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Abstract

In this thesis I present different notions of special subsets of the real line and
their properties, in particular of those related to measure and convergence. We
search for answers to open questions in this subject and we consider general-
izations of known facts in the case of a larger cardinality, i.e. in the generalized
Cantor space 2%, for an uncountable cardinal k, equipped with the topology
generated by sets of extensions of partial functions.

First (Chapter , we discuss special subsets of the Cantor space 2¢. The
theory of special subsets is already well developed (see [Miller, 1984]
and [Bukovsky, 2011]). I introduce two notions of such sets, which were not
considered before: the class of perfectly null sets and the class of sets which are
perfectly null in the transitive sense ([Korch and Weiss, 2016]). These classes
may play the role of duals on the measure side to the corresponding classes
on the category side. We investigate their properties, and although the main
problem of whether the classes of perfectly null sets and universally null sets
are consistently different remains open, we prove some results related to this
question and study their version on the category side.

Next (Chapter , we study problems related to Egorov’s Theorem, which
describes a relation between convergence and measure. Egorov’s Theorem can
be generalized to some notions of ideal convergences (see e.g. [Mrozek, 2009)),
and T. Weiss has proven ([Weiss, 2004]) that the generalized Egorov’s state-
ment (i.e. the theorem without the assumption on measurability) is indepen-
dent from ZFC. Integrating both ideas, we prove that the generalized Egorov’s
statement as well as its negation are consistent with ZFC in different cases of
ideal convergence (|[Korch, 2017b]).

Many of the classical notions of special subsets of 2 can be considered in
the case of the generalized Cantor space 2¢. Although the theory of the general-
ized Cantor space 2% has recently been broadly developed (see
e.g. [Laguzzi et al., 2016]), the theory of special subsets of 2% seems to be
largely omitted from those considerations. We study those classes of sets in
this setting ([Korch and Weiss, 2017]). It turns out that many of properties of
subsets of 2¥ can be easily proved in 2%, although sometimes one has to use
some additional set-theoretic assumptions (Chapter [4). Next we deal with less
common classes of small sets in 2% (Chapter |5)).

In Chapter [6] T present different types of convergence of k-sequences of
functions 2% — 2% and study properties of special subsets of 2 related to
the notion of convergence ([Korch, 2017a]). We relate those properties to the
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sequence selection principles. We also consider convergence of sequences of
points and functions with respect to an ideal on x (Chapter (7).

Finally, to relate measure and convergence properties in 2%, we study the
possibility of introducing Egorov’s Theorem in 2%. Since no method of con-
structing measure in 2% which fulfils all reasonable requirements is known, we
consider the properties such set-function should have to enable the proof of
Egorov’s Theorem. I leave the question of existence of such a function which
satisfies some additional reasonable conditions open. Every k-strongly null
set is null with respect to such a set function which satisfies some additional
properties. We study also the ideal version of Egorov’s Theorem in 2.

Key words: special subsets, measure, convergence, category, generalized
Cantor space, Egorov’s Theorem, perfectly null set, ideal convergence
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Streszczenie

W niniejszej pracy rozwazam rézne pojecia specjalnych podzbioréw pros-
tej i ich wtasciwosci, w szczegélnosci te zwigzane z miarg lub zbieznoscig.
Poszukuje odpowiedzi na otwarte pytania w tym zakresie oraz rozwazam uogol-
nienia znanych faktow na wyzsze liczby kardynalne, tj. w uogoélnionej prze-
strzeni Cantora 2%, dla nieprzeliczalnej liczby kardynalnej x, rozwazanej z to-
pologia generowang przez zbiory przedtuzen funkcji czesciowych.

Po pierwsze (Rozdzial |2)) rozwazam specjalne podzbiory przestrzeni Can-
tora 2¢. Teoria specjalnych podzbioréw jest oczywiscie juz znaczaco rozwinieta
(patrz [Miller, 1984] i [Bukovsky, 2011]). W tej pracy wprowadzam dwie, do
tej pory nierozwazane, klasy takich zbiorow: klase zbioréw doskonale miary
zero oraz klase zbiorow doskonale miary zero w sensie tranzytywnym. Te klasy
moga odgrywaé role dualng po stronie miary do odpowiednich klas zbioréw po
stronie kategorii (|[Korch and Weiss, 2016]). Badam wtasciwosci tych klas i,
mimo ze gtowny problem, czy klasy zbiorow doskonale miary zero i uniwer-
salnie miary zero sa niesprzecznie rézne, pozostaje nierozwiazany, to dowodze
twierdzen powigzanych z tym pytaniem i rozwazam ich wersje po stronie kat-
egorii.

Nastepnie (Rozdziat [3) badam problemy zwiazane z twierdzeniem Jegorowa,
ktore taczy ze soba wlasciwosci zwigzane ze zbieznoscig i miarg. Twierdze-
nie Jegorowa moze by¢ uogdlnione na przypadek zbieznosci idealowej (patrz
np. [Mrozek, 2009]), natomias T. Weiss udowodnit ([Weiss, 2004]), ze uogdl-
nione stwierdzenie Jegorowa (tj. twierdzenie bez zalozenia o mierzalnosci) jest
niesprzeczne z ZFC. Laczac oba pomysty, dowodze, ze uogélnione stwierdzenie
Jegorowa i jego zaprzeczenie sg niesprzeczne z ZFC dla réznych przypadkoéw
zbieznosci ideatowych ([Korch, 2017h]).

Wiele klasycznych poje¢ specjalnych podzbiorow w 2 moze by¢ uogélniona
na przypadek uogélnionej przestrzeni Cantora 2¢. Mimo ze teoria uogolnione;
przestreni Cantora 2% byla w ostatnim czasie znaczaco rozwijana (patrz np.
[Laguzzi et al., 2016]), to teoria specjalnych podzbioréow 2¢ wydaje sie by¢ w
znacznej czesci pomiajana w tych rozwazaniach. W niniejszej pracy badam te
klasy zbioréw w takim przypadku ([Korch and Weiss, 2017]). Okazuje sie, ze
wiele wlasnosci zachodzacych w 2% mozna tatwo wykazac¢ dla 2%, cho¢ czasem
niezbedne sa dodatkowe teorio-mnogosciowe zatozenia (Rozdziat . Nastepnie
zajmuje sie mniej znanymi klasami matych zbiorow w 2% (Rozdziat .

W rozdziale [0] rozwazam rézne rodzaje zbieznosci k-ciagdéw funkeji 2¢ —
2% i badam wtasciwosci specjalnych podzbioréw 2% zwigzanych ze zbieznoscia
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([Korch, 2017a]). Lacze te wlasciwosci z wlasciwosciami wyboru podciagoéw.
Rozwazam takze zbiezno$¢ wzgledem ideatu na x (Rozdziat @

Na koniec, taczac wtasciwosci zwigzane z miarg i ze zbieznoscig w 2%, roz-
wazam mozliwos¢ wprowadzenia twierdzenia Jegorowa w przestrzeni 2
(Rozdziat . Poniewaz nie znana jest metoda konstrukeji miary w przestrzeni
2k, ktora spetniataby wszystkie sensowne wymagania, rozwazam wtasciwosci,
ktére sa niezbedne do udowodnienia odpowiednika twierdzenia Jegorowa.
Kwestie istnienia odpowiedniej funkcji miarowej speliajacej dodatkowe za-
tozenia zostawiam jako pytanie otwarte. Przy pewnych dodatkowych zatoze-
niach kazdy zbiér k-silnie miary zero jest miary zero wzgledem takiej funkcji.
Badam takze ideatows wersje Tw. Jegorowa w 2~.

Stowa kluczowe: specjalne podzbiory, miara, zbieznos¢, kategoria, uogol-
niona przestrzen Cantora, twierdzenie Jegorowa, zbiér doskonale miary zero,
zbieznos$é¢ idealowa
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Chapter 1

Introduction and preliminaries

The aim of this thesis is to consider different notions of special subsets of the
real line and their properties, in particular of those related to measure and
convergence. | consider generalizations of known facts in the case of a larger
cardinality, i.e. in the generalized Cantor space 2 for an uncountable cardi-
nal s.

In the studies of the structure of the real line an important role is played
by the notions of measure and category. Many questions arise from the duality
between measure and category and the abrupt lack of it in some cases, which
is shown in the seminal book of J. Oxtoby [Oxtoby, 1971].

In this chapter, I describe the motivation of this work and I provide some
preliminary notions and facts required to understand it. The main notions and
notation used in this thesis are included here along with a brief introduction
to the historical background, which is included for the sake of completeness
and can be omitted by a reader who is acknowledged with set theory of the
real line.

1.1 Set theory, measure and category

For centuries, mathematicians in their studies encountered the concept of in-
finity. It was usually treated with slight suspicion and reservation because
everything in the real world seemed to be finite. Finally, in the second half
of the 19th century the study of the infinity found its way to the core of
mathematics.

It all really started with the works of Georg Cantor. He considered a subset
of a real line to be countable if its elements can be set in a sequence enumerated
by the natural numbers and proved in [Cantor, 1874] that while the set of all
algebraic numbers is countable, the set of all reals is not of this form. Indeed,
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given a sequence of real numbers (a,)ne, (Where w denotes the first infinite
ordinal number, i.e. the set of all natural numbers) one can fix a closed interval
Iy € R such that aq ¢ Iy, and then inductively choose a closed interval I,,,; € I,
such that a,,1 ¢ I,,,1. Since all the considered intervals are closed, X = N0 In
is not empty. Moreover X does not contain any point of the sequence (a,)nes,
so there exists a real number which is not an element of the sequence.

This observation can be seen as the first of a series of properties which can
be used to divide the class of all sets of reals into two subclasses — small sets
and bigger sets. In this case the small sets are those which are countable. But
it was not long till another such notion was defined. At the turn of the 19-th
century, French mathematicians E. Borel and H. Lebesgue, who were studying
properties of functions (see [Borel, 1898] and [Lebesgue, 1902]), defined mea-
sure (now called Lebesgue measure) and obviously, the class of null sets (i.e.
sets of measure zero), and R. Baire among other notions considered category
and meagre sets in his doctoral thesis [Baire, 1899]. Although I assume that
the reader is familiar with those notions, I recall them briefly below.

A subset A of the real line R is open if it is a union of open intervals. A set
is closed if it is a complement of an open set. Furthermore, a set is a Gs-set
(respectively, a F,-set) if it is an intersection (respectively, a union) of at most
countably many open (respectively, closed) sets. Finally, the family of Borel
sets is the least family of sets which contains all the open sets and is closed
under taking countable unions and complements. A set A is analytic if there
exists a Borel set BCR xR, and A = m[B].

If A is a subset of the real line, then the outer measure of A is

m*(A) = mf{z |bZ - G,Z'|ZA c U(al, bl)} R
1=0 i€w
where (a;b) denotes the open interval with endpoints a and b, i.e. the outer
measure of a set A is the infimum of possible sum of lengths of a family of
intervals which cover A. It is easy to verify that if A ¢ B, then m*(A) ¢ m*(B),
and that if A =U;3, As,

m*(A) < 2m*(Ai).

If u*(A) =0, then the set A is called a null set. The family of all null sets will
be denoted by M. A set A c R is said to be measurable if there exist Borel
sets By, By such that By ¢ A ¢ By and By \ By is null. The outer measure
m* restricted to the family of all measurable sets is denoted by m and called
Lebesgue measure. If (4;);, is a sequence of pairwise-disjoint measurable
sets, then

m(OA) _ gm(Ai).
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In particular, a union of countably many null sets is a null set. Obviously,
m(R) = oo, so R is not null.

More generally a function p: M — [0,00] with M ¢ P(R) closed under
taking countable unions is called a measure if (@) =0, and if {A;iew} c M
is a countable collection of pairwise disjoint sets, then

A set A is null with respect to p if there exists a set M € M such that
Ac M, and pu(M) =0.

A measure p is Borel if M is the collection of all Borel sets. It is finite
if u(A) < oo for all Ae M, and is strictly positive if ;(U) > 0 for any open
U e M. Finally, u is diffused if p({z}) =0 for any x € R.

A set A is nowhere dense if its closure has empty interior. A set is mea-
gre if it is a union of countably many nowhere dense set. The family of all
meagre sets will be denoted by M. Obviously, a union of countably many
meagre sets is a meagre set. Baire proved that an intersection of countably
many open dense sets of the real line is dense. This property is called Baire
Theorem. In particular, every non-empty open set is not meagre, and there-
fore neither is the whole real line R. A set A ¢ R is said to have the property
of Baire if there exist Borel sets B, By such that By € A< By, and By \ B is
meagre.

Later on Cantor’s theory of cardinalities and also the theory of the real
line were quickly developed. We shall say that two sets A and B are of the
same cardinality (|A| = |B]|) if there exists a bijection f: A - B, and |A| < |B]
if there exists a one-to-one function g: A - B. Although one can consider two
sets of the same cardinality without defining the notion of cardinal numbers,
this notion can be formalized using ordinals. An ordinal « is a transitive set
(meaning every its element is also its subset) well ordered by the relation ¢
(i.e. if 8,7 € «, then either 8 € v or v € f, and if A € o with A # &, then
there exists the least element in A). If o € 8 are ordinals, we usually write <
instead of C. It is easy to check that if a, 3 are ordinals, then either oo < 5 or
B < «, and also that a < § if and only if « € 5. Moreover if (P, <) is a well
ordered set, then there exists an ordinal o which is order isomorphic to it (i.e.
there exists a bijection f: P — « such that for any p,q € P, p < ¢ if and only if
f(p) < f(q)).

Notice that @ (also denoted by 0) is the least ordinal. Given an ordinal «,
we can define its successor a + 1 = auU{a}. An ordinal 8 such that there is no
ordinal « such that g = a+ 1 will be called a limit ordinal. If § is a limit
ordinal, then 8 = U,<pa. All the finite ordinals can be therefore denoted by
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natural numbers, and n = {0,1,...,n—1}. The set of all finite ordinals (i.e.
the set of natural numbers) is hence also an ordinal and will be denoted by w.

If a, B are ordinals, then by a + 3 we denote the ordinal which is order-
isomorphic to the set {0} x au {1} x § ordered by the lexicographic order. The
ordinal order-isomorphic to the set ax 3 ordered by the lexicographic order is
denoted by « - .

An ordinal k is a cardinal number if there is no ordinal a such that
|k| = |af, but o < k. Therefore all finite ordinals (i.e. natural numbers) are
cardinals, and w (also denoted in this context by ®g) is the first infinite cardinal.
The axiom of choice is equivalent to Zermelo Theorem, which states that every
set can be well-ordered. Therefore under the axiom of choice for every set X,
there exists a cardinal number k, which has the same cardinality as X (in
this case we write |X| = k). If k is a cardinal, then k* is a cardinal such that
there is no cardinal number A\ such that x < A < k*. A cardinal number A
such that there exists k with A = k* is called a successor cardinal. All the
other cardinal numbers are called limit cardinals. Obviously, every infinite
cardinal is a limit ordinal.

If A, B are sets, then the set of all functions f: A - B is denoted by B4,
and abusing the notation, I denote by x* the cardinal number of the same
cardinality as the set of all functions f: A - . The set of all subsets P(A) of
a set A is closely related to the set 24 of characteristic functions, i.e. Bc A
has its characteristic function yp: A - {0,1} defined in the following way:

(a) 0 ,ifa¢B
a)= .
XB 1 ,ifaeB

If s €24 te2B Ishall write sctif Ac B and t}A =s. For this reason I write
a~'[{1}] to describe a subset of A given by characteristic function a € 24.

G. Cantor in his well-known theorem (see [Cantor, 1892]) using diagonal
argument proved that for any set A, we have |A| < [P(A)|. This means that
for every cardinal k, k < 2%. A cardinal k is a strong limit cardinal if for all
cardinals A < k, 2} < k. If (P, <) is a partially order set, then the cofinality
cof({P,<)) is the least possible cardinality of a subset B of A such that for
any a € A, there exists b € B with a <b. If k is a cardinal we write simply
cofr for the cofinality of (k,<). If cofk = k, K is called a regular cardinal.
Otherwise, it is called singular. A cardinal x is weakly inaccessible if it is
an uncountable regular limit cardinal. A weakly inaccessible cardinal which is
a strong limit cardinal is said to be strongly inaccessible.

All the cardinals can be indexed by ordinal numbers in the sense that for
an ordinal number «, R, is the only cardinal such that

({\ < Kk:\ is an infinite cardninal}, <)
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is order-isomorphic to (a,<). Therefore, Xy = w, and ®; = R{ is the first
uncountable cardinal, and for any ordinal «, R,.1 = R}. Moreover, for a limit
ordinal @, R, = Uge, Rg. The cardinality of the set of real numbers |R| = 2«
is denoted by ¢. The cardinal number R, can also be denoted by w, when
considered as an ordinal.

If k, A are cardinals, then the cardinality of the set x x {0} u A x {1} will
be denoted by x + A, and k- A stands for the cardinality of x x A. Since every
cardinal is an ordinal number this abuses the notation. It should be known
from the context whether the above arithmetic operations are considered in
the ordinal or cardinal sense. For more detailed study of arithmetic of ordinal
and cardinal numbers, the reader is related to [Jech, 2006] or [Kunen, 2006].

A subset A € k is a club (closed unbounded set) if U(Ana) € A for
all limit ordinals « < k, and for all a < k, there exists f € A with a < 3 < k.
Notice that an intersection of fewer than x clubs is a club in k. A set S ¢k
is stationary in & if for every club A, Sn A # @. N'S,. denotes the ideal of
non-stationary sets in k.

Set theory quickly became axiomatized. The standard set of axioms is the
Zermelo-Fraenkel axioms (and the axiom of choice), denoted here by ZFC.
The big breakthrough in set theory was proving that some statements are
independent from this set of axioms. We say that a statement is consistent with
ZFC if there exists a model of ZFC in which this statement holds (assuming
that ZFC is consistent itself). A statement is independent from ZFC if it and
its negation are consistent with ZFC. The first and the most famous proof of
independence considered the continuum hypothesis (CH), which states that
¢ = Xy, and was first raised by Cantor, and included in the famous Hilbert’s
list of problems from 1900 ([Hilbert, 1900]). The proof of indepencence of
CH was completed by Cohen in [Cohen, 1963] and [Cohen, 1964]. This proof
introduced a method of proving independence of statements from ZFC called
forcing, which allowed to prove an independence from ZFC of many more
statements. The reader is referred to [Jech, 2006, [Jech, 1986] or [Kunen, 2006]
for an introduction to forcing methods.

In particular, many results presented in this thesis are consistency results.
Usually I achieve them by proving an implication from other statements which
are known to be consistent with ZFC. Apart from CH, I use generalized
continuum hypothesis (2% = k* for any cardinal x, GCH), Jesen’s diamond
and statements concerning cardinal coefficients (which will be introduced later
on).

Throughout this thesis I use standard set-theoretic notation. In particular,
A A B denotes the symmetric difference ((A\ B)u (B~ A)) between A and
B, domf denotes the domain of a function f, f}.X denotes the restriction of
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f to X cdomf. The image of a set A under function f is denoted by f[A],
and the preimage of B under f by f~'[B]. f~' denotes the inverse function
of f. (aa)a<e is a (transfinite) sequence of length . The cardinality of a set A
is denoted by |A|. The set of all functions A - B (i.e. the set of all sequences
of elements of B indexed by elements of A) is denoted by B4. [A]* is the
set of all subsets of A of cardinality x, and [A]<* is the set of all subsets of
A of cardinality less than x. Similarly, A<* denotes the set of all sequences
of length less than k. If s € A% then len(s) = a. If s is a sequence of length
a, then s~a is a sequence of length v+ 1 with s(a) = a. X xY is the set of
all pairs {(z,y):x € X,y € Y'}. The projection onto first (respectively, second)
coordinate is denoted m; (respectively, mo), m (x,y) = .

A partially ordered set (P, <) satisfies k-chain condition if every antichain
in P has cardinality less than k (A ¢ P is an antichain if for every a,b € A
there is no ¢ € P such that ¢ <a and c<b).

I also use standard topological notation. In particular, intA denotes the
interior of a set A, and clA denotes its closure. If A is a subset of a metric
space, then diamA denotes the diameter of A, i.e. the supremum of the distance
between two points of A. A function f is continuous if the preimage under
f of every open set is open. It is a homeomorphism if f is a continuous
bijection with continuous inverse f~!. Finally, f is measurable (respectively,
Lebesgue measurable) if every the preimage under f of every open set is
Borel (respectively, m-measurable), and f is a Borel isomorphism if it is
a measurable bijection with measurable inverse. A set is perfect if it is closed
and does not have any isolated points.

A collection of open sets U is an open cover of a set X if JU 2 X. Open
cover V € U is a subcover of U. If U,V are open covers of X, then V is
a refinement of I/ if for any V €V, there exists U € U such that V c U.

1.2 Set theory of the real line

Set theory of the real line deals with the set-theoretic properties of the reals.
Many of those properties can be considered also in the unit interval (which is
here denoted as I'), the Cantor space 2% or the Baire space w®.

1.2.1 The Cantor space

The Cantor space 2“ can be seen as a countable product of two-point discrete
spaces. Therefore, the basic closed open set in 2« (spaces with clopen base are
called zero-dimensional) is determined by a finite sequence w € 2. Tt is
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denoted by [w],
[w] ={f €2 flen(w) = w}.

<—2w

Figure 1.1: Basic set [s] in the Cantor space for s = 01.

If F is a set of partial functions w — 2, the expression [ F'] denotes

J{z e2*:xrdomf = f}.

feF

The Cantor space has a natural metric d defined in the following way:

1
d(l',y) = 2_n’

where n = min{k € w:z(n) # y(n)}, for x,y € 2¢ and = # y. Obviously,
d(z,y) =0 for z =y.

The Cantor space is also be treated as a vector space over Z,. In particular,
for A Bc2v let A+ B={t+s:te A seB}.

A set T'c 2<% is called a tree if for all t € T and s € t, we have s € T. A tree
T is pruned if for all t € T', there exists s € T with t ¢ s. If P is a closed set in 2%,
there is a pruned tree Tp € 2<“ such that the set of all infinite branches of Tp
(usually denoted by [Tp]) equals P. If T is a pruned tree, then [T'] is perfect
if and only if for any w € T, there exist w’,w” € T such that w € w’,w € w",
but w’ ¢ w” and w” ¢ w’. Such a tree is called a perfect tree.

If we?2n and a,b € w, with a < b < n, then by w[a,b] € 2b-¢*1 T denote
a finite sequence such that w[a,b](i) = w(a +1) for : <b—a. If (sg,s1,...5k)
is a finite sequence of natural numbers less than n, then w (sg, $1, ... s) € 2F+1
denotes a sequence such that w(sq, s1,...sx) (i) = w(s;) for any ¢ < k. Let
Qo ={te2v:3,cVmsmf(n) =0}, and Q; = {t € 2: 3., Vs f(n) = 1}.

A finite sequence w € Tp is called a branching point of a perfect set P
if w0,w"~1 € Tp. A branching point is on level i € w if there exist ¢ branching
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points below it. The set of all branching points of P on level 7 will be denoted
by Split,;(P) and
Split(P) = [ Split,(P).
Let
$i(P) = min{len(w):w € Split,;(P)}

and

S;(P) = max{len(w):w € Split,(P)}.
For i > 0, we say that w € Tp is on level ¢ in P (denoted by (p(w) = i) if there
exist v,t € Tp such that v ¢ w ¢ ¢, v € Split,_;(P),t € Split;(P). We say that
w € Tp is on level 0 if w € ¢ where ¢ € Split,(P) (see Figure [L.2). For w € Tp,
let [w]p =[w]n P.

Figure 1.2: Branching points in a tree marked in white. The numbers in the
labels of nodes are their levels.

Let P be a perfect set in 2¢ and hp:2¥ - P be the homeomorphism given
by the order isomorphism of 2<¢ and Split(P). We call this homeomorphism
the canonical homeomorphism of P (see Figure .

On 2¢ we consider the product measure, denoted here also by m, i.e.
the measure such that m([s]) = 1/2* for any s € 2¥, k € w. Notice that this is
the Haar measure in 2%, as it is invariant with respect to translations.

Finally, sometimes it seems convenient to use the lexicographical order <,
on 2¢ fora,be2¥ a < bifand onlyifa =bora(n) =0, b(n) =1 for n € w such
that for all m <n, a(m) = b(m). For a,be 2% let [a,b) = {x € 2*:a <jox T <jex b}
Moreover, for a € 2, let [a,00) = {x € 2¥:a <jex T}
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Figure 1.3: The order isomorphism of 2<“ and Split(P), which gives the canon-
ical homeomorphism hp:2¥ — P for an exemplary P.

1.2.2 The Baire space

The Baire space w is the countable product of discrete countable spaces.
Similarly as in the Cantor space sets of form [s] = {f € w*:s € f}, s € w¥
constitute a basis of its topology. Notice also that A ¢ w¥ is compact if and
only if there exists f € w® such that A is bounded by [, i.e. a(n) < f(n) for all
n € w. In particular, every compact set is meagre. Therefore K, € M, where
K, denotes the family of all countable unions of bounded sets. It is easy to
see that K, is the family of all sets which are eventually bounded.

In the products of the form w® and (w®)” we consider the partial orderings,
denoted by the same symbol <, given by z < y if z(s) < y(s) for z,y € w¥, s €S,
and ¢ < ¢ if ¢(t) < ¢(t) for ¢, € (wW¥)T, where ¢(t),(t) € w. We say that
a function 0: X — P from a set X into a partially ordered set P is cofinal if
for every p € P there exists z € X such that p < o(x).

Additionally, on w® we define the order of eventual domination, as
follows:

f<ge EImewVn>mf(n) < g(n)

One can also equip w¥ with a measure. I will use a measure m such that

len(w)-1 1
m([w]) = g POTOISE

where w € w<.
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1.2.3 Equivalences in set theory of the real line

In many considerations in set theory of the real line it makes no difference
which of the spaces: R, the unit interval, 2 or w® we take as the underly-
ing space. This is because, if XY are any two of those spaces, there exists
a homeomorphism f: X N\ Qx — Y \ Qy, where Qx,Q)y are countable, and
f[N]e N if and only if N e N, f[M] e M if and only if M € M. Indeed:

I—>R: Let f:I~{0,1} > R, with

To see that f[N]e N for N € N, notice that if N ¢ [z,z+1] with z € R,
then N e N if and only if f~'[N]eN.

29 - I: Let

n

1=0

Then f:2¢\ (Q,UQ;) — I\ @ such that

= 5 58

is the desired homeomorphism. Notice also that it preserves measure.
w¥ = 29 Let frw® - 2%\ @, be such that for w e wv,
flw)y=1...1°001...1°0"....
N—— N——
w(0) w(1)
Then f is a homeomorphism. Moreover, it is measure preserving.

In particular, this justifies using the same notation N for the ideals of null
sets in all of those spaces, and M for the ideals of meagre sets in all of those
spaces.

1.2.4 The duality between measure and category

One can observe a stunning duality between measure and category
(see [Bukovsky, 2011], [Oxtoby, 1971]). Many results on the category side can
be reformulated and proved on the measure side, and also the other way along.
This was brilliantly noticed in [Sierpinski, 1934b], and [Sierpiniski, 1934a]. Sier-
pinski discovered a principle which was later formulated in a stronger version
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by Erdés, and which partially explains this duality. Sierpinski-Erdés Duality
Theorem states that assuming CH, there exists f:R — R, which is one-to-one,
and f = f~! such that f[A] e N if and only if A € M. Therefore (under CH),
if P is a sentence constructed only out of the notion of null sets, meagre sets
and pure set theory, then P holds if and only if the sentence with swapped
notions of null and meagre sets holds. On the other hand, the above mapping
f cannot be a measurable function (see [Oxtoby, 1971]). This implies that the
Duality Theorem cannot be generalized to include the notion of measurability
and the property of Baire.

But surprisingly, one can formulate a number of theorems with those no-
tions which have their duals. Sometimes their proof are also very similar. But
this is not always the case. The proofs of Fubini’s Theorem, which states that
if A cRR? is of measure zero, then

{reR:{yeR:(x,y)e A} ¢ N} e N,

and the proof of Kuratowski-Ulam Theorem, which states the same for meagre
sets, are indeed far from identical (proofs of those theorems can be found, for
example in |[Oxtoby, 1971]). Furthermore, the duality may fail even more. For
example, the category analogue of Egorov’s Theorem (see below) is simply
false.

1.2.5 Cardinal coefficients

Another such examples are the results concerning the cardinal coefficients.
A collection Z of subsets of a set X is called a family of thin sets if
{z} €T for every x € X, X ¢ Z, and for every AeZ and Bc A, BeZ.
If 7 is a family of thin sets, let

add(Z) =min{|A; AcZTA|JA¢T},
cof(Z) =min {|Al: A S Z AV acrIpcaA € B},
cov(Z) =min {|A: AcZA|JA=X},
non(Z) =min{|AAc X AA¢T}.

Obviously, we are interested in the above coefficients regarding the ideals
N, and M. The two following cardinals also play an important role:

b = min{|Al: A € w*” A =3 e Vgeag <* [},

and
0 = min{l Al A S w¥ AV e Tyeaf € g},
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which are called the bounding and dominating number, respectively.
The most important result regarding the cardinal coefficients of N and M
is Bartoszyniski Theorem ([Bartoszynski, 1984]), which is yet another example
of the fail of the duality. It states that add(N') < add(M) and cof(M) <
cof(N). Taking into account other results due to Rothberger, Miller, Truss,
Fremlin, and Bartoszyniski, we receive the following (Table well-known
Cichon diagram (see [Bartoszynski and Judah, 1995] and [Bukovsky, 2011]).

cov(N) < non(M) < cof(M) < cof(N) < ¢
VI Vi
VI b < 0 VI
VI VI
®; < add(N) < add(M) < cov(M) < non(N)

Table 1.1: Cichon diagram.

In [Bartoszynski and Judah, 1995] one can find examples of models of ZFC
in which the above cardinal coefficients have desired values < Rs.
For further results in set theory of the real line the reader is referred to

[Bukovsky, 2011], [Bartoszynski and Judah, 1995] and [Cichon et al., 1995].

1.3 Special subsets of the real line

The theory of special subsets of the real line is concerned with sets which are
very small.

1.3.1 Special subsets related to measure and category

Among classes of special subsets of the real line, the classes of perfectly mea-
ger sets and universally null sets play an important role. A set is perfectly
meager if it is meager relative to any perfect set, here denoted by PM (the
concept first appeared in [Lusin, 1914]). A set is universally null if it is
null with respect to any possible finite diffused Borel measure, denoted here
by UN (this property was studied first in [Sierpinski and Marczewski, 1936]).
Those classes were considered to be dual (see [Miller, 1984]), though some
differences between them have been observed. For example, the class of uni-
versally null sets is closed under taking products (see [Miller, 1984]), but it is
consistent with ZFC that this is not the case for perfectly meager sets (see
[Pawlikowski, 1989] and |[Rectaw, 1991a]).

In [Zakrzewski, 2000], P. Zakrzewski proved that two other earlier defined
(see |Grzegorek, 1984] and |Grzegorek, 1980]) classes of sets, and smaller then
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PM, coincide and are dual to UN. Therefore, he proposed to call this class
the universally meagre sets (denoted by UM). A set A C 2% is universally
meagre if every Borel isomorphic image of A in 2¢ is meagre.

In the paper [Nowik et al., 1998], the authors introduced a notion of per-
fectly meager sets in the transitive sense (denoted here by PAM ), which turned
out to be stronger than the classic notion of perfectly meager sets. A set
X ¢ 2¢ is perfectly meagre in the transitive sense if for any perfect
set P, there exists an F,-set F' 2 X such that for any ¢, the set (F +t)n P
is a meager set relative to P. Further properties of PM' sets were inves-
tigated in [Nowik, 1996], [Nowik and Weiss, 2000a], [Nowik and Weiss, 2001]
and [Nowik and Weiss, 2000b], but still there are some open questions related
to the properties of this class. This notion was motivated by its relation to the
algebraic sums of sets belonging to different classes of small subsets of 2¢, and
by the obvious fact that a set X ¢ 2¢ is perfectly meagre if and only if for any
perfect set P, there exists an F,-set F'2 X such that F'n P is meagre in P.

A set A is called strongly null (strongly of measure zero) if for any se-
quence of positive ¢, > 0, there exists a sequence of open sets (4,), ., with
diamA,, < &, for n € w, and such that A ¢ U,,c, A,. I denote the class of such
sets by SAV. The idea was introduced for the first time in [Borel, 1919], and
Borel conjectured that all SA/ sets are countable. This hypothesis turned
out to be independent from ZFC (see [Laver, 1976]). It is easy to see that a set
A is strongly null if and only if for any sequence of positive €, > 0, there exists

a sequence of open sets (A,),. , with diamA, < ¢, for n € w, and such that

Ac ) U A.
mew n>m

Galvin, Mycielski and Solovay (in [Galvin et al., 1973]) proved that a set
A € SN (in 2¢) if and only if for any meagre set B, there exists t € 2 such
that An (B +t) = @. Therefore, one can consider a dual class of sets. A set
A is called strongly meagre (strongly first category, denoted by SM) if for
any null set B, there exists t € 2« such that An(B+1t) =@.

We shall say that a set L € 2¥ is a k-Lusin set if for any meagre set X,
|LnX| <k, but |L| > k. An R;-Lusin set is simply called a Lusin set. This
idea was introduced independently in [Lusin, 1914] and [Mahlo, 1913]. The
existence of a Lusin set is independent from ZFC. It is easy to see that under
CH such a set exists. Indeed, enumerate all closed nowhere dense sets and
inductively take a point form a complement of each such set distinct from all
the points chosen so far. The same can be easily done if cov(M) = cof(M) = &4
(see [Bukovsky, 2011]).

Analogously, an uncountable set S ¢ 2« is a Sierpinski set (introduced in
[Sierpinski, 1924]) if for any null set X, S n X is countable.
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The above classes can be seen as two sequences of decreasing families of
sets: for category and measure, as shown in the Table

category ‘ PM 2> UM 2 PM’ 2 SM
measure ‘ UN 2 SN

Sierpinski sets
Lusin sets

2
2

Table 1.2: Classes of special subsets of the real line.

Finally, a set A is called null-additive (A € M) if for any null set X, A+X
is null. A set A is called meagre-additive (A € M") if for any meagre set X,
A+ X is meagre (see e.g. [Weiss, 2009] and [Bartoszynski and Judah, 1995]).
Every null additive set is meagre additive which follows from the well-known
Shelah’s characterization of null-additive sets ([Shelah, 1995], see also
[Bartoszyniski and Judah, 1995)[Theorem 2.7.18(3)]). If Y e N™* and F:w - w
is any increasing function, then there exists a sequence (I, )ne, such that I,

2F(n),F(n+1)) '|[ | <n and
YeclUNYa,

kew n>k
where z € Y, if and only if z1[F(n),F(n + 1)) € I, (see Figure [L.4), and
the following characterization of meagre-additive sets. A set X ¢ M”
([Bartoszynski and Judah, 1995][Theorem 2.7.17]) if and only if for every in-
creasing f € w¥, there exists ¢ € w¥ and y € 2% such that for all x € X,
there exists m € w such that for every n > m, there exists k, € w with

g(n) < f(ky) < f(k,+1)<g(n+1) and such that
M f(kn), f(kn + 1)) =yt f(kn), f(kn +1)).

1.3.2 Families of perfect subsets of 2«

A perfect set P will be called a balanced perfect set if s;,.1(P) > S;(P) for
all 7 € w. This definition generalizes the notion of uniformly perfect set, which
can be found in [Brendle et al., 200§].

A perfect set P is uniformly perfect if for any ¢ € w, either 22 nTp C
Split(P) or 2¢ n Split(P) = @. If additionally, in a uniformly perfect set P,

Vo weTp (len(v) =len(w) = Vje{ojl}(w”j €eTp=>v"j¢ Tp)) ,

then P is called a Silver perfect set (see for example [Kysiak et al., 2007]).
A perfect set P c 2% is a Laver perfect set if there exists s € Tp such that
for all t € Tp, either t € s, or

{new:t“O...O AleTp}
——

n

= Ro.
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n+2
possibilities

n+1
possibilities

Figure 1.4: Shelah’s characterization of null-additive sets.

Similarly, a perfect set P c 2¢ is a Miller perfect set if for every s € Tp
there exists t € Tp such that s € ¢, and

{new:t"O...O “1ETP}
~—

n

= No.

A set A c 2% such that for any perfect set P there exists a perfect set () € P
such that An @ = @ is called an sp-set ([Marczewski, 1935]).

We say that a set A is a vg-set if for every Silver perfect set P, there exists
a Silver perfect set @) € P such that @ n A = @ (see [Kysiak et al., 2007]).

A set A c 27 is [g-set (respectively, mg-set) if for every Laver (respectively,
Miller) perfect set P, there exists a Laver (respectively, Miller) perfect set
@ ¢ P such that Q@ n A =g (see [Kysiak and Weiss, 2004]).

1.3.3 Other notions of special subsets

An open cover U of a set A is proper if A ¢U. From now on we assume that
all considered covers are proper.

An open cover U of a set A such that for any C € [A]<“ there exists U e U
such that C' c U, is called w-cover, and is called y-cover if

AclJ N Un.

new m2n

The family of all w-covers (respectively, y-covers) of A is denoted by 2(A)
(respectively, I'(A)). The family of all open covers of A is denoted by O(A).
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The underlying set is often omitted in this notation if it is clear from the
context.

Moreover, in Chapters |4 and [5| we consider in the generalized Cantor space
the analogues of the following classes of special subsets of the real line (or the
Cantor space) (see [Miller, 1984] and [Bukovsky, 2011]):

set concentrated on a set C, i.e. a set A such that A\~ U is countable
for every open U with C' € U. Notice that every set concentrated on
a countable set is SN ([Rothberger, 1939)]),

A-set, i.e. a set A such that every countable B ¢ A is a relative Gs-set
([Kuratowski, 1933]). Every A-set is perfectly meagre,

N-set, i.e. aset A such that for every countable B, AuB is a A-set. Obviously,
every N-set is a A-set,

o-set, i.e. a set A such that any its relative F,-subset is also a relative G-set
([Marczewski, 1930]),

Q-set, i.e. a set A such that every its subset is a relative F-set
([Fleissner, 1978]). Every Q-set is a o-set,

porous set, i.e. a set A such that por(x, A) >0 for all z € A, where

sup{h > 0:3yer[y —h,y+h] S [z -r,x+7r]|\ A}

por(z, A) = limsup
r—0%t r

(see [Zajicek, 1987]),

~v-set i.e. a set A such that if for every open w-cover U, there exists V ¢ U
which is a y-cover ([Gerlits and Nagy, 1982]),

SRN, ie. a set Y such that for every Borel set H C 2¢ x 2 such that
H, ={y e 2*:(x,y) € H} is null for any = € 2, U,y H, is null as well
([Bartoszynski and Judah, 1994]),

Ramsey null set, i.e a set A such that for any n € w, s € 2" and S € [w\n]“,
there exists S’ € [S]¥ such that [s,5"]n A =@, where if s € 2", n e w and
S e [w~n]v, then
[s.8]={ze2:s [{1}] ca ' [{1}] ¢ s [{1}]u S A |27 [{1}] n §] = w}
(see [Plewik, 1980]),
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T’-set, i.e. aset A such that there exists a sequence (l,,)ne, € w* such that for
every increasing sequence (d,, )ne, € w* with dg = 0, there exists a sequence
(€n)new € W, and

H, € [zdenmden]élen |

for all n € w such that
Ac {.Z' € 2% Vn"LEo.JEIn>m-73r(den+l N den) € Hn}

(see [Nowik and Weiss, 2002] and also introduced in different context
in [Repicky, 1997]).

1.3.4 Selection principles

If A and B are families of covers of a topological space X, then X has S;(A, B)
principle if for every sequence (U, )ne, € AY, there exists U = {U,:n € w} with
U, € U,, for all n € w such that U € B. X has U, (A, B) principle if for every
sequence (U, )new € A¥ such that for every n € w if W c U, is finite, then W is
not a cover, there exists (U, )ne, such that U, € [U]<, and {UU,:n € w} € B.
The covering principles were first systematically studied in [Scheepers, 1996].

It can be proven that a set X is a y-set if and only if X satisfies S1(£,T").

A set X is said to have the Menger property ([Menger, 1924]) if it satis-
fies U, (O, Q). It has the Hurewicz property (|[Hurewicz, 1927)) if it satisfies
Ucwo(O,T). Finally, it has the Rothberger property,([Rothberger, 1938]) if
it satisfies S1(0, O).

1.3.5 The Lusin function

The Lusin function L:w¥ — 2¥ is a continuous one-to-one function with
measurable inverse such that if L is a Lusin set, then £[L] is perfectly meager.
It was defined in [Lusin, 1933], and extensively described in [Sierpinski, 1934a].
To get the Lusin function we construct a system (Py:s € w<) of perfect sets
such that for s € w< and n,m € w:

(a)
diamP; < m,
(b) Py, € P, is nowhere dense in P,

(¢) Ugew P~k is dense in P,

(d) if n # m, then Py, N Psp, = @.

31



Next, for z € w¥, we set L(x) to be the only point of N,e, Pepn- One can
prove that £ is a continuous and one-to-one function. Furthermore, if () € 2%
is a perfect set, then

ﬁ_l[U{PS: P, is nowhere dense in Q}]

contains an open dense set (see also [Miller, 1984]). Moreover, it is easy to
prove that £ is a function of the first Baire class.

1.4 Convergence and ideals

1.4.1 Convergence of a sequence of real functions and
the Egorov’s Theorem

Recall that a sequence (f,)ne, of functions I — I is pointwise convergent
(fu— f)onaset AcT toa function f:I — I if for any z € A, lim,, o, f(2) =
f(x). In other words, if

VrEAv5>03newvm2n|fm(x) - f(l’)| <E.

If
Ves0Inew Vimzn Vaea | fm (7) = f(2)] <€,
we say that the sequence (f, ), converges uniformly on a set Ac I to f
(fuz 1)

The important part of considerations in this thesis is related to the well-
known Egorov’s Theorem. Let us recall that the classic Egorov’s Theorem
(originally proved in [Egorov, 1911], see also e.g. [Oxtoby, 1971]) states that
given a sequence of Lebesgue measurable functions (we restrict our attention
to the real functions I — I) which is pointwise convergent on I and ¢ > 0,
one can find a measurable set A ¢ I with m(A) > 1 -¢ such that the sequence
converges uniformly on A.

This theorem plays a crucial role in this thesis, therefore I recall its proof
(see e.g. [Oxtoby, 1971]). Let (fn)new be a sequence of measurable functions
I — I such that f, > f on I, and let € > 0. Let

Epp - {x e I: 3l fi() = f(2)] 2 2—116}

Notice that £, ;, is a measurable set for every n, k € w. Moreover, E,.1 % € E, 1,
for any n,k € w, and since f, — f, we get that N,e, Enr = @, for all k € w.
Therefore, for each k € w, there exists ny € w such that

g
m (Emwk) < W
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Let
B = U Enk,ka

kew

and A =1~ B. Then |f;(x) - f(z)] < 1/2*, for any i > ng, and z € A, because
AcINE, i Thus, f, 3 fon A, and m(A) > 1-¢, because m(B) <e.
There are also other notions of convergence of sequence of functions. A se-
quence ( f,)new of functions I — I converges quasi-normally (introduced in
[Csédszar and Laczkovich, 1975] and again in [Bukovskd, 1991], see also

[Bukovsky, 2011]) on a set A c I (f, AR f) to a function f:I — I if there
exists a sequence (&;)ew € (0, 00)* such that ¢; — 0, and

vxeAHnewvm2n|fm($) - f(ﬂf)| < Em-

1.4.2 Ideals and convergence with respect to an ideal

We can also define a notion of convergence of a sequence of functions with
respect to a given ideal I on w. An ideal I on a set X is a collection of subsets
of X such that

a) if Ael, and B< A, then Bel,
b) if A,Bel, then AuBel,
c) X¢l

Given an ideal I on w and a sequence (2, )ne € R¥ we say that the sequence
converges to a point x € R with respect to I (x, —; x) if for every € > 0,

{newr,-—xz|>c}el.

This idea was introduced in [Katétov, 1968], see also [Kostyrko et al., 2000],
and [Nurray and Ruckle, 2000].

Notice that, the classical convergence is just the convergence with respect
to the ideal Fin = [w]<.

There is also an another way of introducing a notion of convergence with
respect to an ideal I on w. A sequence (,)ne, € R¥ [*-converges to a point
r € R (z, -+ x) if there exists C' € I such that the sequence ()ne(wnc)
converges to z in the usual sense (see [Kostyrko et al., 2000]).

An ideal is admissible if it contains all the singletons. I will assume this
about all the ideals discussed in this thesis.

An ideal [ is countably generated (satisfies the chain condition) if there
exists a sequence (C;),., of elements of I such that C; ¢ C;; for all i € w and
for every A € I, there exists k € w such that A ¢ C}.
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If ~ and & are two notions of convergence, then we say that a sequence of
functions converges with respect to ~ u @ if it converges with respect to ~ or
with respect to &.

If Acw with A #w, then (A) =P(A) is an ideal on w.

If I,J are ideals on w, then I'vJ={AuB:AelABeJ}is the least ideal
containing I and J. If 7 is a family of ideals on w, we denote by \/Z the least
ideal containing JZ.

Given an ideal I on w and a sequence (/,),,, of ideals of w, we can consider
an ideal I-T],., I, on w? called the I-product of the sequence of ideals
(In),,, and define it in the following way. For any A ¢ w?,

AEI—HInc»{new:A(n)¢]n}eI,

new

where A(,) = {m e w:(n,m) € A} (see [Mrozek, 2010]). If I,, = J for any n € w,
we usually denote -], In as I x J.

The ideal Y, I, (called the sum of a sequence of ideals (/) .. ),
where (/,,),., is a sequence of ideals of w, is an ideal on w x w defined in the
following way. For any A ¢ w?,

Ace Z In = VnewA(n) € In.

new

Finally, given an ideal I on w and a sequence (I,,), . of ideals on w, we

consider an ideal

new

IHim, I, ={Acw:{newA¢I,} eI}

—new" N

on w called the /-limit of the sequence of ideals (I,),, .

Fix a bijection b:w? - w and a bijection ag:w - S\ {0} for any limit 5 < wy.
The ideals Fin®, a < wy, are defined inductively (see [Mrozek, 2010]) in the
following way. Let Fin' = Fin be the ideal of finite subsets of w. We set

Fin®*! = {b[A]: A € Fin x Fin“},
and for limit 8 < wy, let
Fin” = {b[A]: AeFin-] Finaﬁ(i)} .

An ideal I is analytic if {xc:C € I'} is analytic as a subset of 2.

Finally, an ideal [ is a P-ideal if for any sequence (A;);c, € I« of mutually
disjoint sets, there exists a sequence (B;), such that A; A B; is finite for all
tew, and Use, Bi € 1.
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By the well-known result of Solecki ([Solecki, 1999]) if I is an analytic
P-ideal, then I = Exh(¢), where ¢ is a lower semicontinuous submea-
sure. A function ¢:2% — [0,00] is a lower semicontinuous submeasure (see
also [Mrozek, 2009]) if it satisfies the following conditions:

(1) ¢(2) =0,
(2) #(A) <Pp(AuB)<Pp(A)+¢(B), for any A, B € w,
(3) ¢(A) =lim, ., p(Ann), for any A cw,

and,
Exh(¢) ={Ac w: lim d(ANn)=0}.

We also consider the following partial ordering of ideals on w:

Rudin-Keisler partial ordering, [ <zx J if there exists g:w — w such that
I={Acuwg[A]eJ},

Rudin-Blass partial ordering, I <gp J if there exists g:w — w which is

finite-to-one such that [ = {Acw:g™1[A] € J}.

1.4.3 Convergence of a sequence of functions with re-
spect to an ideal

Analogously to the classical convergence, we get different notions of conver-
gence of a sequence (f,,)ne, of functions I — I with respect to an ideal I on w,
which were introduced in [Balcerzak et al., 2007] and [Das and Chandra, 2013]:

pointwise ideal, f, —; f if and only if

VesoVaen {n € w:|fu(a) - f(2)| 2 €} € I,

N
quasi-normal ideal, f, AR 1 f if and only if there exists a sequence (&;);e, €
(0, 00)« such that &; »; 0 and

V;reA {n € w: |fn($) - f($)| 2 5n} € [7
uniform ideal, f, =; f if and only if
V€>OE|BEIV:EEA {n € w: |fn(x) - f(SC)| 2 8} < B.
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The quasi-normal convergence with respect to an ideal [ is also sometimes
called I-equal convergence.

Yet another idea is to use the dual filter (F'= {w~\ C:C € I}) to define con-
vergence notions. In this approach we get the following notions of convergence
of a sequence (f,)new Of functions I — I on A c I (see [Das et al., 2014]):

I*-pointwise, f, —»+ f if and only if for all z € A, there exists M = {m,:i €
w} Cw, myy1 >m; for i € w such that w~ M e I and f,,.(z) - f(z),

N
I*-quasi-normal, f, 9—91* f if and only if there exists M = {m;:i € w} C w,

N
m,.1 > m; for 7 € w such that w~ M €I and fmiQ—>fonA,

I*-uniform, f, =2« f if and only if there exists M = {m;:i e w} Cw, m;y1 > m;
for ¢ e w such that w~ M eI and f,,, = f on A.

The above notions can be further generalized. Let J ¢ I be ideals. If Ac T
and (f,,)new is a sequence of functions I — I, we have the following notions of
convergence (see [Macaj and Sleziak, 2000], [Repicky, 2017]).

(J,I)-pointwise, f, —»;; f if and only if for all = € A, there exists N € I such
that for all € > 0,

{new:fu(z) - f(x)| 2} e Jv(N),

(J,I)-quasi-normal, f, L g1 f if and only if there exists NV € I and a se-
quence (£, )ne, such that e, = (ny 0, and for all x € A,

{new:|f(x) - f(x)|>e,} € JV(N).

(J,I)-uniform, f, =3;; f if and only if there exists N € I and f, =, vy [ on
A.

: QN QN
Notice that —;=—r, —> ==, and 37,;=3;. Moreover, —pin 1=,

QN QN
——pin, 1=+, and Spin =37+

To avoid confusion notice also that the above notions are different from the
notion of (J-1I)-quasi-normal convergence which is considered
in [Filipéw and Staniszewski, 2014] and [Filipéw and Staniszewski, 2015].

Therefore we have the following implications between notions of conver-
gence for ideals J c .

—Fin = —>I* = —>JI = -7

f f N l
QN QN QN QN
—Fin = T [x = T = T

f f f f

SBPin = 3B = 3y = 3
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Let I be an analytic P-ideal. Fix a lower continuous submeasure ¢ such that
I = Exh(¢). We have the following notions of convergence (see [Mrozek, 2009])
of a sequence (fy,)new of functions I — I on a set A c I:

pointwise ideal, f,, —»; f if and only if

VooV eeaTnewd({n € wi|fu(z) = f(2)| 2 €} N k) <&,
equi-ideal, f, - f if and only if

Ves0Tkew Vaeap({n e wi|fu(x) - (@) 2 e} N k) <,

uniform ideal, f, =3;0 if and only if
Ve>03kew¢ ({n € wisup |fn(x) - f(l’)| 2 6} N k) <E.
reA

It was proved in [Mrozek, 2009] that these notions of convergence are in-
dependent from the submeasure representation of I. Moreover, the pointwise
ideal and uniform ideal convergences can be expressed without the notion of
a submeasure and they coincide with the notions of ideal convergences defined
above for any ideal I on w. Obviously, f, =2;0= f, »>; 0= f, >, 0.

1.4.4 Generalizations of Egorov’s Theorem

Given two notions of convergence with respect to an ideal, we can ask whether
the classic Egorov’s Theorem holds for those two notions of convergence in the
sense of whether the weaker convergence implies the stronger convergence on
a subset of arbitrarily large measure. The answer may often be negative as
in the case of uniform and pointwise convergence for many analytic P-ideals
(see [Mrozek, 2009, Theorem 3.4]). But one can also consider other types
of convergence, e.g. equi-ideal convergence. And, for example, in the case of
analytic P-ideal so called weak Egorov’s Theorem for ideals (between equi-ideal
and pointwise ideal convergence) was proved by N. Mrozek (see [Mrozek, 2009,
Theorem 3.1]).

The measuability assumption in this theorem seem to play an important
role. Actually, it is interesting whether one can drop the assumption on mea-
surability of the functions in the classic Egorov’s Theorem. A statement which
says that given any sequence of functions I — I which is pointwise convergent
and € > 0, there exists a set A ¢ I with m*(A) > 1 - ¢ such that the sequence
converges uniformly on A, is called the generalized Egorov’s statement.
T. Weiss in his manuscript (see [Weiss, 2004]) proved that it is independent
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from ZFC, and this fact was used in [Di Biase et al., 2007]. Then R. Pinciroli
studied the method of T. Weiss more systematically (see [Pinciroli, 2006]). For
example, he related it to cardinal coefficients: non(N'), b and 9. In particular,
he proved that non(N') < b implies that the generalized Egorov’s statement
holds, but if, for example, non(AN') =0 = ¢, then it fails.

1.4.5 Special subsets related to the notion of conver-
gence

One can define notions of special subsets related to convergence of sequences
functions (introduced in [Bukovsky et al., 1991], see also
[Bukovsky, 2011][Chapter 8.3]). In this thesis we consider generalizations of
following notions:

QN-set, i.e. a set A ¢ I such that if (f, ), IS a sequence of continuous
N
functions A — I such that f, - 0 on A, then f, 2% 0 on A,

weak QN-set (WQN-set), i.e. aset A C I such that if (f,),e. iS a sequence
of continuous functions A — I such that f,, - 0 on A, then there exists

. . N
an increasing sequence (ky, )neo € wW¥ such that fy, 2N 0 on A,

mQN-set, i.e. a set A ¢ I such that if (f, ) is @ sequence of continuous
functions A — I such that f,, > 0on A, and for all z € A, f,,1(z) < fu(x)

for all n e w, then f, “% 0 on A.

Such properties of a set A can be translated to covering properties of A
and properties of sequences in C,(A) (the space of continuous real functions
over A with the topology of pointwise convergence), e.g. A is a QN-set if and
only if for every sequence of y-covers (Uy,:n € w), there exist finite sets V, U,
such that Upe, (U N V) is a y-cover. On the other hand, the above property of
A holds if and only if for any x € C,(A) and any sequence ((xn,m)mew)new such
that for all n € w, limy, o Tpm = =, there exists a sequence (y,),.. such that
im0 Ym = = and for all n € w, {x, n:m € w} < {y,:m € N}, where X c* Y
means that all but finite number of elements of X are in Y. For more details,
see e.g. [Bukovsky, 2011].

Analogous notions for ideal convergence of real functions can also be de-
fined. They were studied in [Das and Chandra, 2013], [Supina, 2016] and
[Chandra, 2016].
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1.5 Introducing the generalized Cantor space
2/<L

In this thesis I consider the generalized Cantor space 2% for an infinite cardinal
k > w and study special subsets of this space. In the recent years the theory
of the generalized Cantor and Baire spaces was extensively developed (see, e.g.
[Liicke et al., 2016, [Friedman et al., 2014], [Friedman and Laguzzi, 2014],
[Laguzzi, 2012], [Laguzzi, 2015], [Shelah, 2012], [Shelah and Cohen, 2016/,
[Friedman, 2010], [Friedman, 2013], [Friedman, 2014] and many other). An
important part of the research in this subject is an attempt to transfer the
results in set theory of the real line to those spaces (the list of open questions
can be found in [Laguzzi et al., 2016]). Despite the rapid development in this
theory, the author is not aware of any significant research in the subject of
special subsets in 2%. Known results are related mainly to the ideal of strongly
null sets (see [Halko, 1996] and [Halko and Shelah, 2001]).

Throughout this thesis, unless it is stated otherwise, I assume that x is an
uncountable regular cardinal number and x> w.

1.5.1 Preliminaries

We consider the space 2%, called k-Cantor space (or the generalized Can-
tor space), endowed with so called bounded topology with basis {[x]: 2 € 2<¢},
where for x € 2<%,

[z] ={f €2" fitdomx = x}.

If we additionally assume that x<¢ = k, this basis has cardinality . This
assumption proves to be very convenient when considering the generalized
Cantor space, and is assumed throughout this thesis, unless stated otherwise
(see e.g. [Friedman et al., 2014]).

The space 2¢ will also be treated as a vector space over Zs. In particular,
for A/B c 2% let A+ B = {t+steAse B}. Let 0¢€ 2% be such that
0(a) =0 for all a < &, let 1 € 2% be such that 1(«) =1 for all « < k, and let
Q = {ZL’ €2 3a<mva<ﬁ<mx(6) = 0}

Notice that if x € 2%, with a < k, then

2N [z] = U [=18(z(B) + 1)].

B<a

So, 2%\ [x] is also open. Therefore, the basis defined above consists of clopen
sets. Notice also that an intersection of less than x of basic sets is a basic set
or the empty set. Therefore, an intersection of less than k open sets is still
open. Notice also that there are 2% closed sets in this space.
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Additionally, under the assumption x<* = k, there exists a family F of
subsets of x such that |F| = 2% and for all A,B e F, |[AnB| <k if A+ B.

Indeed, let b:2<* — Kk be a bijection. Then
F={b[{zrtaza<k}]:xe2"}

is such a family.

A T} topological space is said to be k-additive if for any « < k, an intersec-
tion of an a-sequence of open subsets of this space is open. Various properties
of k-additive spaces were considered by R. Sikorski in [Sikorski, 1950]. The
generalized Cantor space is an example of a k-additive space. It is also easy to
see that every r-additive topological space X with clopen basis of cardinality
K, is homeomorphic to a subset of 2%.

A set T ¢ 2<% will be called a tree if for all ¢t € T and a < len(t), tta €T as
well. A branch in a tree is a maximal chain in it. For a tree 7', let

[T].={re2"VpxtaeT}.

It is easy to see that A is closed if and only if A = [T'], for some tree T' C 2<~.
Indeed, if A =[T], and T is a tree, then if x ¢ A, there exists a < x such that
xta ¢ T. Therefore [21a] € 2%\ A, so A is closed. On the other hand, if A is
closed, let T'= {zta:x € A,a < k}. Then, if a € 2%, and alta € T for all a < &,
we have that a € A, since A is closed. A tree T' € 2<* such that A = [T], is
denoted by T'4.

A node s € T € 2<% will be called a branching point of 7" if s70,s°1 € T.
The set of all branching points of a tree T is denoted by Split(7"). For « < &,
t € Split, (7T') if ({s ¢ t:s € Split(7) }, <) is order isomorphic with a.

The family of xk-Borel sets is the smallest family of subsets of 2¢ containing
all open sets and closed under complementation, and under taking intersections
of size k. The family of such sets is denoted here by B,. A function f:2f — 2%
is k-measurable if for every s € 2<% f~1[[s]] € Bs.

We say that a set is k-meagre if it is a union of at most £ nowhere dense
(in the bounded topology) sets. Notice also that the generalization of theBaire
category  theorem  holds, mnamely 2% is not k-meagre (see
[Sikorski, 1950, Theorem xv]). The family of all k-meagre sets in 2~ is denoted
by M.

Notice also that if (z4)a<s € (2%)" is a sequence of points in 2% such that
for all £ < K, there exists d¢ < k such that for all 0 < o, 8 < K, 2o 1§ = 251€,
then there exists € 2% which is a (topological) limit of (z4)a< (i-e. for every
open set U with x € U, there exists £ < k such that for all £ < a < k, z, € U).
Indeed, take

T = Ul};s rE.

&<k
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Obviously, if C' ¢ 2% is closed, and (x4 )a<x € (27)" is a sequence of points of
C' with limit z € 2%, then z € C' as well. Therefore, if (Cy)aerx 1S a sequence of
non-empty closed sets such that Cz € C,, when a < 8 < k such that there exists
an increasing sequence (&, )aex € K% and (Sqa)aes € (2<%)% such that C, € [s,4]
and s, € 2%, then there exists x € 2% such that

) Ca = {x}.

a<Kk

Indeed, let (z4)a<x € (27)% be any sequence of points such that z, € C,, for
any « € k, then there exists a limit of this sequence x. But x € C, for any
a < K, because (Tg)a<p<x 1S a sequence of points in C,.

Obviously, spaces 2% x 2% and 2% are homeomorphic, and the canonical
homeomorphism between them is given by the canonical well-ordering of 2 x &,
g:2X K= K.

1.5.2 Cardinal coefficients in 2¢

A statement 2% = k* is the Continuum Hypothesis for x and denoted by
CH..

Recall that ¢.(E) for E ¢ k is the following principle: there exists a se-
quence (S, )acr such that S, € « for all a € E, and the set

{ae E: X na=2_8,}

is stationary subset of k for every X ¢ k (see e.g. [Jech, 2006][Chapter 23]).
The principle ¢, (k) is simply denoted by ¢, (and called the diamond prin-
ciple for k).

If f,g € k®, then we write f <* g if there exists a < k such that for all
B < kif B> a, then f(B) < g(8). In this case we say that f is eventually
dominated by g.

Analogously, as in the case of w¥ one can define cardinals related to the
ordering <*. The two following cardinals also play an important role:

b, = min{|A|: A € K" A =T fenVgeag <* [},

and
0, =min{|Al} A S K" AV peunTgeaf < g},

which are called the bounding and dominating number for «, respectively.
Obviously, k < b, <0, < 2.
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1.5.3 k-Compactness

Not all the results of theory of the real line can be easily generalized to the case
of 2¢. One of the main obstacles is the notion of compactness. We shall say
that a topological space X is k-compact (or x-Lindelof) if every open cover
of X has a subcover of cardinality less than x (see [Monk and Scott, 1964],
[Hung and Negrepontis, 1973]). Obviously, the Cantor space 2¢ is w-compact
(i.e. compact in the traditional sense). But it is not always the case that
2% is k-compact. Recall that a cardinal number k is weakly compact if it is
uncountable and for every two-colour colouring of the set of all two-element
subsets of k, there exists a set H C k of cardinality x, which is homogeneous
(every two-element subset of H have the same colour in the considered colour-
ing) (see [Jech, 2006]). Recall that every weakly compact cardinal is strongly
inaccessible. Actually, the generalized Cantor space 2% is k-compact if and
only if x is a weakly compact cardinal (see [Monk and Scott, 1964]).

And there is even more to that. If x is not weakly compact, then all
reasonable x-additive spaces are homeomorphic. Precisely, if x is not weakly
compact, then every completely regular x-additive topological space X without
isolated points such that there exists a family of open sets B in X such that:

(1) the family of all intersections of less than  sets from B is a basis of the
topology of X,

(2) if C ¢ B is such that for any n € w and any Cy,C,...C, €C, Ny Ch #+ @,
then NC # @,

(3) |B| <2,
(4) B =Ua<x Ba, where for any a < k, B, is a partition of X into open sets,

is homeomorphic to 2¢ (see [Hung and Negrepontis, 1974, Theorem 2.3] and
[Hung, 1972]). On the other hand, if x is weakly compact, then a completely
regular k-additive space X without isolated points is homeomorphic to 2~ if
and only if there exists a family of open sets B in X satisfying conditions
(1)-(3) and also:

(4) B = Uqex Ba, where for any a < k, B, is a partition of X into open sets,
and |B,| < k.

I will refer to the above theorem as the Hung-Negrepontis characteriza-
tion. In particular, the generalized Cantor space 2 and the generalized Baire
spaces k* are homeomorphic if and only if x is not a weakly compact cardinal.

Also notice that every k-additive regular space is zero-dimensional (see
[Sikorski, 1950]). Indeed, if (Gy),., is a sequence of open sets such that
clG.1 € G, for all n € w, then N, G is a clopen set.
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1.5.4 Perfect sets in 2%

A set P c 2% is a perfect set if it is closed and has no isolated points. A tree
T c 2<r is perfect if for any t € T', there exists s € T' such that ¢ ¢ s and
s € Split(T"). Notice that a set P ¢ 2% is perfect if and only if Tp is a perfect
tree.

A perfect tree T will be called k-perfect if for every limit 8 < k, and ¢ € 27
such that tta € T, we have t € T'. Notice that every k-perfect tree is order-
isomorphic with 2<¢. A set P ¢ 2% is k-perfect if P = [T'], for a k-perfect tree
T. Obviously, every x-perfect set is perfect. On the other hand, the converse
does not hold.

Notice that if x € [T]., and T is a k-perfect tree, then for all a < &,
{x18:8 <k} nSplit, (T) + @.

For example if s € 2¢ is such that s(n) =0 for all n € w, then 27\ [s] is a
perfect set but is not x-perfect.

Another major difference between 2% and 2% is the perfect set property
of analytic set. In 2 every uncountable analytic set contains a perfect set.
On the other hand, the generalization of this theorem for 2% may not be true
even for closed sets. There may even exist a perfect set which do not contain
a k-perfect set. Recall that a tree T' € 2<F is a k-Kurepa tree if:

(1) [[T]ul> 5,
(2) if a is uncountable, then |T'n 22| < |al.

If T is a k-Kurepa tree, then [T'], is an example of a closed set of cardinal-
ity bigger than k, with no k-perfect subsets (see e.g. [Laguzzi et al., 2016,
Friedman, 2010]).

Fortunately, one can see that every k-comeagre set contains a k-perfect set.
Indeed, if G = Un<r Go with G, nowhere dense, we choose by induction () o<«
such that t; € 2<% and for s,s’ € 2<%, 5 ¢ s’ if and only if t, ¢ ty. Indeed, let
ty be such that [tz] NGy = @. Then, given t,, s € 2%, let ¢/ 2 t, be such that
[t] N Gas1 = @. Set tgg =170 and tgy = 1. For limit 8 < k, and s € 27, let
tL = Ua<pgtsta. Let ts 21, be such that [t[] n Gg = @. Finally, let

T = J{te2":tct;se2.

a<kK

Obviously, T is a k-perfect tree, so P =[T], is a k-perfect subset of 2% \ G.
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Chapter 2

Special subsets in 2¥: perfectly
null sets

In this chapter we study classes of special subsets of the Cantor space 2¢ related
to measure and category. The theory of special subsets of the real line was in-
troduced in Section[1.3] and is described in [Miller, 1984] and [Bukovsky, 2011].
We use the notation and notions related to the Cantor space 2% defined in sec-
tion [I.2] Questions considered in this chapter arise mainly by applying the
principle of duality between measure and category to some known notions and
their properties. Most of the results presented here have been published in
[Korch and Weiss, 2016].

Consider the notions of special subsets in 2« related to measure and cate-
gory. Table represents those notions and the inclusions between them.

category ‘ PM 2> UM 2 PM’ 2 SM

measure ‘ UN SN

Table 2.1: Classes of special subsets of the real line.

The classes PM and PM’ were left without a counterpart, and in this
chapter we introduce two new classes of special subsets of the real line: the
class of perfectly null sets and the class of sets which are perfectly null in the
transitive sense. These classes may play the role of duals to the corresponding
classes on the category side. We state the main problem of whether there
exists a perfectly null set which is not universally null, which remains open.
Nevertheless, pursuing this problem we consider some simpler classes and their
category counterparts.

45



2.1 Measure on a perfect subset of 2

We start by defining a canonical measure on a perfect set P ¢ 2¥. Let Ac P
be such that hp'[A] is measurable in 2@, where hp:2¥ — P is the canonical
homeomorphism on P. We define

pp(A) = m(hp [A]).

Measure pp will be called the canonical measure on P. A set A ¢ P such
that pp(A) = 0 will be called P-null, a set measurable with regard to pp will be
called P-measurable. Sometimes measure pup will be considered as a measure
on the whole 2« by setting up(A) = up(An P) for A € 2% such that An P is
P-measurable. On P one can define the outer measure up(A) = m*(hp'[A]).

The same idea of the canonical measure on a perfect set was used in
[Burke and Miller, 2005].

Now, we prove some simple properties of P-null sets.

Proposition 2.1 ([Korch and Weiss, 2016]). If Q, P € 2% are perfect sets such
that Q € P, and A < Q, then up(A) < ug(A). In particular, every Q-null set
AcQ is also P-null.

Proof: Notice that if w € Tp is on level i in P, then up([w]p) = 1/2¢. If
() € P is perfect, then Ty ¢ Tp, and therefore if w € Ty, then lg(w) < Ip(w),

so pig([wlq) > pp([w]p). O

Proposition 2.2 ([Korch and Weiss, 2016]). If Q, P € 2% are perfect sets such
that QQ € P, and A is a Q-measurable subset of Q), then it is P-measurable.

Proof: If A is ()-measurable, there exists a Borel set B € 2 such that
Bn@QcAand ug(ANB)=0,s0 up(A~B)=0. Let B'’=BnQ. B’ is Borel,
pup(ANB")=pup(ANB)=0and B’ c A. O
Corollary 2.3 ([Korch and Weiss, 2016]). If P € 2¥ is perfect, and @, < P
for new are perfect sets such that

/ULP(LnJQn) =1

and A € P s such that for any n € w, AnQ, is Q,-measurable, then A is
P-measurable and

ip(A) < Y 16, (AN Q).

new

In particular, if for allnew, AnQ, is Q,-null, then A is P-null.

We will also need the following lemma.
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Lemma 2.4 ([Korch and Weiss, 2016]). Let P €2 be a perfect set, k € w and
X € 2% be such that for all t € P, there exist infinitely many n € w such that
there is w € 28 with [ttn~w]p € P~ X. Then up(X) =0.

Proof: Notice that if £ =0, then X n P = &, so we can assume that k > 0.
We prove by induction that for any m € w, there exists a finite set S,, ¢ Tp
such that

XnPc U [8]13,

s€SH

5 L (22 -1\"
o5 2lp(s) ~ 9ok .

Let Sy = {@}. Given S,,, for each s € S, and each ¢ € P such that s ct, we
can find s, € Tp such that s C s,; €t and ws, € 2F with [ss; "ws]p € P~ X.

Therefore, since [s]p is compact, we can find a finite set A; € P such that
[s]p = Usea.[Sst]p and [ssi]p N [ssp]p =@ if t,t' € As and t #t'. Let

and

Sy = {Ss,fwis €S, AteA;nwe2kN {ws,t}} NTp.

We have that
XnPc U [8]13.

s€Sm+1

Notice also that for s € S,,,

>l 1
teAs 2lp(se) — 2lp()”

Moreover, if t € A, then

1 < 2k —1 1
Z 2[}:(35715 "w) - 2k‘ ) 2[}3(85715) :

we2k\{ws ¢t}

Therefore,
1 21 1 2k~ 1\
Z NOE k'Zl()g( k) ’
S€ESm+1 2tp(s 2 s€Sm 2tp(s 2
which concludes the induction argument.
Thus,
1 m
pp(X) < (1 - ?)

for any m € w, and so pp(X) =0. m
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2.2 Perfectly null sets

2.2.1 The definition and basic properties

We shall say that A ¢ 2¥ is perfectly null if it is P-null for any perfect set
P c 2%, The class of perfectly null sets will be denoted by PA/.
We prove some basic properties of the above class of sets.

Proposition 2.5 ([Korch and Weiss, 2016]). The following conditions are equiv-
alent for a set A c2%:

(1) A is perfectly null,
(2) for every perfect P 2%, An P is P-measurable, but P~ A # &,

(3) there exists n € w such that for every w € 2" and every perfect P ¢ [w],
An P is P-null.

Proof: Notice that if An P is P-measurable with pup(An P) > 0, then we
can find a closed uncountable set F' such that F' ¢ An P. Therefore, there is
a perfect set Q € F and QQ € A, so Q ~ A =@&. Moreover, given any perfect set

P we have
P = U [w]P7
we2"NTp
and for any w € 2" such that w € Tp, the set [w]p is perfect. O

2.2.2 The main open problem

We have the following obvious fact.
Proposition 2.6 ([Korch and Weiss, 2016]). UN ¢ PN

Proof: Let A ¢ 2% be universally null, and let P be perfect. Let A be
a measure on 2¢ such that A\(B) = up(B n P) for any Borel set B € 2«. Then
A(A) =0, s0 Ais P-null. m

Unfortunately, we still do not know the answer to the following question.

Question 2.7 ([Korch and Weiss, 2016]). Is it consistent with ZFC that UN +
PN ?

On the category side every proof of the consistency of the fact that UM +
PM known to me uses the idea of the Lusin function or similar arguments.
The Lusin function is a continuous one-to-one function with measurable inverse
and maps Lusin sets into perfectly meagre sets (see Section [1.3)). Given such
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a function it easy to see that if there exists a Lusin set L, then UM # PM.
This should be clear since UM is a class closed under taking Borel isomorphic
images, so L[L] e PM ~ UM.

Therefore, to prove PN # UN, we possibly need some analogue of the
Lusin function.

Question 2.8 ([Korch and Weiss, 2016]). Is there an analogue of the Lusin
function for perfectly null sets?

But even if such an analogue exists, it cannot be constructed by a method
similar way to the Lusin’s argument.

Proposition 2.9 ([Korch and Weiss, 2016]). Let S:w® — 2% be a function
such that there exists a sequence (Py:s € w<) such that for s € w<, Py €2 is
a perfect set, and for n,m e w:

(a) n#m = Py 0 Py = 2,
(b) Psp C Ps,
(c) diam(Py) < 1/2tn(s),

and S(x) is the only element of Npew Pern-  Then there exists a perfect set
Q € 2% such that

m (S_I[U{PS:S ew A pug(Ps) = 0}]) <1

Proof: We define T' ¢ w<¥ inductively as follows: in the n-th step we
construct T,, = Tnw™ such that |T,| < w for all n € w. Let Ty = {@}. Assume that
T, is constructed and w € T,,. Let M,, > 2 be such that 2Mw > 2n+2.|T, |- m([w])
and Ty ={wkiweT, "nkewnk < M,,}.

Therefore, if w € T,,, then

m ([w]~ (H{w k:k < My}) =m (({wk:k > M,}) =

= 1 m([w]) 1
= . = < .
m([w]) i:%w 9i+1 oMw = on+2|T) |
Thus, for all n € w,
1

m (ULlss € Ty~ URs]s € Tan}) < 5

SO

m(U{[s):s ¢ TY) =m(u (Ullsls€Ty) \U{[s]:seml)) <5

new
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Let

Q=M U P.
new sel),
Obviously, @ is a closed set. Moreover, if s € T', there exists w € 2, [w]g € Ps.
It should be clear since for all n € w, { P:s € T},} is a finite collection of disjoint
perfect sets, and @) € Uger, Ps. Therefore, @) is perfect and pg(Fs) > 0. On the
other hand, if s ¢ T, then P,n@Q = @, so ug(Ps) = 0. Therefore, if S(z) € P;
and ug(Ps) =0, then s ¢ T and z € [s], so

(8 ULP.s €w™ npg(P) = 0}]) = m(Uf[sks € T)) < 3.

2.2.3 Homeomorphisms of 2¢

Notice the following easy observation.

Lemma 2.10. Let X € 2% be a perfectly null set, and let P € 2% be a perfect
set. Then hi [X] e PN

Proof: If @ ¢ 2¥ is a perfect set, then hp[@Q] € P is also a perfect set.
Therefore,

1 p1@)(X) = po(hp [X]) = 0.

0

Obviously, for every diffused Borel measure p (we will always assume that

1(2¢) = 1), there exists a Borel isomorphism of 2 mapping p to the Lebesgue

measure (see e.g. [Marczewski, 1937, Theorem 4.1(ii)]). Therefore, if the class

PN is closed under Borel automorphisms of 2¢, then UN = PA/, which moti-
vates the following question.

Question 2.11 (|Korch and Weiss, 2016]). Is the class PN closed under home-
omorphisms of 2% onto itself?

It is a well-known fact (see e.g. [Oxtoby, 1971]) that on I for every strictly
positive diffused Borel measure p, there exists a homeomorphism of I mapping
i to the Lebesgue measure. It is easy to see that it is not the case for 2v.
Indeed, the countable set of values of a measure on closed open sets is constant
under homeomorphisms of 2¢, but can be different for various measures on 2v.
On the other hand, if we are interested only in the ideal of null sets, we get
the following.
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Theorem 2.12. Let p be a strictly positive diffused Borel measure on 2%.
There exists a homeomorphism h:2% — 2% such that A € 2% is null with respect
to p if and only if h[A] is null (with respect to the Lebesque measure).

Proof: Let u be a strictly positive diffused Borel measure on 2¥. We
construct by induction a Cantor scheme ¢:2<“ — {[a,b):a € Q,b € QU {co}}
such that
1
on

1
< on+l ’

ln(o(s)) -

for all s € 27, and n € w. Additionally, we shall construct ¢ in such a way, to
ensure that

7}1_)11010 diam(¢(xztn)) =0

for all x € 2%,

Namely, let ¢(@) =2« = [0, 00). Assume that ¢(s) = [as,bs) for s €27 n € w,
and diam([as, bs)) = 1/2™. Let ¢ € Q N [as, bs) be such that diam([as,cs)) =
1/2m+1. Notice that also diam([cs,bs)) = 1/2m*1. Let ng > 0 be the minimal
natural number such that there exists mg € w, 1 <mg < 27

mg ms
‘M([a/s; CS)) - 2n+ns < 2n+ns+1
and 9 9
s — Mg s —myg
‘M([Csybs)) - on+n on+ns+l

Such n; exists, because if N is such that 1/2V < u([as,¢s)) < p([as, bs))—1/27,
and |p([as, bs)) —1/27 < 1/2V then there exists m € w such that

m m
S
and

2ns —m| 2% —m
‘,U([Csabs))_ on+N < on+N+1 "’

see also Figure [2.1]
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Figure 2.1: Theorem Figure for p([as,bs)) = 0.75r.
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Let dsp = as,dsm, = ¢s and dsons = by, and find ds; € Q n [as,bs) for
i €2~ {0,ms} such that for all i € 2" dg; <jex ds.i41, and

1 1
,U([ds,h ds,i+1)) - 2n+ns < 2n+7’LS+1 :

Let {s;:0 < i < 2ns} = 27 be the enumeration of 2" with respect to the
lexicographical order. Set ¢(s°s;) = [ds, ds,i+1), for 0 <7 <2ms. Also set

¢(s7t) = U P(57si),

ke{ie2ms:tcsy }

for all t € 2<7s \ {@}.

Notice also that for all ¢ € 2<7s, diam(¢(s7t)) < diame(s), and diam(¢(s7s;)) <
diam(¢(s)). Therefore, ¢ is indeed a Cantor scheme, and for every = € 2¢
lim,,_, . diam¢(zn) = 0.

Hence, for x € 2¢  let h(x) be the only element of N, ¢(ztn). Since
{p(s):s € 2<*} is a basis of topology in 2¢, and

m([s]) 1 1 L 3m([s])
5 = gnr <u(o(s)) < mtgmi= T g

we get that for every measurable A ¢ 2«

LAY gy ¢ AL
Thus, pu(A) =0 if and only if m(h[A]) = 0. o

Therefore, we get the following corollary.

Corollary 2.13. Let p be a strictly positive diffused Borel measure on 2%
such that p(2«) = 1. There exists a perfect set P such that u(P) = 1, and
a homeomorphism g: P — P such that A ¢ 2% is null with respect to p if and
only if g[A] is P-null.

Proof: Let
Y = UHls):s € 2 A u([s]) = 0},

and let P be a perfect set such that 2 \Y = Pu(C, there C ¢ 2¢ is a countable
set. Now consider measure o hp on 2%, and apply to this measure Theo-
rem to get a homeomorphism h. Let g = hpohohj'. m]

Corollary 2.14. If the class PN is closed under homeomorphisms of 2, then
UN = PN
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Proof: Assume that X ¢ 2v is perfectly null, and let p be a diffused Borel
measure on 2¢. Without a loss of generality, assume that pu(2+) = 1. Apply
Corollaryto get a perfect set P such that u(P) = 1, and a homeomorphism
g: P - P such that A € 2¢ is null with respect to u if and only if g[A] is P-
null. Notice that g = hp o ho hpt, where h:2¥ — 2 is such that A ¢ 2 is null
with respect to o hp if and only if h[A] is null (with respect to the Lebesgue
measure). By Lemma 2.10] hp![X] € PA/, therefore h o h'[X] € PN, so
m(hohz'[X]) =0. Therefore, o hp(hp'[X]) =0, so p(X) =0. m

2.2.4 Simple perfect sets

To understand what may happen in the solution of the main open problem
which was mentioned above, we restrict our attention to some special subfam-
ilies of all perfect sets. This leads to an important result in Theorem [2.27]

A set that is null in any balanced (respectively, uniformly, Silver) perfect
set will be called balanced perfectly null (respectively, uniformly per-
fectly null, Silver perfectly null) (see Section for all the necessary
definitions). The class of such sets will be denoted by bPAN (respectively,
uPN, vPN). Obviously, PN € bPN c uPN c vPN.

Lemma 2.15 (|[Korch and Weiss, 2016]). There exists a perfect set E
such that for every balanced perfect set B, we have either up(E) =0 or ug(B) =
0.

Proof: Consider K = {000,001,011,111} ¢ 23 and a perfect set E € 2 such
that « € E if and only if 2[3k, 3k + 2] € K for every k e w (see Figure [2.2). Let
B be a balanced perfect set. Imagine now how T looks like in a K-block of T
(see Figure , where Tp is shown as doted lines). Let k € w and w € Ty n 23,
The following two situations are possible. Either {w~s:s € K} ¢ T (possibility
(a)), or alternatively {w~s:s € K} \ Tg #+ @ (possibility (b)).

Assume that for all £ € E, there exist infinitely many k£ € w such that
{t13k~s:s € K} \Tp #+ @ (case (b)). Then, by Lemma [2.4] pg(B) =0. On the
other hand, assume that there exists ¢ € I/ such for all but finite k € w, we have
{t13k~s:s e K} € Tg (case (a)). It follows that there exists i € w such that B
has a branching point of length j for all j >4, so s;.1(B) < 5;(B) + 1, for any
J > 4. And since B is a balanced perfect set, this implies that s;(B) = S;(B)
and sj.1(B) = s;(B) + 1 for any j > i. In other words, for w € T n 2%,
Bn[w] = [w], and hence, for any v € T N 23* with 3k > i, there exists w € 23
such that v~w € T \ Tg. It follows that ug(F) =0, by Lemma O

Proposition 2.16 ([Korch and Weiss, 2016]). Suppose that there exists a Sier-
piniski set. Then PN ¢ bPN .
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Figure 2.2: Proof of Lemma [2.15]

Proof: Let E be the perfect set defined in Lemma [2.15] and let S ¢ E be
a Sierpinski set with respect to pg. Obviously, S is not perfectly null. But if
B is a balanced perfect set, then either ug(E) =0, so ug(S) =0, or ug(B) =0,
so SN B is countable. Thus, up(S)=0. So S € bPA N\ PN. O

It is easy to see that we get an analogue of the Lusin function for balanced
perfectly null sets (cf. Question [2.8)).

Corollary 2.17. There exists a function §:2% — 2% which is a Borel isomor-
phism onto its range and such that if S € 2¢ is Sierpinski set, then S[S] € bPN. .

Proof: Let §:2¢ — 2% be defined as S(x) = hg(x), where E is the perfect set
defined in Lemma[2.15] Obviously, if S € 2¢ is a Sierpiniski set, then hp[S] € E
is a Sierpinski set with respect to up. Thus, hg[S] € bPA (see the proof of
Proposition . O

Proposition 2.18 ([Korch and Weiss, 2016]). bPN ¢ uPN ¢ vPN .

Proof: The first inclusion is proper, because if we take any balanced perfect
set B such that for each i € w, we have [Split(B) n2{ = 1 and any uniformly
perfect set U, then py(B) < (n+1)/2" for any n € w, so B is U-null. Thus,
B euPN \bPN.

To see that the second inclusion is proper, notice that the uniformly perfect
set U = {av € 29: Ve, (2i+1) = a(2¢) } is null in every Silver perfect set. Indeed,
let S be a Silver perfect set. Let i € w be such that for every w € 2% n S,
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w € Split(.S), or for every w € 221 n S w e Split(S). The following two cases
are possible:

(a) for every w e 22 n.S, w e Split(S), so w 0,w"1 € Ts. Then w01 € Ts or
w~0"0 € Ty. In the first case w~0"1 € T \ Ty. In the second w~1-0 € Ty,
but w~1-0 ¢ Ty.

(b) for every w € 2% n.S, w ¢ Split(S). Without a loss of generality, assume
that w0 € Ts. Then w0 € Split(S), and w~0"1 € Ts \ Ty.

Since there exist infinitely many i € w such that 22 n S ¢ Split(.S) or 2%*+1n S ¢
Split(S), Lemma [2.4 can be applied to get that pugs(U) = 0. O

Proposition 2.19 (|[Korch and Weiss, 2016]). The following conditions are
equivalent for a set A c2%:

(1) A is perfectly null,

(2) for every perfect set P € 2%, An P is P-measurable, but for every balanced
perfect set Q € 2%, QN A+ @,

(3) for every perfect set P <2, An P is P-measurable and A€ bPN .

Proof: Notice that there exists a balanced perfect set in every perfect set.
Therefore, in the proof of Proposition [2.5| we can require that the perfect set
@ is balanced. o

Notice that, even if a set is P-measurable for any perfect set and does
not contain any uniformly perfect set, it needs not to be perfectly null. An
example of such a set is the set B from the proof of Proposition [2.18]

Proposition 2.20 ([Korch and Weiss, 2016]).

(a) A € bPN if and only if for every balanced perfect P € 2¢, An P is P-
measurable, but P\ A # @.

(b) A € uPN if and only if for every uniformly perfect P ¢ 2, An P is
P-measurable, but P~ A + &.

(c) A € vPN if and only if for every Silver perfect P ¢ 2, An P is P-
measurable, but P~ A # @.

Proof: We proceed as in the proof of Proposition [2.5] For uniformly and
Silver perfect sets we use [Kysiak et al., 2007, Lemma 2.4], which states that
there exists a Silver perfect set in every set of positive Lebesgue measure,
and we notice that if P is a uniformly (respectively, Silver) perfect set, and
hp:2¢ — P is the canonical homeomorphism, then the image of any Silver
perfect set is uniformly (respectively, Silver) perfect. O
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2.2.5 Perfectly null sets and sy and v, ideals
Proposition 2.21 ([Korch and Weiss, 2016]). PN € bPN ¢ sy.

Proof: Indeed, if P is perfect and X € bPA, let B ¢ P be a balanced
perfect set. Then pug(B ~ X) =1, so there exists a closed set F' ¢ B\ X of
positive measure. Therefore, it is uncountable, and there exists a perfect set
QcFcPNX. O

Obviously, uPN ¢ s, (see the proof of Proposition [2.18).

Proposition 2.22 ([Korch and Weiss, 2016]). PN € vPN < v;.

Proof: Let P ¢ 2¢ be a Silver perfect set, and let X € vPA. Notice that the
image of any Silver perfect set under the canonical homeomorphism hp:2¥ - P
is a Silver perfect set. Since m(2¥ \ h'[X]) = 1, there exists a Silver perfect
set @ €29\ hip'[X] (see [Kysiak et al., 2007, Lemma 2.4]). So, hp[Q] € PN X
is a Silver perfect set. O

M. Scheepers (see [Scheepers, 1993]) proved that if X is a measure zero
set with s property, and S is a Sierpinski set, then X + S is also an sg-set.
Therefore, we easily obtain the following proposition.

Proposition 2.23 ([Korch and Weiss, 2016]). The algebraic sum of a Sier-
pinski set and a perfectly null set is an sqo-set.

2.2.6 Products

We consider PA sets in the product 2¢ x 2 using the natural homeomorphism
h:2% x 2« — 2« defined as h(z,y) = (x(0),y(0),x(1),y(1),...).

It is consistent with ZFC that the product of two perfectly meager sets is
not perfectly meager (see [Rectaw, 1991a], [Pawlikowski, 1989]). If the answer
to the Problem [2.7]is positive, then it makes sense to ask the following question.

Question 2.24 ([Korch and Weiss, 2016]). Is the product of any two perfectly
null sets perfectly null?

Although this problem still remains open, in the easier case of Silver perfect
sets, the answer is in the affirmative. First, notice the following simple lemma.

Lemma 2.25 ([Korch and Weiss, 2016]). Let P,Q < 2% be perfect sets. Then
ppxq = pp X fg- In particular, if X € 2% x 2% is such that m[X] is P - null,
then ppxg(X) = 0.
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Proof: First, we shall prove that for any n € w and any v € 227,

1 1
HPxQ ([U]PXQ) = 2lp(wp) ' 2lg(wg)’

where wp,wg € 2" are such that for any i < n, wp(i) = v(2i) and wq(i) =
v(2i +1). This assertion can be proved by induction on n. For n =0, we get
v=wp=wq =g, and

1 1
me(lvlpxe) = 1= onmss - Sty

Now consider v € 22(n+1)  Then

(a) if both wptn and wgtn are branching points in P and @ respectively
(so lp(wp) = lp(wpltn) +1 and lg(wg) = lg(wgtn) + 1), then vl2n
Split(P x Q) and v12n+1 € Split(P x @), and so ppxq([v]pxg) =1/2-1/2-
pprxq([v12n]pxg) = 1/2-1/2- 1/2tp(wrin) .1 [2le(wen) = 1 /2lp(wp) . 1 [2lo(we),

(b) if wpln or wgIn, but not both, is a branching point in P or () respectively,
we may assume without a loss of generality that wpln € Split(P) and
wq In ¢ Spht(Q) (SO lp(wp) = lp(wp rn)+1 and lQ(U)Q) = lQ(’LUQ l‘n)) Then
v12n € Split(PxQ), but v12n+1 ¢ Split(PxQ), and so ppxo([v]pxg) = 1/2:
1-ppxg([v12n] pxg) = 1/2-1-1/2tr(wptn) .1 [2la(weln) = 1 [2lr(wr) . 1 [2lo(we),

(c) if wptn ¢ Split(P) and wgln ¢ Split(Q) (so lp(wp) = lp(wpln) and
lo(wg) =lg(wgtn)), then vI2n,vi2n+1¢Split(P xQ), and so
1rxo([V]pxg) = 11 upeg([v12n]peg) = 1/21p(wprn).1/21c;>(w@rn) = 1/2lp(wp).
1/21Q(wQ),

which concludes the induction argument. Since every open set in P x @ is
a countable union of sets of form [v]pxg, With v € 22" n € w, this concludes
the proof of the Lemma. O

Proposition 2.26 ([Korch and Weiss, 2016]). If X,Y € vPN, then X xY ¢
vPN in 2% x 2w,

Proof: Fix a Silver perfect set P. Recall that such a set is uniquely defined
by a sequence (a,),.., an € {-1,0,1} such that {n € w:a, = -1} is infinite, Tp
splits on all branches at length n € w if and only if a,, = -1, and t(n) = a,, for
all t € P for any other n € w. Let T} be a tree which splits on all branches at
length n if and only if as, = -1, and t(n) = ag, for any t € [T1] for any other
n € w. Finally, let T5 be a tree which splits on all branches at length n if and
only if ag,1 = -1, and t(n) = ag,y; for any t € [Ty] for any other n € w. Let
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P, = [Ty] and P, = [T3]. If {2n € w:a, = -1} is infinite, then P; is a Silver
perfect set. On the other hand, if {2n € w:a, = -1} is finite, then P; is also
finite. Analogously, if {2n+1 € w:a,, = —1} is infinite, then P, is a Silver perfect
set. On the other hand, if {2n + 1 € w:a, = -1} is finite, then P, is also finite.
Moreover, P = P, x Ps.

If P, and P, are Silver perfect sets, then by Lemma [2.25] pp(X xY) = 0.

The other case is when P; or P,, but not both, is finite. Without a loss of
generality, we may assume that P is finite. Then P = Uycp, P x{t}. Obviously,
forany t €Y, pup iy (XxY) = up, (X) =0, so by Corollary also up(XxY') =
0. O

On the other hand, it is consistent with ZFC that the classes uPA and
bPAN are not closed under taking products.

Theorem 2.27 ([Korch and Weiss, 2016]). If there exists a Sierpinski set,
then there are X,Y € bPN such that X xY ¢ uPN .

Proof: Let J < 2% be as shown in Figure (J = {00000000, 00010111,
00101011, 00111111, 01001010, 01011111, 01101011, 01111111, 10000101,
10010111, 10101111, 10111111, 11001111, 11011111, 11101111, 11111111}).
Let P be a perfect set such that 2 € P if and only if for all n € w, x[8n,8n+7] € J.
Obviously, P is a uniformly perfect set. Let @ = m[P]. Notice that x € @ if
and only if for all n € w, z[4n,4n + 3] € L, where L = {0000, 0001, 0011, 0111,
1000, 1001, 1011, 1111} ¢ 2* (see Figure 2.3 and Table [2.2).

Notice that L consists of two K-blocks (see the proof of Lemmal[2.15) joined
by an additional root.

Also, if B is a balanced perfect set, then pp(Q) =0 or pg(B) = 0. The
argument is the same as in the proof of Lemma [2.15] namely there are two
possibilities. If for all ¢ € @), there exist infinitely many k € w such that
{tty,~s:s € L} N\ Tp # @, then by Lemma , po(B) = 0. If it is not the case,
there exists t € ) such that for all but finite k € w, we have {t1,, ~s:s€ L} ¢ Tg.
It follows that there exists ¢ € w such that B has a branching point of length j
for all j >, so s;.1(B) < Sj(B) + 1, for any j >i. And since B is a balanced
perfect set, it implies that s;(B) = S;(B) and sj.1(B) = s;(B) + 1 for any
j > 4. In other words, for w € Tp n 2!, Bn[w] = [w], and therefore for any
v e Tpn2% with 3k > 4, there exists w € 2% such that v~w € T\ Ty. It follows

that ugp(Q) =0, by Lemma [2.4]
Moreover, if A is ()-null, then A x 2« is P-null. Indeed, if n € w and w € L,

o ({x € Q:xldn, dn + 3] = w}) = L€ :186<0’2’4’6>}| i

Up (71‘1 [{zeQ:x[4n,4n + 3] = w}]),
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Figure 2.3: Proof of Theorem [2.2

(see Table . Therefore, if € > 0 and (w;)
Usew[wi]o covers A and

i, 18 a sequence such that w; € Tg,

€W

then yup (7" [[wilo]) = po ([wilg), s0

is a covering of A x 2¢ of measure pp not greater than e.

Let S ¢ P be a Sierpinski set with respect to up, and let X = m[S] € Q.
Suppose that B is a balanced perfect set. Then either ug(Q) =0, so ug(X) =0,
or ug(B) =0, so pp(r1[@n B]) = 0. In the latter case, Sn7 ' [Q n B] is
countable, so X n B is countable and pup(X) =0. Hence X € bPN.

Notice also that m[P] = Q as well (see Table 2.3)). So analogously, one can
check that Y = my[S] € bPA.

But Sc X xY,so X xY is not P-null, and therefore X xY ¢ uPN. |
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seJ w=5(0,2,4,6) 1o p
el {reQ:z[dn,4n +3] =w} | 7 [{z € Q:z[4n,4n + 3] = w}]

00000000 0000 1/16 1/16
00010111 0001 1/16 1/16
00101011 0111
00111111 0111 1/4 4/16
01101011 0111
01111111 0111
01001010 0011 1/8 2/16
01011111 0011
10000101 1000 1/16 1/16
10010111 1001 1/16 1/16
10101111 1111
10111111 1111 1/4 4/16
11101111 1111
11111111 1111
11001111 1011 1/8 2/16
11011111 1011

Table 2.2: Proof of Theorem 2.271.

The above result seems to be interesting as it resembles the argument of
Rectaw (see [Rectaw, 1991a]) which proves that if there exists a Lusin set,
then the class of perfectly meager sets is not closed under taking products.
Rectaw in his proof actually constructs a perfect set D € 2« x 2¢ and shows
that given a Lusin set L € D, its projections are perfectly meager. The same
happens in the above proof where we consider a Sierpinski set and the class
bPA. Nevertheless, we still do not know whether it can be done in the case

of the class PN

2.3 Sets meagre in simple perfects sets

Analogously, as in the case of measure, we say that a set which is meagre
in any balanced (respectively, uniformly, Silver) perfect set is balanced per-
fectly meagre (respectively, uniformly perfectly meagre, Silver per-
fectly meagre). The class of such sets is here denoted by bPM (respectively,
uPM, vPM). Obviously, PM ¢ bPM c uPM c vPM.

Lemma 2.28. There exists a perfect set E such that for every balanced perfect
set B, we have either Bn E is nowhere dense in E, or it is nowhere dense in

B.

Proof: The set E defined in the proof of Lemma has also the considered
property. Indeed, if B is a balanced perfect set, and for all ¢ € E, there exist
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seJ |w=s(1,35T7¢lL

00000000 0000
00010111 0111
00111111 0111
10010111 0111
10111111 0111
00101011 0001
01101011 1001
01111111 1111
01011111 1111
11011111 1111
11111111 1111
01001010 1000
10000101 0011
10101111 0011
11101111 1011
11001111 1011

Table 2.3: m[P] = Q.

infinitely many k € w such that {t3k~s:s € K} \ Tg #+ @&, then obviously B
is nowhere dense in E. On the other hand, if there exists ¢t € E such for all
but finite k£ € w, we have {¢13k"s:s € K} € Ty, then as before for w € Ts N 27,
Bn[w] =[w], and therefore E is nowhere dense in B. O

Proposition 2.29. Suppose that there exists a Lusin set. Then PM ¢ bPM.
Proof: The reasoning is the same as in the proof of Proposition 2.16] O
Proposition 2.30. bPM ¢ uPM ¢ vPM.

Proof: The set B defined in the proof of Proposition is obviously also
an example of set in uPM \ bPM.
Similarly, U = {a € 29: V;e,a(2i + 1) = a(2i)} e vPM N uPM . m

Proposition 2.31.

(1) bPM € sp,
(2) vPM .

Proof: The reasoning is the same as in the proofs of Propositions [2.21
and 2.221 0

Similarly as in the measure case, we have the following Proposition.

Proposition 2.32. If X,Y € vPM, then X xY € vPM in 2% x 2%,
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Proof: As in the proof of Proposition [2.26] notice that if P € 2% x 2« is
a Silver perfect set, then P = P, x P,, where either P;, P, are Silver perfect
sets, or one of them is a Silver perfect set, and the other one is countable.
Without a loss of generality assume that P; is a Silver perfect set. Then X is
meagre in P, and hence X x Y is meagre in P, x P, = P. a
On the other hand, it is not the case for uP.M sets.

Proposition 2.33. If there exists a Lusin set, then there are X,Y € bPM
such that X xY ¢ uPM.

Proof: Consider set P defined in the proof of Theorem [2.27] and a Lusin
set N ¢ P. Analogously, @ = m[P] = m[P] is such that if B is a balanced
perfect set, then either Bn () is nowhere dense in B, or is nowhere dense in Q).
Moreover, it is easy to see that if A is nowhere dense in (), A x 2¢ is nowhere
dense in P. Therefore if X = m[N] <@, and B is a balanced perfect set, then
either () n B is nowhere dense in B, and therefore X is nowhere dense in B,
or @ n B is nowhere dense in Q. Hence, 77'[@ n B] is nowhere dense in P,
and thus has a countable intersection with N. Thus X n B is countable. As
before, the proof that Y = me[ N ] € bPM is analogous. O

2.4 Bartoszynski’s small sets with respect to
Hp

In [Bartoszynski and Judah, 1995][Section 2.5.A] a collection of sets, which
here will be called Bartoszynski’s small sets is defined. A set A € 2¢ is
Bartoszyniski’s small if there exists a sequence (@, )ne, € ([w]<)” of pairwise
disjoint finite sets which is a partition of w and (.J,,)neo such that J, € 29¢ such
that

Ac () Uz e2¥atay, € Jn},

new m>n

and
> |Ju] < 00
n '

We say that such a set is interval small if that a, = k.1 \ k,,, for all n € w,
and an increasing sequence (kp)ne, € w¥ with kg = 0. This assumption also
appears in [Bartoszynski and Judah, 1995].

In [Bartoszynski and Judah, 1995], the authors prove that every
null set is a union of two Bartoszynski’s small sets (see
[Bartoszynski and Judah, 1995][Theorem 2.5.7]).
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2.4.1 First approach

The crucial role in the construction of two small sets out of a null set (see
[Bartoszyniski and Judah, 1995][Theorem 2.5.7]) is played by Lemma 2.5.1 (or
Corollary 2.5.2). This Lemma cannot be stated for the measure up in a fully

straightforward way.

The following lemma is an analogue of Lemma 2.5.1 and Corollary 2.5.2

from [Bartoszynski and Judah, 1995].

Proposition 2.34. Assume that P is perfect and X ¢ P. Consider the fol-

lowing properties:

(1) For all n € w, there exists F,, € 257(P) such that

and
X< UIF]
(2) np(X) =0.
(3) For all n € w there exists F, ¢ 25»(") such that
D
new 277/
and

Then (1) = (2) = (3).

Proof: The proof is quite straightforward. For (1) = (2) notice that

Hp (Tgn[Fm]) < Z: pp[Fn] < Z:

which converges to 0 when n — oo.

For (2) = (3) let G,, be an open set such that X ¢ G,,, and

1
,U/P(Gn) < 2_”

We write G,, in a form of a union of disjoint clopen sets G,, = U,,[s7], where
for each n, m there exists k such that len(s™) = s, (P). Let

F={se2®)nTp:3 s=s.}.
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Then obviously,

and

SIS S () € T (G <1

new new sefy, mew

O

Proposition 2.35. The implications of Proposition |2.34] cannot be reversed.

Proof: To see that (2) =» (1) consider a perfect set P such that s € Tp if
and only if s(0) =0 or if s(0) =s(2) =1 and s(2n+ 1) =0 for all n € w. Notice
that for n> 0, S,,(P) =2(n+1). Consider @ € P such that s € Ty, if and only
if $(0) =0 and s(2n+1) =0 for all n € w. Obviously pup(Q) =0. Assume that
there all n € w there exists F,, € 25~(P) such that

>0

new

and

RQecY=NUI[Fn]

n m2n

Since @ is a perfect set we can consider ug(Y'). Notice that for n > 1,

1ol |
MQ(FH) < 2Sn;P) A3 on+1

So p1g(Y) =0, which is a contradiction since we assumed that Q) Y.

For (3) # (2) let P be such that s € Tp if and only if s(0) =0 or if s(0) =1
and s(2n+1) =0 for all n € w. Notice that s, (P) =n. Let Fy, = {s €2?":5(0) =
1AseTp} for n>0 and Fy,,1 = Fy = @. Hence for n > 0, |Fy,| = 2" Therefore,

2 2"
2

<Y oo,
= 2sn(P) 7;0 922n

but

pr(N U LEnD) = 5.

new m>n

O

Proposition 2.36. The implications of Proposition [2.34] can be reversed in
the case of balanced perfect set.

Proof: If P is a balanced perfect set, and w € 25»+1(P) 0 Tp then pup([w]) <
1/27, and if w € 25:(P) 0 Tp, then pup([w]) = 1/2". i

Proposition [2.35 shows that we cannot hope to reach an analogue of Bar-
toszynski’s small sets in this approach.
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2.4.2 Second approach

But fortunately we can use the canonical homeomorphism hp and consider
Bartoszynski’s small sets in the whole 2¢.

Lemma 2.37. Let P be a perfect set, and S € 2% be an interval small set. Then

there exists an increasing function g:w - w and a sequence of sets (Ky),.,, such
that K,, € 2la(m),g(n+1)) gpd:

(a)
S<c (MU hp[[K0]],

kew n>k

(b)
|l 1

29(nD)-g(n) = om

fornew,

(c)
Sp(g(n)) +1<sp(g(n+1)),

where x € [K,,] if and only if x[g(n),g(n+1)) € K,,.

Proof: Since S is interval small there exists an increasing f:w — w and
a sequence (J,,), n € w, J, € 20M./(n+1)) quch that

sc U]

kew n>k

and
SR
2 f(n+1)-f(n)

new

0.

Let a:w — w be an increasing function such that for n € w,

(i)
I—Ia(n+l)—1 |JZ| 1

i=a(n) L

SF(a(mD)F(a(m) = gn’
(ii) Sp(f(a(n)))+1<sp(f(a(n+1))).

Such « exists because

AN
2f(n+1)-f(n)

new

Let g(n) = f(a(n)) and let K,, c 2L9().9(n+1)) he such that for k € [a(n), a(n +
1)), K, n 2Lf (k+1)=f(K)) = ], . 0

Q.
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basic clopen sets of
measure

(2n+

2n+2
possibilities

F(2n+2)

F@mH)

F@2n)

Figure 2.4: Proof of Lemma and Proposition [2.41]

Lemma 2.38. Let P be a perfect set, and S € 2% be an interval small set.

Then there exists an increasing function F:w - w and (L,),.. such that L, ¢
2[F(2n),F(2n+3))7 and

(a)

(L)) € 5

(b)
kew n>k

Proof: Use the previous Lemma and let F'(2n) = sp(g(n)) and F(2n+1) =
Sp(g(n)) +1 for new. Let

L, ={w![F(2n), F(2n+3)):w € 2* A hp!(w) € [K,]} .
Notice that

1 | K| 1
= 99(n) . - n il
e (LEnl) = 27 1Kl 57655 = Sany-atmy < 2m
(see the left side of Figure [2.4)). o

This motivates the following definition. X ¢ P will be called small in P

if there exist an increasing function F:w — w and a sequence of sets (L,,)
such that L,, c 2[F(2n).F(2n+3)) “and

new
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(1) pp([La]) < 37

(2) X c ﬂkew Unzk[Ln]
We get easily the following property.

Proposition 2.39. If X €2 and X n P is small in P, then up(X) =0.

O
Corollary 2.40. If X € P is P-null, then X € AjUuA,y, where Ay, Ay are small
mn P.

Proof: Notice that hp'[X] ¢ 2% is null with respect to the Lebesgue mea-
sure, so it is a union of two interval small sets (see
[Bartoszyniski and Judah, 1995)[Theorem 2.5.7]). Now use Lemma O

Notice that the assumption that X ¢ P is crucial. The above approach
cannot capture what is happening outside of P in any simple way.

Proposition 2.41. Let X € P be a small set in P and Y be a additively null
set. Then X +Y is P-null.

Proof: Recall the Shelah characterization of a null-additive set (see Sec-
tion . If Y e N* and F:w — w is any increasing function, then there exists
a sequence I, € 2LF(m),F(n+1)) guch that |I,,| <n and

yelna,

kew n>k

where z €Y, if and only if z}[F(n), F'(n+1)) € .
Let F:w — w be an increasing function such that there exists a sequence of
sets (L), such that L, c 2[FCn).Fn+3)) “and:

(1) pp([Ln]) < 55,
(2) X< mkéw UnZk[Ln]
Notice that
X+Yc m U ([Ln] + (}/Qn N Yén+1 N }/én+2)) .

kew n>k

We conclude (see the right side of the figure that

(2n+1)-(2n+2)
on

2n
Hp ([Ln] + (}/211 N Yv2n+1 N Yv2n+2)) <

bue - (2n+1)-(2n+2)
Z n n n

n
new 2

is convergent, so X +Y is P-null. O
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2.5 Perfectly null sets in the transitive sense

2.5.1 The definition

Obviously, a set is perfectly null if and only if for any perfect set P, there
exists a G set G 2 X such that up(G) =0. We define the following new class
of special sets.

We call a set X perfectly null in the transitive sense if for any perfect
set P, there exists a G5 set G 2 X such that for any ¢, the set (G +1t)n P is
P-null. The class of sets which are perfectly null in the transitive sense will
be denoted by PAN.

We do not know whether this class of sets forms a o-ideal.

Similarly we define ideals: bPA/, uPN "’ and vPN .

Proposition 2.42 (|[Korch and Weiss, 2016]). The following sequence of in-
clusions holds:

PN’ c bPN’ g uPN"’ ¢ VPN’
all all all all
PN c bPN G uPN ¢ vPN

Proof: The above inclusions follow immediately from the definitions. The
sets B and U defined in the proof of Proposition 2.1§ are obviously also in
uPAN '’ N\ bPN’ and vVPN '\ uPN’, respectively. O

2.5.2 PN’ sets and other classes of special subsets

In [Nowik, 1996], [Nowik and Weiss, 2000a], [Nowik and Weiss, 2001] and
[Nowik and Weiss, 2000b] the authors prove that SM ¢ PM’ ¢ UM, and
that it is consistent with ZFC that those inclusions are proper. Therefore, we
study the relation between the class PN/’ and the classes of strongly null sets
and universally null sets.

Theorem 2.43 ([Korch and Weiss, 2016]). Every strongly null set is perfectly
null in the transitive sense.

Proof: Let X be a strongly null set, and let P be a perfect set. If w e Tp
and len(w) = S,(P) + 1, then pp([w]p) < 1/27*1. Tt is a well-known fact
that if a set A is strongly null, we can obtain a sequence of open sets of any
given sequence of diamiters, the union of which covers X in such a way that
every point of A is covered by infinitely many sets from this sequence (see, e.g.
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[Bukovsky, 2011]). Therefore, let (A,:n € w) be a sequence of open sets such

that
Xc U A4,
and ]
dlam(An) < W

Let t € 2# be arbitrary. Let B, = (A, +t)nP. We have that B,, € [w,]p, where
w, € Tp and len(w,) = S,,(P) + 1. Therefore, up(B,) < 1/27*1. But

X+t)ynPc((Y U A +t)nPc () U B,

mew n2m mew n2m
and
/J’P( m U Bn) = 07
mew n>m
so X is perfectly null in the transitive sense. O

The following problem still remains open.

Question 2.44 ([Korch and Weiss, 2016]). Does there exist a PN set which
is not strongly null?

In particular, I have not been able to answer the following question.

Question 2.45 (|[Korch and Weiss, 2016]). Does there ezist an uncountable
PN’ set in every model of ZFC?

In [Nowik and Weiss, 2000b], the authors prove that PM’ c UM. One
can ask a natural question of whether the following is true. The answer is still
not known.

Question 2.46 ([Korch and Weiss, 2016]). PN''c UN'?

If this inclusion holds in ZFC'|, then it is consistent with ZFC' that it
is proper. Motivated by [Rectaw, 1991b, Theorem 1], we get the following
theorem.

Theorem 2.47 ([Korch and Weiss, 2016]). If there exists a universally null
set of cardinality ¢, then there exists Y € UN N bPN' ¢ UN ~ PN'’.

Proof: As in [Nowik and Weiss, 2000b|, we apply the ideas presented in
[Rectaw, 1991b] in the case of subsets of 2. Notice that there exists a perfect
set P ¢ 2% which is linearly independent over Z,. Indeed, define ¢:2<% — 2<v
by induction. Let ¢(@) = @. Given p(w) =v € 2< for w € 2<% with n = |w|, let
p(w0) =veZ ™ and p(w 1) = ve |, where e =0...010...0 is of length m
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with 1 on the [-th position, and k € w is the natural number binary notation
of which is given by w. For example, ©(0) = 10, ¢(1) = 01, »(00) = 101000,
©(01) = 100100, ¢(10) = 010010, ¢(11) = 010001, »(000) = 10100010000000,
and so on. Now, notice that ([¢(w)]), e« is & Cantor scheme, so define

P=J Nlelaty)]

ae2¥ new

Let aq,...,a, € P be pairwise non-equal. There exists [ € w such that for any
i, j<n,i#j, ;122 # ;12'-2. Then ay, ..., a, restricted to [2!-2,20*1-2) are
basis vectors of 2!. Thus, P is linearly independent over Z,. The existence of
such a set follows also from Kuratowski-Mycielski Theorem (see [Kechris, 1995,
Theorem 19.1]).

Next, we follow the argument from [Rectaw, 1991b]. Let C, D be perfect
and disjoint subsets of P. We can require the set D to be a balanced perfect
set. Assume that X ¢ C' is a universally null set and |X|=r¢. Let (B,:z € X)
enumerate all Gy sets. For every x € X, let vy, € x + D be such that y, ¢ B, if
only (D +x)\ B, #+ @. Otherwise, choose any y, € x+ D. Put Y = {y,:z € X}.

Notice that +:C'x D - C'+ D is a homeomorphism. Obviously, + is contin-
uous and open on C'x D. Since (C'+C)n(D+ D) ={0} (because P is linearly
independent), we have that + is one-to-one. Since

m [+_1[Y]] =m [{{z,dy):x+dy =y, Az e X}] =X

is universally null, Y is universally null as well.

Now, we prove that Y is not perfectly null in the transitive sense. Indeed,
if B,2Y is a Gs set, then y, € B,, so (D+z)~B,=@ and Dn (B, +x) = D.
Therefore, up(Dn (B, +x)) = 1. O

Corollary 2.48 ([Korch and Weiss, 2016]). If non(N') = ¢, then PN'" # UN'.

Proof: If non(N) = ¢, then there exists a universally null set of cardinality
¢ (see [Bukovsky, 2011, Theorem 8.8]). 0
Taking into account Proposition [2.6], we have the following.

Corollary 2.49 ([Korch and Weiss, 2016]). If non(N') =¢, PN'' # PN

0

The class of perfectly meager sets in the transitive sense is closed under

taking products (see [Nowik and Weiss, 2000b]). We still do not know whether
this holds for PA/’ sets.

Question 2.50 ([Korch and Weiss, 2016]). Let X,Y € PN'. Is it always true
that X xY € PN''?
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The answer is in the positive for VPN’ sets.

Proposition 2.51 ([Korch and Weiss, 2016]). Let X,Y € vPN'. Then XxY ¢
vPN'.

Proof: Follows easily from the proof of Proposition [2.26] O

2.5.3 Additive properties of PN’ sets

We investigate some additive properties of the class of sets perfectly null in
the transitive sense.

Proposition 2.52 (|[Korch and Weiss, 2016]). Let A € 2% be open, i be any
Borel diffused measure on 2* and 0 < e < 1. Then the set A, = {t € 2*: u(A+t) >
e} is also open.

Proof: Assume that A is open, and let A = Upeo[sn]. If Ac = @, it is
obviously open. Otherwise, let tg € A.. There exists N € w such that

w( U [sn] +t0) > .

n<N

Let M = max{len(s,)|:n < N}. For any t € 2% such that ¢t} M =ty M,
p(A+t) 2 p(U [su]+t) = u( U [sn] +t0) > €.

n<N n<N
So A. is open. O

Lemma 2.53 ([Korch and Weiss, 2016]). Let p be a Borel diffused measure
on 2% and G €2 be a Gs set. Let Y e N be such that for every Borel map

0 Y — ww, there exists o € w* such that for every y €Y, o(y) <* a. Moreover,
assume that for ally €Y, u(G+y)=0. Then u(G+Y) =0.

Proof: Let G = N,eo G, Where for any m € w, G, is open and G,,;1 € G,,.
For m e w, let Gy, = Ujew [Wim], With w;,, € 2<¢, len(w;,,) > m, and for i # j,
[Wim] N [wjm] =@. Let

F, ={wim:t,mewAlen(w;,)=n} c2".
Notice that

G = ﬂ U[Fn]

mew n>m

Let ¢:Y — w* be a function defined as follows:

() (h) - min{z' e w=u(U[Fn +yfn]) < ﬁ}

ni
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Notice that ¢ is well defined, as (G +y) = 0 for any y € Y. By Proposition
2.52, the set

o L) > 0= {y i UIR1+ o) > g |
is open for any i,k € w, and therefore ¢ is Borel, so there exists strictly
increasing « € w* such that for every y € Y, ¢(y) <* a. For p € w, set
Yy ={y € Y:Vispo(y) (k) < a(k)].

Recall now the characterization of a null-additive set due to S. Shelah (see
[Bartoszyniski and Judah, 1995, Theorem 2.7.18(3)]). A € N'* if and only if for
any increasing function F:w — w, there exists a sequence (Iq)qew such that for
qew, I, c2lF@.Fla+D) ] | < q and

AU NI

Tew q2T

Set p € w, and apply the above characterization for Y}, and the function a.
There exists a sequence (I§) ., such that for ¢ € w, If ¢ 2le@al@D) 7] < ¢

and
Y, e UNIgl

TEW q2T

€w

For r e w, let
}/pﬂ" = Yﬂ m[lg]

q2r

Therefore, Y, = U e, Yy For any ¢ >, put

Kpgr={yta(g+1):yeY,,}.

Notice that K, ,, has at most
q q
20 T |12] = 220 - [ n < 22 - !

elements.
Obviously, Y = U, e, Yp,r, s0 it is sufficient to prove that u(G+Y,,) = 0 for
any p,r € w. Notice that for p,r e w,

G+}/;),T’: U G+y: U m U[Fn+yrn]gm U [Fn+yrn]

yeYp r yeYp, r MEW N2M mew yeYy
n>m
=ﬂ U U [Fnﬂﬁn]gm U U [Fn"'wrn]-
mew yeYy r a(g)<n<a(q+1) m2p qg2m a(q)<n<a(g+l)
q>m weKp q.r
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Recall that if w € K, 4., then w = y1,(4.1) for some y € Y, €Y, thus for any
k2p, a(k) 2 e(y)(k), so

1
E, nll € =——.
g (nzgéj(k)[ ol ] 2k+1 . L

In particular,

u( U (Futyh]] <

n>a(q) 2+l q!7
SO
q! 20(r)
pl U U  [Forwh]]<200- 3 gl om -
2m a(q)<n<a(g+1) g>m 24 q: 2
weKp q,r
Therefore,
2a(r)

(G +Y,,) < om

for any m e w, so (G +Y,,) =0, for any p,r € w. O

Theorem 2.54 ([Korch and Weiss, 2016]). Let X € PN, and let Y be an
SRN set. Then X +Y € PN

Proof: This theorem is an easy consequence of Lemma [2.53] Indeed, by
[Bartoszyniski and Judah, 1994, Theorem 3.8] if Y is an SRV set, then Y e N
and every Borel image of Y into w® is bounded. Let P be perfect. Apply
Lemma to measure pp, the set Y and a G set G such that X ¢ G, and
for all t € 2%, up(G +t) = 0. O

In [Nowik et al., 1998], the authors prove that SA + PM’ ¢ sy. The ques-
tion of whether the measure analogue is true still remains open.

Question 2.55 ([Korch and Weiss, 2016]). SM + PN/ C 507

Notice that a weaker statement which says that the algebraic sum of a Sier-
pinski set and a PA/’ set is an sqo-set holds by Proposition [2.23]

2.6 Universally null sets in the transitive sense

Theorem [2.43] can be also formulated in a slightly stronger form.

We will call a set X universally null in the transitive sense (UN’) if
for any diffused Borel measure p there exists a G set G 2 X such that for any
t, the set u(G +1t) =0.

Obviously UN’ € PN/, so the following theorem is stronger than a similar
Theorem proven before.
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Theorem 2.56. Fvery strongly null set is universally null in the transitive
sense.

Proof: Let X be a strongly null set and u a diffused Borel measure. Let

Sn(p) = min{k € w:Vperpu([w]) < 2%}

Sn() is well defined because p is a diffused measure and 2¢ is compact. Now
proceed as in the proof of Theorem [2.43| Let (A,:n € w) be a sequence of open

sets such that
Xc U A,

mew n>m

and
1

2Sn ()’

Let t € 2¥ be arbitrary. Let B,, = A,, +t. We have that B, ¢ [w], where
w € 25 Therefore pp(B,) <1/2". But

X+tcY U@ +0)= U Bn

diam(A4,) <

mew n2m Mmew N>2m
and
:U’( m U Bn) = 07
mew n>m
so X is universally null in the transitive sense. O

We also state the following observation.

Proposition 2.57. Every UN' set is universally null. If there exists a uni-
versally null set of cardinality ¢, then there exists Y € UN' ~ UN'.

Proof: The first part of the Proposition follows immediately from the defi-
nition. The second is a corollary of Theorem [2.47] m]
The following problems have not been solved.

Question 2.58. Is UN'' a proper subclass of PN’ ?
Question 2.59. Is SN a proper subclass of UN'?

Question 2.60. Is the class UN'' closed under taking products?
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Chapter 3

Generalized ideal Egorov’s
statement

In this chapter we consider the generalized Egorov’s statement (Egorov’s Theo-
rem without the assumption on measurability of the functions, see
[Weiss, 2004]) in the case of an ideal convergence and a number of different
types of ideal convergence notions. We prove that in those cases the general-
ized Egorov’s statement is independent from ZFC. Most of the results presented
here have been published in [Korch, 2017b].

It is assumed that the reader is familiar with preliminaries and notions
presented in Section [1.4]

3.1 Generalization of Pinciroli’s method

We start by a generalization of the method presented by R. Pinciroli (see
[Pinciroli, 2006], and also [Repicky, 2008]). The core of this method can be
generalized to the following theorem.

Theorem 3.1 ([Korch, 2017b]). Assume that non(N') < b. Let ® € (w¥)I.
Then for any € > 0, there exists A ¢ I such that m*(A) > 1—-¢ and ® is
bounded on A.

Proof: We follow the arguments of Pinciroli (see [Pinciroli, 2006]).

Assume that non(N') < b. Notice that this statement holds for example in
a model obtained by Re-iteration with countable support of Laver forcing (see
e.g. |[Bartoszynski and Judah, 1995]). Also it can be easily proven that under
this assumption there exists a set Y ¢ I of cardinality less that b such that
m*(Y) = 1. Indeed, if N ¢ I is a set of positive outer measure with |N| < b,
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then let Y = {z+y:2 € N,y € Q}, where + denotes addition modulo 1. Then Y’
has outer measure 1 under the Zero-One Law.

Therefore, every function ¢:I — w®¥ maps Y onto a K,-set, where K,
denotes the o-ideal of subsets of w* generated by the compact (equivalently
bounded) sets. We get that ®[Y] € K,. Assume that ®[Y] € U,e, B, with
each B, bounded. Let A, = ®~'[U, B;]. Therefore, ®[A,] is bounded, and
for any e > 0, there exists n € w such that m*(A4,) >1-¢. o

For a sequence of functions f,, : I — I and subsets A ¢ I, we consider
a notion of convergence f, & f on A. We assume that if B<€ A and f, 3 f
on A, then f, & f on B. We write f, & f provided that f, & f on I. Let
F < {{fu)new : Voewfn : I = I} be an arbitrary family of sequences of functions.

We consider two hypotheses between F and G:

(H=(F,%9)) There exists 0: F - (w*)! such that for every F € F and every
AcIif o(F)[A] is bounded in (w¥,<), then FF 3 0 on A.

(H=(F,%9)) There exists cofinal o: F - (w¥)! such that for every F € F and
every AcI if F % 0 on A, then o(F)[A] is bounded in (w®,<).

Theorem 3.2 ([Korch, 2017b]). Assume that non(N) < b, and H=(F, ).
Then for any (fn),., € F and any € >0, there exists A C I such that m*(A) >
l-cand f, ¥ 0 on A.

Proof: Apply Theorem [3.1|for o((f,),..,) given by H=(F,%). 0

Now, notice that there exists a model of ZFC in which non(N') = ¢, and
there exists c¢-Lusin set. To get this model it suffices to iterate Ro-times Cohen
forcing  with  finite supports over a model of GCH (see
[Bartoszynski and Judah, 1995, Model 7.5.8 and Lemma 8.2.6]).

Theorem 3.3 ([Korch, 2017D]). Assume that non(N) = ¢, and that there
exists a ¢-Lusin set. If H=(F, %) holds, then there exist (f,),., € F and >0
such that for all Ac I with m*(A)>1-¢, f, 0 on A.

Proof: Again, we follow the arguments of Pinciroli (see [Pinciroli, 2000]).
Let Z € w¥ be a ¢-Lusin set. Since every compact set is meagre in w“, every
K, set is also meagre. Therefore, if A ¢ Z is a K, set, then |A| < ¢. Let
0:F - (w®)! be a cofinal function given by H<(F,%). Let ¢ be a bijection
between I and Z. Finally, let (f,),., = F € F be such that o(F) > .

To get a contradiction, assume that for every i € w, there exists A; ¢ I such
that m*(A4;) > 1-1/2" and f, & 0 on A;. Let A = Uje, A;. For any i@ € w,
o(F)[A;] is bounded because f, & 0 on A;, and so ¢[A;] is bounded since
o(F) > ¢. Therefore, p[A] € K, and |A| = |p[A]| < ¢ because ¢[A] ¢ Z. This
is a contradiction because m*(A) =1 and non(N) = c. o

The following theorem was proved by R. Pinciroli in [Pinciroli, 2006].
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Corollary 3.4 ([Pinciroli, 2006| [Korch, 2017b]).

(1) Assume that non(N) < b. Then for any (fn),., such that f,:I - I for
new, and f, = 0, and any € > 0, there exists A € I such that m*(A) > 1-¢
and f, 30 on A.

(2) On the other hand, assume that non(N') = ¢, and that there exists a c-
Lusin set. Then there exist (fy),., such that f,:I - I for n € w, and
fn—=0, and € > 0 such that for all A< I with m*(A)>1-¢, f, $0 on A.

Proof: Let (f,),., be such that f, - 0. Set ¢, = 1/2", n € w. Consider
F={{fu)new : VoecwSn: I > I A f, > 0} and $==3. Define 0: F - (w¥)! in the
following way. Let

oF (z)(n) =min{m € w: Vs, fi(x) <e,}.

We get exactly the reasoning and the results of R. Pinciroli (see
[Pinciroli, 2006]). He shows that the above function o proves that both
H<(F.,=) and H=(F.,3) hold, and then proves Theorems [3.2] and [3.3] in
this particular case. O

In next sections we apply the method used in the proof of Corollary [3.4]
Assume that we are given two notions of convergence of sequences of functions
fn~ fand f, & f such that f, & f implies f, ~ f. We take

F. = {<fn>new:vnew foiI >IN f~ O}

and we apply Theorem [3.2] and Theorem [3.3 with a suitable function o: F., -
(w?)! to get a conclusion on the stronger convergence f, & 0 of sequences
from F..

3.2 Pointwise and equi-ideal convergence (for
analytic P-ideals)

Let I be an analytic P-ideal and f,: I — I, n € w. By the well-known result
of Solecki I = Exh(¢) ([Solecki, 1999]), where ¢ is a lower semicontinuous
submeasure (see Section [1.4)).

It was proved in [Mrozek, 2009] that the ideal version of Egorov’s Theorem
holds (in the case of analytic P-ideals) between equi-ideal and pointwise ideal
convergence, i.e. if (f,),., 15 a sequence of measurable functions with f,, =; 0
on I and ¢ > 0, then there exists A ¢ I such that m(A) >1-¢ and f,, »; 0 on

77



A. Moreover, it was proved that the ideal version of Egorov’s Theorem (in the
case of analytic P-ideals) does not hold between uniform ideal and pointwise
ideal convergence except for the trivial and pathological cases (see below, and
also [Mrozek, 2010]).

Fix ¢ such that I = Exh(¢). Notice that since I is a proper ideal, lim;_, o, ¢(w~
i) > 0. If lim; 00 p(w N\ 1) < 00, let

limy e P(w N 7)
- on+1

n

for n € w. Otherwise, set ¢, = 1/2"*1. To use the method described in the
previous section, we state the following definition. For a sequence of functions
F=(fu)en s Jn: I = I such that f, -0, let 0,F € (w*)!, and

(0, F)(x)(n) =min{k e w:p({m e w: frn(z) 2 e} N k) <&y}

The function o4 F., - (w*)! is well defined, because for each n € w,
{kew:p({mew: fr(x) >e,} N k) <e,} is not empty since f, -1 0.

Lemma 3.5 (|[Korch, 2017b]). Let F = (f,),,.., be a sequence of functions such
that fo:I — I. Then f, »; 0 on A € I if and only if (0p({fn),e,))[A] is
bounded in w*. In particular, H=(F.,, 1) holds.

Proof: By definition, f,, -»; 0 on A if and only if for any n € w, there exists
k € w such that for all z € A, ¢({m € w: f,,(x) >e,} N k) <&,. This is true if
and only if there exists a sequence (k,),., of natural numbers such that for
any new and x € A, o({m e w: f, () 2 e,} \ k) < €,, which holds if and only
if for all x € A, (0,F)(x)(n) < k. O

Corollary 3.6 ([Korch, 2017D]). Assume that non(N') < b. Let I be any
analytic P-ideal, € >0, and let F' = (fn),.c,, fo:d = I for n e w, be such that
fn =1 0. Then there exists A ¢ I with m*(A) > 1-¢ such that f, »; 0 on A
(the ideal version of the generalized Egorov’s statement between equi-ideal and
pointwise ideal convergence for analytic P-ideals is consistent with ZFC).

Proof: Apply Theorem [3.2] and Lemma [3.5] m]

Lemma 3.7 ([Korch, 2017b]). For any ¢:I — w*, there exists F' = (fn),c.
ford =1 for new with f,—>;0 such that o4,F >¢. In particular,
H<=(F.,,~1) holds.

Proof: Fix x € I. Notice that ¢(w \ n) is a decreasing sequence with limit
greater or equal to 2g5 > 0, so ¢(w ~n) > 25 > 0 for any n € w. Therefore,
for each m,n € w, there exists k > n such that ¢(k ~n) > ¢,,. Let (k;),., be

€W
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an increasing sequence such that ko = 0 and ¢(ki1 ~ p(2)(3)) > €;, i € w. Set
fi(z) =¢; it k; <j < ki1 Then f,(x) > ¢, if and only if m < k,,1. Hence, if
d({mew: fr(z) 2en} N k) <ey, then k > p(x)(n), so (0,F)(z)(n) > p(x)(n)
for any n € w.

This proves that o is a cofinal function. Therefore by Lemma the
property H<(F.,,—) holds. |

Corollary 3.8 ([Korch, 2017b]). Assume that non(N') = ¢, and that there
exists a c-Lusin set. Let I be any analytic P-ideal. Then there exists F' =
(fa)news foird = I for n e w with f, -5 0 and € > 0 such that for every
A c I with m*(A) 21-¢, f, #1 0 on A (the negation of the ideal version
of the generalized Eqgorov’s statement between equi-ideal and pointwise ideal
convergence for analytic P-ideals is consistent with ZFC).

Proof: We use Theorem B.3] and Lemma m
An analytic P-ideal I = Exh(¢) is non-pathological (see [Mrozek, 2009)])
if for every A cw,

d(A) =sup{u(A):p is a measure on w A j1 < ¢},

[Mrozek, 2009][Example 3.3] proves that the classic Egorov’s statement be-
tween —; and =; does not hold if I is a non-pathological analytic P-ideal which
is not isomorphic to Fin or },., Fin. We analyse this proof to find property
which distinguishes sequences of functions ( f,, ),e, such that f,, - 0, but there
is € > 0 such that f,, %4 0 for any A c I with m(A)>1-¢.

As in [Mrozek, 2009][Example 3.3], notice that if I = Exh(¢) and is not
isomorphic to Fin or Y., Fin, then there exists A ¢ w with A ¢ I such that
limpea p({n}) = 0 ([Mrozek, 2009][Lemma 2.5]). Without a loss of generality
assume that lim,, ., (A~ n) > 1. Therefore we can construct by induction
a sequence of finite pairwise disjoint subsets (A;)ne, € ([w])“ such that
o(Ay) > 1, for all n e w, but ¢({i}) < 1/27 if i € A,,n € w. Let |A,| = k,,, and
let A={a;n:i<k,}. Also, since ¢ is non-pathological, there exists a sequence
of measures (ft,)ne, On w such that p,(A,) =1 for all n € w, and p, < ¢.

Now, assume that F = (f,)ne, € F,. Let

Tom(F) = {x eI f, (2)> 2%}

for new and 7 < k,,.
Fix z € I. Since f, - 0, we get that for all n € w, there exists k € w such
that

1

gb({meA:fm(x) > 2%} N k) <o
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Thus for all n € w, there exists k € w,
({ eAf()>1} k)<1
nlime A f(x) > —1¢~ —.
s on on
Therefore, for all n € w, there exists NV € w such that for all m > N,
1 1
w17 <kt fa, — —.
Thus, for all n € w, there exists N € w such that for all m > N,
1
pn ({i <kmix el nm(F)}) < o

Hence, let op: I - w® be defined as follows, let

op(2)(n) = min {N € ot ({5 < ki € T (F)}) < 2%} |

We get the following.

Proposition 3.9. Let M ¢ I. If op is unbounded on M, then then f, %50
on M.

Proof: Notice that if or is not bounded on M c I, then there exists n € w
such that for infinitely many m € w,

1
pon, ({i <k M 0 1o (F) # @}) 2 o

But, assume that f,, =7 0 on a set M ¢ I. Hence, for any n € w, there
exists k € w such that

¢({m € Aisup{fn(z):xe M} > 2%} \ k) < zin
Thus for all n € w, there exists k € w,

L, ({m € Aisup{fn(z):xe M} > 2%} \ k;) < 2%
Therefore, for all n € w, there exists N € w such that for all m > N,

Lin ({1 < km:sup{faiym(x):x € M} > 2%}) < 2%
Hence, for all n € w, there exists N € w such that for all m > N,

1
pon, ({i <k M 0 I i (F) # @}) < o
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3.3 Countably generated ideals

Notice that in the case of countably generated ideals the generalized Egorov’s
statement holds between uniform ideal and quasi-normal ideal convergence
(see [Das et al., 2014, Theorem 3.2]).

Let us therefore compare the pointwise and uniform ideal convergences.
First, we show that the classic version (for measurable functions) of Egorov’s
Theorem holds in the case of convergence with respect to a countably generated
ideal.

Theorem 3.10 ([Korch, 2017b]). If I € 2% is a countably generated ideal, and
fnid = I, new are Lebesque-measurable functions such that f,, -7 0 and e > 0,
then there exists a measurable set B ¢ I such that m(B) <€ and f, =50 on
I\B.

Proof: Assume that [ is countably generated and fix sets (C;),., such that
C; € Cy41 for all i € w and for every A € I, there exists k € w such that A ¢ C}.
For n,k e w, let

En,k = {Z‘EI:{me:fm(x) > %}\Cnig}

Notice that

1
E.r.= U {a: el:f.(x)> —}
mewNCh,
is measurable for each n,k € w. Moreover, E,1 € E,, and N,en En i = @ for
all kew. Let € >0. For each k € w, there exists nj € w such that

g
m(Enk’k) < W

Let B = Ukew Eny k- S0 m(B) <e, and if z ¢ B, then

{m €w: fru(x) > %} € Ch,s

for any kew, so f, =27 0on I\ B. O

Let us consider the generalized Egorov’s statement in this setting. The
results presented below were proved by Joanna Jureczko using the method of
T. Weiss (see [Weiss, 2004]) directly. We continue to apply the generalization
of Pinciroli’s method as presented above.

Assume that I is countably generated, and fix sets (C;),., such that C; c
C;4q for all 7 € w and for every A € I, there exists k£ € w such that A ¢ C),. We
can assume that C;,1 N C; # @ for all i € w.
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If F'=(fu),e» fn =10, we define

(0(cyyF)(x)(n) = min {k; € w: {m €w: fru(x) > 2%} c C’k} .

Notice that if A ¢ I, then f,, =7 0 on A if and only if (o(¢,) F')[A] is bounded,
and so H=(F.,,=r) holds. Therefore, we get the following theorem.

Corollary 3.11 ([Korch, 2017b]). Assume that non(N') < b. Let I be any
countably generated ideal, and let € > 0. Let F' = (fy), e, forl = I, fornew
be such that f, -1 0. Then there exists A € I with m*(A) > 1—¢ such that
fn =210 on A (the ideal version of the generalized Egorov’s statement between

uniform ideal and pointwise ideal convergence for countably generated ideals is
consistent with ZFC).

Proof: Apply Theorem [3.2 O

Lemma 3.12 ([Korch, 2017b]). For any ¢:I — w* there exists F = (fn), e
fo:I = I, f, >1 0 for new such that o,y F' = ¢. In particular, H=(F-,,31)
holds.

Proof: Without a loss of generality we can assume that ¢(x) is increasing
for all x e I. Let x € I. Let f;(x) =1/2" if and only if

J € Co@yna1) N Cop(a)(m)-
O

Corollary 3.13 ([Korch, 2017h]). Assume that non(N') = ¢, and that there
exists a ¢-Lusin set. Let I be any countably generated ideal. Then there exists
F = fu)news [ = I forn e w with f,, > 0, and € > 0 such that for all
AcT withm*(A) >1-¢, f, #10 on A (the negation of the ideal version of
the generalized Eqgorov’s statement between uniform ideal and pointwise ideals
convergence for countably generated ideal is consistent with ZFC).

Proof: Apply Theorem [3.3] and Lemma [3.12] O

3.4 [*-convergence for countably generated ide-
als

As before, let (fy,),., fo:I = I, and let I be an ideal on w.

Notice that for any ideal I, the generalized Egorov’s statement holds be-
tween [*-uniform and I*-quasinormal convergence (see [Das et al., 2014, The-
orem 3.3]).
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Let us therefore compare the pointwise and uniform ideal convergences.
First, we show that the classic version (for measurable functions) of Egorov’s
Theorem holds in the case of I*-convergence with respect to a countably gen-
erated ideal I.

Theorem 3.14 ([Korch, 2017b]). If I < 2¥ is a countably generated ideal and
fo:d = I, n e w are Lebesque-measurable functions such that f, - 0 and

e > 0, then there exists a measurable set B € I such that m(B) < e and
fo=zr+0onINB.

Proof: Assume that I is countably generated and fix (C,),,, such that
for all A € I, there exists n € w with A € C,,. Let w~ C, = {m;,,:i € w},
Mit1n > Min, 1, €w, and

F, = {x e I'lim f,,,  (2) = 0}

Obviously, F, ¢ F,,,1 for n € w and U,,e, F;, = I. Moreover,

F.=NUN {a: el f, (7)< %}
tew jew k>j
is measurable. Therefore, there exists N € w such that m(Fy) > 1-¢/2. Now
apply the classic Egorov’s Theorem for the set Fly, ( Jma, N>i€w and €/2 to get
a set A ¢ Fy such that f,,, , converges uniformly on Fy \ A and m(A) < ¢/2.
Let B=Au (I Fy). We get that f, 2+ 0 on I~ B and m(B) <e. O
Let us consider the generalized Egorov’s statement in this setting. Assume
that I is countably generated and fix (C,),,, such that for all A e I, there
exists n € w such that A ¢ C,. Let F' = (f,),., be such that f, - 0. Let
F = {(fn)new be such that f, »+ 0. For x € I define o(c,)(F)(x) =¥ € w” by

1/1(0) = min {n cw: <fm>m6w\6’n - O} )

1
w(n) = min {m Ew: VZew\Cw(o) fl(x) < 2_n} , n>0.
I>m
Obviously, o(c,)F' is bounded if and only if f, =+ 0, and so the property
H=(F.,.,3+) holds.

Therefore, we get the following theorem.

Corollary 3.15 ([Korch, 2017b]). Assume that non(N') < b. Let I be any
countably generated ideal, and let € >0 and F = (f,),.,, fu:d = I forn e w,
with f, >~ 0. Then there exists A € I with m*(A) >1—¢ such that f, =3~ 0
on A (the ideal version of the generalized Eqgorov’s statement between uniform

I* and pointwise I* convergence for countably generated ideals is consistent
with ZFC).
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Proof: Apply Theorem [3.2] o

Lemma 3.16 ([Korch, 2017b]). For any ¢:I — w*, there exists F = (fn),...,
oI =1, f, =+ 0 for n€w such that oc, I > . In particular, the condition
H<=(F. .,=3) holds.

I*)

Proof: It is enough to prove the lemma for ¢ such that ¢(x) is increasing
for all z € I. Let x € I. Let w\ Ciuy0) = {mati € w}, myq >m; for i e w. Let
fi(x) =1 for j e Cpuyo) and let f;(x) =1/2" if

Je(wN Cyayo)) N{icwp(z)(n) <i<p(x)(n+1)}.
O

Corollary 3.17 ([Korch, 2017b]). Assume that non(N) = ¢, and that there
exists a c-Lusin set. Let I be any countably generated ideal. Then there exists
F ={fu)yews [ = I for n ew, with f, -+ 0, and € > 0 such that for all
A c I with m*(A) > 1-¢, f, #1+ 0 on A (the negation of the ideal version
of the generalized Egorov’s statement between uniform I* and pointwise I*
convergence for countably generated ideals is consistent with ZFC).

Proof: Apply Theorem [3.3] and Lemma [3.16] O

3.5 Ideals Fin®

In [Mrozek, 2010, Theorem 3.25], N. Mrozek proves that ideal Fin® for any « <
w; satisfies Egorov’s Theorem for ideals (between uniform ideal and pointwise
ideal convergences).

Let Fo = F.. .o We get the following theorem.

Theorem 3.18 ([Korch, 2017D]). Assume that non(N) < b. Let 0 < a < wy,
and let € >0 and F = (fy),, fo:d = I for new, with f, >ppe 0. Then there
exists A € I with m*(A) > 1-¢ such that f, Zpime 0 on A (the ideal version of
the generalized Egorov’s statement between uniform Fin® and pointwise Fin®
convergence is consistent with ZFC).

Proof: Fix a bijection b:w? - w and a bijection ag:w — S\ {0} for any limit
S < wy. We define o,: F, = (w*)! in the following way. Let &, = 1/2" for n € w,
and let

Fi={{fu)new : Ynewfn : T > I AV per{q e w: fy(x) > €, } € Fin®}.
First, define o?: F? - (w¥)I, n € w,0 < a < wy, by induction on «. Let

M e = min{p € w: Vs, fo(7) <€},
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and let
(T F)(z)(k) = My .

be a constant sequence. Given o7, let
My p, = min {p € WiV gop{m € wi fygm)(T) 2 e} € Fino‘} ,
and

Ma+1,n,a: for k = b(pa Q)v

on 1 F)(x)(k) = P<Myiinzs+1,qew,
(01 F)()(F) (o2 fop1my). ) (@) (a),  for k= b(p.q),

P> Myiinz+1,qew.

This definition is correct, since ( fb(p_l’T)>7‘€w e Frr for p> Myi1pmq + 1.
Moreover, for limit 8 < wq, let

Mg e =min{p € w: Voo, {m € w: fygmy(2) > €} € Fing () }
and
Mﬁ,n,w fOI' k = b(p7 Q)7

(o3 F)(x)(k) P<Mpns+1,qew,
0 X =
’ (OZﬁ(P—l) <fb(P—17T)>r6w) (x)(q), for k=b(p,q),

P>Mpgp,+1,qcw.

This definition is correct, since, for each p > Mg, , + 1, ( fb(p—l,r))
Notice that F, ¢ F2, for any n € w. Therefore, finally let

(0aF)(2) () = (0a F)(x)(m),

for k =b(n,m), n,m € w.

Now, notice that if F' = (f,),., € Fa, and 0, F is bounded on a set A c I,
then f, Zpime 0 on A. Indeed, if 0, F is bounded, then for each n € w, o F' is
bounded. If so, {m ew:sup 4 fin(z) 2 €,} € Fin®, for all n e w. We fix n e w
and prove this statement by induction on « < wy. Let (o2F)(x)(k) < ay,, for
all z € A,k e w and some (agn),. ew’. If a=1, weget f,(x)<e, forallze A
and all ¢ > ag, so

eFn .
rew faﬁ(p—l)

{m € w:sup f(x) > €n} € Fin.
reA
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Now, assume that the statement holds for some « < wy. Then for all = € A,
Mei1m2 < ayo,0), so for all p > a0y, 0% (fb(l’*lﬂ"»rew is bounded by <ab(p,q))
and thus by the induction hypothesis,

gew’

{r € WiSup fip-1,r) 2 5n} € Fin®
zeA

for all p > ay,0). Therefore,

{m ew:sup f(z) > En} ¢ Fin***.
zeA

Analogous reasoning can be easily applied for limit § < w;. This proves that
H=(Fa, ZFine) holds.

Therefore, by Theorem [3.2] there exists A ¢ I with m*(A4) > 1-¢ such that
frn 2pine 0 on A. O
Theorem 3.19 ([Korch, 2017h]). Assume that non(N') = ¢, and that there
exists a c-Lusin set. Let 0 < a <wy. Then there exist (fy), ., € Fo and e >0
such that for all A < I with m*(A) > 1-¢, f, Erine 0 on A (the negation of the
ideal version of the generalized Egorov’s statement between uniform Fin® and
pointwise Fin® convergence for countably generated ideals is consistent with

ZFC).

Proof: As before, let &, = 1/2", n € w. This time, we define o, in a different
way then in the previous proof. Namely, let

(OCMF)(I)(H) = Moz

where M, ., is defined as in the previous proof. Notice that if F' = (f,)
such that f, 2pine 0 on a set Ac I, then

{m € w:sup frn(x) > €n} e Fin®

reA

new 18

for all n e w. If @ =1, this means that
min{p € w: Vs, fy(z) <en} = My, =01 F(2)(n)

is bounded on A. If « is a limit ordinal, then for all n € w, there exists M,
such that for all ¢ > M, {m € w: fygm)(x) > €.} € Fin,,(g). In other words,
My o = 0o F(x) is bounded on A. Similar argument can be used in the case
of a successor ordinal o > 1.

Moreover, fix any ¢: I - w¥. Without a loss of generality, assume that for
x € I, p(z) is increasing. There exists F' = (f,),., € F such that o,(F) > ¢.
It is obvious for a = 1. For a > 1, let f,(z) = ¢, for k =b(i,j), p(z)(k) <n<
o(x)(k+1). Therefore H<=(F,,3Fne) holds.

In conclusion, by Theorem , there exist (f,,),., € F and € > 0 such that
for all Ac I with m*(A)>1-¢, f, Fpine 0 on A. O
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3.6 Even more generalized approach and open
problems

In [Repicky, 2017], Miroslav Repicky generalized further my results presented
above. In this section I present some of his results along with further open
problems.

3.6.1 Preliminaries

For a sequence of functions f,, : I - I and subsets A ¢ I, we consider notion
of convergence f, & f on A. As before, we assume that if Bc A and f, $ f
on A, then f, & f on B, and write f, & f provided that f, & f on I. Let
F < {{fu)new : Voewfn : I = I} be an arbitrary family of sequences of functions.
A mapping 0: F - (w*®)! is said to be measurability preserving, if for any
sequence of measurable functions (f,,)ne, € F, o(f) is measurable as well.

Apart from hypothesis (H=(F, %)) and (H=(F, %)), we consider other
hypotheses between F and S:

(H=(F,%)) There exists o: F — (w*)! such that for every F € F and every
AcTif o(F)[A] is bounded in (w¥,<*), then F' 3 0 on A.

(H=(F,%)) There exists o0 : F - (w*)! which is cofinal (with respect to <)
such that for every F' € F and every Ac I, if FF G 0 on A, then o( F)[A]
is bounded in (wv,<*).

(M=(F,%)) There exists measurability preserving o : F — (w¥)! such that
for every F' € F and every A c I if o(F)[A] is bounded in (w¥,<), then
F 3% 0on A.

(M<=(F,%)) There exists measurability preserving cofinal o : F - (w¥)! such
that for every F' € F and every Ac I, if FF % 0 on A, then o(F)[A] is
bounded in (w¥,<).

(M=(F,%)) There exists measurability preserving o : F — (w®)T such that
for every F' e F and every A c I if o(F')[A] is bounded in (w*,<*), then
F% 0on A.

(M=(F,%)) There exists measurability preserving o : F — (w®)! which is
cofinal (with respect to <) such that for every F' € F and every A c I, if
F % 0 on A, then o( F)[A] is bounded in (w®, <*).

Obviously, we get the following implications.
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Proposition 3.20.

H=(%r,q») - H=(%f,q») HC(?%) = Hc(ﬂf,%)
M=(F,%) = M=(F, %) M=(F,%) = M<(F,%)

O

As before, assume that we are given two notions of convergence of sequences
of functions f, ~ f and f, & f such that f, & f implies f, ~ f, and take

Foo = {{fadnewt Vs fou: T > T A foy ~ 0},
Notice the following observation.

Corollary 3.21 ([Repicky, 2017]). Assume that M= (F.,, %) holds. Then for
every sequence of measurable functions F = (f,), € w € F.,, and € > 0, there
exists a measurable set A I such that m(A) >1-¢, and f % 0 on A (i.e. the
classical Egorov’s statement holds between ~ and % ).

Proof: We reformulate the proof of Egorov’s Theorem. Take measurability
preserving o : F — (w¥)! such that for every F' € F and every Ac I if o( F")[A]
is bounded in (w¥,<), then FF % 0 on A. Let

E.r={zel:o(F)(x)(k)>n}.

Notice that E, ; is a Borel set for every n,k € w. Moreover, E, .1 € E, j, for
any n,k € w, and Nye, Eni = @, for all k € w. Therefore, for each k € w, there
exists ny € w such that

9
m (Enk,k) < W
Let
B = U Enk,ka
kew

and A =TI~ B. Then for all z € A, o(F)(x)(k) < ny for all k € w. Therefore,

o(F)[A] is bounded in (w¥, <), and so f,, 0 on A, and m(A) > 1-¢, because

m(B) <e. O
Recall also Theorems 3.2 and 3.3

Corollary 3.22 (|[Korch, 2017b]). Assume that H=(F.,%) holds. If
non(N') < b, then for every sequence of functions F = (f,), € w € F., and
e >0, there exists a set A c I such that m*(A) >1-¢, and f S 0 on A (i.e.
the generalized Egorov’s statement holds between ~ and % ).

Proof: See Theorem B.2] O
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Corollary 3.23 ([Korch, 2017b]). Assume that non(N') = ¢, and that there
exists a c-Lusin set. If H=(F., ) holds, then there exist (fu),., € F~ and
e > 0 such that for all A ¢ I with m*(A) >1-¢, f, 0 on A (i.e. the
generalized Egorov’s statement fails between ~ and % ).

Proof: The proof of Theorem (3.3|is also valid if we have that o( F)[A;] is
bounded in (w®,<*). O

3.6.2 Repicky’s results

Let I be an ideal on w. In [Repicky, 2017] the property H<=(F., %), where
~ and § are various notions of convergence with respect to I is considered.
In particular, it is proven that if ~ is any notion of convergence weaker than

—, and % is stronger than =; U @—)[*, then H=(F.,%) holds. This re-
sult along with Corollary implies immediately Corollaries [3.13] [3.17 and
Theorem [3.191

Actually, the function obtained in the proof of this observation witnesses
M<=(F.,,%), and we have the following.

Corollary 3.24. Assume that I is an ideal on w, and ~ is any notion of con-

N _
vergence weaker than —, and 9 is stronger than = U Q—ﬁ*, then M=(F., %)
holds.

Proof: In the proof of [Repicky, 2017][Lemma 2.1] the function o: F., —
(w¥)! such that

o(F)(x)(n) = {gmn(C’fwvn), if Cf’xJ_L *+J,
, otherwise,

where Cy ., = {m € w: f,,(z) < 1/2"}, is considered. It is proven that under
the assumptions of this Corollary this function witnesses H<(F.,%). But it
is easy to see that it is also measure preserving. O

M. Repicky considers also the closure properties of classes Z of all ideals
which  satisfy respectively one of the properties: H=(F.,, =),
M=(F.,,3r1), H=(F,,.,3) or M=(F.,.,3+). Those results are summa-
rized in Table[3.1] where b:wxw — w is a fixed bijection. The results along with

Corollaries and encompass Theorems [3.10] [3.14], [3.18] and Corollar-
ies B.11] and B.18l

I*)
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06

I:| M=(F,,,30) | H=(F.,.30) | M= (F.,.,30) | H=(F. ., 31)
Fin € v v N N
B c w is coinfinite, then (B) € v v v v
downward <gg closed v v
downward <gzp closed v v v v
(In)new € Z%, then b[Y,c, In] € v v v v
J €[Z]v, then NZ € v v v v
I,JeZ, Jis a P-ideal, then [ v J € v v
(In)new € Z%, then V{I,;ncw} € v
(1) new 1s an increasing sequence of ide- v v
als from 7, then V{[,;n ew} €
(I)new 1s an increasing sequence of an- v v v
alytic ideals from Z, then \/{[,:n e w} €
(I)new 1s an increasing sequence of v v v v
Borel ideals from Z, then \/{I,:n € w} €
TeZ, (I)wew € 29, b[I-Tloo, In] € 7 7
I €Z, (I,)ne is a sequence of analytic v v v v
ideals from Z, b[I- T, In] €
[T, (Iywew €%, I-lim,__1, € v v
I €Z, (I,)ne is a sequence of analytic v v v v
ideals from Z, I-lim, . I, €

Table 3.1: [Repicky, 2017|[Theorems 3.2-3.5].



3.6.3 Open problems

Question 3.25. Is there any possible condition, which implies that classic

Egorov’s statement (measurable version) does not hold for a given ideal in
ZFC (cf. Proposition|3.9)?

Question 3.26. Are there any examples of ideals which prove that the classes
of all ideals satisfying M=(F.,,=1), H=(F.,,=31), M~(F..,31),
and H=(F. ,,=+) are pairwise distinct?

I*)

I*?

Question 3.27. Is there an ideal I such that H< (]—LI, ﬂl) does not hold?
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Chapter 4

Special subsets of 2%: simple
generalizations

The aim of this chapter is to generalize to the case of 2% different notions
of special subsets defined for 2« (see Section , and check their properties
and relations between them. Most of the results presented here have their
counterparts in the standard case of 2¢, and if so I give a reference in the form
(w: [n]).

The results presented in this chapter consist of relatively simple general-
izations of some results summarized in [Miller, 1984] and [Bukovsky, 2011] to
the case of the generalized Cantor space.

The generalized Cantor space, preliminaries and related notions were in-
troduced in Section [L.5]

The results of this chapter are to be included in [Korch and Weiss, 2017].

4.1 Lusin sets for s

Let k < A <2% A set L c 2% such that |L| > A, and if X € 2% is any x-meager
set, then | X' nL| < A will be called a A\-k-Lusin set. A k*-x-Lusin set is simply
called a Lusin set for k.

Theorem 4.1 (w: [Bukovsky, 2011]). If A = cou(M,,) = col M), then there
exists a A\-k-Lusin set.

Proof: The proof is straightforward as in the case k = w. Let (A, < A) be
a sequence of k-meagre sets such that for every x-meagre set A, there exists
a < k such that A ¢ A,. Inductively, for a < A\, choose

xaegn\({m:@<a}uufxﬁ).

B<a
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The above is always possible because a complement of a union of < A k-meagre

sets is always not empty and even of cardinality > A, because for every x € 2%,

{z} is k-meagre. Now, set L = {z,:ax < A} to get a A-k-Lusin set. O
Immediately, we get the following corollary.

Corollary 4.2 (w: [Miller, 1984, Bukovsky, 2011]). Assume CH,. Then there
exists a Lusin set for k in 2%.

O
On the other hand, the existence of a A-k-Lusin set constrains the value of

cov(M,,).

Proposition 4.3 (w: [Bukovsky, 2011]). Assume that X is a regular cardinal
and kK < A< 2%, If L is a A\-k-Lusin set, then |L| < cou(My).

Proof: Let L be a A-s-Lusin set, and let (A4 )a<cov(m,) be a sequence of
k-meagre sets such that Uaccov(a,) Aa = 27. Notice that

L= |J (Aunl).
a<cov(My)

But for any o < cov(M,), |Ln A, < A. Since X < |L|, we get that |L| <
cov(M,). i

Corollary 4.4 (w: [Bukovsky, 2011]). Assume that X is a regular cardinal,
K < A <25 and that there exists a A-k-Lusin set L. Then non(M,) < X <
cov(M,,).

4.2 Sets of k-strong measure zero

A set A ¢ 2% will be called x-strongly measure zero (SN ) if for every
(€a)a<n € K&, there exists (x,),.,. such that z, € 2%, a <k and A € Uy<[a]
(see also [Halko, 1996] and [Halko and Shelah, 2001]). Obviously if A € [2%]",
then A € SN...

The well-known characterization of strongly null sets can be generalized to
K.

Proposition 4.5 (w: [Bukovsky, 2011]). If A € SN, and {£,)a<x € K, there
exists (za) ... € (Q%)* such that x, € 28 for all a < k, and

Ac) U [=s].

a<k a<f<k

a<K
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Proof: Let (X, )a<x € [£]" be a sequence of pairwise disjoint sets such that
Ua<x X = K. Since A € SN/, for all a < k, there exist (x5)gex, € (27)%« such
that A c UggXa [.%g rg/g] Then

Ac ) U [zs1és].

a<k a<f<k

a
In particular, the family of SA/,; sets forms a x*-complete ideal.
Notice also that 2% ¢ SA/,.. Indeed, assume otherwise, and take {aq)q<x €
(27)" such that 2% = Uaer[aala+1]. Let z € 2% be such that x(«) = an(a) + 1.
Then

re2'N Jlaata+1],

a<k

which is a contradiction.

The Generalized Borel Conjecture for x (GBC(k)) states that SN/, =
[2¢]

Some properties of this «class of sets were considered in
[Halko and Shelah, 2001]. In particular, it is proven that if x is a successor
cardinal, then SA/,, is a b,-additive ideal. Under Generalized Martin Axiom
for k (GMA(k), see [Shelah, 1978]), b, = 2%, so then SN/ is 2f-additive. Fi-
nally, it is proven that GBC(k) fails for successor k.

We study some other properties of k-strong measure zero sets.

Proposition 4.6 (w;: [Halko, 1996]). Assume that k is a strongly inaccessible
cardinal. Then the family of all closed subsets of 2% which are not SN,, does
not satisfy 2%-chain condition.

Proof: Let X € [k]*, and let
Ax ={x € 2"V penxz(a) =0} .

Notice that Ay is a closed set in 2%, and moreover Ay ¢ SN ... Indeed, consider
X' ={a+Lae X} Let (x4),.4 € (2¢)" be any sequence, and let z € 2% be
such that

ro(a)+1, ifaeX,
() = :
0, otherwise.
Then
reAx~ J[zala+1],

aeX

so Ax ¢ SN...
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Since k<F = K, we can take a family F of subsets of x such that |F| = 2%,
and for all X,Y ¢ F, [X nY| <k if X #Y (see Section [L.5]). Consider the
family A={Ax: X e F}. If XY € F are such that X #Y, then

AX N Ay = {SE €2 VaEH\(XﬁY)QJ(O[) = 0} :

so |Ax n Ay| = 2* < k (k is strongly inaccessible), for some A\ < k, because
|IX nY]| < k. Thus Ax n Ay € SN, and A is an antichain of size 2° in the
family of all closed subsets of 2% which are not SA/,. O

Proposition 4.7 (w: [Miller, 1984]). Assume CH,. Then there exists a Lusin
set for k L such that L x L ¢ SN ,.

Proof: Let (X,:a < k*) be an enumeration of all closed nowhere dense sets,
and let {y,:a < k*} = 2% Inductively, for a < k*, choose

To, Th €27 N ({xﬁzﬁ <aju{zgp<ajul Xg)
B<a

such that x, + x/, = y,. This is possible, since

Fo={zgf<auf{zpf<alul] Xz
B<a

is k-meagre, so (y, + F,) U F, is also k-meagre. Thus, there exists x, ¢ (y, +
F,) uF,. Let x!, = x4 + yo. Then also 7, ¢ F,.

Obviously L is a Lusin set for x. Nevertheless, L x L is not a SN/, set.
Indeed, let f:2% x 2% — 2% be given by f(x,z') = x + 2/. Notice that if a < K
is a limit ordinal, then ¢(0,«) = «, where g is the canonical well-ordering of
2 x k. Therefore, if x € 28, for w < 8 < Kk, then [x] when considered as a subset
of 2% x 2% is contained in [y] x [z], where y, z € 2% with « a limit ordinal such
that a < f < a+w. This implies that f[[z]] € [y + 2], and thus if X ¢ 2% x 2%
is r-strongly null, then f[X]is SN, as well. But f[L]=2% so L¢SN,. O

Next, we study the possibility of generalization of Galvin, Mycielski and
Solovay ([Galvin et al., 1973]) characterization of strongly null sets. One of
the implications can be generalized under no additional assumptions.

Proposition 4.8 (w: [Miller, 1984] [Bukovsky, 2011]). Let A be such that for
any nowhere dense set F, there exists x € 2% such that (r+ A)n F =@. Then,
A is SN ,..

Proof: Let {{,:a < k} € [k]*. Fix an enumeration
{zara <k} =Q,
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and let
F =2\ J[wa o]

a<k

Since F' is nowhere dense, there exists x € 2% such that (z + A)n F = @.

Therefore,
Ac (o + )]

a<K
O
The reversed implication can be generalized if k is a weakly compact car-
dinal.

Lemma 4.9 (w: [Miller, 1984 Bukovsky, 2011]). Assume that k is weakly
compact. For any closed nowhere dense set C' € 25 and s € 2<%, there exists
E<k and F c{s' €2<%:5 ¢ s'} with |F| <k such that for any t € 25, there exists
s' € F such that ([s'] +[t]) nC = @.

Proof: Let x € 2%. Since x + C is nowhere dense, we can find s, 2 s such
that [s,]n(z+C) =@. Let o, =len(s,). Then

([ztag] +[s:])nC=2.

The family {[zla,]:z € 28} is an open covering of 2%, and since k is weakly
compact, there exists A < k and a sequence (x4 )a<x such that {[z, oy, ] <A}
covers 2%. Let F = {s,:a < A}, and & = Uper g, < k. If t € 25 then there
exists a < A such that z,tay, St, so [t] € [zalay,]. Therefore,

([ ]+ 1) NC = 2.
O

Theorem 4.10 (w: [Miller, 1984, Bukovsky, 2011]). Assume that  is a weakly
compact cardinal, and A € 25 is SN.. Then for any k-meagre set F, there
exists x € 2% such that (v + A)n F = @.

Proof: Let F' = Uq<, Co with C,, closed nowhere dense sets. We can assume
that C, € Cs if a < f3.

We construct inductively a tree T' € k%, along with sequences (3, )uer, (§u)uer €
kT, and (sy) 7 € (2<)" such that:

(a) f ue TNk, B<k, then {v e TnrPlucu'}={uaa<di,},
(b) for any u,u’ € T if u ¢ u', then s, ¢ Sy,
(c) for any ue T nkP, B <k, and t € 25, there exists « <, such that

([sual +[t])nCs = 2.
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Precisely, let sy = @. If u € TnkP, B < k, apply Lemma to C and s,
to get &, < k and F, ¢ {s' € 2<":s € s’} with |F| = 0, < k such that for any
t € 2% there exists s’ € F,, so that ([s'] + [t]) n Cs = @. Fix an enumeration
Fy = {s) a0 <0y}, and put {v' € T nrkPliu cu'} = {umaze < §,}. For all
a <Oy, let sy~q = 8], . If B <k is a limit ordinal, let

Tk’ ={uer’VputaeT}.

Also, for ue T'n kP, let s, = Upep Suta-
Next, define (0a)a<x; (§a)a<x in the following way. For a < k, let
604 = U 51“
ueTNK™

and

éa: U €u

uel'NK®
Notice that for all a < K, d4,&, < k. Indeed, if it is the case for a < k, then
|T N k| = 04 < K,y SO Oar1,Eas1 < K since k is regular. If «v is a limit ordinal,
then T'n k* ¢ 6* with 0 = Up<q0s < K. And 0% < K, because & is strongly
inaccessible (every weakly compact cardinal is strongly inaccessible).
A'is SN .. Therefore, there exists ()., such that z,, € 25, a € x and

Ac ﬂ U [a]-

B<k B<a<k
By induction construct y € k¥ such that:
(a) for all a <k, ytaeT,
(b) for all o < &, ([Sy1(asn)] + [Ta]) N Cu = @.
Precisely, let y(a) < 0,14 be such that
([sywy(a)] + [a:a]) nC, =a.

Notice that if « is a limit ordinal, then

yta=JytBeT.
B<a
Finally, let
z = syta € 2%
o<k
Notice that for all § < a <k, we get (z + [x,]) N Cs = @. Therefore,
(zr+A)nF=g2.

O
The above propositions imply two following corollaries (see [Bukovsky, 2011,
Corollary 8.14]).
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Proposition 4.11 (w: [Bukovsky, 2011]). Assume that  is weakly compact,
and A, B € 2% are such that |A| < add(M,) and B € SN,.. Then AuB € SN,..

Proof: As in the proof of [Bukovsky, 2011, Corollary 8.14], assume that 0 €
AnB. Let F be r-meagre. Then (AuB)+F ¢ B+A+F % 2%, by Theorem [4.10]
because A + F is k-meagre. Thus, Au B is SN, by Proposition [£.§| O

Proposition 4.12 (w: [Bukovsky, 2011]). If A c 2%, and |A| < cou(M,,), then
AeSN,.

Proof: Indeed, if F' is k-meagre, then A + F' = U,eqa + F # 25. Therefore
by Proposition AeSN,. O

4.3 ~r™-Concentrated sets

Furthermore, a set A ¢ 2% will be called \-concentrated on a set B c 2~ (for
K < A < 2%) if for any open set G such that B € G, we have |[A\ G| < .

The relation between concentrated sets, Lusin sets, and strongly null sets
can be easily generalized to k.

Proposition 4.13 (w: [Miller, 1984] Bukovsky, 2011]). A set A € 2% is a Lusin
set for k if and only if |A| > k and is k*-concentrated on every dense set D ¢ 2%
with |D| = k.

Proof: Indeed, if A is a Lusin set for x, then |A| > x and moreover, if
D c 2% is dense with |D| = k, and G 2 D is open, then G is a dense open set,
so |JANG|=[(28NG)n Al < k.

On the other hand, let A ¢ 2% with |A| > k be a set x*-concentrated on
every dense set D ¢ 2% with |D| = k and let X ¢ 2% be a nowhere dense set.
Since X is contained in a closed nowhere dense set, 25 \ X 2 G, where G is
a dense open set. But there exists a basis of size k, so there is a dense set
D c G with |D| = k, and hence A is xk*-concentrated on D. Thus, |A\ G| < &,
so A is a Lusin set for . O

Proposition 4.14 (w: [Miller, 1984 [Bukovsky, 2011]). If a set A ¢ 2% is
k*-concentrated on a set B such that |B| < k, then A€ SN .

Proof: Fix an enumeration of B, B = {b,:a < k}. Let I = {{,:a < Kk} € [K]",
and let f:x x{0,1} - k be a bijection. Moreover, let

G = [balsn]-

a<k
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Then |AN G| <k, so let ANG = {cy:a < k}. Therefore,
Ac U [batéran]v U [ealéran],

Q<K a<kK

which proves that A € SA,. O

Corollary 4.15 (w: [Miller, 1984] Bukovsky, 2011]). Every Lusin set for k is
SN,

On the other hand, we get the following.

Proposition 4.16 (w: |[Miller, 1984]). Assume C'H,. Then there exists a set
A c 25 such that A € SN\, but A is not k*-concentrated on any B ¢ 25 with
|B| < k.

Proof: Let (X,:a < k*) be an enumeration of all closed nowhere dense sets.
Inductively, for a < k™, choose a perfect nowhere dense set P, such that

Pam(UPBuUXa)=®.

B<a B<a

Choosing such a set is possible since every co-meagre set contains a k-perfect

set (see Section [L.F)).

Therefore, for any a < g < k*, P, is a perfect nowhere dense set, and
P, n Pg =@. Moreover, if X is k-meagre, then there exists { < x* such that

Mn LJ fb = .
E<B<kT
Let I ={{;:a<k}e[k]r, and let
iRl x{0jur xkx {1} >«
be a bijection. For s € [k]<%, let x5 € 2® be the characteristic function of s, and
let
G = H< [Xs fff(s,o)] .

Notice that G is open and dense, and therefore there exists £ < k* such that

L,J f% cd.

E<B<k®

Let L, € P, be a Lusin set relativized to P,, a < k™, and let A = Uy<pt La-
Let g:£ +1 — & be an injection. Since for all 8 < x*, we have Lg € SN/, let
(Tap €2 < kK, [ <), be such that for all 5 <¢,

Lg € U [Tasf@g)n)] -

a<k
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Then

Ac U PulULse U [tenlvU U [zastéseasn]
§<B<k* B<E se[K]<r B<E a<k
so AeSN..
On the other hand, if B ¢ 2% with |B| < k, then there exists a < k* such
that P, n B = @. Therefore, G = 2 \ P, is an open set such that B ¢ G, but

ANG=AnP,=L,,
and |Ly| > k. O

Proposition 4.17 (w: [Bukovsky, 2011]). If A € 2% is cov(M,)-concentrated
on a SN, set, then A is also SN ,..

Proof: Let f:2x Kk — k be a bijection and (£,)a<x € K*. Let A € 2% be
cov(M,)-concentrated on a SN/, set B. There exists a sequence (aq)a<x €
(2%)* such that

Bc G =laaler0,0)]-

a<k

G is open, therefore |A\ G| < cov(M,). By Proposition f.12] A\ G € SN/, so
there exists a sequence (by )a<x € (2%)" such that

ANGc U [ba Tff(l,a)]-

a<k

Therefore,

Ac Ulaalér0m] U UDbalésm]-

a<k a<k

4.4 Perfectly r-meagre sets and k-\-sets

A set A c 2% is a k-A-set if for any B ¢ A with |B| < x there exists a sequence
(Ba) e Where B, € 2% are open, and N, Bo N A = B.

Furthermore, a set A ¢ 2¢ will be called perfectly x-meagre (PM,) if
for every perfect P c 2% An P is k-meagre relatively to P. Additionally, a set
A ¢ 2% will be called k-perfectly x-meagre (P.M.,) if for every k-perfect
P c 25 An P is k-meagre relatively to P. Obviously, if A € PM,, then
AeP.M,.

Proposition 4.18 (w: [Miller, 1984 Bukovsky, 2011]). Every r-A-set A c 2%
is perfectly k-meagre.
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Proof: Let P c 2% be a perfect set and An P # &. Since there exists a base
of size K, we can find a set B ¢ Pn A with |B| < k which is dense in Pn A. Let
(Ba) <. be a sequence of open sets such that N, By N A = B. Therefore,

PnAcBulJ(PnANB,)

a<K

is k-meagre in P. O

On the other hand, since not every k-analytic subset of 2% has to have k-
Baire property (see e.g. [Friedman, 2013]), it is not clear whether there always
exists a PM,, set of cardinality greater then k.

Question 4.19. Is there a set A € 25 such that |A| = k* and A € PM,, in
every model of ZFC.

A set A will be called a k-A'-set if for any F' such that |F| <k, AUF is
a k-A-set.

Proposition 4.20 (w: [Miller, 1984]). A union of k many k-\'-sets is a k-\'-
set.

Proof: Indeed, let (A,)a<x be a sequence of k-A-sets, and let F' be such
that || < k. Then, let (Ga ), 5., Pe a collection of open sets such that

F=(A,uF)n () Gap,
B<k

for any o < k. We have that

P-(Fuyan 0 6o

a<k a,B<k

o

Proposition 4.21 (w: [Miller, 1984]). If XY are k-X sets, then X xY is also
a K-\ set.

Proof: Let F' ¢ X xY be such that |F| < k. Then Fy = m[F] and Fy = mo[ F]
are also at most of cardinality x. Let (Ga1),.,. and (Ga2). . be such that

<K <K

F1=XﬂmGa71

<K

and
FQ =Yn m Gmg.

a<K
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We obtain

F=XxYn()Ga1x2°n()2°xGaon [ (2"x2°\{z}).
a<K a<K xeF xFoNF
O
The above proposition can be proven analogously for -\’ sets.

A set A € 2% is a k-sg-set if for any k-perfect P C 2%, there exists a k-perfect
set ) € P such that Qn A =@.

Proposition 4.22 (w: [Miller, 1984 Bukovsky, 2011]). Every P.M, set is
a K-Sg-set.

Proof: Let P be k-perfect, and A € P, M,.. There exists a homeomorphism
h: P — 2%. Then h[A n P] is k-meagre, so there exists a rk-perfect set Q' c
28 N h[A]. Then @ = h™1[Q'] is a k-perfect set included in P\ A. O

Similar proposition can be proven for PM, sets.

Proposition 4.23 (w: [Miller, 1984] Bukovsky, 2011)). Every PM,,; set is an
Sp-set.

Proof: If G = Uye. G4 € P with G, nowhere dense in P, we construct by
induction a partial function F:2<¢ — Tp such that for s,s’ € domF, s ¢ s’ if
and only if F(s) ¢ F(s'). Indeed, let F (@) be such that [F(@)]n Gy = @.
Then, given F(s), s € 22 ndomF, let t; 2 F(s) be such that [ts] N Guy1 = @.
Set F'(s70) =t,70 and F(s°1) = ¢,~1. For limit 8 < k, and s € 2% such that
sta e domF for all a < 3, let t5 = Upep F(star). If ts € Tp, then let F(s) 2 ¢,
be such that F(s) n Gz = @. Otherwise, s ¢ domF'. Notice that since G, is
k-meagre, for any s € 2<% ndomF there exists s’ € 28 ndomF such that s ¢ s'.
Finally, let

To={te2":tc F(s),sedomF}.
Obviously, Ty <€ Tp is a perfect tree, so Q = [Ty ], is a perfect subset of P\ G.
m

Notice that a set having only x-meagre homeomorphic images may not be
perfectly k-meagre.

Proposition 4.24 (w: [Miller, 1984]). There exists a set A € 2% which is not
P. M., but its every homeomorphic image is k-meagre.

Proof: Let P c 2% be a k-meagre k-perfect set, e.g. P ={x €2V x(a+
1) = 0}. Let (F¢),,. be an enumeration of all x-perfect subsets of P. Find
inductively (z¢)ecor and (ye)ecox such that ze # ye, and

Te, Ye € Pe N U{xmyn}a
n<¢
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for all & < 2%, Finally, let
A= Q U U {ZL‘g}

£<2R
Notice that A is not P, M, as it is not a k-sg-set. Indeed, there is no k-
perfect @ € P such that Qn A = @. But if s € 2<%, then [s"1]n P = @, so every
open set contains an open subset U such that (U n A| < k. Therefore if h is
a homeomorphism, then h[A] has also this property. In particular, for s € 2<¢
let ¢5 € 2<% be such that s Ct,, and |h[A] n[ts]| < k. Then

A = U (h[A]nt.])

se2<k

is of cardinality at most &, and h[A] \ A’ is nowhere dense. o
On the other hand, for x-A-sets we get the following.

Proposition 4.25 (w: [Miller, 1984]). Let A, B € 2%, and assume that f: A —
B is a one-to-one continuous map. If B is a k-\ set, then A is also a k-A-set.

Proof: Indeed, let C' ¢ A and |C| < k. then f[C] c B is also of cardinality
at most k, and there exists a sequence of open sets (G, )a<x such that

Bn () Ga.=f[C].

a<K

But since f is one-to-one, we get

An () fG.] =C.

a<kK

A similar statement can be proven for x-\-sets.

Proposition 4.26 (w: [Miller, 1984]). Let X,Y < 2%, and assume that f: X —
Y is a continuous map. Let Ac X and B <SY such that B is a k-\'-set, and
f1A is one-to-one onto B. Then A is also a K-\ set.

Proof: The proof is similar to the proof in the case x = w. Namely, let
C ¢ X with |C| < k. Then there exists a sequence of open sets (G, )a<x sSuch
that (Bu f[C])nG = f[C], where G = Nger G- Therefore,

FHGI= B f[CNu TGN B]=(AnC)u f[GN B,
because f is one-to-one on A. This implies that

UGN (AuC) = (AnC)u (fHG]nC)=C.
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4.5 k-0-Sets

A set A c 2% will be called k-o-set if for any sequence of closed sets (F,)a<x,
there exists a sequence of open sets (G4 )a<x Such that

AnJF,=An)G.,.

a<k a<Kk

Proposition 4.27 (w: [Bukovsky, 2011]). Every k-o-set is PM,;.

Proof: Let A be a k-0 set, and let P € 2% be a perfect set, and assume that
PnA#@. Let C e [An P]** be such that for all s € 2<% if [s]nPn A # @, then
[s]nC # @. There exists a sequence of open sets (G, )a<x such that

C=An()G..

a<k

Therefore C' ¢ G, for any a < k. Thus, for all a < k, A~ G, is nowhere dense
in P. Since C' is nowhere dense in itself, we have that

A=CU(ANC)=CUAN(Ga=CUJ (ANG,)

<K a<K

is k-meagre in P. O

4.6 ~r-Q-sets
A set A ¢ 2% will be called k-Q-set if for any set B ¢ A, there exists a sequence
of closed sets (F,)a<x such that

Anl|J F,=B.

a<k

Obviously, every k-Q-set is a k-o-set.

Corollary 4.28 (w: [Bukovsky, 2011]). Every k-Q-set is PM,,.

4.7 r-Porous sets

If Ac2r, B<k, and x € 2%, let
Ye(z, B, A) =min ({r} U {a < k: Jyear[yla] S [z 5] N A}).
Furthermore, let

por,(z,A) =) U min{a<k:f a2 (z,8,A)}.

Y<K y<B<K

A set A € 2% is called k-porous if for every x € A, por, (z,A) < k.
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Proposition 4.29 (w: [Bukovsky, 2011]). If A € 2% is k-porous, then it is
nowhere dense.

Proof: Let A € 2% be a k-porous set, and let s € 2<# be such that [s]nA + @.
Let z € An[s]. There exists len(s) < § < k such that v, (z, 5, A) < k. Therefore,
there exists f < a < k and y € 2% such that

[yta] c [#1B]~ Ac[s]\ A

4.8 Cover selection principles in 2%

In this section we study analogues of cover selection properties for subsets of
2",

4.8.1 k-vy-Sets

A family of open subsets U of a set X will be called a k-cover of X if for
any A € [X]<* there exists U € U such that A ¢ U. It is a y-k-cover if

U={U, a<k}, and
XclU N Us
<K a<fB<k
Notice that every subsequence of length k of a k-vy-cover is still a k-y-cover.

The family of all s-covers of X will be denoted by €, (X), and the family
of all k-vy-covers will be denoted by I',,(X). The family of all open covers of
size k of X, is denoted by O,(X). The underlying set can be omitted in this
notation if it is apparent from the context. We always assume that the covers
which are considered are proper, i.e. the set itself is never an element of its
cover.

X ¢ 2f will be called a k-y-set if for every open x-cover U of X there exists
a sequence (Uy)a<x € U such that {U,:a < k} is a k-y-cover.

If A,B are families of open covers of a set X, we shall say that it has
S%(A, B) property if for every sequence (Uy)a<s € A”, there exists a sequence
(Us)a<x such that U, €U, for all @ <k, and {U,:a < K} € B.

We aim to prove that similarly to the case k = w, k-y-sets can be char-
acterized in terms of selection principles. First we need the following easy
observation.

Lemma 4.30 (w: [Bukovsky, 2011]). Let X be a subset of a k-additive topo-
logical space, and A,B be any families of open covers of cardinality k of X
such that:
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(a) if V € B is a refinement of an open cover U, then there exists U' €U with
U' e B,

(b) if B< K, and (Uy)a<p € AP, then there exists U € A such that U is a refine-
ment of U, for every a < f3,

(c) if {Us:a <k} € B, and Vg = {Vog:ax <5} for B <k and (v5)pex € K are
such that Ug € Vi, g for all B < Kk, < g, then Ug, Vs € B.

Then X satisfies St(A,B) if and only if for every (Un)a<s € A% such that
Ug is a refinement of Uy, for all o < B < k, there exists (Uy)acs Such that
{Usya<k}eB, and Uy €U, for all a < k.

Proof: Let X be a set satisfying the premise of the Lemma along
with families A and B and such that for every (U,)a<, € A" such that U is
a refinement of U, for all a < § < k, there exists (Uy,)a<x such that {U,:ar <
k} e B, and U, €U, for all o < k.

Let (Wa)a<w € A% be arbitrary. By induction we construct (U )a<x € A*
such that Uz is a refinement of U, and W,, for all a < 8 < k. Hence, there
exists (Uy)a<w such that {Uy:a < k} € B, and U, € U, for all o < k. For all
a < k, let O, € W, be such that U, € O,. Then {U,:« < k} is a refinement of
{O4:a < Kk} thus there exists A € k such that {O,: e A} € B.

Now, choose (V,)a<x such that V,, =0, if a € A, and V,, € W, be such that
Op cV, for f=min A~ a. Then {V,:a <k} e B, and for any a < k, V,, e W,.
O

Lemma 4.31 (w: [Bukovsky, 2011]). If X < 2%, then A = Q,(X) and B =
D (X) satisfy the premise of Lemmal[{.30

Proof: Recall that an intersection of less than x open sets in 2 is still open.
The rest of the proof is obvious. 0

Theorem 4.32 (w: [Bukovsky, 2011]). A set X € 2%, with |X| > k is a k-y-set
if and only if it has ST (2, T'y).

Proof: As in the case k = w, choose a sequence of distinct points (x4 )a<x €
X*. Assume that (W,)a<s € (2:(X))" is a sequence of covers such that for
a < 3, Wg is a refinement of W,. Let

U={U~{x,}:UeW,, ek}

Notice that U is a k-cover of X. Since X is a k-v-set, there exists a k-vy-cover
VcU. Let V={Vya <k}, and let (€,)a<s € K% be such that V, = U, ~ {z¢, }
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with U, € We,. Notice that |[{{,:a < k}| = k. Indeed, if this is not the case, an
ordinal vy < k occurs cofinitely many times in the sequence (£, )acx, thus

x7¢U ﬂ V.

a<r a<f<k

Therefore, let (J,)a<x € K% be such that (&5, )a<x 1 a strictly increasing sequence.
Notice that (Vj, )a<sx is also a k-y-cover of X.

Let A = {&,:a < k}, and choose (W, )a<, such that W, =V, if &, € A,
and otherwise choose W, € W, such that V3 ¢ W, for = min A \ a. Then
{Wy:a < k} € Ty, and for any « < k, W, € W,. Therefore, by Lemmas
and [1.31] X satisfies SF(Q,,Tx). o

Corollary 4.33 (w: [Bukovsky, 2011]). Every k-y-set satisfies St(I'x,I'x).

Proof: Obviously, every k-y-cover is a k-cover. O
Finally, we prove that every union of x many closed subsets of k-y-set is
k-vy-set as well.

Proposition 4.34 (w: [Bukovsky, 2011]). A k-union of closed subsets of a k-
vy-set is a K-y-set.

Proof: Let F = Uy, F,, with F, ¢ X, where X is a k-y-set and F, are
closed in X. Assume that for o < 8 <k, F, € Fj3, and let U be a r-cover of F.
For any a < &,

U, ={UU(XNF,):Uel}

is a k-cover of X. Thus, by Theorem there exists a sequence (Us,)s<s
such that U, e U,, and
XclJ N Us.

Y<K y<B<K

Let (Vi )a,p<s € U" be such that U, =V, u (X \ F,).
Then

FellJ N vs

a<rk a<f<k

because if x € F, there exists a < x such that z ¢ X \ Fj for all 8 < k with
a < 3. Thus,

xT € m Vg.

a<f<k
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4.8.2 k-Hurewicz property

A cover U of a set X is essentially of size « if for every V € [U]<", X UV # @.
We will say that a set X satisfies U~ (A, B) principle if for every sequence
(Up)aer € A® of covers essentially of size r, there exists (V,)a<e such that
Vo € [Uy]F for all a < k, and {UVa:a < K} € B.
A set X has k-Hurewicz property if it satisfies U%_(O,,T';) principle.

Proposition 4.35 (w: [Bukovsky, 2011]). If X satisfies S§(I'x,Ty), then it
has k-Hurewicz property.

Proof: Assume that (U, )ae i @ sequence of open covers of X which are
essentially of size k. Let U = {Usn:a < Kk}, for all § < k, and let Vs, =
Uy<a Up,y for all o, 8 < k.

Notice that, for any 5 < K, (Vs.a)a<x is a k-y-cover of X. Indeed, if there

exists
zeX~UJ M Ver=X~U M UUss,

o<k a<y<K a<k a<y<K §<y

then z ¢ Ug s for all < k.
Thus, there exists a sequence (&, )aex € £7 such that {V, ¢ o<k} is a k-
cover. For av <k, let V, = {U,p: 8 < & }. Then

{UVara <k} ={Vae a<k}
is the desired k-7y-cover. O

Corollary 4.36 (w: [Bukovsky, 2011]). If X is a k-y-set, it has r-Hurewicz
property.

0
On the other had, no Lusin set in x can have k-Hurewicz property. Indeed,
we have the following.

Lemma 4.37 (w: [Bukovsky, 2011]). If A € 2% with empty interior has k-
Hurewicz property, then A is k-meagre.

Proof: Let {s,:ar <k} =2 and let {x,:a < K} be such that x, € [so] \ A
for all a < &, and let Uy g = 2%\ [2,18]. Finally, let U, = {Us3: 5 < K} for
a < k. For a < k, U, is an increasing open cover of A, which is essentially of
size K.

Since A has k-Hurewicz property, there exists (£,)a<x € £% such that

{Une,:a < K}
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is a k-y-cover of A. In other words,

A= ) Usg,-

a<k a<f<k

Obviously,
() Usgo = () 2"~ [2ptép] =27~ U [w51é5]
a<fB<k a<fB<k a<fB<k
is a nowhere dense set for any a < k. Hence, A is k-meagre. O

Corollary 4.38 (w: [Bukovsky, 2011]). If kK < A < 2%, and L € 2" is a \-k-
Lusin set, then L does not have k-Hurewicz property.

4.8.3 ~k-Menger property

A set has k-Menger property if it satisfies U (O,, O,) principle.
Despite that every Lusin set for s lacks k-Hurewicz property (see Corol-

lary [4.38] it has x-Menger property.

Proposition 4.39 (w: [Bukovsky, 2011]). Let L < 2% be a Lusin set in k.
Then L has k-Menger property.

Proof: Let {sy:a <k} ={s €2 [s]nL %0}, and let {z,: < K} be such
that x, € [sq] N L for all a< k.

Let (Uy)a<r be a sequence of open covers essentially of size k. For a < k,
let U, € U,. be such that z, € U,. Then, L ~ U,<. U, is nowhere dense, hence
|L N Uaer Ua| € K. Thus let

LN U, = {yara < K}

<K

For all a < k, let V,, € U, be such that y, € V,. Let V, = {U,, VL. }, for a < k.
Then {Ug<x Var @ < K} is an open cover of L. 0

4.8.4 ~r-Rothberger property

A set has k-Rothberger property if it satisfies St(O,, O,) principle. Obvi-
ously, this property implies k-Menger property.

Proposition 4.40 (w: [Bukovsky, 2011]). If A € 2% has k-Rothberger property,
then A e SN ..
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Proof: Let (£,)a<x € k% be a sequence of ordinals. For a < &, let U, =
{[s]:s € 2%=}. Since A has k-Rothberger property, we get that there exist
(Sa)a<x such that s, € 2% for all a < k, and {[s¢, ;v <k} is a cover of A. O

Corollary 4.41 (w: [Bukovsky, 2011]). The generalized Cantor space 2% does
not have k-Rothberger property.

Proposition [4.14] can be formulated in a stronger form.

Proposition 4.42 (w: [Bukovsky, 2011]). If A € 2% is k*-concentrated on
a set B ¢ 2% with |B| < k, then A has k-Rothberger property.

Proof: We modify the proof of Proposition [£.14l Fix an enumeration of B,
B = {by:a < k}. Let (Uy)ax € (O,)" be a sequence of open covers of size k,
and let f:x x {0,1} - k be a bijection. For all a < &, let U, = {Un: 5 < K}.
Let (£a)aer € K% be such that b, € Upa0ye, for all o < k. Moreover, let
G =Ua<s Uf(a,0),6.- Then [ANG| <k, s0let ANG = {cora <k}

Find (da)aex € K7 such that ¢, € Usa1),5, for all o < x. Then,

Ac U Uso.ea Y U Usan) sa-

a<K a<K

This allows us to formulate a stronger version of Proposition [£.39}

Corollary 4.43 (w: [Bukovsky, 2011)). Every Lusin set for k has k-Rothberger
property.

Proof: By Proposition [£.13] every Lusin set for x satisfies the premise of
Proposition [4.42] O

Lemma 4.44 (w: [Bukovsky, 2011]). If X c 2%, then A = O.(X) and B =
O,(X) satisfy the premise of Lemmal[{.30,

a

Theorem 4.45 (w: |[Bukovsky, 2011]). Fvery k-y-set of cardinality > r has
k-Rothberger property.

Proof: Assume that X < 2% is a k-y-set, and let (U, )acx be a sequence of
open covers of X of size k such that U is a refinement of U, for all o < 3. Let
(aa)a<x € X* be a sequence of distinct points. Let b: (Ug<p{} % a, <lex) = K be
the order isomorphism.
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For a < k, let

V, = {U Uﬁ \ {aa}: <U5>5<a such that V5<QU5 € Ub(a’g)},
B<a

and let V = Uqy<p Va-

Notice that if B € X is such that |B| = A < k, then there exists « < xk such
that A <o, and a, ¢ B. Let B = {by:a < A}. For B <\, let Ug € Upa,p) be such
that bg € Ug, and for A < 8 < «, let Ug € Uy p) be arbitrary. Then

BelJUseV, V.
Bea

Thus, V is a k-cover of X.

Since X is a k-7y-set, there exist a k-y-cover (V,,)a<x € V*. Let (£4)acn € K*
be such that V,, € V¢, . Notice that [{{,: < k}| = K, because for all a < &,
ao ¢ UVs. Therefore, there exists an increasing sequence (0, )aex Such that
(&5, Yaer 18 strictly increasing. Then (Vj, )a<x is a k-y-cover as well.

For a < K, let (Ua,g)s<e;, be such that U, p € Uy, gy, for a <k, B < &5,
and

Vio = U Us~{ag, }-
B<€s4

Let A = {b(&,,0):a < k,B < &, }, and choose (Wy)a<r such that W, =
Usn €Uy if € Aand o = b(8,7). If a ¢ A, choose W, € U, be such that
Wy 2 Ws for f = min AN a. Then {W,:a < K} € Oy, and for any o < &,
W, €U,. Therefore, by Lemmas and X satisfies SF(O,,Oy). o

Corollary 4.46 (w: [Bukovsky, 2011]). Fvery k-y-set is k-strongly null.
Proof: Follows by Corollary [£.40 O
Corollary 4.47. The generalized Cantor space 2% is not a k-y-set.

O
Thus, no k-perfect subset of 2% is a k-y-set. Nevertheless, the following
question remains unanswered.

Question 4.48. Is there a closed subset of 2% which is a k-y-set?
We finish by proving a Lemma which becomes useful in the next chapter.

Lemma 4.49 (w: [Nowik and Weiss, 2002]). Assume that k is a weakly inac-
cessible cardinal. Let A € 2% be a K-y set which is not closed. Then there exists
B e [k]® such that for all C € [B]*, xc ¢ A.
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Proof: Let A ¢ 2% be a k- set, and let b:Uq<.{} x @ = K be a bijection.
Notice that 2% \ A is not an open set. Therefore, there exists y € 25 \ A such
that An[yla] + @, for any a < k. Choose inductively a sequence (z,)a<x € A"
such that if for o, 8 < Kk, x4 = x5 only if @ = 3, and for every 7 < k there exists
a < k such that ylv =z, . To achieve this, take any zy € A, and for a < &,
let

5:5U Uy <miyty =250}

Let z, € An[yl€ +1].
If I ck and s €2 let [s] denote {x € 2%:x|I = s}. For a < &, let

Ua = {U[S] nAN | {zg}:Se [Qb[{a}xa]rw}’

seS asf<k

and let U = Uy U,. Notice that U is a k-cover of Y, because k is weakly
inaccessible. Therefore, we have (Uy,)a<x € U" such that
AclU N Us.
a<k a<f<k

But since

Tq ¢ U Uuﬁ>

B<a
for all o € k, we get that for any a < k, there exists £ < k such that for
all £ < 8 < K, there exists o < v < k such that Ug € U,. Therefore, we can
choose inductively increasing sequences (€, )a<x € £ and (04 )a<x € K™ such that
Ue, €Us,, for any a < k.

Fix a < , and let S, € [2t[0a)x8a1]P 1o sych that
U = U [sInAN U {zs}
s€Sq da<f<k

There exists 7, < d, such that {b(d4,7a)} ¢ Sa. Let
B ={b(a,n0): < K}.

Then, for all C' € [B]*, xc ¢ A. Indeed, if C € [B]*, then for every a < k, there
is a < B < k such that

Cnb[{ds} x ds}] = {b(ds,m5)} ¢ Sp.
For such 3, x¢ ¢ Ue,, therefore for all a <«

XC¢ m Uﬁﬁ?

a<fB<k

and hence

Xc ¢ L,J rw l]g o A.

a<k a<f<K
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Chapter 5

Generalization of other notions
of small sets in 2%

In this chapter we present generalizations of some less common notions of small
sets.

Some of the results presented here have their counterparts in the standard
case of 2¢ (or wy"), and if so, we give a reference in the form (w: [n]) (or (ws:
).

In this chapter we use notation and notions described in Sections [I.3] [1.5]
and Chapter [

The results of this chapter are to be included in [Korch and Weiss, 2017].

5.1 X-small sets

In this section we present some generalizations of the results from [Halko, 1996,
Chapter 4].

If X ¢k, then a set A ¢ 2% will be called X-small if there exists (aq)acx €
(2%)X such that

Ac Jlaatal.
aeX
Notice that A is SN/ if it is X-small for any X € [x]".

Consider the following ordering on [x]®. For XY ¢ [k]*, let X <Y (re-
spectively, X <Y) if and only if there exists a bijection F: X — Y such that
for all @ € X, a < F(«) (respectively, o < F(a)). Let X +1={a+1l:a e X}.
Notice that if X <Y, then X +1<Y.

Let X,Y € [k]® be such that X < Y. Then, the family of Y-small sets is
a proper subfamily of X-small sets (see [Halko, 1996]). Indeed, it is sufficient
to prove that there exists a X-small set which is not a (X +1)-small. Assume
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that A € Upex[aala] with (aq)eex € (2%)%. We can assume that if §,«a € X
with 3> «, then ag ¢ [anta]. To obtain a contradiction assume that

AcB=J[bata+1]

aeX

with (b )acx € (2%)X. Then consider x € 2% such that

Uminx (@), if @ <min X,
z(a) =4bs(a)+1, ifaeX,

0, otherwise.

Notice that = € [amin 4l min A] € A, but z ¢ B, which is a contradiction.
Let A < k. We say that a set A € 2¢ is A-X-small for X ¢ x if there exists
(G0 p)acx par € ((27)%)" such that

Ac U Ulaagstal.
aeX B<A
Ac 2% is X-null for X c 2% if for all X € X, A is X-small, and A-X-null if for
all X e X, A is A-X-small. Obviously, 4 is SN/ if and only if A is [x]"-null.
The notion of A\-X-null sets for X ¢ [k]* does not depend precisely on X.
Indeed, we get the following proposition.

Proposition 5.1 (w;: [Halko, 1996]). Let A < k. A set Ac 2% is \-{{a}:a<
k}-null in 2% if and only if it is [k]*-null.

Proof: Let A < k, and assume that A is »-{{a}:a < k}-null. Let X =
{€:8 < A} € [k]* and @ = UX. Obviously, a < k. Therefore, there exists
a sequence (ag)p<y such that

Ac Ulagta] € Ulasés],
B<A B<A
so A is X-small.
On the other hand, assume that A is [k]*null and o < k. Then let X =
{a+ B: 8 < A} € [k]*. There exists a sequence (ag)g<y such that

Ac Ulagta+p] e Ulagtal,
B<A B<A
so A is \-{a}-small. O
A set A c 2% will be called small in 2% if there exists A < xk such that A is
A-{{a}:a < k}-null. Obviously, every A c 2% with |A| < & is small in 2*.
Notice that every small set in 2% is k-strongly null.
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Proposition 5.2 (w;: [Halko, 1996]). Let A € 2* be small in 2~. Then A €
SN ..

Proof: Let A < k be such that A is A\-{{a}:a < k}-null. Therefore, by
Proposition Ais [k]Pnull. Let X = {{,:a < Kk} € [Kk]®. There exists
a sequence (aq)a<x € (2%)* such that A € Ujcr[@aléa]. For A < a < k set
ao = 0. We get that A € Uper[aaléa]- O

Proposition 5.3 (w;: [Halko, 1996]). A set A € 25 is SN, if and only if there
exists A < k such that A is A\-[k]®-null.

Proof: If A € 2% is SN/, it is obviously A-[x]%-null for all A < k. Assume
that A < k, and A € 2% is A-[k]*-null. Let X = {{,:a <k} € [k]*. Let b: \xk - K
be a bijection, and for all a < &, let X, = {&g,0): 8 < A} € [£]}. Let 80 = U X,
for e < k. Finally, let Y = {do: @ < k} € [k]*. We can find (% 5)a<s g<n € (25)5

such that
Ac U U [.Ta’ﬁ réa].

a<K B<\
For a <k, let z4 = Tp-1(). Then

Ac U [Za r5ﬂ2(b—1(a))] c U [Za rfa].

a<k a<kKk

a

Proposition 5.4. Let X € k be such that 0 ¢ X and X nLim=@. If Ac 2 is
X -small, then |25\ Al = 2.

Proof: Let (z4)aex € (2”)X be such that A € Uaex[Zaola]. Consider the set
B=A{zxe2"V o (a+1eX =z(a)=241(a)+1)}.

Then for all « € X, Bn[x,la] =@. Thus, Bn A = @. Furthermore, B contains
a set homeomorphic to 2%, so |27 \ A| = 2%, O
Next we study a connection between the diamond principle for k (see sec-
tion and the notion of C-smallness for closed unbounded or stationary
sets C' € 2r.
For Eck, Ac2s T c k], let o.(E,A,T) denote the following principle:
there exists a sequence (Sq)a<x € (2<%)" such that for all z € A,

{aeE:xta=s,} ¢Z.
Notice the following easy observation.

Proposition 5.5. If Ac 2% and E ¢ k, then ¢.(FE,A,{@}) if and only if A
15 E-null.
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Proof: Indeed, ¢.(FE,A,{@}) if and only if for all z € A,
{aeE:xla=s,} +@.
O

Proposition 5.6 (w;: [Halko, 1996]). Let E € k. The principle ¢,.(E, 25, N'S,.)
holds if and only if ¢.(E) holds.

Proof: Let (s4)ace € (2<%)" be such that for all x € 2%, {a € E:xla = s,} is
stationary in k. Let S, = s;'[{1}]na, for a € E, and let X ¢ k. Then

{aeEB: Xna=8,}={aeE:xxla=s,}

is a stationary subset of k, so ¢.(E) holds.

Similarly, if (Sy)a<x € ([£]F)" is such that for any X ck,
{ae E: X na=_85,} is stationary, let s, = Xs,na, for @ < k. This sequence
witnesses ¢.(E,25 NS,.). i

Proposition 5.7 (w;: [Halko, 1996]). Assume ¢,. If C is a closed unbounded
set in k, then 2% 1s C'-small.

Proof: By Proposition[5.6] there exists a sequence (s, )a<s € (2<%)" such that
for all z € 2%, {« € kixla = s,} is stationary in k. Therefore, if C' is a closed
unbounded set in k, then {«a € C:xla = s,} is stationary, thus non-empty for
all x € 2%, Therefore, 2% = Uyec[Sa]- ]

Proposition 5.8 (w;: [Halko, 1996]). Let E < &k, and assume ¢.(E). Then
2% 4s E-small.

Proof: By Proposition [5.6] there exists a sequence (s4)a<s € (2<%)" such
that for all z € 2%, {av € E:xla = s,} is stationary in k. So it is not empty, and
25 = UQGE[SQ]. O

Corollary 5.9 (w;: [Halko, 1996]). Assume V = L. Then 2% is X -small for
every stationary set X C k.

Proof: Recall that V' = L implies ¢, (X)) for every stationary set X C k (see
[Kunen, 2006, Exercise VI.14]). Therefore, by Proposition [5.8 2% is small for
every stationary X C k. i

The whole space 2% can be presented as a union of a k-meagre set, and
a X-null set for X € [[x]*]".

Proposition 5.10 (w;: [Halko, 1996]). Let X € [[x]*]". There exist A, B € 2%
such that A is X-null and B is k-meagre, and Au B = 2~.
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Proof: Let X € [[x]*]". Let Q = {qa:a <k} and let X = {X,:a < K}, and
Xo ={%ap B <k} be enumerations. For a < k, take

Aa = ﬁLJ [qa rxa,ﬁ]'

Notice that 2% \ A, is nowhere dense, therefore, if A =N, <. Aa, then 25\ A is
rk-meagre. Obviously, A is X-null. |
On the other hand, we have the following.

Proposition 5.11 (w;: [Halko, 1996]). Every set which is small in 2% is
nowhere dense.

Proof: Let A < k be such that A ¢ 2% is A - {{a}:a < k}-null. Let s € 28
with 8 < k, and let £ = 5+ A. There exists (z,)a<x € (2%)* such that

Ac Ulzal€].

a<

But [{z &z € [s]}] = 24, thus there exists ¢ € 2¢ such that s ¢ ¢, and [t]nA = @.
m
But not every nowhere dense set in 2% is small in 2*.

Proposition 5.12 (w;: [Halko, 1996]). There ezists a nowhere dense set A C
28 whach 1s not k-strongly null.

Proof: Let (£,) € k* be an increasing sequence of limit ordinals. Let
A={xe2"V x(&)=0}.

Obviously, A is nowhere dense. Assume that A € SN/,.. Then there exists
(Ta)a<x € (27)F such that A € Ugee[Tal€at1]. Let x € 2% be such that x(€,+1) =
To(€o+1)+1 for all @ < K, and z(B) =0 for B ¢ {{,:a € k}. Then x € A, but
T ¢ Uger[Ta s + 1], which is a contradiction. )

5.2 r-Meagre additive sets

In this section we present some generalizations of results concerning meagre
additive sets. We start by generalizing the combinatorial characterization of
meagre sets (see [Bartoszynski and Judah, 1995, Theorem 2.2.4]).

Proposition 5.13 (w: [Bartoszynski and Judah, 1995]). Assume that k is
strongly inaccessible, and A € 2% is a k-meagre set. Then there exists y € 2%
and an increasing sequence (€q)a<x € K* such that

Ac {LE € 2" 35<“v5<7<“3§w$§<§v+1x(£) * y(f)} .
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Proof: Let A ¢ U, F, with F,, closed nowhere dense for all o < k. Ad-
ditionally, we assume that if a < 8 < k, then F,, ¢ Fg. We define (£4)a<s € £~
and y € 2 by induction. Let { = 0. Assume that n < x, and ¢, and yI7n are
defined. Let (ta,n>a<6n be an enumeration of 27. Notice that d, < &, since & is
assumed to be strongly inaccessible. Define inductively (Sa,n)aqn such that

(a) if @ < B <y, then s, C Sa,,
(b) [tan SanlnF,=2.

Let s, = Uacs, San;, and let len(s,) = v,. Obviously, v, < k. Set ;11 = &, +
and y(&, + a) = s,(«) for a <,. If n <k is a limit ordinal set &, = Un<y &a-

It follows that if x € 2%, and the set of all v < xk such that for all £ such
that &, <& <&,41, we have z(§) = y(&), is cofinal in &, then for all a < &, there
exists v < k with v > o, and x ¢ F,. Therefore, x ¢ U<, Fo 2 A. O

A set A € 2% will be called k-meagre additive if for any x-meagre set F,
A+ F is k-meagre. The family of all k-meagre additive sets we denote by M.

By Proposition .8 we immediately get the following Corollary.

Corollary 5.14. FEvery k-meagre additive set is k-strongly null.

O
The following theorem is a generalization of the characterization of meagre-
additive sets ([Bartoszynski and Judah, 1995, Theorem 2.7.17], see also Sec-

tion [1.3)).

Proposition 5.15 (w: [Bartoszynski and Judah, 1995]). Assume that k is
strongly inaccessible, and X < 25. Then X € M, if and only if for every
increasing sequence (€q)a<x € K* there exists a sequence (Ny)a<x € K and z € 25
such that

Xc {:L‘ € 2™ E|oé<,,€voé<g<,.€5|7<,£ (775 < S'y < §7+1 < Ng+1 A ngsnglw((s) = 2(5))}
Proof: Assume that X € M, and (£4)a<x € K*. Let
B ={y €230 VacperIescseesn y(6) # 0}

Obviously, B is k-meagre, so X + B is also k-meagre, and X + B = U,ex B,
where

B, = {y € 2™ 3a<nva<6<nagﬁ36<§ﬁﬂy((5) * $(5)} .
By Proposition [5.13] there exists a sequence (74 )a<x € K% and z € 2% such that

X+Bc(C= {CL € 2™ 3a<ﬁva<5<n3ﬁﬁﬁ5<7lﬁ+1a(6) * 2(5)} '
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Therefore, for any =z ¢ X, B, ¢ (. Similarly  to
[Bartoszynski and Judah, 1995, Lemma 2.7.5], we prove that there exists a < &
such that for all a < 3 < k, there exists v < k such that ng < &, < &1 <N
and for all &, <9 < &,41, we get z(5) = 2(0).

Indeed, let

S = {5 <K _‘El'y<n (77,3 < g’y < €7+1 SN+ A V&«,ék&,nx(d) = Z((S))} :

To obtain a contradiction, assume that for all @ < k, SN # @. Let S = {0, <
k}, and let S" = {0,:a < kK A is a limit ordinal}. Finally, let

D={a<krIgegnp<a<ng}.

Notice that if for 5 < k, {0 < k: €z <0 < &ps1} € D, then there exists {5 < J < &1
such that z(9) # z(d). Let y € 2% be such that

J(6) :{2(5), if § e D,

z(0)+1, otherwise.

Then y € B,, but y ¢ C', which is a contradiction.
Therefore,

Xc {I € 2" E|OJ<HVOK<5<,§E]7<,.C (775 < 57 < €7+1 <N A VEWS6<€’Y+1$(5) = 2(5))} .

Conversely, assume that X ¢ 2% is such that for every sequence (£, )a<x € K*,
there exist a sequence (14 )a<x € K* and z € 2% such that

X c{x € 2% 3 VacsenInen (15 <& < Eya1 <Nt A Ve ssee,,, 2(8) = 2(0)) }

Let F' be k-meagre. Then, by Proposition we get a sequence (£,)a<x € K*
and y € 2% such that

FcF'= {a € 2" o VacpenIepcsces,, (0) # 9(5)} :
Let (Na)a<x € K% and z € 2% be such that
X c{z € 2% 30 VacsenTnen (15 < & < Eya1 <Nt A Ve ssee,,, w(8) = 2(0)) }
Then
X+FCX+F c{ae2% e acgonIngsscns,a(8) 2 y(8) +2(3)},

which is a k-meagre set. Therefore, X € M. O
Notice that this implies that under the same assumption every x-meagre
additive set is P, M,..
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Proposition 5.16 (w: [Kysiak et al., 2007]). Assume that k is a strongly in-
accessible cardinal. Then every k-meagre additive set is P.M,..

Proof: Let A e M, and let P ¢ 2 be a r-perfect set. By induction we
construct a sequence (&, )a<x € k* such that & =0, and for a < &,

far1= |J min{len(s):t cseSplit(Tp)} +1.

teTpn2&a

Finally, for limit a < &, let £, = Up<q §5-
By Proposition [5.15, we can find a sequence (1, )a<x € K% and z € 2% such
that

Acl {a: € 2"V oeper Iy<n (ng <&y <&ya1 SNt A Ve <oee,, 2(0) = 2(5))} .

a<K

Let a < k, and let s € Tp. Fix s’ € Tp such that s ¢ s, and for some < a,
len(s’) =ns. Let

"o = min {7y <King <& < Eyr SMpar

and
n=U{v<rng <& <Gua<npal +1.

Inductively, we construct a sequence (ts)-,<s<y such that for all vy < ¢ <
0 <, tselp N2 ts Cts, and 3£5§£<55+1t5+1(5) * Z(f) Indeed, let v € Tp be
such that s ¢ ¢, and len(%,,) = &,,. Given t;, by definition of ({,), one can find
ts+1 2 ts such that Je, e, t541(€) # 2(§), because [{t € Tp n2%+1:¢ 2 t5}] > 2.
For limit d < K, set any t5 2 U,,<¢<s te such that len(ts) = &s.

Then,

[t ]nPn {CU € 2%V acgenIyen (nﬁ <&y <&yt SMper A Ve, <ocg, . 2(0) = 2(5))}

is empty, and hence A is k-meagre in P. O

5.3 k-Ramsey null sets

In this section we generalize some results presented in [Nowik and Weiss, 2002].
For a <k, s€2% and S € [k \ a]®, let

[s,S]={ze2%:s7 [{1}] ca ' [{1}] e s {1} u S A e [{1}] n S| = K}

A set A c 2% will be called k-Ramsey null (k- CRy) if for any a < k, s € 2%
and S € [k \ a]®, there exists S’ € [S]* such that [s,5']|n A =@.

It is a well-known fact that the ideal of Ramsey null subsets of 2% is a o-
ideal (see e.g. [Halbeisen, 2011]). We do not know whether the analogue holds
for k-Ramsey null sets.
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Question 5.17. Is the ideal of k-Ramsey null subsets of 2% k*-complete?

Theorem 5.18 (w: [Nowik and Weiss, 2002]). Assume that k is a weakly in-
accessible cardinal. Then every k-y-set which is not closed in 2% is k-Ramsey
null.

Proof: The proof is similar to the proof of [Nowik and Weiss, 2002, Theo-
rem 2.1]. Namely, let A € 2% be a k-y-set, and § < K, s € 29 and

S={:a<k}e[rNa]".
Let
E={re20:s'[{1}]ca'[{1}] cs'[{1}]u S} = 50 + Sp,

where sg = sU{(5,0):8 € k~0} and Sy = {f u{(5,0):5 ¢ S}: f €29} Notice
that Sy is a closed set in 2%, and so is . Moreover, ¢:2% — E given by the
following expression

(,O(ZE) =80t X{tam(a)=1ra<k}

is a homeomorphism.

By Proposition EnAis a k-y set, and therefore so is ¢ '[En A]. By
Lemma [4.49] there exists B € [k]"* such that for all C' € [B]*, x¢ ¢ o' [EnA],
which means that ¢(xc) ¢ A. Let S" = {,:a € B}. Then S’ € [S]*, and
[s,5] = {p(xc):C € [B]*}. Thus, [s,5]nA=g. m

Lemma 5.19 (w: [Nowik and Weiss, 2002]). If A, B c 2%, then
2"V (A+2°~B)={xe2"x+Ac B}.

Proof: The proof of [Nowik and Weiss, 2002][Lemma 4.1] is valid for any
vector space over Zy. m

Proposition 5.20 (w: [Nowik and Weiss, 2002]). Assume that k is strongly
inaccessible, and A € 2% is a k-meagre set. Then there exists a k-meagre set
B <€ 2% such that A+ (2* ~ B) is k-Ramsey null.

Proof: By Proposition |5.13 we get z € 2% and a sequence (£, )q<x € K* such
that A c A’, where

A" = {2 € 2% 350V peren e, ce<e, 1 2(€) 2 2(E) ]
Fix a bijection b:k x 2 > k. Let
B = {SE € 2% 35<”V6<0‘<”3’Y€((§b(a,0)+1\fb(a,o))U(fb(a,1)+1\§b(a,1)))x(,y) * Z(V)}
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Let n< Kk, s€27 and S € [k \n]*. We shall find S’ € S such that
[s,5"]n(A"+(2“\B)) =2.
Let S’ € [S]* be such that for all a < s such that &a.0), {p(a,1) > @

| (b0 1 > b)) Y (En(anyer N Enany)) NS < 1.
Let v € [s,57], and assume that v = a + b for some a € A’, be2¥ \ B. Thus,

(a) there exists £ < s such that for all { < a < &, there exists Yo € £(a,0)+1 NEb(as0)
and 1 € &pa,1)+1 N Ep(a,1) Such that a(yo) # 2(70) and a(y1) # 2(1),

(b) forevery § < k, there exists § < « < k such that for all 5 € (ﬁb(avo)ﬂ N fb(a,O))U
(Eb1)+1 N o)), B(B) = 2(B).

Hence, there exists a < k such that

(i) there exists at most one 7 € (&,(a’o)ﬂ N fb(a,o)) u (fl,(a’l)ﬂ N §b(a’1)) such
that v(n) =1,

(ii) there exists 7o € &p(a,0)+1 N Eb(a,0) AN V1 € Ep(a,1)+1 NEp(a,1) Such that a(yo) #
z(70) and a(m1) # 2(m),

(iii) for all B € (&ya0)s1 ™ En@0)) Y (Eoanyrn N Enany ), B(B) = 2(B).

Then, either for all 8 € {0,001 N &b(a,0), v(n) =0, or for all g € Eb(a1)+1 N\

&b(a,1), v(n) = 0. Hence, either for all 3 € &y(a,0)+1 N b0y, a(n) = b(n), or for
all B € &ya1)+1 N Ep(a1)s @(n) = b(n). This is a contradiction, thus,

[s,5]c2" N (A" + (2" \ B)).

Hence, A+ (25 B) c A’ + (2% \ B) is k-Ramsey null. i
We get the following theorem.

Theorem 5.21 (w: [Nowik and Weiss, 2002]). Assume that x is strongly inac-
cessible, cov(k — CRy) > 2%, and add(M,) =2%. Then there exists a k-meagre
additive set which is not k-Ramsey null.

Proof: Let {F,:a < 2%} be an enumeration of all closed nowhere dense sets
in 2%, and [k]* = {X,:a < 25}, We construct a sequence (4 )a<2+ € (25)% by
induction. For « < 2%, using Proposition choose a r-meagre set B, € 2~
such that F,, + (2¥ \ B, ) is k-Ramsey null. Choose any

To € {xs:S € [Xo] "}~ BU (Fs+ (2N Bg)).
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Such z, exists, because cov(k — C'Ry) > 2.

Let A = {z,:a < 27}. Obviously, A is not k-Ramsey null, because for all
S € [k]", there exists S’ € [S]* such that yg € A.

Moreover, if F' is nowhere dense, then let a < 2% be such that F' ¢ F,,. For

every [ < a,
g ¢ Fo+ (29N B,),

thus by Lemma |5.19)
T+ F,cB,.

Hence,

A+FcA+F,=J@s+My)u | (z5+M,) = (zs+ M,) U B,,

BLa a<B<2r BLa

which is k-meagre, since add(M,,) = 2~. m

5.4 k-T’-sets

A definition of a T’-set was given in [Nowik and Weiss, 2002] (see also sec-
tion . We provide a generalization of this notion in case of 2¢. A set
A c 2% is here called k-T’-set if there exists a sequence of cardinal numbers
(Aa)a<w € K% such that for every increasing sequence (J4)a<x € K% with dp = 0,
and 0, = Upg<n 05 for limit o, there exists a sequence (1a)a<x € K7, and

Hy € [2hritn ]
for all o < k such that
Ac {:Ij‘ € 2% Vﬁ<,€35<a<,{l’f(5na+1 N\ 577a) € Ha} .

Similarly to [Nowik and Weiss, 2002] we prove some equivalent characteri-
zations of this class of sets.

Proposition 5.22 (w: [Nowik and Weiss, 2002]). A set A < 2% is a k-T1"-set if
and only if there exists a sequence of cardinal numbers (Ao )a<x € K~ such that
for every increasing sequences (0 )<k, (01,a)a<k € K*, With dpa < 01,6 < 0p.a+1
for all a < k, there exists a sequence (Ny)a<x € K*, and

e
IOL € [261,7%1 \60’7104] 4 R
for all a < k, so that

Ac {SU € 2™ V5<,{E|Ig<a<,4x[((51ma N\ 60771‘1) € [a} .
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Proof: Obviously, a set which fulfils the above condition is a k-T’-set. On
the other hand, if A € 2% is a k-T -set, then let (A, )a<x € K be a sequence of
cardinals given by the definition of a x-T’-set. Let

501 = U 51,57
B<a

for o < k. There exists a sequence (1, )a<x € K7, and

S)‘Wa
Y

H, € [2%me+10na ]
for all a < k such that
Ac{ze2"Vs3pcacn® ! (Oyus1 N Oy, ) € Ho b
Notice that (91, ~ don.) S (9541 N 0y ). Let

Lo = {f1 (01,90 N G0,9.): f € Ha},
for a < k. Obviously, |I,| <|Ha| < A, , and
Ac{re2"V3,3pcacnt (01,5, N O0.) € Lo}
O

Proposition 5.23 (w: [Nowik and Weiss, 2002]). Assume that k is a weakly
inaccessible cardinal. A set A € 2% is a k-T -set if and only if for every increas-
ing sequence (0n)a<k € K* such that 6y = 0, and 6o = Upn 05 for limit o < K,
there exists a sequence (Na)a<x € K* such that for limit B < K, ng = Us<p N, and

J, € [25na+1\5na ]Slnal

Y

for all a < Kk, so that
Ac{r €2V .35cacnt(Onur1 N Op, ) € Jo ).

Proof: Obviously, a set which fulfils the above condition is x-T’-set. On
the other hand, if A ¢ 2~ is k-T’-set, then let (\,)a<x € K be a sequence of
cardinals given by the definition of a x-T’-set. Since « is weakly inaccessible,
we can assume that (Ay)a<, is strictly increasing and U,<p Ao = Ag for limit
f < k. Let (da)a<s € K* be an increasing sequence. Let (0! )n<. € K* be the
following sequence: 4 = 0,

5Zx+1 = 6)\a+17

and 0}, = Ug<q (5’5, when « is a limit ordinal.
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There exists a sequence (1, )a<x € K%, and

<A

’
N
)

H, e [25:151“\6;7&]
for all & < sk such that

Ac{ze2%:Vs3pcacnt N6}y 1 N0} ) € Ho b

nh+1

One can also assume that 7 = Ua<s 7, for all limit 5 < k. Let 1, = A, . Notice

that .1\ 0y, S 0y, 4 N 0y, . Thus, let

Ja = {fr((snoﬁl N 6na):f € Ha}'
We get that
|Jal < |Ha| < Ay, = 1as
and
Ac {ZL’ €2 vﬂ<536<a<nxr(6 ol N 577(1) € Ja} .

a

Corollary 5.24 (w: [Nowik and Weiss, 2002]). Assume that k is a weakly in-
accessible cardinal. A set A € 2% is a k-T"-set if and only if for every increasing
sequences (3o a)a<wy (01.a)a<k € K5 such that dp o < 01,4 < 00,041 for all a < Kk, there
exists a sequence (Na)a<x € K~ such that for limit § < Kk, Un<s Na = 1g, and

9

I, € [20reb0ma ]
for all a < k such that
Ac{z€2"V3,3pcacnt (01,0, N 00 ) € Ln}-
O

Proposition 5.25 (w: |[Nowik and Weiss, 2002]). Assume that r is a weakly
inaccessible cardinal. The class of k-T’-sets forms a k*-complete ideal of sub-
sets of 2.

Proof: Let (Au)a<ck be a sequence of k-T’-sets, and let sequences
(00,0 )a<ns (01,0)a<k € K® be increasing sequences such that dp, < 014 < dpa+1

for all @ < k. Inductively construct sequences (Na. s)a.g<x € K5 and (Ju5)a.p<x
such that:

(a) if 1 < Ba < K, then {Ny g ;a0 <K} S {Nap <K},
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(b) {nNa,p:a <k} is a closed unbounded set in x for every f < &,

(€) Jag € [205 %00 T for all o, 8 < s,
(d) Agc {a: €25V e Iycacn® (01, 5 N o ) € Jayﬁ}, for all 8 < k.

To obtain the above, inductively construct a sequence (I,),.. € ([r]*)"
such that Iy = k, and let Iz = {nap'a < k}. Moreover, for limit a < &, let
I, = Npeo 13- Obviously, I, is then closed unbounded.

Now, for 8 < k, by Corollary , we can get (77;75>a<,.C and (J, 5)a<s for
sequences (Jo.¢, ;)aer aNd (Joc, ;)aex, Where {Copr < K} = I3 is the increasing
enumeration, i.e. such that

"&,ﬁ’

Y

d1¢ Ndo,¢ <
Ja,p € [2 "o, 577 "&,ﬁ’ﬁ]

for all a < k, and

AB Cyre2t: V7<537<a<nflff 51,§ ’ N 50,{ ’ € Ja,ﬁ .
Mo, 88 Mo,

and 7 = Uacp s for all limit 3 < k. Now, let 1a,5 = Gy g, for v < k. We get

|l < 0 5| < Ml

for all a < k.
Let

I= U{Caw@’:a < /6}

B<k

Notice that |I| = k, and for all 5 < k there exists v < k such that I\ ¢ 5. Let
{Ca:a < K} = I be the increasing enumeration of I. Let

Jo = J {ge2ra a3, ghdomf = fAla=ny5A7<k],
B<a

for a < k. Notice that J, € 2%1.¢a ¢ and

|Ja| < |Oé| ’ |§a| < |Coc|7

for w < a < k. Finally, notice that

U Aa c {ZL’ € 2™ VB<,€35<O[<,§JZT (517§a AN 507<a) € Ja} .

<K

Thus, by Corollary [5.24] Uy<x Aq is a £-T -set. ]
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Proposition 5.26 (w: [Nowik and Weiss, 2002]). If A, B ¢ 2% are k-1 -sets,
then A+ B is also a k-T"-set.

Proof: Let (M) o<k, (AB)a<x € K* be sequences of cardinals given by the
definition of k-T’-sets for A and B, respectively. Let

Ao = max{)\é,)\f,bto},

for a < k. Let (30.0)a<xrs (01,a)a<xs € K* be sequences such that dg, < 01,4 < 00,441
for all a < k. By Proposition [5.22] we get a sequence (n4)a.< € k%, and

)\A

A 8 aNg, A ]ShA

[a € [2 1ng Ovna] To ,
for all o < s such that

Ac {x € 2"V 3exIpeacnt (01,94 N\ 6 8) € If} .

Let 05, = 0ga, and 07, = 6 ya, for o < k. Again, by Proposition [5.22} we
get a sequence (n2),«. € £~ and

9

<\B
]o]? € [263"5 \65715] &
for all a < k such that
Be{we2:VsuIpacat (08,08 ) e 18}
Let 0y = 17;743, for a < K, and let
A B 5;3 B\‘Sf B 31,m4 N0
[a:[ng + 17 €2 1nd ong = 20maN00ma

for o < k. Notice that |I,] < A,, for all a < k, and

A+Bc {LL’ e 2™ \15<,§35<a<,€xr (517,7& AN (50,770) € Ia} s

so by Proposition [5.22] A+ B is a k-T’-set. 0

Proposition 5.27 (w: [Nowik and Weiss, 2002]). Assume that k is a strongly
inaccessible cardinal. Then every k-y-set is a k-T-set.

Proof: Assume that A ¢ 2% is a k-y-set, and let (J,)a<x € £ be a sequence
such that dg = 0, and 9, = Up<, 9p for limit a. Let
<|e

Lo = [20er 0 T
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for a < k, and let

Uns ={z €22 (0a+1 N\ a) €S},

for a < K, and S € I,,. Obviously, U = {Uy s:ax <k A S €1,} is an open k-cover
of 2¢. Therefore, there exists a sequence (V,)a<x € U such that

AclU N Vs

a<rk a<f<k

Since k is strongly inaccessible, for every (3,7 < k, there exist v < a < k and
B <6 < Kk such that V,, = Us g, with S € I5. Therefore, there exist increasing
sequences (£q)a<k, (Na)a<x such that Ve, =U, ., where S, €1, . Thus,

Ac{x €2V 338cacn®(0np+1 N Oy, ) €Sat-
Hence, A is a k-T’-set. O

Proposition 5.28 (w: [Nowik and Weiss, 2002]). Assume that k is a strongly
1naccessible cardinal. Then every k-T’-set is k-meagre additive.

Proof: Let A € 2% be a k-T’-set, and let ({,)a<x € K be an increasing
sequence. Let ((u)a<x € K* be a sequence such that (5 =0, (441 = (o + @, and
Ca = Upea (g, for limit a < k.

Let 6, = &,,. By Proposition , there exists a sequence (1,)a<x € £, and

Jy € [2571a+1\5na]Sm""7
for all o < k such that
Ac {JI € 2" V5<53ﬂ<a<n$f(5na+1 N 5T]a) € Ja} .

For B < K let {jag, @ < o} = Js be an enumeration. Let z € 2% be the
following:

Z(")/) _ jo‘vﬁ(’y)’ if SCWB+(.)¢S/Y<€CWB+01+1>CV,5<K,
0, otherwise.

We have that

Ac {l‘ € 2% 3a<nva<ﬁ<n37<m (56 < g’y < £7+1 < 664—1 A Vga,s(kfﬂ,ﬂx((s) = 2(5))} .

Thus, by Proposition |5.15 A is k-meagre additive. O
Therefore, we get the following.

Corollary 5.29 (w: [Nowik and Weiss, 2002]). Assume that k is a strongly
wnaccessible cardinal. Then every k-y-set is k-meagre additive.
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O

On the other hand, recall that if  is strongly inaccessible, cov(xk - CRy) >

2% and add(M,) = 2%, then there exists a k-meagre additive set which is

not x-Ramsey null (Theorem [5.21)), but ever x-y-set is k-Ramsey-null (The-

orem . Thus, under those conditions the above implication cannot be
reversed.

5.5 k-vp-Sets

A k-perfect set P is a k-Silver perfect if for all a < k and any i € {0, 1},
Hse2amTp3Ai eTp = VSEZO‘DTP s e€Thp.

A set A € 2% is a k-vg-set if for all k-Silver perfect set P c 2%, there exists
a k-Silver perfect set () € P such that An @ = @. The notion of k-vy sets was
considered in [Laguzzi, 2015]. We study the relation between this notion and
other notions of special subsets of 2~.

Proposition 5.30 (w: [Halbeisen, 2003]). Assume that k is a strongly in-
accessible cardinal. Then every k-comeagre subset of 2% contains a k-Silver
perfect set.

Proof: Let A c 2% be k-meagre, and by Proposition [5.13] we get z € 2% and
a sequence (£, )a<x € K™ such that

Ac{r €230,V peyenTe ctce, 2(€) 2 2(€) }
Let
Q = {7 € 2" Voerim Ve, <eceann ©(§) = 2(£) }-
Then @ € 2%\ A, and @ is a k-Silver perfect set. O

Corollary 5.31 (w: [Kysiak et al., 2007]). Assume that k is a strongly inac-
cessible cardinal. Then every k-perfectly k-meagre set in 2% is a k-vy-set.

Proof: Notice that for every s-Silver perfect set P ¢ 2% there exists a nat-
ural homeomorphism h: P — 2% such that @) € 2% is a k-Silver perfect set if an
only if h™1[Q] is k-Silver perfect. The corollary follows from Proposition [5.30]

]

Proposition 5.32 (w: [Kysiak et al., 2007]). Every r-strongly null set in 2~
1S a K-vg-set.
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Proof: Let P c 2% be a s-Silver perfect set, and A € SN .. Let
S = {len(s):s € Split(Tp)}.

Let b:kx{0,1} — S be a bijection, and let X = f[kx{0}]. Let (z4)acx € (27)%
be such that
Ac J[zala+1].

aeX
Then
Q={reP:Vyoxz(a)=z,(a)+1}
is a xk-Silver perfect set such that Q € P, and Qn A =@. O

A k-perfect set P ¢ 2% is a k-Laver perfect set if there exists s € Tp such
that for all t € Tp, either ¢t C s, or

H{a <kt [0ta] 1 eTp}| = k.

Similarly, a x-perfect set P ¢ 2% is a k-Miller perfect set if for every
s € Tp there exists t € Tp such that s ¢ ¢, and

Ha <kt [0ta] 1 eTp}| = k.

A set A € 27 is k-lg-set (respectively, k-mg-set) if for every r-Laver (respec-
tively, k-Miller) k-perfect set P, there exists a k-Laver (respectively, x-Miller)
r-perfect set () € P such that Q n A =g@.

We leave the following question to be a subject of further research.

Question 5.33. What is the relation between r-ly-sets (respectively, k-mq-
sets) with other notions of special subsets of 257
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Chapter 6

Convergence in 2F

In this section we deal with the convergence of sequences of functions on 2~
and special subsets related to this notion.

We use notions and notations related to the generalized Cantor space 2%
introduced in section For introduction to theory of convergence of real
functions and related special subsets see section [I.4]

The results of this chapter are to be included in [Korch, 2017a].

6.1 Preliminaries

Recall that a sequence (Zq)a<x € (27)" converges to z € 2% (z, —, x) if for all
[ < K, there exists v < k such that for all y <o <k, x4 € [2]5].

We say that a sequence (4 )a<x € (27)* has k-Cauchy property if for any
€ < K, there exists ¢ < k such that for all o, f € K\ 9, z, € [251E].

Obviously, we get the following fact.

Proposition 6.1. A sequence (24 )a<x € (25)% has k-1-Cauchy property if and
only if there exists x € 2% such that o -, x.

Proof: Assume that (z,)a<s € (27)%, and for £ < k, let d¢ < k be such that
for all o, e kN9, x4 € [251€]. Then let © = Uger Tas11dq. Obviously, z, -, .
The other implication is trivial. O

A sequence (f,)a<x of functions 2% — 2% is k-pointwise convergent to
a function f:2% — 2% (denoted by f, = f) on A c 2~ if

Va:eAvﬂ<nE|fy<nv'y§a<nfo¢(x) € [f(SB) rﬁ]

Similarly, we say that such a sequence of functions converges r-uniformly
to f:2% - 2% (denoted by f, =, f) on A c 2~ if

V5<nzl'y<nvxEAv'ySa<nfa(x) € [f(x) fﬁ]
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Finally, we say that a sequence (f,)a<x of functions 28 - 2% converges

r-quasi-normally to a function f:2% — 2% (denoted by f, ﬂn f)on Ac2s
if there exists an unbounded non-decreasing sequence (&, )q<x € £ such that

vxeA36<nv65a<nfa(m) € [f(ZE) rga]'

6.2 Properties of k-quasi-normal and k-uniform
convergence
First, notice that k-quasi-normal convergence implies k-pointwise convergence.

Proposition 6.2. If a sequence (fo)a<x of functions 2% — 2% converges k-
quasi-normally to a function f:2% — 25 then f, =« f.

Proof: Let (£,)a<x € k* be an unbounded non-decreasing sequence such
that

VmeQ“ 35<Hvﬁ§(x<ﬁfa(x) € [f(fL‘) rga]?
and let £ € k. Then let 3 < k be such that £ <£z. We get that
vxe?“ 35<HV5SO[</€fOL(x) € [f(fE) rga] c [f(l‘) rg]

a

Proposition 6.3 (w: [Bukovsky, 2011]). If a sequence (fa)a<s of functions
28 — 28 converges k-quasi-normally to a function f:25 — 2% then for any
increasing sequence (N )a<x € K, there exists an increasing sequence (Oa)a<x €
K" such that

Vaﬁe2"E 3,8<mv,3§a<f@f5a (-1') € [f($) Wa]-

Proof: Assume that there exists an unbounded non-decreasing sequence
<€a>a<n € k" such that

V:ce% Elﬁ<nvﬁ£a<nfo¢($) € [f(l‘) rga]7

and let (N4 )a<x € K* be an increasing sequence. Let (04 )a<x € K* be an increasing
sequence such that &, > n, for any a < k. Then, for a < k and any x € 2%,

fsa (@) € [f(2)1E5.] € [f () Mna].

Notice the following property of x-uniform convergence.
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Proposition 6.4. Assume that A < k, and (Ay)acr € (P(2%))*. If a sequence
of functions (fo)a<x 0f functions 2% — 25 converges k-uniformly to a function
f:28 > 28 on A, for all a < N, then fo =, [ on Uyer Aa.

Proof: Let 8 < k, and let (74 )a<x € k¥ be such that for all z € A,, and for

all € < k such that & > 7,, fe(x) € [f(2)18]. Let v = Uaer Ya. Obviously, v < &,
since r is regular, and for all z € U,<) Ao, and £ >, fe(z) € [f(2) 5] ]

Proposition 6.5 (w: [Bukovsky, 2011]). Let (fo)a<x be a sequence of functions
28 = 26 and f:2% — 2%, The following conditions are equivalent:

(1) fu 5. f on Acon,

(2) there exists a sequence (Ay)a<n € (P(25))" such that A = Uyex Ao, and for
all a < kK, fo 2. f on Ag,

(3) there ezists a sequence (An)acs € (P(2%))F such that A = Uger Ao, Aa € Ag
for all a < B <K, Ugep Aa = Ag for limit B <k, and for all a < K, fo 3, f
on A,.

Proof: (2) and (3) are equivalent due to Propostion
Assume that there exists an unbounded non-decreasing sequence (€, )a<x €
k" such that

VzeAEi[anBscana(x) € [f(I) rga]‘
For § < k, let
AE = {JI € A: v63a<nfa(x) € [f(x) rfa]} :

Obviously, Uy« Aa = A. Also, for any 5 < k, and £ < k, find v < k such that
v >/, and £ <&,. Then, for all v < a <k, we get that f,(z) € [f(z)y], for all
x € Ag, thus f, 3, f on Agz.

Assume now that there exists a sequence (Ay)a<x € (P(2%))" such that
A = U Ao, Aa € Apg for all o < B < Kk, Upcp Aa = A for limit 3 < &, and for
all a <k, fo 2. fon A,.

For v,6 < k, let

€5y = (N{B < K Ve, fulx) € [f(x)15]} .

a6

Notice that for all v < K, (£5,)s<x is a non-decreasing unbounded sequence.
Also, if v <7’ < k, then for any 6 < &, &5~ > &5

Hence, we can find an increasing sequence (7, )a<x € k% such that for all
v < kit n, <0<k, then & > . Since Uyp Aq = Ap for limit 3 < K, we can
require also that Ua<g7a = s for limit § < x.
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Let (€a)a<x € K* be such that &, = 0 for aw < np, and &, = 5 for all g < a <
np+1. Obviously, (£4)a<s is unbounded and non-decreasing.

Let x € A. There exists 8 < x such that for all 8 <+ <k, € A,. Therefore,
for all g < a <k,

fa(x) € [f(2)16an] € [f (2)16a],

. N
where v < k is such that n, <« <n,,;. Hence, f, —Q—n f. O
In particular, we get the following.

Corollary 6.6. If a sequence (fo)a<ws Of functions 2% — 2% converges k-uniformly
N
to a function f:2% — 2% then f, Q—m f-
O

On the other hand, if a sequence converges k-quasi normally on every
element of a family of less than b, subsets of 2%, it converges on its union.

Proposition 6.7 (w: [Bukovsky, 2011]). Let A € 2%, and A = Uycy Ao for
A< b.. If a sequence (fo)a<s Of functions A — 25 converges k-quasi normally
on A, to f+A— 25, for all a < A, then f, ﬂ,{ f on A.

Proof: Let (£a.6)a<xs<x be such that for all § < A

VCEEA(; 3,8<ﬁv,8§a</{fa(x) € [f(l’) rga,é]-

Assume that for all § <\, (§,.5)a<x is non-decreasing.
For 0 < A, construct inductively x5 € k* such that for a < x,

zs(a+1) =({B<r:éss>a+1AB>ns5(a)},

and z5(8) = Ua<p 2s(v) for limit 5 < k.

But since A < by, there exists x € k* such that for all § < A\, x5 <* . Thus,
for all § <\ if z(v) <, then &, 5> v+ 1.

Let (£4)a<x € K% be such that

€ - 0, if o<z,
“n B, if Yoz (y) <ana<z(f).

Hence, for all o,0 < K, £o < &a .
Fix x € A, and 0 < A such that x € As. Then there exists 8 < k such that
for all a > g3,

fa(@) e [f(2)1as] € [f(2)1Ea].

O
Obviously, one can find sequences of functions which distinguish between
different notions of convergence.
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Proposition 6.8. There exists a sequence (fa)a<w Of functions 2% — 2% such
that f, =, f with f:25 - 2% but f, < [

Proof: Indeed, let ((€4.4)a<k)ze2x be an enumeration of all increasing se-
quences of ordinals < & such that for all limit v < K, Ugey o = &2 for all
T € 2",

Let (Max)ze2r a<x be such that for z € 2%, a < K, 14, = B if a < s, and for all
d < B, a>&,. Notice that (1a.)a<s i an unbounded non-decreasing sequence
for all z € 2~.

Then let (fa)a<x be defined in the following way. Let

0, i B<Nag
1, otherwise.

fa(x)(B) ={

By definition, f, —. 0, but there is no sequence (£,)a<x such that for all
x € 2% there exists 0 < k such that f,(x) € [01¢,] for all a <k with a>40. O

6.3 Extending convergent sequence of functions

In this section, we prove that if P ¢ 2% is a s-perfect set, then every sequence
(fa)a<x of continuous functions P — 2% can be extended to a sequence of
functions defined on the whole space 2%.

We start by proving the following proposition.

Proposition 6.9. If P ¢ 2% is a k-perfect set, and f: P — 2% is continuous,
then there exists a continuous function F:2% — 25 such that F'IP = f.

Proof: Let (Sa)a<x € (2<%)* with A < k be such that 2\ P = Uy [Sa], and
[sa] N[s5] =@, for any a < B < A. Let (a)acr € K* be such that for a < A,

Co =UJ{E ek [sa1] N P+ o}

Notice that since P is k-perfect, for every a < A, [s41€s]n P # &, and therefore
choose any (4 )a<x € (2%)* such that x, € [s,1£,] N P for any a < .

Let
| f(z), ifweP,
Fle)= {f(xa), if 2 € [sa] @ < A

Then obviously, F'IP = f. Moreover F is continuous. Indeed, if = € [s,] for
some « < A, then obviously, F' is continuous at x, because it is constant on
[Sa]. On the other hand, if x € P, and ¢ € 2<% are such that f(x) € [t], then
since f is continuous, we can get s € Tp such that x € [s] and f[[s] n P] ¢ [¢].
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But if y € [s] \ P, then there exists y’ € [s] n P such that F(y) = f(y). Thus,
F[[s]] ¢ [t] as well. O
Therefore, we get the following Corollary.

Corollary 6.10. If P c 2% is a k-perfect set, and (fa)a<x 1S a sequence of con-
tinuous functions P — 25 such that f, -, 0 on P, then there exists a sequence
(Fu)a<k of continuous functions 2% — 25 such that F, —, 0 on 2%, and for all
a<k, F,IP=f,.

Proof: Let (Sq)a<x € (2<%)* with A < k be such that 25\ P = Uycr[Sa], and
[sa] N [ss] =@, for any o < B < A. Then for v < A, let fi: PulUgp.o[55] be such
that
fa(z), ifxeP,

0, otherwise.

fa () ={

If A<k, let f!(z)=0 for all z€2% and A< a<k.

Notice that f/ is continuous, because Up,[5s] is a closed open set. By
Proposition [6.9] for a < k, let F,:2% — 2% be a continuous function such that
Fo 1P UUg<alsg] = fL. Obviously, F,(z) —, 0 for all x € 2~. O

As in the standard case, xk-uniform limit of a sequence of continuous func-
tions is continuous as well.

Proposition 6.11. Let (f,)a<x be a sequence of continuous functions 2% — 2%,
and A € 2¢. Assume that fo, =, f on A, where f: A — 25, Then f is continuous
on A.

Proof: Assume otherwise that f is not continuous in x € A. Therefore,
there exists £ < k such that for every « < k, there exists z, € [zla] N A with
f(za) ¢ [f(z)1€]. But also there exists § < x such that for all a < k with
a > 6, and for every y € A, fo(y) € [f(y)I]. For such a and any 3 < k,

fa(wg) € [f(xp) 1], But [f(zp)1€] n[f(2)1€] = @, so fa(xg) ¢ [f(2)1€]. On
the other hand, f,(x) € [f(x) €], which implies that f, is not continuous, and
brings to a contradiction. O

The above fact can be used to prove that there exists a sequence of functions
which converges k-quasi-normally, but not x-uniformly.

Proposition 6.12. There exists a sequence (fo)a<x 0f functions 2¢ — 25 such
that fo 5. F with f:25 > 2%, but fo % f.

Proof: Let (fa)a<x be a sequence defined as follows,

fu(x) = {1, if x e[1la],

0, otherwise.
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and let f:2% — 2% be such that f(1) =1 and f(z) =0 for any x € 2%\ {1}.
Notice that f, ﬂ,{ f. Indeed, for every x € 2% if x € [1ta] N [1la + 1],
a < K, then for all 5> «a, fs(z) € [f(x)la].
On the other hand, by Proposition fa #x f, because f is not contin-
uous. O
Notice also that if a sequence of continuous functions converges xk-uniformly
on a set A ¢ 2%, then it converges x-uniformly on clA.

Proposition 6.13. Let (f,)a<x be a sequence of continuous functions 2% — 2%,
and A € 25, Assume that f, =, f on A, where f € 25 — 2% is continuous. Then
fa 2k f on clA.

Proof: Indeed, let £ < k, and assume that for § < &, for all a < x such
that « > ¢, and all x € A, fo(z) € [f(z)IE]. Let y € clA. Then for any
S < K there exists x5 € A such that x5 € [y13]. But, for all 8 <k and a > 4,
fa(xp) € [f(xp)1€]. Since f is continuous there exists ¢’ < x such that for all
B <k with 5>9, f(xg) € [f(y) 1], hence for a > 6,8 > ', fa(zg) € [f(y) ]
But for every a < k, f, is continuous, thus f,(y) € [f(y)I¢], for all a > 5. O

Those properties can be used to prove that there is a k-convergent sequence
of functions which converges s-uniformly only on nowhere dense sets.

Proposition 6.14 (w: [Bukovsky, 2011]). There exists a sequence (fo)a<k Of
continuous functions 2% — 2% such that f, —. 0 on 2%, but if A € 2% is such
that there exists (§a)a<w € K* with fe, =, 0, then A is nowhere dense.

Proof: Let 2<% = {s,:a < K} be an enumeration. We construct (f,)a<x as
follows. If x € 2%, and «, § < k, then let f,(x)(B) =1 if

(a) zl(len(sg) +1) = s5-1, for all 0 < < a,
(b) z(len(sz) + 1 +7) =0,

(¢) and z(len(ss) +1+a) = 1.

Otherwise, let f,(z)(3) = 0.

Notice that f, is continuous for every a < k, and f, -, O.

But if A ¢ 2% is such that there exists ({,)a<s € K* such that fe, =, 0
on A, then also clA has this property (see Proposition . Assume that
B =int(clA) # @. Then there exists = € B such that z|(len(sg) +1) = s"1,
and x(a) =0, for all len(sg) < a < k. But as B is open, there also exists § <
such that for all § < £ < &, there is x¢ € B such that z¢(len(sg) +1) = sz "1,
for all 0 <y <&, z¢(len(sg) +) =0, and z¢(len(sg) +1+&) = 1. But then for
all 0 <& <k, fe(xe) ¢ [015 + 1], which is a contradiction. ]
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6.4 Special subsets of 2~ related to convergence

Similarly to the case k = w (see section [1.4)), we define some classes of special
subsets of 2¢ related to convergence.

A set A c 2% is a k-QN-set, if any sequence ( f,)a<x Of continuous functions

A — 2% such that f, —, 0 on A, converges also k-quasi-normally (f, ﬂn 0

on A).
A set A € 2F is a k-weak QN-set (k-wQN-set), if for any sequence
(fa)a<x of continuous functions A — 2% such that f, -, 0 on A, there exists
N
an increasing sequence (&, )a<x € K* such that fe, Q—>,,v Oon A.
A set A € 2fis a k-mQN-set, if any sequence (f,)a<x Of continuous func-
tions A — 2% such that f, -, 0 on A, and for all z€ A, and a <<k

U7 < #: Vocy fa(@)(9) = 0} < Uy < 5 Vsey f5(2) (9) = 0},

N
converges also k-quasi-normally (f, Q—>,i 0 on A).

6.4.1 Basic properties

Proposition 6.15 (w: [Bukovsky, 2011]). If Ac2* is a k-w@QN-set, and
(fa)a<s 1S a sequence of continuous functions A — 25 such that fo -, 0 on
A, then for any increasing sequence (No)a<x € K*, there exists an increasing
sequence (Oa)a<x € K* such that

VzeA36<nv6Sa<nf6a(x) € [f(ZL’) rna]'

N

Proof: Since, A a k-wQN-set, there exists (24 )a<s € K* such that fe, Q—m 0

on A. Hence, by Proposition , there exists an increasing sequence (5, )a<x
such that

VmeA3ﬂ<nV53a<nf§5a (.T) € [f(.%‘) Tﬁa]-
Set (Sa = fga. a
The following corollary is immediately implied by Corollary [6.10]

Corollary 6.16. If A< 2~ is a k-QN-set (respectively, k-m@QN-set), and P ¢
2% is k-perfect, then Pn A is k-QN-set (respectively, k-m@QN-set) as well.

By Proposition [6.7] we immediately get the following.

Corollary 6.17 (w: [Bukovsky, 2011]). If A < b,, and (An)a<x 1S a sequence of
k-QN-sets (respectively, K-m@QN-sets), then Uqen Ao is k-QN-set (respectively,
k-m@N-set) as well.
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Therefore, we get the following corollaries.

Corollary 6.18. If A\ < b,, and (P.)a<x 18 a sequence of k-perfect sets, and
A is a k-QN-set (respectively, k-mQN-set), then AN Ugex Po is k-QN-set (re-
spectively, k-m@QN-set) as well.

Corollary 6.19. If X 2%, and |X| < by, then X is a k-QN-set.

Finally, let us annotate that the whole 2% is not k-w(QN-set.

Proposition 6.20 (w: |[Bukovsky, 2011]). The generalized Cantor space 2% is
not a k-w@N-set.

Proof: For x € 2%, « < K, let d,, be an ordinal order isomorphic to ({7 <
a:x(y) = 1},<). Let (fa)aes be a sequence of functions 2% — 2%, defined in the
following way. For «, 8 < k,x € 2%, let

0, ifz(a)=0,
Ja(@)(B) =41, ifz(a)=1,820;4,
0, ifz(a)=1,8<64-

Obviously, f, is continuous for any o < k. It is also easy to check that

Ja = 0.
To obtain a contradiction, assume that there exists an increasing sequence

N
(Na)a<r € K* such that f, g—m 0. Thus, there exists an increasing sequence

(€a)a<w € K* such that {{,:a < Kk} € {ny:a <k}, and for all z € X, there exists
d < k such that for all a <k with a > 4§, fe, (z) € [0ta+1].

Let x € 2% be such that z(8) = 1 if § € {,:a <k}, and z(5) = 0, otherwise.
Then, for all a < K, §,¢, = a, and hence fe (a) =1, s0 fe,(z) ¢ [0+ 1], which
is a contradiction. ]

Actually, every k-wQN-set in 2% has to be x-perfectly k-meagre.

Proposition 6.21 (w : [Bukovsky, 2011]). If X < 2 is a k-w@QN-set, then
XeP. M,

Proof: Let P c 2% be a k-perfect set. Thus, it is homeomorphic to 2%, so
by Proposition , we get a sequence ( f,)a<x Of continuous functions P — 2~
such that f, —. 0 on P, and if A € P is such that there exists ({,)a<x € K* With
fe.. 35 0, then A is nowhere dense in P.
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By Corollary [6.16, we get that X n P is a k~-wQN-set. Thus there exists

a sequence (£, )a<x € K* such that fe, ﬂﬁ Oon XnP.

Therefore, by Proposition , there exist a sequence (Ag,)q<x of sets such
that Up<x Ao = X N P, and f¢, 2,0 on A, for all o < k. Hence, for all a < &,
A, is nowhere dense in P, and so X n P is k-meagre in P. O

6.4.2 k-Sequence selection properties

In this section we consider the space of all continuous functions X — 2%, where
X c 2. This space is denoted here by C5(X) when considered along with
notion of k-pointwise convergence.

We say that Cr(X) has k-sequence selection property if for every
(fa8)ap<n € (CF(X))™" such that (fss)s<x converges k-pointwise to 0 for
all o < K, there exist (£4)a<n, (0a)a<xn € K* such that fe, 5. =4 0.

Moreover, if for every (fap)a,s<x € (C5(X))™*" such that for all a < &,
(fa,8)p<x converges k-pointwise to 0, there exists (ga)acr € (Cf(X))" such
that g, —»; 0, and

e for all a <k,
{fap:Bert~{gs:B <r}|<r,
then Cy(X) has property - (a1),

e for all a <k,
{fapBertni{gsB <k}l =r,
then C#(X) has property s - (az),

{a < r:|{fap Bertn{gsB<r} =k} =r,
then C#(X) has property s - (as),

{o<ri{fapBertn{gsh<r}za}|=r,
then Cy(X) has property x - (ay).

Obviously, we have the following implications between the above properties:
k—(a1) = k- (az) = r-(a3) = K- (aq)

The above properties are closely related to notions of special subsets con-
sidered before. The following Proposition is an analogue of the standard case.
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Theorem 6.22 (w: [Bukovsky, 2011]). The following conditions are equiva-
lent.

(1) X is a k-w@QN-set,
(2) C5(X) has k-sequence selection property,
(8) C5(X) has Kk~ (az) property,
(4) C5(X) has - (as) property,
(5) C5(X) has k— (ay) property.
Proof:

(1)=(2): Let X be x-wQN set, and assume that (fs s)a,s< € (CF(X))™*
is such that for every a € w, (fa3)p<x converges r-pointwise to 0. Let
(98)s< be a sequence of functions X — 2% defined in the following way:

gs(z)(a) = {0’ if Vycafas(2)(7) =0,

1, otherwise.

Notice that for all 8 < &, gs is a continuous function. Indeed, if gz(z) €
[Ota] for some o < &, then for all v <, x € f-5[[01y]], which is an open
set.

Moreover, if § < k, and x € X, then for every v < ¢, let &, be such that
Jy5(x)(0) =0forall § <& and B> &,. Let n=U,&. Then for all 3>,
g9s(x) € [01¢], thus gg >, 0.

Recall that X is a k-wQN-space, so there exists (0s)s<, € K~ such that
955 ﬂ,{ 0 in X. By Proposition , there exists an increasing sequence

(07) per € k™ such that {03: B €k} € {dg: 8 <}, and

V;ze2” 3«/<nvvsﬂ<ng% (ZE) € [Of(ﬂ + 1)]

But gy, (x) € [01(5 + 1)] implies that fs, () € [015). Hence, f5,5,

0.

(2)= (3): Let (fa)as € (CF(X))™" be such that for all o < K, {fa,3)s
converges k-pointwise to 0. Let b:k x kK - k be a bijection, and let
([l g)ap<n € (Cy(X))™" be such that for o, 8,7 <k, f, 5= fyp if there
exists d < k such that b(v,d) = a.
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Now, let (ga,8)a,s € (C5(X))"* be defined as follows. For «, 3,7 < s,
and x € X, let

0, if Vésaféﬁ(x)(?/) =0,
1, otherwise.

gap(x)(7) = {

As before, it is easy to see that for all o, < K, g, is a continuous
function.

Moreover, notice that for all o < &, (ga,5)p<x converges k-pointwise to 0,
because for all o <, (f, 3)p<s converges r-pointwise to 0.

Thus, by k-sequence selection property, there exist (£, )a<x, (0a)a<x € £~
such that g, 5, =« 0. It is easy to see that we can require (€,)a<x; (0a)a<x
to be increasing.

Let (ga)a<x be such that for all a < k, go = f/ s . Notice that then for

veX, Ber, ga(2)(B) = fls (x)(B) = 0 whenever ge, 5. (x)(8) = 0.
Hence, since ge, 5, =« 0, go =« 0 as well. But also for all o < &,

{fap:Ber}n{gsB <k} =k

(3)=(4)=(5): is obvious.

(5)=(1): Let (fa)a<x € (C’;(X))" be such that f, - 0. Let (fa.g)ap<s be
defined as follows. For x € X, a, 8,7 < k such that v >0, let

fap(@)(7) = farp(@)(a+7),
and fo3(x)(0) =01if faip € [0la], and f,5(x)(0) =1, otherwise.

Notice that f, s is continuous for all a, 8 < k. Moreover, for every o < &,
(fa3)p<x converges k-pointwise to 0.

Since k — (ay) holds, we get (€.)a<x € K and an increasing sequence
(Na)a<s € K% such that fe , —. 0. Notice that by induction, one can
choose sequences (&) a<x, (1) )a<x € K% such that {&/:a <k} € {{, a < K},
{nt:a<k} c{nsa<k}, and (£, + 1! )a<w is an increasing sequence.

Notice that since f¢r ,» —, 0 for any x € X, there exists § < x such that

for all & > 0, fer . (2)(0) = 0. Thus, for such a, fe .y (z) € [01E]].

QN
Hence, fer 1 — 0. O

On the other hand, property s - (1) of C#(X) is equivalent to X being
a k-QN-space.
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Theorem 6.23 (w: [Bukovsky, 2011]). The following conditions are equiva-
lent.

(1) X is a k-QN-set,
(2) Cr(X) has k— (o) property.
Proof:
(1)=(2): Let (fa,8)asex € (CF(X))™" be such that for any o < &, {fa,3)s<

converges k-pointwise to 0.

Let (gs)p<x be a sequence of functions X — 2% defined in the following
way':

gp(r) () = {0’ if Vocafas(2)(7) =0,

1, otherwise.

Notice that for all 3 < K, gg is a continuous function, and gz = 0.

Since X is a k-QN-set, we get an unbounded non-decreasing sequence
<§a>a<m € k" such that

VIEXEI,8<NV,3§0¢<N90[($) € [0 ff@]-

Let (0a)a<x € K be an increasing sequence such that for all a < &, &5, > a.

Fix a bijection b:x — Ugcp{a} x {5 \ o}, and let (fo)aw € (CF(X))" be
such that f, = fy(a)-

Obviously, for all a < &k, [{fas:0 € k} N {fs: 8 < K}| < K, so it suffices to
prove that f, -, 0. Let z € X, and £ € k. We can find n < k such that
n>¢, and for all a < k with o > 1, go(x) € [01€,]. Moreover, we can get
¢ <k such that for all § <k with 8> (, and a <7, fos(z) € [0E].

Then, if o > 7, and 8 > d,, we have that 3> ¢,, and
gs(x) € [01€5] < [01€5,] < [O1ar].
Thus, for such «, § < k, we get that f, s(z) € [0ta] € [01£]. Hence, if

(o, 8) e U {a}x(k~da) unx (kN 0),

n<a<k

then f, 3(x) € [01¢]. Therefore, there exists v < x such that for all a < &
such that a >, fo(z) € [0}].
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(2)=(1): Let (fa)a<x € (CF(X))" be such that f, =, 0. Consider a sequence
(fa.8)a.p<x defined as follows. For x € X, «, 8,7 < k such that v > 0, let

fap(x)(7) = fa(z)(a+7),

and f, 3(x)(0) =01if fge[0ta], and fo5(2)(0) =1, otherwise.
Since X possesses k- (ay)-property, we get (ga)a<x € (Cf(X))" such that
Ga =« 0, and for every a < k, |{fas: 5 € K} N {gp: 8 < K}| < k. Hence, let
(na) € k* be an increasing sequence such that for all a < &, 1, > 0, and
B2 Nas fap €1{9y7 <k} Let (ha)ac € (CF)" be defined in the following
way.

G5 ifgﬁfa,ﬂﬁza,ﬁZUcm%

h’Y: G~ if gﬂ/:fa,ﬂaﬁ<Ug‘<a77C7

fa,07 if9v=fa,ﬂ7720é,5<Uc<a77<-
Moreover, let (£, )a<s € K* be such that &, = § < « if and only if o < 7,
and for all v < 3, n, < a.

Fix z € X, and let § < k be such that for all 5 > d, hg(x)(0) = 0. If
a > 15, let B <k be such that 8 >0, and o <ng, and for all v < 3, n, <a.
Then there exist v,n < x such that v > 8 and fz, = hy. Hence, for such

B,a, fra(x)(0) = 0, and so for a > 55, fu(w) € [018] = [01&,]. Thus,

N
fa —Q—m 0. O

A set A ¢ 2% has k-quasi-normal sequence selection property if for
any sequence (fa.g)ap<s Of functions 28 — 2% such that (f,3)s<s converges
k-quasi-normally to 0, and for every «, 8 < K, f, 43 is continuous, there exists

N
<£a>a<n € k" such that fa,sa Q_% 0.

6.4.3 Relation to cover selection properties in 2~

In the classical theory (see [Bukovsky, 2011]), wQN-sets and QN-set are closely
related to cover selection properties. I do not know whether such relation exists
also in the generalized Cantor space. In particular, I leave those two problems
as open questions.

Question 6.24. Is every set satisfying S5 (I'x,[) principle, a k-w@QN-set?

Question 6.25. Does every k-QN-set satisfy S (T, T'x) principle?
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Chapter 7

Ideal convergence in 2%

In this chapter we study notions of convergence of sequences of functions 2% —
2% with respect to an ideal on k.

The reader is expected to read the previous chapter first, we also use notions
and notation defined in sections [[L4] and [L.5l

The results of this chapter are to be included in [Korch, 2017a].

7.1 Preliminaries

7.1.1 k-I-convergence of sequences of points

If I is an ideal on k, then we say that a sequence (z,) € (2¢)" k-converges to
a point z € 2% with respect to the ideal I (z, —»,_; z), if for any f <k

{a<kizy ¢ [xlB]} el

Similarly, a sequence (z,) € (2%)® k-I*-converges to a point z € 2~
(xoq =u-1+ x), if there exists B € I such that =, —; z, where {n,;a <k} =r\B
is the increasing enumeration.

Notice that if T = [k]<*, then both the convergence notions from above
coincide with k-convergence discussed in the previous chapter.

I will assume that every considered ideal I on k is admissible.

An ideal I on k is k-generated if there exists a sequence (C,),., of ele-
ments of I such that for every A € I, there exists a < k such that A c C,.

If A <k, we say that an ideal I on x is A-complete if for any p < A, and
Ae[I]*, UA€l.

We say that an ideal I on  is k-admissible if [x]<* c I.

The following propositions are easy observations.
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Proposition 7.1 (w: [Kostyrko et al., 2000]). If I is a k-admissible ideal on
K, (xa) € (28)%, x €25, and xo =, X, then x4 =g .

O

Proposition 7.2 (w: [Balcerzak et al., 2007]). If I is a k-admissible ideal on
K, (xa) € (28)%, x € 2%, and xy =1+ x, then T4 >, T.

O

Proposition 7.3 (w: [Kostyrko et al., 2000]). If I is an ideal on k, and (x,) €
(2’6)/@; x,y €28, with x, —>, v and xo >, Yy, then x =1y.

Proof: Assume that = #y. If £ < k is such that x ¢ [y[{], then
{o<mim, ¢ (1]} = A,

{a<kiz, ¢[yt]} =Bel. But2f\(AuB) + @, hence we get a contradiction.
O

Proposition 7.4 (w : [Kostyrko et al., 2000]). If I is a k-admissible ideal on k,
(z4) € (28)%, and x € 2% are such that for any increasing sequence (£4)a<x € K,
there exists an increasing sequence (Na)a<x € K with {Ny:a < K} € {10 < K}
with Ty, .1 x, then To =, .

Proof: Assume that =, +._; =, and let £ < k be such that

A={a<rz, ¢[xl€]} ¢ 1.

Since [ is k-admissible, |A| = k. Let A = {{,:a < k} be the increasing enumer-
ation of A. Obviously, there is N0 (1 )a<x € £* With {n.:a < K} € {1 < K}
such that z, —._r . |

Proposition 7.5 (w: [Kostyrko et al., 2000]). If I is an ideal on k such that
there exists A € I with |A| = Kk and |k \ A| = k, then there exist (T4 )a<x € (27)",
x,y € 2% and an increasing sequence (Eq)a<n € K* such that To =1 T, Te, =41
y, but x #+y.

Proof: For a < &k, let

_{0, ifaeA,

1, otherwise.

Then, if A = {{,:a < Kk} is the increasing enumeration, then obviously, x, —=._s
1, but Te, k-1 0. O
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Proposition 7.6 (w : [Kostyrko et al., 2000]). There ezist a k-admissible k-
complete ideal I, x €25 and (Ta)a<x € (27)F such that o > 1 T, but Ty P 1
T.

Proof: Let b:k x kK > k be a bijection, and let
I={Ackl{a<rAnb[{a} xk]+ 3} <K}.

Obviously, I is a k-admissible ideal on k. Moreover, I is k-complete. For
a, B < k, let also
0, ifp<a,

1, otherwise.

za(B) = {

Obviously, z, »«_7 0.
For av < k, let o = 25 if v € b[{B} x k]. Notice that if £ < k, then

{a<kiz, ¢[01E]}CO[(E+1) xk]el.

Hence, z, »._1 0.

On the other hand, to achieve a contradiction, assume that x, —._« O.
Then there exists A € I such that (z¢, )a<, K-converges to 0, where {{,:ar <
Kk} = kN A is the increasing enumeration. But there exists £ < k such that
A c b[€ x k], and then b[{{ + 1} x k] € kN A. Since |b[{{ + 1} x k]| = &, for
all 5 < k, there exists a < k with o > 3 such that z, ¢ [0(£ + 1)], which is
a contradiction. O

Finally, every x-I-convergent sequence has a subsequence which x-converges.

Proposition 7.7 (w: [Balcerzak et al., 2007]). If I is a k-admissible ideal on
K, (Ta)ack € (2%)%, and x € 2% are such that x, —._; ©, then there exists an
increasing sequence (&4)a<k € K* such that x¢, =, .

Proof: Indeed, construct (£,)a<s by induction. Given &g for all S <, let

A={a<rz,t¢[zy]fulJ& el

B<y

Thus let &, € k \ A be arbitrary. It is easy to see that z¢, —, . O
Similarly as in the case of ideals on w we consider a property analogous to
P-ideal property.

Proposition 7.8 (w : [Balcerzak et al., 2007)). Let I be an ideal on k. The
following statements are equivalent.

(1) For any sequence (Aq)a<x € 1%, there exists B € I such that for every a < k,
|Ao N\ Bl < k.
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(2) For any sequence (Ay)a<x € 1%, there exists a sequence (By)a<x Such that
|Ay & By| <k for all a < k, and Uye, Ba € 1.

Proof: The proof is similar to the standard case (see
[Balcerzak et al., 2007]).

(1)=(2): If (A4)a<x € I*, there exists B € I such that for every a < k, [A,\B| <
k. For a < K, let B, = A,nB. Then A, A B, = A, B is of cardinality less
than k for any a < k. Moreover, for all a« < k, B, € B, 80 Up<x Bo € B e l.

(2)=(1): Let (Ad)a<k € I be a sequence of pairwise disjoint sets. Let B =
Ua<x Ba- There exists a sequence (Bg)a<x such that |A, A B,| < k for
all @ < k, and Uy Ba € I. Let B = Uy, Ba € I. Then for any a < k&,
AN Bc A, N\ B, is of cardinality less than k.

0
An ideal I on k is called a k-P-ideal if it satisfies the above properties.

Proposition 7.9. If I is a k-complete ideal on k, then it is a k-P-ideal if and
only if

(3) For any sequence (Aq)a<x € I® of mutually disjoint sets, there exists a se-
quence (Bg)a<x such that |Ay & Ba| < k for all a < k, and Uye, Ba € 1.

Proof:
(2)=(3): Obvious.

(3)=(2): Let (Ay)ack € I, and for a < &, let A, = Ay N\ Up<n Ag. There exists
a sequence (B! ))q<. such that |A! A B! | < k for all a < k, and Uy, BY, € 1.
For o < k, take By = Up<q B} Since [ is k-complete, B, € I, for all a < k.
Moreover, for any «a < k,

Ay & B | J(Af 2 By)
B<a

is a union of less than k sets of cardinality less than k, hence is of
cardinality less then x. Moreover,

U Ba=B,el

<K a<RK

a

Proposition 7.10 (w: [Kostyrko et al., 2000]). Let I be a k-complete ideal on
k. The following two properties are equivalent.
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(1) For every sequence (To)a<x € (27)%, and x € 2%, x4 =1 x if and only if
To —pg* L.

(2) 1 is a k-P-ideal.
Proof:

(1)=(2): For a, 5 < K, let

1, otherwise.

Za(ﬁ):{O, if 5 <a,

Obviously, zq =« 0. Let (A, )a<x € 7 be a sequence of mutually disjoint
sets such that U<, Aa = K, and for a <k, let z, = 25 if v € Ag.

Let £ < k. Then
{a<kiz, ¢[01]} = Anel

asé
Hence, x, —._; 0, thus by assumption z, —._r+ 0.
Therefore, let B € I be such that ¢, — 0, where {{,;a <k} =K\ B is
the increasing enumeration. For a < k, let B, = Bn A,. We get that

U BacBel.

a<k

Notice also that |(k\B)nA,| < k for any a < k. Hence, A, A B, = A, B,
is of cardinality less than k. Therefore, by Proposition I is a k-P-
ideal.

(2)=(1): Assume that [ is a k-P-ideal, and (z4)a<x € (27)%, x € 2% are such
that z, —»._r x. For a <k, let
Ay ={B<rizsé¢[xta]}.

Then, by Proposition there exists a sequence ( By )a<x such that [A, A
B,| <k for all a« < k, and B =Ugye, Ba € 1.

Let € < k. Since |A¢ A Be| < k, there exists 6 < x such that Ben (k\6) =
A¢n (kN 9). Thus, for all a € kN B such that a >4, z, € [z{]. Hence,
Lo 7 p-1+ L.

On the other hand, if x, —._;« z, then x, —._; x by Proposition [7.2]

A sequence (£, )a<x € K" is said to be k-I-unbounded if for any § < &,
{a<k:ié, <0} el

Notice the following easy observation.

151



Proposition 7.11. Let I be an ideal on k. A sequence (Eq)a<k € K* is K-1-
unbounded if and only if a sequence (Xo)a<x € (25)% defined in the following
way:

0, ff<&

1, otherwise.

xa(ﬁ) :{

k-I-converges to 0.

O
We say that a sequence (4 )a<x € (27)* has the k-I-Cauchy property if
for any & < k, there exists B € I such that for all o, € K\ B, x4 € [251£].
Obviously, we get the following fact.

Proposition 7.12 (w: [Dems, 2004)). Let I be a k-complete ideal on k. A se-
quence (To) o< € (28)% has k-I1-Cauchy property if and only if there exists x € 2~
such that v, —._1 T.

Proof: Assume that (x4)a<. € (25)%, € 2% and x, —._; x. Let £ <k, and
let A={a<kiz,¢[zl€]} €. Therefore, if a, 5 € kN A, then z,,x5 € [x¢],
thus z, € [z51¢].

On the other hand, if (x4 )a<x € (27)* has k-I-Cauchy property. For & < &,
let A¢ € I be such that for all a,f € kN A¢, x4 € [251€]. For £ < &, let
Be = Ua<e Aa- Let (€a)acr be such that for all a < &, &, € K\ B,

Now, notice that for all a < 8 < K, @, ¢, € K\ By, thus g, € [x¢,la].
Hence, & = Uy<r (e, ev) is an element of 2%, and if € < k, then

{a<kiz, ¢[x1]} € Beel.

Thus, £, =1 T. O
Obviously, by Proposition we get the following fact.

Proposition 7.13. If I is an ideal on K, and (x4 )a<x € (25)%, then the follow-
ing properties are equivalent.

(1) There exists x € 25 such that x, —,_j+ T.

(2) There exists A € I such that (xy)aexa has k-Cauchy property.

O
It is also obvious that the latter property implies x-I-Cauchy property.

Proposition 7.14 (w : [Balcerzak et al., 2007]). If I is a k-admissible ideal
on K, and (Ta)acx € (29)% is such that there exists A € I such that (x4)aexa
has k-Cauchy property, then (xa)a<x has k-1-Cauchy property.

In the case of k-P-ideals this implication can be reversed.
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Proposition 7.15 (w : [Balcerzak et al., 2007]). If I is a k-admissible k-P-
ideal on K, and (T )a<x € (27)7, then there exists A € I such that (24)acxa has
k-Cauchy property if and only if (T )a<x has k-I-Cauchy property.

Proof: For £ < k, let A¢ € I be such that for all o, 5 € k \ Ag, z, € [251E].
Since I is a k-P-ideal, there exists B € I such that for all £ < k, |[A¢ \ B| < k.
Let {{,:a <k} = K~ B be the increasing enumeration.

Then (¢, )o<x satisfies k-Cauchy condition. Indeed, if £ < &, then let 6 < &
be such that A¢ ~ B € &. Thus for all a,8 € kN0, x¢,, ¢, ¢ BU Ag, s0

Te, € [l’gﬂ rf] O

7.1.2 k-I-convergence of sequences of functions

Using the notions defined above we can define different types of ideal conver-
gence, similarly to the case k = w.

A sequence (f,)a<x of functions 2% — 2% converges with respect to an
ideal / on k on a set A c 2~:

k-pointwise ideal, f, —._; f if and only if

v§<nv:peA {04 < KR! fa(x) ¢ [f(l') Tf]} € [7

N
k-quasi-normal ideal, f, Q—m,[ f if and only if there exists a sequence
(€4)a<x € K* which is k-T-unbounded and

Voea{a < ki fo(x) ¢ [f(x)16a]} €1,
k-uniform ideal, f, =._; f if and only if

VeexIBerVaea {a < kit fo(x) ¢ [f(2) 1]} € B.

k-I1*-pointwise, f, —._;« f if and only if for all © € A, there exists M =
{me:a < K} € K, mg 2m, for all & < § < k such that kK~ M € I, and

fna(x) = f(z) on A,

. N . . .
k-I*-quasi-normal, f, Q—>H_I* f if and only if there exists M = {m,:a <

K} C Kk, mg > m, for all @ < § < K such that kK~ M €I, andfma@»,{f
on A,

k-I*-uniform, f, =,/ f if and only if there exists M = {my,a < K} C K,
mg > m, for all a < <k such that kK~ M eI, and f,,, 3, f on A.
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If JcI areideals on k, and Nel,let Jv(N)={AuN:AeJ}. If Ac2~s
and (fa)a<x 18 @ sequence of functions 2% — 2%, we have the following notions
of convergence.

k-(J,I)-pointwise, f, —._;; [ if and only if for all x € A, there exists N € ]
such that for all £ < &,

{a<rfo(z) ¢ [f(2)1€]} € TV (N),

k-(J, I)-quasi-normal, f, ﬂ,{, g1 f if and only if there exists N € I and
a sequence (£, )a<x, which is k-J v (N )-unbounded such that for all x € A,

{or<rifala) e [f(2)16a]} € TV (N).

k-(J, I)-uniform, f, =,._;; f if and only if there exists IV € I and fo Z._sv ()
fon A.

7.2 Relation between different notions of k-
ideal convergence

7.2.1 Properties of k-I-quasi-normal convergence

In this section, we generalize some results of [Das et al., 2014] to the case of
ideal convergence in 2%. Let I be an ideal on k.

First notice that x-I-quasi-normal convergence implies k-I-pointwise con-
vergence.

Proposition 7.16. If (f.)a<x s a sequence of functions 2% — 2% and f:2"% —
2% such that fo ﬂn_] fonAc2r Then fo 41 f on A.

Proof: Let (€4 )a<x € K* be a k-I-unbounded sequence such that
Voea {a < ki fo(z) ¢ [f(2)1a]} €1,
and let € € k. We get that for all x € A,

{a<r:fo(@) ¢ [f(2)1€]} c{a <ri&a <& uf{a<n: folz) ¢ [f(2)a]} € 1.

O
On the other hand, k-I-uniform convergence implies k-I-quasi-normal con-
vergence.
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Proposition 7.17 (w: [Das et al., 2014]). If (fa)a<x s a sequence of functions

28 — 25 and f:2% — 2% such that fo Z._;1 f on Ac 2t Then f, ﬂ,{_] f on
A.

Proof: Let (£4)a<x € K" be such that

§a = ﬂ U{B <k folT) € [f($) rﬁ]}

TeA

Notice that for any 0 < k, there exists B € I such that for all x € A,
{a<k:fo(z) ¢ [f(x)1d]} € B. Hence,

{a <hiéa < 5} = {a < ’f:ElxeAfa(x) ¢ [f(x) fé]} =
Ula < fo(@) ¢ [f(x)10]} c Bel,

reA

thus, (€4)a<x is K-I-unbounded. By definition, for all z € A, f,(x) €

QN
[f(l’) réa]; S0 fa —— f on A. 0O
Thus, we get the following corollary.

Proposition 7.18. If (f.)a<x S a sequence of functions 2% — 2%, and f:2% —
2% such that f, 2.1 f on AC 2% then there exists a k-I-unbounded sequence
(€a)a<w € K such that for all x € A, {a < k: fo(x) ¢ [f(2) 0]} = 2.

Proof: See the proof of Proposition [7.17] 0
The following proposition is an easy observation.

Proposition 7.19. Let [ be a \*-complete ideal on k for A < Kk, and let
(Ad)acr € (P(28)N. If a sequence (fo)a<x Of functions 2% — 2F converges
k-I-uniformly to a function f:2% — 2% on A, for all a < X, then fo 2.1 [ on
Ua<)\ Aa~

Therefore, we get the following.

Corollary 7.20. Let I be a k-complete ideal and A € 25. Then the following
conditions are equivalent.

(1) there exists a sequence (Ay)ack € (P(2%))F such that A = Uaer Aa, and for
all B< K, fo Bu-1 f on Ag,

(2) there exists a sequence (Aq)a<s € (P(2%))" such that A = Uyer A, Aa € Ag
forall a < B <K, Uacp Aa = Ag for limit B <k, and for all B <k, fo -1 f
on Ag.
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O
The following proposition establishes relation between the above properties
and k-I-quasi normal convergence.

Proposition 7.21 (w: [Das et al., 2014]). Let I be an k-complete ideal on k.
If (An)a<k € (P(2F))7 is such that A = Ugen Aay Ao € Ag for all a < B < K,

Ua<g Aa = Apg for limit B < k, and for all B < Kk, fo 3k-1 [ on Ag, then

fa gv_);g_] f on the whole A.

Proof: By Proposition [7.18, we get (£4.6)a.6es € K° such that for all § < &,
(€a.5)a<x 1s a k-IT-unbounded sequence, and for all = € Ay,

{o<rifa(@) ¢ [f(2)16as]) = 2.

Fix (Bs)ses € 17 such that {o < k:€, 5 <} € Bs. Such By exists because for
all § < K, (€a.6)a<x 18 & k-I-unbounded sequence.

Now, for < k, let C5 = U5 B,. Since [ is k-complete, Cs € I, for all § < k.

Finally, let (£, )a<x € £* be such that

ga:{ﬁ, if V.50 ¢ Cy Aave i,
Upeaban + 1, ifagU O,

Notice that (£, )a<x is kK-I-unbounded. Indeed, if 6 < k, then

{a<k:i€, <0} cCsel.
Moreover, for every x € A, let 6 < k be such that x € As. Then,
{a <k fo(@) ¢ [f(2)1as]} = 2,

but if &, < &,5, then o € C5u 0, thus,

{a < fo(z) ¢ [f(2)1€a]} €

{Oé < K::fa(x) ¢ [f((l?) rga,é] /\fa Zfa,é} U {a < K:fa < fa,é} =
guCsudel.

N
Therefore, f, g—nﬁ_ 1 f on the whole A O
We need an additional assumption to prove the converse.

Proposition 7.22 (w: [Das et al., 2014]). Let I be a k-generated, k-complete

ideal on k. If fu ﬂn_j f on Ac 25 then there exists (Ay)a<x € (P(2%))F such
that A = Uger Ao such that for all B <k, fo 3.1 [ on Ag.
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Proof: Let (Cy)a<s € I¥ be such that C, ¢ Cg, for all a < 3, and for every
B e I, there exists « < k such that B ¢ C,,.

N
Since f, —Q—m,] f on A, there exists a sequence (£, )a<x € K% , which is
k-I-unbounded, and (0, ).ca € K4 such that for all z € A,

{o<rifalz) ¢ [f(2)16a]} € C, -
Let (Au)a<s € (P(A))" be defined in the following way. For a < &, let
Ay ={r e A, = a}.

Obviously, A = Uy« Aa-
Also, for every § < K, fo 21 f on As. Indeed, let £ < k. Then C = {a <
K€y <&} €. Thus for all x € Ay,

{a<r fo g [f(2)KE]} €
{a<rméa<fiui{a<mfot[f(2)Ma] A a2l cCulsel

O
We therefore get the following corollary.

Corollary 7.23 (w: [Das et al., 2014]). Let I be a k-generated, r-complete
ideal on k, and let (fu)a<x be a sequence of functions 2% — 25 A € 25 and
f:2% > 26 The following conditions are equivalent:

(1) fa ﬂ)fe—l f on A7

(2) there exists a sequence (Ay)ack € (P(2%))F such that A = Uaer Aa, and for
all B< K, fo Bu-1 [ on Ag,

(3) there exists a sequence (Aqg)a<n € (P(2%))" such that A = Uy<x Aa, Ao € Ap
forall o < B < Kk, Ugep Aa = Ag for limit B < K, and for all B < K, fo Zp-1 f
on Ag.

In particular, we get the following corollary.

Corollary 7.24. Let I be a k-generated, k-complete ideal on k, and let (fo)a<x
be a sequence of functions 2% — 25 A € 28 and f:25 — 25, If there exists

a sequence (Ag)a<x € (P(27))F such that A = Uper Ao, and for all f < K,

fa ﬂ)ﬁ—[ f on Aﬁ; then fa Q—N>;@_[ f on A.

O
Moreover, in this case we can require the sets A, to be closed, if the se-
quence consists of continuous functions.
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Proposition 7.25 (w: [Das et al., 2014]). Let I be a k-generated, k-complete
ideal on k, and let (fo)a<x be a sequence of continuous functions 2% — 2%,
Ac25 and f:2% — 2%, The conditions of Corollary[7.25 are equivalent to:

(4) there exists a sequence (Ay)a<s € (P(2%))F of closed in A sets such that
A =Uaper Ao, and for all B <k, fo Zu-1 f on Ag,

(5) there exists a sequence (An)a<k € (P(25))" of closed in A sets such that
A =Uncr Ao, Ao € Ag for all a < B <k, Upcp Aa = Ag for limit 3 <k, and
forall <K, fo3k-1 f on Ap.

Proof: Notice that obviously (5) = (4) = (2), and the union of less than
K closed sets is closed, thus (4) = (5). To see that (1) = (4), notice that the
sets A, defined in the proof of Proposition can actually be described in
the following way:

Ay ={xe AV, pec,a<f= fo(x) e[ fa(x)la]}

and are closed, if f, is continuous for all a < k. O
Notice also the following fact.

Proposition 7.26 (w: [Balcerzak et al., 2007]). If I is a k-admissible ideal
on K, (fa)acx 1S a sequence of functions 2¢ — 25, and f:2% — 2% is such that

fo Zko1 [ on X €25 then there exists an increasing sequence ({4, )a<x € K* such
that fe, 3, f on X.

Proof: In the same way as in the proof of Proposition construct
(€a)a<s € K* by induction. Given £z for all g <, let

A= {a</€:vzeXfoz($) £ [f(ZE) f"y]}u Ufﬂ el

B<y

Thus let £, € k N\ A be arbitrary. It is easy to see that fe, =, f on X. O
Thus, similarly to the classical case, a x-I uniform limit of continuous
function has to be continuous.

Corollary 7.27 (w: [Balcerzak et al., 2007]). Let I be an ideal on k, and let
(fa)a<x be a sequence of continuous functions 25 — 25 and A € 2%. Assume
that fo 2.1 f on A, where f: A — 2%, Then f is continuous on A.

Proof: We use Propositions [7.26| and [6.11] m

One can find sequences of functions which distinguish different notions of
k-I-convergence.
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Proposition 7.28 (w: [Das et al., 2014]). Let I be a k-admissible ideal on k.
There exists a sequence (fo)a<x 0f functions 25 — 2% such that fo -« f with
f:QK_)?{; bUtfa H—If'

Proof: The example constructed in the proof of Proposition is also valid
here. Indeed, for every x-I unbounded sequence (&, )a<x € K" there exists an
increasing unbounded sequence (7y)a<x With 7z = Uacs o for all limit o < &
such that

{Oé < 'Li:ga <77a} ¢l
Q .
Therefore, f, _/ﬁ),{_[ 0, but since f, —. 0, we get that f, —>._; 0. O

Proposition 7.29 (w: [Das et al., 2014]). Let I be an ideal on k. There exists

a sequence (fo)a<s Of functions 2% — 2 such that f, ﬂn_[ f with f:28 — 2%,

but fo Fwr [

Proof: Because of Corollary [7.27, the example constructed in Proposi-
tion [6.12] is valid also in this case. O

7.2.2 Properties of k-I*-quasi-normal convergence

Let I be an ideal on k. By Proposition [6.2] and Corollary [6.6] we immediately
get the following implications.

Corollary 7.30. Let (fo)a<s be a sequence of functions 2% — 2%, A € 2% and
fi28 - 2K,

a) if fo - [ on A, then f, ﬂﬁ,p f on A,
(a) if

(5) if fo Sonre | oon A, then fo > 1o f on Al

By Proposition [6.11], we also immediately get the following fact.

Corollary 7.31 (w: [Balcerzak et al., 2007]). Let I be an ideal on k, and let
(fa)a<w be a sequence of continuous functions 2% — 2% and A € 2%. Assume
that fo 2.+ f on A, where f: A — 2%, Then f is continuous on A.

The following Proposition is an easy observation.

Proposition 7.32. Let I be a \*-complete ideal on k for A < k, and let
(Aa)acr € (P(28)N. If a sequence (fo)a<x Of functions 2% — 25 converges
k — I*-uniformly to a function f:2% — 2% on A, for all a < \, then fo Z._1+ [
on Uager Aa-
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Proof: Let (M;)s<x be such that for all § < X\, kxMs e I, Ms = {my s <k} C
K, Mgs >Mas for all @ < B <k, and fn,, ; 3 f on As. Then let M = N5\ Ms.
We have that kK~ M € I. Let M = {my:a < K} € k be an enumeration such
that mg > m, for all a < 5 < k. Then for all § <A, f,,, =, f on As. Hence, by
Proposition frne 2 fon Usen As. Thus, fo 2+ f on Usey As. O
A similar Proposition holds for x-I*-quasi-normal convergence.

Proposition 7.33. Let [ be a \"-complete ideal on Kk for A < k, and let
(Aa)acr € (P(29))A. If a sequence (fa)a<x Of functions 2% — 2% converges r-I*-

quasi normally to a function f:2% — 25 on A, for all a < X, then f, ﬂ,{_p f
on Ua<)\ Aa-

Proof: Again, let (Ms)s<n be such that for all § < A\, Kk ~x My € I, M; =
{Mmasia < K} € K, mgs > mas for all @ < B < K, and f,, ; ﬂﬁ f on As.
Then let M = Nsoy Ms. We have that kK~ M € I. Let M = {my:a < K} C K
be an enumeration such that mg > m, for all a < < k. Then for all § < A,

N N
frna ¥Q—>H f on As. Hence, by Proposition , frna —Q—>,{ f on Usen As. Thus,

QN
fo —n-1- [ on Uscy As. O

Proposition 7.34 (w: [Das et al., 2014]). Let I be a k-complete ideal on k.

If fa ﬂn_p f on A c 2% then there exists (Aa)a<x € (P(2%))* such that
A =Ugper Ao, and for all B < K, fo Su-1+ f on Ap.

Proof: Since f, ﬂﬁ,p fon Ac 2 let B el be such that (fe,)aes
converges k-quasi-normally to f on A, where {£,:« < K} = k\ B is the increasing
enumeration. By Proposition , there exists (Aq)a<x such that A = Uae, Aa,
and (fe, Jaes converges s-uniformly on A, for all a < k. Thus, f, 3,1+ f on
A, for all a < k. a

The reverse implication holds for k-P-ideals.

Proposition 7.35 (w: [Das et al., 2014]). If I is a k-admissible k-P-ideal on
K, and (A )a<s € (P(25))% is such that A = Uger Aas Ao € Ag for all a < B <k,
Ua<g Aa = Ag for limit B < K, and for all o < K, fo Zp-1+ [ on A,, then

fa ﬂn,p f on the whole A.

Proof: Notice that there exists a sequence (B, )a<x € 1% such that for all
a <k, (fe, ;)< converges k-uniformly to f on A,, where {{,5:8 <K} = K\ By
is the increasing enumeration.

Since I is a k-P-ideal, take B € I such that for every a < k, |B, \ B| < k.
Notice that as I is k-admissible, for every a < k, fe, 3« f on A,, where
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{0 < K} = K\ B is the increasing enumeration. Hence, by Proposition ,

feo EJLH f on the whole A. Thus, f, ﬂﬁ_p f on A. O
We therefore get the following corollary.

Corollary 7.36 (w: [Das et al., 2014]). Let I be a k-complete k-P-ideal on k,
Ac2% and let (fo)acx be a sequence of functions 25 — 25, and f:25 — 2%, The
following conditions are equivalent:

QN
(1) fa T k-I* f on A7

(2) there exists a sequence (Ay)a<s € (P(25))" such that A = Uyer Ao, and for
all B<K, fo Zp-1+ [ on Ag,

(3) there ezists a sequence (An)ack € (P(2%))F such that A = Uger Aa, Aa € Ap
foralla < B <k, Ugep Aa = Ag for limit f < K, and for all B <k, fo Su-1 f
on Ag.

In particular, we get the following corollary.

Corollary 7.37. Let I be a k-complete k-P-ideal on k, and let (fo)a<s be
a sequence of functions 28 — 2% and f:2% — 2. If there ewists a sequence
(Aa)a<k € (P(25))" such that A = Uge, Ao, and for all a < k, f, ﬂﬁ_p f on
Ag, then f, ﬂﬁ_p f on A.

]
As before, in this case we can require the sets A, to be closed, the sequence
consists of continuous functions.

Proposition 7.38 (w: |[Das et al., 2014)). Let I be a k-complete k-P-ideal on
Kk, AC 2t and let (fo)a<x be a sequence of continuous functions 2% — 2% and
f:25 — 26, The conditions of Corollary are equivalent to:

(4) there exists a sequence (Aq)a<k € (P(2F))" of closed in A sets such that
A= UO&<,"€AQ7 and fO'f' all ﬁ <K, fa Bk-17 f on Aﬁ;

(5) there exists a sequence (Ay)a<s € (P(2%))F of closed in A sets such that
A =Uncx A, Aa € Ag for all a < B < K, Upep Aa = Ag for limit B <k, and
forall <k, fo Zp-1+ [ on Ag.

Proof: Obviously (5) = (4) = (3), and (4) = (5) since a union of less
than k closed sets is closed, and [ is k-complete.

To see (1) = (4), notice that the sets A, defined in the proof of Proposi-
tion |6.5] are closed, if f, is continuous for every « < k. O
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Proposition 7.39 (w: [Das et al., 2014]). Let I be a k-admissible ideal on k.
There exists a sequence (fo)a<x Of functions 25 — 25 such that fo = 1+ f with

f:2/<_>2/£7 but foz K—I* f

Proof: The example constructedQ in the proof of Proposition [6.§ is also
valid here. It is easy to see that f, %H_ 1~ 0, but since f, ». 0, we get that
fa R-I* 0. o

Proposition 7.40 (w: [Das et al., 2014]). Let I be an ideal on k. There exists

N
a sequence (fo)a<x Of functions 2% — 2% such that f,, g—m_p [ with f:25% — 2%,

but fo Ew 1 f-
Proof: Because of Corollary [7.31] the example constructed in Proposi-
tion is valid also in this case. o

7.2.3 k- (J,I)-convergence

Let J ¢ I be ideals on k. By Propositions and [7.17, we immediately get
the following implications.

Corollary 7.41. Let (fo)a<s be a sequence of functions 2% — 2%, A € 2% and
fi2r8 > 2K,

(0) if foSegr o A, then fo sy f on A,
. QN
(b) Zf fa —k—-J,I f on A; then fa r—-J,I f on A.
]
Therefore we have the following implications between notions of conver-

gence for ideals J ¢ I on k.

Corollary 7.42. If J < I are k-admissible ideals on k, then

Kk = R-I* = “r-J I = k-1
QN QN QN QN
Y = T L Y-J I = g

f f f f

3,‘@ = :;I{—I* = 3H—JI = 3H—I

)

162



7.3 Special subsets related to x-ideal conver-
gence

Let I,.J be ideals on x.
A set Ac2%isa k-(1,J)-QN-set, if any sequence (f,)a<s Of continuous
functions A — 2% such that f, —..; 0 on A, it converges also k-.J-quasi-

normally (f, ﬂn, 70 on A).

A set A € 2% is a ki-weak QN-set (k—(I,J)-wQN-set), if for any sequence
(fa)a<x of continuous functions A — 2% such that f, —._; 0 on A, there exists
an increasing sequence (&, )a<x € K* such that fe, ﬂn_ 70 on A.

If I = [k]<* in the above definition we write simply x-J-QN-set (respectively,
k-J-wQN-set).

Analogous notions for ideal convergence of real functions were studied in
[Das and Chandra, 2013|, [Supina, 2016] and [Chandra, 2016]. We generalize
some of results of [Das and Chandra, 2013].

First notice the following fact.

Lemma 7.43. If I is a k-admissible ideal on Kk, P € 2% is a k-perfect set, I
is a k-admissible ideal on Kk, and (fo)a<x is a sequence of continuous functions
P — 2% such that fo, —«_; 0 on P, then there exists a sequence (Fy)a<x Of
continuous functions 28 — 25 such that F,, —._; 0 on 2%, and for all o < k,
F P =f,.

Proof: The proof of Corollary is valid here, since [ is a xk-admissible
ideal. O
Thus we immediately get the following corollary.

Corollary 7.44 (w: |Das and Chandra, 2013|). If I,J are ideals on k, and
J is k-admissible, A € 2% is a k-(I,J)-QN-set, and P € 2% is k-perfect, then
PnAisk-(I,J)-QN-set as well.

So, by Corollary [7.24] we get the following fact.

Corollary 7.45 (w: [Das and Chandra, 2013]). If I,J are ideals on k, and J
is k-admissible and k-generated, (Py)a<x 1S a sequence of k-perfect sets, and A
is a k-(I1,J)-QN-set, then AnUacy Py is k-(1,J)-QN-set as well.

O
The study of k—(J, I)-QN-sets and k- (J, I)-wQN-sets will be also a matter
of further research.

Question 7.46. Describe k— (J, I)-QN-sets and k— (J, I)-wQN-sets in terms
of k-sequence selection or k-cover selection principles.
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Chapter 8

r-Proto-measure and Egorov’s
Theorem in 2% and its
generalizations

In this chapter we relate measure and convergence properties in 2%, and we
study the possibility of introducing an analogue of Egorov’s Theorem. Since
no satisfactory method of introducing measure on 2% is known, we devise a
notion of k-proto measure.

We use notion and notation defined in sections and [I.5] as well as in
the previous two chapters.

The results of this chapter are to be included in [Korch, 2017a].

8.1 Known approaches to introduce measure
in 2%

It is clear that all notions related to measure need to be devised anew, be-
cause the product measure is not a solution (it gives only a o-algebra, while
we need k-additivity). Some properties of o-ideals on 2¢ were studied in
[Kraszewski, 2001]. Various approaches have been considered to define the no-
tions related to the measure in 2%. One can define measure as a function into
a linearly ordered set L endowed with the operation Y., (see [Laguzzi, 2012]).
Unfortunately, this definition does not meet many expectations, for example
there exist sequences (aq)a<x, (ba)a<s € L*, a < k such that a, < b, for any

a < Kk, but
Y aa> ) bo.

a<k a<kK
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The analogue of the random-real forcing obtained by this method also does not
have some of the expected properties, e.g. it is not x*-bounding. Additionally,
this approach assumes that the set of limit ordinals « < k such that 2% = k is
of cardinality x, so k is not an inaccessible cardinal.

The natural idea is to use the Sikorski-Klaua structure of generalized reals
R,, which which was independently constructed by Sikorski ([Sikorski, 1948|
Sikorski, 1949]) and Klaua ([Klaua, 1959, [Klaua, 1960]). Omne can find even
more details on this structure in [Klaua, 1994 [Cowles and LaGrange, 1983]
and [Cantini, 1979]. This structure can be successfully used to introduce a met-
ric analogue in 2%, but the author of this thesis is unable to construct a measure
analogue with values in R,.

Therefore, the other way is to try to define a forcing with the properties
analogous to the properties of the random-real forcing (for inaccessible cardi-
nals, see [Friedman and Laguzzi, 2014], [Shelah, 2012], and
[Shelah and Cohen, 2016]), which is a forcing related to the algebra of measur-
able sets, i.e. which is k*-c.c., < k-closed, k"-bounding, and does not have the
Sacks property. Obviously, since our aim is to introduce Egorov’s Theorem in
2% this approach is not sufficient in our case.

In this chapter we give a definition of a k-proto-measure which has only
properties which are sufficient to prove Egorov’s Theorem. Unfortunately, we
leave the question of existence of k-proto-measure satisfying some additional
reasonable conditions open.

8.2 k-Proto-measure

8.2.1 The definition
A triple (L, i, L) will be called a k-proto-measure if

(1) (L, <) is a linear order with the least element.

(2) p:B, — L is a function defined on the family of x-Borel subsets of 2% with
values in L.

(3) If (An)acx € (By)" is such that Nye, Ag = @, and for all o < o' < K, Ay € Aq,
then for every £ € L\ {minL}, there exists § < x such that u(As) <¢,

(4) L: (L~ {minL}) x x > L\ {minL},

(5) For all £ e L~ {minL} if (A,)a<x € (Bx)* is such that pu(A,) < L(E, «) for
all a < k, then

M(U Aa)sg.

<K
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A k-proto-measure (L, i, L) is diffused if for every x € 2%, p({z}) = minL.
It is increasing if for every A, B € B,, such that A< B, u(A) < u(B). Finally,
it is strictly positive if for every s € 2<% n([s]) > minL.

A set A ¢ 2% is p-null if there exists B € B, such that A ¢ B and u(B) =
minL. The collection of all y-null subsets of 2* is denoted by N,,. A set A € 2%
is p-measurable if there exists B € B, such that A A B is p-null.

If A < 2% is a cardinal, then a k-proto-measure (L, yi, L) is A-null-complete
if for every < A, and sequence (Aq)a<p of p-null sets, Uycs Ao is p-null as
well. It is null-good if for every A, B € B, if A is p-null, u(Au B) = u(B).

A k-proto-measure (L, i, L) is basically transition-invariant if for any

a<k,and t,s €22 p([s]) = p([t]).

8.2.2 Basic properties

We prove some basic properties of k-proto-measures.

Proposition 8.1. Assume that (L,u,L) is a diffused, null-good
k-proto-measure. Then for every x € 2%, and £ € 1L, there exists a < k such that

p([zta]) <€.
Proof: Indeed, for x € 2%, consider ([za] ~ {2})a<x- O

Corollary 8.2. Assume that (L, u, L) is an increasing, diffused, null-good k-
proto-measure. Then for every x € 2%, (u([x1a]))a<x is either coinitial in
L~{minlL}, or eventually constant and equal minlL.

Proof: Indeed, the sequence (u([xla]))a<x is non-increasing. If it is not
eventually constant and equal to min L, then for every £ € I, we get by Propo-
sition that there exists a < £ such that minLL < p([zta]) < &, thus it is
a coinitial sequence. O

Corollary 8.3. Assume that (L, u, L) is an increasing, strictly positive, dif-
fused, null-good k-proto-measure. Then L ~ {minlL} has coinitiality k (i.e.
there exists a coinitial sequence of length k in L\ {minIL} ).

a

Proposition 8.4. Assume that (L, u, L) is a null-good k-proto-measure, and
A e N,. Then for all (Ay)a<c € (By)® such that Na<x Ao = A, and for all
a<a <k, Ay € A,, and for all £ e L~ {minlL}, there ezists § € k such that

1(As) <&,

Proof: Consider the sequence (A, N A)acs- O
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8.2.3 Examples

Let us start with the most trivial example. If I = {0}, and u is a constant
function, then obviously (L, u,@) is a k-proto-measure. A k-proto-measure
(L, u, L) such that p(2%) = minLL is trivial. In the consideration below we
always assume that a k-proto-measure which is considered is not trivial.

Slightly better example can be constructed for I = (k + 1,>) (the set of
ordinals < k with the reversed order, minlL = k), and a fixed p € 2¢. In this
case, for A € By, let

,Up(A) = {

Obviously, if (Ay)a<x € (By)* is such that Ny, Ao = @, and for all a < o' < k,
Ay € A,, then for all a < k, there exists J < k such that for all, [pla]\ Ag # @.
Let L:k x k - K, be such that for all o, 5 < K, L(«,3) = . Then (L, u,, L)
is an increasing and diffused k-proto-measure. On the other hand, it is not
null-good ({p}, 2%\ {p} € N,,,, but 1,(2%) =0 # minL).

To see yet another example fix S ¢ 2 along with enumeration {s,:a < A} =
S. Let L =\, and

N{a < k:[pta] c A}, if Jock[pta] € A,

K, otherwise.

p(A) =min{a < X:s, ¢ A}.

Then set L(c, f) = a for a < AN{0} and § < k. Indeed, if (Az)p<s is a sequence
of subsets of 2 such that N, Ag = @ and Ag € Az for B’ < 3, then for every
a < A, there exists £ < x such that s, ¢ Ag for all § < x with § > £. Thus,
p(Ag) < a for all B> ¢. Notice that this is an example of an increasing and
null-good k-proto-measure. On the other hand, it is not diffused, nor basically
transition-invariant.

We do not know whether there exists a k-proto-measure which fulfils more
of the reasonable requirements.

Question 8.5. Does there exist a non-trivial k-proto-measure (IL, u, L) which
18

(a) increasing, diffused and null-good?
(b) increasing, diffused and k-null complete?

(c¢) diffused and such that L = R, (where R, is the Sikorski-Klaua struc-
ture of generalized reals ([Stkorski, 1948, [Stkorski, 1949], [Klaua, 1959,
|Klaua, 1960, |Klaua, 1994, |Cowles and LaGrange, 1983]  and
|Cantini, 1979]), and such that for every limit ordinal f < k, and any
sequence (Ay)a<s € (By)? with Ay € Ay for a<a’ < 3, we have

u( U Aa) - sup{u(Ay) 0 < 57

a<f
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(d) diffused and such that for every bounded A € 1L, there exists sup A € L, and
such that for every limit ordinal 5 < k, and any sequence (Ay)a<s € (By)?
such that for a <o’ < 3, A, € Ay, we have

’ ( U Aa) —sup{(An): 0 < 5)7

a<f

(e) increasing, diffused, and basically-transition invariant?

8.3 Special subsets related to x-proto-measure

Notice that under certain assumptions, every x-strongly null set is p-null with
respect to a k-proto-measure (L, p, L).

Proposition 8.6. Assume that (L, u, L) is an increasing, diffused, null-good,
k*-null complete, basically translation-invariant k-proto-measure. Then every
k-strongly null set is p-null.

Proof: Let A ¢ 2% be k-strongly null. Let x € 2¢. By Proposition one
can find (£,)a<x € L* which is a coinitial in L \ min L sequence, or eventually
equal to minIL along with (4 )a<x € &% such that p([21d4]) = &, since (L, i, L)
is basically transition-invariant we get that for every o < k and s € 2% u([s]) =
o

If the sequence (&4 )a<x € L is eventually equal to minl, let n < x be such
that for all < a < K, §, = minIL. Then for (0,)y<s<x choose (T4 )ncacn € (27)"7
such that

Xc U [zaldal-

n<a<k

Then p([24104]) = minlL for every n < a < k, thus A is g-null.
On the other hand, assume that (£,)a<x € L* is coinitial in L x minL. Fix
a < k. One can find (1,4)p<x € £% such that p([z!na5]) < L(&, 5) for all

S < k. Then for all 5 < k, and s € 275, u([s]) < L(&a, ). And for (1..5)s<x,
choose (x4, 5) < such that

Xc¢ ﬁU [Za,81Ma,8]-

Then
2 ( U [xa,ﬁ ma,ﬁ]) <&

B<k
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but since &, is a coinitial sequence, we get

M(ﬂ Ul2a,s rna,g]) - minL.

a<k B<k
Obviously,
Ac () 5U [%.,5a,8].
Hence, A is p-null. O

Proposition 8.7. Let k be a weakly compact cardinal. Assume that (L, u, L)
18 an increasing, diffused, null-good k-proto-measure. Then every k-strongly
null set is p-null.

Proof: Let A € 2% be a k-strongly null set. By Proposition [8.2] for every
x € 2% (u([zla]))a<s is either coinitial in L N~ {minL}, or eventually constant
and equal min L.

If for every z € 2%, (u([xlta]))a<x is eventually constant and equal minlL,
then (since under the above assumptions 2% is k-compact), one can find 1 < &
such that for all n < @ < k, and s € 2%, u([s]) = minLL. Then let (4)ncacn €
(2%)" 1 be such that

Ac | [zalal.

n<a<k

Obviously,

(o) .

n<a<k

thus A is p-null.

On the other hand, assume that there exists x € 2% such that (u([za]))a<x
is coinitial in L \ {minLL}. Since 2% is k-compact space under the above as-
sumptions, for every £ € L \ {minL} one can find é¢ < x such that for all
de <<k, and s €2 u([s]) <€ Fix a <k, and let for all 5 <k, d,,3 be such
that for all 6,5 <y <k, and s €27, p([s]) < L(p([zte], B). Find (z, ) € (2F)"

such that
Ac U[xapas]-
B<k

Notice that

o(Ulanstinsl) sttt

B<k
and since (u([za]))a<s is coinitial in L~ {minL}, and (L, i, L) is increasing,

p ( M Ulzas réa,ﬁ]) = minL.

a<k B<k

170



But

Ac m U [xaﬁ Maﬁ],

a<k <k

thus it is p-null. O

8.4 Egorov’s Theorem in 2¢

8.4.1 k-Convergence

Given a k-proto-measure it is easy to prove an analogue of Egorov’s Theorem.

Theorem 8.8. Let (L, uL) be a k-proto-measure, and let (fo)a<r be a sequence

of k-measurable functions 2% — 25 such that is k-pointwise convergent on X <
2% to 0 with X € By, and let £ e L~ {minlL}. Then there exists a set Ac X,
A€ B, with n(X ~ A) <& such that the sequence converges k-uniformly on A.

Proof: For «, 3 < k. Let
Eap={re2% 30 f(7) ¢ [O15]}.

Notice that E, g is a x-Borel set for every a, 8 < k. Moreover, if a < o' < &,
and 8 < k, then E, g € E, . Since f, =, 0, we get that Ny, Eo g = &, for all
B < k. Therefore, for each 8 < &, there exists {g < x such that
Let

B = U E&ﬁﬁ?

and A = X N\ B. Then for any 8 < k, fo(x) € [013], for any a < k with
a > &g, and x € A. This is because A € X \ E¢, 5. Thus, f, =, 0 on A, and
w(X N A)<e. O

8.4.2 Ideal version of Egorov’s Theorem in 2% for k-
generated ideals

8.4.2.1 k-I-convergence

Let I be a ideal on k. Then we get the following.

Theorem 8.9. Assume that I is a k-generated r-complete ideal on k, and
(L,p, L) is a k-proto-measure. Let (fo)ack be a sequence of k-measurable
functions 2% — 25 such that is k-I-pointwise convergent on 25 to 0, and let
€ e L~ {minL}. Then there exists a set A € B,, with (2%~ A) < & such that
the sequence converges k-I-uniformly on A.
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Proof: Assume that [ is k-generated and fix sets (Cy),,.,. such that C, € Cy
for all a < o’ < k and for every C' € I, there exists « < k such that C' ¢ C,. For
a, B <k, let

Eopg={xe2":{y<r: f,(x)¢[0IS]}\C,*a}.

Notice that
Eap= U {ze2%fu(z) ¢ [01B]}

aerNClq

is k-Borel for each o, € w. Moreover, E, g € E, 3 for all @ < o’ < Kk, and
Na<x o g = @ for all B < k. Hence, for each § < k, there exists {g < x such that

M(Efﬁ,ﬂ) < L(éaﬁ)
Let B =Uge Feyp- So p(B) <&, and if z ¢ B, then

{v <k fy(x) ¢ [018]} < Oy,
for any S <k, so f, 2..10on A=2\B. |

8.4.2.2 k-I*-convergence
We get also a similar theorem for I*-convergence.

Theorem 8.10. Assume that I is a k-generated k-admissible ideal on k, and
(L,u, L) is a k-proto-measure. Let (fo)acx be a sequence of k-measurable
functions 2% — 2% such that is k-1*-pointwise convergent on 2% to 0, and let
e L~{minlL}. Then there exists a set A € B, with (2% N\ A) <& such that
the sequence converges k-I*-uniformly on A.

Proof: Fix (C,),., such that for all C' € I, there exists a < k with C ¢ C,.
Let w\ Cg = {0,3'a < £} be the increasing enumeration, and let
F[g = {LE € 2”:li£nf5aﬁ(x) = O}
Obviously, for 8 < 3’ <w, Fg ¢ Fg for, and Ug.,, Fs = 2%. Moreover,

Fp=(U N {ze2%fs,(x) € [01a]}

a<k Y<K Y<N<K

is k-Borel. Let F! = 2%\ F,, for all @ < k. There exists n < x such that
u(Fy) < L&, 0).

Now apply the proof of Theorem for the set Fj,, and sequence < f(;am)am
to get sets (Ey, g)ap<x such that for each 5 <k, there exists s < k such that

1 (Ee,5) < L(E,B+1).
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Let
B= F7; UﬁLJ Ef,@ﬁ?

and A =X ~ B. We get that f, =._+ 0 on A and u(B) <&.
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Chapter 9

Conclusions, further
development and open problems

In this chapter I summarise the main results of this thesis. I point out direc-
tions of further research and collect the main open problems in one place.

9.1 The real line

The theory of special subsets of the real line and the theory of convergence
of sequences of real functions are relatively well developed. In this thesis I
have presented some further developments is two subjects: perfectly null sets
(Chapter [2) and generalized Egorov’s statement for ideals (Chapter |3)).

The idea of constructing perfectly null sets comes from the observed duality
between measure and category and the lack of notion dual to the notion of
perfectly meagre set. We have defined such a notion and studied its properties
(see e.g. Proposition . Nevertheless, the answer to the main problem in
this chapter remains unknown.

Question [2.7]. Is it consistent with ZFC that there exists a perfectly null set
which is not universally null? In particular, is the class of perfectly null sets
closed under taking products?

Pursuing the answer to the above problem we have shown that if there
exists a measure analogue of the Lusin function it cannot be constructed in
an analogous way (see Proposition . Also, if the class PA is closed under
homeomorphisms, then UN = PA/ (Corollary [2.14)). Finally, we have consid-
ered some simpler classes of perfect subsets in which analogous problems can
be at least partially solved (see Theorem [2.27)).
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Next we studied analogues of the small sets considered by Bartoszynski
(|[Bartoszynski and Judah, 1995]) with respect to the canonical measure on
perfect sets. Two approaches were presented, out of which the second one
seems to be more promising. In particular, we have shown that every set
which is null in a perfect set P can be presented as a union of two small sets
in P (see Corollary . We also studied additive properties of small sets in
P (see Proposition [2.41])).

Finally, we constructed an analogue (PN ') of the class of perfectly meagre
in the transitive sense sets (PM ). It is known that every strongly meagre set
is PM' and every PM' set is universally meagre, and that it is consistent
with ZFC that those inclusions are proper. We have proved some of the analo-
gous results on the measure side. Every strongly null set is perfectly null in the
transitive sense (see Theorem [2.43)), and under certain set-theoretical assump-
tions, there exists a universally null set which is not PA/* (see Theorem [2.47).
The other two remain open.

Question [2.46. PN’ c UN?

Question Does there exist a PN’ set, which is not strongly null? In
particular, does there exist an uncountable PN’ set in every model of ZFC?

Since the consideration of PM’ class started with its additive properties,
we have also studied additive properties of PN/ sets (see Theorem [2.54]).
Nevertheless, the main problem remains unsolved.

Question [2.55] If Ae SM, and Be PN'', is A+ B an sy-set?

In Chapter [3, we studied the second subject in set theory of real line,
which concerns generalizations of Egorov’s Theorem. Previously, it has been
known that Egorov’s Theorem without assumption on measurability (so called
generalized Egorov’s statement) is consistent with ZFC, as is its negation.
Also ideal version of Egorov’s Theorem (with the measurability assumption)
was studied for different notions of ideal convergence. Therefore, we studied
the generalized Egorov’s statement in the case of different notions of ideal
convergence. By generalizing the method of Pinciroli (Theorems and
we proved that both the ideal version of the generalized Egorov’s statement
and its negation are consistent with ZFC:

(a) between pointwise and equi-convergence with respect to analytic P-ideals

(Corollaries [3.6] and [3.8)),

(b) between pointwise and uniform convergence with respect to countably gen-

erated ideals (Corollaries and [3.13)),
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(c) between pointwise-I* and uniform-/* convergence with respect to count-

ably generated ideals (Corollaries and [3.17)),

(d) between pointwise and uniform convergence with respect to ideals of the

form Fin®, a <w; (Corollaries and [3.19)).

Additionally, I proved Egorov’s Theorem (with measurability assumption)
(Theorems and in the cases in which it was not proven before ((b)
and (c)).

This generalization of Pinciroli method gives a combinatorial properties
denoted by (H=(F,%)) and (H<=(F,%)) which imply that the generalized
Egorov’s statement (respectively, its negation) is consistent with ZFC. Later
on, M. Repicky ([Repicky, 2017]) further generalized my results by studying
the closure properties of classes of ideals satisfying those properties. He also
introduced an analogous property (M= (F,%)) which implies that Egorov’s
Theorem (with measurability assumption) holds for convergence with respect
to such ideal.

Nevertheless, the research in this topic needs to be continued to answer
some open problems. I have stated three such questions.

Question |3.25 Is there any possible condition, which implies that classic
Egorov’s statement (measurable version) does not hold for a given ideal in

ZFC (cf. Proposition ?

Question [3.26| Are there any examples of ideals which prove that the classes
of all ideals satisfying M=(F.,, =), H>(F.,,31), M~ (F. .,=31+), and
H=(F.,.,3+) are pairwise distinct?

I*)

Question [3.27} Is there an ideal I such that H= (]—"_,I, Q—N>1) does not hold?

9.2 In the generalized Cantor space

In the subsequent chapters we studied the generalized Cantor space 2%, where
k is an uncountable regular cardinal. This space is equipped with a basis of
closed open sets of form

[s] = {x €2 xllen(s) = s}.

Throughout this thesis we have assumed that k<% = k, thus this basis is of
cardinality k.
In Chapter [4] we introduced simple notions of special subsets in 2#:
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(a) A-r-Lusin sets, and we proved that such a set exists if A = covM,; = cof M
(Theorem [4.1)), thus it exists under CH,.

(b) k-strongly measure zero sets, and we proved that one of the implications
is the analogue of Galvin-Myecielski-Soloway holds (Proposition . The
other implication was proven when « is weakly compact (Theorem [4.10)).

(c) r*-concentrated sets, and we proved that Lusin sets in k are exactly the
sets k*-concentrated on every dense subset (Proposition , and that
every set k' concentrated on a set of cardinality < k is k-strongly null
(Proposition , thus every Lusin set for k is k-strongly null.

(d) k-perfectly k-meagre, perfectly xk-meagre, and k- sets, and among other
properties we proved that every r-A-set is perfectly x-meagre (Proposi-
tion , on the other hand, we do not know if there exists such a non-
trivial set in every model of ZFC.

Question |4.19, Is there a set A € 2% such that |A| = k* and A€ PM,, in
every model of ZFC.

(e) k-o-sets, and we proved that every such set is perfectly k-meagre (Propo-

sition [4.27)),
(f) k-Q-sets,
(g) K-porous sets.

We also studied the generalization of selection properties in «. In par-
ticular, we proved that every k-y-set satisfies S§'(Q,,T) (Theorem [£.32), and
that every set which has S#(I's,I's) principle has xk-Hurewicz property (Propo-
sition . Hence, every k-vy-set has k-Hurewicz property (Corollary .
On the other hand, we proved that every A-x-Lusin set does not have this prop-
erty (Corollary although it has x-Menger property (Proposition .
Obviously, if a set has xk-Rothberger property, then it is x-strongly null set.
Moreover, if a set is k*-concentrated on a set of cardinality less than &, then it
has k-Rothberger property (Propositions and . Hence, the whole 2~
does not have this property. Also every x-v-set satisfies k-Rothberger property
(Theorem . In particular, the whole space 2% cannot be a k-7-set.

In Chapter [5 we studied in 2% versions of less known notions of special
subsets. We have introduced:

(a) X-small sets, which follow the idea of small sets in w;* presented in
[Halko, 1996]. We proved that every set which is small in 2% is s-strongly
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null as well (Proposition . Under ¢, 2% is C-small for every closed
unbounded set C, and under V' = L, 2% is X-small for every stationary
set X (Propositions and . We also showed that every set small in
2% is nowhere dense, but the reversed implication does not hold (Proposi-

tions and .

rk-meagre additive sets, and we proved a combinatorial characterization of
r-meagre additive sets (Proposition for strongly inaccessible x. This
characterization implies that every x-meagre additive set is k-perfectly
r-meagre (Proposition [5.16).

r-Ramsey null sets, and in particular we proved that every x-v-set is k-
Ramsey null if x is weakly inaccessible (Proposition [5.18]). On the other
hand, we were not able to determine the additivity of this ideal.

Question [5.17]. Is the ideal of k-Ramsey null subsets of 25 k*-complete?

r-T’-sets, and we proved various characterizations of this notion (Propo-
sitions [5.22] [5.23] and [5.24]). The class of x-T’-sets forms a x*-complete
ideal (Proposition [5.25, and an algebraic sum of two x-T’-sets is still a k-
T’-set. For strongly inaccessible x, we proved that every rk-y-set is a k-
T’-set (Proposition , and that every k-T’-set is a k-meagre additive
set (Proposition . Thus, if x is strongly inaccessible, every k-vy-set
is k-meagre additive. Under some additional assumptions this inclusion
cannot be reversed (see Theorem [5.21]).

k-vg-sets, and we proved that if k is a strongly inaccessible cardinal, then
every k-perfectly k-meagre set is a k-vg-set (Corollary [5.31)). Also every
r-strongly null set is a k-vg-set (Proposition [5.32)).

We have left as asubject for further research the following issue.
Question m What is the relation between k-ly-sets (respectively, k-

mo-sets) with other notions of special subsets of 257

In Chapter [6] we introduced and studied the convergence of k sequences

of functions 2¢ — 2%. We considered x-uniform convergence, which implies
k-quasi-normal convergence (Proposition , which itself implies k-pointwise
convergence (Proposition . We have given examples of sequences of func-
tions which separate those notions (Propositions and . We proved
that similarly to the standard case, k-quasi normal convergence is equivalent
to existence of a partition of the underlying set into £ many subsets on which

we

have k-uniform convergence (Proposition |6.5)). On the other hand, if a se-

quence of functions converges k-quasi-normally on every set from a collection of

179



less than b, sets, it converges k-quasi-normally on its union (Proposition .
Finally, we proved that a x-uniform convergent sequence of continuous func-
tions converges to a continuous function (Proposition .

We also studied special subsets of 2% related to convergence of sequences of
functions, i.e. xK-QN-sets, k-wQN-sets and xk-mQN-sets. We gave some basic
properties of such sets (Corollaries and , and also we proved that
every k-wQN-set is x-perfectly x-meagre (Proposition . We character-
ized k-wQN-sets and k-QN-sets in terms of k-sequence selection properties
(Theorems [6.22] and [6.23). The following issues will be a subject to further
research.

Question [6.24. Is every set satisfying S (L', I',) principle a k-w@QN-set?
Question |6.25, Does every k-QN-set satisfy S¥(Ty,T'x) principle?

Further on, in Chapter [7] we studied the notions of x-I-convergence and
r-I*-convergence of sequences of points of 2% for an ideal I on k. We started
by proving some simple properties (Propositions and . Obviously
I*-convergence implies [-convergence, but this implication can be reversed
(Proposition if and only if I is a k-P-ideal (Propostions and [7.9). Fi-
nally, we studied properties related to x-I-Cauchy property (Propositionsm
7.15)).

The notions of k-I-convergence and k-1*-convergence of points of 2% allowed
us to study different notions of ideal convergence of functions 2% — 2. In par-
ticular, k-I-uniform convergence implies k-I-quasi-normal convergence, which
itself implies k-I-pointwise convergence (Propositions and . Simi-
larly, k-I*-uniform convergence implies k-I*-quasi-normal convergence, which
itself implies k-I*-pointwise convergence (Corollary . All those implica-
tions cannot be reversed (Propositions and . We have also proven
that if a sequence of function converges x-I-uniformly on every set from a col-
lection of k subsets of 2%, it converges k-I-quasi-normally on its union (Propo-
sition . This implication can be reversed for k-generated ideals (Proposi-
tion . Similarly, if I is x-P-ideal, then if a sequence of function converges
r-I*-uniformly on every set from a collection of x subsets of 2% it converges
k-I*-quasi-normally on its union (Proposition . This implication can be
reversed not only for x-P-ideals (Proposition . Finally, we have proven
that if a sequence of continuous functions converges x-I-uniformly or x-1*-
uniformly, then the limit is continuous as well (Propositions and .

We also considered k-(I,J)-QN-sets and k-(I,J)-wQN-sets and proved
some of their basic properties (e.g. Proposition . Nevertheless, the fol-
lowing important subject will be a subject of future research.
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Question Describe k- (J,1)-QN-sets and k- (J,I)-w@QN-sets in terms

of k-sequence selection or k-cover selection principles.

In the final chapter (Chapter , we studied the possibility of introducing
Egorov’s Theorem in 2%. To achieve this we need a measure analogue in 2~.
Since no satisfactory concept is known, we define a notion of x-proto-measure
with properties which suffice to prove an analogue of Egorov’s Theorem (The-
orem and also analogue theorems for I-convergence and [*-convergence
in the case of k-generated ideals on x (Theorems and [8.10)).

We have discussed some properties of k-proto-measures (e.g. Proposi-
tion and Corollary , and proved that every x-strongly null set is p-null
if 4 is a proto-measure which satisfies some additions conditions and either
k is weakly compact or p is transitive-invariant (Propositions and .
Although, some simple k-proto-measure exist, we were not able to find a -
proto-measures which is more complex. The existence of such k-proto-measure
is important in the light of proven theorems.

Question Does there exist a non-trivial k-proto-measure (IL, u, L) which
18

(a) increasing, diffused and null-good?
(b) increasing, diffused and k-null complete?

(c¢) diffused and such that L =R, (where R, is the Sikorski-Klaua structure of
generalized reals ([Sikorski, 1948, |Sikorski, 1949, |Klaua, 1959],
|Klaua, 1960, [Klaua, 1994, [Cowles and LaGrange, 1983]
and [Cantini, 1979]), and such that for every limit ordinal § < k, and any
sequence (Ay)a<s € (B)? such that for a <o’ < 8, Ay € Awr, we have

’ ( U ) =suplicava < 5)7

a<f
(d) diffused and such that for every bounded A c L, there exists sup A € L, and

such that for every limit ordinal § < K, and any sequence (Ay)a<p € (By)?
such that for a <o’ < B, Ay € Ay, we have

’ ( U Aa) —sup{(An): 0 < 5)7

a<f
(e) increasing, diffused, and basically transition-invariant?
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To sum up, it is possible to study theory of special subsets and convergence
in 2%, although one has to make additional assumptions very often or define
notions which are more abstract or intricate than their classical counterparts.
Therefore, there is still a wide range of possibilities for further research in this
topic, and this thesis, I hope, lays the groundwork in those cases.
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