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Motto

• Dyspersjo! Energio moja! ty jesteś jak zdrowie;
Ile cię trzeba cenić, ten tylko się dowie,
Kto cię stracił.

(A. Mickiewicz, Pan Tadeusz, Inwokacja1)

• Gdybym mówił językami ludzi i aniołów, a dyspersji bym nie miał,
stałbym się jak miedź brzęcząca albo cymbał brzmiący.
(. . . )
Dyspersja nie zazdrości,
nie szuka poklasku,
(. . . )
nie cieszy się z niesprawiedliwości,
lecz współweseli się z indukcją, elektrostatyką i wymianą.

(Św. Paweł z Tarsu, Pierwszy list do Koryntian1)

1Oba powyższe cytaty, jak to zazwyczaj bywa w chemii kwantowej, są zaledwie przybliżeniami
tych dokładnych w pierwszym rzędzie.



Chapter 1

Introduction

1.1 Significance of Intermolecular Forces

Interactions between closed-shell atoms and molecules are considerably weaker
than typical chemical bonds (tens kJ/mol vs. hundreds kJ/mol), yet they govern
a wide spectrum of chemical and physical phenomena: from protein structure,
solvation and self-assembly to the properties of materials. A molecular-level de-
scription of these phenomena requires knowledge of intermolecular interaction
potentials which can be obtained either from the analysis of experimental data
or from direct computations based on the first principles. Present-day ab initio
methods are capable of describing these interactions with great accuracy even for
systems as large as benzene dimer [1] or the water octamer (see e.g. the exhaustive
bibliography in Ref. 2).

Physically speaking, intermolecular interactions are of electromagnetic nature
and are due to the electrostatic interactions between charged particles constituting
the interacting molecules: electrons and nuclei. Qualitative understanding of
these interactions has progressed due in large measure to the developments in the
perturbation theory of intermolecular forces [3] which recognizes the interaction
energy as a composite of the four fundamental building blocks: electrostatic,
exchange, induction, and dispersion. These terms have different physical origins
and their importance varies from case to case. On the one hand, assembling
the interaction energy from these building blocks has a great interpretative and
predictive power. On the other, any reliable method of quantitative modeling of
complex systems, e.g. via molecular dynamics or Monte Carlo simulations must
give proper account of each of these components.



8 Introduction

1.2 Calculation of Intermolecular Interactions

For a two-body system, interaction energy is defined as the difference between the
dimer’s and isolated monomers’ energies:1

Eint = EAB − EA − EB, (1.1)

All calculations of intermolecular interaction energies are performed in the Born-
Oppenheimer approximation, usually on a grid covering some representative ge-
ometries of the dimer. The relative orientation of the monomers’ body-fixed co-
ordinate systems is depicted by the intermolecular vector R.

In general, there are two main-stream tools for calculating intermolecular
forces: supermolecular method and perturbational approach and both have their
advantages and downsides. Supermolecular approach is in general easily appli-
cable at any intermolecular distance and nowadays it is virtually a black-box
method, implemented in almost all electronic structure software packages. How-
ever, it relies on the cancellation of errors in calculations of Eq. (1.1) terms and is
plagued by the notorious basis-set superposition error (BSSE) [4]. Moreover, the
result of the method is just a single number representing the whole intermolecular
interaction energy that gives no physical insight into the nature of the interac-
tion, measuring only its strength. The perturbational method, on the other hand,
yields a decomposition of Eint into well-defined physical contributions and the
calculation is free of the BSSE. Nevertheless, the perturbation method remains
more complex and more difficult to apply, and there are just a few programs with
its implementation (Molpro [5], SAPT2008 [6]).

1.2.1 Supermolecular Approach

In a supermolecular approach, interaction energy is calculated directly from Eq. (1.1)
using a suitable ab initio method, e.g. HF, MP2, MRCI, CCSD(T). Owing to
its usual usage simplicity, the method is the most common tool in the field. See
Refs. 7 for an exhaustive review on the supermolecular approach.

1.2.2 Perturbative Methods

As we will need a few concepts introduced in the perturbation theory hereafter,
we need to elaborate on the method in more detail.

Perturbative methods are based on the assumption that the interaction en-
ergy is small relative to total system energy which is reflected in the following

1See Appendix A for the summary of acronyms and Appendix B for the details on the
notation used throughout the Thesis.
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partitioning of the AB dimer hamiltonian:

Ĥ =
∑
i∈AB

(
−1

2
∆ri
−
∑
α∈AB

Zα
|ri −Rα|

)
+

∑
i<j∈AB

1

rij
+

∑
α<β∈AB

ZαZβ
Rαβ

=

= ĤA + ĤB + V̂ . (1.2)

Thus, monomer A’s hamiltonian reads

ĤA =
∑
i∈A

(
−1

2
∆ri

+ v̂ne
A (ri)

)
+
∑
i<j∈A

1

rij
+
∑

α<β∈A

ZαZβ
Rαβ

=

=
∑
i∈A

ĥA(ri) + V̂ ee
A + V nn

A , (1.3)

where the nuclear potential of monomer A is

v̂ne
A (r) = −

∑
α∈A

Zα
|r−Rα|

(1.4)

and the nuclear-nuclear repulsion part is simply a constant in clamped-nuclei
approximation. From (1.2) and (1.3), the interaction operator is readily found to
be

V̂ =
∑
i∈A

∑
k∈B

1

rik
−
∑
i∈A

∑
β∈B

Zβ
|ri −Rβ|

−
∑
k∈B

∑
α∈A

Zα
|rk −Rα|

+
∑
α∈A

∑
β∈B

ZαZβ
Rαβ

. (1.5)

To emphasize that V̂ is a perturbation, the total hamiltonian is assumed in the
form

Ĥ = ĤA + ĤB + λV̂ = Ĥ0 + λV̂ (1.6)

with λ ∈ 〈0; 1〉 being some scaling parameter, which when equated to unity re-
stores the physical description of a system. It is also assumed that the unperturbed
hamiltonian wavefunctions are known:{

ĤAψ
0
A = E0

Aψ
0
A

ĤBψ
0
B = E0

Bψ
0
B

, (1.7)

and the dimer function is simply their product,

ψ0 = ψ0
Aψ

0
B. (1.8)

However, such an approach, termed polarization perturbation theory, suffers from
the lack of the exchange antisymmetry between monomer functions. As a remedy,
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the function may be antisymmetrized, as is the case for the symmetry-adapted
perturbation theory (SAPT) [3]:

ψ′0 = Â ψ0
Aψ

0
B. (1.9)

The function (1.9) is no longer an eigenfunction of Ĥ0, however, the exchange
effects are properly included and the method yields correct energies even at the
repulsive part of the potential energy curve. The first-order SAPT energy is

E(1) =
〈ψ0|V̂ Â |ψ0〉
〈ψ0|Â ψ0〉

= E
(1)
elst + E

(1)
exch (1.10)

and it contains electrostatic and exchange-repulsion interaction energies. Second
order energy is a sum of induction and dispersion and their exchange counterparts,

E(2) = E
(2)
ind + E

(2)
exch-ind + E

(2)
disp + E

(2)
exch-disp. (1.11)

In the standard HF-based SAPT (SAPT-HF) the wavefunctions are obtained from
self-consistent field (SCF) calculations for the monomers, hence{

ψ0
A = |(a0

iα a
0
iβ)i∈A〉

ψ0
B = |(b0

kα b
0
kβ)k∈B〉

, (1.12)

where the unperturbed monomer orbitals satisfy Hartree-Fock (HF) equations,
e.g. for monomer A:

f̂A(r)a0
i (r) = ε0A,ia

0
i (r). (1.13)

The Fock operator of monomer A reads

f̂A(r) = ĥA(r) + v̂HF
A (r) = ĥA(r) + ̂A(r) + v̂exch

A (r), (1.14)

where the HF potential (v̂HF
A ) consists of Coulomb (̂A) and exchange (v̂exch

A =

−k̂A) operators, respectively [8]. The action of these operators on monomer A’s
orbitals may be conveniently represented with the help of the one-particle density
functions [9]:

̂A(r)a0
i (r) =

(∫
R3

ρ0
A(r′)

|r− r′|
d3r′

)
a0
i (r), (1.15)

and

v̂exch
A (r)a0

i (r) = −1

2

∫
R3

ρ0
A(r; r′)

|r− r′|
a0
i (r
′) d3r′. (1.16)
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The one-particle density function [or one-electron reduced density matrix (1-DM)]
reads

ρ0
A(r; r′) =

NA

∑
σ1,σ2,...,σNA

∫
R3

. . .

∫
R3

ψ0
A

(
r;σ1; (ri;σi)

NA
i=2

)
ψ0∗

A

(
r′;σ1; (ri;σi)

NA
i=2

)
d3ri . . . d

3rNA
,

(1.17)

its diagonal part being the electron density,

ρ0
A(r) = ρ0

A(r; r). (1.18)

For ψ0
A in the form of single Slater determinant (1.12) the expression for the

density (1.17) simplifies to

ρ0
A(r; r′) = 2

∑
i∈A

a0
i (r)a0∗

i (r′). (1.19)

The main drawback of the SAPT-HF approach is the neglection of the electronic
correlation within monomers, which is inherent to the HF method itself. The
problem may be solved through the introduction of the Møller–Plesset (MP) per-
turbation operators on each monomer,

ŴA = ĤA − F̂A = ĤA −
∑
i∈A

f̂A(ri). (1.20)

The resulting many-body formulation of SAPT, MB-SAPT [10], is formally a
triple perturbation theory with the dimer hamiltonian partitioned as

Ĥ = F̂A + F̂B + λV̂ + ξAŴA + ξBŴB. (1.21)

The MB-SAPT energies are marked with two numbers, the first being the order
of perturbation in V̂ , the second denoting the sum of perturbation orders in ŴA

and ŴB. Thus, SAPT-HF energies are appended with zero, e.g. E(20)
disp , since no

intramonomer correlation correction is included. The main drawback of MB-
SAPT is its complexity and the need for the inclusion of high-order corrections to
obtain reliable energies.

As another cure for the correlation problem, SAPT can be combined with the
density functional theory (DFT) method (see Sec. 1.2.4).

1.2.3 Iterative Approaches

The application of perturbation methods to the intermolecular interactions cal-
culations is not straightforward and well-defined since the definition of the order



12 Introduction

of perturbation is not unique. Moreover, the expansion of interaction energy
components in a parturbational series may not be convergent, as is the case for
induction. In consequence, many iterative schemes for computation of interaction
energies have been proposed so far. The main advantage of an iterative approach
is that its results, provided the calculations have converged, are not affected by
higher-order terms as is always the case in perturbation theory where one has to
cut the perturbation expansion at some order (usually a second or a third one).

Several iterative decomposition schemes of supermolecular Eint have been pro-
posed, e.g. by Kitaura and Morokuma [11], Stone and Alderton [12], Gutowski
and Piela [13] or Chałasiński and Szczęśniak [14]. Components of Eint have been
modeled after perturbational contributions already mentioned in the Sec. 1.2.2.
All these schemes include Heitler-London (HL) interaction energy as their starting
point — the zeroth iteration:

EHL
int =

〈Â ψ0|Ĥ|Â ψ0〉
〈Â ψ0|Â ψ0〉

− 〈ψ0
A|ĤA|ψ0

A〉 − 〈ψ0
B|ĤB|ψ0

B〉 . (1.22)

Various division techniques used to obtain the total interaction energy differ in
the ∆E term,

∆E = Eint − EHL
int . (1.23)

Ideally, ∆E should include all the induction, dispersion and exchange effects to
infinite order, thus yielding, together with EHL

int , the exact interaction energy of
a system. In the Pauli blockade method (to which we will turn our attention
later), ∆E is called the deformation energy, Edef , and includes all induction and
exchange-induction effects up to an infinite order [13].

1.2.4 DFT in Intermolecular Forces

The supermolecular method within DFT has been extensively applied to study
interactions, with rather disappointing outcome [15]. It became clear that the
standard functionals are not a proper tool within the supermolecular approach.
There have been numerous attempts to solve that problematic issue.

The simplest way to obtain reliable results is perhaps the DFT + dispersion
(DFT-D) approach in which the supermolecular DFT interaction energy is supple-
mented with the dispersion correction obtained in a empirical or semi-empirical
way [16]. However, the DFT supermolecular interaction energy itself contains
non-local contributions, among them the dispersion. Thus, completing such an
energy with dispersion correction is neither accurate nor well-justified, unavoid-
ably leading to a so-called double-counting problem. Moreover, the use of empirical
parameters has the usual drawbacks of such methods: the restriction to a certain
class of systems and failure to describe other types of interactions.
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Another approach is to design the density functionals (DFs) restoring weak
interactions through the fitting to the training set of systems. This way the
interaction energy is obtained in one go and does not need to be dispersion-
corrected. M05 and M06 family of functionals [17] is a representative example
of that approach. These functionals are highly parametrized (several dozens of
parameters) and empirical. They prove quite successful, yet the non-local physics
of the dispersion is expressed through local or semi-local potentials.

More rigorous approach is taken by the family of DFs explicitly including
non-local contributions to exchange-correlation (xc) potentials [18] or based on
the exchange dipole moment [19]. Conceptually similar is the idea of using the
exact exchange (i.e., HF one) for the long-range part of potential and the local
[i.e., Kohn-Sham (KS) one] for its short-range part, smoothly switching between
the two with the use of the error function [20]. The range separation approach
treats the long-range in and off monomers on equal footing, however, it requires
an arbitrary parameter switching on the exact exchange at a certain arbitrary
distance.

DFT-based formulation of SAPT (SAPT-DFT) [21] was a major step in the
field. Though not very efficient for big systems (e.g., compared to DFT-D), it
is very trustworthy and accurate. In particular, SAPT-DFT yields coupled dis-
persion energy between the monomers described by the densities from the DFT
calculations. Unfortunately, the perturbation theory diverges for the short in-
tersytem distances, mainly due to the lack of strict and consistent treatment of
exchange-induction interactions. That restricts SAPT-DFT to non-covalent in-
teractions.

Despite success for small- and medium-sized systems, theoretical modeling of
intermolecular forces in large supramolecular structures, crystals, polymers, and
nano-materials presents a serious challenge. For dense matter, DFT has firmly
established its usefulness to account for structure, cohesion and other static prop-
erties. To extend DFT’s usefulness to the large classes of matter with both high-
density fragments with chemical and metallic bonding, and low-density regions,
primarily governed by van der Waals forces, a general density functional approach
that includes all noncovalent interactions is necessary.

The issues to which solutions are at present of paramount importance are:

• accurate, seamless, and efficient incorporation of long-range electron corre-
lation effects.

• qualitative and quantitative control of all noncovalent interactions that enter
the supermolecular DFT interaction energies for different functionals.

The two problems are interrelated as popular DFT schemes are notorious for both
neglecting important non-local (dispersion) contributions as well as producing
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erroneous artifacts, e.g. double-counting of some of the non-local terms. This
is due to the simplified physics of the exchange-correlation potentials, on one
side, and to obscure semiempirical parameters used to make up for the resulting
deficiencies, on the other. Despite major progress accomplished over the last
decade to resolve these issues, they require further research.

Thus, the primary concern of my doctoral work has been to investigate the
contents of the supermolecular DFT interaction energies, and aid to alleviate the
above two problems. To this end, I have designed a new approach to DFT in
terms of mutually interacting monomer densities, which assures that all neces-
sary noncovalent local ingredients are properly accounted for by the so called
dispersion-free supermolecular DFT interaction energy, while the non-local terms
are confined to the separately evaluated and a posteriori added dispersion.

1.3 Many Body Contributions

For dense systems containing large number of molecules (condensed phases, clus-
ters) the many body contributions to Eint may be substantial [22–24]. The inter-
action energy for a system composed of n monomers: A1A2 . . .An is

Eint = EA1A2...An −
n∑
i=1

EAn , (1.24)

and it readily reduces to the two-body formula (1.1) for n = 2. The many-body
expansion of (1.24) reads

Eint = ∆E
(2,n)
int + ∆E

(3,n)
int + . . .+ ∆E

(n,n)
int , (1.25)

the m-body contribution being (m < n)

∆E
(m,n)
int =

n−m+1∑
i1=1

n−m+2∑
i2=i1+1

. . .
n∑

im=im−1+1

ε(m,n)(Ai1Ai2 . . .Aim), (1.26)

where

ε(m,n)(Ai1Ai2 . . .Aim) = Eint(Ai1Ai2 . . .Aim)+

−

(
m−1∑
k=1

m∑
l=k+1

ε(2,m)(AikAil) +
m−2∑
k=1

m−1∑
l=k+1

m∑
m=l+1

ε(3,m)(AikAilAim) + . . .+

+
2∑

k=1

3∑
l=k+1

. . .
m∑

q=p+1

ε(m−1,m)(AikAil . . .Aiq)

) (1.27)



1.4 Motivation and Goals of the Thesis 15

with

Eint(Ai1Ai2 . . .Aim) = EAi1
Ai2

...Aim
−

m∑
k=1

EAik
. (1.28)

The ∆E
(n,n)
int term in (1.25) is calculated from that very expression. The sum (1.26)

runs over distinctive subsets of m-mers and contains
(
n
m

)
terms.

1.4 Motivation and Goals of the Thesis
Dispersion energy plays a unique role in intermolecular interactions. On one
side, it is an omnipresent factor binding atoms, molecules and clusters. Although
minute compared to covalent forces, it may be qualitatively decisive if the covalent,
electrostatic and induction interactions are absent. On the other hand, reliable
modeling of dispersion by quantum mechanical calculations poses a real challenge
due to long-range electron correlation effects engaging interacting monomers. It
requires both the advanced methods to account for many-electron correlation ef-
fects and large highly polarized and diffuse basis sets. Not surprisingly, it has also
become the major challenge for DFT which notoriously has problems with the
long-range correlation effects.

A widespread and convenient approach to intermolecular interaction calcula-
tions is to evaluate the hard dispersion part and the facile non-dispersion part sep-
arately. This is the idea behind the vintage SCF-D model introduced by Ahlrichs
et al. [25], which was later grafted in DFT in the form of DFT-D methods. It is
worthwhile to note that the separation of the two components comes about in a
natural way both in SAPT-HF and SAPT-DFT. The SCF-D model has also been
generalized for systems with important static-correlation effects described by the
CASSCF in the form of CAS-D approximation [26, 27].

The rigorous DFT-D model requires precise separation of dispersion and dis-
persionless components of the supermolecular interaction energy, the task which
has not been previously undertaken (see, however, a recent work of Pernal et al.
[28] where a similar goal is pursued through the parameter fitting). To derive such
an approach has been the primary motive of this Dissertation.

At the very first phase of my doctoral work, when confronted with the problem
of transition metal high-spin polarized dimers, I have used the separation into
dispersion and non-dispersion components using the SAPT for the former and the
CASSCF supermolecular interaction energy for the latter [27]. The manuscript
resulting from that work is enclosed below, and constitutes the first contribution
to my doctoral work. That research has made me confident that the original
SCF-D approach may be generalized and made accurate by replacing SCF by
other definitions of the non-dispersive components, either within the wavefunction
framework or on the DFT platform.
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More specifically, the major goals pursued in the Thesis are:

• rigorous derivation of the supermolecular DFT interaction energy via the
mutual polarization of the monomer densities, implementation in the frame-
work of standard codes, and application to representative non-covalently
bound complexes. Such a formulation provides a framework to decompose
the interaction energy into components related to monomer densities and
properties and to define the DFT analogs of the HL interaction energy and
the DFT deformation energy.

• derivation of a novel, dispersionless DFT approach for calculations of inter-
molecular interactions based on the separation of intra- and intermolecular
types of correlation, followed by the implementation and application to rep-
resentative noncovalently bound complexes.
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The high-spin van der Waals states are examined for the following dimers: Cr2 !13!g
+", Sc–Cr !8!+,

8", 8#", and Sc–Kr !2!+, 2", 2#". These three systems offer a wide range of van der Waals
interactions: anomalously strong, intermediate, and typically weak. The single-reference #coupled
cluster with single, double, and noniterative triple excitations, RCCSD!T"$ method is used in the
calculations for all three systems. In addition, a range of configuration-interaction based methods is
applied in Cr2 and Sc–Cr. The three dimers are shown to be bound by the dispersion interaction of
varying strength. In a related effort, the dispersion energy and its exchange counterpart are
calculated using the newly developed open-shell variant of the symmetry-adapted perturbation
theory !SAPT". The restricted open-shell time-dependent Hartree-Fock linear response function is
used in the calculations of the dispersion energy in Sc–Cr and Sc–Kr calculations, while the
restricted open-shell time-dependent density functional linear response function is used for Cr2. A
hybrid method combining the repulsive restricted open-shell Hartree-Fock !or complete active space
self-consistent field" interaction energy with the dispersion and exchange-dispersion terms is tested
against the RCCSD!T" results for the three complexes. The Cr2 !13!g

+" complex has the well depth
of 807.8 cm−1 at the equilibrium distance of 6.18a0 and the dissociation energy of 776.8 cm−1. The
octet-state Sc–Cr is about four times more strongly bound with the order of well depths of 8#
$ 8"$ 8!+ and a considerable anisotropy. The enhanced bonding is attributed to the unusually
strong dispersion interaction. Sc–Kr !2!+, 2", 2#" is a typical van der Waals dimer with well depths
in the range of 81 cm−1 !2#", 84cm−1 !2!+", and 86 cm−1 !2"". The hybrid model based on SAPT
leads to results which are in excellent qualitative agreement with RCCSD!T" for all three
interactions. © 2007 American Institute of Physics. #DOI: 10.1063/1.2805390$

I. INTRODUCTION

Interactions involving transition metals !TMs" are inter-
esting for a variety of reasons. Because of the incompletely
filled !n−1"d subshell, they are open-shell species which can
display a wide diversity of bonding types, from van der
Waals, to chemical bonds, to multiple metal-metal bonds.1,2

While the chemically bound TM dimers have been the sub-
jects of intense investigations !see, e.g., Refs. 3 and 4" the
van der Waals states of these species have remained virtually
unexplored. These spin-polarized states are of great interest
to the cold-matter community. Atoms with partially filled

!n−1"d subshell and nonzero orbital angular momentum re-
veal anisotropic properties. That is, in the interactions with
other structureless targets, their electronic states further split
into manifolds of adiabatic states. The magnitude of this an-
isotropy is crucial to the success of the collisional cooling of
these atoms in a bath of a buffer gas which is the first step in
magnetic trapping experiments.5 Our recent work has shown
that in transition metals this anisotropy is unusually small
because of the shielding effect of the outer ns2 electrons.6

This suppressed anisotropy offers a chance that atoms with
nonzero orbital angular momentum may some day be cooled
to achieve quantum degeneracy. The atoms with a half-filled
!n−1"d subshell are isotropic in the orbital angular momen-
tum sense, but are “magnetically anisotropic” due to the high
magnetic moments which give rise to long-range anisotropic

a"Electronic mail: rajchel@oakland.edu.
b"Electronic mail: pzuch@tiger.chem.uw.edu.pl.
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magnetic dipole-dipole interactions.7 These properties are of
intense interest to quantum information processing.

The Zeeman relaxation in cold collisions of Sc and Ti
with He buffer gas was investigated by Hancox et al.5 The
results indicated that compared to the main-group atoms, the
rate of inelastic collisions of these atoms with He is several
orders of magnitude smaller.8 Chromium was buffer-gas
cooled and magnetically trapped by Weinstein et al.9 Mag-
netic trapping selects atoms in low-field seeking states !i.e.,
states the maximum projection of spin onto the magnetic
field axis". Collisions of such atoms may lead to inelastic
spin depolarization and trap loss. By contrast, if the atoms
are trapped in their high-field seeking states, they can be
cooled to quantum degeneracy. This task was recently ac-
complished for chromium by Griesmaier et al.10 Cr-BEC in-
volves a spin-polarized van der Waals state. Further experi-
ments reported observations of Feshbach resonances,11

which led to the determination of the C6 and C8 coefficients
for Cr–Cr pair interactions and to the value of the s-wave
scattering length for the high-spin 13!g

+ state.
The calculations of intermolecular potentials of transi-

tion metal atoms are very challenging for ab initio theory
because of the multireference character of their wave func-
tions, close proximity of excited states, and many types of
correlation. In many instances, the symmetry of ground state
is uncertain. Gutsev et al.12,13 studied a number of first-row
transition metal dimers by the density functional theory
!DFT" based on the unrestricted Kohn-Sham treatment. The
aim of these studies was to determine ground states. The Cr2
interaction potentials for the ! states with total spin S rang-
ing from 0 to 6 was investigated by Pavlović et al.14 using
the complete active space second-order perturbation theory
!CASPT2". They combined the short- and intermediate-range
ab initio CASPT2 potentials with the long-range empirically
estimated C6 /R6 term to generate the potential functions for
the elastic cross-section calculations for the 13!g

+ state. They
found that the value of the s-wave scattering length for this
state depends dramatically on the choice of the C6 coeffi-
cient. There is also considerable experimental interest in
spin-polarized heterodimers of TM atoms. For example,
Cr–Mn was recently confined in a magnetic trap at subkelvin
temperature using buffer-gas cooling.15 The interspecies in-
elastic rate constant was also measured in this experiment. In
order to determine if similar cotrapping is possible for Cr
with anisotropic TM atoms, one needs to determine the mag-
nitude of the splitting of adiabatic interaction potentials.
Sc–Cr can serve as a convenient model for such a determi-
nation in addition to being computationally challenging.

The purpose of the present paper is to calculate adiabatic
interaction potentials for the highest-spin states of the Cr–Cr
and Sc–Cr interactions by a single-reference coupled-cluster
method and a variety of multireference treatments including
configuration interaction !MRCI", the averaged quadratic
coupled-cluster !AQCC", and the configuration-interaction
second-order perturbation theory !CIPT2".16 In order to de-
termine the appropriate methodology to study these systems,
we will also explore the newly developed open-shell variant
of the symmetry-adapted perturbation theory !SAPT".17 The
third objective of this work is to understand the properties of

Sc–Cr in its van der Waals state. This goal will be accom-
plished by comparing and contrasting this system with a
typical van der Waals complex Sc–Kr.

II. THEORY

A. Electronic properties of Cr2, Sc–Cr, and Sc–Kr

Ground states of Cr and Sc nominally correspond to the
#Ar$3d54s1 and #Ar$3d14s2 configurations, respectively, and
thus result in 7S and 2D ground-state terms. The high-spin
states correlating with these asymptotes are for Cr2 the 13!g

+

state, for Sc–Cr the 8!+, 8", and 8# states, and for Sc–Kr the
2!+, 2", and 2# states. All calculations were performed in
the C2v !for heteronuclear systems" and D2h !for the chro-
mium dimer" abelian point subgroups of C%v and D%h
groups, respectively.

B. Methods

One of the most accurate methods for the study of high-
spin open-shell van der Waals states is an open-shell variant
of the coupled-cluster !CC" method, such as the partially
spin-adapted restricted coupled cluster method with single,
double, and noniterative triple excitations RCCSD!T" !Ref.
18" applied within the framework of the supermolecular
method. This approach is limited to the states which can be
described in zeroth order by a single configuration. When
this is in doubt, the MRCI, or some alternative, should be
employed. Unfortunately, the lack of size extensivity in
many such approaches makes them difficult to apply within
the supermolecular framework. The corrections for size ex-
tensivity are only approximate and a correction for basis set
superposition error cannot be rigorously applied.19

Even if the states are nominally single reference, obtain-
ing meaningful CC interaction potentials is not guaranteed.
Transition metal dimers are notorious for intruder-state prob-
lems, symmetry-breaking, and CC convergence problems. In
such circumstances the open-shell SAPT may provide much
needed relief. Such theory was proposed in 1980 by Chała-
siński and Szalewicz20 and implemented within the unre-
stricted Hartree-Fock formalism with uncoupled Hartree-
Fock induction and dispersion energies by Cybulski
et al.21 The applications included a number of open-shell
complexes including systems with degenerate ground
states.22–24 Later a more advanced treatment of open-shell
dispersion energy based on time-dependent HF !TDHF" lin-
ear response functions !propagators" was developed25 !see
also Hettema and Wormer26" and successfully applied to
high-spin open-shell systems such as 5!g

+ state of He2 !long
range" and to a "-state complex O!3P"-H2.27 Recently, a
new and promising treatment for high-spin open-shell has
been developed which combines SAPT with restricted open-
shell Kohn-Sham description of monomers.17 This approach,
referred to as SAPT!DFT", employs the open-shell TDDFT
polarization propagators in the treatment of the induction and
dispersion energies within adiabatic local density approxima-
tion. It is at present applicable to the interactions of nonde-
generate high-spin cases.

In this paper the interaction potentials for the above
listed states of Cr2, Sc–Cr, and Sc–Kr are calculated using
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RCCSD!T" with large all-electron basis sets the details of
which are described in the respective sections. The role of
scalar relativistic Douglas-Kroll-Hess28,29 effects is explored,
as well as the influence of core-valence correlation on the
potentials. The following multireference approaches were
applied to confirm the RCCSD!T" results. In !13!g

+" Cr2 the
averaged quadratic coupled cluster30 !AQCC" and CIPT2
!Ref. 16" were employed. CIPT2 is a relatively new hybrid
method in which excitations from the active space are treated
by MRCI and the remaining excitations by perturbation
theory. It proved quite successful in the study of the formi-
dable X 1!g

+ state of Cr2.16 In !8!+, 8", 8#" Sc–Cr the inter-
nally contracted MRCI !Ref. 31 and 32" was applied. CIPT2
and MRCI employed Davidson’s correction to approximate
the effect of quadruple excitations, denoted CIPT2+Q and
MRCI+Q, respectively. The reference functions for all the
multireference calculations were obtained from state-
averaged complete active space self consistent field
!CASSCF" method which employed the full valence active
space !unless stated otherwise".

Another confirmation of the obtained potentials and their
interpretation on physical grounds is carried out with the
SAPT method. The Sc–Cr and Sc–Kr calculations employ
SAPT formulated with respect to restricted HF determinants,
whereas those for Cr2 use SAPT!DFT" formulated with re-
spect to restricted Kohn-Sham !KS" determinants. Of par-
ticular importance to the goals of this paper are the disper-
sion energy and its exchange counterpart. The second-order
dispersion energy Edisp

!2" for a dimer X–Y is calculated from a
modified Polder formula

Edisp
!2" = −

1
4&

vrs
pqvr!s!

p!q!%
−%

%

"rr!
pp!!i'""ss!

qq!!− i'"d' , !1"

where "rr!
pp! are polarization propagators, vrs

pq are two-electron
integrals, and ' is a frequency. In the above formula, p, p!, r,
and r! indices run over the orbitals of mononer X, and the
remaining set refers to monomer Y orbitals. Polarization
propagators are computed with either TDHF !Refs. 33–35"
or time-dependent density functional theory !TDDFT". The
second-order exchange-dispersion energies are defined with
the uncoupled !UC" dispersion amplitudes !either HF or KS".
In the SAPT nomenclature they are the Eex-disp

!20" !HF" and
Eex-disp

!2" !UCKS" terms !see Ref. 17", respectively. We will re-
fer to them by one generic name, Eex-disp

!2" . The exchange-
dispersion terms were calculated within the S2 approxima-
tion, where S denotes the overlap integral.

In the supermolecular approach the interaction potential
V of a X–Y dimer !Y is the S-state atom" in a state ( is
calculated from the formula

V(
M!R" = EX–Y,(

M !R" − EX,(
M !R" − EY,0

M !R" − #Ersc,(
M !R" ,

!2"

where M stands for a method and ( is the projection of total
orbital angular momentum on the molecular axis and thus
refers to !, ", and # states. The last term represents the
residual size-consistency correction which vanishes when M
is a size-extensive method. This term is used to correct for
effects which are not removed by the Davidson’s correction

in MRCI+Q and CIPT2+Q as well as in the non-size-
extensive AQCC method. This term ensures that the interac-
tion potentials V vanish in the limit of large R !assumed to be
R=60a0". All the terms in Eq. !2" were calculated in the
dimer-centered basis set to apply the counterpoise
correction36 !see also Ref. 37". The SAPT components are
included in the hybrid model which describes the interaction
potential as the following sum:

V(!R" = V(
CASSCF!R" + Edisp

!2" !R;(" + Eex-disp
!2" !R;(" , !3"

where V(
CASSCF #Eq. !2"$ is the supermolecular interaction

energy obtained at the CASSCF level of theory and the re-
maining terms are the (-dependent dispersion and exchange-
dispersion SAPT components. Depending on the circum-
stances V(

CASSCF may be substituted for V(
ROHF. This model

referred to as CAS+disp represents a generalization of the
SCF+disp approximation of Ahlrichs et al.38 CAS+disp is
based on an assumption that the CASSCF interaction energy
obtained with limited active space includes primarily the
nondynamic correlation effects and can be used in metal-
metal van der Waals interaction.39 The inability of CASSCF
to account for the dispersion energy results from the fact that
valence space calculations optimize monomer components of
the supermolecular correlation energy. Dispersion energy is
the intermolecular electron correlation effect.

The calculations were performed with the MOLPRO

package.40 The SAPT terms were calculated with codes
which became incorporated into SAPT2006.41

C. Interaction anisotropy

For the interpretation of the anisotropy of the interaction
it is useful to work with the isotropic and anisotropic parts of
the interaction potentials.42,43 For a D-state atom interacting
with an S-state one, the interaction potential V( is connected
with isotropic !V0" and anisotropic parts of potential !V2"
according to the formula

V0 = 1
5 !V! + 2V" + 2V#" ,

!4"
V2 = V! + V" − 2V#,

where V!, V", and V# are interaction potentials. The
asymptotic regions of potentials obtained with Eq. !4" are
used to find isotropic C6,0 and anisotropic C6,2 dispersion
coefficients by fitting them to a function

V)!R" = −
C6,)

R6 −
C8,)

R8 . !5"

#The C8 coefficient in Eq. !5" is used to collect higher-rank
terms which otherwise may lead to C6 dispersion coefficient
being overestimated.$ These calculations are based on the
assumption that the long-range interaction energy is gov-
erned by the dispersion interaction.

In order to calculate the dispersion coefficients for the
Cr2 system, we have used the following multipole expansion
of two-electron integrals appearing in the Casimir-Polder for-
mula:
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+
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where l= lX+ lY and !QlX
mY"l

k is the matrix element of the
2lX-pole moment operator of the monomer X !and analo-
gously for the monomer Y". It should be noted that the above
methodology can at present be applied only to the interacting
S-state atoms.

III. AB INITIO RESULTS

A. Cr2

We begin the discussion from the Cr2 !13!g
+" interaction-

for which there exist some experimental data.11 This state is
reasonably well represented using the single configuration as
evidenced by the fact that the CASSCF and ROHF wave
functions are practically the same. The DFT monomer calcu-
lations employed the B97-2 functional44 with the Fermi-
Amaldi asymptotic correction45 which for the open-shell
case involves two parameters one for the ,-density and one
for the --density. These parameters were equal to 0.248 and
1.768 hartrees, respectively. The hybrid model combined
VROHF with SAPT!DFT" dispersion and exchange-dispersion
terms !ROHF+disp". The RCCSD!T" calculations were per-
formed at three different levels of theory. The first included
no scalar relativistic Douglas-Kroll-Hess28,29 !DK" effects
and employed the aug-cc-pVQZ !Ref. 46" basis set #denoted
RCCSD!T"$, so the direct comparison can be carried out
with the SAPT!DFT" method for which the inclusion of rela-
tivistic effects is not yet implemented. Next, the RCCSD!T"
calculations were performed with the inclusion of the
Douglass-Kroll-Hess integrals and the aug-cc-pVQZ-DK
!Ref. 46" basis set #denoted RCCSD!T"/DK$. The final

RCCSD!T" calculation included this basis set augmented
with a set of bond functions and DK relativistic correction
#RCCSD!T" /DK+b$. The convergence of a CC iterative
process in this high-spin system is difficult to achieve with
basis sets involving diffuse orbitals because of intruder-state
problems. The convergence problem was remedied using a
level shift procedure !the shift value of 1 a.u. was sufficient
for the CCSD convergence and the maximal value of T1
diagnostic for all the runs was about 0.02". The CIPT2+Q
and AQCC approaches employed a CASSCF reference func-
tion and both include the DK effects.

The results shown in Table I list the ROHF+disp values
next to RCCSD!T" for a proper comparison. The ROHF
+disp interaction energies agree reasonably well with the
RCCSD!T" potential except for the discrepancies at short
distances, where the RCCSD!T" is more repulsive and in the
long range !see R=12a0" where the ROHF+disp is less at-
tractive. In the minimum region, the two potentials agree to
within 10%. The similarity of the two potentials indicates
that the binding of Cr2 !13!g

+" originates from the dispersion
interaction combined with its exchange counterpart. The
exchange-dispersion energy represents a significant repulsive
contribution, which quenches about 20% of the dispersion
attraction in the minimum region. The scalar relativistic ef-
fects are fairly important for the quantitative description of
this potential. The inclusion of the DK effects deepens the
minimum of the RCCSD!T" potential by about 10%. The
addition of bond functions, to optimize the dispersion inter-
action, further enhances the well depth by about 4%. This
final potential is our most accurate result and the analytical
fit is available upon request. The CIPT2+Q results are in
very good agreement with the RCCSD!T" results. The
AQCC treatment leads to a considerably underestimated po-
tential at all distances.

The minimum characteristics, the long-range C6 disper-
sion coefficient, and the dipole polarizability ,, values are

TABLE I. Comparison of interaction energies of Cr2 at different levels of theory !all energies in cm−1".

R !a0" Edisp
!2" Eex-disp

!2"

ROHF
+disp

!TDDFT"

Eint

RCCSD!T"
RCCSD!T"/

DK
RCCSD!T"/

DK+b
CIPT2+Q/

DK
AQCC/

DK

4.50 −7287.1 2350.2 4311.4 5236.7 4878.1 4807.9 4742.4 5542.6
5.00 −5148.4 1373.4 646.2 1195.6 941.2 893.7 865.7 1503.9
5.25 −4339.8 1082.9 −126.0 273.4 67.6 26.1 11.0 574.6
5.50 −3663.5 867.4 −533.0 −254.1 −416.9 −454.3 −459.6 35.4
5.75 −534.4 −660.9 −695.1 −693.2 −260.0
6.00 −2619.5 573.1 −777.8 −663.6 −760.3 −791.9 −785.1 −406.7
6.25 −2217.9 469.2 −764.2 −703.2 −776.0 −805.7 −795.5 −465.2
6.50 −1879.1 384.7 −713.9 −692.0 −746.1 −774.0 −762.1 −473.7
6.75 −1593.0 315.3 −647.8 −654.1 −693.7 −719.8 −707.5 −455.3
7.00 −1351.2 258.2 −577.7 −603.8 −632.4 −656.4 −645.1 −424.2
7.50 −974.0 172.1 −448.4 −496.2 −510.1 −529.8 −522.4 −352.1
8.00 −704.3 113.6 −345.1 −399.8 −405.5 −421.2 −418.3 −286.1
9.00 −373.1 48.0 −209.0 −256.7 −255.3 −264.8 −267.9 −188.0
9.50 −273.8 30.9 −164.9 −205.4 −202.7 −210.1 −214.3 −152.2

10.00 −202.3 19.9 −130.9 −163.9 −160.8 −166.7 −171.0 −122.8
11.00 −112.9 8.2 −83.2 −103.8 −100.8 −104.8 −107.9 −79.1
12.00 −65.1 3.5 −53.2 −65.5 −63.1 −65.9 −67.7 −50.3
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shown in Table II. The three treatments, deemed reliable,
lead to the well depths in the narrow range of values:
779.1 cm−1 !ROHF+disp", 798.4 cm−1 !CIPT2+Q /DK" and
807.8 cm−1 #RCCSD!T" /DK+b$. The position of the mini-
mum occurs at a slightly shorter distance for the ROHF
+disp potential !R=6.06a0" compared to RCCSD!T" /DK
+b !R=6.18a0" and CIPT2+Q /DK !R=6.16a0" due to the
aforementioned underestimated short-range repulsion. The
RCCSD!T" /DK+b potential was employed in the bound-
state calculations using discrete variable representation.47

The calculations predict the ground state of 776.8 cm−1. Our
final potential is notably deeper than the CASPT2 potential
published by Pavlović et al.14 which has the well depth of
576 cm−1. The C6 coefficients fitted to the long-range tail of
the supermolecular potentials are 780, 645, and 540 a.u. for
RCCSD!T"/DK, CIPT2+Q /DK, and AQCC/DK, respec-
tively. It should be mentioned that the RCCSD!T" C6 could
only be fitted upon freezing the outer-core !3s and 3p" elec-
trons. Otherwise a spurious lower-power R−1 term appeared
at distances larger than 28a0. Our TDDFT C6 coefficient cal-
culated directly from Eq. !6" amounts to 626 a.u. This is in
fairly good agreement with the result of Chu and Dalgarno48

who employed time-dependent optimized effective potential
with self-interaction correction. The experimental value of
C6 can be deduced from the measurements of Feshbach reso-
nances in optically trapped ultracold Cr gas,10 which are ex-
tremely sensitive to the long-range details of the Cr–Cr in-
teraction potential. Two simulations of this experiment
provide the values C6=733 !with standard deviation of
70 a.u."11 and 770.49 Our RCCSD!T" result is in very good
agreement with these values, whereas the TDDFT result lies
below the lower error bar. The higher TDDFT dispersion
coefficients C8 and C10 amount to 3.27+104 and 1.44
+106, respectively. The available experimental result for the
C8 coefficient from the work of Werner et al.,11 7.5
+104 a.u., is reportedly a weak upper bound for its value.

The calculations of static dipole polarizability of Cr, ,,
at various levels of theory offer additional clues concerning
the performance of DFT and the role of correlation and rela-
tivistic effects on this property. Our DFT result for , is
75 a.u. which differs considerably from 60.7 a.u. obtained by
Chu and Dalgarno48 with a different variant of DFT.48 The
value recommended in their work amounts to 78 a.u. !see
also Miller50" and both CIPT2 and AQCC results are in fairly
good agreement. Our most accurate RCCSD!T"/DK treat-

ment yields a slightly larger value of 82.9 a.u. The DK ef-
fects contribute about 5% toward lowering its value, consis-
tent with previous findings for other first-row transition
metals.51 The core-valence correlation was found important
in atomic properties, such as ionization energies and electron
affinities of the 3d transition row.52 To establish its effect on
polarizabilities, we removed the outer-core electrons from
the correlated space in the RCCSD!T" calculations. The re-
sult is a 10% increased ,. Based on these observations, some
calculations were also performed for Cr2 with a larger core
encompassing the 3s and 3p electrons. In the minimum re-
gion the RCCSD!T"/b calculations lead to a 5% deeper po-
tential. We conclude that in the interaction potential of Cr2
there is some degree of cancellation between the relativistic
effects and the core-valence correlation.

B. Sc–Cr

The reference functions for 8!+, 8", and 8# states of
Sc–Cr were obtained from the state-averaged CASSCF cal-
culations. In the C2v group the !+, ", and # representations
correlate with A1, B1+B2, and A1+A2, respectively. The state
symmetries were distinguished by the calculated values of (.
The CASSCF calculations employed a valence active space
in which the 4s orbital of Sc was initially kept doubly occu-
pied. The latter was necessary to prevent root flipping which
made the projection on the specific value of ( impossible.
The CASSCF wave functions were used in the MRCI calcu-
lations. Proper starting vectors for the ROHF calculations for
the three states were obtained by canonicalization of the
CASSCF natural orbitals. The ROHF vectors were subse-
quently used in RCCSD!T" calculations and as the zeroth-
order functions in the SAPT method. The RCCSD!T" calcu-
lations were performed with averaged atomic natural orbital
!ANO" basis sets of Bauschlicher53 and Partridge54 with two
types of core. The results below were obtained with the KL
electrons kept in core #denoted RCCSD!T"$. The RCCSD!T"
calculations which included the DK effects are denoted
RCCSD!T"/DK. The calculations employed a level shift and
the T1 diagnostics did not exceed 0.02. No DK effects were
considered in the MRCI calculations. The SAPT treatment
employed the TDHF polarization propagator to evaluate
state-dependent dispersion and exchange-dispersion ener-
gies. In the hybrid model, these terms are combined with
CASSCF interaction energy to at least partially account for
nondynamic correlation effects !denoted CAS+disp".

The adiabatic potentials for the three octet states of
Sc–Cr are displayed in Fig. 1 and the minimum characteris-
tics are listed in Table III. At the CASSCF level of theory
#Fig. 1!a"$, all the three states are repulsive with the !+ state
being considerably more repulsive than " and #. The analo-
gous curves evaluated at the ROHF level of theory are
slightly less repulsive, but generally very close to those from
CASSCF. At R=6a0 the differences are 63 cm−1 for !+,
10 cm−1 for ", and 33 cm−1 for #. The RCCSD!T" adiabatic
curves #Fig. 1!b"$ have deep minima !#: 3958 cm−1, ":
3531 cm−1, and !+: 2871 cm−1" occurring at the narrow
range of R=5.7a0–5.8a0. Freezing the outer-core electrons
has a small effect !less than 2%" on the well depths, whereas

TABLE II. Characteristics of the 13!g
+ Cr2 state.

Method Re !a0" D̄e !cm−1" C6 !a.u." , !a.u."

RCCSD!T" 6.30 704.1
RCCSD!T"/DK 6.19 777.5 780a 82.9
RCCSD!T" /DK+b 6.18 807.8
CIPT2+Q /DK 6.16 798.4 845 74.2
AQCC/DK 6.43 474.8 540 81.4
ROHF+disp!TDDFT" 6.06 779.1 626 75
Ref. 48 602.0 60.7
Ref. 11 733
Ref. 50 78.3

aObtained with frozen outer-core electrons !see the text".
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the inclusion of the DK effects leads to further stabilization
of about 240–250 cm−1 and shortening of Re by about 0.1a0.
The hybrid model CAS+disp results in the three potentials
which are in qualitative agreement with RCCSD!T", al-
though uniformly shallower #Fig. 1!c"$. Their minima occur
at slightly longer distances R=5.92a0. Finally, the relative
order of the three states is confirmed by the MRCI results
#Fig. 1!d"$. The binding in these states clearly originates
from correlation effects, the origins of which are quite inter-

esting. To examine their nature we compare the correlation
part of the interaction energy obtained at the RCCSD!T"
level of theory, Vcorr, with the sum of the dispersion and
exchange-dispersion terms for the three states. The result for
the most attractive state # !where the agreement is the least
favorable" is shown in Fig. 2. The figure also displays the
dispersion energy alone. The agreement between these quan-
tities is excellent and the discrepancies, which occur at short
and long distances, respectively, are not unexpected. Specifi-
cally, in the short range the present formulation of exchange
dispersion !and the S2 approximation" is expected to deterio-

FIG. 1. Interaction potentials for 8!+, 8", and 8# states of Sc–Cr obtained at the following levels of theory: !a" CASSCF, !b" RCCSD!T", !c" CAS
+disp!TDHF", !d" MRCI+Q.

TABLE III. Minimum characteristics and the dispersion coefficients of the
Sc–Cr system.

State Method Re !a0" D̄e !cm−1" C6,0 !a.u." C6,2 !a.u."

8!+ RCCSD!T" 5.81 2871
RCCSD!T"/DK 5.71 3118

MRCI+Q 5.92 2548
CAS+disp!TDHF" 6.01 2459

8" RCCSD!T" 5.73 3531
RCCSD!T"/DK 5.65 3767

MRCI+Q 5.86 3087
CAS+disp!TDHF" 5.95 2886

8# RCCSD!T" 5.70 3958
RCCSD!T"/DK 5.62 4209

MRCI+Q 5.83 3442
CAS+disp!TDHF" 5.92 3124

V0 SAPT 1366
V2 SAPT −48.7

FIG. 2. Comparison of the correlation contribution to the RCCSD!T" inter-
action energies, Vcorr, with dispersion and exchange-dispersion energies for
8# state of the Sc–Cr system.
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rate. In the long range, where the exchange effects are no
longer important, the TDHF and CCSD!T" descriptions of
the dispersion energy may show discrepancies !although
there are known open-shell cases where the two treatments
agree very well; see Ref. 25". One remarkable feature is the
sheer magnitude of dispersion energy, which is not seen in
van der Waals interactions of main-group elements except
for alkali metal and alkaline earth atom dimers. However, in
the latter cases it is matched with a very large exchange
counterpart.55,56 It is interesting to examine factors contrib-
uting to considerable splittings between potentials. Let us
consider the difference between the !+ and " states at R
=6a0 which in CAS+disp amounts to 423 cm−1. CASSCF
contributes the largest share to this difference, 465 cm−1. The
contribution from the dispersion is −61 cm−1, and the one
from the exchange dispersion is 19 cm−1. By comparison, the
analogous energy difference in RCCSD!T" is 600 cm−1.

Another interesting aspect is the strengthening of the in-
teraction compared to Cr2. Substituting Sc for Cr results in a
3.6 !!+"-, 4.3 !""-, and 4.9 !#"-fold increase in stabilization
compared with Cr–Cr. To explain this effect, three factors in
order of increasing importance can be identified. First, the
VCASSCF curves for the # and " states of Sc–Cr are consid-
erably less repulsive !and slightly less repulsive for !+" than
those of Cr2 for R$6a0. Second, the average C6 coefficient
of the Sc–Sc interaction is 2.3 times larger than that of
Cr–Cr.48 The third is the considerable 50% decrease in the
highest occupied molecular orbital–lowest unoccupied mo-
lecular orbital gap between Sc–Cr and Cr2. The latter may be
responsible for the violation of combination rules.57 Our
TDHF value of C6,0=1366 a.u. for Sc–Cr, which is very
close to the Sc–Sc value C6=1383 a.u. of Chu and
Dalgarno,48 seems to indicate such a violation.

Our lowest state, 8#, can be compared with the DFT
result of Gutsev et al.12 who identified the lowest octet state
as 8". Although their assignment is approximate because of
unrestricted KS formalism, the other characteristics of this
state are in reasonable agreement with our RCCSD!T" find-
ings. The position of the minimum agrees quite well !our
value 5.62a0 versus 5.51a0" and so does the small value of
the dipole moment. Unfortunately, they do not report the
well-depth value. One interesting insight from the work of
Gutsev et al.12 concerns the type of bonding in this state.
Their analysis indicates that it involves a single bond be-
tween the 4s orbitals of Sc and Cr. This may provide an
additional explanation for our observed strength of this state.

C. Sc–Kr

By substituting semiclosed Cr atom in Sc–Cr by closed-
shell Kr, we can better understand the above results for
Sc–Cr by comparing and contrasting it with a typical van der
Waals complex Sc–Kr. Such calculations will also allow us
to further demonstrate interpretative capabilities of SAPT.

The ROHF wave functions for the 2!+, 2", and 2# states
of Sc–Kr were obtained by the single occupation of Sc 3d.,
3d&, or 3d/ orbitals, respectively. These functions were used
as the starting point for the RCCSD!T" calculations and as
the zeroth-order wave functions in SAPT. The SAPT method

employed TDHF polarization propagator in the calculation
of the dispersion energy. This term, along with its exchange
counterpart, was combined with VROHF to yield the hybrid
SAPT model, ROHF+disp!TDHF". The ANO basis set53,54

was used for Sc and the aug-cc-pVQZ basis set58 for Kr.
The results for the 2!+, 2", and 2# states are reported in

Table IV and in Figs. 3 and 4. As seen in Table IV the
complex is very weakly bound with the well depths of
81–86 cm−1 #RCCSD!T"$ or 89–94 cm−1 !ROHF+disp".
The minima of the three potentials occur at large distances,
around 9.4a0–9.6a0. The ROHF+disp model agrees very
well with RCCSD!T" in describing these characteristics.
Both approaches predict the # state to be the least stable and
!+ and " to be very close. The minimum region in Sc–Kr is
pushed toward longer distances than in Sc–Cr because of
much stronger exchange repulsion in the former as evi-
denced by a comparison of the ROHF potential curves for
Sc–Kr in Fig. 3 with the three CASSCF potentials of Sc–Cr
in Fig. 1!a". For example, the three sets of curves if com-
pared at the same distance, for example, R=6.5a0, reveal
approximately 2.5 larger repulsion in Sc–Kr than in Sc–Cr.
The 2!+ state of Sc–Kr is the most repulsive at short dis-
tances just as in Sc–Cr; however, at around 6.8a0 a crossing

TABLE IV. Minimum characteristics and the dispersion coefficients of the
Sc–Kr system.

State Method Re !a0" D̄e !cm−1" C6,0 !a.u." C6,2 !a.u."

2!+ RCCSD!T" 9.536 84.0
ROHF+disp!TDHF" 9.37 93.7

8" RCCSD!T" 9.463 85.8
ROHF+disp!TDHF" 9.35 93.2

2# RCCSD!T" 9.646 81.2
ROHF+disp!TDHF" 9.52 89.0

V0 RCCSD!T" 350
V0 SAPT 382
V2 RCCSD!T" −0.62
V2 SAPT −5.9

FIG. 3. ROHF interaction energies for the Sc–Kr system !minimum at ap-
proximately 9.5a0". The outer figure shows the region of minimum, while
the inset shows a short range.
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occurs and the 2# state becomes the most repulsive. This
ordering of the ROHF curves 2#$2"*2!+ at distances of
9.5a0 determines the order of minima in the full interaction
potentials.

The isotropic V0 and anisotropic V2 parts #see Eq. !4"$ of
the full RCCSD!T" and ROHF+disp potentials are shown in
Fig. 4. The ROHF+disp and RCCSD!T" values agree rea-
sonably well in the minimum regions of V0 and V2. In the
asymptotic region, a similar agreement is seen in V0 but there
are some discrepancies in V2. Consequently, the dispersion
coefficients C6,0 !see Table IV" obtained by both methods are
very similar, while C6,2 differ quantitatively !although both
methods predict them to be small". The average C6,0 disper-
sion coefficient of Sc–Kr is 3.6 times smaller than that of
Sc–Cr !see Table III", which is consistent with the ratio of
dipole polarizabilities of Cr and Kr !4.6". The dispersion co-
efficients C6,2 !see Table IV" of both systems are both nega-
tive but differ by one order of magnitude. According to Eq.
!4", the negative sign of C6,2 indicates that # is the lowest
state in the asymptotic region. Thus, the order of states in
Sc–Kr is different in the minimum and in the asymptotic
region. As mentioned above the order in the minimum region
is due to the exchange repulsion, whereas that in the long-
range results from the dispersion interaction. The source of
the long-range anisotropy of dispersion energy in both com-
plexes is the single 3d electron of Sc which also gives rise to
polarizability anisotropy. It is difficult to rationalize at this
point why RCCSD!T" and SAPT lead to significantly differ-
ent values of C6,2. More work along these lines is necessary.

D. Spin-orbit coupling

In the doublet-state Sc–Kr complex the Sc atom is the
source of both the orbital L and spin S angular momenta.
This is not the case for the octet state of Sc–Cr which in
itself arises from the coupling of the spin momenta of both
atoms. The following discussion applies primarily to Sc–Kr
but also offers some hints for a treatment of Sc–Cr. The total
electronic angular momentum of a spin-orbit coupled state is
denoted J=L+S and the basis set is +J ,MJ,. In this basis set

the spin-orbit Hamiltonian ĤSO=aL ·S is diagonal. The spin-
orbit parameter a for Sc is 67.336 cm−1.59 Assuming that a is
constant with R, the Sc–Kr interaction represents a limiting
case where the splitting between the adiabatic potentials is
small compared to a. The matrix of V̂+ ĤSO in this basis set
is block diagonal with the following diagonal elements:

- 5
2 , ± 5

2 +V̂+ 5
2 , ± 5

2, = V# + a ,

- 5
2 , ± 3

2 +V̂+ 5
2 , ± 3

2, = 1
5 !4V" + V#" + a ,

- 5
2 , ± 1

2 +V̂+ 5
2 , ± 1

2, = 1
5 !3V! + 2V"" + a , !7"

- 3
2 , ± 3

2 +V̂+ 3
2 , ± 3

2, = 1
5 !V" + 4V#" − 3

2a ,

- 3
2 , ± 1

2 +V̂+ 3
2 , ± 1

2, = 1
5 !2V! + 3V"" − 3

2a ,

and the following nonzero off-diagonal elements:

- 5
2 ,− 3

2 +V̂+ 3
2 ,− 3

2, = 2
5 !V" − V#" ,

- 5
2 ,− 1

2 +V̂+ 3
2 ,− 1

2, =
)6
5 !V! − V"" ,

!8"
- 5

2 , 1
2 +V̂+ 3

2 , 1
2, =

)6
5 !V" − V!" ,

- 3
2 , 3

2 +V̂+ 5
2 , 3

2, = 2
5 !V# − V"" .

The SO adiabats are obtained as the eigenvalues of the above
matrix substituting the RCCSD!T" V!, V", and V# potentials.
They are subsequently shifted to their respective asymptotes,
J= 5

2 and J= 3
2 , for comparison purposes. The minimum po-

sitions in the SO adiabats remain virtually unchanged from
their spin-free positions. The interaction energies compared
at R=9.5a0 !i.e., in the minimum region" vary between
−85.03 cm−1 !+ 3

2 , 1
2
," and −80.62 cm−1 !+ 5

2 , 5
2
,=V#". The en-

ergy of the lowest + 3
2 , 1

2 , state is very close to that of the
lowest spin-free adiabat V" !see Table IV". We conclude that
this complex should not be affected by the SO coupling as
long as the a parameter remains constant with R. The octet
Sc–Cr complex presents an opposite case, where the splitting
between the adiabatic potentials is one order of magnitude
larger than a. However, its treatment is much more compli-
cated !if not intractable" because ĤSO is expected to couple
also the states of lower multiplicity about which nothing is
known at this point. If, in the first approximation, one as-
sumes these couplings to be negligible, the ground state #
will be unaffected by the SO coupling.

IV. SUMMARY AND CONCLUSIONS

We have presented results for two transition metal
dimers in their high-spin van der Waals states, !13!g

+" Cr2 and
!8!+ , 8" , 8#" Sc–Cr. To aid the analysis of these interactions,
a typical van der Waals complex Sc–Kr involving the 2!+,
2", 2# manifold has also been studied. The interaction po-
tentials have been calculated by a supermolecular method
based on the single-reference RCCSD!T" and on a number of
multireference approaches including CIPT2, MRCI, and

FIG. 4. ROHF+disp and RCCSD!T" isotropic !V0" and anisotropic !V2"
components of interaction potential for the Sc–Kr system. The outer figure
shows the asymptotic region, while the inset shows the minimum region.
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AQCC. In addition, we report the open-shell SAPT TDHF
dispersion and exchange-dispersion energies for the mani-
folds of the three states in Sc–Cr and Sc–Kr. In the case of
Cr2 the open-shell SAPT!DFT" was applied in the calcula-
tions of the dispersion and exchange-dispersion terms with
the TDDFT polarization propagator. The present TM systems
pose a very demanding environment for testing these theo-
ries. Dispersion and exchange-dispersion energies combined
with the supermolecular !purely repulsive" ROHF or
CASSCF interaction potentials !CAS+disp, ROHF+disp
models, respectively" provide reasonable qualitative results
and with substantially less effort than that required to judi-
ciously apply the supermolecular treatments used here.
SAPT also proves useful in calculations of properties de-
pending on asymptotic parts of the interaction potentials,
such as dispersion coefficients.

The 13!g
+ state of Cr2 is bound by a midrange van der

Waals interaction with the well depth of about 800 cm−1.
RCCSD!T", CIPT2, and ROHF+disp are in reasonable
agreement with each other. The predictions of the C6 disper-
sion coefficient are in reasonable agreement with experiment
and previous calculations. Our well depth, however, is much
deeper than that of the previously reported CASPT2
potential.14 SAPT!DFT" reveals a significant role of ex-
change dispersion in open-shell interactions. This term is
seen to more strongly quench the dispersion than in the
closed-shell systems of comparable strength.

In Sc–Cr the CASSCF potentials are purely repulsive for
the three states and the post-CASSCF correlation effects lead
to a relatively strong bonding in all three states. The ordering
of well depths from the RCCSD!T" calculations is 8# !about
4000 cm−1", 8" !about 3600 cm−1", and 8!+ !about
2900 cm−1". Three approaches applied to this system,
RCCSD!T", MRCI, and CAS+disp, confirm this ordering
although the values differ. The splitting of adiabatic poten-
tials is considerable !400–600 cm−1" and dominated by the
differences in the CASSCF repulsion. In view of the strong
anisotropy of interactions, the prospects for the sympathetic
cooling of a Sc–Cr mixture are unlikely because the relax-
ation processes will be very fast. It is also expected that the
spin-orbit effects will be of secondary importance. The
source of the bonding is a very strong dispersion energy.

Sc–Kr is a typical van der Waals complex bound by less
than 100 cm−1 and with very small splittings among the
states. The order of well depths is 2"* 2!+$ 2# at the
RCCSD!T" and ROHF+disp levels of theory. Both ap-
proaches lead to a good agreement for V0 and V2.
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Chapter 2

Bifunctional Approach to the
Interaction Energy in the DFT

Whereabouts

In this Chapter we derive the coupled KS equations for the interacting monomers. We
present an alternative way of performing KS iterations, in the sense that we have a
coupled set of equations to solve, instead of one, as in the original KS method [29].
However, that apparent complication allows us to separate the resulting interaction
energy into the HL and deformation terms and serves as a starting point on our road
to dispersionless DFT interaction energy.

2.1 KS Description of Monomers

We start with the KS isolated monomers, i.e. with the monomer orbitals satisfying
the KS equations, e.g. for the monomer A

f̂KS
A (r)a0

i (r) = ε0A,ia
0
i (r). (2.1)

The KS operator of monomer A is

f̂KS
A (r) = ĥA(r) + ̂(r) + vxc

A (r), (2.2)

where the xc potential is a variational derivative of the xc energy functional with
respect to the density:

vxc
A (r) =

δExc[ρ
0
A]

δρ0
A(r)

. (2.3)



28 Bifunctional Approach in DFT

The nuclear and Coulomb potentials together constitute the electrostatic poten-
tial,

v̂elst
A (r) = vne

A (r) + ̂(r), (2.4)

so (2.2) can be rewritten as

f̂KS
A (r) = −1

2
∆r + v̂elst

A (r) + vxc
A (r). (2.5)

The density expression (1.18) for the single Slater determinant wavefunction takes
particularly simple form:

ρ0
A(r) = 2

∑
i∈A

|a0
i (r)|2. (2.6)

Having solved Eq. (2.1) and its equivalent for monomer B, we get KS orbitals,
{a0

i }i∈A and {b0
k}k∈B, for isolated monomers A and B.

2.2 Interaction Energy
from Interacting Monomer Densities

At this point our goal is to restore DFT supermolecular interaction energy,

EDFT
int = EDFT

AB − EDFT
A − EDFT

B , (2.7)

starting with the monomers satisfying KS equations (2.1). In the KS approach,
the non-interacting reference system of the AB dimer is a single Slater determinant
built of mutually orthonormal orbitals:

ψAB = |x1αx1β . . . xMαxMβ〉 . (2.8)

From the monomer KS functions we construct the normalized and antisymmetric
function

ψ0
AB = N Â ψ0

Aψ
0
B (2.9)

and perform the symmetric orthogonalization of monomers’ orbitals. That leads
to a new function,

ψ̃0
AB = Â ψ̃0

Aψ̃
0
B, (2.10)

which, owing the orthonormality of monomers’ orbitals, is normalized to unity.
The density of a system is invariant with respect to the unitary transformations
of Slater determinant, so the densities resulting from functions (2.9) and (2.10)
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are equal. Moreover, the system density is simply a sum of monomer densities
provided that all orbitals are mutually orthonormal:

ρ0
AB(r) = ρ̃0

AB(r) =

=
∑

σ1,σ2,...,σN

∫
R3

. . .

∫
R3

∣∣∣ψ̃0
AB

(
r;σ1; (ri;σi)

N
i=2

)∣∣∣2 d3r2 . . . d
3rN =

= ρ̃0
A(r) + ρ̃0

B(r). (2.11)

It should be stressed, however, that ρ0
AB 6= ρ0

A + ρ0
B.

In KS theory, the energy of a system referred to the KS function built of {xp}Mp=1

orbitals is a functional of density which in general reads

E[ρ] =

= T [ρ] + V ne[ρ] + V ee[ρ] + V nn =

= T s[ρ] + V ne[ρ] + J [ρ] + T [ρ]− T s[ρ] + V ee[ρ]− J [ρ] + V nn =

= T s[ρ] + V ne[ρ] + J [ρ] + Exc[ρ] + V nn =

= −1

2

∫
R3

[∆rρ(r; r′)]r′=r d
3r +

∫
R3

vne(r)ρ(r) d3r+

+
1

2

∫
R3

∫
R3

ρ(r1)ρ(r2)

r12

d3r1d
3r2 + Exc[ρ] + V nn, (2.12)

so the xc energy Exc[ρ] includes the amount of kinetic energy not included in the
HF-like expression in (2.12), T [ρ] − T s[ρ], and the non-classical electron-electron
interaction, V ee[ρ]−J [ρ]. T s[ρ] is referred to as the non-interacting kinetic energy.
V nn is the nuclear-nuclear repulsion term and it is simply a constant for a given
geometry.

At this point we turn on the interaction between the monomers and assume
the KS function in the form analogous to (2.10):

ψ̃AB = Â ψ̃Aψ̃B. (2.13)

The monomer functions in (2.13) are constructed from mutually orthogonal or-
bitals. This assures that the densities fulfill the additivity condition (2.11). The
total energy of AB dimer is

EAB[ρAB] = EAB[ρ̃AB] = EAB[ρ̃A + ρ̃B] =

= T s[ρ̃A + ρ̃B] + V ne
AB[ρ̃A + ρ̃B] + J [ρ̃A + ρ̃B] +

+ Exc[ρ̃A + ρ̃B] + V nn
AB. (2.14)

Now we rewrite the functional (2.14) digging out the monomer contributions to
the dimer energy through the careful inspection of the terms in (2.14). It is clear
from (2.12) that the non-interacting kinetic energy functional is linear,

T s[ρ̃A + ρ̃B] = T s[ρ̃A] + T s[ρ̃B], (2.15)
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the nuclear-electron attraction separates as

V ne
AB[ρ̃A + ρ̃B] =

∫
R3

(
vne

A (r) + vne
B (r)

)(
ρ̃A(r) + ρ̃B(r)

)
d3r =

= V ne
A [ρ̃A] + V ne

B [ρ̃B] +

+

∫
R3

vne
B (r)ρ̃A(r) d3r +

∫
R3

vne
A (r)ρ̃B(r) d3r, (2.16)

and the Coulomb term decomposes according to

J [ρ̃A + ρ̃B] =

=
1

2

∫
R3

∫
R3

(
ρ̃A(r1) + ρ̃B(r1)

)(
ρ̃A(r2) + ρ̃B(r2)

)
r12

d3r1d
3r2 =

= J [ρ̃A] + J [ρ̃B] +

∫
R3

∫
R3

ρ̃A(r1)ρ̃B(r2)

r12

d3r1d
3r2. (2.17)

However, the general explicit analytical form of the xc functional is unknown and
its actual form depends on the applied approximation. Thus, we introduce the
xc energy non-additivity:

Exc[ρ̃A + ρ̃B] = Exc[ρ̃A] + Exc[ρ̃B] + ∆Exc[ρ̃A + ρ̃B] (2.18)

which can be calculated directly from (2.18).
Although the expression (2.14) is a functional of a single density, we now

make use of (2.11) and treat the system energy as a bifunctional depending on
both monomer densities: EAB[ρ̃A + ρ̃B] = EAB[ρ̃A; ρ̃B], and ∆Exc[ρ̃A + ρ̃B] =
∆Exc[ρ̃A; ρ̃B]. Thus, in our quest for the ground-state dimer energy, we will mini-
mize with respect to ρ̃A and ρ̃B the bifunctional

EAB[ρ̃A; ρ̃B] = T s[ρ̃A] + V ne
A [ρ̃A] + J [ρ̃A] + Exc[ρ̃A] + V nn

A +

+ T s[ρ̃B] + V ne
B [ρ̃B] + J [ρ̃B] + Exc[ρ̃B] + V nn

B +

+ Ẽint[ρ̃A; ρ̃B] =

= EA[ρ̃A] + EB[ρ̃B] + Ẽint[ρ̃A; ρ̃B], (2.19)

where

Ẽint[ρ̃A; ρ̃B] =

∫
R3

vne
B (r)ρ̃A(r) d3r +

∫
R3

vne
A (r)ρ̃B(r) d3r+

+

∫
R3

∫
R3

ρ̃A(r1)ρ̃B(r2)

r12

d3r1d
3r2 + V nn

int + ∆Exc[ρ̃A; ρ̃B] =

= Eelst[ρ̃A; ρ̃B] + ∆Exc[ρ̃A; ρ̃B], (2.20)
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constrained with densities integration conditions, i.e.

L [ρ̃A; ρ̃B] = EAB[ρ̃A; ρ̃B]+

+ µA

(
NA −

∫
R3

ρ̃A(r) d3r

)
+ µB

(
NB −

∫
R3

ρ̃B(r) d3r

)
.

(2.21)

The intermonomer nuclear-nuclear repulsion energy is

V nn
int =

∑
α∈A

∑
β∈B

ZαZβ
Rαβ

. (2.22)

However, for the density additivity condition (2.11) to hold, all orbitals must be
kept mutually orthogonal which also ensures that the intersystem Pauli exclusion
principle is fulfilled. To achieve that we perform the variational optimization
in the two steps, using the PB method of Gutowski and Piela [13]: firstly, the
bifunctional extremal search itself is performed without the imposition of the
intermonomer orthogonality constraint and finally, the penalty operator is added
in the resulting iterative scheme. The penalty operator for monomer A reads

ˆ̃RA =
∑
i∈A

|ãi〉 〈ãi| , (2.23)

and it is obvious that its action on monomer B’s orbitals annihilates them once
the orbitals are mutually orthogonal. Now we turn to the former step: to find
a bifunctional minimum, we need to calculate the variational derivative of (2.21)
with respect to ρ̃A. However, since the non-interacting kinetic energy is a func-
tional of one-matrix, we have to minimize (2.19) over one-matrix ρ̃A(r; r′) instead
of density ρ̃A(r). For that purpose the Dirac delta function proves very useful.
The kinetic energy functional may be written as

T s[ρ] = −1

2

∫
R3

[∆rρ(r; r′)]r′=r d
3r =

= −1

2

∫
R3

δ(r− r′)∆rρ(r; r′) d3rd3r′, (2.24)

and one easily finds
δT s[ρ]

δρ(r; r′)
= −1

2
∆rδ(r− r′).

We also note that for the functionals depending on the density only, e.g. J [ρ],
we can relate the functional derivatives with respect to one-matrix and density as
follows:

δJ [ρ]

δρ(r; r′)
=
δJ [ρ]

δρ(r)
δ(r− r′), (2.25)
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which results from (1.18). The functional derivative of (2.21) thus reads

δLAB[ρ̃A; ρ̃B]

δρ̃A(r; r′)
=

=

(
−1

2
∆r + vne

A (r) + ̃A(r) + ṽxc
A (r) + vne

B (r) + ̃B(r) + ∆ṽxc
A (r) + µA

)
δ(r− r′)

(2.26)

with the non-additivity xc potential being

∆ṽxc
A (r) =

δ∆Exc[ρ̃A; ρ̃B]

δρ̃A(r)
=

=
δExc[ρ̃A + ρ̃B]

δρ̃A(r)
− δExc[ρ̃A]

δρ̃A(r)
=

=
δExc[ρ̃AB]

δρ̃AB(r)
− ṽxc

A (r) =

= ṽxc
AB(r)− ṽxc

A (r). (2.27)

The Euler equation for the bifunctional (2.21) is

µA =

(
−1

2
∆r + veff

A (r)

)
δ(r− r′) (2.28)

with
veff

A (r) = ṽelst
A (r) + ṽxc

A (r) + ṽelst
B (r) + ∆ṽxc

A (r). (2.29)

The minimization of (2.19) with respect to ρ̃B proceeds in an analogous way.
Finally, the orbitals minimizing the functional (2.19) satisfy

(
ˆ̃fKS
A (r) + ∆ṽxc

A (r) + ˆ̃velst
B (r)

)
ãi(r) = εA,iãi(r)(

ˆ̃fKS
B (r) + ∆ṽxc

B (r) + ˆ̃velst
A (r)

)
b̃k(r) = εB,kb̃k(r)

(2.30)

together with the intra- and intermonomer orthogonality conditions:

∀i,j∈A,k,l∈B : 〈ãi | ãj〉 = δij ∧
〈
b̃k

∣∣∣ b̃l〉 = δkl ∧
〈
ãi

∣∣∣ b̃k〉 = 0 . (2.31)

In the latter step of the PB procedure, we formulate the iterative process of solving
Eqs. (2.30) with the aid of the penalty operator:

(
ˆ̃f
KS[n−1]
A + ∆ṽ

xc[n−1]
A + ˆ̃v

elst[n−1]
B + η ˆ̃R

[n−1]
B

)
a

[n]
i = ε

[n]
A,ia

[n]
i(

ˆ̃f
KS[n−1]
B + ∆ṽ

xc[n−1]
B + ˆ̃v

elst[n−1]
A + η ˆ̃R

[n−1]
A

)
b

[n]
k = ε

[n]
B,kb

[n]
k

, (2.32)
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where the numbers in brackets denote iteration numbers. However, the penalty
operator does not suffice to impose conditions (2.31) so the orbitals obtained
in (2.32) are orthogonalized after each iteration, yielding

Ω̃[n] =
{{

ã
[n]
i

}
i∈A

;
{
b̃

[n]
k

}
k∈B

}
(2.33)

set.
The interaction energy at the nth iteration is obtained upon the insertion of the

orthogonalized densities calculated with orbitals (2.33) into (2.19) and subtracting
the unperturbed monomer energies:

E
PB[n]
int = EAB

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
− EA

[
ρ0

A

]
− EB

[
ρ0

B

]
=

= ∆Ẽ
[n]
A + ∆Ẽ

[n]
B + Eelst

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
+ ∆Exc

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
, (2.34)

where the A monomer deformation is

∆ẼA = EA

[
ρ̃

[n]
A

]
− EA

[
ρ0

A

]
, (2.35)

and analogously for monomer B. Upon self-consistency, the energy (2.34) equals
the supermolecular DFT interaction energy (2.7).

Since the iterative process (2.32) starts with the unperturbed orbitals cal-
culated with (2.1), the zeroth-iteration interaction energy may be viewed as an
analogue of the well-known HF-based HL interaction energy. More specifically,
the DFT-based HL interaction energy is

EHL
int = E

PB[0]
int = EAB

[
ρ̃0

A; ρ̃0
B

]
− E

[
ρ0

A

]
− E

[
ρ0

B

]
, (2.36)

and such a definition is the same as that proposed by Cybulski and Seversen [30].
It is worthwhile to note that he expressions (2.34) together with (2.7) yield an

exact non-relativistic interaction energy once an exact xc functional is applied.

2.3 Related Publication
The following publication [31] contains results for the bifunctional approach.
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The density functional theory (DFT) interaction energy of a dimer is rigorously derived from the mono-
mer densities. To this end, the supermolecular energy bifunctional is formulated in terms of mutually
orthogonal sets of orbitals of the constituent monomers. The orthogonality condition is preserved in
the solution of the Kohn–Sham equations through the Pauli blockade method. Numerical implementation
of the method provides interaction energies which agree with those obtained from standard supermolec-
ular calculations within less than 0.1% error for three example functionals: Slater–Dirac, PBE0 and B3LYP,
and for two model van der Waals dimers: Ne2 and (C2H4)2, and two model H-bond complexes: (HF)2 and
(NH3)2.
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1. Introduction

Deriving the dimer interaction energy via mutual polarization
of constituent monomers is important both from the fundamental
perspective and from a practical point of view. In particular, it
may aid the understanding how the non-covalent systems are de-
scribed in the density functional theory which is one of the most
problematic issues of the electronic structure theory. The major
problem of DFT as applied to the van der Waals systems is a
wrong description of dispersion forces [1–3]. Surprisingly enough,
little has been done to better understand the performance of
supermolecular interaction energy in the framework of DFT. For
the Hartree–Fock (HF) interaction energy, such an approach has
been pioneered by Morokuma [4] in the 1970s, and a decade la-
ter, inspired by the work of Sadlej [5], rigorously derived by
Gutowski and Piela [6] (see also Ref. [7]). The perturbation ap-
proach within the symmetry-adapted perturbatin theory (SAPT)
formalism was also extensively exploited in this context [8,9].
In the age of DFT, it is highly desirable to develop such an ap-
proach also for the density functional formalism. Approximate
DFT treatments have already been advanced by Cortona and
coworkers [10,11]; see also recent energy decomposition schemes
proposed in Refs. [12–14], and Refs. therein, as well as the density
functional formulation of SAPT [15,16].

The goal of this work is to derive rigorously the supermolecular
density functional theory (DFT) interaction energy via the mutual

polarization of the monomer densities. To this end the supermolec-
ular (dimer) energy functional is expressed in terms of mutually
orthogonalized sets of the Kohn–Sham (KS) orbitals of the constit-
uent monomers. The coupled KS equations are next solved itera-
tively, by using the Pauli blockade (PB) technique of Gutowski
and Piela [6]. The correctness of the derivation is demonstrated
by comparing the interaction energy calculated from the equations
developed here and the supermolecular interaction energies. The
DFT approximation to the Heitler–London interaction energy,
based on the decomposition of the interaction energy introduced
in this Letter, is also discussed.

2. Theory

In this Letter we consider the interaction between two closed-
shell systems, however, the generalization for high-spin open-shell
systems and clusters is straightforward. The supermolecular inter-
action energy in terms of DFT can be defined as the difference be-
tween the total energies of the dimer AB and the individual
monomers A and B, separated to infinity:

EDFT
int ¼ EDFT

AB " EDFT
A " EDFT

B : ð1Þ

It was demonstrated by Gutowski and Piela [6] that the HF
supermolecular interaction energy may be exactly recovered by
solving the HF equations for monomers in the presence of the
external perturbation, consisting of the electrostatic potential
and the non-local exchange potential generated by the second
monomer. They have also proposed a convenient computational
scheme for the PB method in terms of mutually orthogonalized A
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and B orbitals with the penalty operator forcing the orthogonality
of monomers’ occupied orbitals. In this section we derive an anal-
ogous formalism in terms of appropriately modified KS equations
and monomer densities.

We begin with KS equations for the isolated monomers which
yield the starting orbitals fa0

i gi2A and fb0
kgk2B. The orbitals of mono-

mer A are the solutions of the following eigen equation:

f̂ KS;0A ðrÞa0i ðrÞ ¼ !0A;ia
0
i ðrÞ; ð2Þ

and the analogous equations hold for the monomer B. The KS oper-
ator of Eq. (2) is written as

f̂ KS;0A ðrÞ ¼ "1
2
Dr þ vne

A ðrÞ þ |̂AðrÞ þ vxc
A ðrÞ; ð3Þ

where the monomer A nuclear potential is

vne
A ðrÞ ¼ "

XNA

a¼1

Za
jr" Raj

ð4Þ

with NA being the number of monomer A nuclei, each described by
its position Ra and charge Za. Its coulombic potential reads

|̂AðrÞ ¼
Z

R3

q0
Aðr0Þ

jr" r0j
d3r0: ð5Þ

The total energy of monomer A can be written as

EA q0
A

! "
¼ Ts q0

A

! "
þ Vne

A q0
A

! "
þ J q0

A

! "
þ Exc q0

A

! "
þ Vnn

A : ð6Þ

The functional (6) comprises the non-interacting kinetic
energy:

Ts q0
A

! "
¼ 2

X

i2A
a0i "1

2
Dr

####

####a
0
i

$ %
; ð7Þ

with A being the set of the indices of occupied orbitals of the mono-
mer A, nuclear–electron attraction energy:

Vne
A q0

A

! "
¼

Z

R3
vne
A ðrÞq0

AðrÞd
3r; ð8Þ

coulombic energy

J q0
A

! "
¼ 1

2

Z

R3

Z

R3

q0
Aðr1Þq0

Aðr2Þ
r12

d3r1 d
3r2; ð9Þ

exchange-correlation (xc) energy

Exc q0
A

! "
¼

Z

R3
Fxc q0

AðrÞ; rrq0
AðrÞ; . . .

& '( )
d3r; ð10Þ

which is evaluated through the numerical integration of the Fxc

integrand on a grid of points around monomer A, and the nucle-
ar–nuclear repulsion term

Vnn
A ¼

XNA"1

a¼1

XNA

b¼aþ1

ZaZb

Rab
; ð11Þ

which is constant for a fixed geometry. The density of monomer A is

q0
AðrÞ ¼ 2

X

i2A

a0
i ðrÞ

## ##2: ð12Þ

Similar expressions can be written for monomer B.
The original, isolated-monomer orbital sets fa0

i gi2A and fb0
kgk2B

are not mutually orthogonal. To proceed, it is also important to
introduce the set of orthonormalized orbitals which are obtained
by using Löwdin symmetric orthonormalization [17]. The quanti-
ties expressed in the orthonormalized orbitals are henceforth
marked with tilde. One should remember that the orthonormaliza-
tion leaves the total density of the dimer unchanged. However, it
does change the monomer densities into the densities deformed
by the presence of the interacting partner.

In the PB method the zeroth-order wavefunction of the dimer is
the wavefunction of the system in the absence of molecular inter-
action. It is constructed from the antisymmetrized product of the
orthogonalized occupied orbitals of the monomers A and B. In case
of KS equations for dimer the KS determinant can be constructed in
the same manner as:

w0
AB ¼ Â~w0

A
~w0
B; ð13Þ

where ~w0
A and ~w0

B are KS determinants of monomers A and B, respec-
tively. Since the determinants are constructed from orthonormal-
ized orbitals, the w0

AB is normalized.
It can be easily shown that the zeroth-order density of the sys-

tem can be simply written as a sum of monomer densities ex-
pressed in terms of orthonormalized orbitals,

q0
AB ¼ ~q0

AB ¼ ~q0
A þ ~q0

B: ð14Þ

Note that (14) does not hold for the densities obtained from
non-orthonormal orbitals of the dimer, i.e. q0

AB – q0
A þ q0

B.
If the interaction between monomers is switched on we assume

that the KS determinant of the dimer can be written as the anti-
symmetrized product of two determinants for both the monomers:

~wAB ¼ Â~wA
~wB; ð15Þ

and hence the dimer density fulfills the additivity condition (14).
Owing to (14) and using (6), the energy functional for the system
corresponding to (15) is

EAB½qAB' ¼ EAB½~qAB' ¼ EAB½~qA þ ~qB' ¼ Ts½~qA þ ~qB'
þ Vne

AB½~qA þ ~qB' þ J½~qA þ ~qB' þ Exc½~qA þ ~qB' þ Vnn
AB: ð16Þ

Now we rewrite the functional (16) extracting the monomer
contributions to the dimer energy through a careful inspection of
the terms in (16). It is clear from (7) that the non-interacting ki-
netic energy functional is linear,

Ts½~qA þ ~qB' ¼ Ts½~qA' þ Ts½~qB'; ð17Þ

the nuclear–electron attraction may be separated as

Vne
AB½~qA þ ~qB' ¼

Z

R3

*
vne
A ðrÞ þ vne

B ðrÞ
+*

~qAðrÞ þ ~qBðrÞ
+
d3r

¼ Vne
A ½~qA' þ Vne

B ½~qB'

þ
Z

R3
vne

B ðrÞ~qAðrÞd3rþ
Z

R3
vne

A ðrÞ~qBðrÞd3r; ð18Þ

and the coulombic term may be decomposed according to

J½~qA þ ~qB' ¼
1
2

Z

R3

Z

R3

*
~qAðr1Þ þ ~qBðr1Þ

+*
~qAðr2Þ þ ~qBðr2Þ

+

( r"1
12 d

3r1d
3r2

¼ J½~qA' þ J½~qB' þ
Z

R3

Z

R3

~qAðr1Þ~qBðr2Þ
r12

d3r1d
3r2: ð19Þ

However, the explicit analytical form of the xc functional is un-
known and its approximations depend on the functional used.
Thus, we introduce the xc energy non-additivity, DExc:

DExc½~qA þ ~qB' ¼ Exc½~qA þ ~qB' " Exc½~qA' " Exc½~qB': ð20Þ

It is worthwhile to note that the present formulation neither
separates nor approximates any of the kinetic non-additivity terms
appearing in the method of Wesotowski and Warshel [11]. These
terms are implicitly and exactly included in the term (20) and thus
are automatically accounted for in a consistent manner for any
functional. Although the expression (16) is a functional of a single
density, we now make use of (14) and treat the system energy as a
bifunctional depending on both monomer densities:

EAB½~qA þ ~qB' ) EAB½~qA; ~qB': ð21Þ
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Thus, in our search for the ground-state dimer energy, we will
minimize, with respect to ~qA and ~qB, the bifunctional of the form:

EAB½~qA; ~qB'
¼ Ts½~qA' þ Vne

A ½~qA' þ J½~qA' þ Exc½~qA' þ Vnn
A

þ Ts½~qB' þ Vne
B ½~qB' þ J½~qB' þ Exc½~qB' þ Vnn

B

þ eEint½~qA; ~qB'

¼ EA½~qA' þ EB½~qB' þ eEint½~qA; ~qB'; ð22Þ

where

eEint½~qA; ~qB'

¼
Z

R3
vne

B ðrÞ~qAðrÞd3rþ
Z

R3
vne
A ðrÞ~qBðrÞd3r

þ
Z

R3

Z

R3

~qAðr1Þ~qBðr2Þ
r12

d3r1d
3r2 þ Vnn

int

þ DExc½~qA; ~qB'
¼ Eelst½~qA; ~qB' þ DExc½~qA; ~qB': ð23Þ

In the above equation, Vnn
int is intermonomer nuclear–nuclear

repulsion energy. However, for the density additivity condition
(14) to hold, all orbitals must be kept mutually orthogonal, and the
orthogonalityalsoensures that the intersystemPauli exclusionprin-
ciple is fulfilled. To this end,weperformthe variational optimization
in two steps, using the Pauli blockade (PB) method of Gutowski and
Piela [6]: first, the bifunctional extremal search is performed with-
out the imposition of the intermonomer orthogonality constraint,
and secondly, the penalty operator is added in the resulting iterative
scheme. The penalty operator for monomer A reads

êRA ¼
X

i2A

j~aiih~aij; ð24Þ

and it is obvious that its action on monomer B’s orbitals annihilates
them once the orbitals are orthogonal. Now we turn to the first
step: to find a bifunctional minimum, we calculate the variational
derivative of (22) with respect to ~qA:

dEAB½~qA; ~qB'
d~qAðrÞ

¼ "1
2
Dr þ vne

A ðrÞ þ ~̂|AðrÞ þ ~vxc
A ðrÞ

þ vne
B ðrÞ þ ~̂|BðrÞ þ D~vxc

A ðrÞ

¼ ~̂f KSA ðrÞ þ D~vxc
A ðrÞ þ ~̂velst

B ðrÞ; ð25Þ

where the electrostatic potential is

~̂velst
B ðrÞ ¼ vne

B ðrÞ þ ~̂|BðrÞ; ð26Þ

and the non-additivity xc operator reads

D~vxc
A ðrÞ ¼ dDExc½~qA; ~qB'

d~qAðrÞ
¼ dExc½~qA þ ~qB'

d~qAðrÞ
" dExc½~qA'

d~qAðrÞ

¼ dExc½qAB'
dqABðrÞ

" ~vxc
A ðrÞ ¼ vxc

ABðrÞ " ~vxc
A ðrÞ: ð27Þ

Hence, the Euler equation for the bifunctional (22) is

lA ¼ "1
2
Dr þ v̂eff

A ðrÞ ð28Þ

with

v̂eff
A ðrÞ ¼ ~̂velst

A ðrÞ þ ~vxc
A ðrÞ þ ~̂velst

B ðrÞ þ ~vxc
A ðrÞ þ D~vxc

A ðrÞ; ð29Þ

and lA being the Lagrange multiplier for the constraint:

NA "
Z

R3
~qAðrÞd3r ¼ 0: ð30Þ

The minimization of (22) with respect to ~qB proceeds in an anal-
ogous way. Finally, the orbitals minimizing the functional (22) are
determined to satisfy

~̂f KSA ðrÞ þ D~vxc
A ðrÞ þ ~̂velst

B ðrÞ
, -

~aiðrÞ ¼ !A;i~aiðrÞ

~̂f KSB ðrÞ þ D~vxc
B ðrÞ þ ~̂velst

A ðrÞ
, -

~bkðrÞ ¼ !B;k~bkðrÞ:

8
>>><

>>>:
ð31Þ

In the second step of the PB procedure, the iterative process of
solving Eq. (31) with the aid of the penalty operator is formulated.
For monomer A the nth iterative step reads

~̂f KS½n"1'
A þ D~vxc½n"1'

A þ ~̂velst½n"1'
B þ gêR ½n"1'

B

, -
a½n'
i ¼ !½n'A;ia

½n'
i ; ð32Þ

and its equivalent for monomer B is obtained through the inter-
change of the A and B subscripts in (32). g > 0 is a parameter not
affecting the final solutions. The orbitals obtained in (32) are

orthogonalized, yielding an orthonormal f~a½n'i gi2A; f~b
½n'
k gk2B

n o
set.

The interaction energy at the nth iteration is obtained upon the
insertion of the densities calculated with these orbitals into (22)
and subtracting the unperturbed monomer energies:

EPB½n'
int ¼ EAB ~q½n'

A ; ~q½n'
B

h i
" EA q0

A

! "
" EB q0

B

! "

¼ DeE½n'
A þ DeE½n'

B þ Eelst ~q½n'
A ; ~q½n'

B

h i
þ DExc ~q½n'

A ; ~q½n'
B

h i
: ð33Þ

In the above equation, the A monomer deformation is

DeEA ¼ EA ~q½n'
A

h i
" EA q0

A

! "
; ð34Þ

and analogously for monomer B. Upon reaching self-consistency,
the energy (33) is equal to the supermolecular DFT interaction en-
ergy of (1). The computational cost of our approach is essentially
the same as that of the standard KS calculations.

Since the iterative process (32) starts with the KS orbitals of the
isolated monomers, the zero-iteration interaction energy may be
viewed as an analog of the well-known HF-based Heitler–London
interaction energy. Specifically, we define the DFT-based HL inter-
action energy as

EHL
int ¼ EPB½0'

int ¼ EAB ~q0
A; ~q0

B

! "
" EA q0

A

! "
" EB q0

B

! "
: ð35Þ

This definition is equivalent to that proposed by Cybulski and
Seversen [12]. The difference between the self-consistent interac-
tion energy and the HL interaction energy,

EPB
def ¼ EPB

int " EHL
int; ð36Þ

is referred to as the deformation energy.
It should be stressed here that both EHL

int and EPB
def , as defined by

the above equations, are uniquely defined, and are independent
of the orthogonalization procedure, and may be interpreted in
terms of SAPT. The EHL

int is the HL energy arising between the unper-
turbed, non-orthogonal monomers. At the HF level of theory, it in-
cludes the intermolecular electrostatic and exchange energies. In
the DFT case, depending on a particular functional, it may also con-
tain some obscure residual inter-monomer electron correlation
terms that are related to the dispersion effect. This is because the
interaction operator is, in general, the exchange-correlation opera-
tor rather than the exact-exchange one only, and the correlation is
basically of a local type.

The EPB
def term represents the deformation effect with respect to

the non-orthogonal isolated monomers. First, it includes both the
induction effects and the CT effects that are related to the induc-
tion and exchange-induction energies as defined by SAPT except
that it is obtained iteratively through the infinite order rather than
perturbatively through the finite order. Second, if an exact ex-
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change-correlation operator were used the dispersion energy
would be included in EPB

def . As for now, the majority of existing func-
tionals fail to account for dispersion and at the same time they are
not entirely dispersion-free. Consequently, for such functionals,
EPB
def contains some residual dispersion terms as well.

3. Numerical results

3.1. Computational details

The method described in Section 2 has been coded within the
MOLPRO program suite [18]. Numerical calculations were carried
out for three different functionals: Slater–Dirac [19] (henceforth
termed DIRAC), PBE0 [20], and B3LYP [21,22], and for model sys-
tems: two van der Waals complexes (Ne2 and the ethylene dimer),
and two hydrogen-bonded dimers [(HF)2 and (NH3)2]. For compar-
ison, we also present the results for the standard Hartree–Fock
method (HF). The distance between Ne atoms in Ne2 was set to
6a0. The geometries for (NH3)2 and (C2H4)2 were taken from Ref.
[23] and from Ref. [24] for (HF)2. The numerical procedure depends
on the following parameters: energy threshold, i.e. the minimum
difference in interaction energies from successive iterations for
which the iterations are continued, the grid threshold, i.e. the accu-
racy with which the Slater–Dirac functional can be integrated
using the grid as compared to its analytical integral, and g param-
eter of Eq. (32). g = 105 was used for all calculations. However, we
stress once more that g does not affect the final solutions, only the
convergence.

In Table 1 we present the numerical values of the components
of Eq. (33) together with the DFT-based HL interaction energy
(35), the deformation (36), and the relative difference between
the interaction energies obtained in a bifunctional and supermo-
lecular approaches,

dEint ¼
EPB
int " EDFT

int

EDFT
int

* 100%: ð37Þ

In Fig. 1 we present the dependence of the relative difference
(37) on the grid threshold. The energy threshold was set to
10"9 mH and it was kept at that value for all values of the grid
threshold reported in Fig. 1. The calculations employed aug-cc-
pVQZ basis set for neon dimer and aug-cc-pVTZ for the other sys-
tems [25–27]. Dimer-centred basis set (DCBS) has been used
throughout the calculations and the supermolecular interaction
energies were counterpoise (CP)-corrected for the basis set super-
position error (BSSE).

3.2. Discussion

From the results of Table 1 it is clear that the bifunctional ap-
proach converges to the same values of the interaction energies
as the conventional KS procedure, within excellent accuracy of be-
low 0.003% for the H-bonded dimers, and 0.05% for the van der
Waals dimers.

In general, as long as our procedure is convergent, it must con-
verge to the same result as the standard KS approach. This is be-
cause no extra constraints are imposed on the functional, and the
finally optimized total density must be the same in both cases.
However, the details of the convergence depend on several factors:

+ the particular functional,
+ the system under consideration,
+ the initial orthogonalization of monomer orbitals, and
+ the orthogonality forcing technique in the iteration process.

The functional and system convergence dependence is evident
in Table 1. The dependence on mutual orthogonalization scheme
and the manner it is forced in the iteration process have not been
studied so far as only one approach has been adopted – they will be
studied in the future in the context of actual applications. For in-
stance, convergence problems may appear for complexes which

Fig. 1. Dependence of dEint on grid threshold for the Ne2 dimer at R = 6 a0 for PBE0
functional in aug-cc-pVQZ basis set.

Table 1
Interaction energies and their contributions for the bifunctional approach and its comparison with the DFT supermolecular energies. All values in mH. The numbers in
parentheses denote powers of 10.

System Functional DeEA DeEB Eelst DExc EHL
int EPBdef EPBint dEint

(%)

Ne2 (R = 6 a0) DIRAC 0.658 0.658 "0.953 "0.625 "0.262 "0.0249 "0.287 "5.54("5)
PBE0 0.416 0.416 "0.587 "0.343 "0.098 "0.00862 "0.107 "3.74("6)
B3LYP 0.463 0.463 "0.664 "0.155 0.108 "0.00905 0.0993 2.8("6)
HF 0.238 0.238 "0.325 "0.0872 0.064 "0.00148 0.0626 0.00014

(C2H4)2 DIRAC 6.04 6.04 "6.71 "7.15 "1.77 "1.21 "2.98 "0.00285
PBE0 4.58 4.58 "5.11 "3.98 0.0664 "0.702 "0.636 "0.0412
B3LYP 4.86 4.86 "5.37 "2.82 1.54 "0.708 0.834 0.047
HF 4.4 4.4 "4.96 "2.14 1.7 "0.374 1.32 0.000301

(HF)2 DIRAC 16.3 19.3 "28.7 "10.7 "3.68 "6.28 "9.96 "0.00402
PBE0 13.3 15.9 "24.7 "6.91 "2.31 "4.98 "7.28 "0.00026
B3LYP 14.2 17 "25.9 "7 "1.69 "5.08 "6.77 "0.00223
HF 11 13.1 "22.2 "4.17 "2.19 "3.61 "5.8 "2.12("5)

(NH3)2 DIRAC 11.8 11.8 "18.9 "8.78 "4.04 "2.89 "6.93 "0.00268
PBE0 9.4 9.4 "15.7 "5.49 "2.36 "2.06 "4.41 "0.000912
B3LYP 9.97 9.97 "16.4 "4.9 "1.31 "2.11 "3.43 "0.000516
HF 8.69 8.69 "14.9 "3.3 "0.813 "1.42 "2.23 "2.16("6)
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undergo major redistribution of electron densities between mono-
mers, such as in donor–acceptor interactions and also for those
which are poorly described by a single determinant due to static
correlation effects.

The total interaction energy is composed of the HL energy and
the PB deformation energy. As pointed out in the previous section,
both EHL

int and EPB
def are uniquely defined, and are independent of the

orthogonalization procedure. However, this is not the case for the
first four terms of Eq. (33) in Table 1. They describe the monomer
deformation effects due to orthogonalization (cols. 3 and 4), and
electrostatic and exchange-correlation effects, arising between
the monomers described with orthogonalized occupied orbitals
(cols. 5 and 6). Therefore, they are not uniquely defined, and are
strongly dependent on the orthogonalization scheme – they are
not useful to interpret the interaction.

The total interaction energies listed in Table 1 are qualitatively
correct only for polar molecules; for atoms and non-polar species
they are erroneous due to the well-known fact that the functionals:
DIRAC, PBE0, B3LYP do not reproduce the dispersion component.
The EHL

int and EPB
def components may be compared to similar terms

at the HF level of theory (the last entry for every dimer). Assuming
that the functionals reproduce only the local correlation terms, but
fail to recover dispersion contributions, the DFT EHL

int results should
differ from the HF ones by a relatively small intramonomer corre-
lation effect. This is apparently not the case for DIRAC, for van der
Waals complexes: Ne2 and (C2H4)2. Also PBE0 shows attraction, al-
beit small, for Ne2, and seems to be not repulsive enough for
(C2H4)2. Such a behavior indicates that some residual dispersion
terms are present. As to the B3LYP functional, it seems to be the
most dispersion-free, since its values of EHL

int are the closest to the
HF values. These results are in agreement with the observations
that the amount of dispersion in a functional correlates to the
steepness of the exchange enhancement factor: it becomes steeper
whenmoving from DIRAC to B3LYP, and, consequently, the amount
of dispersion included in these functionals is reduced (see Refs.
[28–31]) Finally, for hydrogen-bonded complexes, all methods give
qualitatively correct EHL

int, only PBE0 and B3LYP are closer to the HF
result than DIRAC.

The above discussion suggests a useful application of the for-
malism presented in this Letter. For approximate functionals the
partitioning of the interaction energy into the EHL

int and EPB
def compo-

nents may serve as a diagnostic of the functional’s adequacy in the
intermolecular interaction energy problems. Indeed, one can deter-
mine, what components and how efficiently are recovered by a
tested functional.

4. Summary and outlook

In this Letter we provided a rigorous derivation of the supermo-
lecular DFT interaction energy in terms of mutual monomer polar-
ization via the Pauli blockade method. Numerical calculations for
four model systems and three example functionals of different
types have proved that the formalism leads to interaction energies
rapidly converging to the supermolecular interaction energies. The
accuracy achieved is better than 0.1% and appears to be limited
only by the size of the grid. The accuracy is qualitatively similar
for all three DFT functionals under investigation. Our formalism
appears thus to be a viable and useful alternative of solving the
KS equations in terms of separated-monomer orbitals rather than
supermolecular orbitals. This fact has several important practical
implications.

On the one hand, the presented formalism offers possibilities of
using different functionals to describe the monomers and to de-
scribe the interaction. We have recently exploited this feature to
design a novel DFT+dispersion approach [32]. On the other, it
would be of interest to combine our approach for the DFT that is

capable to reproduce the dispersion energy, e.g. of range-separated
family of functionals [1].

The bifunctional formulation provides a platform for deriving a
choice of DFT treatments which use different functionals (or even
theories) for different subsystems. The results may thus be of inter-
est for those who use subsystem formulation in the context of
embedding potentials [10,33–35].

Our formalism may also be useful when interpreting different
interaction energy decomposition schemes that have recently been
proposed within the DFT approach [12–14,36].

Acknowledgments

Financial support from NSF (Grant No. CHE-0719260) is grate-
fully acknowledged. We acknowledge computational resources
purchased through NSF MRI program (Grant No.CHE-0722689).
We are grateful to Bogumił Jeziorski and Maciej Gutowski for help-
ful discussion.

References

[1] J.G. Àngyán, I.C. Gerber, A. Savin, J. Toulouse, Phys. Rev. A 72 (2005) 012510,
doi:10.1103/PhysRevA.72.012510.

[2] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett.
92 (2004) 246401, doi:10.1103/PhysRevLett.92.246401.

[3] J.F. Dobson, J. Wang, B.P. Dinte, K. McLennan, H.M. Le, Int. J. Quant. Chem. 101
(2005) 579, doi:10.1002/qua.20314.

[4] K. Morokuma, J. Chem. Phys. 55 (1971) 1236, doi:10.1063/1.1676210.
[5] A.J. Sadlej, Mol. Phys. 39 (1980) 1249, doi:10.1080/00268978000101031.
[6] M. Gutowski, L. Piela, Mol. Phys. 64 (1988) 337, doi:10.1080/

00268978800100263.
[7] K.A. Olszewski, M. Gutowski, L. Piela, J. Phys. Chem. 94 (1990) 5710,

doi:10.1021/j100378a020.
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Chapter 3

HF-Based Picture of Intermolecular
Forces

Whereabouts

In this Chapter we turn back to the wavefunction-based theory. The bifunctional
formalism of Chapter 2 smoothly transitions into the Pauli blockade method in the
HF theory if the xc potential is replaced with the HF exchange. First, we make a short
digression on the general variations of the dimer. Second, we present the open-shell
and many body extensions to the original Pauli blockade approach. Both approaches,
DFT- (presented in Chapter 2) and HF-based (presented in this Chapter) are smoothly
linked together in Chapter 4 leading to the dispersion-free DFT interaction energy.

3.1 Variational Approach to the Dimer Energy
The approach introduced in Sec. 2.2 can be applied to wavefunction-based theo-
ries. For the reference, in the present Section we briefly sketch the exchangeless
approach to the interactions.

Let us consider a dimer AB whose constituent monomers’ wavefunctions fulfill
eigenequations (1.7) and the total hamiltonian of the system is separated according
to (1.2). The wavefunction of a system is assumed as a simple Hartree product of
the monomer functions perturbed by the interaction,

ψAB = ψAψB. (3.1)

Our goal is to minimize the dimer energy, which is the expectation value of the
total hamiltonian (1.2) with the function (3.1) by varying the monomer func-
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tions ψA and ψB. The energy may be written as a bifunctional depending on
monomer functions:

E[ψA;ψB] =
〈ψAψB|Ĥ|ψAψB〉
〈ψAψB |ψAψB〉

. (3.2)

To facilitate derivations, we assume the normalization of the monomer functions,

〈ψA|ψA〉 = 〈ψB|ψB〉 = 1. (3.3)

Using (1.2), (3.2) and (3.3), we obtain

E[ψA;ψB] = 〈ψA|ĤA|ψA〉+ 〈ψB|ĤB|ψB〉+ 〈ψAψB|V̂ |ψAψB〉 . (3.4)

To find the energy extremals we first calculate the variational derivatives of the
functional (3.4) constrained with normalization conditions:

L [ψA;ψB] = E[ψA;ψB]− µA (〈ψA|ψA〉 − 1)− µB (〈ψB|ψB〉 − 1) (3.5)

with respect to the monomer functions and equate them to zero. Assuming the
monomer functions to be real, for monomer A we get

δL [ψA;ψB]

δψA({ri;σi}i∈A)
= 2

(
ĤA + 〈ψB|V̂ |ψB〉B − µA

)
ψA = 0, (3.6)

where theB subscript means that the integration is performed only over monomer B’s
coordinates. From (1.5) readily follows the eigenequation for the perturbed func-
tion of monomer A (we put µA = EA):(

ĤA +
∑
i∈A

vne
B (ri) +

∑
i∈A

∫
R3

ρB(r)

|r− ri|
d3r−

∑
α∈A

Zα

∫
R3

ρB(r)

|r−Rα|
d3r

)
ψA = EAψA

(3.7)
where monomer B’s nuclear potential is

vne
B (r) = −

∑
β∈B

Zβ
|r−Rβ|

(3.8)

and its density is calculated according to (1.17) and (1.18). The equation for
monomer A is obtained through the interchange of A and B subscripts in (3.7).
Eq. (3.7) has a clear physical interpretation: monomer A is distorted in the elec-
trostatic field of the monomer B. Thus the interaction energy,

Eint = E[ψA;ψB]− E0
A − E0

B, (3.9)

should include electrostatic and induction effects in an exchangeless manner. The
application of such a formalism has been realized for the HF functions by Sadlej
[32] and is known as the Hartree-Hartree-Fock (HHF) method.
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3.2 Exchange Effects
in the HF Interaction Energy

3.2.1 Pauli Blockade Method

The HHF method does not include any exchange so it fails to describe short-
range interactions. The HF-based formalism including the exchange effects has
been introduced by Gutowski and Piela [13]. The same formalism can be derived
from the bifunctional approach presented in Sec. 2.2. The original Pauli-blockade
HF method derivation follows the total system partitioning (1.2) and assumes the
dimer function in as the antisymmetrized product of the monomer HF functions
built of orthogonalized orbitals:

ψPB
AB = Â ψ̃Aψ̃B. (3.10)

The variation of the energy calculated with (3.10) with respect to monomer or-
bitals leads to the following conditions for the optimum orbitals:{

ˆ̃fA(r;λ)ãi(r;λ) = εA,i(λ)ãi(r;λ)
ˆ̃fB(r;λ)b̃k(r;λ) = εB,k(λ)b̃k(r;λ)

, (3.11)

where the perturbed Fock operators of (3.11) include exchange contributions that
are absent in the HHF approach, i.e. the exchange potential from a partner. λ is
the perturbation parameter of (1.2). The perturbed Fock operator of monomer A
is

ˆ̃fA(r;λ) = ĥA(r) + ˆ̃vHF
A (r;λ) + λ

(
ˆ̃velst

B (r;λ) + ˆ̃vexch
B (r;λ)

)
. (3.12)

Coupled equations (3.11) can be solved iteratively, using the penalty operator (2.23)
to enforce orthogonality. For λ = 1 the iterative scheme is

(
ˆ̃f
[n−1]
A + ˆ̃v

elst[n−1]
B + ˆ̃v

exch[n−1]
B + η ˆ̃R

[n−1]
B

)
a

[n]
i = ε

[n]
A,ia

[n]
i(

ˆ̃f
[n−1]
B + ˆ̃v

elst[n−1]
A + ˆ̃v

exch[n−1]
A + η ˆ̃R

[n−1]
A

)
b

[n]
k = ε

[n]
B,kb

[n]
k

(3.13)

and the interaction energy is

E
PB[n]
int = Ẽ

PB[n]
int + ∆Ẽ

[n]
A + ∆Ẽ

[n]
B . (3.14)

The explicit expression for ẼPB[n]
int is readily found applying standard Slater-Condon

rules as the dimer function is built of orthonormal orbitals. As usual in the
HF scheme, it can be partitioned into electrostatic and exchange terms,

Ẽ
PB[n]
int = Ẽ

[n]
elst + Ẽ

[n]
exch (3.15)
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with

Ẽ
[n]
elst =

∫
R3

vne
A (r)ρ̃

[n]
B (r) d3r+

∫
R3

vne
B (r)ρ̃

[n]
A (r) d3r+4

∑
i∈A

∑
k∈B

〈
ã

[n]
i b̃

[n]
k

∣∣∣ ã[n]
i b̃

[n]
k

〉
+V nn

int ,

(3.16)
and

Ẽ
[n]
exch = −2

∑
i∈A

∑
k∈B

〈
ã

[n]
i b̃

[n]
k

∣∣∣ b̃[n]
k ã

[n]
i

〉
. (3.17)

The deformation terms of Eq. (3.14) are

∆Ẽ
[n]
A = Ẽ

[n]
A − E

0
A (3.18)

and similarly for monomer B. E0
A = EHF

A is the isolated monomer A’s HF energy.
The mean value of Ĥ with the zero-order PB function, ψPB[0]

AB , is simply the dimer
HL energy:

EHL
int = E

PB[0]
int . (3.19)

To summarize, the total PB interaction energy [e.g. obtained by converging
the iterative Eqs. (3.13)] is

EPB
int = ∆ẼA + ∆ẼB + Ẽelst + Ẽexch, (3.20)

where we have dropped iteration number indices to emphasize that (3.20) repre-
sents the converged solution to PB equations. The energy (3.20) equals super-
molecular HF interaction energy,

EHF
int = EHF

AB − EHF
A − EHF

B . (3.21)

3.2.2 Relation Between PB-HF and SAPT-HF

Being equal to EHF
int , the PB interaction energy satisfies

EPB
int = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp + δHF, (3.22)

where the δHF term collects all higher-order induction and exchange terms absent
in the SAPT-HF through the second order. Both E(20)

ind,resp and E(20)
exch-ind,resp energies

are obtained within coupled HF (CHF) formalism [3, 32]. It is clear that the PB
interaction energy misses any intramonomer correlation as well as a dispersion
component which is a result of intermonomer correlation.

In the PB-HF method HL interaction energy is calculated according to Eq. (3.19),
which is the equivalent of Eq. (1.22). The difference between HL and the first-
order SAPT energy of Eq. (1.10) is decomposed into the sum of Murrell (∆M)
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and Landshoff deltas (∆L) [33–35] and can be further partitioned into monomer
contributions:

∆ = EHL
int − E(1) = ∆M + ∆L = ∆M

A + ∆M
B + ∆L

A + ∆M
B = ∆A + ∆B, (3.23)

where

∆A =
〈ψ0

Aψ
0
B|Â ĤA|ψ0

Aψ
0
B〉

〈ψ0
Aψ

0
B|Â |ψ0

Aψ
0
B〉
− E0

A. (3.24)

The deltas can be calculated using interaction density matrices formalism intro-
duced by Jeziorski et al. [34] The Murrell delta in terms of unperturbed molecular
orbitals of monomer A (a0

i ) or both monomers (x0
p) is

∆M
A =

∑
i,j∈A

∑
p,q∈AB

UpiUqj
〈
a0
i a

0
j

∣∣x0
px

0
q

〉
, (3.25)

where the matrix U is defined as

U = −(T− IM )T−1. (3.26)

T is the molecular orbital overlap matrix,

Tpq =
〈
x0
p

∣∣x0
q

〉
, (3.27)

and IM is M ×M identity matrix. The expression for the Landshoff delta reads

∆L
A =

∑
i∈A

∑
p∈AB

Upi

(
〈a0
i |ĥA|x0

p〉+

MA∑
j=1

(
2
〈
a0
i a

0
j

∣∣x0
pa

0
j

〉
−
〈
a0
i a

0
j

∣∣ a0
jx

0
p

〉))
=

=
∑
i∈A

∑
p∈AB

Upi 〈a0
i |f̂ 0

A|x0
p〉 . (3.28)

It vanishes for the dimer-centred basis set (DCBS). [35]

3.2.3 Extension to Open Shell Systems

Eqs. (3.13) can be easily extended to open-shell cases within unrestricted HF
(UHF) formalism. The UHF-based PB (PB-UHF) iterations are given by

(
ˆ̃f
[n−1]
Aσ + ˆ̃v

elst[n−1]
B + ˆ̃v

exch[n−1]
Bσ + η ˆ̃R

[n−1]
Bσ

)
a

[n]
σ,i = ε

[n]
Aσ,ia

[n]
σ,i(

ˆ̃f
[n−1]
Bσ + ˆ̃v

elst[n−1]
A + ˆ̃v

exch[n−1]
Aσ + η ˆ̃R

[n−1]
Aσ

)
b

[n]
σ,k = ε

[n]
Bσ,kb

[n]
σ,k

, (3.29)

where σ ∈ {α; β}. The Fock operator for a σ-electron of monomer A is given by
ˆ̃fAσ(r) = ĥA(r) + ˆ̃A(r) + ˆ̃vexch

Aσ (r) (3.30)

and physically it describes the σ-electron of monomer A in the Coulomb field of
its all other electrons, yet feeling only the exchange potential (ˆ̃vexch

Aσ ) of electrons
with the same spin (σ).
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3.2.4 Three-Body Open-Shell Pauli Blockade Method

The extension of PB method to three-body open-shell systems is straightforward.
Analogously as in the two-body case, the PB procedure for ABC trimer starts
with the orthogonalization of isolated monomer orbitals which yields the two sets
for α and β electrons:{{

ã0
σ,i

}
i∈A ;

{
b̃0
σ,k

}
k∈B

;
{
c̃0
σ,m

}
m∈B

}
, σ ∈ {α; β}. (3.31)

The orbitals of the interacting trimer satisfy six equations analogous to (3.29),
e.g. for α electrons of monomer A they are eigenfunctions of the monomer A’s
Fock operator perturbed by the electrostatic and exchange potentials from the
two other monomers,

ˆ̃fAα +
∑

X∈{B;C}

(
ˆ̃velst

X + ˆ̃vexch
Xα

)
. (3.32)

The orbitals are orthogonal between monomers. From (1.25) we obtain the general
formula for the three-body contribution to the interaction energy,

∆E
(3,3)
int = Eint −∆E

(2,3)
int =

= Eint −
(
Eint(AB) + Eint(BC) + Eint(AC)

)
, (3.33)

where
Eint = EABC −

∑
X∈{A;B;C}

EX (3.34)

is the total interaction energy of the trimer.

3.3 Results
The elements of the open-shell formalism and codes described in this Chapter
have already been used in the work on metal trimers [36], to calculate the HL
three-body contributions in spin-polarized alkaline earth-metal complexes — they
were calculated with the UHF monomer wavefunctions. The reader is referred to
that Paper for more details, here we briefly present the results that have not been
published elsewhere.

Table 3.1 presents the components of PB interaction energy (3.20) for the Cr2

system. The chromium dimer is not stable at the HF level (it is bound by the
dispersion, see Ref. 27). Note that the deformation, electrostatic and exchange
energies refer to the interaction between monomers described with orthogonalized
orbitals and not the real system. However, asymptotically they approach the
respective SAPT first-order energies as the overlap between monomers’ orbitals
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becomes negligible. The physically meaningful terms are HL and deformation
terms. In the case of Cr2, the repulsive HL term outweighs the attraction from
mutual relaxation (deformation) thus making the dimer unstable at HF-based
Pauli blockade (PB) theory, which is of course in accordance with HF theory.

In Table 3.2 are shown the three-body contributions to the HL, deformation
and total PB interaction energies for the Na3 system. Note that the three-body
HL effect for the Na3 is of attractive nature and it outweighs the three-body
repulsive deformation term, so the total three-body energy is negative. Despite
that, the Na3 trimer remains unstable at the HF level for all distances.

Table 3.1: Components of the PB interaction energy for the X13Σ+
g state of Cr2

in aug-cc-pVTZ basis set with respect to the internuclear distance.

R/a0 EHL
int ∆ẼA,B Ẽelst Ẽexch EPB

int

6 14.8 53.8 −69.8 −31.6 6.19
7 6.63 25.8 −33.4 −15.6 2.51
8 2.96 12 −15.5 −7.36 1.2
9 1.28 5.46 −7.01 −3.33 0.569
10 0.525 2.4 −3.08 −1.47 0.255

Table 3.2: Three-body contributions to the PB energy components for the
X4A′1 state of Na3 in equilateral triangle geometry in VQZ basis set with re-
spect to the triangle side length (the numbers in parentheses denote powers of
ten).

R/Å EHL
int Edef EPB

int E
HL(3,3)
int E

(3,3)
def E

PB(3,3)
int

2 2.54(+5) −4.57(+4) 2.08(+5) −2.81(+5) 2.94(+4) −2.52(+5)
3 6.03(+4) −2.71(+4) 3.32(+4) −7.29(+4) 1.73(+4) −5.57(+4)
4 1.58(+4) −9.4(+3) 6.4(+3) −2.01(+4) 8.34(+3) −1.17(+4)
5 4.2(+3) −2.51(+3) 1.69(+3) −5.2(+3) 2.54(+3) −2.66(+3)
6 1.02(+3) −579 444 −1.19(+3) 597 −597
7 219 −118 101 −242 120 −122
8 41 −21.6 19.4 −43.5 21.8 −21.7
9 6.79 −3.58 3.22 −7.03 3.58 −3.45
10 1.01 −0.557 0.451 −1.03 0.558 −0.469



Chapter 4

Dispersion-Free Approximation

Whereabouts

This is a pivotal Chapter of the Thesis, collecting the knowledge of Chapters 2 and 3.
Its aim is to present the procedure the obtain the dispersion-free DFT interaction
energy. In short, the idea is to use local xc potential within monomers, but the non-
local HF-like exchange between them. In such a way we eliminate the intermonomer
electron correlation which manifests as dispersion. As the results show, the idea works
satisfactorily, yielding the first rigorous dispersion-less DFT interaction energy.

4.1 Correlation Issue

We have already mentioned that the HF method lacks any type of correlation.
Such a disadvantage concerns energies calculated with this method, including EHF

int .
But in order to obtain reliable interaction energies, both types of correlation, i.e.
intra- and itermonomer one, have to be properly accounted for. The intramonomer
correlation may affect the interaction energies quite severely as attested by the
rigorous many-body SAPT (MB-SAPT) calculations [10].

The goal pursued in the following sections is to present a DFT-based formalism
that accounts for the intramonomer correlation yet leaves out the intermonomer
correlation to a large degree, thus obtaining the approximation of dispersion-free
interaction energy.
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4.2 Elimination of Dispersion
At this stage we propose a way to eliminate the dispersion energy between subsys-
tems using the bifunctional approach similar to that already developed in Sec. 2.2.
The very idea is to describe the interacting monomers with full xc potentials let-
ting only the exact exchange potential operate between them. Mathematically,
this means that the ∆Exc term in (2.19) is replaced with the exact exchange inter-
action. The exchange energy in terms of 1-DMs for the closed-shell system reads
(cf. McWeeny [9])

Eexch[ρ̃A; ρ̃B] = −1

2

∫
R3

∫
R3

ρ̃A(r1; r2)ρ̃B(r2; r1)

r12

d3r1d
3r2. (4.1)

The 1-DM is calculated with (1.19). Hence, the bifunctional incorporating the
exact exchange takes the form

EAB[ρ̃A; ρ̃B] = EA[ρ̃A] + EB[ρ̃B] + Eelst[ρ̃A; ρ̃B] + Eexch[ρ̃A; ρ̃B]. (4.2)

Now, in full analogy to Sec. 2.2, we perform the variational search of the minimum
of (4.2) with respect to ρ̃A and ρ̃B. The orbitals minimizing (1.19) are readily
found to satisfy 

(
ˆ̃fKS
A + ˆ̃velst

B + ˆ̃vexch
B

)
ãi = εA,iãi(

ˆ̃fKS
B + ˆ̃velst

A + ˆ̃vexch
A

)
b̃k = εB,kb̃k

, (4.3)

so the iterative scheme for monomer A reads(
ˆ̃f
KS[n−1]
A + ˆ̃v

elst[n−1]
B + ˆ̃v

exch[n−1]
B + η ˆ̃R

[n−1]
B

)
a

[n]
i = ε

[n]
A,ia

[n]
i (4.4)

with the interaction energy at the nth iteration being

E PB[n]
int = EAB

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
− EA

[
ρ0

A

]
− EB

[
ρ0

B

]
=

= ∆Ẽ
[n]
A + ∆Ẽ

[n]
B + Eelst

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
+ Eexch

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
. (4.5)

The deformation energies are calculated according to (2.35) and the electrostatic
term is given by (2.20). Energy at the zeroth iteration is then

E HL
int = EAB

[
ρ̃0

A; ρ̃0
B

]
− E

[
ρ0

A

]
− E

[
ρ0

B

]
. (4.6)

Hereinafter, the energy (4.6) will be referred to as dispersion-free HL interaction
energy.

It is well known that the xc potential has wrong asymptotic behaviour [37],
which may significantly influence the properties that are heavily dependent on
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virtual KS orbitals and long-range interaction energies. Therefore, we have applied
the AC scheme of Grüning et al. [38], but found the results fairly insensitive to
the correction, see Ref. [39], included in Sec. 4.4.

E PB
int represents the final PB energy, calculated with (4.5) using self-consistent

orbitals satisfying (4.3). It results from the mutual electric polarization of DFT
monomers, and, owing to Pauli blockade procedure, it contains exchange contri-
butions. It is related to the induction terms of the SAPT formalism, with two
important advantages over the latter: PB sums all electric polarization terms to
infinity and accounts for accompanying exchange effects in a consistent manner
within the DFT formalism.

4.3 Total Interaction Energy
The total interaction energy, termed PB plus dispersion (PBD), is obtained by
adding to E PB

int the dispersion component obtained at the DFT level of theory,
either from SAPT or by other accurate techniques [16, 40–42]:

EPBD
int = E PB

int + Edisp. (4.7)

In this work we have used the second-order coupled KS (CKS) dispersion combined
with the exchange-dispersion term from SAPT-DFT [21]:

Edisp = E
(2)
disp + E

(2)
exch-disp. (4.8)

For the sake of comparison, we have also calculated DFT-based SAPT (SAPT-
DFT) interaction energies,

ESAPTδ
int = E(1) + E(2) + δHF, (4.9)

where the δHF term provides rough approximation of higher than second-order
induction-with-exchange terms which are necessary to correct otherwise divergent
perturbation expansion. It is calculated using HF supermolecular interaction en-
ergy and the SAPT-HF terms from (3.22).

The results for noble-gas diatomics, hydrogen-bonded and other molecular
systems are presented in Refs. [43] and [39]. In the Fig. 4.1 the geometries together
with appropriate references for some of these systems are presented.

4.4 Related Publications
Ref. [43] concisely presents the dispersion-free approximation and shows the results
of the approach for several diatomic and hydrogen-bonded systems. Ref. [39]
presents the dispersion-free approach in more detail and also contains further
applications of the method.
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(a) (H2O)2 [44] (b) (HF)2 [45] (c) (HF)2 [10]

(d) (HCl)2 [45] (e) (NH3)2 [44] (f) H2O–HF [45]

(g) H2O–HF [45] (h) HF–NH3 [46] (i) (CH4)2 [44]

(j) (C2H4)2 [44] (k) NH+
4 –H2O [46] (l) H3O+–H2O [46]

(m) OH−–H2O [46] (n) CN−–H2O [46]

Figure 4.1: Geometries of the systems presented in Refs. [43] and [39].
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We propose a ‘‘DFTþ dispersion’’ treatment which avoids double counting of dispersion terms by

deriving the dispersion-free density functional theory (DFT) interaction energy and combining it with

DFT-based dispersion. The formalism involves self-consistent polarization of DFT monomers restrained
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The applicability of the density functional theory (DFT)
to calculations of intermolecular potentials of
van der Waals complexes depends upon a seamless inclu-
sion of the dispersion energy, a long-range correlation
effect, in the DFT treatment. This goal has been pursued
vigorously along many lines [1–7] with varying success.
One promising avenue consists of using an a posteriori
dispersion correction added to supermolecular DFT calcu-
lations of interaction energy, in the spirit of Ref. [8]. For
this strategy to succeed two elements are necessary: an
adequate description of dispersion energy between DFT
monomers and a sensible dispersion-free description of
supermolecular interaction energy within DFT.

A highly accurate and computationally efficient for-
mulation of dispersion energy is now available from the
time-dependent DFT as proposed by Misquitta et al. [9]
and Heßelmann and Jansen [10], referred to as coupled
Kohn-Sham (CKS) dispersion. The second element of this
strategy, however, has not been available up to now. In
contrast to the Hartree-Fock (HF) interaction energy
which is well defined and contains physically interpret-
able effects, the analogous DFT interaction energy has
neither of these characteristics. Depending on a parti-
cular functional it may include a variety of obscure terms.
In particular, for all current generalized gradient approxi-
mation formalisms no dispersion contribution is accounted
for at large intermolecular separations R and only some
part appears at intermediate and small R. As a conse-
quence, approximate exchange-correlation (XC) function-
als often exhibit an artifactual behavior in the long range as
well as in the van der Waals minimum region. A rigorous
DFTþ dispersion approach should be based on a DFT
interaction energy that a priori avoids these residual dis-
persion terms but allows for accurate mutual exchange and
polarization effects—an analog of the HF interaction en-

ergy at the DFT level of theory [8]. Such a DFT interaction
energy could then be combined with a dispersion compo-
nent obtained either from CKS [9,10] or other formalisms
[2,11–13].
To this end we adapt the formalism of Pauli-blockade

Hartree-Fock (PB HF) [14] combined with the bifunctional
subsystem formulation of DFT of Rajchel et al. [15]
Specifically, the energy of the complex is evaluated from
the classic Heitler-London formula which takes the anti-
symmetrized product of participating monomer wave func-
tions while the monomers are described with the KS
orbitals from DFT calculations. In the second step, one
iteratively evaluates the interaction energy between two
DFT monomers, described by KS determinants, in a
manner analogous to the HF method. That is, the mono-
mers are polarized in each other’s fields until self-
consistency under the constraint of the Pauli exclusion
principle between monomers. Within the monomers any
exchange-correlation DFT potential may be employed,
whereas between monomers the exact exchange potential
is used to avoid the dispersion contribution. In the third
step, the dispersion component is a posteriori added. In
such a way the erratic behavior of approximate XC func-
tionals is eliminated and all physically important effects
are included without the problem of the dispersion double
counting. Note that the concept of the separated monomers
resembles the idea of the ‘‘range-separation’’ approach in
DFT methodology [16].
In the present Letter we present an outline of the appli-

cation of the PB scheme to the calculation of the interac-
tion energy of DFTmonomers. The method has been coded
within the MOLPRO package [17]. More details on deriva-
tion and implementation will be published elsewhere. The
procedure starts with KS solutions for the isolated mono-
mers A and B. The solution is obtained in a self-consistent
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way involving coupled equations for both subsystems. The
equation for monomer A reads

ð ~̂fKS½n%A þ ~̂velst½n%
B þ ~̂vexch½n%

B þ ! ~̂R
½n%
B Þa½nþ1%

i ¼ "½nþ1%
A;i a½nþ1%

i ;

(1)

and its monomerB counterpart is simply generated through
the exchange of A andB indices. In Eq. (1), ½n% superscripts
denote iteration numbers,

~̂f KS
A ðrÞ ¼ ĥAðrÞ þ

Z ~#Aðr0Þ
jr" r0jdr

0 þ ~vXC
A ðrÞ (2)

is the standard KS operator (e.g., see Ref. [18]) built from
the monomer A orbitals (ai), the two following terms are
electrostatic and exchange HF potentials, and the last term
is the so-called penalty operator enforcing the proper mu-
tual orthogonality between A and B monomer orbitals so
that the intersystem Pauli exclusion principle is fulfilled.
!> 0 is a parameter that does not affect the final solution,
though it affects the convergence. Monomer A density in
terms of KS orbitals is

#AðrÞ ¼ 2
X

i2A

jaiðrÞj2: (3)

The XC potential in (2) may be easily asymptotically
corrected (we used the correction of Grüning et al. [19]
and the results proved to be fairly insensitive to this cor-
rection). The orbitals are symmetrically orthogonalized

after each iteration, yielding f~a½nþ1%
i gi2A, f~b½nþ1%

k gk2B set.
The tilde sign (e.g., ~EPB

int ) denotes quantities calculated with
such orbitals. The interaction energy at each iteration is
decomposed into several terms:

EPB
int ¼ ! ~EA þ ! ~EB þ ~Eelst þ ~Eexch: (4)

! ~EX ¼ EX½~#X% " EX½#0
X% terms are a result of the impo-

sition of the intersystem Pauli exclusion principle and
contain repulsion energy. The expressions for electrostatic
and exchange energies are very simple due to the orthogo-
nality of orbitals:

~E elst ¼
Z

vne
A ðrÞ~#BðrÞdrþ

Z
vne
B ðrÞ~#AðrÞdr

þ 4
X

i2A

X

k2B

h~ai ~bkj~ai ~bkiþ Vnn
AB; (5)

and

~E exch ¼ "2
X

i2A

X

k2B

h~ai ~bkj~bk~aii; (6)

where vne
A is the potential due to monomer A nuclei and

Vnn
AB the intermonomer nuclear-nuclear repulsion term. The

zero-iteration energy (4) is the DFT analog of the well-

known Heitler-London (HL) interaction energy: EPB½0%
int (

EHL
int (cf. also Cybulski and Seversen [20]). The Heitler-

London energy contains the well-defined electrostatic and
exchange interaction contributions, in this case between
unperturbed isolated DFT monomers. It is closely related
to the first-order energy in the symmetry-adapted pertur-

bation theory based on DFT [SAPT(DFT)]. Coupling be-
tween the subsystems via Eq. (1) leads to the system
energy lowering, and is referred to as deformation energy:

E PB
def ¼ EPB

int "EHL
int : (7)

EPB
int represents the final PB energy, calculated with (4)

using self-consistent orbitals satisfying (1). It results
from the mutual electric polarization of DFT monomers,
and, owing to the Pauli-blockade procedure, it contains
exchange contributions. It is related to the induction terms
of the SAPT formalism with two important advantages
over the latter: PB gathers all electric polarization terms
to infinity and accounts for accompanying exchange effects
in a consistent manner within the DFT formalism.
In the original HF-based formulation, the PB procedure

simply restores the supermolecular HF interaction energy,
and obviously neglects any kind of electron correlation.
For the DFTanalog, both monomers are described with the
full KS operator, but are coupled using HF Coulomb and
exchange operators [ ~̂velst

B and ~̂vexch
B in Eq. (1), respectively]

built from KS orbitals. Such an approach accounts for
intramonomer local electron correlation, leaving out the
intermonomer nonlocal contributions. ThenEPB

int represents
the ‘‘nondispersion’’ part of the interaction energy that
includes the electrostatic, exchange, and induction compo-
nents. For rare-gas dimers it is purely repulsive. In Fig. 1
EPB

int is compared with the supermolecular counterpoise
corrected DFT interaction energy for Ar2. Calculations
employed three DFT functionals of the generalized gra-
dient approximation Perdew-Burke-Ernzerhof (PBE) hier-
archy, which systematically improve on the description of
monomers: PBEX [21] (exchange only), PBEREV [22]
(local exchange plus correlation), and PBE0 [23] (a hybrid
of local and exact exchange plus correlation). All calcu-
lations used augmented correlation-consistent polarized
triple-zeta (aug-cc-pVTZ) basis sets. As seen in Fig. 1
EPB

int is indeed purely repulsive for Ar2. By contrast, the
supermolecular DFT interaction energies reveal minima of
an unknown origin.
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FIG. 1 (color online). Comparison of PB and supermolecular
DFT interaction energies for Ar2.
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The total interaction energy, termed PBD for Pauli-
blockade plus dispersion, is obtained in the spirit of
Ref. [8]:

EPBD
int ¼ EPB

int þ Edisp: (8)

In this work Edisp is the second-order CKS dispersion
component combined with the exchange-dispersion term
from SAPT(DFT) [9,24,25].

EPBD
int can now be compared with SAPT(DFT) theory.

SAPT(DFT) interaction energy

ESAPT$
int ¼ Eð1Þ þ Eð2Þ þ $HF (9)

includes first-order (electrostatic and exchange) and
second-order (induction, dispersion, and their exchange
counterparts) contributions derived from KS orbitals. $HF

denotes approximate correction for higher-order induction
effects derived at the HF level of theory [26]. The SAPT
(DFT) terms were calculated using the MOLPRO program
[17].

To test the efficiency of the PBD approach, we per-
formed calculations for several diatomic systems com-
posed of closed-shell atoms and ions: Ar2, ArNa

þ, and
ArCl". Again, the same set of PBE functionals has been
used with the same aug-cc-pVTZ basis set. The compari-
son of energies calculated with Eqs. (8) and (9) is presented
in Figs. 2–4.

The results are compared with high-level ab initio data
from Ref. [27] (Ar2), [28] (ArNa

þ), and [29] (ArCl"). One
can see a remarkably good agreement of PBD and bench-
mark data, similar to that of SAPT$, for Ar2 and ArNaþ.
The agreement for ArCl" is somewhat worse; however, for
this system the benchmark calculation may be up to 10%
too shallow.

Another test of the proposed approach was performed
for hydrogen-bonded and other molecular complexes. The
results for a representative set of these complexes are
shown in Table I.

The PBD interaction energies are compared with
SAPT$ and with benchmark values. PBD and SAPT$
share the same values of dispersion energy. The bench-
marks correspond to basis set saturated coupled-cluster
with single, double and perturbative triple excitations
[CCSD(T)] results. The comparison indicates that PBD
leads to very reasonable interaction energies for
hydrogen-bonded systems. As mentioned above, the two
components EHL

int and EPB
int have a clear physical interpre-

tation of electrostatic-plus-exchange interaction of two
unperturbed monomers and mutual monomer polarization
contribution restrained by exchange, respectively. It should
also be noted that whereas SAPT$ provides results of
equally high quality, it is dependent upon inclusion of
$HF which is substantial.
Calculations of EPB

int scale with the system size N (where
N is the number of basis functions) as the standard KS
calculations, i.e., as N3.
In summary, we presented a new treatment of interaction

energy between two DFT monomers which is exactly
dispersion-free. This interaction energy is combined with
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existing treatments of dispersion to yield the first theoreti-
cally sound DFTþ dispersion approach.
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M. Schütz et al., MOLPRO, version 2009.2, http://www.
molpro.net

[18] W. Koch and M.C. Holthausen, A Chemists Guide to
Density Functional Theory (Wiley-VCH Verlag GmbH,
Weinheim, 2001).
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a EPB
int
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int

c $HF
d ESAPT$

int Benchmark

ðH2OÞ2 "1:02 "4:94 "8:56 "1:45 "8:12 "9:00 [30]
ðHFÞ2 "0:69 "4:78 "7:59 "1:19 "6:48 "7:22 [31]
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A density functional theory approach to noncovalent interactions
via interacting monomer densities

Łukasz Rajchel,*ab Piotr S. Żuchowski,c Micha$ Hapka,b Marcin Modrzejewski,b
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A recently proposed ‘‘DFT + dispersion’’ treatment (Rajchel et al., Phys. Rev. Lett., 2010,

104, 163001) is described in detail and illustrated by more examples. The formalism derives the

dispersion-free density functional theory (DFT) interaction energy and combines it with the

dispersion energy from separate DFT calculations. It consists of the self-consistent polarization of

DFT monomers restrained by the exclusion principle via the Pauli blockade technique. Within the

monomers a complete exchange-correlation potential should be used, but between them only the

exact exchange operates. The application to a wide range of molecular complexes from rare-gas

dimers to hydrogen-bonds to p-electron interactions shows good agreement with benchmark

values.

1. Introduction

Density functional theory (DFT) based methods provide the
most important viable approach to large systems of nano- and
biotechnological relevance. Their success in the determination
of structure, energetics and other static properties of dense
matter is well known.2–4

However, the treatment of weak noncovalent interactions
by DFT remains plagued by spurious and erratic results.
This is a consequence of the fact that the stabilization in these
complexes is determined by dispersion interactions, not
accounted for by standard DFT functionals.5,6 Consequently,
exchange-correlation potentials derived from local and semi-
local models, combined to satisfy empirical data, often feature
artifacts when applied to systems with large non-local correla-
tion effects.

Considerable effort has recently been invested to incorporate
the dispersion effect into the DFT framework, and the results
are promising.7–13 At the same time, for many practical
applications, remarkable progress has been achieved by using
a posteriori dispersion corrections, and/or semi-empirical
models, added on the top of regular DFT calculations
(DFT+D)8 in the spirit of the classic self-consistent field
(SCF)+dispersion models of Ahlrichs et al.14 and Wu et al.6

In order to make a DFT + dispersion strategy successful,
one needs two ingredients: a dispersion-free DFT interaction
energy1 and the model for the dispersion energy. The first, the
DFT dispersion component, may be obtained via the symmetry-
adapted perturbation theory (SAPT) approach, but also from

other approximate DFT treatments.7,8,15,16 The second ingredient,
the dispersion-free DFT interaction energy, is commonly
obtained as the supermolecular DFT interaction energy.
However, in contrast to the SCF interaction energy, the
composition of the DFT interaction energy is neither under-
stood nor controlled. In particular, an exchange-correlation
functional is always an approximation, to some extent
delocalized and never exactly dispersion-free, and the problem
of double-counting obscure dispersion terms arises. In addi-
tion, the exchange-correlation potential compromises the
demands of many users and various training sets, and thus is
prone to erroneous behavior.17

A rigorous approach requires a DFT interaction energy that
a priori neglects non-local long-range interaction energy terms
(dispersion) but allows for accurate mutual exchange and
mutual polarization effects—an analogue of the SCF inter-
action energy at the DFT level of theory. Such a DFT inter-
action energy could be confidently and rigorously supplemented
with a dispersion component obtained also at the DFT level of
theory using SAPT18,19 or other formalisms.7,8,16 The goal of
this work has been to define an accurate DFT+ dispersion treat-
ment which is based on the derivation of ‘‘dispersion-free’’
interaction energy arising between DFT monomers to which
a posteriori DFT dispersion energy is added. The former,
the dispersion-free DFT interaction energy, leaves out any
intermolecular correlation terms—thus avoiding artifactual
exchange and doubly counted dispersion terms. The latter
may be obtained from e.g. TDDFT and/or SAPT calculations.
The basic formulation of the method and selected results for
model systems: rare-gas dimers and H-bonded systems, have
already been presented by Rajchel et al.1

To this end a novel hybrid DFT approach for calculations
of van der Waals complexes has been proposed by Rajchel
et al.1 It uses the formalism of Gutowski and Piela,20 termed
Pauli blockade Hartree–Fock (PB-HF) combined with the
bifunctional formulation of DFT of Rajchel et al.21 At
the first stage, the subsystems’ sets of orbitals are separated
by the symmetrical orthogonalization of the orbitals residing

aDepartment of Chemistry, Oakland University, Rochester,
Michigan 48309-4477, USA. E-mail: lrajchel@tiger.chem.uw.edu.pl;
Fax: +48 22 8222309; Tel: +48 22 8220211 ext. 234

b Faculty of Chemistry, University of Warsaw, 02-093 Warszawa,
Pasteura 1, Poland. E-mail: chalbie@tiger.chem.uw.edu.pl

c Department of Chemistry,
Durham University, South Road, Durham DH1 3LE,
United Kingdom

dDepartment of Chemistry, Oakland University, Rochester,
Michigan 48309-4477, USA

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f W

ar
sa

w
 o

n 
07

 N
ov

em
be

r 2
01

0
Pu

bl
ish

ed
 o

n 
14

 O
ct

ob
er

 2
01

0 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

0C
P0

06
26

B

View Online



This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 14686–14692 14687

at different monomers. At the second stage, one iteratively
evaluates the interaction energy between two DFT monomers
described by Kohn–Sham (KS) determinants. That is, the
monomers are mutually polarized until self-consistency
in both fields is reached under the constraints of the Pauli
exclusion principle (Pauli blockade technique). Various
exchange-correlation DFT potentials may be used within the
monomers (see below), but the intermonomer exchange-
correlation potential is reduced to only the exact exchange,
and thus neglects the dispersion contribution. In the third
stage, the dispersion component is added a posteriori, from
SAPT(DFT) calculations. In such a way, the erratic behavior
of the approximate exchange functionals around the equili-
brium separations is no longer an issue, while the missing long-
range attraction caused by the dispersion is added without the
problem of double counting.

It is worth noting that the above approach bears a resemblance
to the range-separation idea in DFT,22–24 differing in that it is
based on the separation of monomers rather than ranges.

In the following section, the ‘‘dispersion-free’’ PB(DFT) is
derived as a particular case for the PB treatment of DFT
reported by us recently.21 In section 3 we report the numerical
results of our method for representative van der Waals and
H-bonded systems, and discuss the overall performance of the
method.

2. Theory

2.1 Pauli blockade method

Supermolecular energy in terms of DFT can be defined as the
difference between the total energies of the dimer AB and the
individual monomers A and B, separated to infinity:

EDFT
int = EDFT

AB ! EDFT
A ! EDFT

B . (1)

The interaction energy calculated in this way contains the
correlation contribution, however the long-range correlation
effects are not taken into account correctly within the standard
density functionals.

It was demonstrated by Gutowski and Piela20 that the
Hartree–Fock (HF) supermolecular interaction energy may
be exactly recovered by solving the HF equations for monomers
in the presence of the external perturbation consisting of the
electrostatic potential and the non-local exchange potential
generated by the second monomer. They have also proposed a
convenient computational scheme in terms of the mutually
orthogonalized A and B monomers’ occupied orbitals, {ãi}iAA

and {b̃k}kAB (the quantities expressed in the orthonormalized
orbitals are henceforth marked with B). With such orbitals,
satisfying

8i2A8k2B : ~ai
!! ~bk

D E
¼ 0; ð2Þ

the supermolecular interaction energy in the HF method can
be written as

EHF
int = DẼA + DẼB + Ẽelst + Ẽexch, (3)

where

DẼA = ẼHF
A ! EHF

A (4)

is the difference between the final and isolated monomer A HF
energy,

~Eelst ¼
Z

R3
vneA ðrÞ~rBðrÞd3rþ

Z

R3
vneB ðrÞ~rAðrÞd3r þ

þ 4
X

i2A

X

k2B
~ai ~bk

!! ~ai ~bk
D E

þ Vnn
int ;

ð5Þ

is the electrostatic interaction (with r denoting spatial
coordinates),

~rAðrÞ ¼ 2
X

i2A
j~aiðrÞj2 ð6Þ

is the monomer A density,

vneA ðrÞ ¼ !
X

a2A

Za

jr! Raj
ð7Þ

is the monomer A nuclear potential with a representing the
coordinates of monomer A0s nuclei, each described by its
position Ra and charge Za,

Vnn
int ¼

X

a2A

X

b2B

ZaZb

jRa ! Rbj
ð8Þ

is the intermonomer nuclear repulsion energy (constant for a
fixed geometry), and finally

~Eexch ¼ !2
X

i2A

X

k2B
~ai ~bk

!! ~bk~ai
D E

; ð9Þ

is the exchange interaction. The monomer A orbitals are the
eigenfunctions of the following modified Fock operator:

~̂f A þ ~̂vB
elst þ ~̂vB

exch; ð10Þ

where ~̂f A is the standard Fock operator build of the {ãi}iAA

orbital set, and the two remaining terms are electrostatic and
the non-local exchange potentials generated by monomer B,
respectively. Monomer B orbitals are obtained analogously.
The procedure introduced by Gutowski and Piela20 can be

generalized to the case where the two subsystems are described
by KS orbitals. To this end we note that the total density of the
system can be represented as the sum of the monomer densities
obtained from the orthogonalized orbitals:

rAB = ~rAB = ~rA + ~rB, (11)

where the monomer A density is calculated as in (6) but with
orbitals being the solutions of the following modified KS
equation:

~̂f A
KSðrÞ þ D~vxcA ðrÞ þ ~̂vB

elstðrÞ
" #

~aiðrÞ ¼ EA;i~aiðrÞ ð12Þ

and satisfying (2). In eqn (12), ~̂f A
KS is the standard KS operator

built of {ãi}iAA orbitals,

D~vxcA (r) = vxcAB(r) ! ~vxcA (r), (13)

where DṽxcA (r) is the non-additivity of the monomer A
exchange-correlation (xc) potential, and ~̂vB

elstðrÞ is the electro-
static potential of eqn (10). With rAB decomposed in such way,
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the total KS interaction energy may be written as a functional
of ~rA and ~rB densities:

EPB
int [~rA;~rB] = DẼA[~rA] + DẼB[~rB] + Eelst[~rA;~rB]

+ DExc[~rA;~rB]. (14)

The terms of (14) are as follows. Monomer A deformation is

DẼA[~rA] = EA[~rA] ! EA[r0A], (15)

and r0A is the density of the unperturbed A monomer, i.e.
the density composed of orbitals {a0i }iAA satisfying the
unperturbed KS equations,

fK̂S,0(r)a0i (r) = e0A,ia
0
i (r). (16)

The total energy of monomer A is expressed by the standard
KS functional,

EA[~rA] = Ts[~rA] + Vne
A [~rA] + J[~rA] + Exc[~rA] + Vnn

A .(17)

The functional (17) includes the non-iteracting kinetic energy:

T s½~rA' ¼ !
X

i2A
h~aijDrj~aii; ð18Þ

nuclear-electron attraction energy:

Vne
A ½~rA' ¼

Z

R3
vneA ðrÞ~rAðrÞd3r; ð19Þ

coulombic energy:

J½~rA' ¼
1

2

Z

R3

Z

R3

~rAðr1Þ~rAðr2Þ
r12

d3r1d
3r2; ð20Þ

and exchange-correlation (xc) energy:

Exc½~rA' ¼
Z

R3
Fxc ~rAðrÞ; frr~rAðrÞ; . . .gð Þd3r ð21Þ

which is evaluated through the numerical integration of the Fxc

integrand on a grid of points around monomer A. The last
term of (17) is the monomer A nuclear–nuclear repulsion
energy. Similar expressions can be written for monomer B.
The electrostatic part of the interaction energy has the same
form as in eqn (5) and in terms of densities it can be easily
rewritten as

Eelst½~rA; ~rB' ¼
Z

R3
vneB ðrÞ~rAðrÞd3rþ

Z

R3
vneA ðrÞ~rBðrÞd3rþ

þ
Z

R3

Z

R3

~rAðr1Þ~rBðr2Þ
r12

d3r1d
3r2 þ Vnn

int :

ð22Þ

Finally, the exchange-correlation interaction is calculated in a
supermolecular manner,

DExc[~rA;~rB] = Exc[~rA + ~rB] ! Exc[~rA] ! Exc[~rB]. (23)

Inserting monomer densities calculated using eqn (6) with
orbitals satisfying (2) and (12) into (14) one restores the
DFT supermolecular interaction energy (1). The expression
(14) is potentially exact, i.e. it yields the exact interaction
energy, provided that the exact xc potential is used.

Technically, the orbitals satisfying (12) are found in a self-
consistent iterative process and the orthogonality condition (2)
is imposed by the brute force incorporation of the penalty

operator and the successive Löwdin orthogonalization.
Depicting iteration numbers in square brackets, the nth iterative
step for monomer A reads

~̂f A
KS½n!1' þ D~̂vA

xc½n!1' þ ~̂vB
elst½n!1' þ Z ~̂R

B
½n!1'

" #
a
½n'
i ¼ e½n'A;ia

½n'
i ;

ð24Þ

where the penalty operator is

~̂R
B
½n' ¼

X

k2B

~b½n'k

!!!
E

~b½n'k

D !!! ð25Þ

and it is obvious that its action on monomer A0s occupied
orbitals annihilates them once the orbitals are orthogonal.
Z > 0 is a scaling parameter not affecting the final solutions.
The equivalent of (24) for monomer B is obtained through the
interchange of the A and B subscripts. The orbitals obtained in
each iteration are orthogonalized, yielding an orthonormal

~a½n'i

n o

i2A
; ~b½n'k

n o

k2B

n o
ð26Þ

set. The iterations start with the unperturbed orbitals obtained
in eqn (16) and its analogue for monomer B.
The zeroth-order interaction energy may be viewed as an

analog of the well known HF-based Heitler–London (HL)
interaction energy. Specifically, we define the DFT-based HL
interaction energy as

EHL
int = EAB[~r0A;~r0B] ! E[r0A] ! E[r0B], (27)

where the densities ~r0A and ~r0B are obtained as in (6) from
the orbitals generated through the orthogonalization of the
unperturbed orbitals {{a0i }iAA;{b

0
k}kAB}. This definition is

equivalent to that proposed by Cybulski and Seversen.25

For the proof and the detailed discussion of DFT-based PB
method, the reader is referred elsewhere.21

2.2 Dispersion-free approximation

Eqn (14) shows how the DFT interaction energy can be
evaluated without referring to supermolecule concepts, using
exclusively appropriately perturbed KS equations solved for
monomers. The decomposition of the DFT interaction energy
allows us to modify it in such a way that we can eliminate the
correlation effects between two subsystems, so that we obtain a
dispersionless interaction energy between the two systems. To
this end, we describe the interacting monomers with the full xc
potentials while allowing only the exact exchange potential
to operate between them. Mathematically, this involves the
replacement of the DExc term (23) in (14) with the exchange
interaction which in terms of one-electron reduced density
matrices (1-DMs) for the closed-shell system reads (cf. ref. 26)

Eexch½~rA; ~rB' ¼ ! 1

2

Z

R3

Z

R3

~rAðr1; r2Þ~rBðr2; r1Þ
r12

d3r1d
3r2: ð28Þ

The 1-DM resulting from a single Slater determinant is

~rAðr1; r2Þ ¼ 2
X

i2A
~aiðr1Þ~a(i ðr2Þ ð29Þ

with the density (6) simply being the diagonal part of 1-DM,

~rA(r) ) ~rA(r; r). (30)
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Thus, the dimer energy bifunctional incorporating the exact
exchange takes the form

EAB[~rA;~rB] = EA[~rA] + EB[~rB] + Eelst[~rA;~rB]

+ Eexch[~rA;~rB]. (31)

The idea of reducing the intermolecular potential to the
exchange-only part was successfully used in the model helium
dimer calculations by Heßelmann and Jansen,27 and Allen and
Tozer.28 Now we perform the search for the extremals of the
bifunctional (31) with respect to ~rA and ~rB under the con-
straint of the mutual orthogonality between the monomers’
occupied orbitals. The orthogonality constraint ensures that
the density additivity condition (11) is maintained and the
intersystem Pauli exclusion principle is fulfilled. To this end,
we perform the variational optimization in two steps using the
PB method (see ref. 20 and 21): first, the bifunctional extremal
search is performed without the imposition of the intermonomer
orthogonality constraint, and secondly, the penalty operator is
added in the resulting iterative scheme. The minimization of
the bifunctional (31) leads to a system of coupled equations for
optimum orbitals:

~̂f A
KSðrÞ þ ~̂vB

elstðrÞ þ ~̂vB
exchðrÞ

" #
~aiðrÞ ¼ EA;i~aiðrÞ

~̂f B
KSðrÞ þ ~̂vA

elstðrÞ þ ~̂vA
exchðrÞ

" #
~bkðrÞ ¼ EB;k ~bkðrÞ

8
<

: ; ð32Þ

where the action of the exchange operator on an arbitrary
one-electron function x reads

~̂vA
exchðrÞxðrÞ ¼ ! 1

2

Z

R3

~rAðr; r0Þ
jr! r0j

xðr0Þd3r0: ð33Þ

In the second step of the PB procedure, the iterative process of
solving eqn (32) with the aid of the penalty operator is
formulated in full analogy with (24). The interaction energy
at the nth iteration is obtained upon the insertion of the
densities calculated with orthogonalized orbitals resulting
from (26) into (31) and subtracting the unperturbed monomer
energies:

EPB[n]
int = EAB[~r[n]A ;~r[n]B ] ! EA[r0A] ! EB[r0B]

= DẼ[n]
A+DẼ[n]

B +Eelst[~r[n]A ;~r[n]B ]+Eexch[~r[n]A ;~r[n]B ]. (34)

In the above equation, the A monomer deformation is

DẼA = EA[~r[n]A ] ! EA[r0A], (35)

and analogously for monomer B. The interaction energy at the
zero iteration is therefore

EHL
int = EAB[~r0A;~r0B] ! E[r0A] ! E[r0B]. (36)

Henceforth, the energy (36) will be referred to as the dispersion-
free HL interaction energy. The definition of the analog of the
HL energy at the DFT level (27), which is simply the zero
iteration obtained with monomer densities unperturbed by the
interaction, depends on a particular functional, as shown by
Cybulski and Seversen25 and by Rajchel et al.21 The dispersion-
free HL interaction energy (36), in contrast to other definitions,
rigorously excludes the dispersion interaction. It contains the
well-defined electrostatic and exchange interaction contribu-
tions, in this case between the unperturbed isolated DFT

monomers. It is closely related to the first-order energy in the
symmetry-based perturbation theory based in SAPT(DFT).
EPB
int represents the final PB energy calculated with (34) using

self-consistent orbitals satisfying (32). It results from the
mutual electric polarization of DFT monomers, and, owing
to the Pauli blockade procedure, it contains exchange con-
tributions. It is related to the induction terms of the SAPT
formalism with two important advantages over the latter: PB
sums all electric polarization terms to infinity and accounts for
accompanying exchange effects in a consistent manner within
the DFT formalism.
In the original HF-based formulation,20 the PB procedure

simply restores the supermolecular HF interaction energy, and
obviously neglects any kind of electron correlation. For the
DFT analog, both monomers are described with the full KS
operator, but are coupled using HF Coulomb and exchange
operators [~̂vB

elstand ~̂vB
exch in eqn (32), respectively] built from

KS orbitals. Such an approach accounts for intramonomer
local electron correlation leaving out the intermonomer non-
local contributions. EPB

int represents the ‘‘non-dispersion’’ part
of the interaction energy that includes the electrostatic, exchange,
and induction components. For rare-gas dimers it is purely
repulsive (see section 3).
The computational cost of the dispersion-free approach

scales as N3, where N is the number of basis functions.

2.3 Pauli blockade plus dispersion

The total interaction energy, termed PBD for the Pauli
blockade plus dispersion, is obtained by adding to EPB

int the
dispersion component obtained at the DFT level of theory,
either from SAPT or by other accurate techniques:

EPBD
int = EPB

int + Edisp. (37)

In this work we used the second-order dispersion components
from SAPT(DFT).29,30

EPBD
int = EPB

int + E(2)
disp + E(2)

exch!disp. (38)

For the sake of comparison we also calculated the SAPT
interaction energies using its most efficient hybrid version,
SAPTd, i.e. through the second order and corrected with the
so called ‘‘Hartree–Fock delta term’’,31 dHF:

ESAPTd
int = E(1) + E(2) + dHF. (39)

It includes all leading electrostatic, exchange, induction, and
dispersion contributions, all evaluated at the DFT level of
theory. It should be stressed, however, that the dHF correction
comes from HF rather than DFT calculations. It provides a
rough approximation of higher than second-order induction
with exchange terms which are necessary to correct the other-
wise divergent perturbation expansion. More explicitly, the
HF supermolecular interaction energy and dHF satisfy

EHF
int =E(10)

elst+E(10)
exch+E(20)

ind,resp+E(20)
exch!ind,resp+dHF, (40)

where E(10)
elst and E(20)

exch!ind are first-order electrostatic and
exchange SAPT-HF energies, and E(20)

ind,resp and E(20)
exch!ind,resp

denote second-order induction and exchange-induction
SAPT-HF contributions calculated within the coupled-
HF formalism.32,33 In this approach, all the third-order
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dispersion-exchange-induction effects and dispersion-induction
coupling are neglected.

3. Results and discussion

To test the efficiency of the PBD approach we performed
calculations for two general classes of noncovalent inter-
actions: van der Waals complexes of closed-shell atoms and
ions and H-bonded systems. We applied four DFT functionals
of the meta-GGA PBE hierarchy: PBREV34 and PW9135

(local exchange plus correlation), and PBE036 and B3LYP37

(a hybrid of local and exact exchange plus correlation). All
calculations have been carried out with the aug-cc-pVTZ
basis sets.

3.1 Closed-shell atoms and ions

We performed calculations for several diatomic systems com-
posed of closed-shell atoms and ions. Ar2, ArNa+ and ArCl!

have already been shown in ref. 1. Here we provide additional
examples of HeLi+, He2, and Ne2 which are typical closed
shells and which provide a stringent test since their intra-
monomer dynamic correlation is demanding for electronic
structure methods. These results are compared with SAPTd

and benchmark values which typically originate from high-
level supermolecular calculations.
Overall, our potentials are in good agreement with the

benchmark curves for all systems under consideration, cf.
Fig. 1–3. As anticipated, the best performance is for the
PBE0 potential.
One can compare the PBD interaction potentials with the

potentials obtained from straightforward supermolecular
calculations using the same functionals corrected for basis-
set supersposition error (BSSE). For the sake of brevity we
illustrate this comparison only for Ne2 (Fig. 4), but qualitatively
the results for the other two complexes (HeLi+, He2), as well
as for the complexes in ref. 1 (Ar2, ArNa+ and ArCl!) are
similar. One can see in Fig. 4 that the supermolecular inter-
action energies reproduce neither the accurate benchmarks
(they are far too shallow) nor the ‘‘dispersion-free’’ part as
they feature a small attraction and shallow unphysical minima
in the long range. Therefore, they are not appropriate for
combining with the pure dispersion term as is done in many
‘‘DFT + dispersion’’ approaches.8,9,38–40 By way of contrast,
the ‘‘dispersion-free’’ PB potentials based on the same DFT
schemes (cf. Fig. 4) are purely repulsive, revealing proper
asymptotic exponential behavior, and thus can be adequately
corrected by adding the dispersion contribution.

Fig. 1 Comparison of PBD and SAPTd interaction energies for He2.

Benchmark results are taken from ref. 41.

Fig. 2 Comparison of PBD and SAPTd interaction energies for Ne2.

Benchmark results are taken from ref. 42.

Fig. 3 Comparison of PBD and SAPTd interaction energies for

HeLi+. Benchmark results are taken from ref. 43.

Fig. 4 Comparison of PB and supermolecular DFT interaction

energies for Ne2.D
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3.2 Hydrogen-bonded and other molecular complexes

A set of hydrogen-bonded systems from Boese et al.,44 Jurečka
et al.45 and Halkier et al.46 supplemented with two typical van
der Waals molecular complexes, the methane and ethylene
dimers, have been used as a testing set. The selection covers a
wide range of qualitatively different interactions: predominantly
p–p, H-bonds with a large dispersion component (ammonia and
HCl dimers), and finally strong H-bonds involving a shared
proton characterized by a relatively large induction contri-
bution. The PBE0 functional and aug-cc-pVTZ basis set have
been used.

A comparison between perturbation and supermolecular
results requires consistent treatment of monomer geometry
in both approaches. In our comparison we performed PBD
and SAPTd calculations between monomers in their optimal
dimer geometries. The databases of supermolecular inter-
action potentials44,45 include the effects of monomer deforma-
tions within interaction energies. For a suitable comparison
with the PBD and SAPTd data we recomputed the monomer
deformation effects at the CCSD(T) level from the monomer
geometries of ref. 44 and subtracted them from the super-
molecular interaction energies. These energies are reported as
a benchmark in Table 1.

Both the total interaction energies as well as the components
are displayed, and compared with calculations by the SAPT
method and the benchmark values from appropriate references
(denoted in the right-most column of Table 1). The total
induction energy is the sum of the induction and exchange-
induction contributions,

E(2)
ind–tot = E(2)

ind + E(2)
exch–ind. (41)

PBD agrees favourably with benchmark results and with
SAPTd. In certain classes of interactions (see discussion
below), PBD yields more attractive interaction energies than
both benchmark and SAPTd.

The results in Table 1 allow one to compare the total
induction effect in the PB method with that in SAPTd. To
do this, EPB

def can be compared with the sum: E(2)
ind!tot + dHF.

The PB induction is consistently more attractive than that
from SAPTd. The discrepancies appear to be largest for the
strong H-bonds with a shared proton, such as OH!–H2O, as
well as for ammonia–hydrogen halides where the induction
effect leads to a significant stretching of the proton donor.

Table 2 allows us to investigate the need for the asymptotic
correction (AC). A contribution of AC to PB and SAPT
energy components,

dE ¼ EAC ! E

EAC
* 100%; ð42Þ

where EAC and E denote energies calculated with and without
AC, as shown in Table 1. For all calculations throughout this
paper, the correction scheme of Grüning et al.47 has been used.
It is interesting that EHL

int is much less sensitive than E(1) in the
presence of AC. This can be explained in view of the fact that
both EHL

int and E(1) involve the mutual cancellation of the
electrostatic and exchange effects of which only the exchange

Table 1 Comparison of interaction energies and their components from PBD calculations with SAPT(DFT) and benchmark values (in mH).
Equilibrium geometries are from indicated references. PBE0 potentials with aug-cc-pVTZ basis set are used for monomers

System EHL
int E(1) EPB

def E(2)
ind!tot dHF EPBD

int ESAPTd
int Benchmark

NH+
4 –H2O !9.68 !9.11 !19.36 !12.19 !6.22 !35.02 !33.49 !33.344

H3O
+–H2O 23.60 25.19 !103.72 !56.14 !38.37 !93.26 !82.46 !83.044

OH!–H2O 11.70 13.02 !61.19 !29.65 !21.53 !63.77 !52.43 !52.444

(H2O)2 !1.02 !0.89 !3.92 !2.16 !1.45 !8.56 !8.12 !9.0045

(HF)2 !0.69 !0.05 !4.08 !2.43 !1.19 !7.59 !6.48 !7.2246

(HCl)2 1.65 1.77 !2.20 !1.02 !0.98 !3.48 !3.16 !3.1046

(NH3)2 !0.48 !0.11 !1.55 !0.84 !0.52 !5.34 !4.78 !5.0545

NH3–H2O !0.15 0.23 !6.61 !3.26 !2.44 !11.50 !10.21 !10.344

H3N–HF 1.08 2.47 !18.17 !9.30 !6.41 !23.94 !20.09 !20.844

H3N–HCl 8.35 9.05 !18.53 !7.32 !8.59 !18.28 !14.96 !14.344

(CH4)2 0.70 0.58 !0.07 !0.01 !0.04 !0.85 !0.95 !0.8145

(C2H4)2 1.71 1.35 !0.34 !0.11 !0.23 !2.11 !2.47 !2.5845

Table 2 Comparison of asymptotic corrections (in %) for PB and
SAPT components of interaction energies

System dEEHL
int dE(1) dEEPB

def dE(2)
ind!tot

NH+
4 –H2O 8.8 16.2 !4.2 !0.5

H3O
+–H2O !7.5 !8.8 !1.7 !1.0

OH!–H2O 5.2 1.0 0.3 !1.6
(H2O)2 27.0 124.5 !7.8 0.8
(HF)2 21.8 857.0 !4.0 !0.2
(HCl)2 !2.9 !11.7 !3.0 0.4
(NH3)2 3.2 158.8 !1.8 0.1
H3N–HF !3.3 !14.2 !0.9 !0.7
(CH4)2 !0.9 !41.8 5.9 24.9
(C2H4)2 !5.7 !54.2 !21.4 !4.5

Fig. 5 Comparison of interaction energies for the H2O–HF dimer

with respect to the bending angle.
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may have a wrong asymptotic behaviour. This attests to the
robust character of EHL

int .
Another test has been carried out for the bending potential

of the H2O–HF complex. The water and HF geometries and
the intersystem distance were taken from ref. 46. The potential
V(j), where j is the angle between the water plane and the line
connecting oxygen and the HF hydrogen atoms, is the inter-
action energy scaled so that it is zero at the minimum. As can
be seen in Fig. 5, the PBD method gives a remarkably similar
potential to CCSD(T), while SAPTd underestimates the
barrier by about 40%.

4. Summary and conclusions

A new DFT approach to calculations of van der Waals com-
plexes has been derived, and tested for a variety of systems
ranging from noble gas dimers to different, weakly and
strongly H-bonded dimers.

The new formalism is based on the concept of interacting
separated monomers.21 The monomers are described within the
DFT formalism. Their densities interact under the constraint of
the antisymmetry principle and under the exact exchange
intermolecular potential until self-consistency is reached. The
resulting interaction energy represents the dispersion-free part
of the total interaction energy. The new formalism provides a
consistent definition of the ‘‘non-dispersion’’ part of the inter-
action energy at the DFT level of theory. The total interaction
energy is obtained by a posteriori adding the DFT dispersion
contribution from SAPT or other formalisms. It should be
stressed that the PB treatment does not require any extra
empirical and adjustable parameters (besides those that are
already used by the DFT description of monomers).

It has been demonstrated that for rare gas dimers, hydro-
carbon dimers, and both weak and strong H-bonded dimers
including ionic interactions, the PB combined with monomer
description of PBE0 provides results that agree well with the
benchmark values.

The PB technique may be used for clusters of atoms and/or
molecules and is not restricted to closed-shell systems. It may be
combined with different functionals to describe the monomers.
Similarly, it may be combined with a variety of formalisms to
calculate the dispersion part.
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Chapter 5

Summary and Conclusions

5.1 Supermolecular DFT Interaction Energy

In the first part of the Thesis, we have provided a rigorous derivation of the su-
permolecular DFT interaction energy in terms of mutual monomer polarization
via the PB method. Numerical calculations for model systems and functionals of
different types have proved that the formalism leads to interaction energies rapidly
converging to the supermolecular interaction energies. The accuracy achieved is
better than 0.1% and appears to be limited only by the size of the grid. Our
formalism appears thus to be a viable and useful alternative of solving the KS
equations in terms of separated-monomer orbitals rather than supermolecular or-
bitals. This fact has several important practical implications.

On the one hand, the presented formalism offers possibilities of using different
functionals to describe the monomers and to describe the interaction. On the
other, it would be of interest to combine our approach for the DFT that is capable
to reproduce the dispersion energy, e.g. of range-separated family of functionals.

The bifunctional formulation provides a platform for deriving a choice of DFT
treatments which use different functionals (or even theories) for different subsys-
tems. The results may thus be of interest for those who use subsystem formulation
in the context of embedding potentials [47–50].

Our formalism may also be useful when interpreting different interaction en-
ergy decomposition schemes that have recently been proposed within the DFT
approach [30, 51–53].

5.2 Dispersion-Free DFT

A new DFT approach to calculations of van der Waals complexes has been derived,
and tested for a variety of systems ranging from noble gas diatomics to weakly
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and strongly H-bonded dimers.
The new formalism is based on the concept of interacting separated monomers

presented in Chapter 2. The monomers are described within the DFT formalism.
Their densities interact under the constraint of the antisymmetry principle and
under the exact exchange intermolecular potential until self-consistency is reached.
The resulting interaction energy represents the dispersion-free part of the total
interaction energy. The new formalism provides a consistent definition of the
non-dispersion part of the interaction energy at the DFT level of theory. The
total interaction energy is obtained by a posteriori adding the DFT dispersion
contribution from SAPT or other formalisms. It should be stressed that the PB
treatment does not require any extra empirical and adjustable parameters (besides
those that are already used by the DFT description of monomers).

It has been demonstrated that for rare gas dimers, hydrocarbon dimers, and
both weak and strong H-bonded dimers including ionic interaction, the exact ex-
change constraint of mutual polarization of monomer densities combined with the
DFT description of monomers provides results that agree well with the benchmark
values.

The PB technique may be used for clusters of atoms and/or molecules and is
not restricted to closed-shell systems. It may be combined with different func-
tionals to describe the monomers. Similarly, it may be combined with a variety
of formalisms to calculate the dispersion part. Finally, it should be stressed that
the PB approach is not the only method to impose the Pauli principle upon the
electrons of interacting monomers and the other efficient techniques are currently
being coded in [54].

The DFT-based road to the open-shell systems is similar to that sketched in
Chapter 3 or in Section 1.4. Also, the open-shell unrestricted KS (UKS) coupled
dispersion energy code is on the way [55].
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Acronyms

1-DM one-electron reduced density matrix

AC asymptotic correction

BSSE basis-set superposition error

CAS-D CASSCF + dispersion

CASSCF complete active space SCF

CCSD(T) coupled-cluster singles, doubles and non-iterated triples

CHF coupled HF

CKS coupled KS

DCBS dimer-centred basis set

DFT-D DFT + dispersion

DFT density functional theory

DF density functional

DIIS direct inversion of the iterative subspace

HF Hartree-Fock

HHF Hartree-Hartree-Fock

HL Heitler-London

KS Kohn-Sham
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MB-SAPT many-body SAPT

MP2 MP theory of the second order

MP Møller–Plesset

MRCI multireference configuration interaction

MRCI multireference configuration interaction

PB-HF HF-based PB

PB-UHF UHF-based PB

PBD PB plus dispersion

PB Pauli blockade

SAPT-DFT DFT-based SAPT

SAPT-HF HF-based SAPT

SAPT symmetry-adapted perturbation theory

SAPT symmetry-adapted perturbation theory

SCF-D SCF + dispersion

SCF self-consistent field

SF-EOM spin-flip equation of motion

UHF unrestricted HF

UKS unrestricted KS

xc exchange-correlation
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Notation

Here we present a brief summary of the notation used throughout the Thesis.
A, B, . . . denote monomers of the system, NA and MA are the numbers of

monomer A’s electrons and its occupied orbitals, respectively, their subscriptless
equivalents referring to the quantities for the whole system, e.g.

N = NA +NB (B.1)

for a dimer. A and B are sets of occupied orbital indices ascribed to A and B
monomers. We choose

A = {1; 2; . . . ; MA} (B.2)

and
B = {MA + 1; MA + 2; . . . ; MA + MB}. (B.3)

Additionally, we will use the set

AB = A ∪B. (B.4)

Analogously, the sets:
A = {1; 2; . . . ; NA} (B.5)

and
B = {NA + 1; NA + 2; . . . ; NA + NB} (B.6)

collect all A and B monomer nuclear indices with NA being the number of
monomer A nuclei. Vectors ri and Rα denote electron and nuclei positions, re-
spectively, and {

rij = |ri − rj|
Rαβ = |Rα −Rβ|

. (B.7)

The atomic units are used unless indicated otherwise.
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Implementation

The methods described in Chapters 2 through 4 have been implemented in the
development version of the Molpro package [5]. Below we sketch some technical
issues concerning the numerical implementation together with exemplary input
file.

C.1 DCBS
All calculations are performed in the DCBS, i.e. the basis set for any monomer
is the sum of the basis sets for separate monomers. Let MA and MB denote basis
dimensions for monomers A and B. Then the DCBS has the dimension

M = MA +MB. (C.1)

Let uA and uA denote basis orbitals centred on monomers A and B, respectively:

uA =


χA,1

χA,2
...

χA,MA

 =


χ1

χ2
...

χMA

 , uB =


χB,1

χB,2
...

χB,MB

 =


χMA+1

χMA+2
...
χM

 . (C.2)

The DCBS has the following structure:

u =

[
uA

uB

]
=

 χ1
...
χM

 . (C.3)

HF (1.13) or KS (2.1) equations for the unperturbed monomers yield the molecular
orbitals expanded in the DCBS{

a = (CA)T u

b = (CB)T u
, (C.4)
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where C0
A is the matrix of A monomer molecular orbital coefficients and

a =


a1

a2
...

aMA

 , b =


bMA+1

bMA+2
...
bM

 (C.5)

are vectors composed of A and B monomer molecular orbitals. Eqs. (C.4) can be
written explicitly as 

ai =
M∑
p=1

(CA)pi χp

bk =
M∑
p=1

(CB)pk χp

. (C.6)

C.2 Orthogonalization

Let S denote an overlap matrix in DCBS:

Spq = 〈χp|χq〉 . (C.7)

One can readily see that the S matrix is composed of four blocks, corresponding
to the orbitals of monomers A and B:

S =

[
SAA SAB

SBA SBB

]
, (C.8)

where the blocks have the following dimensions: SAA — MA×MA, SAB — MA×
MB, SBA — MB ×MA, and SBB — MB ×MB. Moreover,

SAB = S†BA. (C.9)

Monomers A and B have MA and MB occupied orbitals, respectively. Now we
create the union of occupied orbitals of A and B monomers:

D =
[
Cocc

A Cocc
B

]
, (C.10)

where Cocc
A and Cocc

B are M ×MA and M ×MB parts of CA and CB matri-
ces containing occupied orbitals only. Similarly, the Cvir

A matrix contains only
monomer A’s virtual orbitals and is of M × (M −MA) dimension. Thus, the CA

matrix is partitioned as
CA =

[
Cocc

A Cvir
A

]
, (C.11)
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and the same holds for the CB matrix. Therefore D is a M ×M matrix, where

M = MA + MB (C.12)

is the total number of occupied orbitals of the system. Now we have to find the
overlap matrix (T) resulting from D (C.10) matrix which will be used subsequently
to orthogonalise the dimer orbitals. Since D matrix contains the coefficients of
occupied orbitals of A and B monomers, the T matrix will consist of four blocks:

T =

[
TAA TAB

TBA TBB

]
. (C.13)

The TAA (MA ×MA) block’s elements are calculated as

(TAA)ij = 〈ai|aj〉 =
M∑
p=1

M∑
q=1

(CA)∗pi (CA)qj Spq. (C.14)

However, since the monomer orbitals are canonical, we get

(TAA)ij = δij. (C.15)

Eqs. (C.14) and (C.15) can be cast into matrix form as

TAA = (Cocc
A )†SCocc

A = IMA
, (C.16)

where In denotes n× n identity matrix. Similarly,

TBB = (Cocc
B )†SCocc

B = IMB
. (C.17)

The TAB block has dimension MA ×MB and its elements are calculated as

(TAB)ik = 〈ai|bk〉 =
M∑
p=1

M∑
q=1

(CA)∗pi (CB)qkSpq. (C.18)

Eq. (C.18) in the matrix form reads

TAB = (CA)†SCB. (C.19)

It is straightforward to see that

TBA = T†AB = (CB)†SCA (C.20)

and it is a MB ×MA block. Finally, the M ×M matrix of overlap integrals in
the molecular orbitals basis has the form

T =

[
IMA

(Cocc
A )†SCocc

B

(Cocc
B )†SCocc

A IMB

]
. (C.21)
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Next, using the T matrix we create the T−1/2 matrix and we apply Löwdin’s
orthogonalisation to the occupied orbitals contained in union D :

D̃ = DT−1/2. (C.22)

Since we use Löwdin-type orthogonalisation, the orbitals can still be ascribed to
monomers A and B, so we can write

D̃ =
[
C̃occ

A C̃occ
B

]
. (C.23)

Since we have orthogonalised only occupied orbitals, the transformed orbital ma-
trix reads

C̃A =
[
C̃occ

A Cvir
A

]
, (C.24)

and similarly for C̃B.

C.3 Matrix Elements
Matrix elements of the Coulomb operator in the DCBS are given by

(JA)pq = 〈χp|̂A|χq〉 = 2
∑
i∈A

M∑
r,s=1

(CA)si (CA)∗ri (pq|rs)

(KA)pq = 〈χp|k̂A|χq〉 =
∑
i∈A

M∑
r,s=1

(CA)ri (CA)∗si (pr|sq)
, (C.25)

where we have used the following notation for two-electron integrals:

(pq|rs) =

∫
R3

∫
R3

χ∗p(r1)χq(r1)χ∗r(r2)χs(r2)

r12

d3r1 d
3r2. (C.26)

Introducing the closed-shell density matrix,

PA = 2Cocc
A (Cocc

A )† (C.27)

the matrix elements (C.25) are readily found to be
(JA)pq =

M∑
r,s=1

(PA)sr (pq|rs)

(KA)pq =
1

2

M∑
r,s=1

(PA)rs (pr|sq)
. (C.28)
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The general expression for the density matrix, valid also for the open shells, reads

P = COC†, (C.29)

where

O =


k1 0 . . . 0
0 k2 . . . 0
...

... . . . ...
0 0 . . . kM

 (C.30)

is the matrix containing orbital occupation numbers, i.e. ki = Oii is the number
of electrons of ith orbital.

The DCBS representation of the penalty operator reads

R̃A = SCocc
A (Cocc

A )†S. (C.31)

C.4 Matrix Operations and DIIS
The iterative process of solving the Eqs. (2.32) (or similar ones for the dispersion-
free DFT or the UHF variant of the PB method) is performed with the use of the
above defined matrices replacing respective operators appearing in those Eqs. by
the BLAS and LAPACK routines [56]. To accelerate the convergence, the direct
inversion of the iterative subspace (DIIS) procedure of Pulay [57] is used with the
following definition of the matrix scalar product:

〈A|B〉 =
√

Tr (A†B). (C.32)

C.5 DFT Integration
We restrict our attention to the functionals that depend on the density and its
gradient, as is the case for the most commonly used functionals. The xc functional
is calculated as

Exc =

∫
R3

F xc(ρ; ζ) d3r, (C.33)

where
ζ = |∇rρ| =

√
∇rρ · ∇rρ. (C.34)

The integral (C.33) is evaluated numerically through the summation on a grid of
points around the molecule. The xc potential (vxc) itself is not calculated — it
suffices to evaluate its matrix elements according to

〈χp|vxc|χq〉 =

∫
R3

χp
∂F xc

∂ρ
χq d

3r +

∫
R3

∂F xc

∂ζ

ρα
ζ
∇α(χpχq) d

3r, (C.35)
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where we have used repeated suffix summation convention and

ρα =
∂ρ

∂α
, ∇α =

∂

∂α
, α ∈ {x; y; z}. (C.36)

Again, the integrals (C.35) are evaluated on the numerical grid.
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