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1 Secret sharing and our area of interest

Suppose that there is a con�dential information (e.g. a piece of �nancial data) which we
would like to make available for n persons p0, . . . , pn−1 but only when a reasonably large group
of them (say, a subset of size > k) decides to cooperate. A simple and e�cient solution of
Shamir [16] is to choose a prime power q > n such that the secret can be encoded as an
element S of the �nite �eld Fq, then randomly choose a polynomial P (x) over Fq of degree
k − 1 such that P (0) = S, and �nally equip each participant pi with the value P (xi), where
the participants' identities xi ∈ Fq are pairwise distinct and non-zero. Then, each subset of
k participants can recover S (by Lagrange interpolation), while any smaller set can obtain no
information on S (in the sense of information theory).

More generally, secret sharing means distributing the knowledge of a secret among a set of par-
ticipants by equipping them with pieces of partial information (called shares) in a way which
realizes a given access structure, that is, allows to specify exactly which sets of participants
shall be able to reconstruct the secret if they pool their shares together (such sets are called
authorized in the access structure). In particular, Shamir's solution realizes the k-threshold ac-
cess structure (authorized⇔ of size > k), which is very particular but most frequently needed
in practice [9, Section 3.5]. Brickell [2] has proposed a more general construction, capable of
handling a much broader range of access structures; the price paid for this is an increase of
computational complexity, which, however, may be negligible in many applications.

Our research concentrates on an intermediate class between Shamir's and Brickell's schemes,
proposed by Lai and Ding in [8], called Lai-Ding's schemes in [17]. Comparing to the Shamir's
procedure described above, they introduce three modi�cations:

(i) dispersion of monomial degrees: P shall be now chosen among polynomials of the form∑k−1
j=0 ajx

cj , where c = (c0, . . . , ck−1) is a �xed increasing sequence of non-negative inte-
gers, treated as a new (publicly known) parameter of the scheme;
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(ii) shift of the secret: it shall be the coe�cient ai, where 0 6 i 6 k − 1 is a new parameter
of the scheme;

(iii) allowing that one of participants may have its identity xj set to 0 ∈ Fq.

For further convenience, we will denote a concrete scheme of this form by ΣLD
q (c, i). Note

that Shamir's schemes correspond to the case c = (0, 1, . . . , k − 1) and i = 0 (with xj = 0
forbidden).

Lai-Ding's schemes have been investigated in [8] and [17]; certain their special sub-cases are
also studied in [7], [21], [13], [18] and [19]. Most of the prior research involves only a rather
particular special subclass of Lai-Ding's schemes, called Shamir's type schemes in [19], in
which c = (0, 1, . . . , k − 1) (that is, only modi�cations of type (ii) and (iii) are allowed).

2 Motivation and main goals

There are two main reasons for studying the intermediate classes described above. First,
Shamir's type schemes can handle many examples of non-threshold access structures, as shown
in [8] and [21], and Lai-Ding's schemes turn out to be even much more general, as we show
in the thesis (see Section 6 below for more details). Second, even if we are not interested
in sophisticated access structures, it might be valuable to design new schemes for realizing
simpler ones; a potential value of such �duplicate� schemes is that some of them might turn
out to satisfy additional desired properties, e.g. resistance to some kind of attacks. (For more
examples of such �desired properties�, see [20, Chapter 10] and [9, Section 3.4]). Since the �eld
is still evolving, the list of such properties is likely to expand (particularly as non-standard
applications of secret sharing are being proposed; see [1, p. 1]).

Within the above motivation, our primary objective is to answer several questions raised (and,
sometimes partially, answered for Shamir's type schemes) in [17], [13], [18] and [19]. Some
of these questions concern the range of possible access structures; however, most focus on
quantitative analysis corresponding to the second aspect discussed above.

More precisely, the latter direction is focused on the notion of an admissible coalition of
participants, which is understood in the simplest setting as a set C such that the restriction
of the scheme to C (obtained by simply disregarding all other participants) is k-threshold.
Following mainly [13] and [19], we focus on ensuring existence of sets of a given size n which
satisfy (or do not satisfy) this condition, as well as providing asymptotic estimates for their
total number.

In doing it, we will always consider the asymptotics with respect to q, for a �xed choice
of c, i, n (in the thesis, the potentially in�uential parameters are marked explicitly in the
asymptotic notation). In particular, our existential criteria take the form of lower estimates
for q (in terms of c, i and n); here, we pay particular attention to their practical tractability.
To enhance discussion, we distinguish three classes of such bounds:

• su�ciently large (SL) means any provably existing bound;
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• reasonably su�ciently large (RSL) means any concrete bound which depends polynomi-
ally on n and ck−1 but possibly exponentially on k;
• polynomially su�ciently large (PSL) means that the dependence on k is also polynomial.

As already observed in [17], admissibility in Lai-Ding's schemes is algebraically described by
Schur polynomials, best known from representation theory [5]. More precisely, admissibility
of a set X is (usually) described by non-vanishing of a system of such polynomials on the
elements of X; correspondingly, non-admissible sets correspond (indirectly) to their zeroes.
This suggests that, in general, non-admissible sets are much harder to describe than the
admissible ones. While this di�erence is not so evident for Shamir's type schemes (where
all relevant Schur polynomials are elementary symmetric polynomials, for which describing
zeroes is much simpler than in the general case), it becomes signi�cant for general Lai-Ding's
schemes. As a result, the connection between Lai-Ding's schemes and Schur polynomials
ultimately leads to yet another, purely algebraic, branch of our research.

Below, we brie�y describe our results in each of the main topics discussed above.

3 Admissible sets

Following [13], we study the behaviour of admissible sets of a given size n > k − 1 in a given
Lai-Ding's scheme over the �eld Fq having q elements, where q is an arbitrary prime power
treated as a parameter of the scheme. We also denote the characteristic of Fq by p.

Given such input, the main problems considered in [13] are:

(A) For which q are there any admissible sets of size n?
(B) What is the asymptotics, with respect to q, of the number of such sets?
(C) Is there a procedure to build (almost) all such sets?

Also, assuming that the parameter c is �xed but i is varying, it has been asked:

(D) Can we answer the above questions for c-admissible sets, i.e. sets which are simultane-
ously admissible for the given c and every 0 6 i 6 k − 1?

For Shamir's type schemes, these questions have been answered in [13], as follows:

• Admissible sets of size n exist for q RSL, and their number is Θ(qn);
• The same applies to c-admissible sets (for �xed c and varying i).

In our results stated below, we show that both above claims generalize to all Lai-Ding's
schemes. (To avoid technical details, we state them here in a simpli�ed form).

Theorem 1. Assume that k > 2, 0 6 i < k and n > k. Then, the number of admissible sets
in ΣLD

q (c, i) of size n is Ωc,i(q
n), and they exist whenever

q > n− 1 +
(
n−1
k−1

)(
ck−1 − (k − 1)

)
+
(
n−1
k−2

)(
ck−1 − (k − 2)

)
.

Theorem 2. Assume that k > 2 and n > k. Then, the number of c-admissible sets in
ΣLD
q (c, i) of size n is Ωc,i(q

n), and they exist whenever

q > n+
(
n−1
k−1

)(
ck−1 − c0 − (k − 1)

)
+ k ·

(
n−1
k−2

)(
ck−1 − c0 − (k − 2)

)
.
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In fact, the proofs share the main idea with [13], which is ensuring existence of many simulta-
neous non-zeroes of a system of Schur polynomials. This part of the thesis, already published
as a stand-alone paper [23], seems to be the simplest one.

4 Non-admissible sets

In [19] and [13], non-admissible sets in Shamir's type schemes are considered with regard to
the above questions (A-C). We generalize this to Lai-Ding's schemes, although with restriction
to the case n = k − 1. (As we explain in the thesis, this case seems to be the crucial starting
point for understanding the situation for all n > k− 1; smaller values of n are probably much
harder to handle).

The prior results for Shamir's type schemes show that, for arbitrary n > k− 1, the behaviour
of the total number of non-admissible sets of size n (with respect to q) falls into one of two
templates, depending on the value of i:

(T1) there are no non-admissible sets of size n with non-zero elements;
(T2) non-admissible sets of size n exist for q RSL, and their number is Θ(qn−1).

However, the situtation for general Lai-Ding's schemes is more complex, and involves at least
two new templates. Actually, our results involve three scenarios:

(T2′) non-admissible sets of size n exist if q is RSL and in addition p is PSL;
under these assumptions, their number is Θ(qn−1);

(T2∗) non-admissible sets of size n exist if q and p are SL;
under these assumptions, their number is Θ(qn−1);

(T3) the number of non-admissible sets of size n is either 0 or Θ(qn−1), depending on the
residue of q modulo some positive integer, with both possibilities indeed taking place
in�nitely many times;
in particular, such sets exist if q is PSL and in addition yields a good residue.

The templates (T2′) and (T3) can be regarded as computationally tractable, unlike (T2∗).
On the other hand, while we can provide concrete examples for (T2′) and (T3) (showing in
particular that (T2′) does not always reduce to (T2)); we do not know if there are any �really
untractable� examples of (T2∗), not satisfying (T2′) or some other reasonable strengthening.
(See the Main Theorem below).

Recall that we restrict to the case n = k − 1. In this case, we classify all Lai-Ding's schemes
into one of the above templates; moreover, with even more e�ort, we manage to rule out (T2∗)
in a broad range of cases by strengthening our knowledge to (T2′). For simplicity, we will
present all these results in a uni�ed statement; however, we need to precede it with several
auxiliary de�nitions.

De�nition. A sequence c = (c0, . . . , ck−1) is step-coprime if

gcd(ci+1 − ci, ci+2 − ci+1) = 1 for 0 6 i 6 k − 3.
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De�nition. A subset A ⊆ N is called ultimately periodic [10] if there exist N > 0, k > 0 and
a set of residues B ⊆ {0, 1, . . . , k − 1} such that

∀n>N
(
n ∈ A ⇔ n mod k ∈ B

)
.

If in addition 0 < |B| < k, we will call A proper ultimately periodic.

Denotation. For a sequence c = (c0, . . . , ck−1), we will denote

ĉi = (c0, c1, . . . , ci−1, ci+1, . . . , ck−1).

Main Theorem. Let k > 1 and 0 6 i < k. Denote by Nc,i(q) the number of non-admissible
sets of size k− 1 in ΣLD

q (c, i), and by Bc,i the set of all prime powers q for which Nc,i(q) > 0.

Let P̃ denote the set of all prime powers. Then, we have

Nc,i(q) = Θ(qk−2) for q ∈ Bc,i,

and moreover:

(1) If k = 1, then Bc,i = ∅;
(2) If ci = 0 and k > 2, then Bc,i contains all prime powers greater than k;

(3) If ci > 0, k > 2, and ĉi is an arithmetic progression with common di�erence l, then,
denoting by m the di�erence ci − cj for an arbitrary 0 6 j < k distinct from i, we have:

(a) If l | m, then Bc,i = ∅;
(b) If 2 | l and 2 6 | m, then Bc,i contains all powers q of primes p such that

p > 2, q > k;

on the other hand, there are in�nitely many powers of 2 outside Bc,i;

(c) In all other cases, Bc,i is an intersection of P̃ with a proper ultimately periodic set;

(4) If ci > 0, k > 3, ĉi is not arithmetic, and c is arithmetic with common di�erence λ,
then Bc,i contains powers q of primes p such that

p > 2, q > max
(
1013

(
λ ln(2λ)

)5
, 128λ4 + 1

4
k2
)
;

(5) If ci > 0, k > 4, ĉi is not arithmetic and it is step-coprime, then Bc,i contains all
powers q of primes p such that

p > ck−1 − c0, q > 1010k3(D lnD)5, where D =
k−1∑
j=1

(cj − c0);

(6) In all other cases, Bc,i contains all powers q of primes p such that p is su�ciently large.

Note that the eight scenarios described above adhere, respectively, to

(T1), (T2), (T1), (T2′), (T3), (T2′), (T2′), (T2∗).
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In particular, (3b) and (3c) show that (T2′) and (T3) cannot be avoided in our classi�cation.
However, the question of necessity of (T2∗) is left open.

Following some prior papers (e.g. [19]), we also analyze, though only within parts (1-4), the
e�ect of restricting to non-zero participants' identities (i.e. revoking step (iii) of the de�nition
of Lai-Ding's scheme). In this setting, (2) no longer holds; on the other hand, we show that
the assumption ci > 0 may be removed from (3) and (4).

The �rst two parts (1), (2) are simple, and follow respectively from Fact 2.18 and Corollary 4.3
in the thesis. The subsequent parts (3-6) require more e�ort, and appear in the thesis, re-
spectively, as Theorems 4, 5, 8 and 6. As for (3), while its proof takes several pages, it is still
elementary. For the three remaining parts, we use a deep theorem of Weil [22], in a �avour
provided by Schmidt ([15], [14]):

Weil's Theorem ([22], [15], [14]). Let q be a prime power, and A ∈ Fq[x] be an absolutely
irreducible polynomial of total degree d > 0. Denote by n the length of x, and by NA(q) the
number of zeroes of A in Fnq . Then, we have,

NA(q) = qn−1 + Θd(q
n− 3

2 ),

and moreover, the following concrete estimate from below holds:

NA(q) > qn−1 − (d− 1)(d− 2)qn−
3
2 − 6d2qn−2 for q > 1010n3(d ln d)5.

(Recall that a polynomial A ∈ K[x] is absolutely irreducible if it is irreducible as an element
of K[x], where K is the algebraic closure).

Proving part (4) of our Main Theorem requires applying Weil's Theorem in a very particular
and relatively simple case. For (5) and (6), we use it in its full strength, which results in
a reduction of the initial problem to verifying absolute irreducibility (and some coprimality
properties) of Schur polynomials over �nite �elds. However, this veri�cation turns out to
require a laborous excursion into pure algebra, described below.

5 Irreducibility of Schur polynomials

To complete the proof of parts (5-6) of the Main Theorem, we need to understand how the
corresponding Schur polynomials factor over the algebraic closure Fq. For our purposes, it is
convenient to diverge from the standard notation of [4] or [5] and de�ne Schur polynomials by
the formula

Sc(x) =
det
[
x
cj
i

]
06i,j<k

det
[
xji
]
06i,j<k

,

where c = (c0, . . . , ck−1) is an increasing sequence of non-negative integers, and x = (x0, . . . , xk−1)
is a sequence of indeterminates of the same length. With this notation, properties of the scheme
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ΣLD
q (c, i) reduce to the properties of Sc and Sĉj for 0 6 j < k. On the other hand, note that

our Sc coincides with sλ of [4] and Sλ of [5] provided that

λ =
(
ck−1 − (k − 1), ck−2 − (k − 2), . . . , c1 − 1, c0

)
.

Our primary goal is to �nd su�cient conditions for absolute irreducibility of these polynomials.
If this fails, we also allow some non-absolutely-irreducible cases, in which we need to verify
an additional coprimality property.

Although Schur polynomials are classical and widely studied, surprisingly little has been known
on them in this regard. Even over the �eld C of complex numbers, the question of their
irreducibility has been solved only recently, in [3] and independently in [12]. This knowledge
can be projected to �elds of �nite (but rather huge) characteristics by standard means of
elimination theory, which su�ces to prove (6). However, the resulting bounds for q (and even
for p) are far from being RSL, so (5) requires another approach.

In this direction, we obtain two results. First, we show that a theorem of [11] regarding the
case k = 3 can be combined with an adjustment of fragments of the proof for the C-based
case from [12], leading to the following statement:

Theorem 7 (essentially by Monge [11] and Rajan [12]). Let k > 3 and c = (c0, . . . , ck−1) be an
increasing sequence of non-negative integers. Assume that c0 = 0 and that c is step-coprime.
Let p be a prime such that

p 6 | cj+1 − cj for 0 6 j 6 k − 2, p 6 | cj+2 − cj for 0 6 j 6 k − 3

and let K be any �eld of characteristic p. Then, the Schur polynomial Sc(x) ∈ K[x] is either
constant (if c = (0, 1, . . . , k − 1)) or irreducible in K[x] (in the other case).

This result is new, but the proof uses known techniques. (However, it takes us some pages
to use them properly and explain the details). Since the conditions on p stated above are
satis�ed for p > ck−1 − c0, which is a bound of the PSL type, Theorem 7 leads to part (5) of
our Main Theorem, though still not immediately.

As a second result, we show that, in the proof of Theorem 7, the (adjusted) arguments of [12]
can be replaced with another, somewhat simpler reasoning, which enables proving irreducibility
for a broad class of perturbations of Schur polynomials. This result is digressive, in that it
does not tell anything new about Lai-Ding's schemes; nevertheless, it seems to be interesting
from a purely algebraic viewpoint. Below, we state in a simpli�ed form; even for this, we need
a number of de�nitions.

De�nition. Let x = (x0, . . . , xk−1) and P (x) =
∑

s∈Zk as · xs, where xs denotes
∏k−1

i=0 x
si
i .

Then, we de�ne:

• the Newton polytope [6] of P as the convex hull (in Rk) of the set {s ∈ Zk | as 6= 0};
• the maximal (resp. minimal) i-face of P as the sum of all non-zero monomials as · xs

appearing in P with the maximal (resp. minimal) possible value of si;
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• an iterated standard face of order l as any polynomial Fl such that there are sequences

P = F0, F1, . . . , Fl, i1, i2, . . . , il

such that, for every 1 6 j 6 l, Fj+1 is either maximal or minimal ij-face of Fj, and
moreover, the indices ij are all pairwise distinct.

We note that these notions have a clear �geometric� interpretation (not to be confused with
algebraic geometry) in the context of Newton polytopes.

Now, we are ready to our result, again, in a simpli�ed version.

Theorem 7'. Let c, i, p and K satisfy all the assumptions of Theorem 7, and assume in
addition that

cj+1 − cj > 1 for 1 6 j 6 k − 3.(1)

Let P be any polynomial in K[x] which agrees with Sc upon Newton polytope and all iterated
standard faces of order k−3. Then, P is either constant (if c = (0, 1, . . . , k−1)) or irreducible
in K[x] (in the other case).

In the full statement given in the thesis, we consider all cases which can be handled by
interchanging the proof of Theorem 7 and our new proof of the above claim. (This makes sense
since both reasonings are inductive on k). As a result, a �trade� on the assumptions becomes
possible: one can omit (1) for certain values of j, in exchange for requiring additionally that P
agrees with Sc upon certain iterated standard faces of orders smaller than k−3. In particular,
Theorem 7 can be obtained as another extreme case of this general picture (lift the whole (1)
in exchange for decreasing the order from k − 3 to 0).

6 Access structures

Apart from investigating (non-)admissible sets, the prior papers, particularly [18], provide
some insight into the possible range of access structures realized by Shamir's type schemes.
However, their results are far from giving a complete picture of such structures, which re�ects
the general di�culty of the problem. For general Lai-Ding's schemes, the task seems even more
complex (due to the transition from elementary symmetric to general Schur polynomials), and
we have only obtained preliminary results in two directions.

First, we prove that the class of all Lai-Ding's schemes is almost as general (with respect to
realizable access structures) as that of Brickell's schemes. The precise meaning of almost de-
pends on whether we allow repeated identities in Lai-Ding's schemes; while the prior de�ntions
of [8] and [17] both forbid that, it seems potentially acceptable to consider such schemes as
well, particularly as repeated identities are allowed by Brickell [2] in his class.

Theorem 9. Let Γ be a Brickell access structure. Then:

• If the empty set ∅ is not authorized in Γ, then it can be realized by a Lai-Ding's scheme,
possibly with repeated identities;
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• Γ can be realized by a Lai-Ding's scheme without repeated identities if the following
holds: ∅ is not authorized, and moreover, whenever two distinct participants p1, p2 are
equipotent (i.e. C ∪ {p1} is authorized if and only C ∪ {p2} is, for every set C), then
they must be nilpotent (i.e. C ∪ {p1} is authorized if and only if C is).

The assumptions of the second part, while complicated, seem to be fairly weak from a practical
viewpoint; in typical applications, equipotent pairs of participants are likely either not to exist
or to admit a simple uni�cation.

Altogether, Theorem 9 might look appealing; however, from the practical viewpoint, it is
rather an advertisement of Lai-Ding's schemes than a truly usable result, since our proof of
Theorem 9 tends to produce Lai-Ding's schemes with exponentially growing sequences c even
if the initial Brickell's scheme is fairly simple. Nevertheless, Theorem 9 seems to be valuable
as a demonstration of diversity of Lai-Ding's access structures; in particular, by comparing
with the results of [18], it follows that they are substantially more general than the Shamir's
type access structures.

As a second direction, we investigate the access structures which may arise in the relatively
simple cases considered in parts (3) and (4) of the Main Theorem, i.e. c or ĉi arithmetic. The
�rst of these cases is similar to Shamir's type schemes, and we show that the results from [18]
and [19] generalize there, with appropriate subtle modi�cations. Since the precise statement
is rather lengthy, we refer the reader to Theorem 10 in the thesis.

The case of ĉi arithmetic is signi�cantly di�erent: unlike in Shamir's type schemes, there may
exist authorized sets of size 2. On the other hand, at least for non-zero identities, all minimal
authorized sets must be of size 2 or k, which substantially limits the range of access structures
realizable by this class of schemes.

To achieve better understanding of those access structures, we model their �priviledged layers�
by graphs, in which edges represent authorized sets of size 2. Then, it turns out that the
graphs which can arise in this way can be exactly described:

Theorem. Let c be an increasing sequence of non-negative integers of length k and 0 6 i < k.
Assume that ĉi is arithmetic, and let q be a prime power. Let Gc,i,q be the graph whose vertices
are the participants of the Lai-Ding's scheme ΣLD

q (c, i), and edges connect pairs of participants
which form authorized sets of size 2. Then:

• (Lemma 6.17b) for every c, i, q as above, Gc,i,q is a di�erence of two graphs (sharing
common vertex sets), each of which is a disjoint union of cliques;

• (Theorem 11, weakened) for every graph G as above, there exist some c, i, q as above
such that Gc,i,q is isomorphic to G.

While this result has a much narrower scope than Theorem 9, it is valuable in that it provides
a concrete and e�cient construction of certain Lai-Ding's schemes which realize access struc-
tures not realizable by any Shamir's type scheme, including some of the graphic structures
de�ned by [20].
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