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Abstract

In this dissertation we set out to study a simpli�ed model of activation
�ow in arti�cial neural networks with geometrical embedding. The model
provides a mathematical description of abstract neural activation transfer
in terms, which bear resemblances to multi-value Boltzmann-like evolution.
The activation-preserving constraint mimics a critical regime of the dynamics
and, along with accounting for geometrical location of the neurons, makes
the system more feasible for modelling of real-world networks.

We focus on scale invariance or scale-freeness and small-world phenomena
in the said networks. Our results clearly con�rm presence of both features
at the functional level of the activity-�ow graph. We show that the degree
distribution preserves a power-law shape with the exponent value approx-
imately equal to γ ' −2. In addition, we present our results concerning
characteristic path length in the said graphs, which grows roughly logarith-
mically with the size of the network, while the clustering coe�cient turns out
to be relatively high. Taken together, the clustering and path length ratios
are surprisingly high, and thus con�rm large both local and global e�ciency
of the network.

Finally, we compare the properties of activation-�ow model to those re-
ported in neurobiological analyses of brain networks recorded with functional
magnetic resonance imagining (fMRI). There is a strong agreement between
the shape and exponent value of degree distribution also the clustering and
characteristic path lengths are comparable in both the model and medical
data.

Keywords: neural networks, small-world phenomenon, scale-free net-
work

AMS Mathematics Subject Classification 2010: 92B20 (Neural
networks, arti�cial life and related topics), 82C32 (Neural nets), 05C80 (Ran-
dom graphs), 05C82 (Small world graphs, complex networks).
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Streszczenie

Celem niniejszej rozprawy jest analiza uproszczonego modelu przepªywu ak-
tywno±ci w sztucznych sieciach neuronowych zanurzonych w przestrzeni geo-
metrycznej. Przedstawiony model dostarcza matematycznego opisu transferu
aktywno±ci w terminach zbli»onych do wielowarto±ciowych maszyn
Boltzmanna. Wymóg zachowania staªej sumarycznej aktywno±ci odzwiercie-
dla krytyczno±¢ dynamiki i wraz z uwzgl¦dnieniem wpªywu lokalizacji geo-
metrycznej neuronów sprawia, »e system jest bardziej adekwatny do mode-
lowania rzeczywistych sieci.

Badania koncentruj¡ si¦ na bezskalowo±ci oraz fenomenie maªego ±wiata
w wy»ej wymienionych sieciach. Uzyskane rezultaty potwierdzaj¡ obecno±¢
obu wªasno±ci w omawianych grafach. Poka»emy, »e rozkªad stopni wej-
±ciowych wierzchoªków zachowuje si¦ jak funkcja pot¦gowa z wykªadnikiem
równym γ = −2. Ponadto prezentujemy wyniki dotycz¡ce charakterystycz-
nej dªugo±ci ±cie»ki, który ro±nie logarytmicznie wraz z wielko±ci¡ systemu,
podczas gdy wspóªczynnik klasteryzacji okazuje si¦ do±¢ du»y. W konsekwen-
cji stosunek klasteryzacji do dªugo±ci ±cie»ek jest zaskakuj¡co wysoki, co jest
dystynktywn¡ wªasno±ci¡ sieci maªego ±wiata.

Wreszcie, dokonujemy porównania cech omawianego modelu przepªywu
aktywno±ci z neuro-biologicznymi rezultatami, przedstawionymi w badaniach
grafów mózgowych z danych uzyskanych z funkcjonalnego obrazowania z wy-
korzystaniem rezonansu magnetycznego (fMRI). Wskazujemy siln¡ odpo-
wiednio±¢ pomi¦dzy ksztaªtem i warto±ci¡ wykªadnika rozkªadu stopni, za±
klasteryzacja i charakterystyczna dªugo±¢ ±cie»ki s¡ porównywalne w modelu
i danych medycznych.

Sªowa Kluczowe: sieci neuronowe, grafy bezskalowe, grafy maªego
±wiata

Klasyfikacja tematyczna AMS 2010: 92B20, 82C32, 05C80, 05C82.
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Chapter 1

Introduction

1.1 Aim of the thesis

In this work we set out to study a simpli�ed model of activation-�ow in the
context of question whether scale-freeness and small-world phenomena occur
in sparse recurrent neural networks with geometrical embeddings.

We expect the answer to this question to be positive in both cases (i.e.
both scale-freeness and small-world phenomenon). In such case, this would
make the model comparative and adequate to mimic medical results of the
brain imagining. So far, the medical data of the functional graphs of human
brain con�rm these features, but there is a limited explanation of them.

In order to address the raised question, we adopt numerical simulations
and, whenever possible, mathematical analysis tools. The quantitative de-
scription of the model is highly reliant on random graph theory, which is a
frequently chosen for large-scale graphs. The computational aspect of the
simulation seems to match the algorithmic de�nition of the model, so the
numerical analyses are also reasonable. Moreover, we take advantage of the
mathematical tools, mainly from the area of statistical mechanics, to discuss
some of the properties of the model.

Tu summarise
Aims of the work:

• to study a mathematical model of activation-�ow in neural networks
with geometrical embedding,

• to investigate the presence of the scale-free phenomenon in the said
networks,

• to investigate the presence of small-world phenomenon in the networks.

9



10 Chapter 1. Introduction

Methodology

• description in terms of random graph theory,

• numerical simulations to empirically test the properties of the model,

• mathematical analysis of some of the predictions.

Results

• both phenomena have been con�rmed.

The dissertation itself can be seen as a continuation of the work of
Pi¦kniewski [Pi¦kniewski 2008], however the main results are obtained with
di�erent mathematical means and the model is more elaborate. In addition,
the focus of this work is also extended into small-world analyses and, as
mentioned above, accounts for geometrical embedding.

1.2 Motivation

Arti�cial neural networks are biologically inspired mathematical models for
organic neural cells and brain systems. The area of the topic is also extended
to their application in problem solving and machine learning. Depending
on required accuracy and available computing power, the models vary from
discreet algebraic operations, covered extensively in book [Rojas 1996], to
set of coupled di�erential equations integrated over time [Izhikevich 2007].
Though the expressive power of the single neuron is quite limited, the real
capabilities are at their peak when the neurons are connected into a complex
network. The interconnection dynamics can again be expressed in terms
ranging from weighted averages to di�erential di�usion equations.

Other aspect of arti�cial networks is their emergent tendency to self-
organization. This led to arising a range of stochastic algorithms such as
unsupervised learning [Hebb 1949], principal component analysis, k-means
[MacQueen 1967], Kohonen mappings [Kohonen 1982] etc.

This self-organisation phenomenon is a subject of both theoretical and
empirical research Not only neural networks, but also a collection of large-
scale real-world graphs was studied in this context and resulted in a for-
mulation of their properties in a mixed statistical and graph-theoretical
terms. The possibility of obtaining the said properties from simple graph-
construction rules led to Watts-Strogatz, Albert-Barabasi and other self-
organisation-driven graph models [Albert & Barabasi 2002].

The above cases are vital extension of the random graph theory. While
the graph theory dates back to XVII-th century, the random graph theory is
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connected to work of Erd®s and Rényi from the half of the twentieth century
[Erd®s & Rényi 1959]. The branch sets out to analyse graphs, which are too
large to be precisely described by sole quantitative features. The list of exam-
ples includes, but is not limited to linguistic networks [Kello & Beltz 2009],
metabolic networks [Csemely 2009], co-authoring, co-starring, acquaintance-
ship, power lines etc. Note that, all of these are not a result of strictly
supervised process, quite opposite � they spontaneously evolved into their
�nal shape (and in some cases they still evolve).

Analyses of their properties led to rapid development of the random graph
theory in the second half of the twentieth century. Due to gigantic sizes and
almost continuous growth, they required a description in qualitative rather
than quantitative terms. For instance shape of the degree distribution of the
vertices, instead of �xed numbers. The uniform or gaussian structure would
seem natural for such graphs, but they turn out to be highly hierarchical. As
a result their degree distributions are frequently characterised by heavy tails
of high values. Such sort of behaviour is preserved throughout all ranges of
scale and therefore is referred as scale-invariance or scale-freeness.

Another frequently examined feature is high global and local 'e�ciency'
of the network along. The global one � a characteristic path length is related
to number of edges, needed to reach any pair of vertices, the local one � a
clustering coe�cient is derived from the presence of local clique structures
in the graph. Clearly, the both concepts are trivial in full graphs, however
most of the empirical networks are sparse. Despite their sparsity most of
reports in large-scale graph con�rm short average path length and high local
clustering.

This phenomenon is best known in social networks as so called six hand-
shakes distance. As the name suggests the maximum distance between any
pair of people is six handshakes, which means one can pass a message for
anyone just by at most �ve middle-men of which the sender knows the �rst
one, the �rst middle-man knows the second one, etc. and the last one knows
the recipient. This phenomenon was deeply studied in the twentieth cen-
tury [Gurevitch 1961] and led to the development of the small-world graph
concept [Watts & Strogatz 1998].

In 2004 the empirical data obtained from human brain activity was anal-
ysed with random graph theory tools. Eguiluz et al. con�rmed the scale-free
dependencies in activity graphs obtained by functional magnetic resonance
imagining (fMRI) devices from human patients [Eguiluz et al. 2005]. While
it was neither �rst nor the last power-law report, it brought the attention
of neuroscientists to the notion of random graphs. In addition, it raised the
problem of distinction between the functional and structural brain networks.
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More precisely the availability of some component (a neural cell, a synapse,
etc.) in brain structure does not indicate, that it is always used during the
dynamics. This is due to a unsupervised dynamics process and brain plas-
ticity, which is mandatory for learning. Hence this is the point, there the
notions of self-organisation in neural networks and random graphs meet.

1.3 Thesis structure

The dissertation is organised as follows.
In Chapter 2 we brie�y sketch the main concepts of the random graph the-

ory, which will be used in following chapters. We provide a formal de�nition
of characteristic path lengths, clustering coe�cient and other mathematical
tools, which are used to provide a qualitative description of large scale net-
works. Finally, we de�ne the Erd®s-Rényi and construction-based random
graph models, and discuss their properties.

In Chapter 3 we provide a brief reiteration of arti�cial neural networks,
in whose context an activity-�ow model will be built and analysed. We list
classical spiking (Hodgkin-Huxley, Quadratic Integrate-and-Fire, Izhikevich)
and �ring-rate (perceptron, feed-forward, Hop�eld networks) models of neu-
rons and networks. The chapter is concluded with a summary of the state of
the arts in contemporary neuroscience.

In Chapter 4 the main results of the thesis is discussed. We de�ne a
simpli�ed activity-�ow model in the recurrent network, discuss the geometri-
cal embedding and formulate the stochastic dynamics. Then we discuss the
scale-freeness and small-world phenomenon in the activity-�ow graph, and
compare these results to those obtained in medical counterparts from fMRI
data.

Finally, we summarise our results in Chapter 5 and point out potential
aims of forthcoming researches.

Technical remarks, focused mainly of parallelisation, are outlined in Ap-
pendix section.



Chapter 2

Elements of random graph theory

In this Section we formulate the basic elements random graph theory, which
branched out from the graph theory in the mid of twentieth century. We
provide a formulation and properties of Erd®s-Rényi model, discuss the char-
acteristics of the random graphs and brie�y list contemporary models, which
will be used in analyses of the small world phenomenon and scale invariances
analyses in further chapters.

For any additional information concerning random graphs the reader is
referenced to the monograph [Chung & Lu 2006]. Note, that the 'classic'
graph theory is deliberately omitted and should the reader require such
knowledge, we reference him to handbooks for instance [Deistel 2006] or in
the case of algorithmic applications to [Sysªo et al. 2006].

2.1 Random graph theory

The 'classical' graph theory dates back to XVIII-th century and Leonhard
Euler. As the technical development continued, the analysed graphs became
larger and larger and reached the point, where they turned out too complex
to be analysed quantitatively.

In second half of the twentieth century, a Hungarian mathematician Paul
Erd®s looked on large-scale graphs in a statistical way. Having assumed that
the edges appear randomly, he analysed probability that a graph is connected
[Erd®s & Rényi 1959], its degree distribution etc. With his numerous works
he laid foundations of the random graph theory. This branch of mathematics
has been developing quite rapidly since then, �nding its applications in real-
world large scale networks modelling and being extended onto more elaborate
models.

Among the most characteristic �gures used to describe random graph one

13



14 Chapter 2. Elements of random graph theory

can mention the degree distribution, characteristic and maximal path length,
clustering coe�cient etc.

2.1.1 De�nition of the ER model

De�nition Let n ∈ N≥1 and p ∈ (0, 1). A Erd®s-Rényi random graph with
n vertices and probability p is a graph G = (V , E), where V = {1, ..., n} and
each edge is added independently with probability p � ∀u,v∈V P({u, v}) ∈
E) = p.

Erd®s-Rényi graphs assume almost complete homogeneity in the network
with little, to no variety of the vertices. On one hand this makes the model
relatively easy to analyse and implement. On the other, mathematical mod-
els based on this graph might turn out to omit subtle dependencies such as
hierarchy or outsiders. In addition ER model assumes a static graph be-
haviour. Nonetheless, the ER model is still a useful tool for analyses of the
real-world processes.

2.1.2 Random graph characteristics

Degree distribution

De�nition The degree distribution of the graph G = (V , E) is a discreet
probability distribution of the degrees of the graph vertices

P(deg(v) = k). (2.1)

When a graph is given (for instance a real network) the notion is a bit
abused and applied to empirical degree distribution or normalised histogram
of the vertices.

With size of the graphs approaching in�nity, the degrees can also became
large. Some features like average connectivity (assuming the distribution has
�nite mean value) can be inferred from the degree distribution. With some
additional assumptions one can tell if the graph is connected.

Characteristic path length

A path in graph is de�ned as:

De�nition A path in graph G = (V , E) between vertices u and v is a se-
quence of distinct edges puv = (e1 = {u1, v1}, e2 = {u2, v2}, ..., ek = {uk, vk}),
such that: u1 = u, vk = v, ∀i=1..k−1vi = ui+1 and ∀i 6=jui 6= uj, vi 6= vj and
∀i=1..kei ∈ E .
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De�nition A characteristic path length in graph G = (V , E) or an average
path length is de�ned as an average of the shortest path lengths between any
pair of vertices in V . We denote it as l(G) or simply l.

De�nition A maximal path length in graph or graph diameter G = (V , E)
is de�ned as an maximum of the shortest path lengths between any pair of
vertices in V . We denote it as d(G).

The characteristic path length can be used as rigorous formulation of
so-called six degrees of separation phenomenon, which was noticed in early
XX-th century. First, it was related to general social graphs, with people as
vertices and an event of exchanging a handshake as an edge [Csemely 2009].
The famous 'six degrees of separation' term estimates the l of the hand-
shake graph for the whole planet to be 6. These results have been partially
con�rmed with survey analysis [Gurevitch 1961] and Monte Carlo simula-
tions, new researches carried on the Facebook social graphs also con�rm this
hypothesis [Ugander et al. 2011], we should however note, that the precise
results for such wide population have not been calculated yet.

Humble attempts were made to calculate this value for smaller, specialised
graphs, of which the best-known examples are scienti�c collaboration and
actor co-starring graphs. In the former the edge is de�ned as a co-authorship
of at least one scienti�c publication [Barabasi et al. 2002], in the latter �
the event of casting in at least one cinema �lm [Herr et al. 2007]. Pretty
much as in previous researches, the characteristic path lengths turned out to
be short compared to the size of the sample. In 1998 Barabasi et al. obtained
l ' 9 for mathematical collaboration graph, consisting of over 70 000 authors.
While this is above 6 one should keep in mind that, this is still a subgraph of
the social network and the lifetime of mathematical productivity is shorter
than the lifetime of acquaintanceship.

Rapidly and quite spontaneously developing Internet soon became a cen-
tre of attention for graph scientists. The directed nature of the hyperlinks re-
quires to separately consider input and output interlinks in documents, which
in graph term needs input degin(v) and output degrees degout(v). Nonethe-
less, despite its directed nature, the characteristic path length in World Wide
Web is still orders of magnitude lower than the network size. Albert et al.
obtained l ' 19 for a sub-network of WWW counting over 3 ·105 documents,
see [Albert et al. 1999]. As mentioned above, Ugander et al. analysed social
graph of Facebook counting 721 · 106 active users and obtained l ' 4.3, see
[Ugander et al. 2011].

Recent research with set out to analyse characteristic path length in func-
tional graphs of brain activity. The obtained value l was roughly between
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2.5 and 11, which is still a very low result, see [Basset & Bullmore 2006].
It is worth emphasising, that fMRI imagining o�ers low-to-medium spatial
resolution and the amount of obtained functional areas was not particularly
high.

The short characteristic path length implies a high average e�ciency of
the transport throughout the network (the diameter can be taken as a pes-
simistic e�ciency). One should however tell the di�erence between existence
of the short path, �nding a proper next point on the route, while knowing the
local network only and �nding the shortest path with knowledge of the whole
network. Clearly the latter is a polynomial time problem [Sysªo et al. 2006].
The former is a subject of heuristic techniques [Russel & Norvig 1995] and
whenever possible substituted with a full data collection and a classic search
algorithm. For instance the BGP and OSPF routing protocols, except for
transmitting packets, gather and exchange routing information in order to
�nd the best path [RFC 4271, RFC 2328].

Clustering Coe�cient

De�nition A clustering coe�cient of the node v ∈ V is de�ned as a frac-
tion of all edges present in neighbourhood of v to all possible edges in the
neighbourhood.

C(u) =
|{(w, v) ∈ E : (u,w) ∈ E ∨ (u, v) ∈ E}|

|{w∈V:(u,w)∈E}|(|{w∈V:(u,w)∈E|−1)
2

(2.2)

De�nition A clustering coe�cient of the graph G = (V,E) is de�ned as as
an average of all clustering coe�cients of the graph vertices.

C =
1

|V |
∑
v∈V

C(v) (2.3)

The clustering coe�cient has a clear interpretation of local cliquishness
or local transport e�ciency of the graph. E�ectively, it describes how well
is the graph connected in the neighbourhood of the vertices. The full graph
Kn has its maximum value C = 1. The empty graph, all trees and forests
(unions of trees) have the lowest possible C = 0. Regular lattices (except
for rectangular grid) usually have relatively high local clustering coe�cient
despise being arbitrary sparse.

Since the diagonal of the cube of the adjacency matrix B = [bij]
n
i,j=1 = A3

consists of numbers of closed paths of length 3 the clustering coe�cient can
be calculated as:

C(vi) '
2bii

degi · (degi − 1)
. (2.4)
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Another scheme after [Newman et al. 2001]

C ' 3(number of closed triangles)

number of paths of length 2 edges
. (2.5)

In sociological terms clustering coe�cient is an equivalent to a close ring of
friends, of who everyone is familiar with each other. As a result, the clustering
in social and collaboration network is known to be high [Barabasi et al. 2002].
Quite similar results were obtained in already mentioned analyses Facebook
graph, see again [Ugander et al. 2011].

High clustering might seem to a�ect short path length in graph. It means
that lots of edges are 'wasted' in the neighbourhood, which is already con-
nected, 'e�ectively' reducing the path by just one edge. It is worth noting
that both �gures are independent, and one can generate graphs with var-
ious combinations of these values. For instance, regular triangular lattices
tend to have high clustering and large average path length, while balanced
binary trees have low clustering and short path lengths. The full or nearly
full graphs have large C and very short diameter. More random and less
'degenerate' examples are provided further in this chapter.

In case of adapting the clustering onto the collaboration graph (computing
nodes, human collaboration) the high C would suggest an existence of local
cooperation or competition. Thus, when designing the network architecture,
this �gure can on one hand denote a 'global' local communication, i.e. every
vertex communicates with large number of neighbours, but on the other
suggests a natural aggregation of vertices into a larger unit (for instance
scheduling computing tasks onto a single node, in order to reduce the network
communication).

2.1.3 Properties of the ER graphs

Below we provide basic facts about Erd®s-Rényi graph.

Average connectivity The average connectivity in ER model is 〈k〉 =
p(n − 1), where p is connectivity probability and n = |V| is a number of
vertices.

Connectedness For p < 1
n
the graph is almost surely disconnected, built

from small trees and uni-cyclic structures of size O(log n). For p > 1
n
the

graph almost surely consist of one large connected component of size O(n)
and small components of size O(log n). The large one is unique and referred
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to as a giant component . Additionally for p > c+logn
n

, for c > 1 the graph is
almost surely connected.

For p = 1
n
the structure is quite complex. The graph is almost surely

disconnected, but as p passes 1
n
the small components merge into a large one

of size O(n2/3).

The proof can be found in the work of Erd®s and Rényi, see
[Erd®s & Rényi 1959]. The estimations concerning size of the components,
also for wider ranges of p, are available in [Chung & Lu 2006] in Chapter 5.

(a) p = 0.8
|V| (b) p = 1.0

|V|

(c) p = 1.2
|V|

Figure 2.1: A raise of the large component in Erd®s-Rényi random graphs,
while the connectivity probability p passes the value 1

|V| . All the graphs count
approximately 3200 vertices and were remapped onto a circle. For the case of
visibility all the separate vertices were removed from the plot, they constitute
roughly a fraction of 1

e
of the whole set of vertices V . The largest component

is marked with dark colour.
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Degree distribution One can easily calculate the degree distribution in
ER model. Since the probability of edge addition is identical and indepen-
dent, the resulting σ-�eld for the vertex degree is a product of n− 1 σ-�elds
of additions of incident edges. All of these have zero-one distributions with
probability p, so their sum has a binomial distribution B(n− 1, p). Asymp-
totically, for large n and the probability p, such that np → λ, the degree
distribution becomes poissonian P(np).

Average path length Assuming the graph is has a giant component (for
p > 1

n
), its characteristic path length grows logarithmically with the number

of vertices

l ∝ lnn

ln〈k〉
=

lnn

lnnp
. (2.6)

The proof was provided by Chung and Lu in [Chung & Lu 2001], some
more results concerning concentration of the length distribution can be found
in their monograph [Chung & Lu 2006].

Clustering coe�cient Quite similarly one can estimate the clustering co-
e�cient for ER graph. Due to independence of edge addition, in the neigh-

bourhood of sizem there can be at most
m(m− 1)

2
edges, of which an average

fraction of p is added to E . Hence, the expected clustering coe�cient of any
vertex is

C(v) =
m(m−1)

2
· p

m(m−1)
2

= p (2.7)

and the expected clustering coe�cient of the whole graph is still p.

2.2 Scale-free phenomenon in graphs

A power law probability distribution is a distribution for which P(X = k) ∝
xγ, γ < −1, and in terms of continuous measures with its density function
dX(k) ∝ kγ.

The clear distinction from poissonian (discreet), exponential or gaussian
(continuous) distributions is a lack of exponent term in the formula (pois-
sonian distribution formula has a factorial in its denominator). Hence the
decay rate of the power law distribution is much slower. As a result the mass
of the distribution is skewed towards large values, while in the case of expo-
nential distribution large values are so rare that they are taken as 'outsiders'.
Figure 2.2 presents shapes of power-law and exponential distributions, note
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Figure 2.2: A comparison between power law k−2 and exponential c ·exp(−k)
distributions. Each of highlighted parts contains 50% mass of the sample. For
power law these are 380 best values (out of 105), for exponential distribution
roughly 18.6 · 103 best values (again out of 105).

that the plot is renormalised for visibility purposes. It is not hard to see that

a f(x) =
1

xk
function, when plotted in double logarithmic scale looks like a

straight line, this fact is sometimes useful when estimating the distribution.
Clearly the power-law distributions may fail to have variance or even the
expected value (for −2 ≤ γ < −1).

Upon translation of this considerations onto a graph theory (a power-law
or scale-free graphs) most frequently the (input) degree of the node is taken
as the random variable.

De�nition A random graph is scale free if its degree distribution follows a
power law

P(deg(v) = k) ∝ kγ, (2.8)

where γ < −1 and v is a randomly selected vertex of the graph.

The notion of scale-freeness in graphs was brought into attention in
[Barabasi et al. 1999]. One should keep in mind, that the scale-freeness can
be de�ned as an independence from spatial and / or temporal scale of the
graph, i.e. regardless of size, all its sub-graphs should yield the same shape
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of the degree distribution. This more generalised de�nition is provided by
Chung and Lu, though it is not so useful to decide whether or not the graph
is scale-free, see [Chung & Lu 2006].

A quick example for losing the properties on scale changing, let us con-
sider an random graph G with n vertices and the independent probability
of edge inclusion p (see also Section 2.1.3). For p > 1

n
the graph is almost

surely composed from a single giant component and small number of separate
vertices [Erd®s & Rényi 1959]. Let us consider G1 � induced subgraph of G
with m � n vertices. If 1

n
< p < 1

m
than G1 becomes almost surely discon-

nected and composes from small separate components, see ibidem. Hence,
the selection of the scale can dramatically a�ect the properties of the graph.

2.3 Contemporary random graph models

2.3.1 Watts-Strogatz random graph

This model was put forward in 1998 and was accompanied by �rst formal no-
tions of clustering coe�cient and small-world graphs [Watts & Strogatz 1998,
Watts 2004]. The main motivation was the inability of ER model yo yield
a high clustering without losing its sparsity. To address this problem Watts
and Strogatz developed a graph model with �xed number of vertices and
edges, but heavy reliant on random rewiring.

De�nition Let G = (V , E) be a regular graph with n vertices organized
into unit ring each connected to k nearest neighbours. A Watts-Strogatz
random graph with rewiring probability p ∈ [0, 1] is obtained from G by
applying a rewiring procedure independently with a probability p to every
edge present in E . Rewiring removes the current edge from the graph and in-
cludes another one, picked randomly with uniform probability, but excluding
multi-connections and self-loops.

Degree distribution If the target vertex of the rewiring is picked uni-
formly, the degree distribution is approximately binomial, with the variance
falling with p. Clearly, for p = 0 the distribution degenerates at number of
connected nearest neighbours in starting phase P(deg(v) = k) = 1.

Path length and clustering The starting graph with the topology of
periodic lattice has high clustering (for k > 2) but its diameter is large

(approximately d ' n

k
). The aim of the rewiring part of the construction



22 Chapter 2. Elements of random graph theory

(a) p = 0, k = 6 � regular lat-
tice.

(b) p = 0.3, k = 6 � small
world.

(c) p = 1, k = 6 � a random
Erd®s-Rényi graph.

Figure 2.3: A plot of three Watts-Strogatz random graphs with various
rewiring probabilities p.

is to create small number of 'short-cuts' in the graph without damaging
its local clustering. Clearly for p = 1 the model is equivalent to ER model
with connection probability equal to average connectivity (except for the fact
that the number of edges is exactly equal to the theoretical value) and the
clustering structure is destroyed in the process. On the other hand, for p = 0
the model leaves prede�ned regular graph unaltered with large path length.
Both situations depend on the rewiring probability and seem to oppose each
other, large p increases the chance of the short-cut, while small p preserves
local structure. Contrary to these expectations, Watts ans Strogatz found
quite a long range of p, for which the average path length l is short and the
clustering coe�cient C is high.

This sort of regime of e�cient global transfer and local connectivity is
referred to as small-world phenomenon.
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2.3.2 Albert-Barabasi construction scheme

In 2002 Albert and Barabasi put forward a graph model which accounts for
continuous evolution, clearly inspired social and World Wide Web networks,
see [Albert & Barabasi 2002]. Their model assumes two vital features, which
are present in real large scale network � a growth and preferential attach-
ment.

De�nition Albert-Barabasi random graph generation scheme starts from
small regular graph (for instance a single vertex) and iteratively performs
two actions according to following mechanisms:

• growth adds a single new vertex v to the graph,

• preferential attachment randomly wires the newly added node to the
graph with the probability of choosing a pairing node equal to

P({v, u} ∈ E) =
deg(u)∑
w∈V deg(w)

. (2.9)

An example of graph constructed by Albert-Barabasi scheme is depicted in
Figure 2.4. The growth re�ects an ubiquitous property of the networks, that
they are not rigid structures, and new vertices are born with higher or lower
frequency, for instance new Internet sites or young authors of scienti�c pub-
lications. The model gradually gains popularity and is applied for modelling
connectivity patterns in researches concerning cellular automata or interac-
tion in game theory, for instance [Matuszak & Mi¦kisz 2011].

The preferential attachment is a step towards winner-take-most postulate.
Indeed the existing vertex with high popularity is way more probable to gain
new neighbour (depending on the network: citation, hyperlink, associate,
etc.) rather than completely unknown one.

The model yields a degree distribution which is a power law with exponent
value approximately equal to −3. By modifying the generation scheme one
can (asymptotically) obtain any exponent below −2. Some alterations to the
growth result in exponentially truncated power law or strictly exponential
degree distribution. Below we provide a sketch calculation of the obtained
probability distribution after [Albert & Barabasi 2002].

Denote time as t, time of addition of node vi as ti, a degree of vertex
vi at time t as ki(t), number of new connections introduced along with the
new vertex as m, initial number of vertices as m0. Due to the preferential
attachment, by considering the time-scale to be continuous we can estimate
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Figure 2.4: A plot of Albert-Barabasi random graphs with two edges added
per vertex in preferential attachment. The vertices were added counter-
clockwisely starting from right.

the rate of obtaining a new edges as
dki
dt

=
ki
2t

ki(ti) = m

. (2.10)

The scalar 2 in denominator roots from two 'degrees' being added per edge.
The set of equations gives ki(t) = m

√
t/ti. Now we calculate the probability,

that the degree of vi is less than k

P(ki < k) = P(ti > m2 t

k2
). (2.11)

Here we assume that the vertices are added towards the system with uniform
distribution. Now we obtain

P(ti > m2 t

k2
) = 1− P(ti ≤ m2 t

k2
) = 1− tm2

k2(t+m0)
. (2.12)

For large graphs t→∞ and t
t+m0

→ 1 and we obtain

P(ti > m2 t

k2
) = 1− m2

k2
. (2.13)

Finally, we di�erentiate over k (P(k) := dP(ti ≥ k)/dk) in order to obtain
the distribution (instead of its cumulative form):

P(k) ' −(−2)m2

k3
. (2.14)
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Which results in power law degree distribution with the exponent value γ =
−3.

�

The number of edges grows linearly, while the preferential attachment
leads to appearance of hubs � vertices with large number of connections
which greatly reduce the number of hops necessary to reach other vertices.
Thus, pretty much like Watts-Strogatz, the Albert-Barabasi graph model can
generate sparse graph with short-diameter. More formally, the characteristic
path lengths of the AB model is proportional to logarithm of the number of
vertices n:

l ∝ lnn

ln lnn
. (2.15)

Additionally, the obtained graphs tend to have relatively high clustering.
To our knowledge, this value has not been calculated analytically (see again
[Albert & Barabasi 2002]), however the numerical estimation suggests that
the clustering decays as

C ∼ n−
3
4 . (2.16)

2.4 Critical regime and power laws

Complex systems and large networks frequently undergo their unsupervised
dynamics and reorganisation process. Such self-organisation requires an
abundance of degrees of freedom available in the system [Chialvo 2004].
Their evolution dramatically di�er from carefully designed devices, comput-
ers for instance, where there is almost no freedom left in command execution
protocol. On the other hand, complex systems as landslides [Bak et al. 1987]
are energy-driven and tend relieve the force in order to reach local energy
minimum.

Even more striking, the newly reached minimum is barely stable. It is
like staying in the local minimum at the border of two regimes. Hence, the
complex system can operate in such critical point for quite long time.

For instance, human brain has a constant moderate activity even during
its 'idle' phases. The activity may raise for an instant as a result of input
stimulus, but it will not explode and neither vanish. Any of these cases would
lead to a disaster. Vanishing of all the activity would lead to ceasing of
cognitive abilities, as the brain would not be able to reignite the information
�ow. On the other hand, in extreme situation an over-excitation would cause
fast chaos propagation and as a result malfunctioning of the whole brain and
epilepsy.
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As a counter-example, a computer in its 'critical state' (i.e. high load of
tasks), either becomes blocked by vast amount of long computations or com-
pletes them (or aborts in order to save system stability) quickly to become
idle again. Neither of these cases is critical in the sense discussed above.

Except for the di�erent scales, this seems to be held in mathematical
models of spiking neurons (see Section 3.2). The sophisticated set of equa-
tions, describing the dynamics admit the coexistence of two or more di�erent
states of the neuron: resting and spiking. The resting state is (barely) stable,
so in the absence of external stimuli the neuron tends stabilise in it. However,
after an application of relatively low input current the dynamics leaves the
resting state and performs a cycle of rapid increase and drop of voltage on
the membrane of the neurons (which corresponds to spike generation) and
again returns to the resting state, for detail see [Izhikevich 2007]. In this case
a single neural cell operates in critical or nearly critical dynamics (close to a
bifurcation of the dynamics).

Another example is stochastic Boltzmann machine dynamics,
see [Ackley et al. 1985] and Section 3.3.3 of this dissertation. In a �xed high
temperature regime the network acts completely at random, in a low tem-
perature the dynamics freezes in a local or (hopefully) global minimum. Al-
though, there exists a small range of temperature in which the dynamics be-
comes complicated and the obtained temporal correlation activity graph be-
comes asymptotically scale free [Fraiman et al. 2009]. This, however, occurs
for rather carefully tuned temperature variable, while in most of complex sys-
tems the critical regime is approached spontaneously, see again
[Bak et al. 1987].

Quite frequently, the systems in their critical states are reported to exhibit
in some of their activity statistics a lack of characteristic scale and / or a
power low distribution in their activity. Recall, that a scale-free or scale-
invariant graph is a graph, whose degree distribution is the same as degree
distribution of some of its random subgraphs for various scales of its size
[Chung & Lu 2006]. The best known examples are graphs obeying a power
low degree distribution. Note, that one can also consider graph invariants on
spatial or temporal scales, see ibidem.

Eguiluz �ndings about scale-free networks in fMRI data may relate to a
criticality in human brain networks, see [Eguiluz et al. 2005]. The work of
Chialvo [Chialvo 2004] also account for this hypothesis. This behaviour has
not been fully understood yet, but it is believed that this phenomenon can
be a key to the understanding how the brain works.



Chapter 3

Mathematical models of neural

networks

In this section we brie�y sketch the state of the arts in the �eld of con-
temporary arti�cial neural networks, which are the very foundation of this
thesis. We reiterate various neural models heading for the simpli�ed and
mathematically tractable ones. Finally we recall the results of Pi¦kniewski
and Schreiber, which are the direct inspiration of our research aims.

Arti�cial neural networks are biologically-inspired mathematical models
for organic brain cells and nerve systems. Depending on desired accuracy and
available computing power they can vary in means of description from simple
weighted averages to dynamical systems of di�erential equations. Though the
expressive power of the single neuron is quite limited, the real capabilities are
at their peak when the neurons are connected into a complex network. The
interaction dynamics can again be expressed in terms ranging from vector
and matrices algebra to di�erential di�usion equations.

The aim of modelling of a neural cell and a whole brain is two-fold. First
one is development of said biologically inspired algorithms. Second is to shed
some light on the principles of the work of human nerve system, perception
and higher cognitive abilities.

3.1 Biological neural cell

Biological brain is the centre of the nerve system in animals and humans.
It consists of huge number of neural cells or simply neurons connected with
synapses. The number of neurons in human brain is roughly put at 1010−1011,
while the number of synapses 1014, which yields an average connectivity of
103 − 104 synapses per neuron, see [Russel & Norvig 1995]. This means, the

27
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the brain is a very sparse network.
If we were to compare this vast power to the Internet (a network of

computing units), we would conclude, that the whole WWW network, with
its 40 billion of webpages, slowly approaches a size of single human brain1.
Crude approximations of brain computing capacity vary between 1015 and
1018 FLOPS (�oating-point operations per second), that is 1 petaFLOPS to 1
exaFLOPS, see [Hilbert & Lopez 2011, Russel & Norvig 1995]. These num-
bers might be even more a�ected depending on the accuracy of the dynamics
and translating (or not) continuous neural activity into set of �oating-point
operations. As of the date of writing the top supercomputer achieved as
much as 10.5 petaFLOPS2. On the other hand the human brain operates at
the power far below 100W, while the every contemporary computing centre
requires a small power plant for calculation and cooling.

With some simpli�cations, each cell can be viewed as a small electric
circuit operating on ionic, rather than electric, current. The di�usion and
electrostatic potentials cause the current (mainly sodium, potassium, cal-
cium and chloride) to �ow through the cellular membrane, propagate along
the synapses and excite or inhibit neighbouring cells. These impulses or
spikes, or at least their �ring frequency, are believed to be the main mech-
anism of information passing in the nerve system. They are generated by
perception cells as a result of input (for instance visual) stimuli, transmitted
and 'processed' through the nerve system, �nally they reach e�ectors tissues
(for instance muscles) as a reaction to the stimuli.

An interesting and essential feature of the brain is its plasticity. It is
capable of altering its properties in order to adjust to the environmental
input. An explanation of learning in terms of altering the parameters of
neurons and their interconnections was postulated by Donald Hebb in half
of the twentieth century [Hebb 1949]. There is a common agreement, that
the learning process modi�es the strength of the synapses depending on the
activation of both pre-synaptic and post-synaptic neurons.

The understanding of the processes of thinking and other higher cogni-
tive processes is a long-time program, that may take decades, although some
modest achieves have been accomplished. For instance, recordings of audi-
tory cortex activity was applied to speech reconstruction by Pasley et al.,
see [Pasley et al. 2012]. Nishimoto et al. used fMRI recordings of visual
areas activity along with bayesian inferring for an image reconstruction, see
[Nishimoto et al. 2011]. Vast number of contemporary research in the �eld

1The data after http://www.worldwidewebsize.com. The methodology paper by Mau-
rice de Kunder Geschatte grootte van het geindexeerde World Wide Web is available in
Dutch at http://www.dekunder.nl.

2Information after http://top500.org/, valid as of date 2012.03.06.

http://www.worldwidewebsize.com
http://www.dekunder.nl/Media/Scriptie%20Maurice%20de%20Kunder%20-%20Grootte%20geindexeerde%20web.pdf
http://top500.org/
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of neuroscience sets out to shed some light at small pieces of the complex
dynamics and step-by-step add some scarce information to the knowledge.

3.2 Hodgkin-Huxley model

Historically the earliest neural cell model was named after Hodgkin and Hux-
ley. In the middle of the twentieth century they analysed the axon cell of the
giant squid Loligo. As a result of a several publications in Journal of Physi-
ology [Hodgkin & Huxley, 1952a, Hodgkin & Huxley, 1952b], the excitability
of the neural membrane was described in terms of dynamical system consist-
ing of a set of di�erential equations. The formulae of the functions and
values of the parameters were adjusted to make the system approximately
close to the biological data. Along with development of the neuroscience,
the system was put into use in neural simulations at voltage level. Here we
present the contemporary version of this system with adjustments suggested
by Izhikevich in his monograph [Izhikevich 2007].

The dynamics of the neural cell is described as a set of di�erential equa-
tions evolving with time variable t:

d

dt
V (t) = 1

C
(I − ḡl(V − El)− ḡNan4(V − ENa)

−ḡKm3h(V − EK))

d

dt
n(t) =

n∞(V )− n(V )

τn(V )

d

dt
m(t) =

m∞(V )−m(V )

τm(V )

d

dt
h(t) =

h∞(V )− h(V )

τh(V )

(3.1)

where V (t) stands for membrane voltage, n(t), m(t) and h(t) are gating vari-
ables. ENa, EK and El are rest equilibrium potentials for sodium, potassium
and leak currents respectively. I is an input current and C is a membrane ca-
pacitance. ḡNa, ḡK and ḡl are maximum conductivity of sodium, potassium
and leak ionic gates.

The n∞(V ),m∞(V ) and h∞(V ) are stationary gating functions of sigmoid
shape, see Formula (3.8). The τn(V ), τm(V ) and τh(V ) are unimodal speed
functions, which determine the convergence rates of the gating variables to
their stationary values.

The values of parameters, adjusted to �t the model to the data, are equal
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to (again after [Izhikevich 2007]):

ENa = 55mV ḡNa = 120mS/cm2

EK = −77mV ḡK = 36mS/cm2

ELeak = −55.4mV ḡLeak = 0.3mS/cm2

C = 1µF/cm2

(3.2)

The formulae of the rate-of-convergence functions:

τn =
1

αn + βn
n∞ =

αn
αn + βn

τm =
1

αm + βm
m∞ =

αm
αm + βm

τh =
1

αh + βh
h∞ =

αh
αh + βh

(3.3)

The formulae of the steady-state value functions:

αn(V ) = 0.01
10− V

exp(10−V
10

)− 1
βn = 0.125 exp(

−V
80

)

αm(V ) = 0.1
25− V

exp(25−V
10

)− 1
βm = 4 exp(

−V
18

)

αh(V ) = 0.07 exp(−V
20

) βm =
30− V

exp(30−V
10

) + 1

(3.4)

The main variable responsible for spiking is a membrane potential V , see
Figure 3.1. Gating variables play a secondary, but still important part of
auto-adjusting the in-�owing and out-�owing ionic currents.

Accurate though the system might be, a set of four di�erential equa-
tions turned out to be computationally demanding to simulate, in particular
the exponent functions present in steady-state and convergence functions,
which must be calculated every step. Therefore a number of simpler mod-
els were developed. Among the best known simpli�cations one can note a
persistent sodium and potassium (Na-K) model, quadratic integrate-and-�re
(QIF) model, FitzHugh-Nagumo, Izhikevich simple model etc. Some of them
will be discussed in Section 3.4. In the second half of the twentieth century,
in a pursuit for speed optimization the di�erential equations-driven dynamic
was abandoned in favour of easily implemented weighted averages such as the
perceptron, see Section 3.3.1. With the development of numerical methods
and parallel computing, the accurate spiking models made their comeback
into the neuroscience few decades later.
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Figure 3.1: A plot of Hodgkin-Huxley neuron model in periodic spiking
regime. Membrane voltage V has its scale on the left, while gating values
are between 0 and 1 (right scale was renormalised for better visibility).

3.3 Models of neural �ring rates

The spike sequences are sometimes a bit chaotic and hard to replicate ex-
perimentally. Hence instead of single spikes, a spiking frequency is more
frequently considered as a main information transfer mechanism. This is a
level of abstraction higher above the dynamics of a single synaptic impulse.

The �ring rate models describe the average activity of the neuron or even
the collection of neurons in response to external stimuli. They frequently
trade the accuracy of the spike generation for the computational e�ciency.
The result can be interpreted as a binary, discreet or continuous response to
the input signal. These models found their applications in various problems of
computational intelligence, for instance classi�cation and image recognition,
see Chapters 3�5 in [Bishop 1995].

3.3.1 Simple perceptron model

One of the most basic models of a �ring rate single neural cell is sim-
ple perceptron developed by Frank Rosenblatt in 1958, de�ned as follows
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[Rosenblatt 1958]:

De�nition A simple perceptron is a system consisting of n inputs x1, .., xn,
xi ∈ R, n + 1 weights w0, w1, ..., wn, wi ∈ R associated with the inputs
x0 = +1, x1, ..., xn and an activation or response function f : R→ R. Given
the input vector x̄ = [x1, .., xn], the perceptron returns a response equal to

Out(x̄) = f(
n∑
i=0

xiwi). (3.5)

The complexity of the model was dramatically reduced to a weighted
average over the input signal and computation of one response function f ,
which frequently is also not particularly demanding to compute. As a result,
the dynamics can be very quickly calculated even for �oating point argu-
ments. It is worth emphasising, that perceptron works synchronously i.e. it
returns its value immediately after all the input signals are available.

Assuming the step formula of the response function

f(s) =

{
+1 s ≥ 0
0 s < 0

, (3.6)

the perceptron acts an an integrator, namely it accumulates incoming im-
pulses and produces zero-or-one spike response. From the view of data min-
ing, the perceptron can be considered as a binary classi�er capable of assign-
ing the input data x̄ one of two complementary classes � class A, when the
input stimuli evoked a spike and class B otherwise.

Before the perceptron can be applied in computational intelligence prob-
lem, it must undergo a learning process. First class of learning algorithms
form the supervised or error correction. Their biological motivation might
be argued, as they require an external mechanism, which 'knows' the correct
response and can compare it to the obtained result. The examples of super-
vised learning algorithms are pocket algorithm ([Peretto 1994, Rojas 1996]),
back-error propagation [Werbos 1974] with their modi�cations.

The second class are unsupervised learning algorithms. Due to lack of
external control mechanism, the perceptron is taught by competition between
its weights. Hebb postulated that interactions between input signal and the
response lead to strengthening or weakening the e�ect of the connecting
synapse. Like a self-perpetuating loop, spikes along already strong synapse
cause their e�ect to be even stronger. The idea is referred as a winner-take-all
or competitive learning and widely used in learning algorithms as Hebbian
rule

wi := wi + η · xiOut(x̄), (3.7)
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out

Figure 3.2: A schematic �gure of the simple perceptron with a sign response
function.

where xi is the i-th input signal, wi is a weight of the synapse between the
cell and i-th input, Out() is a post-synaptic response and η > 0 is a learning
rate, [Hebb 1949]. Due to the numerical instability, the Hebbian rule was
later improved by Oja [Oja 1982].

3.3.2 Feed forward perceptron network

A directed, acyclic and topology sorted graph of perceptrons is referred as a
feed forward perceptron network . If two perceptrons v and u are connected
with a directed edge v → u, then the output value returned by v is a part of
the input signal for u with its associated weight ascribed to the edge.

In such simple case passing the information between neurons is reduced
to adding the output value of pre-synaptic unit multiplied by its weight to
the activation signal of the post-synaptic neuron. Assuming the vector form
of input x̄ and weights w̄, the response of the neuron is expressed as f(x̄trw̄),
where f is the response function.

The linear algebra is exploited even deeper in multi-layer perceptron
(MLP) networks. In this case the neurons are organised into pairwise dis-
joint layers. The �rst layer is referred as input layer and contains only the
input data. The last one is an output layer and the remaining are said to be
hidden.

The network connections are allowed only between neighbouring layers,
that is form l− th to l+ 1-th and are considered to constitute a full bipartite
graph. Let us denote X = [x1, .., xn] ∈ Rn as the activations of neurons in
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out

Figure 3.3: A schematic of multi-layer network with two hidden layers.

l-th layer, Y = [y1, .., ym] ∈ Rm � activations of neurons in l + 1-st layer
and W = [wi,j]i=1..n,j=1..m ∈ Rn×m � a weight matrix. The propagation of
data in the MLP network can be expressed as vector-matrix multiplication
Y = f̄(W trX), where f̄ stands for coordinate-wise application of the response
function.

By assigning the sigmoid formula of f

f(s) =
1

1 + exp(−βs)
, (3.8)

the response can be adjusted to be continuous function of the stimuli x̄.
This should not be uniquely interpreted as the spike or its lack, but rather
an average intensity of impulsing (hence the name � �ring rate). On the
other hand this sort of response function allows an application of gradient de-
scent algorithm to error-correction driven learning. The best known learning
algorithm for feed-forward networks is back error propagation developed in
PhD dissertation of Paul Werbos, [Werbos 1974]. However, it was not until
1986 and the work of [Rumelhart et al. 1986], when this algorithm became
popular.

The alternative paradigm is to build the network from scratch by sub-
sequent perceptron addition. Each addition is usually supposed to increase
the expressing power of the network up to the point, where all the training
examples are properly categorized. The literature [Peretto 1994] list pyra-
mid, tiling, up-start algorithms etc. They usually yield a more sophisticated
graph, but with still regular structure.
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3.3.3 Hop�eld network and Boltzmann machine

The Hop�eld network is a simple example of recurrent neural network for
�ring rate. Unlike feed-forward, recurrent networks admit cycles and self-
loops. This makes them more feasible to model biological systems. As a
matter of fact, restriction of acyclicness was needed to ease mathematical
tractability of the inferring and learning algorithms. For instance the back-
error propagation algorithm for recurrent network requires a few tricks like
'unfolding' it into few copies and proper selection of number of time steps
[Werbos 1990]. In the end, the recurrent network loses its uniformity, i.e. the
functionalities of some parts may be prede�ned during the network design
rather than learning process. Recurrent networks by their very de�nition
provide a support for a possible cyclic information propagation. Their main
issue is the stability of learning and reasoning process.

As described in [Hop�eld 1982], the Hop�eld network found applications
in solving constraint based problems. The network consists of n neurons,
each with binary spin σi ∈ {−1,+1}, for i = 1..n. In addition each neuron
has assigned bias hi ∈ R, which can be interpreted as innate preference of
the neuron towards a positive or a negative spin value. The neurons are
connected with all-to-all symmetric synapses. Each synapse has its weight
wij ∈ R, which describes its excitatory (when positive) or inhibitory na-
ture. In case of not-fully connected neurons, the 'weights' of not included
synapses are assumed to be zero. Though the self loops are not permitted,
the symmetric weights and clear lack of order of neurons make Hop�eld net-
work recurrent one, i.e. the information sent by a neuron can after some time
return to it (possibly modi�ed by a number of weights and thresholds).

For a given con�guration of the spins σ̄ = (σ1, ..., σn) we de�ne an energy
(or Hammilonian) of the network as follows:

E(σ̄) = −1

2

∑
i 6=j

wi,jσiσj +
n∑
i=1

hiσi. (3.9)

The energy function has an interpretation of total disagreement in the
network. In this case, a pair of neurons σi, σj, which are connected with
excitatory synapse wij > 0, 'prefer' to be in the same state (σi = σj), if the
weight is negative, they tend to be in opposite spins and the 'tendency' is
proportional to the absolute value of the weight. Additionally the bias can be
interpreted, as an intrinsic attitude of the unit towards positive (for hi > 0)
or negative spin.

The network dynamics iteratively swaps one or all, depending on the syn-
chronisation policy, of the spins in σ̄ obtaining new con�guration σ̄′ leading
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towards lower energy states. In synchronous case this can be written as

σ̄′ := sign(W · σ̄ +H ·coord σ̄), (3.10)

where W = [wij]
n
i,j=1 is a square weight matrix, H = [h1, ..., hn]tr is a bias

vector, sign() is a coordinate-wise sign function and ·coord is a coordinate-wise
multiplication of vectors.

In practical application, the spin con�guration σ̄ can be an encoded so-
lution of given discrete optimization problem. In such case the energy is ex-
pressed as a sum of quality component and penalty component. The quality
part is the value to be optimized, for instance the total length of the Ham-
miltonian cycle, see Figure 3.4. The penalty component can be interpreted
as an additional energy 'punishment' for violating the formal requirements,
given to the solution. In the case of Hammiltonian cycle this may happen
when the 'solution' encoded by the set of spins omits a town on its route, see
again Figure 3.4.

Figure 3.4: An application of Hop�eld network to Hammiltonian cycle prob-
lem. In this case there are four cities u1, ..., u4 to be visited. The con�g-
uration σ̄ has sixteen double-indexed spins. The spin σu,µ = +1 denotes
visiting the city u in step µ. Note, that the current solution σ̄ is not a strict
Hammiltonian cycle, as it omits the city u4, while u3 is visited twice.

Hinton, Ackley and Sejnowski developed a stochastic version of Hop�eld
network, see [Ackley et al. 1985]. It was called a Boltzmann machine after
Boltzmann distribution, which is a vital part of its theoretical background.
Despite similar structure of the network and, to lesser extent, its dynamics,
the Boltzmann machine theory is based on Markov Chain [Markov 1971] and
is inspired by thermodynamics [Newell & Montroll 1953].
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While the dynamics of Hop�eld networks is vulnerable to local energy
minima, stochastic evolution of Boltzmann machines allows to jump to higher
energy con�guration and, by extension, to leave a suboptimal solution.

The dynamics accounts for a stochastic nature of the particles. The new
con�guration σ̄′ is obtained from previous σ̄ by swapping a random spin σi.
Then σ̄′ is accepted as new state of the Boltzmann Machine if it causes the
energy to drop or with the probability P = exp(−β(E(σ̄′)−E(σ̄))) otherwise
(when E(σ̄′) − E(σ̄) ≥ 0) and is rejected with complementary probability.

The parameter β > 0 stands for an inverse temperature, β =
c

T
, where T ≥ 0

is a temperature.

For the zero temperature T = 0 (in�nite β) the dynamics Boltzmann
machine is the same as in asynchronous Hop�eld network. On the other hand,
for T asymptotically approaching in�nity (β approaching 0) the dynamics
becomes chaotic � namely every single con�guration σ̄′ is accepted and the
system becomes a white noise. Clearly both these extreme cases do not occur
in thermodynamics.

en = -135.402667

(a) High temperature.

en = -7368.290667

(b) Low temperature.

Figure 3.5: Boltzmann machines in low and high temperature regimes.

In addition, the Boltzmann machine can be adjusted to account for multi-
valued spins, as presented by Lin and Lee [Lin & Lee 1995]. Another mod-
i�cation can be found in Chapter 4 in the de�nition of the activation-�ow
model.
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3.4 Spiking models

In this section we brie�y list models which generate spikes, rather than mea-
sure average spiking activity. They o�er a bit more precise description of
the cell, but frequently at the expense of the time cost. Some drawback
of spiking models is lack of understanding and shortage of theoretical back-
grounds for learning algorithms, which would put such systems into a use in
computational intelligence.

3.4.1 Integrate-and-�re models

A leaky integrate-and �re (LIF) model is one of the simplest model of neural
activity in terms of di�erential equation. It describes a dynamics of mem-
brane voltage in terms of di�erential equation:

d

dt
V = I − gL(V − EL)

if V ≥ vthresh , then produce a spike; V := vreset

(3.11)

A word of explanation is needed here, as LIF is not actually a spiking
model. To be more precise � it can only model the voltage at sub-threshold
regime. Upon hitting its threshold value vthres it is said to 'produce a spike'
and than simply resets the voltage V . The dynamics does not replicate
neither a rapid raise (depolarisation) nor the downfall (repolarisation) of the
voltage.

Its simple extension is quadratic integrate-and-�re (QIF) neuron model
[Hansel & Mato 2001]. Similarly, the only equation describes membrane volt-
age, but a quadratic term does allow the system to produce a fast upstroke.
However it is still unable to produce a re-polarisation (bringing the volt-
age down after the rise) of the membrane, hence the presence of conditional
resetting.

In LIF hitting the threshold value indicates a production of the whole
spike, while in QIF it is substitution only of the downstroke mechanism.

d

dt
V = V 2 + I

if V ≥ vthresh, then V := vreset

(3.12)

The voltage V dynamics during the simulation of QIF model is presented
on Figure 3.4.1. Note, that the instantaneous drops of the membrane po-
tential are an e�ect of 'manual' resets. Otherwise the voltage would grow to
in�nity in �nite time.
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Figure 3.6: A plot of voltage variable in response to input stimuli in quadratic
integrate-and-�re neuron model. Membrane voltage V , vthresh and vreset
are marked on the left scale. Input current on the right scale.

The major �aw of both models is their inability to mimic any sort of
spiking pattern, other than integrator and cyclic spiking, see discussion in
[Izhikevich 2007].

3.4.2 Two-dimensional models

By adding a second equation to the dynamical one can obtain a cyclic be-
haviour patterns, which can model both voltage upstroke and downfall with-
out a need of manual voltage adjustments. Here we provide two brief exam-
ples of such models.

An instantaneous sodium plus potassium neuron model accounts for two
simpli�cations from Hodgkin and Huxley set of rules, see Section 3.2. First
one is making sodium current instantaneous, which removes the necessity of
gating variable m. Additionally the inactivation potassium gate h is also
removed.
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Figure 3.7: The dynamics of instantaneous sodium and potassium neuron
model: (a) phase portrait, (b) spike origination.
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The model is described by a following set of di�erential equations:

d

dt
V (t) = 1

C
(I − ḡl(V − El)− ḡNam∞(V )(V − ENa)

−ḡKn(V )(V − EK))

d

dt
n(t) =

n∞(V )− n(V )

τn(V )

(3.13)

The functions n∞(),m∞(), τn() have the same meaning and formulae as
those in Hodgkin-Huxley model, see Equations 3.1.

Compared to QIF model the Na-K is a two-dimensional (it is described
by two variables: V and n). As a result it can produce a spike as continuous
response of the system to external stimulation, without 'hand-made' resets.

By adjusting its parameters it admits an existence of dramatic qualitative
phase space shifts, also referred as bifurcations. This allow to change the
spiking pattern by gradually changing one or more of the parameter values.
In addition the number of replicable spiking regimes is larger, compared to
QIF.

The major drawback of this model is still its computational complexity. It
requires a computation of two exponent functions at each step of numerical
Euler simulation. This makes it hard to use in real-time neuro-dynamic
models.

A FitzHugh-Nagumo model was developed in 1961 [FitzHugh 1961] as a
simpli�ed version of a neuron. The dynamics is described by a following set
of equations: 

d

dt
V (t) = V (a− V )(V − 1)− w + I

d

dt
w(t) = bV − cw

(3.14)

V is, as before, a membrane voltage, w stands for recovery current, I is an
input current, a and b are parameters. When compared to ionic current
models, the right-hand side of the equation for V was approximated with a
cubic polynomial and w with a linear function. Despite those simpli�cations,
the model is still capable of generating a spiking responses to the input stimuli
described by current I. This idea of getting rid of computationally expensive
functions was further used in the development of simple neuron model.

3.4.3 Izhikevich simple model

In a pursuit for accurate and e�cient description of spiking process, a mathe-
matician Eugene Izhikevich developed a simple neuron. It was �rst published
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in his work in 2003, see [Izhikevich 2003]. This is a sort of phenomenological
neuron, in other words it has not been derived from a biological system, but
simple dynamics and parameters were adjusted in order to match biological
recordings. The dynamics is still expressed in terms of di�erential equations
system, but number of equations is kept at two, in addition all divisions and
exponential functions were done away with, in order to facilitate the com-
putation on �oating-point arithmetic. To compensate a non-linear if-clause
was added to the dynamics.

The model is de�ned as follows:
dV

dt
= I + 0.04V 2 + 5V + 140− u

du

dt
= a(bu− V )

if V ≥ 30 V := c; u := u+ d;

(3.15)

where V is a membrane voltage potential and u is a dimensionless membrane
recovery variable. a, b, c and d are parameters. The values for the case of
regular spiking cell modelling the dynamics of cortical pyramidal cells of a
mammal (see ibidem):

a = 0.02
b = 0.2
c = −65(mV )
d = 2.

(3.16)

The parameter a stands for time scale of recovery variable u, b is its
sensitivity, c is after-spike hyper-polarisation reset value of the potential and
d denotes after-spike recovery of u.

The model and its properties were deeply studied in the monograph
[Izhikevich 2007]. The most signi�cant is an ability to mimic many of spiking
regimes, noted in the cortical cells including: regular spiking, integrate-and-
�re, resonate-and-�re, burst spiking, etc. In addition it can demonstrate
wide range of qualitative changes in the spiking patterns by manipulating
the parameters a, b, c and d.

The model found its applications in computational neurobiology, in large
scale networks, which require vast resources.

3.4.4 Cable equation

However complex the dynamics of the single neural cell might be, the capa-
bilities of single neuron are still limited. In order to put the models into a
good use, one must connect a number of neurons into a network. To achieve
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that, the network topology and inter-neural interactions need to be speci�ed.
The network topology is frequently described as a directed (or not) graph,
see Section 2. Pretty much as the variety of neuron models, the inter-neural
dynamics can also be described in a number of means. In this section we
present the best recognised.

The di�usion equation is a dynamical system model for heat di�usion in
solid objects. In this case it was adapted to model the di�usion of voltage
along the membrane surface. The equation formula is

C
∂V

∂t
=

2a

R

∂2V

∂x2
+ I − INa − IK − IL, (3.17)

where C stands for capacitance, a is a radius of the cable, R is a resistivity of
the material, x is a geometrical coordinate, t is a time and of course the heat
T was substituted with voltage V . In addition we account for ionic currents
INa, IK, IL and external input current I.

-90 mV

+60 mV

0 mV

Figure 3.8: Propagation of the spike on the membrane surface with toroidal
topology according to the cable equation dynamics.

The system is mainly used for impulse propagation along the membrane
in axon or dendrite tree, though it can also be used for computing a current
passed between the neurons, though there exist more elaborate means like
neurotransmitter simulations. Note, that the equation takes into account
spatial location of the cells. This makes the formula unsuitable for abstract
arti�cial networks without geometrical embedding.
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3.5 The state of the art in functional brain anal-

ysis

In 2005, Eguiluz in [Eguiluz et al. 2005] reported a power-law input de-
gree distribution in correlation-based activity graph obtained from func-
tional magnetic resonance imagining (fMRI) of natural brain activity during
execution of simple tasks. This phenomenon continued the trend of �nd-
ing scale free graphs (i.e. whose degree distribution obeys a power law
[Albert & Barabasi 2002]), which had been reported in linguistic networks
[Kello & Beltz 2009], www [Albert et al. 1999], social [Barabasi et al. 2002,
Ugander et al. 2011], metabolic [Jeong et al. 2000] [Wagner & Fell 2011],
computer programs [de Moura et al. 2003] etc. This somehow changed the
perception of the brain network. Rather than a set of random or prede�ned
all-to-all wires, a more hierarchical and functional-level based approach have
been gaining popularity.

In 2009 the �rst analyses of scale-free phenomenon in arti�cial recurrent
neural networks were carried by Pi¦kniewski and Schreiber [Pi¦kniewski 2008,
Pi¦kniewski & Schreiber 2008]. They showed both theoretically and experi-
mentally, that in fully connected recurrent neural networks with stochastic
driven dynamics the input (and output as well) degree distribution obeys the
power law xγ. In addition they estimated the exponent γ to the value −2.

In next chapter we extend (or maybe rather reforge) the approach to
account for a not all-to-all connected graphs but, instead, make the neural
network more dependent on its geometrical features as it is in the cortex
[Eguiluz et al. 2005].

3.5.1 Emergence of scale-free phenomenon in recurrent

neural networks

The spike or activation �ow model for neural activity in recurrent neu-
ral networks was coined by Pi¦kniewski and Schreiber in 2007 � 2008, see
[Pi¦kniewski & Schreiber 2007]. The assumption they took, was that it ought
to be simple and mathematically tractable. The neurons are able to evoke
their interactions depending on the previously accumulated activity. In fact,
the restriction to the neural networks can be lifted and the model �ts any
abstract or real network, whose nodes are capable of accumulating some sort
of quantity and exhibits this quantity-dependent interactions. As a result the
model resembles the Boltzmann Machine with its range for the allowed spin
values (a stored charge) extended to {0, ..,M}, for some positive number M .
The dynamics is based on charge-conserving and Hammilonian-driven spike
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�ow between a pair of neurons and does not have any obvious bias towards
a scale-free or any hierarchical organisation.

By application of the mean �eld theory in asymptotic conditions they
analysed the in-degree sequence of the neuron visits throughout the travel of
the charge and showed that it obeys a power law with the exponent value
equal to −2. Below we provide a sketch of the proof for recurrent setup after
[Pi¦kniewski & Schreiber 2008].

The said travel takes place according to the direction indicated by a
growing support of the neurons (see de�nition in Section 4.1.4). Suppose that
a unit of charge travels through neurons kl, l ≥ 0, starting from k0. Hitting
kl = 1 indicates, that the unit of charge reached the neuron with the best
support (�rst in a sorted decreasingly list). Consider a sequence of random
variables X1, X2, ..., where X1 is chosen form a uniform at (0, 1) distribution:
X1 ∼ U(0,1) and Xi+1 ∼ U(0,Xi) for i > 1. Now we can approximate kl =
dXl · |V|e, where |V| is a number of neurons.

De�ne πi to be a probability that a unit of charge visits a neuron ui, that
is πi := P(∃l kl = i). For large |V| we have πi ' E(l : Xl ∈ [ l−1

|V| ,
l
|V| ]), and

π1 = 1. The input degrees are distributed according to binomial distribution
with parameters πi and n equal to the number of charge in the system.

Since Xi are uniformly distributed on (0, Xi−1), than Ti := − logXi is
exponentially distributed. Also − logXi+1 − (− logXi) = − log Xi+1

Xi
, hence

Ti+1−Ti is also exponentially distributed. As a result Ti is a Poisson process
and

πi ' E|{l : Tl ∈ [− log(
i

|V|
,− log(

i− 1

|V|
)]}| ' 1

i
.

We end with Di ' 1
i
and |i : Di > k| ' n

k
. And in non-cumulative form:

|i : Di = k| ' n
k2 .

Which concluded the proof of the main theorem of the dissertation of
Pi¦kniewski, see [Pi¦kniewski 2008]:

Theorem In recurrent neural networks the input degree distribution obeys
a power law

P(degv = k) ∝ 1

k2
.

In following chapter we show, that similar property holds for sparsely
connected networks with geometrical embedding.
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Chapter 4

Thesis results

In this chapter we present main results of our work, namely the emergence
of scale invariance and the small world phenomenon in neural networks. The
contents concerning the former are based on our (co-authored with Tomasz
Schreiber and Filip Pi¦kniewski) publication [Piersa et al. 2010] and for the
latter � on publication [Piersa 2011] and new preliminary results to be pub-
lished.

In following sections we de�ne a mathematically tractable model for func-
tional activation networks in geometrical space. Then we analyse its structure
in the context of said terms of random graph properties. Finally, we compare
the results with their medically obtained counterparts.

As pointed out in the introduction the selected methodology mainly fo-
cuses on numerical simulations and, whenever possible, analytical predic-
tions, both of them in the terms of random graph theory as sketched in
Section 2.1. The theory seems to be a reasonable choice for quantitative
description a medium-to-large scale graphs, while the simulation seems to be
in tact with the model described in algorithmic terms. Of course, the an-
alytical results are important part, which completes the simulation, though
it is not always available. We note, that the direct analyses of the fMRI
data, in the context described above, is beyond the scope of this work, due
to lack of necessary devices, not to mention a permission to carry a research
on human-acquired data. Hence, all the fMRI results, used for comparisons,
origin form external researches and are referenced.

4.1 Basic model for neural activity

We start with de�nition of the formal model for neural activity in geo-
metrical networks as introduced by Piersa, Pi¦kniewski and Schreiber in

47
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[Piersa et al. 2010].

4.1.1 Structural network

The underlying structural network is de�ned as a undirected graph G = (V , E)
constructed as follows.

Suppose we are given a two-dimensional sphere S2 with radius R and ex-
pected density of units per square unit of the surface of the sphere ρ� 1. The
number of abstract neurons n is picked from a Poisson distribution P(|S2|ρ).
Each neuron v is generated independently from a uniform distribution on
the surface of S2 and added to the vertices set V , so it receives its euclidean
coordinates (xi, yi, zi) ∈ R3. In addition, an initial abstract activity level or
an accumulated charge σi is independently assigned to the neuron. The ac-
tivity is restricted only to non-negative integer values and the initial charge
is assumed to be strictly positive σi > 0. The set of vertices V is de�ned as
all generated neurons.

Now we generate edges or synapses of the network E . For every pair of
neurons {v, u} v, u ∈ V , a symmetric edge e = {v, u} is included into E
independently with probability

P(e ∈ E) =

{
1 d(e) ≤ 1
d(e)−α otherwise,

(4.1)

where d() is a euclidean distance and −α is a decay exponent. The above
formula of the connectivity function was put forward in [Eguiluz et al. 2005].
In most of our considerations the value of −α is �xed about the value of
the dimension of the sphere. Note, that assuming large density ρ � 1,
the Formula (4.1) with overwhelming probability yields a connected graph.
Indeed, suppose otherwise, that is the graph is disconnected. In the simplest
case, this would require sampling a graph with a neuron v, such that no
other was picked within a radius at least 1. For large R we can approximate
the empty spherical cap with a circle. Hence, we have the probability of
disconnected graph P ≤ (1− 2π12

4πR2 )(ρ·4πR2), which for large R becomes e−ρ/2π

and this approaches zero as the density ρ increases. The probability is even
less, as we omitted the second case of (4.1), which can connect v with other
neurons lying further than 1 unit of distance from it.

Each synapse {u, v} receives its symmetric weight wuv independently from
the gaussian distribution N(0, 1). The weight indicates the excitatory (when
positive) or inhibitory (when negative) nature of the synapse. For simplicity
the weight of edge, which is not included in the network, is assumed to be
zero (neutral) ∀e/∈E we = 0. In particular self-loop weights are zero wuu = 0.
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Having de�ned the structural graph we de�ne an energy (Hammiltonian)
of the system:

E(σ̄) =
∑
{u,v}∈E

wu,v|σv − σu|. (4.2)

Te formula can be rewritten as a sum over pairs of neurons since weights of
synapses absent in E are zero.

Clearly, it bears resemblance to the energy of the Hop�eld network, see
[Hop�eld 1982] and Equation (3.9) in Section 3.3.3 in previous chapter, and
has straightforwardly the same interpretation. Namely, it prefers neurons,
which have similar amount of activity σ, for positive weight synapse wuv > 0
and large di�erences in inhibitory case.

4.1.2 Evolution of the model

The network undergoes a following, charge-conserving, Kawasaki-style dy-
namics (put forward in [Kawasaki 1966]):

1. Iterate multiple times. Terminate the simulation once a stable state is
reached.

a. Randomly pick a pair of neurons (u, v) connected with a synapse, such
that σu ≥ 1.

b. Attempt to transfer a single unit of charge from u to v along the synapse
(i.e. σu − = 1 and σv + = 1). Suppose σ̄ is an initial activity vector
and σ̄′ is obtained from σ̄ by performing the transfer.

c. If the transfer reduces the energy of the network E(σ̄′) < E(σ̄), than
accept the transfer. In such case the unit of activity is said to �ow
through a synapse (σ̄ := σ̄′). Otherwise accept the transfer with prob-
ability

P(σ̄ := σ̄′) = exp(−β∆E), (4.3)

where ∆E is an increase of energy caused by the transfer (∆E =
E(σ̄′)− E(σ̄)).

The parameter β � 0 is an inverse temperature and is assumed to be large.
Its interpretation is pretty much the same as an interpretation of the tem-
perature in Boltzmann machines, see Section 3.3.3.
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4.1.3 Functional network

The �ow of activity through synapses is recorded throughout the dynamics.
Let fuv denote the total charge transferred from u to v, clearly fuv = 0 if
{u, v} /∈ E .

De�nition The spike-�ow activity graph or functional graph G ′ = (V ′, E ′)
is de�ned as a subgraph of G, consisting of all neurons V ′ = V and the edges
of E , whose transfer was positive E ′ = {e ∈ E : fe ≥ 1}.

(a) A regular two-dimensional lattice (b) A fully connected graph

(c) Erd®s-Rényi graph (d) Obtained functional graph

Figure 4.1: A comparison of regular lattice, a clique, ER graph and obtained
activation-�ow network. All the graphs were remapped onto a unit circle for
better visibility.

These spike-�ow graphs are the main focus of this work. Bassett and
Bullmore [Basset & Bullmore 2006, Bullmore & Sporns 2009] discussed the
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di�erences between structural and functional networks in fMRI scannings of
the brain activity. Pi¦kniewski [Pi¦kniewski 2008] analysed a degree distri-
bution in functional arti�cial neural networks assuming that the structural
was a full graph. As it turns out, the di�erence can be substantial.

4.1.4 Evolution of the system

Since the dynamics is a charge conserving i.e.
∑
v∈V

= const, the possible

charge con�gurations σ̄ = (σ1, ..., σn) form a space F = {(s1, ..., sn) ⊂
Zn : ∀i si ≥ 0 ∧

∑
i

si = const}. In addition a jump between two states

σ̄ and σ̄′ is possible if and only if they di�er on exactly two positions and
only by 1, that is ∃i 6=j σi = σ′i + 1 ∧ σj = σ′j − 1 and σk = σ′k for all other
k 6= i, k 6= j. In this case the dynamics, can be interpreted as a Markov
Chain walk on the state space F .

If the inverse temperature β is constant, the chain is uniform. In addition,
in this case the chain is connected since the probability of passing between
neighbouring states is always positive P(σ̄′|σ̄) ≥ 1

|V| exp(−β∆E) > 0 and
reaching every state of F is possible via a sequence of neighbouring swaps.

The chain is also irreducible, to see it we just need to notice that, the
probability of staying in the same state is positive P(¬(σ̄′ := σ̄)) = 1 −
exp(∆E) > 0, at least for a minimal energy state σ̄. Now the period of σ̄ is
equal to a one, k = gcd{1, 2, ...} = 1. And from connectedness, 1 is a period
of every state of F .

Thus, there exists a unique stationary distribution of the states. We can

approximate it as P(σ̄) =
exp(−βE(σ̄))∑
σ̂ exp(−βE(σ̂))

. For large inverse temperature

β this distribution degenerates to one-point distribution centred on σ̄min
with minimal energy. However, due to the �nite simulation time, it is more
reasonable to consider a collection of minimum-energy states, which do not
necessary are focused on single neuron.

For further considerations let us introduce a following de�nition:

De�nition A support of the neuron u is a minus sum of the weights of the
incident synapses Su := −

∑
iwui.

We can sketch the dynamics with a modi�ed elite and bulk picture, as
described by Pi¦kniewski, see [Pi¦kniewski 2008]. The neurons, with espe-
cially high support values Sv are referred to as an elite and the remaining
with low-to-average support as a bulk. With large inverse temperature β and
in late, stable phases the dynamics asymptotically becomes a winner-take-all
with the �ow towards the neurons with higher support, see de�nition above.
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(a) Charge distribution before the simu-
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(b) Charge distribution after the simula-
tion.

Figure 4.2: Activity distribution in the network counting approximately 4k
neurons before and after the evolution. The charge was concentrated in small
number of neurons leaving the rest drained.

The number of opposing transfers becomes negligible. The elite accumulates
all of the activity by draining it from the bulk through the available synapses.
From the activity point of view, this can be seen as a sequence of leaps of the
charge to neurons which are higher in the support hierarchy. Eventually, the
unit of charge reaches the top of the growing-support chain and than is stuck
in there. In fully connected networks there is a single maximum-support
unit and the process can be seen as ascending a hill, though gathering all the
charge in a single neuron can be long. In the case of sparse nets, we are more
likely to end up with a collection of elite neurons, which are not connected
to each other, and the whole process is rather ascending a poset, which has
a number of distinct maximum elements.

The starting (roughly equal) setup of the network can be seen in Figure
4.2 left, while the ending phase in the right plot.

4.2 Geometrical embedding

The human cortex is organised in a highly folded surface. In addition the frac-

tion of synapses of length d in biological brain decays as
1

dα
, see

[Eguiluz et al. 2005]. Similar results for graph of functional brain areas were
obtained in [Salvador et al. 2005]. Therefore we decided to account an im-
pact of the geometrical location of the neurons on the results from the very
beginning.
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In addition to lengths of the synapses in the cortex, there are di�erences
between purposes of the left and right hemispheres. The biological organisa-
tion of the brain reveals specialised areas, in which most of speci�c functional
processes are carried for instance visual perception in occipital lobe. Going
down the hierarchy we reach the cortical column, a group of few hundred
highly coupled neurons. As a result the e�ective organisation of the brain,
it seems to be highly dependent on its the local structure.

As de�ned in Section 4.1.1, the embedding should a�ect only the struc-
tural level of the network. We picked a unit sphere, mainly in order to
ease some theoretical predictions. As the S2 has full rotational symmetry,
no neuron, which was picked from a uniform distribution, is biased towards
any higher or lower number of neighbours. The decay exponent value of
the connectivity function in Equation 4.1 was picked to be roughly equal
to the dimension of the embedding space. Extremely high exponents would
degenerate connectivity function to the case where any synapse longer than
one unit would be rejected. This would eventually lead to locally-connected
regular grid, which might be an abnormal structure.

For comparison purposes we provide the results from other embeddings:
ball, cube and two-dimensional square as well as spheres with varying decay
exponents (see Section 4.4.1). However, unless stated otherwise, the dis-
cussed results were obtained from two-dimensional spherical topology with
decay exponent α = −2.5.

4.3 Scale-freeness in activation �ow model

In this section we discuss the origination of scale-free phenomenon in the
activation-�ow model.

4.3.1 Theoretical analysis

Consider a structural network in the model as described in Section 4.1.1.
Below we provide a formal calculus by Schreiber (see [Piersa et al. 2010]) for
input degree distribution.

Let us denote a cumulative distribution of (input) degrees as:

G(k) = P(degin(v) ≥ k), (4.4)

where v is randomly selected neuron. Each neuron is ascribed its visiting in-
tensity Φ(v) de�ned as number of units of charge, which visited v throughout
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their transfer in the network. We can write Φ as

Φ(v) = a+
∑
u→v

Φ(u)

|N↑(u)|
, (4.5)

where u → v stands for {u, v} ∈ E and Su < Sv (for a de�nition of the
support see Section 4.1.4), and N↑(u) = {v ∈ V : u → v}. By using a
random variable 1u→v, which is equal to +1 if holds u→ v and 0 otherwise,
we can rewrite (4.5) as

Φ(v) = a+
∑
u∈V

1u→vΦ(u)∑
y∈V 1v→y

. (4.6)

Note, that the construction of the network ensures us, that 1u→v are inde-
pendent. In addition the symmetric setup has no bias towards any of the
neurons. In such case we argue that Φ is in fact a function of µv rather than
v where µv is a chosen uniformly between [0, 1] support mark indicating what
fraction of neurons has lower support than v µv > µu ⇐⇒ Sv > Su.

Φ(v) = ϕ(µv) (4.7)

Now we can rewrite

P(u→ v) = (1− µ(u))g(|u− v|)
P(v → u) = µ(u)g(|u− v|),

(4.8)

where g is a connectivity probability function (recall Equation 4.1):

g(x) =

{
1 x ≤ 1
xα x > 1

.

N↑(v) ≈ ρ(1− µv)
∫
Sd−1

g(|u− v|)ξ(dv), (4.9)

where ξ is a Lebesgue sphere surface measure. We rewrite (4.9) as:

N↑(v) ≈ ρ(1− µv)γ, (4.10)

with γ equal to the spherical integral γ =
∫
Sd−1

g(|u−v|)ξ(dv). This requires

the density ρ to be large ρ(1−µv)� 1. Now we put together (4.7) to (4.9):

ϕ(µv) = a+ ρ

∫
Sd−1

∫ µv

0

g(|v − u|) ϕ(µu)

ρ(1− µu)γ
dµuξ(dv)

= a+

∫ µv

0

ϕ(µu)

(1− µu)
dµu

∫
Sd−1

g(|v − u|)ξ(dv)

γ

(4.11)
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which reduces to

ϕ(x) = a+

∫ x

0

ϕ(y)

(1− y)
dy. (4.12)

After solving

ϕ(x) =
a

1− x
. (4.13)

From the construction of the network we have, that the average number of
neurons v ∈ V is ρ·ξ(S2) and the number of neurons v such that µv ∈ (s, s+t)
is ρ · t · ξ(S2). Assuming large density of the neurons ρ → +∞ we can
approximate degin(v) ' Φ(v) ' ϕ(µv). As a result (from (4.4) (4.7) and
(4.12))

G(k) = P(degin(v) ≥ k) '
∫

s:ϕ(s)≥k

ds '
1∫

1− 1
k

1ds =
a

k
(4.14)

and since G is a complementary cumulative function, we conclude that

P(degin(v) = k) ∝ 1

k2
. (4.15)

Which ends the proof of following theorem.

�

Theorem In geometrically embedded spike-�ow network the input degree
distribution function of the vertices obeys power law with the exponent value
equal to −2

P(degin(v) = k) ∝ 1

k2
. (4.16)

Since the di�erence between visiting and leaving activation is equal to the
initial σ, (except for small number of neurons which gathered more charge,
but their number is negligible), the same property is held for the out-degree
distribution.

4.3.2 Numerical results

The model was implemented in computer simulation. The obtained empirical
input degree and complementary cumulative input degree distribution is pre-
sented in Figure 4.3. In both cases the (exponentially truncated) power-law
dependency is clearly observable. The truncation in the tail of the distri-
bution and seems to originate from a �nite sample size. The peak of the
distribution centred in deg ' 100 is approximately equal to initial mean
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Figure 4.3: A logarithmic plot of input degree distribution and complemen-
tary cumulative distribution function in obtained functional network count-
ing 38k neurons. For a reference a solid straight line denotes exact power law
functions c · 1

x2 (left) and c
x
(right), which in log-log plot are straight lines

with their slope equal to the exponent value in original formula.

value of the activity σ. For the cases, in which the initial charge was equal
to one unit, the maximum moved to deg = 1 and the peak disappeared, see
Figure 4.4.

The exact values are presented in Table 4.1. Note, that the slope was cal-
culated for complementary cumulative degree distribution function (CCDF),
so the exponent value is lower by one. The slope was estimated with least
square linear regression and the mean value is γ̄ = −2.0912, which seems to
be a good approximation for a theoretical value. In most of the cases the
dynamics led to draining of over 98 per cent of the neurons from their charge,
which seems to be a reasonable convergence of the system dynamics.

Interestingly, quite similar results were obtained in [Eguiluz et al. 2005]
form functional Magnetic Resonance Imagining (fMRI) data. Recall, that
their functional graph was obtained by thresholding a correlation matrix of
small voxels. The obtained (asymmetric) degree distribution decayed as a
power low xγ, with γ estimated between −2.0 and −2.2 depending on the
threshold. In addition, this is in agreement with Ising-like dynamics reported
in [Fraiman et al. 2009], though the scaling exponent was not provided. Sim-
ilar result, but in dense networks without accounting for embedding, was
obtained by Pi¦kniewski, see [Pi¦kniewski 2008]. It turned out that geomet-
rical embedding, yields strikingly comparable results to those obtained in the
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Table 4.1: Approximated exponent value obtained in simulations. Table
columns include number of neurons, number of connections, number of iter-
ations, approximated slope value, network geometry (S2 is a sphere, (0..d)3

is three-dimensional cube) and fraction of nodes storing all network charge.
Abbreviations: k = ×103, M = ×106, G = ×109. The table is reprinted after
[Piersa et al. 2010].

Neurons Connections Iterations Slope Geometry Units with charge

9k 580k 70M -1.062 S2 0.0065
9k 560k 100M -1.060 S2 0.01
11k 700k 100M -1.100 S2 0.009
12k 800k 100M -1.118 S2 0.008
12k 800k 150M -1.100 S2 0.009
12k 800k 150M -1.053 S2 0.0087
13k 960k 150M -1.066 (0..d)3 0.008
19k 1.3M 150M -1.082 S2 0.011
21k 1.7M 200M -1.170 (0..d)3 0.008
21k 1.7M 200M -1.129 (0..d)3 0.01
32k 2.1M 300M -1.102 S2 0.0076
33k 2.7M 200M -1.096 (0..d)3 0.019
40k 3.4M 500M -1.066 (0..d)3 0.0065
45k 3.0M 500M -1.103 S2 0.0082
48k 4.2M 800M -1.063 (0..d)3 0.0056
48k 4.2M 600M -1.143 (0..d)3 0.019
50k 3.4M 800M -1.080 S2 0.016
50k 3.5M 800M -1.058 S2 0.0078
58k 4M 900M -1.091 S2 0.0082
58k 5M 1G -1.081 (0..d)3 0.006
78k 5.4M 1.2G -1.063 S2 0.0084
81k 5.6M 1.4G -1.040 S2 0.0082
88k 6.2M 1.6G -1.058 S2 0.0078
95k 6.7M 1.8G -1.081 S2 0.0081

mean �eld model.

In Table 4.2 we provide a comparison of exponent values for power law
in degree distributions reported in medical researches and computer simula-
tions, including listed above. Despite the varying size of the networks, most
of them con�rm a power law, the only exception is [He et al. 2007], in whose
case the dependency was exponentially truncated. Moreover all the reported
exponents are approximately equal to each other.
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Table 4.2: Comparison of exponent values in power law formula of the de-
gree distribution in fMRI data and mathematical models of neural activity.
Columns from the left: type of the network / model, size of the network, es-
timated value of the exponent, notes (for instance tuned parameters), source
of the data.

Network Size γ Notes Source

Brain fMRI ∗ 31 · 103 −2.0 rc = 0.6 [Eguiluz et al. 2005]
Brain fMRI ∗ 17 · 103 −2.1 rc = 0.7 [Eguiluz et al. 2005]
Brain fMRI ∗ 4.8 · 103 −2.2 rc = 0.8 [Eguiluz et al. 2005]
Cortex fMRI ∗∗ 54 −1.34 truncated [He et al. 2007]
Ising model ∗∗∗ 40 · 103 ' −2 T = 2.3 (cr.) [Fraiman et al. 2009]
Mean �eld 4 · 103 −2± 0.03 Full graph [Pi¦kniewski 2008]

Activity �ow+ 58 · 103 −2.098 S2 [Piersa et al. 2010]
Activity �ow++ 10 · 103 −1.8004 low σu

∗ Depending on the threshold parameter rc.
∗∗ Obtained exponentially truncated power law i.e. P(deg = k) ∝ kγek/kc .
∗∗∗ The exact value of γ was not calculated. Yields a scale-free distribution only
for a critical value of temperature T .
+ Spherical embedding, moderate initial activity.
++ Averaged over various embeddings, small initial activity σu.

4.3.3 Scale-freeness in geometrical embeddings

To ensure the validity of the predictions we performed additional simula-
tions in more varying embeddings. First, we lifted the restriction concerning
strictly spherical topology and extended the possibilities to cubes, balls (two-
and three-dimensional) and spheres (one- and two- dimensional). Secondly,
we checked wider range of decay exponents α, see Equation (4.1) between −2
and −8. Clearly the lower exponent, the less edges in underlying structural
network.

For the sake of simplicity we reduced amount of activation per neuron
in starting set-up down to one unit and restricted the size of the network
to small samples counting roughly 1.0 − 1.2 · 104 units. This allowed us to
apply a linear regression directly to the logarithm of the distribution (unlike
complementary cumulative distribution as in previous section), although at
the expense of accuracy of the simulation.

Nonetheless the power-law shape of the degree distribution was preserved,
see Figure 4.4. This turned out to be true even for the most extreme values
of the decay exponent α. As noted before, the characteristic peak of the
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distribution at the mean starting activation has gone, or rather 'shifted' to
the value 1.

Table 4.3: A comparison of various embeddings and obtained exponent values
in degree distribution. Columns form the leftmost: the embedding topology,
a decay exponent value α (see Equation (4.1)), size of the network, average
connectivity, approximated value of the degree distribution exponent.

Top. α n 〈k〉 γ Top. α n 〈k〉 γ

−2.5 12782 18 -1.901 −2.5 12683 66 -1.675
−3.5 12561 15 -1.944 −3.5 12233 36 -1.788

Sphere −4.5 12599 14 -2.005 Sphere −4.5 12301 28 -1.758
1d −5.5 12498 13 -2.069 2d −5.5 12663 26 -1.810

−6.5 12480 13 -2.032 −6.5 12530 24 -1.849
−7.5 12637 13 -2.064 −7.5 12589 22 -1.809
−2.5 12726 60 -1.746 −2.5 11414 156 -1.700
−3.5 12714 36 -1.823 −3.5 11516 77 -1.702

Ball −4.5 12402 28 -1.782 Ball −4.5 11516 51 -1.742
2d −5.5 12519 25 -1.767 3d −5.5 11518 41 -1.774

−6.5 12515 23 -1.818 −6.5 11478 35 -1.708
−7.5 12495 22 -1.814 −7.5 11239 31 -1.803
−2.5 10889 58 -1.729 −2.5 10033 146 -1.777
−3.5 10870 35 -1.755 −3.5 10116 73 -1.733

Cube −4.5 10904 28 -1.735 Cube −4.5 10062 49 -1.678
2d −5.5 10915 25 -1.842 3d −5.5 9815 39 -1.706

−6.5 10810 23 -1.836 −6.5 10039 34 -1.674
−7.5 10979 22 -1.825 −7.5 9990 31 -1.643

The results are summarised in Table 4.3 and in Figure 4.5. The small size
of the sample and limited amount of charge have their impact on precise value
of the exponent. The average value is γ̄ = −1.8004 and with the standard
deviation sγ = 0.10832. These values vary from theoretical value −2, but we
conclude that, they still provide a reasonable approximation, especially when
take into account limited sample. Interestingly, the results obtained form a
a circle (one-dimensional sphere) resulted in much better approximations of
the theoretical value.

It might seem surprising that the geometrical embedding preserves scale-
freeness of the degree distribution, as it dramatically reduces the number
of available edges in the system. On the other hand the considerations in
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estimated slope deviates from theoretical value −2.
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Section 4.3.1 were completely independent from the formula of g, we only
assumed it produces a connected network. Hence we con�rmed that the
model yields a power-law degree distribution in functional network even for
sparse graphs with limited long-range connections for various embeddings.

4.4 Small-world phenomenon in arti�cial neu-

ral networks

In this section we discuss the small-world phenomenon in spike-�ow graphs
of geometrical neural networks, in the model described in Sections 4.1.1-
4.1.3. The results are a compilation of our works concerning the diameter of
the graph [Piersa & Schreiber 2010] and [Piersa 2011], as well as some new
results focused on the clustering, yet to be published. Compared to previous
sections, the results of this one are slightly more numerically-oriented.

The emergence of small-world structures had been reported earlier in a
wide range of networks starting from acquaintanceship [Gurevitch 1961], col-
laboration and co-authorship [Barabasi et al. 2002], �lm co-starring
[Herr et al. 2007], social network portals like Facebook [Ugander et al. 2011].
Bullmore and Basset in their work [Basset & Bullmore 2006] con�rm the ex-
istence of small-world organisation on the structural level of brain activity
obtained from the fMRI imagining, obtained in a similar way as in the work
of Eguiluz, see [Eguiluz et al. 2005].

The term small-world was coined by Watts and Strogatz in their publica-
tion in 1998 [Watts & Strogatz 1998]. Unlike previous social-based analyses,
they turned attention not only to the availability of the short path, but also
a local structure of the network. The characteristic or average path length
of the Erd®s-Rényi random graph scales as log(|V|), see [Chung & Lu 2006],
Chapter 5. This however does not make it small world, especially in a sparse
cases. This is where the graph clustering coe�cient (or simply clustering)
steps in. A small-world graph should be characterised not only by a short
average path length, but also it ought to have a high clustering.

4.4.1 Numerical results

Humphries et al. in [Humphries et al. 2006] analysed small-world phenomenon
in a brain stem formation. They de�ned a path length ratio is de�ned as

λ =
Lreal

Lteo

, where Lreal is an average path length of the analysed graph and

Lteo is the mean path length in Erd®s-Rényi graph, counting the same num-
ber of vertices and edges. This ratio should approximately be equal to a
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unity.

Quite similarly they de�ned a clustering ratio1 as γ =
Creal

Cteo

, where Creal

is a clustering of the analysed graph and Cteo is a equivalent Erd®s-Rényi
graph. Since the clustering coe�cient in ER graph is approximately equal
to the connectivity probability pc, this ratio should be large, especially for
sparse small-world graphs.

Finally they de�ned a 'small-world-ness' indicator as σ =
γ

λ
, namely

small-world graph should have this indicator value large σ � 1.

Characteristic path length

In our considerations we apply the model as coined in previous sections. The
obtained spike �ow graph was analysed for its characteristic path length.
In addition we provide results concerning a maximum path length in the
network (diameter).

The results are presented in Figure 4.6(a). As it is visible, both the
characteristic and the maximum path length grow quite slowly compared
to the networks size. The diameter does not exceed 6 hops for α = −3.5
and 4 hops for α = −2.5 (decay exponent in underlying structural graph,
see Equation (4.1) and the discussion in [Eguiluz et al. 2005]) for networks
counting up to 6 ·104 neurons. The characteristic path length barely reached
4 and roughly 3 for cases α = −3.5 and α = −2.5 respectively. The size of
obtained networks have is still orders of magnitude smaller than social graph,
nonetheless the diameter is still short.

When focus on exact path length distribution (Figure 4.6(b)), it is not
surprising to �nd out that most of the distribution mass is concentrated on
3 points. The remaining values up to the diameter are negligible, though
positive. The shape of the distribution slowly moves right (grows) as the
number of neurons increases.

1 From now onwards, the symbol γ is used as a clustering ratio and should not be
mistaken for the exponent value in degree distribution. Both these notations are adopted
from existing works [Humphries et al. 2006] (clustering) and [Pi¦kniewski 2008] (expo-
nent), and we concluded that altering one of them would bring even more confusion.
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Clustering coe�cient

The clustering coe�cient as de�ned in Section 2.1.2 can be considered as a
cliquishness indicator. In social terms this is a equivalent to groups in which
everyone knows each other. In neural networks this might be taken as a brain
area, in which all neurons cooperate (or compete) with each other.

As presented in Figure 4.7(a), the clustering sharply drops for small net-
work size (which is quite reasonable as with radius R approaching 1, the
graph becomes almost fully connected) and stabilises around 10−1 for larger
samples, though small decay is still noticeable. This is high, when compared
to the network size and average connectivity.

The plot of the distribution of the clustering coe�cient is depicted in
Figure 4.7(b). It has a shape of unimodal function with its peak around its
expected value.

The most interesting feature is, that the clustering is one to two orders
of magnitude higher than in equivalent ER model (see next section for more
details) and this di�erence seem to be even larger as the size of the network
increases. Thus, the local structure of the functional graph is highly non-
trivial. The �ow of the activity brings about the synchronisation of the whole
groups of nodes, which in the end pick one of them as a representative, who
sends the information further, up the support-induced hierarchy ladder.

Path-length and clustering ratios

In order to get the larger picture we provide the real and theoretical con-
nectivity and path length values Lreal, Lteo, Creal, Cteo. The Cteo can be easily
estimated as an average connectivity in the graph. The remaining were em-
pirically computed from obtained graphs for sizes varying up to 5 · 104 and
the decay exponent (see Equation (4.1)) equal to −2.5, which is somewhere
'in between' the dimension of the sphere and those of the embedding space
R3.

According to the de�nitions in Section 4.4.1 this requires to compute
clustering and path length values for ER graph with the same number of
vertices and edges. The plots for various network sizes are presented in
Figure 4.8 and the numerical values are provided in Table 4.4.

Not only are the path lengths for both network types of similar magnitude,
but also they are roughly equal in values. As a result path length ratio

λ =
Lreal

Lteo

is almost constant and equal to the unity. This means that the �ow

through the obtained spike-�ow network is very e�cient and any information
can reach its destination as quickly as in random graph model.
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Figure 4.7: A plot of clustering coe�cient of the spike-�ow activity graph for
various network sizes and a typical distribution of clustering in the network
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Table 4.4: Numerical values of the properties of obtained functional graphs.
The columns from the leftmost include: sample size, characteristic path
length, theoretical path length (in ER graph), clustering coe�cient, theoret-
ical clustering coe�cient (in ER graph), path length ratio, clustering ratio,
'small-world-ness' indicator (see description in text).

Neurons Lreal Lrand Creal Crand λ γ σ
274 1.64 1.67 0.44 0.29 0.98475 1.48 1.51
751 1.87 1.87 0.32 0.12 0.99716 2.60 2.61
1948 2.08 1.95 0.25 0.052 1.06722 4.92 4.61
3176 2.21 1.97 0.23 0.034 1.11862 6.89 6.16
4644 2.31 2.04 0.22 0.024 1.13089 9.16 8.10
7035 2.44 2.12 0.21 0.016 1.14908 13.21 11.50
8865 2.52 2.20 0.20 0.012 1.14681 16.22 14.14
12677 2.59 2.30 0.20 0.0093 1.12570 21.38 18.99
19854 2.75 2.46 0.19 0.0061 1.11605 31.39 28.13
28408 2.81 2.56 0.18 0.0042 1.09826 43.31 39.44
38567 2.84 2.67 0.18 0.0031 1.06611 57.00 53.46
50757 2.88 2.70 0.17 0.0024 1.06608 72.50 68.01

On the other hand, the clustering coe�cients of the activation-�ow equiv-
alent ER networks and are approximately equal only for small number of
neurons. The clustering of the functional graph drops slowly, but it did not
fell under 10−1), while this value for ER graph decreases by 2 to 3 orders of
magnitude.

This dramatically alters the properties of the resulting graph. The the-
oretical ER it is a sort of random casual-e�ect scenario, in which there is a
hardly any structure in the �ow graph. However, from the high clustering
we conclude, that there is a local competition in the neighbourhood of the
unit. Not only the best-supported one (see de�nition in Section 4.1.4) drains
the activity from the set of the neighbours, but also the incident neurons
compete for the activity.

This can be read otherwise. The well-supported units cooperate with
each other in gathering the charge scattered along the entire neighbourhood.
In the end they transfer the collected activity towards a single designated
'leader'.

As a result we conclude, that the local cooperation in activity-�ow graphs
exhibit high level of 'small-world-ness', which can be key for obtaining high
e�ciency of the system, which emerged throughout the stochastic dynamics.
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4.4.2 Comparison with numerical data

The results, obtained in presented activity-�ow model, are consistent with
those reported by neuroscientists. We used results obtained and discussed in
works [Achard et al. 2006], [Eguiluz et al. 2005], [He et al. 2007] and
[Salvador et al. 2005]. In addition we provide the results obtained from Ising-
based correlation model in critical temperature, which was put forward in
[Fraiman et al. 2009].

The network sizes vary from about 50 in graphs of brain regions, up to
104 in the case of fMRI voxels and computer simulation models. However we
point out lack of 'medium sized' samples (of orders 102 and 103), which makes
the comparison a bit tricky. Both the path length and clustering coe�cient
gathered from mentioned above medical analyses of brain networks as well
as theoretical models are summarised in Table 4.5 and Figure 4.9

In all of the cases the measured path length scales logarithmically with
the network size and is bounded between 2 and 14 edges. Interestingly, in
most of the cases Lrand for equivalent random model is slightly smaller than
Lreal, but the di�erence seems to be negligible and, by extension, the path
length ratio λ for most of the data is varies between the values one and three.

The clustering ratio γ has wider range, between 2 and 350 depending
on the source and acquisition method, but this value is much more a�ected
by size of the sample. Assuming approximately constant value (this is very

crude approximation) for Creal and
〈k〉
|V|

as an estimation for Crand we obtain

a sub-linear growth. Though, that the above reasoning is highly heuristic.
A very similar property holds for a 'small-world-ness' indicator σ, which

is between 1.9 and abut 150. Note, that by de�nition the theoretical 'small-
world-ness' indicator for Erd®s-Rényi graphs is equal to 1 (which means no
small-world at all).

Taken together, the activity-�ow model gives strikingly similar e�ect as
the medical imagining data, and the emergence of small world phenomenon
is present functional networks obtained from both of in these sources.

The direct comparison with small samples can be hard due to a dramatical
di�erence of the number of units. On one hand, the activation-�ow model
turns out to be a surprisingly good approximation of clustering results of
Eguiluz. On the other hand the path length ratio resembles more the values
obtained for small sizes graphs as those in work of Salvator et al.

Interestingly, the Ising model of Fraiman et al. seems to have an oppose
properties, in other words path length ratio λ is larger than one, as in Eguiluz
et al., while the clustering ratio is somewhere in the middle between two
extremes of medical values.
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Figure 4.9: Comparison of the analysed characteristics in medical data and
simulations. Notations: Eg � [Eguiluz et al. 2005], fMRI � brain regions,
Ising � spin-glass model [Fraiman et al. 2009], AF� presented activity-�ow
model.



7
0

C
h
a
p
t
e
r
4
.
T
h
e
s
is
r
e
s
u
l
t
s

Table 4.5: Comparison of characteristic path lengths and clustering coe�cients of functional graphs from fMRI data
and simulations. Columns from left include: type of the network, size of the network, obtained characteristic path
length, path length for equivalent ER graph with identical number of vertices, path length ratio λ, obtained value
of clustering coe�cient, value of clustering coe�cient for equivalent ER graph, clustering ratio γ, 'small-world-ness'
indicator σ, notes, source.

Network Size Lreal Lrand λ Creal Crand γ σ Notes Source
Macaque cortex 39 2.17 2.15 1.01 0.38 0.15 2.53 2.50 [Stephan et al. 2000]

Brain fMRI 31 · 103 11.4 3.9 2.92 0.14 4.3 · 10−4 325.5 111.3 rc = 0.6 [Eguiluz et al. 2005]

Brain fMRI 17 · 103 12.9 5.3 2.43 0.13 3.7 · 10−4 351.3 144.6 rc = 0.7 [Eguiluz et al. 2005]

Brain fMRI 4.8 · 103 6.0 6.0 1.0 0.13 8.9 · 10−4 144.1 144.1 rc = 0.8 [Eguiluz et al. 2005]

Human fMRI 90 2.82 2.58 1.09 0.25 0.12 2.08 1.9 [Salvador et al. 2005]

Human fMRI 90 2.49 2.31 1.08 0.53 0.22 2.38 2.20 rc = 0.44 [Achard et al. 2006]

Cortex 54 3.05 2.65 1.15 0.3 0.13 2.31 2.0 [He et al. 2007]

Ising model 40 · 103 6.8 2.71 2.51 0.516 0.048 10.75 4.3 T = 2.3 [Fraiman et al. 2009]

Activity �ow 50 · 103 2.89 2.71 1.09 0.18 2.4 · 10−3 75 68.8 to be published
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We are aware, that the major �aw of this section is a lack of a strictly
analytical methods for the 'small-world-ness' indicator, thus the numerical
simulations will have to make up for them. Nonetheless, as a result we
can provide a positive answers to both raised questions, namely in complex
arti�cial neural systems the functional network exhibits both scale-free and
small-world phenomena.



72 Chapter 4. Thesis results



Chapter 5

Discussion

5.1 Conclusion

In Chapter 4 we analysed the activity-�ow model and showed, that is able
to mimic functional patterns typical to biological systems. The model built
a layer of abstraction between functional and neural dynamics, where the
underlying system consists of fairly simple units which operate in discreet
state space. Moreover, we got rid of vast number of connections, putting
their number down to less than 2% of the all available in full graph. To
compensate a geometrical-driven synapse generation was applied and we only
required that the local connectivity is e�cient enough. Finally a pretty
straightforward asynchronous dynamics with energy-driven set of rules was
de�ned.

The results of this thesis are nowhere near to the precise explanation of
the large-scale brain dynamics and origination of the behaviour, they give
however a not overcomplicated nor computationally demanding tool to model
such complex systems. To summarise, we formulate a short list of conclusions
concerning mesoscopic-level neural dynamics.

• The energy driven dynamics leads to emergence of self-organisation.
This appearance of the hierarchy occurred without any bias towards
any unit and was a result of the system evolution.

• The number of connections required to admit an occurrence of complex
self-organization does not have to be high and not necessarily require
a nearly full global density. This is in agreement with some researches
concerning optimal neighbourhood function in self-organising mappings
with Kohonen algorithm, according to which the region size does not
necessarily have to cover the whole network, especially at the ending

73
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phases of the learning, the local and sparse neighbourhood function
yields a good quality mappings, see [Keith-Magee et al. 1999].

• The short diameter of the resulting functional network provides a good
transfer of information. This is vital feature of large-scale graphs such
as social or the Internet, as it makes the �ow of data e�cient.

• Heavy tail of the degree distribution can be an issue, as it suggests
that there exist units, which have an extraordinary connectivity and
require e�cient communication protocols. Moreover due to the spon-
taneous appearance of these hubs, it might be hard to predict which
nodes would become this elite and require special maintenance. This
would be useful information when implementing such system, as the
hubs could be supplied with special e�cient hardware to facilitate in-
formation processing. On the other hand, elites and hubs do exist in
real-world graphs and seem to be a vital parts of them, and their limited
capacity seems to play a secondary part.

5.2 Spectral properties

It would seem interesting to take a closer look at some statistics which are
bound to classical graph theory such as graph spectrum. The spectrum is
de�ned as a set of eigenvalues of the adjacency matrix1 of the graph: {λ ∈
C : Ad · x = λ · x, for some x ∈ Rn}, [Chung 2007, Cvetkovi¢ et al. 1997].

Clearly, the spectrum does not describe a graph uniquely up to the iso-
morphism, but a set of properties such as connectedness or bi-partitioning
can be obtained from it. However, the spectrum can be extended into a multi-
variable polynomial obtained as a determinant of the adjacency matrix with
non-zero entries substituted by distinct variables, see [Krishnamurthy 1981].
This generalisation does de�ne a isomorphism-unique description.

Neural networks are infrequently analysed in terms of spectral graph the-
ory. Schreiber in [Schreiber 2008] analysed spectra of winner-take-all dynam-
ics in neural networks and concluded that the i-th eigenvalue, when sorted

decreasingly, vanquish like c
1

i2
. This prediction was numerically con�rmed

by Pi¦kniewski in [Pi¦kniewski 2009], who analysed spectra of stochastic dy-
namics in recurrent neural networks.

The spectral analysis of the activity-�ow model is one of the aims of the
forthcoming studies, though the �rst preliminary results are quite encour-
aging. In [Piersa & Schreiber 2012] we have computed a spectral density of

1Other de�nitions take eigenvalues of the laplacian matrix of the graph L := In −Ad.
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Figure 5.1: Left: a plot of i vs i-th eigenvalue (sorted decreasingly) of the
obtained functional graph. The middle highlighted part of the plot indicates
a segment, for whom the scaling is valid. The solid reference line is c

i2
. Figure

reprinted after [Piersa & Schreiber 2012]. Right: a comparison plot of the
spectrum in the ER random graph model.

medium-size sample graph obtained from the model, as described in Sec-
tion 4.1. The results con�rm a scale free dependency with an exponential
truncation of the tail. Interesting feature is that, while in [Pi¦kniewski 2009]
the dependency arouse for �rst 10 principal eigenvalues, we have obtained
this in the middle part of the log-log plot and it was valid for approximate 40
to 60% of the spectrum, clearly excluding the principal ones, see Figure 5.1.
It is hard to tell if the truncation is just an artefact caused by a limited
sample size or it is a innate to the geometrical embedding. To some extent
the prediction of [Schreiber 2008] still holds although the WTA dynamics
can be only approximated with high inverse temperature β (see Section 4.1.4
and Equation 4.3) and the presence of synapses is determined by geometrical
embedding rather than taken for granted.

The estimation of the segment, for whom the power law approximation
is valid, was computed by obtaining beginning and ending indices of the seg-
ment i1 and i2, such that the linear regression of the log() of the data between
the indices yields a linear dependency and the sum of squared residuals lays
beneath a �xed threshold value.

When observing the spectrum throughout the dynamics in Figure 5.2, the
scale-free dependency quite clearly appears and strengthens as the evolution
continues. Although in early stages of the dynamics the spectrum bears
resemblances to those of ER graph, the linear segment (in double-logarithmic
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[Piersa & Schreiber 2012].
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plot, thus
c

i2
in the original plot) arises and, as the dynamics continue, grows

in length.
This is even more visible in Figure 5.3, which presents a plot of both

indices and the length of the segment during the simulation. The estimation
scheme, while a bit straightforward, con�rms an emergence of scaling in the
set of eigenvalues. The functional graph only at the beginning is a random
ER model, than as the dynamics continue, it gradually shifts towards more
sophisticated structure. The saturation of the plot at the 60% of the itera-
tions might indicate that our terminating condition is a bit too strong. The
�uctuations at the ending phase seem to stem from a competition between
the 'elite' units, which have gathered the activity and now 'turn against' each
other

An interesting extension of this research would be a comparison to those
obtained, from fMRI data. However, to our knowledge correlation-based
functional graphs from medical imagining have not been analysed with spec-
tral methods.

5.3 Further research

The discussed properties of the activity �ow model are crucial, but by no
means complete. In our research we assumed a full invulnerability of the
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units to noise and random damages. While this is beyond the scope of the
dissertation is would be meaningful to take a closer look at this problem. The
human brain is known for its plasticity and ability to reorganize itself after
minor-to-moderate damages. One might expect, that a good model should
also be resilient to some damage.

Interestingly, large scale real networks such as the Internet or power lines
have their 'fail-safe' protocols, which within reasonable limits keep them
alive despite some breakdowns. These properties are however dependent
on the structure of the network rather than self-organisation. Should too
many nodes in the Internet become damaged, the whole system will even-
tually malfunction, see discussion in [Albert & Barabasi 2002]. Analyses of
the resiliency of the obtained network seem to yield a promising results. Es-
pecially, that, unlike spectral analyses, some results concerning noise resis-
tance in brain network have been reported, for instance [Achard et al. 2006].
Other results concerning a reorganisation after the damage were discussed in
[Grefkes et al. 2011].

Our results concerning spectral properties cannot be considered as com-
plete without comparison to medical counterparts. This concern can be, to
some extent, addressed with modern trends in the science, namely open-
access availability of research data. Not only are the reports published in
freely-accessed repositories more often, but also they are accompanied by
the raw data.

With an access to fMRI records, we would be able to provide an answer
to the raised problem about spectral properties of brain networks without
a need of having our own devices. Such data is, however, striped from any
potentially relevant information about the subject and his/her health state
and, therefore, should be taken with caution when inferring about functional
properties of the healthy brain.



Appendix A

Technical challenges

In this Appendix we brie�y list technical and numerical aspects of the carried
simulation part of this dissertation.

A.1 Technical details

The simulation of the model and its dynamics was implemented in C++
programming language. The data post-processing was carried in GNU Oc-
tave1 numerical environment. The plots were prepared in Gnuplot2 package
with Octave front-end. In addition the software used Linear Algebra Package
(LaPack)3 binding libraries.

The thread-wise parallelisation allowed us to take advantage of high per-
formance computing systems. The largest samples were run on the infras-
tructure of the PL-Grid Project4, whom the author is grateful for sharing
the computational resources. Some of those challenges were discussed in
[Piersa & Schreiber 2010] and [Piersa 2011].

In Figure A.1 we outline modular shape and dependencies of the simula-
tions. Clearly some of them should be easy to 'switch o�' whenever they are
out of focus of ongoing tests. Due to the modularity of the simulation, we
were able to focus on the most time-consuming parts of the computation that
is the dynamics itself, generation of the structural network and calculation
of the characteristic and maximal path length.

1http://www.gnu.org/software/octave/
2http://www.gnuplot.info/
3http://www.netlib.org/lapack/
4http://www.plgrid.pl/
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Figure A.1: A schematic diagram of the simulation program.

A.2 Parallelisation

Structural graph generation requires O(n2) symmetric tests (for each pair
(vi, vj), vi, vj ∈ V , |V| = n) and can be easily domain-partitioned. Quite
similarly calculating a shortest paths in functional graph between every pair
of vertices is a handbook Multiple Data Single Instruction stream (MDSI)
problem.

The biggest challenge was parallelisation of the dynamics itself, as the
activity alterations require synchronised access to the network structure. We
decided to split the dynamics among t threads. Since each thread manip-
ulates registers in two nodes, we end up with extended version of the �ve
dining philosophers problem5. Clearly in this case each thread (a philoso-
pher) can reach towards any pair of connected vertices (forks), rather than
just two assigned in advance. Similarly, each vertex (a fork) can be grabbed

5The formulation of the problem can be found in work Two starvation-free solutions

of a general exclusion problem of E. Dijkstra, available at http://www.cs.utexas.edu/
users/EWD/ewd06xx/EWD625.PDF

http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD625.PDF
http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD625.PDF
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by any thread (philosopher). The semaphore-controlled access turned out to
quite e�cient for low t, although the theoretical analogy to birthday paradox
(suppose t threads randomly lock one of n vertices, what is the probability
that a single vertex will be locked by two threads?) clearly indicates, that
the number of threads t of order

√
n can result in high fraction of collisions

and waits on mutex.

Even more important form of optimization is picking a pair of neurons
which are connected with a synapse, such that one of them has positive
activity level, see Section 4.1.2. Due to sparsity of the graph the naive pick
a random pair until it satis�es requirements is highly ine�cient. Moreover,
as the dynamics continues and the charge becomes concentrated in a small
number of nodes (see discussion in Section 4.1.4) even picking a random edge
frequently becomes in vain, since vast majority of synapses connects a pair
of drained units. Indeed, if the number of remaining useful (i.e. at least
one of incident nodes has positive charge) edges k is small compared to all
available ones (denote their number as l), then l times random sampling over
the set gives (1− k

l
)l → e−k probability of failing to �nd a useful synapse (in

l consecutive samplings). This can become an issue in the ending phases of
the simulations, when k is just a few.

Therefore, if the �rst selected edge is not useful, then following edge is
picked as the next one present on pre-de�ned list, instead of random. This
ensures us that we can �nd a valid synapse in at most l steps, instead of
having just chances 1 − e−k to �nd such edge within l steps, where l is a
number of edges on the list.

In addition, we decided to facilitate this step by periodically purging
the list of void synapses. As it can be seen in Figure A.2, this reduces the
pessimistic number of synapses to search l by 50% after a quarter of the
iterations. This saving is even larger in later parts. This procedure requires
an exclusive access to the list and, thus, it is performed infrequently, every
1-5% of the iterations.

As a last improvement, we require only one of the incident neurons has a
positive activation, to make the synapse useful. The direction of the trans-
fer is automatically de�ned towards drained node. Opposite choice would
have been discarded anyway, so this only saves iterations needed to �nd a
valid synapse. If both have some activity left, than the direction is picked
at random. It might seem, that it arti�cially increases probability of using a
synapse with one neuron drained. However, as we discussed in Section 4.1.4,
as the dynamics tend to drain the activity from neurons and the number
of a�ected synapses (i.e. incident to two positive activation neurons) quite
rapidly drops, also see Figure A.2. Taken together, these improvements al-
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lowed us to dramatically enhance speed of the simulation and, by extension,
increase the sample size.
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Figure A.2: Number of drained neurons and edges removed from the sampling
list throughout the simulation, measured every 2%. Horizontal reference line
is the total number of neurons (left) and synapses (right).

A trade-o� of this is some periodical maintenance of the sampling list
of edges. On the other hand, any sort of statistic tracking also requires
suspension of the computation due to exclusive access to the data structures.
Nonetheless, the results turned out to be satisfying, as the parallelisation
allowed to achieve a speed-up of the simulation with an e�ciency between
0.66 to 0.8, see [Piersa & Schreiber 2010].
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