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Chapter 1

Introduction

Modern density functional theory (DFT) is a pragmatic approach to modeling molec-
ular electronic properties, which aims at the level of accuracy which is useful for
real-world applications, but at the low cost of a single-determinantal method.

Decades before DFT become ubiquitous in chemistry, the theoretical foundations
of this methodology were laid out by Hohenberg, Kohn, and Sham in the 1960s.1,2
These mathematical theorems at the root of DFT are concerned with the existence
of the universal density functional E[ρ] but do not show a concrete way of its con-
struction. Therefore, DFT is not as systematically improvable as wave-function
theory is.

Only some features of the exact functional are known and only a fraction of the
known features can be efficiently implemented in semilocal DFT approximations.
The development of approximate DFT is carried out through testing and refin-
ing incremental additions to existing, well-established formulas for the exchange-
correlation energy.

The hierarchy of semilocal DFT methods is established according to the type and
amount of the variables which enter into the exchange-correlation energy density.
A group of methods which depend on a common set of variables is called a rung.3
The lowest rung, i.e., the local spin density approximation (LSDA), includes only
the electron density and, in an infinitesimal volume element, models the exchange-
correlation energy at the uniform electron gas level. The PW92 functional is an
example of an accurate representation of the uniform electron gas energy,4 which
is embedded into other, higher-rung functionals, e.g., the PBE energy.5 LSDA is
rarely used in chemistry due to its systematic overestimation of binding energies
and underestimation of bond lengths.6

An improvement upon LSDA is achieved by adding density gradient corrections
which account for the inhomogeneity of the electron density of a real system.6 In
the earliest nonempirical gradient-corrected functionals of Perdew and coworkers,6,7
the corrections beyond LSDA are applied by combining the second-order gradi-
ent expansion for the slowly varying electron gas and the exact conditions for the
exchange-correlation hole which are valid for general systems.6,7 Nonetheless, in
most generalized-gradient approximations (GGAs), the holes are not used explic-
itly, and the derivations are based on direct modeling of the GGA formula for the
exchange-correlation energy:

EGGA
XC =

∫
ρ(r1)εGGA

XC (ρ(r1), |∇ρ(r1)|) dr1. (1.0.1)
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GGA reduces the LSDA overestimation of molecular binding energies,6 but it is
still far from the chemical accuracy for thermochemistry and kinetics.8 The most
advanced nonempirical GGA for chemistry is the PBE functional.5

A further addition of the kinetic energy density, which depends explicitly on the
occupied KS orbitals, defines the meta-GGA rung. Optionally, as in the case of
our LC-PBETPSS-D3 functional, the meta-GGA exchange-correlation energy may
encompass the Laplacian of the density:

Emeta-GGA
XC =

∫
ρ(r1)εmeta-GGA

XC

(
ρ(r1), |∇ρ(r1)|, τ(r1),∇2ρ

)
dr1. (1.0.2)

Owing to their more sophisticated mathematical forms, nonempirical meta-GGAs,
e.g., TPSS9 and SCAN,10 can obey a higher number of exact constraints than GGAs
can satisfy. For example, the TPSS functional can accurately predict both thermo-
chemistry of molecules and lattice parameters of solids, which is not achievable for
GGAs.11 The correlation part of TPSS is employed in the LC-PBETPSS-D3 func-
tional presented in this work.

In addition to the three mentioned rungs of pure semilocal DFT, it is common to
form hybrid (meta-)GGAs by supplying the pure semilocal energy with an admixture
of the Hartree-Fock (HF) exchange. In chemical applications, various recommended
amounts of the orbital exchange correlate with a good description of binding energies
and barrier heights.8 These properties can be well described by a pure (non-hybrid)
meta-GGA, but at the expense of heavy empirical parametrization, as in M06-L of
Zhao and Truhlar.12

Within the hybrid GGA and meta-GGA rungs, multiple mathematical forms and
parametrizations are possible. Depending on the number of parameters adjusted to
empirical or higher-level theoretical data, functionals are regarded as more or less
empirical. As a result, a DFT user faces tens of methods available in software
packages.13 To guide a rational selection, functionals are tested on extensive sets of
reference data representing the most frequent applications.

However, even if various benchmarks are taken into account, the choice of the
optimal method is not clear-cut. The methods which are statistically top performers
occasionally fail for unexpected yet important cases. For example, the M06-2X
functional of Zhao and Truhlar,14 which shows superb across-the-board performance
for main-group thermochemistry and kinetics,15 yields unusually large errors for
proton-exchange barriers in hydrogen-bonded clusters.16 The ωB97XD functional,17
known as one of the best DFT methods for noncovalent interactions,15,18 overbinds
the fullerene C60 – catcher complex by 10 kcal/mol (35% of the reference Ebind,
discussed further in the text). Also quite surprisingly, it has been discovered that
most of density functionals fail to describe even at a qualitative level the energetic
effect of successive alkylation of first row atoms.19 The popular B3LYP functional,20
despite its design for thermochemistry, gives wrong sign and is only marginally better
than the HF method for the energy of isomerization between linear and branched
octane.19

Although the errors of approximate DFT are to a certain degree unpredictable,
the performance in two important domains, donor-acceptor systems and nonco-
valent complexes, can be explained by considering two systematic errors: the self-
interaction error and the lack of the long-range dispersion energy. The self-interaction
error is an excessive propensity to transfer electrons between donor and acceptor
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groups, which in turn influences, e.g., noncovalent interaction energies, charge-
transfer excitation energies, and (hyper)polarizabilities of conjugated polymers. It
is partially avoided by using a range-separated exchange functional with the 100%
HF exchange at long interelectron distances. The proper inclusion of the dispersion
energy for noncovalent molecular systems is possible either via nonlocal correla-
tion functionals, as in the double-hybrid class of functionals,21 or with an explicit
dispersion correction, e.g., the DFT-D3 forcefield-like method.22

If we limit ourselves to the relatively inexpensive DFT approaches which do not
employ virtual orbitals, the highest rung available is range-separated hybrid meta-
GGA. Until recently, only the highly empirical functionals of this kind achieved
good overall performance, e.g., the M11 range-separated meta-GGA of Peverati
and Truhlar,23 which includes 40 empirical parameters. But the recent systematic
search in a vast space of possible mathematical forms carried out by Mardirossian
and Head-Gordon24 have shown that the high amount of empiricism is not necessary
and even not recommended if one pursues transferability beyond the training set;
the ωB97M-V functional developed by these authors includes 12 fitted parameters.

In the most recent development, hitherto unutilized exact constraints were in-
tegrated into the SCAN meta-GGA functional.10,25 Initial tests showed that the
performance of this functional uniformly surpasses that of TPSS, which is a previous-
generation nonempirical meta-GGA.10 However, no hybrid range-separated variant
of SCAN has been developed to date, therefore its usefulness in some important
chemical applications, e.g., charge transfer systems, is currently limited. The LC-
PBETPSS-D3 functional, which is the main focus of this work, is the first reliable
range-separated meta-GGA hybrid that is based on a nonempirical model of the
exchange-correlation energy (ref 26, Paper III).

This work is composed as follows. First, we summarize the basic definitions of
DFT which are crucial for understanding how approximate functionals are derived.
Next, we present the details of the functionals aimed solely at noncovalent systems
and not for general properties: the correlation functional of ref 27 (Paper I) and
the exchange-correlation functional of ref 28 (Paper II). Finally, we derive the most
complete, general functional (LC-PBETPSS-D3) and compare it with existing ap-
proaches using numerical tests of noncovalent interaction energies, thermochemical
energy differences, and excitation energies.
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Chapter 2

Basic Definitions

2.1 Kohn-Sham theory
Our focus is on molecular systems described by a clamped-nuclei Hamiltonian,

H = T + Vext + Vee, (2.1.1)

where T = −1/2∑i∇2
i is the kinetic energy operator, Vext = −∑i

∑
A ZA/rAi is

the operator of the Coulombic attraction between electrons and nuclei, and Vee =∑
i>j 1/rij represents the electron-electron repulsion. Atomic units are assumed in

all formulas in this work. The exact ground-state energy is given by the variational
formula

E0 = min
ρ

[∫
vext(r1)ρ(r1)d3r1 + F [ρ]

]
, (2.1.2)

F [ρ] = min
Ψ→ρ

[〈Ψ|T + Vee|Ψ〉] , (2.1.3)

where F [ρ] is the Hohenberg-Kohn universal density functional1 defined in Levy’s
constrained-search formulation29 of DFT.1 The minimization in Eq. 2.1.3 is carried
out in the space of N -electron functions Ψ which integrate to the given electron
density ρ. Unfortunately, computing F directly from the formal definition is in gen-
eral case an intractable task. The Kohn-Sham (KS) scheme2 facilitates a practical
evaluation of F by making reference to a fictitious ground-state system described by
a single-determinantal function (the KS determinant ΦKS), which nonetheless has
the same electron density as the physical system. In the KS scheme, F is broken up
into terms that explicitly depend on the density and the orbitals of the KS system:

F = TS + U + EXC. (2.1.4)

TS =
〈
ΦKS

∣∣∣T ∣∣∣ΦKS
〉
is the kinetic energy of the KS system. The Hartree energy U is

the classical electrostatic energy of the electron density interacting with itself

U [ρ] = 1
2

∫∫ ρ(r1)ρ(r2)
r12

d3r1d3r2. (2.1.5)

Now, the only term of the Kohn-Sham scheme which needs to be approximated
(except for the obvious approximations due to finite basis sets) is the exchange-
correlation energy EXC = EX+EC. In the majority of approximations the individual
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exchange (EX) and correlation (EC) components are modeled separately because the
exact constraints which guide the functional development are known separately for
each of these terms.30 The equations for the KS orbitals read(

−1
2∇

2 + vext(r1) + vU(r1) + vXC(r1)
)
φj(r1) = εjφj(r1). (2.1.6)

The Coulomb potential generated by the electron density is vU(r1) = δU/δρ(r1).
The exchange-correlation potential is given by the functional derivative vXC(r1) =
δEXC/δρ(r1).2

2.2 Adiabatic connection
EXC is usefully expressed through the adiabatic connection formula31

EXC [ρ] =
∫ 1

0

〈
Ψmin,λ
ρ

∣∣∣Vee

∣∣∣Ψmin,λ
ρ

〉
dλ− U [ρ] , (2.2.1)

where Ψmin,λ
ρ minimizes the expectation value of T + λVee and yields the same elec-

tronic density ρ as the wavefunction of the real system at λ = 1. EXC is further
decomposed into the exchange energy

EX =
〈
ΦKS

∣∣∣Vee

∣∣∣ΦKS
〉
− U [ρ] (2.2.2)

and the correlation energy, which is expressed through the coupling-constant integral

EC [ρ] =
∫ 1

0
V λ

C [ρ] dλ (2.2.3)

V λ
C [ρ] =

〈
Ψmin,λ
ρ

∣∣∣Vee

∣∣∣Ψmin,λ
ρ

〉
−
〈
ΦKS

∣∣∣Vee

∣∣∣ΦKS
〉
. (2.2.4)

While it is possible to approximate EC directly without any attempt to model V λ
C ,

our model of EC employed in the MCS functional28 requires V λ
C at an intermediate

stage (shown in section 3.3).

2.3 Exchange and correlation holes
A possible path towards new DFT approximations is through modeling of the
exchange-correlation hole,32–34 which is also the central concept employed in the
derivations presented in this work. The exchange-correlation hole hσσ′

XC(r1, r2) is a
distribution of charge which allows EXC to be formulated in terms of the Coulombic
interaction between hσσ′

XC(r1, r2) and the electron density:32

EXC = 1
2

∫∫ ρσ(r1)hσσ′
XC(r1, r2)
r12

dr1dr2. (2.3.1)

The hole plugged into Eq. 2.3.1 is an average of the holes at different values of the
coupling strength λ

hσσ
′

XC(r1, r2) =
∫ 1

0
hσσ

′

XCλ(r1, r2)dλ. (2.3.2)
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The hole at λ depends on the λ-dependent two-electron density matrix:

hσσ
′

XCλ(r1, r2) = P σσ′
2λ (r1, r2)
ρσ(r1) − ρσ′(r2), (2.3.3)

where

P σσ′

2λ (r1, r2) = N(N − 1)

×
∑

σ3···σN

∫
Ψmin,λ∗
ρ (r1σ, r2σ

′, . . . , rNσN)

×Ψmin,λ
ρ (r1σ, r2σ

′, . . . , rNσN)
× d3r3 · · · d3rN . (2.3.4)

It is useful to split the total exchange-correlation hole into the exchange and
correlation holes. Both contributions can be then approximated separately based
on the knowledge of the exact conditions they fulfill. The exact exchange hole is
expressed using the (spin)orbitals of the KS system and does not depend on λ:

hσσ
′

X (r1, r2) = −δσσ′

∣∣∣∑Nσ
i ψ∗iσ(r1)ψiσ(r2)

∣∣∣2
ρσ(r1) . (2.3.5)

Now, at each λ, the correlation hole is simply the difference between hσσ′
XCλ and hσσ′

X :

hσσ
′

Cλ (r1, r2) = hσσ
′

XCλ(r1, r2)− hσσ′

X (r1, r2). (2.3.6)

Finally, the V λ
C integrand in Eq. 2.2.3 can be expressed via the λ-dependent corre-

lation hole

V λ
C = 1

2
∑
σσ′

∫∫ ρσ(r1)hσσ′
Cλ (r1, r2)
r12

d3r1d3r2. (2.3.7)

A semilocal model for V λ
C (and hσσ′

Cλ ) will be presented in Section 3.3.

2.4 Generalized Kohn-Sham scheme

In the case of semilocal functionals supplemented with a fraction of the Hartree-Fock
exchange or functionals dependent on the KS kinetic energy density, EXC depends
explicitly on the occupied KS orbitals instead of the density only. As a result,
the evaluation of vXC = δEXC/ρ(r1) requires costly optimized effective potential
methods.35 Instead, the generalized Kohn-Sham (GKS) scheme36–38 is applied in
which vXC is a nonlocal potential vXC(r1, r2) = δEXC/δρS(r1, r2), where ρS(r1, r2)
is the first-order KS density matrix.38 An orbital-dependent exchange energy term
contributes to the effective GKS Hamiltonian the exchange operator of the same
form as in Hartree-Fock theory but expressed via the GKS orbitals.

In what follows, the GKS scheme will be applied in every case a functional
includes a fraction of the Hartree-Fock exchange.
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2.5 Range-separated hybrid exchange functionals
In range-separated exchange functionals, different models of the exchange energy
are applied at long and short interelectron distances. The error function splits the
electron-electron interaction operator,

1
r12

= erfc(ωr12)
r12

+ erf(ωr12)
r12

, (2.5.1)

according to the value of the range-separation parameter ω. The definitions of the
short- and long-range components of the total exchange energy follow from Eq. 2.5.1:

EX = ESR
X,approx + ELR

X,exact, (2.5.2)

ESR
X,approx = 1

2
∑
σ

∫∫ ρσ(r1)hσX,approx(r1, r2)erfc(ωr12)
r12

d3r1d3r2, (2.5.3)

ELR
X,exact = 1

2
∑
σ

∫∫ ρσ(r1)hσX,exact(r1, r2)erf(ωr12)
r12

d3r1d3r2. (2.5.4)

The long-range exchange energy ELR
X,exact is based on the exact, orbital-dependent

HF exchange hole of Eq. 2.3.5. A semilocal DFT model of the exchange hole en-
ters into the range-separated functional through ESR

X,approx. Once an approximation
to the exchange hole hσX,approx and ω parameter are fixed, the range-separated ex-
change approximation is completely defined. We note that the local definition of an
exchange hole is ambiguous.34 The ambiguity disappears in the system average of
the hole.34
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Chapter 3

MCS Exchange-Correlation
Functional

Modrzejewski et al.28 have introduced the MCS-D3 functional aimed at noncovalent
interactions, which combines the range-separated hybrid GGA exchange based on
the PBEsol energy11,39,40 and the meta-GGA correlation energy developed earlier
by Modrzejewski et al.27 (Paper I and Paper II). The hybrid semilocal part of EXC
is complemented by a correction for the long-range dispersion energy:

EXC(MCS-D3) = EC + EX(ωPBEsol) + Edisp(D3). (3.0.1)

In ref 28, both the D3 model of Grimme et al.22 and MBD-rsSCS of Ambrosetti et
al.41 are used for Edisp. However, in the numerical data provided in this work, we
restrict ourselves to the D3 variant. This restriction does not change our conclusions
on the performance of the MCS functional.

3.1 Exchange functional

The most unique feature of the MCS functionals is the base exchange model –
PBEsol. It is rarely used in chemistry but proven to be accurate for solid state com-
putations.11 Nevertheless, PBEsol shows promising results for hydrocarbon thermo-
chemistry.39 Csonka et al.39 and Johnson et al.42 have demonstrated that the exact
second-order gradient term in the PBEsol exchange leads to improved results for
two longstanding problems of DFT for organic chemistry: the relative energies of
the (CH)12 isomers19,39 and reaction energies of isodesmic n-alkane fragmentation.42
Notwithstanding, PBEsol is rather poor for other problems relevant for chemistry,
e.g., noncovalent interaction energies, barrier heights, and general cases of main-
group thermochemistry.15

To probe the applicability of the PBEsol exchange beyond the mentioned cases
of hydrocarbon thermochemistry, we apply it in the short-range part of the MCS
functional28 and supply with the 100% HF exchange at long range. The range-
separated PBEsol exchange energy in Eq. 3.0.1 is derived by Henderson et al.40,43
using the GGA exchange hole which integrates to the base PBEsol exchange energy
density.
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3.2 Dispersion correction
Range-separated functionals with a small number of empirical parameters, which are
the main subject of this work, require a dispersion correction of larger magnitude
than other types of functionals, e.g., the empirical meta-GGAs of Zhao and Truh-
lar,14 where a part of the dispersion energy in the vicinity of equilibrium geometries
is accounted for by empirical parametrization. Moreover, range-separated function-
als, in most cases, do not overbind through the exchange contribution, which is a
spurious effect that masks the need for a separate dispersion correction.44–46

The D3 dispersion energy reads47

Edisp(D3) = −
∑
A>B

∑
n=6,8

sn
CAB
n

Rn
AB

f
(n)
damp (RAB) , (3.2.1)

f
(n)
damp (RAB) = 1

1 + 6(RAB/(rnRAB
0 ))−αn , (3.2.2)

where f (n)
damp is a damping function which vanishes at RAB = 0, and s8 and r6 are

empirical, functional-dependent parameters.22 The CAB
6 coefficients are common to

all functionals. Effective coordination numbers are used for the interpolation of CAB
6

to account for the effect of the molecular environment. The interpolation is between
CAB

6 values obtained for hydrides with zero charge.22 A 3-body term can be added
for large systems to model the Axilrod-Teller-Muto contribution to the dispersion
energy:47

E3-body
disp (D3) = −

∑
A>B>C

CABC
9

(3 cos θa cos θb cos θc + 1)
(RABRBCRCA)3 f

(9)
damp

(
RABC

)
, (3.2.3)

where θa, θb, and θc are angles between the three interacting atoms, RABC is the
geometric mean of the interatomic distances, and the CABC

9 is approximated as

CABC
9 ≈ −

√
CAB

6 CAC
6 CBC

6 . (3.2.4)

The nonadditive 3-body term is nonnegligible for large supramolecular systems.48

3.3 Correlation functional
The EC term in Eq. 3.0.1 is based on the meta-GGA correlation model of Mod-
rzejewski et al.27 The derivation of this model is based on a meta-GGA correlation
hole, which is then plugged into Eqs. 2.3.7 and 2.2.3. The model correlation hole
has a simple mathematical form, which is forced to recover the short-range behavior
of the pair correlation function of the uniform electron gas49 and to satisfy formal
constraints, e.g., the normalization integral.27 On top of that, EC includes a single
empirical parameter which enables empirical optimization of the total dispersion-
corrected exchange-correlation functional on a set of noncovalent interaction ener-
gies.

Owing to the spherical symmetry of the 1/r12 operator, only the spherical average
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of the correlation hole enters explicitly into the formula for V σσ′,λ
C :

V σσ′,λ
C = 1

2

∫∫ ρσ(r1)hσσ′
Cλ (r1, r2)
r12

d3r1d3r2

= 1
2

∫
d3r1

∫ ∞
0

ρσ(r1)hσσ′
Cλ (r1, r12)
r12

4πr2
12dr12,

(3.3.1)

where the spherical average of the correlation hole is

hσσ
′

Cλ (r1, r12) = 1
4π

∫ 2π

0
dφr12

∫ π

0
hσσ

′

Cλ (r1, r1 + r12) sin θr12dθr12 . (3.3.2)

Thus, the correlation energy model requires only a spherically-symmetric model of
hσσ

′
Cλ .
The correlation hole which underlies the correlation energy of Modrzejewski et

al.27 comprises parallel- and opposite-spin components
hαβCλ(r1, r12) = (aαβ + bαβr12 + cαβr

2
12) exp(−dαβr12), (3.3.3)

hααCλ(r1, r12) = r2
12(aαα + bααr12 + cααr

2
12) exp(−dααr12). (3.3.4)

The functions aσσ′ , bσσ′ , and cσσ′ depend on the density, density gradient, and the
kinetic energy density at each point of space:

aαβ = Bαβ − ρβ, (3.3.5)
bαβ = λBαβ + dαβaαβ. (3.3.6)

cαβ = − 1
12(aαβd2

αβ + 3bαβdαβ) (3.3.7)

aαα = Bαα −
Dα

3 , (3.3.8)

bαα = λ

2Bαα + aααdαα, (3.3.9)

cαα = − 1
30(aααd2

αα + 5bααdαα), (3.3.10)

where the functions Bαβ and Bαα are chosen to recover the first terms of the short-
range pair correlation function of the uniform electron gas proposed by Gori-Giorgi
and Perdew:49

Bαβ(ρα, ρβ, λ) = ρβ
(
1 + 0.0207λrαβs + 0.08193(λrαβs )2

−0.01277(λrαβs )3 + 0.001859(λrαβs )4
)

exp(−0.7524λrαβs ),
(3.3.11)

Bαα(ρα, |∇ρα|, τα, λ) = Dα

3
(
1− 0.01624λrααs + 0.00264(λrααs )2

)
× exp(−0.5566λrααs ),

(3.3.12)

where rαβs , and rs depend on the electron (spin)-densities

rααs = (3/π)1/3

2ρ1/3
α

, (3.3.13)

rαβs = (3/π)1/3

ρ
1/3
α + ρ

1/3
β

, (3.3.14)

rs =
(

3
4πρ

)1/3

. (3.3.15)
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Table 3.1: Ab Initio Numerical Constants Appearing in Eqs. 3.3.24–
3.3.27.

k Pk Qk Rk Sk

0 1.696 3.356 1.775 3.205
1 −0.2763 −2.525 0.01213 −1.784
2 −0.09359 −0.4500 −4.743× 10−3 3.613× 10−3

3 3.837× 10−3 −0.1060 0.5566 −4.743× 10−3

4 −2.471× 10−3 5.532× 10−4 0.5566
5 0.7524 −2.471× 10−3

6 0.7524

The dependence on the kinetic energy density τα is introduced into the parallel-spin
hole via the variable Dα, which is always non-negative and vanishes for single-orbital
densities:

Dα = τα −
|∇ρα|2

4ρα
. (3.3.16)

Consequently, the parallel-spin hole vanishes for single orbital densities, where the
parallel-spin correlation should be zero.27

The numerical parameters of the correlation holes hαβCλ and hααCλ are derived from
the uniform electron gas with the exception of the empirical parameter G, which
enters in the gradient term of the exponential damping factor:

dαβ = 2.1070
rαβs

+ dgrad, (3.3.17)

dαα = 2.6422
rααs

+ dgrad, (3.3.18)

dgrad = G

rs

∇ρ · ∇ρ
ρ8/3 , (3.3.19)

where G is fitted together with other parameters of the MCS functionals to match
the reference interaction energies on the S22 set.50,51 While the parameter G is
adjusted to reference data, the physical constraints imposed onto hααCλ and hαβCλ stay
untouched, in particular the short-range expansion of the correlation hole, which is
known to be reliable at the semilocal DFT level.52

The total correlation energy is a sum of spin-parallel and spin-opposite compo-
nents

EC = Eαβ
C + Eβα

C + Eαα
C + Eββ

C , (3.3.20)

where the components Eσσ′
C originate from the adiabatic-connection integral of V σσ′

Cλ

Eσσ′

C =
∫ 1

0
V σσ′

Cλ dλ. (3.3.21)
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The explicit, implementation-ready expressions for Eσσ′
C are

Eαβ
C = 1

2

∫
d3r1

∫ 1

0
dλ
∫ ∞

0

ρα(r1)hαβCλ(r1, r12)
r12

4πr2
12dr12

=
∫

d3r1ραπ
Bαβ +Aαβdαβ

d3
αβ

, (3.3.22)

Eαα
C = 1

2

∫
d3r1

∫ 1

0
dλ
∫ ∞

0

ρα(r1)hααCλ(r1, r12)
r12

4πr2
12dr12

=
∫

d3r1ραπ
8Bαα + 4Aααdαα

d5
αα

. (3.3.23)

The integral over the coupling constant λ is computed analytically. Aαβ, Bαβ, Aαα,
Bαα, dαβ, and dαα are functions evaluated at each grid point,

Aαβ = ρβ

rαβs

[(
−P0 +

4∑
k=1

Pk(rαβs )k
)

exp
(
−P5r

αβ
s

)
+ P0

]
− ρβ, (3.3.24)

Bαβ = ρβ

(rαβs )2

[(
−Q0 +

5∑
k=1

Qk(rαβs )k
)

exp
(
−Q6r

αβ
s

)
+Q0

]
+ dαβAαβ, (3.3.25)

Aαα = Dα

3rααs

[(
−R0 +

2∑
k=1

Rk(rααs )k
)

exp (−R3r
αα
s ) +R0

]
− Dα

3 , (3.3.26)

Bαα = Dα

6(rααs )2

[(
−S0 +

3∑
k=1

Sk(rααs )k
)

exp (−S4r
αα
s ) + S0

]
+ dααAαα. (3.3.27)

The nonempirical parameters in Eqs. 3.3.24-3.3.27 are derived from a short-range
model of the correlation hole in the homogeneous electron gas.27 Their values are
provided in Table 3.1.
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Chapter 4

LC-PBETPSS-D3
Exchange-Correlation Functional

The LC-PBETPSS-D3 functional is a dispersion-corrected range-separated meta-
GGA (ref 26, Paper III). In contrast to the MCS functionals, which were developed
primarily for noncovalent interaction energies, LC-PBETPSS-D3 is designed and
tested for general purposes: main-group thermochemistry, barrier heights, and exci-
tation energies. The exchange-correlation model combines the (unmodified) TPSS
correlation,9 the range-separated PBE exchange of Modrzejewski et al.,26 and the
D3 dispersion correction:

EXC(LC-PBETPSS-D3) = EC(TPSS) + EX(range-separated PBE) + Edisp(D3).
(4.0.1)

It may look somewhat surprising that the functional has a meta-GGA correlation
and a PBE-based exchange, but the short-range part of EX is in fact promoted to
the meta-GGA rung. Here, the exchange hole model, which is required to construct
the short-range functional according to Eq. 2.5.3, has the correct coefficient of the
r2

12 term in the short-range expansion around the reference electron. This coefficient
depends on the kinetic energy density and the Laplacian, therefore the resulting
short-range exchange energy is a meta-GGA even though the base functional is a
lower-rung functional. The derivation of EX will be presented in detail in the next
section.

4.1 General scheme for range-separated exchange
meta-GGAs

4.1.1 Existing approaches
The differences between existing approaches to the range-separated exchange energy
boil down to different models of the approximate exchange hole in the short-range
exchange energy formula of Eq. 2.5.3.

In what follows, we consider the exchange energy of a closed-shell system with
ρα = ρβ = ρ/2. The formulas derived below can be applied to open-shell systems
by using the exact relation53

EX [ρα, ρβ] = 1
2EX [2ρα] + 1

2EX [2ρβ] . (4.1.1)
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For clarity, hereafter we skip the spin index in the exchange hole symbol.
The most widely employed model of the exchange hole is that of Iikura, Tsuenda,

Yanai, and Hirao (ITYH).54 It is a general model which can be applied in an au-
tomated manner for arbitrary exchange energy approximations (but with varying
degrees success). The important examples of its usage are LC-BLYP, LC-BOP,
LC-PBEOP, and CAM-B3LYP.55–57

The ITYH exchange hole is directly based on a modified LDA exchange hole,54
which limits the set of exact constraints that it can satisfy. It has the correct value
at r12 = 0,

hX,ITYH(r1, r12 = 0) = hX,exact(r1, r12 = 0) = −ρ(r1)
2 , (4.1.2)

and satisfies the energy integral
1
2

∫ hX,ITYH(r1, r12)
r12

4πr2
12dr12 = εX,approx(r1), (4.1.3)

where εX,approx is the exchange energy density of a given base functional. But the
ITYH hole fails to fulfill two other exact conditions: the hole normalization40∫

hX,exact(r1, r12)4πr2
12dr12 = −1 (4.1.4)

and the correct second-order short-range expansion of the spherically-averaged ex-
change hole at zero current density,32,58,59

hX,exact(r1, r12) = −ρ2 −Qr
2
12 + . . . , (4.1.5)

Q = 1
12∇

2ρ− 1
6τ + 1

24
(∇ρ)2

ρ
, (4.1.6)

where τ is the kinetic energy density of a closed-shell system
τ = 2

∑
i

|∇ψi|2. (4.1.7)

The exact coefficient Q of Eq. 4.1.6 includes meta-GGA ingredients, therefore it
cannot be included in the model at a GGA level.

More advanced models of the exchange hole which satisfy more conditions than
hX,ITYH have been employed in the range-separated PBE functionals of Henderson et
al.40 and of Vydrov et al.60 These expressions satisfy Eq. 4.1.2, Eq. 4.1.3, Eq. 4.1.4,
but only approximately Eq. 4.1.6.

The nonempirical range-separated meta-GGA TPSS functional has been tried
before but, quite remarkably, it failed to benefit in general from using the long-
range HF exchange component.61

The exchange hole of Modrzejewski et al.26 which is employed in EX of Eq. 4.0.1
goes beyond the most popular GGA approaches. Owing to the use of the meta-
GGA ingredients, τ and ∇2ρ, it has the correct coefficient Q defined in Eq. 4.1.6.
The improved exchange allows for employing a more advanced correlation, e.g.,
the range-separated meta-GGA exchange based on PBE is paired with the TPSS
correlation energy.

The presentation of the range-separated exchange of Modrzejewski et al.26 is
divided into two parts. First, we establish a Becke-Roussel-type exchange hole
which integrates to a given exchange energy density. Second, we employ this model
in Eq. 2.5.3 to derive analytic expressions for the short-range PBE exchange, which
is then employed with the 100% HF exchange at long range.
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4.1.2 Exchange hole model
The range-separated energy EX of the LC-PBETPSS-D3 functional includes the
short-range DFT exchange component, which is build up on a model for the exchange
hole. The exchange hole, when integrated with the full-range operator 1/r12, yields
the base PBE exchange energy density. We will present a general hX,approx which
can be adjusted, in a black box manner like the ITYH method,54 to recover an
arbitrary semilocal exchange energy density. So far we have found good numerical
performance for the range-separated exchange energy derived from the base PBE
exchange, but our search space has been limited only to the nonempirical PBE
and TPSS models.26 It is certainly possible to employ the equations derived below
for an empirical functional, i.e., in an optimization procedure similar to that of
Mardirossian and Head-Gordon.24

Our exchange energy is based on the generalized Becke-Roussel (BR) exchange
hole proposed by Becke62

hX,BR(a, b,N ; r12) = −N a

16πbr12

[
(a|b− r12|+ 1)e−a|b−r12|

−(a|b+ r12|+ 1)e−a|b+r12|
]
, (4.1.8)

where the three free parameters, a > 0, b > 0, and N > 0, will be defined later
so that the second-order short-range expansion of hX,BR matches Eq. 4.1.5, and the
energy integral of hX,BR recovers a given base exchange energy εX,approx:

1
2

∫ ∞
0

hX,BR(a, b,N ; r12)
r12

4πr2
12dr12 = εX,approx. (4.1.9)

The price paid for satisfying these conditions is the violation of the normalization
integral ∫

hX,BR(a, b,N ; r12)4πr2
12dr12 = −N , (4.1.10)

where N is no longer guaranteed to be 1, as in the original BR model derived from
the exact exchange hole for the hydrogen atom.33

The generalized BR hole which integrates to a given exchange energy density has
been already employed by Becke62 and Precechtelova et al.63 The equations derived
by these authors are recast below using the notation assumed in this work.

To get hX,BR at each point of space, a nonlinear equation for an auxiliary variable
x = ab is solved first, and then the individual values of a, b, and N are computed
using x and the electron density. The equation for x is

x− 2
x2

(
ex − 1− x

2

)
= − 6Q

πρ2 εX,approx, (4.1.11)

where the solution is sought for with, e.g., the bijection method. For any physically
allowed right-hand side, a unique x > 0 solves Eq. 4.1.11. The computation of hX,BR
is completed by specifying a, b, and N :

a =

√√√√πρ(2− 2ex + x)
xεX,approx

, (4.1.12)

b = x/a, (4.1.13)
N = 4πρex/a3. (4.1.14)
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To recapitulate the properties of hX,BR defined via Eqs. 4.1.11–4.1.14: it integrates
to the given εX,approx (Eq. 4.1.9), has the exact value at the origin (Eq. 4.1.2),
and recovers the exact coefficient of r2

12 (Eq. 4.1.6). Nonetheless, its normalization
integral differs in general from the exact value of −1.

4.1.3 Short-range exchange energy
We now employ the exchange hole derived in the previous section to derive the ana-
lytic expression for the short-range exchange energy component of the base exchange
energy. The short-range exchange energy density εSR

X,approx is the difference

εSR
X,approx = εX,approx − εLR

X,approx, (4.1.15)

where the long-range component εLR
X,approx is

εLR
X,approx = 1

2

∫ ∞
0

hX,BR(r12)erf(ωr12)
r12

4πr2
12dr12 = 1

2U
LR
X,approx, (4.1.16)

ULR
X,approx = −Nω

ν
erf (ν) + Nω2ν

(
1− µ2 + µν

)
erfc (µ− ν) exp

(
µ2 − 2µν

)
+ Nω2ν

(
−1 + µ2 + µν

)
erfc (µ+ ν) exp

(
µ2 + 2µν

)
, (4.1.17)

µ = a

2ω , (4.1.18)

ν = bω. (4.1.19)

For small values of ν, the right-hand side of Eq. 4.1.17 should be evaluated using the
Taylor expansion to avoid numerical errors. The final short-range exchange energy
is evaluated using a numerical quadrature over the whole space

ESR
X,approx =

∫
εSR

X,approx(r1)ρ(r1)dr1. (4.1.20)

The complete range-separated exchange energy EX of Eq. 4.0.1 includes the long-
range HF exchange (Eq. 2.5.4),

EX,approx = ESR
X,approx + ELR

X,exact, (4.1.21)

which completes the construction of the range-separated exchange energy in the
scheme of Modrzejewski et al.26 We stress that at this point the scheme is general,
and one can employ it to derive a range-separated exchange energy from any given
semilocal approximation. However, because of the possible presence of error cancel-
lations, it is not guaranteed that the resulting exchange energy will work well with
a given correlation part. Therefore, although the range-separation scheme is simple
in itself, numerical tests and possibly refitting of some parameters are required to
construct a practical exchange-correlation model.

4.2 One-electron self-interaction error
The range-separated exchange functional constructed using the scheme of Modrze-
jewski et al.26 differs substantially from existing range-separated GGAs, even in
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cases where these functionals stem from the same base semilocal exchange. To com-
pare the new approach with the existing ones, we compute a series of short-range
DFT exchange energies for the ground state of the hydrogen atom and compare
against the HF short-range exchange computed with the same basis set.

In the limit of the hydrogenic density, EX [ρ] should exactly cancel U [ρ]. A
deviation from the perfect cancellation between these terms is the one-electron self-
interaction error.33,64 The self-interaction error arises in GGAs, which use only the
variables ρ(r1) and ∇ρ(r1), but lack the dependence on τ(r1) which is needed to rec-
ognize that the electron density comes from a single orbital. One of the advantages
of meta-GGAs is the ability to recognize one-electron densities.65

The large-ω behavior of the exact short-range exchange energy ESR
X,exact(ω) of the

hydrogen atom is given by the expansion66

ESR
X,exact (ω →∞) = − 1

16ω2 + 1
32ω4 + . . . (4.2.1)

Eq. 4.2.1 assumes the exact density. Gill et al.66 have shown that the first term
on the right-hand side is recovered already by the local density approximation, but
the term of order 1/ω4 requires hX,approx with the correct second-order expansion
for small r12.66 Indeed, the short-range meta-GGA functionals derived in this work,
which satisfy Eq. 4.1.6, approach ESR

X,exact(ω → ∞) visibly faster than the existing
GGAs (Figure 4.1). The reduction of errors for large ω is seen for all tested base
functionals: PBE,5 B88,67 and TPSS.9

Another contribution to the self-interaction error is in the correlation energy.
Clearly, the correlation energy should vanish for the hydrogen atom, but it does
not at the GGA level. The pure PBE exchange-correlation functional yields EC =
−0.006 a.u. (-3.8 kcal/mol). This error can be eliminated only at the meta-GGA
level by using, e.g., the TPSS correlation.9,68 In the next section it will be shown
that the TPSS correlation is the best choice to be combined with the range-separated
exchange energy of Modrzejewski et al.26

4.3 Pairing approximate exchange with approxi-
mate correlation

We now proceed to employ the range-separation scheme of Modrzejewski et al.26
in a complete exchange-correlation functional, and to show that the combination
of the PBE-based exchange and the TPSS correlation is the preferred choice of the
base semilocal models. We restrict ourselves to the nonempirical functionals, PBE
and TPSS, and apply them in three candidate combinations labeled LC-PBETPSS,
LC-PBEPBE, and LC-TPSSTPSS. (LC-XY denotes a range-separated functional
where X is the base model for exchange, εX,approx in Eq. 4.1.11, and Y is the ac-
companying correlation.) The candidate functionals are applied on the AE6 set
of atomization energies70 and BH6 set of barrier heights.70 For each functional we
search for the optimal value of the range-separation parameter ω. Otherwise there
are no adjustable parameters. The AE6 and BH6 benchmarks are representative
of 109 atomization energies and 44 barrier heights, respectively, in the Database/3
collection.70
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Figure 4.1: Differences between approximate and exact short-range exchange ener-
gies of the ground state of the hydrogen atom. All computations employ the aug-
cc-pV5Z basis set69 and HF orbitals. The short-range GGA models of Henderson
et al.40,43 are denoted as HJS. Correlation energies are not included.

Consistently with the results of other authors,61 the range-separated hybrid
based entirely on the TPSS exchange-correlation, LC-TPSSTPSS, fails to yield bet-
ter atomization energies than the pure TPSS functional. The optimal value of ω for
atomization energies of the AE6 set is zero, i.e., no exact long-range exchange. In
contrast to AE6, the errors on the BH6 set are minimized for ω = 0.35. No single
value of ω makes LC-TPSSTPSS applicable for both atomization energies and bar-
rier heights. The numerical data for LC-TPSSTPSS are available in the Supporting
Information for ref 26.

Among all candidates, LC-PBETPSS achieves the best overall accuracy (Fig-
ure 4.2). The optimal range-separation parameter for this functional is in the in-
terval 0.30 ≤ ω ≤ 0.35, depending on the relative weight of the barrier heights
(BH6). The absolute percentage errors for the BH6 set are much larger than for
AE6, therefore a value at the upper end of this interval seems more appropriate.

We use the value of ω = 0.35 as the range-separation parameter of the LC-
PBETPSS functional. This approximately coincides with ω that makes the self-
interaction error for the hydrogen atom vanish, which can be viewed as an alternative
theoretical justification for this choice (Figure 4.1). (The latter is important because
a number of nonempirical functionals have been designed to recover the exact energy
in the limit of the hydrogen atom.9,65)

The candidate which is fully based on the PBE functional, LC-PBEPBE, show
a strong dependence of the atomization energies on the range-separation parameter.
The error curve for AE6 is steep and precludes the choice of a single value of ω which
is good enough for both AE6 and BH6. For example, at ω = 0.30, the average error
in the barrier heights is only 1.6 kcal/mol, which is acceptable, but at the same time
the error for the atomization energies is as high as 10.5 kcal/mol, which is large
compared to the existing range-separated functionals.40 Thus, LC-PBETPSS is the
only functional which we discuss further and employ in the full suite of test sets.
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Figure 4.2: Mean absolute errors on the AE6 and BH6 sets.70 All DFT computations
employ the def2-QZVPP basis set.69,71 The reference values are taken from ref 13
(AE6) and ref 72 (BH6).

Alternatively, it is possible to employ existing schemes to build a range-separated
functional based on the PBE exchange and the TPSS correlation. For example, it
is possible in the Gaussian program using the simpler ITYH exchange hole.54 The
alternative functional, denoted as LC-PBETPSS*, minimizes the errors on AE6
and BH6 at ω = 0.7. The resulting errors (MAE=14.7 kcal/mol for AE6 and
MAE=2.6 kcal/mol for BH6) are larger than for LC-PBETPSS. For 0.20 ≤ ω ≤
0.35, where LC-PBETPSS performs well for AE6, LC-PBETPSS* yields MAE >
30 kcal/mol, which is an extremely large error. The numerical data for LC-PBETPSS*
are available in the Supporting Information of ref 26.

4.4 Dispersion correction
We combine the LC-PBETPSS functional with the D3 dispersion correction of
Grimme et al.22 (see Eq. 3.2.1). The minimization of the MAE for LC-PBETPSS-
D3 on the S22 set of noncovalent systems50,51 yields r6 = 0.88971. We include
only the 1/R6 contribution because adding the 1/R8 term does not decrease the
MAE for the training set. Therefore, we limit the number of empirical, functional-
dependent parameters in the dispersion energy to only one. We employ the original
damping function fn(RAB),22 which vanishes for RAB → 0, instead of the newer
Becke-Johnson damping73 to avoid double counting of the interaction energy at
short range. The instances where we add the nonadditive three-body term are indi-
cated by an appropriate label.
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Chapter 5

Results and Discussion

5.1 Electronic-structure methods
In most tests described in this work, we add the D3 dispersion correction to the
DFT energy. The labels of the dispersion-corrected methods are supplemented with
the “-D3” suffix.

The functionals developed by Modrzejewski et al.26,28 are denoted as MCS-
D3 and LC-PBETPSS-D3. The empirical parameters included in MCS-D3 are
G = 0.075, ω = 0.3, r6 = 1.1822, and s8 = 0.7740. Our main focus is on the
LC-PBETPSS-D3 functional, which is, in contrast to MCS-D3, a general-purpose
method designed for properties beyond noncovalent interactions energies. The tests
of the MCS-D3 functional are carried out only on a subset of the full test set. The
MCS-D3 functional is implemented in our in-house code.

The LC-PBETPSS-D3 functional includes the meta-GGA short-range PBE ex-
change and the 100% HF exchange at long range. The range-separation parameter of
the exchange is fixed at ω = 0.35. The TPSS model is used for the correlation term.
The LC-PBETPSS functional is applied with the D3 dispersion correction (LC-
PBETPSS-D3) and for some systems without the dispersion term (LC-PBETPSS).
The LC-PBETPSS functional is implemented in the Molpro program.74

A wide set of existing methods is gathered and employed in our test calculations.
The comparison with the LC-ωPBE-D3 functional of Vydrov and Scuseria60 probes
the combined influence of upgrading the PBE-based short-range component of the
exchange functional to a meta-GGA and using the meta-GGA TPSS correlation
instead of PBE. The M06-2X empirical meta-GGA functional of Zhao and Truhlar14
is currently one of the most popular methods employed in computational chemistry.
While it accounts for a part of the dispersion energy via empirical parametrization,
it only does so in the vicinity of equilibrium separations. In most cases, we use it
in a dispersion-corrected form (M06-2X-D3), which is thoroughly tested by Goerigk
and Grimme.15 ωB97XD is an empirical, dispersion-corrected, range-separated GGA
functional of Chai and Head-Gordon.17 It is designed for thermochemistry, kinetics,
and energies of noncovalent systems. ωB97X75 is a predecessor of ωB97XD, which
is not optimized for use with a dispersion correction. It is known to perform well
for spectroscopic properties.76 We employ ωB97X in the part of our tests devoted
to excitation energies. M06-L is an empirical, pure meta-GGA functional without
the HF exchange.14 Finally, B3LYP-D3 is employed to show the progress that has
been made with respect to the functionals developed in the 1990s.20
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Figure 5.1: Errors for the binding energies of the CEPX33 set. The computational
details are provided in Table 5.1.

For (CH)12 isomers, we employ the DLPNO-CCSD(T) method to get the ref-
erence energies,77 with the numerical thresholds set at the “tight” level defined in
Table 1 of ref 78. The DLPNO-CCSD(T) computations are performed with the
ORCA 3.0.3 program.79

5.2 Range-separated functionals for noncovalent
complexes

A dispersion-corrected range-separated exchange corrects some of the problems that
traditional functionals have for noncovalent systems. The interaction energy curves
computed with range-separated functionals no longer critically depend on the be-
havior of the enhancement factor for large reduced density gradients.44–46 Range-
separated functionals improve on the description of the exchange repulsion, which is
otherwise systematically overestimated or underestimated. In pure functionals, the
systematic errors for noncovalent systems are extremely sensitive to the behavior
of the approximate exchange in the low-density regions where the density gradient
changes substantially upon bond formation.45,80 In this context, the crucial feature
of an exchange functional is the limit of the exchange enhancement factor for large
reduced density gradients: either it explodes to infinity, as in the B88 exchange, or
approaches a constant, as in PBE. The functionals based on the B88 exchange, e.g.,
BLYP, tend to predict a much more pronounced repulsion than the HF method.44 In
dispersion-corrected approaches, this error in the exchange energy has to be compen-
sated by a strongly attractive dispersion term. At the other end of the spectrum,
the functionals based on the PBE exchange tend to give, somewhat confusingly,
binding exchange-only interaction energy curves for noble gases due to an artifi-
cial exchange component.44 Applying the long-range HF term makes the underlying
semilocal model of the exchange energy much less critical. It has been demonstrated
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Figure 5.2: Errors for the proton-exchange barriers of the CEPX33 set. The com-
putational details are provided in Table 5.1.

by Kamiya et al. for noble gas dimers that range-separated functionals derived from
different base exchange models converge to give repulsive curves.46

The most apparent advantage of range-separated functionals is for donor-acceptor
noncovalent complexes. Nearly all pure and global hybrid methods developed in the
1990s, with the notable exception of Becke’s half-and-half functional,81 overestimate
the charge transfer in these systems and, as a result, dramatically overestimate the
interaction energy and predict too short equilibrium separations.82,83 This issue is
corrected in range-separated functionals. Owing to the 100% exact exchange at
long range, the partial charge transfer is controlled by more realistic frontier orbital
energy differences. The long-range correction limits the spurious delocalization of
electrons around the equilibrium and prevents the formation of unphysical partial
charges at the dissociated constituents of a donor-acceptor dimer.84 The improved
electron density in charge-transfer dimers implies more realistic binding energies,
provided that a necessary dispersion correction is supplied.84

5.3 Hydrogen-bonded systems
Hydrogen-bonded dimers belong to apparently a simple type of systems to be de-
scribed by semilocal DFT models, but larger hydrogen-bonded clusters remain chal-
lenging. For example, the DFT methods tested by Chan et al.16 on the CEPX33
set (the clusters of NH3, H2O, and HF) struggle to achieve good accuracy simulta-
neously or both binding energies and proton-exchange barriers. Our numerical tests
demonstrate excellent performance of the LC-PBETPSS-D3 method (Figures 5.1
and 5.2, Table 5.1). It is the best tested method for binding energies and the sec-
ond best method for proton-exchange barriers, after the empirical M06-L functional.
The D3 dispersion correction added to LC-PBETPSS uniformly improves the results
for both types of properties (Table 5.1). This is not the case for LC-ωPBE, which
gives less accurate barrier heights upon addition of the dispersion correction.

LC-PBETPSS-D3 is accurate for the absolute binding energies of the water 16-
mers studied by Yoo et al.85 but does not capture the minuscule energy differences
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Table 5.1: Mean Absolute Errors (kcal/mol) for
the Binding Energies (BE) and Proton-Exchange
Barriers (PX) of the CEPX33 Seta

method BE PX
LC-PBETPSS-D3 0.28 1.37
LC-PBETPSS 4.71 3.09
MCS-D3 0.77 12.65
M06-L 1.21 1.05
ωB97XD 0.41 1.80
M06-2X-D3 1.40 6.79
LC-ωPBE 2.74 3.44
LC-ωPBE-D3 0.55 5.16
B3LYP-D3 1.99 5.84

a DFT energies are computed with the
aug-cc-pVQZ basis,69 except for MCS-
D3, which employs the def2-TZVPPD
basis. The geometries and reference en-
ergies are taken from ref 86.

between different kinds of clusters (Figure 5.3). The structures of kind I (4444-a
and 4444-b) include eight water molecules connected through hydrogen bonds to four
nearest neighbors, whereas the structures of kind II (antiboat, boat-a, and boat-b)
include four such water molecules.85 LC-PBETPSS-D3 predicts that the clusters of
kind I are slightly too stable relative to the clusters of kind II. A similar, yet more
pronounced errors in the relative energies are present for the M06-type functionals:
M06-L and M06-2X-D3. LC-ωPBE-D3 predicts better relative energy differences
than LC-PBETPSS-D3, but it is not as accurate for the absolute energies.

The MCS-D3 functional performs well for the binding energies of hydrogen-
bonded clusters but fails to accurately predict barrier heights; it captures the subtle
energy differences between the water 16-mers but is by far the worst method for pro-
ton exchange barrier heights (Table 5.1 and Figure 5.3). A plausible reason for this
poor performance is connected to the base exchange energy from which the range-
separated exchange of MCS-D3 stems: the PBEsol functional. The PBEsol exchange
energy is designed primarily for the properties of solid-state systems, e.g., lattice
constants.11 But a GGA cannot perform well for both the properties of solids and
for atomization energies of molecules. Indeed, while PBEsol gives smaller errors for
equilibrium lattice constants than PBE and TPSS,11 it is one of the worst perform-
ing methods for thermochemistry and noncovalent interactions on the GMTKN30
set of Goerigk and Grimme.15 Our own numerical results show that applying the
PBEsol exchange energy in the MCS functional yields a robust method for nonco-
valent interaction energies, but mirrors the deficiencies of the base PBEsol energy
for the properties of covalent systems.
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employed for LC-PBETPSS-D3. The basis-set extrapolated CCSD(T) energies are
taken from ref 28. The energies for the existing DFT methods are taken from ref
87.

5.4 Noncovalent charge-transfer dimers
The notorious self-interaction error of approximate DFT has a strong effect on the
interaction energy curve of the NH3...ClF dimer. The traditional global hybrid
functional B3LYP (supplemented with a dispersion correction) and the pure M06-
L functional are two outliers with the most excessive binding (Figure 5.4). The
artificial binding is corrected only with a high fraction of the HF exchange, as in
M06-2X-D3, or with the long-range HF exchange in range-separated functionals.

The curve belonging to LC-PBETPSS-D3 is close to the reference curve in the
vicinity of the equilibrium geometry of the NH3...ClF dimer. For the smallest sep-
aration, at R = 0.8Req, LC-PBETPSS-D3 is excessively repulsive; however, other
tested methods are not repulsive enough or even predict binding, as in the case
of LC-ωPBE-D3 and M06-L. The MCS-D3 functional overbinds to a much larger
extent than the other range-separated functionals, but it is still more accurate than
B3LYP-D3 and M06-L.

While the NH3...ClF dimer represents strong donor-acceptor binding, similar
advantages of range-separated functionals are clearly seen also for the weaker-bound
dimers of the CT9 set (Figure 5.5, Table 5.2). The MAEs for the CT9 set are
similar for all range-separated functionals and M06-2X-D3, but the range-separated
hybrids tend to underbind, while M06-2X-D3 predicts excessive binding. Both LC-
PBETPSS and LC-ωPBE benefit from the D3 dispersion correction.

5.5 Buckyball-catcher complex
If proven accurate, DFT methods could be a prime choice of methodology for model-
ing supramolecular systems; because of the typical system size, wave-function com-
putations with large basis sets are currently formidable. However, the reliability of
approximate DFT remains an issue.

Some authors suggest that dispersion-corrected range-separated functionals pre-

27



0.8 1.0 1.2 1.4 1.6 1.8 2.0
R/Req

−15

−10

−5

0

5

E
in

t 
[k

ca
l/
m

o
l]

CCSD(T)

LC-PBETPSS-D3

MCS-D3

M06L

M06-2X-D3
LC-ωPBE-D3

ωB97XD

B3LYP-D3

Figure 5.4: Interaction energy curves for the NH3...ClF dimer.

dict excessive binding for supramolecular systems. Otero-de-la-Roza and Johnson88

have concluded that a functional that provides uniformly good across-the-board per-
formance for all types of noncovalent interactions presently is not available. Their
tests of the LC-ωPBE functional, supplemented with the XDM dispersion correc-
tion,89,90 have shown severe overbinding on the S12L set of Grimme,48,91 with the
energies over 40% too low for the dispersion-bound buckyball-catcher complexes 4a
and 4b.88

In contrast, the pure PBE functional has been reported to yield nearly perfect en-
ergy for the complex 4a (reference Ebind=-27.5 kcal/mol) when combined with D391

(-26.6 kcal/mol), MBD92 (-28.3 kcal/mol), and XDM88 (-26.3 kcal/mol) dispersion
energies. But a pure functional cannot be general – we already know that pure
functionals overshot the binding energies for donor-acceptor complexes. Therefore,
it may seem that no PBE-based functional is capable of describing the full gamut
of noncovalent systems.

To establish if the excessive binding is also present for LC-PBETPSS-D3, we
focus on the paradigmatic dispersion-bound buckyball (C60)-catcher complex (la-
beled 4a in ref 48). Comparing LC-PBETPSS with and without the dispersion
part, we find that the attraction between the host and guest is predicted solely due
to the dispersion term, which in this case is not merely a correction but a principal
contribution (Table 5.3). While the final binding energy (Ebind=-30.1 kcal/mol) is
within the expected error bounds, we arrive at this value by including the three-
body correction to the atom-pairwise D3 energy (E3-body

disp =+3.18 kcal/mol), which
is less important for smaller systems. The counterpoise correction for the basis set
is EBSSE=+2.05 kcal/mol. The resulting binding energy for LC-PBETPSS-D3 is as
accurate as the energies provided by M06-2X-D3 and DFT-SAPT.93

Contrary to the conclusions of ref 88, we find that the LC-ωPBE functional
supplied with the D3 correction does not overbind as severely as when applied with
the XDM dispersion energy (Table 5.3). After addition of the three-body dispersion
term, which has not been accounted for in ref 88, the binding energy is in line with

28



C2H
2-

ClF

C2H
4-

F2

CF3
CN-B

F3

GeF
3C

N-B
F3

H2O
-C

lF

HCN-C
lF

NH3-
Cl2

NH3-
F2

Si
F3

CN-B
F3

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

E
D

FT
in

t
-E

re
f

in
t
 [

kc
a
l/
m

o
l]

LC-PBETPSS-D3

M06L

M06-2X-D3

LC-ωPBE-D3

ωB97XD

B3LYP-D3

Figure 5.5: Errors for the interaction energies of the CT9 set of charge-transfer
dimers.

the results of LC-PBETPSS-D3 and M06-2X-D3. Therefore, our computations do
not confirm that the findings of Otero-de-la-Roza and Johnson88 can be generalized
to dispersion models other than XDM.

Surprisingly, we have found that the ωB97XD functional, which is designed
for noncovalent systems, overestimates the binding energy of the buckyball–catcher
complex by over 10 kcal/mol. This error may be caused by the dispersion model
(DFT-D) employed in this approach, which is older and simpler than Grimme’s
DFT-D3.17 Owing to their empirical optimization, all tested Minnesota-type func-
tionals (M06-L, M06-2X, and M11) account for the dispersion contribution at equi-
librium bond lengths. However, for the buckyball–catcher complex, we find that
these functionals are prone to underestimation of the binding energy if the disper-
sion correction is not supplied.

5.6 Thermochemistry of hydrocarbons
Most approximate DFT functionals struggle to yield even a qualitative picture in
certain, apparently simple, cases of hydrocarbon thermochemistry, e.g., for rela-
tive stability of linear vs. branched alkanes. In 2006, a series of computational
studies was published, including the works of Schreiner et al.,94 Woodrich et al.,95
Zhao and Truhlar,96 and Grimme19, where the authors pointed out both severe
and unexpected failures of traditional DFT approximations, most notably B3LYP.
Approximate exchange-correlation models were reported to fail to account for the
energetic effects which were otherwise simple enough to be predicted with great
fidelity by the (SCS-)MP2 method. With some exceptions, the size of the errors
made some of the authors question the applicability of the currently available DFT
methods to polymer science and studies of alkane combustion.19,96

Our test set for hydrocarbon thermochemistry spans the model cases which were
proven in the literature to be extremely difficult for the functionals developed in the
1990s, and for which modern methods yield rather mixed results: (i) The energy dif-
ference between n-octane and 2,2,3,3-tetramethylbutane represents the well-studied
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Table 5.2: Mean Absolute Errors (kcal/mol) for
the Interaction Energies of the CT9 Set of Charge-
Transfer Dimersa

method MAE
M06-2X-D3 0.37
LC-PBETPSS-D3 0.39
LC-PBETPSS 1.44
LC-ωPBE-D3 0.41
LC-ωPBE 1.14
ωB97XD 0.41
B3LYP-D3 0.73
M06-L 0.81

a DFT computations are performed with the def2-
QZVPP basis. The reference energies at the
CCSD(T) level are extrapolated to the basis-
set limit (aug-cc-pVTZ → aug-cc-pVQZ) with
the automated extrapolation scheme available in
ORCA.79 The same computational procedure is
employed for the interaction energy curves of the
NH3...ClF dimer.

problem of predicting the relative energies of branched and linear alkanes19 (Ta-
ble 5.4). (ii) The energy differences between the (CH)12 isomers are known examples
that reveal the difficulties of approximate DFT for large hydrocarbons, possibly with
bicyclic structures94 (Figure 5.7, Table 5.5). (iii) The energy of isodesmic n-alkane
fragmentation

CH3(CH2)mCH3 +mCH4 −−→ (m+ 1)C2H6 (5.6.1)
is a model problem where most functionals fail to properly account for the noncova-
lent interactions between contiguous CH2 units;28,42,97–99 as a result, the errors in the
reaction energies accumulate dramatically as the length of the n-alkane increases.
(iv) The reaction energies of the IDISP test set of Goerigk and Grimme15 probe the
ability of an approximate functional to account for the intramolecular dispersion
energy (Figure 5.9, Table 5.6). (v) The DARC subset of the GMTKN30 database15
comprises fourteen Diels-Alder reaction energies in which the reactants containing
multiple conjugated bonds react to form cyclic and bicyclic products (Figure 5.6,
Table 5.6); good results for this subset are expected for the functionals which reduce
the self-interaction error.100

Using the SCS-MP2 method with localized molecular orbitals, Grimme19 has
demonstrated that the main correlation contributions to the energy differences be-

Figure 5.6: Example of a reaction included in the DARC set.
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Table 5.3: Binding Energy (kcal/mol) of the
Fullerene C60–Catcher complex.a

method Ebind

refb -28.4
LC-PBETPSS-D3c -30.11
LC-PBETPSS +12.09
LC-ωPBE-D3c -30.71
LC-ωPBE +7.53
DFT-SAPTd -30.72
M06-L -21.32
M06-2X-D3c -30.82
M06-2X -25.19
B3LYP-D3c -25.75
ωB97XD -38.29
MCSh-D3c -32.89
M11 -23.74
LC-ωPBE-XDMe -40.0

a Geometry of the complex is taken from ref 48.
All DFT computations are counterpoise corrected
and employ the def2-TZVPP basis set.
b Ref 47. c D3 dispersion energies are supplied
with the 3-body term which is common for all
functionals (+3.18 kcal/mol).
d Ref 93. The deformation energy is accounted
for at the SCS-MP2 level. e LC-ωPBE supplied
with the XDM dispersion correction, ref 88.

tween branched and linear alkanes come from orbital pairs with the charge centers
separated on the length scale of atomic 1,3-interactions.19 Upon addition of a branch-
ing point to a linear alkane, two atomic H-C-C interactions are replaced by H-C-H
and C-C-C.101 Therefore, the difference between the energy of the H-C-C interaction
and the other two determines the relative stability of the linear vs branched forms
of alkanes.19 Inability to predict these differences has general consequences for the
whole class of molecules.

While Grimme hypothesized that this middle-range correlation effect might be
too difficult for semilocal correlation functionals,19 Zhao and Truhlar have shown
that the empirical M05-2X functional is able to predict the energy differences be-
tween hydrocarbon isomers with quantitative accuracy.96 Our numerical results
given in Table 5.4 demonstrate that both LC-PBETPSS-D3 and a more recent func-
tional from Truhlar’s group, M06-2X-D3, predict the energy differences between the
octane isomers within the error bounds of the reference energy. The performance
of B3LYP-D3 is representative for the functionals developed in the 1990s, which
yield qualitatively wrong energetic effects of adding a branching point to an alkane.
Surprisingly, the ωB97XD functional, which generally performs well for thermo-
chemistry, also fails to predict the correct sign.

The middle-range correlation, which, as Grimme argues, underlies alkane ther-
mochemistry,19,97,98 does not explain the performance of the approximate DFTmeth-
ods for which the error varies from one case to another. For example, LC-ωPBE-D3
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Table 5.4: Energy Differences (kcal/mol) Between
n-Octane (3b) and 2,2,3,3-Tetramethylbutane
(3a).a

method E(3b)− E(3a)
referenceb 1.9± 0.5
LC-PBETPSS-D3c 1.57
M06-Ld 0.37
M06-2X-D3d 1.63
LC-ωPBE-D3d 0.54
B3LYP-D3d -2.79
ωB97XDd -0.73

a Geometries are obtained from the compan-
ion website of ref 15. b Ref 19. c Computed
with the def2-QZVP basis. d Ref 15.

is among the best methods for the isodesmic fragmentation of n-alkanes (Figure 5.8).
and is also qualitatively correct for the octane isomers (Table 5.4). However, it dra-
matically fails for the (CH)12 isomers (Figure 5.7, Table 5.5). Its most catastrophic
prediction is for the energy difference E(4b) − E(4a), where the overestimation is
as large as 20 kcal/mol (150% of the reference energy). The error of the MCS-D3
functional is similarly large. Thus, the inferior description of bicyclic structures
containing small rings, discussed by Schreiner et al.,94 is not resolved by range sepa-
ration of the exchange energy. In fact, LC-ωPBE-D3 performs much worse than the
global hybrid PBE0. The ωB97XD functional yields nearly perfect results for the
(CH)12 isomers but predicts wrong energetic order of linear and branched octane
(Table 5.4). Of the range-separated functionals, the only method which performs
consistently well for all tested cases is LC-PBETSS-D3.

The performance of range-separated functionals for hydrocarbon thermochem-
istry is uneven, but the reaction of n-alkane fragmentation is an exception (Fig-
ure 5.8). Here, all tested dispersion-corrected range-separated functionals, including
LC-PBETPSS-D3 and MCS-D3, are bunched together among the top performers.
This is explained by Johnson et al.,42 who argue that the errors of approximate
DFT for n-alkane fragmentation have their roots in a bad description of the regions
of density between interacting CH2 groups. The energetic contributions originating
from the noncovalent interaction regions42 between contiguous methylene or methyl
groups are critically dependent on the reduced-gradient dependence of the exchange
functional. Therefore, for example, the PBEsol exchange energy39 – which obeys

Figure 5.7: Isomers of (CH)12. The naming convention is the same as in ref 39.
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Table 5.5: Energy Differences (kcal/mol) Between
(CH)12 Isomers.a

method E(4c)− E(4b) E(4b)− E(4a)
DLPNO-CCSD(T)b 8.90 14.15
LC-PBETPSS-D3 9.23 18.46
LC-PBETPSS 8.19 18.55
MCS-D3 15.22 47.20
M06-L 3.10 16.12
M06-2X-D3 6.73 15.32
LC-ωPBE-D3 14.85 36.63
LC-ωPBE 14.34 37.40
B3LYP-D3 2.55 -2.72
ωB97XD 7.98 15.55
PBE0 8.55 22.80
TPSS 2.85 11.17

a The structures are depicted in Figure 5.7. The geometries are
taken from Zhao and Truhlar.96 All DFT computations except for
MCS-D3 employ the def2-QZVPP basis set. The MCS-D3 ener-
gies are computed with the def2-TZVPP basis set.
b The DLPNO-CCSD(T) method is employed with the “tight” set
of parameters defined in Table 1 of ref 78. The energies are ex-
trapolated (cc-pVTZ→cc-pVQZ) to the basis set limit using the
default algorithm available in ORCA 3.0.3.

the exact second-order expansion for small density gradients – works better than
the functionals which employ stronger reduced-gradient dependence, e.g., PBE.39,42
Owing to the long-range HF exchange, range-separated functionals are less depen-
dent on the reduced-gradient term in the base functional and, as a result, perform
better for the isodesmic reaction provided that the long-range dispersion energy is
properly supplied (Figure 5.8).28,99

The DARC subset of the GMTKN30 database15 comprises fourteen Diels-Alder
reaction energies in which the reactants containing multiple conjugated bonds react
to form cyclic and bicyclic products (see Figure 1 in ref 100). Most of the existing
DFT approximations underestimate the reaction energies in this set.100 The reasons
for that have general implications for the application of approximate DFT for main
group thermochemistry. Johnson et al.100 have argued that the reactants of the
Diels-Alder reaction have delocalized electron density, therefore these structures
are artificially stabilized due to the self-interaction (delocalization) error. On the
products side, the bicyclic molecules have bridgehead carbons whose noncovalent
repulsion tends to be overestimated by approximate DFT.100 Because of these two
systematic effects, the energetic gain of going from the reactants to the products is
underestimated.

LC-PBETPSS-D3 achieves the lowest mean absolute error of all functionals
tested on the DARC set (Table 5.6). The addition of the dispersion correction
to LC-PBETPSS reduces the MAE by a factor of four. In contrast, supplying the
D3 term to LC-ωPBE increases the MAE from 6.3 kcal/mol to 10 kcal/mol. The
effect of the three-body dispersion term included in LC-PBETPSS-D3+3body is
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Figure 5.9: Example of a reaction included in the test set for intramolecular disper-
sion interactions (IDISP).15

negligible due to the small size of the systems.
The IDISP subset of the GMTKN30 database is composed of six reaction energies

in which alkanes undergo transformations between structures with different amounts
of the intramolecular dispersion energy.15 A typical reaction included in IDISP is
presented in Figure 5.9. LC-PBETPSS-D3, M06-2X-D3, and ωB97XD are the best
methods tested on this set (Table 5.6). The D3 correction is important and beneficial
for both LC-PBETPSS and LC-ωPBE. The addition of the three-body D3 term has
a perceivable beneficial effect on the reaction energies predicted by LC-PBETPSS-
D3+3body.

To sum up our results, LC-PBETPSS-D3 is the only range-separated functional
in our tests which rivals M06-2X-D3 for hydrocarbon thermochemistry. It is as good
as the other range-separated functionals for isodesmic fragmentation of n-alkanes
but avoids the inconsistent performance for alkane branching and isomerization
of larger hydrocarbons, e.g., (CH)12. Remarkably, LC-PBETPSS-D3 accurately
describes the energy differences between the (CH)12 isomers, whereas LC-ωPBE-
D3–which is based on the same base exchange functional–yields catastrophic results
in the cases involving the bicyclic structure 4a.
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Table 5.6: Mean Absolute Errors (kcal/mol) for the
Reaction Energies of the IDISP and DARC Setsa

method IDISP DARC
LC-PBETPSS-D3 2.35b 1.38c

LC-PBETPSS-D3+3body 2.27b 1.37c

LC-PBETPSS 11.38b 6.07c

M06-Ld 6.55 8.04
M06-2X-D3d 1.71 2.28
LC-ωPBE-D3d 4.13 10.04
LC-ωPBEd 8.03 6.30
B3LYP-D3d 6.63 10.23
ωB97XDd 2.63 1.98

a Reference energies and geometries are obtained from
the companion website of ref 15.
b Computed with the def2-QZVP basis.
c Computed with the def2-QZVPP basis. d Ref 15.

5.7 Excitation energies
To further establish versatility of the LC-PBETPSS functional, we apply it to com-
pute valence and Rydberg excitation energies of small molecules (CO, N2, H2CO,
C2H4, and C4H6) and the lowest charge-transfer excitation energies of aromatic
donor-tetracyanoetylene noncovalent complexes (Ar-TCNE). Traditional pure and
global hybrid functionals do not treat these transitions with the same accuracy.
While valence excitations are usually described at a fairly good level, frequently
with MAEs ≤ 0.3 eV, Rydberg and charge-transfer states are predicted to lie too
low.102

This systematic error is corrected in range-separated functionals.55,57 Indeed,
LC-PBETPSS achieves about the same level of accuracy for all types of excitations
(Tables 5.7 and 5.8). Clearly, the best performer for the charge-transfer transitions
is ωB97X,75 but only a small number of systems of this type is tested due to the
technical difficulties associated with carrying out real-time TDDFT propagation.
There are only insignificant differences among the three best functionals for valence
and Rydberg excitations: ωB97X, LC-PBETPSS, and LC-ωPBE.

5.8 Symmetry-adapted perturbation theory
The LC-PBETPSS functional, like any other range-separated hybrid, can be em-
ployed to compute the interaction energy contributions defined in symmetry-adapted
perturbation theory111 (SAPT), but its range-separated parameter must be adjusted
to satisfy112

εHOMO (ω) = −IP(ω). (5.8.1)

Satisfying Eq. 5.8.1 enforces Koopmans’ theorem and, therefore, provides a real-
istic description of the density tail. For global hybrids and pure functionals, one
achieves the same goal by using asymptotic corrections of the exchange-correlation
potential.113
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Table 5.7: Energies (eV) of Valence and Rydberg Transitions in CO, N2,
Formaldehyde, Ethylene, and trans-1,3-Butadiene

transition ref B3LYP M06-L M06-2X ωB97Xg LC-ωPBE LC-PBETPSS
COa

σ → π∗ 8.51d 8.40 8.58 8.22 8.53 8.55 8.66
σ → 3s 10.78d 9.83 9.35 10.86 10.77 10.84 10.76
σ → 3pσ 11.40d 10.21 9.61 10.86 11.22 11.34 11.15
σ → 3pπ 11.53d 10.27 9.87 10.90 11.31 11.42 11.28
N2

a

σg → 3pπu 12.90d 11.78 10.85 12.47 12.57 12.68 12.50
σg → 3pσu 12.98d 11.62 10.53 12.53 12.59 12.70 12.52
πu → 3sσg 13.24f 12.04 11.76 12.49 12.88 13.01 12.86
H2COa

n→ 3sa1 7.09d 6.43 6.14 7.09 7.28 7.26 7.11
n→ 3pb2 7.97d 7.15 6.49 7.90 8.12 8.11 7.98
n→ 3pa1 8.12d 7.16 6.57 7.78 8.00 8.00 7.84
σ → π∗ 8.68d 9.01 7.01 8.81 8.99 9.11 8.92
C2H4

b

π → 3s 7.11e 6.56 6.60 6.85 7.38 7.52 7.44
π → π∗ 7.96c 7.32 7.18 7.47 7.57 7.63 7.69
π → 3dδ 8.90e 7.61 7.22 8.42 8.98 9.23 9.13
π → 3dδ 9.08e 7.77 7.47 8.52 9.08 9.33 9.21
π → 3dπ 9.33e 7.69 7.52 8.58 9.09 9.38 9.28
π → 3dπ 9.51e 8.09 7.92 8.82 9.46 9.79 9.68
C4H6

b

π → π∗ 6.32c 5.54 5.62 5.76 5.88 5.97 5.98
Ryd (2Au) 6.66e 5.88 5.87 6.15 6.84 6.94 6.86
Ryd (2Bu) 7.07e 6.36 6.09 6.75 7.29 7.40 7.29
Ryd (3Bu) 8.00e 6.74 6.39 7.46 8.04 8.30 8.18
MAE 0.97 1.36 0.42 0.20 0.23 0.22

a Energies are computed with the augmented Sadlej basis.103 b Energies are computed with the
6-311(3+,3+)G** basis.104 c Theoretical energy at the FCIQMC level, ref 105.
d Experimental energy, ref 55. e Experimental energy, ref 106. f Experimental energy, ref 107.
g Ref 75.
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Table 5.8: Energies (eV) of the Lowest CT Transi-
tions in Gas-Phase Ar-TCNE Complexesa

Ar benzene toluene o-xylene
ref108 3.59 3.36 3.15
ωB97X75 3.67 3.34 3.37
LC-ωPBE 4.00 3.65 3.68
LC-PBETPSS 3.87 3.50 3.49
B3LYP 2.06 1.81 1.88
M06-L 1.65 1.46 1.56
M06-2X 3.03 2.93 2.78

a DFT calculations employ the cc-pVDZ basis set.69 The
excitation energies for this functional are obtained using
real-time time-dependent DFT (RT-TDDFT) instead of
the usual linear response equations.109,110 Technical de-
tails are provided in ref 26.

We test the performance of LC-PBETPSS against the range-separated PBE
functional of Henderson et al.40 (HJS-ωPBE) and the global hybrid functional
PBE0114 supplemented with the asymptotic correction of Gruning et al.113 (denoted
as PBE0AC) on the A24 set of small noncovalent dimers.115 The improvement of
LC-PBETPSS upon enforcing Eq. 5.8.1 is clear, with over threefold reduction of
the MAE for the total interaction energies (Table 5.9). A similar effect is seen for
HJS-ωPBE. The LC-PBETPSS variant with the adjusted ω achieves slightly better
accuracy than PBE0AC. Detailed numerical data are provided in the Supporting
Information for ref 26.

Table 5.9: Mean Absolute Errors (kcal/mol) for the
Total SAPT Interaction Energies of the A24 Seta

method MAE
HJS-ωPBE(ω=0.40) 0.19
HJS-ωPBE(ω=∗)b 0.07
LC-PBETPSS(ω=0.35) 0.30
LC-PBETPSS(ω=∗)b 0.09
PBE0AC 0.12

a SAPT calculations employ the aug-cc-pVTZ ba-
sis set. The total interaction energy is a sum
of the first- and second-order SAPT contribu-
tions plus a so-called delta-HF term. Each DFT
method is used to compute the orbitals and or-
bital energies, but the exchange-correlation ker-
nel is in every case at the LDA level.
b Range-separation parameters are adjusted to
satisfy Eq. 5.8.1.
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Chapter 6

Summary and Conclusions

We have presented two approximate exchange-correlation density functionals devel-
oped by Modrzejewski et al. in a series of works since 2012,26–28 both belonging
to the rung of dispersion-corrected range-separated hybrid meta-GGAs. Numerical
evidence demonstrates clear progress of the methodology: the newest functional,
LC-PBETPSS-D3,26 is generally as good as the earlier one, MCS-D3,28 for nonco-
valent systems, but it is qualitatively better for thermochemistry.

The MCS-D3 functional employs a range-separated hybrid variant of the PBEsol
exchange,11 the D3 dispersion correction,22 and the meta-GGA correlation of ref 28
with one empirical parameter adjusted to match the other components of the func-
tional. While the base PBEsol exchange is designed primarily for solids, we have
shown that, when included in a range-separated exchange, it works well for non-
covalent interactions of molecular systems, e.g., for water 16-mers, where MCS-D3
correctly predicts the tiny energy differences between the isomers. Still, we have
found some problematic cases: MCS-D3 overestimates the interaction energy of
the model charge-transfer NH3−ClF dimer and binds too strongly the dispersion-
dominated buckyball-catcher complex. MCS-D3 accurately describes the reaction
energies of n-alkane fragmentation owing to the exact second-order gradient ex-
pansion of the PBEsol exchange energy. Nonetheless, its good performance is not
transferable to other problems of hydrocarbon thermochemistry which are difficult
for approximate DFT. In particular, the energy differences of the (CH)12 isomers
come out unexpectedly poor, similarly as for LC-ωPBE-D3.

In contrast to MCS-D3, the LC-PBETPSS-D3 functional embodies a more elab-
orate exchange component based on the meta-GGA short-range functional of Mod-
rzejewski et al.,26 with the dependence on both the kinetic energy density and the
density Laplacian. The unaltered TPSS energy accounts for the correlation part.9,68
The included D3 dispersion correction is limited to the 1/R6 contribution. The
only purely empirical parameter is in the damping function of the dispersion energy.
The range-separation parameter is estimated both theoretically, by minimization of
the self-interaction error for the hydrogen atom, and empirically to be ω = 0.35.
Compared to other currently available range-separated hybrid meta-GGAs, LC-
PBETPSS-D3 reduces the amount of empirical parameters by an order of magni-
tude.

LC-PBETPSS-D3 approaches, and in some important cases surpasses, the accu-
racy of top-of-the-line empirical DFT methods (Figure 6.1). The accuracy of LC-
PBETPSS-D3 is remarkably consistent across the whole range of tests employed in
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Figure 6.1: General view of the performance of DFT methods on the benchmark
sets considered in this work.

this work, including noncovalent interaction energies, thermochemistry, and excita-
tion energies.

While LC-PBETPSS-D3 is better than M06-2X-D3 for noncovalent systems,
especially for clusters of hydrogen-bonded molecules, it is as good as this well-
established empirical functional for hydrocarbon thermochemistry. The ωB97XD
GGA hybrid affords a similar degree of consistent accuracy as LC-PBETPSS-D3
for small noncovalent dimers and for the major part of the tested thermochem-
istry, but it is much less accurate for the binding energy of the buckyball catcher
complex and predicts a wrong sign for the energy difference of linear vs. branched
octane. Compared to LC-ωPBE-D3, another range-separated hybrid derived from
the nonempirical PBE energy, LC-PBETPSS-D3 performs similarly for noncovalent
systems but better for hydrocarbon thermochemistry. In some cases, e.g., for the
(CH)12 isomers and Diels-Alder reactions, the functional of Vydrov and Scuseria
yields extraordinarily poor energies, whereas the approach presented in this work
stays robust.

When applied to excited states of small model systems, LC-PBETPSS describes
charge-transfer and Rydberg excitations at a similar level of accuracy as valence
excitations.

To summarize, we have derived and tested two minimally-empirical range-sepa-
rated hybrid meta-GGAs: MCS-D3 and LC-PBETPSS-D3. The latter method su-
persedes the former and is recommended for noncovalent interaction energies, hydro-
carbon thermochemistry, and excitation energies. Our LC-PBETPSS-D3 functional
is a part of the most recent wave of meta-GGA functionals with reduced empiricism
and extended transferability,10,24 yet it fills a unique place in it–it is the only range-
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separated hybrid built from a nonempirical meta-GGA exchange-correlation energy.
The available data in the test set demonstrate that LC-PBETPSS-D3 is competitive
against or even better than the best empirical functionals, but still more work has to
be done to establish its predictive power for general thermochemistry and systems
including transition metals.
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1Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland
2Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw,
02-093 Warsaw, Pawińskiego 5a, Poland
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We present a physically motivated correlation functional belonging to the meta-generalized gradient
approximation (meta-GGA) rung, which can be supplemented with long-range dispersion correc-
tions without introducing double-counting of correlation contributions. The functional is derived by
the method of constraint satisfaction, starting from an analytical expression for a real-space spin-
resolved correlation hole. The model contains a position-dependent function that controls the range
of the interelectronic correlations described by the semilocal functional. With minimal empiricism,
this function may be adjusted so that the correlation model blends with a specific dispersion cor-
rection describing long-range contributions. For a preliminary assessment, our functional has been
combined with an atom-pairwise dispersion correction and full Hartree-Fock (HF)-like exchange.
Despite the HF-exchange approximation, its predictions compare favorably with reference inter-
action energies in an extensive set of non-covalently bound dimers. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4768228]

I. INTRODUCTION

Inclusion of the dispersion interactions into the set of
phenomena accounted for by density functional theory (DFT)
models is recognized as one of the challenges in the devel-
opment of new density functional approximations (DFAs).1–4

Several ways have been proposed to correct the currently
available semilocal (SL) DFAs for the lacking nonlocal
(NL) correlation contribution responsible for the dispersion
interactions.1, 3 Hereafter, global hybrid and range-separated
hybrid functionals will be called SL DFAs. Although the ex-
change parts of such functionals are nonlocal, our focus will
be on the correlation contributions, which in this case de-
pend on variables calculated at a single point of space. The
examples of such dispersion-corrected methods are: (i) the
exchange-hole dipole method (XDM),5–9 (ii) the atom pair-
wise additive schemes of Goerigk and Grimme, DFT-D3,10

and Tkatchenko-Scheffler approach,11 (iii) seamless van der
Waals density functionals.4, 12–17 It is clear that the accuracy
of these methods depends not only on a faithful representation
of long-range electronic correlations, but also on a consistent
matching of a dispersion correction and the chosen SL com-
plement.

Several groups have studied the conditions under which a
SL functional can be incorporated into a dispersion-corrected
method.18–21 It has been concluded that the improper behav-
ior of a GGA exchange functional in the density tail (large re-
duced gradient regime) is responsible for artificial exchange
binding (as for the PBE22 exchange) or overly repulsive in-

a)Electronic mail: modrzej@tiger.chem.uw.edu.pl.

teraction (as for the B8823 exchange).20, 21 Such systematic
errors may cause the NL correction to worsen the results
compared to the bare SL functional. The following exchange
functionals: PW86,24 refitted PW86,21 and range-separated
hybrids16, 20 were found to be free from artificial binding,
thus being consistent with NL dispersion correction. Sim-
ilarly, combining exact exchange with NL correlation per-
forms satisfactorily.25

It has been observed that a failure to satisfy the condi-
tion of vanishing correlation for a rapidly varying density by
SL correlation functionals22 leads to a systematic overbind-
ing of non-covalent complexes.20 The ad hoc cure is to cancel
the error of the correlation by the opposite-sign error of an ex-
change component.20 However, this does not resolve the prob-
lem of the double counting of SL and NL correlation. Several
remedies have been proposed. For atom pairwise schemes,
multiple damping functions have been devised.26 For VV0915

and VV1016 density functionals the problem is avoided by
demanding the NL constituent to vanish in the homogeneous
electron gas (HEG) limit, because the SL constituent is able
to describe the whole range of the electronic interactions in
this limit. Finally, Pernal et al.18 devised a procedure to reop-
timize an existing SL exchange-correlation functional so as to
recover the dispersionless interaction energy.18 The rationale
of such an approach is to let the SL functional contribute only
the terms that it can describe reliably.

At this point we would like to shed light on the disper-
sion problem27 in DFT. It has been well established that SL
functionals fail to recover the long-range multipole-expanded
dispersion energy. In fact, nearly all dispersion-corrected DFT
approaches aim at recovering only long-range dispersion,

0021-9606/2012/137(20)/204121/10/$30.00 © 2012 American Institute of Physics137, 204121-1
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roughly determined by the leading terms of the multipole
expansion: C6, and possibly C8. The exceptions are the ap-
proaches of Pernal et al.18 and Rajchel et al.19 which supple-
ment a SL functional with total non-expanded dispersion from
symmetry-adapted perturbation theory (SAPT). It is often
overlooked that the long-range contribution, however, does
not constitute the whole dispersion energy at near-equilibrium
distances. Setting aside the exchange-dispersion part, the dis-
persion energy, defined as SAPT,28, 29 has a complex nature,
and includes both long- and short-range contributions. This
has first been observed by Koide30 who quantified the short-
distance behavior of the dispersion energy as A + BR2, with
R being the intermonomer separation. The importance of the
short-range correlation is also unambiguously, though indi-
rectly, supported by the significance of bond functions and
explicitly correlated Gaussian geminals in the dispersion en-
ergy calculations.31 A more direct argument points to the ex-
istence of short-range terms in the exact angular expansion of
the dispersion energy. In the case of atomic interactions, the
latter involves the interaction between S states of monomers,30

which give no contribution to the multipole expansion. Nu-
merical results show that near the equilibrium bond length
these terms, decaying exponentially with the overlap density,
can be comparable in magnitude to the multipole expansion
terms.32 As demonstrated by Dobson et al.27 with the aid of
simple models, SL functionals cannot recover the multipole
expansion of the dispersion energy. However, there is a good
reason to believe that SL functionals are capable of describ-
ing the terms that depend on overlap density.27 Our model is
intended to capture this contribution.

Recent thorough assessments of DFT-D, XDM, and
VV10 approaches have clearly shown that a combination
of a SL functional specifically designed for a dispersion-
corrected treatment with a dispersion correction improves
both the description of noncovalent interactions33–37 and gen-
eral molecular properties.34, 35 Among the functionals that use
atom-pairwise DFT-D correction, B97-D,38 B97-D3,34 and ω-
B97X-D39, 40 are characterized by one of the smallest mag-
nitude and spread of errors in interaction energies33 while
performing well in thermochemistry and reaction kinetics.
The methods utilizing unaltered conventional SL functional
suffer from systematic errors. For example, PBE0-D2, PBE-
D3, and B3LYP-D3 tend to underbind dispersion-bound com-
plexes and overbind hydrogen-bonded systems.33 The sys-
tematic overbinding of charge-transfer complexes within DFT
is more pronounced for the dispersion-corrected approaches
than for the pure DFAs.41, 42 See Ref. 42 and Table II in
Ref. 43, where numerical examples of huge overbinding by
ω-B97X-D and B97-D functionals applied to charge-transfer
complexes are given.

Although much attention has been devoted to the devel-
opment of the proper exchange contribution,20, 21, 44 the theo-
retical effort to derive a dispersion-consistent SL correlation
functional thus far has been reduced to reoptimizing known
expressions. It has also been observed38, 40 that fitting to em-
pirical data coupled with addition of higher-order terms in the
B97 expansion45 does not systematically improve the perfor-
mance as the saturation is approached. Clearly, there is a de-
mand for the theoretical effort to overcome the problem.

The aim of this work is to develop a SL correlation
functional that can be matched with an arbitrary long-range
dispersion correction by optimizing a single parameter that
has a simple physical meaning. As a demonstration of this
approach, we will combine our approximation with DFT-
D3 dispersion correction,10 which contributes damped C6/R6

+ C8/R8 terms, with no short-range contributions. To avoid
the systematic error of spurious exchange attraction, full HF
exchange will be used. To match SL and NL constituents, a
function which controls the spatial extent of our SL correla-
tion hole will be adjusted by minimization of errors in a rele-
vant set of molecules.

II. THEORY

We consider an electronic ground state of a finite molecu-
lar system described by an electronic Hamiltonian of the form

Ĥ = T̂ +
∑

i

v̂ext(ri) + V̂ee, (1)

where T̂ is the kinetic energy operator, the multiplicative
external potential v̂ext is taken to be the Coulomb poten-
tial of nuclear attraction, and V̂ee is the interelectronic re-
pulsion. Atomic units are assumed throughout this work. In
constrained-search formulation46 of DFT47 the ground state
energy of electronic system can be expressed as

E0 = min
ρ

[∫
v̂ext(r1)ρ(r1)d3r1 + 〈

�min
ρ

∣∣T̂ + V̂ee

∣∣�min
ρ

〉]
,

(2)
where �min

ρ denotes an N-body wavefunction that yields elec-
tronic density ρ and simultaneously minimizes expectation
value of T̂ + V̂ee. In Kohn-Sham scheme48 the second term
on the right-hand side of Eq. (2) is decomposed into nonin-
teracting kinetic, Hartree, and exchange-correlation energies,
respectively,〈

�min
ρ

∣∣T̂ + V̂ee

∣∣�min
ρ

〉 = Ts[ρ] + U [ρ] + EXC[ρ]. (3)

Noninteracting kinetic energy Ts is known explicitly in terms
of the wavefunction of the KS system, denoted here as �min

ρ ,

which merely minimizes the expectation value of T̂ :

Ts[ρ] = 〈
�min

ρ

∣∣T̂ ∣∣�min
ρ

〉
. (4)

Hartree energy is given by a classical formula

U [ρ] = 1

2

∫∫
ρ(r1)ρ(r2)

r12
d3r1d3r2. (5)

Exchange-correlation energy can be formally expressed
through adiabatic connection formula49

EXC[ρ] =
∫ 1

0

〈
�min,λ

ρ

∣∣V̂ee

∣∣�min,λ
ρ

〉
dλ − U [ρ], (6)

where �min,λ
ρ minimizes the expectation value of T̂ + λV̂ee

and yields the same electronic density as wavefunction at
λ = 1. Eq. (6) can be further decomposed so that the correla-
tion energy is separately expressed through coupling-constant
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integral

EC[ρ] =
∫ 1

0
V λ

C [ρ]dλ (7)

where

V λ
C [ρ] = 〈

�min,λ
ρ

∣∣V̂ee

∣∣�min,λ
ρ

〉 − 〈
�min

ρ

∣∣V̂ee

∣∣�min
ρ

〉
. (8)

Approximating V λ
C is the primary objective of this work. Let

us begin by expressing V λ
C in terms of a λ-dependent correla-

tion hole

V λ
C = 1

2

∑
σσ ′

∫∫
ρσ (r1)hσσ ′

Cλ (r1, r2)

r12
d3r1d3r2, (9)

where σ denotes a spin variable,

hσσ ′
Cλ (r1, r2) = hσσ ′

XCλ(r1, r2) − hσσ ′
X (r1, r2) (10)

and

hσσ ′
XCλ(r1, r2) = P σσ ′

2λ (r1, r2)

ρσ (r1)
− ρσ ′(r2), (11)

hσσ ′
X (r1, r2) = −δσσ ′

∣∣∣∑Nσ

i ψ∗
iσ (r1)ψiσ (r2)

∣∣∣2

ρσ (r1)
. (12)

Nσ is a number of σ -spin electrons and pair probability den-
sity, P σσ ′

2λ (r1, r2), is defined as

P σσ ′
2λ (r1, r2) = N (N − 1)

×
∑

σ3···σN

∫
�min,λ∗

ρ (r1σ, r2σ
′, . . . , rNσN )

×�min,λ
ρ (r1σ, r2σ

′, . . . , rNσN )

× d3r3 · · · d3rN . (13)

Note that, due to the symmetry of r−1
ij operator, it is the spheri-

cal average of exchange-correlation hole around the reference
electron that enters the energy expression:

V
σσ ′,λ

C = 1

2

∫∫
ρσ (r1)hσσ ′

Cλ (r1, r2)

r12
d3r1d3r2

= 1

2

∫
d3r1

∫ ∞

0

ρσ (r1)hσσ ′
Cλ (r1, s)

s
4πs2ds,

(14)

where the spherical average is implied by scalar argument s,

hσσ ′
Cλ (r1, s) = 1

4π

∫ 2π

0
dφs

∫ π

0
hσσ ′

Cλ (r1, r1 + s) sin θsdθs.

(15)
Equation (14) means that without loss of generality we can fo-
cus our attention on approximating isotropic quantity defined
in Eq. (15).

We postulate the following form of opposite-spin and
same-spin correlation holes:

h
αβ

Cλ(r1, s) = (aαβ + bαβs + cαβs2) exp(−dαβs), (16)

hαα
Cλ(r1, s) = s2(aαα + bααs + cααs2) exp(−dααs). (17)

Unknown parameters appearing above are actually functions
of ρ(r1), but we will not write that explicitly for the sake of
brevity. Quadratic behavior of hαα

Cλ near the reference point
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FIG. 1. Shape of the approximate correlation holes defined in Eqs. (16) and
(17). The functions illustrated on the graph are h

αβ,1
C and h

αα,1
C multiplied by

4πs2. The functions are evaluated at rs = 1 in the spin-compensated HEG
limit. Atomic units are used.

results from the Pauli exclusion principle and the cusp con-
dition discussed further below. The model of Eqs. (16) and
(17) cannot recover radial dependence of the true hole at each
point, however, its simple form leads to reasonable shape of
the system-averaged correlation hole. We thus assume that the
wealth of features of the exact hole50 is averaged out, and use
system-averaged function of shape similar to Eqs. (16) and
(17) in the energy expression. The argument involving system
average was originally put forward by Burke et al.51 in their
discussion of the success of the local-density approximation
(LDA).

The shape of the correlation holes corresponding to
Eqs. (16) and (17) is illustrated in Fig. 1 (the details of
parametrization are discussed below). For any spin density
the qualitative picture is similar: both same-spin and opposite-
spin holes are removing electrons in the vicinity of the ori-
gin, then cross the abscissa exactly once, and decay exponen-
tially. The fact that both model correlation holes (16) and (17)
change sign exactly once can be readily proven.

The form of correlation holes given in Eqs. (16) and (17)
has been derived from observation of system-averaged corre-
lation holes (correlation intracules) in simple systems dom-
inated by dynamical correlation. Qualitatively, the shape of
our model correlation hole is similar to correlation intracules
in He,52 Ne,52 and H2 (Ref. 53) near the equilibrium bond
length. We note that there is a qualitative discrepancy between
our approximate correlation hole and the accurate one for sys-
tems like Li (Ref. 52) or Be.52 These systems are character-
ized by a significant contribution of static correlation. How-
ever, there is a substantial cancellation between exchange and
correlation holes in systems of this type.

The cusp conditions for same-spin and opposite-spin
exchange-correlation holes54 considerably restrict the short-
range expansion55 of h

αβ

XCλ and hαα
XCλ:

h
αβ

XCλ(r1, s) = (Bαβ − ρβ) + λBαβs + . . . , (18)

hαα
XCλ(r1, s) = −ρα +

(
Bαα − 1

6
∇2ρα

)
s2 + λ

2
Bααs3 + . . . .

(19)
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Equation (10) together with Eqs. (18) and (19), and the ex-
pansion of spherically averaged exact exchange hole valid at
zero current density,55–57

hαα
X (r1, s) = −ρα − 1

6

[
∇2ρα − 2τα + 1

2

(∇ρα)2

ρα

]
s2 + . . . ,

(20)
yields short-range expansions of correlation holes:55

h
αβ

Cλ(r1, s) = (Bαβ − ρβ) + λBαβs + . . . , (21)

hαα
Cλ(r1, s) =

(
Bαα − 1

3
Dα

)
s2 + λ

2
Bααs3 + . . . . (22)

Dα is always non-negative and vanishes for single orbital den-
sities,

Dα = τα − |∇ρα|2
4ρα

, (23)

where τα is essentially the density of noninteracting kinetic
energy

τα =
Nα∑
i

|∇ψiα|2. (24)

We will adjust the unknown functions Bαβ and Bαα in
Eqs. (18) and (19) to recover short range expansion of spin-
resolved pair distribution function of the HEG developed by
Gori-Giorgi and Perdew.58 The pair distribution function rep-
resents the solution of the Overhauser model.59 Bαα will be
further modified to eliminate self-interaction error of the cor-
relation functional. We leave the on-top value of the correla-
tion hole (determined solely by Bαβ) unchanged by inhomo-
geneity corrections because it is well-transferable from the
HEG to real systems.51 For the discussion of the quality of
the HEG on-top hole density see the work of Burke, Perdew,
and Ernzerhof.51

Comparison of homogeneous density limit of Eqs. (18)
and (19) with short-range expansions of the spin-resolved
HEG pair distribution function58 yields

Bαβ(ρα, ρβ, λ) = ρβ

(
1 + 0.0207λrαβ

s + 0.08193
(
λrαβ

s

)2

− 0.01277
(
λrαβ

s

)3 + 0.001859
(
λrαβ

s

)4)
× exp

( − 0.7524λrαβ
s

)
, (25)

BHEG
αα (ρα, λ) = DHEG

α

3

(
1−0.01624λrαα

s + 0.00264
(
λrαα

s

)2)
× exp

( − 0.5566λrαα
s

)
, (26)

where rαα
s and r

αβ
s introduce the dependence on electronic

spin densities,

rαα
s = (3/π )1/3

2ρ
1/3
α

, (27)

rαβ
s = (3/π )1/3

ρ
1/3
α + ρ

1/3
β

, (28)

and each of them reduces to the Seitz radius

rs =
(

3

4πρ

)1/3

, (29)

for spin-compensated systems. The formulae (25) and (26)
respect the exact high-density expansion derived by Rassolov,
Pople, and Ratner.60 The HEG limit of parameter (23) in (26)
reads55

DHEG
α = 3

5
(6π2)2/3ρ5/3

α . (30)

We substitute DHEG
α in Eq. (26) for Dα of Eq. (23) to get Bαα:

Bαα(ρα, |∇ρα|, τα, λ)

= Dα

3

(
1 − 0.01624λrαα

s + 0.00264
(
λrαα

s

)2)
× exp

( − 0.5566λrαα
s

)
. (31)

Such choice of the Bαα function leads to vanishing parallel
spin correlation contribution for single orbital densities. In
that sense no correlation self-interaction error is present.

Restricting undetermined coefficients in Eqs. (16) and
(17) to yield short-range expansions of Eqs. (21) and (22),
respectively, gives

aαβ = Bαβ − ρβ, (32)

bαβ = λBαβ + dαβaαβ. (33)

Correct shape of h
αβ

Cλ can be ensured requiring that the func-
tion satisfies the appropriate sum rule,

4π

∫ ∞

0
h

αβ

Cλ(r1, s)s2ds = 0. (34)

Consequently, coefficient cαβ is fixed for Eq. (34) to hold for
all densities:

cαβ = − 1

12

(
aαβd2

αβ + 3bαβdαβ

)
. (35)

Analogously,

aαα = Bαα − Dα

3
, (36)

bαα = λ

2
Bαα + aααdαα, (37)

cαα = − 1

30

(
aααd2

αα + 5bααdαα

)
. (38)

With all but dαβ and dαα coefficients determined, spin re-
solved contributions to V λ

C ,

V
σσ ′,λ

C = 1

2

∫
d3r1

∫ ∞

0

ρσhσσ ′
Cλ (r1, s)

s
4πs2ds, (39)

can now be given as

V
αβ,λ

C =
∫

d3r1ραπ
bαβ + aαβdαβ

d3
αβ

, (40)

V
αα,λ

C =
∫

d3r1ραπ
8bαα + 4aααdαα

d5
αα

. (41)
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FIG. 2. Comparison of the approximate V
σσ ′,λ=1
C energies in the HEG limit

with reference Monte Carlo data.63 Solid lines refer to Eqs. (40) and (41).
Circles and diamonds represent reference values. The cause of discrepancy at
low rs (high densities) is discussed in the main text. Atomic units are used.

Several requisites for the exact exchange-correlation
functional were derived using uniform coordinate scaling
technique,61, 62 i.e., by applying uniformly scaled density

ρκ (r1) = κ3ρ(κr1). (42)

These relations are particularly valuable because they hold
for arbitrary N-electron densities. A density-scaling identity
proved by Levy,61

hσσ ′
Cλ (ρ; r1, s) = λ3hσσ ′

Cλ′=1(ρ1/λ; λr1, λs), (43)

constrains the set of admissible forms of dαβ and dαα . Eq. (43)
implies that

dσσ ′(ρ, |∇ρ|, λ) = λdσσ ′

(
ρ

λ3
,
|∇ρ|
λ4

, 1

)
. (44)

We propose the following simple function which satisfies the
scaling condition:

dσσ ′ = Fσσ ′

rσσ ′
s

+ G

rs

∇ρ · ∇ρ

ρ8/3
. (45)

As Eq. (45) is independent of λ, the coupling-constant inte-
gration of Eq. (7) can be done analytically. The values of Fαβ

and Fαα were determined by least-squares fit of the HEG limit
of V

αβ,λ=1
C and V

αα,λ=1
C to the reference values.63 Opposite-

spin and parallel-spin components were fit independently.
Reference values of V

σσ ′,λ=1
C for the HEG were obtained by

Gori-Giorgi et al.63 by integrating pair correlation functions
from quantum Monte Carlo simulation.64 Our estimates of
V

αβ,λ=1
C and V

αα,λ=1
C were optimized to recover the reference

values for spin-compensated system at metallic densities (rs

= 1, 2, 3, . . . , 10). The resulting parameters are Fαβ = 2.1070
and Fαα = 2.6422. The corresponding mean absolute percent-
age errors (MAPE) of opposite-spin and parallel-spin compo-
nents are 5.0% and 12.0%, respectively. The MAPE of total

V λ=1
C is equal to 4.6%. See Fig. 2 for comparison of our fit

to the reference values. At high densities (rs < 1) our model
does not reduce to the accurate correlation functional for the
HEG as it does not account for the logarithmic divergence of
the correlation energy density for rs → 0.65 This is, however,
a peculiarity of the HEG that is not present in finite molecular
systems.

We supply our SL correlation functional with the
DFT-D3 dispersion correction of Grimme et al.,10 which
contributes damped terms of the multipole expansion of the
dispersion energy. The adjustment of the SL part to harmonize
with the NL correction is accomplished by optimization of the
G parameter, see Eq. (45). The G parameter can be adjusted
freely, without interfering with any of the above-mentioned
physical and formal constraints. In particular, it does not alter
the first two terms in the short-range spatial Taylor expansion
of the correlation holes. The value of G can be chosen so that
the correlation contributions described by SL and NL parts do
not overlap. As G → 0, our SL correlation model reduces to
the correlation of the HEG with self-interaction removed from
parallel-spin part. Our numerical results show that this leads
to a systematic overestimation of intermolecular interactions.
On the other hand, when G → ∞, the SL correlation vanishes,
and the SL functional reduces to an exchange-only approxi-
mation (without adding the dispersion correction). Provided

that the exchange functional is free from artificial binding,
the interaction energies should be underestimated in this limit.
Between these two limits lays the optimal G, which corre-
sponds to an interaction curve slightly shallower than the real
one, for the addition of the negative dispersion term should
move the interaction energy towards the accurate value.

The G parameter of Eq. (45) and the two empirical pa-
rameters present in DFT-D3 dispersion correction, sr, 6 and
s8, (see Eqs. (3) and (4) in Ref. 10) were chosen to opti-
mize mean absolute percentage error of binding energies in
S22 set of non-covalently bound complexes.66 The numeri-
cal optimization has been carried out with the constraint that
the dispersion-free energy cannot fall below the reference to-
tal interaction energy. During the optimization process, self-
consistent KS calculations in aug-cc-pVTZ basis set were per-
formed using the molecular structures published in Ref. 66.
Reference interaction energies were taken from Ref. 67. The
resulting optimal values are G = 0.096240, sr, 6 = 1.1882,
and s8 = 0.65228. The interaction energies in S22 set are pre-
sented in Table II.

III. IMPLEMENTATION

The expression for the correlation energy is obtained af-
ter inserting Eqs. (40) and (41) into Eq. (7) and integrating
with respect to λ. Below we present EC in a form convenient
for implementation,

EC = E
αβ

C + E
βα

C + Eαα
C + E

ββ

C , (46)

E
αβ

C =
∫ 1

0
V

αβ,λ

C dλ =
∫

d3r1ραπ
Bαβ + Aαβdαβ

d3
αβ

, (47)
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Eαα
C =

∫ 1

0
V

αα,λ
C dλ =

∫
d3r1ραπ

8Bαα + 4Aααdαα

d5
αα

, (48)

Aαβ = ρβ

r
αβ
s

[(
−P0 +

4∑
k=1

Pk

(
rαβ

s

)k

)
exp

(−P5r
αβ
s

) + P0

]
− ρβ, (49)

Bαβ = ρβ(
r

αβ
s

)2

[(
−Q0 +

5∑
k=1

Qk

(
rαβ

s

)k

)
exp

( − Q6r
αβ
s

) + Q0

]
+ dαβAαβ, (50)

Aαα = Dα

3rαα
s

[(
−R0 +

2∑
k=1

Rk

(
rαα

s

)k

)
exp

(−R3r
αα
s

) + R0

]
− Dα

3
, (51)

Bαα = Dα

6
(
rαα

s

)2

[(
−S0 +

3∑
k=1

Sk

(
rαα

s

)k

)
exp

(−S4r
αα
s

) + S0

]
+ dααAαα. (52)

Note that E
αβ

C = E
βα

C . The formula for E
ββ

C can be ob-
tained by substitution of spin indices in Eαα

C . The values of the
numerical constants appearing in Eqs. (49)–(52) are listed in
Table I. The following functions: Dα , rαα

s , and r
αβ
s are defined

in Eqs. (23), (27), and (28), respectively. The dσσ ′ function,
defined in Eq. (45), is parametrized as follows:

dαβ = 2.1070

r
αβ
s

+ 0.096240

rs

∇ρ · ∇ρ

ρ8/3
, (53)

dαα = 2.6422

rαα
s

+ 0.096240

rs

∇ρ · ∇ρ

ρ8/3
. (54)

The parameters appearing in DFT-D3 correction10 are sr, 6

= 1.1882 and s8 = 0.65228. Fortran code for numerical eval-
uation of the correlation energy and its derivatives, together
with the corresponding Mathematica68 notebook, can be ob-
tained from the authors by e-mail or from their webpage. The
calculations presented in this work were done using GAMESS

program.69, 70

IV. DISCUSSION

Similar strategy for designing a correlation functional,
i.e., constructing a real-space model for a spin-resolved cor-
relation hole, was originally proposed by Rajagopal, Kimball,
and Banerjee54 with the first application by Becke,55 followed
by the works of Proynov and Salahub71 and Tsuneda, Suzu-
mura, and Hirao.72 A central role in those methods is played
by correlation length, a function completely determining both

TABLE I. Ab initio numerical constants appearing in Eqs. (49)–(52).

k Pk Qk Rk Sk

0 1.696 3.356 1.775 3.205
1 − 0.2763 − 2.525 0.01213 − 1.784
2 − 0.09359 − 0.4500 − 4.743 × 10−3 3.613 × 10−3

3 3.837 × 10−3 − 0.1060 0.5566 − 4.743 × 10−3

4 − 2.471 × 10−3 5.532 × 10−4 0.5566
5 0.7524 − 2.471 × 10−3

6 0.7524

short- and long-range behavior of the correlation holes present
in those models. Our approach has more degrees of freedom,
as the short-range behavior of hσσ ′

Cλ is decoupled from the
choice of the dσσ ′ function which controls its decay. This flex-
ibility allows us to adjust dσσ ′ to match a specific NL correc-
tion without sacrificing the short-range correlation that can be
accurately represented by a SL functional.

The ultimate goal is to develop a general-purpose
functional that not only yields satisfactory results for the
dispersion interactions, but also performs not worse than
the existing approximations in predicting other properties
of chemical interest. To do so, the inclusion of the NL
constituent and the accompanying adjustment of the SL part
should not affect any of the energetically important con-
straints already satisfied by the meta-GGA rung functionals.73

Among the formal constraints, the most fundamental one is
the non-positivity condition,

V
σσ ′,λ

C [ρ] ≤ 0, (55)

which is obeyed by our model for every spin-density.
Similarly, the scaling conditions formulated by Levy,61 e.g.,

lim
κ→0

EC[ρκ ]

κ
=

∑
σσ ′

lim
λ→∞

V
σσ ′,λ

C [ρ] > −∞, (56)

∂V
σσ ′,λ

C [ρ]

∂λ
≤ 0, (57)

together with the high-density limit of the correlation
functional,74

lim
κ→∞ EC[ρκ ] > −∞, (58)

are satisfied. A failure to satisfy condition (58) may contribute
to overbinding of molecules.61

In addition to conditions (55)–(58), our approximation
satisfies a constraint which has a direct connection to the pre-
diction of interaction energies. It was observed by Kamiya,
Tsuneda, and Hirao20 that if a SL functional yields nonzero
contributions to the correlation in the tail of the density, then
adding a NL correction may lead to a severe overbinding.20

In the tail of electronic density, where the reduced gradient is
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large, the dσσ ′ function of Eq. (45) goes to infinity, thus our
SL correlation correctly vanishes.

The correlation self-interaction error is corrected using
τσ variable (the kinetic energy density), see Eq. (31), simi-
larly to other meta-GGA correlation functionals.55, 75, 76 As a
result, in our model the parallel-spin correlation vanishes for
single-orbital spin-compensated densities, and the total corre-
lation energy is zero for hydrogen atom.

The above-mentioned constraints are merely formal
prerequisites for a high-quality approximation to EC. A
decent approximate model should also capture the physics of
molecular systems. Our model reflects the following physical
properties:

1. Short-range electronic correlation is modeled by an ex-
pression borrowed from the homogeneous electron gas,
which is also appropriate for real systems.51, 77–79 (See
Eqs. (25), (26), and (31).) To the best of our knowledge,
we present the first beyond-LDA functional which in-
corporates analytic representation of the short-range cor-
relation function of the HEG developed by Gori-Giorgi
and Perdew.58

2. Long-range behavior of the correlation hole is governed
by dσσ ′ function (see Eqs. (16), (17), and (45)), which
depends on both density and its gradient at a reference
point. This function accounts for damping effect of den-
sity inhomogeneity (∇ρσ ) on the correlation hole. Fur-
thermore, the dσσ ′ function contains a free parameter, G.
It is used in tuning the spatial range separation of the
correlation hole to properly blend with the long-range
correlation correction.

3. Our model closely approximates the exact correlation in
the HEG regime at metallic densities. (See also the dis-
cussion below Eq. (45).)

To make our concept of stitching SL and NL correlation
more transparent, we briefly discuss it in the context of range-
separated approach of Kohn, Meir, and Makarov.80 It is pos-
sible to solve the dispersion problem within DFT by parti-
tioning the interelectron repulsion, 1/r, into short-range part,
exp (−μr)/r, and its long-range complement.80 (μ is a con-
stant.) Both short-range exchange and correlation are then
treated at (semi)local level, and the contributions originating
from the long-range interaction are approximated by a for-
mula that is consistent with the Casimir-Polder expression in
the asymptotic region. Our treatment follows the same gen-
eral idea. The difference is as follows: the exponential fac-
tor that damps the interelectronic interaction, exp (−μr), is
replaced by the exp(−dσσ ′r) function of Eqs. (16) and (17)
which damps the short range expansion of the approximate
correlation holes. Thus, the μ constant is generalized into dσσ ′

function, which depends on density and its gradient at a ref-
erence point.

V. NUMERICAL RESULTS

Our aim was to validate the correlation functional pre-
sented in this work, preferably without the interference from
the errors of an exchange approximation. Therefore, we de-
cided to perform calculations using our correlation com-

TABLE II. Interaction energies in S22 set (kcal/mol).

Dimer Eref Eint Edispfree

Hydrogen-bonded
(NH3)2 − 3.145 − 2.75 − 2.17
(H2O)2 − 5.004 − 4.86 − 4.41
Formic acid dimer − 18.751 − 20.17 − 18.75
Formamide dimer − 16.063 − 16.46 − 14.86
Uracil dimer planar (C2h) − 20.643 − 21.30 − 19.10
2-pyridone · 2-aminopyridine − 16.938 − 16.33 − 13.67
Adenine · thymine WC − 16.554 − 16.15 − 13.24

MSE − 0.13
MUE 0.58
MAPE 5.0

Predominant dispersion
(CH4)2 − 0.529 − 0.60 0.14
(C2H4)2 − 1.482 − 1.52 − 0.15
Benzene · CH4 − 1.448 − 1.45 0.10
Benzene dimer parallel-displaced (C2h) − 2.655 − 1.76 2.55
Pyrazine dimer − 4.256 − 3.36 0.99
Uracil dimer stacked (C2) − 9.783 − 9.97 − 3.63
Indole · benzene stacked − 4.523 − 3.25 2.73
Adenine · thymine stacked − 11.857 − 11.63 − 3.10

MSE 0.37
MUE 0.45
MAPE 13

Mixed interaction
Ethene · ethyne − 1.503 − 1.63 − 0.91
Benzene H2O − 3.280 − 3.78 − 2.19
Benzene NH3 − 2.319 − 2.55 − 0.92
Benzene HCN − 4.540 − 5.68 − 4.02
Benzene dimer T-shaped (C2v) − 2.717 − 2.72 − 0.18
Indole · benzene T-shaped − 5.627 − 5.89 − 2.45
Phenol dimer − 7.097 − 6.87 − 3.96

MSE − 0.29
MUE 0.36
MAPE 9.5

MSE (total) 0.002
MUE (total) 0.46
MAPE (total) 9.3

bined with full HF-like exchange, and to compare it with
other DFAs involving full HF-like exchange. Although a
general-purpose approximation cannot be formed by combin-
ing semilocal DFT correlation with full exact exchange, it is

TABLE III. Interaction energies in WI7/05 set (kcal/mol).

Dimer Eref Eint EM06HF

He · · · Ne − 0.041 − 0.037 − 0.13
He · · · Ar − 0.058 − 0.045 − 0.085
Ne · · · Ne − 0.086 − 0.064 − 0.13
Ne · · · Ar − 0.13 − 0.07 − 0.15
CH4 · · · Ne − 0.18 − 0.18 − 0.20
C6H6 · · · Ne − 0.41 − 0.53 − 0.66
CH4 · · · CH4 − 0.53 − 0.59 − 0.12

MSE − 0.01 − 0.006
MUE 0.04 0.12
MAPE 21 68

Downloaded 29 Nov 2012 to 212.87.2.134. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions60



204121-8 Modrzejewski et al. J. Chem. Phys. 137, 204121 (2012)

TABLE IV. Interaction energies in PPS5/05 set (kcal/mol).

Dimer Eref Eint EM06HF

(C2H2)2 − 1.36 − 1.47 − 1.06
(C2H4)2 − 1.44 − 1.52 − 0.95
Sandwich (C6H6)2 − 1.65 − 0.95 0.48
T-shaped (C6H6)2 − 2.63 − 2.78 − 1.95
Displaced (C6H6)2 − 2.59 − 2.06 − 0.94

MSE 0.18 1.0
MUE 0.31 1.0
MAPE 16 55

a demanding and useful test for a correlation functional. If
the correlation functional performs well with large portion of
the exact exchange, then there is much room for adjusting the
exchange part of a global hybrid or a range-separated hybrid
exchange-correlation functional.

All DFT and HF calculations presented below were per-
formed in aug-cc-pVTZ basis. All energies are obtained from
self-consistent calculations. Table II contains interaction en-
ergies for S22 set of molecules.66 The reference energies, Eref,
are taken from Ref. 67. Eint denotes interaction energy calcu-
lated using the correlation functional described in this work
combined with 100% HF-like exchange and DFT-D3 correc-
tion. All energies, as well as mean signed errors (MSE) and
mean unsigned errors (MUE) are given in kcal/mol. MAPE
are given in percent. Our results (MUE = 0.46 kcal/mol)
compare rather favorably to the other methods utilizing full
HF-like exchange, VV09 (Ref. 25) (MUE = 0.90 kcal/mol),
M06HF34, 81 (MUE = 0.62 kcal/mol), and M06HF-D334, 81

(MUE = 0.84 kcal/mol). The dispersion-free interaction en-
ergies are always significantly below the values that would be
obtained if the dispersion term as defined in SAPT was sub-
tracted, see supplementary information in Refs. 18 and 82.
This fact suggests that in our model, at equilibrium distances,
a large fraction of the dispersion interaction is treated as short-
range and accounted for by the SL functional.

We further evaluate the performance of our approx-
imation on the set of systems from nonbonded interac-
tion database of Zhao and Truhlar.83, 84 This database gath-
ers interacting dimers in subsets according to the dominant
character of the interaction: dispersion-dominated (WI7/05
and PPS5/05 subsets), dipole interaction (DI6/04 subset),
hydrogen-bonded (HB6/04), and charge transfer (CT7/04).

TABLE V. Interaction energies in DI6/04 set (kcal/mol).

Dimer Eref Eint EM06HF

H2S · · · H2S − 1.62 − 1.20 − 0.82
HCl · · · HCl − 1.91 − 1.40 − 0.99
HCl · · · H2S − 3.26 − 2.74 − 2.48
CH3Cl · · · HCl − 3.39 − 2.77 − 2.72
CH3SH · · · HCN − 3.58 − 3.70 − 3.50
CH3SH · · · HCl − 4.74 − 4.13 − 4.27

MSE 0.43 0.62
MUE 0.47 0.62
MAPE 17 26

TABLE VI. Interaction energies in HB6/04 set (kcal/mol).

Dimer Eref Eint EM06HF

NH3 · · · NH3 − 3.09 − 2.82 − 2.53
HF · · · HF − 4.49 − 4.63 − 4.27
H2O · · · H2O − 4.91 − 4.90 − 4.72
NH3 · · · H2O − 6.38 − 6.28 − 6.35
(HCONH2)2 − 15.41 − 16.39 − 15.72
(HCOOH)2 − 17.60 − 19.57 − 19.33

MSE − 0.45 0.28
MUE 0.58 0.30
MAPE 5.2 4.6

The results are presented in Tables III–VII, respectively. The
reference energies (Eref) are calculated at CCSD(T)/mb-aug-
cc-pVTZ level, see Ref. 18. We compare our approxima-
tion (Eint) with M06HF functional81 (EM06HF) which com-
bines empirically-parametrized meta-GGA correlation with
full HF-like exchange. As expected, our model predicts in-
teraction energies more accurately in cases where the disper-
sion interaction dominates, see Tables III and IV. In case of
hydrogen bonded complexes, Table VI, MAPE of either func-
tional is close to 5%. Larger errors are present in DI6/04 and
CT7/04 subsets. Although our approximation performs better
that M06HF in case of DI6/04 dimers, the error is rather large.
In this case, as is seen in Table V, both functionals underes-
timate the interaction strength and their errors are correlated.
This fact suggests that the contribution coming from full HF-
like exchange is too repulsive, which cannot be counterbal-
anced by semilocal DFT correlation. Both functionals display
largest errors in charge-transfer complexes. Our approxima-
tion underestimates interaction for every CT complex. This
behavior to a large degree results from huge errors of the HF
theory itself, see EHF column in Table VII. As explained by
Cohen, Mori-Sánchez, and Yang3 this problem can be traced
to the localization error of the HF theory, which makes elec-
trons excessively localized on the monomers. This error man-
ifests itself as a concave curve of energy vs. fractional num-
ber of electrons, E(N).3 It is also known that pure semilocal
DFT approximations give convex E(N).3 See Ref. 82 for the
relevant discussion of NH3 · · · ClF dimer. Therefore, adding
some amount of semilocal exchange to our approximation
should make the E(N) dependence more linear and make the

TABLE VII. Interaction energies CT7/04 (kcal/mol).

Dimer Eref Eint EM06HF EHF

C2H4 · · · F2 − 1.06 − 0.33 − 0.67 0.71
NH3 · · · F2 − 1.80 − 0.74 − 0.90 0.19
C2H2 · · · ClF − 3.79 − 2.98 − 4.18 − 0.16
HCN · · · ClF − 4.80 − 3.70 − 4.02 − 2.10
NH3 · · · Cl2 − 4.85 − 3.50 − 4.00 − 1.12
H2O · · · ClF − 5.20 − 4.69 − 5.26 − 2.91
NH3 · · · ClF − 11.17 − 10.53 − 11.92 − 5.49

MSE 0.89 0.24
MUE 0.89 0.59
MAPE 31 20
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exchange contribution in CT interactions less repulsive, the
step which will be undertaken in the future.

VI. CONCLUSIONS

This paper presents a novel form of a SL correlation func-
tional belonging to the meta-GGA rung that may be com-
bined in an optimal way with the dispersion interaction com-
ponent, either in the DFT+D manner or by incorporating a
nonlocal potential. The important feature is that it is based
on the first principles, in the form of a number of physi-
cal constraints imposed during the derivation. With minimal
empiricism, our approximation is adjusted to a desired long-
range dispersion correction by optimizing only a single em-
pirical parameter. The parameter has a clear physical mean-
ing: it governs the decay of the approximate correlation hole.
Consequently, the correlation hole vanishes exponentially at
large inter-electronic distances, which prevents double count-
ing of the electron correlation effect that is already included
when adding the long-range dispersion correction. An impor-
tant and unique facet of our functional is that the adjustment
of the empirical range-separation parameter has not relaxed
any of the physical constraints on which our model is based.
The electron correlation is approximated by utilizing several
numerical and analytical results of the HEG model. Most im-
portantly, the HEG approximation to the short-range part of
the correlation hole is rigorously conserved for arbitrary sys-
tems (only the self-interaction pertinent to the HEG model is
removed from the parallel-spin correlation hole).

While our new correlation functional can be combined
with any of non-local dispersion models, for preliminary cal-
culations of this paper, we employed the atom pairwise ad-
ditive DFT-D3 dispersion correction. Given the fact that our
correlation functional is combined with 100% HF exchange
– far from an optimal choice in general case – the numeri-
cal results are very encouraging. For the interaction energies
of hydrogen-bonded complexes, the accuracy is on a par with
that obtained with the M06HF functional, which is a highly
parametrized empirical approximation containing full HF ex-
change. For dispersion-dominated complexes, the predictions
of our model compare favorably with VV09 and M06HF. The
results in the subsets of dipole-interaction and charge-transfer
complexes are less satisfactory, which is easily explained by
the inadequacy of the full HF-like exchange component: in-
deed, the signed errors correlate with the signed errors of
the HF method. Obviously, much improvement may be ex-
pected when a more appropriate exchange part will be incor-
porated. Development of an optimal range-separated hybrid
exchange approximation, appropriate for our new correlation
functional, as well as implementation of non-local van der
Waals correlation functionals are underway in our laboratory.
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ABSTRACT: The accuracy of applying density functional
theory to noncovalent interactions is hindered by errors arising
from low-density regions of interaction-induced change in the
density gradient, error compensation between correlation and
exchange functionals, and dispersion double counting. A new
exchange−correlation functional designed for noncovalent
interactions is proposed to address these problems. The
functional consists of the range-separated PBEsol exchange
considered in two variants, pure and hybrid, and the semilocal
correlation functional of Modrzejewski et al. (J. Chem. Phys.
2012, 137, 204121) designed with the constraint satisfaction
technique to smoothly connect with a dispersion term. Two
variants of dispersion correction are appended to the correlation
functional: the atom−atom pairwise additive DFT-D3 model and the density-dependent many-body dispersion with self-
consistent screening (MBD-rsSCS). From these building blocks, a set of four functionals is created to systematically examine the
role of pure versus hybrid exchange and the underlying models for dispersion. The new functional is extensively tested on
benchmark sets with diverse nature and size. Truly outstanding performance is demonstrated for water clusters of varying size,
ionic hydrogen bonds, and thermochemistry of isodesmic n-alkane fragmentation reactions. The merits of each component of the
new functional are discussed.

1. INTRODUCTION

DFT is one of the few quantum-chemical methods capable of
dealing with problems germane to molecular biology and
materials science that involve electronic structure, yet on a scale
too large for ab initio wave function tools. So far, however, the
approximate character of affordable functionals seriously
restricts their predictive power in several important areas, the
most prominent ones being related to noncovalently bound
systems. An approximate functional focused on performance for
noncovalent interactions is the subject of this work.
During the past decade, a large effort has been devoted to

resolve the deficiencies in the description of noncovalent
interactions. The progress has been indicated by steady
improvement of statistical errors in databases of noncovalent
interactions.1,2 Still, part of this apparent advancement is a
result of error cancellation between the dispersion-free part of a
functional and its a posteriori dispersion correction. Con-
sequently, even for the best performing methods, there exist
systems for which the cancellation does not occur and error
spikes beyond the average levels. Examples of such problematic
systems are water clusters studied in this work.
A practical chemist copes with the issue of large

unpredictable errors by cross-checking her calculations with
several independent approximate functionals. Thus, to make
DFT a dependable tool, we still need new functionals
developed independently from the currently existing ones and

built from well-defined components, which do not exploit
obscure error cancellation.
This work introduces a set of new DFT exchange−

correlation functionals intended primarily for noncovalent
interactions. They are composed of the recent meta-GGA
correlation developed by Modrzejewski et al.,3 the range-
separated PBEsol exchange4−6 (ωPBEsol), and a dispersion
correction,

ω= + +E E E E( PBEsol)XC C X disp (1)

The two variants of the dispersion correction employed in
this work are DFT-D3 by Grimme et al.7 (abbreviated as D3)
and MBD-rsSCS by Ambrosetti el al.8 (abbreviated as MBD).
There are other possible ways of including dispersion not
explored here.9−12 Furthermore, we assess two variants of
short-range exchange: pure PBEsol and a hybrid with an
addition of the short-range HF exchange. For brevity, the full
exchange will be called either pure or hybrid depending on the
fraction of the short-range exact exchange. In total, there are
four combinations of the exchange and dispersion components:
MCS-D3, MCS-MBD, MCSh-D3, and MCSh-MBD, where the
first part of the label denotes the exchange approximation
(MCS for the pure exchange and MCSh for the hybrid) and the
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second part specifies the dispersion correction. This set of
functionals will be collectively referred to as MCS.
The MCS functionals are designed to overcome several

issues of the currently available exchange−correlation approx-
imations.
First, a part of the difficulties in the description of

noncovalent systems can be pinpointed to the poor behavior
of approximate exchange functionals in the low-density regions
where the density gradient changes substantially upon bond
formation.13,14 The emergence of such regions is the signature
of noncovalent bonding15 and is the source of major
contributions to the interaction energy.13,14 For example,
depending on the limit of an exchange enhancement factor
for large reduced gradients, the exchange-only interaction curve
of a noble gas dimer can be either attractive (as in PBE) or
much more repulsive than the Hartree−Fock limit (as in
B88).16 Although the behavior of the exchange is not decisive
for the performance of the full exchange−correlation functional
due to the possible error cancellation, it may obscure the
interpretation of interaction energies and eventually worsen the
compatibility with dispersion corrections. One way of ensuring
that DFT exchange-only interaction curves resemble the
Hartree−Fock ones is by employing range-separated exchange
functionals.17 Also, inclusion of the exact second-order gradient
expansion of the exchange functional improves description of
the regions relevant for noncovalent systems.5,18 The ωPBEsol
exchange included in the MCS functionals combines both of
these remedies.
The second problem with the existing DFT treatments of

noncovalent interactions is that a dispersion correction, such as
D3, tends to disguise the shortcomings of the base semilocal
functional. This may lead to an inconsistency that the long-range
dispersion correction calibrated for an underbinding semilocal
functional becomes larger than the reference value of the total
dispersion as obtained from the SAPT approach.19 A BLYP-D3
treatment of complexes from the S22 database serves as an
example of such an inconsistency. We discuss this issue later in
the text.
The third possible source of errors is double counting of

short-range correlation by a semilocal correlation functional
and a dispersion correction. The semilocal correlation model
employed here is designed to avoid this issue via the design of
the corresponding correlation hole. The hole is equipped with a
single empirical parameter to control its range. To eliminate the
overlap with the dispersion correction, the damping of the hole
for large r12 is adjusted through empirical optimization.3

Some of the features of a density functional deemed here
important for noncovalent systems have been recognized and
built into the ωB97X-D20 and ωB97X-D321 functionals. Both
of these models employ range-separated exchange and have 15
empirical parameters in their energy expressions optimized
simultaneously with the dispersion corrections. (A systematic
analysis of the B97-type functionals has demonstrated, however,
that the number of empirical parameters should be reduced to
improve the performance outside the training sets.22) The
dispersionless density functional of Pernal et al.23 is also an
example of a heavily parametrized functional designed to be
used in combination with a dispersion term.

2. THEORY

2.1. Semilocal Correlation. The first term of eq 1, EC,
stands for the recently proposed correlation functional of

Modrzejewski et al.3 The functional has been derived starting
from a meta-GGA model for the spin-resolved correlation hole,

= + + −λ
αβ

αβ αβ αβ αβh r a b r c r d rr( , ) ( )exp( )C 1 12 12 12
2

12 (2)

= + + −λ
αα

αα αα αα ααh r r a b r c r d rr( , ) ( )exp( )C 1 12 12
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where aσσ′, bσσ′, and cσσ′ are functions of density at a given point,
obtained from analytic formulas for the short-range (small r12)
part of the pair correlation function in the homogeneous
electron gas.24,25 These formulas were modified to include
dependence on the kinetic energy density to eliminate the
spurious self-interaction in the parallel-spin part.3 The only
empirical parameter of the correlation model, G, governs the
exponential damping,
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The larger the numerical value of G, the more short-ranged is
the character of hCλ

σσ′(r1, r12). Thus, G can be optimized to adjust
the range of the approximate correlation hole to complement,
in the manner that avoids double counting, the long-range
correlation contributed by the selected variant of a dispersion
correction. It should be emphasized that all the exact
constraints that are built into our correlation model are obeyed
when varying the value of G.3 In particular, the short-range
Taylor expansion of hCλ

σσ′(r1, r12), which has been accurately
modeled after the homogeneous electron gas,24 remains
unchanged when tuning the correlation functional to a specific
dispersion correction and an exchange functional. Put differ-
ently, the empirical adjustment applied to merge the long-range
dispersion with the semilocal correlation does not adversely
affect the features that are reliable already at the semilocal
level.26

For reader’s convenience, we present EC in a form ready for
implementation. Following ref 3, EC is represented as a sum of
spin-parallel and antiparallel components

= + + +αβ βα αα ββE E E E EC C C C C (7)

As for any semilocal functional, EC is evaluated by
numerically integrating the density of the correlation energy
on a molecular grid
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The integral over the coupling constant λ is done analytically.
αβ, αβ, αα, αα, dαβ, and dαα are functions evaluated at

each grid point
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The symbols in eqs 4−6 and eqs 8−13 are defined as follows:
ρα and ρβ are electronic spin-densities; ρ is the total electronic
density, and τα is the kinetic energy density
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The variable Dα appearing in the parallel-spin part depends on
the electron density, its gradient, and τα
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EC
ββ is obtained by relabeling the spin indices in EC

αα; note also
that the equality EC

αβ = EC
βα holds. The only empirical parameter

in the correlation functional is G (Table 1). The nonempirical
parameters appearing in eqs 10−13 are derived from a short-
range model of the correlation hole in the homogeneous
electron gas.3 Their values are defined in Table 2.
2.2. Dispersion Correction. The semilocal exchange−

correlation functional is supplemented with a dispersion
correction. To confirm the versatility of our approach, we
assess two models of the dispersion interaction: D37 and
MBD.8

The dispersion energy in the D3 approximation is defined as

∑ ∑=
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The D3 model contains two empirical functional-dependent
parameters:7 s8 and r6. Other parameters appearing in eqs 19
and 20 are common to all functionals and are defined in ref 7.
The C6

AB coefficients are interpolated from the ab initio
tabulated data obtained for hydrides.7 The main advantage of
D3 is that it is thoroughly tested1 and available in almost any
quantum chemical program. It also offers simple to compute
derivatives with respect to nuclear coordinates, which is
important for structure optimizations.
The second considered model of the dispersion interaction is

MBD.8 A computation of the MBD energy requires two steps.
First, the screening equation27 is solved for frequency-
dependent polarizabilities. Then, the solution of the screening
equation is used to set up the Hamiltonian of interacting
quantum harmonic oscillators whose correlation energy models
the long-range dispersion energy of the real system. While the
computational cost of MBD is larger than that of D3, it is still
negligible compared to the SCF step. The dipole interaction in
the screening equation as well as in the MBD Hamiltonian is
range separated with a Fermi-type damping function8

= + − −f R
R S
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1
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β= +S R R( )A B
vdW vdW vdW (22)

where β is the only functional-dependent parameter of the
model. The MBD model is expected to be a good
approximation for large molecular systems where an atom-
pairwise approximation may no longer capture the many-body
contributions to the total interaction energy.28,29

2.3. Exchange. The exchange functional is composed of the
short-range ωPBEsol exchange, long-range HF exchange, and
optionally a fraction α of the short-range HF exchange

α ω α= − +E E(1 ) ( PBEsol) E (HF)X,SR X,SR X,SR (23)

The short-range and long-range parts of EX are defined through
the decomposition of the 1/r12 operator,
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Table 1. Empirical Parameters of the Four Tested MCS
Functionalsa

name MCS MCSh definition

G 0.075 0.100 eq 6
ω 0.300 0.200 eq 24
α 0.000 0.200 eq 23
D3 dispersion
r6 1.1822 1.2900 eq 20
s8 0.7740 1.3996 eq 19
MBD dispersion
β 0.8033 0.7242 eq 22

aThe columns labeled “MCS” and “MCSh” correspond to the pure
and hybrid variants of the exchange, respectively.
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We test two variants of the exchange functional: pure (α = 0
and ω = 0.3) and hybrid (α = 0.2 and ω = 0.2). The range
separation parameter ω for the pure variant is obtained via
empirical optimization. The parameters α and ω of the hybrid
variant are assumed the same as for the LRC-ωPBEh functional
of Rohrdanz et al.30 It is worthwhile to note that whereas the
fixed value of ω is convenient in practical computations, the
optimal ω depends on the system size and electronic structure,
which is especially important for donor−acceptor systems.31,32
The PBEsol exchange,4 which is the basis for ωPBEsol, has

the exact second-order gradient expansion. This feature is
important for solids4 and for large organic molecules.5 In
contrast to PBEsol, the gradient expansion of the PBE exchange
is not exact; it is designed to cancel the gradient term of the
PBE correlation,5 which makes it less suitable than PBEsol in
conjunction with our correlation functional.

3. TECHNICAL DETAILS

The functionals employed in this study, besides the MCS
functionals, are ωPBE,6,33 B3LYP,34 BLYP,35 M06,36 M06-
2X,36 and ωB97X-D.20 ωPBE has its range separation
parameter fixed at ω = 0.4. The suffix “-D3” denotes functionals
with added Grimme’s D3 correction.7 For water 16-mers and
for the S22 database the energies are obtained with the LC-
ωPBE functional37 instead of ωPBE. We supply ωPBE and LC-
ωPBE with the same D3 correction calibrated by Grimme at
al.7 All DFT computations employ the def2-TZVPPD basis38,39

unless noted otherwise. The acronyms used to name the types
of errors are mean absolute percentage deviation (MAPD),
root-mean-square deviation (RMSD), mean absolute deviation
(MAD), and mean signed deviation (MSD). Energies are given
in kcal/mol.
The training set for the MCS-D3 and MCSh-D3 functionals

is composed of the noncovalent interactions database of Zhao
and Truhlar.40,41 The training database is partitioned into
subsets according to the nature of the represented interactions.
The subsets are as follows: WI7/05 (small dispersion-
dominated complexes), PPS5/05 (π-electron dispersion
interactions), DI6/04 (dispersion and dipole interactions),
HB6/04 (hydrogen bonds), and CT7/04 (ground-state charge-
transfer interactions).
The optimization of the MCS-D3 functional consisted of the

following steps. First, we generated a grid of parameters (ω,G)
satisfying 0.100 ≤ ω ≤ 0.450 and 0.050 ≤ G ≤ 0.150; for each
pair (ω,G), we optimized the D3 correction by finding the pair
(r6, s8) that minimized the objective function

ω = × +F r s G( , ; , ) 10 RMSD(WI7/05) RMSD(other)6 8
(25)

where RMSD(X) denotes the root-mean-square deviation
within the subset X of the training set. Finally, we selected

the parameters (ω,G,r6,s8) corresponding the smallest MAD
and MAPD. Table 3 presents the results for the training set.

For the MCS-MBD functional, we kept the same values of ω
and G as for MCS-D3. The only difference is that the parameter
β of the MBD dispersion was obtained by minimization of
RMSD for the S22 set.42 The different choice of the training
sets for the D3 and MBD corrections was due to the poor
behavior of the latter for small dispersion-bound dimers.
For the hybrid MCS functionals, MCSh-D3 and MCSh-

MBD, we did not optimize α and ω but fixed these parameters
at the same values as in the LRC-ωPBEh functional.30 The

Table 2. Ab Initio Numerical Constants Appearing in Eqs 10−13

k Pk Qk Rk Sk

0 1.696 3.356 1.775 3.205
1 −0.2763 −2.525 0.01213 −1.784
2 −0.09359 −0.4500 −4.743 × 10−3 3.613 × 10−3

3 3.837 × 10−3 −0.1060 0.5566 −4.743 × 10−3

4 −2.471 × 10−3 5.532 × 10−4 0.5566
5 0.7524 −2.471 × 10−3

6 0.7524

Table 3. Training Database for the MCS-D3 and MCSh-D3
Functionalsa

dimer CCSD(T) MCS-D3 MCSh-D3

He ··· Ne −0.041 −0.020 −0.033
He ··· Ar −0.058 −0.016 −0.034
Ne ··· Ne −0.086 −0.015 −0.048
Ne ··· Ar −0.131 −0.039 −0.061
CH4 ··· Ne −0.18 −0.18 −0.18
C6H6 ··· Ne −0.41 −0.41 −0.52
CH4 ··· CH4 −0.53 −0.55 −0.47
H2S ··· H2S −1.62 −1.40 −1.52
HCl ··· HCl −1.91 −1.54 −1.68
HCl ··· H2S −3.26 −3.18 −3.32
CH3Cl ··· HCl −3.39 −3.08 −3.26
CH3SH ··· HCN −3.58 −3.54 −3.70
CH3SH ··· HCl −4.74 −4.94 −5.13
C2H4 ··· F2 −1.06 −0.98 −1.06
NH3 ··· F2 −1.80 −1.93 −1.95
C2H2 ··· ClF −3.79 −3.74 −3.93
HCN ··· ClF −4.80 −4.15 −4.03
NH3 ··· Cl2 −4.85 −4.86 −5.07
H2O ··· ClF −5.20 −5.12 −5.10
NH3 ··· ClF −11.17 −13.65 −13.89
NH3 ··· NH3 −3.09 −2.78 −2.77
HF ··· HF −4.49 −4.06 −4.13
H2O ··· H2O −4.91 −4.60 −4.61
NH3 ··· H2O −6.38 −6.35 −6.29
(HCONH2)2 −15.41 −15.02 −15.14
(HCOOH)2 −17.60 −18.10 −17.94
(C2H2)2 −1.36 −1.24 −1.29
(C2H4)2 −1.44 −1.59 −1.54
sandwich (C6H6)2 −1.65 −1.58 −1.51
T-shaped (C6H6)2 −2.63 −2.79 −2.86
displaced (C6H6)2 −2.59 −2.80 −2.49

aThe interaction energies are grouped into five subsets: WI7/05, DI6/
04, CT7/04, HB6/04, and PPS5/05. The reference CCSD(T)
energies are taken from Ref 23. The monomer geometries are held
rigid at their dimer values. The units are kcal/mol.
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parameter G in the semilocal correlation and the dispersion
corrections were optimized in the same way as for MCS-D3
and MCS-MBD.
To determine the stabilization energy upon complex

formation, two definitions are employed: the interaction energy
and the binding energy. The interaction energy is defined as

= − −E E E E(dimer AB) (isolated A) (isolated B)int
(26)

where the monomer geometries are held rigid at their dimer
values, and the counterpoise correction is employed. In the case
of water clusters, we use the binding energy instead of Eint

= −E E nE((H O) ) ((H O) )nbind 2 2 isolated (27)

where the coordinates of water molecules relax upon
dissociation from the cluster. Ebind does not include the energy
of zero-point vibrations. The basis set employed for the isolated
H2O monomers does not include any functions centered on the
ghost centers.
The reference binding energies of water 16-mers were

obtained by combining ΔECCSD(T) with the extrapolated
binding energies at the MP2 level, as proposed by Rezac et al.,43

where AVTZ and AVQZ stand for the aug-cc-pVTZ and aug-
cc-pVQZ bases.39 We employed the extrapolation scheme of
Halkier et al.44

= + −
+ −

→ +
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X E X E

X X
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X X
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3
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1 3
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with the aug-cc-pVTZ and aug-cc-pVQZ basis sets (X = 3).
EMP2
CBS(AVTZ→AVQZ) was computed with NWChem45 within the

resolution-of-identity approximation (RI-MP2) and with the
oxygen 1s orbitals frozen. ECCSD(T)

AVTZ and EMP2
AVTZ were taken from

Yoo et al.46 These contributions do not employ the RI
approximation.

4. NUMERICAL RESULTS AND DISCUSSION
This section is split into four parts covering a broad spectrum
of possible applications. (i) We begin with two databases of
noncovalent systems (S22 and A24) that are typical tests for
methods focused on noncovalent interactions.1,47 (ii) Next, we
turn to water clusters of increasing size to test how the accuracy
of our method changes when going from small dimers to
clusters with a large number of distant-neighbor interactions.
(iii) We assess the performance of the MCS functionals for
ionic hydrogen-bonded interactions, which is a common motif
in biological systems. (iv) Finally, we focus on the isodesmic
reaction of n-alkanes, which is a well-known case where
approximate functionals fail to fully account for the effect of
intramolecular noncovalent interactions.
4.1. S22 and A24 Databases. S22 and A24 are two

databases of noncovalent dimers that facilitate comparisons of
density-functional approximations.42,48 The molecules con-
tained in these databases are listed in Figures 1 and 2. We
compare the MCS functionals against the leading functionals in
the field of noncovalent interactions:1,47 Minnesota-family

functionals M06-2X and M06-2X-D3, dispersion-corrected
range-separated hybrid ωB97X-D, and two functionals based
on the B88 exchange49 (B3LYP-D3 and BLYP-D3).
An inspection of Table 4 shows that all the MCS functionals

afford small percentage errors within the S22 database. Notably,
the two hybrids, MCSh-D3 and MCSh-MBD, have errors
below 6%. The pure variants, MCS-D3 and MCS-MBD, tend to
underbind the dimers from the hydrogen-bonded subset of S22
(Figure 1). For the formamide and uracil dimers, the error is
the most pronounced and reaches about 1 kcal mol. The
underbinding is eliminated completely only when both the
hybrid exchange and MBD correction are employed simulta-

Figure 1. Detailed results for the S22 database. The deviations are with
respect to the CCSD(T) results of Podeszwa et al.50 The energies for
the functionals other than MCS are taken from Goerigk and
Grimme.51 2-PY-2-AP denotes 2-pyridone···2-aminopyridine.

Figure 2. Detailed results for the A24 database. The deviations are
with respect to the nonrelativistic interaction energies at the
CCSD(T)/CBS level plus CCSDT(Q) corrections.48 The energies
for the functionals other than MCS are taken from Li et al.47
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neously. The resulting functional, MCSh-MBD, has exception-
ally small absolute as well as relative errors.
Contrary to the results for the S22 database, for A24 we

observe that substituting MBD for D3 worsens the percentage
errors. This is observed especially for small systems weakly
bound by dispersion: (CH4)2, Ar···CH4, and Ar···C2H4. We
stress, however, that these are the only cases where MBD is
systematically inferior to D3.
Although the functionals based on the B88 exchange,49

B3LYP-D3 and BLYP-D3, yield excellent total interaction
energies for the S22 database, the physical content of these
energies is troubling. It has been known since the work of Lacks
and Gordon13 that B88 is a much more repulsive exchange
component than the exact HF exchange. To cancel this
contribution, a massive attractive term must be added to the
interaction energy. Indeed, the D3 correction for the B88-based
functionals tends to be tens of percents larger than Edisp for the
MCS-D3 functional (Table 5).
While it is impossible to ascertain the precise, physically

sound amount of the D3 correction, we argue that a large part

of the dispersion contribution for the B88-based functionals
serves only to cancel the overrepulsive exchange. D3 is based
on the asymptotic multipole form of the dispersion term
defined in SAPT (eq 19). Thus, it accounts only for the long-
range part of the dispersion interaction and cannot, for the
equilibrium dimers of S22, be as large as the total dispersion
defined in SAPT, let alone be larger. The D3 corrections for
BLYP-D3 presented in Table 5 are therefore unphysical. The
spuriously large dispersion contribution is only somewhat
reduced for B3LYP-D3.

4.2. Water Clusters. Water clusters constitute a challenge
for approximate DFT methods. Although water molecules are
polar, their clusters are bound not only by electrostatics and
induction but also largely by the dispersion effects. More
importantly, the cluster sample interactions not represented in
the standard test databases are interactions with distant
neighbors and multiple hydrogen bonds formed by a single
water molecule.
Water clusters exemplify the advantage of our approach over

the dispersion-corrected functionals based on massive error
cancellation. Figure 3 shows the system-size dependence of the

errors of various methods. The MCS functionals show no
systematic underbinding or overbinding. This is in contrast to
the functionals based on the B88 exchange; B3LYP systemati-
cally underbinds, while both B3LYP-D3 and BLYP-D3
systematically overbind due to the overcorrection of the B88
exchange by the D3 term. This error cancellation had no
adverse effects in the previous test cases.
Table 6 illustrates that all four MCS functionals yield

exceptionally small relative and absolute errors for (H2O)n with
n = 2,...,10. While the choice of the dispersion correction does
not influence the average errors, the choice of the exchange
functional is more important. The hybrid MCS functionals
perform significantly better than the pure counterparts. Of all
the tested functionals, MCSh-MBD offers the best performance
for the water clusters of Figure 3.

Table 4. Statistical Errors for the S22 and A24
Databases.42,48a

MAPD RMSD MAD MSD

S22
MCS-D3 7.05 0.54 0.42 0.08
MCS-MBD 6.05 0.47 0.34 0.07
MCSh-D3 5.44 0.44 0.34 0.15
MCSh-MBD 5.94 0.31 0.25 0.03
ωPBE-D3 6.65 0.36 0.27 −0.11
M06-2X 7.38 0.53 0.38 0.20
M06-2X-D3 6.39 0.47 0.34 −0.12
B3LYP 86.4 4.91 3.76 3.76
B3LYP-D3 6.68 0.48 0.39 −0.20
BLYP-D3 5.41 0.33 0.24 −0.20
ωB97X-D 7.37 0.32 0.23 −0.18
A24
MCS-D3 16.38 0.27 0.22 0.20
MCS-MBD 23.67 0.30 0.27 0.24
MCSh-D3 16.45 0.27 0.21 0.21
MCSh-MBD 22.82 0.27 0.23 0.17
ωPBE-D3 8.06 0.12 0.10 0.05
M06-2X 20.51 0.29 0.23 0.04
M06-2X-D3 14.47 0.27 0.19 −0.03
B3LYP 99.6 1.10 1.00 1.00
B3LYP-D3 9.58 0.21 0.15 −0.06
ωB97X-D 10.05 0.15 0.12 0.03

aThe units are kcal/mol.

Table 5. Comparison of the D3 Dispersion Correction and
SAPT Dispersion Plus Exchange Dispersion for Selected
Complexes from the S22 Databasea

dimer SAPT B3LYP-D3 MCS-D3 BLYP-D3

(CH4)2 −1.06 −0.92 −0.79 −1.18
(C2H4)2 −2.58 −2.12 −1.52 −2.90
uracil dimer stack −11.08 −9.16 −6.87 −11.52
C6H6−H2O −2.82 −2.32 −1.73 −2.89
C6H6−NH3 −2.86 −2.36 −1.76 −2.91

aThe SAPT dispersion energies are taken from Pernal at al.23 The
units are kcal/mol.

Figure 3. Differences between the CCSD(T)/CBS and DFT binding
energies for (H2O)n with n = 2,...,10. The coordinates, reference
energies, and labels of the water clusters are taken from
Temeleso et al.52
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Figures 4 and 5 focus on the performance of approximate
methods for water hexamers and 16-mers. All the MCS

functionals yield small absolute errors, excellent ordering of the
hexamers, and well-reproduced (although not perfectly) tiny
energy differences between the 16-mers. The effect of changing
the dispersion correction is negligible when the exchange is
pure (α = 0). However, there is an appreciable difference
between MCSh-D3 and MCSh-MBD for the water 16-mers.
While the binding energy for MCSh-MBD agrees almost
perfectly with the reference values, MCSh-D3 underbinds by
about 4 kcal mol.
The excellent performance of the MCS functionals for the

16-mers is encouraging because these systems exhibit features
that are expected in even larger clusters. First, among the
systems considered in this study, only the 16-mers contain
water molecules participating in four hydrogen bonds. More-
over, the energetics of the 16-mers include significant many-
body effects, which are large compared to the energy
differences between the isomers. Indeed, Wang et al.53 have
estimated that the 5-body and higher effects in the 4444-a 16-

mer to contribute −2.3 kcal mol to the binding energy at the
MP2 level. This is a highly probable estimate because in our
computations the MP2 method is shown to approach extremely
close the CCSD(T)/CBS limits for all 16-mers (Table 7).

Many-body effects in the 16-mers are dominated by
induction terms, as shown by several studies on trimers of
polar molecules.54−56 This explains why the performance of
MP2 is excellent for the 16-mers despite inability of MP2 to
recover the third-order triple-dipole dispersion terms. The
induction nature of many-body effects justifies the D3 atom-
pairwise dispersion correction, which does not comprise any
nonadditive three-body dispersion terms.7 In fact, we have not
observed any significant improvement attributable to the MBD
dispersion correction that is capable of recovering many-body
dispersion.
It should be emphasized that our reference binding energies

of the 16-mers are uniformly shifted with respect to those used
by Leverentz et al.57 This is because these authors employed
the CCSD(T)/aug-cc-pVTZ energies of Yoo et al.46 as their
final reference values, whereas in our study these energies have
been refined in the extrapolation scheme defined in eq 28. The
extrapolation has introduced an upward shift of about 6.5 kcal/
mol relative to CCSD(T)/aug-cc-pVTZ. A recent quantum
Monte Carlo result of Wang et al.53 for the 4444-a isomer
(−165.1(8)kcal mol) is in excellent agreement with our
CCSD(T)/CBS extrapolation (−164.51 kcal mol).

Table 6. Statistical Errors of DFT Methods for (H2O)n with
n = 2,...,10a

functional MAD MAPD MSD RMSD

MCS-D3 1.53 3.17 −0.94 1.92
MCS-MBD 1.52 3.12 −1.02 1.91
MCSh-D3 1.25 2.92 0.87 1.69
MCSh-MBD 1.28 2.65 −0.59 1.64
M06-D3 1.71 3.58 −0.43 2.22
M06-2X-D3 2.75 5.79 −2.58 3.35
B3LYP 4.01 8.53 4.01 4.52
B3LYP-D3 3.66 7.39 −3.65 4.39
BLYP-D3 2.42 4.68 −2.18 3.04
ωPBE-D3 1.55 3.06 −1.09 1.97
M06-L 1.40 3.13 0.29 1.98

aThe units are kcal/mol.

Figure 4. Binding energies of water hexamers. The coordinates and
reference CCSD(T)/CBS energies are taken from Bates and
Tschumper.58 The energies for the functionals other than MCS are
taken from Leverentz et al.57

Figure 5. Binding energies of water 16-mers. The coordinates are
taken from Yoo et al.46 The energies for the functionals other than
MCS are taken from Leverentz et al.57

Table 7. Binding Energies of Water 16-mersa

system CCSD(T) RI-MP2 MCS-D3 MCSh-MBD

4444-a −164.51 −163.91 −166.54 −164.55
4444-b −163.97 −163.46 −166.37 −164.24
antiboat −164.11 −164.07 −166.48 −164.88
boat-a −164.40 −164.45 −166.99 −165.36
boat-b −164.28 −164.33 −166.79 −165.17

aThe CCSD(T) and RI-MP2 energies are extrapolated according to
eqs 28 and 29, respectively. The units are kcal/mol.
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4.3. Ionic Hydrogen Bonds. Hydrogen-bonded systems
composed of an ion interacting with a closed-shell molecule
provide a simple model of interactions ubiquitous in
biochemistry. From the point of view of dispersion corrections,
charged dimers belong to the hardest cases; if a dispersion
correction does not depend on the density, it will not reflect
any alterations of dispersion due to the density change from a
neutral to an ion, which is often dramatic. This is the case of the
D3 model that has been parametrized within a set of neutral
dimers, and its input consists of atomic coordinates only.59

However, because the total interaction is dominated by
electrostatic and induction components, this weakness may
not be especially relevant, as dispersion itself is relatively small
and thus its accuracy not critical.
Figures 6 and 7 show the performance of MCSh-MBD and

compare this functional with the results of popular DFT

methods. The differences between MCSh-MBD, B3LYP-D3,
M06-2X-D3, and ωB97X-D are small, and all of the curves are
close to the reference ones. The ωPBE-D3 functional is
consistently worse than any of the MCS functionals (Table 8)
despite its good performance for water clusters.
Table 8 shows that switching from D3 to MBD changes little

when applied with the pure MCS functionals. However, the
choice the dispersion correction appears more important for
the hybrid variants, and the MBD model works better in this
case. This observation is consistent with our findings for the
hydrogen-bonded dimers of the S22 database and for water
clusters.
4.4. Isodesmic Reaction of n-Alkanes. The systematic

errors of DFT approximations in predicting alkane thermo-
chemistry were discussed by Wodrich et al.,60 Song et al.,61 and
Grimme et al.62 They observed that there is a substantial error
in reaction energies of isodesmic ethane fragmentation
reactions of alkanes, which accumulates as the chain length
grows

+ → +m mCH (CH ) CH CH ( 1)C Hm3 2 3 4 2 6 (30)

The performance of approximate functionals for these
reactions is connected to the quality of the description of
noncovalent interactions. Johnson et al.18 found that the error
in the reactions of eq 30 has its origin in the region of space
between 1,3 methylene groups, where the reduced density
gradient changes upon fragmentation of an alkane to ethane.
This change is a signature of noncovalent bonds.15

Previous studies identified the features that a functional
should possess to alleviate this problem: (i) range separation of
the exchange functional,61 (ii) restoration of the exact gradient
expansion of the exchange5 (as in PBEsol), (iii) dispersion
correction.61,62 The MCS functionals as well as ωPBEsol-D3′
(discussed in the next section) include all of the above features.
As shown in Figure 8, these methods are by far the best
performers for reactions in question.

4.5. Merit of the MCS Correlation. The question remains
as to whether the correlation functional of our approach is
indeed crucial to the quality of the above presented results. One
might argue that this accuracy is primarily determined by the
exchange and dispersion parts and only weakly dependent on
the semilocal correlation. To verify this hypothesis, we have
composed a functional that differs from MCS-D3 only by the
PBEsol correlation (denoted as ωPBEsol-D3′), that is, both
MCS-D3 and ωPBEsol-D3′ share the same ωPBEsol exchange
with ω = 0.3 and the same D3 correction. Figure 4 shows that
keeping the PBEsol correlation leads to about 25% overbinding
in the case of water hexamers. A similar overbinding occurs for
the 16-mers (e.g., Ebind = −206.1 kcal/mol for the isomer 4444-
a). Furthermore, ωPBEsol-D3′ overestimates the interaction
energies for every ionic hydrogen-bonded dimer presented in
Figures 6 and 7. Evidently, the role of the MCS correlation is
essential in these examples, and its replacement by the standard
PBEsol correlation leads to serious overestimation of
interaction energies.
Nonetheless, it is of note that there exist cases where the

choice of a semilocal correlation part matters less. For alkane
fragmentation reactions (Figure 8), ωPBEsol-D3′ performs

Figure 6. Interaction energy curves for hydrogen-bonded dimers
including the acetate anion. The data for B3LYP-D3, M06-2X-D3, and
B97X-D are taken from ref 47

Figure 7. Interaction energy curves for hydrogen-bonded dimers
including the imidazolium cation. The data for B3LYP-D3, M06-2X-
D3, and B97X-D are taken from ref 47
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even better than the MCS functionals, which suggests the
dominant role of the ωPBEsol exchange in this case.

5. SUMMARY AND CONCLUSIONS
We have proposed a new DFT exchange−correlation functional
that is specifically optimized for noncovalent interactions. It is
composed of well-defined and physically meaningful compo-
nents, with minimum of empiricism and reduced opportunity
for error cancellation. It is built of the meta-GGA correlation
functional developed by Modrzejewski et al.3 and the range-
separated PBEsol exchange. The exchange and correlation
contain a slight amount of empiricism in a form of parameters
defining the scope of various approximations: a single
parameter that governs damping of the semilocal correlation
hole at large r12, a range-separation parameter controlling the
onset of the long-range HF exchange, and in the case of the
hybrid exchange, a fraction of the short-range HF exchange.
The novel piece of our functional, the correlation functional,

is designed with the constraint satisfaction technique, but with
the aid of its single empirical parameter, it may be finely
adjusted to any accurate variant of a dispersion correction
without compromising any formal or physical constraints that it
satisfies.
We have calibrated two long-range dispersion corrections to

work with the remaining part of the functional: D37 and MBD.8

Taking into account the two possible variants of exchange and
the two variants of dispersion, there is a set of four MCS
functionals that are tested in this study.
The test set is composed of popular databases of small

noncovalent dimers but includes also the more demanding
cases of water clusters, hydrogen-bonded interactions in ion-
neutral pairs, and thermochemistry of isodesmic reactions of n-
alkanes. For the classic S22 database, the MCS functionals
perform on a par or better than the leading functionals in the

field of noncovalent interactions: B3LYP-D3, M06-2X-D3, and
ωB97X-D. More importantly, the MCS functionals perform
markedly better than these functionals for large water clusters
for which they successfully predict the binding energies from
the newly refined CCSD(T)/CBS benchmarks. The good
performance for hydrogen bonding extends to ionic hydrogen
bonds. Finally, all four MCS functionals display excellent
performance in predicting the energetics of isodesmic reactions
of n-alkanes in direct consequence of the good description of
the intramolecular interactions between methylene groups. We
find that the PBEsol exchange combined with range separation
and a dispersion correction essentially solves the known
problems of DFT with isodesmic reactions of alkanes.
In view of the presented results, all four MCS functionals

could be recommended for the description of noncovalent
systems. The best performer in any case except few-atom
dispersion-bound systems is MCSh-MBD.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: m.m.modrzejewski@gmail.com.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(Grant CHE-1152474) and by the Polish Ministry of Science
and Higher Education (Grant N204 248440). M.M. and G.C.
gratefully acknowledge additional financial support from the
Foundation for Polish Science. Special thanks to Aleksandra
Tucholska for creating the TOC graphic for this paper.

■ REFERENCES
(1) Burns, L. A.; Vazquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C.
D. J. Chem. Phys. 2011, 134, 084107.
(2) Podeszwa, R.; Szalewicz, K. J. Chem. Phys. 2012, 136, 161102.
(3) Modrzejewski, M.; Lesiuk, M.; Rajchel, Ł.; Szczeşńiak, M. M.;
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ABSTRACT: We devise a scheme for converting an existing
exchange functional into its range-separated hybrid variant.
The underlying exchange hole of the Becke-Roussel type has
the exact second-order expansion in the interelectron distance.
The short-range part of the resulting range-separated exchange
energy depends on the kinetic energy density and the
Laplacian even if the base functional lacks the dependence
on these variables. The most successful practical realization of
the scheme, named LC-PBETPSS, combines the range-
separated Perdew−Burke−Ernzerhof (PBE) exchange lifted
to the hybrid meta-generalized gradient approximation rung
and the Tao−Perdew−Staroverov−Scuseria (TPSS) correla-
tion. The value of the range-separation parameter is estimated
theoretically and confirmed by empirical optimization. The D3 dispersion correction is recommended for all energy
computations employing the presented functional. Numerical tests show remarkably robust performance of the method for
noncovalent interaction energies, barrier heights, main-group thermochemistry, and excitation energies.

1. INTRODUCTION

Since the seminal works of Becke,1,2 it is known that the
inclusion of the Hartree−Fock (HF) exchange in density-
functional models not only moves practical density functional
theory (DFT) toward the goal of chemical accuracy in
thermochemistry, but also has a theoretical justification rooted
in the analysis of the exchange holes in molecular systems.3

There are currently two prevalent ways of including the exact
exchange in approximate DFT: as a fraction of the full HF
exchange or as a long-range exact exchange component enabled
only at long interelectron distances. The functionals built using
the former approach, global hybrids, have become a staple of
computational chemistry owing to their favorable trade-off
between accuracy and cost.1,2,4 However, the inclusion of only a
fraction of the orbital exchange results in merely a slight
correction of the self-interaction error inherited from the pure
semilocal predecessors of global hybrids. To correct this
deficiency, in range-separated (long-range corrected) hybrids
the 100% HF exchange is introduced at long range. This way,
the exact −1/R behavior of the exchange potential is forced
upon approximate potentials.5,6 At the same time, range
separation avoids the use of the full orbital exchange at all
distances, which would be incompatible with an approximate
semilocal correlation.
Range-separated hybrids are free from a number of

shortcomings arising as a consequence of the self-interaction
error. The correct long-range potential of a range-separated
hybrid exchange makes the highest occupied molecular orbital

(HOMO) energy close to the vertical ionization energy,7,8

approximately satisfying Janak’s theorem.9 The spurious
propensity to transfer electrons is reduced, which improves
the description of donor−acceptor systems with partial charge
transfer in ground and excited states. The inclusion of the long-
range exact exchange also corrects the underestimation of
Rydberg excitation energies and oscillator strengths,10 and
corrects the overestimation of longitudinal (hyper)-
polarizabilities of polyenes.11

The majority of the available range-separated functionals are
hybrids based on the generalized gradient approximation
(GGA).10,12−19 Notably, a systematic search spanning the
vast space of possible mathematical forms have been conducted
to find range-separated GGAs with the best general perform-
ance.20 In contrast, only a few attempts have been made to
develop a range-separated meta-GGA functional, that is, a
hybrid model in which the semilocal part depends not only on
the density and density gradient, but also on the kinetic energy
density and in some cases the Laplacian. Empirical functionals
of this kind have been proposed by Lin et al.21,22 (ωM05-D and
ωM06-D3) and by Peverati et al.23 (M11). While these
methods are heavily parametrized, for example, M11 contains
40 empirical parameters, the available tests show that the
improvement over the best range-separated GGAs is nonuni-
form and minor.22,24 A nonempirical range-separated meta-
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GGA based on the Tao−Perdew−Staroverov−Scuseria (TPSS)
functional was tested by Vydrov et al.,5 but for thermochemistry
this method showed no improvement over the pure TPSS
functional.
The purpose of this work is to construct a reliable range-

separated functional in which the short-range exchange part is a
meta-GGA derived from an existing nonempirical semilocal
model.
The range-separated exchange energy consists of two

components, short-range and long-range, defined according to
the range split of the electron interaction,

ω ω= +
s

s
s

s
s

1 erfc( ) erf( )
(1)

where ω is the range separation parameter and s = |r1 − r2|.
Inserting eq 1 into the definition of the exchange energy yields
the formulas for the short-range and long-range components:
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The long-range exchange energy EX,exact
LR is based on the exact,

orbital-dependent HF exchange hole
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In the definition of the short-range exchange energy EX,approx
SR ,

one has to assume a specific form of the approximate exchange
hole hX,approx

σ . As in the case of the exchange energy density, the
local definition of the exchange hole is not unique. However,
the ambiguity disappears in the system average of the hole.25

In what follows, we present equations for closed-shell
systems with ρα = ρβ = ρ/2. There is no loss of generality
because the exchange functional for arbitrary spin polarizations
is simply related to its spin-compensated counterpart by the
formula26

ρ ρ ρ ρ= +α β α βE E E[ , ]
1
2

[2 ]
1
2

[2 ]X X X (5)

For clarity, hereafter we skip the spin index in the exchange
hole symbol.
There exists a series of range-separated GGAs which employ

various levels of exact constraints in the model exchange hole
inserted into the definition of EX

SR.
One of the earliest range-separated functionals are those of

Iikura, Tsuenda, Yanai, and Hirao (ITYH),27 who devised a
general technique of converting existing GGAs into range-
separated hybrids. The ITYH scheme was employed in several
functionals, including LC-BLYP, LC-BOP, LC-PBEOP, and
CAM-B3LYP.10,12,13

The ITYH exchange hole is based on a simple modification
of the local density approximation (LDA) exchange hole.27 It
has the correct value at s = 0,

ρ= = = = −h s h sr r
r

( , 0) ( , 0)
( )
2X,ITYH 1 X,exact 1

1
(6)

and satisfies the energy integral

∫ π = ϵh s
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s s
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4 d ( )X,ITYH 1 2
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where ϵX,approx is the exchange energy density of a given base
functional. The ITYH hole fails to fulfill two other exact
conditions appropriate to a semilocal functional: the hole
normalization14

∫ π = −h s s sr( , )4 d 1X,exact 1
2

(8)

and the correct second-order short-range expansion of the
spherically averaged exchange hole at zero current density,28−30
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where τ is the kinetic energy density

∑τ ψ= |∇ |
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It should be stressed that eq 10 cannot be satisfied at the GGA
level.
Several GGAs have been developed in which the exchange

hole obeys more exact conditions than the ITYH model. The
range-separated Perdew−Burke−Ernzerhof (PBE) functionals
of Henderson et al.14 and of Vydrov et al.15 satisfy eq 6, eq 7, eq
8, and only approximately eq 10. Both methods are an
improvement over the ITYH model in atomization energies
and barrier heights.14

Still, there is a possibility for going one rung higher than the
existing range-separated GGAs. This work presents a scheme
for construction of meta-GGA range-separated exchange
functionals which employ the kinetic energy density and the
Laplacian to exactly include the second-order coefficient of eq
10. The method allows one to transform an existing GGA or a
meta-GGA model into its range separated variant. The resulting
functional depends on the kinetic energy density and the
Laplacian even if the base functional does not.
In the following, we begin by deriving the working equations

of the new range-separation scheme. Next, we search for a
preferred combination of the base exchange functional and the
accompanying correlation model. Finally, we test the perform-
ance of the selected functional on a test set including
thermochemical energy differences, barrier heights, noncovalent
interaction energies, and excitation energies.

2. THEORY
2.1. Exchange Hole Model. Our range-separation scheme

requires an exchange hole model which integrates to ϵX,approx
and has enough degrees of freedom to satisfy two further
conditions: the exact value of hX,approx at s = 0 and the exact
coefficient of s2. These prerequisites are satisfied by the
generalized Becke−Roussel (BR) exchange hole.31,32 The
spherically averaged generalized BR hole,

π
= − | − | +

− | + | +

− | − |

− | + |

h a b s
a

bs
a b s

a b s

( , , ; )
16

[( 1)e

( 1)e ]

a b s

a b s

X,BR

(12)

includes three parameters, a, b, and , which we will define by
selecting a subset of three equations from a wider set of
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possible conditions. For any a > 0 and b > 0, the normalization
integral of hX,BR is

∫ π = −h a b s s s( , , ; )4 dX,BR
2

(13)

In the original BR model, the parameters a and b are fixed by
enforcing the zeroth- and second-order coefficients of eq 9, and
the normalization is set to −1, that is, = 1. With these
definitions satisfied, the original hX,BR reduces to the exact
exchange hole when applied to the hydrogen atom.31

The original definitions of the BR model have to be modified
so that the electrostatic potential generated by hX,BR
corresponds to the assumed base exchange energy density:

∫ π = ϵ∞ h a b s

s
s s

1
2

( , , ; )
4 d

0

X,BR 2
X,approx (14)

The formula for the short-range component of ϵX,approx will be
given in section 2.2. Following Becke32 and Precechtelova et
al.,33 we enforce eq 14 at the cost of relaxing the normalization
condition. The set of equations defining the parameters of
hX,BR,

πρ
− − − = − ϵ⎜ ⎟

⎛
⎝

⎞
⎠

x
x

x Q2
e 1

2
6x

2 2 X,approx
(15)

πρ= − +
ϵa

x
x

(2 2 e )x

X,approx (16)

=b x a/ (17)

πρ= a4 e /x 3 (18)

is to be solved at each point of space. (For the derivation of eqs
15−18 see the Appendix of ref 32.) For any physically allowed
right-hand side, a unique x > 0 solves eq 15. The solution can
be obtained with a numerical solver or interpolation.
The resulting exchange hole integrates to the given ϵX,approx

(eq 14), has the exact value at the origin (eq 6), and recovers
the exact coefficient of s2 (eq 10). However, its normalization
integral differs in general from the exact value of −1.
2.2. Short-Range Exchange Energy. The short-range

exchange energy density ϵX,approx
SR is the difference between the

full-range semilocal exchange and its long-range part:

ϵ = ϵ − ϵX,approx
SR

X,approx X,approx
LR

(19)

We define ϵX,approx
LR using the potential generated by hX,BR:

∫ ω
πϵ = =∞ h s s

s
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The integration in eq 20 can be done analytically, giving

ω
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(21)

μ
ω

= a
2 (22)

ν ω= b (23)

For small values of ν, the right-hand side of eq 21 should be
evaluated using a Taylor series expansion to avoid numerical
errors. Finally, the short-range exchange energy is obtained by
integrating ϵX,approx

SR over the whole space:

∫ ρ= ϵE r r r( ) ( ) dX,approx
SR

X,approx
SR

1 1 1 (24)

The complete range-separated exchange energy is the sum of
EX,approx
SR and the long-range HF exchange,

= +E E EX,approx X,approx
SR

X,exact
LR

(25)

2.3. One-Electron Self-Interaction Error. We use the
example of the self-interaction error in the ground state of the
hydrogen atom to illustrate the difference between our meta-
GGA range-separation scheme and the existing GGA
approaches.
The ground state of the hydrogen atom is a difficult limiting

case for conventional DFT approximations. Using only local
variables ρ(r1) and ∇ρ(r1), GGAs have no way of knowing that
the density under consideration belongs to a single-particle
system. Therefore, the one-electron self-interaction error arises
as a residual value left by an imperfect cancellation between an
approximate exchange energy and the Coulomb repulsion.31,36

A single-electron density can be detected using the kinetic
energy density τ, thus meta-GGA functionals can, at least
partially, reduce the self-interaction error.
The large-ω behavior of the exact short-range exchange

energy of the hydrogen atom is given by the expansion37

ω
ω ω

→ ∞ = − + +E ( )
1

16
1

32
...X,exact

SR
2 4 (26)

Equation 26 assumes the exact density. Gill et al. have shown
that the first term on the right-hand side is recovered already by
the local density approximation, but the term of order 1/ω4

requires hX,approx with the correct second-order expansion for
small s.37 Indeed, the short-range meta-GGA functionals
derived in this work, which satisfy eq 10, approach EX,exact

SR (ω
→ ∞) visibly faster than the existing GGAs (Figure 1). The
reduction of errors for large ω is seen for all tested base
functionals: PBE,38 B88,39 and TPSS.40

Figure 2 shows why, in our scheme, TPSS is not a preferred
candidate for the base exchange functional, and PBE should be
used instead. Let ⟨hX⟩(s) denote the system and spherical
average of the exchange hole for the hydrogen atom,

∫ ρ⟨ ⟩ =h s h sr r r( ) ( ) ( , ) dX 1 X 1 1 (27)

The real-space analysis of the total exchange energy is then
expressed as

∫= ∞
E H s s( ) dX

0
X
TOT

(28)

where

π= ⟨ ⟩H s s h s( ) 2 ( )X
TOT

X (29)

and the short-range exchange energy is

∫ω = ∞
E H s s( ) ( ) dX

SR

0
X
SR

(30)

where

π ω= ⟨ ⟩H s s h s s( ) 2 ( ) erfc( )X
SR

X (31)
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For the TPSS exchange, HX
TOT(s) is too deep around s = 1 bohr

and too shallow in the tail, but these two errors perfectly cancel
each other to yield the exact EX enforced by the construction of
the TPSS exchange. However, the factor erfc(ωs) included in
the short-range energy cuts off the tail of HX

TOT(x), thus leaving
the relatively large short-range error uncompensated in EX

SR. By
contrast, in the PBE energy, the short-range and long-range
errors in HX

TOT(s) do not cancel perfectly, but the error at short
range is small, and the factor erfc(ωs) enhances the error
cancellation in EX

SR.
The single-electron density of the hydrogen atom was

previously utilized as a constraint in the design of several
functionals. The TPSS exchange of Tao et al.40 and the MVS
exchange of Sun et al.41 are parametrized to recover the exact
exchange energy in this limit. The hydrogen atom energy is also
included in the training set of the empirical M05-2X
functional.42 Here, we use the single-electron limit to estimate
the value of ω which is most appropriate for the range-
separated exchange energy obtained using our scheme.

According to Figure 1, our model of the short-range PBE
exchange energy recovers the exact energy at ω = 0.33. Later in
the text we will show that this value is nearly optimal for the
atomization energies and barrier heights of small molecules.
Apart from its manifestation in approximate exchange energy

functionals, the self-interaction error arises as a nonvanishing
correlation energy of a single-electron system. In the case of the
pure PBE exchange-correlation functional, the total energy of
the hydrogen atom is only 0.0006 au lower than the exact
energy, but at the same time the correlation contribution
amounts to −0.006 au (−3.8 kcal/mol). This error can be
eliminated only at the meta-GGA level. The desired improve-
ment over the PBE correlation is provided by TPSS.40,43 The
TPSS correlation is built on the PBE formula, but with one-
electron self-interaction terms subtracted.43 As a result, TPSS
yields exactly zero correlation energy for the hydrogen atom,
which we regard as a feature compatible with our exchange
model. We will test the advantage of using the TPSS correlation
over PBE for general systems in the following section.

2.4. Complete Exchange-Correlation Model. To fully
define our exchange-correlation functional, we have to specify
the base exchange functional together with the accompanying
model for correlation. We restrict our search to two exchange-
correlation models only: PBE and TPSS. The choice of these
two functionals reflects our preferrence for methods with a
small number of empirical parameters. Still, it remains possible
to pair our range-separation scheme with formulas including
multiple adjustable parameters and to perform a comprehensive
empirical optimization.
Let LC-XY denote a range-separated functional where X is

the base model for exchange (ϵX,approx in eq 15), and Y is the
accompanying correlation. Our search comprises three
candidate functionals, LC-PBETPSS, LC-PBEPBE, and LC-
TPSSTPSS, applied on a set of atomization energies (AE644)
and barrier heights (BH644). Each functional is employed with
a varying value of ω. The best method is selected for further
tests described in the remainder of this paper. The AE6 and
BH6 benchmarks are representative of 109 atomization
energies and 44 barrier heights, respectively, in the Database/
3 collection.44

LC-TPSSTPSS is the poorest performing functional, which
cannot fully benefit from the addition of the long-range exact
exchange. For this functional, a single value of ω cannot work
well for both AE6 and BH6: the optimal value for the former
set is ω = 0.0, that is, the limit of the pure TPSS functional,
whereas for the latter set ω = 0.35 minimizes the mean absolute
error (MAE). A similar behavior of the TPSS range-separated
hybrid has been observed by Vydrov et al.5 The numerical data
for LC-TPSSTPSS are available in the Supporting Information.
The problem of choosing a universally applicable value of ω

arises again in the case of the candidate based entirely on the
PBE model, LC-PBEPBE, albeit it is not as severe as for LC-
TPSSTPSS. At ω = 0.30, the average error in the barrier heights
is only 1.6 kcal/mol, but at the same time the error for the
atomization energies is as high as 10.5 kcal/mol, which is large
compared to the existing range-separated functionals.14

The best overall accuracy is achieved by LC-PBETPSS
(Figure 3). The optimal range-separation parameter for this
functional is in the interval 0.30 ≤ ω ≤ 0.35, depending on the
weight of the BH6 set relative to AE6. (The percentage errors
on the BH6 set are much larger than on AE6, see the
Supporting Information.) This result matches our theoretical
estimate, ω = 0.33, based on the minimization of the self-

Figure 1. Differences between approximate and exact short-range
exchange energies of the ground state of the hydrogen atom. All
computations employ the aug-cc-pV5Z basis set34 and HF orbitals.
The short-range GGA models of Henderson et al.14,35 are denoted as
HJS. Correlation energies are not included.

Figure 2. Real-space analysis of the contributions to the (short-range)
exchange energy of the hydrogen atom. All computations employ the
aug-cc-pV5Z basis set34 and HF orbitals.
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interaction error for the hydrogen atom. Taking into account
the relatively large errors in the barrier heights, we choose ω =
0.35 for the final version of LC-PBETPSS recommended for
general use. The MAEs at this value of the range-separation
parameter are 6.7 kcal/mol for AE6 and 2.1 kcal/mol for BH6.
LC-PBETPSS is the final, recommended functional which we
will employ in the full test set.
The long-range correction proposed here should not be

confused with the correction based on the ITYH scheme, which
can be applied, for example, in the Gaussian program, to any
pure functional. Let us denote by LC-PBETPSS(ITYH) a
functional which employs the ITYH-based range-separated PBE
exchange.27 Using the above-described procedure for optimiz-
ing the range-separation parameter, we find that ω = 0.7 is
optimal simultaneously for AE6 (MAE = 14.7 kcal/mol) and
BH6 (MAE = 2.6 kcal/mol). For both sets, LC-PBETPSS-
(ITYH) is inferior to LC-PBETPSS, but the difference is
especially large for the atomization energies. On the AE6 set,
LC-PBETPSS(ITYH) is only slightly more accurate than the
pure PBETPSS functional without any addition of the HF
exchange. For 0.20 ≤ ω ≤ 0.35, where LC-PBETPSS performs
well for AE6, LC-PBETPSS(ITYH) yields extremely large
MAEs above 30 kcal/mol. Alternatively, one could combine the
range-separated PBE exchange of Henderson et al.14 and the
TPSS correlation to obtain LC-PBETPSS(HJS). While this
method performs generally better than LC-PBETPSS(ITYH),
for its optimal value of ω = 0.45, the errors for AE6 (MAE = 9.9
kcal/mol) and BH6 (MAE = 2.4 kcal/mol) are both larger than
for LC-PBETPSS. The numerical data for LC-PBETPSS-
(ITYH) and LC-PBETPSS(HJS) are available in the
Supporting Information.
2.5. Dispersion Correction. A dispersion correction

compensates for the deficiencies of a semilocal DFT
approximation in the modeling of long-range correlation
contributions to noncovalent interaction energies. We test the
performance of LC-PBETPSS with the D3 correction of
Grimme et al.47 The general form of the atom-pairwise D3
correction is47

∑ ∑= −
> =

E s
C
R

f R(D3) ( )
A B n

n
n
AB

AB
n

n
ABdisp

6,8
damp
( )

(32)

= + α−f R
R r R
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1 6( /( ))
n

AB
AB n

ABdamp
( )

0
n (33)

where fdamp
(n) is the damping function. The only functional-

dependent parameters are r6 and s8. The C6
AB dipole−dipole

coefficients are obtained ab initio, tabulated, and interpolated
for the effective coordination numbers in the system of interest.
The minimization of the MAE for LC-PBETPSS-D3 on the S22
set of noncovalent systems48,49 for LC-PBETPSS yields r6 =
0.88971. The 1/R8 term is not included because it does not
decrease the MAE for the training set (s8 = 0). We employ the
original damping function fdamp

(n) (RAB),
47 which vanishes for RAB

→ 0, instead of the newer Becke−Johnson damping50 to avoid
double counting of the interaction energy at short range.
Optionally, a 3-body term can be added to model the Axilrod−
Teller−Muto contribution to the dispersion energy:47
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where θa, θb, and θc are angles between the three interacting
atoms, and R̅ABC is the geometric mean of the interatomic
distances. The triple-dipole coefficient C9

ABC is approximated as

= −C C C CABC AB AC BC
9 6 6 6 (35)

The nonadditive three-body term is known to be important for
large systems.51

3. RESULTS AND DISCUSSION
3.1. Electronic-Structure Methods. The functional

developed in this work is denoted as LC-PBETPSS. For the
clarity of presentation, let us list its main characteristics which
were discussed in the previous sections. The range-separated
exchange combines the meta-GGA short-range PBE exchange
and the 100% HF exchange at long range. The range-separation
parameter of the exchange is fixed at ω = 0.35. The TPSS
model is used for the correlation term. The LC-PBETPSS
functional is applied with the D3 dispersion correction (LC-
PBETPSS-D3) and for some systems without the dispersion
term (LC-PBETPSS). The LC-PBETPSS functional is
implemented in the developer version of the Molpro
program.52

To make a fair presentation of the performance of the new
method, we have assembled a test set of well-established
functionals for comparison. The LC-ωPBE functional of
Vydrov and Scuseria15 is a GGA range-separated functional
based on the PBE exchange and PBE correlation. The
numerical comparison between LC-PBETPSS-D3 and LC-
ωPBE-D3 probes the cumulative effect of upgrading the short-
range exchange to meta-GGA and removing the one-electron
self-interaction error from the correlation. The M06-2X
empirical meta-GGA functional of Zhao and Truhlar53 is a
workhorse of modern computational chemistry. Even though
this functional reproduces a large part of the dispersion energy
in the vicinity of equilibrium separations, adding the D3
correction slightly improves the results in general. M06-2X-D3
is the best dispersion-corrected meta-GGA hybrid on the

Figure 3. Mean absolute errors on the AE6 and BH6 sets.44 All DFT
computations employ the def2-QZVPP basis set.34,45 The reference
values are taken from ref 4 (AE6) and ref 46 (BH6).
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GMTKN30 database.54 ωB97XD is an empirical, dispersion-
corrected, range-separated GGA functional of Chai and Head-
Gordon.18 It is designed for thermochemistry, kinetics, and
energies of noncovalent systems. ωB97X17 is a predecessor of
ωB97XD, which is not optimized for use with a dispersion
correction. Still, its design makes it suitable for spectroscopic
properties.55 We employ ωB97X in the part of our tests
devoted to excitation energies. M06-L is an empirical meta-
GGA functional which does not contain any HF exchange.53 It
is known for the reliable description of hydrogen-bonded
systems.56 Finally, B3LYP-D3 is an example of a hybrid
functional57 developed in the 1990s, supplemented with the
modern D3 correction.
In addition to DFT methods, for ground-state charge-transfer

dimers we use the DLPNO−CCSD(T) method,58 which is a
low-scaling approximation within the coupled-cluster wave
function formalism including connected triples. The numerical
thresholds for DLPNO−CCSD(T) are set at the “tight” level
defined in Table 1 of ref 59, as recommended for noncovalent
interactions.59 The DLPNO−CCSD(T) computations are
performed with the ORCA 3.0.3 program.60

3.2. Hydrogen-Bonded Systems. Modeling of hydrogen-
bonded clusters is still challenging for modern DFT procedures.
Common hybrid GGAs and the M06-type functionals
accurately describe the binding energies but unexpectedly fail
for the proton-exchange barriers on the CEPX33 set of NH3,
H2O, and HF clusters.56,61 In our tests on the CEPX33 set, LC-
PBETPSS-D3 performs consistently well for both properties
(Figures 4 and 5). It is the best method for the binding energies
and only slightly less accurate than the best functional (M06-L)
for the barriers. The D3 correction added to LC-PBETPSS
improves the results for both binding energies and barrier
heights (Table 1). This is in contrast to LC-ωPBE, for which
the effect of supplying the dispersion term is inconsistent.

To test if the high accuracy of LC-PBETPSS-D3 persists for
systems larger than those of the CEPX33 set, we apply this
functional on the set of water 16-mers studied by Yoo et al.62

Here, some of the water molecules are connected through
hydrogen bonds to four nearest neighbors. The structures of
kind I (4444-a and 4444-b) include eight such nodes, whereas
the structures of kind II (antiboat, boat-a, and boat-b) include
four water molecules with such high connectivity.62 As
illustrated in Figure 6, LC-PBETPSS-D3 represents reliably
the absolute binding energies, but it predicts that the clusters of
kind I are slightly too stable relative to the clusters of kind II. A
similar, yet more pronounced error in the relative energies is
present for the M06-type functionals: M06-L and M06-2X-D3.

3.3. Noncovalent Charge-Transfer Dimers. Since the
1990s, it is known that pure and global hybrid functionals
severely overestimate binding energies of noncovalent charge-
transfer dimers.65,66 Range-separated functionals achieve
qualitative improvement by removing the main cause of the
overbinding, which is an unrealistic propensity to transfer
electrons between the donor and acceptor. The distinction
between range-separated functionals and more traditional DFT
approximations is apparent for the interaction energy curve of
the NH3...ClF dimer (Figure 7). The two deepest, most

Figure 4. Errors for the binding energies of the CEPX33 set. The
computational details are provided in Table 1.

Figure 5. Errors for the proton-exchange barriers of the CEPX33 set.
The computational details are provided in Table 1.

Table 1. Mean Absolute Errors (kcal/mol) for the Binding
Energies (BE) and Proton-Exchange Barriers (PX) of the
CEPX33 Seta

method BE PX

LC-PBETPSS-D3 0.28 1.37
LC-PBETPSS 4.71 3.09
M06-L 1.21 1.05
ωB97XD 0.41 1.80
M06-2X-D3 1.40 6.79
LC-ωPBE 2.74 3.44
LC-ωPBE-D3 0.55 5.16
B3LYP-D3 1.99 5.84

aEnergies are computed with the aug-cc-pVQZ basis.34 The
geometries and reference energies are taken from ref 61.
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overbinding curves belong to M06-L and B3LYP-D3, a pure
functional and a global hybrid, respectively. The range-
separated methods, LC-PBETPSS-D3 in particular, yield a
distinct group of energies close to the reference CCSD(T)
curve. The only functional which performs well but is not
range-separated, M06-2X-D3, includes a relatively large fraction
of the HF exchange (54%).
The LC-PBETPSS-D3 curve is extremely close to the

reference curve in the vicinity of the equilibrium separation
of NH3...ClF, but its repulsive part is overestimated. For the
compressed dimer at R/Req = 0.8, the interaction energy of LC-
PBETPSS-D3 (Eint = +2.92 kcal/mol) is qualitatively different
from that of LC-ωPBE-D3 (Eint = −0.72 kcal/mol), but in
accordance with the reference coupled-cluster result (Eint =
+1.17 kcal/mol).
Similar behavior of approximate DFT methods is observed

for the CT9 set of relatively weakly bound donor−acceptor
equilibrium dimers (Table 2). The CT9 set gathers the dimers
of the CT7/04 set Zhao and Truhlar67 (C2H2...ClF, C2H4...F2,

H2O···ClF, HCN···ClF, NH3...Cl2, NH3...F2) and a subset of
the complexes studied by Yourdkhani et al.68 (CF3CN···BF3,
GeF3CN···BF3, SiF3CN···BF3). The MAEs for CT9 are similar
for all range-separated functionals and for M06-2X-D3, but the
range-separated hybrids tend to underbind, while M06-2X-D3
predicts excessive binding. Compared with the uncorrected
variants, both LC-PBETPSS and LC-ωPBE benefit from the
D3 dispersion correction.
For additional comparison, we also employ the low-scaling

DLPNO−CCSD(T) wave function method. With the MAE of
0.18 kcal/mol on the CT9 set, DLPNO−CCSD(T) is more
accurate than any tested DFT method. However, it is still
computationally more expensive than single-determinantal
DFT approaches owing to the relatively strong dependence
on the basis set quality.

3.4. Main-Group Thermochemistry. To test the perform-
ance of LC-PBETPSS-D3 for main-group thermochemistry, we
use the sets of isodesmic reaction energies,69 Diels−Alder
reaction energies (DARC),54 and reaction energies with a large
contribution of the intramolecular dispersion energy (IDISP).54

A general-purpose functional has to describe the energy
differences between covalently bound structures while including
the contributions from intramolecular noncovalent interactions.
A model case of this kind involves the reaction energies of n-
alkane isodesmic fragmentation

+ → +m mCH (CH ) CH CH ( 1)C Hm3 2 3 4 2 6 (36)

Several authors have enumerated the factors which affect the
accuracy of approximate DFT for these reactions. Grimme69

noted that a dispersion correction is crucial, but even a
dispersion-corrected semilocal DFT lacks a proper description
of middle-range correlation. Johnson et al.70 ascribed the size-
dependent errors in the reaction energies to the deficient
description of regions where the reduced density gradient
changes upon the reaction. An appropriate description of these
regions is provided by the PBEsol exchange energy which obeys
the exact second-order expansion for small density gra-
dients.70,71 Song et al.72 stressed the importance of correcting
the exchange functional via range separation. Finally,
Modrzejewski et al.63 demonstrated a remarkable improvement
in the isodesmic reaction energies when using the MCS
functional, which combines the range-separated PBEsol

Figure 6. Binding energies of water 16-mers. The def2-TZVPPD
basis34,45 is employed for LC-PBETPSS-D3. The basis-set extrapolated
CCSD(T) energies are taken from ref 63. The energies for the existing
DFT methods are taken from ref 64.

Figure 7. Interaction energy curves for the NH3...ClF dimer.

Table 2. Mean Absolute Errors (kcal/mol) for the
Interaction Energies of the CT9 Set of Charge-Transfer
Dimersa

method MAE

DLPNO−CCSD(T) 0.18
M06-2X-D3 0.37
LC-PBETPSS-D3 0.39
LC-PBETPSS 1.44
LC-ωPBE-D3 0.41
LC-ωPBE 1.14
ωB97XD 0.41
B3LYP-D3 0.73
M06-L 0.81

aDFT computations are performed with the def2-QZVPP basis. The
reference energies at the CCSD(T) level and the DLPNO−CCSD(T)
energies are extrapolated to the basis-set limit (aug-cc-pVTZ → aug-
cc-pVQZ) with the automated extrapolation scheme available in
ORCA.60 The same computational procedure is employed for the
interaction energy curves of the NH3...ClF dimer.
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exchange and our meta-GGA correlation optimized to work
with a dispersion correction.73

In our tests, all functionals underestimate alkane stability
with the error proportional to the alkane size (Figure 8). The

two error curves with the lowest slope belong to LC-PBETPSS-
D3 and M06-2X-D3. Without the D3 correction, LC-PBETPSS
and LC-ωPBE form a group of outliers together with the pure
M06-L functional. The dispersion term has only a limited effect
on M06-2X, which appears to account for the essential part of
the intramolecular dispersion energy via its extensive empirical
parametrization.
The DARC subset of the GMTKN30 database54 comprises

14 Diels−Alder reaction energies in which the reactants
containing multiple conjugated bonds react to form cyclic
and bicyclic products (see Figure 1 in ref 74). Most of the
existing DFT approximations underestimate the reaction
energies in this set.74 The reasons for that have general
implications for the application of approximate DFT for main
group thermochemistry. Johnson et al.74 have argued that the
reactants of the Diels−Alder reaction have delocalized electron
densities, therefore these structures are artificially stabilized due
to the self-interaction (delocalization) error. On the products
side, the bicyclic molecules have bridgehead carbons whose
noncovalent repulsion tends to be overestimated by approx-
imate DFT.74 Because of these two systematic effects, the
energetic gain of going from the reactants to the products is
underestimated.
LC-PBETPSS-D3 achieves the lowest mean absolute error of

all functionals tested on the DARC set (Table 3). The addition
of the dispersion correction to LC-PBETPSS reduces the MAE
by a factor of 4. In contrast, supplying the D3 term to LC-
ωPBE increases the MAE from 6.3 to 10 kcal/mol. The effect
of the three-body dispersion term included in LC-PBETPSS-
D3 + 3body is negligible due to the small size of the systems.
The IDISP subset of the GMTKN30 database is composed

of six reaction energies in which alkanes undergo trans-
formations between structures with different amounts of the
intramolecular dispersion energy.54 A typical reaction included

in IDISP is presented in Figure 9. LC-PBETPSS-D3, M06-2X-
D3, and ωB97XD are the best methods tested on this set

(Table 3). The D3 correction is important and beneficial for
both LC-PBETPSS and LC-ωPBE. The addition of the three-
body D3 term has a noticeable beneficial effect on the reaction
energies predicted by LC-PBETPSS-D3 + 3body.

3.5. Excitation Energies. Numerous authors have reported
evidence that there exists a marked advantage of using range-
separated functionals over more traditional DFT approxima-
tions for excitation energies of donor−acceptor systems and for
Rydberg transitions, without compromising on valence
excitations.10,13 To test the performance of LC-PBETPSS, we
apply it to the lowest charge-transfer excitations of aromatic
donor-tetracyanoethylene (Ar-TCNE) pairs (Table 4) as well
as valence and Rydberg excitations of CO, N2, H2CO, C2H4,
and C4H6 (Table 5).
Due to the limitations of the software suite in which LC-

PBETPSS has been initially implemented, the excitation
energies for this functional are obtained using real-time time-
dependent DFT (RT-TDDFT) instead of the usual linear
response equations.75,76 The propagation of the density matrix
was carried out for 2500 au (60 fs) for all molecules except for
the TCNE−xylene dimer and ethylene, which were propagated
for 3000 au and 10000 au, respectively. The time step in each

Figure 8. Errors in isodesmic reaction energies of n-alkane
fragmentation. The geometries and reference energies at the
CCSD(T) level are taken from ref 69. The def2-QZVP basis is
employed for all DFT computations except for MCS-D3. MCS-D3 is a
range-separated functional based on the PBEsol exchange.63 The
energies for MCS-D3 are computed using the def2-TZVPP basis.

Table 3. Mean Absolute Errors (kcal/mol) for the Reaction
Energies of the IDISP and DARC Setsa

method IDISP DARC

LC-PBETPSS-D3 2.35b 1.38c

LC-PBETPSS-D3 + 3body 2.27b 1.37c

LC-PBETPSS 11.38b 6.07c

M06-Ld 6.55 8.04
M06-2X-D3d 1.71 2.28
LC-ωPBE-D3d 4.13 10.04
LC-ωPBEd 8.03 6.30
B3LYP-D3d 6.63 10.23
ωB97XDd 2.63 1.98

aReference energies and geometries are obtained from the companion
Web site of ref 54. bComputed with the def2-QZVP basis. cComputed
with the def2-QZVPP basis. dReference 54.

Figure 9. Example of a reaction included in the test set for
intramolecular dispersion interactions (IDISP).54
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case was Δt = 0.1 au (0.0024 fs). Each time a dc pulse with a
duration of 0.24 fs and field strength of Emax = 0.0001 au was
applied. All RT-TDDFT calculations were carried out in the
Molpro program.52

LC-PBETPSS achieves about the same level of accuracy for
Rydberg, valence, and charge-transfer excitations (Tables 4 and
5). While the best DFT method for the charge-transfer
transitions is ωB97X,17 there is only an insignificant difference
between ωB97X, LC-PBETPSS, and LC-ωPBE for valence and
Rydberg excitations.
3.6. Symmetry-Adapted Perturbation Theory. Symme-

try-adapted perturbation theory provides a framework for
computation and intepretation of noncovalent interaction

energies.86 The energy contributions defined in SAPT can be
computed using approximate functionals, provided that orbital
coefficients, orbital energies, and density response functions are
available.
The accuracy of the total interaction energy as well as of the

individual SAPT contributions is contingent on the realistic
description of the density tail, therefore traditional pure and
global hybrid functionals must employ asymptotic corrections
of the exchange-correlation potential.87 Range-separated func-
tionals do not require the corrections which change the decay
rate of the potential, but they need a procedure that levels the
HOMO energy with negative of the vertical ionization potential
(IP).88 The adjustment of the orbital energy involves tuning of
the range-separation parameter for each molecule of interest to
satisfy Koopmans’ theorem:80

ω ωϵ = −( ) IP( )HOMO (37)

The procedure of solving eq 37 is repeated for each interacting
monomer,88 therefore each monomer is assigned its unique
value of ω.
To illustrate the importance of using the monomer-

dependent range-separation parameters, we employ LC-
PBETPSS and the range-separated PBE functional of
Henderson et al.14 (HJS-ωPBE) to compute the total SAPT
interaction energies on the A24 set of noncovalent dimers.89

Here, the total interaction energy is a sum of the first- and
second-order SAPT contributions plus a so-called delta-HF
term. Each functional is used to compute the orbital coefficients
and energies provided to the SAPT program, but the exchange-

Table 4. Energies (eV) of the Lowest CT Transitions in Gas-
Phase Ar−TCNE Complexesa

Ar benzene toluene o-xylene

ref77 3.59 3.36 3.15
ωB97X17 3.67 3.34 3.37
LC-ωPBE 4.00 3.65 3.68
LC-PBETPSS 3.87 3.50 3.49
B3LYP 2.06 1.81 1.88
M06-L 1.65 1.46 1.56
M06-2X 3.03 2.93 2.78
GW78 3.58 3.27 2.89
BNLb 3.8 3.4 3.0

aDFT calculations employ the cc-pVDZ basis set.34 bThe range-
separated BNL functional79 includes a system-dependent parameter ω.
The energies are taken from ref 80.

Table 5. Energies (eV) of Valence and Rydberg Transitions in CO, N2, Formaldehyde, Ethylene, and trans-1,3-Butadiene

transition ref B3LYP M06-L M06-2X ωB97X17 LC-ωPBE LC-PBETPSS

COa

σ → π* 8.51d 8.40 8.58 8.22 8.53 8.55 8.66
σ → 3s 10.78d 9.83 9.35 10.86 10.77 10.84 10.76
σ → 3pσ 11.40d 10.21 9.61 10.86 11.22 11.34 11.15
σ → 3pπ 11.53d 10.27 9.87 10.90 11.31 11.42 11.28
N2

a

σg → 3pπu 12.90d 11.78 10.85 12.47 12.57 12.68 12.50
σg → 3pσu 12.98d 11.62 10.53 12.53 12.59 12.70 12.52
πu → 3sσg 13.24f 12.04 11.76 12.49 12.88 13.01 12.86
H2CO

a

n → 3sa1 7.09d 6.43 6.14 7.09 7.28 7.26 7.11
n → 3pb2 7.97d 7.15 6.49 7.90 8.12 8.11 7.98
n → 3pa1 8.12d 7.16 6.57 7.78 8.00 8.00 7.84
σ → π* 8.68d 9.01 7.01 8.81 8.99 9.11 8.92
C2H4

b

π → 3s 7.11e 6.56 6.60 6.85 7.38 7.52 7.44
π →π* 7.96c 7.32 7.18 7.47 7.57 7.63 7.69
π → 3dδ 8.90e 7.61 7.22 8.42 8.98 9.23 9.13
π → 3dδ 9.08e 7.77 7.47 8.52 9.08 9.33 9.21
π → 3dπ 9.33e 7.69 7.52 8.58 9.09 9.38 9.28
π → 3dπ 9.51e 8.09 7.92 8.82 9.46 9.79 9.68
C4H6

b

π → π* 6.32c 5.54 5.62 5.76 5.88 5.97 5.98
Ryd (2Au) 6.66e 5.88 5.87 6.15 6.84 6.94 6.86
Ryd (2Bu) 7.07e 6.36 6.09 6.75 7.29 7.40 7.29
Ryd (3Bu) 8.00e 6.74 6.39 7.46 8.04 8.30 8.18
MAE 0.97 1.36 0.42 0.20 0.23 0.22

aEnergies are computed with the augmented Sadlej basis.81 bEnergies are computed with the 6-311(3+,3+)G** basis.82 cTheoretical energy at the
FCIQMC level, ref 83. dExperimental energy, ref 10. eExperimental energy, ref 84. fExperimental energy, ref 85.
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correlation kernel is in every case at the adiabatic local density
approximation level.
The improvement of LC-PBETPSS upon using eq 37 is clear,

with over 3-fold reduction of the MAE for the total interaction
energies (Table 6). The errors are reduced by a similar factor

for HJS-ωPBE. With the monomer-dependent parameter ω,
LC-PBETPSS achieves slightly better accuracy than the
common PBE0AC approach, that is, the PBE0 functional90

employed with the asymptotic correction of Gruning et al.87

4. SUMMARY AND CONCLUSIONS
We have proposed a method of creating meta-GGA range-
separated exchange functionals from existing semilocal
approximations. Owing to the use of the kinetic energy density
and the Laplacian, the underlying exchange hole has the exact
second-order expansion in the interelectron distance. The
importance of this condition is demonstrated for the hydro-
genic density, for which the functionals derived using the new
approach show a clear reduction of the self-interaction errors
compared to existing range-separated GGAs.
While the method is general, its performance strongly

depends on the selected pair of the base exchange functional
and the accompanying correlation. The initial numerical tests
on small sets of atomization energies and barrier heights have
shown that the preferred pair of the semilocal models is the
PBE exchange and the TPSS correlation. Therefore, the only
functional considered in the full suite of tests and the method
which we recommend for general use is LC-PBETPSS.
The onset of the long-range HF exchange is controlled by

the range-separation parameter which is estimated theoretically
and confirmed by empirical optimization to be ω = 0.35. For
applications in SAPT, we recommend to adjust ω to enforce
Koopmans’ theorem for the interacting monomers.
Supplementing LC-PBETPSS with the D3 dispersion

correction (comprising only the 1/R6 term) generally improves
the accuracy of the method for all test sets considered in this
work. We observe additional slight improvement when a three-
body dispersion term is included for large systems.
As Figure 10 illustrates, the accuracy of LC-PBETPSS-D3 is

remarkably consistent across the whole range of tests which
probe the performance for noncovalent interaction energies,
barrier heights, and thermochemical energy differences. The
errors corresponding to LC-PBETPSS-D3 are in most cases
either the smallest or close to the best functionals. The only
other functional achieving a similar level of consistent accuracy
is ωB97XD. When applied to excited states of small systems,
LC-PBETPSS describes charge-transfer and Rydberg excita-
tions with a similar level of accuracy as valence excitations.
Compared to LC-ωPBE-D3, the new method offers

improved accuracy for the reaction energies of the IDISP set,

Diels−Alder reaction energies, and proton-exchange barriers.
While LC-PBETPSS-D3 works better for covalent bonds, it
does not compromise on the accuracy for noncovalent
interaction energies. Moreover, the dispersion correction is
more compatible with LC-PBETPSS than with LC-ωPBE. The
D3 term is beneficial for LC-ωPBE when applied to the
interaction energies of noncovalent dimers and clusters, but it
degrades the accuracy for proton-exchange barriers and Diels−
Alder reaction energies. The performance of LC-PBETPSS-D3
is free from such irregularities.
Compared to M06-2X-D3, the new method is more reliable

for the binding energies and barrier heights of hydrogen-
bonded systems while providing a similar level of accuracy in
alkane thermochemistry.
To conclude, the tests presented in this work show that LC-

PBETPSS-D3 combines reliability with low empiricism. Further
work is needed to assess the performance of the new functional
for systems with more complicated electronic structure.
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