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Abstract 

 

 

One of the biggest challenges of modern-day solar technologies is to develop carbon-neutral, 

efficient and sustainable systems for solar energy conversion into electricity and fuel. Over 

the last two decades there has been a growing impact of ‘green’ solar conversion technologies 

based on the natural solar energy converters, such as the robust extremophilic photosystem I 

(PSI) and its associated protein cofactors. The main bottleneck of the currently available 

biophotovoltaic and solar-to-fuel technologies is the low power conversion efficiency of the 

available devices due to wasteful charge recombination reactions at the interfaces between the 

working modules, as well as instability of the organic and inorganic components. 

This thesis describes the development of three novel approaches to improve energy 

and electron transfer in PSI-based biophotoelectrodes and plasmonic nanostructures: (1) 

construction of all-solid-state mediatorless biophotovoltaic devices incorporating p-doped 

silicon substrate, extremophilic robust PSI complex and its associated light harvesting antenna 

(PSI-LHCI) in conjunction with its natural electron donor cytochrome c553 (cyt c553) from a 

red microalga Cyanidioschyzon merolae and (2), biofunctionalization of the silver nanowires 

(AgNWs) with a highly organised architecture of the cyt c553/PSI-LHCI assembly for the 

significant improvement of absorption cross-section of the C. merolae PSI-LHCI complex 

due to plasmonic interactions between the distinct subpool of chlorophylls (Chls) and AgNWs 

nanoconstructs. The third (3) approach was based on development of the photo-driven in vitro 

hydrogen production system following hybridisation of the robust extremophilic PSI-LHCI 

complex with the novel and established proton reducing catalysts (PRC). The last approach 

has led to generation of molecular hydrogen with TOF of 521 mol H2 (mol PSI)-1 min-1 and 

729 mol H2 (mol PSI)-1 min-1 for the hybrid systems of PSI-LHCI with cobaloxime and the 

DuBois-type mononuclear nickel proton reduction catalysts, respectively. The TOF values for 

biophotocatalytic H2 production obtained in this study were 3-fold and 16.6-fold higher than 

those published for cyanobacterial PSI/PRC hybrid systems employing cobaloxime and a 

similar Ni mononuclear PRC, respectively.  

Construction of all-solid-state mediatorless PSI-based nanodevices was facilitated by 

biopassivation of the p-doped Si substrate with His6-tagged cyt c553, as evidenced by 

significant lowering of the inherent dark saturation current (J0), a well-known semiconductor 

surface recombination parameter. Five distinct variants of cyt c553 were obtained by 

genetically engineering the specific linker peptides of 0-19 amino acids in length between the 

cyt c553 holoprotein and a C-terminal His6-tag, the latter being the affinity ‘anchor’ used for 

specific immobilisation of this protein on the semiconductor surface. The calculated 2D Gibbs 

free energy maps for all the five cyt c553 variants and the protein lacking any peptide linker 

showed a much higher number of thermodynamically feasible conformations for the cyt c 

variants containing longer linker peptides upon their specific immobilisation on the Si surface. 

The bioinformatic calculations were verified by constructing the respective cyt c553/Si 

bioelectrodes and measuring their dark current-voltage (J-V) characteristics to determine the 

degree of p-doped Si surface passivation, measured by minimisation of the J0 recombination 

parameter. The combined bioinformatic and J-V analyses indicated that the cyt c553 variants 

with longer linker peptides, up to 19AA in length, allowed for more structural flexibility of 

immobilised cyt c553 in terms of both, orientation and distance of the haem group with respect 

to the Si surface, resulting in efficient biopassivation of this semiconductor substrate. This 

molecular approach has allowed for the developing of an alternative, cheap and facile route 
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for significant reduction of the inherent minority charge recombination at the p-doped Si 

surface. 

To improve direct electron transfer within all-solid state PSI-based nanodevices, the 

specific His6-tagged cyt c553 variants, generated in this study, were attached to the Ni-NTA-

functionalised p-doped Si surface prior to incorporation of the PSI-LHCI photoactive layer. 

Such nanoarchitecture resulted in an open-circuit potential increment of 333 µV for the 

specific PSI-LHCI/cyt c553/Si nanodevice compared to the control device devoid of cyt c553. 

Moreover, the all-solid state mediatorless PSI-LHCI-based devices produced photocurrents in 

the range of 104-234 µA/cm2 when a bias of -0.25 V was applied, demonstrating one of the 

highest photocurrents for this type of solid-state devices reported to date. The power 

conversion efficiency of the PSI-LHCI/p-doped Si devices was 20-fold higher when 19AA 

variant of cyt c553 was incorporated as the biological conductive interface between the PSI-

LHCI photoactive module and the substrate, demonstrating the significant role of this cyt 

variant for improving direct electron transfer within the PSI-based all-solid-state mediatorless 

biophotovoltaic device.  

In a complementary line of research, it was demonstrated that the highly controlled 

assembly of C. merolae PSI-LHCI complex on plasmon-generating AgNWs substantially 

improved the optical functionality of such a novel biohybrid nanostructure. By comparing 

fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and 

the results obtained for the PSI-LHCI/cyt c553 bioconjugate with AgNWs it was concluded 

that the specific binding of PSI-LHCI complex with the defined uniform orientation yields 

selective excitation of a pool of Chls that are otherwise almost non-absorbing. This is 

remarkable, as this work shows for the first time that plasmonic excitations in metallic 

nanostructures not only can be used to enhance native absorption of photosynthetic pigments, 

but also, by employing cyt c553 as the conjugation cofactor, to activate the specific Chl pools 

as the absorbing sites, only when the uniform and well-defined orientation of PSI-LHCI 

complex with respect to plasmonic nanostructures is achieved. This innovative approach 

paves the way for the next generation solar energy-converting technologies to outperform the 

reported-to-date biohybrid devices with respect to power conversion efficiency. 
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Streszczenie 

 

 

Jednym z głównych wyzwań technologicznych jest opracowanie wydajnych i odnawialnych 

systemów konwersji energii słonecznej w elektryczność i paliwo, stosując zerowy bilans 

emisji związków węgla. W ciągu ostatnich dwóch dekad nastąpił znaczący postęp w 

zastosowaniu “zielonych” technologii biofotowoltaicznych, opartych na naturalnych białkach 

absorbujących energię słoneczną, takich jak fotosystem I (PSI) wraz ze związanymi z nim 

kompleksami antenowymi i kofaktorami transportu elektronowego. Głównym ograniczeniem 

obecnych urządzeń fotowoltaicznych jest ich niska wydajność kwantowa, związana z 

procesami rekombinacji ładunku w interfejsach pomiędzy modułami tych urządzeń, jak 

również ograniczona stabilność zastosowanych jak dotąd biologicznych i syntetycznych 

komponentów.       

W ramach niniejszej rozprawy doktorskiej opracowano nowatorską technologię, 

polegającą na zastosowaniu wysokostabilnego PSI oraz naturalnego donora elektronów dla 

tego kompleksu, cytochromu c553 (cyt c553), wyizolowanych z ekstremofilnego krasnorostu 

Cyanidioschyzon merolae, do konstrukcji trzech typów nanourządzeń biofotowoltaicznych: 

(1), biofotoogniw w stałej konfiguracji (ang., all-solid-state), zawierających domieszkowany 

pozytywnie półprzewodnikowy substrat krzemowy (ang., p-doped Si, p-Si) wraz z warstwami 

fotoaktywnego kompleksu PSI i cyt c553; (2), plazmonowych srebrnych bionanodrutów 

(AgNWs), funkcjonalizowanych wysokouporządkowaną nanoarchitekturą monowarstw PSI i 

cyt c553, oraz (3), systemu fotokatalitycznej produkcji wodoru cząsteczkowego in vitro z 

zastosowaniem kompleksów hybrydowych PSI wraz z syntetycznymi katalizatorami redukcji 

protonów (ang., proton reducing catalysts, PRC). W przypadku ostatniego z powyższych 

systemów, optymalizacja biofotokatalitycznej produkcji wodoru cząsteczkowego z 

zastosowaniem systemów hybrydowych z PSI i PRC, opartych na kobaloksymie i niklowym 

katalizatorze mononuklearnym typu DuBois, precypitowanych na powierzchni PSI w 

roztworze wodnym, pozwoliła na osiągnięcie aktywności wydzielania wodoru odpowiednio, 

521 moli H2 (mol PSI)-1 min-1 oraz 729 moli H2 (mol PSI)-1 min-1, przewyższając tym samym 

3-17-krotnie aktywność wydzielania wodoru w podobnych systemach biohybrydowych i 

warunkach pomiarowych. 

Poraz pierwszy zastosowano cyt c553 z C-terminalną metką His6 do biopasywacji 

półprzewodnikowego substratu p-Si, mierzonej minimalizacją parametru rekombinacji 

powierzchniowej J0. Poprzez inżynierię genetyczną sklonowano i wyrażono w E. coli 5 

różnych wariantów cyt c553, z których 4 zawierały w swej strukturze sekwencje peptydowe o 

długości 5-19 aminokwasów (AA), aby zbadać ich wpływ na procesy rekombinacji ładunku 

w obrębie elektrody krzemowej. Peptydy te zostawy wstawione pomiędzy holobiałkiem a 

metką His6, którą zastosowano do unieruchomienia każdego z wariantów cyt c553 na 

powierzchni elektrody. Obliczenie energii swobodnej Gibbsa pozwoliło na utworzenie 

konformacyjnych map 2D dla każdego z wariantów, w których pokazano, iż warianty z semi-

helikalnym peptydem 19AA przyjmują znacząco większą liczbę termodynamicznie 

możliwych konformacji na powierzchni elektrody pod względem odległości i kąta nachylenia 

grupy hemowej w stosunku do powierzchni elektrody. Bioinformatyczna analiza została 

potwierdzona poprzez ciemniową charakterystykę prądowo-napięciową (J-V) utworzonych 

odpowiednio bioelektrod krzemowo-cytochromowych. Stwierdzono, że warianty cyt c553 z 

dłuższymi peptydami pomiędzy metką His6 a holobiałkiem efektywnie minimalizują prądy 

ciemniowe krzemowego substratu, najprawdopodobniej dzięki istnieniu większej ilości 
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termodynamicznie zoptymalizowanych konformacji cytochromu, pozwalających na 

minimalizację rekombinacji ładunku powierzchniowego substratu.  

Funkcjonalizacja elektrody p-Si wariantem cyt c553, charakteryzującym się 

największym stopniem swobody orientacji grupy hemowej w stosunku powierzchni elektrody 

krzemowej, pozwoliła na efektywną biopasywację tego półprzewodnikowego substratu 

poprzez minimalizację parametru J0, co z kolei pozwoliło na zwiększenie parametru Voc o 333 

µV w biofotoogniwach typu PSI/cyt c553/p-Si, w porównaniu do kontroli zawierającej jedynie 

PSI/p-Si. Uzyskano fotoprądy w stałych biofotoogniwach PSI/p-Si w zakresie 104-234 µA 

cm-2 (przy nadpotencjale -0.25 V), co należy do jednych z najwyższych wartości fotoprądów 

wygenerowanych przez stałe biofotoogniwa z PSI, w podobnych warunkach pomiarowych. 

Jednocześnie wydajność konwersji energii słonecznej w fotoogniwach typu PSI-LHCI/cyt 

c553/p-Si była 20-krotnie wyższa, w obecności wariantu cyt c553 19AA, zastosowanego w tych 

urządzeniech jako biologiczna warstwa biopasywacji substratu krzemowego oraz warstwa 

kondukcyjna pomiędzy substratem a PSI. Tym samym wykazano, że ów wariant może być 

zastosowany w urządzeniach biofotowoltaicznych do zwiększenia transferu elektronowego 

pomiędzy substratem a PSI.    

W równoległym i komplementarnym kierunku badań, zastosowanie równomiernej i 

specyficznie ukierunkowanej nanoarchitektury fotoaktywnej warstwy PSI na plazmonowych 

nanostrukturach metalicznych AgNWs, sfunkcjonalizowanych uprzednio cyt c553, pozwoliło 

na znaczące zwiększenie efektywnej absorpcji PSI, w zakresie spektralnym, w którym PSI jest 

nieaktywny in vivo, poprzez aktywację specyficznej puli tzw. czerwonych cząsteczek 

chlorofilu w obrębie fluoroforów PSI. Tym samym pokazano, że oddziaływania plazmonowe 

mogą być efektywnie zastosowane nie tylko do zwiększenia całkowitej absorpcji 

fotoaktywnych kompleksów białkowych, ale również do aktywacji spektralnej specyficznych 

pigmentów, wyłącznie w obrębie wysokouporządkowanej i zorientowanej nanoarchitektury 

tych fotokompleksów na nanokonstruktach plazmonowych. Powyższe nowatorskie podejście 

badawcze może być w przyszłości zastosowane do konstrukcji nowej generacji urządzeń 

biofotowoltaicznych o zwiększonej wydajności konwersji energii słonecznej. 
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Preface 

Exploring the molecular interaction between cytochrome c553 and photosystem I with its 

associated light-harvesting antenna complex for an improved energy and electron transfer in 

three distinct configurations of artificial photosynthetic devices  

We can learn a great deal from nature. Over the course of 3.5 billion years, nature has 

optimised the pathways of energy conversion from sunlight directly into sugars and other 

biomass building molecules that ultimately power the existence and development of 

humankind. Plants, and other photoautotrophic photosynthetic organisms, are ultimately 

responsible for powering our society. The logarithmic growth of the global population over 

the last century has increased dramatically the consumption of the natural energy resources, 

including fossil fuels which can be considered as energy equivalents accumulated since the 

onset of photosynthesis. Due to our indiscriminate consumption of fossil fuels, we will run out 

of them, sooner rather than later. Moreover, the current political agendas aim at consuming 

these finite sources of fuel even more aggressively than it has been envisaged in the last 

decade. Therefore, it is imperative to urgently find ways of developing sustainable forms of 

clean energy in the not-too-distant future.  

We do not have to look very far to get inspired on how to develop technologies for 

sustainable solar energy conversion. The primary reactions of photosynthesis have been 

evolutionary optimised at a spectacular efficiency of the primary conversion events. Overall, 

photosynthesis is rather inefficient (0.2% solar-to-biomass efficiency on average), yet it 

powers life on our Planet in a cyclic manner, providing at the same time the sole source of 

atmospheric oxygen. Photosystem I (PSI) and photosystem II (PSII) are the macromolecular 

pigment-protein complexes embedded in the light-converting sub-cellular membranes of 

oxygenic phototrophs. These nanomolecular machines are responsible for converting the 

energy of sunlight into reducing equivalents through a complex, yet conserved, chain of 

electron transfer pathways, ultimately leading to the production of adenosine triphosphate 

(ATP), an energy-rich molecule which powers carbon dioxide conversion into sugars and 

ultimately, fossil fuels. As the Sun is a practically an infinite source of energy, the modes in 

which these two macromolecular machines operate provide a blueprint for developing 

alternative, innovative technologies for sustainable solar energy conversion. 

Over the last decade, the scientific community has witnessed a plethora of approaches 

to incorporate the photosynthetic complexes into the specialised nanodevices capable of either 
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exploiting the abilities of these proteins to convert solar energy into electricity or fuel. 

Throughout my doctorate and with the help of a very talented interdisciplinary team, I have 

managed to construct a new class of energy-converting devices which in some cases enhanced 

PSI’s ability to capture solar light. This is remarkable, as for the first time we have exploited 

the natural interaction between PSI and its natural electron donor, cytochrome c553, to 

specifically orient this complex on the surface of plasmonic nanostructures. Importantly, we 

now have the strong evidence suggesting that by employing the specific orientation of PSI on 

plasmon-emitting nanomaterial, a distinct group of chlorophylls is activated to absorb certain 

wavelengths of light which are normally not captured. Thus, we have exploited the interaction 

between inorganic material and the natural PSI complex to improve functionality of the latter. 

Moreover, I have also constructed all-solid-state silicon-based biophotoelectrodes, 

functionalised with PSI and cytochrome c553, either individually, or together. Silicon is a very 

attractive solar energy conversion material as it is cheap and it is the second most abundant 

and evenly distributed element in the Earth’s crust. The absorption spectrum of silicon 

complements that of PSI. By exploiting the evolutionary optimised intermolecular interaction 

between PSI and cytochrome c553, and by minimising the distance between all the modules of 

the bioelectrode (that is, silicon, cytochrome c553 and PSI) I have managed to construct the 

biohybrid electrodes which serve as the prototype for the development of cost-effective, 

scalable biophotovoltaic devices, as evidenced by some of the highest current density values 

reported for this type of devices to date.  

Nature has a great deal to teach us, and as this thesis shows, we do not need to 

circumvent nature to improve it. On the contrary, we need to learn, use and exploit nature for 

the service of the society. If we want to improve nature, we should understand how it works. 

Most importantly, we should understand the intricate molecular processes that exist in natural 

photosynthetic systems to be able to exploit the newly discovered or improved functionalities 

of photosynthetic complexes upon their integration with plasmonic nanomaterials within 

cheap and scalable solar energy-converting devices.  
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My favourite quotes: 

 

“Science requires sacrifice”   Maria Skłodowska-Curie 

 

“Duty first, self second”   HM (HRH) Queen Elizabeth II of the United Kingdom of Great 

Britain and Northern Ireland  

 

“If you can't explain it simply, you don't understand it well enough”   Albert Einstein 
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Abstract 

One of the biggest challenges of modern-day solar technologies is to develop carbon-neutral, 

efficient and sustainable systems for solar energy conversion into electricity and fuel. Over 

the last two decades there has been a growing impact of ‘green’ solar conversion technologies 

based on the natural solar energy converters, such as the robust extremophilic photosystem I 

(PSI) and its associated protein cofactors. The main bottleneck of the currently available 

biophotovoltaic and solar-to-fuel technologies is the low power conversion efficiency of the 

available devices due to wasteful charge recombination reactions at the interfaces between the 

working modules, as well as instability of the organic and inorganic components. 

This thesis describes the development of three novel approaches to improve energy 

and electron transfer in PSI-based biophotoelectrodes and plasmonic nanostructures: (1) 

construction of all-solid-state mediatorless biophotovoltaic devices incorporating p-doped 

silicon substrate, extremophilic robust PSI complex and its associated light harvesting antenna 

(PSI-LHCI) in conjunction with its natural electron donor cytochrome c553 (cyt c553) from a 

red microalga Cyanidioschyzon merolae and (2), biofunctionalization of the silver nanowires 

(AgNWs) with a highly organised architecture of the cyt c553/PSI-LHCI assembly for the 

significant improvement of absorption cross-section of the C. merolae PSI-LHCI complex 

due to plasmonic interactions between the distinct subpool of chlorophylls (Chls) and AgNWs 

nanoconstructs. The third (3) approach was based on development of the photo-driven in vitro 

hydrogen production system following hybridisation of the robust extremophilic PSI-LHCI 

complex with the novel and established proton reducing catalysts (PRC). The last approach 

has led to generation of molecular hydrogen with TOF of 521 mol H2 (mol PSI)-1 min-1 and 

729 mol H2 (mol PSI)-1 min-1 for the hybrid systems of PSI-LHCI with cobaloxime and the 

DuBois-type mononuclear nickel proton reduction catalysts, respectively. The TOF values for 

biophotocatalytic H2 production obtained in this study were 3-fold and 16.6-fold higher than 

those published for cyanobacterial PSI/PRC hybrid systems employing cobaloxime and a 

similar Ni mononuclear PRC, respectively.  

Construction of all-solid-state mediatorless PSI-based nanodevices was facilitated by 

biopassivation of the p-doped Si substrate with His6-tagged cyt c553, as evidenced by 

significant lowering of the inherent dark saturation current (J0), a well-known semiconductor 

surface recombination parameter. Five distinct variants of cyt c553 were obtained by 

genetically engineering the specific linker peptides of 0-19 amino acids in length between the 
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cyt c553 holoprotein and a C-terminal His6-tag, the latter being the affinity ‘anchor’ used for 

specific immobilisation of this protein on the semiconductor surface. The calculated 2D Gibbs 

free energy maps for all the five cyt c553 variants and the protein lacking any peptide linker 

showed a much higher number of thermodynamically feasible conformations for the cyt c 

variants containing longer linker peptides upon their specific immobilisation on the Si surface. 

The bioinformatic calculations were verified by constructing the respective cyt c553/Si 

bioelectrodes and measuring their dark current-voltage (J-V) characteristics to determine the 

degree of p-doped Si surface passivation, measured by minimisation of the J0 recombination 

parameter. The combined bioinformatic and J-V analyses indicated that the cyt c553 variants 

with longer linker peptides, up to 19AA in length, allowed for more structural flexibility of 

immobilised cyt c553 in terms of both, orientation and distance of the haem group with respect 

to the Si surface, resulting in efficient biopassivation of this semiconductor substrate. This 

molecular approach has allowed for the developing of an alternative, cheap and facile route 

for significant reduction of the inherent minority charge recombination at the p-doped Si 

surface. 

To improve direct electron transfer within all-solid state PSI-based nanodevices, the 

specific His6-tagged cyt c553 variants, generated in this study, were attached to the Ni-NTA-

functionalised p-doped Si surface prior to incorporation of the PSI-LHCI photoactive layer. 

Such nanoarchitecture resulted in an open-circuit potential increment of 333 µV for the 

specific PSI-LHCI/cyt c553/Si nanodevice compared to the control device devoid of cyt c553. 

Moreover, the all-solid state mediatorless PSI-LHCI-based devices produced photocurrents in 

the range of 104-234 µA/cm2 when a bias of -0.25 V was applied, demonstrating one of the 

highest photocurrents for this type of solid-state devices reported to date. The power 

conversion efficiency of the PSI-LHCI/p-doped Si devices was 20-fold higher when 19AA 

variant of cyt c553 was incorporated as the biological conductive interface between the PSI-

LHCI photoactive module and the substrate, demonstrating the significant role of this cyt 

variant for improving direct electron transfer within the PSI-based all-solid-state mediatorless 

biophotovoltaic device.  

In a complementary line of research, it was demonstrated that the highly controlled 

assembly of C. merolae PSI-LHCI complex on plasmon-generating AgNWs substantially 

improved the optical functionality of such a novel biohybrid nanostructure. By comparing 

fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and 

the results obtained for the PSI-LHCI/cyt c553 bioconjugate with AgNWs it was concluded 
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that the specific binding of PSI-LHCI complex with the defined uniform orientation yields 

selective excitation of a pool of Chls that are otherwise almost non-absorbing. This is 

remarkable, as this work shows for the first time that plasmonic excitations in metallic 

nanostructures not only can be used to enhance native absorption of photosynthetic pigments, 

but also, by employing cyt c553 as the conjugation cofactor, to activate the specific Chl pools 

as the absorbing sites, only when the uniform and well-defined orientation of PSI-LHCI 

complex with respect to plasmonic nanostructures is achieved. This innovative approach 

paves the way for the next generation solar energy-converting technologies to outperform the 

reported-to-date biohybrid devices with respect to power conversion efficiency. 
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Chapter 1 Introduction 

1.1 The fundamental processes of oxygenic photosynthesis 

The simple resources of water, sunlight and carbon dioxide power so much motion and activity 

in the world. The photosynthetic apparatus that enables the fundamental process of natural 

photosynthesis consists of components that operate in an extremely sophisticated orchestration 

of steps. A more thorough and comprehensive understanding of the fundamental aspects of 

photosynthesis not only has revealed an indispensably applicable plethora of knowledge, but 

has indisputably been of importance in trying to meet the rapidly increasing energy demand 

of humankind. 

The evolution of oxygenic photosynthesis resulted in an explosive change in the 

biosphere of our planet as the atmosphere then became capable of sustaining aerobic 

respiration and ultimately, higher complexity of life. Most organisms – including oxygenic 

photoautotrophs – use oxygen for cellular respiration. Interestingly, oxygen is considered as 

the by-product of the photosynthetic water splitting reaction. Our current biosphere functions 

in a way which requires continuous oxygen consumption for essential respiratory biological 

processes to take place.  

Photoautotrophs are not limited to oxygenic photosynthesis, as anaerobic 

photoautotrophy can also take place in some organisms, e.g., non-sulphur purple bacteria or 

green-sulphur bacteria. In oxygenic photosynthesis water is normally employed as the source 

of reducing equivalents, but some organisms have the capability of using other compounds as 

electron donors. Examples include small organic molecules and hydrogen gas, formate, 

acetate, or methanol, and hydrogen sulfide in the case of green-sulphur bacteria.  

The introduction of this PhD thesis will encompass the most recent advances in 

dissecting the mechanisms of natural oxygenic photosynthesis at the molecular level. With 

organic thin-film arrays and solid-state solar cells already surpassing the efficiency of 

phototrophs in terms of power conversion efficiency, it may seem perhaps that little could be 

gained from elucidating nature’s approach in photosynthesis, but further understanding of this 

rather complex and fundamental process may in fact continue to improve the efficiency of 

conversion of sunlight into electricity and perhaps more practically, into storable high-density 

liquid or gaseous fuels.  
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1.1.1 Overview of products and chemical reactions of oxygenic photosynthesis 

All chemical reactions occur due to the flow of electrons, so understanding their movement is 

critical to understanding chemical processes. In photosynthesis, excited electrons are 

transferred in a series. This is core to the conversion of sunlight to energy equivalents stored 

in chemical bonds of organic molecules. Oxidation and reduction reactions are the terms used 

to describe this movement of electrons. The term ‘oxidising’ refers to accepting a compound’s 

electrons, and ‘reducing’ refers to donating of electrons.   

In cells, energy equivalents are ultimately stored as chemical bonds. Formation of 

bonds is achieved through electron movement. The reaction below summarizes photosynthesis 

and shows the formation of carbohydrates (Eq. 1); it does not show additional products that 

can be made and only conveys mass balance stoichiometric aspects: 

CO2 + H2O → (CH2O)x + O2    (Eq. 1) 

During photosynthesis, cellular energy equivalents are stored temporarily in two 

molecules, chiefly NADPH and ATP. In subsequent reactions, these two compounds are 

utilised to achieve long-term energy storage by synthesising carbohydrates. The energy from 

photons is employed to form the ‘high energy bond’ between ADP and Pi (inorganic 

phosphate) during the formation of ATP. One could think of ATP as the “energy currency” of 

photosynthesis (and the whole cellular metabolism), as it serves as an energy investment for 

later reactions that otherwise would not occur. Specifically, photosynthesis can reverse the 

equilibrium of key reactions by coupling the chemical reactions with ATP hydrolysis (Eq. 2). 

As an illustration, the equilibrium of the reaction adding phosphate to glucose is shifted to the 

product, glucose-6-P (Eq. 3 and 4). 

      ATP + H2O → ADP + Pi (-31 kJ mol-1)    (Eq. 2) 

Pi + glucose → glucose-6-P + H2O (+ 14 kJ mol-1)    (Eq. 3) 

glucose + phosphate → glucose-6-P (-17 kJ mol-1)    (Eq. 4) 

The transfer of electrons to reduce NADP+ also enables the transfer of protons across the 

photosynthetic membrane (so-called thylakoid). This results in generation of the proton 

gradient across the membrane, which in turn produces a proton motive force (pmf). The 

movement of protons through membrane-bound cytochrome b6f (cyt b6f) from the side of high 

proton concentration to low concentration generates sufficient mechanical force to produce a 

conformational change (a rotation to be more specific) in the enzyme ATPase (also bound 
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within the same photosynthetic membrane), which in turn enables it to catalyse the production 

of ATP.   

 Conventionally, the light reactions (known as the photosynthetic primary reactions) 

are the light-driven redox reactions that are responsible for production of ATP and NADPH. 

The overall light reaction is summarised below: 

2H2O + 2NADP+ + 3ADP → 3Pi + O2 + 2NADPH + 3ATP       (Eq. 5) 

where Pi is a free phosphate ion that is negatively charged  

The movability of NADP and ATP allows for the series of dark reactions to occur in a 

separate soluble compartment, the stroma, from where energy from photons is collected in the 

form of chemical bonds of carbohydrates. Analogously, one can envisage how electricity 

generated in one place may be stored in fuel or batteries elsewhere.  

In conclusion, the production of carbohydrates by photosynthesis occurs in two sets of 

reactions: (1) those yielding NADPH and ATP (light reactions, also known as the primary 

reactions of photosynthesis) and (2) light-independent reactions that utilise these high-energy 

molecules for reductive synthesis of organic products from CO2 (dark reaction, also known as 

the secondary reactions of photosynthesis).  

  



20 
 

1.1.2 Primary reactions of oxygenic photosynthesis: energy and electron transfer 

Charge separation results from an electron leaving its location within a bond in a molecule, 

leaving behind a positive charge (a hole). As opposite charges attract, their separation requires 

an input of energy, which in photosynthesis comes from the energy of photons. The captured 

solar energy expels electrons from the pigment molecules of the so-called primary donors to 

higher energy levels, or in terms of molecular orbital theory, it promotes electrons from lower 

molecular orbitals to higher molecular orbitals.  

It is known that 8-10 photons must be captured to fix each molecule of CO2 [1]. The 

photons travel all the way from the Sun before participating in photosynthesis, but then they 

are very quickly utilised. Photons produced by our solar system’s nuclear reactor travel 10,000 

years from the Sun, and cover a distance of 150,000,000 km in about 8 min. to reach our 

atmosphere, and within a time frame of 100 ps they are captured and channelled in the reaction 

centres of photosystem I (PSI) and photosystem II (PSII) that are present in the thylakoid 

membranes of oxygenic photoautotrophs [2].   

The light-harvesting modules in photosynthesis absorb photons of certain wavelength 

very efficiently, then tunnel them to the photochemical reaction centres containing a 

specialised chlorophyll (Chl) a pair, known as the primary donor. As a matter of fact, the 

primary donor operates almost perfectly – one electron is excited every time a photon is 

absorbed within the proper wavelength range of red light. This miracle of nature is 

accomplished in PSI by a very complex system – in higher plant PSI there are 190 pigments 

incorporated in the protein scaffold in addition to several other cofactors and lipids. Excited 

electrons routinely pass through these light-absorbing pigments before reaching their 

destination, the primary donor [3]. 

The efficiency of photosynthesis, is limited, as it utilises only a subset of visible light 

within the red and blue regions of solar light. Moreover, the visible spectrum of 

photosynthetically active radiation (PAR), 400-800 nm, represents merely half of the solar 

spectrum that reaches the Earth. The wavelength range available to use in each photoautotroph 

is dictated by the composition of the pigment molecules within and/or surrounding the reaction 

centres (Figure 1). 
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Figure 1 

Spectrum of sunlight in the visible region and absorption of various pigment molecules. 

Most of the photons utilised are in the blue and red regions. Adapted from [4]. 
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1.1.3 Primary donor excitation and electron transfer pathways 

In natural photosynthesis, PSII complex present in oxygenic phototrophs (plants, algae and 

cyanobacteria) catalyses the light-driven water splitting reaction, while PSI generates highly 

reducing potential (Em of  ̶ 1.3 eV) to power electrons derived from water for generation of a 

biological “hydrogen storage” molecule, NADPH. Both photosystems act concomitantly as 

their Chla-containing reaction centres (termed P680 and P700 for PSII and PSI, repectively) 

absorb quanta of red light to drive a unidirectional electron flow through intricately organised 

branches of redox-active cofactors (see Figure 2). As briefly introduced, with the aid of a third 

redox-active protein complex, cyt b6f, which in the thylakoid membrane is localised between 

PSII and PSI, an electrochemical potential gradient of protons is also formed, driving the 

activity of the thylakoid-bound ATP synthase to chemiosmotically produce ATP. ATP and 

NADPH are subsequently used for reduction of CO2 into sugars in the dark reactions of 

oxygenic photosynthesis, as well as several other biomass components [5].   

Natural photosystems operate as nearly perfect photoelectrical devices, exhibiting a 

quantum efficiency close to 100%. The spatial organisation of light absorbing pigments, 

redox-active cofactors and metals of the water-oxidation complex (WOC) of PSII are 

optimised to facilitate and maximize forward electron transfer and minimise wasteful back 

reactions. As a matter of fact, structural analysis of various photosynthetic reaction centres 

(including those from anoxygenic photosynthetic bacteria) revealed that these centres all share 

a common structural blueprint: they all contain a charge-separator cofactor assembly 

embedded with a protein dimer composed of 5-transmembrane spanning domains, as well as 

the light harvesting system [6]. The photosynthetic unit rapidly harnesses solar energy across 

the whole PAR spectrum and rapidly tunnels it efficiently to the associated reaction centres, 

with minimal energy losses at relatively low light intensities. This is possible through the 

presence of various pigments with different and varying spectral properties and their discrete 

interactions with the protein scaffold to which they bind. The overall transfer times of energy 

migration from the light harvesting system to the reaction centre occurs on a sub-nanosecond 

timescale [6–8].  
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Figure 2 

Linear and cyclic electron transfer pathways in oxygenic photosynthesis. Reproduced 

from [9] with updated crystal structures from photosystem II (PSII), cytochrome b6f (cyt b6f) 

and photosystem I (PSI) (see below for PDB accession numbers and respective references). 

Linear and cyclic electron transport and regeneration of reducing equivalents along with 

NAPDH and ATP is performed by the concerted action of PSII (4UB6 [10]), cyt b6f (4PV1, 

[11]) and PSI (4XK8 [3]), aided by the mobile electron carriers: plastocyanin in higher plants 

and green algae (PC) or cytochrome c6 (cyt c6, 1CYI [12]) in cyanobacteria and green algae; 

ferredoxin (Fd, 3AB5 [13]) and ferredoxin:NADP+ reductase (FNR, 1FNB [14]). The ATP 

synthase powers the formation of ATP thanks to the proton motive force generated by photo-

oxidation of water and the subsequent electron transport across the thylakoid membrane. 

NADPH and ATP generated during the light reactions are subsequently employed for fixation 

and reduction of CO2 into carbohydrates (not shown). When ATP is consumed under certain 

metabolic circumstances, cyclic electron flow is induced (dotted arrow) which produces ATP 

without production of NADPH. The Mn4CaO5 which comprises the oxygen evolving complex 

(OEC) is buried within he donor side of PSII. Fx, FA, FB – [4Fe – 4S] clusters; A1 – 

phylloquinone; A0 – Chla; PQ/PQH2 – plastoquinone/plastoquinol: oxidised and reduced 

plastoquinone; QA, QB – primary and secondary quinone electron acceptors; Pheo – 

pheophytin: a primary electron acceptor in PSII.  
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As shown in Figure 2, the continuous demand of the photosynthetic apparatus for 

electrons requires a substrate to sustain the supply; in the case of oxygenic photosynthesis, 

that source is water. During evolution, the ability of the protoautotroph to oxidise water – and 

hence generate protons, electrons and molecular oxygen – ultimately resulted in the evolution 

of oxygenic photosynthesis, and ultimately highly efficient aerobic respiration.  

2H2O  → O2 + 4H+ + 4e-    (Eq. 6) 

 The redox power of photosynthesis is remarkable. The reaction centres of PSII and PSI 

are the strongest oxidant and strongest reductant known in biology, respectively. The reaction 

centre of PSII, P680 is a strong oxidant (Em +1.25 eV) that is responsible for water oxidation 

and formation of molecular oxygen as the by-product of this reaction.   

 Regulation of photosynthetic electron transport in the thylakoid membrane is a 

fundamental feature for coping with dynamic fluctuations in light intensity and variable 

demand for ATP and NADPH. The abovementioned process, known as linear electron 

transport, generates a proton gradient across the thylakoid membrane (ΔpH) through the 

combination of protons generated by the water-splitting complex associated with PSII and 

proton translocation associated with electrons passing through the cyt b6f complex [15]. The 

ΔpH together with a membrane potential formed across the thylakoid membrane (Δψ) drives 

ATP production by ATP synthase. In addition, the water-water cycle (Mehler reaction), in 

which electrons, through linear electron transport, reduce O2 to O2
− in the chloroplast, are 

coupled to the generation of ΔpH, which drives ATP synthesis without accumulating NADPH 

[16].  

In contrast to linear electron transport, cyclic electron transport requires only 

cooperation of PSI with the cyt b6f complex to generate the ΔpH. This gradient is able to drive 

ATP synthesis without producing NADPH in chloroplasts [17]. Importantly, an additional 

consequence of the trans-thylakoid ΔpH is that it alters energy dissipation from the light-

harvesting complexes via induction of the energy-dependent quenching component (qE) of 

nonphotochemical quenching (NPQ) of absorbed light [18]. Notably, several studies have 

indicated that cyclic electron transport around PSI requires only PSI photochemical reactions 

to efficiently operate under excess-light conditions [19–21], although its physiological 

relevance and precise molecular mechanisms still remain an open question.  

Each of the two charge-separation transmembrane complexes (PSI and PSII) in the 

thylakoid membrane have distinct pigment composition with unique absorption 
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characteristics. Therefore, an imbalance of energy distribution between the two photosystems 

tends to occur in natural habitats, where light quantity and quality fluctuate at different time 

intervals [22]. Because these two photosystems are functionally connected in series under 

natural conditions, plants and algae must constantly have to balance their excitation levels to 

ensure perfect efficiency of electron flow. State transitions happen under such conditions to 

equilibrate the light-harvesting capacities of the two photosystems, thereby minimising the 

unequal distribution of light energy. Classically, State 1 occurs when PSI is favourably excited 

and the light-harvesting capacities of PSII and PSI are increased and decreased, respectively, 

to compensate for the excitation imbalance between both photosystems; this state is indicated 

by pointedly higher Chl fluorescence yield at room temperature. On the other hand, State 2 

occurs when PSII is favourably excited and the light harvesting capacities of PSII and PSI are 

decreased and increased, respectively, to readjust the excitation imbalance; this state may be 

monitored as a lower Chl fluorescence yield at room temperature [22].  

One of the major discoveries in this field occurred with the isolation of the 

megasupercomplex conducting cyclic electron flow in the green alga Chlamydomonas 

reindhardtii, upon chemical induction of State 2 [23]. The isolated megasupercomplex was 

composed of PSI with its associated light-harvesting complex (LHCI), the PSII light-

harvesting complex (LHCII), the cyt b6f complex, Fd-NADPH oxidoreductase (FNR), and the 

trans-membrane protein PGRL1 [23]. Spectroscopic analyses indicated that upon illumination, 

reducing equivalents from downstream PSI were transferred to cyt b6f, whereas oxidised PSI 

was re-reduced by electrons from cyt b6f, indicating that this megasupercomplex is engaged 

in the cyclic electron flow [23]. Thus, the authors claim that formation and dissociation of the 

PSI–LHCI/LHCII/FNR/cyt b6f/PGRL1 supercomplex not only switched the mode of 

photosynthetic electron flow (from linear to cyclic), but also controlled the energy balance 

between the two photosystems [23]. 

More recently, State 1 and State 2 PSI and PSII supercomplexes from Chlamydomonas 

reindhardtii have been purified and analysed [24]. It was shown that PSI was capable of 

binding two LHCII trimers that contained all four major Lhcb isoforms in State 2, and one 

minor Lhcb monomer, most probably CP29, in addition to the nine Lhca subunits of the LHCI 

complex [24]. This structure was the largest PSI complex ever observed, having an antenna 

size of 340 Chls/P700. Furthermore, it was demonstrated that all Lhcas bound to PSI were 

able to transfer energy efficiently to the PSI reaction centre [24]. A 20Å EM projection map 

of the supercomplex was obtained which revealed the structural organisation of this complex 
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(see [24]). Moreover, the authors claimed that only LHCII type I, II and IV, are in fact 

phosphorylated when associated with PSI, in contrast to LHCII type III and CP29 subunits 

which are not phosphorylated upon their association with PSI. Interestingly, CP29 was shown 

to be phosphorylated when associated with PSII in State 2, confirming the crucial role of this 

post-translational modification in inducing conformational changes of this subunit during state 

transitions [24]. 

Figures 3 and 4 display the Z-scheme of photosynthesis, with different times of 

reactions and energy in eV associated with every step of the photosynthetic electron transfer 

pathway.  

 

 

Figure 3  

Z-scheme of photosynthetic electron transfer from H2O to NADP+, including estimated 

times for the various steps. Reproduced from [18]. The solid blue arrows display linear 

electron flow, the solid red arrow shows cyclic electron flow around PSI, and the dotted red 

arrow shows the Q cycle of the cyt b6f complex. Electrons transported in series produce pmf, 

which ultimately drives ATP production catalysed by the chloroplast ATP synthase. 

Abbreviations (left to right): PSI/II, photosystem I/II; Mn, manganese cluster; Yz, tyrosine 161 

in the D1 protein; P680, reaction centre of PSII; P680*, excited P680; Pheo, primary electron 

acceptor of PSII; PQ, plastoquinone pool; pmf, proton motif force; cyt b6f, cytochrome b6f 

complex; PC, plastocyanin; P700, reaction centre of PSI; hγ, photon energy; P700*, excited 

P700; A0, primary electron acceptor of PSI; Fx, FA, and FB, three different iron-sulphur 

centres; FNR, ferredoxin-NADP reductase.  
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Figure 4 

Z-scheme of photosynthesis displaying different energy levels (in eV). Reproduced from 

[25]. The primary reactions of photosynthesis have a very large energetic spread, ranging from 

almost +1.25 eV to -1.3 eV, which is bioenergetically impressive.  
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1.2 Structure and function of the oxygenic photosynthetic apparatus  

In order to fully understand the design intricacies of the oxygenic photosynthetic machinery, 

a comprehensive and thorough understanding of each component’s structure is essential. 

Extensive structural investigations have enlightened us over the last two decades with the near-

atomic or medium resolution X-ray structures of these complexes, particularly those of PSII 

and PSI, which are exclusively responsible for solar energy capture and ultimate photo-

electrical conversion.  

Below are subchapters referring to structural characterisation of the components of 

oxygenic photosynthetic apparatus, including cytochrome c553 (cyt c553), which plays a crucial 

role in mediating electron transfer between cyt b6f and PSI in a model organism used in this 

PhD study, an extremophilic red microalga Cyanioschyzon merolae.  

 

1.2.1 Photosystem II as H2O-plastoquinone oxidoreductase 

The structure of PSII was solved by X-ray diffraction (XRD) at 1.9 Å resolution, and showed, 

as in all the previous X-ray structures of this complex [26–32], that the oxygen-evolving 

complex (OEC) is a Mn4CaO5-cluster coordinated by a properly defined protein environment 

[33]. Extended X-ray absorption fine structures (EXAFS) studies have shown that the 

manganese cations in the OEC are easily reduced by X-ray radiation and therefore, the distance 

between the Mn-Mn atoms differs between XRD studies and EXAFS [27–29,34–36].  

 For the first time, a ‘radiation-damage-free’ structure of PSII from 

Thermosynechococcus vulcanus has been reported at a resolution of 1.95 Å in the S1 (dark) 

state employing the most advanced state-of-the art femtosecond X-ray pulses of the SPring-8 

Ångstrom compact free-electron laser (SACLA) using hundreds of large, highly isomorphous 

PSII crystals [10]. This achievement is revolutionary, as for the first time the entire, intact, 

operational oxygen-evolving complex (OEC) has been elucidated in its entirety, contributing 

invaluably to our understanding of the complete mechanism of biological water oxidation in 

oxygenic phototrophs.  

 The PSII complex is a multimeric pigment-protein complex embedded in the thylakoid 

membranes of cyanobacteria, green algae and higher plants. It is the only multimeric 

macromolecular protein complex capable of oxidising water using visible light. Biological 

water oxidation results in the release of electrons, oxygen molecules and protons at the 

catalytic centre of PSII, specifically, the OEC. The process encompasses four consecutive 

electron and/or proton removing steps within the Si-state cycle (with i = 0-4, where i indicates 
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the number of oxidative equivalents accumulated) [10]. Because of its ability to perform 

biological photolysis rather efficiently [10], the OEC is considered a potential, very promising 

template for the synthesis of artificial catalysts for water-splitting, with the ultimate purpose 

of obtaining clean and renewable energy from sunlight, as will be explained in the subsequent 

chapters of this PhD thesis.  

 The PSII complex occurs as a dimer and each monomer contains 20 subunits with a 

total molecular mass of 350 kDa [28,31,33,34,36,37] for each monomer (see Figure 5, Panel 

A) The latest X-ray structure of the cyanobacterial dimeric PSII complex revealed that in 

addition to the protein subunits, there are 35 Chls, 11 β-carotenes, two pheophytins, more than 

20 lipids, 2 haem irons, 2 plastoquinones, 1 non-haem iron, 4 manganese atoms, 3-4 calcium 

atoms (one of which is in the Mn4Ca cluster), 3 Cl- ions (two of which are in the vicinity of 

the Mn4Ca cluster), 1 bicarbonate ion and more than 15 detergents per monomer [33]. Each 

monomer contains more than 1,300 water molecules, yielding a total of 2,795 water molecules 

in the dimer (see Figure 5, Panel B). As shown, the water molecules are organised in two 

layers located on the surfaces of the lumenal and stromal sides, with the former having more 

water molecules than the latter. Some water molecules have been found within the membrane 

region, most of them serving as ligands to Chls [33]. Figure 6 displays the organisation of the 

OEC and its protein environment [10]. Figure 7 presents the possible mechanisms for 

biological water oxidation based on the assumption that when the S2 state is reached, one 

electron may be removed from Mn4A, leading to a dextro-open structure (‘R-type’), or from 

Mn1D, leading to a levo-open structure (‘L-type’) [10]. 

  



30 
 

 

 

Figure 5 

PSII overall structure from T. vulcanus at a resolution of 1.9 Å. Reproduced from [33]. 

Plane view is perpendicular to the membrane normal. A: Overall structure of the monomer 

complex. The protein subunits are coloured individually in the right-side monomer and in 

light-grey of the left-side monomer. The OEC is embedded close to the 33-kDa protein and 

can be distinguished by a considerable cluster of water molecules. Water molecules are 

represented by orange balls. B: Water molecule arrangement in the PSII dimer. Protein 

subunits are coloured in light grey and all other cofactors are omitted for simplicity. Central 

dotted lines are non-crystallographic and indicate monomer-monomer interaction. PDB code: 

3ARC. 
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Figure 6 

X-ray structure of the OEC and its ligand environment at 1.9 Å. Reproduced with 

identical labelling from [10]. A: Superposition of the OEC and its ligand environment from 

the three structures available. For clarity, the structures and protein environment are labelled. 

B: Overall structure of the chair comprising the OEC. Orange spheres; water molecules, grey 

spheres; manganese atoms, red spheres, oxygen atoms; blue sphere, calcium atom. Distances 

between atoms are displayed in Angstroms. Labelling of atoms is as specified in [10].  
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Figure 7 

Possible mechanisms for photosynthetic water oxidation. Reproduced from [10]. In the S1 

state O5 is connected to both Mn1D (III) and M4A (III). When the S2 state is reached, one 

electron may be removed from Mn4A, leading to a dextro-open structure (‘R-type’), or from 

Mn1D, leading to a levo-open structure (‘L-type’). Both structures will allow insertion of a 

new water molecule from the nearby microenvironment during the following S-state 

transition, in preparation for the transition state immediately before O=O bond formation (this 

is indicated by a red bond in the right-hand structure of the bottom row). In contrast, the 

transition state preparing for O=O bond formation may be formed by moving either W2 or 

W3 towards O5 (this is indicated in the left-hand structure from the bottom row).  
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The precise mechanism of the water-splitting reaction is still a matter of heated debates 

and its intricacies are beyond the scope of this PhD thesis. Nonetheless, the PSII complex is 

responsible for all oxygenic life on Earth, and its ability to perform photon-powered biological 

water oxidation is unique and awe-provoking. Therefore, understanding the  complete 

mechanism of photosynthetic water photooxidation will not only elucidate the chemical nature 

of this energetically demanding reaction, but it has inspired chemists to build the artificial 

water-splitting catalysts [38–40] that could match or even hopefully outperform PSII in the 

not-too-distant future. 

 Recently, the first X-ray structure of the eukaryotic (red algal) PSII dimer has been 

revealed, showing the structural similarities and differences with its cyanobacterial 

counterpart [41]. The X-ray structure of the PSII dimer of Cyanidium caldarium has been 

reported at a 2.76 Å resolution, where the presence of the lumenal PsbQ’ subunit and its 

interaction sites are revealed. This protein subunit functions as a fourth extrinsic protein 

required for stabilising the OEC on the lumenal surface of PSII [41]. Significantly, the X-ray 

structure confirmed the earlier electron microscopy/single particle analysis study [42] that 

PsbQ’ is present right under the lumenal domain of the CP43 inner light harvesting subunit, 

close to PsbV extrinsic subunit. Moreover, it reveals four up-to-down helices arranged in a 

similar fashion to those of cyanobacterial and higher plant PsbQ homologues, although helices 

I and II of PsbQ’ were kinked compared to its higher plant counterpart due to its interactions 

with CP43 [41]. Furthermore, the structure revealed two previously unknown transmembrane 

helices which are not present in the cyanobacterial PSII dimer. The authors propose that one 

of them may correspond to PsbW which is exclusively present in eukaryotic PSII.  
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1.2.2  Cytochrome b6f as plastoquinol-oxidised-plastocyanin oxidoreductase 

Integral membrane cytochrome bc lipoprotein complexes (namely cyt bc complexes) b6f and 

bc1 play critical roles in photosynthetic and respiratory electron transport chains, respectively, 

where they regulate electron transfer by coupling transmembrane proton translocation to 

membrane electron transfer through redox reactions of plastoquinone/plastoquinol and 

ubiquinone/ubiquinol, respectively [11,43–47]. Plastoquinone in photosynthetic membranes, 

contains a redox active ring that is attached to a 45-50 carbonyl prenyl tail (See Figure 8, 

Panel A). On the electro-positive side of bc complexes (known as p-side), quinol 

deprotonation-oxidation occurs within the Qp domain and it involves quinol entry into an 11 

Å portal that connects the Qp site to the quinone pool in the lipid-full intermonomer cavity of 

bc complexes, as clearly shown in detail for the X-ray structure of the cyt b6f complex [48] 

(See Figure 8, Panel B). 

The main function of cyt b6f is to: (i), couple electron transfer from plastoquinol on the 

stromal side of the membrane to a soluble cyt c6 or plastocyanin on the lumenal side of 

thylakoids and (ii), generate a transmembrane electrochemical proton gradient [49]. This 

happens via a two-electron oxidation of hydroplastoquinone coupled with the release of two 

protons at the Qo on the lumenal side of thylakoids. One electron is transferred through a high-

potential chain constituting a [2Fe-2S] cluster (also known as “Rieske cluster” or the “Rieske 

iron-sulphur protein”) and a haem f, similar to c1 in cytochrome bc1, in contrast to the other 

electron which travels through haems bL and bH to reduce quinone at the Qi site on the other 

side of the membrane, the stromal side. Upon two sequential reduction events at the Qi site, 

two protons are taken up from the stroma. This way, a proton electrochemical gradient is 

generated through the release and uptake of protons on either side of the membrane [49].  

 Three dimensional structures of the cyt b6f complex have been obtained at a resolution 

of 3.0-3.1 Å  from the thermophilic filamentous cyanobacterium, Mastigocladus laminosus 

(PDB code: 1VF5) [50] and the green alga, Chlamydomonas reinhardtii (PDB code: 1Q90) 

[49] in the presence of the quinone analogue inhibitor, tri-decyl-stigmatellin. These structures 

display that the b6f complex contains eight polypeptide subunits with 13 transmembrane 

helices in each monomer of a functional dimer [50]. Four of the eight subunits, PetA, B, C and 

D, comprise considerably sized redox cofactors (16–31 kDa: cyt f, cyt b6, the Rieske iron-

sulfur protein, and subunit IV). The four small (3.3–4.1 kDa) hydrophobic subunits, PetG, L, 

M, and N (see Figure 9, Panel A) form a “ring” at the outside periphery of each monomer, 

with each small subunit containing one transmembrane helix.  
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Figure 8  

Structure of plastoquinone and spatial arrangement of cytochrome b6f electron transfer 

cofactors. Reproduced from [11]. A: The plastoquinone molecule, the main substrate of 

cytochrome b6f redox catalysis. B: Electron transfer cofactors are shown as sticks, the Qp portal 

is displayed as a blue cylinder. PDB code: 2E74. 

 

  

 

 

 

 

 

 

 



36 
 

 

 

Figure 9 

Polypeptide composition of the cyt b6f complex and a schematic representation of 

electron-proton transfer pathways in the complex. Reproduced from [11]. A: Dimeric 

cytochrome b6f complex of oxygenic photosynthesis from M. laminosus (PDB code: 2E74, 

[50]). The colour code displays the eight known subunits of the complex, cyt b6, cyan; subunit 

IV, pink; cyt f, yellow; ISP, orange; PetL, red; PetM, green; PetG, brown; PetN, wheat. B: 

Electron-proton transfer processes in cyt b6f complex in higher oxygenic phototrophs. The 

dashed fence represents the complex’s transmembrane core. On the p-side, deprotonation-

oxidation of the reduced plastoquinol (PQH2) results in production of anionic semiquinone 

(PQ˚-) (highlighted in red). This highly reactive subspecies can also be produced by back-

transfer of an electron to the oxidized PQ from the reduced haem bp (more commonly known 

as bL). This anionic semiquinone has been associated with the reduction of molecular oxygen 

to superoxide (O2˙
-) which could serve as the “master switch” of global homeostasis in 

photosynthesis and similarly in respiration. FNR, ferredoxin-NADP+-oxidoreductase; Fd, 

ferredoxin; PC, plastocyanin; F2S2 iron-sulphur protein or Rieske cluster. 
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 Despite the mechanistic and structural similarities between cyt b6f and cyt bc1 

complexes, fundamental differences also exist. As explained above, in oxygenic 

photosynthesis the electron transfer chain can switch from a linear mode, which starts with 

water and ends with NADPH, to a cyclic electron flow, whereby electrons are transferred from 

cyt b6f to PSI, on the lumenal side of the membrane, then are fed back to cyt b6f on the stromal 

side, boosting ATP synthesis at the expense of reducing equivalents [49]. Despite considerable 

and substantial advances in the field, this cyclic electron flow mechanism remains largely 

unknown. Interestingly, isolation of cyt b6f from spinach thylakoids suggested some 

association with FNR protein, although this has not been investigated further [51]. It has been 

postulated that this pathway may involve an NADH-plastoquinone reductase, the 

PGR5/PGRL1 [52] or perhaps it may be mediated directly by ferredoxin, the 

ferredoxin:NADP+ reductase [51], or by a biochemically unidentified G cytochrome [53,54]. 

Moreover, cyt b6f has been thought to regulate state transitions by activating a protein kinase(s) 

[55,56].  

Interestingly, two cofactors of unknown function per monomer, Chla and β-carotene, 

are part of the cyt b6f complex [11] and although they are believed to play structural roles in 

anionic semiquinone production [11], their functions are still not fully understood. It is 

speculated that these pigments may play a role in response to excessive illumination, which 

could explain for instance why haem f has different kinetic properties than the six haems in 

the cyt bc1 complex [57]. Figure 10 compares the main structural features of the cyt b6f and 

cyt bc1 monomers.  
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Figure 10  

Comparison between cyt b6f and cyt bc1 monomer. Reproduced from [49]. Left: cyt b6f. 

Right: cyt bc1. Cyt b6f’s haems red, haem ci in yellow), [2Fe-2S] (red) and chlorophyll (green) 

are represented as viewed along the membrane plane. Distances between metal centres (in Å) 

are indicated (parenthesis indicate the distances from b6f structure) (PDB code: 1Q90 [49]). 

On the right, the cofactors of cyt bc1 (blue) are superimposed on the monomer structure of b6f 

(bc1 structure from PDB code 1KB9, [58]). The angle between the planes of haem ci and bH 

is 74º; the iron of haem ci is 3.9 Å closer to the stroma than that of bH. 
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1.2.3  Photosystem I as plastocyanin-ferredoxin oxidoreductase 

In higher plants and algae, the PSI supercomplex comprises the core complex that is 

surrounded by a crescent-like light-harvesting complex (LHCI) that captures sunlight and 

transfers the excitation energy to the reaction centre [3]. In  fact, PSI-LHCI supercomplex is 

the most efficient ‘photoelectric device’ that is known in biology [59,60] (and all references 

therein). The quantum yield of the PSI complex is almost unity, which means that for every 

photon absorbed one electron is ejected from the reaction centre. This is remarkable as no 

man-made device can operate with such photophysical efficiency.  

Recently, the structure of the PSI-LHCI supercomplex from Pisum sativum has been 

solved at a 2.8 Å resolution [3,61]. The structure reveals a 600-kDa supercomplex with 

detailed arrangement of pigments and other cofactors, particularly within the LHCI complex, 

as well as numerous specific interactions between the reaction centre and the LHCI complex. 

At last, these structural intricacies have enlightended our understanding of the precise energy 

transfer pathways and significantly, photoprotection mechanisms within the PSI-LHCI 

supercomplex.  

The PSI complex exists predominantly as a homotrimer in cyanobacteria and its X-ray 

structure has been determined at a 2.5 Å resolution [62]. Each reaction centre monomer 

contains 12 protein subunits, 128 cofactors (comprising 96 Chls, 2 phylloquinones, 3 [4Fe-

4S] clusters, 22 carotenoids, 4 lipids and a Ca2+ ion). In contrast, the higher plant PSI-LHCI 

supercomplex occurs strictly as a monomer in the thylakoid membranes. It contains four 

unique eukaryotic subunits, PsaG, PsaH, PsaN and PsaO in the core complex, in addition to 

the subunits homologous to cyanobacterial counterpart [63] and four Lhca subunits (Lhca1 to 

Lhca4) of the LHCI complex. 

The latest  X-ray structure of PSI-LHCI reveals a semi-spherical shape similar to what 

has been observed for previous structures [62,64], with a dimension of 140 Å x 40 Å (Figure 

11, Panels A and B). The supercomplex comprises 16 subunits, but the X-ray structure does 

not include PsaN and PsaO [3]. These subunits are thought to be lost during purification and/or 

crystallisation most likely due to their weak association with the core complex. Four LHCI 

subunits, Lhca1 to Lhca4, are arranged in as the functional dimers of two heterodimers (Lhca1-

Lhca4 and Lhca2-Lhca3) and are attached to one side of the PSI core where PsaG, PsaF, PsaJ, 

and PsaK are located, in the shape of a semi-crescent moon (Figure 11, Panels A and C). 
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Figure 11 

Overall structure of the PSI-LHCI supercomplex from Pisum sativum at a 2.8 Å 

resolution. Panels A and B are reproduced from [3]. Panels C and D are reproduced from 

[61]. A: View along the membrane normal from the stromal side. B: Side view of the PSI-

LHCI complex from the peripheral antenna (LHCI) side, with the phytol tails of Chls omitted. 

Colour codes for A and B: Core subunits: pink, PsaA; grey, PsaB; light blue, PsaC; khaki, 

PsaD; light green, PsaE; orange, PsaF; blue, PsaG and PsaK; red, PsaH; purple, PsaI and PsaJ; 

green, PsaL as in [3]. Lhca subunits: green, Lhca1; cyan, Lhca2; magenta, Lhca3; yellow, 

Lhca4. C: Overall structure of the supercomplex with ribbons replacing cylinders in A. The 

PsaJ and PsaF subunits connecting in the middle of LHCI belt are coloured in green and 

magenta, respectively. The three subunits of the stromal ridge, PsaC, PsaD, and PsaE, are 

distinguished in the middle of the complex, coloured cyan, pink, and blue, respectively. The 

two iron-sulphur clusters of PsaC can be distinguished as yellow and orange clusters in the 
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middle of the complex. D: Pigment organisation in the supercomplex. The electron-transfer 

cofactors of the core are depicted in red, Chls of the core antenna green, Chla in the LHCI 

belt in cyan, and Chlb in magenta. Carotenoids which are distributed throughout the complex, 

are coloured in blue and lipids in key connecting points and conserved positions in the core, 

in orange. PDB code: 4XK8. 

 

 In addition to the protein subunits, the latest structure [3] revealed 155 Chls (143 Chls 

a and 12 Chls b), 35 carotenoids [26 β-carotenes (BCRs), 5 luteins (Luts) and 4 violaxanthins 

(Vios)], 10 lipids [six phosphatidylglycerols (PGs), 3 monogalactosyldiacylglycerols 

(MGDGs)], and 1 digalactosyldiacylglycerol (DGDG), 3 [4Fe-4S]  clusters, 2 phylloquinones, 

and several water molecules (Figure 11, Panel B). In total, these molecules amount to 226 

cofactors. In contrast, Nelson and colleagues [61] identified 156 Chls (147 Chls a and 9 Chls 

b), 32 carotenoids and 14 lipids in their 2.8 Å X-ray structure published in parallel to the 

structure of the complex from Shen and colleagues [3], many of them located at key contact 

points of the core complex and the LHCI antenna. They amount to the total of 202 cofactors, 

in contrast to the 226 cofactors identified by Shen and co-workers [3]. 

 

1.2.3.1 The electron transfer cofactors 

 A crystallographic comparison of the cyanobacterial and higher plant PSI X-ray 

structures reveals an almost identical organisation and ligating sites for the electron transfer 

cofactors (ETC). This part of PSI comprises six Chla molecules, two phylloquinones and three 

[4Fe-4S] clusters, as shown in Figure 12, Panel A. The Chls and phylloquinones are arranged 

along two branches, A and B, as pairs of pseudo-dimers related by the pseudo-symmetry C2
 

axis and coordinated by the side chains of the PsaA/PsaB reaction centre heterodimer [62,65]. 

Branch A is composed of Chls eC-A1, eC-B2, eC-B3 and a phylloquionone QK-A, whereas 

branch B contains Chls eC-B1, eC-A2, eC-B3 and a phylloquinone QK-B (nomenclature from 

[62]).  The two branches join once again at the [4Fe-4S] cluster Fx which is followed by the 

two additional [4Fe-4S] clusters, termed FA and FB, both of which are coordinated by the side 

chains of the stromal extrinsic subunit, PsaC [66].  

 It is now well established that both branches of the ETC are active in electron transfer. 

[67,68]. The rate constants are 35 × 106 s−1 and 4.4 × 106 s−1 for the electron transfer steps 

from each phylloquinone to FX [54,69]. The latest data indicates that the fastest phase is 

considered to be dominated by the phylloquinone (PhQ) molecule oxidation coordinated by 
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the PsaB subunit (PhQB), and the slowest phase is dominated by the oxidation of the PhQ 

coordinated by the PsaA subunit (PhQA) [70] (see Figure 12, Panel B). The reaction centre 

of PSI is comprised by a cluster of 6 Chla molecules that function as the primary electron 

donors (eC-A1-3 and eC-B1-3, according to nomenclature from [62]) and primary electron 

acceptors (A0, eC-A3 and eC-B3). Secondary electron acceptors are formed by 2 

phylloquinones (A1: QK-A and QK-B) [62]. The primary electron donor of PSI reaction centre 

is the P700 pair, (Em ~ 0.5 eV), which is formed by the ‘special’ pair of the eC-A1/eC-B1 Chls 

that are excitonically tightly coupled with a Mg–Mg distance of 6.6 Å [62]. The planes of 

chlorins of P700 Chls are oriented perpendicular to the membrane plane and form a stacked 

dimer with a 3.6 Å interplanar distance. This arrangement contrasts with the special pair in 

purple-bacteria reaction centres where the Mg-Mg distance is larger than 7.6 Å [71,72]. 

Moreover, in contrast to purple bacterial RCs, P700 Chls form a heterodimer, with eC-A1 

being Chl a’ 13’-epimer [62,73]. The characteristically heterodimeric nature of P700 primary 

electron donor is also reflected by the presence of hydrogen bonds within the binding pocket 

of eC-A1 and lack of those in the binding site of eC-B1 [62].  

 The other two Chla pairs are composed of the eC-B2/eC-A2 and eC-A3/eC-B3 [62]. 

These eC-A/B-2 Chls represent the ‘accessory’ Chls. The eC-A/B-3 Chls are commonly 

referred to as A0 (Em of −1.0 eV), which represents the primary electron acceptor from the 

primary donor. The A0 Chls are adjacent to a pair of phylloquinone molecules (often referred 

to as A1). They are called QK-A and QK-B according to [62]. The A1 phylloquinones (Em of 

−0.8 eV) act as secondary electron acceptors that are rapidly reduced to the phyllosemiquinone 

by a minimum of two exponential phases, characterised by lifetimes in the 10–30 ns and 150–

300 ns ranges [70]. Unsurprisingly, all the amino acid ligands coordinating the eC-2 and eC-

3 Chla pairs are highly conserved within PsaA and PsaB subunits from cyanobacteria to higher 

oxygenic phototrophs, indicating that throughout evolution these interactions are in fact 

essential for fine-tuning the redox potentials of the ETC cofactors [66]. The electron acceptor 

from A1 is the [4Fe-4S] cluster, well known as Fx [66], which, similar to P700, is located at 

the interface of the PsaA/B heterodimer. The Fx cluster, (Em of −0.7 eV) is ligated by four 

strictly conserved Cys residues present in the loop segments A/B-hi of the PsaA/B heterodimer 

[62]. The two terminal [4Fe-4S] iron-sulphur clusters FA and FB, which operate in tandem, are 

coordinated by Cys residues present within the conserved regions of the stromal extrinsic PsaC 

subunit [62]. 
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Recently, electron transfer processes within the ETC of cyanobacterial PSI particles 

from Synechocystis sp. PCC 6803 with a high potential naphthoquinone (2,3-dichloro-1,4-

naphthoquinone) incorporated into the A1 quinone binding site have been investigated at 298 

and 77 K using state-of-the-art time-resolved visible and infrared difference spectroscopy [74]. 

This high potential naphthoquinone inhibits electron transfer past A1, and biphasic P700+A1
- 

radical pair recombination is observed. The two phases were assigned to P700+A1B
- and 

P700+A1A
- recombination, respectively. Analyses of the transient absorption changes illustrate 

that the ratio of A- and B-branch electron transfer is 95:5 at 77 K and 77:23 at 298 K [74].  

For a summary of approximate standard free energy levels and kinetics of charge 

separation of PSI principal ETCs please refer to Figure 13. For snapshots of the electronic 

density at different time illustrating the different charge transfer steps across the ETC please 

refer to Figure 14. The aspects of quantum interference and advanced physics go beyond the 

scope of this PhD thesis, but the interested reader is invited to consult the pertinent literature 

on the matter (see [75,76] and all references therein).  
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Figure 12 

Electron transfer cofactors of PSI and a relative standard redox potential for PhQA
-

/PhQA with respect to FX/FA/B. A: Electron transfer cofactors for PSI. Organisation of the 

electron transfer confactors (ETCs) in cyanobacterial PSI from T. elongatus viewed along the 

membrane plane. The cofactors of the ETC are related by the pseudo-symmetry C2 axis 

passing through Fx, and oriented perpendicular to the paper plane. eC-A1/B1: a primary 

electron donor; eC-A2/B2, accessory Chls; eC-A3/B3 Chls, A0 primary electron acceptor in 

P700; QK-A and QK-B, A1 phylloquinones which are secondary electron acceptors in P700; 

FX, FA, FB: [4Fe–4S] clusters, the latter two are shown embedded in the backbone of PsaC 

(pink). B: Schematic illustration of the cofactors involved in secondary electron transfer 

reactions in photosystem I. PhQA (red), PhQB (blue), FX (gold) and FA/B (yellow). Schematic 

illustration of the spread of standard redox potential for PhQA
-/PhQA with respect to FX/FA/B, 

according to comparative kinetic and energetic modelling of phyllosemiquinone oxidation in 

PSI [70]. The dashed box indicates energetic circumstances in which the reaction can be 

considered as largely uphill (red), coupled to a weak driving force (orange) or coupled to a 

large driving force (violet). A reproduced from [66] and B reproduced from [70]. PDB code: 

1JB0. 
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Figure 13  

Approximate free energy levels and kinetics of charge separation within the PSI electron 

transfer chain. Reproduced from [75]. The standard free energy of the dark state (P700) was 

arbitrarily set to zero for clarity. Reduction midpoint potentials (vs. NHE) obtained by redox 

titrations of intact PSI and indicated on the right-hand side scale (data displayed is from [75]). 

If interactions between the cofactors are negligible, the standard reaction free energy ΔG0 (per 

molecule) for the formation of a pair P+A- from PA is related to the reduction potentials by: 

ΔG0 (PA    P+A- ) = qe [Em (P+/P) - Em (A/A-)]          (Eq. 7) 

where qe is the elementary charge.  
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Figure 14  

Changes of the electronic density during charge transfer within the electron transfer 

chain. Reproduced from [76]. Note the efficiency of the primary steps, taking only 0.5 ps to 

transfer charge density to Chl-A molecules in the ETC, the cofactors in the immediate 

vicinity of the P700 primary electron donor. 

 

1.2.3.2 Light harvesting antenna complexes and energy transfer pathways in 

photosystem I  

 The latest crystal structure of the PSI-LHCI supercomplex identified 75 cofactors 

within the four Lhca subunits: 45 Chls a, 12 Chls b, 5 Luts, 4 BCRs, 4 Vios, 2 MGDGs and 3 

PGs (Figure 15). The Chl a/b ratio was determined to be 3.75, which is in agreement to the 

value determined previously by [77]. The distribution of Chls in the LHCI is divided in two 

layers; one is close to the stromal and the other one is close to the lumenal surface (see Figure 

15, Panel A). The stromal-side contains 36 Chls (29 Chls a and 7 Chls b) with an average Mg-

Mg distance of 11.3 Å (see Figure 15, Panel A). On the lumenal side the Chls are less densely 

packed and the layer is comprised of 16 Chls a and 5 Chls b, which are separated into two 

different clusters or subgroups in each Lhca with an average Mg-Mg distance of 10.6 Å and a 
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total distance of 19.7 Å between the two sub-groups. The smallest distance between the 

stromal- and lumenal-side layers is 11.6 Å, in Lhca3, from Chl a607 to Chl a619 [3].  

 An important and striking feature of Lhcas is the presence of red forms of several Chls 

that are important for energy trapping and transfer in the entire PSI complex [78]. It has been 

shown that these ‘red forms’ of Chl play critical roles in harvesting of energy and transfer to 

the reaction centre with exceptionally high efficiency [79–81]. The Chl603-609 dimers in each 

Lhca (Figure 15, Panel B) have a close distance and some overlap between their E and C 

rings, displaying their nature as red Chls [3]. All four Chl603-609 dimers are trapped at the 

inside of LHCI, with their phytol tails bulging into the gap region between LHCI and the PSI 

core, in excellent agreement with their function as energy mediators responsible for energy 

transfer from LHCI to the PSI core. It is believed that the interactions between LHCI and the 

PSI core may affect the conformation of the red Chl dimers, particularly through interactions 

involving the hydrophobic phytol chains [82], which correlates with the emission 

enhancement of red Chls in LHCI upon its binding to the core complex [79]. There are marked 

structural differences between the Lhca subunits, like for instance, in the Lhca1 and Lcha2, 

the central ligand of Chl a603 is a histidine (Figure 15, Panel B), whereas in Lhca3 and Lhca4 

it is an asparagine. Chl a603 is hydrogen-bonded to Chl a609 by the His or Asn residue, and 

Chl a609 is further hydrogen-bonded with an arginine residue (Figure 15, Panel B). 

Interestingly, the multiple interactions of Chla a609 suggest that its porphyrin head is more 

stable geometrically than Chl a603, implying that Chl a603 is more likely to undergo 

conformational modulation. This suggests a functional difference between the individual Chl 

molecules in the red dimer [3].  
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Figure 15  

Detailed structural analysis of Chl organisation, distribution and red dimer coordination 

within the Lhcr belt of PSI-LHCI supercomplex. Reproduced from [3]. A: View of the Chl 

organisation from the membrane normal from the stromal and lumenal sides, respectively (I; 

stroma and II; lumen, as indicated in A, inset). Chls a and b are represented by grey and orange 

spheres, respectively. The distance in Å of the Mg-Mg centres are indicated. The numbering 

of Chls is as per [3]. B: Local environments of the red Chl a603-a609 dimers in LHCI. The 

view is perpendicular to the membrane from the stromal side of the complex. Bonds to the 

central Mg2+ ligands, hydrogen bonds, and ionic bonds are portrayed as dashed lines. Lhcr 

colour coding is as per Figure 11, Panel A. Red, Chl a603-a609 dimers; yellow, other Chls a; 

magenta, Chls b; pink, MGDG molecules; red spheres, water molecules. PDB code: 4XK8 
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Figure 16  

Plausible energy transfer pathways from LHCI to the PSI core. Reproduced from [3]. A: 

Overall location of pigments involved in energy transfer from LHCI to the PSI core, with cone 

symbols and arrowheads representing view directions shown in the lower panels. B: Stromal-

side energy transfer pathway 1Bs from Lhca1 to PSI core. C: Lumenal-side pathway 1Fl from 

Lhca1 to PSI core. D: Pathways 2Js and 2Jl from Lhca2 to PSI core. E: Pathways 3As and 3AI 

from Lhca3 to PSI core. Visual geometries are from the stromal side for (A) and perpendicular 

to the membrane normal for (B) to (E), respectively. The terminology of the core subunits 

follows the cyanobacterial one. Colour codes as in [3]: blue, Chls a in PSI core; red, Chl a603-

a609 dimers; purple, Chl a617 and Lut624 in Lhca4; orange, other Chls close to PSI core; 

cyan, carotenoids. PDB code: 4XK8.  
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A detailed structural analysis of near-neighbour associations between pigments 

revealed a number of possible energy transfer pathways from Lhcas to the PSI reaction centre, 

of which four appear to be more likely; these were designated 1Bs, 1Fl, 2Js, and 3As/3Al 

(according to nomenclature from [3]). The 1Bs pathway suggests possible energy transfer 

from the a603-a609 of Lhca1 to three Chls (a1218, a1219, and a1802) of PsaB at the stromal 

side with the shortest edge-to-edge distance of 7.5 Å. Chl a616 of Lhca1 may also direct 

energy to Chl a1701 of PsaF at the lumenal side, providing the 1Fl pathway (Figure 16, Panels 

A and C). Because of the considerable gap between Lhca4 and the PSI core, an unswerving 

energy transfer from Lhca4 to the PSI core would be quite unlikely, and Lhca4 may guide its 

energy to the PSI core via its red forms Chl a603-a609 through the 1Fl pathway [3]. Chl a603 

of Lhca2 is somewhat distant to accomplish a direct energy transfer to Chl a1302 of PsaJ. This 

suggests that the 2Js pathway may not be very efficient. The Chl trimer (a603-a609-a619) of 

Lhca3 is close enough to Chl a1108 and the a1110-a1118 dimer of PsaA at the stromal side, 

forming the 3As pathway. Due to the considerably strong coupling between Chl a1110-a1118, 

this pathway suggests energy transfer from the red forms of Lhca3 to this Chl pair in the PSI 

core. At the lumenal side, Chl a607 of Lhca3 is in proximity to another Chl a1112-a1114 dimer 

of PsaA, providing the 3Al pathway. Furthermore, Chls a613 and a614 of Lhca3 are close to 

Chl a1002 of PsaK (3Kl pathway), which may also facilitate to some extent energy transfer 

from Lhca3 to the PSI core [3]. 
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1.2.4 Cyanidioschyzon merolae as the model photoautotroph with the efficient and 

robust photosynthetic apparatus 

As discussed in Chapter 1.1.3 and Figure 2, compulsory oxygenic phototrophs are 

distinguished by a well-known chain of linear electron transfer, comprising the transmembrane 

components of PSII, cyt b6f complex, PSI and ATPase. Soluble electron carriers include cyt 

c6, and for the extremophilic red microalga C. merolae used in this PhD project, a close 

homologue, cyt c553. Other mobile electron carriers include ferredoxin and ferredoxin-

NADPH reductase (FNR) operating on the stromal side of the thylakoid membrane. As 

explained above, the whole purpose of this electron transfer chain is to generate a pmf across 

the thylakoid membrane, with the ultimate purpose of generating ATP via a transmembrane 

ATPase.  

A red extremophilic unicellular red alga Cyanidioschyzon merolae is an ideal organism 

to study the photosynthetic machinery of compulsory oxygenic phototrophs as it is capable of 

sustaining a strong chemiosmotic balance between the lumen and stroma of thylakoids inside 

the chloroplasts while thriving in an extremely acidic environment at a pH range of 0.4-4.0 

and moderately high temperatures of 40-56 ºC [83,84]. The pmf needs to be approximately 50 

kJ·mol-1 for the ATP synthase to be able to synthesise ATP [85]. 

C. merolae is an ultrasmall (2 µm in diameter), club-shaped, unicellular haploid red 

alga adapted to high sulphur acid hot spring environments. The cellular architecture of C. 

merolae is exquisitely simple, containing merely a single chloroplast and a single 

mitochondrion, lacking a vacuole and a cell wall [83]. Moreover, the cellular and organelle 

divisions may be synchronised. For the abovementioned reasons, C. merolae is an excellent 

model system for study of cellular and organelle division processes, as well as structural 

biology and biochemistry [86,87]. C. merolae’s genome was fully sequenced in 2004 [88]. Its 

plastid sequence was sequenced in 2000 and 2003, and its mitochondrial sequence in 1998 

[89]. The organism is considered the simplest eukaryotic organism that exists due to the 

simplicity of its intracellular architecture [90]. 

Because C. merolae thrives in such extreme conditions, its photosynthetic machinery 

must function well under such severe environmental pressure, and the molecular mechanisms 

behind this phenomenon have been studied by Kargul and colleagues [42,91]. The 

transmembrane complexes of this organism must function with a sufficient efficiency, most 

likely with the need for additional ATP to drive the active extrusion of protons from the 

cytoplasm [92] in the presence of low external pH. It has been shown that the dimeric PSII 
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complex isolated from C. merolae is very stable across a range of extreme light, temperature, 

and pH conditions [42]. By measuring the fluorescence quenching properties of the isolated 

C. merolae PSII complex, the first direct evidence was provided of the pH-dependent non-

photochemical quenching in the red algal PSII reaction centre [42]. This type of quenching, 

along with accumulation of zeaxanthin, appears to delineate photoprotection mechanisms that 

are rather resourcefully utilised by this robust water-splitting complex under excess 

illumination [42].   

In order to reveal the structural details of this red algal (eukaryotic) PSII, electron 

microscopy was employed in conjunction with single particle analysis to obtain a 17-Å map 

of the C. merolae PSII dimer where the position of PsbQ’ was identified [42]. It was concluded 

that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane 

plane [42]. The assignment of the PsbQ’ position is supported by previous EM studies of 

cyanobacterial PSII [37,93], whereby the side view dimer projection lacks the additional mass 

identified in the C. merolae PSII dimer particles [42].  

The red algal PSI-LHCI complex is redolent of the green algal and higher plant 

counterparts as it is composed of the monomeric reaction centre core complex composed of 

13 subunits, (PsaA-PsaF and PsaI-PsaO) [94,95] and is associated with a non-symmetrically 

located, crescent-like peripheral LHCI complex composed of an adjustable number of Chla-

binding Lhcr subunits depending on the species and environmental conditions [96–98]. 

Analysis of the Galdieria sulphuraria plastid genome suggests that the red algal PSI complex 

may have evolved earlier than the present-day cyanobacterial, green algal and higher plant 

counterparts [94]. The interesting features of the red algal PSI-LHCI supercomplex is the 

retention of the cyanobacterial PsaM subunit and lack of higher plant and green algal PsaH 

and PsaG subunits implied in docking of the LHCII antenna and formation of the LHCI belt, 

respectively [66]. The chimeric nature of the two core subunits PsaF and PsaL accommodating 

both cyanobacterial and higher-plant like structural domains further supports the notion of the 

evolutionary intermediate character of the red algal PSI-LHCI supercomplex [66,99]. 

1.2.5 Cytochrome c553: structure and function  

Cytochrome c553 (cyt c553) is an analogue of cyanobacterial and algal cyt c6 whose function is 

to carry electrons between cyt b6f complex and the P700 reaction centre of PSI. In higher 

oxygenic phototrophs, plastocyanin, a copper metal-centre protein, is a functional analogue of 

cyt c553. Interestingly, genes encoding for both proteins are present in certain species of green 

algae, including Chlamydomonas reinhardtii, and these genes are regulated by growth 
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conditions and copper availability in the medium [100,101]. Although red algal cyt c553 and 

plastocyanin have very similar sizes (~10 kDa), similar redox potential (~ +370 mV) and 

isoelectric points (~4.5), these two proteins have no sequence similarity, contain different 

metal centres and are structurally discrepant [102]. Although plastocyanin is a β-sheet protein 

with copper as the central metal centre, [103] cyt c6 is a highly α-helical haem-containing 

protein [104,105]and references therein].  

Cyt c553 is a class I c-type cytochrome, where the haem iron has methionine-histidine 

axial coordination [102] (see Figure 17, Panel A). Class I cytochromes encompass mainly 

low-spin bacterial and mitochondrial soluble cyts c [106]. Classically, the haem attachment 

site sits towards the N-terminus, with the sixth ligand provided by a methionine residue 

approximately 40 residues further down, towards the C-terminus [106]. Although chloroplasts 

are believed to have risen evolutionarily from cyanobacteria [107], there are marked 

differences in the expression and genome coding of cyt c6 between green and red algae. In C. 

reinhardtii, the gene for cyt c6 exists in the genomic DNA and its coding region is interrupted 

by two introns [108]. On the other hand, in red algal species such as Cyanidioschyzon  merolae, 

the petJ gene encoding cyt c553 is present in the chloroplast genome and is intronless [87]. Cyt 

c553 from C. merolae is highly homologous to other red algal counterparts, including those 

from Cyanidiaceae sp. MX-AZ01, Cyanidium caldarium, Porphyridium purpureum and 

Galdieria sulphuraria (see Figure 17, Panel C).  

As established by Howe and Merchant [109], maturation of thylakoid lumen proteins 

proceeds post-translationally through an intermediate in vivo. In C. merolae, pre-holo-

cytochrome c553 is synthesised in the chloroplast as a larger molecular weight precursor and 

subsequently it is processed to its mature size during transport into the thylakoid lumen [109–

111]. In contrast, in Chlamydomonas reinhardtii, the green algal nuclear-encoded cyt c6 is 

synthesised outside the chloroplast as a larger molecular weight precursor and subsequently it 

is processed to its mature size during its transport into chloroplasts and thylakoid lumen [109–

111]. Import of soluble proteins into chloroplasts encompass an extremely sophisticated and 

highly-redox regulated system. Nuclear genetically encoded proteins are translated in the 

cytosol and must be subsequently imported to the chloroplast [111]. The process involves 

three main steps; (I) cytosolic sorting procedures, (II) binding to the appropriate receptor-

equipped target organelle and (III) the successive translocation process [111]. During the 

import, proteins must overcome two main barriers of the chloroplast envelope, chiefly the 

outer envelope membrane (OEM), and inner envelope membrane (IEM) [111]. In most cases, 
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this process is facilitated by two distinct multiprotein complexes, located in the OEM and IEM 

respectively, classically known as TOC and TIC [111].  

Phototrophs, and particularly extremophilic acidophiles such as C. merolae, are 

constantly exposed to fluctuating environmental conditions such as temperature, light and pH, 

and must therefore regulate protein composition within the chloroplast very quickly and 

efficiently in order to ensure optimal functioning of essential ATP production processes [111].  

In the case of cyt c553, the pre-pro-protein is translated within the chloroplast ribosomal 

machinery and subsequently transported to the thylakoid lumen, with the involvement of a 

signalling peptide termed “an N-terminal cTP” [110–112]. The processes of pre-pro-protein 

processing and complete maturation of the redox-active haem group in the chloroplast (more 

specifically the thylakoid lumen) are extremely sophisticated and go beyond the scope of this 

PhD thesis. The interested reader is referred to an excellent recent review on the subject [111] 

and on the topic of post-transcriptional control of chloroplast gene expression [110].  

 For a detailed 1.57-Å X-ray structure and coordination of the red algal cyt c haem 

group, please refer to Figure 17 (Panels A and B) below, which displays in detail the haem 

environment, as observed in the crystal structure of the red algal cyt c6 from a red alga 

Porphyra yezoensis [102].   
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Figure 17  

Structural analysis of haem environment from the crystal structure of red algal cyt c6 at 

a 1.57 Å resolution. Structures in A and B obtained from Porphyra yezoensis [102] (PDB 

code: 1GDV). A: Parallel view to the haem planes of the final electron-density map (2Fo - Fc) 

around the haem of the cyt c6 from Porphyra yezoensis. This map was calculated with 

amplitudes of reflections in the resolution range 20.0-1.57 Å and is contoured at 1.3σ where 

σ is the standard deviation of the electron-density map. Haems and neighbouring residues are 

represented by ball-and-stick models with atom specific colours: yellow, carbon, cerulean, 

nitrogen; red, oxygen; green, sulphur; dark red, iron. B: The structure around the exposed 

haem edge of the cyt c6 from P. yezoensis. The ribbon model displays the protein region 

(residues 14 to 59). The haem is represented in pink and the haem iron by a grey sphere. 

Lys29, Met26, Gln50, Met41, and Lys55 are symbolised by ball-and stick models in the same 
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colouring scheme as in A. Water molecules are represented as red spheres. Possible hydrogen 

bonds are represented by red dashed lines. C: Sequence homology blast between the most 

related sequences of cyt c6 from the red algal lineage. The sequences are ordered from top to 

bottom in order of homology; Cyanidiaceae sp. MX-AZ01 has a 90.5% alignment, Cyanidium 

caldarium has an 80% alignment, Porphyridium purpureum has an 79.8% alignment and 

Galdieria sulphuraria a 76.5% alignment. Notice the identical residues involved in haem 

group binding/chelation (marked in green and red for clarity).  
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1.3 Artificial and biohybrid solar cells and solar-to-fuel devices 

Over the last several decades, significant research effort has been put into developing the 

efficient technologies capable of harnessing solar energy for generation of electricity and heat 

using widely available materials such as silicon. Nevertheless, the main challenge remains to 

efficiently store solar energy in the form of high energy density fuels to alleviate the 

environmental burden associated with burning fossil fuels. As explained in previous chapters, 

phototrophs perform conversion of solar energy into chemical bonds stored in biomass through 

the fundamental process of photosynthesis. For years, scientists worldwide have been trying 

to imitate the early events of photosynthesis to construct the so-called “artificial leaf,” using 

both the natural and synthetic light-converting components in order to produce storable solar 

fuels for use when sunlight is not available.  

 

1.3.1 The energy crisis: current status and perspectives for the transition of the global 

energy economy 

At present, fossil fuels provide 87% (a percentage which is deemed to increase this year) of 

the global primary supply of energy, and renewables merely reach 9% of the overall share 

(mainly hydroelectricity) [113] (Figure 18). The global demand for fossil fuels amounts to 

1,066 barrels of oil, 108,000 cubic metres of natural gas and 250 tonnes of coal per second 

[113]. Data from 2015 indicate that coal reserves might cover the current total world energy 

demand for over 110 years, compared to oil and natural gas, which will be depleted at the 

current rate of consumption in 52.5 and 54.1 years’ time, respectively, in the best case scenario 

[113]. These periods are expected to decrease by the time the next BP Statistical Review of 

World Energy is published in June of 2017.  
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Figure 18  

Global supply of commercially traded primary energy. Data reproduced from [113]. 

 

1.3.2 Recent advances in silicon-based photovolotaics  

It is now a matter of urgency to find a scalable, cost-effective, and viable technology that will 

ensure a smooth transition from the fossil fuel-based economy to a renewable energy-based 

one where global energy sustainability will be attained. A gargantuan plethora of approaches 

have emerged over the last fifteen years or so that have attempted to address this issue; 

however, they are mostly limited to the laboratory scale. So far, only one attempt has 

succeeded in realising the upscaling of a concept which, originally by design, is scalable to 

large areas and is compatible with multiple thin-film photovoltaic (PV) technologies [114]. 

The recent study introduces the design and realisation of monolithically integrated solar-

driven water-splitting modules based on silicon thin-film module technology [114]. The 

current device fulfils the basic requirements for a future large-scale technology, as it is 

wireless and scalable to arbitrary device areas [114]. The scalability of the device has been 

achieved by a continuous and multipliable reproduction of a base unit, which in itself 

combines a PV device with two electrodes of an electrolyser [114]. 
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The authors of this study took advantage of the pre-existing laser-patterning processes 

used for the series connection of thin-film solar cells [115–117] and the versatility of design 

options in line with this type of processing. Importantly, the authors feature a large-area 

module (device area of 64 cm2) encompassing thirteen base units. The latter represents one of 

the few practical demonstrations of the first generation of scalable monolithic water-splitting 

macrodevices reported to date (Figure 19). The authors postulate that the base unit of the PV-

driven water-splitting device described in their study may be employed either in a series 

connection of three Si:H single-junction cells or two a-Si:H/µc-Si:H tandem cells connected 

in a series [114]. 

 

Figure 19  

Schematic representation of the solar-driven water splitting device and a photograph of 

a scaled-up device with an area of 64 cm2. Reproduced from [114]. A: The sketch illustrates 

the cross-section of the device structure of a scalable, completely integrated water-splitting 

device in the superstrate (monolithic) configuration. The number of cell stripes in series may 
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be adjusted easily or added in series as desired (here three are presented). Note, dimensions 

are not to scale. The schematic representation only displays an excerpt from the device. The 

configuration may be extended in either direction, as shown by the dashed blue arrows, the 

base unit that defines the area of periodic repetition is illustrated by a dashed box. B: The total 

device area reported is 64 cm2 with an active area of 52.8 cm2. Each base unit is comprised of 

two series-connected a-Si:H/µc-Si:H tandem solar cells with a cell stripe length and width of 

80 and 2.5 mm, respectively. In this configuration, thirteen base units were neighbouring on 

a 10 x 10 cm2 substrate. The back part was made of laser-cut nickel-foam elements for both 

cathodes and anodes.  

The device features a solar-to-hydrogen efficiency of 3.9%, one of the highest reported 

in the scientific literature for scalable water-splitting devices [114]. The concept and its 

successful operation and realisation gives birth to the latest generation of scalable, Si-based 

devices that contribute towards the large-scale application of artificial photosynthesis 

technology.  

Silicon is the second most abundant and evenly distributed element in the Earth’s crust 

and there is no risk of its shortage for the time being [113]. In the hypothetical scenario where 

Si-based PV technologies provide 100% of the world’s electricity supply by 2030, the Si 

production growth rate required would fall within the range of the historical range recorded 

over the last four decades, as argued by Armaroli and Balzani [113]. This is excellent news as 

not only is Si reasonably priced, but its absorption spectrum overlaps the visible region (see 

Figure 20).  
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Figure 20 

Absorption coefficient of silicon as a function of wavelength. Absorption coefficient of Si 

in cm-1. Silicon is known to be an indirect bandgap semiconductor so there is a long tail in 

absorption out to long wavelengths, which is characteristic for this type of materials. This data 

is graphed and presented conventionally on a log scale. Reproduced from 

http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon. 

  

 Moreover, Si-based PV is the most mature solar-to-electric technology to date which 

carries great potential for generation of cheap renewable energy from sunlight. With over 80% 

of the current solar energy market and a growth rate exceeding 40% p.a., Si solar cells have 

the potential to make a substantial contribution towards meeting the globally increasing energy 

demand [113,118]. Furthermore, the global share of Si-based technologies in PV has increased 

from about 80% in 2009 to more than 90% in 2014 [113]. Recently, the third most efficient 

solar cell was reported, a black Si-based solar cell, with an efficiency of 27.6 ± 1.2% [119].  

 Over the last 55 years, experts in the field have believed that it was impossible to break 

the Shockley-Queisser limit. This has been established to be the maximum theoretical 

efficiency of a solar cell employing a single p-n junction to collect power from the cell [120]. 

This limit is understood to be one of the most fundamental to solar energy production, and as 

a matter of fact, it is one of the most important discoveries in the PV field. The limit dictates 

a maximum solar conversion efficiency of approximately 33.7% assuming a single p-n 

junction with a band gap of 1.34 eV (using a standard 1.5 AM solar spectrum) [121]. This 

http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon
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means, that of all the power of incident sunlight falling onto an ideal solar cell, (approximately 

1000 W m-2) only 33.7% could ever be turned into electricity (337 W m-2). Silicon, has a less 

favourable band gap of 1.1 eV, resulting in a maximum efficiency of about 32% [120]. It is 

important to note that the Schockley-Queisser limit only applies to cells with a single p-n 

junction; cells with multiple layers may out-perform this limit. Theoretically, with an infinite 

number of layers, the corresponding limit is 86.8% using concentrated sunlight [122]. 

 The most recent developments in the field indicate that very soon this limit will be 

surpassed. Last year, thermally based spectral shaping has emerged as a potential technology 

for the ultimate purpose of enhancing PV energy conversion [123]. Specifically, in this 

approach the absorption of sunlight and subsequent re-emission of electromagnetic radiation 

is achieved from tuned thermal emission from nanophotonic structures [123]. The entire 

incident photon spectrum is yoked through a “broadband index-matched thermalisation 

process by a high-temperature (>1,000 ºC) absorber” [123]. This results in thermal excitations 

within the emitter structure, generating a thermal emission spectrum that culminate in the 

generation of free electrons that are localised to the conduction band edge in the PV (Figure 

21). In conjunction with strong suppressors of sub-bandgap photon emission, high efficiency 

is retained by means of the spectral shift, while absorbed photon thermalisation in the PV cell 

is diminished and excessive heat generation rates can be eradicated [123]. This effect could in 

principle allow for cooling of the PV despite the device typically being under high solar 

concentration (>100 suns). Moreover, this technology could also allow for the integration of 

auxiliary heating [124] and thermal energy storage [125] for continuous operation, perhaps 

the most appealing aspects of this technology compared to other spectral converters. 

Therefore, these qualities render this technology as the most attractive technology to date for 

enhancement of PV energy conversion as it addresses the issues of efficiency, waste heat 

issues, and dispatchability, which are the main bottlenecks of achieving less than 30% solar 

conversion efficiency.  
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Figure 21 

Comparison of solar thermophotovoltaic converting (STPV) and PV technologies and 

implications of surpassing the Shockley–Queisser limit. Reproduced from [123]. A: 

Schematic illustration of a solar thermophotovoltaic device. The incident concentrated light 

is thermalised at the absorber. Generated heat conducts to the thermal emitter surface 

depending on the temperature and spectral properties of the surface such that the engineered 

thermal emission is directed towards an optical filter. The filter is responsible of passing 

photons capable of exciting charge carriers in a single-junction PV cell and reflecting back to 

the emitter those photons that are not capable of doing so. B: Energy transformation 

mechanisms in the cell comparing illumination by engineered thermal radiation (STPV) with 

direct solar (PV). The schematic illustration on the right depicts electrons (full circles) being 

excited by incident photonic radiation from the level of the valence to the level of the 

conduction band of the semiconductor diode (solar-cells present diode-like behaviour, as it 

will be discussed further in this PhD thesis); the intensity of the photon reaching the cell is 

displayed as a function of the photon energy on the left. In the solar PV process, high-energy 

electrons generate heat within the junction of the cell as they decay down to the conduction 

band line, where, as the name implies, they can be extracted and conducted. The STPV process 

generates an equivalent number of free electrons but they are localised at the energy level of 

the conduction band, significantly diminishing heat generation at the interface of the solar 
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cell. C: Predicted performances of the three-component spectral converter demonstrated in 

[123] when paired with a PV (Eg = 0.55 eV) that functions in the radiative limit. The 

performance is displayed as a function of scale (4 cm2) and at a kilowatt scale of 400 cm2. As 

a reference, the Shockley–Queisser limit (dashed) shows the performance of the same ideal 

PV under AM 1.5 solar illumination. Additionally, the laboratory-scale device with an ideal 

single-cut-off emitter is displayed, and used to calculate the theoretical limits in Panel A. 

 

1.3.3 Natural photosynthesis as a blueprint for biophotovoltaic and solar-to-fuel devices  

Photosynthesis provides a blueprint for the design of the complete artificial leaf that would on 

one side conduct an oxidative chemistry of water splitting reaction and on the opposite side 

use the water-derived electrons and protons to conduct the reductive chemistry of molecular 

hydrogen or carbon-based solar fuel formation (see Figure 22). 

 

 

 

Figure 22  

The concept of artificial photosynthesis. Natural photosynthesis shows that the major 

photosynthetic reactions must be compartmentalised, as displayed in the artificial setup shown 

in the left panel. Moreover, a proton permeable membrane must imitate the function of cyt b6f 

such that the protons generated by water splitting can be transported properly to the other side 

of the leaf, where in nature PSI employs the reducing equivalents for NADPH generation. In 
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the artificial setup, these reducing equivalents should be employed ideally for proton or CO2 

reduction (not show). The artificial setup panel is reproduced from [126].  

 

The primary reactions of photosynthesis do not use one single photosystem, and do not 

use one light absorber that is required to absorb light in the near-ultraviolet region to obtain 

sufficient energy from each incident photon to perform the chemical bond-making and bond-

breaking that is needed to generate an energy-dense fuel. In natural oxygenic photosynthesis, 

PSII and PSI complexes are arranged in series, so that two red photons can generate a voltage 

equivalent to that produced by absorption of a single, ultraviolet photon which contains higher 

energy. Nonetheless, photosynthesis is not optimised in other aspects of its natural design for 

the purposes of solar energy conversion. For instance, Chla and Chlb absorb at 670 nm, and 

thus, they compete for photons. Optimally, one material should absorb the more energised 

photons, leaving the less energised photons for the other material to drive electron flow 

efficiently [127].   

Moreover, for production of solar fuels, the first law of thermodynamics imposes a 

compulsory constraint. In essence, the voltages provided by the two photosystems must 

combine in order to produce the voltage necessary to produce fuel, including the 

thermodynamically required voltage as well as any kinetic over-potentials and resistance 

losses that will, inevitably, be present in an artificial system [127]. In a solar cell, an engineer 

may trade voltage for current with no losses on the overall system efficiency. For instance, a 

solar cell that provides 1 V of voltage and 10 mA of current produces the same power as a 

solar cell that provides 2 V of voltage and 5 mA of current. In contrast, for fuel production, 

particularly for water splitting under “standard conditions,” providing 1.2 V produces no fuel, 

regardless of how much current is produced, while the production of 1.23 V or larger can yield 

a fully operational solar-driven water-splitting system having a rate of H2 production that is 

stated by the current that flows through the system. Thence, a viable blueprint for an artificial 

photosynthetic system involves two complementary, current-matching and voltage-adding 

photosystems, in combination with two different catalysts: one to oxidise water, and the other 

to reduce either protons into molecular hydrogen or reduce CO2 to simple carbon-based solar 

fuels [127]. 

Another advantageous design principle implemented by biological photosynthesis is to 

separate the sites of oxidation and reduction reactions. As mentioned in the previous chapters, 

the OEC of PSII generates all O2 in the atmosphere and the photosynthetic water-splitting 
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reaction is ultimately responsible for all oxygenic life on Earth. Although the OEC is not 

stable, the operational Mn complex is never exposed to a reducing environment. In a similar 

fashion, many of the key reducing enzymes in a cell, such as FNR, hydrogenases and 

nitrogenases, are the source of photosynthetically formed biofuels and, ultimately generated 

fossil fuels. These enzymes are not stable in an oxidative environment. Hence, 

compartmentalisation of these catalysts serves to avoid the constraint involved with ensuring 

that the catalysts and photochemical modules are chemically stable under the same conditions, 

at the same time. This compartmentalisation also brings an advantage as it produces flexibility 

in the choice of materials as well as in the choice of designs to achieve a practicable, fully-

operational artificial photosynthetic system. Furthermore, a catalyst-separated design also 

requires a technique to ensure robust separation of the products; otherwise the energy-dense 

fuels and O2 will tend to inevitably recombine, decreasing the efficiency of the system. 

Likewise, the mixture of the products could potentially result in explosion, for instance, if 

stoichiometric mixtures of H2 (g) and O2 (g) were produced over active catalysts in one 

compartment. The membrane that separates the products must also be selectively permeable 

to ions, to maintain charge neutrality in the system. Water photo-oxidation results in liberation 

of protons, whereas the reduction of water and/or CO2 requires consumption of protons. 

Therefore, protons and/or hydroxide ions must cross the membrane to sustain the optimal pH 

of the system for the oxidative and reductive chemistry occurring separately in each 

compartment, or a continuously increasing pH gradient will result in an eventual operational 

arrest, as argued by Lewis [127]. 

 

1.3.3.1 Structure and function of photosystem I and its application in biomimetic 

solar-to-fuel systems (based on Kargul et al. JPP (2012) 169: 1639 – 1653) 

As above-mentioned, PSI operates with a quantum yield of almost unity, despite its 

intricate structural complexity, and to date no man-made device has reached this impressive 

efficiency. The characteristic light-harvesting and electron-transfer properties as well as 

robustness of natural PSI make this macromolecular complex suitable for hydrogen production 

in the solar-to-fuel biomimetic devices. As PSI forms an exceptionally long-lived charge 

separated state of P700+ FB
- (65 ms) and its distal FB characterized by an exceptionally low 

redox potential (Em of −0.58 eV), it provides a sufficient driving force to reduce protons to H2 

at neutral pH [66]. For these reasons, there is significant interest in utilising robust, ultrastable 

PSI for generation of solar fuels [66]. A considerable variety of biomimetic hydrogen 
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producing PSI-based nanodevices and/or reconstitution in vitro assays have been explored to 

date in which PSI was used in conjunction with metal calalysts (Pt, cobaloxime) and 

hydrogenase (H2ase) catalytic modules, (see Figure 23). However, none has been turned into 

a scalable, viable device. Due to the technological limitations that this endeavour has posed, 

despite extensive efforts, operators have opted to employ the system for photoelectrical 

conversion, which holds a great promise and practicality by demonstration of solid-state 

nanodevices with gradually improved power conversion efficiencies.  

Recently, Cliffel, Jennings and colleagues have reported a semi-solid-state solar 

nanodevice where electro-polymerisation of polyaniline (PAni) in the presence of solubilised 

PSI on a TiO2 produces the photoactive biohybrid substrate [128]. The device is characterised 

by a photoactive composite layer for efficient charge separation and charge transfer from the 

higher plant PSI protein to the semiconductor electrode [128]. Employing a relatively facile 

and cost-effective preparative methodology, the PSI complex has been successfully 

incorporated into a conductive PAni network to ensure fast electron transfer within the all-

solid-state device. By means of electrochemical polymerisation, this organic, bio-derived 

active layer was grown directly off transparent TiO2 electrodes. The performance of these 

solid-state solar cells greatly exceeds the current state-of-the-art in PSI-derived solid-state 

photovoltaics by nearly 250-fold in the photocurrent output, while also being cost-effective 

and more robust than the previously reported PSI devices [128]. This result goes well in 

agreement with our reviews [5,9,66], as a semi-solid-state or all-solid-state platform for 

directed, specific and nanoengineered electron transfer at the interfaces is the key for 

enhanced, efficient unidirectional electron transfer with ultimate power conversion efficiency 

amelioration.  

In another study, Richter, Blom, Herrman and colleagues implemented cyanobacterial 

PSI in organic electronic devices based on indium tin-oxide and titanium suboxide which 

combined the ease of processing of these organic semiconductors with the photochemical 

activity of PSI [129]. Importantly, this device enabled the authors to characterise the 

biophysical properties of the PSI complex and to demonstrate the performance of PSI as the 

only photoactive component in this novel solid-state bio-organic solar cell [129]. 

Significantly, the authors proved that the biological component and organic semiconducting 

materials may be successfully integrated without compromising their original optoelectronic 

properties. Moreover, the study is a proof-of-concept of the importance to orient the 

photoelectroactive complex, such as PSI, for maximisation of the operational capacity. To this 
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end, functional solid-state devices for solar energy conversion were constructed wherein 

properly oriented PSI complex is exclusively responsible for the produced photocurrent [129]. 

The functional hybrid solid-state solar cell displayed a large open circuit voltage and a 

photocurrent action spectrum exhibiting the typical absorption features of the trimeric 

cyanobacterial PSI complex [129]. 

  

 

Figure 23 

Biomimetic H2-producing PSI nanodevices. Reproduced from [66]. A: Photocatalytic 

hydrogen production system from a PSI-cobaloxime hybrid complex. Two successive photo-

generated electrons are necessary for the catalyst to produce one H2 molecule. Electron donors 

depicted comprise Asc and cyt c6 [130]. B: In-vitro hydrogen production system composed of 
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PSI, H2ase, mercaptoacetic acid (MA) as electron donor and methyl viologen (MV) as electron 

acceptor [131]. C: H2-evolution system consisting of platinised PSI with covalently linked 

plastocyanin (PC). The covalent linker is 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (blue stick). Ascorbate functions here as a sacrificial electron donor [132]. D: 

PSI-molecular wire-[FeFe]-H2ase nanodevice. The wire indicated here is 1,6-hexanedithiol 

(red line). Cyt c6 was cross-linked with a zero-length cross-linking agent to limit diffusion-

based electron transfer to P700+. The arrow indicates the directionality of electron transfer, 

including reduction of protons to H2 by the hydrogenase (H2ase) [133]. E: Bioconjugate 

consisting of PC cross-linked to PSI, 1,4-benzenedithiol as the molecular wire (red line) and 

a platinum nanoparticle catalyst, dichlorophenolindophenol (DCPIP) was employed as the 

sacrificial electron donor on this occasion [134]. F: Semi-solid state Au surface-immobilized 

PSI-[NiFe]-H2ase photocathode. A reconstituted PsaF-His6-tagged PSI-NiFe hydrogenase 

fusion complex was immobilised on a Ni-NTA functionalised electrode which provides 

electrons to reduce the oxidised form of phenylmethyl sulfonate (PMS) as the electron donor 

to P700+ in PSI. The electrons are transferred from the FB cluster at the PSI acceptor side to 

the distal iron–sulphur cluster of the [NiFe]-H2ase and further to its active site, where protons 

are reduced to molecular hydrogen [135]. 

 

1.3.3.2 Oxygenic photosynthesis: translation to solar fuel technologies (based on 

Janna Olmos and Kargul, Act Soc Bot Pol (2014) 83(4):423 – 440) 

As briefly overviewed, the overall solar-to-biomass efficiency of photosynthesis is 

extremely low, at an average of 0.2% [5]. The vast majority of incident solar radiation is lost 

in the form of transmission, reflection, scattering, and in higher plants, losses are due to the 

water column package effect (see Figure 24). 

As above-mentioned, one of the characteristics of photosynthesis is the very high 

efficiency of the primary reactions. The main aim of artificial photosynthesis is to short-circuit 

natural photosynthetic reactions in order to harvest high energy photogenerated electrons so 

as to avoid major energy losses associated with complex biochemical processes of biomass 

generation (see Figures 25-27). In natural photosynthesis, the dark reactions consume most 

of the energy and result in the overall low solar-to-biomass efficiencies. 
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Figure 24  

Energy losses and dissipation in natural photosynthesis. Reproduced from [5]. Much of 

the incident energy is lost as low-grade heat either directly or indirectly. Only a small amount 

of energy is stored as chemical free energy in new organic material, indicating that overall 

photosynthesis is a rather inefficient process.  
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Figure 25  

Short-circuiting the light reactions to maximise power conversion efficiency and 

minimise energy losses. Reproduced from [5]. The dark reactions of photosynthesis are 

energetically expensive, leading to losses of energy and hence significant reduction of overall 

solar-to-fuel/solar-to-biomass conversion efficiency. Short-circuiting of the primary 

photosynthetic events for proton reduction and photocatalysis may considerably enhance 

solar-to-fuel efficiency.  
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Figure 26  

Artificial versus natural photosynthesis. Reproduced from [5]. A contrast between 

photosynthesis in vivo and artificial photosynthesis explains why it is more energetically 

viable to employ artificial photosynthesis for clean fuel production. Natural photosynthesis is 

extremely inefficient in terms of solar-to-biomass conversion. Artificial photosynthesis short-

circuits the natural process by employing the most energetically efficient primary events of 

light capture, charge separation and charge transfer.  
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Figure 27  

Reconstitution of the photosynthetic Z-scheme in biohybrid solar-to-high value product 

devices. Reproduced from [5]. Diagrammatic representation of artificial photosynthesis 

concept. Light converting modules (P), water oxidation catalyst (WOC), sacrificial electron 

donor (SED), hydrogen evolving catalyst (HEC), CO2 reduction catalyst (CRC), sacrificial 

electron acceptor (SEA). Em (V) are displayed on right and left with major tick marks inside 

indicating the respective energy levels for each reaction.  

 

Recent advances have elucidated suitable semiconductor substrates for the 

construction of artificial leaves [5]. Hematite (α-Fe2O3) has recently become the material of 

choice for photoanodes due to the material’s inherent characteristics, including low cost, lack 

of toxicity, corrosion resistance over a considerable pH range, peculiar robustness towards 

photocorrosion, a narrow bandgap (2.1 eV), and importantly, its photocatalytic activity in the 

visible part of the spectrum (approximately 40% solar light is absorbed by this n-type 

semiconductor) [5,136]. Hematite is considered by many essential and perhaps even critical 

for improvement of power conversion efficiency in an artificial leaf, therefore, its bulk and 

surface electronic properties have been investigated thoroughly for decades [5,136]. Lately, a 

novel photoanode heterostructure of n-type hematite and p-type NiO/α-Ni(OH)2 has been 

reported by Bora and colleagues [137] which is considerably efficient in terms of solar energy 

conversion. The p-n-type water-splitting heterojunction assembly was engineered in order to 

lower a bias and to maximise current density output by overcoming the kinetic barrier of the 

water oxidation reaction. An impressive record current density of 16 mA cm-2 was recorded 
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for the full assembly [137]. Moreover, the system displayed charge-storing capacity along 

with electrochromic behaviour upon exposure to AM 1.5 light. This is normally not the case 

in the case of p-n-junction-like devices made by mere deposition of NiO on hematite by simple 

thermal annealing. Additionally, no such behaviour was observed for hematite alone. 

Therefore, this novel type of electrode offers a simple low-cost option for both water splitting 

and charge storage [137]. A similar approach features an electron/hole-doped film in the α-

Fe2O3 photoanode upon electrochemical oxidation [138].  

 In contrast to this fully-synthetic water splitting photoanode, we have recently 

published the successful nanoengineering of nanocrystalline hematite/FTO with the robust red 

algal PSI-LHCI supercomplex, thus forming an alternative green biohybrid photoanode and 

the full dye-sensitised solar cell (DSSC) [139]. The synthetic and biological photoactive 

components were interfaced in order to construct a highly organised biophotoanode, which 

was further employed for assembly of the biohybrid DSSC using Pt counterelectrode for 

reduction of water-derived protons [139]. The XRD analyses and electron microscopy showed 

that red algal PSI-LHCI was immobilised as a structured multilayer over highly ordered 

nanocrystalline arrays of hematite. Compared to a related tandem system based on TiO2/PSI-

LHCI material, the α-Fe2O3/PSI-LHCI biophotoanode generated the largest open circuit 

photocurrent and incidentally operated at the highest power conversion efficiency due to a 

better electronic tuning between the conductive band of hematite  and the PSI-LHCI layer 

[139]. The directed nanosctructuring of the PSI-LHCI multilayer in which subsequent layers 

of this complex were organised in the head-to-tail orientation was accomplished by surface 

charge manipulation at various pH, which enabled immobilisation of the PSI-LHCI 

supercomplex with its reducing side towards the hematite surface [139]. Significantly, upon 

illumination with visible light above 590 nm, the biohybrid PSI-LHCI-based DSSC was 

capable of sustained photoelectrochemical H2 production at a very decent rate of 744 µmoles 

H2 mg Chl-1 h-1, representing one of the best performing biohybrid “green” solar-to-fuel 

nanodevices capable of sustained H2 production under standard solar illumination [5,9,139]. 

 

1.3.3.3 A quest for the artificial leaf (based on Janna Olmos and Kargul, IJBCB 

(2015) 66: 37 – 44)  

 Natural photosystems and the associated light harvesting antenna are non-toxic. They 

possess versatile optical properties and are comprised of materials with low environmental 

impact and practically unlimited availability [9]. Particularly, PSI from extremophilic 
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microalgae has been successfully used for incorporation into solar-to-fuel nanodevices 

producing H2 sustainably for over three months under intermittent illumination [139,140]. 

Contrasting with the traditional solar cell technologies, including organic and inorganic PV, 

photosystem-based solar cells have the unique characteristic to have been manufactured by 

solar power itself, being characteristically CO2 neutral, biocompatible,  and operational under 

very low light intensities and are designed to work in ultrathin films [9]. Technology based on 

such biosolar cells may very well end up in applications of small electronic devices 

(biophotosensors), low light intensity energy harvesting, do-it-yourself solar energy 

harvesting or large scale disposable printed solar cells for electric power and solar fuel 

generation (see Figure 28).  

In contrast, the main remaining challenge in organic/inorganic PV technology is to 

reduce manufacturing costs and improve robustness of the PV systems without compromising 

the overall efficiency of the PV devices [9]. Furthermore, in thin-film PV the best performing 

devices are usually associated with the use of heavy metals for their construction and as such, 

their ultimate mass usage would result in a public health hazard. Nonetheless, there is 

currently intense research in the field of PV based on organic or inorganic semiconductors 

over the last decade and for some of these devices distinctly high efficiencies have been 

achieved (refer to [119] and references therein).   

To date, four main categories of solution-processed solar cell technologies have 

exceeded 10% power conversion efficiency, which is the widely accepted threshold efficiency 

aimed for artificial photosynthetic devices [9,141]. These are: colloidal quantum-dots solar 

cells, organic PV, solution-processed bulk inorganic PV and DSSC cells [141]. Although 

many of the recently reported PV devices have reached impressive power conversion 

efficiencies of up to 46% (e.g. GaInP/GaAs//GaInAsP/GaInAs tetra-junction modules, [119]), 

the main challenges remain to lower their manufacturing cost, increase their stability and most 

of all, efficiently interface them with water splitting and hydrogen evolving/CO2 reducing 

catalysts within the fully-functional solar-to-fuel device, i.e., a complete artificial leaf that uses 

water as the sole source of reducing equivalents, just like in natural photosynthesis [9].  

Although the progress in the field of artificial photosynthesis has been momentous over 

the last decade, several major obstacles to commercialisation of this technology remain; 

chiefly redox compatibility of the working modules, low solar-to-fuel overall conversion 

efficiencies due to inefficient and improper nanostructuring and interfacing of the modules 

and most importantly, cost-effectiveness. The latter has imposed the major bottleneck; 
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scalability and realisation for widespread practical application as an alternative to fossil fuels 

[9]. Graetzel-type solar cells (DSSCs) seem to provide one of the best working solar-to-electric 

devices, operating at overall efficiencies above 10% and incorporating cheap, earth abundant 

materials as the photosensitisers, water splitting and proton reduction catalysts [9,141]. 

Recently, Graetzel and colleagues have reported a very efficient tandem solar cell composed 

of a solution-processed perovskite PV tandem module wired to a bifunctional NiFe catalyst 

that was capable of both reduction of protons to molecular hydrogen and water splitting in an 

alkaline electrolyte [9,142]. The study reported a record current density value of 10 mA cm-2, 

equivalent to a solar-to-hydrogen efficiency of 12.3% [9,142]. Although the cell holds great 

promise, perovskite instability in aqueous environment compromised its robustness, rendering 

it unsuitable for long-term usage and hence scalability [9]. However, it is one of the best 

performing fully operational completely artificial photoelectrochemical devices reported to 

date that carries a great potential for further improvement [9].  

A feat in the endeavour for a fully synthetic viable artificial leaf was the construction 

of the device capable of splitting water and generating molecular hydrogen under neutral pH, 

room temperature and standard illumination conditions (AM 1.5) [9,143]. The rather simple 

design of the device of Nocera and coworkers consisted of a triple junction, amorphous Si 

phosensitiser what was interfaced with self-renewing Co-oxo-borate as the catalyst 

responsible for water-splitting and the ternary alloy wafer of NiMoZn as the HEC, in either 

wireless or wired configuration [9,143]. Although the efficiencies of the device were only 

2.5% and 4.7% for the wireless and wired assemblies, respectively, the use of earth-abundant 

cheap metal catalysts, particularly self-healing and self-assembling cobalt catalyst, their 

unsophisticated interfacing with a commercially available cheap Si PV module, and operation 

under ambient conditions carries tremendous potential for future macroscaling and 

commercialisation [9,143].  

A major progress towards construction of the viable state-of-the-art artificial leaves was 

the employment of nanosctructured hollow nanospheres with optical range size and composed 

of a Pt-doped carbon nitride organic semiconductor exhibiting both PRC and WOC activities 

[9,144]. The nanospheres functioned as a scaffold for the co-catalyst. Additionally, they served 

as the artificial light-harvesting antennae. This novel, elegant and rather unsophisticated 

nanoscaffold assembly of controlled thickness was shown to operate at 7.5% solar-to-

hydrogen quantum efficiency, placing it amongst one of the most efficient fully artificial 

leaves to date [9,144]. These hollow polymerised nanospheres with ideal thickness and 
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controlled surface functionalities provide a blueprint for future construction of different 

functionalities into complex nano- or macrostructures while, importantly, maintaining 

spatially separated compartments. This elegant, nature-inspired design follows essentially the 

blueprint provided by the thylakoid membrane, were both PSII (the natural WOC) and PSI 

(the natural PRC) complexes are spatially separated and ordered in tandem for highly efficient 

photoinduced energy/electron transfer within the structures of the photosynthetic reaction 

centres  [5,9]. Figure 28 emphasises the versatility of Nature’s most proficient photoconverter 

and demonstrates how suitable this photoconverter is for incorporation into novel 

biophoelectric constructs.  

 

 

 

Figure 28 

Applications of PSI-based biophotoelectrodes. Depending on the desired out-come, PSI 

immobilised on an electrode may be utilised to produce liquid fuels, for photovoltaic 

applications upon directed electron transfer or as part of a photo-recognition component for 

the construction of biophotosensors. The versatility of this complex allows for the following 
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applications: (i), its incorporation into semiconducting or conducting electrodes to produce 

photovoltaic devices capable of converting solar energy into photocurrent; (ii) its 

incorporation into nanoscale and mesoscale devices capable of harnessing sunlight and 

converting solar energy into storable renewable liquid or gas fuels; or (iii), its incorporation 

together with a field emission transistor (charge detector) to convert photons into electrons 

within biophotosensors, such as those used in the ultrasensitive imaging devices. Reproduced 

from [9]. 

 

 

Figure 29  

Biohybrid PSI-based artificial leaf. Diagrammatic representation of two artificial leaf 

configurations, whereby highly robust PSI linked to the iridium-based water oxidation catalyst 

(WOC) may be employed either as a photosensitiser of the semiconducting substrate or as a 

component of a biophotocathode linked to the hydrogen evolving catalyst (HEC), such as the 

cobaloxime derivative encapsulated within a photoactive metal–organic framework. The 
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versatile nature of PSI allows it to function in both configurations for production of anodic or 

cathodic photocurrents. Note, the artificial leaf is theoretical and only envisaged on the current 

available technologies where PSI applicability has been realised to the laboratory scale. 

Reproduced from [9]. 

 

Construction of the artificial leaf is a particularly attractive approach to tackle the 

energy gap problem that mankind faces in a couple of decades, when the global energy 

demand considerably exceeds the amount of energy produced globally from the waning fossil 

fuel reserves. Figure 29 depicts a hypothetical yet ideal fully operational artificial leaf. It is 

still possible to build a highly efficient artificial system that is relatively facile to manufacture 

on a macroscale. Ideally, such a system should be engineered using robust self-renewing earth-

abundant materials that can harvest a wide spectrum of solar light, whilst minimising spectral 

overlap on the anodic and cathodic segments of the leaf. Finally, the ‘ideal’ (Figure 29) 

artificial leaf should employ water as the sole source of electrons and protons for the reduction 

of CO2 into high energy density liquid fuels. Obviously, this area of research requires an 

interdisciplinary approach to generate novel ideas that can be transcribed not only into fully 

operational prototypes but most importantly, viable and realisable scaled-up artificial leaves.  

The field has been greatly advanced by revealing the molecular structures and 

mechanisms that permit the natural photosystems and their respective associated light 

harvesting complexes to operate with high internal quantum efficiencies. Important challenges 

remain in the field, like for instance, how to extend lifetimes of charge separation to minimise 

wasteful back reactions and competently manage proton coupled electron transfer during 

photo-catalysis. Optimisation of all these processes is of the utmost importance, as it is 

indispensable for the artificial leaf to outperform the overall natural photosynthetic process, a 

feat imperative for this system to become viable. Recent global initiatives are making 

tremendous progress to achieve this goal. Nonetheless, it is important to mention that a 

considerable amount of continuous investment is vital to ensure the steady progress in these 

endeavours. 
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Chapter 2 Aims and Goals 

The main aim of this PhD study was to apply a highly robust PSI-LHCI complex from an 

extremophilic microalga Cyanidioschyzon merolae as the biological photochemically active 

module for nanoengineering of four types of biophotovoltaic devices with  improved power 

conversion efficiencies compared to similar systems reported to date: (1), photo-driven in 

vitro hydrogen production system comprising PSI-LHCI complex, cyt c553, and metallic or 

novel mononuclear proton reduction catalysts; (2), PSI-LHCI/cyt c553/AgNWs 

bionanostructures with an improved light harvesting functionality; (3), all-solid-state PSI-

LHCI/p-doped Si biophotoelectrodes, and (4), all-solid-state PSI-LHCI/cyt c553/p-doped Si 

biophotoelectrodes.  

For all the devices presented in this thesis, rational design and nanoengineering of the 

abovementioned PSI-LHCI nanoarchitectures and interfaces between the working modules 

were applied. The spectroscopic and J-V properties of the constructed PSI-LHCI-based 

bionanoarchitectures, as well as hydrogen production rates for type 1 devices was measured 

to evaluate the working hypothesis on the applicability of cyt c553 as the cofactor that promotes 

not only direct electron transfer in the all-solid-state PSI-based biophotovoltaic devices but 

also facilitates the specific orientation and formation of novel light harvesting properties of 

the PSI-LHCI complex upon its immobilisation on the metallic or semiconductor surfaces.  

The specific goals of this PhD study were: 

1. Examination of interaction of the PSI-LHCI complex with platinum or mononuclear 

nickel proton reduction catalysts for sustained photo-driven in vitro hydrogen 

production. 

2. Investigation of the role of cyt c553 in promoting the highly ordered, oriented 

immobilisation of the PSI-LHCI assemblies with an improved light harvesting 

functionality within plasmon-emitting metallic nanostructures or p-doped Si 

semiconductor substrate. 

3. Investigation of the role of cyt c553 in minimisation of surface charge recombination 

within the p-doped Si semiconductor substrate as the function of the distance and 

orientation of the redox active haem group with respect to the electrode surface. 

4. Development of the all-solid-state mediatorless biophotovoltaic devices with highly 

ordered PSI-LHCI nanoarchitecture with an improved direct electron transfer through 
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the incorporation of cyt c553 as the conductive layer between the biophotoactive 

module of PSI-LHCI and the silicon semiconductor substrate.   
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Chapter 3 Materials and Methods 

3.1 Materials 

3.1.1 Strains 

A) Cyanidioschyzon merolae strain NIES-1332 10D was obtained from the Microbial 

Culture Collection of the National Institute for Environmental Studies (Tsukuba, Japan) 

B) Thermosyneccocus elongatus BP-1 strain NIES-2133 was obtained from Prof. Matthias 

Rögner and Dr. Marc Nowaczyk, University of Bochum, Germany 

C) Escherichia coli DH5α (ThermoScientific®) strain was obtained from Prof. dr hab. 

Dariusz Bartosik, Department of Bacterial Genetics, Faculty of Biology, University of 

Warsaw 

D) Escherichia coli BL21 (ThermoScientific®) strain was obtained from Prof. dr hab. 

Dariusz Bartosik, Department of Bacterial Genetics, Faculty of Biology, University of 

Warsaw 

E) Escherichia coli MC1000 (ThermoScientific®) strain was obtained from Prof. dr hab. 

Dariusz Bartosik, Department of Bacterial Genetics, Faculty of Biology, University of 

Warsaw 

F) Escherichia coli TOP10 (ThermoScientific®) strain was obtained from Prof. dr hab. 

Dariusz Bartosik, Department of Bacterial Genetics, Faculty of Biology, University of 

Warsaw 
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3.1.2 Growth media 

A) C. merolae Allen 2 (A2) medium (M-Allen) [88]  

Table 1 

M-Allen (A2) medium composition  

 

 

 

 

 

 

 

After adjustment to the final volume of 100 ml with distilled water, the medium was 

autoclaved, then 400 µl of filter-sterilised A2 Fe-stock solution was added.  

*The pH was adjusted to 2.5 with 1M H2SO4. 

 

Table 2 

A2 trace elements stock solution 

 

 

 

 

 

 

 

  

(NH
4
)
2
SO

4
 19.8 mM 

KH
2
PO

4
 4 mM 

MgSO
4 

· 7H
2
O 2 mM 

CaCl
2 

· 2H
2
O 1 mM 

A2 trace element stock 

solution 

0.2 mL 

Distilled water 99.4 ml 

pH 2.5* 

H
3
BO

3
 46 mM 

MnCl
2 
· 4H

2
O 9.1 mM 

ZnCl
2
 0.77 mM 

Na
2
MoO

4 
· 2H

2
O 1.6 mM 

CoCl
2 
· 6H

2
O 0.2 mM 

CuCl
2 
· 2H

2
O 0.25 mM 

Distilled water 100 ml 
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Table 3 

A2 Fe stock solution 

 

 

 

 

 

 

After adjustment to the final volume of 100 ml, the solution was sterilised by passing 

through a Millipore filtering device (0.22 μm). 

 

B)  T. elongatus BG-11 medium [145] 

Table 4 

BG-11 medium composition 

100 x BG-FPC (i) 10 ml 

HEPES-NaOH, pH 8.2 (ii) 5 ml 

1000 x ammonium ferric 

Citrate (iii) 

1 ml or 2.3 mM ammonium 

ferric citrate 

Na2CO3 (v) 1 ml 

K2HPO4 (vi) 1 ml 

After adjustment to 1000 ml with distilled water the medium was autoclaved. 

 

Table 5 

(Stock i) 100 x BG-FPC (Adjusted to 1000 ml with distilled H2O) 

NaNO3 1.76 M 

MgSO4 x 7H2O 30 mM  

CaCl2 x 2H2O 25 mM  

Citric acid 3 mM 

Na2EDTA, pH 8.0 0.3 mM 

10% (v/v) microelements (iv) 100 ml 

 

(Stock ii) 1 M HEPES-NaOH, pH 8.2. The stock solution was adjusted to 500 ml with 

distilled H2O. 

(Stock iii) Stock of ammonium ferric citrate (2.3 mM). The stock was adjusted to 100 ml 

with distilled H2O. 

EDTA · 2Na 20.7 mM 

FeCl
3 

· 6H
2
O 14.8 mM 

Distilled water 100 ml 
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Table 6 

(Stock iv) Microelements stock solution (Adjusted to 1000 ml with distilled H2O)  

H3BO3 46 mM 

MnCl2 · 4H2O 9 mM 

ZnSO4 · 7H2O 0.77 mM 

Na2MoO4 · 2H2O 1.6 mM  

CuSO4 · 5H2O 0.3 mM 

Co(NO3)2 · 6H2O 0.17 mM 

 

(Stock v) 189 mM Na2CO3. The stock solution was adjusted to 200 ml with distilled H2O.  

(Stock vi) 175 mM K2HPO4. The stock solution was adjusted to 200 ml with distilled H2O.  

 

C) E. coli: Standard LB-Miller medium (Lysogeny broth) [146]  

Normally, 10 g tryptone was mixed with 5 g yeast extract and 10 g NaCl L-1 

 

3.1.3 Molecular biology materials 

A) Primers: All primers have been synthesised by oligo.pl, at the Institute of Biochemistry 

and Biophysics, Polish Academy of Sciences, re-suspended in H2O to a concentration 

of 100 μM, aliquoted and stored at -20º C as a stock solution. The sequences of primers 

used in this study are listed in Table 7. 
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Table 7 

Forward and reverse primers for amplification of the petJ gene sequence 

 

Primer name, length 

(bp) and amount 

produced (nmol) 

Primer sequence (5’ to 3’) 

petJ_C_f 

33 bp 

300 nmol 

GCGCCCATGGAAAGCTTATTAACATTCATTTTG 

petJ_C_r 0AA 

33 bp 

40 nmol 

TTATGAGCTCCCCCAACCTTTTTTAGCTTGAGC 

petJ_C_r 5AA 

35 bp 

40 nmol 

TTATGAGCTCCCCCAACGGAAGTGGGCTCGAAACT 

petJ_C_r 10AA 

42 bp 

40 nmol 

TTATGAGCTCCGGGTCTGGCTCAGGTACTTGAAACAC

TTA 

petJ_C_r 12 AA 

46 bp 

40 nmol 

TTATGAGCTCCCCCAACCTTTCGTCTGTTTAGCGGCTG

CATTGGAA 

petJ_C_r 19AA 

50 bp 

40 nmol 

TTATGAGCTCCCCCAACCTTTTTTAGCTTGAGCGCGGA

AGCCGCCGCTA 

The forward (f) primer was employed equally for all PCR products. (r) reverse primer. 

 

B) Polymerase Chain Reaction (PCR) mixture: DreamTaqTM Green PCR Master Mix (2x), 

which includes DreamTaq DNA Polymerase, 2x DreamTaq Green buffer, dNTPs, and 

4 mM MgCl2 (ThermoScientifc®)   

C) Plasmids: pET28b-(+) was obtained from Invitrogen® (ThermoScientific®) and 

pBAD/HisA was obtained from Prof. dr hab. Dariusz Bartosik, Department of Bacterial 

Genetics, Faculty of Biology, University of Warsaw. The pEC86 vector was a kind gift 

from Prof. A. Szczepaniak, Wrocław University, Poland. Refer to Chapter 7.2 for maps 

of all plasmids used and constructed in this study.  

D) Restriction enzymes: All enzymes used for cloning were FastDigest—Thermo 

Scientific®. All enzymes were utilised with the 10x FastDigest universal buffer. Specific 

enzymes are listed in methods at each step when they were required. Refer to Chapter 

3.2.2.3 for detailed methods.  

E) Ligase: E. coli DNA Ligase Invitrogen® (ThermoScientific®) was used for all DNA 

ligations. The buffer was 10X concentrated and was supplied with 188 mM Tris-HCl 

(pH 8.3), 906 mM KCl, 46 mM MgCl2, 37.5 mM DTT, 1.5 mM λ-NAD and 100 mM 
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(NH4)2SO4. The ligase was aliquoted and stored at -20º C. ATP was added freshly to the 

aliquot after thawing and gently mixed before use. 

F) DNA extraction kits: GeneJET Plasmid isolation kits were used for plasmid isolation 

from ThermoScientific®. Miniprep Kits were applied for all plasmid purifications.  

G) Gel extraction kits: GeneJET Gel extraction kits were employed for PCR isolation and 

purification of DNA from standard TAE agarose gels (ThermoScientific®) 

 

3.1.4 Reagents 

All standard reagents and essential laboratory consumables were purchased from Sigma-

Aldrich®, POCH® (Poland), ROTH (Carl Roth®, Germany), Chempur® (Poland), or Witko® 

(Poland) and were used at 97-99.9% purity, unless stated otherwise.  

 

3.1.5 Chromatography materials  

A) DEAE TOYOPEARL 650 M resin (Sigma-Aldrich®) 

B) DEAE TOYOPEARL 650 S resin (Sigma-Aldrich®) 

C) Sephadex® G-25 Fine resin (GE Healthcare®, via Sigma-Aldrich®)  

D) HisTrapTM Excel, 1 ml columns, (from GE Healthcare®, via Sigma-Aldrich®) 

E) HisPurTM Ni-NTA Resin (ThermoScientific®) (20% slurry in EtOH) 

F) Size exclusion (SEC-4000 column, Phenomenex®, Torrance, CA) 

 

3.1.6 Standard buffers 

3.1.6.1 DNA electrophoresis buffers 

TAE (Tris-acetate EDTA) buffer for applied for DNA electrophoresis (40 mM Tris, 

20 mM acetic acid, 1 mM EDTA, pH 8.0). Normally a 1.5% solution of agarose was 

employed, depending on the size of the DNA fragments and/or plasmids to be analysed.  

 

3.1.6.2 Buffers for preparation of competent E. coli cells 

A) TFB I (per 200 ml): [30 mM CH3CO2K, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2 

15% glycerol (w/v)] was adjusted to pH 5.8 with (1.5 µM) acetic acid (CH3COOH). 

B) TFB II (per 100 ml): [10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15% glycerol (w/v)] 

was adjusted to pH 6.5 with (0.32 µM) sodium hydroxide (NaOH). 
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3.1.6.3 Chromatographic buffers 

A)  Standard Phosphate Buffer (10x SPB): 100 mM Na2HPO4, 18 mM KH2PO4, pH 7.5 

B)  E. coli resuspension buffer (carrier buffer) for Ni-NTA purification: 20 mM imidazole, 

10 x SPB (as above), 25% glycerol (w/v) and 30 μM phenylmethylsulfonyl fluoride 

(PMSF) [or one tablet of CompleteTM protease inhibitor cocktail (Roche®) and DNase I 

(5 mg) (Roche®)] per 50 ml of suspension, pH 7.5 

C) Carrier Buffer for purifications (both FPLC and batch-type) was prepared as above but 

without protease inhibitor cocktail or DNase additives. 

D) High Imidazole Buffer (elution buffer) for Ni-NTA purification composition: 

FPLC: 500 mM imidazole, 10 x SPB, 25% glycerol (w/v), pH 7.5 

Batch-type: 250 mM imidazole, 10 x SPB, 25% glycerol (w/v), pH 7.5 

E)  Resuspension Buffer for long term protein storage and manipulation (with glycerol 

removed as required): Standard Phosphate Buffer (10 x SPB) composed of 100 mM 

Na2HPO4, 18 mM KH2PO4, pH 7.5, 25% glycerol (w/v).  

D)  C. merolae thylakoid isolation buffer: 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM 

MgCl2, 25% (w/v) glycerol was supplemented with 1 tablet of CompleteTM protease 

inhibitor cocktail (Roche®), DNase I (5 mg) (Roche®) per 50 ml of buffer suspension. 

 

T. elongatus thylakoid isolation buffers:  

A)  20 mM MES-KOH, pH 6.5, 10 mM MgCl2 and 10 mM CaCl2 supplemented with 1 

tablet of CompleteTM protease inhibitor cocktail (Roche®), DNase I (5 mg) (Roche®) 

and RNAse I (10 μl from stock) (Sigma-Aldrich®) per 50 ml of buffer. 

B)  As in A) with additional 0.5 M mannitol, pH 6.5  

 

C. merolae PSI and PSII purification buffers:  

I)  1st chromatographic step 

A)  Carrier buffer: 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 25% (w/v) 

glycerol, 0.03% n-dodecyl-β-D-maltoside (DDM) 

B) Wash Buffer: 90 mM NaCl, 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 

25% (w/v) glycerol, 0.03% DDM 

C)  Elution Buffer: 250 mM NaCl, 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 

25% (w/v) glycerol, 0.03% DDM 
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II)  2nd chromatographic step 

A) Carrier buffer: 40 mM HEPES-KOH, pH 8.0, 3 mM CaCl2, 25% glycerol (w/v), 0.03% 

DDM 

B) Elution buffer: 250 mM NaCl, 40 mM HEPES-KOH, pH 8.0, 3 mM CaCl2, 25% 

glycerol (w/v), 0.03% DDM 

C) Low ionic strength buffer for sucrose gradient loading: 50 mM K2HPO4-KH2PO4, pH 

8, (w/v) 0.03% DDM 

D) Sucrose gradient buffer: 0.4 M sucrose, 0.45 M betaine, 5 mM Tris-HCl, pH 8, 0.05% 

(w/v) DDM 

 

3.1.6.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis buffers  

Protocol and solutions were followed according to [147]. For preparation of the 

acrylamide-bisacrylamide AB-3 stock solution (49.5% T, 3% mixture), 48 g of acrylamide 

and 1.5 g of bisacrylamide were dissolved in 100 ml of water and filtered through a 0.22 µM 

pore-sized membrane. For the AB-6 stock solution (49.5% T, 6% mixture), 46.5 g of 

acrylamide and 3 g of bis-acrylamide were dissolved in 100 ml of water and filtered as above. 

 

A) Gel buffer (3 X): 3 M Tris, 1 M HCl, 0.3% SDS, pH 8.45 

B) Anode buffer (10 X): 1 M Tris, 0.225 M HCl, pH 8.9 

C) Cathode buffer (10 X): 1 M Tris, 1 M Tricine, 1.0 % SDS, pH 8.25 

D) Reducing sample buffer:  

(5X): 0.225 M Tris-HCl, pH 6.7; 50% glycerol; 5% SDS; 0.05% bromophenol blue; 

0.25 M 1,4-dithiothreitol (DTT) 

E) Fixing solution: 50% methanol, 10% acetic acid, 100 mM ammonium acetate 

F) Staining solution: 0.025% Coomassie brilliant-blue dye (R-250) (Carl Roth®), 10% 

acetic acid  

G) De-staining solution: 10% acetic acid  

H) Gel dry-out: standard gel drying system with 25% glycerol (Sigma-Aldirch®) 

 

3.1.6.5 Western blotting and colourimetric reagents for protein detection and 

quantification 

A)  Polyvinylidene fluoride (PVDF) membranes were used for protein transfer (BioRad®) 

B) Transfer buffer (for Western blotting, 25 mM Tris, 192 mM glycine) 
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C) TBST buffer: 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.05–0.1% Tween® 20 (Sigma-

Aldrich®)  

D) Blocking solution: 137 mM NaCl, 2.68 mM KCl, 1.47 mM KH2PO4, 8.1 mM Na2HPO4, 

0.05%-0.1% Tween® (Sigma-Aldrich®) 2-5% powdered milk or 10% Bovine Serum 

Albumin (BSA) (Sigma-Aldrich®) 

E) Ponceau S solution (SigmaAldrich®) was used for protein visualization 

F) Bradford Reagent (SigmaAldrich®) was used for protein concentration determination 

via the Bradford colourimetric assay [148] 

G) Bovine serum albumin (BSA) (SigmaAldrich®) was used as the protein standard.  

 

3.1.7 Antibodies and immunodetection kits 

A) ECL Western Blotting Substrate (Promega®): 250 ml Peroxide Solution and 250 ml 

Luminol Enhancer Solution 

B) SuperSignalTM West Pico PLUS Chemiluminescent Substrate (ThermoScientific®) 

C) HisProbeTM-HRP conjugate (ThermoScientific®) 

 

3.1.8 Plasmonic and electrode materials 

A) Silver nanowires (AgNW) were synthesised in the laboratory of Prof. Sebastian 

Maćkowski (Nicolaus Copernicus University in Toruń, Poland) according to the 

procedure described in [149]. 

 

3.1.9 Proton Reducing Catalysts  

A) DuBois-type proton reducing catalysts (PRCs) were synthesised in the laboratory of 

Prof. Joost Reek (University of Amsterdam, Amsterdam, Netherlands) according to the 

procedure described in [150]. 

B) Cobaloxime was purchased form Sigma-Aldrich®. 

C) ~3.0 nm Pt nanospheres were obtained using a facile synthesis protocol described in 

Chapter 3.2.8.1. 

 

3.1.10 Other materials 

A) p-doped Si wafers were purchased and processed at the Department of 

Optoelectronics, Institute of Electronic Materials Technology (ITME, Warsaw, 

Poland). 
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B) 0.1 mm glass beads from ROTH (Carl Roth®, Germany)  

C) Gold tablets, silver tablets and indium were purchased from Mennica Małopolska, 

Kraków, Poland. 

 

3.2 Methods 

3.2.1 Cell culturing and processing methods  

3.2.1.1 C. merolae cell culturing  

Liquid cultures of the C. merolae cells were grown in a temperature- and light-

controlled growth chamber (Sanyo®, Japan) in standard 250-ml tissue flasks. Cells were 

grown in 50-75 ml of Allen 2 medium, pH 2.5 at 42º C under continuous white light 

illumination (90 µmoles photons m-2 s-1 (µE) for moderate light (ML) conditions) with 

continuous shaking at 115 rpm. Small scale cultures were grown to OD680 ~ 2.5 and then sub-

cultured into 1 L interim cultures and finally grown as 5-10 L cultures in Allen 2 medium until 

the late log phase (until OD680 ~ 3.5) in the presence of 5% CO2 administered at a constant 

flow rate of 30 L h-1 under continuous white light illumination of 150 µE. Figure 30 displays 

a typical C. merolae growth curve for a 10 L culture under ML illumination conditions. Figure 

31 displays a representative RT absorption spectrum of an early log phase C. merolae cell 

suspension at the “day 0” timepoint of inoculation. 
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Figure 30 

C. merolae growth curve for a 10 L culture under ML illumination. Light intensity was 

increased from 90 µE to 150 µE for the last 2 days of growth to the late log phase. Absorbance 

of cell suspensions was measured at 680 nm daily to assess C. merolae liquid culture growth. 
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Figure 31 

A representative RT absorption spectrum of an early log phase C. merolae cell 

suspension at “day 0” inoculation timepoint. Indicated are peaks corresponding to 

photosystems (445 nm and 680 nm) and phycobilisomes (635.2 nm). These peaks were 

indicative of the healthy cell growth.  

 

3.2.1.2 T. elongatus cell culturing 

The T. elongatus cells of were cultivated in BG-11 medium at 45º C, pH 8.0, with 

continuous white light of 90 µE with gentle bubbling with 5% CO2 in air for 1-10 L cultures 

to aid the culture growth. Cultures were grown for approximately 7-13 days with continuous 

white light illumination of 90 µE to a maximum OD680 of 0.8-1.0 prior to thylakoid isolation.  

 

3.2.1.3  E. coli cell culturing 

The Escherichia coli liquid cultures were grown in a standard LB-Miller (Lysogeny 

broth, 10g L-1 NaCl, as specified above) medium at 37º C, with continuous vigorous agitation 

at 220 rpm. Cells were normally grown for 16 h unless a special overexpression system was 

employed (see below). Cells were also grown on 1.25 % agar plates with the standard LB-

Miller medium. Antibiotic selection was used both for liquid and solid plate culturing using 

an appropriate concentration of the selection antibiotics. For double transformants, 30 µg ml-

1 chloramphenicol and 100 µg ml-1 ampicillin were employed as the selection markers. 
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Specific culturing conditions were developed for the overexpression of cyt c553 variants for 

the double transformants. Overnight saturated cultures (16 h) were inoculated into a 1 L of 

LB-Miller liquid medium supplemented with antibiotics as specified above, and allowed to 

grow to an OD600 ~ 0.4. The cultures were then supplemented with 100 mg L-1 Fe2SO4 and 17 

mg L-1 δ-aminolevulinic acid, and gene expression was induced with 0.2% arabinose for 20 

hrs with a lowered rotation of 160 rpm at 37º C for Innova Incubators (New BrunswickTM 

Innova® 44/44R).  

 

3.2.1.4 Preparation of E. coli competent cells  

WT cells from the desired strain (TOP10 for cyt c553 overexpression) were inoculated 

to the desired volume from overnight saturated cultures. Cells were cultured (as specified 

above) until the OD600 ~ 0.4. Cells were then chilled on ice for 15 min. Cells were harvested 

at 3,000-5,000 x g for 5 min. Cells were re-suspended in 1/3 of the volume of the container 

(normally 16.7 ml for a 50 ml Falcon tube) in TFBI (as in Chapter 3.1.6.2) buffer and chilled 

on ice again for 15 min. Cells were harvested at 3,000 g for 5 min, then re-suspended in 1/30 

of the volume of the container (normally 1.7 ml for a 50 ml Falcon tube) in TFBII (as in 

Chapter 3.1.6.2) buffer, re-chilled on ice for 15 min. and aliquoted to 200 µl and frozen 

immediately in liquid nitrogen and subsequently stored at -80º C.  

 

3.2.1.5 E. coli transformation  

All the competent cells were transformed using a heat shock method. Chiefly, 100 µl 

E. coli aliquots were used for transformation with recombinant plasmids and 200 µl E. coli 

aliquots were used for transformation with the ligation mixtures. Cell aliquots were thawed 

on ice. 10 ng of DNA was added (normally adjusted to a volume of 0.1 µL), and cells were 

kept on ice for further 10 min. Cells were heat-shocked in a heat block or hot water bath at 

42º C for 90 s., then placed back on ice for precisely 2 min. One ml of LB-Miller medium was 

added and the cells were incubated at 37º C for 1 h with gentle shaking (~115 rpm), then 

pelleted at low speed (700-1,000 x g) and plated on the appropriate selective LB-agar plates. 

Plates were grown at 37º C for 16 hours after which the transformant colonies were selected 

and sub-cloned.  
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3.2.1.6 Cell harvesting and manipulation  

For cell harvesting, cell cultures were centrifuged at 4,000 x g for 15 min. at 15º C and 

the cell pellets were transferred to ice in the cold room. The C. merolae cells were re-

suspended in a prechilled buffer containing 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM 

MgCl2, 25% (w/v) glycerol supplemented with a CompleteTM protease inhibitor cocktail tablet 

(Roche®), DNase I (5 mg) (Roche®) per 50 ml of buffer and kept in dim green light.  

 

The T. elongatus cells were resuspended in 20 mM MES-KOH, pH 6.5, 10 mM MgCl2 and 

10 mM CaCl2 supplemented with a CompleteTM protease inhibitor cocktail tablet (Roche®), 

DNase I (5 mg) (Roche®) and RNAse I (10 μl from stock) (Sigma-Aldrich®) per 50 ml of 

buffer and kept in dim green light.  

 

The E. coli cells were resuspended in a buffer containing 20 mM imidazole, 100 mM 

phosphate buffer (100 mM Na2HPO4, 18 mM KH2PO4, pH 7.5), 25% glycerol (w/v) and 30 

μM phenylmethylsulfonyl fluoride (PMSF) (or one CompleteTM protease inhibitor cocktail 

tablet (Roche®) and DNase I (5 mg, Roche®) per 50 ml of suspension, pH 7.5 and kept on ice 

at 4º C until further use or re-frozen in liquid nitrogen and stored at -80º C for the long term 

storage.  

 

3.2.1.7 Cell disruption 

All the cells used in this study were disrupted using a Bead Beater (Biospec®) system 

with 0.1 mm glass beads ROTH (Carl Roth®, Germany). After resuspension of the cell pellets 

in the specific buffers described for each cell material below, the cell suspensions were mixed 

with an equal volume of glass beads to the 80-90% of the bead beating chamber volume. 

Subsequently, the inner chamber was topped up with a mixture of ice and ice-cold water 

containing a pinch of NaCl, and the outer jacket was filled with ice. The specific protocols for 

cell rupture were applied for each cell material, as described in detail below. 

For the C. merolae cell disruption, cells were resuspended in a buffer containing 40 

mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 25% (w/v) glycerol, supplemented 

with a CompleteTM protease inhibitor cocktail tablet (Roche®), DNase I (5 mg) (Roche®) per 

50 ml of buffer. The cell suspensions were disrupted with equal intervals of a total of 13 

cycles. Each cycle consisted of 10 seconds of beating followed by 4 minutes of rest. Ice levels 

were monitored closely, and were topped up as deemed necessary if the ice thawed.  
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For the T. elongatus cell rupture, the cells were resuspended in a buffer containing 20 

mM MES-KOH, pH 6.5, 10 mM MgCl2 and 10 mM CaCl2 supplemented with a CompleteTM 

protease inhibitor cocktail tablet (Roche®), DNase I (5 mg) (Roche®) and RNAse I (10 μl from 

stock) (Sigma-Aldrich®) per 50 ml of buffer. The cells were then disrupted by vigorous 

agitation with the beads at 10 sec. interim cycles with 4 min. of rest on ice, with a total of 17 

cycles. 

For E. coli cell disruption, cells were suspended in a buffer containing 20 mM 

imidazole, 100 mM phosphate buffer (100 mM Na2HPO4, 18 mM KH2PO4, pH 7.5), 25% 

glycerol (w/v) and 30 μM phenylmethylsulfonyl fluoride (PMSF) (or one tablet of 

CompleteTM protease inhibitor cocktail (Roche®) and DNase I (5 mg, Roche®) per 50 mL of 

buffer. The cells were disrupted by vigorous agitation with the beads at 45 sec. interim cycles 

with 4 min. of rest on ice, with a total of 18 cycles. Prior to the E. coli cell lysate processing, 

the cell debris was removed by ultracentrifugation at 100,000 x g at 4º C for 45 min. 

Cell lysates were briefly centrifuged at 1,000 x g to remove the unbroken cells, then 

filtered with the Whatmann paper to separate cell lysate from any residual cell debris or glass 

beads. All the photosynthetic samples were processed in dim green light at 15º C. The cell 

lysate obtained for each biological material was always filtered through 0.22 µM filtering 

devices and either processed immediately or frozen at -80º C for future use.   

 

3.2.1.8 Thylakoid isolation from C. merolae cells  

Thylakoids were pelleted by centrifugation at 100,000 x g for 30 min. at 4º C and 

washed once with C. merolae thylakoid isolation buffer. Final thylakoid pellets were 

resuspended in 40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 25% (w/v) glycerol, 

Chla concentration was determined according to the Arnon method (see Chapter 3.2.4.2), 

and the membranes were snap-frozen in liquid N2, and stored at -80º C for the long term 

storage or used immediately. 

 

3.2.1.9 Thylakoid isolation from T. elongatus cells  

Cyanobacterial cell homogenates were filtered as above with the same buffer (20 mM 

MES-KOH, pH 6.5, 10 mM MgCl2 and 10 mM CaCl2) supplemented with 0.5 M D-mannitol. 

The lysate was ultracentrifuged at 100,000 x g for 30 min. The pellet was then resuspended in 

the buffer as above but without D-mannitol. The same step was repeated two or three more 

times depending on the amount of phycobilisomes observed in the supernatant. The final 
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membrane suspension was resuspended in the buffer as above supplemented with 0.5 M D-

mannitol, adjusted to a Chla concentration of 3-5 mg ml-1 estimated by the Arnon method (see 

Chapter 3.2.4.2) and snap-frozen in liquid N2 and stored at -80º C for long term storage or 

used immediately. 

 

3.2.2  Molecular Biology methods 

3.2.2.1 Primer design 

All primers were designed employing Clone ManagerTM software and later reverified 

with Sap GeneTM software. The petJ gene sequence encoding cyt c553 protein, was obtained 

from the C. merolae gene database (annotated CMV193C in the C. merolae gene database; 

http://merolae.biol.s.u-tokyo.jp/db/). The restriction sites of NcoI and SacI were added to the 

termini of the primer sequences to generate sticky ends upon digestion and facilitate cloning 

into the expression vectors. The full primer sequences are listed in Table 7. 

 

3.2.2.2 Polymerase chain reaction protocols 

Dream TaqTM Green PCR Master Mix (2x) was gently vortexed and centrifuged after 

thawing. Ideally, the preparation was aliquoted upon arrival and kept in aliquots to avoid 

freeze-thawing. A thin-walled PCR tube was placed on ice and the following components 

were added per 50 µl reaction (Table 8): 

 

Table 8 

Typical components of a PCR reaction mixture 

Dream Taq TM Green PCR Master Mix (2x) 25 µl 

Forward primer 1µl (equivalent to 40 nmol) 

Reverse primer 1µl (equivalent to 40 nmol) 

Template DNA 10pg – 1µg (0.1 µl of C. merolae culture) 

Nuclease-free H2O 22.9 µl 

Final volume 50 µl 

The samples were gently vortexed and centrifuged quickly before placing in the thermocycler 

(Eppendorf® Mastercycler® ThermoScientifc®).  

http://merolae.biol.s.u-tokyo.jp/db/


98 
 

The following PCR protocol was performed: 

Table 9 

Typical PCR protocol for amplification of the petJ gene 

 

 

 

 

 

 

 

3.2.2.3 DNA digestion methods  

Standard DNA digestion reactions were performed by mixing the ingredients as in 

Table 10 and incubating the reaction mixtures for 15 min. at 37º C to allow for the complete 

digestion.  

 

Table 10 

 Composition of the plasmid and DNA fragment restriction digestion mixture 

Component Plasmid DNA PCR DNA 

Nuclease-free H2O 15 µl 17 µl 

10X FasDigest® Green Buffer 2 µl 2 µl 

DNA 2 µl (up to 1µg) 10 µl (up to 5µg) 

FastDigest® enzyme 1 µl 1 µl 

Final volume 20 µl 30 µl 

 

3.2.2.4 DNA agarose gel electrophoresis and DNA extraction from the agarose 

gels 

Normally, 1.5% TAE gels were run at 100-150 V (depending on DNA fragment/plasmid 

size) until the bands were resolved properly. The DNA fragment extraction from the agarose 

gels was performed with the GeneJETTM Gel Extraction Kit (Fermentas, Thermo Scientific®) 

using the freshly prepared solutions, as specified in Chapter 3.1.3. Gel slices containing the 

DNA fragments were excised with a clean scalpel or razor blade minimising the gel volume. 

The slice was placed in a pre-weighed 1.5-ml Eppendorf tube to estimate its weight. UV light 

exposure, used for DNA visualisation, was minimised to avoid DNA damage. Binding buffer 

Step Temperature ºC Time Number of 

cycles 

Initial denaturation 95 1-3 min. 1 

Denaturation 95 30 s 25-40 

Annealing Tm-5 (68-72) 30 s 25-40 

Extension 72 1 min./kb 25-40 

Final extension 72 5-15 min. 1 
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was added in a 1:1 ratio to the gel slice (volume:weight), i.e., 100 µl of binding buffer for 

every 100 mg of agarose gel. The slice and the buffer were incubated at 50-60º C for 10 min. 

with gentle rotation until the agarose was completely dissolved. The solubilised gel solution 

was run through a GeneJETTM purification column (Fermentas, Thermo-Scientific®). The 

column was centrifuged for 1 min. at 13,000 x g using a benchtop microcentrifuge. The flow-

through was discarded and the column was placed back in the same collection tube. 700 µl of 

wash buffer was added and the column was centrifuged for 1 min. The flow-through was 

discarded and the column placed back in the collection tube. The column was transferred to a 

new clean Eppendorf tube and 50 µl of elution buffer (or ultra-high-quality MilliQ H2O) was 

added to the centre of the column membrane and the column was centrifuged for 1 min. to 

elute DNA. The DNA fragment was used immediately or aliquoted and stored at -20º C until 

further use. 

 

3.2.2.5 Plasmid extraction from E. coli cells  

E. coli strain DH5α was used for all the molecular biology manipulations unless stated 

otherwise. Normally, 1 mL of E. coli overnight saturated culture was used for plasmid 

extraction. All the subsequent purification steps were carried out at room temperature. All 

centrifugations were performed on a bench-top centrifuge at a maximum speed of 13,000 x g. 

All plasmid isolations were performed with the GeneJETTM Plasmid Miniprep Kit (Fermentas, 

Thermo Scientific®) as specified in Chapter 3.1.3, with freshly prepared solutions. Cells were 

pelleted and resuspended in 250 µl of Resuspension Buffer (Fermentas, Thermo Scientific®). 

The resuspension was vortexed vigorously to avoid any cell lumps. 250 μl of the Lysis 

Solution (Fermentas, Thermo Scientific®) was added and mixed thoroughly by inverting the 

tube 4-6 times until the solution became viscous and translucent. 350 μl of the neutralisation 

solution was added and mixed immediately and thoroughly by inverting the tube 4-6 times. 

The tube was centrifuged for 5 min. to pellet cell debris and chromosomal DNA. The 

supernatant was transferred to the supplied GeneJETTM spin column by decanting or pipetting, 

taking care not to transfer the white cellular debris precipitate. The column in the tube was 

centrifuged for 1 min. and the flow-through was discarded. The column was placed back in 

the same collection tube. 500 μl of the Wash Solution (Fermentas, Thermo Scientific®) was 

added (diluted with ethanol prior to first use as per manufacturer’s instuctions) to the 

GeneJETTM spin column (Fermentas, Thermo Scientific®). The column was centrifuged for 

30-60 s. and the flow-through discarded. The column was placed back in the same collection 
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tube. The procedure was repeated. The flow-through was discarded and the procedure 

repeated once more to remove any residual ethanol. The GeneJETTM spin column (Fermentas, 

Thermo Scientific®) was transferred into a fresh 1.5 ml microcentrifuge tube and 50 μl of the 

elution buffer (or ultra-high-quality Milli-Q H2O) was added to the centre of GeneJETTM spin 

column (Fermentas, Thermo Scientific®) to elute the plasmid DNA. The column was 

incubated for 2 min. at room temperature and centrifuged for further 2 min. The purified 

plasmid DNA stored at -20º C. 

 

3.2.2.6 Ligation protocols 

Standard ligation mixtures were prepared as in Table 11 below, 

 

Table 11 

Composition of the ligation mixture 

Linear vector DNA (digested plasmid) 20-100 ng (normally 1.5 µl) 

Insert DNA (PCR products) 5-6:1 molar ratio over vector (8.5 µl 

volume, concentration adjusted if 

deemed necessary) 

10 x T4 DNA Ligase Buffer (Thermo 

Scientific®) 

2 µl 

T4 DNA ligase (Thermo Scientific®) 1 µl 

Nuclease-free H2O 7 µl (adjusted to reach a total volume 

of 20 µl) 

Total volume 20 µl 

Ligation mixtures were incubated in a water bath at 16º C or overnight at 4º C and were 

used for transformation the following day.  

 

3.2.2.7 Selection of E. coli transformants 

Single transformant colonies were selected on the selective media agar plates, the DNA 

was amplified with overnight E. coli cultures and the recombinant plasmids were purified and 

analysed by both restriction analysis and DNA sequencing.  
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3.2.2.8 Cloning of the C. merolae petJ gene 

Genomic DNA from C. merolae was used as a template for polymerase chain reaction 

(PCR) to amplify the petJ gene (annotated CMV193C; http://merolae.biol.s.u-

tokyo.ac.jp/db/). The original verified sequence of petJ was cloned into pET28b-(+) vector 

(Invitrogen®) together with 4 distinct sequences of AA linkers introduced by using different 

reverse primers (as depicted in Table 7) between the petJ sequence and the C-terminal His6-

tag encoded by the multiple-cloning site of the pET28b-(+) vector. The entire constructs were 

excised with NcoI and PstI restriction enzymes, and sub-cloned into a pBAD/HisA expression 

vector (Invitrogen®) using the same restriction enzymes and transformed into E. coli strain 

DH5α. The correct orientation and sequence of the petJ::pBAD/HisA constructs was 

confirmed by restriction analysis of recombinant plasmids and DNA sequencing. For all the 

maps of all the plasmids used and constructed in this study refer to Chapter 7.2.   

 

3.2.3 Protein purification methods 

3.2.3.1 Cytochrome c553 purification from the E. coli lysate 

3.2.3.1.1 Batch purification on Ni-NTA agarose 

Buffers were prepared in advance. The carrier buffer contained 20 mM imidazole, 10x 

SPB, 25% glycerol (w/v), pH 7.5. Wash buffers were prepared identically but the 

concentration of imidazole was increased as desired (normally up to a maximum of 60 mM). 

The elution buffer had the same composition but was supplemented with 250 mM imidazole. 

The pH of all the buffers was adjusted to 7.5. An appropriate amount of Ni-NTA resin was 

transferred to an Eppendorf tube. The tube was centrifuged for 2 min. at 700 × g and the 

supernatant was carefully removed and discarded. Two resin-bed volumes of the carrier buffer 

were added and mixed gently until the resin was fully suspended. The suspension was 

centrifuged for 2 min. at 700 × g and the buffer was carefully removed and discarded. The 

sample was prepared by mixing the cell lysate with an equal volume of the carrier buffer. The 

total volume was equal to at least two resin bed volumes. Thus prepared protein extract was 

added to the pre-equilibrated Ni-NTA resin as above and mixed on an end-over-end rotator 

for 30 min. either at room temperature or 4º C overnight, as required. The mixture was 

centrifuged for 2 min. at 700 x g. The resin was then washed with two bed volumes of the 

wash buffer, then centrifuged for 2 min. at 700 x g. The wash step was repeated and the 

supernatant monitored spectroscopically by measuring its absorbance at 280 nm until the 

http://merolae.biol.s.u-tokyo.ac.jp/db/
http://merolae.biol.s.u-tokyo.ac.jp/db/
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baseline stabilised. This step was repeated as many times as deemed necessary to remove 

excess of non-specifically bound proteins. Bound His6-tagged proteins were eluted using 1:1 

ratio of the resin-bed volume to the elution buffer. The agarose suspension was further 

centrifuged for 2 min. at 700 x g, and the supernatant carefully collected. This step was 

repeated twice, and each supernatant fraction was collected in separate tubes. Protein elution 

was normally monitored spectroscopically by measuring the absorbance of the fractions at 

280 nm. The eluted protein fractions were analysed spectroscopically and by SDS-PAGE. 

 

3.2.3.1.2 FPLC purification of the cytochrome c553 variants using immobilised 

metal affinity chromatography 

After filtration, samples were applied on an FPLC preparative Ni2+-nitrilo-triacetic 

acid (Ni-NTA) HisTrapTM FPLC/HPLC column (GE Healthcare®) at a flow rate of 0.5 ml 

min-1. The non-specifically bound proteins were washed for 30 min. at a flow rate of 0.5 ml 

min-1 with 50 mM imidazole in 100 mM (10x) phosphate buffer (100 mM Na2HPO4, 18 mM 

KH2PO4, pH 7.5). The His6-tagged cyt c553 fractions were eluted with a linear gradient of 50-

420 mM imidazole in the same buffer. The column was further washed with 500 mM 

imidazole in 100 mM phosphate buffer (100 mM Na2HPO4, 18 mM KH2PO4, pH 7.5) for 30 

min. Elution and the final washing steps were done at a flow rate of 0.5 ml min-1. Elution of 

cyt c553 fractions was monitored simultaneously at 416 nm, 521 nm and 553 nm, 

corresponding to the absorption peaks of the reduced forms of cyt c553. Cyt c553-containing 

fractions were pooled and concentrated in the VIVASPIN-2 devices (3,000 MWCO, 

Sartorius-Intec®, Poland) and resuspended in 100 mM phosphate buffer (100 mM Na2HPO4, 

18 mM KH2PO4, pH 7.5) supplemented with 25% glycerol (w/v). 

 

3.2.3.2 Purification of the T. elongatus PSI trimer 

Crude T. elongatus thylakoids were thawed for 3-4 hours on ice, or used directly after 

isolation. The Chla concentration (a total of 66.3 mg Chla) was adjusted to 1.61 mg  ml-1 (1.8 

mM) (Arnon method, see Chapter 3.2.4.2) before solubilisation with 0.5% (w/v, from a 10% 

stock solution) DDM (10 mM) at a detergent to Chla molar ratio of ~5:1 in the presence of 1 

tablet of CompleteTM protease inhibitor cocktail (Roche®) for 20 min. at RT in the dark, with 

gentle rotation or stirring. The solubilised thylakoids were centrifuged at 104,200 x g for 45 

min. at 4 ºC. The T. elongatus PSI trimers were purified from solubilised thylakoids by eluting 

from the DEAE TOYOPEARL 650M column with 0.09 M NaCl. Briefly, filtered supernatants 



103 
 

were applied onto a DEAE TOYOPEARL 650M column pre-equilibrated with 40 mM MES-

KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 25% (w/v) glycerol supplemented with 0.03% 

DDM. The loaded column was washed with 2 column volumes of 0.09 M NaCl, 40mM MES-

KOH, pH 6.1, 3 mM CaCl2, 25% (w/v) glycerol, 0.03% (w/v) DDM to elute the crude PSI 

trimers which were then processed as described below. All steps were performed at a flow 

rate of 5 ml min-1, with the exception that the column equilibration was done at a flow rate of 

7 ml min-1. Eluted fractions were analysed spectroscopically, and the PSI-enriched fractions 

were pooled, then directly applied onto a 350-400 ml bed volume Spehadex G-25® (Sigma-

Aldrich®) filtration column which had been previously equilibrated with the carrier buffer 

composed of 40 mM HEPES-NaOH, pH 8.0, 3 mM CaCl2, 25% (w/v) glycerol, and 0.03% 

(w/v) DDM. The pooled fractions were applied and eluted continuously at 3-4 ml min-1. 

Desalted PSI trimers were collected, concentrated with the 100-kDa MWCO filtering devices 

(Sartorius-Intec®, Poland). Following Chla determination (Arnon method, see Chapter 

3.2.4.2) the PSI samples were either used immediately for the next purification step or snap 

frozen in liquid nitrogen and stored at -80º C until further use. The crude, desalted PSI trimers 

were applied to a DEAE TOYOPEARL 650 S column that was pre-equilibrated with the 

carrier buffer (40 mM HEPES-NaOH, pH 8.0, 3 mM CaCl2, 25% (w/v) glycerol, 0.03% (w/v) 

DDM). The bound PSI trimer complexes were extensively washed with the carrier buffer at 3 

ml min-1 to remove the excess of phycobilisomes (PBS) and carotenoids, as verified by RT 

absorption spectroscopy. The PSI trimers were then eluted with a linear gradient of 0-0.5 M 

NaCl at 3 ml min-1, with the trimers specifically and very strongly bound to the top of the 

column compared to PSI monomers which were bound less strongly, hence eluted in the early 

phase of the NaCl gradient. The eluted PSI trimers were then applied onto a desalting 

Sephadex G-25® (Sigma Aldrich®) column in the carrier buffer as above, collected, 

concentrated to 3-5 mg ml-1 Chla (Arnon method, see Chapter 3.2.4.2) then snap-frozen in 

liquid nitrogen and stored at -80º C prior to use or used immediately for spectroscopic, 77K 

fluorescence, photochemical activity and SDS-PAGE analyses. 
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3.2.3.3 Purification of the C. merolae PSI-LHCI supercomplex 

Thylakoids (1 mg ml-1 of Chla (Arnon method, see Chapter 3.2.4.2)) were solubilized 

with 1% (w/v) DDM at 4º C with gentle yet continuous rotation for 40 min. in the dark. 

Solubilised membranes were centrifuged at 104,200 x g for 30 min. at 4º C to remove the 

insoluble fraction, then filtered and loaded at 5-7 ml min-1 onto a DEAE TOYOPEARL 650 

M column (40 mL bed volume) pre-equilibrated with the equilibration buffer composed of 40 

mM MES-KOH, pH 6.1, 10 mM CaCl2, 5 mM MgCl2, 25% (w/v) glycerol supplemented with 

0.03% DDM. To elute the crude PSI-LHCI supercomplex sample, the column was washed 

with 2 bed volumes of the low-salt buffer comprising 0.09 M NaCl, 40 mM MES-KOH, pH 

6.1, 3 mM CaCl2, 25% (w/v) glycerol, 0.03% (w/v) DDM at 5-7 ml min-1. All the subsequent 

steps were performed at a flow rate of 5-7 ml min-1, with the column equilibration done at the 

maximal flow rate of 7 ml min-1 or slowly overnight. Eluted fractions were analysed 

spectroscopically to identify the PSI-enriched fractions. The PSI-enriched fractions were then 

pooled, and directly applied onto a 350-400 mL bed volume Spehadex G-25® (Sigma-

Aldrich®) filtration column pre-equilibrated with the carrier buffer (40 mM HEPES-NaOH, 

pH 8.0, 3 mM CaCl2, 25% (w/v) glycerol, 0.03% (w/v) DDM). The pooled crude PSI fractions 

were then eluted continuously at a 3-4 ml min-1 flow rate. The desalted crude PSI-LHCI 

sample was collected, concentrated with the 100-kDa MWCO filtering devices, and used 

either immediately for the next step of PSI purification or snap frozen in liquid nitrogen and 

stored at -80º C until further use. Crude desalted PSI-LHCI sample was applied onto a DEAE 

TOYOPEARL 650 S column (30 mL bed volume) and pure PSI-LHCI supercomplex fractions 

were eluted with a continuous 0-0.25 M NaCl gradient in the carrier buffer. The fractions were 

analysed by RT absorption spectroscopy to select the purest PSI-LHCI-containing fractions 

that were devoid of contaminating PBSs. For a representative spectrum of a PSI-LHCI fraction 

contaminated with PBSs, refer to Suppl. Figure 1. The pure PSI-LHCI fractions, obtained 

after the DEAE 650 S column, were pooled and subsequently concentrated to 1 mg ml-1 Chla 

and further purified to remove any residual PBSs by the following two methods: (1) additional 

chromatography purification step performed on the desalting Superdex G-25® (Sigma 

Aldrich®) column in the carrier buffer (40 mM HEPES-NaOH, pH 8.0, 3 mM CaCl2, 25% 

(w/v) glycerol, 0.03% (w/v) DDM) and (2) fractionation on a discontinuous sucrose gradient 

(0.4 M sucrose, 0.45 M betaine, 5 mM Tris-HCl, pH 8, 0.05% (w/v) DDM) prepared by a 

freeze-thaw method [151] (see below) and ultracentrifuged at 125,000 x g (SW Ti32 rotor, 
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Beckman-Coulter®, USA) for 20 hours at 4º C. Chla concentration was determined using the 

Arnon method (see Chapter 3.2.4.2).   

 

3.2.3.4 Discontinuous sucrose gradient fractionation  

The discontinuous sucrose gradient preparation and fractionation was adapted from 

[151]. Briefly, a 0.4 M sucrose, 0.45 M betaine, 5 mM Tris-HCl, pH 8, 0.05% (w/v) DDM 

buffer was distributed on an equal weight basis into the polyallomer tubes (Beckman-

Coulter®) up to 85% of their volume, covered with parafilm and frozen at -20º C or -80º C for 

at least 15 h prior to use. Tubes were thawed at 4º C vertically without any disturbance for 

approximately 5 h, and then the sample was applied. For the large-scale fractionation, a 

sucrose gradient was prepared in 35-ml polyallomer tubes and a maximum of 500 µg of Chla 

was added per tube. Before application, the buffer of the PSI-containing sample was 

exchanged to a low ionic strength buffer composed of 50 mM K2HPO4-KH2PO4, pH 8.0, 

0.03% (w/v) DDM, and the volume was adjusted so that 1-2 ml portions (corresponding to 

350 µg Chla) were very gently overlaid on top of the gradients, then centrifuged at 125,000 x 

g (SW Ti32 rotor, Beckman-Coulter®, USA) for 20 h at 4º C. The densest band(s) containing 

the pure PSI-LHCI supercomplex was/were concentrated and exchanged to the carrier buffer 

(40 mM HEPES-NaOH, pH 8.0, 3 mM CaCl2, 25% (w/v) glycerol, 0.03% (w/v) DDM). Final 

Chla concentration was determined using the Arnon method (see Chapter 3.2.4.2) and the 

sample was either snap frozen in liquid nitrogen and stored at -80º C, or used immediately for 

spectroscopic, 77K fluorescence, photochemical activity or SDS-PAGE analyses. 

 

3.2.3.5 Size exclusion chromatography 

Fractions containing the PSI-LHCI supercomplexes were further characterised by size 

exclusion chromatography (SEC), using a Biosep SEC-4000 column (Phenomenex®, 

Torrance, CA) equilibrated with a carrier buffer (20 mM MES-KOH, pH 6.5, 10 mM MgCl2, 

3 mM CaCl2, 0.5 M mannitol, 0.05% DDM) at a flow rate of 2 ml min-1.  
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3.2.4 Spectroscopic methods 

3.2.4.1 RT absorption spectroscopy 

For the C. merolae cells, thylakoids, and other photosynthetic material (5 µg of Chla 

ml-1), optical absorption spectra were recorded at room temperature in the range of 800-350 

nm using a UV-1800 Shimadzu spectrophotometer with the TCC-100 temperature controlled 

cell holder using a quartz cuvette with an optical path length of 10 mm, a slit width of 0.1-0.5 

nm and sampling intervals of 0.05-2.0 nm. Normally, a slit width of 0.1 nm and sampling 

intervals of 0.5 nm were employed.   

 

3.2.4.2 Measurement of Chla concentration  

Chla concentration was determined according to the Arnon method [152]. Briefly, 1-

5 µL of photosynthetic material was diluted into 1 mL of freshly prepared 80% acetone. After 

vortexing for 2 min. and 13,000 x g centrifugation for 2 min., the absorption of Chla was 

recorded at 663 nm, taking into account the dilution factor. An extinction coefficient of 86.3 

μL-1 μg-1 cm-1 [152] was employed to calculate the Chla concentration. 

 

3.2.4.3 Redox difference absorption spectroscopy of cytochrome c553  

UV-VIS spectra [(5-20 µg ml-1 protein in 10 mM phosphate buffer (SPB x 1) or 

standard phosphate buffer (10 x SPB) (100 mM Na2HPO4, 18 mM KH2PO4, pH 7.5), as 

described in Chapter 3.1.6.3. Spectra were recorded in a Shimadzu UV 1800 

spectrophotometer at RT. For redox difference spectroscopy, a few grains of sodium dithionite 

were added to fully reduce the cytochrome sample, and the corresponding spectrum was 

recorded. Subsequently, a grain of ferricyanide ([Fe(CN)6]
3−, FeCN) was added to monitor 

oxidation of the cyt sample by measuring the absorption spectra, in which flattening of the 

521 nm and 553 nm peaks was observed upon chemical oxidation of the sample. An equivalent 

amount of FeCN was added again, until the protein was fully oxidised. Excess FeCN had to 

be added to obtain the fully re-oxidised species. Re-reduction of the sample was initiated by 

titration with sodium dithionite, resulting in the reappearance of the 416 nm, 521 nm, and 553 

nm peaks. The difference between absorption at 553 nm in the fully reduced and fully oxidised 

states of the cyt sample was used to calculate the exact concentration of redox active cyt c553 

using a molar extinction coefficient of 24.1 mM-1 [153].  
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3.2.4.4 Fluorescence spectroscopy  

Briefly, an LS 55 Fluorescence Spectrofluorometer (Perkin Elmer) with an adaptor for 

77K measurements was used. For spectroscopic measurements, the PSI-LHCI samples were 

diluted to 3 µg ml-1 Chl in 40 mM HEPES-NaOH, pH 8.0, 3 mM CaCl2, 25% (w/v) glycerol, 

0.03% (w/v) DDM supplemented with 80% (w/v) glycerol, to a final concentration glycerol 

of 40% (w/v). The capillary tubes with the samples were frozen in liquid nitrogen and the 

fluorescence steady-state emission spectra were recorded in the range of 600-800 nm using an 

excitation wavelength of 435 nm for Chla and in the range of 620-800 nm for an excitation 

wavelength of 600 nm for PBS emission. Action spectra were generated by exciting the 

samples at 400-700 nm and recording emission at 728 nm. 

 

3.2.5 Fluorescence microscopy methods  

3.2.5.1 Microscope slide preparation  

The plasmonic nanohybrid samples were prepared on microscopic slides at RT as 

follows. For preparation of the reference sample, PSI-LHCI complexes (0.12 μg ml-1 Chla) 

were enclosed within a polymer matrix of 0.05% aqueous polyvinyl alcohol (PVA) and spin-

casted on a glass substrate. Such a low concentration of PVA allowed for the proper formation 

of a layer of PSI complexes. For preparation of the physisorbed sample (PSI-LHCI+AgNWs), 

functionalised silver nanowires (AgNWs) were first mixed with the buffer suspension of PSI-

LHCI complexes (0.12 μg ml-1 Chla) in 0.05% PVA and were then spin-coated on a glass 

substrate. For the generation of bioconjugated sample (PSI-LHCI@AgNWs), Ni-NTA-

functionalised AgNWs were incubated for 60 min. with 90 μg ml-1 of cyt c553 resuspended in 

the standard PSI-LHCI carrier buffer (40 mM HEPES-KOH, pH 8.0, 3 mM CaCl2, 25% 

glycerol (w/v), 0.03% DDM) (see Chapter 3.1.6.3). The bioconjugated AgNWs were 

centrifuged and rinsed 3 times in the same buffer to remove any unbound protein, then 

incubated with the PSI-LHCI complex (12 μg ml-1 Chla) for 60 min. The sample was rinsed 

3 times in the same buffer as above (40 mM MES-KOH, pH 8.0, 3 mM CaCl2, 25% (w/v) 

glycerol, 0.03% DDM) to remove any unbound PSI, followed by resuspension in 0.05% PVA 

and spin-coating on a glass substrate. 
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3.2.5.2 Optical characterisation and fluorescence microscopy  

Absorption and extinction spectra were measured using a Varian Cary 50 

spectrophotometer. Emission spectra were collected with a Horiba Jobin Yvon Fluorolog 3 

spectrofluorometer. The fluorescence intensity maps were measured using a Nikon Eclipse 

Ti-U body-based wide-field fluorescence microscope with the Nikon Plan Apo immersion oil 

objective lens (100x, NA of 1.4). This setup employs the Andor iXon3 Du-888 EMCCD 

camera as a detector, cooled to -75 ºC to minimize dark counts contribution in collected 

signals, together with a T650LPXR dichroic mirror (Chroma) as well as FELH0650 

(Thorlabs) and FB670-10 (Thorlabs) optical filters. Fluorescence intensity maps 

measurements were conducted using two excitation wavelengths of 405 nm and 535 nm, 

provided by LED illuminators, both normalised to generate the 100 μW beam. Both LED 

illuminators were equipped with optical filters (FB405-10 and FEL0600, respectively; 

Thorlabs). In order to perform comparative analysis of results collected for both excitation 

wavelengths, for each area of the samples analysed a set of consecutive measurements was 

performed. Firstly, fluorescence intensity frames excited at 535 nm were taken followed by 

collection of the fluorescence signals from the same area of the sample, using excitation at 

405 nm. Additionally, in the case of samples containing AgNWs, a picture of chosen sample 

area was taken in transmission mode to check correlation between the position of nanowires 

and spatial arrangement of emitting regions. Time-resolved fluorescence measurements were 

performed using a home-built confocal fluorescence microscope. The excitation laser of 485 

nm in a pulsed mode with a repetition rate of 20 MHz and average power of 48 μW was used. 

Gaussian beam of the laser was achieved using a spatial filter with a 25 μm pinhole. The laser 

was focused on the sample using a microscope oil objective 60X, NA=1.49 (Nikon®). The 

sample was placed on a piezoelectric translation stage, which enabled a continuous movement 

with respect to the excitation laser beam. The emission was filtered by a long pass filter 

HQ655LP (Chroma®) and extracted with a bandpass filter HQ675/20 (Chroma®). The time-

correlated single photon counting technique was used to measure dynamics of the 

fluorescence. The setup combines an SPC-150 module (Becker & Hickl) with fast avalanche 

photodiode (idQuantique id100-50) as a detector and gives the temporal resolution of 100 ps. 

(reproduced from Materials and Methods from [149]).  
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3.2.6 Photochemical activity measurements  

Photochemical activity of the purified PSI-LHCI (5 μg Chla) complex was measured by the 

O2 consumption assay [154,155] using an oxygen Clark-type electrode (Hansatech®) (see 

Figure 32). Measurements were performed at 30º C in the reaction buffer (40 mM HEPES-

NaOH, pH 8.0; 3 mM CaCl2, 25% (w/v) glycerol, 0.03% DDM) in the presence of 0.1 mM 

methyl viologen (MV) and 0.1 mM dichlorophenolindophenol (DCPIP) as the exogenous 

electron acceptor and mediator, respectively. Samples (5 µg ml-1 Chla) were incubated in the 

dark for 2 min. followed by the addition of 3 mM sodium ascorbate (NaAsc) as the sacrificial 

electron donor and illumination with a white light intensity of 5,000 µE, using a KL 2500 

LCD white light source (Schott®, Germany). The sample was incubated with the three 

exogenous electron mediators as above and a background reaction (up to 15-20 µmoles O2 

mg-1 Chl h-1) was observed in the dark, which was considered for all the final activity 

calculations. Following illumination of the sample a maximum oxygen consumption reaction 

proceeded until all the oxygen in the 1 ml reaction mixture was consumed. Each activity 

measurement was repeated at least three times. The same protocol was applied for all the PSI 

preparations from C. merolae and T. elongatus. 
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Figure 32 

Schematic representation of the oxygen consumption assay for determination of the PSI-

LHCI photochemical activity. Chemical structures of redox mediators with appropriate 

concentration or the amount of Chla per 1 mL reaction mixture are displayed. The full electron 

transfer pathway is shown in the right panel.  

 

3.2.7 Standard biochemical methods  

3.2.7.1 Bradford colourimetric assay for protein quantification 

The classic method from [148] was employed with an updated protocol and reagent 

composition. Briefly, a 3.1 ml assay mixture consisted of mixing 1 part of the protein sample 

with 30 parts of the Bradford Reagent (Sigma Aldrich®). The sample was either a blank, a 

protein standard, or an unknown sample. Blank samples consisted of a buffer with no protein. 

The protein standard consisted of a known concentration of protein, and the unknown sample 

was the solution to be measured for protein concentration. Bradford assay was performed at 

room temperature. Colour development began immediately. The absorbance at 595 nm was 

recorded and the protein concentration was determined by comparison to a standard curve 

freshly prepared each time. BSA was employed as a standard sample. Below is an example of 

a typical BSA standard table and curve (Table 12 and Figure 33, respectively). 
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Table 12 

 Typical Bradford assay standard curve 

 

 

Figure 33 

Typical BSA standard curve employed for determination of protein concentration. The 

maximum BSA standard concentration was 1.4 mg ml-1. 

 

3.2.7.2 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

The Tris-Tricine SDS-PAGE system was used according to [147]. Typically, 0.7 mm-thick 

gels were used with the BioRad Mini Protean II (BioRad®) system. Acrylamide solutions were 

prepared as stated in Chapter 3.1.6.4. All the electrode and gel buffers were prepared as 

described in Tables 13 and 14. 

  

Sample no. Sample volume 

(ml) 

[BSA] protein 

standard (mg/ml) 

Bradford reagent (ml) 

1 0.1 0 3 

2 0.1 0.25 3 

3 0.1 0.5 3 

4 0.1 1.0 3 

5 0.1 1.4 3 

6 0.1 (unknown) 3 
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Table 13 

Composition of SDS-PAGE running buffers and gel buffer 

Concentration Anode Buffer 

(10X) 

Cathode Buffer 

(10X) 

Gel buffer (3x) 

Tris (M) 1.0 1.0 3.0 

Tricine (M) - 1.0 - 

HCl (M) 0.225 - 1.0 

SDS % - 1.0 0.3 

pH 8.9 ~8.25 8.45 

 

Table 14 

SDS-PAGE gel composition depending on the desired polyacrylamide gel 

concentration  

 

Ingredient amounts 4% casting 

gel 

10% running 

gel 

16% running 

gel 

16% running 

gel/6 M urea 

AB-3/AB-6       (ml) 1 6 10 10 

Gel buffer (3X) (ml) 3 10 10 10 

Glycerol             (g) - 3 3 - 

Urea                   (g) - - - 10.8 

Water to final volume               

(ml) 

12 30 30 30 

APS (10%)        (µl) 90 150 100 100 

TEMED             (µl) 9 15 10 10 

6 M Urea was employed in all the gels used for separation of trans-membrane proteins. The 

freshly prepared ammonium persulfate (APS) solution and TEMED were added 

immediately before pouring the gels.  

 

 Protein samples were mixed 5:1 (v/v) with the appropriate amount of the 5x sample 

buffer composed of 0.225 M Tris-HCl, pH 6.7; 50% glycerol; 5% SDS; 0.05% bromophenol 

blue; and 0.25 M 1,4-dithiothreitol (DTT), as specified in Chapter 3.1.6.4. Normally, 0.2-3 

µg of protein was loaded per lane for non-Chla containing samples, whereas for Chla-

containing samples no more than 5 µg of Cha was loaded per lane. Roughly 0.2–1 μg of 

protein for each protein band was sufficient for Coomassie staining or transfer onto PVDF 

membranes for the in-gel IMAC assay (see below). Accordingly, the desired protein 

concentration in the sample was estimated to be approximately 0.1 mg ml–1 for each protein 

band.  



113 
 

After mixing the protein sample and 5 x sample buffer on an equal amount or volume 

basis, soluble protein samples were incubated at 95º C for 8 min., with interim vortexing every 

2 min., whereas membrane proteins (photosynthetic samples) were incubated in the same 

sample buffer in the dark for 45 min. at RT, with occasional vortexing every 10-15 min. The 

samples were then centrifuged at 13,000 x g using a benchtop microcentrifuge and the 

supernatant was loaded onto the SDS-PAGE gels. The supernatant was pippeted very 

carefully to avoid accidentally aspiring the pellet. A volume of 15-20 µl (3 µg protein or 5 µg 

of Chla) was never exceeded to avoid cross-contamination between the wells. Normally, 3-5 

µg of Chla was sufficient for proper visualisation of all protein bands by Coommassie 

staining. The running conditions for SDS-PAGE are shown in Table 15. 

 

Table 15 

SDS-PAGE gel running conditions  

 10% (0.7 mm) 16% (0.7 mm) 16% (1-1.6 mm) 

Initial voltage 30 V 30 V 30 V 

Next voltage step  190 V 200 V 90 V constant 

Voltage at end of run 270 V 300 V - 

Time  1-2 h 2-3 h 5-6 h 

 

The resolved SDS-PAGE gels were either incubated in a fixing solution composed of 50% 

methanol, 10% acetic acid, 100 mM ammonium acetate for 30 min., or washed with Milli-Q 

water prior to Western blotting (see below). Fixed gels were then stained overnight with 

0.025% Coomassie Brilliant Blue (R-250) in 10% acetic acid. The gels were destained by 

washing several times with copious amounts of the destaining solution (10% acetic acid). 

Developed gels were transferred to water, photographed, and dried using a gel drying system 

(Sigma Aldrich®). 

 

3.2.7.3 Western blotting  

Immediately after electrophoresis, gels were equilibrated with Milli-Q water for 2 

min., then with 1 x transfer buffer (25 mM Tris, 192 mM glycine, see Chapter 3.1.6.5) for 

10–15 min. PVDF membranes were activated in 100% methanol (analytical or HPLC grade), 

then equilibrated in the 1 x transfer buffer for 5-10 min. The blot was placed towards the 

cathode and the gel towards the anode in the transfer sandwich, according the manufacturer’s 

instructions (BioRad®). The transfer was performed at a constant current of 10 mA for 45 min. 
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using prechilled transfer buffer and an ice block. The protein bands were visualised by staining 

the blots with Ponceau S solution (Sigma Aldrich®) for 5 min., then washing away the excess 

stain with TBST buffer [20 mM Tris-HCl; pH 7.5, 150 mM NaCl, 0.05–0.1% Tween® 20 

(Sigma-Aldrich®)].  

 

3.2.7.4 Chemiluminescent His6-tag detection using HisProbe-HRP conjugate 

The blots were blocked overnight in the cold room with 10-20 ml of the Blocking Buffer 

(HisProbe™-HRP kit), 2-5% powdered milk or 10% BSA in TBST. The membrane was 

subsequently washed twice with 15 ml of TBST for 10 min. each. The blot was incubated with 

10 ml of 1:5000 dilution of the HisProbe-HRP conjugate in TBST. The membrane was washed 

four times with 15 ml of TBST for 10 min. each, then incubated with 10 ml of SuperSignal® 

Working Solution for 5 min. Blots were normally exposed for 1-60 s. to obtain the best signal-

to-noise ratio either with an X-ray film (Sigma-Aldrich®) or gel documentation system 

(ChemiDoc™ XRS + System, BioRad®).  

 

3.2.8  In vitro hydrogen production methods 

3.2.8.1 Platinum nanoparticles synthesis 

The was protocol was adapted from [156]. An anaerobic Schlenk system was set up, 

cleaned thoroughly and dried with a heat gun. The Schlenk flask was dried and purged with 

nitrogen. 1 mL of 27.3 mM mercaptosuccinic acid (MSA) solution (3.56 mg MSA dissolved 

in 1 mL of MilliQ water) was added to 10 mL of 3.38 mM hexachloroplatinic acid solution. 

The contents were stirred vigorously for 1-3 min. at RT. The reducing solution was prepared 

by dissolving 67.6 mM sodium borohydride (12.78 mg in 5 mL MilliQ water), then added to 

the Schlenk flask dropwise. The reduction reaction proceeded for 20-30 min. at RT in the 

Schlenk in ambient light. The Pt nanoparticles were collected by centrifugation, washed 

several times with analytical methanol to remove excess MSA, borohydride and unreacted 

hexachloroplatinic acid. The Pt particles were dried in the air or in a gentle stream of N2 gas 

overnight, and were used freshly for incubation with the PSI-LHCI complex.    
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3.2.8.2 Hybridisation of PSI-LHCI complex with proton reducing catalysts and 

platinum nanoparticles 

Cobaloxime was prepared freshly as a 5 mM stock of Co(dmgH)2pyCl in dimethyl 

sulfoxide (DMSO). Other proton reducing catalysts (PRCs) were prepared as 5 mM stocks 

either in DMSO or acetonitrile depending on their solubility. The same was done for Pt 

nanospheres, although these had to be constantly shaken to avoid settling due to the element’s 

high density. Dark-adapted 5 μM PSI-LHCI complex was incubated with 100-300 μM 

Co(dmgH)2pyCl or the DuBois-type Ni PRCs in a buffer containing 20 mM HEPES-KOH, 

25% glycerol (w/v) pH 8.0, 3 mM CaCl2, and 0.03% DDM. The PSI and 

Co(dmgH)2pyCl/PRC mixture was tumbled at 20 rpm for 2 h at RT in the dark on a standard 

bench-top rotator/rocker (Fisher Scientific®). The PSI-LHCI/PRC hybrid samples were used 

immediately for the in vitro hydrogen production assay. 

 

3.2.8.3 Determination of PSI-LHCI:proton reducing catalyst molar ratios by 

inductively coupled plasma mass spectrometry 

All the samples were prepared in a final volume of 500 µl. For the H2 production assay, 

5 µM PSI-LHCI sample (equivalent to 380 µg Chla per 500 µl of preparation) was hybridised 

with a freshly prepared 5 mM stock of a PRC at an appropriate molar ratio (see Chapter 

3.2.8.2) in the carrier buffer (40 mM HEPES-NaOH, pH 8.0; 3 mM CaCl2, 25% (w/v) 

glycerol, 0.03% DDM) for 2 h in the dark at RT with tumbling. To remove the unbound PRC, 

the sample was subjected to ultrafiltration by employing Amicon 100,000 MWCO filtration 

devices, then diluted (8x) with the carrier buffer twice to wash away any traces of the unbound 

PRC. The final 500 µl preparations were diluted to a 10-ml final volume in the carrier buffer. 

The pure carrier buffer and non-treated PSI-LHCI sample served as the blank references for 

determination of the molar ratios of the catalysts and PSI-LHCI by inductively coupled plasma 

mass spectrometry (ICP-MS) and inductively coupled plasma graphite furnace atomic 

absorbtion spectroscopy (ICP-FAAS). Both analyses were performed by Dr. Jakub Karasiński 

and Prof. Dr hab. Ewa Bulska, Expert Analytical Centre (Analityczne Centrum Eksperckie), 

Biological and Chemical Research Centre, University of Warsaw, Poland.   
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3.2.8.4 Gas chromatography system calibration and in vitro hydrogen 

production assay  

The morning before the H2 production assay, the Schlenk and gas chromatography 

(GC) systems were calibrated to ensure that there was no oxygen in the line and that the flow 

of hydrated N2 was appropriate. The calibration of the GC system was performed by injection 

of a known volume of hydrogen gas, then integration of the resultant H2 elution peak to 

determine the exact area-volume ratio. This calculation was used for the precise determination 

of the amounts of hydrogen detected. MES buffer (40 mM MES-KOH, pH 6.1, 10 mM CaCl2, 

5 mM MgCl2) was purged with either nitrogen or argon gas for 2 h prior to the H2 evolution 

experiment. Only after purging the MES buffer with an inert gas, DDM was added carefully 

to the same buffer to a final concentration of 0.03% (w/v), this was done by adding a specific 

amount of a concentrated stock to avoid frothing. The PSI-LHCI sample and the appropriate 

PRC compound were hybridised at an appropriate molar ratio (see Chapter 3.2.8.2), then 

used for H2 production immediately, omitting the ultrafiltration step. The final reaction 

mixture had a final volume of 2 ml and consisted of 100 nM PSI-LHCI/PRC hybrid, 100 mM 

NaAsc and 15-20 µM cyt c553 (10AA linker variant; as determined by redox absorption 

spectroscopy). The reaction mixture was illuminated for 16 h at 8,130 μE m-2 s-1 (white light 

source, see below) and the total amount of hydrogen that accumulated in the headspace of the 

Schlenk system was measured by gas chromatography (GC, see below). Alternatively, the 

same procedure was performed in the sealed flasks if the Schlenk system was found to leak.  

 

3.2.8.5 Gas chromatography analysis 

The volume of the Schlenk system was 5 ml, and the headspace volume was 

approximately 1-2 ml. When using a 2 ml H2 production reaction mixture, the headspace of 

the vessel was continuously pumped through the GC column with a 5 Å molecular sieve for 

gas separation (Compact GC, Interscience®) using 5 min. sampling intervals. A 500 W Hg-

Xe lamp (Hamamatsu®, L8288) was used for the photocatalysis, using a water filter with a 

30-cm path length to eliminate IR radiation. The amounts of hydrogen detected were 

determined specifically as per the calibration, as described above.  
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3.2.9 Preparation and J-V characterisation of cyt c553/p-doped silicon, PSI-LHCI/p-

doped silicon and PSI-LHCI/cyt c553/p-doped silicon bioelectrodes  

3.2.9.1 Chemical functionalisation of p-doped silicon substrate 

Heavily p-doped Si wafers were obtained from the Department of Silicon Technology 

at the Institute of Electronic Materials Technology (ITME, Warsaw, Poland). Silicon wafers 

had a thickness of 500 ± 25 µm and a resistivity of 0.001-0.005 [Ω cm] equivalent to a boron 

doping density of 2.13 x 1019-1.3 x 1020 cm-3. Ni-NTA functionalisation of p-doped Si was 

performed according to the procedure of [157], as summarized in Figure 34. Briefly, a gas-

phase aminosinilation was performed on the SiO2 surface. Subsequently, 1,4-phenylene 

diisothiocyanate (DITC) was reacted with the amine for 2 hours at 40º C in ethanol. Si wafers 

were then rinsed thoroughly with water and ethanol and dried under a N2 stream. N,N-

bis(carboxymethyl)-L-lysine was reacted by immersion in an aqueous solution for 30 min. 

Samples were then rinsed thoroughly with water, then dried under a gentle N2 stream. Ni2+ 

cations were chelated to the tricarboxylic acid functionality by immersion in a 1 mM aqueous 

NiCl2 solution for 20 min. The functionalised Si wafers were used immediately for cyt c553 

biofunctionalisation. 
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Figure 34 

Workflow for the synthesis of nickel-nitrilo acetic acid self-assembled monolayer. 

Protocol was essentially reproduced from [157] using steps A-D. First, a gas-phase 

aminosinilation was performed on the SiO2 surface. Subsequently, 1,4-phenylene 

diisothiocyanate (DITC) was reacted with the aminosilane functionalised Si for 2 hours at 40º 

C in ethanol (A). Wafers were then rinsed thoroughly with water and ethanol and dried under 

a N2 stream. N,N-bis(carboxymethyl)-L-lysine was reacted by immersion in an aqueous 

solution for 30 min. (B). Samples were subsequently rinsed thoroughly with water and dried 

under a N2 stream. Ni2+ was chelated to the tricarboxylic acid functionality by immersion in a 

1 mM aqueous NiCl2 solution for 20 min. (C). The functionalised Si wafers were employed 

immediately for cyt c553 biofunctionalisation (D). 
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3.2.9.2  Construction of cyt c553/p-doped silicon devices 

The p-doped Si wafers were pre-treated by submerging in the SWIPE® (Industrial 

Cosmetics Ltd.®) detergent for 24 hours. After removal of the detergent, the wafers were 

treated with hot, concentrated 96% sulphuric acid, and a solution of ammonia in hydrogen 

peroxide and water [H2O:H2O2:NH4OH/1:1:0.05, (v/v)], and finally in diluted hydrofluoric 

acid in water (HF:H2O/1:10, (v/v)). Subsequently a 200 nm Ag layer was deposited through 

chemical evaporation on the back side of the wafers. The Rapid Thermal Processing method 

(RTP) was used to improve the formation of metal/semiconductor contacts. Subsequently, the 

wafers were treated with diluted hydrofluoric acid (as above) and then functionalised with Ni-

NTA moiety, according to a protocol described in [157]. Briefly, p-doped Si wafers were 

placed in the vacuum using a vacuum-assisted spin coater (model: TSR 48/8 5Q85, Convac® 

(discontinued; property of the Deparment of Optoelectronics, ITME, Warsaw, Poland) then 

centrifuged at 150 rpm for 25 s. followed by centrifugation at 500 rpm for 60 s. as an extra 

step to remove any impurities from air that might be present on the surface of the silicon. After 

functionalisation, 500 μl of 125 μM cyt c553 variant solution was deposited using vacuum-

assisted spin coating to ensure that only a thin layer of protein was homogeneously chelated 

to the Ni-NTA SAM. After application of the protein solution, the Si wafers were centrifuged 

as above. The biofuntionalised Si wafers were then dried with a gentle nitrogen stream and 

left in the nitrogen cabinet for 24 hours at RT for further drying. A transparent 5-nm layer of 

gold or Au/Cr was then deposited to ensure formation of the proper metal/cyt c553 electrical 

contact. Several contact points were made by chemical evaporation of Au by employing laser-

cut masks, then the remaining surface was sealed with a transparent 50-nm layer of SiO2. Four 

to six bioelectrodes were cut into rectangular shapes of the exact surface area of 3.24 cm2. The 

J-V properties of the bioelectrodes were characterised in the dark by employing a home-made 

PV setup (Deaprtment of Optoelectronics, ITME, Warsaw, Poland), as described in detail in 

Chapter 3.2.9.4. At least 4 independent bioelectrodes were assessed per each cyt c553 variant 

using 3 independent J-V measurements. For electrochemical impedance spectroscopy 

experiments, an extra 50-nm layer of Au/Cr was chemically deposited on top of the bottom 

Ag contact to avoid any background electrochemical Ag oxidation. 
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3.2.9.3 Construction of PSI-LHCI/p-doped silicon and PSI-LHCI/cyt c553/p-

doped silicon devices  

The p-doped Si wafers were prepared essentially as described in Chapter 3.2.9.2, with 

or without chemical modification, where appropriate. After biofunctionalisation with cyt c553 

(see Chapter 3.2.9.2), the Si wafers were dried in a semi-anaerobic nitrogen box for 24 h. A 

500 µl suspension of the C. merolae PSI-LHCI complex at 1 mg ml-1 Chla was overlaid on 

the pretreated Si wafers and the protocol described in Chapter 3.2.9.2 was followed for the 

vacuum-assisted spin coating of the protein sample, with the exception that instead of a 5-nm 

of Au layer, a 5-nm of Ag was employed.  

 

3.2.9.4 J-V measurements, assessment of open circuit potential and 

photocurrent   

All the J-V curves were acquired in a custom-made PV setup (Department of 

Optoelectronics, Intitute of Electronic Materials Technology, ITME, Warsaw, Poland). All 

the J-V data was acquired using a custom-made setup comprising a PC with an interface card 

(Texas Instruments®), an AGILENT 34401A digital multi-metre, the AGILENT 6634B 

system DC power supply and a home-made interface card (Department of Optoelectronics, 

ITME). Data was processed using ITME-customised LAB VIEW 8.6 software. Data was 

averaged using four independently prepared bioelectrodes using the selected area of 3.24 cm2 

which was employed as a standard area for all the electrodes constructed in this study. The 

entire protocol was repeated twice to ensure reproducibility of the J-V results. The J-V values 

were averaged for three independent bioelectrodes using the data from three most similar J-V 

curves from a total set of four measurements. All the J0 values were calculated from Eq. 8 

below, and were also determined from the J-V curves presented on a semi-logarithmic scale, 

where the J0 value corresponds to the y-intercept (see Suppl. Figure 3). 

 

J = J0 
(qV/enkT)-1 [158]         (Eq. 8) 

 

where: J, the net current flowing through the diode; J0, dark saturation current (diode leakage 

current in the dark); V, applied voltage across the terminals of the diode; q, absolute value of 

electron charge; n, ideality factor; k, Boltzmann’s constant; T, absolute temperature (K). 

Note: the above was done strictly for cyt c553 based devices only as this specialised set-up 

made the dark saturation current assessment facile.  
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All photoelectrochemical measurements (PSI-LHCI based devices) were performed 

with a CH Instruments CHI660a electrochemical workstation (CH instruments, Inc.®) The 

working electrode clip was attached to the Ag bottom contact layer, and the counter and 

reference electrodes were clipped on the top Ag layer contact as depicted in Figures 95 and 

99 of Chapter 4.6. The light source employed was an Industrial Solar Cell Testing Light 

Source (150/300W) (Solar Light®) and the intensity output was 100 mW cm-2 for all the 

photocurrent measurements, reassessed independently with a quantum metre (HD 2302.01) 

(DeltaOhm®) to a value of 2,200 µmoles photons m-2 s-1. Samples were positioned in the same 

distance from the light source for all the measurements, with frequent verification of constant 

light intensity. Chronoamperometric data was collected with no bias between the reference 

and working electrodes for measurement of photo-driven open-circuit voltage changes or at -

250 mV for the measurements of the cathodic photocurrents. Short circuit currents were 

measured when the voltage was 0 V. 

The following equations were employed for determining fill factor (FF) and external 

quantum efficiency (η) of the PSI-LHCI-containing biophotoelectrodes: 

 

FF = (Voc – ln(Voc + 0.72))/Voc + 1       (Eq. 9) 

η = (Voc · Jsc · FF)/Pin x 100%       (Eq. 10) 

 

where: Pin, power input was determined to be 0.324 W (with AM 1.5 irradiation) into an 18 x 

18 mm2 biophotoelectrode surface used throughout this study. Normalised Voc was employed 

for all calculations and thermal equilibrium was assumed, with the ideality factor of 1 and the 

temperature 300 K.   

 

3.2.9.5 Scanning electron microscopy imaging 

All scanning electron microscopy (SEM) imaging was done using an SEM microscope 

(Phenom ProX, with EDS and a 15-kV acceleration voltage, PhenomWorld®). Briefly, four 

different regions of each cyt c553/p-doped Si electrode were visualised using a magnification 

of 36,000 x and photographed accordingly after appropriate scanning and selection of the 

regions. Images were only processed to improve brightness/darkness contrast with CorelDraw 

X7.  
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Chapter 4  Results 

 

Chapter 4.1 

 Purification and biochemical characterisation of photosystem I and its 

associated light harvesting antenna from Cyanidioschyzon merolae 

 

4.1.1 Introduction  

The photosynthetic machinery of a red thermoacidophilic microalga Cyanidioschyzon merolae 

has gained quite some interest over the last decade due to the unique evolutionary positioning 

of this species near the root of the red algal lineage that forms the basal group within 

eukaryotes, and diverged approximately 1.3 billion years ago within the most ancient algal 

order of Cyanidiales [159,160]. The photosynthetic machinery of this alga is considered an 

evolutionary intermediate between the apparatus of prokaryotic cyanobacteria and that of the 

eukaryotic phototrophs of the green lineage [66,99,161].  

 The red algal photosystem I with its associated light harvesting antenna (PSI-LHCI) 

supercomplex is evocative of the higher plant and green algal counterparts as it comprises the 

monomeric RC core complex composed of 13 subunits (PsaA-PsaF and PsaI-PsaO) [94,95] 

together with the crescent-like light harvesting antenna complex (LHCI) that binds 

asymmetrically to the RC on the PsaF/PsaJ side. The peripheral LHCI complex is composed 

of a variable number of Chla-binding Lhcr subunits depending on the species, with a minimal 

number of 4 subunits [96–98]. Interestingly, this red algal PSI-LHCI supercomplex retains the 

cyanobacterial PsaM subunit and lacks the higher plant PsaH and PsaG subunits implied in 

docking of the mobile LHCII antenna and formation of the LHCI belt, respectively [66]. 

Moreover, the chimeric nature of the two core subunits, PsaF and PsaL, which accommodate 

both cyanobacterial and plant-like structural domains further supports the evolutionary 

intermediate character of the red algal photosynthetic machinery [66,99]. 

 Recently, we have shown that PSI-LHCI from C. merolae is extremely robust due to 

its ability to (i) remodel its peripheral antenna complex to adjust the effective absorption cross-

section as a molecular mechanism of adaptation to varying light intensities (similar to the 

green algae Chlamydomonas reinhardtii) [66,99] and (ii), accumulate a photoprotective 

carotenoid zeaxanthin in the LHCI antenna and possibly the PSI reaction centre [91]. Although 
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these findings go beyond the scope of this PhD thesis, an optimised purification methodology 

which yields a rather generous amount of the active, ultrastable, and robust PSI-LHCI 

supercomplex is described here, as it provided the biological photoactive material used for 

both molecular hydrogen production in vitro (see Chapter 4.3), and construction of PSI-

LHCI-based nanodevices, including silver nanowire plasmonic bionanostructures (see 

Chapter 4.4) and biophotoelectrodes (see Chapter 4.6). This chapter shows that not only is 

the optimised purification methodology reproducible, but it yields generous amounts of highly 

active and robust PSI-LHCI complex outside of its native photosynthetic membrane 

environment that can be utilised for the subsequent nanoengineering studies. Here, and in 

Chapter 4.3, it is shown that the purified PSI-LHCI complex from C. merolae retains up to 

60-70% of its activity when treated with increased concentrations of organic solvents. This 

has facilitated the subsequent development of the functional assay for the in vitro H2 

production using this photoactive complex and organic proton reducing catalysts, as described 

in detail in Chapter 4.3. 

4.1.2 Purification and biochemical characterisation of the C. merolae PSI-LHCI complex   

In order to improve yield and purity of the PSI-LHCI supercomplex, a two-step anion 

chromatography purification protocol was developed in conjunction with a preparative size 

exclusion/desalting column followed by a final step of sucrose gradient fractionation to 

remove any residual phycobilisomes. During the anion exchange chromatography step, the 

PSI and PSII complexes were separated as described in detail in Chapter 3.2.3.3. Figure 35 

shows a representative chromatogram of the first step of anion-exchange chromatography 

(AEC) which was highly reproducible following the protocol optimisation.  
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Figure 35 

A representative anion-exchange chromatogram for purification of the crude C. merolae 

PSI-LHCI sample. Normally, 30-40 mg of Chla from solubilised thylakoids were loaded onto 

the DEAE-M column. For all moderate light (ML, 90 µE) thylakoids, a 4:1 intensity ratio of 

PSI-LHCI to PSII was observed for at least three independent preparations. PSI-LHCI 

fractions collected for spectroscopic analysis, pooling and desalting are highlighted in green, 

and normally comprised fractions 3-6.  

 

After elution from the DEAE-M column, fractions containing the pure PSI-LHCI 

complex (reproducibly fractions 3-6 in the chromatogram in Figure 35, highlighted in green, 

comprising a total volume of 20-21 ml), were characterised by RT absorption spectroscopy, 

then pooled and desalted by gel filtration chromatography to remove NaCl and any residual 

PBSs.  The samples were desalted as described in detail in Chapter 3.2.3.3. After desalting, 

the PSI-LHCI sample was subjected to a second AEC step on a DEAE-S column, then was 

subjected to a second chromatographic step on a desalting column followed by concentration 

on filtering devices. In the last step, the PSI-LHCI supercomplex was purified to homogeneity 

by sucrose gradient fractionation.  

Figure 36 displays a representative chromatogram of the PSI-LHCI complex 

purification using the second step of anion exchange chromatography (DEAE-S column). As 

shown in the figure, two PSI-LHCI subpools were identified (see retention times indicated 

above each peak). Monitoring of the two subpools by absorption spectroscopy revealed that 
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the first subpool (main peak in the centre of the chromatogram) contained a small amount of 

PBS and carotenoid contamination (see Suppl. Figure 1). The major PSI-LHCI subpool 

(which was highly devoid of PBS) was the most strongly bound one that eluted at 33.5 min. 

from the DEAE-S column. Interestingly, most of the pure PSI-LHCI complex eluted at the 

same retention time very reproducibly from preparation to preparation (33.5 min) but the other 

subpool, reproducibly eluted at ~ 44.5 min. as well, suggesting the presence of the damaged 

or possibly improperly formed complex in this particular subpool. As this subpool was not of 

interest, it was not investigated further. 

 

 

Figure 36 

A representative anion-exchange chromatogram for the purification of the C. merolae 

PSI-LHCI complex. Representative chromatogram of the fractions eluted from an AEC 

DEAE-S column used as the 2nd chromatographic purification step with monitoring the peak 

intensity at 678 nm. The diagonal line represents the increase in concentration of NaCl as a 

function of retention time.  

 

 After elution from the second anion exchange column, the PSI-LHCI-enriched 

fractions were characterised spectroscopically (see Figure 37) to select the purest PSI-LHCI 

fractions that were devoid of PBSs and carotenoid contaminations. These fractions normally 

eluted at the centre of the chromatogram and corresponded to the fractions with retention time 

of 33.5 min. (see Figure 36), or fractions no. 90-96 (see Figure 37). 



126 
 

 

Figure 37 

RT absorption of the C. merolae PSI-LHCI-containing fractions eluted from the DEAE-

S AEC column. After elution, PSI-LHCI-enriched fractions were analysed spectroscopically 

for the presence of PBSs. Typically, only fractions no. 90-96 were selected for pooling and 

subsequent desalting, as they were devoid of PBSs.  

 

 Following the spectroscopic characterisation, the PSI-LHCI-enriched fractions devoid 

of PBSs were desalted, and further purified by sucrose density fractionation as described in 

detail in Chapters 3.2.3.3 and 3.2.3.4. Figures 38 and 39 show representative sucrose gradient 

results, including fraction identification and the RT absorption spectra of fractions of interest, 

respectively. 
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Figure 38 

Discontinuous sucrose gradient fractionation of the C. merolae PSI-LHCI-enriched 

sample obtained by a two-step anion exchange chromatography-desalting approach. The 

fractions were collected following 20-h ultracentrifugation at 125,000 x g at 4ºC.  
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Figure 39 

Representative RT absorption spectra of bands 4 and 5 obtained through sucrose 

gradient fractionation (See Figure 38).  For clarity, RT absorption spectra of bands 1-3 are 

not shown, as these correspond to free carotenoids and contaminating PBSs (See Figure 38).  

 

As bands 4 and 5 were found to be spectroscopically identical, they were pooled and 

used together for all the further studies. The purity of these pooled bands was further 

confirmed by RT absorption, 77K fluorescence, RT fluorescence and SDS-PAGE analyses, as 

shown in Figures 40, 41 and 42.   
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Figure 40 

A representative RT absorption spectrum of the pure C. merolae PSI-LHCI 

supercomplex following sucrose gradient fractionation. Note the distinctive peaks at 438 

nm and 680 nm corresponding to Chla bound to PSI.  

 

 Prior to sucrose gradient fractionation, PSI-LHCI-enriched samples typically displayed 

a 77K emission spectrum with a major peak at 724 nm and a small peak at 675 nm when Chla 

was excited at 440 nm, as shown in Figure 41, Panel A. As can be clearly seen, 

allophycocyanin, phycocyanin and Chla peaks are well separated, indicating the lack of 

excitonic coupling between PSI-LHCI and PBSs, in contrast to Busch et al. [97], who 

suggested the existence of a PSI-LHCI subpool in which some functional coupling between 

PBSs and C. merolae PSI-LHCI complex may occur.   
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Figure 41 

Representative 77K excitation spectra of the C. merolae PSI-LHCI complex before and 

after sucrose gradient fractionation. Panel A: steady-state 77K PSI-LHCI emission spectra 

before sucrose gradient fractionation. Panel B: steady-state 77K PSI-LHCI emission spectra 

after sucrose gradient fractionation. Chla was excited at 440 nm, whereas PBSs were excited 

at 580 nm. Emission spectra were recorded from 600 nm to 800 nm. In some cases, a small 

amount of allophycocyanin remained bound to PSI-LHCI, as evidenced in Panel B. Note that 

Chla is not excitonically coupled to phycocyanin and allophycocyanin, as shown here by the 

two well separated peaks. SG, sucrose gradients.  
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  Although sucrose gradient fractionation allowed for the depletion of the majority of 

PBSs, a small amount of phycocyanin and allophycocyanin was still detectable in the pure 

PSI-LHCI sample, as evidenced by the 77K emission spectra of PBS in the sucrose gradient 

fractionated PSI-LHCI sample (see Figure 41, Panel B) and RT fluorescnece emission 

maxima observed for the same sample at approximately 630 nm (see Figure 42, Panels C and 

D).  

 

 

Figure 42 

Representative RT excitation and emission fluorescence spectra of the pure C. merolae 

PSI-LHCI sample devoid of PBSs following sucrose gradient fractionation. A: PSI-LHCI 

emission spectra at different excitation wavelengths. B: PSI-LHCI emission spectra at the 

same wavelengths (normalised). C: PSI-LHCI excitation spectra recorded at different 

emission wavelengths. D: PSI-LHCI excitation spectra (normalised at 625 nm). Samples were 

excited at 300-750 nm range.  
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To verify further the purity of the final PSI-LHCI sample, the complex was analysed 

by size-exclusion chromatography (SEC). Figure 43 shows a representative SEC 

chromatogram of the pure PSI-LHCI supercomplex following sucrose gradient fractionation, 

in which a single peak of PSI-LHCI complex can be observed, with no other contaminating 

proteins. Moreover, no signs of complex degradation are observed, further confirming 

biochemical integrity of the purified C. merolae PSI-LHCI complex.  

 

 

Figure 43 

A representative SEC chromatogram of ultrapure C. merolae PSI-LHCI sample. The 

sample was eluted at a flow rate of 2 ml min-1.  

  

Figure 44 shows the representative SDS-PAGE protein profiles of the crude (before 

sucrose gradient fractionation) and pure (after sucrose gradient fractionation) PSI-LHCI 

supercomplex samples, confirming the presence of all the major PSI protein subunits.  The 

PBSs were clearly visible in the crude PSI-LHCI sample in contrast to pure counterpart, where 

their presence was negligible following an additional purification step by sucrose gradient 

fractionation.  
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Figure 44 

A representative SDS-PAGE gel of the C. merolae PSI-LHCI samples before (crude PSI) 

and after (pure PSI) sucrose gradient fractionation. A 12% Tris-Tricine gel with 6 M urea 

was used to obtain protein profiles of the PSI-LHCI complex, as described in detail in Chapter 

3.2.7.2. SG, sucrose gradients. Protein size markers in kDa are indicated on the left. 

 

The photochemical activity of the purified PSI-LHCI sample was routinely assessed 

by an oxygen consumption assay (see Chapter 3.2.6). The PSI-LHCI samples purified in this 

study displayed very similar activities, ranging from 800 to 1,200 µmoles O2 mg-1 Chla hr-1. 

To test the robustness of the purified PSI-LHCI complex, the sample was subjected to a 

treatment with an organic solvent dioxane at the varying concentration. Figure 45 shows that 

the PSI-LHCI complex retains up to 60% of its photochemical activity after treatment with 

10% dioxane, often used for preparation of solar cells [139], indicating a relative robustness 

of this complex, even in the presence of significant amount of this organic solvent.  
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Figure 45 

Photochemical activity of the C. merolae PSI-LHCI complex in the presence of the 

increasing concentration of dioxane. The PSI-LHCI complex retains 60% of its activity in 

the presence of 10% (v/v) dioxane.  

 

4.1.3   Concluding remarks 

An improved and optimised procedure for purification of homogeneous, highly active PSI-

LHCI supercomplex from C. merolae was developed in this study. The PSI-LHCI complex 

was purified to homogeneity from cells grown at moderate light of 90 µE as specified in detail 

in Chapter 3.2.1.1. The purification methodology differed from the one described by Hippler 

and colleagues [97], in that the PSI and PSII complexes were separated first through a two-

step AEC protocol followed by sucrose gradient fractionation rather than starting from sucrose 

gradient fractionation followed by an AEC step as reported in [97]. The main advantage of the 

approach described in this Chapter is that the PSI-LHCI complex can be purified in large 

quantities to homogeneity, whilst still retaining its full photochemical activity. The amount of 

purified PSI-LHCI complex ranged from 3 mg to 11 mg Chla of the pure PSI-LHCI complex 
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per 30-40 mg Chla of thylakoids, corresponding to the overall yield of 10-27.5%, which was 

sufficient to conduct a large scale in vitro hydrogen production assays, prepare the plasmonic 

bionanoconstructs of this complex on silver nanowires, and perform the construction of the 

biosolar cells described in the subsequent chapters. The latter, as will be mentioned further on, 

demanded a considerable amount of the supercomplex, particularly for optimisation 

experiements. The optimised protocol presented here can be reproducibly used for rapid 

purification of highly active and robust PSI-LHCI complex that provides the suitable 

photoactive biological material for construction of biophotoelectrodes, solar-to-fuel 

nanodevices and nanoconstructs. 

 In contrast to the findings of [97], PSI-LHCI complex purified from the C. merolae 

cells grown at 90 µE was found to be excitonically de-coupled from residual PBSs identified 

in the final sample. As seen in Figure 41, the maxima corresponding to allophycocyanin, 

phycocyanin and Chla are well separated, suggesting excitonic decoupling between them. In 

contrast, Hippler and colleagues [97] observed some excitonic coupling between 

allophycocyanin, phycocyanin and a subpool PSI-LHCI purified from the low light (LL)-

grown cells of C. merolae. At the LL intensity, excitonic coupling between PBSs and PSI-

LHCI is believed to be advantageous to increase the light harvesting capability of the PSI-

LHCI complex. Nevertheless, such a putative PBS-PSI-LHCI complex is very labile and more 

stringent purification protocols were shown to disrupt PBS association with PSI [91]. Another 

explanation as to why Hippler and colleagues [97] observed some association of PBSs with 

their purified PSI-LHCI complex could be due to the fact that that they employed a salt of the 

lower ionic strength for the elution of their complex by AEC (MgSO4), compared to NaCl 

which was employed as the eluting agent in the present study. Moreover, the small 77K PBS 

emission peaks presented by Hippler and colleagues [97] in the same study in the PSI-LHCI 

fractions are well separated from the PSI-LHCI emission peak, indicating that the PBSs 

observed by these authors are not excitonically coupled with the PSI-LHCI supercomplex. 
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Chapter 4.2 

Heterologous expression, purification and biochemical characterisation of 

cytochrome c553 from Cyanidioschyzon merolae 

 

4.2.1 Introduction 

Cytochromes c (cyt c) play a central role in the biological electron transport systems and they 

have been a popular subject for study in main areas of protein chemistry and redox reactions 

for more than thirty years [162]. Our current knowledge of cyt c proteins has advanced 

enormously through the contributions of disciplines as different as, structural biology, physical 

chemistry, microbial physiology and a plethora of magnetic and optical spectroscopic 

techniques [162].  

A family of cyt c proteins comprise cationic haemoproteins composed of 94-114 amino 

acid (AA) residues depending on the species [163]. They are the most studied proteins, very 

likely due to their exceptional thermodynamic stability. Their characteristic red colour, due to 

the presence of the redox active haem group, makes protein purification easier when the cyt 

protein is in a sufficiently reduced state [162]. Cytochromes c can bind one or several c-type 

haems through two thioether bonds involving the sulphydryl groups of two Cys residues. The 

X-ray structure of mitochondrial cyt c has been solved in the late 1960s to up to 4.0 Å 

resolution, followed by several other X-ray structures from various sources which were solved 

to 1.5–2.8 Å resolution in the late 1960s and up to the early and late 1980s [164–167]. The 

small size, considerable solubility, exceptionally high helical content, and the presence of the 

haem cofactor have allowed mitochondrial, bacterial and algal cyt c proteins to be studied 

through a plethora of spectroscopic and other biophysical techniques [102,162,168,169].  

The structure of cyt c6 from the red alga Porphyra yeoenzis has been determined at 

1.57 Å resolution [102]. The overall structure of cyt c6 follows the topology of Class I c-type 

cytochromes in which the haem prosthetic group covalently binds to Cys14 and Cys17 within 

a CXXCH-consensus/recognition motif, and the iron has an octahedral coordination with 

His18 and Met58 as the axial ligands [102]. The redox potential of the Porphyra yeoenzis cyt 

c6 was determined via potentiometric redox titration to be +210 ± 10 mV [102]. A close 

homologue of cyanobacterial cyt c6, cyt c553 present in an extremophilic red microalga C. 
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merolae, is a mono-haem protein that is encoded by a single, intronless petJ gene present in 

the chloroplast genome of this alga [87]. 

For the cyanobacterial cyt c6 counterpart, the polypeptide chain consists of four α-

helices (I-IV), connected by loops [170]. The long N-terminal helix I (Ala3-His18) has a 

distinctive kink at Cys14. The two Cys residues forming the covalent bonds to the haem group 

and the fifth iron-containing ligand, His18, are also present in this helix. As in other cyt c6 

molecules, the three successive amino acids Ala19-Gly-Gly21 form a 310-helix followed by 

an Ω-loop composed of a AA sequence Asn22–Lys32 [170]. This Ω-loop separates helix I 

from the short helix II (Ala33–Tyr39). Residues Gly46–Ser49 and Leu40–Tyr43 form type 

VIII-β and type IV-turns, respectively [171].  

In the structure of P. yezoensis cyt c6, four α-helices, Asp2-Asn13 (I), Lys33-Ala38 

(II), Ile44-Asn53 (III) and Asp67-Lys83 (IV), are observed as fundamental elements of the 

secondary structure, with the arrangement of helices I and IV crossing at an angle of 90º C 

[102]. Helices II and III in this protein, are shorter than helices I and IV, and reside on different 

sides relative to the haem plane, whereas those of the mitochondrial counterparts are located 

on the side of the Met ligand [102]. In addition to these α-helices, the region Ala15-His18, 

which is involved in the covalent bonding of the haem prosthetic group in the red algal cyt c6, 

forms a normal α-helix (I’) rather than the 310-helix observed in the corresponding region of 

the cyanobacterial homologue [104,170].  

As described in Chapter 1.2.5, cyt c6/c553 proteins function as the mobile electron 

carriers, present on the lumen of thylakoids, and they shuttle electrons between cyt b6f complex 

and the photo-oxidised P700 reaction centre of the PSI complex. These proteins are the 

functional counterparts of plastocyanin, a small copper protein, in the lumen of chloroplasts 

from higher plants and green algae.  

In this study, the genes encoding five different variants of the C. merolae cyt c553 were 

cloned, co-transformed with a specific haem-maturation cassette and overexpressed in E. coli. 

The corresponding fully functional protein products were purified to homogeneity and 

thoroughly characterised biochemically and spectroscopically. The cyt c553 variants differed 

in lengths and structures of AA linkers engineered at the C-terminus of cyt c553, between the 

holoprotein and a His6-tag. All the variants were then applied as the electroactive modules of 

the biophotoelectrodes in order to investigate electron transfer kinetics at the interface between 

the electrode surface and the photoelectroactive modules within the all-solid-state silicon-

based biohybrid electrodes. The overall aim of this analysis was to select the ideal cyt c553 
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variant that would promote the most efficient direct electron transfer from the Si substrate to 

the photo-oxidised P700 RC within the complete biophotoelectrode, containing PSI-LHCI as 

the photoactive module (see Chapter 4.6). 

In E. coli, haem maturation enzymes are encoded by the ccmABCDEFGH gene cluster, 

found in the aeg-46.5 operon [172], and the mature enzymes are located in the periplasm 

and/or cytoplasmic sub-membrane region. The expression of the aeg-46.5 operon was found 

to be consistent with this localisation, as all bacterial cyt c proteins are either periplasmic or 

are present on the periplasmic side of the cell membrane [173]. The pEC86 vector is 

constitutively expressed in E. coli. This means that the genes encoding the haem maturation 

enzymes do not require the specific induction of expression [173]. Table 16 displays ccm 

genes and Ccm E. coli gene products, respectively. 

  

Table 16 

ccm genes and Ccm E. coli gene products  

Gene* E. coli gene product (no. of resides) 

ccmA/yejW CcmA (205) 

ccmB/yejV CcmB (219) 

ccmC/yejTU CcmC (245) 

ccmD/yoiM CcmD (69) 

ccmE/yejS CcmE (159) 

ccmF/yejR CcmF (647) 

ccmG/yejQ CcmG (185) 

ccmH/yejP CcmH (350) 

* The initial designation of the E. coli ORFs submitted to the GenBank database by Richterich et al. 

(accession number U00008) is given on the right hand side of the left panel (reproduced from [172]).  

 

 

4.2.2 Cloning of the C. merolae petJ gene and its variants   

The petJ gene in the chloroplast genome of C. merolae encodes cyt c553, being the structural 

and functional counterpart of the cyanobacterial cyt c6 [87]. As throughly overviewed in 

Chapter 1.2.5, maturation of thylakoid lumen proteins proceeds post-translationally through 

an intermediate precursor. Interestingly and in constrast to cyt c553, a close relative, the green 

algal cyt c6 from C. reinhardtii, is in fact synthesised outside the chloroplast as a larger 

molecular weight precursor and is subsequently processed to its mature size during protein 

translocation to the lumenal space [110–112,174]. This may be due to the fact that petJ is 

encoded in the nuclear genome in C. reinhardtii whereas in C. merolae petJ is encoded in the 

chloroplast genome [87]. The maturation of pre-apo-cyt c6 to its mature form involves several 
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post-translational steps, including translocation of the precursor across the chloroplast 

envelope and thylakoid membranes, processing of the pre-sequence, and covalent ligation of 

haem to the apoprotein [110–112,174]. The same process occurs in cyanobacterial cytochrome 

c6, where import to the thylakoid lumen is mediated by TOC and TIC proteins, as described 

in Chapter 1.2.5. In C. merolae, transcription and translation occurs in the chloroplast, as cyt 

c553 is encoded by the chloroplast genome, and, as the petJ gene is intronless, protein 

processing and assembly is believed to occur much more efficiently and quickly [110,111]. 

This could explain to some extent why the photosynthetic apparatus of C. merolae is so robust 

and able to cope so quickly with severe fluctuations in the immediate environment for extreme 

conditions of pH, light intensity and temperature as discussed in more detail in Chapter 1.2.5.  

The C. merolae cyt c553 AA sequence of 104 AA includes a 20-AA signalling peptide 

at the N-terminus, which is subsequently post-translationally excised [175,176], most likely 

after the cyt c553 precursor’s translocation into the thylakoid lumen [111,176]. The pre-pro-

protein has an observable size of 11.33 kDa, whereas the mature form of this protein is 9 kDa 

in size. Figure 46 shows the full DNA sequence of the intronless C. merolae petJ gene [87] 

as well as the AA sequence of the gene product, including the signalling peptide in the cyt c553 

pre-pro-protein. 

The aim of the present study, was to introduce four different peptides between the C. 

merolae cyt c553 holoprotein and its genetically engineered C-terminal His6-tag in order to 

investigate electron transfer properties between the haem group and the electrode surface 

within all-the-solid state biolelectrodes following immobilisation of this protein via its His6-

tag on the Ni-NTA-functionalised semiconductor substrate of p-doped Si. 

The AA sequence and physicochemical properties of each linker peptide are 

summarised in Table 17. Figure 47 shows the corresponding 3D structures of all the cyt c553 

variants genetically engineered in this study. The 0AA variant comprises the cyt c553 

holoprotein genetically engineered with a His6-tag at its C-terminus. The 5AA peptide linker 

is composed mainly of small, polar amino acids allowing for limited structural flexibility 

particularly at the more charged C-terminal end of the sequence. The 10AA linker comprises 

mainly polar Gly/Ser repeats and a charged Glu residue allowing for a higher degree of 

structural flexibility of the immobilised cyt c553 variant compared to 5AA variant. The 12AA 

linker corresponds to the original linker peptide encoded within the multiple cloning site of 

the expression vector between the cyt c553 holoprotein sequence and a C-terminal His6-tag. It 

comprises polar Gly/Ser residues, non-polar Val/Ala/Leu residues, and negatively charged 
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Asp/Glu residues. Finally, the 19AA variant was designed to introduce a semi-helical peptide 

linker to the immobilised cyt c553 holoprotein. For this variant the Phi/Psi angles of each AA 

residue were determined to be equal to -62/-41, which corresponds to the average values found 

experimentally for α-helixes which are non-geometrically ideal [177].  

 

 

Figure 46 

petJ nucleotide sequence and cyt c553 primary structure. A: petJ nucleotide sequence. B: 

cyt c553 pre-pro-protein AA sequence, with the N-terminal signalling peptide highlighted in 

red.  
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Table 17 

Physicochemical properties of cytochrome c553 variants  

 

 

 

 

 

Figure 47 

Modelling of 3D stuctures of His6-tagged cyt c553 variants with the linker peptides. A: 

0AA, B: 5AA, C: 10AA, D: 12AA, E: 19AA (note that all the cyt c553 holoprotein sequences 

are identical). Modelling of AA linkers into the crystal structure of cyt c6 from Synechococcus 

sp. PCC 7002. The cyt c6 structure (PDB code: 4EIC) [171] is the highest resolution type I c-

type cytochrome (cyt c553 from C. merolae is a type I c-type cytochrome) crystal structure 

Name of 

variant/

linker 

type 

AA sequence Linker 

length 

(AA no.) 

Molecular 

weight 

(Da) 

Theoretical 

pI 

0 AA cyt c553-H6 

 

0 0 N/A 

5 AA cyt c553-GSGLE-H6 

 

5 461.4 4.00 

10 AA cyt c553-GSGSGSGSLE-H6 

 

10 836.8 4.00 

12 AA cyt c553-GSSVDKLAAALE-H6 

 

12 1160.2 4.37 

19 AA cyt c553-

AEAAAKEAAAKEAAAKALE-H6 

19 1814.0 4.95 
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available to date and was used to model in five distinct AA linkers used in this study. The 

haem group of cyt c6 with its central Fe atom is displayed in red. 

 

For genetic engineering of all the cyt c553 variants used in this study, a cloning strategy 

was designed, whereby five different constructs containing the petJ sequences were cloned 

into the pET28b-(+) vector, and subsequently subcloned (including the C-terminal His6-tag 

encoded within the pET28b-(+) vector multiple cloning site (MCS) sequence) into the 

pBAD/HisA expression vector. As the pBAD/HisA vector only encodes for a His6-tag at the 

N-terminus of the MCS, this subcloning step was essential due to the cleavage of the N-teminal 

His-tag upon N-terminal proteolytic processing of the cyt c553 precursor during its 

translocation to the periplasm of E. coli, where the haem synthesis and its insertion into the 

mature cyt c553 protein also occur. Figure 48 summarises the cloning strategy. 

 

Figure 48 

C. merolae petJ gene cloning strategy. Briefly, the petJ PCR products were engineered so 

that an NcoI and SacI restriction sites would be present at the N- and C-terminus of the 

sequence, respectively. Thus modified PCR products were subsequently cloned into the 

pET28b-(+) vector, subsequently, they were excised with NcoI and PstI to contain the full petJ 

sequence with the C-terminal His6-tag, and finally subcloned into the pBAD/HisA expression 

vector. Using this strategy, five distinct recombinant plasmids were cloned, including 

pBAD/HisA-0AA, pBAD/HisA-5AA, pBAD/HisA-10AA, pBAD/HisA-12AA and 

pBAD/HisA-19AA containing no (0AA) or 4 different peptide linkers between the cyt c553 
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holoprotein and its C-terminal His6-tag. Refer to Chapter 7.2 for the maps of all plasmids 

used in this study.  

 

Figure 49 shows the gel analysis of the five different PCR products produced in this 

study. For cyt variants 0 and 5, some non-specific products were apparent; however, the main 

PCR product was ~ 300 bp in size, as expected for the petJ gene. Following ligation of the 

PCR products with the pET28b-(+) vector, five petJ-pET28 recombinant vectors were 

produced (see Figure 48). Figure 50 shows the restriction analysis results, demonstrating the 

appropriate size of the petJ insert (300 bp) and linearised vector (5,600 bp). The correct 

sequence of all the recombinant vectors was additionally directly verified by DNA sequencing. 

The NcoI- and PstI-digested inserts were ligated with the pBAD/HisA vector which had been 

previously linearised with the same restriction enzymes. Restriction analysis of all the 

recombinant vectors (see Figure 51) confirmed the correct insert and vector size and insert 

orientation. Furthermore, all the finally cloned petJ sequences containing the distinct peptide 

and His6-tag sequences were directly verified by DNA sequencing.  
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Figure 49 

Gel analysis of the PCR products obtained for five different variants of cyt c553. As 

expected, the PCR petJ products for the longer AA linker variants (19AA, 12AA and 10AA) 

are larger due to the longer peptide sequences present. The PCR reaction for the 5 and 0AA 

was not completely specific, yet most the product was the petJ gene with appropriate 

sequences as expected. The name of each cyt c553 variant is presented above each lane and it 

is simplified by the number of AA in the peptide sequence. From left to right: 19; 19AA, 12; 

12AA, 10; 10AA, 5; 5AA, 0; 0AA. 
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Figure 50 

Restriction analysis of the recombinant petJ-pET28b-(+) vectors. As expected, the size of 

the digested petJ fragments was approximately 300 bp, and that of the linearised vector 

approximately 5,600 bp. The name of the restriction enzymes is displayed in red. The name 

of each cyt c553 variant is presented above each lane in blue and it is simplified by the number 

of AA in the peptide sequence. From left to right: 19; 19AA, 12; 12AA, 10; 10AA, 5; 5AA, 

0; 0AA. 
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Figure 51 

Restriction analysis of the final recombinant petJ-pBAD/HisA vectors. As expected, the 

size of the digested petJ fragments was approximately 300 bp, and that of the linearised vector 

approximately 4,300 bp, which is more than 1,000 bp smaller than the size of pET28b-(+). 

The name of the restriction enzymes is displayed in red. The name of each cyt c553 variant is 

presented in blue above each lane and it is simplified by the number of AA in the peptide 

sequence. From left to right: 19; 19AA, 12; 12AA, 10; 10AA, 5; 5AA, 0; 0AA. 
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4.2.3 Heterologous expression of the petJ gene variants in E. coli 

In order to express His6-tagged cyt c553 holoprotein and its peptide linker variants, each 

recombinant petJ-pBAD/HisA (0-19 AA) expression vector was co-transformed into E. coli 

together with the pEC86 vector encoding for the ccm haem maturation cassette [172]. This 

cassette includes the ORF (yejWVUTSRQP) genes encoding CcmABCDEFGH haem 

synthesis and processing enzymes as shown in Table 16 of Chapter 4.2.2.1. Co-transformants 

with pBAD/HisA 0AA, pBAD-HisA 5AA, pBAD-HisA 10AA, pBAD-HisA 12AA and 

pBAD-HisA 19AA and pEC86 vectors were produced in two E. coli strains, MC1000 and 

TOP10, and the overall expression yield of cyt c553 holoproteins was assessed by redox 

difference spectroscopy after induction of the petJ gene expression for three controlled time 

intervals (2 h, 4 h and 20 h). Two expression systems, pET28b-(+) and pBAD/HisA (both 

double transformed with pEC86), were compared for the yield of expressed cyt c553 

holoprotein variants, under the identical expression conditions (see Chapter 3.2.1.3). Of the 

two expression vectors used, the pBAD/HisA system proved to be useful for further expression 

studies of cyt c553, as the pET28b-(+) overexpression system yielded the inclusion bodies 

under the experimental conditions used, resulting in no or extremely low amount of cyt c553 

holoprotein produced in the soluble fraction of the E. coli cell lysate, below the spectroscopic 

detection level (data not shown).  

Two strains of E. coli, TOP10 and MC1000, were used for optimisation of cyt c553 

holoprotein synthesis. To this end, the appropriate double transformants were obtained, as 

described above. The first double transformant obtained from the recombinant plasmid 

pBAD/HisA 10AA and pEC86 vector, was employed for the initial optimisation studies, as 

shown in Figure 52. Overall, the double transformant of the MC1000 expression strain 

produced lower yield of the 10AA cyt c553 variant protein (5.3 mg redox active cyt c553 L
-1)  

compared to the expression level of this protein in the double transformants of the TOP10 

strain (18.93 mg redox active cyt c553 L
-1). Therefore, the TOP10 strain was used for all the 

further cyt c553 expression studies.  

The overall yields of all the cyt c553 variants produced in the double transformants 

under optimised expression conditions varied between 12.5 mg L-1 and 24.78 mg L-1, and are 

summarised in Table 18. 
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Table 18 

Yield of redox active cyt c553 variants depending on E. coli expression strain (after 

optimised expression conditions, as specified in Chapter 3.2.1.3).  
 

His-tagged cyt c553 variant double 

transformant 

Yield of redox active cyt c553 variants 

depending on expression strain employed 

(TOP10 yield/MC 1000 yield) 

pBAD/HisA 0AA/pEC86 18.82 mg L-1/4.1 mg L-1 

pBAD/HisA 5AA/pEC86 24.78 mg L-1/6.8 mg L-1 

pBAD/HisA 10AA/pEC86 18.93 mg L-1/5.3 mg L-1 

pBAD/HisA 12AA/pEC86 12.50 mg L-1/5.0 mg L-1 

pBAD/HisA 19AA/pEC86 15.96 mg L-1/2.0 mg L-1 

The amount of cyt c553 was determined by redox difference spectroscopy using ΔAbs 

(red553nm-ox553nm) and extinction coefficient 24.1 mM-1, as described in Chapter 3.2.4.3. The 

yield is calculated in mg of redox active cyt c553 protein purified from 1 L of E. coli culture. 
 

 It is important to mention that at the time that pilot expression experiments were being 

performed, the cell disruption protocol was still being optimised. The fully optimised protocol 

was employed for the data presented in Table 18 using the bead beating technique (see 

Chapter 3.2.1.7). For the data presented in Figures 52-55, sonication was employed, as this 

was the most accessible method for cell disruption at the time the experiments were 

performed.  

 Initially, the batch method with Ni-NTA resin was used for the optimisation of cyt c553 

10AA variant purification. Following optimisation of haem maturation time period (see 

Figure 52) by monitoring cyt c553 reduced spectra on an equal volume basis, in which the 

increase of absorbance for the distinctive α (553nm), β (521 nm) and γ (416 nm) peaks of 

redox active reduced cyt c553 was observed, the expression studies recombinant cells were 

allowed to grow for 20 hours directly after the expression induction.  
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Figure 52 

Optimisation of cyt c553 holoprotein synthesis in the E. coli TOP10 expression strain. The 

data shows the expression levels of petJ gene product (10AA variant) in pBAD/HisA 

10AA/pEC86 double transformants of the TOP10 E. coli strain. A total yield of 1.8 mg L-1 of 

redox active cyt c553 was obtained after 4 h expression induction, compared to the maximum 

yield of 18.93 mg L-1 after 20 h induction (displayed as overnight induction in the figure). For 

spectral analysis 100 µL of the total cell lysate was diluted to a 1000 µL final volume with 

standard phosphate buffer as specified in Chapter 3.2.4.3. 

 

 The optimisation of the batch purification method began by investigating the optimal 

imidazole concentration necessary for maximal elution whilst minimising elution of non-

specifically bound proteins. Application of 30 mM–60 mM imidazole in the wash buffer 

resulted in some minimal release of cyt c553 from the Ni-NTA matrix, with the elution of the 

main pool of this protein at a 250 mM imidazole concentration. As can be observed from 

Figures 53, 54, and 55, the cyt c553 elution was quite non-specific and on many occasions a 

considerable amount of cyt remained bound to the Ni-NTA resin. Moreover, Panel B of 

Figure 55 shows that the SDS-PAGE elution profile at 250 mM imidazole clearly 
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demonstrates non-homogeneity of the eluted cyt sample, rendering this method suboptimal for 

further purification studies of cyt c553 variants.   

 

 

Figure 53 

Yield optimisation for cyt c553 batch purification with Ni-NTA in the E. coli Top10 

expression strain. A: Enrichment of cyt c553 (10AA variant) elution fraction monitored by 

reduced absorption spectroscopy on an equal total protein basis (570 µg protein, as determined 

by the Bradford colourimetric assay). B: 553 nm absorbance enrichment calculated from A. 

C: Overall enrichment of reduced-oxidised (redox difference) change in absorbance at 553 

nm, demonstrating that all fractions are active in electron transfer. Induced: total cell lysate 

including overexpressed cyt c553; Unbound: non-binding proteins; Wash: cyt c553 elution at 

low (60 mM) imidazole concentration; Elution: cyt c553 elution at high (250 mM) imidazole 

concentration.  
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Figure 54 

Spectroscopic assessment of the batch purification of His6-tagged cyt c553 on an equal 

volume basis. Note the increased absorbance at 553 nm of the wash fractions with an 

increasing concentration of imidazole, corresponding to the increasing amounts of the His6-

tagged reduced form of cyt c553 (10AA variant) in the respective wash fractions. With the 

batch method, cyt c553 normally eluted completely at 250 mM imidazole.  
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Figure 55 

Spectroscopic assessment of the batch purification of His6-tagged cyt c553 on an equal 

protein basis. A: redox difference absorption spectra of the fractions on an equal protein basis 

(350 µg, as determined by the Bradford colourimetric assay). B: SDS-PAGE protein profile 

of the fractions obtained by the batch purification method. From left to right: M, protein size 

marker; WT, total E. coli protein extract from a wild type TOP10 culture; I, induced total cell 
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lysate including overexpressed cyt c553 (10AA variant); Unbound: non-binding proteins; WI, 

1st wash (50 mM imidazole); WII, 2nd wash (60 mM imidazole); E, elution (250 mM 

imidazole). The 20-kDa band observed in fraction E most likely corresponds to improperly 

denatured cyt c553.  

 

 Due to the lack of homogeneity of the cyt c553 samples obtained by batch purification 

method (see Figure 55, Panel B), an alternative approach was used by employing the FPLC 

purification of cyt c553 (initially 10AA variant) using commercially available Ni-NTA His-

TRAP columns (see Chapter 3.2.3.1.1). Figure 56 shows the representative chromatograms 

obtained by loading 20 mg of redox active cell lysate containing the 10AA cyt variant 

(determined by redox difference absorption spectroscopy) onto the His-TRAP® column. Two 

well separated pools of the 10AA variant of cyt c553 were obtained which corresponded to the 

reduced and oxidised form of this protein. The reduced pool was 3-fold more abundant than 

the oxidised one, as shown in Figure 56. 
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Figure 56 

Representative elution chromatograms for FPLC-IMAC purification of cyt c553. 20 mg 

of redox active E. coli lysate containing 10 AA cyt variant (as determined by redox difference 

absorption spectroscopy) was loaded onto the His-Trap Ni-NTA column. A: Absorption at 

416 nm vs retention time. B: Absorption at 416 nm vs. fraction number. C: Absorption at 553 

nm vs. retention time. D: Absorption at 553 nm vs. fraction number. Absorbance values on 

Panels B and D correspond to neat absorbance.  
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4.2.4 Biochemical and spectroscopic characterisation of cytochrome c553 variants 

Once the protocol for FPLC cyt c553 purification was optimised, a large effort was put to 

maximise protein yield without compromising homogeneity. It was shown that upon loading 

of 30 mg of redox active lysate onto the 1 ml His-TRAP columns, chromatograms displayed 

three main peaks, corresponding to different pools of cyt c553. At first it was believed that these 

pools corresponded to different isoforms of the protein, but later it was shown that they 

reflected different oxidations states of the protein, with the first pool always being the most 

reduced and the most impure, compared to the second and third pool which were more 

homogenous. Pool 3 corresponded to the oxidised cyt c553, and was always bound to the His-

TRAP column with greatest specificity and strength. Panel A of Figure 57 shows a typical 

chromatogram of an FPLC purification of cyt c553 (10AA variant) using 30 mg of redox active 

lysate bound to the His-TRAP® column as the starting material. 

To verify the presence of the His6-tag at the C-terminus of the cyt c553 holoprotein, 

SDS-PAGE replica gels were analysed in parallel by Coomassie (R-250) staining and IMAC 

detection of the His6-tag by the HisProbe-HRP detection. Panel B of Figure 58 shows an 

SDS-PAGE protein profile of the eluted fractions (A) together with the parallel HisProbe 

detection (B) of the corresponding His6-tagged cyt c553 bands in elution Pools 1 and 2.  

Following optimisation of the cyt c553 overexpression, purification and spectroscopic 

characterisation with the 10AA linker variant, the same optimised protocol was performed for 

all the other variants of cyt c553. Figure 59 shows the respective SDS-PAGE profiles of the 

five preparations of cyt c553 variants, including the profiles of two 10AA linker variant 

preparations where 20 and 30 mg of redox active lysate was processed, as evidenced for 

preparations displaying two and three pools, respectively. As mentioned previously, these 

pools were found to be biochemically identical, yet differing in the oxidation state of the 

purified cyt c553. This was an interesting observation, as this difference in oxidation state for 

the distinct pools was strictly reproducible. 
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Figure 57 

Biochemical and spectroscopic characterisation or FPLC-IMAC purified cyt c553 

samples. Data are presented for samples purified from 30 mg of redox active E. coli lysate 

containing the 10AA variant, as determined by redox difference absorption spectroscopy. A: 

A553 vs fraction number. B: 553 nm enrichment on 300 µg of protein as determined by the 

Bradford colourimetric method. C: Redox difference spectra of Pool 2, the most homogeneous 

from this preparation as evidenced in Panel D. D: SDS-PAGE protein profiles of various 

fractions obtained during FPLC purification of His6-tagged cyt c553. 16% SDS-PAGE gels 

were loaded with 15 µL of each fraction per lane (equal volume basis) to assess enrichment of 

each fraction with cyt c553. The bands corresponding to cyt c553 are boxed. M, protein size 

marker; WT, total E. coli protein extract from a wild type TOP10 culture; I, induced total cell 

lysate including overexpressed cyt c553 (10AA variant); FT, flow-through; W, wash (50 mM 

imidazole); E, elution (175-250 mM imidazole). Note that Pool 2 corresponds to the most 

homogeneous cyt c553 pool isolated.  
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Figure 58 

FPLC purification of His6-tagged cyt c553. Data is presented for samples (10AA variant) 

purified on His-TRAP Ni-NTA columns from 20 mg of redox active E. coli lysate (as 

determined by redox difference absorption spectroscopy). A: Representative IMAC 

chromatogram showing absorption of each fraction at 553 nm vs. fraction number. B: SDS-

PAGE protein profiles of each fraction. M, protein size marker; WT, total E. coli protein 

extract from a wild type TOP10 culture; I, induced total cell lysate including overexpressed 

cyt c553 (10AA variant); FT, flow-through; E, elution (175-250 mM imidazole). Note that Pool 

2 corresponds to the most homogeneous elution fractions. Bottom-right: HisProbe-HRP 

detection of the His6-tagged purified cyt c553 fractions. Note that only bands belonging to 

eluted cyt c553 display a chemiluminescent signal, confirming the presence of the His6-tag cyt 

c553 in Pools 1 and 2. 
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Figure 59 

SDS-PAGE protein profiles of the purified variants of cyt c553. The name of the variant 

and the AA sequence of the linker peptide is presented on top of each profile preparation. For 

the 10AA cyt c553 variant, two preparations were purified, one employing 20 mg of redox 

active lysate and the other one employing 30 mg of the redox active lysate. As can be 

distinguished, the preparation where 20 mg of redox active lysate was employed contained 2 

pools, in contrast to the one where 30 mg of redox active lysate was employed, where 3 pools 

can be distinguished. All the lanes were run on an equal volume basis. M, protein size marker; 

Crude, unbound lysate; FT, flow-through; Pool 1 and 2, pools corresponding to each 

purification where 20 mg of redox active lysate was employed as displayed in the previous 

chromatograms (see Figures 57 and 58), Pools 1-3, pools corresponding to each purification 

where 30 mg of redox active lysate was employed as displayed in the previous chromatograms 

(see Figure 57).  
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Figure 60 displays the protein profiles for all the cyt c553 variants used in this study 

(Panel A), confirming not only the purity of the samples obtained through the optimised 

IMAC approach but also their full redox activity, as shown by redox diffrerence spectroscopy 

(Panels B and C). 

 

 

 

Figure 60 

Optimised purification, spectroscopic and biochemical characterisation of cyt c553 

variants. A: SDS-PAGE protein profiles of the five cyt c553 variants synthesised in E. coli (30 

μg of redox active cyt c553 per lane as determined by redox difference spectroscopy and the 

Bradford colourimetric assay) in conjunction with a representative HisProbe detection of His6-

tagged protein products (10AA cyt c553 variant). B: A representative FPLC chromatogram of 

cyt c553 (10AA variant) purified from E. coli via IMAC technology when 20 mg of redox 

active lysate was loaded into the His-TRAP column. C: A representative redox difference 

absorption spectrum of cyt c553 variant (10AA) showing reduced and oxidised species. Spectra 

from all other variants were identical (see Suppl. Figure 2).  
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4.2.5 Concluding remarks 

A robust, reproducible and scalable C. merolae cyt c553 overexpression procedure was 

developed, which yielded over 12.5-25 mg of redox active protein per litre of E. coli culture 

(depending on the variant of cyt c553). The overexpression system described here reports the 

highest yield of redox active c-type cytochrome compared to other cyt c expression studies 

reported to date [153,170,178–181]. The system involves a tightly controlled expression 

system based on the pBAD/HisA vector, combined with a constitutively expressed cyt c-type 

maturation cassette in the E. coli strain TOP10. Although the genes encoding five distinct 

variants of cyt c553 exhibited different expression levels, they were all well above 10 mg of 

redox active protein per litre of the recombinant E. coli culture. Optimisation of conditions 

such as selection of the most appropriate E. coli host strain, choice of the inducible expression 

system in conjunction with constitutively expressed haem maturation enzymatic system, and 

cell disruption technique all assisted dramatically with the enhancement of the overall yield of 

redox active cyt c553 holoprotein. 

All the five cyt c553 variants isolated in this study proved to be fully active in electron 

transfer, as evidenced by redox difference absorption spectroscopy and redox responsiveness 

of cyt c553 functionalised nanodevices upon external illumination as discussed in Chapter 4.5 

and shown in Suppl. Figure 4. Moreover, the overexpression and purification system 

optimised in this PhD study is reproducible in yielding redox active lysate and purified protein 

to almost homogeneity in all the cases, as evidenced by Figures 59 and 60.  
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Chapter 4.3 

In vitro hydrogen production using C. merolae  

PSI-LHCI complex and cytochrome c553  

 

4.3.1 Introduction 

4.3.1.1 Hydrogen and Nature inspired proton-reducing catalysts 

Hydrogen gas combustion produces only water as a side product. The reaction is 

characterised by an extremely low enthalpy of combustion, at -286 kJ/mol. As a result, 572 kJ 

of energy is released, which is thermodynamically quite impressive. These, along with many 

other desirable properties of molecular hydrogen, make this compound “the holy grail” of 

sustainable energy. To this end, hydrogen gas as a secondary energy carrier which can be 

stored, transported and used in manifold applications is actively investigated [182]. As 

displayed in Figure 61, molecular hydrogen (hydrogen gas, 100% H2) displays the largest 

volumetric energy density value (280 kWh/m3), compared to other forms of hydrogen fuel, 

making it the most desired form of hydrogen fuel for energy storage. 

 

 

Figure 61 

Energy densities for different hydrogen based energy storage systems. Figure reproduced 

from [182]. Note the large discrepancy between pumped hydrogen (far right) and H2 (100%) 

on (far left). H2 (100%); Pure hydrogen gas, H2 (GuD); liquified hydrogen, AA CAES; 

Advanced Adiabatic Compressed Air Energy Storage Hydrogen, pumped hydro; pumped 

hydrogen gas produced by hydroelectricity.  
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As PSI forms an exceptionally long-lived charge-separated state P700+ FB
- (∼60 ms) 

and is characterised by an exceptionally low redox potential associated with the distal FB 

cluster (Em of -0.58 eV), it provides a sufficient driving force to reduce protons to H2 at neutral 

pH. For these reasons, there is significant interest in utilising the highly stable forms PSI for 

generation of solar fuels, such as molecular hydrogen. As described in Chapter 1.3.3.1, a 

number of in vitro and solid-state H2 production approaches with the successful incorporation 

of PSI have yielded very promising results, reporting up to 3,000 µmol H2 mg Chl−1 h−1 

[66,135] (see Figure 23).  

To date, only higher plant and cyanobacterial PSI have been used for H2 production 

using in vitro reconstitution and solid-state systems [66]. As highlighted in Chapter 4.1, C. 

merolae PSI-LHCI supercomplex displays exceptional long-term stability and robustness, also 

at high light intensities of up to 20,000 µmoles photons m-2 s-1 ([91,139] Chapter 4.1), making 

it the candidate par excellence for in vitro hydrogen generation, when hybridised with the 

specific proton reducing catalysts (PRCs).  

 It is undisputed that platinum (Pt) is the metal catalyst of choice when it comes to 

proton reduction, as it displays very high activity and stability at very low overpotential [183]. 

In contrast to iridium, there should be sufficient Pt for Terawatt (TW) scaled up hydrogen 

production as enough turnonvers occur with considerably low Pt loadings [184]. Nonetheless, 

scarcity and high cost of this metal impose obvious limitations for its large-scale industrial 

employment, and thence, avoiding a dependence on this noble metal is by all possible means 

desirable. Many efforts have been made in the development of highly active, robust proton-

reduction catalysts based on earth-abundant materials during the last decade [185]. Various 

metal phosphides (e.g. CoP, FeP and MoP) and NiMo perform well under basic conditions, 

and they have shown to be very active PRCs at low pH values [183]. Over the last decade, the 

gap between these earth-abundant catalysts and Pt has been considerably diminished, but 

improvements are still essential. Nanostructuring of the catalysts aides with the activity 

improvement, but at the cost of corrosion. Improvement of PRCs robustness, either by material 

choice or specific supramolecular organisation by light harvesting/stabilising modules is 

therefore greatly desired.  

 Nature provides us with PRC counterparts which work rather efficiently. Excellent 

catalysts are found in the form of hydrogenase (H2ase) enzymes that reduce protons at near-

zero overpotential [183]. Unfortunately, most [FeFe]-H2ases (the most active class of this 

enzyme) are known for their severe aerobic instability, limiting their practical use in solar-to-
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fuel devices [183]. This fact has inspired the development of molecular mimics of these 

enzymes in the form of stable, efficient, inexpensive alternatives [183]. Several transition 

metal complexes, mostly based on Co, Ni and Fe, have been synthesised and evaluated with 

the ultimate purpose of improving catalyst performance and understanding the mechanistic 

milieu of proton reduction [186]. Many [FeFe]-H2ase mimics have been synthesised and 

investigated as PRCs [187]. The latest generation of these catalysts have displayed very high 

activities and stabilities in water at low pH, although the low overpotential of the natural 

system is difficult to parallel [188]. Modifications of the outer coordination sphere of these 

natural mimics might result in the enhancement of catalytic performance due to a similar 

phenomenon observed in the stimulation of the [FeFe] active site of H2ase by neighbouring 

amino acid residues [183]. Figure 62 displays the structural similarity between the active site 

of [FeFe]-H2ase and the [FeFe] centre of an efficient, state-of-the-art [FeFe] PRC.  

 

 

Figure 62 

Structural similarity between the active site of [FeFe]-H2ase and the [FeFe] catalytic 

centre of PRC #20. A: Schematic representations of the active sites in [FeFe]-H2ase (left), 

[NiFe]-H2ase (centre) and [Fe]-H2ase (right). The presence of H- and H2 ligands in [FeFe]-
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H2ase and [Fe]-H2ase, respectively, has yet to be confirmed. B: Hydrogen-evolution reaction 

(HER) catalytic cycle proposed for compound #20 from [188]. Figures reproduced from [187].  

 

 One of the best PRCs known to date is the DuBois-type Ni(II) complexes with amine-

based containing diphosphine ligands. Some of these catalysts have demonstrated to reduce 

protons at rates greater than 100,000 s-1 in organic solvents, although at an overpotential of ~ 

0.6 V [150]. A rather simple adjustment of the coordination sphere around the Ni(II) by 

introduction of amino ligands in the side chains of the suspended amine ligand ameliorates 

reversible H2 addition/release [189]. This results in catalytic rates for proton reduction in 

acidic water of greater than 300 s-1 at near-zero overpotential demonstrating the influence of 

the outer coordination sphere on the catalytic centre and ultimately its influence in the catalysis 

reaction rates and stability of these catalysts [183].  

 A great number of approaches have been pursued to anchor molecular catalysts on 

surfaces employed in the assembly of device structures. Other strategies employ noncovalent 

adsorption techniques, such as supramolecular binding motifs, π-π interactions, and 

hydrophobic interactions [183]. Moreover, metal-ligand interactions are an alternative 

significant approach to bind catalysts on metal oxide surfaces (for instance, with phosphate 

binding, carboxylate, hydroxyamate or siloxane) [190]. In most of the examples reported thus 

far, the application of electrodes with molecular catalysts results in a rapid drop (normally 

within one hour) of the catalytic activity due to either cleavage or deactivation of the catalyst 

[183]. Clearly, more efforts are required to upsurge the robustness of such systems [183].  

 To date, several PRCs, capable of reducing protons in vitro under simulated solar light, 

have shown a lot of promise [191]. However, many of these catalysts are unable to reduce 

hydrogen at times due to poor electron transfer because of catalyst aggregation, charge 

recombination between the catalyst and the substrate, or instability of the catalyst after the 

first cycle of the proton reduction reaction [191].  

 

4.3.1.2 PSI-based systems for hydrogen production 

There is a precedent in the literature for the employment of Pt and earth-abundant Co 

and Ni-based catalysts in conjunction with PSI for photogenerated hydrogen production. 

Platinization of PSI has been achieved by two different methods to date. Iwuchukwu and 

colleagues [140] have achieved platinization of PSI via a photo-precipitation of 

hexachloroplatinic acid [PtCl6]
2- onto cyanobacterial (Synechocystis PCC 6803 and T. 
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elongatus) PSI monomers, while Utschig and colleagues [192] have achieved platinization of 

Synechococcus leopoliensis and Synechococcus lividus PSI monomers via electrostatic 

association of ~ 3.0-nm Pt nanospheres. The former methodology yielded a maximal hydrogen 

production rate of 5.5 µmol H2 mg Chl−1 h−1 while the latter yielded a maximal hydrogen 

production rate of 244 µmol H2 mg Chl−1 h−1. These studies demonstrate that highly efficient 

photoproduction of H2 can be obtained for a self-assembled, noncovalent complex between 

PSI and Pt nanoparticles [140,192]. As abovementioned, due to cost and scarcity Pt is not 

suitable for potential large-scale industrialisation of H2 generation process and hence, 

hybridisation of PSI has been investigated with the molecular catalysts based on earth-

abundant elements, such as Co and Ni. 

Utschig and colleagues [130] have reported an alternative strategy for H2 production 

that involves the adsorption of a Co-based catalyst onto the PSI complex, in the vicinity of FB 

cluster [130]. One of the benefits of this particular design is that both the redox potential and 

chemical structure for the specific covalent binding of the catalyst can be tuned through known 

chemical modifications, and this might enable future modular creation of multiple hybrid 

systems with different functions [130]. Cobaloxime, a well-known proton reduction 

electrocatalyst, was chosen for this purpose. Cobaloximes are pseudomacrocyclic 

bis(dimethylglyoxamato)cobalt complexes that were originally developed as vitamin B12 

mimics and found to catalyse electrochemical proton reduction [193,194]. Unlike hydrogenase 

mimicking catalysts, cobaloximes in general are oxygen tolerant, readily synthesised, and the 

H2 production catalysis proceeds at a low overpotential ([130] and references therein). 

Cobaloximised-PSI hybrids resulted in a record hydrogen production at a rate of 120 µmol H2 

mg Chl−1 h−1, half of that reported for the platinized counterpart [130]. These results are 

comparable to those presented in this Chapter for the C. merolae cobaloximised PSI-LHCI 

supercomplex, as shown in the subsequent sections.  

Utschig and colleagues extended their work by performing a non-covalent 

hybridisation of mononuclear DuBois-type Ni catalyst [Ni(P2
PhN2

Ph)2](BF4)
2] to the acceptor 

side of Synechococcus leopoliensis and Synechococcus lividus PSI monomers [195]. The 

methodology was very similar to that reported previously for cobaloxime [130], although the 

record hydrogen production rate was much lower, close to 30 µmol H2 mg Chl−1 h−1. It is 

important to mention that the attempts to hybridise either cobaloxime or DuBois-type Ni 

catalysts have only been performed to date on cyanobacterial PSI, which as mentioned in 
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Chapter 1.2.3, is trimeric and lacks the LHCI complex characteristic of the eukaryotic PSI 

complex.  

This Chapter describes development of an in vitro system for the biohybrid H2 

photoproduction using the eukaryotic, extremophilic red algal PSI-LHCI supercomplex 

conjugated with Pt nanospheres, cobaloxime or a small library of DuBois-type Ni molecular 

catalysts. It has been recently shown that the C. merolae PSI-LHCI supercomplex operates 

under a wide range of pH conditions [91] which would normally impair PRCs, such as very 

basic or very acidic conditions as these conditions would render the catalysts prone to 

degradation and most likely unwanted chemical rearrangements [150,183,191]. Moreover, the 

preliminary data presented in this chapter indicates that C. merolae PSI-LHCI complex may 

play a critical role in stabilising the selected PRCs under intense and prolonged illumination, 

which, as aforesaid, is highly desirable for continued, robust and scalable molecular hydrogen 

production. 

 Importantly, it is shown in this Chapter that cyt c553 is essential to promote PSI-based 

in vitro H2 production, as in the absence of cyt c553 no hydrogen evolution was detected. The 

data presented here is a testament to the fact that employing nature’s most perfect 

photoconverter in conjunction with man-made PRCs and the photoconverter’s native electron 

donor lays the foundation to developing a cheap and potentially scalable technology for 

production of molecular hydrogen. 

 

4.3.2  Optimization of PSI-LHCI:mononuclear nickel catalyst, PSI-LHCI:cobaloxime 

and PSI-LHCI:platinum hybrid formation 

Several novel Dubois-type mononuclear Ni catalysts were employed for this study and their 

chemical structures are presented in Figure 63. These catalysts were synthesized via advanced 

organic synthesis methods in the laboratory of Prof. Joost Reek (University of Amsterdam). 

The PRCs were adsorbed on the C. merolae PSI-LHCI supercomplex, following the procedure 

described for cobaloxime and cyanobacterial PSI [130], as described in detail in Chapter 

3.2.8. 

To determine optimal molar ratios of PRC/PSI-LHCI for the highest rates of H2 

production, various amounts of the constituents were incubated together and tumbled in the 

dark to allow for physisorption of PRCs on the acceptor side of C. merolae PSI-LHCI 

supercomplex. After removal of the unbound catalyst, the PSI-LHCI/PRC hybrid was 

analysed for the amount of the catalyst adsorbed on PSI-LHCI complexes by inductively 
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coupled plasma-graphite furnace atomic absorption spectrosocopy (ICP-GFAAS) in the 

Expert Analytical Centre, Biological and Chemical Research Centre, University of Warsaw, 

Poland. The results of this analysis are presented in Table 19. 

 

Figure 63 

Chemical structures of proton-reducing mononuclear nickel catalysts and cobaloxime 

employed in this study. Please refer to name coding for all the data presented in this Chapter. 

Mwt (MW) (g·mol-1) is displayed above each compound structure. 
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Table 19 shows that the molar ratios of PSI-LHCI supercomplex to DuBois-type Ni 

catalysts (compounds 1-4, see Figure 63), cobaloxime and Pt were directly proportional to the 

initial molar ratios of the hybrid constituents, but on several occasions, a saturation point was 

reached. This was the case particularly for compounds #2, #3, cobaloxime and interestingly 

for Pt as well. Cobaloxime presented a rather interesting precipitate in the bottom of the 

Eppendorf when the 1:60 molar ratio was employed for the preparation for the PSI hybrid 

complexes, whereas such a precipitate was not observed when a 1:40 molar ratio was 

employed. A similar phenomenon was observed for compound #2, also at the higher catalyst 

loading (1:50 and 1:60 molar ratios, respectively). Interestingly, these were the only two 

hybrid complexes (compound #2:PSI-LHCI and cobaloxime:PSI-LHCI) that yielded 

hydrogen production under the conditions used in this investigation. It is believed that in order 

to get a successful delivery of electrons to the metal active site, the catalyst should be present 

in the vicinity of the FB cluster of PSI. As the C. merolae PSI-LHCI complex is considerably 

larger compared to cyanobacterial PSI monomer, which lacks the peripheral antenna complex, 

it is unsurprising that this complex requires a much higher catalyst loading than that reported 

for the cyanobacterial counterpart hybrid complexes [130,195] in order to ensure the presence 

of at least one catalyst in the vicinity of the FB cluster.  

 As observed in Figures 64 and 65, the activity of PSI-LHCI and its UV-VIS RT 

absorbance spectra are barely affected by the hybridisation of this complex with the DuBois-

type Ni catalysts or cobaloxime. Moreover, the hybrid complexes retain in average 60% of the 

photochemical activity upon hybridisation with the PRCs. Figures 66-70 summarise the 

optimisation of the binding of the Dubois-type mononuclear Ni catalysts and cobaloxime to 

the C. merolae PSI-LHCI complex, presenting the final molar ratios of the catalyst and PSI-

LHCI complex obtained in this study. Figure 71 displays the molar ratios obtained for the 

Pt/PSI-LHCI hybrid complexes containing ~3.0 nm Pt nanopspheres(s) (assumed 

nanostructure and diameter). The nanospheres are believed to have a diameter of ~3.0 nm as 

the protocol from [156] was reproduced sensu stricte (see Chapter 3.2.8.1). Figure 71 shows 

that even at high molar ratios of Pt and PSI-LHCI used for hybridisation, only one Pt 

nanosphere adsorbs onto one PSI-LHCI complex, similar to the results obtained by Utschig 

and colleagues [192]. 
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Table 19 

ICP determination of PRC:PSI-LHCI molar ratios in the PSI hybrid complexes 

Compound 

number 

PSI-LHCI:PRC initial 

molar ratio used for 

hybridisation 

Final PRC:PSI-LHCI molar ratio1 

1 1:2 subs 

1 1:4 subs 

1 1:6 subs 

1 1:20 1-2 

1 1:40 6 

1 1:50 7 

1 1:60 8-9 

2 1:2 subs 

2 1:4 subs 

2 1:6 subs 

2 1:20 1 

2 1:40 3 

2 1:50 3-4* 

2 1:60 2-3* 

3 1:2 subs 

3 1:4 1  

3 1:6 subs 

3 1:20 2-3 

3 1:40 10-11 

3 1:50 16-17 

3 1:60 18-19 

4 1:2 subs 

4 1:4 1-2 

4 1:6 2-3 

4 1:20 14-16 

Cobaloxime 1:2 subs 

Cobaloxime 1:4 subs 

Cobaloxime 1:20 3-4 

Cobaloxime 1:40 7-8 

Cobaloxime 1:60 In solution saturation reached* 

Pt 1:4 subs 

Pt  1:8 subs 

Pt 1:20 ~1 

Pt 1:40 ~1 

Compound numbers 1-4 correspond to Ni-based molecular catalysts as presented in Figure 

63.  
1as determined by elemental analysis by ICP-GFAAS analysis.  

*as observed by formation of precipitate most likely due to in solution saturation of the 

catalyst. 

Subs, sub-stochiometric. 
 

 



170 
 

 

Figure 64 

Mononuclear DuBois-type Ni PRC/PSI-LHCI hybrid complex activity. The 

photochemical activity of the PSI hybrid complexes is expressed as the percent of the control 

corresponding to the untreated C. merolae PSI-LHCI sample. The PSI-LHCI hybrid 

complexes retain over 60% of the activity, confirming the robustness of the supercomplex, 

and showing almost 100% activity in the presence of 2% acetone in the incubation buffer. The 

numbers to the right correspond to the compound number (as in Figure 63) and molar ratio 

employed (see Table 19). Acetone was employed for solubilisation of all the DuBois-type 

mononuclear Ni catalysts used in this study. A final PSI-LHCI hybrid suspension contained 

2% acetone (v/v), and was compared to the control PSI-LHCI sample in the buffer containing 

the equivalent amount of acetone (top right, 2% acetone).  



171 
 

 

Figure 65 

RT absorption spectra of hybridised PRC/PSI-LHCI samples. The untreated sample was 

measured at twice the concentration of Chla to get a higher definition of the peaks, but all the 

other samples were found to be spectroscopically identical. Displayed on the right is the 

number of the compound (see Figure 63) followed by the PRC/PSI-LHCI molar ratio (see 

Table 19).  
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Figure 66 

PRC catalyst #1 loading onto C. merolae PSI-LHCI. PRC:PSI-LHCI molar ratios were 

determined by ICP elemental analysis. This is a diagrammatic representation of the results 

shown in Table 19. The number of moles and the chemical structure of the catalyst are shown.  
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Figure 67 

PRC catalyst #2 loading onto C. merolae PSI-LHCI. PRC:PSI-LHCI molar ratios were 

determined by ICP elemental analysis. This is a diagrammatic representation of the results 

shown in Table 19. The number of moles and the chemical structure of the catalyst are shown.  
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Figure 68 

PRC catalyst #3 loading onto C. merolae PSI-LHCI. PRC:PSI-LHCI molar ratios were 

determined by ICP elemental analysis. This is a diagrammatic representation of the results 

shown in Table 19. The number of moles and the chemical structure of the catalyst are shown.  
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Figure 69 

PRC catalyst #4 loading onto C. merolae PSI-LHCI. PRC:PSI-LHCI molar ratios were 

determined by ICP elemental analysis. This is a diagrammatic representation of the results 

shown in Table 19. The number of moles and the chemical structure of the catalyst are shown.  
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Figure 70 

Cobaloxime loading onto C. merolae PSI-LHCI. PRC:PSI-LHCI molar ratios were 

determined by ICP elemental analysis. This is a diagrammatic representation of the results 

shown in Table 19. The number of moles and the chemical structure of cobaloxime are shown.  
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Figure 71 

Platinum nanoparticle loading onto C. merolae PSI-LHCI. The ICP analysis determined 

approximately 1.0 ± 0.2 Pt nanoparticles per PSI-LHCI complex, even at molar excess of Pt 

used for hybridisation. The nanosphere is assumed to have an approximate diameter of ~3.0 

nm as the protocol from [156] was reproduced. The number of moles is shown as per the 

previous figures. This is a diagrammatic representation of the results shown in Table 19.  
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4.3.3 Investigation of in vitro hydrogen production using PRC/PSI-LHCI hybrid 

complexes and cytochrome c553  

Following optimisation of the binding of the DuBois-type Ni catalysts, cobaloxime or Pt to PSI-

LHCI complex, the photo-driven hydrogen production was investigated for the selected 

PRC/PSI-LHCI hybrid complexes obtained in this study. Typically, H2 production 

reconstitution assays were composed of 60-100 nM given PSI-LHCI hybrid complex, 100 mM 

sodium ascorbate and 15-20 µM cyt c553 (10AA variant, see Figure 72). All the reaction 

mixtures were illuminated with a white light intensity of 8,130 μE m-2 s-1. The catalysis was 

performed in an air-tight cell which was directly coupled to a gas chromatography (GC) 

system to determine in situ H2 production.  

As shown in Table 20, of all the PRCs tested only compound #2 and cobaloxime 

yielded measurable amounts of molecular hydrogen upon continuous illumination for up to 16 

h. Interestingly, both the mononuclear Ni catalyst and cobaloxime were used at the same molar 

ratios for preparation of the PSI-LHCI hybrids. Figures 73 and 74 display the total hydrogen 

yield obtained with these two types of PRC/PSI-LHCI hybrid complexes after 16 h continuous 

illumination with white light of 8,130 μE m-2 s-1. They were determined as 100 µmoles and 

140 µmoles of H2 evolved over 16 h using 100 nM PSI-LHCI/cobaloxime and 100 nM PSI-

LHCI/compound #2 PRC hybrid systems, respectively. The total TON values were 500,000 

mol H2 (mol PSI)-1 and 700,000 mol H2 (mol PSI)-1, for the PSI-LHCI/cobaloxime and PSI-

LHCI/compound #2 Ni PRC hybrid systems, respectively. The TOF values were 521 mol H2 

(mol PSI)-1 min-1 and 729 mol H2 (mol PSI)-1 min-1 for the PSI-LHCI/cobaloxime and PSI-

LHCI/compound #2 Ni PRC hybrid systems, respectively.  

Importantly, the hydrogen production was absolutely dependent on the presence of cyt 

c553 in the reaction mixture (Figure 75), in agreement with the previous studies 

[130,140,192,195]. Figure 75 shows that in the absence of cyt c553 no photo-induced H2 

production was detected with the PSI-LHCI/PRC hybrid system, employing the same 

conditions as those for Figures 73 and 74.   
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Figure 72 

Diagrammatic representation of a typical in vitro hydrogen production assay using PSI-

LHCI complex. The crystal structure of a T. elongatus PSI monomer is shown instead of PSI-

LHCI from C. merolae, as no structure for the latter is currently available. As an example of 

a PRC, cobaloxime is shown in close proximity to the PsaE, PsaC and PsaD subunits, as it is 

believed to be in sufficient proximity of the FB cluster to allow for an efficient turnover of 

proton reduction. In all the H2 production assays of this study, the 10AA cyt c553 variant was 

used (see Chapter 4.2). Note, the components are not to scale.  



180 
 

Table 20 

Photo-driven hydrogen production by PRC/PSI-LHCI hybrid complexes  

 

Compound 

number 

PSI-LHCI:PRC1 

 

Hydrogen produced in the  

in-vitro reaction mixture2 

1 1:20 TBD 

1 1:40 - 

1 1:50 TBD 

1 1:60 TBD 

2 1:20 TBD 

2 1:40 +* 

2 1:50 TBD 

2 1:60 TBD 

3 1:4 TBD 

3 1:20 TBD 

3 1:40 - 

3 1:50 - 

3 1:60 - 

4 1:4 TBD 

4 1:6 TBD 

4 1:20 - 

cobaloxime 1:20 TBD 

cobaloxime 1:40 + 

Pt 1:20  TBD 

* data for a single assay due to the lack of readily available PRC.  

TBD, to be determined, as the PRC was not available at the time of the experiments or the 

system presented technical limitations, as was the case for Pt. 
1Molar ratios used for preparation of the PRC/PSI-LHCI hybrid complexes. 
2The reaction mixture comprised 100 mM NaAsc, 15-20 µM cyt c553 and 60-100 nM 

PRC/PSI-LHCI hybrid, and was illuminated continuously for 16 h with white light of 8,130 

μE m-2 s-1. 
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Figure 73 

Hydrogen production with the PSI-LHCI/cobaloxime hybrid complex. The hybrid 

constituents were mixed at a 1:40 molar ratio for precipitation of cobaloxime onto PSI-LHCI 

(equivalent to 3-4 cobaloxime molecules per PSI-LHCI supercomplex). The reaction mixture 

contained 100 nM PSI-LHCI/PRC hybrid and 15-20 µM cyt c553, added freshly before 

illumination. The TOF was 521 mol H2 (mol PSI)-1 min-1 during continuous illumination at 

8,130 μE m-2 s-1 for 16 h. The peak area (y-axis) was determined by integrating the hydrogen 

peaks generated in the GC system; before each round of experiments the GC system was 

calibrated with a given volume (measured analytically) of hydrogen gas as a control. This 

calibration was repeated three times before the experiment to ensure reproducibility of the 

generated peak area and precision of measurements. Refer to Chapters 3.2.8.4 and 3.2.8.5 for 

details.   
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Figure 74 

Hydrogen production with the PSI-LHCI/compound #2 hybrid complex. The hybrid 

constituents were mixed at a 1:40 molar ratio for precipitation of the PRC onto PSI-LHCI 

(equivalent to 3 PRC molecules per PSI-LHCI supercomplex). The reaction mixture contained 

100 nM PSI-LHCI/PRC hybrid and 15-20 µM cyt c553, added freshly before illumination. The 

TOF was 729 mol H2 (mol PSI)-1 min-1 during continuous illumination at 8,130 μE m-2 s-1. The 

peak area (y-axis) was determined by integrating the hydrogen peaks generated in the GC 

system; before each round of experiments the GC system was calibrated with a given volume 

(measured analytically) of hydrogen gas as a control. This calibration was repeated three times 

before the experiment to ensure reproducibility of the generated peak area and precision of 

measurements. Refer to Chapters 3.2.8.4 and 3.2.8.5 for details. 
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Figure 75 

Lack of hydrogen production in the absence of cyt c553. The hybrid constituents were mixed 

at a 1:40 molar ratio for precipitation of the PRC onto PSI-LHCI (equivalent to 3-4 PRC 

molecules per PSI-LHCI supercomplex, both for compound #2 or cobaloxime). The reaction 

mixture did not contain any cyt c553. No photo-driven H2 production was detected after 16 h 

of continuous illumination of the PSI-LHCI/PRC hybrid, following identical conditions as in 

Figures 73 and 74. The peak area (y-axis) was determined by integrating the hydrogen peaks 

generated in the GC system; before each round of experiments the GC system was calibrated 

with a given volume (measured analytically) of hydrogen gas as a control. This calibration 

was repeated three times before the experiment to ensure reproducibility of the generated peak 

area and precision of measurements. Refer to Chapters 3.2.8.4 and 3.2.8.5 for details. The 

GC system was so sensitive that it can be assured that no hydrogen was detected.  
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Figure 76 

Photochemical activity of the C. merolae PSI-LHCI complex in the presence of the 

increasing concentration of acetonitrile and DMSO. The PSI-LHCI complex retains ~60% 

of its activity in the presence of 10% (v/v) organic solvents used for solubilisation of PRCs, 

similar to the activity measured in the presence of 10% dioxane (Figure 45, Chapter 4.1) 

[139]. 
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4.3.4 Concluding remarks: Hydrogen as a potential fuel of the future. Challenges for 

implementation of a hydrogen-based economy. 

Although the results presented in this chapter are to some extent preliminary due to limited 

availability of some of the most promising PRCs, they present a potential ‘green’ alternative 

to produce molecular hydrogen as the solar fuel, using the simple biological components: 

photoactive robust PSI-LHCI complex and its natural electron donor, cyt c553. In fact, the C. 

merolae PSI-LHCI complex is ideal for these purposes, as it can operate in extreme conditions 

and still retain nearly 100% of its photochemical activity [91], even in the presence of up to 

10% organic solvents needed for dissolving the organic PRCs, such as dioxane [139] (Figure 

45, Chapter 4.1), dimethyl sulfoxide (DMSO) (this study, Panel A of Figure 76) and 

acetonitrile (this study, Panel B of Figure 76). The ongoing work focuses on further 

optimisation of hydrogen production in this biohybrid system, including fine tuning of the 

catalyst loading, illumination intensity, and the pH of the reaction mixture.  Nevertheless, this 

study provided a rigorous analysis of both the catalyst loading and amount of cyt c553 required 

for the sustained photo-driven H2 production. Importantly, it demonstrated that a sufficient 

amount of cyt c553 is critical (Figure 75) for the proton reduction cycle to occur efficiently and 

continuously under prolonged, intense illumination. No hydrogen gas was produced in the 

absence of cyt c553, indicating that this electroactive protein is essential for biomediated 

electron transfer between the sacrificial electron donor (ascorbate), and the photooxidised 

P700 reaction centre of the PSI-LHCI/PRC hybrid complex (Figure 75).   

To date, hydrogen can be produced as a solar fuel by photochemical water splitting 

through different strictly inorganic realisable approaches, such as homogeneous solutions and 

a variety of photoelectrochemical cells (PECs) and dye-sensitised photoelectrochemical cells 

(DSPEC) [113]. More pertinently, PSI-based hydrogen production has been attempted 

numerously in the past [66]. The H2 production rates (TOF values) obtained in the present 

study were 3-fold and 16.6-fold higher than those published for cyanobacterial PSI/PRC 

hybrid systems employing cobaloxime [130] and a similar Ni mononuclear PRC [196], 

respectively. As mentioned previously in this thesis (Chapter 1.3.3.1) [66]), one of the 

limitations of employing in solution systems is “loss of electron transfer efficiency” due to 

electron diffusion in solution. Despite this inherent in-solution limitation, PSI-LHCI from C. 

merolae displays unprecedented robustness as it operates in such high light illumination 

intensity, specifically that of 8,130 μE m-2 s-1, which is most likely the main reason for 

significantly higher TOF for H2 production obtained in this study. This has not been reported 
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to date for its cyanobacterial counterpart (either monomeric or trimeric forms of PSI) and 

seems to be an inherent robustness of PSI-LHCI from this extremophilic red microalga [91].  

As mentioned in Chapter 1.3.3.1 and [66], the ideal hydrogen producing configuration 

should employ a semi-solid state or ideally and all-solid-state system. As shown in Chapter 

4.6, all-solid-state configurations which incorporate PSI-LHCI are highly desired so as to 

maximise electron transfer competence to P700 and enhance the overall solar-to-hydrogen 

efficiency, resulting in ameliorated hydrogen yields. Heberle and colleagues reported a 

spectacular configuration, whereby they demonstrated that immobilising a PSI-[NiFe]-H2ase 

(oxygen tolerant) on a gold electrode resulted in the impressive hydrogen production rate of 

3,000 µmoles H2 mg-1 Chla hr-1 [135]. The work was revolutionary at the time, as it featured 

one of the first attempts to minimise the distance between the P700 reaction centre of PSI and 

the electrode surface, by employing IMAC technology (His6-tagged PSI was chelated to a Ni-

NTA functionalised gold electrode). Although the configuration was semi-solid-state (PMS 

was employed to relay electrons between gold and P700, as an artificial electron donating 

module to P700), it demonstrated rather elegantly that the key to enhancement of electron 

transfer competence lies in minimising the distance between the modules and matching redox 

potentials of the modules such the electron transfer chain/cascade is thermodynamically 

favourable [5,9,66,135]. Whether an oxygen tolerant H2ase or a synthetic PRC is employed in 

conjunction with PSI or PSI-LHCI for hydrogen production, the key to enhancing hydrogen 

production rates and ultimately hydrogen production yield lies in minimising electron transfer 

diffusion by employing all-solid-state set-ups over in-solution-based systems together with 

more robust photocatalytical biohybrid systems [5,9,66]. As a matter of fact, the work from 

Heberle and co-workers [135] still holds the record for hydrogen production rate for a semi-

solid-state PSI-H2ase assembly to date [9,66,135].  

The aforementioned efforts are still the object of intensive research; unfortunately, 

none has yet reached a technological development enabling market entry. The main 

bottlenecks encompass poor choice of redox compatible constituents, improper 

nanoarchitecture and instability and/or availability of the modules/materials [5,9,66] along 

with cost-effectiveness at the GW/TW scale [196]. Moreover, although attempts of PSI-based 

hydrogen production systems have been successful (this work, [130,135,140,192,195], 

scalability seems to be the culprit of severe technical limitations. Therefore, none of these 

attempts have been able to compete with current PEC, DSPEC and PV-electrolyser system 

technologies which have a much greater potential for scalability [113].  
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Currently, PEC cells cannot compete with PV-electrolyser systems [113]. Although 

PEC technology is still at its infancy, a life-cycle net energy assessment of a large-scale PEC 

hydrogen production facility has been attempted recently [197]. The data obtained give an 

approximate estimation of the dimension of the H2 production effort. To make a 1 GW annual 

average plant, that means, 610 metric tons of H2 per day, corresponding to the amount needed 

to power 0.62% of all the present light duty US vehicles and assuming a 10% solar-to-

hydrogen efficiency, a PEC solar collection area of 41.1 km2 would be needed (180 km2 of 

gross facility land area) [197]. Scalability is also an issue, evidently. Different routes to obtain 

hydrogen by means of electricity production by PV cells have been followed by water 

electrolysis [113]. This technology is considered mature because both PV panels and water 

electrolysers have been commercially available for quite some time. Unfortunately, it is by no 

means cost effective. It has been shown that the electricity consumption accounts for more 

than 80% of the final hydrogen production price [198]. Hence, the initial investment costs for 

the electrolysis systems are less appropriate, as compared, for instance, to fuel cell systems. 

With an electricity price of 2.4 € kW h-1 (which is very close to the current electricity price in 

western Europe as of 2016 (slightly higher this year)), the production cost has been estimated 

to be 2.6 € kg-1 H2, to be compared with the cost of hydrogen produced by steam reforming of 

methane, which is approximately 1 € kg-1 H2 [198]. Recently, technological advances to reduce 

energy consumption of hydrogen production have been freshly overviewed [199].  

Industrialising such a technology could potentially solve the following issues: (i) 

system engineering, (ii) materials and fabrication procedures and (iii) safety and 

environmental issues [200]. The number of power-to-gas plants that produce hydrogen from 

fluctuating renewable power sources is increasing, either using it for electricity generation or 

injecting it into the gas distribution system [201]. Most of them, however, have been in 

operation for a short time, unfortunately, so that long term experience is still lacking.  

Even though PV-electrolyser systems are the most mature technology for H2 

production to date, research on PEC cells must be pursued, because it may very well have 

lower environmental impact and, in the long run, might be the most cost-effective solution 

[113]. If we leave aside the problem of hydrogen production, there are several other scientific 

and technological hurdles on the pathway to a hydrogen-based economy [113]. Perhaps the 

most challenging issue is, hydrogen storage for mobile applications [113]. Compared to 

hydrocarbons, hydrogen gas has good energy density by weight (33.3 kWh kg-1 vs. 13.9 kWh 

kg-1 for natural gas), but poor energy density by volume. To increase its volumetric energy 
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density, hydrogen may be liquefied (2.4 kWh L-1 at -253º C vs. 5.8 kWh L-1 of liquefied natural 

gas) but unfortunately, 30-40% of the energy content of the hydrogen is required for its 

liquefaction (See Figure 61). Moreover, insulation for liquid hydrogen tanks is usually 

expensive and problematic [113]. The preferred solution in most hydrogen cell prototype cars 

is hydrogen compression. Even at 700 atm, hydrogen has a 4.6 times lower energy content per 

volume than gasoline, which means that the hydrogen tank must be much larger. Moreover, 

compressed hydrogen tanks have to be cylindrical to ensure integrity under high pressure. 

Furthermore, this proves to be problematic as integration in a road vehicle remains a technical 

challenge. As shown in Figure 61 and as discussed at the beginning of this Chapter, pure 

hydrogen gas (100% H2) has the largest volumetric energy density value (280 kWh m-3), 

compared to other forms of hydrogen fuel, making it the most desired form of hydrogen fuel 

for energy storage. 

An alternative to address the storage issue is the employment of porous organic 

materials or by using metals or alloys that absorb hydrogen to form hydrides [202]. To be 

efficient, the absorption, desorption processes must be reversible, complete and fast—a 

challenging combination of demanding requirements. Moreover, hydrogen distribution, either 

in a centralised fashion (production in big plants and storage in relatively few locations) or in 

a decentralised fashion (production on site by distributed electricity) presents challenges [113].  

 An alternative route for fuel production involves the combination of CO2 with 

hydrogen obtained through electrolysis from wind and solar energy to produce synthesis gas 

(syngas, a mixture of H2 and CO). Syngas can then be converted into various types of synthetic 

fuels, such as methane, methanol, and dimethyl ether. Diesel and synthetic petrol may also be 

produced from syngas Fischer–Tropsch process (F-T) [113].  

Solid proton conducting electrolysis cells (SPCECs) and solid oxide electrolysis cells 

(SOECs) may electrolyse not only H2O, but also a mixture of H2O and CO2 to produce syngas 

[113]. Thence, by co-electrolysis of H2O and reduction of CO2, it is possible, in principle, to 

produce synthetic fuels from renewable energy, a rather viable approach that would avoid 

major modifications of existing infrastructure in the transport sector [113] (Figure 77).  

 In conclusion, with our current electricity prices, high-temperature electrolysis cannot 

compete with hydrogen production by steam reforming of natural gas. Nonetheless, FT-diesel 

can be produced by co-electrolysis of CO2 and H2O at a price that although higher than that of 

hydrogen produced by H2O electrolysis is comparable with that of diesel obtained from fossil 

fuels, 1.1–1.2 € L-1 [113,198]. Figure 77 displays a scheme of a solar-powered co-electrolysis 
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of H2O and CO2 yielding syngas that can be used to produce diesel fuel by the Fischer–Tropsch 

(F-T) synthetic process. 

 

 

 

Figure 77 

Scheme of solar-powered co-electrolysis of H2O and CO2 reduction, yielding syngas that 

can be used to produce diesel fuel by the Fischer–Tropsch synthesis. Reproduced from 

[113]. 
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Chapter 4.4 

Cytochrome c553 as a facilitator of plasmonic interactions between PSI-

LHCI complex and silver nanowires 

4.4.1 Introduction 

Due to the unprecedented quantum yield of PSI-LHCI supercomplex (in terms of formation 

of the primary radical pair) and its extensive absorption cross-section, incorporation of this 

complex into state-of-the-art plasmon-generating nanostructures is highly desired for 

generation of novel biosolar cells and biophotosensors of improved efficiencies compared to 

existing non-plasmonic biophotovoltaic devices. In the case of biomimetic systems employing 

natural photosynthetic units, excellent progress has been made on improving their inherent 

optical and photochemical properties by nanoengineering of electromagnetic interactions 

between these natural light harvesting complexes and plasmon-emitting metallic 

nanoarchitectures [203–207].  

For metallic nanoparticles with sizes in the range of the wavelength of incoming 

photons, localised plasmon resonance events occur, and these events can be used for 

modifying the optical properties of photoactive molecules located in their neighbouring 

vicinity. In particular, the efficiency of both absorption and emission may be influenced by 

plasmonic interactions [208,209], as well as intra-molecular energy transfer [210]. The nature 

of these rather fascinating and peculiar interactions between the plasmonic nanostructures and 

the photosynthetic modules depend strongly on their distance, and particularly, and as shown 

in this thesis, their geometry and order with respect to one another [209,211–215]. It has also 

been shown that in the case of complex multipigment-containing systems, such as natural 

photosynthetic complexes, plasmon excitations in metallic nanoparticles can activate emission 

of otherwise non-emitting Chl molecules [204]. This opens up a unique possibility to utilise 

metallic nanostructures as highly advanced nanotools for tailoring the function of naturally 

evolved photosynthetic complexes, especially in the context of construction of solar-to-fuel, 

solar cell and biosensor devices of improved efficiencies.  

This chapter describes development of a novel approach for the controlled assembly 

of the C. merolae PSI-LHCI complex on silver nanowires (AgNWs) that yields the 

considerable improvement of the absorption cross-section of this light harvesting 

macromolecular complex. By orienting the PSI-LHCI complex via its native electron donor, 

the His6-tagged cyt c553 protein on Ni-NTA functionalised AgNWs, an improved absorption 
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of this complex was achieved within the spectral range that is normally not absorbed by this 

photosystem. Moreover, no fluorescence quenching was observed for such novel 

nanoarrangements, which is normally not the case for this type of plasmonic-complex 

fluorophore nanoconstructs. Comprehensive spectroscopic studies, including fluorescence 

imaging, show clearly the scale of the absorption improvement, including the precise 

quantitification of fluorescence enhancement in such novel biohybrid plasmonic 

nanoarchitectures. In addition, time-resolved fluorescence measurements reveal almost 

complete homogeneity of the nanostructure fabricated using the cyt c553-mediated 

bioconjugation, in contrast to the randomly oriented PSI-LHCI sample.  

 

4.4.2 Photosynthesis and plasmonics 

The intricate and inevitable ability of photosystems to absorb light and transfer energised 

electrons within their reaction centres have powered the research to employ natural 

photosynthetic light-harvesting modules in the vicinity of plasmonic nanostructures in order 

to investigate the effects of plasmonic energy transfer on the photo-physical properties of such 

nanobiohybrid structures. Recently, it has been demonstrated that the light-harvesting 

efficiency of Chls can be drastically enhanced by tuning the plasmon frequency of the 

constituent silver nanostructure (in this case silver island films) to coincide with the maximal 

photon flux of sunlight [216]. These findings demonstrate that the Chls interacting with 

plasmons can be even better light harvesting molecules around the red/infrared region than 

Chls that are unassisted by plasmons. The study serves as another example of how solar energy 

can be utilised more efficiently when a man-made nanomaterial system interacts 

plasmonically with a natural material system to improve functionality of the latter [216].  

As seen in Panel B of Figure 78, the Time Correlated Single Photon Counting 

(TCSPC) decay curve demonstrates that the most efficient system investigated in the 

aforementioned study is that of a silver film interacting with a mixture of Chla, as evidenced 

by the td/tc ratio. In simple terms, Chla molecules are assisted by plasmons resulting in energy 

transfer efficiency enhancement, as surface plasmons travel much faster in this particular 

system. These results are well in agreement with the results presented in this chapter, and 

particularly, they underline the importance of plasmonic interactions between Chla 

fluorophores and metallic nanostructuctures to fine tune the optical properties of the light-

harvesting pigments.  
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Figure 78 

Absorption and time resolved fluorescence decay measurements of Chl/PVP films on 

silver. Reproduced from [216]. A: Dashed lines indicate a picosecond pulse laser excitation 

wavelength of 735 nm and Chla emission wavelength of 675 nm. B: Normalised fluorescence 

decay curves of the Chl/PVP films on silver films with td/tc = 0.77, 0.94, 1.11, and 1.28, 

respectively. The decay rate Г reaches the maximum when λSP of silver film is around λemi = 

675 nm (td/tc = 0.77).  
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4.4.3 Plasmonic nanostructures  

Although AgNW are an excellent example of plasmonic nanostructures, other nanostructures 

exist and have been widely employed for construction of plasmonic nanoarchitectures, 

including Ag spheres and Ag cubes [206]. 

 

Figure 79 

Normalised extinction spectra for Ag wire, cube and sphere nanoparticles. Reproduced 

from [206]. These particular nanowire-shaped particles are 90 ±12 nm diameter and >30 aspect 

ratio, cubic particles are 79 ± 12 nm edge length and spherical particles are 38 ±12 nm 

diameter. 

  

Gold, silver and copper nanostructures exhibit resonant behaviour when interacting 

with photons in the UV and VIS spectral ranges [206]. Because a large fraction of the abundant 

solar flux consists of UV–VIS photons, these particular noble metals are of particular interest. 

The resonant wavelength and surface plasmon resonance (SPR) intensity depend not only on 



194 
 

the nature of the metal, but also on the size and shape of metallic nanostructures. By purposely 

manipulating the composition, shape and size of plasmonic nanoparticles, it is possible to 

design nanostructures that interact with the entire solar spectrum and beyond [206]. 

 

4.4.4 Generation of surface plasmons 

Surface plasmons may be generated on any noble metal surface. One could think of surface 

plasmons as packets of energy travelling on the surface of a metallic surface, or metallic 

nanoparticle. These plasmons represent a collection of delocalised electrons travelling on top 

of the metal surface. As one electron pushes the neighbouring electron out of place, they travel 

together until they reach the end of the structure. The total excitation, including both the charge 

motion and associated electromagnetic field, is called either a surface plasmon polariton at a 

planar interface, or a localised surface plasmon for the closed surface of a small specifically 

shaped particle [217,218]. This could explain, incidentally, why excited silver AgNWs are 

brighter at the tips compared to the rest of the structure. Photons concentrate at the tips due to 

the nanoarchitecture of the wire and result in much stronger emission at the tips of the wires.  

 

4.4.5 Improving functionality of photosystem I and its associated light harvesting 

antenna from Cyanidioschyzon merolae by the orientation-dependent plasmonic 

interactions with silver nanowires (based on Szalkowski, Janna Olmos et al., 

Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins 

assembled on silver nanowires, under review) 

Three different experimental configurations were generated in this study, including (i) 

PSI-LHCI supercomplex spin-casted on a glass substrate; (ii) PSI-LHCI supercomplex 

deposited onto Ni-NTA functionalsed AgNWs and (iii) PSI-LHCI supercomplex deposited 

onto cyt c553 bioconjugated Ni-NTA functionalsed AgNWs (Figure 80, Panel B). In brief, we 

wanted to investigate whether organised dispersion or organised recovering of PSI-LHCI 

around AgNWs would be beneficial for enhancement of emission particularly at a wavelength 

where PSI-LHCI absorbs poorly. Moreover, knowing that cyt c553-P700 interaction is transient 

but very specific, we could qualitatively determine whether this interaction is strong enough 

so as to result in an organised nanoarchitecture of PSI-LHCI complexes recovering the cyt c553 

bioconjugated Ni-NTA functionalised AgNWs. It is now well established that efficient 

electron transfer from cytochrome c to eukaryotic PSI depends on the PsaF subunit of 

eukaryotic PSI [219]. Although the cyt c553-PsaF interactions are purely electrostatic, P700+ 
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is reduced with first-order kinetics and has a half-time of 3µs in the case of Chlamydomonas 

reinhardtii [219], a green algae which is a close relative of C. merolae, leading us to believe 

that the interaction might be intensified when the reaction centre is opened [149]. This was in 

fact the case, as presented in this chapter and could explain why the interaction was so stable, 

particularly upon illumination [149]. In order to assess whether energy transfer (in the form of 

surface plasmons on this occasion) was significant from the AgNWs to PSI-LHCI, we probed 

the entire three experimental configurations (see above, (i), (ii), and (iii), respectively) at two 

wavelengths; one wavelength was selected where PSI-LHCI absorbs strongly, and the other 

wavelength was selected where PSI-LHCI absorbs poorly yet the AgNWs have considerable 

absorption at this wavelength (Figure 80, Panel A). The two wavelengths were 405 nm and 

535 nm, respectively (Figure 80, Panel A). If we detect strong emission at the latter 

wavelength, then we could conclude of course that energy transfer is enhanced and in fact 

most of the emission of the entire bioconjugated system comes from a spectral region where 

PSI-LHCI absorbs poorly (or more specifically this particular pool of Chls absorbs poorly), 

rendering the PSI-LHCI-AgNW hybrid suitable for enhanced emission and an excellent 

nanoconstruct for expanding the cross-section of the natural PSI photoconverter substantially. 
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Figure 80 

Absorption spectra of an aqueous suspension of AgNWs (blue) and buffer suspension of 

the PSI-LHCI complex (black) and architecture of investigated samples. A: The emission 

spectrum of PSI-LHCI suspension upon excitation at 405 nm is displayed in red. B: 

Architecture of investigated samples: (a) PSI-LHCI layer spin-casted on a glass substrate, (b) 

a layer of PSI-LHCI complexes deposited randomly onto the Ni-NTA functionalized AgNWs, 

and (c) PSI-LHCI complexes bioconjugated with the Ni-NTA functionalized AgNWs via a 

His6-tagged cyt c553. Note, that the diagrammatic representations are not to scale. 

 

An illustrative example of a result for the PSI-LHCI-cyt c553-AgNW experimental set-

up is a nanoconstruct that was excited at 405 nm. Along the 5 µm nanowire, the surface 

plasmon polaritons could be observed along the wire and at the tips localised surface plasmons 

can be observed, as visualised by fluorescence of AgNW (see Figures 81 and 82). For 

optimisation of signal-to-noise ratio, various incubation time periods were investigated for 

conjugation of cyt c553-functionalised AgNWs with the PSI-LHCI complex. Figure 82 

displays the distribution of fluorescence intensity along the bioconjugated AgNWs, measured 



197 
 

after excitation at 405 nm. After a 60 min. incubation period the highest value of fluorescence 

occurrences was observed upon excitation at 405 nm, with more than 600 counts detected (see 

Panel C of Figure 82). Therefore, this incubation time period was employed for all the 

subsequent analyses. The conclusions of this step of the investigation are summarised by 

Figure 83. As may be observed, emission at 535 nm was significantly higher for the 

nanoconstruct which incorporates cyt c553 compared to the nanoconstruct which lacks this 

plasmonic facilitator, indicating without any doubts that cyt c553 interaction is (i) sufficiently 

strong such as to place PSI-LHCI (specifically P700, as it is in close proximity to the PsaF 

subunit and the PsaF subunit interacts strongly with cyt c553 as aforementioned) in close 

proximity to the nanowire (according to our calculations the distance is approximately 7 nm, 

[149]) and (ii) the absorbtion cross-section of PSI-LHCI is undoubtedly and significantly 

expanded as the emission comes from a wavelength in which absorption is virtually blind for 

this photoconverter (Figure 80, Panel A).  
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Figure 81 

A representative micrograph of Ni-NTA-functionalised AgNW bioconjugated with C. 

merolae cyt c553 and PSI-LHCI complex following excitation at 405 nm.  The distinctive 

qualitative shape and emission profile of all AgNW was similar, albeit with different AgNW 

length (this is normal, as it is very difficult to control homogeneously the length of the wires 

due to the nature of this metal which is quite brittle at this thickness). The distinctive shape 

and emission profile of all fluorescent AgNWs attests to the robustness and reproducibility of 

surface plasmon generation of noble metallic nanostructures, particularly silver 

nanostructures.  
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Figure 82 

Fluorescence intensity maps the PSI-LHCI complexes conjugated with AgNWs via cyt 

c553 measured for 405 nm excitation over (a) 10 min. (b) 30 min. and (c) 60 min. 

incubation periods. Corresponding fluorescence intensity cross-sections are shown on the 

right. 
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Figure 83 

Fluorescence imaging obtained for PSI-LHCI+AgNWs (left column, a and c) and 

PSILHCI@AgNWs (right column, b and d). The images were obtained for the same 

nanowire in each structure for the excitation wavelength of 405 nm (a and b, respectively), 

and 535 nm (c and d, respectively). The cross sections along the nanowires are displayed in 

(e) and (f) for PSI-LHCI+AgNWs and PSI-LHCI@AgNWs, with black and red lines 

corresponding to excitation at 405 nm and 535 nm, respectively. 
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In order to investigate further the nature of this rather peculiar cyt c553-PSI-LHCI 

interaction, the emission of the nanoconstructs was collected always at the tips and along the 

nanowires. The set of data, presented in Figure 84, Panel A, as a set of histograms, was 

obtained and processed. Two selected wavelengths, namely that of 405 nm and 535 nm, 

respectively, were selected for the reasons stipulated above. Table 21 summarises the results 

of the histograms obtained by indicating the relative intensity of emission at these 

wavelengths. As can be distinguished from this table, the highest emission at 535 nm is 

achieved for the spatially well-organised nanoconstruct, when cyt c553 is present and had been 

previously chelated to the Ni-NTA AgNWs via its His6-tag. Therefore, the lowest 

<Iem405>/<Iem535> ratio was observed for the body and the tips of the bioconjugated AgNWs 

with the highest degree of organised nanoarchitecture of PSI-LHCI with respect to the 

plasmonic structures (PSI-LHCI/cyt c553/AgNW). Panel A of Figure 84 confirms this 

phenomenon and shows that the intensity at 535 nm is similar to that of 405 nm in the case of 

the organised PSI-LHCI/cyt c553/AgNWs nanoarchitecture, as can be seen in sub-panel (f) and 

in agreement with Table 21. 

Table 21  

Average values of emission intensity of PSI-LHCI on glass, PSI-LHCI + AgNWs and 

PSI-LHCI@AgNWs nanoconstructs upon excitation at 405 nm and 535 nm 

 PSI-LHCI 

on glass 

PSI-LHCI + AgNWs PSI-LHCI@AgNWs 

  along the 

AgNWs 

at the ends 

of AgNWs 

along the 

AgNWs 

at the ends 

of AgNWs 

<Iem
405> 446.0 1755.0 

(3.9) 

5538.0 

(12.4) 

1605.0 

(3.6) 

5756.0 

(12.9) 

<Iem
535> 70.0 340.0 

(4.9) 

1104.0 

(15.8) 

866.0 

(12.4) 

3305.0 

(47.2) 

<Iem
405>/<Iem

535> 6.4 5.2 5.0 1.9 1.7 

The respective enhancement factors, calculated with the assumption that PSI-LHCI forms a 

monolayer on glass, are given in parenthesis. The bottom row contains calculated ratios of the 

average emission intensity measured for 405 nm and 535 nm.  

 

 To finalise the study, we investigated the decay curves of the three experimental 

configurations by highly advanced ultra-sensitive TCSPC. Generally, measurements of 

fluorescence intensity are insufficient so as to determine alone the complex nature of the 

observed phenomena. Time-resolved fluorescence decay measurements can shine light onto 
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the excited state dynamics but also into special arrangements of the proteins relative to the 

AgNW structure [149]. Therefore, we examined the kinetic components of the PSI-LHCI 

fluorescence decay upon 485 nm excitation of the three different experimental configurations. 

Panel B of Figure 84 displays the representative normalised fluorescence decay 

curves (dots) as well as bi-exponential fits (lines). Fluorescence intensity decay of the PSI-

LHCI layer on glass (green) exhibits bi-exponential behaviour, with the fast and slow 

components (0.35 ns and 4.1 ns). Interaction of PSI-LHCI with plasmonic excitations in 

AgNWs qualitatively changes the kinetics of fluorescence. In the case of the physisorbed 

sample (PSI-LHCI+AgNW) (purple fit), where no control over the distance between the 

AgNW and the supercomplex is present, we would expect either fluorescence quenching for 

the complexes that are in the proximity of the AgNWs, as well as substantially weaker 

interaction for the complexes that are more distal. This inhomogeneity results in: (i), 

considerable shortening of the fluorescence decay; and (ii), the presence of substantial 

contribution of fluorescence quenching (particularly by disorganised neighbouring complexes 

in an non-homogenous proximity) marked by a long decay constant. In stark contrast, the 

highly organised nanostructure (PSI-LHCI@AgNW) (grey fit) seems to exhibit the fast 

component of the fluorescence decay, with the slow component significantly weakened. 

Nonetheless, this fast decay component features no measurable reduction over the kinetics 

obtained for PSI-LHCI on glass [149]. These observations suggest that (i), for the highly 

organised nanoarchitecture the fluorescence enhancement can be mainly attributed to the 

increase of absorption cross-section of PSI-LHCI and (ii), most of the PSI-LHCI complexes 

attached to AgNWs in a spatially controlled fashion via cyt c553 interact in a similar way with 

plasmonic excitations. These observations leads us to believe that Chls present in the 

periphery of the LHCI antenna, might be interacting with each other from PSI-LHCI to PSI-

LHCI. Particularly, this could be the case for specialised Chl pairs, quite possibly red Chl 

pairs indetified in the LHCI antenna, as stipulated in the latest crystal structure of the 

eukaryotic super complex (603a-609a red Chl pairs) [3] (See Chapter 1.2.3). Moreover, this 

could also explain why no fluorescence quenching is observed in this particular configuration; 

red Chls might function as “energy tuners” impeding quenching and maximizing energy 

transfer. 
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Figure 84 

Histograms of fluorescent intensity and TCSPC decay curves for all the investigated 

experimental configurations of bioconjugated AgNWs. A: (a) Histograms of fluorescence 

intensity for the PSI-LHCI layer on glass, (b) PSI-LHCI + AgNWs, and (c) PSI-

LHCI@AgNWs structures following excitation at 405 nm. Analogous results measured for 

excitation at 535 nm are shown in panels (d)-(f). Intensities along the nanowires and at their 
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ends are shown in empty and filled bars, respectively. B: Fluorescence decay curves measured 

with the excitation at 485 nm for PSI-LHCI layer on glass (green), PSI-LHCI physisorbed on 

AgNWs (red), and PSI-LHCI bioconjugated with AgNWs (black) together with fitted decay 

curves and residual plots. IRF, Internal Reflective Factor. 

 

Figure 85 shows the level of occurrences vs. the ratio of fluorescence intensity at 405 

nm compared to fluorescence at 535 nm. As observed in Panel A of Figure 80, PSI-LHCI 

absorbs very poorly at 535 nm. Figure 85 abridges succinctly the results, as it shows that the 

ratio of I405/I535 is significantly lower (by more than a factor of 2.0) when the nanoconstruct 

employs cyt c553 as a plasmonic cofactor between the Ni-NTA functionalised AgNW and the 

PSI-LHCI complex. This means that the emission at 535 nm is indisputably much higher, 

which means that the absorption cross-section of PSI-LHCI in this rather organised 

nanoarchitecture is significantly enlarged. Moreover, as the complex is normally non-

absorbing at this spectral region, it strongly suggests that a non-absorbing pool of Chls is 

activated in this macromolecular organisation. As stipulated above, this could also explain 

why energy transfer from 603a-609a red Chl pairs to other adjacent pairs of neighbouring PSI-

LHCI complexes could occur. Although this is hypothetical and requires direct verification, it 

could in principle explain emission at this normally non-absorbing wavelength (see above).  
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Figure 85 

Novel highly organised plasmonic nanoarchitecture is generated by site specific 

conjugation of PSI-LHCI with silver nanowires via cyt c553. The values in brackets 

correspond to the calculated ratios of the average emission intensity measured at 405 nm and 

535 nm. The light harvesting properties of PSI-LHCI are improved by plasmonic interactions, 

whereby absorption at 535 nm of otherwise non-absorbing pigments is significantly enhanced 

only when a uniform orientation of this light harvesting/charge separating complex is 

maintained by the specific interaction with cyt c553. 

 

4.4.6 Concluding remarks 

This chapter describes the construction of the novel biohybrid system through the controlled 

assembly of eukaryotic PSI-LHCI complex on plasmonically active AgNWs through 

application of the His6-tagged cyt c553 monolayer formed as the bio-interface between both 

modules. In this configuration, cyt c553 may be considered as a “plasmonic facilitator” or 

“plasmonic cofactor.” By comparing fluorescence intensities measured for PSI-LHCI 

complex randomly oriented on AgNWs and the results obtained for the organised PSI-LHCI-

cyt c553 bioconjugate with AgNWs it was concluded that the specific binding of photosynthetic 

complexes with defined uniform orientation yields selective excitation of a pool of Chl 

molecules that are otherwise non-absorbing. This discovery shows for the first time, that 
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plasmonic excitations in metallic nanostructures can not only be used to enhance native 

absorption of photosynthetic pigments, but also – by utilising cyt c553 as the conjugation 

cofactor – to activate the specific Chl pools which are otherwise effectively non-absorbing in 

PSI-LHCI. As absorption of PSI alone is relatively low, this approach lends itself as an 

innovative approach to outperform the reported-to-date biohybrid devices with respect to solar 

energy conversion.  

By specific conjugation of photosynthetic complexes on plasmonically active metallic 

nanoparticles we have shown that the control of distance and orientation of PSI-LHCI 

complexes with respect to the AgNWs allows for selective and concerted excitation of Chl 

fluorophore subpopulations yielding the innovative fluorescence properties of this complex. 

Tuning of energetic properties of these subpopulations, possibly of a subpool of red Chls, 

results in an increased light harvesting functionality of the PSI-LHCI supercomplex. This 

means that it is possible to extend the active absorption spectral range by engineering 

plasmonic interactions within highly ordered and oriented light harvesting/electroactive 

geometries. Interactions within such plasmonic/light harvesting nanostructures may thus be 

considered, in this context, as a powerful tool for “improving nature,” particularly with the 

ultimate purpose of constructing efficient solar-to-fuel nanodevices, biosolar cells, 

(bio)medical devices and biosensors that would absorb a specific wavelength or at a 

wavelength range. Significantly, the native electron donor of PSI-LHCI, cyt c553, specifically 

from the same organism, was employed in this work for the first time as the bioconjugating 

electroactive protein that allowed for a uniform orientation of the PSI-LHCI complex with the 

P700 specilized Chla pair oriented towards the plasmonic nanostructure. In this way, oriented 

nanoarchitecture of PSI-LHCI complexes enhances the specific plasmonic interactions that 

ultimately improved functionality of PSI-LHCI itself, providing a proof-of-concept that 

increasing light absorption efficiency of this complex is feasible in an artificial leaf by 

application of plasmonic nanostructures.  
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Chapter 4.5 

 

Application of cytochrome c553 in the p-doped silicon biophotoelectrode for 

the improved direct electron transfer  

 

4.5.1 Introduction 

The main limitation of the present-day biomimetic approaches for generation of electricity and 

solar fuels in a viable manner is their low solar-to-hydrogen quantum efficiency (well below 

1%) [129,139,220–225]. The low efficiency of the biohybrid PSI-based solar cells is mainly 

due to the recombination of photo-excited electron-hole pairs that takes place at the interfaces 

of the electrode modules, rather than being limited by the PSI itself. The main reasons for such 

low output are losses due to diffusion-based electron transfer in such devices and wasteful 

reactions of charge recombination/short circuiting of electron transfer in the working modules 

and at their interfaces. Therefore, it is important to develop rational approaches to overcome 

the latter limitations. This Chapter describes one of such approaches, namely biopassivation 

of the p-doped Si substrate with the electroactive cyt c553 protein. 

There is a precedent in the literature showing that different lengths and 3D structures 

of AA linkers that connect the electroactive proteins, such as ferredoxin, with photoactive 

components such as PSI result in varied electron transfer rates [226]. It has been shown that 

engineering different AA linkers of varying lengths within ferredoxin, a native electron 

acceptor of PSI, and linking this protein in the vicinity of the PsaC subunit on the acceptor 

side of PSI results in enhanced electron transfer rates in the linker-dependent manner [226]. 

Using a similar rationale, in this PhD project a working hypothesis was put forward to test 

whether the AA linker peptides that were engineered between the cyt c553 holoprotein and its 

C-terminal His6-tag (see Chapter 4.2) can enhance electron transfer rates between the haem 

group of cyt c553 and P700+ reaction centre within the all-solid-state state biophotovoltaic 

devices. The rationale behind this hypothesis was that depending on the length and even 

structure of the peptide linkers a varying degree of movement of immobilised cyt c553 may 

influence the kinetics of electron transfer between the semiconductor substrate and the 

photoelectroactive modules of the biophotoelectrode.  
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 Si photovoltaics is the most mature solar-to-electric technology to date, and it carries 

great potential for generation of cheap renewable energy from sunlight. With over 80% of the 

current solar energy market and a growth rate exceeding 40% p.a., Si solar cells have the 

potential to make a substantial contribution towards meeting the globally increasing energy 

demand [113,118,227]. The global share of Si-based technologies in photovoltaics has 

increased from about 80% in 2009 to more than 90% in 2014 [113]. There is no risk of Si 

shortage in any foreseeable future as it is the second most abundant and evenly distributed 

element in the earth’s crust [113]. Incorporation of Si-based photoelectrodes that are sensitised 

with natural light harvesting proteins, such as PSI, into the solar-to-fuel devices is a 

particularly novel and attractive concept, as such a biosolar technology employs the cost-

effective and robust semiconducting material that absorbs the visible part of the 

electromagnetic spectrum together with the highly efficient natural light-harvesting/charge 

separating protein complex that operates with the internal quantum yield close to unity (see 

Chapters 1.2.3 and 1.3).  

Generation of highly efficient biohybrid solar cells requires cost-effective techniques 

and methodologies for producing semiconductor/dielectric surfaces with very low inherent 

charge recombination. To this end, various surface passivation approaches have been 

developed based on chemical modification of the semiconductor surface and electric field 

effects [228–230]. Recently, a new generation of chemically passivated Si solar cells with an 

efficiency of 22.1% has been reported by Savin et al. [231]. In the study, the authors employed 

atomic layer deposition of Al2O3 on the surface of the nanostructured Si in order to 

significantly decrease surface charge recombination by extending minority carrier lifetimes to 

the millisecond timescale range due to significantly reduced Auger recombination [231].  

Si-solar cells hold great promise, as they have the highest reported solar-to-electric 

efficiencies to date. The second highest most efficient solar cell reported to date is a black Si 

solar cell with a solar-to-electric efficiency of 27.6 ± 1.2% [119,232]. The authors used a 

similar approach to that of Savin et al. [231] but incidentally managed to improve the 

efficiency by increasing the thickness of the rear passivating layer, employing the same 

approach that we use in the present chapter with a biological passivating layer, namely cyt 

c553. The key to recombination minimisation at the semiconductor surface and hence, 

maximisation of the power conversion efficiency lies in the optimisation of the interfaces 

between biological, organic and inorganic modules of the semiconductor electrode 

[227,231,232]. This chapter describes a novel strategy to tackle this grand challenge by 
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developing the biophotoelectrodes based on p-doped Si substrate that has been biopassivated 

with C. merolae cyt c553 in a haem-Si orientation and distance-dependent manner. 

 

4.5.2 Selection of p-doped silicon as the electrode material 

In the past, metal electrodes have commonly been used in PSI-based photobioelectrodes 

[128,222,233–237]. However, application of semiconducting electrode materials allowed for 

a significant enhancement of photocurrent and photovoltage outputs [128,129,139,221]. The 

p-doped Si was chosen as the electrode material in this study as it has been previously shown 

to serve as an excellent substrate for cyt c553 [238], as the mid-point potential of this haem-

containing protein (+210 ± 10 mV) is very close to the estimated Fermi level of the conduction 

band of p-doped Si (0.5 V vs. SHE) with this level of doping, as shown in Figure 86 and 

Suppl. Figure 4. Furthermore, p-doped Si was found to be an excellent platform for electron 

donation to the photo-oxidised P700 reaction centre of PSI (see Chapter 4.6) [222,234] due 

to well matched valence and conduction bands for Si (0.5 V and -0.6 V vs. SHE, respectively), 

the P700 primary electron donor and FB iron-sulphur cluster (terminal electron acceptor) of 

PSI (0.43 V and -0.58 V vs. NHE, respectively) [234]. 
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Figure 86 

Diagrammatic representation of the second (II) generation cyt c553/p-doped Si device 

organisation and the corresponding energy band diagram. A: A diagram displaying the 

cyt c553/p-doped Si device (second (II) generation device). The thickness of the layers was 

estimated with sputtering detection. The circuit displays schematically how the devices were 

characterised, strictly in the dark for the assessment of their inherent recombination parameter 

(J0). B: The energy band diagram displays valence band (0.5 V vs. SHE) and conduction band 

(-0.6 V vs. SHE) of p-doped Si and the midpoint potential of cyt c553 along the estimated Fermi 

level for this level of B-doped Si. The proximity of the estimated Fermi level of Si with this 

level of boron p-doping is shown (in purple) with respect to the redox midpoint potential of 
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cyt c553, emphasising their redox compatibility. This implies that injection of electrons from 

the valence band of photoactivated p-doped Si to the haem group may proceed efficiently. On 

the right handside the P700 primary electron donor and FB iron-sulphur cluster (terminal 

electron acceptor) of PSI (0.43 V and -0.58 V vs. NHE, respectively) are displayed so as to 

emphasise the energetic compatibility of valence and conduction bands of the modules.  

 

4.5.3 Construction of first (I) and second (II) generation biophotoelectrodes 

Five distinct biophotoelectrodes have been constructed by immobilisation of the 

experimentally designed and purified His6-tagged cyt c553 variants (see Chapter 4.2) on p-

doped Si substrate that had been previously functionalised with a Ni-NTA self-assembled 

monolayer (SAM). Diagrammatic representation of the constructs is shown in Figures 87 and 

88. For the construction of the cyt c553/Si biophotoelectrodes an estimated 3-nm monolayer of 

each cyt c553 variant was immobilised on a heavily p-doped Si wafer using a His6-tag as a 

molecular anchor. We introduced the Ag and Au/Cr recovering (200 nm and 50 nm, 

respectively) contacts for generation of a closed circuit, as schematically shown in Figures 87 

and 88. 
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Figure 87 

First (I) generation of all-solid-state cyt c553/p-doped Si nanodevice. The thickness of the 

layers was estimated using an atomic force detector built into the specialised sputtering device. 

All the devices were constructed at ITME (Department of Optoelectronics, Institute of 

Electronic Materials Technology, Warsaw, Poland). Refer to Figure 94 of Chapter 4.6 for a 

flow-chart describing construction of the nanodevices. 
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Figure 88 

Second (II) generation of all-solid-state cyt c553/p-doped Si nanodevice. The thickness of 

the layers was estimated using an atomic force detector built into the specialised sputtering 

device. All the devices were constructed at ITME (Department of Optoelectronics, Institute of 

Electronic Materials Technology, Warsaw, Poland). An additional layer of 50 nm Au/Cr alloy 

was added to the bottom of the layer to avoid any oxidation of Ag contact upon submersion of 

the device into a photo-electrochemical cell with a Ag/AgCl counter electrode. Moreover, it 

was found that this recovering prolongued and imrpoved the quality fo the bottom Ag layer. 

Refer to Figure 94 of Chapter 4.6 for a flow-chart describing the construction of the 

nanodevices. 
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4.5.4 Biopassivation of p-doped silicon substrate with cytochrome c553 (based on Janna 

Olmos et al., Biopassivation of p-doped silicon with cytochrome c553 leads to 

minimisation of charge recombination and leakage current at the semiconductor 

surface, under review) 

The main objective of this study was to optimise the direct electron transfer between the p-

doped Si semiconductor electrode and cyt c553 by manipulating both the distance and 

orientation of the redox active haem group with respect to the electrode surface. As a first step 

to understand the kinetics of electron transfer of the cyt c553 variants chelated to the Ni-NTA 

SAM-functionalised p-doped Si surface, bioinformatics simulations of the Gibbs free energy 

using the PyRosetta® software were performed to obtain an insight into the thermodynamic 

properties of the distinct variants of cyt c553 upon their immobilisation on the electrode surface. 

Firstly, a Monte Carlo minimisation approach was applied to calculate the acceptance rate for 

each cyt c553 variant, corresponding to the ratio of a number of energetically permissive moves 

to a number of rejected moves. The acceptance rate was used in this context as a measure of 

the thermodynamic freedom of motion of each cyt variant upon its attachment to the Si surface 

via a His6-tag. It is worth noting that the acceptance rate largely depends on the degree of 

flexibility of the different AA side-chains present within the linker peptides. A Monte Carlo 

object was used to calculate the probability of free motion of the cyt c553 variants. These are 

commonly defined by the Metropolis criterion [239]. Figure 89 shows that the highest 

acceptance rate (0.6851 ± 0.04) was calculated for the shortest (5AA) cyt variant, whereas the 

lowest acceptance rate value (0.3868 ± 0.02) was attributed to the cyt variant containing a 

structured semi α-helix (19AA) linker peptide.  

Subsequently, the 2D Gibbs free energy maps for each cyt c553 linker peptide variant 

were calculated related to the absolute distance of the haem group of cyt (central Fe atom) and 

the relative planar angle between the haem and flat electrode surface. Panel A of Figure 90 

shows that the presence of the longer peptide linkers within the cyt c553 structure evokes a 

significantly larger number of thermodynamically favourable conformations of the anchored 

cyt c (in terms of probability of energetically favourable alignment of the haem group to the 

electrode surface) after a given move, and consequently, a lower acceptance rate (see Figure 

89), according to the Monte Carlo criteria. On the other hand, a short linker is more likely to 

adopt a thermodynamically unfavourable conformation, since very few combinations of 

dihedral angles are possible within the whole linker length and hence a lower probability of 

proximal alignment of the haem group to the Si surface. For the 0AA variant, two distinct 
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populations of thermodynamically favourable conformations were identified, as shown in 

Figure 89.  

 

Figure 89 

Acceptance rates of different cyt c553 variants after Monte Carlo simulation. The 

acceptance rate is calculated as the ratio of the number of energetically permissive moves to 

the number of rejected moves (using standard Metropolis criterion) [239], after applying 

random modifications of geometrical conformation to each cyt c553, each having a different 

version of AA linker. The acceptance rate was not calculated for the 0AA linker variant as 

there is no AA linker peptide between the two ab initio points of this simulation; namely the 

C-terminus of the holoprotein sequence and the first histidine residue of the His6-tag. Values 

for acceptance rates are displayed above the error bars of each different variant.  

  



216 
 

 

Figure 90 

2D conformational flexibility maps for different cyt c553 variants. A: The maps show 

relative probability of conformations for a given orientation of haem plane described by its 

distance to the Si plane and the angle between the two planes: X and Y axis, respectively (see 

Panel B for the definition). The probability in logarithmic scale is directly proportional to the 

Gibbs free energy of a given state. Note the significant difference between the 0AA and 19AA 

linker variants. B: Definition of internal coordinate system used to describe haem-Si mutual 

orientation. Haem is displayed in green with Fe central atom (red ball). Two coordinates were 

used: the dihedral angle between the plane of the haem group and Si plane as well as the 

distance between the two planes. Figure reproduced from Janna Olmos et al., under review 

[227].  
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To evaluate semiconductor surface coverage with different cyt c553 variants scanning 

electron microscopy (SEM) was performed for visualisation of the bioelectrode surface (see 

Figure 91). Panel A shows a control which is a pristine surface of the p-doped Si covered by 

Au. Panels B-F show homogenously deposited cytochromes. In the case of 19AA linker we 

obtained less dense coverage of the semiconductor area which could be attributed to a larger 

and more rigid structure of the peptide linker, resulting in more steric hindrance upon spin-

coating. Overall, in all cases immobilisation of this redox active protein was successful and 

SEM images confirmed that chosen deposition technique (i.e. vacuum spin-coating) is 

appropriate for this all-solid-state device construction. 

 

 

 

Figure 91 

Scanning electron micrographs of the surface of cyt c553/p-doped Si bioelectrodes. The 

five bioelectrodes constructed in this study display the homogenous cyt c553 protein 

distribution on the Si/Au electrode surface. The nanostructure of the biofunctionalised Si 

electrodes is notably different compared to the Si control (with Ni-NTA SAM) which contains 

no cyt (shown in A). B: 0AA, C: 5AA, D: 10AA, E: 12AA, F: 19AA. Three different regions 

of each biodevice were investigated and all presented almost identical appearance. 

Micrographs were obtained using 36,000 magnification. Scale bar, 1 µm. 
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4.5.5 Assessment of J-V properties of the all-solid state cyt c553/p-doped silicon devices 

To evaluate the Si surface charge properties of the constructed cyt c553/p-doped Si devices 

dark saturation currents were measured. The dark saturation current value, also known as the 

recombination parameter (J0) [158] (Eq. 8) is used to quantify the level of surface charge 

recombination of a semiconductor. It can be referred to as the “background recombination” 

parameter, i.e., the higher the J0 value, the more recombination events exist. As clearly 

displayed in Table 22, dark saturation current values obtained for all the cyt c553/p-doped Si 

devices were inversely proportional to the length of the AA linker sequence present in the cyt 

c553 variant, with the lowest J0 recorded for the 19AA cyt c553 variant Si bioelectrode.  

The data presented in Table 22 goes well in agreement with that presented in Figures 

92 and 93, where the J-V and solid-state voltammograms display the highest dark currents for 

the 5AA linker variant and the lowest for the 19AA linker variant. In agreement with the 

thermodynamic calculations, two classes of 0AA variant biolelectrodes were identified which 

displayed either very low or very high J0 values.  
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Table 22 

Characterisation of dark saturation currents in the all-solid-state cyt c553 variant/p-

doped Si bioelectrodes  

Biodiode type J0 (mA/cm2) 

Control (with SAM*) 1.2 x 10-1 

 0 AAa 4.5 x 10-2 

 0 AAb 2.8 x 10-3 

5 AA  6.9 x 10-2 

10 AA 2.3 x 10-2 

12 AA  3.5 x 10-2 

19 AA  7.5 x 10-3 

J0, dark saturation current (inherent recombination parameter) of each solid-state device. The 

J0 values were obtained from Eq. 8 (assuming that at 300K, kT/q = 25.8 mV)  

*For a scheme depicting SAM synthesis refer to Figure 34 
avalue obtained for two 0AA linker variant electrodes which displayed similar J-V curves (see 

Figure 92)  
b value obtained for two 0AA linker variant electrodes which displayed similar J-V curves (see 

Figure 92) 

 

J = J0
(qV/enkT) -1  [158]         (Eq. 8) 

 

All the J0 values were calculated from Eq. 8 above, and were also determined from the J-V 

curves presented on a semi-logarithmic scale, where the J0 value corresponds to the y-intercept 

(see Suppl. Figure 3). 
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Figure 92 

J-V characteristisation of cyt c553/p-doped Si bioelectrodes. The five bioelectrodes 

constructed in this study display the biodiode characteristics, albeit at different kinetic rates of 

e- transfer. Short, rigid AA linkers allow for a higher degree of recombination (measured by 

J0 parameter) compared to longer, more flexible linkers. The data indicates that the 5 AA-

linker-cyt c553 variant potentially allows for the highest degree of recombination within the 

bioelectrode, which agrees with the 2D maps displayed in Figure 90. The degree and 

probability of alignment of the haem group to the p-doped Si surface translates to its degree 

of charge recombination; short rigid AA linker peptides have a much higher degree of 

recombination compared to longer, more flexible peptides which allow more efficient electron 

transfer as they permit more favourable haem alignment to the Si surface. The 0AA linker 

variant presents anomalous behaviour displaying either very low or very high J0 values. We 

attribute this behaviour due to the extreme restriction of movement of this variant linker 

peptide, which contains no linker peptide between the C-terminus of the protein and the first 

Histidine residue of the His6-tag, rendering the haem group ether completely perpendicular or 

completely parallel to the Si plane. The control is the Si functionalised with Ni-NTA SAM 

(see Figure 34). 
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Figure 93 

Linear sweep voltammograms of the all-solid-state cyt c553/p-doped Si bioelectrodes. The 

CVs were obtained in a specialised two electrode measuring setup at a scan rate of 10 mV/s. 

The potential was cycled from -500 mV to 500 mV. Note that the Ni-NTA SAM contributes 

to the redox activity of the solid-state construct, as shown above. The absolute value of the 

current (mA) is inversely proportional to the length of the linker peptide, having the highest 

current for 5AA and the lowest for 19AA. Note that the anomalous behaviour for the 0AA 

linker is also observed here, as seen in Figure 92 and Table 22.  
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4.5.6 Concluding remarks 

In this study, five novel cyt c553/p-doped Si bioelectrodes were engineered which differed in 

the length and structure of the peptide linkers inserted between the C-terminal His6-tag and 

the cyt c553 holoprotein (see Chapter 4.2 and Table 17). First, the His6-tagged variants of cyt 

were immoblised on Si surface through a Ni-NTA-containing SAM, as shown 

diagrammatically in Figure 34, and their J-V properties were characterised in order to select 

the best cyt c553 variant for optimal direct electron transfer (DET) within all-solid-state PSI-

based Si biophotoelectrodes (described below in Chapter 4.6).  

The data presented here show that introduction of longer peptide linkers to the structure 

of redox active cyt c553 leads to a much more significant degree of passivation in the Si surface 

of the biodiode, as evidenced by the significant minimisation of dark saturation current (J0) 

(Figures 92 and 93). Furthermore, dark currents were measured in the range of 1.0-6.25 mA 

cm-2 attesting to the advantage of employing all-solid-state devices over constructs that rely 

on mediated electron transfer [227]. These observations are discussed in Chapter 4.6, in the 

context of a rational design of optimal DET within the full biophotoelectrode, comprising the 

Si substrate, cyt c553 conductive module and light-harvesting/charge separating module of PSI. 

Immobilisation of His6-tagged cyt c553 variants at the all-solid-state Ni-NTA 

functionalised p-doped Si interface resulted in a considerable reduction of surface charge 

recombination [227]. Moreover, it was shown that different lengths and shapes of linkers 

between the His6-tag and the C-terminus resulted in different degrees of passivation 

(minimisation of recombination), showing clearly that there is a correlation between haem 

alignment geometry and passivation at the all-solid-state interface [227]. This phenomenon 

could be explained by the geometrical restrictions imposed to the movement of the haem group 

with relative proximity to the Si substrate/surface. Longer, more flexible linkers could allow 

closer proximity of the haem group to the Si surface, thus interacting better with the surface 

by allowing a more favourable geometrical alignment of the haem group with respect to the 

Si surface. In contrast, shorter more restricted linkers have much more geometrical restrictions 

imposed on the haem group, and therefore interact less favourably with the Si surface. This is 

the reason why parallel Si-haem alignment is more favourable for electron transfer and thus 

minimisation of recombination at the Si surface. This could also explain why longer linkers 

have significantly much lower dark saturation current by nearly three orders of magnitude 

compared to shorter linkers and Si-SAM control (see Figures 92, 93 and Table 22). 
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The Gibbs free energy calculations and mapping of energetically favourable 

conformations of cyt c553 variants upon their anchoring to the Si surface (see Figures 89 and 

90) demonstrated that the variants display different degrees of flexibility and alignment with 

respect to the Si surface in this novel all-solid-state setup. Therefore, by introducing the 

specific linker peptides (12AA-19AA) within the cyt c553 structure we were able to manipulate 

the alignment of the haem group respective to the semiconductor surface, which was 

confirmed by the J-V characterisation of the cyt c553/p-doped Si devices (see Figs 92, 93 and 

Table 22). This molecular approach has allowed for the developing of an alternative, cheap 

and facile route for significant reduction of the inherent minority charge recombination of the 

p-doped Si semiconductor substrate while producing solid-state biodevice currents in the mA 

cm-2 range. Importantly, this study demonstrated that one of the linker variants, the 19AA 

linker variant is a good candidate as the conductive biopassivating module of the full all-solid-

state PSI-based biophotovoltaic device, as investigated in the subsequent Chapter 4.6.  
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Chapter 4.6 

Towards construction of efficient PSI-LHCI/silicon biophotoelectrodes 

 

4.6.1 Introduction 

Leading renewable energy production data show a substantial growth of solar electricity 

technologies and indicate that crystalline silicon PV primes the initial wave of renewable 

energy disposition on the TW scale around the globe [113]. Presently, renewable energy 

encompasses only 9% of the entire global supply of commercially traded primary energy (see 

Figure 18). This is an insufficiently small share in the global energy supply considering that 

87% of our energy consumption (a number believed to increase considerably by 2020) relies 

very heavily on fossil fuels. The global demand for fossil fuel-derived energy sums to 1,066 

barrels of oil, 108,000 cubic meters of natural gas and 250 tonnes of coal per second as 

mentioned in Chapter 1.3.1 [113]. Currently, it is estimated that coal reserves might cover the 

present world demand for over 110 years, compared to oil and natural gas, which will be 

depleted at this rate in 52.5 and 54.1 years, respectively, in the best case scenario [113]. These 

facts give the scientific community very limited time to develop and optimise sustainable 

technologies that will allow for production of renewable energy at an ever growing rate. 

Functionalisation of semiconductor electrode materials, such as Si, with natural light 

harvesting proteins such as PSI complex is a particularly attractive concept, as such biohybrid 

solar technology utilises the combination of relatively cheap and stable semiconducting 

material, such as Si that absorbs the visible part of the electromagnetic spectrum, together with 

the highly efficient light-harvesting/charge separating natural pigment/protein complex that 

operates with the internal quantum yield close to unity [240]. However, the efficiency of the 

biohybrid PSI-based photoelectrodes is still limited to values below 1% mainly due to the 

recombination of photo-excited electron-hole pairs at the interface of the electrode modules, 

rather than being limited by the PSI photochemical activity itself. Other obstacles to obtain 

high power conversion efficiency of PSI-based biophotoelectrodes are poor electronic contact 

between the photoactive module and the electrode, insufficient and heterogeneous PSI loading 

onto the electrode and instability of the biological modules. Nevertheless, it has been recently 

shown that high energy photoactivated electrons that are generated in PSI upon light 

absorption can be recovered in artificial devices, even faster than in natural photosynthesis 
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itself [241], highlighting the great potential of PSI-based biohybrid solar technology once it is 

optimised. 

Previously, metal electrodes have commonly been used in PSI-based 

photobioelectrodes [235–237]. Nonetheless, application of semiconducting electrode 

materials allowed for a significant improvement of photocurrent and photovoltage outputs 

[128,129,139,221,242]. In particular, p-doped Si was found to be an excellent platform for 

electron donation to the photo-oxidised P700 reaction centre [222,234] due to well matched 

valence and conduction bands for silicon (0.5 V and -0.6 V vs NHE respectively) and the P700 

primary electron donor and FB iron-sulphur cluster (terminal electron acceptor) of PSI (0.43 

V and -0.58 V vs. NHE (or SHE), respectively) [234]. 

Due to the recent and substantial advancements in Si technology, it is possible to shift 

the Fermi level of silicon by introducing impurities. It is now well established that one can in 

fact control and enhance the electron flow through the biohybrid system by changing the 

doping type and doping density of Si biophotoelectrodes [234]. The optimised system allows 

for electrons to flow in a single direction, from Si substrate to the protein, and finally to a 

redox mediator, or ideally in the solid state to the counter electrode, to minimise energy losses 

due to the diffusional character mediator-based electron transfer (MET) [227]. Such a 

technology might in principle allow for construction of highly efficient thin-film Si-based 

biophotoelectrodes which would allow desirable electron-transfer efficiency at the all-solid-

state interface, short-cutting electron transfer and minimising energy losses by otherwise 

energy consuming processes such as diffusion-based electron transfer in solution [227]. This 

way, it is hypothesised that the Shockley-Queisser limit might be finally breached when 

employed in conjunction with solar thermophotovoltaic converting (STPV) technology, 

envisaging solar-to-electric efficiencies greater than 32% for thin-film Si-based solar cells 

[123,232]. 

As mentioned in the previous chapter, there is no risk of Si shortage in any foreseeable 

future as it is the second most abundant and evenly distributed element in the earth’s crust 

[113]. Importantly, it is now well established that in the hypothetical scenario where silicon 

PV technologies provide 100% of the world’s electricity supply by 2030, the required Si 

production growth rate would fall within the range of the historical range recorded over the 

last four decades [113]. Moreover, the same applies to Au, which not only is essential for 

electrical contacts, but as a matter of fact is considered the most critical material in PV panels 

[118].  
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The main results described in this chapter are the construction of a novel type of all-

solid-state mediatorless p-doped Si-based biophotoelectrodes containing both the substrate 

(Si) either with or without biological conductive layer of cyt c553 and ultimately, a 

photoelectroactive module of the robust extremophilic PSI-LHCI complex. The prototypes of 

such a biophotovoltaic devices described in this chapter provide the foundation for the green 

technology based on biophotoelectrodes that in long-run may be optimised to the 

competencies and efficiencies that would warrant implementation on the commercial scale. 

Moreover, it is demonstrated here, that the 19AA linker cyt c553 variant, used as a biological 

conductive interface between the p-doped Si substrate and PSI-LHCI photoactive module (see 

Figures 101 and 102), biopassivates the Si surface, as described in Chapter 4.5. As a result, 

introduction of the 19AA linker variant of cyt in the full PSI-LHCI-based biophotovoltaic 

device results in a 333 µV increment of the open-circuit potential (Voc) upon illumination 

compared to the device comprised of PSI-LHCI/Si devoid of any cyt c553 conductive layer.  

 

4.6.2 Immobilisation of PSI-LHCI complex on a p-doped silicon substrate (third (III) 

generation biophotovoltaic devices) 

The optimisation of the construction of PSI-LHCI/p-doped Si biophotovoltaic devices was 

based on minimisation of the native oxide build-up and avoidance of improper electrical 

contact formation. The abovementioned were avoided thanks to the technical and engineering 

expertise provided in the Department of Optoelectronics of the Institute of Electronic 

Materials Technology (ITME, Warsaw, Poland) led by Head Eng. Marian Teodorczyk. 

Figure 94 displays a flow-chart elucidating the main steps in the construction of these novel 

mediatorless all-solid-state biophotodevices. 

 Figure 95 displays the representation of the PSI-LHCI/Si nanodevice, with thickness 

of each layer indicated. The thickness of the consecutive layers was estimated via sputtering 

detection.  
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Figure 94 

Flow-chart depicting preparation of all-solid-state PSI-LHCI/cyt c553/p-doped Si 

biophotovoltaic devices. For a detailed protocol of Ni-NTA synthesis on Si refer to Figure 

34. Roman numbers correspond to the consecutive generations of the biophotovoltaic devices 

prepared in this study. Four generations of the devices were constructed, as described in 

Chapters 4.5 and 4.6. 
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Figure 95 

Diagrammatic representation of the PSI-LHCI/p-doped Si nanodevice (third (III) 

generation biophotovoltaic device). The thickness of each layer is indicated on the right and 

was estimated by sputtering detection. The components are not to scale. All Si layers were 

functionalised and contained a Ni-NTA SAM, as displayed in Figure 94.  

 

Upon photoelectrochemical characterisation of the constructed devices, large 

variability was observed within many devices. This is due to several reasons. Firstly, p-doped 

Si is a considerably defective material. For doping Si to the required levels for the generation 

of the material with the desired Fermi level shift (in the case of the present study to a doping 

density of 2.13 x 1019-1.3 x 1020 cm-3), boron was introduced into the Si block before cutting 

the block into the standard wafer sizes. Wafers constituted a circle with a 100-mm diameter 

and a thickness of 500 µm. Usually, this process introduces significant defects into the 

nanostructure of Si (as evidenced by Panel A of Figure 91 in Chapter 4.5, also pers. comm. 

by Grzegorz Gawlik, ITME, Warsaw, Poland).   

 Other reasons for variation may include unequal distribution of SAM functionalisation 

and uneven protein dispersion and biofunctionalization. It was noted also that even after rapid 

thermal processing of the bottom silver contact, the contact could be easily detached if handled 
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too harshly. As is noted in the literature [128,222,233,234,243], this variability from device 

to device seems to be commonplace in these novel types of all-solid-state mediatorless 

nanodevices [128,222,234]. Consequently, it was observed that nanodevices which displayed 

a notoriously anomalous or aberrant appearance in the bottom Ag contact displayed large 

variability in terms of the J-V data obtained.  

  As a starting point of PV performance characterisation, the changes in the open circuit 

potential (Voc) were measured upon illumination of the constructed devices. The Voc parameter 

represents the difference of electrical potential between two terminals of a device when 

disconnected from any external circuit (see Figure 95 for a schematic of the circuit of the 

device employed for the all-solid-state photoelectrochemical characterisation). Figure 96 

displays the results of Voc measurements obtained when this routine parametrisation was done 

with three independent devices, whereby the only difference between each set of devices was 

the presence of the PSI-LHCI layer. More than an order of magnitude increase in Voc was 

observed for the PSI-LHCI-functionalised devices which display in average 1,300 µV 

increase of Voc in comparison to the 100 µV increase for the bare p-doped Si SAM control. It 

must be mentioned that an anomalous behaviour was observed for one the p-doped Si SAM 

electrodes devoid of PSI-LHCI, where a Voc change of 800 µV was detected. As the other two 

devices displayed identical photoelectrochemical behaviour, this anomaly is attributed to the 

aberrant quality of the Ag contacts observed in this device, which is believed to be the main 

reason for the inconsistent behaviour observed for several devices constructed in this study.  

 For the next step of PV characterisation, photocurrents were measured by 

photochronoamperometry to determine whether there was a marked difference between the p-

doped Si/SAM control and the PSI-LHCI-functionalised p-doped Si devices. As shown in 

Figure 97, p-doped Si/SAM device produced on average residual current densities of 6 µA 

cm-2. In contrast, when two independent PSI-LHCI/p-doped Si devices where tested, 

photocurrents of 104-234 µA cm-2 were detected, being the highest photocurrent densities 

reported to date for mediatorless all-solid-sate PSI-LHCI-functionalised nanodevices, when 

an overpotential of -250 mV and the same illumination conditions were applied 

[128,222,233,243] (see Figure 98).  
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Figure 96 

Open circuit potential (Voc) measurement of illuminated PSI-LHCI/p-doped Si 

nanodevices.  Upon illumination with white light of 100 mW cm-2 (2,200 µmoles photons m-

2 s-1), PSI-LHCI-functionalised p-doped Si devices (Panel A) display on average more than 

one order of magnitude increase in Voc parameter compared to the p-doped Si/SAM control 

(Panel B), confirming that PSI-LHCI functionalisation is instrumental for the incrementation 

of Voc upon illumination. Blue and red arrows symbolise light on and off, respectively. 

Potential values (µV) on the y-axis have been rescaled for clarity.   
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Figure 97 

Representative photocurrent generation within p-doped Si/SAM control. An 

overpotential of -250 mV was applied in the circuit to feed electrons into the system. Blue and 

red arrows indicate light on and off, respectively. Note that the Si substrate produces residual 

photocurrents. Current density values on the y-axis have been rescaled for clarity. 
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Figure 98 

Photocurrent generation within two representative PSI-LHCI/p-doped Si devices. Panel 

A: A representative PSI-LHCI device characterised by photochronoamperometry. Panel B: A 

representative PSI-LHCI device characterised by photochronoamperometry. An overpotential 

of -250 mV was applied to the circuit to feed electrons into the system. Although both devices 

displayed large variability, reproducible photocurrent densities were detected upon standard 

illumination, ranging from 104-234 µA cm-2. Blue and red arrows symbolise light on and off, 

respectively. Current density values on the y-axis have been rescaled for clarity. The shape of 

the photoresponsive curves was noted to vary from device to device, and could be attributed 

to imperfections in the construction of the device, unequal protein distribution or limited 

electron dispatchability.   
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4.6.3 Construction and photovoltaic characterisation of all-solid-state PSI-LHCI/cyt 

c553/p-doped silicon devices (fourth (IV) generation biophotovoltaic devices)  

Ultimately, it was important to determine whether incorporation of the cyt c553 linker variants 

(see Chapters 4.2 and 4.5) between the p-doped Si substrate and PSI-LHCI photoactive layer 

would influence DET, as measured by a marked increase in the generated photocurrents and 

the Voc parameter in the presence of the cyt c553 conductive layer within the devices. In this 

case, the Voc parameter would shine more light into the kinetics and competence of DET 

because it represents the difference of electrical potential between two terminals of a device 

when disconnected from any external circuit, and hence it is directly proportional to the 

kinetics of the unidirectional electron flow from the bottom Ag to the top Ag contact via p-

Si/cyt c553/PSI-LHCI layers (see Figure 99 for a schematic representation of the full PSI-

LHCI/cyt c553-based biophotovoltaic device). 

 

Figure 99 

Diagrammatic representation of the PSI-LHCI/cyt c553/p-doped Si nanodevice (fourth 

(IV) generation biophotovoltaic devices). The thickness of each layer indicated on the right 

was estimated by sputtering detection. The components are not to scale. All Si layer was 

consecutively functionalised with SAM, cyt c553 variant and PSI-LHCI (see Figure 94).  
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 The open circuit potential measurements within the all-solid-state PSI-LHCI/cyt c553/p-

doped Si biophotovoltaic devices showed that introduction of the 19AA cyt c553 linker variant 

increased Voc by 333 µV compared to the PSI-LHCI/p-doped Si sample (see Figures 100 and 

101), most likely due to efficient biopassivation of the p-doped Si surface by this cyt c553 

variant (see Chapter 4.5). It must be noted that it was not possible to assess the degree of 

biopassivation of the device which incorporated the 10AA linker variant. As observed in 

Figure 100, this type of device displays a ΔVoc of 350 µV, however, with an SD value of 

nearly 200%, this device was excluded from further analyses. Such an aberrant behaviour was 

most likely due to severe defects in the Ag bottom contact in two out of the three 10AA devices 

employed for the PV assessment.  
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Figure 100 

Average change (Δ) in open-circuit potential (Voc) for all the different types of PSI-

LHCI/cyt c553/p-doped Si devices constructed in this study. The Voc data (SD ± 100 µV for 

all the variants except for the 10AA linker variant) was averaged from three independent 

measurements from three devices for each class of the device. Note that a significant 

aberration is observed for the 10AA linker variant electrode due to notorious defect of two out 

of three devices incorporating this cyt c553 variant. Therefore, no conclusions could be reached 

for this class of the devices. The sample termed p-Si/SAM corresponds to the control with no 

biological modules. Average ΔVoc values (µV) on the y-axis have been rescaled for clarity.  
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Figure 101 

Photochronoamperometric determination of open-circuit potential (Voc) within PSI-

LHCI/p-doped Si (Panel A) and PSI-LHCI/19AA cyt c553/p-doped Si biophotovoltaic 

devices (Panel B). After averaging the three independent devices, an increase in 333 µV is 

observed for the 19AA cyt variant-containing biophotoelectrode (Panel B) compared to the 

biophotoelectrode containing the PSI-LHCI alone (Panel A). The average Voc increment for 

the biophotoelelctrode containing PSI-LHCI sample is 1,000 µV (shown in Panel A), while 

the average Voc increment for the biophotoelectrode containing PSI-LHCI in addition to the 

19AA linker variant is 1,333 µV (shown in Panel B). Blue and red arrows symbolise light on 

and off, respectively. Potential (µV) values on the y-axis have been rescaled for the ease of 

ΔVoc estimation. 

 

 Measurements of the photocurrents in all the (IV) generation devices exhibited a large 

degree of variability. This was also the case for photochronoamperometric curves, most likely 

due to the faulty Ag back contacts, as mentioned earlier. It was noted that the devices which 

contained higher quality Ag back contacts displayed much clearer and cleaner 

photochronoamperometric signatures, such as those shown in Panel A of Figure 102. 

Unfortunately, most of the 19AA cyt variant-containing PSI devices contained rather damaged 

Ag back contacts (as shown by the Voc measurements), rendering many devices impossible to 

analyse. Nevertheless, three independent devices of this class proved to be suitable for the 

measurement of photocurrents. Figure 102 displays photocurrent generation within two 
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distinct p-doped Si/PSI-LHCI and p-doped Si/19AA cyt c553/PSI-LHCI devices. The latter 

device displayed a much poorer quality of the photochronoamperometric curves compared to 

the p-doped Si/PSI-LHCI sample, due to the suboptimal Ag contacts which were easily 

dislodged even upon delicate manipulation. Despite the variability of the observed 

photocurrents, reasonably reproducible photocurrent densities were generated upon 

illumination, ranging from 104-234 µA cm-2 for the PSI-LHCI-containing nanodevices devoid 

of cyt c553, compared to 70-147 µA cm-2 for the nanodevices that contained 19AA cyt variant 

between the p-doped Si and PSI-LHCI layer, when an overpotential of -250 mM was applied. 

 

 

Figure 102 

Photochronoamperometric measurements of photocurrents generated within two 

selected PSI-LHCI/p-doped Si and PSI-LHCI/19AA cyt c553/p-doped Si biophotovoltaic 

devices. An overpotential of -250 mV was applied to feed electrons into the circuit. Blue and 

red arrows symbolise light on and off, respectively. Current density values on the y-axis have 

been rescaled for clarity.  

 

 To finalise PV characterisation, the short circuit current (Jsc) of the best performing p-

doped Si/PSI-LHCI and p-doped Si/19AA cyt c553/PSI-LHCI devices was measured by 

photochronoamperometry. The Jsc value is regarded in the realm of photovoltaics as possibly 

one of the most important values of a solar cell, as it displays the photocurrent generated when 
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the voltage across the circuit of the cell equals 0. As observed in Figure 103, biopassivation 

of p-doped Si substrate by the 19AA linker cyt variant causes a 20-fold Jsc value increase 

compared to that of that of the PSI-LHCI/p-doped Si device devoid of cyt.  

 

  

Figure 103 

Photochronoamperometric determination of short circuit current (Jsc) within the best 

performing PSI-LHCI/p-doped Si and PSI-LHCI/19AA cyt c553/p-doped Si 

biophotovoltaic devices. No overpotential was applied to determine Jsc parameter. Blue and 

red arrows symbolise light on and off, respectively. Current density values on the y-axis have 

been rescaled for clarity. 

 

4.6.4 Concluding remarks  

Two novel generation of nanodevices have been constructed which demonstrated that the 

presence of the 19AA linker enhances direct electron transfer between photoactivated p-doped 

Si and PSI-LHCI, in comparison to the devices with p-doped Si and PSI-LHCI alone, as 

proven by a marked Voc enhancement of 333 µV in the presence of the 19AA cyt variant. 

Although a great degree of variation was observed in terms of the photochronoamperometric 

curves, the record photocurrent densities of 104-234 µA cm-2 were produced for PSI-

containing devices devoid of cytochrome, being the highest reported to date for mediatorless 

all-solid-state PSI-LHCI-functionalised nanodevices, when an overpotential of -250 mV is 

applied [128,222,233,243]. In a similar device, featured by Jennings, Cliffel and colleagues, a 
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maximum photocurrent density of 127 µA cm-2  was reported when an overpotential was 

applied falling well in line with our results [222]. More recently, the same group featured a 

design with an polyaniline (PAni) polymer and a TiO2 substrate when an overpotential was 

applied, reporting photocurrent densities of 72-100 µA cm-2, also falling well in agreement 

with our results [128]. Due to the novelty and originality of our design, we could only find 

two reports in the literature which display a complete mediatorless setup, which, as 

aforementioned, produced photocurrents with similar values to ours [128,222]. We do not find 

it suitable or appropriate to compare our results with reports that employ in-solution mediators 

and/or electrolytes, as the photocurrent values reported barely exceed 15 µA cm-2 due to 

diffusion based energy loss [129,139,221,233,243,244]. Morevoer, we could clearly see the 

effect of cyt-evoked biopassivation of p-doped Si by comparing the measured the Jsc values 

for the best performing PSI-LHCI/p-doped Si and PSI-LHCI/19AA cyt c553/p-doped Si 

devices. Figure 103 shows that upon biopassivation, the Jsc current density is increased 

approximately 15-20 times in the biopassivated device compared to the device devoid of cyt 

c553. Morevoer, this Jsc current density value (1,550 µA cm-2) is the highest reported to date 

for any mediatorless all-solid-state PSI-LHCI containing device [128,222]. 

Although the results presented in this chapter are very promising, further optimisation 

of the device construction is required, e.g., optimisation of PSI-LHCI layer thickness and 

importantly, Ag contact construction and adhesion, to improve the reproducibility of 

photocurrent generation in the PSI/cyt-containing devices, which would aid the rigorous 

photoelectrochemical/photovoltaic assessment of the produced biovotovoltaic devices. 

Nonetheless, sealing the biological modules, such as extremophilic PSI-LHCI and cyt c553 

proteins, with a thin layer of SiO2 seems to aid tremendously in stabilisation of the modules 

and encapsulation of these robust biological modules. Furthermore, it should be noted that the 

photovoltaic/photoelectrochemical assessment of these devices was performed six months 

after construction of the devices, attesting once again to the unprecedented robustness of the 

photosynthetic biological modules of C. merolae. Additionally, these biological modules seem 

to be stable despite the rather aggressive chemical treatment during their incorporation into 

the biophotovoltaic devices (see Matarials and Methods). Therefore, the biological 

components employed in this study hold a great promise for construction of these all-solid-

state mediatorless nanodevices with even higher efficiencies than those reported here (see 

Table 23). 



240 
 

Chapter 5 Discussion and future outlook 

 

The soluble electron carrier responsible for transfer of electrons from cytochrome b6f complex 

to photooxidised PSI-LHCI in Cyanidioschyzon merolae is cyt c553. Once the electron carried 

by cyt c553 is used to reduce photooxidised P700+ reaction centre, this complex undergoes a 

subsequent photo-event leading to the formation of its characteristic photoexcited state P700*. 

The electron is then ejected from the primary electron donor and transferred via a highly 

organised chain of redox cofactors down the energy gradient to the terminal [4Fe-4S] cluster, 

FB. The formation of P700* species occurs at unparalleled, almost 100% quantum efficiency, 

and the main limiting step is the re-oxidisation and re-reduction of P700 by cyt c553. This 

important aspect of the primary events of photosynthesis, along with the essential bioenergetic 

properties of the redox cofactors involved in the electron transfer (respective Em values of all 

redox transfer cofactors, including the haem mid-point potential of cyt c553) prompted the 

working hypothesis of this PhD work, that the presence of cyt c553 in novel nanoarchitectured 

biosolar cells and solar-to-fuel devices, as well as plasmonic nanoconstructs would play a 

critical role in enhancing the energy transfer at the interface between the electrode/plasmonic 

nanostructure surface and the PSI photoelectroactive modules. Understanding the intricacies 

of electron transfer within the interfaces of specifically structured bionanodevices which 

incorporate nature’s most efficient photoconverter known to mankind, namely the PSI 

complex, remains the major challenge in biosolar research, and this PhD work set out to 

address this important issue.  

Purification of highly homogeneous PSI-LHCI sample devoid of peripheral light 

harvesting antenna for PSII, phycobilisomes (PBSs), was proven to be a non-trivial task, as 

described in detail in Chapter 4.1. As evidenced by Figure 41, after the multistep purification 

no detectable functionally-coupled PBSs remained present in the purified PSI-LHCI sample 

used in this study for construction of various configurations of solar-converting 

bionanodevices. These results contrast with the work of Hippler and colleagues, who detected 

a small pool of PBSs that seemed to be energetically coupled with the PSI-LHCI complex 

from C. merolae [97]. The present study showed that a small amount of allophycocyanin and 

phycocyanin were still present in the final PSI-LHCI sample, albeit most likely as an impurity, 

as it did not interact functionally with the PSI-LHCI RC, as shown by steady state 77K 

emission and excitation spectroscopy analyses (Figures 41 and 42).  One of the reasons which 

could explain this discrepancy is the fact that Hippler and colleagues employed a different 
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purification strategy. As mentioned in Chapter 4.1.3, the purification strategy differed in that 

in our case, the PSI and PSII complexes were separated first through a two-step AEC protocol 

followed by sucrose gradient fractionation rather than starting from sucrose gradient 

fractionation followed by an AEC step as reported by Hippler and colleagues [97]. Moreovoer, 

there AEC step was based on a MgSO4 gradient for elution of the PSI-LHCI supercomplex in 

contrast to NaCl employed in this study, which has a much higher ionic strength than MgSO4. 

Moreover, Hippler and colleagues purified a subpool of the PSI-LHCI [97] complex from low 

light conditions, in contrast to medium light conditions used in the present study. Our single 

particle analysis of the C. merolae PSI-LHCI complex (data not shown) has shown the 

existence of the additional protein density in the LHCI complex, corresponding to the 

additional Lhcr subunits over and above the 4 Lhca subunits of the LHCI complex identified 

in the crystal structure of higher plant PSI-LHCI complex [3,64,65].  

As discussed in Chapter 1.2.3.2, higher plant LHCI contains over 100 molecules of 

pigments including Chla, Chlb, carotenoids (β-carotenes, violaxanthin and lutein) [245]. In 

red algae, the LHCI complex is composed of a varying number of the Lhcr subunits whose 

genes are encoded in the chloroplast genome [87]. It is now well established that phototrophs 

are able to remodel their antenna as a photoprotective adaptation to different light conditions 

[24,81,246]. Interestingly, C. merolae PSI-LHCI complex undergoes remodelling of its LHCI 

antenna under varying light conditions [91], as one of the mechanisms underlying its high 

robustness in high light. However, the precise molecular mechanisms underlying the 

photoprotection of the C. merolae PSI-LHCI complex are beyond the scope of this PhD thesis.  

The highly stringent purification methodology was developed in the present work 

which yielded large amounts of highly active PSI-LHCI supercomplex which was 

subsequently used for the in vitro hydrogen production studies (Chapter 4.3), construction of 

novel AgNW plasmomic nanodevices (Chapter 4.4) and engineering of the various classes of 

biophotoelectrodes (Chapter 4.6). A more stringent purification procedure which was 

developed after the completion of this PhD study yields the PSI-LHCI samples completely 

devoid of PBSs [91], however, for the purposes of this project, the level of purity of this 

complex following the procedure developed in this study was sufficient. Additionally, the 

purification procedure optimised in this study was suitable for rapid production of mg amounts 

of highly active and stable PSI-LHCI complex, with yields ranging from 10% to 27.5% (see 

Figures 35 and 36) [91]. This was deemed advantageous as many optimisation protocols 
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(particularly for Chapters 4.3, 4.4 and 4.6) required considerable amounts of PSI-LHCI (for 

instance, the functionalisation of the biophotoelectrodes required 500 µg Chla per p-Si wafer).  

 Another protein used in this study was cyt c553. This protein was produced in mg 

amounts and was successfully incorporatred in the bioelectrodes, using five different cyt c553 

variants differing in the respective orientation and distance of the haem group with respect to 

the electrode surface. To this end, a relatively rapid and robust overexpression system was 

developed to produce redox active, homologous cyt c553 variants (Chapter 4.2). The E. coli-

based overexpression system presented here is, to the best of our knowledge, the most robust 

expression system for these c-type class-I photosynthetic cytochromes [153,170,178–181]. 

With yields in the range of 12.5-25 mg of pure redox active cyt c553 protein per 1 L of E. coli 

cell culture, a reasonably low number of preparations were sufficient for the production of all 

the devices produced in this PhD project.  

 Once the optimisation of the purification protocol for both biological components of 

the biophotovoltaic devices was completed (see Chapters 4.1 and 4.2), the PSI-LHCI 

photoactive module was employed for construction of novel biophotoelectrodes, in a series of 

configurations which led to understanding of how the cyt c553 and PSI-LHCI complexes 

interact ex vivo (Chapters 4.3, 4.4 and 4.6) during conversion of solar energy into 

photocurrents or molecular hydrogen.  They also showed that by building a specific and highly 

ordered nanoarchitecture of both complexes on plasmonic nanostructures, such as AgNWs, it 

was possible to enhance the specific plasmonic interactions between the plasmonic surface of 

the nanowires and PSI-LHCI fluorophores, in the presence of cyt c553 (Chapter 4.4).   

The present work provides the strongest evidence that cyt c553 enhances energy transfer 

to PSI-LHCI in an ex vivo configuration, as shown by fluorescence enhancement observed for 

PSI-LHCI/cyt c553/AgNWs nanoconstructs (Chapter 4.4, Table 21, Figures 82-85). 

Moreover, such plasmonic interactions have led to substantial extension of the absorption 

cross-section of the PSI-LHCI supercomplex, as evidenced by fluorescence enhancement 

following excitation of the PSI-LHCI/cyt c553/AgNWs nanostructure at 535 nm, the 

wavelength that is normally poorly absorbed by the PSI-LHCI complex (Table 21 and Figure 

84). This phenomenon was not observed in the absence of cyt c553, indicating that the presence 

of the native electron donor not only orients the PSI-LHCI fluorophore properly with its donor 

side towards the plasmonic nanostructure, but it also ensures that the plasmonic interactions 

are very specific and involve the discrete Chl subpools which are normally ‘blind’ (Figures 

80-85 and Table 21, Chapter 4.4). Consequently, highly oriented nanoarchitecture of PSI-
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LHCI/cyt c553/AgNWs displayed for the first time specific plasmonic interactions that led to 

improvement of the light harvesting functionality of PSI-LHCI. This discovery, described in 

Chapter 4.4, is important for developing a rational approach to constructing viable and highly 

efficient biosolar cells and solar-to-fuel devices. Furthermore, no fluorescence quenching was 

observed for such PSI-LHCI/cyt c553/AgNWs nanostructures, which is normally not the case 

for these novel type of plasmonic devices [247–249]. This property is not desirable, as 

fluorescence quenching results in energy loss.  

A possible explanation could be, that in a spatially highly organised configuration, i.e., 

whereby PSI-LHCI complexes are oriented uniformly on AgNWs by cyt c553, plasmon-

resonance energy transfer (PRET) and fluorescence-resonance energy transfer (FRET) events 

dominate, having the packets of energy move unidirectionally towards the tips of the wires. 

This could explain why such high values of emission were observed at the tips of the AgNWs 

upon bioconjugation with cyt c553 and PSI-LHCI. The specific nanoarrangement of PSI-LHCI 

by means of its domain-specific intermolecular interaction with cyt c553 lends itself to the 

construction of a super macromolecular-PSI-LHCI-complex in the shape of nanowires, which 

could in principle explain such pronounced emission intensity at the tips of the wires. 

Nonetheless, given the remarkable plasmon enhancement of fluorescence phenomena 

observed in such highly organised nanoarchitectures of PSI-LHCI, this novel bioengineering 

approach provides a possible alternative route to outperform current photoconverting 

platforms employed in solar-to-electric and solar-to-fuel nanodevices.  

As discussed by Wang and colleagues [216], artificially structured plasmonic materials 

are versatile in light harvesting and energy conversion. Employing a simple and scalable 

design of near-percolating silver nanostructures, Wang and colleagues [216] elegantly 

demonstrated that the light-harvesting efficiency of Chls can be drastically enhanced by tuning 

the plasmon frequency of the constituent silver nanoparticles (or nanoarchitecture, in this case 

silver films) to coincide with the maximal photon flux of sunlight. They demonstrate that the 

photon upconversion efficiency was readily enhanced by more than a factor of twenty. Their 

findings suggest that Chls can serve as the molecular building blocks for ultra-high-efficiency 

light harvesting and solar energy converting nanoconstructs. Although in our findings 

(Chapter 4.4) we did not calculate photon upconversion efficiency, we observed very 

significant (almost by a factor of 50, see Table 21) fluorescence enhancement factors at the 

tip of AgNWs bioconjugated with cyt c553 and PSI-LHCI, demonstrating that organised, 

energetically compatible supramolecular emission is the key to improving efficient photonic 



244 
 

absorption and emission for viable future artificial leaves. Indeed, Friebe and colleagues have 

recently demonstrated that deposition of purple bacterial reaction centre and its associated 

light harvesting complex (RC-LH1) on two different types of nanosctructured silver yielded 

very high photocurrents even at relatively low fluorescence enhancement factor of 2.5 [207].  

In the context of the results presented in Chapter 4.4, it is desirable to employ highly 

robust PSI-LHCI from extremophilic eukaryotes due to the inherent high photochemical 

activity of this photoconverter (Chapter 4.1, Figure 42) and the very reasonable fluorescence 

enhancement factors obtained upon plasmonic interaction (Chapter 4.4, Table 21). As it is 

well established that the plasmonic properties of metallic nanostructures can be tuned 

depending on the size and shape of the metallic nanostructure, one could envisage the system 

where the ideal nanostructure is designed, produced and employed with PSI-LHCI and cyt c553 

in such a fashion such that the distance between PSI-LHCI and the nanostructure is optimised, 

while the distance between adjacent PSI-LHCI complexes is also optimised (which 

incidentally is the case here for AgNW) resulting in the scenario where the fluorescence 

enhancement factor is maximised.  

 Perhaps the strongest evidence of cyt c553’s importance as electron transfer cofactor 

between an arbitrary sacrificial electron source and P700 is the fact that, as expected, in the 

absence of cyt c553 there is no in vitro H2 production, when PSI-LHCI interacts with the proton 

reducing catalysts (PRCs), as shown in Chapter 4.3 (Figure 75). This was demonstrated 

before [130,140,192,195] for cyanobacterial PSI/cyt c6/PRCs reconstitution assays, and the 

present study supports this observation. The importance of these experiments is evident, as 

molecular hydrogen, will most likely become the fuel of the future [113] (section 4.3.4 of 

Chapter 4.3 is highly recommended). Although the hydrogen-based economy seems 

nowadays an idealistic dream, scientifically it is important to state that molecular hydrogen is 

in fact the most energy dense fuel known to mankind after uranium, thorium, plutonium and 

tritium  (specifically hydrogen gas compressed at 700 bar, which has an energy density of 

1,555 Wh L-1 or a specific energy of 39,443 Wh kg-1) [182]. Although the results presented 

here are preliminary, they hold the great potential for scaling up H2 production using cheap, 

self-renewing and non-toxic biological photoelectroactive components, such as PSI, acting in 

tandem with novel PRCs to yield this clean solar fuel. As reported by Gross and colleagues 

[250], after prolonged illumination most DuBois-type Ni catalysts, such as those used in this 

study, suffer from photobleaching and ultimately undergo photodegradation. Therefore, 

finding alternative routes to stabilise these PRCs is highly desirable. The work presented in 
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Chapter 4.3 shows that PSI-LHCI/PRC hybrid systems are highly photostable, as they 

produce hydrogen with TOF values that were 3-fold and 16.6-fold higher than those published 

for cyanobacterial PSI/PRC hybrid systems employing cobaloxime [130] and a similar Ni 

mononuclear PRC [196], respectively. In contrast to the work published by Utschig and 

colleagues [130,192,195], these hydrogen production rates were obtained under intense white 

light illumination (8,130 μE m-2 s-1). Although it was not possible to record the real-time 

hydrogen production data due to technical obstacles and only hydrogen yields after 16 h of 

continuous illumination were assessed, it is believed that the hydrogen evolution proceeded 

until the complete exhaustion of the electron donor, ascorbate.  

 Investigation of the process of electron transfer at the interface between the p-doped Si 

surface and immobilised His6-tagged cyt c553 revealed that incorporation of this electroactive 

protein at the electrode surface results in considerable lowering of dark saturation currents 

(Figure 92 and Table 22, Chapter 4.5). These type of currents, quantified by the 

recombination parameter (J0), reflect the degree of semiconductor surface charge 

recombination, which is the intrinsic property of each type of semiconductor material [158]. 

Results in Chapter 4.5 show that the length of the peptide linker engineered within the cyt 

c553 structure play a significant role in modulating the dark saturation currents of the 

bioelectrodes, whereby longer linkers result in lower dark saturation currents, whereas shorter 

linkers result in the largest, compared to the non-biofunctionalised control (Table 22, Chapter 

4.5). As suggested by Amdursky and colleagues [251,252], this could be attributed to the 

ability of the haem group to relax electronically upon excitation from dark saturation inherent 

electrons at the interface. As shorter, more rigid linkers are likely to place the haem group 

closer to the p-Si surface (as evidenced by our 2D thermodynamic maps, see Figure 90, Panels 

A and B), there is a very low probability of the haem group relaxing electronically and hence, 

higher J0 recombination currents are observed (Figures 92 and 93, Table 22, Chapter 4.5). 

On the other hand, longer, more flexible linkers allow larger structural flexibility of the haem 

group with respect to the p-Si surface, resulting in the higher probability of haem relaxation 

and significantly lowering the surface charge recombination (7.5 x 10-3 mA cm-2, see Table 

22), resulting in considerably lower J0 values (Figure 92, Chapter 4.5). This hypothesis is 

also supported by the bioinformatic analysis of the Gibbs free energy distribution (see Figures 

89 and 90) which shows that longer linkers have higher degrees of flexibility and result in 

transitory states where the haem group is placed at a further distance with respect to the surface 

of the p-Si electrode.  
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This mechanistic hypothesis could explain the significant differences in J0 values 

depending on the cyt c553 variant used in this study. Furthermore, this study suggests that the 

ideal geometry for electron transfer from the p-doped Si surface to the haem group is that of 

parallel plane configuration, i.e., when the haem group is in parallel configuration with respect 

to the surface of the p-doped Si. Interestingly, the 0AA linker variant of cyt c553 introduces an 

aberrant behaviour when immobilised on the Si surface, yielding a J0 value either very close 

to the non-functionalised control or significantly lower (see Table 22). Such anomalous 

behaviour of this class of biolelectrodes can be explained by the severe geometrical restriction 

imposed on the haem group by the lack of any peptide linker, whereby the haem might be 

either in perpendicular or parallel orientation with respect to the Si surface. Interestingly, the 

Gibbs free energy mapping supports this hypothesis, as clearly two distinct populations of 

thermodynamically feasible conformations of the immobilised 0AA linker cyt c variant can 

be distinguished (Figure 90, Panel A, Chapter 4.5). As the 19AA linker variant is the only 

one that possesses sufficient flexibility such as to allow a more favourable parallel alignment 

with the Si surface (see Figure 92 and Table 22, Chapter 4.5), it would explain why these 

two (0AAb and the 19AA variant) possess reasonably similar J0 values (2.8 x 10-3 and 7.5 x 

10-3 mA cm-2, respectively). 

 In order to verify whether the cyt c553 linker variants genetically engineered in this 

study would exert the same effect in the complete PSI-LHCI-containing biophotovoltaic 

devices, five types of PSI-LHCI/cyt c553/Si biophotoelectrodes were constructed which 

incorporated a thin layer of PSI-LHCI on top of a cyt c553 variant layer (Chapter 4.6, Figure 

94). Moreover, two controls composed of Si/PSI-LHCI and Si with Ni-NTA SAM were used 

as the reference devices to assess the effect of incorporation of cyt c553 variants on the overall 

electron transfer in the all-solid-state biophotovoltaic devices prepared in this study. The open-

circuit potential analyses showed that the 19AA linker variant enhanced direct electron 

transfer within the devices, as evidenced by a 333 µV increase of Voc upon illumination 

compared to the PSI-LHCI/p-doped Si electrode devoid of cytochrome. This is the most 

significant result of the PV analysis, as for the open-circuit potential measurements no external 

bias is applied, thus, only electrons responsible for incrementing the potential are those which 

are photo-generated, as discussed by Jennings and colleagues [243]. Therefore, by 

biopassivating the p-doped Si surface with the 19AA cyt linker variant the direct electron 

transfer was improved, as measured by the Voc potential increase compared to the electrode 

with PSI-LHCI alone (Figure 101, Chapter 4.6).  



247 
 

The results of Chapter 4.6 go well in agreement with those presented in Chapter 4.5, 

whereby three independent experimental approaches demonstrated that the 19AA linker 

variant of cyt c553 is the best biopassivator of all the cyt c553 linker variants genetically 

engineered in this study. Subsequently, these results were confirmed in a fully operational all-

solid-state mediatorless artificial leaf composed of p-doped Si, 19AA cyt c553 variant, and the 

robust red algal PSI-LHCI complex. Although the devices presented a great degree of 

variability in terms of their PV performance due to imperfections in the Ag bottom contacts 

along with significant defects present in the p-doped Si, as evidenced by SEM imaging (Figure 

91, Chapter 4.5), the data obtained in this study was obtained from three independent 

nanodevices that were constructed in an identical fashion. Furthermore, after application of an 

overpotential of -250 mV photocurrent densities were generated in the range of 104-234 µA 

cm-2, placing them among the highest photocurrents reported to date for all-solid-state 

mediatorless PSI-LHCI-based nanodevices (Figure 98) [128,222,233,243]. Moreover, the 

PSI-LHCI/19AA cyt/p-doped Si devices display the highest short circuit current density (Jsc) 

reported to date for any PSI functionalised all-solid-state mediatorless device [128,222], a 

spectacular 1,550 µA cm-2. It is impoprtant to clarify that the the short circuit current is the 

current across the solar cell when the voltage across the solar cell is zero (Figure 98).  

Table 23 summarizes the performance of selected devices featured in this work 

compared to the most similar prototypes, namely those from Jennings, Cliffel and colleagues 

[128,222]. Biopassivation of p-doped Si substrate by the 19AA linker cyt variant enhances the 

external power conversion efficiency (η) of the device by 20-fold compared to the PSI/p-doped 

Si devices without cyt. The biopassivation effect exerted by 19AA cyt variant was also 

demonstrated by over 15-fold increase in the short circuit current (Jsc), when both types of the 

biophotovoltaic devices are compared (Figure 103).  Perhaps one of the reasons why our 

power conversion effiency values are so low compared to those of Jennings, Cliffel and 

colleagues [128,222] is non-homogeneous PSI-LHCI loading on top of the cyt c553 layer (in 

case of the 19AA functionalised device) or on top of the p-Si surface (in the case of the device 

devoid of cyt c553). This could be the case as it is difficult to control the PSI-LHCI orientation 

within such devices. Specifically, P700 should be oriented towards the p-Si surface or the cyt 

c553 haem for efficient cathodic photocurrent production. Furthermore, a homogeneous 

monolayer dispersion is challenging to achieve when employing vaccum-assisted spin coating. 

To overcome this, more sophisticated PSI-LHCI sealing techniques should be employed, such 

as confined-plume chemical deposition (CPCD) to obtain highly nanostructured PSI-LHCI/p-
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Si or PSI-LHCI/cyt c553/p-Si layers. An alternative technique could be to employ a redox active 

nanostructuring polymer as the interface between the substrate and PSI, such as PAni [128] or 

improve the direct electron transfer from the FB cluster on the reducing side of PSI by 

application of ZnO layer [223]. Nonetheless, the fill factor (FF) values obtained in this study 

are comparable to those of the similar type all-solid-state mediatorless biophotovoltaic devices 

based on PSI (see Table 23). The FF parameter is important, as in conjunction with Voc and 

Jsc parameters, it determines the maximum power output of a solar cell.  

Table 23 

Comparison of PV performance of all-solid-state mediatorless PSI/p-doped Si 

biophotovoltaic devices 

Device  

configuration 

Jsc  

[µA · cm-2] 

Voc  

[V] 

FF η  [%] References 

p-Si/19AA/PSI 

 

1,550* 0.001333* 0.31 0.00061 this work 

p-Si/PSI 

 

100* 0.001* 0.31 0.000031 this work 

p-Si/PSI/ZnO/ITO 127 0.214 0.28 0.0077 [222] 

PAni/PSI/TiO2/SnO2 72 0.299 0.42 0.0091 [128] 

Jsc; short circuit current, the current density when the voltage across the device is 0 V (Figure 

103) 

Voc; open circuit voltage or open circuit potential (the photovoltage generated when no bias is 

present across the circuit) (Figure 101) 

FF; fill factor  

η [%]; external power conversion efficiency of the biophotovoltaic device  

The performance of the listed solid state biosolar cells was evaluated at standard white light 

illumination of 100 mW cm-2 (AM 1.5) (See Chapter 3.2.9.4) 
* values were estimated for selected electrodes with the best performance. As mentioned in 

Chapter 4.6, significant variability was observed between devices due to fragile construction.  
1Calculation of fill factor and efficiency was performed with the open circuit voltage for the 

estimated values presented in the table assuming an ideality factor of 1 (n = 1) and a 

temperature of 300 K, as specified in Chapter 3.2.9.4. 

 

 Although mediatorless all-solid-state biophotovoltaic devices carry a number of 

advantages over mediated ones, including minimisation of charge recombination at the 

interfaces, eliminating toxicity of external mediators, avoidance of corrosion of metal 

electrodes, avoidance of mass transfer limitations, and avoidance of device failure caused by 

leaks [128,222,233,234,243], they also present certain challenges mainly due to limited 

stability of redox active species upon illumination, poor protein loading and non-uniform 
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orientation of the photoactive proteins with respect to the electrode substrate. A semi-solid-

state/solution-based system would potentially allow for more flexibility of the haem groups in 

the cyt c553 variants depending on the peptide linker used. Ultimately, this could result in more 

efficient electron transfer from the haem groups to P700+ but could also be energetically 

costly, as electron/hole pairs could recombine in solution, and mass transfer could dominate 

the mode of electron transfer in such devices [238].  

In the work presented by Beam and colleagues [222], the biophotovoltaic device 

composed of p-Si, spinach PSI-LHCI, ZnO and indium tin oxide (ITO) exhibited a 

photocurrent density shift of 5 µA cm-2 when illuminated in a photo-electrochemical cell 

configuration with the electrolyte. In contrast, when the device was characterised in the all-

solid-sate mediatorless mode, it displayed a photocurrent density shift of 15 µA cm-2. That is 

an increase of 10 µA cm-2, a rather significant gain in photocurrent density and a very clear 

example as to why the mediatorless all-solid-state configuration is more advantageous over 

the electrolyte/mediator photo-electrochemical cell configuration, which, as evidenced above, 

is energetically expensive and limiting in terms of competent electron transfer. The all-solid-

state nanodevice presented in this study which incorporated the cyt c553 19AA linker variant 

as the biopassivator of the semiconductor may hold the key to solving the problem of electron 

dispatchability at the interface between the semiconductor photo-active substrate (in this case 

p-doped Si) and PSI-LHCI, the latter serving as the photoactive module of the device.    

 In brief, it is shown by construction of three independent devices, i.e., (i) PSI-LHCI/cyt 

c553 AgNWs, (ii) hydrogen reconstitution assays, (iii) Ag/p-doped Si/cyt c553/PSI-LHCI/Ag 

all-solid-state mediatorless biophotoelectrodes, that cyt c553 is not only essential for electron 

donation to P700, but actually critical for competent energy transfer between plasmonic 

nanoarchitectures and semiconducting substrates, leading to ameliorated electron transfer 

between the Si substrate and cyt, and lowering of the surface charge recombination events 

within the Si bioelectrodes. Importantly, a high degree of specific orientation of PSI-LHCI 

complex on cyt c553/AgNWs leads to an improved absorption cross-section of the PSI-LHCI 

complex. Significantly, enhanced open-circuit potential increments when in the presence of 

the 19AA linker variant as a redox active solid-state mediator evidence and confirm 

biopassivation by this particular cyt c553 linker variant at the all-solid-state interface. 

Moreover, in the absence of cyt c553 hydrogen production in vitro reconstitution assays do not 

produce hydrogen (see Figure 75, Chapter 4.3), attesting once again to the criticial role that 
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cyt c553 plays in mediating electron transfer to P700, whether in solution or at the all-solid-

state interface.  

 This study culminated with the purification, isolation and characterisation of PSI-LHCI 

of sufficient quality and quantity for employment in semi-solid-state, in vitro hydrogen 

production assays and all-solid-state set-ups. It produced a sufficiently robust cyt c553 E. coli 

based overexpression system (as a matter of fact the most robust reported to date) 

[153,170,178–181] such that sufficient amounts of five different variants of redox active, 

fully-operational cyt c553 were successfully isolated, purified and characterised.  

 As Si photovoltaics is expected to dominate the clean energy market by 2030 [113], 

the results of this study greatly support this technology and open it to “green’ approaches. 

Nevertheless, considerable efforts will be necessary to overcome the main bottlenecks that 

hamper improvement of power conversion efficiencies of Si/PSI-based biophotovoltaics. First 

and foremost, overcoming the technical challenges associated with the construction of the Si 

biophotovoltaic devices is of paramount importance. The main factors responsible for 

lowering the overall performance of such devices are related to Si doping, contact adhesion, 

contact construction, and homogeneous doping. Another important technical challenge is 

homogenous (photo)electroactive protein loading and stability. In order to improve the latter 

aspect, electrospray should be employed in conjunction with spin coating, this way, 

homogenenous protein deposition in entire areas of the semiconductor can be ensured. The 

latter should be confirmed with subsequent profilometry analysis. Once all these aspects are 

optimised, the electron dispatchability issue should be addressed. As emphasised in this work, 

a novel type of biological, robust redox active all-solid-state mediator is proposed by 

employment of a variant of cytochrome c553. This, in conjunction with improvement of 

material quality (either by improving doping technology or by more advanced Si processing 

techniques) should advance and ultimately optimise competent electron dispatchability.  

This work shows that for improvement of direct electron transfer and overall power 

conversion efficiency of the all-solid-state mediatorless devices biopassivation with redox 

active cyt c can be successfully applied. The performance of such devices may be further 

improved by application of plasmonic photo-converting biohybrids with well-defined 

architecture of the biological photoconverter, such as PSI-LHCI used in this study, so that the 

light harvesting properties of the latter are maximised. In addition, application of solar 

thermophotovoltaic converting (STPV) technology to miminise energy losses by dissipation 

and maximise energy re-adsorption by means of an optical filter and a thermal emitter could 
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also be advantageous for PV performance improvement. These technologies, together with 

other developments in the field, shall culminate with breaching the Shockley–Queisser limit 

and subsequent achievement of spectacular and unanticipated solar-to-electric efficiencies, 

concluding in a cost-effective, clean, scalable, non-toxic technology that will prove viable.  

In an even more ideal, yet quite plausible configuration, PSI-based biophotovoltaic 

device could be linked to photostable robust proton-reducing catalysts, such as those used in 

this study, that would work in conjunction with PSI to produce hydrogen in a prolonged, and 

perhaps even intermittent fashion at equatorial illumination intensities. Four important factors 

are considered in the pursuit for the ‘ideal’ artificial leaf: (1), power conversion efficiency; 

(2), robustness; (3), scalability; and (4), cost-effectiveness. The main challenge to date is the 

efficient production and proper interfacing of all the required components of a robust, scalable, 

cost-effective and most importantly, an efficient artificial photosynthetic device capable of 

producing fuel from water upon solar illumination [9]. Redox compatibility and efficient 

energy transfer seem to embody the main bottleneck. Therefore, a thorough characterisation 

of new materials and stringent selection of appropriate working conditions is of paramount 

importance [253]. Furthermore, the spatial organisation of the building modules chosen for a 

particular solar fuel system may have a significant impact on the overall power conversion 

efficiency due to the potential losses associated with chemical transport processes or parasitic 

electrical resistances inherent to certain solar-to-fuel device geometries [253]. An additional 

limitation arises from the physical combination of all the components into a fully operational 

water-splitting/fuel producing device. A proper example is the assembly and construction of 

a half-cell photoelectrode. The most efficient catalysts do not always produce the most 

efficient assemblies when placed on the most efficient light absorbing materials [253]. As 

mentioned previously, scalability and cost-effectiveness seem to be currently the most limiting 

factors in the field [9]. The term “scalability” is often mistakenly equated to the employment 

of earth-abundant materials for the construction of scalable, cost-effective artificial 

photosynthetic devices. This is certainly not the case. Other important factors must be taken 

into consideration, most pointedly the relationship between elemental abundance, capital and 

raw materials costs [9,253].    

Currently, great efforts are undertaken in the PV field to optimise hydrogen storage, 

transport and safety, but once this technology is optimised, we shall finally achieve the holy 

grail of sustainability, and at long last, our quest for the ultimate sustainability of energy 

consumption and production, shall conclude. The Oxford dictionary defines the word ‘quest’ 
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as “a long or arduous search for something.” We do not have to look very far to learn what is 

left to be learnt to complete successfully a quest for the sustainable energy production. As 

evidenced by this PhD thesis, nature can teach us a great deal, and it is possible to use nature 

for the service of humanity. Nature, as it always has, and always will, holds within the bowels 

of its molecular machinery, the answer.  
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Chapter 6 Summary  

 

6.1 Summary 

In the quest for a viable, scalable, non-toxic and cost-effective artificial leaf incorporating 

nature’s most efficient photoconverter, i.e., PSI, one must overcome the challenges presented 

by our current lack of knowledge regarding the intricacies of electron transfer within the 

modules of the bioelectrodes and at the interfaces within. In this study, it is demonstrated by 

three independent approaches, i.e., (i), construction of PSI-LHCI/cyt c553 AgNWs; (ii), photo-

driven in vitro hydrogen production assays, and (iii), construction of Ag/p-doped Si/cyt 

c553/PSI-LHCI/Ag all-solid-state mediatorless biophotovoltaic devices, that by employing the 

PSI-LHCI photoconverter together with its native electron donor, cyt c553, significantly 

improved energy and electron transfer is achieved within such novel devices.  

The specific nanoarchitectures described in this study involved orienting the robust 

extremophilic PSI-LHCI complex within a highly ordered architecture, i.e., with its donor side 

towards the semiconductor substrate or a specific plasmon-generating nanoconstruct of silver 

nanowires. To this end, cyt c533 was used as it specifically interacted with the domain of PSI-

LHCI in the vicinity of the P700 primary electron donor. This ‘orienting’ molecular approach 

allowed for the energy packets (in the form of surface plasmons) to migrate more efficiently 

to the specific subpools of fluorophores present in the PSI-LHCI structure, or transfer electrons 

at a sufficient kinetics to drive the catalytic reduction of protons into molecular hydrogen by 

proton reducing catalysts upon their adsorption onto the acceptor side of PSI-LHCI complex. 

Moreover, in an all-solid-state configuration, application of a cyt c553 19AA peptide linker 

variant facilitated competent electron transfer to P700, as evidenced by an open-circuit 

potential increase of 333 µV, as well 15-fold increase of the short circuit current upon 

illumination compared to a non-functionalised control. These results are consistent with 

minimisation of the J0 recombination parameter recorded for the p-doped Si electrode which 

incorporated 19AA cyt c553 linker variant on its surface.  

This PhD thesis is a testament to the fact that we still have a great deal to learn from 

Nature. Understanding the electron transfer modes and kinetics at the interfaces of 

biophotoelectrodes is important, as such knowledge will ultimately allow for the development 

of rational design of viable solar cells and solar-to-fuel nanodevices. The incessant and 

indiscriminate consumption of billions of years worth of photosynthesis (by burining fossil 
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fuels) will only last a couple of decades, and after that is up to us to find a way to harness and 

convert solar energy into clean carbon-neutral solar fuels, such as hydrogen. The results 

presented in this PhD thesis demonstrate that extraction of two natural components from the 

extremophilic photosynthetic apparatus and their subsequent employment in a number of 

rationally designed, highly ordered nanoarchitectures may provide an attractive green 

alternative to solar energy conversion into photocurrent and solar fuel, such as molecular 

hydrogen. Although the experimental platforms developed in this study are currently at the 

laboratory benchtop scale and require further optimisation, their possible scaling up and 

commercialisation seem to be on a good track to realisation.  

 

As mentioned in the preface of this thesis: 

 

“Nature has a great deal to teach us, and as this thesis shows, we do not need to 

circumvent nature to improve it. On the contrary, we need to learn, use and exploit nature for 

the service of the society. If we want to improve nature, we should understand how it works. 

Most importantly, we should understand the intricate molecular processes that exist in natural 

photosynthetic systems to be able to exploit the newly discovered or improved functionalities 

of photosynthetic complexes upon their nanostructuring within cheap and scalable solar 

energy-converting devices.”   

 

Julian David Janna Olmos  
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6.2 Podsumowanie 

Optymalizacja procesów transferu energii i transferu elektronowego w 

biofotowoltaicznych nanourządzeniach zawierających fotosystem I oraz cytochrom c553 

z ekstremofilnego krasnorostu Cyanidioschyzon merolae 

Wobec zmniejszających się globalnie dostępnych zasobów paliw kopalnych i rosnącego 

zapotrzebowania na energię, konieczność opracowania wydajnych zielonych technologii 

pozwalających na konwersję praktycznie niewyczerpywalnej energii słonecznej w 

elektryczność i neutralne paliwa jest niepodważalna. Jednym z głównych wyzwań technologii 

biofotowoltaicznych, w których stosuje się wysokowydajne i aktywne fotochemicznie 

kompleksy białkowo-pigmentowe jako moduły konwertujące energię słoneczną, jest 

zwiększenie wydajności kwantowej urządzeń biofotowoltaicznych. W tym celu, jednym z 

najważniejszych zadań badawczych jest minimalizacja procesów rekombinacji ładunku w 

obrębie biologicznych i syntetycznych modułów, jak również interfejsu biofotoelektrod. 

Dodatkowym wyzwaniem jest zwiększenie stabilności i homogenności upakowania 

biofotoaktywnych komponentów.  

W ramach niniejszej rozprawy doktorskiej opracowano nowatorską technologię 

polegającą na zastosowaniu wysokostabilnej naturalnej makromolekularnej maszyny 

konwertującej energię słoneczną, fotosystemu I (PSI) oraz naturalnego donora elektronów dla 

tego kompleksu, cytochromu c553 (cyt c553), wyizolowanych z ekstremofilnego krasnorostu 

Cyanidioschyzon merolae, do konstrukcji trzech typów nanourządzeń biofotowoltaicznych: 

(1), biofotoogniw w stałej konfiguracji (ang., all-solid-state), zawierających domieszkowany 

pozytywnie półprzewodnikowy substrat krzemowy (ang., p-doped Si) wraz z warstwami 

fotoaktywnego kompleksu PSI i cyt c553; (2), plazmonowych srebrnych bionanodrutów 

(AgNWs), funkcjonalizowanych wysokouporządkowaną nanoarchitekturą monowarstw PSI i 

cyt c553, oraz (3), systemu fotokatalitycznej produkcji wodoru cząsteczkowego in vitro z 

zastosowaniem kompleksów hybrydowych PSI wraz z syntetycznymi katalizatorami redukcji 

protonów (ang., proton reducing catalysts, PRC).  

Funkcjonalizacja elektrody p-Si wariantem cytochromu c553, charakteryzującym się 

największym stopniem swobody orientacji grupy hemowej w stosunku powierzchni elektrody 

krzemowej, pozwoliła na efektywną biopasywację tego półprzewodnikowego substratu 

poprzez minimalizację parametru rekombinacji ładunku powierzchniowego J0, co z kolei 

pozwoliło na zwiększenie parametru Voc o 333 µV w biofotoogniwach PSI/cyt c553/p-Si, w 
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porównaniu do kontroli zawierającej PSI/p-Si, a pozbawionej cyt c553. Uzyskano fotoprądy w 

stałych biofotoogniwach PSI/p-Si w zakresie 104-234 µA cm-2 (przy nadpotencjale -0.25 V), 

co należy do jednych z najwyższych wartości fotoprądów generowanych przez stałe 

biofotoogniwa z PSI, w podobnych warunkach pomiarowych. Jednocześnie wydajność 

konwersji energii słonecznej w fotoogniwach typu PSI-LHCI/cyt c553/p-Si była 20-krotnie 

wyższa, w obecności wariantu cyt c553 19AA, zastosowanego w tych urządzeniech jako 

biologiczna warstwa biopasywacji substratu krzemowego oraz warstwa kondukcyjna 

pomiędzy substratem a PSI. Tym samym wykazano, że ów wariant może być zastosowany w 

urządzeniach biofotowoltaicznych do zwiększenia transferu elektronowego pomiędzy 

substratem a PSI.    

W równoległym i komplementarnym kierunku badań, zastosowanie równomiernej i 

specyficznie ukierunkowanej nanoarchitektury fotoaktywnej warstwy PSI na plazmonowych 

nanostrukturach metalicznych AgNWs, sfunkcjonalizowanych uprzednio cyt c553, pozwoliło 

na znaczące zwiększenie efektywnej absorpcji PSI, w zakresie spektralnym, w którym PSI jest 

nieaktywny in vivo, poprzez aktywację specyficznej puli tzw. czerwonych cząsteczek 

chlorofilu w obrębie fluoroforów PSI. Tym samym, pokazano, że oddziaływania plazmonowe 

mogą być efektywnie zastosowane nie tylko do zwiększenia całkowitej absorpcji 

fotoaktywnych kompleksów białkowych, ale również do aktywacji spektralnej specyficznych 

pigmentów, wyłącznie w obrębie wysokouporządkowanej i zorientowanej nanoarchitektury 

tych fotokompleksów na nanokonstruktach plazmonowych. Powyższe nowatorskie podejście 

badawcze może być w przyszłości zastosowane do konstrukcji nowej generacji urządzeń 

biofotowoltaicznych o zwiększonej wydajności konwersji energii słonecznej. 

Optymalizacja biofotokatalitycznej produkcji wodoru cząsteczkowego z zastosowaniem 

systemów hybrydowych z PSI i PRC, opartych na kobaloksymie i niklowym katalizatorze 

mononuklearnym typu DuBois, precypitowanych na powierzchni PSI w roztworze wodnym, 

pozwoliła na osiągnięcie aktywności wydzielania wodoru odpowiednio, 521 moli H2 (mol 

PSI)-1 min-1 oraz 729 moli H2 (mol PSI)-1 min-1, przewyższając tym samym 3-17-krotnie 

aktywność wydzielania wodoru w podobnych systemach biohybrydowych i warunkach 

pomiarowych.    
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6.3 Conclusiones (en castellano) 

En la cruzada por una hoja artificial viable, realizable, ecológica, económica y factible, 

incorporando el foto-convertidor más eficiente de la naturaleza (el fotosistema I), uno debe 

superar los obstáculos presentados por la falta de conocimiento en relación con los detalles 

complicados e intricados con respecto a la transferencia electrónica entre los módulos de 

bioelectrodos biotecnológicos y particularmente entre sus interfaces. En este estudio se 

demuestra por tres técnicas independientes que la incorporación del donador de electrones 

biológico del fotosistema I, el citocromo c553, culmina en transferencia electrónica competente 

por inyección dirigida a la pareja de clorofilas especializada del centro reactivo del fotosistema 

I gracias a una nano-geometría ultra-específica. La nano-arquitectura específica descrita en 

este estudio exigió la orientación del fotosistema I de una manera altamente organizada i.e., 

con su pareja de clorofilas especializadas dirigida hacia el material semiconductor o en una 

nano-arquitectura especializada sobre nanocables de Plata. Con este fin, el citocromo c553 fue 

utilizado ya que este tiene una interacción muy específica con el fotosistema I, particularmente 

con la pareja de clorofilas especializada (P700), la cual es responsable de la separación de 

carga y de recivir electrones por parte del citocromo c553. Esta estrategia de ‘orientación 

natural’ permitió que los paquetes de energía (en la forma de plasmones de superficie) viajaran 

más eficientemente hacia los fluoroforos del fotosistema I, y también ha culminado en la 

transferencia de electrones en tal competencia que ha permitido la reducción de protones en 

hidrogeno molecular por medio de una catálisis dirigida gracias a compuestos adsorbidos en 

la vecindad del ultimo centro cuaternario de hierro [4Fe-4Fe] (conocido como FB) del 

fotosistema I. Complementariamente, en una configuración del estado sólido completo, un 

variante especifico del citocromo c553, (el variante de 19 amino ácidos descrito en esta tesis) 

ha demostrado transferencia electrónica super-competente a P700 evidenciado por un 

incremento de 333 µV cuando el biofotoelectrodo solar construido es iluminado comparado 

con un biofotoelectrodo idéntico simplemente que no contiene este citocromo y solo el 

fotosistema I en interface con la silicona. Los resultados demuestran sin duda alguna una 

reducción considerable de recombinación de carga en la interface de biofotoelectrodos de 

silicona tipo p que incorporan específicamente este variante del citocromo en la superficie del 

material semiconductor. 

 Esta disertación doctoral es un testimonio del hecho que aún tenemos mucho que 

aprender de la naturaleza. Entender los mecanismos de transferencia electrónica y cinética en 

las interfaces de biofotoelectrodos es de suma importancia ya que este conocimiento 
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últimamente nos permitirá desarrollar racionalmente un diseño de células solares viable en 

adición de nano y macro-maquinas que culminen en una eficiencia de conversión solar-a-

combustible razonable, viable y comercializable. Nuestra devastación incesante, 

indiscriminada y agresiva de billones de años de fotosíntesis (en la forma de combustibles 

fósiles) solo aguantará un par de décadas, en el mejor de los casos, y después de que los 

combustibles fósiles se agoten es nuestra obligación encontrar la forma de utilizar la luz solar 

para convertirla en combustibles solares libres de carbón, como por ejemplo, el hidrogeno 

molecular. Los resultados presentados en esta disertación doctoral demuestran que la 

extracción de dos componentes naturales del aparato fotosintético de una micro-alga 

extremofílica acidofílica y su apropiada utilización en un número de nano-arquitecturas 

altamente organizadas, diseñadas racionalmente, que incluyen en su diseño un material 

semiconductor ideal para células solares, la silicona tipo p, además de la producción in vitro 

de hidrogeno donde el fotosistema I funciona sincronizado con compuestos catalíticos que 

reducen protones, o con materiales que emiten plasmones de superficie, como por ejemplo 

nano-cables de Plata, resultan en conversión foto-eléctrica competente, últimamente 

mejorando las características foto-físicas del fotosistema I o resultando en la producción 

sostenida de hidrogeno cuando este mismo foto-convertidor es utilizado con su donante natural 

de electrones, el citocromo c553. Aunque las plataformas experimentales desarrolladas en este 

estudio solo se encuentran a escala de laboratorio al día de hoy, y sin duda alguna requieren 

de mucha más optimización, su posible comercialización e industrialización parecen estar en 

un buen camino hacia la ejecución.  

 

 

Julián David Janna Olmos  
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6.4 Special notes from the author 

At thirty years of age, and after many personal circumstances over the last seven years, I have 

come to the realisation of several momentous things. First and foremost, a PhD is a very tough 

lesson of endurance, fortitude and resolve. Without any of the latter it would be impossible for 

any doctoral candidate to accomplish their doctorate in full. I cannot deny that it had always 

been my dream to become a doctor of science. Today, observing and understanding that all 

my dreams are coming true, I feel that nothing can stop me, and that nothing can get on the 

way of my success. But most importantly, I have come to the realisation of a critical golden 

principle. Family is the one and only true wealth in this life. Being away from my family all 

these years has made me appreciate them more than I ever thought I could, and has made me 

realise that nothing can buy family love, nothing is more valuable than family and that nothing 

compares to true family love. Just as my dreams are coming true as I finish writing this thesis, 

I have faith and strong believe that very soon I shall be reunited with my family, and that very 

soon, we should all rejoice together to celebrate the love and trust that we so very much profess 

to each other. Faith has driven me through all these years of hard indefatigable and relentless 

work, and faith, only through true, passionate and everlasting faith, I will find the means to 

finally see my family again, and to feel once again the incredible and indescribably happiness 

and joy of being reunited with those that I always have and always will love.  

 

 

Julian David Janna Olmos 
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6.5 Notas especiales del autor (en castellano) 

A los 30 años de edad, y después de muchas circunstancias personales durante mis últimos 

siete años, he alcanzado finalmente el entendimiento de muchos temas transcendentales. Lo 

primero y lo más importante es que, un doctorado es una lección muy dura de perseverancia, 

determinación, paciencia y fortaleza. Sin ninguna de estas cuatro cualidades hubiera sido 

posible doctorarme. No puedo negar que siempre ha sido mi sueño convertirme en un doctor 

de ciencia. Hoy, observando y concibiendo que todos mis sueños se están haciendo realidad, 

siento que nada puede detenerme, y que nada se puede interponerse en mi camino al éxito. 

Pero lo más importante de todo, es que he llegado al entendimiento de un principio dorado. 

La familia es la única y verdadera riqueza en esta vida. Estar lejos de mi familia todos estos 

años me ha hecho apreciarlos mucho más de lo que yo pensé sería posible, y me ha hecho 

darme cuenta que nada puede comprar el amor de una familia. Nada es más precioso que la 

familia y nada puede compararse al verdadero amor familiar. Así como mis sueños se hacen 

realidad al terminar de escribir mi disertación doctoral, tengo muchísima fe y creo fuertemente 

que muy pronto podre estar reunido con mi familia un vez más, y, que muy pronto, junto con 

mi familia, celebraré el amor y la confianza que mutuamente nos profesamos con pasión. La 

fe me ha estimulado todos estos años de dedicación y trabajo arduo, duro e incesante, y solo 

por medio de una fe verdadera, eterna y apasionada, encontraré la forma de volver a estar 

reunido con mi familia un vez más, para sentir ese sentimiento de alegría tan inenarrable y tan 

intenso. Por fín, después de tantos años, podre sentir ese sentimiento de estar junto aquellos 

que amo y que siempre amaré, pese a las circunstancias, el tiempo, o la distancia. 

 

 

Julian David Janna Olmos 
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Chapter 7 

 

Appendices and supplementary information 
 

 

7.1 Equations 
 

CO2 + H2O → (CH2O)x + O2         (Eq. 1) 

 

ATP + H2O → ADP + Pi (-31 kJ mol-1)      (Eq. 2) 

 

Pi + glucose → glucose-6-P + H2O (+ 14 kJ mol-1)     (Eq. 3) 

 

glucose + phosphate → glucose-6-P (-17 kJ mol-1)     (Eq. 4) 

 

2H2O + 2NADP+ + 3ADP → 3PiO2 + 2NADPH + 3ATP    (Eq. 5) 

where Pi is a free phosphate ion that is negatively charged  

 

2H2O  → O2 + 4H+ + 4e-        (Eq. 6) 

 

ΔG0 (PA      P+A- ) = qe [Em (P+/P) - Em (A/A-)]     (Eq. 7) 

 

J = J0 
(qV/enkT) -1 [158]         (Eq. 8) 

 

FF = (Voc – ln(Voc + 0.72))/Voc + 1       (Eq. 9) 

 

η = (Voc · Jsc · FF)/Pin         (Eq. 10) 
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7.2 Plasmid maps 

 
7.2.1 pET28b-(+) 
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7.2.1 pBAD/HisA map 

 

 

 
  



264 
 

7.2.3 pEC86 map 
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7.2.4 pET28b-(+) 0 AA map 
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7.2.5 pET28b-(+) 5 AA map 
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7.2.6 pET28b-(+) 10 AA map 
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7.2.7 pET28b-(+) 12 AA map 
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7.2.8 pET28b-(+) 19 AA map 
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7.2.9 pBAD/HisA 0 AA map 
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7.2.10 pBAD/HisA 5 AA map 
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7.2.11 pBAD/HisA 10 AA map 
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7.2.12 pBAD/HisA 12 AA map 
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7.2.13 pBAD/HisA 19 AA map 
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7.3 Supplementary Figures 

 

 

Supplementary Figure 1. Representative RT absorbance spectrum of PSI-LHCI 

phycobilisome-contaminated simple. Normally, an increase in absorbance was observed at 

628.5 nm and a blue shift of the Chla peak from 680 nm to 677.5 nm was observed for PSI-

LHCI samples with a considerable contamination of PBSs. Moreover, as the amount of PBS 

contamination increased, a larger blue shift from 630 nm to 628.5 nm was observed. These 

PBSs-containing samples were deemed unsuitable for biotechnological applications and 

required much more extensive purification steps, as shown in Chapter 4.1 and discussed in 

detail in Chapters 3.2.3.3, 3.2.3.4 and 3.2.3.5. 
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Supplementary Figure 2. Redox difference absorption spectra of the cyt c553 linker 

peptide variants used in this study (excluding the 10AA linker variant). Presence of α, β 

and γ peaks and their full redox reversibility indicate that all the cyt c proteins are active in 

electron transfer. All the variants possess identical redox difference spectra. The spectra also 

indicate appropriate haem group maturation, incorporation and full reversibility of the redox 

reaction. Spectra for fully oxidised (max. oxidised, displayed in green) species had to be cut 

off above unreliable absorbance values as excess FeCN had to be titrated depending on the 

amount of cyt c553 present to achieve the maximally oxidised species of the redox active 

protein. In the same fashion, spectra of fully reduced species were truncated below 370 nm, 

as the sodium dithionite maxima overshadows the cyt c553-specific peaks. Absorbance values 

on the y-axis were re-scaled for clarity and to display equal spectral intensity on the four 

panels.  
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Supplementary Figure 3. Dark J-V characterisation of cytochrome c553/p-doped silicon 

bioelectrodes. Dark current density J (mA cm-2) was measured for all the devices, as shown 

in Figure 91. Semi-logarithmic representation of the measured J-V values allows for 

estimation of the J0 recombination parameter which corresponds to the y-intercept and is 

calculated according to Eq. 8. 
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Supplementary Figure 4. PV determination of cyt c553 mid-point potential. The potential 

was estimated at the mid-point when the tangent line of the photovoltaic curves, generated 

upon illumination with standard AM 1.5 light (1 kW m-2), stopped decreasing and before it 

started to increase again. As eternal illumination produced severe Auger recombination, 

current density values on the y-axis were drastically decreased and had to be re-scaled for 

clarity. Note the discrepant behaviour of the p-Si SAM control on its own, confirming the 

strong redox interaction between cyt c553 and p-Si. 
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