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ABSTRACT

This survey gives an overview of analytic tools to the design, anal-
ysis, and modelling of communication systems which can be de-
scribed by linear vector channels such as y = Hx + z where the
number of components in each vector is large. Tools from probabil-
ity theory, operator algebra, and statistical physics are reviewed.

Asymptotic eigenvalue distributions of some classes of ran-
dom matrices are given in terms of densities, moments and/or
Stieltjes transforms. Free probability theory which evolved from
non-commutative operator algebras is explained from a probabilis-
tic point of view in order to better fit the engineering commu-
nity. For that purpose freeness is defined without reference to non-
commutative algebras. The treatment includes additive and mul-
tiplicative free convolution, the R-transform, and the S-transform.
The replica method developed in statistical physics for the purpose
of analyzing spin glasses is reviewed from the view point of its
applications in communications engineering. Correspondences be-
tween free energy and mutual information as well as energy func-
tions and detector metrics are established.

1. INTRODUCTION

In a multi-dimensional communication system many data streams
are transmitted from various sources to various sinks via a common
medium called a channel. Technical systems handling this task are
telephone networks, both fixed and wireless, the internet, local area
networks, computers’ data buses, etc.

The complexity of such communication systems increases with
the number of people or data streams to be handled simultaneously.
This rise in complexity is not limited to the hardware to be de-
ployed, but also affects the design, the modeling, and the analysis
of the system. From an engineering point of view, it is particularly
important to be able to predict the behavior of a technical system,
before it is actually built. With respect to the steadily increasing
number of people using various kinds of communications technol-
ogy, this seems to become, sooner or later, a hopeless task at first
sight.

In a combustion engine, many molecules of fuel and air interact
with each other. However, though we cannot control the individ-
ual behavior of each molecule, and even do not intend to do so,
we can trust that the mixture of gas and air will explode when it
is lighted, heat up, expand, and drive the engine. Physicists have
successfully build the theory of thermodynamics to explain the evo-
lution of macroscopic values like temperature and pressure though
the microscopic behavior of the molecules is only described statis-
tically. Simply the fact, that there are enough objects which interact
randomly, makes the unity of these objects to obey certain rules.
These rules depend on the kind of interaction and some other things
and can be understood as generalizations of the law of large num-
bers.

Communication systems for multiple data streams can be mod-
eled as well by statistical interactions between the signals belonging
to different data streams. Provided that the number of data streams
transmitted simultaneously through the system is large enough, sim-
ilar effects as in thermodynamics occur.

The use of microscopic statistical models to predict macro-
scopic quantities in physics is not limited to thermodynamics. It was
already used by Wigner in the 1950s in order to predict the spacings

of nuclear energy levels. Random matrices and their applications in
communications engineering are discussed in Section 3.

Advances in free probability theory are driven by mathemati-
cians interested in operator algebras and the Riemann hypothesis.
Since numerical evidence showed a striking connection between the
zeros of Riemann’s zeta function and the spacings of adjacent eigen-
values of large random matrices, physicist started to hope for new
insights into their problems. However, the first concrete meaning
for the R-transform, one of the most fundamental concepts in free
probability theory, was found in the theory of large CDMA systems.
An overview on free probability is given in Section 4.

Random matrix and free probability theory are concepts well
suited to analyze the interaction of many Gaussian random pro-
cesses. However, they do not respect the binary nature of most
signals in modern communications. Driven by the laws of quantum
mechanics which allow only two values for the spin of an electron,
physicists have developed powerful tools to analyze the thermody-
namics of magnetic materials, one of which is called the replica
method. Though from a mathematical point of view not rigorously
established yet, it is able to predict the macroscopic behavior of spin
glasses just as well as bit error rates of maximum a-posteriori de-
tectors for CDMA signals. An overview on the replica method is
given in Section 5.

2. APPLICATIONS

The principles to be surveyed here apply to a broad class of com-
munication channels. To just pick one of them, consider the vector-
valued additive white Gaussian noise channel

ylv] =H[v]x[v]+n[v] (M

with the K X 1 vector of transmitted symbols x[V], the N x 1 vector
of received symbols y[V], the N X K channel matrix H[V], the N x 1
vector of additive white Gaussian noise n[Vv], and discrete time V.
The time index will be dropped whenever it is not needed to express
the dependency on discrete time explicitly.

It is well known in literature [1] that the signal

r[v] = H'[V]y[v] = H'[VH[V]x[v] + H"[V]n[v] ~ (2)

provides sufficient statistics for the estimation of the signal x[Vv].
All information about x[V] that could be extracted from the received
signal y[Vv] can also be extracted from the signal r[V].

The two equivalent channels (1) and (2) appear in several areas
of wireless and wireline communications:

e In CDMA, the components of the vector x are regarded as the
signals of K individual users while the matrix H contains their
spreading sequences as columns.

e In antenna array communications, the components of the vec-
tors x and y represent the signals sent and received by the K
transmit and NV receive antenna elements, respectively.

e In cable transmission, the components of the vector x contains
the signals sent on the bundled twisted pairs within a cable. The
coefficients in the matrix HPH describe the electromagnetic
crosstalk between the respective twisted pairs.

e For block transmission over a dispersive channel, the compo-
nents of the vectors x and y contain the symbols sent and re-
ceived consecutively in time. Discrete time vV counts blocks,
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and the matrix H is a circulant matrix of the channel’s discrete-

time impulse response.

o In orthogonal frequency-division multiple access (OFDM), the
components of the vectors x and r represent the K sub-carriers
at transmitter and receiver site, respectively, and the matrix
H"H accounts for inter-carrier interference.

Regardless of the application one has in mind, performances
can be analyzed for a variety of receiver algorithms and assumptions
on the properties of the channel matrix H. Numerous results are
reported in literature [1, 2] and we do not try to make any effort to
be comprehensive here.

3. RANDOM MATRIX THEORY

The channel matrix H in (1) is composed of NK random elements.
Though it can be simply considered as an NK dimensional random
object, it has also some more interesting interpretations.

Consider a scalar zero-mean random process Hp[u] over dis-
crete time U. Stack the time samples into the row dimensions of the
matrix H and the ensembles 1 into the column dimensions of H
such that

®[0] H 1] H[2]
[0 Hy[1] Hy[2] -
H=| H[0] H[l] H[2] - |. 3

If we let the dimension N, K — o, the matrix H describes a whole
random process. Nevertheless, we can still think of it as a single
realization of a many-dimensional random variable. This double
interpretation results in the self~averaging property of many func-
tions of a large dimensional random matrices.

Consider the function rowsum : X € CV*K s k—2X1 € CV
with 1 denoting the all one vector. It simply sums up the rows of
its argument and normalizes the result. As K — oo, the value of the
function h = rowsum(H) is an N-dimensional Gaussian random
vector due to the central limit theorem. As N — oo, the empirical
distribution function of its components #;

Ph(x):]%]|{hi:hi<x}| 4)

converges to a Gaussian distribution. Communications engineering
builds upon this result, whenever something is modeled as a Gaus-
sian random process.

The type of distribution h follows does not depend on the distri-
bution of H as N — . Instead, the distribution of h is determined
by the mapping from N X K-dimensional space into N-dimensional
space. For many linear mappings, such as rowsum(-), the projection
follows a Gaussian law. For non-linear mappings, a rich plurality of
other limit distributions occurs.

3.1 Convergence of Eigenvalues

The eigenvalues of the channel matrix are important to characterize
performance measures in communications engineering. Calculating
the eigenvalues of (a function of) a random matrix, is a projection,
though a non-linear one, similar to the rowsum function.

Calculation of the moments of the eigenvalue distribution is
conveniently done by a normalized trace since

1 X 1
ngl A= y race (H™). ®)
In the following, we also use
Tr(H) 2 Jim ltrace(H) 6)
T Nowo N ’

to denote the normalized trace in the large matrix limit. The eigen-
value distributions of several types of random matrices are exam-
ined in greater detail in the following.

3.1.1 Quarter Circle Law

Let the random matrix H be square, N x N, with independent iden-
tically distributed entries with zero mean and variance 1/N. Let

Q=vHHL )

Let .Z denote the set containing the eigenvalues of Q, i.e. the singu-
lar values of H. Then, the empirical distribution of the eigenvalues

PQ(x):]%[|{)\€$:/\<x}| (8)

converges to a non-random distribution function as N — c whose
density is given by

pQ(x):{é—‘\M—)@ 0<x<2 ©)

elsewhere

This distribution is called the quarter circle distribution.

With standard methods for the transformation of probability
densities, see [3], the asymptotic eigenvalue distribution of Q2 =
HH can be derived. It reads

1 4—x

pQZ(x):{E\/T 0<x<4 (10)
0 elsewhere

Its m™ moments are the Catalan numbers which play an important
role in combinatorics [4].
3.1.2 Deformed Quarter Circle Law

The quarter circle law is part of a more general result for rectangu-
lar matrices: Let the entries of the N x K matrix H be independent
identically distributed with zero mean and variance 1/N. Then, the
empirical distribution of the singular values of H, i.e. the eigenval-

ues of
R =vHH! (11)

converges to a non-random distribution function as N, K — oo with
B = K/N fixed and its density is given by

V4B-(?=1-B)’
Pr (x)= Ty
[1-BI"3(x)

Again, we also consider the eigenvalue distribution of R? =
HH" and find

VLB (1 B <x< (1+VBP

[1- BT 3(x)
(13)

This distribution is known as the Marcenko-Pastur distribution. It
has been used in [5] to calculate channel capacity for CDMA with
random spreading.

I1-VBl<x<1+y/B (12)

elsewhere

Pr> (x)=
elsewhere

3.1.3 Haar Distribution

Let the random matrix H be square N x N with independent identi-
cally complex Gaussian distributed proper! entries with zero mean
and finite positive variance. Then, the empirical distribution of the
eigenvalues of the unitary random matrix

1

2

T-H (HHH)_ (14)

converges to a non-random distribution function as N — o that is
uniform on the complex unit circle and vanishes elsewhere.

'A complex random variable is said to be proper if real and imaginary
part are independent and identically distributed [6].
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3.2 Stieltjes Transform

The task of finding an unknown probability distribution given its
moments is known as the problem of moments. It was addressed by
Stieltjes in 1894 using the integral transform

dp
G2 [P (15)
xX—s
with Os > 0. It is now commonly referred to as the Stieltjes trans-
form.
A Taylor series expansion of its kernel

dm G(s7')
s—)O@ N

=m!/xmdP(x) (16)

shows how the moments can be found given the Stieltjes transform
without the need for integration. The probability density function
can be obtained from the Stieltjes transform taking the limit

p(x) = lim —DG(x+Jy) (17)
y—0+

which is often called the Stieltjes inversion formula [7].

3.2.1 Products of Random Matrices

Let the random matrix H fulfill the same conditions as needed for
the deformed quarter circle law. Moreover, let X = XHbean Nx N
Hermitian matrix, independent of H, with an empirical eigenvalue
distribution converging almost surely in distribution to a distribution
function Py (x) as N — . Then, almost surely, the eigenvalue dis-
tribution of the matrix product P = HH"YX converges in distribu-
tion, as K, N — o, but 8 = K/N fixed, to a nonrandom distribution
function whose Stieltjes transform satisfies for [ls > 0 [8, 9]

_ dPy (x)
S )= | e a®

3.2.2 Sums of Random Matrices

Let the random matrix H fulfill the same conditions as needed for
the deformed quarter circle law. Let X = XH be an N x N Her-
mitian matrix with an eigenvalue distribution function converging
weakly to Py (x) almost surely. Let Y = diag(y,,...,yx) be a
K x K diagonal matrix and the empirical distribution function of
{ Vireros yK} e RX converge almost surely in distribution to a prob-
ability distribution function P, (x) as K — c0. Let H,X,Y be in-
dependent. Then, almost surely, the empirical eigenvalue distribu-
tion of the random matrix S = X + HYH" converges weakly, as
K,N — oo, but B = K/N fixed, to a nonrandom distribution function
whose Stieltjes transform satisfies for Us > 0 [10, 11]

ydPy,

ox (s=p [ Zx ) ao)
1—&—yGS

This result was used in [12, 13, 14, 15, 16, 17, 18, 19,20,21,22]

to derive results on the capacity, the SINR, and the output statistics
of CDMA or antenna array channels.

Gg (s) =

3.2.3 Girko’s Law
Let the N x K random matrix H be composed of independent entries
(H),; with zero-mean and variances w;;/N such that all w;; are
uniformly bounded from above. Assume that the empirical joint
distribution of variances w : [0, 1] x [0, B] — R defined by w(x,y) =
w;; for i, j satisfying i/N <x < (i+1)/Nand j/N <y < (j+1)/N
converges to a bounded joint limit distribution w(x,y) as K = BN —
co. Then, for each a,b € [0,1],a < b, and O(s) > 0

1 oM

N (HHH - sI) S /b u(x,s)d (20)

an’

where convergence is in probability and u(x,s) satisfies the fixed
point equation

-1

,S+/ 1 w(x,y)dy @1
0 14+ fu(x,s)w(x',y)dx’
0

u(x,s) =

for every x € [0,1]. The solution to (21) exists and is unique in the
class of functions u(x,s) > 0, analytic for O(s) > 0 and continuous
onx € [0,1].

Moreover, almost surely, the empirical eigenvalue distribution
of HH! converges weakly to a limiting distribution whose Stieltjes
transform is given by [23]

1

/uxs (22)

0

HHH

This result was used in [24] to analyze asynchronous CDMA in the
large system limit, in [25] to proof resource pooling of chips and
receive antennas in CDMA systems with antenna diversity, and in
[26] to study capacity scaling in large dual antenna array systems.

3.3 Convergence Properties of Eigenvectors

While there are many results known in literature about the eigen-
values of large random matrices, few is known about the eigenvec-
tors. However, there is one particular result which proves helpful
for communications engineering applications:

Let H be an N x K random matrix with independent identically
distributed real-valued random entries with zero mean and all posi-
tive moments bounded from above. Let the orthogonal matrix U be
defined be the eigenvalue decomposition

UAU=HTH. (23)

Note that the rows of U are the eigenvectors of HTH. Let x € RY
with ||x|| = 1 be an arbitrary vector with unit Euclidean norm and
the random vector y = [y, ... ,yN}T be defined as y = Ux. Then,
as N,K — oo, but 3 = K/N fixed,

[tN]
S i —t (24)
k=1

almost surely for every ¢ € [0; 1] with [x] denoting the nearest inte-
ger to x which is not smaller than x [27].

This result is like a law of large numbers for the components
of any linear combination of the components of the eigenvectors of
HTH. The elements of the eigenvector matrix UT behave, for the
purpose of summing its squared elements, as they were statistically
independent in the large matrix limit. This property was used in [28]
to show that the SINR of linear multiuser receivers is asymptotically
Gaussian distributed for a random signature assignment.

4. FREE PROBABILITY THEORY

While random matrix theory considers a large random matrix as
a whole ensemble and proves convergence results, free probability
looks at a random matrix from a different point of view: A random
matrix is primarily seen as a linear random operator. Free probabil-
ity theory provides a framework for dealing with certain classes of
linear random operators.

The essential feature that distinguishes random operators in-
cluding random matrices from scalar random variables is the com-
mutative law which, in general, does not hold for matrices and oth-
ers operators. In order to see what causes problems for probability
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theory, if a random matrix is seen as a single (non-commutative)
random variable, consider the expectations

E{tw)™}y = E{™7) (25)
E{xY)"y # E{X"Y"} (26)

where x,y are standard scalar random variables and X,Y are ran-
dom operators. For independent random variables, all joint mo-
ments must factorize. For statistically independent random matrices
X and Y, this is impossible, in general, due to the non-commutative
nature of matrix multiplication. Thus, the fundamental concept of
statistical independence does not make sense, if a random matrix
is considered as a single random object. Random matrix theory
circumvented this problem, considering a random matrix as being
composed of standard scalar random variables. Thus, it defines sta-
tistical independence of two random matrices if all entries of the one
matrix are jointly independent from all entries of the other matrix.
In this section, we take the viewpoint of free probability. How-
ever, we restrict ourselves to asymptotically large random matrices
as free random variables. Free probability theory also applies to
other classes of random operators.

4.1 Free Expectation

An expectation operator should be linear and should assign 1 to the
identity matrix (the unit element of the matrix algebra). It turns out
that A
E{}=Tr() 27
free
is the right definition for some random matrices to fit into the frame-
work of free probability theory. For those random matrices, Tr(-) is
indeed (almost surely) a deterministic quantity due to the asymp-
totic convergence of their eigenvalues.

4.2 Freeness

Freeness is the conceptual counterpart in free probability to inde-
pendence in classical probability theory. Unfortunately, defining
freeness is considerably more involved than defining independence.

Consider the following example of four random matrices and
assume that they satisfy

Tr(ABCD) = Tr(AB)Tr(CD) (28)
T((ACBD) # Tr(AB)Tr(CD). (29)
For commutative random variables, (28) and (29) would contradict

each other. For non-commutative multiplication, however, (28) and
(29) can be true at the same time.

4.2.1 Non-commutative Polynomials

Due to the non-commutative nature of matrix-multiplication, there
are more different matrix polynomials of two or more variables for
a fixed degree than for commutative variables such as the real or
complex numbers. Let A, B be real matrices. The set of all second
order non-commutative polynomials in two variables A and B is
given by

o,A’B? + a,AB’A + 0;,ABAB + a,BABA +
+a;BA’B+a,B’A? + a,A’B+a,ABA+
+0a,BAB+0a,B’A+a,;A’+a,AB+
+a;BA+a,B’+aA+a,B+a,L

(30)

A non-commutative polynomial in p variables of order n can be
defined by

N A )
Pu(A,...,Ap) = Zaiﬂ |‘|Aqfkq
=1 k=1g=1
n
kzzime{O,l,...,n}/\aieRVi,q . (31)
=1

Note that the number of terms can be considerably large even for
small values of n and p.

4.2.2 Definition of Freeness

In literature [29, 30, 31, 7], freeness is defined in terms of algebras
and sub-algebras. Here we avoid referring to algebras, and define
freeness in terms of non-commutative polynomials.

Definition 4.1 Let s, € {1,2,...,7} be a sequence of integers such
that
S, =581 #0. (32)

Then, the sets 2, 2 {A,,...,A:}, 2, = {Bl,...,Bb}, s 92,
Jorm a free family (2,,...,2;) if, for every sequence s, obeying
(32), any sequence of polynomials Q, such that Q; € Pw(2s,),
and any positive integer n,

Tr(Q))=...=Tr(Qx) =0=Tr(Q,Q,--Q.) =0. (33)

Note that due to (32) adjacent factors in the product Q,Q,---Qp
must be polynomials of different sets of the family. This reflects the
non-commutative nature in the definition of freeness.

4.3 Free Random Matrices

Random matrices are a very popular and practically relevant exam-
ple of non-commutative random variables. However, not all sets
of statistically independent random matrices are capable of form-
ing free families. So far, only a few examples of random matrices
are known which form free families as their dimensions grow large.
Most of them were discovered by Voiculescu [32, 29]. His results
were strengthened and extended in [33, 7].

4.3.1 Gaussian Random Matrices

Let the random matrices H, Vi, be square N x N with independent
identically complex Gaussian distributed proper entries with zero
mean and variance 1/N. Moreover, let X j,V j, be an N X N matrices
with upper bounded norm and a limit distribution as N — co. Then
the family

({xl,xH,xz,xz“,...},{HI,H‘E},{HZ,H?},...) (34)
is asymptotically free as N — oo almost surely [7, 33].

4.3.2 Hermitian Random Matrices

Let the random matrices H,, Vi, be N x K with independent iden-
tically complex Gaussian distributed proper entries with zero mean
and variance 1/N. Moreover, let the matrices X j,V 'j, be as in Sec-

tion 4.3.1 and let S; = H,;H!, Vi. Then the family

({x X%, X8} {8,},{8,) ) 69)

is almost surely asymptotically free as N,K — o with 3 = K/N
fixed [7, 33].

The asymptotic freeness of some random covariance matrices
has been used in [34] to analyze multiuser channel estimation in
large CDMA systems, in [35] to calculate error rates of space-time
codes, in [36] to descibe scattered wave propagation between an-
tenna arrays, and in [37, 38, 39, 40, 41] to design multiuser detec-
tors with sub-cubic complexity.

4.3.3 Unitary Random Matrices

Let the random matrices T, Vi, be N x N Haar distributed random
matrices as defined in Section 3.1.3. Moreover, let the matrices
Xj,Vj, be as in Section 4.3.1. Then, the family

({xl,x’ﬁ,xz,xgi,...},{TI,T?},{TZ,T’;},...) (36)

is almost surely asymptotically free as N — oo [7, 33].
The asymptotic freeness of such unitary random matrices has
been used in [42] for the analysis of multi-carrier systems.
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4.4 R-Transform

Let A and B be two non-commutative random variables belonging
to different sets of a free family. Further, let

c2A+B. (37)

Then, we call the probability measure (asymptotic eigenvalue distri-
bution) p (x) the additive free convolution of the probability mea-
sures p (x) and pg (x). Unlike classical convolution which pro-
vides the distribution of a sum of independent commutative random
variables, additive free convolution is a highly non-linear operation.

In principle, the moments of p (x) could be found from the
moments of p 4 (x) and pg (x) via the definition of freeness. Then,
the distributions could be recovered from the moments solving the
problem of moments via the Stieltjes transform. However, this is
a very tedious task. Significant simplification is achieved via the
R-transform. The R-transform is defined in terms of the Stieltjes
transform as

R(w) 26! (=w) —w! (38)

where G~!(+) denotes the inverse function of the Stieltjes transform
with respect to composition (this should not be confused with the
inverse Stieltjes transform).

The R-transform linearizes additive free convolution of two
non-commutative probability measures [29]. Thus, we have

R (W) =R, (W) +Rg (w). (39)

Then, the distribution of C can be recovered inverting (38) and,
then, using the Stieltjes inversion formula (17).

Tse [43] discovered that the additivity of the R-transform is re-
sponsible for the decoupling of interference powers in the SINRs
of asymptotically large random CDMA with linear multiuser re-
ceivers.

4.5 S-Transform

In analogy to additive free convolution, we define

DZAB (40)

and call the probability measure pp, (x) the multiplicative free con-
volution of the two probability measures p, (x) and pg (x), again
under the restriction that A and B belong to different sets of a free
family of non-commutative random variables. Though, the factors
are non-commutative operators, multiplicative free convolution is
commutative [29].

Under the additional assumption that the probability measures
of both factors have non-zero mean, i.e. Tr(A) # 0 # Tr(B), we
can linearize multiplicative free convolutional via the definition of
an appropriate transform such that

Sp (z2) = Sa (2) Sy (2) 41

where S(-) is called the S-transform. In order to define the S-
transform explicitly, we first introduce an auxiliary transform

Y(s) & / i

1 —sx

dP(x):—s_lG(s_l)—l. 42)

Calculating the inverse with respect to composition of this auxiliary
transform, the S-transform is given as

S(z)

In order to return to the probability distribution, you return to the
Stieltjes domain via (43) and (42) and then apply the Stieltjes inver-
sion formula (17).

It was shown in [18] that formula (18) for products of some
asymptotic random matrices is equivalent to applying the S-
transform. Thus, the S-transform is not restricted to free random
matrices, but also applies to any asymptotic random matrices which
obey the conditions of Section 3.2.1.

él—l—z
Tz

Y '(2). (43)

5. REPLICA METHOD

In the previous part of this work, considerations were restricted to
the eigenvalues (and eigenvectors) of random matrices. In order
to analyze and design large dimensional communication systems
which cannot be described by eigenvalues and eigenvectors alone,
but depend on more complicated functions of the channel matrix,
such as minimum distances between signal points, a more pow-
erful machinery than random matrix and free probability theory
is needed. Such a machinery was developed in statistical physics
for the analysis of some particular magnetic materials called spin
glasses and is known as the replica method [44].

The replica method is also able to reproduce many of the results
which were found by means of random matrix and free probability
theory, but the calculations based on the replica method are often
much more involved. Additionally, the replica method, in contrast
to free probability theory, has not been developed into a mature the-
ory, yet. Moreover, it is still lacking mathematical rigor in some
respects. However, due to its success in explaining physical phe-
nomena and its consistency with engineering results from random
matrix and free probability theory [45], we can trust that its predic-
tions in other engineering applications [46, 47, 48, 49, 50, 51, 52]
are correct. Nevertheless, we should always exercise particular care
when interpreting new results based on the replica method. Estab-
lishing a rigorous mathematical basis for the replica method is a
topic of current research in mathematics and theoretical physics.

5.1 Self Average

While random matrix theory and recently also free probability the-
ory [7, 33] prove the (almost sure) convergence of some random
variables to deterministic values in the large matrix limit, statisti-
cal physics does not always do so. It is considered a fundamental
principle of statistical physics that there are microscopic and macro-
scopic variables. Microscopic variables are physical properties of
microscopically small particles, e.g. the speed of a gas molecule or
the spin of an electron. Macroscopic variables are physical prop-
erties of compound objects that contain many microscopic parti-
cles, e.g. the temperature or pressure of a gas, the radiation of a hot
object, or the magnetic field of a piece of ferromagnetic material.
From a physics point of view, it is clear which variables are macro-
scopic and which ones are microscopic. An explicit proof that a
particular variable is self~averaging, i.e. it converges to a determin-
istic value in the large system limit, is a nice result, if it is found, but
it is not considerably important to the physics community. When
applying the replica method, systems are often only assumed to be
self-averaging. The replica method itself must be seen as a tool to
enable the calculation of macroscopic properties by averaging over
the microscopic properties.

5.2 Free Energy

The second law of thermodynamics demands the entropy of any
physical system with conserved energy to converge to its maximum
as time evolves. If the system is described by a density p, (x) of
states X € R, this means that in the thermodynamic equilibrium the
(differential) entropy

HCY) = — [ logpy (1) dPy (1) (#4)
is maximized while keeping the energy
B = [ [id]dPy () 45)

constant. Hereby, the energy function ||x|| can be any measure
which is uniformly bounded from below.

The density at thermodynamic equilibrium is easily shown by
the method of Lagrange multipliers to be

e Hll
py(¥) = (46)
T e Flhll g
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and called the Boltzmann distribution. The parameter T is called the
temperature of the system and determined by (45). For a Euclidean
energy measure, the Boltzmann distribution takes on the form of a
Gaussian distribution which is well-known in information theory to
maximize entropy for given average energy.

A helpful quantity in statistical mechanics is the (normalized)
free energy? defined as

o0
F(X) 2 E(X) = TH(X) = — T log /e*%H"“dx . @)

— 00

In the thermodynamic equilibrium, the entropy is maximized and
the free energy is minimized since the energy is constant. The free
energy normalized to the dimension of the system is a self averaging
quantity.

5.3 The Meaning of the Energy Function

The free energy is clearly related in statistical mechanics to the en-
tropy of the system at given energy due to (47). This establishes
the usefulness of the free energy for information theoretic tasks like
calculations of channel capacities. Moreover, the free energy is a
tool to analyze various types of multiuser detectors. In fact, the free
energy is such a powerful concept that it needs not any coding to be
involved in the communication system to yield striking results. The
only condition, it requires to be fulfilled, is the existence of macro-
scopic variables, microscopic random variables and the existence
of an energy function. For communication systems, this requires, in
practice, nothing more than their size growing above all bounds.

The broad applicability of the statistical mechanics approach
to communication systems stems form the validity of (47) for any
definition of the energy function. The energy function can be in-
terpreted as the metric of a detector. Thus, any detector parameter-
ized by a certain metric can be analyzed with the tools of statistical
mechanics in the large system limit. There is no need that the per-
formance measures of the detector depend only on the eigenvalues
of the channel matrix in the large system limits. However, there
is a practical limit to the applicability of the statistical mechanics
framework to the analysis of large communication systems: The
analytical calculations required to solve the equations arising from
(47) are not always feasible. The replica method was introduced
to circumvent such difficulties in certain cases. Many other cases,
however, have remained intractable until present time.

Consider a communication channel uniquely characterized by
a conditional probability density Pyx (1,x) and a source uniquely

characterized by a prior density py (x). Consider a detector for the
output of this channel characterized by an assumed channel transi-
tion probability f)yl v (1) and an assumed prior distribution P (x).
Let the detector minimize some kind of cost function, e.g. bit error
probability, subject to its hypotheses on the channel transition prob-
ability pY| + (1) and the prior distribution py (x). If the assumed

distributions equal the true distributions, the detector is optimum
with respect to its cost function. If the assumed distributions differ
from the true ones, the detector is mismatched in some sense.

The minimization of a cost function subject to some hypothe-
sis on the channel transition probability and some hypothesis on the
prior distribution defines a metric which is to be optimized. This
metric corresponds to the energy function in thermodynamics and
determines the distribution of the microscopic variables in the ther-
modynamic equilibrium. In analogy to (46), we find

] et
px|y(x’y) = (48)
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where the dependency on Y and the assumed distributions is implicit
via the definition of the energy function || -||. The energy function

2The free energy is not related to fieeness in free probability theory.

reflects the properties of the detector. Using Bayes’ law, the appro-
priate energy function corresponding to particular hypotheses on the
channel transition function and the prior distribution can be calcu-
lated via (48).

In order to study macroscopic properties of the system, we must
calculate the free energy of the system. For that purpose, we make
use of the self-averaging property of the thermodynamic equilib-
rium and (47):

+o0
F(X):I;:F(XW):—T/log /e—%llxlldx P, () (49)
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Note that, inside the logarithm,the assumed distributions appear
(implicitly) via the definition of the energy function, while, outside
the logarithm, the integration is with respect to the true distribution.

In the case of matched detection, i.e. the assumed distributions
equal the true distributions, the argument of the logarithm in (49)
becomes py (y) up to a normalizing factor. Thus, the free energy
becomes the (differential) entropy of ¥ up to a scaling factor and an
additive constant.

Statistical mechanics provides an excellent framework to study
not only matched, but also mismatched detection. The analysis of
mismatched detection based on asymptotic properties of large ran-
dom matrices is difficult and has been very limited so far. One
exception is the asymptotic SINR of linear MMSE detectors with
erroneous assumptions on the powers of interfering users in [53].

5.4 Replica Continuity

The explicit evaluation of the free energy turns out to be very com-
plicated in many cases of interest. One major obstacle is the occur-
rence of the expectation of the logarithm of some function f{(-) of a

random variable ¥
Elog /(). (50)

In order to circumvent this expectation which also appears fre-
quently in information theory, the following identity is helpful

7]
log(Y) = lim — Y. 51
og(¥) = lim — (51
Under the assumption that limit and expectation can be inter-
changed, this gives

0
Elog /(1) = lim =~ log E[/(V)]" (52)

and reduces the problem to the calculation of the n" moment of the
function of the random variable Y in the neighborhood of » = 0.
Note that the expectation must be calculated for real-valued vari-
ables 7 in order to perform the limit operation.

At this point, it is customary to assume analytic continuity of
the function EC,[f(Y)]". That is, the expectation is calculated for
integer n only, but the resulting formula is trusted to hold for ar-
bitrary real variables # in the neighborhood of n» = 0. Note that
analytic continuity is just an assumption. There is no mathematical
theorem which states under which exact conditions this assumption
is true or false. In fact, establishing a rigorous mathematical fun-
dament for this step in the replica analysis is a topic of ongoing
research.

Relying on the analytic continuity, let f(¥) = [ f(x)dx for
some function fy (x). Since the variable of integration is arbitrary,
this implies

= ([ heos) = [ [ a6

Thus, instead of calculating the n™ power of £ (Y), replicas of x are
generated. These replicated variables x, are arbitrary and can be as-
signed helpful properties. Often they are assumed to be independent
random variables.
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In general, it is not easier to calculate the expectation of the
right hand side of (53) than just the expectation over [f(Y)]". How-
ever, there are some functions fy (x) for which the replica method is
indeed advantageous, particularly if there is no closed form solution
for [ f(x)dx, thus, f(Y) cannot be given explicitly. Then, it might
help to substitute the set of variables (x,...,x,,y) by some other
variables which allow to solve the integral.

5.5 Replica Symmetry

Typically, integrals arising from the replica ansatz are solved by sad-
dle point integration. The general idea of saddle point integration is
as follows: Consider an integral of the form

%log/er(xl""Z)d.x1 dx,. (54)

In the limit K — oo the integral is dominated by that values x,,x,
which maximize the function f(x,,x,). Thus, we have

1 X
Jim log [/ 5)dn dvy = max (5, xv). (59)

That means, the integral can be solved taking the derivative of the
argument of the exponential function.

If the function in the exponent is multivariate—typically all
replicated random variables are arguments—one would need to find
the extremum of a multivariate function for an arbitrary number of
arguments. This can easily become a hopeless task, unless one can
exploit some properties of the exponential argument.

Assuming replica symmetry means that one concludes from the
symmetry of the exponent, e.g. f(x,,x,) = f(x,,x,) for the bi-
variate case, that the extremum appears if all variables take on the
same value. Then, the multivariate optimization problem reduces to
a single variate one, e.g.

max f(x,x,) = m;axf(x,x) (56)

X%

for the bi-variate case. This is the most critical assumption when
applying the replica method. It is not always true, even in practically
relevant cases. The general way to circumvent this trouble is to
assume replica symmetry at hand and proof later, having found a
replica symmetric solution, that it is correct.

There are also practically relevant cases without replica sym-
metric solutions. Such phenomena are labeled replica symmetry
breaking and a rich theory in statistical mechanics literature exists
to deal with them [54, 44]. For the introductory character of this
work, however, replica symmetry breaking is a to advanced issue.

5.6 Phase Transitions

In thermodynamics, the occurrence of phase transitions, i.e. melt-
ing ice becomes water, is a well-known phenomenon. In digital
communications, however, such phenomena are less known, though
they do occur. Phase transitions in turbo decoding and detection of
CDMA were found in [55] and [45], respectively.

Phase transitions in digital communications are similar to the
hysteresis in magnetic materials. They occur if the equations deter-
mining the macroscopic parameters have multiple solutions. Then,
it is the free energy to decide which of the solution corresponds
to the thermodynamic equilibrium. If a system parameter, e.g. the
load or the noise variance, changes, the free energy may shift its fa-
vor from the present to another solution. Since each solution corre-
sponds to a different macroscopic behavior of the system, changing
the valid solution means that a phase transition takes place.

In digital communications, a popular macroscopic property is
the bit error probability. As an example, the bit error probability
of a CDMA system with random spreading is depicted in Fig. 1.
The thick curve shows the bit error probability of the individually
optimum detector as a function of the load. The thin curves show
alternative solutions for the bit error probability corresponding to
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Figure 1: Bit error probability for the individually optimum detec-
tor with uniform binary prior distribution versus system load for
10log,y(Es/N,) = 6 dB.

alternative solutions to the equations for the macroscopic variables.
For a certain interval of the load, approximately 1.73 < 8 < 3.56 in
Fig. 1, multiple solutions occur. The bit error probability increases
with the load. At a load of approximately 8 = 1.986 a phase tran-
sition occurs and lets the bit error probability jump. Unlike to fer-
romagnetic materials, there is no hysteresis effect for the bit error
probability of the individually optimum detector, but only a phase
transition.
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