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Abstract 

 Composition of the newly formed secondary organic aerosol (SOA) generated by ozonolysis 

of the cyclohexene (model precursor) and α-pinene was studied using liquid chromatography 

coupled to electrospray ionization tandem mass spectrometry (LC-ESI/MSn). SOA was generated in 

the flow-tube reactor under standard conditions: 20°C and 1 atm. and the reaction time less than 

1 min. In an attempt to resolve the current ambiguities, regarding the structure of the α-pinene 

SOA nucleating agents, analytical methods for analysis of α-acyloxyhydroperoxy aldehydes and 

high molecular weight (HMW) compounds containing carboxylic group were developed. Both 

groups of those compounds are currently considered as the potential nucleating agents. However, 

no analytical evidence proving the presence of α-acyloxyhydroperoxy aldehydes in the SOA 

samples have been presented. Also, very limited experimental data, indicating that the nucleating 

agents are acidic oligomers is currently available. The α-acyloxyhydroperoxy aldehydes were 

analyzed with LC-ESI/MSn for the first time. Analysis of the tandem mass spectra of the α-

acyloxyhydroperoxy aldehydes ammonia adducts was used to propose the general fragmentation 

mechanism, supported by the analysis of the isotopically labeled analogs. The proposed 

mechanism was used to predict the mass spectrum of the α-acyloxyhydroperoxy aldehydes that 

could not be synthesized. After analyzing the SOA samples, generated in the flow-tube reactor, it 

was concluded that α-acyloxyhydroperoxy aldehydes were not formed in significant quantities, 

and are unlikely to participate in the aerosol nucleation. Direct analytical evidence was found, 

arguing against the gas-phase nucleation and proving that acidic oligomers are formed in the early 

stages of SOA formation. Also, based on the acquired experimental data, it was concluded that the 

reactive uptake of carbonyl compounds is an important growth mechanism for the freshly formed 

SOA. For the first time, isotopically labeled analog of cyclohexene (cyclohexene-d10) was used to 

propose the structures for the up-to-date unknown oligomers. The acquired experimental data 

point out the need for revision of the current α-pinene SOA nucleation mechanism.  
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Abstrakt 

Skład świeżo powstałego wtórnego aerozolu organicznego (secondary organic aerosol, 

SOA) został przeanalizowany za pomocą chromatografii cieczowej połączonej z tandemową 

spektrometrią mas z jonizacją przez elektrorozpylanie (LC-ESI/MSn). SOA został wytworzony w 

reaktorze przepływowym w standardowych warunkach temperatury i ciśnienia: 20°C i 1 atm. a 

czas reakcji wynosił < 1 min. Aby rozstrzygnąć obecne niepewności dotyczące struktury zalążków 

nukleacji SOA powstałego w wyniku ozonolizy α-pinenu, zostały opracowane metody analizy α-

acyloksyhydroperoxy aldehydów oraz oligomerów zawierających grupę karboksylową. Obydwa 

typy związków są obecnie rozważane, jako potencjalne zalążki nukleacji. Jednak, do tej pory nie 

zostały przedstawione żadne bezpośrednie dowody potwierdzające obecność α-

acyloksyhydroperoxy aldehydów w próbkach SOA. Ponadto, tylko niewielka ilość danych wskazuje, 

iż zalążkami nukleacji są kwasowe oligomery. α-Acyloksyhydroperoxy aldehydy po raz pierwszy 

zostały przeanalizowane za pomocą LC-ESI/MSn. W wyniku analizy widm fragmentacyjnych został 

zaproponowany ogólny mechanizm fragmentacji adduktów amonowych α-acyloksyhydroperoxy 

aldehydów; mechanizm ten został potwierdzony za pomocą analizy izotopowo znaczonych 

analogów. Zaproponowany mechanizm fragmentacji został wykorzystany żeby przewidzieć widmo 

masowe α-acyloksyhydroperoxy aldehydów, które nie mogły być zsyntezowane. W próbkach SOA 

wytworzonych w reaktorze przepływowym, α-acyloxyhydroperoxy aldehydy nie zostały wykryte w 

znaczących ilościach i prawdopodobnie nie brały udziału w procesie nukleacji aerozolu. Otrzymane 

wyniki wskazują, iż nukleacja prawdopodobnie nie zachodzi w fazie gazowej. Jednocześnie, zostało 

udowodnione, że kwasowe oligomery są wytwarzane już na wczesnych etapach formowania SOA. 

Stwierdzono także, iż absorpcja związków karbonylowych w wyniku formowania się oligomerów 

jest ważnym mechanizmem wzrostu cząstek aerozolu na czesnych etapach jego powstawania. Po 

raz pierwszy, izotopowo znaczony prekursor (cykloheksen-d10) został wykorzystany do 

zaproponowania struktur do tej pory nieznanych oligomerów. Zidentyfikowane oligomery 

najprawdopodobniej powstały w wyniku reakcji związków karbonylowych. Wyniki przedstawione 

w tej pracy wskazują, iż obecnie zaproponowany mechanizm nukleacji powinien zostać 

zaktualizowany. 
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1. Introduction 

This introduction is divided into four sections; in section 1.1 basic definitions related to the 

atmospheric particles are given. The most prominent historical events, related to the origin of 

scientific interest in the atmospheric aerosols and air pollution in general are also outlined. 

Subsequently, the currently used measures of the aerosols size distribution and concentrations are 

presented in section 1.1.1. 

In the second part of the introduction (section 1.2.), brief global overview of atmospheric 

aerosols is presented, including sources (section 1.2.1), composition (section 1.2.2.), deposition 

mechanisms (section 1.2.3), as well as climate (section 1.2.4.) and health effects (section 1.2.5.). 

The third section of the introduction describes the secondary organic aerosols (SOAs) 

formation by alkene ozonolysis in the gas-phase; section 1.3. SOA formation by α-pinene ozone-

initiated oxidation in the gas-phase is discussed in section 1.4. 

  

1.1. Atmospheric aerosols – basic definitions and historical outline 

Aerosol is a relatively stable suspension of very fine, solid or liquid particles in the gas 

phase. In this definition, the term aerosol applies to both the gas and the suspended particles. 

However, in the majority of the published literature, the term aerosol is most often associated 

only with the suspended particles. In this introduction the terms aerosol, atmospheric particles 

and particulate matter (PM) are used interchangeably. A number of common terms, associated 

with the atmospheric aerosols, are listed in Table 1.1. Please note that definitions given in Table 

1.1 are not strictly scientific. 

 

Table 1.1 Common terms associated with the atmospheric particles*  

Term Definition Size range (µm) 

Aerosol Fine particles dispersed in gas 0.002 – 100 

Bioaerosol Fine, biogenic particles dispersed in gas, e.g. fungal spores and 

pollens 

1 – 100 

Cloud A visible agglomeration of mainly water droplets or ice crystals ≈ 10 
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Dust Solid, irregular particles, produced via mechanical processing 

(crushing, grinding) of various materials 

1 - 100 

Fume Solid particles produced by condensation of vapors or gaseous 

precursors oxidation 

< 0.5 

Haze Aerosol that obscures visibility < 0.5 

Mist/Fog Spherical particles, usually condensed water or ice, the term fog 

commonly applies to clearly visible aerosol 

1 - 200 

Smog The term smog originates from the combination of terms smoke 

and fog, used to describe aerosol – polluted air 

1 - 2 

Smoke Particles produced as a result of incomplete combustion ≥ 0.01 

Soot Particles, mainly consisting of elemental carbon, also produced 

as a result of incomplete combustion 

0.03-0.15 

*adapted from ref. 1 – pages 3-6, and ref. 2 Table 2.18, page 56 

 

As listed in Table 1.1, diameters of the aerosol particles fall in the range from about 0.002 

µm to more than a 100 µm. 1-3  Since a significant fraction of the particles encountered in the 

atmosphere are not spherical, the diameters listed in this section are aerodynamic diameters, not 

the geometric diameters. The definition of aerosol aerodynamic diameter is given in section 1.1.1. 

The aerosol size range is not strictly defined, with the lower size limit corresponding to a 

cluster of molecules; fine mineral dust can be given as example of the particles with diameters 

from the upper size limit. 1,2 A number of commonly encountered aerosols, together with their 

corresponding size ranges, are listed in Fig. 1.1. 
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Figure 1.1 Sizes of the commonly encountered particles (adapted from ref. 3, Figure 9.1. page 

350 and ref. 2, Figure 1.6. page 9) 

 

As shown in Fig. 1.1, size distribution of the commonly encountered particles is very broad, 

ranging from sub-micrometer particles to coarse, visible particles like e.g. fine sand. Diameters of 

particles most relevant to the atmospheric chemistry and physics are within the range from 0.002 

to about 10 µm. 1 Most common forms of expressing the particles size distribution and 

concentration are described in section 1.1.1. 

Aerosol particles remain in the atmosphere for a fixed period of time and are eventually 

deposited onto the Earth surface as described in section 1.2.3. The stability of the aerosols ranges 

from a few seconds – very large particles – up to a year. 2,3  

As listed in Table 1.1, atmospheric aerosols particles can contain wide range of organic or 

inorganic materials. They can also be directly introduced into the atmosphere (e.g. dust particles) 

or formed in the gas phase from a variety of volatile precursors. Sources and composition of the 

atmospheric aerosols are described in sections 1.2.1 and 1.2.2, respectively. 
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Air pollution problem has been recognized and documented since the early 19th century, and 

earlier. 1,4,5 Table 1.2 lists the most famous historical air pollution events, resulting, in most cases, 

in a considerable number of excess deaths. Excess deaths reflect the abnormal mortality, 

compared to the number of expected deaths, calculated using the previous year’s mortality data. 

Although these events were not caused by aerosol air pollution alone, it is important to notice that 

black carbon (BC) particles (soot) were concluded to be present in extremely high concentrations 

during London, Meuse Valley and Donara Valley events. 

Table 1.2 Dates and locations of the historical, air pollution events 

Date Location Description Reference 

17th 

century 

Westminster Queen Elizabeth I forbids coal burning near the palace 4 

1661 London John Evelyn suggests moving the factories away from London due to 

high smoke emissions 

1,4 

1930 Meuse Valley 
Belgium 

63 excess deaths due to the use of coal in domestic heaters 1,4 

1948 Donora Valley, 

US 

20 excess deaths due to the use of coal in domestic heaters 1,4 

1952 London Approx. 4000 excess deaths caused by air pollution 1,5,6 

1962 London Approx. 700 excess deaths caused by air pollution 1 

 

 London smog on December 1952 was a famous air pollution event, frequently listed as the 

most prominent example of negative influence of PM inhalation and gaseous air pollutants on 

human health. The so called great smog lasted for four days and it is believed to cause approx. 

4000 excess deaths due to extremely high concentrations of black smoke and SO2. Health effects 

of atmospheric aerosols are further described in section 1.2.5. 

Severe smog episodes were observed in the middle of 19th century over Los Angeles. The Los 

Angeles smog significantly differs from London smog by both composition and origin. 1 It was 

concluded that clearly visible haze over Los Angeles area was a result of tropospheric ozone 

interaction with a variety of volatile organic compounds (VOCs), resulting in the atmospheric 

aerosol formation. Similar to London smog, pollution over Los Angeles also consisted of a variety 

of trace gases, mainly NOx, O3 and VOC’s. The mechanism of aerosol formation due to ozone – 
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initiated oxidation of unsaturated compounds, namely α-pinene is described in section 1.4. Ozone 

was produced over Los Angeles area as a result of sunlight interaction with traffic related 

pollution, containing large amounts of nitrogen oxides (NOx). Similar phenomena were observed in 

a number a cities across the globe, near the end of the 20th century; for example in Athens, regions 

adjacent to Sydney, Mexico City and Tokyo to name a few. 1,4 

As a consequence of the extensive air pollution, observed over highly urbanized areas, air 

quality legislation was introduced in a number of countries. In response to the London events from 

December 1952, a Clean Air Act was passed by the UK Parliament in 1956. The Clean Air Act from 

1956 significantly reduced the number of excess deaths, following the London smog event in 1962, 

leading to approx. 700 as opposed to 4000 excess deaths during the previous event – see Table 

1.2. Later, in 1987 World Health Organization (WHO) introduced the Air Quality Guidelines for 

Europe, establishing standards for both SO2 and black smoke concentrations. 6  

1.1.1. Size distribution, density and concentration 

In order to describe the physical properties of the aerosols, several important definitions 

need to be presented. Size is the most important PM property, all crucial aerosol properties are 

size - dependent. 1,2 As already discussed in section 1.1., aerosols encountered in the atmosphere 

are often non-spherical. Therefore, effective diameters are used to approximate the sizes of non-

spherical particles and the most popular one is aerodynamic diameter. Aerosol aerodynamic 

diameter is defined as the diameter of unit density sphere (1 g/cm3) having the same terminal 

falling velocity as the particle of interest. 1-3 Therefore, aerodynamic diameter for non-spherical 

particles describes their dry deposition efficiency. 7 

Particle size distribution can be presented by plotting the number of particles (ΔN) against 

the diameter interval (ΔD) in either linear or logarithmic scales. Frequently, a plot of ΔN/LogΔD as 

a function of ΔD or ΔlogD is used. Particle distribution data are usually not continuous, and are 

expressed as a particle number in a given diameter interval. Such data representation was 

concluded to be the most convenient and representative. 1,2 A typical plot of particles size 

distribution, ΔN/ΔlogD against ΔD is shown in Fig. 1.2.  Please note that the plot shown in Fig. 1.2 

does not represent any actual experimental data. 
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Figure 1.2 Typical plot of the particle size distribution 

The data shown in Fig. 1.2 should be interpreted as follows: by integrating area under the 

curve, a number of particles falling in a given size range can be calculated. Other properties can be 

illustrated in the same manner, such as particles volume, surface or velocity. 1,2,8 

When sizes of atmospheric particles are considered, distinction between specific groups of 

particles is very often made. Particles having a diameter less that 2.5 µm (PM2.5) are referred to a 

fine, whereas particles having a diameter greater than 2.5 µm are called coarse. This distinction 

was concluded to be a fundamental one, taking into account different origins, atmospheric 

processing and removal mechanisms for fine and coarse particles. 1,3 Ultrafine particles (UFP’s) is a 

subcategory of fine particles (PM2.5), having a diameter less than 0.01 µm. 1,3 Particles having a 

diameter less than 10 µm (PM10) is another frequently monitored aerosol fraction; standards for 

PM10 are also included in the air quality legislation. 3 The PM10 and PM2.5 distinction is due to 

different penetration of human respiratory track by the particles having different diameters (see 
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Section 1.2.5). It is also important to emphasize, that PM10 should not be confused with coarse 

particles. PM10 is a subfraction of coarse particles, just like UFP’s are the subfraction of PM2.5.  

Even so, a number of studies defines coarse fraction as particles having diameters between 2.5 

and 10 µm. 9 

There are several common conventions used to describe the aerosol concentration, the most 

common one is mass concentration. Aerosol mass concentration provides particles mass in a 

volume of gas, and is often expressed in µg/m3. The aerosol mass concentration in µg/m3 is also 

commonly used in air quality legislation. Another popular measure of aerosol concentration is the 

number of particles (N) per volume of gas, given in N/ml. 2  

Particle density differs from the bulk density of the aerosol – particles plus the bath gas, since 

it describes the density of particles only. Particles density also differs from the parent material, 

due to non-uniform structures of the particles, like cracks and void spaces. 1 

1.2. Global overview of aerosols properties 

This part of the introduction presents an overview of the atmospheric particles properties 

on a global scale. In Section 1.2.1, anthropogenic and biogenic PM sources are described, for both 

primary (Section 1.2.1.1.) and secondary (Section 1.2.1.2.) aerosols. Afterwards, bulk, global 

aerosol composition is presented, based on the currently published measurements of aerosol 

optical depth and modeling studies – Section 1.2.2. Two critically important aerosols – related 

topics, climate and human health influence are described in Section 1.2.4 and Section 1.2.5, 

respectively. Influence of the atmospheric aerosols on global climate, by both direct (Section 

1.2.4.1.) and indirect (Section 1.2.4.2.) effects are outlined. Aerosols health effects are described 

based on the currently published epidemiological (Section 1.2.5.1.) and toxicological (Section 

1.2.5.2.) investigations.  

1.2.1. Sources 

As outlined in Section 1.1., aerosols can be introduced into the atmosphere from a number 

of different sources. Significant portion of the atmospheric particle originates from the natural 

sources. However, increased industrialization over highly urbanized areas, is the cause of 

constantly-growing contribution of the anthropogenic aerosols to the yearly, global aerosol flux. 
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2,3,10-13 Particles can be either directly introduced into the atmosphere (primary aerosols) or 

formed from a variety of precursors (secondary aerosols). Formation of secondary organic aerosol 

by ozone – initiated oxidation of α-pinene is described in section 1.4.  

1.2.1.1. Primary aerosols 

The main components of natural, primary aerosols are mineral dust and sea salt. It is 

currently estimated that 75% of the global dust emission can be ascribed to the natural sources. 14 

The reminder of the mineral dust emission is due to the agricultural activity. 14,15 Current and past 

estimations of the global dust emissions were summarized by Zender et al. 16  Sea salt aerosol, 

sometimes referred to as a sea spray is emitted into the atmosphere due to wind activity over 

oceans and breaking of the ocean waves. 9,17  Volcanic dust is also believed to be an important 

constituent of the primary, aerosol. 18 However, contribution of the volcanic dust to the total 

biogenic, primary aerosols emission is estimated to be about two orders of magnitude less than 

mineral dust and sea salt aerosols, similar to particles emitted into the atmosphere due to forest 

fires. 2,3 Primary biological aerosols consist mainly of bacteria, fungal spores, pollens, and viruses.  
2,7,19 

Primary anthropogenic aerosols sources are fossil fuels combustion and industrial 

processes. 3,9 Significant source of the anthropogenic particles, besides the agricultural processes 

is also burning of wood fuel. Primary particles introduced into the atmosphere due to human 

activities include BC, industrial dust and organic aerosols (organic carbon; OC).  

1.2.1.2. Secondary aerosols 

Secondary aerosols are formed directly in the atmosphere due to processing of volatile 

precursors, leading to the formation of products that can subsequently undergo gas-particle 

partitioning. Processes leading to the new particles formation include condensation, nucleation as 

well as a variety of chemical reactions. 20 Atmospheric trace gases such as SO2, dimethyl sulfate 

(DMS), ammonia (NH3) and nitrates are the major precursors of the secondary aerosols. SO2 is 

emitted into the atmosphere mainly due to fossil fuels burning and industrial processes, 9 but also 

from natural sources. 3 These atmospheric trace gases (SO2 and NOx) are transformed into the 
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corresponding inorganic acids. The inorganic acids can subsequently react with NH3, to yield 

ammonium salts, and form particles. Secondary organic aerosols are also formed by condensation 

of low-volatile products, produced by oxidation of VOCs. Oxidants that are known to react with a 

variety of precursors to form aerosols, include O3, atomic oxygen and radicals: Cl, OH and NO3. 21,22 

Such conversion produces numerous organic compounds, many of which have been identified in 

the previously published studies – see Hallquist et al. 20 and references cited therein. Detailed 

description of the secondary organic aerosol (SOA) formation during ozone - initiated oxidation of 

α-pinene is given in Section 1.4.1. Structures of the high-molecular weight (HMW) components, 

tentatively identified in the currently published studies of α-pinene SOA are described in Section 

1.4.3. 

1.2.2. Composition  

Composition of the atmospheric particles is not constant, since it varies in time, depending 

on the type of particles and their atmospheric processing (aging). Aerosol composition is 

dependent on source and type of the aerosol, precursor, oxidant (for secondary aerosols) and 

formation conditions. Since e.g. SOAs are known to contain numerous organic compounds, only 

brief overview of the global, bulk aerosols compositions will be presented here. Bulk aerosol 

composition varies significantly, dependent on the sampling site. As already discussed in Section 

1.2.1, the bulk aerosol components are: sulphates, nitrates, sea salt, mineral dust, OC and BC from 

both biomass burning and fossil fuels burning. Pöschl 10 in his recent review outlined the bulk 

aerosols concentration collected in the urban and remote mountain region. The data, based on 

the PM2.5 composition analysis from a number of studies, shows a large composition variation 

between urban and mountain-region aerosols. Indeed, comparison of the data from the recent 

compilation of the aerosol optical depth measurements, 23 complemented by modeling estimates 

of the particles composition 24 illustrates that either component listed above can be a dominating 

one, depending on the sampling site. It is important to note that there are still significant 

uncertainties about global aerosol composition, e.g. global SOA emission may have been 

underestimated in some modeling studies. 20 
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1.2.3. Deposition mechanisms and lifetimes 

As already discussed in section 1.1, aerosols are eventually removed from the atmosphere 

and deposited onto the Earth’s surface. Relative lifetimes of the atmospheric particles vary 

significantly, and are strongly dependent on a number of variables, including particles size, density 

and chemical composition as well as local weather conditions (see below).  12,25 The lifetimes of 

atmospheric particles varies from days to weeks, as opposed to e.g. various trace gases 

encountered in the atmosphere, whose lifetime varies from a few seconds up to a century. 3,10 

Particles, as well as gaseous pollutants are removed from the atmosphere in the presence or 

absence of precipitation. These two mechanisms are termed wet and dry deposition. It is currently 

estimated that the wet deposition is the main removal pathways of the atmospheric aerosols. 10 

However, the main deposition pathway is very strongly dependent on a number of local factors 

(see section 1.2.3.1.). Therefore, local removal pathways sometimes differ significantly from the 

global tendencies. 1 For example, Matsuda et al. 26 investigated deposition pathways of BC (soot) 

particles in Thailand tropical forest and concluded that dry deposition for these particles was much 

more important than the wet deposition.  

1.2.3.1. Wet deposition 

Removal of the particles by any form of precipitation is defined as wet deposition. Particles 

can be scavenged by rain, snow, fogs and clouds and delivered onto Earth’s surface. It is important 

to underline, that deposition classification refers only to the transportation mechanism. 1 For 

example, deposition of the organic aerosols by rainfall onto the desert surface is still termed wet 

deposition. Efficiency of the removal mechanism depends on a number of factors. When the 

particle is deposited via wet deposition, it must first come in contact with water or ice particles. 

Whether or not this occurs, strongly depends on the amount of precipitation in the region. If the 

solubility of particles under consideration is sufficiently high, it can be scavenged by water or ice 

particles. In turn, the solubility of the specific particles and whether they are scavenged by ice or 

snow depends on pH of the precipitation, size and number of water droplets present etc. 1 Before 

the precipitation reaches the Earth’s surface, scavenged aerosol can undergo a number of 

chemical transformations. Frequently, scavenged particles are again released, by e.g. evaporating 
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rain droplets. 3 Naturally, wet deposition is very important sink of the aerosols acting as a cloud 

condensation nuclei (CCN) and ice nuclei (IN) – see Section 1.2.4.  

1.2.3.2. Dry deposition 

Gravitational setting of the aerosol particles, as well as adhesion and diffusion onto the 

Earth’s surface is termed dry deposition. Dry deposition is defined as any form of aerosols removal 

from the atmosphere that does not involve water droplets or ice crystals, as opposed to wet 

deposition. 3,10 Dry deposition is strongly dependent on the type of the surface. Particles can be 

deposited directly on to the soil, as well as on the plants surface and buildings; chemical nature of 

both the surface and the identity of deposited particles governs the dry deposition efficiency. 

Generally, it is assumed that gravitational setting and sedimentation is the predominant removal 

mechanism for particles having diameters larger than 10 µm. 7 As already discussed in Section 

1.1.1, aerodynamic diameter defines the efficiency of particles deposition, in the absence of 

precipitation. Similar to wet deposition, particle size, density and shape 3,27 can determine whether 

or not the dry removal occurs. Speed and direction of wind near the surface itself was also 

concluded to be a very important factor, governing the efficiency of particles dry removal. Again, 

the nature of the surface itself does not affect the removal mechanism classification. As already 

discussed, dry deposition of atmospheric PM is believed to be less important than wet deposition. 

1.2.4. Aerosols influence on the climate 

Aerosols, as the natural components of the atmosphere, have significant impact on the 

Earth's radiation balance and climate. However, as discussed in Section 1.2.1, since the 

preindustrial era, anthropogenic sources of the atmospheric PM have an ever-growing 

contribution to the global aerosol budget. Aerosols are believed to cool the Earth’s atmosphere, as 

opposed to greenhouse gases (GHGs). 13 The net effect of GHGs and aerosols is measured by their 

radiative forcing, given in watts per meter squared (W·m-2). Greenhouse effect is caused by 

trapping the part of the outgoing Earth’s infrared (IR) radiation by GHG’s and reflecting some part 

of it back onto the surface, thus causing the planet’s temperature to rise. Positive value of the 

GHGs radiative forcing indicates that their warming effect has increased since the preindustrial 

era. The increase of GHGs radiative forcing is currently estimated to be about 2.4 W·m-2. 13 It is 
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estimated that the cooling effect produced by anthropogenic particles compensate, to some 

extent, atmosphere warming caused by anthropogenic emission of the GHG.13,28,29 Aerosols 

influence the Earth’s radiation budget by absorbing and scattering solar radiation (direct effects) 

and by altering clouds properties (indirect effects). The aerosols negative radiative forcing is 

estimated to be from -2.5 to -0.5 W·m-2, with the largest contribution from the direct 

effects.24,28,30-32 Those two mechanisms will be briefly described in Sections 1.2.4.1. and 1.2.4.2. 

1.2.4.1. Direct effects 

Aerosols directly influence the radiation budget by absorption and scattering of the 

incoming solar radiation. As the aerosol particles size becomes close to the wavelength of the 

incoming solar radiation, scattering can occur, and thus the amount of radiation reaching the 

surface is decreased. While scattering is a portion of the incoming solar radiation reflected back 

into space, leading to the cooling effect, absorption is a component of the semi direct effect (see 

section 1.2.4.2.).3 Scattering and absorption efficiency is dependent on the size and the number of 

aerosol particles and also on their chemical composition. 13,28 In addition to reflecting a part of 

incoming solar radiation back into space, aerosols can also reflect part of the radiation back onto 

the surface. The absorbing and scattering efficiency is described by the single scattering albedo 

(SSA). 13,32 SSA is defined as the ratio of scattering to the sum of scattering and adsorption.  As 

already discussed, direct effects have the largest contribution to the observed aerosol net cooling 

effect. 13,33 

1.2.4.2. Indirect and semi-direct effects 

The most important indirect effect is aerosol interactions with clouds. In the atmosphere, 

clouds are formed on the preexisting seed particles, as opposed to homogenous nucleation of 

water vapor. Aerosols can act as both CCN and ice nuclei IN. The potential of specific particles to 

act as the CCN depends largely on their size and hygroscopicity. 7,34 The increase in the 

atmospheric particles concentration due to human activities, resulted in enhanced concentration 

in CCN and IN. Higher number of CCN and IN, leads in turn to the formation of smaller and more 

numerous cloud droplets; such clouds reflect the solar radiation more efficiently. This is the major 

indirect effect, also termed cloud albedo or Twomey effect. 28,29,33 As already discussed, cloud 



21 
 

warming due to more efficient absorption of solar radiation, leads to their evaporation, thus 

allowing more radiation to reach the surface. This is called a semi direct effect, since it is a 

consequence of the aerosol absorption properties, but also affects the clouds. In general, indirect 

effects are considered to be less important on a global scale, than direct radiative forcing. 

1.2.5. Health effects of atmospheric aerosols 

Adverse PM human health effects have been investigated by both epidemiological and 

toxicological studies. Both short and long term effects of the PM exposure on human health have 

been reported. Particle size determines how deeply particles penetrate the respiratory system. 
8,35,36 Smaller particles can travel deeper into the human respiratory track, and most frequently 

cause more severe health problems.  As already discussed in section 1.1, for the purpose of air 

quality control, PM2.5 and PM10, are the two routinely monitored aerosol fractions 8. Ultrafine 

particles are believed to be particularly toxic fraction of the PM2.5.  4,6,10,35,37,38 

Currently, it is estimated that increase of PM10 concentration by 10 µg m-3 results in 

mortality risk increase between 0.1 and 1% for all-cause mortality, as well as for cause-specific 

studies, including cardiovascular and respiratory conditions 4,6,8,35,39. Smaller particles are believed 

to be significantly more toxic, which is reflected by the increased health risks and the premature 

death risk increase associated with the elevated PM2.5 concentration. Increase in PM2.5 

concentration by 10 µg m-3 was reported to increase all-cause mortality by approx. 4% 4,8 and by 

8% increase in lung cancer mortality. 5 Consequently, a decrease of 10 µg m-3 in PM2.5 

concentration was estimated to increase the mean life expectancy by 0.61 ± 0.20 years in 51 US 

metropolitan areas. 8,40 Brook et. al. 39 in their review summarized a number of studies 

investigating relative mortality risk due to PM2.5 and PM10 exposure published since 2004. It is also 

important to notice that apparently there is no threshold concentration below which health 

effects of PM exposure are no longer observable. 5,8 

1.2.5.1. Epidemiological studies 

A number of end-points have been used to analyze association between PM pollution and 

adverse human health effects, and all-cause mortality was most commonly studied. Additionally, 

in a number of studies specific health risks and cause-specific mortality were also included in the 
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reported evaluations. Cause - specific studies investigated correlations between PM exposure and 

variables like neurotoxic effects, cardiovascular and respiratory disorders, asthma, hospital 

admissions as well as work and school absences. Several studies reported positive correlations 

between increased mortality and concentrations of PM10 as well as PM2.5, for both short and long 

term exposures. In the study by Dockery et. al,41 it was concluded that inhalation of PM resulted in 

excess mortality in six United States cities. In a follow-up study Laden et. al. 42 reported that air 

quality improvement i.e. reduction of PM2.5 concentration resulted in reduced mortality risk, for 

all-cause mortality as well as cardiovascular and lung cancer mortality. Similar correlation between 

PM10 as well as total suspended particles (TSP) concentration and increased all-cause mortality 

were observed in Utah Valley 43 and in a number of US cities, including Los Angeles, 44 Steubenville 

in Ohio 45 and Detroit. 46 Concentration of total PM and SO2 were also found to be positively 

correlated with increased mortality in Philadelphia, as reported by Schwartz and Dockery. 47 Also, 

it was concluded the exposure to PM2.5 and EC particles inhibited development of children's lungs 

between 10 and 18 years old. 48 Xu et al. 49 reported a strong correlation between the decrease of 

pulmonary function of adults and air pollution by PM and SO2, produced mainly due to the 

extensive use of household coal heaters. Elevated concentrations of PM10 were also found to 

cause respiratory distress in Utah, Salt – Lake city and Cache Valleys. 50 Inhalation of diesel exhaust 

particles was reported to be related to enhancement in certain allergic responses and asthma 

symptoms.51-53 Pope et al. 54 described positive association between fine PM exposure, i.a. PM2.5 

and all-cause, cardiopulmonary and lung-cancer mortality, studying the data for 500000 adults in 

the US. A detailed list of variables investigated in cause – specific studies, together with a number 

of papers published for each variable, for both short and long – term investigations can be found 

in a recent review by Ruckel et al. 5 

Majority of published studies reported positive correlations between all-cause mortality as 

well as case-specific mortality and PM exposure for general population. 8 However, an exposure to 

PM pollution was proven to affect human health on all stages of life. 5 Therefore, several studies 

included variables like age; such as already discussed investigations by Gauderman et al. 48 and Xu 

et al. 49 studied negative effects on children and adults health, respectively. A review of studies 

investigating association between PM exposure and respiratory symptoms in children was 
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published by Wards and Ayres. 55 Adverse human health effects of PM pollution were studies for 

both short and long-term exposures. 4,5,8 Long term studies investigated the effects of PM 

inhalation over several years, 42 while short-term studies usually cover the time-scales from a few 

days to several months, like for instance, the study by Wards and Ayres. 55 

1.2.5.2. Toxicological studies 

A number of studies proposed specific aerosols components to be responsible for the 

adverse PM health effects. Exposure to the bulk inorganic aerosols components, such as sulphates 

and nitrates was concluded to be only slightly correlated with the negative aerosol health effects. 
8,56,57 Transition metals are often associated with the cell damage by PM due to the redox activity. 
4,8,37 In their review Chen and Lippmann 58 identified a number of transition metals, associated 

with the aerosols adverse health effects, mainly Ni, V, Pb and Zn. 8   

 Polycyclic aromatic hydrocarbons (PAHs) are compounds that, alongside transition metals 

like As and Ni, 8 are often associated with the cancerogenic potential of the ambient PM, especially 

PM2.5. 
4,59 PAHs were also concluded to have mutagenic properties. PAHs are produced mainly due 

to incomplete combustion processes and road traffic. 4 Particles produced as a result of 

combustion processes are also believed to have free radicals permanently bounded to their 

matrix. 4 

It was proposed, that due to the larger surface area, UFP retain toxic substances more 

efficiently, in comparison to particles with larger diameters. 4,8,38 Very small diameter results in 

even deeper penetration of the human respiratory system by UFP; also, these particles are capable 

of transition into the bloodstream. Ultrafine particles were also proven to generate free radicals, 

and thus leading to the lung damage and DNA mutation, oxidative stress and inflammation. 4,37 

However it is important to underline, that aerosols toxicity should not be associated only with 

their chemical composition. Rather, the observed health effects were concluded to be 

combination of detected trace components and particles sizes, which in turn determines their 

biological processing, as discussed above. Indeed, MacNee and Donaldson 37 demonstrated that 

UF BC particles generate oxidative stress in a different manner than transition - metals mediated 

mechanism.  
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1.3. Secondary organic aerosols (SOAs)  

SOA is formed when the volatile precursors are transformed into low-volatile products by 

various atmospheric processes and form particles via gas-particle partitioning. Ozone as well as 

NO3, OH and Cl radicals are the major oxidants in the troposphere. 20,60 The formation pathways of 

the NO3, OH and Cl radicals in the atmosphere are well known, 1,21,60 and will not be described 

here. Emissions and relative importance of the BVOC are outlined in Section 1.3.1, followed by the 

tropospheric ozone formation mechanism, described in section 1.3.2. General alkene ozonolysis 

mechanism is presented in Section 1.3.3. 

Since α-pinene and ozone reaction is described in detail in the subsequent section (1.4), 

only general VOC oxidation mechanism will be presented here. Atmospheric degradation of BVOCs 

begins with the formation of the alkyl or substituted alkyl radicals. 20,21,60 For the BVOCs, the 

radicals can be formed via two possible mechanisms: addition of O3, NO3 or OH radicals to the 

carbon-carbon double bond or by H atom abstraction from C-H or, less commonly, from O-H bond. 
21 General mechanism of BVOC’s oxidation in the atmosphere is shown in Fig. 1.3. 
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Figure 1.3 General mechanism of BVOC’s oxidation in the atmosphere 

As shown in Fig. 1.3, alkyl radicals, formed by BVOC reaction with oxidants and/or UV 

photolysis subsequently react with atmospheric oxygen, to from organic peroxy (RO2) radicals. 
20,21,60 RO2 radicals can react with HO2 radicals to form hydroperoxides, carboxylic acids and peroxy 

acids. Reversible reaction with NO and NO2 leads to the formation of nitrates and peroxynitrates, 

respectively.  The second key intermediates in the atmospheric processing of BVOCs are alkoxy 
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radicals (RO). Alkoxy radicals can decompose to form carbonyl compounds or isomerize to form 

hydroxycarbonyls and other products.  

1.3.1. Emission of biogenic secondary organic aerosols (BSOAs) precursors  

A variety of BVOCs have been recognized as the important SOAs precursors. The most 

important SOA precursors are alkanes, alkenes and aromatic hydrocarbons. 61 Oxygenated VOCs 

were also concluded to be important SOA precursors, such as aldehydes, ketones, aliphatic 

alcohols, esters and alkyl nitrates. 21,60 It is estimated that biogenic VOCs emission accounts for 

more than 90 % of the total non-methane organic compounds emission. 60,62 1150 Tg of BVOCs are 

emitted to the atmosphere every year from vegetation and around 100 Tg/year from the 

anthropogenic sources. 61 Isoprene and monoterpenes are the most abundant natural volatile 

organic compounds. It is estimated that isoprene accounts for 30 – 44 % of the global BVOCs 

emission. 21,61,62 Monoterpenes account for 10 % of the yearly BVOCs flux, 21,60,63 with the α-

pinene, β-pinene and limonene being the most abundant in the ambient atmosphere - see Table 

1.3. 20,21,62-66 Compounds in Table 1.3 are listed in the order: from the most studied BSOA 

precursor to the precursor that received the least interest in the current literature. 

Table 1.3 Names and structures of the unsaturated, biogenic monotpernes studied as the 

BSOAs precursors 

Name Structure 

α-pinene CH3

CH3

CH3

 

β-pinene CH2

CH3

CH3

 

Limonene 

CH2CH3

CH3
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Δ3-Carene CH3

CH3
CH3

 

Sabinene CH3 CH3

CH2  

Myrcene 
CH2

CH2

CH3

CH3

 

Camphene CH3

CH3

CH2  

 

As listed in Table 1.3 α–pinene, β-pinene and limonene are the most extensively studied 

precursors of the BSOA. Other, less abundant monoterpenes, such as Δ3-carene, sabinene, 

myrcene and camphene have received considerably less attention, due to lower atmospheric 

concentration of these compounds. 

Isoprene, α and β-pinene are generated due to plants vegetation and are synthesized from 

the common precursors: dimethylallyl pyrophosphate (DMAPP) and isomer isopentenyl 

pyrophosphate (IPP). 63,67 The precursor of monoterpenes, geranyl pyrophosphate, is synthesized 

via condensation of DMAPP and IPP.  
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Figure 1.4 Biosynthesis of α-pinene 

As shown in Fig. 1.4, the first step of the biosynthesis of α and β-pinene is the dissociation 

of geranyl pyrophosphate – reaction 1.1. Subsequently, enzymatic cyclizations of the geranyl 

pyrophosphate (reaction 1.2) lead to the formation of α or β-pinene – reaction 1.3. 63,67 

1.3.2. Ozone in the atmosphere 

Ozone is an important trace constituent of the Earth’s atmosphere, found mainly in the 

stratosphere. Region of the stratosphere with the highest ozone concentration is called ozone 

layer. About 90% of the atmospheric ozone can be found in the stratosphere. 

Stratospheric ozone production/decomposition cycle involves a series of photochemical 

reactions, originally proposed in 1930’s by Sir Sydney Chapman, and thus referred to as the 

Chapman cycle: reactions - 1.4 – 1.7 in Fig. 1.5. 68 
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Figure 1.5 Chapman cycle reactions 

The UV absorption by the ozone molecule leads to the formation of two oxygen atoms 

(reaction 1.4). Atomic oxygen subsequently reacts with oxygen molecule to produce ozone via 

reactions 1.5. In reaction 1.5, M symbolizes a third body, required for the stabilization of high – 

energy byproduct of the atomic oxygen addition to the oxygen molecule. 69 In this reaction, excess 

energy is released as heat. If the ozone molecule is encountered by the atomic oxygen, it can 

recombine to form two oxygen molecules – reaction 1.6. Ozone can dissociate to form 

energetically exited oxygen molecule and atomic oxygen. Excess energy, after the UV absorption in 

the reaction 1.7 is also released as heat, thus both reactions 1.5 and 1.7 are responsible for the 

increase of temperature in the stratosphere. 

Ozone layer causes the increase of temperature in the stratosphere, as compared to the 

troposphere. Troposphere is mainly heated by the surface thermal radiation, and the temperature 

in this layer decrease with the increasing altitude. However, in the stratosphere the excess energy 

of the UV radiation absorbed by the ozone, is emitted as heat, therefore rising the temperature as 

the altitude increases.  

Ozone absorbs UV radiation with the wavelengths shorter than 290 nm. It is well known, 

that increased amount of the UV-B radiation (280–315 nm) significantly impacts both climate and 

all living species (including humans). Depletion of the ozone layer, and thus increase in the amount 

of the UV-B radiation reaching the planet’s surface was concluded to be associated with various 

adverse human health effects, including skin cancer, as well as conditions like age-related macular 

degeneration  and  ocular melanoma. Exposure to UV radiation was also concluded to suppress 
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some aspects of the immune system. 70,71  It is important to note that increased exposure to UV-B 

radiation also promotes the production of vitamin D, thus counteracting to some extent the 

remainder of negative health effects. 71 

Depletion of the ozone layer was also concluded to have significant impact on the climate 

and plants, including alterations in the biological cycles, aquatic ecosystems, Earth’s radiation 

balance and hydrological cycle. 70,72 Ozone is also the third most important greenhouse gas.  

 Therefore, preserving the protective ozone layer is critical for the life on Earth. It is 

important to underline, that while the regulations of the Montreal Protocol are essential for 

protection of the ozone layer, it will take several decades to repair the damage caused by Halons 

after 1980. 72 

The importance of the ozone layer was recognized in Vienna Protocol (1985). Although 

Vienna Protocol was ratified by 196 countries, it did not contain any legally binding regulations 

regarding the production and emission of the substances with high ozone depletion potentials 

(ODP’s). Such regulations were included in the Montreal Protocol (1997), which is currently ratified 

by 197 countries, including all members of the United Nations and European Union. 73 The 

Montreal Protocol contains legally binding regulations, effective from 1st of January 1989, 

regarding reduction in emissions of the substances with high ODPs. Briefly, the protocol 

regulations contain reduction schedules for the halogenated hydrocarbons emission, responsible 

for the rapid sink of the protective ozone layer. 74 All halogenated hydrocarbons were concluded 

to significantly decrease the stratospheric ozone concentration, with the exception of 

hydrofluorocarbons (HFCs).75-77 

Tropospheric ozone is produced mainly via photolysis of the gaseous air pollutants. It is 

important to underline, that small concentration of the natural, background ozone is also present 

near the surface. However, tropospheric ozone production is known to be significantly enhanced 

due to atmospheric processing of the anthropogenic pollutants.  

 The major precursor of ozone in the troposphere is NO2. NO2 is photolysed by solar UV 

radiation to form O3, as shown in Fig. 1.6. Initially, photodissociation of the NO2 molecule leads to 
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the formation of the NO molecule and ground state atomic oxygen – reaction 1.8. Afterwards, 

atomic oxygen reacts with the oxygen molecule, (reaction 1.9). 69,78,79 

h( < 430 nm)
NO2 NO + O (1.8)

O + O2 O3 (1.9)
M

 

Figure 1.6 Photolysis of NO2 and formation of tropospheric ozone 

 It is well known that NOx emission is mainly associated with the human activity, such as 

road traffic, and industrial fuel combustion. NO is oxidized to NO2 via series of photochemical 

reactions in the presence of VOCs and sunlight- Fig. 1.7. 69,78,79 
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Figure 1.7 Production of the NO2 in the presence of VOCs 

 As shown in Fig. 1.7, both RO2 and HO2 radicals rapidly oxidize NO to NO2 – 

reactions 1.13 and 1.14. 69,78,79  HO2 radicals can be generated by reaction of OH with CO. 79 If the 

small alcohol molecule reacts with OH, it can also generate HO2 via the reaction of alkoxyl radical 

(RO) radical with O2. 69 After oxidation of NO to NO2, OH radical is regenerated, this propagates the 

chain – reaction 1.13. The major chain termination step is reaction 1.15, oxidation of NO2 to HNO3 
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– a major component of acidic rain. 69 Since the air pollution is the cause of the elevated NOx 

concentration, ozone is the component of the urban smog.  

The remaining 10% of ozone is found in the troposphere and it is considered to be a 

harmful contaminant, negatively affecting both human health and plants. High concentrations of 

the ground – level ozone are known to have negative impact on the vegetation such as crop yields, 

biomass accumulation and forest growth. 79-82 Since the elevated ozone concentration, can reduce 

the forest growth rate, it can also significantly impact the removal of the CO2 from the 

atmosphere, and in this way strongly influence the carbon cycle. 83 

Human exposure to the elevated ozone concentrations is known to be associated with 

health effects such as skin cancer, allergic responses and increased mortality. 84,85 Thus, the human 

health effects of the ground level ozone significantly differ from those of the stratospheric ozone, 

with the latter one composing the protective ozone layer.  

As already discussed in Section 1.3, ozone is one of the major tropospheric oxidants. Ozone 

reaction with the natural, unsaturated compounds is known to produce SOA.  In section 1.3.3, 

general alkene ozonolysis mechanism is described. 

1.3.3. Alkene ozonolysis 

Ozone is one of the main thropospheric oxidant of the BVOCs. The reaction of alkenes with 

ozone is also known to produce SOA. Large quantities of the biogenic alkenes are emitted to the 

atmosphere from natural sources, such as plant vegetation, as outlined in Section 1.3.1. Therefore, 

detailed knowledge of the atmospherically relevant alkene ozonolysis mechanism is essential. In 

this section, general alkene ozonolysis mechanism is described. Subsequently, overview of the 

previously published data on the ozonolysis reactions in the liquid phase is presented in Section 

1.3.4, focusing primarily on the standards synthesis for SOA composition analysis. α-Pinene 

ozonolysis mechanism is presented in Section 1.4.1. 

Currently accepted alkene ozonolysis mechanism was originally proposed by Rudolf 

Criegee, 86 hence the by-products of this reaction are referred to as excited Criegee intermediate 

(ECI) and stabilized Criegee intermediate (SCI) – see below. 
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Ozone addition across the carbon-carbon double bound initially leads to the formation of 

an unstable primary ozonide, as shown in Fig. 1.8, reaction 1.16. 
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Figure 1.8 Formation of primary ozonide and its decomposition yielding carbonyl 

compound and excited Criegee intermediate (ECI) 

 As stated in the Criegee paper, 86 primary ozonides are unstable and rapidly decompose to 

yield ECIs and carbonyl compounds, reactions 1.17a and 1.17b. ECIs are also termed Criegee 

biradicals or Criegee zwitterions or carbonyl oxides. In Fig. 1.8, ECIs have been denoted as 

biradicals, however, denoting those intermediates as zwitterions with positively charged carbon 

atom and negatively charged oxygen atom, is also accepted. Indeed, the zwitterion notation is 

most often used when describing the liquid-phase ozonolysis reaction, 1,87 while the biradical 

notation is used when describing reactions in the gas phase. 1,88 In some publications, neither 

zwitterion nor radical notation is used, like for instance in Tobias and Ziemann papers. 89-91 The 

writing convention is not strictly defined, with all notation used interchangeably. This may be due 

to ambiguous nature of the ECIs, since, as stated by Finlayson-Pitts and Pitts Jr, 1 the intermediates 
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have either more radical or zwitterionic character. Decomposition of non-symmetric alkene can 

yield two possible carbonyl compound and ECIs. It is important to note that carbon-carbon double 

bond cleavage by ozone addition leads to the formation of two molecules only in case of linear 

and exocyclic alkenes. For instance ozonolysis of exocyclic terpene, β-pinene, will result in the 

formation of two molecules. 92 However, in case of endocyclic alkenes, like cyclohexene and α-

pinene, the carbon-carbon double bond cleavage results in ring opening and the resulting products 

contains both ECI and carbonyl group. 

For the symmetrical alkenes (cyclic and linear), reactions 1.17a and 1.17b will lead to the 

formation of the identical products. However, when non-symmetrical alkene is considered, a more 

substituted ECI is more likely to be formed. According to the previously published studies, the 

formation of a more substituted ECI is only moderately favored, with both possible biradicals 

formed with comparable yields. The formation ratio for the two ECIs for α-pinene is 6:4, favoring 

the methyl substituted biradical. 93 Finlayson-Pitts and Pitts Jr 1 have summarized the data from a 

number of studies. 17,18,94-97 According to the presented data, it can be concluded that more alkyl 

substituents enhance the formation yield for a given ECI. Formation yields of 0.65 (substituted) 

and 0.35 (not substituted) were reported for the alkene containing two non-hydrogen substituents 

on one side of the carbon-carbon double bond and no substituents on another.  

After the formation, the ECIs are known to undergo several transformations. The 

subsequent reactions of ECI’s strongly depend on whether the reaction is conducted in the gas or 

liquid phase and on whether the large quantities of scavengers are present. 
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Figure 1.9 Possible reaction pathways of Exited Crieege intermediate 

In the gas phase, a portion of formed ECIs can be stabilized by losing excess energy via 

collisions with batch gases, to yield SCI – reaction 1.18a in Fig. 1.9. Stabilization yields differ for 

different alkenes, and generally fall into the range from 0.10 to 0.47 at 298 K and 1 atm in air. 1,98,99 

Since it occurs via collisions with gas molecules, the stabilization is strongly pressure dependent, 

and significantly reduced at lower pressures. 88,100 SCIs can subsequently react with other 

molecules, including H2O, SO2,101 NO3, and CO as well as organic compounds. SCI reactions with 

carboxylic acids (1.19c), alcohols (1.19b) and carbonyl compounds (1.19 d) are shown in Fig. 1.10. 
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Figure 1.10 Reactions of SCI with water, alcohols, carboxylic acids and aldehydes 

SCI reactions with water, alcohols, carboxylic acids and aldehydes lead to the formation of 

hydroxyalkyl, alkoxyalkyl, acyloxyalkyl hydroperoxides and secondary ozonides, respectively. SCI 

can also react with the organic scavengers and water, in the gas phase 91 as well as in the liquid 

phase. Some of the reactions, shown in Fig. 1.10, are believed to produce a fraction of oligomers, 

recently detected in SOA samples, as discussed in Section 1.4.3.4.2., as well as participate in the 

new particles formation, as described in Section 1.4.4. Rate coefficients of the reactions shown in 

Fig. 1.10 in the gas-phase were reported, relative to water, and are listed in Table 1.4. 
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Table 1.4 SCI gas-phase reaction rate coefficients with alcohols, carboxylic acids and aldehydes 

relative to water 

SCI scavenger  Reaction rate coefficient, 

relative to H2O 

Reference 

R-OH 22 – 50 91 

R1(O)H 100 – 2700 91,93,102 

RCOOH 6700 – 17000 91,93,103 

 

As listed in Table 1.4, water is the least effective SCI scavenger. However, since water is 

present in the atmosphere in significantly larger quantities than the organic scavengers, it is 

considered to be the most important SCI scavenger under ambient conditions. 20 The reactivity for 

the rest of SCI scavengers increases from alcohols to carboxylic acids. As concluded by Tobias and 

Ziemann, 91 the carboxylic acids are most reactive, since the reaction with SCI involves O-H bond 

breaking in the scavenger molecule. Indeed, the relative rate coefficients, reported in Table 1.4, 

were found to increase with decreasing ΔGacidity, for the gas-phase dissociation of the neutral 

scavenger molecule into H+ and the corresponding anion. Thus, a given scavenger reacts faster, if 

the bond dissociation is more energetically favored.  

Aside stabilization, fraction of ECIs formed in the gas–phase undergoes isomerization to 

form a high-energy hydroperoxide – reaction 1.18b. Afterwards, the “hot” hydroperoxide 

undergoes O-OH bond dissociation for produce the OH radical and the corresponding alkoxy 

radical. This channel is considered very important, since such decomposition introduce OH radicals 

to the atmosphere. As summarized by Finlayson-Pitts and Pitts Jr, 1 the yields of OH radical in the 

ozonolysis reaction for a number of alkenes varies in the range from 0.01 to 0.9. 1,18,104 For α-

pinene, the OH radicals yield is believed to be about 0.85.1,105  Since reaction of OH radicals with α-

pinene 101,105 is about 6 orders of magnitude faster than reaction with ozone, 98,99,101,105 such high 

OH yield creates an important feedback loop in the α-pinene/ozone system. In order to suppress 

the precursor consumption by highly reactive OH radicals, in a number of laboratory ozonolysis 

studies, large excess of OH radical scavengers is often added to the system – refer to Section 

1.4.2.3 for more detailed discussion.  



38 
 

Another important ECI reaction pathway is reaction 1.18c shown in Fig. 1.9, involving 

rearrangement to a “hot” ester, and subsequent decomposition with CO2 elimination and/or 

formation of other products. 106 Formation of specific products depends on the precursor under 

study, with simple precursors yielding simple hydrocarbons, in addition to CO2. 18,104,106  

Reaction 1.18d shown in Fig. 1.9 is the third possible ECI decomposition pathway, and it is 

considered minor under atmospheric conditions. 1,106 Yields of the oxygen atom elimination from 

the CI were reported to be less than 0.05. 99 

1.3.4. Liquid phase ozonolysis of the alkenes 

In this section, the liquid phase alkene ozonolysis is discussed.  

However it is not a complete review of the alkene-ozone liquid phase chemistry. A brief overview 

of the liquid phase ozonolysis is given, focusing on atmospheric chemistry – related investigations. 

The aim of the presented studies was mainly the standard synthesis for the subsequent SOA 

composition analysis or the ozonolysis product study of the atmospherically relevant alkenes. 

Based on the studies summarized in Table 1.5, synthesis method used in this work, for a number of 

α-acyloxyhydroperoxy aldehydes was developed. Standards were prepared by liquid – phase 

ozonolysis of cyclohexene in the presence of different carboxylic acids – see section 3.3. 107 Two α-

acyloxyhydroperoxy aldehydes were also prepared using α-pinene as the precursor and, cis-

pinonic acid as well as pinic acid as the SCI scavengers. The α-acyloxyhydroperoxy aldehydes are 

currently considered as important intermediated in the SOA nucleation, formed by gas-phase 

ozonolysis of alkenes, such as α-pinene – see Section 1.4.4. Analysis of the synthesized compounds 

is described in Section 4.1.2. 

Liquid phase ozonolysis of alkenes was previously utilized to investigate alkene ozonolysis 

products, as well as to synthesize compounds shown in Fig. 1.10. In the liquid phase, the 

ozonolysis mechanism is significantly different from the gas-phase mechanism. ECI stabilization 

yield is much higher in the liquid than in the gas-phase. For example, the α-acyloxyhydroperoxy 

aldehydes formed during liquid–phase ozonolysis of alkenes were reported to be produced in 

nearly quantitative yields, proving that almost all of the produced ECIs were stabilized. 64 

Stabilization (reaction 1.18a shown in Fig. 1.9) is therefore the dominant pathway for the ECI 

formed during alkene liquid-phase ozonolysis.  
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Liquid phase ozonolysis can be conducted in participating and non-participating solvents. 

Generally, solvents that cannot act as SCI scavenger, and thus had no impact on the products 

distribution, are considered non-participating. Examples of such solvents include ACN, 107,108 CCl4, 
109 CH2Cl2 108 and alkanes 91,107,109-111 as listed in Table 1.5. Participating solvents include H2O, 

aldehydes, alcohols and other compounds that can act as the SCI scavengers, aside from been 

used as the reaction medium. Participating solvents significantly affect the products distribution, 

since they are usually present in large excess as compared to the precursor. Reactions of the SCI 

with water, alcohols, carboxylic acids and aldehydes are shown in Fig. 1.10. 

Due to “solvent cage” effect, 1 the resulting SCI and aldehyde remain in close proximity and 

can subsequently react to form secondary ozonide, reaction 1.19d in Fig. 1.10. Of course, non-

participating solvent has to be used to promote SCI reaction with aldehyde. This method was 

utilized by Tobias et al. 110 to synthesize secondary ozonide by 1-tetradecene ozonolysis in hexane. 

For a number of endocyclic alkenes, it was concluded that self-reaction of the SCIs leads to the 

formation of intramolecular secondary ozonides. 111 Ozonolysis of cholesterol in hexane or CCl4 

lead to the similar conclusions, resulting in the formation of dimer hydroperoxides and secondary 

ozonides. 109 Similar dimer peroxides were generated as a result of verbenone ozonolysis in non-

participating ACN and CH2Cl2. 108 

Products distribution can be also controlled by adding the SCI scavenger, most often in 

large excess, to the reaction mixture. Frequently, a given scavenger can also act as the reaction 

medium – participating solvents discussed above. Docherty et al, 112 Murai et al, 113 Ziemann 89 as 

well as Tobias and Ziemann 114,115 utilized this approach to prepare a series of α-methoxyalkyl 

hydroperoxides, using simple alcohols as reaction solvents. Methanol and water were also used as 

participating solvents in cholesterol ozonolysis, leading to the association of the formed SCI with 

the solvent molecules. 116 

 Alkene ozonolysis in the presence of carboxylic acids resulted in the formation of 

acyloxyalkyl hydroperoxides. 91,107,114 Carboxylic acids are usually not used as the participating 

solvents. Similarly as in the formation of the intramolecular secondary ozonides, non-participating 

solvent is preferable to avoid competing reactions. This approach was used by Tobias and Ziemann 
91 for the synthesis of α-hydroperoxytridecyl heptanoate from the terminal alkene: 1-tetradecene 
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and heptanoic acid in cyclohexane. Tobias and Ziemann 114 also used formic, acetic, heptanoic and 

nonanoic acids as the SCI scavengers, to synthesize a series of α-acyloxyalkyl hydroperoxides from 

1-tetradecene. In the study discussed above acetone was used as a solvent. 

Table 1.5 Liquid phase alkenes ozonolysis 

Alkenes Solvents SCI scavengers Products Reference 

1-octene, 1-nonene, 2-
methyl-1-octene, 1-

decene, 1-dodecene, 
and 1-tetradecene 

 

Methanol 

α-Methoxyalkyl 
hydroperoxides 

112 

1-octene Ethanol 1-Ethoxy-n-heptyl 

Hydroperoxide 

113 

Cyclohexene, 
cycloheptene, 
cyclooctene, 

and cyclodecene 

Methanol or 1-propanol 

 

Alkoxyhydroperoxy 

Aldehydes 

 

89 

 

Verbenone 

Methylene 

chloride or 

acetonitrile 

SCI (self reaction) Dimer peroxides 108 

 

 

 

Cholesterol 

 

Water/THF or 

MeOH/ methylene 

chloride 

MeOH, Water Hydroxy, hydroperoxy 
bishemiacetals and other 

116 

Hexane or carbon 

tetrachloride 

None (self reactions) Dimeric secondary 

ozonides and 

hydroperoxides 

109 

 

 

 

 

1-Tetradecene 

 

Hexane Tridecanal (self 
reaction) 

Secondary ozonide 110 

Cyclohexane Heptanoic acid α-Hydroperoxytridecyl 

heptanoate 

91 

2-propanol α-Methoxyalkyl 
hydroperoxides 

115 

2-Propanol, 

methanol 

acetone, 

cyclohexane 

2-propanol, MeOH 

Formic, acetic, 

hetanoic and 

nonanoic acids 

α-Methoxyalkyl 
hydroperoxides 

α-Acyloxyalkyl 
hydroperoxides 

114 

Limonene, 3-carene, 4-
carene and possibly 

isolimonene 

Pentane  
None (self reaction) 

Intramolecular secondary 

ozonides 

111 



41 
 

 

 

Cyclohexene, α-pinene 

 

Acetonitrile or 

cyclohexane 

C5-C10 linear 
carboxylic acids, C4-C8 

linear dicarboxylic 
acids, 

4-Oxopentanoic acid 
5-Oxohexanoic acid, 
cis-pinonic acid and 

pinic acid 

 

α-Acyloxyhydroperoxy 

aldehydes 

107 

 

1.4. SOA formation from  the α-pinene ozone-initiated oxidation 

As described in Section 1.3.2, ozone is one of the major atmospheric oxidants. α-Pinene is 

the most abundant monoterpenes emitted from the natural sources, as already discussed in 

Section 1.4.1. Therefore, SOA formation from the α-pinene initiated oxidations is of great 

atmospheric importance. 

In Section 1.4.1, SOA formation mechanism in the α-pinene/ozone system is described. 

Afterwards, overview of the laboratory studies of SOA formation from α-pinene ozonolysis is 

presented – Section 1.4.2. The presented review includes description of the smog chamber studies 

– Section 1.4.2.1. – and the flow tube reactor experiments – Section 1.4.2.2, as well as discussion 

about the use of the OH radicals scavengers – Section 1.4.2.3.  Afterwards, instrumental 

techniques used for the α-pinene/ozone SOA composition analysis are described in Section 1.4.3.  

At this point it is important to present the currently accepted classification criterion for a 

given compound as a LMW or HMW α-pinene SOA component. Generally, it is accepted that LMW 

α-pinene SOA components masses are centered roughly around 150 – 180 Da. Examples of such 

compounds are presented in section 1.4.1. On the other hand, association products of these stable 

molecules, as well as reaction of LMW compounds with SCI are considered HMW α-pinene SOA 

components. The masses of HMW dimers are centered around 350 - 380 Da, as far as α-pinene 

SOA composition is considered. 

Initially, identification of the LMW α-pinene SOA components in the studies published 

earlier is discussed in Section 1.4.3.1. Afterwards, the analysis methods of the HMW SOA fraction 

are described. Analysis methods of HMW SOA components are discussed in Section 1.4.3.2 and 

Section 1.4.3.3. 
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Afterwards, proposed formation pathways of the detected HMW compounds are described 

in Section 1.4.3.4, including condensed – phase reactions and gas – phase reactions, Sections 

1.4.3.4.1. and 1.4.3.4.2, respectively.  

Previously proposed nucleation mechanisms of the SOA formed in the α-pinene/ozone system 

are summarized in Section 1.4.4. 

 
1.4.1. α-pinene ozone-initiated oxidation mechanism 

General alkene ozonolysis mechanism is described in section 1.3.3. In this section, ozone-

initiated α-pinene oxidation mechanism will be presented. Since detailed evaluation of the α-

pinene oxidation by ozone and OH radicals is beyond the scope of this introduction, only brief 

summary of the currently accepted and proposed formation pathways of the stable products are 

shown in Fig. 1.11 and Fig. 1.12. Incorporation of the oxygen atoms into the α-pinene structure 

results in the formation of low-volatile products, subsequently partitioning between the gas and 

particle-phase, according to the currently accepted model. A number of by-products, as well as 

addition, rearrangement and elimination reactions were omitted in Fig.1.11 and Fig. 1.12 for 

clarity. For example, water addition to the SCI leads to the formation of the α-hydroxyalkyl 

hydroperoxides. SCI can rearrangement to form a hot hydroperoxide, as already described in 

Section 1.3.3; the subsequent reactions of the high-energy hydroperoxide involve elimination of 

the OH radicals as well as reactions with NO and RO2 radicals. 

 Please note that only products detected in the particles phase are included in the summary; 

however, the majority of the α-pinene ozonolysis products partition between gas and particle 

phase. 
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Figure 1.11 Formation channels of some stable LMW products from α-pinene reaction with ozone 

For α-pinene, two ECIs can be formed as a result of the ozone addition to the carbon-

carbon double bond, as shown in Fig. 1.11. The formation ratio for two ECIs was reported to be 

about 6:4, favoring the methyl substituted biradical with the stabilization yields of about 0.15 for 

both ECIs. 93,117 As already discussed in Section 1.3.3, there are three possible channels for the ECI 

decomposition. OH radicals are formed via hydroperoxide channel, and the reported yields of the 

OH radicals formation from the α-pinene ozonolysis are in the range from 0.70 to 0.85. 21,93,117-119 

Such high OH radicals yield warrants the description of the SOA formation in the α-pinene/ozone 

system as ozone – initiated oxidation rather than ozonolysis. Since the OH radicals reacts with α-
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pinene much faster than ozone, 101 in order to study “pure” ozonolysis, in a number of laboratory 

studies, large excess of the OH radicals scavengers are often added to the system. The use of the 

OH radical scavengers in the laboratory studies of SOA formation in the α-pinene/ozone system is 

discussed in section 1.4.2.3. 

As shown in Fig. 1.11, few products were proposed to be formed via SCI and ester channel, 

with the majority of the stable compounds produced via hydroperoxide channel. The most 

important product, proposed to be formed via ester channel is pinonic acid. 120-123 Alongside 

pinonic acid, other compounds with MW 184 were also proposed to be formed via this channel. 122 

Pinonaldehyde as well as cis-pinonic acid are believed to be produced after SCI reaction with 

water, via SCI channel. 93,122,124,125 The rest of ozonolysis products shown in Fig. 1.11 are produced 

via hydroperoxide channel, via series of reactions with various radical species and stable 

molecules. Products shown in Fig. 1.11 were included in the mechanism presented by Ma et al. 120 

and Winterhalter et al. 122 

 When no scavengers are present, which is the case in the ambient atmosphere, reaction of 

OH radicals with α-pinene is important oxidation pathway, and thus should also be described in 

this section, in order to present complete overview of the ozone – initiated α-pinene SOA 

formation. OH addition to the carbon-carbon double bond results in the formation of the two 

possible radical: by-products I and II shown in Fig. 1.12. 117,122 The OH – α-pinene adducts I and II 

can subsequently isomerize, resulting in the formation of new carbon-carbon double bond – 

adduct III shown in Fig. 1.12 117,122,126 or react with O2 to produce alkylhydroxylperoxy radicals. 
117,122 The isomerization product (III) also reacts with O2 to yield alkylhydroxylperoxy radical. 

Addition by-product III can yield stable compounds such as acetone and compound with MW 126, 

as shown in Fig. 1.12. Also, 8-hydroxy-menthen-6-one, a stable product of the radical III reaction 

with O2, can be further oxidized by yield highly oxygenated product with MW 200. 
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Figure 1.12 Formation channels of the stable LMW products from α-pinene reaction with OH 

radicals 

 As shown in Fig. 1.11, pinonaldehyde is produced via reaction of SCI with water, however, this 

compound is also a main products of the α-pinene oxidation by OH radicals. 93,117,122,127,128  
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1.4.2. Laboratory studies of α-pinene SOA formation  

In this section, the laboratory methods for α-pinene SOA generation are described. Laboratory  

SOA generation experiments are conducted in order to mimic,  to some extent, the ambient 

aerosol formation conditions. Most frequently, laboratory studies focus on investigating a small 

portion of the processes, leading to the formation of SOA in the atmosphere. Those studies are 

usually limited to one oxidant and one precursor, in order to get insights into specific reaction(s). 

Afterwards, results of such investigation are often extrapolated to the atmospheric conditions in 

order to estimate the SOA forming – potential of specific mixtures of oxidant and precursor under 

study.  

In this section, laboratory studies of α-pinene reaction with ozone are summarized, focusing on 

SOA composition analysis, since such analysis was also the main objective of this thesis. SOA 

composition analysis methods are discussed separately in Section 1.4.3. 

Generally, two types of laboratory SOA formation studies can be found in the current 

literature; smog chamber studies and flow – reactors experiments. Studies investigating SOA 

produced as a result of α-pinene ozone-initiated oxidation are summarized in Section 1.4.2.1. 

(smog – chamber experiments) and Section 1.4.2.2. (flow – tube reactors experiments).  

1.4.2.1. Smog chamber experiments 

SOA generation experiments in smog – chambers are most often aimed for using low 

reactants concentrations, close to those encountered in the ambient atmosphere and therefore 

have large volumes ranging from 1 m3 to 200 m3, as listed in Table 1.6.   
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Table 1.6 Summary of the smog – chamber α-pinene SOA generation conditions 

α-pinene 

concentration 

RH (%) OH scavenger Ozone 

concentration 

Chamber 

size 

Residence 

time 

Aerosol 

composition 

analysis 

Reference 

44 ppb Not 

specified 

2-propanol 88 ppb 176 ppb 50 m3 After 

complete α-

pinene 

consumption 

 

GC/MS 129 

3.7 ppm Not 

specified 

None/cyclohexane 

1860 ppmv 

1.5 ppm 0.5 m 3 After 95% of 

ozone 

reacted 

GC/MS 130 

0.96 ppm 18-40  none Not specified, 

initial NOx 0.45 

ppmv 

190 m3 15 h GC/MS 117,131 

330 – 510 ppb 0 – 80  None/cyclohexane 

3.5 ppmv 

190 – 508 ppb 0.002 and 

0.5 m 3 

1.45  and 66 

min 

Online 

APCI/MS 

132 

15 ppb 50 < none 100 ppb 600 m3 > 1h none 133 

300 – 500 ppb 4 – 40  none 300 – 500 ppb 0.012 and 

0.5 m 3 

Not 

specified 

Online 

APCI/MSn 

134 

700 ppb 10 < none 560 ppb Dual 0.5 

m3 

55 min none 135 

100 ppb 0 – 50 none 135 ppb Dual 200 

m 3 

Not 

specified 

LC-ESI/MS 

LC-APCI/MS 

122 

12 – 135 ppb 55  cyclohexane 24 – 270 ppb Dual 28 m 
3 

5 – 7 h ESI/MS 

LC-ESI/MSn 

 

136,137 

100 ppb 40 – 50  none 70 ppb 9 m3 2.5 h CE-ESI/MS 138 

3.4 ppm 28 – 30  none 0.8 ppm 0.5 m3 1 h MALDI, ESI-

MS, 

Desorption CI 

and  ESI- 

FTICRMS 

139 

4.5 ppm 0.5 – 50  Cyclohexane, 1-

propanol, 

formaldehyde 

2.7 ppm 7 m3 After all of 

the ozone 

reacted 

Online 

TDPBMS 

125 
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320 – 490 ppm 

300 ppb 24 – 27  none 700 ppb 2 m3 1.5 h GC/MS 140 

200 ppb 2   < none 240 ppb 27 m3 7.5 h ESI- FTICRMS 141 

200 ppb 1  < none 1 ppm 0.5 m3 19 min LC-ESI/MSn 

 

142 

12 ppb 1  < None/CO 209.3 ppb 200 m3 2 – 3 h ESI/MS 

LC-ESI/MSn 

143 

0.7 ppm 4 < Hexane 

20 – 100 ppmv 

250 ppb 9 m3 Not 

specified 

ESI-FTICRMS 144 

6.1 ppm 5 none 150 - 200 ppb 0.5 m 3 45 min ESI-MS/MS 

and ESI- 

FTICRMS 

145 

252 – 254 ppb 1  < none 1300 – 1400 

ppb 

4.2 m3 3.5 h LC-ESI/MSn 146 

100 ppb 1 < none 116 - 100 ppb 25 m3 Not 

specified 

HPLC-

ESI/TOF-MS 

147 

5 - 20 ppb 1 < none 50 - 100 ppb 10 m3 5 h Online CIMS 

(NO3
-) 

148 

280 - 350 ppb 0.7 – 3.5  2-butanol 450 – 600 ppb 5.5 m3 5 ± 0.5 h GC/MS 149 

 Complete list of abbreviations is provided in section 6. 

The smog chambers are made from Teflon,117,125,129,133,135,136,139,141,144,147,149 glass 
130,132,134,142 or stainless steel. 146 These three materials are most frequently selected for 

constructing the inner part of the reaction vessel, since the reactor material should be chemically 

inert, in order to avoid interactions with the reactants. 

The smog chamber itself is the reactor vessel in which the VOC of interest reacts with the 

selected oxidant. The reaction vessel is, of course, the central part of the installation. However, in 

order  to draw any meaningful conclusion from the acquired experimental data, all of the smog 

chambers, listed in Table 1.6 are equipped with the large number of analytical instruments, for 

monitoring the critical reaction parameters, as well as for aerosol sampling.  

Concentrations of the reactants used in the chamber experiments described in the 

literature are listed in Table 1.6. α-Pinene concentrations used in these experiments ranged from 
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few ppbs 122,129,132,136-138,143,148  to a few ppms, 125,130,139,144,145   in case of a few studies listed in 

Table 1.6. Large volume of the chamber allows using small concentrations of the reactants, closer 

to those encountered in the ambient atmosphere. Large reaction vessel volumes are necessary 

when using low reactants concentration, since sufficient amount of aerosol and conseqently 

ozonolysis products need to be present due to limited sensitivity of the analytical instruments. 

Relative humidity (RH) was also included in Table 1.6, since it is an important parameter for the 

smog-chamber investigations of SOA formation as a result of α-pinene ozonolysis. Water is very 

important SCI scavenger, when alkene ozonolysis under atmospheric conditions is considered, as 

already discussed in Section 1.3.3. 

 Ozone concentration is usually kept in the similar range as the concentration of the 

precursor, 134,141,147 with a number of studies using excess of the α-pinene 125,130,135,139,144,145 or 

ozone. 129,140,142,143,146,148,149 OH radicals scavenger, if used in a given experiment, is also listed in 

Table 1.6. Briefly, when OH radicals are produced with high yields during the α-pinene ozonolysis, 

as already discussed in Section 1.4.1, the large excess of the scavenger is added to suppress the 

alkene consumption by the generated radicals. 125,129,130,132,136,137,143,144,149 The use of different OH 

radicals scavengers is discussed in Section 1.4.2.3. 

Time scale of the smog-chamber experiments are also listed in Table 1.6. The main aim of 

the smog chamber experiments is to study SOA formation and composition in a large time scales, 

therefore reaction times listed in Table 1.6 vary from 20 min 132,142,145 to a few hours. 117,131,133,136-

141,143,146,148,149 These long time scales allow studying the SOA aging and time evolution of aerosol. 

Studies of SOA formation on much shorter time scales are performed in the flow-tube reactors, as 

discussed in Section 1.4.2.2.  

 In the majority of the smog-chamber studies, ozone is added directly to α-pinene in the 

presence or absence of the OH radicals scavengers. However, in a number of studies reactions 

involving ozone generation from NOx mixtures were also employed, in order to mimic the 

photosmog formation in the ambient atmosphere. 117 Such reactions are usually performed 

exclusively in the smog-chambers, since due to low amounts of the reactants used and long time-
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scale of the ozone generation reaction from NOx these experiments are unsuitable for the flow-

reactors.  

 After SOA generation, its  analysis can be performed either online, 125,132,134,148 or offline. 
117,122,129-131,136-147,149 The latter is performed after SOA collection. When online analysis is utilized, 

particles are focused into a narrow stream, usually with aerodynamic lenses, and directed to the 

analytical instrument. 125,132,134,148 For the offline analysis, filter sampling is utilized most 

frequently; 117,122,130,131,136-139,141-147,149 sampling with the impinger 129 was also used.  When filter 

sampling is performed, the chamber is evacuated, and air with particles is forced to pass through 

the filter and/or denuder, 117,131,138,142,146 for retaining the particulate and gaseous reaction 

products. 

 Analytical technique, used for SOA composition analysis in the specific experiment is  also 

listed in Table 1.6. It is important to underline, that SOA composition analysis is not always the 

main object of the given investigation. 133,135 In a number of studies, very valuable conclusions were 

presented, without identifying the compounds, composing the aerosol particles. However, since 

the main aim of the experiments performed in this work was investigating the SOA composition, 

only the analytical techniques, used for composition analysis were included in Table 1.6. Again, it is 

important to note that the analytical instruments, connected to the smog-chamber in the specific 

experiment were not limited to those listed in Table 1.6. The instrumental methods, used for SOA 

composition analysis include offline and online methods, as well as chromatographic techniques. 

α-Pinene SOA   composition analysis methods are described in Section 1.4.3. 

1.4.2.2. Flow – tube reactors 

Flow – tube reactors, as opposed to smog chambers, are used for studying the SOA 

formation on a short time scale. Most frequently, such studies are performed to provide insights 

into SOA formation mechanism and/or to measure reaction rate coefficients of ozone with aerosol 

precursors e.g. α-pinene, for the investigations listed in Table 1.7. The most significant difference 

between the experiments performed in the smog-chambers and flow-tube reactors is time scale of 

the reaction. Since flow-tubes are used to investigate the SOA properties on the early stages of 

aerosol formation, the times scales of the reaction range from less than a second to a couple of 
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minutes. Similarly to the smog-chambers, flow reactors experimental setup allows to monitor all of 

the critical reaction parameters, as well as to sample the particles and gaseous products, if offline 

composition analysis is performed. 150 Filter sampling is the most frequently used SOA collection 

method for offline analysis, along with the collection of gaseous reaction products with denuder. 
150,151 SOA sampling on an impactor (plate) was also used; sampling method described by Heaton 

et al. 152 required the use of aerodynamic lenses to focus the generated particles on a very narrow 

spot on the collection plate. Afterwards, collected particles are extracted and subjected to the 

composition analysis by various analytical techniques, as described in Section 1.4.3. Reactants 

concentrations used in the given flow-tube experiment are listed in Table 1.7. The reactants 

concentrations used in the flow-tube α-pinene SOA formation experiments are much higher than 

those, used in the smog-chamber experiments. The much smaller volumes of the flow-tube 

reactors, as compared to the smog-chamber experiments require using higher reactants 

concentrations, to produce sufficient SOA, since, as already discussed in Section 1.4.2.1, the 

analytical techniques used for aerosol analysis have limited sensitivity. As listed in Table 1.7, in the 

majority of experiments performed in the flow-tube reactors, reactants concentrations are in the 

ppm range, from a few ppm to about 200 ppm.  

 Lengths and diameters of the flow-tube reactors, described in the literature are also listed 

in Table 1.7. As already discussed, flow-tubes usually have much smaller volumes than smog-

chambers, since those most frequently consist of approx. 1-3 m glass tube with the ID’s from 2 to 

10 cm.  Reaction time is controlled by the reactants residence time in the reactor, which in turn 

depends on the total volumetric flow through the reactor, reactor length and ID. 

The parameter describing the flow conditions inside the reactor is  the Reynolds number. 
153 When gas flow in a round pipe is considered, Reynolds number value depends on dimensions of 

the tube, volumetric flow of gas and air kinematic viscosity. The equation is provided in section 

4.2.1, where Reynolds number calculations are presented, for the flow-tube reactor used in this 

work. The air kinematic viscosity is of course constant, under standard conditions. The tube 

dimensions and flow rate, however, can be considered user adjustable parameters, since the size 

of the tube is selected during the reactor construction, and the flow rate is adjusted during the 
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experimental run. In order to calculate the reactants mean residence time in the flow – tube 

reactor, the reaction has to be performed under laminar flow conditions. If the reaction was 

performed under turbulent flow conditions, it would be very difficult to draw any meaningful 

conclusion, especially when kinetic studies are considered. 154 

In a pipe reactor, the flow can be considered laminar when Reynolds number, calculated 

for a given set of experimental conditions, is less than 2100, while values larger than 4000 indicate 

the fully developed turbulent flow. 153 If the Reynolds number is in the intermediate region, the 

flow conditions are expected to randomly change between the laminar and turbulent regimes, 

thus preventing to obtain reproducible results. 153  

 Reynolds numbers are listed for each of the flow-tube reactors experiments summarized in 

Table 1.7. If the authors did not report the Reynolds number for their system, the values listed in 

Table 1.7 were calculated using the equation from Section 4.2.1. As listed in Table 1.7, for all of the 

summarized studies, Reynolds number values are well below the threshold value of 2100, thus 

proving that the reactions were performed under laminar flow conditions.  

 Table 1.7 Summary of the flow – tube reactors experiments for studying SOA formation in 

the α-pinene/ozone system 

α-Pinene 

concentration 

RH 

(%)  

OH 

scavenger 

Ozone 

concentration 

Flow 

tube 

length 

and ID 

Reaction 

time 

Aerosol 

composition 

analysis 

Reynolds number  Ref.  

5.5 – 22 ppm 3 none 0.5 ppm  1 m x 

2.5 cm 

0.6 s GC/MS 281 150 

11 – 136 ppm 5 < none 1 ppm 1.25 m 

x 2.22 

cm 

3 - 22 s Online PIAMS 150 155  

1.86 ppm 5 < CO 0.19 ppm 1 m x 

10 cm 

0.5 – 5 

min 

none 20 - 50 154 

Not specified 5 < Hexane 2 – 3 ppm 1.2 m x 

9 cm 

Not 

specified 

LC-ESI/MSn 

 

Inssuficient data 

was provided to 

calculate the 

151 
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number 

155-200 16 

– 

52 

none 0.57 – 0.88 ppm 1 m x 

2.5 cm 

12 s FTIR 123 - 140 135 

40 ppm 5 < none 500 ppb 1.25 m 

x 2.22 

cm 

23 s Online NAMS 

ESI-FTICR-MS 

150 152 

20 ppb 1 – 

85  

none/2-

butanol 

1 ppm 1.4 m x 

4.6 cm 

270 s none 25 156 

0.74 – 8 ppm 2 < none 0.04 – 0.4 ppm 1 m x 

10 cm 

17 – 48 s none 107 157 

Complete list of abbreviations is provided in Section 6. 

Flow tube reactors, described in the investigations, summarized in Table 1.7 usually share a 

number of design features, such as the glass tubes acting as a reaction vessel and relatively small 

volumes, as compared to the smog-chambers, described in Section 1.4.2.1. If the experiment 

requires changing the reactants residence time inside the flow – tube, sliding injectors (plungers) 

are often used. 154,156,157 The most obvious way to change the  reaction time in the flow-tube 

would be to alter the flow rate of a carrier gas. However, it is not convenient changing the reaction 

time in such a manner, due to the risk of pressure rise inside the reactor or developing a turbulent 

flow. Also, once the total flow is changed, all reactants concentrations would change, due to 

different dilutions e.g. for ozone introduced from the separate line, most frequently from the 

ozone generator. Ozone generators are usually calibrated for operating under specific flow 

conditions, and changing the flow would require recalibration under new flow conditions. The 

same conclusion can be made for all other chemical species introduced to the flow reactor. 

Therefore, the use of movable plungers (injector) is convenient, since the reaction time can be 

adjusted without altering the reaction conditions and enables to avoid troublesome recalibration. 

It is also convenient to use the movable injectors, if reaction time needs to be shortened, while 

avoiding too high flow of a carrier gas. In many flow-tube experimental setups, employing the 

movable injectors, the ozone was introduced via the plunger. α-Pinene, diluted with the carrier gas 

was introduced directly to the reactor, and came in contact with the ozone upon reaching the 

plunger tip. 154,156,157  
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In a number of studies, when reactants residence time is only controlled by the flow rate of 

the carrier gas, mixing plates are often employed, in order to ensure sufficient reactants mixing 

after entering the reactor. 135,150 When movable plungers are used, their design is usually more 

complex than a narrow tube, sliding inside the reactor. This is because, aside from acting as a 

sliding ozone injector, a second function of a movable plunger is mixing of the reactants, after 

initiating the reaction. This is not always the case, like for the experimental setup, described by 

Jonsson et al, 156 when injection was performed by a movable, narrow glass – tube, connected 

directly to the ozone generator and installed in the middle of the flow-tube reactor. The movable 

mixing plunger, described by Duncianu et al. 154 contained small glass beads, to ensure sufficient 

mixing of alkenes and ozone. Simpler design of a mixing plunger was described by Bernard et al, 157 

where the mixing plunger was constructed from a three, parallel plates, with openings on each 

side of a plunger, forcing the gas to circulate inside the injector, and thus ensuring sufficient 

mixing of the reactants. The detailed design of the flow – tube reactor used in this work is 

presented in Section 3.4.1. 

1.4.2.3. OH radicals scavengers 

A number OH radicals scavengers were utilized in investigations of α-pinene SOA formation 

performed in smog-chamber experiments, 125,129,130,132,136,137,143,144,149 as well as in flow-tube 

reactors studies. 151,154,156 The aim of the OH radicals scavengers, is to reduce the secondary 

reactions between α-pinene and OH radicals during ozonolysis. As already discussed in Section 

1.4.1, OH radicals are produced with very high yields (approx. 0.7 - 0.85 21,93,117-119) during the α-

pinene ozonolysis reaction. The reaction rate coefficient of OH radicals with α-pinene is estimated 

to be about 5 × 10-11 cm3 molecule-1s-1.101,158  Reaction rate coefficient of α-pinene with ozone is 8 

×10-17 cm3 molecule-1s-1 (see section 3.8.1), which is about 6 orders of magnitude lower as 

compared to the reaction with OH radicals. This creates a very important feedback loop in the α-

pinene/ozone reaction system, 157 and significantly affects the products distribution.  

The most straightforward method of minimizing the OH reaction with the parent alkene, 

e.g. in the case of α-pinene ozonolysis, is to add a large excess of the other reactant, to scavenge 

the generated OH radicals. Naturally, such scavenger needs to be reactive towards OH and 
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unreactive towards ozone, as well as sufficiently volatile to be introduced in the required 

concentrations. Ideally, the scavenger needs to react with OH while not yielding any products that 

could alter the ozonolysis reaction mechanism, and thus lead to the incorrect conclusions 

regarding the ozonolysis mechanism. There are several sufficiently volatile compounds, highly 

reactive towards OH and at the same time unreactive towards ozone. The compounds previously 

used as the OH radicals scavengers in the laboratory studies of α-pinene ozone initiated SOA 

formation are listed in Table 1.8. 

Table 1.8 OH radicals scavenger used in some of the studies, summarized in Table 1.6 and 
Table 1.7 

OH scavenger Reaction rate coefficient 
with OH (cm3 molecule-1s-1) 

Reference 

Cyclohexane 7 × 10-12 125,130,132,136,137 

CO (1.5 – 2) × 10-13 
154 

2-butanol 8.5 × 10-12 129,149,156 

hexane 5.5 × 10-12 
144,151 

formaldehyde 1 × 10-11 
125 

1-propanol 5.5 × 10-12 
125 

 
 Reaction rate coefficients listed in Table 1.8 were summarized in the NIST kinetic database. 
101 As listed in Table 1.8, reaction rate coefficients of OH with all listed scavengers are significantly 

smaller than that of OH radicals with α-pinene. Consequently, a large excess of all the scavengers 

listed in Table 1.8, as compared to α-pinene need to be introduced into the reaction system. 

Indeed, as summarized in Table 1.6 and Table 1.7, very high concentrations of the OH radical’s 

scavengers were present in the reaction mixtures. 

 However, as discussed above, the ideal scavenger should not alter the ozonolysis reaction 

mechanism, and consequently, the ozonolysis reaction products distribution. The addition of 

excess scavenger is required when the focus of a given study is exclusively on the investigation of 

the ozonolysis mechanism. 120 However, if the results of the laboratory investigation are to be 

extrapolated for the ambient conditions, careful evaluation of the possible alterations from the OH 

radical’s scavengers is essential. 
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 In the paper by Lee and Kamens, 150 it was suggested that scavengers, such as cyclohexane 

and 2-butanol, can produce carbonyl compounds and alcohols when reacting with OH radicals. 

Subsequently, these compounds can act as the SCI scavengers and thus alter the reaction 

mechanism. Also, it is important to underline, that scavengers such as alcohols, 125,129,149,156 and 

formaldehyde 125 can also, by themselves, act as SCI scavengers, as it was discussed in Section 

1.3.3 and Section 1.3.4; especially when present in large quantities, as compared to the 

unsaturated precursor. Ma et al. 120 in their investigation concluded, that the presence of the OH 

radicals scavengers, such as cyclohexane and methanol, alter the ratio of the RO2 to HO2 radicals in 

the system, and thus influence the major products yields. Similar conclusions were presented in 

the modeling study by Jenkin, 159 when it was concluded, that the large excess of cyclohexane and 

2-butanol altered the yields of the major LMW products.  

 Jonsson et al. 160 investigated the effects of the OH radicals scavengers on SOA formation. 

It was concluded, that SOA formation was affected by both OH radical’s scavenger type and 

concentration. Similarly to other studies, it was argued that the observed effects on SOA formation 

can be explained by the alteration of the RO2 and HO2 radicals concentrations by the OH 

scavengers. Jonsson et al. 160 also summarized the results of other studies, where similar 

conclusions were presented.  

1.4.3. SOA composition analysis 

Analysis of SOA’s composition, including aerosol produced in the α-pinene/ozone system, is 

carried by a variety of analytical techniques. These techniques were summarized in a number of 

recent reviews, 20,161-163 therefore, a complete summary will not be presented here. The review 

presented in this section will focus only on the most popular analytical techniques, used for α-

pinene SOA composition analysis.  

Initially, methods for the analysis for the LMW and HMW α-pinene SOA components are 

summarized in Sections 1.4.3.1 and 1.4.3.2. Afterwards, identification methods and proposed 

formation pathways for the detected HMW α-pinene SOA components are discussed in Section 

1.4.3.3 and Section 1.4.3.4. 
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1.4.3.1. Low – molecular weight (LMW) compounds  

Earlier studies of SOA composition were very often carried out with the capillary gas 

chromatography coupled to mass spectrometry (GC/MS). 93,117,129-131,140,149,150,163-166 It is well 

known that OAs, including SOAs contain extremely high number of different organic compounds.  
167 Even if only SOA composition from just a single organic precursor is considered, like α-pinene, 

the resulting mixture of organic compounds is very complex, requiring analytical methods with 

high separation power. Capillary GC/MS appears to be very well suited for analyzing such complex 

organic compounds mixtures, due to very high resolution, sensitivity and ability to provide 

molecular identification of the compounds of interest. 20,161-163 

 However, GC/MS also has certain drawbacks which were proven to prevent analyzing and 

identifying the HMW portion of SOA mass. In order to be analyzed by GC, the compounds of 

interest should be volatile and relatively non-polar. The variety of the LWM α-pinene ozone-

initiated oxidation products, as presented in Section 1.4.1, are highly oxygenated compounds, with 

the functional groups like carbonyl (RC(=O)R'), carboxylic (-C(=O)OH), hydroperoxide (-OOH) and 

alcohol (-OH). Therefore, to enhance the volatility and reduce polarity of these compounds, 

various derivatization procedures were used.  

Table 1.9 Derivatization methods used for analysis of the oxygenated α-pinene SOA 

compounds, used prior to GC/MS analysis 

Derivatization 

method 

Derivative Functional group 

derivatized  

Reference 

O-(2,3,4,5,6-

pentafluorobenzyl) 

hydroxylamine (PFBHA) 

R

R
1

N O

FF

F F

F

 

Carbonyls 93,131,164,165 
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silylation reagent 
N,O-bis(trimethylsilyl)-

trifluoroacetamide 

(BSTFA) 

R
O

Si

 

Carboxylic acids, alcohols 149,164-166 

Pentafluorobenzyl 

bromide (PFBBr) 

F

F

F

F

F

O

R O

 

Carboxylic acids 93,131,150 

BF3/MeOH O

R O  

Carboxylic acids 130,131 

 

Methods, listed in Table 1.9 transform the non-volatile, polar SOA components into their 

corresponding, volatile and less polar derivatives, and thus making them amenable for the GC/MS 

analysis. Beside been complex and time consuming, derivatization procedures are also known to 

produce artifacts that can alter the original products distribution in the studied SOA sample. 

It was also proven that HMW SOA components are not amenable to be analyzed by 

GC/MS.110,114,115 The HMW SOA components are usually extremely non-volatile and thermally 

labile. They can be decomposed during the derivatization step or by high temperature in the GC 

injector. Even if the HMW compounds were able to be separated by GC, the electron impact (EI) 

ionization, used in the vast majority of the GC/MS system, would result in extensive fragmentation 

of these compounds, since it is characteristic for this type of ionization method. 162 The EI mass 

spectra for the vast majority of the organic compounds is complex, 168 due to high number of mass 

peaks. For more complex compounds, such as HMW SOA components (see section 1.4.3.3) data 

interpretation is much more challenging, than for simple monomers. 

This is the most significant drawback of the GC/MS analysis, since it is currently well known 

that HMW components consist of a significant fraction of SOA, including α-pinene SOA. 20,136,169 

Thus, data obtained from SOA composition solely by GC/MS analysis is not reliable, since the HMW 
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fraction would not be quantified. Therefore, different techniques have to be used for the complete 

analysis of the SOA composition, especially for analysis of oligomers and other HMW compounds.  

1.4.3.2. Oligomers and other high-molecular weight (HMW) 

compounds 

Complete list of abbreviations used in this section is provided in Section 6. 

A number of recent studies have demonstrated that soft ionization method like ESI and 

APCI are especially suitable for analysis of the HMW SOA components. 20,161,162 ESI 122,136-139,141-

147,151,152 and APCI 132,134 are capable of preserving the molecular integrity of the analyzed 

compounds. When analyzing polar compounds with LC/MS, derivatization is not required since 

typical LC/MS analysis conditions were proven to be very well suited for analyzing polar and non – 

volatile HMW compounds. Direct analyses of the liquid samples by ESI or APCI also minimize the 

risk of the analytes decomposition, as compared to the GC/MS analysis using EI.  It is also very 

important to underline, that the LMW compounds, mostly analyzed by GC/MS, can also be 

analyzed by ESI and APCI without the time consuming and complex derivatization procedures. 

Recent studies, utilizing ESI and APCI for analysis of α-pinene SOA samples are summarized in 

Table 1.10.  

Table 1.10 Detection of different compound classes in SOA samples with ESI and APCI  

Ionization method Ions detected Reference 

 

 

ESI 

M+Na+ 136,139,141,143,145,152,169 

M+K+ 139 

M+H+ 145,169 

M-H- 136,138,142-147,152,169-171 

APCI M-H- 134,172 
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M+H+ 122,132 

 

Electrospray can operate in both positive and negative ionization modes, when the 

detection of cations and anions is performed, respectively. The preferable ionization mode 

depends on the analyte structures, and the presence of the positive and negative ionization sites, 

such as e.g. functionalities containing basic nitrogen and carboxylic group. When the detection of 

positively charged ions is performed, the spectrum is usually more complex, due to the higher 

number of possible adduct ions, like for instance metal cluster ions - see Table 1.10. Of course, 

detection of the protonated, pseudo-molecular ions is preferable. Adducts with the eluent 

additives can be also formed in the negative ionization mode, like for instance M+HCOO-. 173 In 

both positive and negative ionization mode, non-covalently bonded analyte clusters can also be 

formed. 

Since the use of ESI is becoming very popular as the ionization method of choice for the 

analysis of the HMW SOA components, a more detailed description of this ionization method is 

presented in this section. The mechanism of ESI is shown in Fig. 1.13. 

Figure 1.13 Mechanism of ionization using electrospray ion source 
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As shown in Fig. 1.13, when liquid sample is ionized with ESI, initially liquid is forced 

through a narrow capillary, with high voltage (2 – 5 kV, dependent on the polarity) applied. Also, 

nebulizer gas flows around the capillary, to assist the spray formation and solvent evaporation; the 

latter one can be also enhanced by heating the spray.  Applying a high voltage results in the 

formation of the Taylor cone (not shown in Fig. 1.13) at the tip of the capillary and the charged 

droplets generation. 173 Afterwards, the droplets volumes reduce, and at some point, when the 

repulsion of the ions inside the droplets overcomes the surface tension, a set of smaller charged 

droplets is formed. It is repeated, until the ions are formed in the gas-phase. Subsequently, ions 

are transferred from the ion source (atmospheric pressure) into the mass analyzer (vacuum).  

This ionization mechanism has several important consequences for the mass spectrum 

appearance, and also for subsequent data interpretation. ESI is considered one of the “softest” 

ionization methods.  If the ionization conditions are adjusted correctly, there is little to none in-

source fragmentation. As a result, ESI is very well suited for determining the molecular mass of the 

compound of interest. If a mass resolution of the analyzer is sufficiently high (TOF or FTICRMS), 

elemental formula for the compounds of interest can be calculated (see section 1.4.3.3.1). 

 Also, tandem mass analyzers are used in the current, state-of-the art mass spectrometers, 

utilizing ESI. Additional information about the compounds of interest can be obtained using 

tandem mass spectrometers. Such data subsequently provides very valuable structural 

information, even for the unknown compounds, which is especially important when SOA samples 

are analyzed. Of course, this approach also posses certain limitations, as discussed in Section 

1.4.3.1.1. However, it is important to underline that the structural information acquired using 

tandem mass spectrometer cannot be obtained with the simpler apparatus equipped with single 

mass analyzer. Obtaining the fragmentation spectra (MS2 and MS3 scans) of the selected precursor 

ion using triple quadrupole mass spectrometer is described below. 
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Figure 1.14 Operation schematic of a tandem mass spectrometer 

In the tandem mass spectrometer, such as the triple quadrupole spectrometer shown in 

Fig. 1.14, the precursor ion is selected in the first mass analyzer (Q1) and introduced into the 

collision cell (Q2). Here, the collision induced dissociation (CID) takes place – MS2 scan. In the 

collision cell, the ion is subjected to fragmentation by collision with the neutral gas molecules 

(most often N2) and obtained fragments are analyzed by the third quadrupole (Q3). Similar 

analysis can be performed in the mass analyzers equipped with the quadrupole followed by linear 

the ion trap (LIT). The degree of fragmentation can be controlled by adjusting the specific 

parameters, and the resulting fragmentation spectrum can provide structural information about 

the analyzed compounds. Multiple reactions monitoring (MRM) mode is a specific variant of the 

MS2 scan, used mostly for quantitative analysis. In the MRM mode, fragmentation conditions for 

each pair of ions (parent ion/fragmentation ion) are optimized for the maximum sensitivity. MRM 

mode coupled with the LC analysis significantly enhances the sensitivity and nearly eliminates the 

background noise, as compared to the total ion current (TIC) mode. Another mode of operation of 

the triple quadrupole mass spectrometer is the MS3 mode, in which the fragmentation spectrum 

of one of the fragment ion is obtained, by causing the fragmentation in both Q2 (collision gas) and 

Q3 (excitation energy). MS2 and MS3 modes are especially useful in studying the fragmentation 

pathways of the compounds of interests, providing structural information. Such approach, often 

coupled with the elemental formula assignment if utilized very frequently in studies investigating 

the structures of the HMW SOA components, as described in Section 1.4.3.3.1. 
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ESI, as well as all other ionization techniques, also has a number of drawbacks. The very 

little in-source fragmentation can be regarded as an advantage or disadvantage, depending on the 

aim of analysis and compounds of interest. This can be overcome by the use of tandem mass 

analyzers, equipped with the collision cell, which enables the operator to adjust the degree of 

fragmentation of a selected precursor ion. Another drawback is the ability to directly detect only 

the molecules containing labile hydrogens in their structures, like carboxylic acids or amines. 173 

Therefore, ESI is unable to directly detect hydrocarbons or even carbonyls and alcohols. This 

second limitation can be, to a certain degree, avoided by detecting adducts ions of the compounds 

of interest, usually with metal cations, as will be described below.  

Another limitation of ESI is the formation of the non-covalently bonded analytes cluster 

ions. 141,145,170 Formation of the non-covalently bonded clusters of the simpler molecules has to be 

taken into account, especially when analysis of the HMW components of SOA is performed in the 

direct infusion mode. Formation of such clusters can be, to a certain degree, avoided by proper 

calibration of the ion source or separation of the sample components by LC prior to the 

introduction into the ion source. The advantages of the LC/MS analysis over the analysis 

performed in the direct infusion mode are discussed in Section 4.3.1.3.  

As listed in Table 1.10, when HMW α-pinene SOA components are considered, ions that are 

most often detected are sodium adducts – M+Na+, potassium adducts were also utilized. 

Protonated ions were detected in two studies, which strongly indicate that HMW SOA components 

usually do not have ionization site, enabling the formation of protonated or deprotonated ions. A 

large number of studies used ESI operating in the negative ionization mode to study SOA 

composition. The use of ESI in the negative ionization mode is convenient, since a large number of 

SOA components contains carboxylic group, and thus can be readily detected as anions. Also, 

there are less adduct ions in the negative ESI and compared to the positive polarization, however, 

as already discussed above, adduct formation can be an issue in both ionization modes.  

The APCI ionization mechanism is significantly different from ionization in ESI, even though 

both ion sources operate under atmospheric pressure. In APCI, similar to the ESI, the liquid sample 

is pumped through a narrow capillary, and solution is vaporized by applying high temperature. 
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Afterwards, the sample is sprayed to the corona discharge needle. APCI ionization mechanism is 

similar to the mechanism in chemical ionization (CI), in such a way, that the analyte is ionized by 

gas-phase charge-transfer reactions of the compound of interest molecules with charged 

molecules of eluent and bath gas. Some of the reactions, involved in positive APCI ionization, are 

shown in Fig. 1.15.173 

N2 + e- N2
+. + 2e- 

N2
+. + 2N2 N4

+. + N2 

H2O
+. + H2O H3O

+ + OH
.

H3O
+ + H2O + N2 H+(H2O2) + N2

H+(H2O)n-1 + H2O + N2 H+(H2O)n + N2

A + B+. A+. + B

A + BH+ AH+ + B

1.20

1.21

1.22

1.23

1.24

1.25

1.26
 

Figure 1.15 Ionization process in APCI 

As shown in Fig. 1.15, reactions 1.20 – 1.24 involve the formation of the gas bath gas and 

solvent ions, initiated by the electrons emitted from the corona-discharge needle. Afterwards, 

analyte (A) can be ionized by charge transfer reaction 1.25 or proton transfer reaction 1.26. 

APCI is significantly less popular ionization method, used mostly in online 

investigations,132,134 although it is also suitable for analyzing the liquid samples, either by direct 

infusion, or by connecting the ion source to LC. 122 Due to the APCI ionization mechanism, this 

technique is less suited for the detection of large, polar compounds. In case of α-pinene SOA 

samples, it can be concluded that only analytes with molecular masses < 200 Da can be detected. 

The HMW compounds most likely decompose in the ion source. 132 However, it should be noted 

that in the study by Hoffman et al. 172 it was possible to ionize stable HMW compounds using APCI. 



65 
 

Due to the “softer” ionization conditions in APCI than in, for instance EI, there is also relatively 

little in-source fragmentation. However, since the sample spray is not generated by applying high 

voltage to the capillary, but by vaporizing the sample with high temperature, thermal 

decomposition is still an issue. Also, gas-phase reactions involved in the ionization process can 

result in fragmentation/decomposition of the more labile analytes even though this process leads 

to the formation of ions with significantly lower amounts of excess energy, as compared to EI. 

However, APCI is capable of directly ionizing such compounds as carbonyl or alcohols, and thus 

was used as the ionization method complementary to ESI, 122 which in turn cannot ionize some 

molecules.  

1.4.3.3. Identification of the HMW α-pinene SOA components 

In this section, identification methods of the HMW SOA components are summarized. Due 

to the lack of the appropriate standards, the structures and therefore formations pathways of the 

HMW SOA components can be only tentatively identified, although very significant progress was 

made in recent years. Structures of the HMW compounds, proposed as a potential nucleation 

precursors of SOA generated in the α-pinene/ozone system are discussed separately in Section 

1.4.4. The most widely utilized approach is based on the elemental formula assignment by high 

resolution (HR) - MS and/or tandem mass spectra interpretation, discussed in Section 1.4.3.3.1. 

The more problematic but also more reliable approach of identifying the HMW SOA components, 

involving synthesis of the actual standards for the compounds of interest is discussed in Section 

1.4.3.3.2. 

1.4.3.3.1. Mass spectra interpretation and elemental 

formula assignment 

Mass spectra interpretation frequently supported by the elemental formula assignment is 

most often utilized approach used for the identification of HMW SOA components. Studies 

utilizing either one of both of the methodologies, are listed in Table 1.11 
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Table 1.11 Methods of HMW α-pinene SOA components identification 

Identification method Reference 

Interpretation of the 

fragmentation spectrum 

136-139,142,145,147,151,170,172 

Elemental formula assignment 139,141,144,145,152,170 

 

Structures proposed in the currently published studies are based on either the elemental 

formula assignment by high resolution (HR) - MS and/or tandem mass spectra interpretation.  An 

example of such investigation, picturing both advantages and disadvantages of this approach will 

now be presented, based on the results described by Hall et al. 145 In the discussed study, state of 

the art FTICRMS was used to provide extremely high mass resolution, enabling to assign the 

elemental composition for over a 1000 of mass peaks. This, of course, provided very valuable data 

about the SOA elemental composition. However, as stated by the Hall et al, 145 due to the number 

of monomers and possible association mechanisms of these monomers it was impossible to 

propose the structures for a majority of the detected compound. In fact, for the peak with m/z 

375.214 Da, there were 18 equally probable structures. Even when fragmentation spectrum was 

acquired, the authors concluded that, in most cases, it did not provide the sufficient data to 

reduce the number of possible structures. It is very important to underline, that authors 

recognized the problem of the number of possible structures, by conducting extensive monomer 

investigation, and thoroughly examining the possible association mechanisms. Such careful 

evaluation is necessary to recognize the complexity of the problem, so that possible structures of 

the compound under consideration are not proposed, based on limited structural information 

available.  

For a number of mass peaks, however, it was concluded that based on the acquired data, 

the observed mass peaks can be explained only by one or two (or both) possible structures of 

compounds with a given elemental composition and MW. It was concluded that neutral losses of a 

certain masses indicate the presence of certain functionalities, which is a widely used approach. 
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However, as stated by the Hall et al, 145 evidence for certain oligomers formation was less 

compelling. Experimental evidence was presented, supporting all of the formation mechanisms, 
125,135-139,141-143,145-147,152,174 discussed in Section 1.4.3.4. However, as also stated by the Hall et al, 145 

the presented results should not be considered definitive, unless these were supported by the 

analysis of the actual standards. Similar conclusion can also be applied to all of the other studies, 

utilizing HR-MS together with the tandem mass spectra analysis to propose the structures and 

formation pathways of the detected HMW SOA components. 

 Also, studies like the investigation presented by Hall et al. 145 are often performed directly 

introducing the sample into the ion source in MS, and thus the limitation to be considered is the 

ion-source formation of adducts, very characteristic when ESI is used – see section 1.4.3.2. In the 

Hall et al. 145 study special attention was paid to avoid in-source adducts formation. It was also 

concluded that the ion-source artifacts formation cannot be avoided in the negative ionization 

mode, thus only the data from positive ionization mode was analyzed. 

To underline advantages as well as limitations of the analytical approach presented in this 

section the change in the structure understanding of the extensively studies HMW α+pinene SOA 

component, a compound with MW 358 Da is presented in Table 1.12  

 

Table 1.12 Structures of the compound with MW 358 Da proposed between 1998 and 2013 

Proposed structure Year published Reference 

O

O
O

OH

H O

O

O

O

H

H

 

1998 172 

O

OH

OH O OH

OH

O  

2004 137 
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2010 175 

2010 174 

2012 146 

2013 147 

 

As listed in Table 1.12, this compound has been detected in number of studies and thus 

extensively analyzed. For the first time, a presence of the compound with MW 358 Da was 

reported in the chamber study of α-pinene ozone – initiated SOA formation by Hoffman et al. 172 

At that time, it was proposed this compound was a stable adduct of pinic and norpinic acid. That 

adduct was concluded to be very stable, even under the LC analysis conditions. The discussed 

study was published 15 years ago, thus it may be argued that these results should not be 

compared with the currently available data. However, analytical tools used by Hoffman et al. did 

not differ from those used in the studies published in 2013 (LC coupled to the MSn), as well as in a 

number of other investigations, summarized in Table 1.10 (section 1.4.3.2). The main objective of 

the summary, presented in Table 1.12, is to show, that the same data can be interpreted 

differently, providing a reasonable justification of the fragmentation spectrum obtained for a given 

mass peak. Fragmentation spectrum reported by Hoffman et al. 15 years ago agrees perfectly with 

the spectra reported in more recent studies. Gao et al. 137 also investigated the structure of the 

compound with MW 358 Da, again obtaining the same fragment ions as those reported in a more 

recent investigations. In a number of recent studies, after extensive investigation of the MSn 

spectra, the compound with MW 358 Da was established to consist of diaterpenylic acid and cis-

pinic acids. 175 This structure is currently accepted as a correct one. 

The fact that the proposed structure of the compound with MW 358 Da changed 

significantly since the detection of this compound in 1998, illustrates the speculative nature of the 

results obtained by elemental formula assignment and/or interpretation of the fragmentation 

spectrum. The obtained fragment ions can be explained by a number of structures. Especially 

when simple bond cleavage is considered as the only possible fragmentation mechanism which 



69 
 

was, for some reason, accepted practice in all of the studies summarized in Table 1.11. Also, it 

should be noted that the structure of the compound with MW 358 Da was finally resolved, since it 

was consistently detected in a number of studies. This compound is now considered a very 

important α-pinene SOA tracer. 175  

However, for a large portion of the HMW compounds detected in SOA samples, such 

extensive investigations were not conducted. As already discussed above, the structures of 

detected HMW compounds are often tentatively proposed, to explain their masses and elemental 

formulas. Tandem mass spectrometry provides information about structures of the compounds of 

interest. Structures presented in the studies summarized in this section, should be therefore, to a 

certain degree, considered uncertain. While providing very valuable data, such methodology is 

only capable of reducing the number of possible structures for the compounds under 

consideration. 20 Of course, a significant advantage of this approach is that all of the detected 

compounds can be analyzed in this manner, as opposed to the approach involving standard 

synthesis, discussed in the following section. 

1.4.3.3.2. The use of standard synthesis for the 

identification of the HMW α-pinene SOA components  

Analysis of the actual standards has proven to be necessary for unambiguous identification 

of SOA components. 139,142,176-178 Synthesizing the actual standards for the compounds of interest 

basically eliminates the need of time consuming data analysis. Results of standard analysis need to 

be compared with those, obtained from the actual sample. Using this approach, unambiguous 

identification of SOA components is possible, as opposed to the approach, presented in section 

1.4.3.3.1. Studies, utilizing standard synthesis for the unambiguous identification of the HMW SOA 

components, are listed in Table 1.13. 
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Table 1.13 Synthesized standards of the α-pinene SOA HMW components 

Standard synthesized Reference 

O
O

OH

O O

OH 

142 

O

O
OH

O
 

139 

 

As shown in Table 1.13, very few studies, utilizing the actual standards synthesis can be 

found in the literature. Beside frequently complex synthesis procedure, the lack of standards, even 

for LMW ozonolysis products and/or OH-initiated oxidation products of α-pinene is a main issue. 

Tolocka et al. 139 synthesized aldol condensation product of two pinonaldehyde molecules and 

subsequently detected this aldol product in the actual SOA sample. In a number of studies, 

surrogate precursors like cyclohexene was used, 176 or experiments were preformed, using the 

mixture of α-pinene and cyclohexene.142 The use of cyclohexene is frequent, since due to the 

simpler structure, a larger number of its ozonolysis products can be purchased. Mixed studies 

provide more mechanistic than structural information, since the certain mechanism of the 

oligomer formation (e.g. esterification) can be justified. 142 For the “pure” α-pinene/ozone system, 

few standards for the LWM products were also synthesized, since even for the simple compounds 

standards are frequently not available. 177 

For example, synthesizing all of the 18 possible structures of the compound corresponding to 

the ion m/z 375.214 Da, discussed in the previous section (1.4.3.3.1) would required a tremendous 

amount of time and effort, even assuming that all the monomers are available for synthesis, which 
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is rarely the case. Even if synthesis of the 18 possible structures was conducted, it would only lead 

to resolving the structure of one compound, out of the approx. 1000 assigned elemental 

compositions, 145 therefore providing little to none insights into the formation processes of the 

bulk of HMW α-pinene SOA components. The most popular analytical techniques used for SOA 

composition analysis, such as ESI/MSn and LC-ESI/MSn (see section 1.4.3.2), are well suited for 

unambiguous identification of a known compounds in the complex, unknown matrices. However, 

since the availability of the standards is very limited, approach described in this section is often 

impractical or impossible to be used for analysis of a majority of SOA samples. 

It is, of course, possible, that the compound with the same mass, similar fragmentation and 

the same retention time as the synthesized standard is a different chemical individual, with nearly 

identical properties as the reference compound. However, the possibility of such scenario is 

significantly lower than the incorrect identification using the methodology described in section 

1.4.3.3.2, when no standards are available. Still, lack of commercially available standards 

drastically limits the use of the methodology outlined in this section. 

1.4.3.4. Formation mechanisms of the high molecular weight (HMW) compounds 

formed during the SOA formation in the α-pinene/ozone system 

Two formation pathways of the α-pinene SOA HMW components were proposed, based on 

the data summarized in Section 1.4.3.3. The first set of reactions possibly leading to the observed 

HMW compounds involve particle – phase reactions for coupling of the stable, first generation 

products – Section 1.4.3.4.1. Proposed gas – phase reactions also involve the association of the 

stable molecules. However, more frequently, reactions of radical intermediates with the stable 

oxidation products in the gas phase are proposed as the dominant pathway of HMW compounds 

formation – Section 1.4.3.4.1. Please note that no distinction is made between studies where 

experimental results were presented, supporting the proposed oligomer formation and studies 

where authors only hypothesized the formation of a given compound. Identification methods of 

the specific classes of the HMW SOA components are discussed separately in Section 1.4.3.3.  

1.4.3.4.1. Particle – phase reactions 
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It was suggested (see Table 1.14) that, primary products could act as the building blocks to 

form oligomers, mostly by the acid – catalyzed, particle - phase reactions. These reactions were 

proposed as possible association pathways of the LMW SOA components, and are summarized in 

Table 1.14 20,92,125,135-142,179 A number of the reactions, summarized in Table 1.14 can be catalyzed 

by either acid or base, however, in case of SOA particles acid catalysis is believed to be dominant. 
20,179,180 It is important to underline, that usually there is more than one possible coupling 

mechanism between the LMW SOA components, since the majority of these compounds usually 

contain more than one functional group, as it was shown in Section 1.4.1.  

Table 1.14 Liquid – phase reactions that were proposed to lead to observed HMW α-pinene 

SOA components formation 

Reaction number Reaction type Reference 

1.27 Aldol condensation 136-140,143,145 

1.28 Gem-diol and acetals formation 125,135-139,141,143,145,152 

1.29 Esterification 136,141-143,146,147 

  

 Aldol condensation (reaction 1.27) was frequently proposed as possible linking mechanism 

between the carbonyl compounds. This reaction product is characterized by the elimination of the 

18 Da fragment from the parent ion, corresponding to the neutral loss of water. 141 Aldol 

condensation reaction between pinonaldehyde and pinonic acid is shown in Fig. 1.16, reaction 

1.27. 145 
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 Figure 1.16 Particle – phase reactions leading to the formation of α-pinene HMW SOA 

components 

 Hemiacetal formation (reaction 1.28a) is also proposed as a coupling mechanism for 

carbonyl compounds. If the carbonyl compound initially undergoes hydration reaction, gem-diol 

(hydrate) is formed. Afterwards, generated OH group can react with another carbonyl group to 

form a hemiacetal with MW 354 Da, and subsequently MW 336 Da, as a result of water 

elimination. 139  

 Formation of peroxyhemiacetals (reaction 1.28b) was also proposed as a possible 

association mechanism between carbonyl compounds and molecules with hydroperoxide moiety. 

An example of peroxyhemiacetal formation proposed by Hall et al. 145 was also included in Fig. 

1.16, showing the proposed formation of the compound with MW 434 Da. 

 Example of pinic and 10-hydroxy-pinonic acid association via esterification (reaction 1.29), 

proposed by Camredon et al. 143 is also shown in Fig. 1.16. Generally, this HMW SOA components 

formation mechanism can be operational, when the two molecules under consideration contain 

carboxylic and hydroxyl groups. Please note that only one possible structure of this product was 
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included for clarity. Also, water elimination is characteristic for ester formation, thus the mass of 

the resulting product differ from the sum of the masses of substrates by 18 Da. 

 It is important to underline that, a large number of possible association reactions between 

the multifunctional monomers, makes the identification of the specific formation mechanism of 

observed HMW compounds very difficult. Association of the two stable products can lead to a 

number of compounds and the two molecules can react via a number of possible mechanisms. 

Therefore, in the majority of the currently available studies, unambiguous identification of the 

specific reaction mechanism was not possible, and presented evidence was rarely conclusive see 

section 1.4.3.   

1.4.3.4.2. Gas – phase reactions 

Besides coupling of the monomers in the particle-phase, reactions in the gas-phase leading 

to the HMW components of SOA were also proposed. Summary of the proposed gas-phase 

reactions, leading to the formation of the oligomers is presented in Table 1.15. The majority of the 

gas-phase formation pathways of the HMW compounds involve reactions of SCIs with the stable 

products, such as those listed in Section 1.4.1. Reactions 1.30 - 1.32 involves SCI association with 

aldehydes, carboxylic acids and SCI self reaction. Reaction 1.33 is association of the two carboxylic 

acids in the gas-phase to form non-covalently bonded dimer. Some of these reactions were 

proposed to produce nucleation – inducing species, as discussed in Section 1.4.4. 

Table 1.15 List of substrates that were proposed to react in the gas-phase to form HMW α-

pinene SOA components 

Reaction number Reactant 1 Reactant 2 Product Reference 

1.30 SCI Aldehyde Secondary ozonide 145,150,152,155 

1.31 SCI Carboxylic acid Acyloxyhydroperoxides 93,117,150,152,155 

1.32 SCI SCI Oligoperoxide 155 

1.33 Carboxylic acid Carboxylic acid Non-covalently bonded dimer 133,145,172 
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Figure 1.17 Gas – phase reactions leading to the formation of α-pinene HMW SOA components 

Examples of the proposed reactions listed in Table 1.15, leading to the formation of HMW 

compounds in the α-pinene/ozone system are shown in Fig. 1.17. Since, as already discussed in 

Section 1.4.1, two SCIs can be produced from α-pinene, only one possible structure was included 

for clarity. 

  Reaction 1.30 involves the SCI association with the pinonaldehyde to produce secondary 

ozonide. 172 Reaction 1.31 is the SCI reaction with cis-pinonic acid to produce α-

acyloxyhydroperoxy aldehyde. 124 Both reaction 1.30 and 1.31 are considered important for the 
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SOA nucleation process, as will be discussed in the seciton 1.4.4. Reaction 1.32 involves 

association of two SCIs 155 The first two reactions were proven to occur in the gas-phase, and they 

involve SCI reactions with scavengers, reacting a few orders of magnitude faster  than reaction 

with water.  

 The gas-phase formation of the terpenylic acids dimers was concluded to be energetically 

favorable, with the dimerization energies comparable to acetic acid. 175 Therefore, gas-phase 

dimerization of terpenylic acid via hydrogen bonding of the two carboxyl groups appears to be 

reasonable.  

Reactions summarized in section are believed to compose a fraction of HMW SOA 

components; however, formation of the potential nucleation – inducing species via reactions 1.30 

and 1.31 was also proposed, as discussed in section 1.4.4. As already discussed in the 1.4.3.3, up-

to date, very limited analytical evidence, supporting the formation reactions 1.30 and 1.31 

products have been presented.   

 

1.4.4. Proposed nucleation precursors 

In this section, current theories of the SOA nucleation in the α-pinene/ozone system are 

discussed. In the earlier publications, it was speculated that dicarboxylic acids were initiating the 

SOA nucleation, due to their lowest vapor pressures, out of all known α-pinene oxidation products 

at that time. Currently published results strongly indicate that this theory was incorrect, 
93,133,139,150,181 and thus it will not be discussed here. Instead, results of the most recent 

investigations of the SOA nucleation in the α-pinene/ozone system will be summarized. Up to-

date, there is no generally accepted nucleation mechanism, although in a number of studies, 

similar theories were presented.  

Kamens et al. 93 in their model study assumed that the α-pinene/ozone SOA self-nucleation 

will proceed via SCI addition to the pinonaldehyde, producing the secondary ozonide. It was 

argued, that since the secondary ozonide is most probably extremely non-volatile, it will enable 

the SOA self-nucleation pathway in the model simulation. This assumption was based on the 
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earlier observation of the secondary ozonides formation during the ozonolysis of simple alkenes, 

such as propylene and isobutene. In the subsequent study, Kamens and Jaoui 117, in addition to the 

formation of the nucleation seeds via reaction of SCI with pinonaldehyde, reaction with the 

carboxylic acids were also included as the possible formation pathway of the nucleating species, 

thus the formation of α-acyloxyhydroperoxy aldehydes was assumed. Also, as compared to the 

previous model, gas-phase association of the two dicarboxylic acids was included as the possible 

formation of the nucleating species. It was argued that such nucleation mechanism is reasonable, 

based on the investigations available at that time, reporting the formation of large molecules from 

SCI association with carboxylic acids and carbonyls for simple alkenes, such as ethene. As 

concluded by Kamens and Jaoui, 117 both modeling studies agreed reasonably well with the 

experimental data. However, no evidence of the HMW compounds formation, assumed to be 

acting as the nucleating species in the developed model was presented. 

Bonn et al. 181 investigated the influence of the water vapor on the SOA nucleation for both 

α and β-pinene and other monoterpenes. For α and β-pinene it was found that water addition 

suppressed the SOA formation. For the α-pinene experiments, when the higher reactants 

concentrations were used, no effect of water vapor on SOA formation was initially observed, as 

opposed to the experiments with β-pinene. Similar effect for the α-pinene experiments was 

observed after lowering the concentrations of both ozone and the precursor by about an order of 

magnitude, effectively increasing the water concentration, relative to other two reactants. It was 

concluded that for both α and β-pinene water reduced the nucleation precursor concentration 

and, consequently, suppressed the SOA formation. For α-pinene, and endocyclic alkenes, 

suppression of SOA formation by water was less pronounced than for exocylic alkenes. Also, the 

addition of formic acid to the reaction system, much more reactive SCI scavenger, led to much 

stronger suppression of the SOA nucleation than the addition of water. There results pointed out 

on the SCI-mediated nucleation mechanism, similar to other studies, listed in Table 1.16. Two 

possible nucleating agents were proposed for the exocyclic and endocyclic alkenes, based on the 

acquired data. For the exocyclic alkenes, such as β-pinene, it was proposed that the secondary 

ozonide, formed by the reaction of C9-SCI with a carbonyl compound can initiate the SOA 

nucleation. For the α-pinene, an intramolecular secondary ozonide was proposed. Since the water 
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suppressing effects was much weaker for the endocyclic alkenes, Bonn et al. 181 have argued that 

the formation of the intramolecular secondary ozonide is much faster, hence observed 

suppression effect on SOA formation was weaker, than in the case of β-pinene. It is however 

important to underline, that the proposed nucleation precursors were not observed directly. Also, 

Lee and Kamens, 150 after calculating the vapor pressure of the intramolecular secondary ozonide 

formed from α-pinene SCI, concluded that this compound is much too volatile, thus it is unlikely to 

act as a nucleating agent. 

Lee and Kamens 150 studied SOA formation by adding high concentration of LMW SCI 

scavengers to the α-pinene/ozone system. It was concluded, that SOA formation was significantly 

supressed in experiments with the SCI scavengers. In case of α-pinene ozonolysis a number of 

products of the SCI reaction with the first generation products was poroposed as the possible 

nucleation precursors. The compounds proposed by Lee and Kamens 150 are shown in Fig. 1.18. 

Please note that for the non-symmetrical alkene, such as α-pinene, two possible SCIs can be 

produced (see sections 1.3.3. and 1.4.1). For simplicity, only one possible reaction product with 

the SCI scavenger, also listed in Fig. 1.18, was shown.  
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Figure 1.18 Structures and the molecular masses of the possible nucleation precursors proposed 

by Lee and Kamens. 150 

 Aside from studying the impact of addition of LMW SCI scavengers on SOA formation yield, 

Lee and Kamens 150 also studied the first generation aerosol composition produced in a very short 

time scale 0.4-6 s. The SOA composition was studied with GC/MS after appropriate derivatization 

procedure was performed on filter extracts. Such approach does not allow detecting the HMW 

SOA components, as already discussed in Section 1.4.3. However, it was possible to eliminate the 

formation of the dicarboxylic acids such as pinic acid in this short time-scale, since this acid was 

not detected in the filter extract. Thus, pinic acid was not included as the potential SCI scavenger, 

and such product was not considered as the possible nucleation precursor. For every compound 

shown in Fig. 1.18, vapor pressure was calculated. It was concluded, that products of the SCI 

reaction with the α-acyloxyhydroperoxy aldehydes have the vapor pressures approx. two orders of 

magnitude lower than the vapor pressure for secondary ozonide, thus suggesting that the latter 

class of compounds are better candidates for the potential nucleation precursors. It was also 

concluded that intramolecular, secondary ozonide, produced from the SCI self – reaction is much 

too volatile as compared to the other compounds shown in Fig. 1.18 to be considered as the 

potential nucleation precursor, as already discussed earlier in this section. It is however important 

to underline, that no experimental evidence for presence of the compounds considered as the 

nucleation precursors in the discussed study was presented.  

Tolocka et al. 155 also studied ozone-initiated α-pinene SOA formation on a short time scale 

of 3 – 22 s. Photoionization aerosol mass spectrometer (PIAMS) was use for the online analysis of 

the SOA molecular composition. A number of oligomers were concluded to be produced within the 

time scale of the experiment, based on the PIAMS mass spectrum. The acquired data suggested 

the formation of the secondary ozonide proposed by Lee and Kamens 150 – see Fig. 1.18. Ions 

indicating the formation of the other secondary ozonides were also detected. However, as stated 

by Tolocka et al, 155 it is difficult to obtain unambiguous identification of the SOA components, 

based on the PIAMS mass spectrum. Therefore, alternative mechanisms for the formation of the 

observed HMW ions were proposed. The oligomers were proposed to be formed by association of 
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the two SCIs followed by elimination reaction, and/or fragmentation of the ions with the highest 

m/z. It was also hypothesized that PIAMS may selectively detect the secondary ozonides, over α-

acyloxyhydroperoxy aldehydes, and thus the ions indicating the formation of the latter class of 

compounds were not observed. 

Claeys et al. 177 have proposed that clusters of the terpenylic acid, a molecule with strong 

tendencies to form a non-covalently bonded dimers is likely to initiated SOA nucleation. Claeys et 

al. 177 concluded that this compound was present in the smog-chamber generated SOA, as well as 

in ambient SOA samples. The identification was based on the mass spectra interpretation, as well 

as on the actual standard synthesis. Based on the quantum calculations as well as experiments 

performed with LC-ESI/MS, it was concluded that terpenylic acids formed dimers, while under the 

same conditions, no dimer formation was observed from the cis-pinonic acid. It was argued that 

terpenylic acid dimer have sufficiently low vapor pressure as well as appropriate size to be a good 

candidate for the nucleation precursor. Additionally, in a number of previously published studies, 

this specific acid was concluded to be produced in the early stages of SOA formation. The 

presented theory is well supported by the analytical as well as theoretical experimental results. 

However, it is important to underline that there is no direct, analytical evidence, proving that the 

terpenylic acid clusters initiated SOA nucleation during gas-phase, ozone initiated oxidation of α-

pinene.  

Viitanen et al. 182 used ion mobility spectrometer (IMS) to study the SOA nucleation in the 

α-pinene/ozone system. It was concluded that the large molecule or most likely dimer with the 

MW 355 ± 71 Da was responsible for initiating the SOA formation. The Viitanen et al 182 justified 

this conclusion as follow: the small cluster of molecules, below the detection limit of the scanning 

mobility particle sizer (SMPS), which was used to monitor particles size distribution, was detected 

well before the nucleation was observed with SMPS. The two peaks, detected with IMS were 

assumed to be responsible for the SOA nucleation, since they were the only indication of the 

reaction mixture composition change before the particles formation were observed with SMPS. As 

stated by Viitanen, et al 182 IMS cannot measure the mass to charge ratio directly, thus some 

approximation were made, resulting in significant uncertainty of the reported MW of suspected 
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nucleating species. However, the molecular identity of the suspected nucleation precursor could 

not be elucidated, based on the acquired experimental data. 182 Also, it was underlined that this 

cluster can consist of two or more HMW species. 

Significantly different results were reported by Gao et al. 174 where SOA composition was 

studied over a time scale of 23 s in the flow-tube reactor. It was concluded that under the 

experimental conditions used by Gao et al. 174 the compound with MW 358 was a dominant 

component of the freshly formed aerosol in the α-pinene/ozone system. This dimer was previously 

identified as an ester of diaterpenylic acid and pinic acid – see section 1.4.3.3.1. 146,147,175 Thus, it 

was concluded that this ester is a key intermediate in the nucleation process. In the study by Gao 

et al. 174  it was also concluded that the particles formation was not limited by the gas-phase dimer 

formation. This was confirmed by investigating the dependence of particle number concentration 

from the ozone concentration. The particle number concentration was found to increase linearly 

with the ozone concentrations, thus strongly indicating that the new particles formation was not 

initiated by the gas-phase dimerization. It is also important to underline, that Gao et al. 174 

presented clear experimental evidence of SOA composition analysis, supporting the hypothesis 

that the previously observed ester with MW  358 is the key intermediate for the new particles 

formation. 

Wolf et al. 88 studied the aerosol formation from a number of alkenes ozonolysis, including 

1-methyl-cyclohexene, methylene–cyclohexane, α-pinene, β-pinene etc. In the study by Wolf et al, 
88 SOA formation was studied as a function of pressure. As the pressure was decreased, the SOA 

yield was also reduced. Also, formation of the specific decomposition products was observed at 

lower pressures, suggesting that the lower SOA yield was a result of the reduced ECI stabilization. 

However, as discussed by Wolf et al, 88 a detailed modeling study is necessary to draw any 

definitive conclusions.  

  Winkler et al. 183 studied SOA formation during the gas-phase α-pinene ozonolysis in the 

flow tube reactor at the time scale ranging between 15 and 60 s. SOA particles composition was 

analyzed with thermal desorption chemical ionization mass spectrometer (TDCIMS). As stated by 

the Winkler et al, 183 this instruments is unable to analyze oligomers, due to the sampling method 
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employed in the TDCIMS, they most likely decompose into the respective monomers. It was found 

that there is a significant difference between the chemical composition of the smallest particles 

(10 and 20 µm in diameter) and the particles with diameters of 40 µm. The dominant components 

of the smallest particles were carboxylic acids, while the larger particles consisted primarily of 

carbonyl compounds and LMW carboxylic acids. However, the decomposition of the less stable 

oligomers during analysis raises the question, if the observed monomers indeed origin directly 

from the simple decomposition of the parent compound. It is however possible, that the 

fragments of the HMW parent compound, produced in TDCIMS further isomerize and/or 

rearrange to form the observed ions.  The simple bond cleavage is not always the dominant 

fragmentation mechanism.  Also, suggestion that pinic acids could participate in the new particles 

formation is in direct opposition to the results presented by Lee and Kamens, 150 suggesting that  

pinic acid is not produced during the very early stages of SOA formation.  

Zhao et al.148 have used chemical ionization mass spectrometry (CIMS) to probe the 

composition of α-pinene SOA on the early stage of particles formation. It was found that a group 

of compounds with molecular masses ranging from 490 – 630 Da participated in the new particles 

formation. This conclusion was based on the observed correlation between the concentration of a 

specific group of HMW compounds and the formation of the smallest particles, with diameters 10 

– 20 µm. It is important to underline, that the presented experimental results strongly indicated 

that the initially formed particles contain oligomers, and the LMW compounds were not detected 

in significant quantities suggesting that HMW species were responsible for the initial particles 

formation. The Zhao et al. 148 concluded that the compounds with the molecular masses between 

490 and 630 Da most probably initiated the SOA nucleation. However, specific molecular identities 

of the suspected nucleation precursors could not be elucidated based on the acquired 

experimental data. As stated by the Zhao et al, 148 additional investigation of the initially formed 

particles composition is necessary to present any definitive conclusions. 
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Table 1.16 Summary of the α-pinene/ozone SOA nucleation studies 

Proposed nucleation 

mechanism 

Experimental evidence Ref. Year of 

publication 

SCI – mediated 

nucleation 

mechanism and 

association of the 

acids adducts in the 

gas-phase 

The products of SCI association with 

carbonyls were sufficiently low-volatile to 

induce the system self-nucleation 

93,117 1999 and 2001 

SCI – mediated 

nucleation 

mechanism 

Water vapor and formic acid (LMW SCI 

scavengers) suppressed SOA formation 

181 2002 

SCI – mediated 

nucleation 

mechanism 

Reduced SOA yield with addition of the high 

– concentration of LMW SCI scavengers 

150 2005 

SCI – mediated 

nucleation 

mechanism 

Masses of the oligomers formed in the early 

stages of SOA formation corresponded to 

the SCI addition to the primary oxidation 

products 

155 2006 

Clusters of terpenylic 

acids and related 

compound 

participated in the 

nucleation process 

The compounds under consideration 

showed strong dimer forming properties in 

ESI, supported by the quantum chemical 

calculations 

177 2009 

Compound wit MW. = 

355 ± 70 was 

responsible  for SOA 

nucleation 

Very small particles consisting of dimers 

with approx. 355 Da were observed before 

SOA nucleation 

182 2010 
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Ester of terpenylic 

acid and cis-pinic acid 

acting as the 

nucleation precursor 

Analysis of the molecular composition of 

particles, produced in the flow-tube reactor 

revealed the compound with MW. = 358 as 

the dominant component 

174 2010 

SCI – mediated 

nucleation 

mechanism 

Both SOA yield and SCI stabilization was 

reduced as the pressure was lowered 

88 2011 

Ester of terpenylic 

acid and cis-pinic acid 

acting as the 

nucleation precursor 

The two carboxylic acids were detected as 

the main components of the smallest 

particles, as opposed to the particles with 

larger diameters 

183 2012 

Different compounds, 

with molecular 

masses between 490 

and 630 Da initiated 

particles formation 

Correlation between formation of 

compounds with m/z with that specific 

range and formation of the smallest SOA 

particles 

148 2013 

 

As summarized in Table 1.16, a variety of experimental results indicated a different 

nucleation mechanism. Formation mechanism as well as molecular identity of the SOA nucleation 

precursors in the α-pinene/ozone system is currently unclear.  Some studies report that the single 

compound, such as ester, secondary ozonide and/or α-acyloxyhydroperoxy aldehyde can initiate 

the SOA nucleation. On the other hand, there is considerable number of published results, 

indicating that more than one compound is responsible for the new particle formation. Most of 

the studies, summarized in Table 1.16, provided indirect evidence for the SCI participation in the 

formation of the nucleation precursors. SCI association with first generation oxidation products 

such as carbonyl compounds and carboxylic acids was proposed to lead to the formation of HWM 

oligomers. Such molecules are good candidates for the potential nucleating species, since they are 

extremely low-volatile.  
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On the other hand, a number of more recent investigations indicate participation of the 

carboxylic acids clusters and/or dimers in the nucleation process. Such dimers were observed 

directly, with soft-ionization techniques like ESI in the early stages of SOA formation. Monomers, 

corresponding to carboxylic acids, were also observed in the small, newly formed particles.  

Despite a large number of published studies, still little is known about the SOA nucleation 

process in the α-pinene/ozone system. Also, up-to date, there is no commonly accepted 

nucleation mechanism; the formation mechanism and structures of the nucleation precursors or 

precursor are particularly ambiguous, as can be concluded from the results of the previously 

published studies, summarized in this section. 
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2. Aim of this work  

The main goal of this work was to study the SOA composition on the early stages of aerosol 

formation, focusing mainly on the currently poorly characterized HMW compounds. 20 136-

139,141,142,144,145,147,151,152,170,172  Formation of the α-acyloxyhydroperoxy aldehydes was postulated in 

a number of previously published investigations as the possible nucleation precursors of SOA 

formed in the α-pinene/ozone system. 20,117,150,155 

 Also, according to a number studies, they can compose a fraction of the HMW SOA 

components. 20,145 Even though that the formation of these compounds during α-pinene gas-phase 

ozonolysis was previously proposed, no direct, analytical evidence confirming or excluding the 

formation of α-acyloxyhydroperoxy aldehydes was presented. 20,117,150,152,155 

Therefore, the investigation of α-acyloxyhydroperoxy aldehydes formation during gas-phase 

ozone-initiated oxidation of α-pinene with the appropriate analytical techniques would provide 

valuable insights into the importance of these compounds for the SOA formation. The additional 

goal was to study the SOA composition on the early stage of particles formation with the 

instrumental technique that, up-to date, provided the most detailed information on the molecular 

identity of the HMW α-pinene SOA components, as discussed in Section 1.4.3.2. 

Since it was previously reported that water, present in large quantities in the atmosphere, 

could have significant impact on the proposed SCI-mediated nucleation mechanism, 20,150,181 an 

additional objective of this study was to investigate the humidity impact on the SOA composition. 

The experimental work described in this thesis can be divided into three sections: 

(I) Standards preparation and analysis method development for the α-acyloxyhydroperoxy 

aldehydes was the initial step of the presented investigation. Standards of the α-

acyloxyhydroperoxy aldehydes were generated by liquid – phase ozonolysis of cyclohexene and α-

pinene in the presence of the selected carboxylic acids. The next stage of this work was to develop 

a universal method to identify a whole class of α-acyloxyhydroperoxy aldehydes and to optimize 

the LC/MS conditions for their analysis. Cyclohexene was used as a model precursor, in addition to 
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the synthesis of the α-acyloxyhydroperoxy aldehydes using α-pinene. Standards of the α-

acyloxyhydroperoxy aldehydes were prepared as described in Section 3.3. Development of the α-

acyloxyhydroperoxy aldehydes analysis method is described in Section 4.1.2. 

(II) The second part of this work was a design and construction of the flow-tube reactor. In 

the past, similar flow-tube reactors as the one constructed, here were used to generate SOA by 

the gas-phase α-pinene ozonolysis on a short time scale. 150,155135,151,152,154,156,157 Therefore, flow – tube 

reactor was concluded to be most suitable to study SOA composition on the early stages of 

particles formation, as opposed to the aerosol generation in a smog-chamber or in a Teflon bag. If, 

as postulated in a number of previous studies, 20,117,150,155 α-acyloxyhydroperoxy aldehydes are the 

compounds initiating the SOA formation, it is reasonable to assume that they should be one of the 

main HMW components of the newly formed aerosol. Flow – tube reactor constructed and used in 

this work is described in Section 3.4.  

(III) In the last part of this work, the  method developed was used to study a formation of α-

acyloxyhydroperoxy aldehydes in the SOA samples from the α-pinene and cyclohexene ozonolysis 

using the flow-tube reactor, as described in Section 4.3.1.2. and Section 4.3.2.2. Aside from 

investigating the formation of α-acyloxyhydroperoxy aldehydes, the investigation of the HMW 

cyclohexene and α-pinene components of SOA, produced during the early stages of aerosol 

formation from these two precursors was also carried out. 
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3. Experimental 

In this section, detailed description of the experimental setup is given while reagents are 

listed in section 3.1. Afterwards, description of the LC/MS and GC/FID apparatus and analysis 

conditions is given in Section 3.2. Standards synthesis is described in section 3.3. Detailed 

description of the flow – tube reactor experimental setup is provided in Section 3.4. 

3.1. Reagents 

Pentanoic acid (≥ 99.8%) was purchased from Fluka, Sigma - Aldrich (Schnelldorf, 

Germany). Levulinic acid (≥ 98.0%), 5-oxohexanoic acid (≥ 97.0%), hexanoic acid (≥ 99.5%), 

heptanoic acid (≥ 99.0%), octanoic acid (≥ 98.0%), decanoic acid (≥ 98.0%), succinic acid (≥ 99.0%), 

glutaric acid (≥ 99.0%), adipic acid (≥ 99.0%), pimelic acid (≥ 98.0%), suberic acid (≥ 98.0%), cis-

pinonic acid  (≥), pinic acid (≥), ammonium acetate-d7 (≥ 98.0% D), hexanoic acid-6,6,6-d3 (≥ 99.0% 

D atom), cyclohexene (≥ 99.0%), α-pinene (≥ 98.0%), as well as LC - MS grade solvents and eluent 

additives:, acetonitrile (≥ 99.9%), ammonium acetate (≥ 99.0%), formic acid and acetic acid (≥ 

99.5%), were all purchased from Sigma - Aldrich (Schnelldorf, Germany). Deionized water (18 

MΩ×cm-1) was prepared using Direct - Q3 Ultrapure Water System (Millipore). Nonanoic acid was 

purchased from AlfaAesar, Chemat (Gdańsk, Poland). Cyclohexene - d10 (≥ 98.0% D atom) was 

purchased from C/D/N Isotopes, Dr. Ehrenstorfer (Augsburg, Germany). Deuterium oxide (≥ 99.5% 

D) was purchased from Armar, AMX (Łódź, Poland). Pentane (≥ 99.0%), methanol (≥ 99.0%) and 

acetone (≥ 99.0%) were purchased from POCH, Gliwice, Poland. Synthetic zero air for FID (≤ 3 

ppmv of H2O, ≤ 0.1 ppmv of hydrocarbons), H2 for FID (≥ 99,999 %) and ultra-high purity (UHP) He 

for GC (≥ 99,999 %) were supplied by Multax (Stare Babice, Poland). 

3.2. Apparatus 

In this section experimental conditions for the chromatographic and/or mass spectrometric 

characterization of the specific compounds are presented. Initially, direct infusion MSn 

experimental conditions are provided in Section 3.2.1.  MS2, MS3 as well as optimization of the 

MRM conditions was performed in the direct infusion mode. Cyclohexene and α-pinene SOA 

composition was studied with LC-ESI/MSn. LC-ESI/MSn experimental conditions for the analysis of 
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cyclohexene and α-pinene SOA composition are provided in Sections 3.2.2.1, 3.2.2.2, 3.2.2.3 and 

3.2.2.4. Elemental formulas of the synthesized α-acyloxyhydroperoxy aldehydes were confirmed 

with ESI-HR-MS and the experimental conditions for these measurements are provided in Section 

3.2.2.5. GC/FID conditions used for monitoring cyclohexene and α-pinene gas-phase 

concentrations in the flow-tube reactor are reported in Section 3.2.2.6. 

3.2.1. Direct infusion electrospray tandem mass spectrometry (ESI-MSn) 

Investigation of the fragmentation mechanism of the synthesized α-acyloxyhydroperoxy 

aldehydes, as well as optimization of the MS/MS conditions for the multiple reaction monitoring 

(MRM) mode were performed by introducing the sample directly into the ion source of QTRAP 

3200 mass spectrometer (AB Sciex). Mass spectrometer was equipped with the exchangeable ESI 

and APCI probes. Samples were delivered to the ion source with the Harvard Apparatus syringe 

pump at a flow rate of 10 μL/min. ESI conditions were as follows: source temperature 200 °C, 

curtain, nebulizer and auxiliary gas (N2): 0.07 MPa, source voltage 4.0 kV, declustering (DP) and 

entrance (EP) potentials were set to 20 and 10 V, respectively. Spectra were registered in the mass 

range: 50 - 1000 m/z in the positive or negative ionization mode. In the MS2 experiments selected 

precursor ion was subjected to the collision - induced dissociation (CID) in the collision cell (Q2) 

and the collision energy (CE) - dependent fragments were monitored using the third quadrupole 

(Q3). In the MS3 experiments, the 1st precursor ion was subjected to CID in Q2 and one of the 

fragment ions produced, the 2nd precursor, was trapped in the ion trap (Q3) and fragmentation 

was induced by applying excitation energy (AF2). Conditions for the MRM mode were also 

optimized by directly introducing the sample into the mass spectrometer ion source. For the 

selected precursor ion, potentials: EP, DP, collision cell entrance potential (CEP), CE, and collision 

cell exit potential (CXP) were optimized. 

3.2.2. Liquid chromatography coupled to the electrospray ionization tandem mass 

spectrometry (LC-ESI/MSn) 

LC/MS experiments were performed by coupling the tandem mass spectrometer with LC20 

liquid chromatograph (Shimadzu). Separation was carried out with Zorbax (Agilent) C8 column 

(150 mm × 2.1 mm, 3 µm) kept at 40°C; the mobile phase was delivered at a flow rate of 0.2 
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mL/min. 2µl  of the sample was injected into the liquid chromatograph. LC/MS analysis conditions 

varied, and are listed below. 

3.2.2.1. Carboxylic acids produced by gas-phase ozonolysis of cyclohexene 

For the analysis of the acidic fraction of the cyclohexene (including cyclohexene-d10) SOA, the 

analysis conditions were as follows.  Formic acid (pH = 3.28) and ACN (eluent B) were used as the 

mobile phase components, and the following gradient elution program was used: 0 - 8 min, 5% B, 

8 -12 min 50% B, 12-15 min, 50% B, 15 – 21 min 90%, 21 - 25 min 90% B, 25 - 27 min 5% B, 27 - 35 

min 5% B. Mass spectrometer was operating in the MRM mode and the mass spectra were 

simultaneously obtained in the range 50 – 300 m/z in both positive and negative ionization modes. 

ESI conditions were as follows: capillary temperature was 450 °C, curtain gas was 1.7 atm, 

nebulizer and auxiliary gas were 3.0 atm, spray voltages were 5.5 kV in positive and 4.5 kV in the 

negative ionization mode, DP and EP were set to 30 and 10 V respectively.  

3.2.2.2. α-acyloxyhydroperoxy aldehydes synthesized using cyclohexene  

The same gradient elution as for the acidic fraction was used for the analysis of the α-

acyloxyhydroperoxy aldehydes, synthesized using cyclohexene as a precursor. Ammonium formate 

(pH = 3.4) was used as eluent component A and ACN as eluent component B. Mass spectrometer 

was operating in the MRM mode and the mass spectra were simultaneously obtained in the range 

50 – 300 m/z in both positive and negative ionization modes. ESI conditions were as follows: 

capillary temperature was 450 °C, curtain gas was 2.7 atm, nebulizer and auxiliary gas were 

introduced at pressure of 3.0 atm, spray voltages were 5.5 kV in positive and 4.5 kV in the negative 

ionization mode, DP and EP were set to 30 and 10 V, respectively. 

3.2.2.3. Carboxylic acids produced by gas-phase ozonolysis of α-pinene 

For the analysis of the acidic fraction of the α-pinene SOA, the analysis conditions were as 

follows. Formic acid (pH = 4) and ACN (eluent B) were used as the mobile phase components, and 

the following gradient elution program was used: from 0 - 8 min, 10% B, 8 – 18 min 50% B, 18 – 20 

min, 50% B, 20 – 27 min 10% B, 27 – 35 min 10% B. Mass spectrometer was operating in the MRM 

mode and the mass spectra were simultaneously obtained in the range 50 – 500 m/z in both 
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positive and negative ionization modes. ESI conditions were as follows: capillary temperature was 

450 °C, curtain gas was 2.4 atm, nebulizer and auxiliary gas were introduced at pressure of 3.0 

atm, spray voltages were 5.5 kV in positive and 4.5 kV in the negative ionization mode, DP and EP 

were set to 20 and 10 V respectively. 

3.2.2.4. α-acyloxyhydroperoxy aldehydes synthesized using α-pinene as the precursor 

The same gradient elution as for the acidic fraction, was used for analysis of the α-

acyloxyhydroperoxy aldehydes, synthesized using α-pinene as the precursor. Ammonium formate 

(pH = 4) was used as eluent A component and ACN as eluent B component. Mass spectrometer 

was operating in the MRM mode and the mass spectra were simultaneously obtained in the range 

50 – 500 m/z in both positive and negative ionization modes. ESI conditions were as follows: 

capillary temperature was 450 °C, curtain gas was introduced at pressure of 2.0 atm, nebulizer and 

auxiliary gas were introduced at pressure of 3.0 atm, spray voltages were 5.5 kV in positive and 4.5 

kV in the negative ionization mode, DP and EP were set to 20 and 10 V respectively. 

during direct infusion experiments.  

3.2.3. Elemental formula assigned for the synthesized α-acyloxyhydroperoxy aldehydes 

with high-resolution mass spectrometry (HR-MS) 

High-resolution mass spectrometry (HR-MS) experiments were performed with LCT TOF 

mass spectrometer (Waters). Apparatus was equipped with the ESI probe and the ionization 

condition were as follows; spray voltage was 4.5 kV, nebulizer gas was introduced at pressure of 

2.0 atm and cone voltage was 10 V. Spectra were acquired in the mass range 50 – 1500 m/z in the 

positive ionization mode. Samples were introduced into the ion source with the Harvard 

Apparatus syringe pump at a flow rate of 10 μL/min. Reaction mixtures were diluted with water 

and acetonitrile (ACN) (1:1 v/v).  Sodium acetate was used as a mass calibration standard. 

Elemental formulas of the sodium adducts for the compounds of the α-acyloxyhydroperoxy 

aldehydes were fitted within the tolerance of ± 5.0 mDa. 
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3.2.4. α-pinene and cyclohexene quantification with GC/FID 

Gas chromatograph (HP 5890 Series II, Hewlett Packard) equipped with the flame 

ionization detector (FID) was used to monitor the concentrations of both α-pinene and 

cyclohexene during the SOA generation experiments in the flow-tube reactor. Gas samples from 

the flow-tube were drawn from the sampling port (see Section 3.4.1) with the gas – tight syringe; 

100 µl of the sample was injected into GC. 

For the cyclohexene quantification, GC was equipped with SPB-1 fused silica capillary column 

(60 m, 0.32 mm, 1 µm). Column was kept at a constant temperature of 75°C and the analysis 

conditions were as follows: Injector temperature 120°C, FID temperature 180°C, column head 

pressure 1.38 atm. Ultrapure He was used as carrier gas. For the α-pinene quantification GC was 

equipped with DB-5 fused silica capillary column (30 m, 0.32 mm, 0.25 µm) kept at 90°C, injector 

and detector temperatures were 150°C and 180°C, respectively. Carrier gas pressure was 0.59 atm. 

3.3. Standards synthesis 

Standards of the α-acyloxyhydroperoxy aldehydes were prepared by liquid phase 

ozonolysis of cyclohexene in the presence of carboxylic acids. Reaction mixtures were prepared by 

dissolving 0.1 mM of cyclohexene and 0.2 mM of the carboxylic acid in 2 ml of ACN. Ozone/air 

mixture (0.6 % v/v) was bubbled through the solution for 4 minutes, resulting in the α-

acyloxyhydroperoxy aldehyde concentration of approximately 1.25×10-2 M/L. All the synthesized 

α-acyloxyhydroperoxy aldehydes together with their elemental formulas and the carboxylic acids 

used as the SCI scavengers are listed in Section 4.1.2.1. 

After synthesis, 10 µl of the sample was diluted with 1ml of the solvent and injected into 

mass spectrometer. For the LC/MS experiments, 2 µl of the sample was injected into liquid 

chromatograph. 

 

3.4. Flow tube reactor 

In this section, detailed description of the flow tube reactor experimental setup is given. 

Outline of the flow tube reactor is presented in Section 3.4.1, including description of the critical 
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treaction parameters monitoring; precursor and ozone concentrations as well as relative humidity 

(RH). Description of the SOA generation procedure is given in section 3.4.2. Aerosol filter sampling 

and sample preparation prior to analysis by LC/MS is described in section 3.4.3. Reactor cleanup 

procedure is described in section 3.4.4. 

 

3.4.1. Flow tube reactor experimental setup 

Outline of the flow tube reactor is shown in Fig. 3.1. Reactor consisted of 60 mm O.D. and 

75 cm long glass tube with two Teflon covers. The carrier gas was sealed inside the reactor by two 

Viton o-rings located between the glass and the Teflon in each cover. The whole experimental 

setup, including the filter holder, flow meters, humidifier and small precursor bubbler was leak-

tested up to approx. 1.5 atm.  

 

Figure 3.1 Schematic of the flow reactor 

 As shown in Fig. 3.1, before entering the reactor, carrier gas (UHP synthetic air) 

from the tank was directed through a four-way flow divider, connected to the four mass flow 

meters (Sierra). Carrier gas, precursor and humidified air were mixed before entering the reactor 

in the ¼” cross connector and introduced into the flow tube via one of the two inlet ports in the 

Teflon cover - Fig. 3.1. Picture of a part of experimental setup is shown in Fig. 3.2. It includes the 

500 ml water bubbler (humidifier), the small precursor bubbler, the heating jacket (used in α-
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pinene experiments only, see later in this section), the four mass flow meters, the pressure sensor 

and the Teflon cover with two inlet ports. 

 

 
Figure 3.2 The inlet side of the flow reactor 

For the experiments under both dry and humid conditions, RH was adjusted by bubbling air 

through a 500 ml bubbler filled with approx. 200 ml of distilled water. Relative humidity, and 

temperature were monitored with thermo hygrometer (model 701, LAB-EL), connected to the 

outlet of the reactor. Pressure was monitored with capacitance manometer (model MP 221, Elvac) 

and adjusted to exactly 1 atm. using a rotary vaccum pump (model BL15P; Unitra) connected to 

the exit of the reactor, as shown in Fig. 3.1. Pressure adjustment using vaccum pump was 

necessary in order to avoid pressure rise inside the reactor due to the restriction of flowing air 

through the filter sampling assembly.  
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Figure 3.3 The middle section of the reactor 

As shown in Fig. 3.1 and Fig. 3.2, ozone was introduced separately via the second inlet port. 

1/8” Teflon tube, shown in Fig. 3.3, was used to connect ozone generator with the movable Teflon 

mixing plunger, thus avoiding ozone contact with the precursor before reaching the mixer and 

initiating the ozonolysis reaction. Movable mixing plunger design schematic and photograph are 

shown in Fig. 3.4A and Fig. 3.4B, respectively. 
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Figure 3.4 Detailed design schematic of the movable mixing plunger (A) and the photograph of the 

plunger front side, installed inside the flow tube (B) 

 Mixing plunger consisted of three, 2 mm thick Teflon discs, mounted inside the 50 mm O.D. 

Teflon housing, as shown in Fig. 3.5. 
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Figure 3.5 Detailed design schematic of the three disks, mounted inside the housing of the 

movable mixing plunger 

The plunger was designed to mix the precursor with ozone and generate uniform stream of 

gas on the outlet side of the mixer. Ozone entered the mixing plunger via 1/8” Teflon tubing. 

Precursor entered the plunger via the four 10 mm holes, together with the carrier gas. The holes in 

the second disk, forced the gas flow to circulate inside the plunger and thus mixing of the ozone 

with the precursor. Mixed gases, exited the mixing plunger via the holes in the third disk as a 

uniform stream, as shown in Fig. 3.4 and Fig. 3.5. 

As illustrated in Fig. 3.3, the initial part of the reactor was ozone-free section, and 

contained only precursor mixed with humidified air. Ozone concentration was monitored with 

ozone sensor (A-212X, Eco Sensors), connected to the exit of the reactor. Ozone was generated 

using Ozone 25 generator (Aqua Medic), (see Fig. 3.1 and Fig. 3.6). 
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Figure 3.6 Photograph of the flow – tube reactor 

Both cyclohexene and α-pinene were added to the reactor by passing a stream of air over the 

pure liquid surface (Fig. 3.2), with, of course, the only one precursor present at a given 

experiment. α-Pinene was gently heated to about 45°C to achieve high enough concentration, 

since the amount of this compound, introduced into the reactor at room temperature was 

insufficient. Cyclohexene was kept at room temperature, due to much higher vapor pressure of 

this compound, heating was not necessary. Precursors concentrations were monitored using a gas 

chromatograph, as described in Section 3.2.4. Samples were drawn from the reactor via the 

sampling port positioned in the middle as shown in Fig. 3.1, Fig. 3.3 and Fig. 3.6. 
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3.4.2. Conditions for the SOA generation  

Experimental conditions for SOA generation are reported in Table 3.1; all experiments were 

performed at room temperature and under dark conditions, i.e. after shielding the reactor from 

the outside irradiation by black cloth. As listed in Table 3.1, precursor and ozone concentrations 

varied slightly between experiments. Uncertainties, listed in Table 3.1, are standard deviations 

calculated from the experiments under given conditions. Ozone and precursor concentrations 

were always kept at the levels that ensured almost complete ozone consumption by the excess of 

alkene before it could reach the filter holder – see section 4.2.2. 

Table 3.1 Experimental conditions for SOA generation 

Precursor Precursor 

concentration 

(ppm) 

Ozone 

concentration 

(ppm) 

Temperature Relative 

humidity 

(%) 

Extraction 

solvent 

Cyclohexene 

 

278 ± 36 3.6 ± 0.4 
 

Room 

temperature, 

approx. 20°C 

40.8 ± 0.5 ACN/H2O 

(1:4, v/v) 3.3 ± 0.2 

α-pinene 

 

434 ± 46 3.4 ± 0.3 
3.5 ± 0.2 ACN/H2O 

(1:1, v/v) 40.9 ± 0.6 

 

The procedure of SOA generation was as follows: 

-Reactor was assembled after cleaning (see section 3.4.4) and the whole system was leak 

tested. 

-After approx. 30 min flushing with clean air, the air composition inside the reactor was 

monitored with GC/FID; the traces of the precursor left from the previous experiments would 

interfere with the ozone concentration measurement. 

-Filter was placed inside the filter holder, and the bypass line was opened for RH adjustment. 
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-After adjusting the RH, ozone was introduced into the reactor and its concentration was set to 

about 3.5 ppm - see Table 3.1. 

-Both needle valves on the precursor supply line were opened (see Fig. 3.1) and precursor was 

added into the reactor. Filter line remained closed until the precursor reached sufficient 

concentration; the airflow was forced through the bypass line. 

-After the alkene concentration was sufficiently high to consume all of the ozone (see section 

4.2.2), the bypass line was closed and air was pumped through the filter; pressure was 

adjusted to exactly 1 atm. 

-Aerosol was collected for 2 h. 

-Precursor concentration was monitored for the entire time of aerosol collection using GC/FID 

in 5 min intervals. 

-After 2 h, ozone generator was shut down, and precursor was allowed to consume all of the 

leftover ozone. 

-Afterwards, filter line was closed and the bypass line was opened. 

-Before removing the filter holder, precursor and humidifier lines were closed and reactor was 

flushed with clean air for 10 min. 

-Filter was removed and extracted with the solvent – see Table 3.1. 

-Reactor was cleaned after each experiment, including blank experiments (section 3.4.5.) 

 

3.4.3. SOA sampling 

Aerosol was collected with in-line polycarbonate filter holder. Photograph of the filter holder is 

shown in Fig. 3.7A and Fig. 3.7C. Interior side of the Teflon front cover, with two Viton o-rings is 

shown in Fig. 3.7B. As shown in Fig. 3.7C, filter holder consisted of the polycarbonate body, 

support screen and silicone o-ring, making the filter capsule gas-tight up to 3.35 atm. 184 
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Figure 3.7 The exit side of the flow-tube reactor (A); reactor front cover (B) and filter holder (C) 

Filter holder was connected to the exit of the reactor with ¼” PTFE tube and positioned 

immediately after the Teflon cover, as shown in Fig. 3.1 and Fig. 3.7A. Particles were collected by 

the 47 mm borosilicate glass fiber filter coated with fluorocarbon (T60A20), Pall Corporation. After 

particle collection, each filter was extracted with 1.5 ml of the solvent for 15 min in the ultrasonic 

bath. Extraction solvents, used in experiments with both precursors are listed in Table 3.4. After 

extraction, samples were filtered with 0.2 µm pore size, nylon syringe filter and subjected to the 

LC/MS analysis, as described in section 3.2. Please note that filter extracts were not evaporated to 

dryness and redissolved, to minimize analyte losses and possible secondary reactions. 
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3.4.4. Reactor cleaning 

After each experiment (including blank experiments), the front cover of the reactor was 

removed, and the glass tube was cleaned with acetone and methanol. Movable mixing plunger 

was also thoroughly cleaned with both solvents. Front reactor cover and filter holder were cleaned 

with detergent, thoroughly rinsed with distilled water and dried overnight at 50°C. After cleaning, 

the reactor was assembled and leak tested. Before each experiment, flow-tube was flushed with 

air until FID signals for the solvents (acetone and methanol) and traces of precursor were 

indistinguishable from the background noise. 
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4. Results and discussion 

In this section, the results from the performed experiments are reported and discussed. 

Initially, the development of the LC/MS analysis methods for carboxylic acids analysis (Section 

4.1.1) and the α-acyloxyhydroperoxy aldehydes analysis (section 4.1.2) is described. Afterwards, 

the SOA formation in the flow-tube reactor is described (section 4.2). In Section 4.3 results of the 

SOA samples analysis are reported and discussed.  

4.1. Development of the SOA composition analysis method using liquid chromatography 

coupled to electrospray ionization tandem mass spectrometry (LC-ESI/MSn) 

In this section, optimization of the LC/MS analysis conditions for the SOA samples analysis 

is described. Carboxylic acid LC/MS analysis method is described in Section 4.1.1. That method was 

used for the analysis of carboxylic acids produced during gas-phase ozone initiated oxidation of a 

model compound - cyclohexene (Section 4.1.1.1) and α-pinene (Section 4.1.1.2). Calibration curves 

were optimized for both deprotonated pseudo-molecular ions as well as selected fragment ions. 

Development of the α-acyloxyhydroperoxy aldehydes analysis method is described in 

Section 4.1.2. Development of the analysis method included evaluation of the ionization 

conditions (Section 4.1.2.3) followed by confirmation of the synthesized compounds elemental 

formulas (Section 4.1.2.4). Afterwards, the detailed investigation of the fragmentation mechanism 

(Section 4.1.2.5), including analysis of the isotopically labeled analogs (Section 4.1.2.6) was 

performed. α-Acyloxyhydroperoxy aldehydes prepared using cyclohexene as well as α-pinene 

shared the common fragmentation mechanism, as described in Section 4.1.2.5 and section 4.1.2.7.  

General mechanism allowed predicting the mass spectrum of different α-acyloxyhydroperoxy 

aldehydes that could not be synthesized due to the lack of appropriate substrates, is described in 

Section 4.1.2.8. 

4.1.1. Carboxylic acids analysis method  

Carboxylic acids are known particle-phase components for aerosol (SOA) generated from 

both precursors under study; cyclohexene as well as α-pinene. As opposed to the α-
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acyloxyhydroperoxy aldehydes, standards for a number of carboxylic acids were commercially 

available, and thus synthesis was not necessary. LC/MS analysis conditions for each set of 

carboxylic acids are described in Section 3.2.2. In the following sections, carboxylic acids analysis 

method optimization is discussed separately for the model precursor - cyclohexene (section 

4.1.1.1) and α-pinene (section 4.1.1.2). 

4.1.1.1. Carboxylic acids obtained by cyclohexene ozonolysis 

LC/MS analysis conditions for the carboxylic acids obtained by cyclohexene ozonolysis are 

listed in section 3.2.2.1. List of carboxylic acids selected for the LC/MS analysis method of 

cyclohexene SOA is provided in Table 4.1; structures and molecular masses of the standards were 

also included. 

Table 4.1 Carboxylic acids selected as standards for the analysis of SOA samples, generated by 

cyclohexene ozonolysis 

Name Structure Molecular weight (Da) 

Succinic acid 

OH

O
O

OH

 

118 

Glutaric acid OH

O
O

OH  

132 

Levulinic acid 
O

O

OH
 

116 

5-oxohexanoic acid  O

OHO  

130 
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Adipic acid 
OH

O
O

OH  

146 

Pimelic acid 
OH

O

O

OH 

160 

Suberic acid 
OH

O

O

OH

 

174 

 

As listed in Table 4.1, seven commercially available carboxylic acids were selected as 

standards or surrogate standards for the known ozonolysis products of cyclohexene. 136,170,185 The 

selected carboxylic acids were two carboxylic acids containing carbonyl group and five dicarboxylic 

acids. This set of carboxylic acids was selected to react with SCI, formed by ozone reaction with 

cyclohexene in the liquid phase, to synthesize compounds VII – XIII (see Table 4.7 and Fig. 4.8). 

Synthesis of the α-acyloxyhydroperoxy aldehydes standards is described in Section 3.3. 

 It was also possible to detect the deprotonated pseudo-molecular ions for the compounds 

of interest, in addition to the selected Q1/Q3 transitions, monitored in the MRM mode, as 

described below. MS conditions were optimized, so the M-H- ions for the carboxylic acids listed in 

Table 4.1 had the highest sensitivity. Extracted ion current (EIC) chromatograms for all carboxylic 

acids listed in Table 4.1 are shown in Fig. 4.1.  
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Figure 4.1 EIC’s for the carboxylic acids standards listed in Table 4.1.  

 As shown in Fig. 4.1, M-H- ions were detected for all compounds of interest. Acidic eluent 

was used in order to enhance the retention of the carboxylic acids on the used C8 RP stationary 

phase (see section 3.2.2). Even though the carboxylic acids were retained sufficiently to be eluted 

after the void peak, the majority of peaks shown in Fig. 4.1 are not separated to the baseline. This 

can be attributed to the weak retention of the LMW compounds with the carboxylic functional 

groups, such as the acids listed in Table 4.1. However, since the MS was used as the detector, full 

chromatographic separation was not necessary. As shown in Fig. 4.1 the compounds under study 

can be quantified separately due to the different molecular masses. The use of the MRM mode 

further enhanced selectivity of the developed method.  

 Analysis conditions for the MRM mode were optimized by directly introducing standard 

solutions for each carboxylic acid into the MS ion source and swapping the values of the individual 

ion lenses voltages for the highest sensitivity. MS conditions for the direct-infusion experiments 

are reported in Section 3.2.1. Afterwards, CE was optimized for the fragment ions, and one or two 
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most efficient Q1/Q3 transitions were selected for the final method. Examples of the CE 

optimization for the adipic acid and 5-oxohexanoic acid are shown in Fig. 4.2A and Fig. 4.2B, 

respectively. 
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Figure 4.2 Optimization of the CE for the adipic acid, m/z 145 Da (A) and 5-oxohexanoic acid m/z 

129 Da (B) 

 As shown in Fig. 4.2, the two carboxylic acids produced different sets of fragment ions. For 

the adipic acid (Fig. 4.2A), the most intense Q1/Q3 transitions were 145/101 and 145/83, as listed 

in Table 4.2. For the 5-oxohexanoic acid (Fig. 4.2B) the two Q1/Q3 transitions selected for the final 

method were 129/57 and 129/59 also listed in Table 4.2.  Results of the MRM conditions 

optimization for each carboxylic acid from Table 4.1 are listed in Table 4.2; it includes optimal 

values of DP, EP and CE. 

Table 4.2 Optimal MRM parameters for the analyzed carboxylic acids   

Name MRM (s) Retention 

time (min) 

DP (V) EP (V) CE (V) 

Succinic acid 117/73 3.08 25 4.5 16 

Glutaric acid 131/87 3.54 25 5.5 16 

Levulinic acid 115/97 3.62 25 6.5 14 

5-

oxohexanoic 

acid 

129/57 

129/59 

4.68 25 

25 

9.5 

9.5 

16 

24 

Adipic acid 145/101 

145/83 

4.88 25 

25 

4.5 

4.5 

16 

18 

Pimelic acid 159/97 8.80 25 8.5 18 

Suberic acid 173/111 14.76 30 6.5 20 

 

 As listed in Table 4.2, one or two Q1/Q3 transitions (MRMs) were selected for each 

carboxylic acid. Mass spectrometer operating in the MRM mode is much more sensitive than in 

the TIC mode due to significantly lower background noise. Also, in addition to the molecular 
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masses of the compounds of interests, monitoring specific fragment ions is possible, which further 

enhances the selectivity of the MS detection. MRM chromatograms for the selected Q1/Q3 

transitions (Table 4.2) are shown in Fig. 4.3. 
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Figure 4.3 MRM’s for the carboxylic acids listed in Table 4.2.  

 As shown in Fig. 4.3, retention times of the monitored Q1/Q3transitions (MRMs) are in 

excellent agreement with the retention times of the peaks detected for the M-H- ions. However, 

this mode of detection is much more selective towards the compounds under study, since only 

specific Q1/Q3 transitions are monitored. However, as discussed in Section 4.3.1.1, if similar, 

isobaric carboxylic acid is present in the sample, it may produce different fragment ions than the 

standard compound. 

Therefore, peak areas from both MRMs and deprotonated pseudo-molecular ions were 

used as dependent variable for the linear regression analysis. Standard solution of the carboxylic 
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acids was prepared over the concentration range: 0.001 – 0.03 mg/ml, and each sample was 

analyzed three times. Plot of the analyte peak area versus concentrations of the standard solutions 

is shown in Fig. 4.4A (for the MRM pairs listed in Table 4.2) and Fig. 4.4B, (deprotonated pseudo-

molecular ions).   
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Figure 4.4 Plot of the analyte peak area versus concentrations for the selected MRM pairs (A) and 

deprotonated pseudo-molecular ions (B) 

As shown in Fig. 4.4 in both quantification modes, sensitivity increases with the increasing 

MW of the analyte. Using the data shown in Fig. 4.4A and Fig. 4.4B, linear regression analysis was 

performed. The results of the linear regression analysis are summarized in Table 4.3. Two squared 

linear regression coefficients and two equations are listed when additional MRM was selected. 

Table 4.3 The results of linear regression analysis  

Name R2 (MRM) Regression equation 

(MRM) 

R2 (M-H-) Regression equation 

(M-H-) 

Succinic acid 0.9983 (MRM) 2.67×108+1.72×105 0.9971 7.12×109+7.46×106 

Glutaric acid 0.9984 (MRM) 3.04×108+6.16×104 0.9987 7.51×109+5.01×106 

Levulinic acid 0.9992 (MRM) 2.8×106+2.2×103 0.9973 1.06×1010+1.6×107 

5-oxohexanoic 

acid 

0.9975 

0.9993 

(MRM) 7.71×107+6.87×104 

(MRM1) 1.44×108-1.71×103 

0.9981 1.76×10+3.32×107 

Adipic acid 0.9949 

0.9949 

(MRM) 2.35×108+5.45×103 

(MRM1) 2.27×108-2.56×104 

0.9971 8.51×109+6.27×106 

Pimelic acid 0.9977 (MRM) 3.77×108+2.615×105 0.9988 1.13×1010-1.6×107 

Suberic acid 0.9990 (MRM) 6.72×108+6.67×105 0.9987 1.69×1010+3.09×107 

 As listed in Table 4.3, values of the squared linear regression ≥ 0.99 were obtained, thus 

proving linear response of the MS detector in the studied concentration range. It is important to 

underline, that no weighting method was used during the linear regression analysis.  
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4.1.1.2. Carboxylic acids obtained by α-pinene ozonolysis 

LC/MS analysis conditions for the carboxylic acids obtained by α-pinene ozonolysis are 

listed in Section 3.2.2.3. List of carboxylic acids selected for the LC/MS method analysis of α-pinene 

SOA is provided in Table 4.4; structures and molecular masses were also included. 

Table 4.4 Carboxylic acids selected as standards for the analysis of SOA samples, generated by α-

pinene ozonolysis 

Name Structure Molecular weight (Da) 

Cis-pinonic acid 

OH

O

O

 

184 

Pinic acid 

OH

OH

O

O

 

186 

 

Two commercially available carboxylic acids (Table 4.4) were selected as standards or 

surrogate standards (see section 4.3.2.1) for the known ozonolysis products of α-pinene. For the 

remainder of carboxylic acids produced by ozone-initiated α-pinene oxidation, standards were not 

commercially available. The selected carboxylic acids included one carboxylic acid containing 

carbonyl group: cis-pinonic acid and one dicarboxylic acid: pinic acid. These two acids were used as 

the SCI scavengers, for the synthesis of the α-acyloxyhydroperoxy aldehydes as described in 

Section 3.3: compounds XIV and XV listed in Table 4.7 and shown in Fig. 4.9. Thus, investigating the 

carboxylic acids production was the initial step of the α-acyloxyhydroperoxy aldehydes formation 

analysis, since they can subsequently react with SCI to form the potential α-pinene SOA nucleation 

precursors. 

Mass spectra were acquired continuously in the mass range 50 - 500 m/z see section 

3.2.2.3. Therefore, it was possible to detect the deprotonated, pseudo-molecular ions for both 
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carboxylic acids, in addition to the Q1/Q3 transitions, monitored in the MRM mode, as described 

below. MS conditions were optimized, so the deprotonated pseudo-molecular ions M-H- for the 

two carboxylic acids, listed in Table 4.4 had the highest sensitivity. Extracted ion current (EIC) 

chromatograms for the pinic and cis-pinonic acids are shown in Fig. 4.5A and Fig. 4.5B, 

respectively. 
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Figure 4.5 EIC’s for the α-pinene carboxylic acids standard solution  

As shown in Fig. 4.5, M-H- ions were detected for both pinic and cis-pinonic acid. Acidic 

eluent was used to enhance the retention of the carboxylic acids on the used RP (C8) stationary 

phase. However, pH was less acidic, than for the analysis of cyclohexene carboxylic acids (pH=4 as 

compared to pH=3, see section 3.2.2.1 and section 3.2.2.3). Also, for both carboxylic acids listed in 

Table 4.4 it was possible to obtain baseline separation. This can be attributed to the better 

retention of the pinonic acid and cis-pinic acid as compared to the carboxylic acids produced 

during gas-phase ozone-initiated oxidation of cyclohexene. Better retention is most probably a 

result of higher molecular masses and larger number of carbon atoms in the molecule for the pinic 

acid and cis-pinonic acid, making these two compounds significantly less polar, as compared to the 

LMW carboxylic acids, listed in Table 4.1. Also, since the MS was used, it is possible to quantify co-

eluting carboxylic acids with different MWs as discussed in Section 4.3.2.1. 
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Analysis conditions for the MRM mode were optimized in the direct infusion mode, as 

described in Section 3.2.1. Afterwards, CE was optimized for the ion products, and one or two 

most intense Q1/Q3 transitions were selected for the final method. Example of the CE 

optimization for the cis-pinonic acid is shown in Fig. 4.6. 
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Figure 4.6 CE optimization for the cis-pinonic acid: m/z 183 

As shown in Fig. 4.6, CID of cis-pinonic acid produced several CE - dependent fragments. 

For the cis-pinonic acid as well as for pinic acid, the most intense Q1/Q3 transitions were selected 

for the final method, as listed in Table 4.5. As reported in Section 3.2.1, for each MRM, individual 

ion lenses voltages were optimized to achieve highest sensitivity. The results of the MRM 

conditions optimization for both carboxylic acids are listed in Table 4.5; optimal values of DP, EP 

and CE are also included. 
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Table 4.5 The optimal parameters for pinic and cis-pinonic acids MS analysis  

Name MRMs Retention 

time (min) 

DP (V) EP (V) CE (V) 

 

Pinic acid 

183/141 

183/139 

183/57 

 

6.20 

30 

30 

30 

9 

9 

9 

18 

16 

20 

 

Cis-pinonic 

acid 

185/167 

185/141 

185/123 

 

12.30 

35 

35 

35 

8.5 

8.5 

8.5 

18 

20 

22 

 

As listed in Table 4.5, three MRMs were selected for each carboxylic acid. Linear regression 

analysis was performed to calculate MS response for the pinic acid as well as cis-pinonic acid. Both 

acids were quantified in the α-pinene SOA samples, as described in section 4.3.2.1. Response 

factors of the MS detector calculated for the deprotonated, pseudo-molecular ions were used for 

the quantification of the remainder of carboxylic acids formed during α-pinene ozone initiated gas-

phase oxidation, for which standards were not available – see section 4.3.2.1. Peak areas from 

both MRMs and deprotonated pseudo-molecuar ions were used as dependent variable for the 

linear regression analysis. Standard solution for both carboxylic acids was prepared over the 

concentration range 0.006 – 0.03 mg/ml, and each sample was analyzed three times. MRM 

chromatograms for the selected Q1/Q3 transitions (Table 4.5) are shown in Fig. 4.7. 
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Figure 4.7 MRMs for the cis-pinonic acid (A) and pinic acid (B) in standard solution (0.01mg/ml) 

As shown in Fig. 4.7A and Fig. 4.7B, retention times of the monitored MRM pairs match those 

for the EICs for the M-H- ions shown in Fig. 4.5. Similar to the analysis of cyclohexene, the use of 

MRM mode significantly enhanced sensitivity and selectivity of the MS detector for the analysis of 

the cis-pinonic acid as well as the pinic acid. 

Plot of the analytes peak areas versus concentrations of the standard solution is shown in Fig. 

4.8A and Fig. 4.8B, for the six Q1/Q3 transitions (MRMs) listed in Table 4.5 and deprotonated 

pseudo-molecular ions, respectively. Linear regression analysis results for both deprotonated 

pseudo-molecular ions as well as six MRM pairs were used to calculate the cis-pinonic acid and 

pinic acid concentrations in the SOA samples. Linear regression analysis results obtained for 

deprotonated pseudo-molecular ions were used to calculate the concentrations for the remainder 

of carboxylic acids, detected in the SOA samples – see section 4.3.2.1. 
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Figure 4.8 Plot of the analyte peak area versus concentrations for the selected MRM pairs (A) and 

deprotonated pseudo-molecular ions (B) 
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As shown in Fig. 4.8, MS response for the two carboxylic acids, listed in Table 4.4 was of similar 

order. For the MRM mode MS response differed more significantly (Fig. 4.8A), the MRM 185/141 

being the most sensitive, out of the six Q1/Q3 transitions, listed in Table 4.5. 

Using the data shown in Fig. 4.8A and Fig. 4.8B, linear regression analysis was performed. The 

results of the linear regression analysis are summarized in Table 4.6. Three squared linear 

regression coefficients and equations are listed for every carboxylic acid, since three MRM pairs 

were selected, as listed in Table 4.5.  

Table 4.6 Linear regression analysis results 

Name R2 (MRM) Regression equation 

(MRM) 

R2 (M-H-) Regression equation 

(M-H-) 

Pinic acid 0.9991 

0.9959 

0.9984 

(MRM) 1.37×106-2.03×103 

(MRM1) 7.94×107-7.25×104 

(MRM2) 6.55×107-3.7×104 

0.9993 4.06×1010+5.86×107 

Cis-pinonic 

acid 

0.9987 

0.9995 

0.9988 

(MRM) 9.75×108-2.11×105 

(MRM1) 1.17×108-5.79×104 

(MRM2) 7.71×107-3.26×104 

0.9992 

 

3.62×1010+3.05×107 

 

As listed in Table 4.6, values of the squared linear regression ≥ 0.99 were obtained, thus 

proving linear response of the MS detector in the studied concentration range. Similar as for the 

analysis of the carboxylic acids formed during ozone initiated, gas-phase oxidation of cyclohexene, 

no weighting method was used for linear regression analysis. 
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4.1.2. α-acyloxyhydroperoxy aldehydes analysis method 

In this section, a development of the LC/MSn analysis method of the α-acyloxyhydroperoxy 

aldehydes is described. Since the standards for these compounds are not commercially available, 

development of the analysis method was much more complex, as compared to the carboxylic 

acids. Initially, standards were synthesized, as described in Section 4.1.2.1. Also, appropriate 

solvent had to be selected as the reaction medium as described in Section 4.1.2.2. Afterwards, 

ionization conditions were evaluated, as described in Section 4.1.2.3. Elemental formulas of the 

synthesized standards were confirmed using HR-MS, as described in Section 4.1.2.4. 

Fragmentation mechanism was thoroughly investigated, as described in Section 4.1.2.5, including 

analysis of a series of isotopically labeled analogs, described in Section 4.1.2.6. Afterwards, two α-

acyloxyhydroperoxy aldehydes synthesized using α-pinene were analyzed – Section 4.1.2.7. It was 

concluded that the fragmentation spectrum of a more complex α-acyloxyhydroperoxy aldehydes 

can be predicted, based on the analysis of simpler analogues, as described in Section 4.1.2.8. 

4.1.2.1. Synthesis of the α-acyloxyhydroperoxy aldehydes standards 

α-acyloxyhydroperoxy aldehydes were synthesized as described in section 3.3. Structures 

of the synthesized compounds are shown in Fig 4.9; molecular masses and elemental compositions 

of the synthesized α-acyloxyhydroperoxy aldehydes together with the names and molecular 

masses of carboxylic acids used as the SCI scavengers are listed in Table 4.7. 

Table 4.7 Synthesized α-acyloxyhydroperoxy aldehydes standards 

Compound 

number 

 

Molecular 

weight (Da) 

Elemental 

composition 

Name of the SCI 

scavenger 

Molecular weight of 

the SCI scavenger 

(Da) 

I 232 C11H20O5 Pentanoic acid 102 

II 246 C12H22O5 Hexanoic acid 116 

III 260 C13H24O5 Heptanoic acid 130 

IV 274 C14H26O5 Octanoic acid 144 

V 288 C15H28O5 Nonanoic acid 158 

VI 302 C16H30O5 Decanoic acid 172 

VII 246 C11H18O6 4-Oxopentanoic acid 116 
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VIII 260 C12H20O6 5-Oxohexanoic acid 130 

IX 248 C10H16O7 Succinic acid 118 

X 262 C11H18O7 Glutaric acid 132 

XI 276 C12H20O7 Adipic acid 146 

XII 290 C13H22O7 Pimelic acid 160 

XIII 304 C14H24O7 Suberic acid 174 

XIV 368 C20H32O6 cis-Pinonic acid 184 

XV 370 C19H30O7 Pinic acid 186 

 

 Linear carboxylic acids were used as SCI scavengers for the synthesis of the compounds I - 

VI. Compounds VII – XIII were prepared using the carboxylic acids previously identified as 

components of SOA from the cyclohexene ozonolysis, as already discussed in section 4.1.1.1. The 

same procedure was used to prepare compounds XIV and XV, with α–pinene as a precursor and 

cis–pinonic and pinic acids as the SCI scavengers. Structures of the studied α-acyloxyhydroperoxy 

aldehydes are shown in Fig. 4.9.  
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Figure 4.9 Structures of the synthesized α - acyloxyhydroperoxy aldehydes 



121 
 

Liquid phase ozonolysis of the alkenes in the presence of carboxylic acids and alcohols is 

known as very efficient method for preparation of the α-acyloxy and α-alkoxy hydroperoxides, as 

described in section 1.4.3. 89,91,110,112-115,186-189 For the cyclic alkenes, the resulting α-

acyloxyhydroperoxy aldehydes contains both hydroperoxy and aldehyde moiety, therefore 

compounds shown in Fig. 4.9 can potentially form cyclic peroxyhemiacetals. However, as reported 

by Ziemann, 89 the cyclization of alkoxy hydroperoxyaldehydes synthesized from a series of cyclic 

alkenes occurred only in the gas – phase and under the thermal conditions.  The reaction of SCI 

with the carboxylic acids used for the synthesis of compounds I – VI and IX - XIII could only yield 

one possible product. However, the two carboxylic acids containing carbonyl group used for the 

synthesis of the compounds VII and VIII can potentially yield two isobaric products: hydroperoxide 

and the secondary ozonide. Relative rate coefficients for the reactions of formic acid with the C1 

and C13 SCIs were reported to be approx. 2.5 104 and 20 91 times faster than for formaldehyde (see 

section 1.3.3). Those values would correspond to the secondary ozonide product yields of 0.4 and 

0.05 comparing to the yields of hydroperoxide products, respectively. Therefore, it is difficult to 

predict if the secondary ozonides are the significant side - products under the experimental 

conditions used in this work. However, the results presented in section 4.1.2.5 strongly indicate 

that the secondary ozonides were not formed in significant quantities. No significant differences 

between the MS2 spectra of the compounds VII and VIII and the rest of α-acyloxyhydroperoxy 

aldehydes were observed. Those results strongly indicated that secondary ozonides were not 

significant side – products under the experimental conditions used in this work. 

4.1.2.2. Liquid phase ozonolysis solvent 

In the previously published studies, both cyclohexane 91,114 and hexane 110 were used as 

non - participating solvents for the ozonolysis of 1-tetradecene in the presence of carboxylic acids 

– see section 1.3.4. However, it was concluded that the solubility of carboxylic acids containing 

carbonyl group and dicarboxylic acids in the most popular, non – participating ozonolysis solvents 

was insufficient to carry out the synthesis of the compounds VI – XIII. Therefore, ACN was used as 

the most suitable ozonolysis solvent, since it dissolved the required carboxylic acids in sufficient 

quantities. Acetonitrile was previously used as the reaction medium for the liquid – phase 

ozonolysis of verbenone and it can be also considered a non – participating solvent. 108 In order to 
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confirm that the use of ACN did not affect the products distribution, synthesis of the compounds I 

- VI was carried out in both ACN and cyclohexane. Analysis of the MS and MS2 spectra of the 

compounds I – VI synthesized in both solvents has confirmed that use of ACN had no impact on 

the course of reaction. MS2 spectra of the compound IV synthesized in cyclohexane and ACN are 

shown in Fig. 4.10. 
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Figure 4.10 MS2 spectra of compound IV (identified as M + NH4
+ ion) synthesized using 

cyclohexane (A) and acetonitrile (B) as the reaction medium 
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  As shown in Fig. 4.10, the comparison of the two MS2 spectra of the compound IV 

synthesized proved that ACN didn’t affect the product formation. This agrees with the previously 

published studies, reporting very similar products yields when liquid phase ozonolysis of 

verbenone was performed in ACN and CH2Cl2. 108 

4.1.2.3. Evaluation of the ionization conditions 

 Analysis of the organic peroxides and hydroperoxides using ESI and APCI is problematic and 

only few papers on the subject can be found in the literature. 116,176,178,190-198  Results of the 

previously published studies have shown that hydroperoxy group is not a favorable protonation or 

deprotonation site. 176,190-193 However, it was tentatively concluded that some hydroperoxides 

produced relatively abundant M + H+ ions in APCI. 178 In the majority of the published studies, 

protonation of the hydroperoxy group has led to the neutral losses of water and hydrogen 

peroxide, thus suppressing the M + H+ ions formation. 176,190-193 Therefore, if no ionization sites are 

present, 176 detection has to rely on the formation of adduct ions. Hydroperoxides produced 

during cholesterol ozonolysis were analyzed with ESI as their ammonia and acetate adducts. 116,194 

Formation of sodium and ammonia adducts was utilized for the detection of the triacetone 

triperoxide. 195,196 Ammonia and silver adducts were used for the detection and structural analysis 

of diacyl peroxides with ESI. 197,198 

 Ionization conditions were investigated in order to determine the optimal detection 

method and solvent composition. Two ionization methods as well as six solvent compositions 

listed in Table 4.8 were studied. Samples were prepared as described in section 3.3 and delivered 

directly into the mass spectrometer ion source. 

 Table 4.8 Solvents used during the investigation of ionization conditions 

Solvent composition (1:1 v/v) pH 

H2O + ACN   

 

7 

 

H2O + MeOH  

2 mM ammonium acetate (H2O) + 
ACN  
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2 mM ammonium acetate (H2O) + 
MeOH   

8 mM formic acid (H2O) + ACN   

 3 
8 mM formic acid (H2O) + MeOH  

 

4.1.2.3.1. Atmospheric pressure chemical ionization (APCI) 

All of the analyzed compounds failed to produce M + H+ ions when APCI was used. 

Additionally, mass spectra obtained using APCI indicated significant decomposition of the analyte 

in the ion source. Those results were expected, since it is known that APCI is not suitable for 

ionization of the large, thermally labile molecules. 173 Thus, indirect ionization of the α-

acyloxyhydroperoxy aldehydes by ammonia adducts formation with ESI was concluded to be 

necessary, similar to the ionization conditions reported in other studies of the different organic 

peroxides and hydroperoxides.  

4.1.2.3.2. Electrospray ionization (ESI) 

The use of ESI led to the following conclusions. As expected, all of the analyzed compounds 

failed to produce protonated pseudo-molecular ions. When solvent containing water and 

methanol or acetonitrile was used, only the formation of sodium and potassium adducts ions was 

observed. Similar spectra distribution was observed when aqueous solution of formic acid (pH = 3) 

was used as the solvent component. Formation of the deprotonated pseudo-molecular ions M–H- 

was observed for the compounds IX - XIII due to the presence of the non-derivatized carboxylic 

group, as shown in Fig. 4.8. Formation of these ions was observed in all of the tested solvents, and 

it was most efficient when ammonium acetate was used. A number of dicarboxylic acids were 

reported as the components of SOA from ozonolysis of cyclohexene and α-pinene. However, 

variety of carboxylic acids detected in the SOA sample also contains hydroxyl and carbonyl groups. 

Therefore, a method for detecting a single group of α-acyloxyhydroperoxy aldehydes would be far 

from universal. It was concluded that formation of the ammonia adducts was the most versatile 

ionization method. This method was proven to be efficient for the e.g. diacyl peroxides and 

hydroperoxides produced during ozonolysis of cholesterol. 116,194,198 Also, all of the studied α-
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acyloxyhydroperoxy aldehydes can be ionized in this manner. Solvents containing 2mM 

ammonium acetate gave similar spectra distribution, when ACN and methanol were used. 

However, acetonitrile and ammonium acetate were chosen as the optimal solvent components 

since in ACN the M + NH4
+ ions had significantly higher intensity compared to methanol. Also, the 

use of alcohol as a solvent carried a risk of hemiacetal formation, since all of the compounds 

shown in Fig. 4.8 had one or two (compounds VII and VIII) carbonyl groups. 

4.1.2.4. Confirmation of the elemental formulas of α-acyloxyhydroperoxy 

aldehydes with HR-MS 

The elemental formulas of the synthesized standards of α-acyloxyhydroperoxy aldehydes 

were confirmed with HR-MS. Sample preparation and conditions of the HR-MS experiments are 

described in section 3.2.3. 

 In order to validate the method, elemental formulas of the compounds synthesized using 

model precursor – cyclohexene - were confirmed. Results of the HR-MS experiments are reported 

in Table 4.9. C, H, O, Na and N were the elements included in the elemental formulas assignment, 

even though the only source of nitrogen was the inert solvent (ACN). Molecular formulas of the 

compounds VII-XIII were confirmed with the HR-MS, since synthesis of these compounds was 

concluded to be potentially most problematic, due to presence of the two reactive sites in the SCI 

scavengers molecules, as already discussed in section 1.3.3.  

Table 4.9 Results of the HR-MS measurements of the compounds VII - XIII 

Compound 
number 

Scavenger Elemental 
formula 

 Calculated 
molecular 

weight 

Calculated 

M+Na+  

mass 

Measured 

M+Na+ 

mass 

Matching 
formulas 
+/- 5 mDa 

VII Levulinic 
116 

C11H18O6 
 

246.1103 269.1001 
 

269.1033 C14H16NO3Na  
C13H17O6  

C16H15NO3  
C11H15N3O5  
C11H18O6Na  

C9H16N3O5Na  
C8H17N2O8  

VIII 5-
oxohexanoic 

C12H20O6 260.1259 283.1158 283.1131 C9H19N2O8  
C10H18N3O5Na  
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130 C12H20O6Na  
C12H17N3O5  
C16H15N2O3  

IX Succinic 
118 

C10H16O7 
 

248.0895 271.0794 271.0763 C7H15N2O9  
C8H14N3O6Na  
C10H16O7Na  
C14H11N2O4  

X Glutaric 
132 

C11H18O7 
 

262.1052 285,0950 285.0912 C8H17N2O9  
C9H16N3O6Na  
C15H13N2O4  
C11H18O7Na  
C11H15N3O6  

XI Adipic 
146 

C12H20O7 
 

276.1208 299.1107 299.1087 C9H19N2O9 
C10H18N3O6Na  

C12H20O7Na  
C14H19O7  

C15H18NO4Na  
XII pimelic 

160 
C13H22O7 

 
290.1365 313.1263 313.1270 C13H19N3O6  

C13H22O7Na  
C15H21O7  

C16H20NO4Na  
C11H20N3O6Na  

C10H21N2O9  
C18H19NO4  

XIII Suberic 
174 

C14H24O7 
 

304.1521 327.1413 
 

327.1392 C18H19N2O4  
C11H23N2O9  

C17H22N1O4Na  
C14H24O7Na  

C9H24N2O9Na  
 

Formulas listed in Table 4.9 had the exact masses closest to the experimental data. As 

shown in Table 4.9, when only sodium adducts of the compounds without nitrogen are 

considered, elemental formulas for all of the synthesized standards were confirmed within the 

uncertainty of the measurement (shown in bold). 

4.1.2.5. Investigation of the fragmentation mechanism 

Investigation of the fragmentation pathways of the ammonium cationized pseudo-

molecular ions of the compounds I – XIII was carried out as follows. Initially, MS2 spectra of the M 

+ NH4
+ ions were acquired and the structures of the major fragmentation ions were investigated by 

recording their MS3 spectra. General fragmentation mechanism was elucidated using acquired 

tadem mass spectra and confirmed with analysis of the isotopically labeled analogs (see section 
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4.1.2.6). MS2 spectra of the M + NH4
+ ammonia adducts of compounds I, II, III, V and VI are shown 

in Fig. 4.11. Spectrum of the compound IV is shown in Fig. 4.10.  
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Figure 4.11 MS2 spectrum of the M + NH4
+ ion of the compound I (A), II (B), III (C), V (D) and VI (E) 

 As shown in Fig. 4.11, all of the compounds synthesized with linear carboxylic acids shared 

the same fragmentation patterns, strongly indicating the same fragmentation mechanism. The 
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MS2 spectra of the compounds I – VI differ only by the scavenger - specific fragment ions, as 

discussed later in this section. Based on the interpretation of the tandem mass spectra as well as 

analysis of the isotopically labeled analogs (see section 4.1.2.3), general fragmentation mechanism 

for the ammonium cationized α - acyloxyhydroperoxy aldehydes was proposed. 

Bond homolysis has been previously proposed as a major fragmentation mechanism for 

some ammonium cationized diacyl peroxides. 198 However, this mechanism appears to be unlikely 

for the ammonium cationized α - acyloxyhydroperoxy aldehydes studied in this work. If the bond 

dissociation between the atoms 2 and 5 occurred via homolysis mechanism, the major resulting 

fragment ions would be radical cations: m/z 149 for the peroxide side of the molecule and m/z 

Mscavenger +17 for the fragment ions originating from the SCI scavenger. Instead of bond homolysis, 

two mechanisms of the bond dissociation between carbon 2 and oxygen 5 are proposed. Both 

fragmentation pathways involve McLafferty – like hydrogen rearrangements as shown in Fig. 4.12.  
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Figure 4.12 Proposed fragmentation mechanism of the ammonium cationized α - 

acyloxyhydroperoxy aldehydes 

An alternate mechanism, involving the formation of intramolecular, peroxyhemiacetal is 

also proposed. Please note that hydrogen rearrangements accompanying the formation of a 

number of ions shown in Fig. 4.12 were omitted for clarity. Pathway (a) leads to the formation of 

the m/z 113 ion by the hydrogen rearrangement via six membered transition state. Very similar 

fragmentation mechanism was previously reported for ammonium cationized, alkyl-substituted 

diacyl peroxides. 198 After the transfer of hydrogen atom adjacent to the carbon atom 1 to the 

oxygen atom 6 the ion m/z 113 is formed by the subsequent elimination of water and ammonia 

molecules. MS2 spectrum of compound II, along with the MS3 spectra of the major fragmentation 

ions are shown in Fig. 4.13. 
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Figure 4.13 M + NH4
+ion MS2 spectrum of the compound II – m/z 264 (A); MS3 spectra of the major 

fragment ions: m/z 148 (B), m/z 131 (C), m/z 114 (D) and m/z 113 (E) 

Ions produced from fragmentation of the m/z 113 ion, shown in Fig. 4.13 E, are formed by 

subsequent elimination of water and/or carbon oxide molecules. This leads to the formation of the 

m/z 95, 85 and ultimately m/z 67 ions. 

Formation of the m/z 114 ion is also proposed to occur via McLafferty - like rearrangement. 

The hydrogen atom adjacent to the oxygen atom 4 is transferred to the oxygen atom 6 via seven – 

membered transition state; pathway (b) shown in Fig. 4.12. Fragmentation via pathway (b) initially 

leads to the formation of the m/z 148 ion, which subsequently produces ion m/z 114 (Fig. 4.13 B) 
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by loss of 34 mass units, it is consistent with the elimination of hydrogen peroxide. Subsequent 

fragmentation (MS3) of the m/z 114 ion has led to the formation of the m/z 97, 96, 79 ions and 

minor fragment m/z 84 ion as shown in Fig. 4.13 D. Formation of the ions m/z 97 and 96 can be 

attributed to the loss of water molecule or ammonia. Elimination of both water and ammonia 

leads to the formation of m/z 79 ion. M/z 84 fragment ion is proposed to be formed by the neutral 

loss of formaldehyde. Unfortunately, this conclusion could not be confirmed based on acquired 

experimental data. 

Since seven membered transition states are known to be very uncommon in mass 

spectrometry, 199-201 an alternate mechanism for the generation of the fragment m/z 148 is 

proposed. The second possible mechanism, denoted as pathway (b’) in Fig. 4.12 involves the 

formation of the intramolecular, cyclic peroxyhemiacetal in the gas phase, 89 structurally very 

similar to the secondary ozonide. Fragmentation of the 5 – membered ozonide ring can lead to the 

regeneration of the Criegee intermediate, as it was concluded in the previously published studies. 
202,203 For example, the bond dissociations between atoms 2-5 and 4-7, will lead to the 

regeneration of the Criegee intermediate as well as the scavenger-specific ion formation, as 

reported previously. 202,203 The Criegee intermediate can subsequently react with ammonia to 

generate one of the possible structures of the m/z 148 ion.  After the formation of m/z 148 ion, 

fragmentation via both proposed pathways proceed by the common mechanism. Unfortunately, 

the fragmentation via pathway (b) or (b’) cannot be concluded as the major path based on the 

experimental data acquired in this study. However, as discussed in section 4.1.2.6, analysis of the 

compounds synthesized with cyclohexene-d10 as the precursor strongly indicated the 

fragmentation mechanism involving the transfer of non – aliphatic hydrogen from the peroxide 

side of the molecule to the acidic fragment. This can only be accomplished by either seven – 

membered transition state (b) or by formation of an intramolecular peroxyhemiacetal (b’).  

In addition to the two major fragmentation pathways, (a) and (b), pathway (c) shown in Fig. 

4.12 was a minor one (approx. 5% of the relative intensity). Weakly abundant protonated, pseudo-

molecular ions were detected in the MS2 spectra for all of the synthesized standards. An example 

of formation of the ions via pathway (c) is shown in Fig. 4.14, for the compound VI. Please note the 

difference in the Y axis scale between the frame and the reminder of the mass spectrum.  
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Figure 4.14 MS2 spectrum of the M + NH4
+ ion of compound VI 

 As shown in Fig. 4.14, fragments corresponding to the neutral losses of H2O and H2O2 from 

the M + H+ ions were also detected. It is also important to notice, that loss of the hydrogen 

peroxide molecule from the protonated pseudo-molecular ions as well as from the ion m/z 148 in 

the pathway (b) additionally confirmed the presence of the –OOH moiety.  

In both proposed fragmentation pathways, ammonia can be coordinated by either 

hydroproxide – fragment of the molecule or by the scavenger (acidic) fragment. MS2 spectra of the 

M + NH4
+ ions for the compounds synthesized using carbonyl containing carboxylic acids as well as 

dicarboxylic acids are shown in Fig. 4.15. Spectra for the compounds VII and VIII, synthesized using 

carboxylic acids containing carbonyl groups are shown in Fig. 4.15A and Fig. 4.15B; spectra of the 

compounds IX, X, XI, XII, XIII are shown in Fig. 4.15C, Fig, 4.15D, Fig, 4.15E, Fig. 4.15F and Fig. 

4.15G. 
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Figure 4.15 MS2 spectrum of the M + NH4
+ ion of the  compound VII (A), VIII (B), IX (C), X 

(D), XI (E), XII (F) and XIII (G) 

The relative intensities of the major fragment ions for the compounds I – XIII are 

summarized in Table 4.10. 

Table 4.10 Relative abundances (%) of the ions formed via two major fragmentation pathways – 

(a) and (b) in the MS2 spectra of the synthesized standards 

Compound 
number 

Mass to charge ratio 
of the major fragment 

ions 

148 131 114 113 67 Scavenger+1 Scavenger+1-
H2O 

I* 11.3% 10.8% 11.1% 0.4% 63.0% 1.1% 2.2% 

II 17.9% 8.0% 13.6% 1.2% 58.0% 0.6% 0.6% 

III** 5.8% 7.5% 9.1% 3.2% 63.7% 7.5% 3.2% 

IV 11.2% 7.2% 7.9% 5.9% 64.4% 2.4% 1.0% 
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V 23.7% 16.8% 13.4% 2.2% 42.5% 1.0% 0.4% 

VI 12.2% 11.6% 12.5% 1.6% 61.7% 0.4% 0.1% 

VII 6.2% 3.9% 4.1% 1.7% 25.6% 14.7% 43.8% 

VIII** 4.1% 18.0% 0.8% 29.0% 1.2% 18.0% 29.0% 

IX 3.7% 1.5% 1.4% 5.2% 33.6% 9.8% 44.8% 

X 2.9% 1.5% 4.7% 5.6% 27.3% 13.9% 44.0% 

XI 5.3% 4.3% 5.1% 3.6% 33.5% 19.3% 29.0% 

XII 7.6% 4.6% 4.9% 3.6% 41.3% 15.6% 22.4% 

XIII 6.9% 3.5% 5.0% 5.0% 41.5% 10.7% 27.4% 

*For the compound I dehydrated SCI scavenger ion was overlapping with the m/z 85 ion, produced 

via pathway (a) from m/z 113 ion 

**Please note that for the compounds III and VIII ions produced from the SCI scavenger and 

peroxide side of the molecule are isobaric and thus cannot be distinguished 

As shown in Fig. 4.11 and Fig. 4.15, as well as in Table 4.10, relative intensities of the 

scavenger’s specific fragments differ significantly between the compounds synthesized using linear 

carboxylic acids, and those synthesized with carboxylic acids containing carbonyl group as well as 

dicarboxylic acids. The scavenger’s specific fragments are the most abundant peaks in the MS2 

spectra of the compounds VII – XIII, as opposed to the compounds I – VI. 

Ability to produce more intense scavenger fragments in the MS2 spectrum is most likely a 

result of higher oxygen content in the carboxylic acids containing carbonyl group as well as 

dicarboxylic acids. The larger number of oxygen atoms in those carboxylic acids results in a better 

coordination of the NH4
+ and H+ ions, and thus higher intensity of the ions originating from the SCI 

scavengers. 

4.1.2.6. Isotope study  

As already discussed in section 4.1.2.5, proposed fragmentation mechanism for α-

acyloxyhydroperoxy aldehydes is supported by the analysis of isotopically labeled analogs. Shifts of 

the major mass peaks in the MS2 spectra of the isotopically labeled analogs are summarized in 
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Table 4.11; ions for the non-labeled standards were added for reference. As listed in Table 4.11, 

for each compound under study, MS2 and MS3 spectra of the M + ND4
+ as well as M + N15H4

+ ions 

were acquired and analyzed. Compounds I – XIII were also prepared with the cyclohexene–d10. 

Compound II, was prepared using hexanoic acid-6,6,6-d3, and was omitted in the summary, 

presented in Table 4.11, since that was the only experiment with the isotopically labeled 

scavenger. 

Table 4.11 Mass to charge ratio of the major mass peaks in the MS2 spectra of the isotopically 
labeled analogs 

The most abundant ions produced upon CID of the ammonium cationized standards (m/z) 

 

Description 

Non- labeled 
standards 

Ammonium 
acetate – d7 

Ammonium 
acetate – N15 

Cyclohexene - 
d10 

Ammonium cationized 
fragment 

148 152 149 158 

Protonated fragment 131 132 131 141 

Ion produced via pathway 
(a) 

113 113 113 122 

 
Fragments originating from 

m/z 113, pathway (a) 

95 95 95 102 

85 85 85 94 

67 67 67 74 

Ion produced via pathway 
(b) 

114 116 115 124 

 
Fragments originating from 

ion m/z 114 

79 79,80,81 79 84,85,86 

96 97,98 97 104,105 

97 98,99 97 106,107 

For the compounds VII – 
XIII the fragment ions 

originating from the SCI 
scavengers were the major 

mass peaks in the MS2 
spectrum; refer to section 
4.1.2.5 for the discussion 

Scavenger+1 Scavenger+2 Scavenger+1 Scavenger+1 and 
scavenger +2 

Scavenger +18 Scavenger +22 Scavenger +19 Scavenger +18 
and +19 
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In following paragraphs, analysis results for the each isotopically labeled analog, listed in 

Table 4.11 are discussed separately. 

Hexanoic acid-6,6,6-d3 was used to confirm the formation of the scavenger - specific 

fragments. The mass spectrum of the compound II, synthesized with isotopically labeled hexanoic 

acid is shown in Fig. 4.16   
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Figure 4.16 MS2 spectrum of the M + NH4
+ ion of the compound II prepared using hexanoic acid – 

d3 as the SCI scavenger 

As shown in Fig. 4.16A, the MW of compound II shifted by 3 mass units, unambiguously 

confirms the occurrence of SCI reaction with the carboxylic acid. The shift of the acidic fragments 

m/z by three mass units, confirmed that these ions were indeed scavenger’s specific fragments. 

For the compound II, the scavenger’s fragments can be observed at m/z 117 and m/z 134, for the 

protonated and ammonium cationized ions, respectively, as shown in Fig. 4.13A. These ions are 

shifted to the m/z 120 and 137, as it can be seen in Fig. 4.16. The shift in molecular mass for these 

ions by 3 mass units also indicates that the initial fragmentation of the α-acyloxyhydroperoxy 
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aldehydes didn’t involve the formation of the scavenger’s specific ions and confirms the proposed 

fragmentation mechanism described in section 4.1.2.5.  

Ammonium acetate labeled with deuterium (d7) allowed to distinguish the protonated and 

ammonium cationized fragments. Measurements with the deuterium labeled ammonium acetate 

were performed in D2O/ACN instead of H2O/ACN, due to fast exchange of labile hydrogens with 

the solvent if H2O was used. Note that the use of D2O was only necessary when ND4
+ was used, 

since it contained solvent - exchangeable deuterium atoms. MS2 spectrum of the M + ND4
+ ion of 

the compound II is shown in Fig. 4.17.  
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Figure 4.17 MS2 spectrum of the M + ND4

+ ion of the compound II 

Distinguishing the protonated and ammonium cationized fragment ions was crucial for the 

correct interpretation of the MS2 and MS3 spectra and for proposing the fragmentation 

mechanism. Before the mass shift of the fragment ions in the MS2 spectrum is discussed, it is 

important to underline that the parent ion shifted by 4 mass units, unambiguously confirming that 

the ions under study were indeed ammonia adducts of the compounds of interest. As listed in 

Table 4.11, fragment ion m/z 148 was the only mass peak that shifted by 4 mass units, confirming 
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that NH4
+ was the charge carrier in this fragment. Ion m/z 131 shifted by 1 mass unit, thus 

confirming that this fragment was the protonated ion. Ion m/z = 114 is shifted to m/z = 116 

suggesting that two ammonia hydrogen atoms are transferred to this fragment during 

fragmentation process. This can be explained by the formation of the new nitrogen – carbon bond, 

as shown in Fig. 4.12. Also, when MS3 spectrum of the ion m/z 116 was acquired, a higher number 

of fragment ions were observed, as compared to the spectrum of the m/z 114 ion when non-

labeled analogs were analyzed. This has led to the conclusion, that fragment ions m/z 96 and m/z 

97 produced from the ion m/z 114 via pathway b (Fig. 4.12) can be formed via different hydrogen 

rearmament mechanism, involving exchange between the two original NH4 hydrogen atoms and 

aliphatic hydrogen atoms of the m/z 114 ion. Ions m/z=113 and 95, 85 and 67 remained 

unaffected by the substitution of NH4
+ with ND4 +; proving that these ions were most likely 

carbocations. This conclusion is consistent with the fragmentation via pathway (a). As also listed in 

Table 4.11, scavenger’s specific ions shifted by 1 and 4 mass units, respectively, proving the 

formation of protonated and ammonium cationized acidic fragments. For the compound II the ions 

originating from the hexanoic acid are shifted from m/z 117 and m/z 132 to m/z 118 and m/z 138, 

respectively, as shown in Fig. 4.17. 

The use of N15 labeled ammonia also allowed to confirm the formation of ammonium 

cationized parent ion. The mass of the parent ion is shifted by 1 mass unit, again confirming that 

the ions under study were ammonia adducts. MS2 spectrum of the M + N15H4
+ ion of the 

compound II is shown in Fig. 4.18.  
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Figure 4.18 MS2 spectrum of the M + N15H4
+ ion of the compound II 

As shown in Fig. 4.18, and listed in Table 4.11, ions m/z 148 and m/z 114 shifted by 1 mass 

unit, confirming the presence of the nitrogen atom in this ion. Shift of the ion m/z 114 confirmed 

the nitrogen presence in this fragment, which in turn indicates the formation of the new carbon-

nitrogen bond, consistent with the fragmentation pathway (b) as shown in Fig. 4.12 Also, the 

elimination of the 18 mass units from the parent ion created an ambiguity, since when non-

isotopically labeled standards were analyzed. It was unclear whether neutral ammonia or OH 

radical was eliminated from the parent ion. Elimination of OH radicals during fragmentation 

process was even more likely, due to presence of the -OOH moiety. However, when ammonia 

labeled with N15 was used, exclusive loss of 19 mass units was observed, thereby excluding OH 

radical elimination from the parent ion. The same reasoning can be applied to the elimination of 

the 19 mass units from the fragment ion m/z 149, leading to the formation of the ion m/z 131, 

consistent with the fragmentation pathway (b). As listed in Table 4.11, ions formed via 

fragmentation pathway (a), m/z 113, 95, 85 and 67 were unaffected by substitution of regular 

ammonia with ammonia labeled with N15, which is also consistent with the proposed 

fragmentation mechanism – section 4.1.2.5. 
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The use of cyclohexene-d10 as the precursor instead of the regular cyclohexene provided 

additional insights into some hydrogen rearrangements as well as enabled to calculate the number 

of aliphatic hydrogen atoms in the individual fragments. The use of cyclohexene-d10 also 

confirmed that the observed ions were indeed reaction products of the SCI with carboxylic acids, 

since the mass of the parent ions shifted by 10 mass units. MS2 spectra of the compound X and VI 

are shown in Fig. 4.19A and Fig. 4.19B. 
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Figure 4.19 MS2 spectrum of the M + NH4
+ ion of the compound X (A) and compound VI (B) 

synthesized using cyclohexene-d10 

  As shown in Fig. 4.19A and Fig. 4.19B, when cyclohexene-d10 and regular ammonia were 

used, ions m/z 148, 131 and 114 are shifted by 10 mass units, yielding fragments at m/z 158, 141 

and 124 respectively. Therefore, these fragments are likely to be formed via the same pathway. 

Also, the use of cyclohexene-d10 as the precursor resulted in a split of the protonated scavenger 

ions into two peaks. For the compound X, the mass peak of the protonated scavenger splits into 

m/z 133 and 134; analogically, for the compound VI, the mass for protonated scavenger ion splits 

into m/z 173 and m/z 174, as shown in Fig. 4.19A and Fig. 4.19B. These observations strongly 

indicated fragmentation mechanism involving the transfer of non – aliphatic hydrogen from the 

peroxide side of the molecule to the acidic fragment. This can only be accomplished by either 

seven – membered transition state (b) or by formation of an intramolecular peroxyhemiacetal (b’), 

as shown in Fig. 4.12. Also, in the MS3 spectrum of the ion m/z 124, instead of the same number of 

peaks as in the spectrum of ion m/z 114, groups of ions spaced by 1 m/z were observed – see 

Table 4.11. This suggested that most likely several hydrogen rearrangements were involved in the 
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formation of those fragment ions, which is in line with the same conclusion, drawn when ND4
+ was 

used, as it was already discussed above. Ion m/z 113 was shifted to m/z 122, indicating the 

fragmentation mechanism, involving the transfer of the aliphatic hydrogen from the peroxide side 

of the molecule to the acidic fragment. This is consistent with the fragmentation mechanism via 

pathway (a). Also, fragments produced as a result of ion m/z 113 fragmentation, m/z 95, 85 and 67 

were shifted to m/z 102, 94 and 74, which indicates the presence of 7, 9 and 7 aliphatic precursor 

hydrogen presence in these ions.. This is consistent with the fragmentation mechanism via 

pathway (a) involving elimination of H2O and CO from the ion m/z 113 to produce the detected 

fragment ions. Also, it is important to underline that the substitution of the regular cyclohexene 

with cyclohexene-d10 didn’t resulted in splitting of the fragment ions produced via pathway (a) into 

several peaks, similar as for the ions produced via pathway (b). This observation additionally 

confirmed that ion m/z 113 was indeed carbocation, and not protonated ion.  

The experiments with the isotopically labeled analogs provided very valuable insights into 

the fragmentation mechanism of the ammonium cationized α-acyloxyhydroperoxy aldehydes. The 

results presented in this section allowed proposing the fragmentation mechanism, common for all 

of the compounds under study. It is important to underline, that whether pathway (b) or (b’) was 

the main fragmentation mechanism, could not be concluded, based on the data presented here. 

However, analysis of the isotopically labeled analogs greatly aided in the correct data 

interpretation providing unambiguous confirmation of the number of proposed fragmentation 

reactions. Such definitive conclusions could not be presented based only on analysis results for 

non-labeled standards. 

4.1.2.7. Analysis of the ammonium cationized α-acyloxyhydroperoxy 

aldehydes synthesized using α-pinene 

After establishing the general fragmentation mechanism, two α-acyloxyhydroperoxy 

aldehydes related to the BSOA chemistry were analyzed. For the synthesis of the compounds XIV 

and XV cis–pinonic acid and pinic acid were used. Compound XIV was proposed by Lee et al. 150 as 

a possible SOA nucleation precursor in the α–pinene/ozone system, as described in section 1.4.4. 

Compound XV was excluded as a possible nucleation precursor, since it was concluded that the 
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time required for pinic acid formation is longer that the time necessary for SOA formation. 

Compound XV was synthesized, since pinic acid and cis-pinonic acid were the only commercially 

available standards for the known α-pinene LMW SOA components. Also, confirmation of the 

proposed fragmentation mechanism, based only on one compound analysis would not allow for 

presenting any meaningful conclusions. Even though the compound XV was tentatively excluded 

as a possible nucleation precursor, it could be produced during subsequent SCI reactions, after 

initial nucleation steps. 

Two SCIs can be produced from non – symmetric precursor like α–pinene (see section 

1.3.3), therefore leading to the two possible α-acyloxyhydroperoxy aldehydes. 150 For clarity, only 

one possible structure of the compounds XIV and XV was included in Fig. 4.9. The formation ratio 

for the two ECIs is 6:4, favoring the methyl substituted ECI with the stabilization yields of about 

0.15 for both ECIs, as described in section 1.3.3. The mechanism was reported for the gas–phase 

ozonolysis and it is unclear whether these findings also apply to the reaction in the liquid–phase. 

However, the degree of stabilization seems to be much higher in the liquid, since the α-

acyloxyhydroperoxy aldehydes formed during liquid–phase ozonolysis of the alkenes were 

reported to be produced in nearly quantitative yields, as it was already discussed in section 1.3.4. 
89 It is therefore reasonable to assume that both possible structures of compounds XIV and XV will 

give very similar spectra distribution and undergo fragmentation pathways (a), (b) and (c), as 

shown in section 4.1.2.5.  

 For both compounds XIV and XV fragmentation of the ammonium cationized pseudo-

molecular ions via pathway (a) will lead to the formation of the m/z 167 ion, and m/z 139, 149 and 

121 ions due to the neutral loss of carbon oxide and water. M/z 202 ion is expected to be formed 

via pathway (b) and yield m/z 168 and 185 ions by the neutral loss of hydrogen peroxide and 

ammonia, respectively. Neutral loss of water and ammonia from the m/z 168 ion will produce m/z 

151, 150 and m/z 133 ions. MS2 spectra of the M + NH4
+ ions for the compound XIV  and 

compound XV are shown in Fig. 4.20A and Fig. 4.20B 
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Figure 4.20 MS2 spectra of the M + NH4
+ ions for the compound XIV (A) and XV (B)  

As shown in Fig. 4.20A and Fig. 4.20B, the experimental data are in very good agreement 

with the predicted fragmentation. Unfortunately, for the compound XIV, similar to the compounds 

III and VIII, fragments originating from the SCI scavenger overlap with those obtained from the 

fragmentation of the peroxide side of the molecule via pathway (b). Ion of the protonated cis–
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pinonic acid, m/z 185 will most likely undergo fragmentation by the elimination of water and 

carboxylic group, producing m/z 167 and 139 ions. However, under the experimental conditions 

employed in this work, fragments originating from the cis-pinonic acid could not be distinguished 

from those produced by the peroxide side of the molecule. For the compound XV, weakly 

abundant, but clearly present ions corresponding to the protonated (m/z 187), ammonium 

cationized (m/z 204) and dehydrated (m/z 169) pinic acid were observed as shown in Fig. 4.20B. In 

addition to the fragments produced via pathways (a) and (b), weakly – abundant ions formed via 

pathway (c) were observed. Fragments corresponding to the neutral loss of water and hydrogen 

peroxide molecules from the MXIV+H+ and MXV+H+ ions were detected as shown in Fig. 4.20A and 

Fig. 4.20B. The m/z 107 ion was most abundant in the spectrum of both compound XIV and XV. 

The m/z 107 ion formation can be attributed to the loss of the 42 mass units from the m/z 149 ion, 

most likely due to the fragmentation of cyclobutane ring. This fragmentation mechanism was not 

possible for the compounds I - XIII. However, it is important to note that the formation of the 

majority of fragments produced by CID of the M+NH4
+ ions for both compound XIV and XV was 

predicted accurately. 

4.1.2.8. Optimization of the MS/MS conditions and predicted MRM 

(pMRM) method 

After the general fragmentation mechanism was established (section 4.1.2.5) using 

standards synthesized with the model precursor (cyclohexene), it was confirmed that the mass 

spectrum of a more complex α-acyloxyhydroperoxy aldehydes can be accurately predicted. 

Therefore, if the structure of the α-acyloxyhydroperoxy aldehyde under consideration is known, 

the mass spectrum of the ammonium adduct can be accurately predicted without the need for 

standard synthesis, as it was concluded in Sections 4.1.2.5 and 4.1.2.6. 

After investigating the fragmentation mechanism, MRM conditions for the compounds VII 

– XV were optimized. Compounds I – VI were not selected for the LC/MS method, since the linear 

carboxylic acids were not reported to be produced in significant quantities during gas-phase 

cyclohexene ozonolysis, 136 as already discussed  in Section 4.1.1.1. The MRM conditions 

optimization procedure was the same, as for the carboxylic acids – see section 3.2.1. Positive 
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ionization mode was used to detect the ammonia adducts the synthesized standards shown in Fig. 

4.9. Potentials: EP, DP, CEP, CE and CXP were swapped and optimal values for each MRM pairs 

were determined. Afterwards, CE was optimized for the ion products, and the most intense Q1/Q3 

transitions were selected for the final method. Examples of the CE optimization for compound XI 

and compound XIV are shown in Fig. 4.21A and Fig. 4.21B. 
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Figure 4.21 Optimization of the CE for the compound XI(A) and compound XIV(B) 

As shown in Fig. 4.21, the compounds XI and XIV produced different sets of fragment ions. 

For the compound XI (Fig. 4.21A), the most intense Q1/Q3 transitions were 294/147 and 294/129, 

294/111 and 294/101 as listed in Table 4.12. For the compound XIV (Fig. 4.21B) four Q1/Q3 

transitions selected for the final method were 386/202 and 386/185, 386/168 and 386/107, as 

also listed in Table 4.12. The first three fragment ions can be either scavenger – specific ions (cis-

pinonic acid) or the ions produced by fragmentation of the peroxide side of the molecule, as 

already discussed in Section 4.1.3.5. The transition 386/107 was common for the compounds XIV 

and XV, and can be considered a marker of the cyclobutane ring presence, as already discussed in 

section 4.1.3.7. Results of the MRM conditions optimization for the synthesized compounds, listed 

in Table 4.7 are reported in Table 4.12.  
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Table 4.12 The most abundant Q1/Q3 transitions for the α-acyloxyhydroperoxy aldehydes selected 

for the final method 

Compound number Molecular weight (Da) M+NH4
+  m/z MRMs 

VII 246 264 117,99,71,67 

VIII 260 278 148, 131, 114, 85 

IX 248 266 119, 101, 113, 67 

X 262 280 133, 115, 87, 67 

XI 276 294 147, 129, 111, 101 

XII 290 308 161, 143, 125, 67 

XIII 304 322 175, 157, 83, 67 

XIV 368 386 202, 185, 168, 107 

XV 370 388 185, 168, 107, 105 

  

 As listed in Table 4.12, for the compounds VII – XIII scavenger’s specific ions were the most 

abundant fragment, with the exception of the compound VIII, as discussed in Section 4.1.3.4. As 

already discussed in Section 4.1.3.6, m/z 202, 185 and 107 ions are most likely being produced as a 

result of the peroxide side fragmentation. It is therefore reasonable to assume, that the 

ammonium cationized ions of the compounds XVI – XVIII will produce the same set of ions, when 

the fragmentation of the peroxide side of the molecule is considered. As concluded in Section 

4.1.3.6 the scavenger’s specific fragment ions can be formed as a result of the ammonia adducts 

CID of the α-acyloxyhydroperoxy aldehydes formed from the reactions of α-pinene SCI with a 

different carboxylic acids. Based on the detailed evaluation of the fragmentation mechanism 

(section 4.1.2.5) and analysis of the compounds XIV and XV (section 4.1.2.6), fragment ions for a 

set of α-acyloxyhydroperoxy aldehydes listed in Table 4.13 were predicted. 
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Table 4.13 Predicted fragmentations of the α-acyloxyhydroperoxy aldehydes produced from α-

pinene SCI and three carboxylic acids 

Compound 

number 

SCI scavenger α-Acyloxyhydroperoxy aldehyde 

structure 

Molecular 

weight (Da) 

M+NH4
+  

m/z 

Predicted 

major 

fragment 

ions 

XVI 

OH

O
O

 
Norpinonic acid 

MW 170 Da 

O

O OH

O

O

O
 

354 372 185, 107, 

202, 171, 

189 

XVII 

OH

O
O

 
Pinalic-4-acid MW 

156 Da 

O

O OH

O

O

O

 

340 358 185, 107, 

202, 157, 

175 

 

XVIII OH

O O

O

 
Terpenylic acid 

MW 172 Da 

O
O

O

O
O

O OH

 

356 374 185, 107, 

202, 173, 

191  

 

Five fragment ions for each compound listed in Table 4.13 were proposed. The first three 

fragments, listed in Table 4.13 are most likely to be formed as a result of the molecule peroxide 

side fragmentation. The next two ions corresponding to the protonated and ammonium cationized 

ions of the carboxylic acids (SCI scavengers) were also included in Table 4.13. The protonated and 

ammonium cationized acidic fragment ions were 171 and 189, 157 and 175, 173 and 191 for the 

norpinonic acid, pinalic-4-acid and terpenylic acid, respectively. Compounds XVI and XVII were 

proposed as potential nucleation precursors, as discussed in Section 1.4.4. 117,150  Compound XVIII 

is the product of the reaction of SCI with the terpenylic acid. Terpenylic acid was recently proven 

to be produced in the early stages in SOA formation, as discussed in section 1.4.4. 174,177,183 Since it 

was impossible to optimize the MRM conditions for the compounds listed in Table 4.13, the same 

ion-lenses voltages were used as for the analysis for the compounds XIV and XV. Therefore, 

MS/MS analysis conditions for the analysis of the compounds listed in Table 4.13 were not 
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optimized for the highest possible sensitivity. However, it is reasonable to assume that individual 

ion lenses voltages and CE for the compounds XIV and XV and the α-acyloxyhydroperoxy 

aldehydes presented in Table 4.13 did not differ significantly, due to very similar structures of 

these compounds. 

4.2. SOA formation in the flow – tube reactor 

Details of the flow tube reactor experimental setup are provided in section 3.4. In the flow-

tube reactor precursor, cyclohexene or α-pinene was mixed with ozone to initiate SOA formation. 

Reactor schematic is presented in Section 3.4.2; reactor was designed in a similar manner to the 

flow tube reactors described in the studies published previously, summarized in Section 1.4.2.2. 

Movable plunger was used to shorten the reaction time without increasing the carrier gas flow 

rate and for reactants mixing. Reactants residence time and concentrations were also comparable 

with those used in the experiments, described in the literature - see Section 1.4.2.2. SOA 

generation conditions are described in Section 3.4.3. SOA was generated for both precursors 

under both low and high humidity conditions, as described in Section 3.4.3. 

SOA was sampled onto a filter, extracted with a solvent and subjected to the LC/MS 

analysis as described in Section 3.4.3. LC/MS analysis conditions for the SOA samples are described 

in Section 3.2.2. During the SOA formation experiments, aerosol particles formation and growth 

were not monitored directly. Thus, the only indication of the SOA formation in the flow tube 

reactor was the detection of the particle-phase products with LC/MS. In the flow-tube reactor, 

pressure was controlled with the vacuum pump (see sections 3.4.1 and 3.4.2), thus pressure rise 

inside the reactor due to clogging of the filter was not observed. In Section 4.3, results of the SOA 

samples analysis with LC/MS are described. 

All experiments under dry and humid conditions and with both precursors were performed 

at least three times, to ensure that the results were reproducible. Blank experiments for each set 

of the experimental parameters were also carried out, in the absence of the precursor or ozone. 

Experiments with cyclohexene-d10 (see section 4.3.1.1) were performed under the same 

conditions, as for the regular cyclohexene. 
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Reynolds number was calculated for the used set of experimental conditions to confirm 

that that the SOA formation in the flow-tube reactor was performed under laminar flow conditions 

- see section 4.2.1. In order to minimize the possibility of the filter artifacts formation, the 

reactants concentrations were adjusted so that the ozone was almost completely consumed 

before reaching the filter capsule – section 4.2.2. Also, no OH radicals scavengers were used in this 

study, since the use of such scavengers was concluded to alter the original product distribution, as 

discussed in Sections 4.2.3 and 1.4.2.3. 

4.2.1. Flow conditions calculations 

Flow rates of the carrier gas, air flowing thought bubblers filled with water and liquid 

precursor as well as though ozone generator are listed in Table 4.14. Such flow rates were 

necessary to obtain the desired concentrations of the water vapor, the precursor and the ozone 

inside the reactor. The total flow rate was 800 ml/min. 

Table 4.14 Flow rates though the flow-tube reactor 

RH conditions and 

precursor 

Flow rates  (ml/min) 

Precursor RH (%) Carrier gas Humidifier Precursor Ozone 

Cyclohexene 
4 790 3 5 10 

40 410 370 5 10 

α-pinene 
4 690 3 100 10 

40 690 370 100 10 

In order to determine if reaction in the flow tube will take place under laminar or turbulent 

conditions, Reynolds number for a set of experimental conditions used in this study was 

calculated, according to Eq. 4.1: 

ܴ݁ = ொ∙஽ಹ
௩	∙஺

    (4.1) 

Where: 

A: tube cross-sectional area - (m²) 

Q: volumetric flow rate - (m3s-1) 
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DH: hydraulic diameter of the pipe - (m) 

ν: air kinematic viscosity - (m2s-1) 

 

Values used for Reynolds number calculations were as follows: A=0.028 m2, Q=1.667 × 10-5 

m3/s – see Table 3.1, DH=0.0595 m, ν=1.51× 10-5 m2/s, yielding the Reynolds number of 24, thus 

proving that reaction was performed under laminar conditions. Since the plunger was positioned 

15 cm before the outlet of the reactor, the mean reaction time was calculated to be approx. 33 

seconds, under laminar flow conditions 

4.2.2. Box model calculations 

Box model simulations were performed in order to confirm that the ozone was completely 

consumed before reaching the end of the reactor, as well as for calculating the amount of 

precursor consumed during a single experimental run. 

In order to ensure that the ozone will be almost completely consumed before reaching the 

end of the reactor, calculations were performed using the reactants concentrations and reaction 

time reported in Table 4.3. Calculated ozone temporal profiles in both experiments are shown in 

Fig. 4.22A and Fig. 4.22B. Reaction rate coefficients in Table 4.15 were mean values, calculated 

using the numbers listed in the NIST Chemical Kinetics Database. 101 

Table 4.15 Ozonolysis reaction rate coefficients for cyclohexene and α-pinene reported in the 

literature 

Precursor Reaction rate coefficient with 

O3 (cm3 molecule-1s-1) at 298 K 

Reference 

 

α-pinene 

8.11 × 10-17 Khamaganov and Hites 98 

8.00 × 10-17 Munshi et al. 99 

8.09 × 10-17 Atkinson et al. 105 

 

Cyclohexene 

7.44 × 10-17 Treacy et al. 204 

7.46 × 10-17 (296 K) Greene and Atkinson 205 

7.80 × 10-17 (297 K) Nolting et al. 206 
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As shown in Table 4.15, for both cyclohexene and α-pinene the reaction rate coefficients 

with ozone are well established, and discrepancies between the values reported in the literature 

are relatively low. For convenience, the numbers in cm3 molecule-1s-1 were converted to the ppm -1 

s-1 listed in Table 3.3. The conversion was performed using the formula given by Kamens et al. 93  

Table 4.16 Concentrations of the reactants and reaction rate coefficients used for calculations 

Precursor Precursor 

concentration 

(ppm) 

Ozone 

concentration 

(ppm) 

Reaction rate 

coefficient 

(ppm -1 s-1) 

Reaction 

time (s) 

Consumed 

ozone (%) 

Cyclohexene 220 5 0.00183 
33 

>99.999 

α-Pinene 220 5 0.00213 >99.999 
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Figure 4.22 Simulated temporal profiles of ozone under experimental conditions listed in Table 3.3 

during the reaction with cyclohexene (A) and α-pinene (B). 

As shown in Fig 4.22A and Fig 4.22B, under experimental conditions employed in this work, 

99.999% of ozone was consumed after 33 s of the reaction (also, see Table 4.16). Therefore, it can 

be assumed that only negligible amount of ozone was passing though the filter during the SOA 

collection. Based on the box model simulations, the following conclusions can be made. Taking 

into account accuracy of the ozone and precursors concentration measurements, ozone 

concentration was adjusted to about 3.5 ppmv – see Table 3.1. Also, sufficient excess of the 

precursor has to be present to consume all of the ozone, and avoid artifacts formation during 

sampling. As reported in Section 3.4.2 both precursors concentrations were higher than 200 ppmv 

used for box model calculations, and always kept well above this threshold concentration. 

 As already discussed in Section 1.3.3 and Section 1.4.1, during the ozonolysis of alkenes, 

high amounts of OH radicals are formed. Therefore, in order to calculate the molar yields of the 

detected LMW and HMW products, reported in Section 4.3.1.1, Section 4.3.1.4.1, Section 4.3.2.1  
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and Section 4.3.2.4.1, the total amount of the precursor, oxidized during each experiment is 

needed. 

Table 4.17 Kinetic calculations input parameters, used for calculating the total amount of 

consumed precursor 

Precursor Concentration 

(ppm) 

Ozone 

concentration 

OH radicals yield Reaction rate 

coefficient with 

OH (ppm -1 s-1) 

Cyclohexene 220 3.5 0.55 1659 

α-pinene 220 3.5 0.85 1312 

 

The OH yields and reaction rate coefficients listed in Table 4.17 were taken from 

summaries published by Atkinson 158 and Finlayson-Pitts and Pitts jr. 1  Concentrations of the 

precursor used for the simulations (Table 4.16) were lower than those used in the actual 

experiments (see Table 3.1). However, it was concluded that as long as the high excess of the 

precursor was present in the flow-tube reactor, the amount of the reacted alkene remained 

constant. Ozone concentration during each experiment was approx. 3.5 ppm, as listed in Section 

3.4.2. It is known that one ozone molecule reacts with one alkene molecule (section 1.3.3). Also, 

single OH radical reacts with the single alkene molecule. Using the input values listed in Table 4.17, 

it was calculated, that 5.4 ppm of cyclohexene and 6.48 ppm of α-pinene was consumed during 

33s of reactants residence time inside the reactor. Knowing the reaction vessel volume, the 

amount of the precursors consumed during 2 h of the experimental run was calculated to be 

approx. 2.22 × 10-5 M of cyclohexene and 2.66 × 10-5  M of α-pinene. These values include 

precursor oxidation by the ozone and OH radicals, generated as a result of gas-phase alkene 

ozonolysis.  

4.2.3. Precursors concentrations monitoring 

During the SOA formation experiments, concentration of α-pinene and cyclohexene was 

monitored with GC/FID. GC/FID conditions for the analysis of cyclohexene and α-pinene are 
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reported in section 3.2.4. Samples were taken from the sampling port positioned in the middle of 

the reactor, as described in Section 3.4.1. 

For both precursors, GC/FID was calibrated over the range from 1 to 1000 ppmv. Standard 

solutions were prepared by diluting different volumes of cyclohexene and α-pinene (1 – 100 µl) 

with n-pentane to reach the total volume of 1 ml. Afterwards, 1 µl of each standard solution was 

added to the 20.3 ml gas-tight headspace vial and thermostated for 10 min in water bath at 35°C. 

Alkene concentration was calculated using ideal gas-law after correcting for temperature; pressure 

inside the headspace vial was assumed to be unaffected by expansion of 1 µl of the pentane 

solution. After cooling down to room temperature, 100 µl of air from the vial was injected into the 

GC using gas–tight syringe and each sample was analyzed only once. Solutions for each 

concentration were prepared and analyzed three times. Calibration curves were calculated using 

FID peak areas and analyte concentration in ppm. Squared correlation coefficients (R2)≥0.999 were 

obtained for both compounds. Calibration curves are shown in Fig. 4.23A for cyclohexene and Fig. 

4.23B for α-pinene. 
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Figure 4.23 GC calibration curves for cyclohexene (A) and α-pinene (B) 

Equations, obtained from linear regression analysis used for calculating the precursor 

concentration in the flow – tube are shown in Fig. 4.23A and Fig. 4.23B. Concentration of 

cyclohexene-d10 was calculated using the FID response factor for the regular cyclohexene. The 

results of the SOA generation experiments using cyclohexene-d10 are described in Section 

4.3.1.1.1 and section 4.3.1.3.1. 

4.2.4. OH radicals scavengers 

Large amounts of the highly reactive OH radicals are known to be formed during ozonolysis 

of the alkenes, as already discussed in Section 1.3.3, Section 1.4.1 and Section 1.4.2.3. Therefore, 

frequently, high concentrations of the OH radicals scavengers are used during the laboratory 

studies of SOA formation (see section 1.4.2.3). However, it was concluded that the use of OH 

radicals scavengers influences the SOA formation mechanism and thus alters the original products 

distribution, as discussed in section 1.4.2.3.  

It was previously reported, that the use of OH radicals scavengers alter the LMW products 

distributions, formed during the gas phase ozone initiated oxidation of α-pinene. 120,159 160 It is also 
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important to underline, that, up-to date, it was not examined, if the formation yields of the HMW 

α-pinene SOA components are affected by the OH radical’s scavengers. However, it was 

unambiguously proven that the SOA yields, as well as yields of the individual LMW products are 

dependent on the OH radical scavenger type and concentration. 120,159,160  

Therefore, it is straightforward to assume that, since the LMW SOA components are the 

building blocks for the HMW compounds (see section 1.4.3.4 and section 1.4.3), that the 

formation yields of these HMW compounds are also scavengers dependent.  

Taking into account the previously published results, discussed above and in section 

1.4.2.3, it can be concluded, that the presence of the OH radicals scavengers significantly alter the 

SOA generation mechanism from ozone – initiated α-pinene oxidation. In the ambient 

atmosphere, both α-pinene oxidation channels, by O3 and OH radicals, are operational. Therefore, 

performing the laboratory studies in the absence of the OH radicals scavengers is more 

representative, when the SOA formation in the ambient atmosphere is considered. Also, high 

amounts of some OH radicals scavengers can act as the SCI scavengers, as it was concluded in the 

previously published studies. 125,129,149,150,156 Also, products of the reaction of the most frequently 

used OH radicals scavengers are often carbonyl compounds or alcohols; such compounds can also 

potentially act as the SCI scavengers. 

 Thus, in order to obtain more reliable data, no OH radicals scavengers were used during 

the SOA generation experiments in the flow-tube reactor conducted in this work. 

 

4.3. Analysis of SOA samples generated in the flow tube reactor 

In this section analysis of SOA samples generated in a flow-tube reactor with the developed 

LC/MS analysis method is described. LC/MS analysis conditions are described in section 3.2.2. SOA 

sample in each set of experimental conditions (see section 3.4.2) was prepared and analyzed three 

times to confirm the results reproducibility. Every result presented in this section was confirmed 

by analysis of the blank sample, generated in the absence of the ozone or precursor, as described 

in Section 3.4.2. 
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4.3.1. SOA produced from ozonolysis of the model compound – 

cyclohexene 

Globally, cyclohexene SOA forming  potential is very low when the ambient atmosphere is 

considered, as compared to the monoterpenes – see section 1.3.1. 

However, very frequently cyclic alkenes, like cyclohexene and 1-methylcyclohexene, are 

used as the simpler analogues of α-pinene. Those simple cyclic alkenes can be considered  model 

compounds for all the endocyclic monoterpenes. Investigation of the simpler precursors have 

provided very valuable insight in the mechanism and chemical composition of SOA generated in 

the more complex monoterpenes/ozone systems. 88,136,142,170,171,176,185,207,208 Therefore, SOA 

composition, produced from the ozone initiated oxidation of a model compound - cyclohexene 

was initially investigated.  

Carboxylic acids analysis in the SOA samples is described in Section 4.3.1.1 and section 

4.3.1.1.1, for the cyclohexene and cyclohexene-d10, respectively. Carboxylic acids produced during 

cyclohexene ozonolysis were analyzed as described in Section 4.1.1.1.  

 Afterwards, investigation of the α-acyloxyhydroperoxy aldehydes formation is discussed in 

Section 4.3.1.2. α-acyloxyhydroperoxy aldehydes were analyzed as described in section 4.1.2. 

Aside from α-acyloxyhydroperoxy aldehyde, formation of other HMW SOA components was 

investigated in section 4.3.1.3. Using the data acquired for the deuterated analogs of the LMW 

SOA components generated during the cyclohexene ozonolysis, structures of the detected HMW 

SOA components (section 4.3.1.3) were proposed, as described in section 4.3.1.3.1. 

RH influence on SOA composition is discussed in sections 4.3.1.4, including the impact of 

higher water concentration on the formation of carboxylic acids (section 4.3.1.4.1), α-

acyloxyhydroperoxy aldehydes (section 4.3.1.4.2) and other high-molecular weight SOA 

components (section 4.3.1.4.3). 

4.3.1.1. Carboxylic acids identification 

In this section, investigation of the carboxylic acids formation during the SOA generation by 

cyclohexene ozonolysis is described. Carboxylic acids detected in the SOA samples formed by 
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ozone-initiated cyclohexene oxidation in the flow-tube reactor under low humidity conditions (RH 

≈ 3%) are listed in Table 4.18. 

Table 4.18 Carboxylic acids identified in the SOA samples formed by ozone-initiated cyclohexene 

oxidation under dry conditions (RH ≈ 3%) 

Name Structure Molecular weight (Da) 

Succinic acid 

OH

O
O

OH

 

118 

Glutaric acid OH

O

O

OH 

132 

Adipic acid 
OH

O
O

OH  

146 

5-oxopentanoic acid O

OHO  

116 

6-oxohexanoic acid 

 

O

OH
O

 

130 

4.5-dioxopentanoic acid 
O

OH
O

O

 

144 

 

 Succinic, adipic and glutaric acids listed in Table 4.18 were identified based on the 

comparison with the actual standards. MRM and EIC chromatograms of the cyclohexene SOA 

samples for these three carboxylic acids are shown in Fig. 4.21. 
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Figure 4.24 ECI and MRM chromatograms for succinic acid (A), glutaric acid (B) and adipic acid (C) 

in the SOA sample 

 For the succinic acid (Fig. 4.24A), glutaric acid (Fig. 4.24B), and adipic acid (Fig. 4.24C) both 

MRMs and deprotonated pseudo-molecular ions were detected, unambiguously confirming the 

presence of these three acids in SOA samples formed by cyclohexene ozonolysis. 

 On the other hand, both - carboxylic acids containing carbonyl group listed in Table 4.2, 

levulinic and 5-oxohexanoic acids were concluded to be absent in the aerosol samples. However, 

intense peaks for the deprotonated pseudo-molecular ions for these two carboxylic acids were 

detected, as shown in Fig. 4.25. 
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Fig. 4.25 ECI and MRM chromatograms for levulinic acid (A) and 5-oxohexanoic acid (B) in the SOA 

sample 

 The absence of the specific fragment ions for the levulinic acid (Fig. 4.25A) and only very 

minor MRM peaks for the 5-oxohexanoic acid (Fig. 4.25B) while the parent ions were clearly 

present can be explained by the presence of structurally different carboxylic acids with the same 

MWs as the analyzed standards. Based on the mechanistic implications and previously published 

data 136,209-211 these compounds can be identified as 5-oxopentanoic and 6-oxohexanoic. 137,210-212 

The structural information for the compound with MW 144 Da was less conclusive. 

However, intense peak, most likely originating from the deprotonated, pseudo-molecular ion m/z 

143 was also detected. EIC for the m/z 143 is shown in Fig.4.26. 
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Fig. 4.26 ECI chromatogram for m/z 143 in the SOA sample 

As shown in Fig. 4.26, short retention time of this compound suggested that it was most 

likely carboxylic acid with additional oxygen-containing functional group, making the compound 

under consideration more polar than for instance carboxylic acid with lower MW, such as 5-

oxopentanoic acid. 

  Using the calibration curves, listed in Section 4.1.1.1, concentration of each carboxylic acid 

in the SOA sample was calculated. For the 5-oxopentanoic and 6-oxohexanoic calibration curves 

obtained for the levulinic acid and 5-oxohexanoic acids were used. For the compound with the 

MW 144 Da, mean MS response factor for the carboxylic acids containing carbonyl group was 

used. Concentrations of the carboxylic acids were subsequently used to calculate their molar 

yields, listed in Table 4.19. Amount of the cyclohexene consumed during a single experimental run, 

as a result of oxidation by both ozone and OH radicals was calculated as described in Section 4.2.2.  
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Table 4.19 Molar yields of the carboxylic acids identified in the SOA samples formed by ozone-

initiated cyclohexene oxidation under dry conditions (RH ≈ 3%) 

Name M-H- Retention time (min) Molar yield 

Succinic acid 117 3.08 (2.8 ± 0.4) × 10-4 

4.5-dioxopentanoic 

acid* 143 

 

3.14 (4.0 ± 0.3) × 10-4 

5-oxopentanoic acid 115 3.5 (1.6 ± 0.4) × 10-3 

Glutaric acid 131 3.58 (5.1 ± 0.4) × 10-3 

6-oxohexanoic acid 129 4.79 (2.4 ± 0.3) × 10-3 

Adipic acid 145 4.99 (5.9 ± 1.0) × 10-3 

 

 Molar yields, listed in Table 4.19 are the cyclohexene molar yields, representing the 

fraction of cyclohexene molecules converted into the given carboxylic acid. Unfortunately, the 

experimental setup used in this work (see section 3.4) was not equipped with the instrument, 

capable of measuring particles size distribution, such as SMPS. Therefore, it was not possible to 

estimate the portion of SOA mass corresponding to the carboxylic acids listed in Table 4.18. 

 Adipic and glutaric acids were produced with highest yields, which is consistent with the 

literature data.136,210,211 Relative yields of the succinic acids are also in good agreement with 

previously reported values 136. 4.5-dioxopentanoic acid formation yield differ more significantly 

from the literature data, 136 as compared to the formation yields for dicarboxylic acids. Due to the 

lack of the standard, this compound may have been incorrectly identified. This difference in yield 

can be attributed to a shorter reaction time-scale in the flow-tube as compared to the reaction in 

the smog-chamber. Once formed, 6-oxohexanoic, as well as other carboxylic acids, can undergo 

subsequent reactions to form a variety of different products, similar to e.g. adipic acid (see below). 

6-oxohexanoic formation mechanism is most likely analogous to the formation mechanism of the 

cis-pinonic acid. It can be generated directly from the SCI via ester channel or by SCI reaction with 

water. Thus, it is likely to be produced in the early stages of SOA formation in larger quantities. 



171 
 

No peaks suggesting the presence of the higher MW carboxylic acids, such as pimelic and 

suberic acids, were detected in cyclohexene SOA samples. It is important to underline that no 

carboxylic acid containing more carbon atoms than the original alkene was detected. Also, it is 

important to note, that in the study by Gao et al, 136 significantly larger number of carboxylic acids 

were detected in the cyclohexene SOA samples, including pimelic and adipic acid derivatives, such 

as 2-hydroxyadipic acid. The lack of higher-MW carboxylic acids can also be explained by the short 

formation time-scale of the SOA formation used in this work. This agrees well with the relatively 

simple composition of the freshly formed cyclohexene SOA, reported by Nojgaard et al. 211 The 

formation mechanism of pimelic and suberic acids as well as of other carboxylic acids previously 

detected in cyclohexene SOA samples,136,210 is more complex, and consequently slower. In general, 

the LMW compounds found in SOA samples, formed during ozone-initiated cyclohexene oxidation 

under dry conditions (RH ≈ 3%) found in this work agreed very well with the previously published 

data. 136,210,211 

4.3.1.1.1. Isotope study 

Cyclohexene-d10 SOA was generated under the same conditions as for regular 

cyclohexene, as described in Section 3.4.4. Standards for the deuterated analogs of the carboxylic 

acids listed in Table 4.18 were not available. Carboxylic acids detected in the cyclohexene-d10 SOA 

are listed in Table 4.20. Deprotonated, pseudo-molecular ions for the non-labeled carboxylic acids 

and their deuterated analogs are also listed in Table 4.20. 

Table 4.20 Carboxylic acids obtained from the gas-phase ozonolysis of cyclohexene-d10 

Carboxylic 

acid 

Retention 

time 

(cyclohexene) 

M-H- 

(cyclohexene) 

M-H- 

(cyclohexene-

D10) 

Retention 

time 

(cyclohexene-

D10) 

Number of 

original 

precursor 

hydrogen  

Succinic acid 3.08 117 121 3.20 4 
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4.5-

dioxopentanoic 

acid 

3.14 143 150 3.10 7 

5-

oxopentanoic 

acid 

3.5 115 122 3.40 7 

Glutaric acid 3.58 131 137 3.61 6 

6-oxohexanoic 

acid 

 

4.79 129 138 4.52 9 

Adipic acid 4.99 145 153 5.00 8 

 

EIC’s chromatograms of the cyclohexene-d10 SOA samples for the m/z 121, 150, 122, 137, 

138 and 153 ions listed in Table 4.20 are shown in Fig. 4.27. 
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Figure 4.27 EIC’s chromatograms of the cyclohexene-d10 carboxylic: m/z 121 (A), 150 (B), 122(C), 

137 (D), 138 (E) and 153 (F) acids in the SOA sample 

 As can be seen in Fig. 4.27 (A), peak for EIC m/z 121 was detected at a retention time of 

3.20 in the cyclohexene-d10 SOA sample, most likely corresponding to the deuterated succinic 

acid. Succinic acid M-H- ion was shifted by 4 mass units, equal to the number of the aliphatic 

hydrogen in this acid molecule. Since the retention times of compounds with MW 123 Da and 151 

Da, corresponding to mass peaks with m/z 122 and 150 were very similar, there may be some 

confusion, which m/z corresponds to the specific carboxylic acid. The following reasoning can be 

used to resolve this ambiguity. Both m/z 122 and 150 cannot correspond to the deuterated 

succinic acid, because the mass shift of 5 and 33 is too large, since there are only 4 aliphatic 

hydrogens present in the succinic acid molecule. By the same logic, m/z 150 is not a deuterated 5-

oxopentanoic acid. Thus, m/z 150 can be assigned to the deprotonated pseudo-molecular ion for 

the deuterated 4,5-dioxopentanoic acid. By analogy the deuterated ion of 5-oxopentanoic acid can 

be found at m/z 122. These assumptions agree with the number of aliphatic hydrogen atoms in 

molecules of those acids, as listed in Table 4.20. It is important to underline at this point, that the 

compound structure detected with m/z 143 (see section 4.3.1.1 and Table 4.19) cannot be 

unambiguously confirmed, based on the stable isotope study discussed in this section. This 

compound was tentatively identified as 4.5-dioxopentanoic acid, based on the experimental data 

obtained for experiments with cyclohexene – see section 4.3.1.1. However, there are still different 

structural isomers of this acid, and definitive conclusions cannot be presented, based on the 

experimental data acquired in this study.  

 For the deuterated glutaric acid, the ion m/z 137 was partially overlapping with the EIC 

from m/z 138, as shown in Fig. 4.27D and Fig. 4.27E. However, weakly intense but clearly present 

peak at retention time 3.61 min was detected, corresponding to the deprotonated, pseudo-

molecular ion for glutaric acid, shifted by 6 mass units, which is in line with the number of aliphatic 

hydrogen atoms present in this molecule.  
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 Intense peak for ion m/z 138 was found at retention time 4.52 min., most likely 

corresponding to the deuterated 6-oxohexanoic acid. This ion is shifted by 9 mass units, equal to 

the number of aliphatic hydrogen atoms in the 6-oxohexanoic acid molecule.  

 Intense peak for m/z 153 was also detected in cyclohexene-d10 SOA at retention time 5.10 

min, most likely corresponding to the deuterated adipic acid, and thus shifted by 8 mass units. 

Mass shift of the M-H- ion of adipic acid corresponds to the number of aliphatic hydrogen atoms in 

this acid molecule.   

 By generating SOA in the flow-tube reactor, using cyclohexene-d10 instead of regular 

cyclohexene, it was possible to drawn several important conclusions regarding the formation of 

the carboxylic acids listed in Table 4.18. Mass shifts of the carboxylic acids listed in Table 4.18 were 

equal to the number of original precursor hydrogen, when cyclohexene was substituted with 

cyclohexene-d10. The results presented in this section have shown that aliphatic hydrogens in the 

detected carboxylic acid molecules are not dissociated during the precursor oxidation and 

formation of the detected carboxylic acids. 

4.3.1.2. Investigation of α-acyloxyhydroperoxy 

aldehydes formation 

In this section, investigation of the α-acyloxyhydroperoxy aldehyde formation during 

cyclohexene SOA generation is described. During the initial experimental run, MRMs for the 

compounds VII – X were monitored. Carboxylic acids used for the synthesis of the compounds IX – 

XI were detected in SOA samples as described in Section 4.3.1.2. Also, isobaric carboxylic acids as 

those used for the synthesis of the compounds VII and VIII, were also detected in the aerosol 

samples.  

 EIC and MRM chromatograms for the compounds VII, IX, and X are shown in Fig. 4.28A, Fig. 

4.28B and Fig. 4.28C. 
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Figure 4.28 ECI and MRM chromatograms for the compound VII (A), IX (B), and X (C) 

from the SOA sample 

 As shown in Fig. 4.28, for the compounds VII, IX and X, the ammonium cationized ions were 

not detected, and only background signals were observed. Also, weakly intense peaks for the 

monitored MRM’s for these compounds are visible. However, the intensities and shape of these 

peaks strongly indicated that these were only the background noise. Therefore, it was concluded, 

that compounds VII, IX and X were not present in the cyclohexene SOA samples.  

EIC and MRM chromatograms for the compounds VIII, and XI are shown in Fig. 4.29A, Fig. 

4.29B. 

 



176 
 

0 5 10 15 20 25 30 35
0.00

1.10x104

0.0

3.0x105

0.00

1.50x105

0.0

3.0x103

Time (min)

 MRM: 294/67
 MRM: 294/111
 MRM: 294/129
 MRM: 294/147

B

A

m/z 294

m/z 278

In
te

ns
ity

 (c
ps

)

 MRM: 278/85
 MRM: 278/113
 MRM: 278/131
 MRM: 278/148

 
Figure 4.29 M ECI and MRM chromatograms for the compound VIII (A), and XI (B) 

in the SOA sample 

As it can be seen in Fig. 4.29 minor peaks for both ammonium cationized ions and MRM’s 

were detected in the SOA samples. Although these peaks were also comparable with the 

background noise, similar for the compounds VII, IX and X, however, significantly higher intensity 

of the peaks shown in Fig. 4.29 created an ambiguity, whether the minor quantities of the 

compounds VIII and XI were present in the cyclohexene SOA samples. In order to resolve this 

ambiguity, LC/MS analysis of the standards for the compounds VIII and XI was performed. EIC and 

MRM chromatograms for the standards of the compounds VIII, and XI are shown in Fig. 4.30A, Fig. 

4.30B, respectively. 
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Figure 4.30 ECI and MRM chromatograms for the compound VIII (A), and XI (B) in the standard 

samples 

 By comparing the ECI and MRM chromatograms, the retention times of the peaks detected 

in the SOA samples (14:52 min) and synthesized standard (15:73 min) differ significantly. Also, 

comparison of the MS2 spectra of the m/z 294 in the standard sample and SOA sample was 

performed. MS2 spectra of the m/z 294 in the standard sample (A) and cyclohexene SOA (B) is 

shown in Fig. 4.31. Please note that background spectrum was subtracted from both spectra 

shown in Fig. 4.31. 
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Figure 4.31 MS2 spectra of the m/z 294 from the LC/MS analysis of the compound XI 

standard (A) and in the SOA sample (B) 

 

 As shown in Fig. 4.31A, MS2 of the m/z 294 in the standard sample is in excellent 

agreement with the spectrum of the compound XI acquired in the direct infusion mode – see Fig. 

4.15E. Also, fragmentation spectrum of the ion m/z 294 in the SOA sample differ significantly from 

the spectrum of the standard compound, as could be seen in Fig. 4.31B. Of course, in the SOA 

sample,  the additional compound with m/z 294 may be present at the same retention time. 

However, if the MS2 spectrum of the compound XI, present in the SOA sample, was overlapping 

with the spectrum of another, isobaric compound, the spectrum seen in Fig. 4.31B should be 

composed of fragments, shown in Fig. 4.31A. However, only few ions are common for the spectra 

presented in Fig. 4.31A and Fig. 4.31B. Thus the unambiguous confirmation of the presence of the 

compound XI is not possible.   

 However, a presence of the α-acyloxyhydroperoxy aldehyde formed by SCI reaction with 6-

oxohexanoic acid could not be confirmed by comparison of the retention times with the 

compound VIII. Compound VIII was synthesized using 5-oxohexanoic acid, and this acid was not 
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detected in SOA samples formed by ozone-initiated oxidation of cyclohexene, as already discussed 

in Section 4.3.1.1. Instead, isobaric carboxylic acid, 6-oxohexanoic acid was detected in significant 

quantities. Therefore, retention times of the compound VIII and α-acyloxyhydroperoxy aldehyde 

formed by SCI association with 6-oxohexanoic acid are expected to be different. Moreover, as 

already discussed in section 4.1.2.5, both isobaric α-acyloxyhydroperoxy aldehydes should 

produce the same fragment ions. Therefore, the comparison of the MS2 spectra for the m/z 278 

ion of the standard and in the SOA samples should allow confirming or eliminating the formation 

of α-acyloxyhydroperoxy aldehyde with MW 278 Da during gas-phase cyclohexene ozonolysis. MS2 

spectra of the m/z 278 in the standard sample (A) and cyclohexene SOA (B) are shown in Fig. 4.32. 
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Figure 4.32 MS2 spectra of the m/z 278 from the LC/MS analysis of the compound VIII standard (A) 

and in the SOA sample (B) 

 

 As shown in Fig. 4.32(B) spectra of the m/z 278 in the SOA sample, differ significantly from 

the standard spectra shown in Fig. 4.32A. Thus, most likely the ion peaks seen in the MRM 

chromatograms, presented in Fig. 4.29, originated from different aerosol components and/or from 

the background signal, but not from the α-acyloxyhydroperoxy aldehydes.  
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Thus, it can be concluded, that α-acyloxyhydroperoxy aldehydes are not formed during the 

ozone-initiated SOA formation from cyclohexene in significant quantities, as compared to the 

other LMW and HMW components, described in Sections 4.3.1.1 and 4.3.1.3. It is important to 

note that some minor quantities of the α-acyloxyhydroperoxy aldehydes may still be produced 

during the SOA formation from cyclohexene ozonolysis, but it is unlikely that such low quantities 

would have any influence on the aerosol formation. 

4.3.1.3. Formation of other high-molecular weight 

SOA components 

In this section, investigation of the other high-molecular weight compounds formation 

during cyclohexene SOA generation is described. In addition to the carboxylic acids, listed in Table 

4.18, a number of HMW compounds were also detected in the cyclohexene SOA samples. These 

peaks were detected using negative ionization mode; LC/MS analysis conditions were the same as 

for the analysis of carboxylic acids, listed in Table 4.18. EIC chromatograms for the compound with 

MW 230 Da (tr = 15.24 min) and the compound with MW 244 Da (tr = 15.61 min) are shown in Fig. 

4.33A and 4.33B.
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Figure 4.33 ECI chromatograms for the m/z 229 (A) and 243 (B) in the SOA sample 

 As shown in Fig. 4.33, compounds with molecular masses 230 and 244 were the major 

HMW components of the cyclohexene SOA samples. Peaks from the compound with MWs 288 Da 

and 294 Da were also detected. However, these peaks were barely distinguishable from the 

background noise. Also, the formation of these additional peaks was not reproducible. For these 

two HMW cyclohexene SOA based on molecular weights and known association mechanisms of 

the LMW SOA components (see section 1.4.3.4), a number of possible structure was proposed. 

The possible structures and formation pathways of the compounds with MWs 230 Da and 244 Da 

are shown in Fig. 4.34. 
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 It is important to notice, that the molecular mass of the compounds with MW 230 Da and 

244 Da does not correspond to the sum of mass of any two LMW cyclohexene SOA components, 

listed in Table 4.18. Therefore, additional building blocks of the observed HMW cyclohexene SOA 

components have to be considered. It is well known, that large quantities of adipaldehyde (MW 

114 Da) and glutaraldehyde (MW 100 Da) are formed during gas-phase ozonolysis of cyclohexene. 
211-213 These two carbonyl compounds are also known to partition between gas and particle phase. 

As already discussed in Section 1.4.3.2, when ESI is used, detection of carbonyl compounds it 

usually not possible, and thus formation of these two aldehydes was not experimentally confirmed 

in this work. However, it is well known that adipaldehyde and glutaraldehyde are one of the major 

LMW components of the SOA formed by cyclohexene ozonolysis. Thus, it is reasonable to assume 

that they can both act as potential building blocks for the HMW compounds. Taking this 

assumption into account, a number of potential structures for compounds with MW 230 Da and 

244 Da is shown in Fig. 4.34. Pathway A shown in Fig. 4.34 involves association of 6-oxohexanoic 

acid with adipaldehyde by either aldol condensation reaction or hydration followed by 

esterification, leading to the formation of products AI and AII, respectively. Pathway B involves 

analogous reaction between 4,5-dioxopentanoic acid (or another dicarbonyl carboxylic acid) and 

glutaraldehyde, leading to the formation of products BI and BII. Pathway C shows association 

between 5-oxopentanoic acid and adipaldehyde, also via either aldol condensation (C1) or 

hydration followed by esterification (C2). Product with MW 230 Da can be also formed by reaction 

of glutaraldehyde with 6-oxohexanoic acid by either of the two mechanisms – products D1 and D2.  

 Pathways E and F shows the reaction of SCI association with adipaldehyde (E) and 

glutaraldehyde (F), leading to the formation of the secondary ozonide. The reaction E and F are 

most likely to occur in the gas phase (see section 1.4.3.4.2).  

 The number of possible structures for the two most prominent HMW components of SOA 

formed by cyclohexene ozonolysis creates an ambiguity, since standards for these compounds 

were not available. The detection of these two compounds in the negative ionization mode 

suggests the presence of the carboxyl group, thus tentatively eliminating the formation of 

compounds A2, B2, C2 and D2, since they do not contain any apparent proton dissociation sites.  
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Also, it is unclear if secondary ozonides can be detected in the negative ionization mode – 

compounds E1 and F1. A number of papers, describing secondary ozonides detection using ESI 

operating in the negative ionization mode can be found in the currently available literature. 202,214-

216 However, these publications describe analysis of secondary ozonides, also containing other 

functional groups, acting as the ionization sites. Therefore, it is highly unlikely, that the ozonides 

such as compounds E1 and F1 would directly ionize in the negative ESI since no currently published 

data supports such hypothesis. 

The ambiguity, regarding the structures of the detected HMW components of SOA formed 

by cyclohexene ozonolysis has been resolved based on the comparison with the analysis of the 

deuterated analogs, and is going to be discussed in Section 4.3.1.3.1. 

It is also important to underline that in this study analysis of the HMW components of SOA 

formed by cyclohexene ozonolysis was carried out by LC/MS and not by directly introducing the 

sample into the ion source. As already discussed in Section 1.4.3.2, the important limitation of ESI 

is the in-source formation of analytes adducts ions. 141,145,170 Direct introduction of a complex 

mixture of organic compounds into the ion source, can result in formation molecular clusters, 

mimicking the formation of dimers, trimers and tetramers, even if those are not actually present in 

the sample. 173 As demonstrated by Muller et al, 170 when adipic and pinic acids mixture was 

directly introduced into ESI ion source, the resulting mass spectrum contained a large number of 

adduct ions. When mixture of unknown compounds is analyzed, the formation of these cluster 

ions can be easily misinterpreted as a confirmation of dimers presence in the sample. Those 

clusters cannot be distinguished from the actual, covalently bonded dimers even by HR-MS, since 

their elemental formulas are often identical. This can be avoided by adjustment of the proper 

parameters and calibrating the system with standard “monomer” solutions. 141,145,170 The cluster 

ions can also be unambiguously distinguished from the covalently bonded molecules by 

performing LC analysis,146,170 before introducing the samples into the ion source. When LC analysis 

is performed, LMW and HMW sample components are not present in the ions source at the same 

time, and thus it can be easily deduced which of the observed ions are covalently and non-

covalently bonded molecules. 
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4.3.1.3.1. Isotope study and identification of the HMW compounds 

The mass peaks corresponding to the detected HMW components of SOA formed by 

cyclohexene ozonolysis were also detected in the cyclohexene-d10 SOA. The detected 

cyclohexene-d10 HMW SOA components are listed in Table 4.21. Additionally, the ion peaks 

corresponding to the two most prominent HMW components of SOA formed by cyclohexene 

ozonolysis were added for reference. 

Table 4.21 Detected HMW compounds in cyclohexene and cyclohexene-d10 SOA 

M-H- 

(cyclohexene) 

Retention 

time 

(cyclohexene) 

M-H- 

(cyclohexene-

d10) 

Retention time (cyclohexene-

d10) 

Mass 

shift 

(Da)  

229 15.24 245 15.20 16 

243 15.61 261 15.51 18 

 

EIC chromatograms for the compounds detected in the cyclohexene-d10 SOA listed in 

Table 4.21 are shown in Fig. 4.35A and 4.35B. 
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Figure 4.35 ECI chromatograms for the m/z 245 (A) and 261 (B) in the cyclohexene-d10 SOA 

sample 

As presented in Table 4.21, the compounds with MWs 230 Da and 244 Da are shifted by 16 

and 18 mass units. Based on the mass shift of the ion corresponding to the specific HMW 

compound it was possible to elucidate its formation mechanism, given certain assumptions. As 

discussed in Section 4.3.1.1.1, experimental data acquired it this study show that aliphatic 

precursor hydrogen atoms do not participate in the formation of the carboxylic acids listed in 

Table 4.18. Thus, the when cyclohexene was substituted with the cyclohexene-d10 during the SOA 

formation experiments in the flow-tube reactor, mass of the ions of detected carboxylic acids 

shifted by the values corresponding to the number of aliphatic hydrogens in their molecules. 

 However, before evaluating the mass shifts for the two most prominent SOA cyclohexene 

SOA components, adipaldehyde formation mechanism needs to be presented. Since this 

compound was not observed experimentally in this work, the number of the original precursor 

hydrogen atoms in this compound has to be evaluated, based on the available literature data. 
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Adipaldehyde, similar to the pinonaldehye (section 1.4.1) is formed via ozonolysis, as well as the 

reaction of OH with the cyclohexene. 211,212 Both formation mechanisms are shown in Fig. 4.36A 

and Fig. 4.36B, for the ozone and OH-initiated adipaldehyde formation mechanism, respectively. 
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Figure 4.36 Adipaldehyde formation pathways via cyclohexene oxidation by ozone (A) and 

OH radicals (B)  

Both formation pathways for the adipaldehyde are analogous to the formation pathways of 

the pinonaldehyde, described in section 1.4.1. Pathway A shown in Fig. 4.36 involves SCI reaction 

with water and subsequent elimination of hydrogen peroxide to yield adiplaldehyde. It is 

reasonable to assume that the alipahatic hydrogens do not participate in this reaction, and only 

water hydrogen atoms are eliminated from the formed hydroxyl hydroperoxide. When OH 

initiated oxidation is considered, the initial step is the addition to the carbon-carbon double bond 

and the formation of the radical product, followed by addition of O2. Next, the original double 

bond breaks in the following step, involving elimination of oxygen atom (by e.g. oxidation of NO to 

NO2, see section 1.3.3) and isomerization of the resulting radical product. Afterwards, 

adipaldehyde is formed via elimination of HO2 and addition of oxygen molecule. These reaction 

steps involve addition and/or elimination of O2, OH and HO2 radicals. Thus, it is also reasonable to 

assume that aliphatic precursor hydrogen atoms do not participate in the reactions shown in Fig. 

4.36B. As already discussed in section 4.3.1.3, glutaraldehyde alongside adipaldehyde was also 

reported to be formed in large quantities during gas-phase ozonolysis of cyclohexene. 211-213 Mass 

of the glutaraldehyde should shift by 8 mass units, equal to the number of aliphatic hydrogens, 

present in this molecule, when cyclohexene is substituted with the cyclohexene-d10. These 
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conclusions are in excellent agreement with the study by Aschmann et al. 212 In the study by 

Aschmann et al, 212 SOA composition from the ozonolysis of cyclohexene and cyclohexene-d10 was 

investigated and it was reported that the peaks for adipaldehyde and glutaraldehyde are shifted 

by 10 and 8 mass units, respectively. It is important to note, that the study by Aschmann et al. 212 

was carried out in the presence of the OH radical scavengers. There are also no experimental 

indications, suggesting that the cyclohexene hydrogen atoms are exchanged when adipaldehyde 

and glutaraldehyde are produced by the gas-phase ozone initiated oxidation of cyclohexene. 

Given the assumption described above, the mass shift of the two HMW cyclohexene SOA 

components allows eliminating a number of structures shown in Fig. 4.34, as listed in Table 4.22. 

Table 4.22 Number of aliphatic hydrogen atoms for the compounds shown in Fig. 4.34  

Structure in Fig. 4.34 Compound 

number 

Molecular 

weight (Da) 

Number of aliphatic 

hydrogen atoms 

O

O
O

OH

O

H

 

A1 244 18 

OH
OO

O

O  

A2 244 19 

O

O
O

OH
OH

O

 

B1 244 14 

O
O

O

O O

 
B2 244 16 

O
O O

O
O

 

E1 244 20 

O
O O

O
O

 

F1 230 18 
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OH

O
O

O

OH  

C1 230 16 

OH
O

O

O O 
C2 230 17 

O

O

OH

OH

O

 

D1 230 16 

O

OH
O

O

O  
D2 230 17 

 

As listed in Table 4.22, a number of aliphatic hydrogen atoms in the individual molecules 

allows eliminating most of possible structures for the compounds with MWs 230 Da and 244 Da. 

The formation of secondary ozonides, structures E1 and F1, can be eliminated since the reaction of 

SCI with adipaldehyde and glutaraldehyde would lead to the mass shift of the product by 20 and 

18 mass units, instead of the observed 18 and 16 mass units. Also, as noted above, it is very 

unlikely that secondary ozonides would directly ionize in ESI, in the negative ionization mode. 

Structures B1 and B2 for the compound with MW 244 Da can also be eliminated, as these 

molecules are not containing a sufficient number of aliphatic hydrogen atoms to explain the 

observed mass shift. Therefore, the only possible structures of the compound with MW 244 Da are 

the aldol product (A1) and ester (A2), formed from the association of the 6-oxohexanoic acid and 

adipaldehyde.  

The experimental data acquired in this study, strongly indicate that the observed 

compound was an aldol condensation product (A1), instead of an ester (A2). As already discussed 

in Section 4.3.1.1, the detection of the compound A2 is most likely not possible using ESI in the 

negative ionization mode, due to the lack of the ionization site, namely the carboxylic group. Also, 

the formation of an ester does not involve the exchange of one of the aliphatic hydrogen atoms 

with the solvent, as discussed below, and thus the mass shift of the observed product would be 19 

instead of the 18. Additionally, if the hydration followed by esterification was the dominant 
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oligomer formation pathway, additional esters of the adipaldehyde and e.g. adipic acid would be 

observed, since dicarboxylic acids were also detected in significant quantities, as described in 

Section 4.3.1.1. 

Therefore, the only mechanism explaining the observed shift by 18 mass units is the aldol 

condensation between adipaldehyde and 6-oxohexanoic acid, as shown in Fig. 4.37.  
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Figure 4.37 Proposed formation mechanism of the compound with MW 244 Da 

 It was concluded in the previously published papers, 20,125,135,179 that the particle – phase 

reactions leading to the portion of the observed HMW SOA components are most likely acid-

catalyzed – see section 1.4.3.4.1. Thus, the aldol reaction shown in Fig. 4.37 is acid catalyzed 

variant of the aldol condensation. 180 Protonation can occur on carbonyl group of adipaldehyde or 

6-oxohexanoic acid leading to the two isomers of the compound A1; for simplicity only one 

mechanism and the resulting product is shown in Fig. 4.37. The number of aliphatic hydrogen 

atoms for the substrates of compound A1 is 19, with the 10 original cyclohexene hydrogens for the 

adipaldehyde, as discussed above in this section, and 9 hydrogens for the 6-oxohexanoic acid, as 

confirmed by the acquired experimental data, reported in Section 4.3.1.1.1. As a result of the aldol 

condensation between these two compounds, one of the aliphatic hydrogen atoms of either 

adipaldehyde or 6-oxohexanoic acid is exchanged with the water hydrogen, thus leading to the 

observed mass shift by 18 mass units. Initially, the carbonyl group is protonated by the acid, 

followed by the abstraction of the α-carbon hydrogen, leading to the enol formation. In this step, 

the exchange of the one of aliphatic hydrogen occurs, leading to the observed mass shift by 18 
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mass units. Aliphatic hydrogen atoms are not involved in the subsequent steps of the new carbon-

carbon double bond formation between the adipaldehyde α-carbon and the carbonyl carbon of 

the 6-oxohexanoic acid, followed by deprotonation of the carbonyl group and formation of the 

product. The presented mechanism agrees well with the experimental data, acquired from the 

SOA formation in this study as a result of cyclohexene-d10 ozone initiated oxidation.  

 For the compounds with MW 230 Da, using the same arguments, as for compound with 

MW 244 Da, the structures D2 and C2 can be eliminated, together with the formation of the 

secondary ozonide (F1). Structures C1 and D1 can be presented for the compound with the MW 

230 Da. This compound is formed as a result of either the aldol condensation between 5-

oxopentanoic acid with adipaldehyde or 6-oxohexaonic acid with glutaraldehyde, structures D1 

and C1, respectively. Unfortunately, since these two compounds have the same molecular masses 

and are formed via the same mechanism, whether the structure C1 or D1 is the major product 

cannot be concluded. It is also possible that chromatographic resolution was insufficient to 

separate the two isomers, and there were two isomers of the compound with MW 230 Da present 

in the sample. 

 In the study by Muller et al. 170 SOA formation from cyclohexene ozone-initiated oxidation 

was studied in a 100 L reaction vessel. HMW SOA components were subsequently analyzed using 

ESI-FTICR-MS as well as LC-ESI/MSn. A number of HMW SOA components were detected by Muller 

et al. 170 using ESI in the negative ionization mode. Compounds with MWs 230 Da and 244 Da were 

also detected by Muller et al. 170 and their elemental formulas agree with the elemental formulas 

of the compound A1, for the species with MW 244 Da, and with compounds C1 and D1 for the 

compound with MW 230 Da. The same two compounds were detected by Sato, 185 however, the 

structures were not proposed. 

Several different HMW SOA components from cyclohexene ozonolysis were detected 

previously in the other studies. 136,142,185,210 Right now, it is not clear which compound is the major 

HMW component of SOA, formed during ozone initiated oxidation of cyclohexene. Due to the lack 

of standards, it cannot be confirmed if compounds A1, C1 and D1 are ionized much more 

efficiently, as compared to the other HMW species. The preferable ionization of the aldol 
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condensation products is unlikely, but it cannot be completely excluded. However, assuming that 

the ionization efficiency does not differ significantly for the carboxyl group-containing compounds, 

the two compounds detected in this work (MW 230 Da and 244 Da) appear to be the major HMW 

components of the freshly formed SOA, in addition to some minor components, as noted in 

Section 4.3.1.3. These compounds were detected previously, 170,185 proving that they are not 

artifacts, formed exclusively in the experimental setup used in this work, or during the extraction 

procedure. However, the structures for these two SOA components were not previously proposed. 
170,185 They were also never reported to be the major components of the freshly formed 

cyclohexene SOA. A number of other compounds, most likely the derivatives of dicarboxylic acids 

(e.g. compounds with MW 246 Da tentatively identified as a derivative of adipic acid) was reported 

to compose the “aged” SOA formed in the cyclohexene ozonolysis during the smog chamber 

studies. 137,142,170,185,209,210 This leads to the conclusion that the two compounds, identified in this 

work, are characteristic for the freshly formed aerosol. Based on the results discussed in this 

section, it can be concluded that the early stages of SOA particles formation most likely involve the 

reactive uptake of the carbonyl compounds and oligomer formation by the aldol condensation 

reactions. 

4.3.1.4. Relative humidity influence on the composition of SOA  resulted 

from cyclohexene ozonolysis 

In this section, RH influence on composition of SOA formed by gas-phase cyclohexene 

ozonolysis is discussed. SOA samples were prepared in humidified air (40% RH), as described in 

Section 3.4.2. 

4.3.1.4.1. Carboxylic acids 

Carboxylic acids were identified as described in Section 4.3.1.1. The same set of carboxylic 

acids was detected in SOA samples generated under dry and humid conditions. Therefore, 

increased humidity did not influence the cyclohexene SOA composition, when the formation of 

LMW carboxylic acids is considered.  
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  Molar yields of the individual carboxylic acids were calculated as described in Section 

4.3.1.1. Comparison of the carboxylica acids cyclohexene molar yields calculated for the 

experiments performed under dry and humid conditions are presented in Table 4.23. 

Table 4.23 Molar yields of the carboxylic acids formed under dry and humid conditions 

Name M-H- Molar yield  (3% RH) Molar yield  (40% RH) 

Succinic acid 117 (2.8 ± 0.4) × 10-4 (4.2 ± 0.6) × 10-4 

4.5-dioxopentanoic 

acid* 143 (4.0 ± 0.3) × 10-4 (1.03 ± 0.2) × 10-3 

5-oxopentanoic acid 115 (1.6 ± 0.4) × 10-3 (2.20 ± 0.6) × 10-3 

Glutaric acid 131 (5.1 ± 0.4) × 10-3 (8.4 ± 1.0) × 10-3 

6-oxohexanoic acid 129 (2.4 ± 0.3) × 10-3 (6.8 ± 1.0) × 10-3 

Adipic acid 145 (5.9 ± 1.0) × 10-3 (1.19 ± 0.3) × 10-2 

As listed in Table 4.23, significant increase in the molar yields for all of the carboxylic acids 

detected in the cyclohexene SOA samples was observed.  

The RH influence on SOA formation produced by gas-phase ozone initiated oxidation of 

cyclohexene was not previously investigated. However, results reporting investigation of RH 

influence on SOA formation in the α-pinene/ozone system can be found in the literature. 150,181,217 

Therefore, the results of the RH influence on SOA formation by cyclohexene ozonolysis were 

evaluated, by comparison with the data available for α-pinene. 

According to the previously published studies 150,181,217   increased RH has led to the uptake 

of water molecules onto the SOA particles formed as a result of ozone-initiated α-pinene 

oxidation. It was also reported, that for the SOA formation in the α-pinene/ozone system, 

increased water content lead to the increase in the SOA mass 160,217 and volume concentration 181 

Total aerosol volume also increased with increasing RH. 181 Also, as already discussed in Section 

1.4.4 and section 2, water influences the α-pinene ozonolysis mechanism, e.g. by acting as the SCI 

scavenger. 20,150,181 

  The results of the SOA formation experiments performed in the flow tube reactor at 40 % 

RH indicate that formation of all of the LMW compounds is enhanced by increased water content. 
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This suggests increase in the SOA mass with increasing RH. As already discussed in Section 4.3.1.1, 

it is not clear what portion of the SOA mass corresponds to the compounds listed in Table 4.18. 

However, as reported previously from smog-chamber experiment, LMW compounds correspond 

to about 31% of the total SOA mass. 136 Thus, it seem to be reasonable to assume, that the 

compounds listed in Table 4.18 compose a significant SOA fraction, and thus increase in their 

formation yields indicate the increase in aerosol yields under humid conditions, as compared to 

the experiments performed under dry conditions. 

4.3.1.4.2. α-acyloxyhydroperoxy 

aldehydes 

Formation of the α-acyloxyhydroperoxy aldehydes was investigated as described in section 

4.3.1.2. Similar to the experiments under dry conditions, it was concluded that no α-

acyloxyhydroperoxy aldehydes were produced when cyclohexene ozonolysis under humid 

conditions was performed.  

4.3.1.4.3. Other high-molecular weight 

SOA components 

No additional HMW compounds were detected in the SOA samples generated under humid 

conditions. However, it is important to underline, that formation of the different products under 

dry and humid conditions cannot be completely excluded. Since the reactants concentrations used 

here were much higher, as compared to the smog-chamber investigations as well as to those 

encountered in the ambient atmosphere. Therefore, the increased RH impact on the SOA 

composition may be more pronounced, when lower reactants concentrations are used, effectively 

increasing the relative water concentration, as compared to the other reactants. This assumption 

agrees  with the results published by Bonn et al. 181 In the study by Bonn et al, 181 the α-pinene SOA 

formation was initially unaffected by increased RH; however, when reactants concentrations were 

lowered by about a factor of 10, the aerosol nucleation was suppressed. These results point out, 

that a careful evaluation of the laboratory results is necessary, before any meaningful conclusions 

can be presented, and extrapolated to the ambient conditions. 
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4.3.2. SOA produced from α-pinene ozonolysis  

Carboxylic acids identification in the SOA samples obtained by α-pinene ozonolysis is 

described in Section 4.3.2.1. Afterwards, investigation of the α-acyloxyhydroperoxy aldehydes 

formation is discussed in section 4.3.2.2. The α-acyloxyhydroperoxy aldehydes analysis is 

described in Section 4.1.3; predicted MRM method used for the analysis of the α-pinene SOA 

samples is described in Section 4.1.3.8. 

  The formation of other HMW SOA components is described in Section 4.3.2.3. Using the 

data acquired for the model precursor - cyclohexene, structures of the detected HMW α-pinene 

SOA components were proposed. 

RH influence on SOA composition is discussed in Sections 4.3.2.4, including impact of the 

higher water concentration on the formation of carboxylic acids (Section 4.3.2.4.1), α-

acyloxyhydroperoxy aldehydes (Section 4.3.2.4.2) and other high-molecular weight SOA 

components (Section 4.3.2.4.3). 

4.3.2.1. Carboxylic acids identification 

In this section, investigation of the carboxylic acids formed by α-pinene ozonolysis is 

described. Carboxylic acids detected in the α-pinene SOA samples, generated under dry conditions 

(RH ≈ 3%) are listed in Table 4.24. 

Table 4.24 Carboxylic acids identified in the SOA samples formed by ozone-initiated α-pinene 

oxidation under dry conditions (RH ≈ 3%) 

Name Structure Molecular weight (Da) 

Cis-pinonic acid 

OH

O

O

 

184 
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Pinic acid 

OH

OH

O

O

 

186 

4-hydroxy-pinalic-3- 
acid 

OH

OOH

O  

186 

Diaterpenylic acid OH

O

OH O

OH

 

190 

Norpinalic acid O

O

OH

 

156 

Pinalic acid O

O

OH 

170 

Norpinonic acid O

O

H

OH

 

170 

Terpenylic acid 

O

O
O

OH
 

172 

10-hydroxy pinonic acid 

OH
O

O

OH
 

200 

 

O
O

OH

OH
O

 

216 
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cis-Pinonic acid and pinic acid were identified based on the comparison with the actual 

standards. MRM and EIC chromatograms of the α-pinene SOA samples for these two carboxylic 

acids are shown in Fig. 4.38.  
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Fig. 4.38 ECI and MRM chromatograms for cis-pinonic acid (A) and pinic acid (B) in the SOA sample 

For the cis-pinonic acid (Fig. 4.38A) and pinic acid (Fig. 4.38B) both MRMs and 

deprotonated pseudo-molecular ions were detected, unambiguously confirming the presence of 

these two acids in α-pinene SOA samples. Both cis-pinonic 120,122,138,147,150,155 and pinic acids 
120,122,137,138,147,155,170,174,175,183 are known as α-pinene SOA particle phase components. For the rest 

of carboxylic acids LMW compounds the standards were not available. Therefore, the structures 

listed in Table 4.24 are based on the previously published data. 
120,122,134,137,138,143,146,147,155,170,174,175,177,183  

As shown in Fig. 4.38B the small peak at retention time 3.62 min for the m/z 185 was 

detected. For the compound, isobaric to pinic acid, a number of structures were proposed by 

Winterhalter et al. 122 However, out of the proposed structures, only pinic acid was detected in the 

negative ESI. The structure of the 4-hydroxy-pinalic-3-acid, listed in Table 4.24 was tentatively 
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identified by Ma et al. 120 EIC chromatograms for the ions listed in Table 4.24 are shown in Fig. 

4.39. 
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Figure 4.39 ECI chromatograms for the m/z 155 (A), m/z 169 (B), m/z 171 (C), m/z 173 (D),  m/z 

189 (E), m/z 199 (F) and m/z 215 (G) 

 As shown in Fig. 4.39A, for the m/z 155 there were two peaks present at tr = 2.72 min and tr 

= 5.54 min. The second peak was concluded to be a background signal, since it was also present in 

the blank sample. However, the first signal can be attributed to the carboxylic acid with MW 156 

Da, identified in the earlier studies as norpinalic acid. 120,143,150  

As shown in Fig. 4.39B, two peaks for m/z 169 were detected. The carboxylic acids with 

MWs 170 Da were detected in a number of previous studies.120,122,150,155 These compounds have 

been tentatively identified as pinalic acid 122,218 or norpinonic acid.  122,150,218 The two carboxylic 

acids had the same MWs and both produced deprotonated, pseudo-molecular ions with m/z 169. 
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Therefore, it was not possible to distinguish pinalic acid and norpinonic acid, based on the 

acquired experimental data.  

A single ion peak, corresponding to the compound with MW 172 Da was detected, as 

shown in Fig. 4.39C. Compound with MW 172 Da was detected in a number of previously 

published studies. 120,122,137,172,174 Two possible structures were proposed for this compound; 

earlier it was tentatively identified as norpinic acid. 120,122,137 However, in the most recent 

investigations, it was concluded that compound with MW 172 Da is most likely a molecule 

containing a lactone moiety; terpenylic acid. 147,174,175,177,183 These two acids cannot be 

distinguished even with HR-MS due to the same elemental formulas. 171 However, it is important 

to note, that terpenylic acid was shown to be produced in large quantities in the early stages of 

SOA formation. 174,177,183 Also, terpenylic acid hydrolysis product – diaterpenylic acid was identified 

as a building block of dimer with MW 358 Da, a potential nucleating agent. Compound with MW 

358 Da (see section 4.3.2.3) as well as diaterpenylic acid were detected in significant quantities in 

this study. Also, high concentrations of norpinic acid were concluded to characterize an aged α-

pinene SOA. 146  Thus, it is very reasonable to assume that norpinic acid should not be present in 

the freshly formed α-pinene SOA in significant quantities. Therefore, compound with MW 172 Da 

detected in this study was identified as terpenylic acid. At the same time, the formation of norpinic 

acid under the experimental conditions used in this work cannot be completely excluded, due to 

e.g. insufficient chromatographic resolution and/or very large concentration difference between 

the two, isobaric compounds. However, assuming that the detected compound with MW 172 Da 

was terpenylic acid, norpinic acid was not formed in significant quantities.  

 Two ion peaks were detected for the compound with the MW 174 Da; the first ion peak 

originated from the background signal. However, the ion peak eluting at tr 3.44 min indicated the 

presence of the previously unidentified carboxylic acid. It is also unlikely that this ion peak is result 

of in-source fragmentation, since its retention time doesn’t correspond to the retention time of 

any other compound, as listed in Table 4.22. The presence of the carboxylic acid with this 

particular mass was reported by Muller et al. 170 and assigned elemental formula for this 
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compound shown the presence of four oxygen atoms. However, the structure for this compound 

could not be proposed, based on the experimental data acquired in this study. 

 Ion peak shown in Fig. 4.39E (MW 190 Da) most likely corresponded to the diaterpenylic 

acid, a hydrolysis product of the terpenylic acid. This compound was detected in a number of 

previously published studies. 147,170,175  

 The compound with MW 200 Da (Fig. 4.39F) was also detected in a number of previously 

published studies. 120,122,137,138,143,146,147,155,170 This compound was tentatively identified as 

hydroxypinonic acid. Three of possible isomers for this acid were proposed by Winterhalter et al. 
122 In the few studies, reporting the detection of this or isobaric carboxylic acid, specific structure 

was not proposed.  138,155,170 However, in a number of studies, the structure of the 10-hydroxy 

pinonic acid was proposed as the most probable structure of this compound. Thus, the structure of 

this acid is shown in Table 4.24. 120,137,143,146,147 Also, it is important to note that 10-hydroxy pinonic 

acid was identified as one of the building blocks of the ester with MW 368 Da, also identified as 

the SOA component produced in the flow tube reactor – see section 4.3.2.3. Using similar 

reasoning as for the formation of tepenylic acid and norpinic acid, the formation of additional 

isomers cannot be completely excluded. 

 Two ion peaks with m/z 215 were detected at tr = 4.20 min and 8.19 min as shown in Fig. 

4.39G. The first ion peak can be attributed to the cluster of terpenylic acid and eluent additive – 

formic acid (section 3.2.2.3). Formation of such abundant adduct ions with eluent additive is 

common in ESI (see section 1.4.1.3) but was not observed for the rest of the carboxylic acids. This 

can be explained by the strong cluster-forming properties of the terpenylic acid. 177 It was proven 

by theoretical calculations 177 that terpenylic acid possess strong dimer forming properties. 

 The ion peak eluting at tr = 8.19 min indicated the presence of the compound with MW 216 

Da. The formation of this compound was reported to be enhanced by the presence of acidic seed. 
138 The elemental formula, assigned by HR-MS measurement, indicated that this molecule contain 

five oxygen atoms. 170 The structure listed in Table 4.24 was proposed by Warscheid and 

Hoffmann, 134 based on on-line α-pinene SOA composition study. The elemental formula of the 

molecule listed in Table 4.24 also agrees with the experimental data, reported by Muller et al.  170  
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 After proposing the structures for the detected LMW α-pinene SOA components, their 

relative concentrations were estimated by calculating the molar yields listed in Table 4.25. 

Concentrations of the cis-pinonic acid and pinic acid were calculated using calibration curves (see 

Section 4.1.1.2). No standards were available for the rest of the carboxylic acids, listed in Table 

4.24. Therefore, the concentrations of these carboxylic acids were estimated by using the MS 

response calculated for cis-pinonic acid and pinic-acid, for the monocarboxylic acids and 

diaterpenylic acid, respectively. Of course, utilizing such approach leads to the increased 

uncertainty, regarding the α-pinene molar yields for these compounds. Amount of the α-pinene 

consumed during a single experimental run, as a result of oxidation by both ozone and OH radicals 

was calculated as described in Section 4.2.2. Concentrations of the carboxylic acids were 

subsequently used to calculate their molar yields listed in Table 4.25.  

Table 4.25 Molar yields of the carboxylic acids identified in the SOA samples formed during ozone-

initiated α-pinene oxidation under dry conditions (RH ≈ 3%) 

Name M-H- Retention time (min) Carboxylic acids molar yield 

cis-Pinonic acid 183 12.26 (2.8 ± 0.1) × 10-3 

Pinic acid 185 6.29 (7.4 ± 0.9) × 10-4 

10-hydroxy pinonic acid 199 5.01 (4.8 ± 0.4) × 10-4 

Pinalic acid/Norpinalic acid 169 4.48 (1.2 ± 0.1) × 10-3 

Diaterpenylic acid 189 3.84 (2.9 ± 0.4) × 10-4 

Terpenylic acid 171 4.17 (1.2 ± 0.1) × 10-3 

4-Hydroxy-pinalic-3-acid 185 3.62 (7.0 ± 0.4) × 10-5 

Norpinalic acid 155 2.72 (9.0 ± 2) × 10-5 

MW 216 Da 215 8.19 (1.3 ± 0.4) × 10-4 

 

Molar yields, listed in Table 4.25 are the fraction of α-pinene molecules, converted into the 

carboxylic acids as a result of oxidation in the flow-tube reactor. As already discussed in Section 
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4.3.1.1, the yields reported in the literature are SOA mass yields, it is therefore difficult to compare 

the data acquired in this study with the values available in the literature. 

 As listed in Table 4.25, cis-pinonic acid was the main LMW α-pinene SOA component, 

formed under experimental conditions used in this work. It is currently known that cis-pinonic acid 

is one of the main constituents of the newly formed SOA. 150,155,174 Cis-pionic acid was present in 

significant quantities in the aerosol generated in the smog-chamber experiments. 120,138 As already 

discussed in section 1.4.1, cis-pinonic acid is formed by the direct rearrangement of the α-pinene 

SCI via ester channel and by SCI reaction with water. Thus, it is expected that the large quantities 

of this compound would be present in the freshly formed SOA.  

Pinic acid was found in this work to be present in the freshly formed SOA samples in 

significant quantities, as shown in Table 4.25. Lee and Kamens 150 reported that this carboxylic acid 

was not produced during very early stages of α-pinene SOA formation. On the other hand, pinic 

acid was also reported to be formed during early stages of SOA formation. 155,183 However, pinic 

acid was found to be  an important oligomer building block, in particular for the compound with 

the MW 358 Da, 146,147,170,174,175,219 proposed as the potential nucleating agent 174 – see section 

1.4.4. 

Both terpenylic acid and diaterpenylic acid were shown to be formed in significant quantities 

during the early stages of SOA formation. 122,172,174 The amount of terpenylic acid was shown to 

decrease as a result of SOA aging, indicating that the presence of this acid is characteristic for the 

freshly formed aerosol. 146  This agrees very well with the results obtained in this study. Also, as it 

was already discussed in section 1.4.4, the gas-phase terpenylic acid dimer was proposed to 

participate in the α-pinene SOA nucleation process. The significant amount of terpenylic acid, 

detected in the SOA samples generated under the experimental conditions used in this work, 

support this hypothesis. However, in this as well as in the previously published studies, 177 no 

experimental evidence supporting the stable terpenylic acid dimer production in the early stages 

of α-pinene SOA formation can be presented – see section 1.4.4. It is important to note, that the 

presence of diaterpenylic acid acetate (MW 232 Da) was also reported, alongside the 

underivatized acid. 147,175 However, compound with the MW 232 Da was not detected in significant 
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quantities in the SOA particles, produced in this work. This is consistent with the conclusions 

presented by Yasmeen et al,146 where diaterpenylic acid acetate was identified as one of the traces 

of α-pinene SOA chemical aging. 

10-Hydroxy pinonic acid was previously detected in the SOA samples generated in smog 

chamber experiments. 120,122,138 The compound with MW 200 Da was also detected in the freshly 

formed SOA. 155 The concentration of this adic decreased as a result of chemical aging, 175 thus it is 

unlikely to be a product of the SOA subsequent aerosol transformation reactions.  Therefore, the 

presence of significant quantities of 10-hydroxy pinonic acid in the freshly formed SOA found in 

this work agrees very well with the previously published data. 155  

One of the structural isomers of the carboxylic acid with MW 170 Da was also reported to 

be present in the freshly formed α-pinene SOA. 150,155 This agrees with the experimental data 

obtained in this work. As noted above, this compound may be one of the two isomers: pinalic acid 

or norpinalic acid.  

The α-pinene molar yields for the rest of the detected carboxylic acids; 4-hydroxy-pinalic-3-

acid, norpinalic acid as well as for the compound with the MW 216 were calculated to be less than 

approx. 0.0001. Therefore, these compounds were present in significantly lower quantities than 

other SOA components listed in Table 4.24. Due to significantly lower concentrations, these 

compounds were unlikely to participate in the SOA nucleation either directly or as the oligomers 

building blocks - see below. 

The formation of 4-hydroxy-pinalic-3-acid was reported for the SOA generated in smog-

chamber experiments, and there are no results indicating the participation of this acid in the 

aerosol nucleation process. 120 The molar yield of the unknown compound with MW 174 Da was 

approx. 0.00005 (not included in Table 4.25). Compound with the MW 216 Da was also detected in 

a number of smog chamber studies. 122,134,138,170 There is no published data indicating the formation 

of large quantities of the acids with MWs 174, 4-hydroxy-pinalic-3-acid as well as norpinalic acid 

during the early stages of α-pinene SOA formation and growth. The results acquired in this work 

also confirmed that the acids with MWs 174, 4-hydroxy-pinalic-3-acid as well as norpinalic acid 
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were not present in the freshly formed SOA formed by gas-phase α-pinene ozonolysis in large 

quantities. 

Norpinalic acid was reported to be present in significant quantities in the freshly generated 

SOA samples. 151 In this study, this carboxylic acid was found to be a minor LMW SOA component. 

This difference may be due to different time-scale of the SOA formation in this study and in the 

study by Lee and Kamens. 151 Also, Lee and Kamens used GC/MS for the LMW products 

quantification. Since norpinalic acid standard was not available, it is difficult to estimate the ESI 

response for this acid under the experimental conditions used in this work. Also, using cis-pinonic 

acid as the surrogate standard for the quantification led to the significant uncertainty in the 

calculated molar yield of norpinalic acid. Since significant quantities of norpinalic acid were not 

detected in the SOA samples studied in this work, it was unlikely that this compound was the 

important monomer building block under the experimental conditions used in this work.  

Results reported in this section are in excellent agreement with the previously published 

data, 120,122,134,137,138,143,146,147,155,170,174,175,177,183 which can be regarded as a validation of the 

experimental setup used in this work. Analysis of the LMW α-pinene aerosol fraction provided 

little insights into the nucleation mechanism, with the exception of terpenylic acid. It is currently 

well established that carboxylic acids are very unlikely to initiate α-pinene SOA nucleation (it was 

discussed in Section 1.4.4). The main LMW SOA components, produced in large quantities during 

early stages of aerosol formation, can be regarded as the potential building blocks for the HMW 

components. These HMW compounds can either initiate the SOA formation or participate in the 

early stages of aerosol growth. Formation of these HMW compounds is discussed in Section 

4.3.2.2 and Section 4.3.2.3. 

4.3.2.2. Investigation of α-acyloxyhydroperoxy 

aldehydes formation 

In this section, investigation of the α-acyloxyhydroperoxy aldehyde formation during α-

pinene SOA generation is described. During the initial experimental run, MRMs for the compounds 

XIV – XVIII were monitored. Carboxylic acids used for the synthesis of the compounds XIV - XV 

were detected in SOA samples as described in section 4.3.2.1. MRMs for the α-acyloxyhydroperoxy 
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aldehydes that can potentially be produced as a result of the SCI reaction with the norpinonic acid 

(compound XVI), pinalic-4 acid (compound XVII) and terpenylic acid (compound XVIII) were 

predicted, as described in section 4.1.2.8. Compounds XIV, XVI and XVII were previously proposed 

as potential nucleation precursors of the SOA formed in the α-pinene/ozone system, as described 

in Section 1.4.4. 

 Compounds XIV and XV were synthesized and MRM conditions were optimized for these 

two α-acyloxyhydroperoxy aldehydes, as described in Section 4.1.2.8. Since compounds XVI, XVII 

and XVIII could not be synthesized, their MRM conditions were predicted based on the results of 

the MRM conditions optimization for the compounds XIV and XV (see section 4.1.2.8). The 

carboxylic acids used for the synthesis of the compounds XIV and XV were the two major LMW 

SOA components, as listed in Table 4.25. EIC and MRM chromatograms for the compounds XIV and 

XV are shown in Fig. 4.40A and Fig. 4.40B.   
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Figure 4.40 ECI and MRM chromatograms for the compound XIV (A), and XV (B) in the SOA sample 
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 As shown in Fig. 4.40A and Fig. 4.40B, for both compound XIV and XV, the characteristic ion 

peaks for the ammonium cationized parent ions as well as monitored MRMs were not detected. 

Small peak was detected for the compound XV, however the retention time of this peak differ 

significantly from the retention time of the synthesized standard (see below). Also, the shape of 

the peak shown in Fig. 4.40B strongly indicated that this signal was a result of the background 

noise.  

 To confirm the absence of the compound XIV and the compound XV in the α-pinene SOA 

sample, LC/MS analysis of the synthesized standards was performed. EIC and MRM 

chromatograms for the standards of the compounds XIV and XV are shown in Fig. 4.41A, Fig. 

4.41B, respectively. 
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Figure 4.41 ECI and MRM chromatograms for the synthesized standards of the compounds XIV (A) 

and XV (B)  
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 As shown in Fig. 4.41A, for the compound XIV, ion peaks for both ammonium cationized 

parent ion as well as fragments monitored in the MRM mode were detected at tr 23.20. Also, as 

shown in Fig. 4.41, no distinctive peak was present at this retention time in the SOA sample 

unambiguously proving that compound XIV was not present in the SOA sample.  

 Similarly, as shown in Fig. 4.41B, for the compound XV, the ion peak was detected at tr 

21.48. As shown in Fig. 4.40B, no signal with this retention time was detected in the SOA samples, 

thus proving that compound XV was also not present in the flow tube reactor aerosol samples. 

 As already discussed in Section 4.1.3.8, no standards were available for the compounds 

XVI, XVII and XVIII. EIC and MRM chromatograms for the compounds XVI, XVII and XVIII are shown 

in Fig. 4.42A, Fig. 4.42B and Fig. 4.42C. 
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Figure 4.42 ECI and MRM chromatograms for the compounds EIC and MRM chromatograms for 

the compounds XVI(A), XVII(B) and XVIII(C) 
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As shown in Fig. 4.42, for the compounds XVI, XVII and XVII, the ammonium cationized ions 

were not detected, and only background signals were observed. Weakly intense ion peaks for the 

monitored MRMs for these compounds are visible. However, the intensities and shape of these 

ion peaks strongly indicated that these were only background signals. As shown in Fig. 4.42B, for 

the compound XVII, distinctive peaks for MRM pairs 358/107 and 358/157 were detected. 

However, the absence of ion peaks for the rest of the MRMs predicted for this compound strongly 

indicated that the observed signals were also the result of the presence of the compound similar 

to the α-acyloxyhydroperoxy aldehyde – see section 4.3.2.3. Therefore, the compounds XVI, XVII 

and XVII were not present in the α-pinene SOA samples. 

Thus, it was concluded, that α-acyloxyhydroperoxy aldehydes were not formed during the 

early stage of the ozone-initiated SOA formation from α-pinene in significant quantities, in 

contrast to LMW and HMW components - see sections 4.3.2.1 and 4.3.2.3. These results are in 

excellent agreement with those obtained for the model precursor – cyclohexene, as described in 

section 4.3.1.2.  

As already discussed in Section 4.3.1.2, it is important to note that some minor quantities 

of the α-acyloxyhydroperoxy aldehydes may still be produced during the cyclohexene and α-

pinene SOA formation, but it is unlikely that such low yields would have any influence on the 

aerosol formation. These results undermine the previous assumptions about the key role of the α-

acyloxyhydroperoxy aldehydes in the α-pinene SOA nucleation process. As already discussed in 

section 1.4.4, up-to-date, no direct, analytical evidence were presented, confirming or 

contradicting this hypothesis. Thus, the results presented in this section are the first, direct 

analytical evidence, showing that the α-acyloxyhydroperoxy aldehydes are not the main 

components of the freshly formed SOA in the α-pinene/ozone system. The analysis results 

reported in this section strongly indicate that the α-acyloxyhydroperoxy aldehydes are unlikely to 

be the important nucleating agents for the α-pinene SOA.  

Also, HMW compounds detected in the negative ionization mode are in perfect agreement 

with the recently published nucleation theories, 174,177,183 arguing against the gas-phase formation 
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of the nucleating agents. The formation of HMW compounds, most likely responsible for the SOA 

formation and growths is discussed in Section 4.3.2.3. 

4.3.2.3. Formation of other high-molecular weight 

SOA components 

In this section, investigation of the HMW compound formation during α-pinene SOA 

generation is described. In addition to the carboxylic acids, listed in Table 4.24, a number of HMW 

compounds were also detected in the α-pinene SOA samples. These experiments were carried out 

in the negative ionization mode; LC/MS carboxylic acids analysis conditions are described in 

Section 3.2.2.3. Mass to charge ratio (m/z) for the M-H- ions of the detected HMW α-pinene SOA 

components, together with their retention times are listed in Table 4.26; names (if known) and 

structures were also included. 
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Table 4.26 HMW compounds detected in SOA samples formed during ozone-initiated α-pinene 

oxidation under dry conditions (RH ≈ 3%)  

Name M-H- Structure Retention time (min) 

 

 

 

Aldol condensation 

products 

337 

 

O

O O
OHOH

 
and 

O

O

O

OHOH

 

19.46 

21.44 

Unknown 341 
Experimental data was insufficient to 

propose the structure for this compound 18.14 

Aldol condensation 

product 
351 O

O

O

OH
OH

 
20.80 

Pinyl-diaterpenylic ester 

 357 

OH

O

OOH

O

O

O

OH

 17.30 

Pinonyl-pinyl ester 

367 

OH

O

O

O
O

OOH

 
19.47 

 

EIC chromatograms for the compounds listed in Table 4.26 are shown in Fig. 4.43. 
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Figure 4.43 ECI chromatograms for the m/z 337(A), 341(B), 351(C), 357(D) and 367(E) in the α-

pinene SOA sample 

As shown in Fig. 4.43A, two peaks were detected for the m/z 337, showing the presence of 

the two isomers of the compound with MW 338 Da. The formation of this compound in the α-

pinene SOA generated in smog-chamber experiment was reported by Tolocka et al, 139 but no 

structure was proposed. The formation of this compound in the early stages of aerosol formation 

produced in the flow-tube reactors was also reported. 155,174 The compound with MW 338 Da 

detected in the ambient SOA samples was identified as a dimer product and elemental formula 

assigned for this compound using HR-MS was C19H30O5.219 Therefore, this compound appears to be 

an unknown, important intermediate for the early stage α-pinene SOA formation. There are a 

number of possible structures for this compound, taking into account the possible formation 

mechanism, as discussed in Section 1.4.3.4 and Section 4.3.1.3. However, using the data acquired 

for the analysis of the model precursor, cyclohexene and cyclohexene-d10 it is possible to propose 

the specific structure. As described in Section 4.3.1.3, there were two intense dimer peaks 

detected in the cyclohexene and cyclohexene-d10 SOA samples. After detailed evaluation of the 

data obtained for the deuterated precursor, these two compounds were concluded to be the aldol 
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condensation products of carboxylic acids containing carbonyl group with adipaldehyde and/or 

glutaraldehyde. It is therefore reasonable to assume the same formation mechanism for the 

dimers formed during α-pinene ozonolysis. In order to apply such reasoning, it has to be assumed 

that the carbonyl compounds are formed in large quantities during ozone – initiated α-pinene 

oxidation. This agrees with the previously published studies, reporting that pinonaldehyde and 

norpinonaldehyde were the major products of the gas-phase α-pinene ozone-initiated oxidation. 
120,143,150,183 

 Taking this into account, the compound with MW 338 Da detected in this study is most 

likely produced by association of cis-pinonic acid wit norpinonaldehyde and pinalic acid/norpinonic 

acid with pinonaldehyde. Both cis-pinonic acid and carboxylic acid with MW 170 Da were 

concluded to be major LMW SOA components, as reported in section 4.3.2.1. The possible 

formation mechanism for the compounds with MW 338 Da detected in this study is shown in Fig. 

4.44. 
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Figure 4.44 Mechanism of formation of the compounds with MW 338 Da via aldol condensation 

reaction 

 Reaction 4.2 and 4.3 are aldol condensation reactions between norpinonaldehyde and cis-

pinonic acid and pinonaldehyde and cis-pinonic acid, respectively. Since, as the substrates shown 

in Fig. 4.44 are non-symmetric molecules, there are a number of possible isomers for the products 

of the reaction 4.2 and reaction 4.3.  Only one possible product is shown for clarity. The retention 

time corresponding to the specific isomer of the compound with MW 338 Da cannot be 
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elucidated, based on the experimental data obtained in this study. Also, it is important to 

underline, that elemental formulas for the compound with the MW 338 Da, reported by Wozniak 

et al. 219 matches the elemental formulas of the compounds shown in Fig. 4.44. 

 For the α-pinene SOA, there are two pathways leading to the formation of the compounds 

with MW 338 Da. On the other hand, only one peak for the compound with MW 230 Da was 

detected in the cyclohexene - SOA samples – as reported in Section 4.3.1.3. This can be attributed 

to the lower chromatographic resolution of the cyclohexene dimers, and thus the two isomers 

were not separated. For the α-pinene, the retention on the C8, RP column is much more efficient, 

due to higher number of carbons in the precursor molecule, and consequently in the oxidation 

products, making the baseline separation of the two isomers possible.  

 The same argument can be used to identify the structure of the compounds with MW 352 

Da. This compound was also detected in the number of studies 139,155,219 and identified as an early 

stage HMW α-pinene SOA component. 155 This compound was tentatively identified as secondary 

ozonide, 155 but no experimental evidence, supporting these assumptions were presented. 

However, as already discussed in Section 4.3.1.3 no experimental results, proving that the 

secondary ozonides can be detected in the negative ESI are currently available. Also, it is 

reasonable to assume that the formation mechanism of the compound with MW 352 Da is 

analogous to the formation mechanism of the compound with MW 244 Da, detected in the 

cyclohexene SOA samples. Therefore, the compound with MW 352 Da is most likely formed via 

aldol condensation of cis-pinonic acid and pinonaldehyde, as shown in Fig. 4.45. 
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Figure 4.45 Possible formation mechanism of the compound with MW 352 Da via aldol 

condensation reaction 
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 As shown in Fig. 4.43C, only one peak for the m/z 351 was detected, strongly indicating 

that only one formation pathway for this compound exists. Also, similar to the compounds with 

MWs 338 Da, the elemental formula of the aldol condensation product shown in Fig. 4.45 agrees 

with the elemental formula for the compound with MW 352 Da, reported by Wozniak et al: 

C20H32O5. 219 

 As shown in Fig. 4.43D, ion peak with m/z 357 in the EIC was also detected in the SOA 

sample. As already discussed in Section 1.4.3.3.1 and Section 4.3.2.1, this compound was detected 

in a number of studies and it is now considered an important α-pinene SOA tracer. 
146,147,170,174,175,219 As already discussed in section 1.4.3.3.1, the structure of this compound is now 

considered to be well established, and corresponds to the ester of pinic acid and diaterpenylic 

acid. This is in excellent agreement with the results reported in section 4.3.2.1, since both these 

acids were concluded to be the major LMW components of α-pinene SOA, produced under the 

experimental conditions used in this work. Most importantly, this compound was reported to be 

the dominant component of the smallest particles, generated on short time-scale in a flow-tube 

reactor by Gao et al. 174 The results of investigation presented in this work are in excellent 

agreement with those reported by Gao et al. 174 

 Two ion peaks for m/z 367 were detected in the α-pinene SOA samples, at retention times 

tr=12.30 min and tr=19.47 min, as shown in Fig. 4.43E. The first ion peak corresponds to the non-

covalently bonded dimer of cis-pinonic acid, based on the retention time of cis-pionic acid 

standard – see section 4.1.1.2. The second peak most likely corresponds to the acidic compound 

with MW 368 Da. The compound with MW 368 Da was previously detected in the SOA samples, 

generated by ozonolysis of α-pinene in the smog-chamber. 147,170,174,175 This compound was 

proposed to be esterification product of the pinic acid and 10-hydroxy pinonic acid. 147,175 This is in 

excellent agreement with the results reported in section 4.3.2.1. Both 10-hydroxy pinonic acid and 

pinic acid were identified as the major LMW components of SOA generated in this study. The 

formation of the compound with MW 368 Da during the early stages of α-pinene SOA formation 

agrees with the results published by Gao et al. 174 



214 
 

 As shown in Fig. 4.43B, large ion peak corresponding to  the compound with MW 342 Da 

was detected at tr=18.14 min. The formation of this compound has been reported by Gao et al, 174 

and elemental formula assigned to this deprotonated peak was C17H25O7. The same elemental 

formula was assigned to the deprotonated ion for this compound by Muller et al.170 Although the 

formation of this compound during the early stages of SOA formation agrees with the previously 

published data, the structure could not be proposed, based on the experimental data acquired in 

this work.  

 It is difficult to estimate the concentrations of the HMW SOA components listed in Table 

4.26, due to lack of standards. Similarly to the carboxylic acids listed in Table 4.24, response of the 

MS detector for the cis-pinonic acid and pinic acid can be used for such estimation. However, since 

the ESI signal is strongly dependent on the eluent composition, this estimation is very likely to lead 

to the overestimation of the HMW compounds concentration yields. The HMW compounds listed 

in Table 4.26 are strongly retained on the C8 stationary phase and thus are introduced into the ion 

source in solvent containing high portion of ACN due to used gradient elution (see section 3.2.2.3). 

It should also be noted that assuming the similar ionization efficient for the carboxylic acids and 

their dimers leads to an additional increase in the experimental uncertainty. 

 Taking this into account, the molar yields for the compounds listed in Table 4.26 should be 

in the range of the minor LMW components (5.0 to 1.0 × 10-5).  The realistic estimate of the 

uncertainty for these values can be as high as a factor of 10. Similar yields were obtained by 

directly comparing the ion peak areas for the HMW and LMW components; such method was 

utilized by Gao et al. 174 However, in their study 174 the peak area for the dimers were reported to 

be about 20 time greater that the peak areas of the corresponding monomers. Such discrepancies 

can be a result of several factors. Initially, it should be noted that comparing the ion peak areas, 

obtained for the two different LC/MS systems must be performed very carefully. The relative 

ratios of the peak areas in this study can be easily reversed by changing e.g. the ESI parameters. 

Reaction time of 23 s used in the flow-tube reactor by Gao et al. 174 was very similar to the 

reaction time used in this work - 33 s.  (see section 3.4). Therefore different reaction time is 

unlikely to be a source of the aforementioned discrepancies. However, significantly lower reactant 



215 
 

concentrations used by Gao et al. 174 and the measurement of the size-dependent particles 

composition are likely to be a reason for the different concentration ratios of the LMW and HMW 

components of SOA. Also, since size-dependent SOA composition was not measured in this study, 

the reported results apply to the bulk of aerosol particles, including particles with larger 

diameters.  

On the other hand, results presented in this work provided important insights into 

subsequent α-pinene SOA growth mechanism, while confirming the participation of the compound 

with MW 358 Da in the nucleation process. Also, it may be possible that more than one chemical 

individual is responsible for the SOA self-nucleation. This agrees with the results reported  by Zhao 

et al. 148 The number of different compounds was found in the smallest particles. Similar 

conclusions were presented by Viitanen et al. 182  

 In this work, for the first time, the analytical evidence shows that the reactive uptake of the 

carbonyl compounds is an important growth mechanism for the freshly formed SOA, produced by 

gas-phase ozonolysis of α-pinene. This was supported by proposing the structures for the 

previously unidentified HMW products. The conclusion that aldol condensation products may be 

responsible for the subsequent SOA particles growth is in excellent agreement with the results 

published by Winkler et al. 183 In their study, it was shown that the smallest particles composed 

mostly of carboxylic acids while the larger particles were characterized by the higher 

concentrations of the carbonyl compounds. Also, as discussed by Winkler et al, 183 the used 

analytical method has most likely led to the thermal decomposition of the oligomers into the 

corresponding monomers. Therefore, it is reasonable to assume that thermal decomposition of 

the aldol condensation products would lead to the regeneration of the carbonyl building blocks. 

The results reported by Winkler et al. 183 strongly indicate that carbonyl compounds were 

responsible for the subsequent SOA particles growth. This is in excellent agreement with the 

experimental data acquired in this work, where both esters and aldol products were identified in 

the freshly formed SOA, produced in the α-pinene/ozone system. Similar results were obtained by 

studying the uptake of pinonaldehyde onto the particles composed of H2SO4 and (NH4)2SO4. 220 It 

was concluded that the reactive uptake on aerosol grain with the subsequent oligomer formation 
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were the major carbonyl compounds partitioning mechanisms. However, for the first time, results 

supporting such growth mechanism for the freshly formed SOA in the α-pinene/ozone system 

were presented.  

The results presented in this study indicate that the SOA nucleation mechanism (in the 

absence of seed particles) assuming formation of the α-acyloxyhydroperoxy aldehydes needs to be 

revised. Under the experimental conditions used in this work, significant quantities of the α-

acyloxyhydroperoxy aldehydes were absent in the freshly formed SOA as compared to the other 

possible nucleating agents. Therefore, the results presented in this work strongly indicate that α-

acyloxyhydroperoxy aldehydes are not responsible for the self – nucleation of aerosol formed in 

the α-pinene/ozone system. 

4.3.2.4. Relative humidity influence on SOA 

composition 

In this section, RH influence on SOA composition is discussed. α-pinene SOA samples were 

prepared in humidified air (40% RH), as described in Section 3.4.4. 

4.3.2.4.1. Carboxylic acids 

Carboxylic acids were identified as described in Section 4.3.2.1. The same carboxylic acids 

were detected in SOA samples generated under dry and humid conditions. Therefore, increased 

humidity did not influence the α-pinene SOA composition, when the formation of the LMW 

carboxylic acids is considered.  

Molar yields of the individual carboxylic acids were calculated as described in section 

4.3.2.1. Comparison of the molar yields calculated for the experiments performed under dry and 

humid conditions are presented in Table 4.27. 

Table 4.27 Molar yields of the α-pinene carboxylic acids formed under dry and humid conditions 

Name M-H- Molar yield (3% RH) Molar yield  (40% RH) 

cis-Pinonic acid 183 (2.8 ± 0.1) × 10-3 (1.1 ± 0.2) × 10-2 

Pinic acid 185 (7.4 ± 0.9) × 10-4 (3.2 ± 0.4) × 10-3 
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10-hydroxy pinonic 

acid 

199 (4.8 ± 0.4) × 10-4 

(1.4 ± 0.1) × 10-3 

Pinalic acid/Norpinalic 

acid 

169 (1.2 ± 0.1) × 10-3 (1.0 ± 0.2) × 10-2 

 

Diaterpenylic acid 189 (2.9 ± 0.4) × 10-4 (5.8 ± 0.4) × 10-4 

Terpenylic acid 171 (1.2 ± 0.1) × 10-3 (1.4 ± 0.2) × 10-3 

4-Hydroxy-pinalic-3-
acid 

185 (7.0 ± 0.4) × 10-5 (1.5 ± 0.3) × 10-4 

Norpinalic acid 155 (9.0 ± 2) × 10-5 (1.8 ± 0.3) × 10-4 

MW 216 Da 215 (1.3 ± 0.4) × 10-4 (3.2 ± 0.08) × 10-4 

 

As listed in Table 4.27, significant increase in the molar yields for all of the carboxylic acids 

detected in the α-pinene SOA samples was observed, within the experimental uncertainty. Similar 

to the data obtained for the cyclohexene SOA experiments, discussed in section 4.3.1.4, the results 

reported in this section indicate that formation of all of the LMW compounds is enhanced by 

increased amount of water vapor during the SOA formation in the flow-tube reactor. This suggests 

that most likely the SOA mass increases with increasing RH under the experimental conditions 

used in this work. This is in very good agreement with the results reported in a number of the 

previously published investigations. As already discussed in Section 4.3.1.4 the increased humidity 

leads to an increase in the SOA mass and volume. 151,160,181,217 Regrettably, since the data for the 

SOA mass and size distribution formed in the experimental setup used in this work was not 

available, no additional conclusions can be presented. 

4.3.2.4.2. α-acyloxyhydroperoxy aldehydes 

Formation of the α-acyloxyhydroperoxy aldehydes was investigated as described in Section 

4.3.2.2. Similar to the experiments under dry conditions, it was concluded that no α-

acyloxyhydroperoxy aldehydes were produced when α-pinene ozonolysis under humid conditions 

was performed. These results are in good agreement with the absence of the significant quantities 

of α-acyloxyhydroperoxy aldehydes in cyclohexene SOA samples, produced under humid 

conditions, as described in Section 4.3.1.4.2. 
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4.3.2.4.3. Other high-molecular weight SOA 

components 

No additional HMW compounds were detected in the α-pinene SOA samples generated 

under humid conditions. Increase in the formation yields, by approx. a factor of 2 was observed, 

similar as for the LMW components, as discussed in Section 4.3.2.4. As already discussed in section 

4.3.1.4.3, the increased RH impact on the SOA composition may be more pronounced, when the 

lower reactants concentrations are used, effectively increasing the relative water concentration, as 

compared to the precursor and ozone. 181 These conclusions warrants further studies of the RH 

influence on SOA formation yields as well as on the formation yields of LMW and HMW 

components. 
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5. Summary and conclusions 

The main goal of this work was to investigate the formation of the HMW components 

(including α-acyloxyhydroperoxy aldehydes), produced during the initial stages of SOA formation 

in the α-pinene/ozone system. In order to get additional insights into the SOA formation 

mechanism, analysis of a simpler, model precursor – cyclohexene – was also carried out. 

 The first step of this work was the development of the analytical method for the analysis of 

α-acyloxyhydroperoxy aldehydes. These compounds were proposed as one of the potential 

nucleation precursors of the α-pinene SOA. However, the presence of these compounds in the α-

pinene SOA samples was never experimentally confirmed. The analysis of a series of α-

acyloxyhydroperoxy aldehydes synthesized standards was performed with LC -ESI/MS/MS. The α-

acyloxyhydroperoxy aldehydes were identified as their ammonia adducts for the first time. 

Fragmentation pathways of the several α-acyloxyhydroperoxy aldehydes were thoroughly 

investigated with tandem mass spectrometry and confirmed using isotopically labeled analogs. 

Acquired data was used to predict the tandem mass spectra of the α-acyloxyhydroperoxy 

aldehydes that could not be synthesized. LC/MS analysis was used to analyze the LMW α-pinene 

SOA components.  These LMW compounds are currently regarded as the building blocks for the 

detected HMW SOA components. 

The second step of this work was the construction of the flow-tube reactor for the SOA 

generation and sampling. In the flow – tube reactor, it was possible to produce SOA under 

precisely controlled conditions (RH, temperature, pressure as well as concentrations of the ozone 

and the precursor). Precursor concentration was monitored off-line with GC/FID. Adjustment of 

the reaction time was performed by selecting the flow-rate of the carrier gas and the position of 

the movable plunger, used to introduce the ozone into the reactor. A filter sampling assembly was 

built and then used for particles collection for the LC/MS analysis. Also, the box – model 

simulations were used to confirm the complete ozone consumption before reaching the filter 

cartridge, thereby minimizing the possibility for the filter artifacts formation. 
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The third step of this work was the analysis of the SOA samples, generated in the flow-tube 

reactor. SOA samples under both dry and humid conditions were prepared and their chemical 

composition was thoroughly investigated with the LC-ESI/MS/MS. Initially, the formation of the 

LMW carboxylic acids was investigated for both precursors. The experimental data was in excellent 

agreement with the previously published results, reporting the chemical composition of the freshly 

formed α-pinene SOA. After validation of the experimental setup and developed analytical 

method, the investigation of the HMW SOA components was carried out. 

α-Acyloxyhydroperoxy aldehydes formation during gas-phase ozone-initiated oxidation of a 

model compound, cyclohexene, was investigated. For the cyclohexene SOA, standards for the 

majority of the investigated α-acyloxyhydroperoxy aldehydes were synthesized. Since the 

standards for the majority of the investigated α-acyloxyhydroperoxy aldehydes were avalabile, the 

cyclohexene SOA samples collected from flow-reactor were compared with the standards using 

LC/MS/MS. Using the data obtained from the LC/MS analysis of the cyclohexene SOA samples the 

formation of the significant quantities of the α-acyloxyhydroperoxy aldehydes during cyclohexene 

ozonolysis was excluded. Afterwards, the formation of the α-acyloxyhydroperoxy aldehydes during 

α-pinene ozonolysis was investigated. Four α-acyloxyhydroperoxy aldehydes were previously 

proposed as the potential nucleation precursors, and standard for only one of these compounds 

was synthesized, due to limited availability of the corresponding substrates. The presence of the 

rest of α-acyloxyhydroperoxy aldehydes was investigated by predicting their fragmentation 

spectrum, using the data obtained during the first step of this investigation. Similarly as for the 

analysis of the cyclohexene SOA, the significant quantities of the α-acyloxyhydroperoxy aldehydes 

were not formed during α-pinene SOA formation. Since the significant quantities of α-

acyloxyhydroperoxy aldehydes were not present in the SOA samples, it is unlikely that these 

compounds are important intermediates in the initial steps of the particles formation in the α-

pinene/ozone system.  

After confirming that the α-acyloxyhydroperoxy aldehydes most probably did not 

significantly impact the SOA formation during the initial steps of particles production, the 

formation of the remainder of HMW components was investigated. A number of HMW 
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compounds were produced during the initial stages of α-pinene SOA formation. The results from 

the HMW components analysis performed in this work indicated that the formation of ester is the 

most likely SOA nucleation mechanism, arguing against the gas-phase nucleation mechanism. 

Therefore, based on the results acquired in this study, direct participation of the SCI reaction 

products with the stable molecules, such as carboxylic acids and carbonyl compounds in the 

nucleation mechanism is unlikely. This is especially important for the revision of the α-pinene SOA 

self-nucleation mechanism, previously used in the number of modeling studies. 

A number of previously unidentified HMW compounds were also detected. Data obtained for 

the model precursor was used to propose structures for those up-to-date unknown oligomers. This 

novel approach utilizing analysis of the deuterated analog was used to identify the HMW SOA 

components. Such approach appears to be very versatile, since it allows to exclude number of 

possible structures, based on the mass shift of the specific ion peak alone, as opposed to the most 

popular approach based only on tandem mass spectra interpretation. This allowed to assign 

structure for the two – previously unrecognized α-pinene HMW SOA components. These 

compounds were identified as aldol condensation products between carbonyl compounds and 

carbonyl-containing carboxylic acids. 

The direct, experimental evidence were presented excluding the formation of the 

significant quantities of secondary ozonides in the α-pinene/ozone system. Results indicating the 

formation of secondary ozonides as the important α-pinene HMW SOA components were most 

likely misinterpreted in the previous investigations.  

At the same time, the established formation mechanism of the previously unknown HMW α-

pinene SOA components allowed proposing the growth mechanism of the freshly formed aerosol. 

The structures for these products were identified, based on the experimental data obtained from 

the SOA composition analysis, produced from the cyclohexene and cyclohexene-d10 ozonolysis. 

The proposed growth mechanism of the freshly formed SOA includes reactive uptake of the 

carbonyl compounds, as opposed to the simple gas-particle phase partitioning.  The direct, 

analytical evidence supporting these assumptions were presented for the first time. 
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Increased relative humidity enhances the SOA yield. However, the RH increase did not 

significantly impact the SOA chemical composition.  

 

6. List of abbreviations  

In this section, used abbreviations are listed in the alphabetical order. 

ACN - acetonitrile 

APCI - atmospheric pressure chemical ionization 

BC – black carbon 

BSOA – biogenic secondary organic aerosol 

BVOC – biogenic volatile organic compound 

CCN – cloud condensation nuclei 

CE - capillary electrophoresis 

CI - chemical ionization 

CID – collision induced dissociation 

CIMS - chemical ionization mass spectrometry 

DMS - dimethyl sulfate 

ECI - excited Criegee intermediate 

EI – electron ionization 

ESI – electrospray ionization 

EIC – extracted ion current 

FID – flame ionization detector 

FTICRMS - Fourier transform ion cyclotron resonance mass spectrometry 

GC - gas chromatography 

GC/FID – gas chromatography with flame ionization detected 
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GC/MS - gas chromatography coupled to the mass spectrometry 

GHG – greenhouse gas 

HFC - hydrofluorocarbon 

HMW – high molecular weight - used with respect to SOA fraction with the MW < 250 

HR-MS – high resolution - mass spectrometry 

ID - inner diameter 

IMS - ion mobility spectrometer 

IN – ice nuclei 

LC - liquid chromatography/high performance liquid chromatography 

LC/MS – liquid chromatography/high performance liquid chromatography coupled to the 
mass spectrometry 

LC-ESI/MSn - liquid chromatography coupled to the electrospray ionization tandem mass 
spectrometry 

LIT – linear ion trap 

LMW – low molecular weight - in this thesis used with respect to SOA fraction > 250 

MALDI - matrix assisted laser desorption ionization 

MS - mass spectrometry 

MW - molecular weight 

OA – organic aerosol 

OC – organic carbon 

PAH - polycyclic aromatic hydrocarbon 

PIAMS - photoionization aerosol mass spectrometer 

PM – particulate matter 

PM10 - particles having diameters 10 µm or less 

PM2.5 – particles having diameters 2.5 µm or less 



224 
 

RH - relative humidity 

SCI - stabilized Criegee intermediate 

SOA – secondary organic aerosol 

TDPBMS - thermal desorption particle bean mass spectrometry 

TOF – time of flight (mass spectrometer) 

UF – ultra fine 

UFP – ultrafine particles 

UHP – ultrahigh purity 

VOC – volatile organic compound 
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