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Abstract

In this dissertation Two-Higgs-Doublet Models (2HDMs) with a Z2-symmetric scalar
potential are studied from different perspectives. Two kinds of models, which differ
by the choice of the vacuum state, are analysed. One of them is the so-called 2HDM
(mixed) which breaks the symmetry of the potential by non-zero vacuum expectation
values (VEVs) of the neutral components of the two scalar doublets. The other one,
the exactly Z2-symmetric Inert Doublet Model (IDM) with only one non-vanishing
VEV, is of central interest to this work. It contains a SM-like Higgs boson and a
candidate for the dark matter (DM) particle.

The first part of this thesis is devoted to the analysis of the allowed parameter
space of the studied 2HDMs. The models are subject to a number of constrains, such
as: positivity of the potential, stability of the vacuum state, perturbative unitarity,
electroweak precision tests and the LEP bounds. We also take into account the fact
that the scalar discovered at the LHC is a SM-like Higgs boson with mass around
125 GeV. We present the allowed regions in the parameter space for the parameters
of the potential and the physical masses. For the 2HDM (mixed), within a scenario
where the lightest CP -even scalar plays a role of the SM-like Higgs particle, we
find a strong bound on the parameter tan β, which is independent of the type of
Yukawa interactions. In the IDM we derive an upper bound on the mass parameter
of the potential which is based on the condition for the stability of the vacuum and
excludes a phenomenologically interesting part of the parameter space.

In the second part of the present dissertation, constraints on the properties of
the new scalars of the IDM, based on the experimental results for the Higgs particle,
are analysed. First of all, we study the Higgs diphoton decay. We show, that the
additional scalars (in particular the charged scalar and the DM candidate) can affect
the observed signal strength of this decay. From this fact, we infer strong upper
and lower limits on the masses of these particles. Next, the decay of the Higgs to
a Z boson and a photon is analysed. We demonstrate that the correlation between
the diphoton and Zγ signal strength is positive, which gives a possible experimental
probe of the IDM. Furthermore, we study the invisible and total decay widths of
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the Higgs boson and infer constraints on the DM particle and its coupling to the
Higgs particle. In the following, the Higgs results are combined with the DM data.
We derive constraints and exclusions for different possible DM scenarios, proving
the idea of combining different sources of results very fruitful. Interestingly, the
results of this combination, when translated to the parameters probed by the direct
detection experiments, give constraints which are comparable or even stronger than
the results of the dedicated searches.

In the final part of the present dissertation, the issue of vacuum stability is
studied, in particular, the influence of the additional scalars on this problem. Two
distinct approaches are adopted. First, the additional scalars of the IDM are assumed
to be heavy, and thus they contribute to the effective potential only through loop
corrections. We demonstrate that the heavy inert scalars can change the structure
of the effective potential, introducing a new minimum which is deeper than the SM
one and this way they can destabilise the vacuum state. In addition, the regions
where destabilisation of the vacuum may occur are confronted with theoretical and
experimental constraints, and we prove that the IDM, in the valid part of the
parameter space, is free from the threat of vacuum instability. The other approach
to the issue of vacuum stability adopted in this thesis admits all of the scalar fields
in the effective potential, and thus allows the study of the coexistence of different
minima. We show that the inert minimum can coexist with an inert-like one at
one-loop level in a vaster region of the parameter space than at tree level. Moreover,
we demonstrate that the loop corrections may invert the ordering of the minima,
i.e. a tree-level global minimum may, in certain cases, become a local one at one-loop
level. This shows the importance of beyond-tree-level analysis of the issue of vacuum
stability.
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Streszczenie

Niniejsza dysertacja poświęcona jest badaniu modeli z dwoma dubletami pól Higgsa
(ang. Two-Higgs-Doublet Model, 2HDM ) opisywanych potencjałem skalarnym z sy-
metrią typu Z2. Analizowane są dwa rodzaje modeli 2HDM różniące się wyborem
stanu próżni. Pierwszy z nich to tzw. 2HDM (mixed), który łamie symetrię poten-
cjału, gdyż w stanie próżni neutralne składowe obu skalarnych dubletów uzyskują
niezerową próżniową wartość oczekiwaną. Drugi, model z biernym dubletem pól
skalarnych (ang. Inert Doublet Model, IDM ) posiadający jedną niezerową próżniową
wartość oczekiwaną i zachowujący tym samym symetrię potencjału, jest głównym
przedmiotem niniejszej pracy. Zawiera on bozon Higgsa o własnościach zbliżonych
do własności bozonu Higgsa z Modelu Standardowego (ang. Standard Model, SM )
oraz kandydatkę na cząstkę ciemnej materii.

Pierwsza część niniejszej pracy jest poświęcona analizie przestrzeni parametrów
badanych modeli 2HDM. Modele te są ograniczane przez rozmaite warunki i pomiary
takie jak: dodatniość potencjału, stabilność stanu próżni, perturbacyjna unitarność,
precyzyjne dane elektrosłabe oraz ograniczenia z akceleratora LEP. Ponadto bierzemy
pod uwagę fakt, że cząstka skalarna odkryta w LHC ma własności standardowego
bozonu Higgsa oraz masę około 125 GeV. Dozwolone obszary są przedstawione w
przestrzeni parametrów potencjału oraz fizycznych mas cząstek. W modelu 2HDM
(mixed), w przypadku gdy najlżejsza cząstka skalarna o dodatniej parzystości CP
pełni rolę bozonu Higgsa, prezentujemy nowe silne ograniczenie na parametr tan β,
niezależnie od typu oddziaływań Yukawy. W modelu IDM, w oparciu o warunek sta-
bilności próżni, wyprowadzamy ograniczenie na parametr masowy potencjału, które
wyklucza interesujący z fenomenologicznego punktu widzenia obszar przestrzeni
parametrów.

W drugiej części niniejszej dysertacji w oparciu o dane eksperymentalne dotyczące
bozonu Higgsa, wyprowadzamy ograniczenia na możliwe własności nowych cząstek
skalarnych w IDM. W pierwszej kolejności analizowany jest rozpad bozonu Higgsa
na dwa fotony. Pokazujemy, że dodatkowe skalary, w szczególności cząstka nała-
dowana oraz kandydatka na cząstkę ciemnej materii, mogą znacząco wpływać na
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siłę sygnału dla tego rozpadu. Z tego faktu wyprowadzamy silne ograniczenia na
masy tych cząstek. Następnie, analizowany jest rozpad bozonu Higgsa na bozon
Z oraz foton. Pokazujemy, że korelacja między siłami sygnału w tym kanale oraz
kanale dwufotonowym jest pozytywna, co stwarza możliwość poddania IDM eks-
perymentalnej weryfikacji. Ponadto, badamy stosunek rozgałęzień rozpadu bozonu
Higgsa na cząstki niewidzialne oraz jego całkowitą szerokość rozpadu, co pozwala
na wyprowadzenie ograniczeń na masę cząstki ciemnej materii oraz jej sprzężenie
do bozonu Higgsa. W dalszej części wyniki dotyczące bozonu Higgsa są połączone z
danymi dotyczącymi ciemnej materii. Wyprowadzamy istotne ograniczenia i wyklu-
czenia dotyczące różnych możliwych scenariuszy istnienia ciemnej materii, pokazując
tym samym, że łączenie różnych źródeł danych może być niezwykle owocne. Nasze
ograniczenia wynikające z tej analizy przetłumaczone na ograniczenie parametrów
próbkowanych przez eksperymenty bezpośredniej detekcji ciemnej materii okazują się
być porównywalne lub nawet silniejsze od wyników tych dedykowanych poszukiwań
ciemnej materii.

W ostatniej części niniejszej pracy analizowany jest problem stabilności stanu
próżni, w szczególności wpływ jaki mają na niego dodatkowe cząstki skalarne. Ba-
damy to zagadnienie na dwa różne sposoby. W ramach pierwszego podejścia zakła-
damy, że dodatkowe skalary są ciężkie i w związku z tym mogą dawać wkład do
potencjału efektywnego jedynie poprzez efekty pętlowe. Pokazujemy, że dodatkowe
skalary mogą zmodyfikować strukturę potencjału efektywnego i zdestabilizować stan
próżni, wprowadzając dodatkowe głębsze minimum. Dodatkowo, konfrontując ob-
szary parametrów, w których możliwa jest destabilizacja próżni z ograniczeniami
teoretycznymi i doświadczalnymi, pokazujemy, że w IDM taki scenariusz nie jest moż-
liwy. Drugie podejście do problemu stabilności próżni stosowane w niniejszej pracy
pozwala na obecność wszystkich pól skalarnych w potencjale efektywnym, stwarzając
tym samym możliwość zbadania współistnienia różnych typów minimów. Pokazu-
jemy, że minima typu inert oraz inert-like mogą współistnieć na poziomie pętlowym,
w szerszym zakresie parametrów niż na poziomie drzewowym. Co więcej, pokazujemy,
że poprawki pętlowe mogą odwrócić uporządkowanie próżni, tzn. drzewowe minimum
globalne może stać się na poziomie pętlowym minimum lokalnym. To pokazuje jak
istotne może być wyjście poza poziom drzewowy w analizie stabilności próżni.
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1
Introduction

The work described in this dissertation was developed during extremely exciting
times for particle physics — during the operation of the Large Hadron Collider
(LHC) at CERN and in the era of the discovery of a new scalar particle in the
ATLAS [18] and CMS [19] experiments. A scalar particle, the Higgs boson, was the
only missing, not yet observed experimentally fundamental particle of the Standard
Model (SM) of elementary interactions. It was predicted in the 1960’ as an accompa-
nying particle of spontaneous symmetry breaking (SSB) via the Brout–Englert–Higgs
mechanism [20–23] which endows gauge bosons with mass. F. Englert and P. Higgs
were awarded the Nobel prize in Physics in 2013 for proposing this mechanism of
mass generation, R. Brout passed away in 2011 before the decision of the Nobel
committee. The prevailing question was whether the discovered particle is the Higgs
boson as predicted by the SM or maybe it shows some different features. In general,
the experimental results converge towards the SM predictions [24], however some new
physics effects could be hidden in the experimental uncertainties or in the processes
that have not yet been observed. Furthermore, it still remains an open question
what the upgraded run of the LHC, with the centre-of-mass energy equal to 13 TeV,
will uncover. Some first exciting hints on the existence of a new resonance with mass
around 750 GeV have been reported [25, 26] but we should probably wait with the
wave of enthusiasm for more data.

The general excitement with which any discrepancy between the experimental
results and the SM predictions is welcomed is caused by the fact that the SM
faces certain theoretical and experimental problems and is believed not to be the
final theory of fundamental interactions. Among these problems are the hierarchy
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problem, metastability of the SM vacuum state, neutrino masses, existence of dark
matter (DM) and domination of matter over antimatter. A large number of models
describing new physics beyond the SM (BSM) has been devised to deal with these
issues. Typically, they correspond to extensions of the SM with additional fields,
which produce some new effects not present in the SM, as well as they modify the
predictions for the SM processes. Any hint of disagreement between the SM and the
observations may point towards a particular new physics model.

Among the simplest extensions of the SM, providing interesting phenomenology,
are the models with an extended scalar sector which instead of one complex SU(2)

doublet of the SM contain more of the doublets or also scalar fields belonging to
other representations of SU(2). In the present thesis we will focus on the two-Higgs-
doublet models (2HDM) which contain two scalar SU(2) doublets and were first
proposed by T. D. Lee in 1973 to provide an additional source of CP violation as
compared to the SM (CKM matrix) [27]. Moreover, 2HDMs can offer a candidate for
a DM particle, as well as some conditions for baryogenesis. In particular, the Inert
Doublet Model (IDM), which is a special type of 2HDM with an exact Z2 symmetry,
will be of main interest to us.

The Higgs boson is central to this dissertation. It will be studied here within the
2HDMs from different perspectives. First of all, we will study its properties via the
analysis of the LHC results. We will focus on the decay of the Higgs boson to two
photons, which was the first observational channel of the new particle and also at
first showed some discrepancies from the SM expectations. We will also study the
Higgs decays to a Z boson and a photon as well as to particles that are invisible for
the detector, and the total decay width of the Higgs boson. In all of these studies
our main goal will be to use the Higgs data to learn something about the new, yet
unobserved particles present in the model. Therefore, one may say that the Higgs
boson is treated in this thesis as a probe of new physics.

Moreover, we will study the interplay between the properties of the Higgs boson
and the properties of the DM candidate present in the IDM. We will show that
analysing the results related to the Higgs boson together with the DM data may
lead to strong constraints, even stronger than results obtained by dedicated direct
searches of DM. Therefore, the Higgs boson plays also a role of a portal to the DM
sector.

On the other hand, the Higgs boson, interpreted as an excitation of the scalar
field, will be studied from a theoretical perspective. The scalar field is a basic
component of SSB, and the nature of its ground state determines the properties of
the theory. In particular, it is crucial that the ground (vacuum) state is sufficiently
stable, otherwise the theory cannot be predictive. In this thesis we study the impact
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of additional scalar fields on the stability of the vacuum state.
Integrating these different ways of reasoning, a phenomenological approach with

a more theoretical one, we develop a thorough analysis of the studied models.
This thesis is organised as follows. We start from introducing the studied models

in chapter 2. We specify the lagrangian and its symmetries, discuss the potential and
the possible vacuum states. Depending on the vacuum state chosen, different models
are possible. For these models we specify the particle spectrum, giving expressions
for masses and discussing the properties of the particles.

In chapter 3 we present the constraints on the parameter spaces of the discussed
models. Among them are basic theoretical constraints: positivity of the potential,
stability of the vacuum state and perturbative unitarity. Moreover, experimental
bounds such as electroweak precision tests (EWPT), LEP and flavour physics con-
straints are presented. We show how these constraints affect parameter spaces of the
studied models. Furthermore, we present the constraints to be studied in more detail
in the following chapters: the results from the LHC as well as the DM constraints.

Chapter 4 is devoted to the study of the properties of the Higgs boson within
the IDM. We start from the analysis of the Higgs diphoton decay. Providing both
analytical and numerical analysis, we investigate what the influence of the new scalar
particles on the diphoton signal strength is, and extract limits on the scalar masses
from the observational data. Further on, we study the decay of the Higgs boson
to a photon and a Z boson. We show that the mechanisms controlling the signal
strength are very similar to the ones appearing in the case of the h → γγ decay
so also all the constraints derived in this case would be the same. An interesting
observation is that the two signal strengths are positively correlated, which can serve
as a potential experimental probe of the validity of the IDM. Next, we study the
total decay width of the Higgs boson, as well as the branching rations of the decays
to invisible particles. From these observables we are able to derive upper and lower
bounds on the coupling between the Higgs boson and the DM candidate.

The next part of chapter 4 is devoted to the study of the interplay between the
properties of the Higgs boson and the inert DM. We show that the same parameters,
the mass of the DM particle and its coupling to the Higgs boson, are important
for the computation of the diphoton signal strength and the DM relic abundance.
Using this fact, we derive limits on different possible DM scenarios. Moreover, we
interpret the obtained bounds so that it is possible to compare them with the results
of the direct search experiments, and it appears that the bounds obtained by us are
comparable with the results from the XENON100 and LUX experiments.

The following part of this dissertation is focused on the problem of vacuum
stability. This issue gained a lot of attention after the discovery of the Higgs boson
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and the measurement of its mass. The stability of the SM vacuum depends strongly
on the values of the top quark and Higgs boson masses, and the most up-to-date
analyses show that the SM vacuum is not absolutely stable [28–31]. This provokes
questions about the influence of new physics on this result.

In chapter 5 we introduce the basic tool which allows the study of vacuum
states — the effective potential. We show why it is well suited for our study and
derive formulas for the one-loop contributions to the effective potential coming from
different types of particles.

Next, in chapter 6, we study the stability of the vacuum state in the IDM using
the effective potential formalism. The analysis is performed from two perspectives.
First, we assume that the additional inert scalars are heavy and decoupled. This
way they enter the effective potential only via loop corrections so only the Higgs field
is dynamical and can develop a vacuum expectation value (VEV). This approach
allows us to study the impact of the inert scalars on the SM-like inert vacuum state.
It appears that in fact the new scalars can, in principle, destabilise the vacuum state.
However, we show that this option is excluded in the IDM by the parameter space
constraints.

Within the second approach all the scalar fields can acquire a VEV which allows
us to study the coexistence of the inert and inert-like minima beyond tree level. We
show that the loop corrections may have important consequences for the vacuum
structure of the model — they can invert the hierarchy of coexisting minima such
that the minimum which was global at tree level, at one-loop level becomes a local
one.

In the closing part of chapter 6 we discuss a possible way of studying the vacuum
structure of models with an extended scalar sector in full generality. We present a
method of consistently using the effective potential in presence of many energy scales
associated with the new scalar fields, and discuss possible problems with applying it
in practice.

Chapter 7 contains a summary of the presented results, as well as a brief pre-
sentation of some open questions. There are also appendices, where additional
information and derivations are collected. Appendix A contains a discussion of the
appropriate choice for the range of the mixing angle α. Appendix B summarises
the formulas for the decay widths of the Higgs boson, used in the computations
presented in chapter 4. The details of dimensional regularisation of the one-loop
contribution to the effective potential are described in appendix C. Derivation of
and formulas for the one-loop self-energies of the scalar particles in the IDM, which
were needed for the considerations presented in chapter 6, are given in appendix D.
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Models with extended scalar

sector — Two-Higgs-Doublet

Models

The present thesis is focused on studying the Higgs boson, its properties and relation
to the issue of vacuum stability in models with extended scalar sector. In particular,
the Inert Doublet Model (IDM), which is a special type of a Two-Higgs-Doublet
Model (2HDM) is of main interest. In this chapter we will briefly introduce these
models, specifying the lagrangian, its symmetries, and the possible vacuum states.

2.1 Lagrangian of 2HDM

2HDMs are extensions of the SM containing two, instead of one, scalar SU(2) dou-
blets, for a recent review see ref. [32]. Both doublets have weak hypercharge equal 1.
The doublets will be denoted by φS and φD throughout this thesis.

In general, a 2HDM is described by the following lagrangian

L = LSM + LH + LY ,

where LSM denotes the SM part of the lagrangian, i.e. defines interactions of the fer-
mions and gauge bosons with the gauge group SU(3)C ×SU(2)L×U(1)Y . The part
of the lagrangian LH describes the interactions of the scalar fields,

LH = (DµφS)† (DµφS) + (DµφD)† (DµφD)− V.
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V is the scalar potential. The symbol Dµ denotes the covariant derivative, defined
as follows

Dµ = ∂µ +
ig

2
τaW

a
µ +

ig′

2
Y Bµ,

whereW a
µ and Bµ are the gauge fields, and τa, and Y are the generators of the groups

SU(2)L, and U(1)Y , respectively (Y = I2×2). The kinetic terms for the scalars intro-
duce the gauge-scalar interactions, and these are the terms that generate the masses
of the gauge bosons after SSB.
LY defines interactions between fermions and scalar fields, called the Yukawa

interactions. In presence of two scalar doublets flavour-changing neutral currents
(FCNC), which are strongly constrained experimentally, arise naturally. However,
if all fermions with the same electric charge and helicity couple to the same scalar
doublet, there is no possibility of mixing [33, 34]. To assure that, discrete symmetries
(typically Z2) are imposed on the 2HDM lagrangian, and thus different types of
Yukawa interactions arise. The two basic types, to be discussed in this work, are
type I, and type II.

In type I all the quarks couple to a single scalar doublet, here it is φS, and the cor-
responding discrete symmetry is defined as φD → −φD.

In type II the up-type right-handed quarks dR couple to one of the doublets (φS),
and the down-type right-handed quarks to the other (φD). The corresponding
symmetry is φD → −φD, dR → −dR.

2.2 Potential

The most general potential of a 2HDM reads [35–38]

V =− 1

2

[
m2

11φ
†
SφS +m2

22φ
†
DφD + (m2

12φ
†
DφS + h.c.)

]
+

1

2

[
λ1(φ†SφS)2 + λ2(φ†DφD)2

]
+ λ3(φ†SφS)(φ†DφD) + λ4(φ†SφD)(φ†DφS)

+

[
1

2
λ5(φ†SφD)2 +

(
λ6φ

†
DφD + λ7φ

†
SφS

)
(φ†DφS) + h.c.

]
,

where the parameters can, in principle, be complex. However, the requirement that
V is a hermitean function forces that λ1, . . . , λ4, m2

11, m2
22 are real numbers.

As was explained above, the most general 2HDM with no additional symmetries
imposed, will in general lead to large FCNC. To avoid that, in this work we assume
a Z2 symmetry of the potential. The most general Z2-symmetric 2HDM potential
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reads

V =− 1

2

[
m2

11(φ†SφS) +m2
22(φ†DφD)

]
+

1

2

[
λ1(φ†SφS)2 + λ2(φ†DφD)2

]
+ λ3(φ†SφS)(φ†DφD) + λ4(φ†SφD)(φ†DφS) +

1

2
λ5

[
(φ†SφD)2 + (φ†DφS)2

]
, (2.1)

where λ6 = λ7 = m2
12 = 0. Moreover, without loss of generality, the parameters can

be chosen to be real, and we can assume that λ5 < 0 (the choice λ5 > 0 is equivalent
from the physical point of view).

2.2.1 Symmetry of the potential

Saying that the potential (2.1) is Z2-symmetric is not enough, since in fact it possesses
a “double” symmetry: Z2 × Z2. The two transformations which are preserved are
defined as follows

S : φS → −φS, φD → φD, D : φS → φS, φD → −φD. (2.2)

At the level of the potential the S and D symmetries are absolutely equivalent —
the roles of the doublets φS and φD can be easily exchanged with a global rephasing
of the fields, which does not have any physical meaning. However, once Yukawa
interactions are fixed the roles of the doublets are settled, and they can no longer be
interchanged. In particular, lagrangians with Yukawa interaction of type I or II are
only D-symmetric, and not S-symmetric. So with the choice of the Yukawa model,
the initial Z2 × Z2 symmetry of the potential is reduced to a single Z2.

2.2.2 Extrema of the potential

The theory should be built around the minimum of the potential, i.e. around a state
with vacuum expectation values (VEV) fulfilling the extremum conditions (this is a
necessary condition)

∂V

∂φi

∣∣∣∣
φi=〈φi〉

= 0,
∂V

∂φ†i

∣∣∣∣
φi=〈φi〉

= 0, i = D,S. (2.3)

There are different possible patterns of symmetry breaking [39]. In general the VEVs
can be written as follows

〈φS〉 =
1√
2

(
0

vS

)
, 〈φD〉 =

1√
2

(
u

vDe
iξ

)
, (2.4)

where v2
S + v2

D + u2 = v2 = 1√
2GF
≈ (246 GeV)2. Depending on whether vS, vD and

u are zero or not, different extrema of the potential are possible [39–42]. Below we
discuss these types.
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Electroweak symmetry conserving extremum. The EW symmetry conserv-
ing extremum is realised when both of the doublets have a zero VEV, as
follows

〈φS〉 = 0, 〈φD〉 = 0.

With this vacuum state all the fermions and gauge bosons are massless, so
definitely it is not the true vacuum state of the theory today. However it is
expected that such a symmetric state was the ground state before EWSB.

Charge-breaking extremum. When the charged component of a scalar field ac-
quires a non-zero VEV

〈φS〉 =
1√
2

(
0

vS

)
, 〈φD〉 =

1√
2

(
u

vD

)
,

the electromagnetic U(1) symmetry is spontaneously broken, and the photon
gets a non-zero mass. This is of course unacceptable from the todays phe-
nomenological point of view. However, in principle such a state could have
been a vacuum during the evolution of the Universe.

CP violating extremum. CP violating extremum appears when there is a non-
zero phase difference between the VEVs of the neutral components of the scalar
doublets,

〈φS〉 =
1√
2

(
0

vS

)
, 〈φD〉 =

1√
2

(
0

vDe
iξ

)
.

However, appearance of this phase does not necessarily mean that CP is
spontaneously violated. For example, in the case of Z2-symmetric potential
CP is conserved but a non-zero phase may appear. It has been shown using
a transformation λ5 → −λ5 that this case is equivalent to having two real
VEVs [42].

Mixed (normal) extremum. The mixed or normal extremum is realised when
both of the neutral components of the scalar doublets have non-zero VEVs

〈φS〉 =
1√
2

(
0

vS

)
, 〈φD〉 =

1√
2

(
0

vD

)
. (2.5)

This vacuum violates the Z2 symmetry of the potential spontaneously. It is
very well studied, as it forms the ground state of supersymmetric models, as
well as general 2HDMs.
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Inert extremum. The inert extremum is characterised by only φS having a non-
zero VEV

〈φS〉 =
1√
2

(
0

v

)
, 〈φD〉 =

1√
2

(
0

0

)
. (2.6)

This vacuum state is symmetric under the D transformation, but violates the S
symmetry of the potential.

Inert-like extremum. The inert-like extremum is an analog of the inert one, with
the roles of φS and φD exchanged,

〈φS〉 =
1√
2

(
0

0

)
, 〈φD〉 =

1√
2

(
0

v

)
. (2.7)

This state violates the D, and preserves the S symmetry.

It should be underlined that the inert and inert-like states are not limiting cases
of the mixed state. It can be shown as follows. When u, ξ = 0 is assumed in (2.4),
the extremum conditions (2.3) take the following simple form [39]

vS
(
λ345v

2
D + λ1v

2
S −m2

11

)
= 0, (2.8)

vD
(
λ345v

2
S + λ2v

2
D −m2

22

)
= 0. (2.9)

The values of the VEVs in the mixed state are obtained with the assumption
vS, vD 6= 0 so the expressions in brackets in the extremum conditions, eqs. (2.8),
(2.9), must vanish. On the other hand, the solutions for the inert and inert-like
states are obtained with the assumption vD = 0 or vS = 0, respectively, and thus
only one of the expressions in brackets must vanish. Therefore, the relations between
the parameters in the mixed and inert/inert-like extrema are different. In particular,
the inert state could be considered a limiting case of the mixed one, only if together
with the assumption vD → 0 one simultaneously requires that the expression in
bracket in eq. (2.9) vanishes.

In principle, the potential for a given set of parameters can develop several
minima with different properties (i.e. the minimisation conditions can have multiple
solutions). It has been checked that if the mixed minimum exists it has to be a
global one, and inert or inert-like minima cannot coexist with it [43–45]. On the
other hand, the inert and inert-like minima can be developed simultaneously [41].
This coexistence is studied in detail in section 6.3.

Depending on which of the minima is the global one (i.e. which is the ground
state of the theory) the resulting models will have different properties. We reserve
the name 2HDM to refer to a general class of models with two scalar doublets. The
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specific models studied in this thesis are the 2HDM (mixed), which has a mixed
state as a vacuum state, and the IDM with the inert vacuum. Below we review the
properties of these models. We also review the properties of the inert-like minimum
which will be useful for the study of coexistence of inert and inert-like minima.

2.3 2HDM (mixed)

A version of the 2HDM with the potential (2.1) and a normal (mixed) vacuum state
(i.e. where both of the doublets acquire non-zero VEVs) will be referred to as 2HDM
(mixed).1 The VEVs are given by eq. (2.5) and the vacuum state spontaneously
breaks both the D and the S symmetry.

The doublets can be decomposed around the minimum as follows

φS =
1√
2

( √
2ρ+

S

vS + ρS + iχS

)
, φD =

1√
2

( √
2ρ+

D

vD + ρD + iχD

)
, (2.10)

where v2
S + v2

D = v2 = (246 GeV2). The component fields appearing above are not
mass-eigenstates. Mass-eigenstates are mixtures of the ρ±K , ρK and χK (K = S, D),
namely(

G±

H±

)
= R(β)

(
ρ±S
ρ±D

)
,

(
G

A

)
= R(β)

(
χS

χD

)
,

(
H

h

)
= R(α)

(
ρS

ρD

)
,

where R denotes a rotation matrix of an angle α or β, α ∈ (−π/2, π/2), β ∈ (0, π/2)

and tan β = vD
vS
. R is defined as follows

R =

(
cosα sinα

− sinα cosα

)
.

In the literature one may encounter some confusions about the appropriate range
for the angle α. To clarify this point and justify our convention stated above we
discuss this issue in detail in appendix A.

In the particle spectrum of the model there are two neutral CP -even scalars h
and H, h being lighter than H. These are two possible candidates for the Higgs
boson, both of the scenarios are possible. Moreover, there is a pseudoscalar A and

1In the literature it is most often called simply 2HDM, however here we need a clear distinction
between a general class of models, and a model with the particular vacuum state, as explained
before.
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a charged Higgs boson H±. The physical masses of the scalar particles read

M2
H± = −1

2
(λ4 + λ5)v2,

M2
A = −λ5v

2,

M2
H =

1

2

(
λ1v

2
S + λ2v

2
D +

√
(λ1v2

S − λ2v2
D)2 + 4λ2

345v
2
Sv

2
D

)
,

=
v2

2

1

1 + tan2 β

(
λ1 + λ2 tan2 β +

√
(λ1 − λ2 tan2 β)2 + 4λ2

345 tan2 β
)
, (2.11)

M2
h =

1

2

(
λ1v

2
S + λ2v

2
D −

√
(λ1v2

S − λ2v2
D)2 + 4λ2

345v
2
Sv

2
D

)
.

=
v2

2

1

1 + tan2 β

(
λ1 + λ2 tan2 β −

√
(λ1 − λ2 tan2 β)2 + 4λ2

345 tan2 β
)
.

It is convenient to study the model with the use of physical masses, and the mixing
angles (most frequently tan β and sinα, or sin(β − α)). The parameters λ1, . . . , λ5

are expressed through these parameters as [38]

λ1 =
1

v2 cos2 β
(M2

H cos2 α +M2
h sin2 α),

λ2 =
1

v2 sin2 β
(M2

H sin2 α +M2
h cos2 α),

λ3 =
sin 2α

v2 sin 2β
(M2

H −M2
h) +

2M2
H±

v2
, (2.12)

λ4 =
1

v2
(M2

A − 2M2
H±),

λ5 = − 1

v2
M2

A.

2.4 Inert Doublet Model

The IDM [39, 46, 47] is a 2HDM with a scalar potential of the form of eq. (2.1), and
the inert vacuum state of the form (2.6). Both the potential V , and the vacuum
state are symmetric under the D symmetry defined in eq. (2.2) (with Ψ→ Ψ, where
Ψ denotes the SM fields). In order to preserve this symmetry, Yukawa interactions
are set to type I, i.e. only the φS doublet couples to fermions. This way the D
symmetry is exact in the IDM.

The doublets can be decomposed around the minimum in the following way

φS =
1√
2

( √
2G+

v + h+ iG

)
, φD =

1√
2

( √
2H+

H + iA

)
.
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The second derivative of the potential, i.e. the mass matrix, is diagonal in the basis
composed of the fields G,G±, h,H,A,H± at the minimum so these are the mass-
eigenstates. G and G± correspond to the massless Goldstone bosons, and the remain-
ing fields correspond to physical scalar particles. Their tree-level masses read (we de-
compose H± and G± into real component fields as H± = H±1 +iH±2 , G± = G±1 +iG±2 )

M2
h =

∂2V

∂h2

∣∣∣∣
I

= −1

2
m2

11 +
3

2
λ1v

2 = λ1v
2 = m2

11,

M2
H± =

∂2V

∂H±2
1

∣∣∣∣
I

=
∂2V

∂H±2
2

∣∣∣∣
I

=
1

2

(
−m2

22 + λ3v
2
)
,

M2
A =

∂2V

∂A2

∣∣∣∣
I

=
1

2

(
−m2

22 + λ−345v
2
)
, (2.13)

M2
H =

∂2V

∂H2

∣∣∣∣
I

=
1

2

(
−m2

22 + λ345v
2
)
,

M2
G =

∂2V

∂G2

∣∣∣∣
I

=
1

2

(
−m2

11 + λ1v
2
)

= 0,

M2
G± =

∂2V

∂G±2
1

∣∣∣∣
I

=
∂2V

∂G±2
2

∣∣∣∣
I

=
1

2

(
−m2

11 + λ1v
2
)

= 0,

where the subscript I indicates that the derivatives were computed in the inert
vacuum state defined in eq. (2.6), and λ345 = λ3 + λ4 + λ5, and λ−345 = λ3 + λ4 − λ5.

The boson h is a SM-like Higgs boson. It couples at tree level to fermions and
gauge bosons just like the SM Higgs. The fields originating from the φD doublet
are referred to as dark or inert scalars, as they do not couple to fermions. Their
couplings to gauge bosons come from the covariant derivative. Due to the Z2

symmetry the dark scalars can appear in interaction vertices only in pairs. H and
A are electrically neutral, and H± is a pair of charged scalar particles.

Due to exact conservation of the D symmetry, a new conserved quantum number
can be introduced: D parity. The dark particles are odd under D, and all other are
even. As a consequence of the conservation ofD, the lightestD-odd particle is stable,
and thus constitutes a dark matter (DM) candidate, provided that is electrically
neutral. In the IDM the potential DM candidates are A and H. The two choices are
equivalent, they differ only by the choice of the sign of λ5. Here we choose λ5 < 0,
and thus MH < MA, and also MH < MH± , which implies

λ4 + λ5 < 0. (2.14)

The IDM can be parametrized by the original parameters appearing in the potential,
i.e. m2

11, m2
22, λ1, . . . , λ5 (where m2

11 is fixed by the first line of eq. (2.13)). Alterna-
tively, one may use sets of parameters containing the physical masses of the scalar
particles. Two such sets used in this work are: m2

22, λ2,Mh,MH ,MA,MH± , and
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λ2, λ345,Mh,MH ,MA,MH± . Useful relations inverse to those given in (2.13), which
allow to switch between the parameter sets, read

λ1 =
M2

h

v2
,

λ3 =
1

v2

(
2M2

H± +m2
22

)
=

2

v2

(
M2

H± −M2
H

)
+ λ345,

λ4 =
1

v2

(
M2

H +M2
A − 2M2

H±

)
, (2.15)

λ5 =
1

v2

(
M2

H −M2
A

)
,

m2
22 = −2M2

H + λ345v
2.

2.5 Inert-like vacuum

The inert-like vacuum state, defined in eq. (2.7), is an analog of the inert state
with the roles of φS and φD exchanged. A model with an inert-like vacuum state
and Yukawa interactions defined such that only φD couples to fermions would be
exactly equivalent to the IDM. However, if ordinary type I of Yukawa interactions
is considered, then the fermions are massless in this minimum. Moreover, massive
scalars from the φS doublet couple to the massless fermions and are thus very
unstable. This is certainly an unphysical situation and should be avoided. This
is particularly important when the IDM is considered — as was explained before
the inert and inert-like minima can coexist in this model and we should make sure
that the inert minimum is the proper ground state of the theory. This condition at
tree level is discusses in section 3.1.2, and at one-loop level in section 6.3. To study
the properties of this minimum the tree-level masses of the scalar particles will be
needed.

In the inert-like minimum the scalar doublets can be decomposed as follows

φS =
1√
2

( √
2H+

H + iA

)
, φD =

1√
2

( √
2G+

v + h+ iG

)
.

The fields present in the above formula are all mass-eigenstates. G and G± are the
Goldstone bosons, h is the Higgs boson, and H, A and H± are massive scalars. One
should note that the field names are the same as in the case of the inert vacuum
but they do not correspond to the same particles as the roles of φS and φD are
exchanged.
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CHAPTER 2. MODELS WITH EXTENDED SCALAR SECTOR —
TWO-HIGGS-DOUBLET MODELS

The masses of the particles read

M2
h =

∂2V

∂h2

∣∣∣∣
IL

= −1

2
m2

22 +
3

2
λ2v

2 = λ2v
2 = m2

22,

M2
H± =

∂2V

∂H±2
1

∣∣∣∣
IL

=
∂2V

∂H±2
2

∣∣∣∣
IL

=
1

2

(
−m2

11 + λ3v
2
)
,

M2
A =

∂2V

∂A2

∣∣∣∣
IL

=
1

2

(
−m2

11 + λ−345v
2
)
, (2.16)

M2
H =

∂2V

∂H2

∣∣∣∣
IL

=
1

2

(
−m2

11 + λ345v
2
)
,

M2
G =

∂2V

∂G2

∣∣∣∣
IL

=
1

2

(
−m2

22 + λ2v
2
)

= 0,

M2
G± =

∂2V

∂G±2
1

∣∣∣∣
IL

=
∂2V

∂G±2
2

∣∣∣∣
IL

=
1

2

(
−m2

22 + λ2v
2
)

= 0,

where the subscript IL indicates that the derivatives were computed in the inert-like
minimum. These masses can be obtained from the masses in the inert minimum
with an exchange m2

11 → m2
22 and λ1 → λ2 but one has to remember that the origin

of respective particles is different in the inert-like minimum than in the inert one.
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3
Constraints on 2HDMs

Every model of new physics should be theoretically self-consistent and stay in agree-
ment with the available experimental data. This poses diverse constraints on the
parameter space of a given model. In this chapter we review the constraints that
can be imposed on Z2-symmetric 2HDMs (the IDM and the 2HDM (mixed)). On
the side of theory these include: positivity of the scalar potential, stability of the
vacuum state and perturbative unitarity. Among the experimental constrains are
the electroweak precision tests (EWPT) applied in terms of the oblique parameters
S and T , constraints from the LEP experiment, flavour physics constraints, the
bound from the LHC, and the DM related constraints. Since the presence of the
DM candidate is an important feature of the IDM we review the issue of DM in
more detail, giving motivation for the existence of DM, describing DM detection
experiments, and the constraints from the measurements of the DM relic density.

In the next parts of this chapter we present the allowed parameter space for the
IDM (section 3.5) and for the 2HDM (mixed) (section 3.4) resulting from imposition
of the basic constraints (positivity of the potential, perturbative unitarity, EWPT,
LEP constraints, Higgs mass). The results described here are mostly based on our
work presented in ref. [5] (see also refs. [6, 17, 48]).

In the literature there exist several analyses of the parameter space of different
types of 2HDMs, see e.g. [46, 49–65].1 The features of our analysis presented here
that distinguish it from other works are: careful treatment of the vacuum stability
condition — we required that the vacuum state is not only a minimum, it should be a

1Here we mention only the references studying the basic constraints similarly to the analysis
presented in this chapter. Subsequently, there appeared many papers studying various experimental
constraints like the DM relic abundance and the LHC constraints.
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CHAPTER 3. CONSTRAINTS ON 2HDMS

global minimum, which gave us an important constraint on the mass parameter of the
scalar potential; we considered the full scattering matrix of the scalar sector, including
also doubly charged channels; our analysis for the 2HDM (mixed) is independent
of the type of Yukawa interactions chosen, which makes the results very universal;
we combined the information on the mass of the Higgs boson with perturbative
unitarity constraints which gave stringent bounds on the parameter tan β which had
not been known before.

3.1 Theoretical constraints

3.1.1 Positivity

In order to allow for a stable vacuum state (a global minimum of the potential),
the scalar potential of the model should be bounded from below, i.e. it should not
tend to minus infinity for any direction in the field space. Concrete bounds for
the parameters of the potential are found by considering the potential along different
directions, and demanding that the limit at infinity is positive. For potential (2.1),
at tree level, this is assured by the following conditions [39, 66]

λ1 > 0, λ2 > 0, λ3 +
√
λ1λ2 > 0, λ345 +

√
λ1λ2 > 0. (3.1)

These conditions are also often referred to as stability conditions (or vacuum stability
conditions, even though they are only the necessary conditions, and not sufficient)
or boundedness-from-below conditions. Second and third of these conditions are
illustrated in figure 3.1 (it is only valid for the IDM since λ1 is fixed to 0.26, as
follows from eq. (2.13) with Mh = 125 GeV, v = 246 GeV.).

Discussion of positivity at loop level is more involved, since the effective potential
has to be examined, and we postpone it to chapter 6.

3.1.2 Stability of the vacuum state

A model is always built around a vacuum state which should be stable. To be so, it
has to correspond to a global minimum of the scalar potential. Therefore, the state
playing the role of the vacuum has to be

(i) a stationary point, fulfilling eq. (2.3),

(ii) a minimum, i.e. the matrix of second derivatives of the potential in this state
should be positive definite.
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Figure 3.1: Region allowed by positivity constraints, eq. (3.1) (second and third
condition) in the (λ2, λ3) and (λ2, λ345) planes. The value of λ1 is fixed to 0.26,
which is the value given in the IDM by the measurement of the Higgs boson mass
(see eq. (2.13)).

This means that the masses squared of all the particles must be positive,

M2
h , M

2
H , M

2
A, M

2
H± > 0. (3.2)

In the case of the IDM this conditions give

m2
11 > 0, (3.3)

and a set of constraints for λ3, λ345, λ
−
345 and m2

22, which can be easily obtained from
the expressions for masses, eq. (2.13).

In the case of the 2HDM (mixed), conditions derived the same way can be
simplified, and expressed as

v2
S =

m2
11λ2 − λ345m

2
22

λ1λ2 − λ2
345

> 0, v2
D =

m2
22λ1 − λ345m

2
11

λ1λ2 − λ2
345

> 0,

λ4 + λ5 < 0, λ5 < 0, λ1λ2 − λ2
345 > 0. (3.4)

Moreover, the vacuum state should correspond to a minimum that is deeper
than any other minimum (i.e. a global minimum).2 It has been shown that once
a mixed state (2.5) is a minimum, then it is a global one [41]. However, the inert
minimum (2.6) can coexist with an inert-like one (2.7). In this case the energies
(depths) of the minima should be compared. The inert one is deeper if [5, 41, 67]

m2
11√
λ1

>
m2

22√
λ2

. (3.5)

2Metastable states could also be allowed as vacua. However, we do not consider this case in
this chapter, for a more detailed discussion see sections 6.1 and 6.2.

21



CHAPTER 3. CONSTRAINTS ON 2HDMS

This condition can be translated to a constraint for m2
22 if the parameters m2

11 and
λ1 are expressed in terms of Mh and v (eq. (2.13))

m2
22 <

√
λ2Mhv. (3.6)

In the next section we present an upper bound on λ2, λ2 < 8.38 (see eq. (3.13)).
Anticipating this result and using the values Mh = 125 GeV and v = 246 GeV we
obtain an upper bound on the value of the m2

22 parameter [5]

m2
22 . 9 · 104 GeV2. (3.7)

As is shown in section 4.1, where the diphoton Higgs decay signal strength within
the IDM is analysed, this constraint can have significant influence on the phenomeno-
logical predictions of the model.

3.1.3 Perturbative unitarity

The S matrix unitarity condition, SS† = 1, when translated into the language of
partial wave amplitudes aj(s), gives for an elastic processes:

[
Re
(
aj(s)

)]2
+

[
Im
(
aj(s)

)
+

s

2
√
λ(s,m1,m2)

]2

=
s2

4λ(s,m1,m2)
− A2, (3.8)

where A is a non-negative constant,3 s is the center-of-mass energy of the process,
m1 and m2 are masses of the particles involved in the scattering, and λ is defined as

λ(x, y, x) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

Equation (3.8) means that the partial wave amplitudes of elastic scattering processes
lie on the so-called Argand circle, which is depicted schematically in fig. 3.2. From
the properties of the circle it follows that:∣∣Re

(
aj(s)

)∣∣ 6 s

2
√
λ(s,m1,m2)

,∣∣aj(s)∣∣ 6 s√
λ(s,m1,m2)

,

which in the high energy limit (s � m2
i ) implies that the partial wave amplitudes

are constrained as follows: ∣∣Re
(
aj(s)

)∣∣ 6 1

2
(3.9)∣∣aj(s)∣∣ 6 1. (3.10)
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Re (aj)

Im (aj)

Figure 3.2: The Argand circle.

What should be underlined is that all above equations apply to the full amplitudes,
i.e. to the solutions of the full theory, not its perturbative expansion.

When perturbation theory is concerned things cease to be that straightforward.
All we know is that the full amplitudes lie on the circle (3.8). However, this does
not necessarily apply to perturbative approximations. In particular, for the tree-
level amplitude it is usually impossible to lie on the circle as it tends to be real.
So the higher order corrections have to bring the full amplitude back to the circle.
But if the theory is to be perturbative, the higher order corrections should be
small compared to the zeroth order. Therefore for the theory to be perturbative
and unitary it is necessary that the zeroth order amplitude lies “not too far” from
the circle. Usually the condition of lying “not too far” is expressed by the requirement
that the zeroth order amplitude fulfils either (3.9) or (3.10) (which means that the
amplitude lies inside the circle). Here we will use the former one [54–56, 59]:

|Re(a
(0)
0 (s))| 6 1

2
, (3.11)

where a(0)
0 (s) denotes the tree-level amplitude of the s wave. The choice of the pertur-

bative unitarity condition is to some extent arbitrary; the following form
∣∣∣a(0)

0

∣∣∣ 6 1

was also used in the literature [49–53, 57, 58, 68, 69].
A possible threat to unitarity is due to the scattering of the longitudinally po-

larised vector bosons, and the scalar particles are supposed to unitarise the scattering
amplitudes. Because of the equivalence theorem [68–70], in the high-energy limit
it is sufficient to take into account scattering of the Goldstone bosons instead of

3The exact value of A is not important for this reasoning, the definition of A can be found in
ref. [48], on page 20.
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CHAPTER 3. CONSTRAINTS ON 2HDMS

the longitudinally polarized vector bosons, so only the scalar sector is of interest to
us. Moreover, as the physical fields (mass eigenstates) are obtained from the original
fields appearing in the basic Lagrangian by means of a unitary transformation and
only the eigenvalues of the scattering matrix are important for the following analysis,
it suffices to consider the scattering matrix between the original fields [54]. Therefore,
using the high-energy formula for a(0)

0 (s), the unitarity condition, eq. (3.11), can be
re-expressed in terms of the eigenvalues Λi of the scattering matrix:

|Λi| 6 8π. (3.12)

The full scattering matrix of the scalar sector has dimension 25: there are 14
neutral channels [54], eight charged channels [55, 56] and three doubly charged
channels [5, 6, 17, 48, 57, 58]. Diagonalisation of the scattering matrix leads to 12
distinct eigenvalues, being combinations of the quartic couplings λi,

e1 = λ3 + 2λ4 − 3λ5,

e2 = λ3 − λ5,

f+ = λ3 + 2λ4 + 3λ5,

f− = λ3 + λ5,

f1 = λ3 + λ4,

a± =
1

2

(
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

)
,

b± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
,

c± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

5

)
,

p1 = λ3 − λ4.

Applying eq. (3.12) to these eigenvalues gives a set o inequalities and leads to
constraints for the parameter space of the model.

To obtain numerical bounds on the parameters λ1, . . . , λ5, we solved these in-
equalities numerically by randomly scanning the parameter space of the model.
In addition, we imposed also the positivity constraints, and the requirements λ5 < 0

(see comment below eq. (2.1)), λ4 + λ5 < 0 (see eqs. (2.14) and (3.4)). The values
of the parameters were chosen randomly from the following ranges: λ1, λ2 ∈ (0, 35],
λ5 ∈ [−20, 0), λ4 ∈ [−30,−λ5), λ3 ∈ (−

√
λ1λ2 − λ4 − λ5, 35]. As a result we
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3.1. THEORETICAL CONSTRAINTS

obtained the overall bounds on the parameters λi which read

0 6 λ1 6 8.38,

0 6 λ2 6 8.38,

−6.05 6 λ3 6 16.53,

−15.98 6 λ4 6 5.93,

−8.34 6 λ5 6 0.

(3.13)

These bound are not very strong but comparing with the traditional bound from
perturbativity |λi| < 4π they present some improvement.

It should be underlined that the parameters λ1, . . . , λ5 are interpreted here as
parameters of the potential (2.1), with no reference to the vacuum state. This means
that the constraints discussed here are universal for all 2HDMs with the same scalar
potential. If some model-specific constraints are added to the analysis (such as
conditions for stability of a particular vacuum state, or model-specific experimental
constrains) more restrictive limits, which are valid only for a particular model, can be
obtained. We present such limits for the 2HDM (mixed) and the IDM in sections 3.4
and 3.5, respectively.

The limits of eq. (3.13) do not give full information that can be derived from
perturbative unitarity constraints, since in fact different parameters λi are correlated,
and the allowed region is a complicated figure in a 5-dimensional space. To show
some of the correlations we present some two-dimensional projections of the allowed
regions in fig. 3.3.

-5 0 5 10 15

-15

-10

-5

0

5

λ3

λ
4

0 2 4 6 8
-10

-5

0

5

10

λ2

λ
34

5

Figure 3.3: The allowed regions in the (λ3, λ4) and (λ2, λ345) planes.

Origin of some of the bounds visible in the plots can be easily identified, for
example the sharp cutoff in the lower right part of the plot in fig. 3.3 (left panel)
corresponds to the unitarity bound on the eigenvalue p1 of the scattering matrix,
which implies λ4 > λ3 − 8π for λ3 > λ4. Similarly the upper bound on λ2 visible
in fig. 3.3 (right panel) originates from constraint on another eigenvalue: |a+| 6
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8π, which for λ1 = λ2, 2λ3 = −λ4 gives λ2 6 8π
3
≈ 8.38. The lower border of

the region in fig. 3.3 (right panel) corresponds to the positivity constraint, eq. (3.1),
λ345 +

√
λ1λ2 > 0 with maximal value of λ1 inserted (see eq. (3.13)): λ1 = 8.38.

3.2 Experimental constraints

3.2.1 Electroweak precision tests (EWPT)

With the use of the so-called oblique parameters [71] radiative contributions from new
physics to the electroweak processes can be tracked. Then, precise measurements of
these processes allow to constrain these parameters. We follow the definitions from
[72, 73] (see also references therein). Namely

T =
1

α

(
AWW (0)

M2
W

− AZZ(0)

M2
Z

)
,

S =
4s2

W c
2
W

α

(
AZZ(M2

Z)− AZZ(0)

M2
Z

− ∂Aγγ(q
2)

∂q2


q2=0

+
c2
W − s2

W

cW sW

∂AγZ(q2)

∂q2


q2=0

)
,

where α = e2/(4π) is the fine-structure constant, sW = sin θW , cW = cos θW are
the sine and cosine, respectively, of the weak mixing angle and AV V ′ is defined as
follows:

Πµν
V V ′ = gµνAV V ′(q

2) + qµqνBV V ′(q
2).

Here Πµν
V V ′ is the vacuum-polarisation tensor and V V ′ denotes the divectors: γγ,

γZ, ZZ or WW . Moreover, one has to remember that AV V ′(q2) contains only
contributions from the new physics, namely

AV V ′(q
2) = Afull

V V ′(q
2)− ASM

V V ′(q
2),

where Afull
V V ′(q

2) denotes the quantity calculated in considered model (in this case
2HDM (mixed) or IDM) and ASM

V V ′(q
2) denotes the same quantity computed in

the SM.
The latest results for the S and T values come from the Gfitter group [74], with

U fixed to 0 they read (the reference value of Mh is 125 GeV),

T = 0.10± 0.07,

S = 0.06± 0.09,

with the correlation between the parameters equal to 0.91. We will implement
the constraints at 2σ level.

In fig. 3.4 the values of the S and T parameters for the IDM (for two values of
m2

22, points corresponding to m2
22 = 0 are displayed in dark green, and to m2

22 =
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−106 GeV2 in light green) and 2HDM (mixed) (for the analytical expressions for S
and T see below) are shown together with the 2σ ellipses around the central values.4

The masses of the scalar particles were randomly selected from the following intervals

• in the IDM: MA, MH± ∈ (0, 1010] GeV, MH ∈ (0, min(MA, MH±)], Mh =

125 GeV;

• in the 2HDM (mixed): MH± , MH , MA ∈ (0, 800] GeV, Mh ∈ (0, MH ], tan β ∈
[0, 60] and sinα ∈ [−1, 1].

Then the theoretical constraints described in the preceding section and the LEP
bound (see section 3.2.2 below) were imposed, and for the valid points the values of
S and T were computed.

In general, in models with two scalar doublets the predicted value of S is within
or close to the experimental bounds so the important constraints come from the T
parameter. This is confirmed by the plot, with an exception for some of the points
for 2HDM (mixed), where however still the parameter T is in general far more
constraining.
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Figure 3.4: Values of the S and T parameters computed for the IDM (left panel, for
two values of m2

22: 0 (dark green), and −106 GeV2 (light green)) and for the 2HDM
(mixed) (right panel), for the values of masses fulfilling the theoretical constraints
described previously, and the LEP bounds (see section 3.2.2).

4The central values used are based on older results from ref. [75], with T = 0.07 ± 0.08, S =
0.03± 0.09, but this does not effect the conclusions.
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3.2.1.1 S and T parameters in the 2HDM (mixed)

For the 2HDM (mixed), using formulas from [72, 73] adapted for a two-doublet case,
the following expressions for the S and T parameters are obtained (compare also
with ref. [76]):

T =
1

16π2v2α

{
F (M2

H± ,M
2
A) + sin2(β − α)

[
F (M2

H± ,M
2
H)− F (M2

A,M
2
H)
]

+ cos2(β − α)
[
F (M2

H± ,M
2
h)− F (M2

A,M
2
h)
]

+ 3 cos2(β − α)
[
F (M2

Z ,M
2
H)− F (M2

W ,M
2
H)
]

+ 3 sin2(β − α)
[
F (M2

Z ,M
2
h)− F (M2

W ,M
2
h)
]

− 3
[
F (M2

Z ,M
2
href

)− F (M2
W ,M

2
href

)
]}
,

S =
1

24π

{
(2s2

W − 1)2G(M2
H± ,M

2
H± ,M

2
Z)

+ sin2(β − α)
[
G(M2

A,M
2
H ,M

2
Z) + Ĝ(M2

h ,M
2
Z)
]

+ cos2(β − α)
[
G(M2

A,M
2
h ,M

2
Z) + Ĝ(M2

H ,M
2
Z)
]

− 2 logM2
H± + logM2

A + logM2
H + logM2

h − logM2
href
− Ĝ(Mhref ,M

2
Z)
}
.

The following definitions were used:

G(x, y, z) = −16

3
+

5(x+ y)

z
− 2(x− y)2

z2

+
3

z

(
x2 + y2

x− y
− x2 − y2

z
+

(x− y)3

3z2

)
log

x

y

+
z2 − 2z(x+ y) + (x− y)2

z3
f
(
x+ y − z, z2 − 2z(x+ y) + (x− y)2

)
,

f(x, y) =


√
y log

∣∣∣x−√yx+
√
y

∣∣∣ for y > 0,

0 for y = 0,

2
√
−y arctan

√
−y
x

for y < 0,

Ĝ(x, y) = −79

3
+ 9

x

y
− 2

x2

y2
+

(
− 10 + 18

x

y
− 6

x2

y2
+
x2

y3
− 9

x+ y

x− y

)
log

x

y

+

(
12− 4

x

y
+
x2

y2

)
f(x, x2 − 4xy)

y
.

3.2.1.2 S and T parameters in the IDM

For the IDM the expressions for S and T were taken from [46] (see also [63, 73]5):
5Note that in the formulas in [63, 72] terms containing Mh and Mhref do not appear. They are

assumed to cancel, however it is not the case unless Mh = Mhref , which is not always true.
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T =
1

32π2αv2

(
F (M2

H± ,M
2
A) + F (M2

H± ,M
2
H)− F (M2

A,M
2
H)

)
+

3

8π
log

(
Mhref

Mh

)
,

S =
1

2π

{
1

6

M4
A

(
M2

A − 3M2
H

)
(M2

A −M2
H)3

log

(
M2

A

M2
H

)
+

1

6
log

(
M2

H

M2
H±

)
− 5

36

+
M2

HM
2
A

3
(
M2

A −M2
H

)2 −
1

3
log

(
Mhref

Mh

)}
.

Mhref denotes the reference value of the SM Higgs boson mass used in the fit of
the experimental data. As was mentioned before in the latest fit the reference
value of the Higgs boson mass was equal to the experimentally measured one, so
the contributions from the physical Higgs mass Mh and Mhref cancel, but we keep
the reference terms for completeness, since in older data different values were assumed,
e.g. Mhref = 117 GeV in [75]. Function F is defined as follows:

F (x, y) =


x+y

2
− xy

x−y log x
y

for x 6= y,

0 for x = y.

3.2.2 LEP bounds

The results obtained at LEP (Large Elctron–Positron collider) provide several sources
of bounds on new physics, in particular on 2HDMs. First of all, the masses of
additional scalars are constrained by precise measurements of the decay widths of the
Z and W bosons. Secondly, there were also dedicated searches for the charged Higgs
bosons of 2HDM (mixed) with type I and type II Yukawa interactions. Moreover,
some constraints for the IDM have been rederived from neutralino searches.

Finally the bounds for the IDM read [67, 77, 78]

MH±+MH > MW , MH±+MA > MW , MH +MA > MZ , MH± > 70−90 GeV.

(3.14)
Moreover, the region where simultaneously [77]:

MH < 80 GeV, MA < 100 GeV, MA −MH > 8 GeV (3.15)

is excluded.
For the 2HDM (mixed) there are bounds on the charged Higgs mass at 95%

confidence level, from a combination of the results from all experiments at LEP [79]

MH± > 80 GeV (for type II),

MH± > 72.5 GeV (for type I and MA > 12 GeV). (3.16)
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3.2.3 Flavour physics constraints

Flavour physics observables provide some constraints on 2HDMs. The key feature
of models with more scalar doublets is that they contain a charged scalar, different
than the charged Goldstone boson, which can contribute to the flavour processes.
There are many observables that can be analysed in the context of 2HDMs, for
example B → τν, D → µν, Ds → τν, Ds → µν, K → µν, π → µν, B0

s → µ+µ−,
B0
d → µ+µ−, τ → Kν, τ → πν, B → Xsγ, K–K̄ mixing, B0

d–B̄0
d mixing, and

B0
s–B̄0

s mixing [80], for analyses within the 2HDM framework see e.g. [32, 80–83].
Some of the observables, such as the branching ratio of B̄ → D(∗)τ−ν̄τ relative to
B̄ → D(∗)`−ν̄` decays (measured by Belle [84–86], BaBar [87, 88] and LHCb [89]
collaborations) were claimed to show deviation from the SM prediction [88–90].
In principle, this discrepancy could be explained within 2HDMs, however, the data
seemed to disprove this scenario. With an improved measurement, the experimental
values agree both with the SM and 2HDM (mixed) (Yukawa type II) [86].

A well known, stringent bound on the mass of the charged Higgs boson H± in
a 2HDM (mixed) with the Yukawa interactions of type II comes from the B̄ → Xsγ

process [91], it reads

MH± > 480 GeV at 95% C.L.

For tan β . 2 the bound becomes even stronger.
As can be noticed from the short discussion above, flavour constrains depend

on the model of Yukawa interactions considered. This makes them less universal
and very model-specific. In section 3.4 we present parameter space constraints on
2HDMs with the mixed (normal) vacuum state and for the sake of generality we
do not include flavour constraints so that the presented results are independent of
the assumption on the Yukawa sector. Flavour physics does not introduce serious
constraints in the case of the IDM so we do not consider flavour observables in this
case either.

3.2.4 LHC bounds

The LHC up to now has shown that the discovered Higgs particle is SM-like. Nonethe-
less, it has provided numerous measurements which can be used to constrain various
models of new physics. The ones to which we refer in the present thesis are

1. Measurement of the Higgs mass [92]: Mh ≈ 125 GeV.

2. Constraint on the width of the Higgs boson [93, 94]: Γh < 22 MeV (Γh/ΓSM
h <

5.4).
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3. Constraints on the invisible Higgs decay rates [95]: Br(h → inv) < 0.23.
A global fit to LHC and Tevatron data provides even stronger constraints [96]:
Br(h→ inv) < 0.2.

4. Measurement of the Higgs decay width to two photons [24]: Rγγ = 1.16+0.20
−0.18.

These constraints are discussed in detail in the context of the IDM in chapter 4.
Of course, more data and more measurements are available, however in this thesis

we focus on the measurements listed above because analysing them we can track
the influence of the new scalar particles. This way not only do we obtain constrains
on the parameter space, but also we develop some insight into the structure of the
model.

3.3 Dark matter

As was mentioned in the introduction to this chapter, the DM candidate is an
important feature of the IDM, and one of the main reasons to study this particular
model. Therefore, in this section we review not only the bounds on the parameter
space that can be obtained from the DM measurements but also the motivation to
study DM and possible ways of DM searches.

3.3.1 Motivation for the postulate of dark matter

The question of the existence of DM is an unsolved problem of cosmology. There
are several observations which can be interpreted as hints on the existence of some
non-baryonic matter. For reviews on particle DM see e.g. refs. [97–99].

Rotation curves of galaxies. Orbital velocities of stars in galaxies are measured
and it appears that the observed velocities do not coincide with the predictions
based on the Kepler law, and the observed density of matter in the galaxy [100].
The discrepancy can be explained by the presence of a halo composed of non-
luminous matter. Another possible explanation is modified theory of gravity.

Gravitational lensing. A massive object (such as a cluster of galaxies) placed on
the way between a shining astronomical object (e.g. a quasar) and an observer
can bend the light due to gravitational interactions. Based on the measurement
of the light distortion the mass of the distorting object can be estimated. On the
other hand, mass of luminous matter in this object can be computed based
on the light it emits. Discrepancies between these two measurements indicate
existence of some type of non-luminous matter [98].

31



CHAPTER 3. CONSTRAINTS ON 2HDMS

Bullet cluster. A collision of two galaxy clusters has been observed. The mea-
surements using light (X-rays) show that most of the light-emitting matter
is placed around the centre of the system — the matter which interacts elec-
tromagnetically was bound together by these interactions around the collision
point. However, the weak lensing measurements show that there is much mat-
ter that passed by, without interactions. This, supposedly, is the DM [101,
102].

Primordial nucleosynthesis. According to primordial nucleosynthesis, the ob-
served ratio of the number density of hydrogen to other light elements indi-
cates a baryon density which is too low to account for the observed expansion
rate of the Universe. This suggests the necessity of existence of some other,
non-baryonic matter.

Cosmic microwave background measurements. Analysis of the anisotropies
of the cosmic microwave background radiation (CMB), measured by theWMAP
and Planck experiments [103, 104], allows to estimate the density of matter
in the Universe.6 It appears, that the density of matter is by far greater than
the density of the baryonic matter. This leads to a conjecture of the existence
of non-baryonic matter — dark matter.

3.3.2 Dark matter detection experiments

There are many experiments aiming at detection of DM particles. The two main
groups of experiments are direct detection experiments, which are based on the scat-
tering of DM off nuclei, and indirect detection experiments, which look for the prod-
ucts of DM annihilation or decay. Moreover, the DM particles could be directly
produced and detected in accelerator experiments at the LHC.

3.3.2.1 Direct detection experiments

The details of the experimental techniques used in the direct detection searches differ
between experiments (ionisation, scintillation and nuclear recoil effects are used as
well as the measurements of the yearly modulation of DM signal due to the variation
of relative velocity of the Earth and DM). In general, the important parameters
for these experiments are the mass of the DM particle and the cross section for its
scattering off a nucleus, σDM,N, and these are the ones that can be constrained by
the direct detection experiments.

6The estimate relies on the standard cosmological model.
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The DAMA/LIBRA [105], CoGeNT [106] and CRESST-II [107] experiments
reported excesses of events that could not be explained by background, and claimed
observation of DM signal. The highest significance, at the confidence level of 9.3σ

was reported by the DAMA/LIBRA collaboration. The regions favoured by these
experiments are shown in fig. 3.5 (left panel, taken from ref. [108]). It can be easily
noted that these regions do not overlap, which causes tension. Moreover, the liquid
xenon experiments, XENON100 [108] and LUX [109, 110] set upper bounds on σDM,N

which exclude all the regions favoured by DAMA/LIBRA, CoGeNT and CRESST-II,
see fig. 3.5, left and right panel (taken from ref. [110]). Recently, also the CRESST-II
experiment, with an improved detector reported an upper bound on the DM-nucleon
scattering cross section, which excludes the region favoured by its previous analysis,
as well as the discovery regions of DAMA/LIBRA and CoGeNT [111]. It also provides
the most stringent bounds for very light DM particles, with masses of the order of
a few GeV [112].
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Figure 3.5: Results of direct detection searches for DM. Left panel: Regions favoured
by the DAMA/LIBRA, CoGeNT and CRESST-II experiments confronted with
the bounds from XENON100, plot taken from ref. [108]. Right panel: Bounds
from the LUX experiment compared with the bounds from XENON100, and other
experiments, plot taken from ref. [110].

Due to these, yet not understood, discrepancies we will not directly incorporate
the direct detection limits/signals in the analysis presented in this dissertation.
Nonetheless, in section 4.4.3 we present a comparison of our bounds on the DM-
nucleon cross section with the ones from XENON100 and LUX.

3.3.2.2 Indirect detection experiments

In the indirect detection experiments products of DM annihilation or decay in
the regions of high DM density, such as the galactic centre, are searched for. These
products are SM particles such as antiprotons, positrons, neutrinos and photons.
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The biggest problem with the interpretation of such searches is that it strongly
depends on the distribution of DM in the Universe, which is unknown [113]. Thus
uncertainties related to such observations are rather big.

Among the indirect detection experiments are PAMELA, INTEGRAL, AMS and
Fermi-LAT [114–119]. Most of them reported certain excesses of the measured events
over the expected background, however, it is not proven that the source of these
signals is indeed DM annihilation. Due to these uncertainties we will not include
the indirect DM signals in our analysis.

In the future a new experiment is planned, the Cherenkov Telescope Array
(CTA) which should improve the gamma-ray observations [120, 121]. It has re-
cently been demonstrated in refs. [122, 123] that the IDM parameter space will be
within the reach of this experiment, and that the heavy DM mass region could be
significantly constrained.

3.3.2.3 Collider experiments

Since DM particles interact with the SM particles weakly, in collider experiments
they can be observed through a measurement of missing energy. Important signatures
for DM production processes are the ones with a single photon or a single jet and
missing energy [124]. It has been argued that these searches may provide stronger
bounds than the direct detection experiments [124]. Within the IDM, processes
with two [125–127] or more leptons [64, 128], as well as a monojet [129] and missing
energy were also analysed, providing some constraints on the parameter space.

Moreover, within the IDM the invisible decays of the Higgs boson can be inter-
preted as decays to DM particles (or the other neutral scalars A). Thus, the mea-
surements of the Higgs invisible decay width provide constraints on DM mass and
coupling, see sections 3.2.4 and 4.3.

3.3.3 Dark matter relic density

The density of matter in the Universe was estimated based on the measurements of the
anisotropies of the cosmic microwave background radiation made by the astrophysical
experiments WMAP [103], and more recently Planck [104]. The density of matter
is greater than the density of baryonic matter, and the difference between these
two quantities is attributed to DM. The current value of the DM relic abundance
reads [104]

0.1118 < ΩDMh
2 < 0.1280 (at 3σ), (3.17)
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where h denotes Hubble constant in the units 100 km/Mpc/s. If the density predicted
by a model is below the lower bound, the model can be either rejected or an additional
source of DM has to be invoked. Too high relic density, above the upper limit, means
that the Universe is overclosed in the discussed model, and thus it has to be rejected.

The relic density of DM is determined by the production and annihilation pro-
cesses of the DM in the early Universe, which in turn depend on the possible
interactions and couplings of the DM matter candidate. This way the relic den-
sity measurement can constrain parameters of a given model. A common tool for
computation of DM relic density predictions is MicrOMEGAs [130–132], which al-
lows to effectively compare the predictions of the model with the value obtained
experimentally.

There were numerous studies treating the potential of the inert DM to account
for the observed relic density [64, 65, 125, 129, 133–140]. In general, it has been
shown that there are three viable regions where the inert DM can account for all
the observed relic density. These are

Light DM with mass below 10 GeV, and the coupling to the Higgs boson |λ345| ∼
O(0.5),

Intermediate DM with mass 40 GeV .MH . 80 GeV and |λ345| ∼ O(0.05),

Heavy DM with mass above 500 GeV and |λ345| ∼ O(0.1).

A more detailed discussion of the DM relic abundance constraints, in combination
with the LHC data, is presented in section 4.4.

3.4 Parameter space of the 2HDM (mixed)

In this section the constrained parameter space of the 2HDM (mixed) is presented.
The basic constraints described previously in this chapter are imposed, namely: posi-
tivity constraints, eq. (3.1), condition for the mixed minimum, eq. (3.4), perturbative
unitarity, eq. (3.12), EWPT constraints, and the LEP bounds (since the two bounds
of eq. (3.16) are close it does not make a big difference which one is used, thus we
use a common bound MH± < 78 GeV which was an older value of this constraint).
The results are obtained using a random scan of the parameter space, with the
ranges of parameters described in section 3.1.3 (for λi) and in section 3.2.1 (for the
scalar masses). We do not impose the flavour constraints so the obtained results are
independent of the type of Yukawa interactions chosen. The results are based on
refs. [5, 6, 48].
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3.4.1 Limits on couplings

As was already discussed in section 3.1.3, the constraints on the parameters λi, when
they are treated as parameters of a 2HDM with a fixed vacuum state are different
then the constraints for parameters of the general potential (2.1). The numerical
limits for the parameters λ1, . . . , λ5 within the 2HDM (mixed) read

0 6 λ1 6 8.38,

0 6 λ2 6 8.38,

−4.92 6 λ3 6 15.95,

−13.49 6 λ4 6 5.50,

−8.06 6 λ5 6 0.

(3.18)

The correlations between some of the parameters are presented in fig. 3.6 (light
green). For comparison they are shown together with the correlations obtained for
general 2HDMs (dark green). It should be noted that the regions allowed within
2HDM (mixed) differ significantly form the generally allowed regions. This shows
that the constraints related to the type of vacuum are important.
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Figure 3.6: Correlations between parameters in the 2HDM (mixed) caused by im-
posing the basic theoretical and experimental bounds (see the text). Dark green
regions are allowed for an arbitrary 2HDM with the potential (2.1), the light green
regions are obtained by applying also specific bounds for the 2HDM (mixed).

3.4.2 Constraints on masses

The overall bounds on the masses of the scalar particles within the 2HDM (mixed)
read

MH 6 697 GeV,

MH± 6 707 GeV,

MA 6 706 GeV,

Mh 6 446 GeV.

(3.19)
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Here both h and H can play a role of the Higgs boson so we did not fix any of the
masses to 125 GeV. The obtained bounds are in good agreement with the most
precise analytical results derived from perturbative unitarity constraints of ref. [59].7

The allowed regions of masses are presented in fig. 3.7. The EWPT constraints were
imposed in the second step (light green) to see what is their significance. It can be
concluded that in the 2HDM (mixed) EWPT do not constrain the space of allowed
masses strongly.
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Figure 3.7: Regions of masses allowed in the Mixed Model with/without EWPT
included (ligh/dark green).

3.4.3 Constraint on the parameter tan β

We also investigated correlations between the values of scalars’ masses and tan β

allowed by the analysed constraints, see also [6]. Mh exhibits interesting dependence
on tan β, the results are presented in fig. 3.8.8 It shows maximal allowed values ofMh

as a function of tan β, Mmax
h (tan β). We have checked that for any value of sin(β−α)

only the area below that curve Mmax
h (tan β) is allowed. From fig. 3.8 it follows that

if we consider a particular value of the mass of h (or at least set a lower bound
on it), then tan β is constrained, both from above and below. For Mh = 125 GeV

the following bound is obtained:9

0.18 . tan β . 5.59. (3.20)

It should be underlined that this bound is obtained without any assumptions on the
Yukawa couplings.

The correlations between MH and tan β are more complicated. For different
values of sin(β − α) we obtained different curves Mmax

H (tan β). In particular for
7Small discrepancies are due to the uncertainty of the numerical method applied in our analysis.
8EWPT were not included in the analysis leading to this plot, however, they would hardly

change the picture.
9Here also EWPT are included.
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Figure 3.8: Correlation between maximal values of the mass of h and tan β in
the Mixed Model allowed by the analysed constraints. For any value of sin(β − α)
only the points lying below the curve are allowed. The horizontal line corresponds
to the mass of 125 GeV.

the case with sin(β − α) = 0 (SM-like scenario) the corresponding curve is just
a straight line at MH ≈ 700 GeV. This means that fixing MH cannot introduce any
bounds on tan β unless we fix sin(β − α) to a non-zero value.

To understand why there is a bound on tan β if we assume Mh = 125 GeV, while
there is no bound in the MH = 125 GeV case, one should go back to the expressions
for masses of the scalars, eq. (2.11) [6]. It can be easily checked that Mh → 0 as
tan β → 0 or tan β → ∞ for any fixed values of λ1, λ2, λ345. Thus the curve in
fig. 3.8 was bound to tend to zero for tan β → 0 and tan β → ∞, and so fixing
Mh must introduce an upper and a lower bound on tan β. On the contrary, this
does not apply to MH and therefore no bound on tan β follows from the assumption
MH = 125 GeV (independently of sin(β − α)).

3.5 Parameter space of the IDM

In this section we present the results of applying to the IDM the basic constraints
described in previous sections, namely: positivity of the potential, eq. (3.1), condition
for existence of an inert minimum, eq. (3.2), and for that minimum being a global
one, eq. (3.5), perturbative unitarity, eq. (3.12), EWPT (with the values taken from
ref. [75]) at 2σ level, LEP bounds, eqs. (3.14), (3.15), and the mass of the Higgs mass,
Mh = 125 GeV (which fixes λ1 to a value of 0.26). We will start from the constraints
on the couplings, and then also present constraints on the masses of the scalar
particles. The results are based on our work described in ref. [5] (see also [17, 48]).

The results were obtained by randomly scanning the parameter space of the model
and imposing the constraints listed above. The ranges of the parameters are the
same as those described in section 3.1.3 (for the parameters λi) and in section 3.2.1
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(for the scalar masses).

3.5.1 Limits on couplings

As explained in the case of the 2HDM (mixed), the parameters λ1, . . . , λ5 when
interpreted within the IDM are subject to more stringent limits than in the general
case (eq. (3.13)). Moreover, the scalar couplings in the IDM are simple combina-
tions of the parameters of the potential so they are mostly constrained by unitarity.
The overall bounds on the couplings within the IDM read

0 6 λ2 6 8.38,

−1.32 6 λ3 6 16.53,

−8.95 6 λ4 6 5.08,

−8.22 6 λ5 6 0,

−1.45 6 λ345 6 11.94,

−1.15 6 λ−345 6 16.40,

−8.33 6 1
2
λ45 6 0,

−2.64 6 1
2
λ−45 6 5.08,

−1.22 6 λ34 6 13.34,

(3.21)

where λij = λi+λj, λ−ij = λi−λj, and the value of λ1 is fixed to 0.26 by the measured
value of the Higgs boson mass. Later on the most important of these couplings will
be λ2 as the quadratic DM couplings (corresponding e.g. to the vertex HHHH),
and λ345 which is proportional to the hHH vertex. The bounds on the parameters
λ1, . . . , λ5 can be compared with eq. (3.13) where bounds on the same parameters,
but without inclusion of any assumptions about the vacuum state are presented.
It is clear that the constraints imposed on IDM strengthen some of the bounds.
To better compare the bounds imposed on a general 2HDM with scalar potential of
the form (2.1), and the bounds relevant for the model with definite vacuum state,
in fig. 3.9 the correlations between some of the couplings are shown (dark green
corresponds to the general 2HDM, and light green to the IDM). It can be interesting
to compare this figure with fig. 3.6, where analogous plots for the 2HDM (mixed)
are presented. It can be noticed, that the bounds significantly differ between the two
models.

3.5.2 Constraints on masses

Using the relations (2.13) the constraints from positivity and perturbative unitarity
on the parameters appearing in the lagrangian can be translated to constraints
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Figure 3.9: Correlations between parameters in the IDM caused by imposing the
basic theoretical and experimental bounds (light green, see the text). Dark green
regions are allowed for an arbitrary model with the potential (2.1).

on masses of the scalar particles. The parameter m2
22 enters the expressions for

the masses of the dark scalars (eq. (2.13)), but does not enter the unitarity (eq. (3.12))
or positivity conditions (eq. (3.1)). Thus, the bounds on masses depend on its value.
For the case with m2

22 = 0 the bounds on the masses of the scalars following from
the constraints listed in the beginning of this section read

MH 6 602GeV,

MH± 6 708GeV,

MA 6 708GeV.

(3.22)

As was mentioned before in the IDM h plays the role of the SM Higgs boson so we
fixed its mass to Mh = 125 GeV (so m2

11 = (125 GeV)2 and λ1 = 0.26).
We have checked that in a large range of m2

22, for |m2
22| . 104 GeV2, the results

hardly change with respect to the case with m2
22 = 0. However, when m2

22 is
extremely big and negative, the allowed regions of masses are changed and also lower
bounds on masses develop. The allowed regions of dark scalars’ masses for both of
the cases (m2

22 = 0, m2
22 = −106 GeV2) are presented in fig. 3.10 in the (MH± ,MA)

and (MH± ,MH) planes. The plot representing correlations in the (MA,MH) plane
is not displayed as it is very similar to the one for (MH± ,MH). Note that the regions
of masses allowed for the cases with m2

22 = 0 and m2
22 = −106 GeV2 have empty

intersection (see fig. 3.10, right panel). It can be seen that EWPT strongly constrain
the available parameter space.
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Figure 3.10: Regions of masses allowed in the IDM. The darker, wider regions
correspond to applying constraints without the EWPT, while the lighter ones to all
of the constraints applied. In both of the plots the figures in the lower left corner
correspond to the case with m2

22 = 0, while the figures in the upper right corner
(pale colors) correspond to m2

22 = −106 GeV2.
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4
Properties of the Higgs boson in

the Inert Doublet Model

A new scalar particle with mass around 125 GeV was discovered by the ATLAS and
CMS collaborations at the LHC in 2012 [18, 19, 92]. A crucial question arose: is
it the missing piece of the SM of electroweak interactions — the Higgs boson? To
answer it many measurements have been performed, studying the properties of the
new particle, its production and decay modes. The results obtained to date are fully
consistent with the SM hypothesis [24]. However, the experimental uncertainties
leave some space for effects of new BSM physics.

The IDM contains a SM-like Higgs boson which has all tree-level couplings to
fermions and gauge bosons identical as the SM Higgs particle. Therefore it fits well
the current experimental status. Nonetheless, it contains also the new dark scalars
which affect the Higgs phenomenology.

In this chapter a study of the properties of the Higgs boson within the IDM
is presented. Using the Higgs data we aim at constraining the properties of the
inert, yet unobserved scalars. We start from the analysis of the decay of the Higgs
boson to two photons, which gave the first experimental hint on the existence of
the Higgs particle. This analysis gives us some information about the properties of
the neutral and charged scalar particles. Then, an analysis of the h → Zγ decay
follows, in particular we study a correlation between signal strength of this and the
diphoton decay. Another element is a study of the total and invisible decay widths
of the Higgs, which also sheds some light on the possible values of the additional
scalars’ masses and couplings. In the next part of this chapter we present results
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which follow from combining the information on the Higgs diphoton decay, and the
measurements of the DM relic density. It appears that this two seemingly disjoint
sources of information can be considered as complementary, and the combination
provides important new predictions about the DM properties.

Of course, the analyses presented in the present chapter do not make use of all
the available data provided by the LHC experiments. This is because our aim was to
understand the relations between different particles present in the IDM, the impact
of the new particles on the LHC phenomenology, and the interplay between the LHC
searches and the DM studies, and this becomes extremely involved when too many
results are included. On the one hand, this approach does not provide the most
stringent constrains possible, but on the other it allows deeper understanding of
the studied model. There exist publicly available numerical tools allowing to study
a wide spectrum of the experimental constrains. Most of the available constraints
are implemented for example in the programs HiggsBounds (contains bounds also
from LEP and Tevatron) [141–143] and HiggsSignals [144] which have been used
in the recent thorough analysis of ref. [145]. Other phenomenological analyses of the
IDM can be found in refs. [64, 129, 139].

4.1 Decay of the Higgs boson to two photons

The h→ γγ decay is one of the most important observational channels of the Higgs
boson at the LHC. It gained much interest when some deviations from the SM
prediction for its rate have been reported. The current experimental results for
the h→ γγ decay signal strength read [24]: Rγγ = 1.16+0.20

−0.18. This measurement is
fully consistent with the SM expectation, however, the experimental uncertainties
leave some space for new physics effects.

The γγ signal strength is interesting, because it is sensitive to new physics
— in particular to the existence of new charged particles coupling to the Higgs
boson. By this means it is well suited to study 2HDMs, distinctive feature of which
is the existence of a charged scalar. Precise measurement of the decay rate of
the h→ γγ channel can also constrain the invisible decays branching ratios, which
would bring information about the masses of extra scalars present in in the IDM.

The diphoton decay rate in the IDM was studied in refs. [47, 63, 146, 147]. In the
parameter region studied in ref. [47] no enhancement of the signal was found, while
in ref. [146] the possibility of modifying the total decay width of the Higgs boson
due to the invisible decays into DM particles was not taken into account. In refs. [63,
147] the entire parameter space was not investigated; as the mass parameter of the
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potential was taken with only one sign, the DM particle was assumed to be lighter
than the Higgs boson and the mass of DM was constrained (MH < 150 GeV). The
diphoton decay rate was also considered in the context of the electroweak phase
transition in ref. [148]. Below we present an independent thorough analysis of the
diphoton Higgs decay mode in the IDM which improves the points mentioned above,
it is based on the results presented in ref. [4] (see also refs. [11–16]). Subsequently,
the diphoton decay rate was included in many analyses of the IDM, see e.g. refs. [3,
129, 139, 149, 150].

4.1.1 General analysis

The diphoton signal strength Rγγ (often denoted also as µγγ) is measured at the LHC
and is defined as follows [4, 63]:

Rγγ =
σ(pp→ h→ γγ)IDM

σ(pp→ h→ γγ)SM
≈ [σ(gg → h)Br(h→ γγ)]IDM

[σ(gg → h)Br(h→ γγ)]SM

=
Br(h→ γγ)IDM

Br(h→ γγ)SM
=

Γ(h→ γγ)IDM

Γ(h→ γγ)SM
Γ(h)SM

Γ(h)IDM . (4.1)

Above we used the narrow width approximation and the fact that the gluon fusion is
the dominant channel of Higgs production. Moreover, in the IDM σ(gg → h)IDM =

σ(gg → h)SM, so Rγγ reduces to the ratio of the h→ γγ branching ratios.
As can be seen, both the partial decay width of the Higgs boson to two photons,

Γ(h → γγ)IDM, and the total decay width of the Higgs, Γ(h)IDM, contribute to
Rγγ. There are two possible origins of deviation from Rγγ = 1, which is the SM
prediction: the charged scalar loop contributing to Γ(h→ γγ)IDM and the invisible
decays augmenting Γ(h)IDM. In different regions of the parameter space, different
effects dominate.

4.1.1.1 Total decay width of the Higgs boson

Many channels contribute to the total decay width of the Higgs boson h. The most
important ones for the massMh = 125 GeV are bb, cc, τ+τ−, ZZ∗,WW ∗, gg, γγ, Zγ,
HH, and AA. To compute the decay widths we used the formulas from refs. [151–
155]. For completeness they are summarised in Appendix B. The partial widths of
the tree-level h decays into SM particles, and the loop-mediated decay into gg in
the IDM are equal to the corresponding ones in the SM. The γγ and Zγ partial
decay widths are modified with respect to the SM by the presence of the charged
scalar loop. However, the γγ and Zγ branching ratios are of the order of 10−2–10−3

so their contributions to the total decay width are negligible. Thus the total decay
width can deviate from the SM prediction only due to the invisible decay channels.
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The branching ratios of the Higgs boson as functions of λ345 are shown in
Fig. 4.1 [4, 156]. Three different cases are considered: decay channels h → AA

and h → HH are open (with MH = 50 GeV, MA = 58 GeV, left panel), h → AA

is closed and h → HH is open (MH = 60 GeV, MA > 63 GeV, middle panel), and
both h → AA and h → HH are closed (MH = 75 GeV, MA > MH , right panel).
It can be seen, that the invisible decay channels dominate over the SM decays if
they are kinematically allowed. Within the detailed numerical analysis it will be
shown, that in these cases the total decay width of the Higgs boson is so big that
Br(h→ γγ)IDM < Br(h→ γγ)SM. If the invisible channels are closed, the H± loop
impact on h→ γγ and h→ Zγ becomes clearly visible.
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Figure 4.1: Branching ratios for h with mass equal to 125 GeV as functions of λ345.
Upper panel, left: decay channels h→ HH and h→ AA are open (MH = 50 GeV,
MA = 58 GeV); upper panel, right: h→ HH open (MH = 60 GeV,MA > 63 GeV);
lower panel: no invisible h decay channels allowed (MH = 75 GeV,MA > MH). The
legend is common for all the plots, the decay channels are listed in the same order in
which they appear in the plots. Note that the curves corresponding to the h→ cc̄
decay almost entirely overlap the ones for h → ZZ∗, and thus the latter ones can
barely be seen.
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4.1.1.2 Partial diphoton decay width of the Higgs boson

As was explained above, if the decay channels h→ HH and h→ AA are kinemat-
ically closed, the total width of h is barely modified with respect to the SM case.
Thus in this case Rγγ (eq. (4.1)) reduces to the ratio of the partial widths in the IDM
and in the SM, namely

R̃γγ =
Γ(h→ γγ)IDM

Γ(h→ γγ)SM
. (4.2)

In the IDM, the partial decay width of the Higgs boson to γγ is (approximately)
given by [47, 63, 146, 151, 152]

Γ(h→ γγ)IDM =
GFα

2M3
h

128
√

2π3

∣∣∣∣ 4

3
A1/2

(
4M2

t

M2
h

)
+ A1

(
4M2

W

M2
h

)
︸ ︷︷ ︸

MSM

+
2M2

H± +m2
22

2M2
H±

A0

(
4M2

H±

M2
h

)
︸ ︷︷ ︸

δMIDM

∣∣∣∣2, (4.3)

whereMSM denotes the contribution from the SM and δMIDM is the extra contri-
bution present in the IDM,MIDM =MSM + δMIDM.1 The form factors in eq. (4.3)
are defined as follows [157]:

A0(τ) = −τ [1− τf(τ)],

A1/2(τ) = 2τ [1 + (1− τ)f(τ)],

A1(τ) = −[2 + 3τ + 3τ(2− τ)f(τ)]

and

f(τ) =


arcsin2

(
1√
τ

)
for τ > 1,

−1
4

[
log
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]2

for τ < 1.

The important contribution to Rγγ comes from the charged scalar loop, which can
interfere either constructively or destructively with the SM part. Furthermore, in
eq. (4.3) 2M2

H± + m2
22 = λ3v

2, where λ3 is proportional to the hH+H− coupling,
so one of the following sets of parameters λ3, MH± or m2

22, MH± can be chosen to
determine Γ(h→ γγ)IDM.

We are interested in the possible modifications of Rγγ with respect to the SM
case, so we consider the inequality R̃γγ > 1, which corresponds to:∣∣MSM + δMIDM

∣∣2 > ∣∣MSM
∣∣2 , (4.4)

1Above we do not include the contributions from the bottom- and charm-quark loops as well
as from the τ loop, as we have checked that they are negligible. We take MW = 80.399 GeV and
Mt = 173 GeV from the Particle Data Group analysis [154].
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where MSM is fixed for Mh = 125 GeV.2 The inequality (4.4) can be solved ana-
lytically. We will discuss the results first, and the derivation is presented below,
in the next section. There are two possible cases for which R̃γγ > 1, in each case
the analytical bounds can be be translated to numerical constraints on m2

22 using
the LEPII bound on the mass of the charged scalar, MH± 6 70 GeV. The two cases
correspond to:

Constructive interference In the case of constructive interference the charged
scalar loop contributes to Γ(h → γγ) with the same sign as the SM terms.
The upper bound on m2

22 reads

m2
22 < −2M2

H± 6 −9.8 · 103 GeV2. (4.5)

This bound can be translated to a constraint on λ3, and gives λ3 < 0 [4, 63].

Destructive interference In the case of destructive interference the contribution
from the charged scalar has to be at least twice as big as the SM term [146].
The obtained bound on m2

22 reads

m2
22 >

M2
h Re

(
MSM

)
1−

(
2MH±
Mh

)2

arcsin2
(

Mh

2MH±

) − 2M2
H± & 1.8 · 105 GeV2. (4.6)

If this bound is compared with the constraint following from the requirement
of the existence of the inert vacuum, eq. (3.7) it is clear that this solution is
excluded.

Thus it can be concluded that enhancing R̃γγ is only possible if the charged scalar
loop interferes constructively with the SM contribution.

4.1.1.3 Analytical solution for the enhancement of the h→ γγ signal
strength

We need to solve the following inequality∣∣MSM + δMIDM
∣∣2 > ∣∣MSM

∣∣2 , (4.7)

whileMSM is fixed, and we assume that the invisible decay channels are closed, i.e.
MH > Mh/2. Let us use the following definitions

a = ReMSM,

b = ImMSM,

c = δMIDM =
2M2

H± +m2
22

2M2
H±

A0(τ),

2If the contributions from light quarks are neglected,MSM is real, but we treat it as a complex
number to keep the reasoning general.
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where τ =
4M2

H±
M2
h

, τ > 1. The parameter c is a real number, because f
(

4M2
H±

M2
h

)
=

arcsin2
(
Mh

2MH

)
for MH > Mh/2. Hence the inequality (4.7) can be written as

|a+ ib+ c|2 > |a+ ib|2

and is equivalent to
c(c+ 2a) > 0.

There are two possibilities:

c > 0 and c+ 2a > 0 or c < 0 and c+ 2a < 0.

One can compute that a ≈ −6.53 < 0, so these two cases reduce to

c > −2a or c < 0.

The first case is realised if and only if
2M2

H±
+m2

22

2M2
H±

A0(τ) > −2a. SinceA0(τ) = −τ +

τ 2 arcsin2(1/τ), then A0(τ) > 0 for τ > 1. Therefore this condition is translated to

m2
22 >

aM2
h

1−
(

2MH±
Mh

)2

arcsin2
(

Mh

2MH±

) − 2M2
H± .

The other case, c > 0, can be realised either if 2M2
H± +m2

22 > 0 and A0(τ) < 0,
or if 2M2

H± +m2
22 < 0 and A0(τ) > 0. As A0(τ) > 0, the first option is excluded and

the other reduces to m2
22 < −2M2

H± .
Summing up, there are two regions where enhancement in the h→ γγ channel

is possible:

m2
22 < −2M2

H± or

m2
22 >

aM2
h

1−
(

2MH±
Mh

)2

arcsin2
(

Mh

2MH±

) − 2M2
H± ,

which correspond to constructive and destructive interference between the SM and
the IDM contributions, as discussed in the previous section.

4.1.2 Numerical results

4.1.2.1 Method of analysis

We randomly scanned the parameter space of the IDM, taking into account the fol-
lowing constraints: positivity, existence of the inert vacuum, perturbative unitarity,
EWPT, LEP bound (the details can be found in chapter 3.5). We also assume
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MH < MA,MH± , for H to be the DM candidate. The parameters were varied in
the following regimes:

Mh = 125 GeV,

70 GeV 6 MH± 6 800 (1400) GeV,

0 < MA 6 800 (1400) GeV,

0 < MH < MA,MH± ,

−25 · 104 (−2 · 106) GeV2 6 m2
22 6 9 · 104 GeV2,

0 < λ2 6 10.

The allowed region in the parameter space depends on the choice of the minimal
value of m2

22, which is not constrained by perturbative unitarity, as was discussed
in section 3.5. We considered two regimes for m2

22, narrow and wide. For the wider
of the two, larger masses of dark scalars were allowed, up to 1400 GeV (values in
brackets). In the parameter space fulfilling the constraints we analysed the possible
values of Rγγ.

4.1.2.2 Rγγ and the masses of the scalar particles

In fig. 4.2 (upper panel) the regions of masses allowed in the IDM by the constraints
for the narrow m2

22 range are presented. The regions where the enhancement in
the h→ γγ channel occurs are displayed in light green. It can be seen that the Rγγ

enhancement is only possible when MH > Mh/2 and MA > Mh/2. This means that
the partial widths of invisible decays increase the total width of the Higgs boson so
much that the enhancement of Rγγ with respect to the SM case is impossible (this is
in agreement with the results of ref. [63]). The plots in fig. 4.2 (upper panel) seem to
suggest that Rγγ > 1 can only be realised if MH± . 350 GeV (see also the analysis
of ref. [63]). However, it is only an artefact of the choice of the range for the m2

22

parameter, which can be understood by comparing the upper and the lower panel
of fig. 4.2. In fact, as we will shortly show, the Higgs diphoton signal strength can
be enhanced for any value of the charged scalar mass.

Now we turn to the possible values that Rγγ can assume in the IDM. In fig. 4.3
Rγγ as a function of scalar masses is displayed together with the experimental bounds
on Rγγ. The solid purple line corresponds to the current experimentally measured
value, Rγγ = 1.16, and the dashed lines to 1σ, 2σ and 3σ limits. The upper
panel corresponds to the narrow, and the lower panel to the wide range of the m2

22

parameter. Clearly, both enhanced and suppressed signal is allowed by the data.
It can be read off from the plot that in the IDM Rγγ can be enhanced with respect
to the SM up to about 3.4 times. It can also be noted that substantial enhancement
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Figure 4.2: The regions in the parameter space allowed by the constraints. In light
green the points for which Rγγ > 1 are displayed. The plots in the upper panel
correspond to the scan in the narrow m2

22 range (25 ·104 GeV2 6 m2
22 6 9 ·104 GeV2),

and the lower panel to the scan in the wide range −2 ·106 GeV2 6 m2
22 6 9 ·104 GeV2.

of Rγγ is only possible for rather light charged scalar (and consequently also light
DM candidate). This bound is independent of the range of m2

22.

To clarify the issue of the dependence of the bounds on masses on the m2
22 range

we analyse the allowed region in the (m2
22,MH±) plane, see fig. 4.4. The points for

which Rγγ > 1 are displayed in light green. The purple lines correspond to fixed
values of R̃γγ . We use here R̃γγ (eq. (4.2)) instead of the full Rγγ (eq. (4.1)) because
we are interested in the enhanced Rγγ rate, which, as we have already shown, is only
realised in the case when the invisible Higgs decay channels are closed. In this case
Rγγ reduces to R̃γγ.

As can be seen from the right panel of fig. 4.4 values of Rγγ equal to or slightly
greater than one can be achieved for arbitrarily big values of MH± , up to a few GeV.
However, since the H± loop contribution to Γ(h→ γγ) is controlled by λ3v2

2M2
H±

(see
eq. (4.3) and comments below), and λ3 is constrained by unitarity, for big values
of MH± the contribution of the charged scalar will become less and less important.
This could be expected, it means that the heavy H± particle decouples. It confirms
the conclusion formulated before, that by requiring Rγγ > 1 we cannot constrain
MH± . The apparent constraints on masses, visible in fig. 4.2 are coming solely from
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Figure 4.3: Allowed values of Rγγ as a function of the scalar masses. Points with
Rγγ > 1 are displayed in light green. The solid purple line corresponds to the current
experimentally measured value, Rγγ = 1.16, and the dashed lines to 1σ, 2σ and 3σ
limits. The plots in the upper panel correspond to the scan in the narrow m2

22 range
(25 · 104 GeV2 6 m2

22 6 9 · 104 GeV2), and the lower panel to the scan in the wide
range −2 · 106 GeV2 6 m2

22 6 9 · 104 GeV2.

the constraint imposed on the range of the m2
22 parameter, since big scalar masses

are associated with big negative values of m2
22.

On the other hand, if we look at the contours of R̃γγ = 1.1, 1.2, we see that
substantial enhancement of Rγγ is only possible for a constrained range of MH± ,
and thus these constraints do not depend on on the range of m2

22. For example, for
Rγγ > 1.2 we have MH± . 154 GeV. This implies also MH . 154 GeV. Of course,
for Rγγ enhancement to occur the invisible channels have to be closed. Combining
these constraints with the LEP bounds on the charged scalar mass, we can conclude
that if Rγγ > 1.2 is measured, then

62.5 GeV < MH . 154 GeV, 70 GeV < MH± . 154 GeV. (4.8)

This means that in case of substantial Rγγ enhancement the additional scalars (at
least H and A) have to be fairly light, with masses that allow to potentially observe
them at colliders.

Looking at the parts of the plots in fig. 4.4 corresponding to positive values ofm2
22

we can see that the allowed points come very close to the curve R̃γγ = 1, and they
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Figure 4.4: Allowed region in the (m2
22,MH±) plane. Points with Rγγ > 1 are

displayed in light green. The solid purple lines corresponds to fixed values of Rγγ.
The plot in the left panel correspond to the scan in the narrow m2

22 range (25 ·
104 GeV2 6 m2

22 6 9 ·104 GeV2), and in the right panel to the scan in the wide range
(−2 · 106 GeV2 6 m2

22 6 9 · 104 GeV2).

would go below this curve (thus yielding Rγγ > 1) if bigger values ofm2
22 were allowed.

These points would correspond to enhancement through destructive interference, see
the discussion in section 4.1.1.2. This shows that a phenomenologically interesting
region of the parameter space is excluded by the condition for the inert vacuum
state, eq. (3.7), which is often not taken into account in the literature.

4.1.2.3 Rγγ and the scalar couplings

As discussed before, the mechanisms modifying Rγγ with respect to the SM are the in-
visible Higgs decays to the HH and AA pairs, and the propagation of the charged
scalar in a loop. The first of these are controlled by the scalar couplings λ345 and
λ−345, which are proportional to the hHH and hAA couplings (see also eq. (B.1)).
The latter is controlled by the λ3 parameter, see eq. (4.3) and discussion below. Thus
λ3, λ345 and λ−345 are the parameters which should be analysed in the context of
the study of Rγγ in the IDM. Dependence of Rγγ on these parameters is presented in
fig. 4.5. First of all, looking at the left panel of fig. 4.5 we can see that enhanced Rγγ

only appears for λ3 < 0, which confirms the conclusion of our analytic computation
presented in section 4.1.1.2. Second conclusion that can be read off from this figure,
is that Rγγ > 1 strongly constraints the couplings, namely it yields

−1.47 . λ3, λ345 . 0. (4.9)
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Figure 4.5: Allowed values of Rγγ as a function of the scalar couplings. Points
with Rγγ > 1 are displayed in light green. The solid purple line corresponds to
the current experimentally measured value, Rγγ = 1.16, and the dashed lines to
1σ, 2σ and 3σ limits. The plots correspond to the scan in the narrow m2

22 range
(25 · 104 GeV2 6 m2

22 6 9 · 104 GeV2). Results of the scan in the wide range are very
similar to the ones presented here so we do not display them here.

If substantial enhancement is required, for concreteness let us set Rγγ > 1.2, then

−1.46 . λ3, λ345 . −0.24. (4.10)

It can be also noted that the dependence of Rγγ on λ345 is sharp, the allowed region
is well defined, whereas the regions in the (λ3, Rγγ) and (λ−345, Rγγ) planes have many
scattered points. It can by explained by the fact that it is the λ345 parameter that
opens and closed the invisible decay channels of the Higgs boson. It is because the H
particle is the lightest one among the inert scalars, so only if h → HH is allowed,
also h→ AA is possible.

4.2 Decay of the Higgs boson to a photon and a Z

boson

The decay h → Zγ is another one, after h → γγ, that is purely loop-induced in
the SM, and as such is sensitive to new-physics effects. This decay has not yet been
observed at the LHC, there are only upper bounds on the signal strength, RZγ < 9.5

(CMS [158]), RZγ < 11 (ATLAS [159]). The results presented in this section are
based on ref. [4].

The signal strength is defined the same way as for the diphoton decay

RZγ =
Br(h→ Zγ)IDM

Br(h→ Zγ)SM
.

Analogously to the Rγγ case, RZγ can be modified with respect to the SM case
(RZγ = 1) due to the charged scalar loop influencing the partial decay width and
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the invisible decays augmenting the total decay width. Just like in the h→ γγ case
if the invisible decays of h are open, RZγ > 1 is impossible.

The partial decay width Γ(h→ Zγ)IDM is given by the following formulas,

Γ(h→ Zγ) =
G2
Fα

64π4
M2

WM
3
h

(
1− M2

Z

M2
h

)3∣∣∣∣21− 8
3

sin2 θW

cos θW
Ah1/2

(
4m2

t

M2
h

,
4m2

t

M2
Z

)
+ Ah1

(
4M2

W

M2
h

,
4M2

W

M2
Z

)
−

2M2
H± +m2

22

2M2
H±

(1− 2 sin2 θW )

cos θW
I1

(
4M2

H±

M2
h

,
4M2

H±

M2
Z

) ∣∣∣∣2, (4.11)

where

Ah1/2(τ, λ) = I1(τ, λ)− I2(τ, λ),

Ah1(τ, λ) = cos θW

{
4

(
3− sin2 θW

cos2 θW

)
I2(τ, λ) +

[(
1 +

2

τ

)
sin2 θW
cos2 θW

−
(

5 +
2

τ

)]
I1(τ, λ)

}
,

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2

[
f(τ)− f(λ)

]
+

τ 2λ

(τ − λ)2

[
g(τ−1)− g(λ−1)

]
,

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ)− f(λ)

]
,

g(τ) =


√

1
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− 1 arcsin

√
τ for τ 6 1,

√
1− 1

τ

2

(
log

1+
√

1− 1
τ

1−
√

1− 1
τ

− iπ
)

for τ > 1.

The charged scalar contribution is given by the third line of eq. (4.11), and is con-
trolled by the hH+H− coupling λ3 and the mass of the charged scalar (or equivalently
m2

22 and MH±) so by the same parameters that were crucial for Rγγ.3 To compare
the impact of the charged scalar loop on the h → γγ and h → Zγ partial decay
widths in fig. 4.6 we present the region where R̃γγ > 1 (shaded region) and the region
where R̃Zγ > 1 (inside the dashed line). R̃Zγ is defined analogously to R̃γγ , namely

R̃Zγ =
Γ(h→ Zγ)IDM

Γ(h→ Zγ)SM
. (4.12)

We analyse R̃γγ and R̃Zγ instead of Rγγ and RZγ to focus on the contribution from
the charged scalar, not taking care of the invisible decays. In fig. 4.6 it can be
seen that the two regions overlap almost ideally, with differences only present for
MH± < 70 GeV (the red line corresponds to MH± = 70 GeV), i.e., in the region
excluded by the LEP constraints. Thus, in the IDM if Rγγ > 1 than also RZγ > 1

and vice versa.4
3Note the minus sign of the charged scalar contribution [155], which is different than in some

publications, e.g. ref. [151].
4Since Rγγ and RZγ are so similar we will not present here analogs of the plots in figs. 4.2–4.5

because they would be very simmilar the ones already presented.
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Figure 4.6: Region in the (m2
22, MH±) plane where R̃γγ > 1 (shaded region) and

the region where R̃Zγ > 1 (inside the dashed line). Differences appear only below
theMH± = 70 GeV line (red solid line), in the region excluded by the LEP constraints.

Another interesting question that one can address is about the correlation between
Rγγ and RZγ. This correlation is presented in fig. 4.7. The correlation is positive,
which could have already been inferred from fig. 4.6, and the curve passes through
the point (1, 1), which corresponds to the SM. The structure of a two-branch
curve can be easily explained: the lower branch (straight line, for which Rγγ ≈
RZγ) represents the case of open invisible channels, where both Rγγ and RZγ are
damped by a big common constant (invisible decays widths), which dominates over
the charged scalar contributions, leading to Rγγ ≈ RZγ < 1. The other branch
describes the correlation following from the fact that both H± loops in h → γγ

and h → Zγ are controlled by the same parameters. The fact that in the IDM
the correlation between Rγγ and RZγ is positive can serve in the future as a good
probe of the model since a measurement showing a negative correlation would exclude
the IDM. The result shown in fig. 4.7 was confirmed by refs. [160, 161].

4.3 Total and invisible decay widths of the Higgs

boson

So far the experiments at the LHC have managed to pose some constraints on
the total width of the Higgs boson, as well as on its invisible decay width. The current
constraints for the total decay width read [93, 94]

Γh < 22 MeV or Γh/Γ
SM
h < 5.4, (4.13)
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Figure 4.7: Correlation between Rγγ and RZγ.

and for the invisible branching ratios [95]

Br(h→ inv) < 0.23. (4.14)

A global fit to the LHC and Tevatron data provides even stronger constraints [96]:

Br(h→ inv) < 0.2. (4.15)

Remembering that the branching ratios of the γγ and Zγ Higgs decays are of
the order of 10−3, the total decay width of the Higgs boson in the IDM can be
approximated by

Γ(h)IDM ≈ Γ(h)SM + Γ(h→ HH) + Γ(h→ AA).

The partial width of the decay to a pair of DM candidates is given by

Γ(h→ HH) =
λ2

345v
2

32πMh

√
1− 4M2

H

M2
h

, (4.16)

and for the h→ AA decay λ345 should be exchanged to λ−345, and MH to MA. There-
fore, the parameters that can be constrained by these measurements are the masses
of the neutral dark scalars, MH and MA, and their couplings to the Higgs boson,
λ345, λ−345. To reduce the number of free parameters we will assume for now that
the channel h→ AA is kinematically closed (some results for the general case can
be found in ref. [3]). In this case the constraints following from eqs. (4.13) and (4.14)
can be represented in the (MH , λ345) plane. (Since the result in eq. (4.15) is very
close to the bound of eq. (4.14) we will not include it in the analysis.) The results
are presented in fig. 4.8, the region between the dashed curves is allowed by the con-
straint on invisible branching ratios, whereas the region between the solid lines is
consistent with the bound given by the total width measurement. It is clear that
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the measurement of the invisible branching ratios is by far more constraining than
the bound on the total Higgs decay width. To be in agreement with the LHC results,
for MH < 62.5 GeV the parameter λ345 has to be less than about 0.1. In fact in
most of the MH range λ345 has to be less than 0.03.
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Figure 4.8: Region allowed by the constraints on the total decay of the Higgs boson
(between the solid lines), and region allowed by the constraint on the invisible
branching ratios (between the dashed lines).

4.4 Interplay between the properties of the Higgs

boson and the inert DM

We have already discussed the consequences of observing an enhanced signal in
the h → γγ decay channel. In this section we will focus on the implications of
setting a lower bound on Rγγ. Moreover, these bounds will be combined with
the constraints following from the measurements of the relic density of DM performed
by the WMAP [103] and Planck [104] experiments.

4.4.1 Interplay between constraints from Rγγ and DM relic

density

As was already explained in section 4.1, the diphoton signal strength depends on
the DM mass, and its coupling to the Higgs boson through the total decay width of
the Higgs particle. Thus the parameters MH and λ345 are important for the value
of Rγγ. We can choose the scalar masses and the parameters λ345 and λ2 as a set
of independent variables describing the IDM (see section 2.4). The parameter λ2

does not influence Rγγ in any way. Therefore, once the masses of the inert scalars
are fixed, Rγγ is just a function of λ345. Behaviour of Rγγ(λ345) for a certain choice
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of masses (MH = 55 GeV, MA = 60 GeV, MH± = 120 GeV) is presented in fig. 4.9.
The Rγγ(λ345) curve is bell-shaped, so setting a lower limit on Rγγ will yield upper
and lower bounds on the values of λ345. These will of course depend on the masses
of the inert scalars that have been chosen. In the case presented in fig. 4.9, requiring
Rγγ > 0.7 implies that λ345 has to be in the range −0.023 6 λ345 6 0.009 so
the bound is rather restrictive.
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Figure 4.9: The diphoton signal strength, Rγγ , as a function of λ345 forMH = 55 GeV,
MA = 60 GeV, MH± = 120 GeV. Constraints on λ345 following from the requirement
that Rγγ > 0.7 are shown. Figure taken from ref. [3].

In the case when the invisible decay channel h → AA is kinematically closed,
Rγγ does not depend on MA, and consequently neither do the discussed λ345 bounds.
In this thesis we will focus on this case, for the clarity of presentation. The study of
MH-dependence of the λ345 constraints is enough to show relations between the pa-
rameters, and some tendencies while keeping the plots two-dimensional. A study of
the case with both h→ HH, and h→ AA open can be found in refs. [3, 126].

Since the H particle in the IDM plays also the role of a DM candidate, it is also
constrained by the DM relic density measurements performed by the WMAP [103]
and the Planck [104] experiments. The most currently precise 3σ bounds read

0.1118 < ΩDMh
2 < 0.1280. (4.17)

The relic density of DM in the IDM is controlled by different annihilation processes,
the most important among them are annihilation into a pair of fermions (with an
intermediate h particle), or annihilation into a pair of gauge bosons, see fig. 4.10.
The first is more important for lighter DM particles, whereas the latter for heavier
ones. For very heavy DM also coannihilation with A is significant.

The annihilation process HH → h → ff̄ is controlled by the hHH coupling,
which is proportional to λ345, and by the mass of H. Thus constraints on the relic
density can be translated to constraints on λ345, depending on the mass of H. These
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Figure 4.10: Most important processes controlling the DM relic density in the IDM.

constraints were discussed in ref. [137], and the dependence of the relic abundance
of DM, ΩDMh

2, on λ345 for different values of MH is presented in fig. 4.11, which was
taken from this reference. In the plot also the constraints from WMAP are marked
(the allowed region lies between the black dashed lines), the numerical values differ
slightly from those quoted in eq. (4.17) but it is not important for the qualitative
discussion presented here. For the numerical bounds presented in the next section,
the Planck constraints, eq. (4.17) will be used. It can be seen that imposing the relic
density constraints results in upper and lower limits on λ345. In general, the larger
λ345 get, the more efficient the annihilation to fermionic pair becomes, thus yielding
small DM relic density. On the other hand, for very small λ345 the annihilation is
inefficient leading to overabundance of DM.
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Figure 4.11: The dependence of the relic abundance of DM, ΩDMh
2, as a function

of λ345 for different values of the DM mass, in the low mass regime. The region
between black dashed lines is allowed by WMAP. Plot taken from ref. [137].

Our aim is to combine the discussed constraints on λ345 and MH following from
lower bounds on Rγγ, and the experimental bounds on ΩDMh

2. The discussion of
the results is presented in the next section.
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4.4.2 Combined results

In this section the combination of the constraints on λ345 and MH following from
lower bounds on Rγγ with the bounds following from the relic density measurements
is presented following ref. [3] (see also refs. [9, 10]).

4.4.2.1 Light DM

In fig. 4.12 the bounds on the λ345 parameter as a function of MH are presented for
MH < Mh/2. The plots correspond to the requirement Rγγ > 0.7 (left), Rγγ > 0.8

(middle) and Rγγ > 0.9 (right), different styles of curves correspond to different
values of MH± . Since we assume MA > Mh/2, the bounds do not depend on MA.
They are in general very stringent and yield

|λ345| < 0.04 for MH < Mh/2 (4.18)

and they are stronger for lighter MH± . In the case of Rγγ > 0.9 the whole region of
very light DM with MH . 40− 50 GeV is excluded.
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Figure 4.12: Constraints on the λ345 parameter following from the requirement that
Rγγ > 0.7 (left panel), Rγγ > 0.8 (middle panel), Rγγ > 0.9 (right panel). Different
styles of curves correspond to different values of MH± . The regions between the
curves are allowed. Plot taken from ref. [3].

On the other hand, the analyses of DM relic abundance [137] show that if light
DM (with MH . 10 GeV) is to account for the total relic abundance of DM, its
coupling to the Higgs boson has to fulfill (see also fig. 4.11)

|λ345| ∼ 0.4− 1.2. (4.19)

This is, however, in contradiction with eq. (4.18). Therefore, if the assumption
Rγγ > 0.7 is experimentally confirmed, the light DM region for MH . 10 GeV can
be excluded.
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4.4.2.2 Intermediate DM

Another region in the parameter space where the inert H particle may account for
the observed relic density is for intermediate masses of H, 40 GeV .MH . 80 GeV.
From the point of view of the Rγγ analysis this region breaks into two sub-regions
with different properties, depending whether the Higgs particle may or may not
decay into DM pairs.

In fig. 4.13 plots combining information on the values of Rγγ and the relic
abundance are shown for these two cases. The plots can be viewed as a combination
of analogs of figs. 4.11 and 4.12 for the intermediate mass region. In fig. 4.13 different
shades of blue indicate the values of Rγγ. The grey shaded region is excluded by
the Planck measurement, i.e. the relic density in this region is too big. The red
region is in agreement with the relic density measurements, it fulfils eq. (4.17). In
the remaining parameter space, the relic abundance of DM is too low, below the lower
bound of eq. (4.17). It is excluded, if no other DM candidate is proposed. The masses
of A and H± were fixed for concreteness. In the left panel MA = MH± = 120 GeV,
in the right one MA = MH± = MH + 50 GeV.
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Figure 4.13: Map of the values of Rγγ in the (MH , λ345) plane for the intermediate
DM masses. Superimposed are constraints from the relic density measurements:
grey shaded region is excluded (DM relic density is too big), in the red region
the relic density is in agreement with the Planck measurement, and in the remaining
parameter space the relic density is too low. In the left panelMA = MH± = 120 GeV,
in the right panelMA = MH± = MH + 50 GeV (δA = MA−MH , δH± = MH±−MH).
Plot taken from ref. [10].

In the left panel of fig. 4.13 results for the case with MH < Mh/2 are presented.
It can be observed that due to the presence of invisible Higgs decays λ345 has to be
very small to obtain high values of Rγγ. Because of this, requiring Rγγ > 0.7, and
simultaneously demanding that the DM relic density produced within the IDM is
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correct, we obtain a lower bound on the DM mass

MH & 53 GeV. (4.20)

It should be also noted, that for bigger masses ofH, close to the resonantMH = Mh/2,
both Rγγ > 0.7, and correct relic density require very small, finely tuned values of
λ345.

In the right panel, results for the case of closed invisible decays are presented.
Here in the whole considered parameter space Rγγ > 0.7. However, if we require
agreement with the Planck data, the Rγγ signal strength is always suppressed with
respect to the SM.

4.4.2.3 Heavy DM

The correct relic density of DM can be obtained within the IDM also in the high
DM mass region, for MH & 500 GeV. In this region all the inert particles have to be
quasi-degenerate in mass because coannihilation effects are crucial to obtain correct
relic density [162].

In fig. 4.14 a map of values of Rγγ, together with the Planck constraints for
heavy DM is presented, the colour coding is the same as in fig. 4.13. The masses of
the inert scalars A and H± differ from the mass of H by 1 GeV. It is visible that
in the whole region that is in agreement with the Planck measurements, Rγγ is very
close to one. This behaviour is due to decoupling of the inert scalars — not only
are they all heavy, but also due to small mass splittings, the couplings are relatively
small. This scenario may be very hard to distinguish from the SM.

4.4.3 Comparison with the direct detection constraints

One of the main search strategies of DM is via direct detection — these experiments,
such as LUX [109] or XENON [108], aim to measure recoil energy of the scattering of
DM off heavy nuclei (see also section 3.3.2). The key parameter for these searches is
the cross section for the scattering process, σDM,N. In the case of inert DM (similarly
as in other Higgs-portal DM models) it can only interact with the nucleon through
an exchange of the Higgs boson. Thus, the tree-level cross section is proportional to
the λ345 parameter squared and it reads

σDM,N =
λ2

345

4πM4
h

m4
N

(mN +MH)2
f 2
N , (4.21)
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Figure 4.14: Map of the values of Rγγ in the (MH , λ345) plane for the heavy DM
masses. Superimposed are constraints from relic density measurements: grey, shaded
region is excluded (DM relic density is too big), in the red region the relic density is
in agreement with the Planck measurement, and in the remaining parameter space
the relic density is too low. We set MA = MH± = MH + 1 GeV. Plot taken from
ref. [10].

where mN denotes the mass of the nucleon, and fN is a universal Higgs-nucleon
coupling.5 There is no agreement on the value of the fN coupling and various estima-
tions exist in the literature because of uncertainty of the strange quarks contribution
to the mass of the nucleon. Here, following our choice made in ref. [3], we consider
the middle value of 0.14 < fN < 0.66 [165, 166], fN = 0.326. For a recent discussion
on the DM-nucleon interaction see e.g. ref. [167].

As can be seen from eq. (4.21) the only unknown parameters in σDM,N are
the Higgs-DM coupling, λ345, and the DM mass. Thus, having upper bounds on
λ345, an upper bound on σDM,N can be derived. To this end we used the constraints
following from the requirement that Rγγ > 0.7 (Rγγ > 0.8) presented in fig. 4.12,
the resulting bounds are shown in fig. 4.15. They bounds are computed for MH± ≈
500 GeV but the dependence on the mass of the charged scalar is slight. Only for very
light charged scalar, on the verge of the LEP bounds, the bounds would be stronger
(see also [3]). For comparison, we present also the bounds from the XENON100 [108]
and the LUX [109] experiments.

The same reasoning can be used to derive bounds on σDM,N from the measurement
of invisible decay width of the Higgs boson (see section 4.3). Such studies were
performed by the ATLAS collaboration [95]. These results are also presented in
fig. 4.15.

5It has been shown that one-loop electroweak corrections to the DM-nucleon scattering cross
section may be significant, especially in the case when λ345 is very small [163, 164]. However,
the discussion of these corrections is beyond the scope of this work.
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Figure 4.15: Bounds on the DM-nucleon scattering cross section, σDM,N, as a function
of DM mass derived from the requirement that Rγγ > 0.7 (Rγγ > 0.8). For compar-
ison, also ATLAS results inferred from invisible decay width measurement [95], as
well as XENON100 [108] and LUX [109] results are presented.

It can be seen that the bounds following from the collider measurements are
far more sensitive in the low mass region, for MH . 10 GeV, our results from
h → γγ being more constraining than the ones from invisible Higgs decays. In
the rest of the parameter space considered, our results are stronger or comparable
to the constraints from XENON100, and slightly weaker or comparable to the ones
from LUX. It should be noted, however, that if stronger lower bounds on Rγγ are
imposed, then σDM,N will be even more constrained. This shows how powerful are
the collider searches, they can compete in predictions with the dedicated DM search
experiments.
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5
One-loop effective potential

In the following part of this thesis we study the issue of stability of the vacuum
state. A vacuum state is an extremely important element of any model of elementary
interactions since it is the ground state around which the theory is built. It is crucial
that the vacuum state is stable if the theory is to be predictive. At tree level the
issue of vacuum stability is rather simple, however complications appear when loop
corrections are included because they may significantly change the vacuum state (for
example introducing symmetry breaking [168]).

A basic tool to study vacuum states is the effective potential. In the present
chapter, before we move to the detailed analyses of the effective potential within
the IDM, we introduce this notion, give arguments that indeed it is a well suited
object for the study of vacuum stability, and show how to compute it in various
models. This is a textbook material, it is presented here to keep this dissertation
self-consistent and self-explanatory. In the presentation we follow the seminal paper
by Coleman and Weinberg [168], the book of Li and Cheng [169], the notes by
Coleman [170] and the textbook by Chankowski [171].

5.1 Definition of the effective potential

Let us start from the generating functional for the Green’s functions for a simple
theory with one scalar field φ (the generalisation the the case with more scalar fields
is straightforward)

W [J ] =

∫
Dφ exp

{
i

∫
d4x [L(φ(x)) + J(x)φ(x)]

}
, (5.1)
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it can be thought of as a vacuum-to-vacuum transition amplitude in the presence of
an external source J(x)

W [J ] = 〈0|0〉J .

The coefficients of the expansion of logW in a functional Taylor series in J(x) are
the connected Green’s functions

−i logW [J ] =
∑
n

1

n!
d4x1 . . . d

4xnG
(n)(x1, . . . , xn)J(x1) . . . J(xn).

The classical field, denoted here by ϕ, is defined as the VEV of the quantum field
operator φ in the presence of the source J(x)

ϕ ≡ −iδ logW

δJ(x)
=

[
〈0|φ(x)|0〉
〈0|0〉

]
J

,

where the x-dependence of ϕ is not written explicitly for the sake of simplicity.
Therefore, if J = 0, the classical field corresponds to the simple VEV of the field
operator vϕ

vϕ =
〈0|φ(x)|0〉
〈0|0〉

,

and is constant in space and time due to translational invariance of the theory.
The effective action, which is a functional of ϕ, is a Legendre transform of

logW [J ],

Γ[ϕ] = −i logW [J ]−
∫
d4xJ(x)ϕ(x),

and hence
δΓ[ϕ]

δϕ
= −J(x).

For a constant classical field configuration this derivative vanishes

δΓ[ϕ]

δϕ

∣∣∣∣
ϕ=vf

= 0, (5.2)

which shows that VEVs of the field operators correspond to the stationary points
of the effective action. That is why the effective action is useful in the study
of spontaneous symmetry breaking. Γ[ϕ] contains the information about possible
VEVs to all orders in perturbation theory, however, it is not straightforward to use
in practice. That is why we need a simpler tool for practical calculations.

The effective action Γ[ϕ] can be expanded in powers of ϕ

Γ[ϕ] =
∑
n

1

n!

∫
d4x1 . . . d

4xnΓ(n)(x1. . . . , xn)ϕ(x1) . . . ϕ(xn), (5.3)
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where Γ(n) is a sum of all 1PI Feynman diagrams with n external legs. Alternatively
we can expand Γ in powers of momenta

Γ[ϕ] =

∫
d4x

[
−V (ϕ) +

1

2
(∂µϕ)2Z(ϕ) + . . .

]
. (5.4)

The term with zero power of momentum, V (ϕ), is called the effective potential. It
is clear that for constant classical fields, ϕ = vϕ the effective action is proportional
to the effective potential

Γ[vϕ] = −V (vϕ)

∫
d4x.

Thus looking at eq. (5.2) it is clear that VEVs of field operators correspond to
stationary points of the effective potential,

δΓ[ϕ]

δϕ

∣∣∣∣
ϕ=vf

=
δV (ϕ)

δϕ

∣∣∣∣
ϕ=vf

∫
d4x = 0.

Since in the following we will use the effective potential to study the VEVs of the
quantum fields, we limit ourselves to constant classical fields ϕ.

A physical interpretation of the effective potential given by Coleman (here we
follow ref. [171], see also ref. [170]) is that V (ϕ) corresponds to the minimum of the
expectation values of the Hamiltonian density H calculated in a class of normalised
states, such that the VEV of the field operator φ is equal to ϕ.1 Namely,

V (ϕ) = min〈Ψ|H|Ψ〉, for Ψ such that 〈Ψ|Ψ〉 = 1 and 〈Ψ|φ|Ψ〉 = ϕ.

This shows that the effective potential is a function which for a given VEV gives the
minimal energy density. So a state that minimises V , minimises the energy density,
i.e. corresponds to the ground state of a theory. This shows that indeed to find a
ground state of a theory, i.e. the vacuum state, one has to minimise the effective
potential.

To express V (ϕ) in terms of Green’s functions we will rewrite Γ(n) in the momen-
tum space

Γ(n)(x1, . . . , xn) =

∫
d4k1

(2π)4
. . .

d4kn
(2π)4

(2π)4δ(4)(k1+. . .+kn)ei(k1x1+...+knxn)Γ(n)(k1, . . . , kn).

Substituting this to eq. (5.3), expanding in powers of momenta, and writing the δ
function in a form of an integral we get

Γ[ϕ] =
∑
n

1

n!

∫
d4x1 . . . d

4xn

∫
d4k1

(2π)4
. . .

d4kn
(2π)4

∫
d4xei(k1+...+kn)xei(k1x1+...knxn)

×
[
Γ(n)(0, . . . , 0)ϕ(x1) . . . ϕ(xn) + . . .

]
=

∫
d4x

∑
n

1

n!

[
Γ(n)(0, . . . , 0)ϕ(x)n + . . .

]
. (5.5)

1The argumentation showing that this interpretation is correct is rather involved, and therefore
we do not show it here. It can be found in ref. [171].
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We can now compare eq. (5.4) with eq. (5.5), and find out that the nth derivative
of the effective potential is the sum of all 1PI diagrams with n external legs. Thus
V (ϕ) reads

V (ϕ) = −
∑
n

1

n!
Γ(n)(0, . . . , 0)ϕ(x)n. (5.6)

V can be also expanded in subsequent loops, as an alternative to the perturbative
expansion in coupling constant.2 If we expand V from eq. (5.6) in loops, we can see
that at tree level the effective potential coincides with the scalar potential appearing
in the lagrangian treated as a function of the classical field. At the one-loop level,
the contribution to the effective potential δVCW is the sum of all one-loop diagrams
with growing number of external legs, with the 1

n!
coefficient, and vanishing external

momenta,

δVCW(ϕ) = −
∑
n

1

n!
Γ

(n)
1-loop(0, . . . , 0)ϕ(x)n, (5.7)

where the subscript CW stands for the Coleman–Weinberg contribution. The renor-
malised one loop effective potential is the sum of the tree-level effective potential
and the one-loop correction, as well some counterterms δV , necessary to obtain a
finite result,

V
(1)

eff (ϕ) = V
(0)

eff (ϕ) + δVCW(ϕ) + δV.

As can be seen from eq. (5.7) the concrete form of the effective potential depends
on a theory, and in particular on its particle content (different particles will give
different loop contributions). In the following section we present a derivation of
the effective potential in various simplified models, to show how the effective po-
tential depends on particles of different spin. We use the straightforward method
of diagrammatical calculations to get the results. For other possible methods see
e.g. ref. [171].

5.2 Effective potential for λφ4 theory of a single

scalar field

Let us start from deriving the effective potential for a theory with a single, real
scalar field with the self-interaction term of the λφ4 form. The lagrangian for this
model reads

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4.

2Here we skip the argumentation why it is a valid way of expanding the potential, it can be
found for example in the book of Li and Cheng [169].
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Then the scalar potential is given by

V =
1

2
m2φ2 +

λ

4!
φ4. (5.8)

Above φ denotes the quantum field, in the following ϕ will denote the corresponding
classical field. Note that the tree-level effective potential is given by eq. (5.8) with
φ exchanged by ϕ. This is a general property — to obtain the tree-level effective
potential one has to replace the quantum scalar fields by the corresponding classical
fields. Thus having the tree-level scalar potential we also have the tree-level effective
potential.

The effective one-loop potential is given by the sum of all 1-loop diagrams with
zero external momenta. In fact, due to the structure of the potential (no odd powers
of φ) there is no way of generating diagrams with an odd number of external legs so
we only need to sum the diagrams with an even number of legs. The computation
differs depending on the sign of the mass parameterm2, and we will consider different
cases separately.

5.2.1 Case with m2 > 0

When m2 > 0, the term 1
2
m2ϕ2 is just a mass term for the scalar field. Feynman

rules for this theory are as follows:

– interaction vertex = −iλ,

– scalar propagator = i
k2−m2+iε

.

Therefore the diagram with one pair of external legs (see fig. 5.1, left panel) gives
the following contribution:

−iλ
∫

d4k

(2π)4

i

k2 −m2 + iε

1

2
ϕ2 =

∫
d4k

(2π)4

1
2
λϕ2

k2 −m2 + iε
,

where 1
2
comes from the symmetry factor accounting for the exchange of external

legs, and external legs contribute a factor of ϕ. The diagram with two pairs of

Figure 5.1: Diagrams with two (left), four (middle), and six (right) external legs
contributing to the one-loop effective potential of the λϕ4 model.
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external legs with zero momentum (fig. 5.1, middle) gives the contribution

1

2

∫
d4k

(2π)4
(−iλ)

i

k2 −m2 + iε
(−iλ)

i

k2 −m2 + iε

(
1

2
ϕ2

)2

=

∫
d4k

(2π)4

1

2

( 1
2
λϕ2

k2 −m2 + iε

)2

,

where the 1/2 factor at the beginning accounts for the possibility of exchanging
the internal propagators.

Expressions for diagrams with bigger number of external legs are constructed
analogously. Only the symmetry factors have to be assigned carefully. In each
diagram the factor of (1/2)n will account for swapping external legs within the pairs.
We can think of the interaction vertices as of the vertices of a regular polygon of
n sites. For a given n, n! polygons with different numberings of the vertices can
be constructed. However, two configurations that differ by a rotation or a mirror
symmetry are equivalent, and should not be counted twice. Therefore the right
symmetry factor is n!

2n
. We have to remember also about the 1

n!
factor from eq. (5.7).

Finally we get a 1
2n

factor for a n-leg class of diagrams.
The contribution to the effective potential coming from all such diagrams reads:

δVCW = i
∞∑
n=1

∫
d4k

(2π)4

1

2n

( 1
2
λϕ2

k2 −m2 + iε

)n
. (5.9)

The overall factor of i comes from the expansion of the generating functional W . To
compute δVCW we perform the Wick rotation by setting k0 = ikE0 , where “E” stands
for Euclidean,

(
kE
)2

= kE0 k
E0 + kEi k

Ei. Then

δVCW = i2
∞∑
n=1

∫
d4kE

(2π)4

1

2n

( 1
2
λϕ2

−(kE)2 −m2

)n
=
∞∑
n=1

∫
d4kE

(2π)4

(−1)n+1

2n

( 1
2
λϕ2

(kE)2 +m2

)n
,

where we skipped the iε in the denominator for convenience. Now we use the formula

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn,

and obtain

δVCW =
1

2

∫
d4k

(2π)4
log

(
1 +

1
2
λϕ2

k2 +m2

)
, (5.10)

where we skipped the superscript in kE for brevity.
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Let us rewrite δVCW in a more useful way:

δVCW =
1

2

∫
d4k

(2π)4
log

(
k2 +m2 + 1

2
λϕ2

k2 +m2

)
=

1

2

∫
d4k

(2π)4

[
log

(
k2 +m2 +

1

2
λϕ2

)
− log

(
k2 +m2

)]
. (5.11)

This integral is UV-divergent and therefore has to be regularised. The procedure of
dimensional regularisation of δVCW is presented in detail in appendix C. The final
result for the regularised one-loop contribution to the effective potential is given by

δVCW =
m4

eff

64π2

[
−2

ε
+ γE −

3

2
+ log

(
m2

eff

4πµ2

)]
. (5.12)

5.2.1.1 Renormalisation of δVCW

The result shown above, eq. (5.12), is clearly divergent as ε → 0. Therefore, we
have to add counterterms to the potential which would cancel the divergences. Thus
the one-loop effective potential will have the form

V
(1)

eff =
1

2
m2ϕ2 +

λ

4!
ϕ4 + δVCW +

B

2
ϕ2 +

C

4!
ϕ4. (5.13)

Different renormalisation conditions can be chosen to fix the counterterms. In
the seminal paper by Coleman andWeinberg [168] the mass and coupling of the scalar
particle were identified with the second and fourth derivative of the effective potential
at ϕ = 0 (see also [169]),3

m2 =
d2V

(1)
eff

dϕ2

∣∣∣∣∣
ϕ=0

, (5.14)

λ =
d4V

(1)
eff

dϕ4

∣∣∣∣∣
ϕ=0

. (5.15)

In this work we will use different renormalisation schemes — the on-shell (OS)
scheme, in which masses of physical particles are not changed by the loop correc-
tions, and the MS scheme, where the counterterms simply cancel the divergencies
of eq. (5.12). More details of the renormalisation procedure used in this work will
be given in sections 6.2.1 and 6.3.2.

5.2.2 Case with m2 < 0

In the case when the parameter m2 in the potential (5.8) is negative, it cannot be
interpreted as a mass term. We will therefore, treat it as a part of the interaction

3Special care should be taken when m2 = 0 because then the conditions (5.14) and (5.15) lead
to divergencies.
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vertex, which is then equal to (see fig. 5.2)

−i
(
λ

2
ϕ2 +m2

)
,

and consequently the propagator is massless:
i

k2 + iε
.

With this changes in the vertex and the propagator we can construct δVCW analo-

ϕ

ϕ

−i
(
λ
2
ϕ2 +m2

)

Figure 5.2: Field-dependent interaction vertex for λφ4 theory with m2 < 0.

gously to the case with m2 > 0, however this time we sum diagrams with massless
propagators, field-dependent interaction vertices, and no external legs, see fig. 5.3.
The result reads (compare with eq. (5.9)):

δVCW = i
∞∑
n=1

∫
d4k

(2π)4

1

2n

( 1
2
λϕ2 +m2

k2 + iε

)n
.

Performing the same steps as previously we arrive at the expression:

δVCW =
1

2

∫
d4k

(2π)4
log

(
1 +

1
2
λϕ2 +m2

k2

)
. (5.16)

Rewriting this expression as

δVCW =
1

2

∫
d4k

(2π)4
log

(
k2 +

1

2
λϕ2 +m2

)
− 1

2

∫
d4k

(2π)4
log
(
k2
)
,

and comparing with eq. (5.11) we see that the two expressions differ only by the sec-
ond, constant term. And even that one can be adjusted to the form of eq. (5.11)
with a simple change of variables, k′2 +m2 = k2. So the two approaches of treating
m either as a mass, or as a contribution to the vertex are equivalent, and the final
formula for δVCW is given by eq. (5.12). We will frequently use the latter approach
in the following parts of this chapter.

Figure 5.3: First three diagrams contributing to the one-loop effective potential of
the λϕ4 model with m < 0. The black dots denote the field-dependent interaction
vertices, the scalar propagators are massless.
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5.3 Effective potential in a model with a vector

field

To learn how bosonic fields contribute to the effective potential, let us consider
a model in which a scalar field interacts with a vector field. Then the lagrangian
contains an interaction term of the form4

L ⊇ e2AµA
µφ2.

We are not be interested in purely scalar contributions to the effective potential, since
these were already analyzed in the previous section. We only consider the scalar-
vector interactions. The Feynman rules in the Landau gauge read:

– scalar–scalar–vector–vector vertex: i2e2gµν ,

– vector propagator: −igµν−kµkν/k
2

k2+iε
,

– scalar propagator: i
k2+iε

.

We have not included a mass term to the scalar propagator. If a mass term is present
in the lagrangian, it can be included in the scalar self-interaction vertex, as described
in the previous section.

To find the bosonic contribution to effective potential we have to sum the diagrams
with even number of external scalar legs, the first three are presented in fig. 5.4.
The symmetry factors for the diagrams will remain the same as in the scalar case,
i.e., a diagram with n interaction vertices will be multiplied by 1/2n.

Figure 5.4: Diagrams with two, four, and six external scalar legs and bosonic internal
lines contributing to the one-loop effective potential.

The diagram with one interaction vertex gives the contribution∫
d4k

(2π)4

1

2

ϕ2ie2gµν(−i)(gµν − kµkν/k2)

k2 + iε
=

∫
d4k

(2π)4

1

2
ϕ2e2

gµµ − 1

k2 + iε
,

4Of course a field to interact with a photon has to be charged so the model has to contain
a complex scalar field. Here we are not interested in the details of the toy model, our focus is to
demonstrate how bosonic fields contribute to the effective potential, so we can simply think of φ
as a real part of a complex scalar field.
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where the factor of 2 from the interaction vertex was cancelled by 1
2
accounting for

the exchange of the scalar fields. If we want to go to D dimensions to compute this
integral we have to be careful, since gµµ depends on D. It also depends on whether
dimensional regularisation or dimensional reduction is used. In the following we
will use dimensional regularisation, and later on we will comment on the case of
dimensional reduction. In D dimensions, with D = 4− ε we have∫

dDk

(2π)D
µε

1

2
ϕ2e2

gµµ − 1

k2 + iε
= (D − 1)

∫
dDk

(2π)D
µε

1

2

ϕ2e2

k2 + iε
.

The diagram with two vertices will contribute as∫
dDk

(2π)D
µε

1

4

(ϕ2ie2)2gµν(−i)2(gνρ − kνkρ/k2)gρσ(gσµ − kσkµ/k2)

(k2 + iε)2

=

∫
dDk

(2π)D
µε

1

4
(ϕe)4

gµρg
ρ
µ − 2kµkµ/k

2 + kµkµk
ρkρ/k

4

(k2 + iε)2

= (D − 1)

∫
dDk

(2π)D
1

4

(ϕe)4

(k2 + iε)2 .

The contributions from next diagrams are computed analogously. Finally, the sum
of all 1-loop diagrams with vectorial internal lines gives

i

∫
dDk

(2π)D
µε(D − 1)

∞∑
n=1

1

2n

[
(ϕe)2

k2 + iε

]n
.

Using the same tricks as described in section 5.2.1 (Wick rotation, summing the series)
we get the result

δVCW =

∫
dDk

(2π)D
1

2
(D − 1) log

(
1 +

e2ϕ2

k2

)
.

The integral can be performed along the lines of section 5.2.1, however at the stage
of expanding around D = 4 one has to remember about the factor D− 1 = 3− ε. It
will modify the result slightly, namely

δVCW =
3m4

eff

64π2

[
−2

ε
+ γE −

5

6
+ log

(
m2

eff

4πµ2

)]
, (5.17)

where m2
eff = e2ϕ2. In general, m2

eff will always be replaced by a field-dependent mass
of the considered particle, i.e. a mass acquired by the particle from the mass terms
present in the lagrangian, and from the interaction with the ϕ field. The important
difference between the scalar and the vector contributions is the factor of 3 in front
of the expression. Moreover, the factor of 3

2
in the bracket is replaced by 5

6
.

If dimensional reduction was used, the factor D− 1 coming from construction of
bosonic propagators would give 3 instead of 3− ε, and thus in eq. (5.17) 3

2
instead

of 5
6
would be present.
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5.4 Effective potential in a model with a fermionic

field

Let as now consider a theory with a scalar and a fermionic field. The lagrangian
includes a kinetic term for the fermionic field and a term describing interaction
between the fermion and the scalar. The relevant part of the Lagrangian looks as
follows

L ⊇ Ψ /DΨ + gΨφΨ.

As in the case of the scalar theory withm < 0, section 5.2.2, we will treat the classical
field ϕ as a part of the interaction vertex. Therefore the Feynman rules will read:

– fermion-fermion-scalar vertex: igϕ ≡ imeff,

– (massless) fermionic propagator: i
/p+iε

.

If a mass term for the fermionic field is present it can be included in the fermion-
fermion-scalar vertex, meff. In this theory only diagrams with an even number of
fermionic propagators will contribute to the effective potential, since with every
propagator one Dirac matrix is introduced, and a trace of an odd number of Dirac
matrices is zero.

Figure 5.5: First two diagrams contributing to the one-loop effective potential of
a model containing a scalar and a fermionic field. The black dots denote the field-
dependent interaction vertices, the fermionic propagators are massless.

The simplest diagram, which contributes to the effective potential has two
fermionic propagators, see fig. 5.5 (left). Its contribution reads

(−1)

∫
d4k

(2π)4
Tr
[
imeff

i

/k + iε
imeff

i

/k + iε

]
,

where an overall factor of -1 for a fermionic loop should be noted. Simplifying this
expression we get

−
∫

d4k

(2π)4
Tr

[
m2

eff

(/k + iε)
2

]
= −4

∫
d4k

(2π)4

m2
eff

k2 + iε
.
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The factor of 4 comes from the trace over Dirac indices. The contribution from
a diagram with four fermionic propagators is computed in an analogous way

(−1)

∫
d4k

(2π)4
Tr
[
imeff

i

/k + iε
imeff

i

/k + iε
imeff

i

/k + iε
imeff

i

/k + iε

]
= −4

∫
d4k

(2π)4

(
m2

eff

k2 + iε

)2

.

The symmetry factors for the diagrams are the same as previously, so the sum of all
1-loop diagrams can be performed straightforwardly

δVCW = −i
∞∑
n=1

1

2n
4

∫
d4k

(2π)4

(
m2

eff

k2 + iε

)n
= −4

[
1

2

∫
d4k

(2π)4
log

(
1 +

m2
eff

k2

)]
.

(5.18)
The result differs from the result for the scalar field by a factor of 4 coming from
the trace over Dirac indices, and the overall factor of -1 (the iε term in the denomi-
nator was omitted in the last equality for convenience).

5.5 Effective potential in a model with k scalar

fields

Let us consider a model with k types of scalar fields. The scalar interactions are
described by the scalar potential which is a quartic polynomial of the fields φi
(i = 1, . . . , k). If it is to be renormalisable, it cannot contain terms of order three
in the fields. So the one-loop contribution to the effective potential will amount to
a sum of all one-loop diagrams with an even number of external legs. To compute this
quantity we will need the quartic vertices. If we again employ the field-dependent
vertices (as discusses in section 5.2.2), a general vertex will read as follows (see
fig. 5.6)

−iWab(ϕi) = −i ∂2V

∂ϕa∂ϕb
,

where the tree-level potential is treated as a function of the classical fields ϕi, cor-
responding to quantum fields φi (so V is the tree-level effective potential). Wab is
a quadratic function of ϕi and is symmetric in the a, b indices. With this kind of in-
teractions, the type of particle propagating in the loop will change at the interaction
point. The mass terms are of course included in the interaction vertices.

The simplest diagram, see fig. 5.7, will contain only one interaction vertex. Sum-
ming contributions from all types of fields that can propagate in the loop we will
get

k∑
a=1

∫
d4k

(2π)4

1

2
(−iWaa)

i

k2 + iε
=

k∑
a=1

∫
d4k

(2π)4

1

2

Waa

k2 + iε
.
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ϕa

ϕb

−iWab(ϕi)

Figure 5.6: Field-dependent interaction vertex, Wab(ϕi). At the interaction point
a field of type a is exchanged to a field of type b.

Waaϕa WbaWab

ϕa

ϕb

Wcb

Wac

Wab

ϕa ϕc

ϕb

Figure 5.7: First three diagrams contributing to the one-loop effective potential of
the model with k scalar fields. The black dots denote the field-dependent interaction
vertices, the scalar propagators are massless.

In the case of two interaction vertices the contribution reads

k∑
a=1

k∑
b=1

∫
d4k

(2π)4

1

4

WabWba

(k2 + iε)2
.

In the case with n interaction vertices we have the contribution

k∑
a1=1

k∑
a2=1

. . .
k∑

an=1

∫
d4k

(2π)4

1

2n

Wa1a2Wa2a3 . . .Wan−1anWana1

(k2 + iε)n

=
k∑

a1=1

∫
d4k

(2π)4

1

2n

(W n)a1a1
(k2 + iε)n

.

Of course, the numerator could be reduced to the trace of W n, but we do not want
to perform this simplification before summing the contributions from all diagrams.5

Since W is symmetric we can diagonalise it, and in the eigenbasis (W n)a1a1 =

(Wa1a1)
n. Hence, the full one-loop contribution to the effective potential, which is

a sum of all one-loop diagrams, amounts to (in the eigenbasis of W )

δVCW = i

∞∑
n=1

k∑
a1=1

∫
d4k

(2π)4

1

2n

(Wa1a1)
n

(k2 + iε)n
= i

k∑
a1=1

[
∞∑
n=1

∫
d4k

(2π)4

1

2n

(Wa1a1)
n

(k2 + iε)n

]
.

5HereW stands forWab with indices suppressed for the sake of clarity. It should not be confused
with the generating functional W .
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Now, inside the bracket we can perform usual tricks, i.e., Wick rotation and summa-
tion of the series, and we arrive at

δVCW = i
k∑

a1=1

∫
d4k

(2π)4
log

(
1 +

Wa1a1

k2

)
.

Apart from the sum over a1, it is the same as the result for the case with one scalar
field, withm < 0 andm2

eff replaced byWa1a1 . Therefore, the regularisation procedure
will work the same, and δVCW will read:

δVCW =
1

64π2

k∑
a1=1

(Wa1a1)
2

[
log

(
Wa1a1

4πµ2

)
− 2

ε
+ γE −

3

2

]
. (5.19)

Remembering that W is the matrix of second derivatives of the scalar potential
so the mass matrix of the scalar sector, we see that a contribution to the effective
potential in a model with k scalars is just a sum of the contributions of the scalars.
However, one should note that the masses present in this formula are field-dependent,
and in general each mass depend on k scalar fields.

The result can be written also in a basis independent form as

δVCW =
1

64π2

{
Tr

[
W 2 log

(
W

4πµ2

)]
+ Tr(W 2)

[
−2

ε
+ γE −

3

2

]}
. (5.20)

Since trace is independent of the basis in which it is computed, the formula will hold
also for basis different than the eigenbasis of W .

5.6 Effective potential in a model with k vector

fields

Let us now consider a model with k vector fields. We define the couplings between
the classical scalar field and the bosonic fields as M2(ϕi)

1

2

∑
a,b

M2
abAµaA

µ
b .

M2, which is a field-dependent mass matrix of the bosonic sector, is a quadratic
polynomial of ϕi and is symmetric in the a, b indices.

If we use the propagators in the Landau gauge, they will be of the form discusses
in section 5.3. Once more, while computing contributions from 1-loop diagrams
with different numbers of external legs, from the contraction of the numerators
of propagators a factor of D − 1 (or 3, depending on the scheme used) will arise
for each diagram. Further, the analysis goes along the same lines as above, in
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the case of multiple scalar fields. Therefore we can simply write down the result for
the contribution to the effective potential

δVCW =
3

64π2

{
Tr

[
M2 log

(
M

4πµ2

)]
+ Tr(M2)

[
−2

ε
+ γE − C

]}
, (5.21)

where C = 5
6
or 3

2
for dimensional regularisation or dimensional reduction, respec-

tively. If we work in an mass-eigenbasis the result can be written in a simpler form

δVCW =
3

64π2

k∑
i=1

M4
i

[
log

(
M2

i

4πµ2

)
− 2

ε
+ γE − C

]
, (5.22)

where the sum runs over all bosonic mass-eigenstates.

5.7 Effective potential in a model with k fermionic

fields

Similar reasoning may be applied in the case of multiple fermionic fields. If the in-
teractions with the classical scalar fields are of the form

−
∑
ab

Ψam(ϕi)abΨb,

then the matrix m is a matrix in the internal space of the fermionic fields, and in
the Dirac space

mab = Aab + iBabγ5,

where A and B are Hermitian matrices and linear functions of ϕi.
Only the diagrams with an even number of internal fermionic lines will give

non-vanishing contributions, as a trace of an odd number of Dirac matrices is equal
zero. The contributions from 1-loop graphs will be similar as in the case of a single
fermion, see section 5.4. However, now for meff we have to substitute m, which is
a matrix and it does not necessarily commute with the propagator. The contribution
from a diagram with n external legs (and n fermionic propagators) will include

Tr
[
. . .m

1

/k
m

1

/k
. . .

]
= Tr

[
. . .m

/k

k2
m
/k

k2
. . .

]
,

where we skipped iε in the denominators for convenience. Since {γµ, γ5} = 0, then

m/k = (A+ iBγ5)/k = /k(A− iBγ5) = /km†.

Therefore,

Tr
[
. . .m

/k

k2
m
/k

k2
. . .

]
= Tr

[
. . .mm†

1

k2
. . .

]
.
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The number of m/k sequences in all of the contributions is even, so they can be
combined in pairs. And then the method from previous sections can be applied and
the result is obtained in a straightforward way in the form

δVCW = − 1

64π2

{
Tr

[(
mm†

)2
log

(
mm†

4πµ2

)]
+ Tr

[(
mm†

)2
] [
−2

ε
+ γE −

3

2

]}
,

(5.23)
where the trace is taken over the Dirac indices and over the internal space (because
we sum over different kinds of fermions). In the mass-eigenstate basis the result
reads

δVCW =
4

64π2

k∑
i=1

M4
i

[
log

(
M2

i

4πµ2

)
− 2

ε
+ γE −

3

2

]
, (5.24)

where the sum runs over mass-eigenstates, and Mi are field-dependent masses of
the fermions.

One has to remember that if the fermions have colour charge, an overall factor
accounting for the number of colours should be added.

5.8 General one-loop correction to the effective

potential

Summing up the results obtained in the preceding sections we can conclude that in
a model containing scalars, bosons and fermions the one-loop CW contribution to
the effective potential reads

δVCW =
1

64π2

∑
a

naMa(ϕi)
4

[
log

(
Ma(ϕi)

2

4πµ2

)
− 2

ε
+ γE − Ca

]
, (5.25)

where the sum runs over all particles present in the theory. Ma(ϕi) are the field-
dependent mass-eigenvalues of the respective particles, in general they can depend
on all the scalar fields present in the theory. The constant Ca = 5

6
for bosons when

dimensional regularisation is used and Ca = 3
2
for boson when dimensional reduction

is used, and for other particles independently of the regularisation method applied.
The factor na counts the degrees of freedom corresponding to each particle, namely

na = (−1)2saQaKa(2sa + 1), (5.26)

where sa is the spin of the particle a, Qa is equal 1 or 2 for neutral or charged
particles, respectively, and Ka counts the number of colours of particle a.

Formula (5.25) is written in the mass-eigenbasis. If this basis is inconvenient,
the general formulas, eq. (5.20), (5.21) and (5.23) should be used.
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6
Vacuum stability

With the recent discovery of a Higgs boson and the measurement of its mass [18,
19, 92], the issue of vacuum stability gained a lot of attention. State of the art
computations show that the SM vacuum is metastable — it is not a global minimum
of the SM effective potential but its lifetime is extremely long [28–31], see fig. 6.1
(from ref. [29]). However, this is not the final answer to the question of vacuum
stability because new BSM interactions can modify vacuum structure of the potential
and change the lifetime of the EWSB vacuum [172–176].
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Figure 6.1: Phase diagram of the SM. The SM vacuum is in the metastability region.
Plot taken from ref. [29].
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To study stability of a vacuum state one normally starts from requiring the (effec-
tive) potential to be bounded from below (positivity conditions). The common way
of achieving this at the one-loop level is to check the tree-level positivity conditions
with running couplings inserted. The destabilising factor is the contribution from
the fermions, in particular the top quark, because with fermionic loops a minus sign
is associated (see the derivation of the contribution from a fermion to the effective
potential, section 5.4). On the other hand, scalar fields contribute positively both
to the running and to the effective potential (see section 5.2) so in presence of
additional scalars the running Higgs self-coupling receives additional positive con-
tribution, which helps to stabilise the potential. It has been shown that indeed in
the IDM the potential is stable up to higher energy scales than the SM potential [139,
177, 178].

One has to remember that analysing the tree-level positivity conditions with
running coupling constants inserted may not give an accurate answer to the question
of boundedness from below of the one-loop effective potential [179, 180]. It is because
the one-loop potential, besides the tree-level component, contains also the one-loop
contribution. Of course, as long as we are within the perturbativity range, the
one-loop correction should be small, and thus a tree-level potential with tree-level
couplings replaced by the running ones should be a good approximation of the
one-loop potential. However, if the the “running” positivity conditions are evolved
through many different energy scales, it might happen that a scale is reached where
the perturbative expansion breaks, and the tree-level conditions are no longer valid.
Thus, this criterion should be used with an appropriate care.

Moreover, positivity of the effective potential is not enough for stability of
the EWSB vacuum since the loop corrections can modify the structure of the effective
potential introducing new minima, potentially deeper than the EWSB minimum. As
was explained in the preceding section, to find the real vacuum state of the theory
one has to minimise the effective potential. This is in general not an easy task, and
the problem is even more complicated in models with additional scalar fields, because
then the effective potential is a multivariable function, and can have extrema along
various directions in the scalar-field space.

The aim of this chapter is to analyse the issue of the stability of the inert vacuum
state. Since it is a complicated task, we will approach it from different perspectives.
Starting from an effective, simplified approach, we will move to a more complete
description of the problem. In the end, we will comment on remaining open questions
and possible further developments.
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6.1 Stability of a vacuum state

6.1.1 Stable, metastable and unstable vacua

Let us start from defining the notions that will be used throughout this chapter.
A vacuum state is a ground state of a theory, i.e. a state of the lowest energy. Thus
it should correspond to a global minimum of the (effective) potential. If a theory
is built around a state which is not stable, it will be faulty since with the decay of
the ground state it will no longer describe reality. This is a reason why a potential
should be bounded from below — if it tends to minus infinity, no state can be really
stable.

A state corresponding to a global minimum of a potential will be referred to
as a stable vacuum or a true vacuum. A state which corresponds to only a local
minimum of a potential can tunnel (decay) to the true vacuum. Nonetheless, it can
play a role of the ground state of a theory, given that its lifetime is sufficiently long.
If the lifetime of such a state was shorter than the age of the Universe it would have
already decay and certainly it would not be an appropriate ground state for a theory
describing present world. Thus, an acceptable ground state must have lifetime longer
than the age of the Universe. Such states will be referred to as metastable vacua. If
a state minimising a potential is short-lived (with respect to the Universe), then it
is not an acceptable vacuum state and will be called an unstable or a false vacuum.

6.1.2 Tunnelling

A conservative approach leads to accepting as ground states only stable vacua.
However, from the practical point of view, metastable vacua are also acceptable, and
to distinguish them from the unstable ones, one needs to compute the lifetime of
a given vacuum.

The tunnelling process between vacua is described semi-clasically. In the compu-
tation of the vacuum lifetime we follow the seminal papers [181, 182], and the more
recent ones [172–175]. A good extended introduction to this topic can be found in
the textbook by Rubakov [183].

To determine the lifetime of vacuum we have to find a classical trajectory, the so-
called bounce solution, ϕB, which satisfies the following equation (in thecase when
the problem is O(4)-symmetric it depends only on one variable s =

√
~x2 + x2

4):

ϕ̈+
3

s
ϕ̇ =

∂V
(1)

eff (ϕ)

∂ϕ
, (6.1)

where the dot denotes a derivative with respect to s. The boundary conditions are:
ϕ̇B(0) = 0, and ϕB(∞) = v. Having this solution, an approximate relative lifetime
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of the vacuum τ is given by (in the units of the age of the Universe TU)

τ =
eSE

ϕ4
0T

4
U

. (6.2)

The formula above is an approximation, since quantum fluctuations around the
bounce solution in the exponential prefactor have been replaced by another dimen-
sionful quantity, ϕ0 = ϕB(0), see refs. [174, 175]. This approximation has been
shown [174] to give a good estimation of the tunnelling time. The quantity SE,
the Euclidean action on the bounce solution ϕB, is given by

SE = 2π2

∫
dss3

[
1

2
ϕ̇2
B(s) + V

(1)
eff (ϕB(s))

]
. (6.3)

The effective potential is in general a complicated function of the classical field
so it is not possible to solve eq. (6.1) analytically. Therefore, we solve it using
the undershoot-overshoot method.

Equation (6.1) can be viewed as an equation describing movement of a body in
the potential −V (1)

eff , in the presence of a friction force (second term of eq. (6.1)),
and time denoted by s; see figure 6.2 for an exemplary shape of −V (1)

eff (ϕ). A bounce
solution corresponds to a classical trajectory of a body sliding down from the slope
of the higher hill (corresponding to the deeper minimum of V (1)

eff ) with initial velocity
ϕ̇ equal zero, and stopping at the lower hill at infinite time s.1 The task is to find
appropriate starting point: if we start to close to the peak of the bigger hill we will
overshoot and the body will not stop on the other hill. If we start too far, it will not
reach the top. Somewhere in between lies the correct starting point. Knowing that,
we look for it using the bisection method, and solve eq. (6.1) numerically.

The procedure presented above works for effective potentials being functions of
one scalar field. Full effective potential of a multi-scalar model is a function of multiple
classical fields, thus the computation of the tunneling time is more complicated. Even
finding all the stationary points of such a potential may be very difficult. There
exist computer programs, CosmoTransitions [184] and Vevacious [185] (the latter
using the former), devised to deal with such problems. However, they are subject
to certain limitations. Therefore, to avoid the complexities of multi-scalar approach
but at the same time be able to understand the impact of additional scalars on the
problem of vacuum stability, in the proceeding section we use an effective approach.
This way only one scalar field will be considered as dynamical and we will be able
to use the procedure of computation of the tunnelling time described above.

1For the computation of the tunnelling time we shift the potential such that it is equal zero at
ϕ = v, not at ϕ = 0. Thanks to that the integrand in eq. (6.3) converges to zero for s→∞.
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Figure 6.2: Minus effective potential as a function of the classical field ϕ. The bounce
solution corresponds to a classical trajectory of a body sliding (in presence of a friction
force) from the slope on the left with zero initial velocity and stopping on the top
of the lower hill on the right at infinite time s.

6.2 Vacuum stability in the IDM with heavy inert

scalars

Below we will analyse stability of the vacuum state in the IDM. As was already
explained, in order to examine the vacuum structure of a model we need to analyse
the effective potential [168]. Study of vacuum stability in models with extended scalar
sector is a complex task as the effective potential becomes a function of multiple
variables, and new minima can appear along various directions (see e.g. analysis
in refs. [149, 186]). As was explained in section 2.2.2 in the IDM even at tree
level minima with different vacuum expectation values can coexist [41]. Similarly,
in the general 2HDM simultaneous tree-level minima can occur [187, 188]. Since
the tree-level structure of 2HDMs is well studied [39, 41, 43–45, 188–191], here we
focus on the loop effects. We follow the approach presented in refs. [2, 7].

To avoid the complexities of multi-variable potential, but still study the impact
of the presence of additional scalars on vacuum stability in the IDM, we employ
a simplified approach. Our assumption is that the inert scalars cannot be observed in
the final/initial states, i.e. they are integrated out. Because of this approach, we focus
on the heavy DM regime, whereMH & 500 GeV. In this way, in the effective potential
computation we only consider one classical field on external legs of the diagrams, and
the effective potential is a function of only one variable. Nonetheless, loop corrections
from the inert scalars are included in the one-loop renormalisation process, and their
contributions to the Coleman–Weinberg (CW) [168] potential (see eq. (5.25)) are
taken into account. We will show that the impact of the new heavy scalars on
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vacuum structure can be significant.
The procedure is as follows. We start from the tree-level potential and renormalise

it on-shell. Then we add the CW terms. Infinities present in both components cancel,
and we end up with a usable, one-loop effective potential. There is one subtlety here:
since we allow the additional scalars only in the loop processes (or, equivalently we
assume that the additional doublet does not develop a non-zero VEV) the tree-level
potential will be just the SM potential. But to compute the loops (tadpoles and
Higgs self-energy) we will need the couplings of the new scalars, so the full tree-level
potential of the IDM will be used.

The one-loop effective potential is thus given by

V
(1)

eff = V
(0)

eff + δVCW + δV + const. (6.4)

V
(0)

eff denotes the tree-level effective potential (in agreement with the convention of
eq. (2.1))

V
(0)

eff = −1

4
m2

11ϕ
2 +

1

8
λ1ϕ

4, (6.5)

where ϕ is a real classical field. δVCW stands for the one-loop CW potential, and δV is
the counterterm potential. A constant that shifts the potential to get limϕ→0 V (ϕ) =

0 is explicitly singled out.
In the following sections we will explain the procedure of computing different

parts of the effective potential.

6.2.1 Renormalisation of the effective potential

We need to renormalise the potential (2.1), so we should shift the constants in
the potential as λ → λ + δλ, and compute the counterterms. However, as we are
interested in an effective potential of a single classical field, we will finally substitute

φS =
1√
2

(
0

ϕ

)
, φD =

(
0

0

)
(6.6)

to the renormalised potential. In this way all the terms with φD will vanish so we
can get rid of them from the very beginning. Thus, the tree-level potential is given
by eq. (6.5). We shift the constants as follows m2

11 → m2
11 + δm2

11, λ1 → λ1 + δλ1,
ϕ2 → (1 + δZ)ϕ2. This gives us the renormalised potential

V
(0)

eff + δV = V
(0)

eff −
1

4

(
m2

11δZ + δm2
11

)
ϕ2 +

1

4

(
λ1δZ +

1

2
δλ1

)
ϕ4. (6.7)

To find these renormalisation constants we use the on-shell conditions (we follow
the method of ref. [149]), and demand that the tadpole of the Higgs boson vanishes,
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i.e.,

T + δT = 0, (6.8)

ΣR(p2)
∣∣
p2=M2

h

= 0, (6.9)

dΣR(p2)

dp2

∣∣∣∣
p2=M2

h

= 0, (6.10)

where T is the Higgs tadpole, δT is the tadpole counterterm, and ΣR(p2) is the renor-
malised Higgs self-energy, i.e., it is a sum of the loop corrections to the self-energy,
Σ, and the counterterms, δΣ,

ΣR = Σ + δΣ.

Condition (6.8) guarantees that the effective potential has an extremum at ϕ = v.
To compute the counterterms we perform the shift of the constants in the la-

grangian as described above (at the level of quantum fields, not the classical fields).
The relevant terms (proportional to h or h2, where h denotes the Higgs field) in
the renormalised lagrangian Lr read

Lr ⊇
1

2
δZ∂µh∂

µh+ h

[
1

2

(
m2

11δZ + δm2
11

)
−
(
λ1δZ +

1

2
δλ1

)
v2

]
v

+
1

2
h2

[
1

2

(
m2

11δZ + δm2
11

)
− 3

(
λ1δZ +

1

2
δλ1

)
v2

]
,

This gives the expressions for the tadpole counterterm (the term proportional to h)
and the self-energy counterterm (the term proportional to 1

2
h2). Having that, we

can make use of the renormalisation conditions (6.8)–(6.10). Since the renormalised
lagrangian depends on three combinations of the counterterms: δZ, (m2

11δZ + δm2
11),(

λ1δZ + 1
2
δλ1

)
, we will try to use the renormalisation conditions, eqs. (6.8)–(6.10),

in such a way as to get conditions for these combinations.
As was already mentioned, the tadpole counterterm consists of the terms linear

in the field h, so it is equal to

−iδT = −i
[

1

2

(
m2

11δZ + δm2
11

)
−
(
λ1δZ +

1

2
δλ1

)
v2

]
v. (6.11)

From our first renormalisation condition, eq. (6.8), we get

T = −δT . (6.12)

The self-energy counterterm, δΣ, can be read off from the part of the counterterm
Lagrangian which is quadratic in the field h

−iδΣ = −i
[
−p2δZ +

1

2

(
m2

11δZ + δm2
11

)
− 3

(
λ1δZ +

1

2
δλ1

)
v2

]
. (6.13)
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Now, using expressions (6.11)–(6.13) we can obtain conditions for the combinations
of the renormalisation constants which we need. We get

−iδΣ = −i
[
−p2δZ − T

v
+ 2

(
λ1δZ +

1

2
δλ1

)
v2

]
. (6.14)

Using the second renormalisation condition, eq. (6.9), we can write

ΣR = Σ− p2δZ − T
v

+ 2

(
λ1δZ +

1

2
δλ1

)
v2. (6.15)

This gives a condition for the combination
(
λ1δZ + 1

2
δλ1

)
. To get a condition for

the other combination, we proceed similarly, starting also from eq. (6.13) and adding
and subtracting terms that we need. As a result we get

−iδΣ = −i
[
−p2δZ − 3T

v
+
(
m2

11δZ + δm2
11

)]
, (6.16)

and
ΣR = Σ− p2δZ − 3T

v
+
(
m2

11δZ + δm2
11

)
. (6.17)

Now applying the renormalisation conditions we get

λ1δZ +
1

2
δλ1 = − 1

2v2

[
Σ(M2

h)−M2
hΣ′(M2

h)− T
v

]
,

m2
11δZ + δm2

11 = −
[
Σ(M2

h)−M2
hΣ′(M2

h)− 3T
v

]
, (6.18)

δZ = Σ′(M2
h),

where Σ′(M2
h) := dΣ(p2)

dp2

∣∣∣
p2=M2

h

. This is sufficient to renormalise the potential.

The only remaining components to be computed are Σ, Σ′ and T . This requires
computation of a number of loop integrals. A complete calculation is presented in
appendix D.

In the counterterms there is a source of imaginary part of the effective potential
— the loops containing the b quark. This complexity signals instability of the Higgs
boson, and we can simply take into account only the real part of the potential [192].

6.2.2 One-loop Coleman–Weinberg terms

To get a full one-loop effective potential we need to add to the renormalised tree-level
potential the CW contributions coming from the Higgs boson, the Goldstone bosons,
the fermions (we include top and bottom quarks as the heaviest ones), the gauge
bosons, and the additional scalars. Such a contribution computed in dimensional
regularisation (D = 4− ε) reads (see eq. (5.25))

δVCW =
∑
a

na
64π2

Ma(ϕ)4

[
log

(
Ma(ϕ)2

4πµ2

)
− 2

ε
+ γE − Ci

]
,
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where na depends on the spin, charge, and color charge of a particle as given in
eq. (5.26) (nh = nH = nG = nA = 1, nG± = nH± = 2, nt = nb = 12, nW± = 6,
nZ = 3), and Ci = 3

2
for all of the particles, except the gauge bosons, for which

CW± = CZ = 5
6
.2

For the physical particles the field dependent masses Ma(ϕ) are obtained by sub-
stituting ϕ instead of v in the tree-level masses. The tree-level masses of the scalars
are given in eq. (2.13), the tree-level masses for the gauge bosons and fermions read

MW =
gv

2
, M2

Z =

√
g2 + g′2

2
v, Mf =

yfv√
2
. (6.19)

For ϕ = v the field-dependent masses of the Goldstone bosons of course vanish,
however, for ϕ < v they become negative, and the effective potential acquires an
imaginary part. Recently it has been shown that the problematic Goldstone con-
tributions can be consistently resummed, and this way the imaginary part can be
removed [193, 194]. Furthermore, it has been demonstrated that this resumma-
tion procedure has little numerical impact on the results, thus we simply ignore
the imaginary contributions from the Goldstones.

The infinities present in δV exactly cancel the 2
ε
terms in δVCW, together with

γE − log(4πµ2). Thus the final potential is finite and µ-independent.

6.2.3 One-loop effective potential in the on-shell scheme

We can collect the contributions computed before to get the full 1-loop effective
potential of the form

V
(1)

eff = V
(0)

eff + δV + δVCW

= −1

4

{
m2

11 −
[
Σ(M2

h)−M2
hΣ′(M2

h)− 3T
v

]}
ϕ2

+
1

8

{
λ1 −

1

v2

[
Σ(M2

h)−M2
hΣ′(M2

h)− T
v

]}
ϕ4

+
1

64π2

{
1

4

(
−m2

22 + λ345φ
2
)2
[
−2

ε
+ γE −

3

2
+ log

(
1

2

(
−m2

22 + λ345φ
2

4πµ2

))]

+
1

4

(
−m2

22 + λ−345φ
2
)2
[
−2

ε
+ γE −

3

2
+ log

(
1

2

(
−m2

22 + λ−345φ
2

4πµ2

))]
(6.20)

2The value of CW± and CZ depends on the regularisation method used. If, instead of dimen-
sional regularisation, dimensional reduction was used, then CW± and CZ would be equal 3

2 , as for
the remaining particles, see section 5.3. This approach will be adopted in section 6.3.
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+
1

2

(
−m2

22 + λ3φ
2
)2
[
−2

ε
+ γE −

3

2
+ log

(
1

2

(
−m2

22 + λ3φ
2

4πµ2

))]

+m4
22

[
2

ε
− γE +

3

2
+ log

(
4πµ2

)]
−m4

22 log

(
−1

2
m2

22

)}
+ δVCW,SM,

where the non-SM contribution is singled out, and the SM CW terms are symbolised
by δVCW,SM. V

(0)
eff denotes the tree level effective potential (see eq. (6.5)), δV is

the counterterm potential (see eq. (6.7)), with the renormalisation constants taken
from eq. (6.18). In the last line constants are added for convenience: the first term
cancels the constant infinity and some irrelevant constants, and the second one shifts
the potential in such a way as to get limϕ→0 V (ϕ) = 0.

From this form it is clear, that new, with respect to SM, contributions are present.

6.2.4 Electroweak vacuum stability with heavy inert scalars

To evaluate the impact of the heavy inert scalars on vacuum stability we analyse
the structure of the effective potential, eq. (6.20) around the EW scale. In the
literature, vacuum stability is often analysed in terms of the running tree-level
positivity conditions. The behaviour of the effective potential is studied at large field
values, see e.g. [139, 177, 178]. However, as was discussed in the introductory part
of this chapter, this is not enough for the absolute stability of the vacuum. Thus,
we will study the structure of minima of the effective potential focusing at the EW
scale.

For this general discussion we fix the mass of the DM candidate to 550 GeV and
λ345 = −0.1, as suggested by DM data (see e.g. ref. [3]). The A and H± particles
are assumed to be degenerate, with common mass M . In figure 6.3 the OS effective
potential for the IDM with different values of M is shown. The solid line represents
the SM case (similar results were presented in ref. [149]).

A side remark is needed here. It can be viewed from fig. 6.3 that the value of the
Higgs VEV used here is v = 250.6 GeV. A common way to compute v is to use its
relation to the Fermi constant v2 = 1√

2GF
, which gives the value v = 246.2 GeV (and

this value is used in the remaining parts of this work). However, in the computations
presented in this section we needed exact cancelation between terms coming from
the CW potential, and from the OS renormalisation procedure (see section 6.2.2). In
the latter, the tree-level masses of W and Z appear, and thus taking their measured
values from Particle Data Group [195] (MW = 80.385 GeV, MZ = 91.1876 GeV),
and the fine structure constant α = 1/137 as input we have to compute v using the
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Figure 6.3: The one-loop OS effective potential for the IDM with heavy inert scalars
integrated out given by eq. (6.20). In this plot MH = 550 GeV, λ345 = −0.1, and A
and H± are assumed to be degenerate, with mass M .

tree-level relation with these quantities, namely

v =
2MW√

4πα

√
1−

(
MW

MZ

)2

≈ 250.6 GeV.

Going back to the main topic, fig. 6.3 shows that for lighter inert scalars the ef-
fective potential of the IDM is very close to the SM one. While the common mass
M of A and H± is increased (while MH is fixed), the maximum at ϕ = 0 turns
to a minimum, and a maximum for 0 < ϕ < v appears. Then, the minimum at
ϕ = v becomes a local minimum of the potential, and thus to constitute a metastable
vacuum state for our model it must have long enough lifetime.

It might be surprising that the heavier the A and H± scalars are, the bigger
the deviation from the SM scenario is. This is because the mass of H is fixed here,
and increasing the splitting between M and MH , we increase the couplings. For M
and MH being close (and heavy) we are in the decoupling regime, and no significant
deviation from the SM is observed.

To check whether the local minima can constitute metastable vacuum states
we computed their lifetimes according to the procedure described in section 6.1.2.
We underline that we are interested here in lifetimes with respect to the tun-
nelling to the EW symmetric minimum, we do not consider tunnelling to a pos-
sible minimum at very high field values. In the cases with M = 750, 800 GeV

the EWSB minima are stable, their energy is lower than the energy of the EW
symmetric minimum. For M = 850 GeV the tunnelling can occur but the lifetime of
the EWSB vacuum is very long, log10 τ ≈ 434 (where τ is the lifetime of the vacuum
with respect to the age of the Universe given by eq. (6.2)). For the cases with
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M = 900, 950, 1000 GeV the EWSB minima are highly unstable, their lifetimes are
given by log10 τ ≈ −129,−164,−171, respectively. Thus they cannot be considered
as ground states of the IDM.

This shows that additional scalars can have a striking impact on the stability
of vacuum. Although the additional heavy scalars may improve the behaviour of
running Higgs self-coupling at large field values [139, 177, 178], they can destabilise
the vacuum due to EW-scale effects. We demonstrated this effect for the IDM with
heavy inert scalars, but one can expect similar behaviour in other models with extra
scalar fields.

As was mentioned above, the interesting case of unstable EWSB minimum cor-
responds to relatively large splitting between M and MH . This suggests that “large”
values of the λi parameters are required. How large? For the presented cases we
checked the perturbative unitarity conditions, which constrain the parameters λi. In
the scenarios with M up to 900 GeV the conditions are fulfilled, and starting from
M = 950 GeV they are violated. So parameters λi required for the meta- or unsta-
ble scenarios are rather big but still within the allowed region. In section 6.2.6 we
confront the bounds coming from the requirement of stability with other theoretical
and experimental constraints in more detail to check whether meta- or instability
scenarios can occur within viable parameter space of the IDM. But before that, in
section 6.2.5 we study validity of the perturbative expansion of the effective potential.

6.2.5 Validity of the perturbative expansion

One may ask whether the one-loop approximation of the effective potential used
in this work is valid. In the OS scheme the terms of the form log µ, where µ is
the renormalisation scale, cancel out between the counterterm potential and the CW
contribution. As a consequence, the logarithmic terms are of the form log M2(ϕ)

M2 ,
where M2 is the physical mass of a particle, and M2(ϕ) is its field dependent mass.
Therefore there is no freedom of adjusting µ to make the logarithms small.

The behaviour of the logarithms log M2(ϕ)
M2 for the cases analysed above (MH =

550 GeV, λ345 = −0.1, MA = MH± = M) is shown in figure 6.4. Different styles of
the curves correspond to different values of M (the colour coding is the same as in
figure 6.3). The horizontal black line corresponds to log

M2
H(ϕ)

M2
H

.

It can be seen from the plot that log
M2
H(ϕ)

M2
H

is small for the whole range of ϕ.

The absolute value of the other logarithm, log M2(ϕ)
M2 , for M 6 900 GeV is less then

1 which is required for the perturbative expansion of the effective potential to be
valid. For the cases with M = 950, 1000 GeV the logarithm becomes larger around
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Figure 6.4: The logarithm log M2(ϕ)
M2 as a function of ϕ for MH = 550 GeV, λ345 =

−0.1. Different styles of the curves correspond to different values of the common
mass of A and H±, M . The horizontal black line corresponds to log

M2
H(ϕ)

M2
H

.

ϕ = 0. This could suggest breakdown of perturbative expansion, however these two
cases are already excluded by perturbative unitarity, as was shown above.

One should note, that the most important point, from the perspective of this
analysis, is the point ϕ = v. And at this point all the logarithms vanish, and are
small around. This means that the perturbative expansion of the effective potential
should be trustworthy around the EWSB minimum. Since the CW contribution
vanishes around ϕ = v, the shift in the value of the potential at this point that can
be seen in figure 6.3, is due to the counterterms, and the shift fixing V (1)

eff (0) = 0.

Another thing that should be taken into account is that the expansion of the ef-
fective potential is not in terms of the logarithms only, but rather in some coupling
α times the logarithm. So the quantity α

4π
log M2(ϕ)

M2 should be small (see e.g. [185,
186]). It is, however, not straightforward in the case of scalars to define α, since
the scalar contributions to the CW potential are not linear in ϕ4 (in contrast to
the fermionic or gauge-boson contributions). Therefore we consider separately per-
turbativity of the couplings in section 6.2.6 (in terms of perturbative unitarity).
Admittedly, the couplings get rather large (within the allowed region) in the inter-
esting cases, but as explained above, it is hard to draw final conclusions from that
fact.

The standard way of improving the validity of the effective potential is using
the RGEs to resum the large logarithms. However, here the source of rather big
logarithms is the splitting of the scales related to masses of different particles, and
therefore RGEs should not improve the situation. Thus, only a two-loop calculation
could definitely show whether the one-loop potential can be trusted in the range
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where the logarithms become large. However, the two-loop computation is beyond
the scope of this work.

6.2.6 Vacuum instability in the light of parameter space

constraints

We will start from analysing the case with degenerate A and H±, as was described
in the preceding sections. We will examine the regions in the (MH , M) plane where
the EWSB minimum is stable/metastable/unstable (phase diagram of the IDM),
and confront them with other constraints. We underline that we do not consider
the behaviour of the potential at large field values here, we are only interested in
the stability around the EW scale.

The results can be seen in figure 6.5 (left panel), the solid line represents the region
where V (1)

eff (v) = 0, i.e. the boundary between stability and metastability region.
Along the dashed line τ = 1 (in the units of TU) so it is the boundary between
the metastable and unstable vacua. The shaded region is excluded by perturbative
unitarity. Since MA = MH± the oblique parameter T is equal to zero and hence
EWPT do not introduce new constraints. The parameter λ345 is fixed to −0.2. We
checked that changing λ345 within the range that is favoured by the relic density
constraints (−0.3 . λ345 . 0.3) [196] changes the picture only slightly.

sta
ble

me
tas
tab
le

un
sta
ble

sta
ble

me
tas
tab
leun

sta
ble

Figure 6.5: Stability/metastability/instability regions in the (MH ,M) plane (left
panel) and (MH ,MH±) plane (right panel) for the case with λ345 = −0.2, and
MA = MH± = M (left panel) or MA = MH + 1 GeV (right panel). The solid
line denotes the boundary between stable and metastable vacua, the dashed line is
the boundary between the metastability and instability region. The dark shaded
region is excluded by unitarity, and the light shaded region is excluded by EWPT.
EWPT do not constrain the case with MA = MH± .

It is clear from figure 6.5 that in the degenerate case with MA = MH± meta- and
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unstable scenarios are in agreement with unitarity constraints3 and EWPT, as was
discussed before. However, for an unstable vacuum to appear, the splitting between
MH and M has to be large, at the level of 300 GeV. This cannot be reconciled with
the relic density constraints — the heavy DM needs coannihilation with other scalars
to develop the correct relic density and the mass splitting among inert scalars must
be small [162].

Let us then consider a case where H and A are quasi-degenerate (we assume
MA = MH + 1 GeV) to allow for coannihilation processes. Figure 6.5 (right panel)
shows the boundaries between regions with vacua of different properties, the colour
coding is the same as in the left panel. Once more we fix λ345 = −0.2, and small
changes in λ345 do not alter the picture significantly. In this case we have to take into
account the EWPT constraints. The light shaded region is excluded by constraints
on S and T (it overlaps with the region excluded by unitarity). In this case unitarity
and EWPT exclude the scenarios where metastability or instability can occur.

Therefore we conclude that the metastability or instability scenarios within
the IDM with heavy scalars cannot be reconciled with theoretical and experimental
constraints.

6.2.7 Summary

We showed that the new scalars can have a striking effect on the effective potential.
They can turn the maximum of the effective potential at ϕ = 0 into a minimum, and
moreover change the energy of the EWSB minimum in such a way that it becomes
only a local one. This gives rise to unstable or metastable EWSB minimum, and
the source of instability is around the EW scale. Our analysis was performed for
the IDM but similar effects may be observed in other extensions of the SM. This
shows that it is not enough to consider the behaviour of the effective potential or
running coupling constants at large field values. Introduction of new fields can
modify the effective potential at low energies and one has to check what effect such
modifications have on vacuum stability.

For the particular case of the IDM we checked that the metastability/instability
scenario is not a threat since the region where it is realised cannot be reconciled
with perturbative unitarity, EWPT and the DM relic abundance measurements by
the Planck experiment.

3If rather big values of λ2 were considered, the meta- and unstable scenarios could be excluded
by unitarity.

97



CHAPTER 6. VACUUM STABILITY

6.3 Coexistence of minima at one-loop level

In the preceding section we discussed the issue of the stability of the inert vacuum
using an effective approach, in which the inert scalars were heavy and decoupled, and
only the Higgs field was considered dynamical. This approach gave us some insight
about the impact of the additional scalars on the stability of the inert vacuum.

However, in multi-scalar models, in principle, all the scalar fields can acquire
a VEV, and thus the vacuum structure of the scalar potential can be complicated.
As was already mentioned, the tree-level vacuum structure of 2HDMs is well stud-
ied [39, 41, 43–45, 188–191], and also many results for N-Higgs-doublet models are
available [197–201]. Therefore, we are interested to study the loop effects. Since
the IDM is of main interest for the work presented in this thesis, we will focus on
the inert vacuum. In contrast to the previous section, here we will focus on the
relation between the inert minimum, and other possible minima. At tree level an
inert minimum can coexist with an inert-like minimum, and we will study what is
the relation between these two minima at loop level. Can the inert-like minimum
become a global minimum at loop level, if at tree level it was only a local one? In
other words, can the inert vacuum be destabilised by the loop corrections? How
much the picture differs from the tree-level one? These are the questions that are
addressed in this section. The analysis described in this section is based on ref. [1]
(see also ref. [8]).

6.3.1 Coexistence of inert and inert-like minima at tree level

Different types of minima which the Z2-symmetric potential of eq. (2.1) can develop
have been described in section 2.2.2. Among them, the inert and inert-like extrema
can be developed simultaneously (i.e. for one choice of the parameters’ values the po-
tential can have two minima of different types) [41], whereas if a mixed (normal)
minimum exists for some choice of parameters, then no other can be developed.

As was discussed in section 3.1.2 (see eq. (3.3)) for the inert minimum to exist it
is necessary that m2

11 > 0. By analogy, for the inert-like state to be a minimum it is
necessary that m2

22 > 0. Thus a necessary condition for the coexistence of the two
minima reads4

m2
11 > 0 and m2

22 > 0. (6.21)

4Of course, this is not the only possible necessary condition. For an existence of the inert
minimum it is also necessary that the scalar squared masses are positive. If one looks at eq. (2.13),
and assumes that eq. (6.21) holds, than it is obvious that for M2

H to be positive, also λ345 has to
be positive. Similar reasoning works for the inert-like minimum, thus λ345 > 0 is also a necessary
condition for the coexistence of minima.
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If the two minima coexist, one has to one has to make sure that the inert one is
deeper, since in the inert-like minimum unphysical effects, such as massless fermions,
appear.5 The criterion (3.5) for the inert minimum being a global one, discussed in
section 3.1.2, is based on comparison of the depths of inert and inert-like minima [41].
The difference in depths can be expressed in terms of the parameters of the potential
or masses of scalar particles. In particular, we will use the following expressions

VI − VIL = −m
4
11

8λ1

+
m4

22

8λ2

(6.22)

=
1

4

[(
M2

H±

v2
D

)
IL

−
(
M2

H±

v2
S

)
I

]
v2
Sv

2
D, (6.23)

where the subscript I refers to quantities computed in the inert minimum, i.e. VI
is the value of the potential at the inert minimum, and

(
M2

H±

)
I
is the value of

the charged scalar mass at the inert minimum (given in eq. (2.13)). Analogously,
the subscript IL refers to the inert-like minimum (see eq. (2.16)).6 The VEV of the
neutral component of the φS doublet in the inert minimum is denoted by vS (and
in fact vS = v = 246 GeV), and vD is the corresponding value for the φD doublet in
the inert-like minimum. It should be underlined that the value of vD is, in principle,
different that v.

Which of the minima is the global one is decided by the sign of the value of
the expression above. This is, however, only a tree-level result. The question that
we want to address in this section, is whether loop corrections can influence the tree-
level vacuum structure. We will check whether they can modify the depths of the two
minima in such a way that they are inverted — that the global one becomes local
and vice versa. To answer this question an effective potential at one-loop level is
needed.

6.3.2 Effective potential

For the computation of the one-loop effective potential we use the same formula as
previously, eq. (5.25), however this time a different (than in section 6.2.1) renormal-
isation approach is adopted. First of all, dimensional reduction (DRED) is used
instead of dimensional regularisation (DREG), which means that all the Ca factors
in eq. (5.25) are equal to 3

2
. The renormalisation scheme is the minimal subtraction

one (MS/DR), which means that the counterterms are adjusted in such a way, as
5A local inert minimum could also play a role of the ground state of the model if the tunnelling

time to the inert-like global minimum was long enough. However, we will not discuss the issue of
metastability in depth in this section.

6Notice that, as explained in section 2.5, in the inert-like minimum the H± particle originates
from the φS doublet, and not the φD.
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to cancel the terms proportional to −2
ε

+ γE − log 4π in the CW contribution (see
eq. (5.25)). This leaves us with the one-loop correction to the effective potential
given by the following formula (which is a sum of the one-loop CW contribution
δVCW and the counterterm potential δV )

V1(ϕi) =
1

64π2

∑
a

naM
4
a (ϕi)

[
log

(
M2

a (ϕi)

µ2

)
− 3

2

]
. (6.24)

where M2
a (ϕi) are the field-dependend eigenvalues of the mass-squared matrix. In

principle they depend on eight real (classical) scalar fields, which are labelled by
the subscript i (see section 5.5). To identify these fields we will use the following
decomposition (analogous to the one in eq. (6.25))

φS =
1√
2

(
ηS + iζS

ρS + iχS

)
, φD =

1√
2

(
ηD + iζD

ρD + iχD

)
, (6.25)

Written this way, the fields ηj, ζj, ρj, χj (j = S,D) are quantum fields. However,
for the sake of simplicity we will use the same symbols to denote the classical fields,
appearing as ϕi in the effective potential, eq. (6.24).

The eigenvalues M2
a are rather complicated for arbitrary values of the fields.

However, in the inert and inert-like minima they are simple. The masses of the scalar
particles in the inert minimum are given by eq. (2.13), while the masses of gauge
bosons and fermions by eq. (6.19), with v replaced by ρ1. In the case of the inert-like
minimum also the field-dependent masses are given by the expressions for the tree-
level masses, eq. (2.16), with v2 replaced by ρ2, however, one has to remember that
the fermions are massless, since the φD doublet does not couple to fermions at tree
level.

The full one-loop effective potential is thus given by

V
(1)

eff (ϕi) = V
(0)

eff (ϕi) + V1(ϕi), (6.26)

where V (0)
eff (ϕi) is the tree-level potential of eq. (2.1) with the quantum fields replaced

with respective classical fields.
In contrast to the case from the previous section, where the OS renormalisation

scheme was used, the renormalisation scale parameter µ does not explicitly vanish
from the effective potential computed in the MS scheme. However, up to two-loop
effects, the results for the masses or VEVs should not depend on the choice of this
scale, as long as it is such that the loop corrections are small and the perturbative
expansion holds.7 To render the logarithms present in the one-loop correction to

7In fact, to guarantee independence of µ of the effective potential, we should add to it a ϕi-
independent, µ-dependent parameter. However, since we are interested in differences in the depth
of the effective potential at different minima, this parameter would cancel.
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the effective potential small, µ should be of the order of the masses present in
the theory [179]. Moreover, it is crucial to use the same renormalisation scale for
computation of the effective potential at both of the minima [202, 203]. Thus, we
adopted the value µ = 200 GeV, as it is close enough to the values of the masses
acquired by the particles at both of the studied minima.

6.3.3 Inert and inert-like minima at loop level

6.3.3.1 One-loop extremum conditions

To verify the existence of a given type of a stationary point at loop level one has to
compute the first derivatives of the effective potential, eq. (6.26), and check whether
they vanish. Simple calculation leads to the following formula

∂V
(1)

eff

∂ϕi
=
∂V

∂ϕi
+

1

32π2

∑
a

nam
2
a

∂m2
a

∂ϕi

[
log

(
m2
a

µ2

)
− 1

]
. (6.27)

To obtain numerical values of the derivatives, one has to compute the derivatives
of the field-dependent mass-squared eigenvalues, which in general is a nontrivial
task. Fortunately, in the inert and inert-like minima all derivatives of m2

a, apart
from the ones with respect to ρ1 (in the case of the inert minimum) and ρ2 (in
the case of the inert-like minimum) vanish. Moreover, the derivatives of mass-squared
eigenvalues evaluated at the inert (inert-like) minimum are equal to the derivatives
of the eigenvalues at the inert (inert-like) minimum.8 Therefore, the the only non-
vanishing first derivative of the effective potential in the inert minimum reads

1

vS

(
∂V

(1)
eff

∂ρ1

∣∣∣∣∣
I

)
= −1

2
m2

11 +
1

2
λ1v

2
S

+
1

32π2

{
λ1m

2
G

[
log

(
m2
G

µ2

)
− 1

]
+ 3λ1m

2
h

[
log

(
m2
h

µ2

)
− 1

]
+ λ345m

2
H

[
log

(
m2
H

µ2

)
− 1

]
+ λ−345m

2
A

[
log

(
m2
A

µ2

)
− 1

]
+ 2λ3m

2
H±

[
log

(
m2
H±

µ2

)
− 1

]
+ 2λ1m

2
G±

[
log

(
m2
G±

µ2

)
− 1

]
(6.28)

− 6λ2
tm

2
t

[
log

(
m2
t

µ2

)
− 1

]
− 6λ2

bm
2
b

[
log

(
m2
b

µ2

)
− 1

]
− 2λ2

τm
2
τ

[
log

(
m2
τ

µ2

)
− 1

]
+ 3

g2 + g′2

2
m2
Z

[
log

(
m2
Z

µ2

)
− 1

]
+ 3g2m2

W

[
log

(
m2
W

µ2

)
− 1

]}
8This is not an obvious fact. It was checked with an explicit calculation with the use of

Mathematica.
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and it has to be equal zero for the inert state to be a stationary point at loop level.
The masses in the equation above are the tree-level masses computed at the inert
minimum. The non-vanishing derivative in the inert-like state is almost identical,
and reads

1

vD

(
∂V

(1)
eff

∂ρ2

∣∣∣∣∣
IL

)
= −1

2
m2

22 +
1

2
λ2v

2
D

+
1

32π2

{
λ2m

2
G

[
log

(
m2
G

µ2

)
− 1

]
+ 3λ2m

2
h

[
log

(
m2
h

µ2

)
− 1

]
+ λ345m

2
H

[
log

(
m2
H

µ2

)
− 1

]
+ λ−345m

2
A

[
log

(
m2
A

µ2

)
− 1

]
(6.29)

+ 2λ3m
2
H±

[
log

(
m2
H±

µ2

)
− 1

]
+ 2λ2m

2
G±

[
log

(
m2
G±

µ2

)
− 1

]
+ 3

g2 + g′2

2
m2
Z

[
log

(
m2
Z

µ2

)
− 1

]
+ 3g2m2

W

[
log

(
m2
W

µ2

)
− 1

]}
,

where the masses are the tree-level masses evaluated at the inert-like minimum.
Notice, that in this case there are no contributions from fermions, since fermions are
massless in the inert-like state.

6.3.3.2 One-loop minimum conditions

To check whether the stationary states are indeed minima of the potential, one
has to compute the second derivatives of the effective potential. If we wanted to
differentiate the formula of eq. (6.27) second time, and make use of the result in
the explicit computations, we would encounter certain practical problems. Namely,
we would need to compute the second derivatives of the field-dependent mass-squared
eigenvalues, which is of course possible but rather cumbersome.

To avoid these problems an alternative approach can be adopted. We will use
the fact that the second derivatives of the effective potential correspond to the one-
loop masses of the scalar particles computed at zero external momentum. The one-
loop mass of a particle, M, is given by the formula

M2(p) = M2 + ReΣ(p), (6.30)

where M2 is the tree-level mass, and Σ(p) is the one-loop self-energy of the particle.9

The physical mass is defined at momentum corresponding to this physical mass, i.e.

M2
phys = M2 + ReΣ(Mphys). (6.31)

9In the case when the discussed particle is unstable, its self-energy Σ acquires an imaginary
part. That is why only the real part of the self-energy contributes to its mass, the imaginary part
corresponds to the decay width [204].
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The detailed computation of and formulas for the self-energies of the scalar
particles in the inert minimum can be found in appendix D. For the sake of cross-
check the obtained results were compared with formulas obtained by an adaptation
of the general expressions derived by Martin [205, 206]. We have also verified
that the one-loop Goldstone masses at zero momentum are zero, which means that
the Goldstone bosons are massless also at loop level. Analogous formulas for the one-
loop self-energies in the inert-like minimum can be easily obtained from the ones for
the inert state, remembering about the following points

• fermions are massless in the inert-like state,

• fermions do couple to the fields from the ΦS doublet, with the same couplings as
in the inert state (the Yukawa couplings are defined by the Yukawa lagrangian,
independently of the vacuum state),

• in all the scalar and VEV indices an exchange 1↔ 2 should be performed,

• the Goldstone bosons of the inert-like state follow from the φD doublet so
the expression for the self-energy of the χD field will be obtained from the G
self-energy, etc. The Higgs boson in the inert-like minimum corresponds to
the ρD field so its self-energy can be obtained from the one of h. However,
the components of the φD doublets do not couple to fermions so the fermionic
contributions will not appear,

• the massive scalars of the inert-like state follow from the φS doublet so their
self-energies will be obtained from the A,H and H± self-energies. However,
they do couple to fermions so an additional fermionic contribution will be
present in the form of

(3y2
t + 3y2

b + y2
τ )p

2B(p2, 0, 0). (6.32)

It is equal for all of these scalars in the limit of massless fermions.

6.3.3.3 Numerical procedure

In order to find a region in the parameter space where at loop level an inert minimum
and an inert-like one coexist we employed the following numerical procedure.

1. A solution of one-loop minimisation conditions (the first derivatives of the ef-
fective potential are given in eqs. (6.28) and (6.29)) is searched for numer-
ically starting from a randomly generated initial point. It is required that
vS = v = 246 GeV, and that the physical mass of the h boson in the inert
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minimum is close to 125 GeV (1 GeV deviation is allowed). The solution gives
a set of the values of m2

11, m2
22, λ1, . . . , λ5 and vD.

2. To verify whether the stationary inert and inert-like points corresponding to
the previously obtained set of parameters are minima, the one-loop scalar
masses are computed. We check whether the masses are positive — if yes,
the set of parameters is saved. It should be noted that also the Goldstone
bosons’ masses are also checked. Due to numerical accuracy they do not exactly
vanish, and the obtained values (typically less than 10−6 GeV, while masses
of the other scalars are of the order of hundreds of GeV) should be positive.
A small but negative value would imply that the analysed set of parameters
corresponds to a saddle point.10

3. Basic theoretical constraints are checked: perturbative unitarity, perturbativity
(all the quartic couplings have their absolute values below 4π), and boundedness
from below (eq. (3.1)).11

4. We take a conservative approach and only allow the values of parameters for
which all the tree-level masses are positive. This corresponds to looking for
the one-loop minima around the tree-level ones, and prevents an occurrence
of a imaginary part in the effective potential.

5. After verifying all of the conditions, the values of the one-loop potential at
the two minima are computed and stored. Subsequently, the scan starts again
from the beginning.

6.3.4 Results

In this section the effect of the loop corrections on the vacuum structure of the IDM
potential is studied and we present the results of the procedure described above. Since
at the loop level not only scalar fields affect the potential, but also contributions from
gauge bosons and fermions are present, we divide the analysis into parts, switching
on respective contributions sequentially. This allows to study the impact of each part
on the final result, and understand which sector introduces the biggest modifications.
We will start from analysing a model containing scalar fields only, then the gauge

10The physical masses are computed, i.e. masses at the value of the momentum corresponding
to the physical mass, and not at zero momentum. This, however, should not influence the result,
since the masses computed with the effective potential approximation (i.e. at zero momentum) are
normally very close to the physical masses [207–209].

11The positivity constraints of eq. (3.1) are tree-level conditions. They do not necessarily apply
to the one-loop potential. However, we work at a fixed renormalisation scale for which the loop
corrections are small. Thus, the use of the tree-level positivity constraints is a fair approximation.
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bosons will be taken into account, and finally the full IDM with scalars, bosons and
fermions will be analysed.

6.3.4.1 Scalar contributions only

We start from a toy model containing only scalar fields. Thus, in the computa-
tions only the contributions from the scalar particles are taken into account, and
the fermionic and gauge terms are set to zero.

The question that we study is what is the difference in the relative depth of
the inert and inert-like minima between the tree and the loop level. In particular,
we are interested whether a tree-level global minimum may turn to a local one
at loop level. To answer this question we compared the relative depth computed
using the full one-loop effective potential, according to the procedure described in
the previous section, and the tree-level expectations computed from the formulas
of eqs. (6.22) and (6.23). We will refer to the result obtained from formula (6.22)
as ∆V

(1)
0 , whereas to the one obtained from eq. (6.23) as ∆V

(2)
0 .12 Since they were

derived at tree level, we may expect that they are no longer equivalent at one-loop
level.

The comparison of the exact one-loop result (VI − VIL), where VI = V
(1)

eff

∣∣∣
I
and

VIL = V
(1)

eff

∣∣∣
IL
, with the tree-level results ∆V

(1)
0 , ∆V

(2)
0 is shown in fig. 6.6. Notice,

that in the plot in the right panel the region around zero is presented, while in
the left panel the range of the plot is wider.

In general, it can be noted that most of the points are located along the diagonal,
which means that the tree-level computation is a fair approximation to the full
result. Nonetheless, one immediately notices points in the lower part of the plot in
the left panel which deviate significantly from the diagonal. The one-loop relative
depth of the inert and inert-like minima for these points is around −108 GeV, while
the tree-level value for this quantity is mostly positive, which means that an inversion
of the two minima occurs, i.e. the tree-level global minimum becomes a local one
and vice versa. A closer examination of these points revealed that they correspond
to m2

22 < 0. As stated in eq. (6.21), at tree level the inert and inert-like minima
cannot coexist in this part of the parameter space. This shows that at loop level
the parameter space where coexistence of minima can occur is wider than at tree level.
Moreover, this explains why the tree-level expectations differ so much from the loop
results in this region. Simply, this region was excluded at tree level so it is hard to
compare it with the loop results. A question may arise why these points are not
present in the plot in the right panel. The answer is in the fact, that the quantities

12They are obtained with the use of the one-loop values of the parameters.
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∆V
(1)

0 and ∆V
(2)

0 are computed with the one-loop values of the parameters, and
somehow the one-loop masses and VEVs incorporate the loop corrections better
than the potential parameters.
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Figure 6.6: One-loop relative depth between the inert and inert-like minima, VI−VIL,
in a toy model with scalars only versus the tree-level expectation ∆V

(1)
0 computed

from eq. (6.22) (left panel) or versus ∆V
(2)

0 computed from eq. (6.23) (right panel).
In the right panel the green line shows the diagonal, i.e. the line along which the tree-
level results coincide with the loop-level result, the red points indicate the region
where inversion of the minima, with respect to tree level, occurs.

There is another region where inversion of minima occurs — it is located around
the point (0, 0), and is displayed in red in the right panel of fig. 6.6. In this region
the two minima are very close in energies — they are almost degenerate, so it is not
strange that small loop corrections can reverse their hierarchy. Nonetheless, it is an
important conclusion of this study — in the case of coexisting minima which are
close in energies it is crucial to go beyond the tree-level potential to ascertain which
of them is the global one.

6.3.4.2 Scalar and gauge contributions

We showed that even with scalar contributions to the effective potential only, the one-
loop results may be significantly different than the tree-level ones. Now we will turn
on the gauge contributions to see what difference they introduce.

The gauge contributions in both minima are qualitatively the same — the gauge
bosons couple to both of the doublets in the same way, with the SM couplings.
The only difference between the two minima is the value of the VEVs, which results
in different masses of the gauge bosons.

A more detailed numerical analysis reveals that indeed inclusion of the gauge
contributions does not change the picture significantly. The plots showing the com-
parison of the one-loop and tree-level relative depths of the minima look very similar
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to the plots presented in fig. 6.6 so we do not show them here. Also, as previously,
the allowed parameter space for coexistence of the minima is wider than at tree-level,
with m2

22 < 0 not excluded, and and inversion of minima is possible.

6.3.4.3 Full results

In this section we present the result for the full model, with scalars, gauge bosons,
and fermions included. We can expect that the fermionic contributions will introduce
certain discrimination between the inert and inert-like minima, since in the IDM
fermions couple only to the φS doublet and do not to the φD, and thus they are
massless in the inert-like minimum.

A technical difference that can be noticed while performing the numerical analysis
is that it is more difficult to solve the minimisation conditions and find parameter
points for which the two minima coexist. This may be caused by the differences
between the fermionic properties of the two minima briefly discussed above.

Let us start the presentation of the results from an analog of the plot in the right
panel of fig. 6.6, where the tree-level formula, ∆V

(2)
0 , is compared with the one-loop

result VI −VIL, see fig. 6.7. It can be seen that now the tree-level results are a worse
approximation of the one-loop ones. Nonetheless, still some points where inversion
of minima occurs persist.
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Figure 6.7: One-loop relative depth between the inert and inert-like minima, VI−VIL,
in the full IDM versus the tree-level expectation ∆V

(2)
0 computed from eq. (6.23), in

the range around the (0, 0) point, where inversion of minima can occur. The green
line is the diagonal.

To compare the two tree-level formulas, ∆V
(1)

0 and ∆V
(2)

0 , in fig. 6.8 we present
also analogous plots for these two cases, with the same range of the plots. It can be
noted that, in general, the formula ∆V

(1)
0 underestimates the difference in depths

between the inert and inert-like minima, whereas ∆V
(2)

0 overestimates this difference.
To sum up, even though the fermions distinguish the two minima, and make the tree-
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Figure 6.8: One-loop relative depth between the inert and inert-like minima, VI−VIL,
in the full IDM versus the tree-level expectation ∆V

(1)
0 computed from eq. (6.22)

(left panel) or versus ∆V
(2)

0 computed from eq. (6.23) (right panel). The red (left
panel) and green (right panel) lines correspond to diagonals.

level predictions less accurate, the key conclusions remain the same as in the case with
scalar contributions only: the hierarchy of the minima can be inverted by the loop
corrections and the coexistence of the two minima can be realised in a region that
was forbidden at tree level.

The one-loop effective potential of the IDM was thoroughly analysed in ref. [149].
The main purpose of this paper was the study of possibility of first-order phase
transition in the course of the evolution of the Universe, for which a temperature-
dependent effective potential was used. Nonetheless, the authors also studied the zero-
temperature potential. Although the renormalisation scheme was chosen differently
than in the present work (the on-shell scheme in place of the MS), some of the results
can be compared. It can be inferred from fig. 2 of ref. [149] that the inert and inert-
like minima can coexist in a region that was forbidden at tree level — namely for
λ345 < 0, which confirms our finding that the region of coexistence of the minima
is extended at the one-loop level. However, in ref. [149] the problem of inversion
of minima was not studied. The existence of the inert minimum at loop level was
guaranteed by one of the renormalisation conditions, however it is not enforced that
the inert minimum is global at tree level. Thus, it cannot be inferred whether or not
the loop corrections change the nature of the tree-level minimum. Therefore, a full
comparison of the two approaches is not possible, but certainly the conclusion about
enlarging the parameter space where the inert and inert-like minima can coexist is
common to our work and the results presented in ref. [149].
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6.3.5 Discussion

The conclusions of the present work, about the possibility of inversion of minima
and enlarged parameter space where coexistence is allowed, may have important
meaning for the studies of the IDM. First of all, they show that the loop corrections
may indeed qualitatively change the tree-level predictions. In particular, the vacuum
state, which is a fundamental of the theoretical description, may be misidentified
when tree-level potential is used. Fortunately, this risk comes into play only when
the coexisting inert and inert-like minima are close in the energies, and in these
cases the one-loop potential should be used.

What is probably even more important, is that these results point towards a more
general problem — a problem of the vacuum structure of other 2HDMs beyond
tree level. The tree-level vacuum structure has been well studied [39, 41, 43–45,
188–191], and possible types of minima were identified. The geometric analysis of
ref. [44] showed that only minima which break the same symmetries of the scalar
potential can coexist. For example normal (mixed) minima cannot coexist with inert
ones. A question that arises is whether these conclusions hold beyond tree-level.
Our analysis showed that some of the tree-level predictions can be altered by loop
corrections which suggests that the same may happen in other cases. This problem
is still to be studied.

6.4 Towards a complete description

In the two preceding sections we discussed some approaches to the issue of vacuum
stability in the IDM. We used an effective approach, where only one field is dynamical,
and analysed the impact of the loop effects from the additional scalars on the stability
of the SM vacuum. Further on, we moved to a more general approach in which
all the fields are dynamical, and we studied the coexistence of inert and inert-like
minima. However, as was mentioned in the previous section, the study of the vacuum
structure in 2HDMs beyond tree level in full generality remains an open question.
One of the biggest obstacles in this task are the problems with the consistent use
of the effective potential being a function of many scalar fields, in particular, the
appearance of different energy scales associated to these fields.

In section 6.3 we used the full one-loop effective potential in the MS scheme.
However, since we were only interested in the coexistence of two minima, we were
able to control the energy scale of ϕi and adjust the renormalisation scale which would
render all the logarithms in eq. (6.24) fairly small. If one wants to examine the general
vacuum structure of a 2HDM, one has to allow VEVs along any direction in the ϕi
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space. In this case, some of ϕi can be big, and some small, introducing various energy
scales under the logarithms in the effective potential. This may potentially lead to
breakdown of the perturbative expansion, since it may be impossible to choose one
scale that would simultaneously make all the logarithms small.

A possible solution to this problem may be introduction of the formalism of
ref. [210], which was originally devised mainly to cope with the problems arising
due to the presence of many mass scales in supersymmetric models, even if only one
scalar field is present (see also [211, 212] for earlier attempts to deal with similar
issues). In brief, the main idea is to decouple each particle species at an energy
corresponding to its field-dependent mass, Mi(ϕ). This means that each component
in the sum over a in eq. (6.24) would be multiplied by θa = θ(µa −Ma(ϕ)), where
µ2
a = eCaµ2. Ca, as previously is equal 3

2
for all the particles if DRED is used, and 5

6

for vector bosons when DREG is employed. This way, all the particles contributing
to the effective potential at a given scale are lighter that this energy scale, and thus
effectively behave as massless and there is no problem with big logarithms (they are
resummed).

This procedure is very useful because for each choice of ϕ there exists a boundary
scale equal to min{Ma(ϕ)}, below which the effective potential is just the tree-level
one, with running coupling constants. This way it is easy to use and moreover the
perturbative expansion is well applicable, because for any scale µ∗ 6 min{Ma(ϕ)}
both the loop corrections and the explicit µ dependence of the effective potential
vanish. Therefore it is always possible to use the tree-level potential with running
couplings, however the running has to be studied carefully. One has to remember
that the running of the couplings is also affected by the decoupling procedure, and
that the β functions also contain the θ functions. Moreover, for each value of ϕ
the running will be different, because the field-dependent masses will take different
values, and thus the decoupling scales will change. Therefore, with this approach
it is only possible to study the effective potential for fixed values of ϕ. To get the
low energy values of the parameters one has to fix them at a scale high enough so
that none of the fields is decoupled (these values are ϕ independent), and then run
them down to the selected energy scale, remembering about the θ functions which
depend on the value of ϕ. Doing this for different values of ϕ, the low-scale effective
potential can be reconstructed point by point.

The approach described very briefly above can be extrapolated to the case of
a model containing many scalar fields. In this situation, the field-dependent masses
depend on all the scalar fields, and thus their decoupling scales do as well. Thus
fixing high-scale values of parameters, one has to evolve them to the optimal µ∗ scale
separately for each point in the field space. This way the effective potential at µ∗
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can be numerically reconstructed. However, to study the vacuum structure of such
a potential, it should be carefully reconstructed, not to miss some of the minima.
This is a complex task, requiring development of well-suited numerical algorithms.

This approach presumably gives a chance to study the effective potential of
a general 2HDM (or any other model with an extended scalar sector), being a function
of many classical fields, in a consistent way, staying within the scope of perturbation
theory. However, the numerical complexity of this task has impeded obtention of
final results. Thus this issue remains an open question to be studied in the future.
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7
Summary

7.1 Summary and conclusions

This dissertation is aimed at the study of 2HDMs with the Higgs boson serving as
a guideline. The Higgs boson is treated as a probe of new physics — by studying
its properties within 2HDMs we draw conclusions about the properties of the new
scalar particles. Moreover, it is also a portal to DM — we showed that combing the
results of the Higgs-related experiments and the DM data provides new important
insight to the nature of the DM particle. Last but not least, the discovery of the
Higgs boson and the measurement of its mass leads us to the question of the stability
of the vacuum state, and the influence the new physics can exert on it.

The main focus of this dissertation is on the IDM which is a special kind of 2HDM
containing a SM-like Higgs boson and a DM candidate. There are three main parts
of the thesis: first we study the parameter space of 2HDMs (IDM and the 2HDM
with a normal (mixed) vacuum state) in the light of theoretical and experimental
constraints; then we analyse the properties of the Higgs boson of the IDM using the
LHC results and the DM data; in the end we study the stability of the SM-like inert
vacuum state from different perspectives. The main results of the dissertation are
summarised below.

Parameter space of 2HDMs. We studied the allowed parameter space under the
following constraints: positivity of the scalar potential, tree-level stability of
the vacuum state, perturbative unitarity, EWPT and the LEP constraints. We
also used the fact that a SM-like Higgs particle with mass around 125 GeV
was discovered.
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For the IDM we gave constraints on the values of the parameters of the scalar
potential, as well as on the couplings between the physical scalar particles.
They appeared to be, in some cases, more stringent than the traditional pertur-
bativity bounds. Moreover, we presented correlations between the couplings,
showing that they are not independent, one of another. We also gave con-
straints on masses of the scalar particles, depending on the value of the mass
parameter of the potential, m2

22. We showed that the value of this parameter
is also bounded — we derived an upper bound from the condition for the inert
minimum and perturbative unitarity. This constraint had not been studied in
the literature before and considering the diphoton Higgs decay we proved that
it excludes some interesting region in the parameter space.

For the 2HDM (mixed) we provided similar constraints on the scalar parameters
and masses, which are in this case absolute since they do not depend on m2

22

as it was in the IDM. Moreover, we obtained a new interesting strong bound
on the tan β parameter, that is independent of the Yukawa interactions, and
follows from perturbative unitarity and the value of the Higgs boson mass. We
also pointed out an interesting fact that the bound is only valid if the lighter
of the two CP even scalars of the 2HDM (mixed) plays the role of the SM-like
Higgs boson and explained this situation.

Higgs boson in the light of the LHC and DM data. We started from analy-
sing the signal strength of the diphoton decay of the Higgs boson, Rγγ within
the IDM. We studied the possibility of modifying this parameter with respect
to the SM expectation. In particular, following the experimental hints, we
were interested in the possibility of enhancing the signal. We showed that
there are two factors modifying the signal strength: the invisible decays of the
Higgs boson to the inert particles, and a new loop effect due to the exchange
of the charged scalar. The invisible decays, if kinematically allowed, decrease
the signal strength, while the charged scalar loop can interfere with the SM
part either constructively or destructively.

Analysing analytically the formula for the diphoton signal strength, and per-
forming a numerical scan of the parameter space we showed that an enhanced
signal strength can be obtained only if the neutral inert scalars are heavier than
half of the mass of the Higgs boson, i.e. when the invisible decay channels are
closed. At the same timeRγγ can be grater than one for any value of the charged
scalar (remembering about the lower bound from LEP, MH± > 70 GeV). How-
ever, for very heavy charged scalar its contribution decouples and Rγγ ≈ 1.
If the diphoton signal strength is greater than (and not equal to) 1, upper
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bounds on MH± arise. Since the DM candidate is the lightest of the inert
scalars, its mass is also constrained from above. In particular, we showed that
if Rγγ > 1.2, then 62.5 GeV < MH . 154 GeV, 70 GeV < MH± . 154 GeV,
which would mean that the H and H± particles are within the reach of the
current experiments.

In the next step we analysed the possibility of suppressing the diphoton signal
strength. We showed that an important parameter, λ345 proportional the
coupling between the Higgs boson and a pair of DM particles, influences both
the diphoton signal strength and the DM relic density. Thus, we combined the
DM data from the Planck experiment with constraints obtained by assuming
some lower limit on Rγγ. We proved that if Rγγ > 0.7 light inert DM, with
masses below 10 GeV, is excluded. In the intermediate mass region, we showed
that the same assumption leads to a lower bound on DM mass, MH & 53 GeV.
In the heavy DM regime, the diphoton signal strength is always very close to
one, due to decoupling, and the DM relic density can be accounted for by the
inert candidate.

Moreover, we studied the correlation between the signal strength of the h→ Zγ

and h → γγ decays. We showed that the correlation is positive, providing
an experimental test of the validity of the IDM, to be checked by the future
experiments.

Apart from that, also the measurements of the total decay width and invis-
ible branching ratios of the Higgs boson were analysed by us. We provided
constraints on the DM coupling to the Higgs boson as a function of the DM
mass.

Vacuum stability. We studied the issue of the vacuum stability in the IDM from
two perspectives. The first approach was to look at the influence of additional
heavy inert scalars on the SM-like inert vacuum state. The new scalars were
assumed to be heavy so that they could only influence the potential through
loop effects. The common knowledge is that additional scalars stabilise the
vacuum state, contributing positively to the effective potential and to the
running of the Higgs self-coupling. This reasoning is normally applied to high
energy scales. In this work, we focused on the influence that the additional
scalars exert on the effective potential around the EW scale. Moreover, we were
interested in the structure of the potential, i.e. the types of possible minima,
rather than the running of the couplings. Adopting this new approach we
showed, contrary to what is normally assumed, that additional scalars may
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have a striking effect on the effective potential, destabilising the SM EWSB
vacuum by introducing a new EW symmetric minimum which is deeper than
the EWSB one. This proved that it is not enough to consider the effect of the
new scalars at large field values, and that it is crucial to study the structure of
the effective potential, rather than just the running of the coupling constants.
Further on, we demonstrated that the instability (or metastability) scenarios
are excluded within the IDM by the perturbative unitarity, EWPT and DM
relic abundance. Nonetheless, it is expected that similar effect can occur in
other models with additional scalars.

Another approach we took was more general as all of the scalar fields appeared
in the effective potential. We were interested to study the stability of the inert
vacuum with respect to the inert-like state. These two types of minima can
coexist at tree level and we analysed what influence on this coexistence and
energy hierarchy between them have the one-loop corrections. Our results show
that the coexistence at one-loop level can be realised in a wider parameter
space than at tree level. Moreover, we demonstrated that the two minima can
be inverted by loop corrections, i.e. a global inert minimum can be turned to a
local one, leading to an unstable or a metastable state. This situation can take
place only if the two minima are very close in energies but it shows important
limitations of the common tree-level approach to the study of vacuum stability
in models with extended scalar sector.

7.2 Open questions

Vacuum stability in a general 2HDM beyond tree level. A question that nat-
urally follows the results presented in this thesis is about a general answer to
the question of vacuum stability in a generic 2HDM beyond tree level. In this
dissertation we assumed two approaches which allowed us to study different
aspects of this problem within the IDM. Nonetheless, obtaining a general
classification of all possible minima of the one-loop effective potential of a
generic 2HDM would be very interesting. As was described in section 6.4 the
main difficulty in studying this problem is the consistent use of the effective
potential being a function of several scalar fields. Since with each of the scalar
fields an independent energy scale can be associated, large logarithms of the
ratios of these scales may easily appear rendering the perturbative description
of the problem inappropriate. We discussed a possible approach to cope with
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7.2. OPEN QUESTIONS

the effective potential which assures that the perturbative expansion of the ef-
fective potential remains valid. Still, its practical implication requires involved
and nontrivial numerical algorithms. Thus this problems remains as a matter
of further studies.

New LHC results. The LHC has started a new run at an energy higher than before
and certainly will provide new data which 2HDMs will need to be confronted
with.

A first example of an intriguing experimental hint is a diphoton excess around
750 GeV reported in December 2015 by the CMS [26] and ATLAS [25] collab-
orations. Even though the statistical significance of the signal is not yet great,
and it can be still interpreted as a fluctuation, it remains puzzling and many
authors attempted to explain it within new physics models. In particular,
several authors interpreted the excess within the framework of a 2HDM or its
extensions [213–223]. In general, it is concluded that in a pure 2HDM it is not
possible to account for the observed signal strength in the gg → H → γγ or
gg → A→ γγ channels. The most common solution is to propose additional
new particles, vector-like quarks and leptons or scalars. This shows that with
the new data the 2HDM will have to be thoroughly tested, and there is a
chance it will be proven wrong, or will require certain modifications.
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A
The range of the mixing angle α

in the 2HDM (mixed)

The mixing angle α originates from diagonalisation of the mass-matrix of the neu-
tral, CP -even scalar fields in the 2HDM (mixed). As mentioned in section 2.3, in
the literature one may encounter different conventions for the range of this angle,
some of them being in contradiction with one another. To clarify this issue, below
we present a derivation of the expression for sinα, and explain which ranges can be
chosen for α.

A.1 Condition for diagonalisation of a symmetric

matrix

Let us consider an arbitrary symmetric 2× 2 matrix M :

M =

(
a b

b c

)
,

and assume that it is diagonalised by a rotation of an angle α. Then the new basis
(f1, f2), which diagonalises M , is obtained from the old basis (η1, η2) by means of
a transformation R defined as follows

R =

(
cosα sinα

− sinα cosα

)
, R−1 =

(
cosα − sinα

sinα cosα

)
. (A.1)

The matrix M is diagonalised in the following way

∆ = RMR−1,
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where ∆ is diagonal. By performing explicitly the multiplication RMR−1 and
requiring that the off-diagonal terms of ∆ vanish, we obtain a condition that has to
be fulfilled by α in order to diagonalise M . It reads

(c− a) sinα cosα + b(cos2 α− sin2 α) = 0, (A.2)

and is equivalent to tan 2α = 2b
a−c .

Using basic trigonometric identities and eq. (A.2), it can be verified that if α
diagonalises M , than also α − π/2, α − π, α + π/2, etc. do. This shows that for
a symmetric matrix M , in any quadrant there exists an angle that diagonalises it.

A.2 Relation between different angles

diagonalising M

Let us assume, as described above, that α diagonalises M , i.e. in the diagonalising
basis (f1, f2) this operator reads:

∆ =

(
λ+ 0

0 λ−

)
.

Let us also assume that λ+ > λ−.
We now know that α+ π/2 also diagonalises M , so if we rotate the basis (f1, f2)

by π/2, the operatorM should be also diagonal in the new basis. Let us call the new
basis (g1, g2) and the operator in this basis ∆1. We have

∆1 = R1∆R−1
1 ,

where

R1 =

(
cos π

2
sin π

2

− sin π
2

cos π
2

)
=

(
0 1

−1 0

)
, R−1

1 =

(
0 −1

1 0

)
.

Therefore ∆1 reads

∆1 =

(
0 1

−1 0

)(
λ+ 0

0 λ−

)(
0 −1

1 0

)
=

(
λ− 0

0 λ+

)
,

and g1 = f2, g2 = −f1.
Thus although both α and α+π/2 diagonaliseM , the orderings of the eigenvalues

associated with these angles are different. Therefore, if we want to diagonalise M in
such a way that the first eigenvalue is bigger, it is not sufficient to look for α only
in one quadrant.
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A.3 The range of α

We will now perform the diagonalisation of the mass matrix M for the CP even
sector explicitly. With M given by

M =

(
a b

b c

)
, a = λ1 cos2 βv2, b = λ345 cos β sin βv2, c = λ2 sin2 βv2.

the eigenvalues read

λ± =
1

2

(
a+ c±

√
(a− c)2 + 4b2

)
,

where λ+ > λ−.
Denoting S =

√
(a− c)2 + 4b2 and remembering that the eigenvector associated

to the eigenvalue λ+, v+ = (v+1, v+2), must fulfil the condition (M − λ+I) v+ = 0

we obtain the following equation

1

2
(a− c− S) v+1 + bv+2 = 0.

Thus

v+ = γ+

(
1

c−a+S
2b

)
,

where γ+ is a normalisation constant. Requiring that v+ is normalised to 1, |v+|2 = 1,
we get:

v+ = ± |2b|√
4b2 + (c− a+ S)2

(
1

c−a+S
2b

)
. (A.3)

The same procedure can be conducted for λ−. This brings us to the result:

v− = ± |2b|√
4b2 + (c− a+ S)2

(
a−c−S

2b

1

)
. (A.4)

It can be easily checked that v+ · v− = 0.
Now we would like to match the eigenvectors v± with the mass eigenstates H

and h. We want H to be heavier than h, so it must correspond to v+. We adopt
the following convention for the angle α (as defined by the R matrix, eq. (A.1)),

v+ = H = cosαη1 + sinαη2 =

(
cosα

sinα

)
, (A.5)

v− = h = − sinαη1 + cosαη2 =

(
− sinα

cosα

)
. (A.6)
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It can be now seen that if eqs. (A.5) and (A.6) are to be in agreement with eqs. (A.3)
and (A.4), the overall signs in eqs. (A.3) and (A.4) should be the same. By comparing
eqs. (A.5) and (A.6) with eqs. (A.3) and (A.4) we get:

cosα = ± |2b|√
4b2 + (c− a+ S)2

,

sinα = ± |2b|(c− a+ S)

2b
√

4b2 + (c− a+ S)2
.

Thus, if we pick the plus sign in both of the equations presented above, then cosα has
to be always positive, so the correct range for α is (−π/2, π/2). If we pick the minus
sign, then cosα < 0 and α ∈ (−3π/2, −π/2). Since the choice of the overall sign is
arbitrary, we will choose the positive sign for convenience. Then, sinα can be either
positive or negative, the sign depending on the sign of |2b|(c−a+S)

2b
√

4b2+(c−a+S)2
. Therefore

sgn(sinα) = sgn

(
|2b|(c− a+ S)

2b
√

4b2 + (c− a+ S)2

)
= sgn(b)sgn(c− a+ S),

since
√

4b2 + (c− a+ S)2 > 0. Moreover, c − a + S = c − a +
√

(a− c)2 + 4b2 >

c − a +
√

(a− c)2 = c − a + |c − a| > 0, so sgn(sinα) = sgn(b). Remembering
the definition of b, b = λ345 cos β sin βv2, and assuming that β ∈ (0, π/2), we
conclude that:

sgn(sinα) = sgn(λ345).

And we see that indeed, both positive and negative α have to be taken into account
if we want to keep the first eigenvalue greater than the other one. So the proper
range of α, with the conventions we have adopted, is (−π/2, π/2).
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B
Decay widths of the Higgs boson

Below we summarize the decay widths of the Higgs boson following Refs. [47, 63,
146, 151–155, 157]. Some of the formulas (for the decays h → γγ, h → Zγ, h →
HH,h → AA) appear in the main text of the dissertation, however they are also
repeated here for the sake of completeness. These formulas were used in the analysis
of chapter 4 for the computation of the total decay width of the Higgs boson.

B.1 h→ qq̄

Γ(h→ qq̄) =
3GF

4
√

2π
Mhm

2
q(Mh)

{
1 + 5.67

αs(Mh)

π

+

[
37.51− 1.36Nf −

2

3
log

M2
h

m2
t

+

(
1

3
log

m2
q(Mh)

M2
h

)2]
α2
s(Mh)

π2

}
.

Nf = 5 is the number of active light-quark flavors. The running quark mass defined
at the scale Mh is [153]

mq(Mh) = mq(mq)

(
αs(Mh)

αs(mq)

)12/(33−2Nf )
1 + c1qαs(Mh)/π + c2qα

2
s(Mh)/π

2

1 + c1qαs(mq)/π + c2qα
2
s(mq)/π2

,

where for the bottom quark c1b = 1.17, c2b = 1.50 and for the charm quark c1c = 1.01,
c2c = 1.39. The running strong coupling constant is approximated at the one-loop
level (for energy scales around Mh, where the number of active light quarks can be
taken to be constant) [154]

αs(Mh) =
αs(MZ)

1 +
33−2Nf

12π
αs(MZ) log

M2
h

M2
Z

.
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The values of quark masses and of the strong coupling are taken from the Particle
Data Group [154]: mb(mb) = 4.18 GeV, mc(mc) = 1.273 GeV, αs(MZ) = 0.118,
αs(mb) = 0.223, and αs(mc) = 0.38.

B.2 h→ τ+τ−

Γ(h→ τ+τ−) =
GFNc

4
√

2π
Mhm

2
τ

(
1− 4m2

τ

M2
h

)3/2

.

B.3 h→ V V ∗

Γ(h→ V V ∗) =
3G2

F

16π3
M4

VMhδVRT (x),

where δW = 1, δZ = 7
12
− 10

9
sin2 θW + 40

9
sin4 θW ,

RT (x) =
3(1− 8x+ 20x2)√

4x− 1
arccos

(3x− 1

2x3/2

)
− 1− x

2x

(
2− 13x+ 47x2

)
− 3

2
(1− 6x+ 4x2) log x

and x =
M2
V

M2
h
.

B.4 h→ gg

Γ(h→ gg) =
GFα

2
sM

3
h

36
√

2π3

∣∣∣∣34A1/2

(
4m2

t

M2
h

)∣∣∣∣2.
B.5 h→ ϕϕ (ϕ = H,A)

Γ(h→ ϕϕ) =
λ2
hϕϕv

2

32πMh

√
1−

4M2
ϕ

M2
h

, (B.1)

where λhHH = λ345 and λhAA = λ−345.

B.6 h→ γγ

Γ(h→ γγ)IDM =
GFα

2M3
h

128
√

2π3

∣∣∣∣43A1/2

(
4M2

t

M2
h

)
+ A1

(
4M2

W

M2
h

)
+

2M2
H± +m2

22

2M2
H±

A0

(
4M2

H±

M2
h

)∣∣∣∣2, (B.2)
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B.7. h→ Zγ

where

A0(τ) = −τ [1− τf(τ)],

A1/2(τ) = 2τ [1 + (1− τ)f(τ)],

A1(τ) = −[2 + 3τ + 3τ(2− τ)f(τ)]

and

f(τ) =


arcsin2

(
1√
τ

)
for τ > 1,

−1
4

[
log
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]2

for τ < 1.

B.7 h→ Zγ

Γ(h→ Zγ) =
G2
Fα

64π4
M2

WM
3
h

(
1− M2

Z

M2
h

)3∣∣∣∣21− 8
3

sin2 θW

cos θW
Ah1/2

(
4m2

t

M2
h

,
4m2

t

M2
Z

)
+ Ah1

(
4M2

W

M2
h

,
4M2

W

M2
Z

)
−

2M2
H± +m2

22

2M2
H±

(1− 2 sin2 θW )

cos θW
I1

(
4M2

H±

M2
h

,
4M2

H±

M2
Z

) ∣∣∣∣2, (B.3)

where

Ah1/2(τ, λ) = I1(τ, λ)− I2(τ, λ),

Ah1(τ, λ) = cos θW

{
4

(
3− sin2 θW

cos2 θW

)
I2(τ, λ) +

[(
1 +

2

τ

)
sin2 θW
cos2 θW

−
(

5 +
2

τ

)]
I1(τ, λ)

}
,

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2

[
f(τ)− f(λ)

]
+

τ 2λ

(τ − λ)2

[
g(τ−1)− g(λ−1)

]
,

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ)− f(λ)

]
,

g(τ) =


√

1
τ
− 1 arcsin

√
τ for τ 6 1,

√
1− 1

τ

2

(
log

1+
√

1− 1
τ

1−
√

1− 1
τ

− iπ
)

for τ > 1.

Note the minus sign of the charged scalar contribution [155], which is different than
the result in ref. [151].
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C
Dimensional regularisation of

the one-loop contribution to the

effective potential

In this appendix we present the details of the procedure of dimensional regularisation
of the one-loop contribution to the effective potential, δVCW. Our starting point is
the expression of eq. (5.11), which is UV divergent and requires regularisation.

In the following we will use the abbreviation

m2
eff = m2 +

1

2
λϕ2.

of course m2
eff depends on ϕ but we will not write it explicitly to make the formulas

shorter. We will work with the first part of the integral from eq. (5.11):

I =

∫
d4k

(2π)4
log
(
k2 +m2

eff

)
.

This integral is divergent in 4 dimensions so let us use dimensional regularisation
and consider I in D dimensions, so we have to introduce the energy scale µ, for
the dimensions to agree, ID =

∫
dDk

(2π)D
µ4−D log (k2 +m2

eff). We will perform a trick
first differentiating ID with respect to ϕ, next integrating over momentum k, then
expanding it around D = 4, and finally integrating over ϕ.

∂

∂ϕ
ID =

∂

∂ϕ

∫
dDk

(2π)D
µ4−D log

(
k2 +m2

eff

)
= µ4−D

∫
dDk

(2π)D
1

k2 +m2
eff

∂

∂ϕ

(
m2

eff

)
= µ4−D ∂m

2
eff

∂ϕ

∫
dDk

(2π)D
1

k2 +m2
eff
.
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A formula for the integral in the equation above is known, it reads∫
dDk

(2π)D
1

(k2 + a)n
=

1

(4π)D/2
Γ
(
n− D

2

)
Γ(n)

aD/2−n.

Remembering that Γ(1) = 1, setting D = 4 − ε, and using the fact that xΓ(x) =

Γ(x+ 1) (so
(
ε
2
− 1
)

Γ
(
ε
2
− 1
)

= Γ
(
ε
2

)
) we get

∂

∂ϕ
ID = µε

∂m2
eff

∂ϕ

1

(4π)2−ε/2
Γ
(
ε
2

)
ε
2
− 1

(
m2

eff

)1−ε/2
.

Now we are ready to expand this expression in terms of ε. We will use the following
facts:

Γ
( ε

2

)
≈ 2

ε
− γE,

aε = elog aε = eε log a ≈ 1 + ε log a,

1

1− x
≈ 1 + x,

where γE denotes the Euler gamma, γE ≈ 0.5772. Therefore(
4πµ2

m2
eff

)ε/2
≈ 1 +

ε

2
log

(
4πµ2

m2
eff

)
,

and
∂

∂ϕ
ID = − m2

eff

(4π)2

∂m2
eff

∂ϕ

[
1 +

ε

2
log

(
4πµ2

m2
eff

)](
1 +

ε

2

)(2

ε
− γE

)
.

Now we neglect the terms which tend to zero as ε goes to zero (so the terms that
vanish in D = 4),

∂

∂ϕ
ID =

m2
eff

(4π)2

∂m2
eff

∂ϕ

[
−1− 2

ε
− log

(
4πµ2

m2
eff

)
+ γE

]
.

In the next step we have to integrate ∂
∂ϕ
ID over ϕ,

ID =

∫
dϕ

∂

∂ϕ
ID =

∫
dϕ

m2
eff

(4π)2

∂m2
eff

∂ϕ

[
−1− 2

ε
+ log

(
m2

eff

4πµ2

)
+ γE

]
.

Let us change variables in this integral substituting x =
m2

eff
4πµ2

and consequently

dx =
∂m2

eff
∂ϕ

dϕ. Then our integral takes the form

ID =

(
4πµ2

4π

)2 ∫
dxx

[
−2

ε
+ γE − 1 + log x

]
.

So the following formula is needed∫
dxx(a+ log x) = x2

(
1

2
a − 1

4
+

1

2
log x

)
.
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Applying it to ID we get

ID =
1

2

m4
eff

(4π)2

[
−2

ε
+ γE −

3

2
+ log

(
m2

eff

4πµ2

)]
.

Substituting this result to eq. (5.11) we finally obtain (the second term in (5.11) is
computed in the same way as the first one):

δVCW =
m4

eff

64π2

[
−2

ε
+ γE −

3

2
+ log

(
m2

eff

4πµ2

)]
− m4

64π2

[
−2

ε
+ γE −

3

2
+ log

(
m2

4πµ2

)]
.

The second term above is a constant so it can be removed from the effective potential
without loss of generality.1 This gives the well known result quoted also in chapter 5
in eq. (5.12)

δVCW =
m4

eff

64π2

[
−2

ε
+ γE −

3

2
+ log

(
m2

eff

4πµ2

)]
.

1It should be noted that the constant term depends on the renormalisation scale µ so its can be
omitted if values of the potential at a fixed scale are considered. If the effective potential at different
scales is analysed, the running of the vacuum energy should also be taken into account [202, 203].
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D
Self-energies of the scalar

particles in the IDM

In this appendix we present a complete computation of the self-energies of the scalar
particles and the Goldstone bosons within the IDM. The results derived here were
used in the analyses of chapter 6. The final results were cross-checked with the
results obtained from the general prescriptions given by Martin in refs. [205, 206].

D.1 Definitions of the loop functions

In the following we will compute loop corrections to the tadpoles and to the self-
energy of the Higgs boson and other scalar particles. To make the computations
cleaner, we will reduce all the integrals to the basic Passarino–Veltman functions [224]
(note, however, that various definitions of these functions exist, differing by overall
factors). These are the scalar vacuum integrals. We will need only the two simplest
of them, namely

a(m2) =

∫
dDk

(2π)D
iµε

k2 −m2 + iε
, (D.1)

b0(p2,m1,m2) =

∫
dDk

(2π)D
iµε

(k2 −m2
1 + iε) [(p− k)2 −m2

2 + iε]
. (D.2)

It is important to note that the b0 function is symmetric under the exchange of
the second and third argument.

Using the standard Feynman parametrization, and expansion in ε, the functions
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can be evaluated, up to terms vanishing for ε→ 0

a(m2) = − m2

(4π)2

(
2

ε
− γE + log(4πµ2)− logm2 + 1

)
, (D.3)

b0(p2,m1,m2) = − 1

(4π)2

(
2

ε
− γE + log(4πµ2)−

∫ 1

0

dx log ∆

)
, (D.4)

where ∆ = −x(1− x)p2 + xm2
1 + (1− x)m2

2. For the sake of performing cross-checks
of intermediate results it is helpful to note that the divergent parts of a and b0 differ
only by a factor of m2. It is also useful to know that

a(0) = 0.

We also introduce a non-standard ab and bb0 functions, which will be useful for
the bosonic loops

3ab(m2) = (D − 1)a(m2) = − 3m2

(4π)2

(
2

ε
− γE + log(4πµ2)− logm2 +

1

3

)
,

(D.5)

4bb0(p2,m2
1,m

2
2) = Db0(p2,m2

1,m
2
2)

= − 4

(4π)2

(
2

ε
− γE + log(4πµ2)−

∫ 1

0

dx log ∆− 1

2

)
. (D.6)

They differ from the original ones only by the finite part.1

D.2 Higgs self-energy and tadpoles in the SM

We will start our computations from a case of a single Higgs boson within the SM.
Not much more computations will be needed to give the self-energy expressions for
the scalars in the IDM. To conform with the conventions used within this thesis the
SM potential we use if of the form of eq. (2.1) with φD set to zero.

D.2.1 Tadpoles

We start by computing the tadpole diagrams for the Higgs field. In the loop
the W±, Z, t, b, G± and G can propagate. Respective diagrams are shown in fig. D.1,
and the relevant couplings in fig. D.2. For the couplings we follow Ref. [225], with
ξ = 0, since we work in the Landau gauge.

The scalar tadpoles are easy to compute, because they are just equal to the a or
ab functions, with appropriate coefficients. Therefore, since G± and G are massless,

1These functions would not appear if we used DRED instead of DREG.
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h

W±, Z

h

t, b

h

h,G,G±

Figure D.1: The Higgs tadpole diagrams.

W±
µ

W∓
ν

h igMWgµν

Zµ

Zν

h i g
cos θ

MZgµν

t, b

t, b

h −ig
2

Mt,b

MW

h

h

h −3ig
M2
h

MW
= −i3λ1

Figure D.2: The couplings relevant for the computation of the Higgs tadpole diagrams.

their contribution will vanish. We only have to take care of the 1
2
symmetry factor

for the Higgs loop, and will express the coupling as

3g
M2

h

MW

= 3λ1v
2 2

gv
= 3λ1v.

The W loop yields the following expression

gMW

∫
dDk

(2π)D
µε
gµν
(
gµν − kµkν

k2

)
k2 −M2

W

= −ig
2v(D − 1)

2

∫
dDk

(2π)D
iµε

1

k2 −M2
W

= −i3g
2v

2
ab(MW ).

The Z loop differs only by a symmetry factor 1
2
, and by the coupling, and gives

the result
−i3

2

√
g2 + g′2MZa

b(MZ) = −i3
4

(g2 + g′2)vab(MZ).

The fermionic loops will give similar contributions (below Mf is the mass of the fer-
mion and the color factor of 3 is taken into account)

3g

2

Mf

MW

∫
dDk

(2π)D
µεTr

(
1

/k −m

)
=

3g

2

Mf

MW

∫
dDk

(2π)D
µεTr

(
/k +m

k2 −m2

)
= −i6g

M2
f

MW

∫
dDk

(2π)D
iµε

1

k2 −m2
= −6ig

M2
f

MW

a(Mf ) = −6iy2
fva(Mf ).
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These contributions can be summarised as follows

−iT = −i
[

3

2
λa(Mh) +

3

2
g2ab(MW ) +

3

4
(g2 + g′2)ab(MZ)

− 6y2
t a(Mt)− 6y2

ba (Mb)

]
v. (D.7)

D.2.2 Higgs self-energy

The next step towards renormalizing the effective potential of the SM amounts
to the computation of the self-energy of the Higgs boson. To this end numerous
diagrams have to be computed. They are depicted in fig. D.3, and the relevant
couplings are listed in fig. D.4.

h h

W±

G∓

(A)

h h

W±

W∓

(B)

h h

W±

(C)

h h

Z

G

(D)

h h

Z

Z

(E)

h h

Z

(F)

h h

h,G,G±

(G)

h h

h,G,G±

(H)

h h

t, b

(I)

Figure D.3: Diagrams contributing to the Higgs self-energy.
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W±
µ

G∓

h ∓ig
2
(k − p)µ

k
p

Zµ

G

h
g

2 cos θW
(k − p)µ

k
p

G

G

h −ig
2

M2
H

MW

G±

G∓

h −ig
2

M2
H

MW

h

h

W±
µ

W∓
ν

i
2
g2gµν

h

h

Zµ

Zν

i
2

g2

cos2 θW
gµν

h

h

h

h

−i3
4
g2 M2

h

M2
W

Figure D.4: Couplings relevant for the computation of the Higgs self-energy. The cou-
plings are defined for all the momenta incoming. We omit the ones that are listed
in fig. D.2.

D.2.2.1 Diagrams (A) and (D)

Let us start the computation from the diagram (A) of fig. D.3. For the beginning
we will express the W± propagator in a more useful way (below we skip the iε term
in the denominator).

−i

[
gµν − (1− ξ) kµkν

k2−ξM2
W

k2 −M2
W

]
= −i

[
gµν

k2 −M2
W

+
kµkν

M2
W

(
1

k2 − ξM2
W

− 1

k2 −M2
W

)]
.

(D.8)
It is true, because of the following simple identity

1

k2 − ξM2
W

− 1

k2 −M2
W

= − (1− ξ)M2
W

(k2 −M2
W )(k2 − ξM2

W )
.

We will set ξ = 0 only at the end of the computation. Now we are ready to write
down the expression corresponding to this diagram. For concreteness let us assume
that the W+ boson is propagating in the loop (the contribution from the diagram
with W− will be the same, so in the end we will multiply the result by 2). Assigning
momentum p to the Higgs boson, momentum k to the W boson, and (due to
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momentum conservation) p− k to the G, we arrive at the following integral2

g2

4

∫
dDk

(2π)D
(k − 2p)µ

[
gµν

k2 −M2
W

+
kµkν

M2
W

(
1

k2 − ξM2
W

− 1

k2 −M2
W

)]
×(2p− k)ν

1

(p− k)2
µε. (D.9)

We will treat the part containing gµν , and the one containing kµkν separately. Let
us start with the gµν part.

numerator = (k − 2p)µg
µν(2p− k)ν = −(2p− k)2 = −4p2 + 4pk − k2.

Substituting

pk =
1

2

[
p2 + k2 − (p− k)2

]
, (D.10)

we can continue

numerator = −4p2 − k2 + 2p2 + 2k2 − 2(p− k)2 = k2 − 2p2 − 2(p− k)2.

Adding the denominator we get the following expression (below the trick is to modify
the numerator in such a way, as to cancel the denominator)∫

dDk

(2π)D
µε
k2 − 2p2 − 2(p− k)2

(k2 −M2
W )(p− k)2

=

∫
dDk

(2π)D
k2 −M2

W − 2(p− k)2 − 2p2 +M2
W

(k2 −M2
W )(p− k)2

= −i
[ ∫

dDk

(2π)D
iµε

(p− k)2
− 2

∫
dDk

(2π)D
iµε

k2 −M2
W

+ (−2p2 +M2
W )

∫
dDk

(2π)D
iµε

(k2 −M2
W )(p− k)2

]
= −i

[
a(0)− 2a(MW ) + (−2p2 +M2

W )b0(p2,MW , 0)
]

= −i
[
−2a(MW ) + (−2p2 +M2

W )b0(p2,MW , 0)
]
, (D.11)

where in the last equality we used the fact that a(0) = 0.
Let us now move to the second part, containing kµkν . Looking first at the nu-

merator, we get

numerator = (k − 2p)µk
µkν(2p− k)ν = − [(k − 2p)k]2 = −

(
k2 − 2pk

)2
.

Using the same expression for 2pk as above, and arrive at

numerator = −
[
−p2 + (p− k)2

]2
= −

[
p4 − 2p2(p− k)2 + (p− k)4

]
.

2Note that when constructing this expression one has to take the coupling hG−W+ once with
the “+” sign, and once with the “-” sign, because an incoming W+ is equivalent to an outgoing
W−.
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Now we want to add the denominator and use the same strategy as previously, to
reduce the integral to the Passarino–Veltman functions. In the expression (D.9)
a sum of two terms with different denominators is present. They differ by the ξ
coefficient multiplying the W mass. To reduce the length of the calculations, we
will perform it only for one “generic” denominator wit an arbitrary ξ. Then, adding
in the final result two terms – one with ξ = 0 (it corresponds to the denominator
with ξ, and in the Landau gauge ξ = 0), and the other with ξ = 1 (it reproduces
a denominator with no ξ), we will recover the correct result in the Landau gauge.

−
∫

dDk

(2π)D
µε

[p4 − 2p2(p− k)2 + (p− k)4]

(k2 − ξM2
W )(p− k)2

= −i
[
− p4

∫
dDk

(2π)D
iµε

(k2 − ξM2
W )(p− k)2

+ 2p2

∫
dDk

(2π)D
iµε

k2 − ξM2
W

−
∫

dDk

(2π)D
iµε

(p− k)2

k2 − ξM2
W

]
= −i

[
−p4b0(p2, ξMW , 0) + 2p2a(ξMW )−

∫
dDk

(2π)D
iµε

(p− k)2

k2 − ξM2
W

]
. (D.12)

Above the notation a(ξMW ) should be treated rather symbolically.
√
ξ would be

more correct than ξ, however as we consider only ξ = 0, 1, it does not matter, as
√
ξ = ξ. Let us elaborate a bit more on the last integral∫

dDk

(2π)D
iµε

(p− k)2

k2 − ξM2
W

=

∫
dDk

(2π)D
iµε

p2 − 2pk + k2

k2 − ξM2
W

= p2

∫
dDk

(2π)D
iµε

k2 − ξM2
W

+

∫
dDk

(2π)D
iµε + ξM2

W

∫
dDk

(2π)D
iµε

k2 − ξM2
W

= (p2 + ξM2
W )a (ξMW ) +

∫
dDk

(2π)D
iµε, (D.13)

where the integral over kp in the first line is zero, because it is an odd function, while
the denominator is even under the change k → −k.

Now, collecting the results of Eq. (D.12) and (D.13) we get the result for a generic
denominator

−i
[
−p4b0(p2, ξMW , 0) + (p2 − ξM2

W )a (ξMW )−
∫

dDk

(2π)D
iµε
]
.

So when we subtract the two terms with ξ = 0 and ξ = 1, we get

(ξ = 0)− (ξ = 1) = −i
{
−p4[b0(p2, 0, 0)− b0(p2,MW , 0)]− (p2 −M2

W )a(MW )
}
,

(D.14)
where the fact that a(0) = 0 was taken into account.
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Finally, adding the terms with kµkν , Eq. (D.14) (remembering that it should be
divided by M2

W ), and gµν , Eq. (D.11), we end up with the following result

− ig
2

4

{
− 2a(MW ) +

(
−2p2 +M2

W

)
b0(p2,MW , 0)

− p4

M2
W

[
b0(p2, 0, 0)− b0(p2,MW , 0)

]
+

(
− p2

M2
W

+ 1

)
a(MW )

}
= −ig

2

4

[
−
(
p2

M2
W

+ 1

)
a(MW ) +

(
p4

M2
W

− 2p2 +M2
W

)
b0(p2,MW , 0)

− p4

M2
W

b0(p2, 0, 0)

]
= −i g2

4M2
W

[
−
(
p2 +M2

W

)
a(MW ) +

(
p2 −M2

W

)2
b0(p2,MW , 0)− p4b0(p2, 0, 0)

]
.

(D.15)

To get the final result for the diagram (A) of fig. D.3 we should multiply Eq. (D.15)
by a factor of 2 since in fact it represents two diagrams with either W+ or W−

propagating in the loop. The final contribution reads

(A) = −i g2

2M2
W

[
M2

Wa (MG±) +
(
−p2 −M2

W +M2
G±

)
a(MW )

− (p2 −M2
G±)2b0

(
p2, 0,MG±

)
(D.16)

+
(
p4 +M4

G± +M4
W − 2p2M2

W − 2M2
G±M

2
W − 2p2M2

G±

)
b0(p2,MW ,MG±)

]
.

Above we have explicitly included the masses of the Goldstone bosons. It these
particles are on-shell, these masses of course vanish, and the expression simplifies.
However, for certain computations it is needed to allow for non-zero Goldstone
masses.

The diagram (D) differs from (A) only by: the value of the coupling, the mass
of the propagating boson (MW has to be changed to MZ) and the overall factor of
2, which is not present in this case. The coupling can be expressed as follows

g2

4 cos2 θW
=
g2 + g′2

4
.

Having that, we can just write down the final result:

(D) = −ig
2 + g′2

4M2
Z

[
M2

Za (MG) +
(
−p2 −M2

Z +M2
G

)
a(MZ)

− (p2 +M2
G)2b0

(
p2, 0,MG

)
+
(
p2 +M2

G −M2
Z

)2
b0(p2,MZ ,MG)

]
. (D.17)

D.2.2.2 Diagrams (B) and (E)

Diagrams (B) and (E) will be computed in absolutely analogous manner. Let us
start with the diagram (B). It is the one that requires the longest calculations.
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Using the propagator from Eq. (D.8), assigning momentum p to the external
Higgs fields, momentum k and p− k to the W bosons, and using the couplings from
fig. D.2 we can write down the integral corresponding to the diagram (B)

(B) = g2M2
W

∫
dDk

(2π)D
µε gµρgνσ︸ ︷︷ ︸

F

 gµν

k2 −M2
W︸ ︷︷ ︸

♥

+
kµkν

M2
W

(
1

k2 − ξM2
W

− 1

k2 −M2
W

)
︸ ︷︷ ︸

♠



×

 gρσ

(p− k)2 −M2
W︸ ︷︷ ︸

♦

+
(p− k)ρ(p− k)σ

M2
W

(
1

(p− k)2 − ξM2
W

− 1

(p− k)2 −M2
W

)
︸ ︷︷ ︸

♣

 .
The expression is rather lengthy and requires multiplying various terms. Be-

cause of that we labelled different terms with symbols, and will treat their products
separately.

F · ♥ · ♦

∫
dDk

(2π)D
µε(F · ♥ · ♦) =

∫
dDk

(2π)D
µεgµρgνσg

µνgρσ
1

k2 −M2
W

1

(p− k)2 −M2
W

=

∫
dDk

(2π)D
µεgρρ

1

k2 −M2
W

1

(p− k)2 −M2
W

= −iDb0(p2,MW ,MW )

= −4ibb0(p2,MW ,MW ). (D.18)

F · ♠ · ♦

Let us start from the numerator

numerator = gµρgνσg
µνkρkσ = kµkνgµν = k2.

Now let us proceed with a term, which has a generic denominator, with ξ ∈ {0, 1}
(as above in section D.2.2.1). As previously, we add and subtract mass terms in
the numerator in such a way as to cancel some of the terms in the denominator.

1

M2
W

∫
dDk

(2π)D
iµε

k2

(k2 − ξM2
W ) [(p− k)2 −M2

W ]

=
1

M2
W

∫
dDk

(2π)D
iµε

k2 − ξM2
W

(k2 − ξM2
W ) [(p− k)2 −M2

W ]

+
ξM2

W

M2
W

∫
dDk

(2π)D
iµε

1

(k2 − ξM2
W ) [(p− k)2 −M2

W ]

= −i
[

1

M2
W

a(MW ) + ξb0(p2, ξMW ,MW )

]
.
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Now the full result of this part will be obtained by subtracting the term with ξ = 1

from the term with ξ = 0.∫
dDk

(2π)D
µε(F · ♠ · ♦) = −i

[
1

M2
W

a(MW )− 1

M2
W

a(MW )− b0(p2,MW ,MW )

]
= −i

[
−b0(p2,MW ,MW )

]
. (D.19)

F · ♥ · ♣

If we change the variables in this expression, such as k′ = k − p we recover
precisely the expression F · ♠ · ♦, so the result of this part will be exactly the same
as above.

F · ♠ · ♣

Let us start from simplifying the numerator

numerator = gµρgνσk
µkν(p− k)ρ(p− k)σ = kρkσ(p− k)ρ(p− k)σ = [k(p− k)]2 .

We use the familiar expression pk = 1
2

[p2 + k2 − (p− k)2] and continue

numerator =

[
1

2
p2 +

1

2
k2 − 1

2
(p− k)2 − k2

]2

=
1

4

[
p2 − k2 − (p− k)2

]2
=

1

4

 p4︸︷︷︸
(a)

+ k4︸︷︷︸
(b)

+ (p− k)4︸ ︷︷ ︸
(c)

−2 p2k2︸︷︷︸
(d)

−2 p2(p− k)2︸ ︷︷ ︸
(e)

+2 k2(p− k)2︸ ︷︷ ︸
(f)

 . (D.20)

To keep track of all the terms we will consider them separately. We will analyze each
term with a generic denominator, and then choosing appropriate values for ξ and ξ′

write down the full result. In the following we add a factor of i in the numerators,
to comply with the definitions of a and b0 functions, so we need to remember to add
a −i compensating factor in the final result.

(a)

p4

∫
dDk

(2π)D
iµε

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]
= p4b0(p2, ξMW , ξ

′MW ). (D.21)

(b) ∫
dDk

(2π)D
iµε

k4

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

=

∫
dDk

(2π)D
iµε

k2 (k2 − ξM2
W ) + k2ξM2

W

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]
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=

∫
dDk

(2π)D
iµε

k2

[(p− k)2 − ξ′M2
W ]

+ ξM2
W

∫
dDk

(2π)D
iµε

k2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]
.

In the first integral we change variables l = k − p, and proceed.∫
dDk

(2π)D
iµε

(l + p)2

l2 − ξ′M2
W

+ ξM2
W

∫
dDk

(2π)D
iµε

1

[(p− k)2 − ξ′M2
W ]

+ ξ2M4
W

∫
dDk

(2π)D
iµε

1

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

=

∫
dDk

(2π)D
iµε

l2 + lp+ p2

l2 − ξ′M2
W

+ ξM2
Wa(ξ′MW ) + ξ2M4

W b0(p2, ξMW , ξ
′MW ).

(D.22)

The integral over lp vanishes, because it is an odd function of l, while the de-
nominator is even. Continuing we get∫

dDk

(2π)D
iµε +

(
p2 + ξ′M2

W

)
a(ξ′MW ) + ξM2

Wa(ξ′MW ) + ξ2M4
W b0(p2, ξMW , ξ

′MW )

=

∫
dDk

(2π)D
iµε +

[
p2 + (ξ + ξ′)M2

W

]
a(ξ′MW ) + ξ2M4

W b0(p2, ξMW , ξ
′MW ).

(D.23)

(c) It is easy to check, by changing the variables so that l = k − p, that the result
of this part is the same as of the part above with the exchange ξ ↔ ξ′.∫

dDk

(2π)D
iµε

(p− k)4

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

=

∫
dDk

(2π)D
iµε

l4

[(p− l)2 − ξM2
W ] (l2 − ξ′M2

W )

=

∫
dDk

(2π)D
iµε +

[
p2 + (ξ + ξ′)M2

W

]
a(ξMW ) + ξ′2M4

W b0(p2, ξMW , ξ
′MW ).

(D.24)

(d)

p2

∫
dDk

(2π)D
iµε

k2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

= p2

∫
dDk

(2π)D
iµε

k2 − ξM2
W

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

+ p2ξM2
W

∫
dDk

(2π)D
iµε

1

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

= p2
[
a(ξ′MW ) + ξM2

W b0(p2, ξMW , ξ
′MW )

]
.

(D.25)
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(e) In the same way as in the point (c), it can be shown that the result of this
point is the same as the result of (d) with the exchange ξ ↔ ξ′, namely

p2

∫
dDk

(2π)D
iµε

(p− k)2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

= p2
[
a(ξMW ) + ξ′M2

W b0(p2, ξMW , ξ
′MW )

]
. (D.26)

(f) ∫
dDk

(2π)D
iµε

k2(p− k)2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

=

∫
dDk

(2π)D
iµε

k2 [(p− k)2 − ξ′M2
W ]

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

+ ξ′M2
W

∫
dDk

(2π)D
iµε

k2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]
.

The result for the second term can be obtained from the point (d). Thus we
get∫

dDk

(2π)D
iµε

k2 − ξM2
W

(k2 − ξM2
W )

+ ξM2
W

∫
dDk

(2π)D
iµε

1

(k2 − ξM2
W )

+ ξ′M2
W

[
a(ξ′MW ) + ξM2

W b0(p2, ξMW , ξ
′MW )

]
=

∫
dDk

(2π)D
iµε +M2

W

[
ξa(ξMW ) + ξ′a(ξ′MW ) + ξξ′M2

W b0(p2, ξMW , ξ
′MW )

]
.

(D.27)

Now we can collect the contributions of the points (a)–(f) (Eqs. (D.21)–(D.27)).

(a) + (b) + (c)− 2(d)− 2(e) + 2(f)

= p4b0(p2, ξMW , ξ
′MW )

+

∫
dDk

(2π)D
iµε +

[
p2 + (ξ + ξ′)M2

W

]
a(ξ′MW ) + ξ2M4

W b0(p2, ξMW , ξ
′MW )

+

∫
dDk

(2π)D
iµε +

[
p2 + (ξ + ξ′)M2

W

]
a(ξMW ) + ξ′2M4

W b0(p2, ξMW , ξ
′MW )

− 2p2
[
a(ξ′MW ) + ξM2

W b0(p2, ξMW , ξ
′MW )

]
− 2p2

[
a(ξMW ) + ξ′M2

W b0(p2, ξMW , ξ
′MW )

]
+ 2

∫
dDk

(2π)D
iµε + 2M2

W

[
ξa(ξMW ) + ξ′a(ξ′MW ) + ξξ′M2

W b0(p2, ξMW , ξ
′MW )

]
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= 4

∫
dDk

(2π)D
iµε +

[
−p2 + (3ξ + ξ′)M2

W

]
a(ξMW ) +

[
−p2 + (3ξ′ + ξ)M2

W

]
a(ξ′MW )

+
[
p4 +M4

W

(
ξ2 + ξ′2 + 2ξξ′

)
− 2p2M2

W (ξ + ξ′)
]
b0(p2, ξMW , ξ

′MW )

= 4

∫
dDk

(2π)D
iµε +

[
−p2 + (3ξ + ξ′)M2

W

]
a(ξMW ) +

[
−p2 + (3ξ′ + ξ)M2

W

]
a(ξ′MW )

+
[
p2 −M2

W (ξ + ξ′)
]2
b0(p2, ξMW , ξ

′MW ).

Therefore our integral with a generic denominator reads

1

4M4
W

∫
dDk

(2π)D
iµε

[p2 − k2 − (p− k)2]
2

(k2 − ξM2
W ) [(p− k)2 − ξ′M2

W ]

=
1

M4
W

∫
dDk

(2π)D
iµε +

1

4M4
W

{ [
−p2 + (3ξ + ξ′)M2

W

]
a(ξMW )

+
[
−p2 + (3ξ′ + ξ)M2

W

]
a(ξ′MW ) +

[
p2 −M2

W (ξ + ξ′)
]2
b0(p2, ξMW , ξ

′MW )
}

≡ I(ξ, ξ′).

To get the final result for
∫

(F · ♠ · ♣) we have to add terms with different values of
ξ, ξ′. It is easy to see that I(ξ, ξ′) = I(ξ′, ξ). Hence∫

dDk

(2π)D
iµε(F · ♠ · ♣) = I(0, 0) + I(1, 1)− 2I(1, 0)

=
1

M4
W

∫
dDk

(2π)D
iµε +

p4

4M4
W

b0(p2, 0, 0)

+
1

M4
W

∫
dDk

(2π)D
iµε +

1

4M4
W

[
2
(
−p2 + 4M2

W

)
a(MW ) +

(
p2 − 2M2

W

)2
b0(p2,MW ,MW )

]
− 2

M4
W

∫
dDk

(2π)D
iµε − 1

4M4
W

[
2(−p2 + 3M2

W )a(MW ) + 2
(
p2 −M2

W

)2
b0(p2,MW , 0)

]
.

After simplifying we get∫
dDk

(2π)D
iµε(F · ♠ · ♣) =

1

4M4
W

[
2M2

Wa(MW ) + p4b0(p2, 0, 0)

+
(
p2 − 2M2

W

)2
b0(p2,MW ,MW )− 2

(
p2 −M2

W

)2
b0(p2,MW , 0)

]
.

(D.28)

Eventually, we can collect all the contributions, Eqs. (D.18), (D.19), (D.28), and
write down the final result for the (B) diagram.

(B) =− ig2
{

4M2
W b

b
0(p2,MW ,MW )− 2M2

W b0(p2,MW ,MW )

+
1

4M2
W

[
2M2

Wa(MW ) + p4b0(p2, 0, 0) +
(
p2 − 2M2

W

)2
b0(p2,MW ,MW )

− 2
(
p2 −M2

W

)2
b0(p2,MW , 0)

]}
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=− ig2

4M2
W

[
2M2

Wa(MW ) + p4b0(p2, 0, 0)− 2
(
p2 −M2

W

)2
b0(p2,MW , 0)

+ 16M4
W b

b
0(p2,MW ,MW ) +

(
p4 − 4p2M2

W − 4M4
W

)
b0(p2,MW ,MW )

]
.

(D.29)

The result for the diagram (E) will differ from the one above only by the coupling
(see fig. D.2) and a symmetry factor of 1

2
. Therefore

(E) =− i (g2 + g′2)

8M2
Z

[
2M2

Za(MZ) + p4b0(p2, 0, 0)− 2
(
p2 −M2

Z

)2
b0(p2,MZ , 0)

+ 16M4
Zb

b
0(p2,MZ ,MZ) +

(
p4 − 4p2M2

Z − 4M4
Z

)
b0(p2,MZ ,MZ)

]
. (D.30)

D.2.2.3 Diagrams (C) and (F)

The diagram (C) is easy to compute. If we assign a momentum k to theW circulating
in the loop, and use the coupling from fig. D.4, we get the following expression

(C) =
g2

2

∫
dDk

(2π)D
µε
gµν
(
gµν − kµkν

k2

)
k2 −M2

W

= −ig
2(D − 1)

2

∫
dDk

(2π)D
iµε

1

k2 −M2
W

= −i3g
2

2
ab(MW ). (D.31)

The computation for the diagram (F) works exactly the same, up to the value of
the coupling constant and the symmetry factor. The result reads

(F ) = −i3 (g2 + g′2)

4
ab(MZ). (D.32)

D.2.2.4 Diagrams (G)

The diagrams (G) are proportional to the a function. The result for the h loop reads
(with k being the momentum of h inside the loop)

−i3
8
g2 M

2
h

M2
W

∫
dDk

(2π)D
iµε

1

k2 −M2
h

= −i3
8
g2 M

2
h

M2
W

a(Mh).

The remaining diagrams are computed analogously, and the result reads

(G) = −i
[

3

8
g2 M

2
h

M2
W

a(Mh) +
g2

4

M2
h

M2
W

a(MG±) +
g2

8

M2
h

M2
W

a(MG)

]
. (D.33)

D.2.2.5 Diagrams (H)

The contributions from the diagrams (H) are also very easy to compute since only
scalar integrals are involved. The contributions from different scalars differ only by
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the coupling constants and symmetry factors. The result reads

(H) = −i
[
g2

4

M4
h

M2
W

b0(p2,MG± ,MG±) +
g2

8

M4
h

M2
W

b0(p2,MG,MG) +
9

8
g2 M

4
h

M2
W

b0(p2,Mh,Mh)

]
.

(D.34)

D.2.2.6 Diagrams (I)

The contribution from fermions reads as follows (Mf is the mass of the fermion, and
a color factor equal 3 is added)

3g2

4

M2
f

M2
W

∫
dDk

(2π)D
µε(−1)Tr

[
1

/k −Mf

1

(/k − /p)−M2
f

]

= −3g2

4

M2
f

M2
W

∫
dDk

(2π)D
µεTr

{
k2 − kp+m2

(k2 −M2
f )[(k − p)2 −M2

f ]

}
.

Using Eq. (D.10) for pk, and taking Tr(I) = 4 we get

− 3g2
M2

f

M2
W

∫
dDk

(2π)D
µε
k2 − 1

2
k2 − 1

2
p2 + 1

2
(p− k)2 +m2

(k2 −M2
f )[(k − p)2 −M2

f ]

= −3g2

2

M2
f

M2
W

∫
dDk

(2π)D
µε
k2 − p2 + (p− k)2 + 2m2

(k2 −M2
f )[(k − p)2 −M2

f ]

= i
3g2

2

M2
f

M2
W

∫
dDk

(2π)D
iµε

k2 −M2
f + (p− k)2 −M2

f − p2 + 4m2

(k2 −M2
f )[(k − p)2 −M2

f ]

= i
3g2

2

M2
f

M2
W

[
2a(Mf ) + (−p2 + 4M2

f )b0(p2,Mf ,Mf )
]
.

The final contribution is a sum of the expressions for t and b quarks (we neglect
the light quarks)

(I) = i
3g2

2M2
W

{
M2

t

[
2a(Mt) + (−p2 + 4M2

t )b0(p2,Mt,Mt)
]

+M2
b

[
2a(Mb) + (−p2 + 4M2

b )b0(p2,Mb,Mb)
]}
. (D.35)

D.2.2.7 Higgs self-energy

Now we can collect all the contributions computed in the previous sections. The com-
putation is rather lengthy but we display it for the sake of completeness.

Σ(p2) =
g2

2M2
W

[
M2

Wa (MG±) +
(
−p2 −M2

W +M2
G±

)
a(MW )

− (p2 +M2
G±)2b0

(
p2, 0,MG±

)
+
(
p2 +M2

G± −M2
W

)2
b0(p2,MW ,MG±)

]
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+
g2 + g′2

4M2
Z

[
M2

Za (MG) +
(
−p2 −M2

Z +M2
G

)
a(MZ)

− (p2 +M2
G)2b0

(
p2, 0,MG

)
+
(
p2 +M2

G −M2
Z

)2
b0(p2,MZ ,MG)

]
+

g2

4M2
W

[
2M2

Wa(MW ) + p4b0(p2, 0, 0)− 2
(
p2 −M2

W

)2
b0(p2,MW , 0)

+ 16M4
W b

b
0(p2,MW ,MW ) +

(
p4 − 4p2M2

W − 4M4
W

)
b0(p2,MW ,MW )

]
+

(g2 + g′2)

8M2
Z

[
2M2

Za(MZ) + p4b0(p2, 0, 0)− 2
(
p2 −M2

Z

)2
b0(p2,MZ , 0)

+ 16M4
Zb

b
0(p2,MZ ,MZ) +

(
p4 − 4p2M2

Z − 4M4
Z

)
b0(p2,MZ ,MZ)

]
+

3g2

2
ab(MW )

+
3 (g2 + g′2)

4
ab(MZ)

+
3

8
g2 M

2
h

M2
W

a(Mh) +
g2

4

M2
h

M2
W

a(MG±) +
g2

8

M2
h

M2
W

a(MG)

+
9

8
g2 M

4
h

M2
W

b0(p2,Mh,Mh) +
g2

4

M4
h

M2
W

b0(p2,MG± ,MG±) +
g2

8

M4
h

M2
W

b0(p2,MG,MG)

− 3g2

2M2
W

M2
t

[
2a(Mt) + (−p2 + 4M2

t )b0(p2,Mt,Mt)
]

− 3g2

2M2
W

M2
b

[
2a(Mb) + (−p2 + 4M2

b )b0(p2,Mb,Mb)
]

=
g2

2M2
W

[
M2

Wa (MG±) +
(
−p2 +M2

G±

)
a(MW )

− (p2 +M2
G±)2b0

(
p2, 0,MG±

)
+
(
p2 +M2

G± −M2
W

)2
b0(p2,MW ,MG±)

]
+
g2 + g′2

4M2
Z

[
M2

Za (MG) +
(
−p2 +M2

G

)
a(MZ)

− (p2 +M2
G)2b0

(
p2, 0,MG

)
+
(
p2 +M2

G −M2
Z

)2
b0(p2,MZ ,MG)

]
+

g2

4M2
W

[
p4b0(p2, 0, 0)− 2

(
p2 −M2

W

)2
b0(p2,MW , 0)

+ 16M4
W b

b
0(p2,MW ,MW ) +

(
p4 − 4p2M2

W − 4M4
W

)
b0(p2,MW ,MW )

]
+

(g2 + g′2)

8M2
Z

[
p4b0(p2, 0, 0)− 2

(
p2 −M2

Z

)2
b0(p2,MZ , 0)

+ 16M4
Zb

b
0(p2,MZ ,MZ) +

(
p4 − 4p2M2

Z − 4M4
Z

)
b0(p2,MZ ,MZ)

]
+

3g2

2
ab(MW )
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+
3 (g2 + g′2)

4
ab(MZ)

+
3

2
λ1a(Mh) + λ1a(MG±) +

1

2
λ1a(MG)

+
9

2
λ2

1v
2b0(p2,Mh,Mh) + λ2

1v
2b0(p2,MG± ,MG±) +

1

2
λ2

1v
2b0(p2,MG,MG)

− 3g2

2M2
W

M2
t

[
2a(Mt) + (−p2 + 4M2

t )b0(p2,Mt,Mt)
]

− 3g2

2M2
W

M2
b

[
2a(Mb) + (−p2 + 4M2

b )b0(p2,Mb,Mb)
]
.

D.3 Higgs self-energy and tadpoles in the IDM

Now we turn to the computations of one-loop tadpoles and self-energy of the Higgs
boson within the IDM. All the diagrams that were present in the SM case will be
also present here. The only new contributions that have to be taken into account
are purely scalar loops, no other new couplings are present.

From the potential (2.1) couplings between the scalar particles can be read off
after a symmetry breaking VEV is introduced. The quartic and trilinear scalar
couplings are listed below, in tables D.1 and D.2.

G+G+G−G− 2λ1, H+H−HH λ2, G−H+Ah i
2
(−λ4 + λ5),

hhGG λ1, G+G−HH λ3, H−G+hA i
2
(λ4 − λ5),

GGGG 3λ1, hhH+H− λ3, H−G+GH i
2
(−λ4 + λ5),

G+G−GG λ1, GGH+H− λ3, G−H+GH i
2
(λ4 − λ5),

hhhh 3λ1, G+G−AA λ3, H−G+hH 1
2
(λ4 + λ5),

G+G−hh λ1, H−H−G+G+ 2λ5, H−G+GA 1
2
(λ4 + λ5),

H+H+H−H− 2λ2, G−G−H+H+ 2λ5, hhHH λ3 + λ4 + λ5,

HHAA λ2, hGAH λ5, AAGG λ3 + λ4 + λ5,

HHHH 3λ2, G+G−H+H− λ3 + λ4, GGHH λ3 + λ4 − λ5,

AAAA 3λ2, G−H+AG 1
2
(λ4 + λ5), hhAA λ3 + λ4 − λ5.

H+H−AA λ2, G−H+hH 1
2
(λ4 + λ5),

Table D.1: Quartic couplings between the scalars. All should be multiplied by
a factor −i.
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hGG λ1v hhh 3λ1v G+G−h λ1v

GAH λ5v hH+H− λ3v G−H+H 1
2
(λ4 + λ5)v

G−H+A i
2
(−λ4 + λ5)v H −G+ A i

2
(λ4 − λ5)v H−G+H 1

2
(λ4 + λ5)v

hHH (λ3 + λ4 + λ5)v hAA (λ3 + λ4 − λ5)v

Table D.2: Trilinear couplings between the scalars. All should be multiplied by
a factor −i.

D.3.1 Higgs tadpole

The only new contribution to the Higgs tadpole will be the scalar loops depicted in
fig. D.5. They are easily computable, and the result reads

−iTIDM = −i
[
λ3a(MH±) +

1

2
λ345a(MH) +

1

2
λ−345a(MA)

]
v.

The total tadpole is a sum of SM and IDM contributions

T = TSM + TIDM.

h

H,A,H±

Figure D.5: The Higgs tadpole diagrams in the IDM. In addition there are the dia-
grams present also in the SM, see fig. D.1

D.3.2 Higgs self-energy

The non-SM contributions to the Higgs self-energy are presented in fig. D.6. There
are two types of diagrams, but since only scalar particles are present, they are all
easy to compute.

The contribution of the (A)-type diagrams reads

(A) = −i
[
λ3a(MH±) +

1

2
λ345a(MH) +

1

2
λ−345a(MA)

]
,

and the contributions of the (B)-type diagrams give

(B) = −i
[
(λ3v)2b0

(
p2,MH± ,MH±

)
+

1

2
(λ345v)2b0

(
p2,MH ,MH

)
+

1

2
(λ−345v)2b0

(
p2,MA,MA

) ]
. (D.36)
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h h

H,A,H±

(A)

h h

H,A,H±

(B)

Figure D.6: Non-SM contributions to the Higgs self-energy in the IDM.

Once more, the Higgs self-energy is the sum of the SM and the IDM terms

Σ = ΣSM + ΣIDM = ΣSM + i(A) + i(B).

D.4 Self-energies of the inert scalars and

the Goldstone bosons

For the computation of the self-energies of the remaining scalars we will need to know
the couplings between them and the gauge bosons. These couplings are listed in
figs. D.7 and D.8 (all the following figures can be found in the end of this appendix).
All the momenta should be assumed to be incoming. The results for the dark scalars
can be written down with the use of the computations done for the Higgs self-energy,
and knowing the list of couplings. Additional complications will appear for the
Goldstone bosons.

D.4.1 H

The diagrams contributing to the self-energy ofH are listed in fig. D.9. The letters are
assigned to different types of diagrams such that diagrams of the same type present
in the Higgs self-energy have the same label. There are no fermionic contributions,
nor diagrams with two gauge propagators. The result reads

−iΣH = −i
{

g2

2M2
W

[
M2

Wa (MH±) +
(
−p2 −M2

W +M2
H±

)
a(MW )

− (p2 −M2
H±)2b0

(
p2, 0,MH±

)
+
(
p4 +M4

H± +M4
W − 2p2M2

W − 2p2M2
H± − 2M2

H±M
2
W

)
b0

(
p2,MW ,MH±

)]
+

3g2

2
ab(MW )
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+
g2 + g′2

4M2
Z

[
M2

Za (MA) +
(
−p2 −M2

Z +M2
A

)
a(MZ)

− (p2 −M2
A)2b0

(
p2, 0,MA

)
+
(
p4 +M4

A +M4
Z − 2p2M2

A − 2p2M2
Z − 2M2

AM
2
Z

)
b0

(
p2,MZ ,MA

)]
+

3

4

g2

cos2 θW
ab(MZ)

+
3

2
λ2a(MH) +

1

2
λ2a(MA) + λ2a(MH±)

+ λ3a(MG±) +
1

2
λ345a(Mh) +

1

2
λ−345a (MG)

+λ2
5v

2b0(p2,MA,MG) + λ2
345v

2b0(p2,MH ,Mh) +
1

2
λ2

45v
2b0(p2,MH± ,MG±)

}
.

D.4.2 A

The results are very similar for the A scalar. The diagrams contributing to the self-
energy of A are shown in fig. D.10, and the result for the self-energy reads

−iΣA = −i
{

g2

2M2
W

[
M2

Wa (MH±) +
(
−p2 −M2

W +M2
H±

)
a(MW )

− (p2 −M2
H±)2b0

(
p2, 0,MH±

)
+
(
p4 +M4

H± +M4
W − 2p2M2

H± − 2p2M2
W − 2M2

H±M
2
W

)
b0(p2,MW ,MH±)

]
+

3g2

2
ab(MW )

+
g2 + g′2

4M2
Z

[
M2

Za (MH) +
(
−p2 −M2

Z +M2
H

)
a(MZ)

− (p2 −M2
H)2b0

(
p2, 0,MH

)
+
(
p4 +M4

H +M4
Z − 2p2M2

H − 2p2M2
Z − 2M2

HM
2
Z

)
b0(p2,MZ ,MH)

]
+

3

4

g2

cos2 θW
ab(MZ)

+
1

2
λ2a(MH) +

3

2
λ2a(MA) + λ2a(MH±)

+ λ3a (MG±) +
1

2
λ345a(MG) +

1

2
λ−345a(Mh)

+ λ2
5v

2b0(p2,MG,MH) +
1

2
(λ5 − λ4)2v2b0(p2,MG± ,MH±)

+ (λ−345)2v2b0(p2,Mh,MA)

}
.

D.4.3 H±

The H± scalar has more contributions to the self-energy than the neutral inert
scalars since it couples to the photon. The relevant diagrams are shown in fig. D.11.
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The contribution of the (C’) diagram is 0, since a(0) = 0. The diagram with one
photonic internal line is computed with a regulator mass Mγ, which is then taken
to zero. The limit Mγ = 0 needs to be taken with care. We use a similar strategy
to the one used in ref. [205, 206], and this way no infrared singularities arise.

−iΣH± = −i
{
e2
[
3a(MH±)− 3(p2 +M2

H±)b0(p2,MH± , 0)− 2p2
]

+
g2

4M2
W

[
M2

Wa (MH) +
(
−p2 −M2

W +M2
H

)
a(MW )

− (p2 −M2
H)2b0

(
p2, 0,MH

)
+
(
p4 +M4

H + 2M4
W − 2p2M2

H − 2p2M2
W − 2M2

HM
2
W

)
b0(p2,MW ,MH)

]
+

g2

4M2
W

[
M2

Wa (MA) +
(
−p2 −M2

W +M2
A

)
a(MW )

− (p2 −M2
A)2b0

(
p2, 0,MA

)
+
(
p4 +M4

A +M4
W − 2p2M2

A − 2p2M2
W − 2M2

AM
2
W

)
b0(p2,MW ,MA)

]
+

3g2

2
ab(MW )

+
e2 cot2 2θW

M2
Z

[
M2

Za (MH±) +
(
−p2 −M2

Z +M2
H±

)
a(MZ)

− (p2 −M2
H±)2b0

(
p2, 0,MH±

)
+
(
p4 +M4

H± +M4
Z − 2p2M2

H± − 2p2M2
Z − 2M2

H±M
2
Z

)
b0(p2,MZ ,MH±)

]
+

3

4

g2 cos2 2θW
cos2 θW

ab(MZ)

+ 2λ2a(MH±) +
1

2
λ2a(MA) +

1

2
λ2a(MH)

+
1

2
λ3a(Mh) +

1

2
λ3a(MG) + λ34a(MG±)

+
1

4
(λ5 − λ4)2v2b0(p2,M±

G ,MA) + λ2
3v

2b0(p2,Mh,MH±)

+
1

4
λ2

45v
2b0(p2,MG± ,MH)

}
.

D.4.4 G

The diagrams contributing to G self-energy are listed in fig. D.12. G couples to
fermions, contrary to the inert scalars (the coupling to fermions is taken from
Ref. [225]). The result for the self-energy reads

−iΣG = −i
{

g2

2M2
W

[
M2

Wa(MG±) +
(
−p2 −M2

W +M2
G±

)
a(MW )

− (p2 −M2
G±)2b0(p2, 0,MG±)

+
(
p4 +M4

G± +M4
W − 2p2M2

G± − 2p2M2
W − 2MG±M

2
W

)
b0(p2,MW ,MG±)

]
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+
3g2

2
ab(MW )

+
g2 + g′2

4M2
Z

[
M2

Za (Mh) +
(
−p2 −M2

Z +M2
h

)
a(MZ)− (p2 −M2

h)2b0

(
p2, 0,Mh

)
+
(
p4 +M4

h +M4
Z − 2p2M2

h − 2p2M2
Z − 2M2

hM
2
Z

)
b0(p2,MZ ,Mh)

]
+

3

4

g2

cos2 θW
ab(MZ)

+
1

2
λ1a(Mh) +

3

2
λ1a(MG) + λ1a(MG±)

+
1

2
λ345a(MA) +

1

2
λ−345a(MH) + λ3a(MH±)

+ λ2
1v

2b0(p2,MG,Mh) + λ2
5v

2b0(p2,MH ,MA)

+ 3y2
f

[
−2a(mf ) + p2b0(p2,mf ,mf )

]}
.

D.4.5 G±

The diagrams relevant for the G± self-energy are shown in figs. D.13 and D.14. There
appear the (B)-type diagrams with two distinct bosonic lines in the loop. Thus, the
computation is more involved than in the SM case, where the bosons in the loop were
of the same kind. However, we do not present the full derivation here because it goes
along the same lines as in the SM case. The (B”) diagram has to be computed with
a regulator mass of the photon, and then the limit Mγ → 0 must be taken [205, 206].
The result reads (the contribution from the diagram (C’) vanishes, the coupling to
fermions is taken from Ref. [225])

−iΣG± = −i
{
e2
[
3a(MG±)− 3(p2 +M2

G±)b0(p2,MG± , 0)− 2p2
]

+
g2

4M2
W

[
M2

Wa (Mh) +
(
−p2 −M2

W +M2
h

)
a(MW )

− (p2 −M2
h)2b0

(
p2, 0,Mh

)
+
(
p4 +M4

h +M4
W − 2p2M2

h − 2p2M2
W − 2M2

hM
2
W

)
b0(p2,MW ,Mh)

]
+

g2

4M2
W

[
M2

Wa (MG) +
(
−p2 −M2

W +M2
G

)
a(MW )

− (p2 −M2
G)2b0

(
p2, 0,MG

)
+
(
p4 +M4

G +M4
W − 2p2M2

G − 2p2M2
W − 2M2

GM
2
W

)
b0(p2,MW ,MG)

]
+

3g2

2
ab(MW )
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+
g2 sin4 θW
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W
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16M2

ZM
2
W b
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Figure D.7: Triple scalar-gauge coulings in the IDM. All momenta are incoming.
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Figure D.8: Quartic scalar-gauge couplings in the IDM.
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Figure D.9: Diagrams contributing to the self-energy of H.
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Figure D.10: Diagrams contributing to the self-energy of A.
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Figure D.11: Diagrams contributing to the self-energy of H±.
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Figure D.12: Diagrams contributing to the self-energy of G.
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Figure D.13: Diagrams contributing to the self-energy of G± (part 1).
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Figure D.14: Diagrams contributing to the self-energy of G± (part 2).
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