
MyWebGuard: Toward a User-Oriented Tool for
Security and Privacy Protection on the Web

Panchakshari N. Hiremath*, Jack Armentrout*, Son Vu, Tu N. Nguyen, Quang Tran Minh, and Phu H. Phung*

* Intelligent System Security Lab
Department of Computer Science, University of Dayton

https://isseclab-udayton.github.io/

The paper is published in the 6th International Conference on Future Data and Security Engineering 2019
(FDSE'2019), Nha Trang City, Vietnam, November 27-29, 2019
Link: https://bit.ly/2VsEAhM

Stander Symposium, University of Dayton
 April 22, 2020

https://isseclab-udayton.github.io/

Privacy on the web- Tracker Example

2

User Concerns
● Amount of malicious content on web?

○ Around 18.5 million websites are compromised at a given time each week
○ Average website attacked 44 times a day

● What are the options for a user?
○ Do Not Track- Websites do not have to honour
○ Blocker Extensions
○ Brave Browser

https://www.securityweek.com/185-million-websites-infected-malware-any-time

3

User Tracking Concerns

Mayer, J.R., Mitchell, J.C.: Third-party web tracking: Policy and technology. In:
2012 IEEE Symposium on Security and Privacy. pp. 413–427. IEEE (2012) 4

Existing solutions
● There are more than 80 browsers in the industry,

including popular ones such as Google Chrome,
Apple Safari, Mozilla Firefox.

● Some of these are more committed to privacy
than others such as Brave who disable third-party
cookies to ensure user privacy, which in turn can
limit usability.

Web Users

Browsers

Is user safe from only browser?

5

Browser Extensions

Web Users

Is user safe from
browser and
extensions?

6

● There are many browser extensions for privacy
and top extensions are, Ghostery, Ublock,
Simple Blocker, and AdBlock.

● Still, can attackers gain access to user data?

● A browser extension is a small software module
for customizing a web browser.

● Extensions are small software programs that
customize the browsing experience. They
enable users to tailor Chrome functionality and
behavior to individual needs or preferences.

● They are built on web technologies such as
HTML, JavaScript, and CSS.

Limitations of existing solutions

● Existing browser extensions only enforce block
on all the attacks or allow there is no
categorization.

● Extensions are predefined, so there are new
trackers or other third-party content they are
not blocked by these extensions.

● Popular security extensions like Ghostery and
uBlock do not detect data leakage from
sources and sinks.

7

Web-origin Extension

Browser

Block all

Block all or do nothing.

Malicious data
Allow all execution

Motivation
● Preserve user privacy on the web

○ Third-party trackers
○ Malicious injected webpage content

● Allow for an ethical middle ground for the collection of user data with the
consent of the user

● User-centric
○ User defined control for third-party privacy accessibility
○ Allow user in real time to make privacy relevant decisions

8

Our Approach
● Monitor JavaScript sources and sinks, distinguishing origin of code

○ Sources and Sinks: Where any JS API can execute
○ Utilize runtime stack to distinguish between first/third-party code

● Enforce policies on these channels to protect against privacy violations,
based on code origin

9

Our
Policy

Execute
PolicyBlock

Execution

Interception of defined policy

Allow execution

third-party

third-party-js

How do we enforce a policy?
● When a monitored JavaScript API is called

○ Determine origin of code using runtime stack
○ Screen through relevant policy
○ Allow API to proceed or block the call in the case of a violation

■ Consult the user in the case of a privacy violation to allow for an override if requested

10

Security
Relevant
Method call

Determine
Origin

Allow
execution of
the method

Block the
execution of
the method

First-party Origin

Third-party OriginWrap
Function

Policy Example: Read Cookie

11

If the determined origin is not allowed to read the cookie, then we block
the request

Object.defineProperty(document, "cookie",
{get: function(){ //JavaScript attempts to read the cookie
//Determine the origin of the code

//if origin is allowed
//return the original value

//else
//block the request

 },
 //...
});

Policy Example: Image Policies

12

Img sources are wrapped and passed through policies to protect
against malicious content in img sources

var imgPolicy = {
 get: function(obj, prop) { /* policies for get */},
 set: function(obj, prop, value) { /* policies for set */}
};

//save the original image

class ImageWrapper {
 constructor(height, width) {
 //create image object from original image
 //pass image object through relevant policy
 //return sanitized image
 }
}

//replace the requested image with sanitized image

Interception of operation

13

MyWebGuard Browser Extension Implementation

● We have developed a JavaScript library and
deployed in the browser extension to self-protect
the web users.

● Our interception library(CoreFlashJax) run first
before a web page is loaded, we have implemented
our JavaScript library code in innerHTML property
so that when page loads it will be set as a first
current page.

● We have implemented interception for data source
access and data sink channels.

Request / Response

 Unload

MyWebGuard
 Library

Process the document and
Load the DOM

 Page Load

14

Evaluation Setup
● We set up on our host websites (first-party) with third-party JavaScript code

implemented
○ We test our extension on the host website with simulated attacks from third party code

15

<script
src="https://mywebguard-thirdparty.github.io/script.js "
></script>

https://mywebguard-thirdparty.github.io/script.js

We notice that data leakage
and tracking requests are
caught by MyWebGuard and
users would be notified

Demonstration

16

However, the simulated data leakage
and tracking requests were ignored by
uBlock, one of the popular browser
privacy extensions

Functionality
- When examining Brave

browser, which has a
JavaScript-blocking
mechanism, we test some
websites

- We notice several breakages
and loading issues (such as
YouTube)

17

Functionality
- We do not notice any issues

when loading those websites
(like YouTube) with MyWebGuard

18

● We tested MyWebGuard with both Chromium and Brave browsers (on Ubuntu
18.04.2 LTS) on real websites

○ The overheads are not noticeable as
shown in the graph

19

Runtime Evaluation

Contribution
● Browser-agnostic approach to preventing privacy leakage not monitored by

contemporary solutions
● Present a compromise to “all-or-nothing” filter lists
● Advances conventional same-origin policy standard by enforcing different

policies for each source of code
● Evaluation of approach overhead shows a lightweight yet effective

implementation

20

Future Work
● Extend and refine policies and enforcement mechanism

○ Machine learning to produce practical policies
○ Effectiveness when built into a browser

● Allow for end-users to customize privacy preferences
● Perform large-scale evaluations of MyWebGuard

○ On top websites
○ Interference with co-existing browser extensions

21

Thank You

22

Intelligent System Security Lab
Department of Computer Science, University of Dayton

https://isseclab-udayton.github.io/

https://isseclab-udayton.github.io/

Runtime Evaluation
We now test our extension on different sites (such as EBay, Amazon,
FaceBook…)

 To avoid anomalies, we test each site 10 times, recording the loading times (time
for a site to finish loading its required contents

23

Runtime Evaluation
We tested MyWebGuard with both Chromium and Brave browsers (on Ubuntu
18.04.2 LTS) using our testing simulation

There exists a slowdown time on both browsers, which is due to the runtime stack
that helps track the code origin

24

25

26

