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1. Streszczenia  

 

Wieloletnie parazytologiczne badania środowiskowe pozwalają na szeroki wgląd  

w ekologiczne i ewolucyjne kształtowanie się układu pasożyt-żywiciel (Alsarraf et al., 2016; 

Bajer et al., 2014b). Małe ssaki, a w szczególności gryzonie, są dobrymi podmiotami takich 

badań, ponieważ ich populacje są bardzo liczne, heterogenne i bardzo zależne od czynników 

środowiskowych, włączając w to dostęp do pożywienia oraz warunki klimatyczne (Bujalska 

and Hansson, 2000; Flowerdew JR, 1984; Turner et al., 2014). Zespół pasożytów krwi gryzoni 

jest dobrze zbadany na terenie Europy, Ameryki Północnej, Ameryki Południowej i Azji, 

natomiast niewiele informacji na ten temat pochodzi z terenu Afryki. Zgrupowania 

hemopasożytów występujących u gryzoni egipskich, takich jak  kolcomysz arabska (Acomys 

dimidiatus), kolcomysz złota (Acomys russatus) i myszoskocz arabski (Dipodillus dasyurus) 

podlegają zmianom w zależności od szeregu czynników i złożonych oddziaływań pomiędzy 

nimi (Alsarraf et al., 2016). Czynnikami biorącymi udział w kształtowaniu zgrupowań 

pasożytów u gryzoni z terenów pustynnych i półpustynnych Egiptu mogą być czynniki 

zewnątrzpopulacyjne, takie jak zespół unikalnych czynników środowiskowych (m.in. 

wilgotność i temperatura), charakterystycznych dla danego roku badań (dalej opisywany jako 

zmienna ‘rok badań’), czy miejsce odłowu żywicieli (powierzchnia badawcza, dalej opisana 

jako zmienna „dolina badań” lub „Wadi’). Innymi czynnikami odpowiedzialnymi za strukturę 

zgrupowań pasożytów u gryzoni są czynniki wewnątrzpopulacyjne, do których należą, między 

innymi, płeć i wiek żywiciela. Na podstawie wymiarów i masy ciała oraz dojrzałości płciowej 

żywiciela, odłowione gryzonie zostały przypisane do trzech klas wiekowych (osobniki 

młodociane, młode dorosłe, dorosłe).  

Badano wpływ wymienionych czynników wewnątrz- i zewnątrzpopulacyjnych na 

występowanie 5 rodzajów pasożytów krwi: Babesia, Bartonella, Haemobartonella 

(Mycoplasma), Hepatozoon i Trypanosoma u kolcomyszy arabskiej (A. dimidiatus) z Masywu 

Synaju. Wieloletnie badania (2000-2012) w czterech dolinach odizolowanych od siebie 

łańcuchami górskimi w okolicy miasta Świętej Katarzyny na Masywie Synaju (Egipt) 

rozpoczęto na przełomie sierpnia i września 2000 r. i powtarzano co 4 lata.  

Moją rozprawę doktorską podzieliłem na dwie części; pierwszą stanowiły badania nad 

wieloletnią dynamiką występowania hemopasożytów u kolcomyszy arabskiej (A. dimidiatus) 



reprezentatywnego gatunku gryzoni z gór Synaju.  Drugą część badania stanowił opis nowego 

gatunku Babesia, wykrytego u myszoskocza D. dasyurus. 

Postawiłem następujące hipotezy:  

1. W warunkach pustynnych i półpustynnych można zaobserwować wieloletnią dynamikę 

występowania pasożytów krwi u gryzoni w Masywie Synaju. 

2. W czterech odizolowanych dolinach, zasiedlonych przez podobne zgrupowania gryzoni, 

możemy zaobserwować różne zespoły pasożytów krwi, a izolacja populacji żywicieli może 

wpływać na różnorodność genetyczną i specyficzność żywicielską pasożytów. 

3. Czynniki wewnątrzpopulacyjne (wiek i płeć żywiciela) mają wpływ na ekstensywność 

i intensywność zarażenia pasożytami krwi u gryzoni. 

4. Niezbadane gatunki gryzoni mogą być zarażone nieopisanymi dotychczas pasożytami krwi. 

 

Tak postawione hipotezy dotyczące wieloletniej dynamiki zarażeń hemopasożytami 

u kolcomyszy arabskiej zostały zweryfikowane przez realizację następujących celów 

badawczych: 

1. Określenie dynamiki zespołu pasożytów krwi u A. dimidiatus na przestrzeni 12 lat na 

podstawie danych uzyskanych na temat ekstensywności, intensywności i bogactwa 

gatunkowego zarażeń w badanych populacjach gryzoni w poszczególnych latach. 

2. Określenie różnorodności genetycznej i specyficzności żywicielskiej pasożytów krwi 

gryzoni w odizolowanych od siebie dolinach górskich masywu Synaju. 

3. Określenie różnorodności genetycznej i stopnia pokrewieństwa między gatunkami 

pasożytów krwi u Acomys dimidiatus. 

4. Opisanie i charakterystyka nowych gatunków pasożytów występujących u innych gryzoni.  

 

Gryzonie odławiane  były przez 4-5 tygodni na przełomie sierpnia i września w latach 

2000, 2004, 2008 i 2012 w pobliżu miasta Święta Katarzyna w Górach Synaj (Egipt). Odłowy 

prowadzono na terenie czterech dolin górskich (Wadi Arbaein, W. Gebal, W. Gharaba 

i W. Tlah), odizolowanych od siebie łańcuchami górskimi. Gryzonie (N=1041, 857 kolcomysz 

arabskich, 73 kolcomyszy złotych i 111 myszoskoczów arabskich) były odławiane za pomocą 

pułapek żywołownych Shermana i oznaczone co do gatunku, płci oraz przypisane do 

odpowiedniej klasy wiekowej. Pobierano próbki krwi bezpośrednio z serca do EDTA w celu 

izolacji DNA oraz wykonania dwóch rozmazów krwi do analizy mikroskopowej. Pasożyty krwi 

obserwowałem pod mikroskopem świetlnym i zliczałem zarażone komórki krwi na 200 polach 

widzenia przy powiększeniu 1000x w przypadku Babesia, Bartonella, Haemobartonella 



i Trypanosoma. Natomiast w przypadku Hepatozoon zliczałem leukocyty zarażone w puli 50 

kolejnych leukocytów w celu określenia ekstensywności, intensywności oraz bogactwa 

gatunkowego pasożytów krwi. DNA pasożytów wyizolowałem za pomocą zestawu DNAeasy 

Blood & Tissue kit (Qiagen, USA) albo MiniPrep Blood kit (AxyGen, USA). Do analiz 

molekularnych i filogenetycznych wykorzystałem marker 18S rRNA w celu określenia 

różnorodności genetycznej u Hepatozoon [fragment genu o wielkości 660 pz; (Inokuma et al., 

2002)] i Trypanosoma [fragment genu 520 pz; (Noyes et al., 1999)], a także fragment genu 

rpoB w przypadku Bartonella [o wielkości 333 pz; (Paziewska et al., 2011)]. W celu opisania 

nowego gatunku Babesia behnkei wykorzystałem 18S rRNA [1700 pz; (Matjila et al., 2008; 

Oosthuizen et al., 2008)] oraz rejony ITS1 [615 pz; (Blaschitz et al., 2008; Nijhof et al., 2003)] 

i ITS2 [315 pz;(Blaschitz et al., 2008; Nijhof et al., 2003)].  

 

Część I: wieloletnia dynamika zarażeń hemopasożytami u kolcomyszy arabskiej 

A. dimidiatus (Alsarraf et al. 2016) 

Do realizacji celów 1-3 zbadałem 835 kolcomyszy arabskich. Ogólna ekstensywność 

zarażenia pasożytami krwi u A. dimidiatus wynosiła 76.2%, przy czym zaobserwowałem 

istotny spadek  ekstensywności zarażenia hemopasożytami na przestrzeni lat – najwyższą 

ekstensywność zarażenia odnotowałem w roku 2004 (91.2%), natomiast najniższa była w roku 

2012 (53%). Zaobserwowałem różnicę w ekstensywności zarażenia hemopasożytami pomiędzy 

populacjami kolcomyszy arabskich z różnych dolin badań – najwyższą ekstensywność 

odnotowałem w W. Tlah (88.5%), a najniższą w W. Arbaein –  68.8%. 

 

Wieloletnia dynamika zarażenia Babesia sp. w populacjach  A. dimidiatus z czterech 

dolin 

Ogólna ekstensywność zarażenia Babesia sp. wynosiła 3.1%. Badania dynamiki 

występowania Babesia sp. u A. dimidiatus wykazały ogólny spadek w ekstensywności 

zarażenia na przestrzeni lat. Najwyższą ekstensywność zarażenia Babesia odnotowałem 

w 2004 roku – wynosiła 6.9% i spadła do 0% w 2012 r. Odnotowałem różnice w dynamice 

zarażeń  Babesia u kolcomyszy arabskiej między dolinami. Ekstensywność zarażenia Babesia 

sp. u A. dimidiatus  – najwyższy odsetek zarażenia (8.2%) odnotowałem w W. Gebal, 

a najniższy (0.5%) w W. Gharaba.  

 

 



Wieloletnia dynamika zakażenia Bartonella sp. w populacjach  A. dimidiatus z czterech 

dolin 

Ogólna ekstensywność zakażenia Bartonella sp. wynosiła 3.6%. Badania dynamiki 

występowania Bartonella sp. u A. dimidiatus wykazały zmiany ekstensywności zakażenia na 

przestrzeni lat. Najwyższą ekstensywność zakażenia Bartonella (8.3%) odnotowałem  w roku 

2004, a najniższą (0.8%) w roku 2008. Najwyższą ekstensywność zakażenia Bartonella sp. 

w zależność od dolin badań odnotowałem na poziomie 6.9% w populacji z W. Gebal, 

a najniższą (1.6%) w W. Gharaba. Badania dynamiki występowania Bartonella sp. 

u A. dimidiatus wykazały różnice między dolinami gdzie odnotowałem wzrost ekstensywności 

zakażeń Bartonella sp. w W. Arbaein i spadek występowania we wszystkich innych dolinach 

na przestrzeni 12 lat badań.  

 

Wieloletnia dynamika zakażenia Haemobartonella sp. w populacjach  A. dimidiatus 

z czterech dolin 

Wśród zbadanych pasożytów najczęściej występował rodzaj Haemobartonella sp. Ogólna 

ekstensywność zakażenia wynosiła 57.8%. Zaobserwowałem ogólny spadek w zarażeniu 

Haemobartonella sp. na przestrzeni lat – najwyższy odsetek wyniósł 85.2% w roku 2004, 

a najniższy - 27.9% w roku 2012. Badania dynamiki występowania Haemobartonella sp. 

u A. dimidiatus wykazały różnice między dolinami gdyż odnotowałem najwyższą 

ekstensywność zakażenia Haemobartonella sp. w W. Gebal –71.7%, a najniższą  w W. Gharaba 

(44.8%). 

 

Wieloletnia dynamika zarażenia T. acomys u A. dimidiatus w zależności od roku, dolin 

badań i wieku żywiciela oraz analiza molekularna i filogenetyczna pasożytów 

Ogólna ekstensywność zarażenia T. acomys wyniosła 15.8%. Najwyższą ekstensywność 

zarażenia (22.7%) odnotowano w roku 2004, a najniższą (11.9%) w roku 2012. Ekstensywność 

zarażenia T. acomys była najwyższa w W. Tlah (34.8%) i  W. Gharaba (21.9%), zaś najniższa 

w W. Arbaein (0.4%). Najwięcej zarażonych T. acomys osobników stwierdziłem w  drugiej 

klasie wiekowej (26.6%), a najniższy odsetek zarażeń- u dorosłych z trzeciej klasy wiekowej 

(10.4%). 

 Analiza molekularna i filogenetyczna 45 izolatów T. acomys z wykorzystaniem markera 

18S rDNA pozwoliła wyróżnić dwa warianty – A i B. Wariant A T. acomys wykryto u 44 

kolcomyszy, a wariant B tylko w jednym izolacie DNA. Różnica między wariantami wynosiła 

7 nukleotydów. Analiza filogenetyczna wykazała, że oba warianty T. acomys grupują się 



z innymi gatunkami Trypanosoma z różnych żywicieli i z różnych części świata, tworząc grupę 

monofiletyczną. Reprezentatywne sekwencje tych wariantów zostały wprowadzone do bazy 

GenBank NCBI jako pierwsze sekwencje tego gatunku.   

  

 Wieloletnia dynamika zarażenia Hepatozoon sp. u  A. dimidiatus w zależności od 

roku i dolin badań oraz analiza molekularna i filogenetyczna reprezentatywnej grupy 

izolatów z A. dimidiatus i  A. russatus 

 Ogólna ekstensywność zarażenia Hepatozoon sp. u A. dimidiatus wyniosła 29.7%. 

Najwyższą ekstensywność zarażenia (40%) odnotowałem w roku 2008 a najniższą (20.6%) 

w roku 2000. Był to jedyny pasożyt, dla którego zaobserwowano wzrost zarażenia na 

przestrzeni 12 lat badań. Większość zarażeń Hepatozoon sp. wykrywano w dwóch dolinach, 

W. Gharaba i W. Tlah, podobnie jak zarażenia T. acomys, co jest związane z występowaniem 

wektorów – pcheł Parapulex chephrensis, w tych dwóch dolinach (Bajer A., 2006). Najwyższą 

ekstensywność zarażenia odnotowałem w W. Tlah (58.9%) a najniższą w W. Gebal (6.3%). 

 Uzyskane sekwencje 18S rDNA Hepatozoon sp. z Egiptu porównywałem z innymi 

sekwencjami z bazy GenBank, w tym z sekwencjami H. erhardovae, występującego u nornicy 

rudej w Polsce (Alsarraf, 2012; Bajer et al., 2014b).  

 W celu określenia poziomu zmienności międzygatunkowej. Po przeprowadzeniu analiz 

molekularnych i filogenetycznych, wyróżniłem wśród swoich prób dwa warianty fragmentu 

genu 18S rDNA: A i B. Wariant A był reprezentowany przez 37 sekwencji i wykazał 

podobieństwo/ homologię rzędu 96.06% do H. ayorgbor z pytona z Ghany. Wariant A był 

szeroko rozpowszechniony i występował we wszystkich dolinach u A. dimidiatus  i A. russatus. 

Drugi wyróżniony wariant B (N=2) wykazał podobieństwo na poziomie 96.75% do H. 

ayorgbor. Wariant B występował tylko u kolcomyszy złotej A. russatus w W. Tlah w 2012 r. 

i W. Gharaba w 2004 r. Warianty A i B Hepatozoon różniły się 11 nukleotydami 

w porównywanym fragmencie genu, a analiza filogenetyczna otrzymanych sekwencji 

wykazała, że tworzą  jedną parafiletyczną grupę, która była odrębna od wszystkich innych 

gatunków Hepatozoon. Ze względu na niskie podobieństwo do opisanych gatunków 

Hepatozoon i brak sekwencji referencyjnych z H. acomys z rodzaju Acomys, opisanego na 

podstawie cech morfologicznych przez Mohammeda i Saounda (1972) za (Smith, 1996), nie 

jestem na razie w stanie określić, czy jest to nowy gatunek z rodzaju Hepatozoon, czy jest to 

właśnie H. acomys. Wymaga to dalszych badań.  

 

 



 

Część II: Opis nowego gatunku Babesia (Babesia behnkei) u D. dasyurus (Bajer et al. 2014) 

 Obserwacje mikroskopowe rozmazów krwi myszoskocza pozwoliły wyróżnić trofozoity 

Babesia sp., które były mniejsze od trofozoitów B. microti King’s College, referencyjnego 

szczepu utrzymywanego w myszach szczepu BALB/c w naszym zakładzie. Ze względu na 

rozmiar trofozoitów początkowo gatunek zaklasyfikowałem do rodzaju Theileria, jednakże 

przeprowadzone przeze mnie analizy molekularne i filogenetyczne pozwoliły ustalić,  że jest 

to nowy gatunek Babesia, odrębny od rodzaju Theileria i znanych gatunków Babesia. Pasożyty 

te występowały tylko u myszoskocza Dipodillus dasyurus w dwóch dolinach W. Arbaein 

i W. Gebal, a ogólna ekstensywność zarażenia tego gatunku gryzonia była wysoka i wynosiła 

39% (Bajer et al., 2014a).  

 W celu opisania gatunku B. behnkei, zmierzyłem średnicę trofozoitów B. behnkei 

(N=212) i porównałem z wymiarami trofozoitów B. microti King’s College. Średnica  

trofozoitu B. behnkei wynosiła  1.26 µm, a B. microti 1.46 µm. Analiza molekularna 

i filogenetyczna z wykorzystaniem 3 markerów genetycznych, prawie całego genu 18S rRNA 

(1700 pz), rejonu ITS1 (615 pz) i rejonu ITS2 (315 pz), wykazała odrębność genetyczną  tego 

pasożyta od wszystkich innych opisanych gatunków Babesia. Na podstawie analiz 18S rDNA, 

B. behnkei wykazała pewne podobieństwo (96% homologii)  do B. lengau z geparda 

z Południowej Afryki. Analiza filogenetyczna wykazała, że B. behnkei zgrupowała się 

z gatunkami Babesia o afrykańskim i amerykańskim pochodzeniu, w tzw. grupie Duncani, 

zawierającej także gatunki patogenne dla ludzi (Bajer et al., 2014a; Lack et al., 2012). Analizy 

filogenetyczne rejonów ITS1 i ITS2 dały bardzo podobny wynik do analizy 18S rDNA. Babesia 

behnkei jest trzecim po B. microti i B. rodhaini gatunkiem Babesia występującym u gryzoni. 

 

Dyskusja 

Główną rolę w kształtowaniu zgrupowań pasożytów krwi u gryzoni pełniły czynniki 

zewnątrzpopulacyjne. Zaobserwowałem wyraźną dynamikę wieloletnią zarażeń oraz różnice 

w ekstensywności i intensywności zarażeń oraz w średnim bogactwie gatunkowym zespołu 

pasożytów pomiędzy izolowanymi dolinami/ populacjami na przestrzeni 12 lat. Natomiast 

powodem ogólnego spadku badanych parametrów (ekstensywności, intensywności i bogactwa 

gatunkowego) w ciągu 12 lat mogła być przewlekła susza, objawiająca się wyraźnym 

zmniejszeniem opadów. Odnotowana średnia opadów deszczowych to 42.5 mm/rok w latach 

1970-1994, natomiast w latach 2001-2009 średnia opadów wynosiła tylko 15.5 mm/rok 

(Alsarraf et al., 2016). Podczas ostatnich wypraw badawczych 2008 i 2012 zaobserwowaliśmy 



degradację pokrycia roślinnością i wysychanie/ pustynnienie ogrodów należących do 

Beduinów w tych dolinach. Te zmiany klimatyczne, szczególnie brak wody, mogą wpływać 

negatywnie nie tylko na populację gryzoni, ale również na przeżycie wektorów 

hemopasożytów, a więc i na spadek transmisji.  

Zaobserwowałem występowanie T. acomys i Hepatozoon sp. najczęściej w dwóch 

dolinach, W. Gharaba i W. Tlah. Powodem tego może być obecność potencjalnego wektora –  

pchły z gatunku Parapulex chephrensis, która występowała najczęściej u kolcomyszy arabskich 

z W. Gharaba i Tlah, i była stwierdzona tylko jednorazowo w W. Arbaein w roku 2000  u dwóch 

osobników kolcomyszy (Alsarraf et al., 2016; Bajer A., 2006).  

Z czynników wewnątrzpopulacyjnych wiek żywiciela miał istotny wpływ na 

ekstensywność i intensywność zarażenia Hepatozoon sp. i T. acomys, z maksimum w drugiej 

i trzeciej klasie wiekowej A. dimidiatus. Wynika to z tego, że dłużej żyjące gryzonie są bardziej 

(częściej) narażone na infestacje przez wektory.  

W celu opisania nowego gatunku Babesia występującego u myszoskocza arabskiego 

D. dasyurus z Masywu Synaju (Egipt) wykonałem analizy mikroskopowe, molekularne 

i filogenetyczne. W oparciu o trzy markery genetyczne (18S rRNA, ITS1 i ITS2) wykazałem 

jego odrębność od B. microti i B. rodhaini,  gatunków typowych dla gryzoni, jak również od 

innych znanych gatunków Babesia i Theileria. Nowy gatunek Babesia wykazywał ograniczony 

zasięg (dwie doliny w masywie Synaju) i specyficzność żywicielską w stosunku do 

D. dasyurus, jego patogenność dla ludzi jest nierozpoznana. 

Podsumowanie 

Podsumowując dokonania w ramach mojej pracy doktorskiej: 

• Zaobserwowałem spadek średniego bogactwa gatunkowego, ekstensywności 

i intensywności zarażenia hemopasożytami na przestrzeni 12 lat. 

• Zaobserwowałem występowanie Hepatozoon i Trypanosoma tylko w dwóch 

izolowanych dolinach, w których stwierdzono odpowiednie dla nich wektory. 

•  Zaobserwowałem specyficzność żywicielską u T. acomys, która występowała tylko 

u kolcomyszy arabskiej (A. dimidiatus), natomiast Hepatozoon sp. wykazał pewną 

specyficzność żywicielską, gdyż wariant A stwierdzany był u obu gatunków z rodzaju 

Acomys, a wariant B tylko u kolcomyszy złotej (A. russatus).  

• Wieloletnie zmiany warunków środowiskowych (susza) na przestrzeni 12 lat 

prawdopodobnie miały wpływ na występowanie wszystkich żywych organizmów, 

w tym na spadek transmisji pasożytów wektorowanych. 



Otrzymane wyniki pozwoliły na sformułowanie następujących wniosków: 

• W badaniach wieloletnich można zaobserwować wyraźną dynamikę zarażeń oraz 

potwierdzić występowanie powtarzalnych różnic w zespołach pasożytów krwi 

izolowanych populacji żywicieli.  

• Zespół pasożytów krwi kolcomyszy arabskiej kształtuje się w zależności od 

właściwości badanych dolin oraz czynników wewnątrzpopulacyjnych. 

• Dla niektórych gatunków pasożtów wykazano specyficzność żywicielską, skutek 

koewolucji układu pasożyt-żywiciel (B. behnkei, T. acomys) 

• Mało przebadane gatunki gryzoni z trudno dostępnych rejonów świata mogą być 

zarażone nieznanymi nauce pasożytami.  

 
2. Summary  

Long-term field studies of parasite communities provide a powerful insight into ecological 

and evolutionary processes shaping host-parasite communities (Alsarraf et al., 2016; Bajer et 

al., 2014b). Small mammals, especially rodents, are good model hosts for such studies because 

their populations are abundant, heterogenous and highly dependent on environmental factors, 

including food availability and climatic conditions (Bujalska and Hansson, 2000; Flowerdew 

JR, 1984; Turner et al., 2014). Haemoparasites of rodents are well studied in Europe, North 

America, South America and Asia but there are comparatively few studies on the 

haemoparasites of rodents from Africa.  The parasites communities infecting Egyptian rodents, 

such as spiny mice (Acomys dimidiatus), golden spiny mice (Acomys russatus) and Wagner’s 

gerbils (Dipodillus dasyurus) are subject to change depending on a number of factors and 

complex interactions between them (Alsarraf et al., 2016). With regard to rodents from desert 

and semi-desert areas of Egypt, such factors were hypothesized to include unique 

environmental factors (such as humidity and temperature), specific for the year of the study 

(hereafter described as YEAR), or the place (dry valley, in arabic Wadi) where the rodents were 

trapped (hereafter described as SITE). Other factors affecting the structure of the haemoparasite 

communities of rodents are intrinsic factors that we took into account in our analyses (host age 

or sex). The rodent’s age was classified in three classes (juvenile, adult and mature) based on 

the body size, weight and sexual maturity of the host. 

We studied the effect of these external and intrinsic factors on the prevalence, abundance 

and species richness of 5 blood parasites species: Babesia, Bartonella, Haemobartonella 

(Mycoplasma), Hepatozoon and Trypanosoma in spiny mice (A. dimidiatus) from the Sinai 



Massif (Egypt). Fieldwork was conducted over 4–5 -week periods in August-September 

beginning in 2000 and repeated every 4 years.  

My PhD thesis is structured in two sections: the first focuses on a long-term dynamic 

study of the haemoparasites of the spiny mouse (A. dimidiatus), the representative rodent 

species from the Sinai Mountains. The second section comprises a description of a novel species 

of Babesia from Wagner’s gerbil   (D. dasyurus). 

I postulated the following hypotheses: 

1. Under desert and semi-desert condition we should observed long-term dynamic 

variation in the presence of  haemoparasites in rodents from the Sinai Massif.  

2. In four isolated valleys (Wadis), inhabited by similar groups of rodents, we should 

observed a different combination of blood parasites, while the degree of isolation 

of the host population should have consequences for the genetic diversity and the 

host specificity of the parasites. 

3. The intrinsic factors (age class and sex)  should influence the prevalence and 

abundance of the haemoparasite infections in rodents.  

4. The hitherto unaudited species of rodents could be infected with as yet unclassified 

novel species of blood parasites. 

The hypotheses concerning long-term dynamics of haemoparasite infections in spiny mouse 

were verified by realization of the following research aims.  

1. Determination of the dynamic presence of combinations of blood parasites in 

A. dimidiatus over a period of 12 years, based prevalence, abundance and species 

richness data in the populations of rodents in different years.  

2. Determination of the genetic diversity and the host specificity of the rodents’ 

haemparasite communities in the isolated mountain valleys in Sinai Massif.  

3. Determination of genetic diversity and the relationship between the species of 

haemparasites in A. dimidiatus.  

4. Description and characterization of novel species of parasites present in other 

rodents.  

 

Rodent trapping was conducted over 4–5 -week periods in August September in 2000, 

2004, 2008 and 2012, close to the town of St Katherine in the Sinai mountains, Egypt. Trapping 

was carried out in four montane dry valleys “wadis” (W. Arbaein, W. Gebal, W. Gharaba and 

W. Tlah), isolated from each other by mountain ranges. Rodents (N=1041, 857 spiny mice, 73  

golden spiny mice and 111 Wagner’s gerbil) were caught live in Sherman traps, identified to  



species level, and sex and age class were recorded. A blood sample was taken directly from the 

heart into EDTA for DNA isolation and two blood smears were made for microscopic analyses. 

I examined the blood smears by light microscopy and I detected blood cells (erythrocytes), 

infected with Babesia, Bartonella,and Haemobartonella, The presence of Trypanosoma  in the 

plasma was also recorded in 200 fields of vision for each blood smear.  In the case of 

Hepatozoon I count the number of infected leucocytes in a total of 50 leucocytes to 

determination the prevalence, and abundance of this species. I isolated the parasites’ DNA, 

using DNAeasy Blood & Tissue kit (Qiagen, USA) or MiniPrep Blood kit (AxyGen, USA). For 

the molecular and phylogenetic analyses I used the marker 18S rRNA to determine the genetic 

diversity of Hepatozoon [gene part 660 bp; (Inokuma et al., 2002)] and Trypanosoma [gene 

part 520 bp; (Noyes et al., 1999)], and gene part of rpoB for Bartonella [product size 333 bp; 

(Paziewska et al., 2011)]. For the description of the novel species of Babesia behnkei I used the 

markers, 18S rDNA [1700 bp (Matjila et al., 2008; Oosthuizen et al., 2008)], the ITS1 region 

[615 bp (Blaschitz et al., 2008; Nijhof et al., 2003)] and the ITS2 region [315 bp; (Blaschitz et 

al., 2008; Nijhof et al., 2003)].  

 

I section: Long-term dynamics of haemoparasite infections in spiny mice 

A. dimidiatus (Alsarraf et al. 2016) 

 To realize aims 1-3, I examined 835 spiny mice, and found the overall prevalence of 

haemoparasites in spiny mice to be 76.2%. I observed a decrease in the prevalence of 

haemoparasites over successive years of the study. The highest haemoparasites prevalence was 

recorded in 2004 (91.2%), while the lowest was in 2012 (53%). I observed also marked 

differences in the prevalence of haemoparasites in spiny mice from different valleys (Wadis) – 

I recorded the highest in W. Tlah (88.5%) and the lowest in W. Arbaein (68.8%). 

 

Long-term dynamic change in Babesia sp. in A. dimidiatus population from four 

valleys 

The overall prevalence of Babesia sp. was 3.1%. In A. dimidiatus there was a gradual 

decrease in the prevalence of Babesia sp. over the years of the study. The highest prevalence of 

Babesia sp. was recorded in 2004 (6.9%) and this fell to 0% by 2012. I recorded also differences 

in prevalence of Babesia sp. in  A. dimidiatus from different SITES, the highest prevalence 

being (8.2%) in W. Gebal and the lowest in W. Gharaba (0.5%). 

 



Long-term dynamics of Bartonella sp. infection in A. dimidiatus population from 

four valleys 

The overall prevalence of Bartonella sp. infection was 3.6%, however, the study found 

dynamic changes in the presence of Bartoenlla sp. in  A. dimidiatus over the years of the study. 

The highest prevalence of Bartonella sp. infection was 8.3%, recorded in 2004 and the lowest 

in 2008 (0.8%). In W. Gebal I recorded the highest prevalence of Bartonella sp. infection 

(6.9%) and the lowest was in the population of A. dimidiatus from W. Gharaba (1.6%). There 

were also marked temporal differences in prevalence of Bartonella sp. infection between SITES 

with prevalence of Bartonella increasing in W. Arbaein and decreasing in all other valleys over 

the years of study.  

 

Long-term dynamics of Haemobartonella sp. infection in A. dimidiatus from four 

valleys 

From among all the recorded species of parasites Haemobartonella sp. was the most 

prevalent in the population of A. dimidiatus, overall prevalence being 57.8%. I observed a fall 

in the prevalence of Haemobartonella over the years of the study, with the highest prevalence 

recorded (85.2%) in 2004 and the lowest (27.9%) in 2012. There were also differences in the 

prevalence of  Haemobartonella sp. infection between the valleys. I recorded the highest 

prevalence of Haemobartonella sp. infection in A. dimidiatus from W. Gebal (71.7%) and the 

lowest (44.8%) in W. Gharaba. 

 

Long-term dynamics of T. acomys infection in A. dimidiatus depending on year, 

valley of study and the host age,  and additional molecular and phylogenetic analyses of 

the parasite 

The overall prevalence of the T. acomys infection was 15.8%. The highest prevalence 

of infection was 22.7% in 2004, and the lowest was 11.9% in 2012. The highest prevalence of 

T. acomys infection was in W. Tlah (34.8%) and in W. Gharaba (21.9%), but the lowest was in 

W. Arbaein (0.4%). I record the highest prevalence of infection in adult (second age class) 

A. dimidiatus (26.6%) and the lowest in the mature (third age class) of A. dimidiatus (10.4%). 

Molecular and phylogenetic analyses of 45 isolates of T. acomys using a fragment of 

18S rRNA gene revealed two genetic variants A and B. Variant A was identified in 44 spiny 

mice, while variant B was present in just one isolate. Alignment of our two Trypanosoma 

variants revealed a difference of 7 nucleotides between them. Phylogenetic analysis revealed 

that our Trypanosoma sequences grouped together with species of Trypanosoma derived from 



other species of rodents from different parts of the world, and together they formed 

a monophyletic group. A representative sequence of each of these two variants is provided in 

the GenBank database, as the first sequence for T. acomys. 

 

Long-term dynamics of Hepatozoon infection in A. dimidiatus depending on year 

and valley of study, and additional molecular and phylogenetic analyses of 

a representative group of isolates from A. dimidiatus and A. russatus 

The overall prevalence of the Hepatozoon sp. infection in A. dimidiatus was 29.7%. The 

highest prevalence of infection (40%) was recorded in 2008 and the lowest (20.6%) in 2000. 

Hepatozoon sp. was the only parasite which showed an increase in prevalence over the12 years 

of study. Almost all cases of the presence of this parasite were recorded in W. Gharaba and 

W. Tlah,  similarly to T. acomys , the prevalence of which was associated with the presence of 

the vector Parapulex chephrensis in these two valleys (Bajer A., 2006). The highest prevalence 

was recorded in W. Tlah (58.9%) and the lowest in W. Gebal (6.3%). 

The 18S rDNA sequence of Hepatozoon sp. from Egypt was aligned with other 

representative sequences from the GenBank database to determine the diversity between the 

species. Among these sequences was one of H. erhardovae, which infects bank voles in Poland 

(Alsarraf, 2012; Bajer et al., 2014b). Molecular and phylogenetic analyses led to the 

identification of two variants of the 18S rDNA gene fragment: A and B. Variant A was 

represented by 37 sequences, these sequences showing 96.06% identity to H. ayorgbor from 

a python from Ghana. Variant A was widespread, identified in 32 A. dimidiatus and 5 

A. russatus at all sites. Variant B was identified only in 2 A. russatus (1 from W. Gharaba, 2004 

and 1 from W. Tlah, 2012) and showed 96.75% identity to H. ayorgbor. The differences 

between these two variants were 11 nucleotides and the phylogenetic analyses showed that the 

two variants clustered together forming a paraphyletic group, separated from all other species 

of Hepatozoon. Because of the low similarity of our isolate to the classified species of 

Hepatozoon and there being no reference sequence for H. acomys in GenBank which has been 

described only on morphological features by Mohammed and Saound (1972) from (Smith, 

1996), I have not yet determined whether our isolate is a new species of Hepatozoon or whether 

it is in fact just H. acomys. This requires further study. 

 

 

 



II section: description of  a new species of Babesia (Babesia behnkei) from D. dasyurus 

(Bajer et al. 2014) 

Microscopic observations of blood smears led to the identification of trophozoites of 

Babesia sp. which were smaller than trophozoites of B. microti King’s College, the reference 

strain maintained in BALB/c mice in our department. Due to the size of the trophozoites, at first 

I classified them as Theileria sp. but when I completed the molecular and phylogenetic analyses 

I established that it was a new species of Babesia, distinct from Theileria and other classified 

species of Babesia. These parasites were recorded just in Wagner’s gerbil D. dasyurus in two 

valleys W. Arbaein and W. Gebal. The overall prevalence was 39%. In order to provide 

a detailed description of the species B. behnkei, I measured the diameter of trophozoites of 

B. behnkei  (N=212) and compared these measurements with the diameter of trophozoites of 

B. microti King’s College. The mean diameter of the B. behnkei was significantly smaller 1.26 

µm than B. microti 1.46 µm. For the molecular and phylogenetic analyses,  3 genetic markers 

were used, near-full-length of 18S rDNA (1700 bp), region ITS1 (615 bp) and region ITS2 (315 

bp) and these analyses revealed that Babesia behnkei was genetically distinct from all other 

species of Babesia. A BLAST search of 18S rDNA  of B. behnkei showed 96% identity to 

B. lengau from a Cheetah from South Africa. The phylogenetic analyses revealed that 

B. behnkei clustered in group Duncani with American and African species of Babesia (Bajer et 

al., 2014a; Lack et al., 2012). Phylogenetic analyses for ITS1 and ITS2 gave very similar results 

to 18S rDNA. B. behnkei is the third species of Babesia infecting rodents to be described, after 

B. microti and B. rodhaini.  

 

Discussion  

As predicted, external factors (site and year of study) had a much greater influence on 

the haemoparasites community compared with intrinsic factors. Long-term dynamic changes of 

haemoparasites were observed in prevalence, abundance and in mean species richness during 

the 12 years of the study and these could be associated with the chronic drought, reflected in 

a substantial reduction in rainfall over this period in this part of Egypt. The recorded average 

rainfall was 42.5 mm / year in the period 1970-1994, while in 2001-2009 the average rainfall 

was only 15.5 mm / year (Alsarraf et al., 2016). During the last expeditions to sample the rodent 

populations in 2008 and 2012, we observed degradation of plant cover and the drying / 

desertification of gardens belonging to the Bedouin in these valleys. Climate change, 

particularly lack of water, may adversely affect not only the population of rodents but also the 

survival of the vectors of haemoparasites and therefore result in a decrease in transmission. 



I observed the occurrence of T. Acomys and Hepatozoon sp., mostly in just the two valleys, 

W. Gharaba and W. Tlah. The reason may be the presence of a potential vector - flea of the 

species Parapulex chephrensis, which appeared most often in the spiny mouse in  W. Gharaba 

and W. Tlah, and was found only once in W. Arbaein in 2000 on two individual spiny mice. 

From among the intrinsic factors, age had a significant effect on the prevalence and abundance 

of Hepatozoon sp. and T. acomys infection, with maximum values for both parameters recorded 

in the second and third age classes of A. dimidiatus. This is due to the fact that the longer lived 

rodents are more (often) exposed to infestation by the vector. In order to describe the new 

species of Babesia from D. dasyurus from the Sinai Massif (Egypt) I used microscopic, 

molecular and phylogenetic analyses. Based on the three genetic markers (18S rRNA, ITS1 and 

ITS2) this showed the distinct identity of B. behnkei and its separation from the B. microti and 

B. rodhaini, typical species of rodent Babesia, as well as other known species and Theileria. 

The new species of Babesia had limited coverage (two valleys in the Sinai massif) and host 

specificity to D. dasyurus. Its pathogenicity for humans is as yet unstudied and unknown. 

 

Summary 

To summarize the achievements in my PhD thesis  

 I have observed a decrease in the mean species richness, prevalence and abundance of 

haemoparasites infection over 12 years in our study sites. 

 I have observed the presence of T. acomys and  Hepatozoon sp. only in two isolated 

valleys, wherein the proposed vectors of these species are suitable for transmission. 

 I observed host specificity of T. acomys, which appeared only in spiny mouse 

(A. dimidiatus), while Hepatozoon sp. showed some specificity for its hosts, since 

variant A was found in both species of the genus Acomys, but variant B only in golden 

spiny mice (A . russatus). 

 Long-term changes in environmental conditions (drought) over 12 years probably have 

had an impact on the incidence of all living organisms, including a decrease in the 

transmission of rodent haemoparasites in the region. 

 

The results led to the following conclusions: 

 Long-term research, such as this recorded in the current thesis, is necessary to detect 

clear dynamic temporal patterns of change in the prevalence of infections and to 



identify stable as well as dynamic features in the prevalence and abundance of  

combinations of blood parasites from isolated populations of hosts. 

 The prevalence of blood parasites of spiny mice is dependent on ecological features 

of the valleys in which they live and host intrinsic factors. 

 Some parasite species have been demonstrated to be host specific, the consequence 

of co-evolution of host and parasite (B. behnkei, T. Acomys). 

 Wild rodents from remote places in the world which have not been studied well 

could harbor as yet unclassified novel species of parasites. 
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Abstract

Background: Long-term field studies of parasite communities are rare but provide a powerful insight into the
ecological processes shaping host-parasite interactions. The aim of our study was to monitor long-term trends in
the haemoparasite communities of spiny mice (Acomys dimidiatus) and to identify the principal factors responsible
for changes over a 12 year period.

Methods: To this end we sampled four semi-isolated populations of mice (n = 835) in 2000, 2004, 2008 and 2012 in
four dry montane valleys (wadis) located in the Sinai Massif, Egypt.

Results: Overall 76.2 % of spiny mice carried at least one of the five haemoparasite genera (Babesia, Bartonella,
Haemobartonella, Hepatozoon, Trypanosoma) recorded in the study. Prevalence of haemoparasites varied significantly
between the sites with the highest overall prevalence in Wadi Tlah and the lowest in W. El Arbaein, and this changed
significantly with time. In the first two surveys there was little change in prevalence, but by 2008, when the first signs
of a deepening drought in the region had become apparent, prevalence began to drift downwards, and by 2012
prevalence had fallen to the lowest values recorded from all four sites over the entire 12-year period. The overall mean
species richness was 1.2 ± 0.03, which peaked in 2004 and then dropped by more than 50 % by 2012. Species richness
was highest among mice from Wadi Tlah and peaked in age class 2 mice (young adults). Site was the most significant
factor affecting the prevalence of individual parasite species, with Trypanosoma acomys and Hepatozoon sp. occurring
mainly in two wadis (W. Tlah & W. Gharaba). In four of the five genera recorded in the study we observed a significant
drop in prevalence or/and abundance since 2004, the exception being Hepatozoon sp.

Conclusions: During the 12-year-long period of study in the Sinai, we observed dynamic changes and possibly even
cycles of prevalence and abundance of infections which differed depending on parasite species. Although the exact
reasons cannot be identified at this time, we hypothesize that the effects of a 15-year-long scarcity of rainfall in the
local environment and a fall in host densities over the period of study may have been responsible for a drop in
transmission rates, possibly by a negative impact on vector survival.

Keywords: Acomys dimidiatus, Acomys russatus, haemoparasites, Haemobartonella, Bartonella, Hepatozoon,
Trypanosoma, Babesia, Species-richness, Prevalence, Abundance, Sinai, Drought, Between year variation
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Background
Long-term field studies of parasite communities provide a
powerful insight into ecological and evolutionary processes
shaping host-parasite interactions over time. Small
mammals, especially rodents, are good model hosts for
such studies because their populations are abundant,
heterogenous and highly dependent on environmental
factors, including food availability and climatic conditions
[1–3]. The high heterogeneity and the dynamic between-
and within-year variation of rodent populations allow also
investigation of the relative contribution of a range of quan-
tifiable intrinsic and extrinsic factors underlying some of
the dominant patterns of variation in parasitic infections
observed in the field [4–7]. Each rodent community can be
regarded as comprising a set of different functional sub-
groups including, for example, settled, territorial adults of
both sexes and mobile juveniles, which may differ in their
exposure and susceptibility to infection [8].
Climatic conditions are believed to play a crucial role in

shaping plant or animal communities in different habitats,
including those living in arid environments such as the
deserts of the Middle East, and are likely also to have a
major impact on the parasite communities of the indigen-
ous hosts. However, other than in short-term catastrophic
events (e.g. earthquakes, intense storms etc.), the influence
of climatic changes is likely to be slow over a prolonged
period of time and hence long-term ecological studies are
essential to identify links between changing climatic
conditions and disease.
In earlier studies we have shown that the haemoparasite

communities of Acomys dimidiatus vary markedly between
subpopulations of spiny mice living in four distinct dry
semi-isolated desert valleys (wadis) in the Sinai mountains
of Egypt. These four wadies are segregated from each other
by natural barriers [9, 10] and they differ in altitude but
ecologically they show many similarities although distinct
differences have also been recorded [11]. Such isolated or
semi-isolated subpopulations of animals may differ in the
stresses to which they are subjected in each site, including
pathogens, and hence may experience different selection
pressures created by the specific conditions in their home
range (the geographical mosaic theory of co-evolution;
[12]). Haemoparasites in particular are likely to be an
important source of selective pressure on hosts because
they are often associated with pathogenicity (e.g. acute
babesiosis, trypanosomiasis; [13–15]) and hence, resist-
ance/tolerance of such infections confers enormous
fitness benefits [16–18]. In this context it is pertinent
that in our first survey in 2000, the haemoparasite com-
munity of the spiny mice living in these wadies were
more diverse [10] than in our concurrent and subse-
quent studies on the haemoparasites of common or
bank voles in Poland [4, 19–21] or in other studies on
rodents [22–24].

We continued to monitor the haemoparasites of
the same spiny mouse populations in 2004, 2008 and
2012 in order to assess the stability of the epidemio-
logical patterns that were observed in 2000. Here,
building on the resources collected in these four
expeditions to the Sinai and the resultant database
on natural infections in wild spiny mice, we report
on the spacio-temporal stability of some haemopara-
site species carried by A. dimidiatus and on the dy-
namic changes in others in our study sites. Detailed
morphometric data on each animal also allowed the
effect of host intrinsic factors on haemoparasites to
be assessed. We predicted that the effects of host age
and sex would be consistent and repeatedly observable in
successive surveys, showing little between-year variation
in magnitude of the effect due to co-evolution of the hosts
and parasites involved. Haemoparasites are vector-borne
pathogens (VBP) and in short-lived host species, such as
spiny mice, we would expect a significant increase in the
prevalence of VBP with host age, as the probability of
being infested with ticks or fleas carrying VBP increases
also with host age. However, host immune responses to
each of the haemoparasites differ, and where host-
protective immunity is generated, we would also expect
both prevalence and abundance of infection to decline in
the oldest age class [25]. We predicted that extrinsic
factors (unique abiotic conditions associated with
certain wadi and/or particular years of study) would
have a greater influence resulting in repeatable patterns
(for between-site differences) or distinct between-
survey dynamics (for between-year differences). While
abiotic conditions are largely ‘unpredictable’ for both
hosts and parasites, the climatic changes in the Sinai
have been well documented [26–28] and in this long-
term study of the parasites of spiny mice we had an
opportunity to observe the impact of decreasing water
availability on host and parasite populations/communi-
ties. Egypt is the most arid country on Earth [29],
classified as ‘hyper-arid’ in climatology. Because of the
alarming reduction in the water supply in the montane
wadies of S. Sinai as a consequence of a long period
(15 years) of no or only very low rainfall and the
resulting increasing aridity of the local environment
with associated loss of arable land (Bedouin gardens),
clearly apparent during the expeditions in 2008 and
2012 (compared with the first two expeditions in 2000
and 2004), we expected marked differences in parasite
community structure over this period of 12 years. For
parasite isolates obtained in 2004–2012 we carried out
also preliminary molecular characterization and phylo-
genetic analyses. Our data provide a novel insight into
the ecology of the haemoparasites of rodent hosts
living in semi-isolated, hyper-arid habitats, about which
little is currently known.
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Methods
Field studies in Sinai, Egypt
Fieldwork was conducted over 4–5 -week periods in
August-September in 2000, 2004, 2008 and 2012 and was
based at the Environmental Research Centre of Suez Canal
University (2000, 2004) or at Fox Camp (2008, 2012) in the
town of St Katherine, South Sinai, Egypt. Trapping was
carried out in four montane wadis (dry valleys) in the
vicinity of St Katherine. The local environment and general
features of the four study sites (Wadi ElArbaein, W. Gebal,
W. Tlah, W. Gharaba), as well as their spatial relationships
with one another, have been described elsewhere [9]. At
each site, rodents were caught live in Sherman traps, placed
selectively among the rocks and boulders around walled
gardens and occasionally along the lower slopes of wadis.
These were set out at dusk, and inspected in the early
morning before exposure to direct sunlight. All traps were
brought into the local or main camp, where the animals
were removed, identified and processed. Traps were re-set
the following evening.
The three most abundant rodent species (A. dimidiatus,

A. russatus, D. dasyurus) were sampled- sexed, weighed,
measured and scrutinized for obvious lesions as described
by Behnke et al. [9]. Ectoparasites visible during field
examination were removed and placed in 70 % ethanol.
Blood and faecal samples were taken and animals were
then either fur marked individually or ear clipped and
released close to the point of capture, or returned to the
main camp at St Katherine for autopsy.
Animals were allocated to three age classes, principally

on the basis of body weight and nose-to-anus length. For
male and non-pregnant female mice separately, these two
measurements were reduced by principal components
analysis, and principal component 1 (for males Eigen
value = 1.87 and accounted for 93.5 % of variance and for
non-pregnant females the Eigen value was 1.83, account-
ing for 91.4 % of variance) together with observations
recorded for each animal in the field (for males whether
scrotal or non-scrotal, for females whether lactating,
perforate or pregnant), was used to guide allocation of ani-
mals to three age classes. Full details of the methods used
and statistical verification of this approach are given in
Behnke et al. [9] (all means are cited ± one standard error).
Age class 1 comprised the youngest animals, mostly
weanlings and very young non-reproductively active
juveniles (mean weight for males = 17.8 g ± 0.40, n = 74;
females = 19.5 g ± 0.31, n = 116), age class 2 comprised
juveniles and young adults (mean weight for males =
28.1 g ± 0.29, n = 114, non pregnant females = 27.4 ± 0.30,
n = 104; pregnant females = 28.8 ± 2.49, n = 3), and age
class 3 comprised the adult and oldest animals in the
study (mean weight for males = 41.5 ± 0.42, n = 184; non-
pregnant females = 40.6 g ± 0.44, n = 182; pregnant
females = 47.4 ± 1.09, n = 58).

Blood collection and DNA extraction
Thin blood smears were prepared from drops of blood
taken from the retro-orbital plexus using heparinized
capillary tubes of animals lightly anaesthetized with
ether during examination in the field and from the heart
of those that were autopsied. Blood smears were air-dried,
fixed in absolute methanol and stained for 1 h in Giemsa
stain in buffer at pH 7.2. Each smear was examined under
oil immersion (×1000 magnification). Parasites were
counted in 200 fields of vision. Microscopical observation
of stained blood smears was used as the only detection
method for study in 2000 and for Babesia spp. In
subsequent expeditions, in addition to blood smears,
molecular techniques were used for species identification
of Bartonella, Hepatozoon and Trypanosoma but confined
to samples that were positive by microscopical observation
in 2004 and 2008, and as the diagnostic method for all
samples in 2012. Blood from the tail vein was collected on
FTA classic cards (Whatman, UK) for the long-time
preservation of DNA. From the culled animals, 200 μl of
whole blood were also collected into 0.001 M EDTA and
frozen at -20 °C.
Genomic DNA was extracted from whole blood using

DNAeasy Blood & Tissue kit (Qiagen, USA) or AxyPrep
MiniPrep Blood kit (AxyGen, USA) and stored at a
temperature of -20 °C. DNA from FTA cards was
cleaned with FTA purification Reagent (Whatman, UK)
according to the manufacturer’s instructions.

Molecular characterization
The extracted DNA was subjected to specific PCRs as
described in detail in Bajer et al. [4]. The primers and
cycling conditions used in this study are listed in a table
(Additional file 1). Reactions were performed in 1× PCR
buffer, 0.2 U Taq polymerase, 1 μM of each primer and
2 μl of the extracted DNA sample. Negative controls
were conducted in the absence of template DNA. PCR
products were subjected to electrophoresis on a 1.5 %
agarose gel, stained with Midori Green stain (Nippon
Genetics GmbH) and sequenced by a private company
(Genomed S.A., Poland).

Genotyping and phylogenetic analysis
Bartonella sp.
One Bartonella isolate obtained from A. dimidiatus from
W. Tlah in 2004 was genotyped by the amplification and
sequencing of a 333-bp fragment of the rpoB region [30].

Hepatozoon
Thirty nine isolates derived from A. dimidiatus and A.
russatus in 2004, 2008 and 2012 from all sites (Table 1)
were investigated by the analysis of a 660 bp 18S rRNA
gene fragment [31]. First, all obtained sequences were
aligned using MEGA v. 6.0. The phylogenetic analyses
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including our sequences (660 bp) and sequences of
Hepatozoon spp. deposited in the GenBank database
were conducted in MEGA v. 6.0 [32]. A representative
tree for 18S rDNA sequences was obtained using the
Maximum Likelihood method and a Tamura 3-
parameter (I + G) model.

Trypanosoma
Forty five isolates derived from A. dimidiatus from 2004,
2008 and 2012 from W. Gebal (n = 1), W. Gharaba (n = 15)
and W. Tlah (n = 29) were investigated by the analysis of a
520 bp 18S rRNA gene fragment [33]. The phylogenetic
analyses including our sequences (520 bp) and other
sequences of Trypanosoma spp. deposited in the GenBank
database were conducted in MEGA v. 6.0 [32]. A rep-
resentative tree for 18S rDNA sequences was obtained
using the Maximum Likelihood method and a Tamura
3-parameter (I + G).

Statistical analysis
Prevalence (percentage of animals infected) was estimated
based on microscopical observations and values are
reported with the 95 % confidence limits, calculated by be-
spoke software based on the tables of Rohlf and Sokal [34].
The intensity of infection in each animal was quantified as
the number of infected red blood cells (iRBC) [for Babesia,
Bartonella, Haemobartonella (Mycoplasma)] or parasites
(for Trypanosoma, Hepatozoon) in 200 fields of vision at
×1000 magnification and mean abundance is the average
of this measure, including all the sampled animals whether
infected or not. Species richness was calculated as the
number of different haemoparasite species in each animal.
When samples were only positive by PCR (in 2012), an
intensity of 1 iRBC/1 parasite in 200 fields of vision was
implemented into quantitative statistical analysis.
The statistical approach adopted has been documented

comprehensively in our earlier publications [4, 6, 7]. For
analysis of prevalence we used maximum likelihood
techniques based on log - linear analysis of contingency
tables in the software package IBM SPSS (version 21.0.0,
IBM Corp). Initially, full factorial models were fitted, in-
corporating as factors SEX (2 levels, males and females),
AGE (3 levels), YEAR of study (4 levels, each of the four
surveys), and SITE (4 levels, the four study sites). The
presence of parasites was implemented as INFECTION

and was considered as a binary factor (2 levels, present
or absent). These factors were fitted initially to all
models that were evaluated. For each level of analysis in
turn, beginning with the most complex model, involving
all possible main effects and interactions, those combi-
nations that did not contribute significantly to explain-
ing variation in the data were eliminated in a stepwise
fashion beginning with the highest level interaction
(backward selection procedure). A minimum suffi-
cient model was then obtained, for which the likeli-
hood ratio of χ2 was not significant, indicating that
the model was sufficient in explaining the data. The
importance of each term (i.e. interactions involving
INFECTION) in the final model was assessed by the
probability that its exclusion would alter the model
significantly and these values relating to interactions
that included INFECTION are given in the text. The
remaining terms in the final model that did not in-
clude INFECTION are not given but can be made
available from the authors on request.
For analyses of quantitative data we used general

linear models (GLM) with normal errors implemented
in R version 2.2.1 (R Core Development Team) and the
residuals were checked for approximate Gaussian
distribution. When the residuals failed to meet the
requirements of Gaussian model we explored models
based on log10 (X + 1) transformed data and generalised
linear models with negative binomial or Poisson error
structures. Full factorial models that converged satisfac-
torily were simplified using the STEP procedure and
tested for significance using deletion of terms
beginning with the highest order interaction by
comparing models with or without that interaction.
Changes in deviance (DEV) are given for models based
on Poisson errors (interpreted as Chi2 values), for
models based on Gaussian errors we give F and for
those based on negative binomial errors the likelihood
ratio (LR). Minimum sufficient models were then fitted
(all significant interactions and main effects plus any
main effects that featured in interactions) and the
process was repeated to obtain values for changes in
deviance, test statistics and probabilities. Finally, if the
data did not meet the assumptions of parametric tests,
we employed non-parametric tests (Kruskal- Wallis test
and the Mann - Whitney U-test).

Table 1 Hepatozoon isolates/variants by the host, site and year of study

2004 2008 2012 Total

Arbaein Gebal Gharaba Tlah Arbaein Gebal Gharaba Tlah Arbaein Gebal Gharaba Tlah

A. dimidiatus Variant A 0 1 1 0 4 3 3 4 5 0 2 9 32

A. russatus Variant A 0 0 0 0 1 1 2 0 0 0 0 1 5

Variant B 0 0 1 0 0 0 0 0 0 0 0 1 2

Total 0 1 2 0 5 4 5 4 5 0 2 11 39
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Ethical issue
Rodents from St Katherine National Protectorate were
sampled by agreement with the St Katherine National
Protectorate authorities obtained for each set of field-
work. A maximum of 40 % of the captured rodents from
each site were culled by agreement with the St Katherine
National Protectorate authorities.

Results
Molecular identification of parasite species (2004, 2008
and 2012)
Bartonella sp.
One Bartonella sp. isolate obtained from A. dimidiatus
from W. Tlah in 2004 was successfully genotyped by the
amplification and sequencing of a 333-bp fragment of the
rpoB region. Comparison with the GenBank database
revealed that the isolate showed the highest sequence
homology (99.37 %; 317/319 bp) with Bartonella acomydis
strain KS2-1 obtained from A. russatus (AB529942). This
reference strain was identified in the golden spiny mouse
imported from Egypt to Japan as an exotic pet [35].

Hepatozoon sp.
Thirty nine Hepatozoon sp. isolates obtained from 2004,
2008 and 2012 from all sites and two host species, A.
dimidiatus and A. russatus (Table 1), were genotyped by
sequencing of a 660 bp fragment of the 18S rRNA gene.
Two genetic variants of Hepatozoon were identified, vari-
ant A and B. Variant A was widespread, identified in 32 A.
dimidiatus and 5 A. russatus at all sites (Table 1). Four
representative sequences of this variant were deposited
in the GenBank database under the accession numbers
KT337467, KT337468, KT337471 and KT337472.
Variant B was identified only in 2 A. russatus (1 from
W. Gharaba, 2004 and 1 from W. Tlah, 2012). Both se-
quences of this variant were deposited in the GenBank
database under the accession numbers KT337469 and
KT337470.
A BLAST search in the GenBank database revealed,

that variant A showed the highest sequence homology
(96.23 %) to Hepatozoon sp. AO5 from the olive grass
mouse, Abrothrix olivaceus, from Chile (FJ719818) and
96.06 % sequence homology to H. ayorgbor from the
royal python, Python regius, from Ghana (EF157822).
Variant B showed the highest sequence homology
(96.75 %) to H. ayorgbor from P. regius (EF157822) and
97.09 % to Hepatozoon sp. AO5 from A. olivaceus
(FJ719818). Both variants showed a lower sequence
homology with Hepatozoon isolates from jerboas Jaculus
orientalis and J. jaculus (95.5–96.5 %) [36].
Alignment of our two Hepatozoon variants revealed a

difference of 11 nucleotides between them. Alignment of
these two variants with the two most similar sequences
of Hepatozoon from the GenBank database is given in

Additional file 2. Phylogenetic analysis revealed that our
Hepatoozon sequences grouped together with genotypes/
species of Hepatozoon derived from other species of
rodents from different parts of the world [i.e. A.oliva-
ceus, A. sanborni, Bandicota indica, Jaculus spp., Sciurus
vulgaris, Clethrionomys (Myodes) glareolus] and from
some species of reptiles, but were distant from Hepa-
tozoon genotypes/species found in carnivores (i.e. H.
felis, H. americanum, H. ursi) (Fig. 1).

Trypanosoma sp.
Forty - five Trypanosoma isolates were obtained and ge-
notyped: 13 isolates from 2004, 10 isolates from 2008
and 22 isolates from 2012. All isolates were derived from
A. dimidiatus, mostly from just two wadis where this
parasite was found during the study period: 15 isolates
from W. Gharaba and 29 isolates from W. Tlah.
Additionally, one isolate from W. Gebal was obtained
and genotyped. Isolates were genotyped by the amplifica-
tion and sequencing of a 520-bp fragment of the 18S
rRNA gene. Two genetic variants of Trypanosoma were
identified, variant A and B. Variant A was widespread, and
identified in 44 A. dimidiatus from W. Gebal, Gharaba
and Tlah (2004, 2008 and 2012). One representative se-
quence of variant A was deposited in the GenBank data-
base under the accession number KT337473. Variant B
was identified only in one isolate from A. dimidiatus from
W. Tlah in 2012. The sequence of this variant was depos-
ited in the GenBank database under the accession number
KT337474.
A BLAST search in the GenBank database revealed, that

both variants A and B showed the highest sequence hom-
ology to a Trypanosoma sp. isolate from A. dimidiatus
from one of our own earlier expeditions to Egypt (100 %;
HQ324793) (direct submission). The next closet matches
(95.94 %) of variant A were Trypanosoma sp. from
Anderson’s red-backed vole, Eothenomys andersoni, from
Japan (AB242276) and T. microti from the field vole, Micro-
tus agrestis, from the UK (AJ009158). Variant B showed the
next highest homology (97.39 %) to Trypanosoma sp. B08-
471 from a squirrel flea, Ceratophyllus (Monopsyllus) sciur-
orum from the Czech Republic (KF054111) and to
T. microti from M. agrestis from the UK (AJ009158).
Alignment of our two Trypanosoma variants revealed a

difference of 7 nucleotides between them. Alignment of
these two variants with the most similar sequences of
Trypanosoma from the GenBank database is presented in
Additional file 3. Phylogenetic analysis revealed that our
Trypanosoma sequences grouped together with species of
Trypanosoma derived from other species of rodents from
different parts of the world (T. blanchardi, T. evotomys, T.
grosi, T. kuseli, T. lewisi, T. microti, T. musculi) and were
distant from the key pathogenic species,T. brucei or T. cruzi
(Fig. 2).
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KJ499516.Hepatozoon sp. JPM-2014. Jaculus jaculus.Mauritania

FJ719818.Hepatozoon sp. AO5.Abrothrix sanborni. Chile

KJ499535.Hepatozoon sp. JPM-2014.Jaculus jaculus. Mauritania

KJ499527.Hepatozoon sp. JPM-2014. Jaculus orientalis.Morocco

HQ317910.Hepatozoon sp. V46Hep Th. v.s. komaini. Thailand

EF157822.Hepatozoon ayorgbor. Python regius. Ghana

AB181504.Hepatozoon sp. HepBiCM001.Bandicota indica. Thailand

EF222259.Hepatozoon sp. squirrel 1.Sciurus vulgaris. Spain

KF418366 .Hepatozoon erhardovae Myodes glareolus. Poland

JX644998.Hepatozoon sp. KR-2012 isolate HEP8.Myodes glareolus. Hungary

AY600626.Hepatozoon sp. BV1.Myodes glareolus. Spain

KF418367.Hepatozoon erhardovae Myodes glareolus. Poland 

AY600625.Hepatozoon sp. BV2.Myodes glareolus. Spain

KT337470 Hepatozoon sp. I.274-2012-Talh. Acomys russatus . Egypt

KT337469 Hepatozoon sp. I.164-2004-Gharaba. Acomys russatus. Egypt

KT337467 Hepatozoon sp. I.79—2004-Gebal. Acomys dimidiatus. Egypt

KT337468 Hepatozoon sp. I.1-2008-El.Aerbein. Acomys dimidiatus. Egypt

KT337472 Hepatozoon sp. I.270-2012-Tlah. Acomys dimidiatus. Egypt

KT337471 Hepatozoon sp. I.129- 2008-Gharaba . Acomys russatus .Egypt

KM234649.Hepatozoon domerguei. Furcifer sp.. Madagascar

HM585204.Hepatozoon sp. CCS-2010 isolate V9.komaini. Thailand

KF246566.Hepatozoon seychellensis. Grandisonia alternans. Island

FJ719814.Hepatozoon sp. DG2. Dromiciops gliroides. Chile

FJ719813.Hepatozoon sp. DG1. Dromiciops gliroides. Chile

EU146062.Hepatozoon americanum. Canis familiaris. USA

AF176837.Hepatozoon catesbianae. Rana catesbiana. Canada

KP119773.Hepatozoon theileri. Amietia quecketti. South Africa.

EF222257.Hepatozoon sp. .Martes martes. Spain

GQ377216.Hepatozoon felis isolate Korea-1.Prionailurus bengalensis. Korea

AY620232.Hepatozoon felis isolate Spain 1.Felis catus. Spain

HQ829437.Hepatozoon ursi. Melursus ursinus. India

AF176836 Hepatozoon americanum

KM435071.Hepatozoon felis isolate Cuiaba. Felis catus. Brazil

AB771554.Hepatozoon felis. Prionailurus bengalensis euptilurus. Japan

JN181157.Hepatozoon sipedon. Nerodia sipedon sipedon. Canada

EU408317.Cryptosporidium bovis. Ovis aries. UK

HQ259589.Cryptosporidium parvum. Bos taurus. Kenya

EU408310.Cryptosporidium sp. A26. Ovis aries. UK
99

99

85

68

62

89

51

37

55

85

12

4

35

38

32

15

0.05

Variant A

Variant B

Fig. 1 The evolutionary history of Hepatozoon, based on a fragment of the 18S rRNA gene, was inferred using the Maximum Likelihood method
and a Tamura 3-parameter (I + G). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000
replicates) are shown next to the branches. The analysis involved 38 nucleotide sequences. All positions containing gaps and missing data were
eliminated. The nucleotide sequence of Cryptosporidium parvum, C. ovis and C. bovis were used as outgroups. Evolutionary analyses were conducted
in MEGA6.0
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AY491765.Trypanosoma rabinowitschae. Cricetus cricetus. France

AJ223568.Trypanosoma musculi. Mus musculus. Unknown

AY491764.Trypanosoma blanchardi. Eliomys quercinus. France

GU252214.Trypanosoma lewisi. Callithrix jacchus. Brazil

FJ694763.Trypanosoma grosi. . Apodemus agrarius. China

AB175626.Trypanosoma kuseli. Pteromys volans. Mongolia

AJ843896.Trypanosoma nabiasi. Spilopsyllus cuniculi. UK

AY043356.Trypanosoma evotomys. Myodes glareolus. UK

AJ009158.Trypanosoma microti. . Microtus agrestis. UK

KT337473 Trypanosoma sp.I.40-2004-Gebel. Acomys dimidiatus. Egypt (Variant A)

KT337474 Trypanosoma sp. I.243-2012-Itlah. Acomys dimidiatus .Egypt (Variant B)

AJ009161.Trypanosoma rotatorium. Rana catesbeiana. Canada

AF416559.Trypanosoma avium. Aquila pomarina. Slovakia

KJ867127.Trypanosoma binneyi. Ornithorhynchus anatinus. Australia

AF297086.Trypanosoma chelodinae. Emydura signata. Australia

AJ009143.Trypanosoma cobitis. Noemacheilus barbatulus.UK

U39580.Trypanosoma boissoni. Zanobatus atlanticus. Senegal

AJ131958.Trypanosoma cyclops. Macaca spp. Malaysia

KJ195884.Trypanosoma cervi. Dama dama. Poland

HQ664912.Trypanosoma melophagium. Melophagus ovinus. Croatia

AJ009164.Trypanosoma theileri. Bos taurus. Germany

AJ012411.Trypanosoma conorhini. Rattus rattus .Brazil

AJ012412.Trypanosoma leeuwenhoeki. Choloepus hoffmanni. Colombia

KF192984.Trypanosoma livingstonei. Hipposideros caffer. Mozambique

KF557749.Trypanosoma dionisii. Carollia perspicillata. Brazil

JN040992.Trypanosoma erneyi. Mops condylurus. Mozambique

X53917.Trypanosoma cruzi. Unknown. Peru

M31432.Trypanosoma cruzi. Unknown. Unknown.

GU966588.Trypanosoma sp. Phascolarctos cinereus. Australia

JF778738.Trypanosoma bennetti. Aquila pomarina. Slovakia

FJ649479.Trypanosoma irwini. Phascolarctos cinereus. Australia

HQ909083.Trypanosoma culicavium. Culex pipiens. Czech

M12676.Trypanosoma brucei. Unknown. 

KF041804.Leishmania hertigi. Coendou sp.. Panama

KJ697713.Leishmania chagasi. Canis lupus familiaris. Brazil

KF041810.Leishmania hoogstraali. Unknown. 94
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Fig. 2 (See legend on next page.)
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Environmental study in Sinai in the period 2000–2012
Acomys dimidiatus
A total of 857 individual spiny mice were caught over
the four surveys (Table 2) and blood samples of suffi-
cient quality to assess microscopically were obtained
from 835 (Table 3). Values for the trapping effort and
the resulting success in terms of mice caught/100 trap
hours (th), and number of mice as a percentage of traps
deployed in the field are summarized by wadi and year
of survey in Table 2. Analysis of these data by the

Kruskal-Wallis test with either YEAR or SITE as the
explanatory factor on each of the variables listed in turn,
revealed that the only significant effect was that of YEAR
on the number of trap hours (χ23 = 11.5, P = 0.009). As can
be seen in Table 2, the number of trap hours was larger in
2008 and 2012 compared with the two earlier years.
The structure and the sample sizes of each subset of the

host population that was assessed for haemoparasites, is
shown in Table 3 by site and year of study, host sex and
age. The numbers of mice sampled differed significantly
between the wadis (χ23 = 25.4, P < 0.001), with most from
W. Tlah and the least from W. Gebal. The distribution of
mice among age classes also varied significantly between
the sexes (SEX × AGE, χ22 = 6.8, P = 0.033) and between
the four surveys (YEAR × AGE, χ26 = 15.2, P = 0.019), and
these effects are taken into consideration in further
analyses.

Haemoparasites - all species combined
Overall 76.2 % (72.61–79.42) of the 835 spiny mice carried
at least one of the five haemoparasite genera recorded in
the study. Prevalence varied significantly between the sites
(Table 4; SITE × INFECTION, χ23 = 34.5, P < 0.001) with
the highest overall prevalence in W. Tlah and the lowest
in W. El Arbaein, and it changed significantly with time
(Table 4; YEAR × INFECTION, χ23 = 99.1, P < 0.001),
although the pattern of change of prevalence with time
varied between the sites (Fig. 3a; YEAR × SITE × INFEC-
TION, χ29 = 29.7, P < 0.001). In the first two surveys there
was little change in prevalence, but in 2008 prevalence
began to drift downwards, especially in W. Gharaba and
by 2012, prevalence had fallen in all four sites relative to
2000, although the least change was observed in mice
from W. Tlah. Age on its own was just the wrong side
of significance (AGE × INFECTION χ22 = 5.9, P = 0.051)
and as can be seen in Table 4, prevalence was lowest
among the young age class but only 9 % higher in the
intermediate age class and slightly lower among the
oldest mice, so overall little change with increasing host
age. However, the age of hosts featured also in two
interactions, one with year of survey (YEAR × AGE ×
INFECTION, χ26 = 13.5, P = 0.036) and one with loca-
tion of sampling (SITE × AGE × INFECTION χ26 = 19.0,
P = 0.004), which we did not explore further. There was
no significant difference in prevalence between the two
sexes and SEX did not figure in any of the interactions
that were detected.

(See figure on previous page.)
Fig. 2 The evolutionary history of Trypanosoma, based on the fragment of the 18S rRNA gene, was inferred using the Maximum Likelihood method and
a Tamura 3-parameter (I + G). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are
shown next to the branches. The analysis involved 36 nucleotide sequences. All positions containing gaps and missing data were eliminated.
The nucleotide sequence of Leishmania hertigi, L. chagasi and L. hoogstraali were used as outgroups. Evolutionary analyses were conducted
in MEGA6.0

Table 2 Trapping effort and relative population size of A.
dimidiatus

Trap
Hours

No. of
A. dimidiatus

Mice/100
tha

Trap
success (%)b

Arbaein 2000 2723 63 2.31 32.0

2004 3265 43 1.32 16.8

2008 3714 69 1.86 25.3

2012 3918 67 1.71 23.4

Combined 13620 242 1.78 23.9

Gebel 2000 1838 32 1.74 21.3

2004 2112 43 2.04 27.4

2008 3831 43 1.12 16.4

2012 3675 47 1.28 17.2

Combined 11456 165 1.44 19.6

Gharaba 2000 2136 28 1.31 16.5

2004 2913 61 2.09 29.2

2008 4314 54 1.25 16.1

2012 3989 52 1.30 17.2

Combined 13352 195 1.46 19.2

Tlah 2000 2199 46 2.09 27.7

2004 2117 70 3.31 45.2

2008 5344 80 1.50 20.1

2012 3988 59 1.48 19.9

Combined 13648 255 1.87 25.1

Combined 2000 8896 169 1.90 24.7

2004 10407 217 2.09 27.9

2008 17203 246 1.43 19.3

2012 15570 225 1.45 19.4

Grand
total/average

52076 857 1.65 22.0

aNo of animals caught per 100 trap hours (th)
bTrap success = percentage of traps occupied by a mouse after overnight
deployment of traps in the study sites
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The mean species richness was 1.2 ± 0.03. The best
fit model was one with a Gaussian error structure
(YEAR + SITE + AGE + YEAR x SITE + YEAR x AGE
on species richness, adjusted R2 = 0.31). The data in
Table 5 show that species richness peaked in 2004
and dropped by more than 50 % to 2012 (main effect
of YEAR, F3,826 = 45.9, P < 0.0001), was highest among
mice from W. Tlah (main effect of SITE, F3,826 = 38.1,
P < 0.0001) and peaked in age class 2 mice (main effect of
AGE, F2,826 = 5.5, P = 0.004). While species richness was
consistently highest among mice from W. Tlah, there was
significant variation in the rank order of species richness
among mice for the other wadis from survey to survey
(Fig. 4a; 2-way interaction YEAR × SITE, F9,820 = 7.5,
P < 0.0001), as illustrated for example among mice
from W. Gharaba for which species richness was
second highest in 2000 and 2004, but lowest in 2008.
The profile of species richness across the three age
classes also varied between surveys (Fig. 5a; YEAR ×
AGE, F6, 817 = 3.1, P = 0.006). In three surveys (2004,
2008 and 2012), species richness was highest among

Table 3 Numbers of Acomys dimidiatus examined by site, year,
host age and sex

Age class Totals

Site Year Sex Class1 Class2 Class3 Row Site and
year

El
Arbaein

2000 Males 6 15 7 28

Females 11 8 11 30 58

2004 Males 4 5 12 21

Females 7 6 9 22 43

2008 Males 3 10 17 30

Females 11 9 16 36 66

2012 Males 8 3 18 29

Females 9 11 15 35 64

All
years

Total males 21 33 54 108

Total females 38 34 51 123

Total combined
sexes

59 66 105 231

Gebal 2000 Males 3 7 2 12

Females 3 5 8 16 28

2004 Males 4 2 8 14

Females 8 1 20 29 43

2008 Males 5 2 12 19

Females 4 5 15 24 43

2012 Males 4 7 10 21

Females 7 1 16 24 45

All
years

Total males 16 18 32 66

Total females 22 12 59 93

Total combined
sexes

38 30 91 159

Gharaba 2000 Males 1 5 5 11

Females 2 6 9 17 28

2004 Males 5 8 12 25

Females 6 10 19 35 60

2008 Males 7 3 14 24

Females 8 5 15 28 52

2012 Males 1 4 14 19

Females 6 8 19 33 52

All
years

Total males 14 20 45 79

Total females 22 29 62 113

Total combined
sexes

36 49 107 192

Tlah 2000 Males 4 9 11 24

Females 4 5 13 22 46

2004 Males 2 15 17 34

Table 3 Numbers of Acomys dimidiatus examined by site, year,
host age and sex (Continued)

Females 7 8 21 36 70

2008 Males 13 12 14 39

Females 12 12 16 40 79

2012 Males 4 7 10 21

Females 11 8 18 37 58

All
years

Total males 23 43 52 118

Total females 34 33 68 135

Total combined
sexes

57 76 120 253

Total by
year

2000 Males 14 36 25 75

Females 20 24 41 85

Both sexes 34 60 66 160

2004 Males 15 30 49 94

Females 28 25 69 122

Both sexes 43 55 118 216

2008 Males 28 27 57 112

Females 35 31 62 128

Both sexes 63 58 119 240

2012 Males 17 21 52 90

Females 33 28 68 129

Both sexes 50 49 120 219

Total by
sex

Males 74 114 183 371

Females 116 108 240 464

Both sexes 190 222 423 835
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age class 2 mice, but the pattern was different in 2000
with a peak among the oldest animals.

Babesia spp.
The overall prevalence of Babesia spp. was just 3.1 %
(1.97–4.81). Prevalence varied from 6.9 % in 2004, to zero
in 2012, and the difference between the surveys was signifi-
cant (Table 4; YEAR × INFECTION, χ23 = 22.7, P < 0.001),
as was that also between sites (Table 4; SITE × INFEC-
TION χ23 = 21.9, P < 0.001). Prevalence was highest in W.
Gebal and lowest in W. Gharaba, where just one of the 192
spiny mice examined was found to be infected. However,
there was also a significant interaction (YEAR × SITE ×
INFECTION, χ29 = 22.7, P = 0.007) and this is illustrated in
Fig. 3b. Infections were sporadic in three of the wadis,
recorded in only 1 or 2 of the 4 surveys, except in W. Tlah
where Babesia was detected in three of the four surveys.
There was also a marked peak in prevalence in 2004 in
mice from W. Gebal, where otherwise in 2000 and 2012 no
infections were detected. Prevalence was higher among the

youngest age class (Table 4; AGE × INFECTION χ22 = 10.8,
P = 0.004) compared with the older age classes, but there
was no significant difference in prevalence between the
sexes.
With just 26 out of 835 animals infected with

Babesia sp., the overall mean abundance was 0.79 ± 0.600
IN/200FV. Quantitative analysis was problematic with
parametric models with Gaussian errors on raw and log
transformed data failing to generate acceptable distribu-
tions of residuals and to those with negative binomial
errors failing to converge (See Methods). Therefore, only
the main effects were tested using non-parametric tests,
with much the same outputs as those for prevalence
(Kruskal-Wallis test for the effects of YEAR, χ23 = 18.6,
P < 0.001; SITE, χ23 = 22.5, P < 0.001 and AGE, χ22 10.1,
P = 0.006). There was no significant difference between
the sexes (Mann-Whitney U test Z = -1.37, P = 0.17). The
mean values are given in Table 5 and the SITE x YEAR
effect in Fig. 4b. Mostly mean abundance was less than 0.4
IC/200FV, with the exception of W. Gebal when in

Table 4 Prevalence of haemoparasites by year, site, host sex and age class

Haemoparasites Babesia spp. Bartonella spp. Haemobartonella spp. Trypanosoma acomys Hepatozoon spp.

Year

2000 86.3
(79.11–91.34)

1.9
(0.44–6.20)

2.5
(0.76–7.00)

80.0
(72.16–86.30)

17.5
(11.68–25.22)

20.6
(14.26–28.47)

2004 91.2
(88.25–93.47)

6.9
(4.91–9.61)

8.3
(6.12–11.24)

85.2
(81.69–88.17)

22.7
(19.08–26.70)

29.2
(25.18–33.48)

2008 77.1
(72.86–80.85)

3.3
(1.97–5.48)

0.8
(0.31–2.25)

45.8
(41.09–50.58)

12.1
(9.28–15.53)

40.0
(35.42–44.74)

2012 53.0
(48.40–57.53)

0
(0–0.82)

2.7
(1.56–4.65)

27.9
(23.92–32.10)

11.9
(9.18–15.16)

25.6
(21.78–29.76)

Site

Arbaein 68.8
(64.36–72.98)

0.9
(0.33–2.27)

3.5
(2.08–5.59)

66.2
(61.67–70.55)

0.4
(0.16–1.57)

10.4
(7.80–13.61)

Gebal 72.3
(63.96–79.50)

8.2
(4.38–14.45)

6.9
(3.61–12.75)

71.7
(63.24–78.90)

0.6
(0.07–4.02)

6.3
(3.17–11.88)

Gharaba 71.9
(62.51–79.80)

0.5
(0.04–4.43)

1.6
(0.25–6.27)

44.8
(35.47–54.56)

21.9
(14.92–30.98)

33.9
(25.33–43.58)

Tlah 88.5
(85.06–91.34)

4.0
(2.41–6.30)

3.2
(1.81–5.34)

51.4
(46.52–56.24)

34.8
(30.27–39.55)

58.9
(54.04–63.63)

Sex

Males 76.0
(70.62–80.73)

4.0
(2.21–7.04)

3.0
(1.49–5.70)

56.9
(51.00–62.58)

15.4
(11.55–20.08)

28.3
(23.29–33.90)

Females 76.3
(70.13–81.59)

2.4
(0.97–5.43)

4.1
(2.04–7.60)

58.6
(51.94–65.09)

16.2
(11.75–21.64)

30.8
(25.03–37.24)

Age

Class 1 69.5
(59.84–77.81)

6.3
(2.95–12.62)

4.2
(1.56–9.94)

60.0
(50.30–69.17)

15.3
(9.32–23.40)

9.5
(5.06–16.61)

Class 2 78.8
(74.85–82.40)

0.9
(0.35–2.28)

3.2
(1.86–5.17)

57.7
(53.08–62.14)

26.6
(22.69–30.84)

36.9
(32.56–41.51)

Class 3 77.8
(72.12–82.65)

2.8
(1.33–5.81)

3.5
(1.77–6.70)

57.0
(50.64–63.11)

10.4
(7.03–14.92)

35.0
(29.14–41.28)

Significant main effects are highlighted in bold
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2004, twelve mice were infected, and one with 500
IC/200 FV, generating a mean for this site of 13.7 ± 11.60
for that year.

Bartonella spp.
The prevalence of Bartonella spp. was also very low
(3.6 %, 2.36–5.38). Prevalence varied significantly between
years (Table 4; YEAR × INFECTION χ23 = 19.0, P < 0.001)
with a peak in 2004, mostly accounted for by high values
among mice from Wadis Gebal and Tlah. Prevalence also
rose in W. El Arbaein in 2012, but otherwise values were

very low. There was no independent effect of SITE, but
the significant SITE × YEAR × INFECTION interaction
(χ29 = 28.7, P = 0.001) is illustrated in Fig. 3c. There were
no independent effects of host sex or age, but there was a
complex interaction involving these factors (SEX × SITE
× AGE × INFECTION, χ26 = 19.6, P = 0.003) which we did
not explore further.
As with Babesia, quantitative analysis of abundance

of Bartonella sp. was problematic because so few
animals were infected (30/835). The overall mean abun-
dance was 16.0 ± 10.23 IC/200FV, but this relatively
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Fig. 3 Prevalence of haemoparasites recorded in spiny mice at the four study sites in the Sinai between 2000 and 2012. a, all haemoparasites,
combined; b, Babesia sp.; c, Bartonella sp.; d, Haemobartonella sp.; e, Trypanosoma acomys; f, Hepatozoon sp. The key to symbols used for the four
study sites are given in panel A
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high value was largely attributable to young mice from
Wadis Gebal (mean = 258.0 ± 191.4 with values exceeding
1000 IC/200FV in three mice, maximum =8000) and Tlah
(mean = 31.9 ± 28.6; maximum= 2000) in 2004 (Fig. 4c
and Table 5). In marked contrast, in the remaining surveys
the mean abundance values did not exceed 0.3 IC/200 FV
in the other wadis. Analysis was by non-parametric tests
which showed that there was a hugely significant differ-
ence between surveys (Table 5; Kruskal-Wallis test with
YEAR, χ23 = 20.9, P < 0.001) and a weaker effect of SITE
(χ23 = 7.8, P = 0.05). There was no significant difference be-
tween the sexes or between the age classes.

Haemobartonella spp.
The overall prevalence of Haemobartonella spp. was
57.8 % (53.88–61.73). However, as can be seen in Table 4
and Fig. 3d, initially in the first two surveys prevalence was
higher exceeding 75 % in four wadis, but then prevalence
fell markedly in two wadis in 2008 (Gharaba and Tlah),
and the other two also by 2012 (YEAR × INFECTION,
χ23 = 205.4, P < 0.001). The difference in prevalence
between wadis was also significant (Table 4; SITE ×
INFECTION, χ23 = 37.4, P < 0.001), with the highest
overall value in W. Gebal and the lowest in W. Gharaba.
Prevalence of this species was not affected by either host
age or sex, but there was a significant interaction between
all four factors and INFECTION (χ218 = 35.9, P = 0.007),
suggesting some differences between age classes and the

two sexes in particular data subsets (i.e. in particular years
and sites) which we did not explore further.
The mean abundance for Haemobartonella sp. was

7.5 ± 1.10 IC/200FV. The best-fit model was a GLM with
negative binomial errors (YEAR + SITE + AGE + YEAR x
SITE+ SITE x AGE). There were highly significant main
effects of YEAR (LR3,826 = 182.1, P < 0.0001) and SITE
(LR3,826 = 76.5, P < 0.0001) and these are summarised in
Table 5. Abundance peaked in 2004 and was lowest in
2012, and peak abundance was detected in mice from
W. Gebal, whilst the lowest value was from those from
W. Gharaba. The highly significant interaction between
SITE and YEAR (LR9,811 = 120.9, P < 0.0001) is illustrated
in Fig. 4d. This shows the dynamic changes that oc-
curred between surveys, with peak abundance among
mice from W. Gebal in three surveys (2000, 2008 and
2012) but not in 2004 when peak abundance was
among mice from W. El Arbaein. There was no main
effect of host age (LR2,826 = 0.78, P = 0.96), but there
was a significant interaction between SITE and AGE
(LR6,811 = 19.5, P = 0.0034) which is illustrated in
Fig. 5b. As can be seen, the age-prevalence profiles
were quite different among mice from each of the 4 wadis,
although there was some similarity between those from
Wadis Gharaba and Tlah where overall prevalence was
lowest. Peak prevalence was observed in age class 1 mice
in Wadi El Arbaein, in age class 3 in Wadi Gebal and in
age class 2 in Wadis Gharbara and Tlah. An alternative

Table 5 Abundance of haemoparasites by year, site, host sex and age class

Species richness Babesia sp. Bartonella sp. Haemobartonella sp. Trypanosoma acomys Hepatozoon sp.

Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M.

Year

2000 1.23 0.063 0.11 0.079 0.04 0.024 5.17 0.502 4.19 1.279 8.65 1.889

2004 1.53 0.058 2.81 2.318 61.72 39.432 15.73 3.435 5.55 1.337 20.29 4.884

2008 1.02 0.047 0.15 0.056 0.07 0.063 7.18 2.159 0.94 0.249 23.98 4.334

2012 0.68 0.050 0 0 0.05 0.020 1.30 0.211 1.29 0.330 15.75 5.146

Site

Arbaein 0.81 0.042 0.07 0.055 0.05 0.019 8.93 2.543 0.03 0.026 3.84 1.167

Gebal 0.94 0.059 3.75 3.147 69.78 52.114 13.09 3.319 0.11 0.113 1.10 0.583

Gharaba 1.03 0.060 0.03 0.026 0.06 0.036 3.28 0.571 4.65 1.438 15.59 2.629

Tlah 1.52 0.056 0.17 0.06 8.89 7.929 5.76 1.797 5.77 0.925 43.14 6.835

Sex

Males 1.08 0.043 0.25 0.073 5.72 5.394 7.68 1.820 1.55 0.262 16.21 2.741

Females 1.12 0.039 1.22 1.079 24.23 17.889 7.29 1.352 3.88 0.766 19.30 3.433

Age

Class 1 0.95 0.057 0.38 0.122 63.32 44.54 8.98 3.046 1.66 0.419 2.25 0.772

Class 2 1.26 0.062 0.13 0.097 1.09 0.757 6.44 1.897 3.23 0.531 29.32 6.697

Class 3 1.09 0.039 1.32 1.183 2.58 2.365 7.32 1.375 3.18 0.806 19.00 2.664

Significant main effects are highlighted in bold
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model based on log-transformed abundance and Gaussian
errors generated much the same output (R2 = 0.34).

Trypanosoma acomys
The overall prevalence of T. acomys was 15.8 %
(13.09–18.92). Although prevalence changed significantly
over the four surveys, peaking in 2004 (Table 4; YEAR ×
INFECTION, χ23 = 12.5, P = 0.006), there was a huge differ-
ence between the wadis (SITE × INFECTION, χ23 = 175.3,
P < 0.001), with this species being largely confined to two
of the four study sites in all four surveys (Gharaba and

Tlah; Fig. 3e). There was no difference in prevalence
between the two sexes, but there was a significant differ-
ence between age classes (AGE × INFECTION, χ22 = 26.8,
P < 0.001). Prevalence was highest in age class 2 (Table 4),
and then dropped by more than 50 % in the oldest age
class. There were no significant confounding interactions
in this case.
Since this parasite was largely confined to just two of the

four wadis, we recalculated the effect of age on prevalence
restricting the data to mice from wadis Gharba and Gebal,
and this is shown in Fig. 6a. Prevalence in age class 2 spiny
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Fig. 4 Abundance of haemoparasites recorded in spiny mice at the four study sites in the Sinai between 2000 and 2012. a, species richness; b, Babesia
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mice was now 46.4 % (38.75–54.16), falling to 18.9 %
(15.57–22.85) among the oldest mice, a reduction of
59.2 %.
The mean abundance of T. acomys was 2.85 ± 0.443.

Parametric models based on raw data with Gaussian or
negative binomial errors, and log10(X + 1) transformed
data with Gaussian errors all failed to generate acceptable
distributions of residuals. However analysis by 1-way non-
parametric tests identified a marked effect of SITE
(Table 5; Kruskal-Wallis test, χ23 = 141.5, P < 0.001) mean
abundance of trypanosomes being higher in mice from W.
Gharaba and Tlah. There were also significant changes in
abundance between the 4 surveys (Kruskal-Wallis test on
effect of YEAR χ23 = 16.1, P = 0.001) with mean abundance
higher in the first two surveys compared with the latter
two. Abundance also increased with host age, especially
between the youngest mice and age class 2, and then fell
marginally in the oldest mice (Kruskal-Wallis test on
effect of AGE χ22 = 26.8, P < 0.001). There was no
significant difference in abundance between the sexes.
Changes of abundance over time in the 4 wadis are
illustrated in Fig. 4e, where it can be seen clearly that
mean abundance was consistently higher among mice
from Wadis Gharaba and Tlah compare to those
from Wadis El Arbaein and Gebal.

Hepatozoon sp.
The prevalence of this species was 29.7 % (26.17–33.47).
As with T. acomys, Hepatozoon sp. was largely confined to

the same two wadis (Gharaba and Tlah), and not surpris-
ingly there was a huge SITE effect (SITE × INFECTION,
χ23 = 198.6, P < 0.001). Prevalence also varied between the
surveys (YEAR × INFECTION, χ23 = 20.2, P < 0.001) and
differently among the mice from the four wadis (Fig. 3f;
SITE × YEAR × INFECTION, χ29 = 36.1, P < 0.001). There
was no effect of host sex, but age affected prevalence
significantly (Table 4; χ22 = 56.7, P < 0.001), and the precise
effect of age on prevalence varied between the
surveys (Not illustrated, AGE × YEAR × INFEC-
TION, χ26 = 17.7, P = 0.007). Very few of the youngest
mice were infected, but then prevalence increased and
stabilized in mature and older individuals some 3–4
times higher (Table 4). However, since this species, like T.
acomys, was largely confined to mice from Wadis Gharaba
and Tlah, the analysis was repeated excluding individuals
from the other two wadis and this is illustrated in Fig. 6b.
Prevalence was still very low among the youngest mice
(16.1 % [7.95–28.36]), but rose to over 55 % among age
classes 2 and 3.
The mean abundance of this species was 17.9 ± 2.26.

Parametric models based on raw data with Gaussian or
negative binomial errors, and log10(X + 1) transformed data
with Gaussian errors all failed to generate acceptable distri-
butions of residuals. Analysis by 1-way non-parametric tests
identified a marked effect of SITE (Table 5; Kruskal-Wallis
test, χ23 = 190.8, P < 0.001), mean abundance of Hepatozoon
sp. being highest in W. Tlah and lowest in W. Gebal. There
were also significant changes in abundance between the 4
surveys with peak abundance detected in 2008 (Kruskal-
Wallis test on effect of YEAR χ23 = 21.2, P = 0.001). As with
T. acomys abundance was lowest in the youngest mice,
higher among age class 2 before falling in age class 3
(Kruskal-Wallis test on effect of AGE χ22 = 51.1, P < 0.001).
There was no significant difference in abundance between
the sexes. Changes of abundance over time in the four
wadis are illustrated in Fig. 4f, where the consistently high
abundance among mice from W. Tlah can be seen. This is
followed by a consistent intermediate level of abundance
among mice from W. Gharaba and much lower abundance
among animals from the remaining two wadis, although
there was a small peak in abundance in 2008 among mice
from the latter two sites.

Discussion
Molecular identification of parasites
Molecular techniques were used for the identification of
parasite species/genotype and for a preliminary study of
the diversity of parasites among the four semi-isolated
populations of spiny mice. Analyses of the sequences
that we obtained did not allow exact identification of
species (no 100 % sequence homology was found in the
GenBank database) of Bartonella, Trypanosoma or
Hepatozoon as to-date, excepting our own depositions,
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no data on the haemoparasites specific to A. dimidiatus
have been deposited. The closest match was for Barto-
nella, as our sequence was >99 % similar to B. acomydis,
the species described from the golden spiny mouse, A.
russatus [35]. As Bartonella species/genotypes show
some host-specificity, further study on the Bartonella
from A. dimidiatus is needed to clarify with certainty
the identity of the parasite in the spiny mice in our study
sites. Interestingly, in our study more Bartonella-positive
mice were detected by conventional microscopy of blood
smears, but only one PCR product was obtained with
the primers that we used. In Inoue et al. [35], the study
referred to above, the overall prevalence of Bartonella in
A. dimidiatus imported from Egypt to Japan was 9.7 %,
relatively low as in our study, but in three isolates B. eli-
zabethae was identified (100 % homology with GenBank
reference sequences), a species that is pathogenic for
humans. Therefore, it is still possible that other species/
strains of Bartonella may be found in the future in spiny
mice from our S. Sinai study sites.
There is only one species of Trypanosoma described

from spiny mice, T. acomys [37, 38], but no reference
sequences for 18S rDNA of this species are available in
GenBank. However, almost no diversity was observed in
the 45 Trypanosoma sequences that we compared and
this supports the identification of our isolates as the host-
specific T. acomys. Interestingly, one of our sequences was
different (variant B), but still most closely related to our

dominant variant- variant A of T. acomys. T. acomys was
found in mice from two quite distant wadis (W. Tlah and
W. Gharaba) which despite the distance between them are
connected, W. Gharaba being located at the extreme
north end of the continuous valley system leading away
from St. Katherine [9], and there was no detectable
diversity between the isolates from these two wadis.
The genotyping of Hepatozoon isolates from the two

Acomys species revealed the presence of two variants, A
and B, and neither of these could be identified to species
level through comparison with data in GenBank (at best
homology was 96–97 % with known Hepatozoon species).
Only one species of Hepatozoon has been described from
Acomys spp. - H. acomys (Mohammed and Saound 1972,
following [39]) and generally the systematics of this genus
are still poorly developed [36, 39]. The majority of identi-
fied Hepatozoon infections from different groups of ani-
mals, including amphibians, reptiles and mammals, are
reported simply as ‘Hepatozoon sp.’ However, even among
the conserved 18S rDNA sequences of those Hepatozoon
spp. isolates that have been deposited, there are significant
differences (Fig. 1) and there is an urgent need to name
the different genotypes of Hepatozoon that are known to
be associated with certain host species. Only one detailed
description of Hepatozoon from Egyptian rodents is
currently available- H. balfouri in J. jaculus and J. orienta-
lis [40]. However, the gamonts of this species were found
only in erythrocytes, and never in leucocytes, in contrast
to the Hepatoozon that we observed in A. dimidiatus.
Moreover, a recent study of Hepatozoon from jerboas
revealed sequences that were quite different to our own
isolates (Fig. 1; [36]), supporting the existence of a differ-
ent Hepatozoon species in A. dimidiatus. Interestingly, our
variant B of Hepatozoon was found only in one of the two
Acomys species, A. russatus, which is consistent with the
idea of host-specificity among parasites in this genus.

Long-term ecological study
Our data show that the haemoparasite communities varied
markedly between the four subpopulations of spiny mice
living in isolated wadis and displayed long-term trends,
most likely associated with the increasing aridity of the
environment during the years of our surveys. The haemo-
parasite communities of A. dimidiatus were dynamic, with
only some species showing stability across the 12-year-long
period. As predicted, external factors (site and year of
study) had a much greater influence on the haemoparasite
community than the intrinsic factors that we took into
account in our analyses (host age or sex).
Long-term dynamic changes of haemoparasites were

observed in prevalence, abundance and in mean species
richness, as reflected in the spatio-temporal patterns/
trends illustrated in Figs. 3 and 4 (the year x site interac-
tions). While the prevalence of haemoparasites was
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relatively high and stable during the first two surveys, in
2000 and 2004, there was a 50 % reduction by the last
survey in 2012, and this pattern of declining prevalence
was observed clearly among the spiny mice in 3 of the 4
wadis in our study (W. El Arbaein, W. Gebal, W.
Gharaba), with only slightly lower values for mice from
W. Tlah. Mean species richness was the highest in 2004
and then decreased by more than 50 % to 2012. Both of
these two parameters (prevalence and mean species
richness) were significantly reduced in 2008 and then in
2012, compared with the earlier surveys. The fall in value
of both parameters may have two non-mutually exclusive
explanations– an exceptionally high prevalence of two
‘rare’ pathogens, Babesia and Bartonella sp. in 2004,
exceeding 20–30 % in W. Gebal, and the marked decrease
in Haemobartonella sp., in 2008 in W. Tlah and Gharaba,
and then in 2012 in W. El Arbaein and Gebal. Although
overall prevalence of T. acomys was generally stable
over the 12-year-long period, the greatest stability was
observed in W. Tlah while in W. Gharaba prevalence of
Trypanosoma followed the general trend in the preva-
lence of other haemoparasites – a significant, albeit
relatively small, reduction during last two surveys,
contributing to an overall drop in haemoparasite preva-
lence and mean species richness. Interestingly, even for
this ‘stable’ parasite, the abundance and intensity of
infection were much lower in 2008 and 2012 in both
W. Tlah and Gharaba, compared to the first two surveys.
An opposite trend was found for H. acomys – the only
parasite species displaying an increase in prevalence in
2008 and a spread to new sites.
This fall in the value of three parameters must reflect

a drop in transmission of these vector-borne parasites.
There have been severe fluctuations in the weather in
the Sinai over the past decade (2002–2010). Since 2002
there has been a severe drought with very little
(< 50 mm) or no rain every year until March 2010 and
therefore one underlying explanation could be the
marked decrease in water availability, first noted during
the expedition in 2008. This was the first expedition
during which we observed a lack of water pipes that are
usually employed to deliver water to Bedouins’ gardens
situated at higher altitudes in the wadis, the lack of
water in wells located in the wadis, the abandonment of
several gardens in W. Gebal and Gharaba, resulting not
only in a lack of ground-cover plants and vegetables but
also in desiccation of trees. This drought was broken in
May 2010 when there was heavy rainfall. 2011 was again
extraordinarily wet, with heavy rainfall and snow in the
winter and spring, while 2012 had very little rainfall and
was colder than normal. Although almost the wettest
place in Egypt (second only to the Mediterranean
northwestern coast), according to the best (patchy) data
we have, the mountains of South Sinai received only an

average of 42.5 mm per year precipitation between 1970
and 1994, and substantially less (15.5 mm) between 2001
and 2009 (data courtesy of the St Katherine Protectorate
Management Unit) [28]. These weather conditions have
probably caused the marked changes recorded in a
parallel long-term study on the Sinai thyme (Thymus
decussatus) population. Between 2002 and 2010, the num-
ber of thyme plants in Farsh Shoeib near St Katherine fell
from 1208 to 669, i.e. 44.6 % of the plants disappeared
(assumed to have died). Between 2002 and 2010, the
condition of plants deteriorated decreasing from 53 % to
25 %; one-third of the surviving plants were <10 %
green [28].
Most likely as a result of these local climatic changes, a

greater effort had to be made to catch representative num-
bers of mice for our study - reflected in the significantly
higher number of trapping hours in 2008 and 2012, in
comparison to 2000 and 2004. Although we are not able to
conclude with any degree of certainty if rodent population
sizes have actually fallen because of this significant change
in their habitats (reduction in water availability and in the
acreage of Bedouin gardens), we may nevertheless be
certain that at least the population densities of the mouse
subpopulations were lower in the latter two surveys. This
may have affected the transmission of parasites with
consequent lower prevalence - both density-dependent or
frequency-dependent, as established convincingly in the
long-term studies on cowpox virus transmission in field
voles, Microtus agrestis, in Kielder forest, UK (reviewed in
[3]). Changes in the abiotic factors in the study sites
affected not only the host populations but also could have
had a direct negative impact on the survival of parasite
vectors such as juvenile fleas and ticks, contributing also to
overall lower transmission rates.
Generally, the changes observed in the haemoparasite

communities of spiny mice in the Sinai were much more
pronounced and more diverse than the patterns/trends
observed in our other studies on haemoparasites in
common and bank voles from central Europe (Poland)
[4, 19, 20]. This marked dynamic may reflect a more fra-
gile structure of parasite communities in the hyper-arid
environment in Egypt, in comparison to the relatively
more predictable abiotic conditions in woodland habitats
in central and northern Europe, which show marked
seasonal changes but an annual sequence of changes that
varies little from year to year.
Although we observed significant temporal changes,

nevertheless the site of sampling of the mouse population
was always the main factor influencing haemoparasite
community structure and many of the differences between
the wadis that we observed in 2000 [10] were maintained
during the subsequent 12-year-long period of monitoring.
Subpopulations from wadis Tlah and Gharaba constituted
the main hosts for T. acomys and Hepatozoon sp., and
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spread of the latter species to other mouse populations
observed in 2008 was only partially successful. It is appar-
ent therefore that ideal conditions for maintaining the
host-vector-parasite relationship exist only in these two
sites/habitats. As we reported in our earlier paper [10],
fleas (Parapulex chephrensis), the most likely vectors of
Trypanosoma [41] and Hepatoozon, were found mostly on
mice from Wadis Tlah and Gharaba (unpublished
observations for 2012 confirm the published data from
2000, reported in [10]). In 2000 no fleas were found on
mice from W. Gebal, and only two mice from W. El
Arbaein were found with fleas. The overall prevalence of
T. acomys among mice with its likely flea vector was
44.8 % compared with just 12 % among mice without fleas
and there was a weak but statistically significant overall
association between prevalence of T. acomys and flea in-
festation [10]. Similarly, in 2000 the prevalence of
Hepatozoon sp. among mice with fleas was 41.4 %, in
contrast to 16.8 % among mice without fleas. However,
when the site, sex and age effects were controlled for, no
significant association was evident between these taxa.
Comparing haemoparasite communities between the

host subpopulations from the four wadis, spiny mice from
W. Tlah consistently showed the highest mean species
richness, total species richness and the highest prevalence
of all haemoparasites. This site experienced also the least
change in habitat structure over the 12-year period and
the lowest loss of arable land. Wadi Tlah consists of a
deep, narrow valley with steep cliffs on both sides, with
ample shaded areas, well-maintained gardens and few
apparent signs of aridification because it drains most of
the high-mountain region, so any rainfall will percolate
through it. The prevalence of T. acomys underwent almost
no change in mice from this wadi. In contrast, by the end
of our study period mice from the high-altitude W. Gebal
showed the lowest mean species richness and lowest
prevalence of all haemoparasites. This is in agreement
with previous studies on haemoparasites from A.
dimidiatus from this wadi, and is also consistent with
studies on intestinal micro- and macroparasites and
ectoparasites [9, 10]. Mice from W. Gebal have consist-
ently revealed an impoverished parasite fauna, lacking
both the flea P. chephrensis and T. acomys, in addition to
the absence of the dominant nematode Protospirura
muricola [9]. However, this wadi constituted the main
focus for the transmission of a novel Babesia species- B.
behnkei– discovered in Wagner’s gerbil D. dasyurus in
2004 and recently described [42]. This high-altitude wadi
experiences the most extreme abiotic conditions and
greatest degree of aridification/desertification: by 2008
about half of Bedouins’ gardens in this wadi had been
abandoned and in 2012 even the remaining trees and
bushes were extensively desiccated and damaged by
grazing feral donkeys. In contrast, mice from the low-level

W. Gharaba, which has greater exposure to direct sunlight
and is considerably warmer than the other three wadis,
were heavily infected with P. muricola, P. chephrensis
and T. acomys [9, 10]. As with W. Gebal, this site
has experienced severe shortage of water with result-
ing increased aridity, and this change in climatic
conditions is reflected in reduced prevalence and
abundance of both Haemobartonella sp. and T. acomys,
but interestingly not Hepatozoon. Wadi El Arbaein is the
site that is most affected by human activities, with a large
town (St Katherine) localized at its mouth, and it experi-
ences extensive exposure to livestock, mainly goats and
camels, but also cats and dogs. This is also the wadi with
the highest tourist activity. During the 12-year-long period
the town has grown and developed (i.e. construction of
new paved roads, lighting on the streets) but has also been
affected by drought, the level of ground water having
fallen alarmingly over this period (from 7 m to about 25
m in Fox Camp). The construction of new water storage
tanks and water pipes for the provision of water for the
city from the coast had not been successfully completed
by 2012. Perhaps not surprisingly therefore, the mice from
W. El Arbaein showed the lowest prevalence of haemo-
parasites in the early surveys and a variable pattern of
haemoparasite species richness and prevalence, generally
as in the mice from W. Gebal. Interestingly, as in the mice
from W. Gebal, H. acomys was introduced to the mice
in this wadi in 2004 and then increased in prevalence
and persisted through to 2012, creating a third location
for the occurrence of this parasite among spiny mice in
our study sites.
As we had predicted, host sex has no detectable influence

on the haemoparasite community, and this is consistent
with many earlier studies [3, 22–24], including our work in
Egypt and Poland [4, 10, 20, 21]. However, there were two
contrasting patterns in relation to host age. For Babesia
and Haemobartonella, the highest prevalence or abundance
were observed in young animals, but for Trypanosoma and
Hepatozoon the highest infection parameters were from
adults (class 2 or 3). The former pattern of increasing
likelihood of carrying infection with increasing host age is
consistent with the idea that the longer the mouse lives,
the higher the probability of being infested by an infected
vector and hence of contracting the infection. Most of the
parasites identified in this study typically cause long
subclinical infections in their natural hosts [37, 42], and
thus the proportion of animal carrying infection increases
with host age, peaking among the older animals. The latter
pattern of peak prevalence in young animals, as observed
in the case of T. acomys and Hepatozoon sp., can have two
explanations. One possibility is vertical transmission
resulting in congenital or neonatal (i.e. transmitted by nest
ectoparasites) infection and this combined with the high
susceptibility of young naïve individuals to infections, and
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followed by acquired immunity reducing prevalence among
the older sectors of the population. Vertical transmis-
sion and congenital infections have been confirmed for
Babesia spp. [43, 44], Hepatozoon balfouri [40] and
Haemobartonella (Mycoplasma) [45].
Rodent trypanosomes are known to generate potent

sterilizing immunity. Thus the declining prevalence of T.
acomys in the oldest age class, was not unexpected given
that this species probably generates life-long immunity
just like T. lewisi and T. musculi to which it is closely
related. The long patent period explains the high
prevalence of infection with T. acomys in mice of age
class 2, and the decline in the oldest mice (age class 3)
suggests either the action of some form of immunity in
laterlife or selective mortality of infected older mice. An
immune response certainly occurs in T. lewisi and T.
musculi, and is suggested by the data of Abdallah et al.
[37] for T. acomys, which show clearance from periph-
eral blood after 150 days, although a mechanism for this
has not yet been identified.

Conclusions
Haemoparasite communities varied markedly between four
subpopulations of spiny mice living in isolated wadis and
displayed long-term trends, most likely associated with a
changing environment driven by decade-long drought.
As predicted, external factors (site and year of study)
had a much greater influence on parasite communities
than intrinsic factors (host age or sex).
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Abstract

Background: Although a number of new species of Babesia/Theileria have been described recently, there are still
relatively few reports of species from Africa. In this study based on the evaluation of morphology and phylogenetic
relationships, we describe a novel species from Wagner’s gerbil, Babesia behnkei n. sp.

Methods: Rodents (n = 1021) were sampled in four montane valleys (wadies) in 2000, 2004, 2008 and 2012 in the
Sinai Mountains, Egypt. The overall prevalence of Babesia spp. was highest in the Wagner’s gerbil (Dipodillus
dasyurus; 38.7%) in comparison to the prevalence in the spiny mice species, Acomys dimidiatus and A. russatus.
Morphological investigations were conducted for the comparison of trophozoites of the novel species of Babesia
with the B. microti King’s 67 reference strain. Thirty-two isolates derived from D. dasyurus over a 9 year period
(2004-2012) from two wadies (29 isolates from Wadi Gebel and 3 from Wadi El-Arbaein) were investigated by
microscopic, molecular and phylogenetic analysis. A near-full-length sequence of the 18S rRNA gene and the
second internal transcribed spacer (ITS2) region were amplified, sequenced and used for the construction of
phylogenetic trees.

Results: A novel species of Babesia was identified in two isolated populations of D. dasyurus. Phylogenetic analysis
of 18S rDNA and ITS2 sequences revealed that B. behnkei n. sp. is most closely related to B. lengau from cheetahs
from South Africa and to Nearctic species found only in North America (the pathogenic B. duncani and B. conradae)
and that it is more distant to the cosmopolitan rodent parasite B. microti. Trophozoites of B. behnkei were smaller
and less polymorphic than trophozoites of B. microti.

Conclusion: Babesia behnkei n. sp. is a novel species of the ‘Duncani group’ maintained in isolated populations of
Dipodillus dasyurus occurring in the Sinai Mountains of Egypt.
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Background
The genus Babesia comprises tick-transmitted, intraery-
throcytic protozoan parasites of many different verte-
brates including humans [1,2]. Currently there are over
120 recognized species of Babesia described from va-
rious parts of the world. Even in the last two decades new
species have been added to the list, e.g. B. venatorum in
humans in Europe, B. benneti in the yellow-legged gull [3],
B. hongkongensis in feral cats in Hongkong [4] and a novel
Babesia/Theileria species from marsupials in Australia [5].
In contrast to the rest of the world, relatively few new

species have been described from African hosts in recent
years, including for example B. lengau from cheetahs [6],
B. bicornis from black rhinoceros [7], B. ugwidiensis from
cormorants [8] and B. leo from lions [9]. Additionally,
putative new species of Babesia/Theileria have been
reported from sable antelopes [10] and wild felids from
Kenya [11]. It is pertinent that new species of Babesia
(and presumably also other haemoparasites) are often dis-
covered at post-mortem examinations, especially in the
case of endangered host species such as the sable antelope
and the black rhinoceros.
The diversity of Babesia spp. depends on many factors,

including host-parasite or vector-parasite specificities,
well reflected in the geographically restricted distri-
bution of some species. Cosmopolitan species include
parasites of livestock and horses (B. bovis, B. divergens,
B. equi, B. ovis), dogs or cats (B. canis, B. rossi, B. vogeli,
B. felis) or rodents (B. microti). Other species are specific
to particular hosts whose distribution is restricted to
continents, as for example with B. conradae, B. duncani
or B. odocoilei found in North America, B. benetti, B.
capreoli, B. venatorum found in Europe, and B. crassa,
B. hongkongensis, B. motasi, B. orientalis found only in
Asia. In this last Asian group of species, some have been
identified to date only in a single host species. However,
it is also well established that some hosts are susceptible
to, and can carry concurrently, more than a single spe-
cies of Babesia/Theileria; often these species are indis-
tinguishable by conventional microscopy. For example,
cats are susceptible to infection with B. felis but also
with B. leo, B. hongkongensis and B. lengau [4,12,13]. In
view of this complexity, it is highly likely that many
Babesia spp. remain still unrecognized, especially those
infecting rarely studied wild species of hosts in isolated
regions of the world.
Conventionally and historically, new species of Babesia

have been erected based on their hosts and on morpho-
logical criteria. However, the trophozoites of different
species of ‘small’ Babesia and Theileria spp. in erythro-
cytes appear very similar under light microscopy and
their differentiation is difficult. In recent decades how-
ever, the use of molecular tools have made a significant
impact on the field and the sequencing of selected gene

fragments has greatly improved the accuracy and reli-
ability of species identification. However, because of the
morphological similarities, the systematics of Babesia/
Theileria spp. are still not fully resolved and in urgent
need of revision in view of the many recently conducted
molecular phylogenetic studies [14-16]. Based on these,
the distant clades of ‘Babesia’, including some species
that were misidentified as ‘Theileria’ [14], require revi-
sion of their generic status and new nomenclature. Thus
the use of molecular tools, which are clearly more
sensitive than conventional morphology based on light
microscopy, remains crucial for distinguishing between
and for the identification of Babesia/Theileria spp. and
for their assignment to particular clades.
One cosmopolitan species of public health concern is

B. microti, the main cause of human babesiosis in the
United States of America [2,17,18] but also identified
recently in humans in Europe [19,20], China and Japan
[21]. This species had been originally described as Smithia
microti in Portugal from the vole Microtus incertus [22];
voles of the genus Microtus are still considered to be the
main reservoir of this parasite worldwide [22,23]. Surpri-
singly B. microti has subsequently been found in a wide
variety of rodent species worldwide [21,22,24-34].
In Eurasia and North America the main rodent hosts

of B. microti are different species of voles, Microtus spp.,
Myodes (Clethrionomys) spp. and mice, Apodemus spp.
At least 8 species of Microtus have been reported as com-
monly infected with B. microti: M. arvalis, M. agrestis and
M. oeconomus from Europe [22,32,35,36], M. montebelli
from Japan and M. miurus, M. montanus, M. ochrogaster
and M. pennsylvanicus from North America [21,33,34,37].
Additionally, 4 species of Myodes (Clethrionomys) (M.
glareolus, M. gapperi, M. rufocanus and M. rutilus) and 5
species of Apodemus (A. agrarius, A. argenteus, A. flavi-
collis, A. speciosus and A. sylvaticus) have been reported
as hosts of B. microti worldwide. Peromyscus leucopus has
recently been shown to act as a competent host in North
America [27] and infected P. keeni have been reported
from Alaska [37]. Other species of rodents reported to
host B. microti include eastern chipmunks Tamias striatus
[27]. However, carnivores (i.e. foxes, raccoons) and in-
sectivores such as shrews (at least 5 species of Sorex,
Blarina and others) may also serve as hosts of B. microti
[21,25,27,33-35]. On the basis of the above, B. microti ap-
pears to be the most widely distributed species world-
wide evidently lacking tight host-specificity, but caution
is warranted. Among the many studies on rodent hae-
moparasites reporting the presence of infections with
B. microti [38-42], it is suspected that few have ap-
propriately and critically assessed the species identity;
rather it has been merely assumed that the parasite is
B. microti because it was detected in a rodent host. In
fact, recent studies have shown that at least three
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distinct clades, differing in their host-specificity, exist
among isolates of B. microti that have been genotyped
[43,44]. Another species of Babesia infecting rodents,
B. rodhaini, has been used worldwide as a laboratory
model in mice and rats; this species seems to be closely
related to the ‘Microti group’ according to phylogentic
analysis [14].
Our research on the parasite fauna of wild rodents

from the Sinai Mountains began in 2000, when we were
invited by Professor Jerzy M. Behnke from the Univer-
sity of Nottingham to join an expedition of the uni-
versity assessing the helminth communities of wild
rodents in four isolated montane valleys. Initially, the
study focused on gastrointestinal parasites of Acomys
dimidiatus, the most abundant rodent species inhabi-
ting Bedouins’ gardens [45,46]. Subsequently, intestinal
protozoa and haemoparasites were incorporated into
the study [38] and the host range extended. The highest
prevalence of infections with Babesia and Bartonella
spp. were found in the Wagner’s gerbil, Dipodillus
dasyurus, one of the three most numerous rodent
species in the study sites (unpublished data). Primary
molecular research on the Babesia-positive samples re-
vealed surprisingly low homology (approx. 96%) of par-
tial (550 bp) 18S rDNA sequence to those for B. microti
and other named species. Therefore, exploiting ma-
terial collected in the latter expeditions to the study
sites, we characterized this novel species of Babesia by
light microscopy study and molecular and phylogenetic
analyses.

Methods
Field studies in Sinai, Egypt
Fieldwork was conducted over 4-5-week periods in
August-September 2000, 2004, 2008 and 2012 and was
based at the Environmental Research Centre of Suez
Canal University (2000, 2004) or at Fox Camp (2008,
2012) in the town of St Katherine, South Sinai, Egypt.
Trapping was carried out in four montane wadis (dry
valleys) in the vicinity of St Katherine. The local en-
vironment and general features of the four study sites
(Wadi El-Arbaein, Wadi Gebel, Wadi Itlah and Wadi
Gharaba), as well as their spatial relationships with one
another, have been described elsewhere [46]. At each
site, rodents were caught live in Sherman traps, placed
selectively among the rocks and boulders around walled
gardens and occasionally along the lower slopes of
wadis. These were set out at dusk, and inspected in the
early morning before exposure to direct sunlight. All
traps were brought to the local or main camp, where the
animals were identified and processed. Traps were re-set
the following evening.
The three most abundant rodent species (A. dimidiatus,

A. russatus and D. dasyurus) (Table 1) were sampled-
sexed, weighed, measured and scrutinized for obvious
lesions as described by [46]. Ectoparasites observed during
field examination were removed and placed in 70% etha-
nol. Blood and faecal samples were taken and animals
were then either fur marked individually and released
close to the point of capture (Figure 1A), or returned to
the main camp at St Katherine for autopsy. A maximum

Table 1 Structure of the rodent communities sampled and numbers of hosts studied during 2000-2012

Year of study Host species Site (wadi) No. of rodents

W. El Arbaein W. Gebel W. Gharaba W. Itlah Total by species Total by year

2000 Acomys dimidiatus 58 28 28 46 160

Acomys russatus 4 4 1 6 15

Dipodillus dasyurus 3 6 2 2 13 188

2004 Acomys dimidiatus 43 43 60 70 216

Acomys russatus 1 8 3 8 20

Dipodillus dasyurus 4 16 7 0 27 263

2008 Acomys dimidiatus 66 43 52 80 241

Acomys russatus 3 6 3 8 20

Dipodillus dasyurus 2 15 2 0 19 280

2012 Acomys dimidiatus 64 46 52 58 220

Acomys russatus 0 7 2 9 18

Dipodillus dasyurus 14 22 16 0 52 290

Total by site Acomys dimidiatus 231 160 192 254 837

Acomys russatus 8 25 9 31 73

Dipodillus dasyurus 23 59 27 2 111

Overall Total no. of rodents 262 244 228 287 1021
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of 40% of the captured rodents from each site were culled
(by agreement with the St Katherine National Protectorate
authorities).

Blood collection and DNA extraction
Thin blood smears were prepared from drops of blood
taken from the heart or tail tip. Blood smears were air-

dried, fixed in absolute methanol and stained for 1 h in
Giemsa stain in buffer at pH 7.2. In 2004, 2008 and 2012,
in addition to blood smears, molecular techniques were
used for the detection of Babesia spp. Blood from the tail
vein was collected on FTA classic cards (Whatman, UK)
for the long-time preservation of DNA. From the culled
animals, 200 μl of whole blood were also collected into

Figure 1 The type-host, Wagner’s gerbil Dipodillus dasyurus (W. Gebel) trapped in Sinai, Egypt, and type-forms of Babesia behnkei
n. sp. A. Type host: Wagner’s gerbil, Dipodillus dasyurus (W. Gebel, Sinai, Egypt). B. Type-forms of Babesia behnkei n. sp. ex Wagner’s gerbil Dipodillus
dasyurus (W. Gebel) collected in Sinai, Egypt. Typical forms - single rounded trophozoites in erythrocytes. C. Double trophozoites and dividing form
(tetrad) of Babesia behnkei n. sp. ex Wagner’s gerbil Dipodillus dasyurus in erythrocytes. D. Trophozoites of Babesia microti King’s 67 in erythrocytes of
BALB/c mice (acute phase, on the 8th day post infection). E. Different forms of Babesia behnkei n. sp. ex D. dasyurus. F. Different forms of Babesia microti
from BALB/c mice.
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0.001 M EDTA and frozen at -20°C. Genomic DNA
was extracted from whole blood using DNAeasy Blood &
Tissue kit (Qiagen, USA) or AxyPrep MiniPrep Blood kit
(AxyGen, USA) and stored at -20°C. DNA from FTA cards
was cleaned with FTA purification Reagent (Whatman,
UK) accordingly to manufacturer’s instructions.

Molecular characterization
Detection and genotyping of 32 Babesia isolates (Table 2)
were performed by amplification and sequencing of ITS1,
ITS2 and 18S rRNA regions/genes. The primers and ther-
mal profiles used in this study have been described pre-
viously [7,10,47-50]. Reactions were performed in 1× PCR
buffer, 1 U Taq polymerase, 1 μM of each primer and 2–5
μl of the extracted DNA sample. Negative controls were
performed in the absence of template DNA. Primers GF
(5’-G(C/T) (C/T)T TGT AAT TGG AAT GAT GG-3’)
and GR (5’-CCA AAG ACT TTG ATT TCT CTC-3’)
were used for the detection of Babesia/ Theileria spp. by
the amplification of a 559 bp fragment of the 18S rDNA
[48,49]. Primers Nbab_1F (5’-AGC CAT GCA TGT CTA
AGT ATA AGC TTT T-3’) [10] and TB Rev (5’-AAT
AAT TCA CCG GAT CAC TCG-3’) [50] were used for
the genetic characterization of positive isolates by the
amplification of a 1,700 bp near-full-length sequence of
the 18S rRNA gene. As a second genetic marker, the 315
bp of the ITS2 region were amplified using the primers
ITS2-F (5’-GGC TCA CAC AAC GAT GAA GG-3’) and
ITS2-R (5’-CTC GCC GTT ACT AAG GGA ATC-3’)
[7,47]. Additionally, a 615 bp sequence of the 18S-ITS1-
5.8S region was amplified using the primers ITS1-F
(5’-CGA GTG ATC CGG TGA ATT ATT C-3’) and
ITS1-R (5’-CCT TCA TCG TTG TGT GAG CC-3’)
[7,47]. PCR products were subjected to electrophoresis
on a 1.5% agarose gel, stained with Midori Green stain
(Nippon Genetics, GmbH) and sequenced by a private
company (Genomed S.A., Poland).

Sequence analysis
DNA sequence alignments and phylogenetic analyses were
conducted using MEGA v. 6.0 [51]. Akaike information
criterion was used in jModel Test to identify the most
appropriate model of nucleotide substitution. Tamura
3-parameter (I + G) model was chosen as the most

appropriate for the Maximum Likelihood analysis of the
18S rDNA alignment. Neighbor-Joining method was used
as the tree construction method for ITS2 (MEGA v. 6.0),
with Kimura 2-parameter model.
Sequences of species/strains of Babesia, Theileria and

Cytauxzoon obtained from GenBank (www.ncbi.nlm.nih.
gov) were used in the sequence alignment. The stability
of inferred phylogenies was assessed by bootstrap ana-
lysis of 1,000 randomly generated sample trees.

Morphology by light microscopy
Giemsa stained blood smears were examined under oil
immersion (at × 1000 magnification). Parasites (Babesia
spp., Bartonella spp., Haemobartonella (Mycoplasma) spp.,
Hepatozoon spp. and Trypanosoma spp.) were counted in
200 fields of vision. For comparison, stained blood smears
prepared from BALB/c mice infected with B. microti King’s
67 strain were also examined [52]. Trophozoites of Babesia
spp. were measured with a Nikon screw micrometer cali-
brated against a standard stage micrometer. Images of the
novel Babesia forms were made with a digital camera inte-
grated with Nikon Eclipse E600. Typical forms, characte-
ristic of the isolates were drawn on the basis of more than
100 images.

Statistical analysis
Quantitative data reflecting the mean diameter of tro-
phozoites were compared between B. behnkei n. sp. and
B. microti King’s 67 strain. The mean diameters were
analyzed by multifactorial ANOVA with SPSS v. 21
using models with normal errors.

Ethical issue
Rodents from St Katherine National Protectorate were
sampled by agreement with the St Katherine National
Protectorate authorities obtained for each set of field
work. B. microti strain King’s 67, originally obtained from
Dr. S. Randolph (Oxford University) is maintained in our
laboratory by weekly blood passage in adult BALB/c fe-
males. Blood sampling was carried out in strict accordance
with the recommendations in the Guide for the Care and
Use of Laboratory Animals of National Ethics Committee
for Animal Experimentation, Poland. The protocol no

Table 2 Origin of the isolates of B. behnkei n. sp. from Dipodillus dasyurus used for genotyping and phylogenetic
analysis

Year of study W. El-Arbaein W. Gebel W. Gharaba W. Itlah All sites

2004 0 isolates 12 isolates nd nd 12 isolates (W. Gebel)

2008 1 isolate 3 isolates nd nd 4 isolates (1 isolate W. El Arbaein, 3 isolates W. Gebel)

2012 2 isolates 14 isolates nd nd 16 isolates (2 isolates W. El Arbaein, 14 isolates W. Gebel)

Total 3 isolates 29 isolates nd nd 32 (3 isolates W. El Arbaein, 29 isolates W. Gebel)

Nd- not done, no isolates available.
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214/2011 was approved by First Warsaw Local Ethics
Committee for Animal Experimentation.

Results
Taxonomic review
Babesia behnkei n. sp.
Type-host: Wagner’s gerbil, Dipodillus dasyurus (Rodentia,

Muridae, Gerbillinae).
Type-locality: Wadi Gebel in Sinai Mountains, Egypt.
Other localities: Wadi El-Arbaein in Sinai Mountains,

Egypt.
Type-material: Hapanotype. Eg085 from Dipodillus

dasyurus, sampled on 22 August 2004 in Wadi Gebel,
Sinai Mountains, Egypt, deposited at the Natural History
Museum, London, UK (NHMUK 2014.8.26.1).
Parahapanotypes. Eg083 (NHMUK 2014.8.26.2), Eg084

(NHMUK 2014.8.26.3) from D. dasyurus, sampled on 22
August 2004 in Wadi Gebel, Sinai Mountains, Egypt;
Eg041(NHMUK 2014.8.26.4) from D. dasyurus, sampled
on 17 August 2008, W. El-Arbaein, Sinai Mountains,
Egypt; Eg026 (NHMUK 2014.8.26.5), Eg028 (NHMUK
2014.8.26.6) from D. dasyurus sampled on 17 August
2012, W. El-Arbaein, Eg089 (NHMUK 2014.8.26.7), Eg091
(NHMUK 2014.8.26.8) from D. dasyurus, sampled on 21
August 2012 W. Gebel, Sinai Mountains, Egypt; all depo-
sited at the Natural History Museum, London, UK.
Vector: currently unknown, but assumed to be a local

species of ixodid tick.
Representative sequences: GenBank KJ908691 (18S

rRNA gene); KJ908692 (ITS2 region); KM067276 (ITS1
region).
Etymology: The species is named for Professor Jerzy M.

Behnke, the pioneer and the leader of studies on rodent
parasites from isolated wadis in the Sinai Mountains of
Egypt.
ZooBank reference numbers: pub: D3D8C6F4-796B-

4E93-9DE4-CD6B7897E169
act: 7491E249-3966-4170-AC52-6D521D988672
Description
The organism is a typical small species of Babesia, with

trophozoites occupying central to subcentral position
within host erythrocytes (Figures 1B, E). On Giemsa stained
slides, the cytoplasm is pale with a purple-staining nucleus
around the periphery (Figure 1B, C). Trophozoites are

mainly rounded, rarely slightly ovoid, less polymorphic than
trophozoites of B. microti King’s 67 observed in BALB/c
mice (Figure 1B–F). Trophozoite dimensions (diameter)
of B. behnkei n. sp. were significantly smaller than those
of B. microti King’s 67 [range 0.5-2.2 μm, mean ± SD
1.26 ± 0.35 μm (n = 212) vs range 0.6-3.0 μm, mean
1.46 ± 0.56 μm (n = 50); F1,261 = 8.48, P = 0.004, respec-
tively]. Dividing forms, tetrads (resembling the Maltese
cross) were observed and sometimes two forms in one
red cell were recorded (Figure 1C).

Field studies: ecology of Babesia behnkei n. sp.
Altogether, 1,021 rodents from the Sinai Mountains,
Egypt, were sampled in four montane valleys (wadies) in
2000, 2004, 2008 and 2012, including 837 individuals of
the spiny mouse Acomys dimidiatus, 73 A. russatus and
111 Wagner’s gerbils Dipodillus dasyurus (Table 1).
Overall prevalence of Babesia spp. was the highest in
Wagner’s gerbil (38.7%, Table 3) in comparison with
A. dimidiatus or A. russatus (<10%, data not presented).
Infections with B. behnkei were identified only in two
isolated populations of D. dasyurus, from Wadi Gebel
(66.1%) and from W. El-Arbaein (17.4%). Parasites were
maintained in these populations over a period of at least
9 years, 2004-2012 (Table 3).

Genotyping and phylogenetic analysis
Thirty two isolates derived from D. dasyurus obtained over
a 9 year period from two wadies (29 isolates from Wadi
Gebel and 3 from Wadi El-Arbaein) (Table 2) were investi-
gated by the analysis of near-full-length sequence of the
18S rRNA gene. All sequences were identical, indicating
the presence of a single parasite species. A BLAST search
in GenBank revealed no identical sequences in the data-
base, therefore this new species was designated as Babesia
behnkei n. sp. The highest homology (about 96%) found
was with B. lengau from cheetahs [6] and with B. vesperu-
ginis from bats Pipistrellus spp. in Cornwall, UK [53]. The
18S rRNA sequence for Babesia behnkei n. sp. differed
from that for B. lengau by 43 nucleotides and from that
for B. microti by 55 nucleotides (Additional file 1).
The phylogenetic analyses including sequences for

Babesia behnkei n. sp. and for other species of Babesia/
Theileria were conducted in MEGA v. 6.0 as detailed in

Table 3 Prevalence of B. behnkei n. sp. in Wagner’s gerbils: no. of infected/examined hosts (prevalence in %)

Year of study W. El-Arbaein W. Gebel W. Gharaba W. Itlah All sites

2000 0/3 (0)* 0/6 (0)* 0/2 (0)* 0/2 (0)* 0/13 (0)*

2004 1/4 (25) 15/16 (93.8) 0/7 (0) 0/0 16/27 (59.3)

2008 1/2 (50) 6/15 (40) 0/2 (0) 0/0 7/19 (36.8)

2012 2/14 (14.3) 18/22 (81.8) 0/16 (0) 0/0 20/52 (38.5)

Total by site 4/23 (17.4) 39/59 (66.1) 0/27 (0) 0/2 (0) 43/111 (38.7)

*Prevalence only on the basis of microscopy; no DNA samples available for PCR.
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the Methods section [51]. A representative tree for 18S
rDNA sequences, obtained using the Maximum Likeli-
hood method and a Tamura 3-parameter (I + G) model is
presented in Figure 2. Babesia behnkei n. sp. clustered in a
monophyletic group/clade with the African species B.
lengau and with American zoonotic species B. duncani
(Babesia WA1) and canine parasite B. conradae (‘Duncani
group’[14]). This clade was distinct from Babesia spp.
(sensu stricto), i.e. B. bovis, B. canis, B. gibsoni, B. vena-
torum [EU1] and B. divergens, as well as from the main
Theileria spp. clade including T. annulata, and from the
zoonotic and non-zoonotic B. microti strains (Figure 2).
Phylogenetic analysis of an approximately 315 bp region

of ITS2 of four isolates by the neighbour-joining method
with the Kimura two-parameter distance calculation re-
vealed very similar results (Figure 3). Babesia behnkei n.
sp. formed a monophyletic group with the American spe-
cies and strains, B. duncani (Babesia WA1), B. conradae
and others (‘Duncani group’[14]), and with the African
B. lengau. Again, this clade was distant from Babesia spp.
(sensu stricto), i.e. B. divergens, B. major and B. gibsoni, as
well as from the main Theileria clade with T. parva,
and from B. microti and related species (B. rodhaini and
B. felis) (Figure 3).
Comparison of the ITS2 sequences for Babesia behnkei

n. sp. with those for other species (B. lengau, B. duncani
and B. microti) revealed low homology (Additional file 2).
Similarly, the ITS1 sequence displayed low homology with
a few known sequences for Babesia spp., including B.
microti (Additional file 3).

Discussion
Microscopic, molecular and phylogenetic analysis of the
Babesia sp. infecting Wagner’s gerbil from the Sinai
Mountains supported its differentiation from all known
species and consequently the naming of a novel rodent
species of piroplasms was justified. Infections with Babesia
behnkei n. sp. were found in two isolated populations of
D. dasyurus during a 9 year period (2004–2012). This
novel species belongs to the ‘Duncani group’ (Clade VI)
and is closely related to B. lengau and the human-infecting
parasite B. duncani from North America.
Morphologically, Babesia behnkei n. sp. is indistin-

guishable from other small Babesia spp. but seems less
polymorphic than B. microti. Dividing forms were ob-
served rarely and parasitaemia exceeded 100 parasites
per 200 fields of vision at × 1000 magnification in only 5
individuals. The majority of parasite trophozoites were
regular and rounded.
Molecular and phylogenetic analysis of two widely

used molecular markers (18S rDNA and ITS2) revealed
that Babesia behnkei n. sp. is distinct from other known
rodent Babesia spp. (B. microti and B. rodhaini), Babesia
(sensu stricto) and Theileria spp. Analysis of both loci

placed the new species in a recently distinguished ‘Dun-
cani group’ (Clade VI [14]). This group is interesting be-
cause it consists of only a few named species and several
unnamed piroplasms, including some pathogenic for
humans [6,14]. Among the established species, there are
two from North America, B. duncani (previously Babesia
WA1), identified as an etiologic agent in human cases of
babesiosis in western states of the USA [54], and B. conra-
dae, described from a dog in California [55,56]. Among
the parasites of the ‘Duncani group’, there is only one spe-
cies from Africa, B. lengau, identified recently in cheetahs
from South Africa [6]. However, another new strain/
species of Babesia related to B. lengau, has been found
recently in spotted hyenas from South Africa [57]; the
latter still requires formal description. It is highly likely
that this clade of piroplasms will be expanded in the fu-
ture with new molecular studies on parasites from host
species that have yet to be examined in Africa, America
and elsewhere.
The pathogenicity of known and new Babesia species/

strains differs extensively even among species from a
single phylogenetic group. Babesia lengau appears to be
nonpathogenic for cheetahs but is pathogenic for cats
[6,12]. Babesia conradae causes haemolytic anaemia in
dogs in California [55,56] and B. duncani may infect
humans with an intact spleen or asplenic individuals,
and infections in humans were reported to be subclinical
or severe [17]. We have not observed any obvious symp-
toms of babesiosis in the Wagner’s gerbil (i.e. brown
colored urine, chills, apathy).
Cases of human babesiosis have been recorded in

Egypt [58-60] and interestingly, both North and South
Sinai (our study site) governorates are considered to be
endemic regions for babesiosis in Egypt [61]. The num-
ber of reported cases differs [33,61] and so far no mo-
lecular identification of the Babesia spp. involved in
human cases has been carried out. The number of mo-
lecular studies on Babesia spp. infections in Egyptian
ticks is also extremely limited and the results of the few
published studies certainly need verification, i.e. the
presence of B. venatorum (EU1) in ticks Ixodes ricinus
or of B. microti, B. venatorum (EU1) and B. bigemina in
rats/gerbils from Sinai Peninsula [62]. Because of the oc-
currence of human babesiosis in South Sinai, the high
prevalence of B. behnkei n. sp. in a common rodent spe-
cies from the region, the Wagner’s gerbil, and the close
relationship between B. behnkei and the pathogenic B.
duncani, the possibility of human infection with this
novel species should be considered. Our as yet unpub-
lished data indicate that the most common tick in the
studied area is the camel tick, Hyalomma dromedarii,
which also attaches to and feeds on humans. This tick
species is certainly the main candidate for a possible vec-
tor of the new species of Babesia, especially because its
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Figure 2 Phylogenetic analysis of 18S rRNA sequences by the Maximum Likelihood method. The evolutionary history was inferred based
on the Tam3 (I + G) model. The tree with the highest log likelihood (0.0000) is shown. The percentages of replicate trees in which the associated
taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches [67]. The tree is drawn to scale, with branch
lengths measured as the number of substitutions per site. The analysis involved 49 nucleotide sequences. All positions containing gaps and
missing data were eliminated. Evolutionary analyses were conducted in MEGA v. 6.0 [51].
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Figure 3 Evolutionary relationships of the taxa based on ITS2 sequences. The evolutionary history was inferred using the Neighbor-Joining
method [68]. The optimal tree with the sum of branch length = 3.34829688 is shown. The percentages of replicate trees in which the associated
taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches [67]. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed
using the Kimura 2-parameter method [69] and are in the units of the number of base substitutions per site. The analysis involved 31 nucleotide
sequences. All positions containing gaps and missing data were eliminated. There were a total of 107 positions in the final dataset. Evolutionary
analyses were conducted in MEGA v. 6.0 [51].
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juvenile stages were found feeding on rodents in Egypt
[63]. Juvenile ticks were also collected from rodents in
our study and we plan to screen these for the presence
of the diagnostic marker for B. behnkei and hence to de-
termine their role as a vector of B. behnkei in the region.
Dipodillus (Gerbillus) dasyurus was the second most nu-

merous rodent species sampled throughout the 13 years of
field work in Sinai. This solitary, burrowing species occurs
in a variety of arid habitats, including desert, semi-desert
and rocky habitats in hill country [64]. It is a common spe-
cies, distributed mainly in the Nile Delta, the Sinai, Syria,
Iraq and the Arabian Peninsula and it is listed as of Least
Concern in the IUCN Red List of Threatened Species.
Interestingly, we were able to amplify Babesia spp. DNA
only from this host species, so it is likely that host specifi-
city of B. behnkei n. sp. is high and that despite the con-
cerns expressed above, it may not constitute a zoonotic
treat to people in the region. The wide geographic range of
D. dasyurus represents a particular challenge for the study
of the distribution of the novel species of Babesia. On the
other hand, the high rate of infection in gerbils registered
in only two isolated wadis and the absence of the parasite
throughout the period of study in other neighboring wadis,
support the idea that B. behnkei might have evolved locally
in these semi-isolated mountain populations of Wagner’s
gerbils. In our studies on helminth communities in the
same study sites, marked differences in community struc-
ture were noted between wadis [46]. Similarly, the preva-
lence of the intestinal protozoa and other haemoparasites
(Trypanosoma spp., Hepatozoon spp.) differed markedly
between rodent populations inhabiting these four sites
[38]. Each wadi thus presents its own particular challenges
for the animals that live there and local adaptation of para-
sites to their hosts and vice versa is to be expected [65,66].
In this particular case, B. behnkei n. sp. showed generally
high prevalence (25–90%) in two wadis and was not de-
tected at all in the other two of the four study sites moni-
tored. Where present, it occurred in Wagner’s gerbils in
each of the three surveys conducted over a period of 9
years (2004, 2008 and 2012). The Sinai Massif and its asso-
ciated deep wadis constitute therefore an ideal location for
studies of this type, testing the idea that parasites evolve
and adapt locally to their hosts and assessing the role of
gene flow and metapopulation structure for both hosts
and parasites. In future work we hope to unravel further
the intricacies of these relationships in the region, notably
for haemoparasites such as B. behnkei.

Conclusion
In conclusion, both ecological, phenotypic and phylo-
genetic analyses reported in this paper support the recog-
nition of a new piroplasm, B. behnkei n. sp., infecting
isolated populations of Wagner’s gerbil in Sinai as a dis-
tinct species.
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