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Privacy on the web- Tracker Example
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User Concerns
● Amount of malicious content on web?

○ Around 18.5 million websites are compromised at a given time each week
○ Average website attacked 44 times a day

● What are the options for a user?
○ Do Not Track- Websites do not have to honour
○ Blocker Extensions
○ Brave Browser

https://www.securityweek.com/185-million-websites-infected-malware-any-time
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User Tracking Concerns

Mayer, J.R., Mitchell, J.C.: Third-party web tracking: Policy and technology. In:
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Existing solutions 
● There are more than 80  browsers in the industry, 

including popular ones such as Google Chrome, 
Apple Safari, Mozilla Firefox.

● Some of these are more committed to privacy 
than others such as Brave who disable third-party 
cookies to ensure user privacy, which in turn can 
limit usability.

Web Users

Browsers

Is user safe from only browser?
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Browser Extensions

Web Users

Is user safe from 
browser and 
extensions?
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● There are many browser extensions for privacy 
and top extensions are, Ghostery, Ublock, 
Simple Blocker, and AdBlock.

● Still, can attackers gain access to user data?

● A browser extension is a small software module 
for customizing a web browser.

● Extensions are small software programs that 
customize the browsing experience. They 
enable users to tailor Chrome functionality and 
behavior to individual needs or preferences.

● They are built on web technologies such as 
HTML, JavaScript, and CSS.



Limitations of existing solutions

● Existing browser extensions only enforce block 
on all the attacks or allow there is no 
categorization.

● Extensions are predefined, so there are new 
trackers or other third-party content they are 
not blocked by these extensions.

● Popular security extensions like Ghostery and 
uBlock do not detect data leakage from 
sources and sinks. 
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Web-origin Extension

Browser 

Block all 

Block all or do nothing.

Malicious data
Allow all execution 



Motivation
● Preserve user privacy on the web

○ Third-party trackers
○ Malicious injected webpage content

● Allow for an ethical middle ground for the collection of user data with the 
consent of the user

● User-centric
○ User defined control for third-party privacy accessibility
○ Allow user in real time to make privacy relevant decisions 
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Our Approach
● Monitor JavaScript sources and sinks, distinguishing origin of code

○ Sources and Sinks: Where any JS API can execute
○ Utilize runtime stack to distinguish between first/third-party code

● Enforce policies on these channels to protect against privacy violations, 
based on code origin

9

Our 
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Execute 
PolicyBlock

Execution 

Interception of defined policy 

Allow execution 

third-party

third-party-js



How do we enforce a policy?
● When a monitored JavaScript API is called

○ Determine origin of code using runtime stack
○ Screen through relevant policy
○ Allow API to proceed or block the call in the case of a violation

■ Consult the user in the case of a privacy violation to allow for an override if requested
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Security 
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Origin

Allow 
execution of 
the method

Block the 
execution of 
the method

First-party Origin

Third-party OriginWrap 
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Policy Example: Read Cookie
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If the determined origin is not allowed to read the cookie, then we block 
the request

Object.defineProperty(document, "cookie", 
{get: function(){ //JavaScript attempts to read the cookie
//Determine the origin of the code

//if origin is allowed
//return the original value

//else
//block the request

  },
  //...
});



Policy Example: Image Policies
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Img sources are wrapped and passed through policies to protect 
against malicious content in img sources

var imgPolicy = {
    get: function(obj, prop) { /* policies for get */},
    set: function(obj, prop, value) { /* policies for set */}
};

//save the original image

class ImageWrapper {
    constructor(height, width) {
        //create image object from original image
        //pass image object through relevant policy
        //return sanitized image
    }
}

//replace the requested image with sanitized image



Interception of operation
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MyWebGuard Browser Extension Implementation

● We have developed a JavaScript library and 
deployed in the browser extension to self-protect 
the web users.

● Our interception library(CoreFlashJax) run first 
before a web page is loaded, we have implemented 
our JavaScript library code in innerHTML property 
so that when page loads it will be set as a first 
current page.

● We have implemented interception for data source 
access and data sink channels.  

Request / Response

 Unload

MyWebGuard 
      Library 

Process the document and 
Load the DOM 

   Page Load
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Evaluation Setup
● We set up on our host websites (first-party) with third-party JavaScript code 

implemented
○ We test our extension on the host website with simulated attacks from third party code
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<script 
src="https://mywebguard-thirdparty.github.io/script.js "
></script>

https://mywebguard-thirdparty.github.io/script.js


We notice that data leakage 
and tracking requests are 
caught by MyWebGuard and 
users would be notified

Demonstration
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However, the simulated data leakage 
and tracking requests were ignored by 
uBlock, one of the popular browser 
privacy extensions 



Functionality
- When examining Brave 

browser, which has a 
JavaScript-blocking 
mechanism, we test some 
websites

- We notice several breakages 
and loading issues (such as 
YouTube)
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Functionality
- We do not notice any issues 

when loading those websites 
(like YouTube) with MyWebGuard 
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● We tested MyWebGuard with both Chromium and Brave browsers (on Ubuntu 
18.04.2 LTS) on real websites

○ The overheads are not noticeable as
shown in the graph 
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Runtime Evaluation



Contribution
● Browser-agnostic approach to preventing privacy leakage not monitored by 

contemporary solutions
● Present a compromise to “all-or-nothing” filter lists
● Advances conventional same-origin policy standard by enforcing different 

policies for each source of code
● Evaluation of approach overhead shows a lightweight yet effective 

implementation
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Future Work
● Extend and refine policies and enforcement mechanism

○ Machine learning to produce practical policies
○ Effectiveness when built into a browser

● Allow for end-users to customize privacy preferences
● Perform large-scale evaluations of MyWebGuard

○ On top websites
○ Interference with co-existing browser extensions
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Thank You 
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Runtime Evaluation
We now test our extension on different sites (such as EBay, Amazon, 
FaceBook…)

 To avoid anomalies, we test each site 10 times, recording the loading times (time 
for a site to finish loading its required contents
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Runtime Evaluation
We tested MyWebGuard with both Chromium and Brave browsers (on Ubuntu 
18.04.2 LTS) using our testing simulation

There exists a slowdown time on both browsers, which is due to the runtime stack 
that helps track the code origin
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