
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Michał Kaczmarczyk

Fragmentation in storage systems with

duplicate elimination
PhD dissertation

Supervisors:

prof. dr hab. Krzysztof Diks

Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

dr Cezary Dubnicki

9LivesData LLC

January 2015

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

January 15, 2015 .
date Michał Kaczmarczyk

Supervisor’s declaration:
the dissertation is ready to be reviewed

January 15, 2015 .
date prof. dr hab. Krzysztof Diks

. .
dr Cezary Dubnicki

Abstract

Deduplication inevitably results in data fragmentation, because logically
continuous data is scattered across many disk locations. Even though this
significantly increases restore time from backup, the problem is still not well
examined. In this work I close this gap by designing algorithms that reduce
negative impact of fragmentation on restore time for two major types of
fragmentation: internal and inter-version.
Internal stream fragmentation is caused by the blocks appearing many

times within a single backup. Such phenomenon happens surprisingly often
and can result in even three times lower restore bandwidth. With an al-
gorithm utilizing available forward knowledge to enable efficient caching I
managed to improve this result on average by 62%-88% with only about 5%
extra memory used. Although these results are achieved with limited forward
knowledge, they are very close to the ones measured with no such limitation.
Inter-version fragmentation is caused by duplicates from previous back-

ups of the same backup set. Since such duplicates are very common due
to repeated full backups containing a lot of unchanged data, this type of
fragmentation may double the restore time after even a few backups. The
context-based rewriting algorithm minimizes this effect by selectively rewrit-
ing a small percentage of duplicates during backup, limiting the bandwidth
drop from 21.3% to 2.48% on average with only small increase in writing
time and temporary space overhead.
The two algorithms combined end up in a very effective symbiosis result-

ing in an average 142% restore bandwidth increase with standard 256MB of
per-stream cache memory. In many cases such setup achieves results close
to the theoretical maximum achievable with unlimited cache size. Moreover,
all the above experiments where performed assuming only one spindle, even
though in majority of today’s systems many spindles are used. In a sample
setup with ten spindles, the restore bandwidth results are on average 5 times
higher than in standard LRU case.

Keywords: deduplication, fragmentation, backup, caching, forward knowl-
edge, restore, streaming access

ACM Classification: E.5, H.3.1

Streszczenie

Fragmentacja jest nieuniknioną konsekwencją deduplikacji, ponieważ po-
jedynczy strumień danych rozrzucany jest pomiędzy wiele lokalizacji na dysku.
Fakt ten powoduje znaczące wydłużenie czasu odzyskiwania danych z ko-
pii zapasowych. Mimo to, problem wciąż nie jest dobrze zbadany. Niniejsza
praca wypełnia tę lukę poprzez propozycje algorytmów, które redukują ne-
gatywny wpływ fragmentacji na czas odczytu dla dwóch najważniejszych jej
rodzajów: wewnętrznej fragmentacji strumienia oraz fragmentacji pomiędzy
różnymi wersjami danych.
Wewnętrzna fragmentacja strumienia jest spowodowana blokami powta-

rzającymi się wielokrotnie w pojedynczym strumieniu danych. To zjawisko
zdarza się zaskakująco często i powoduje nawet trzykrotnie niższą wydaj-
ność odczytu. Proponowany w tej pracy algorytm efektywnego zarządzania
pamięcią, wykorzystujący dostępną wiedzę o danych, jest w stanie podnieść
wydajność odczytu o 62-88%, używając przy tym tylko 5% dodatkowej pa-
mięci.
Fragmentacja pomiędzy różnymi wersjami danych jest spowodowana du-

plikatami pochodzącymi z wcześniejszych zapisów tego samego zbioru da-
nych. Ponieważ pełne kopie zapasowe tworzone są regularnie i zawierają duże
ilości powtarzających się danych, takie duplikaty występują bardzo często. W
przypadku późniejszego odczytu, ich obecność może powodować nawet po-
dwojenie czasu potrzebnego na odzyskanie danych, po utworzeniu zaledwie
kilku kopii zapasowych. Algorytm przepisywania kontekstowego minimalizuje
ten efekt przez selektywne przepisywanie małej ilości duplikatów podczas za-
pisu. Takie postępowanie jest w stanie ograniczyć średni spadek wydajności
odczytu z 21,3% do 2,48%, kosztem minimalnego zwiększenia czasu zapisu
danych i wymagania niewielkiej przestrzeni dyskowej na pamięć tymczasową.
Obydwa algorytmy użyte razem działają jeszcze wydajniej, poprawiając

przepustowość odczytu przeciętnie o 142% przy standardowej ilości 256MB
pamięci cache dla każdego strumienia. Dodatkowo, ponieważ powyższe wy-
niki zakładają odczyt z jednego dysku, przeprowadzone zostały testy symu-
lujące korzystanie z przepustowości wielu dysków, gdyż takie konfiguracje są
bardzo częste w dzisiejszych systemach. Dla przykładu, używając dziecięciu
dysków i proponowanych algorytmów, można osiągnąć średnio pięciokrotnie
wyższą wydajność niż w standardowym podejściu z algorytmem typu LRU.

Słowa kluczowe: deduplikacja, fragmentacja, kopia zapasowa, pamięć ca-
che, wiedza przyszła, odzyskiwanie danych, dostęp strumieniowy

Acknowledgments

I would like to express my greatest appreciation to my supervisors: Profes-
sor Krzysztof Diks, for giving me this opportunity, believing in the practical
computer science with insights from a more theoretical perspective; and Dr
Cezary Dubnicki for his close cooperation, precious insights during many
consultations, his time and patience with my progress and sharing his pro-
fessional attitude towards science.
Many thanks to my colleagues: Wojciech Kilian, Marcin Barczyński and

Bartłomiej Romański. Your support with development of testing tools helped
me a lot with performing so many experiments in an endless number of sce-
narios. Thank you also for all the discussions and the time spent reviewing
my ideas and papers along with others: Dr Marek Biskup, Dr Michał Stro-
jnowski, Michał Wełnicki and Krzysztof Lichota.
The companies of NEC and 9LivesData are the ones which should not be

omitted here. Without the knowledge I could acquire while working for both
of them and the hardware which I was allowed to use for testing, none of the
below would take place. Additionally, I would like to thank the University
of Warsaw for allowing me to publish this dissertation and friendly attitude
throughout the time of our cooperation.
I would also like to thank my parents, my two great sisters and my grand-

mother Katarzyna for everything they did for me. Their love and support
gave me the opportunities which in some aspect materialize at this moment.
Special thanks to Professor Andrzej Potocki OP. You did an excellent job in
encouraging me to work in critical moments. Your constant interest in my
work (regardless your extremely different field of interests), passion for true
science and spiritual care were a huge support for me throughout the last
two years.
Last, but not least, my wife Monika. I cannot find words to express my

gratitude not only for the (indirect) impact you made on this thesis. Your
presence in my life changed everything to the level I could never dream of.
Simple thank you is not enough, but there are moments when there is nothing
more one can say. Therefore thank you for your love, inspiring passion for
other people and attitude toward me and our son Jakub.

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Problem statement . 7

1.2.1 Impact of fragmentation on restore bandwidth 7

1.2.2 Inter-version fragmentation 8

1.2.3 Internal stream fragmentation 10

1.3 Thesis contributions . 11

1.4 Outline of dissertation . 12

2 Backup and Deduplication 15

2.1 Secondary storage systems . 15

2.1.1 Requirements . 15

2.1.2 History . 16

2.2 Duplicate elimination . 21

2.2.1 Characteristics . 21

2.2.2 Deduplication ratio . 24

2.2.3 Benefits . 26

2.2.4 Drawbacks and concerns 27

2.3 Today’s market . 28

3 The problem of stream fragmentation 33

3.1 The role of restore in backup systems 33

3.1.1 Backup procedure . 35

3.1.2 Verified combination: Prefetch and cache 36

3.2 Fragmentation problem in systems with duplicate elimination 38

3.2.1 Internal stream fragmentation 39

3.2.2 Inter-version fragmentation 42

3.2.3 Global fragmentation 43

3.2.4 Scalability issues . 46

3.3 Problem magnitude . 47

2 CONTENTS

3.3.1 Impact of different kinds of fragmentation on the latest
backup . 48

3.3.2 Fragmentation in time 51
3.3.3 Cache size impact on restore time 52

3.4 Options to reduce the negative impact of fragmentation during
restore . 53

4 Cache with limited forward knowledge to reduce impact of
internal fragmentation 55
4.1 Desired properties of the final solution 56
4.2 The idea . 56
4.3 System support . 57
4.4 Algorithm details . 57
4.4.1 The system restore algorithm 57
4.4.2 The disk restore process 59
4.4.3 Memory requirements 66
4.4.4 Discussion . 66

4.5 Trade-offs . 67

5 Content Based Rewriting algorithm to reduce impact of inter-
version fragmentation 69
5.1 Desired properties of the final solution 69
5.2 The idea . 70
5.3 System support . 72
5.4 Algorithm details . 74
5.4.1 Block contexts . 74
5.4.2 Keeping the contexts similar 75
5.4.3 Reaching rewrite decisions 75
5.4.4 Implementation details 78
5.4.5 Memory requirements 81
5.4.6 Discussion . 82

5.5 Trade-offs . 82

6 Evaluation with trace driven simulations 85
6.1 Experimental methodology . 85
6.1.1 Backup system model 86
6.1.2 Omitted factors . 89
6.1.3 Data sets description 90
6.1.4 Testing scenarios . 91

6.2 Evaluation of forward knowledge cache 92
6.2.1 Meeting the requirements 92

CONTENTS 3

6.2.2 Setting the forward knowledge size 94
6.2.3 Impact of fragmentation on required cache size 97
6.2.4 Experimenting with larger prefetch 98

6.3 Evaluation of CBR effectiveness 100
6.3.1 Meeting the requirements 100
6.3.2 Cost of rewriting . 102
6.3.3 Setting the rewrite limit 104
6.3.4 Effect of compression 105
6.3.5 Impact of CBR defragmentation process on required

cache size . 106
6.4 Combined impact of both algorithms 107
6.5 Scalability . 111

7 Related Work 115
7.1 Comparison with off-line deduplication 115
7.2 Fragmentation measurement 117
7.3 Defragmentation algorithms 119
7.4 Caching . 121
7.5 Other related work . 123

8 Conclusions 125
8.1 Summary . 125
8.2 Future work . 127
8.2.1 Perfect memory division during restore 127
8.2.2 Optimal cache memory usage 128
8.2.3 Variable size prefetch 128
8.2.4 Retention policy and deletion experiments 129
8.2.5 Possible extensions to CBR algorithm 129
8.2.6 Global fragmentation 130

Glossary 131

Bibliography 135

List of Figures 145

List of Tables 147

Chapter 1

Introduction

This chapter presents the background of backup systems. Next, it states the
motivation of my research along with brief description of the fragmentation
problem in popular systems with deduplication. The final sections show main
contributions of the thesis and provide the outline for the whole dissertation.

1.1 Motivation

 10000

 20000

 30000

 40000

 2010 2012 2014 2016 2018 2020

E
x
a
b
y
te

s

Year

Digital Universe size

Figure 1.1: The Digital Universe size. Source: IDC’s Digital Universe Study,
December 2012 [35]

The digital world becomes bigger and bigger every day. Since 2007 [36]
International Data Corporation has been sizing up what it calls the Dig-
ital Universe, or the amount of digital information created and replicated

6 CHAPTER 1. INTRODUCTION

in a year. The most recent study [35] shows that the digital universe will
about double every two years to achieve an impressive number of 40 trillion
gigabytes in 2020 (see Figure 1.1).
Since practically all of the new data created is stored digitally, the ex-

ponential growth in the amount of data created leads directly to a similar
increase in the demand for storage. The average annual increase in the trans-
actional data stored amounts to 30-50%. The growth of WORM data (write
once, read many), e.g. medical data (such as X-rays), financial, insurance,
multimedia data, is 100% per annum [19]. Additionally, in many areas, leg-
islation [1, 60] requires keeping data for a long time, which further increases
storage needs. It is easy to imagine the need to store company strategic
data or information which cannot be easily recreated, but recent events have
shown a demand for archiving even public Internet content in general. The
reason for this is to preserve the Web for future generation as a space of
”cultural importance”. Such project is lead by British Library [11], and it
has already collected thousands of websites in the British Internet together
with their evolution over time.
The recent report [34] also shows that nearly 75% of our digital world

is a copy, which means that only 25% of created data is unique. When we
look at this number within secondary storage market it can indicate even less
than 5% of unique data stored [37, 85]. This fact is one of the key reasons for
systems with duplicate elimination to become very popular on the backup
market since they appeared about 10 years ago. Having to store actually
only a few percent of all the data significantly lowered the price of disk-based
backup storage which enabled features such as an easy access to any backup
from the past and efficient replication over a network for disaster recovery.
Additionally, high write throughput delivered by systems available [57, 65]
assures small backup window, which together with fractional storage cost
makes more frequent backup service possible (both to schedule and keep).
As estimated [2], the market of such systems, called purpose-built backup

appliance (PBBA), is to grow up to $5.8 billion (8.6 billion gigabytes shipped)
in year 2016 from $2.4 billion (465 million gigabytes shipped) in 2011 (see
figure 1.2).
Introducing secondary storage systems with duplicate elimination was en-

abled by key technologies such as distributed hash tables [24], stream chunk-
ing [68], erasure coding [82], fast duplicate elimination [85], to name a few.
A lot of effort had been put into testing the effectiveness of the approach in
reducing both: time needed to perform backups and storage space required to
save them [23, 52, 67]. The effect is visible in the market popularity. Today,
storage systems with data deduplication deliver new records of backup band-
width [32, 57, 65] and the world is being flooded with various dedup solutions

1.2. PROBLEM STATEMENT 7

 0

 1000

 2000

 3000

 4000

 5000

 2010 2012 2014 2016

R
e

v
e

n
u

e
 (

$
M

)

Year

 0

 2000

 4000

 6000

 8000

 2010 2012 2014 2016

C
a

p
a

c
it
y
 s

h
ip

p
e

d
 (

P
B

)

Year

Figure 1.2: Worldwide Purpose-Built Backup Appliance Revenue (left) and
Capacity Shipped (right) Forecast, 2010-2016. Source: IDC’s Market Analy-
sis, April 2012 [2]

proposed by many vendors [3, 26, 29, 31, 40, 56, 66, 75, 78]. In practice, dedu-
plication has become one of indispensable features of backup systems [2, 4, 9]
and a field of extensive research [23, 42, 45, 46, 54, 70, 76, 77, 80, 81, 85].

1.2 Problem statement

The data fragmentation on standard magnetic hard drives (HDDs) appears
when two or more pieces of data used together are stored far form each
other, therefore reducing the performance achieved with every access to them.
Unfortunately, the problem of fragmentation in deduplication backup systems
is strictly connected with their main feature – the deduplication itself. In
most modern deduplication systems, before the data is written, it is chunked
into relatively small blocks (e.g. 8KB). Only after the block uniqueness is
verified, it is stored on the disk. Otherwise, the address of an already existing
block is returned. As such block could potentially be stored far from the most
recently written ones, the restore of the exactly same stream of data becomes
inefficient. This is the place where the fragmentation story begins.

1.2.1 Impact of fragmentation on restore bandwidth

The restore bandwidth (time to recover data when needed) is one of the ma-
jor factors describing performance of deduplication system, along with data
deduplication ratio (storage space which can be saved) and maximal write
performance (backup window length). Actual restore performance achieved
by a regular customer in his working environment can often differ from the

8 CHAPTER 1. INTRODUCTION

Figure 1.3: The schematic cost of having each kind of fragmentation as a de-
crease of the restore bandwidth achievable by a system with no deduplication.

ones showed by the system manufacturer for various reasons [48, 62, 63, 64,
83]. In particular, the restore bandwidth is usually moderately good for an
initial backup saved to an empty system, but deteriorates for subsequent
backups [42, 45, 54]. The primary reason for this are the different kinds of
data fragmentation caused by deduplication. Those are:

• inter-version fragmentation - caused by periodical backups (daily, weekly,
monthly) of the same data,

• internal stream fragmentation - caused by the same block appearing
many times in a single backup,

• global fragmentation - caused by the same blocks appearing in backups
with no logical connection to each other.

The schematic cost of having each of the above factors, appearing as
a decrease in restore bandwidth, is presented in Figure 1.3. In this work I
am going to look closer into the two main ones (as discovered during further
analysis): inter-version fragmentation and internal stream fragmentation.

1.2.2 Inter-version fragmentation

Inter-version fragmentation can be observed only in systems with in-line
deduplication, where the process of eliminating redundant blocks is done dur-

1.2. PROBLEM STATEMENT 9

Figure 1.4: Backup inter-version fragmentation process caused by duplicate
elimination.

ing the backup. Such systems are the most popular on today’s market [2]. As
in this solution duplicate blocks are never stored, such fragmentation results
in data logically belonging to a recent backup scattered across multiple loca-
tions of older backups. This effect becomes bigger with each backup, as more
and more of its data is actually located in an increasing number of previous
backups implying increasing number of different disk locations. Depending
on the data set, its characterization and backup pattern, my experiments
show a decrease of read performance from a few percent up to more than
50%. As my data sets cover not more than 50 consecutive backups, I expect
this percentage to be even higher when more backups are performed.

This most severe (as increasing) fragmentation of subsequent backups can
be avoided with so-called post-process (off-line) forward-pointing deduplica-
tion. In such approach, a backup is written without any deduplication, and
later the deduplication is performed in the background to preserve the latest
copy of a block [47, 83]. As a result, the fragmentation does not increase and
the latest backup does not become more fragmented with its age. Since the
latest backup is the most likely to be restored, this solution looks promis-
ing. Unfortunately, it suffers from many problems, including (1) an increased
storage consumption because of space needed for data before deduplication
and (2) a significant reduction in write performance of highly duplicated
data, because writing new copies of duplicates is usually much (a few times)
slower than deduplicating such data in-line [32, 46]. The latter problem oc-
curs because writing new data requires transferring it across the network and
committing it to disk, whereas hash-based deduplication needs only compar-
ison of a block hash against hashes of blocks stored in the system assuring
much smaller resource usage (network, processor and disk).

To illustrate the inter-version fragmentation problem, let us assume a full
backup of only one file system is saved every week to a system with backward-
pointing deduplication. In such system the oldest copy of the block is pre-

10 CHAPTER 1. INTRODUCTION

served, as is the case with in-line deduplication, because the new copy is not
even written.
Usually, a file system is not modified much between two backups and after

the second backup many duplicates are detected and not stored again. In the
end, the first backup is placed in continuous storage space and all the new
blocks of the second backup are stored after the end of currently occupied
area (see Figure 1.4). Such scenario is continued during following backups.
After some number of backups, blocks from the latest backup are scattered
all over the storage area. This results in large number of disk seeks needed
for reading the data and in consequence, a very low read performance (see
the restore process scheme of the last backup in Figure 1.4).
Such process can be very harmful to emergency restore, because the above

scenario is typical to in-line deduplication and leads to the highest fragmen-
tation of the backup written most recently – the one which will most likely
be needed for restore when user data is lost.

1.2.3 Internal stream fragmentation

The factor which can also introduce a large restore bandwidth penalty is in-
ternal stream fragmentation. Even though it is caused by deduplication as the
previous one, it is limited to a single backup only. This results in a different set
of characteristics, such as rather constant impact on all the backup versions
of the same data and the variety of deduplication backup systems affected
(including off-line). My experiments have shown that internal stream dedu-
plication, the exact cause of internal stream fragmentation, is usually quite
significant as 17-33% of blocks from a single backup appeared more than
once within the backup. By default, they are eliminated by deduplication
mechanism therefore saving the precious space for user data. Unfortunately,
this happens with a cost of up to 70% performance degradation which is
visible when the restore is necessary. Further analyzes have also shown that
the LRU caching algorithm, which is commonly used with restore in backup
systems, does not work well in the described scenario, very often filling the
memory with useless data.
To illustrate the internal stream fragmentation problem it is enough to

backup a single stream of data, with some average number of internal dupli-
cate blocks, to a system with deduplication. As the system will store only one
copy of each block, the normally sequential backup will not be stored in such
way on the disk any more (see Figure 1.5). This results in a large number of
disk seeks needed for reading the data, and in consequence, a very low read
performance (see the restore process scheme of the backup in Figure 1.5).
In the end, the internal data fragmentation causes both ineffective cache

1.3. THESIS CONTRIBUTIONS 11

Figure 1.5: Backup internal stream fragmentation caused by duplicate elim-
ination.

memory consumption and lower restore bandwidth. The problem character-
istics, though, is much different to the one caused by inter-version fragmen-
tation. First, the impact on the performance is more or less constant for all
the backups from a data set, starting from the first one. Second, the prob-
lem affects all deduplication systems (including off-line) in equally significant
way.

1.3 Thesis contributions

Considering the described scenarios, the goal of this work is to show how to
avoid the reduction in restore performance caused by specific data location
on disk in backup systems with deduplication. The result should be achieved
with no impact on the original deduplication effectiveness nor backup per-
formance. In other words, the ideal deduplication solution should provide
high write bandwidth, as provided currently by the in-line approach, and
high restore performance, without any read penalty caused by any kind of
fragmentation.

The main contributions of this thesis are:

• detailed analysis and description of fragmentation problems specific to
storage systems with deduplication (especially in-line) based on real
traces gathered from users;

• identification of requirements and possible trade-offs for algorithms
solving the problems found;

• proposal of Intelligent Cache with Forward Knowledge as a solution
greatly improving read cache effectiveness and dealing with internal
stream fragmentation by leveraging backup system characteristics;

12 CHAPTER 1. INTRODUCTION

• proposal of Context Based Rewriting Algorithm (CBR) to fight inter-
version fragmentation with no deduplication loss and minimal backup
write performance impact, together with a number of features address-
ing important trade-offs such as write bandwidth, latency, restore per-
formance and temporary use of additional space;

• analysis of the requirements satisfaction and trade-offs resolution of the
proposed algorithms, together with a set of experiments based on real
user traces to prove the effectiveness of the chosen solutions;

• analysis of the scalability of fragmentation problem and the proposed
solutions.

The experiments performed on real user traces proved the quality of pre-
sented algorithms. CBR limited the inter-version fragmentation impact from
21.3% to only 2.48% on average with an increase in backup time of not more
than a few percent. The Intelligent Cache on the other side provided 62%-88%
of average additional performance boost with only 5% of additional memory,
achieving often the performance level of unlimited cache while having less
than 256MB. The two algorithms combined end up in a very effective sym-
biosis resulting in an average 142% restore bandwidth increase, being often
close to the maximal theoretical limitation. This effect is even brighter in
larger configurations with many spindles. For example with ten disks, the
combined algorithms are able to provide 8 times higher restore bandwidth
while, with the same hardware extension, current approach showed only 60%
gain.

1.4 Outline of dissertation

The thesis is organized as follows. The next chapter provides information
about deduplication and storage systems in general. The motivation for this
work, closer look at the nature of the problem of fragmentation, its differ-
ent sources and a few examples are given in Chapter 3. Chapters 4 and 5
present solutions for two different issues which appear in storage systems with
deduplication. Intelligent cache with forward knowledge tries to provide the
effective usage of read cache in presence of internal stream fragmentation,
while content based rewriting algorithm (CBR in short) deals with inter-
stream fragmentation in order to assure the most effective block placement
for future restoration of the most recent backup. Both solutions are followed
by the discussion and trade-offs. Chapter 6 contains evaluation of both al-
gorithms on real traces gathered from different users, including discussion

1.4. OUTLINE OF DISSERTATION 13

of performance results together with the assumptions and the methodology
used in experiments. This chapter also includes both separate and joined ex-
periments together with a section about scalability of both solutions. Related
work is discussed in Chapter 7 together with other solutions to the fragmen-
tation problem. Finally, Chapter 8 contains conclusions, insights on possible
algorithm extensions and other directions for future work.

Chapter 2

Backup and Deduplication

This chapter provides detailed information on the historical background of
processing backups. Second part describes duplicate elimination characteris-
tics together with an analysis of benefits and drawbacks of the deduplication
solution. Finally, the last section looks at the today’s market in order to ver-
ify the importance of secondary storage with deduplication in a real world
usage scenarios.

2.1 Secondary storage systems

2.1.1 Requirements

By its definition, backup is a copy of a file or other item made in case the orig-
inal is lost or damaged. Such simple and easily looking task does not sound
very challenging when it comes to a backup of a single desktop. The scenario
changes dramatically though when we move into a medium to big size com-
pany with hundreds of users, terabytes of data produced every day and the
requirement to perform backup every night or weekend (short backup win-
dow) for internal safety reasons. One cannot forget the backup policy which
requires keeping many backups of the same data set (one for each day/week),
which can differ by only a few bytes between each other, nor easy manage-
ment of even a very large system (at petabytes level). Some value the pos-
sibility of setting individual resiliency for each set of data, while others see
features such as deletion on demand (very complicated in distributed envi-
ronment [77]) or uninterruptive update together with easy system extension
as the most crucial ones. Easy and fast remote replication is also seen as an
important addition together with the price - the lowest one possible. As one
may expect, each of those two constraints usually introduce trade offs which

16 CHAPTER 2. BACKUP AND DEDUPLICATION

are not easily to be dealt with [23]. What is more, one need to remember
about the main reason for backup systems to exist: the emergency restore.
Without fast recovery to minimize the expensive downtime all other features
seem much less attractive.

Characteristic Primary storage Secondary storage

Write bandwidth in MBs/s in TBs/h

Transactions latency in milliseconds in seconds

Restore start time milliseconds seconds to minutes

Data access random stream (mostly)

Data resiliency optional essential

Interface any file system VTL, OST, NFS, CIFS

Required capacity in TBs in PBs

Table 2.1: Primary vs secondary storage comparison

It is important to underline the differences between secondary (backup)
and primary storage, which are required for the understanding of further
sections (see Table 2.1). The latter systems are the ones used for every-
day tasks in a similar way people use hard disks in their computers. While
with backup, we would expect huge streaming throughput, data resiliency
and maximal capacity, here the low latency will be crucial for all operations
(read/write/delete), even the ones which would require random access [76].
On the other hand, in the same primary systems bandwidth and data re-
siliency, although important, will not be the one mostly required. Such small,
but subtle difference becomes even bigger when we consider features such as
compression, encryption and data deduplication taking place on the critical
path of every backup operation.

2.1.2 History

Even though the first general-purpose computer was build in year 1946 and
the backup evolution seems quite short, it is also a very intense one. The
first available punched cards could store less than 100 bytes of data while
the newest devices can keep more than 1TB. This huge leap in such short
period of time show the amount of work put into developing the technology
for every user to get the maximum out of the computer experience.
The punched cards, the first medium which could be considered as a backup,

were already in use since the end of 19th century. With the appearance of

2.1. SECONDARY STORAGE SYSTEMS 17

Figure 2.1: Storage of IBM record cards at the Federal Records Center in
Alexandria, Virginia, November 1959. Source: www.archives.gov

computers they were easily adopted in order to become (in 1950s) the most
widely used medium for data storage, entry, and processing in institutional
computing. Punched cards were essential to computer programmers because
they were used to store binary processing instructions for computers. In fact,
NASA used punched cards and computers to read them in order to perform
calculations as part of the first manned space flight to the moon. Luckily,
punching an exact copy or two cards at once was an easy way to produce
instant backups.

As the use of punched cards grew very fast, storing them became a hassle;
eventually requiring large storage facilities to house cartons upon cartons of
punched cards (see Figure 2.1). This problem was to be solved by magnetic
tapes, which were becoming more and more popular. Even so, punched card
programs were still in use until the mid-1980s [15, 41].

Since one roll of magnetic tape could store as much as ten thousands
punch cards, it gradually became very popular as the primary medium for
backup in 1960s. Its reliability, scalability and low cost were the main rea-
sons for the success which made the technology to the top of most popular
ways to perform backup in 1980s. During following years the technology had
been improved in order to deliver higher bandwidth and better data den-
sity. In September 2000, a consortium initiated by Hewlett-Packard, IBM
and Seagate (its tape division was spun-off as Certance and is now part of

18 CHAPTER 2. BACKUP AND DEDUPLICATION

Figure 2.2: Tape Library Autoloader. Source: www.storagetutorials.com

Quantum Corp.) released the technology called Linear Tape-Open (LTO) Ul-
trium which introduced a common standard developed and used until now.
The latest generation (LTO-6) was announced in June 2012 and delivered:
6.25TB capacity and data transfer rate at the level of 400MB/s together with
features such as WORM (write once read many), encryption and partition-
ing [79]. In order to provide automation and transfer to/from many streams
at once, the dedicated robots/libraries with many tape drives are available
(see Figure 2.2).

Introduction of hard disk drives (HDD) did not change much in the
backup market because of their high price, large size and low capacity. The
new technology, which brought the possibility of random access to the data,
first found its place in desktops, but at the end of 1980s it was used for the
backup as well. Further development in this direction was possible thanks to
the introduction of redundant array of independent disks (RAID), which are
still common within the world of fairly small data, but the limitations of size
and resiliency were too severe for medium and large companies. In year 2013
a single 3.5 inch hard drive could provide up to 4TB of capacity and over
200MB/s transfer rate. Even though those values are comparable with the
ones available with modern tapes, the price to be paid is a few times higher.

Local Area Network supported by Network Attached Storage (NAS) and
Storage Area Network (SAN) became the next big player in the backup
market. Keeping the data remotely makes the backup more convenient (no
additional media to attach), faster and easily replicable. Furthermore, the

2.1. SECONDARY STORAGE SYSTEMS 19

Figure 2.3: Purpose-Built Backup Appliance example: A single node with 12
disks – the smallest building block of NEC HYDRAstor system (up to 165
of such nodes can work together in a single system). Source: www.nec.com

use of hard drives allows nearly instant access to any data and usage of al-
gorithms such as deduplication, which can make backup more efficient and
much cheaper. Since the new millennium, backup systems are not only at-
tached through network, but they can form a separate living community of
nodes being able to deliver features not possible before. Thanks to using
many servers in a single system one can get intelligent data resiliency with
automatic healing process in case of any disk, but even a machine or switch
failure. What is more, the combined power of all computers can provide huge
levels of throughput (over 900TB/hr [57]) and capacity (over 100PB [57]) in
order to enable data collection from many different sources in a short backup
window. Even though the systems available today are rather local or at the
size of a data center, they can talk between each other to replicate data over
a large distance and transfer only the data which is not duplicated. Software,
on the other hand, provides a whole set of important features, enables easy
management of a cluster and provides interface exporting the system as one
unified space through network interfaces such as NFS or CIFS. Lower prices,
potentially unlimited scaling possibilities and higher density of disk drives
combined with deduplication technology and supported by remote replica-
tion, load balancing, fault tolerance and fast recovery made the systems,
known as purpose-built backup appliances (see Figure 2.3), to be the first
choice as the short-medium term backup solution today [2, 17].

Solid State Drives (SSD) would seem to be the logical successor to the
current spindle-based disks in different kind of usage. They are fast, need less
power and prevent problems such as access to large indexes and stream data
fragmentation (no streaming access required any more). Unfortunately, they
have a few considerable downsides which makes them not a good choice for
business solution, especially the ones where large amounts of storage space are
required. Even though we can find SSD drives with a price below $1 per GB, it
is still far from $0.05, which is to be paid for a regular drive with spindles (own
research: June 2013). With these prices and in general a few times smaller
maximal capacity, it is difficult to predicate any revolution even taking into

20 CHAPTER 2. BACKUP AND DEDUPLICATION

account the fact that considerable price drop, we have experienced during
recent years, continues. On the other hand, the small evolution is possible
here and slowly takes place. As recent research suggests, SSD drives can be
quite easily adopted for large indexes [44, 84] and for improving deduplication
throughput [21, 50], which seem to be very useful in today’s backup.

Over the last 30 years many other media have appeared which could
be used as a backup solution but have not become popular especially in
an enterprise environment. The most common devices were different kind
of disks: floppy, compact (CD), versatile (DVD), HD-DVD, Blu-Ray. With
each one the capacity, transfer rates and other indicators became better and
better but they were still not enough to compete with hard disks or tapes.
The main problems are as usual: the price, access time, too little storage
space and complicated management.

The most recent idea of the backup is known as online backup and con-
nected with the cloud concept. It is a strategy for backing up data that in-
volves sending a copy of the data over a proprietary or public network to an
off-site server. The server is usually hosted by a third-party service provider,
who charges the backup customer a fee based on capacity, bandwidth or
number of users. Online backup systems are typically built around a client
software application that runs on a schedule determined by the level of service
the customer has purchased. To reduce the amount of bandwidth consumed
and the time it takes to transfer files, the service provider might only provide
incremental backups after the initial full backup. Third-party cloud backup
has gained popularity with small offices and home users because of its conve-
nience, as major expenditures for additional hardware are not required and
backups can be run dark, which means they can be run automatically without
manual intervention. In the enterprise, cloud backup services are primarily
being used for archiving non-critical data only. Traditional backup is a better
solution for critical data that requires a short recovery time objective (RTO)
because there are physical limits for how much data can be moved in a given
amount of time over a network. When a large amount of data needs to be
recovered, it may need to be shipped on tape or some other portable storage
media [71]. The most important issues here are also the data security, avail-
ability, privacy and the risk of using the data by the service provider in some
undefined way. Especially large companies will prefer keeping the sensitive
data in their own system without taking a risk of giving the control away.
It is important to state that the technology used here remains basically the
same or very similar to described above network backup. What is different is
the required agreement between sides, software being used and the concept
of interaction between customer and service provider.

2.2. DUPLICATE ELIMINATION 21

2.2 Duplicate elimination

Deduplication is usually defined as a technology that eliminates redundant
data. When data is deduplicated, a single instance of duplicate information
is retained while the duplicate instances are replaced with pointers to this
single copy. The whole process is completely hidden from users and appli-
cations, which makes it easy to use and not require any dedicated software
modifications.

In order to be easily compared and found, each piece of data requires a
unique identifier which is much shorter (about 160 bits) than the data itself
(usually about 8KB). In secondary storage, such identifier is calculated based
on the content of data to be stored and makes it easy to locate any existing
incoming piece of data using dedicated indexes. Systems which identify their
data in such way are defined as Content Addressable Storage (CAS) and have
been an area of research for more than 10 years already [67].

Deduplication is sometimes confused with compression, another technique
for reducing storage requirements. While deduplication eliminates redundant
data, compression uses algorithms to save data more concisely. Some com-
pression is lossless, meaning that no data is lost in the process, but ”lossy”
compression, which is frequently used with audio and video files, actually
deletes some of the less-important data included in a file in order to save
space. By contrast, deduplication only eliminates extra copies of data; none
of the original data is lost. Also, compression doesn’t get rid of duplicated
data – the storage system could still contain multiple copies of compressed
files.

2.2.1 Characteristics

Granularity

Data deduplication can generally operate at the file or block level. The former
one eliminates duplicate files, but is not a very efficient way of deduplication
in general as any minimal modification requires to store the whole file again
as a different one [61]. Block deduplication looks within a file and chunks it
into small blocks. Each such block is then processed using a hash algorithm
such as SHA-1 or SHA-256 in order to generate a unique hash number which
is stored and indexed. If a file is updated, only the changed data is stored.
That is, if only a few bytes of a document or presentation are changed, only
the changed blocks are saved. This behavior makes block deduplication far
more efficient. However, block deduplication takes more processing power
and uses a much larger index to track the individual pieces.

22 CHAPTER 2. BACKUP AND DEDUPLICATION

Algorithm

Two main abstractions for duplicate elimination algorithm on block level are
called: fixed and variable size chunking. After a number of tests it turned
out that having blocks of fixed length does not work well with possible up-
dates [67]. By simple modification of a few bytes at the beginning or in
the middle of a file all the following content had to be rewritten as new
data with different block boundaries in order to preserve its size. Variable
chunking length [23, 51, 85], on the other hand, makes use of a dedicated al-
gorithm (such as Rabin fingerprinting [68]) which enables synchronization of
block boundaries shortly after any modification takes place. Thanks to that,
the following part of the modified file can be cut into the identical blocks
which can then be deduplicated to those already present after backup of the
unmodified original file.
Usually, a block size produced in such way in modern systems is within

some boundaries (e.g. 4-12KB) with an average value somewhere in the mid-
dle. The most common average values used are between 4KB and 64KB and
have significant impact on overall deduplication ratio along with some other
system features such as the scope of deduplication, data fragmentation. Some
dedicated algorithms try to optimize this impact by allowing usage of many
different block sizes during a single backup (i.e. 64KB with 8KB). As research
shows [43, 70], the results are quite promising.

Point of Application

A secondary storage system is being used by a set of clients performing
backup. Each backup stream requires to be chunked into blocks together
with hash calculation for each one of them in order to verify its existence in
the system. Those operations can take place either on the client or server side.
The former one, called source deduplication, will require dedicated software
to be installed on the client, but at the cost of some processing power (hash
calculation) it can offer much lower network usage. The latter, on the other
hand, called target deduplication, is completely transparent for the clients,
simply providing the storage space through network interfaces and therefore
extremely easy to use performing the hashing and all other required operation
internally. Both options are available on the market and deployed based on
customer requirements.

Time of Application

Within systems with target deduplication there are two groups which differ in
time when the process is applied. Off-line (post-processing) deduplication [62,

2.2. DUPLICATE ELIMINATION 23

63, 75] is the simplest way where, in the first phase, all data from the current
backup are stored continuously in the system. After the operation is finished
the actual deduplication is performed in the background in such a way that
the blocks from the latest backup are a base for eliminating duplicates from
older backups [47, 62]. On one hand, such approach makes sure that all the
data from newest backup is located in one continuous space, which makes
it easier to read, but on the other, it causes a number of different issues.
The problem though is with even a few times lower backup performance,
lack of possibility to conserve network or disk bandwidth (i.e. deduplication
on client or backup server) and the space required to hold an entire backup
window’s worth of raw data (landing zone). Even though the landing zone can
be minimized by starting the deduplication process earlier and performing it
part by part (staging), the system resources needed for that operation will
make the current backup slower, which would add one more negative effect
[13]. What is more, the off-line process becomes quite expensive as after each
backup about 95% of its size (assuming 20:1 dedup ratio) has to be found in
entire storage space and deleted in the background.
The other kind, called in-line deduplication, makes sure the duplicate

data is found during the write process and never stores a block which is
already present in the system. It requires fast algorithms in order to verify
the block existence on the fly and return either the duplicated or new pointer,
depending on the result. Such path is complicated in general, but by making
sure that no duplicate data is found in the system, it does not require any
cleanup after the backup. Also, as checking the hash existence (often in index
placed in memory [85]) can be three times faster [42] than storing a new
block on disk, it delivers much better bandwidth. The problem with such
approach is a progressing fragmentation, which will be described in details
in the next chapters of this work.

Scope

The final characteristic of deduplication is connected with its scope. The
most intuitive global version, where each duplicate block existing in the sys-
tem is always identified, is not that common because of the implementation
and technical issues which appear. The main problem is with the huge global
index, which should always be up to date and allow fast identification of re-
quired block. One of the issues here is to identify whether a block is a dupli-
cate or not. This is often done with a Bloom filter [10] and used by distributed
systems such as Google’s Big Table [16] and DataDomain [85]. It helps to
avoid expensive look-up for blocks which will not be found. On the other
hand, techniques such as using larger block size [23] and exploiting chunk

24 CHAPTER 2. BACKUP AND DEDUPLICATION

locality for index caching as well as for laying out chunks on disk [69, 85]
reduce the amount to data required in RAM. As a result, only small per-
centage of requests needs an access to the full index which is placed on disk.
When we move into distributed environment the problem is even more com-
plicated, which results in only one commercially available system with global
deduplication (HYDRAstor [23]), which uses a dedicated Distributed Hash
Table [24] in order to deal with the task.
Other existing solutions are either centralized ones (such as EMC Data

Domain) or use a different kind of techniques limiting the required memory at
the cost of deduplication. Sparse Indexing [46], for example, is a technique to
allow deduplication only to a few most similar segments based on a calculated
hash, while Extreme Binning [7] exploits file similarity in order to achieve
better results for workloads consisting of individual files with low locality.

2.2.2 Deduplication ratio

Deduplication ratio (or duplicate elimination ration, dedup ratio) is defined
as a data size reduction ratio achieved thanks to deduplication technology.
For example if about 100TB of data was written into a systems and thanks
to the deduplication only 5TB where actually stored on disks the dedupli-
cation ratio would be shown as 20:1. The actual values can vary widely
depending on data stream characterization, chunking algorithm, block size
and retention policy. As research articles confirm, metadata size in relation
to all the stored data must also be taken into consideration [70] together
with performance required to calculate the hashing or update the metadata
and store/locate the data. At last, one needs to remember about the issues
with scalability of the system and the time to reconstruct the data. All of the
above certainly impacts the deduplication ratio, which can range from 4:1
to 200:1 and more [49]. When aggregated, a compression of 10-20 times or
more (less than 5% of the original storage capacity) can be achieved, which
is with some deviation confirmed with other sources, both business [4, 5] and
scientific [45, 70, 85].
Most modern backup systems use variable size chunking, because of its ad-

vantages described in Section 2.2.1. As it was shown in many articles [55, 70],
the average value target of variable block size has a noticeable impact on
the data deduplication ratio. When looking at the data only one can al-
ways expect smaller blocks to perform better in terms of space savings,
but needs to remember about the problems which can appear. The usage
of small blocks cause higher memory requirements (bigger index), backup
performance degradation (more blocks to verify and deliver), and data frag-
mentation (smaller random reads possible) causing restore bandwidth prob-

2.2. DUPLICATE ELIMINATION 25

Policy
name

One bkp
size

Modified
data in
each bkp

Number
of bkps

Sum data
stored

Sum data
written

Dedup
ratio

Daily 1 TB 1% 365 4.65 TB 365 TB 78.49

Weekly 1 TB 6.79% 52 4.53 TB 52 TB 11.48

Monthly 1 TB 26.03% 12 4.12 TB 12 TB 2.91

Table 2.2: Different backup policy vs deduplication ratio - simulation results
(assuming the random data modification rate at 1% per day; no compression,
initial backup and each modification consists of only unique blocks)

lems. What is more, each block of data requires a small, but noticeable piece
of metadata stored which does not depend on the data size. Unfortunately,
when taken into account, it may waste all the savings provided by applying
smaller block size. When looking at the market the most common block size
used is 8KB (i.e. EMC Data Domain - global leader [29]), but there exists
competition with block size even 64KB (NEC HYDRAstor [57]) or 4KB (HP
StoreOnce [39]) on the other side.
After all, every single backup will deduplicate best with some individually

defined block size. Furthermore, in order to achieve best results each part of a
stream could be divided into different size segments regarding its modification
scheme. Even though in general the problem looks extremely complicated,
some simplified solutions appeared letting to use two sizes of blocks during a
single backup. The decision on whether the block should be small or large is
based on the previously stored information. According to Romanski et al. [70]
such approach can result in 15% to 25% dedup ratio improvement achieved
with almost 3 times larger average block size.
Often underestimated factor, when calculating duplicate elimination ra-

tio, is a retention policy. As the biggest power of deduplication comes from
elimination of duplicates from previous backup of the same data, the informa-
tion about number of such backups is crucial for the purpose of calculations.
Lets assume the size of our example file system to be 1 TB and the modi-
fication rate at a level of 1% of blocks per day (to simplify the calculation
we assume that our backup does not increase in size and random blocks
are modified every day). Having such system, user can choose one of three
simple backup policies: daily, weekly and monthly. Each of them defines a
frequency of the full backup to be performed. After a year with each of
the policies, we will end up with having similar amount of data occupied in
our system (4.1TB-4.6TB), but with significantly different amount of data

26 CHAPTER 2. BACKUP AND DEDUPLICATION

written (12TB-365TB). Therefore, each of them calculates into a completely
contrasting deduplication ratios: 78.49, 11.48 and 2.91 (see Table 2.2). Each
policy is simply unique and at different costs (i.e. time spend on backup dur-
ing month) protects data in a different way. The calculation shows only the
fact that each specified case is unique and taking only deduplication ratio
into account has its own drawbacks. In general the average number of du-
plicates in a backup (except the initial one) seems to be more precise as an
indicator of deduplication power.
Similar effect can be achieved when choosing between incremental and

full backup. The former one will most probably take less time to perform but
more to finally restore the data as the latest full backup and all incrementals
until given time need to be patched together. The latter one, even though it
takes more time, thanks to deduplication it will not consume more storage
space. It is also important to note that from a statistical point of view even
though the data stored is similar, the final deduplication ratio in both cases
will look much different.
The compression is one more task usually applied before the data is stored

in the system. Keeping only essential data may need more processor power
to compress and possibly decompress in the future, but can often increase
the overall data reduction ratio (compression together with deduplication
ratio) by a factor of 2 or more. Such space saving is usually worth the effort
especially with larger block sizes, where compression becomes more effective.
Finally, the basic impact on the deduplication ratio has the individual

backup stream characteristic. The stream content and it’s internal redun-
dancy is an important start. Taking for example mailboxes, the first backup
may result in less than 50% of unique data sored in the system (improv-
ing deduplication ration by a factor of 2), while having the first backup of
a movie database will not show any savings at all. Starting from the second
backup the percentage of duplicates usually stabilizes but at different level
for each data set. It depends mostly on the modification rate/pattern and
the period between backups. Those two numbers combined with a number of
full backups kept in the system will have a major impact on the final score
achieved.

2.2.3 Benefits

Although the deduplication can be used in any environment, it is ideal for
highly redundant operations such as backup, which requires repeatedly copy-
ing and storing the same data set multiple times for recovery purposes over
30- to 90-day periods. The described usage pattern makes the technology to
be especially useful ending with over 20 times reduction of the data to be

2.2. DUPLICATE ELIMINATION 27

stored (depending on many different features - see Section 2.2.2 for details).
Such result can end up in high money savings or enable possibilities not
achievable before.
Probably the most important result of introducing data deduplication

in secondary storage is a huge technological leap in the area. Thanks to
limiting required storage space, it enables the previously expensive disk based
systems to compete with tapes bringing into secondary storage world features
not available before. Those are: immediate and random access to the data
(emergency restore), high transfer rates, one combined storage space, many
streams of backup, cheap and definable data resiliency class, easy and fast
replication, maintained data integrity.
What is more, having the possibility to verify the existence of data based

on short (i.e. 160 bit) hash of the data opens a way to save network band-
width. A dedicated software may be used to produce hashes at the client
(source deduplication - see Section 2.2.1) and send only the data which are
not present in the system. Assuming the hash size lower than 0.5% of the
data size and 20:1 deduplication ratio, only 5.5% of all the data needs to be
transferred over the network in order to perform a regular backup. Such ap-
proach not only makes the process much faster (to make the backup window
smaller), but also it does not require the network from client to allow high
bandwidth vales. This feature is even more important in case of replication
when master and replica sides are placed in different states or countries.
Overall, the data deduplication technology is not only a single feature

added to an existing software. It is a start of a whole new era in secondary
storage – the era of servers and hard disk with all the features they provide
such as instant random access, extremely high bandwidths, constant data
monitoring. Supported by network saving replication and the competitive
price, it creates a complete and well equipped solution in terms of secondary
storage.

2.2.4 Drawbacks and concerns

Whenever the data is transformed in any way users may be concerned about
their integrity. The deduplication process looks for the same copy of a block
somewhere in the system and may end up with the data of one stream scat-
tered over many locations on disks and servers. Such way of saving storage
space makes it almost impossible to read the required data without the exact
recipe stored somewhere in the metadata and in the exact opposite way it was
written. All this put high requirements on the quality of the software from
vendors and implies fair amount of trust in the process from the customers.
Each deduplication system has to be able to find and compare the blocks

28 CHAPTER 2. BACKUP AND DEDUPLICATION

in order to verify their identity. As described before, the hash function is an
easy and effective way to find a candidate for verification but it turns out
that reading such candidate in order to verify its content with newly written
block byte by byte would make the storing process very time consuming. In
order to remove this overhead the industry relies on hash comparison only
in order to determine the identity of two blocks. Of course a single hash of
length 160 or 256 bit in theory can be used to identify a lot of 8KB blocks but
as it was verified, assuming the collision-resistant function (i.e. SHA-1 [25])
and the amount of blocks which can be stored in a system, the probability
of such collision is extremely low, many orders of magnitude smaller than
hardware error rates [67]. Though when the data corruption appears it will
most probably be rather a problem with IO bus, memory or other hardware
components.

One more concern is connected with computational power necessary to
perform the algorithm and other required functions. This is the case in source
deduplication, as this option requires at least some of the calculations to be
performed on the client machine. Such additional cost should be calculated
in the early phase of comparing the solutions before purchase. Alternatively,
the system with target deduplication can be used, as the one without any
power requirements on the client.

Finally, going into a system with many disks and tens or hundreds of
servers keeping all the data accessible and not loosing any may be an issue.
Such system requires efficient distributed algorithms, self-healing capabilities
and incorporated intelligence in order to allow fairly easy management. With
thousands of disks the probability of braking one becomes quite high, so that
features allowing easy disk/node replacement without spoiling the overall
availability become important. Fortunately, there exist systems having all
the above features being able to work in configurations with over 100 nodes
assuring even 7.9PB of raw capacity [57].

2.3 Today’s market

According to Information Storage Industry Consortium (INSIC) the use of
tape technology, the most common during last 30 years as secondary storage,
has recently been undergoing a transition [17]. The type systems are moving
out from backup system market towards third tier backup (quite recently
created category for long time retention backup with infrequent or no access),
archive (data moved for longer term storage) and regulatory compliance data
(preserved for duration defined by regulation). All those use cases involve
keeping a single copy of data for a long time often without reading it at

2.3. TODAY’S MARKET 29

Disk Tape

Advantages:

• Rapid random access of single/s-
mall files

• Multiple stream handling

• Read/write throughput (since
one stream is usually stored on
many hard drives) [65]

• Deduplication to archive high
compression ratios, enable re-
mote replication and other func-
tions

• Many formats of backup

• Manageable reliability with large
systems

Advantages:

• Low energy usage and cost per
GB of data stored

• Data life span of up to 30 years

• Significantly higher reliability
than single SATA disk

Appropriate use:

• Fast storage and data retrieval in
any way

• Active, newly created and fre-
quently accessed data

• Multi-stream access

• Redundant data (i.e. backup)

• Efficient replication

Appropriate use:

• Storage and restore of large files
or quantities of streaming data

• Less heavily accessed data

• Data that must be retained for
some period of time and are
rarely or never read

• Unique data

Table 2.3: Disk and tape comparison [17]

30 CHAPTER 2. BACKUP AND DEDUPLICATION

Figure 2.4: Survey on data deduplication solutions in organizations. Source:
Enterprise Strategy Group, 2012 Data Protection Trends

all. For those purposes tape may still be a better choice due to the price,
better duration, smaller energy cost and no deduplication requirement (see
Table 2.3).
The above tendency is also visible when asking organizations about using

data deduplication solutions. The survey performed in year 2012 by Enter-
prise Strategy Group (see Figure 2.4) on over 300 respondents had shown
76% of them having used or planning to use a deduplication solution (com-
pared with 43% in year 2008 [30]). On the other hand there are numbers
developed by the market itself. The whole tape market (with its media and
robotics, including archiving and other purposes) in year 2011 closed in to-
tal of $3 billion [59] (after 10% drop) while for deduplication systems it was
$2.4 billion [2] (after 43% grow). While the tape market was still bigger, it
looks like the usual 20x deduplication ratio, high write bandwidth, scalabil-
ity, the ease of remote replication and fast emergency restore are considered
important when the decision is to be made at the company.
Even though the deduplication systems grow at the extensive rate, they

are most probably not going to eliminate tape usage totally. As data collected
from companies suggest [17], they are rather going to use both disk based
and tape systems for the backup (62% in year 2010 comparing to 53% in year
2008). Taking all the above information into perspective, there seems to be

2.3. TODAY’S MARKET 31

a tendency to use the disk-AND-tape model as the most successful method-
ology for data protection with disk-based systems as a main component for
backup up to 6 months and tapes used for archive and data requiring longer
retention period.
There is no doubt that thanks to deduplication the second big step in

global secondary storage is in progress (the first one was the transition
from punched cards to tapes in 1980s). On the other hand, the number
of published papers for last few years places the topic under extensive re-
search [23, 42, 45, 46, 54, 70, 76, 77, 80, 81, 85]. At this scale each innovative
approach, algorithm or discovery may end up having large impact on every-
one from vendors to systems administrators worldwide. Even though a lot of
knowledge has already been presented, there are still strategic areas waiting
to be discovered. One of them is stream fragmentation, as a side effect of
deduplication, and critical restore in general.

Chapter 3

The problem of stream
fragmentation

This chapter describes the importance of restore process in backup systems.
Next, it presents the description of a problem caused by different aspects
of stream fragmentation with a separate section addressing the scalability
issues. The detailed impact of each fragmentation aspect is presented based
on real world workloads to show the nature and size of the problem. Final
discussion summarizes the basic options to reduce the negative impact of
fragmentation.

3.1 The role of restore in backup systems

Even though restore does not happen as often as backup, it is used not only in
case of lost data but also in order to stream the full backup to tape (third tier
backup) and replicate changed data off-site. As a result, there exist even 20%
of systems with actually more reads than writes, while on average reads are
responsible for about 26% (mean; 9% median) of all the I/Os in an average
backup system even when the replication activity is excluded [81].

Each attempt to restore data from a backup system can be caused by
a number of reasons. Accidentally deleted file or access to a previous version
of some document are actually one of the simplest requests to handle in a
short time when considering disk based systems with easy random access to
all the data. On the other hand, restoring full backups consisting of many
GBs of data is a whole different problem of providing the maximal bandwidth
for many hours. Even though such scenario does not necessarily mean some
outage in the company (it can be a transfer of the data to some other place)
this should be the case to be handled extremely well in the first place. The

34 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Figure 3.1: Typical age of recovered data. Source: ESG Research Report
”2010 Data Protection Trends” [30]

recovery time objective (RTO), being one of the most important factors of any
backup system specification, actually makes the investment of thousands of
dollars in a backup system rational for a vast majority of companies. Every
emergency issue in this area may be seen as a major test for the backup
system and the final verification of the investment for the company.

When analyzing the usual restore process some of its characteristics can
be noticed. Very important one is the fact that not every backup has the
same significance, which makes the restore process valued differently. First,
it is the data itself which may be simply less critical for the company. Second,
it is the time when the backup was taken and its usefulness for restore in case
of emergency. Figure 3.1 shows a result of a survey performed by Enterprise
Strategy Group on 510 respondents. Not surprisingly, the data restored most
often are the ones backed up very recently. Based on the results only 6% of
restores are older then two weeks and the majority of them (58%) is recovered
from last 48 hours.

To sum up, the big picture which appears above makes a clear goal for the
verification of a backup system true value. It is the restore bandwidth of the
latest backup. Even though this statement sounds very trivial, it has major
consequences especially for the backup systems with deduplication, which
are very close to become the most common in today’s world and during the
years to come.

3.1. THE ROLE OF RESTORE IN BACKUP SYSTEMS 35

3.1.1 Backup procedure

Each company has its own backup policy, which should be the best answer to
the data safety and disaster recovery requirements. One of the most common
strategies is to perform a backup of all company data during the weekend
and smaller, incremental backups every day [81]. This is usually caused by
a very limited backup window every working day (the time available for
the backup to finish) and a larger one during the weekend. When using
deduplication system, the full backup can be performed even every day, as
with such solution only new and modified data is actually stored (its size is
more or less equal to the incremental backup), while all the other duplicate
data are confirmed very quickly to the backup application making the process
many times shorter than regular full backup.

Next characteristic to the backup policy is the retention period which may
also be different in many companies [18]. The original idea was to limit the
space used for backups which were less likely to be helpful in case of emer-
gency restore. Usually the choice was to keep some (usually 5-30) most recent
daily backups, about 4-26 weekly backups, close to 12-24 monthly backups
and a few yearly. Very often the backups older than 3-6 months were moved
to the so-called archive storage, which implies extremely low probability of
usefulness. After introduction of deduplication systems the scenario is slowly
changing. Thanks to the new technology each additional backup add almost
no new data to the storage space, therefore, a company can keep daily back-
ups for a year paying only slightly more (metadata) than keeping only the
actual data and modifications. Having such technology makes keeping high
granularity of backups possible at an extremely low price, which may even-
tually help to recover the exact state of given documents from the required
date regardless of the time passed.

When looking at the single backup procedure one can notice another
simple, but very important fact, which is related to data order and place-
ment. Each storage system usually receives data in a so called stream: a
sequence of bytes in some defined, logical order with beginning and end.
Usually a backup application is responsible for creating such stream from a
file system or directory which is to be stored. In case of storage file system
mounted directly through NFS or CIFS such stream is equivalent to each
transferred file (usually a quite big tar archive). Having a logical order each
stream guarantees that every access to its data will be done sequentially and
in the same order as it was written. This assumption is important for all
backup systems, enabling them to achieve good performance. The access to
data in a non sequential way would make those systems not usable from the
market perspective [67, 85].

36 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Prefetch
size (in
KB)

Time of one
single prefetched
read operation
(I/O) in ms

Average time to read
1GB of data (in s)

Read time dif-
ference in % of
2MB prefetch re-
sult

16384 104.10 6.26 -46.00%

8192 58.38 7.47 -39.43%

4096 35.52 9.09 -26.28%

2048 24.10 12.34 0.00%

1024 18.38 18.82 +52.57%

512 15.52 31.79 +157.71%

128 13.38 109.62 +788.54%

Table 3.1: Impact of prefetch size on the actual restore time based on common
enterprise data center capacity HDD specification [72, 73] (sustained data
transfer rate: 175MB/s, read access time: 12.67ms (average read seek time:
8.5ms, average rotational latency: 4.17ms [7200 rpm]))

3.1.2 Verified combination: Prefetch and cache

The sequential access to data significantly helps to reduce the problem of the
biggest bottleneck in restore performance, which is reading the data from
the actual hard drive. Having the fact of optimal data placement, when it
comes to popular HDDs, enables engineers to use simple but effective tech-
niques improving the restore performance many times, when compared to
the random or undefined data access pattern.

Prefetch

The most common and effective technique in case of sequential data is to
prefetch it in fixed or variable big chunks from the hard drive to system
memory. In the result of such operation user read request of only one block
(e.g. 8KB) triggers read from disks of a much larger chunk (e.g. 2MB) placing
all the read blocks (2MB / 8KB = 256) in system memory for further use.
Thanks to such approach, in the case of sequential access it enables many fol-
lowing read operations to retrieve the data from the memory without paying
the price of disk access.

This algorithm is actually a consequence of the HDD construction, which

3.1. THE ROLE OF RESTORE IN BACKUP SYSTEMS 37

makes reading small portions of data very inefficient. The two main charac-
teristics for each disk are: the data access time and transfer rate. The first
one is the most problematic here. Before starting to transfer the data to
the system memory, the disk has to move its head to the proper track (seek
time) and wait for the required data to appear under the head (rotational
latency). The whole process is very expensive and assuming constant transfer
rate, the number of such data accesses determines the total read performance
(see Table 3.1).
In addition, it is important to notice that the disk technology in terms

of bandwidth and capacity is in constant development. Unfortunately at the
same time both seek time and number of rotations stay basically at the same
level for many years already. In fact, as this work was almost completed,
Seagate announced new version of their Enterprise Capacity 3.5 HDD with
29% higher sustained data transfer rate (226MB/s), but with no changes in
the read access time [74]. Such unequal development makes the problem of
fragmentation even more severe as accessing the data alone is taking larger
and larger part of the total restore time.

Cache

After the data is prefetched from disk it is stored into a dedicated system
memory called buffer cache (or read cache), which is usually much larger than
the actual prefetch. The reason for that is lack of the ideal sequential load
in the reality. In case of a small cache each non-sequential disruption (read
from a different place on disk) would require reloading the data after coming
back to the previous read sequence. Thanks to a larger size the cache can be
not only resilient to some extent in the described scenario but also support
read in not exact order (in case of data reordering during write) and the
access to many streams at the same time. In case of duplicate elimination
backup systems one more function of the cache becomes quite interesting
and important. It can simply hold blocks of data, which are requested many
times during a relatively short period, allowing additional improvement in
the achieved restore bandwidth.
As the memory for cache is always limited it requires dedicated cache

eviction/replacement policy. Each of many existing algorithms has its own
best suitable usage. For the backup systems the most commonly used policy
is Least Recently Used (LRU) [45, 54, 81, 85]. The main goal in this case
is to discard the least recently used blocks first. Although the algorithm
requires keeping track of what was used and when to make sure the correct
item is removed, some optimizations exist to make it less expensive. The
experiments with a few other well known algorithms such as Most Recently

38 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Used and Least-Frequently Used on the traces presented in this work also
showed the much better results with the LRU.
It is important to state that for the page replacement policy (which is

somewhat similar) the most efficient algorithm actually exists and is called:
Bélády’s optimal algorithm [6]. In order to achieve the optimal cache us-
age it first discards the page from memory that will not be needed for the
longest time in the future. Unfortunately, since in general it is not possible
to predict when the information will be needed, the algorithm is not imple-
mentable in practice for the majority of known scenarios. Also, the pages in
memory differ from blocks so moving it into backup system environment is
not straightforward but can bring interesting insights.

Efficiency issues

Even though the prefetch/cache algorithm effectively helps achieving rea-
sonable restore bandwidth, it sometimes does not work very well. One case
is when the access pattern is actually only partly sequential. Such pattern
results in reading from disk possibly a lot of data which will never be used,
and waste both the time during the actual read operation and the space in
the memory, which effectively makes the cache even a few times smaller than
actual memory reserved.
The other problem is connected with blocks loaded to cache many times.

Such scenario may happen in case the block was either evicted from cache
before it was used (too small cache or too random access) or even though it
was already used it was required more than once (internal stream duplicate).
When it comes to backup systems with duplicate elimination, especially the
second scenario was surprisingly intensive in the traces I have explored even
within one sequential stream of data.

3.2 Fragmentation problem in systems with

duplicate elimination

In general fragmentation is defined as a state of being broken into fragments.
For the purpose of this work we focus on a sequential stream of data which
is backed up and the way it is stored on the disk drive in systems with
duplicate elimination. As we are generally interested in the practical more
than a theoretical point of view, as fragmentation we consider only such block
reorder which requires additional I/O operation (disk accesses) when using
described above prefetch/cache algorithm in comparison to the number of
the I/Os needed in the case of perfect sequential data placement.

3.2. SYSTEMS WITH DUPLICATE ELIMINATION 39

Issue Observable impact
on read bandwidth

Impact with in-
creasing number
of backups

Inter-version fragmentation from -10% to -50% increasing

Internal stream fragmentation from +50% to -70% stable

Global fragmentation from 0% to -10% stable*

Table 3.2: Impact of different kinds of fragmentation on the final restore after
some number of backups based on my experiments (depending on the data).

* note that global fragmentation will most probably slowly increase, but rather than the
increasing number of backups it will be with the total amount of unique data stored in
the system

Backup systems with duplicate elimination differ much from those with-
out such feature within the usage of storage space for the data. From the
external point of view each backup process may still be seen as sequential but
when it comes to the data which are deduplicated, only some will eventually
get to the hard drive. Unfortunately, such write pattern highly increases the
inefficiency problems in prefetch/cache algorithm described in Section 3.1.2
causing fragmentation. The concept of deduplication from its design will al-
ways eventually enforce storage of two blocks as neighbors on the disk which
are in fact placed many MBs from each other in the actual logical stream, or
do the opposite with the two logically sequential blocks. Such data placement
required in order to save storage space opens a quite new area for researchers
to identify and solve the new problems which appear.
In general three kinds of fragmentation problem exist, each caused by

a different aspect of data deduplication with very individual impact on the
final restore bandwidth (see Table 3.2). The detailed description and analysis
of each area can be found in the following sections.

3.2.1 Internal stream fragmentation

The experiments show that having only one single backup in the entire system
with deduplication may already cause degradation in its restore performance
compared with the system without this feature. Such phenomenon is called
internal stream fragmentation and is caused by identical blocks appearing
many times in a single stream.
Figure 3.2 shows a part of the initial backup (from logical block offset 402

to 438). In the presented sequence one can notice blocks which are stored

40 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Figure 3.2: Impact of internal stream fragmentation. An example of restore
process of blocks 402-438 from some initial backup with two different data
storage algorithms.

3.2. SYSTEMS WITH DUPLICATE ELIMINATION 41

in a different location on the disk than others (i’5, i’1, i’76 etc.) as they
are duplicates stored already in the previous part of the same stream. The
problem with such blocks is that in order to read them the disk drive has to
move its head to a different location than current front of reading (between
i’279 and i’304), which costs an extra I/O. What is more, the algorithm will
usually try to read a full prefetch of the data placing it in cache. This wastes
the allocated memory as, in many cases, only a small fraction of such blocks
will ever be used. The whole process can be very expensive when it comes to
the final restore bandwidth.
Note that blocks i’6 and i’129 do not cause the additional disk access

even though they are not in the main sequence (from i’279 to i’304). This is
due to the fact that those blocks will be present in the cache memory while
reading thanks to previously read blocks i’5 and i’128 with no additional I/O
required. What is more, one can notice two blocks named i’5 while only the
first is marked as causing disk access. It simply assumes that as the block
i’5 was read only 27 blocks earlier, it will be still present in the cache during
the restore of its second copy.
Having looked at Figure 3.2 and assuming example prefetch size of 4 blocks

and the cache of 100 blocks (quite large as it fits 25% of a stream so far),
we can visualize the difference in the number of I/O required in two interest-
ing cases. When the shown part of the stream is stored in a system without
deduplication we need 10 I/O (= 10 x prefetch of size 4) to read the entire
part. The reason for this is the sequential read of 37 blocks (from 402 to 438)
as in such system logical address are identical to physical ones. On the other
hand, when using deduplication we need 7 I/Os to read the continuous data
from i’279 to i’304 (26 blocks) and 8 additional I/Os to read the duplicate
data (see Figure 3.2). When comparing both results the difference between
described scenarios is at the level of 50% (10 vs 15 I/Os) which means half
the time more for the system with deduplication to restore the same backup
data. Note that we have assumed a moderately large cache size as otherwise
we might need to reconsider adding an extra I/O to read the second i’5 block
(logical offset 431), as it could have been evicted from the cache meanwhile
(between reading offset 404 and 431).
Fortunately, the appearance of internal duplicate blocks can be cleverly

twisted in order to decrease rather than increase the total time required for
the stream restore. Let us assume the same initial backup is read from the
very beginning (starting from logical offsets 1,2,3...) but with unlimited cache.
In such case, after achieving block 402 (disk location: i’279) all the blocks
marked as duplicates will be already present in the memory. As a result,
when requesting the part presented in Figure 3.2 only 7 I/Os will be required
instead of original 10 in the system without deduplication, ending up in a

42 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

restore time smaller by 30%.
In general, even though it was expected that duplicates can also appear

within one stream, a rather surprising fact is the scale of such appearance
and its negative impact on the restore bandwidth in the experiments. The
better news is a more or less constant number of internal duplicate blocks
and similar impact on every backup regardless of the time and number of
backups performed before. The important fact, on the other hand, is the
observation of unlimited cache size impact, which will be further analyzed
and inspire the presentation of alternative cache eviction policy supported
by limited forward knowledge (see Chapter 4).

3.2.2 Inter-version fragmentation

As backups are performed regularly (daily/weekly/monthly [18]) each piece of
one logical stream can be found in various versions of the same data set. Every
such version differs from the previous one by the amount of data modified
within one backup cycle (usually very small percentage), which makes the
consequent versions of the same data set very similar.
Each backup system with deduplication will discover duplicated blocks

and eventually store only the ones which have changed. The most popular in-
line solutions (see comparison with off-line version in Section 2.2.1) will place
all the modified/new blocks together, regardless of their actual position in
the logical backup stream. Unfortunately, after tens or hundreds of backups
such data placement leads to the latest backup being scattered all over the
storage space.

Figure 3.3: Location of data stored in each backup version with in-line dedu-
plication (inter-version fragmentation)

3.2. SYSTEMS WITH DUPLICATE ELIMINATION 43

Figure 3.3 shows ten versions of a sample backup set stored in a system
with in-line deduplication. Each version is stored in one continuous segment
on the disk, but as the initial one stores all it’s data, the versions from
1 to 9 add only data which were not present in previous backups (all the
duplicate blocks are eliminated and not stored on the disk). As a result,
blocks belonging to the logical backup 9 can be found on disk in each of the
sections initial and 1 to 9.
The restore process of the first 38 blocks of backup 9 is visualized in

Figure 3.4. Assuming a prefetch size of 4 blocks and even unlimited cache
memory, reading all the blocks in the shown example requires 21 I/Os (see
marked blocks), while in the system where all the data are placed always
sequentially only 10 I/Os (38 divided by prefetch size) are enough. Finally, an
over doubled restore time is the actual cost of fragmentation in the described
scenario.
The fragmentation achieved in such way is called inter-version fragmen-

tation. The distinctive fact here is that, such kind of fragmentation is not
present when one starts using the system, and increases during the following
backups with a rate very unique for each data set and usage pattern. As the
process is rather invisible during the common backup cycle, it will usually
appear when the restore is necessary, which may uncover the problem of a few
times lower restore bandwidth than expected. Such discovery may have very
expensive consequences in case the restore was an urgent issue.
As regards inter-version fragmentation, two facts seem to clearly visual-

ize the core of the problem. The first one is the character of changes which
is slow and increasing with the number of backups, while the other is the
knowledge about the typical age of recovered data (see Figure 3.1) described
in Section 3.1. Given the most recent backup is the most likely to be re-
stored, the issue seams to be very serious, but on the other hand, gathered
information give an interesting insight when trying to solve the problem.

3.2.3 Global fragmentation

Global fragmentation is actually very similar to the internal one. The only
but significant difference is that problematic duplicates do not come from the
earlier part of the same stream but from a completely unrelated one. This
is due to the fact that with internal fragmentation the problem was caused
by the second and further block appearances in the stream, which allowed
us to fight with its negative consequences by keeping the already restored
blocks in the long enough cache. In case of the global fragmentation the issue
appears with already the first block appearance (further ones should rather
be qualified as internal fragmentation) and as the block is outside of the

44 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Figure 3.4: Impact of inter-version fragmentation. An example of restore
process of blocks 1-38 from the 9th backup of some data set with two different
data storage algorithms.

3.2. SYSTEMS WITH DUPLICATE ELIMINATION 45

Data set Global duplicates
(blocks present in
other data sets)

Impact on restore
bandwidth

DevelopmentProject 1.40% -6.99%

GeneralFileServer 0.01% -0.06%

IssueRepository 0.55% -8.91%

Mail-30daily 0.05% -0.94%

Wiki 1.47% -5.10%

Table 3.3: Impact of global fragmentation on each data set (UserDirectories
and Mail data set was gathered using different hashing function therefore
they could not be included in the experiment; instead of Mail other, similar
data set was taken gathered using the same hashing function)

current backup set, it can be found in just about any location within the
whole system.

I have performed a simple experiment on five independent data sets in
order to verify the amount of global duplicate blocks and the impact of global
fragmentation on restore performance. For each data set the first backup
was chosen as a data set representative. The backup system was prepared by
storing all representatives but the one tested which was loaded as the last
one. By comparing the number of duplicate blocks and the bandwidth with
the scenario when such backup is stored as the only one in the system, we
can visualize the scale of the problem.

The results in Table 3.3 show actually a very small amount of global
duplicate blocks present in other independent data sets (between 0.01% and
1.47%). Even though the outcome suggests a relatively small impact on the
restore bandwidth (between 0.06% and 8.91%), the actual numbers can differ
and will most probably slowly increase with the number of independent data
sets and the total size of unique data stored in the system.

What can be surely done to eliminate global fragmentation is to backup
together (in one stream) all the data which can potentially have common
blocks such as mail/home backups of different employees or virtual machine
system partition images. Unfortunately, such approach makes sense only until
there exists probability of restoring those data together as otherwise it does
not help. The goal of the described modification is to transfer the global
fragmentation into the internal one which is much easier to deal with.

46 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

On the other hand, as the test result (Table 3.3) suggests, independent
data sets share only a very small amount of data causing sometimes consider-
able amount of fragmentation (see IssueRepository). In order to prevent such
scenario one could decide not to deduplicate against other data sets but only
against previous version of the current one. Such approach will eliminate the
global fragmentation at the cost of usually small additional blocks stored.
The global fragmentation is definitely the most problematic and complex

one, both to analyze and to solve, when assuming that no duplicate blocks
are allowed to be stored. Eliminating duplicate blocks to any of the current
system data makes our backup dependent in some way on another com-
pletely unrelated one or possibly more. Even though some globally optimal
position for each common block exists, its calculation is usually complicated
and even if found, at least some of the involved backups will anyway suffer
from fragmentation. What is more, the impact of such factor actually cannot
be verified, as each of given traces will behave differently based on the other
data present in the system.
The described complications, usually a small amount of global duplicate

blocks in the backup stream and rather constant impact on the restore perfor-
mance (with constant number of data sets), result in much higher priority of
the other problems: inter-version and internal stream fragmentation. Taking
that into account and the character of global fragmentation, rather hard or
even impossible to verify, I have decided not to analyze this problem further
in this work.

3.2.4 Scalability issues

The whole new perspective has to be taken into account when large dedu-
plication backup systems are to be examined. Having tens or hundreds of
servers together with even thousands of hard disks all the issues tend to
reach another level. On one hand, there is more hardware to handle requests
and mask the potential problems, but on the other, the scalability objectives
require scaling the system capabilities together with its size.
Usually when restoring backup stream from a large system many disks are

involved in the process. Because of the erasure coding [82] or RAID usually
present, even each single block is cut into smaller fragments and then placed
on many hard drives. More disks means better resiliency and higher potential
single stream performance but unfortunately, together with multiplication of
fragmentation issues and sometimes even more expensive access to a single
block. Assuming, that one continuous stream is held by 10 disks, in order to
read it and preserve the close to optimal bandwidth (i.e. close to 1750MB/s
instead of 175MB/s with one disk [72]) one should prefetch about 2MB of

3.3. PROBLEM MAGNITUDE 47

data from each disk, ending up with total prefetch of 20MB (see similar
observations in [45]). As such big prefetch has much higher chance of being
ineffective, in practice most systems use much smaller buffer agreeing on
suboptimal choice and limiting maximal possible performance [45]. Bigger
overall prefetch means also higher probability of wasting cache memory by
prefetching not needed data and higher maximal fragmentation, as a result
requiring a few times bigger cache. Last but not least, in case of one disk drive
the minimal size of useful data was 8KB out of 2MB prefetch (0.4%), while
with a scalable solution sometimes it was even 8KB out of 20MB (0.04%),
significantly increasing the cost of each random read. Note that with RAID
configured with larger stripe size than deduplication block size, one block
may not be cut into many fragments. Still, assuming typical stripe sizes of
4-128KB and the fact that we never read less than the prefetch size of data
(2-20MB) all the drives will be used anyway, which leaves the user in a similar
scenario to the erasure coded one.

In general, it is much easier to assure good bandwidth having more spin-
dles, but with a big system one should expect much more than a decent single
stream performance of a single disk drive. In case of emergency one should
expect the restore process of the number of streams usually backed up every
day/week, which suggests keeping the scalability of reads at the same level
as writes, which are usually performed in one or a very limited number of
disk locations. Regardless of that, even in the simplest scenario of restoring
single stream the maximal performance with using minimal amount of power
and system memory is desirable.

3.3 Problem magnitude

In order to visualize the real scale of the fragmentation problem I have per-
formed simulations on six different data sets gathered from customers of
commercial system HYDRAstor. The detailed description of all data sets
and the experimental methodology can be found in Section 6.1.

Additionally, I have implemented a caching algorithm based on the Bélády’s
optimal algorithm called adopted Bélády’s cache (see Section 3.1.2 for details
of the Bélády’s algorithm). Even though it is not optimal when moving from
pages to blocks (see Section 8.2.2 for discussion on its lack of optimality in
case of prefetching blocks), it states the achievable performance level very
well and can be used as a benchmark of near-optimal solution.

48 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

3.3.1 Impact of different kinds of fragmentation on the
latest backup

In Figure 3.5 the topmost line corresponds to restore bandwidth achievable
by the latest backup with given cache memory size and adopted Bélády’s
cache. The other lines are the results of simulations with real backup system
and most common LRU cache eviction policy. While the middle one shows
the numbers with only latest backup present in the whole system, therefore
showing the impact of internal stream fragmentation, the bottom one rep-
resents the latest backup bandwidth after all the backups from the data set
are stored, though including the inter-version fragmentation as well.

The results were gathered for different cache sizes and visualized as a per-
centage of restore bandwidth achieved for a system without deduplication (as-
suming sequential data location and the cache size to fit one prefetch only).
Note that with using unlimited memory the internal fragmentation does not
exist (only inter-version fragmentation is visible), as in case of a read request
for any duplicate block the algorithm will always receive it directly from the
memory. Furthermore, the restore bandwidth with such unlimited cache can
be regarded as the maximal as long as there is no inter-version fragmentation
nor data reordering in the backup stream.

One can easily notice high, even above 100%, maximum bandwidth level
for each data set starting from some memory level. This phenomenon is in
fact the positive impact of internal stream duplicate blocks described in Sec-
tion 3.2.1 (reading duplicate data which are already in the memory). Even
though for some data sets such values would be possible even for realistic
cache sizes (512MB and below), in practice the results show up to 70% per-
formance degradation (see: Mail and IssueRepository charts). What is more
when adding the impact of inter-version fragmentation (up to 50% degrada-
tion) the final result can reach even 81% below the optimal level (IssueRepos-
itory) which is 75% below the level of a system without deduplication.

In general, it is very difficult to argue about the importance of either of
inter-version or internal stream fragmentation. Even though they both add
up to the restore performance degradation of the latest backup, their origin
and characteristics are much different. Also, the impact of each of them highly
depends on the data set used for measurement. More important, the inter-
version fragmentation increases with each backup, which makes the moment
of measurement very significant.

3.3. PROBLEM MAGNITUDE 49

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Development project (7)

+
-

Positive effect of fragmentation

Negative effect of fragmentation

(C) Internal + inter-version fragmentation with LRU cache
(B) Internal fragmentation with LRU cache
(A) Internal fragmentation with adopted Belady cache (theoretical result)

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Issue repository (7)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

General file server (14)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Wiki (8)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

User directories (50)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

Mail (22)

+
-

Figure 3.5: Impact of different kinds of fragmentation and cache size on the latest
backup (total number of backups in each set can be found in parentheses next to
the backup set name). Simulation methodology: (A),(B) - restoring the last backup
when it is the only one stored [with given cache algorithm]; (C) - restoring the last
backup when it is stored after all previous backups from a given data set [with
standard LRU cache]

50 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

%
 o

f
re

s
to

re
 b

a
n
d
w

id
th

 w
it
h
 n

o
 d

u
p
lic

a
te

s

Development project

128MB cache
256MB cache
512MB cache

1024MB cache
unlimited cache

unlimited cache - no fragmentation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

Issue repository

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14

%
 o

f
re

s
to

re
 b

a
n
d
w

id
th

 w
it
h
 n

o
 d

u
p
lic

a
te

s

General file server

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

Wiki

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

%
 o

f
re

s
to

re
 b

a
n
d
w

id
th

 w
it
h
 n

o
 d

u
p
lic

a
te

s

Backup Number

User directories

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20

Backup Number

Mail

Figure 3.6: Problem of fragmentation after each backup on different data sets
with defined LRU cache sizes

3.3. PROBLEM MAGNITUDE 51

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

Backup Number

Development project

32MB cache
64MB cache

128MB cache

256MB cache
512MB cache

1024MB cache

2048MB cache
4096MB cache
unlimited cache

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

Backup Number

Issue repository

Figure 3.7: Maximal bandwidth for each backup limited by the internal
stream fragmentation of each backup (no inter-version fragmentation). Re-
sults with different LRU cache sizes.

3.3.2 Fragmentation in time

The perspective of time or the actual number of backups performed, is very
important when it comes to the backup systems with in-line duplicate elimi-
nation. Figure 3.6 shows the problem of fragmentation after each performed
backup. The top line represents the bandwidth achievable with unlimited
cache (eliminates internal stream fragmentation) and no inter-version frag-
mentation to show the maximal performance level achievable for each backup
in each data set. All the other lines include both kinds of fragmentation.

Unfortunately, while having not more than 50 backups, it was difficult to
show the impact of the problem which could be verified best after many years
of regular backups. Some approximation, though, is given by Lillibridge et
al. in [54] through a synthetic data set of 480 backups covering a period of
2 years and showing a drop of up to 44 times when no defragmentation was
used. Even though it was generated by HP Storage Division based on the
customers involving high fragmentation, it still visualizes the problem well.

As my experiments show (see Figure 3.7), the level of internal stream
fragmentation is more or less stable for most backups within one set and
usually stays at the level of first initial backup. Therefore, the decrease with
every additional backup is in general caused by inter-version fragmentation.

52 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

As such performance drop, expressed as the percentage of the initial backup,
is similar regardless of the cache size the actual scale of the problem can
be easily noticed while looking at two topmost lines in Figure 3.6. Both
of them with unlimited memory (which disables impact of internal stream
fragmentation), but only the upper one without inter-version fragmentation
included. The lines for each cache size and no inter-version fragmentation
were omitted due to the clearness of charts, but the detailed impact of each
factor on the latest backup is presented on Figure 3.5.

3.3.3 Cache size impact on restore time

As shown in Figures 3.7 and 3.5, the cache may be considered as the weapon
used to fight internal stream fragmentation. Even though it does the work
(especially when unlimited memory is available), the price is very high. For
example, when starting with 32MB of cache memory with DevelopmentPro-
ject one need to use 16 times more memory (512MB) in order just to double
the restore bandwidth and still be under the 100% line for system without
duplicates. Similarly, with IssueRepository to achieve the same result, the
memory required is even 64 times higher (2048MB). Additionally, when hav-
ing in mind that modern backup systems handle many backup streams at
once, the required memory would have to be multiplied again by many times,
making the total system requirements enormous.
What is more, even though the increasing memory does improve the per-

formance of usual backup, the help received is very ineffective. As the algo-
rithm with adopted Bélády’s cache show (the total topmost line in Figure 3.5),
in most cases having only 128MB or 256MB cache memory backup should
be able to allow the restore with near maximal possible bandwidth, which is
from 20% (GeneralFileServer 256MB) up to 519% (IssueRepository 256MB)
higher than the one achieved with conventional cache usage (LRU) and usu-
ally above the level of non duplicate system bandwidth. The only data set
which differs much is Mail, where the internal duplicates pattern causes even
the adopted Bélády’s cache not to achieve non duplicate bandwidth levels
with reasonable amounts of memory.
On the other hand, as regards the inter-version fragmentation, the ad-

ditional memory does not seem to help much (Figure 3.5). The impact on
increasing restore time caused by this aspect of fragmentation is similar re-
gardless of the cache size and equal to 13-20% for the shortest sets (Wiki,
DevelopmentProject, GeneralFileServer), 34-46% for the Mail and UserDi-
rectories and up to even 91-171% for the most fragmented IssueRepository
after only 7 backups.
Simulation results of using different cache sizes within one data set show

3.4. OPTIONS TO REDUCE THE NEGATIVE IMPACT 53

only moderate impact of the memory size on the actually achieved bandwidth
but also indicate the reason of such observation. While the inter-version frag-
mentation problem does seem to be more or less memory-independent, the
second issue connected with internal fragmentation is simply caused by the
poor memory effectiveness reached by the common Least Recently Used cache
eviction policy. As the experiments with adopted Bélády’s cache show (see
Figure 3.5), the potential solution of this problem may offer higher restore
bandwidth with using even 8 times smaller amount of memory (in all data
sets having 128MB with adopted Bélády’s cache is better than 1024MB with
LRU).

3.4 Options to reduce the negative impact of

fragmentation during restore

Fragmentation is a natural by-product (or rather waste) of deduplication.
It is possible to completely eliminate fragmentation by keeping each backup
in a separate continuous disk space with no interference between backups,
however, in such case there will be no deduplication.

Another approach to practically eliminate impact of fragmentation on
restore performance is to use a big expected block size for deduplication. In
such case, when fragmentation happens, it will not degrade restore speed
much, because the seek time is dominated by the time needed to read block
data. For example, with 16MB expected blocks size, read disk bandwidth
of 175 MB/s and 12.67 ms read access time [72], a seek on each block read
will increase the restore time by less than 14%. However, optimal block size
for deduplication varies between 4KB and 16KB depending on particular
data pattern and storage system characterization (we need to include block
metadata in computing the effectiveness of dedup [70]). With much larger
blocks, the dedup becomes quite ineffective, so using such big blocks is not
a viable option [43, 55, 70].

An interesting solution would be to use reduced deduplication in order
to fight fragmentation. In this approach whenever some currently written
block is far away on the disk during backup, it can be simply stored on the
disk regardless of the existing copy. Unfortunately, as one of the solutions
show [45], this path leads to lower duplication ratio especially when moving
towards reasonable restore results. An interesting trade-off would be to fight
global fragmentation this way (as it is usually caused by a small number of
duplicates) but use other techniques, which would save the full deduplication,
to solve inter-version and internal stream fragmentation.

54 CHAPTER 3. THE PROBLEM OF STREAM FRAGMENTATION

Given backup systems usually consist of many servers and disks, they can
also be used in order to speed up the restore. If the performance from one
drive is at the level of 25% of the one achieved by system with no dedupli-
cation one can use four (or more) disks in order to reach the desired level
(together with prefetch and cache multiplication and all the consequences).
The only modification necessary would be to divide the single stream between
the chosen number of drives, which is often the case anyway (e.g. RAID). Al-
though this proposal means rather masking than solving the problem, it will
work whenever sufficient number of not fully utilized devices are available.
Finally, there is one more potentially good solution for the problem of

inter-version fragmentation called off-line deduplication (see Section 2.2.1
for details). In this approach as the latest backup is always stored as single
sequential stream, the restore performance is optimal (assuming no internal
duplicates). Unfortunately, the number of problems with this deduplication
concept results in a very small percentage of such solutions present on the
market.
The options presented above, although possible and sometimes even very

easy to introduce, require either fair amount of additional resource or propose
trade-offs which are not easily acceptable (i.e. restore bandwidth at the cost
of deduplication effectiveness). On the other hand, just by looking at the
details of the backup and restore process one can find a number of interesting
characteristics. Using them in a dedicated way may actually solve the problem
with only minimal cost and surprisingly reach restore bandwidth levels not
achievable before, sometimes even higher than those provided by backup
systems with no deduplication.

Chapter 4

Cache with limited forward
knowledge to reduce impact of
internal fragmentation

As it was stated in the previous section, one of the main reasons for a usu-
ally low restore bandwidth in systems with duplicate elimination is internal
stream fragmentation. When analyzing the test results for each cache size (see
Figure 3.5), one can notice much higher restore bandwidth achieved with the
adopted Bélády’s cache when compared with the common solution with LRU
cache, even when only single backup is present in the backup system (without
inter-version fragmentation). Even though the results differ much depending
on the data set, the average increase for all cache sizes is above 80%, while
for example with 256MB cache size the values differ from 7% and 25% for
GeneralFileServer and Wiki, up to 160% and 197% for IssueRepository and
Mail.
The actual problem visualized in the above results is inefficient usage of

cache memory. Because of the poor quality of prediction delivered by LRU
very often the block is evicted from cache before it is actually used (or reused),
while at the same time many blocks not needed at all occupy memory. This
is true especially in backup systems with deduplication where many copies of
the same block appear quite often in a single stream (see Table 6.1 for more
details).
In this chapter I would like to present an algorithm of cache eviction

policy with limited forward knowledge, whose purpose is to alleviate the
consequences of internal stream fragmentation by keeping only the blocks
which will be referenced in the near future. The side effect of the proposed
solution is also a more effective cache usage in general, which provides benefits
also when used for streams with inter-version fragmentation.

56 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

4.1 Desired properties of the final solution

In order to successfully replace LRU as a cache replacement policy the new
solution should:

• provide the restore bandwidth close to the one achieved with adopted
Bélády’s cache (and of course significantly higher than LRU),

• not require additional data to be stored (maximal deduplication effec-
tiveness should be kept),

• enforce only small if any modifications in restore algorithm,

• not require any changes outside of the restore algorithm,

• not require much additional resources such as disk bandwidth, spindles
and processing power,

• offer a range of choices in addressing trade-offs if necessary.

4.2 The idea

Each data set before being stored in a backup system is usually compacted
into one large (tens or hundreds of GBs [81]) logical stream by a backup
application. Many read [45] and deduplication [85] algorithms already rely
on such backup policy and tend to optimize the path of streaming access,
which is in fact very common in backup systems. In my idea I would like to
further optimize this well known property during the restore process.
As the problem of internal stream fragmentation seems to appear quite

often, any forward knowledge can be very useful in order to keep in memory
only those blocks which would reappear in the nearest future. The idea itself is
present in the Bélády’s algorithm [6], but the major issue making it useless in
general is that such information is difficult or even impossible to get. Luckily,
in a backup system this characteristic is different as backups are generally
very big and accessed in the same order as they were written. When starting
a restore one can usually find out the whole restore recipe, which means
having access to actually infinite knowledge about blocks being requested in
the future.
Even though the idea of using all forward addresses is tempting, in real-

ity it is not necessary as they would occupy precious memory which could
otherwise be used for the actual cache (to keep the data). My experiments
showed that having limited forward knowledge (fixed amount of information

4.3. SYSTEM SUPPORT 57

about future access to blocks) is enough in order to deliver good restore per-
formance. Moreover, the achieved results are often very close to the ones of
the adopted Bélády’s cache which has infinite forward knowledge.
The high level scheme of the algorithm presented in this chapter is shown

in Figure 4.1.

4.3 System support

To implement the limited forward knowledge cache I assume a backup system
supporting the following abilities:

• one address for all blocks with identical content: Blocks with the same
content should also have the same address. In case of backup systems
this property is assured by content addressability [67];

• whole backup restore with single stream identifier: Single identifier de-
livered to the system should be sufficient in order to read the entire
backup. Thanks to that the system gains access to the metadata for
blocks restored in the future and is able to deliver forward knowledge;

• ability to prefetch metadata in advance: The system should be able to
read defined amount of metadata first before retrieving the actual data.
Such metadata will be required for the cache eviction policy to assure
better memory usage.

Most systems with deduplication already support content addressabil-
ity [23, 85] and provide mechanism for reading the whole stream, given for
example the file path as identifier. Also every restore requires the metadata,
which are gradually read from dedicated place in the system (usually sepa-
rate from the data) in order to receive the full recipe and the addresses of
the actual data blocks. Small reorganization in order to read more of such
metadata before beginning of a stream restore can be easily introduced. As
a result, the algorithm described in the next section can be seen as generic
and adoptable to a wide range of systems with deduplication.

4.4 Algorithm details

4.4.1 The system restore algorithm

Looking from the system level, a restore of a stream starts by receiving the
stream identifier (see Figure 4.2). Even though such operation unlocks the

58 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

1 class Cache function i n s e r tB l o ck s (blocksWithData , forwardKnowledgeOracle)
2 {
3 for (blockID , blockData) in blocksWithData
4 {
5 i f (forwardKnowledgeOracle . conta in s (blockID))
6 {
7 this−>i n s e r tB lo ckWithPr io r i ty (
8 forwardKnowledgeOracle . g e tP r i o r i t y (blockID) , blockID , blockData
9)
10 }
11 }
12 this−>removeBlocksWithLowestPriorityExceedingMemoryLimit ()
13 }
14

15 function readStream(streamID)
16 {
17 cu r r en tO f f s e t = 0
18 endOffse t = FORWARD KNOWLEDGE SIZE CONST
19

20 // i n i t i a l i z e forward knowledge
21 blockIDs = readBlockIdsForStream(StreamID , cur r entO f f s e t , endOffse t)
22 forwardKnowledgeOracle . addForwardKnowledge (blockIDs)
23

24 while notFinishedReading (streamID)
25 {
26 blockID = getNextBlockID(streamID)
27 i f (not cache . conta insBlock (blockID))
28 {
29 blocksWithData = d i sk . readBlockWithPrefetch (blockID)
30 cache . i n s e r tB l o ck s (blocksWithData , forwardKnowledgeOracle)
31 }
32

33 blockData = cache . getBlockData (blockID)
34 b lo ckS i z e = blockData . s i z e ()
35 returnToUserAsynch (blockData)
36

37 // update forward knowledge
38 forwardKnowledgeOracle . updatePr ior ityForReadBlock (blockID)
39 cu r r en tO f f s e t = endOffse t
40 endOffse t = endOffse t + b lo ckS i z e
41 blockIDs = readBlockIDsForStream(StreamID , cur r entO f f s e t , endOffse t)
42 forwardKnowledgeOracle . addForwardKnowledge (blockIDs)
43 }
44 }

Figure 4.1: Reading a stream from a backup system with limited forward
knowledge - scheme

4.4. ALGORITHM DETAILS 59

Figure 4.2: The data restore process - scheme.

access to all metadata required, usually only some small amount is read in
order not to occupy too much memory. Based on this, the requests to read
blocks with dedicated addresses are sent. When the restore proceeds, the
additional metadata is read and more requests are issued. The whole process
is very smooth in order to provide constant load fully utilizing the system
and its resources.
The basic idea of the proposed solution is to use the information which

is already in the system. As having the knowledge about future blocks to be
read can be very useful for caching policy, the algorithm should be able to
read some reasonable amount of such forward knowledge.

4.4.2 The disk restore process

At the disk level, when it comes to the data storage, the standard prefetch
and cache algorithm is used (see Section 3.1.2), but with modified cache
eviction policy (see Figure 4.3). Thanks to the forward information received,
a dedicated oracle with limited forward knowledge can be created. Its in-
formation about next block occurrence helps with assuring close to optimal
memory allocation in cache.

60 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

Figure 4.3: The forward knowledge cache - scheme.

Whenever the name cache is used in this thesis it always refers to the mem-
ory where the actual data is kept, common for all caching algorithms (data
cache area on the above figure). As a result, it does not cover additional
memory required by specific solutions. LRU cache, Forward Knowledge cache
and other similar names are used to refer to the entire algorithm utilizing
corresponding cache eviction policy.

The oracle with limited forward knowledge

The oracle is designed as a map keeping the identifiers of all known forward
but unread blocks together with sorted list of block positions in which they
appear in a stream (see Figure 4.4). The update with forward information
will add an identifier of a block if not present and push the proper block
position at the back of its list. When necessary, the structure may return for
a given block the closest future position in which it will be required, or update
the most recently read block by removing its closest (current) position from
the list of next block occurrences. With the additional data, the oracle with
limited forward knowledge requires dedicated memory different from the one
where the cache data are kept. For each block address from the total amount
of forward knowledge, both the block identifier and its position in the stream
are required. Fortunately, the size of both can be limited to use only fraction

4.4. ALGORITHM DETAILS 61

Figure 4.4: The design of oracle with limited forward knowledge.

of memory that is required for the actual cache.
Each block in a system can be identified by its address. In deduplication

backup systems such address is usually based on a block content and is cal-
culated using a hash function such as 160-bit SHA1. Such original address
(hash) size is designed to assure an extremely low probability of collision in
order not to assume two different blocks as identical ones (see Section 2.2.4
for details). Fortunately, in the case of the oracle structure such information
does not need to be that precise. First, even when some hash collision ap-
pears, the only thing which happens is keeping in memory a single block,
which will in fact not be needed in the future (and will be easily detected
and removed when the expected occurrence does not happen). Second, with
limited forward knowledge the algorithm limits also the subset of the whole
storage system in order to find the collision (i.e. to a few GBs). In order to
set an example there is a 1 to 10 million chance for a hash collision within
about 2 million of blocks (=16GB of data, assuming 8KB block size) while
having 64bit (8 bytes) hash function and assuming its uniform distribution

(N−1
N
·

N−2
N
· ... ·

N−(k−1)
N
; where N = 264, k = 2 · 106). This leads to the

conclusion, that 64bit identifier is good enough for the purpose of providing
required functionality.
The exact information about block location in the stream is also not

required in the algorithm. As its only purpose is to roughly compare the
blocks position on the quite large part of a stream (i.e. a few GBs), it is
enough to divide the stream into sections and keep only this reduced infor-
mation in order to save the memory. Such a section may cover for exam-

62 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

Figure 4.5: Comparison of structures used by LRU and Forward Knowledge
algorithms

ple 8MB (arbitrary number) and be identified by its number sequentially
from the beginning of a stream. As it would be desired to keep the sec-
tion identifier limited (i.e. 2 bytes) in case all numbers are used, renumber-
ing operation can be performed to subtract the number of current section
from all the numbers stored in the oracle. In our example such operation,
even though cheap as performed in memory, will be executed once every
8MB ·64K(2bytes)−8GB(offorwardknowledge) = 504GB of data restored
in a single stream (which in reality can happen in only a few % of cases ac-
cording to backup workload analysis of over 10000 of systems by Wallace et
al. [81]).

Cached blocks locations

The forward knowledge cache is in general organized as a standard map with
block addresses as keys and the data as values. The only difference from LRU
is the kind of information kept (see Figure 4.5). Instead of the list storing least
recently used blocks (LRU priority queue) the ordered list of blocks with the
closest occurrence is kept - FK Cache priority queue (with ability to binary
search in case a block with new location is added). All the operations, such
as updating or adding blocks, are very similar to the operations on LRU
structures, beside the fact that instead of the latest usage the next block
occurrence information is stored.

4.4. ALGORITHM DETAILS 63

Figure 4.6: Reading a block already present in cache

64 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

Figure 4.7: Reading a block not present in cache (with eviction policy)

4.4. ALGORITHM DETAILS 65

The eviction policy

Figures 4.6 and 4.7 show the example of block restore and cache eviction
policy in two cases. The first one, when the block was found in cache, and
the second, when it had to be restored from disk. In the former case the only
operation performed is the actual update of the restored block in both cache
and oracle structures. The latter one is more complicated and includes also
the cache eviction process. In general, it consists of the following steps:

• read the block from the disk to cache together with its prefetch (updat-
ing cache with the information about next section occurrence provided
by the oracle)

• update the cache priority queue keeping blocks ordered by the section
of the next occurrence with restored blocks

• remove the blocks exceeding the maximal cache size with the most time
to the next occurrence (highest section numbers)

• continue updating the structures in the same way it is done when the
restore is performed from cache (4.6)

In a case when there is no known section of next occurrence in the oracle
for the most recently prefetched blocks and there is still some space left in the
cache memory, a few choices can be made. We can keep some of such blocks
in the cache (for example by assigning an artificial and large section number
and use an LRU or other algorithm for evicting them) or free the memory to
use it for some other purpose in case dynamic memory allocation to different
structures is possible. As my experiments showed that the first option does
not provide noticeable performance gain, the better choice would be to use the
additional memory for other system operations if necessary (such as restores,
writes and background calculations) or to dynamically increase the oracle
size, which would result in providing more forward information until all the
available memory is efficiently used.

The algorithm presented above is very similar to the adopted Bélády’s
cache. Actually it behaves identically until the cache memory is utilized in
100% by blocks indicated by forward knowledge. Any lower utilization indi-
cate worse behaviour than the adopted Bélády’s cache. The reason for such
scenario is always the limitation in forward knowledge size and characteris-
tics of the individual stream (duplicate blocks outside of forward knowledge
area).

66 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

4.4.3 Memory requirements

As the cache itself in the algorithm with Forward Knowledge is build in a
very similar way to the one with LRU algorithm, its memory requirements do
not change. Separate and dedicate memory, though, will be required by the
oracle with its forward knowledge. Another requirement may be an additional
list of all the block addresses waiting to be restored after they are received
as a forward knowledge, but before they are actually used to restore the
data. As the forward knowledge size may cover many gigabytes, it can take
many seconds before the addresses are used to restore the data (I assume
that addresses are delivered in order to fill the forward knowledge while the
restore is performed as fast as possible), which means they require dedicated
memory. The alternative approach described in detail in Section 4.4.4 may be
not to occupy the additional memory but restore the metadata twice: once
for the sake of forward knowledge and the second time for the restore itself.
Whichever solution is used, the proper memory size should be included in
the total memory assigned for the restore cache.
The detailed amount of additional memory required can be calculated as

follows. Each entry in the oracle equals at most one short hash (8 bytes) and
one section number entry (2 bytes). To be detailed we need to include the
structure overhead as well. As standard map requires keeping pointers which
are expensive (8 bytes per pointer while we keep only 10 bytes per entry),
the hash table with closed hashing is a much better choice here, possibly at
the cost of in-memory access time. Still, for acceptable results in this case
the memory allocated should be at least 30% higher [38] than requested,
which ends up with about 13 bytes per entry. Together with the full address
in the waiting list of 20 bytes size (160 bits, assuming SHA-1) the total of
33 bytes is the cost of having one block (8KB) forward knowledge, which
further means 4.12MB per every 1GB of data. For best results, a few GBs of
forward knowledge is desirable (in detail it depends on each exact data set
characteristics).

4.4.4 Discussion

Alternative solution

The important observation is that keeping only the list of addresses for the
data to be read in the future consumes already two thirds of the additional
memory required (20 out of 33 bytes kept per block). An idea worth consid-
eration in order to minimize this impact is presented below.
The easiest way in order not to keep the additional memory allocated is to

read the addresses again from the system. In such case, there would be two

4.5. TRADE-OFFS 67

stream accesses to metadata: one to provide proper information for oracle
and the other asking for the concrete block addresses to be restored. Given
the size of a block address is 20 bytes per 8KB block, the whole operation
would require reading 0.256% more data than with the original solution,
leaving only a small requirement of about 1.62MB of memory per each 1GB
of forward knowledge (instead of 4.12MB).

This solution sounds very tempting, especially in cases when only small
amount of memory is available. The exact choice would definitely require the
detailed analysis of a given system and other possible consequences of both
approaches.

The impact of different metadata read order

As the pattern of metadata restore is to be significantly modified with the
proposed algorithm, the question of its impact on restore performance ap-
pears. The discussion on this subject is difficult in general, as it requires the
detailed knowledge of a given system and its metadata restore process. Fortu-
nately, as the metadata is usually only small portion of all data to be restored
(0.256% with 20 bytes for each 8KB), even reading it all again should not
generate much additional work. Also, when the systems with high metadata
overhead of over 100 bytes per block [70] are taken into account, the total
restore bandwidth degradation in the same scenario would still be lower than
1.5%, which should be hardly noticeable.

4.5 Trade-offs

The major trade-off in the area of intelligent cache with forward knowledge
is with the size of memory dedicated for the standard cache and the forward
knowledge. Depending on the data set characteristics and the total amount of
memory available, only very small amount of forward knowledge can already
assure the effective cache usage in some cases, whereas in others very big
forward information even at the cost of a much smaller cache size is a much
better choice.

The best solution to this problem would be not to state any hard divi-
sion between the cache and the oracle. Thanks to such approach, the system
would be able to extend the future knowledge in case the cache memory is
not fully utilized or decrease it otherwise. Even though the described scenario
is tempting, it is much more complicated and requires detailed testing, espe-
cially in the real storage system case where distributed communication may
be an issue. Those concerns made me offer the version with hard division,

68 CHAPTER 4. CACHE WITH LIMITED FORWARD KNOWLEDGE

keeping the details of this solution for the future work.
One more trade-off is connected with the section size. Since in order to

save the memory the exact location of next block occurrence is not kept, some
evictions can be made not in the order desired. Such scenario can happen
when many blocks are located in a single section and one is to be evicted.
Fortunately, such event does not impact performance much as the reordering
can happen only within the blocks with the longest time to next occurrence
(the least important ones). Also, the achieved performance can never be lower
than the one in the same scenario but with the cache memory reduced by
the size of a single segment. In the typical scenario of 256MB cache and 8MB
section size, the performance would never be worse than with 248MB cache
and the exact knowledge about each block position.

Chapter 5

Content Based Rewriting
algorithm to reduce impact of
inter-version fragmentation

The experiments presented in Section 3.3.2 show the negative impact of inter-
version fragmentation caused by in-line duplicate elimination. Even though
the values in some cases do not seem very significant (restore bandwidth
decrease of about 12%-17% after 7-14 backups in case of GeneralFileServer,
Wiki and DevelopmentProject) the fact of relatively small number of backups
in those data sets and visible tendency of the problem to increase in time
supported by the experiments with longer data sets (about 19%-36% decrease
after 22-50 backups in case of Mail and UserDirectories) suggest potentially
high impact in real world usage, where the number of backups created for one
data set varies from 50 to over 300 every year. Moreover, the IssueRepository
data set states that there exist cases where performing only 7 backups may
already cost over 50% of potential restore bandwidth. My observations were
confirmed on other, independent data sets by Nam et al. [53, 54] and longer
ones (over 90 backups) by Lillibridge et al. [45].

In this chapter I would like to propose the Context Based Rewriting
algorithm (CBR) dealing with the issue of inter-version fragmentation by
changing the location of blocks to reflect the current streaming access pattern,
and as a result, provide more effective prefetch and cache usage.

5.1 Desired properties of the final solution

The problem requires a solution without negative effects on other important
metrics of deduplication system. Such solution should:

70 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

• eliminate the reduction in restore bandwidth caused by inter-version
fragmentation for the latest backups;

• introduce no more than very little (preferably below 5%) write perfor-
mance drop for ongoing backups;

• not degrade deduplication effectiveness (if necessary use only little and
temporary additional space);

• not require much additional resources such as disk bandwidth, spindles
and processing power;

• offer a range of choices in addressing trade-offs.

5.2 The idea

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7

%
 o

f
re

s
to

re
 b

a
n
d
w

id
th

 w
it
h
 n

o
 d

u
p
lic

a
te

s

Backup Number

Issue repository

in-line dedup
off-line dedup

Figure 5.1: Comparison of backup fragmentation: in-line vs. off-line dedup
(restore speed of each backup after all 7 IssueRepository backups with 512MB
cache and LRU cache eviction policy)

5.2. THE IDEA 71

In most cases, the latest backup is restored after failure, because users are
usually interested in having the most up to date information restored (see
Figure 3.1). Based on this observation, I would like to eliminate fragmentation
for the latest backups at the expense of the older ones (in order to preserve
deduplication ratio). An example of such approach is given in Figure 5.1.
It presents the drop in restore performance caused by fragmentation across
backup versions as a function of version number in two cases: (1) in-line
dedup with fragmentation decreasing with the backup age; and (2) off-line
dedup, which results in the latest backup written continuously to disk and
fragmentation increasing with the backup age. By introducing the Context
Based Rewriting algorithm I would like to add a defragmentation capability
to the in-line deduplication feature in order to achieve the defragmentation
effect similar to the off-line dedup, but without the associated costs.
As it was already presented in Chapter 3.2, in a system with in-line dedu-

plication the already existing blocks are not written again, making the backup
process very fast. Unfortunately, such approach may lead to high fragmenta-
tion as the two neighbour blocks in the stream can end up being far from each
other in the system. In order to prevent such scenario the CBR algorithm
analyzes the blocks from incoming backup stream and their physical local-
izations in the system. In order to minimize the performance drop caused by
inter-version fragmentation, the algorithm will move some of duplicate blocks
to a new physical location to preserve good streaming access and make the
prefetching effective. As the algorithm is performed during backup of the
stream, the actual blocks to be moved are not read (which might cost a lot)
but a copy delivered in the stream is written. The old copies are removed
by the deletion process run periodically. In opposite to off-line deduplication
only a small percentage of blocks is moved (rewritten) – the ones assuring the
highest restore bandwidth gain. The scheme of the CBR algorithm during
writing of a backup stream is presented in Figure 5.2.
Even though both cache with limited knowledge and CBR algorithm fight

fragmentation, they present a completely different approach and aim at dif-
ferent kind of the issue. The first one does not modify the data in the system
and allows effective cache memory usage during the restore by using the
future knowledge available. Such approach allows caching duplicate blocks
present internally in the stream, causing internal stream fragmentation. The
latter algorithm presented in this chapter is completely different and does not
deal with blocks reappearing in the stream. It’s main goal is to make all the
blocks structured in a more sequential way during backup and to fight the
so-called inter-version fragmentation. Interesting fact, though, is that such
approach results in a more effective prefetch leading to more accurate data
loaded into cache, which links both solutions. The actual impact of each of

72 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

them separately and combined are further analyzed in my experiments.

5.3 System support

To implement our defragmentation solution described in the next section,
the backup storage should support the following features:

• content addressability [67]: This is a base feature useful for the subse-
quent features described below;

• deduplication query based on checking for block hash existence: It is cru-
cial that this query is hash-based and requires reading metadata only.
For presented defragmentation solution it is not important if dedupli-
cation is attempted against all blocks in the system, or the subset of
them (such as with sparse indexing [46]). However, it is required to
avoid reading entire block data to perform dedup, because such opera-
tion would result in fact in reading the fragmented stream and a very
low total write performance. Also, it has to be acknowledged, that
with high fragmentation one may not have enough spindles even to
read block metadata fast enough. However, there exist solutions to this
problem based on flash memory [21, 50], whereas SSDs are too small
and too expensive to hold entire backup data;

• fast determination of disk-adjacent blocks: Given two blocks, system
should be able to determine quickly if they are close to each other
on disk. This can be achieved when each query which confirms block
existence in the system returns location of this block on disk;

• ability to write a block already existing in the system and remove the
old one. This is needed when a decision is made to store a block again
in order to increase future read performance. Such rewrite effectively
invalidates the previous copy, as the new one will be used on restore.

Many systems with in-line deduplication such as DataDomain [85] and
HYDRAstor [23] support the above features; for other systems such features
or their equivalents can be added. As a result, the algorithm described in the
next section can be seen as generic and adoptable to a wide range of systems
with in-line deduplication.

5.3. SYSTEM SUPPORT 73

1 class StreamContext function addBlock (b lock)
2 {
3 i f (i sDup l i c a t e (b lock . getID ()))
4 {
5 blockDiskLocat ion = getBlockLocationOnDisk (b lock . getID ())
6 }
7 else

8 {
9 blockDiskLocat ion = NONE
10 }
11 this−>addBlockWithLocation (block , b lockDiskLocat ion)
12 }
13

14 function writeBackupStream (stream)
15 {
16 // streamContext i s a smal l , cont inuous par t o f a stream of de f ined s i z e
17 while notFul l (streamContext) and not stream . isEmpty ()
18 {
19 streamContext . addBlock (stream . extractNextBlock ())
20 }
21

22 while not stream . isEmpty ()
23 {
24 dec i s i onB lo ck = streamContext . e x t r a c tF i r s tB l o ck ()
25

26 i f not i sDup l i c a t e (dec i s i onB lo ck . getID ())
27 {
28 blockAddress = storeBlockOnDisk (b lock)
29 }
30 else

31 {
32 blockDiskLocat ion = getBlockLocationOnDisk (b lock . getID ())
33 i f streamContext . numBlocksLocatedNear(b lockDiskLocat ion) < THRESHOLD
34 {
35 blockAddress = storeBlockOnDisk (b lock)
36 scheduleToRemoveOldCopyInBackground(b lockDiskLocat ion)
37 }
38 else

39 {
40 blockAddress = diskToBlockAddress (b lockDiskLocat ion)
41 }
42 }
43 streamContext . addBlock (stream . extractNextBlock ())
44

45 returnToUserAsynch (blockAddress)
46 }
47

48 f lushStreamContextLeftoversToDisk (streamContext)
49 }

Figure 5.2: Writing a backup stream with CBR algorithm - scheme

74 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

5.4 Algorithm details

5.4.1 Block contexts

Figure 5.3: Disk and stream contexts of a block

The algorithm utilizes two fixed-size contexts of a duplicate – its disk
context and stream context. The stream context of a block in a stream is
defined as a set of blocks written in this stream immediately after this block,
whereas its disk context contains blocks immediately following this block on
disk (see Figure 5.3). When the intersection of these two contexts is substan-
tial, reading of blocks in this intersection is very fast due to prefetching. In
fact, this is quite often the case especially for an initial backup.

The problem of fragmentation appears when the disk context contains
little data from the stream context. This occurs because of deduplication
when the same block is logically present in multiple stream locations with
different neighbours in each one of them. Even though such effect is also
caused by internal duplicate blocks (internal stream fragmentation), it is
practically eliminated by the cache with limited forward knowledge proposed
in the previous chapter. The algorithm presented below lets us deal only with
the blocks, which appear for the first time in the current backup stream.

5.4. ALGORITHM DETAILS 75

Note that the disk context size is strictly connected with the restore
algorithm and equals the prefetch size. The stream context size, on the other
hand, cannot be lower than this value in order not to limit the maximal
intersection. Based on the experiments, the usual sizes of disk and stream
context where by default set to 2MB and 5MB respectively. The impact of
other values will be described in section 5.5.

5.4.2 Keeping the contexts similar

The basic idea is to rewrite highly-fragmented duplicates, i.e. blocks whose
stream context in the current backup is significantly different from their disk
context. The attempt with such rewriting is to make both contexts similar
in terms of common blocks percentage. After rewriting, the new copy of the
block will be used for reading, which means also prefetching other blocks
stored in the same backup (therefore reducing fragmentation), and the old
copy is eventually reclaimed in the background.

The goal is to rewrite only a small fraction of blocks, because each rewrite
slows down backup and consumes additional space until the old copy of the
block is reclaimed. By default this parameter, called rewrite limit, is set to
5% of blocks seen so far in the current backup.

The algorithm iterates in a loop over the backup stream being written
deciding for each encountered duplicate if it should be rewritten. The current
duplicated block to be processed by the algorithm is called the decision block.

Since the data to be written is not not known in advance by the storage
system, the decisions whether to rewrite duplicates are made on-line (with-
out future knowledge, except for the stream context). Taking the above into
account, the algorithm can always make a sub-optimal choice for a given du-
plicate: for example by deciding to rewrite it, although such rewrite ”credit”
may be better saved for another duplicate later in the stream; or by de-
ciding not to rewrite a duplicate with a hope that a better candidate may
appear later in the stream; but such candidate may in fact never materialize.
Therefore, the challenge in the algorithm is to make good rewrite decisions.

5.4.3 Reaching rewrite decisions

In order to guide the rewriting process, we need to introduce a notion of
rewrite utility of a duplicate. Also, two thresholds will be maintained and
adjusted on each loop iteration: the minimal rewrite utility (constant), and
the current utility threshold (variable).

76 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

Rewrite utility

If the common part of disk and stream contexts of a decision block is small,
rewriting of such block is desired, as it can help to avoid one additional disk
seek to read little useful data. In the other extreme, if this common part
is large, such rewriting does not save much, as the additional seek time is
amortized by the time needed to read a lot of useful data.
Therefore, for each duplicate in a backup stream, the rewrite utility is

defined as the size of the blocks in the disk context of this duplicate which
do not belong to its stream context, relative to the total size of this disk
context. For example, the rewrite utility of 70% means, that exactly 30%
of data in blocks in the disk context appear also as the same blocks in the
stream context.

Minimal rewrite utility

 0

 20

 40

 60

 80

 100

 50 70 80 90 99

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
s
to

re
 b

a
n
d
w

id
th

Rewrite utility of 5% blocks

<- Minimal rewrite utility default value

Figure 5.4: Read bandwidth decrease with having only 5% of blocks with a
given rewrite utility (assuming other blocks are not fragmented).

The minimal utility is a constant parameter of the CBR algorithm in order
to avoid rewriting which would improve restore performance only marginally.
I have set the minimal rewrite utility to 70%. This value may look high, but
lower minimal utility is not much useful as presented in the below analysis.

5.4. ALGORITHM DETAILS 77

Let us assume a simple case of a backup with 5% of fragmented dupli-
cate blocks, all with rewrite utility equal to the minimal rewrite utility. The
remaining 95% of blocks are not fragmented (rewrite utility equal to 0%).
Moreover, assume that a prefetch of each fragmented block does not fetch
any useful data beyond blocks needed to satisfy the rewrite utility of this
fragmented block. Such scenario assures the minimal possible gain with the
maximal possible effort. In such case, rewriting all of the fragmented dupli-
cates potentially improves restore performance by about 12% (see Figure 5.4),
which is in my opinion sufficient to justify the rewriting. If the minimal util-
ity was set to 50%, rewriting all fragmented duplicates in a similar backup
would offer only 5% improvement, which simply seems not enough.

Note that there may be backups which suffer significantly from fragmen-
tation, but for which all duplicates have rewrite utility just below the minimal
utility. However, to reduce restore bandwidth drop caused by fragmentation
for such backups, the algorithm would need to rewrite many more blocks
than just 5%. For example, when having all the blocks with rewrite utility
70% rewriting 5% of blocks assures not more than 2.15% better performance.
Fortunately, I have not encountered any such case in my experiments.

Current utility threshold

The current utility threshold is a variable parameter of the CBR algorithm
defining the rewrite utility for current decision block. In order to calculate its
value a best-5% set of blocks is defined as 5% (the default value) of all dupli-
cates seen so far in the backup stream with the highest rewrite utility. Note
that each rewritable block must be a duplicate, so in some cases fewer than
5% of all blocks may be kept, because there may be not enough duplicates
in the stream.

To establish best-5%, the utility of rewriting each duplicate seen so far is
calculated without taking into account actual actions taken by the algorithm.
In each loop of the algorithm, the current rewrite utility threshold is set to
the utility of rewriting the worst of the best-5% blocks. Such selection roughly
means that if this value had been used as the current utility threshold for
every decision block from the beginning of the backup up to the current
point, and without a limit on the number of rewritten blocks, the algorithm
would have rewritten all the best-5% blocks.

Initially, the current rewrite utility threshold is set to the minimal utility
and is kept at this level for 500 blocks in order to allow defragmentation
of the first blocks in the stream. As this part consists of only 4MB of data
(usually out of many GBs), the 5% rewrite limit is not observed here.

78 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

Rewrite decision

The decision block is rewritten when its rewrite utility is not below the
maximum of the current rewrite utility threshold and the minimal utility.
Otherwise, all blocks in the context intersection are not rewritten, i.e. they
are treated as duplicates in the current stream and marked to be skipped
by future loops of the algorithm. Note that always each rewrite decision is
subject to the 5% rewrite limit, which is computed on-line based on all blocks
in the stream seen so far.
The decision is asymmetric: rewrite only the decision block or mark all

blocks in the intersection as duplicates. That is, even if the decision block is
to be rewritten, there is no decision to rewrite (or not) other blocks in the
intersection, as they may have their context intersections big enough to avoid
rewriting. However, once the verdict to keep the decision block as a duplicate
is taken, all the remaining blocks in the intersection should also be kept as
duplicates, to ensure that the read of the decision block will fetch also these
additional blocks (i.e. the rewrite utility of the decision block remains low).
Block rewriting does not always guarantee that the size of the intersection

of stream and disk contexts will be increased. For example, the stream context
may contain duplicates only and the algorithm may decide to rewrite just
one of them, because remaining are sequential. In such case, the size of the
intersection is not increased. However, the rewritten block will still end up on
disk close to other new or rewritten blocks. When such blocks are prefetched,
they will most likely survive in read cache, reducing number I/Os needed for
restore, so rewriting can be still beneficial.

5.4.4 Implementation details

Computing the context intersection

The stream context of the decision block is filled by delaying the completion
of this block write until enough write requests are submitted for this stream.
For each request, the duplicate status is resolved by issuing a modified dedup
query (with extra result of block location on disk) based on secure hash of
the data (i.e. SHA-1) [24, 25]. If there already is a query result filled in by
one of the previous loops of the algorithm, such query is not issued. In case
a duplicate is detected, the modified query returns the location of the block on
disk and the block address (the hash) is returned without further delay. While
filling in the stream context, each given block is examined by comparing
distance on the disk to the decision block and qualified as duplicate appearing
already in the disk context (or not). In such way, the intersection of the disk
context and the stream context is determined.

5.4. ALGORITHM DETAILS 79

Adjusting rewrite utility threshold

Since tracking utilities of best-5% is impractical, the algorithm keeps a fixed
number of utility buckets (for example 10000). Each bucket is assigned dis-
joint equal sub-range of rewrite utilities, all buckets cover the entire utility
range, and each bucket keeps the number of blocks seen so far with its utility
in this bucket range. Such structure allows, with minimal cost, approximation
of the rewrite utility of the worst of the best-5% blocks with reasonable accu-
racy – within the range of utility assigned to each bucket. Actually, only the
buckets representing the values above the minimal rewrite utility are useful,
but in both cases the memory required for such structure is negligible.

Filtering internal stream duplicates

My experiments show that actually every backup stream contains blocks
which are duplicates of some others from the stream (internal stream dupli-
cates). Since without decreasing the deduplication ratio, there is no on-line
way to determine the optimal location of such internal duplicate, any disk lo-
cation in a neighborhood of the corresponding duplicate block from a stream
can be considered as a potentially good one. The important thing, though,
is that during the backup of each version of the stream, the same logical
location is chosen by the CBR algorithm for the purpose of rewriting and
no other location triggers such operation. This is required in order not to
rewrite the internal duplicate blocks from one place in the logical stream
to another during each backup (thrashing). On the other hand, the cache
with forward knowledge described in the previous section suggests that the
first location in the logical stream should be considered as the one having
the highest potential. Once read into cache, it can potentially stay there for
long time serving also other requests to the same data. Therefore, the block
should be considered for rewriting only when it occurs in the stream for the
first time.

As the knowledge about being an internal duplicate does not need to be
exact and the size of each backup can be known with some approximation
before it is written, we can use a bloom filter [10] in order to use relatively
little memory. Before being qualified for the stream context, each block should
be verified in the filter for existence. If found, it should be written to the
system by the standard mechanism (it can be a false positive). Otherwise,
proper bits in the filter should be set indicating the block existence and the
block should be qualified for the stream context and for the CBR algorithm.
Note that the bits are never set to zero and the whole bloom filter is deleted
when the backup is completed.

80 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

In such case, for each 1GB of expected data, we require about 240KB
of memory in order not to exceed 0.1% false positive ratio (15 bits per key,
128·1024 keys, 7 hash functions) for the last bytes of the stream. Such number
is acceptable, as with having at maximum 5% of blocks to be rewritten,
usually below 4 (roughly estimating) of them will become falsely assumed as
internal duplicates. As the 1GB of data require at least 500 I/O, the negative
impact on the restore bandwidth will usually be much smaller than 1%.
Usually, the process of hashing does require additional processing power,

but this case is different. Since in the considered systems, we already have
the hash of the whole block calculated (160 or 256 bits), we can simply use
some chosen bits of this hash as a good hashing function for the bloom filter.
Such optimization make the final requirement on the additional processor
cycles is negligible.

Read simulation during write

The presented CBR algorithm performs well in assuring more sequential disk
access by rewriting a small number of blocks. In the end, though, what counts
is the restore performance achieved, when reading a stream. Keeping this
result at the same level, along with further decreasing number of rewritten
blocks, would help to lower the cost paid during each backup.
In order to achieve that, a restore simulation during backup is performed

with standard LRU cache eviction policy. Instead of the block hashes, block
location identifiers are kept in the memory. Thanks to that we can simulate
reading of blocks which are not yet stored to the system. The structure
requires the LRU queue and the map to check whether the incoming block
location is already in the cache, which should take no more than 384KB of
memory with simulation of 128MB cache (3 x 8bytes x 128MB / 8KB), which
delivered very similar results for all cache memory sizes in most data sets.
After introducing this enhancement, the number of rewritten blocks became
lower by about 20%-30% while keeping similar restore bandwidth.
Simulating the algorithm of cache with forward knowledge instead of LRU

during backup, would most probably bring even better results in decreasing
the number of rewritten blocks, but is more complicated (requires additional
memory and delay) and will be considered for the future work.

Background operations

The CBR algorithm requires a background process removing the old copies
of the rewritten blocks. This can be done together with other maintenance
tasks already run from time to time, such as deletion, data scrubbing and

5.4. ALGORITHM DETAILS 81

data sorting [23]. Until this removal is performed, the additional space used
by rewrites temporarily reduces the deduplication ratio. As the percentage of
such data is limited and the maintenance tasks are usually performed quite
often, such solution should be easily acceptable.

Modifications to read operation

If data blocks are content-addressable, both old and new copies have the
same address, so pointers to data blocks do not have to be changed when the
old copy is replaced with the new one. To ensure good performance of the
latest backup restore, only the procedure to access the latest copy of a block
may need slight modifications if the system previously did not allow many
copies of the same block. This can be done by keeping only the entry to the
newest block in the block index.

5.4.5 Memory requirements

The part of the algorithm, which potentially requires significant amount of
the memory, is the bloom filter used for the elimination of internal duplicate
blocks, as described in Section 5.4.4. The memory required is about 240KB
for each GB of the backup stream, which does not seem much, but bigger
streams put larger pressure on this requirement.

Since the usual amount of memory used during stream backup is at the
level of tens of GBs, the proposed solution is acceptable for stream sizes up
to 100GB (24MB of memory) or even 1TB (240MB of memory) - depending
on the system and the exact memory available. Note that according to data
gathered from over 10000 backup systems by Wallace et al. [81], streams
larger than 500GB use on average less than 5% of total capacity in the
backup systems, making them very rare in general.

If necessary, it is always possible to divide one large stream into the
smaller ones based on its logical content, assuring more common data placed
together (see Section 3.2.3). The alternative solution is also to use less precise
(higher number of false positives) or compressed bloom filter, at the cost of
lower number of defragmented blocks or more complex access to its data.

Finally, the described above bloom filter and the stream context of the
default size 5MB are structures required per each stream being stored into the
system. This means, that the final amount of memory should be multiplied
by the number of streams expected.

82 CHAPTER 5. CONTENT BASED REWRITING ALGORITHM

5.4.6 Discussion

Optimizing the on-line algorithm

The CBR algorithm is clearly on-line, as it looks only at the blocks seen so far
(plus small stream context which could be considered as forward knowledge).
Unfortunately, for the same reason it is optimal only in the case when current
utility is stable throughout the whole stream. In the other cases, with large
variations especially between the rewrite utility of blocks at the beginning
and the end of the stream together with full utilization of 5% rewrite limit,
the final result may not be that good (even though still better than before
defragmentation).
All the malicious scenarios can be addressed optimally by setting the fixed

rewrite utility for the whole stream. The best value of such utility would be
the one computed by the current utility algorithm and achieved at the end
of the stream. Unfortunately, such information would require future analysis
before storing the stream. A simple approximation could be done to use the
statistics gathered during backup of previous version of the same data set.
Fortunately, in all data sets tested the above problems were at the minimal

level also because the number of blocks rewritten was always below the 5%
level. Therefore, even with the on-line algorithm the final results were quite
close to the ones achieved with no inter-version fragmentation.

The off-line CBR

A simple modification of the CBR algorithm can be introduced, which seems
to eliminate its cost and preserve the advantages: first, identify the blocks
to be rewritten, and rewrite them later in the background, after backup is
finished. This does not work well, however, because rewriting would require
reading the fragmented blocks, which could be extremely slow (exactly be-
cause they are the most fragmented). In the in-line version of the CBR those
blocks are actually received almost for free, when a user is writing the data.

5.5 Trade-offs

Stream context size

The algorithm uses by default 5MB as stream context size, because it is big
enough to allow the CBR to be effective and small enough so increase in
write latency, due to filling this context is acceptable. Assuming a backup
system achieving 100 MB/s for a single stream [85], it will take not more than
50ms to fill in the context. Other values between 2MB and 20MB were also

5.5. TRADE-OFFS 83

verified and are acceptable to lower or increase the desired latency with only
slightly different final bandwidth results, but larger variation in number of
duplicates rewritten (larger stream context means less blocks to be rewritten
but a bit worse restore bandwidth). On the other hand, when the delay is
crucial in some system, it is possible to define the size of stream context by
the maximal acceptable delay we are able to wait for the write confirmation.
In such case the stream context of each block will be different but it should
still provide reasonable defragmentation results.
Note that the delay from the above examples will be introduced only for

non-duplicate blocks, which already have a significant latency.

Number of rewrites

Even though the default limit for the number of rewrites is set to 5% of all
blocks appearing so far in the stream, this value can be easily modified in
case of some individual requirements. Having a higher limit will make all the
blocks with the rewrite utility above the minimal one to be rewritten and
may be very useful for a stream which was backed up for a long time without
CBR defragmentation. Of course, the time of such backup will proportionally
increase but from the next one the limit may be brought back to 5%.
Also, decreasing the limit may be useful in cases where only minimal

bandwidth drop is acceptable (e.g. below 1%). In such case the algorithm will
do well in choosing the most fragmented blocks to be rewritten, providing
the highest gain with the smallest associated cost.

Chapter 6

Evaluation with trace driven
simulations

This chapter contains description of experimental methodology, data sets and
testing scenarios. Next, it provides separate evaluation for each of the algo-
rithms presented in Chapter 4 and 5. The combined effect of both solutions is
also presented. Finally, the scalability evaluation shows the possible impact
of fragmentation and the above solutions on many large systems present on
the today’s market.

6.1 Experimental methodology

The goal of my experiments is to show the problem in the environment com-
mon for all or at least most of the systems without any bottlenecks but the
disk itself and not look into details of each particular implementation. This
way, I give priority to evaluate the severity of the actual fragmentation prob-
lem and efficiency of its solution without obscuring the experiments with
architectural assumptions, which usually are simply the limitations of some
given implementation. In other words, the results presented in this section
can be viewed as the upper bound on the performance, especially signifi-
cant for the most popular systems with in-line deduplication. Note that even
though the systems with off-line deduplication do not suffer from inter-version
fragmentation, they still have to deal with the one present internally in the
stream. For that, the cache with forward knowledge presented in Chapter 4
and evaluated here works very well.

With the additional help of my colleagues I have prepared a 12,000 line
C++ simulator capable of performing parallel testing (on many cores and
machines) in thousands of possible configurations. Having the actual traces

86 CHAPTER 6. EVALUATION

gathered from real users, the simulator produced results and statistics which
lead to the conclusions and finally the numbers presented in this work. Even
though this is only a fraction of the results achieved, the numbers presented
are the most important ones having the highest impact on analyzing and
overcoming the fragmentation problem present in backup systems with dedu-
plication.

6.1.1 Backup system model

I propose a backup system model general enough to represent the common
part of the vast majority of backup systems with in-line deduplication, sim-
ple enough to be implemented with respect especially to the main problem
characteristics, and efficient enough in order to perform a large number of
experiments in a limited time.

Write simulation

In the model I have assumed a simple storage subsystem that consists of one
continuous space (something as a single large disk) which is empty at the be-
ginning of each measurement. The write process in the simulator was designed
to keep all the characteristics present in systems with in-line duplicate elimi-
nation described in Section 3.2 with the main ones such as locality preserving
blocks placement [85] and placing new blocks after currently occupied area.
Such write algorithm assures maximal write bandwidth and minimal resource
utilization, which were always the priorities while performing a backup.
The data used for the simulations was gathered from real users. In order

to optimize the process, each version of a given data set was chunked using
Rabin fingerprinting [12, 68] into blocks of the average size 8KB (as the
most popular in today’s backup systems). After such process the traces with
short hash only (64 bit) and size of each block were stored and used for all
the simulation. Thanks to that it was not necessary to perform chunking nor
hashing each time the experiment was performed, and it was possible to keep
the whole disk image in the system memory, which made the testing process
very efficient.

Restore simulation

As described in the Section 3.1.2, reading with using prefetching and caching
is the most commonly used within the storage environment.
In all experiments fixed-size prefetch is used, so we can assume that the

read bandwidth is inversely proportional to the number of data I/O oper-

6.1. EXPERIMENTAL METHODOLOGY 87

ations during restore. Although certainly there are systems for which per-
formance is influenced by other factors, I believe that correlating achieved
bandwidth with the number of fixed-size I/Os allows us to focus on the core of
the fragmentation problem and disregard secondary factors such as network
and CPU speeds.
I assumed constant prefetch size of 2MB as the most efficient with today’s

disk drives even with most fragmented data (see next section for justifica-
tion). The cache size varies between 128MB up to 1GB per single stream
being restored for better problem visualization, while the experiments with
unlimited size of cache provide important information about maximal theo-
retical limitations. The common LRU data replacement policy, as the most
popular one [42, 45, 54], is used in order to show current performance level.
Note that in the experiments with forward knowledge only the blocks

with known future appearance are kept in cache. If the forward knowledge
is short or there is only a small number of blocks which are to be used in
the future, the cache memory may not be fully utilized. Such approach is
not optimal but I have decided to use it in order to clearly visualize the
limitations. Also, my experiments showed that keeping memory fully utilized
in a way similar to LRU helps only a little or does not help at all, especially
when having larger forward knowledge. Based on the results, it is clear that
any additional memory should be used in the first place to extend the forward
knowledge, which suggests dynamic memory division between the oracle and
the cache when it comes to specific implementation.

The choice of disk context/prefetch size

Prefetching is very effective for reading data placed sequentially on disk. In
order to show this in the environment with deduplication, I have performed
a simulation with fixed prefetch size modified from 512KB up to 8MB for all
six data sets (see Figure 6.1). Since the comparison here is done with using
different prefetch sizes, extrapolation of performance based on the number of
I/Os only cannot be done any more (comparison result in such case depends
on how much data a disk can read in a seek time). Therefore, I have used
common enterprise data center capacity HDD specification [72] to be able to
reason about achieved performance.
As we can see on the charts, in 4 out of 6 cases for both fragmented and

not fragmented data the shortest restore time is achieved with prefetch size
equal 2MB. The only exceptions are Wiki and GeneralFileServer, for which
8MB prefetch is slightly better. Based on those results, I have decided to use
2MB prefetch for majority of the tests, as the most representative one for
both fragmented and not fragmented data with common LRU cache. The

88 CHAPTER 6. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 128 512 2048 8192

R
e

la
ti
v
e

 b
a

c
k
u

p
 r

e
s
to

re
 t

im
e

Prefetch Size (KB)

UserDirectories
Mail

IssueRepository
DevelopmentProject

Wiki
GeneralFileServer

 0

 20

 40

 60

 80

 100

 120

 128 512 2048 8192

Prefetch Size (KB)

Figure 6.1: Relative restore time of the latest backup for each backup set,
with inter-version fragmentation (left chart) and without it (right chart), as
a function of prefetch size. Experiment performed with LRU cache eviction
policy, 512MB cache size and common enterprise data center capacity HDD
specification [72] (sustained data transfer rate: 175MB/s, read access time:
12.67ms)

two exceptions are clearly marked in separate sections and show possibility
of further restore bandwidth increase, when using larger prefetch sizes with
forward knowledge cache and after taking the scalability perspective into
account.

Although the variable prefetch size can also be an option, it can only
mask the fragmentation to some extent, especially when the streaming ac-
cess is concerned. By reading smaller amounts of data when random read
is detected, it may improve the current performance, but it may also de-
crease it if the streaming access is detected not soon enough. Also, each time
the prefetch is modified from the maximal value, also the maximal possi-
ble performance suffers. Moreover, such solution requires many assumptions
about the system and its architecture. Therefore, I decided to use the fixed
prefetch size in my experiments and in order to extrapolate bandwidth based
on number of I/Os performed in the test.

This measure ignores some speed variances due to file system physical
fragmentation, faster seeks when particular I/Os are close to each other and

6.1. EXPERIMENTAL METHODOLOGY 89

slower when they are far away in favor of the dominant cost: the single I/O
read time.

6.1.2 Omitted factors

In my experiments I have omitted incremental backups (in systems with
duplicate elimination, they are actually very similar to full backups, as only
the new data is stored), which are often performed every day by many users.
Unfortunately, the users who kindly agreed to usage of their data in my
experiments did not have them. Even though the experiments with such data
would be valuable, they would only extend the picture already presented
by my experiments. What is sure, such backups cannot negate nor lower
the problem of fragmentation, as after the whole week they end up having
written similar new data in the same storage area. In fact, as the day to
day modifications are smaller and more frequent, they may even make the
problem more severe as the new data from one week is now divided into 5-7
areas instead of one.
In modern backup systems, being able to handle many backups at once

is one of the key features. Even though in my experiments only a single
stream load is verified, such approach lets me provide a repeatable way to
perform experiments and show the results with optimal block placement
on the disk (no data from other sets nor containers limiting the power of
prefetch). Writing many streams at once leads to many issues connected with
the implementation, which would require looking into the problem separately
from each system perspective. As this was not my goal, I decided to provide
the simplest implementation, which should actually be close to the optimal
case for each system from both write and restore bandwidth points of view.
Each additional stream being written at the same time requires solving at
least the problem of storing all the streams in separate containers, which
potentially introduces additional fragmentation.
The aspect of data retention, and therefore their deletion, is always present

with backups systems and especially difficult when deduplication is taken into
account. As a single backup system is stored for a quite long time, at some
point a decision needs to be taken which backups to remove. This influences
also data fragmentation. Actually, experiments show that the exact schedule
for deleting backups does not particularly affect the results in another way
than changing the overall deduplication factor [45]. Also, in case of my exper-
iments, the number of backups in each data set is relatively small, therefore,
applying a data retention policy to it and verifying the fragmentation changes
would not allow me to draw sufficiently general conclusions.
One of the factors omitted in my experiments is also global deduplication

90 CHAPTER 6. EVALUATION

data set name number
of
backups

avg. one
backup
size

avg. dupli-
cate blocks*

avg. internal
duplicate
blocks

DevelopmentProject 7 13.74 GB 96.42% 17.81%

IssueRepository 7 18.36 GB 85.42% 23.20%

Wiki 8 8.75 GB 97.76% 17.79%

GeneralFileServer 14 77.59 GB 83.43% 17.38%

UserDirectories 50 76.15 GB 92.58% 19.34%

Mail 22 25.91 GB 97.76% 32.55%

Table 6.1: Data sets characteristics (* – data excluding first backup)

(within the whole system), which can be found in some of the systems on
the market [23]. The main reason for that is the difficulty of performing tests
and giving reliable results along with limited impact factor. The details of
my decisions were presented in Section 3.2.3.

6.1.3 Data sets description

In order to diagnose the problem of fragmentation and verify proposed al-
gorithms, I have gathered traces representing real user data of over 5.7TB
in size and consisting of 6 sets of weekly full backups. The characteristics
of each set are described in Table 6.1, while the types of their content are
presented below.

• DevelopmentProject - large C++ project cvs data, LDAP data, server
configuration files

• IssueRepository - issue repository data (contains XMLs and attach-
ments), server configuration files

• Wiki - wiki data, server configuration files

• GeneralFileServer - home directories of computer science research lab-
oratory (netware)

• UserDirectories - linux home directories of 18 users in a software com-
pany (tar)

• Mail - mailboxes of 35 users in a software company (tar)

6.2. FORWARD KNOWLEDGE CACHE 91

6.1.4 Testing scenarios

Each test always starts with an empty system and beside the parameters
(such as cache and prefetch size, caching algorithm, forward knowledge size)
can be performed in three different scenarios:

• base - all backups from a data set loaded one after another (includes
internal and inter-version fragmentation)

• defrag - all backups from a data set loaded one after another with
CBR defragmentation enabled (both internal and inter-version frag-
mentation with the last one limited by CBR algorithm). Note that,
this result will be shown only in experiments actually using CBR algo-
rithm.

• max - only the last backup from a set loaded into the system (only
internal stream fragmentation). This result can be referred to as the
potentially maximal bandwidth level for the stream [it actually is max-
imal when unlimited cache size is used]. It can be considered realistic
only with off-line deduplication, but only together with associated costs
(see Section 2.2.1).

The goal of each scenario is to visualize the system in a state of being
fragmented (base), defragmented (defrag) and not fragmented (max) in order
to measure the effectiveness of presented algorithms and compare different
options with no deduplication version (the x axis in all experiments) and
between each other. Note that regardless of the scenario, the internal stream
fragmentation is always present in a stream as it cannot be eliminated with-
out decreasing deduplication level and changing the logical structure. Also,
as already stated in Section 3.2.1, it highly impacts the final results, making
the numbers in all scenarios sometimes far from the level achieved with no
deduplication (in both: negative and positive way).

Another important observation is that the max scenario together with
unlimited cache size can be regarded as the maximum bandwidth achievable
in theory (as whole backup is placed in the one continuous area in the order
of reading and all the blocks once read will never be evicted from cache).

92 CHAPTER 6. EVALUATION

LRU cache Cache with forward
knowledge (FK)

base scenario
(with inter-version fragmen-
tation)

max scenario
(no inter-version fragmenta-
tion)

1GB 128MB + 2GB FK 0.94 - 50.92% 0.85 - 37.4%
(avg. 18.67%) (avg. 14.84%)

128MB 128MB + 2GB FK 9.45% - 200.62% 8.84% - 183.41%
(avg. 72.2%) (avg. 73.63%)

256MB 256MB + 8GB FK 6.67% - 185.47% 6.79% - 196.95%
(avg. 70.36%) (avg. 87.76%)

512MB 512MB + 8GB FK 3.78% - 197.73% 3.84% - 238.54%
(avg. 66.42%) (avg. 82.03%)

1GB 1GB + 8GB FK 2.50% - 211.34% 2.57% - 253.56%
(avg. 61.97%) (avg. 67.64%)

Table 6.2: Backup restore bandwidth increase of cache with forward knowl-
edge over standard LRU cache eviction policy in various configurations (mea-
surements for the latest backup in each data set).

6.2 Evaluation of forward knowledge cache

6.2.1 Meeting the requirements

Performance results

The cache with limited forward knowledge presented in Chapter 4 does very
well in optimizing the memory usage during restore of every backup (includ-
ing the latest one) for both fragmented and not fragmented data (including
off-line dedup), assuring an average restore bandwidth increase between 62%
and 88% (see Table 6.2).
Moreover, for 4 out of 6 not fragmented data sets having only 256MB of

cache memory together with 8GB forward knowledge already provide results
almost identical to the ones achieved with unlimited cache size. For two
others (UserDirectories and Mail) possible options are either to stay with
256MB size of cache and gain 22%-73% of additional bandwidth even when
comparing to LRU with 1GB cache, or to use the same size of 1GB cache
with 22%-253% bandwidth boost and additional 20% possible with larger
forward knowledge. The exact results are shown in Figures 6.2 and 6.3, while
their detailed analysis can be found in the following sections.
In addition to the above characteristics, the cache with forward knowledge

6.2. FORWARD KNOWLEDGE CACHE 93

enables a range of choices based on the resources available and the restore
bandwidth requirements. It is possible to choose between the cheaper option
with 8 times lower memory usage and still slightly better performance (1GB
LRU vs 128MB with forward knowledge), and the one with the same amount
of memory, but higher performance (see Table 6.2). Depending on the actual
system usage pattern, both options sound very interesting with a significant
leap from currently most popular LRU algorithm as the cache replacement
policy.

Additional resource usage and possible trade-offs

As described in details in Section 4.4.4, the usage of limited forward knowl-
edge requires additional resources, which should be included in the total
costs. In the most effective case those are: memory (about 13MB for 8GB of
forward knowledge) and bandwidth (about 0.256% decrease). Although the
second one is small enough to become negligible, the first one can make some
difference, especially when the total amount of cache memory is small. Even
though assuming 256MB of cache as the most effective in general, having
8GB of forward knowledge causes only about 5% higher memory usage. This
cost does not seem to be high, assuming the bandwidth increase and how
well it approximates infinite forward knowledge.

Note that in my experiments this additional memory is not included by
default in the total cache size. This enables clear and easy comparison be-
tween different forward knowledge sizes and their impact on the performance
while keeping exactly the same cache size. Also each of the possible imple-
mentations require different amount of memory, which would be complicated
to visualize and would require much more testing.

Tunability

The cache with forward knowledge is also tunable by setting the size of re-
quested forward knowledge at the cost of additional memory. In general, the
higher the forward knowledge the better the solution, but in detail, this prop-
erty is limited and relies on the internal duplicates pattern, the size of cache
memory and the state of the stream (fragmented or not). As already men-
tioned in Section 4.5, the desired solution would be to automate the memory
division between the actual cache and the forward knowledge within some
total amount of memory available in order to secure the best performance
results.

94 CHAPTER 6. EVALUATION

Code modifications and deduplication

Although code modification is required to use the algorithm in some given
implementation, it is very limited and does not impact deduplication effec-
tiveness. The two modifications which are necessary consider only the al-
gorithm responsible for the data restore in general and the cache memory
management using the interfaces already available. The former one is re-
quested only in order to fill the oracle with the actual forward knowledge,
and it can be easily done by attaching proper information to each standard
read request, making the modification almost invisible from other system
components perspective. The latter one, on the other hand, is limited to the
restore algorithm, only making it easy to simply swap the implementation.
Such limited modifications make the algorithm suitable for most (or possibly
even all) systems present on the market.

6.2.2 Setting the forward knowledge size

Figures 6.2 and 6.3 show the impact of cache with forward knowledge, both
limited (to 512MB, 2GB, 8GB) and unlimited (the same as adopted Bélády’s
cache used before in this work), together with the comparison to standard
LRU algorithm.

In both figures we can notice very good results when using actually any
amount of forward knowledge, although the highest gain (in %, when com-
pared with LRU) is almost always possible with the smallest cache size. This
is because small amount of cache makes LRU algorithm highly ineffective,
as before the block is requested again it already becomes evicted from cache
(best visualized with DevelopmentProject and GeneralFileServer data sets).
With forward knowledge each block in cache has its own purpose and is not
evicted until used at least once (with some rare exceptions when prefetched
blocks are to be read earlier than some others already present in the cache).
Also, the small amount of memory makes the cache utilized in 100% in al-
most all the cases and throughout the whole experiment, which is not always
true with higher values (see Section 6.1.1 for details). For example, not frag-
mented DevelopmentProject achieves already maximal bandwidth with only
128MB of cache memory, even when having infinite forward knowledge.

Increasing forward knowledge always helps to improve the achieved re-
sults. The gain, though, is highly correlated with the amount of cache used
and the pattern of internal duplicate blocks present in a stream. The prob-
lem of duplicates defines the minimal size of memory necessary not to reread
blocks from disk, which is in fact the desired size of the cache. Being able to
find all the blocks to keep in memory in the limited forward knowledge and

6.2. FORWARD KNOWLEDGE CACHE 95

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Development project (7)

+
-

LRU base
512MBFK base
2GBFK base
8GBFK base
infFK base

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Issue repository (7)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

General file server (14)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Wiki (8)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

User directories (50)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

Mail (22)

+
-

Figure 6.2: Impact of forward knowledge size on restore performance of the latest
backup with storing previous backups of the set before (base scenario)

96 CHAPTER 6. EVALUATION

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Development project (7)

+
-

LRU max
512MBFK max
2GBFK max
8GBFK max
infFK max

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Issue repository (7)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

General file server (14)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Wiki (8)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

User directories (50)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

Mail (22)

+
-

Figure 6.3: Impact of forward knowledge size on restore performance of the latest
backup when it is stored as the only one in the system (max scenario)

6.2. FORWARD KNOWLEDGE CACHE 97

having the required size of the memory makes the process the most effective.
This characteristic can be noticed especially in case of Mail data set, which
contains the highest amount of internal duplicates. On both figures (frag-
mented and not) having 1GB of cache and 8GB of forward knowledge gives
significantly better results than with lower memory and forward knowledge
sizes.
On the other hand, there are many cases where limited forward knowledge

actually limits the cache memory usage. In my implementation, whenever the
cache with forward knowledge is simulated, it keeps in the memory only the
blocks which are to be used in the future (found in forward knowledge).
Therefore, the cache amount in this case should be seen as a top limitation
rather than the specific amount of memory in use. The actual value can vary
throughout the simulation, but at some point it reaches its peak, which means
that adding extra memory will not improve the results (unless more forward
knowledge is used). Such scenario is best seen with forward knowledge limited
to 512MB. In this case more cache than 128MB will not bring any visible
benefits for any of the data sets presented as not more than 128MB will
be actually used. With other limits for the future knowledge such border is
different for each data set and can be easily read from Figures 6.2 and 6.3.
In order to have the whole picture, it is interesting to look at the forward

knowledge with relation to the size of the whole backup. As we can notice
when comparing Figures 6.2 and 6.3, one globally true claim seems to be that
fragmented data needs less forward knowledge than not fragmented data (see
next section for details), which leads to the conclusion that the memory for
the forward knowledge should change with the life of a data set. Other in-
sights are dependent on the stream detailed characteristics rather than on the
stream size. When we look at the charts, having 2GB of forward knowledge
is perfectly enough for all data sets with 128MB cache while for 256MB it is
a bit short, especially for the IssueRepository, which is actually quite small.
One thing which may change when having very large streams is the distance
to optimal algorithm using unlimited memory, which is understandable. This
is the case especially with UserDirectories.

6.2.3 Impact of fragmentation on required cache size

An interesting fact can be observed when comparing once more Figures 6.2
and 6.3 for the efficiency of cache memory usage with different forward knowl-
edge sizes. While for the first one (with inter-version fragmentation) 8GB of
forward knowledge is enough even for 1GB cache to stay within at maxi-
mum 8% of the algorithm with infinite forward knowledge (avg. 2.48%), the
not fragmented option has higher requirements, because of more data worth

98 CHAPTER 6. EVALUATION

data set name
base

(with inter-version
fragmentation)

max
(no inter-version
fragmentation)

DevelopmentProject 212 MB 94 MB

IssueRepository 2654 MB 309 MB

Wiki 353 MB 269 MB

GeneralFileServer 184 MB 181 MB

UserDirectories 3916 MB 1887 MB

Mail 2230 MB 1366 MB

Table 6.3: Cache memory actually used when performing experiments with
infinite forward knowledge (peak usage for the latest backup in each data
set) [memory required for forward knowledge not included]

keeping is restored with every I/O. In this case 8GB of forward knowledge
works extremely well for up to 256MB cache (at maximum 2.3% deviation
from no limit option; avg 0.83%) with already showing shortage while hav-
ing 512MB (max. 19.25%, avg. 5.48%). With this and bigger cache options,
longer forward knowledge is required. Note that in my experiments only the
blocks found in forward knowledge can be kept in cache (see Section 6.1.1
for details). If the forward knowledge is short or there is only small number
of blocks which are to be used in the future, the cache memory may not be
fully utilized, which can be often noticed on the figures when two results with
different memory sizes are the same.

In order to measure the maximal memory requirements for each data set,
I have performed a test with the unlimited amount of memory and infinite
forward knowledge. The results in Table 6.3 show that data fragmentation
has significant impact on required memory even in the case of having forward
knowledge. With 3 out of 6 cases the memory requirements have doubled
after allowing the inter-version fragmentation, while for IssueRepository they
were multiplied by 9 times. The requirements for the remaining two data sets
stayed at a quite similar level.

6.2.4 Experimenting with larger prefetch

Because of the observations from Section 6.1.1 most of my experiments were
performed with fixed default prefetch of size 2MB, as it was the most effec-
tive for the most common LRU algorithm point of view and provided easy

6.2. FORWARD KNOWLEDGE CACHE 99

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

Development project

LRU base
LRU max

8GBFK base
8GBFK max

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Issue repository

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

General file server

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Wiki

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

Prefetch Size (KB)

User directories

 0

 50

 100

 150

 200

 250

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Prefetch Size (KB)

Mail

Figure 6.4: Impact of prefetch size on restore bandwidth of the latest backup
with and without forward knowledge for both fragmented (base) and not frag-
mented (max) data [100 - restore bandwidth of a system with no deduplica-
tion and prefetch size 2MB]. Cache size in all cases equals 256MB. Common
enterprise disk characteristics used [72].

100 CHAPTER 6. EVALUATION

comparison between different algorithms. Such level of prefetch size (2-4MB)
is also similar to the one used in many papers [45, 54], suggesting that it can
be regarded as the most common one. Nevertheless, it turned out that having
caching algorithm with forward knowledge modifies those assumptions signif-
icantly. In order to visualize the difference in restore bandwidth with relation
to prefetch size, I have performed a simulation with common enterprise disk
characteristics [72] (sustained data transfer rate: 175MB/s, read access time:
12.67ms). The results shown in Figure 6.4 suggest that every backup in each
condition (fragmented and not fragmented), and using different restore algo-
rithm, has its own optimal prefetch size, which can differ a lot between each
other. The one clear observation is that such optimal prefetch is always larger
for not fragmented data when comparing to fragmented one, and for the for-
ward knowledge algorithm when comparing to LRU. As a result, switching to
the larger prefetch improves the restore bandwidth through a smaller number
of I/Os which limits unproductive seeks. Thanks to the forward knowledge
algorithm the prefetch size can be larger by 2 to 16 times than with LRU,
therefore providing maximal restore bandwidth increase at the level of 11%-
117% (avg 68.47%) for fragmented data and 27%-252% (avg. 120.24%) for
not fragmented data. When comparing to the results with forward knowl-
edge and 2MB prefetch, extending prefetch size can give an additional gain
of 0%-48% (avg. 23.89%) for fragmented and 3%-92% (avg. 53.90%) for not
fragmented data.

6.3 Evaluation of CBR effectiveness

6.3.1 Meeting the requirements

Performance results

The CBR algorithm presented in Chapter 5 is very effective when eliminat-
ing the inter-version fragmentation impact for all the traces. In the common
scenario with 256MB of LRU cache the resulting restore bandwidth of the
latest backup in each data is on average within 2.48% (from within 21.29%)
of the maximal one, which is achieved with no inter-version deduplication
(for example by storing single backup). Even though this indicates on aver-
age only 29.1% (8%-94%) restore bandwidth increase, the important fact is
the perspective of further degradation which should be taken into account.
Unfortunately, the true potential of the algorithm could not be shown here
due to the lack of traces covering many years of backups (see Section 3.3.2
for details).
When looking more deeply into results shown in Figure 6.5, one can make

6.3. CONTEXT BASED REWRITING ALGORITHM 101

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

Development project

LRU base 256MB cache
LRU defrag 256MB cache

LRU max 256MB cache
base unlimited cache

defrag unlimited cache
max unlimited cache

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

Issue repository

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

General file server

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

Wiki

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

Backup Number

User directories

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20

Backup Number

Mail

Figure 6.5: The restore bandwidth achieved by CBR algorithm in two sce-
narios: LRU basic algorithm with 256MB cache and unlimited cache size
(measurement in all scenarios performed after each backup).

102 CHAPTER 6. EVALUATION

some interesting observations specific to each data set. For example, the
biggest increase in fragmentation occurs for backups 2 and 7 of IssueReposi-
tory. This is caused most likely by data deletion, because these backups are
the only ones significantly smaller than their predecessors. On the other hand,
the peaks visible on UserDirectories and Mail charts are caused by not fully
completed backups, while other peaks usually differ much in backup stream
characteristics (number of duplicates, unique blocks, backup size) from usual
ones in a set. Unfortunately, I was not able to verify the core reason of those
deviations.

Additional space and resources used

My algorithm does not use additional space except for rewritten duplicated
blocks, therefore, the additional space consumption is below 5% of all blocks.
Actual number is much lower – between 0.35% and 3.27% (avg. 1.58%). Old
copies of the blocks are removed in the background, for example as part of
the deletion process running periodically, so the space consumption is only
temporary. Additional disk bandwidth consumption is also limited to writing
rewritten blocks.

Tunability

The presented algorithm is also easily tunable by setting the percent of blocks
to be rewritten. The higher the percentage, the better restore performance
at the expense of a bigger drop in write performance and more disk space
required for storing temporarily old copies of the rewritten blocks.

6.3.2 Cost of rewriting

When evaluating the cost of the presented algorithm, I have estimated the
slowdown of the backup process caused by rewriting. Since the CBR rewrites
duplicates as non-duplicates, in order to establish such operation cost, I have
modified the write path of a commercial backup system HYDRAstor [23, 56]
to avoid checking for duplicates, and compared the resulting bandwidth to
the bandwidth of unmodified system when writing 100% of duplicates.
As a result, the bandwidth of duplicates was 3 times higher than non-

duplicates. Based on this number, I have used a factor of 4 slowdown for
rewriting a block (1 for standard duplicate write/verification + 3 for extra
write) vs. deduplicating it. For example, 5% blocks rewritten cause from
5.17% up to 15% slowdown. Since all rewritten blocks are duplicates, the ac-
tual slowdown depends on the percentage of duplicates in the original stream

6.3. CONTEXT BASED REWRITING ALGORITHM 103

data set name B/W before
defrag-
mentation
(base) as %
of max

B/W after
defrag-
mentation
(defrag) as
% of max

% of blocks
rewritten

write time
increase

DevelopmentProject 88.15% 95.22% 0.86% 2.40%

IssueRepository 49.15% 95.63% 2.18% 4.59%

Wiki 86.89% 97.54% 2.29% 6.57%

GeneralFileServer 88.13% 95.83% 0.35% 0.94%

UserDirectories 81.24% 107.74% 0.52% 1.39%

Mail 78.67% 93.14% 3.27% 9.38%

Table 6.4: Impact of CBR defragmentation on the latest backup restore band-
width of each data set with maximal bandwidth (max - without inter-version
fragmentation) normalized to 100%. All the tests preformed with 256MB of
cache memory and LRU eviction policy.

– the higher the percentage, the higher the slowdown, and 15% slowdown is
achieved when all blocks in the stream are duplicates.

The maximum presented slowdown seems significant, but as the experi-
ments show, the algorithm hardly ever reaches the maximal allowed rewrite
(see Table 6.4). This is because I am very conservative since the minimal
rewrite utility is set high at 70% and I always observe the 5% limit while
processing backup streams. As a result, the CBR increases the backup time
by 1%-9% (avg. 4.21%; see Table 6.4), which seems reasonable. However,
there still exists a possibility to set smaller limit of rewritten blocks in order
to decrease the potential costs and perform only the rewrites with maximal
gain.

The alternative option to reduce the cost introduced by rewrites is to
perform the algorithm only every n-th backup. Such solution should also
work very well, and at some cost of restore bandwidth, introduce smaller
overhead during the backup process.

Note that this trade off addresses also the amount of resources required
performing off-line deduplication in the background and the temporary space
needed after the backup as they are proportional to the number of rewritten
blocks.

104 CHAPTER 6. EVALUATION

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8

R
e

s
u

lt
 b

a
n

d
w

id
th

 (
%

 o
f

n
o

t
fr

a
g

m
e

n
te

d
)

UserDirectories
Mail

DevelopmentProject
IssueRepository

GeneralFileServer
Wiki

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8

M
e

a
s
u

re
d

 p
e

rc
e

n
ta

g
e

 o
f

b
lo

c
k
s
 r

e
w

ri
tt

e
n

Max allowed percentage of blocks to be rewritten

UserDirectories
Mail

DevelopmentProject
IssueRepository

GeneralFileServer
Wiki

Figure 6.6: The impact of rewrite limit percentage on the latest backup in
each data set

6.3.3 Setting the rewrite limit

To select the best value for the rewrite limit, I performed experiments varying
this limit from 0% to 8% while keeping the minimal rewrite utility unchanged
at 70%. The results for the latest backup in each backup set are given in
Figure 6.6. Setting this limit to low values such as 2% or even 1% works well
for all sets except IssueRepository, for which the rewrite limit of 5% offers the
lowest reduction in restore bandwidth. Increasing this limit beyond 5% does
not give additional boost and may increase the backup time significantly, so
I decided to set this limit to 5% for all experiments. Even though with this
setting the maximal theoretical write bandwidth drop is at the level of 15%,
in reality it is on average only slightly above 4%. Also the maximum drop
is achievable only with 100% duplicate stream, for which the bandwidth is
already very high.

Note that, for most data sets the number of rewritten blocks is propor-
tional to the restore bandwidth gained. This correlation is pretty weak in
case of Mail, where internal fragmentation is very severe, and is not true for
the case of Wiki data set. The latter one is caused by very unusual backup
just before the last one, with about 15 times more blocks added and many
more deleted than in standard backups of this set. The algorithm is trying
to defragment the backup making a lot of rewrites, while the next one (the

6.3. CONTEXT BASED REWRITING ALGORITHM 105

last in the set) is rather similar to the others, which makes the algorithm to
basically rewrite most of the blocks from the previous backup again.
The interesting fact is also that the UserDirectories restore bandwidth af-

ter defragmentation is actually better than the version with no fragmentation
(stored as a single and only stream in the system). This is due to the block
reordering, which luckily made the caching more effective. This observation
also shows that there exists potential in writing backup in a slightly different
order than the one requested by the user, but as some of my other tests sug-
gest, such effect is possible only with LRU algorithm as it is not very effective
in general (it would require forward knowledge about the whole stream be-
ing written and rearranging the block on the fly or expensive background
operations). When the cache is equipped with forward knowledge such phe-
nomenon does not happen.

Rewritten rewrites

My experiments show that even 39% to 97% of all rewritten blocks in the
latest backup are the ones which were already rewritten in one of the previous
backups. The highest number is reached in backups with very low number
of new blocks, resulting in many iterations required to finally achieve the
context of enough size. Even though they are rewritten again, it does not
mean that they are unnecessary (the experiments disabling the possibility of
rewrites already rewritten in previous or any backup showed 10-20% drop in
final restore performance). In some cases the rewriting helps to decrease the
rewrite utility only a little, not reaching below the required level, or simply
moves the blocks to the neighbourhood, which increases the possibility of
being read before needed, but without the visible impact on its rewrite utility
value (because of restore cache). Both aspects are well visualized with the
results of modified algorithm in such a way, that in order to rewrite a block, at
least one non duplicate block should be found in its stream context (in order
to assure the decrease of its rewrite utility for the next time). Such experiment
significantly (even by half) reduced the number of rewritten blocks, but it
also reduced the achieved restore bandwidth by a few percent. Similar results
can be achieved with increasing the stream context up to even 100MB.
Since the overall number of rewritten blocks is still very small, I have de-

cided to keep the version of the algorithm assuring better restore bandwidth.

6.3.4 Effect of compression

So far we have assumed that the backup data is not compressible. If we
keep the prefetch size constant and equal to 2MB, the compressible data

106 CHAPTER 6. EVALUATION

data set name

base
(with inter-
version frag-
mentation)

defrag

(CBR de-
fragmenta-
tion)

max
(no inter-
version frag-
mentation)

DevelopmentProject 212 MB 99 MB 94 MB

IssueRepository 2654 MB 312 MB 309 MB

Wiki 353 MB 272 MB 269 MB

GeneralFileServer 184 MB 182 MB 181 MB

UserDirectories 3916 MB 2196 MB 1887 MB

Mail 2230 MB 1375 MB 1366 MB

Table 6.5: Required cache memory to assure maximal performance with infi-
nite forward knowledge (peak usage) for the latest backup in each data set –
the effect of CBR defragmentation (extension of Table 6.3) [memory required
for forward knowledge not included].

results in fragmentation increase and the CBR algorithm delivering even
better relative improvements in restore bandwidth. For example, for 50%
compressible data, the drop in restore performance increases on the tested
data sets from 12%-51% (avg. 21.27%) to 16%-56% (avg. 26.12%), whereas
the CBR defragmentation improves the restore of the latest backup by 11-
121% (avg. 35.79%) instead of 8%-95% (avg. 28.94%), resulting in total drop
reduction up to 10% (instead of up to 7% without compression). All results
were achieved with a very similar number of blocks rewritten.
Obviously, selecting different prefetch size, based for example on com-

pressibility of data, could change the above results.

6.3.5 Impact of CBR defragmentation process on re-

quired cache size

In order to verify the process of CBR defragmentation in terms of cache
memory required, I have performed a test of reading the last backup of each
data set after the defragmentation with infinite forward knowledge and po-
tentially unlimited cache size. The actual peak memory usage in each case
can be found in Table 6.5. The gathered numbers suggest that the CBR de-
fragmentation process works very well in terms of limiting the memory usage
and therefore making the latest backup similar to the one never fragmented
in the memory usage area.

6.4. COMBINED IMPACT OF BOTH ALGORITHMS 107

data set name
LRU
base

LRU
defrag

FK8GB
base

FK8GB
defrag

UserDirectories 47.65 +32.61% +42.12% + 72.30%

DevelopmentProject 57.33 + 8.02% +79.26% +103.52%

IssueRepository 23.51 +94.56% +89.75% +388.90%

Mail 12.39 +18.40% +185.47% +238.42%

GeneralFileServer 95.84 + 8.74% + 6.67% + 16.28%

Wiki 83.80 +11.29% +18.87% + 36.47%

Average +28.94% +70.36% +142.65%

Table 6.6: Comparison of different restore options with 256MB cache as %
of increase over LRU base scenario bandwidth (latest backup only). Note
that, LRU base results are shown as ”% of max possible bandwidth with no
duplicates” – the standard metric used throughout this work.

6.4 Combined impact of both algorithms

Figure 6.7 shows detailed results for both CBR defragmentation with limited
forward knowledge cache algorithms in a single and combined options for the
latest backup with different cache sizes. Two algorithms used to fight different
aspects of fragmentation end up in a very effective symbiosis resulting in 16-
388% bandwidth increase (avg. 142.65% - see Table 6.6) for different data
sets with 256MB as an example.

Furthermore, the algorithm produces very good results when compared
with the maximal possible restore bandwidth achieved with unlimited cache
size having only 256MB of cache memory (see Table 6.7). In four out of six
cases the results were at most 13% from the theoretical maximum leaving not
much space for improvement, while the remaining two cases still fall behind.
UserDirectories (-34.15%) is a quite big data set and require both bigger
cache and higher forward knowledge in order to deliver better results, while
Mail (-71.15%) includes large portion of internal duplicate blocks which re-
quire more memory for efficient caching. In this case more forward knowledge
may be beneficial after reaching 1GB of cache.

Figure 6.8 shows the fragmentation process in time and the impact of
each proposed algorithm with using 256MB of cache memory in comparison
with the base LRU scenario and the max scenario with unlimited cache size.
When looking at the charts joined impact of both CBR and limited forward

108 CHAPTER 6. EVALUATION

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Development project (7)

+
-

LRU base
8GBFK base
LRU defrag
8GBFK defrag
8GBFK max
infFK max

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Issue repository (7)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

General file server (14)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Wiki (8)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

User directories (50)

+
-

 0

 50

 100

 150

128M
B

256M
B

512M
B

1024M
B

unlim
ited

%
 o

f
m

a
x
 p

o
s
s
ib

le
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s

Cache size

Mail (22)

+
-

Figure 6.7: Impact of CBR with forward knowledge cache on the latest backup
(total number of backups in each set can be found in parentheses next to the
backup set name).

6.4. COMBINED IMPACT OF BOTH ALGORITHMS 109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

Development project

LRU base 256MB cache
8GBFK base 256MB cache

LRU defrag 256MB cache
8GBFK defrag 256MB cache

8GBFK max 256MB cache
infFK max unlimited cache

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

Issue repository

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

General file server

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

Wiki

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

%
 o

f
re

s
to

re
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
lic

a
te

s

Backup Number

User directories

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20

Backup Number

Mail

Figure 6.8: Impact of CBR with forward knowledge cache backup after
backup on different data sets (measured after each backup).

110 CHAPTER 6. EVALUATION

data set name
LRU
base

FK8GB
defrag

FK8GB
max

infFK
max

UserDirectories -61.79% -34.16% -29.46% -28.38%

DevelopmentProject -53.52% - 5.40% - 0.29% - 0.00%

IssueRepository -82.12% -12.59% - 5.88% - 5.34%

Mail -91.65% -71.75% -68.49% -68.49%

GeneralFileServer -17.80% - 4.42% - 0.39% - 0.00%

Wiki -30.84% - 5.63% - 0.69% - 0.50%

Average -56.29% -22.32% -17.54% -17.12%

Table 6.7: Comparison of different restore options (256MB cache) with rela-
tion to the maximal bandwidth (max scenario + unlimited cache)

knowledge algorithms works very well keeping the results extremely close
when comparing to the scenario when the data was never fragmented at all
(8GBFK defrag vs 8GBFK max). For all the backups there is only one case
when the deviation is higher than a few percent.

On the other hand, based on the traces I was able to gather, it is quite
difficult to predict whether this mentioned deviation can stay at the same
small level for hundreds or thousands of future backup. Even if this is not
possible, the impact of fragmentation will be limited to the fraction of the
one showing without this solution and in fact may never be noticed by the
potential end-user.

When looking at Figure 6.7 and the same results gathered in Table 6.8, we
can notice one important fact. Thanks to using both algorithms it is possible
to decrease memory demands 8 times (from 1024MB to 128MB) and end up
with higher performance (11.35% - 249.61%; avg. 67.74%). What is more,
for 4 out of 6 data sets the restore bandwidth results with 128MB cache
were higher than with unlimited memory in the LRU case with fifth data
set results very close (UserDirectories - 4.52% lower) and the last (Mail -
65.22% lower) left behind because of its high memory requirements and the
specific pattern of internal stream duplicates.

The results suggest that many data sets require only fraction of mem-
ory, which is usually allocated today, and only some may benefit from the
larger amount, but only when efficiently used. In general, the proper amount
of memory should be allocated rather dynamically during the restore pro-
cess based on the memory available, user requirements and the exact needs

6.5. SCALABILITY 111

data set name LRU
base
with
1GB
cache
(1)

LRU
base
with
unlim-
ited
cache
(2)

FK8GB
defrag
with
128MB
cache
(3)

(3)
vs
(1)

(3)
vs
(2)

DevelopmentProject 85.08 103.04 116.62 37.07% 13.18%

IssueRepository 24.49 56.46 85.62 249.61% 51.65%

Wiki 91.51 104.06 107.58 17.56% 3.38%

GeneralFileServer 99.74 102.58 111.06 11.35% 8.27%

UserDirectories 57.8 82.68 78.94 36.57% -4.52%

Mail 21.34 94.66 32.92 54.26% -65.22%

Average 67.74% 1.12%

Table 6.8: Comparison of both new algorithms with 128MB cache memory
and the old LRU in two options: with 1GB and unlimited cache size. Note
that, the results in the first three columns are shown as ”% of max possible
bandwidth with no duplicates” – the standard metric used throughout this
work.

requested by each data stream.

6.5 Scalability

Last but not least, with current systems using very often 10 or more disks in
order to restore a single block [23, 45, 85] through RAID or erasure coding [82]
and serving many streams at the same time, all the above results can be
brought into another level. In my experiments I assumed 2MB prefetch for
the whole stream, which in the above setup means only 200KB prefetch per
disk. When using recent disk drives [72] such small prefetch means almost
6 times higher restore time from a single disk when compared with the 2MB
(see Table 3.1).

As it has already been mentioned before in case of the systems with
deduplication, the higher prefetch does not always mean higher performance.
When looking at the results with common LRU algorithm (see Figure 6.9),

112 CHAPTER 6. EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

Development project

LRU base
LRU max

8GBFK base
8GBFK max

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Issue repository

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

General file server

 0

 200

 400

 600

 800

 1000

 1200

 1400

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Wiki

 0

 50

 100

 150

 200

 250

 300

 350

 400

 128 256 512 1024 2048 4096 8192 16384 32768 131072

%
 o

f
m

a
x
 r

e
a

d
 b

a
n

d
w

id
th

 w
it
h

 n
o

 d
u

p
s
 a

n
d

 2
M

B
 p

re
fe

tc
h

Prefetch Size (KB)

User directories

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 128 256 512 1024 2048 4096 8192 16384 32768 131072

Prefetch Size (KB)

Mail

Figure 6.9: Impact of prefetch size on restore bandwidth of the latest backup
when considering 10 disk bandwidth with and without forward knowledge
for both fragmented (base) and not fragmented (max) data. Cache size in all
cases equals 256MB. Common enterprise disk characteristics used [72]. Note
the different scale on each graph.

6.5. SCALABILITY 113

even having the speed of ten drives (10 x 175MB/s) the further growth of
the prefetch above 8MB (800KB/drive) gives slightly positive impact only in
one case and only for not fragmented data.
The results look completely different when the cache algorithm with for-

ward knowledge is taken into account. In all cases 32MB prefetch gives a few
times better results and in two cases (DevelopmentProject and GeneralFile-
Server) even higher results with larger prefetch are available. In a single
case only (UserDirectories) 16MB prefetch is slightly better than 32MB.
In details, when moving from the best LRU prefetch (chosen separately for
each data set) to best prefetch with forward knowledge algorithm, we can
gain additional 75%-390% (avg. 184.23%) for fragmented and 116%-933%
(avg. 396.77%) for not fragmented data. Comparing with the forward knowl-
edge algorithm and 2MB prefetch simply increasing, the prefetch size can
increase the results by up to 109%-379% (avg. 254.72%) and 132%-835%
(avg. 531.25%) respectively.
Having the above numbers, increasing the prefetch size seems a very in-

teresting option. One needs to remember, though, that such operation intro-
duces higher latency variations, which may be important for some type of
usage. Fortunately, with secondary storage system it will not be an issue, as
bandwidth is the most important in this case and the higher latency can be
easily accepted.
Examining the prefetch size brings one more observation. The larger the

size the more visible the difference between fragmented and not fragmented
data. As with LRU standard algorithm and its best prefetch size for each data
set the defragmentation could give about 20%-156% (avg. 59.72%) bandwidth
increase, the same gain for forward knowledge algorithm with its best prefetch
size can achieve 44%-420% (avg. 164.18%). Such results suggest even higher
importance of proper defragmentation algorithm.
In order to verify the ability to defragment data with proposed CBR de-

fragmentation algorithm, I performed a simulation with only two parameters
modified. The prefetch size was set to 32MB (3.2MB/drive), which seems
to be close to optimal with 10 drives, and the stream context to 80MB, in
order to preserve the proportion to prefetch size. The cache size was still
256MB with forward knowledge set to 8GB. The achieved results without
any additional tuning were actually pretty good. The algorithm was able to
gain 36%-333% (avg. 97.66%) of restore bandwidth, ending up with a result
only 4% to 19% (avg. 8.88%) lower than totally not fragmented stream. The
only data set which was hard to defragment in the above setup was Mail. In
this case the final result was 34% lower from the not fragmented stream after
a still significant 36% increase over the fragmented version.
To sum up, I performed one more experiment showing the importance of

114 CHAPTER 6. EVALUATION

using many disks for restore and the algorithms introduced in this thesis. As-
suming 10 disks used I compared two algorithms with 256MB of cache: 8MB
prefetch LRU (representing the level used often in today’s systems [45, 54])
versus 32MB prefetch with forward knowledge (8GB) and CBR defragmen-
tation. The resulting restore bandwidth of the latest backup depending on
the data set was from 3.5 up to 16 times higher with an average of slightly
above 8 times. Going simply to 8MB prefetch with LRU, which is best when
considering all the data sets and 10 disk drives, gives only 60% increase, mak-
ing the proposed solution still over 5 times better. This shows that the leap
possible in case of the critical restore, thanks to the presented algorithms
and using many disk drives, can be very significant.

Chapter 7

Related Work

This chapter compares the proposed solution to off-line deduplication and de-
scribes the related work in the topic of data fragmentation. The analyzed ar-
eas include: fragmentation measurement options, defragmentation algorithms
and caching policies. Each of them covers the references and comparison to
the algorithms presented in this thesis.

7.1 Comparison with off-line deduplication

One simple solution which satisfies some of the requirements for fighting inter-
version fragmentation is already present on the market and is called off-line
deduplication [62, 63, 75], described in Section 2.2.1. In its simplest form,
all data from the current backup are stored continuously on disk, and the
deduplication is done in the background in such a way that the blocks from
the latest backup are a base for eliminating duplicates from older backups
[47, 62].

As a result, the currently written stream has no fragmentation and older
backups are fragmented proportionally to their age. Even though the algo-
rithm was most probably not designed to deal with fragmentation, it is very
effective for eliminating it in recent backups. However, since deduplicating
a block is usually much faster than sending it over a wire and storing it on
disk, off-line deduplicating systems may be slower than in-line deduplicat-
ing systems (or require more spindles and network bandwidth to avoid such
problem).

The percentage of duplicates in a backup depends on the data patterns,
but based on the characteristics of over 10000 systems gathered by Wallace
et al. [81], we can assume the average value of deduplication ratio at a level
of 10 times reduction, which results in about 90% of duplicates in an average

116 CHAPTER 7. RELATED WORK

Aspect Off-line dedup In-line CBR Off-line CBR

duplicated
stream write
bandwidth

low high high

read bandwidth maximal close to
maximal

low after
backup, later
close to
maximal

additional disk
space

low (with
staging)

low (not more
than 5%)

low (with
staging)

additional disk
bandwidth and
spindles

high (write all
duplicates and
remove)

low (no
duplicates
written except
for 5% rewrites)

medium
(additional
reads)

Table 7.1: Comparison of defragmentation solutions.

backup. As explained in section 6.3.2, deduplication without writing the data
can be 3 times faster than writing the data first and then deduplicating it in
the background. Therefore, writing a backup stream with 90% of duplicates
costs 300 time units with off-line deduplication and only 110 time units using
a system with in-line dedup, even if such system does a dedup query for each
block. As a result, using off-line dedup results in a backup window more than
170% larger. This is clearly not acceptable, as backup window usually cannot
be extended much.

The idea of the context rewriting algorithm was to keep most of the
defragmentation assured by off-line deduplication solution and provide the
flexibility being able to fight its biggest issues described in section 2.2.1. In
fact, when modifying the configuration parameters of the algorithm, all the
blocks would be rewritten and all the duplicates would be eliminated in the
background making both solutions very similar. On the other hand, with the
border of rewritten blocks set to 5% preserving the performance and other
aspects of in-line duplicate elimination, the fragmentation may be improved
by a major factor.

Beyond off-line deduplication and the in-line CBR, there is at least one
more option – to perform the context-based rewriting in the background,
i.e. off-line, mentioned already in section 5.4.6. Such solution does not af-
fect backup writing at all, but it needs a long time to complete reading the

7.2. FRAGMENTATION MEASUREMENT 117

fragmented data and rewriting them in the background. Additionally, a re-
store attempted before block rewriting is completed will still suffer from low
bandwidth.
The comparison of all mentioned alternatives is presented in Table 7.1.

I would like to note here that storage consumption of both off-line options can
be improved by staging, i.e. by running the process of removing the duplicates
(or rewriting some of them) in parallel, but little behind the process of backup
writing. Staging, however, requires more resources such as CPU, available
disk bandwidth and spindles.

7.2 Fragmentation measurement

Chunk Fragmentation Level (CFL) has been been introduced by Nam et
al. [53] in order to visualize the fragmentation problem of a stream. Assuming
that the data were stored in fixed size containers (2MB or 4MB), the idea
was to divide the optimal chunk fragmentation (size of the stream divided by
the container size) by the current chunk fragmentation (the actual number
of containers read during restore), limiting the maximal value of achieved
result to 1. The resulting number was to be proportional to the achieved
performance. Unfortunately, the number did not consider the existence of
read cache, which is very important when measuring restore performance
and made the experiments not realistic.

The second version of this algorithm [54] did include the existence of read
cache in the current chunk fragmentation calculation, but some other flaws
remained. The maximal value of 1 seems to be an artificial limitation and
does not reflect the real restore performance in case there is a high and well
cached internal stream deduplication, which, as my experiments show, can
often happen. The other limitation is actually the strong dependence on the
writing algorithm (container size) together with its usage in cache eviction
algorithm. Keeping whole or no container in the cache does not seem like
an optimal option for the cache either, especially that usually only some
blocks from the container will be necessary. On the other hand, as the LRU
cache replacement policy is in general not very effective, the impact of such
algorithm is rather small - the problem would be much larger if more effective
cache eviction policy was used, such as the cache with forward knowledge.

Lillibridge et al. [45] propose actually a very similar indicator called
”speed factor”. It is also based on the number of containers, but it is de-
fined in a bit different way as 1 divided by the number of containers read per
MB. Assuming the container size the same as with CFL (4MB), the ”speed
factor” 1 equals CFL 0.25. When comparing both indicators, the CFL looks

118 CHAPTER 7. RELATED WORK

Fragmentation
metric

Value
indicating
bandwidth
level with no
deduplication

Correlation
with
bandwidth

Dependence
on the
backup
algorithm

Level of
caching used
with
simulation

Chunk Frag-
mentation
Level (CFL)

1 yes (but not
above 1)

yes
(container)

container

Speed factor 4 yes yes
(container)

block

% of restore
bandwidth
with no
duplicates

100% yes no block

Table 7.2: Comparison of different fragmentation metrics

a bit better only because the value of 1 clearly shows the speed of the sys-
tem with no deduplication and no fragmentation. On the other hand, ”speed
factor” is not limited in any way, showing the exact values even when the im-
pact of internal stream deduplication is positive. Unfortunately, such feature
is just theoretical as the algorithms used in the experiments did not allow
the ”speed factor” value of 4 (equal to CFL 1.0) and above, even with unlim-
ited cache memory used. Some limitation in both algorithms is still strong
dependence on the container size created during the backup process.

The indicator proposed by me: ”% of restore bandwidth with no dupli-
cates” is actually very similar to the ones above with some modifications
(see comparison in Table 7.2). First, its name clearly presents its meaning,
which makes it very intuitive to use. Second, it does not limit the results in
any way, predicting the output performance very well even in cases when it is
better than in systems with no deduplication. Third, it is highly independent
from the writing algorithm and does not depend on the used container size,
which can help in making it usable in the wide area of systems and in order
to experiment with different prefetch values. Of course, it can be also easily
limited to reflect the exactly same behavior like the ones with fixed container
sizes. The last but not least factor is the cache eviction policy used by the
simulation. My experiments showed that with no doubt it is an extremely
important factor when measuring fragmentation and may have a very high
impact on the achieved results.

7.3. DEFRAGMENTATION ALGORITHMS 119

7.3 Defragmentation algorithms

Most recently, the topic of improving read performance in storage systems
with deduplication became quite popular in the published papers. The solu-
tion proposed by Lillibridge et al. [45] involves a technique called ”container
capping”, which can be regarded as a kind of defragmentation. The solution
does well in improving read bandwidth by assuring restore only from limited
number of containers, but the results shown are compared only with the orig-
inal algorithm designed by the author [46], which is rather poor and cause
high fragmentation by design (by analyzing the results 12-44 worse restore
bandwidth, when compared to a simple system with no deduplication). Un-
fortunately, there is no comparison with the restore bandwidth achieved with
no inter-version fragmentation nor the algorithm with unlimited cache, which
would be very interesting and would have made the results at least partly
comparable with the ones presented in my work. Without that, the level of
internal deduplication cannot be determined together with its impact on the
final results, which can potentially be significant as shown in the experiments.
One information we can get from the charts is that with capping set to 10
(achieving the highest restore bandwidth of all options analyzed in the ar-
ticle) the algorithm achieves 50-90% (assuming speed factor 4 equals 100%)
of bandwidth possible in case of a system with no deduplication. This result
would sound moderately well, but only if we do not consider the negative
impact on the cumulative deduplication factor, which in such setup is equal
to 17-50% (depending on the data set). This cost is very high and causes
lower write bandwidth, which is not mentioned in the text. Compared to Lil-
libridge’s research, none of the algorithms presented in my work modify the
deduplication ratio and only one slightly decreases write bandwidth. Beside
the algorithms, the study also showed the significance of the fragmentation
problem on interesting long term traces (covering even 2 year period), which
is something difficult to find. Unfortunately, the traces turned out not to be
available for other researches, which did not allow me to compare the results
directly.

Another way for assuring demanded read performance was presented
by Nam et al. [54]. The basic idea here is to use Chunk Fragmentation
Level [53, 54] indicator to monitor simulated read performance during write
and enable selective deduplication when this level is below some defined
threshold. As it was shown that CFL is a good indicator to do that, such
algorithm guarantees some predefined read performance while storing data.
In practice this result is achieved with moderately high cost. As selective
deduplication works only part time, some places in the stream where frag-
mentation could be significantly improved at low cost are omitted, whereas

120 CHAPTER 7. RELATED WORK

requiring blocks to be stored in perfect sequence makes that a lot of unneces-
sary duplicate blocks are stored again. Based on the above observations, and
in some cases a very low backup bandwidth (even 70-90% drop while assur-
ing CFL=0.6 for restore), I can only assume that the level of such blocks is
high, as the impact of algorithm on deduplication ratio was not mentioned
in the article. The algorithms presented in this work, on the other hand,
does not introduce additional storage consumption and try to fix the frag-
mentation problem at the cost not higher than the one defined by the user.
Such approach is much more efficient as I try to improve the fragmentation
at the smallest possible cost. Having an option with assured performance is
also possible (in an easy way: by setting current rewrite utility to some fixed
value; or a more complicated way: to set it by simulating restore performance
during write), but at the cost of variable write bandwidth, which may not
be acceptable. Such solution would still be better than the one proposed by
the author as the blocks rewritten at first would be the ones introducing the
highest fragmentation.
Fu et al. proposed History-Aware Rewriting (HAR) [33], an interesting

attempt to exploit historical information in order to minimize the required
rewriting and maximize potential gain. HAR keeps data in 4MB containers
and rewrites duplicates to ensure that at least 50% of each container read on a
backup restore is useful backup data. The biggest problem with this solution
is that HAR significantly degrades deduplication by block rewriting, whereas
CBR does not. Moreover, problem mentioned by the authors is the out-of-
order containers with blocks from different parts of the stream, natural in case
of in-line deduplication systems. As the algorithm uses the global knowledge
for the whole previous backup such container is considered well utilized and
not rewritten whereas during restore it may be loaded into memory many
times. This is because in a case of streaming access the local information is
required (considering the restore algorithm and available cache size) and not
the global one. In this aspect the rather small stream context size in CBR
is actually an advantage leveraged by the authors in the hybrid HAR+CBR
implementation. In my opinion making the CBR aware of the actual restore
algorithm would actually be the best way to go here, but making the HAR
to use more local than the global knowledge could also be a good solution.
HAR paper actually contains a comparison with CBR, but it was simulated
without internal duplicates filtering (implemented, but not described in the
original CBR paper), which made CBR results rather poor in the HAR paper.
RevDedup [58] is a system which fights fragmentation by performing on-

the-fly reverse deduplication. After storing such a block, the older copy is
immediately located and removed. Interesting approach is also used to handle
the null (zero-filled) blocks, which can be often found in virtual machine

7.4. CACHING 121

images. In such case the server skips the disk writes and when necessary,
generates the null data on-the-fly. Unfortunately, the whole system is tailored
for virtual machine images with many solutions such as fixed block sizes
and large segments (4MB), which are not applicable to storage systems in
general. The solution succeeds in highly improving the restore bandwidth,
but on the other hand, even with clever null blocks handling the system
suffers from a much lower (30-65%) backup throughput when compared with
the conventional deduplication, and achieves lower deduplication ratio.

Srinivasan et al. [76] describe very similar issues with fragmentation dis-
covered in primary storage. The solution proposed by iDedup is to amortize
seeks by keeping a minimum sequence length on disk by stored blocks. In
this case the task is more complicated as for primary systems latency is one
of the most important factors. The various results show increase in average
request size and better client response time, but the difference is not signif-
icant. Also, no restore bandwidth was measured (probably due to different
purpose of this system). On the other hand, the drop in deduplication ratio
at a level of 30-50% seems significant even for a primary storage system.

7.4 Caching

Forward assembly area [45], the second technique proposed by Lillibridge et
al., beside container capping, is aimed to help with better cache memory
usage by using the backup’s recipe (similar to forward knowledge) known
at the restore start. In the simplest case the authors restore the full backup
in M-byte slices with necessary memory allocated for the one being read
called forward assembly area. To restore a single M-byte slice, they first
read in the corresponding part of the recipe into the memory buffer and
determine which chunks are needed to fill the required byte ranges. Each
time the earliest unfilled chunk spot in the assembly area is localized, the
corresponding container is restored while filling all the parts of the assembly
that need chunks form that container. After the process is completed the
data can be returned to the user and the assembly area can be clear in order
to read the next M-byte slice.

The interesting fact is that the solution works well only on highly frag-
mented data (no capping or high capping levels), which in the way it is
defined, can be also observed in my experiments. Unfortunately, with more
reasonable capping values (10,15,20 - as defined in the paper) this makes
the algorithm not really useful. The main problem here is that the whole
forward area needs to have the memory reserved even though it may not
be used for most of the time (1GB of forward assembly area at the cost of

122 CHAPTER 7. RELATED WORK

1GB of RAM). This approach significantly limits the maximal possible size
of forward assembly area, which as a result makes the algorithm less effective
for not fragmented streams. Compared with the forward assembly area, the
cache with forward knowledge presented in this work requires even as low as
1.62MB of memory for 1GB of forward knowledge and it uses all the cache
very effectively only for keeping the blocks, which will actually be needed
in the future. Actual difference can be seen in Figure 6.3, where the option
with 512MB cache and 512MB of forward knowledge looks very similar to the
512MB forward assembly area (besides the fact that with my algorithm the
reappearing block can be held in memory throughout the whole stream, while
with forward assembly area the guarantees not to read it again are only for
the size of the area). As a result, the user can get higher restore bandwidth
with a few times smaller memory cost with the forward knowledge cache.
Fu et al. solution [33], mentioned already in previous section, introduces

The Optimal Restore Cache beside History-Aware Rewriting. The algorithm
is also based on the Bélády’s optimal algorithm, but with full forward knowl-
edge and 4MB containers. Such large containers reduce overhead due to keep-
ing full knowledge, but also result in unneeded data blocks kept in the cache.
In contrast, the cache proposed in this thesis uses only limited forward knowl-
edge, but with much finer unit - 8KB blocks. This allows to keep in the cache
only the data to be used soon. Also, as my experiments showed, having only
limited forward knowledge is perfectly enough to implement close-to-optimal
cache eviction policy. Moreover, moving to the level of blocks instead of con-
tainers reduces the memory requirements possibly even a few times. This is
because of both sparse containers, with partly unused data and, even more,
out-of-order containers, of which only small amount of blocks is required
locally. In general, for 3 traces tested, HAR with Optimal Cache reduced
the performance drop, comparing to a system with no deduplication, to be-
tween 25% and 50% with one spindle and 1GB cache; whereas the cache with
limited forward knowledge and CBR are able to eliminate this drop almost
completely on average with only 256MB cache (albeit for different 6 traces).
All studies of fragmentation in backup systems other than the above [42,

53, 54] simply use LRU cache to measure achieved results and verify the
efficiency of proposed solution. In addition, Wallace et al. [81] performed a
wide study of backup workloads in production systems reporting the hit ratio
for LRU read cache when restoring final backups. On the charts showed, we
can observe the impact of additional cache memory. Unfortunately, when
looking at the only reasonable choice (container level caching) starting from
128MB of memory up to 32TB, most of the results look very similar and
cannot be read with required precision, which makes the usefulness of such
data representation very low for our purpose. Note that in case of no duplicate

7.5. OTHER RELATED WORK 123

stream access with 4MB container the expected stream hit ratio is 99.8%
(1 read every 500 blocks of size 8KB), while 99.6% shows already two times
more I/O operations therefore reducing the restore bandwidth by half. Also,
in case of well cached internal stream duplicates the cache hit ratio can be
above the 99.8% level.

In [6] Bélády shows the optimal cache replacement policy when having
a complete sequence of block references to be used supplied by a pre-run of
the program. Originally the algorithm was designed for paging, but it can
be used anywhere until the single read size (from some slow device) and the
smallest cache replacement size are equal. With similar assumption Cao et
al. [14] performed a study of integrated prefetching and caching strategies
giving four rules to be followed by every optimal solution. Unfortunately,
they do not apply directly for the same reason for which the Bélády’s algo-
rithm is not optimal in case of streaming access in backup systems. Assuming
the prefetch containing many blocks which are read at once and the cache
eviction policy which can operate on each single block, the potential cost
of reading again for each candidate for removal should be calculated. As
the blocks are read in batches, this cost should be always calculated with
consideration of all the blocks read in one batch and should be divided by
the number of blocks actually needed. Such approach, on one hand, may
allow an optimal usage of cache dedicated for data, but on the other, may
require additional storage for meta information with unknown final result.
As my experiments show, the cache with limited forward knowledge which
uses simplified additional information works very well and in many cases ac-
tually results in a performance very close to the maximal one (achieved with
unlimited cache size).

7.5 Other related work

A few papers investigated improving metadata read for faster duplicate elim-
ination. Zhu et al. [85] describes a solution with Bloom Filter and stream-
oriented metadata prefetch, whereas Lillibridge et al. [46] argues that sparse
indexing (eliminating duplicates only within previously selected few large
segments) is better due to smaller memory consumption. These solutions as-
sume streaming write pattern, whereas SSD can be used for elimination of
random duplicates [21, 50]. Such approach makes the fragmentation problem
even harder, as more fine-grained duplicates can be detected. Additionally,
none of the above techniques solves the problem of reading the fragmented
data and in all cases fragmentation increases with subsequent backups. The
interesting fact is that the CBR defragmentation algorithm improves the ef-

124 CHAPTER 7. RELATED WORK

fectiveness of some former solutions as a side effect, by making the access to
both data and metadata of the defragmented stream more sequential.
If we relax the requirement on defragmentation solution of not degrading

deduplication effectiveness, we can try to deduplicate only within a subset
of data, therefore potentially reducing fragmentation. Besides sparse index-
ing, such approach is possible with extreme binning [8], with large segment
similarity such as in ProtectTier [3], subchunk deduplication [70], and with
multi-node systems restricting dedup to one or a subset of nodes such as
Pastiche [20] and DataDomain global extension [22, 28]. Unfortunately, even
if we consider very few (2-3) segments of previous backups to deduplicate the
current segment against, those segments may already be not sequential on
disk, because they may contain also duplicates from other, older segments.
Some vendors, such as EMC, try to fight the fragmentation with time and

resource consuming housekeeping processes [48, 85]. The description of this
process has not been published, but one possible approach is to selectively
rewrite subset of duplicates in the background, i.e. in a way similar to my
CBR approach, but done off-line. More on such algorithm is given in Sec-
tion 7.1. Other systems, such as HYDRAstor [23, 56], use bigger block size
(64KB), which reduces the severity of the fragmentation problem, but may
also lower the deduplication. However, big block size facilitates also global
deduplication which in sum increases deduplication ratio. Finally, we can
eliminate fragmentation by deduplication with logical objects. In early ver-
sions of EMC Centera [27], the unit of deduplication was entire file, which
worked well for Centera’s target market, i.e. archiving, but is not the right
solution for backups, because file modifications make such dedup ineffective.
What is important, none of the above solutions mentions usage of forward

knowledge which is easily accessible when it comes to backup solutions. As my
experiments show, this additional information makes a significant difference
when it comes to restore performance and the efficiency of cache memory
used.

Chapter 8

Conclusions

This chapter contains summary of the dissertation and proposals of directions
for future work.

8.1 Summary

In this work I described data fragmentation problem in backup systems with
deduplication and proposed solutions for two different aspects of this is-
sue. Additionally, I quantified the impact of different kinds of fragmentation
caused by the deduplication on backup restore bandwidth with and without
introduced algorithms. To support my results I performed a large number of
experiments on real backup traces gathered from users.

The fragmentation problem is quite severe, and depending on each data
set characteristics, it may result in restore bandwidth drop of more than 4
times (including inter-version and internal stream fragmentation) while as-
suming the usage of a single drive and comparing to systems with no dedu-
plication. Even bigger drop should be expected when more spindles are being
used. As my experiments were driven by six sets of real backup traces with
only 7-50 backups in each set, the problem has still high potential for fur-
ther growth with backups spanning many months or years. Finally, in the
most popular systems with in-line deduplication, fragmentation affects the
latest backup the most – the one which is also the most likely to be restored.
To deal with the problem, I have proposed two algorithms addressing two
different aspects of fragmentation.

The first algorithm is a dedicated cache with limited forward knowledge,
and is aimed at dealing with the internal stream fragmentation caused by
many duplicates present in a single backup. Thanks to the design, tailored
to backup systems, the solution uses the forward knowledge already present

126 CHAPTER 8. CONCLUSIONS

with each backup in order to provide effective usage of cache memory – the
one dedicated for the actual data to be reused (cache in short). Moreover,
depending on memory limitations and stream characteristics, the algorithm
transfers most of the negative impact caused by internal stream fragmenta-
tion into a positive one. This is possible by keeping the blocks used many
times in the memory, resulting often in even better performance than in
systems with no deduplication, where the data is placed sequentially.
As a result, when using forward knowledge the average restore bandwidth

increases in 128MB-1GB cache configurations by 62% - 88% when compared
with the standard LRU approach. The effectiveness of used memory is also
very well shown when comparing 128MB option with only 2GB of forward
knowledge (131.25MB of memory used in total) to 1GB LRU cache. In this
case, even though with almost 8 times less memory, the proposed algorithm
still achieves on average 16% better restore bandwidth. Another interesting
fact is that with 256MB of memory, 8GB of forward knowledge is often able
to provide restore results nearly as high as with infinite forward knowledge.
Moreover, in 4 out of 6 cases the results are almost identical to the ones
achieved with unlimited cache size.
The second algorithm called context-based rewriting is aimed directly at

the inter-version fragmentation problem caused by many backups of the same
file system changing slowly in time. By rewriting not more than 5% of all
blocks during backup, the algorithm improves restore bandwidth of the latest
backups, while resulting in increased fragmentation for older ones, which are
rarely read. Old copies of the rewritten blocks are removed in the background,
for example during periodic deletion and space reclamation process, which is
already required in storage systems with deduplication.
My trace-driven simulations have shown that rewriting a few selected

blocks (1.58% on average) reduces maximal write performance a little (1-
9%), but practically eliminates the restore speed reduction for the latest
backup from 12-51% to at most 7% (avg. 2.6%) of the maximal bandwidth
with LRU cache.
As both of the proposed algorithms deal with different aspects of data

fragmentation, I have combined them together in order to achieve even better
results. The actual numbers show 16% up to 388% higher restore bandwidth
over standard LRU with an average of over 140% (both with 256MB cache,
but the combined version having additional 13MB for the forward knowledge
structures). The results show the algorithms to be complementary to each
other, as the effect is even higher than the one which could be expected after
simply adding the gain achieved by each of them (which would give an aver-
age improvement at the level of 99%). Moreover, combined algorithms with
only 128MB of cache, due to effective block rewriting and efficient memory

8.2. FUTURE WORK 127

usage, provide better results than the standard LRU, with even unlimited
cache available and leaving the space for further limitations of the memory
used while keeping reasonable performance. This is important as the mem-
ory showed is required per each stream being read, while in case of a critical
restore there can be many of streams restored at once.

The presented algorithms perform very well when assuming only a sin-
gle disk drive in the system, but even more interesting is their behavior in
more real-life scenarios, where the restore of one stream is performed from
many disk drives at once. The experiments show that in such environment
the problem reaches another level, making the restore even more ineffective.
Fortunately, the combined algorithms show their strength in such scenario as
well by effectively utilizing the setup and reaching on average 5 times higher
bandwidth.

Even though the problem of data fragmentation has already been known
for some time [47, 48, 62, 63, 64, 83, 85], for a few years there has been
no published work in the subject. The first papers trying to dig into this
topic appeared in 2012 [42, 54, 76], with a few additional ones published in
2013 [45, 58]. This suggests that the subject has become more interesting for
the community and potentially still requires research to definitely understand
the problem and provide a solution flexible enough to be useful with different
approaches. I believe that my work is a major step forward in this direction
through: (1) detailed analysis of the problem with naming the three reasons
of observed slowdown, (2) the proposal of two independent algorithms for
solving the most severe aspects of the issue and (3) providing the results
of various experiments, leaving the community with better understanding of
the data fragmentation problem in backup systems with deduplication.

8.2 Future work

8.2.1 Perfect memory division during restore

As already discussed in Chapter 4.5, the fixed memory division between the
actual cache and the forward knowledge is not the optimal choice when it
comes to different data sets and even within the restore process of a single
stream. The solution here would be the dynamic memory division. The idea is
to extend the forward knowledge when the rest of the memory is not yet fully
occupied by the actual data, and decrease it when there is not enough space
to keep the blocks read and required in the future. The key is to constantly
preserve the state where all the read blocks, which are to be found in forward
knowledge, can be stored in the memory while keeping it utilized in nearly

128 CHAPTER 8. CONCLUSIONS

100%.
The idea is in general quite simple, but the difficulty here is with the

latency of each such operation always present in distributed systems. It will
require some dedicated algorithm making the division rather smooth and
dedicated communication interface between the layer providing the metadata
and the cache itself. Nevertheless, such algorithm should enable even more
effective cache usage than fixed memory allocation presented in this work.

8.2.2 Optimal cache memory usage

Having fixed amount of cache, the presented algorithm of evicting blocks
which will not be used for the longest time in the future is not optimal as the
Bélády’s optimal algorithm [6] is when it comes to page replacement policy.
In the latter case the page is actually treated as an independent unit which
can be deleted or read separately in case of a page fault, making the case
with data blocks in a backup stream different.
As within a backup neighboring blocks are very often logically connected

between each other in terms of the time of being read, it would be good
to utilize this observation when it comes to memory management. The idea
is to look not only at the distance to the block when eviction is necessary,
but actually at the cost of each operation. When doing so, it may appear
that instead of keeping blocks located in the stream being restored in the
N,N+1 position in the future, it is actually better to keep the ones located
in N+2 and N+3 positions. Such scenario can happen when the first two are
readable from the disk with only one I/O, while for the latter ones two I/Os
are required.
The potential of such solution in increasing the bandwidth and/or even

more effective usage of small amounts of memory is difficult to predict. On
one hand, with 256MB of memory 4 out of 6 data sets in my experiments
already achieve maximal possible bandwidth (similar to the one with unlim-
ited cache size), but on the other, there is still potential when it comes to
UserDirectories and Mail. Of course, in all cases it is possible that thanks
to the actually optimal implementation even smaller amount of memory will
provide the bandwidth very close to the maximal one, available when no
memory limitations are present.

8.2.3 Variable size prefetch

One more general proposal of improving the overall restore performance is
to use variable prefetch size. The idea is to modify the prefetch size based on
some stream characteristics known in advance or gathered during the stream

8.2. FUTURE WORK 129

restore. Thanks to that, for example, one can use a very small prefetch when
the data requests are more or less randomly scattered over the disk or use
a very large one when they are requested in the exactly sequential order.
Even though the algorithm may be very useful when the order of requested
data can differ a lot or can be known in advance with relation to each block
placement on the disk, in case of backups systems it seems to have a limited
usability. The main problem here is that it does not actually fix the potential
fragmentation problem, but only tries to mask it with using smaller prefetch,
which still leads to restore degradation.

8.2.4 Retention policy and deletion experiments

The interesting area which is still to be examined in terms of factors im-
pacting the restore performance of the latest backup is the retention policy.
The first idea here is to verify the frequency of backups (daily vs weekly
vs monthly) and its impact on fragmentation level together with the results
achieved with CBR defragmentation. The second one is to verify the impact
of the number of previous versions of one backup set kept in the system (as-
suming fixed backup frequency within one experiment). On one hand, having
more data makes it also more difficult to read the blocks which are actually
needed, but on the other, simply deleting the old versions does not make
the current backup change the location on the disk. Having some intelligent
concatenation mechanism between the data belonging to the same streams,
may be a solution here.

8.2.5 Possible extensions to CBR algorithm

When it comes to the context based rewriting algorithm, the future work
may explore the following issues:

• allowing for slightly reduced deduplication when fragmentation suffers
a lot

• simulating the cache algorithm with forward knowledge during write
(exactly the same or similar to the one used with restore)

• applying the statistics gathered during previous backups while choosing
the optimal current utility threshold

• performing CBR defragmentation once every n-th backup in order to
save write bandwidth

130 CHAPTER 8. CONCLUSIONS

• when considering some block as a rewrite, taking into account other
streams in which it is present

Even though the current CBR algorithm performs the defragmentation
very well, leaving not more than 7% to the optimal result, the above ex-
tensions may reduce this gap even further together with the cost of write
bandwidth reduction with every backup.

8.2.6 Global fragmentation

The last aspect of fragmentation left for further analysis is the global frag-
mentation present between the different data sets placed in one backup sys-
tem. In Section 3.2.3 I have already described the problem and some possible
approaches to the actual solution. While committing to the maximal effi-
ciency of data deduplication, this aspect of fragmentation seems the most
complex one in terms of providing the solution for any existing system and
any combination of different data sets placed together. Throughout many dif-
ferent usage patterns the number of global duplicates can vary a lot together
with its impact on both deduplication ratio and the amount of additional
fragmentation. Limiting the deduplication scope to the previous version of
the same stream may be a reasonable choice in case of a system with ex-
tremely high priority of the restore performance. Some of the extensions to
the CBR algorithm proposed in previous section may also help in the aspect
of global fragmentation.

Glossary

Backup A copy of a file or other item made in case the original is lost or
damaged (see Section 2.1.1).

Backup data set A set of data being backed up together as a single logical
backup stream.

Backup policy A policy used for performing backup by a given user. Usu-
ally consists of different order and frequency of full and incremental
backups (see Section 2.2.2).

Backup retention period The period within which each single backup is
kept in the backup system before it is removed (see Section 2.2.2).

Backup (storage) system A system used to keep backup data usually pro-
vided by some backup application (see Section 2.1).

Backup version The logical backup stream representing some data set at
a given time. If a data set is backed up every week, each week’s backup
will become a different version of one data set (different and separate
logical backup stream, but with not many differences when compared
byte by byte).

Block hash A result of hash function computed over the data within a given
deduplication block. With good hash function and enough hash length
(i.e. 160 bits or more) the result can be regarded as a good and unique
(with extremely high probability) identifier for the block enabling easy
deduplication (see Section 2.2.1).

Data fragmentation A phenomenon in which logically sequential data are
not placed sequentially on the disk making the restore process expen-
sive. In this thesis I look especially at the fragmentation caused by
duplicate elimination (see Chapter 3).

Deduplication A technique to save storage space by finding identical blocks
and keeping only one copy of each of them (see Section 2.2).

132 GLOSSARY

Deduplication block The smallest sequential part of logical backup stream
which can be compared with others (see Section 2.2.1).

Deduplication ratio A proportion of bytes written to bytes actually stored.
Within backup systems often in a range between 10 and 20 (see Sec-
tion 2.2.2). Sometimes shown as 1:10, 1:20.

Duplicate elimination See Deduplication.

Full backup A backup consisting of all the data. Can be used directly for
recovery.

Global fragmentation A kind of data fragmentation caused by identical
blocks appearing in two or more different data set (see Section 3.2.3).

In-line deduplication The technique to deduplicate blocks during the backup
process. Thanks to that only the unique blocks are stored on disk (see
Section 2.2.1).

Incremental backup A backup consisting of only the data which were
changed from the last backup (full or incremental). Can be used for
recovery only with the latest full backup and all subsequent incremen-
tal backups.

Inter-version fragmentation A kind of data fragmentation caused by iden-
tical blocks appearing many times between two backup versions of the
same data set (see Section 3.2.2).

Internal stream fragmentation A kind of data fragmentation caused by
identical blocks appearing many times within a single logical backup
stream (see Section 3.2.1).

Logical backup stream An ordered sequence of bytes forming a single user
backup stream (usually tens or hundreds of GBs [81]).

Logical block location The address of a block in a logical backup stream
(two sequential blocks in a logical backup stream will always have two
sequential addresses). See difference between logical and physical block
location in Sections 3.2.1 and 3.2.2.

Off-line deduplication The technique to deduplicate blocks after the backup
process. All blocks are always stored on disks and later in the back-
ground the redundant blocks are removed (see Section 2.2.1).

GLOSSARY 133

Physical block location The address of a block on a physical device (two
sequential blocks in a logical backup stream will not necessarily have
sequential addresses). See difference between logical and physical block
location in Sections 3.2.1 and 3.2.2.

Purpose-Built Backup Appliances A kind of a backup system that uti-
lize software, disk arrays, and server engine(s)/nodes. These products
are standalone disk systems purpose built to serve as a target for backup
and include features such as deduplication, compression, encryption,
remote replication, and support interface (see Section 1.1).

Recovery Time Objective (RTO) Targeted duration of time and a ser-
vice level within which a business process must be restored after a
disaster (or disruption) in order to avoid unacceptable consequences
associated with a break in business continuity. One of the key objec-
tives in backup systems.

Secondary storage system See Backup system.

Bibliography

[1] 107th Congress, United States of America. Public Law 107-204:
”Sarbanes-Oxley Act of 2002”. July 2002.

[2] R. Amatruda. Worldwide Purpose-Built Backup Appliance 2012-2016
Forecast and 2011 Vendor Shares. International Data Corporation, April
2012.

[3] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S. T.
Klein. The design of a similarity based deduplication system. In Proceed-
ings of SYSTOR 2009: The Israeli Experimental Systems Conference,
SYSTOR ’09, pages 6:1–6:14, New York, NY, USA, 2009. ACM.

[4] T. Asaro and H. Biggar. Data De-duplication and Disk-to-Disk Backup
Systems: Technical and Business Considerations, July 2007. The Enter-
prise Strategy Group.

[5] B. Babineau and D. A. Chapa. Deduplication’s Business Imperatives.
December 2010.

[6] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Syst. J., 5(2):78–101, June 1966.

[7] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme
binning: Scalable, parallel deduplication for chunk-based file backup. In
MASCOTS, pages 1–9. IEEE, 2009.

[8] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme
binning: Scalable, parallel deduplication for chunk-based file backup. In
Proceedings of the 17th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2009), Sep 2009.

[9] H. Biggar. Experiencing Data De-Duplication: Improving Efficiency and
Reducing Capacity Requirements, February 2007. The Enterprise Strat-
egy Group.

136 BIBLIOGRAPHY

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[11] British Library. Web Archive: preserving uk websides.
http://www.webarchive.org.uk/ukwa/.

[12] A. Z. Broder. Some aplications of rabin’s fingerprinting method. In Se-
quences II: Methods in Communications, Security, and Computer Sci-
ence, pages 143–152. Springer-Verlag, 1993.

[13] M. Campbell. Backup and Inline Versus Post-Processing Deduplication.
Unitrends.com, April 2010. http://www.unitrends.com/blog/backup-
and-inline-versus-post-processing-deduplication/.

[14] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of integrated
prefetching and caching strategies. In Proceedings of the 1995 ACM SIG-
METRICS Joint International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’95/PERFORMANCE ’95,
pages 188–197, New York, NY, USA, 1995. ACM.

[15] S. Casey Morgan. The History of Data Storage and Backup Part 4:
Punched Cards. 2013. http://www.storagecraft.com/blog/history-of-
data-storage-and-backup-part-4-punched-cards/.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. In OSDI’06: 7th USENIX Sympo-
sium on Operating Systems Design and Implementation, pages 205–218,
Berkeley, CA, USA, 2006. USENIX Association.

[17] I. S. I. Consortium. INSIC’s 2012-2022 International Magnetic Tape
Storage Roadmap. May 2012.

[18] R. Cook. How to optimize your backup tape rotation strategy. Search-
DataBackup.com, February 2009.

[19] E. Corporation. EMC Centera. Content Addressable Storage. Product
Description Guide.

[20] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making backup
cheap and easy. In OSDI ’02: Proceedings of the 5th symposium on Op-
erating systems design and implementation, pages 285–298, New York,
NY, USA, 2002. ACM.

BIBLIOGRAPHY 137

[21] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up inline
storage deduplication using flash memory. In 2010 USENIX Annual
Technical Conference, June 2010.

[22] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane.
Tradeoffs in scalable data routing for deduplication clusters. In Proceed-
ings of the 9th USENIX conference on File and Storage Technologies,
FAST’11, pages 15–29, Berkeley, CA, USA, 2011. USENIX Association.

[23] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzel-
czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki. HYDRAs-
tor: a Scalable Secondary Storage. In FAST’09: Proceedings of the 7th
USENIX Conference on File and Storage Technologies, pages 197–210,
Berkeley, CA, USA, 2009. USENIX Association.

[24] C. Dubnicki, C. Ungureanu, and W. Kilian. FPN: A distributed hash
table for commercial applications. In Proceedings of the 13th IEEE In-
ternational Symposium on High Performance Distributed Computing,
pages 120–128, Washington, DC, USA, 2004. IEEE Computer Society.

[25] D. E. Eastlake and P. E. Jones. US Secure Hash Algorithm 1 (SHA1).
RFC 3174 (Informational), September 2001.

[26] EMC Avamar: Backup and recovery with global deduplication, 2008.
http://www.emc.com/avamar.

[27] EMC Centera: Content addressed storage system, January 2008.
http://www.emc.com/centera.

[28] EMC Corporation: Data Domain Global Deduplication Array,
2011. http://www.datadomain.com/products/global-deduplication-
array.html.

[29] EMC Corporation: DataDomain - Deduplication Storage for Backup,
Archiving and Disaster Recovery, 2014. http://www.datadomain.com.

[30] Enterprise Strategy Group. 2010 Data Protection Trends. April 2010.

[31] Exagrid. http://www.exagrid.com.

[32] D. Floyer. Wikibon Data De-duplication Performance Tables. Wik-
ibon.org, May 2011. http://wikibon.org/wiki/v/Wikibon Data De-
duplication Performance Tables.

138 BIBLIOGRAPHY

[33] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, and
Q. Liu. Accelerating restore and garbage collection in deduplication-
based backup systems via exploiting historical information. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), pages 181–
192, Philadelphia, PA, June 2014. USENIX Association.

[34] J. Gantz and D. Reinsel. The Digital Universe Decade - Are You Ready?
IEEE Trans. Parallel Distrib. Syst., May 2010. Sponsored by EMC
Corporation.

[35] J. Gantz and D. Reinsel. The Digital Universe in 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East. IEEE Trans.
Parallel Distrib. Syst., December 2012. Sponsored by EMC Corporation.

[36] J. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton,
I. Xheneti, A. Toncheva, and A. Manfrediz. The expanding universe: A
forecast of worldwide information growth through 2010. March 2007.

[37] A. S. P. Group. Identifying the Hidden Risk of Data Deduplication: How
the HYDRAstor Solution Proactively Solves the Problem. 2009. White
Paper WP103-3 0709, NEC Corporation of America.

[38] G. L. Heileman and W. Luo. How caching affects hashing. In C. Deme-
trescu, R. Sedgewick, and R. Tamassia, editors, ALENEX/ANALCO,
pages 141–154. SIAM, 2005.

[39] HP StoreOnce Backup, 2013. http://www8.hp.com/us/en/products/data-
storage/data-storage-products.html?compURI=1225909.

[40] IBM ProtecTIER Deduplication Solution. https://www-304.ibm.com/-
partnerworld/wps/pub/overview/HW21Z.

[41] D. W. Jones. Punched Cards. A brief illustrated technical history. 2012.
http://homepage.cs.uiowa.edu/ jones/cards/history.html.

[42] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki. Reduc-
ing impact of data fragmentation caused by in-line deduplication. In
Proceedings of the 5th Annual International Systems and Storage Con-
ference, SYSTOR ’12, pages 15:1–15:12, New York, NY, USA, 2012.
ACM.

[43] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal content defined
chunking for backup streams. In Proceedings of the 8th USENIX confer-
ence on File and Storage Technologies, FAST’10, pages 239–252, Berke-
ley, CA, USA, 2010. USENIX Association.

BIBLIOGRAPHY 139

[44] S.-W. Lee and B. Moon. Design of flash-based dbms: an in-page logging
approach. In SIGMOD Conference, pages 55–66, 2007.

[45] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving restore speed for
backup systems that use inline chunk-based deduplication. In Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies,
FAST’13, pages 183–198, Berkeley, CA, USA, 2013. USENIX Associa-
tion.

[46] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble. Sparse indexing: Large scale, inline deduplication using
sampling and locality. In FAST’09: Proceedings of the 7th USENIX
Conference on File and Storage Technologies, pages 111–123, 2009.

[47] J. Livens. Deduplication and restore performance. Wiki-
bon.org, January 2009. http://wikibon.org/wiki/v/Deduplication and-
restore performance.

[48] J. Livens. Defragmentation, rehydration and deduplication. AboutRe-
store.com, June 2009. http://www.aboutrestore.com/2009/06/24/-
defragmentation-rehydration-and-deduplication/.

[49] H. Macarthur. Data deduplication: The real benefits. com-
puterweekly.com, January 2008. http://computerweekly.com/news/-
1289693/Data-deduplication-The-real-benefits.

[50] D. Meister and A. Brinkmann. dedupv1: Improving Deduplication
Throughput using Solid State Drives (SSD). In Proceedings of the
26th IEEE Symposium on Massive Storage Systems and Technologies
(MSST), May 2010.

[51] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth net-
work file system. In Proceedings of the eighteenth ACM symposium on
Operating systems principles, SOSP ’01, pages 174–187, New York, NY,
USA, 2001. ACM.

[52] A. Muthitacharoen, B. Chen, and D. Mazires. A low-bandwidth network
file system. In In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01, pages 174–187, New York, NY, USA,
2001. ACM.

[53] Y. Nam, G. Lu, N. Park, W. Xiao, and D. H. C. Du. Chunk fragmen-
tation level: An effective indicator for read performance degradation in
deduplication storage. In P. Thulasiraman, L. T. Yang, Q. Pan, X. Liu,

140 BIBLIOGRAPHY

Y.-C. Chen, Y.-P. Huang, L.-H. Chang, C.-L. Hung, C.-R. Lee, J. Y.
Shi, and Y. Zhang, editors, HPCC, pages 581–586. IEEE, 2011.

[54] Y. J. Nam, D. Park, and D. H. C. Du. Assuring demanded read per-
formance of data deduplication storage with backup datasets. In Pro-
ceedings of the 2012 IEEE 20th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS ’12, pages 201–208, Washington, DC, USA, 2012. IEEE
Computer Society.

[55] P. Nath, B. Urgaonkar, and A. Sivasubramaniam. Evaluating the useful-
ness of content addressable storage for high-performance data intensive
applications. In HPDC ’08: Proceedings of the 17th international sym-
posium on High performance distributed computing, pages 35–44, New
York, NY, USA, 2008. ACM.

[56] NEC Corporation. HYDRAstor Grid Storage System, 2008.
http://www.hydrastor.com.

[57] NEC HYDRAstor HS8-4000 Specification, 2013.
http://www.necam.com/HYDRAstor/doc.cfm?t=HS8-4000.

[58] C.-H. Ng and P. P. C. Lee. RevDedup: A Reverse Deduplication Storage
System Optimized for Reads to Latest Backups. CoRR, abs/1302.0621,
2013.

[59] B. Panzer-Steindel. Technology, Market and Cost Trends 2012. May
2012. CTO CERN/IT.

[60] E. Parliament. Directive 2006/24/EC ”On the retention of data gen-
erated or processed in connection with the provision of publicly avail-
able electronic communications services or of public communication net-
works”. March 2006.

[61] C. Policroniades and I. Pratt. Alternatives for detecting redundancy
in storage systems data. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’04, pages 6–6, Berkeley,
CA, USA, 2004. USENIX Association.

[62] W. C. Preston. The Rehydration Myth. BackupCentral.com, June
2009. http://www.backupcentral.com/mr-backup-blog-mainmenu-47/-
13-mr-backup-blog/247-rehydration-myth.html/.

BIBLIOGRAPHY 141

[63] W. C. Preston. Restoring deduped data in dedupli-
cation systems. SearchDataBackup.com, April 2010.
http://searchdatabackup.techtarget.com/feature/Restoring-deduped-
data-in-deduplication-systems.

[64] W. C. Preston. Solving common data deduplication sys-
tem problems. SearchDataBackup.com, November 2010.
http://searchdatabackup.techtarget.com/feature/Solving-common-
data-deduplication-system-problems.

[65] W. C. Preston. Target deduplication appliance performance comparison.
BackupCentral.com, October 2010. http://www.backupcentral.com/-
mr-backup-blog-mainmenu-47/13-mr-backup-blog/348-target-
deduplication-appliance-performance-comparison.html.

[66] Quantum Corporation: DXi Deduplication Solution, 2011.
http://www.quantum.com.

[67] S. Quinlan and S. Dorward. Venti: A new approach to archival storage.
In FAST’02: Proceedings of the Conference on File and Storage Tech-
nologies, pages 89–101, Berkeley, CA, USA, 2002. USENIX Association.

[68] M. Rabin. Fingerprinting by random polynomials. Technical report,
Center for Research in Computing Technology, Harvard University, New
York, NY, USA, 1981.

[69] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed
storage in foundation. In Proceedings of the 2008 USENIX Annual Tech-
nical Conference, pages 143–156, Berkeley, CA, USA, 2008. USENIX
Association.

[70] B. Romanski, L. Heldt, W. Kilian, K. Lichota, and C. Dubnicki. Anchor-
driven subchunk deduplication. In Proceedings of the 4th Annual In-
ternational Conference on Systems and Storage, SYSTOR ’11, pages
16:1–16:13, New York, NY, USA, 2011. ACM.

[71] M. Rouse. Cloud backup. searchdatabackup.techtarget.com, Febru-
ary 2013. http://searchdatabackup.techtarget.com/definition/cloud-
backup.

[72] Seagate Corporation. Common enterprise disk specifica-
tion (based on Seagate Constellation ES.3 4TB, model 2012).

142 BIBLIOGRAPHY

http://www.seagate.com/www-content/product-content/constellation-
fam/constellation-es/constellation-es-3/en-us/docs/constellation-es-3-
data-sheet-ds1769-1-1210us.pdf.

[73] Seagate Corporation. Seagate Desktop HDD 4TB, model 2013 -
disk characteristics. http://www.seagate.com/www-content/product-
content/barracuda-fam/desktop-hdd/barracuda-7200-14/en-gb/docs/-
desktop-hdd-data-sheet-ds1770-1-1212gb.pdf.

[74] Seagate Corporation. World’s fastest 6TB hard disk drive announce-
ment — the Seagate Enterprise Capacity 3.5 HDD v4, April 2014.
http://www.seagate.com/about/newsroom/press-releases/Seagate-
ships-worlds-fastest-6TB-drive-enterprise-capacity-pr-master.

[75] SEPATON Scalable Data Deduplication Solutions.
http://sepaton.com/solutions/data-deduplication.

[76] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup:
latency-aware, inline data deduplication for primary storage. In Proceed-
ings of the 10th USENIX conference on File and Storage Technologies,
FAST’12, pages 24–24, Berkeley, CA, USA, 2012. USENIX Association.

[77] P. Strzelczak, E. Adamczyk, U. Herman-Izycka, J. Sakowicz, L. Slusar-
czyk, J. Wrona, and C. Dubnicki. Concurrent deletion in a distributed
content-addressable storage system with global deduplication. In Pro-
ceedings of the 11th USENIX Conference on File and Storage Technolo-
gies, FAST’13, pages 161–174, Berkeley, CA, USA, 2013. USENIX As-
sociation.

[78] Symantec NetBackup Appliances. http://www.symantec.com/backup-
appliance.

[79] Ultrium LTO official website, 2013. www.lto.org.

[80] C. Ungureanu, A. Aranya, S. Gokhale, S. Rago, B. Atkin, A. Bohra,
C. Dubnicki, and G. Calkowski. Hydrafs: A high-throughput file system
for the hydrastor content-addressable storage system. In FAST ’10,
pages 225–239, 2010.

[81] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, and W. Hsu. Characteristics of backup workloads in production
systems. In Proceedings of the 10th USENIX conference on File and
Storage Technologies, FAST’12, pages 4–4, Berkeley, CA, USA, 2012.
USENIX Association.

BIBLIOGRAPHY 143

[82] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In IPTPS ’01: Revised Papers from the
First International Workshop on Peer-to-Peer Systems, pages 328–338,
London, UK, 2002.

[83] L. Whitehouse. Restoring deduped data.
searchdatabackup.techtarget.com, August 2008.
http://searchdatabackup.techtarget.com/tip/Restoring-deduped-data.

[84] S. Yin, P. Pucheral, and X. Meng. Pbfilter: indexing flash-resident data
through partitioned summaries. In CIKM, pages 1333–1334, 2008.

[85] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the
Data Domain deduplication file system. In FAST’08: Proceedings of the
6th USENIX Conference on File and Storage Technologies, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

List of Figures

1.1 The Digital Universe size. 5

1.2 Worldwide Purpose-Built Backup Appliance Revenue 7

1.3 The schematic cost of having each kind of fragmentation . . . 8

1.4 Backup inter-version fragmentation 9

1.5 Backup internal stream fragmentation 11

2.1 Storage of IBM record cards 17

2.2 Tape Library Autoloader . 18

2.3 Purpose-Built Backup Appliance example 19

2.4 Survey on data deduplication solutions 30

3.1 Typical age of recovered data 34

3.2 Impact of internal stream fragmentation 40

3.3 Location of data stored in each backup version 42

3.4 Impact of inter-version fragmentation 44

3.5 Impact of different kinds of fragmentation and the cache size . 49

3.6 Problem of fragmentation after each backup (LRU) 50

3.7 Maximal restore bandwidth for each backup 51

4.1 Reading a stream from a backup system with FK 58

4.2 The data restore process - scheme. 59

4.3 The forward knowledge cache - scheme. 60

4.4 The design of oracle with limited forward knowledge. 61

4.5 Comparison of structures used by LRU and FK 62

4.6 Reading a block already present in cache 63

4.7 Reading a block not present in cache (with eviction policy) . . 64

5.1 Comparison of backup fragmentation: in-line vs. off-line dedup 70

5.2 Writing a backup stream with CBR algorithm - scheme 73

5.3 Disk and stream contexts of a block 74

5.4 Read bandwidth decrease with a given rewrite utility 76

146 LIST OF FIGURES

6.1 Relative restore time of the latest backup 88
6.2 Impact of forward knowledge size on restore performance - base 95
6.3 Impact of forward knowledge size on restore performance - max 96
6.4 Impact of prefetch size on the restore bandwidth 99
6.5 The restore bandwidth achieved by CBR algorithm 101
6.6 The impact of rewrite limit percentage 104
6.7 Impact of CBR with forward knowledge cache on latest backup108
6.8 Impact of CBR with forward knowledge cache on each backup 109
6.9 Impact of prefetch size on restore bandwidth with 10 disks . . 112

List of Tables

2.1 Primary vs secondary storage comparison 16
2.2 Different backup policy vs deduplication ratio 25
2.3 Disk and tape comparison . 29

3.1 Impact of prefetch size on the actual restore time 36
3.2 Impact of different kinds of fragmentation 39
3.3 Impact of global fragmentation 45

6.1 Data sets characteristics . 90
6.2 Backup restore bandwidth increase of FK over LRU 92
6.3 Cache memory actually used with infinite forward knowledge . 98
6.4 Impact of CBR on the latest backup restore bandwidth 103
6.5 Cache size for maximal performance with infinite FK 106
6.6 Comparison of different restore options to LRU 107
6.7 Comparison of different restore options to maximal bandwidth 110
6.8 Comparison of both new algorithms and LRU 111

7.1 Comparison of defragmentation solutions. 116
7.2 Comparison of different fragmentation metrics 118

	Introduction
	Motivation
	Problem statement
	Impact of fragmentation on restore bandwidth
	Inter-version fragmentation
	Internal stream fragmentation

	Thesis contributions
	Outline of dissertation

	Backup and Deduplication
	Secondary storage systems
	Requirements
	History

	Duplicate elimination
	Characteristics
	Deduplication ratio
	Benefits
	Drawbacks and concerns

	Today's market

	The problem of stream fragmentation
	The role of restore in backup systems
	Backup procedure
	Verified combination: Prefetch and cache

	Fragmentation problem in systems with duplicate elimination
	Internal stream fragmentation
	Inter-version fragmentation
	Global fragmentation
	Scalability issues

	Problem magnitude
	Impact of different kinds of fragmentation on the latest backup
	Fragmentation in time
	Cache size impact on restore time

	Options to reduce the negative impact of fragmentation during restore

	Cache with limited forward knowledge to reduce impact of internal fragmentation
	Desired properties of the final solution
	The idea
	System support
	Algorithm details
	The system restore algorithm
	The disk restore process
	Memory requirements
	Discussion

	Trade-offs

	Content Based Rewriting algorithm to reduce impact of inter-version fragmentation
	Desired properties of the final solution
	The idea
	System support
	Algorithm details
	Block contexts
	Keeping the contexts similar
	Reaching rewrite decisions
	Implementation details
	Memory requirements
	Discussion

	Trade-offs

	Evaluation with trace driven simulations
	Experimental methodology
	Backup system model
	Omitted factors
	Data sets description
	Testing scenarios

	Evaluation of forward knowledge cache
	Meeting the requirements
	Setting the forward knowledge size
	Impact of fragmentation on required cache size
	Experimenting with larger prefetch

	Evaluation of CBR effectiveness
	Meeting the requirements
	Cost of rewriting
	Setting the rewrite limit
	Effect of compression
	Impact of CBR defragmentation process on required cache size

	Combined impact of both algorithms
	Scalability

	Related Work
	Comparison with off-line deduplication
	Fragmentation measurement
	Defragmentation algorithms
	Caching
	Other related work

	Conclusions
	Summary
	Future work
	Perfect memory division during restore
	Optimal cache memory usage
	Variable size prefetch
	Retention policy and deletion experiments
	Possible extensions to CBR algorithm
	Global fragmentation

	Glossary
	Bibliography
	List of Figures
	List of Tables

