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Abstract

Algorithms and models for protein structure analysis

In this work we present several algorithmic approaches designed to help re-
searchers in the study of various orders of protein structure. To facilitate the
study of molecular sequence evolution we present an algorithm for multiple align-
ment of sequence profiles, describe a tool that can be used to study the relation-
ship between residue co-evolution and structure, and a database of structures
modeled based co-evolutionary approach. On the structure side, a new algo-
rithm for knot type assignment in biological molecules is introduced, a database
of linked protein structures is described, and a method of fixing structure mod-
els in a topologically-conscious way is presented. Additionally, folding pathways
of several newly discovered knotted proteins are proposed, and the influence of
coevolution-based interactions of folding simulations discussed.

Algorytmy i modele do analizy struktur białkowych

Niniejsza rozprawa doktorska omawia szereg metod mających zastosowanie w
badaniu białek na wielu płaszczyznach. Pierwszy rozdział wprowadza nowy al-
gorytm pozwalający na określenie typu węzła w biocząsteczkach. Drugi rozdział
poświęcony jest ewolucji sekwencji molekularnych. Na początku opisany jest
nowy algorytm do multiuliniawiania profili sekwencyjnych oraz jego zastosowanie
w badaniu ewolucji białek membranowych zawierających zduplikowane domeny.
Następnie przedstawione jest narzędzie pozwalające na badanie związków między
koewolucją sekwencji (znalezioną poprzez metodę Direct Coupling Analysis), a
strukturą cząsteczki, oraz baza danych struktur wymodelowanych na podstawie
koewolucji sekwencji. Wreszcie przedstawione jest zastosowanie oddziaływań
wskazanych przez koewolucję w symulacjach zwijania białek. Ostatni rozdział
poświęcony jest badaniom nietrywialnych topologicznie struktur białek, poprzez
bazę danych struktur zawierających linki oraz metodę naprawy modeli struktur z
zachowaniem właściwej topologii. Na koniec przedstawione są propozycje ścieżek
zwijania dla nowopoznanych struktur białek z węzłami.
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1
Introduction

Proteins are traditionally described using three aspects, following the flow of
genetic information: sequence, structure, and function. Proteins, also called
polypeptides, are biopolymers – molecules, made up of multiple chained amino

acids. There are 20 standard proteinogenic amino acids, which differ in physical (size,
hydrophobicity, charge) and chemical properties (atomic composition). Each amino
acid can be divided into two parts – the side chain (also called residue, and often used
interchangeably with ”amino acid” when describing a protein), which is distinctive for
every type of amino acid, and the main chain, which is identical for all and through
which amino acids polymerise. The consecutive bonded main chains of amino acids
form the backbone of a protein chain (Fig.1.1).

Sequence of a protein is the order of residues of amino acids that make up its
chain, and is also known as protein’s primary structure. Based on this sequence, and
how different residues interact with each other, the protein folds (either by itself or
with help of other proteins) into its final shape1 – tertiary structure. If more than
one protein chain (not necessarily identical) acting in concert is needed to fulfil its
designated function they can form a complex, which is then the quaternary structure.
Secondary structure, omitted above, are the local structural elements – such as α-helices
and β-sheets – which are the base building blocks of more elaborate three-dimensional

1Here we disregard any folding errors – misfolds – and disordered proteins.
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Figure 1.1: Amino acids polymerise into a protein chain. In the molecular formula the backbone atoms are connected
by blue lines, side chain atoms by green lines.

configurations, known as folds. As the interactions that guide the proper folding of the
protein are the interactions of amino acids that make up its chain, sequence similarity
usually indicates a structural similarity (although the reverse is not necessarily true).

Proteins are usually classified based on their primary, ternary, or quaternary struc-
ture. The most abundant information available, due to its relative ease and cheapness
of obtaining, are the sequences. In general, proteins with similar function, especially if
they share a common ancestry, contain one or more similar domains. This allows the
use of homologues, that is proteins which descend from the same ancestor protein, as
the reference for structure prediction.

This dissertation is focused mainly on proteins, with brief forays into nucleic acids
– RNA and chromatin. To study protein structure we apply a broad range of different
mathematical tools – from topology and knot theory, through statistics and graph
algorithms, up to statistical physics. Figure 1.2 shows a diagram presenting where do
they fit in, in the thesis.

1.1. Protein sequence analysis
Protein sequences provide the most information when studied in comparison with oth-
ers. The order of residues by itself is not yet understood enough to provide much data
beyond some basic hydrophobic/hydrophilic differentiation (although this gives some
intuition about how structurally buried we can expect a given region to be (Callaway,
1994)). Any further characteristics, such as predicted secondary structure elements, or
domain organisation, can only be identified in comparison to already known – extracted
from already known proteins structures – statistics (in case of secondary structure prob-

9
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Figure 1.2: Schematic representation of the overlap between various topics included in this thesis.

ability) or patterns (for domains).

1.1.1. Evolution of positions, and of interacting regions

All the evolutionary diversity of phenotypes, considered both on micro- and macro-
scopic levels, has its roots in just a handful of processes of molecular evolution. Large
scale genomic rearrangements – such as gene duplications – are crucial for new proteins
to be able to emerge. A duplicated gene has more freedom to mutate, and as long as
one of the copies behaves as expected, the other may temporarily (in terms of evolu-
tion) lose or change its functions. However, the actual engine of persistent change2

are the mutations (including insertions and deletions, known together as indels) that
affect single nucleotides. When looking at a single nucleotide in a protein-encoding
gene, changing the base can start a cascade of changes throughout the central dogma
of molecular biology and beyond. If the mutation is not silent – that is the amino acid
encoded by the nucleotide triad that changed will be different – the sequence of the

2Here we only account for mutations to the genome of the organisms – so those that can be passed
on to the offspring.
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protein will change. This can result in a direct loss of function, if e.g. the residue was
important in ligand binding, or a change to the structure which can then impact the
function of the protein or even prohibit correct folding.

>1 GKQ-S-EED

>2 GKQASADED

Edit distance: 3

>1 GKQSEED--

>2 GKQASADED

Edit distance: 5

Figure 1.3: Exemplary alignment: which the lowest possible edit distance (left), same sequences aligned in a suboptimal
way (right).

1.1.2. Sequence alignment

The most straightforward way of comparing two sequences, represented as strings, of
same length is to calculate their percentage identity, or some form of edit distance
(number of positions which differ). Those metrics can be extended to sequences of
different length by finding their ’alignment’ which maximizes the identity/minimizes
the distance. Alignment here is the association of corresponding positions from each
sequence – in practice writing one of the sequences below the others, adding gap sym-
bols signifying indels to one or both, in a way that optimizes the column-wise score
(Fig. 1.3). First step in comparing two sequences is an alignment, which finds corre-
sponding residues between them. Alignments are made to satisfy at least one of the
following criteria (Claverie and Notredame, 2006):

• evolutionary similarity, where aligned residues hail from the same residue in the
ancestral protein;

• structural similarity, where aligned residues are placed in approximately the same
position in the protein structure;

• functional similarity, in which aligned residues fulfil the same role in the function
of the protein.

For related sequences all three criteria are usually highly convergent, but none can be
universally calculated outright from the sequence. Additionally, three sequences with
the same number of conserved positions and pairwise identity percentages may still
differ in similarity. The assumption that some changes between amino acids are more
likely to be successful – or rather mutation between residues with similar properties is
less likely to break the protein – lead to the creation of amino acid scoring matrices
(such as BLOSUM (Henikoff and Henikoff, 1992) and PAM (Dayhoff et al., 1978))
that indicate how favourable is any given change of residues (with no change being
the most favourable, in particular for more peculiar residues). Finding an optimal

11



alignment is a computationally complex task – for two sequences with lengths M and
N it has the time complexity of O(N ×M) and space complexity O(N ×M) (can be
reduced to O(N · max(1, M

log(N)
)) (Arlazarov et al., 1970; Masek and Paterson, 1980),

and O(min(N,M)) (Hirschberg, 1975), respectively). Most popular algorithms for
sequence alignment are based on dynamic programming, and can be further divided
based of their applications (Fig. 1.4):

1. global alignment (e.g. Needleman-Wunsch algorithm (Needleman and Wunsch,
1970)) creates an end-to-end matching between analysed sequences. Can be
used to find differences between overall similar sequences. Resulting alignment
contains full length of input sequences.

2. local alignment (e.g. Smith-Waterman algorithm (Smith et al., 1981)) finds most
similar region(s) of analysed sequences. Typically used to find e.g. shared do-
mains of two proteins.

3. ”glocal” (semi-global) alignments (e.g. (Brudno et al., 2003)) attempt to create
an alignment where at least one start, and one end of a sequence are present (not
necessarily from the same sequence). This is useful when looking for a global
alignment of proteins with vastly different lengths.

A

B

A

B

A

B

A

B

Global Local Glocal

Figure 1.4: Alignment of two protein sequences: (left) global; (middle) local; (right) glocal. Colours indicate regions
of similarity.

Other alignment methods include the dot matrix (Gibbs and McIntyre, 1970), which
is a binary heat map of identity used to find large scale sequence rearrangements, and
k-tuple method which is a sub-optimal solution used for fast database screening. Those
approaches are much less versatile than the algorithms mentioned earlier.

It is possible to generalise the pairwise sequence alignment to encompass a larger
number of sequences, creating a multiple sequence alignment (MSA). However, only
the aforementioned dynamic programming alignment algorithms can be scaled to a
larger number of sequences, and those are matrix based (of the size corresponding to
one sequence in each dimension). As such calculating them for a real life biological data
set is too time-consuming to globally optimise (as it would require creating and finding
an optimal path through an N dimensional matrix of size L, where N is the number
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of sequences and L is the length of a sequence, assuming it is constant for all). As
such, MSAs are commonly calculated using heuristic methods, for example by creating
a guide tree based on pairwise distances between sequences, with each node merging
the sub-alignments created in its children (Sievers and Higgins, 2014) (see Fig. 1.5). It
is worth noting, that usually only global alignment algorithms are used for MSAs, as
it possible that some regions of similarity would be discarded from a local alignment
before they could be used to match some proteins.

>2 GRNAS-EDD

>3 --QAS-EED

>4 G-AAS-EED

>1 GKQASAEED

>5 GSAARAEED

>6 -SNGSA--D

>1 GKQASAEED

>2 GRNASEDD

>3 QASEED

>4 GAASEED

>5 GSAARAEED

>6 SNGSAD

>2 GRNASEDD

>3 QASEED

>4 GAASEED

>1 GKQASAEED

>5 GSAARAEED

>6 SNGSAD

>3 -QASEED

>4 GAASEED

>2 GRNASEDD

>3 --QASEED

>4 G-AASEED

>1 GKQASAEED

>5 GSAARAEED

>2 GRNAS-EDD

>3 --QAS-EED

>4 G-AAS-EED

>1 GKQASAEED

>5 GSAARAEED

Input sequences Distance matrix Multiple sequence alignment with a guide tree

Figure 1.5: Creation of a multiple sequence alignment (MSA) using a guide tree.

Creating an MSA of related, and performing the same function, proteins helps find
the residues, or regions, that are conserved through all, or most, of them. In particular,
such alignment can then be used to create a sequence profile – a position weight matrix
(PWM) resulting from quantitative symbol comparison (Fig. 1.6). Profiles can in turn
be used to quantify a similarity of sequence (implicitly – probability of belonging) to
a given group, and are in fact the basis of assigning single proteins to protein families
(El-Gebali et al., 2018; Finn, 2015). Additionally, profiles (in particular when presented
as a sequence logo – Fig. 1.6) provide an easy insight into the entropy of each position,
which in turn highlights the best conserved sequence motifs.

Another way of representing sequence profiles is through Hidden Markov Models
(HMMs) (Eddy, 1998) – linear state machines, in which there is a match node for
every column of the alignment (for an ungapped alignment; in alignments with gaps the
number of states often can e.g. match the number of columns with less than 50% gaps).
Additionally, to handle comparisons with sequences of different length, there should be
delete states and insert states to handle relative indels. Each match node should have
a set of emission probabilities of generating given symbols, and transition probabilities
to its corresponding insert node, and the next match node and its corresponding delete
node (as the sequence generation is modeled by a Markov process). HMMs can be
trained on a given MSA (e.g. using the Baum-Welch algorithm), and describes the
expected pattern behind the known sequences, instead of just the observed counts
(as is the case for position weight matrices). As such, HMMs are significantly more
sensitive for more remote homology detection (Madera and Gough, 2002).

The most important question to answer which sequence profiles are used is ”How
likely is a given sequence under the model?”, which is used to e.g. to define protein
families. Also, there are residues which are more likely to form specific secondary
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structure elements and motifs, which makes sequence profiles useful also for some basic
structure prediction. Additionally, profiles are much more sensitive than sequences
for an alignment, as it is based on column-wise symbol count comparison, and thus
doesn’t require any specific level of sequence identity to work. However, while there
are algorithms for sequence-profile alignments, and pairwise profile-profile alignments,
there is currently no method for a multiple profile alignment. In Chapter 3 we introduce
a new algorithm that can be used to that end, and describe a phylogenetic analysis
which wouldn’t be possible without such an algorithm.

>1 GATTAA

>2 CATTAA

>3 GACTAC

>4 CAGTCG

>5 CGATGC

MSA PPM PWM Sequence Logo

Figure 1.6: From the left: A multiple sequence alignment (MSA) of DNA sequences, corresponding position proba-
bility matrix (PWM), position weight matrix (PWM) with no pseudocounts, and sequence logo, which shows bits of
information added by each symbol at a given position (Crooks et al., 2004; Schneider and Stephens, 1990).

1.1.3. Sequence-based methods for structure prediction

Protein sequences are much easier and cheaper to discover experimentally, as com-
pared to structures – currently there are more than 150 million sequences deposited in
the UniProt (Consortium, 2018) database, three orders of magnitude more than pro-
tein structures deposited in the largest structural database – Research Collaboratory
for Structural Bioinformatics Protein Data Bank (RCSB PDB)(Berman et al., 2000).
However, sequence alone does not provide full overview of the intricacies of a protein.
This makes sequence-based structure prediction particularly important. Structure pre-
diction methods can be divided into two main approaches:

• comparative modeling, which uses a known 3D structure as a guide. When avail-
able, a structure of a homologous protein is taken as a reference, or, for unrelated
proteins, a ”threading” of a protein chain in question is attempted in order to
recognise a similar fold;

• de novo modeling, in which a model is composed either from shown structural
fragments known to form from given sequence fragments, a folding simulation is
attempted to minimise the energy of a model based on physico-chemical proper-
ties of amino acids, or a model fitting some specified contact list is sought (e.g.
with contacts found using co-evolutionary methods described below).
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Chapter 4 describes GapRepairer – a webserver which uses comparative modeling
for a topologically conscious repair of 3D structure coordinates.

1.1.4. Sequence co-evolution

The expanse of the protein sequence space (which for any given length N is 20N , with
20 being the number of standard proteinogenic amino acids) is far, far greater than
actually visited by the evolution regions of functional sequence space (Salisbury, 1969).
This highlights how ”easy” it is for a protein to mutate and ”fall out” from those safe
havens. One of the mechanisms that allow proteins sequences to change significantly
without losing their function are the compensating or correlated mutations (Taylor
and Hatrick, 1994). Change of one residue can severely impact the protein, however if
another one mutates to ”pick up to slack”, either by taking its place in some interaction
or e.g. making space to accommodate different side chain (Fig. 1.7), those mutations
have a chance to live on. As potential problems associated with sequence mutations
are exhibited in structural mishaps, the compensatory mutation should happen close
by in terms of spatial proximity. From that we can surmise that if a pair of positions
appear to mutate in concert throughout a family of proteins, they are in some sort of
contact in the structure.

His Ala
Single mutation

His Leu

Correlated mutations

Ala Leu

Figure 1.7: An example of a compensating mutation which allows the structure to stay unchanged.

Multiple sequence alignments containing a large set of related sequences can be a
source of data for correlation of some positions in the structure, as columns of the
alignment should represent evolutionarily linked (in the best case – descendent from
the same residue in the ancestral protein) amino acids. Statistical correlation methods
(such as Mutual Information (Altschuh et al., 1987; Göbel et al., 1994)) have been
used to predict some properties of proteins structures based on MSAs, but more so-
phisticated approaches have proven to be more discerning of accidental correlations.
In particular, a group of methods collected under an umbrella term Direct Coupling
Analysis (Morcos et al., 2011; Weigt et al., 2009) have been successfully applied to both
protein and RNA structures by disentangling direct correlations from those arising from
dependencies on the rest of the sequence.
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Chapter 3 goes into more detail on applications of DCA to protein research: Sec-
tion 3.3.2 presents a tool for easy exploration of DI values in regards to a known struc-
ture, Section 3.3.3 describes a database of protein structures modeled based on DCA
scores, Section 3.3.4 shows how introduction of DCA-found interactions can facilitate
protein folding simulations.

1.2. New order of structure – topology
In 1994 Marc L. Mansfield described a knot-like entanglement he had found in some
protein structures, with the ”most knotted” that of a human enzyme – carbonic an-
hydrase (Mansfield, 1994). While he assumed this, very shallow, with one terminus
barely passing through a large loop, knotting to be insignificant and a random oc-
currence caused by thermal fluctuations, he has thus introduced a new descriptor for
protein structures. One based on mathematical topology, and as such not fully falling
into any of the traditional orders of protein structure – particularly since some of the
entanglements found since then are link-like, and so can be defined on a set of protein
chains. Next subsections give a brief introduction to mathematical knot theory, and
how it was adapted and used for biological molecules. Chapter 2 introduces an im-
proved algorithm for detection and identification of protein entanglements. Chapter 4
describes the creation of some of the online resources which present or use topology of
proteins.

1.2.1. Knots in biology

Finding knot-like structures in biological molecules is a non-trivial task – most of
the polymers found in biology are open chains, and not closed curves as expected
by the mathematical knot definition (descriptions of the strengths and weaknesses
of particular knot recognition methods, in particular relating to their application to
biomolecules, can be found in Chapter 2). Thus, in general, when a phrase ”protein
knot” appears, the implicit idea is of a ”common sense” knot, as one would find on a
string – a structure in which pulling on both ends would not result in a straight line.
One notable exception are DNA molecules which can be circular, such as plasmids,
and can actually be rather easily knotted and unknotted by topoisomerases (enzymes
which sole function is allowing the DNA chain to pass through itself). As such, the
circular DNA knots and links have been known and studied for the last four decades
(Macgregor and Vlad, 1972; Sumners, 1995).

Much more complex topic are knots on open biological polymers – such as pro-
teins, RNA, and chromatin (open DNA chains). Finding them necessitates a more
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lax approach to the mathematical definition, as the curve of the backbones of those
molecules must be closed first, to allow the use of tools of knot theory. Typical ap-
proach consists of virtually elongating the termini multiple times in random directions,
connecting them on a surface of a large sphere around the structure, and calculating
the knot type of each resulting closed chain separately. This gives a probability score
to each knot type found (an unknot score for Mansfield (Mansfield, 1994)), with the
40% probability cut-off often used to determine the actual presence of a knot (Jamroz
et al., 2014).

The most interesting – due to the most diverse nature of chain elements – appear
to be proteins. While it can be easily shown, that collapsing a long chain will usually
lead to an entangled structure (Levitt, 1976; Némethy and Scheraga, 1977; Skolnick
and Kolinski, 1991; Chan and Dill, 1993) and this will in fact represent the most
advantageous packing of the polymer, protein folding have been long thought to elude
this tendency (Bryant et al., 1974). While folding is generally thought to be guided
by hydrophobic collapse, various interactions (both attractive and repulsive) between
amino acids that make up the protein chain complicate this process – in particular, a
lack of reptative motions of the chain is expected (as the protein chain is not a smooth
one). Because of this, the knotting should happen close to its native position in the
structure – giving the protein entanglements another possible classifier: their depth.
This depth is defined as the minimum number of residues have to be removed from
either end of the chain to untangle it. An often complimentary quantity is ”tightness”
of a knot, which describes how long is the knot core – minimal knotted fragment of a
structure.

Due to the fact that the entanglement cannot slide along the protein chain, the
rate limiting step in formation of a knot-like structure is assumed to be the piercing
of the loop. Consequently, all the protein entanglements found to date correspond to
knots which can be made by just a single passing of the chain through a (potentially
multiple times) twisted loop (Sułkowska et al., 2012b; Taylor, 2007). For example –
while a 52 knot-like structure can be found in a family of deubiquitinases, there are no
known structures similar to the 51 knot (see Fig. 2.2).

In the years following Mansfield’s discovery of a shallowly knotted anhydrase, the
number of knotted protein structures increased significantly, starting with the discovery
of first deeply knotted protein by Taylor in 2000 (Taylor, 2000). To date, entanglements
have been found in approximately 1% of known protein structures, with the simplest
non-trivial knot (31) being the most common (Jarmolinska et al., 2019a). The largest
family of knotted proteins are the SPOUT methyltransferases (Tkaczuk et al., 2007;
Lim et al., 2003). It is important to note, that entanglements appear to run in the
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family (Sułkowska et al., 2012b) – the only known example of a protein family with
members differing in topology are the ATCase/OTCases, which groups two related en-
zymes: aspartate (knotted) and ornithine (trivial) carbamoylotransferases. Entangle-
ment often coincides with the active site (Tkaczuk et al., 2007), but its actual function
remains unknown – if there even is a one common denominator of protein knotting.
Entanglement has also been linked to increased stability of a protein – both in terms
of environmental influences (such as high temperatures) and intracellular degradation
machinery (Mallam et al., 2010), as well as mechanical resistance (Sułkowska et al.,
2008; Sriramoju et al., 2018). Some studies (Mallam et al., 2008) have shown that
entangling the chain is a rate limiting step in folding (including, due to high potential
of errors) – and thus can be involved in metabolic regulation, with knotted proteins,
slower to fold and slower to degrade, having a lower turnover. The most complex pro-
tein knot found to date is the Stevedore (61) knot in a bacterial haloacid dehalogenase
(Bölinger et al., 2010).

Knotted proteins can be found in organisms from all branches of the Tree of Life,
and in molecules with vastly different functions – from enzymes (including mitochon-
drial ones), through membrane proteins, up to ribosomal subunits (Jarmolinska et al.,
2019a). Knots themselves vary in tightness – from cores of less than 50, up to almost
500 residues – and depth – from shallow knots, with tails made up of a few residues,
to a bacterial protein which has a whole domain on each of the knot’s tails.

Other types of entanglements which can be found on the backbone trace of a protein
(Fig. 1.8) include ”slipknots” (where the twisted loop was pierced through another loop
– thus only a subchain of the protein is knotted) and links (which are again an open
chain variation on the mathematical topology). Both have been found and classified
by methods similar to those employed in search of protein knots, either by applying
them to fragments of the chain, or multiple interacting chains (Jamroz et al., 2014;
Dabrowski-Tumanski et al., 2016a).

Chapter 4 explores in more detail the diversity of entangled proteins – Section 4.1.1
presents a database of protein structures containing links, Section 4.3 describes possible
folding pathways for some of the newly discovered knotted protein structures.

In case of RNA molecules, screening of the RCSB Protein Data Bank has found
only a handful of entangled structures (Micheletti et al., 2015), however none have held
up to closer scrutiny – they appeared to be structure determination errors due to low
resolution, as all their homologues were found to be unknotted.

One of the challenges not yet overcome by structural biology is the structure of
chromatin (Mirny, 2011). Compared with proteins, packed chromosomes are about
two orders of magnitude larger, comparatively much more densely packed, and on the
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A

B

Figure 1.8: Structure, topology sketch and a simplified topology skech of: (A) a knotted protein (PDB Id 4rlv chain
A); (B) a slipknotted protein (PDB Id 2j85 chain A); (C) a linked protein (PDB Id 5nt2 chains D and E). Structure
visualisations made using PyMOL.

whole don’t have a stable conformation. All of the above make traditional methods of
structural biology unsuitable for chromatin. Currently, the most successful studies in-
volve 3D models based on contact matrices obtained from Hi-C experiments (Stevens
et al., 2017). Studying the topology of the chain can be an important resource in
verification of the structures (as excessively entangled chromosomes would prove dif-
ficult for the cell to separate during division), or could provide unexpected insights
into the packing of biomolecules (as simple polymers do tend to entangle when col-
lapsed). Recently proposed models of mouse chromosomes (Stevens et al., 2017) have
been found (Sulkowska et al., 2018) to contain composite knots, which would be a first
in biomolecular topology.

Knot_pull algorithm, presented in Chapter 2, provides the first biomolecular tool
for deterministic detection of such structures.
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1.3. Our contributions
In this thesis we present our contributions to the field of protein science. For the
research into the molecular evolution of proteins sequences, we introduce the first
multiple profile alignment algorithm, and use it in the first study into the evolution
of slipknotted topology in membrane proteins. We give describe several approaches to
studying the relationship between structure and sequence co-evolution. For the study
of protein topology we introduce new algorithms for structure simplification and knot
type assignment. Finally, we present a database of proteins with linked chains, a server
for topologically-conscious repair of structure models, and propose folding pathways
for several newly discovered knotted proteins.
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Agacie, bez której nie powstałaby nawet molekuła tej pracy.



Głupcy wiążą węzły. Mędrcy je rozwiązują.

Mądrość ze zrywanego kalendarza dla gospodyń
domowych

We may be unable to define a knot in an open
path, but we know one when we see it.

Marc L. Mansfield, paraphrasing Justice Potter
Steward

2
Detection of knot-like folds in biological

molecules

By mathematical definition, knots are closed curves in a 3 dimensional space.
Because of that, most biological molecules1 can never be described as mathe-
matically knotted – as the examples of closed backbones of biomolecular chains

are few and far between (the only naturally occurring example of cyclic peptides are
cyclosporins). Even disregarding the openness of the chain, even a very entangled curve
is always isomorphic to a straight, unknotted line. However, this approach disregards
the complexity of interactions that must be involved in knotting e.g. a protein.

To this end we can consider ”common-sense” knots – chains where one of the ends
pierces through a twisted loop. These, while possibly less interesting from the mathe-
matical point of view, have nonetheless real consequences for the molecule in question.
In Chapter 4 we describe different web servers and databases of knotted proteins and
chromatin models, all of which follow the methodology introduced in first papers on
knotted proteins (Mansfield, 1994; Taylor, 2000). This chapter is dedicated to a new
algorithm we designed for recognising the topology of open polymers. Implementation
is available on GitHub (http://github.com/dzarmola/knot_pull).

Chapter is divided into following sections:
1with the notable exception of circular DNA, which is known to be mathematically knotted
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1. Knots in knot theory, a short introduction into the mathematical study of knots;

2. Knot type assignment, which details the application of Dowker-Thisthelthwaite
code to knot recognition, and an algorithm for its reduction;

3. Smoothing the chain, which describes an algorithm for topologically-conscious
reduction of 3D coordinates of a polymer, as well as its application for link
detection;

4. Validation of results, which contains the comparison of the topology assessment
using knot_pull with available resources on biomolecular entanglements.

Knot_pull is a new tool for analysing the topology in open chains – such as proteins,
RNA and DNA (chromatin). It was designed to bypass some of the particularities of
currently used methods.

Presently, most software (Tubiana et al., 2018; Lua, 2012; Jamroz et al., 2014) uses
the same basic approach:

1. smoothing (simplification) of the chain, to get a curve with the same overall
topology, but less crossings in a plane projection;

2. closing the curve on the surface of a large (implicitly – infinite) sphere surrounding
the structure – this step can be error prone, as the closures could add additional
entanglement to the chain. Thus such closure is usually repeated multiple times,
to lessen the impact of occasionally erroneous path.

3. Closed chain is projected on a plane, and a knot invariant (e.g. Alexander poly-
nomial (Alexander, 1928), or HOMFLY-PT polynomial (Section 2.0.1, Equa-
tion 2.1)) is calculated. For multiple closures this gives a probability that the
structure contains a given type of a knot.

2.0.1. Knot theory

Mathematically, knots are embeddings of a closed curve (simply put, a circle) in three
dimensional Euclidean space. Knots can be classified according to their complexity,
expressed as the number of crossings (or double points) in their projection on a surface
(a diagram).

Definition 1 (Link diagram). An orthogonal projection of a knot or link into a plane
that contains a finite number of multiple points (double points with transverse crossing),
gives a link diagram D – an undirected labeled planar graph, which satisfies following
conditions:
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1. loops are connected components with no vertices (thus disconnected from the rest
of the graph);

2. both ends of a non-loop edge lead to one vertex each (possibly the same one), and
both are labeled as undercrossing or overcrossing in corresponding vertex;

3. there are two overcrossing, and two undercrossing, incident edges leading to each
vertex, and their cyclic ordering alternates under- and overcrossings.

A knot diagram is a link diagram with only one connected component. Vertices of a
link diagram are called crossings.

To simplify matters all knots which are isomorphic, that is can be twisted into
one another without the ”strings” that make them up passing through themselves, are
classified according to the minimal number of crossings they can be morphed to contain
(Fig. 2.1). The simplest knot, also called an unknot, is a circle which does not contain
any crossings. Next in order of complexity is a trefoil (a 31 knot in the most common,
Alexander-Briggs (Alexander, 1928), notation) with three crossings. For 5 and more
crossings there exist multiple non-isomorphic knots with this number of crossings, and
they are differentiated through a lower index.

A B

Figure 2.1: A. Exemplary knot diagram isomorphic to an unknot. B. Exemplary knot diagram isomorphic to a trefoil
knot.

A collection of non-intersecting, but potentially linked together chains is called
a link. Two (or more) oriented knots can be summed by connecting their planar
projections by straight bars in such a way that their orientation is preserved. This
connected sum (Rolfsen, 1976), for non-trivial knots, is called a composite knot, and
allows the definition of prime knots – knots that cannot be decomposed into non-trivial
simpler knots. As an example – there are three possible non-equivalent prime knots
with six crossings, and two non-equivalent composite knots with the same number of
crossings (a sum of two trefoil knots). Knot tabulations, which are used to classify and
relate different knot notations, usually include only prime knots.

First knot tabulation has been attempted by Peter Tait in 19th century and con-
tained mostly alternating knots – knots in which diagrams consecutive crossings along
the chain alternate in orientation (going over/under).
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An interesting, in terms of the process of entangling, group of knots are twist knots.
They are obtained by joining the ends of a twisted loop (with one of the ends passing
through the surface of the loop) – i.e. creation of a twisted knot on a string needs only
one ”threading action” performed by one of the ends. A half-twisted loop results in a
31 knot, then adding consecutive half-twists yields a 41, 52, 61 etc (Fig. 2.2).

31 41
52 61

+ half twist + half twist + half twist

Figure 2.2: Twist knots are knots that can be made with just one threading through a twisted loop.

Additional characteristic that can be used to differentiate knots for which a direction
of the curve has been specified is chirality. It is usually symbolised by a + or − sign in
the notation, and separates mirror images of a knot. However, some of the knots are
achiral (e.g. 41 knot).

A B

C D

Figure 2.3: Examples of mathematical knots and their Alexander-Briggs notation. (A) The trivial knot – an unknot.
(B) Knots which analogues have been found in proteins (with 3, 4, 5 and 6 crossings). (C) A knot with 5 crossings for
which no protein analogues have been found. (D) A composite knot – made up of two prime (in this case both with 3
crossings) knots.

Usually knots are recognised through knot invariants. Simply put, a knot invari-
ant is any quantity which can be defined for any knot, and is the same for equivalent
(i.e. isomorphic) knots. However, it is important to note that the reverse does not
hold – that is dissimilar knots can have the same invariant (e.g. in case of Alexander
polynomial a prime, 8-crossing knot as the same invariant as a composite 6-crossing
knot). Most commonly used knot invariants are knot polynomials (Alexander, 1928),
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which are computed on a given knot diagram (although the choice of a diagram is
irrelevant, as per the definition of the invariant). Examples include Alexander polyno-
mial (Alexander, 1928), Jones polynomial (Jones, 1985) and HOMFLY-PT polynomial
(Freyd et al., 1990)(the last one used also for links). Polynomial coefficients are calcu-
lated through manipulation of crossing directions (e.g. using skein relations), and, as
invariants, encode some properties of a knot.

The HOMFLY-PT polynomial is a generalisation of the Alexander and Jones poly-
nomials, and can be transformed into both given appropriate substitutions. The poly-
nomial is defined using skein relations (Fig. 2.4), which give a linear relation between
knot polynomial values for links which differ by one crossing (skein relations are suffi-
cient to calculate Alexander and Jones polynomials just by recursion).

L+ L0 L-

Figure 2.4: Skein relationship can be defined for three link diagrams differing in one crossing. Each diagram should
have the crossing in question in different configuration, possible crossing diagrams are shown.

With link diagrams L−, L+, L0 as pictured in Fig. 2.4, the HOMFLY-PT polynomial
can be defined as follows:

PU(l,m) = 1 (2.1)

lPL+
(l,m) + l−1PL

−

(l,m) +mPL0
(l,m) = 0,

where U is an unknot, and l and m are polynomial coefficients used to distinguish the
invariants of different knots. Some main properties of this polynomial include:

• HOMFLY-PT polynomial of a composite knot is the product of polynomials of
its components;

• HOMFLY-PT polynomial can be used to distinguish two knots of different chi-
rality, as PK(l,m) = PMirror image(K)(l

−1,m)

An example of a knot notation which, when properly simplified, gives the actual
number of crossings is the Dowker (also called Dowker-Thistlethwaite – DT) code (an
improvement on the Tait code) (Dowker and Thistlethwaite, 1983). To obtain this

28



notation for a surface projection of a knot, we start at some arbitrary point of the
curve and while moving along the string we number each crossing that we pass. For
a proper knot when we get back to the starting point each crossing should be labeled
by two values – one odd and one even (Fig. 2.5). To also take into account chirality
of the structure, the crossings can be additionally marked to indicate whether we pass
under or over the second line when crossing (which is indicated by a minus sign next to
the even value if we add it when going over). The notation can then be shortened, by
sorting the label pairs according to the odd value – final order (and positive/negative
sign) of the even numbers indicate the knot type. However, it should be noted that
this is not an invariant – as one knot diagram can have multiple different notations.

1

2

-43

2,5

3,8

1,6
-4,7 1  3  5  7

6  8  2 -4

Dowker-Thistlethwaite
 code

 41 knot

1

Figure 2.5: Dowker-Thistlethwaite code annotation of a 41 knot diagram.

2.1. Knot type assignment
The most problematic step is the selection of a closing path, as due to the diverse
packing of molecular structures selection of universally minimally interfering closure is
non-trivial (Tubiana et al., 2018). However, polynomial based knot detection makes
this step mandatory, as the polynomials are only properly defined for closed curves.
Knot_pull bypasses this hurdle, by using the Dowker-Thistlethwaithe (DT) code for
topology assignment.

By definition, DT code is assigned based on the plane projection of a 3D structure,
as follows: starting from an arbitrary point on the curve, follow the chain (in, again,
an arbitrary direction) until you get back to the starting point. Along the way, num-
ber all crossings as you pass them, noting whether you were going over or under the
crossing. When this is finished, all crossings should be annotated with two numbers
(corresponding to two chain segments making up each crossings), one of them marked
as going on top of the other. Additionally, it was shown in (Dowker and Thistlethwaite,
1983) that in a properly created code one of the numbers in each crossing will be odd,
and one even. This notation is not a widely used one in knot theory, as it cannot be
used as a knot invariant. Due to the flexibility of the starting point and movement
direction selection, same knot can have different codes. This however can be seen as
a source of additional information when studying open polymers, as the starting point
(the N terminus) and direction are encoded in the structure of a protein. This in turn
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makes it easier to differentiate structures with different realisations of a given knot
type (see Fig. 2.6). Additional advantage of using the Dowker-Thistlethwaite notation
is that the code for a closed chain is the same as the code for an open chain with the
break in the corresponding starting point. As a result, the code assigned to the open
chain can be said to represent a closed chain, with the implicit closing path that does
not contribute any crossings. If no such path is possible, the resulting code will be
incorrect (that is there will be crossings with two numbers of the same parity) – which
indicates that a different plane projection should be used.

8  6  10  2  4

-6 -8 -10 -4 -2

Figure 2.6: Different realisations of an open chain 5 crossings knot (analogous to the 52 knot) with their Dowker-
Thistlethwaite code. Removing (inverting) the crossing indicated by a blue circle leads to: (left) a 3 crossings knot;
(right) an unknot.

On the contrary to knot polynomials, DT code describes a particular projection
– even with the same starting point and direction, adding a twist to the chain will
result in a change in notation. Since this in principle results in an infinite number of
descriptions for a given knot type, knot_pull calculates the shortest DT code. This is
done by through a series of code reductions based on the Reidemeister moves of the
chain (which have been shown to be sufficient to relate knot diagrams with the same
knot type (Reidemeister, 1927)).

First, let us define the DT code as a list of N crossings DT = {C1, C2, C3, ..., CN},
each crossing Ci comprised of two values Ci.a, Ci.b. Then the potential notation sim-
plifying modifications can be found as follows:

1. Reidemeister move type I – untwisting:

• a simple loop (a crossing annotated with two consecutive values |Ci.a −

Ci.b| = 1) can be removed with no influence on the rest of the structure
(Figure 2.7 A)

• when another segment passes through a simple loop (|Ci.a−Cj.b| = 2;Ci.a <

{Cj.a, Ck.a} < Ci.b and the chain goes sequentially through Ci and Cj on
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the same side (over/under), different than through Ck) the twisted crossing
can be removed but the order of ”internal” crossings along the strike-through
segment must be reversed (Figure 2.7 B);

2. Reidemeister move type II – moving a loop from over/under another:

• if two crossings are consecutive twice (|Ci.a− Cj.a| = 1 ∧ |Ci.a− Cj.b| = 1,
and consecutive values are both/neither marked as going on top) they can
be removed (Figure 2.7 C)

• if the chain has the same overhandedness in two consecutive (along one
value) crossings, they can possibly be replaced by one new crossing – this
is verified by trying to find a second value (first being one of those consec-
utive) that would give a valid DT code – if no such value can be found, no
simplification is made (Figure 2.7 D);

3. Reidemeister move type III – moving a segment completely over/under another
crossing: this is the only move implemented which does not explicitly simplify
the code, however it is attempted when no further simplification can be made
(on condition that it will give a code not yet encountered).

B C DA

Figure 2.7: Visualisation of code simplifying moves implemented. (A,B): based on Reidemeister move Type I. (C,D):
based on Reidemeister move Type II.

Lemma 1. Let N be the initial number of crossings. If the third Reidemeister move
is not attempted, then the time complexity of the Dowker-Thistlethwaite code reduction
scheme introduced here is O(N2).

Proof. In each pass of the reducing loop, we iterate over each crossing to check if it
can be somehow reduced, which gives the outer N term. This loop will be run up to N

times (inner N term), with at least one crossing removed in each pass, until no further
simplification can be made. ■

The third Reidemeister move is used if after simplifications any crossings remain,
then all the segments which can be safely (without introducing additional crossings)

31



passed over/under a crossing are moved one by one until the chain can be simplified
further, or all configurations with different DT code have been explored (combinator-
ically at most N !, however this number would be never explored, as most are quickly
reducible).

Problem 1 (Unknotting problem). Given a link diagram D, is D a knot diagram
representing a trivial knot?

Remark. Determining if the knot diagram represents an unknot has been shown to be
in co-NP class (Lackenby, 2016) and (Hass et al., 1999) gives it a tighter bound of being
in the NP class and time complexity O(exp(cn2)) for a diagram D with n crossings,
and some constant c, and space complexity O(n2 log(n)). In terms of unknotting by
Reidemeister moves, it has been shown that the number of moves required to reduce a
diagram of an unknot is at most polynomial (Lackenby, 2015), hence one approach to
determining the unknottedness of a diagram is by going through all possible Reidemeister
moves sequences, however that would require an exponential time.

It should also be noted, that the algorithm presented here doesn’t guarantee that an
unknot would be fully reduced, as the number of crossings is required to either lessen
or remain the same in each loop pass, however there are known unknot diagrams which
cannot be reduced without at some point increasing the number of crossings (Henrich
and Kauffman, 2014). However, in the protein structures test set no such diagram was
encountered. Similarly, the third Reidemeister move either wasn’t used, or at most one
segment-crossing pair was explored (and in significantly less than 1% of structures).

2.1.1. Finding a valid Dowker-Thistlethwaite code

As mentioned before, we can check if the projection of our structure on the plane (which
corresponds to drawing a knot diagram) is a good representation of the topology, by
checking the validity of its DT code (that is if all crossings are annotated by one odd
and one even number). We do this by rotating the structure around its y-axis until the
proper code is found (Equation 2.2), or the full rotation was completed – and then we
change the coordinates of each bead Bi = {x, y, z} to B′

i = {y, z, x}.
For each bead Bi = {x, y, z} the coordinates are rotated around the y-axis by angle

θ to get the new coordinates B′
i as follows:

x′ = x · cos θ − z · sin θ

z′ = z · cos θ + x · sin θ (2.2)

B′
i = {x

′, y, z′}.
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2.2. Smoothing the chain
Dowker-Thistlethwaite code reduction scheme described above could be applied to a
projection of molecular backbone without any smoothing, but this would be compu-
tationally expensive and finding a valid (resulting in a proper code) projection, non-
trivial. To simplify knot detection, the first step in the knot_pull workflow is the
structure smoothing. This is done in a manner similar to the one described in (Taylor,
2000), with the topology conservation ensured by the triangle crossing condition intro-
duced in (Koniaris and Muthukumar, 1991). Smoothing algorithm used (Algorithm 1)
introduces additional breakpoints on the chain, which facilitates the collapse of the
structure around the entanglements. This in turn both makes the termini of the chain
protrude more, which makes finding a valid projection easier.

Algorithm 1 Smoothing algorithm for a sequence of 3D coordinates
INPUT: a doubly linked list of beads atoms
OUTPUT: a shorter doubly linked list of beads

function smooth (atoms)
while bead removed or moved by > 0.05Å do

for each Bi in atoms do
if less than two beads remain till end of chain then

process Bi+1

if no chain segment crosses △(Bi, Bi+1, Bi+2) then
if [Bi, Bi+2] > 4Å then

move Bi+1 to the avg(Bi, Bi+2)

process Bi+1

else
remove Bi+1

process Bi

else
if [Bi, Bi+1] > 4Å then

insert new bead Bi+1/2 at avg(Bi, Bi+2)

process Bi+1/2

Remark. The time complexity of Algorithm 1 largely depends on the structure. Each
smoothing step has a complexity of O(n2), where n is the number of coordinates, however
number of steps depends on a number of characteristics of the shape analysed, such as
oblateness, and its ratio of length to the radius of gyration (how tightly packed is it).
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To the best of our knowledge there are no studies into the time complexity of structure
smoothing algorithms on biological data. In our simulations, the number of smoothing
steps required was influenced the most by:

• proportion of coordinates not colinear with the line connecting the two termini;

• whether the main axis of the structure was roughly colinear with the line between
two termini, or if it was curved.

We run simulations on straight (Fig. 2.8 upper row) and curved (Fig. 2.8 lower
row) helices of different lengths with with radius A ∈ 1, ..10 units and slope K/A

where K ∈ 1/10..1/2+1...10 units. Straight helices were generated with n ∈ {10, 120}

coordinates using the equations (with unit equal to 1):

∀i ∈ {1, ..., n} x(i) = A cos(i)

y(i) = A sin(i) (2.3)

z(i) = Ki,

for curved helices the y coordinate was changed to

y(i) = A sin(i) + (i if i < n

2
, n− i otherwise )

Plots of the number of steps required for smoothing the initial n coordinates to
just two points are shown in Figure 2.8. As can be seen there, for straight helices
the number of steps in most cases either converges with length to a constant becomes
regular in function of the slope. However, for curved helices, except in a small number
of cases where the shape of a helix allowed for a very regular placement of beads,
the number appears to constantly increase, which can be explained by the increasing
deviation from the axis joining the termini.

Running times for a test set of real biological data (protein chains from the PDB
database) are shown in Figure 2.9.

Additional advantage of collapsing the structure, instead of just simplifying it, is
that it is centred on the entanglement. Which means, that for composite knots, each
of the prime knots within, if they are separated on the chain, will collapse indepen-
dently (example shown in Fig. 2.10). They can then be easily identified, by separating
the structures into non-trivial fragments which cannot be simplified even when discon-
nected.

Algorithm 2 disconnects the continuous chain into two substructures in the mid-
dle of each chain segment separately. Each of the substructures is then smoothed
separately. If this additional smoothing didn’t change the coordinates of neither sub-
structure, they are a potential decomposition of the structure into prime knots (or
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Figure 2.8: Number of smoothing steps required to reduce a helix to a two straight line connecting the two termini.
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Figure 2.9: Running times for smoothing an unknotted protein chain by the length of the chain (a random subset of
50 000 protein chains from the RCSB PDB).

unknots). The algorithm for identifying linked chains in a structure is analogous, with
the only difference being that the division into substructures is only done to separate
the whole chains.

Algorithm 2 Detecting composite knots on a chain
INPUT: a doubly linked list of beads after smoothing atoms
OUTPUT: a list of disconnected sub-lists of beads subchains

edges is a list of beads preceding any edge that separates sub-entanglements
for each Bi in atoms do

midpoint = avg(Bi, Bi+1)

if smooth(atoms) is the same as smooth(atoms to midpoint) + smooth(atoms
from midpoint) then

add Bi to edges

for each Bi in atoms do
if Bi...Bi+k for k >= 4 not in edges then

add list Bi...Bi+k to subchains
process Bi+k+1

else
process Bi+1

2.2.1. Link detection

Knot_pull does not currently recognise different types of inter-chain links, but it does
detect if there is a link (Fig. 2.11). Usually, links in proteins (in which each protein chain
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Figure 2.10: Collapsing the structure of a model of a mouse chromosome reveals three consecutive knot-like folds
(from the N terminus – blue): 31, 51 and a composite 31#31.

is one link component) are detected in a manner which is an extension of the polynomial
based knot detection – that is each chain is separately, and through random path
closed, and the linking of so closed chains is calculated. This is an error-prone method,
as the large loops used as closing paths (passing on a surface of an implicitly infinite
sphere) are advantageous in reducing the number of crossings in single component
knot diagrams, but counterproductive for links, as the probability of artificial linking
between such loops increases. Knot_pull bypasses this limitation by again disregarding
any closing – links are present when presence of one chain hampers the smoothing of
another. This is checked in a manner similar to sub-entanglement detection. If after the
smoothing of the whole structure finishes it is possible to further simplify the chains
by considering them separately, they are linked. However, depending on the exact
definition of a protein link (chains wrapped around each other vs. fragment of a chain
passing through another), this approach can yield some false positives, as two crescent
shaped structures interlocked would be marked as linked.

2.3. Topology preservation while smoothing
In any polymer smoothing algorithm, the crucial part is how to ensure that the topology
will not be changed, that is, that the chain will not pass through itself. In knot_pull
this is ensured by checking that no segment of the chain passes through the implicit
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Figure 2.11: Chains found by knot_pull as linked.

path of the fragment that is smoothed (Figure 2.12).

A

B

E

Figure 2.12: Obstacle for smoothing. Segment between beads D and E crosses through the surface spanning between
beads A, B and C, thus preventing the smoothing algorithm from moving bead B to the coordinates B’.

For a chain made up of a sequence ofN beads (3D coordinates)B = {B1, B2, ..., BN},
the obstacles are found as follows: for a triangle △(Bi, Bj, Bk), where i + 1 = j and
j + 1 = k, all chain segments connecting beads [Ba, Bb], where a + 1 = b and (b ≤

i−1 or k+1 ≤ a) are checked. First, we check if either Ba and Bb lay on the surface of
the triangle by finding their projection on its surface (Heidrich, 2005), and calculating
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its distance from the original point. For a point Bx, this is done as follows

u⃗ = Bj − Bi

v⃗ = Bk − Bi

n⃗ = u⃗× v⃗

w⃗ = Bx − Bi (2.4)

γ = [u⃗× w⃗ · n⃗]/n⃗2

β = [w⃗ × v⃗ · n⃗]/n⃗2

α = 1− γ − β

B′
x = αBi + βBj + γBk,

whereB′
x are the coordinates of aBx projection on the plane spanned on the△(Bi, Bj, Bk).

If 0 ≤ {α, β, γ} ≤ 1, B′
x lays within the triangle. Now, if Bx = B′

x (or |Bx−B′
x| < ϵ to

correct for a possible numerical error), Bx lays within the triangle and is an obstacle
in smoothing.

If no obstacle was found yet, we check the segment [Ba, Bb] by finding the intersec-
tion between this segment and the plane on which lays △(Bi, Bj, Bk). Normal is the
cross product of two edges of the triangle:

u⃗ = Bj − Bi

v⃗ = Bk − Bi (2.5)

n⃗ = u⃗× v⃗,

from which we can get a 4D vector of the plane N⃗ = {a, b, c, d}, where n⃗ = {a, b, c}

and
d =

∑

{(n⃗ · Bi)} · −1.

With x⃗ = Bb − Ba corresponding to the checked segment, we check if the plane and
the line on which lays x⃗ intersect (are not parallel): if

n⃗ · x ̸= 0,

the point of intersection exists, and we can calculate it as:

p⃗ = n⃗ ·
d

N⃗ · N⃗

w⃗ = Ba − p⃗

pos = −1 ·
n⃗ · w⃗

n⃗ · x
(2.6)

u⃗′ = u⃗ · pos

I⃗ = Ba + u⃗,
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where I⃗ is the intersection between the line and the plane, and pos indicates where on
the vector [Ba, Bb] it lays – it belongs to the segment only if 0 ≤ pos ≤ 1. Now we can
check if point I⃗ lays within the triangle using Equation 2.4.

2.4. Validation of results
Knot_pull was tested against the KnotProt database (Jamroz et al., 2014), which is
hand curated. All the chains annotated in the database as knotted (1054 in total)
have been found to return the same knot type for the full chain (disregarding the
chirality, as it is not returned by knot_pull). For 503 slipknotted chains there were
3 cases where knot_pull reported a knot instead of the (expected) unknot – all three
structures actually contain an (albeit very shallow) knot. Additionally, over 94% of
those structures were reduced to only 2 points during smoothing. From chains reported
by KnotProt as trivial, 65000 were randomly selected and tested, and all of them
reduced to 2 points after smoothing, except for seven structures which actually contain
knots (Table 2.1), and one which by homology should be knotted, but was calculated
as an unknot due to a gap in the structure (PDB Id 4kjs chain A). Testing available
RNA structures confirmed results of (Micheletti et al., 2015), with only the structures
reported there exhibiting non-trivial topology.

Table 2.1: Protein chain which were found by knot_pull to contain different topology than reported by KnotProt

PDB Id Chain Knot type (KnotProt) Knot type (knot_pull) Note

5nfj A 01 (unknot) 31

5ush A 01 (unknot) 31

4r70 A 01 (unknot) 41

5wr7 A 01 (unknot) 31

5l6t A 01 (unknot) 31

5hya A 01 (unknot) 31

4coq A 01 (unknot) 31 very shallow knot

1oq5 A 01 (slipknot: 31) 31

535u A 01 (slipknot: 31) 31

3f7u A 01 (slipknot: 31) 31

One obvious weakness of all available biomolecular knot detection software, from
which knot_pull is not exempt, is its uncertainty when faced with structures with
missing residues or otherwise gapped backbone. Such gaps are filled by straight lines
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which can often result in artificially knotted (or unknotted) structures. Chapter 4
presents GapRepairer – a server designed to provide the gap filling step in analyzing
protein structures.
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It has frequently been suggested that proteins
may not be pure chemical entities but may con-
sist of mixtures of closely related substances with
no absolute unique structure. The chemical re-
sults obtained so far suggest that this is not the
case, and that a protein is really a single chemi-
cal substance, each molecule of one protein being
identical to every other molecule of the same pure
protein.

Frederic Sanger 1952 The arrangement of amino
acids in proteins. Adv. Protein Chem

3
Modeling protein sequence evolution

Molecular evolution is hard to trace – we don’t know the intermediate steps.
While when studying evolution on macroscopic scale it is possible to encounter
some fossils giving us an insight into the transitional forms, there is no record

of sequence mutations that may have happened along the way. The only information
available are the sequences found in (usually only) currently living organisms, and
then only a subset of them. A popular approach in phylogenetics is parsimony – a
phylogenetic Occam’s razor, where the most likely explanation is the simplest one –
according to which the correct phylogeny is the one explainable with the least number
of evolutionary events. While based on this principle, it is possible to create a possible
model of evolution of related sequences, there is no way of it is the correct one. This
model may underestimate the number of mutations, or if the sequences variations not
found on a tree are impossible (due to lethality of mutations), lost due to e.g. extinction
or simply not yet discovered.

This chapter introduces an as-of-yet unpublished algorithm for the multiple align-
ment of sequence profiles (Sec. 3.1), and describes results published in (Jarmolinska
et al., 2019b) (Sec. 3.3.2), (Lamb et al., 2019) (Sec. 3.3.3) and (Dabrowski-Tumanski
et al., 2015) (Sec. 3.3.4).
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3.1. Maximum weight trace finding – an algorithm
for multiple alignment

Multiple sequence alignment (MSAs) are generally made with the assumption of a
common evolutionary lineage of studied sequences. However, a common lineage does
not necessarily indicate a noticeable similarity between all pairs of sequences in our data
set. As such MSAs are built iteratively, often using a rough similarity tree as a guide,
in each step merging the two sub-alignments (at the beginning – single sequences) that
are most similar to each other. An important caveat here, is that the alignment process
is trying to maximise the overall score of matching. Local alignments within a global
one may be significantly suboptimal.

An alternative method of building an MSA is by maximising the agreement with
all-vs-all pairwise (which can be resolved optimally in polynomial time – Section 1.1.2)
alignments. This can be done by finding a maximum weight trace (Kececioglu, 1993)
in a graph G = (V,E,≺) representing a set of alignments, which is defined as follows.

Definition 2. A graph G = (V,E,≺) is an alignment graph for a set S of sequences if
vertices V correspond to positions in sequences in S, with an order within each sequence
Si imposed by relation ≺ on positions si, sj ∈ Si: si ≺ sj ⇐⇒ i + 1 = j, that is ≺
holds only if si immediately preceeds sj. Edges E are undirected weighted connections
between vertices which have been aligned in one of the pairwise alignments. Position si

is characterised by two values: sequence from which it was taken si.sequence, and its
index in this sequence si.index.

A path in graph G is a set of positions to be aligned in one column – thus splitting
the graph into connected components gives columns of the alignment, with the caveat
that the alignment is only valid if columns can be linearly ordered under relation ≺′,
where for connected components A and B:

A ≺′ B ⇐⇒ (∃a ∈ A)(∃b ∈ B) : x ≺ y.

A trace in the alignment graph G is then a subset of edges T ⊆ E for which
connected components are acyclic under ≺′. For a graph G with edges weighted by
function w the maximum weight trace is found by maximising

∑

e∈T w(e).
The problem of finding the maximum weight trace of an alignment graph has been

shown to be NP -complete (Kececioglu, 1993). The main obstacle for biological data is
that the pairwise alignments may disagree – leading to the cycles between connected
components. Here we present two heuristics based on greedy graph traversing with a
modified Dijkstra’s algorithm (Dijkstra, 1959) for the shortest-path tree. We assume
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a data set of M sequences of length N , which positions all have at least one match to
another position (a connected edge in the graph), with the weight w of edge describing
its length (thus we will be minimising the weight trace).

Note. The requirement that all positions in sequences have been matched to
something doesn’t necessarily hold in real data – depending on the input those vertices
can be first filtered out (and the relation ≺ modified to mean ”immediately preceeds
amongst values present in the graph”), or as trivial connected components treated as
ready-made columns.

3.1.1. Depth-first column building

In this approach the set of columns C is build sequentially, by column. We start by
finding the shortest edge e(vi, vj), and marking the vertices it connects as belonging to
the new column C. Then we find the shortest edge going out of the column (connecting
a vertex in column with some vertex vk outside), check if ̸ (∃vi ∈ C)vi.sequence =

vk.sequence, and if not we add vk to C. When no outgoing edges are available the
column is ready, and added to C. Each edge is removed when first encountered.

During the construction of next columns, we additionally check if adding vk to C

would create cycles in the ordering of columns, that is adding vk would cause

(∃ci ∈ C) ci ≺
′ C ∧ C ≺′ ci.

It should be noted, that as the algorithm is only edge-based, all vertices without any
outgoing edges will be discarded – to keep them in the alignment they should be later
added as one-character columns.

Lemma 2. Time complexity of Algorithm 3 on a graph G = (V,E) is O(|E|2 · (|E| ·
|V |2)).

Proof. Three loops can run O(E · E) times, with the worst case scenario being that
for each edge removed from E in the outer while loop, we will pass through all the
remaining edges in the for loop without removing anything. Second term is caused by
the cycle search – for each edge found for a column we need to compare each vertex
in this column (at most |V | elements) against all other columns (totalling up to V

elements). ■

3.1.2. Breadth-first column building

This approach is based on a bottom-up clustering of graph vertices into columns (Al-
gorithm 4). At the beginning, each column consists of one vertex. In each step we
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Algorithm 3 Heuristic for finding a shortest length trace in an alignment graph by
sequentially extracting columns

INPUT: list of edges E sorted by lowest length
OUTPUT: ordered list of columns C
C is an ordered list of columns
while E do

e(vi, vj)← E.pop_first()
c = [vi, vj] list representing a new column
while change do

change = 0

for e(va, vb) ∈ E do
if va ∈ c ∧ vb ∈ c then

remove e from E

else
if va ∈ c XOR vb ∈ c then

remove e from E

if va ∈ c then
if va.sequence /∈ c ∧ c+ va will not add cycles to C then

add va to c

change = 1

break
else

if vb.sequence /∈ c ∧ c+ vb will not add cycles to C then
add vb to c

change = 1

break
if c will not add cycle to C then

add c to C
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find the shortest edge e(vi, vj) where vi ∈ Ci ∧ vj ∈ Cj ∧ Ci ̸= Cj. Then we verify
if sequences present in Ci, Cj do not overlap, and column Ck = Ci + Cj would not
introduce cycles in the ordering of columns. If there is no such problems, we merge
columns. Regardless of merging, the edge is removed. Algorithm finishes, when there
are no more edges connecting different columns.

Algorithm 4 Heuristic for finding a shortest length trace in an alignment graph by
bottom up clustering of columns

INPUT: PriorityQueue of columns C, where each column c is a PriorityQueue of
vertices v sorted by shortest edge out of column available, with one vertex each
OUTPUT: unsorted list of columns CL

while change ∧ C do
column c← C.pop_first()
column v ← c.pop_first()
if v has an edge e(v, v′) where v′ /∈ c then

c′ ← v′.column

remove c′ from C

put v in c

if v.sequence /∈ c′ ∧ v′.sequence /∈ c ∧ c + c′ will not add cycles to C ∧ c +

c′ will not add cycles to CL then
c = c+ c′

remove internal edges in c

else
remove e from v and v′

put c′ in C

put c in C

else
add c to CL

Lemma 3. Time complexity of Algorithm 4 on a graph G = (V,E) is O(|E| · |V |2).

Proof. While loop in each step either removes one edge from E or removes one column
from C (which is equal to |V | at the beginning, so |E| + |C| is the upper bound on
the number of passes). Whenever an edge is removed we check if honouring it will
add cycles to the ordering of columns, which needs up to |V |2 comparisons (up to
|V | elements in c + c′ against all the other vertices in other columns in C). Here we
disregard the costs of removing elements from priority queues. ■
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3.1.3. Results

Due to the specific nature of biological data the depth-first heuristic appears to run
about faster 20% faster. Alignments produced by both methods are shown in Fig. 3.1.

A B

Alignment length

S
e

q
e

u
n

ce
s

Figure 3.1: Exemplary multiple profile alignment for data described in Section 3.2 created by (A) Algorithm 3 and
(B) Algorithm 4. Each row corresponds to one sequence, white spaces are gaps in the alignment, positions are coloured
according to a rainbow colour scale spanning the whole length of the initial sequence. Terminal residues of each sequence
are coloured blak when present. Blue ovals indicate discontinuities in sequences (indicated by a break in the colour
scale).

When compared with multiple sequence alignment methods, the optimised weight
trace heuristics shown are more suited to a local alignment. In particular in depth-first
column building only the parts of sequences which were matched to something in initial
pairwise alignments have a chance to be included. Additionally, if a given sequence has
no reasonable similarity (significance below the default cut-off) to any other, it will not
be included in the final alignment – on the contrary to the usual behaviour of MSA
software, where all the initial sequences are mandatory. It is important to note, that
the resulting alignment, due to its local nature, does not guarantee that the fragment
present in the alignment will contain all the positions in its range (Fig. 3.1).

One important advantage that this approach has on more common score-maximising
MSA algorithms, is that the sequences aligned need only be pairwise-alignable and have
the ≺ relation defined – they don’t need to be scored in triplets or larger set, which
is a requirement in other methods. This makes trace methods uniquely suited to the
alignment of sequence profiles, with one example of such analysis described in the next
section.

Python code implementing the full aligning workflow is available online at http:
//github.com/dzarmola/hhaligner.
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3.2. Case study for the multiple profile alignment al-
gorithm – evolution of repeated membrane pro-
teins

Membrane proteins are an interesting case in protein evolution, as many of them
exhibit internal symmetry suggestive of domain duplication and fusion (Duran and
Meiler, 2013). In some proteins the fusion of chains of a dimer into a single molecule
is credited with the emergence of a knotted topology. However, an even more inter-
esting example can be found amongst the cation:proton antiporter/anion transporter
(CPA_AT) protein clan of membrane transporters and related families. Based on se-
quential and structural similarity it is possible to find 16 protein families which appear
to be paralogous1 – we have found organisms with representatives of up to 13 of those
families.

Most of families in the data set have two instances of a common structural motif,
to which we will refer to henceforth as a ”repeat”:

• 12 families belonging to the CPA_AT clan (CL00064 in Protein Families (PFam)
database (El-Gebali et al., 2018));

• transition state regulatory proteins (AbrB) (PF05145 in PFam);

• 2-hydroxycarboxylate transporters (2HCT) (PF03390 in PFam);

Additionally, two families with sequences covering only a ”single repeat” were included
– LrgA and LrgB. Presence of both single domain and repeated proteins makes this an
already interesting topic, but this is additionally spiced up by the topological angle –
all the repeated proteins from this data set for which the structure is known are trivial,
with the exception of those belonging to the 2HCT family, which are slipknotted.
Co-existence of single and double domain proteins, as well as topologically different
repeated structures suggested that the common ancestor of all studied proteins was a
single domain protein, similar to LrgA and LrgB. Thus, to trace all the evolutionary
events which resulted is such a diverse group of descendants we have decided to ”break”
all the duplicated proteins, and create a phylogenetic tree of all the resulting single
repeats.

Due to the overall diversity of repeats found in the data set we have first clustered
them by the sequence similarity, which resulted in further division of the largest families
into smaller groups. Overall sequence similarity of the data set was not enough to create

1Paralogue is a homologue – protein with the same ancestor – within the same organisms, arising
from a gene duplication.
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a workable alignment for phylogenetic analysis, thus we used the algorithm described
in the Section 3.1, to align instead profiles calculated with HH-Suite (Steinegger et al.,
2019) for each family-group-repeat, the resulting alignment is shown in Fig. 3.1 (B). We
used this alignment, as well as additional information provided by sequence clustering
to calculate a bayesian inference tree using MrBayes (Huelsenbeck and Ronquist, 2001).
Fig. 3.2 shows a schematic unrooted tree showing the evolution of studied proteins.

Figure 3.2: Schematic unrooted tree of evolution of 16 families of membrane proteins. Tree is annotated with PFam
family identifiers. Green boxes indicate gene duplications, blue indicate gene fusions.

Our results suggest that topological difference of studied proteins is the result of
separate fusion events. We expect there to be 13 different fusion events between repeats
from the data set – there are two not repeated families, one of the families from the
CPA_AT clan appears to have duplicated and speciated after fusion (PF13953 speci-
ated from PF01758), and one of the repeats (sequentially first from family PF05982)
didn’t shown sufficient similarity to any other repeat to be included in the alignment,
and can in fact be of different ancestry. The most interesting sequence of events ap-
pears to have happened with families PF01758 and PF03547 – as they share very
similar repeats, but in reverse order in the sequence.

3.3. Co-evolution-based structure analysis
Protein structures are the basis of their function – an active site of an enzyme needs
specific residues to properly interact with a ligand. Positions of those residues are often
conserved, to a point where they can be used to predict some interaction based on
sequence patterns. It’s a prime example of how the function (for which proper binding
of the ligand is crucial) and structure (shape of the binding site which need particular
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residue properties in specific places) influence the evolution of the sequence. Obviously,
the function (or lack thereof) of a folded protein cannot directly exert evolutionary
pressure on the sequence. However, any mutation in the DNA which impairs either the
folding or functioning of the resulting protein, impairs in turn all the processes which
depend on this molecule, possibly leading to the death of the cell – which as a result
removes this mutation from the evolutionary lineage.

One way through which significant (thus potentially lethal) changes can be con-
served throughout evolution is through compensating changes – the effects of one
change can be mitigated through a different mutation (Taylor and Hatrick, 1994).
By looking at this process in reverse – if two positions in a sequence appear to be
correlated, we can assume that they are facing a joint evolutionary pressure, which is
usually the case for residues close together in the 3D structure. One of the methods of
studying such dependencies is through Direct Coupling Analysis (DCA). For a multi-
ple sequence alignment, DCA calculates a fully-connected statistical model of residue
probabilities, which gives direct (not through another residue) correlation scores, called
Direct Information (DI), to all pairs of positions in the MSA.

3.3.1. Direct Coupling Analysis

Direct Coupling Analysis (DCA) is a statistical inference framework built on a Potts
model, which represents interacting spins (with q possible values) on a lattice model (a
generalized Ising model). Standard Potts model has an interaction Hamiltonian given
by:

Hp = −Jp
∑

(i,j)

δ(si, sj), (3.1)

where Jp is the interaction parameter, δ is the Kronecker delta (1 if sij, 0 otherwise),
si ∈ 1...q is the spin at position i, and (i, j) are pairs of positions which are considered
for interaction (e.g. nearest neighbours).

Potts model can be generalised by adding a ”magnetic field” term, and allowing
the parameters to vary across model, which for a fully connected model gives:

Hp = −β
∑

i

∑

j

Jijδ(si, sj)−
∑

i

hisi, (3.2)

in which
β =

1

kT
,

where k is the Boltzmann constant and T the temperature.
To model sequence evolution this model can be calculated to fit the multiple se-

quence alignment of, expected to be phylogenetically related, sequences. For an MSA
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of length N the model would be an N ×N lattice with q = 21 spins (representing the
symbols in the alignment – 20 standard amino acids and a gap). For the alignment as
a whole, each spin on the lattice is in fact better presented as a q × q matrix of Kro-
necker deltas of coincidences between corresponding columns in the alignment. Under
this model we can calculate the probability of a sequence a = a1, a2...aN to match the
model, as

P (a|J, h) =
1

Z
exp(

N−1
∑

i=1

N
∑

j=1

Jij(ai, aj) +
N
∑

i=1

hi(ai)), (3.3)

where Z is the normalisation constant, so that
∑

a P (a|J, h) = 1, hi(ai) is a value
representing the propensity of a symbol (e.g. amino acid) to be found at i-th position,
Jij(ai, aj) is a value representing the propensity of a symbol ai to be found at i-th
position, and aj to be found at j-th position in the same sequence.

DCA seeks a distribution P which maximises the functional

F [P ] =−
∑

a

P (a) logP (a)

+
∑

i<j

∑

x,y

Jij(x, y)(Pij(x, y)− fij(x, y)) (3.4)

+
∑

i

∑

x

hi(x)(Pi(x)− fi(x)) + Z(1−
∑

a

P (a)),

where fi are observed frequencies of symbols at position i, fij is the covariance of
symbols positions i, j derived so that it will reproduce the observed marginal distri-
butions, Z is the normalisation constant, and hi and Jij are the model parameters.
The parameters are optimised to satisfy the empirical (from the alignment) frequencies
and correlations. It is important to note, that the model is intractable on a multiple
sequence alignment, as the normalisation constant Z would require a number of terms
equal to the number of all possible sequences of a given length – N q.

There are multiple derivations of the DCA model, all leading to the estimation of
model parameters maximising the likelihood of the MSA:

• mpDCA (Weigt et al., 2009): inference based on message passing/belief propa-
gation;

• mfDCA (Morcos et al., 2011): inference based on a mean-field approximation;

• gaussDCA (Baldassi et al., 2014): inference based on a Gaussian approximation;

• plmDCA (Ekeberg et al., 2013): inference based on pseudo-likelihoods.
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Strength of interaction, also called Direct Information (DI), between two columns
i, j in the alignment can be calculated using a Frobenius norm and an average product
correction, as (Ekeberg et al., 2013; Baldassi et al., 2014):

DIij = Fij −
Fi · Fj

F
, (3.5)

where

Fij =

√

∑

a,b

Jij(a, b)2

Fi =
1

N

N
∑

i ̸=j

Fij (3.6)

F =
1

N2 −N

∑

i,j,i ̸=j

Fij

and a, b are spins (symbols) found in the alignment.
Direct Information indicates the most co-dependent pairs of sequence positions,

which implies the importance of their cooperation for the proper functioning of the
molecule. Such pairs can give new insights into various forms of structural interactions,
which makes co-evolutionary measures useful for a broad range of applications, such as
structure prediction (Sułkowska et al., 2012a; De Leonardis et al., 2015; Michel et al.,
2017; Taylor and Sadowski, 2011), conformational dynamics (Morcos et al., 2013),
analysis of folding pathways (Dabrowski-Tumanski et al., 2015; Cheng et al., 2014;
Jamroz et al., 2014) and prediction of interaction partners and interface (Dos Santos
et al., 2015; Schug et al., 2009; Cheng et al., 2014; Zschiedrich et al., 2016; Skwark
et al., 2017; Bitbol et al., 2016)

3.3.2. DCA-MOL – mapping co-evolution to a structure

DCA-MOL is a plugin we created for PyMOL Molecular Graphics Systems which
facilitates the analysis of Direct Coupling Analysis results. One of the hurdles to
cross when analysing co-evolutionary scores is that DCA methods is that the Direct
Information scores are given for all possible position pairs, with little indication of
which are significantly correlated. DCA results are highly dependent on the input
data, such as the number and diversity of the sequences, and depending on the desired
application can gain significantly from some additional knowledge (e.g. when studying
the intricacies of a folding pathway, knowing the final structure can help differentiate
between folding and native interactions). DCA-MOL performs automatic mapping
between the structure, sequences in the MSA and DI results, taking into account
any missing or discarded residues (using a modified Needleman-Wunsch algorithm –
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Alg. 5), and provides the user with a convenient and fully interactive plot coupled with
the structure visualisation.

Lemma 4. Time complexity of Algorithm 5 is O(N ·M), space complexity is O(N ·M).

Proof. First part of the alignment creates two matrices of size N ×M in N ×M steps.
Second part backtracks through the matrix in at most N +M steps. ■

Case study 1 – Interface interactions in isocitrate dehydrogenase protein
dimers.

Residue in 2iv0 chain A
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Figure 3.3: DCA-MOL analysis of isocitrate dehydrogenase interface interactions (PDB Id 2iv0). (A) A DI map is
shown in the lower triangle (x-axis for residues in chain A, y-axis for residues in chain B), and 3D structure in the upper
triangle (red for chain A, yellow for chain B). The interactions between two chains are marked with a red rectangle in
the DI map and black dash lines in the structure. (B) A collection of DCA-MOL’s options and features. DCA output
files used here were calculated using the DCA server (http://dca.rice.edu).

Interactions between residues in molecular interfaces could also be coevolved. DCA
studies can not only be used to capture the interactions inside the protein monomer,
but also be used to infer interfacial interactions in homo or heterodimeric systems.
With DCA-MOL, users can switch and compare these interactions more efficiently.

In this sample case, we use isocitrate dehydrogenase dimers to showcase the molec-
ular interface analysis (Fig. 3.3). Isocitrate dehydrogenase is a homodimer containing
two chains (A and B) (PDB Id 2iv0 and Pfam Id PF00089.25). By including both
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Algorithm 5 Modified Needleman-Wunsch algorithm for global alignment of almost
identical sequences with additional gap information

INPUT: Sequence1 of length N with symbols indicating structure breaks, Sequence2
with length M

OUTPUT: aligned sequences Aligned1, Aligned2
M is an empty matrix of size N ×M , M [0][0] = 0, Path is an empty matrix of size
N ×M

for i=0 to N do
M [i][0] = M [i− 1][0]− 1

Path[i][0] = 1

for j=0 to M do
M [0][j] = M [0][j − 1]− 1

Path[0][j] = 2

for i=1 to N do
for j=1 to M do

if Sequence1[i] ̸= then
Match = M [i− j][j − 1] + (2 if Sequence1[i] = Sequence2[j] else − 2)

Insert = M [i][j − 1]− 1

Delete = M [i− 1][j]− 1

else
Match = M [i− j][j − 1]

Insert = M [i][j − 1] + 1

Delete = M [i− 1][j]− 1

M [i][j] = max(Match, Insert,Delete)

if Match = M [j][j] then
Path[i][j] = 3

else
if Insert = M [j][j] then

Path[i][j] = 1

else
Path[i][j] = 2
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Aligned1 = ””, Aligned2 = ””
while i > 0 or j > 0 do

if i > 0 and j > 0 and M [i][j] = Match then
Aligned1 = Sequence1[i] + Aligned1
Aligned2 = Sequence2[j] + Aligned2
i = i− 1, j = j − 1

else
if i > 0 and M [i][j] = Insert then

Aligned1 = Sequence1[i] + Aligned1
Aligned2 = ”-” + Aligned2
i = i− 1

else
Aligned1 = ”-” + Aligned1
Aligned2 = Sequence2[j] + Aligned2
j = j − 1

chains independently in the alignment file, loading a corresponding chain from the
structure for each sequence, and indicating that they form a molecular interface, we
are able to study them separately, and also as a dimer.

This mode allows switching and comparing between monomeric interactions and
interfacial interactions efficiently by choosing different plot options in the drop-down
list. In this example, we found that some top DI value pairs are far away from each other
in the monomeric structure but are close in the dimeric structure. This observation
suggests that these interactions could be important to keep quaternary structure and
function.

Case study 2 – Conformational dynamics in periplasmic binding proteins.

While performing their function, some proteins experience large conformational changes.
DCA-MOL can be utilised to study how co-evolving pairs play a role in different pro-
tein conformations. Here, we use DCA-MOL to illustrate the conformational change
of L-leucine binding protein, [PDB Ids 1usg (open state) and 1usi (close state)] upon
ligand binding.

Within the multimodel mode, we can switch and compare between different contact
maps for different states (see change current state option). The native contact map
(lower triangle) shows a similar pattern between two states, except for a set of contacts
exclusive to the closed state (Fig. 3.4). In our predicted contact map (upper triangle),
we do not only get the interaction information for single states, but also interactions
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Figure 3.4: DCA-MOL analysis of L-leucine-binding protein: (A,C) Apo state (PDB Id 1usg); (B,D) closed, holo state
(PDB Id 1usi). DCA-MOL’s interactive plots of Direct Information (upper triangle) and contact maps of the structures
(lower triangle). Selected with a red rectangle are contacts present only in the closed conformation (top). Cartoon
representation of the structure (red). Predicted interactions selected on the plot are shown as purple bonds (bottom).

that are essential for function during conformational plasticity. For example, selected
with a red rectangle are contacts which appear in the contact map only for the closed,
ligand bound, conformation (Fig. 3.4). By integrating structural information taken
from different states, DI pairs can be used to identify an ensemble of different con-
formation of the protein along with their coevolutionary signals. The multiple state
model of DCA-MOL will allow users to clearly visualise the interactions during protein
dynamics.

3.3.3. PConsFam – a database of DCA-based structure predic-
tions

Since its inception DCA was used to predict various structural properties of proteins,
however due to the statistical machinery used, the results were only significant for a
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limited number of protein families, with sufficiently large number of diverse members.
By the addition of deep learning methodologies it is possible to improve the DI based
contact predictions, to get reasonable results even for proteins with only a few hundred
members. Results of such prediction for more than 13000 protein families from the
PFam database (El-Gebali et al., 2018) can be found in PConsFam (Lamb et al.,
2019). More than a half of those proteins have no known reference structure yet.

When modeling protein structures it is important to be able to recognise strengths
and weaknesses of the model. In particular in case of de novo predictions, for proteins
with no known homologues, it is important to consider what assumptions where used
to create it. In case of DCA-based prediction, these assumptions are the pairs selected
as relevant (co-evolving) based on their Direct Information scores.

User interface in the PConsFam database (Fig. 3.5) guides the user through the
analysis of the structure, by allowing multiple modes of comparison between the DI
scores for the whole alignment of a protein family and the resulting structure. It is
important to note, that to ensure high quality of the results parts of the multiple
sequence alignment may be discarded (e.g. if there are too many gaps). When a
reference (e.g. crystal) structure for the protein is available, the parts corresponding
to the modeled region are presented to the user for comparison.

To ensure that a proper mapping between the model and the reference structure is
created, a global alignment is calculated (using a modified Needleman-Wunsch algo-
rithm – Alg. 5) – as the sequences should in principle be identical, but both may contain
unresolved regions, the information of backbone breaks is used for proper gap place-
ment in the alignment (alignment is done by aligning each structure to the known full
sequence, and extracting corresponding columns). More details about the applications
of PConsFam can be found in (Lamb et al., 2019).

3.3.4. Prediction of minimal interactions for protein folding

Knotted proteins remain a mystery in many aspects. Chief among them is the one con-
nected to the long held belief (Mansfield, 1994), that protein chains cannot be knotted
– how do they fold? Protein folding is in a large part dependant on the hydrophobic
collapse, and excluded volume effect, both of which should increase knotting rates in
long polymers – except for the multitude of inter-residue interactions within a protein
structure. Smaller loop clearance in a tightly packed structure makes it much less
probable for a chain to cross the loop surface without any additional driving force.

This crossing is assumed to be a rate limiting step in knotted protein folding (King,
2010), and one of the reasons why computational studies of the folding process are
problematic. Knotted proteins are for the most part too large for all-atom explicit
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solvent molecular dynamics (MD) simulations, and simplified, structure-based coarse-
grained models (Levitt and Warshel, 1975; Kmiecik et al., 2016) do not fold the knotted
proteins reliably enough to fully explore their free energy landscape. Coarse grained
models are structure approximations where each residue is represented by one (e.g. in
Go-like models (Taketomi et al., 1975)) or more beads (UNRES force field (Sieradzan
et al., 2015), CABS force field (Kmiecik et al., 2011)). In structure based models, the
potential energy of any given conformation is calculated in relation to the native (ref-
erence) structure of the protein. Potential energy of the structure, which is minimised
during the folding simulation is given by a Hamiltonian (Clementi et al., 2000):

E(Γ,Γ0) =
∑

bonds

Kr(r − r0)
2 +

∑

angles

Kθ(θ − θ0)
2

+
∑

dihedral

K
(n)
φ [1 + cos(n(ϕ− ϕ0))] (3.7)

+
∑

i<j−3

{

εij[5(
σij

rij
)12 − 6(

σij

rij
)10] + ε′ij(

σij

rij
)12

}

,

where Γ is the current coordinate configuration and Γ0 is the native (reference) struc-
ture. Respectively, r and r0 represent the distance between beads representing consec-
utive residues, θ and θ0 the angle formed by three consecutive beads, and ϕ and ϕ0 the
dihedral angle between four consecutive beads, in the current configuration and the
reference structure. The dihedral potential consists of a sum of two terms for every
four adjacent C-α atoms, one with period n = 1 and one with n = 3. Those three
terms represent the geometry of the backbone (and can in fact be modified to fold a
protein (Najafi and Potestio, 2015)), however, the most interesting force behind the
folding is the last term. It involves non-local native interactions (hence the i < j − 3

in the sum) and is calculated as a Lenard-Jones (Jones, 1924) potential with attractive
and repulsive terms with the minimum at the distance found in the native structure
(σ variables), where ε is the depth of the potential well. K parameters are weights to
modify the relative strength of interactions and depend on the force field used. There
are some limitations to the Lenard-Jones potential, in particular the excluded volume
effect. Implicit size of the bead in a pair depends on the native distance, and this can
have a large effect on the entropy of a folded state. In our work we used instead an
attractive Gaussian well

CG(rij, r
ij
0 ) = (1 + (

σNC

rij

1

2)(1− exp(−(rih − r
ij
0 )

2

2σ2
))− 1,

where σ is derived based on the Lenard-Jones potential (Noel and Onuchic, 2012), and

σ2 =
(rij0 )

2

50 ln 2 .
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Modification to the last term in the equation, by e.g. adding attraction between
non-native residue pairs, allows for inclusion of additional driving forces to the simu-
lation (Wallin et al., 2007).

Analysis described in (Dabrowski-Tumanski et al., 2015) is an attempt to identify
the forces that help knotted proteins to in folding, by combining MD simulations
with other bioinformatics tools to identify the minimal set of physical interactions
necessary for entangling a protein (in this case the smallest knotted proteins with PDB
Id 2efv). As the ”conventional” means – native structure-based contacts and chemical
and physical properties-based non-native interactions (Miller et al., 1987; Miyazawa
and Jernigan, 1996; Sippl, 1990) – of studying the folding process of large molecules
fail against the conundrum of knotting, a new criterion is introduced, based on sequence
co-evolution.

Our main idea was to identify regions of the structure that appear to interact,
exhibiting as a joint evolutionary pressure, but be far enough in the final structure,
that it will not explain such co-dependency. A natural assumption here, is that those
contact are important in transition states, and facilitate the correct folding pathway.

Two clusters of DCA-determined contacts with highest DI score were selected, with
the assumption, that in folding two interacting neighbourhoods of positions are more
probable to have a noticeable influence, than a single point of contact. We then added
them as non-native interactions to the coarse-grained folding simulation, and both
appeared to smooth the folding landscape, which suggests that knotting is one of
factors imposing evolutionary pressure on the surrounding structure.
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Figure 3.5: User interface of PConsFam detailing results for the PF00001 family. The default Visualization’s tab
contains structure visualisation of the model(s) (superposed with reference structure if available), Direct Information
(DI) plot (which can also display contact maps), and the sequence and topology of the models. Range and format of
displayed contacts can be changed, and contacts between residues can be visualised as bonds on the structure. RMSD
between model and reference, and a positive predicted value score (PPV) indicating overlap between residues pairs
and structural contacts in the model are also shown. Other tabs contain additional information about the family, and
download links for calculated data.
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”There once was a protein knot,
that folded itself without thought.
Chaperonins paled,
simulations failed,
and researchers lost all the plot!”

Nodus Anonymus

4
Databases and algorithmic tools for protein

topology explorations

Topology, by its very name (from the Greek τoπoζ(topos), place, and λoγoζ(logos),
study), is a branch of mathematics studying the properties of space, and it’s
deformations. In the case of proteins, ”topology” has been used to describe rela-

tive placement of secondary structure elements in the structure of a molecule (Rawlings
et al., 1985), however since the discovery of knot-like entanglements along the protein
chains in 1994 (Mansfield, 1994) it has been getting more traction in referring to folds
similar to those described mathematically.

This chapter presents works published as (Dabrowski-Tumanski et al., 2016a) (Sec-
tion 4.1.1), (Jarmolinska et al., 2018) (Section 4.2), and (Jarmolinska et al., 2019a)
(Section 4.3).

4.1. Databases collecting information about topolog-
ically complex structures

While the existence of knot-like structures in proteins has been shown a quarter of
a century ago, only in the recent years has the number of known protein structures,
including those entangled risen to the levels which prompted the creation of servers
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and databases dedicated to the study of topological complexities of biomolecules.

4.1.1. LinkProt: a database collecting information about bio-
logical links

Entanglements of a single protein chain have been studied for more than 20 years, but
only recently the acceptance of those chains as knots has been taken to its natural
conclusion. If each chain is a, possibly trivial, knot, then a protein complex forms
an, again possibly trivial, link. Some actually connected multichain arrangments, have
been, pardon the pun, linked to the function of proteins in question. Examples include
domain-swapped proteins (Baiesi et al., 2016), and catenates forming viral capsids
(Duda, 1998). An important consideration here is that protein chains are open curves.
Thus, similar to the case of knot-like structures, first an implicit closing curve must
be added to connect the termini. Then the chain backbone is a proper knot, and
can be analysed to find possible links. However, protein links can also be defined
within a single chain (Liang and Mislow, 1995; Boutz et al., 2007). Protein backbone
forms loops, which can be occasionally closed through a covalent bond – such as a
cysteine bridge (interaction between sulphur atoms found in some of the amino acid
residues). Such loop can be considered a closed curve – a valid mathematical knot –
and in proteins where more than one such closed loop exists – a part of a valid link
(Fig. 4.1). To allow researchers an easy and intuitive access to the information about
various types of link-like structures found in proteins we have a created a self-updating
database of biological links – LinkProt (Dabrowski-Tumanski et al., 2016a) (available
at https://linkprot.cent.uw.edu.pl).

All entries in the database are based on structures available in RCSB PDB database,
and our database is updated each week, as the new structures in PDB are released. For
the link type identification the components are represented by the coordinates of the
C −α atoms (with the gaps in the structure filled with straight line segments between
present atoms). In both cases all the combinations of deterministic or probabilistic
components (up to 4 at a time) are given to the link identification algorithm, with
an addendum for whole chain based components. For two chains to be considered
as a potential non trivial link, there must be at least one coordinate of one of the
structures which is closer to the centre of mass of the second structure than any of
its own atoms – as link type determination in a non-deterministic case is the most
computationally heavy step, this modification significantly speeds up the calculations
in multichain structures. To find out how exactly are components entangled a minimal
surface is computed for each component (Niemyska et al., 2016; Dabrowski-Tumanski
et al., 2016b). Link type is identified using the Ewing-Millet (Ewing and Millett, 1991)
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Figure 4.1: Examples of Hopf links found in proteins: structure visualisation (using PyMOL), topology sketch,
simplified topology sketch: (A) deterministic (PDB Id 1bw3 chain A); (B) probabilistic (PDB Id 5nt2 chains D and E).

implementation of the HOMFLY-PT polynomial as it distinguishes not only classes,
but also chirality and orientation of the link.

Additionally, each newly added link is compared to those already present in database
to update the non-redundancy table. For single protein chain non-redundancy is often
defined as cutoff of sequence identity of e.g. 30%. In case of links, which may consist
of multiple chains the comparison is made by finding for each chain from one link its
sequentially closest counterpart in the second link, without repetitions (two links with
different number of chains are non-redundant by default). Then for each pair of chains
the 30% identity criterion is verified.

Underlying database was designed to minimise the amount of data necessary, while
keeping the correct separation to allow a single protein chain to contain deterministic
links and potentially be part of multiple linked sets of chains. Database scheme is
presented in Fig. 4.2.

User interface

To facilitate the analysis of data available multiple filters can be applied to the non-
trivially linked protein data set. Proteins can be grouped by the topology, but also
family to which they belong, enzyme classification, keywords from the PDB descrip-
tion, and filtered so that only a non redundant sequences are shown. Redundancy
here signifies the sequence identity cutoff above which a protein is considered to be
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Figure 4.2: Key tables of the database schema designed for LinkProt.

sufficiently represented by another. As the actual entities of the database are links,
the redundancy takes into account similarity between most similar pairs of component
sequences between two links.

Each single entry page presents the results of one link – that is one combination of
components present in a given, possibly multichain, protein. In case of deterministic
links (that is those with curves closed by covalent bonds) this is a straight forward
result, with always only one link type assigned. In case of non-deterministic (here
called ”probabilistic”) links, due to the random nature of component closing attempts
a number of possible link types can be obtained for the same components. Then all of
them are presented, with their probability of belonging to a given class of link types
specified. All links for which the probability of an unlink topology was less than 60%
are included in the database.

4.2. GapRepairer – a server for topologically con-
scious reconstruction of missing parts of protein
models

Over a quarter of known protein structures possess unresolved fragments – which hin-
ders the study of afflicted proteins in many ways, in particular in regards to their
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topology. When determining the entanglements found on a protein chain, gaps are
usually filled in as a straight line connecting the last residues on both sides, which of-
ten results in incorrect topology assignment. However, topology is not usually verified
by software designed for protein structure modeling. GapRepairer (Jarmolinska et al.,
2018) is a tool we created to bridge this gap, and allow easy repair and modification
of protein structures.

GapRepairer was designed as a user-friendly homology modeling tool, although
thanks to the capabilities of MODELLER (Webb and Sali, 2014) software, it will
also attempt to fill any gaps without reference structure de novo. To monitor the
topology of the protein, both potential templates and resulting models are screened
for inconsistencies in knot type – as protein topology has been shown to be better
conserved than the sequence (Sułkowska et al., 2012b).

Applications of GapRepairer

The entanglement appears in protein modeling in various ways giving rise to many
applications of GapRepairer. The most fundamental is topologically valid gap model-
ing. The server may also be used to assess the topological correctness of the structure.
This is especially important in the case of low-resolution structures (such as coming
from CryoEM) and in structure prediction competitions (e.g. CASP (Moult et al.,
1995), CAPRI (Janin et al., 2003)). Another application is to generate a topologi-
cally valid list of homologues (either structural or sequential). Finally, the user can
utilise non-entanglement-based functions of GapRepairer unique to this server, such as
the modeling of a chain in the neighbourhood of other chains (important for domain-
swapped structures), or modeling chains with exceptionally large gaps.

Possible uses for GapRepairer include:

• Topologically valid gap modeling. For some structures, the easiest way
of modeling is not the best one, as it can artificially (dis)entangle the target.
E.g. the original structure of glycohydrolase (PDB Id 3sij) possesses a deep +31

knot. However, the non-trivial topology stems from the location of the 9-residue-
long gap. Modeling this gap with GapRepairer correctly disentangles the model
(Fig. 4.3A). Similarly, the hydrolase with PDB Id 2d7d, after a proper modeling
changes topology from deep 41 knot to unknot. Modeling CryoEM structure of
human 26S proteasome (resolution 6.8 Å PDB Id 5ln3, chain N) also disentan-
gles the protein. The modeling can also change the chirality of the knot and
reduce the complex topological fingerprint, as in the case of human hydrolase
with PDB Id 4zg6. The gapped structure features a left-handed −31 knot, but
after gap filling, it turns out that it has the right-handed +31 knot (Fig. 4.3B).
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Figure 4.3: Possible utilization of GapRepairer server. (A) Disentangling of an artificially knotted protein with PDB
Id 3SIJ—the straight interval joining gap ends (red stripe in the structure) results in a 31 knotted protein, as shown in
the matrix fingerprint (highlighted by blue rectangle). The correct way of gap modeling is shown with the green curve
on the structure. (B) Change in the fingerprint and topology upon gap modeling for the protein with PDB Id 4zg6.
Before modeling (below diagonal) two knotted regions can be spotted. After gap modeling (above diagonal), only one
portion of the chain is 31 knotted. (C) Assessing topological correctness. For the potentially Hopf-linked protein with
PDB Id 3j70, removing and remodeling of parts of the loops (dashed lines in left panel), results in unlinked loops (right
panel). The topology in each case is shown schematically above the structure. (D) Validating crystallographic data—
remodeling parts of the protein with PDB Id 2xkl (left panel) reveals an incorrect connection between b-strands (right
panel). For each case, the scheme of b-strands connection is shown below the structure. (E) Search for a topologically
valid template—the structures of ATC (red) and OTC (blue) are almost perfect structural homologues, yet they differ
in the location of pieces of chain in one part, shown as the thick structure and enlarged in the right panel. Interchanging
the parts according to the arrows shown in the right panel changes the topology of the protein. (F) The idea of circular
permutation of protein fragments. The right panel shows exemplary structures corresponding to the scheme in the
frame.

Even though GapRepairer is not optimized to reconstruct membrane proteins,
it properly models loops based on structural and topological assumptions when
homological chains are unknown. E.g. modeling amino acid transporter (PDB
Id 5llm, chain A, 4 gaps up to 23 amino acids) changes its topology from knot
to slipknot characteristic to all of the members of Sodium-dicarboxylate sym-
porter family. Another membrane protein (PDB Id 5l25) has 6 gaps in total,
one comprising 94 residues. In this case, careless modeling generates the com-
plex topological fingerprint, with unnatural 82 knot. Proper modeling of this
loop results in regular S3131 slipknot motif. Furthermore, reconstruction (using
only structural homologues) of the membrane protein with PDB Id 4kjs chain A
reveals the knot and therefore the first deeply knotted membrane protein family
(Jarmolinska et al., 2019a).
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• Assessing the topological correctness Assessing the topological correctness
is crucial for already known structures with dubious fragments, e.g. coming from
low resolution techniques, such as CryoEM. For example, the human immune
system related protein (PDB Id 3J70, from CryoEM) contains, according to the
model, two linked covalent loops. However, after cutting out a part of each loop
and remodeling, the loops turn out to be unlinked, which stays in accordance with
all experimentally determined homologues (Fig. 4.3C). Similarly, the structure
of methyltransferase (PDB Id 1oy5) is unknotted, although all proteins from
this family form a deeply +31 knotted structure. After the remodeling of this
protein, a structure with a deep +31 knot is recreated. Finally, the covalent loop
placement may also disclose improperly crystallized protein. Remodeling of the
murine lipid transport protein (PDB Id 2xkl) reveals that the -sheets in the crystal
structure were joined in a wrong order (Fig. 4.3D). Such topological assessment
is decisive in prescribing the function and the properties of a protein, especially
as the function of a protein can be guessed knowing the function characteristic
for such topological motif (Niemyska et al., 2016; Sułkowska et al., 2012b).

• Redesigning protein architecture. The GapRepairer can be also used to
design a new architecture of the proteins, e.g. to design entangled proteins, or
disentangle the topologically non-trivial ones by the addition of a loose loop. This
can be a useful technique in understanding the role of knots (King, 2010; Yeates
et al., 2007) (by comparison of different topology homologues). The ability to
design topologically non-trivial structures can be as well used to engineer highly
stabilized proteins (Ghosh et al., 2015) or to design intradomain linkers (Scalley-
Kim et al., 2003). Template selection is fundamental in any homology modeling
or homology-based function prediction. However, even the close homologues can
differ in topology as e.g. the pair Acetylornithine TransCarbamylase (knotted)
and Ornithine TransCarbamylase (ATC/OTC) (unknotted). Only GapRepairer,
using its topological analysis can distinguish these cases and select relevant close
homologues (Fig. 4.3E).

• Other uses. GapRepairer is also equipped with functions not necessarily con-
nected with the protein topology. The ability to repair one chain in the presence
of the second makes it a unique on-line tool capable of treating domain-swapped
proteins. It also allows GapRepairer to model gaps in many-chain systems. The
GapRepairer has no restriction on the gap size if only enough homologues are
present. This allows one to model a structure with circularly permuted fragments
of the protein (Fig. 4.3F), one of the techniques used to investigate the protein
energy landscape (Lindberg, 2006). Finally, because of the DALI database (Holm
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and Laakso, 2016) utilization, GapRepairer is the only webserver which can cope
with structures with no sequential homologues, if there are some structurally
similar chains.

An in depth exploration of those use cases can be found in the online documentation
(https://gaprepairer.cent.uw.edu.pl).

4.3. Diversity of knotted proteins
Folding, which is the process in which a newly translated protein reaches its final shape,
is a non-trivial task. Only by attaining its proper structure can a molecule function as it
should, which makes folding an essential process – hence a complex cellular machinery
present to oversee it. Even topologically trivial proteins often need help in folding,
provided e.g. by other proteins called molecular chaperons. However, in case of knotted
proteins the process is even more complicated, as for a knot to appear the chain of a
folding protein must make a, at least once, twisted loop, stable enough for another
loop, or protein terminus, to thread through. The exact mechanisms which help this
process in a crowded, cellular environment are unknown – proposed answers include
binding to the translating ribosome and forces provided by non-native interactions in
the chain (see Section 3.3.4). Nonetheless, it is possible to give some intuition about
the possible folding pathways of knotted proteins using the traditional approach to in
silico studies of molecular folding, that is through coarse grained molecular dynamics
simulations. In this approach each amino acid is replaced by a single bead, which
interactions with all the other bead are defined based on the proximity in the known
final structure.

In (Jarmolinska et al., 2019a) we propose the folding pathways of 3 knotted proteins
structures:

1. a mitochondiral apoptosis-inducing factor (PDB Id 5fmh, chain a),

2. a protein from the large subunit of the human mitochondrial ribosome (PDB Id
4v1a, chain w), and

3. a protein of unknown function from Treponema pallidum (PDB Id 5jir, chain A).

Based on the simulations, mitochondiral apoptosis-inducing factor (Aifm1) can be
divided into four stuctural domains, folding independently. The knot is fully contained
in the N-terminal domain, which allows it to fold at any point during the whole folding
process, and can in fact be facilitated by one of the domain termini being held in place
by the already folded rest of the structure.
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Both of the other proteins studied need the proper terminus threading to be the
first step in folding, otherwise there is a high chance of a topological trap prohibiting
acquiring the proper structure. The ribosomal protein has a complex topological fin-
gerprint involving multiple slipknots – the core of the structure is made up of several
loops wrapped around by another, twisted, loop – held together by a shallow threading
of the C terminus which results in a knot. Simulations show that wrapping the outer
loop around the protein poses no problem, however the only way to fold correctly is
for the N terminus to first thread through this loop, followed by the C terminus (which
makes the structure knotted) and the internal loop (which results in the slipknots).
Any other order of threading prohibits the N terminus from plugging through the outer
loop and locks the protein in a topological trap.

The most interesting case studied is the deeply embedded knot in the T. pallidum
protein. It is made up of 3 separate domains, each over 140 residues long, with a 31

knot in the middle domain. The only way for this protein to fold is if the twisted
loop forms at the very beginning and one of the termini threads through it soon after.
Otherwise, folding of the two outer domains exerts constant tension on the middle
part of the protein which prohibits folding. Additionally, it two terminal domains
were folded first, it would be impossible for the middle domain to provide a loop large
enough for one of those domains to pass through.
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“The road goes ever on and on”

J.R.R. Tolkien, The Hobbit

“Wszyscy zgodnie orzekli, że nigdy nie będą brali
ze sobą żadnych map, bo najciekawsze są podróże
w nieznane.”

Narrator, odcinek 5 serialu Muminki

5
Summary

This dissertation presents several different approaches to the study of proteins,
focusing mostly on those relating to the topology of their structures, with
a small detour into the co-evolutionary methods, as they are still relatively

unexplored, and thus promising, as an avenue for discovering secrets of biomolecular
entanglements. First, a new, and the first deterministic, algorithm knot_pull for en-
tanglement analysis of biological molecules is introduced. Then, a novel algorithm for
multiple profile alignment is presented, and applied to provide the first study on the
evolution of slipknotted membrane proteins. Different resources for exploration (DCA-
MOL) and exploring (PConsFam) the structural information provided by sequence
positions co-evolution are described, and the interactions found used for knotted pro-
tein folding simulations. Then, a self-updating database of links in proteins LinkProt is
shown, along with a webserver for topologically-conscious modeling of missing parts of
protein structure coordinates. Finally, possible folding pathways of newly discovered
entangled proteins are explored.

Compared to many other fields of protein research, the study of topology is barely
crawling – there are still many more questions than answers, including the fundamental
ones:

Why did the knots emerge during evolution? Was it purely a random mutation
that stuck, or did they bring some crucial advantage?
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How did they appear? Was each knot that remains in genome a one time event,
or did those knots deepen, or increase their complexity, over time?

What makes them fold efficiently, or at least efficiently enough?

Is there a method to the complexity of knots found in proteins? What is the
reason for different knot types and chiralities found in protein structures?

Is there even a common to all knots answer to this questions?

Works presented here attempt to bring us closer to the answers but there is still a lot
more to do, hence the main goal of most of the research presented was to allow others
a smoother pass into the mysterious world of biological entanglements.
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