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aMax-Planck-Institut für Physik,
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geometric Scherk-Schwarz reductions. We show in detail how the Maurer-Cartan form for
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1 Introduction

Double Field Theory (DFT) [1–6] is an attempt to construct a duality invariant effective

string action. One interesting question within this context is, whether this can be done

in a background independent way. Another important question is, if DFT always leads

back to standard supergravity on geometric spaces, or if it is possible that non-geometric

string backgrounds can be consistently included into the DFT framework, after relaxing

the strong constraint in one way or the other. Recently a new version, named Double

Field Theory on group manifolds or abbreviated by DFTWZW, was constructed in [7]. This
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theory was derived using Closed String Field Theory (CSFT) applied to a Wess-Zumino-

Witten (WZW) model and the associated Kač-Moody current algebras up to cubic order

in the fields. Later on, it was reformulated in terms of a generalized metric [8] and thereby

extrapolated to all orders in the fields. In comparison to original DFT of [1–6], which was

derived starting from toroidal backgrounds, it gives rise to additional structures. E.g. it

comes with new terms in its action, in its generalized Lie derivative, which mediates the

gauge transformations of the theory, and in the strong constraint. Furthermore, the theory

possesses a manifest 2D-diffeomorphism invariance through the consequent use of covariant

derivatives. This new symmetry is a consequence of the explicit splitting into background

fields and fluctuations emerging in DFTWZW. Revoking this splitting by imposing the

optional extended strong constraint, the known results of original DFT are reproduced

and the 2D-diffeomorphism invariance is broken [8]. While fluctuations in our theory are

still governed by a strong constraint, the background only has to fulfill the much weaker

Jacobi-Identity. An important result visible in DFTWZW is that this relaxation of the

strong constraint for the background is closely related to the closure constraint in the

original flux formulation [9–12] and allows to treat genuinely non-geometric background,

which are not T-dual to any geometric configuration.

String theory on a curved background space generally needs the addition of fluxes in

order to deal with a conformally invariant string background. In particular for the string

propagation on a group manifold, the presence of theH-flux is required by conformal invari-

ance. A main objective of this paper is to derive a flux formulation of Double Field Theory

on group manifolds and to apply it to study generalized Scherk-Schwarz compactifications

of DFTWZW. We will see that the flux formulation’s action on group manifolds

S =

∫
d2DX e−2d

(
SÂB̂F

Â
F
B̂
+

1

4
F
ÂĈD̂

F
B̂
ĈD̂ SÂB̂ − 1

12
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

)
,

(1.1)

derived in the course of this paper, formally matches the results in original DFT. However,

we use a slightly different index convention: Hatted indices Â, . . . , F̂ are associated to the

double Lorentz group. They are converted to O(D,D) indices by the fluctuation vielbein

Ẽ
Â
B, where both flat indices A, . . . , F and hatted indices Â, . . . , F̂ run from 1, . . . , 2D (see

section 2.2 for details). The covariant fluxes

F
ÂB̂Ĉ

= F̃
ÂB̂Ĉ

+ F
ÂB̂Ĉ

(1.2)

appearing in (1.1) are quite different from the original results. They explicitly split into

a fluctuation part F̃
ÂB̂Ĉ

and a background part F
ÂB̂Ĉ

. While the former is based on

an O(D,D)-valued fluctuation generalized vielbein Ẽ
Â
B, which has to fulfill the strong

constraint

DAD
A· = 0 , (1.3)

the latter arises as the structure coefficients of the background group manifold whose

tangent space is spanned by the vielbein EA
I ∈ GL(2D), where I, J,K also run from

1, . . . , 2D:

F̃
ÂB̂Ĉ

= 3D[ÂẼB̂
EẼ

Ĉ]E and F
ÂB̂Ĉ

= Ẽ
Â
DẼ

B̂
EẼ

Ĉ
FFDEF (1.4)

with FABC = 2D[AEB]
IECJ .
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Note that we use the flat derivatives

DA = EA
I∂I and D

Â
= E

Â
BDB . (1.5)

Moreover, the covariant fluxes transform as scalars under generalized diffeomorphisms and

2D-diffeomorphisms. Remarkably, the background part is much more flexible than the

fluctuation part. It is only restricted by the Jacobi identity

FAB
EFEC

D + FCA
EFEB

D + FBC
EFEA

D = 0 (1.6)

which is equivalent to the closure constraint [10–12] in the original formulation for constant

fluxes. Thus, this splitting allows to treat all possible solutions of the embedding tensor

and not only the geometric subset.

Besides the manifest invariance under generalized and 2D-diffeomorphisms, the ac-

tion (1.1) is also invariant under double Lorentz transformations. Its equations of motion

G = 0 and G[ÂB̂] = 0 (1.7)

have the same form as in the original formulation. The absence of the strong constraint

violating term 1/6FABCF
ABC in (1.1), proposed by [11], results directly from the CFT

origin of the theory. A non-vanishing value of this term would result in a conformal

anomaly. Still, this term can be added by hand without spoiling any symmetries in order

to reproduce the scalar potential of half-maximal, electrically gauged supergravities.

Especially in order to perform generalized Scherk-Schwarz compactifications [9, 11–13],

which recently got a lot of attention in DFT [14–17] but also in Exceptional Field Theories

(EFTs) [18, 19], a flux formulation is the preferred starting point. Hence, we directly

apply the results obtained in the first part of this paper to discuss these compactifications

in our new framework. With an appropriate compactification ansatz, we obtain a bosonic

subsector of a half-maximal, electrically gauged supergravity

Seff =

∫
dD−nx

√−g e−2φ

(
R+ 4∂µφ∂µφ− 1

12
ĜµνρĜ

µνρ

− 1

4
ĤABF̂AµνF̂B

µν +
1

8
D̂µĤABD̂µĤAB − V

)
(1.8)

as lower dimensional effective theory. Now, the background vielbein EA
I takes the role

of the twist UI
J appearing in generalized Scherk-Schwarz compactifications of original

DFT. As it is much less restricted than the twist, e.g. it only has to be a GL(2D) element

instead of being limited to the subgroup O(D,D), it can be identified with the left-invariant

Maurer-Cartan form of the effective theory’s gauge group. In original DFT, this possibility

is ruled out. Thus, there is no explicit construction of the twists UI
J starting from a

solution of the embedding tensor. It has to be ‘guessed’, which of course is an unsatisfactory

situation. This problem is solved in DFTWZW. Interestingly, these new results are in perfect

accordance with standard, geometric Scherk-Schwarz compactifications [20, 21] where the

twist is chosen as a Maurer-Cartan form, too.

– 3 –
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The paper is organized as follows: in the first part, which is contained in section 2,

we successively go through all the steps necessary to rewrite the generalized metric action

of DFTWZW in terms of the covariant fluxes presented above. Afterwards we discuss in

section 2.3.1 the absence of the strong constraint violating term 1/6FABCF
ABC , which

was introduced in the original flux formulation to reproduce the scalar potential of half-

maximal, electrically gauge supergravities. Furthermore, we prove the double Lorentz

invariance of the action in section 2.3.2. Next, the gauge transformations and equations of

motions are derived. The second part of the paper in section 3 is dedicated to generalized

Scherk-Schwarz compactifications. After a short review of the embedding tensor formalism,

especially in n = 3 internal dimensions, original DFT is discussed. Here, we highlight the

problem of constructing the twist, mentioned above. In section 3.3, we switch to the new

flux formulation of DFTWZW. In this framework, the generalized background vielbein EA
I

takes the role of the twist and can be chosen as the left invariant Maurer-Cartan form on

the group manifold. We present explicitly how to construct it, starting form an arbitrary

solution of the embedding tensor, in section 3.4. Finally, section 4 concludes the paper. In

the appendix, we provide the background generalized vielbeins for all compact embeddings

in O(3, 3).

2 Flux formulation

Starting from the generalized metric formulation, which is shortly reviewed in section 2.1,

we derive the corresponding flux formulation. To this end, we first identify the covariant

fluxes in our framework in section 2.2. Afterwards, we rewrite the generalized metric

action (2.14) in terms of these objects, yielding the desired flux formulation. Moreover, we

discuss its symmetries and equations of motion.

2.1 Review of the generalized metric formulation

In the following, we present a compact review of the DFTWZW generalized metric formu-

lation, derived in [8]. It is going to be the starting point for the derivation of the flux

formulation in the next sections. The theory is formulated on a 2D-dimensional space with

the coordinates

XI =
(
xi xī

)
. (2.1)

Doubled, curved indices are denoted by capital letters beginning from I. They run from

one to 2D and decompose into unbared and bared indices, each of them running from 1 to

D. Doubled indices are lowered and raised with

ηIJ = EA
IE

B
J ηAB and its inverse ηIJ = EA

IEB
JηAB . (2.2)

Besides curved indices, also flat indices appear in this context. The latter are represented

by letters ranging from A to H and are linked to the former by the generalized background

vielbein EA
I and its inverse transpose EA

I . In order to explicitly calculate ηIJ , we define

its flat version

ηAB =

(
ηab 0

0 −ηāb̄

)
and ηAB =

(
ηab 0

0 −ηāb̄

)
. (2.3)

– 4 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
9

Its constituents ηab and ηāb̄ are both Minkowski metrics with signature (+, −, . . . , −). As

opposed to the original DFT framework [2, 4, 5], the vielbein EA
I is not restricted to be

O(D,D) valued. It is an element of GL(2D) and generally depends on all coordinates XI .

Taking into account the partial derivative

∂I =
(
∂i ∂ī

)
(2.4)

on the target space, we are able to define the flat derivative

DA = EA
I∂I . (2.5)

The commutator of two such flat derivatives gives rise to another one, namely

[DA, DB] = FAB
CDC . (2.6)

This relation allows to define the structure coefficients

FABC = 2Ω[AB]C with the coefficients of anholonomy ΩABC = DAEB
IECI . (2.7)

For DFTWZW, they have to be constant and totally antisymmetric, which restricts the

doubled background space to group manifolds. In order to write the action and its gauge

transformations in a compact form, it is convenient to introduce the covariant derivative

∇AV
B = DAV

B +
1

3
FB

ACV
C . (2.8)

It possesses the following properties:

• Compatibility with the frame

∇AEB
I = DAEB

I − 1

3
FC

ABEC
I + EA

JΓI
JKEB

K = 0 , (2.9)

which allows to calculate the Christoffel symbols

ΓI
JK =

1

3
F I

JK − ΩJK
I . (2.10)

• Compatibility with the η metric

∇A ηBC = 0 . (2.11)

• Compatibility with integration by parts
∫

dX2De−2d̄ v(∇Aw) = −
∫

dX2De−2d̄ (∇Av)w (2.12)

where d̄ denotes the background generalized dilaton and v, w are placeholders for

tensorial objects contracting to a scalar. This identity is equivalent to

∇Ie
−2d̄ = ∂Ie

−2d̄ − ΓJ
IJe

−2d̄ = 0 or ΩIJ
J = 2∂I d̄ , (2.13)

where we used that e−2d̄ transforms as a scalar density with weight +1.

– 5 –
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After this prelude, we are able to write down the DFTWZW action

S =

∫
d2nXe−2dR , (2.14)

with the generalized curvature scalar

R = 4HAB∇A∇Bd−∇A∇BHAB − 4HAB∇Ad∇Bd+ 4∇Ad∇BHAB

+
1

8
HCD∇CHAB∇DHAB − 1

2
HAB∇BHCD∇DHAC +

1

6
FACDFB

CDHAB , (2.15)

which was derived in [8]. Its dynamical fields are the generalized metric, fulfilling

HACHBDηCD = ηAB , (2.16)

and the generalized dilaton d. The action (2.14) is invariant under generalized diffeomor-

phisms

δξHAB = LξHAB = λC∇CHAB + (∇AλC −∇Cλ
A)HCB + (∇BλC −∇Cλ

B)HAC

δξd = Lξd = ξA∇Ad−
1

2
∇Aξ

A , (2.17)

mediated by the generalized Lie derivative, if the strong constraint

∇AD
A· = 0 (2.18)

holds for fluctuations and the background structure coefficients fulfill the Jacobi identity

FAB
EFEC

D + FCA
EFEB

D + FBC
EFEA

D = 0 . (2.19)

The placeholder · stands for HAB, d, the parameter ξA of the gauge transformation δξ and

arbitrary products of them. They have to be treated like scalars in equation (2.18). Thus,

the covariant derivative only acts on the index of DA. Imposing both the strong constraint

and the Jacobi identity, the commutator of two gauge transformations

[Lξ1 , Lξ2 ] = L[ξ1,ξ2]C (2.20)

gives rise to another gauge transformation. Its resulting parameter is governed by the

C-bracket

[ξ1, ξ2]
A
C = ξB1 ∇Bξ

A
2 − 1

2
ξB1 ∇A ξ2B − (1 ↔ 2) (2.21)

and the gauge algebra closes.

Besides generalized diffeomorphisms, the action (2.14) is also manifestly invariant un-

der ordinary 2D-diffeomorphisms. They are dictated by the Lie derivative Lξ and the

covariant derivative ∇I is covariant with respect to them. This additional symmetry is

absent in the original generalized metric formulation of DFT. By applying the optional

extended strong constraint

∂Ib ∂
If = 0 , (2.22)

linking background fields b and fluctuations f , and by further restricting the background

generalized vielbein to be O(D,D) valued, one breaks the 2D-diffeomorphism invariance.

In this case, the original formulation emerges as a very special case of DFTWZW.

– 6 –
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2.2 Covariant fluxes

Before writing the DFTWZW action in the flux formulation, we first have to fix its con-

stituents, the covariant fluxes. Therefore, we introduce the composite generalized vielbein

E
Â
I = Ẽ

Â
BEB

I , (2.23)

which combines the background vielbein EA
I with a new vielbein Ẽ

Â
B, capturing fluctu-

ations around the background. While the former is not O(D,D) valued, the latter is and

thus fulfills

ηAB = ẼĈ
A η

ĈD̂
ẼD̂

B , (2.24)

where ηAB and η
ÂB̂

have exactly the same entries. Much more, it allows to express the

generalized metric as

HAB = ẼĈ
A S

ĈD̂
ẼD̂

B . (2.25)

It is of great importance to distinguish between the different indices appearing in the dif-

ferent vielbeins. We already encountered the curved indices I, J , K, . . . and their flat

counter parts. Now, we also use hatted indices like Â, B̂, Ĉ, . . . . As we are going to see

shortly, these indices are connected to the doubled Lorentz symmetry, we discuss in sec-

tion 2.3.2. At the first glance, it seems puzzling to have two different generalized vielbeins,

while in the original formulation one is sufficient. The additional structure, introduced by

the background generalized vielbein EA
I , can be illustrated through the following diagram:

O(1, D − 1)×O(D − 1, 1) O(D,D) GL(2D)
ηIJ

EB
I

HAB

Ẽ
Â
B

. (2.26)

Starting point is a 2D-dimensional smooth manifoldM equipped with a pseudo Riemannian

metric η, which exhibits a split signature. It reduces the manifold’s structure group from

GL(2D) to O(D,D). The corresponding frame bundle on M is given by the background

generalized vielbein EA
I . Moreover, there is the generalized metric HAB. It further reduces

the structure group to the double Lorentz group O(1, D−1)×O(D−1, 1) and is represented

by the fluctuation frame Ẽ
Â
B. In original DFT, the information encoded in ηIJ is missing.

To get familiar with the new, composite generalized vielbein E
Â
I , we calculate the

C-bracket

[
E
Â
, E

B̂

]J
C
E
ĈJ

= 2E[Â
I∂IEB̂]

JE
ĈJ

− E[Â
I∂JE

B̂]IEĈJ
+ T J

IKE
Â
IE

B̂
KE

ĈJ

= F
ÂB̂Ĉ

+ 2D[Â Ẽ
B̂]

DẼ
ĈD

−D
Ĉ
Ẽ[B̂

DẼ
Â]D . (2.27)

In the first line, we have applied the generalized torsion [7]

T I
JK = −ΩI

[JK] (2.28)

of the covariant derivative ∇I to express the C-bracket in terms of partial derivatives

instead of covariant derivatives. Similar to the use of EA
I to switch between flat and

curved indices, we apply Ẽ
Â
B to obtain the structure coefficients

F
ÂB̂Ĉ

= Ẽ
Â
DẼ

B̂
EẼ

Ĉ
FFDEF (2.29)
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in hatted indices. Furthermore, we define the coefficients of anholonomy

Ω̃
ÂB̂Ĉ

= Ẽ
Â
DDDẼB̂

EẼ
ĈE

= D
Â
Ẽ

B̂
EẼ

ĈE
(2.30)

with

D
Â
= Ẽ

Â
BDB (2.31)

for the fluctuations analogous to (2.7). Due to the fact that the metric ηAB is constant

and therefore can be pulled through flat derivatives, they are antisymmetric in their last

two indices:

Ω̃
ÂB̂Ĉ

= −Ω̃
ÂĈB̂

. (2.32)

Finally, we introduce the fluxes

F̃
ÂB̂Ĉ

= 3Ω̃[ÂB̂Ĉ] = Ω̃
ÂB̂Ĉ

+ Ω̃
B̂ĈÂ

+ Ω̃
ĈÂB̂

(2.33)

in the same way as they are defined in the flux formulation of original DFT. With these

definitions (2.27) simplifies to

[
E
Â
, E

B̂

]M
C

E
ĈM

= F
ÂB̂Ĉ

+ 2Ω̃[ÂB̂]Ĉ − Ω̃
Ĉ[B̂Â] = F

ÂB̂Ĉ
+ F̃

ÂB̂Ĉ
:= F

ÂB̂Ĉ
(2.34)

and allows us to introduce the covariant fluxes F
ÂB̂Ĉ

. They decompose into a background

part F
ÂB̂Ĉ

and a fluctuation part F̃
ÂB̂Ĉ

. An alternative way to construct the covariant

fluxes makes use of the generalized Lie derivative

E
ĈM

LE
Â
E
B̂
M =

[
E
Â
, E

B̂

]M
C
E
ĈM

+
1

2
∇M

(
E
ÂN

E
B̂
N
)
=

[
E
Â
, E

B̂

]M
C
E
ĈM

= F
ÂB̂Ĉ

. (2.35)

By construction, these fluxes are covariant under generalized diffeomorphisms and 2D-

diffeomorphisms. Under both, they transform as scalars.

Besides FABC , the original flux formulation [9, 11, 22] contains FA. Its embedding in

the DFTWZW framework follows from the definition

F
Â
= −e2dLE

Â
e−2d = −e2d∇B

(
E
Â
Be−2d

)
= Ω̃B̂

B̂Â
+ 2D

Â
d̃− E

Â
Be2d̄∇Be

−2d̄

= 2D
Â
d̃+ Ω̃B̂

B̂Â
= F̃

Â
. (2.36)

Here, we have applied the decomposition

d = d̄+ d̃ (2.37)

of the generalized dilaton in a fluctuation and background part d̄ and d̃. Going from the

first to the second line, we make further use of (2.13), a direct consequence of the covariant

derivative’s compatibility with integration by parts. As the covariant fluxes derived in the

last paragraph, F
Â
transforms under generalized and 2D-diffeomorphisms like a scalar.

– 8 –
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2.3 Action

Now, we are ready to derive the action of the DFTWZW flux formulation. Following [9], we

start from the generalized curvature scalar (2.15) and plug in the generalized metric (2.25),

expressed in terms of the generalized vielbein E
Â
I .

Let us first calculate the term

∇
Â
HB̂Ĉ = Ẽ

Â
AẼB̂

BẼ
Ĉ
C∇AHBC

= Ω̃
ÂD̂

B̂SD̂Ĉ + Ω̃
ÂD̂

ĈSB̂D̂ +
1

3
F B̂

ÂD̂
SD̂Ĉ +

1

3
F Ĉ

ÂD̂
SB̂D̂ (2.38)

which we are going to need several times in the following calculations. Equipped with this

result, we obtain for the first two terms in the second line of (2.15)

1

8
HCD∇CHAB∇DHAB =

1

36
F
ÂĈD̂

F
B̂
ĈD̂SÂB̂ − 1

36
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

+
1

4
Ω̃
ÂĈD̂

Ω̃
B̂
ĈD̂SÂB̂ − 1

4
Ω̃
ÂĈÊ

Ω̃
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

+
1

6
F
ÂĈD̂

Ω̃
B̂
ĈD̂SÂB̂ − 1

6
F
ÂĈÊ

Ω̃
B̂D̂F̂

SÂB̂SĈD̂SÊF̂ (2.39)

and

−1

2
HAB∇BHCD∇DHAC =

1

18
F
ÂĈD̂

F
B̂
ĈD̂SÂB̂ − 1

18
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂ (2.40)

+
1

2
Ω̃
ÂĈÊ

Ω̃
D̂B̂F̂

SÂB̂SĈD̂SÊF̂ − 1

2
Ω̃
ĈÂD̂

Ω̃
B̂
ĈD̂SÂB̂ − 1

2
Ω̃
ÂĈD̂

Ω̃Ĉ
B̂
D̂SÂB̂

− 1

2
Ω̃
ĈD̂Â

Ω̃D̂
B̂
ĈSÂB̂ +

1

3
F
ÂĈD̂

Ω̃
B̂
ĈD̂SÂB̂ − 1

3
F
ÂĈÊ

Ω̃
B̂D̂F̂

SÂB̂SĈD̂SÊF̂ .

The remaining third term in this line yields

1

6
FACDFB

CDHAB =
1

6
F
ÂĈD̂

F
B̂
ĈD̂SÂB̂ . (2.41)

Summing up these three terms and combining appropriate terms into covariant fluxes

F
ÂB̂Ĉ

, we find

1

8
HCD∇CHAB∇DHAB − 1

2
HAB∇BHCD∇DHAC +

1

6
FACEFBDFHABηCDηEF =

=
1

4
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂ηĈD̂ηÊF̂ − 1

12
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

−1

2
Ω̃
ĈD̂Â

Ω̃ĈD̂
B̂
SÂB̂ − Ω̃

ĈD̂Â
Ω̃D̂

B̂
ĈSÂB̂ − F

ÂĈD̂
Ω̃ĈD̂

B̂
SÂB̂ . (2.42)

Except for the last line, this result looks already quite promising. Subsequently, we evaluate

the terms in the first line of (2.15). They give rise to

4HAB∇A∇Bd = 4SÂB̂D
Â
D

B̂
d̃− 4SÂB̂ Ω̃

ÂB̂
ĈD

Ĉ
d̃ , (2.43)

−4HAB∇Ad∇Bd = −4SÂB̂D
Â
d̃ D

B̂
d̃ , (2.44)

4∇Ad∇BHAB = −4D
Â
d̃ Ω̃Ĉ

ĈB̂
SÂB̂ + 4SÂB̂ Ω̃

ÂB̂
ĈD

Ĉ
d̃ (2.45)
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and

−∇A∇BHAB = −SÂB̂ Ω̃Ĉ
ĈÂ

Ω̃D̂
D̂B̂

+ SÂB̂D
Â
Ω̃Ĉ

ĈB̂

+ Ω̃
B̂Ĉ

ÂSB̂Ĉ Ω̃D̂
D̂Â

−D
Â
Ω̃
B̂Ĉ

ÂSB̂Ĉ . (2.46)

We rewrite the last two terms of (2.46) as

− Ẽ
Â
AẼ

B̂
B
(
DADBẼĈ

M
)
ẼÂ

M SB̂Ĉ + Ω̃
ĈD̂Â

Ω̃D̂
B̂
ĈSÂB̂ , (2.47)

while the last term in the first line of this equation yields

− Ẽ
Â
AẼ

B̂
B
(
DADBẼĈ

M
)
ẼÂ

M SB̂Ĉ − F
ÂĈD̂

Ω̃ĈD̂
B̂
SÂB̂ . (2.48)

Combining these two results, we find

−∇A∇BHAB = −SÂB̂ Ω̃Ĉ
ĈÂ

Ω̃D̂
D̂B̂

+ 2SÂB̂D
Â
Ω̃Ĉ

ĈB̂
(2.49)

+ Ω̃
ĈD̂Â

Ω̃D̂
B̂
ĈSÂB̂ + F

ÂĈD̂
Ω̃ĈD̂

B̂
SÂB̂ . (2.50)

In total, the terms in the first line of (2.15) give rise to

4HAB∇A∇Bd−∇A∇BHAB − 4HAB∇Ad∇Bd+ 4∇Ad∇BHAB =

= 2SÂB̂D
Â
F
B̂
− SÂB̂F

Â
F
B̂
+ Ω̃

ĈD̂Â
Ω̃D̂

B̂
ĈSÂB̂ + F

ÂĈD̂
Ω̃ĈD̂

B̂
SÂB̂ . (2.51)

Ultimately, we arrive at

R =
1

4
F
ÂĈD̂

F
B̂
ĈD̂SÂB̂ − 1

12
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

− 1

2
Ω̃
ĈD̂Â

Ω̃ĈD̂
B̂
SÂB̂ + 2SÂB̂D

Â
F
B̂
− SÂB̂F

Â
F
B̂

(2.52)

by taking (2.42) and (2.51) into account. Moreover, applying the strong constraint

D
Ĉ
Ẽ

D̂
ADĈẼD̂

B = 0 (2.53)

for fluctuations, the first term in the second line vanishes. Analogous to the generalized met-

ric formulation of DFTWZW discussed in section 2.1, the strong constraint only is required

for fluctuations. For the background, captured by F
ÂB̂Ĉ

, only the Jacobi identity (2.19)

has to hold. Performing integration by parts
∫

d2DX e−2dD
Â
v w =

∫
d2DX (F

Â
v w − v D

Â
w) , (2.54)

we obtain the action

S =

∫
d2DX e−2d

(
SÂB̂F

Â
F
B̂
+

1

4
F
ÂĈD̂

F
B̂
ĈD̂ SÂB̂ − 1

12
F
ÂĈÊ

F
B̂D̂F̂

SÂB̂SĈD̂SÊF̂

)
.

(2.55)

It is manifestly invariant under generalized diffeomorphisms and 2D-diffeomorphisms, be-

cause it only contains covariant fluxes and no additional flat derivatives. Its form is equiv-

alent to the original flux formulation of [11] without strong constraint violation terms. We
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explain in the next section why these terms are absent here. However, the covariant fluxes

F
ÂB̂Ĉ

differ significantly from the previous results. They now exhibit an explicit splitting

into a fluctuation and a background part.

In order to demonstrate the transition to the original formulation after imposing the

extended strong constraint (2.22) and restricting the background generalized vielbein to

O(D,D), this splitting has to vanish. Hence, if we remember that imposing these two

optional constraints allows us to replace [8]

FABC = 2Ω[AB]C with FABC = 3Ω[ABC] , (2.56)

which yields

F
ÂB̂Ĉ

= 3(Ω̃[ÂB̂Ĉ] +Ω[ÂB̂Ĉ]) = 3D[ÂEB̂
IE

Ĉ]I . (2.57)

This breaks the strict distinction between background and fluctuations. Only the O(D,D)

valued composite vielbein remains. Of course, its dynamics are still governed by the ac-

tion (2.55).

2.3.1 Strong constraint violating terms

The action (2.55) reproduces all terms of the original flux formulation [11]

SDFT =

∫
d2DX e−2d

(
FAFBS

AB +
1

4
FACDFB

CDSAB − 1

12
FABCFDEFS

ADSBESCF

− 1

6
FABCFABC −FAFA

)
, (2.58)

except for the strong constraint violating ones in the second line. All fluctuations are

required to fulfill the strong constraint. Thus, they do not contribute to these missing

terms. Nonetheless, one would expect to find at least background contributions of the form

FAF
A or

1

6
FABCF

ABC . (2.59)

In order to see why these terms are not appearing either, we go back to the CSFT origins

of DFTWZW. We only considered CFTs with a constant dilaton. Thus, FA = 0 has to hold

and the first term in (2.59) drops out. Further, remember the expression for the central

charge [7]

c =
kD

k + h∨
(2.60)

of the closed strings left moving part, with the level k and the dual Coxeter number h∨.

It gives rise to the total central charge

ctot = c+ cgh = D − Dh∨

k
+ cgh +O(k−1) , (2.61)

after adding the ghost contribution cgh. Terms of order k−2 and higher were excluded

during the derivation of DFTWZW. Therefore, we also neglect them when computing the

central charge. Using

ηab = − α′k

4h∨
Fad

cFbc
d , (2.62)

– 11 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
9

as it was defined in [7], we express the second term in (2.61),

− Dh∨

k
=

α′

4
Fad

cFbc
dηab , (2.63)

through the unbared structure coefficients.1 Keeping in mind that the same relations hold

for the central charge of the anti-chiral, right moving part, we obtain

ctot − c̄tot =
α′

4

(
Fad

cFbc
dηab − Fād̄

c̄Fb̄c̄
d̄ηāb̄

)
= −α′

2
FABCF

ABC (2.64)

when remembering the decompositions

ηAB =
1

2

(
ηab 0

0 −ηāb̄

)
and FAB

C =





Fab
c

Fāb̄
c̄

0 otherwise .

(2.65)

This result is proportional to the second term in (2.59). As CSFT derivations require that

both total central charges ctot and c̄tot vanish independently, it has to vanish, too. Another

interesting effect of this observation is that the scalar curvature

R =
2

9
FABCF

ABC = RABC
BηAC = 0 , (2.66)

which arises from the Riemann curvature tensor

RABC
D =

2

9
FAB

EFEC
D , (2.67)

induced by the covariant derivative ∇A, has to vanish.

2.3.2 Double Lorentz symmetry

Besides generalized and 2D-diffeomorphisms invariance, there is local double Lorentz sym-

metry. It acts on hatted indices, as the one of the fluctuation generalized vielbein, by

Ẽ
Â
B → T

Â
ĈẼ

Ĉ
B (2.68)

where the tensor T
Â
B̂ has to fulfill the properties

T
Â
Ĉη

ĈD̂
T
B̂
D̂ = η

ÂB̂
and T

Â
ĈS

ĈD̂
T
B̂
D̂ = S

ÂB̂
. (2.69)

Whereas in the generalized metric formulation local double Lorentz symmetry is manifest,

because there are no hatted indices, in the flux formulation it is not and we have to check

it explicitly. To this end, we consider the infinitesimal version of (2.68). We denote such

transformations by

δΛEÂ
I = Λ

Â
B̂E

B̂
I . (2.70)

1Note that this identification only works for semisimple Lie algebras whose Killing form is non-degenerate.

But this was also exactly the assumption while deriving DFTWZW via CSFT.
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Furthermore, as a generator of a doubled Lorentz transformations, Λ
ÂB̂

fulfills the identities

Λ
ÂB̂

= −Λ
B̂Â

and Λ
ÂB̂

= S
ÂĈ

ΛĈD̂S
D̂B̂

. (2.71)

A short calculation gives rise to the transformation behavior

δΛFÂB̂Ĉ
= 3

(
D ˆ[A

Λ
B̂Ĉ] + Λ[Â

D̂F
B̂Ĉ]D̂

)
(2.72)

δΛFÂ
= DB̂Λ

B̂Â
+ Λ

Â
B̂F

B̂
(2.73)

of the covariant fluxes. Note that the last terms in both equations spoil covariance under

double Lorentz transformations. Using these results, it is straightforward to calculate

δΛS = −
∫

d2nX e−2dΛ
Â
ĈδÂB̂Z

B̂Ĉ
(2.74)

with

Z
ÂB̂

= DĈF
ĈÂB̂

+ 2D[ÂFB̂] −F ĈF
ĈÂB̂

. (2.75)

We do not present the intermediate steps of this calculation, since they are analogous to

the derivation for the flux formulation of original DFT [11]. For evaluation of Z
ÂB̂

, we split

the covariant fluxes F
ÂB̂Ĉ

into their fluctuation and background parts according to (2.34).

Consequently, we have to calculate the terms

DĈ F̃
ĈÂB̂

= DC
(
DCẼ[Â

DẼ
B̂]D

)
+ Ω̃Ĉ

ĈD̂
Ω̃D̂

ÂB̂
+ 2DĈΩ̃[ÂB̂]Ĉ

DĈF
ĈÂB̂

= Ẽ
Â
AẼ

B̂
BDCFCAB + Ω̃D̂

D̂
ĈF

ĈÂB̂
+ 2F[ÂĈD̂

Ω̃ĈD̂
B̂]

2D[ÂF̃B̂] = 2F
ÂB̂

ĈD
Ĉ
d̃+ 4Ω̃[ÂB̂]

ĈD
Ĉ
d̃+ 2D[ÂΩ̃

Ĉ
ĈB̂]

−F̃ ĈF
ĈÂB̂

= −2F
ÂB̂

ĈD
Ĉ
d̃− Ω̃D̂

D̂
ĈF

ĈÂB̂

−F̃ Ĉ F̃
ĈÂB̂

= −2Ω̃Ĉ
ÂB̂

D
Ĉ
d̃− 4Ω̃[ÂB̂]

ĈD
Ĉ
d̃− Ω̃D̂

D̂
ĈΩ̃

ĈÂB̂
− 2Ω̃D̂

D̂
ĈΩ̃[ÂB̂]Ĉ .

The underlined terms cancel due to the identity

2DĈΩ̃[ÂB̂]Ĉ − 2Ω̃D̂
D̂
Ĉ Ω̃[ÂB̂]Ĉ = −2F[ÂĈD̂

Ω̃ĈD̂
B̂] − 2D[ÂΩ̃

Ĉ
ĈB̂] (2.76)

which arises after swapping two flat derivatives. Thus, equation (2.75) yields

Z
ÂB̂

= DC
(
DCẼ[Â

DẼ
B̂]D

)
− 2Ω̃Ĉ

ÂB̂
D

Ĉ
d̃+ Ẽ

Â
AẼ

B̂
BDCFCAB , (2.77)

where the first two terms vanish under the strong constraint. The remaining term gives

rise to

Z
ÂB̂

= Ẽ
Â
AẼ

B̂
BDCFCAB . (2.78)

The structure coefficients FABC are constant, as we are on a group manifold, and we

finally find Z
ÂB̂

= 0. Hence, we have proved the invariance of the action (2.55) under

double Lorentz transformations.
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2.4 Gauge transformations

In the flux formulation it is convenient to write all quantities in hatted indices. Thus,

we now check how the gauge transformations (2.17) of DFTWZW act on these indices.

Therefore, we introduce an arbitrary vector in the canonical way

V Â = ẼÂ
BV

B . (2.79)

Parameters of a gauge transformation are vectors, too. Hence, they are given in the same

fashion. This splitting allows to evaluate the generalized Lie derivatives as

LξV
Â = ξB̂D

B̂
V Â +

(
DÂξ

B̂
−D

B̂
ξÂ

)
V B̂ + F Â

B̂Ĉ
ξB̂V Ĉ and (2.80)

Lξd =
1

2
ξÂF

Â
− 1

2
D

Â
ξÂ , (2.81)

where F
ÂB̂Ĉ

and F
Â

denote the covariant fluxes defined in (2.34) and (2.36). Note that

this result formally matches with the original flux formulation. But, as for the action, the

covariant fluxes are defined differently and split into a background and a fluctuation part.

Furthermore, equipped with (2.79), we are also able to compute the C-bracket (2.21)

in hatted indices. Doing so, we obtain

[
ξ1, ξ2

]Â
C
= ξB̂1 DB̂

ξÂ2 − 1

2
ξB̂1 D

Âξ2 B̂ +
1

2
F Â

B̂Ĉ
ξB̂1 ξ

Ĉ
2 − (1 ↔ 2) . (2.82)

Again, the same comments as for the action and the generalized Lie derivative hold.

2.5 Equations of motion

Now, we derive the equations of motion, following [11, 12]. The variations of the ac-

tion (2.55) with respect to the dilaton fluctuations d̃ and the fluctuation vielbein Ẽ
Â
B can

be formally written as

δd̃ S =

∫
d2nXe−2d G δd̃ (2.83)

and

δE S =

∫
d2nXe−2d GÂB̂ δẼ

ÂB̂
with δẼ

ÂB̂
= δẼ

Â
CẼ

B̂C
. (2.84)

Because δẼ
ÂB̂

is antisymmetric, which immediately follows from

δ(Ẽ
Â
CẼ

B̂C
) = δη

ÂB̂
= 0 , (2.85)

only the antisymmetric part of GÂB̂ contributes. Evaluating the variations (2.83) and (2.84)

explicitly, we find

G = −2R and G[ÂB̂] = 2SD̂[ÂDB̂]F
D̂
+
(
F
D̂
−D

D̂

)
F̌ D̂[ÂB̂] + F̌ ĈD̂[ÂF

ĈD̂
B̂] (2.86)

with

F̌ ÂĈÊ =

(
− 1

2
SÂB̂SĈD̂SÊF̂ +

1

2
SÂB̂ηĈD̂ηÊF̂ +

1

2
ηÂB̂SĈD̂ηÊF̂ +

1

2
ηÂB̂ηĈD̂SÊF̂

)
F
B̂D̂F̂

.

(2.87)
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Thus, the equation of motion read

G = 0 and G[ÂB̂] = 0 . (2.88)

Again, this result matches the one for the original flux formulation, which was derived

in [11]. However, keep in mind that the covariant fluxes used here differ significantly from

the original ones. The object F̌ ÂB̂Ĉ seems at first glance quite artificial. Its role becomes

more obvious, if we rewrite it through

F̌
ÂĈÊ

= P
ÂĈÊ

B̂D̂F̂F
B̂D̂F̂

, (2.89)

where P
ÂĈÊ

B̂D̂F̂ incorporates eight different projections

P
ÂĈÊ

B̂D̂F̂ = P
Â
B̂P

Ĉ
D̂P

Ê
F̂ − P̄

Â
B̂P̄

Ĉ
D̂P̄

Ê
F̂ + P̄

Â
B̂P

Ĉ
D̂P

Ê
F̂ + P

Â
B̂P̄

Ĉ
D̂P

Ê
F̂ (2.90)

+ P
Â
B̂P

Ĉ
D̂P̄

Ê
F̂ − P̄

Â
B̂P̄

Ĉ
D̂P

Ê
F̂ − P̄

Â
B̂P

Ĉ
D̂P̄

Ê
F̂ − P

Â
B̂P̄

Ĉ
D̂P̄

Ê
F̂

with the projectors

P
Â
B̂ =

1

2

(
S
Â
B̂ + δ

Â
B̂
)

and P̄
Â
B̂ = −1

2

(
S
Â
B̂ − δ

Â
B̂
)
. (2.91)

These two projectors are well known from the equations of motion in the generalized metric

formulation [5, 8].

3 Generalized Scherk-Schwarz compactification

The flux formulation derived in section 2 allows us to connect DFTWZW with generalized

Scherk-Schwarz compactifications. Evidences for this link were already mentioned in [7, 8].

Here, we make it manifest by applying a slightly adapted generalized Scherk-Schwarz ansatz

and derive the low-energy, effective theory in section 3. As expected, this theory describes a

bosonic subsector of a half-maximal, electrically gauged supergravity. All emerging gauged

supergravities can be classified in terms of the embedding tensor which is reviewed in

section 3.1. Following [15, 23], explicit solutions are discussed for compactifications with

n = 3 internal dimensions. Before we present our new results, we shortly review generalized

Scherk-Schwarz compactifications in original DFT, where the construction of the twist,

which captures all the properties of the compactification, is problematic. In general, the

original DFT description is lacking an explicit algorithm to obtain the twist from a solution

of the embedding tensor and so one has to start guessing. Thus, it is not clear whether there

exist twists for all solutions of the embedding tensor at all. With the results presented in

this section, we are now able to evade these problems completely. Hence, we give a detailed

prescription to derive the background generalized vielbeins, which take the role of the twist,

for arbitrary solutions of the embedding tensor in section 3.4.

3.1 Embedding tensor

Before starting with the actual generalized Scherk-Schwarz compactifications, we discuss

an essential tool to classify maximal/half-maximal gauged supergravities which arise from
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these compactifications. This tool is called the embedding tensor ΘI
α. For a comprehensive

review see e.g. [24]. It describes the embedding of the supergravity’s gauge group into the

global symmetry group of the ungauged theory. For DFT, we are interested in embeddings

in O(D,D), the T-duality group of a D-dimensional torus. There is a direct relation

between the embedding tensor and the structure coefficients

FAB
C = ΘA

α
(
tα
)
B
C =

(
XA

)
B
C , (3.1)

of the Lie algebra, related to the gauge group. Here, tα labels the different O(D,D)

generators. Their vector representation, acting on arbitrary doubled vectors V A as

tαV
A = V B(tα)B

A , (3.2)

is denoted by
(
tα
)
B
C . In general, the embedding tensor must fulfill two conditions: a linear

and a quadratic constraint. Each solution to both of them specifies a consistent gauged

supergravity.

For higher dimensions, solving these constraints is very challenging. Thus, we here

restrict the discussion to n = 3 internal dimensions. Following [15, 23], we are going to find

in total twelve different solutions, each of them possessing a continuous parameter α. To be

more specific, tα in (3.1) is assumed to describe the six different o(3, 3) generators. Their

vector representation carries indices A,B, · · · running from 1, . . . , 6. Group-theoretically,

the embedding tensor product lives in the tensor product

6⊗ 15 = 6⊕ 10⊕ 10⊕ 64 , (3.3)

where the first factor represents the vector representation, while the second one stands for

the adjoint representation labeled by the subscript α in tα. The linear constraint projects

out certain irreps. In our case, we only keep the irreps 10⊕10 of the decomposition (3.3).

All other components of the embedding tensor are set to zero. Now, FABC is in one

to one correspondence with the vacuum expectation value (or background part) of the

covariant fluxes FABC , which have exactly the right number (6·5·4/3! = 20) of independent

components.

Following [15], we can express
(
XA

)
B
C through irreps of sl(4) instead of using so(3, 3).

Both algebras are isomorphic and the decomposition (3.3) does not change. In order to

distinguish between the two different algebras we introduce the fundamental sl(4) indices

p, q, r = 1, . . . , 4. The relevant 10⊕ 10 part of the embedding tensor then reads [15]

(
Xmn

)
p
q =

1

2
δq [mMn]p −

1

4
εmnprM̃

rq (3.4)

where Mnp and M̃ rq are symmetric matrices and ε labels the Levi-Civita symbol in 4-

dimensions. These symmetric matrices have 4 · 5/2 = 10 independent components each.

Thus, we identify Mpq with the irrep 10, while M̃ rp lives in the dual irrep 10. Furthermore,

the indices m and n in
(
Xmn

)
p
q are antisymmetric and label the 4 · 3/2 = 6 independent

components of the sl(4) irrep 6. The dual representation with two upper antisymmetric

indices is given by

Xmn =
1

2
εmnpqX

pq . (3.5)
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The irreps 10⊕10 are embedded into the product 6⊗15 by equation (3.4). However,

the structure coefficients live as rank 3 tensor in 6 ⊗ 6 ⊗ 6. Therefore,
(
Xmn

)
p
q needs to

be embedded into this product through the relation

(
Xmn

)
pq

rs = 2
(
Xmn

)
[p
[rδq]

s] . (3.6)

Finally, we have to go back from sl(4) to so(3, 3). To this end, the irrep 6 of the former is

related to the latter one by the ’t Hooft symbols
(
GA

)mn
. For n = 3, they read

(
G1

)mn
=

1√
2




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




,
(
G2

)mn
=

1√
2




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0




,

(
G3

)mn
=

1√
2




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0




,
(
G1̄

)mn
=

1√
2




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0




,

(
G2̄

)mn
=

1√
2




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




,
(
G3̄

)mn
=

1√
2




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0




(3.7)

and satisfy the identities

(
GA

)
mn

(
GB

)mn
= 2ηAB , (3.8)

(
GA

)
mp

(
GB

)pn
+
(
GB

)
mp

(
GA

)pn
= −δm

n ηAB (3.9)

with the standard O(D,D) invariant metric

ηAB =

(
δab 0

0 −δāb̄

)
(3.10)

of DFTWZW. With them, we finally obtain the covariant fluxes

FABC = (Xmn)pq
rs (GA)

mn (GB)
pq (GC)rs (3.11)

in their familiar form.

For our setup, the quadratic constraint of the embedding tensor is equivalent to the

Jacobi identity (2.19) for the structure coefficients FABC of the background vielbein. In

the sl(4) representation (3.6) discussed above, the Jacobi identity has the simple form [15]

MmpM̃
pn =

1

4
δm

nMpqM̃
pq . (3.12)
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ID diagMmn/ cosα diag M̃mn/ sinα range of α gauging

1 1 1 1 1 1 1 1 1 −π
4 < α ≤ π

4

{
SO(4) , α 6= π

4 ,

SO(3) , α = π
4 .

2 1 1 1 −1 1 1 1 −1 −π
4 < α ≤ π

4 SO(3, 1)

3 1 1 −1 −1 1 1 −1 −1 −π
4 < α ≤ π

4

{
SO(2,2) , α 6= π

4 ,

SO(2, 1) , α = π
4 .

4 1 1 1 0 0 0 0 1 −π
2 < α < π

2 ISO(3)

5 1 1 −1 0 0 0 0 1 −π
2 < α < π

2 ISO(2, 1)

6 1 1 0 0 0 0 1 1 −π
4 < α ≤ π

4

{
CSO(2, 0, 2) , α 6= π

4 ,

f1 (Solv6) , α = π
4 .

7 1 1 0 0 0 0 1, −1 −π
2 < α < π

2





CSO(2, 0, 2) , |α| < π
4 ,

CSO(1, 1, 2) , |α| > π
4 ,

g0 (Solv6) , |α| = π
4 .

8 1 1 0 0 0 0 0 1 −π
2 < α < π

2 h1 (Solv6)

9 1 −1 0 0 0 0 1 −1 −π
4 < α ≤ π

4

{
CSO(1, 1, 2) , α 6= π

4 ,

f2 (Solv6) , α = π
4 .

10 1 −1 0 0 0 0 0 1 −π
2 < α < π

2 h2 (Solv6)

11 1 0 0 0 0 0 0 1 −π
4 < α ≤ π

4

{
l (Nil6(3) ) , α 6= 0 ,

CSO(1, 0, 3) , α = 0 .

12 0 0 0 0 0 0 0 0 α = 0 U(1)6

Table 1. Solutions of the embedding tensor for half-maximal, electrically gauged supergravity in

n = 3 dimensions. All shaded entries give rise to compact groups. Details about f1, f2, g0, h1 and

h2 can be found in [15]. All compact solution are also discussed in appendix A in detail.

Since the matrix Mnp is symmetric, one can always find a SO(4) rotation to diagonalize it.

This group is the maximal subgroup of SL(4) and is up to Z2 isomorphic to SO(3)×SO(3),

the maximal compact subgroup of SO(3, 3). Hence, there is always a double Lorentz

transformation that can be applied to the structure coefficients to diagonalize Mnp. If

Mnp is diagonal, M̃ rq is diagonal, too. Otherwise, equation (3.12) would be violated. This

observation allows us to solve the quadratic constraint. In total, one finds the eleven

different non-trivial solutions [15] presented in table 1. All of them depend on one real

parameter α. The shaded ones are compact2 and thus the appropriate starting point for

2Note that groups like ISO(3) or CSO(2, 0, 2) are of course in general not compact. However, one is able

to make them compact by identifying various points. In the same way a compact D-tours arises from the

non-compact plane R
D. As discussed e.g. in [25], this procedure puts restrictions on the background fluxes

and quantizes them.
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a compactification. For completeness, we also added the trivial solution 12 with vanishing

structure coefficients. It arises after a compactification on a T3. Note that only the

solutions 1, 2 and 3 give rise to semisimple Lie groups. The others correspond to solvable

and nilpotent Lie groups. Appendix A shows how to construct the DFTWZW background

generalized vielbein EA
I for all shaded, compact solutions.

3.2 Original DFT

In this subsection, we review generalized Scherk-Schwarz compactifications in the original

flux formulation. In order to perform a compactification, it is essential to distinguish

between internal, compact and external, extended directions. In the following we assume

that there are n internal and D − n external ones. To make this situation manifest, we

split the flat and curved doubled indices used in original DFT into the components

V Ā =
(
Va V a V A

)
and W Ī =

(
Wµ Wµ W I

)
. (3.13)

Lowercase indices like a and µ describe external directions and thus run from 0 to D − 1,

while A and I parameterized the internal, 2n-dimensional doubled space. In this conven-

tion, the O(D,D) invariant metric reads

ηM̄N̄ =




0 δµν 0

δνµ 0 0

0 0 ηMN


 , ηM̄N̄ =




0 δνµ 0

δµν 0 0

0 0 ηMN


 (3.14)

and the flat generalized metric is defined as

SĀB̄ =




ηab 0 0

0 ηab 0

0 0 SAB


 , SĀB̄ =




ηab 0 0

0 ηab 0

0 0 SAB


 . (3.15)

The curved version of the generalized metric arises after applying the twisted generalized

vielbein [9, 11, 12]

EĀ
M̄ (X) = ÊĀ

N̄ (X)U N̂
M̂
(Y) with U N̂

M̂
=




δµν 0 0

0 δνµ 0

0 0 UN
M


 (3.16)

to the flat version SĀB̄, resulting in

HM̄N̄ = EĀ
M̄SĀB̄E

B̄
N̄ . (3.17)

This twisted vielbein implements a special case of the generalized Kaluza-Klein ansatz [13]

called generalized Scherk-Schwarz ansatz. It is a product of two parts: while the generalized

vielbein

ÊĀ
M̄ =




eα
µ −eα

ρCµρ −eα
ρÂMρ

0 eαµ 0

0 ÊA
LÂ

L
µ ÊA

M


 with Cµν = Bµν +

1

2
ÂL

µÂLν , (3.18)
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which combines all dynamic fields of the effective theory, only depends on the external

coordinates X, the twist UN
M just depends on the internal coordinates Y. All quantities

it has a non-trivial action on are induced by a hat. For simplicity, we assume that the

generalized dilaton d is constant in the internal space. Moreover, the twist further has to

fulfill the following constraints [9, 12, 15, 22]:

• Only O(n, n)-valued twists with the defining property

UI
KηKLUJ

L = ηIJ (3.19)

are allowed.

• The structure coefficients of the effective theory’s gauge algebra

FIJK = 3U[I
L∂LUJ

MUK]M = const. (3.20)

have to be constant.

• The structure coefficients have to fulfill the Jacobi identity

FM [IJF
M

K]L = 0 . (3.21)

Note that these properties imply that the structure coefficients FIJK are solutions of the

embedding tensor, which we discussed in the last subsection.

Using them, one is able to calculate all components of the covariant fluxes

FĀB̄C̄ = 3E[Ā
I∂IEB̄

JEC̄]J and (3.22)

FĀ = EB̄I∂IEB̄
JEĀJ + 2EĀ

I∂Id with d = φ− 1

2
log det eaµ . (3.23)

Remember that these two definitions differ significantly from the ones used in DFTWZW.

After some algebra, one obtains the non-vanishing flux components [9, 13]

Fabc = ea
µeb

νec
ρĜµνρ Fab

c = 2e[a
µ∂µeb]

νecν = f c
ab

FabC = −ea
µeb

νÊCM F̂M
µν FaBC = ea

µD̂µÊB
M ÊCM

FABC = 3Ω[ABC] Fa = f b
ab + 2ea

µ∂µφ . (3.24)

These equations are written in a manifest gauge covariant way, by using the gauge covariant

derivative

D̂µÊA
M = ∂µÊA

M −FM
JIÂ

J
µÊA

I . (3.25)

The corresponding field strength

F̂M
µν = 2∂[µÂ

M
ν] −FM

NLÂ
N

µÂ
L
ν (3.26)

is defined as usual in Yang-Mills theories. It fulfills the Bianchi identity

D[µF
M

νρ] = 0 . (3.27)
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Furthermore, the canonical field strength for the B-field, Bij , is extended by a Chern-

Simons term in order to be invariant under gauge transformations. The resulting 3-form

Ĝµνρ = 3∂[µBνρ] + 3∂[µÂ
M

νÂMρ] −FMNLÂ
M

µÂ
N

νÂ
L
ρ (3.28)

also fulfills a Bianchi identity, namely

∂[µGνρλ] = 0 . (3.29)

Plugging the covariant flux (3.24) into the action of the original flux formulation

S =

∫
d2DX e−2d

(
FAFBS

AB +
1

4
FACDFB

CDSAB − 1

12
FABCFDEFS

ADSBESCF

− 1

6
FABCFABC −FAFA

)
(3.30)

and switching to curved indices, we finally arrive at the effective action [9, 13]

Seff =

∫
dD−nx

√−g e−2φ

(
R+ 4∂µφ∂µφ− 1

12
ĜµνρĜ

µνρ

− 1

4
ĤMN F̂MµνF̂N

µν +
1

8
D̂µĤMN D̂µĤMN − V

)
, (3.31)

with the scalar potential

V = −1

4
FI

KLFJKLĤIJ +
1

12
FIKMFJLNĤIJĤKLĤMN +

1

6
FIJKF IJK . (3.32)

Here, R denotes the standard scalar curvature in the external directions. As a consequence

of the generalized Scherk-Schwarz ansatz, the Lagrange density of DFT is constant in the

internal directions. Thus, it is trivial to solve the action’s integral in these directions. The

resulting global factor is neglected. As expected, the action (3.31) describes a bosonic

subsector of a half-maximal, electrically gauged supergravity. It is equivalent to the one

presented by [22].

Note that all derivations in this subsection only took into account the properties (3.19)–

(3.21) of the twist UI
J . However, it is in general not clear whether twists with exactly these

properties exist for all solutions of the embedding tensor. There is no systematic way to con-

struct them. One is left with guessing solutions for the partial differential equation (3.19)

which are elements of O(n, n) at the same time. Some of these solutions were discussed

in [15, 25] and more recently in the context of Extended Field Theory (EFT) [18]. This

problem concerning the twist is a major difference between geometric Scherk-Schwarz com-

pactifications [20, 21], which have been known for many years in the context of supergravity

compactifications, and their generalization in DFT. For the former, there is a straightfor-

ward way to construct the twist. One uses the right or left invariant Maurer-Cartan form

on the group manifold the compactification is performed on. Unfortunately, this procedure

is not applicable to original DFT, because it requires a geometry ruled by ordinary diffeo-

morphisms and not by generalized diffeomorphisms. In the remainder of this paper, we will

show that our new formulation cures this problem. Because all background fields transform

covariantly under 2D-diffeomorphism, we recover the common notion of geometry. Thus, as

subsection 3.4 shows, one is again able to use the right or left invariant Maurer Cartan form.
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3.3 DFT on group manifolds

Equipped with the flux formulation of DFTWZW, we now perform a generalized Scherk-

Schwarz compactification and present the resulting low energy effective action. Throughout

the following calculations, we have to distinguish between n compact, internal directions

and D − n extended, external directions, corresponding to the internal coordinates Y and

external coordinates X, respectively. To make this situation manifest, we split the three

different types of indices, which are relevant for the flux formulation derived in the last

sections, according to

V
ˆ̃
A =

(
Vâ V â V

Â

)
W B̃ =

(
Wb W b WB

)
XM̃ =

(
Xµ Xµ XM

)
. (3.33)

This step is equivalent to the strategy in DFT. There is only the difference that we have

to treat three different kinds of indices (hatted, flat and curved) with this splitting, while

DFT has only two, as it does not possess a background vielbein. The external indices â, a

and µ run from 0 to D−n− 1 and their internal counterparts Â, A and M parameterize a

2n-dimensional, doubled space. This index convention gives rise to three different versions

of the η-metric

η ˆ̃
A

ˆ̃
B
=




0 δâ
b̂

0

δâ
b̂ 0 0

0 0 η
ÂB̂


 ηÃB̃ =




0 δab 0

δa
b 0 0

0 0 ηAB


 ηM̃Ñ =




0 δµν 0

δµ
ν 0 0

0 0 ηMN


 (3.34)

that are used to lower the indices defined in (3.33). Moreover, we use the flat, background

generalized metric

S ˆ̃
A

ˆ̃
B
=




ηâb̂ 0 0

0 η
âb̂

0

0 0 S
ÂB̂


 and its inverse S

ˆ̃
A

ˆ̃
B =




η
âb̂

0 0

0 ηâb̂ 0

0 0 SÂB̂


 . (3.35)

For the next step, we specify the Scherk-Schwarz ansatz of the composite generalized viel-

bein

E ˆ̃
A

M̃ = Ẽ ˆ̃
A

B̃(X)EB̃
M̃ (Y) . (3.36)

Its fluctuation part only depends on the external coordinates X, while the background part

only depends on the internal ones Y. In comparison with the ansatz in [9, 12, 13, 22], the

background generalized vielbein EB̃
M̃ takes the role of the twist U N̂

M̂
. As opposed to

the twist, it is not restricted to be O(D,D) valued. This observation solves the problem

of constructing an appropriate twist: there is always a straightforward way to construct

EB̃
M̃ as the left-invariant Maurer Cartan form on a group manifold. We went through this

process for the example of S3 with H-flux in [25].

For the fluctuation vielbein Ẽ ˆ̃
A

B̃, the generalized Kaluza-Klein ansatz [9, 12, 13] is

adapted to the index structure introduced above and gives rise to

Ẽ ˆ̃
A

B̃(X) =




eb
â 0 0

−eâ
cCbc eâ

b −eâ
cÂB

c

Ê
Â
CÂCb 0 Ê

Â
B


 with Cab = Bab +

1

2
ÂD

aÂDb . (3.37)
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In this ansatz, Bab denotes the two-form field appearing in the effective theory and

ĤCD = Ê
Â
CSÂB̂Ê

B̂
D (3.38)

represents n2 independent scalar fields which form the moduli of the internal space. Anal-

ogous to the twist, the background vielbein has only non-trivial components in the internal

space and reads

EB̃
M̃ (Y) =




δbµ 0 0

0 δb
µ 0

0 0 EB
M


 . (3.39)

With the Kaluza-Klein ansatz (3.37) and the partial derivative

∂M̃ =
(
∂µ ∂µ ∂M

)
(3.40)

in mind, it is straightforward to calculate the fluxes F̃ ˆ̃
A

ˆ̃
B

ˆ̃
C

and F̃ ˆ̃
A

defined in (2.33)

and (2.36). After some algebra, we obtain the non-vanishing components

F̃
âb̂ĉ

= eâ
de

b̂
eeĉ

f 3
(
D[dBef ] + ÂD

[dDeÂDf ]

)
F̃
âb̂

ĉ = 2e[â
dDdeb̂]

eee
ĉ = f̃ ĉ

âb̂

F̃
âb̂Ĉ

= −eâ
de

b̂
eÊ

ĈD
2D[dÂ

D
e] F̃

âB̂Ĉ
= eâ

dDdÊB̂
DÊ

ĈD

F̃â = f̃ ĉ
âĉ + 2eâ

bDbφ . (3.41)

In order to determine the covariant fluxes F ˆ̃
A

ˆ̃
B

ˆ̃
C
, we also have to evaluate the background

contribution F ˆ̃
A

ˆ̃
B

ˆ̃
C
. As the background vielbein (3.39) only depends on internal coordi-

nates, the only non-vanishing components of FÃB̃C̃ are

FABC = 2Ω[AB]C . (3.42)

They give rise to the non-vanishing components

F
âb̂ĉ

= −eâ
de

b̂
eeĉ

f Âd
DÂe

EÂf
FFDEF F

âb̂Ĉ
= eâ

de
b̂
eÂc

DÂd
EÊ

Ĉ
FFDEF

F
âB̂Ĉ

= −eâ
bÂb

DÊ
B̂
EÊ

Ĉ
FFDEF F

ÂB̂Ĉ
= E

Â
DE

B̂
EE

Ĉ
FFDEF . (3.43)

Combining these results with (3.41) and remembering the gauge covariant quantities

D̂µÊÂ
B = ∂µÊÂ

B − FB
CDÂµ

CÊ
Â
D

F̂A
µν = 2∂[µÂν]

A − FA
BCÂµ

BÂν
C

Ĝµνρ = 3∂[µBνρ] + Â[µ
A∂νÂρ]A − FABCÂµ

AÂν
BÂρ

C , (3.44)

discussed in section 3.2, we finally obtain

F
âb̂ĉ

= eâ
µe

b̂
νeĉ

ρĜµνρ F
âb̂

ĉ = 2e[â
µ∂µeb̂]

νeν
ĉ

F
âb̂Ĉ

= −eâ
µe

b̂
νÊ

ĈA
F̂A

µν F
âB̂Ĉ

= eâ
µD̂µÊB̂

AÊ
ĈA

F
ÂB̂Ĉ

= Ê
Â
DÊ

B̂
EÊ

Ĉ
F FDEF Fâ = f̃ b

ab + 2eâ
µ∂µφ . (3.45)
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Note that the gauge covariant objects here carry indices A,B,C, · · · instead of I, J,K, · · · ,
as they do in the last subsection. This is because they have to carry O(n, n) indices, which

are the former for DFTWZW (depicted in (2.26)) and the latter in the original formulation.

From this point on, all further calculations proceed as explained in the last subsection.

Thus, when substituting our results into the flux formulation’s action of DFTWZW (2.55),

we again obtain the effective action (1.8). As explained above, this time the indices

I, J,K, · · · are substituted by A,B,C, · · · . However, this difference is mere convention.

Furthermore, the scalar potential

V = −1

4
FA

CDFBCDĤAB +
1

2
FACEFBDF ĤABĤCDĤEF (3.46)

lacks the strong constraint violating term 1/6FABCF
ABC , which appears as a cosmological

constant in gauged supergravities, even if we do not impose the strong constraint on the

background field. In section 2.3.1, we argued why this term is missing in our formulation.

Anyhow, from a bottom up perspective it is totally legitimate to add it by hand to the

action in the same way as it was done in the original flux formulation. It is perfectly

compatible with all the symmetries of the theory.

Our new approach solves an ambiguity of generalized Scherk-Schwarz compactifica-

tions: in the DFTWZW framework, the twist is equivalent to the background generalized

vielbein EA
I . It is constructed in the same way as for conventional Scherk-Schwarz com-

pactifications. This is possible, because the theory possesses standard 2D-diffeomorphisms.

Thus, all mathematical tools available for group manifolds are applicable. We immediately

lose these tools, if we return to the original DFT formulation, because the extended strong

constraint, necessary for this transition, breaks 2D-diffeomorphism invariance. Hence, one

is left with the problems outlined in subsection 3.2.

All derivations performed so far in DFTWZW are top down. It started from full bosonic

CSFT in [7, 8] and was reduced step by step until we finally arrived at the low energy

effective action (1.8). Thus, one is able to explicitly check the uplift of solutions of its

equations of motion to full string theory. In doing so, we have to keep in mind that all

results obtained so far are only valid at tree level. Consistency at loop level, e.g. a modular

invariant partition function, gives rise to additional restrictions. There is another lesson

which can be learned from the CFT side: we know that the background fluxes FABC scale

with 1/
√
k, where k denotes the level of the Kač-Moody algebra on the world sheet. To

make this property manifest, we decompose them into

FABC =
1√
k
fABC (3.47)

and assume that the structure coefficients fABC are normalized, e.g.

fAC
DfBD

C =
1

2
δAB . (3.48)

Now, the gauge covariant derivative reads

D̂µV
A = ∂µV

A − 1√
k
fA

BCÂµ
BCC . (3.49)

– 24 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
9

From this equation, we immediately read off the Yang-Mills coupling constant

gYM =
1√
k
. (3.50)

Remember, the geometric interpretation of DFTWZW only holds in the large level limit

k ≫ 1. The corresponding effective theory is weakly coupled and thus can be treated

perturbatively. However, freezing out all fluctuations in the internal directions, which is

exactly the case for generalized Scherk-Schwarz compactifications, our results extend to

k = 1. In this case, one has to reduce the number of external directions to cancel the total

central charges of the bosons and the ghost system.

3.4 Constructing the twist

A major advantage of generalized Scherk-Schwarz compactifications in DFTWZW is the

existence of a straightforward procedure to construct the background vielbein EA
I , which

replaces the twist in the original scenario, by starting from a solution of the embedding

tensor. In the following, we present this scheme in detail.

Let us first assume that tA denotes 2n different N ×N matrices which give rise to the

algebra

[tA, tB] = tAtB − tBtC = FAB
CtC . (3.51)

Its structure coefficients are equivalent to an arbitrary solution of the embedding ten-

sor (3.1). In this case

FAB
DηDC + FAC

DηBD = 0 (3.52)

has to hold. Furthermore, we define a non-degenerate, bilinear, symmetric two-form

K(tA, tB) = ηAB (3.53)

on the vector space spanned by the matrices tA. Later, we will explain how they and the

two-form are realized. At the moment, these three definitions are sufficient. With them, it

is evident that the background fluxes FABC are given by

FABC = K(tA, [tB, tC ]) . (3.54)

The second ingredient, required to derive the background generalized vielbein, is a

group element g ∈ G of the group G representing the background. Therefore, we use the

exponential map

g = exp(tAX
A) =

∞∑

m=0

1

m!
(tAX

A)n (3.55)

in order to derive it from the generators tA. For compact groups this map is surjective onto

the identity component G0 of G. We assume that all groups we treat here are path-connect

and thus G0 and G are equivalent. The map (3.55) becomes bijective, if we restrict the

domain of the coordinates XI accordingly. In this case, each group element is labeled by a

unique point in the coordinate space. The left invariant Maurer-Cartan form is defined as

EAI = K(tA, g
−1∂Ig) . (3.56)
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Using it to calculate

ΩABC = EA
I∂IEB

JECJ , (3.57)

we obtain

ΩABC = −EA
I
[
K(tC , ∂Ig

−1 gg−1 ∂Jg) +K(tC , g
−1∂I∂Jg)

]
EB

J

= EB
JK(g−1∂Jg, tC g−1∂Ig)EA

I −K(tC , g
−1∂I∂Jg)EA

IEB
J

= K(tB, tCtA)−K(tC , g
−1∂I∂Jg)EA

IEB
J . (3.58)

The coefficients of anholonomy give rise to the correct background covariant fluxes, namely

FABC = 2Ω[AB]C = K(tA, [tB, tC ]) . (3.59)

Thus, we indeed recover the correct identity for the background generalized vielbein EA
I ,

with the left invariant Maurer-Cartan form (3.56).

As already stated, the generators tA of the Lie algebra are N ×N matrices

tA =




(tA)11 · · · (tA)1N
...

...

(tA)N1 · · · (tA)NN


 . (3.60)

In order to evaluate K(x, y) for arbitrary algebra elements x, y ∈ g, we need to expand

them in terms of the generators, e.g.

x =
2n∑

A=1

cAtA , (3.61)

where cA denotes the 2n expansion coefficients. It is convenient to rearrange the matrix x

into the vector

x =
(
x11 · · · x1N x2N · · · xNN

)
(3.62)

and solve the linear system of equations

cM = x with M =




(t1)11 · · · (t1)1N (t1)2N · · · (t1)NN

...
...

...
...

(t2n)11 · · · (t2n)1N (t2n)2N · · · (t2n)NN


 and c =

(
c1 · · · c2n

)

(3.63)

to calculate these coefficients. We are interested in a unique solution, thus the 2n × N2

matrix M has to have full rank

rankM = 2n . (3.64)

Besides (3.51), this equation gives a second constraint on the generators tA. According to

Ado’s theorem [26], both can be satisfied for a finite N . Such representations are called

faithful. We show, how one obtains them for semisimple and solvable Lie algebras in the

next subsections, which are partly based on [27]. Appendix A applies these techniques to

all the compact solutions of the embedding tensor presented in table 1.
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3.4.1 Semisimple algebras

For semisimple Lie algebras, the generators

(tA)BC = FAB
C (3.65)

can be read off directly from the structure coefficients. Doing so, we obtain the adjoint

representation

adx y = [x, y] with x, y ∈ g (3.66)

in the basis spanned by all abstract generators. It has dimension N = 2n and is faithful if

the center of the Lie algebra

Z(g) = {x ∈ g | [x, y] = 0 for all y ∈ g} (3.67)

is trivial. This is the case for semisimple Lie algebras. However, there are also non-

semisimple ones, such as ISO(3) which is discussed in appendix A.2, with vanishing center.

The matrix realization of their generators is given by (3.65), too.

In general, the adjoint representation is not the lowest dimensional one. E.g. for

SO(4), which we present in appendix A.1, the adjoint has N = 6, while the fundamental

representation is only 4-dimensional. In the end, each of them works for our purpose.

However, taking the smallest one simplifies the calculations considerably.

3.4.2 Nilpotent Lie algebras

For nilpotent Lie algebras, (3.65) gives rise to generators tA which are not linear indepen-

dent from each other. Thus, they are not faithful and violate (3.64). Before discussing how

to obtain proper generators, let us first give a criterion to identify these algebras. To this

end, consider the lower central series

Lm+1 = [g, Lm] with L0 = g . (3.68)

It gives rise to the series

g = L0 ⊇ L1 ⊇ L2 ⊇ . . . (3.69)

of subalgebras. If this series terminates at a finite k with Lk = {0}, the algebra g is

nilpotent of order k.

In the following we make use of the infinite dimensional universal enveloping algebra

U(g) of the nilpotent Lie algebra g. According to the Poincaré-Birkhoff-Witt theorem, it

is spanned by the ordered monomials

t(α) = tα1

1 tα2

2 . . . tα2n

2n with α ∈ Z
3
+ . (3.70)

Via left multiplication

φx : U(g) → U(g) , φx(y) = xy with x ∈ g , (3.71)

algebra elements x act faithful on the universal enveloping algebra. Ado’s theorem states

that even on the finite dimensional subspace

V k = {t(α) ∈ U(g) | ord t(α) ≤ k} (3.72)
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of U(g), φx acts still faithful. Here one uses the order function

ord t(α) =
2n∑

m

αm ord tm , ord tm = max{s | tm ∈ Ls−1} and ord 1 = 0 (3.73)

to fix this subspace. To finally obtain a N = dimV -dimensional, faithful matrix represen-

tation of the generators tA, we express the linear operator φtA in the basis which spans V k.

3.4.3 Solvable Lie algebras

Techniques from both, semisimple and nilpotent Lie algebras, find their application in the

case of solvable Lie algebras, which are characterized by a derived series

Lm+1 = [Lm, Lm] with L0 = g (3.74)

which terminates at a finite k with Lk = {0}. Like (3.69), it gives rise to the series

g = L0 ⊃ L1 ⊃ · · · ⊃ Lk−1 ⊃ {0} . (3.75)

of subalgebras. The first of them, n = L1 is nilpotent. Thus, we expand the map (3.71)

for all its generators t ∈ n in the basis (3.72) to obtain their matrix representation. Fur-

thermore, the adjoint representations adx = [x, y],

adx 1 = 0 and adx y1 . . . yl =
l∑

m=1

y1 . . . ym−1[x, ym]ym+1 . . . yl with ym ∈ n (3.76)

of the remaining generators x ∋ q = g/n act faithful on V k, too. Besides φt, we also express

adu, u ∈ q, in the basis V k to complete the N = dimV dimensional matrix representation

of the algebra. Note that all nilpotent Lie algebras are automatically solvable with q = {}.

4 Conclusion and outlook

During the course of this paper, we derived the flux formulation of DFTWZW and applied it

to examine generalized Scherk-Schwarz compactifications. In contrast to the original flux

formulation, we obtained new covariant fluxes. They split into a fluctuation part, which

has to fulfill the strong constraint, and a background part, for which the Jacobi identity

is sufficient. Furthermore, the covariant fluxes transform as scalars under generalized

diffeomorphisms and 2D-diffeomorphisms. The latter ones are missing completely in the

original DFT framework. This result underpins the general structure of our theory. Starting

point is a geometric, 2D-dimensional, pseudo Riemannian manifold with split signature.

This space is isomorphic to a Lie group which admits an embedding into the group O(D,D).

Its metric, ηIJ , reduces the structure group of the manifold from GL(2D) to O(D,D). All

dynamic fields, such as the generalized metric, are build on this reduced structure and

reduce it even further.

Original DFT, either the generalized metric or the flux formulation, is lacking this

geometric interpretation of ηIJ . It starts directly with the fixed O(D,D) structure. As
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a consequence, problems arise in the construction of the twist for generalized Scherk-

Schwarz compactifications. We discussed these problems in detail and showed that they

are solved naturally in the framework of DFTWZW. Here, the background generalized

vielbein takes the role of the twist. Due to the geometric structure of the background, it

can be identified with the left invariant Maurer-Cartan form on the group manifold, used

in the compactification. This observation is in perfect agreement with geometric Scherk-

Schwarz reductions [20, 21], which also use the left or right invariant Maurer-Cartan form.

Moreover, only the Jacobi identify has to hold for the background. On a group manifold,

it is equivalent to the closure constraint introduced in [10–12]. Thus, embeddings into the

full O(D,D) group are accessible.

As a top down approach, DFTWZW was constructed in [7, 8] from CSFT. Thus, one

is able to identify all fields in the theory with quantities on the world sheet of closed

string theory. Doing so, e.g. allowed us to explain why the strong constraint violating term

1/6FABCF
ABC vanishes in the action. Even more, this relation can be used to uplift non-

geometric backgrounds. However, this uplift still only takes tree-level computations into ac-

count. Modular invariance of the torus partition function introduces additional constraints.

Still, the connection between non-geometric fluxes and the structure coefficients of the Kač-

Moody algebra in the world sheet CFT, which were already suggested in [7], is now evident.

In generalized Scherk-Schwarz compactifications, there are no fluctuations in the in-

ternal space Y. Hence, the generalized metric HAB and the generalized dilaton d do not

depend on Y. In this case, the strong constraint is solved trivially. However, it seems that

especially non-trivial solutions of the strong constraint, which differs significantly from the

one in the original formulation, expose the full power of DFTWZW. Studying them pre-

sumably would also lead to a better understanding as how dualities are implemented in

this theory.
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A Twists for the compact solutions of the O(3, 3) embedding tensor

In the following, we apply the techniques presented in section 3.4 to derive the background

generalized vielbeins EA
I for all compact solutions of the n = 3 embedding tensor in table 1.

To this end, we first calculate the structure coefficients FABC using (3.11). In most cases,

it is convenient to further apply a particular O(3, 3) rotation RA
B in order to simplify the

results:

F ′
ABC = RA

DRB
ERC

FFDEF and η′AB = RA
DRB

EηDE . (A.1)
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Moreover, we assign symbols to all six generators, e.g.

tA = {a, b, c, d, e, f} , (A.2)

and read off their algebra according to (3.51). Starting from this algebra, we derive a N -

dimensional matrix representation for the generators by following the procedures outlined

in sections 3.4.1–3.4.3. Next, we obtain the group elements g by applying the exponential

map (3.55) and finally use them to calculate the left invariant Maurer-Cartan from (3.56).

A.1 SO(4)/SO(3)

Applying the rotation

RA
B =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0




, results in η′AB =




−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(A.3)

and the semisimple Lie algebra

[sa, sb] = α− εab
c sc and [s̄a, s̄b] = α+ εab

c s̄c (A.4)

with

α+ = −
√
2
(
cos(α) + sin(α)

)
and α− =

√
2
(
cos(α)− sin(α)

)
, (A.5)

after assigning the symbols

tA = {s1, s2, s3, s̄1, s̄2, s̄3} (A.6)

for the generators. Here εab
c denotes the totally antisymmetric tensor in three dimensions

with ε12
3 = 1. For α = 0, this Lie algebra is equivalent to so(4). Further, it degenerates

at α = π/4 to so(3). In the basis we have chosen, the decomposition

so(4)α = so(3)α+
⊕ so(3)α

−

(A.7)

is manifest.

We use the adjoint representation of the Lie algebra to construct the group elements.

But instead of applying the exponential map (3.55), we use

g = exp(t6X
6) exp(t5X

5) · · · exp(t1X1) , (A.8)

which allows to read off the inverse group element

g−1 = exp(−t1X
1) exp(−t2X

2) · · · exp(−t6X
6) (A.9)

directly. The coordinates

XI = {φ1, φ2, φ3, φ̄1, φ̄2, φ̄3} . (A.10)
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split into three angles twice, describing a rotation in R
3 each. Finally, we construct the

left invariant Maurer-Cartan form

EA
I =

(
Aα−(φ1, φ2, φ3) 0

0 Aα+(φ̄1, φ̄2, φ̄3)

)
(A.11)

and its inverse transposed

EA
I =

(
A−T

α−(φ1, φ2, φ3) 0

0 A−T
α+(φ̄1, φ̄2, φ̄3)

)
(A.12)

where Aα denotes the matrix

Aα(φ1, φ2, φ3) =




1 0 − sin(φ2α)

0 cos(φ1α) cos(φ2α) sin(φ1α)

0 − sin(φ1α) cos(φ1α) cos(φ2α)


 (A.13)

and its inverse transpose reads

A−T
α (φ1, φ2, φ3) =




1 0 0

sin(φ1α) tan(φ2α) cos(φ1α) sec(φ2α) sin(φ1α)

cos(φ1α) tan(φ2α) − sin(φ1α) cos(φ1α) sec(φ2α)


 . (A.14)

Choosing α = 0, this background generalized vielbein describes a S3 with H-Flux.

A.2 ISO(3)

Applying the rotation

RA
B =

1√
2




0 0 1 0 0 1

0 1 0 0 1 0

−1 0 0 −1 0 0

0 0 −1 0 0 1

0 −1 0 0 1 0

−1 0 0 1 0 0




, results in η′AB =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




(A.15)

and the non-semisimple Lie algebra

[sa, sb] = cos(α)εab
c sc + sin(α)εab

c tc , [sa, tb] = cos(α)εab
c tc and [ta, tb] = 0 , (A.16)

after assigning the symbols

tA = {s1, s2, s3, t1, t2, t3} (A.17)

for the generators. For α = 0, this algebra is equivalent to iso(3), which arises from a Lie

algebra contraction of so(4) [28].
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The center (3.67) of this algebra is trivial. Thus, the 6-dimensional adjoint represen-

tation of the generators is faithful. In order to obtain group elements g, we apply the same

exponential map (A.8) as for SO(4), but this time we use the coordinates

XI = {φ1, φ2, φ3, x1, x2, x3} . (A.18)

Finally, we construct the left invariant Maurer-Cartan form for the case α = 0. We

only chose this restriction to get results which are not too bulky. The procedure works for

all values of α in the same manner. By evaluating (3.56), we obtain

EA
I =

(
A1(φ1, φ2, φ3) 0

0 B(φ1, φ2, φ3)

)
(A.19)

and its inverse transposed

EA
I =

(
A−T

1 (φ1, φ2, φ3) 0

0 B(φ1, φ2, φ3)

)
(A.20)

where A1(φ1, φ2, φ3) is given in (A.13) and B(φ1, φ2, φ3) is defined as

B(φ1, φ2, φ3) =




c2 c3 c2 s3 −s2

c3 s1 s2 − c1 s3 c1 c3 + s1 s2 s3 c2 s1

c1 c3 s2 + s1 s3 −c3 s1 + c1 s2 s3 c1 c2


 with

si = sinφi

ci = cosφi

. (A.21)

A.3 CSO(2, 0, 2)/f1

Applying the rotation

RA
B =

1√
2




1 0 0 1 0 0

0 0 0 0 0
√
2

0 0 0 0
√
2 0

−1 0 0 1 0 0

0 0
√
2 0 0 0

0
√
2 0 0 0 0




, (A.22)

results in

η′AB =




0 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(A.23)
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and the solvable Lie algebra

[t0, ta] = α+ εa
b tb , [t0, sa] = α− εa

b sb ,

[ta, tb] = α+ εab z and [sa, sb] = −α− εab z (A.24)

with

α+ = − cos(α)− sin(α) and α− = cos(α)− sin(α) (A.25)

after assigning the symbols

tA = {t0, s1, s2, z, t1, t2} (A.26)

for the generators. The indices a, b, c, . . . run from 1 to 2 and εa
b denotes the totally

antisymmetric tensor in two dimensions with ε1
2 = 1. For α = 0, this algebra is equivalent

to cso(2, 0, 2). Its derived series reads

L0 = {t0, t1, t2, s1, s2, z} ⊃ {t1, t2, s1, s2, z} ⊃ {z} ⊃ {0} (A.27)

for α 6= π/4 and z is the non-trivial center. Thus, the adjoint representation is not faithful.

As explained in section 3.4.3, we read off the nilpotent subalgebra

n = L1 = {s1, s2, z, t1, t2} and the remaining generators q = {t0} . (A.28)

This subalgebra gives rise to the lower central series

L0 = n = {s1, s2, z, t1, t2} ⊃ {z} ⊃ {0} , (A.29)

showing that n is indeed nilpotent of order k = 2.

With this data, we construct the N = 16-dimensional subspace

V 2 = {s21, s1s2, s22, t21, t1t2, s1t1, s2t1, t22, s1t2, s2t2, z, ord · = 2

t1, t2, s1, s2, ord · = 1

1} ord · = 0 (A.30)

of the universal enveloping algebra. We obtain the generators by following the procedure

outlined in section 3.4.3.

Group elements arise from the exponential map (A.8) with the coordinates

XI = {φ, x1, x2, z, y1, y2} (A.31)

We calculate the background generalized vielbein by using 3.56 and obtain

EA
I =




1 0 0 0 0 0

0 cos(α−φ) sin(α−φ) 0 0 0

0 − sin(α−φ) cos(α−φ) 0 0 0

0 0 α− x1 1 0 −α+ y1

0 0 0 0 cos(α+ φ) sin(α+ φ)

0 0 0 0 − sin(α+ φ) cos(α+ φ)




(A.32)
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with the inverse transposed

EA
I =




1 0 0 0 0 0

0 cos(α−φ) sin(α−φ) −α− x1 sin(α−φ) 0 0

0 − sin(α−φ) cos(α−φ) −α− x1 cos(α−φ) 0 0

0 0 0 1 0 0

0 0 0 α+ y1 sin(α+φ) cos(α+ φ) sin(α+ φ)

0 0 0 α+ y1 cos(α+φ) − sin(α+ φ) cos(α+ φ)




.

(A.33)

This background generalized vielbein describes a twisted torus. Its base is given by a circle

with the coordinate φ. Over this circle, a two dimensional torus is fibered. The monodromy,

which arises after one complete cycle around the base, can be expressed in terms of the com-

plex structure / Kähler parameter of the fibered torus. There are two important cases: first,

α = 0 give rise to a geometric solve manifold. It is also call single elliptic case. Secondly,

α 6= 0 corresponds to the double elliptic case [25]. This background is not T-dual to any ge-

ometric configuration. For α = ±π/4 the group reduces to f1 as α+ or α− becomes zero [15].

A.4 h1

Applying the rotation

RA
B =

1√
2




−1 0 0 1 0 0

1 0 0 1 0 0

0 −1 0 0 0 1

0 0 −1 0 −1 0

0 1 0 0 0 1

0 0 −1 0 1 0




, results in η′AB =




0 0 0 −1 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

−1 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0




(A.34)

and the solvable Lie algebra

[t0, ta] = cos(α) εa
b tb , [t0, sa] = cos(α) εa

b sb − sin(α) ta , (A.35)

[sa, sb] = − sin(α) εab z and [ta, sb] = − cos(α) δab z , (A.36)

after assigning the symbols

tA = {t0, s1, s2, z, t1, t2} . (A.37)

Both, its derived series and the lower central series of its nilpotent Lie subalgebra n,

match with the cso(2, 0, 2) case discussed in the last subsection. Thus, obtaining the

N = 16-dimensional matrix representation of the generators, goes exactly along the lines

of appendix A.3.

Group elements arise from the exponential map (A.8) with the coordinates given

in (A.31). Here, we only present the background generalized vielbein for α = 0. In
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this case, we recover the h1 algebra presented in [15]. This restriction is not mandatory,

however, it simplifies the results

EA
I =




1 0 0 0 0 0

0 cos(φ) sin(φ) 0 0 0

0 − sin(φ) cos(φ) 0 0 0

0 0 0 1 −x1 −x2

0 0 0 0 cos(φ) sin(φ)

0 0 0 0 − sin(φ) cos(φ)




(A.38)

and its inverse transposed

EA
I =




1 0 0 0 0 0

0 cos(φ) sin(φ) 0 0 0

0 − sin(φ) cos(φ) 0 0 0

0 0 0 1 0 0

0 0 0 x1 cos(φ) + x2 sin(φ) cos(φ) sin(φ)

0 0 0 x2 cos(φ)− x1 sin(φ) − sin(φ) cos(φ)




(A.39)

considerably.

A.5 CSO(1, 0, 3)/l

Applying the rotation

RA
B =

1√
2




0 −1 0 0 1 0

−1 0 0 1 0 0

0 0 cos(α) + sin(α) 0 0 − cos(α) + sin(α)

0 1 0 0 1 0

1 0 0 1 0 0

0 0 − cos(α) + sin(α) 0 0 − cos(α)− sin(α)




, (A.40)

results in

η′AB =




0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 sin(2α) 0 0 − cos(2α)

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 − cos(2α) 0 0 − sin(2α)




(A.41)

and the nilpotent Lie algebra

[t1, t2] = cos(2α) z3 − sin(2α) t3 , [t2, t3] = z1 and [t3, t1] = z2 (A.42)
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after assigning the symbols

tA = {t1, t2, t3, z1, z2, z3} . (A.43)

For α = 0, we obtain the Lie algebra

[ta, tb] = εab
c zc (A.44)

which is called cso(1, 0, 3) [15]. It is nilpotent of order 2 and its lower central series reads

L0 = {t1, t2, t3, z1, z2, z3} ⊃ {z1, z2, z3} ⊃ {0} . (A.45)

The center of this algebra is {z1, z2, z3}. Following the procedure outlined in section 3.4.2,

we construct the N = 13-dimensional subspace

V 2 = {t21, t1t2, t1t3, t22, t2t3, t23, z1, z2, z3, ord · = 2

t1, t2, t3, ord · = 1

1} ord · = 0 (A.46)

of the universal enveloping algebra. Finally, we obtain the matrix representation of the

generators tA, by expanding the linear maps φtA in the basis spanned by V 2. Group

elements are derived from the exponential map (A.8) using the coordinates

XI = {x1, x2, x3, z1, z2, z3} . (A.47)

They give rise to the left-invariant Maurer-Cartan form

EA
I =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −x2 1 0 0

0 0 x1 0 1 0

0 −x1 0 0 0 1




(A.48)

with the inverse transposed

EA
I =




1 0 0 0 0 0

0 1 0 0 0 x1

0 0 1 x2 −x1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (A.49)

This background generalized vielbein describes a 3-torus with H-flux.

For α 6= 0, the lower central series changes

L0 = {t1, t2, t′3, z1, z2, z′3} ⊃ {z1, z2, z′3} ⊃ {z1, z2} ⊃ {0} , (A.50)
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where we have introduced the abbreviations

t′3 = cos(2α)t3 − sin(2α)z3 and z′3 = sin(2α)t3 + cos(2α)z3 , (A.51)

identifying a nilpotent Lie algebra of order 3. If we want to treat it in a proper way, we

have to extend V 2 to

V 3 = {t31, t21t2, t21t′3, t1t22, t1t2t3, t1t3′2, t2t3′2, t3′3, t1z′3, t2z′3, t′3z′3, z1, z2, ord · = 3

t21, t1t2, t1t
′
3, t

2
2, t2t

′
3, t

′
3
2
, z′3, ord · = 2

t1, t2, t
′
3, ord · = 1

1} . ord · = 0

(A.52)

They give rise to the modified Lie algebra

[t1, t2] = z′3 , [t1, z
′
3] = sin(2α)z2 , [z′3, t2] = sin(2α)z1 , (A.53)

[t2, t
′
3] = cos(2α)z1 and [t′3, t1] = cos(2α)z2 , (A.54)

which we have to use to evaluate the map φtA in the basis V 3. Doing so, we obtain aN = 24-

dimensional matrix representation for the generators of the Lie algebra. Exponentiating

them according to (A.8) and using the arising group elements to calculate the background

generalized vielbein, one obtains

EA
I =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −x2 cos(2α) 1 0 x2 sin(2α)

0 x21 cos(α) sin(α) x1 cos(2α) 0 1 −x1 sin(2α)

0 −x1 0 0 0 1




(A.55)

assuming the coordinates

XI = {x1, x2, x′3, z1, z2, z′3} . (A.56)

The inverse transposed reads

EA
I =




1 0 0 0 0 0

0 1 0 −x1 x2 sin(2α) x21 cos(α) sin(α) x1

0 0 1 x2 cos(2α) −x1 cos(2α) 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −x2 sin(2α) x1 sin(2α) 1




. (A.57)
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Flat indices, such as the A of EA
I , are lowered with the ηAB metric

η′′AB =




0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 − sin(2α) 0 0 − cos(2α)

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 − cos(2α) 0 0 sin(2α)




. (A.58)

For α = π/4, we find the algebra l presented in [15], after an additional rotation of the

cso(1, 0, 3) structure coefficients (A.42) with

R′′
A
B =




−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0




resulting in η′′′AB =




0 0 0 0 0 1

0 0 0 0 −1 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 −1 0 0 0 0

1 0 0 0 0 0




(A.59)

and the commutator relations

[
t1, t2

]
= t4

[
t1, t4

]
= t5

[
t2, t4

]
= t6 (A.60)

where we assigned the symbols

tA = {t1, t2, t3, t4, t5, t6} (A.61)

for the generators.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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