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Abstract

Numerical modelling of the atmosphere is crucially important for the state-of-the-

art weather forecasting and climate prediction. In weather, climate, and chemistry-

transport models, advective transport of moist air, chemical species, or pollutants has

to be represented with high accuracy. Furthermore, advection schemes need to respect

the fundamental physical principles of transport, such as conservation, monotonicity,

compatibility with mass continuity, and correlations between tracers.

Numerical errors and behavioural properties of an advection scheme are dependent

on its order of accuracy. In atmospheric modelling, second-order accurate schemes are

common, and a trend towards high-order (i.e. third-order or higher) accurate algorithms

can be observed. However, combining high-order accuracy with robustness and physical

realisability is far from trivial.

To achieve high-order accuracy without compromising advantageous numerical

properties, this thesis proposes a third-order accurate advection scheme based on

the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA).

MPDATA-based solvers have a rich history of successful applications in geo- and

astrophysics. The standard MPDATA advection scheme is second-order accurate,

sign-preserving (optionally nonoscillatory), and fully multidimensional. Remarkably,

in simulations of turbulent flows, MPDATA can provide an implicit subgrid-scale

turbulence model.

This thesis extends MPDATA to third-order accuracy for temporally or spatially

varying flows, while preserving its beneficial characteristics. This is accomplished by

deriving the leading truncation error of the standard second-order MPDATA, performing

the Cauchy-Kowalevski procedure to express it in a spatial form and compensating

its discrete representation—much in the same way as the standard MPDATA corrects

the first-order accurate upwind scheme. The procedure of deriving the spatial form of

the truncation error was automated using a computer algebra system. This enables

various options in MPDATA to be included straightforwardly in the third-order scheme,

thereby minimising the implementation effort in existing code bases. Following the

spirit of MPDATA, the error is compensated using the upwind scheme resulting in a

sign-preserving algorithm, and the entire scheme can be formulated using only two

upwind passes. Established MPDATA enhancements, such as formulation in generalised
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curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry

over to the fully third-order accurate scheme.

The novel scheme was implemented in libmpdata++, which is an open-source library

of MPDATA-based solvers. Highlights of the library are presented, particularly stressing

its design based on object-oriented programming and modern software development

practices. Benefits of the adopted design choices for implementing the fully third-order

accurate scheme are discussed.

A manufactured 3D analytic solution is used to verify the theoretical develop-

ment and its numerical implementation. Global tracer-transport benchmarks facilitate

comparison of the fully third-order accurate MPDATA to other schemes popular in com-

putational meteorology, while also demonstrating its benefits for chemistry-transport

models fundamental to air quality monitoring, forecasting and control.

Advantages of the fully third-order-accurate MPDATA for fluid dynamics appli-

cations are illustrated by simulations of a double shear layer, a convective boundary

layer, and an idealised supercell storm. The double shear layer simulations quanti-

fy the increased accuracy of the new scheme in an overall lower-order accurate flow

solver. Simulations of the convective boundary layer reveal its implicit subgrid-scale

turbulence model. Characteristics of the scheme in simulations with parametrised cloud

microphysics are explored in the idealised supercell storm benchmark.

Using the genuinely third-order accurate MPDATA consistently improved simulation

results in a variety of test cases relevant to atmospheric modelling. The improvement

was especially significant for the tracer transport benchmarks; therefore, the novel

scheme can be generally recommended for tracer transport applications. In simulations

of turbulent flows, the fully third-order accurate MPDATA revealed an implicit subgrid-

scale model with beneficial characteristics. An increased complexity of the new scheme

is offset by the availability of its open-source implementation.
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Streszczenie

Modelowanie numeryczne jest ważnym, jeśli nie najważniejszym, narzędziem wyko-

rzystywanym w prognozowaniu pogody oraz predykcjach klimatycznych. W modelach

pogody, klimatu i transportu zanieczyszczeń adwekcyjny transport powietrza, związków

chemicznych lub zanieczyszczeń powinien być opisany z dużą precyzją. Co więcej,

schematy adwekcyjne muszą respektować fundamentalne prawa fizyczne, takie jak

zachowawczość, monotoniczność i korelacje pomiędzy transportowanymi składnikami.

Własności i błędy numeryczne schematu adwekcyjnego zależą od jego rzędu dokład-

ności. W modelowaniu atmosfery powszechnie stosowane są schematy drugiego rzędu

dokładności. Ostatnio daję się jednak zaobserwować trend ku algorytmom wyższego

rzędu dokładności (tj. trzeciego lub wyższego). Połączenie wysokiego rzędu dokładności

ze stabilnością schematu i respektowaniem praw fizycznych jest nietrywialne.

Niniejsza praca proponuje schemat adwekcyjny trzeciego rzędu dokładności w opar-

ciu o istniejący algorytm MPDATA (Multidimensional Positive Definite Advection

Transport Algorithm). Modele oparte o schemat MPDATA mają bogatą historię zasto-

sowań w geo- i astrofizyce. Standardowy schemat adwekcyjny MPDATA jest drugiego

rzędu dokładności, zachowuje znak (opcjonalnie jest nieoscylacyjny) i jest w pełni wielo-

wymiarowy. Warto podkreślić, że w symulacjach przepływów turbulentnych MPDATA

może modelować w niejawny sposób turbulencję podskalową.

Niniejsza praca rozszerza algorytm MPDATA do trzeciego rzędu dokładności dla

przepływów zmiennych w czasie lub przestrzeni, jednocześnie utrzymując wszystkie

zalety istniejących schematów MPDATA o drugim rzędzie dokładności. Zostało to osią-

gnięte przez wyprowadzenie wiodącego członu błędu obcięcia standardowego schematu

MPDATA drugiego rzędu, przeprowadzenie procedury Cauchy-Kowalewskiej w celu

wyrażenia go w formie przestrzennej i kompensacje jego dyskretnej postaci—w sposób

bardzo podobny do tego jak standardowy schemat MPDATA poprawia błąd schematu

pierwszego rzędu dokładności typu upwind. Procedura wyprowadzenia błędu obcięcia w

formie przestrzennej została zautomatyzowana poprzez użycie systemu algebry kompu-

terowej. Pozwala to na uwzględnienie różnych opcji algorytmu MPDATA bezpośrednio

w schemacie trzeciego rzędu dokładności, ułatwiając w ten sposób implementacje algo-

rytmu w istniejących kodach komputerowych. W duchu algorytmu MPDATA, błąd jest

kompensowany używając schematu typu upwind, co skutkuje otrzymaniem algorytmu
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zachowującego znak, oraz wymagającym jedynie dwóch iteracji typu upwind. Różne

opcje algorytmu MPDATA (takie jak: wersja w uogólnionych zmiennych krzywolinio-

wych lub opcja nieoscylacyjna) w sposób prosty mogą być zastosowane w schemacie o

pełnym trzecim rzędzie dokładności.

Nowy schemat został zaimplementowany w bibliotece schematów MPDATA z otwar-

tym kodem źródłowym, libmpdata++. W pracy przedstawiono główne idee przyświeca-

jące stworzeniu biblioteki, szczególnie podkreślając jej zamysł oparty na programowaniu

obiektowym oraz użyciu nowoczesnych zasadach inżynierii oprogramowania. Przedys-

kutowana są zalety takiego zaprojektowania biblioteki dla implementacji schematu o

pełnym trzecim rzędzie dokładności.

Specjalnie skonstruowane trójwymiarowe rozwiązanie równania adwekcji jest użyte

w celu weryfikacji teoretycznego wyprowadzenia oraz jego numerycznej implementacji.

Standardowe testy transportu adwekcyjnego pozwalają na porównanie nowego sche-

matu z innymi popularnymi schematami stosowanymi w meteorologii obliczeniowej.

Demonstrują również jego zalety dla modeli transportu zanieczyszczeń używanych do

monitorowania, prognozy, i kontroli jakości powietrza.

Zalety schematu MPDATA o pełnym trzecim rzędzie dokładności dla zastosowań

w dynamice płynów są zilustrowane poprzez symulacje podwójnej warstwy ścinania,

konwekcyjnej warstwy granicznej oraz wyidealizowanej superkomórki burzowej. W

symulacjach podwójnej warstwy ścinania przeprowadzona została ilościowa analiza

zwiększonej dokładności nowego schematu w modelu, który jako całość ma mniej-

szy rząd dokładności. Symulacje konwekcyjnej warstwy granicznej pokazują niejawny

model turbulencji podskalowej nowego schematu MPDATA. Cechy schematu w symula-

cjach z parametryzowaną mikrofizyką chmur zostały zbadane w teście wyidealizowanej

superkomórki burzowej.

Podsumowując, użycie schematu MPDATA o trzecim rzędzie dokładności popra-

wiło wyniki symulacji w różnych testowanych przypadkach istotnych w modelowaniu

atmosfery. Zalety nowego schematu są szczególnie dobrze widoczne w standardowych

testach transportu adwekcyjnego, , zatem używanie go dla rozwiązywania transportu

adwekcyjnego może być szczerze rekomendowane. Nowy algorytm MPDATA, lepiej

niż jego wersja standardowa, modeluje w niejawny sposób turbulencję podskalową.

Skomplikowaność nowego schematu nie stanowi dużego problemu dzięki dostępności

jego otwartej implementacji.
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1 Introduction

The Earth’s atmosphere is a complex system composed of moist air and a multitude

of trace chemical species evolving on a variety of spatio-temporal scales. While fluid

dynamics and thermodynamics are believed to provide adequate mathematical descrip-

tion, obtaining a solution to the governing equations generally necessitates the use of

numerical methods. Advection is one of the fundamental processes in fluids and hence

its numerical representation is of the utmost importance in the design of numerical

models of the atmosphere. Numerical advection schemes are at the heart of long-range

chemistry-transport models with applications to monitoring, forecasting and control of

air pollution. In dynamical models advective terms form the principal nonlinearity of

atmospheric equations of motion, and are responsible for such phenomena as energy

cascades and turbulence.

Since the advent of numerical atmospheric modelling the simultaneous increase

in computing power and algorithms’ sophistication have enabled realistic transient

three-dimensional simulations. However, the current computing resources are still far

from allowing sufficient resolution of the full range of atmospheric scales. Therefore,

minimising numerical errors by the use of advanced algorithms is still critical. Moreover,

it is increasingly necessary to develop algorithms suitable for contemporary massively

parallel machines. An advection scheme is a part that faces the most stringent accuracy

requirements and is usually responsible for a sizeable part of the run time. Consequently,

there is a continuing quest for improved advection schemes applied in climate, weather

and chemistry-transport models.

Numerical modelling of advection in atmospheric flows is challenging because of the

highly variable multi-scale circulations and the need to respect the fundamental physical

properties of transport. For example, compatibility with mass continuity is vital but

is not automatically assured when combining different discretisations (Gross et al.,

2002). Conservation of mass is important for transport of moisture or long-lived reactive

species, especially for long-term climate simulations. Preservation of other analytically

conserved quantities may be beneficial for specialised applications (Thuburn, 2008).

While atmospheric flows are characterised by low Mach numbers and do not develop

shocks, regions of sharp gradients in transported variables frequently occur—consider for

example atmospheric fronts or a cloud-air interface—and have to be captured accurately.
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To avoid overshoots or undershoots near large gradients, schemes that are monotonicity

preserving are preferable. Representations of moist processes or chemical reactions do

not tolerate negative values, making sign preservation a paramount property. Some

tracer mixing ratios (for example nitrous oxide N2O and ’total odd nitrogen’ NOy)

appear to be related by simple functional relations, in that case it is advantageous

that a transport scheme does not disturb their correlations. To allow quasi-uniform

distributions of mesh points on the sphere or to handle the orography, advection schemes

should be geometrically flexible; either by incorporating coordinate transformations,

or formulations on unstructured meshes. Finally, good performance and scalability on

modern machines with high core counts is essential. All together, balancing accuracy,

efficiency and the physical realisability is problem specific and rarely straightforward.

The key properties of a finite-difference approximation to any properly posed initial

value problem are (in the spirit of the Lax’s Equivalence Theorem) the consistency,

stability and convergence (§3 in Richtmyer and Morton (1967), §13.2 in Toro (2009)).

The first two are necessary for the third that per se is a categorical imperative of

computational physics. Inherent in the concept of convergence are the interrelated

notions of the convergence rate and truncation error, epitomised by the order of

accuracy. The latter is a simple single measure that reflects the dependence of the

approximation’s leading truncation error on the powers of the discretisation increments

(spatial or temporal, or both) as well as the asymptotic rate at which the approximate

solution converges to the sufficiently smooth genuine result in terms of the increments’

powers as they tend to zero; cf. §7 in Richtmyer and Morton (1967). While high-order

accuracy is a holy grail of numerical analysis, designing even a truly second-order

method for practical problems of computational physics can be a difficult (if at all

attainable) task; see Knoll et al. (2003), §20.5.2 in Toro (2009) and Jarecka et al. (2015)

for related discussions. Moreover, for complex computational models solving systems

of inhomogeneous partial differential equations (PDEs) with multiplicity of the right-

hand-side (rhs) forcings that act on disperse spatio-temporal scales, the asymptotic

convergence rate may be practically inaccessible even though the employed method is

formally sufficiently accurate. This, however, does not preclude the utility of high-order

approximations, because the actual functional form of the leading truncation error can

determine behavioural errors (such as excessive implicit diffusion or dispersion, lack of

conservation or sign preservation, etc.), which for the application at hand can be more

important than the formal accuracy (§III-A-23 in Roache (1972)).

Historically, the first-order-accurate advection schemes were discarded due to the

notorious implicit diffusion, stimulating the development of second-order-accurate

schemes. However, already in the seventies, higher-order schemes (i.e. third-order or

higher) were shown to have computational advantages for atmospheric applications

(Kreiss and Oliger, 1972). The key motivation is that higher-order accuracy can be

more cost-effective than increasing resolution with a lower-order scheme, but there can
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be others related to the behavioural errors; e.g., a more uniform accuracy in terms

of the Courant number and better preservation of the solution symmetries (Jaruga

et al., 2015), or the strong stability at reduced dissipativity (see §5.4 in Richtmyer and

Morton (1967) for a substantive discussion). More recent studies demonstrated the

efficiency of higher-order methods in the area of computational fluid dynamics (Wang

et al., 2013) and in representing atmospheric wave motion (Ullrich, 2014), while a

trend towards higher-order schemes can be observed for atmospheric modelling (Ullrich

and Jablonowski, 2012; Kelly and Giraldo, 2012; Skamarock et al., 2012). It is worth

noting that, even though the literature on high-order advection schemes is vast, many

formulations adopt simplifying assumptions of constant velocity and may not reach

their target accuracy for variable flows. Additionally, many very high-order methods

are only formulated for one dimensional advection, and when used in a dimensionally-

split fashion (Strang, 1968), only achieve second-order accuracy in multidimensional

applications (§4.3 in Gustafsson et al. (1995)).

This thesis concerns construction, verification and application of a genuinely (i.e.

for variable flows and in multiple dimensions) third-order advection scheme following

the approach of Multidimensional Positive Definite Advection Transport Algorithm

(MPDATA), a method proven in geophysical applications. The material is based in-

part on Waruszewski et al. (2018), extended with additional details, discussions, and

simulations.

The MPDATA scheme and MPDATA-based flow-solvers have a rich history. As

it stands today, the term MPDATA encompasses a class of generally second-order

accurate nonoscillatory forward-in-time1 advection algorithms, formulated as finite-

difference (FD) schemes on structured rectilinear grids (Smolarkiewicz, 1984; Smo-

larkiewicz and Margolin, 1998) or finite-volume (FV) schemes on unstructured me-

shes (Smolarkiewicz and Szmelter, 2005; Kühnlein and Smolarkiewicz, 2017). MPDATA

schemes are based on iterative application of the first-order accurate upwind scheme,

while exploiting its sign-preserving property (Smolarkiewicz, 1984). In the first pass the

transported variable is advected by the physical velocity, whereas subsequent passes

use error-compensating pseudo-velocities designed to compensate the leading-order

spatial and temporal truncation errors of the upwind scheme. Only one corrective

pass is required for the second-order accuracy. MPDATA schemes have many virtues,

including full multidimensionality, conservation, sign-preservation, nonlinear stability

and relatively small phase error (Smolarkiewicz and Margolin, 1998; Smolarkiewicz

and Szmelter, 2005). Sign-preservation can be extended to monotonicity by means of

the nonoscillatory option (Smolarkiewicz and Grabowski, 1990). The nonoscillatory

option is typically combined with the infinite-gauge (asymptotic limit of MPDATA for

an infinite constant background), especially suitable for the transport of variable-sign

1 Temporal derivatives are approximated with forward-in-time differences, while temporal errors are
compensated by utilising the information contained in the governing PDE.

13



fields and having favourable efficiency.

In order to guarantee the second-order accuracy in time, the pseudo-velocities of

MPDATA contain terms compensating the error of the forward-in-time differencing.

This places MPDATA in a class of one-step Lax-Wendroff schemes (Lax and Wen-

droff, 1960), that use the Cauchy-Kowalevski procedure (Toro, 2009) to transform

temporal derivatives in the error terms into spatial derivatives while relying on the

structure of the governing PDEs. Advantages of forward-in-time methods include

the reduced storage requirements compared to multi-level schemes and the absence

of computational modes such as those typical of basic centred-in-time schemes. The

Cauchy-Kowalevski procedure was also instrumental for transforming MPDATA into a

family of solvers for generalised transport equations with arbitrary right-hand-sides

in curvilinear coordinates (Smolarkiewicz and Margolin, 1993, 1998). Recent advances

comprise soundproof-time-step semi-implicit integration schemes for the compressible

Euler equations of all-scale atmospheric dynamics based on the FD (Smolarkiewicz

et al., 2014) and the FV (Kühnlein and Smolarkiewicz, 2017) MPDATA formulations.

Simulations of high Reynolds number flows with the nonoscillatory MPDATA

revealed that, in the absence of an explicit subgrid-scale turbulence model, the scheme

itself provides an implicit subgrid-scale model (Margolin et al., 1999). While it is not

surprising that the truncation error of a conservative scheme forms an effective stress

tensor, the veracity of the approach, dubbed implicit large-eddy-simulation (ILES), is

remarkable. The ILES property was subsequently studied in depth (Margolin et al., 2002;

Margolin and Rider, 2002; Domaradzki et al., 2003; Margolin et al., 2006b,a; Strugarek

et al., 2016) and verified in diverse geo- and astrophysical applications (Warn-Varnas

et al., 2007; Prusa et al., 2008; Piotrowski et al., 2009; Ghizaru et al., 2010; Racine

et al., 2011; Kumar et al., 2015). ILES is particularly suitable for problems where

formulating physically motivated subgrid-scale turbulence models is hard, for example

when subgrid scales are anisotropic or when complicated coordinate transformations

are applied. In Margolin and Rider (2002); Margolin et al. (2006a) the ILES property

was attributed to the similarity between the truncation terms of the basic MPDATA

and the finite-scale corrections to the Burgers’s and Navier Stokes’s equations. At

first glance, this suggests that going beyond the second-order accuracy may impact

the scheme suitability for ILES. However, the ILES property can be also realised via

the nonoscillatory enhancement of the infinite-gauge option (Margolin et al., 1999;

Domaradzki et al., 2003; Margolin et al., 2006b), or the basic MPDATA truncation

combined with the nonoscillatory enhancement (Warn-Varnas et al., 2007; Ghizaru

et al., 2010; Racine et al., 2011; Strugarek et al., 2016; Cossette et al., 2017). All

three options have merits benefiting specialised applications. The specific question of

suitability of the fully third-order accurate MPDATA for ILES is addressed in the thesis.

The FD-MPDATA is the basis of the EULAG model (Prusa et al., 2008; Smolarkie-

wicz and Charbonneau, 2013) , while the FV-MPDATA is employed in the Finite-Volume
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Module (FVM) for global all-scale atmospheric flows (Smolarkiewicz et al., 2016, 2017;

Kühnlein et al., 2018). Recently, the FD-MPDATA based solvers were also implemented

in an open-source free/libre library libmpdata++ (Jaruga et al., 2015), of which the

author of the thesis is one of core developers. The aim of the library is to provide a set

of reusable components for building MPDATA-based numerical models, while strictly

adhering to the modern software-development practices such as automatic testing, clear

separation of concerns, and focus on readability and maintainability. Together with

it’s sister cloud microphysics library libcloudph++ (Arabas et al., 2015), libmpdata++

serves as the basis of University of Warsaw Lagrangian Cloud Model (UWLCM), a

LES model for researching microphysical effects in warm clouds.

Technically, the proposed scheme can be viewed as an extension of the work in

Margolin and Smolarkiewicz (1998), where a recursively summed error-compensating

pseudo-velocity was derived and a third-order accurate FD-MPDATA was devised under

the assumption of a constant physical velocity. To obtain the third-order accuracy two

sources of error had to be compensated, the truncation error of the upwind scheme and

the MPDATA corrective pass. The error was compensated by either using the recursive

pseudo-velocity (resulting in a scheme with just one corrective iteration) or performing

two corrective iterations. For problems where the velocity field changes in space or

time, this variant of MPDATA is formally second-order accurate but, nonetheless, offers

improved accuracy and diminishes the error dependence on the Courant number.

Here, an extension of the FD-MPDATA to the third-order accuracy for variable flows

is presented. In contrast with Margolin and Smolarkiewicz (1998), the full truncation

error of the second-order FD-MPDATA is analytically derived, rather than solely the

error of the first upwind pass. The error is then transformed into a spatial form following

the Cauchy-Kowalevski procedure. The leading order-truncation error is written as

a pseudo-velocity, and the origins of the terms that compose it are discussed. The

adopted approach has the advantage that a two-pass third-order accurate scheme can

be easily constructed, obviating the need for the recursive pseudo-velocity. Furthermore,

established MPDATA enhancements, such as formulation in generalised curvilinear

coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the

fully third-order accurate scheme.

For verifying the correctness of the analytic derivations as well as their numerical

implementation, a manufactured 3D analytic solution is used, designed to have the full

coordinate dependence of the advective velocity. To provide an example of intermediate

complexity that is both relevant to atmospheric applications and facilitates comparisons

to other advection algorithms popular in computational meteorology, two standard

test cases for tracer transport in spatially variable time-dependent flows on the sphere

are adopted. The first is the moving vortices on the sphere test case from Nair and

Jablonowski (2008). The second is selected from the test suite in Lauritzen et al. (2012),

and addresses tracer correlations in a reversing deformational flow.
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Having proved the newly developed advection scheme, its advantages to simulate

fluid dynamics are demonstrated. Simulations of a viscous double shear layer rollup

(Drikakis and Smolarkiewicz, 2001; Drikakis et al., 2002) discriminately quantify the

benefit of the fully third-order MPDATA embedded in a lower-order accuracy flow

solver. Similarly, simulations of a dry convective boundary layer (Margolin et al.,

1999) illustrate the scheme advantages in simulations of atmospheric flows, while also

addressing its suitability for implicit large-eddy simulations. Finally, the performance

and robustness of the proposed scheme are explored in simulations of an idealised

supercell storm, a complex atmospheric benchmark case featuring very strong winds,

small-scale microphysical effects and heavy precipitation.

The thesis is organised as follows. In Chapter 2 the standard FD-MPDATA scheme

for the solution of a homogeneous generalised transport equation is outlined. Chapter 3

contains the novel truncation error analysis of the standard FD-MPDATA, constructs

the fully third-order accurate MPDATA, and provides details of its implementation.

Chapter 4 provides an overview of the libmpdata++ library of MPDATA solvers, which

contains an open implementation of the scheme and was used to perform simulations

presented in the thesis. The proposed scheme is first verified and compared to the

established MPDATAs based on tracer transport benchmarks in Chapter 5. Afterwards,

Chapter 6 demonstrates the utility of the fully third-order-accurate MPDATA for fluid

dynamics simulations, including ILES study of three-dimensional turbulent atmospheric

flow. Idealised supercell simulations are presented in Chapter 7. Chapter 8 presents

conclusions and final remarks. Some technical details and derivations are delegated to

appendices.
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2 Standard MPDATA

This chapters reviews the standard MPDATA scheme—first introduced in Smolarkie-

wicz (1983) and subsequently extended—for integrating the homogeneous generalised

transport equation

∂GΨ
∂t

+∇ · (V Ψ) = 0 , (2.1)

where Ψ(t,x) is a scalar field and (t,x) are the independent curvilinear coordinates.

The symbol ∇· represents the scalar product of the nabla operator ∇ = (∂x, ∂y, ∂z)

with a vector. In general, the symbol G corresponds to the Jacobian of the coordinate

transformation, the fluid density, or a product of both. Hereafter, it is assumed that G

is independent of time G = G(x). The vector field V = Gẋ denotes a generalised flow

field, where ẋ is the contravariant velocity in the underlying coordinate system.

The presentation follows in-part already available comprehensive reviews (Smo-

larkiewicz and Margolin, 1998; Smolarkiewicz, 2006) with the aim of providing the

necessary background for the next chapter introducing the fully third-order-accurate

scheme.

2.1 Derivation in 1D

To explain the underlying idea behind MPDATA in a simplified setting consider (2.1)

in one dimension, with U := V 1,

∂Ψ
∂t

+
1
G

∂

∂x
(UΨ) = 0. (2.2)

The first-order upwind approximation to (2.2) is written in the flux form

Ψn+1
i = Ψn

i −
1
Gi

[
F (Ψn

i ,Ψ
n
i+1,Ui+1/2)− F (Ψn

i−1,Ψ
n
i ,Ui−1/2)

]
, (2.3)

where

F (ΨL,ΨR,V) = 0.5 [(|V|+ V)ΨL + (V− |V|)ΨR] (2.4)
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is the upwind flux function. Here, superscripts n+ 1 and n correspond, respectively, to

the tn+1 and tn time levels of a uniformly spaced temporal grid (tn+1 = tn + δt where

δt is the time step), index i labels cells of a computational grid (with uniform grid

spacing δx), half integer indices correspond to cell faces and U = (δt/δx)U is the local

Courant number.

While the upwind scheme is sign-preserving and has a relatively small phase error,

it is plagued by a large implicit diffusion. This is revealed by a simple truncation error

analysis1 of (2.3) which, under a simplifying assumption of constant U and G, results

in the advection-diffusion equation

∂Ψ
∂t

+
1
G

∂

∂x
(UΨ) =

1
G

∂

∂x

(
K
∂Ψ
∂x

)
+O(δt2, δx2), (2.5)

with a diffusion coefficient

K =
δx2

2δt

(
|U| − U

2

G

)
. (2.6)

The diffusive term is the leading-order error of the upwind scheme. While its simple

centred-differences compensation leads to the well-known oscillatory one-step Lax-

Wendroff scheme, MPDATA ingenuity stems from rewriting this term as a divergence

of an advective flux

1
G

∂

∂x

(
K
∂Ψ
∂x

)
=

1
G

∂

∂x
(UΨ), (2.7)

where

U =
δx2

2δt

(
|U| − U

2

G

)
1
Ψ
∂Ψ
∂x

(2.8)

is an error-compensating pseudo-velocity. Hence, the error can be compensated by

a second iteration of the upwind scheme using the pseudo-velocity as the advective

velocity, while preserving the sign of Ψ. Moreover, since the corrective pass is also based

on the upwind scheme, the correction can be iterated further. A suitable numerical

approximation to the ratio 1
Ψ
∂Ψ
∂x in (2.8) is

1
Ψ
∂Ψ
∂x

∣∣∣∣
i+1/2

≈ 2
δx

Ψi+1 −Ψi

Ψi+1 + Ψi + ε
, (2.9)

which, for Ψ of constant sign, ensures the boundness of the pseudo velocity and, conse-

quently, the stability of the scheme (Smolarkiewicz and Margolin, 1998; Smolarkiewicz

1 Expanding all dependant variables in a Taylor series about (xi, tn), dropping i and n as the
resulting equation is valid for arbitrary i and n, and converting time derivatives to spatial derivatives
using the governing equation. See the next chapter for a more thorough discussion of this procedure in
the derivation of the fully third-order scheme.
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and Szmelter, 2005; Kühnlein and Smolarkiewicz, 2017). An arbitrary small—e.g.10−15

in 64-bit precision for fields with the amplitude of O(1)—constant ε is added in the

denominator of (2.9) to ensure the validity of the scheme at zeros of Ψ2.

2.2 Multidimensional MPDATA

One of the main benefits of MPDATA is that it can be used for multidimensional

transport in geometrically unsplit fashion, a favourable property for simulating nearly

incompressible atmospheric flows. Extending MPDATA to multiple dimensions requires

the truncation error analysis of the multidimensional upwind scheme to derive the

associated pseudo-velocity (Smolarkiewicz, 1984). The analytical expression for such

pseudo-velocity can be compactly written as

V (V ,Ψ) =
1
2
δx� ↑V ↑ � ∇Ψ

Ψ
− 1

2
δt
V

G

[
V · ∇Ψ

Ψ
+∇ · V

]
, (2.10)

where (↑a↑)I := |aI | denotes component-wise absolute value of a vector and (a� b)I :=

aIbI is the component-wise (Hadamard) product of two vectors. The standard multidi-

mensional MPDATA proceeds using the iterative form

Ψ(m)
i =Ψ(m−1)

i

− 1
Gi

N∑
I=1

{
F
(
Ψ(m−1)
i ,Ψ(m−1)

i+eI ,VI (m)
i+1/2 eI

)
− F

(
Ψ(m−1)
i−eI ,Ψ(m−1)

i ,VI (m)
i−1/2 eI

)}
,

(2.11)

for m = 1,M , where the parenthesised superscripts number the MPDATA iterations.

The number of spatial dimensions is N , eI denotes the unit vector with I indicating

the coordinate direction, half integer indices correspond to cell faces. At the start of

the algorithm, Ψ(0) ≡ Ψn, VI (1) ≡ (δt/δxI)(V I)n+1/2, where δxI is the grid spacing in

the Ith coordinate direction. The Mth iteration of (2.11) yields the updated solution

Ψn+1 ≡ Ψ(M). Note that assumed here is the availability of an estimate for the

local Courant number VI (1) at the intermediate time level tn+1/2 with at least O(δt2)

accuracy, discussed further in the chapter. The second and subsequent iterations use

the nondimensional error-compensating pseudo-velocities

VI (m) =
δt

δxI
V I (m) =

δt

δxI
V
I
(
V (m−1),Ψ(m−1)

)
for m > 1, (2.12)

2Implementations with ε ≡ 0 are possible but less cost-effective.
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based on FD approximations to the analytical expression (2.10). The standard discrete

expression is

V i+1/2eI =

|V I
i+1/2eI | −

δt
(
V I
i+1/2eI

)2

Gi+1/2eI

 Ψi+eI −Ψi

Ψi+eI + Ψi + ε

−
M∑

J=1,J 6=I

δt

2

V I
i+1/2eIV

J
i+1/2eI

Gi+1/2eI

Ψi+eI+eJ + Ψi+eI −Ψi+eI−eJ −Ψi−eJ

Ψi+eI+eJ + Ψi+eI + Ψi+eI−eJ + Ψi−eJ + ε

− δt

4

V I
i+1/2eI

Gi+1/2eI

M∑
J=1

(
V J
i+eI+1/2eJ + V J

i+1/2eJ − V
J
i+eI−1/2eJ − V

J
i−1/2eJ

)
,

(2.13)

where V J
i+1/2eI = 1

4(V J
i+eI+1/2eJ + V J

i+1/2eJ + V J
i+eI−1/2eJ + V J

i−1/2eJ ) and Gi+1/2eI =
1
2(Gi+eI +Gi). Similarly to the one dimensional case, the adopted discretisation of the

term ∇Ψ
Ψ has the favourable boundness property.

2.3 MPDATA options

The above review presented the basic second-order-accurate MPDATA scheme for

transporting fields of constant sign. This section introduces some of the advanced

options of the algorithm.

2.3.1 Transporting fields of variable sign

The simplest way of extending MPDATA for transporting fields of variable sign is by

exploiting the relationship

1
Ψ
∂Ψ
∂xI

=
1
|Ψ|

∂|Ψ|
∂xI

, (2.14)

which amounts to replacing every Ψ by the corresponding absolute value |Ψ| in (2.13).

Another approach, introduced in Smolarkiewicz and Clark (1986), is based on the gauge

transformation

∂G(Ψ + cχ)
∂t

+∇ · [V (Ψ + cχ)] = 0, (2.15)

where c is an arbitrary constant and χ is the fluid density (for elastic systems) or a

constant χ = 1 (for anelastic systems). The additional degree of freedom introduced by

the transformation can be used to define an asymptotic limit of the MPDATA scheme

for c→∞. This two-pass variant of the scheme, termed ”infinite-gauge”, is technically

achieved by replacing in the second MPDATA iteration the first two arguments of the

upwind flux function with unity, substituting every Ψ that enters the denominators of
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the pseudo-velocity velocity (2.13) with unity and multiplying the terms independent

of Ψ by Ψi+1/2eI . Since the resulting second-order-accurate scheme is linear and hence

oscillatory it is commonly combined with the nonoscillatory option discussed below.

2.3.2 Nonoscillatory option

While sign-preservation is sufficient for a variety of geophysical applications, there are

problems where nonoscillatory solutions are needed. In Smolarkiewicz and Grabowski

(1990) MPDATA was extended to full monotonicty preservation in the framework of

multidimensional FCT (Zalesak, 1979). MPDATA is especially well suited for this

because the FCT procedure mixes schemes with similar phase-error properties. The

FCT limiting does not depend on the exact form of the pseudo-velocity, hence it is

applicable to any variant of MPDATA.

2.3.3 Velocity extrapolation/interpolation

The first iteration of MPDATA requires advective velocities located at the cell faces

and taken at the intermediate time level tn+1/2. The temporal staggering is necessary

to maintain second-order accuracy for time dependant flows. In anelastic fluid solvers

based on MPDATA, where the velocity components are part of the prognosed variables,

the most common way to obtain V n+1/2 is linear extrapolation

V n+1/2 :=
1
2

(3V n − V n−1), (2.16)

which maintains mass continuity3.

The prognosed variables are located at the cell centers, to obtain the values at the

cell faces linear interpolation

V I
i+1/2eI :=

1
2

(V I
i + V I

i+eI ) (2.17)

is commonly used.

2.3.4 Constant coefficients third-order correction

For generalised transport equation with constant coefficients, that is both V and

G are constant in (2.1), a third-order accurate variant of MPDATA was derived in

Margolin and Smolarkiewicz (1998). The required modification of the psuedo-velocities

3The given formula assumes a uniform time step. See Kühnlein et al. (2012) for variable time
stepping that also accounts for time-dependent curvilinear coordinates.
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of MPDATA are discrete approximations to analytical expressions of the form

δU =
δx2

6

(
3U|U|
G
− 2U3

G2 − U
)

1
Ψ
∂2Ψ
∂x2 +

δxδyV
2G

(
|U| − 2U2

G

)
1
Ψ
∂2Ψ
∂x∂y

+
δxδzW

2G

(
|U| − 2U2

G

)
1
Ψ
∂2Ψ
∂x∂z

+
2δyδzUVW

3G2
1
Ψ
∂2Ψ
∂y∂z

, (2.18)

where modifications of other pseudo-velocity components are obtained by symmetric

permutations.
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3 Fully third-order MPDATA

In this chapter a third-order accurate MPDATA scheme for spatially and temporally

variable flows is developed. The starting point is the derivation of a third-order error-

compensating pseudo-velocity based on the leading-order truncation error of standard

MPDATA. A unified expression for the resulting pseudo-velocity, including combined

effects of various MPDATA options, is presented and discussed. Each term in the

expression is labelled and given a clear interpretation based on its origin. Finally, the

details of the scheme implementation are presented.

3.1 Derivation of the third-order error-compensating

velocity

The derivation of the third-order error-compensating velocity comprises two distinct

steps. First, the leading order spatial and temporal truncation error of the second-

order MPDATA scheme is derived. Afterwards, the temporal error is converted to a

spatial form using the Cauchy-Kowalevski procedure. Importantly, the exact result

depends on some of the standard MPDATA options, such as number of iterations or

the interpolation/extrapolation procedures discussed in the previous chapter. While

the procedure is conceptually simple the calculations can be involving. Hence, to assist

hand derivations, an implementation of the procedure in a computer algebra system

was created. Both approaches are summarised below, with a step-by-step description of

the hand derivation relegated to Appendix A.

3.1.1 Hand derivation

To find the leading-order spatial truncation error of the standard MPDATA every

Ψ(m−1)
j , VI (m)

j+1/2 eI and Gj that appears in the iterative form (2.11) is expanded in

a third-order Taylor series in space about a common point xi. Note that different

formulations of the discrete scheme may result in different truncation errors. For

example if V I
i+1/2eI is known with O((δxI)3) accuracy then

V I
i+1/2eI = V I

i +
δxI

2
∂V I

∂xI

∣∣∣∣∣
i

+
(δxI)2

8
∂2V I

∂(xI)2

∣∣∣∣∣
i

+O((δxI)3). (3.1)
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However, if linear interpolation is used, then

V I
i+1/2eI :=

1
2

(V I
i + V I

i+eI ) = V I
i +

δxI

2
∂V I

∂xI

∣∣∣∣∣
i

+
(δxI)2

4
∂2V I

∂(xI)2

∣∣∣∣∣
i

+O((δxI)3), (3.2)

leading to a different coefficient multiplying the second spatial derivative. The resulting

system of equations (one for each iteration) is then reduced to a single equation by

successively expressing Ψ(m)
i in terms of Ψ(m−1)

i , stopping when Ψn+1 is expressed

sorely in terms of Ψn. A third-order Taylor series expansion in time of the resulting

equation about tn results in modified equation of the form

∂Ψ
∂t

+
1
G
∇ · (V Ψ) =

1
G
∇ · (TF )− δt

2
∂2Ψ
∂t2
− δt2

6
∂3Ψ
∂t3

+O3(δt, δx), (3.3)

where TF symbolises the truncation error of the MPDATA fluxes. Notably, the spatial

truncation error is in the divergence form as expected for a conservative scheme.

Hereafter, Or(δt, δx) refers to any terms of order greater or equal to r when considered

as a polynomial in the variables δt and δx. The second-order accuracy of MPDATA is

not yet evident, as (3.3) contains a term proportional to δt. This is characteristic of

Lax-Wendroff type schemes, which rely on cancellations between spatial and temporal

truncation errors. To directly see the second-order accuracy of MPDATA and to obtain

the spatial form of the error, the Cauchy-Kowalevski procedure is applied to (3.3).

This means successively using (3.3) and its time derivatives to express the truncation

error solely in terms of spatial derivatives of the transported scalar. Importantly, for

the third-order accuracy, using (3.3) as opposed to (2.1) to perform the conversion

is essential (Warming and Hyett, 1974; Margolin and Smolarkiewicz, 1998). The end

result can be expressed as follows

∂Ψ
∂t

+
1
G
∇ · (V Ψ) =

1
G
∇ · (TS) :=

1
G
∇ ·

(
V Ψ

)
, (3.4)

where the O3(δt, δx) terms were dropped, TS symbolises the spatial form of the

O2(δt, δx) truncation error, and the last equality defines V—the third-order error-

compensating velocity. Following the outlined approach, the detailed derivation of

the truncation error of the standard MPDATA with two iterations is presented in

Appendix A. A unified expression for V , combining the computer algebra extensions

presented in the subsequent Section 3.1.2, is shown and discussed in Section 3.2.

3.1.2 Computer algebra implementation

While the procedure presented in the previous subsection is conceptually straightforward,

the analytical manipulations can be involving, especially when extensions, such as

going beyond two iterations, are considered. To validate and extend the modified

equation analysis of MPDATA, the computer algebra system SageMath (The Sage
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Developers, 2018)1 was used to implement the procedure. The implementation uses

computer algebra capabilities judiciously to keep the truncation error in the divergence

form. The approach is briefly summarised below.

Notwithstanding the iterative nature of MPDATA, the scheme can be formally

written as

Ψn+1
i = Ψn

i −
1
Gi

N∑
I=1

[
F
I [MP ]
i+1/2eI − F

I [MP ]
i−1/2eI

]
, (3.5)

where F [MP ] is the MPDATA numerical flux, i.e. the sum over all iterations in (2.11).

Formally expanding (3.5) to third-order accuracy in time and space leads to (3.3) with

TF = −δx
δt
�
(
F [MP ] +

δx� δx
24

�∇�∇� F [MP ]
)

+ V Ψ. (3.6)

Writing (3.3) as

∂Ψ
∂t

+
1
G
∇ · (V Ψ) =

1
G
∇ · (TF )− δt

2
∂

∂t

(
∂Ψ
∂t

)
− δt2

6
∂

∂t2

(
∂Ψ
∂t

)
+O3(δt, δx), (3.7)

and noting that

∂Ψ
∂t

=
1
G
∇ · (TF − V Ψ)− δt

2
∂

∂t

(
∂Ψ
∂t

)
+O2(δt, δx) =

1
G
∇ · (TF − V Ψ) +O1(δt, δx),

(3.8)

gives

∂Ψ
∂t

+
1
G
∇ · (V Ψ) =

1
G
∇ ·

[
TF −

δt

2
∂

∂t
(TF − V Ψ) +

δt2

12
∂2

∂t2
(TF − V Ψ)

]
+O3(δt, δx).

(3.9)

Equation (3.9) is the starting point for the automated Cauchy-Kowalevski procedure,

which is only applied to the terms under the divergence operator on the rhs of (3.9),

thus keeping the result in the divergence form.

1https://www.sagemath.org
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3.2 Third-order error-compensating velocity

The explicit expression for the third-order error-compensating velocity V is

V (V ,V ,Ψ) =− δx� δx
24

�
[
4V � 1

Ψ
∇�∇Ψ + 2

∇Ψ
Ψ
�∇� V + α∇�∇� V

]
︸ ︷︷ ︸

A

+ βM
δx

2
�
xV x� ∇Ψ

Ψ︸ ︷︷ ︸
B

+
δt

2
δx� ↑V ↑ � 1

Ψ
∇
[

1
G
∇ · (V Ψ)

]
︸ ︷︷ ︸

C

− δt2

3
V

GΨ
∇ ·

[
V

G
∇ · (V Ψ)

]
︸ ︷︷ ︸

D

+
δt2

24

[
γ
∂2V

∂t2
+

2V
GΨ
∇ ·

(
∂V

∂t
Ψ
)
− 2
GΨ

∂V

∂t
∇ · (V Ψ)

]
︸ ︷︷ ︸

E

, (3.10)

where α, βM and γ are parameters that result from different MPDATA formulations.

All terms on the rhs of (3.10) originate from a source of third-order error in the

basic algorithm and has a clear interpretation; for the subsequent discussion they are

labelled with letters A to E. The first two terms A and B both originate from upwind

differencing, with A corresponding to the third-order error of the first upwind pass, and

B related to the upwinding based on the pseudo-velocity in the second pass. Noteworthy,

the term B is O2(δt, δx) as V is composed of terms proportional to δx and δt. The

term C is a result of the iterative nature of MPDATA; specifically, it comes from using

the first-order accurate upwind solution in calculating gradients of Ψ that enter the

pseudo-velocity formula (2.10). The last two terms D and E are both related to the

forward-in-time differencing errors. This terms differ, because D derives only from

the temporal variations of Ψ, whereas E includes contributions from the time-varying

velocity field. In the case of stationary flow the term E vanishes identically.

The parameters α, βM and γ on the rhs of (3.10) combine three different MPDATA

options into a common formula. Within the limits of the third-order accurate ana-

lysis, the only effect of increasing the number of MPDATA passes beyond two is

the cancellation of the B term. Consequently, βM is equal to 1 if M = 2 and 0

otherwise. The other two parameters account for the effects of the standard interpo-

lation/extrapolation procedures for the velocity. The parameter α is equal to 4 when

the standard linear interpolation V I
i+1/2eI = 1

2(V I
i + V I

i+eI ) is used, and 1 if V I
i+1/2eI is

known to O(δx3). In principle a higher-order interpolation could be used, however, it

is usually more convenient to account for this error directly in the third-order error-

compensating velocity. Similarly, the parameter γ is related to the linear extrapolation

V n+1/2 = 1
2(3V n −V n−1). The error of this estimate can also be directly incorporated
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into the third-order error-compensating velocity by choosing γ = 10. Otherwise, if

V n+1/2 is at least O(δt3) accurate, γ = 1. The meaning and values of α, βM and γ are

collected in Table 3.1.

Tabela 3.1
Summary of various options in MPDATA and the corresponding
values of the parameters α, βM and γ appearing in (3.10).

Condition Parameter Value

V I
i+1/2eI is at least O(δx3) accurate α 1

V I
i+1/2eI = 1

2(V I
i + V I

i+eI ) α 4

M = 2 βM 1

M > 2 or infinite-gauge βM 0

V n+1/2 is at least O(δt3) accurate γ 1

V n+1/2 = 1
2(3V n − V n−1) γ 10

3.3 Construction and implementation of the fully

third-order accurate MPDATA

Here, a third-order accurate MPDATA is constructed based on the expression for the

third-order error-compensating velocity. As in the standard MPDATA, the general

idea is to subtract an estimate of the third-order error by using V in an upwind

iteration. In the simplest way, it can be done in just two iterations of the form (2.11),

by replacing the nondimensional pseudo-velocity in the second iteration (2.12) with the

sum of the standard MPDATA pseudo-velocity and the third-order error-compensating

pseudo-velocity

VI (2) =
δt

δxI

[
V
I
(
V (1),Ψ(1)

)
+ V

I (
V (1),V (V (1),Ψ(1)),Ψ(1)

)]
. (3.11)

Performing only two iterations is computationally efficient and can benefit parallel

distributed-memory communication. However, it is worth pointing out other possibilities,

potentially admitting larger time steps δt,2 such as first proceeding with all of the

standard MPDATA iterations and then applying an extra upwind pass based solely

on V .

2Implementations summing pseudo-velocities of corrective iterations generally have more restrictive
Courant-number condition sufficient for the linear stability; see §5.5 in Smolarkiewicz (1984) and §6.1
in Margolin and Smolarkiewicz (1998) for discussions.
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The discrete formulation of V completes the definition of the fully third-order

accurate scheme. Following the decomposition in (3.10), V
I

i+1/2eI = Ad + Bd + Cd +

Dd + Ed, where

Ad =− 1
3
V I
i+1/2eI

|Ψi+2eI | − |Ψi+eI | − |Ψi|+ |Ψi−eI |
|Ψi+2eI |+ |Ψi+eI |+ |Ψi|+ |Ψi−eI |+ ε

− 1
12

(
V I
i+3/2eI − V

I
i−1/2eI

) |Ψi+eI | − |Ψi|
|Ψi+eI |+ |Ψi|+ ε

− α

24

(
V I
i+3/2eI + V I

i−1/2eI − 2V I
i+1/2eI

)
, (3.12)

Bd =βM |V
I
i+1/2eI |

|Ψi+eI | − |Ψi|
|Ψi+eI |+ |Ψi|+ ε

, (3.13)

Cd =
δt

2

|V I
i+1/2eI |

〈|Ψ|〉C + ε

{
[∇ · (V |Ψ|)]i+eI

Gi+eI
− [∇ · (V |Ψ|)]i

Gi

}
, (3.14)

Dd =− δt2

3

V I
i+1/2eI

Gi+1/2eI (〈|Ψ|〉D + ε)
×

N∑
J=1

1
δxJ

{
[∇ · (V |Ψ|)]i+1/2eI+1/2eJ

Gi+1/2eI+1/2eJ
−

[∇ · (V |Ψ|)]i+1/2eI−1/2eJ

Gi+1/2eI−1/2eJ

}
, (3.15)

Ed =
δt2γ

24

(
∂2V I

∂t2

)
i+1/2eI

+
δt2V I

i+1/2eI

12Gi+1/2eI (〈|Ψ|〉E + ε)

[
∇ ·

(
∂V

∂t
|Ψ|
)]

i+1/2eI

− δt2

12Gi+1/2eI (〈|Ψ|〉E + ε)

(
∂V I

∂t

)
i+1/2eI

[∇ · (V |Ψ|)]i+1/2eI . (3.16)

Like in all previous MPDATA formulations, normalisation of the truncation error

expressions with ∼ Ψ is performed in a way that ensures boundedness of the error-

compensating pseudo-velocities, and thus the stability of the scheme. Specifically,

the normalisation is constructed as an average over all discrete Ψ’s that enter the

discretisation of the term that this factor is multiplying. This is written explicitly

in (3.12)-(3.13), and symbolically as 〈|Ψ|〉C , 〈|Ψ|〉D and 〈|Ψ|〉E in (3.14)-(3.16). Note

that (3.12)-(3.16) is already extended for transport of fields with variable sign in the

standard way, by replacing every Ψ with the corresponding absolute value |Ψ|. Similarly,

a small constant ε added in the normalisations in (3.12)-(3.16) ensures the validity of

the scheme when 〈|Ψ|〉... = 0.

The divergence of a product of an arbitrary vector field ω with a scalar field φ is

formulated as

[∇ · (ωφ)]i =
N∑
I=1

1
δxI

(
ωIi+1/2eIφi+1/2eI − ωIi−1/2eIφi−1/2eI

)
. (3.17)

Whenever the values of scalar or vector fields are needed at points where they are not
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located, a suitable average based on the minimal number of points is used, for example

φi+1/2eI = 1
2(φi+eI + φi) for a scalar field and ωi = 1

2(ωi+1/2eI +ωi−1/2eI ) for a vector

field. Especially in the context of fluid solvers, the expressions for the first and second

time derivative of velocity in (3.16) have to be known only to O(δt) in order to ensure

the third-order accuracy of the scheme. Consequently, simple backward differentiation

formulae can be used to obtain them.

The enhancements to the standard MPDATA algorithm discussed in the previous

chapter, such as the nonoscillatory option and the infinite-gauge, carry over to the

proposed scheme. In addition to the standard alterations, the infinite-gauge variant

sets the value of the parameter βM = 0.
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4 Open implementation of the fully

third-order MPDATA

The fully-third order MPDATA scheme was implemented in an open-source library

of MPDATA-based solvers, libmpdata++ (Jaruga et al., 2015). This chapter presents

highlights of the library, particularly stressing the design choices allowing easy, efficient,

and maintainable implementation of the new scheme.

4.1 Library organisation

Following the principle of separation of concerns (Hürsch and Lopes, 1995), the library

is separated into four components, each handling a separate aspect of the solution

procedure. The four components are

• Numerical solvers,

• Boundary conditions,

• Concurrency handlers,

• Output mechanisms.

The separation benefits code maintainability and extensibility, as every component can

be developed independently from the others. A diagram showing library organisation

can be seen in Figure 4.1.

4.1.1 Numerical solvers

The numerical solvers available in libmpdata++ are organised in a hierarchical fashion.

This organisation is not only conceptual, but actually realised at the code level. Techni-

cally, this is achieved by using the inheritance feature of object-oriented programming.

More advanced solvers build upon the more basic, and each solver can be used in a

stand-alone fashion. This approach has two main benefits. Firstly, there is no code

duplication, so each feature added to a base solver is automatically propagated to the

solvers inheriting from it. Secondly, a problem-specific feature-minimal solver can be

chosen, while more advanced but unnecessary components will not be even compiled.
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Anelastic
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turbulent flows

Fig. 4.1. Organisation of the libmpdata++ library.

For example, for a pure transport problem there is no need to compile the code for

handling source terms. This benefits library testability, as basic solvers can be first

tested in isolation from more advanced aspects. Then, only the advanced features have

to be tested, as the basic ones have already been verified. Moreover, there are obvious

performance benefits, since only the necessary operations are executed.

The most basic libmpdata++ solver handles homogeneous advection problems in

one, two, or three dimensions. A direct extension of this solver performs advection with

temporal integration of arbitrary source terms. Both of the above solvers require a

kinematic setup, with a prescribed velocity field. To solve problems where the velocity

field is one of the dependent variables, the prognosed velocity solver is available. This

solver can be used to model many purely hyperbolic problems in an explicit way, such

as the shallow water equations. In fact, as an example extension, a shallow water solver

is already included with libmpdata++. The shallow water solver was applied in Jarecka

et al. (2015) to compare originally-derived analytical solutions of a spreading drop of

water with direct numerical simulations. A more complex extension of the prognosed

velocity solver handles the anelastic fluid equations, commonly used in small-scale

atmospheric modelling. The anelastic constraint is enforced by the pressure-projection

technique (Chorin, 1967), requiring the solution of an elliptic problem. While there

are a few elliptic solvers implemented in libmpdata++, the most advanced (and the

library default) is a bespoke generalised conjugate residual solver (See Smolarkiewicz

and Margolin (2000); Smolarkiewicz and Szmelter (2011) for a discussion). Finally,
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libmpdata++ provides a solver for anelastic flows with explicit subgrid-scale modelling

capability. Currently, the Smagorinsky turbulence model is implemented, and the solver

can also be used to solve the Navier-Stokes equations with constant viscosity, in the

spirit of direct numerical simulations.

4.1.2 Boundary conditions

libmpdata++ implements three commonly used types of boundary conditions: periodic,

rigid-lid, and open. Additionally, special ”polar” conditions for simulations on the

sphere are available; they are formulated based on the principles of differential geometry

(Szmelter and Smolarkiewicz, 2010). Periodic, rigid, and open boundaries can be chosen

independently in each dimension. This enables a wide range of setups in three dimensions.

Triply-periodic idealised studies of turbulence, horizontally periodic atmospheric LES

with impermeable ground and a capping inversion, or a flow in an open-ended channel

can all be realised.

4.1.3 Concurrency handlers

Currently, libmpdata++ allows serial and shared-memory parallel execution using

threads. Threads concurrency handler is an abstract interface that can be implemented

using different concrete backends. For example, libmpdata++ includes implementations

using the OpenMP library, the Boost.Thread library, or the standard C++11 threads.

This benefit performance portability, since the best performing backend can be chosen

for any platform. Moreover, extending the available backends with vendor-provided

optimised implementations is possible.

4.1.4 Output mechanisms

There are three provided mechanisms for outputting information from libmpdata++.

The most basic relies on a C++ interface to the gnuplot plotting software. It allows

constructing plots on the fly, without having to store the output data. This is preferable

for simple examples, especially for teaching purposes. However, for most simulations

output data needs to be stored. For that purpose, libmpdata++ provides data output in

the HDF5 format. Optionally, the HDF5 files can be extended with XDMF annotations,

understood by a professional visualisation software, such as ParaView. The plain HDF5

output is still useful for one-dimensional simulations, that usually do not benefit from

XDMF annotations.

4.2 Library design

Developers of scientific software usually also are its end users. Spending time to make

scientific software easy to use can be offset by the productivity gains, especially when
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the software is used over a long period of time. This is typically the case for modelling

codes, which require considerable upfront effort and implementations of specialised

numerical algorithms. The software also has to be maintained for many years, and on

many computer systems. To enable productivity and ensure long-term maintainability,

libmpdata++ was developed in accordance with best practices for scientific software

development (Wilson et al., 2014). After conducting research into object-oriented

implementations of MPDATA in different programming languages (Arabas et al., 2014),

the C++ programming language was chosen to implement the library. C++ was chosen,

because it is a high-level language, that is also high-performance capable and has a

wealth of mature libraries for many purposes.

In the course of library development, the following best practices were particularly

stressed

• keeping the code concise and readable,

• maximising code reuse,

• writing the code at the highest level of abstraction that allows reasonable perfor-

mance,

• having a central public repository where the most recent version of the library

resides,

• using a version control system,

• having a suite of tests,

• automatic testing after every merged change.

4.3 Code availability

Many problems of scientific computing, in particular the problem of research repro-

ducibility, are linked to a typically closed source status of the underlying software

(Merali, 2010). There is a growing sentiment that for truly reproducible research the

software has to be made open (Morin et al., 2012; Ince et al., 2012), and maybe even

peer-reviewed. The developers of libmpdata++ fully embrace this principles. The library

is freely available at the project repository1 and is released under the GPLv3 licence2.

Not only is the source code released, but the whole history of modifications to the

code is available, and versions used for simulations in specific papers are tagged. When

developing the library, it is our policy that every major change is peer-reviewed by a

developer other than the author of the changes. The library documentation and users

1https://github.com/igfuw/libmpdataxx
2https://www.gnu.org/licenses/gpl-3.0.html
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guide are available in Jaruga et al. (2015), alongside a presentation of selected test

results.

4.4 Implementing fully third-order MPDATA in

libmpdata++

The design of libmpdata++ enabled fairly easy implementation of the fully third-order

accurate MPDATA scheme. The scheme was implemented and tested gradually, starting

from homogeneous advection in one dimension, and ending with a three-dimensional

implementation in the prognosed velocity framework. Template programming constructs

available in C++ allowed concise code representation of numerical expressions, mini-

mising the possibility of errors. For example, only one component of pseudo-velocity

had to be hand-written, while other components were generated automatically without

performance penalty. Most of the implementation code was localised in numerical

solvers, and did not touch other concerns, such as parallelisation and output.

The initial work quickly paid off by allowing the use of the full range of library

features with the fully third-order accurate scheme. The library extensive test suite was

used to check the implementation. Furthermore, the scheme could be immediately tested

on a variety of already established setups. Efficient parallelisation allowed to perform

a large number of simulations quickly, which was essential for a detailed study of the

scheme benefits. The homogeneous advection solver was used to perform simulations

presented in the next chapter, while later chapters show results obtained by employing

the anelastic turbulent flows solver.
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5 Numerical advection tests

Herein the newly developed fully third-order accurate MPDATA is verified and its

merits are assessed compared to the established variants of the scheme. Three test

problems are considered, solely in the context of the homogeneous transport equation

(2.1), for which sufficiently smooth genuine solutions are known, at least in selected

time instants, thereby enabling rigorous accuracy analysis. The first test problem uses

a bespoke 3D solution with a stationary Jacobian and a non-stationary generalised

flow field, manufactured to verify the correctness of the theoretical development and

its numerical implementation (Roache, 2002). The remaining two problems employ

established benchmarks (Nair and Jablonowski, 2008; Lauritzen et al., 2012), designed

to typify difficulties encountered in a long range tracer advection at the heart of

atmospheric chemistry-transport models. Such models are of the utmost importance to

monitoring, forecasting and controlling air pollution across scales from micrometeorology

to climate; see Pudykiewicz (1989); Hundsdorfer et al. (1995); Frohn et al. (2002);

Carmichael et al. (2008); White III and Dongarra (2011); Santillana et al. (2016) for

a sample of representative works that address relevant computational issues over the

three decades. Both benchmarks idealise two-dimensional tracer transport on the sphere

in rotating deformational flows. The first benchmark addresses a cross-polar transport

in a velocity field composed of two vortices advected over the poles; whereas, the second

focuses on tracer correlations in a reversible deformational flow that leads to tracer

filamentation and its reversal—the latter phase being important to source detection of,

e.g., nuclear testing (Pudykiewicz, 1998).

5.1 Common setup

In all three advection tests the fully third-order accurate scheme is compared with

MPDATA using the constant-velocity third-order correction from Margolin and Smo-

larkiewicz (1998). For tracer transport on the sphere results using the nonoscillatory

infinite-gauge variant of second-order accurate MPDATA are provided as a reference.

In those examples, the nonoscillatory infinite-gauge variant of the fully third-order

accurate scheme is also examined to see how well the new advancement combines

with the previous developments. Table 5.1 lists all the schemes used in the thesis. The
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numerical solution error was measured in the standard `2 norm

`2 =

√∑
iGi(Ψi −Ψe

i)
2∑

iGi(Ψ
e
i)

2 (5.1)

where Ψe
i is the exact solution evaluated at the point xi.

As every test considered here uses a prescribed time-dependent flow field, the

velocities at the intermediate time level tn+1/2 were calculated directly from the

analytical expressions. For the manufactured solution and the reversing deformational

flow the velocities were evaluated directly at the cell faces, whereas in the moving

vortices test the velocity was first calculated at the grid points and then interpolated (cf.

the second row in Table 3.1). Similarly, the time derivatives of velocity, needed in (3.16),

were calculated based on the analytical formulae for the manufactured solution and the

reversing deformational flow but based on second-order centred finite-differences for

the moving vortices.

Tabela 5.1
Summary and labels of the various MPDATA formulations utilised in
the simulations presented in Chapter 5, Chapter 6 and Chapter 7.

Label Scheme

Mp2 fully second-order-accurate MPDATA

Mp3 fully third-order-accurate MPDATA

Mp3cc third-order-accurate constant-coefficient MPDATA

Mg2No nonoscillatory infinite-gauge variant of Mp2

Mg3No nonoscillatory infinite-gauge variant of Mp3

Mg3ccNo nonoscillatory infinite-gauge variant of Mp3cc

5.2 Manufactured solution in 3D

Using the method of manufactured solutions (Roache, 2002) the following analytical

solution of the transport equation (2.1) was constructed

Ψ(t,x) = (2 + sin t sinx)(2 + sin t sin y)(2 + sin t sin z) , (5.2)

with the corresponding coefficients

G(x) = ecosx+cos y+cos z , (5.3)

V I(t,x) =
G cos t

2 + sin t sinxI
. (5.4)

The solution Ψ can be interpreted as a fluid density that obeys the continuity equation

formulated in curvilinear coordinates with the Jacobian G. Note that the flow field
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contains regions of strong convergence and divergence (the ratio of the divergence

reciprocal to the advective time scale is ∼ 0.1 near the divergence extrema), consequently

the uniform initial condition Ψ(0,x) = 8 gets shaped into a sinusoidal pattern.

The generalised transport equation (2.1) was solved in a triply periodic domain

[0, 2π] × [0, 2π] × [0, 2π] discretised on a N ×N ×N regular Cartesian grid. For the

convergence study a range of values N = 9, 17, 33, 65, 129 was chosen. The time step

was continuously adapted such that the maximum Courant number did not exceed

0.5. The solution error was calculated at the final time t = 1, chosen to prevent the

possibility of error cancellations due to the flow symmetries.

Two sets of simulations were performed, one using the proposed fully third-order

accurate MPDATA (Mp3), and second using the established MPDATA that is third-

order accurate for constant flows (Mp3cc). Convergence of the error measure under the

grid refinement is shown in Figure 5.1. Results confirm the third-order convergence of

the Mp3 scheme, while the convergence of the Mp3cc scheme reduces to second-order

due to the variability of the flow.

9 17 33 65 129
N
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10−2

` 2
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2nd order

3rd
order

Mp3

Mp3cc

Fig. 5.1. Numerical convergence to the manufactured solution in the `2 error norm at time
t = 1.

5.3 Moving vortices

To assess the accuracy of the fully third-order accurate scheme for tracer transport

on the sphere a two-dimensional test case was adopted from Nair and Jablonowski

(2008). It specifies an initial distribution of a tracer field together with a non-divergent,

variable in time and space, deformational flow field such that the analytical solution

of (2.1) at any given moment is readily available. The flow field is composed of two

vortices, which are always located on the opposite sides of the sphere and embedded
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in a background solid-body rotation. Here, the rotation angle of the background flow

was set to π/2, corresponding to the cross-polar flow. All other parameters of the test

case were set following the numerical experiments in Nair and Jablonowski (2008).

Initially, the centre of one of the vortices was located at (3π/2, 0) in longitude-latitude

coordinates. Consequently, the initial position of the second vortex was (π/2, 0). One

full rotation of the vortices over the poles takes 12 days. Figure 5.2a and Figure 5.2b

depict the initial condition of the tracer field and its exact distribution after 12 days,

respectively.

The numerical solution was computed on a regular longitude-latitude grid with

(2N + 1) × N points, corresponding to uniform δλ = δθ = π/N grid increments.

Simulations were run with N = 24, 48, 96, 192, 384, 768. Differencing in the vicinity of

the poles follows the principles of differential geometry applied to the longitude-latitude

coordinate system, see Szmelter and Smolarkiewicz (2010) for a discussion. As in the

preceding example the time step was continuously adapted to keep the maximum

Courant number less than a prescribed value, here equal to 1. The simulation time of

12 days corresponds to one full rotation of the vortices over the poles. Here, selected

schemes of Table 5.1 are compared. Two of them are the same as in the preceding

example—the novel Mp3 scheme and the established Mp3cc scheme. Moreover, the

Mg3No scheme combines the novel third-order infinite-gauge with the nonoscillatory

option. Simulations using the standard nonoscillatory infinite-gauge MPDATA (Mg2No)

serve as a reference to evaluate accuracy of the third-order schemes.

(a) Initial condition (b) Exact solution t = 12 days

(c) Difference t = 12 days (d) Numerical solution t = 12 days
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Fig. 5.2. The initial condition (a) together with the analytical solution (b), the difference
between the numerical and the analytical solution (c) and the numerical solution (d) after one
rotation of the vortices over the poles for the moving vortices test case. The numerical solution
was obtained using the Mp3 scheme on a grid with N = 192, see Section 5.3 for details.
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Convergence in the `2 error measure with increasing resolution is shown in Figure 5.3.

In the range of simulated N the proposed Mp3 scheme converges the fastest at a rate

slightly higher than third. In contrast, the Mp3cc scheme does not sustain a third-

order rate and reduces to second-order convergence. Enforcing monotonicity in the

third-order accurate Mg3No leads to a significant loss of accuracy and basically second-

order convergence. The reference Mg2No shows the largest errors and second-order

convergence achieved only over the finest grids. Even though three of the four schemes

end up converging at a second-order rate, there are marked differences between their

accuracy. On the finest grid N = 768, the `2 error norms span almost two orders of

magnitude between the various schemes.
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Fig. 5.3. Numerical convergence in the `2 error norm for the moving vortices test case. The
error was evaluated after one rotation of the vortices over the poles.

Table 5.2 lists runtimes of the MPDATA schemes relative to the upwind scheme,

based on the N = 192 simulations.

Tabela 5.2
Runtimes of the MPDATA schemes relative to the upwind
scheme, based on the moving vortices test case. See
Section 5.3 for details.

Upwind Mp2 Mg2No Mp3cc Mp3 Mg3No

1.0 3.6 5.9 9.5 10.3 12.6

In addition, the sign-preserving second-order accurate MPDATA scheme (Mp2)

is also included for reference. The relative runtimes for Mp2 and Mp3 are ∼ 3.6 and

∼ 10.3, respectively, i.e. roughly a cost factor of ∼ 3 to increase the order by one (up

to three). The relative runtimes for the two monotone MPDATA schemes are ∼ 5.9

and ∼ 12.6, showing the significantly smaller cost increase when going from second- to
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third-order than first- to second-order. Importantly, the fully third-order accurate Mp3

scheme is only slightly more expensive than the constant-coefficients variant Mp3cc.

5.4 Reversing deformational flow

In Lauritzen et al. (2012), the authors introduced a test suite for a two-dimensional

transport on the sphere using various prescribed time-dependent deformational flow

fields. Results of the test suite for a variety of state-of-the-art schemes were collected

in Lauritzen et al. (2014). Here, selected diagnostics from this test suite are evaluated

for the schemes tested in Section 5.3.

The setup specifies four different initial conditions for the tracer field, each composed

of two distributions in the same shape centred at (π/2, 0) and (3π/2, 0), respectively.

The four different shapes are Gaussian hill, cosine bell, slotted cylinder and ’correlated’

cosine bell. Two wind fields, one non-divergent and one divergent, were prescribed in the

test suite. Here, only diagnostics based on the non-divergent wind field are considered.

As in the previous example, the flow field is composed of a deformational part and

the solid-body rotation part. The solid-body rotation is purely in the zonal direction.

Contrary to the previous example, the deformational part of the flow has a temporal

dependence that leads to the flow reversal halfway through the rotation. Hence, after

the full rotation, the initial conditions should be recovered. For the detailed specification

of the setup in terms of analytical formulae the reader is referred to Lauritzen et al.

(2012).

As in the preceding example, a regular longitude-latitude grid with (2N + 1)×N
points was used. Simulations were performed with N = 60, 120, 240, 480, 960 correspon-

ding to δλ = δθ between 3◦ and 0.1875◦. Again, a variable time step was employed with

the maximum Courant number kept just under 0.8. The total time of each simulation

corresponded to one full rotation.

Figure 5.4 shows the numerical solution for each initial condition, midway through

the simulation, obtained with the Mg3No scheme using a δλ = 1.5◦ grid interval. No

oscillations can be seen, even for the discontinuous slotted cylinders initial conditions

(Figure 5.4c). More quantitatively, normalised deviations from the initial extrema

(min Ψn − min Ψ0)/max Ψ0 = 0 and (max Ψn − max Ψ0)/max Ψ0 = −0.001 for the

slotted cylinders at the time of the maximal deformation. This shows the effective

combination of the developed third-order scheme with the nonoscillatory option of

MPDATA. Overall, the filamentary structure of the solutions at the time of the maximal

deformation seems to be well captured.
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Fig. 5.4. Tracer fields for the reversing deformational flow at the time of the maximal deforma-
tion. The results were obtained using the Mg3No scheme on a grid with N = 120 (δλ = 1.5◦),
see Section 5.4 for details.

The first quantitative metric is the convergence in the `2 error norm with the

increasing resolution using the Gaussian hill initial condition, presented in Figure 5.5.
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Fig. 5.5. Numerical convergence for the Gaussian hills initial condition of the reversing
deformational flow test in the `2 error norm. The error was evaluated when the tracer first
returned to its initial position.

In a stark difference to the preceding example, the results obtained using the

Mp3, Mp3cc and Mg3No schemes are nearly identical. Each of the aforementioned
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schemes converges at the third-order with negligible differences in the error norm.

The lack of improvement in accuracy with the fully third-order accurate scheme can

be attributed to the compact C∞ support of the initial conditions that leads to the

filamentary structure of the solution during most of the simulation time. Consequently,

there is a scale separation between the smooth large-scale flow variations and the

sharper gradients of the transported tracer. The truncation error associated with the

flow variability is therefore much smaller than the error due to the tracer gradients,

the latter of which is fully compensated to third-order by both the Mp3cc and Mp3

schemes. This hypothesis was tested by repeating the convergence test using the initial

condition of the previous example in the considered flow field, resulting in the Mp3

scheme converging at the third order and the Mp3cc scheme falling off the third-order

convergence line. Without cross-polar transport, the nonoscillatory scheme Mg3No

retains the third-order convergence due to the MPDATA nonscillatory option blending

first- and higher-order schemes with consistently low phase errors (Smolarkiewicz and

Grabowski, 1990).
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Fig. 5.6. Scatter plots showing preservation of the pre-existing functional relation for the
reversing deformational flow test. The results for the ’correlated’ cosine bells (ξ) versus cosine
bells (χ) are shown at the time of the maximal deformation on a grid with N = 240 (δλ = 0.75◦).
The solid lines indicate the regions used to classify the numerical mixing. The mixing diagnostics
`r, `u, `o are given for each scheme. See Section 5.4 for details.

Motivated by transport of long-lived species in the stratosphere or aerosol-cloud

interactions, the authors in Lauritzen et al. (2012) included a set of diagnostics that
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assess the ability of a scheme to preserve ”pre-existing” functional relations. The setup

involves the cosine bell initial conditions and another initial condition constructed from

it, dubbed ’correlated’ cosine bells. The construction is based on applying pointwise the

non-linear functional relation ξ(χ) = −0.9χ2+0.8 where χ is the value of the cosine bells

tracer. Ideally, this relation should be preserved during the simulation, the correlation

plot of ξ and χ plotted at the time of the maximal deformation shows the degree of

numerical mixing introduced by the scheme. Furthermore, the numerical mixing can

be classified into mixing resembling real mixing in the atmosphere, ”range-preserving”

unmixing and overshooting, which are quantified by the corresponding `r, `u and `o

measures (Lauritzen and Thuburn, 2012).

Figure 5.6 presents the correlation plot and the numerical mixing measures for the

four schemes considered in this example, computed on the grid with the δλ = 0.75◦

intervals. The Mp3 scheme shows less of both the ”real” mixing and the unmixing

compared to the Mp3cc scheme. As both schemes are only sign-preserving they show

some degree of overshooting, similar in magnitude. The overshooting is entirely eli-

minated by the nonoscillatory Mg2No and Mg3No schemes, that also exhibit smal-

ler values of ”real” mixing. Both ”real” mixing and ”range-preserving” unmixing

diagnostics are better for the Mg3No scheme featuring the full third-order correc-

tions. The measure of unmixing is similar with the Mp3 scheme and its nonoscilla-

tory infinite-gauge counterpart Mg3No. The results presented here can be compa-

red to the results obtained using a variety of state-of-the-art schemes in Lauritzen

et al. (2014), section 3.5 therein. For example, values for the shape-preserving ver-

sions of the MPAS and the CAM-FV advection schemes at δλ = 0.75◦, which can

be directly compared to Mp3No, are (lr, lu, lo) = (6.43 × 10−4, 3.06 × 10−4, 0) and

(lr, lu, lo) = (3.11× 10−4, 1.98× 10−4, 6.86× 10−5).
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6 Fluid dynamics applications

This chapter substantiates the significance of the new development beyond the passive

tracer advection. First, a synopsis of the MPDATA-based flow solvers, widely docu-

mented in the literature (Prusa et al., 2008; Smolarkiewicz and Charbonneau, 2013;

Smolarkiewicz et al., 2014, 2016), is presented. Then, two problems, that utilise the

full machinery of MPDATA-based solvers for anelastic flows, are considered. The first

problem is a double sheer layer rollup in the framework of two-dimensional viscous

Navier-Stokes equations. The charm of the problem is its relative simplicity, together

with the discriminating accuracy indicator of producing (or not) at coarse resolutions

superfluous eddies compared to pristine converged result with two eddies (Drikakis and

Smolarkiewicz, 2001; Drikakis et al., 2002). The second problem is a three-dimensional

simulation of dry convective boundary layer. It is a classical test for LES studies of

atmospheric flows and the first experiment that demonstrated ILES capabilities of

second-order accurate MPDATA (Margolin et al., 1999). Here, it is used to highlight

benefits of the fully third-order MPDATA for simulating nonhydrostatic atmospheric

flows, and to study its ILES properties.

6.1 MPDATA based integrator for an archetype fluid

problem

In simulation of fluid dynamics, the prognostic governing PDEs can be viewed as a

system of nonlinear inhomogeneous transport equations

∂GΨ
∂t

+∇ · (V Ψ) = GR, (6.1)

with the rhs forcings GR generally dependent on all prognostic variables. Given a

fully second-order accurate forward-in-time advection algorithm for the homogeneous

transport problem (2.1), written in short as

Ψn+1
i = Ai(Ψn,Vn+1/2, G) , (6.2)
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the inhomogeneous problem (6.1) is integrated to the second-order accuracy with the

template algorithm

Ψn+1
i = Ai(Ψn + 0.5δtRn,Vn+1/2, G) + 0.5δtRn+1

i , (6.3)

provided at least O(δt2) estimates of the advective velocity Vn+1/2 and the rhs forcing

Rn+1 (Smolarkiewicz and Margolin, 1993; Smolarkiewicz, 2006; Smolarkiewicz et al.,

2014). Advecting half of the rhs’ trapezoidal integral effectively adds to the solution the

term −δtG−1∇ · (0.5δtVR) that compensates, to the second-order accuracy, the first-

order truncation error term revealed by the Cauchy-Kowalevski procedure employed

in derivation of the MPDATA integrator for the inhomogeneous transport problem

(Smolarkiewicz and Margolin, 1993). Assuring fully third-order-accurate solutions to a

complete system of fluid equations requires accounting for such coupling terms as well as

fully third-order-accurate representation of the rhs. This may be virtually impossible in

a paradigm of essentially two-time-level integrators. Moreover, the requirements such as

the solution monotonicity (Smolarkiewicz and Grabowski, 1990), compatibility of scalar

conservation laws with their Lagrangian forms (Kühnlein et al., 2012; Smolarkiewicz

et al., 2016, 2017), or compatibility of elliptic Poisson/Helmholtz operators with

advection (Smolarkiewicz et al., 2014) may take precedence over the formal accuracy,

for the sake of physical realisability and efficacy in complex simulations. Nevertheless,

the increased accuracy of the homogeneous algorithm Ai can benefit the overall accuracy

of integrations, as evidenced by the subsequent examples.

6.2 Governing equations

The problems considered in this chapter assume the incompressible Boussinesq limit

of the all-scale Euler equations Smolarkiewicz et al. (2014). Assuming a quiescent

environment with background potential temperature Θ(z) such that Θ(z = 0) = Θo =

const., and density ρ(z) = ρo = const., the governing Boussinesq PDEs in a Cartesian

reference frame are compactly written as

∂u
∂t

+∇ · (u⊗ u) = −∇ϕ− g
θ

Θo
+Du , (6.4)

∂θ

∂t
+∇ · (uθ) = −u · ∇Θ +DΘ ,

∇ · u = 0 .

Here, u = (u1, u2, u3) and θ denote velocity vector and potential temperature perturba-

tion with respect to the ambient state, ϕ is the density normalised pressure perturbation

and g = (0, 0,−g) marks the gravitational acceleration. The terms Du and DΘ refer to

dissipative and diabatic forcings in the momentum and entropy equations, respectively.

The equations of the system (6.4) are of the form (6.1)—with G ≡ ρo, Ψ corresponding
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to θ and components of u, and R representing the associated rhs—whereby integrations

of (6.4) adopt the template algorithm (6.3).

Completing the solution to (6.4) requires combining templates (6.3) for θ and

vertical velocity component u3 into the closed form expression for u|n+1, subsequently

plugged into the discrete form of the mass continuity equation of (6.4) to generate the

elliptic boundary value problem for ϕ, see Smolarkiewicz et al. (2014, 2016) for details.

For compatibility of θ advection with the elliptic solver, α ≡ 0 in (3.12)1.

6.3 Viscous rollup of a double shear layer

Following Brown and Minion (1995); Minion and Brown (1997), the rollup of a double

shear layer has become an accuracy benchmark for assessing the performance of various

of numerical methods designed to integrate incompressible Navier-Stokes equations.

The governing equations are a special case of (6.4) with identically vanishing g, θ and

H, while Du = ν∆u is the incompressible viscous stress and ν denotes the viscosity.

The dimensionless problem is posed on a 2D doubly-periodic Cartesian domain of a

unit linear extent, with the divergence free initial condition

u1 =

tanh((y − 0.25)δ) if y ¬ 0.5

tanh((0.75− y)δ) otherwise,
(6.5)

u2 = v′ sin(2πx). (6.6)

The parameter δ controls the thickness of the shear layer, here δ = 100 results in

a relatively thick layer. A small perturbation of magnitude v′ = 0.05 is added to

the second velocity component to trigger the flow evolution. The chosen value of the

viscosity ν = 0.5 · 10−4 corresponds to the Reynolds number Re= 104.

The problem was discretised on a N ×N regular Cartesian grid. All simulations

were run for N = 129, 257, 513, 1025, 2049 to asses convergence. The simulations used a

constant time step δt = 0.8δx and the final time was t = 1.5. Here and in the following

section, simulations using the nonoscillatory infinite-gauge variants of, respectively, the

second-order accurate (Mg2No), the third-order constant coefficient (Mg3ccNo) and

the fully third-order accurate (Mg3No) MPDATA were performed. Advective velocities

were linearly extrapolated to the intermediate time level and interpolated to cell faces.

The idea of the double shear-layer benchmark is that its under-resolved simulations

feature artefacts in the form of spurious vortices, which, without knowledge of the

resolved solution, could be mistaken for physical features. With this respect, Fig. 6.1 is

self-evident showing for the same grid the increased accuracy of the solutions based on

1The elliptic solver uses a second-order accurate discretisation of the incompressibility constraint.
Without setting α ≡ 0 this result in incompatibility with the fully third-order accurate scheme, which
manifests itself as spurious oscillations in constant background states.
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the fully third-order-accurate advection solver.

M
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o

Fig. 6.1. Vorticity isolines for Mg2No, Mg3ccNo and Mg3No advection (top to bottom) for
129× 129, 257× 257, 513× 513 and 1025× 1025 doubly periodic grids (left to right).

Tabela 6.1
Error norm `2 of u1 velocity component for the double shear layer example calculated at
t = 1.5. Reference solution was obtained on a 2049× 2049 grid with Mg3No.

Grid Mg2No Order Mg3ccNo Order Mg3No Order

129× 129 3.35× 10−1 — 3.65× 10−1 — 7.02× 10−2 —

257× 257 1.96× 10−1 0.77 1.09× 10−1 1.74 4.79× 10−2 0.55

513× 513 7.21× 10−2 1.44 2.90× 10−2 1.91 1.57× 10−2 1.60

1025× 1025 2.05× 10−2 1.82 7.06× 10−3 2.04 4.30× 10−3 1.87

Table 6.1 quantifies the accuracy of the selected MPDATA options and corroborates

the discussion of the preceding subsection. While for each resolution the Mg3No scheme

is consistently the most accurate, the convergence rate of all schemes appears to

approach the second-order asymptotic limit; however this is not formally ensured as

the diffusion terms are integrated only to O(δt2). The quickest accuracy gain of the

Mg3ccNo result is correlated with its largest error at the coarse resolution where the

solution is topologically inconsistent with the converged result.
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6.4 ILES of convective boundary layer

The problem of turbulent convective planetary boundary layer in the Boussinesq limit

was one of the first demonstrations of the ILES property of MPDATA-based flow

solvers (Margolin et al., 1999). Here this experiment is adopted to investigate the

ILES properties of the fully third-order accurate MPDATA and show its benefits for

simulations of nonhydrostatic atmospheric dynamics. The calculations closely follow

the setup of Smolarkiewicz et al. (2013), which is briefly summarised below.

The equations (6.4) assume prescribed diabatic forcings Du = −dτ/dz and Dθ =

−dH/dz, where τ and H represent fluxes of momentum and heat, respectively. Both

fluxes are parametrised similarly, τ = τo exp (−z/λ) and H = Ho exp (−z/λ), with the

surface drag τo = −Cd‖uo‖uo, the surface heat flux Ho = 0.01 K m s−1, the drag

constant Cd = 0.1, and the length scale λ = 25 m. Since the fluxes decay exponentially

with height, they parametrise only near-surface effects, whereas ILES properties of

MPDATA are responsible for subgrid-scale modelling aloft. The ambient Θ(z) = 300 K

up to 500 m and Θ(z) = Θo[1 + Sz] above, with the stratification S = 10−5 m−1. The

model domain of size 3200 m× 3200 m× 1500 m is periodic in horizontal with rigid-lid

boundaries at the top and the bottom. Gravity wave absorbers attenuate the solution

toward ambient conditions in the vicinity of the upper boundary, with a time scale that

increases linearly from 0 at the distance 500 m below the boundary to 1020−1 s−1 at the

boundary. The initial conditions are generated by randomly perturbing θ and w := u3

with a small amplitude white noise and then finding the potential flow consistent with

mass continuity. The amplitude of the perturbation at the surface is 0.001 K and

0.2 m s−1, respectively for θ and w, and decreases linearly with height to zero at the

top of the mixed layer.

The model domain was discretised on a 65× 65× 51 regular Cartesian grid, cor-

responding to horizontal grid spacings δx = δy = 50 m and a vertical grid spacing

δz = 30 m. To allow statistical analysis of the inherently sensitive turbulent flow, for

every MPDATA variant an ensemble of 60 simulations was performed, each initialised

with a different white noise perturbation. The final-time profiles and spectra presented

below were averaged over this ensemble, as well as over the last 50 time steps of

simulation. All simulations were run with a constant time step δt = 8 s for 15000 s,

corresponding to about 13 large eddy-turnover times.

Figure 6.2 shows profiles of heat flux, temperature variance, and vertical velocity

variance, generated with nonoscillatory infinite-gauge options of the second-order-

accurate, third-order-accurate for constant coefficients and fully third-order accurate

MPDATA. For comparison purposes, experimental data and results from a reference

LES study of Schmidt and Schumann (1989) are also presented. Overall, the profiles

for different MPDATA options are similar, confirming that the fully third-order is also

capable of ILES. Moreover, the standard convective scales are independent of advection
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scheme. Their values zi = 690 m, w∗ = 0.613 m s−1, t∗ = 1126.2 s and T ∗ = 0.0163 K

closely match those in the first row of Table 1 in Smolarkiewicz et al. (2013). As the

accuracy of the advection scheme increases, the vertical velocity evinces amplification

of the variance.
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Fig. 6.2. Normalised profiles (at t/t∗ ≈ 13 large-eddy turnover times) of heat flux, temperature
variance, and vertical velocity variance, in ILES simulations of the convective boundary layer,
employing Mg2No, Mg3ccNo and Mg3No advection; stars denote the explicit LES result of
Schmidt and Schumann (1989) generated with second-order-accurate centred-in-space differen-
cing, and red circles represent field and laboratory data. The profiles were averaged over a short
time-window and ensemble of simulations, see the text for details.
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Fig. 6.3. Normalised vertical velocity spectra (at t/t∗ ≈ 13 and z/zi = 0.4) in ILES simulations
of the convective boundary layer, employing Mg2No, Mg3ccNo and Mg3No advection. The
spectra were averaged over a short time-window and ensemble of simulations, see the text for
details.

52



Further effects of increasing the order of accuracy can be observed on the power

spectra of vertical velocity presented in Figure 6.3. The spectra show increasing length

of the inertial range and more energy in the largest scales with increasing order. The

changes in vertical velocity variance and spectra are consistent with increasing effective

resolution of the simulation (cf. Figs. 6-8 in Sullivan and Patton (2011)) or, alternatively,

the effective Reynolds number; see §6.5.7 in Pope (2000).
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Fig. 6.4. Vertical velocity field u3 [m s−1] in the x− y plane at z/zi ≈ 0.2 and t/t∗ ≈ 13, using
Mg2No, Mg3ccNo and Mg3No advection.
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Furthermore, Fig. 6.4 shows the instantaneous vertical-velocity field organized

into characteristic Rayleigh-Bénard cells (Piotrowski et al., 2009) evincing improved

regularity for the full third-order accuracy, as opposed to the constant-coefficient case

of the MPDATA advection. Nonetheless both are superior to the Mg2No solution. The

latter result indicates that the implicit subgrid-scale model contained in the truncation

terms of the Mg3No scheme may be even more scale selective than in second-order

MPDATAs (Domaradzki et al., 2003; Strugarek et al., 2016); cf. §3.3 in Schmidt and

Schumann (1989) for a discussion. Notwithstanding the improvements in the solution

quality with the increasing accuracy of the MPDATA advection, all three results are

formally at most second-order-accurate.
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7 Idealised supercell simulations

The previous chapter compared the fully third-order-accurate MPDATA to second-order

variants for simulating dry atmospheric dynamics in the nonhydrostatic regime. Here,

another comparison is presented for a significantly more complicated case of moist

precipitating dynamics. Specifically, simulations of an idealised supercell storm were per-

formed, which is a classical benchmark case for studies of deep moist convection (Klemp

and Wilhelmson, 1978; Smolarkiewicz et al., 2017)

Supercells are intense long-lived convective storms characterised by persistent

rotating updraughts (Klemp, 1987). High values of convective available potential

energy and the presence of strong low-level environmental wind shear are conducive to

supercell formation. Vorticity dynamics plays a key role in the evolution of supercell

storms. Twisting of vortex tubes by precipitation-laden downdraughts may lead to

storm splitting, a distinctive phenomenon where a single supercell separates into two

counterrotating storms. Supercell storms often produce severe weather such as damaging

wind, large hail, and the world’s most intense tornadoes.

Simulations of supercell thunderstorms are challenging because latent heat release

injects energy at the finest scales, which are highly susceptible to numerical errors.

To regularise the smallest scales idealised studies of supercells often introduce simple

diffusive terms that are a proxy for full model physics. Results of simulations are sensitive

to the form and magnitude of introduced dissipation and to numerical details (Kurowski

et al., 2011, 2014).

Recently, a supercell benchmark was formulated on a reduced-radius sphere (Klemp

et al., 2015) and adopted for an intercomparison project of global atmospheric mo-

dels (Ullrich et al., 2017). To allow grid-convergence studies, the benchmark assumes

constant coefficients of diffusion and viscosity. The preliminary results of the inter-

comparison (Zarzycki et al., 2018) show very large intermodel differences, further

confirming high sensitivity of results to numerical formulation. For each individual

model, convergence was observed when approaching 0.5 km horizontal grid spacing.

Inspired by the benchmark, a similarly posed problem is used to investigate benefits of

the fully third-order accurate MPDATA for supercell simulations.
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7.1 Governing equations

To properly describe deep convection the previously presented Boussinesq equations

(6.4) are extended to a fully anelastic system, assuming height-dependant base state

profiles of density ρb(z) and potential temperature θb(z). The treatment of moisture

is based on one-moment bulk microphysics, with new primary variables qv, qc, qp
denoting mixing ratios of water vapour, cloud water, and precipitation, respectively.

The equations are written in conservation form as

∂u

∂t
+

1
ρb
∇ · (ρbu⊗ u) = −∇ϕ− g

θb

(
θ′ + θb(εq′v − qc − qp)

)
+Du, (7.1)

∂θ′

∂t
+

1
ρb
∇ · (ρbuθ′) = −u · ∇θe +

Lθe
cpTe

(Cd + Ep) +Dθ, (7.2)

∂qv
∂t

+
1
ρb
∇ · (ρbuqv) = −Cd − Ep +Dqv , (7.3)

∂qc
∂t

+
1
ρb
∇ · (ρbuqc) = Cd −Ap − Cp +Dqc , (7.4)

∂qp
∂t

+
1
ρb
∇ · (ρbuqp) = Ap + Cp + Ep +Dqp −

1
ρb
∇ · (ρbu↓qp), (7.5)

∇ · (ρbu) = 0. (7.6)

Here, T denotes the temperature, L is the latent heat of condensation, cp is the

specific heat at constant pressure, ε = Rv/Rd − 1, where Rv/Rd is the ratio of the gas

constants for water vapour and dry air. The primed variables denote perturbations

from environmental profiles marked by the subscript e, that is Ψ′ = Ψ − Ψe. The

microphysical source terms include condensation of water vapour into cloud water (Cd),

autoconversion of cloud water into precipitation (Ap), collection of cloud water by

precipitation (Cp), and evaporation of precipitation in the undersaturated conditions

(Ep). Additionally, the terms Dqi symbolise dissipative forcings for water species, such as

molecular or eddy diffusion. The last term on the rhs of (7.6) describes the precipitation

fallout with the velocity u↓ = (0, 0,−wt) where wt is the terminal velocity.

The parametrisation of microphysical processes assumes a standard warm-rain

formulation, summarised in Appendix B. For details of coupling the microphysics

to the dynamics during numerical integration the reader is refereed to the review in

Smolarkiewicz et al. (2017).

7.2 Simulation setup

Setup of idealised supercell simulations usually includes two key ingredients—environmental

profiles of wind, temperature, and moisture conducive to supercell formation and a

smooth localised initial perturbation of temperature. Here, the setup of Klemp et al.

(2015) is used, modified from spherical geometry to a flat plane.
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The size of the domain is Lx×Ly×Lz = 168 km×168 km×20 km. Rigid boundaries

are assumed at the top and bottom of the domain, whereas lateral boundaries are

periodic. The environmental potential temperature profile is prescribed by

θe(z) =

θo + (θtr − θo)
(
z
ztr

)5/4
for z ¬ ztr

θtr exp
[

g
cpTtr

(z − ztr)
]

for z > ztr,
(7.7)

where θo = 300 K is the surface potential temperature, θtr = 343 K is the potential

temperature at the tropopause level of height ztr = 12 km, and Ttr = 213 K is the

temperature of the isothermal stratosphere. The water content is given by the relative

humidity profile

He(z) =

1− 3
4

(
z
ztr

)5/4
for z ¬ ztr

1
4 for z > ztr.

(7.8)

Additionally, the initial water vapour mixing ratio is constrained by qv0 = max (qv0, q
max
v0 )

with qmaxv0 = 0.014 kg kg−1 to approximate a well-mixed boundary layer near the ground.

The environmental wind is ue = (Ue(z), 0, 0), with the zonal velocity profile

Ue(z) =



Us
(
z
zs

)
− Uc for z ¬ zs −∆zs

Us

[
−4

5 + 3 z
zs

+ 5
4

(
z
zs

)2
]
− Uc for |z − zs| < ∆zs

Us − Uc for z > zs + ∆zs,

(7.9)

where Us = 30 m s−1, zs = 12 km, ∆zs = 1 km, and Uc = 15 m s−1 accounts for a

Galilean shift to render the storm nearly stationary. The initial potential temperature

perturbation is

δθ =

∆θ cos
(
πR
2

)
for R ¬ 1

0 for R > 1,
(7.10)

where

R(x, y, z) =

√√√√(x− x0

Rx

)2
+

(
y − y0

Ry

)2

+
(
z − z0

Rz

)2
. (7.11)

Here, the magnitude of the perturbation is ∆θ = 3 K, (x0, y0, z0) = (Lx/2, Ly/2, Rz),

where Rx = Ry = 10 km and Rz = 3.5 km.

As mentioned at the beginning of the chapter, the assumed form of dissipation is

important. The adopted setup assumes constant viscosity ν = 500 m2 s−1 for momentum
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and a common diffusion coefficient Ks = 1500 m2 s−1 for all scalar variables. To prevent

mixing of the geostrophically balanced environmental state, the dissipation and diffusion

are only applied to the perturbations about it.

The domain was discretised with vertical grid spacing δz = 0.5 km. For the purpose

of grid-refinement study, four different horizontal spacings were used δx = δy = 4, 2, 1,

and 0.5 km. The time step was continuously adapted to keep the Courant number

smaller than 0.8, and the total simulation time was two hours. Simulations using the

fully third-order scheme and the second-order MPDATA were performed, both in the

nonoscillatory infinite-gauge configuration.

7.3 Results

Figure 7.1 illustrates the evolution of the storm over the two hour period; the result

was obtained using the fully third-order accurate MPDATA on the finest grid with 0.5

km spacing. This result compares well to Figure 3 in Smolarkiewicz et al. (2017), which

was also obtained using MPDATA-based numerics. The figure presents characteristic

splitting of the storm, showing two separate convective cells past the 30 min mark.
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Fig. 7.1. Supercell evolution in the simulation using the Mg3No scheme at 0.5 km resolution.
Horizontal cross sections of vertical velocity (top; m s−1) and rainwater mixing ratio (bottom;
g kg−1) at 5 km altitude in 30 min intervals.
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Fig. 7.2. Horizontal cross sections of the final (at 120 min) vertical velocity (top; m s−1) and
rainwater mixing ratio (bottom; g kg−1) at 5 km altitude for grid spacings 4 km, 2 km, 1 km,
and 0.5 km (left to right). Results from simulations employing the Mg2No scheme.
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Fig. 7.3. Same as Figure 7.2 but for simulations employing the Mg3No scheme.

59



Figures 7.2 and 7.3 show structural convergence under grid refinement of the final

vertical velocity and rainwater distributions at 5 km altitude, for the second-order

accurate scheme and the fully third-order accurate scheme, respectively. As expected,

both options show increasing detail in the solution as the resolution increases. The

4 km solutions are clearly under-resolved. While both 2 km solutions do not appear

well-resolved, the solution using the fully third-order accurate scheme appears to have

better effective resolution. Moreover, the vertical velocity distribution of the Mg3No

scheme at 1 km grid spacing compares better to the Mg2No solution at 0.5 km grid

spacing than to its 1 km equivalent. Interestingly, the updraught region of the Mg3No

scheme becomes more elongated at 0.5 km grid spacing, and looks different than

the corresponding Mg2No result, while the distributions of rainwater appear similar.

However, all of the observed differences are small compared to the intermodel differences

presented by the intercomparison in Zarzycki et al. (2018).
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Fig. 7.4. Instantaneous maximum vertical velocity and precipitation rate time series for the
Mg2No (left) and the Mg3No (right) supercell simulations with different grid spacings.

Time series of maximal vertical velocity and precipitation rate for every considered

grid spacing and MPDATA variant are presented in Figure 7.4. The plots further

corroborate that 4 km solutions are under-resolved, showing much too small (large)

vertical velocity (precipitation rate) values. The time series at 2 km grid spacing improve

upon these results, but visibly are not yet converged. The Mg3No scheme at 2 km

shows a bit larger vertical velocity maxima and smaller precipitation rates than the
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corresponding Mg2No solution during the second hour of the simulation. The statistics

appear almost converged at 1 km grid spacing, which is especially evident by looking

at the precipitation rates. At this resolution, the fully third-order MPDATA vertical

velocity during the first hour of the simulation is similar to the 0.5 km result, while

the second-order scheme overshoots its fine grid solution. Both MPDATA options show

slightly higher vertical velocities than the fine grid solutions during the second hour of

the evolution.
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Fig. 7.5. Maximum vertical velocity for the entire simulation as a function of the viscosity
magnitude. Results from simulations with the Mg2No and the Mg3No MPDATA variants at 2
km (left) and 0.5 km (right) grid spacings are shown.
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Fig. 7.6. Horizontal cross sections of the final (at 120 min) rainwater mixing ratio (g kg−1) at
5 km altitude in inviscid 0.5 km grid spacing simulations using the Mg2No and the Mg3No
MPDATA.
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To further investigate differences between the Mg2No and Mg3No simulations,

sensitivity analysis to modifying the viscosity magnitude was conducted, similarly

as in Kurowski et al. (2014)—see their Section 4.c and Figure 8. Simulations with

progressively smaller values of viscosity were performed, down to a formally inviscid

case relying on the ILES property of MPDATA. Diffusion coefficients for the scalar

fields were also proportionally reduced. Figure 7.5 presents the dependence of maximum

(over the course of the entire simulation) vertical velocity on the viscosity coefficient for

2 km and 0.5 km grid spacings. At 2 km grid spacing, the Mg3No simulations shows

consistently higher maximal updraught speeds for every value of viscosity except zero.

However, the viscous term is not yet converged, as there is no clear trend of increasing

updraught speeds with decreasing viscosity. The expected trend can be observed for 0.5

km simulations, but there is no systematic difference between the fully third MPDATA

and the second order variant. Nonetheless, decreasing viscosity does lead to solutions

showing different morphology, distinct for each scheme, as can be seen in Figure 7.6

comparing ILES solutions at 0.5 km. With that in mind, the maximum vertical velocity

statistics do not tell the whole story, as numerical diffusivity exhibits a spatial structure.

Real storms are characterised by much higher Reynolds numbers, and may benefit from

the implicit subgrid-scale model of the fully third-order scheme. To sum up, the results

suggest that using the fully third-order MPDATA has positive impact on the solutions

when running on coarser resolutions, but the effect is overshadowed by the diffusive

term which is not yet fully converged.
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8 Final remarks

Advection schemes are a key element of numerical atmospheric models, which are

essential for the state-of-the-art weather forecasting and research. The schemes’ order

of accuracy determines not only their effective resolving power, but also (and perhaps

even more importantly) their behavioural properties.

The development of nonoscillatory second-order accurate advection schemes in the

seventies and the eighties was transformative for the whole field of computational fluid

dynamics, allowing realistic simulations of turbulent flows. During the same time, the

generally second-order accurate MPDATA advection scheme emerged for atmospheric

applications, incorporating favourable properties such as full multidimensionality and

strict sign-preservation. Since that era, research into higher-order accurate advection

algorithms has been ongoing, motivated by the desire to further diminish numerical

errors and explore different behavioural characteristics.

While many high-order accurate schemes have been proposed, combining the nono-

scillatory or sign-preserving properties with high-order of accuracy has proven difficult,

either limiting many schemes applicability or forcing them to abandon their formal order

of accuracy. In the meantime, the second-order MPDATA has become a foundation

for general geo- and astrophysical flow solvers, enjoying a diverse area of applications

and being praised for their robustness. The goal of the research presented in this

thesis was to use the MPDATA approach to construct a genuinely third-order accurate

advection scheme for atmospheric applications, while keeping the favourable properties

of MPDATA.

A fully third-order accurate MPDATA advection scheme under a temporally and

spatially varying flow has been developed. The foundation of the proposed scheme

lies in the rigorous modified equation analysis of the standard MPDATA, followed by

expressing the spatial form of the error as the divergence of an advective flux. The

discrete error estimate is compensated in the subsequent upwind pass, resulting in

a third-order-accurate sign-preserving scheme. The scheme requires only two upwind

passes, which can benefit parallel distributed-memory communication.

The main building block of the proposed scheme is the third-order error-compensating

pseudo-velocity, which was derived in a continuous form and later discretised on a

structured rectilinear computational grid. To provide insight into the various sour-
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ces of the standard MPDATA error, the pseudo-velocity was separated into select

terms with a clear interpretation. Using a computer algebra system, the third-order

error-compensating velocity was augmented with terms that compensate errors of

common interpolation and extrapolation procedures in implementations of the standard

MPDATA.

The developments presented in this thesis are available as part of the open-source

libmpdata++ library (Jaruga et al., 2015). The library implements a variety of MPDATA-

based solvers and provides facilities for parallelisation and output. It is implemented in

an object-oriented manner, benefiting user/researcher productivity and long-term code

maintainability. As a side benefit of the presented work, many other enhancements to

the library capabilities were added. The library was used to perform every simulation

presented in the thesis.

Three-dimensional numerical convergence tests based on a manufactured solution

verified the third-order accuracy of the scheme. Two benchmarks of tracer advection in

time-varying rotating deformational flows on the sphere—pertinent to global chemistry-

transport models—were used to compare the proposed scheme with the established

MPDATA formulations. The novel third-order accurate MPDATA showed a robust

decrease in the solution error compared to the established third-order constant-coefficient

scheme. Moreover, the fully third-order scheme with nonoscillatory enhancement is

substantially more accurate than the established nonoscillatory MPDATAs. The novel

scheme can also much better preserve functional correlations between the tracers.

Evaluation of the computational cost showed the efficacy of the fully third-order

accurate MPDATA schemes, with about the same cost as the third-order constant-

coefficient scheme.

In general, simulations of complete fluid equations for the rollup of a double shear

layer, the evolution of a convective boundary layer, and the splitting of an idealised

supercell storm reveal overall accuracy gains of the advective transport based on the

fully third-order-accurate scheme. This is despite the fact that the complete model is at

most second-order accurate, and, in addition to advective transport, feature increasingly

complex physics. Specifically, the rollup of the double shear-layer allowed both visual

and quantitative assessment of the solution accuracy, manifestly showing smaller errors

of the fully third-order scheme. The evolution of the convective boundary layer revealed

characteristics consistent with higher numerical resolution of the fully third-order

scheme, while also demonstrating its advantageous ILES properties. Similarly, the

splitting supercell benchmark benefited from the smaller numerical dissipation of the

novel scheme. Moreover, the novel scheme demonstrated excellent robustness, allowing

simulations of an intense storm featuring rapid phase-changes and heavy precipitation

with the same time step as the second-order variant.

Overall, using the genuinely third-order accurate MPDATA consistently improved

simulation results in a variety of benchmarks relevant to atmospheric modelling. The
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improvement was significant not only when compared to the standard second-order

MPDATA but also to the constant coefficient third-order variant. Because the option

comes at about the same computational expense as its constant-coefficients predecessor,

it is a valuable addition to the MPDATA based fluid-dynamics codes. Moreover, the use

of fully third-order accurate MPDATA can be generally recommended for transport of

tracers. Admittedly, it is not possible to make a similar recommendation for arbitrary

fluid dynamics problems. While improvements by using the fully third-order scheme

can be expected, the benefits may not outweigh the increased computational cost. This

is the case especially when the problem is dominated by factors other than advection,

such as strong forcings. Nevertheless, having the option for third-order accuracy allows

numerical experimentation, possibly illuminating the impact of advection errors on a

solution. In simulations of turbulent flows, the fully third-order accurate MPDATA is

an interesting option due to its advantageous ILES properties. Finally, an increased

complexity of the new scheme is offset by the general accessibility of its source code.
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A Detailed modified equation analysis
of the standard MPDATA with two
iterations

A.1 Expansion in space

By expanding the first iteration of MPDATA, m = 1 in (2.11), in Taylor series about a

common spatial point xi the following equation is obtained

Ψ(1) = Ψn +
δt

G
∇ ·

{
−V n+1/2Ψn +

δx

2
�
xV n+1/2

x�∇Ψn +HUPW

}
+O4(δt, δx),

HUPW = −δx� δx
24

�
(
V n+1/2 �∇�∇Ψn + 2∇Ψn �∇� V n+1/2

+ Ψn∇�∇� V n+1/2
)
, (A.1)

where the index i was omitted, because the resulting equation is valid for arbitrary i.

Similarly, expanding the second iteration, m = 2 in (2.11), under the assumption that

the discrete approximations to the pseudo-velocity components at the staggered spatial

grid points are at least second-order accurate, leads to

Ψn+1 = Ψ(1) +
δt

G
∇ ·

{
−V n+1/2, (1)Ψ(1) +

δx

2
�
xV n+1/2, (1)

x�∇Ψ(1)
}

+O4(δt, δx),

(A.2)

where a shorthand notation V a, b = V (V a,Ψb) was adopted.

Using the definition of pseudo-velocity (2.10) in the first term under the divergence

operator on the rhs of (A.2) leaves

Ψn+1 = Ψ(1) +
δt

G
∇ ·

{
− δx

2
�
xV n+1/2

x�∇Ψ(1) +
δt

2G
V n+1/2∇ ·

(
V n+1/2Ψ(1)

)

+
δx

2
�
xV n+1/2, (1)

x�∇Ψ(1)

}
+O4(δt, δx). (A.3)
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The elimination of Ψ(1) from (A.3) proceeds in two steps. First, (A.1) is used in the

first term on the rhs of (A.3) which results in

Ψn+1 = Ψn +
δt

G
∇ ·

{
− V n+1/2Ψn − δx

2
�
xV n+1/2

x� (∇Ψ(1) −∇Ψn)

+
δt

2G
V n+1/2∇ ·

(
V n+1/2Ψ(1)

)
+
δx

2
�
xV n+1/2, (1)

x�∇Ψ(1) +HUPW

}
+O4(δt, δx). (A.4)

As (A.1) implies

∇Ψ(1) = ∇Ψn − δt∇
[

1
G
∇ ·

(
V n+1/2Ψn

)]
+O2(δt, δx) , (A.5)

∇ ·
(
V n+1/2Ψ(1)

)
= ∇ ·

(
V n+1/2Ψn

)
− δt∇ ·

[
V n+1/2

G
∇ ·

(
V n+1/2Ψn

)]
+O2(δt, δx) , (A.6)

after applying (A.1), (A.5) and (A.6) to the rhs of (A.4) the result reads

Ψn+1 = Ψn +
δt

G
∇ ·

{
−V n+1/2Ψn +

δt

2G
V n+1/2∇ ·

(
V n+1/2Ψn

)
+HX

}
+O4(δt, δx) , (A.7)

HX = HUPW +
δx

2
�
xV n+1/2, n

x�∇Ψn

+
δt

2
δx�

xV n+1/2
x�∇ [ 1

G
∇ ·

(
V n+1/2Ψn

)]
− δt2

2G
V n+1/2∇ ·

[
V n+1/2

G
∇ ·

(
V n+1/2Ψn

)]
. (A.8)
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A.2 Expansion in time

By expanding (A.7) in time about a common time level tn and again omitting its index,

as the resulting equation is valid for arbitrary n, the following equation is obtained

Ψ + δt
∂Ψ
∂t

+
δt2

2
∂2Ψ
∂t2

+
δt3

6
∂3Ψ
∂t3

= Ψ +
δt

G
∇ ·

{
− V Ψ− δt

2
∂V

∂t
Ψ +

δt

2G
V ∇ · (V Ψ)

+HTX

}
+O4(δt, δx) , (A.9)

HTX = H̃X −
δt2

8
∂2V

∂t2
Ψ +

δt2

4G
∂V

∂t
∇ · (V Ψ) +

δt2

4G
V ∇ ·

(
∂V

∂t
Ψ
)
,

where H̃X refers to (A.8) after time expansion that, for high order terms, amounts to

replacing V n+1/2 with V n and V n+1/2, n with V n, n.

Finally, dividing both sides of (A.9) by δt and rearranging leads to the modified

equation of MPDATA

∂Ψ
∂t

=
1
G
∇ ·

{
−V Ψ− δt

2
∂V

∂t
Ψ +

δt

2G
V ∇ · (V Ψ) +HTX

}
− δt

2
∂2Ψ
∂t2
− δt2

6
∂3Ψ
∂t3

+O3(δt, δx). (A.10)

A.3 Expressing temporal derivatives in terms of spatial

derivatives

In order to express the rhs of (A.10) solely in terms of the spatial derivatives of the

scalar Ψ, the second and the third temporal derivative of Ψ have to be related to the

spatial derivatives. First, by observing that the second temporal derivative on the rhs

of (A.10) is multiplied by δt and the third is multiplied by δt2, it follows that it is

sufficient to know them up to O2(δt, δx) and O1(δt, δx), respectively. Keeping this in

mind, differentiating (A.10) with respect to time results in

∂2Ψ
∂t2

=
1
G
∇ ·

{
− ∂V

∂t
Ψ− V ∂Ψ

∂t
− δt

2
∂2V

∂t2
Ψ− δt

2
∂V

∂t

∂Ψ
∂t

+
δt

2G
∂V

∂t
∇ · (V Ψ) +

δt

2G
V ∇ ·

(
∂V

∂t
Ψ
)

+
δt

2G
V ∇ ·

(
V
∂Ψ
∂t

)}

− δt

2
∂3Ψ
∂t3

+O2(δt, δx). (A.11)
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Using (A.10) on the rhs of (A.11) gives

∂2Ψ
∂t2

=
1
G
∇ ·

{
− ∂V

∂t
Ψ +

V

G
∇ · (V Ψ)− δt

2
∂2V

∂t2
Ψ− δt

G
V ∇ ·

[
V

G
∇ · (V Ψ)

]

+
δt

2
V
∂2Ψ
∂t2

+
δt

G

∂V

∂t
∇ · (V Ψ) +

δt

G
V ∇ ·

(
∂V

∂t
Ψ
)}

− δt

2
∂3Ψ
∂t3

+O2(δt, δx) . (A.12)

Applying (A.12) to the rhs of itself results in

∂2Ψ
∂t2

=
1
G
∇ ·

{
− ∂V

∂t
Ψ +

V

G
∇ · (V Ψ)− δt

2
∂2V

∂t2
Ψ− δt

2G
V ∇ ·

[
V

G
∇ · (V Ψ)

]

+
δt
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∂t
∇ · (V Ψ) +

δt

2G
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(
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∂t
Ψ
)}
− δt

2
∂3Ψ
∂t3

+O2(δt, δx).

(A.13)

Differentiating (A.13) with respect to time and using the order argument again gives

∂3Ψ
∂t3

=
1
G
∇ ·

{
− ∂2V

∂t2
Ψ− ∂V

∂t

∂Ψ
∂t

+
1
G

∂V

∂t
∇ · (V Ψ) +

V
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∇ ·

(
∂V

∂t
Ψ
)

+
V

G
∇ ·

(
V
∂Ψ
∂t

)}
+O1(δt, δx). (A.14)

Using (A.10) on the rhs of (A.14) leads to

∂3Ψ
∂t3

=
1
G
∇ ·

{
− ∂2V

∂t2
Ψ +

2
G

∂V

∂t
∇ · (V Ψ) +

V

G
∇ ·

(
∂V

∂t
Ψ
)
− V
G
∇ ·

[
V

G
∇ · (V Ψ)

]}
+O1(δt, δx). (A.15)

Applying first (A.13) and then (A.15) to the rhs of (A.10) leaves

∂Ψ
∂t

=
1
G
∇ · {−V Ψ +HXX}+O3(δt, δx), (A.16)

HXX = HTX +
δt2

6
∂2V

∂t2
Ψ− δt2

3G
∂V

∂t
∇ · (V Ψ)− δt2

6G
V ∇ ·

(
∂V

∂t
Ψ
)

+
δt2

6G
V ∇ ·

[
V

G
∇ · (V Ψ)

]
. (A.17)

Finally, the definition V := HXX/Ψ leads to the final result (3.10) with α = 1, βM = 1

and γ = 1.
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B Warm-rain microphysics

Here, the standard warm-rain microphysics (Kessler, 1969; Grabowski and Smolarkie-

wicz, 1996) used in supercell simulations of Chapter 7 is summarised. In the following,

all formulae with numeral coefficients assume SI units.

Following Klemp and Wilhelmson (1978), the precipitation terminal velocity is

prescribed as

wt = 36.34(10−3ρqp)0.1364(ρ/ρ0)−1/2, (B.1)

where ρ0 is the density at the ground level.

In (7.2) – (7.4), the bulk condensation rate Cd is defined implicitly by assuming

that the water vapour is saturated in the presence of cloud water

qc > 0 =⇒ qv = qvs, (B.2)

and that the cloud water evaporates instantaneously in subsaturated conditions

qv < qvs =⇒ qc = 0. (B.3)

The saturated water vapour mixing ratio is given by

qvs =
εes

p− es
, (B.4)

where ε = Rd/Rv and the saturation water vapour pressure is

es(T ) = e0 exp
[
L

Rv

(
1
T0
− 1
T

)]
, (B.5)

with e0 = 611 Pa and T0 = 273.16 K. Other microphysical sources on the rhs of (7.2) –

(7.6) are given by the power law expressions

Ap = max (0, k1(qc − qTc )), (B.6)

Cp = k2qcq
0.875
p , (B.7)

Ep =
1
ρ

(qv/qvs − 1)C(10−3ρqp)0.525

5.4× 102 + 2.55× 105/(pqvs)
, (B.8)
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where k1 = 10−3 s−1, k2 = 2.2 s−1, qc = 10−4 kg kg−1 and C = 1.6+124.9(10−3ρqp)0.2046

is the ventilation factor. Here, the autoconversion threshold qTc was chosen to be 10−3

kg kg−1.
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Kühnlein, C., P. K. Smolarkiewicz, and A. Dörnbrack, 2012: Modelling atmo-

spheric flows with adaptive moving meshes. J. Comput. Phys., 231, 2741–2763,

doi:10.1016/j.jcp.2011.12.012.

Kumar, D., R. Bhattacharyya, and P. K. Smolarkiewicz, 2015: Repetitive formation and

decay of current sheets in magnetic loops: An origin of diverse magnetic structures.

Phys. Plasmas, 22, 012 902, doi:10.1063/1.4905643.

Kurowski, M., B. Rosa, and M. Ziemiański, 2011: Testing the anelastic nonhydro-

static model EULAG as a prospective dynamical core of a numerical weather pre-

diction model Part II: Simulations of supercell. Acta Geophys., 59, 1267–1293,

doi:10.2478/s11600-011-0051-z.

Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2014: Anelastic and

compressible simulation of moist deep convection. J. Atmos. Sci., 71, 3767–3787,

doi:10.1175/JAS-D-14-0017.1.

77

https://doi.org/10.1002/2015MS000435
https://doi.org/10.1146/annurev.fl.19.010187.002101
https://doi.org/10.1175/1520-0469(1978)035%3C1070:TSOTDC%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035%3C1070:TSOTDC%3E2.0.CO;2
https://doi.org/10.1016/S0021-9991(03)00008-1
https://doi.org/10.1111/j.2153-3490.1972.tb01547.x
https://doi.org/10.5194/gmd-2018-237
https://doi.org/10.5194/gmd-2018-237
https://doi.org/10.1016/j.jcp.2016.12.054
https://doi.org/10.1016/j.jcp.2011.12.012
https://doi.org/10.1063/1.4905643
https://doi.org/10.2478/s11600-011-0051-z
https://doi.org/10.1175/JAS-D-14-0017.1


Lauritzen, P. H., W. C. Skamarock, M. J. Prather, and M. A. Taylor, 2012: A standard

test case suite for two-dimensional linear transport on the sphere. Geosci. Model

Dev., 5, 887–901, doi:10.5194/gmd-5-887-2012.

Lauritzen, P. H., and J. Thuburn, 2012: Evaluating advection/transport schemes using

interrelated tracers, scatter plots and numerical mixing diagnostics. Q. J. R. Meteorol.

Soc., 138, 906–918, doi:10.1002/qj.986.

Lauritzen, P. H., and Coauthors, 2014: A standard test case suite for two-dimensional

linear transport on the sphere: results from a collection of state-of-the-art schemes.

Geosci. Model Dev., 7, 105–145, doi:10.5194/gmd-7-105-2014.

Lax, P., and B. Wendroff, 1960: Systems of conservation laws. Commun. Pure Appl.

Math., 13, 217–237, doi:10.1002/cpa.3160130205.

Margolin, L., and P. K. Smolarkiewicz, 1998: Antidiffusive velocities for multipass donor

cell advection. SIAM J. Sci. Comput., 20, 907–929, doi:10.1137/S106482759324700X.

Margolin, L. G., and W. J. Rider, 2002: A rationale for implicit turbulence modelling.

Int. J. Numer. Methods Fluids, 39, 821–841, doi:10.1002/fld.331.

Margolin, L. G., W. J. Rider, and F. F. Grinstein, 2006a: Modeling turbulent flow with

implicit LES. J. Turb., 7, 1–27, doi:10.1080/14685240500331595.

Margolin, L. G., P. K. Smolarkiewicz, and Z. Sorbjan, 1999: Large-eddy simulations

of convective boundary layers using nonoscillatory differencing. Physica D, 133,

390–397, doi:10.1016/S0167-2789(99)00083-4.

Margolin, L. G., P. K. Smolarkiewicz, and A. A. Wyszogradzki, 2006b: Dissipation in

implicit turbulence models: A computational study. J. Appl. Mech., 73, 469–473,

doi:10.1115/1.2176749.

Margolin, L. G., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2002: Implicit tur-

bulence modeling for high Reynolds number flows. J. Fluids Eng., 124, 862–867,

doi:10.1115/1.1514210.

Merali, Z., 2010: Computational science: Error, why scientific programming does not

compute. Nature, 467, 775–777, doi:10.1038/467775a.

Minion, M. L., and D. L. Brown, 1997: Performance of under-resolved two-

dimensional incompressible flows simulations II. J. Comput. Phys., 138, 734–765,

doi:10.1006/jcph.1997.5843.

Morin, A., J. Urban, P. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz, 2012: Shining

light into black boxes. Science, 336, 159–160, doi:10.1126/science.1218263.

78

https://doi.org/10.5194/gmd-5-887-2012
https://doi.org/10.1002/qj.986
https://doi.org/10.5194/gmd-7-105-2014
https://doi.org/10.1002/cpa.3160130205
https://doi.org/10.1137/S106482759324700X
https://doi.org/10.1002/fld.331
https://doi.org/10.1080/14685240500331595
https://doi.org/10.1016/S0167-2789(99)00083-4
https://doi.org/10.1115/1.2176749
https://doi.org/10.1115/1.1514210
https://doi.org/10.1038/467775a
https://doi.org/10.1006/jcph.1997.5843
https://doi.org/10.1126/science.1218263


Nair, R. D., and C. Jablonowski, 2008: Moving vortices on the sphere: A test

case for horizontal advection problems. Mon. Weather Rev., 136, 699–711,

doi:10.1175/2007MWR2105.1.

Piotrowski, Z. P., P. K. Smolarkiewicz, S. P. Malinowski, and A. A. Wyszogrodzki, 2009:

On numerical realizability of thermal convection. J. Comput. Phys., 228, 6268–6290,

doi:10.1016/j.jcp.2009.05.023.

Pope, S. B., 2000: Turbulent Flows. Cambridge University Press.

Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG,

a computational model for multiscale flows. Comput. Fluids, 37, 1193–1207,

doi:10.1016/j.compfluid.2007.12.001.

Pudykiewicz, J., 1989: Simulation of the Chernobyl dispersion with a 3-D hemispheric

tracer model. Tellus B, 41, 391–412, doi:10.1111/j.1600-0889.1989.tb00317.x.

Pudykiewicz, J. A., 1998: Application of adjoint tracer transport equations for eva-

luating source parameters. Atmos. Environ., 32, 3039–3050, doi:10.1016/S1352-

2310(97)00480-9.
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