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Abstract

Background

The link between DNA methylation, obesity, and adiposity-related diseases in the general

population remains uncertain.

Methods and Findings

We conducted an association study of body mass index (BMI) and differential methylation

for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 par-

ticipants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent

replication in three external cohorts of 4,055 participants. We examined variations in whole

blood gene expression and conducted Mendelian randomization analyses to investigate the

functional and clinical relevance of the findings. We identified novel and previously reported

BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related

differential methylation was associated with concurrent changes in the expression of genes

in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methyl-

ation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element

binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits,

and coronary artery disease. Independent genetic instruments for expression of SREBF1

supported the findings linking methylation to adiposity and cardiometabolic disease. Methyl-

ation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to

differences in BMI. However, the cross-sectional nature of the data limits definitive causal

determination.

Conclusions

We present robust associations of BMI with differential DNA methylation at numerous loci in

blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights

into the relationship between DNA methylation, obesity, and adiposity-related diseases.

Author Summary

Why Was This Study Done?

• Genetic sequence variants explain only a modest proportion of the variation in body

mass index (BMI) and cardiometabolic disease in the general population.

• There is limited understanding of the link of DNA methylation—a well-characterized epi-

genetic modification—with BMI and cardiometabolic disease in the general population.

Methylome-Wide Study of BMI
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What Did the Researchers Do and Find?

• We conducted a cross-sectional analysis of the association of BMI with leukocyte DNA

methylation at over 400,000 sites in the genome among 7,798 community-dwelling

adults.

• We identified associations between BMI and methylation at 83 replicated sites (includ-

ing 50 novel sites) and concurrent differences in expression in whole blood of genes

overrepresented in lipid metabolism pathways.

• Using genetic sequence variants to model exposure to differential DNA methylation

and tissue-specific gene expression, we found differential methylation and expression of

SREBF1 to be implicated in BMI, adiposity-related traits, and coronary artery disease.

• Using genetic sequence variants to model exposure to differences in BMI, we found a

substantial proportion of the differentially methylated sites (16 of 83) to be downstream

of BMI.

What Do These Findings Mean?

• Evidence is accumulating that epigenetic modifications, such as DNA methylation, are

related to obesity-related diseases in the general population.

• We provide support for a role of genomic regulation of a lipid metabolism transcription

factor, SREBF1, in adiposity and coronary artery disease.

• Mendelian randomization approaches can help prioritize relevant loci for future func-

tional studies, but the cross-sectional observational nature of our study limits definitive

causal inference.

Introduction

Obesity is highly prevalent in developed nations [1] and contributes to a substantial burden of

morbidity and mortality [2,3]. Despite advances in the understanding of genetic variants, life-

style factors, and gene–environment interactions associated with obesity [4–7], much of the

interindividual variation in body weight remains unexplained by measurable lifestyle and

genetic factors. DNA methylation, one of the most frequent and well-characterized epigenetic

modifications, reflects at the molecular level a wide range of environmental exposures and

genetic influences [8]. By stabilizing chromatin structure and altering gene expression, DNA

methylation has the potential to affect an individual’s susceptibility to obesity (see review in

[9]). Further, changes in the methylation of DNA may occur secondarily to obesity and may

consequently influence the development of adiposity-related diseases such as diabetes, dyslipi-

demia, hypertension, and cardiovascular disease. Large gaps in knowledge remain as to how

human epigenetic modifications relate to obesity and its sequelae.

Epigenetic biomarkers represent a largely untapped precision medicine resource to guide

therapy decisions using an individual’s epigenetic profile obtained from blood samples [10].
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Identification of clinically relevant epigenetic loci in blood holds the potential to create a foun-

dation upon which to base future functional studies and trials to test epigenetically guided clin-

ical decision making for cardiometabolic diseases. In addition, we may gain novel insights into

the molecular underpinnings of obesity and adiposity-related diseases through the study of dif-

ferentially methylated DNA loci in blood. Doing so may lead to the identification of biologi-

cally relevant therapeutic targets.

The present study provides results of an epigenome-wide association study (EWAS) of

body mass index (BMI) in over 3,700 participants from the Framingham Heart Study (FHS)

and the Lothian Birth Cohorts (LBCs) of 1921 and 1936 (LBC1921 and LBC1936). We con-

ducted independent external replication in over 4,000 individuals from the Atherosclerosis

Risk in Communities (ARIC), Genetics of Lipid Lowering Drugs and Diet Network

(GOLDN), and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS)

cohort studies. We examined the functional relevance of the identified loci by interrogating

the known trans-tissue regulatory functions and concomitant changes in gene expression in

blood. In addition, we explored the clinical relevance of the findings for adiposity-related dis-

eases with genetic instrumental variable (IV) analyses using bidirectional and two-step trans-

tissue Mendelian randomization (MR) approaches [11–13].

Methods

Study Design

The study includes two major components. First, we conducted an EWAS of BMI. Second,

BMI-related differentially methylated loci were taken forward for further analyses to better

understand the magnitude of association, regulatory annotation, functional implications, and

clinical relevance (Fig 1). The discovery/replication design and secondary models for the BMI

EWAS were defined a priori (S1 Text). Downstream analyses to characterize the discovered

loci were outlined a priori, but the final approach was primarily driven by the findings and

concurrent advancements in the field.

Ethics

The FHS protocols and participant consent forms were approved by the institutional

review board of Boston University School of Medicine. Ethics permission for the LBC1921 was

obtained from the Lothian Research Ethics Committee (Wave 1: LREC/1998/4/183). Ethics

permission for the LBC1936 was obtained from the Multi-Centre Research Ethics Committee

for Scotland (Wave 1: MREC/01/0/56) and the Lothian Research Ethics Committee (Wave 1:

LREC/2003/2/29). Written informed consent was obtained from all discovery cohort (FHS

and LBC) and replication cohort (ARIC, GOLDN, and PIVUS) participants.

Study Participants

Data for the discovery phase of this investigation were drawn from the FHS offspring cohort

[14] and the LBCs of 1921 and 1936 [15–17]. As previously described [14], the FHS off-

spring cohort was initially recruited in 1971 and included 5,124 offspring (and their

spouses) from the FHS original cohort [18]. The eligible sample for this investigation was

from the 3,021 participants in the FHS offspring cohort who attended the eighth examina-

tion cycle from 2005 to 2008. The LBC1921 and LBC1936 samples derive from the Scottish

Mental Surveys of 1932 and 1947, respectively, when nearly all 11-y-old children in Scotland

completed an IQ-type test in school. The LBC studies provided follow-up of surviving par-

ticipants, most of whom were living in the Lothian region (Edinburgh city and outskirts)

Methylome-Wide Study of BMI
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of Scotland. The current study draws upon the older-age baseline examinations of 551 par-

ticipants in LBC1921 recruited in 1999–2001 and 1,091 participants in LBC1936 recruited

in 2004–2007.

Anthropometric Measurements

Height and weight were measured in each study using established protocols as described in

detail in the S1 Methods. BMI was calculated as weight (in kilograms) divided by height (in

meters) squared.

Fig 1. Series of analyses conducted for the epigenome-wide association study of body mass index. ARIC, Atherosclerosis Risk in

Communities; BMI, body mass index; DHS, DNase I hypersensitive site; FHS, Framingham Heart Study; GO, Gene Ontology; GOLDN,

Genetics of Lipid Lowering Drugs and Diet Network; GWAS, genome-wide association study; LBC, Lothian Birth Cohorts; MR, Mendelian

randomization; PIVUS, Prospective Investigation of the Vasculature in Uppsala Seniors; TSS, transcription start site.

doi:10.1371/journal.pmed.1002215.g001
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Molecular Genomics

DNA from whole blood samples was collected at the same examination assessment as the

anthropometric and covariate measurements in both studies. DNA methylation, assayed with

the Infinium HumanMethylation450 BeadChip [19] (Illumina), was available for 2,846 FHS

participants and 1,518 LBC participants (514 from LBC1921 and 1,004 from LBC1936). Details

of rigorous quality control, normalization procedures, and exclusions of non-autosomal

probes, cross-hybridizing probes, and probes with underlying single nucleotide polymor-

phisms (SNPs) are described in S1 Methods. Each discovery and replication cohort conducted

cohort-specific preprocessing pipelines that allowed each cohort to address study-specific tech-

nical and batch effects. This design allowed for the selection of true biological signals indepen-

dent of bias introduced from uniform processing methods. After quality control in the

discovery cohorts, there were 402,358 shared CpG (cytosine-phosphate-guanine) methylation

probes available for analyses in 2,377 FHS and 1,366 LBC participants (446 from LBC1921 and

920 from LBC1936). Final sample size was determined by the number of community-based

participants in the discovery cohorts who consented to genomic studies and who had available

DNA and methylation assays passing quality control measures. In the FHS, SNP data were

obtained from the Affymetrix 550K Array imputed to the 1000 Genomes Project reference

panel, as previously reported [20]. The LBC samples were genotyped using the Illumina

Human610-Quad v1.0 genotyping platform and imputed to the 1000 Genomes Project refer-

ence panel as well. Gene expression in blood was available in the FHS and was measured using

the Affymetrix Human Exon 1.0 ST GeneChip as described in S1 Methods.

Epigenome-Wide Association Study of BMI

In the FHS, linear mixed effects regression models were conducted to test the association

between site-specific DNA methylation and BMI. The primary model was adjusted for age,

sex, family relatedness (random effect), and surrogate variables (to account for differential cell

proportions and technical effects) [21], with BMI as the independent variable of interest and

DNA methylation (inverse-normal transformed) as the dependent variable. In the LBC, linear

regression models were conducted adjusting for age, sex, and white blood cell counts, with

each DNA methylation probe (residual taken forward from a generalized linear model with a

logistic link function adjusting for technical and batch effects) as the dependent variable and

BMI as the independent variable of interest. Further analytical details for the discovery cohorts

are described in S1 Methods. In both cohorts, secondary models were conducted: (1) addition-

ally adjusting for smoking status, (2) restricted to participants with BMI 18–35 kg/m2 in order

to avoid confounding due to frailty or morbid obesity and obesity-related diseases, and (3)

testing for age and sex interactions. Results from the FHS and LBCs were meta-analyzed using

methods that weighted the p-value by sample size [22]. Directional consistency of statistically

significant cohort-specific effects was confirmed for all methylome-wide significant findings

from the discovery meta-analysis. We focused our analyses on the resultant test statistic and

direction of effect from the independent variable of interest (BMI) as the cohort-specific linear

regression coefficients were not directly comparable due to the differences in the preprocessing

approach between cohorts. The threshold for statistical significance in the discovery phase was

defined by Bonferroni correction for multiple testing to be 0.05/405,000 (p-value< 1.2 × 10−7).

A flowchart of analyses conducted is presented in Fig 1.

External Replication of EWAS Findings

The methylome-wide significant CpGs from the FHS and LBC meta-analysis were taken for-

ward to external replication in three independent cohorts that used the same methylation

Methylome-Wide Study of BMI
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microarray: the ARIC study, using whole-blood-derived DNA from 2,096 participants of Afri-

can ancestry; the GOLDN study, using DNA derived from CD4+ cells from 992 participants of

European ancestry; and the PIVUS study, using whole blood-derived DNA from 967 partici-

pants of Swedish ancestry. Description and analytical methods of the replication cohorts are

supplied in S1 Methods. Replication cohorts also conducted cohort-specific preprocessing.

Replication was examined within each cohort individually and then in a meta-analysis of all

three replication cohorts (using p-value-weighted methods and ensuring directional consis-

tency as described above). The threshold for statistically significant replication was determined

by Bonferroni correction to be 0.05 divided by the number of CpGs taken forward from

discovery.

Sensitivity Models Adjusting EWAS Findings for Potential Confounding

by Genetic Variation

In order to demonstrate whether the DNA methylation and BMI association results were inde-

pendent of genetic variants influencing methylation (methylation quantitative trait loci

[meQTLs]), we conducted sensitivity models in the FHS for the replicated BMI-related CpGs

conditional on the top cis-meQTL (selected by lowest p-value; ±500 kb from the CpG) for each

replicated CpG. The approach to identify cis-meQTLs for the BMI-related CpGs is described

in S1 Methods.

Interindividual Variation in BMI and Distribution of Obesity in Relation to

EWAS Findings

In order to determine the magnitude of variation in BMI contained within the studied epige-

netic signatures in blood, we examined the variation captured in three ways. First, we exam-

ined the increase in model R2 starting from the baseline covariate-only linear regression

model, with BMI as the dependent variable, when adding nonredundant (|r|< 0.7) replicated

CpGs as independent variables in order of decreasing statistical significance. We conducted

this analysis in two discovery test sets: (1) methylome-wide significant CpGs in the FHS only

were tested in the LBCs and (2) replicated nonredundant CpGs from the BMI EWAS were

tested in one of the replication cohorts, PIVUS. Due to differences from the discovery cohorts

in ethnicity (African ancestry in ARIC) and cell line (CD4+ cells in GOLDN), we conducted

the variation analyses only in PIVUS. Second, we created an additive composite measure of

the same nonredundant statistically significant replicated CpGs weighted by effect size. The

composite methylation measure was generated for each individual by summing the product of

the methylation beta-value and the cohort-specific effect size (including direction of effect) for

each of the nonredundant replicated CpGs. The distribution of BMI and prevalence of obesity

(BMI� 30 kg/m2) was assessed across deciles of the additive weighted composite measure in

the PIVUS cohort. Third, the change in BMI and odds of overweight (BMI 25–29.9 kg/m2)

and obesity were tested in age- and sex-adjusted linear and logistic regression models for each

standard deviation (SD) change in the additive weighted composite measure in the PIVUS

cohort. The weighted summation of the composite methylation measure was converted to SD

units (mean = 0, SD = 1) to enhance interpretability of results. As some of the cross-sectional

differential methylation changes were expected to be secondary to BMI differences, the pur-

pose of these analyses was not to develop a biomarker or risk predictor for cross-sectional BMI

measures but to determine if a large proportion of variation in BMI and obesity, and hence

obesity-related cardiometabolic risk, is reflected in the blood DNA methylation patterns. Fur-

ther analyses examine the molecular pathways that are affected and attempt to infer which

Methylome-Wide Study of BMI
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methylation changes are causally influencing BMI, which are secondary to BMI differences,

and which have relevance for clinical disease outcomes.

Gene Expression Analyses

We analyzed whole blood gene expression data in the FHS to identify which BMI-related dif-

ferentially methylated CpGs demonstrated association with altered gene expression. The repli-

cated CpGs were tested using linear mixed effects models for association, with the expression

level of the corresponding gene in whole blood (based on annotation by the manufacturer) as

the dependent variable and DNA methylation as the independent variable, adjusted for age,

sex, and technical and batch effects (further details in S1 Methods).

Functional and Regulatory Annotation

We studied the Gene Ontology (GO) biological process, molecular function, and cellular com-

ponent pathways (release 2016-08-22) of the genes identified in the BMI EWAS using the

PANTHER (protein annotation through evolutionary relationship) overrepresentation test

[23]. Secondarily, we restricted analysis to the higher certainty genes shown to have altered

whole blood gene expression in association with BMI-related differential methylation, as

described in the previous section. If multiple probes were annotated to the same gene, then the

gene was included only once (unweighted). As the methylation array covers 99% of RefSeq

genes, the background universe of genes tested was not restricted. Results were corrected for

multiple testing within each category.

In addition, we used eFORGE v1.2 (http://eforge.cs.ucl.ac.uk/) [24] to identify if the repli-

cated CpGs were enriched in DNase I hypersensitive sites (DHSs) (markers of active regulatory

regions) and loci with overlapping histone modifications (H3Kme1, H3Kme4, H3K9me3,

H3K27me3, and H3K36me3) across available cell lines and tissues from Roadmap Epige-

nomics Project, BLUEPRINT Epigenome, and ENCODE (Encyclopedia of DNA Elements)

consortia data [25–27].

Bidirectional and Two-Step Trans-tissue Mendelian Randomization

IV analyses using SNPs as IVs for (1) DNA methylation, (2) gene expression, and (3) BMI

were conducted in order to infer potential causal relationships between EWAS findings, BMI,

and adiposity-related diseases (the series of analyses conducted is outlined in Table 1). The

detailed approach is provided in S1 Methods. In brief, differences in methylation and expres-

sion were modeled using quantitative trait loci (QTLs), thus leveraging the contribution of

genetic variation to epigenetic traits to infer causal relations. Blood QTL IVs were selected as

the single top SNP methylation or expression association (by lowest p-value) in the FHS with

replication in the external cohorts or public datasets. As QTLs vary in effect in different tissue

types, we selected tissue-specific methylation and expression QTLs to examine tissue-specific

effects (details in S1 Methods). To model the effect of BMI on methylation (reverse causation),

the IV for BMI was assembled as an additive weighted genetic risk score from the 97 genome-

wide significant SNPs from the Genetic Investigation of ANthropometric Traits (GIANT) con-

sortium 2015 genome-wide association study (GWAS) results [7]. A sensitivity analysis utiliz-

ing a single SNP in the FTO (fat mass and obesity associated) locus as the IV for BMI was

conducted to examine an IV less prone to pleiotropy bias but also less powerful to detect

potential causal relations.

Forward MR, using the two-stage least squares method, tests the causal relation of differen-

tial methylation with BMI. SNP IVs that implicated a causal effect of differential methylation

on BMI from the forward MR (Bonferroni-corrected and, secondarily, nominal causal

Methylome-Wide Study of BMI
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p-value< 0.05) were tested in the trans-tissue two-step MR. The trans-tissue two-step MR was

implemented to further break down the relationship between DNA methylation and BMI and

to infer whether the hypothesized mediator (gene expression in multiple tissues) is influenced

by the exposure (DNA methylation) and, second, whether the mediator (gene expression in

multiple tissues) affects the outcome (BMI). SNP IVs that implicated a causal effect of differen-

tial methylation and expression on BMI were tested for associations with adiposity-related

phenotypes from published GWAS results. Finally, the reverse MR was conducted to test the

causal relation of BMI with downstream changes in DNA methylation.

Results

Discovery Cohort Characteristics

The discovery sample included 3,743 individuals: 2,377 from the FHS and 1,366 from the

LBCs (n = 446 from LBC1921 and n = 920 from LBC1936). The FHS, LBC1921, and

LBC1936 cohorts were older adults (mean [SD] age 67 [9], 79 [1], and 70 [1] y, respectively)

and had similar sex distribution (50%–60% female) and proportion of current smokers

(8%–11%) (Table 2).

Epigenome-Wide Association Study of BMI

Discovery. In the FHS-LBC EWAS meta-analysis, 135 CpGs were significantly associated

with BMI after correction for multiple testing in the primary age- and sex-adjusted model

(p< 1.2 × 10−7; full list and regression coefficients are provided in S1 Table; Q-Q plots in S1

and S2 Figs; Manhattan plot in S3 Fig; genomic inflation factor of discovery meta-analysis,

λ = 1.14). Similar results were observed following additional adjustment for smoking status

and after excluding 313 individuals with BMI outside of 18–35 kg/m2 (Models 2–3 in S2 Table;

S4 Fig).

External replication. The 135 statistically significant CpGs from the discovery BMI EWAS

meta-analysis (primary model) were tested for external replication in the ARIC (n = 2,096),

Table 1. Schema of instrumental variable analyses conducted in order to infer the potential causal relations between DNA methylation, gene

expression, BMI, and adiposity-related disease.

Method Exposure IV Source of IV Selection Outcome Setting

Forward MR DNA methylation meQTL FHS/replication

cohorts

All replicated CpGs

(as the exposure)

BMI FHS/GIANT consortium

Two-step MR—first step DNA methylation meQTL FHS/replication

cohorts

Significant in

forward MR

Gene expression in

multiple tissues

FHS/external eQTL datasets

from blood, liver, and adipose

tissue

Two-step MR—second

step

Gene expression in

multiple tissues

eQTL FHS/GTEx/

external eQTL

datasets

Significant in

forward MR

BMI FHS/GIANT consortium

Extension of causal

relations to adiposity-

related traits

DNA methylation meQTL FHS/replication

cohorts

Significant in

forward MR

Adiposity-related

traits

GWAS results

Gene expression in

multiple tissues

eQTL FHS/GTEx/

external eQTL

datasets

Significant in two-

step MR

Adiposity-related

traits

GWAS results

Reverse MR BMI BMI

GRS

GWAS results All replicated CpGs

(as the outcome)

DNA methylation FHS

BMI, body mass index; eQTL, expression quantitative trait locus; FHS, Framingham Heart Study; GIANT, Genetic Investigation of ANthropometric Traits;

GRS, genetic risk score; GTEx, Genotype-Tissue Expression Project; GWAS, genome-wide association study; IV, instrumental variable; meQTL,

methylation quantitative trait locus; MR, Mendelian randomization.

doi:10.1371/journal.pmed.1002215.t001
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GOLDN (n = 992), and PIVUS (n = 967) cohorts. There was external replication of 83 of 135

CpGs in at least one cohort (73 in ARIC, 22 in GOLDN, and 19 in PIVUS; S5 Fig) at p-
value< 3.7 × 10−4 (Bonferroni-corrected p-value for 135 tests), and 83 of 135 CpGs replicated

in the meta-analyses of the three replication cohorts and were taken forward for subsequent

analyses (S3 Table). Greater methylation was associated with higher BMI at 49 (59%) of the 83

replicated CpGs. The majority of BMI-related CpGs (65%–85% of CpGs depending on the

cohort) had mean sample CpG methylation levels between 20% and 80% (S4 Table). Fifty of the

83 replicated differentially methylated CpGs have not been previously reported in microarray-

based EWASs of BMI [28–36] (Table 3).

Age and sex interactions among the BMI EWAS findings. Among the 135 discovery

CpGs, a significant sex interaction was demonstrated in the discovery cohorts for one unanno-

tated CpG (cg26651978 on Chromosome 17q25.3; <3 kbp from the 30 end of LGALS3BP [lec-
tin galactoside-binding soluble 3-binding protein]), and a significant age interaction for one

CpG (cg24678869; DENND4B [DENN domain 4B Rab GDP-GTP exchange factor]) at p-
value < 3.7 × 10−4 (Bonferroni-corrected p-value for 135 tests) (S4 Table). The sex interaction

identified at cg26651978 (LGALS3BP) modestly replicated in the external cohorts (replication

meta-analyses p = 0.02), with larger regression coefficients and lower p-values in stratified

models among men than among women (replication meta-analyses p = 1.73 × 10−6 and 0.002

in men and women, respectively; overall and sex-stratified regression coefficients for each

cohort in S5 Table). The age interaction at cg24678869 (DENND4B) did not replicate in the

external cohorts (replication meta-analyses p = 0.9). Due to the narrow age range in PIVUS,

however, this interaction was tested only in ARIC and GOLDN (n = 3,079).

HIF3A locus methylation. Examining a previously identified BMI-related differential

methylation at the HIF3A locus [28], we demonstrated modest associations with BMI in the

FHS-LBC discovery cohorts for the three reported CpGs (p = 0.02 for cg22891070, p = 0.03 for

cg16672562, and p = 0.04 for cg27146050; no significant sex interactions). Stratifying models

at the median age of 66 y in the FHS (age range too narrow in LBC for stratification) revealed

stronger associations in the younger subset and null associations in the older subset (for

cg22891070, cg16672562, and cg27146050, p = 0.003, p = 0.008, and p = 0.046, respectively,

among participants�66 y of age, and p = 0.9, p = 0.6, and p = 0.4, respectively, among partici-

pants>66 y of age).

Sensitivity models conditioning on cis methylation quantitative trait loci. Sensitivity

models conditioning on the top cis-meQTL (selected by lowest p-value; ±500 kb from the

CpG) in the FHS demonstrated minimal attenuation of the test statistic for the association of

BMI, with differential methylation at the majority of CpGs (81/83 [98%]) attenuated by less

than 20% (S6 Table).

Table 2. Study characteristics of the Framingham Heart Study and Lothian Birth Cohort participants (discovery cohorts) at the time of DNA meth-

ylation assays.

Characteristic FHS LBC1936 LBC1921

N 2,377 920 446

Age (years) 67 ± 9 70 ± 1 79 ± 1

Female 55% 40% 61%

BMI (kg/m2) 28.3 ± 5.4 27.8 ± 4.4 26.2 ± 4.0

Current smoking 8% 11% 7%

Data are counts, means ± standard deviation, and proportions as appropriate.

BMI, body mass index; FHS, Framingham Heart Study; LBC, Lothian Birth Cohort.

doi:10.1371/journal.pmed.1002215.t002
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Table 3. Fifty novel replicated differentially methylated CpGs associated with BMI sorted by p-value in the discovery cohorts.

CpG Gene Discovery Replication

FHS-LBC (n = 3,743) ARIC (n = 2,096) GOLDN (n = 992) PIVUS (n = 967) Meta-analysis

p-Value Dir p-Value Dir p-Value Dir p-Value Dir p-Value

cg17501210 RPS6KA2 4.14E−21 − − − − 1.72E−04 − 1.36E−06 − 4.15E−02 − 1.07E−06

cg14870271 LGALS3BP 4.87E−16 + + + + 2.28E−04 + 3.62E−03 + 4.80E−02 + 1.51E−05

cg11202345 LGALS3BP 6.22E−15 + + + + 7.70E−05 + 1.36E−02 + 1.83E−01 + 4.20E−05

cg19750657 UFM1 2.21E−13 + + + + 5.55E−06 + 6.92E−07 + 2.27E−08 + 5.60E−13

cg17901584 DHCR24 2.87E−12 − − − − 6.26E−07 − 1.23E−04 − 7.99E−07 − 4.14E−12

cg10179300 TRIO 5.71E−12 + + + + 7.37E−04 + 1.16E−02 + 8.82E−02 + 1.06E−04

cg10508317 SOCS3 2.90E−11 − − − − 1.31E−03 − 3.49E−05 − 2.85E−02 − 1.12E−05

cg17836612 LGALS3BP 1.05E−10 + + + + 4.73E−06 + 1.99E−03 + 7.40E−04 + 1.24E−08

cg26950531 DPF1 1.13E−10 − − − − 6.28E−04 − 6.49E−03 − 9.90E−04 − 2.22E−06

cg21429551 GARS 1.31E−10 − − − − 3.95E−03 − 1.13E−05 − 8.58E−02 − 6.76E−05

cg01881899 ABCG1 1.37E−10 + + + + 4.90E−03 + 4.99E−04 + 8.25E−02 + 1.98E−04

cg17782974 TRIM8 1.79E−10 + + + + 7.54E−06 + 5.71E−02 + 1.39E−01 + 1.05E−05

cg16611584 AKAP10 2.40E−10 + + + + 2.08E−04 + 9.92E−01 + 1.98E−02 + 1.40E−04

cg07730360 3.32E−10 + + + + 1.37E−06 + 3.31E−02 + 5.38E−02 + 8.00E−07

cg17738521 HIVEP2 3.51E−10 − − − − 2.36E−04 − 1.37E−01 − 7.56E−02 − 1.07E−04

cg18098839 GOLIM4 1.21E−09 − − − + 1.48E−03 − 1.12E−03 − 3.66E−04 − 1.42E−06

cg00108715 NT5DC2 1.71E−09 + + + + 1.98E−07 + 4.60E−01 + 4.00E−04 + 1.61E−08

cg24531955 LOXL2 2.26E−09 − − − − 3.85E−05 − 1.67E−02 − 9.20E−03 − 1.46E−06

cg17058475 CPT1A 2.28E−09 − − − − 3.18E−04 − 1.64E−05 − 1.29E−01 − 1.17E−05

cg24678869 DENND4B 2.56E−09 + + + + 4.72E−08 + 6.92E−01 − 4.46E−01 + 2.64E−05

cg13134297 3.21E−09 − − − − 1.10E−04 − 5.62E−03 − 2.06E−01 − 4.59E−05

cg10474597 SERPINE3 3.82E−09 + + + + 3.51E−04 + 2.13E−01 + 1.39E−04 + 2.19E−06

cg03725309 SARS 3.93E−09 − − − − 2.67E−04 − 2.75E−04 − 2.43E−03 − 6.00E−07

cg26894079 ASAM 4.06E−09 − − − − 2.31E−06 − 4.60E−05 − 1.96E−03 − 3.52E−09

cg22012981 ACOX2 4.65E−09 + + + + 2.64E−04 + 2.27E−02 + 1.97E−03 + 2.71E−06

cg26361535 ZC3H3 5.46E−09 − + + + 1.56E−07 + 2.65E−02 + 1.37E−02 + 3.43E−08

cg04286697 B3GNT7 5.96E−09 + + + + 8.70E−06 + 4.51E−02 + 7.53E−01 + 1.22E−04

cg26651978 6.24E−09 − − − − 6.42E−03 − 3.07E−04 − 2.76E−03 − 1.68E−05

cg19017142 7.86E−09 − − − − 1.48E−04 − 1.92E−02 − 1.80E−02 − 8.35E−06

cg10919522 C14orf43 9.71E−09 − − − − 3.98E−06 − 2.78E−04 − 8.58E−04 − 5.44E−09

cg25649826 USP22 1.05E−08 + + + + 9.69E−06 + 1.41E−03 + 6.62E−02 + 1.18E−06

cg07037944 DAPK2 1.19E−08 − − − − 2.47E−04 − 1.36E−01 − 4.12E−09 − 4.32E−09

cg24145109 1.23E−08 + + + + 2.69E−05 + 8.59E−02 + 2.28E−04 + 1.62E−07

cg01751802 KANK2 1.32E−08 + + + + 6.33E−07 + 8.89E−01 + 3.31E−01 + 4.30E−05

cg13274938 RARA 1.43E−08 + + + + 5.48E−07 + 3.47E−03 + 3.70E−02 + 9.57E−08

cg11673687 SLC9A1 2.52E−08 + + + + 7.80E−04 + 8.37E−01 − 7.96E−03 + 2.51E−04

cg26800893 ATPGD1 2.87E−08 − − − − 5.04E−04 − 8.10E−04 − 3.80E−04 − 4.29E−07

cg01368219 CACNA2D3 3.20E−08 + + + + 3.90E−06 + 2.21E−02 + 2.62E−02 + 6.87E−07

cg01130991 4.00E−08 + + + + 7.46E−06 + 2.49E−04 + 2.91E−02 + 2.19E−07

cg27470213 LGALS3BP 4.63E−08 − − − − 3.88E−05 − 1.23E−03 − 4.18E−03 − 2.64E−07

cg26955383 CALHM1 6.04E−08 + + + + 2.02E−04 + 3.52E−02 + 1.70E−01 + 1.15E−04

cg03500056 ABAT 6.19E−08 + + + + 4.21E−06 + 1.53E−02 + 8.29E−03 + 2.10E−07

cg09182678 6.22E−08 − − − − 1.03E−05 − 1.32E−03 − 5.88E−07 − 1.59E−10

cg02286155 6.39E−08 + + + + 2.99E−03 + 6.56E−03 + 7.40E−02 + 2.41E−04

cg12593793 7.12E−08 − − − − 1.59E−04 − 8.31E−03 − 2.04E−08 − 1.06E−09

(Continued )
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Interindividual Variation in BMI and Distribution of Obesity

The interindividual variation in BMI and distribution of obesity captured in the BMI EWAS

findings was evaluated. Regressing BMI on the 77 nonredundant (inter-probe correlation

|r|< 0.7) CpGs from the 83 replicated CpGs identified in the BMI EWAS revealed that 18% of

the interindividual variation (adjusted R2) in BMI is captured by differential methylation

beyond age and sex in the external replication cohort PIVUS (S6 Fig). This proportion is simi-

lar to that observed when examining a completely independent discovery test set using the 75

CpGs that were methylome-wide significant in the FHS discovery cohort (no replication),

which accounted for 17.5% of the interindividual variation in BMI (adjusted R2) beyond age

and sex in the LBCs. Creating an additive weighted composite measure of the 77 nonredun-

dant replicated CpGs and examining the distribution of BMI and obesity (BMI� 30 kg/m2)

across deciles of the measure demonstrated that the median BMI increased in a graded manner

from 22 to 34 kg/m2 and the prevalence of obesity rose from 0% to 50% (Figs 2 and S7).

For each SD increase in the composite DNA methylation measure in the PIVUS replication

cohort, BMI increased by 1.63 (standard error 0.13) kg/m2 (p = 3.7 × 10−34). The odds ratios

for obesity (BMI� 30 kg/m2) and overweight (BMI 25–29.9 kg/m2) compared to the reference

group (BMI< 25 kg/m2) were 2.8 (95% CI 2.3–3.5; p = 1.6 × 10−25) and 1.9 (95% CI 1.6–2.2;

p = 2.5 × 10−18), respectively, for each SD increase in methylation measure in age- and sex-

adjusted models.

Three-Way Association of DNA Methylation, Gene Expression, and BMI

We examined the association of DNA methylation at the 83 replicated BMI-related CpGs with

gene expression among 2,246 FHS participants, in order to determine which genes in blood

may be influenced by differential methylation of the BMI EWAS CpGs. Of the 83 replicated

CpGs, annotated gene expression from whole blood was available for 62 CpG–gene expression

pairs (three transcript results were unavailable on the microarray, and 18 CpGs were inter-

genic). There were significant associations (p-value< 8 × 10−4; 0.05/62) between differential

DNA methylation and gene expression in whole blood for 19 CpG–gene expression pairs,

representing ten unique gene transcripts (ABCG1, CPT1A, SREBF1, LGALS3BP, DHCR24,

PHGDH, SARS, NOD2, CACNA2D3, and SLC1A5), with almost all of the CpG–gene expression

pairs (18/19; 95%) demonstrating an inverse association of methylation with expression

Table 3. (Continued)

CpG Gene Discovery Replication

FHS-LBC (n = 3,743) ARIC (n = 2,096) GOLDN (n = 992) PIVUS (n = 967) Meta-analysis

p-Value Dir p-Value Dir p-Value Dir p-Value Dir p-Value

cg23172671 7.47E−08 + + + + 1.22E−04 + 7.70E−02 + 1.25E−01 + 8.01E−05

cg13139542 7.93E−08 − + + + 1.23E−05 + 1.05E−02 + 3.78E−01 + 2.67E−05

cg02571142 DKK4 9.91E−08 + + + + 6.33E−04 + 4.34E−03 + 6.97E−02 + 5.34E−05

cg21766592 SLC1A5 1.07E−07 − − − − 7.69E−03 − 5.41E−01 − 3.33E−04 − 1.34E−04

cg01526748 FGF12 1.18E−07 + + + + 5.32E−04 + 4.17E−04 + 3.32E−02 + 1.11E−05

The full list of the 83 replicated BMI-related differentially methylated CpGs is presented in S3 Table. The four directions of association with BMI for the

FHS-LBC cohorts indicate, in order, the two lab batches in the FHS and the LBC1936 and LBC1921 cohorts individually.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; Dir, direction of association with body mass index; FHS, Framingham Heart Study;

GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; LBC, Lothian Birth Cohort; PIVUS, Prospective Investigation of the Vasculature in Uppsala

Seniors.

doi:10.1371/journal.pmed.1002215.t003
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(S7 Table). There were significant three-way associations (CpG versus BMI; CpG versus gene

expression; gene expression versus BMI) for 11 CpGs with seven unique annotated genes

(Table 4). Five of the seven genes (71%) with significant three-way associations between CpG–

gene expression–BMI are known to exhibit cardiometabolic phenotypes in murine gene

knockout models [37–44].

Functional and Regulatory Annotation of the BMI EWAS Findings

Gene Ontology pathway analyses. GO analyses of biological process, molecular function,

and cellular component pathways of the 55 unique genes annotated to the 83 replicated CpGs

(ten CpGs were annotated to genes annotated to other replicated CpGs, and 18 CpGs were

intergenic) did not identify any statistically significant pathways after adjustment for multiple

testing. Secondarily, in order to further refine gene selection for GO analyses to the genes that

demonstrated altered expression, we restricted the GO analyses to the ten unique genes for

which variation in expression was associated with differential methylation, as described in the

previous section. We identified significant overrepresentation of a biological process pathway

Fig 2. Histogram of the proportion of obese individuals (BMI� 30 kg/m2) in the PIVUS cohort across deciles of the

additive weighted composite methylation measure of the 77 nonredundant replicated CpGs (|r| < 0.7) from the BMI

epigenome-wide association study. BMI, body mass index; PIVUS, Prospective Investigation of the Vasculature in

Uppsala Seniors.

doi:10.1371/journal.pmed.1002215.g002
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in the positive regulation of lipid metabolic processes (GO:0045834; adjusted p-value = 0.002;

64-fold enrichment; four overlapping genes [ABCG1, SREBF1, CPT1A and NOD2] of 130 total

genes in pathway) and two related processes (positive regulation of the cholesterol biosynthetic

[GO:0045542] and cholesterol metabolic [GO:0090205] processes; adjusted p-value = 0.02–

0.03).

Regulatory annotation of CpGs associated with gene expression in blood. Most BMI-

related CpGs associated with altered gene expression were located within 50 kb of the transcrip-

tion start site and were within known enhancer or DHSs (S8 and S9 Figs). CpGs associated with

BMI were more likely to be in enhancers and DHSs (enrichment p-value = 4.5 × 10−7 and

9.4 × 10−4, respectively) and less likely to reside in CpG islands (depletion p-value = 3.2 × 10−11)

compared to the full set of measured CpGs on the microarray (S8 Table).

DNase I hypersensitive site testing of all identified CpGs. Tissue- and cell-type-specific

DHS enrichment testing using the eFORGE v1.2 tool demonstrated that the BMI-related

CpGs are enriched in DHSs across almost every tissue and cell type assayed in the included

ENCODE, BLUEPRINT Epigenome, and Roadmap Epigenomics Project datasets (S10 and

S11 Figs), thus supporting the notion that the CpGs identified in blood are also situated in

known active regulatory regions in not only blood, but also other metabolically active tissues.

Table 4. Association results from 11 replicated CpGs with significant three-way associations in whole blood between CpG methylation and BMI,

CpG methylation and gene expression, and gene expression and BMI.

Gene (GEx

Probe Number)

CpG CpG versus

BMI

CpG versus GEx GEx versus BMI Protein Function and Transgenic Mouse

Cardiometabolic Phenotype

Dir p-Value Dir R2 p-Value Dir R2 p-Value

ABCG1

(#3922444)

cg06500161 + 7.6 × 10−43 − 0.112 1.2 × 10−59 − 0.023 6.2 × 10−73 Function: membrane transporter for cholesterol

and phospholipids; transgenic mouse: decreased

susceptibility to diet-induced obesity, smaller

adipocytes, lower weight [37]

cg27243685 + 2.3 × 10−15 − 0.054 4.4 × 10−29 − 0.023 6.2 × 10−73

cg01881899 + 1.4 × 10−10 − 0.035 3.8 × 10−19 − 0.023 6.2 × 10−73

cg10192877 + 1.7 × 10−08 − 0.014 1.7 × 10−08 − 0.023 6.2 × 10−73

CACNA2D3

(#2624639)

cg01368219 − 3.2 × 10−08 − 0.014 2.9 × 10−08 − 0.006 1.1 × 10−08 Function: voltage-dependent calcium channel

complex; transgenic mouse: decreased serum free

fatty acids [38]

CPT1A

(#3379644)

cg00574958 − 2.2 × 10−29 − 0.025 7.7 × 10−14 + 0.017 4.5 × 10−24 Function: transporter across the mitochondrial

inner membrane for fatty acid beta oxidation;

transgenic mouse: decreased serum glucose and

increased serum free fatty acid levels after fasting

[39]

cg17058475 − 2.3 × 10−09 − 0.014 2.2 × 10−08 + 0.017 4.5 × 10−24

DHCR24

(#2413907)

cg17901584 − 2.9 × 10−12 − 0.017 8.9 × 10−10 + 0.003 1.4 × 10−07 Function: catalyzes the reduction of sterol

intermediates during cholesterol biosynthesis;

transgenic mouse: decreased subcutaneous and

mesenteric adipose stores, decreased body size,

decreased circulating cholesterol [40]

SARS

(#2350551)

cg03725309 − 3.9 × 10−09 − 0.011 6.6 × 10−07 + 0.011 4.7 × 10−10 Function: catalyzes the transfer of L-serine to

tRNA; transgenic mouse: no cardiometabolic

phenotypes reported

SLC1A5

(#3866276)

cg02711608 + 6.3 × 10−08 − 0.013 5.1 × 10−08 + 0.023 1.7 × 10−69 Function: amino acid transporter; transgenic

mouse: no cardiometabolic phenotypes reported

SREBF1

(#3747966)

cg11024682 + 4.8 × 10−22 − 0.009 8.0 × 10−06 − 0.003 5.2 × 10−05 Function: transcription factor for sterol

biosynthesis; transgenic mouse: abnormal fat cell

and fat pad morphology, abnormal lipid

homeostasis, insulin resistance, enlarged liver [41–

44]

Complete list of results for all methylome-wide significant CpGs is available in S8 Table.

BMI, body mass index; Dir, direction of correlation; GEx, gene expression.

doi:10.1371/journal.pmed.1002215.t004
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Further stratification by whether BMI-related CpGs had overlapping H3 histone methylation

revealed that the BMI-related CpGs predominately overlapped regions with mono-methyla-

tion and, to a lesser extent, tri-methylation of lysine 4 on histone H3K4 (H3K4me1 and

H3K4me3) across numerous tissues from the consolidated Roadmap Epigenomics Project

data (S12–S14 Figs). H3K4me1 marks are indicative of enhancers, H3K4me3 marks are indica-

tive of promoters, and both are known markers of transcriptional activation.

Genetic Instrumental Variable Analyses (Mendelian Randomization)

Successive genetic IV analyses were conducted to infer causal relations between differential

methylation, gene expression, and BMI, followed by evaluation of the modeled epigenetic

changes on adiposity-related traits using GWAS results (Table 1).

Forward Mendelian randomization. Testing the causal association of DNA methylation

with BMI revealed that differential methylation at two CpGs had nominally significant

causal associations (p-value< 0.05) with BMI: (1) cg11024682 (SREBF1; cis-meQTL SNP IV

rs752579) and (2) cg07730360 (a non-annotated CpG on Chromosome 3q21.3; trans-meQTL

SNP IV rs13437553), with causal p-value = 0.02 and 0.04, respectively (S15 Fig; S9 Table). Tak-

ing forward the two causal CpGs in discovery for external validation, we found that modeled

differential methylation at one of the two CpGs (cis-meQTL SNP IV rs752579 for differential

methylation at cg11024682 [SREBF1]) was associated with BMI in the 2015 GIANT consor-

tium results (p = 0.0003; all ancestries).

Two-step Mendelian randomization (first step). In the first step (DNA methylation

affecting the mediator, gene expression), the SNP IV (rs752579) utilized in the forward MR

analyses to model differential methylation of the SREBF1 locus (cg11024682) was also found to

be strongly associated with altered SREBF1 gene expression in blood in the FHS (p = 3 × 10−12;

decreased expression in relation to the C allele), a published [45] blood expression quantitative

trait locus (eQTL) dataset (p = 3.2 × 10−6; direction of effect in blood consistent with that seen

in the FHS), and liver (p = 1 × 10−15; in the same direction as observed in blood in a reanalysis

of 958 samples [46,47]).

Two-step Mendelian randomization (second step). In the second step (gene expression

in blood and alternate tissues affecting BMI), we identified adequate eQTLs for SREBF1
expression in whole blood (rs1889018; p = 1.7 × 10−15) from the FHS; in adrenal gland

(rs4925138; p = 1.1 × 10−6) and liver (rs11078366; p = 1.8 × 10−6) from the Genotype-Tissue

Expression (GTEx) Project; and in adipose tissue (rs4985779; p = 8.4 × 10−4) from the larger

MuTHER dataset [48]. The multi-tissue SREBF1 eQTLs were selected to be largely indepen-

dent from the SREBF1 methylation locus SNP IV (details in S1 Methods). We identified signif-

icant associations with BMI (adjusted for the four tests, p< 0.013) in the GIANT consortium

results for two of the four tissue types; specifically, BMI was associated with the SNP IV for

SREBF1 expression in whole blood (rs1889018, p = 0.002) and adrenal gland (rs4925138, p =
0.0098), but not liver (rs11078366, p = 0.89) or adipose tissue (rs4985779, p = 0.80).

Adiposity-related traits in GWASs. Assessing other cardiometabolic disease associations

from published GWASs, the SNP IV (rs752579) for exposure to differential methylation at the

SREBF1 locus (cg11024682) was also found to be associated with (1) adiposity-related traits

[49–51] (waist-hip ratio adjusted for BMI [p = 2.0 × 10−4], adiponectin [p = 0.007], birthweight

[p = 0.046]), (2) diabetes traits [52–55] (type 2 diabetes [p = 0.002], fasting insulin adjusted for

BMI [p = 0.001], HbA1C [p = 0.003], HOMA-B [p = 0.007]), (3) lipid levels [56] (triglycerides

[p = 0.001], high-density lipoprotein cholesterol [p = 0.03]), and (4) coronary artery disease

[57] (p = 1.7 × 10−6). Additionally, the SNP IV for increased SREBF1 expression in whole blood

(rs1889018) was also associated with waist-hip ratio (p = 0.0002), adiponectin (p = 0.003), and
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PLOS Medicine | DOI:10.1371/journal.pmed.1002215 January 17, 2017 15 / 30



triglycerides (p = 0.02) based on GWAS results [49,50,56]. The SNP IV for increased SREBF1
expression in the adrenal gland (rs4925138) was also nominally associated with adiponectin

(p = 0.02), triglycerides (p = 0.022), and low-density lipoprotein change in response to statin

treatment (p = 0.04) [50,56,58].

Causal effect estimates. Each SD increase in DNA methylation at the SREBF1 locus

(cg11024682) was predicted to result in a 2.8-kg/m2 decrease in BMI in the FHS (modeling the

effect of allele C for rs752579). In contrast, the observed relationship between methylation in

blood and BMI in the FHS was in the opposite direction: a 1.0-kg/m2 increase in BMI per SD

increase in DNA methylation at cg11024682. The predicted direction of effect between methyl-

ation and BMI is partly derived from the observed direction of effect between the SNP IV and

methylation in blood. Previous literature has reported cell-type-dependent QTLs with opposite

directions of effect between a SNP and methylation or expression depending on the cell or tis-

sue type examined [59]. As extensive databases of trans-tissue methylation are unavailable, we

examined trans-tissue eQTLs for SREBF1 from the GTEx Portal [60]. A series of eQTLs for

SREBF1 (false discovery rate� 0.05) demonstrate opposite direction of effect between blood

versus adrenal gland (p-value< 10−6) and additional tissues (at p-value< 10−5) such as

skeletal muscle, esophagus, aorta tissue, and tibial nerve (http://www.gtexportal.org/home/

bubbleHeatmapPage/SREBF1). Strong eQTLs for SREBF1 are likely present in adrenal tissue

as SREBF1 is highly expressed in the adrenal gland compared to other tissues (http://www.

proteinatlas.org/ENSG00000072310-SREBF1/tissue). For example, rs854764 is a strong eQTL

for SREBF1 in both blood and adrenal tissue but in opposite directions (p = 3.8 × 10−12 and

p = 4 × 10−6, respectively, in the GTEx catalog) and is associated with BMI in GIANT (p =
0.001) and waist-hip ratio (p = 9.2 × 10−4), adiponectin (p = 0.02), HbA1C (p = 0.02), type 2

diabetes (p = 0.03), triglycerides (p = 0.04), and coronary artery disease (p = 1.1 × 10−5) in

GWAS results [4,7,50,52,54,57,61]. This SNP, rs854764, is also a meQTL for SREBF1 locus

methylation at cg11024682 in the FHS (p = 2.8 × 10−18), but the association with SREBF1 locus

methylation in adrenal gland, the potential tissue of effect, is unknown. See S10 Table for

causal effect estimates and confidence intervals for the second step of the two-step MR

analyses.

Reverse Mendelian randomization. To test whether BMI affects methylation at the iden-

tified CpGs, the additive weighted genetic risk score of 97 known BMI SNPs [7] was used as an

IV for BMI (F-test statistic = 26). Sixteen CpGs were found to be differentially methylated as a

consequence of BMI using a nominal causal p-value< 0.05 cutoff (full list in S11 Table). The

16 downstream CpGs were annotated to 12 genes (ABCG1, USP22, DPF1, RARA,KDM2B,

KANK2, RALB, NT5DC2,DENND4B, B3GNT7, DKK4, and ABAT). A sensitivity analysis using

a single SNP in the FTO locus as a BMI IV (S12 Table) further supported causal associations

downstream of BMI at two of the 16 CpGs (nominal causal p-value< 0.05 for cg06500161 and

cg04286697, at the ABCG1 and B3GNT7 loci, respectively). The annotated genes with BMI-

related differential methylation are characterized in Fig 3.

Discussion

In this analysis of the association of BMI with differential methylation of blood-derived DNA,

we provide robust evidence of a connection between replicable epigenetic signaling at 83 CpGs

and BMI. We also demonstrate the correlation of BMI-related differential methylation with

the altered expression of ten genes in whole blood that are overrepresented in lipid metabolism

pathways. Among the 83 replicated BMI-related CpGs, one differentially methylated locus

(cg11024682) at the lipid metabolism transcription factor SREBF1 demonstrated evidence of a

causal effect on BMI; genetically predicted exposure to differential methylation and expression
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of SREBF1 was found to be associated with BMI and other adiposity traits, glycemic traits, dys-

lipidemia, and coronary artery disease. In contrast, we found that a substantial proportion (16

out of 83 [19%]) of the BMI-related differentially methylated CpGs identified in this EWAS

are likely a consequence of BMI (i.e., downstream signals).

BMI Variation Is Reflected in DNA Methylation Signatures in Blood

A substantial proportion (~18%) of interindividual variation in BMI is captured by the repli-

cated differentially methylated CpGs in blood. The magnitude of BMI difference (~12 kg/m2

between the highest and lowest deciles) equates to substantial health risks; for example, each

5-kg/m2 increase in BMI in the general population is associated with a 30% increase in mortal-

ity [62].

Fig 3. Annotated genes of replicated differentially methylated CpGs identified in the BMI epigenome-wide association study.

Genes are grouped by association with gene expression, association of gene expression with BMI, and Mendelian randomization analyses

for causal support. Duplicate gene names within the same group are not shown. Figure does not include 18 intergenic CpGs without a gene

annotation. BMI, body mass index; EWAS, epigenome-wide association study.

doi:10.1371/journal.pmed.1002215.g003
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Our results suggest that epigenetic biomarkers hold the potential to improve risk prediction

and help tailor therapy choices to prevent or treat cardiometabolic diseases. For example, at

the population level, BMI is an effective measure of average future cardiometabolic disease risk

[63], but it is insufficiently predictive at the individual level. Regardless of causality, blood-

based biomarkers can be useful for prognostic or diagnostic purposes. Further research is

required to determine whether refining BMI-related risk by incorporating epigenetic biomark-

ers can improve risk prediction and help guide treatment decisions.

Differential Methylation Is Identified in Loci Known to Be Involved in

Adiposity

Lipid metabolism. Previously conducted experiments support a causal role of SREBF1 in

adiposity [64]. SREBF1 (also known as SREBP1) plays a central role in energy homeostasis by

promoting glycolysis, lipogenesis, and adipogenesis via induction of the conversion of acetyl-

CoA to triglycerides (S16 Fig). SREBF1 promotes the conversion of free fatty acids to triglycer-

ides in the liver and to triglyceride-rich lipoproteins in the bloodstream. In situations of caloric

excess, SREBF1 is a key mediator of the induction of lipogenesis in humans [64]. In mice with

diet-induced insulin resistance, inhibition of SREBF1 attenuates accelerated atherosclerosis,

supporting a link to atherosclerosis and coronary artery disease [65]. The causal connection

between increased triglyceride-rich lipoproteins and coronary disease is supported by human

genetic studies [66]. We highlight the potential role of SREBF1 expression in the adrenal gland

in weight regulation and adiposity-related diseases based on results from the MR analyses. Dis-

eases of the adrenal gland are known to be linked to severe obesity, and adrenalectomy in

murine models can reverse genetically induced obesity [67,68]. Our results suggest that altered

genomic regulation of SREBF1 is causally related to BMI; however, the lack of large datasets of

meQTLs in numerous tissues and under various conditions, in combination with the inability

to conduct tissue-targeted epigenetic editing in relevant experimental models, limits our ability

to make a definitive causal inference. Regulation of SREBF1 is an underexplored target for the

prevention of coronary artery disease.

Another of our top genes, CPT1A (carnitine palmitoyltransferase 1A), is an outer mito-

chondrial membrane enzyme involved in the utilization of acetyl-CoA, functioning as a key

enzyme in the beta-oxidation of long-chain fatty acids in mitochondrial energy metabolism.

Acetyl-CoA has recently been identified as a central link between altered lipolysis due to adi-

posity or inflammation and resultant changes in hepatic insulin resistance with cross-com-

munication between liver and adipose tissue [69]. ABCG1 (ATP binding cassette G1), a cell-

membrane lipid transporter, has an established role in reverse cholesterol transport; its role

in obesity is supported in previous animal [37] and human studies [70]. DHCR24 (24-dehy-
drocholesterol reductase) catalyzes the reduction of sterol intermediates during cholesterol

synthesis. Differential methylation of SREBF1, CPT1A, ABCG1, and DHCR24 has been

reported in previous EWASs of adiposity, glycemic traits, and lipids [29–31,71–76]. We add

to the published literature and provide evidence that differential methylation at the ABCG1
locus is likely a downstream effect of BMI. From these findings taken together, epigenetic

dysregulation is emerging as a common link between obesity and obesity-related comorbidi-

ties. Although further functional research is required, we hypothesize that obesity and adi-

posity-related diseases are partly driven by changes in DNA methylation, with resultant

dysregulation of energy balance via effects on expression of lipid metabolism pathway genes.

Regulatory mechanisms involved in energy homeostasis have been proposed as attractive tar-

gets for the treatment of obesity, metabolic syndrome, and heart disease [77,78]. Our results
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demonstrate that these connections are evident in humans, adding to previous evidence

from animal models [78].

Inflammatory pathways. Aside from the lipid metabolism genes, a number of loci

involved in inflammatory pathways were identified by our EWAS. Enlarged adipocytes in

obese individuals are known to promote inflammation. One BMI-related differentially meth-

ylated CpG was identified at the NOD2 (nucleotide binding oligomerization domain 2) locus.

NOD2, an innate immune receptor, is involved in the immune response to bacterial lipopoly-

saccharides (LPSs) by activating NF-κB signaling. Uptake of LPS from gut microbiota has

been demonstrated to result in increased internalization of LPS-rich lipoproteins into adipo-

cytes and promote macrophage conversion from the M2 form to the inflammatory M1 form

[79]. NOD2 is also included in the GO pathway for regulation of lipid metabolism (0045834)

as it is a positive regulator of phosphatidylinositol 3-kinase activity and has been demon-

strated to promote vascular inflammation and formation of lipid-rich atherosclerotic lesions

in hypercholesterolemic LDLR−/− mice [80,81]. NOD2 interacts with another BMI-related

differentially methylated inflammatory gene locus at SOCS3 (suppressor of cytokine signaling
3), a negative regulator of cytokine signaling. In addition, LGALS3BP (lectin, galactoside
binding soluble 3 binding protein), also known as MAC2BP (Mac-2-binding protein), is

involved in the immune response associated with lymphokine-activated killer cell cytotoxic-

ity and platelet activation, signaling, and aggregation. LGALS3BP has been found to stimulate

host defenses and is elevated in individuals with various types of cancer such as breast, lung,

colorectal, ovary, and endometrial cancers, many of which are obesity-related. In addition,

LGALS3BP was recently identified as a promising biomarker for non-alcoholic steatohepati-

tis and pancreatitis [82,83], known obesity-related diseases. Methylation at the LGALS3BP
locus demonstrated a significant sex interaction, with a stronger effect in men. This may be

related to environmental factors more common in men (such as specific dietary patterns) or

male-specific physiology.

Differential Methylation Is Identified in Loci Not Previously Linked to

Adiposity

Serine metabolism. Two of the ten genes differentially expressed in association with

BMI-related methylation (PHGDH and SARS) are involved in L-serine metabolism. PHGDH
(phosphoglycerate dehydrogenase) is involved in the early steps of the synthesis of the amino

acid L-serine, which plays a role in oxidoreductase as a NADP acceptor in the tricarboxylic

acid cycle. SARS (seryl-TRNA synthetase) catalyzes the transfer of L-serine to tRNA. In addi-

tion, RPS6KA2 (ribosomal protein S6 kinase A2), a locus not previously reported as being BMI-

related, is a serine/threonine kinase that acts downstream of MAPK signaling and is involved

in cell proliferation. L-serine is necessary for specific functions in the central nervous system;

however, the link between adiposity and functional health consequences via effects on serine

metabolism is currently unknown.

Cell-membrane transporters. In addition to the cell-membrane transporters discussed,

two additional membrane transporters were identified among the ten genes associated with dif-

ferential methylation. SLC1A5 (solute carrier family 1 member 5), which was found to have sig-

nificant three way associations with altered gene expression in blood and BMI, is a sodium-

dependent transporter of amino acids. It is activated by insulin concentration, which is often ele-

vated in individuals with obesity. BMI-related differential methylation was also identified at the

CACNA2D3 (calcium channel, voltage-dependent, alpha 2/delta subunit 3) locus. CACNA2D3 is

involved in nerve signal transmission and cardiac conduction.
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BMI EWAS Findings in the Context of Published Epigenetic

Epidemiology Studies

Previous in silico methods of identifying putative epigenetically regulated obesity genes

highlighted SOCS3 (suppressor of cytokine signaling 3) and RARA (retinoic acid receptor alpha)

[84], both of which were identified in the FHS-LBC meta-analysis (p = 2.7 × 10−11 for

cg27637521 in SOCS3 and p = 1.3 × 10−8 for cg13274938 in RARA). An association study of

DNA methylation and BMI in 459 individuals from the Cardiogenics Consortium identified

an association of methylation at three CpGs intronic to HIF3A (hypoxia inducible factor 3A) in

blood and adipose cells with BMI [28]. We found modest associations of differential methyla-

tion and expression at the HIF3A locus with BMI in our study. However, the associations were

stronger in younger individuals in the FHS, suggesting that the connection may be less appar-

ent at older ages.

At a nominal causal p-value< 0.05, we found that many (16 [19%]) of the replicated CpGs

are downstream of BMI. This is consistent with recent findings from longitudinal methylation

data and bidirectional MR in the Avon Longitudinal Study of Parents and Children [85] that

BMI-related HIF3A methylation is likely secondary to differences in BMI.

There is substantial overlap between the identified BMI-related CpGs and reported CpG–

metabolite associations in blood from 1,814 participants in the KORA cohort (Kooperative

Gesundheitsforschung in der Region Augsburg) [86] (S13 Table). Notably, ceramides and

sphingolipids—known to have altered levels among obese individuals and implicated in the

development of the metabolic syndrome [87–89]—were identified. In addition, the BMI-

related differentially methylated CpG (cg03725309) at the SARS locus, as discussed above in

the serine metabolism section, was found to be associated with blood levels of serine.

BMI EWAS Findings in the Context of BMI GWAS Results and Nearby

Genetic Variants

Of note, none of the CpGs associated with BMI was near genes previously identified in

GWASs of obesity-related traits, such as FTO (fat mass and obesity associated) or MC4R (mela-
nocortin 4 receptor). We hypothesize that many of the replicated differentially methylated loci

reflect novel pathways involved in the regulation of adiposity or adiposity-related diseases.

Long-range interactions of DNA methylation with known obesity-related loci, however, may

exist [90]. Further work to understand the role of the novel loci in relation to adiposity is also

required. In addition, combining information from DNA methylation with genetic markers

identified from DNA sequence variation may allow for improvements in risk prediction previ-

ously not possible with sequence variants alone [91].

Many of the significant loci from the discovery phase (73 of 135) were replicated in Afri-

can-Americans from the ARIC study [30]. Similarly, many of the BMI-related differentially

methylated CpGs identified in this study were also reported in relation to BMI in people of

Arabic ancestry [34]. In GWASs, failure to replicate across racial/ethnic groups may be due to

differences in allele frequencies and linkage disequilibrium patterns. In contrast, the high rate

of replication of DNA methylation results for BMI in individuals of European and African and

other ancestries suggests that shared environmental exposures or changes secondary to differ-

ences in BMI, and not genetic variation, may underlie many of the associations. Further work

is needed to identify environmental factors that promote or mitigate disease-relevant obesity-

related epigenetic dysregulation. Our analyses that conditioned on top meQTLs showed mini-

mal attenuation, suggesting that the association between differential methylation and BMI is

largely independent of genetic variants near the reported CpGs.
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Study Limitations

Our study has several limitations. Results from MR analyses utilizing genetically predicted

methylation and expression levels do not prove causation but provide supportive evidence.

The results of the MR analyses are based on numerous assumptions, for example, that there

are not alternative pathways through which the SNP IV may act on BMI (i.e., pleiotropic

effects). The MR assumptions cannot be tested directly and may bias the results. The forward

MR results did not reach Bonferroni-adjusted significance thresholds for multiple testing;

however, validation of the nominally significant results in the larger GIANT consortium sup-

ports our findings. We avoided the use of multi-SNP score IVs as we had already identified

adequate single SNP meQTLs and using multi-SNP score IVs would have further risked intro-

ducing bias due to pleiotropy. The meQTLs for the MR analyses were derived in the FHS and

the outcome was tested within the same cohort, which can potentially result in bias toward

significance. The MR analyses, using the blood meQTL IV, suggest an inverse relationship

between the predicted methylation of the SREBF1 locus and BMI, the reverse of the observed

relationship, which can be interpreted as a null result. This finding is potentially explained by

different directions of effect of QTLs in alternate tissues, which was supported by examining

the association of genetic variants in blood versus other metabolically active tissues in the

GTEx Project resource. Unfortunately, there are limited datasets of meQTLs in various tissues

to explore this further. The observation of associations of BMI with methylation at the same

CpG in different directions of effect in blood versus adipose-derived DNA has been previously

reported at BMI-related CpG sites [30]. For SREBF1, we presume that the metabolic conse-

quences of altered methylation and the effect on BMI occur in tissues other than blood, such

as the adrenal gland, with the methylation changes in blood that we were able to detect repre-

senting a biomarker of trans-tissue differential methylation [92]. In addition, it is possible that

positive and negative feedback loops can result in regulation of the same gene to be both a

causal and a downstream effect of adiposity. We would not be able to discern this scenario

from the observational cross-sectional data in this study.

An alternate methylation assay would be required for clinical purposes as the current

microarrays are unsuitable in a clinical setting. Future research would be required for technical

validation for clinical purposes. Our study supports blood cells as a useful accessible tissue for

epigenetic biomarker discovery in large population studies. However, our study would not be

able to detect tissue-specific methylation changes occurring in non-blood cell lines (e.g., neu-

ron-specific epigenetic modifications in relation to BMI). Many of our top CpGs replicated in

the GOLDN study, which assessed DNA methylation in a single blood cell type (CD4+), sug-

gesting that the associations we detected are not likely to be due to confounding by blood cell

heterogeneity. Many of the genes associated with BMI-related differential methylation were

known to have a role in adiposity and cardiometabolic traits from murine knockout models;

however, the universe of knockout models is likely enriched for the study of adiposity and car-

diometabolic traits, and we could not directly test whether our results identified more than

expected. Our study was conducted among older-age adults, and the findings may not be gen-

eralizable to younger ages.

Conclusions

We provide the results of a large EWAS of BMI in almost 8,000 individuals that identified 83

replicable DNA methylation loci and evidence of complementary transcriptomic differences

that were enriched for gene products involved in lipid metabolism. The genetic IV analyses

prioritize the SREBF1 locus for future functional studies to further define the causal relation

with adiposity, insulin resistance, obesity-related dyslipidemia, and coronary artery disease.
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Our findings provide a foundation for further research to determine if individualized epige-

netic profiles can be used to guide clinical decision making and improve health outcomes. Our

findings may have additional clinical and therapeutic relevance if other loci that are differen-

tially methylated in relation to BMI represent attractive targets for the treatment or prevention

of obesity and adiposity-related diseases.

Supporting Information

S1 Fig. Quantile-quantile plot of expected versus observed −log10 p-values from the epi-

genome-wide association study of BMI in the FHS-LBC meta-analysis. Models: (A) age-

and sex-adjusted, (B) additionally smoking-adjusted, and (C) additionally excluding frailty/

morbid obesity (BMI< 18 kg/m2 and> 35 kg/m2).

(EPS)

S2 Fig. Quantile-quantile plot of expected versus observed −log10 p-values from the epi-

genome-wide association study of BMI in FHS alone. Using surrogate variables to adjust for

cell count proportion and technical effects (A) compared to the alternate approach of imputed

cell counts and measured technical effects (B). Genomic inflation factor lambda is lower in the

surrogate variable analysis approach compared to the approach of imputed cell counts and

measured technical effects (1.04 versus 1.25), suggesting fewer potential false positives and a

more conservative approach.

(EPS)

S3 Fig. Manhattan plot of the epigenome-wide association study of BMI in the FHS-LBC

meta-analysis in age- and sex-adjusted models. The dotted line indicates the Bonferroni cut-

off for significance of p-value< 1.2 × 10−7. The top six CpGs with the lowest p-values are

shown, annotated to their closest gene transcript.

(EPS)

S4 Fig. Comparison of −log10 p-values of results of the FHS-LBC BMI epigenome-wide

association study. (A) Model 1 (age- and sex-adjusted) + Model 2 (additionally smoking-

adjusted). (B) Model 1 + Model 3 (excluding BMI< 18 and> 35 kg/m2).

(EPS)

S5 Fig. Three-dimensional scatterplot of −log10 p-values for 135 epigenome-wide signifi-

cant CpGs from the FHS-LBC discovery cohorts in three external replication cohorts. Rep-

lication significance defined as Bonferroni-adjusted p-value< 3.7 × 10−4 (0.05/135). CpGs

significant in one, two, and all three replication cohorts are depicted in green, yellow, and red,

respectively. Annotated genes are labeled for CpGs replicated in all three cohorts. Full list of

replication results is available in S2 Table.

(EPS)

S6 Fig. Variation in BMI explained (adjusted R2) by differential methylation of 77 nonre-

dundant replicated CpGs in the FHS-LBC epigenome-wide association study and tested in

the independent PIVUS cohort. CpGs are added in decreasing order of significance and are

adjusted for age, sex, and preceding CpGs.

(EPS)

S7 Fig. Boxplot of BMI in the PIVUS cohort across deciles of the additive weighted com-

posite measure of differential DNA methylation at 77 nonredundant replicated CpGs.

(EPS)
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S8 Fig. Relationship between location of CpG relative to the transcription start site and

proportion of variation in changes in corresponding gene expression, stratified by whether

the CpG resides in a known DHS or enhancer region. CpGs located in known DHS or

enhancer regions are depicted in red. bp, base pairs; DHS, DNase I hypersensitive site; TSS,

transcription start site.

(EPS)

S9 Fig. Relationship between location of CpG relative to the transcription start site and

proportion of variation in changes in corresponding gene expression, stratified based on

location relative to nearest CpG island. Shores are defined as up to 2 kb from the CpG island,

and shelves are defined as up to 2 kb from the CpG shore. TSS, transcription start site.

(EPS)

S10 Fig. Enrichment of nonredundant replicated differentially methylated CpGs from the

BMI epigenome-wide association study in DNase I hypersensitive sites among various cell

and tissue types using ENCODE and 2012 Roadmap Epigenomics Project data. (A)

ENCODE and (B) 2012 Roadmap Epigenomics Project.

(EPS)

S11 Fig. Enrichment of nonredundant replicated differentially methylated CpGs from the

BMI epigenome-wide association study in DNAse I hypersensitive sites among various cell

and tissue types using consolidated Roadmap Epigenomics Project and BLUEPRINT Epigen-

ome data. (C) consolidated Roadmap Epigenomics Project and (D) BLUEPRINT Epigenome.

(EPS)

S12 Fig. Enrichment of nonredundant replicated differentially methylated CpGs from the

BMI epigenome-wide association study in regions overlapping histone modifications in

the consolidated Roadmap Epigenomics Project data: H3K4me1 and H3K4me3 histone

modifications. Presented is enrichment of BMI EWAS CpGs in regions overlapping (A)

H3K4me1 and (B) H3K4me3 histone modifications.

(EPS)

S13 Fig. Enrichment of nonredundant replicated differentially methylated CpGs from the

BMI epigenome-wide association study in regions overlapping histone modifications in

the consolidated Roadmap Epigenomics Project data: H3K9me3 and H3K27me3 histone

modifications. Presented is enrichment of BMI EWAS CpGs in regions overlapping (C)

H3K9me3 and (D) H3K27me3 histone modifications.

(EPS)

S14 Fig. Enrichment of nonredundant replicated differentially methylated CpGs from the

BMI epigenome-wide association study in regions overlapping histone modifications in

the consolidated Roadmap Epigenomics Project data: H3K36me3 histone modifications.

Presented is enrichment of BMI EWAS CpGs in regions overlapping (E) H3K36me3 histone

modifications.

(EPS)

S15 Fig. Depiction of an example result for SREBF1 from the bidirectional Mendelian ran-

domization analyses for each of the replicated CpGs and BMI. Example shown illustrates

the bidirectional relationship of cg11024682 intronic to SREBF1 and BMI using a meQTL to

model the exposure of differential methylation at that locus and an additive weighted genetic

risk score using known BMI-related SNPs to model the exposure of elevated BMI.

(EPS)
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S16 Fig. DNA methylation and mRNA expression of CPT1A and SREBF1 in whole blood

in triglyceride and fatty acid catabolism (beta-oxidation) pathways was observed in associ-

ation with higher BMI.
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