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To my wife Zuzanna and my parents Helena and Stanisław.





Abstract

This thesis studies the dynamics of the Loop Quantum Gravity states defined by the spin-
foam models of Euclidean 4D Quantum Gravity. A link between the 4D spin-foam theory
and the kinematics of the (3+1) Loop Quantum Gravity (LQG) was proposed by J. Engle,
R. Pereira, C. Rovelli and E. Livine [86]. Their model, called the EPRL spin-foam model,
is a promising candidate for the spin-foam model of the dynamics of the Loop Quantum
Gravity states. In the original formulation, the EPRL spin-foam model is defined for
triangulations and is applicable to specific LQG states. A generalization of the model to
all the LQG states was proposed in [123] by W. Kamiński, J. Lewandowski and myself.
Some properties of the generalized model were studied in [123, 124, 125, 29]. In particular,
in [29] a general framework for studying symmetries of spin-foam models was proposed.
The heart of the generalization is the generalized EPRL vertex amplitude. E. Bianchi, D.
Regoli and C. Rovelli proposed another spin-foam model of 4D Quantum Gravity with the
generalized EPRL vertex amplitude [48]. E. Bianchi, C. Rovelli and F. Vidotto used the
model [48] to construct the first model of Quantum Cosmology based on the spin-foam
formalism [49]. They calculated a transition amplitude between coherent states peaked
on homogeneous, isotropic geometries using certain approximations. The approximations
were justified a posteriori by a correct semiclassical limit of the transition amplitude. One
of them was a truncation of the transition amplitude to a contribution from a single foam
with one internal vertex, four internal edges and a certain boundary, which we will call a
BRV foam. F. Hellmann discussed contributions from other foams with these properties,
which a priori cannot be discarded [115]. All the possible foams were listed in [130] by
J. Lewandowski, J. Puchta and myself. The class of the foams considered was defined by
graph diagrams, which we introduced in [129]. We expect that the contributions from the
foams we have found can be neglected in the limit of large universe.

In chapter 1, I present the construction of the Loop Quantum Gravity states and in-
troduce the spin-foam formalism. Since I do not take under consideration the matter
couplings in this thesis, I consider the combinatorial Hilbert space [163] to be the Hilbert
space of the Loop Quantum Gravity states.

In chapter 2, I briefly summarize the state of art of the research in the spin-foam models
of 4D Quantum Gravity before my contribution and the key results of this thesis.

In chapter 3, I define and compare the two models generalizing the EPRL model. First,
I present the generalized EPRL intertwiners and the generalized EPRL vertex amplitude
that were constructed in [123] by W. Kamiński, J. Lewandowski and myself. After this, I
present the two spin-foam models with the generalized EPRL vertex amplitude [123, 48]
and compare them.

Each EPRL intertwiner is labelled with an SU(2) invariant tensor (SU(2) intertwiner).
A map from a space of SU(2) intertwiners to a space of Spin(4) intertwiners that maps
an SU(2) intertwiner into its corresponding EPRL intertwiner is linear. It will be called
an EPRL map and its image will be called a space of EPRL intertwiners. In chapter 4, I
show that an EPRL map is 1-1 if its co-domain is non-trivial. I also give an example of
non-isometric EPRL map. The results were obtained by W. Kamiński, J. Lewandowski
and myself and published in [86, 124, 125].

Since an EPRL map can be mapping an orthonormal basis into non-orthonormal one,
there is an ambiguity in defining the sum over the intertwiners: in the model [48] the sum
is over orthonormal basis of the SU(2) intertwiners and in the model [123] the sum is over a
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basis of the EPRL intertwiners orthonormal in the scalar product inherited from the space
of Spin(4) intertwiners. In chapter 5, I present an approach to spin foams where instead
of labelling the internal edges with intertwiners and summing over them, one labels the
internal edges with operators. This approach is called operator spin foams [29]. I study
moves on the (operator) spin foams changing the orientations or refining the (operator)
spin foams. The model [123] is symmetric with respect to the moves and the model [48] is
not symmetric. This chapter is based on a paper by B. Bahr, F. Hellmann, W. Kamiński,
J. Lewandowski and myself published in [29].

In chapter 1 the foams are defined as certain oriented piecewise linear 2-complexes.
However, the complexes refer to auxiliary affine structures, which are not compatible
with the diffeomorphism invariance of General Relativity. In chapter 6, I present another
class of foams, introduced in [129] by J. Lewandowski, J. Puchta and myself, defined
combinatorially by using certain diagrams, called graph diagrams. For each graph diagram
I construct the corresponding foam and the boundary graph, which are oriented CW-
complexes. I define operator spin-network diagrams as graph diagrams with suitable
coloring. The coloring induces a coloring of the corresponding foam, making it an operator
spin foam. I show that the construction of the operator spin foam corresponding to an
operator spin-network diagram is not needed to calculate the spin-foam operator and thus
to calculate the transition amplitudes. The spin-foam operator can be read directly from
the operator spin-network diagram. As a result the formalism of operator spin-network
diagrams can be used independently from the formalism of operator spin foams. I use this
technical advantage in the following chapter.

In chapter 7, I construct all graph diagrams such that the corresponding foams have
one internal vertex, four internal edges and the same boundary as the BRV foam. I
discuss contributions to the transition amplitude from some of the graph diagrams. I
show that in the limit of large volume of the universe they can be neglected in comparison
to the contribution from the BRV foam. I expect that this property holds for every graph
diagram constructed in this chapter. This chapter is based on a paper by J. Lewandowski,
J. Puchta and myself published in [130].

vi



Streszczenie

Przedmiotem badań prezentowych w mojej rozprawie doktorskiej jest dynamika stanów
pętlowej kwantowej grawitacji zdefiniowana przez pianowo-spinowe modele euklidesowej
czterowymiarowej kwantowej grawitacji. Związek pomiędzy czterowymiarowymi teoriami
pian spinowych a kinematyką pętlowej kwantowej grawitacji został zaproponowany przez J.
Engle’a, R. Pereirę, C. Rovelliego i E. Livine’a [86]. Ich model, nazywany modelem EPRL,
jest dobrze zapowiadającym się kandydatem na pianowo-spinowy model dynamiki stanów
pętlowej kwantowej grawitacji. W pierwotnym sformułowaniu model EPRL jest zdefi-
niowany dla triangulacji czasoprzestrzeni i może być stosowany tylko dla pewnych stanów
pętlowej kwantowej grawitacji. Uogólnienie modelu do wszystkich stanów zostało zapro-
ponowane w [123] przez J. Lewandowskiego, W. Kamińskiego i przeze mnie. Pewne włas-
ności uogólnionego modelu zostały zbadane w [123, 124, 125, 29]. W szczególności w [29]
została zaproponowana ogólna metoda badania symetrii modeli pian spinowych. Głównym
elementem zaproponowanego uogólnienia jest uogólniona amplituda wierzchołka EPRL.
E. Bianchi, D. Regoli i C. Rovelli zaproponowali inny pianowo-spinowy model czterowy-
miarowej kwantowej grawitacji z uogólnioną amplitudą wierzchołka EPRL [48]. E. Bianchi,
C. Rovelli i F. Vidotto zastosowali model [48] w celu skonstruowania pierwszego modelu
kwantowej kosmologii opartego na formalizmie pian spinowych [49]. Stosując pewne przy-
bliżenia, obliczyli amplitudę przejścia pomiędzy stanami koherentnymi, skupionymi na
jednorodnych, izotropowych geometriach. Zastosowane przybliżenia były uzasadnione a
posteriori poprzez poprawną granicę semi-klasyczną amplitudy przejścia. Jednym z zas-
tosowanych przybliżeń było obcięcie amplitudy przejścia do wkładu pochodzącego od jed-
nej piany mającej jeden wierzchołek wewnętrzny, cztery wewnętrzne krawędzie i pewien
brzeg, którą będziemy nazywać pianą BRV. F. Hellmann przedyskutował wkłady od in-
nych pian, które nie mogą zostać odrzucone a priori [115]. Wszystkie możliwe piany z tymi
własnościami zostały znalezione w [130] przez J. Lewandowskiego, J. Puchtę i przeze mnie.
Klasa rozważanych pian została zdefiniowana przez diagramy grafowe, które wprowadzi-
liśmy w [129]. Spodziewamy się, że wkłady od znalezionych pian mogą zostać zaniedbane
w granicy dużych rozmiarów wszechświata.

W rozdziale 1 prezentuję konstrukcję stanów pętlowej kwantowej grawitacji i wprowa-
dzam formalizm pian spinowych. Nie rozważam w mojej rozprawie sprzężeń z materią,
dlatego jako przestrzeń Hilberta stanów pętlowej kwantowej grawitacji przyjmuję kombi-
natoryczną przestrzeń Hilberta [163].

W rozdziale 2 krótko podsumowuję stan badań nad pianowo-spinowymi modelami cztero-
wymiarowej kwantowej grawitacji przed rozpoczęciem moich badań oraz główne wyniki
mojej rozprawy doktorskiej.

W rozdziale 3 definiuję i porównuję dwa modele uogólniające model EPRL. Najpierw
prezentuję uogólnione splatacze EPRL i uogólnione amplitudy wierzchołków EPRL, które
zostały skonstruowane w [123] przez W. Kamińskiego, J. Lewandowskiego i przeze mnie.
Następnie prezentuję dwa wyżej wspomniane modele. Na końcu porównuję oba modele.

Splatacze EPRL są z definicji indeksowane tensorami niezmienniczymi ze względu na
działanie grupy SU(2) (splataczami SU(2)). Odwzorowanie z przestrzeni splataczy SU(2)
w przestrzeń splataczy Spin(4) przyporządkowujące splataczowi SU(2) odpowiadający mu
splatacz EPRL jest liniowe. Będzie nazywane odwzorowaniem EPRL, a obraz tego od-
wzorowania będzie nazywany przestrzenią splataczy EPRL. W rozdziale 4 pokazuję, że
odwzorowanie EPRL jest injektywne, jeśli jego przeciwdziedzina jest nietrywialna. Prezen-
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tuję również przykład odwzorowania EPRL, które nie jest izometrią. Prezentowane wyniki
zostały uzyskane przez J. Lewandowskiego, W. Kamińskiego i przeze mnie. Zostały opub-
likowane w [123, 124, 125].

Odwzorowanie EPRL może przyporządkowywać bazie ortonormalnej bazę nieortonor-
malną. W rezultacie występuje pewna niejednoznaczność w definicji sumy po splataczach:
w modelu [48] suma jest po ortonormalnej bazie splataczy SU(2), natomiast w modelu [123]
suma jest po bazie splataczy EPRL ortonormalnej w naturalnym iloczynie skalarnym w
przestrzeni splataczy Spin(4). W rozdziale 5 przedstawiam podejście do pian spinowych,
w którym zamiast przypisywania splataczy krawędziom wewnętrznym piany i sumowa-
nia po nich, krawędziom wewnętrznym przypisuje się pewne operatory. Podejście to
jest nazywane operatorowymi pianami spinowymi [29]. Badam ruchy na operatorowych
pianach spinowych pozwalające na zmianę orientacji i zagęszczanie operatorowych pian
spinowych. Model [123] jest symetryczny ze względu na te ruchy, natomiast model [48]
nie jest symetryczny. Rozdział ten jest oparty na artykule napisanym przez B. Bahra, F.
Hellmanna, W. Kamińskiego, J. Lewandowskiego i przeze mnie, opublikowanym w [29].

W rozdziale 1 piany są zdefiniowane jako pewne zorientowane kawałkami-liniowe dwu-
kompleksy. Jednakże kompleksy te odwołują się do zbędnej struktury afinicznej, która jest
niezgodna z dyfeomorficzną niezmienniczością ogólnej teorii względności. W rozdziale 6
przedstawiam inną klasę pian, wprowadzoną w [129] przez J. Lewandowskiego, J. Puchtę i
przeze mnie, zdefiniowaną kombinatorycznie przy użyciu pewnych diagramów, które nazy-
wamy diagramami grafowymi. Dla każdego diagramu grafowego konstruuję odpowiadającą
mu pianę i graf brzegowy, które są zorientowanymi CW-kompleksami. Definiuję opera-
torowe sieciowo-spinowe diagramy jako diagramy grafowe z odpowiednim kolorowaniem.
Każdemu operatorowemu sieciowo-spinowemu diagramowi odpowiada operatorowa piana
spinowa. Pokazuję, że konstrukcja operatorowej piany spinowej, odpowiadającej opera-
torowemu sieciowo-spinowemu diagramowi, nie jest konieczna do obliczania pianowo-spi-
nowego operatora, a zatem nie jest konieczna do obliczania amplitud przejścia. Pianowo-
spinowy operator może być odczytany bezpośrednio z operatorowego sieciowo-spinowego
diagramu. W rezultacie formalizm operatorowych sieciowo-spinowych diagramów może
być stosowany niezależnie od formalizmu pian spinowych. Właśnie tę techniczną zaletę
stosuję w następnym rozdziale.

W rozdziale 7 konstruuję wszystkie takie diagramy grafowe, że odpowiadające im pia-
ny mają jeden wierzchołek wewnętrzny, cztery wewnętrzne krawędzie i brzeg taki sam
jak brzeg piany BRV. Omawiam wkłady do amplitudy przejścia, pochodzące od niek-
tórych ze znalezionych diagramów grafowych. Pokazuję, że w granicy dużych rozmiarów
wszechświata mogą być zaniedbane, w porównaniu do wkładu od piany BRV. Spodziewam
się, że własność ta zachodzi dla każdego diagramu grafowego skonstruowanego w tym
rozdziale. Rozdział ten jest oparty na pracy [130], którą napisałem wspólnie z J. Lewan-
dowskim i J. Puchtą.
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1. Loop Quantum Gravity states and spin
foams

We begin the thesis by introducing the main subjects underlying our study – the Loop
Quantum Gravity and the spin foams. There is a number of books and publications
reviewing the subjects. In this chapter we present the topics relevant for our study. We
refer our reader to [17, 178, 162, 165, 164, 107, 19] for reviews of the Loop Quantum
Gravity and to [165, 164, 20, 145, 146, 84, 19, 169] for reviews of the spin-foam formalism.

Our departing point is the canonical analysis of the General Relativity presented in
section 1.1. The canonical theory is obtained from the Palatini action with the Holst
term. A system of first class constraints is obtained: vector constraint generating the
diffeomorphisms of space, Gauss constraint generating SO(3) gauge transformations and
scalar constraint defining the dynamics.

In section 1.2.1 we present a (non-separable) Hilbert space for background independent
quantum theories of (Poisson commuting) connections. In section 1.2.4 we impose the
(quantum) vector and the (quantum) Gauss constraints and obtain a separable Hilbert
space by using a procedure of averaging the solutions to the Gauss constraint (described
by spin-network cylindrical functions) over certain group of extended diffeomorphisms
[90]. The space depends on graphs and their linking and knotting. Since the dynamics of
the pure (quantum) gravitational field seems not to depend on the linking and knotting
[28, 179], as a Hilbert space of Loop Quantum Gravity we consider a subspace of this
space (see section 1.2.5), called combinatorial Hilbert space [163].

The kinematics of the theory is well understood. A still open problem is to define the
dynamics of the states. In section 1.3 we introduce the spin-foam formalism as a possible
solution to the problem. It can be considered to be a path integral formulation of the
dynamics. A particular example of a spin-foam model defining the dynamics of the Loop
Quantum Gravity states is introduced in the next chapter.

1.1. Canonical analysis of General Relativity

We assume that the space-time manifoldM is an oriented product manifold Σ×R, where
Σ is an oriented, compact 3-dimensional manifold without boundary. The space-time
indices will be denoted by Greek letters α, β, µ, ν and the space indices (indices in Σ) will
be denoted by small Latin letters a, b, c, d. We start with a Holst-Palatini formulation of
General Relativity and then perform a canonical analysis of the theory. This will be a
preparatory step for the quantization.

1.1.1. Holst-Palatini action

In the original formulation General Relativity is a theory of metrics. In the Palatini
formulation the variables are connections and tetrads. A tetrad eIµ is a 1-form with values

1



1. Loop Quantum Gravity states and spin foams

in V = R4. We use an index notation such that the capital letters I, J,K,L are the indices
in the internal space V . The space V is equipped with a fixed metric ηIJ of signature
-,+,+,+. Our analysis also applies to the signature +,+,+,+. We will denote by SO(η)
the group of transformations of V leaving η invariant and by so(η) we will denote its Lie
algebra. For simplicity we assume that a connection is described by a global one-form
ω I
µ J taking values in so(η) and that the tetrad is defined globally.
The theory is defined by an action

SP[e, ω] =
1

4k

∫
M
εIJKLe

I ∧ eJ ∧ FKL, (1.1)

where εIJKL is an alternating tensor on V such that the orientation of εIJKLeI∧eJ∧eK∧eL
agrees with the orientation of M,

F = dω + ω ∧ ω

is the curvature of the connection ω and k = 8πG where G is the Newton’s constant.
The correspondence with the formulation in terms of metrics is the following. The

metric is constructed from the tetrad: gµν = ηIJe
I
µe
J
ν . The variation of the action with

respect to the connection leads to a field equation:

de+ ω ∧ e = 0. (1.2)

Solving this equation for ω and substituting the solution ω(e) for the connection one-form
ω in the Palatini action gives the Einstein-Hilbert action:

SP[e, ω(e)] =
1

2k

∫
M

√
|det(g)|R,

where R is the scalar curvature of the metric gµν .
Holst noticed that the field equations are not changed after adding a term [118] – the

field equations resulting from the Palatini action (1.1) are the same as the field equations
resulting from the following action:

SH[e, ω] =
1

4k

∫
M
εIJKLe

I ∧ eJ ∧ FKL +
σ

2kβ

∫
M
eI ∧ eJ ∧ FIJ , (1.3)

where the number β is called the Barbero-Immirzi parameter [34, 120] and σ is the sign
of the determinant of the metric η. Although the field equations resulting from the Holst
action do not depend on the Barbero-Immirzi parameter β, the resulting quantum theories
depend on this parameter.

1.1.2. 3+1 decomposition of space-time

In order to perform Legendre transform one introduces on M:

• a smooth time function t such that dt is everywhere non-zero and each t = t, t ∈ R
slice Σt is diffeomorphic to Σ,

• a future directed vector field t = tα∂α such that tα∂αt = 1.

2



1.1. Canonical analysis of General Relativity

Let nα be a unit time-like vector field normal to the slices Σt. Decompose tα as

tα = Nnα +Nα, Nαnα = 0.

The function N is called the lapse and the vector field Nα is called the shift. The vector
field tα describes a ”time flow” and can be used to identify Σt with Σ0 [182]. Each slice Σt

is an embedded hypersurface and the embeddings θt : Σ→M satisfy d
dtθt

α(q) = tα(θt(q)).
Let us denote by TpM the tangent space to M at point p and by T ∗pM the cotangent

space at point p. Let

T rsM := TM⊗ . . .⊗ TM︸ ︷︷ ︸
r factors

⊗T ∗M⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s factors

be the space of tensor fields of type (r, s). Let us denote by HpM the subspace of TpM or-
thogonal to nα(p) and by H∗pM the subspace of T ∗pM orthogonal to nα(p) := gαβ(p)nβ(p).
The subspace of tensor fields orthogonal to nα (and nα) at each point and in each of the
indices will be denoted by Hr

sM:

Hr
sM := HM⊗ . . .⊗HM︸ ︷︷ ︸

r factors

⊗H∗M⊗ . . .⊗H∗M︸ ︷︷ ︸
s factors

.

The restriction of T rsM and Hr
sM to tensor fields on Σt will be denoted by T rs Σt and

Hr
sΣt respectively.
Let us note that the pullback map θt∗ : T ∗θt(q)Σt → T ∗q Σ annihilates forms in the direction

of nα(θt(q)) and is 1-1 on the space H∗θt(q)Σt. The pushforwad (θt)∗ : TqΣ→ Tθt(q)Σt is 1-1

and its image is Hθt(q)Σt. For fixed t the map θt induces two maps (θ̃t)∗ : T rs Σ → Hr
sΣt

and θ̃∗t : Hr
sΣt → T rs Σ defined as follows:

• We define
(θ̃t)∗ : T ∗q Σ→ H∗θt(q)Σt

to be the inverse of θt∗|H∗
θt(q)

Σt and

(θ̃t)∗ : TqΣ→ Hθt(q)Σt

to be the pushforward map (θt)∗ : TqΣ → Hθt(q)Σt. The map can be naturally
extended to arbitrary tensor fields in T rs Σ.

• We define
θ̃∗t : Hθt(q)Σt → TqΣ

to be the inverse of the pushforward map (θt)∗ (where (θt)∗ is treated as a map
(θt)∗ : TqΣ→ Hθt(q)Σt) and

θ̃∗t : H∗θt(q)Σt → T ∗q Σ

to be the map θt∗|H∗
θt(q)

Σt . The map θ̃∗t can be naturally extended to arbitrary tensor
fields in Hr

sΣt.
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1. Loop Quantum Gravity states and spin foams

Any tensor field T ∈ Hr
sM induces a one-parameter family t 7→ Tt ∈ T rs Σ of tensor fields

on Σ:
Tt(q) := θ̃∗t T (θt(q)).

On the other hand, a one-parameter family of tensor fields on Σ induces a tensor field on
M:

T (θt(q)) = (θ̃t)∗ Tt(q).

Consider the first fundamental form of Σ [113]:

ht = θt
∗g.

The tensor field in T 0
2M corresponding to ht is

hαβ := ((θ̃t)∗ht)αβ = gαβ − σnαnβ.

The tensor hαβ := gαγhγβ considered as a map from Tθt(q)M to itself is a projector onto
the subspace orthogonal to nα(θt(q)), and considered as a map from T ∗θt(q)M to itself is a
projector onto the subspace orthogonal to nα(θt(q)). Therefore hαβ can be used to project
tensor fields T rsM onto Hr

sM.
We define a time derivative of a one-parameter family of tensor fields on Σ:

Ṫ a...b
t c...d (q) := lim

∆t→0

1

∆t

(
T a...b
t c...d (q)− T a...b

t−∆t c...d (q)
)
.

Let T, Ṫ be the tensor fields in Hr
sM corresponding to Tt, Ṫt. From the definition of the

Lie derivative L follows that:

Ṫα...βµ...ν = LtTα
′...β′

µ′...ν′ h
α
α′ . . . h

β
β′h

µ′
µ . . . h

ν′
ν .

1.1.3. Hamiltonian theory

Partial gauge fixing

In the passage to the canonical framework, one partially fixes the SO(η) internal gauge
transformations: one fixes an internal vector field nI such that nInI = σ and restricts to
tetrads such that eIαnI = nα, where nα is the unit normal to the hypersurfaces Σt. This
reduces the SO(η) internal gauge group to its subgroup SO(η) leaving nI invariant. The
Lie algebra of SO(η) will be denoted by so(η). Let q : V → V be a projector onto the
space V⊥ orthogonal to nI . The indices corresponding to V⊥ will be denoted by lowercase
Latin letters i, j, k, l. In this notation qIi is an orthonormal basis of V⊥, qiI is the partial
isometry from V to V⊥ such that qiIn

I = 0 and qiIq
I
j = δij . The relation between qIJ , qIi

and qiI is the following qIJ = qIi q
i
J . The metric on V induces a metric on V⊥:

ηij = qIi q
J
j ηIJ

and the alternating tensor εIJKL on V induces an alternating tensor on V⊥:

εijk = qIi q
J
j q

K
k n

LεIJKL.
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1.1. Canonical analysis of General Relativity

The connection one-form ωIJ can be decomposed into ”magnetic” and ”electric” compo-
nents with respect to nI , qiI :

Γi =
1

2
qiInJε

IJ
KLω

KL, Ki = qiInJω
IJ . (1.4)

The induced one-forms on Σ:

Γit := θt
∗Γi, Ki

t := θt
∗Ki

have a natural interpretation. Let us introduce a triad on Σ:

(et)
i
a := qiI(θt

∗eI)a.

The induced metric h on Σ coincides with the metric constructed from the triad:

ht ab = ηij(et)
i
a(et)

j
b.

If the connection ω is compatible with the tetrad e, i.e. if equation (1.2) holds, then Γi is
a so(η) connection on Σ compatible with (et)

i
a:

deit + εijkΓ
j
t ∧ ekt = 0

and Ki
t is the extrinsic curvature of Σt:

(Kt)
i
a = (et)

i
b (θ̃∗t )

α
a (θ̃∗t )

b
β h

α′
αh

β
β′∇α′nβ

′
,

where ∇ is the torsion-free derivative operator compatible with gαβ.

Legendre transform and the constraints

In the following we omit the index t and denote a one-parameter family of tensor fields
on Σ and the corresponding tensor field on M by the same symbol. In order to pass to
the canonical formulation, one performs Legendre transform of the Holst-Palatini action
(1.3):

S =

∫
dt

∫
Σ
d3x

(
P ai Ȧ

i
a − h(A,P ,N,Na, ωi(t))

)
, (1.5)

where
Aia := Γia + βKi

a, P ai := − σ

2kβ
ejbe

k
cη
abcεijk,

h is given by:
h(A,P ,N,Na, ωi(t)) = ωi(t)Gi +NaCa +NC

with ωi(t) = −1
2ε
ijkωjk(t). By ηabc we denote the Levi-Civita tensor density (of weight 1)

on Σ. Geometrically, Aia is a connection 1-form on Σ and P ai represents an orthonormal
triad of density weight 1 on Σ:

P ai =
1

kβ

√
|deth|eai .

From the expression (1.5) follows that (Aia, P
a
i ) is a canonical pair; ωi(t), Na, N are

Lagrange multipliers. The dynamics of General Relativity is generated by a set of con-
straints:
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1. Loop Quantum Gravity states and spin foams

• the Gauss constraint:

Gi = DaP ai := ∂aP
a
i + ε k

ij A
j
aP

a
k = 0,

• the vector constraint:

Ca = P biF
i
ab +

σ − β2

β
Ki
aGi = 0,

where F = dA+A ∧A is the curvature of A,

• the scalar constraint:

C =
kβ2

2
√
|deth|

P ai P
b
j

(
εijkF

k
ab + 2(σ − β2)Ki

[aK
j
b]

)
+ (β2 − σ)k∂a(

P ai√
|deth|

)Gi = 0.

The canonical phase space consists of set of pairs (Aai (x), P jb(y)) that are canonically
conjugate:

{Aai (x), P jb(y)} = δji δ
a
b δ(x, y), {Aai (x), Ajb(y)} = 0, {P ai (x), P jb(y)} = 0.

The evolution of the canonical pair is given by:

Ȧ
a
i = {Aai , H}, Ṗ

i
a = {P ia, H},

where the Hamiltonian is H :=
∫

Σ d
3xh. Together with the three constraints, the evolution

equations are equivalent to Einstein equations.
Let us consider functions on the phase space obtained by smearing:

• Gi with any smooth function Λi on Σ with values in so(3):

CG(Λ) :=

∫
Σ
d3xΛiGi,

• Ca with any smooth vector field Na on Σ:

CDiff(~N) :=

∫
Σ
d3xNaCa,

• C with any smooth function N on Σ:

C(N) :=

∫
d3xNC.

The function CG(Λ) generates SO(3) gauge transformations in the direction of Λi:

{Aia, CG(Λ)} = −DaΛi, {P ai , CG(Λ)} = ε k
ij ΛjP ak.

The function CDiff(~N) generates diffeomorphisms along ~N :

{Aia, Cdiff(~N)} = L~NA
i
a, {P ai , Cdiff(~N)} = L~NP

a
i .

The function C(N) generates time evolution, ”off” Σ [17].
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1.2. The Hilbert space of the Loop Quantum Gravity states

1.2. The Hilbert space of the Loop Quantum Gravity states

1.2.1. The cylindrical functions and the measure

Let us consider a manifold Σ, a compact Lie group G, its Lie algebra g, and the set A(Σ)
of the Lie algebra g valued differential one-forms (connection one-forms) on Σ.

A G-valued parallel transport function on A(Σ) is defined by each finite curve ` in Σ,
namely for every A ∈ A(Σ),

U`(A) := Pexp

∫
`
−A . (1.6)

The parallel transport functions are used to define the cylindrical functions Cyl(A(Σ)). A
cylindrical function Ψ : A(Σ) → C is defined by an embedded graph γ and by a smooth
complex-valued function ψ : GN → C. An embedded graph γ [133, 17] is a finite set of
compact 1-dimensional submanifolds of Σ called (embedded) links, such that:

• a link is an embedded interval with a boundary or an embedded circle with a marked
point or an embedded circle;

• the intersection of two different links is either empty or is a finite set of points; each
of the intersection points is either one of the endpoints of an embedded interval or
a marked point of an embedded circle.

We will say that a function Ψ : A(Σ)→ C is cylindrical if there is a graph γ such that

Ψ(A) := ψ(U`1(A), ..., U`N (A)) (1.7)

for a smooth complex-valued function ψ : GN → C. We will say that Ψ is cylindrical with
respect to graph γ. Let us note that a function cylindrical with respect to a graph γ is
also cylindrical with respect to any larger graph.

On the space of cylindrical functions Cyl(A(Σ)) there is a natural diffeomorphism in-
variant integral:

Cyl(A(Σ)) 3 Ψ 7→
∫
dµ0(A)Ψ(A) (1.8)

defined as ∫
dµ0(A)Ψ(A) :=

∫
dµH(g1)...dµH(gN )ψ(g1, ..., gN ). (1.9)

The graph γ is not uniquely defined but the right-hand side is independent of the choice of
γ. The Hilbert space L2(A(Σ), µ0) serves as the Hilbert space for background independent
quantum theories of (Poisson commuting) connections, in particular as the Hilbert space
in which Quantum Geometry of Loop Quantum Gravity is defined. In order to calculate a
scalar product between two functions Ψ1,Ψ2 ∈ Cyl(A(Σ)) cylindrical with respect to (in
general different) graphs γ1 and γ2, respectively, we introduce a third graph γ3 containing
γ1 and γ2 (such graph exists if the differentiability class of the links is properly defined
[132]). Clearly, the functions are cylindrical with respect to the graph γ3:

Ψ1(A) := ψ1(U`1(A), ..., U`N3
(A)), Ψ2(A) := ψ2(U`1(A), ..., U`N3

(A)).
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1. Loop Quantum Gravity states and spin foams

The scalar product is:

〈Ψ1|Ψ2〉 =

∫
dµH(g1) . . . dµH(gN3) ψ1(g1, ..., gN3)ψ2(g1, ..., gN3).

The gauge invariant cylindrical functions can be easily identified as the functions given
by closed loops. The subspace HΣ ⊂ L2(A(Σ), µ0) of the gauge invariant functions is
defined by the functions of the form

Ψ(A) = ψ(Uα1(A), ..., Uαm(A)), (1.10)

where α1, ..., αm are free generators of the first homotopy group of an embedded graph γ.
An orthonormal basis of HΣ can be constructed by endowing the embedded graphs with
spin-network structures (see section 1.2.2).

In the Hilbert space L2(A(Σ), µ0) one defines a quantum representation for the classical
variables (A,P ), where the Poisson bracket is

{f, h} =

∫
Σ

δ

δAia
f

δ

δP ai
h−

∫
Σ

δ

δAia
h

δ

δP ai
f. (1.11)

In particular, one defines the quantum flux operators

P̂ (S) =
1

i

∫
S

δ

δAia
,

across a 2-surface S ⊂ Σ.

1.2.2. Abstract spin networks

Definition

Given a compact group G, a G-spin network is a triple (γ, ρ, ι) (see figure 1.1):

• γ is an oriented abstract graph. An oriented abstract graph is a finite set of nodes
γ(0), a finite set of links γ(1) and functions s : γ(1) → γ(0), t : γ(1) → γ(0) [22]. We
say that the node s(`) is the source of the link `, or equivalently that the link ` is
outgoing from the node s(`). We say that the node t(`) is the target of the link `,
or equivalently that the link ` is incoming to the node t(`).

• ρ is a coloring of the links of the graph γ. It maps the set γ(1) into the set Irr(G)
of the unitary irreducible representations of G. That is, to every link ` we assign an
irreducible representation ρ` defined on a Hilbert space H`,

` 7→ ρ`. (1.12)

• ι is a coloring of the nodes of the graph γ. It maps each node n ∈ γ(0) into the space

Hn := Inv

 ⊗
` incoming to n

H∗` ⊗
⊗

`′ outgoing from n

H`′

 (1.13)
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1.2. The Hilbert space of the Loop Quantum Gravity states

of invariant tensors (intertwiners) in⊗
` incoming to n

H∗` ⊗
⊗

`′ outgoing from n

H`′ , (1.14)

where each H∗` denotes the dual vector space to H`. The map will be denoted by

n 7→ ιn. (1.15)

Figure 1.1.: A spin network.

We introduce an equivalence class on the set of oriented abstract graphs: two graphs
are equivalent if and only if one differs from the other only by orientations of some of its
links. The equivalence classes of this relation will be called unoriented abstract graphs
and denoted by |γ|.

Operations on spin networks

Following Baez [22] we introduce operations on the spin networks such as flipping orien-
tation of a link, splitting a link, adding a link and adding a node. We supplement the
operations with operations of taking complex conjugate of a spin network and Hilbert
conjugate of a spin network.

Flipping orientation is the first operation we consider. Being given a spin network
s = (γ, ρ, ι), let a graph γ′ be obtained by flipping the orientation of one of the links, say
`0 ∈ γ(1). The flipped orientation link is denoted by `−1

0 . On γ′ we define a spin network
flip`0(s) := (γ′, ρ′, ι′), where:

ι′ := ι (1.16)

ρ′` :=

{
(ρ`0)∗, if ` = `−1

0 ,

ρ`, otherwise.
(1.17)

Splitting a link of a spin network s = (γ, ρ, ι) consists of considering the graph γ′ obtained
from γ by splitting one of its links, say `0, into

`0 = `′2 ◦ `′1,

9



1. Loop Quantum Gravity states and spin foams

where we use a convention, that first we run through `′1 and then through `′2. The links
`′1, `

′
2 are oriented in the agreement with `. We label each of the links `′1, `

′
2 with the

representation ρ`0 and the new node n12 connecting the links `′1 and `′2 with the identity
operator

id : H`0 → H`0
considered as an element of Inv

(
H∗
`′1
⊗H`′2

)
= Inv

(
H∗`0 ⊗H`0

)
. In summary, we define a

spin network split`0(s) := (γ′, ρ′, ι′), where

ρ′` :=

{
ρ`0 , if ` = `′1, `

′
2,

ρ`, otherwise,
(1.18)

ι′n′ :=

{
id, if n′ = n12,

ιn′ , if n′ ∈ γ(0).
(1.19)

Adding a link to a spin network s = (γ, ρ, ι) is an operation that maps the spin network
s to a spin network addn0,n1(s) = (γ′, ρ′, ι′), such that γ′ is obtained from γ by adding a
new link, say `0, connecting (not necessarily different) nodes n0, n1 of the graph γ oriented
such that n0 is the source of the link `0 and n1 is a target of the link; we insert the trivial
representation 1 on the new link `0, and use the canonical isomorphism

Inv

 ⊗
` outgoing

Hρ` ⊗
⊗

` incoming

Hρ`′

→ Inv

C⊗
⊗

` outgoing

Hρ` ⊗
⊗

` incoming

Hρ`′


to map the intertwiners ιn0 , ιn1 on γ to intertwiners ι̃n0 , ι̃n1 on γ′. In detail,

ρ′` :=

{
1, if ` = `0,

ρ`, if ` ∈ γ(1),
(1.20)

ι′n :=

{
ι̃n, if n = n0 or n = n1,

ιn otherwise.
(1.21)

Adding a node to a spin network s = (γ, ρ, ι) is an operation that maps the spin network
s to a spin network addn0(s) = (γ′, ρ′, ι′), such that γ′ is a disjoint union of γ and n0,
ιn0 = 1 ∈ C. In detail,

ρ′` := ρ` (1.22)

ι′` :=

{
1 ∈ C, if n = n0,

ιn otherwise.
(1.23)

The complex conjugate spin network (γ, ρ, ι) to a given spin network (γ, ρ, ι) is defined
by using the conjugation map of any vector space

V 3 v 7→ v̄ ∈ V̄ .

The conjugate vector space V̄ is defined as the same set V with a new multiplication ·̄
defined to be

a ·̄ v := āv,

10



1.2. The Hilbert space of the Loop Quantum Gravity states

the same adding operation +̄ = +, and the conjugation map being the identity. Clearly,

ῑn := ιn, ρ̄` := ρ`. (1.24)

The Hilbert conjugate spin network (γ†, ρ†, ι†) to a spin network (γ, ρ, ι) is a spin network
defined on the graph γ† obtained by flipping the orientation of each of the links of γ, and

ρ†
`−1 := ρ`, (1.25)

ι†n := (ιn)†, (1.26)

where being given the Hilbert space H, we denote by

H 3 v 7→ v† ∈ H∗

the antilinear map defined by the Hilbert product (that is “ |v〉† = 〈v| ”). It is not hard
to check, that each spin network (γ†, ρ†, ι†) can be obtained from the complex conjugate
spin network (γ, ρ̄, ῑ) by the operations of flipping orientation of each of the links of γ.

Spin-network functions

With a spin network s = (γ, ρ, ι) we associate a function1

ψs : Gγ(1) → C. (1.27)

Let us denote elements of Gγ(1) by

g : γ(1) → G, ` 7→ g`.

For every g ∈ Gγ(1) there is a unique contraction

ψs(g) :=

⊗
`∈γ(1)

ρ`(g`)

y

 ⊗
n∈γ(0)

ιn

 . (1.28)

In the abstract index notation, the contraction is defined as follows. We denote by
A,B,C,D the indices in the representation spaces. For every link ` ∈ γ(1) we have ρAB(g`)
in (1.28). At the start point n of `, there is an invariant ιn...A...... in (1.28) (the dots stand
for the remaining indices) and at the end point n′ of `, there is an invariant ιn′ ......B.... The
corresponding part of (1.28) reads

. . . ιn...A...
... ρAB(g`) ιn′ ...

...B... . . .

Given a graph γ, the spin-network functions form naturally a basis of the Hilbert space
Hγ ⊂ L2(Gγ(1) , µH), where µH is the Haar measure. The subspace Hγ coincides with the
subspace of gauge invariant elements of L2(Gγ(1) , µH), where the gauge transformations

1Given two sets X and Y , by Y X we denote the set of maps X → Y . If X has N elements then Y X ∼ Y N .
This notation lets us avoid choosing an ordering in X.
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1. Loop Quantum Gravity states and spin foams

are defined as follows: given a node n ∈ γ(0) the gauge transformation defined by h ∈ G
in Gγ(1) is

(h, n)g` =


g`h, if ` begins at n and ends elsewhere,

h−1g`, if ` ends at n and begins elsewhere,

h−1g`h, if ` begins and ends at n,

g`, otherwise.

(1.29)

The general gauge transformation is defined by a sequence of elements of G labelled by
nodes.

Next, we define operations on the spin-network functions such as flipping orientation
of a link, splitting a link, adding a link and adding a node (compare [22, 32]). They
correspond to the operations on spin networks defined in the previous section.

If a graph γ′ is obtained by flipping the orientation in one of the links, say `0, of γ, then
we define a map

flip`0 : Gγ′(1) → Gγ(1) , (1.30)(
flip`0(g)

)
`

=

{
g−1

`−1
0

, if ` = `0,

g`, otherwise.
(1.31)

The map flip`0 induces an isometric map flip`0 : Hγ → Hγ′ defined by

(flip`0 ψ)(g) := ψ(flip`0(g)).

In particular, the operation is related to the operation of flipping orientation of a link of
a spin network (see section 1.2.2) by flip`0 ψs = ψflip`0 (s).

In the case when γ′ is obtained by splitting one of the links, say `0, of γ into `0 = `′2 ◦ `′1,
the corresponding map is

split`0 : Gγ′(1) → Gγ(1) , (1.32)

split`0(g)` =

{
g`′2g`′1 , if ` = `0,

g`, otherwise.
(1.33)

The map induces an isometric map split`0 : Hγ → Hγ′ defined by

(split`0 ψ)(g) := ψ(split`0(g)).

In particular split`0 ψs = ψsplit`0 (s).

If a graph γ′ is obtained by adding a link, i.e. connecting two nodes of γ, say n0 and
n1, with a new link, say `0, the corresponding map is:

addn0,n1 : Gγ′(1) → Gγ(1) , (1.34)

(addn0,n1(g))` = g` for ` ∈ γ(1). (1.35)

Let us emphasize that ` runs through the links of γ(1), and the link `0 is simply omitted.
The map addn0,n1 induces an isometric map addn0,n1 : Hγ → Hγ′ defined by

(addn0,n1 ψ)(g) := ψ(addn0,n1(g)).

12



1.2. The Hilbert space of the Loop Quantum Gravity states

In particular addn0,n1 ψs = ψaddn0,n1 (s).

Since adding a node, say n0, does not change the set of links of the graph, the corre-
sponding map addn0 : Gγ′(1) → Gγ(1) acts trivially on g:

addn0(g) = g.

The maps addn0 induces an isometric map addn0 : Hγ → Hγ′ :

(addn0 ψ)(g) := ψ(g).

Again, addn0 ψs = ψaddn0 (s).

Not surprisingly the complex conjugation of a spin network has the following interpre-
tation in terms of the spin-network functions

ψs̄ = ψs. (1.36)

Equivalence relation

Any inclusion of a graph γ into a finer graph γ′ can be represented as a sequence of
operations of flipping the orientations of links, splitting links, adding links and adding
nodes. As a result, the inclusion induces an isometric map from Hγ to Hγ′ . We can
therefore identify Hγ with a subspace of Hγ′ . This identification induces an equivalence
relation in the space of spin networks, namely two spin networks are equivalent if and only
if one can be mapped into the other by a sequence of operations of splitting links and/or
reorienting links and/or adding links and/or adding nodes. This equivalence allows us to
treat a spin network defined on a graph γ as a spin network defined on arbitrary finer
graph γ′.

Evaluation of a spin network

Evaluation of a spin network s = (γ, ρ, ι) is the number

s 7→ ψs(I), (1.37)

where I ∈ Gγ is the identity element.

1.2.3. The spin-network cylindrical functions of connections

Finally, we are in a position to explain the application of the spin networks in the Hilbert
space of the cylindrical functions introduced in the previous section. Let us consider the
graphs embedded in Σ, and embedded spin networks defined on them. Given an embedded
spin network s = (γ, ρ, ι), we use the corresponding spin-network function ψs, to define a
spin-network cylindrical function Ψs : A(Σ) → C. First, a connection A ∈ A(Σ) defines
an element Uγ(A) ∈ Gγ(1) ,

Uγ(A) : ` 7→ U`(A) ∈ G. (1.38)

Next, we use the spin-network function ψs,

Ψs(A) := ψs(Uγ(A)). (1.39)

13



1. Loop Quantum Gravity states and spin foams

In order to define an embedded spin-network on an embedded graph containing circles,
we introduce a marked point on each circle. The spin-network cylindrical function does
not depend on the location of the marked point on the circle.

If we put a restriction on embeddings to be piecewise analytic then the spin-network
cylindrical functions span a dense subset of the Hilbert spaceHΣ and it is easy to construct
from them an orthonormal basis. This assumption allow us to overcome some degener-
ated behaviour of the smooth category (see [27] for analogous construction in the smooth
category). In the following we will assume that the embeddings are piecewise analytic.

The cylindrical functions lead to a natural equivalence relation between embedded spin
networks: two embedded spin-network states are equivalent if and only if the corresponding
spin-network states are equal.

1.2.4. Solutions to the Gauss constraint and the vector constraint

The Hilbert space of the theory of connections is L2(A(Σ), µ0). In Loop Quantum Gravity
the gauge group G is the SU(2) group. The Gauss constraint generates SU(2) gauge
transformations and the solutions to this constraint form a subspace HΣ ⊂ L2(A(Σ), µ0)
formed by the gauge invariant functions. This space can be written as a direct sum of
Hilbert spaces H′Σ,γ spanned by SU(2) spin-network cylindrical functions Ψ(γ,ρ,ι) such that
each representation ρ` is non-trivial. Let us note, that a Hilbert space H′Σ,γ is non-trivial
only if γ is closed, i.e. has no 1-valent nodes. The decomposition is

HΣ =
⊕
γ∈G
H′Σ,γ ,

where G is a set of oriented embedded closed graphs γ such that:

• γ has no spurious nodes, i.e. it cannot be obtained from another graph by a sequence
of operations of splitting links or adding marked points to circles,

• any two different graphs in G cannot be related by the operations of flipping orien-
tations of some links,

• any graph can be obtained from one of the graphs in G by a sequence of operations
flipping orientations of some links, splitting links, adding links.

We include a null graph K0, i.e. graph having no nodes – in this case H′Σ,K0
= C.

The vector constraint generates an action of the group of diffeomorphisms on the space
HΣ. The constraint is solved by using averaging procedure. The action of a diffeomorphism
φ : Σ→ Σ on a cylindrical function Ψ is defined by [17]:

(UφΨ)(A) := Ψ(φ∗A).

In particular, the action of a diffeomorphism φ : Σ→ Σ on an embedded spin-network is
of the following form [178, 179]:

(UφΨs)(A) = ψφ·s(Uφ(γ)(A)),

where s = (γ, ρ, ι), φ · s = (φ(γ), ρ′, ι′), ρ′φ(`) = ρ`, ι
′
φ(n) = ιn. Let Diffγ be a subgroup of

the group of diffeomorphism which maps γ to itself and let TDiffγ be its subgroup which
preserves every link of γ and its orientation. The quotient

GSγ = Diffγ/TDiffγ

14



1.2. The Hilbert space of the Loop Quantum Gravity states

is a finite group – it is the group of symmetries of γ.
The averaging procedure is the following [17]:

1. First, one defines a projection operator Pdiff,γ : H′Σ,γ → H′Σ,γ by averaging each state
Ψ ∈ H′Σ,γ over the group of symmetries of γ

Pdiff,γΨ =
1

|GSγ |
∑
φ∈GSγ

UφΨ,

where |GSγ | is the order of the group GSγ .

2. Second, one averages over the diffeomorphisms that move the graph γ. The result
of the averaging is an element of an algebraic dual of Cyl(A(Σ)) ∩ HΣ, (η(Ψ)| ∈
(Cyl(A(Σ)) ∩HΣ)?, defined by its action on any state |Φ〉 ∈ Cyl(A(Σ)) ∩HΣ:

(η(Ψ)| Φ〉 =
∑

φ∈Diff/Diffγ

〈 Uφ Pdiff,γ Ψ |Φ 〉 ,

where the bracket on the right-hand site denotes the scalar product in HΣ.

From the invariance of the scalar product in HΣ follows that (η(Ψ)| is invariant under the
action of the group of diffeomorphisms:

(η(Ψ)| UφΦ〉 = (η(Ψ)| Φ〉

for any diffeomorphisms φ. The assignment H′Σ,γ 3 Ψ 7→ (η(Ψ)| ∈ (Cyl(A(Σ)) ∩ HΣ)?

extends to an anti-linear map η : HΣ → (Cyl(A(Σ)) ∩ HΣ)?. The states (η(Ψ)| span
a linear subspace of (Cyl(A(Σ)) ∩ HΣ)?, which can be equipped with a scalar product,
defined by:

(η(Ψ)|η(Φ)) := (η(Ψ)| Φ〉
and Cauchy completed. The resulting Hilbert space is the Hilbert space of solutions
to the Gauss and the vector constraint. The Hilbert space obtained this way is non-
separable. However, if instead of the group of diffeomorphisms we average over certain
group of extended diffeomorphisms, we obtain a separable Hilbert space [90]. The group
of extended diffeomorphisms is formed by invertible maps φ : Σ→ Σ such that φ and φ−1

are continuous and infinitely differentiable everywhere except possibly at finite number of
points. The resulting separable Hilbert space is spanned by elements

(
η(Ψ(γ,ρ,ι))

∣∣ labelled
by graphs γ representing the orbits of the action of the diffeomorphisms on the space of
embedded graphs. In other words: one introduces an equivalence relation γ ∼ γ′ if and
only if there is an extended diffeomorphism φ such that φ(γ) = γ′, and labels the states
by representants of the equivalence classes of this relation. It was shown in [90] that these
equivalence classes are equivalent to the singular knots. Since the knotting classes are
countable, the space is separable.

1.2.5. Combinatorial Hilbert space

The quantum scalar constraint (see section 1.3.1) in the absence of matter does not change
the linking and knotting. Neither is the spin-foam dynamics of the vacuum gravity sensitive
to linking and knotting [28]. Therefore as the Hilbert space of the Loop Quantum Gravity
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1. Loop Quantum Gravity states and spin foams

states we choose a subspace of the separable Hilbert space of solutions of the Gauss and the
vector constraint from [90], spanned by elements obtained from

(
η(Ψ(γ,ρ,ι))

∣∣ by averaging
over possible knotting classes. In other words, we use the combinatorial Hilbert space
[163]. We define the combinatorial Hilbert space in the following way:

• Let γ be an abstract graph. Let us consider the space Hγ of gauge invariant elements
in L2(SU(2)γ

(1)
, µH) introduced in section 1.2.2. Let us denote by H′γ the subspace

spanned by (abstract) spin-network states ψ(γ,ρ,ι) such that each representation ρ`
is non-trivial.

• Let φ ∈ Autγ be an automorphism of the graph γ, i.e. a pair of bijections φ0 : γ(0) →
γ(0) and φ1 : γ(1) → γ(1) that preserve the source and the target relations [163]. Its

action on SU(2)γ
(1)

is the following:

autφ(g)` = gφ1(`).

It induces an action of the group Autγ on H′γ

(autφψ)(g) = ψ(autφ(g)).

We define a projection operator onto the states invariant under the action of the
group Autγ :

Pγψ =
1

|Autγ |
∑

φ∈Autγ

autφψ.

We denote by H̃γ the range of the projection operator Pγ : H′γ → H′γ .

• The combinatorial Hilbert space is a direct sum:

Hcomb =
⊕
γ∈G
H̃γ ,

where G is a set of oriented graphs γ such that:

– each node of γ either is at least 3-valent or is 2-valent and there is a link in γ(1)

starting and ending at the node,

– any two different graphs in G cannot be related by the operations of flipping
orientations of some links,

– any graph can be obtained from one of the graphs in G by a sequence of
operations flipping orientations of some links, splitting links, adding links and
adding nodes.

We include a null graph K0, which is a graph having 0 nodes – in this case H̃K0 = C.

Let s = (γ, ρ, ι) be a spin network. We define an action of the group of automorphisms
on s by

autφ(s) := (γ, ρ′, ι′),

where ρ′φ1(`) = ρ`, ι′φ0(n) = ιn. We define an equivalence relation in the space of spin
networks: two spin networks s1 and s2 are equivalent if and only if there exists a third
spin network s = (γ, ρ, ι) such that s1 and s2 can be obtained from s by (in general
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different and possibly empty) sequences of operations: autφ (for some automorphisms φ
of the graph γ) followed by splitting links, reorienting links, adding links, adding nodes.
The equivalence classes of this relation, denoted by [s], label the states spanning the
combinatorial Hilbert space. The corresponding spin-network functions are:

ψ[s] = 0⊕ . . .⊕ 0⊕ Pγψ(γ,ρ,ι) ⊕ 0 . . . ∈ Hcomb,

where γ ∈ G. It is always possible to choose γ ∈ G, because any graph is obtained from
one of the graphs γ ∈ G by a sequence of operations splitting links, reorienting links,
adding links and adding nodes.

1.3. Spin foams

1.3.1. Spin foams as histories of spin networks

In the previous section we constructed a Hilbert space of solutions of the Gauss constraint
and the vector constraint. The transformations generated by these constraints will be
called kinematical because they operate on a ’fixed time’ surface. Finding the dynamics
amounts to imposing the scalar constraint, which is still an open problem in Loop Quantum
Gravity. The problem could be solved by quantizing the scalar constraint and solving
the quantum constraint. Different quantizations of the constraint have been proposed
[172, 100, 70, 71, 6]. In the approaches [172, 100, 70, 71] the quantum operator acts on
spin network’s nodes and modifies the spin networks by creating new links according to
figure 1.2a [146]. In [6] the scalar constraint operator modifies the spin network by creating
new links according to figure 1.2b.

Figure 1.2.: The scalar constraint operator is changing the graph: a) the scalar constraint
operator studied in [172, 100, 70, 71], b) the scalar constraint operator studied
in [6].

Some simple solutions to the quantum constraint [172] are known. However, general
solution is still missing. One of the reasons is complicated structure of the constraint oper-
ator. This can be attributed to the 3+1 splitting of space-time breaking the 4-dimensional
diffeomorphism symmetry [146]. The spin-foam approach to LQG aims at finding the so-
lutions by formulating the dynamics covariantly and developing an analog of the Feynman
path integral. The idea of Rovelli and Reisenberger [155, 158] is that the paths should
be suitably defined histories of the spin-network states called spin foams. Since the spin
networks are graphs with a suitable coloring, the spin foams are 2-complexes (histories of
graphs) with suitable colorings.

In standard formulation of quantum mechanics the path integrals define matrix elements
of the evolution operator. In Quantum Gravity the path integrals provide a scalar product
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1. Loop Quantum Gravity states and spin foams

between solutions to the constraints. The scalar product is interpreted as a transition
amplitude between quantum geometry encoded in the initial state and the final state
[111].

Figure 1.3.: a) A history of a spin network. b) The initial and, respectively, final spin
network.

The advantage of using the spin-foam approach to define the dynamics of Loop Quantum
Gravity is two-fold. First, it defines the solutions of the constraints. Second, it allows to
define the dynamics in a covariant way without constructing the quantum constraints
operators explicitly. The idea is to consider an amplitude assigned to a single spin foam
as a truncation of the full transition amplitude. The corresponding truncation in the
classical theory is defined by Regge calculus. The correspondence is a semiclassical limit.
In summary (compare [165]):

Full Quantum Gravity
semi-classical limit //

truncation

��

General Relativity

truncation

��Amplitude of
a single spin foam semi-classical limit

// Regge calculus

The transition amplitude of the full theory of Quantum Gravity is either a sum of ampli-
tudes of different spin foams or a refinement limit. In fact, in [166] the authors argue that
the two definitions coincide.

A motivating example is the Ponzano-Regge model [150] (see also [42, 20]), which is a
special case of a spin-foam model of quantum BF theory. We will discuss the model in the
next subsection, starting with a general construction of the spin-foam models of quantum
BF theory.

1.3.2. Spin-foam models of quantum BF theory

Let G be a compact group, g be its Lie algebra and M be a d-dimensional manifold. Let
us denote by <,> an invariant scalar product on g. In the BF theory the variables are:
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1.3. Spin foams

• a g valued (d-2)-form B on M ,

• a connection one-form ω on M .

The BF theory is defined on general principal fibre bundle [20]. For simplicity we restrict
ourselves to trivial bundle (ω and B are globally defined forms).

By F we denote the curvature two-form of the connection one-form ω. The BF theory
is defined by action functional:

S[B,ω] =

∫
M

Tr (B ∧ F) ,

where Tr (B ∧ F) =< τp, τq > Bp ∧ Fq, τp is a basis of g.
For simplicity, let us assume that the manifold M does not have boundary. In this case

the object of interest is the partition function:

Z(M) =

∫
D[B]D[ω]ei

∫
M Tr(B∧F).

Formally, the integral over the B fields can be performed giving:

Z(M) =

∫
D[ω]δ(F). (1.40)

In order to construct a spin-foam model one introduces a triangulation of the manifold
M and constructs a 2-skeleton of a complex dual to the triangulation (for definition of a
triangulation see [119, 179] and for definition of a complex dual to a given complex see
[119, 180, 179]). This 2-skeleton equipped with an orientation will be called a (simplicial)
foam. The foam has one vertex in the center of each n-simplex, one edge intersecting
each (n-1)-simplex, and one face intersecting each (n-2)-simplex. For example, if M is 3-
dimensional, the relation between the elements of the triangulation and the foam is given
in table 1.1. If M is 4-dimensional, the relation is given in table 1.2.

Triangulation point segment triangle tetrahedron
Foam (κ) face (f) edge (e) vertex (v)

Table 1.1.: Relation between elements of a triangulation of 3-dimensional manifold and
elements of the corresponding foam.

Triangulation point segment triangle tetrahedron 4-simplex
Foam (κ) face (f) edge (e) vertex (v)

Table 1.2.: Relation between elements of a triangulation of 4-dimensional manifold and
elements of the corresponding foam.

The connection is discretized by assigning one group element ge to each oriented edge
e of the foam. If an orientation of an edge, say e0, is changed, the labelling is changed
according to the rule (compare (1.31)):

ge 7→
{

(ge−1
0

)−1, if e = e0,

ge, otherwise.
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1. Loop Quantum Gravity states and spin foams

The discrete connection is called flat if the holonomy around each (oriented) face is
trivial:

ge1f · · · geNf f = I,

where

gef =

{
ge, if the orientation of e agrees with the orientation of f,

(ge)
−1, otherwise.

The discrete analog of the partition function (1.40) is:

Z[κ] =

∫ ∏
e∈κ(1)

dµH(ge)
∏

f∈κ(2)
δ(ge1f · · · geNf f ),

where κ(1) denotes the set of edges of the foam κ, κ(2) denotes the set of faces of the foam
κ, µH denotes the Haar measure. Using Peter-Weyl theorem the δ distribution can be
expressed as a weighted sum of the characters of the group G:

δ(g) =
∑

ρ∈Irr(G)

dimHρ Tr (ρ(g)) ,

where the sum is over unitary irreducible representations of G; Hρ is the representation
space of the representation ρ. Using this formula, the expression for the partition function
becomes:

Z[κ] =
∑

ρf∈Irr(G)

∫ ∏
e∈κ(1)

dµH(ge)
∏

f∈κ(2)
dimHf Tr

(
ρf (ge1f · · · geNf f )

)
, (1.41)

where we use a shorthand notation Hf := Hρf . Let us split the faces containing an edge
e into the faces which orientation agrees with the orientation of e and the faces which
orientation is opposite. In order to calculate the integral over ge in the expression above,
we need to find a formula for

P e =

∫
dµH(ge)

⊗
f same orientation as e

ρf (ge) ⊗
⊗

f opposite orientation to e

ρf (g−1
e ).

Let us denote by He the following Hilbert space:

He =
⊗

f same orientation as e

Hf ⊗
⊗

f ′ opposite orientation to

H∗f ′ .

The integral over ge is performed by noting that P considered as an operator

P e : He → He

is orthogonal projection onto the space Inv (He) ⊂ He of invariants of the representation:⊗
f same orientation as e

ρf ⊗
⊗

f ′ opposite orientation to e

ρ∗f ′ .
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The operator P e can be written in the following way:

P e =
∑
ιe

ιe ⊗ ι†e, (1.42)

where the sum is over the orthonormal basis in Inv (He) ⊂ He.
In (1.41) the indices of the matrices ρf (geIf ) are contracted. In order to study the

contraction pattern of the indices of the invariants ι†e / ιe′ let us first note that to each
vertex v there corresponds a tensor (figure 1.4a):⊗

outgoing e

ι†e ⊗
⊗

incoming e′

ιe′ . (1.43)

For every face f intersecting v, there are exactly two edges at v, say e1 and e2, contained
in f (figure 1.4b). Let us take the corresponding invariants present in (1.43). One of them
has exactly one index corresponding to the representation ρf . Then, the other one has
exactly one index in the representation ρ∗f . Let us contract those indices and repeat the
procedure for every face intersecting v. The result can be symbolically denoted by,

Trv

 ⊗
outgoing e

ι†e ⊗
⊗

incoming e′

ιe′

 . (1.44)

Figure 1.4.: a) Edges meet at vertices. Every edge contributes an invariant or hermitian
conjugate invariant. b) Every face meeting v contains exactly two of the edges.

.

Applying this considerations to formula (1.41) we obtain

Z[κ] =
∑
ρ

∑
ι

∏
f∈κ(2)

dimHf
∏
v∈κ(0)int

Trv

 ⊗
outgoing e

ι†e ⊗
⊗

incoming e′

ιe′

 .

The numbers dimHf and Trv

(⊗
outgoing e ι

†
e ⊗

⊗
incoming e′ ιe′

)
are called face and vertex

amplitudes, respectively. In general, the expression may also involve amplitudes assigned
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to edges of the foam called edge amplitudes. Let us note that we considered manifolds
without boundaries and as a result the foam κ does not have boundary. In the next
section 1.3.3 we will introduce a general definition of a spin foam valid also for foams with
boundary.

The Ponzano-Regge model

An example of a spin-foam model of quantum BF theory is the Ponzano-Regge model [150,
42, 20]. In this model the structure group G is SU(2) and the manifold M is 3-dimensional.
Remarkably in this case, the BF theory coincides with a 3-dimensional version of Euclidean
General Relativity (see for example [146]). Since the unitary irreducible representations of
the SU(2) group are labelled with spins j ∈ 1

2N, to each face f of a foam κ there corresponds
a spin jf . Since each face of the foam is dual to a segment of the triangulation, the labelling
of κ induces a labelling of the segments of triangulation with spins. Ponzano and Regge
interpret the spins as the lengths of the segments – strictly speaking a length lf of a
segment f is taken to be lf = jf + 1

2 . The lengths determine the geometry, in particular
they define dihedral angles Θv

f , which are the angles between the outward pointing normals
to the two triangles of a tetrahedron v that are intersecting f . Using Regge calculus [154]
it can be shown that the action:

S =
∑
v

Sv, where Sv =
∑
f⊂v

lfΘv
f

approximates the Einstein-Hilbert action. Ponzano and Regge showed that the vertex
amplitude

Trv

 ⊗
outgoing e

ι†e ⊗
⊗

incoming e′

ιe′


in the limit of large spins is asymptotic to:√

2

3πV
cos
(
Sv +

π

4

)
, (1.45)

where V is the volume of the tetrahedron. One could expect to get the usual Feynman’s
weight eiSv but gets a cosine instead because the lengths determine the edges of the
tetrahedron up to rotation and reflection. The phase shift π

4 is the result of stationary
phase approximation [20]. In the Ponzano-Regge model the semiclassical limit is the limit
of large spins (see [165] for the tentative explanation why these limits may coincide). The
limit corresponds to the lower arrow in the diagram in the previous subsection.

1.3.3. Spin foams

Motivated by the example of the model of quantum BF theory from the previous section
we introduce now the definition of a spin foam.

Foams

By a foam we mean in chapters 1, 3, 4, 5 an oriented piecewise linear 2-cell complex with
(possibly empty) boundary. In chapter 6 we will introduce another class of 2-complexes
defined diagrammatically.
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A piecewise linear cell complex is defined in the following way [20, 160]. A cell is a
convex hull of a finite number of points in Rn. The dimension of the smallest affine space
containing a cell is called the dimension of the cell. Let X be a cell and x ∈ X; let 〈x,X〉
denote a sum of lines L in Rn such that L ∩X is a line segment and x is in its interior.
If there are no such lines, then 〈x,X〉 is defined to be {x}. The cell 〈x,X〉 ∩X is called
a face of X. If Y is a face of X we write Y ≺ X. A piecewise linear complex K is a
collection of cells such that:

• if X ∈ K and Y ≺ X then Y ∈ K,

• if X,Y ∈ K then X ∩ Y is a face of both X and Y .

We say that a complex is k-dimensional if it has cells of dimension k but not higher. A
complex is called oriented if the cells are equipped with orientations; it is assumed that
0-cells have positive orientation.

A foam κ is a piecewise linear oriented 2-complex such that each edge is contained in
several (at least one) faces, each vertex is contained in several (at least one) edges and
that the number of faces is finite. It consists of 2-cells called faces (n.b. this is a standard
nomenclature; it should not be confused with the face of a cell in the definition of a cell
complex given in the previous paragraph), 1-cells called edges, and 0-cells called vertices.
We denote by κ(2) the set of faces of κ, κ(1) the set of edges of κ and κ(0) the set of vertices
of κ.

Figure 1.5.: Cells of the complex.

The boundary ∂κ is a 1-cell subcomplex (graph) of κ such that there exists a one-to-one
affine map c : ∂κ× [0, 1]→ κ which maps each cell of ∂κ× [0, 1] onto the unique cell of κ
and the set ∂κ× [0, 1[ onto an open subset of κ (see appendix of [20] for details). An edge
of κ is called a boundary link if and only if it is contained in ∂κ. Otherwise, it is called
an internal edge. An important technical subtlety of the definition of a boundary is that
a vertex of κ is a vertex of ∂κ if and only if it is contained in exactly one internal edge of
κ. Such vertex is called a boundary node. Each vertex which is not a boundary node is
called an internal vertex of κ. We denote by κ(1)

int the set of internal edges, by κ(0)
int the set

of internal vertices, by ∂κ(1) the set of boundary links and by ∂κ(0) the set of boundary
nodes of κ.

Coloring

Given a foam κ, a spin foam is defined by introducing three colorings (see figure 1.8):
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• ρ colors the faces of κ with unitary irreducible representations of the group G,

ρ : κ(2) → Irr(G), (1.46)

f 7→ ρf . (1.47)

We consider representation ρf as acting on a given Hilbert space Hf .

• ι colors the internal edges of κ with invariants of suitable tensor product of the
representations given by the coloring ρ. Let e ∈ κ(1)

int . To define the space of invariants
Inv (He) we split the set of faces containing e, into faces which orientation coincides
with that of e and respectively, with the opposite orientation (see figure 1.6),

Inv (He) ⊂ He :=
⊗

f same orientation as e

Hf ⊗
⊗

f ′ opposite orientation to e

H∗f ′ , (1.48)

where the subset consists of the invariants of the representation⊗
f same orientation

ρf ⊗
⊗

f ′ opposite orientation

ρ∗f ′ . (1.49)

The coloring ι is a map
e 7→ ιe ∈ Inv (He) . (1.50)

In fact, it is often convenient to think of ι†e as assigned to the edge e at the start
point whereas at the end point we assign ιe. We will often consider ιe to be an
element of He by using the canonical embedding Inv (He) ⊂ He.

Figure 1.6.: The edge Hilbert space He.

• A colors the internal vertices of κ with linear functionals of suitable tensor product
of the spaces Inv (He). Let v ∈ κ(0)

int . We introduce (see figure 1.7):

Hv =
⊗

e incoming at v

Inv (He)⊗
⊗

e outgoing at v

Inv (He)∗ .

The coloring A is a map
v 7→ Av ∈ (Hv)∗. (1.51)

It is sometimes convenient to define the coloring in a bigger space

H̃v =
⊗

e incoming at v

He ⊗
⊗

e outgoing at v

H∗e ,
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1.3. Spin foams

Figure 1.7.: The vertex Hilbert space Hv.

A coloring of internal vertices with linear functionals

κ
(0)
int 3 v 7→ Ãv ∈ (H̃v)∗,

uniquely defines a coloring (1.51) by restricting Ãv to Hv:

Av = Ãv|Hv .

An important example is the vertex trace Trv (compare (1.44)). It can be defined
by a functional on H̃v '

⊗
f :v⊂f Hf ⊗H∗f by taking

T̃rv :=
⊗
f :v⊂f

Trv,f ,

where Trv,f : Hf⊗H∗f → C is the trace functional. On the other hand, any functional

Av : Hv → C can be extended to a functional Ãv on H̃v by defining Ãv to be equal
to Av on Hv ⊂ H̃v and to be zero on any element in orthogonal complement of Hv
in H̃v. In this thesis we will omit the tilde and denote by Av the linear functional
on Hv as well as on H̃v.

Let us note that the spin-foam structure has been defined in the interior of a foam.

Induced boundary spin-network

Given a spin foam (κ, ρ, ι,A), the colorings ρ and ι induce on the boundary ∂κ a spin-
network structure (∂κ, ∂ρ, ∂ι). For every link ` of ∂κ let f ` denote the unique face of κ
that contains `, and

∂ρ` :=

{
ρf` , if the orientations of f ` and ` coincide,

ρ∗f` , if they are opposite.
(1.52)

For every node n of ∂κ, let en be the unique internal edge of κ that contains n, and

∂ιn :=

{
ι†en , if n is the beginning of en,

ιen if n is the end of en.
(1.53)
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1. Loop Quantum Gravity states and spin foams

Figure 1.8.: a) Faces are colored with unitary irreducible representations of G. b) Inter-
nal edges are colored with invariants. c) Internal vertices are colored with
contractors.

Figure 1.9.: a) A spin foam with boundary (in the bottom). b) Induced spin network on
the boundary.

The vertex spin network

Let us consider a spin foam (κ, ρ, ι,A). Given an internal vertex v and the intersecting
faces, on each of the faces we consider a suitable neighbourhood of v. The neighbourhood
is bounded by the segments of the sites of the face meeting at v, and a new extra edge
connecting the segments (marked by a thinner curve on figure 1.10 a)). The union of
the resulting neighbourhoods of v in each intersecting face is a foam neighbourhood of the
vertex v. The foam neighbourhood of v is a spin foam with boundary itself. The boundary
is formed by the thinner edges on figure 1.10 a). Let us denote the spin network induced
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1.3. Spin foams

on the boundary (figure 1.10 b)) by sv = (γv, ρ, ι), and the corresponding spin-network
function by ψsv . We will call sv a vertex spin network.

Figure 1.10.: a) A foam neighbourhood of the vertex v bounded by new, thinner edges. b)
The spin network induced on the boundary of the neighbourhood. We will
call it the vertex spin network and denote it by sv.

Vertex amplitude

A contractor Av defines a map

s†v 7→ Av(s†v) := Av(
⊗
n∈γ(0)v

ι†n). (1.54)

The number Av(s†v) is called the vertex amplitude.
Let us note that the vertex amplitude defined by the vertex trace (1.44) equals the

evaluation of the conjugate spin network

Trv(s
†
v) = ψsv(I) (1.55)

The conjugate spin network itself is the spin network induced on the boundary of the spin
foam obtained from (κ, ρ, ι,A) by removing the neighbourhood of the vertex v.

In the case when the 2-complex is defined by a triangulation of 4-dimensional space-
time, a vertex is dual to a 4-simplex (see table 1.2) and a vertex amplitude is called also
a 4-simplex amplitude.

1.3.4. Amplitude of a spin foam

A spin-foam model specifies a group G, a class of spin foams (a class of foams and possible
colorings) and defines functions: Aface : Irr(G)→ C and Alink : Irr(G)→ C such that

Aface(ρ1) = Aface(ρ2), Alink(ρ1) = Alink(ρ2)
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1. Loop Quantum Gravity states and spin foams

if the representations ρ1 and ρ2 are equivalent. Let (κ, ρ, ι,A) be a spin foam. The number
Aface(ρf ), where f ∈ κ(2), is called a face amplitude. The number Alink(∂ρ`) is called a
boundary link amplitude.

A spin-foam model assigns to each spin foam (κ, ρ, ι,A) (in the class) a complex number:

Z(κ, ρ, ι,A) =
∏

`∈(∂κ)(1)

Alink(∂ρ`)
∏

f∈κ(2)
Aface(ρf )

∏
v∈κ(0)int

Av(s†v).

Z(κ, ρ, ι,A) is called a spin-foam amplitude. In general, this expression could involve
boundary node amplitudes and internal edge amplitudes. The amplitudes can be incor-
porated by redefining the boundary link amplitudes and the contractors [48].

It is easiest to understand the meaning of the amplitude of a spin foam by studying the
casual approach [136, 20, 145, 146]. In this approach a spin foam (κ, ρ, ι,A) is a history of
an initial spin network sin evolving into a final spin network sout. The histories are defined
by foams κ such that ∂κ = γout∪γin. The spin network sin is the hermitian adjoint (= the
complex conjugate) of the spin network induced on γin whereas sout is the spin network
induced on γout. A formal sum of the spin-foam amplitudes over all possible histories of
an initial spin network sin evolving into a final spin network sout:

”
∑

(κ,ρ,ι,A):(∂κ,∂ρ,∂ι)=sout⊗s†in

Z(κ, ρ, ι,A) ” (1.56)

is called a transition amplitude. It can be interpreted as a scalar product between the
solutions to all the (quantum) constraints. The solutions to vector and scalar constraint
after averaging over the knotting classes are states in the combinatorial Hilbert space. The
remaining problem is to solve the scalar constraint. If zero is in the continuous part of
the spectrum of the (quantum) scalar constraint [146], the solutions will be distributional
(as in the case of vector constraint) – tentatively they will be elements of the algebraic
dual D? to some dense domain D ⊂ Hcomb [179]. Let us denote by Ĉ a quantum operator
corresponding to the scalar constraint function C. The solutions to the constraint are
expected to be given by an antilinear map ηscalar : D → D?, such that:

Ĉ (ηscalar(ψ) | = 0

for all ψ ∈ D. In other words, the map ηscalar is such that(
ηscalar(ψ)|Ĉψ′

〉
= 0,

for any ψ,ψ′ ∈ D. The space of solutions to the scalar constraint D?phys has a natural
hermitian inner product:〈

ηscalar(ψ)|ηscalar(ψ
′)
〉

:=
(
ηscalar(ψ)|ψ′

〉
.

It defines a hermitian inner product on Dphys := D/ ker ηphys:〈
ψ|ψ′

〉
phys

:=
〈
ηscalar(ψ)|ηscalar(ψ

′)
〉
,

called the physical scalar product. The Cauchy completion of Dphys in the physical scalar
product is called the physical Hilbert space Hphys.
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1.3. Spin foams

The transition amplitude (1.56) is expected to define the physical scalar product 2〈
ψ[sout])|ψ[sin]

〉
phys

= ”
∑

(κ,ρ,ι,A):(∂κ,∂ρ,∂ι)=sout⊗s†in

Z(κ, ρ, ι,A) ”.

The modulus square of the transition amplitude is interpreted as a probability of a transi-
tion from the state ψ[sin] to the state ψ[sout]. It has a form of a sum of spin-foam amplitudes.
Therefore spin foams can be thought of as a sum-over-histories approach (path-integral
approach) to defining dynamics of the loop quantum gravity states. In chapter 5 we will
define operator spin foams, which are obtained from spin foams by summing over the
intertwiners. In the chapters 6, 7 we will use the operator spin foams instead of spin
foams.

In general, the boundary does not have to be a disjoint union of two graphs. The
expression

”
∑

(κ,ρ,ι,A):(∂κ,∂ρ,∂ι)=s

Z(κ, ρ, ι,A) ”

is interpreted as an action of a so-called boundary functional W on a boundary state ψ[s†]

and denoted by W (ψ[s†]). The modulus square |W (ψ[s†])|2 is a probability of a process
defined by the boundary state ψ[s†] [139, 141, 162, 165, 44].

2The spin-foam formalism provides a scalar product between solutions to all the constraints. Moreover,
the spin-foam dynamics of vacuum gravity is insensitive to linking and knotting [28]. Therefore it seems
reasonable to expect that the transition amplitude (1.56) is the same for any spin networks sin and sout
in the equivalence classes [sin] and [sout], respectively.
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2. The key results of the thesis

This thesis presents the results from [123, 124, 125, 29, 130, 129]. The key results are
briefly summarized in the section 2.2. We start this chapter with a short summary of the
state of art of the research in the spin-foam models of 4D Quantum Gravity before the
author’s contribution.

2.1. The state of art before the author’s contribution

The spin foams were defined in an attempt to solve the problem of the dynamics of the
Loop Quantum Gravity states [21, 121, 155, 158, 136, 23]. The idea is to express the
transition amplitude between spin-network states as a sum over histories of spin networks,
called spin foams (see section 1.3.1). This idea was successfully realized in 3D Quantum
Gravity, where the correspondence between the kinematics of 2+1 Loop Quantum Gravity
and the 3D spin-foam dynamics was settled [138]. The spin-foam model of 3D Quantum
Gravity is the Ponzano-Regge model [150]. It can be derived by formulating 3D General
Relativity as a BF theory (see section 1.3.2).

The starting point for the derivation of the spin-foam models of 4D Quantum Gravity
is a formulation of 4D General Relativity as a constrained BF theory [149, 95, 156, 67]
(see section 3.1). Since the spin-foam model of quantum BF theory is well known (see
section 1.3.2) the remaining problem is to impose the constraints in the quantum theory.
For many years the proposal that attracted most of the attention was the Barrett-Crane
model [38, 39] (BC model). The strategy of Barrett and Crane was to discretize the
4D General Relativity on a triangulation of the space-time and quantize the resulting
theory. The Barrett-Crane spin-foam model is obtained from the BF spin-foam model
by restricting the class of possible histories (spin foams) – the constraints restrict the
representations labelling the faces and the intertwiners labelling the internal edges. In the
Euclidean signature the Barrett-Crane spin foam is: a foam defined by a triangulation
of the space-time; a labelling of the faces with certain Spin(4) (double cover of SO(4))
representations, called balanced representations; and a labelling of the internal edges with
certain Spin(4) intertwiners, called Barrett-Crane intertwiners (BC intertwiners). For a
given internal edge and a labelling of the faces intersecting this edge with the balanced
representations, the Barrett-Crane intertwiners form a vector space InvBC (He) ⊂ Inv (He)
called the space of the Barrett-Crane intertwiners. Barrett and Crane provided a canonical
element in this space, which is non-zero if Inv (He) is non-trivial (see [123] for the proof).
Later, Reisenberger proved that the intertwiner solving the Barrett-Crane constraints
is unique up to a scale – in other words he proved that the space InvBC (He) is one-
dimensional if Inv (He) is non-trivial [157]. The Barrett-Crane spin foams are histories
of certain spin networks, called relativistic spin networks. The relativistic spin networks
are Spin(4) spin networks with links labelled by the balanced representations and nodes
labelled by the Barrett-Crane intertwiners.
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2. The key results of the thesis

Barrett and Crane defined the 4-simplex amplitude as the evaluation of the (relativis-
tic) vertex spin network (see also section 1.3.3). However, they did not specify the face
amplitude and the normalization of the BC intertwiner. Without these the model was not
complete 1. In [157] Reisenberger argued that if the spin foam model is to be a restriction
of the BF spin foam model to histories satisfying the constraints, the face amplitude must
be the dimension of the representation assigned to a face and the internal edges must be
labelled by the BC intertwiners normalized in the natural scalar product inherited from
the edge Hilbert space. De Pietri, Freidel, Krasnov and Rovelli [68] proposed a certain
quantum field theory which Feynman diagrams correspond to the spin foams appearing in
the Barrett-Crane model and obtained precisely the same face amplitude and normaliza-
tion of the BC intertwiner as those suggested by Reisenberger. To improve the convergence
of the transition amplitudes also other choices of the face amplitude and normalization of
the BC intertwiners were discussed [147, 26].

In the original derivation the relativistic spin networks are defined for graphs determined
by triangulations of the space manifold and the Barrett-Crane spin foams are histories
of such spin networks. In this formulation the Barrett-Crane model is a quantization
of discretized Gravity. In order to become a model of Quantum Gravity with all its
local degrees of freedom it should be generalized to histories of spin networks defined for
arbitrary graphs. In [183] the n-valent Barrett-Crane intertwiner was constructed (see
also [37] and [157]). Thanks to this generalization the relativistic spin network could be
defined for arbitrary graphs and the Barrett-Crane vertex amplitude could be generalized
to arbitrary vertex graphs. Using the n-valent BC intertwiners Reisenberger generalized
the Barrett-Crane spin-foam model to a model including histories of arbitrary relativistic
spin networks [157]. He interpreted the generalized model as a restriction of (generalized)
BF spin-foam model to histories where left-handed and right-handed geometries match
[157, 156].

It turned out that the Barrett-Crane model does not have enough degrees of freedom
to give a proper classical limit. A calculation of the graviton propagator in the large-
scale limit based on the dynamics defined by the Barrett-Crane vertex amplitude did
not reproduce the correct tensorial structure of the propagator [47, 4, 1]. This result
triggered a search for new spin-foam models of 4D Quantum Gravity [134, 88, 89, 5, 135].
Finally, two teams have proposed new spin-foam models called after the names of the
authors the Engle-Pereira-Rovelli-Livine model [86] (EPRL model) and Freidel-Krasnov
model [96] (FK model). The Barrett-Crane model was defined for the Palatini action. The
new models are defined for the Holst-Palatini action with real Barbero-Immirzi parameter
β > 0. In the Euclidean signature it is additionally assumed that the parameter is rational
and different from 1 (see also section 4.2). In the Euclidean case when 0 < β < 1 the EPRL
model and the FK model coincide and when β > 1 the models are different. Short after
the models were defined, the formula for the semiclassical limit of the EPRL 4-simplex
amplitude was derived [40, 41]. It relates the EPRL 4-simplex amplitude to the Regge
action of 4D General Relativity very much like the asymptotic formula in section 1.3.2
relates the Ponzano-Regge vertex amplitude to the Ponzano-Regge action. It was also
shown that the EPRL 4-simplex amplitude reproduces the correct tensorial structure of
the graviton propagator in the large-scale limit [3].

1One should also specify the boundary link amplitude. A natural choice is to take Alink(∂ρ`) =
1√

Aface(∂ρ`)

– see chapter 5.
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2.2. The key results of the thesis

In this thesis we focus on the dynamics of the Loop Quantum Gravity states defined by
the Euclidean EPRL spin-foam model.

Generalization of the EPRL intertwiners and the EPRL vertex amplitude

In the original formulation [86] the EPRL model is defined only for triangulations of space-
time. As a result the EPRL intertwiners are 4-valent and the EPRL vertex amplitude is
defined only for the vertex graph that is the 1-skeleton of the 4-simplex, i.e. the complete
graph on five nodes. We generalize the 4-valent EPRL intertwiners to n-valent EPRL
intertwiners. Our n-valent EPRL intertwiners become the n-valent BC intertwiners in the
limit β → ∞. This is compatible with the fact that the Holst-Palatini action becomes
the Palatini action in this limit. We use the generalized EPRL intertwiners to define the
EPRL vertex amplitude for arbitrary vertex graphs and we generalize EPRL spin foams
to a broader class of foams. Thanks to this generalization the EPRL spin-foam model
can be used to define the dynamics of all Loop Quantum Gravity states, not only those
defined for the graphs that are determined by the triangulations of the space manifold.

Theorem concerning injectivity of an EPRL map

In our generalized EPRL spin foams the faces are labelled with Spin(4) representations
satisfying certain constraints and the internal edges are labelled with the generalized EPRL
intertwiners. To a given internal edge and a labelling of the faces intersecting this edge
with the representations satisfying the constraints there correspond a vector space of the
EPRL intertwiners InvEPRL (He) ⊂ Inv (He) and a vector space of SU(2) intertwiners.
There is a linear map from the space of SU(2) intertwiners to the space of the EPRL
intertwiners, called an EPRL map. The main technical result of this thesis is the proof
that an EPRL map is 1-1 unless its co-domain is trivial and its domain is non-trivial. As
a result the vector spaces of the EPRL intertwiners and the corresponding vector spaces
of the SU(2) intertwiners are isomorphic unless the former is trivial and the latter is non-
trivial. It is natural to ask if they are also isomorphic as Hilbert spaces (equipped with
the natural scalar products inherited from the spaces of the Spin(4) intertwiners and,
respectively, the SU(2) intertwiners). It turns out that this is not the case – we present
an example of non-isometric EPRL map.

Definition of the sum over the intertwiners

Since a space of EPRL intertwiners is usually more than 1-dimensional, a proper definition
of the sum over the intertwiners is needed. In the Barrett-Crane model (as well as in the
Ponzano-Regge model) the problem was simpler, because the only ambiguity was the scale
factor. We define the sums by introducing operator spin foams, i.e. foams which faces are
labelled with unitary irreducible representations, internal edges are labelled with certain
operators and vertices are labelled with certain linear functionals.

Since an EPRL map in general is not an isometry, there is an ambiguity in defining the
sum: one could either define it as a sum over orthonormal basis of the SU(2) intertwiners
or over a basis of the EPRL intertwiners orthonormal in the scalar product inherited
from the space of Spin(4) intertwiners. Our proposal is to use the latter sum – this
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choice corresponds to a coloring of each internal edge with the orthogonal projection from
the space of Spin(4) intertwiners Inv (He) onto its subspace of the EPRL intertwiners
InvEPRL (He). In the limit β → ∞ our proposal coincides with the Reisenberger’s choice
of the BC intertwiner normalized in the natural scalar product in Inv (He). Let us mention
that in the literature there is also a model that uses the former sum [48]. It will be also
discussed in this thesis.

Moves on the operator spin foams and fixing the face and boundary link
amplitudes

We introduce moves on operator spin foams similar to the Baez’s moves on spin networks
(see section 1.2.2). The moves allow to split an edge, split a face, flip the orientation of an
edge, flip the orientation of a face, add a face. Thanks to the choice of the coloring of the
internal edges with orthogonal projections onto the space of the EPRL intertwiners, our
operator spin-foam model is invariant under the move of splitting an internal edge. The
remaining degrees of freedom are the face amplitude and the boundary link amplitude.
We fix them by requiring our model to be symmetric with respect to all of the moves and
to have a certain glueing property.

Definition of a class of foams

A natural question is what is the optimal class of foams compatible with our generalization
of the EPRL vertex amplitude and allowing histories of arbitrary spin networks. In [129]
we defined such class combinatorially using certain diagrams called graph diagrams. We
constructed an oriented CW complex (a foam) corresponding to a graph diagram. In
[129] the foam corresponding to a graph diagram was constructed by using certain glueing
procedure. In this thesis we present a construction of the foam that does not use this
procedure. The class of foams defined by graph diagrams admits full variety of boundary
graphs. We construct the boundary graph directly from the graph diagram – without
needing to reconstruct the foam corresponding to the graph diagram. In [129] the boundary
graph was constructed by using certain procedure of merging graphs. In this thesis it is
constructed without reference to this procedure.

Independence of the operator spin-network diagram framework from the
operator spin foam framework

We define a coloring of a graph diagram turning it into an operator spin-network diagram.
To each operator spin-network diagram there corresponds an operator spin foam. We show
that the construction of the operator spin foam corresponding to an operator spin-network
diagram is not needed to calculate the spin-foam operator – the spin-foam operator can
be read directly from the operator spin-network diagram. As a result the operator spin-
network diagrams can be used independently from the operator spin foams. We use this
technical advantage in an application of graph diagrams to Dipole Cosmology.

Application of operator spin-network diagrams to Dipole Cosmology

Our generalization of the EPRL vertex amplitude was used by Bianchi, Rovelli and Vidotto
to introduce the first model of Quantum Cosmology based on the spin-foam formalism [49].
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They calculated a transition amplitude between coherent states peaked on homogeneous
and isotropic geometries using certain approximations and showed that the model recovers
the Friedmann dynamics in the classical limit. One of the approximations was a truncation
of the transition amplitude to a contribution from a single foam with one internal vertex,
four internal edges and a certain boundary. A priori there is no good reason to restrict
to only one such foam. In fact, the choice of this foam was judged a posteriori by correct
classical limit. In [115] Frank Hellmann has discussed contributions from other foams
with these properties. Our class defined by graph diagrams includes all the foams from
[115] but it also includes many other foams with these properties. We find all of them: in
particular we construct all possible vertex graphs. We discuss contributions from some of
the foams we found and show that they can be neglected in the limit of large volume of
the Universe.

Some improvements, reformulations

The definition of a spin foam and operator spin foam we use is more general from the
standard one [21, 29], because we introduce a coloring of the internal vertices with linear
functionals called contractors. In particular, in this thesis the moves on the operator spin
foams transform also the contractors.

The presentation of the EPRL intertwiners is original and based on the quantum poly-
hedral geometry introduced in [73]. It is similar to the interpretation of the Barrett-Crane
intertwiners in terms of the quantum tetrahedra [24] (an extension of the interpretation
to polyhedra was suggested in [157]).

The definition of a graph diagram is different from (but equivalent to) the definition
from [129] – in place of a family of link relations we use a certain bijective map.
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3. Spin-foam models with the EPRL vertex
amplitude

In chapter 1 we presented a general definition of a spin-foam model. In this chapter we
will present two spin-foam models of 4D Quantum Gravity basing on the so-called Engle-
Pereira-Rovelli-Livine vertex amplitude: a model which we introduced in [123] and a model
introduced by Bianchi, Regoli and Rovelli [48]. We call the models: the Spin(4) and,
respectively, the SU(2) spin-foam model with the EPRL vertex. Although the model [48]
is defined in the Euclidean as well as in the (physical) Lorentzian signature, we present only
the Euclidean versions of both models. The Euclidean version is simpler as the structure
group is compact. Due to non-compactness of the Lorentz group, the Lorentzian version
requires regularization [87, 25, 39, 66] thanks to which the vertex amplitude is finite if the
vertex graph is 3-edge connected [122].

The EPRL model was originally defined for triangulations of space-time [86] and the
EPRL intertwiners were 4-valent. As a result, the boundary graphs were defined by
triangulations of space and the model was not applicable to all the Loop Quantum Gravity
states. In [123] we introduced n-valent EPRL intertwiners and generalized the EPRL
vertex amplitude to arbitrary vertex graphs. We extended the original definition of the
EPRL model to piecewise linear 2-complexes allowing full variety of boundary states.
Another model generalizing the original EPRL model using the n-valent EPRL intertwiners
and the generalized EPRL vertex amplitude was proposed in [48]. The (generalized)
models are promising candidates for the spin-foam dynamics of the Loop Quantum Gravity
states.

The spin-foam models of 4D Quantum Gravity are based on an interpretation of General
Relativity as constrained BF theory (see section 3.1.1). The theory is discretized (see sec-
tion 3.1.2) and the discrete theory is quantized. In sections 3.2.1 and 3.2.2 we will present
an interpretation of the discrete constraints in terms of polyhedra that was proposed in
[73]. Next, basing on the ideas from [73] and from [24], we will quantize the geometries of
the polyhedra and define quantum polyhedra. By averaging over the vectors normal to the
quantum polyhedra we will obtain (n-valent) EPRL intertwiners which are basic building
blocks of the (generalized) EPRL vertex amplitude (see section 3.3). In section 3.4 we will
present and compare the two models with the EPRL vertex amplitude. Other models of
4D Quantum Gravity will be shortly discussed in section 3.5.

3.1. General Relativity as constrained BF theory

3.1.1. Continuous theory

In the previous chapter we constructed a spin-foam model of quantum BF theory. The
construction of the spin-foam models of Quantum Gravity is based on a formulation of the
General Relativity as a BF theory with constraints, which was introduced by Plebański
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[149]. The gravity theory can be interpreted as given by the action

S(B,ω) =
1

2k

∫
M
BIJ ∧ FIJ (3.1)

with additional simplicity constraint

BIJ =
1

2
εIJKLe

K ∧ eL (3.2)

in the Palatini case, and

BIJ =
1

2
εIJKLe

K ∧ eL +
σ

β
eI ∧ eJ (3.3)

in the Holst action case.
An alternative form of the constraints is based on the following observation. It can be

shown [67] that if EIJ satisfies

ηαβµνEIJαβE
KL
µν = e εIJKL, (3.4)

where e = 1
4!εIJKLE

IJ
αβE

KL
µν η

αβµν , ηαβµν is the Levi-Civita tensor density on M which
orientation agrees with that ofM, then EIJ is in one of the following five disjoint sectors:

(I±) EIJ = ±eI ∧ eJ ,

(II±) EIJ = ±1
2ε
IJ
KLe

K ∧ eL,

(deg) e = 0.

The sectors are called Plebański sectors [67, 57, 81]. If the two-form EIJ is in the sector
(II+) then BIJ = EIJ in the Palatini case, and

BIJ = EIJ +
1

2β
εIJKLE

KL (3.5)

in the Holst case. For β 6= ±i in the Lorentzian case and β 6= ±1 in the Euclidean case,
the relation (3.5) can be inverted:

EIJ =
β2

β2 − σ

(
BIJ − 1

2β
εIJKLB

KL

)
. (3.6)

By making the substitution (3.6) in (3.4) we obtain constraints on BIJ . The solutions of
the resulting equations are in one of the following sectors:

(I±) BIJ = ±eI ∧ eJ ± 1
2β ε

IJ
KLe

K ∧ eL,

(II±) BIJ = ±1
2ε
IJ
KLe

K ∧ eL ± σ
β e

I ∧ eJ ,

(deg) εIJKLB
IJ
αβB

KL
µν η

αβµν = 0.

In fact, the constraints we use in the following section select the (II±) and (deg) sectors.
However, no further constraints will be used to select the II+ sector. As a result the
resulting spin-foam model mixes the (II±) and (deg) sectors. This issue is discussed in
details in [81], and in [83, 82] a spin-foam model is proposed which is restricted to the
(II+) sector. However, the model is defined for triangulations but a generalization to a
broader class of foams is still an open problem.
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3.1.2. Discretized theory

In order to pass to the spin-foam framework one approximates General Relativity by using
Regge calculus [89]. In this approximation the space-time is approximated by piecewise
flat manifold formed from flat oriented simplices glued such that the geometries of their
boundaries match. Let us focus on a single oriented 4-simplex. The boundary of the
4-simplex consists of five tetrahedra. We number them by a = 0, 1, 2, 3, 4. Since each pair
of tetrahedra shares a single triangle, this triangle is uniquely labelled by an unordered
pair of indices {a,b} and the oriented triangle is uniquely labelled by an ordered pair ab.
The connection ω is discretized by assigning to each pair of neighbouring 4-simplices an
SO(4) group element. The two-forms EIJ are discretized by assigning to each triangle an
element in the so(η) lie algebra, ab 7→ Eab ∈ so(η), such that [81]

Eab = −Eba.

If e 6= 0 then the constraints (3.4) are equivalent to the following ones [67]:

εIJKLE
IJ
αβE

KL
µν = e ηαβµν .

In the discrete theory the constraints take the following form [67, 145]:

•
∀a,b,c εIJKLE

IJ
abE

KL
ac = 0 (3.7)

• for any permutation π : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4}

εIJKLE
IJ
π(1)π(2)E

KL
π(3)π(4) = sgnπ εIJKLE

IJ
12E

KL
34 . (3.8)

It can be shown that if Eab satisfy the following constraints:

• (closure)
∀a

∑
b6=a

EIJab = 0, (3.9)

• (linear simplicity)
∀a ∃na∈R4 : εIJKLn

J
aE

KL
ab = 0 (3.10)

(in the Lorentzian case we assume that na is time-like, for other choices see [64, 62]),

then Eab satisfy the constraints (3.7) and (3.8). In fact the closure and linear simplicity
constraints restrict Eab to the Plebański sectors (II±) or (deg) [81].

Since a variable in the action is B, not E, we need to express the constraints in terms
of BIJ

ab , where according to (3.5) BIJ
ab = EIJab + 1

2β ε
IJ
KLE

KL
ab . Let qa : V → V be the

orthogonal projection onto the space V a⊥ of vectors orthogonal to nIa (let us recall that
V = R4). Given nIa, (qa)iI we decompose each BIJ

ab into ”magnetic” and ”electric” parts:

Liab

(
nIa, (qa)iI

)
=

1

2
(qa)iIna Jε

IJ
KLB

KL
ab , Kiab

(
nIa, (qa)iI

)
= (qa)iIna JB

IJ
ab . (3.11)

Note that although BIJ
ab is antisymmetric in the indices ab, Liab and Kiab do not have this

property. Using Liab and Kiab from (3.11), we write the linear simplicity constraint in the
following form:

Liab −
σ

β
Kiab = 0.
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3. Spin-foam models with the EPRL vertex amplitude

Therefore the constraints on BIJ
ab become the following: for every tetrahedron ”a” there

exists a normalized vector na ∈ V such that Liab and Kiab defined in equations (3.11) satisfy:

• (reduced closure) ∑
b 6=a

Liab = 0, (3.12)

• (linear simplicity)
Liab −

σ

β
Kiab = 0. (3.13)

Note that the equations do not depend on the choice of the basis in V a⊥, i.e. on the choice
of (qa)iI . Note also that the reduced closure constraint (3.12) is equivalent to the closure
constraint (3.9) if the linear simplicity constraint (3.13) is satisfied.

Classically the linear simplicity constraint is equivalent to the following one:

∑
i

(
Liab −

σ

β
Kiab

)2

= 0. (3.14)

However, in the quantum theory, the expressions are not equivalent – in the quantum
theory the formula (3.14) will be used. We introduce self-dual and anti-selfdual part of
BIJ

ab :
B± iab = (Bab ± ∗Bab)IJ(qa)iIna J ,

where the duality operator ∗ is given by (∗Bab)IJ = 1
2ε
IJ
KLB

KL
ab . The relation between

B± iab and Liab, K
i
ab is the following:

B± iab = Kiab ± Liab.

In the quantum theory we will use the equation (3.14) written in the following form:(
1− 1

β2

)(
Liab

)2
+

1

2β2

((
B+ i

ab

)2
+
(
B− iab

)2)− σ

2β

((
B+ i

ab

)2 − (B− iab

)2)
= 0. (3.15)

3.2. Quantum polyhedron

In this section we give a geometric interpretation to the closure and the linear simplicity
constraints in terms of closed convex polyhedra in R4. By a closed convex polyhedron
in Rd (d ≥ 3) we mean a convex hall of a finite number of vectors in Rd spanning a
3-dimensional subspace. Basing on the ideas from [73] and from [24] we quantize the
geometries of the polyhedra and obtain quantum polyhedra. By averaging a 3D quantum
polyhedron over possible embeddings into 4D we obtain an EPRL intertwiner – a basic
building block of the models studied in this chapter.

3.2.1. Polyhedron in 3D

In R3 the geometry of a polyhedron is given by unit vectors normal to the faces and
areas of these faces. In fact, these data determine the polyhedron up to translations. The
existence of a closed convex polyhedron with prescribed areas of the faces and vectors
normal to these faces was proved by Minkowski [137, 8]:
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3.2. Quantum polyhedron

Theorem 1 (Minkowski). If ~n1, . . . , ~nN are distinct non-coplanar unit vectors and A1, . . . , AN
are positive numbers such that

A1~n1 + . . .+AN~nN = 0,

then there exists a closed convex polyhedron which faces have outwards normals ~nI and
areas AI .

He also showed that the polyhedron is unique up to translations [8].
Instead of using unit normals and areas of the faces, one can use (non-zero) vectors ~LI

normal to the faces but not necessarily normalized. They are related to the areas and the
unit normals by the following equations

‖~LI‖ = AI, ~nI =
1

‖~LI‖
~LI.

The conditions on the areas and vectors normal to the faces are transformed into the
following conditions on the vectors ~LI:

• the vectors are not coplanar and each pair of vectors is linearly independent,

•
~L1 + . . .+ ~LN = 0. (3.16)

3.2.2. Polyhedron in 4D

In R4 the geometry of a polyhedron is given by bivectors orthogonal to the faces. Given
two orthogonal unit vectors vI1 , v

I
2 normal to a face, the corresponding bivector is:

EIJ = 2Av
[I
1 v

J ]
2 ,

where A is the area of the face. The norm of the bivector is related to the area by
EIJEIJ = 2A2.

Instead of using bivectors we describe the geometry in terms of antisymmetric matri-
ces. By looking at the condition (3.16) in 3 dimensions one could anticipate that the
matrices should satisfy the closure constraint. In 4 dimensions one needs additionally the
linear simplicity constraint, because not every antisymmetric matrix is a bivector. We use
the following geometric interpretation of the closure and the linear simplicity constraint
(compare Theorem III.1. in [73]):

Theorem 2. If N non-coplanar antisymmetric matrices EIJ1 , . . . , EIJN satisfy the condi-
tions:

• each pair of matrices is linearly independent1,

• (closure constraint)
EIJ1 + . . .+ EIJN = 0,

• (linear simplicity constraint)

∃nI : nIε
IJ
KLE

KL
I = 0 for all I ∈ {1, . . . , N},

1Clearly, the space of antisymmetric matrices is a vector space.
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3. Spin-foam models with the EPRL vertex amplitude

then there exists a closed convex polyhedron in R4 such that EIJI are bivectors normal to
its faces and EIJI EI IJ = 2A2

I , where AI is the area of the face I.

Proof. Given nI , qiI , we decompose each EKLI into ”magnetic” and ”electric” parts (com-
pare (1.4)):

LiI(n
I , qiI) =

1

2
qiInJε

IJ
KLE

KL
I , Ki

I(n
I , qiI) = qiInJE

IJ
I .

The decomposition is an isomorphism between the space of 4× 4 antisymmetric matrices
and R6. Indeed: if EIJ = 2v[InJ ] then Li = 0, Ki = qiJv

J , and if EIJ = εIJKLv
InJ

then LiI = qiJv
J , Ki

I = 0. This shows that the image of the map is the whole space R6.
Therefore the map is an isomorphism.

It is easy to see that the linear simplicity constraint is equivalent to vanishing of the
magnetic part of each matrix EIJI : LiI = 0 is equivalent to nIεIJKLE

KL
I = λnJ for some

λ ∈ R; however nIεIJKLE
KL
I is orthogonal to nJ and thus λ = 0. The vectors Ki

I are
N distinct vectors in R3. Since the matrices are non-coplanar, the vectors are also non-
coplanar and since the matrices satisfy the closure constraint, the vectors satisfy:

Ki
1 + Ki

2 + Ki
3 + Ki

4 = 0.

From Minkowski theorem follows that there exists a closed convex polyhedron (in R3)
which faces have outward normals ~nI = 1

‖~KI‖
~KI and areas AI = ‖~KI‖.

Let us consider the isometric embedding qIi : R3 → R4 such that qIinI = 0, qiIq
I
j = δij .

This embedding maps the tetrahedron in R3 to a tetrahedron in R4 preserving its geometry.
Note that:

EIJI = 2K
[I
I n

J ],

where KI
I := qIiK

i
I . Indeed, it is the unique matrix which ”electric” part is equal Ki

I

and ”magnetic” part is equal 0. Clearly, the bivectors EIJI are normal to the faces and
EIJI EI IJ = 2A2

I .

If the closure constraint and the simplicity constraints are satisfied, but the matrices
are coplanar or two matrices are colinear then the configuration is called degenerate.
The degenerate configurations correspond to degenerate polyhedra obtained as a limit of
(regular) polyhedra.

3.2.3. Quantum polyhedron in 3D

We now switch to the quantum theory. Let τ i = iσi, where σi are the Pauli matrices.
The matrices τi form a basis of su(2) – the Lie algebra of the SU(2) group. Let us denote
by ρk : SU(2)→ U(Hk) a unitary irreducible representation of the SU(2) group with spin
k, and by ρ′k the corresponding representation of its Lie algebra. The quantum operators
corresponding to the vectors LiI from section 3.2.1 act in the Hilbert space

Hk1 ⊗ . . .⊗HkN

and are defined by
L̂iI = id⊗ . . .⊗ ρ′kI(τ

i)⊗ . . .⊗ id.
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3.2. Quantum polyhedron

A tensor I ∈ Hk1 ⊗ . . .HkN will be called a quantum polyhedron in 3D if it satisfies the
following quantum constraint: (

L̂i1 + . . .+ L̂iN

)
I = 0. (3.17)

This is quantum version of the classical constraint (3.16). Let us note that the operator

L̂i1 + . . .+ L̂iN

is a generator of a diagonal action of the SU(2) group on Hk1 ⊗ . . .⊗HkN :

u · I = ρk1(u)⊗ . . .⊗ ρkN (u)I.

The solutions of the equation (3.17) are the invariant tensors Inv (Hk1 ⊗ . . .HkN ). The
space Inv (Hk1 ⊗ . . .HkN ) will be called the space of quantum polyhedra in 3D and any
element of the space will be called a quantum polyhedron in 3D. If N = 4 this definition
reduces to the definition of quantum tetrahedron in 3D from [24, 36, 35].

3.2.4. Quantum polyhedron in 4D

In quantum theory the SO(4) group is replaced with the Spin(4) group

The Holst-Palatini formulation as well as the Plebański formulation allow to consider
General Relativity as an example of a (diffeomorphism invariant) SO(1,3) gauge theory
in the Lorentzian signature or SO(4) gauge theory in the Euclidean signature. In the
quantum theory these groups will be replaced by their universal coverings [86]. In par-
ticular, the SO(4) group is replaced with Spin(4) group, which is isomorphic with the
Spin(4)=SU(2)×SU(2) group. The group homomorphism from the SU(2)×SU(2) group
to the SO(4) is defined in the following way (see for example [96]). Every element of
R4 = C2 can be identified with a 2×2 complex matrix

x =

(
z1 z2

−z2 z1

)
.

The action of an SU(2)×SU(2) group element g = (g+, g−) ∈ Spin(4) on x is

g · x = g+ x (g−)−1.

Clearly, this action preserves the determinant |z1|2 + |z2|2 and therefore is an orthog-
onal transformation of R4. In fact, it is an SO(4) transformation, because the group
SU(2)×SU(2) is connected, and the transformation corresponding to identity element in
Spin(4) is the identity transformation of R4. Let us note that the diagonal subgroup (h, h)
is the subgroup leaving

n̊ =

(
1 0
0 1

)
invariant (this matrix corresponds to the vector n̊I = δI0). We will denote by [g]IJ the
SO(4) matrix corresponding to g.
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3. Spin-foam models with the EPRL vertex amplitude

The unitary irreducible representations of the Spin(4)=SU(2)×SU(2) group are defined
by a pair of SU(2) unitary irreducible representations ρj+ , ρj− . We denote by ρj+j− ,
j+, j− ∈ 1

2N, the representation :

ρj+j−(g+, g−) = ρj+(g+)⊗ ρj−(g−)

acting in the tensor product Hj+ ⊗Hj− =: Hj+j− . By ρ′j+j− we denote the corresponding
representation of spin(4) (the Lie algebra of Spin(4)).

Let τ IJ be a basis of so(4), τ IJ ∈ End(R4), such that (τ IJ)KL = i(δIK δ
J
L − δIL δ

J
K).

The spin(4) Lie algebra and the so(4) Lie algebra are isomorphic. The isomorphism
spin(4)→ so(4) is given by:

(τ i, 0) 7→ τ i+ := τ i0 +
1

2
εi0jkτ

jk, (0, τ i) 7→ τ i− := τ i0 − 1

2
εi0jkτ

jk.

It is easy to invert this isomorphism:

τ i0 7→ (
1

2
τi,

1

2
τi), τ jk 7→ (−1

2
εjkiτ

i,
1

2
εjkiτ

i).

The representation ρ′j+j− of the basis elements τ IJ is:

ρ′j+j−(τ i0) =
1

2
ρ′j+(τi)⊕ ρ′j−(τi), ρ′j+j−(τ jk) =

1

2
εjki ρ

′
j+(−τi)⊕ ρ′j−(τi).

Quantum polyhedron in 4D orthogonal to nI

The quantum operators corresponding to BIJ
I act in the Hilbert space

Hj+1 j−1 ⊗ . . .⊗Hj+N j−N
and are defined by

B̂IJ
I = id⊗ . . .⊗ ρ′

j+I j
−
I

(τ IJ)⊗ . . .⊗ id.

This choice of quantum operators is justified by the Poisson bracket structure of the
discrete theory [73]. We decompose the operators into ”electric” and ”magnetic” parts:

L̂iI =
1

2
nIq

i
Jε
IJ
KLB̂

KL
I , K̂iI = nIq

i
J B̂

IJ
I .

and introduce the operators corresponding to the self-dual and anti-selfdual components
Bi±

I :
B̂i±

I = K̂iI ± L̂iI .

Let us note that the operators L̂iI , K̂
i
I as well as B̂i±

I depend on the choice of basis in V⊥
(and thus on qiI). The quantum constraints do not depend on the choice of the basis and
neither does the quantum polyhedron.

Let us quantize the reduced closure and the linear simplicity constraints (3.12), (3.15).

Let Hn,qiI
poly be a Hilbert space of solutions to the following equations (ι ∈ Hj+1 j−1 ⊗ . . . ⊗

Hj+N j−N ):

• (quantum reduced closure)
∑N

I=1 L̂
i
I ι = 0,
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3.2. Quantum polyhedron

• (quantum linear simplicity)((
1− 1

β2

) (̂
LiI
)2

+
1

2β2

(
̂(
B+ i

I

)2
+

̂(
B− iI

)2)− 1

2β

(
̂(
B+ i

I

)2 − ̂(
B− iI

)2))
ι = 0,

where (̂
LiI
)2

= (L̂iI)
2 −

√
(L̂iI)

2 +
1

4
id +

1

2
id,

̂(
B± iI

)2
= (B̂± iI )2 −

√
(B̂± iI )2 +

1

4
id +

1

2
id.

The choice of the operators
(̂
LiI
)2 and

̂(
B± iI

)2
seems to be very enigmatic and far from

the expected operators (L̂iI)
2 and (B̂± iI )2. The choice becomes clear after inspecting

the spectra of the operators: the spectrum of the operator (L̂i)2 is k(k+ 1) while the

spectrum of the operator
(̂
LiI
)2 is k2 and similarly for (B̂± iI )2 and

̂(
B± iI

)2
. When

the spins are large, i.e. in the classical limit, the operators coincide – therefore the

choice of
(̂
LiI
)2 instead of (L̂iI)

2 can be interpreted as a quantization ambiguity. This
choice of quantization is motivated by the fact that the solutions of the quantum
linear simplicity constraint exist and in fact take a simple form.

The quantum constraints are matrix equations. Remarkably, the matrices commute and
therefore there is a common basis diagonalizing them. The subspace of solutions is the
subspace corresponding to zero eigenvalue of all the matrices. From the invariance of

these equations under the choice of basis in V⊥ follows that the Hilbert spaces Hn,qiI
poly do

not depend on the choice of qiI . Therefore we will write Hn
poly = Hn,qiI

poly and call Hn
poly the

Hilbert space of quantum polyhedra in 4D orthogonal to nI . The vectors in Hn
poly will be

called quantum polyhedra in 4D orthogonal to nI and denoted by ιnpoly.
Let us construct the quantum polyhedra orthogonal to nI . First, note that from the

transformation property:

ρj+j−(g)ρ′j+j−(τ IJ)ρj+j−(g−1) = [g−1]IK [g−1]JLρ
′
j+j−(τKL).

follows that, if ιnpoly is a quantum polyhedron orthogonal to nI then

N⊗
I=1

ρj+I j
−
I

(g)ιnpoly

is a quantum polyhedron orthogonal to (g · n)I = [g]IJn
J . As a result, the natural action

of the Spin(4) group on Hj+1 j−1 ⊗ . . .⊗Hj+N j−N ,

ι 7→ g · ι :=

N⊗
I=1

ρj+I j
−
I

(g)ι (3.18)

defines an isomorphism of the Hilbert spaces Hn
poly and Hg·npoly. In particular, from the

invariance of the quantum constraints under the choice of basis in V⊥ follows that the space
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3. Spin-foam models with the EPRL vertex amplitude

Hn
poly is invariant under the action of SUn(2) – the SU(2) subgroup of Spin(4) leaving nI

invariant. We find the solutions to the quantum equations in the case n̊I = δI0 , q̊
i
J = δiJ , i.e.

the Hilbert space Hn̊
poly. The Hilbert spaces Hn

poly are obtained by using the isomorphisms
(3.18).

The reduced closure constraint has the following solutions. The operator
∑N

I=1 L̂
i
I is an

infinitesimal generator of the action of SUn(2) on Hn
poly:

u · ι =
N⊗
I=1

ρj+1 j
−
1

(u)ι, u ∈ SUn(2)

and the solutions to this constraint are tensors invariant under the action. As a result, not
only the Hilbert space Hn

poly is invariant under the action of the SUn(2) group but also
each element of the space is invariant under this action. In the case n̊I = δI0 the SU(2)
subgroup leaving nI invariant is the diagonal subgroup SUn̊(2) = {(h, h) : h ∈ SU(2)} and
the space of solutions of this constraint is spanned by elements of the following form:

ι(I)A
+
1 A
−
1 ...A

+
NA
−
N = C

A+
1 A
−
1

A1
. . . C

A+
NA
−
N

AN
IA1...AN ,

where C
j+I j
−
I

kI
∈ Inv

(
Hj+I ⊗Hj−I ⊗H

∗
kI

)
, |j+

I − j−I | ≤ kI ≤ j+
I + j−I , kI + j+

I + j−I ∈ N,

I ∈ Inv
(
Hρk1 ⊗ . . .⊗HρkN

)
. We choose the normalization of C

j+I j
−
I

kI
such that C

j+I j
−
I

kI
:

HkI → Hj+I ⊗Hj−I is an isometric embedding. By CkI
j+I j
−
I

we denote the adjoint operator.

In the index notation we omit j+
I , j

−
I , kI, e.g.

C
A+

I A
−
I

AI
:= (C

j+I j
−
I

kI
)
A+

I A
−
I

AI
,

AI ∈ {1, ..., 2kI + 1} corresponds to the space HkI , A+
I ∈ {1, ..., 2j+

I + 1} corresponds to the
space H∗

j+I
and A−I ∈ {1, ..., 2j−I + 1} corresponds to the space H∗

j−I
.

We impose now the quantum linear simplicity constraint. The vectors ι(I) are eigen-
vectors of the operators (L̂iI)

2 and (B̂± iI )2:

(L̂iI)
2ι(I) = kI(kI + 1)ι(I), (B̂± iI )2ι(I) = j±I (j±I + 1)ι(I),

as well as of the operators
(̂
LiI
)2 and

̂(
B± iI

)2
:

(̂
LiI
)2
ι(I) = k2

I ι(I),
̂(
B± iI

)2
ι(I) = (j±I )2ι(I).

The linear simplicity constraint becomes a constraint on the spins kI, j
+
I , j

−
I :(

1− 1

β2

)
k2
I +

1

2β2

(
(j+

I )2 + (j−I )2
)
− 1

2β

(
(j+

I )2 − (j−I )2
)

= 0.

Using the fact that |j+
I − j−I | ≤ kI ≤ j+

I + j−I it can be shown that this equation has the
following solution [81]:

j±I =
|1± β|

2
kI,
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3.2. Quantum polyhedron

provided that |1±β|2 kI ∈ 1
2N. As a result, if β and k1, . . . , kN are such that

|1± β|
2

kI ∈
1

2
N,

then for each I ∈ Inv (Hk1 ⊗ . . .⊗HkN ) there is a quantum polyhedron

ι̊poly(I) ∈ Inv
(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
, j±I =

|1± β|
2

kI,

defined by

ι̊poly(I)A
+
1 A
−
1 ...A

+
NA
−
N = C

A+
1 A
−
1

A1
. . . C

A+
NA
−
N

AN
IA1...AN . (3.19)

Using the isomorphism (3.18) we obtain that any element of Hn
poly is of the following

form:

ιpoly(nI , I) =
N⊗
I=1

ρj+I j
−
I

(g)̊ιpoly(I), (3.20)

for some g ∈ Spin(4) such that nI = [g]I0 and I ∈ Inv (Hk1 ⊗ . . .⊗HkN ). The map
Inv (Hk1 ⊗ . . .⊗HkN ) → Hn

poly, I 7→ ιpoly(nI , I) is an isomorphism of Hilbert spaces. It
maps a quantum polyhedron in 3 dimensions to a quantum polyhedron in 4 dimensions
orthogonal to nI .

Quantum polyhedron in 4D

The linear simplicity constraint requires that there exists a unit vector nI such that the
condition (3.15) is satisfied. In order to meet this condition, we define the set of embedded
quantum polyhedra to be ⋃

n

Hn
poly ⊂ Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

This is however not a Hilbert space. In order to obtain a Hilbert space we consider two
embedded quantum polyhedra in 4D to be congruent if one can be obtained from the
other by a Spin(4) transformation (the analogous congruence condition in 3D is trivially
satisfied). As a result, we define

Hpoly :=

(⋃
n

Hn
poly

)
/Spin(4),

i.e. the space of orbits of the action of the Spin(4) group on the set
⋃

nHn
poly. The elements

of this space will be called quantum polyhedra in 4D. The space Hpoly has a natural vector
space structure:

λ [ιpoly(nI , I)] + λ′ [ιpoly(n′
I
, I ′)] := [λ ιpoly(nI , I) + λ′ ιpoly(nI , I ′)],

and a natural scalar product:〈
[ιpoly(nI , I)]|[ιpoly(n′

I
, I ′)]

〉
:=
〈
ιpoly(nI , I)|ιpoly(nI , I ′)

〉
.

As a result Hpoly is a Hilbert space. It will be called the Hilbert space of quantum
polyhedra in 4D. Remarkably, Hpoly is isomorphic with the Hilbert space of quantum
polyhedra in 3D. The states ofHpoly are obviously invariant under the action of the Spin(4)
group – this can be interpreted as an implementation of the (full) closure constraint (3.9).
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3. Spin-foam models with the EPRL vertex amplitude

The EPRL intertwiners

The EPRL intertwiner is obtained by averaging an embedded quantum polyhedron in 4D
ιpoly(nI , I) ∈ Hn

poly over the group of Spin(4) transformations (rotations of the embedded
quantum polyhedron):

ιEPRL(I) =

∫
Spin(4)

dg
N⊗
I=1

ρj+1 j
−
1

(g)ιpoly(nI , I).

Let us note that this integral does not depend on nI . From the invariance of the embedded
quantum polyhedron in 4D under the group or SU(2) transformations leaving nI invariant,
follows that one can equivalently write the integral as an average over the unit normals
nI (compare eq. (3.50) in [179]):

ιEPRL(I) =

∫
S3
dn ιpoly(nI , I). (3.21)

3.3. The generalized EPRL vertex amplitude

3.3.1. The EPRL intertwiners

Here we summarize the construction of the EPRL intertwiners. In a given intertwiner
space Inv

(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
a necessary condition for the existence of an EPRL

intertwiner is

j+
I =

|β + 1|
|β − 1|j

−
I , I = 1, ..., N, (3.22)

where we assume that β ∈ R, β 6= 0,±1 (in fact the condition can be satisfied only for
β ∈ Q). An ingredient of the EPRL intertwiner is an SU(2) invariant

I ∈ Inv (Hk1 ⊗ ... ⊗HkN ) , (3.23)

where the spins kI are adjusted as follows

kI :=

{
j+
I + j−I , if − 1 < β < 1

|j+
I − j−I |, if β < −1 or 1 < β .

(3.24)

Given I, an EPRL intertwiner ιEPRL(I) is defined using the invariants

C
j+I j
−
I

kI
∈ Inv

(
Hj+I ⊗Hj−I ⊗H

∗
kI

)
, I = 1, ..., N. (3.25)

First, let us construct a tensor

C
j+1 j
−
1

k1
⊗ ... ⊗ Cj

+
N j
−
N

kN
y I ∈ Hj+1 ⊗ ... ⊗Hj+n ⊗ Hj−1 ⊗ ... ⊗Hj−N . (3.26)

In the index notation
C
A+

1 A
−
1

B1
... C

A+
NA
−
N

BN
IB1...BN . (3.27)

Next, let us project this tensor orthogonally onto the subspace of invariant tensors. The
resulting tensor is the EPRL intertwiner:

ιEPRL(I) := P C
j+1 j
−
1

k1
⊗ ... ⊗ Cj

+
N j
−
N

kN
yI, (3.28)
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3.3. The generalized EPRL vertex amplitude

where
P : Hj+1 j−1 ⊗ . . .⊗Hj+N j−N → Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

is the orthogonal projection onto Inv
(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
. Since

Inv
(
Hj+1 j−2 ⊗ ... ⊗Hj+N j−N

)
= Inv

(
Hj+1 ⊗ ... ⊗Hj+N

)
⊗ Inv

(
Hj−1 ⊗ ... ⊗Hj−N

)
⊂ Hj+1 ⊗ ... ⊗Hj+N ⊗ Hj−1 ⊗ ... ⊗Hj−N ,

(3.29)

the projection P is of the form:
P = P+ ⊗ P−,

where
P± : Hj±1 ⊗ ... ⊗Hj±N → Hj±1 ⊗ ... ⊗Hj±N

are the orthogonal projections onto Inv
(
Hj±1 ⊗ ... ⊗Hj±N

)
. In the index notation the

equation (3.28) takes the following form:

ιEPRL(I)A
+
1 ...A

+
NA
−
1 ...A

−
N = P+A

+
1 ...A

+
N

D+
1 ...D

+
N

P+A
−
1 ...A

−
N

D−1 ...D
−
N

C
D+

1 D
−
1

B1
... C

D+
ND
−
N

BN
IB1...BN . (3.30)

The formula (3.28) can be written in a simpler way by skipping one of the projections,
namely

ιEPRL(I) = (P+⊗1)C
j+1 j
−
1

k1
⊗ ... ⊗Cj

+
N j
−
N

kN
yI = (1⊗P−)C

j+1 j
−
1

k1
⊗ ... ⊗Cj

+
N j
−
N

kN
yI , (3.31)

and in the index notation

ιEPRL(I)A
+
1 ...A

+
NA
−
1 ...A

−
N = P+A

+
1 ...A

+
N

D+
1 ...D

+
N

C
D+

1 A
−
1

B1
... C

D+
NA
−
N

BN
IB1...BN (3.32)

The EPRL intertwiners form a subspace in Inv
(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
. This subspace

will be called the space of EPRL intertwiners and denoted by

InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
.

3.3.2. The EPRL map

Given β ∈ Q and kI ∈ 1
2N, I ∈ {1, . . . , N} such that ∀I j±I := |1±β|

2 kI ∈ 1
2N, the map

ιEPRL : Inv (Hk1 ⊗ · · · ⊗ HkN )→ Inv
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
(3.33)

defined as follows:

ιEPRL(I)A
+
1 ...A

+
NA
−
1 ...A

−
N := P+A

+
1 ...A

+
N

D+
1 ...D

+
N

P+A
−
1 ...A

−
N

D−1 ...D
−
N

C
D+

1 D
−
1

B1
... C

D+
ND
−
N

BN
IB1...BN

will be called the Engle-Pereira-Rovelli-Livine map (EPRL map in short) and denoted by
ιEPRL [123]. Let us note that although the EPRL intertwiner is defined for β ∈ Q, β 6=
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3. Spin-foam models with the EPRL vertex amplitude

0,±1, we define the EPRL map for β ∈ Q (see [123] for a discussion of the limits of the
EPRL intertwiner and the EPRL spin-foam model as β → 0,±1).

Let us note that the EPRL map can be also viewed as a map from a Hilbert space of
quantum polyhedra in 4D into a space of Spin(4) invariant tensors assigning to a quantum
polyhedron in 4D [ιpoly(nI , I)] an EPRL intertwiner∫

Spin(4)
dg

N⊗
I=1

ρj+1 j
−
1

(g)ιpoly(nI , I).

Clearly, the EPRL intertwiner does not depend on the choice of the representant of the
equivalence class [ιpoly(nI , I)] and thus the map is well defined.

3.3.3. The EPRL spin networks

An EPRL spin network is a Spin(4) spin network (γ, ρEPRL, ιEPRL) such that:

• ρEPRL
` = ρj+` j

−
`

, where j+
f = |β+1|

|β−1|j
−
f ,

• ιEPRL
n is an EPRL intertwiner:

ιEPRL
n ∈ InvEPRL

 ⊗
` incoming to n

H∗` ⊗
⊗

`′ outgoing from n

H`′

 ⊂ Hn.
To each SU(2) spin network s = (γ, ρk, I) such that ∀`∈γ(1) |1±β|2 k` ∈ 1

2N there corresponds
an EPRL spin network ιEPRL(s) = (γ, ρEPRL, ιEPRL) defined by the following conditions:

• ρEPRL
` = ρj+` j

−
`

, where j±` = |1±β|
2 k`,

• ιEPRL
n = ιEPRL(In).

3.3.4. The generalized EPRL vertex amplitude

In the spin-foam model of quantum Spin(4) BF theory the vertices are colored with the
vertex traces

Trv :
⊗

e incoming at v

Inv (He)⊗
⊗

e outgoing at v

Inv (He)∗ → C.

We define a pullback of the vertex trace Trv with the EPRL map:

ι∗EPRL(Trv)

 ⊗
outgoing e

I†e ⊗
⊗

incoming e′

Ie′

 :=

= Trv

 ⊗
outgoing e

ιEPRL(I†e)⊗
⊗

incoming e′

ιEPRL(Ie′)

 .

The contractor ι∗EPRL(Trv) will be called an EPRL contractor and denoted by AEPRL
v :

AEPRL
v := ι∗EPRL(Trv).
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3.3. The generalized EPRL vertex amplitude

Since the EPRL map can be also viewed as a map from a Hilbert space of quantum
polyhedra in 4D to a space of Spin(4) invariant tensors, the EPRL contractor could be also
viewed as a linear functional on a tensor product of Hilbert spaces of quantum polyhedra
in 4D.

The vertex amplitude corresponding to the EPRL contractor is called the EPRL vertex
amplitude:

AEPRL
v (s†v) := AEPRL

v

 ⊗
n∈γ(0)v

In

 .

The EPRL vertex amplitude is the evaluation of the EPRL spin network corresponding
to the SU(2) vertex spin network s†v:

AEPRL
v (s†v) = ψιEPRL(sv)(I).

We interpret the EPRL vertex amplitude in the following way. The quantum polyhedra
in 3D I†e/Ie′ corresponding to a single internal vertex v are embedded into 4D and glued
together to form a boundary of a 4-dimensional bulk. Then one integrates over the vectors
nI orthogonal to the quantum polyhedra in each bulk separately. A quantum polyhedron
in 3D Ie corresponding to an internal edge e is embedded to 4D twice, because it appears
in the boundaries of the two adjacent bulks corresponding to the two internal vertices on
the endpoints of e. The degrees of freedom corresponding to the connection are encoded
in the Spin(4) transformation relating the two embeddings. The degrees of freedom cor-
responding to the B field are encoded in the intertwiners I, the spins and partially in the
vectors nI . The integral over the vectors normal to the polyhedra (3.21) is a part of the
functional integral – the degrees of freedom corresponding to the connection and some
degrees of freedom corresponding to the B field are integrated out. Let us note that the
geometries of the boundaries of the polyhedra in 3D that are embedded to 4D and glued
together do not have to match. As a result the corresponding classical geometries do not
have to be the Regge geometries but could be more general geometries [102] called twisted
geometries [98, 99, 80, 171].

If the foam is defined by triangulation of space-time, the polyhedra are tetrahedra and
the tetrahedra corresponding to a single internal vertex v are glued together to form
a boundary of a 4-simplex. In this case the EPRL vertex amplitude is also called the
EPRL 4-simplex amplitude. The semi-classical limit of the EPRL 4-simplex amplitude
was studied in [40] for the Euclidean signature and in [41] for the Lorentzian signature. The
asymptotic formula relates the EPRL 4-simplex amplitude to the Regge action of four-
dimensional General Relativity very much like the asymptotic formula in section 1.3.2
relates the Ponzano-Regge vertex amplitude to the Ponzano-Regge action. This makes
the models studied in the section 3.4 very promising. However, in [81] an issue with the
semi-classical limit of the 4-simplex amplitude was raised. The author argues that the
EPRL 4-simplex amplitude mixes the (II±) and (deg) Plebański sectors (see section 3.1).
In [83, 82] the author proposes a new vertex amplitude in the Euclidean case. The model
is however limited to foams defined by triangulations.
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3. Spin-foam models with the EPRL vertex amplitude

3.4. The spin-foam models with the EPRL vertex amplitude

In this section we compare the two models with the (generalized) EPRL vertex amplitude:
the model we introduced in [123], which we will call Spin(4) spin-foam model with the
EPRL vertex, and the model from [48], which we will call SU(2) spin-foam model with
the EPRL vertex. The models depend on the Barbero-Immirzi parameter β, which we
assume to be rational and different from 0,±1.

3.4.1. Spin(4) spin-foam model with the EPRL vertex

In this subsection we present a model where the spin foams are histories of the EPRL spin
networks. We introduced this model in [123] and studied it in [123, 124, 29].

• The Spin(4) EPRL spin foam (κ, ρ, ι,A) is a foam κ with a coloring such that

– ρf = ρj+f j
−
f

, where j+
f = |β+1|

|β−1|j
−
f .

– ιe is an EPRL intertwiner, ιe ∈ InvEPRL (He) ⊂ Inv (He),
– Av is the vertex trace Av = Trv ∈ H∗v familiar from the BF theory (see sec-

tion 1.3.2).

• The amplitude of each spin foam (κ, ρ, ι,A) is defined by the formula:

Z(κ, ρ, ι,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df
∏
v∈κ(0)int

Trv(s
†
v),

where df = dimHf . In this model df = (2j+
f + 1)(2j−f + 1).

• To sum with respect to the spin-network histories with the amplitude as a weight,
one fixes an orthonormal basis in each space

InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+M j−M ⊗H

∗
j+M+1j

−
M+1
⊗ . . .⊗H∗

j+N j
−
N

)
of the EPRL intertwiners. In the (suitably defined) sums the intertwiners run
through the fixed basis, for each choice of the representations at each edge.

Let us note that the structure of the spin-foam amplitudes is that of the BF theory. It
has the following interpretation: the amplitudes are calculated using Spin(4) spin-foam
model of quantum BF theory, the Quantum Gravity is obtained by restricting to histories
satisfying the constraints, i.e. restricting the possible coloring of faces and edges.

3.4.2. SU(2) spin-foam model with the EPRL vertex

An alternative spin-foam model with the EPRL vertex amplitude was proposed in [48].
In this model the spin foams are histories of the SU(2) spin networks. The model is a
modification of quantum SU(2) BF theory obtained by assigning to vertices the EPRL
contractors. In this approach a boundary of a spin foam is an SU(2) spin network and
therefore the model is naturally compatible with the standard SU(2) formulation of Loop
Quantum Gravity.
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• The SU(2) EPRL spin foam (κ, ρ, ι,A) is a foam κ with a coloring such that

– ρf = ρkf is an SU(2) representation such that |1±β|2 kf ∈ 1
2N,

– ιe is any invariant tensor in Inv (He),
– Av is the EPRL contractor AEPRL

v .

• The amplitude of each spin foam (κ, ρ, ι,A) is defined by the formula:

Z(κ, ρ, ι,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df
∏
v∈κ(0)int

AEPRL
v (s†v),

where df = dimHf = 2kf + 1.

• To sum with respect to the spin-network histories with the amplitude as a weight,
one fixes an orthonormal basis in each space

Inv
(
Hk1 ⊗ . . .⊗HkM ⊗H∗kM+1

⊗ . . .⊗H∗kN
)

of the SU(2) intertwiners.

This model was successfully extended to the SL(2,C) theory [48, 163, 165].

3.4.3. Comparison of the models

Since the SU(2) invariants parametrize the space of the EPRL intertwiners, one could also
use SU(2) coloring from the SU(2) spin-foam model with the EPRL vertex in the Spin(4)
spin-foam model with the EPRL vertex. The resulting model is defined in the following
way:

• The spin foams (κ, ρ, ι,A) are the SU(2) spin foams from section 3.4.2, i.e. they are
foams κ with colorings such that

– ρf = ρkf is an SU(2) representation such that |1±β|2 kf ∈ 1
2N,

– ιe is any invariant tensor in Inv (He),
– Av is the EPRL contractor AEPRL

v .

• The amplitude of each spin foam (κ, ρ, ι,A) is defined by the formula:

Z(κ, ρ, ι,A) =
∏

`∈(∂κ)(1)

Alink(∂ρ`)
∏

f∈κ(2)
Aface(ρf )

∏
v∈κ(0)int

AEPRL
v (s†v),

where Aface(ρk) = (|β + 1|k + 1)(|β − 1|k + 1), Alink(ρk) = 1√
(|β+1|k+1)(|β−1|k+1)

.

• To sum with respect to the spin-network histories with the amplitude as a weight,
one fixes a basis in each Inv

(
Hk1 ⊗ ...HkM ⊗H∗kM+1

⊗ ...⊗H∗kN
)

that is mapped
with the EPRL map to an orthonormal basis in

InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+M j−M ⊗H

∗
j+M+1j

−
M+1
⊗ . . .⊗H∗

j+N j
−
N

)
.
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3. Spin-foam models with the EPRL vertex amplitude

The correspondence with the model from section 3.4.1 is the following. A spin kf uniquely
determines a pair of spins j+

f (kf ) = |1+β|
2 kf , j

−
f (kf ) = |1−β|

2 kf and therefore the coloring
ρkf is equivalent to the coloring ρj+f j

−
f

from section 3.4.1. As we will see in the next chapter,

an EPRL map is 1-1 unless its domain is non-trivial but its co-domain is trivial. If the co-
domain is trivial, the spin-foam amplitudes in the model presented in this section as well as
in the model from section 3.4.1 are zero. Therefore these degenerate configurations do not
contribute in neither of the models. If the co-domain is non-trivial, the EPRL map maps
a basis of SU(2) intertwiners to a basis of the EPRL intertwiners. Therefore the coloring
of intertwiners is equivalent to the coloring from section 3.4.1 and the correspondence
is given by the EPRL map. Clearly, the sums over the intertwiners are also equivalent.
Since the EPRL contractor is just a pullback of the vertex trace (see section 3.3.4), an
amplitude of an SU(2) spin foam defined in this section is the same as the amplitude of
the corresponding Spin(4) EPRL spin foam from section 3.4.1.

It is now easy to compare the Spin(4) spin-foam model with the EPRL vertex and the
SU(2) spin-foam model with the EPRL vertex. The result of the comparison is summarized
in table 3.1.

Spin(4) spin-foam model with the
EPRL vertex

SU(2) spin-foam model
with the EPRL vertex

face amplitude (|β + 1|kf + 1)(|β − 1|kf + 1) 2kf + 1

boundary link
amplitude

1√
(|β+1|kf`+1)(|β−1|kf`+1)

1√
2kf`+1

vertex amplitude EPRL vertex amplitude

sum over inter-
twiners

sum over orthonormal basis in

InvEPRL

(⊗
f Hj+f j−f ⊗

⊗
f ′ H∗j+

f ′j
−
f ′

) sum over or-
thonormal basis in
Inv

(⊗
f Hkf ⊗

⊗
f ′ H∗kf ′

)
Table 3.1.: Comparison of the SU(2) spin-foam model corresponding to the Spin(4) spin-

foam model with the EPRL vertex and the SU(2) spin-foam model with the
EPRL vertex.

3.5. Other spin-foam models of 4D Quantum Gravity

There are three main proposals for the spin-foam models of 4D Quantum Gravity:

1. The Barrett-Crane (BC) model corresponding to the Palatini action [38, 39].

2. The Engle-Pereira-Rovelli-Livine (EPRL) model corresponding to the Holst-Palatini
action with real, positive value of the Barbero-Immirzi parameter β. In the Euclidean
case it is additionally assumed that β is rational and different from 1 [86] 2.

2Although in the original paper [86] the authors restrict to positive values of the Barbero-Immirzi pa-
rameter, the derivation of the Euclidean EPRL model works also for negative values. In this thesis we
assume that in the Euclidean case β ∈ Q, β 6= 0,±1. The Barbero-Immirzi parameter β needs to be
rational because the constraint j±I = |1±β|

2
kI can be solved only for β rational (see section 4.2 for more

detailed discussion).
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3. The Freidel-Krasnov (FK) model also corresponding to the Holst-Palatini action
with real, positive value of the Barbero-Immirzi parameter β. In the Euclidean case
it is additionally assumed that β is rational and different from 1 [96].

The Euclidean BC model is based on BC intertwiners. The BC intertwiners were derived
by passing to the quantum level some symmetry between the self-dual and anti-self dual
2-forms [38, 183, 37, 157, 140]. In [4] it was noticed, that the BC states are insufficient
to define physical semi-classical states of Quantum Gravity. That observation produced
a new activity and led to the EPRL theory. The EPRL approach uses the Holst-Palatini
action and the BC approach uses the Palatini action. In the limit β → ±∞ the conditions
(3.22,3.23,3.24,3.25,3.32) defining the EPRL intertwiners go to (see section 3.3.1)

j+
I = j−I =: jI, kI = 0, C

j+I j
−
I

kI
= εj

+
I j
−
I , I = 1, (3.34)

ιEPRL(1)A
+
1 ...A

+
nA
−
1 ...A

−
n = P+A

+
1 ...A

+
n

D+
1 ...D

+
n
εD

+
1 A
−
1 ... εD

+
NA
−
N , (3.35)

where εj
+
I j
−
I ∈ Inv

(
Hj+I ⊗Hj−I

)
are invariants unique up to scaling (the normalization

and reality condition reduce the scaling ambiguity to ±1). The EPRL intertwiner becomes
the BC intertwiner. This is consistent with the fact that the classical Holst-Palatini action
becomes the Palatini action in the limit β → ±∞.

The FK model also uses the Holst-Palatini action. The quantum simplicity constraint is
encoded in a construction of suitable kinematical semiclassical states. Remarkably, in the
Euclidean case the result coincides with the EPRL model as long as 0 < β < 1, whereas
the result is different for β > 1. In particular β → ∞ is no longer the BC model. We do
not study the FK model in the case β > 1 in the thesis.
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In this chapter we will show that the kernel of an EPRL map (see section 3.3.2) is trivial
unless the co-domain of the map is trivial and the domain is non-trivial. We also give an
example of non-isometric EPRL map.

The LQG states defined by spin networks such that each spin network has at least one
node labelled with an intertwiner that is not in the domain of or happens to be annihilated
by an EPRL map are not given any chance to play a role in the physical Hilbert space.
In this sense they are degenerate. In section 4.2 we will formulate the theorem concerning
injectivity of the EPRL map. We will also discuss the states which are not in the domain
of the EPRL map. We will prove the injectivity theorem in the case |β| ≥ 1 in section 4.3
and in the case |β| < 1 in section 4.4. The proof is technical and therefore we will begin
the chapter with an example of a non-isometric EPRL map (section 4.1).

The importance of the non-isometricity of the EPRL map was already emphasized in
the previous chapter (section 3.4). Given an orthonormal basis I1, . . . , IN of the Hilbert
space

Inv
(
Hk1 ⊗ . . .⊗HkM ⊗H∗kM+1

⊗ . . .⊗H∗kN
)

we have a basis ιEPRL(I1), . . ., ιEPRL(IN ) of the corresponding Hilbert space1

InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+M j−M ⊗H

∗
j+M+1j

−
M+1
⊗ . . .⊗H∗

j+N j
−
N

)
.

The question is, whether or not the latter basis is also orthonormal. In section 4.1 we will
present an example, where this is not the case. As a result, in the example the Hilbert
space of SU(2) spin networks and the Hilbert space of Spin(4) EPRL spin networks are
not isomorphic. This leads to the ambiguity in the definition of the spin-foam model
with the EPRL vertex amplitude: either one considers the spin foams as histories of the
SU(2) spin networks and sums over orthonormal basis in the space of SU(2) intertwiners
(see section 3.4.2), or one considers the spin foams as histories of the Spin(4) EPRL spin
networks and sums over an orthonormal basis in the space of EPRL intertwiners (see
section 3.4.1).

4.1. Non-isometricity of the EPRL map

In this section we give an example of a non-isometric EPRL map. Consider an SU(2)
intertwiner I ∈ Inv (Hk1 ⊗Hk2 ⊗Hk3 ⊗Hk4). We choose a basis |kImI〉 (the eigenvector
of the third component of angular momentum operator with eigenvalue mI) in each space
HkI , I ∈ {1, . . . , 4}. We choose a real basis of the space Inv (Hk1 ⊗Hk2 ⊗Hk3 ⊗Hk4) in

1Unless all the intertwiners ιEPRL(I I) are trivial.
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the following form [2]:

(Ia)k1m1k2m2k3m3k4m4 =
√

2a + 1
k∑

m=−k

a∑
m′=−a

(−1)a+m

(
k1 k2 a
m1 m2 m

)
·

· δm,−m′
(

k3 k4 a
m3 m4 m′

)
,

where
(

k1 k2 k3

m1 m2 m3

)
is the Wigner 3j-Symbol, δm,m′ is the Kronecker Delta.

Let ιj+ ⊗ ιj− be the basis of the space Inv
(
Hj+1 ⊗ . . .⊗Hj+4

)
⊗ Inv

(
Hj−1 ⊗ . . .⊗Hj−4

)
.

The intertwiner ιEPRL(Ia) expressed in this basis takes the following form:

ιEPRL(Ia) = fa
+a−

a ιa+ ⊗ ιa− ,

where fa
+a−

a are real and are known as fusion coefficients [86]. We define a tensor hāa:

hāb := (ιEPRL(Ia)|ιEPRL(Ib)) =
∑
a+a−

fa
+a−

a fa
+a−

b .

As an example we give the result of the calculation of the hāb matrix for β = 1
2 , j1 =

2, j2 = 4, j3 = 4, j1 = 2; a, b ∈ {2, . . . , 6}):

53723
175616 −2265

√
5
7

50176
5093

√
5

1053696 − 3
√

55
25088 0

−2265
√

5
7

50176
117853
501760 − 12805

301056
√

7

45
√

11
7

7168 −3
√

13
7

8960
5093

√
5

1053696 − 12805

301056
√

7

741949
3512320 −781

√
11

752640
5
√

13
5376

− 3
√

55
25088

45
√

11
7

7168 −781
√

11
752640

583
2560 0

0 −3
√

13
7

8960
5
√

13
5376 0 13

40


.

We used the analytic expression for the fusion coefficient presented in [2]. Clearly this
matrix is non-diagonal. It shows that the EPRL map is not isometric.

4.2. Injectivity theorem

The missed states

Given a value of the Barbero-Immirzi parameter β, an EPRL map is defined on an invariant
space Inv (Hk1 ⊗ . . .⊗HkN ), only if the spins k1, . . . , kN ∈ 1

2N are such that also each
|1±β|

2 k1, . . . ,
|1±β|

2 kN ∈ 1
2N. That is why we assume that β is rational,

β =
p

q
,

where p, q ∈ Z, q > 0 and they are relatively prime (the fraction can not be further
reduced). If we need an explicit formula for k ∈ 1

2N such that |1±β|2 k ∈ 1
2N, we find two

possible cases of β and the corresponding formulas for k:
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4.2. Injectivity theorem

(i) both p and q odd ⇒ k = qs where s ∈ 1
2N,

(ii) (p even and q odd) or (p odd and q even) ⇒ k = 2qs where s ∈ 1
2N.

Invariants involving even one value of spin kI which is not that of (i), or respectively (ii)
depending on β, are not in the domain of any EPRL map, hence they are missed by the
EPRL maps.

The annihilated states

We assume that there is given a space of invariants Inv(Hk1 ⊗ . . .⊗HkN ) such that each
k1, . . . , kN satisfies (i) or, respectively, (ii) above. We assume also that the space is non-
trivial. Recall, that for every N -tuple k1, . . . , kN of spins, the space Inv (Hk1 ⊗ . . .⊗HkN )
contains a non-zero element if and only if the spins satisfy the following conditions:

kI ≤
∑
J 6=I

kJ, I = 1, . . . , N, (4.1)

∑
I

kI ∈ N. (4.2)

The proof is presented in appendix A. An N -tuple k1, k2, . . . , kN , kI ∈ 1
2N satisfying

conditions (4.1) and (4.2) will be called admissible.
The target space of the EPRL map

Inv (Hk1 ⊗ · · · ⊗ HkN )→ Inv
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
is nontrivial, if and only if

j±I ≤
∑
J 6=I

j±J , I = 1, . . . , N, (4.3)

∑
I

j±I ∈ N. (4.4)

Whereas (4.1) does imply (4.3), the second condition∑
I

j±I =
|1± β|

2

∑
I

kI ∈ N (4.5)

is not automatically satisfied for arbitrary β.
For example, let

β =
1

4
, k1, k2, k3 = 4.

Certainly the space Inv(H4 ⊗H4 ⊗H4) is non-empty. However,

j−1 , j
−
2 , j

−
3 =

3

2
, j+

1 , j
+
2 , j

+
3 =

5

2

and
Inv(H 3

2
⊗H 3

2
⊗H 3

2
)⊗ Inv(H 5

2
⊗H 5

2
⊗H 5

2
) = {0} ⊗ {0}.
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4. Properties of the EPRL map

In other words, if β is 0.25, then the EPRL map annihilates the SU(2) invariant corre-
sponding to the spins k1 = k2 = k3 = 4.

For β and k1, . . . , kN satisfying condition (i) in the previous subsection, the equation
(4.2) implies (4.4). If β and k1, . . . , kN satisfy (ii), there is a set of non-trivial sub-
spaces Inv (Hk1 ⊗ . . .⊗HkN ) which are annihilated by the EPRL map, because the target

Inv
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
is just the trivial space.

The theorem formulated below states exactly, that the EPRL map does not annihilate
more states than those characterized above.

The injectivity theorem

Theorem 3. Assume β ∈ Q. For kI ∈ 1
2N, I ∈ {1, . . . , N} such that

• ∀I j±I := |1±β|
2 kI ∈ 1

2N,

• ∑N
I=1 j

+
I ∈ N

the EPRL map is injective.

Let us note that when Inv (Hk1 ⊗ · · · ⊗ HkN ) is trivial, injectivity trivially holds. Let us
also note that injectivity of an EPRL map defined for β, kI, j

±
I = |1±β|

2 kI implies injectivity

of an EPRL map defined for −β, kI, j±I = |1∓β|
2 kI. It is therefore enough to prove the

injectivity theorem for β ≥ 0.

4.3. Proof of the injectivity theorem in the case β ≥ 1

We will show now that the EPRL map is injective in the case

kI = j+
I − j−I ,

provided j−1 + . . .+ j−N ∈ N.
If we have found some I0, such that

ιEPRL(I0) = 0, (4.6)

that is
P+A

+
1 ...A

+
N

D+
1 ...D

+
N

C
D+

1 A
−
1

B1
. . . C

D+
NA
−
N

BN
IB1...BN

0 = 0, (4.7)

then any contraction of the left-hand side also vanishes, in particular

P+A
+
1 ...A

+
N

D+
1 ...D

+
N

C
D+

1

A−1 B1
. . . C

D+
N

A−NBN
IB1...BN

0 WA−1 ...A
−
N = 0, (4.8)

where we lowered the indices A−I with the εj−I j
−
I

bilinear forms and took any

0 6= W ∈ Inv
(
Hj−1 ⊗ . . .⊗Hj−N

)
.

Such W exists if and only if j−1 + . . . + j−N ∈ N. We will show now that the last equality
can not be true unless I0 = 0 itself.
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4.3. Proof of the injectivity theorem in the case β ≥ 1

First, let us show a property of the spin composition map

Ck+j
k j : Hk ⊗Hj → Hk+j , (4.9)

defined for any k, j ∈ 1
2N. In our notation the map is given by the intertwiners CABC ,

namely
Hk ⊗Hj 3 KBC 7→ KBCCABC ∈ Hk+j . (4.10)

The key property is that the map can not annihilate a non-zero simple tensor KBC =
IBWC

IBWCCABC = 0 ⇔ IBWC = 0. (4.11)

To see that this is really true, view each of the Hilbert spaces Hl, l ∈ 1
2N as the symmetric

part of the tensor product H 1
2
⊗ . . . ⊗ H 1

2
, introduce an orthonormal basis |0〉, |1〉 ∈ H 1

2

and define a basis v(l)
0 , . . . , v

(l)
2l ∈ Hl,

v
(l)
0 := |0〉 ⊗ . . .⊗ |0〉,
v

(l)
1 := Sym (|0〉 ⊗ . . .⊗ |0〉 ⊗ |1〉) ,

. . .

v
(l)
2l := |1〉 ⊗ . . .⊗ |1〉,

where
Sym : H 1

2
⊗ . . .⊗H 1

2
→ H 1

2
⊗ . . .⊗H 1

2

denotes the projection onto the subspace of symmetric tensors. The spin composition map
in this basis reads

Ck+j
k j : v(k)

m ⊗ v(j)
m′ 7→ v

(k+j)
m+m′ . (4.12)

Hence, the product of two general elements is mapped in the following way

2k∑
m=m1

I ′mv(k)
m ⊗

2j∑
m′=m′1

W ′m
′
v

(j)
m′ 7→ I ′m1W ′m

′
1v

(k+j)
m1+m′1

+
∑

M>m1+m′1

αMv
(k+j)
M 6= 0, (4.13)

where Im1 and Wm′1 are the first non-vanishing components. The result can not be zero,
because the first term on the right-hand side is non-zero, and is linearly independent of
the remaining terms.

Secondly, we generalize the statement (4.11) to the following one:

C
D+

1

A−1 B1
. . . C

D+
N

A−NBN
IB1...BNWA−1 ...A

−
N = 0 ⇔ IB1...BNWA−1 ...A

−
N = 0, (4.14)

for arbitrary I ∈ Hk1 ⊗ . . .⊗HkN and W ∈ Hj−1 ⊗ . . .⊗Hj−N . In the proof we will use a
calculation similar to that of (4.13), with the difference that now the coefficients in (4.13)
take values in the N − 1 valent tensor products. Specifically, the left-hand side of the first
equality in (4.14) is the result of the map

C
k1+j−1
k1j
−
1

⊗ . . .⊗Ckn+j−N
knj
−
N

: Hk1 ⊗ . . .⊗HkN ⊗ Hj−1 ⊗ . . .⊗Hj−N → Hk1+j−1
⊗ . . .⊗HkN+j−N

,

(4.15)
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4. Properties of the EPRL map

defined by (4.9), and applied to given I ′ and W ′. By analogy to (4.13), we can write

I =

2k1∑
m=m1

v(k1)
m ⊗ Im, W =

2j−1∑
m−=m−1

v
(j−1 )

m− ⊗W
m− , (4.16)

where Im1 is the first non-vanishing Hk2 ⊗ . . .⊗HkN valued component of I and Wm−1 is
the first non-vanishing Hj−2 ⊗ . . .⊗Hj−N valued component of W . Now we apply the map
(4.15),

C
k1+j−1
k1j
−
1

⊗ . . .⊗ CkN+j−N
kN j

−
N

 2k1∑
m=m1

v(k1)
m ⊗ Im ⊗

2j−1∑
m−=m−1

v
(j−1 )

m− ⊗W
m−


= v

(k1+j−1 )

m1+m−1
⊗
(
C
k2+j−2
k2j
−
2

⊗ . . .⊗ CkN+j−N
kN j

−
N

(
Im1 ⊗Wm−1

))
+

+
∑

M>m1+m−1

v
(k1+j−1 )
M ⊗ αM .

(4.17)

The first term on the right-hand side is linearly independent of the others, hence if it
were nonzero so would be the right-hand side. But it is non-zero provided (4.14) holds for
N replaced by N − 1. Since (4.14) is true for N = 1, the statement (4.14) follows by the
mathematical induction.

Finally, we notice that if

I = I0 ∈ Inv(Hk1 ⊗ · · · ⊗ HkN )

and
W ∈ Inv(Hj−1 ⊗ . . .⊗Hj−N ),

then the tensor
C
D+

1

A−1 B1
. . . C

D+
N

A−NBN
I0

B1...BNWA−1 ...A
−
N (4.18)

defines an element of Inv
(
Hj+1 ⊗ . . .⊗Hj+N

)
, that is

C
k1+j−1
k1j
−
1

⊗ . . .⊗ CkN+j−N
kN j

−
N

(I0 ⊗W ) ∈ Inv
(
Hj+1 ⊗ . . .⊗Hj+N

)
. (4.19)

Hence the projection P+ in (4.7) acts as the identity,

P+C
k1+j−1
k1j
−
1

⊗ . . .⊗ CkN+j−N
kN j

−
N

(I0 ⊗W ) = C
k1+j−1
k1j
−
1

⊗ . . .⊗ CkN+j−N
kN j

−
N

(I0 ⊗W ), (4.20)

hence

P+A
+
1 ...A

+
N

D+
1 ...D

+
N

C
D+

1

A−1 B1
. . . C

D+
N

A−NBN
I0

B1...BNWA−1 ...A
−
N = 0 ⇔ I0

B1...BNWA−1 ...A
−
N = 0,

(4.21)
but W is arbitrary in (4.7), hence

I0 = 0.
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

In this case the proof is more complicated. In order to make the presentation clear, we will
divide it into sections. The main result is an inductive hypothesis stated below and proved
in section 4.4.2. The injectivity of EPRL map follows from that result. In section 4.4.1
we present a proof of the theorem restricted to certain intertwiners which we call tree-
irreducible. In the remaining (degenerate) cases the proof has the same scheme but details
depend on a type of degeneracy and have to be taken care of case by case.

Under the conditions that we assume, for every intertwiner I ∈ Inv (Hk1 ⊗ · · · ⊗ HkN )
and its image ιEPRL(I) with respect to the EPRL map we construct an intertwiner φ ∈
Inv

(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
such that the scalar product

〈φ, ιEPRL(I)〉 6= 0.

It proves the triviality of the kernel of EPRL map (and thus injectivity of the map). The
invariant will be such that the scalar product 〈φ, ιEPRL(I)〉 factorizes (see figure 4.1), i.e.
it has the form:

〈φ, ιEPRL(I)〉 = χ1 . . . χN−2,

where each factor is given by a 9j-symbol (modulo non-zero factor) known not to vanish
χI 6= 0, I ∈ {1, . . . , N − 2}.

We construct such intertwiner φ step by step and the proof takes the form of inductive
procedure. In fact we prove inductively a more general theorem. We prove injectivity of
a map ιk1...kN analogous to EPRL map (compare (3.28)):

ιk1...kN (I)A
+
1 ...A

+
nA
−
1 ...A

−
n := P+A

+
1 ...A

+
n

D+
1 ...D

+
n
P−

A−1 ...A
−
n

D−1 ...D
−
n
C
D+

1 D
−
1

B1
... C

D+
ND
−
N

BN
IB1...BN , (4.22)

but defined under a bit more general conditions Con N .

Con N : Sequences (k1, . . . , kN ) and (j±1 , . . . , j
±
N ), where kI, j

±
I ∈ 1

2N, are such
that

• (k1, . . . , kN ) is admissible,

• kI 6= 0 for all i > 1,

• j+
1 + j−1 = k1,

• j±I = 1±β
2 kI for I 6= 1 and

1 + β

2
k1 −

1

2
≤ j+

1 ≤
1 + β

2
k1 +

1

2
, (4.23)

• j±1 + . . .+ j±N ∈ N,

• (ordering) ∃I ≥ 1:
j+
J ∈ N, J ≤ I,
j+
J ∈ N + 1

2 , J > I.

This generalization allows us to perform an inductive step. We base our proof on the
following inductive hypothesis for N ≥ 3, N ∈ N:
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4. Properties of the EPRL map

Hyp N : If (k1, . . . , kN ), (j±1 , . . . , j
±
N ) satisfy condition Con Nand

I ∈ Inv (Hk1 ⊗ · · · ⊗ HkN ) ,

then there exists

φ ∈ Inv
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
such that 〈φ, ιk1...kN (I)〉 6= 0.

As mentioned before, this proves injectivity of the EPRL map (theorem 3) for N ≥ 3.
Cases N = 1 and N = 2 are needed to be checked separately but this is straightforward.

Few remarks are worth mentioning:

• We would like to emphasize that although an EPRL map usually does not satisfy
those conditions, it can be easily replaced by an equivalent map that satisfies Con
N .

First of all, we can assume that kI 6= 0 for I ≥ 1. Secondly, we can permute kI in
such a way that

∃I : j+
J ∈ N, for J ≤ I, j+

J ∈ N +
1

2
, for J > I. (4.24)

These are exactly conditions of Con N .

• From the definition above follows that j+
I + j−I = kI for all I = 1, . . . , N .

• It follows also that
1− β

2
k1 −

1

2
≤ j−1 ≤

1− β
2

k1 +
1

2
.

• From conditions Con N follows that (j±1 , . . . , j
±
N ) satisfy admissibility conditions:

Lemma 4. Let (k1, . . . , kN ) and (j±1 , . . . , j
±
N ) be elements of 1

2N, such that:
(k1, . . . , kN ) is admissible, j±I = 1±β

2 kI for I 6= 1, 1+β
2 k1 + 1

2 ≥ j+
1 ≥ 1+β

2 k1 − 1
2 ,

j+
1 + j−1 = k1, j±1 + . . .+ j±N ∈ N, then (j±1 , . . . , j

±
N ) satisfy admissibility conditions.

Proof. From the definition of j±I and from the fact that (k1, . . . , kN ) is admissible,
we know that

j±1 ≤
1± β

2
k1 +

1

2
≤ 1± β

2
(k2 + . . .+ kN ) +

1

2
= j±2 + . . .+ j±N +

1

2
.

We have j±1 + . . .+j±N ∈ N, so j±1 < j±2 + . . .+j±N + 1
2 . As a result j±1 ≤ j±2 + . . .+j±N .

This is one of the desired inequalities.

Similarly for I 6= 1 we have:

j±I =
1± β

2
kI ≤

1± β
2

k1 +
∑

J>1,J 6=I

1± β
2

kJ ≤
∑
J 6=I

j±J +
1

2

As in the previous case j±1 + . . . + j±N ∈ N implies j±I <
∑

J 6=I j
±
J + 1

2 and finally
j±I ≤

∑
J 6=I j

±
J . This finishes proof of this lemma.
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

• Let us note that 〈φ, ιk1...kN (I)〉 = 〈φ, ι′k1...kN (I)〉, where ι′k1...kN is defined without
projections onto invariants of Spin(4), i.e.

ι′k1...kN : Inv (Hk1 ⊗ · · · ⊗ HkN )→
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗
(
Hj−1 ⊗ · · · ⊗ Hj−N

)
ι′k1...kN (I)A

+
1 ...A

+
NA
−
1 ...A

−
N = IA1...ANC

A+
1 A
−
1

A1
· · ·CA

+
NA
−
N

AN
(4.25)

As a result, it is enough to find φ, such that 〈φ, ι′k1...kN (I)〉 6= 0.

4.4.1. Proof of the theorem in simplified case

We will start the proof in a simpler case, called tree-irreducible case. To make the presen-
tation more transparent, we will move some parts of it to the section entitled The choice
of j+

α .
We consider a restriction of the map ιk1...kN to tree irreducible intertwiners, i.e.

elements of the space(
span

(
N−1⋃
M=1

Inv (Hk1 ⊗ · · · ⊗ HkM )⊗ Inv
(
HkM+1

⊗ . . .⊗HkN
)))⊥

,

where the span denotes the linear span and ⊥ denotes orthogonal compliment in

Inv (Hk1 ⊗ . . .⊗HkN ) .

We denote the restricted map by ιtree
k1...kN

. We base the proof of injectivity of ιtree
k1...kN

, on
the following inductive hypothesis (n ∈ N+, n ≥ 3):

Hyp N : If (k1, . . . , kN ), (j±1 , . . . , j
±
N ) satisfy condition Con N and I ∈

Inv (Hk1 ⊗ · · · ⊗ HkN ) is tree-irreducible, then there exists

φ ∈ Inv
(
Hj+1 ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−1 ⊗ · · · ⊗ Hj−N

)
such that 〈φ, ιk1...kN (I)〉 6= 0.

This in fact proves injectivity of ιtree
k1...kN

.

Proof of the tree-irreducible case of the inductive hypothesis

Let us assume that N > 3 and that we have proved Hyp N − 1. Let (k1, . . . , kN ) and
(j±1 , . . . , j

±
N ) satisfy Con N and I ∈ Inv (Hk1 ⊗ · · · ⊗ HkN ) be tree-irreducible. We may

write the invariant in the following way:

IA1A2...AN =
∑
kα∈J

CA1A2
Aα

(Ikα)AαA3...AN (4.26)

for the uniquely defined invariants Ikα ∈ Inv (Hkα ⊗Hk3 ⊗ · · · ⊗ HkN ) , kα ∈ 1
2N and

J := {kα ∈ 1
2N : Ikα 6≡ 0}.

1. Define k′α to be the minimal element in J. Note that if n > 2, then k′α 6= 0, because I
is tree-irreducible.
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4. Properties of the EPRL map

2. Find j+
α (determined by k′α) using the procedure defined in section entitled The choice

of j+
α . This procedure uses the fact that I is tree-irreducible.

The j+
α ∈ 1

2N is chosen by the following criteria:

1 + β

2
k′α −

1

2
≤ j+

α ≤
1 + β

2
k′α +

1

2
,

(j+
α , j

+
1 , j

+
2 ) and (j−α , j

−
1 , j

−
2 ) are admissible (j−α := k′α − j+

α ).

Note that j±α + j±3 + . . . + j±N ∈ N. It follows from the fact that j±1 , . . . , j
±
N ∈ 1

2N (i.e.
from Con N) and the fact that j±α + j±1 + j±2 ∈ N.

Let us also note, that j+
α ∈ N+ 1

2 only if exactly one of j+
1 or j+

2 belongs to N+ 1
2 . Then

from the ordering condition only j+
2 ∈ N + 1

2 and so j+
α , j

+
3 , . . . , j

+
N ∈ N + 1

2 . Ordering
condition is thus satisfied also for (kα, k3, . . . , kN ).

Considerations above show that (k′α, k3, . . . , kN ) and (j±α , j
±
3 , . . . , j

±
N ) satisfyCon N−1.

This justifies the choice of j+
α .

3. Notice that Ik′α is tree-irreducible, because I is.

From Hyp N − 1 follows that for Ik′α there exists

φk
′
α ∈ Inv

(
Hj+α ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−α ⊗ · · · ⊗ Hj−N

)
such that 〈φk′α , ι′k′αk3...kN (Ik′α)〉 6= 0.

4. Having defined φk
′
α , we construct φ:

φA
+
1 ...A

+
N ,A

−
1 ...A

−
N := C

A+
1 A

+
2

A+
α

C
A−1 A

−
2

A−α
(φk

′
α)AαA

+
3 ...A

+
N ,A

−
αA
−
3 ...A

−
N .

5. The φ constructed in the previous point is the φ we are looking for, i.e.

〈φ, ι′k1...kN (I)〉 6= 0.

In this point we will show it.

First, using equation (4.26) we write 〈φ, ι′k1...kN (I)〉 as a sum:

〈φ, ι′k1...kN (I)〉 =
∑
kα

〈φ, ι′k1...kN (Ck1k2kα
◦ Ikα)〉, (4.27)

where (Ck1k2kα
◦ Ikα)

A1A2...AN
:= CA1A2

Aα
(Ikα)AαA3...AN .

From the definition of k′α in point 1 follows that the sum is actually over kα ≥ k′α:

〈φ, ι′k1...kN (I)〉 =
∑
kα≥k′α

〈φ, ι′k1...kN (Ck1k2kα
◦ Ikα)〉. (4.28)

Let us compute each term 〈φ, ι′k1...kN (Ck1k2kα
◦Ikα)〉 (such term is schematically illustrated

on figure 4.1a):
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

(a) 〈φ, ι′k1...kN (Ck1k2kα
◦ Ikα)〉 =

= 〈Cj
+
1 j

+
2

j+α
⊗ Cj

−
1 j
−
2

j−α
◦ φk

′
α , ι′k1...kN (Ck1k2kα

◦ Ikα)〉

(b) The only non-trivial term in the sum (4.27) is
χ〈φk

′
α , ι′k′α...kN (Ik

′
α)〉.

Figure 4.1.: The figure illustrates the structure of the contractions on the right-hand side
of equation (4.29). The result is the evaluation of the spin network depicted
on figure 4.1a. The figure 4.1b illustrates an algebraic identity: the evaluation
of the spin network on the figure 4.1a equals the product of the evaluations
of the spin networks on figure 4.1b. For kα = k′α the evaluation of the upper
spin network is denoted by χ in (4.30) and it is different than zero. This is
proved in lemma 5. This refers to equation (4.31).

〈φ, ι′k1...kN (Ck1k2kα
◦ Ikα)〉 =

= (φk
′
α)†
A+
αA

+
3 ...A

+
NA
−
αA
−
3 ...A

−
N

CA
+
α

A+
1 A

+
2

CA
−
α

A−1 A
−
2

C
A+

1 A
−
1

A1
· · ·CA

+
NA
−
N

AN
CA1A2
Aα

(Ikα)Aα...AN =

= CA
+
α

A+
1 A

+
2

CA
−
α

A−1 A
−
2

C
A+

1 A
−
1

A1
C
A+

2 A
−
2

A2
CA1A2
Aα
·

·(φk′α)†
A+
αA

+
3 ...A

+
NA
−
αA
−
3 ...A

−
N

C
A+

3 A
−
3

A3
· · ·CA

+
NA
−
N

AN
(Ikα)AαA3...AN . (4.29)

We have

CA
+
α

A+
1 A

+
2

CA
−
α

A−1 A
−
2

C
A+

1 A
−
1

A1
C
A+

2 A
−
2

A2
CA1A2
Aα

=

{
0, kα > j+

α + j−α ,

χCA
+
αA
−
α

Aα
, kβ = j+

α + j−α .
(4.30)

The first equality is obvious because there exists no intertwiner if kα > j+
α + j−α (let us

remind that j+
α +j−α = k′α). The second equality is also obvious because for kα = j+

α +j−α ,
the space Inv (Hkα ⊗Hk2 ⊗Hk3) is one-dimensional. The non-trivial statement is that
χ 6= 0. The non-triviality of χ is assured by the following lemma.
Lemma 5. Let (j+, k+, l+),(j−, k−, l−) be admissible. Define j = j++j−, k = k++k−,
l = l+ + l−. Take any non-zero η ∈ Inv (Hj ⊗Hk ⊗H∗l ),
η+ ∈ Inv

(
H∗j+ ⊗H∗k+ ⊗Hl+

)
and η− ∈ Inv

(
H∗j− ⊗H∗k− ⊗Hl−

)
. We have:

η+C
+

A+B+η−
C−

A−B−C
A+A−
A CB

+B−
B ηABC = χ CC

+C−
C
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4. Properties of the EPRL map

for χ 6= 0.

Proof. The fact that χ 6= 0 was first proved in [124]. Here we present an alternative
proof from [125].

First notice that it is enough to show that under assumptions above,

η+C
+

A+B+η−
C−

A−B−C
A+A−
A CB

+B−
B ηABC CCC+C− 6= 0

for some non-zero C ll+l− .

However the expression η+C
+

A+B+η−
C−

A−B−C
A+A−
A CB

+B−
B ηABC CCC+C− is proportional with

non-zero proportionality factor to 9j-symbol, i.e.:

η+C
+

A+B+η−
C−

A−B−C
A+A−
A CB

+B−
B ηABC CCC+C− = λ


j− l− k−

j+ l+ k+

j l k

 ,

where λ 6= 0. The appearance of this 9j-symbol here is strictly connected with the
expansion of fusion coefficient into product of 9j-symbols done in four-valent case in
the article [2]. From the properties of 9j-symbol and admissibility of (j+, k+, l+),
(j−, k−, l−) follows that this 9j-symbol is proportional to a 3j-symbol (see e.g. equation
(37) in [2]) with non-zero proportionality constant, i.e.:

j− l− k−

j+ l+ k+

j l k

 = µ

(
l− l+ l

j− − k− j+ − k+ −(j − k)

)
,

where µ 6= 0.

Recall that l = l+ + l−, so(
l− l+ l

j− − k− j+ − k+ −(j − k)

)
= (−1)l

−−l++j−k·

·
[

(2l−)!(2l+)!)

(2l + 1)!

(l + j − k)!(l − j + k)!

(l− + j− − k−)!(l− − j− + k−)!(l+ + j+ − k+)!(l+ − j+ + k+)!

] 1
2

.

From admissibility of (j+, k+, l+), (j−, k−, l−) follows that(
l− l+ l

j− − k− j+ − k+ −(j − k)

)
6= 0.

Finally:

η+C
+

A+B+η−
C−

A−B−C
A+A−
A CB

+B−
B ηABC CCC+C− = λµ

(
l− l+ l

j− − k− j+ − k+ −(j − k)

)
6= 0.

Summarizing, for some χ ∈ C\{0}, we have:

〈φ, ι′k1...kN (Ck1k2kα
◦ Ikα)〉 =


0, kα > k′α,

χ〈φk′α , ι′k′αk3...kN (Ik′α)〉, kα = k′α,

∗, kα < k′α.
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

The star ∗ in the formula above is a number which value is irrelevant for the further
considerations. As a result all but one term in the sum (4.28) are equal zero and:

〈φ, ι′k1...kN (I)〉 = χ〈φk′α , ι′k′αk3...kN (Ik′α)〉 6= 0. (4.31)

We recall that the non-vanishing of 〈φk′α , ι′k′αk3...kN (Ik′α)〉 follows from Hyp N − 1.

We obtained that for N > 3, Hyp N follows from Hyp N − 1. In order to finish the
inductive proof, it remains to check that Hyp 3 is true. In this case sequences (k1, k2, k3)
and (j±1 , j

±
2 , j

±
3 ) are admissible and invariant spaces are one dimensional. Hyp 3 follows

now from lemma 5.
This proof of first inductive step is valid in general case, because for N = 3 all invariants

are tree-irreducible.

The choice of j+
α

In this section we will present the procedure of choosing j+
α . It is depicted on the diagram

below and it is justified by three lemmas 6, 7, 8. Note that k1 6= 0 and kα 6= 0 (on every
step of inductive procedure), because I is tree-irreducible. It is reflected in these lemmas
by the condition, that j 6= 0 and l 6= 0.

1

1+γ
2 k1 − 1

2 < j+1 < 1+γ
2 k1 +

1
2 ?

Take one of the j+α satisfying

1+γ
2 k′α − 1

2 ≤ j+α ≤ 1+γ
2 k′α + 1

2

and suh that j+α + j+1 + j+2 ∈ N

Does there exist j+α ∈ 1
2N satisfying

1+γ
2 k′α − 1

2 < j+α < 1+γ
2 k′α + 1

2
and suh that j+α + j+1 + j+2 ∈ N ?

Take this j+α .

k2 + k′α > k1 and k2 + k1 > k′α ?

In this ase j+1 = 1+γ
2 k1 +

1
2

or j+1 = 1+γ
2 k1 − 1

2 .

Take j+α = 1+γ
2 k′α − 1

2

or j+α = 1+γ
2 k′α + 1

2 respetively.

In this ase j+1 = 1+γ
2 k1 +

1
2

or j+1 = 1+γ
2 k1 − 1

2 .

Take j+α = 1+γ
2 k′α + 1

2

or j+α = 1+γ
2 k′α − 1

2 respetively.

No

No

Yes

Yes

No

Yes

We define j−α := k′α − j+
α . In each case in the diagram above lemmas 6, 7, 8 show

that (j+
α , j

+
1 , j

+
2 ) and (j−α , j

−
1 , j

−
2 ) are admissible. The first lemma is used in the first and

second case depicted in the diagram (in those cases we use lemma 6 with j = k1, k = k2, l =
kα, k

± = j±1 , j
± = j±2 , l

± = j±α and j = kα, k = k2, l = k1, k
± = j±α , j

± = j±2 , l
± = j±1

respectively). The second and third lemma are used in the last step. We prove now those
lemmas.
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4. Properties of the EPRL map

Lemma 6. Let (j, k, l) be admissible and j 6= 0, l 6= 0. If j+, k+, l+ are elements of 1
2N

satisfying: 1+β
2 j − 1

2 < j+ < 1+β
2 j + 1

2 , k+ = 1+β
2 k, 1+β

2 l − 1
2 ≤ l+ ≤ 1+β

2 l + 1
2 and

j+ + k+ + l+ ∈ N, then (j+, k+, l+) and (j − j+, k − k+, l − l+) are admissible.

Proof. We denote j− := j − j+, k− := k − k+, l− := l − l+.

1. Notice that j−, k−, l− satisfy 1−β
2 j − 1

2 < j− < 1−β
2 j + 1

2 , k− = 1−β
2 k, 1−β

2 l − 1
2 ≤

l− ≤ 1−β
2 l + 1

2 and j− + k− + l− ∈ N. It is a direct check. Inequalities 1+β
2 j − 1

2 <

j+ < 1+β
2 j + 1

2 imply, that

1 + β

2
j − 1

2
< j − j− < 1 + β

2
j +

1

2
.

As a result
−1 + β

2
j − 1

2
< −j− < −1 + β

2
j +

1

2

and
1− β

2
j − 1

2
< j− <

1− β
2

j +
1

2
.

The same with 1−β
2 l − 1

2 ≤ l− ≤ 1−β
2 l + 1

2 and k− = 1−β
2 k is obvious. Finally

j− + k− + l− ∈ N follows from the fact that j+ + k+ + l+ ∈ N and j + k + l ∈ N.

2. Note also that j− ≥ 0, k− ≥ 0, l− ≥ 0: 1−β
2 j − 1

2 < j−, so −1
2 < j−; similarly

1−β
2 l− 1

2 ≤ l− implies −1
2 < l−, because l 6= 0 and |β| < 1; k± ≥ 0 is straightforward.

3. We check now triangle inequalities.

j+ + k+ >
1 + β

2
j − 1

2
+

1 + β

2
k =

1 + β

2
(j + k)− 1

2
≥ 1 + β

2
l − 1

2
≥ l+ − 1.

It follows that
j+ + k+ − l+ > −1.

However j+ + k+ + l+ ∈ N, so j+ + k+ − l+ ∈ Z. As a result

j+ + k+ − l+ ≥ 0.

Similarly,

k+ + l+ ≥ 1 + β

2
k +

1 + β

2
l − 1

2
=

1 + β

2
(k + l)− 1

2
≥ 1 + β

2
j − 1

2
> j+ − 1.

We obtain k+ + l+ − j+ ≥ 0.

We also have

l+ + j+ >
1 + β

2
l +

1 + β

2
j − 1 =

1 + β

2
(j + l)− 1 ≥ 1 + β

2
k − 1 = k+ − 1.

Finally l+ + j+ − k+ ≥ 0. This proves that (j+, k+, l+) is admissible. The proof for
(j−, k−, l−) is the same.
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Lemma 7. Let (j, k, l) be admissible and j 6= 0, l 6= 0. If j+, k+, l+ are elements of 1
2N

satisfying: j+ = 1+β
2 j ± 1

2 , k+ = 1+β
2 k, l+ = 1+β

2 l ∓ 1
2 , j+ + k+ + l+ ∈ N, k + l > j and

j + k > l, then (j+, k+, l+) and (j − j+, k − k+, l − l+) are admissible.

Proof. As previously, we denote j− := j − j+, k− := k − k+, l− := l − l+ (it is easy to
check that they are non-negative).

Let us check triangle inequalities:

j+ + k+ =
1 + β

2
j ± 1

2
+

1 + β

2
k =

1 + β

2
(j + k)± 1

2
>

1 + β

2
l ± 1

2
= l+ ∓ 1.

By arguments used in the previous lemma, we obtain j+ + k+ − l+ ≥ 0.
Let us check another inequality:

k+ + l+ =
1 + β

2
k +

1 + β

2
l ∓ 1

2
=

1 + β

2
(k + l)∓ 1

2
>

1 + β

2
j ∓ 1

2
= j+ ± 1.

As a result k+ + l+ − j+ ≥ 0.
Finally

j+ + l+ =
1 + β

2
j ± 1

2
+

1 + β

2
l ∓ 1

2
=

1 + β

2
(j + l) ≥ 1 + β

2
k = k+.

This finishes the prove of triangle inequalities. Proof for j−, k−, l− is the same.

Lemma 8. Let (j, k, l) be admissible and j 6= 0, l 6= 0. If j+, k+, l+ are elements of 1
2N

satisfying: j+ = 1+β
2 j ± 1

2 , k+ = 1+β
2 k, l+ = 1+β

2 l ± 1
2 , j+ + k+ + l+ ∈ N, k + l = j or

j + k = l, then (j+, k+, l+) and (j − j+, k − k+, l − l+) are admissible.

Proof. Let k + l = j. Then k+ + l+ = j+ which proves triangle inequalities. The proof
is the same for j + k = l. One can check in the same way that (j − j+, k − k+, l − l+) is
admissible.

4.4.2. Proof of the theorem

Previously, we restricted ourselves to tree-irreducible intertwiners, because then the lowest
spin kα in the decomposition (4.26) (we denote it by k′α) as well as k1 are different than 0,
if n > 3. In general k′α or k1 may be equal 0 for n > 3 and then our procedure determining
j+
α and j−α may not be applied (lemmas 6, 7, 8 require kα 6= 0, k1 6= 0). Actually the case
k′α = 0 (so k1 = k2) and j+

1 = j+
2 is not problematic – we simply take j+

α = 0 and follow
steps 3-5 in section 4.4.1. The case k1 = 0 is also simple, because j+

1 +j−1 = k1 = 0 implies
j±1 = 0 and the inductive step is trivial. Problems appear when k′α = 0 and j+

1 = j+
2 ± 1

2 ,
j−1 = j−2 ∓ 1

2 . We treat this case separately.
We start the inductive step (as in simplified case in section 4.4.1) by expanding I as in

equation (4.26) and finding minimal kα which we call k′α. We may perform the procedure
from section 4.4.1 unless we are in the problematic case. Note that in this case

j+
I ∈ N +

1

2
, I > 1, (4.32)
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as j+
1 = j+

2 ± 1
2 and sequences are ordered. If this is the case, we expand the intertwiner

I one level further, i.e. instead of formula (4.26) we use the following one:

IA1A2...AN =
∑

(kα,kβ)∈K

CA1A2
Aα

CAαA3
Aβ

(Ikαkβ )AβA4...AN , (4.33)

where K := {(kα, kβ) ∈ 1
2N × 1

2N : Ikαkβ 6≡ 0}. We define K′ = K ∩ {(kα, kβ) : kβ < k3}.
There are two cases K′ = ∅ and K′ 6= ∅ which we will describe in the next two sections.
The procedure is summarized by the diagram below.

It is important to notice that in the case n = 4, we either obtain k′α > 0 or kα′ = 0,
j+
1 = j+

2 . In this case notice that either j+
1 ∈ N, j+

2 ∈ N or j+
1 ∈ N + 1

2 , j+
2 ∈ N + 1

2
(this follows from the fact that j+

1 + j+
2 + j+

3 + j+
4 ∈ N and from ordering of kI) – as a

result if k′α = 0 then j+
1 = j+

2 . This means that when n = 4, the inductive step from
simplified case may be used. As a result the check of initial conditions done in the proof
of tree-irreducible case is sufficient in the general case presented here.

2

Ordering of k1, . . . , kn suh that �rst are the ki
with j+i ∈ N and then ki with j+i ∈ N+ 1

2 .

k1 = 0 ?

It follows, that j±1 = 0 and

indutive step is trivial

k′α > 0 ?

Follow indutive step in

simpli�ed ase � setion 3.4.1.

j+1 = j+2
Take j±α = 0 and follow point 3-5

in indutive step of simpli�ed ase

k2 6= k3
Exhange k2 and k3 and follow

indutive step in simpli�ed ase

K′ 6= ∅ ? (we have j+1 = j+2 ± 1
2 )

Follow steps in subsetion

entitled The ase K′ 6= ∅

Follow steps in subsetion

entitled The ase K′ = ∅

No

No

Yes

Yes

Yes

Yes

No

No

No

Yes

The case K′ 6= ∅

1. Find k′′α and k′β, such that:

k′′α = min{kα : ∃kβ, (kα, kβ) ∈ K′} (4.34)
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

and
k′β = min{kβ : (k′α, kβ) ∈ K′}. (4.35)

They exist, because K′ is non-empty.

2. Notice that k′′α > 0 because (k3, k
′′
α, k
′
β) is admissible and k′β < k3. We define j±α using

the procedure from section 4.4.1.

If k′β > 0, we use the same procedure (but for triple (k′′α, k3, k
′
β)) to define j±β and if

kβ = 0, we take j±β = 0. Let us check now if j±α and j±β is a good choice.

• (j±1 , j
±
2 , j

±
α ) are admissible – this is guaranteed by procedure from section 4.4.1.

• (j±α , j
±
3 , j

±
β ) are admissible:

If k′β > 0 then this is guaranteed by procedure from section 4.4.1.

If k′β = 0, then k′′α = k3. As a result we have j+
3 − 1

2 ≤ j+
α ≤ j+

3 + 1
2 . However

j+
α ∈ N+ 1

2 (j+
1 = j+

2 + 1
2 or j+

1 = j+
2 − 1

2 , so j+
1 + j+

2 is not an integer). From the
ordering j+

3 ∈ N+ 1
2 . Finally we have j+

α = j+
3 and j−α = k′′α − j+

α = k3 − j+
3 = j−3 .

Obviously (j±α , j
±
3 , 0) are admissible.

• j±β + j±4 + . . .+ j±N ∈ N:

We know that j+
1 ∈ N, j+

2 ∈ N + 1
2 ,j+

3 ∈ N + 1
2 , so j+

β ∈ N and j+
1 + j+

2 + j+
3 ∈ N.

Finally from j+
1 + j+

2 + j+
3 + j+

4 . . .+ j+
N ∈ N, follows that j+

β + j+
4 . . .+ j+

N ∈ N.

Using the facts that j−β + j−4 . . .+ j−N = k′β + k4 . . .+ kN − (j+
β + j+

4 . . .+ j+
N ) and

k′β + k4 + . . .+ kN ∈ N, we obtain j−β + j−4 . . .+ j−N ∈ N.

• We see that 1+β
2 k′β − 1

2 ≤ j+
β ≤ 1+β

2 k′β + 1
2 . We also have j+

4 ∈ N + 1
2 and so the

ordering property is satisfied.

Eventually, Con N − 2 is fulfilled for (k′β, k4, . . . , kN ) and (j±β , j
±
4 , . . . , j

±
N ).

3. From Hyp N − 2 follows that for Ik′′αk′β from (4.33) there exists

φk
′′
αk
′
β ∈ Inv

(
Hj+α ⊗Hj+β ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−α ⊗Hj+β ⊗ · · · ⊗ Hj−N

)
,

such that
〈φk′′αk′β , ι′k′β ...kN (Ik′′αk′β )〉 6= 0.

4. Having defined φk
′′
αk
′
β , we construct φ:

φA
+
1 ...A

+
N ,A

−
1 ...A

−
N := C

A+
1 A

+
2

A+
α

C
A+
αA

+
3

A+
β

C
A−1 A

−
2

A−α
C
A−αA

−
3

A−β
(φk

′′
αk
′
β )A

+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N

5. The φ constructed in the previous point is the φ we are looking for, i.e.

〈φ, ι′k1...kN (I)〉 6= 0.

We will now prove this statement.
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Figure 4.2.: Schematic picture of a term in the sum (4.36). The evaluation of the spin
network depicted on this figure is equal to the term 〈φ, ι′k1...kN (Ck1k2kα

◦Ckαk3kβ
◦

Ikαkβ )〉.

a) First, using equation (4.33) write 〈φ, ι′k1...kN (I)〉 as a sum:

〈φ, ι′k1...kN (I)〉 =
∑

(kα,kβ)∈K

〈φ, ι′k1...kN (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )〉, (4.36)

where (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )
A1A2...AN

:= CA1A2
Aα

CAαA3
Aβ

(Ikαkβ )AβA4...AN .

b) Let us compute 〈φ, ι′k1...kN (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )〉 (see fig. 4.2):

〈φ, ι′k1...kN (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )〉 = (φk
′′
αk
′
β )†
A+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N

CA
+
α

A+
1 A

+
2

C
A+
β

A+
αA

+
3

CA
−
α

A−1 A
−
2

C
A−β

A−αA
−
3

C
A+

1 A
−
1

A1
. . . C

A+
NA
−
N

AN
CA1A2
Aα

CAαA3
Aβ

(Ikαkβ )AβA4...AN =

= CA
+
α

A+
1 A

+
2

CA
−
α

A−1 A
−
2

C
A+

1 A
−
1

A1
C
A+

2 A
−
2

A2
CA1A2
Aα

C
A+
β

A+
αA

+
3

C
A−β

A−αA
−
3

C
A+

3 A
−
3

A3
CAαA3
Aβ

(φk
′′
αk
′
β )†
A+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N

C
A+

4 A
−
4

A4
. . . C

A+
NA
−
N

AN
(Ikαkβ )AβA4...AN .

Using lemma 5 we can show that for some χ1 6= 0

CA
+
α

A+
1 A

+
2

CA
−
α

A−1 A
−
2

C
A+

1 A
−
1

A1
C
A+

2 A
−
2

A2
CA1A2
Aα

=

{
0, kα > j+

α + j−α ,

χ1C
A+
αA
−
α

Aα
, kα = j+

α + j−α .

Applying this lemma again we can show that for some χ2 6= 0

C
A+
β

A+
αA

+
3

C
A−β

A−αA
−
3

CA
+
αA
−
α

Aα
C
A+

3 A
−
3

A3
CAαA3
Aβ

=

{
0, kβ > j+

β + j−β ,

χ2C
A+
β A
−
β

Aβ
, kβ = j+

β + j−β .
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

Finally, for χ := χ1χ2 6= 0 :

〈φ, ι′k1...kN (Ck1k2kα
◦Ckαk3kβ

Ikαkβ )〉 =


0, kα > k′′α or kβ > k′β,

χ〈φk′′αk′β , ι′k′β ...kN (Ik′′αk′β )〉, kα = k′α and kβ = k′β,

∗, otherwise.
(4.37)

c) Now we use formula just obtained (4.37) to calculate the sum (4.36).

First notice that k′β ≤ k3. As a result the elements in the sum (4.36) with kβ > k3

vanish and the sum is actually over the K′:

〈φ, ι′k1...kN (I)〉 =
∑

(kα,kβ)∈K′
〈φ, ι′k1...kN (Ck1k2kα

◦ Ckαk3kβ
◦ Ikαkβ )〉.

However from the definition of k′′α and k′β follows that

〈φ, ι′k1...kN (I)〉 =
∑

kα≥k′′α,kβ≥k′β

〈φ, ι′k1...kN (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )〉.

Finally, using (4.37) we obtain:

〈φ, ι′k1...kN (I)〉 = χ〈φk′′αk′β , ι′k′β ...kN (Ik′′αk′β )〉

and
〈φ, ι′k1...kN (I)〉 6= 0.

The case K′ = ∅

Let us change the basis used previously in the decomposition of I (4.33):

IA1A2...AN =
∑

(kα̃,kβ)∈L

CA2A3
Aα̃

CA1Aα̃
Aβ

(Ikα̃kβ )AβA4...AN , (4.38)

where L := {(kα̃, kβ) ∈ 1
2N× 1

2N : Ikα̃kβ 6≡ 0}.
We define:

L′ = L ∩ {(kα̃, kβ) : kβ = k3}.

This set is non-empty, because kβ = k3 was present in the decomposition (4.33). In fact
(kα = 0, kβ = k3) ∈ K and so kβ = k3 occurs also in the decomposition (4.38).

1. Find k′α̃ such that:
k′α̃ = min{kα̃ : ∃kβ, (kα̃, kβ) ∈ L′}.

Note that kβ < k3 does not appear in this decomposition because they are absent in
the decomposition (4.33). Note also that if we defined k′β in analogous way to (4.35),
i.e. k′β = min{kβ : (k′α̃, kβ) ∈ L′}, we would obtain trivially k′β = k3. In this section one
may think that k′β = k3. However, we will not write this k′β explicitly.
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4. Properties of the EPRL map

2. We now define j±α̃ , j±β . Note that only j±β (but not j+
α̃ ) has to be of special form to

match Con N − 2. The requirements for j±α̃ may be limited to assure admissibility
conditions and the condition that j+

α̃ + j−α̃ = kα̃. We will use this freedom to define j±α̃ ,
j±β .

Note that, in our case (j±2 , j
±
3 , j

±
α̃ ) are admissible iff j±α̃ ≤ 2j±2 and j±α̃ ∈ N (because

j+
2 = j+

3 ). We also have j+
1 = j+

2 ± 1
2 . The choices of j±α̃ and j±β in this case are given

in the following diagram.

3

j+1 = j+2 + 1
2? j+1 = j+2 − 1

2?

k′α < 2k2?

We de�ne j±β = j±2 ± 1
2 and

take any j±α̃ satisfying

j+α̃ ≤ 2j+2 , j
−
α̃ ≤ 2j−2 − 1,

j±α̃ ∈ N, j+α̃ + j−α̃ = k′α̃

We de�ne j±β = j±2 ∓ 1
2 and

take any j±α̃ satisfying

j+α̃ ≤ 2j+2 − 1, j−α̃ ≤ 2j−2 ,
j±α̃ ∈ N, j+α̃ + j−α̃ = k′α̃

k′α < 2k2?
We de�ne j±β = j±2 ∓ 1

2

and j±α̃ = 2j±2

We de�ne j±β = j±2 ± 1
2

and j±α̃ = 2j±2

Let us justify this choice. Suppose that j+
1 = j+

2 + 1
2 (the case j+

1 = j+
2 − 1

2 is analogous).

• Case of k′α̃ < 2k2. Note that k2 6= 0. As a result j−2 ≥ 1
2 (|β| < 1) and there

exist j±α̃ , such that j+
α̃ ≤ 2j+

2 , j−α̃ ≤ 2j−2 − 1, j±α̃ ∈ N. It is possible to choose j±α̃
satisfying j+

α̃ + j−α̃ = k′α̃, because j+
α̃ + j−α̃ ≤ 2(j+

2 + j−2 )− 1⇒ j+
α̃ + j−α̃ < 2k2 (and

k′α̃ < 2k2).

It is straightforward to check that (j±2 , j
±
3 , j

±
α̃ ), (j±1 , j

±
α̃ , j

±
β ) are admissible:

0 = |j±2 − j±3 | ≤ j±α̃ ≤ j±2 + j±3 = 2j±2 , 0 = |j±1 − j±β | ≤ j±α̃ ≤ j±1 + j±β (4.39)

but j+
1 + j+

β = 2j+
2 and j−1 + j−β = 2j−2 − 1.

• Case of k′α̃ = 2k2.

As it was previously pointed out if k2 6= 0, then j±2 ≥ 1
2 . It follows that 2j±2 ≥ 1.

So j±α̃ ≥ 1 and j±α̃ ∈ N, j+
α̃ + j−α̃ = k′α̃.

It is straightforward to check that (j±2 , j
±
3 , j

±
α̃ ), (j±1 , j

±
α̃ , j

±
β ) are admissible:

0 = |j±2 −j±3 | ≤ j±α̃ ≤ j±2 +j±3 = 2j±2 , 1 = |j±1 −j±β | ≤ j±α̃ ≤ j±1 +j±β = 2j±2 . (4.40)

3. Note that since j+
1 and j+

α̃ are natural then also j+
β ∈ N. Recall also that j+

1 ∈ N,
j+
2 , j

+
3 ∈ N + 1

2 and j+
1 + . . . j+

N ∈ N. As a result j+
β + j+

4 + . . . j+
N ∈ N and

j−β + j−4 + . . . j−N = k3 + k4 + . . .+ kN − (j+
β + j+

4 + . . . j+
N ) ∈ N.

We also have that 1+β
2 k3 − 1

2 ≤ j+
β ≤ 1+β

2 k3 + 1
2 and j+

4 ∈ N + 1
2 , so Con N − 2 is

fulfilled for (k3, k4, . . . , kN ) and (j±β , j
±
4 , . . . , j

±
N ).
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4.4. Proof of the injectivity theorem in the case 0 ≤ β < 1

Figure 4.3.: Schematic picture of a term in the sum (4.41). The evaluation of the spin
network depicted on this figure is equal to the term 〈φ, ι′k1...kN (Ck2k3kα̃

◦Ckα̃k1kβ
◦

Ikα̃kβ )〉.

4. From Hyp N − 2 follows that for Ik′α̃k3 from (4.38) there exists

φk
′
α̃k3 ∈ Inv

(
Hj+α ⊗Hj+β ⊗ · · · ⊗ Hj+N

)
⊗ Inv

(
Hj−α ⊗Hj+β ⊗ · · · ⊗ Hj−N

)
,

such that
〈φk′α̃k3 , ι′k3...kN (Ik′α̃k3)〉 6= 0.

5. Having defined φk
′
α̃k3 , we construct φ:

φA
+
1 ...A

+
N ,A

−
1 ...A

−
N := C

A+
2 A

+
3

A+
α̃

C
A+
α̃
A+

1

A+
β

C
A−2 A

−
3

A−
α̃

C
A−
α̃
A−1

A−β
(φk

′
α̃k3)A

+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N .

6. The φ constructed in the previous point is the φ we are looking for, i.e.

〈φ, ι′k1...kN (I)〉 6= 0.

We will now prove this statement.

a) First, using equation (4.38) write 〈φ, ι′k1...kN (I)〉 as a sum:

〈φ, ι′k1...kN (I)〉 =
∑

(kα̃,kβ)∈L

〈φ, ι′k1...kN (Ck2k3kα̃
◦ Ck1kα̃kβ

◦ Ikα̃kβ )〉, (4.41)

where (Ck2k3kα̃
◦ Ck1kα̃kβ

◦ Ikα̃kβ )
A1A2...AN

:= CA2A3
Aα̃

CA1Aα̃
Aβ

(Ikα̃kβ )AβA4...AN .

b) Let us compute 〈φ, ι′k1...kN (Ck2k3kα̃
◦ Ck1kα̃kβ

◦ Ikα̃kβ )〉 (see fig. 4.4.2):
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4. Properties of the EPRL map

〈φ, ι′k1...kN (Ck1k2kα
◦ Ckαk3kβ

◦ Ikαkβ )〉 = (φk
′
α̃k
′
β )†
A+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N

C
A+
β

A+
α̃
A+

1

C
A+
α̃

A+
2 A

+
3

C
A−β

A−
α̃
A−1
C
A−
α̃

A−2 A
−
3

C
A+

1 A
−
1

A1
. . . C

A+
NA
−
N

AN
CA2A3
Aα̃

CAα̃A1

Aβ
(Ikα̃kβ )AβA4...AN =

= C
A+
α̃

A+
2 A

+
3

C
A−
α̃

A−2 A
−
3

C
A+

2 A
−
2

A2
C
A+

3 A
−
3

A3
CA2A3
Aα̃

C
A+
β

A+
α̃
A+

1

C
A−β

A−
α̃
A−1
C
A+

1 A
−
1

A1
CAα̃A1

Aβ

(φk
′
α̃k
′
β )†
A+
β A

+
4 ...A

+
N ,A

−
β A
−
4 ...A

−
N

C
A+

4 A
−
4

A4
. . . C

A+
NA
−
N

AN
(Ikα̃kβ )AβA4...AN .

Using lemma 5 we can show that for some χ1 6= 0

C
A+
α̃

A+
2 A

+
3

C
A−
α̃

A−2 A
−
3

C
A+

2 A
−
2

A2
C
A+

3 A
−
3

A3
CA2A3
Aα̃

=

{
0, kα̃ > j+

α̃ + j−α̃ ,

χ1C
A+
α̃
A−
α̃

Aα̃
, kα̃ = j+

α̃ + j−α̃ .

Applying this lemma again we can show that for some χ2 6= 0

C
A+
β

A+
α̃
A+

1

C
A−β

A−
α̃
A−1
C
A+
α̃
A−
α̃

Aα̃
C
A+

1 A
−
1

A1
CAα̃A1

Aβ
=

{
0, kβ > j+

β + j−β ,

χ2C
A+
β A
−
β

Aβ
, kβ = j+

β + j−β .

Finally, for χ = χ1χ2 6= 0 :

〈φ, ι′k1...kN (Ck2k3kα̃
◦Ckα̃k1kβ

Ikα̃kβ )〉 =


0, kα̃ > k′α̃ or kβ > k′β,

χ〈φk′α̃k′β , ι′k′β ...kN (Ik′α̃k′β )〉, kα̃ = k′α̃ and kβ = k′β,

∗, otherwise.
(4.42)

c) Now we use the formula just obtained (4.42) to calculate the sum (4.41).

First notice that in this case kβ ≥ k3. Moreover, the elements in the sum (4.41)
with kβ > k3 vanish (4.42) and the sum is actually over L′:

〈φ, ι′k1...kN (I)〉 =
∑

(kα̃,kβ)∈L′
〈φ, ι′k1...kN (Ck2k3kα̃

◦ Ck1kα̃kβ
◦ Ikαkβ )〉.

However, from the definition of k′α̃ follows that

〈φ, ι′k1...kN (I)〉 =
∑
kα̃≥k′α̃

〈φ, ι′k1...kN (Ck2k3kα̃
◦ Ck1kα̃k3

◦ Ikα̃k3)〉.

Finally, using (4.42) we obtain:

〈φ, ι′k1...kN (I)〉 = χ〈φk′α̃k3 , ι′k3...kN (Ik′α̃k3)〉

and
〈φ, ι′k1...kN (I)〉 6= 0.
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5. Operator spin foams

In the previous chapter we showed that the EPRL map is not isometric. As a result there
are two inequivalent spin-foam models with the EPRL vertex amplitude: the SU(2) spin-
foam model with the EPRL vertex [48] and the Spin(4) spin-foam model with the EPRL
vertex [124]. In the second model one sums the spin-foam amplitudes over an orthonormal
basis of the space of EPRL intertwiners. This can be done by mapping a basis Ia of the
space of SU(2) intertwiners to a basis ιEPRL(Ia) of the space of the EPRL intertwiners1

and orthonormalizing it. Another possibility is to go back to equation (1.42) and modify
the definition of a spin foam. Instead of assigning an invariant tensor to each edge of a
foam, one can assign to each edge an operator Pe : He → He. Let us assume for simplicity
that ∂κ = ∅; a general case will be studied shortly. In the BF theory Pe is the orthogonal
projection onto the subspace of invariant tensors Inv (He). The operator can be written
in the following form:

Pe =
∑
ιe

ιe ⊗ ι†e,

where ιe runs through orthonormal basis of the space Inv (He). Since the tensor structure
of the operator is the same as ιe ⊗ ι†e, where ιe ∈ Inv (He), there is a natural contraction
of the indices of the operators and the contractors Av. The partition function is defined
by this contraction:

Z(κ, ρ, ι,A) =
∏
f

dimHf
⊗
v

Trvy
⊗
e

Pe.

In the Spin(4) spin-foam model with the EPRL vertex we introduce a coloring of edges
with orthogonal projection operators PEPRL

e : He → He onto a subspace of the solutions
to the EPRL constraints InvEPRL (He) [124]. This operator can be written in terms of an
orthonormal basis of the space InvEPRL (He):

PEPRL
e =

∑
ιEPRL
e

ιEPRL
e ⊗ (ιEPRL

e )†,

where ιEPRL
e runs through an orthonormal basis of InvEPRL (He). It can also be written

in terms of any basis of InvEPRL (He), in particular in terms of ιEPRL(Ie,a):

Pe =
∑
a,b

habe ιEPRL(Ie,a)⊗ ιEPRL(Ie,b)†,

where habe is the inverse matrix to he ba = 〈ιEPRL(Ie,b)|ιEPRL(Ie,a)〉, 〈·|·〉 is the scalar
product in He.
1According to the injectivity theorem from the previous chapter, either ιEPRL(Ia) is a basis of the space

of the EPRL intertwiners or all vectors ιEPRL(Ia) are zero.
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5. Operator spin foams

In section 5.1.1, we will define operator spin foams (see also [29]), which are foams
labelled by group representations, operators and linear functionals, as our main tool. In
section 5.1.2, we will introduce moves on operator spin foams analogous to the operations
of splitting a link, flipping the orientation of a link, adding a link and adding a node
to a spin network. A set of moves we introduce in the set of the operator spin foams
allows (among other operations) splitting an edge of a foam, splitting a face, adding a face
and changing the orientations. The moves are used to introduce an equivalence relation.
One may, but does not have to, consider two equivalent operator spin foams as the same
operator spin foam. In section 5.2, we will assign to each operator spin foam a spin-foam
operator, by contracting the indices and multiplying the resulting contracted operator by
the face and the boundary link amplitudes. Next in section 5.3, we will define operator
spin foam models and consider a class of models assumed to be symmetric with respect
to the moves from section 5.1.2. Our operator spin-foam framework can be translated
into the language of spin foams and spin-foam amplitudes. Among our spin-foam models
there are the BF spin-foam model, the BC model, and the models with the EPRL vertex
amplitude [123, 48]. We will show that the Spin(4) (operator) spin-foam model with the
EPRL vertex [123] is symmetric with respect to the moves we introduce and the SU(2)
(operator) spin-foam model with the EPRL vertex [48] is not symmetric. Of course we
do not mean to insist that the model of [123] is better than the one of [48]. We will
simply find a set of natural properties that lead to the former model, the bottom line is
that the latter model is inconsistent with some of the conditions we will spell out. Our
operator spin-foam framework can be also used in more general spin-foam models that are
not symmetric with respect to one or all of the moves we consider.

5.1. Operator spin foam

5.1.1. Definition

An operator spin foam is a quadruple (κ, ρ, P,A), where ρ, P and A are colorings by repre-
sentations and, respectively, operators and contractors defined below (see also figure 5.1).

• ρ is a coloring of the faces with unitary irreducible representations of G:

ρ : κ(2) → Irr(G), (5.1)

f 7→ ρf . (5.2)

• P is a coloring of the internal edges with operators:

κ
(1)
int 3 e 7→ Pe, (5.3)

Pe : Inv (He) → Inv (He) . (5.4)

The operator Pe is defined on Inv (He). However, it can be treated as an operator
Pe : He → He. The space He is a direct sum Inv (He)⊕ Inv (He)⊥, where Inv (He)⊥
is the orthogonal complement of Inv (He) in He. To the operator Pe : Inv (He) →
Inv (He) there corresponds a unique operator P̃e : He → He defined by

P̃e =

[
Pe 0
0 0

]
:

Inv (He)
⊕

Inv (He)⊥
→

Inv (He)
⊕

Inv (He)⊥
.
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5.1. Operator spin foam

For example, let id : Inv (He)→ Inv (He) be the identity operator. Then

ĩd : He → He

is the orthogonal projection onto Inv (He). In this thesis we will omit the tilde in
the notation and we will simply denote by Pe the operator on He corresponding to
Pe : Inv (He)→ Inv (He).

• A is a coloring of the internal vertices with linear functionals (figure 5.1)

κ
(0)
int 3 v 7→ Av ∈ H∗v.

It will be sometimes convenient to consider the function Av as a functional on a
bigger space (see remarks in section 1.3.3)⊗

e incoming to v

He ⊗
⊗

e′ outgoing from v

H∗e′ .

Figure 5.1.: a) Faces are colored by irreducible representations of G. b) Internal edges
are colored with operators Pe : Inv (He) → Inv (He). c) Internal vertices are
colored with contractors.

5.1.2. The moves and the equivalence relation they define

In the space of operator spin foams we consider a set of moves and an equivalence relation
they define. The moves allow to subdivide edges and faces, change their orientation, use
colorings with equivalent representations, add faces and edges. In the following paragraphs
we describe that equivalence relation in detail. The moves are analogous to the moves in
the space of the spin networks. Two equivalent operator spin foams are not literally
identified in this paper. The equivalence relation is used as a symmetry of the structures
we define in this chapter.
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5. Operator spin foams

Figure 5.2.: Edge reorientation

Edge reorientation

Being given an operator spin foam (κ, ρ, P,A), let us flip the orientation of its edge e1,

e′1 = e−1
1 , (5.5)

and leave all the other orientations unchanged. Let us denote the resulting 2-complex by
κ′. To define an operator spin foam (κ′, ρ′, P ′,A′) that is equivalent to (κ, ρ, P,A), first
let us suppose that the edge e1 is internal and

• leave the labelling ρ, namely
ρ′ = ρ. (5.6)

Now, ρ′ determines the Hilbert space He′1 to be

He′1 = H∗e1 , (5.7)

where ∗ denotes the algebraic dualization. The natural choice for P ′e′1 is

• for the reoriented edge e′1 = e1
−1,

P ′e′1 = P ∗e1 , (5.8)

• whereas for the remaining edges of κ′ we leave

P ′e = Pe. (5.9)

Flipping the orientation of an edge does not change the Hilbert spaces Hv. The natural
choice for the contractors is:

A′v = Av.
The operator spin foams (κ, ρ, P,A) and (κ′, ρ, P ′,A) are equivalent,

(κ, ρ, P,A) ≡ (κ′, ρ, P ′,A). (5.10)

The remaining case when the reoriented edge e1 is not internal is yet simpler: both
labellings ρ and P are defined on the faces/edges unaffected by the reorientation of e1; we
just leave them unchanged that is we set ρ′ = ρ, P ′ = P and A′ = A.
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5.1. Operator spin foam

Figure 5.3.: Face reorientation

Face reorientation

Being given an operator spin foam (κ, ρ, P,A), let us switch the orientation of its face f1

and denote the reoriented face f ′1. Let us denote the resulting 2-complex by κ′. To define
an operator spin foam (κ′, ρ′, P ′,A′) equivalent to (κ, ρ, P,A), we modify the labelling ρ
in the following way:

• for the reoriented face f ′1 we take the dual representation,

ρ′f ′1
= ρ∗f1 , (5.11)

• for the remaining faces, the labelling ρ′ coincides with ρ,

ρ′f = ρf , for f 6= f ′1. (5.12)

At each edge e, the labelling ρ′ defines the same Hilbert space He as ρ in (κ, ρ, P,A).
Therefore, the following definitions of P ′ and A′ are possible,

• For a labelling P ′ the choice is
P ′ = P. (5.13)

• For a labelling A′ the choice is
A′ = A.

Again, we will consider (κ′, ρ′, P,A) and (κ, ρ, P,A) equivalent,

(κ, ρ, P,A) ≡ (κ′, ρ′, P,A). (5.14)

Face splitting

Let us consider an operator spin foam (κ, ρ, P,A). Split one of its faces, say f0, into f ′1
and f ′2 such that a resulting new edge e′0 (oriented arbitrarily) contained in f ′1 and in f ′2
connects two vertices v1, v2 belonging to κ(0). Choose an orientation of the new faces to
be the one induced by f0. The resulting new 2-complex κ′ is obtained by replacing the
face f0 by the pair of faces f ′1 and f ′2 and by adding the edge e′0. Define a labelling ρ′ on
κ′ in the following way
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5. Operator spin foams

Figure 5.4.: Face subdivision

• ρ′ coincides with ρ on the unsplitted faces,

ρ′f ′ = ρf ′ , if f ′ 6= f ′1, f
′
2 (5.15)

• and ρ′ agrees with ρ on the faces f ′1, f
′
2 resulting from the splitting

ρ′f ′ = ρf0 , if f ′ = f ′1, f
′
2. (5.16)

The Hilbert space Inv
(
He′0

)
= Inv

(
Hf0 ⊗H∗f0

)
is isomorphic to C. Indeed, by Schur’s

Lemma every element of Inv
(
Hf0 ⊗H∗f0

)
⊂ Hf0 ⊗ H∗f0 is proportional to identity map

id : Hf0 → Hf0 . We denote by Λe′0 the linear isomorphism

Λe′0 : Inv
(
He′0

)
= Inv

(
Hf0 ⊗H∗f0

)
→ C

such that
Λe′0(id) = 1.

Since id can be treated as an element of the space Inv
(
He′0

)
or as an element of the space

Inv
(
He′0

)∗
, Λe′0 can be treated as a functional Λe′0 : Inv

(
He′0

)
→ C or as a functional

Λe′0 : Inv
(
He′0

)∗
→ C.

Let us define a labelling P ′ of the internal edges of κ′

• to be the identity on the new edge e′0 resulting from the splitting,

P ′e′ = id : Inv
(
He′0

)
→ Inv

(
He′0

)
, if e′ = e′0 (5.17)

• and to coincide with P on the old edges

P ′e′ = Pe′ , if e′ 6= e′0 . (5.18)

Let us define a labelling A′ of the internal vertices of κ′
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5.1. Operator spin foam

• to be
A′v1 = Av1 ⊗ Λe′0 , A′v2 = Av2 ⊗ Λe′0 ,

• and to coincide with A on the old vertices

A′v = Av, if v 6= v1, v2 .

The resulting operator spin foam is equivalent to (κ, ρ, P,A),

(κ, ρ, P,A) ≡ (κ′, ρ′, P ′,A′). (5.19)

Edge splitting

Figure 5.5.: Invariance under the edge subdivision

In an operator spin foam (κ, ρ, P,A) we split an edge e0 into e′1 and e′2

e0 = e′2 ◦ e′1 (5.20)

which orientations are induced by e0. The splitting adds new vertex v0 to the 2-complex
κ. Denote the resulting 2-complex by κ′. Strictly speaking, the edge splitting move is
not well defined in the class of piecewise linear cell complexes because κ′ is not in the
class. In order to stay in the class, this move should be always followed by splitting each
face intersecting the edge such that the resulting new edge is connecting the new vertex
with either another internal vertex intersecting the face or a vertex obtained after splitting
another internal edge intersecting the face.

An operator spin foam (κ′, ρ′, P ′,A′) defined on κ′ is equivalent to (κ, ρ, P,A),

(κ, ρ, P,A) ≡ (κ′, ρ′, P ′,A′) , (5.21)

whenever the following conditions are satisfied by ρ′, P ′ and A′:

• ρ is unchanged,
ρ′ = ρ, (5.22)

• A′ coincides with A on the vertices v′ 6= v0,

• A′v0 is defined by the identity operator in Inv (He):

A′v0 = id ∈ Inv (He)⊗ Inv (He)∗ ,
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5. Operator spin foams

• P ′ coincides with P on the edges e′ 6= e′1, e
′
2,

• P ′e′1 and P ′e′2
satisfy the following constraint

P ′e′2
◦ P ′e′1 = Pe0 , (5.23)

provided the edge e0 is internal.

Rescaling of the operators

Every operator spin foam (κ, ρ, P,A) is equivalent to any operator spin foam (κ, ρ, P ′,A′)
defined by rescalings:

P ′e = aePe, e ∈ κ(1)
int , ae ∈ C, (5.24)

such that ∏
e∈κ(1)int

ae = 1. (5.25)

Face relabelling with equivalent representations

Let us consider an operator spin foam (κ, ρ, P,A) and (κ, ρ′, P ′,A′), where

• ρf = ρ′f for all but one face f = f0, and for f0 there exists an isomorphism

ζ : Hf0 → H′f0

which intertwines the representations, namely ζ ◦ ρf0 = ρ′f0 ◦ ζ;

• Pe = P ′e for every internal edge e not contained in the face f0;

P ′e = id⊗ . . .⊗ ζ ⊗ id⊗ . . .⊗ id ◦ Pe ◦ id⊗ . . .⊗ ζ−1 ⊗ id⊗ . . .⊗ id, (5.26)

if the face f0 is outgoing from the edge e;

P ′e = id⊗ . . .⊗ ζ∗−1 ⊗ id⊗ . . .⊗ id ◦ Pe ◦ id⊗ . . .⊗ ζ∗ ⊗ id⊗ . . .⊗ id, (5.27)

if the face f0 is incoming to the edge e.

• A′v = Av for every internal vertex v not contained in the face f0;

A′v = id⊗ id⊗ . . .⊗ I ⊗ ζ∗−1 ⊗ . . .⊗ id⊗ id (Av) ,

where Av is considered to be an element of the space
⊗

f Hf ⊗H∗f with f running
through the faces containing v.

The two spin foams are equivalent:

(κ, ρ, P,A) ≡ (κ, ρ′, P ′,A′). (5.28)
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5.1. Operator spin foam

Adding a face labelled by the trivial representation

Our definition of the operator spin foams does not exclude the trivial representation from
the set of labels assigned to the faces. Every operator spin foam (κ, ρ, P,A) will be
considered equivalent to an operator spin foam (κ′, ρ′, P ′,A′) obtained by adding a face
f ′1 and labelling it by the trivial representation 1. That is,

ρ′f ′ =

{
ρf ′ , if f ′ ∈ κ(2)

1, if f ′ = f ′1.

All the internal edges e and the corresponding Hilbert spacesHe coincide, and P ′ is defined
to be,

P ′ = P.

Also all the internal vertices v and the corresponding Hilbert spaces Hv coincide, and A′
is defined to be

A′ = A.

5.1.3. Glueing the operator spin foams

Figure 5.6.: Glueing of the operator spin foams

There is the natural operation of glueing foams (see figure 5.6). It admits a natural
extension to an operation of glueing the operator spin foams, which we will describe in
this section, for the sake of completeness. Two oriented piecewise linear 2-cell complexes
κ and κ′ can be glued along a connected component γ of the boundary ∂κ and a con-
nected component γ′ of ∂κ, provided that γ and γ′ are isomorphic closed 1-cell complexes
(unoriented graphs) and the orientations of the glued faces and, respectively, their sites
match. If φ : γ → γ′ is an isomorphism, then the glueing amounts to glueing along each
link ` of γ a face f` of κ containing `, with the face f ′φ(`) of κ′ containing the link φ(`) of

87



5. Operator spin foams

γ′. In what follows we will assume that the map

γ(1) 3 ` 7→ f`, γ′(1) 3 `′ 7→ f ′`′ (5.29)

is 1-1 (each ` has its own f`). This can be always achieved by dividing the faces and
edges. The resulting face f`#f ′φ(`) can be oriented either according to the orientation of
f` or to the orientation of f ′φ(`); coinciding of the two orientations is the matching relation
we have mentioned above. A similar matching condition applies to the oriented sides of
the faces f` and f ′φ(`). Repeating this glueing for every link ` of γ, we complete the glueing
of κ and κ′ along γ. The result can be denoted by κ#κ′ and it depends on the graphs
γ, γ′ and the isomorphism φ. If the 2-complexes above were endowed with the structures
of the operator spin foams (κ, ρ, P,A), and respectively, (κ′, ρ′, P ′,A′), the operator spin
foams can be glued into an operator spin foam (κ#κ′, ρ#ρ′, P#P ′,A#A′) provided the
representations agree on the boundary, and the glueing condition is

ρ′f ′
φ(`)

= ρf` (5.30)

for every pair ` and φ(`) of the identified edges.

• For each of the boundary links `, due to the glueing condition we can set

(ρ#ρ′)f`#f ′φ(`)
= ρf` = ρ′φ(`). (5.31)

• For the remaining faces we use either ρ or respectively, ρ′

(ρ#ρ′)f ′′ =

{
ρf ′′ , if f ′′ ∈ κ(2),

ρ′f ′′ if f ′′ ∈ κ′(2).
(5.32)

For the operator part P#P ′, the glueing consists in

• taking the composition of the operators for every pair (ẽ, ẽ′) of sides of the faces f`,
and respectively f ′φ(`) that are glued into a side of the face f`#f ′φ(`), that is either

(P#P ′)ẽ◦ẽ′ = Pẽ ◦ Pẽ′ (5.33)

or
(P#P ′)ẽ′◦ẽ = Pẽ′ ◦ Pẽ (5.34)

depending on the orientations.

• For each of the remaining internal edges of κ#κ′ we leave the corresponding operator
of either κ or κ′,

(P#P ′)e′′ =

{
Pe′′ , if e′′ ∈ κ(1)

int ,

P ′e′′ , if e′′ ∈ κ′(1)
int .

(5.35)

The coloring A#A′ of the internal vertices is that of either κ or κ′:

(A#A′)v =

{
Av, if v ∈ κ(0)

int ,

A′v, if v ∈ κ′(0)
int .
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5.2. Spin-foam operator

5.2. Spin-foam operator

5.2.1. Spin-foam operator

There is a canonical contraction

Tr (κ, ρ, P,A) :=
⊗
v∈κ(0)int

Avy
⊗
e∈κ(1)int

Pe (5.36)

called the contracted operator spin foam. It is defined by contracting each Av with either:

• Inv (He)∗ part of the operator Pe ∈ Inv (He) ⊗ Inv (He)∗ if the edge e is outgoing
from v,

• or Inv (He) part of the operator Pe ∈ Inv (He)⊗ Inv (He)∗ if the edge e is incoming
to v.

The spin-foam operator of an operator spin foam (κ, ρ, P,A) is obtained by multiplying
the contracted operator spin foam by the face and boundary link amplitudes:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

Alink(∂ρ`)
∏

f∈κ(2)
Aface(ρf ) Tr (κ, ρ, P,A) . (5.37)

The spin-foam operator Z(κ, ρ, P,A) is indeed an operator. Identifying each operator
Pe : Inv (He)→ Inv (He) with an element of Inv (He)⊗ Inv (He)∗, the spin-foam operator
Z(κ, ρ, P,A) is identified with an element of the Hilbert space

H∂κ =
⊗

e incoming to ∂κ

Inv (He)⊗
⊗

e′ outgoing from ∂κ

Inv (He′)∗ . (5.38)

Any splitting H∂κ = Hout ⊗H∗in makes the spin-foam operator Z(κ, ρ, P,A) an operator
Hin → Hout.

5.2.2. Abstract index notation

In order to understand the contraction better, it is useful to introduce the (abstract) index
notation. The given

w ∈ Inv

 ⊗
f opposite orientation to e

H∗f ⊗
⊗

f ′ same orientation as e

Hf ′

 (5.39)

is denoted in the index notation as

w = wA...
A′... (5.40)

where the lower/upper indices correspond to the spaces H∗f / Hf ′ . The action of the
operator Pe reads

(Pew)A...
A′... = Pe

A′...B...
A...B′...wB...

B′.... (5.41)

Moreover, the vector wA...A
′... is associated to the beginning of the given edge e, whereas

the vector (Pew)A...
A′... lives at the end of e. In this sense, the indices B,B′ of PeA

′...B...
A...B′...
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5. Operator spin foams

Figure 5.7.: The rule of assigning an index of Pe to a corner v of a face f . Being given an
edge e contained in a face f , the indices of Pe corresponding to the Hilbert
space Hf are assigned to the two internal vertices intersecting e. If the ori-
entation of e is the same as that of f , the lower / upper index is assigned to
the beginning / ending point of e. If the orientation of e is opposite to that
of f , the lower / upper index is assigned to the end / beginning point of e.
The oriented arc marks the orientation of the polygonal face f .

are associated with the beginning point of e, whereas the indices A,A′ of PeA
′...B...

A...B′... with
the end point of e. Therefore, for every internal edge e and for each face f containing e,
there are two indices in the operator Pe, an upper and a lower one corresponding to the
Hilbert space Hf . The indices are associated with the ends of the edge e, according to the
rule introduced above and presented in figure 5.7.

There is a canonical contraction of the indices of the contractors and the indices of the
edge operators (see figure 5.8). Whenever in the operator Pe there is an upper/lower index
associated with an internal vertex v ≺ e, there is a lower/upper index in the contractor
Av. We contract the indices and obtain the contracted operator spin foam.

Figure 5.8.: The contraction of the indices. There is a canonical contraction of the indices
of the contractors and the indices of the edge operators. The figure depicts
situations when an edge is connecting two internal vertices. In this case, all
indices of the corresponding edge operator are contracted with the indices of
the contractors. If an edge connects an internal vertex and a boundary node,
then half of the indices of the corresponding edge operator are contracted with
the indices of the contractor corresponding to the internal vertex (and half
of the indices is left uncontracted). If an edge connects two boundary nodes,
then all the indices of the corresponding edge operator are left uncontracted.
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5.2. Spin-foam operator

5.2.3. 2-edge contraction

Wherever two internal edges of a spin foam (κ, ρ, P,A) meet, the geometry of a spin foam
defines a natural contraction between the corresponding operators.

For every pair of edges e and e′ which belong to the same face f and share a vertex
v, if the index of Pe corresponding to f and v is upper / lower, then the index of Pe′
corresponding to f and v is lower / upper, respectively. The indices can be contracted.
In this way the natural contraction Trv,f at v (figure 5.9) is defined.

Figure 5.9.: 2-edge contraction of indices: The edges e and e′ are connected by the face f .
The blue indices A of Pe and respectively Pe′ correspond to the Hilbert space
Hf and get contracted by Trv,f .

As a result there is a distinguished contractor:

Trv =
⊗
f

Trv,f ,

where the product is over faces containing the vertex v. This is the vertex trace (1.44) used
in the spin-foam model of quantum BF theory (section 1.3.2) and the Spin(4) spin-foam
model with the EPRL vertex (section 3.4.1).

5.2.4. Symmetric spin-foam operator

Contraction and the equivalence moves

The expression (5.36) is not invariant with respect to the equivalence moves introduced in
the previous subsection. Being given an operator spin foam (κ, ρ, P,A) let us suppose that
an operator spin foam (κ′, ρ′, P ′,A′) is obtained from (κ, ρ, P,A) by one of the equivalence
moves except for the face splitting move. Then

Tr
(
κ′, ρ′, P ′,A′

)
= Tr (κ, ρ, P,A) . (5.42)

However, if an operator spin foam (κ′, ρ′, P ′,A′) is obtained from (κ, ρ, P,A) by the move
of splitting a face f0 (see section 5.1.2), then

Tr
(
κ′, ρ′, P ′,A′

)
6= Tr (κ, ρ, P,A) ,
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5. Operator spin foams

except for the case dimHf0 = 1. The Hilbert space

Inv
(
Hf ′1 ⊗H

∗
f ′2

)
= Inv

(
Hf0 ⊗H∗f0

)
is spanned by the identity operator id : Hf0 → Hf0 . In the index notation, idAB = δAB,
(Λe′0)AB = 1

df0
δAB,

P ′e′0
AB′
BA′ =

1

df0
δABδ

B′
A′ , (5.43)

where
df0 = dimHf0 . (5.44)

It is easy to verify that

Tr
(
κ′, ρ′, P ′,A′

)
=

1

df0
Tr (κ, ρ, P,A) . (5.45)

This shows that the move is not a symmetry indeed.

Face amplitude restores the equivalence

Introducing suitable face amplitude makes the contraction Tr of operator spin foam exactly
invariant with respect to all the moves. Let us consider a spin-foam operator defined by
a formula (tilde will be removed when we establish the final form of the operator)

Z̃(κ, ρ, P,A) =

 ∏
f∈κ(2)

Af

Tr (κ, ρ, P,A) (5.46)

where
f 7→ Af

is an unknown function, a face amplitude. Then a unique solution for f 7→ Af such
that for every operator spin foam (κ, ρ, P,A) and every equivalent operator spin foam
(κ′, ρ′, P ′,A′)

Z̃(κ,ρ,P,A) = Z̃(κ′,ρ′,P ′,A′), (5.47)

is
Af = dimHf . (5.48)

Boundary amplitude restores the compatibility with the glueing

The introduction of the face amplitude destroys the compatibility with the glueing of
the operator spin foams. Consider two operator spin foams (κ, ρ, P,A) and (κ′, ρ′, P ′,A′),
and their composition (κ, ρ, P,A)#(κ′, ρ′, P ′,A′) glued along a graph γ. The operator spin
foam contraction induces the contraction of the operators Z̃(κ, ρ, P,A) and Z̃(κ′, ρ′, P ′,A′)
– let us denote it by Trγ . The result is

Trγ

(
Z̃(κ, ρ, P,A)⊗ Z̃(κ′, ρ′, P ′,A′)

)
=

∏
`∈γ(0)

df` Z̃(κ#κ′, ρ#ρ′, P#P ′,A#A′). (5.49)
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To restore the compatibility of Z̃ with glueing the operator spin foams we multiply Z̃ by
suitable boundary link amplitudes. Finally, we find that the symmetric spin-foam operator
is of the form:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

1√
df`
Z̃(κ, ρ, P,A), (5.50)

We assume that ` 6= `′ ⇒ f ` 6= f `′ – this can be always achieved by splitting faces and
edges. Now we have

Trγ
(
Z(κ, ρ, P,A)⊗Z(κ′, ρ′, P ′,A′)

)
= Z(κ#κ′, ρ#ρ′, P#P ′,A#A′). (5.51)

5.2.5. Relation with the spin foams

The operator spin foam formalism seems to differ from the usual formulation of spin
foams presented in section 1.3.3, because there are operators assigned to edges instead of
intertwiners. However, if the operators Pe are orthogonal projections,

PePe = Pe, P †e = Pe,

then the spin-foam operator can be interpreted as the result of summing the spin-foam
amplitudes over the intertwiners. Since Pe is an orthogonal projection, it can be written
in the following form:

Pe =
∑
ιe

ιe ⊗ ι†e, (5.52)

where the sum is over an orthonormal basis in ranPe. Using the decomposition (5.52),
the tensor product

⊗
e Pe can be written as a linear combination of terms of the following

form: ⊗
e∈κ(1)int

ιe ⊗ ι†e.

As a result, it is sufficient to assign to each internal edge e an intertwiner ιe ∈ ranPe and
sum over an orthonormal basis of each space ranPe. After applying the decomposition of⊗

e∈κ(1)int

Pe to the contracted operator spin foam (5.36), we obtain

Tr (κ, ρ, P,A) =
⊗
v∈κ(0)int

Avy
⊗
e∈κ(1)int

Pe =
∑
ι

∏
v∈κ(0)int

Av(s†v)
⊗

n∈∂κ(0)
∂ιn.

Since a spin-foam operator is obtained from contracted operator spin foam by multiplying
by face and boundary link amplitudes, we obtain

Z(κ, ρ, P,A) =
∑
ι

∏
`∈∂κ(1)

Alink(∂ρ`)
∏

f∈κ(2)int

Aface(ρf )
∏
v∈κ(0)int

Av(s†v)
⊗

n∈∂κ(0)
∂ιn.

The relation between the spin-foam operator Z and the spin-foam amplitude Z is the
following:

Z(κ, ρ, P,A) =
∑
ι

Z(κ, ρ, ι,A)
⊗

n∈∂κ(0)
∂ιn.

In this sense the operator spin foams formalism is obtained from the standard spin-foam
formalism by summing over the intertwiners.
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5.2.6. Amplitude form of the spin-foam operator

In general, we decompose each Pe,

Pe =
∑
ιe∈Be

∑
ι′e∈B

†
e

Ae(ιe, ι
′
e) ιe ⊗ ι′e (5.53)

in any basis,
Be ⊂ He, (5.54)

and the conjugate basis
B†e = {ι†e : ιe ∈ Be} ⊂ H∗e, (5.55)

where H 3 v 7→ v† ∈ H∗ is the canonical antilinear map (denoted by |v〉 7→ 〈v| in the
Dirac notation).

After the substitution of the right hand side of (5.53) for Pe, the tensor product⊗
e∈κ(1)int

Pe becomes a linear combination of the tensor products⊗
e∈κ(1)int

ιe ⊗ ι′e, (5.56)

in which to each internal edge e there is assigned a (tensor product of a) pair of the
intertwiners ιe⊗ ι′e, where ιe ∈ Be and ι′e ∈ B†e are independent of each other. In fact, from
the point of view of the contractions we use, ι′e is assigned to the start point of e whereas
ιe is assigned to the end point of e. That is the generalized case of a spin foam that was
derived in [124] (see figure 5.10).

Being given a vertex v, the application of the contractor to the tensor product of inter-
twiners assigned to the vertex v produces a C number factor

Av

 ⊗
e incoming to v

ιe ⊗
⊗

e′ outgoing from v

ι′e′

 . (5.57)

It is natural to call the factor the vertex amplitude also in the generalized case.
Finally, the substitution of the right hand side of (5.53) into the spin foam operator
Z(κ, ρ, P,A) definition (5.37) gives the following sum with respect to all the labellings ι
and ι′:

Z(κ, ρ, P,A) =
∑
ι,ι′

Z(κ, ρ, ι, ι′,A)
⊗

n∈(∂κ)(0)

∂ιn, (5.58)

where

∂ιn =

{
ιen if en is incoming to n,

ι′en if en is outgoing from n,

en is the unique internal edge containing the boundary node n,

Z(κ, ρ, ι, ι′,A) =
∏

`∈(∂κ)(1)

Alink(∂ρ`)
∏

f∈κ(2)
Aface(ρf )

∏
e∈κ(1)int

Ae(ιe, ι
′
e)·

·
∏
v∈κ(0)int

Av

 ⊗
e incoming to v

ιe ⊗
⊗

e′ outgoing from v

ι′e′


can be considered to be a (generalized) spin-foam amplitude.
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Figure 5.10.: The operator approach is equivalent to an approach in which we assign an
irreducible representations of group G to each face of the 2-complex, a pair
of intertwiners ιe ∈ Be, ι′e ∈ B†e together with the complex number Ae(ιe, ι

′
e)

to each internal edge and a contractor Av ∈ H∗ to each internal vertex.

5.3. Operator spin-foam models

A G operator spin-foam model defines

• a class of possible operator spin foams (κ, ρ, P,A) (a class of foams and possible
colorings),

• a spin-foam operator Z(κ, ρ, P,A) for each operator spin foam (κ, ρ, P,A) in the
class.

Given (κ, ρ, P,A) the spin-foam operator Z(κ, ρ, P,A) is defined uniquely up to the face
and boundary link amplitudes (see section 5.2.1). The second point is therefore equivalent
to saying that a spin-foam model defines the face and boundary link amplitudes.

5.3.1. Natural operator spin-foam models

We will consider below a class of natural operator spin-foam models, that is models such
that, briefly speaking,

• the assignment e 7→ Pe depends only on an unordered sequence of labels ρf such
that e ≺ f ,

• the assignment v 7→ Av depends only on the vertex graph and the labelling of the
links of the graph induced by the labelling ρ (see section 1.3.3),

and are independent of the other parts of a given 2-complex κ - see below for a technical
definition. We will also assume that each Pe is self-adjoint, that is
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• for every internal edge e ∈ κ(1)
int

P †e = Pe. (5.59)

Technically, the first assumption means, that for every unordered sequence R of allowed
unitary irreducible representations of the group G, we fix an operator

PR : Inv

⊗
ρ∈R
Hρ

 → Inv

⊗
ρ∈R
Hρ

 . (5.60)

The second assumption means, that for every pair (γ, ρ) of oriented graph γ and coloring
ρ of its links with (allowed) unitary irreducible representations of the group G, we fix a
linear functional

A(γ,ρ) :
⊗
n∈γ(0)

Hn → C,

such that
A(γ′,ρ′) = A(γ,ρ), (5.61)

if γ′ is obtained from γ by flipping an orientation of a link, say `0, and

ρ′`′ =

{
ρ∗`0 , if `′ = `−1

0

ρ`′ , otherwise.

Next, being given any (allowed) pair (κ, ρ):

• we can use the equivalence relation to reorient the faces f containing e, such that
their orientations agree with that of e, and therefore an operator Pe should be a map

Pe :
⊗
f :e≺f

Hf →
⊗
f :e≺f

Hf , (5.62)

and set
Pe = PRe (5.63)

with the unordered sequence Re of the representations ρf where f ranges the set of
faces containing e;

• we set
Av = A(γv ,ρv),

where γv is the vertex graph corresponding to the vertex v and ρv is the coloring
of its links with unitary irreducible representations induced by the coloring of faces
containing v (see section 1.3.3).

5.3.2. Symmetric operator spin-foam models

A symmetric model is a model such that all the equivalence moves of section 5.1.2 are sym-
metries of the model. That is, whenever (κ, ρ, P,A) is in the class of operator spin foams
defined by the model, so does any (κ′, ρ′, P ′,A′) that can be obtained from (κ, ρ, P,A) by
the equivalence moves.
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Symmetric natural operator spin-foam models

An important class of models is the subclass of symmetric models in the class of the natural
operator spin-foam models. The set of conditions defining the models has a general solu-
tion. First, the assumed symmetry with respect to the face splitting move of section 5.1.2
implies that

• for every unordered sequence R given by the pair of elements ρ and ρ∗

PR = id, (5.64)

• if γ′ is obtained from γ by splitting one of its links, say `0, into two links `0 = `′2 ◦ `′1
by adding a node n′0, then

A(γ′,ρ′) = A(γ,ρ) ⊗ Λn′0 , (5.65)

where

ρ′`′ =

{
ρ`0 , if `′ = `′1, or `′ = `′2
ρ`′ , if `′ ∈ γ(1).

Second, the consequence of the symmetry with respect to the edge splitting move of
section 5.1.2 implies that

• for every unordered sequence R of unitary irreducible representations, the operator
PR (5.60) satisfies

PRPR = PR, (5.66)

• for any theta graph Θ, i.e. a graph having two nodes n, n′ and N links connecting
the two different nodes outgoing from the node n and incoming to the node n′, the
contractor is trivial:

A(Θ,ρ) = id ∈ Hn ⊗H∗n. (5.67)

A direct consequence of (5.66) and (5.59) is that each operator Pe is an orthogonal pro-
jection onto a subspace

Hs
R ⊂ HR. (5.68)

The subspaces Hs
R are subject to the isomorphisms following from (5.26),(5.27). They

give rise to subspaces Hs
e assigned to the internal edges e of the 2-complexes.

5.3.3. Examples

In the following, we will show how different choices of the operator labelling P and the
labelling with contractors A defining different operator spin-foam models, reproduce dif-
ferent spin-foam models. Three of the examples we will discuss below fall into the class
of the symmetric natural operator spin-foam models, one is a natural operator spin-foam
model but it is not symmetric and one is not natural but it is symmetric.

The symmetric natural operator spin-foam models presented here assign to each vertex
the distinguished contractor

Av = Trv.
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5. Operator spin foams

By construction each operator (5.3) is a projection. The remaining choice consists in fixing
a subspace (5.68),

Hs
R ⊂ HR = Inv

⊗
ρ∈R
Hρ

 (5.69)

for every unordered sequence R of the equivalence classes of unitary irreducible represen-
tations of G (see the conditions (5.26),(5.27)). Each of the models can be thought of as a
quantization of G BF theory with constraints. For a given operator spin foam (κ, ρ, P,A)
of a given model, elements of the Hilbert subspaces Hs

e = Hs
Re

assigned to the edges are
quantum solutions to the constraints.

The next to last model reproduces the spin-foam model presented in section 3.4.2. As
we will see, it is a natural spin-foam model but it is not symmetric. In this model each
operator (5.3) is a projection, but the contractors A(γ,ρ) do not satisfy equations (5.65),
(5.67). The last model is a modification of the preceding model that is symmetric but not
natural operator spin-foam model.

BF theory

The easiest nontrivial choice is the spin-foam model of quantum BF theory. For a given
compact group G the BF operator spin foam (κ, P, ρ,A) is a foam κ with the coloring
such that:

• ρf is arbitrary unitary irreducible representations of G,

• Pe is the identity operator, Pe = id : Inv (He)→ Inv (He) ,

• Av is the vertex trace (1.44), Av = Trv.

The spin-foam operator corresponding to an operator spin foam (κ, ρ, P,A) is:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df Tr (κ, ρ, P,A) .

Clearly, it is a symmetric operator spin-foam model with Hse = Inv (He).

The Barrett-Crane model

In terms of our framework the Barrett-Crane model [38] is a G = Spin(4) operator spin-
foam model. The BC operator spin foam (κ, P, ρ,A) is a foam κ with the coloring such
that:

• ρf = ρj+f j
−
f

, where j+
f = j−f =: jf ,

• Pe is orthogonal projection onto the subspace InvBC (He) spanned by invariants of
the form I ⊗ I ∈ Inv (He), where

I ∈ Inv

 ⊗
f opposite orientation to e

H∗jf ⊗
⊗

f ′ same orientation as e

Hjf ′



98



5.3. Operator spin-foam models

• Av is the vertex trace, Av = Trv.

The spin-foam operator corresponding to an operator spin foam (κ, ρ, P,A) is:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df Tr (κ, ρ, P,A) .

Clearly, it is a symmetric operator spin-foam model with Hse = InvBC (He).

The Spin(4) operator spin-foam model with the EPRL vertex

In this operator spin-foam model again G = Spin(4). The EPRL model relies on the
Barbero-Immirzi parameter β that needs to be a rational number β 6= 0,±1. The Spin(4)
operator spin foam with the EPRL vertex is a quadruple (κ, ρ, P,A) such that:

• ρf = ρj+f j
−
f

, where j+
f = |β+1|

|β−1|j
−
f ,

• Pe is orthogonal projection onto the subspace of the EPRL intertwiners InvEPRL (He),

• Av is the vertex trace, Av = Trv.

The spin-foam operator corresponding to an operator spin foam (κ, ρ, P,A) is:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df Tr (κ, ρ, P,A) .

Clearly, it is a symmetric operator spin-foam model with Hse = InvEPRL (He).
The amplitude form of the operator spin-foam model is the following [124, 29]. Using

the EPRL map, a (typically orthonormal) basis

B ⊂ Inv (Hk1 ⊗ . . .⊗HkN )

is mapped into a basis

BEPRL ⊂ InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
(typically not orthonormal). We can expand the operator Pe in the basis BEPRL

e :

Pe =
∑

Ie∈Be,I′e∈B
†
e

Ae(Ie, I ′e) ιEPRL(Ie)⊗ ιEPRL(I ′e), (5.70)

where the coefficients Ae(Ie, I ′e) are defined by the following conditions

∑
I∈Be

Ae(I1, I†) (ιEPRL(I)|ιEPRL(I2)) =

{
1 if I1 = I2,

0 if I1 6= I2,
(5.71)

I1, I2 ∈ Be, (·|·) is the Hilbert product in He. As a result instead of assigning an operator
Pe to each edge e, one considers a set of assignments of two SU(2) intertwiners Ie, I ′e,
to the end and respectively, the start point of each edge e (figure 5.10). Following the
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5. Operator spin foams

derivation of the amplitude form of the spin-foam operator done in section 5.2.6 we obtain:

Z(κ, ρ, P,A) =
∑
I,I′

∏
`∈(∂κ)(1)

1√
(2j+

f`
+ 1)(2j−f` + 1)

∏
f∈κ(2)

(2j+
f + 1)(2j−f + 1)·

·
∏
e∈κ(1)int

Ae(Ie, I ′e)
∏
v∈κ(0)int

AEPRL
v

⊗
ev

Iev ⊗
⊗
e′v

I ′e′v

⊗
ẽ

ιEPRL(I ẽ)⊗
⊗
ẽ′

ιEPRL(I ′ẽ′)

(5.72)

where ev/e′v ranges the set of edges incoming/outgoing at the vertex v, ẽ/ẽ′ ranges the set
of edges intersecting ∂κ at the end/start point.

Note that the edge amplitude Ae(Ie, I ′e) has to be included if Pe is supposed to be an
orthogonal projection onto the space of the EPRL solutions to the constraints, since the
EPRL map ιEPRL (typically) is not an isometry. The edge amplitude can be interpreted
as a measure factor appearing when summing over intertwiners. If the Ae(Ie, I ′e) factors
are not included in the spin-foam amplitude, then the EPRL intertwiners are summed
over with a different measure, and lead to Pe not being an orthogonal projection – in
particular, the operator Z(κ, ρ, P,A) is no longer invariant under the edge splitting move.

The SU(2) operator spin-foam model with the EPRL vertex

The SU(2) operator spin-foam model for the EPRL intertwiners is an operator spin foam
with the coloring such that:

• ρf = ρkf is an SU(2) unitary irreducible representation such that |1±β|2 kf ∈ 1
2N,

• Pe is the identity operator id : Inv (He)→ Inv (He),

• Av is the EPRL contractor, Av = AEPRL
v .

The spin-foam operator corresponding to an operator spin foam (κ, ρ, P,A) is:

Z(κ, ρ, P,A) =
∏

`∈(∂κ)(1)

1√
df`

∏
f∈κ(2)

df Tr (κ, ρ, P,A) .

Obviously, the operators Pe are orthogonal projections and therefore satisfy equations
(5.66) as well as (5.64). However, the coloring with contractors does not satisfy equations
(5.65) and (5.67), therefore the model is not symmetric.

A modification of the SU(2) operator spin-foam model with the EPRL vertex

If we give up the requirement of naturalness we can modify the SU(2) operator spin-
foam model with the EPRL vertex and restore the symmetry. First, we define the model
according to the definition from the previous subsection for each 2-complex which cannot
be obtained from another 2-complex by splitting an edge or splitting a face. Then we
apply the operations of splitting edges and splitting faces to define the model for any
2-complex. When splitting an edge we choose the labelling of the new edges to be the
identity operators (as in the model in the previous subsection). With this choice the
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5.3. Operator spin-foam models

condition (5.23) is satisfied because P ′e′ and Pe are orthogonal projections (for any e′ and
e). Let us note, that in this model the coloring of edges is the same as in the model in the
previous subsection; the models differ in the coloring of some of the internal vertices.
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6. Operator spin-network diagrams

The piecewise linear foams refer to auxiliary affine structures, which are not compatible
with the diffeomorphism invariance of General Relativity. In [129] we proposed to use
another class of foams defined purely combinatorially (see also [152, 127]). The foams
allow all possible closed graphs to be boundary graphs and all closed, connected graphs
to be vertex graphs. The class is defined by certain diagrams that we call graph diagrams
(see section 6.1.1). Graph diagrams are a generalization of the diagrams defined by Frank
Hellmann [114] for the triangulations. To each graph diagram there corresponds an ori-
ented CW-complex (a foam), which we construct in section 6.1.3. In the paper [129] the
foam was obtained by glueing together elementary building blocks that are certain foams
with one internal vertex. In this thesis the foam is constructed directly from the diagram,
without reference to the glueing procedure. The foams have a clearly defined boundary,
which we describe in section 6.1.4. In [129] the boundary is constructed by using a certain
procedure of merging graphs. However, in this thesis the boundary graph is constructed
without reference to this procedure. On the one hand there are some foams in the class
that were not allowed in the class of piecewise linear foams – for example, in a piecewise
linear 2-complex each face is bounded by at least three edges, which is clearly not the case
in the foam depicted in figure 6.2b. On the other hand we impose a restriction demanding
that a (non-empty) foam has at least one internal vertex. This complicates, for example,
the definition of the static spin foam representing a trivial evolution of a spin network (see
section 6.2.4).

In section 6.2.1 we will define operator spin-network diagrams (OSD) as suitably colored
graph diagrams. For each graph diagram its coloring induces a coloring of the correspond-
ing foam making it an operator spin foam (see section 6.2.2). The spin-foam operator can
be calculated without constructing the corresponding operator spin foam explicitly (see
section 6.2.3). We will use this technical advantage in the next chapter.

Importantly, the operator spin-network diagrams accommodate the two versions of the
EPRL model[123, 48], as well as other possible spin-foam models. In section 6.3 we present
the OSD models such that the corresponding operators spin-foam models are: the Spin(4)
operator spin-foam model with the EPRL vertex described in section 5.3.3 and the SU(2)
operator spin-foam model with the EPRL vertex described in section 5.3.3.

6.1. Graph diagrams

6.1.1. Definition

Beginning from this chapter by a graph we will mean an oriented abstract graph (see
definition in section 1.2.2). We say that a graph is connected if there is an (undirected)
path from every node to every other node. We say that a graph is closed if each of its
nodes is at least 2-valent. Let us denote by

γin
n = {` ∈ γ(1) : t(`) = n} = t−1(n)
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6. Operator spin-network diagrams

the set of links incoming to the node n and by

γout
n = {` ∈ γ(1) : s(`) = n} = s−1(n)

the set of links outgoing from the node n.

Figure 6.1.: A graph diagram. The thick dots represent the nodes of the graphs, the solid
lines with arrows represent the oriented links of the graphs, the dashed lines
illustrate the node relation Rnode and the dotted lines illustrate the glueing
map. For example: (n, n′) ∈ Rnode, ϕ(`) = `′, ϕ(`′) = `′′.

A general graph diagram D = (G,Rnode, ϕ) consists of a finite set G of connected, closed
graphs {γ1, ..., γN}, a relation Rnode and a map ϕ:

• Rnode: a symmetric relation on the set of nodes of the graphs, which we call the
node relation, such that each node n is either in relation with precisely one n′ 6= n
or is unrelated. In the later case, it will be called a boundary node. A necessary
condition for two different nodes n and n′ to be in node relation is that

#γin
n = #γout

n′ , #γout
n = #γin

n′ .

• ϕ: a 1-1 map from the set Gout :=
⋃

(n,n′)∈Rnode
γout
n to the set Gin :=

⋃
(n,n′)∈Rnode

γin
n

such that
∀(n, n′) ∈ Rnode

(
` ∈ γout

n =⇒ ϕ(`) ∈ γin
n′
)
.

We will call ϕ a glueing map.

Let us note that ϕ is in fact a bijection. We denote by G(0) the set of nodes of all graphs:

G(0) =
⋃
I

γ
(0)
I , I ∈ {1, . . . , N}
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6.1. Graph diagrams

and by G(1) the set of links of all graphs:

G(1) =
⋃
I

γ
(1)
I , I ∈ {1, . . . , N}.

Let us note that if there are no boundary nodes, then Gin = Gout = G(1). In this case a
glueing map is a permutation of the links of all graphs.

In [129, 130] we used a family of symmetric relations, called link relations, in place of
the glueing map. Two links ` ∈ γout

n , `′ ∈ γin
n′ identified with each other by a glueing map

(i.e. `′ = ϕ(`)) were said to be in the link relation R(n,n′)
link at the nodes n and n′. In this

thesis we prefer to use the definition in terms of the glueing map and we do not use the
notion of link relations.

6.1.2. Face and edge relations

The node relation Rnode and the glueing map ϕ introduced with the definition of graph
diagram lead to equivalence relation in the set of all links of all graphs. We say that
a link ` is in face relation with a link `′ if and only if there exists a sequence of links
(`1, . . . , `M ),M ≥ 1 such that

`K ∈ G(1), K ∈ {1, . . . ,M}, (6.1)

`K+1 = ϕ(`K), K ∈ {1, . . . ,M − 1}, (6.2)

`1 = `, `M = `′ or `1 = `′, `M = `. (6.3)

The equivalence classes of face relation will be denoted by [`] and the set of the equivalence
classes will be denoted by F. To each equivalence class [l] there corresponds a sequence
(`1, . . . , `M ) such that each element of [l] appears precisely once in the sequence and the
condition (6.2) is satisfied. If in addition (t(`1), s(`M )) ∈ Rnode then the equivalence class
is called closed. Otherwise it is called open. The set of closed equivalence classes will be
denoted by Fclosed and the set of open equivalence classes will be denoted by Fopen. Let
us note that if [l] is closed, then

`1 = ϕ(`M ).

If [l] is open, the sequence is unique. The face relation will be used in the construction of a
CW-complex corresponding to a graph diagram (see section 6.1.3). It carries information
about the faces of the CW-complex and allows to introduce face amplitude without explicit
reference to the complex itself (see section 6.2.3).

For our convenience we will also introduce the edge relation Redge. The edge relation
Redge is the unique equivalence relation on the set G(0) such that two different nodes are in
the relation if and only if they are in node relation. There are two types of the equivalence
classes:

1. Each node unrelated to any other node by Rnode sets a one-element equivalence class
of Redge.

2. Each pair of nodes {n, n′} related by the Rnode sets a two-element equivalence class
of Redge.

The equivalence classes of the edge relation will be denoted by [n]. The set of equivalence
classes of the edge relation will be denoted by E.
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6. Operator spin-network diagrams

6.1.3. A CW-complex corresponding to a graph diagram

In this section we construct a CW-complex corresponding to a given graph diagram. A
general CW-complex is defined by the following procedure [112]:

1. Define X0 to be a discrete set – the points of X0 are called 0-cells,

2. Xd is constructed from Xd−1 by attaching d-cells edα via continuous maps

φdα : Sd−1 → Xd−1.

Xd is the quotient space of a disjoint union

Xd−1 t
⊔
α

Dd
α

of Xd−1 with a collection of d-disks Dd
α under the identifications x ∼ φd−1

α (x) for
x ∈ ∂Dd

α. As a set Xd = Xd−1 t⊔α e
d
α, where each edα is an open disk.

The CW-complex corresponding to a graph diagram D = ({γ1, . . . , γN},Rnode, ϕ), is
constructed in the following way.

1. X0 is a disjoint union of the boundary nodes and N points v1, . . . , vN correspond-
ing to the graphs γ1, . . . , γN in G. The points v1, . . . , vN will be called the internal
vertices. We denote by vI the point corresponding to the graph γI, by v` the point
corresponding to the graph γ ∈ G such that ` ∈ γ(1) and by vn the point correspond-
ing to the graph γ ∈ G such that n ∈ γ(0).

2. X1 is constructed in the following way. The collection of 1-disks ([0, 1] segments) is
labelled by the equivalence classes of the edge relation [n] and the open equivalence
classes of the face relation [`]. We denote the cells corresponding to [n] by e[n] and
call them the internal edges. The attaching maps φ1

α map the endpoints {0, 1} of
the segments D1

α to the points of X0 such that

a)
φ1

[n](0) = vn, φ1
[n](1) = vn′ ,

where n and n′ are the two different nodes in [n].1

b)
φ1

[n](0) = vn, φ1
[n](1) = n,

where n is a boundary node,

c)
φ1

[`](0) = s(`), φ1
[`](1) = t(`′),

where ` is the link in [`] outgoing from a boundary node and `′ is the link in [`]
incoming to a boundary node.

1At the level of CW-complex it is irrelevant, if φ1
[n](0) = vn, φ

1
[n](1) = vn′ or φ1

[n](1) = vn, φ
1
[n](0) = vn′ .

The two different cases will correspond to different orientations of the internal edge e[n] in the oriented
CW-complex that we will introduce in this section. However, the operator spin foams constructed in
the section 6.2.2, corresponding to the different cases will be equivalent.
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3. X2 is constructed in the following way. The collection of 2-disks is labelled by the
equivalence classes of the face relation [`]. The corresponding 2-cells will be denoted
by f [`] and will be called the faces. The definition of an attaching map φ2

[`] depends
on whether the equivalence class [`] is closed or open.

a) To each closed equivalence class there corresponds a sequence (`1, . . . , `M ) such
that each link in [`] appears precisely once in the sequence, (6.2) holds and t(`1)
is in the node relation with s(`M ) (see section 6.1.2). The attaching map φ2

[`]
is the continuous map

φ2
[`] : R/MZ→ X1

such that φ2
[`](K− 1) = v`K , and

φ2
[`](t) =

{
t− K + 1 ∈ intD1

[s(`K)], if φ1
[s(`K)](0) = v`K , t ∈]K− 1,K[,

1− (t− K + 1) ∈ intD1
[s(`K)], if φ1

[s(`K)](1) = v`K , t ∈]K− 1,K[,

where K ∈ {1, 2, . . . ,M}.
b) To each open equivalence class there corresponds a unique sequence (`1, . . . , `M )

such that each link in [`] appears precisely once in the sequence, (6.2) holds
and t(`1) is a boundary node (see section 6.1.2). The attaching map φ2

[`] is a
map

φ2
[`] : R/(M + 2)Z→ X1

such that φ2
[`](0) = t(`1), φ2

[`](K) = v`K , φ2
[`](M) = v`M , φ2

[`](M + 1) = s(`M ),
and

φ2
[`](t) =



1− t ∈ intD1
[t(`1)], if t ∈]0, 1[,

t− K ∈ intD1
[s(`K)], if φ1

[s(`K)](0) = v`K , t ∈]K,K + 1[,

1− (t− K) ∈ intD1
[s(`K)], if φ1

[s(`K)](1) = v`K , t ∈]K,K + 1[,

t−M ∈ intD1
[s(`M )], if t ∈]M,M + 1[,

t−M − 1 ∈ intD1
[`], if t ∈]M + 1,M + 2[,

where K ∈ {1, 2, . . . ,M − 1}.

The cells can be equipped with natural orientation: we assume that the boundary nodes
and internal vertices have positive orientation, the orientation of each edge is the orienta-
tion inherited from the natural orientation of the segment [0, 1] and the orientation of the
face is the orientation inherited from the natural orientation of R/NZ. The resulting ori-
ented CW-complex will be called a foam corresponding to a graph diagram D and denoted
by κD.

Let us note that a graph diagram does not contain any information about orientations
of the internal edges of the corresponding CW-complex. We choose the orientations of
the internal edges connecting two internal vertices arbitrarily and we fix the orientations
of the edges connecting a boundary node and an internal vertex to be incoming to the
boundary node. The operator spin foams constructed in the section 6.2.3, corresponding
to different choices of orientations of the internal edges connecting two internal vertices,
will be equivalent.

An example of a graph diagram and the corresponding foam is given on figure 6.2.
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6. Operator spin-network diagrams

(a) A graph diagram. The dashed lines de-
note the node relation. The glueing map is
the unique map ϕ : Gout → Gin such that
`′J = ϕ (`J) ∨ `J = ϕ (`′J), J ∈ {1, . . . , 6}.

(b) The foam (oriented CW-complex) corre-
sponding to the graph diagram (a). The
orientations of the internal edges connect-
ing two internal vertices can be chosen arbi-
trarily. We fix the orientations of the edges
connecting an internal vertex with a bound-
ary node such that the boundary node is the
target of the edge.

Figure 6.2.: A graph diagram and the corresponding foam (oriented CW-complex). To
each graph there corresponds an internal vertex. The equivalence classes of
the edge relation are [n] = {n}, [n′] = {n′}, [nK] = {nK, n′K}, K = {1, 2, 3}.
The nodes n and n′ are boundary nodes, nK and n′K are in node relation.
To each boundary node there corresponds a node on the boundary of the
CW-complex, to each equivalence class of node relation there corresponds an
internal edge. The equivalence classes of face relation are [`J] = {`J, `′J}, J ∈
{1, . . . , 6}. The equivalence classes [`1], [`5], [`6] are open and the equivalence
classes [`2], [`3], [`4] are closed. To each equivalence class of face relation there
corresponds a face. Additionally, to each open equivalence class of face relation
there corresponds a boundary link.

6.1.4. Boundary graph

The boundary graph is a subcomplex of the complex κ constructed in the following way:

1. X0 is a disjoint union of the boundary nodes,

2. X1 is defined in the following way. The collection of 1-disks ([0,1] segments) is
labelled by the open equivalence classes of the face relation. The attaching maps φ1

α

are mapping the endpoints {0, 1} of the segments D1
α to the points of X0, such that

φ1
[`](0) = s(`), φ1

[`](1) = t(`′),
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where ` is the link in [`] outgoing from a boundary node and `′ is the link in [`]
incoming to a boundary node.

An example of a graph diagram and the corresponding boundary graph is given on fig-
ure 6.3.

(a) A graph diagram. (b) The corresponding boundary graph.

Figure 6.3.: A graph diagram and the corresponding boundary graph. The boundary
graph is the boundary of the foam corresponding to the graph diagram.

6.2. Operator spin-network diagrams

6.2.1. Definition

An operator spin-network diagram (D, ρ, P,A) is defined by coloring a graph diagram
D = (G,Rnode, ϕ) as follows:

• The coloring ρ assigns to each link ` ∈ G(1) a unitary irreducible representation of
the group G:

` 7→ ρ` ∈ Irr(G). (6.4)

It is assumed that
∀` ∈ Gout ρ` = ρϕ(`). (6.5)

• The coloring P assigns to each node n ∈ G(0) an operator:

n 7→ Pn ∈ Hn ⊗H∗n, (6.6)
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6. Operator spin-network diagrams

where Hn = Inv
(⊗

` incoming to nH∗` ⊗
⊗

`′ outgoing from nH`′
)

is the node Hilbert

space (see section 1.2.2).

Whenever two nodes n and n′ are related by Rnode, then from (6.5) it follows that
Hn = H∗n′ and it is assumed about P that

Pn = P ∗n′ . (6.7)

• The coloring A assigns to each graph γI a contractor

γI 7→ AI ∈

 ⊗
n∈γ(0)I

Hn


∗

. (6.8)

If a node n ∈ G(0) is related by Rnode with another node n′ ∈ G(0) (and thus n and n′ are
in the same equivalence class of edge relation, [n] = [n′]), then Pn and Pn′ are elements
of the same Hilbert space

⊗
ñ∈[n]Hñ; due to (6.7) they appear to be the same element

P [n] ∈
⊗
ñ∈[n]

Hñ. (6.9)

We extend this notation to any equivalence class of node relation by defining

P [n] := Pn (6.10)

for any boundary node n.
A natural example of a contractor exists due to the fact that the Hilbert space

⊗
nHn

can be uniquely embedded into a space (see remarks in section 1.3.3 concerning the coloring
with the contractors): ⊗

n∈γ(0)I

Hn ↪→
⊗
`∈γ(1)I

H` ⊗H∗` . (6.11)

The distinguished element of (
⊗

nHn)∗ is

TrI =
⊗
`∈γ(1)I

Tr`, (6.12)

where Tr` ∈ H` ⊗ H∗` is the trace functional. If γI is the graph obtained from a vertex
graph by flipping the orientation of each link and each ρ`, ` ∈ γI is the representation dual
to the representation induced on the corresponding link of the vertex graph, the contractor
TrI is the vertex trace (see section 1.3.2 and section 5.2.3).

6.2.2. The operator spin foam corresponding to operator spin-network
diagram

In section 6.1.3 we constructed a foam corresponding to a graph diagram. In this section
we construct an operator spin foam for each operator spin-network diagram (D, ρ, P,A):

1. The foam is the oriented CW-complex κD constructed in section 6.1.3.
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6.2. Operator spin-network diagrams

2. Let us recall, that the faces of κD are labelled with the equivalence classes of faces
relation and are denoted by f [`]. We define the coloring:

ρ : κ(2) → Irr(G),

to be
ρf [`] = ρ`.

3. Let us recall, that the internal edges of the foam κD are labelled by the equivalence
classes of the edge relation and denoted by e[n].

a) If # [n] = 2, the relation between the edge Hilbert spaces and the node Hilbert
spaces is:

Inv
(
He[n]

)
= Hn,

where n is the node in [n] such that vn is the source of the edge e[n] (i.e.
vn = φ1

[n](0)). We define the edge operator to be:

P e[n] = Pn : Hn → Hn.

b) If # [n] = 1, then

Inv
(
He[n]

)
= Hn.

We define the edge operator to be:

P e[n] = Pn : Hn → Hn.

4. Let us recall, that the internal vertices of the foam κD correspond to the graphs γI
and are denoted by vI. Note that the vertex Hilbert space is

HvI =
⊗
n∈γ(0)I

Hn.

We define the coloring with contractors to be

AvI = AγI .

An example of an operator spin-network diagram and the corresponding operator spin
foam is depicted in figure 6.4.

6.2.3. The spin-network diagram operator

There is a canonical contraction, which we will call contracted operator spin-network
diagram (compare section 5.2.1),

Tr (D, ρ, P,A) =

(⊗
I

AI

)
y

⊗
[n]∈E

P[n]

 (6.13)
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6. Operator spin-network diagrams

(a) An operator spin-network diagram. (b) The operator spin foam corresponding to the
operator spin-network diagram (a).

Figure 6.4.: An operator spin-network diagram and the corresponding operator spin foam.
The orientations of the internal edges connecting two internal vertices can be
chosen arbitrarily. For example, if we had chosen the orientation of the edge
e[n1] (see figure 6.2b) to be opposite to the one indicated on figure (b), the
operator corresponding to this link would be P1 (instead of P ∗1 ). As a result,
the corresponding operator spin foam would be equivalent to the operator
spin foam on figure (b) (see section 5.1.2).

where I labels the graphs in G. It is defined by contracting each AI with the Hn-part of
each operator P [n], n ∈ γ(0)

I (see (6.9) and (6.10)). As a consequence, the H∗n part of each
operator P[n] assigned to a boundary node n remains uncontracted, and

Tr (D, ρ, P,A) ∈
⊗

boundary n

H∗n. (6.14)

We define the spin-network diagram operator to be

Z(D, ρ, P,A) =
∏

[`]∈Fopen

Alink(ρ[`])
∏

[`]∈F

Aface(ρ[`]) Tr (D, ρ, P,A) , (6.15)

where ρ[`] := ρ` for any ` ∈ [`].
A comparison of (6.13) with (5.36) and (6.15) with (5.37) shows that the spin-network

diagram operator of an operator spin-network diagram and the spin-foam operator of the
operator spin foam corresponding to the operator spin-network diagram coincide. As a
result, the formalism of operator spin-network diagrams can be used independently from
the formalism of operator spin foams.

112



6.2. Operator spin-network diagrams

6.2.4. Static operator spin-network diagrams

Given a pair (γ, ρ) of an oriented graph γ and a labelling of its links with representations,
the static operator spin foam is:

• A 2-complex κ = γ × [0, 1]. The boundary graph of κ is γin ∪ γout, where γout = γ
and γin = γ is obtained from γ by flipping the orientations of all the links. For each
link ` of γ, the face f ` = `× [0, 1] of κ is oriented in agreement with `.

• A coloring of faces of the foam ρ is such that

ρf` = ρ`.

• For each node n of γin, there corresponds an internal edge en = n× [0, 1] of the foam.
It is colored by the identity operator

P en = id ∈ Inv (Hen)⊗ Inv (Hen)∗ . (6.16)

• Since there are no internal vertices, no contractors are needed.

An example of a static foam κ = γ × [0, 1] is shown on figure 6.5. The spin-foam operator
corresponding to the static operator spin foam is:

Z(κ, ρ, P ) =
⊗
n∈γ(0)

P en ∈

 ⊗
n∈γ(0)

Hn

⊗
 ⊗
n∈γ(0)

Hn

∗ (6.17)

and due to the choice of coloring (6.16) it is the identity operator. The static operator
spin foam represents therefore a trivial evolution of a spin network.

(a) A graph γ. (b) The static foam κ = γ × [0, 1].

Figure 6.5.: Static foam corresponding to a graph γ.

In analogy to the static spin foam, we define a static operator spin-network diagram.
The diagram will consist of the so called (generalized) θ-graphs. A generalized theta graph
is a graph θ such that # θ(0) = 2 , # θ(1) ≥ 2 and ∀`∈θ(1)s(`) 6= t(`). The static operator
spin-network diagram is (Dγ , ρ, P,A) such that
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6. Operator spin-network diagrams

• G = {θ̃n : n ∈ γ(0)}, where θ̃n is defined in the following way (see also figure 6.6):

1. The graph θn is a generalized theta graph such that θ(0)
n = {nd, nu} and

#s−1(nd) = #t−1(n), #t−1(nd) = #s−1(n),

i.e. the number of incoming/outgoing links at the node nd ∈ θ(0)
n is equal to

the number of outgoing/incoming links at the node n ∈ γ(0).

2. The graph θ̃n is obtained from θn by splitting each link of the graph. We use
the following notation:

θ̃(0)
n = {nd, nu} ∪ {s` : ` ∈ γout

n } ∪ {t` : ` ∈ γin
n },

θ̃(1)
n = {(n, n′) : n = nd ∨ n = nu, n′ = s` ∨ n′ = t`},

s((n, n′)) =

{
n, if (n, n′) = (nd, t`) or (n, n′) = (nu, s`),

n′, if (n, n′) = (nd, s`) or (n, n′) = (nu, t`),

t((n, n′)) =

{
n, if (n, n′) = (nd, s`) or (n, n′) = (nu, t`),

n′, if (n, n′) = (nd, t`) or (n, n′) = (nu, s`).

• Rnode = {(s`, t`) : ` ∈ γ(1)} ∪ {(t`, s`) : ` ∈ γ(1)} (see figure 6.6b). Since each node
s`, t` is two-valent and there are one link incoming and one link outgoing from the
node, there is only one possible glueing map.

• We set the following coloring:

1. The coloring ρ : θ̃
(1)
n → Irr(G) is the following:

ρ(n,s`) := ρ`, ρ(n,t`) := ρ`,

where n ∈ {nd, nu}.
2. Each node n ∈ G(0) is colored by the identity operator, the canonical element

of the corresponding space Hn ⊗H∗n.

3. Each graph θ̃n in the diagram is colored by the natural contractor (6.12).

The figure 6.6b shows the graph diagram Dγ . The operator spin foam corresponding to
(Dγ , ρ, P,A) is not the static operator spin foam (compare figure 6.5b and figure 6.7).
However, it can be obtained from the static operator spin foam by the moves of split-
ting edges and faces from section 5.1.2. As a result the spin-network diagram operator
corresponding to the trivial diagram is (equal to) the identity operator (6.17).

6.3. The OSD models with the EPRL vertex amplitude

In section 3.4 we presented two models with the EPRL vertex amplitude: the SU(2)
spin-foam model with the EPRL vertex and the Spin(4) spin-foam model with the EPRL
vertex and in section 5.3.3 we constructed the corresponding operator spin-foam models.
In this section we present two OSD models such that the corresponding operator spin-foam
models are the ones from section 5.3.3 and section 5.3.3.2 The first one is a Spin(4) OSD
model, whereas the second one is an SU(2) OSD model.
2Provided that the foam corresponding to a graph diagram can be equipped with a piecewise linear

structure making it a piecewise linear 2-complex.
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6.3. The OSD models with the EPRL vertex amplitude

(a) A graph γ. (b) The static graph diagram Dγ . The dashed
lines denote the node relation. There is only
one possible glueing map.

Figure 6.6.: Static graph diagram corresponding to a graph γ.

Figure 6.7.: A foam corresponding to the static graph diagram from figure 6.6b. It can be
related to the static foam from figure 6.5b by the moves of splitting the edges
and the faces.

6.3.1. The Spin(4) OSD model with the EPRL vertex

Given a value of the Barbero-Immirzi parameter β ∈ Q, β 6= 0,±1, the Spin(4) operator
spin-network diagram with the EPRL vertex is a graph diagram D with the following
coloring.

• We color each link ` with a unitary irreducible representation ρj+` j
−
`

of the Spin(4)

group (j±` ∈ 1
2N) such that j+

` = |β+1|
|β−1|j

−
` .

• We color each node n with an operator Pn that is the orthogonal projection onto
the space of the EPRL intertwiners (see also section 5.3.3):

InvEPRL

 ⊗
` incoming to n

H∗
j+` j
−
`

⊗
⊗

`′ outgoing from n

Hj+
`′ j
−
`′

 ⊂ Hn. (6.18)
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6. Operator spin-network diagrams

• We color each graph γI with the natural trace contractor (6.12):

AI = TrI. (6.19)

The spin-network diagram operator corresponding to (D, ρ, P,A) is

Z(D, ρ, P,A) =
∏

[l]∈Fopen

1√
d[`]

∏
[l]∈F

d[`] Tr (D, ρ, P,A) ,

where d[`] = dim ρj+` j
−
`

= (2j+
` + 1)(2j−` + 1) for any link ` ∈ [`].

The corresponding operator spin foam model is the Spin(4) operator spin foam model
with the EPRL vertex described in section 5.3.3.

6.3.2. The SU(2) OSD model with the EPRL vertex

Given a value β ∈ Q, β 6= 0, ±1, the SU(2) OSD with the EPRL vertex is a graph diagram
D with the following coloring.

• We color each link ` with a unitary irreducible representation ρk` of the SU(2) group
(k` ∈ 1

2N) such that |1±β|2 k` ∈ 1
2N.

• We color each node n with the identity operator,

Pn = id ∈ Hn ⊗H∗n.

• Let TrI ∈
⊗

`∈γ(1)I

Hj+` j−` , where j±` = |1±β|
2 k`, be the natural trace contractor (6.12).

We define a pull-back of TrI with the EPRL map (compare section 3.3.4):

ι∗EPRL(TrI)

 ⊗
n∈γ(0)I

In

 := TrI

 ⊗
n∈γ(0)I

ιEPRL(In)

 ,

for any In ∈ Hn. We color each graph γI with the contractor

AI = ι∗EPRL(TrI) ∈
(⊗

n

Hn
)∗

. (6.20)

It will be called the EPRL contractor and denoted by

AEPRL
I := ι∗EPRL(TrI).

The spin-network diagram operator corresponding to (D, ρ, P,A) is

Z(D, ρ, P,A) =
∏

[l]∈Fopen

1√
d[`]

∏
[l]∈F

d[`] Tr (D, ρ, P,A) ,

where d[`] = dim ρk` = 2k` + 1 for any link ` ∈ [`].
The corresponding operator spin foam model is the SU(2) operator spin foam model

with the EPRL vertex described in section 5.3.3.2
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7. Dipole Cosmology

Bianchi, Rovelli and Vidotto used the SU(2) spin-foam model with the EPRL vertex am-
plitude (see sections 3.4.2, 5.3.3, 6.3.2) to construct the first model of Quantum Cosmology
based on the spin-foam formalism. They calculated a transition amplitude between co-
herent states peaked on homogeneous, isotropic geometries using certain approximations,
and showed that the resulting amplitude recovers the vacuum Friedmann dynamics in a
classical limit. The first approximation was a truncation of the LQG state space to the
states associated with a generalized theta graph with 4 links, called a dipole graph (see
figure 7.1a). The second one was a truncation of the transition amplitude to a contribution
from a single foam (we will call it a BRV foam) with one internal vertex, four internal
edges and a boundary formed by two disjoint dipole graphs (see figure 7.1b) — the first
order of vertex expansion. The third one was that of large volume of the universe. The
class of foams defined by OSD includes the BRV foam. However, it also includes a variety
of other possible foams with one internal vertex, four internal edges and the given bound-
ary, which a priori cannot be discarded. Contributions from some other foams having
these properties were investigated in [115]. The class of foams we consider includes all the
foams from [115] as well as many others. We found all of them [130] (see also [128]). In
section 7.1 we will briefly summarize the Bianchi-Rovelli-Vidotto model. In the following
sections 7.2, 7.3 and 7.4 we will describe the foams in the class defined by OSD that may
contribute to the transition amplitude in the first order of the vertex expansion. In sec-
tion 7.2 we will present the algorithm for constructing the diagrams. Different operator
spin-network diagrams correspond to different choices of: orientations of the links of the
two dipole graphs in the boundary; the graph corresponding to the internal vertex (which
we call interaction graph); node relation; glueing map; coloring of the links of the graph
diagram with unitary irreducible representations. In section 7.3 we will find all possible
interaction graphs and in section 7.4 we discuss the remaining degrees of freedom.

At that point a question arises whether the transition amplitude including contributions
from all the foams still has the correct classical limit. We expect that the transition
amplitude in the limit of large universe is dominated by the BRV transition amplitude
and therefore it indeed recovers the vacuum Friedmann dynamics in a classical limit. In
section 7.5 we will present some arguments supporting this hypothesis.

7.1. The Bianchi-Rovelli-Vidotto model

The idea of the Bianchi-Rovelli-Vidotto model of spin-foam cosmology [49] is to calculate
the transition amplitude of the SU(2) EPRL model with the EPRL vertex (see sections
3.4.2, 5.3.3, 6.3.2) between coherent states peaked on homogeneous, isotropic geometry.
The amplitude is calculated under certain approximations and it is shown that in a classical
limit the vacuum Friedmann dynamics is recovered. The following approximations are
used:
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7. Dipole Cosmology

(a) (b)

Figure 7.1.: (a) The dipole graph |θ4|, (b) The Bianchi-Rovelli-Vidotto 2-complex. It is a
cone ((|θin| t |θout|)× [0, 1]) / ((|θin| t |θout|)× {0}).

1. Graph expansion. The Hilbert space is truncated to states supported on graphs
contained in a generalized theta graph with four links θ4 (see section 6.2.4), called a
dipole graph [167, 49]:

Hθ4comb =
⊕

γ∈G:γ⊆θ4

H̃γ

The corresponding truncation in the classical theory is defined by a triangulation
of a three-sphere S3 consisting of two tetrahedra which faces are identified. The
tetrahedra correspond to the nodes of the graph (compare section 3.2.3). To each
link of the dipole graph θ4 there corresponds a triangle in the boundary of each
tetrahedron – the triangles in the two different tetrahedra corresponding to the same
link are identified. An approximation of the universe with two tetrahedra may seem
to be crude. However, the Regge-type calculations show that even few tetrahedra
may approximate the continuous FRW universe [61].

2. Vertex expansion. The transition amplitude is truncated to a contribution from a
single 2-complex with one internal vertex. The boundary of the 2-complex is formed
by two disjoint unoriented dipole graphs |θin| = |θout| = |θ4|(see section 1.2.2 for the
definition of an unoriented abstract graph). The 2-complex is a cone

C (|θin| t |θout|) = ((|θin| t |θout|)× [0, 1]) / ((|θin| t |θout|)× {0})

(see [112] and figure 7.1b). This approximation is analogous to first-order calcula-
tions in the perturbation approach to Quantum Field Theory [49, 165, 168].

3. Large volume expansion. The transition amplitude is calculated in the limit in
which the universe is large compared to the Planck scale.
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7.2. The algorithm

The geometry is encoded in coherent states (in and out). Each state is of the heat-kernel
type [49, 45, 46, 176, 173, 174, 175, 170, 177, 30, 31, 92, 93, 18]:

ΨH`(U`) =

∫ ∏
n∈θ(0)4

dµH(gn)
∏
`∈θ(1)4

Kt(g
−1
t(`)U`gs(`)H

−1
` ), (7.1)

where Kt is the analytic continuation to SL(2,C) of the heat kernel on SU(2), t is a
spread of the heat kernel. The integration is over two copies of the SU(2) group and
implements the projection onto gauge invariant states. The state is peaked at a classical
geometry encoded in SL(2,C) matrices H`. The homogeneity and isotropy of the geometry
is reflected in a special form of the matrices:

H`(u`, z`) = u`e
iz`

σ3
2 u−1

` , (7.2)

where u` ∈ SU(2),

z` =

{
zin ∈ C, if ` is a link of the graph |θin|,
zout ∈ C, if ` is a link of the graph |θout|,

σ1, σ2, σ3 are the Pauli matrices. Each matrix u` gives rise to a normalized vector ~n` ∈ R3

defined by ~n` · ~σ = u` σ3 u
−1
` . The vectors ~n` (−~n`) are interpreted as vectors normal to

the corresponding triangles bounding the tetrahedron associated to the source (target) of
the link `. It is assumed that the tetrahedra are regular [165], i.e. ~n` · ~n`′ = −1

3 for any
two different links ` 6= `′. The real and imaginary parts of the complex numbers zin/out

are interpreted as the standard scale factor a of cosmology and its time derivative ȧ, i.e.
the real part of zin/out is proportional to ȧin/out and the imaginary part is proportional to
ain/out, <(zin/out) ∼ ȧin/out, =(zin/out) ∼ ain/out. The transition amplitude is a function
of two complex variables W (zin, zout). In the approximation of large universe it satisfies a
quantum constraint:

Ĥ W (z, z′) = 0. (7.3)

The corresponding classical constraint turns out to be the Friedmann hamiltonian con-
straint [49].

Our expectation is that the transition amplitude W̃ (z, z′), including contributions from
the operator spin-network diagrams we find in this chapter, converges in a limit of large
universe to W (z, z′) and therefore the full transition amplitude in the approximation of
large universe still satisfies the quantum constraint: Ĥ W̃ (z, z′) = 0.

7.2. The algorithm

We will present now an algorithm for constructing all the operator spin-network diagrams
with boundary fixed (modulo orientations of the links) to be the graph |γdipole| that consists
of two disjoint 4-valent theta graphs |θin| = |θout| = |θ4| (figure 7.2),

|γdipole| = |θin| t |θout|, (7.4)

and such that the corresponding operator spin foams have one internal vertex and four
internal edges. The spin foams contribute to the transition amplitude in the first order of
vertex expansion. The algorithm is the following:
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Figure 7.2.: The dipole boundary graph |γdipole| = |θin| t |θout|.

(a) (b)

Figure 7.3.: Construction of the graph diagram. (a) Step 1 – choose an orientation of each
link of the unoriented graph |γdipole|. (b) Step 2 – construct an interaction
graph γint; an example is depicted.

1. γdipole: choose an orientation of each link of the unoriented graph |γdipole| (fig-
ure 7.3a), i.e. choose a representant of the equivalence class |γdipole|.

2. γint: Construct an interaction graph γint. It is any graph with the following proper-
ties:

γ
(0)
dipole = γ

(0)
int , (7.5)

∀n ∈ γ(0)
dipole #(γint)

in
n = #(γdipole)

in
n ∧ #(γint)

out
n = #(γdipole)

out
n . (7.6)

We obtain each interaction graph γint by assigning an orientation to each link of an
unoriented graph |γint| having the following two properties:

• each graph |γint| has exactly 4 nodes,

• each node of |γint| is precisely four-valent.

In the next subsection we will construct and list all the possible unoriented interac-
tion graphs |γint| (they are depicted in figure 7.10).
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7.2. The algorithm

3. Dγdipole#γint: Use the static graph diagram Dγdipole of the graph γdipole (see sec-
tion 6.2.4 and figure 7.4a) and the interaction graph γint to construct a diagram
Dγdipole#γint (figure 7.4b). It is any graph diagram with the following properties:

• The set of graphs consists of the graphs θ̃n, n ∈ γ
(0)
dipole and the connected

components of γint.

• The node relation is such that: s` is in relation with t` (see section 6.2.4), each
node nd is in relation with a node n′ ∈ γ(0)

int , each node nu is a boundary node.

• The glueing map is arbitrary.

(a) (b)

Figure 7.4.: Step 3 – construction of the graph diagram Dγdipole#γint: (a) the static graph
diagram Dγdipole , (b) the graph diagram Dγdipole#γint. The dotted lines denote
the glueing map.

4. Define the following colorings:

• a coloring ρk of the links of the diagram Dγdipole#γint with unitary irreducible
representations of the SU(2) group such that

∀` ∈ Gout ρk` = ρkϕ(`) , (7.7)

• a coloring of the nodes of the graphs with the identity operators

Pn = id ∈ Hn ⊗H∗n, n ∈ G(0),

• a coloring of the graphs θ̃n with the natural contractors (6.12),

• a coloring of each connected component of the interaction graph γint with the
EPRL contractor (6.20).

Let us note that the induced coloring of the corresponding foam is not exactly that
of the SU(2) operator spin-foam model with the EPRL vertex but rather that of
the symmetric but not natural model from section 5.3.3. However, the resulting
operator spin foam is equivalent to an SU(2) operator spin foam with the EPRL
vertex amplitude.
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7. Dipole Cosmology

5. Consider all the possible: orientations of the links of γdipole, interaction graphs
γint, node relations between the nodes of the interaction graph and corresponding
nodes of static diagram, glueing maps, colorings of the links with unitary irreducible
representations of the SU(2) group.

The algorithm is a special case of a general algorithm for finding all spin foams with
a given boundary graph, number of internal vertices and number of internal edges that
was introduced in [130]. Let us note that strictly speaking the foam corresponding to
Dγdipole#γint has more than one internal vertex. The first reason is that there are internal
vertices corresponding to the graphs θ̃n. The second reason is that there is one internal
vertex corresponding to each connected component of γint and if the graph γint is not
connected, each connected component contributes one internal vertex. However, the re-
sulting operator spin foam can be obtained from an operator spin foam with 1 internal
vertex by a sequence of moves of splitting edges and faces from section 5.1.2 supplemented
by a move of pulling the internal vertices apart from [28]. As a result, thanks to the
chosen coloring, the operator spin foam is equivalent to an SU(2) operator spin foam with
1 internal (EPRL) vertex.

7.3. All the possible interaction graphs

In this subsection we construct all the possible graphs |γint|. We depicted the resulting
graphs in figure 7.10. In order to obtain an interaction graph γint, we assign to each link of
a graph |γint| an orientation consistent with the orientation of the boundary. Let us note
that such assignment is not always possible. For example, take graph 1 from figure 7.10
as a graph |γint|. It is not possible to choose orientations of the links of this graph
compatible with orientation of the links of the boundary graph from figure 7.3a, because
the boundary graph in figure 7.3a has a node with three outgoing and one incoming link
and such structure of incoming/outgoing links is not possible for any node of the graph 1
from figure 7.10 (since each link of this graph forms a loop, the number of incoming links
and outgoing links needs to be equal at every node). Note, that there is a distinguished
graph |γint| – the graph 19 from figure 7.10 used in [49]. This graph may be oriented
in a way compatible with any boundary graph γdipole. There arises a question if each
interaction graph from figure 7.10 can be oriented in a such way that its orientation is
compatible with some orientation of the boundary graph. The answer is affirmative: for
each graph |γint| the orientations of its links may be chosen to be compatible with a
boundary graph oriented in a such way that at every node the number of incoming links
equals to the number of outgoing links.

We now present in detail the construction of unoriented graphs with exactly 4 nodes, all
of which are four-valent, i.e. all possible graphs |γint|. It is well known that each unoriented
graph may be encoded in adjacency matrix. It is a symmetric matrix A ∈ Sym(N) with
the number of columns/rows equal to the number of the vertices of this graph. The entries
AIJ are equal to the numbers of links connecting node I with node J, with a specification
that links forming closed loops (corresponding to diagonal entries) are counted twice. An
example of such matrix and the corresponding graph is given on figure 7.5.

However, to a given graph there are many corresponding matrices, because for each
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Figure 7.5.: A graph and the corresponding adjacency matrix.

permutation π ∈ SN the matrices

(π ◦A)IJ := Aπ(I)π(J) (7.8)

and AIJ define the same graph. There is a natural bijective correspondence between the
graphs with N vertices and the orbits of the action (7.8) of the permutation group on the
set of symmetric matrices, i.e. elements of Sym(N)/SN .

In our case the graphs have four nodes. We are therefore interested in 4× 4 symmetric
matrices. The condition that each node is 4-valent corresponds to an assumption that the
sum of numbers in each row/column is equal to 4:

∀I
4∑

J=1

AIJ = 4. (7.9)

The set of the possible interaction graphs is therefore characterized by the moduli space:{
A ∈ Sym(4) : ∀I

4∑
J=1

AIJ = 4

}
/S4. (7.10)

First, we introduce a parametrization of the space of symmetric matrices with natural
number entries satisfying (7.9) and then we find the moduli space (7.10) using Wolfram’s
Mathematica 8.0.

To define our parametrization in a transparent way we introduce a triple (K4, d,m) (see
figure 7.6):

• the complete graph K4 on four nodes, i.e. an unoriented graph with four nodes,
K

(0)
4 = {n1, n2, n3, n4}, and six links, K

(1)
4 = {`12, `13, `14, `23, `24, `34}, each link `IJ

connecting a node nI with a node nJ;

• a labelling of its nodes d : K
(0)
4 → {0, 2, 4},

n 7→ dn, (7.11)

such that the numbers dn1 , dn2 , dn3 , dn4 satisfy the generalized triangle inequalities:

∀I dnI
≤
∑
I6=J

dnJ
. (7.12)
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7. Dipole Cosmology

Figure 7.6.: A graphical representation of (K4, d,m).

• a labeling of its links m : K
(1)
4 → {0, 1, 2, 3, 4},

` 7→ m`, (7.13)

such that
∀
n∈K

(0)
4

∑
{`∈K

(1)
4 :`∩n6=∅}

m` = dn (7.14)

The condition that dn, n ∈ K
(0)
4 satisfy the generalized triangle inequalities (7.12)

ensures the existence of at least one labeling m1.
To each triple (K4, d,m) there corresponds an unoriented graph |γ(K4,d,m)|, defined in

the following way (see also an example on figure 7.7):

Figure 7.7.: An example of the correspondence between (K4, d,m) and |γ(K4,d,m)|. The
numbering of the nodes is redundant here. However, we add it to make the
exposition clearer.

• it has the same set of nodes, γ(0)
(K4,d,m) = K

(0)
4 ,

• two different nodes nI and nJ of |γ(K4,d,m)| are connected with precisely m`IJ links,

• for each node n there are precisely (4−dn)/2 links connecting n with itself (figure 7.8).

Alternatively we may read from (K4, d,m) the corresponding adjacency matrix:
1This well known fact is used for example in the representation theory of SU(2) to construct the invariant

tensors in the tensor product Hdn1/2
⊗ Hdn2/2

⊗ Hdn3/2
⊗ Hdn4/2

, where dimHj = 2j + 1, and
dn1 + ...+ dn4 ∈ 2N by the construction.
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7.3. All the possible interaction graphs

Figure 7.8.: The correspondence between the number dn and the structure of the links at
the node n ∈ γ(0)

(K4,d,m).

Figure 7.9.: The adjacency matrix corresponding to (K4, d,m).

• the diagonal entries of the adjacency matrix are equal to 4− dnI
, i.e. AII := 4− dnI

,

• the off-diagonal entries of the adjacency matrix are equal to m`IJ , i.e.

AIJ :=

{
m`IJ if I < J,

m`JI if J < I.

This correspondence is depicted in figure 7.9. Let us note that being given the numbers dn,
the total number of links going from nodes n1, n2 to nodes n3, n4 (we denote the number
by k) and the number m`23 , we can reconstruct the remaining coloring of (K4, d,m). As
a result those numbers give the parametrization of the adjacency matrix. Explicitly, we
parametrize the solutions to equations (7.9) with

• four numbers d1, d2, d3, d4 ∈ {0, 2, 4} satisfying triangle inequalities (7.12),

• a natural number k ∈ [|d1 − d2|, d1 + d2]∩ [|d3 − d4|, d3 + d4], such that k+d1 +d2 ∈
2N,

• an even natural number m ∈ [d3 − d4 + d2 − d1,min{d3 − d4 + k, d2 − d1 + k}].

The corresponding parametrization is:

A =


4− d1

d1+d2−k
2

d2−d1+k−m
2

d4−d3+d1−d2+m
2

d1+d2−k
2 4− d2

m
2

d3−d4+k−m
2

d2−d1+k−m
2

m
2 4− d3

d3+d4−k
2

d4−d3+d1−d2+m
2

d3−d4+k−m
2

d3+d4−k
2 4− d4

 . (7.15)

Next, using Mathematica 8.0 we find the orbits of the action of the permutation group
S4 on the set of the matrices of the form (7.15). The resulting graphs are depicted in
figure 7.10.

125



7. Dipole Cosmology

1) 2) 3)

4) 5) 6)

7) 8) 9)

10) 11) 12)

Figure 7.10.: The list of all the possible interaction graphs in the first order of the vertex
expansion (modulo orientations).
Note that the spin foams considered in [115] have the interaction graphs of
type 17, 18 or 19.

Let us note that one could further restrict the number of matrices considered by re-
quiring that the sequence (d1, d2, d3, d4) is monotonous and considering only orbits un-
der the action of S4/H, where H is the subgroup, which does not change the sequence
(d1, d2, d3, d4). This remark enables one to do the calculation without using a computer.
On the other hand, one could write a program which does not use the parametrization
we introduced – e.g. one could generate matrices with entries taking values in the set
{0, 1, 2, 3, 4} (with even numbers on diagonal) and choose only those which satisfy equa-
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7.4. Possible operator spin-network diagrams

13) 14) 15)

16) 17) 18)

19) 20)

Figure 7.10.: (Continued.)

tion (7.9) (a direct method). We have chosen the method we present here, because it gives
better understanding of the structure of the graphs considered, it is less laborious than
calculation without using computer and it is easily applicable to a more general case stud-
ied in [181, 56] where the four nodes are not necessarily four-valent. When d1, d2, d3, d4

are becoming larger, this method becomes considerably faster than the direct method.

7.4. Possible operator spin-network diagrams

As we have explained in the previous subsection, there are exactly 20 interaction graphs.
In this subsection we discuss in more detail the diversity of the operator spin-network
diagrams resulting from the procedure from section 7.2.

7.4.1. Possible graph diagrams

For a given oriented interaction graph γint and a static diagram Dγdipole , there may be
more than one graph diagram Dγdipole#γint. The ambiguity is in the choice of the node
relation and the glueing map.
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7. Dipole Cosmology

• The ambiguity in the choice of a node relation. It exists if an oriented
interaction graph γint has two nodes, say n1 and n2, such that the number of the
incoming/outgoing links at n1 is equal to the number of the incoming/outgoing
links at n2. Then, for every node relation between the nodes of the interaction
graph and the corresponding nodes of the static diagram, there is another, different
node relation obtained by switching the nodes n1 and n2 – see figure 7.11.

(a) (b)

Figure 7.11.: Two nonequivalent graph diagramsDγdipole#γint obtained by different choices
of a node relation between the nodes of the interaction graph and the nodes
of the static diagram. The nodes connected by a dashed line are in node
relation.

• The ambiguity in the choice of a glueing map. Having settled down the node
relation, there are still many possible glueing maps (see figure 7.12).

7.4.2. Possible colorings

We say that a coloring of the links of the boundary graph ρk : γ
(1)
dipole → Irr(SU(2)) is

compatible with a graph diagram Dγdipole#γint, if there exists a coloring ρ̃k of the links of
the graph diagram Dγdipole#γint satisfying (7.7) and such that

ρ̃k(n,s`)
= ρk` , ρ̃k(n,t`)

= ρk` , (7.16)

where n ∈ {nd, nu} ⊂ θ̃
(0)
n . If the coloring ρk is compatible with a graph diagram

Dγdipole#γint then the conditions (7.7) and (7.16) uniquely define a coloring ρ̃k of the
links o the graph diagram Dγdipole#γint. For a given coloring ρ̃k the coloring with opera-
tors P and contractors A is uniquely defined (see section 7.2). As a result each coloring ρk
of the links of the boundary graph γdipole compatible with a graph diagram Dγdipole#γint

defines a coloring of this graph diagram. Each coloring of a graph diagram Dγdipole#γint

can be defined this way.
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7.5. The transition amplitude

(a) (b)

Figure 7.12.: Being given an oriented interaction graph, a static diagram and a node re-
lation one may choose different glueing maps. Diagrams (a) and (b) are
different. The node relation is depicted in figure 7.11a, the glueing map is
denoted by the dotted lines.

Some colorings of the links of the boundary graph ρk : γ
(1)
dipole → Irr(SU(2)) are not

compatible with a given graph diagram Dγdipole#γint. For example, let us consider the
coloring of the boundary graph depicted in figure 7.13a and the OSD in figure 7.13b (node
relations are depicted in figure 7.11a, the coloring with operators and contractors was
described in section 7.2). It is straightforward to see that there exists a coloring of the
links satisfying the conditions (7.7) and (7.16) if and only if

ρ4 = ρ5, ρ6 = ρ7.

There is a distinguished graph diagram, which is not limited by the coloring in the way
described above – it is the BRV graph diagram (see figure 7.14), i.e. the graph diagram
which corresponding foam is the BRV foam. It is compatible even with a coloring of the
links of the boundary graph with pairwise different representations. Moreover, it is the
only graph diagram compatible with such generic coloring.

7.5. The transition amplitude

We expect that the contribution from the BRV foam is dominating all other contributions
in the limit of large volume of the universe. As a result, the total transition amplitude
still recovers the vacuum Friedmann dynamics in the classical limit. In this section we
present some arguments supporting this scenario. The full proof will appear in [126].

We calculate an amplitude W (zin, zout) corresponding to a graph diagram Dγdipole#γint

in the limit of large volume of the universe. First, we use the Peter-Weyl expansion of the

129



7. Dipole Cosmology

(a) (b)

Figure 7.13.: Compatibility of a coloring of the boundary graph with a given graph diagram
– an example. (a) A coloring of the links of a boundary graph. (b) A coloring
of the links of a graph diagram. The glueing map is denoted by the dotted
lines. The node relation if depicted in figure 7.11a and the corresponding
coloring with operators and contractors was described in section 7.2. The
coloring (a) is compatible with the graph diagram (b) if and only if ρ4 = ρ5

and ρ6 = ρ7. If this condition is satisfied the coloring (a) induces the coloring
(b).

heat-kernel function:

Kt(g
−1
t(`)U`gs(`)H

−1
` ) =

∑
k`

(2k` + 1)e−k`(k`+1)tTr
(
ρk`(g

−1
t(`)U`gs(`))ρk`(H

−1
` )
)
.

Next, we approximate ρk`(H
−1
` ) in the limit of large volume of the universe [45, 49]:

ρk`(H
−1
` ) ≈ e−iz`k`ρk`(u`) |k`k`〉 〈k`k`| ρk`(u−1

` ) = e−iz`k` |k`~n`〉 〈k`~n`| , (7.17)

where
|k`~n`〉 = ρk`(u`) |k`k`〉

is the Perelomov coherent state [143]2. The transition amplitude becomes:

W (zin, zout) =
∏

`∈γ(1)dipole

∑
k`

√
2k` + 1e−k`(k`+1)t−iz`k` 〈sout| Z

(
Dγdipole#γint, ρ̃k, P,A

)
|sin〉 ,

(7.18)
2The Perelomov coherent states are defined up to a phase. Obviously the expression (7.17) does not

depend on the choice of the phase.
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7.5. The transition amplitude

where sin = (θin, ρk|θin , ιLS) and sout = (θ†out, ρk|†θout , ι
LS†) are spin networks such that:

the graphs θin, θout are the connected components of the boundary graph γdipole; ρk|θin
and ρk|θout are the colorings of the links of the graph θin and respectively θout obtained by
restricting the coloring ρk of the links of the boundary graph γdipole; ιLS is a labelling of the
nodes of the graphs θin, θout with the Livine-Speziale coherent intertwiners [134, 63, 97]:

ιLS
n =

∫
dµH(gn)

⊗
`:s(`)=n

ρk`(gn) |k`~n`〉 ⊗
⊗

`:t(`)=n

〈k`~n`| ρk`(g−1
n ). (7.19)

The in and out states in (7.18) are:

|sin〉 = ιLS
n1
⊗ ιLS

n2
, |sout〉 = (ιLS

n3
)† ⊗ (ιLS

n4
)†,

where n1, n2 are the nodes of θin and n3, n4 are the nodes of θout. The coloring ρ̃k is the
coloring of the links of the graph diagram Dγdipole#γint induced by a coloring ρk of the
links of the boundary graph γdipole (see section 7.4.2). The amplitude

〈sout| Z
(
Dγdipole#γint, ρ̃k, P,A

)
|sin〉

is zero if the coloring ρk is not compatible with the graph diagram Dγdipole#γint. We
introduce the following notation:

δcomp(k) =

{
1 if ρk is compatible with Dγdipole#γint,

0 otherwise.

Each compatible coloring of the boundary links defines unambiguously a coloring of all
links of the graph diagram. In particular it defines a coloring of the links of the interaction
graph. The coloring of the nodes of the graph γdipole with the Livine-Speziale coherent
intertwiners naturally transfers to a coloring of the nodes of the interaction graph (without
loss of generality, it can be assumed that n ∈ γ

(0)
int is in relation with nd ∈ θ̃

(0)
n ). As a

result, the interaction graph is equipped with a spin-network structure:

sint = (γint, ρk, ι
LS).

We will call it an interaction spin network. Using this notation,

W (zin, zout) =
∑
k

∏
`∈γ(1)dipole

e−k`(k`+1)t−iz`k`δcomp(k)
∏

[`]∈Fclosed

(2k[`] + 1)AEPRL
int (sint) , (7.20)

where k[`] = k` for any ` ∈ [`], the sum is over all possible colorings k : γ
(1)
dipole → 1

2N of the

links of the boundary graph with spins such that |1±β|2 k` ∈ 1
2N and the action of AEPRL

int

on sint is defined in (1.54).
A BRV graph diagram is depicted in figure 7.14. In the following we consider some other

graph diagrams contributing to the transition amplitude. We compare an amplitude

δcomp(k)
∏

[`]∈Fclosed

(2k[`] + 1)AEPRL
int (sint) (7.21)

corresponding to an operator spin-network diagram (Dγdipole#γint, ρ̃k, P,A) to an ampli-
tude corresponding to the BRV operator spin-network diagram with the coloring induced
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7. Dipole Cosmology

Figure 7.14.: Any choice of orientations of the links makes the diagram depicted on this
figure a graph diagram. Any such graph diagram will be called a BRV graph
diagram.

by the same coloring ρk of the boundary links. Since the gaussians in (7.20) are peaked
at approximately =(z`)

2t [49] which is large, we compare the amplitudes in the limit of large
spins. We show that in this limit the amplitudes can be neglected when compared to the
amplitude of the corresponding BRV operator spin-network diagram.

Clearly, when the coloring of the boundary is not compatible with the graph diagram,
the amplitude is zero (but the BRV amplitude is not zero) and therefore it is enough to
consider the amplitude for compatible colorings, i.e. for the colorings such that

δcomp(k) = 1.

7.5.1. Face amplitudes

In this section we discuss the factor ∏
[`]∈Fclosed

(2k[`] + 1) (7.22)

from (7.21). Let us note, that

Gout = γ
(1)
int ∪ {(nd, s`) : ` ∈ γ(1)

dipole, n ∈ γ
(0)
dipole}∪

∪ {(nd, t`) : ` ∈ γ(1)
dipole, n ∈ γ

(0)
dipole} ∪ {(nu, t`) : ` ∈ γ(1)

dipole, n ∈ γ
(0)
dipole}.

Let us recall that without loss of generality, it can be assumed that n ∈ γ(0)
int is in relation

with nd ∈ θ̃(0)
n . It can be also assumed that

γ
(1)
int = γ

(1)
dipole
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7.5. The transition amplitude

and

ϕ(nd, t`) = `,

where (nd, t`) ∈ θ̃
(1)
n . With this conventions, the glueing map uniquely defines and is

uniquely defined by a permutation π : γ
(1)
dipole → γ

(1)
dipole:

• ϕ(nu, t`) = (n′u, s`) if n = t(`) ∈ γ(0)
dipole, n

′ = s(`) ∈ γ(0)
dipole,

• ϕ(nd, s`) = (n′d, t`) if n = s(`) ∈ γ(0)
dipole, n

′ = t(`) ∈ γ(0)
dipole,

• ϕ(nd, t`) = ` if nd is in node relation with t(`) ∈ γ(0)
int ,

• ϕ(`) = (nd, sπ(`)) if s(`) ∈ γ(0)
int is in node relation with nd.

For a given interaction graph and a node relation not all permutations are allowed, for
example the identity permutation is allowed only in a BRV graph diagram.

The closed equivalence classes of the face relation are of the form:

{(nd, s`), (n′d, t`), `, (n′′d, sπ(`)), . . .},

where s(`) = n ∈ γ
(0)
dipole, t(`) = n′ ∈ γ

(0)
dipole, n

′′d is in node relation with s(`) ∈ γ
(0)
int .

Therefore they are in 1-1 correspondence with the cycles of the permutation π and a
compatible coloring of the boundary graph satisfies:

kπ(`) = k`.

Since the number of cycles is at most 8 and is equal to 8 only for the identity permutation,
we conclude that the polynomial ∏

[`]∈Fclosed

(2k[`] + 1)

is of degree at most 8 and it is of degree 8 only for a BRV graph diagram.

7.5.2. Vertex amplitudes

From the analysis of the factor
∏

[`]∈Fclosed
(2k[`] + 1) done in the previous subsection it

follows that in order to show that an amplitude (7.21) corresponding to an operator spin-
network diagram (Dγdipole#γint, ρ̃k, P,A) can be neglected in the limit of large spins when
compared to the amplitude corresponding to the BRV operator spin-network diagram with
the same coloring ρk of the boundary links, it is enough to show that the modulus of the
vertex amplitude is not greater than the corresponding BRV vertex amplitude. We expect
that this is indeed the case. We present some examples when this inequality holds. In
fact, in the first example the modulus of the vertex amplitude is not only not greater
than the BRV vertex amplitude but is negligibly small when compared to the BRV vertex
amplitude (in the limit of large spins).
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(a) s12 (b) s19

Figure 7.15.: The interaction spin networks s12 and s19. The nodes are labelled with the
Livine-Speziale coherent intertwiners ιLS

n and the links are labelled with uni-
tary irreducible representations ρk of the SU(2) group. To make the picture
clearer we indicate only the spin k` of the representation ρk` . The vertex am-
plitude AEPRL

12 (s12) as a function of the spins k` is decaying exponentially.
Since the corresponding BRV vertex amplitude AEPRL

19 (s19) is decaying as
inverse polynomial, the contribution from the graph diagram depicted in
figure 7.13b can be neglected.

Loops (interaction graphs 1-16)

The first example is depicted in figure 7.13b. The interaction graph contains two links
starting and ending at the same node (forming loops). The compatible coloring k satisfies
k4 = k5, k6 = k7. The interaction spin network sint = s12 is depicted in figure 7.15a. The
amplitude AEPRL

12 (s12) is of the following form:

AEPRL
12 (s12) = δk4k8

1

(2j+
4 + 1)2(2j−4 + 1)2

| 〈k4~n4|k4~n8〉 |2| 〈k6~n6|k6~n7〉 |2 ·

·
〈
ιEPRL(ιLS

n1
)|ιEPRL(ιLS

n1
)
〉
, (7.23)

where j±4 = |1±β|
2 k4. Since the tetrahedra associated to the nodes are regular, it follows

that ~n4 · ~n8 = −1
3 , ~n6 · ~n7 = −1

3 and [143]

| 〈k4~n4|k4~n8〉 |2| 〈k6~n6|k6~n7〉 |2 =

(
1 + ~n4 · ~n8

2

)2k4 (1 + ~n6 · ~n7

2

)2k6

=

(
1

3

)2(k4+k6)

.

As a result the amplitude (7.23) as a function of the spins decays exponentially. The
amplitude of a BRV operator spin-network diagram with the same coloring ρk is (compare
figure 7.15b)

A19(s19) =
〈
ιEPRL(ιLS

n3
)|ιEPRL(ιLS

n3
)
〉 〈
ιEPRL(ιLS

n1
)|ιEPRL(ιLS

n1
)
〉
.

and decays as inverse polynomial [134]. As a result, for sufficiently large spins the ampli-
tude AEPRL

12 (s12) is negligibly small when compared to the amplitude A19(s19). Whenever
there is a loop in an interaction graph, there is a factor exponentially decaying [129]. We
therefore expect that a contribution from any graph diagram with an interaction graph
1− 16 can be neglected in the limit of large volume of the universe.
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7.5. The transition amplitude

Interaction graphs 17, 18 and 19

(a) A boundary spin network. (b) An operator spin-network diagram compatible
with the boundary spin network (a).

Figure 7.16.: In this example we limit to graph diagrams with the boundary graph oriented
as on figure (a). One possible graph diagram is depicted on figure (b). The
coloring of the boundary links compatible with the graph diagram satisfies
k4 = k5, k3 = k6. The permutation corresponding to the graph diagram is

π =

(
`1 `2 `3 `4 `5 `6 `7 `8
`1 `2 `6 `5 `4 `3 `7 `8

)
.

In this section we discuss all contributions from the interaction graphs that are com-
patible with an orientation of the boundary graph from figure 7.16a. An example of such
graph diagram is depicted in figure 7.16b. The interaction graphs compatible with this
orientation are graphs 17, 18 and 19.

We use the observation from the section 7.5.1 that to each graph diagram there corre-
sponds a permutation π : γ

(1)
dipole → γ

(1)
dipole. In the cases studied in this section, the vertex

amplitude can be written in the following form:

〈Ψ| Aπ |Ψ〉 ,

where |Ψ〉 = ιEPRL(ιLS
n2

)⊗ ιEPRL(ιLS
n3

) and Aπ :
⊗

`∈γ(1)dipole

Hj+` j−` →
⊗

`∈γ(1)dipole

Hj+` j−` is the

operator permuting the indices:

(Aπ)
A+
`1
...A+

`8
A−`1

...A−`8
B+
`1
...B+

`8
B−`1

...B−`8
= δ

A+
`1

B+
π(`1)

· · · δA
+
`8

B+
π(`8)

δ
A−`1
B−
π(`1)

· · · δA
−
`8

B−
π(`8)

.

Since Aπ is unitary:
| 〈Ψ| Aπ |Ψ〉 | ≤ 〈Ψ|Ψ〉 = AEPRL

19′ (s19′),

where the spin network s19′ is depicted in figure 7.17b and AEPRL
19′ (s19′) is a BRV vertex

amplitude. As a result, the modulus of each vertex amplitude considered in this section
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is not greater than the BRV vertex amplitude. Together with the result about the face
amplitudes from section 7.5.1 it shows that in the limit of large spins the amplitude cor-
responding to a BRV operator spin-network diagram is dominating among the amplitudes
corresponding to the operator spin-network diagrams considered in this section.

(a) s18 (b) s19′

Figure 7.17.: We show that |AEPRL
18 (s18)| ≤ AEPRL

19′ (s19′). Such inequality holds for the
vertex amplitude of any operator spin-network diagram with the orientation
of the boundary graph fixed to be the one depicted in figure 7.16a.

Interaction graph 20

Figure 7.18.: An operator spin-network diagram with interaction graph 20. A coloring of
the boundary links compatible with the graph diagram satisfies k2 = k7, k3 =
k6, k4 = k5.

In this section we discuss a contribution from a graph diagram with interaction graph
20. The graph diagram is depicted in figure 7.18. The compatible coloring of the boundary
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links satisfies k2 = k7, k3 = k6, k4 = k5. The interaction spin network s20 is depicted in
figure 7.19a.

(a) s20 (b) s18′ (c) s19′′

Figure 7.19.: We show that |AEPRL
20 (s20)| ≤ AEPRL

18′ (s18′) ≤ AEPRL
19′′ (s19′′).

We define:

Ψ
A+
`1
A−`1

A+
`8
A−`8

1 A+
`2
A−`2

A+
`7
A−`7

=

= ιEPRL(ιLS
n2

)
A+
`1
A−`1

A+
`3
A−`3

A+
`4
A−`4

A+
`2
A−`2

ιEPRL(ιLS
n4

)
A+
`8
A−`8

A+
`3
A−`3

A+
`4
A−`4

A+
`7
A−`7

.

In this notation the vertex amplitude is of the following form:

AEPRL
20 (s20) = 〈Ψ1| A1 |Ψ1〉 ,

where

(A1)
B+
`1
B−`1

A+
`2
A−`2

A+
`7
A−`7

B+
`8
B−`8

A+
`1
A−`1

B+
`2
B−`2

B+
`7
B−`7

A+
`8
A−`8

= δ
B+
`1

A+
`1

δ
B−`1
A−`1

δ
A+
`2

B+
`7

δ
A−`2
B−`7

δ
A+
`7

B+
`2

δ
A−`7
B−`2

δ
B+
`8

A+
`8

δ
B−`8
A−`8

is a unitary operator

A1 : Hj+`1j−`1 ⊗H
∗
j+`2

j−`2
⊗H∗

j+`7
j−`7
⊗Hj+`8j−`8 → Hj+`1j−`1 ⊗H

∗
j+`2

j−`2
⊗H∗

j+`7
j−`7
⊗Hj+`8j−`8 .

It follows that

|AEPRL
17 (s17)| = | 〈Ψ1| A1 |Ψ1〉 | ≤ 〈Ψ1|Ψ1〉 = AEPRL

18′ (s18′),

where s18′ is the spin network depicted in figure 7.19b. Now, we use an argument similar
to the one used in the previous subsection. We define

Ψ2 = ιEPRL(ιLS
n2

)⊗ ιEPRL(ιLS
n3

)

and note that
AEPRL

18′ (s18′) = 〈Ψ2|A2|Ψ2〉 ,
where

(A2)
B+
`1
B−`1

A+
`2
A−`2

B+
`3
B−`3

B+
`4
B−`4

B+
`5
B−`5

B+
`6
B−`6

B+
`7
B−`7

A+
`8
A−`8

A+
`1
A−`1

B+
`2
B−`2

A+
`3
A−`3

A+
`4
A−`4

A+
`5
A−`5

A+
`6
A−`6

A+
`7
A−`7

B+
`8
B−`8

=

= δ
B+
`1

A+
`1

δ
B−`1
A−`1

δ
A+
`2

B+
`2

δ
A−`2
B−`2

δ
B+
`3

A+
`6

δ
B−`3
A−`6

δ
B+
`4

A+
`5

δ
B−`4
A−`5

δ
B+
`5

A+
`4

δ
B−`5
A−`4

δ
B+
`6

A+
`3

δ
B−`6
A−`3

δ
B+
`7

A+
`7

δ
B−`7
A−`7

δ
A+
`8

B+
`8

δ
A−`8
B−`8
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7. Dipole Cosmology

is a unitary operator mapping

Hj+`1j−`1 ⊗H
∗
j+`2

j−`2
⊗Hj+`3j−`3 ⊗Hj+`4j−`4 ⊗Hj+`5j−`5 ⊗Hj+`6j−`6 ⊗Hj+`7j−`7 ⊗H

∗
j+`8

j−`8

to itself. As a result,

AEPRL
18′ (s18′) = | 〈Ψ2|A2|Ψ2〉 | ≤ 〈Ψ2|Ψ2〉 = AEPRL

19′′ (s19′′),

where the spin network s19′′ is depicted in figure 7.19c. In summary,

|AEPRL
20 (s20)| ≤ AEPRL

19′′ (s19′′).

Together with the result about the face amplitudes from section 7.5.1 this inequality
shows that in the limit of large spins an amplitude corresponding to an operator spin-
network diagram studied in this section is negligibly small when compared to an amplitude
corresponding to the BRV operator spin-network diagram with the same coloring ρk.
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8. Discussion and outlook

In this thesis we studied the spin-foam dynamics of the LQG states. We presented a
generalization of the EPRL vertex amplitude to arbitrary vertex graphs and discussed
two models with the generalized vertex amplitude. The models are compatible with the
LQG framework and accommodate all the spin-network states.

Each of the generalized models describes a dynamics of the Loop Quantum Gravity
states. In order to be a theory of Quantum Gravity, it should define a transition amplitude
that reproduces the dynamics of General Relativity in the classical limit. The results
concerning the semi-classical limit of a single 4-simplex amplitude are encouraging [40, 41].
However, the studies of a transition amplitude truncated to a finite foam [51, 50, 148,
106, 105, 116] point to a problem with the semi-classical limit that is called a flatness
problem. Most Regge geometries are suppressed in the semi-classical limit, and the only
non-suppressed geometries are those satisfying certain curvature constraints, βΘf = 0
mod 2π, limiting the possible values of the deficit angle Θf of the holonomy around a face
f . In [116] the authors argue that this problem could be solved at a price of loosing the
connection to the LQG state space.

The generalized EPRL models provide a link between the LQG formalism and the spin-
foam formalism. An open problem is to find a precise correspondence between them. Such
correspondence would be a strong argument for a given model of dynamics of the LQG
states, could clarify what class of foams should be used and could lead to approximate
methods in the spin-foam formalism – it could justify the vertex expansion used, for
example, in the Dipole Cosmology [168]. A Feynman-like derivation of the spin-foam
transition amplitude from the LQG formulation was first proposed in [158, 161]. The
correspondence was studied in some simpler models: in [138] the correspondence between
canonical and covariant (spin-foam) quantization of 3D Gravity was presented and in [15,
16, 58] a spin-foam formulation of Loop Quantum Cosmology was proposed. Some research
in this direction has been also done in the case of 4D Gravity [85, 109, 108, 76, 7, 179].
However, the picture is still not satisfactory [179, 117]. Some interesting new ideas were
presented in [168, 117] in the context of quantum cosmology. A regulator δ was introduced
and the physical scalar was obtained in the limit of δ → 0.

Some issues with the derivation of the spin-foam models of 4D Quantum Gravity were
raised. The quantum simplicity and closure constraints do not commute (in the EPRL
model the constraints are imposed weakly [75, 74]). In [110] the authors argue that an im-
position of the closure constraint gives non-trivial restrictions on the measure and propose
a new model. Let us recall how the closure constraint is treated in this thesis: we im-
pose (commuting) quantum simplicity and reduced closure constraint and obtain quantum
polyhedra in 4D orthogonal to nI (see section 3.2.4). Then in section 3.2.4 we construct
the Hilbert space of quantum polyhedra in 4D as a space of orbits under the action of
the Spin(4) group on the set of embedded quantum polyhedra. As a result the states are
Spin(4) invariant. We interpret this property as imposition of the (full) quantum closure
constraint. Another issue concerning the imposition of the constraints was discussed in
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8. Discussion and outlook

[13, 10, 9, 12, 101, 11, 78, 77, 79]. The authors argued that the simplicity constraints
should be supplemented by secondary constraints. As a result in [9] a modification of
the BC vertex amplitude was proposed and in [11] a modification of general spin-foam
quantization procedure of theories of Plebański type was proposed. In [78, 77, 79] the
authors argued that the secondary constraints impose certain shape-matching conditions
reducing certain more general geometries called twisted geometries [98, 99, 80, 171] to
Regge geometries. This scenario is currently under debate [102, 14]. Another issue with
the EPRL model was raised in [81]. The author argues that the EPRL model mixes the
II+, II− and deg Plebański sectors and in [83, 82] proposes a modification of the EPRL
4-simplex amplitude selecting only the desired sector II+. The model is defined only for
triangulations and its generalization to more general foams is still an open problem. The
issue with mixing the sectors is related to a cosine problem: the semi-classical limit of
an EPRL 4-simplex amplitude is of the form eiSv + e−iSv , rather than eiSv , where Sv is a
discretization of the Einstein-Hilbert action on the 4-simplex v (see (1.45)). The model
[83, 82] extracts only the exponential term eiSv in the semi-classical limit. On the other
hand, the existence of the two terms may be related to the fact that the propagation
forward and backward in the coordinate time are indistinguishable and the path integral
should involve both terms [162, 165]. In [60] the authors proposed another interesting in-
terpretation – they suggested that the existence of the two terms may reflect an existence
of regions of space-time where the determinant of the tetrad eIµ is negative.

We presented a formulation of spin foams called operator spin foams useful for studying
symmetries of the spin-foam models. We introduced moves on operator spin foams such
as splitting a face, splitting an edge, reorienting an edge, reorienting a face, adding a face.
The symmetric models are invariant under these moves. The moves are analogous to the
moves on spin networks introduced by Baez [22] allowing to flip the orientation of a link,
split a link, add a link or add a node. The Baez’s moves can be used to map a spin
network into a spin network defined on any finer graph. It would be interesting to look
for a complete set of moves that will allow to map an operator spin foam to an operator
spin foam defined on any finer foam. This problem could be translated into the language
of operator spin-network diagrams and the solution could be looked for in this language.

In this thesis we presented two Euclidean models with the EPRL vertex amplitudes. One
of them is a Spin(4) operator spin-foam model and the second one is an SU(2) operator
spin-foam model. The Spin(4) model can be interpreted as a restriction of the operator
spin-foam model of Spin(4) BF theory to histories satisfying the simplicity constraints.
The model is symmetric with respect to the moves discussed in the previous paragraph
but it is naturally interpreted in terms of histories of Spin(4) EPRL spin networks rather
than the LQG SU(2) spin networks. On the other hand the SU(2) model is not symmetric
with respect to the moves but it is naturally interpreted in terms of histories of the LQG
SU(2) spin networks. We have constructed an SU(2) spin-foam model equivalent to the
Spin(4) model with the EPRL vertex and we compared it with the SU(2) operator spin-
foam model with the EPRL vertex – they differ by the face and the edge amplitudes. A
Lorentzian version of the SU(2) spin-foam model with the EPRL vertex was proposed in
[48, 163, 165]. It uses a generalization of the Lorentzian EPRL 4-simplex amplitude [86].
The definition of the Lorentzian vertex amplitude needs a regularization that amounts
to dropping spurious integration over the SL(2,C) group. After the regularization, the
vertex amplitudes corresponding to 3-edge connected graphs are finite [122]. However,
this regularization is often not sufficient for vertex graphs that are not 3-edge connected,
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for example any Lorentzian EPRL vertex amplitude corresponding to a graph γ′ obtained
from a 3-edge connected graph γ by splitting one of its links is infinite. One possibility
to deal with this problem is to discard all foams that have a vertex such that the cor-
responding vertex graph is not 3-edge connected. Another possibility is to improve the
regularization, in the simple example we presented above we could just define the vertex
amplitude corresponding to a vertex spin network s′ = (γ′, ι′, ρ′) obtained from a vertex
spin network s = (γ, ι, ρ) by the move of splitting a link to be equal to the vertex am-
plitude corresponding to s (or proportional by some finite proportionality factor). The
graphs that are not 3-edge connected appear in the face splitting move. This makes the
definition of the symmetric model more complicated. In the Euclidean case the require-
ment of invariance of a model under the face splitting move fixes the face amplitude. We
expect that in the Lorentzian model the face amplitude can be chosen to be the natural
SU(2) face amplitude (as in the model [48, 163, 165]) and the invariance under the face
splitting move can be translated into a condition on the (improved) regularization. Im-
posing further invariance with respect to the edge splitting move will lead to a non-trivial
internal edge amplitude.

We showed that an Euclidean EPRL map is injective unless its co-domain is trivial and
its domain is non-trivial. The EPRL map can also be defined in the (physical) Lorentzian
signature [122]. Since the states annihilated by the map are not given any chance to
play a role in the physical Hilbert space, it would be worthy to extend this result to the
Lorentzian signature.

We presented operator spin foams as a version of the spin-foam formalism where the
sum over intertwiners has been already performed. The sum over the representations
is more problematic, because it is often divergent – see [144, 147, 65, 66, 55, 53, 54,
116, 52, 159, 59] for some studies of these divergences. An interesting possibility is to
regularize the divergences by replacing classical groups with certain quantum groups. The
regularization can be related to an introduction of a (non-zero) cosmological constant.
This idea comes from the spin-foam quantization of 3D Gravity with cosmological constant
[180]. In [91, 103, 104] generalizations of the EPRL model to a quantum group are proposed
and in [72, 104] it is shown that the modified 4-simplex amplitude [104] reproduces the
4D (Regge) Gravity with cosmological constant in the semi-classical limit. However, from
the point of view of canonical quantization the question why the quantum group should
be introduced is non-trivial. The case of 3D Gravity with cosmological constant sheds
some light on the problem – in [151] it is shown that the deformation of the group into
a quantum group is caused by the dynamics. The generalizations of the EPRL model to
a quantum group are defined for the vertex graph that is the 1-skeleton of a 4-simplex.
It would be interesting to extend these models to arbitrary vertex graphs (and boundary
graphs) and settle a link between the extended spin-foam model and kinematics of the
canonical theory similar to the one we settled in the case of vanishing of the cosmological
constant [123].

The transition amplitude involves a sum over the foams or a refinement limit [166]. A
proper definition of the transition amplitude needs therefore a proper definition of the
class of foams. We defined a class of foams by using graph diagrams. Let us mention that
another class of foams defined combinatorially was proposed in [166]. In the literature
also other classes of the 2-complexes are used, for example: simplicial [86], cubular [33],
piecewise linear [20, 123] or the foams derived as the Feynman diagrams from actions of
Group Field Theory models [69, 94, 43, 131, 142]. Our class is certainly bigger than the
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8. Discussion and outlook

class of simplicial and cubular foams. In this thesis we constructed an (oriented) CW-
complex corresponding to a graph diagram. It would be interesting to understand the
relation between our class and the class of combinatorially defined foams [166].

We have found all possible graph diagrams such that the corresponding foam has the
same boundary graph as the BRV foam, one internal vertex and four internal edges.
Similar algorithm could be applied to the graphs of many-node/many-link approaches
to spin-foam cosmology [181, 56]. In particular, the computer algorithm for finding all
interaction graphs we presented can be easily extended to the many links dipole graph
[181] (generalized theta graph with N > 4 links).

We discussed some examples of the first-order contributions to the Dipole Cosmology
transition amplitude. We presented some arguments supporting a hypothesis that the
contribution from the BRV foam dominates all other contributions. The proof will be
presented in [126]. We expect that the arguments we used can be generalized for the case
of many link dipole graph [181]. We considered only the Euclidean case. The calculation of
Bianchi, Rovelli and Vidotto transfers to the Lorentzian case [153]. An important problem
is to investigate also a possible extension of the arguments we presented to the Lorentzian
case. Since interaction graphs which are not 3-edge connected are present on the list on
figure 7.10 a proper regularization of the Lorentzian model is needed (see discussion of
the Lorentzian EPRL model above). In some cases (for example interaction graphs 1, 3
or 18) the standard regularization is sufficient, but in some cases (for example graphs
9 or 17) additional regularization is required. Obviously the argument about the face
amplitudes from section 7.5.1 transfers to the Lorentzian model. In those cases where the
interaction graph has a loop (and the standard regularization is sufficient) an exponentially
decaying term appears [129] and therefore, it seems reasonable to expect that after a proper
regularization the contributions from graph diagrams with interaction graphs 1 − 16 can
be neglected also in the Lorentzian case. It is more difficult to transfer to the Lorentzian
case the arguments concerning the transition amplitudes corresponding to graph diagrams
with interaction graphs 17 − 20 and the study of these amplitudes may require different
methods.
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A. The condition for non-triviality of SU(2)
invariants

This appendix is dedicated to the following theorem and its proof:

Theorem 9. Let us denote by Hk the Hilbert space of the irreducible 2k + 1 dimensional
representation of SU(2). The space Inv (Hk1 ⊗ · · · ⊗ Hkn) of tensors invariant under the
action of the SU(2) group is non-trivial if and only if the following conditions are satisfied:

kI ≤
∑
J 6=I

kJ, I = 1, .., N, (A.1)

∑
I

kI ∈ N. (A.2)

We give now arguments that conditions (A.1) and (A.2) are necessary and sufficient for
non-triviality of the space Inv (Hk1 ⊗ · · · ⊗ HkN ). The proof is an inductive proof with
respect to N .

First, let us note that for N ∈ {1, 2, 3} the theorem is obviously true. Let N ≥ 4. Let
us assume that the theorem is satisfied for N − 1.

• The conditions (A.1) and (A.2) are sufficient.
Without loss of generality we may assume that kN and kN−1 are the lowest spins
among k1, k2, . . . , kN . It is straightforward to check that k′1 = k1, k

′
2 = k2, . . . , k

′
N−2 =

kN−2, k
′
N−1 = kN + kN−1 satisfy

k′I ≤
∑
J 6=I

k′J, I = 1, .., N − 1,

∑
I

k′I ∈ N.

Therefore the space Inv
(
Hk1 ⊗ · · · ⊗ HkN−2

⊗HkN+kN−1

)
is non-trivial. This shows

that in the decomposition

Inv (Hk1 ⊗ · · · ⊗ HkN ) =

kN+kN−1⊕
k=|kN−kN−1|

Inv
(
Hk1 ⊗ · · · ⊗ HkN−2

⊗Hk
)

the term corresponding to k = kN + kN−1 is non-trivial. As a result

Inv (Hk1 ⊗ · · · ⊗ HkN )

is non-trivial.
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A. The condition for non-triviality of SU(2) invariants

• The conditions (A.1) and (A.2) are necessary.
Being given k1, ..., kN , choose any two spins, say kN and kN−1 (the problem is in-
sensitive on an ordering in the N -tuple). Decompose Inv (Hk1 ⊗ · · · ⊗ HkN ) into the
direct sum Inv (Hk1 ⊗ · · · ⊗ HkN ) =

⊕kN+kN−1

k=|kN−kN−1| Inv
(
Hk1 ⊗ · · · ⊗ HkN−2

⊗Hk
)
.

From the non-triviality of Inv (Hk1 ⊗ · · · ⊗ HkN ) follows that there is k ∈ 1
2N such

that |kN − kN−1| ≤ k ≤ kN + kN−1, k + kN + kN−1 ∈ N, and the space

Inv
(
Hk1 ⊗ · · · ⊗ HkN−2

⊗Hk
)

is non-trivial. It follows that

|kN − kN−1| ≤ k ≤ k1 + . . .+ kN−2.

From those inequalities we have

kN − kN−1 ≤ k1 + . . .+ kN−2,

hence
kN ≤ k1 + . . .+ kN−2 + kN−1.

Since kN is arbitrarily chosen from among of k1, ..., kN , this shows that the gen-
eralized triangle inequality (A.1) is satisfied. To check that the condition (A.2) is
fulfilled, note that

k1 + . . .+ kN−2 + k + kN + kN−1 + k ∈ N,

since k1 + . . .+ kN−2 + k ∈ N and kN + kN−1 + k ∈ N. However, 2k ∈ N, therefore

k1 + . . .+ kN−2 + kN−1 + kN ∈ N.

In conclusion, both conditions (A.1) and (A.2) are satisfied.
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B. Notation

Index conventions

α, β, µ, ν Space-time indices.

A,B,C,D Indices in a representation space. See H`, Hf , Hk.

a, b, c, d Space indices (i.e. indices in Σ).

a, b, c, d Indices in the space Inv
(
Hk1 ⊗ . . .⊗HkM ⊗H∗kM+1

⊗ . . .⊗H∗kN
)

.

a, b, c, d A numbering of tetrahedra in a 4-simplex (the indices take values in {0, 1, 2, 3, 4}).

I, J,K,L Indices in the internal space V .

i, j, k, l Indices in the space V⊥.

I, J,K Indices taking values in {1, 2, . . . , N} or {1, 2, . . . ,M}.

List of symbols

#S The number of elements in the set S.

Y ≺ X Y is face of X. See section 1.3.3.

Γia The connection compatible with the triad eia. See section 1.1.3.

I An SU(2) invariant tensor – an element of Inv
(
Hk1 ⊗ . . .⊗HkM ⊗H∗kM+1

⊗ . . .⊗H∗N
)

.

Λ An isomorphism of Inv (H⊗H∗) and C, such that Λ(id) = 1. See section 5.1.2.

Σ A space manifold – oriented, compact 3-dimensional manifold without boundary.

Σt A constant time slice (t = t slice). See section 1.1.2.

β The Barbero-Immirzi parameter. See section 1.1.1.

γ A graph (embedded or abstract). See section 1.2.1 and section 1.2.2.

γ(0) The set of nodes of the graph γ. See section 1.2.2.

γ(1) The set of links of the graph γ. See section 1.2.2.

γdipole A dipole boundary graph. See section 7.2.

γin
n The set of the links of the graph γ incoming to n, γin

n = t−1(n). See section 6.1.
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List of symbols

γint An interaction graph. See section 7.2.

|γ| An unoriented abstract graph. See section 1.2.2.

εIJKL The alternating tensor on V such that the orientation of εIJKLeI ∧ eJ ∧ eK ∧ eL
agrees with the orientation of M.

εijk The alternating tensor on V⊥: εijk = qIi q
J
j q

K
k n

LεIJKL. See section 1.1.3.

ηIJ An inner product on V = R4. The signature of ηIJ is either -,+,+,+ or +,+,+,+.
See section 1.1.1.

ηabc The Levi-Civita tensor density on Σ which orientation agrees with the orientation of
Σ.

ηαβµν The Levi-Civita tensor density onM which orientation agrees with the orientation
of M.

ηij An inner product on V⊥. See section 1.1.3.

θt Embedding θt : Σ→M, such that θt(Σ) = Σt. See section 1.1.2.

ι A labelling of nodes of a graph with intertwiners or a labelling of edges of a 2-complex
(foam) with intertwiners. See section 1.2.2 and section 1.3.3.

∂ιn The invariant tensor induced on the node n of the boundary of a spin foam. See
(1.53).

ιEPRL An EPRL map, I 7→ ιEPRL(I). See section 3.3.2.

ιEPRL(I) An EPRL intertwiner. See (3.28).

ιk1...kN The map analogous to EPRL map defined under modified conditions Con n. See
(4.22).

ι′k1...kN The map analogous to ιk1...kN defined without the projections onto invariants of
Spin(4). See (4.25).

ιLS
n The Livine-Speziale coherent intertwiner assigned to the node n. See (7.19).

ιpoly(nI , I) The quantum polyhedron in 4D orthogonal to nI corresponding to a quantum
polyhedron in 3D I. See (3.20).

ι̊poly(I) The quantum polyhedron in 4D orthogonal to n̊I corresponding to a quantum
polyhedron in 3D I. See (3.19).

ιnpoly A quantum polyhedron in 4D orthogonal to nI . See section 3.2.4.

κ A foam (2-complex). See section 1.3.3.

κ(0) The set of vertices of κ. See section 1.3.3.

κ
(0)
int The set of internal vertices of κ. See section 1.3.3.
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List of symbols

κ(1) The set of edges of κ. See section 1.3.3.

κ
(1)
int The set of internal edges of κ. See section 1.3.3.

κ(2) The set of faces of κ. See section 1.3.3.

∂κ The boundary graph of a foam κ. See section 1.3.3.

κD The foam corresponding to the graph diagram D. See section 6.1.3.

µH The Haar measure.

ρ A labelling of links of a graph with unitary irreducible representations or a labelling
of faces of a 2-complex (foam) with unitary irreducible representations. See sec-
tion 1.2.2, section 1.3.3, section 5.1.1.

∂ρ` The unitary irreducible representation induced on the link ` of the boundary of a spin
foam. See (1.52).

ρj+j− The Spin(4) representation defined by a pair of SU(2) unitary irreducible representa-
tions ρj+ , ρj− : ρj+j−(g+, g−) = ρj+(g+)⊗ ρj−(g−), j+, j− ∈ 1

2N. See section 3.2.4.

ρ′j+j− The representation of the spin(4)=so(4) Lie algebra induced by the Spin(4) repre-
sentation ρj+j− (the tangent map of ρj+j−).

ρk An SU(2) unitary irreducible representation of spin k.

ρ′k The representation of the su(2) Lie algebra induced by the SU(2) representation ρk
(the tangent map of ρk).

σ The sign of the determinant of the metric η. See section 1.1.1.

ϕ A glueing map. See section 6.1.

ω I
µ J A connection one-form onM. In this thesis it is a global one-form onM with values

in so(η).

1 The trivial representation.

Aia A connection one-form on Σ. See section 1.1.3.

A A labelling of internal vertices of a spin-foam with contractors: A : κ
(0)
int → H∗v. The

complex number Av(s†) is called a vertex amplitude. See sections 1.3.3, 1.3.3, 5.1.1.

AEPRL
v The EPRL contractor. See section 3.3.4.

Ae An (internal) edge amplitude. See section 5.2.6.

Aface A function Aface : Irr(G)→ C, such that Aface(ρ1) = Aface(ρ2) if the representations
ρ1 and ρ2 are equivalent. The number Aface(ρf ) is called a face amplitude. See
section 1.3.4.

Alink A function Alink : Irr(G)→ C, such that Alink(ρ1) = Alink(ρ2) if the representations
ρ1 and ρ2 are equivalent. The number Alink(∂ρ`) is called a boundary link amplitude.
See section 1.3.4.
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List of symbols

A(Σ) The set of the Lie algebra g valued differential one-forms (connections) on Σ.

BIJ
ab A discretization of the field BIJ

µν . See section 3.1.2.

BIJ
µν An so(4) (or so(1,3)) valued 2-form on M. See section 3.1.1.

B̂IJ
I The quantum operator corresponding to BIJ

ab . See section 3.2.4.

Cj2j3j1
, Cj1j2j3 , C

A2A3
A1

, CA1
A2A3

The Clebsch-Gordan map: Let (j1, j2, j3) ∈ 1
2N × 1

2N × 1
2N

satisfy triangle inequalities and j1 + j2 + j3 ∈ N. We denote by Cj2j3j1
the natural

isometric embedding Hj1 → Hj2 ⊗ Hj3 and by Cj1j2j3 the adjoint operator. In the

index notation we omit j1, j2, j3, e.g. CA1
A2A3

:= (Cj1j2j3)A1
A2A3

, A1 ∈ {1, ..., 2j1 + 1}
corresponds to the space Hj1 , A2 ∈ {1, ..., 2j2 + 1} corresponds to the space H∗j2 and
A3 ∈ {1, ..., 2j3 + 1} corresponds to the space H∗j3 .

Cyl(A(Σ)) The space of cylindrical functions. See section 1.2.1.

D A graph diagram D = (G,Rnode, ϕ). See section 6.1.1.

Dγ The static diagram of the graph γ. See section 6.2.4.

df The dimension of the representation ρf (df = dimHf ).

eIµ A tetrad. See section 1.1.1.

e An edge of a foam, i.e. 1-cell of a 2-complex κ. See section 1.3.3.

E The set of the equivalence classes of the edge relation. See section 6.1.2.

e[n] The 1-cell of κD corresponding to the equivalence of the edge relation [n]. See sec-
tion 6.1.3.

eia A triad, eia = qiI(θt
∗eI)a. See section 1.1.3.

F iab The curvature two-form of the connection one-form Aia. F = dA+A ∧A.

f A face of a foam, i.e. 2-cell of a 2-complex κ. See section 1.3.3.

F The curvature two-form of ω: F = dω + ω ∧ ω.

F The set of the equivalence classes of the face relation. See section 6.1.2.

Fclosed The set of the closed equivalence classes of the face relation. See section 6.1.2.

Fopen The set of the open equivalence classes of the face relation. See section 6.1.2.

f ` The unique face containing the boundary link `.

f [`] The 2-cell of κD corresponding to the equivalence class of the face relation [`]. See
section 6.1.3.

G The Newton’s constant.

G A Lie group (we usually assume that G is compact).
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List of symbols

G A finite set of oriented, connected, closed graphs. See section 6.1.

G(0) The set of nodes of all graphs in G, G(0) =
⋃

I γ
(0)
I . See section 6.1.1.

G(1) The set of links of all graphs in G, G(1) =
⋃

I γ
(1)
I . See section 6.1.1.

Gin =
⋃

(n,n′)∈Rnode
γin
n . See section 6.1.

Gout =
⋃

(n,n′)∈Rnode
γout
n . See section 6.1.

[g]IJ The SO(4) matrix corresponding to g ∈ Spin(4). See section 3.2.4.

gµν Space-time metric: gµν = ηIJe
I
µe
J
ν .

g The Lie algebra of the Lie group G.

hab The first fundamental form of Σ. See section 1.1.2.

Hcomb The combinatorial Hilbert space. See section 1.2.5.

He The edge Hilbert space: He =
⊗

f opposite orientation to eH∗f ⊗
⊗

f ′ same orientation as eHf ′ .
See section 1.3.3.

Hf The representation space of the representation ρf . See section 1.3.3.

Hj+j− The representation space of the ρj+j− representation. Hj+j− = Hj+ ⊗Hj− .

Hk The representation space of the ρk representation.

H` The representation space of the representation ρ`. See section 1.2.2.

Hn The node Hilbert space: Hn = Inv
(⊗

` incoming to nH∗` ⊗
⊗

`′ outgoing from nH`′
)

.
See section 1.2.2.

Hpoly The Hilbert space of quantum polyhedra in 4D, Hpoly =
(⋃

nHn
poly

)
/Spin(4). See

section 3.2.4.

Hn
poly The Hilbert space of quantum polyhedra in 4D orthogonal to nI . See section 3.2.4.

HΣ The Hilbert space of gauge invariant functions in L2(A(Σ), µ0). See section 1.2.3.

Hγ The Hilbert space of gauge invariant functions in L2(Gγ(1) , µH). See section 1.2.2.

Hv =
⊗

e incoming at v Inv (He)⊗
⊗

e outgoing at v Inv (He)∗. The vertex Hilbert space. See
section 1.3.3.

id The identity operator.

Inv (Hρ1 ⊗ . . .⊗HρN ) The subspace of invariant tensors (intertwiners) in Hρ1⊗ . . .⊗HρN .

InvEPRL

(
Hj+1 j−1 ⊗ . . .⊗Hj+N j−N

)
A space of EPRL intertwiners (the image of an EPRL

map). See section 3.3.1.

Irr(G) The set of unitary irreducible representations of the group G.
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List of symbols

k = 8πG.

Ki
a The extrinsic curvature of Σ. See section 1.1.3.

Kiab The ”electric” part of Bi
ab: Kiab = (qa)iIna JB

IJ
ab . See section 3.1.2.

Ki
I The ”electric” part of an antisymmetric matrix EIJI : Ki

I = qiInJE
IJ
I . See section 3.2.2.

K̂
i

I The quantum operator corresponding to Kiab: K̂
i

I = nIq
i
J B̂

IJ
I . See section 3.2.4.

Liab The ”magnetic” part of Bi
ab: Liab = 1

2(qa)iIna Jε
IJ
KLB

KL
ab . See section 3.1.2.

LiI The ”magnetic” part of an antisymmetric matrix EIJI : LiI = 1
2q
i
InJε

IJ
KLE

KL
I . See

section 3.2.2.

L̂
i

I The quantum operator corresponding to Liab: L̂
i

I = 1
2nIq

i
Jε
IJ
KLB̂

KL
I . See section 3.2.4.

L The Lie derivative.

` A link of a graph, ` ∈ γ(1). See section 1.2.2.

[`] An equivalence class of a face relation. See section 6.1.2.

M A space-time manifold. It is assumed thatM = Σ×R, where Σ is the space manifold.

N,Nα The lapse and the shift: tα = Nn+Nα. See section 1.1.2.

n A node of a graph, n ∈ γ(0). See section 1.2.2.

nα The unit time-like vector field normal to the slices Σt. See section 1.1.2.

[n] An equivalence class of an edge relation. See section 6.1.2.

nI Components of the vector n.

n A vector in V such that nInI = σ.

~n A unit vector in R3.

P A coloring of internal edges of a foam with operators Pe : Inv (He) → Inv (He) or
a coloring of the nodes of the graphs in a graph diagram Pn : Hn → Hn. See
section 5.1.1 and section 6.2.1.

P ai The momentum canonically conjugate to Aia. See section 1.1.3.

q, qIi , q
i
I , q

I
J Orthogonal projection q : V → V into the space V⊥. qIi is an orthonormal

basis of V⊥, qiI is the partial isometry from V to V⊥ such that qiIn
I = 0 and qiIq

I
j = δij .

See section 1.1.3.

R The scalar curvature of the metric gµν .

Redge An edge relation. See section 6.1.2.

Rlink A link relation. See section 6.1.

150



List of symbols

Rnode A node relation. See section 6.1.

s(`) The source of the link `. See section 1.2.2.

SO(η) The group of transformations in V leaving η invariant.

so(η) The Lie algebra of the SO(η) group.

SO(η) The group of transformations in V⊥ leaving η invariant.

so(η) The Lie algebra of the SO(η) group.

SUn(2) The subgroup of Spin(4) transformations leaving n invariant.

sv The vertex spin network. See section 1.3.3.

t Time function, i.e. a smooth function t : M→ R such that dt is everywhere non-zero
and each manifold t = t, t ∈ R is diffeomorphic to Σ. See section 1.1.2.

t(`) The target of the link `. See section 1.2.2.

Tr(κ, ρ, P,A) Contracted operator spin foam. See section 5.2.1.

TrI The distinguished contractor corresponding to the graph γI ∈ G. TrI =
⊗

`∈γ(1)I

Tr`,

where Tr` ∈ H` ⊗H∗` is the trace functional.

Tr(D, ρ, P,A) Contracted operator spin-network diagram. See section 6.2.3.

Trv The vertex trace (BF contractor). See section 1.3.2 and section 5.2.3.

t, tα Time vector t = tα∂α, i.e. a (future directed) vector field such that tα∂αt = 1. See
section 1.1.2.

V Internal vector space. In this thesis V = R4. See section 1.1.1.

v A vertex of a foam, i.e. 0-cell of a 2-complex κ. See section 1.3.3.

vI The 0-cell of κD corresponding to the graph γI ∈ G. See section 6.1.3.

v` The 0-cell of κD corresponding to the graph γ ∈ G such that ` ∈ γ(1). See section 6.1.3.

vn The 0-cell of κD corresponding to the graph γ ∈ G such that n ∈ γ(0). See section 6.1.3.

V⊥ The subspace of V of vectors orthogonal to n. See section 1.1.3.

Z(κ, ρ, ι,A) The spin-foam amplitude. See section 1.3.4.

Z(κ, ρ, P,A) The spin-foam operator. See section 5.2.1.

Z(D, ρ, P,A) The spin-network diagram operator. See section 6.2.3.

∇ The torsion-free derivative operator compatible with gαβ.
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