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Genexpressionsprofile von in vitro produzierten Rinderembryobiopsien in Relation zur in 

vivo Entwicklung nach Transfer 

 

In dieser Arbeit wurde der Zusammenhang zwischen Genexpression in  Embryonen und 

Trächtigkeitserfolg, basierend auf der Expressionsanalyse von vor dem Transfer an den 

Rezipienten gewonnenen Blastozystenbiopsien, untersucht. Hierzu wurden Biopsien (30-

40% des intakten Embryos) von Tag 7 Blastozysten genommen (n=118) und der 60-70% 

Restteil den Rezipienten nach Re-expansion transferiert. Basierend auf dem Erfolg der 

Trächtigkeit wurden die Biopsien in 3 Gruppen (je 10 Biopsien) gepoolt, nämlich: jene, die 

in keiner Trächtigkeit resultierten (G1), resorbierte Embryonen (G2) und jene, die in Geburt 

eines Kalbes resultierten (G3). Die Genexpressionsanalyse dieser Gruppen wurde mit 

einem selbsthergestellten bovinen präimplantationsspezifischen cDNA Array (mit 219 

Clonen) und mit BlueChip (mit ~2000 Clonen) durchgeführt. Die Datenanalyse mittels 

Significant Analysis for Microarray (SAM) Software zeigte insgesamt 52 bzw. 58 

unterschiedlich regulierte Gene im Vergleich zwischen G1 versus G3 und G2 versus G3. 

Quantitative real-time PCR wurde zur Bestätigung der durch das Microarray-Experiment 

entdeckten unterschiedlich exprimierten Gene eingesetzt. G3-Biopsien exprimierten 

herstäarkt solche Gene, die notwendig für Implantation (COX-2 und CDX2), 

Kohlenhydratmetabolismus (ALOX15), Wachstum (BMP15), oxidative Stressantwort 

(TXN), Signalübermittlung (PLAU) und Plazentafunktion-8 (PLAC8), sind die Biopsien 

der resorbierten Embryonen zeigten vermehrt Transkripte, die in Protein-phosphorylation 

(KRT8), Plasmamembranaufbau (OCLN) und Glucosemetabolismus (PGK1, AKR1B1). 

Involvirt sind die Biopsien von G1-Embryonen, exprimierten vermehrt Transkripte von 

Zytokinen (TNF), Proteinaminoacidbindung (EEF1A1), Transkriptionfaktoren (MSX1, 

PTTG1), Enzymen des Glucosemetabolismus (PGK1, AKR1B1) und CD9, einem Inhibitor 

der Implantation. Zusammengefasst lässt sich sagen, dass wir direkte Kandidatengene 

identifiziert haben, die eine wichtige Rolle in der Bestimmung der Enwicklungsfähigheit  

des Embryos nach dem Transfer spielen könnten. 

 

 



Transcriptional analysis of biopsies derived from in vitro- produced bovine blastocysts in 

relation to pregnancy success after transfer to recipients 

 

This study was carried out to address the relationship between the transcriptional profile of 

embryos and the pregnancy success based on gene expression analysis of blastocyst 

biopsies taken prior to transfer to recipients. For this, biopsies (30-40% of the intact 

embryo) were taken from day 7. Blastocysts (n=118) and 60-70% part were transferred to 

recipients after re-expansion. Based on the success of pregnancy, biopsies were pooled in 

three groups (each 10 biopsies) namely: those resulting in no pregnancy (G1), resorption 

(G2) and those resulting in delivery of calf (G3). Gene expression analysis of these groups 

was performed using a home made bovine preimplantation specific cDNA array (with 219 

clones) and BlueChip (with ~2000 clones). Data analysis using Significant Analysis for 

Microarray (SAM) software revealed that a total of 52 and 58 genes were differentially 

regulated during comparison between G1 versus G3 and G2 versus G3 respectively. 

Quantitative real-time PCR was used to validate the results of the microarray experiments. 

G3-Biopsies are enriched with genes necessary for implantation (COX-2 and CDX2), 

carbohydrate metabolism (ALOX15), growth factor (BMP15), response to oxidative stress 

(TXN), signal transduction (PLAU) and placenta-specific 8 (PLAC8). G2-Biopsies are 

enriched with transcripts involved protein phosphorylation (KRT8), plasma membrane 

(OCLN) and glucose metabolism (PGK, AKR1B1). G1-Biopsies are enriched with 

transcripts involved inflammatory cytokines (TNF), and factors relevant for protein amino 

acid binding (EEF1A1), transcription factors (MSX1, PTTG1), glucose metabolism (PGK1, 

AKR1B1) and CD9 which is an inhibitor of implantation. The bovine MSX1 protein 

detected by immunohistochemistry was localized in the cytoplasm of immature oocytes and 

distributed at periphery of the cytoplasm of matured oocytes. Throughout the 

preimplantation period the staining was apparently more concentrated around the nuclei, 

whereas the ICM in blastocyst showed weaker labelling for MSX1 than the trophectoderm. 

In conclusion, we generated direct candidates of genes which may play an important role in 

determining the fate of the embryo after transfer. 
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Introduction 1 

1 Introduction 

 

Revenue from dairy and beef farms is directly dependent upon reproductive efficiency 

because it affects milk production and the number of calves born. Pregnancy loss can have 

devastating effects on economical success in dairy and beef units. In dairy farms, it was 

estimated that each pregnancy lost results in an average loss of US$ 640.00 (Thurmond et 

al. 1990). In beef herds, pregnancy loss represents an even more important economic factor 

because most of the income is determined by the number of calves sold. So, pregnancy loss 

or in other words, embryonic mortality is a recognized cause of reproductive failure in 

cattle leading to the loss of a large number of potential calves, retarded genetic progress, 

and significant loss of money and time in rebreeding cows (Khurana and Niemann 2000, 

Morris et al. 2001).  

Embryonic mortality results either from intrinsic defects within the embryo, or an 

inadequate maternal environment, or asynchrony between embryo and mother, or failure of 

the mother to respond appropriately to embryonic signals (Hansen 2002). With the advent 

of reproductive technologies this developmental failure becomes more evident. In in vitro 

production (IVP) of bovine embryos, most of this mortality is sustained within the first 2-3 

weeks after fertilization (Diskin and Sreenan 1980, Dunne et al. 2000, Farin et al. 2001 and 

Sreenan et al. 2001). The explanation for this high rate of developmental failure according 

to the defect within the embryo (intrinsic errors) remain unclear. The extent and regulation 

of cell death during preimplantation development is likely to be critical for later 

development of the conceptus (Brison and Schultz 1997), however, the causes, roles and 

genetic regulation of embryo death and arrest before implantation remain to be elucidated. 

Implantation failure may result from failure of particular gene expression or erroneously 

gene expressions at a crucial point in time. In some cases, even a defect in a single but a 

critical gene is sufficient to cause implantation failure (Copp 1995). This is in agreement 

with what was shown from in vitro production of bovine embryos correlated with 

significant up- or down regulation, de novo induction or silencing of genes critical for 

undisturbed fetal and neonatal development (Blondin et al. 2000, Crosier et al. 2002, 

Wrenzycki et al. 2005).  
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The study of gene expression in preimplantation development will help to understand the 

development after transfer also, as it has been reported in both mice and cattle that IVP of 

embryos resulted in not only altered expression of metabolic and growth-related genes in 

preimplantation-stage embryos but also altered conceptus and fetal development following 

transfer (Khosla et al. 2001 and Lazzari et al. 2002). Therefore, understanding and 

unravelling the secrets of preimplantation embryo development has been a challenge to the 

investigators in the field aiming to alleviate the problems of pregnancy failure. So it is 

important to study the gene expression during the critical period when the embryo loss 

occurs, because a better knowledge of gene expression patterns during pre-implantation 

development would yield insights into the molecular pathways controlling early embryonic 

development and for understanding events that may be compromised in its mortality 

(Khurana and Niemann 2000).  

Despite the fact that, data on transcriptional analysis of transferable blastocysts of various 

origins have been accumulated (Rizos et al. 2003, de A Camargo et al. 2005, Wrenzycki et 

al. 2005), so far no direct connection of gene expression and developmental competence 

has been established. To study the embryo gene expression responsible for the pregnancy 

failure we need to study the gene expression in blastocyst which already transferred to the 

animal or identical with it. What is needed is a well established biopsy technique to obtain 

cells from embryos prior to transfer without any lethal effect to the embryo during further 

development. One of the possibilities used to obtain genetically identical offspring in cattle 

is embryo splitting (Klein et al. 2006). This technique has been used extensively in cattle 

with many thousands of calves being born worldwide (Ozil 1982, Williams et al. 1984). 

There have been no reports of the technique producing abnormalities in the offspring 

(Lewis 1994). The health of calves resulted from embryo duplication is not different from 

normal calves. The success of the embryo bisection is greatest at the blastocyst to expanded 

blastocyst stage (Lewis 1994, Hygate et al. 1995). 

 

Therefore the objectives of this study were:- 

 

1- To compare transcriptional activity of embryo biopsies derived from blastocysts 

resulting in different pregnancy phenotypes after transfer to recipients. 
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2- To identify differentially regulated genes between three biopsy groups. 

3- Further functional analysis for selected candidate gene at the protein level. 
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2 Literature review 

 

2.1 Preimplantation conceptus and maternal uterine communication 

 

After fertilization, embryo development involves differentiation, as well as development of 

the fetal body and extra-embryonic tissue until the moment of implantation. Implantation is 

a unique example of successive interaction between two tissues (embryo and endometrium) 

that are genetically distinct, therefore, this critical step for mammals in establishing 

pregnancy, requires successful completion of sequential events such as maternal uterine 

development, conceptus development and attachment, and placental formation (Basak et al. 

2002, Robertson et al. 2003, Imakawa et al. 2004). Differing from rodents and primates, the 

ruminant blastocyst undergoes a longer, up to two weeks, pre-attachment period (Aplin et 

al. 2004, Imakawa et al. 2004). The embryo begins to form the placenta around day 20 of 

gestation in bovine (King et al. 1980, Yamada et al. 2002), while embryonic trophoblast 

and endometrial cells tightly unite to form placentomes on day 30 (Wooding and Flint 

1994). A variety of molecules including adhesion, signaling, transcription, growth factors, 

cytokines, cell cycle, DNA replication proteins and hormones by embryonic as well as 

maternal tissues of both uterine and extra-uterine origins coordinate conceptus and uterine 

development, differentiation and structural formation during this critical phase (Carson et 

al. 2000, Basak et al. 2002). It is apparent that, even though embryonic development may 

proceed normally, there remain many opportunities for implantation failure (Carson et al. 

2000). This failure in implantation or lack of sufficient placental development leads to 

conceptus losses. Such losses are commonly associated with in vitro fertilization 

procedures in human and livestock species of the agriculture industry (Imakawa et al. 

2004). It is assumed that essential mechanisms for embryo implantation must be supported 

by redundant pathways to ensure the conception of new offspring. This predicts that a large 

number of genes that are important for implantation remain to be identified (Rees et al. 

2001, Qin et al. 2003, Imakawa et al. 2004).  
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Figure 1: Gene expression model during the early implantation period in mouse (Imakawa 

et al. 2004) 

 

2.2 Gene expression during preimplantation embryo development 

 

Early embryonic development of most animals requires a specific complement or 

abundance of oogenetic mRNAs and proteins to confer full developmental competence 

following fertilization (Babinet et al. 1990, Renard et al. 1994). Formation of zygotes 

following successful fertilization triggers cohorts of events beginning with repeated cycles 

of cell division, activation of embryonic genome, compaction and differentiation into inner 

cell mass (ICM) and trophoblast cells resulting in the formation of blastocyst (De Sousa 

1998, Lawinger et al. 1999, Ko et al. 2000). While these series of events have been the 

distinctive characteristics of preimplantation embryo development, temporal occurrences 

vary between different species (Telford et al. 1990, Lawinger et al. 1999) and reliant on the 

sequential and temporal expression of about 10,000 genes out of which the sequence, 

expression and function of only a very minor portion of these a known so far (Ko et al. 

2000, Niemann and Wrenzycki 2000). Recently, cDNA microarray has been applied 

successfully to profile the expression pattern of a large number of transcripts involved in 

various developmental pathways. These include study in the analysis of preimplantation 

stage human embryos (Kelly and Rizzino 2000, Adjaye et al. 2005), study of gene 
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expression in mouse embryos using cDNA arrays (Tanaka et al. 2000, Brambrink et al. 

2002), of bovine oocyte maturation using heterologous cDNA array (Dalbies-Tran and 

Mermillod 2003), the identification of  important genes in oocyte library important for 

embryogenesis (Yao et al. 2004) and of novel oocyte-specific genes in three different 

species: bovine, mouse and Xenopus laevis (Vallee et al. 2005). Comparing the 

developmental competence between oocyte and  preimplantation embryo in bovines 

showed that 35 genes were differentially regulated between matured oocyte and blastocyst 

(Mamo et al. 2005), compare the expression profiles of embryos derived from different 

origins (Wrenzycki et al. 2004), detect the gene expressions during bovine embryogenesis 

and implantation (Ushizawa et al. 2004) and recently identification of differentially 

expressed genes in preimplantation embryos produced by nuclear transfer to study the 

effect of this new technology on reprogramming the genes required for development (de A 

Camargo et al. 2005, Pfister-Genskow et al. 2005). Generally, the control of development 

in preimplantation embryos is guided by two major activation events occurring temporally 

at the preimplantation development stage. These are maternal and zygotic gene activation 

events that control development sequentially. 

 

2.2.1 Maternal gene activation and development control 

 

Early embryonic development in mammalian species is regulated by maternal transcripts. 

As a result, any activity that requires the creation and development of an embryo, whether 

it is in the context of infertility treatment or in the creation of a reconstructed embryo by 

nuclear transfer, is dependent on the intrinsic ability of that oocyte to support development 

(Nusser et al. 2001, Rodriguez and Farin 2004). This is, however, guided by a very stable 

form of RNA that accumulated in the oocyte and translated during maturation, fertilization 

and early embryonic development (Stutz et al. 1998). These translationally dormant 

mRNAs encode a variety of products which are activated in a stage and sequence specific 

manner in early development (De Moor and Richter 1997, Stutz et al. 1998). During this 

time, different factors were mentioned to be responsible for the regulation of translation in 

this stored mRNAs. Sub-cellular localization, cytoplasmic polyadenylation, and Y-box 

proteins have emerged as leading candidates to regulate the translation of maternal mRNAs 
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(Yu et al. 2001). Although these and a number of other mechanisms are probably 

responsible for the translational control of maternal mRNA, one that appears to be 

widespread is cytoplasmic poly (A) elongation (De Moor and Richter 1997, Charlesworth 

et al. 2002, Tay et al. 2003). As a result, mRNAs and proteins synthesized and stored 

during oogenesis initiate and support a developmental program induced by sperm 

penetration (Memili et al. 1998, Viuff et al. 1998, Pacheco-Trigon et al. 2002, Lonergan et 

al. 2003). Several gene transcripts required for oocyte competence have been identified in 

mouse including oocyte specific growth differentiation factor-9 (GDF-9) (McGrath et al. 

1995), Bone morphogenetic protein 15 (BMP15) (McNatty et al .2004) connexin 37 (Cx37) 

(Simon et al. 1997), c-mos proto-oncogene (Colledge et al. 1994) and genes encoding the 

zona pellucida glycoprotein (Epifano et al. 1995). However, after one to four cleavage 

divisions, based on the species, the maternal phase gradually looses its development control 

(Telford et al. 1990, De Sousa et al. 1998, Watson et al. 1999). This transition from 

maternal to embryonic control of development is characterized by a degradation of 

maternal RNA and protein, arrest in embryonic development, increased sensitivity to 

transcriptional inhibitors such as alpha-amanitin, a burst of transcriptional activity from the 

embryonic genome (Natale et al. 2000) and in the replacement of transcripts previously 

degraded and the generation of new transcripts that were not present in the oocyte (Brunet-

Simon et al. 2001). 

 

2.2.2 Embryonic gene activation and development control 

 

In all species, the development beyond early cleavage divisions is dependent on zygotic 

gene activation and subsequent maintenance of temporally and spatially appropriate zygotic 

transcription (Henrion et al. 2000). The trigger for the initiation of embryonic transcription 

remains unclear (Memili and First 1999, Ma et al. 2001). However, it involves the synthesis 

of proteins, which are about 40 in mouse (Latham et al. 1991). During the transition from 

maternal to embryonic control of development, maternal transcripts are depleted and 

embryo specific transcripts involved in early embryogenesis are generated (Adjaye et al. 

1999). The transcription of the 18S, 5.8S, and 28S rRNA polymerase I and their subsequent 

processing lead to the formation of a distinct nuclear structure of the nucleus (Viuff et al. 
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1998). Furthermore, the transition is accompanied by modifications in chromatin structure 

and post-translational modifications of the transcriptional abilities in early embryos 

(Pacheco-Trigon et al. 2002). In addition, a dramatic reprogramming of gene expression 

occurs during this transition, and this is likely the molecular foundation for transforming 

the highly differentiated oocyte into the totipotent blastomere of the early cleavage stage 

preimplantation embryo (Ma et al. 2001). The timing of zygotic gene activation, or 

competence to sustain appreciable transcriptional activity in bovine embryos may be 

controlled temporally by a time dependent mechanism referred to as zygotic clock rather 

than by developmental stage (Nothias et al.1995, Watson et al. 1999). In bovine embryos, 

zygotic gene activation has definitely occurred by the 8 to 16 cells stage as evidenced by 

incorporation of [3H]-uridine into nuclei and nucleolei at the 8-cells stage (De Sousa et al. 

1998). As in cattle embryo, a relatively constant pattern of protein synthesis is observed 

during the first three cell cycles (one-, two-, or four-cell embryos), but a distinctly different 

pattern is observed in 16-cell embryos and at later stages (Telford et al 1990). This 

activation is responsible for controlling subsequent development, and different transcripts 

are expressed in a stage specific manner. However, first transcript initiation at 2 to 4 cells 

stages was observed in bovine embryo development and this initiation is α- amanitin 

insensitive and is not required for progression of embryonic development to advanced 

preimplantation stage (De Sousa et al. 1998). 

 

2.2.3 Genes expressed during the period from blastogenesis through implantation 

 

The process of implantation involves complex cell-to-cell communications between the 

blastocyst trophectoderm and luminal epithelium of the receptive uterus (Wang et al. 2002). 

As a result, the period of pre-implantation in ruminants is of main interest for the outcome 

of pregnancy, since it is associated with a high rate of developmental failure. Blastocyst 

growth and differentiation can thus be considered as a main target period for the 

improvement of applications resulting from embryo technologies. In this process, the 

expression of different genes contributing of normal implantation and development is very 

important. For example, inadequate production of interferon-tau (IFN-τ) by the embryo to 

block uterine prostaglandin F2α production results to pregnancy failures in cattle (Hansen 
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2002). IFN-τ mRNA has been detected in blastocysts but not in morula, suggesting that the 

onset of IFN-τ production is tightly linked to blastocoel formation (Bazer et al. 1997, Lee et 

al. 2002, Rizos et al. 2003, Ushizawa et al. 2004). Platelet/endothelial cell adhesion 

molecule 1 (PECAM-1) is indeed expressed in the mouse blastocyst and it is specific for 

the cell-cell borders of the inner cell mass (ICM) (Robson et al. 2001). Similarly, disruption 

of sodium/potassium transporting ATPase (Na/K-ATPase) gene expression by antisense 

oligonucleotide inhibition disrupted blastocyst formation; these results have implicated the 

Na/K-ATPase as a key regulator of bovine blastocyst formation (Watson et al. 1999). 

Furthermore, octamer-binding transcription factor 4 (Oct4) is expressed during cleavage 

stages and is essential for the differentiation of the blastocyst (Boiani et al. 2002). Oct4 is 

expressed initially in all blastomers and later restricted to the inner cell mass (ICM) and 

down regulated in trophectoderm (Palmieri et al. 1994, Pesce and Schöler 2000). The 

absence of Oct-4 leads to blastocysts of lower cell number in ICM in bovines 

(Nganvongpanit et al 2006) and results in periimplantation lethality from defective ICM 

development in the mouse conceptus (Imakawa et al. 2004). Other transcription factors 

involved in ICM differentiation include fibroblast growth factor-4 (FGF-4) (Rappolee et al. 

1994), heparin-binding FGF like growth factor (HB-EGF) (Paria et al. 2000) and FGF 

receptor 2 (FGFR-2) (Rappolee et al. 1998, Haffner-Krausz et al. 1999). It was indicated 

that Oct-4 enhances the ICM expression of FGF-4, which affects both ICM and trophoplast 

development mediated through the FGFR-2 pathway. Thus, the differentiation of ICM and 

trophoplast cells during the process of implantation is regulated by means of factors like 

Oct-4, FGF-4 and FGFR-2 as summarized in figure 1 (Imakawa et al. 2004).  

Immunostaining of blastocyst confirmed that HB-EGF, which is present in both the 

trophectoderm and the inner cell mass, promotes blastocyst growth and function in a 

number of species (Wang et al 2002). Similarly, ß human chorionic gonadotrophin (HCG), 

human leukocyte antigen (HLA)-G and pregnancy specific ß-1 glycoprotein (SP-1) are 

known to be the three placental markers that are expressed prior to implantation and there 

was a significant positive correlation between SP-1 concentrations and blastocyst cell 

numbers, which suggest that SP-1 may be used to select blastocysts with higher cell 

number, possibly resulting in higher pregnancy rates (Jurisicova et al. 1999).  
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Numerous transcription factors are expressed in trophoplasts including zink finger protein 

42 (Rex-1) (Rogers et al. 1991), gata binding protein 3 (GATA-3) (Ng et al. 1994), T-box 

gene Eomesodermin (Eomes) (Ciruna and  Rossant 1999), the caudal-related gene Cdx-2 

(Beck et al. 1995), activating protein 2 gamma (AP-2δ) (Shi and Kellems 1998), basic 

helix-loop-helix (bHLH) gene Mash2 (Rossant et al. 1998), heart and neural creast 

derivatives expressed 1 (Hand1) (Cross et al. 1995) and erythroblastosis virus E26 

oncogene homology 2 (Ets-2) (Yamamoto et al. 1998). 

The T-box gene Eomes and homeobox gene Cdx-2 are required for early trophoplast 

development during the pre-implantation period (Chawengsaksophak et al. 1997, Russ et 

al. 2000). Cdx2 is one of the genes crucial for placental development, which its aberrations 

in embryo can result in implantation or placental defect as reported by Hall et al. (2005). 

AP-2 δ, Mash2, Hand1 and Ets-2 are involved in trophoplast development during the peri- 

and post-implantation periods (Guillemot et al. 1994, Yamamoto et al. 1998, Riley et al. 

1998, Scott et al. 2000). 

Also, more genes found to be expressed from blastogenesis through implantation like, 

matrix metalloproteinnases (MMPs) (Whiteside et al. 2001), heparanase (Kizaki et al. 

2001), retinoid X receptors (Mohan et al. 2002), trophoplast-cell-specific molecules such as 

placental lactogenes (Pls), prolactin-related proteins (PRPs) as stated by (Ushizawa et al. 

2004). Interestingly, mouse conceptuses deficient in several other genes, which expressed 

as DNA replication initiator such as cell division cycle 45 (CDC45) (Yoshida et al. 2001), 

cell cycle, checkpoint kinase 1 homolog (Chk-1) (Liu et al. 2000), SWI/SNF related, matrix 

associated, actin dependent regulator of chromatin subfamily (a) member 4 (Brg-1) 

(Bultman et al. 2000), neural precursor cell expressed, developmentally down-regulated 

gene 8 (NEDD-8) (Tateishi et al. 2001), and menage a trios 1 (Mat-1) (Rossi et al. 2001), 

are reported to die during the preimplantation period. High expression of Cox-2 during the 

time of the implantation suggestes an important role for the prostaglandins released by the 

embryo in mediating interactions with the uterus (Charpigny et al. 1997, Wang et al. 2002). 

Vast numbers of genes change their expression levels during this period to support the 

complex mechanisms of embryogenesis and implantation. Although numerous molecules 

participate in trophoblast differentiation and placentation, the precise molecular and genetic 

pathways which lead to the formation of placenta remain difficult to clarify. Nevertheless, 
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recent data from animal cloning technology where a somatic or stem cell nucleus is 

transplanted to an enucleated unfertilized egg, strongly suggested that inappropriate 

expression of genes is possibly the main cause of early embryo loss (Hashizume et al. 2002, 

Zhang et al. 2004). 

 

2.3 Fertility and embryo loss in cattle 

 

Fertility is a measure of reproductive success and might be considered as two traits: 

inherent fertility and expressed fertility. Inherent fertility refers to the genetic potential for 

reproductive performance and is not directly measurable. Expressed fertility can be 

measured by age at puberty, quality and quantity of spermatozoa, conception rate, etc. 

Many factors are correlated with fertility in cattle such as nutrition (Boland and Lonergan 

2003), genetics (Royal et al. 2002) and yield (Butler 2003). Fertility in males can be 

defined as the ability of bull to produce semen that will result in successful pregnancy 

whereas in females, it can be defined as the ability of a cow to cycle and conceive normally 

to produce a viable offspring. Such a complex feature is under the influence of numerous 

genes, working together to produce functional gametes; promote early embryonic and fetal 

development and finally the delivery of a healthy calf. The heritability, the proportion of 

variability in phenotypic trait that due to genetics relative to the proportion that due to the 

environment is relatively low for fertility, usually with value of 5% or less (Dearborn et al. 

1973, Berglund and Philipson 2001). However, a number of genetically based variations is 

known to have direct effects on fertility and reproductive outcome in cattle. For example 

genetic selection programs have produced a modern dairy cow biologically efficient at 

producing large volumes of milk, but with an embryo loss rate close to 50% (Diskin et al. 

2001). Similarly a higher increment of embryonic loss in high-yielding dairy cattle than in 

moderate yielding cows or in heifers was observed (Silke et al. 2002, Santos et al. 2004b). 

This in accordance with Lucy (2001) who reported that pregnancy rate per insemination in 

dairy cattle has declined in the last 30 years. Although some of this decline likely reflects 

failures of estrus detection, improper semen deposition, and so on, such a large decrease in 

pregnancy rate points to an increase in embryonic mortality. It has usually been estimated 



Literature review 12

that genetic merit has greater effects on early embryonic loss or fertilization failure than 

that on later stages of embryo development (Grimard et al. 2006). 

 

2.4 Pregnancy failure and embryo loss  

 

Embryo mortality is a major problem for the cattle breeding industry which compromises 

reproductive efficiency and genetic improvement, resulting in serious financial loss to 

farmers (Morris et al. 2001). 

 

2.4.1 Factors associated with pregnancy loss 

 

2.4.1.1 Oocyte quality and persistent follicles  

 

Pregnancy begins at conception (union of egg and sperm), but factors affecting the health 

of gametes may ultimately determine the developmental competence of the embryo. The 

newly-formed zygote is composed of both genetic and nongenetic material from the oocyte 

and spermatozoa that produced it. Sperm mitochondria are rapidly ubiquitinated and 

cleared from the zygotes (Sutovsky et al. 2000). So, the cytoplasm of the zygote is largely 

derived from the oocyte and only maternal mitochondria survive in the zygote. Until the 

late four-cell to eight cell stage, when there is a major round of embryonic transcription, the 

early embryo undergoes only limited transcription (Memili and First 2000) and the embryo 

is dependent in large part on transcripts and proteins formed in the oocyte which lead to 

developmental competence.  

The term oocyte competence has been developed to describe the potential of an oocyte to 

give rise to a normally developing embryo following fertilization. Mayes (2002) proposed 

the theory that the developmental competence of the oocyte is determined during the long 

period of follicular growth that precedes ovulation or in case of in vitro maturation, precede 

the isolation of the oocyte from its follicle. The biochemical and morphological changes in 

the oocyte in persistent follicles reduce fertility in cattle (Mihm et al. 1994, Inskeep 2002) 

due to embryo mortality before the 16-cell stage (Ahmad et al. 1995). Therefore, extending 

the period of follicle dominance either by exogenous progestins (Mihm et al. 1994) or when 
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cows have cycles with two waves of follicle growth (instead of three follicle growth waves; 

Townson et al. 2002) Fortunately, the presence of a persistent follicle does not alter the 

developmental potential of oocytes from smaller follicles; that is, if the persistent follicle 

regresses, normal fertility is resumed (Smith and Stevenson 1995).  

It is becoming increasingly clear that environmental or nutritional stresses can adversely 

affect oocyte competence. Using in vitro fertilization, several factors have been reported to 

reduce oocyte competence, as measured by the reduction in the proportion of oocytes that 

successfully develop into blastocysts (Hansen 2002). These factors include diets with high 

amounts of degradable crude protein (Sinclair et al. 2000, Armstrong 2001), low body 

condition score (BCS), parity, and high genetic merit for milk yield (Snijders et al. 2000). 

Oocytes collected from cows with low BCS had lower rates of cleavage and blastocyst 

formation rates than those from cows with high BCS. Furthermore fertilization of oocytes 

from first lactation cows resulted in fewer blastocysts than from third lactation cows. Also 

oocytes of high genetic merit cows yielded fewer blastocysts and had lower rates of 

cleavage and blastocyst formation than oocytes from medium genetic merit cows. In 

addition, oocyte competence is reduced in prepubertal animals (Armstrong 2001). Using in 

vitro fertilization protocols, the proportion of oocytes that develop to blastocyst is greater 

for oocytes from larger follicles than for oocytes recovered from smaller follicles 

(Lonergan et al. 1994). 

 

2.4.1.2 Heat stress 

 

The summer decline in oocyte competence is presumably due to heat stress. In sheep, heat 

stress 12 d before estrus reduced fertilization and lambing rates (Dutt 1964). In addition, 

retrospective analysis of a large reproductive data set in lactating dairy cattle revealed a 

negative association between heat stress 10 d before breeding and subsequent pregnancy 

rate (Al-Katanani et al. 1999). Near estrus, the oocyte also appears sensitive to damage. 

Exposure of superovulated cows to heat stress for 10 h beginning at the onset of estrus had 

no effect on fertilization rate but reduced the proportion of normal embryos recovered on d 

7 after estrus (Putney et al. 1989). 
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Exposure to high environmental temperatures compromised steroidogenesis and viability of 

oocytes (Zeron et al. 2001), reduced oocyte quality (Hansen 2002), and reduced 

fertilization rate (Sartori et al. 2002) and causes declines in oocyte competence (Al-

Katanani et al. 2002). Drost et al. (1999) demonstrated that transfer of in vivo produced 

embryos from cows exposed to thermoneutral temperatures increased pregnancy rate in 

heat-stressed recipient cows compared to that in heat-stressed cows subjected to AI. 

Cartmill et al. (2001b) observed an extremely high pregnancy loss (42.7%), which was 

substantially higher than that observed for cows at similar stage of gestation not exposed to 

heat stress. These results demonstrate the negative effects of heat stress on oocyte quality, 

which compromises fertilization and early embryo development, thus further exacerbating 

pregnancy losses. 

 

2.4.1.3 Insemination protocol 

 

A wide range of hormonal programs is available to synchronize estrus or ovulation, thereby 

optimizing service rate. Lucy (2001) indicated that most studies evaluating late embryonic 

losses in cattle involved animals subjected to timed AI protocols. Based on results from 

Smith and Stevenson (1995), it was suggested that cows inseminated following 

spontaneous estrus may have lower rates of embryonic death than those bred following 

timed AI (Lucy 2001). 

Pregnancy loss in 6 published studies (Cartmill et al. 2001a, Cartmill et al. 2001b, Cerri et 

al. 2003, Gümen et al. 2003, Santos et al. 2004a, Chebel et al. 2004) with cows inseminated 

following timed AI was 11.2%, which was similar to that of cows inseminated upon estrus 

detection (12.7%; Table 1). In five of the six studies, pregnancy loss was not altered by 

insemination protocol. In only one study (Cartmill et al., 2001b), a tendency for increased 

pregnancy loss was observed with timed AI and, in spite of insemination protocol, 

pregnancy loss was extremely high (42.7%), perhaps associated with heat stress during the 

study. In spite of lack of evidence that timed AI results in increased embryonic losses in 

cattle, it is possible that synchronization protocols that limit the length of the proestrus or 

result in incompetent follicles might compromise fertility by increasing pregnancy losses. 
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2.4.1.4 Milk yield  

 

The rapid progress in genetics and management in the dairy industry throughout the world 

has created a new era in which a smaller number of dairy cows meet the growing demand 

for dairy products. To meet the demands of the 21st century, individual cows produce more 

milk and are found on farms with larger herd sizes (Nebel and McGilliard 1992). Recent 

genetic improvement in dairy cows has led to a dramatic increase in milk yield, which has 

been associated with a decrease in reproductive performance (Pryce et al. 1999, Royal et al. 

1999, Washburn et al. 2002) and higher embryonic loss (Silke et al. 2002, Santos et al. 

2004b). Selection for milk yield has increased blood concentration of somatotropin and 

prolactin, stimulators of lactation, and decreased insulin, a hormone that is antagonistic to 

lactation and may be important for normal follicular development. These changes in 

hormone concentration promote higher milk yield but maybe potentially detrimental to 

other physiological functions, such as reproduction (Nebel and McGilliard 1992). One 

challenge that will undoubtedly affect future efficiency of the dairy industry is the decline 

in fertility and reproductive efficiency in modern dairy cows (Lucy 2001). 

In dairy cattle the loss of the embryo occurs within 40 d after the cow became pregnant 

(Moore et al. 2005). The same author stated that a large proportion of the loss occurs 8 to 

19 d after breeding (early embryonic loss) resulting in return to heat 18 to 24 d post-

breeding. Other losses occur after pregnancy is recognized by the cow at 17 to 19 d after 

breeding but prior to the time when pregnancy can be detected by rectal palpation at 35 to 

42 d.  

 

2.4.1.5 Nutritional effects  

 

Intensive genetic selection for increased milk production, coupled with increased dry matter 

intakes has led to significant improvements in cow milk yield, however, this increase in 

milk output has been accompanied by decline in cow fertility through increasing the 

embryo loss (Silke et al. 2002, Boland et al. 2003). It has been found that embryo loss is 

affected by nutrition of the cow at the time of insemination where, fluctuation in energy 

intake can have a significant deleterious effect on embryo survival rate. A reduction in 
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energy intake from twice to 0.8 times maintenance requirements for a period of two weeks 

immediately after insemination resulted in reduction in embryo survival rate to 38% 

(Diskin et al. 2001). 

Despite the documented relationship between energy intake and systemic progesterone in 

sheep and pigs, there is no evidence presented that changes in energy intake affect systemic 

progesterone concentration in heifers as it has found by Diskin et al. (2001), who stated that 

previous published reports on the effect of nutrition on progesterone concentration in cattle 

are equivocal. 

Similarly cows fed the high rumen-degradable-protein diet during early lactation were less 

likely to conceive at first service and to have prolonged interval from calving to conception 

(Westwood et al. 2002). Diets rich in highly degradable crude protein (CP) compromises 

fertility through direct actions of urea on the oocyte and through diet-induced alterations in 

uterine pH (Ocon and Hansen 2003). Furthermore toxic plants can cause embryonic death 

and abortion (James et al. 1992). For instance cottonseed contains gossypol that can be 

toxic to mammalian cells (Santos et al. 2003, Villasenor et al. 2003) since high plasma 

gossypol concentrations (>5 µg/ml) reduced embryo quality and development, and 

conception rates. Cows fed high gossypol diets experienced more fetal losses, and reduced 

conception rates and fetal survival (Santos et al. 2003). 

 

2.4.1.6 Progesterone and the uterine environment 

 

Sub-optimal cross-talk between the conceptus and the endometrial epithelial cells leads to 

secretion of PGF2α and resumption of ovulatory cycles with cessation of pregnancy 

(Thatcher et al. 1986, Mann and Lamming 2001, Thatcher et al. 2001). Progesterone 

secretion by the corpus luteum (CL) is essential for orchestrating the histotrophic 

environment for nourishment of the conceptus (Santos et al. 2004b). Low systemic 

progesterone in the first week after AI in cow has been associated with reduced embryo 

survival (McNeil et al. 2006). 

Indeed progesterone and estradiol act as systemic regulators leading to local oviductal and 

endometrial timed events and they program the uterus to regress the CL if there is sub-

optimal communication between conceptus and uterus via secretion of PGF2α (Robinson et 
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al. 2001). Progesterone inhibits luteolysis by decreasing sensitivity to oxytocin by binding 

to oxytocin receptors and blocking the second messenger system (Grazzini et al. 1998). 

Nevertheless, the most important effect of progesterone in blocking luteolysis is by 

enhancing conceptus development which, in turn, stimulates secretion of interferon-tau 

(Mann and Lamming 2001). Because progesterone plays a major role in stimulating the 

production of several endometrial proteins and growth factors (Geisert et al. 1992), 

supplemental progesterone during the first 4 days after AI increased morphological 

development and biosynthetic activity of day 14 conceptus (Garret et al. 1998). 

Supplemental progesterone was beneficial to fertility by increasing conception rates when 

administered prior to day 6 after AI in lactating dairy cows (Mann and Lamming 1999). 

Collectively, these data indicate that progesterone availability in the early diestrus phase 

may benefit conception rates and embryonic survival. 

 

2.4.1.7 Pregnancy recognition  

 

The mononuclear cells of the trophectoderm in early stages of development are responsible 

for the production and secretion of interferon-tau (Thatcher et al. 2001). It is first produced 

by the conceptus on day 12 of pregnancy because of expression of trophoblastic interferon 

genes (Farin et al. 1990), but its concentrations in the uterine lumen only peak on days 15–

17 of gestation. The antiluteolytic effect of interferon-tau results from the inhibition of 

endometrial expression of oxytocin receptors and possibly through the transduction 

mechanism after oxytocin-receptor binding on the endometrial cells and inhibits the 

episodic release of PGF2α (Demmers et al. 2001). Compromised development of the 

embryo and underdevelopment of the trophectoderm are, therefore, responsible for 

premature luteolysis. Therefore, some of the embryonic losses in cattle are thought to be 

mediated by the inability of the embryo to suppress the luteolytic cascade during the period 

of CL maintenance (Thatcher et al. 1986). 

There is compelling evidence that failure of the conceptus to produce luteotropic signals, or 

perhaps failure of the CL to respond to luteotropins contribute to early embryonic death in 

cattle (Thatcher et al. 1986, 2001). Administration of an anti-prostaglandin agent at embryo 

transfer increased pregnancy rates (82% versus 56%). These data indicate that suppressing 
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PGF2α secretion favors establishment and maintenance of pregnancy in cattle by reducing 

embryonic mortality. (Elli et al. 2001) 

 

2.4.1.8 Body condition 

 

Changes in body condition score (BCS) have been used to monitor the energy balance of 

the cow (Britt 1992), who showed that pregnancy rates are less in recipients with low BCS 

(Mapletoft et al. 1986). Furthermore, it has been indicated that a 1 unit drop in body 

condition score (BCS; 1–5 scale) from calving to 30 days postpartum increased the 

pregnancy loss by 2.41 (Lopez-Gatius et al. 2002). Similarly, Silke et al. (2002) observed 

that cows losing 1 unit in BCS from days 28 to 56 of gestation had a 3.2-fold increase in 

pregnancy loss in the same period. Therefore, the metabolic status of the cow, as evidenced 

by changes in BCS, affects embryonic and fetal survival. 

 

2.4.2 Genetic control of embryonic survival and death 

 

Failures in physiologic and or genetic mechanisms essential for proper fetal growth and 

survival outside of the uterus contribute significantly to pregnancy and neonatal losses 

(Farin et al. 2006). A number of factors can influence the survival of embryos produced 

using in vitro systems including medium composition (Thompson 2000), atmosphere 

(Watson et al. 1994), oocyte quality (Blondin and Sirard 1995, Sinclair et al. 2000) and 

embryo genotype. The influence of embryo genotype can be further subdivided into the 

effects of sire and dam (Hasler et al.1995, Holm and Callesen 1998), embryo sex (Avery et 

al. 1991, Xu et al. 1992), and expression of specific alleles such as those affecting rates of 

development during culture (Wu et al. 1998) or metabolic capacity (Niemann and 

Wrenzycki 2000).  

There are many possible underlying causes for embryo demise, including DNA damage, 

poor embryo metabolism and the effect of suboptimal culture media, all of which could 

result in an imbalance in gene expression and the failed execution of basic embryonic 

decisions (Jurisicova and Acton 2004). Also embryonic loss through death of the conceptus 

is observed with varying frequency among mammalian species (Diskin and Sreenan 1980, 



Literature review 19

king 1991, Dunne et al. 2000). In a variety of species, cell death is first observed during 

blastocyst formation, and occurs predominantly in the inner cell mass (Handyside and 

Hunter 1986, Jurisicova et al. 1995), which could be a means to eliminate abnormal cells 

and cells with inappropriate developmental potential (Hardy 1999). Programmed cell death 

is a precisely coordinated set of events dependent upon the actions and interactions of at 

least 100 genes that either repress or activate the process of cellular self-destruction (Green 

and Reed 1998, Vaux and Korsmeyer 1999, Adams and Cory 2001). This means that cell 

fate (i.e. survival/differentiation or death) is determined by the outcome of specific 

intracellular interactions between pro- and anti-apoptotic proteins, many of which are 

expressed during oocyte and preimplantation embryo development (Jurisicova and Acton 

2004). The most widely studied of these genes are members of the Bcl-2 family, which can 

be subdivided into two groups: cell death suppressors (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1) 

and cell death inducers (Bax, Bak, Mtd, BH3-only proteins) (Jurisicova and Acton 2004).  

Moreover, there are several mutations that cause death in the preimplantation period. For 

instance inactivation of the gene that encodes E-cadherin, a cell-surface adhesion molecule, 

yields embryos that fail to form a trophectoderm epithelium at blastocyst stage. (Copp 

1995). The extent and regulation of cell death during preimplantation development is likely 

to be critical for later development of the conceptus (Brison and Schultz 1997). However, 

the causes, roles and genetic regulation of embryo death and arrest before implantation 

remain to be fully elucidated (Betts and King 2001). 
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Figure 2: Proposed model for embryo death and arrest during early bovine development. 

(Betts and King 2001) 

 

All these factors can adversely affect reproductive capacity. However, there is also a new 

element to be taken into account: epigenetics. There is no doubt that epigenetics is 

profoundly involved in embryo and foetal losses in cattle, not only under artificial 

conditions but also under normal ones. One could say that in vitro embryo production and, 

in particular, cloning by somatic cell nuclear transfer exaggerates the problems and thus 

makes it easier to deduce the cause of embryo, conceptus and neonatal mortality (Greve 

and Callesen 2005)  

 

2.4.3 Embryo loss in relation to the source of the embryo 

 

2.4.3.1 Embryo loss in inseminated cows 

 

Reproductive failure in inseminated cattle results from poor fertilization and embryo 

survival. Recent studies utilizing dairy and beef cattle indicate that fertilization rates are 

higher for dairy and beef heifers and nonlactating beef cows than lactating beef and dairy 

cows and nonlactating dairy cows as reported by Santos et al. (2004b), who suggested that 

pregnancy losses in dairy cattle from fertilization to term might represent up to 60% as 

shown in figure 3. 
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Once fertilization has occurred, the fate of a successful pregnancy is then determined by the 

survival of the embryo and fetus. Losses of pregnancy are characterized by early embryonic 

death, which occurs prior to the period of CL maintenance in the cow at d 15–17 of the 

cycle, and late embryonic death, which occurs from CL maintenance to the end of the 

differentiation stage, at approximately 42 d of gestation. After 50 d of gestation, pregnancy 

losses are less frequent and characterize fetal death.  

Most pregnancy losses occur prior to the period of maintenance of the CL, but in high 

producing lactating dairy cattle, substantial losses continue to occur up to 42–56 d after 

insemination (Santos et al. 2004b). This is in line with results obtained by Hubbert (1974) 

who reported that loss of pregnancy in cattle is greater during the embryonic period 

(conception to the end of organogenesis, d 1 to d 42), than during either the fetal period 

(completion of organ differentiation to parturition, d 42 to d 280) or the neonatal period 

(parturition to d 28 of extra-uterine life). 

 

Figure 3: Timing and extent of pregnancy losses in the high producing lactating dairy cow.  

               CR: conception rate (Santos et al. 2004b) 

 

Specifically, early embryonic loss between Day 8 and 18 accounts for approximately 40% 

of all pregnancy loss in cattle (Ayalon 1978, Diskin and Sreenan 1980). This early 
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embryonic loss is considered as a major reproductive problem in all mammalian species 

(Morris et al. 2001). 

Embryonic mortality results either from intrinsic defects within the embryo, an inadequate 

maternal environment, asynchrony between embryo and mother, or failure of the mother to 

respond appropriately to embryonic signals (Hansen 2002). Failures in implantation or lack 

of sufficient placental development or functioning lead to conceptus losses. In in vivo and 

in vitro embryos most of this mortality is sustained within 1-3 weeks after fertilisation 

(Diskin et al. 1980, Dunne et al. 2000, Farin et al. 2001, Morris et al. 2001). Estrous cycle 

length is normal for cows experiencing embryonic mortality prior to d 16, but extend when 

embryonic death occurs after d 16 of pregnancy (Northey and French 1980). Such losses 

are commonly associated with in vitro fertilization procedures in humans and livestock 

species of the agricultural industry (Imakawa et al. 2004, Farin et al. 2006). In most cases, 

pregnancy rates following transfer of in vitro-produced embryos have been significantly 

lower than those for comparison groups composed of recipient cattle bred by AI or 

receiving in vivo-produced embryos (Farin et al. 2001) (discussed in details below). 

 

2.4.3.2 Embryo loss after transfer of IVP embryos  

 

Although a variety of methods has been used to produce IVP embryos in cattle, but several 

laboratories have demonstrated that these embryos have distinct differences in morphology, 

developmental competence and gene expression, compared to the embryos produced in 

vivo (Farin et al. 2001, Lonergan et al. 2003, Tesfaye et al. 2004, Wrenzycki et al. 2005). In 

addition, markedly higher rates of early embryonic death and abortions was shown than 

that seen with either artificial insemination or the transfer of in vivo-produced embryos 

(Bousquet et al. 1999, Hasler 2000, Farin et al. 2006). The developmental outcomes 

following transfer of IVP or somatic cell nuclear transfer (SCNT) embryos is shown in 

figure 4.  

Based on numerous studies, pregnancy rates following transfer of IVP embryos have 

ranged from about 45% to 60% (Kruip and den Daas 1997, Bousquet et al. 1999, Lane et al. 

2003, Hansen and Block 2004). Factors that have shown to influence the maintenance of 

pregnancy following transfer of IVP embryos include genetic abnormalities (Gianaroli et 
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al. 2000, Thompson et al. 2001), heterogeneity of oocyte quality (Young et al. 1998), 

embryo culture system, embryo quality, embryo evaluator, number of embryos transferred 

per recipient, synchrony of embryo development with the recipients day of estrous cycle, 

transfer technician, fresh versus frozen embryos,  heat stress on the embryo or recipient and 

maternal exposure to excessively high urea diets (Young et al. 1998, Bousquet et al. 1999, 

Farin et al. 2001, Peterson and Lee 2003, Hansen and Block 2004, Wrenzycki et al. 2005). 

The reasons for this embryonic loss and abnormal development during early development 

may be due to one factor or a combination of these, the effect of which can be manifested 

by disturbances of gene expression and adverse effects on embryo survival (Niemann and 

Wrenzyski 2000, Rizos et al. 2002). Pregnancy loss following transfer of IVP of embryos 

occurs most frequently prior to day 21 of gestation, or within about 2 weeks of embryo 

transfer (Diskin and Sreenan 1980, Dunne et al. 2000, Farin et al. 2001, Morris et al. 2001). 

The explanation for this developmental failure remains unclear, but it is postulated that this 

phenomenon is accompanied by  significant up- or down regulation, de novo induction or 

silencing of genes critical for undisturbed fetal and neonatal development (Blondin et al. 

2000, Crosier et al. 2002, Wrenzycki et al. 2005). 

Some genes that are transcribed exclusively in the trophectoderm, the precursor of the 

placenta (i.e. IFN-τ and Mash2), were affected by reproductive biotechnology (Wrenzycki 

et al. 2001), supporting the hypothesis that deviation from normal placentation is one major 

cause of pregnancy loss after transfer of embryos derived from biotechnological procedures 

(Hasler et al. 1995). It is important to keep in mind that differences in levels of gene 

expression can vary within the same medium types supplemented with different commercial 

brands of bovine serum albumin or other type of protein; it is not surprising that gene 

expression profiles from embryos at the same stage of development will differ between 

laboratories (Wrenzycki et al. 2001). Unfortunately, this situation increases the level of 

difficulty for successfully identifying key genes that critically the influence development of 

IVP embryos. Characterization of early deviation in gene expression would enable us to 

better understand the biology of early embryo development and improve in vitro culture 

systems. To improve the IVP systems and make these embryos as good as their in vivo 

counterparts it is necessary to identify gene expression patterns associated with competence 



Literature review 24

                

Figure 4: Classification system for conceptus development following transfer of embryos 

from in vitro production (IVP) or somatic cell nuclear transfer (SCNT) in cattle. 

AOS refers to abnormal offspring syndrome (Farin et al. 2006). 

 

in oocytes and during early embryonic development (Rizos et al. 2003, Farin et al. 2004, 

Mohan et al. 2004, Wrenzycki et al. 2005). Studying the gene expression in preimplantation 

development will help to understand the development after transfer, as reported in both 

mice and cattle embryos produced in vitro using specific culture environments which 

resulted in altered expression of some genes in preimplantation-stage embryos and also 

altered conceptus and fetal development following transfer (Khosla et al. 2001, Lazzari et 

al. 2002). Moreover, the embryonic stage and quality at the time of embryo transfer have 

also been shown to be closely associated with the degree of elongation and pattern of gene 

expression on day 17 or 18 of development (Farin et al. 1999). 

 

2.5 Embryo splitting and transfer 

 

The splitting of blastocysts (multi-layered pre-embryos at the last stage before implantation 

is referred to as “embryo splitting” (Cohen and Tomkin 1994). In this technique, a 

IVP or SCNTIVP or SCNTIVP or SCNTIVP or SCNT    
BlastocystBlastocystBlastocystBlastocyst    
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blastocyst is bisected into multicellular groups of non-totipotent cells, each of which is 

nurtured to encourage further development (Jones et al. 1994). This technique was first 

described by Willadsen and Polge (1981) for producing bovine monozygotic twins from the 

bisection or splitting of one embryo. Following this, the technology was refined, and 

successes were achieved with different kinds of splitting instruments and embryos of 

varying ages (Ozil 1982, Williams et al. 1984). Embryos could be bisected (split) using 

either a glass microneedle or a metal microblade (Kippax et al. 1991). Since cattle 

blastocysts can be easily obtained by uterine flushing, embryo splitting is the preferred 

means of embryo multiplication in the cattle industry. However, embryo splitting yields 

only 1.0 to 1.52 pregnancies per original embryo, a yield less than the ideal rate of 2.0 due 

to the inevitable loss of some cells by the splitting process (Fehilly and Willadsen 1986, 

Hasler 1992). On contrary, Nibart et al. (1989) have shown that removal of a few cells as 

resulted of biopsied embryo does not have a drastic effect on pregnancy initiation. 

Furthermore, Heyman et al. (1998) has reported that the method of splitting, stage of 

embryo development and parity of recipient have no effects on pregnancy rates and embryo 

splitting has become a relatively simple technique but is limited to twining. Also it has been 

found that embryo biopsy for selection of the embryos for transfer can improve the 

implantation rates and decrease multiple pregnancy rates (Geber and Sampaio 1999) and 

can be useful for sex determination (Leoni et al 2000). Regarding the source of the embryo, 

Nibart et al. (1989) have reported a 55% pregnancy rate following transfer of fresh, 

biopsied, in vivo derived embryos. On the other hand, pregnancy rates of 44% from 

biopsied and vitrified IVP embryos were observed (Agca et al. 1998). Regarding the 

genetic expression, Klein et al. (2006) have reported that this technique is found to be both 

a unique possibility to eliminate genetic variability and a factor potentially affecting the 

results of gene expression analysis. Furthermore Leoni et al. (2000) have found that this 

technique will enhance the use of molecular genetic methods in animal production, animal 

genetic resources programmes and assisted human reproduction.  
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3 Materials and Methods 

 

3.1 Materials 

 

In this section, materials used as input for the study such as embryos, all other biological 

materials, chemicals, kits, reagents, equipments and softwares used in different procedures 

are mentioned with their sources. 

 

3.1.1 Embryos 

 

Embryos used in this study were produced in vitro according to procedures described in 

section 3.2.1 below. These embryos were used to study and to compare transcript 

expression patterns and levels using microarray technique, and to study the expression 

profiles of different transcripts using real-time PCR technique.  

 

3.1.2 Materials for laboratory analysis 

 

3.1.2.1 Chemicals, kits, biological and other materials 

 

Amersham Biosciences (Freiburg): CyScribeTM GFXTM purification kit, CyScribe post- 

labelling kit 

Biomol (Hamburg): Phenol, Phenol/Chlorophorm/Isoamyl alcohol (25:24:1), Lambda DNA 

Eco91I (BstE II) and Lambda DNA HindIII 

Biozym Diagnostic (Epicentre technologies): AmpliScribeTM T7 transcription kit Corning 

(Amsterdam): GAPS II coated slides 

DYNAL biotech (Hamburg): Dynabeads. oligo (dT)25 

Eppendorf (Hamburg): SYBR Green Real Master Mix 

Gibco (Karlsruhe): BME (Essential amino acids), MEM (non essential amino acids), DTT,  

G. Streuli & Co (Aulendorf): Streptocombin 

Invitrogen life technologies (Karlsruhe): DTT, SuperScriptTM II RNase H- Reverse 

Transcriptase, 5 X first strand buffer, Random primers 
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MBI Fermentas (St. Leon-Rot): Glycogen 

Mettler Instrument company (USA): Mettler AE 200 sensitive balance Nunc (Roskilde): 

Four well dishes, Cryotubes 

Promega (Mannheim): BSA, pGEM.-T vector, RQ1 RNase-free DNase, RNasin. 

Ribonuclease inhibitor, 2X rapid ligation buffer, T4 DNA ligase 

Qiagen (Hilden): RNeasy. Mini kit, QIAquick PCR purification kit, MiniEluteTM reaction 

cleanup kit 

Roche Diagnostics GmbH (Mannheim): DOP PCR Master Kit 

Roth (Karlsruhe): Acetic acid, Agar-Agar, Ampicillin, Ammonium peroxide sulphate 

(APS), Bromophenol blue, Dimethyl sulfoxide (DMSO),  

Ethylenediaminetetraacetic acid (EDTA), Ethanol, Ethidium bromide, 

Hydrochloric acid, Isopropyl β-D-thiogalactoside (IPTG), Kohrsolin. FF, Nitric 

acid, Pepton, Potassium dihydrogen phosphate, 2- Propanol, Silver nitrate, 

Sodium acetate, Sodium carbonate, Sodium chloride, Sodium hydroxide, 

Trichloromethane/chlorophorm, Tris, X-Gal (5-bromo-4-chloro-3-indolylbeta- D-

galactopyranoside), Yeast extract 

Sigma-Aldrich Chemie GmbH (Munich): Agarose, Ammonium acetate, Calcium chloride, 

Calcium chloride dihydrate, Calcium lactate, Dulbecco’s phosphate buffered 

saline (D-PBS), Epinephrine, Formaldehyde, FSH, GenEluteTM plasmid 

Miniprep kit, Glutamine, Hemicalciumlacate, Heparin, Hepes, Hydroxylamin, 

Hypotaurin, Igepal, Isopropanol, Magnesium chloride, Magnesium chloride 

hexahydrate, Medium 199, 2-Mercaptoethanol, Mineral oil, Oligonucleotide 

primers, Penicillin, Phenol red solution, 10 X PCR reaction buffer, Potassium 

chloride, Sodium dodecyl sulfate (SDS), Sodium hydrogen carbonate, Sodium 

hydrogen phosphate, Sodium hydrogen sulfate, Sodium lactate solution (60%), 

Sodium pyruvate, Streptomycin sulfate, Taq DNA polymerase, yeast tRNA  

STARLAB GmbH (Ahrensburg): Rigid thin wall 96 X 0.2 ml skirted microplates 

Stratagene (Amsterdam): 5 α DH Escherichia coli competent cells 

USB Corporation (Staufen): Exo-SAP-IT 
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3.1.2.2 Reagents and media 

 

All solutions used in this investigation were prepared with deionised and demineralised 

(Millipore) water and where necessary the pH was adjusted with Sodium hydroxide or 

hydrochloric acid. 

 

Agarose loading buffer:                         Bromophenol blue                                     

Xylencyanol 

Glycerol 

Water added to                                        

0.0625 g 

0.0625 g 

7.5 ml 

25 ml total 

 

Binding buffer:                                  

 

1 M Tris HCl pH 7.5    

5 M LiCl 

5 mM EDTA pH 8.0 

Water added to                         

                                                                                                                    

 

1.0 ml 

10.0 ml 

20.0 ml 

50.0 ml 

 

Capacitation medium:      

 

 

 

 

 

 

 

 

 

 

Culture medium (CR1):               

                     

Sodium chloride    

Potassium chloride  

Sodium hydrogen carbonate 

Sodium dihydrogen phosphate 

Hepes 

Magnesium chloride hexahydrate 

Calcium chloride dihydrate 

Sodium lactate solution 

Phenol red solution (5% in D-PBS) 

Water added to  

 

Calcium lactate  

Streptomycin sulphate 

                                                                                                       

0.2900 g 

0.0115 g 

0.1050 g 

0.0017 g 

0.1190 g 

0.0155 g 

0.0145 g 

(60%) 184 µl 

100 µl 

50 ml 

 

0.0273 g 

0.0039 g 
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 Penicillin 

Sodium chloride 

Potassium chloride 

Sodium hydrogen carbonate 

Sodium pyruvate 

Glutamin 

Phenol red solution (5% in D-PBS) 

Water added to                                                                                       

                                    

                                           

0.0019 g 

0.3156 g 

0.0112 g 

0.1050 g 

0.0022 g 

0.0073 g 

100µl 

50 ml 

dNTP solution: dATP (100 mM)  

dCTP (100 mM) 

dGTP (100 mM) 

dTTP (100 mM) 

Water added to                                                                                                                                                                                                               

10.0 µl 

10.0 µl 

10.0 µl 

10.0 µl 

400.0 µl 

Epinephrine solution:                         Sodium hydrogen sulfite 

Sodium lactate solution (60%) 

Epinephrine                                                   

0.04 g 

100.00 µl 

0.00183 g 

Fertilization medium:                          Sodium chloride 

Potassium chloride   

Sodium hydrogen carbonate 

Sodium dihydrogen phosphate  

Penicillin   

Magnesium chloride hexahydrate  

Calcium chloride dihydrate                                         

Sodium lactate solution (60%) 

Phenol red solution  (5% in D-PBS)                                           

Water added to                                                                                                                                                

0.3300 g 

0.0117 g 

0.1050 g 

0.0021 g 

0.0032 g 

0.0050 g 

0.0150 g 

93µl 

100 µl 

50 ml        



Materials and Methods  

 
30

Hypotaurin solution:                           Hypotaurin 

Physiological salt solution (0.9%)                 

0.0011 g 

10.0 ml 

 

IPTG solution:                                    IPTG               

Water added to                                               

1.2 g 

10.0 ml 

 

LB-agar plate:                            Sodium chloride 

Peptone  

Yeast extract  

Agar-Agar 

Sodium hydroxide (40.0 mg/ml)  

Water added to                                                                                                                                                       

 

                                               

8.0 g 

8.0 g 

4.0 g 

12.0 g 

480.0 µl 

800.0 ml 

LB-broth:                                            Sodium chloride   

Peptone 

Yeast extract  

Sodium hydroxide (40.0 mg/ml)   

Water added to                                                                                              

                                              

8.0 g 

8.0 g 

4.0 g 

480.0 µl 

800.0 ml 

Lysis buffer:                                        Igepal 

RNasin  (40U/µl) 

DTT (100mM) 

Water added to                                              

0.8 µl 

5.0 µl 

5.0 µl 

100.0 µl 

 

Modified Parker medium:                   Sodium hydrogen carbonate 

Hepes 

Sodium pyruvate 

Glutamin  

Tissue culture medium (TCM- 199) 

0.0800 g 

0.1400 g 

0.0250 g 

0.0100 g 

99.0 ml 
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Gentamycin (10mg/ml) 

Calcium lactate 

Water                                                                                                

                          

500 µl 

0.0600 g 

10.0 ml 

PBS: Sodium chloride 

di-Sodium hydrogen phosphate 

Potassium dihydrogen phosphate 

Water added to                                                             

                                                                 

8.766 g 

1.495 g 

0.204 g 

1000.0 ml 

 

PHE: 0.9 % physiological solution 

Hypotaurin solution 

Epinephrin solution                                        

                                                     

16.00 ml 

10.0 ml 

 4.0 ml 

Physiological solution (0.9%):     Sodium chloride  

Water                                               

9.0 g 

1000.0ml 

 

Prehybridization buffer:                      BSA 

10 % SDS 

20 % SSC  

water added to                                                

                                                                                                              

0.5 g 

0.5 ml 

7.5 ml 

50.0 ml 

TAE (50x) buffer, pH 8:                 Tris 

Acetic acid  

EDTA (186.1 mg/ml) 

Water added to                                           

                                                                                     

242.0 mg 

57.1 ml 

100.0 ml 

1000.0 ml 

 

TE (1x) buffer:                                    Tris (1 M)  

EDTA (186.1 mg/ml)                                       

Water added to                                                                                    

10.0 ml 

2.0 ml 

1000.0 ml 



Materials and Methods  

 
32

SDS (10%): Sodium dodecil sulphate 

Water  

5 g 

100 ml 

 

SSC (20x): NaCl 

Sodium citrate 

Water  

87.65 g 

44.1 g 

500 ml 

Washing buffer:                 1 M Tris HCl pH 7.5  

5 M LiCl   

5 mM EDTA 

Water added to                                                                                             

0.5 ml 

1.5 ml 

10.0 ml 

50.0 ml 

 

X-gal:                                                  X-gal   

N, N’-dimethylformamide                                       

50.0 mg 

1.0 ml 

 

3.1.3 Equipments 

 

ABI PRISM 7000 SDS                                      Applied Biosystems, Foster city, USA 

CEQ 8000 genetic analysis apparatus                Beckman Coulter, Inc, USA 

CO2-incubator (MCO-17AI)                             Sanyo, Japan 

Electrophoresis (for agarose gels)                      BioRad, München, Germany 

Fluorescence microscope (DM-IRB)                 Leica, Bensheim, Germany  

GenePix 4000A scanner                                     Axon Instruments, Foster City, USA 

GFL 7601 hybridization chamber                       GFL, Dülmen, Germany 

HERA safe Bioflow safety hood                        Heraeus Instruments, Meckenheim, Germany 

Hot baking plate                                                  Jenway, Essex, UK 

Hybridization cassettes                                       TeleChem International, Inc, CA, USA 

Icycler Bio-Rad Laboratories, München, Germany 

Memmert CO2 incubator                                    Fisher Scientific, Leicestershire, UK 

Microplade (Beaver)  Minitüb GmbH, Tiefenbach, Germany 

Millipore apparatus                                             Millipore Corporation, USA 
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PCR thermocycler (PTC 100)                             MJ Research, USA 

Power supply PAC 3000  

PTC-100 thermal cyclers  

BioRad, München, Germany 

Waltham, MA, USA                                 

Savant SpeedVac GMI, Inc. Minnesota, USA 

Spectrophotometer (Ultrospec™ 2100) Amersham Bioscience, Freiburg, Germany 

Thermoshake Gerhardt                                         John Morris scientific, Melbourne, Australia 

Tuttnauer autoclave                                              Connections unlimited, Wettenberg, Germany 

-85 °C Ultra low freezer                                       Labotect GmbH, Gottingen, Germany 

UV Transilluminator (Uvi-tec)                             Uni Equip, Martinsried, Germany 

 

3.1.4 Used softwares 

 

BLAST program                                                     http://www.ncbi.nlm.nih.gov/BLAST 

Entrez Gene                                       www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene      

Gene Ontology                                                             http://www.geneontology.org 

GenePix Pro Version 4.0                                            Axon Instruments 

GPROCESSOR   http://bioinformatics.med.yale.edu/softwarelist.html 

PermutMatrix                      http://www.lirmm.fr/~caraux/PermutMatrix/EN/index.html 

Multiple Sequence Alignment                                   http://searchlauncher.bcm.tmc.edu/ 

multialign/Options/clustalw.html 

Primer Express software                                              Primer Express. Software v2.0 

SAM http//www-stst.stanford.edu/tips/SAM 

 

3.2 Methods of sample preparation and molecular analysis 

 

3.2.1 Bovine embryo production and sample preparation 

 

3.2.1.1 Oocyte collection and in vitro maturation 

 

Bovine ovaries were collected from slaughtered cows at a local abattoir, and transported to 

the laboratory within 2-4 h, in a thermosflask containing physiological NaCl solution (0.9% 
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NaCl supplemented with 50 µl/100 ml Streptocombin;) maintained at a temperature of 30

35°C. In the laboratory, the ovaries were washed once with 70% ethanol and twice with 

physiological saline to eliminate surface organisms, and were dried with sterile paper to 

avoid sample contamination. Subsequently, cumulus-oocyte complexes (COCs) were 

aspirated from 2- to 8-mm-diameter follicles using a 10-ml syringe loaded with an 18-

gauge needle. COCs with multiple cumulus layers and evenly granulated cytoplasm were 

selected under the microscope, washed three times in pre-warmed maturation medium 

[Modified Parker Medium (MPM) supplemented with 12 % heat-inactivated oestrous cow 

serum and 10 µg/ml FSH], and finally transferred to wells containing 400 µ1 maturation 

medium. The MPM was composed of medium 199 0.73 mg/ml of sodium bicarbonate, 

50 µg/ml of gentamicin, 0.23 mg/ml of sodium pyruvate, 1.27 mg/ml HEPES and 

0.55 mg/ml calcium lactate. Cumulus-oocyte complexes were maintained in groups of 50 

and incubated in four-well dishes containing maturation medium and covered with mineral 

oil. Maturation was done at 39°C in a humidified atmosphere containing 5% CO2 in air for 

22 h. 

 

3.2.1.2 In vitro fertilization  

 

Two semen straws from selected bulls were thawed at a temperature of 39°C for 8 seconds 

in a water bath, and sperm cells were separated by means of the “swim up” technique in 

capacitation medium in the incubator for 50 minutes (Parrish et al. 1988). The supernatant 

was carefully discarded and sperms were resuspended in 3.5 ml capacitation medium, 

centrifuged at 1500 rpm for 10 minutes with discarding the supernatant. The sperm cells 

were diluted and counted in a haemocytometer. The matured oocytes in group of 50 were 

transferred in Fert-TALP medium (Parrish et al. 1988) and co-incubated 1 X 106 

spermatozoa/ml and incubated for 18 h at the same conditions used for maturation. 
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3.2.1.3 In vitro culture 

 

At the end of co-incubation, the presumed zygotes were treated with 0.1 % (w/v) 

hyaluronidase and mechanically denuded by repeated pippeting to remove the attached 

sperm and cumulus cells, and washed three times in the culture medium [CR-1aa] 

(Rosenkrans and First 1994) supplemented with 10% oestrus cow serum, 10 µl/ml of basal 

medium Eagle (BME) essential amino acid solution, and minimum essential medium 

(MEM) non-essential amino acid solution. Cumulus free zygotes were then transferred to 

400 µl culture medium covered with mineral oil and incubated at the same conditions as 

used for maturation and fertilization till blastocyst stage. 

 

3.2.2 Recovery of embryo biopsies  

 

Morphologically good quality day 7 blastocysts were used for biopsing which was 

performed using the Beaver microblade (Minitüb GmbH, Tiefenbach, Germany) fixed to a 

micromanipulator under inverse microscope (Leica , Bensheim, Germany). In this 

procedure 30-40% of blastocyst containing both ICM and TE cells were taken as biopsy 

and the rest 60-70% was cultured in-vitro for two hours to allow the re-expansion before 

transfer to recipients. 

 

3.2.3 Embryo transfer procedure  

 

Healthy 2-years old Simmental heifers of our experimental herd were estrus synchronized 

by administration of PGF2α (2 ml Estrumate, Fa. Essex, Germany) followed by a second 

administration 11 days later. Re-expanded demi-blastocysts were transferred using non 

surgical standard procedures into the uterus at day 7 of the estrus cycle, placed to the side 

of the uterus where the corpus luteum was located. All recipients were monitored for 

coming back to estrus at day 21. Cows returning to estrus at day 21 were considered as non 

pregnant (Group 1). Pregnancies were checked at days 28 and 42 by ultrasonography (Pie 

Medical, Netherlands, 5 MHz) and by rectal palpation at day 56. Positive pregnancies at 

day 28 but which got lost until day 56 were categorized as resorbed (Group 2), pregnancies 
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which got lost after day 56 were judged as aborted. Recipients containing their pregnancies 

to give birth to a calf were categorized as group 3. An overview of the experimental design 

is shown in Figure 5. 
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Figure 5: Overview of the experimental design for the identification of differently regulated 

genes between the three embryo biopsy categories and further functional 

characterization of selected candidate genes. 
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3.3 Microarray technique and hybridization 

 

3.3.1 Preparation of probes 

 

In our study we used two types of arrays. The first one is a custom cDNA array (Blue-chip) 

obtained from the working group of Dr. Sirard (Department of Animal Sciences, Laval 

University, Canada) which represents transcripts derived from four different suppressive 

subtractive hybridisation (SSH) made with bovine tissues. The first library is the result of 

substraction between germinal vesicle (GV) oocytes and somatic tissues (including the 

liver, kidney, spleen, skeletal muscles and cumulus cells). The second library comes from 

GV oocytes subtracted from Day-8 blastocysts. The third library is the reverse experiment 

of the second one and subtracted Day-8 from that of GV oocytes. The final substraction is 

between Day-8 blastocysts and somatic tissues. The second array is a bovine 

preimplantation specific array (BPSA) generated in our lab from bovine preimplantation 

embryo cDNA library construction (Ponsuksili et al. 2001), SSH techniques (Ponsuksili et 

al. 2002) and differential display analysis (Tesfaye et al. 2003). In addition to these, some 

specific genes that are known to be expressed during embryo preimplantation development 

stage have also been amplified with gene specific primers and finally cloned for probe 

production.  

 

3.3.1.1 RNA isolation and synthesis of complementary DNA (cDNA)  

 

Messenger RNA (mRNA) was isolated from embryo samples prepared using Dynabead 

oligo (dT)25 following the manufacturer's instructions and finally eluted in 11 µl RNase-

free water. First-strand cDNA synthesis was carried out in 20 µl reaction volumes by 

adding 1 µl of oligo d(T)12 primer (100 µM) and 8 µl reverse transcription reaction mix 

[first-strand buffer (50 mM Tris-HCl, pH 8.3; 75 mM KCl; 3 mM MgCl2), 0.3 mM dNTP, 

0.1 mM DTT, 10 U of RNase inhibitor and 200 U of SuperScript II reverse transcriptase] to 

the 11µ1 mRNA sample. The reactions were carried out by using the PTC-100 

thermocycler at 42°C for 90 min followed by 75°C for 15 min to terminate the reaction. 
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Successes of first-strand cDNA synthesis were checked with histone 2a (H2A) 

amplification as an internal control gene.  

 

3.3.1.2 Primer design and PCR reaction 

 

Gene specific primers were designed using Primer Express® sequence design software v2.0 

(Applied Biosystems) using default parameters set by the software. PCR reactions have 

generally been carriedout in a 20 µl reaction volume containing 2 µ1 template, 2 µ1  10 X 

PCR buffer, 0.5 µl dNTP, 50 pmol of each (forward and reverse) primer, 0.5 units of Taq 

DNA polymerase and water has been added to complement the rest volume. Most PCR 

reactions were performed in a ‘touch down‘PCR protocol, for about 2-3 hours. PCR cycles 

were generally hot start with denaturation at 94 °C for 3-5 minutes. Annealing begins at 5 

°C above the expected temperature, decreasing 0.5 °C/cycle until it reaches the expected 

temperature after 10 cycles. In all cases, annealing was preceded by 30 seconds of 

denaturation at 94 °C and followed by 30-60 seconds of extension at 72 °C. The reaction 

was carried out 35-40 cycles with final extension at 72 °C for 5 minute. 

At the end of the PCR reactions, the products were loaded and screened on agarose gel in 1 

X TAE buffer by staining with ethidium bromide. 

 

3.3.1.3 Purification of PCR products 

 

For purification, PCR products were loaded on 0.7%-1% (w/v) agarose gel and run in 1 X 

TAE buffer by staining with ethidium bromide. The bands were then visualized under UV 

light and specific gel slices containing the bands were cut for further processing. 600 µ1 of 

1 X TE buffer were added to this gel slice and grounded with the syringe needle until it was 

dissolved, to which 600 µ1 of phenol chloroform was again added and centrifuged for 20 

min at 14000 rpm. The supernatant was carefully transferred to another tube and 600 µ1 of 

chloroform was added and centrifuged for 20 min. Then the supernatant was transfered 

carefully in another tube, and 1:10 volume (v/v) of 3 M sodium acetate, two volumes (v/v) 

of 100 % ethanol were added and incubated at -20 °C overnight. The next day, the sample 

was centrifuged at 14000 rpm for 30 minutes, and the pellet was recovered, which was 
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subsequently washed with 70 % ethanol, centrifuged at 14000 rpm for 15 min, air dried  

and later dissolved in 8-10 µ1 of Millipore water. 

 

3.3.1.4 Cloning of PCR products 

 

This was done by using 2 µ1 of PCR product in a 6 µ1 total reaction volume containing 3 

µ1 of 2 X rapid ligation buffer, 0.5 µ1 each of vector and ligase enzyme and incubated at 4 

°C overnight. 

To clone specific fragment, 3 µ1 of the ligation product and 60 µ1 of DH5α  Escherichia 

coli competent cells were incubated on ice for 20 min followed by 90 seconds of heat shock 

at exactly 42 °C, and immediate cold shock on ice for 2 min. To this, 700 µ1 of LB-broth 

were added and put in a Thermoshaker kept at 37 °C and 110 rpm for 90 min. In the mean 

time, LB-agar plates containing ampicillin (5 µl/ml) were prepared by adding 20 µ1 of X-

Gal and an equal amount of IPTG solution. At the end of the 90 min time, the cell culture 

was then plated on these plates and incubated at 37 °C for 12-16 h. 

Four white colonies assumed to contain inserts, were selected and picked into 1% PCR 

buffer prepared in 30 µ1 volume.  In addition to the white colonies, one blue colony 

assumed to have no insert, was also picked as a control in a similar volume and buffer 

condition. The 30 µ1 sample was boiled at 95 °C for 15 min and from this lysate, 10 µ1 

product was used as a template to screen for products in a PCR reaction. The reaction 

conditions were similar as mentioned before. However, in this case, the differences were 

the use of M13 forward (5‘-TGTAAAACGACGACGGCCAGT-3‘) and M13 reverse 

primers (5‘-CAGGAAACAGCTATGACC -3‘) and 60 °C annealing temperature, which is 

specific for this reaction.  

 

3.3.1.5 Sequencing and product confirmation 

 

M13 products containing inserts were used as a template and sequenced from both termini. 

Sequencing was done by CEQ 8000 Genetic Analysis System using CEQ Dye Terminator 

Cycle sequencing with Quick start kit. The product was purified first using 5 µ1 M13 

products then adding 1 µ1 Exo-SAP-IT. To activate the enzyme, the reaction started with 
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37°C for 30 min. Then the temperature was increased to 80°C to stop the reaction after 15 

min. The sequencing PCR reaction was done according to the recommendation of the 

company with minor modification as follows: 6 µ1 purified product was added to a PCR 

tube then 2 µ1 of 1.6 µM M13 primer (forward or reverse ), 4 µ1 DTCS Quick start master 

mix and 8 µ1 milli-pore water were added. The sequencing PCR reaction was done for 30 

cycles  at 96 °C for 20 sec, 50 °C for 20 sec and 60 °C for 4 min, followed by holding at 

4°C. Precipitation and loading the samples into CEQ sample plate performed according to 

the instructions in the kit protocol. The sequences were then compared against the 

GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/). 

 

3.3.1.6 Amplification of probes 

 

For probe amplification, 2 ul of M13 product from each clone was used as a template to 

amplify the probes in 40 u1 reaction volume containing 10 X PCR buffer, dNTP, each of  

amine modified M13 forward (5‘[AC12]TGTAAAACGACGACGGCCAGT-3‘) and M13 

reverse primers (5‘-[AC12]CAGGAAACAGCTATGACC-3‘), Taq DNA polymerase 

(Sigma) and water  add up to  the volume  40 u1. Reactions were carried in PTC-100 

thermal cyclers with a hot start at 95 °C for 5 minutes, followed by 35 cycles of 

denaturation at 95 °C for 30 seconds, annealing at 56°C for 30 seconds and extension at 72 

°C for 1 minutes and final extension at 72 °C for 10 minutes. These PCR products were 

purified using a PCR purification kit following the manufacturer‘s instructions. Finally the 

product was eluted in 30 µl RNase free water from which 8 µl was taken to estimate the 

yield and purity of DNA by UV absorbance reading A260/280 using Ultrospec™ 2100 pro 

UV/Visible Spectrophotometer. The product was then stored at –20 °C until spotting. 

 

3.3.1.7 Array spotting and description 

 

Using the clones prepared in our lab, spotting was performed by custom service provided 

by the Resource centre and primary database (RZPD) Germany. Probes used to construct 

the bovine preimplantation specific array (BPSA) containing genes and ESTs. Each slide 

has two independent sub-arrays, with 16 blocks. Each block has 11 X 6 spots in which each 
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clone is represented by three spots in the block representing 3112 spots (or features) to 

avoid possible missing data and confirm reproducibility (Figure 6). ß-actin (4 spots), 

GAPDH (4 spots) and H2AFZ (8 spots) were printed as positive hybridization control, and 

3SSC and blank as a negative hybridization control. The code of the clones, the gene 

names, accession numbers and the functions are shown in Table 1. 

 

Preparation for blue-chip was done according to the Sirard Group. Briefly, the microarray 

slide contained 4928 spots divided into two arrays. Each array was composed of 2304 ESTs 

randomly selected clones obtained from four different Subtraction suppressive 

hybridization (SSH) made with bovine tissue (First SSH: GV oocytes subtracted from 

somatic tissues, second SSH: GV oocytes subtracted from Day-8 blastocyst, third SSH: 

Day-8 blastocyst subtracted from GV oocytes subtracted and fourth SSH: Day-8 blastocyst 

subtracted from somatic tissues). All the clones were spotted two times in each array for a 

total of four replicates. Eleven more samples namely vide (32 spots), alien1 (8 spots), 

alien2 (8 spots), GFP (4 spots), GFP1 (4 spots) , GFP 1/2 (4 spots), GFP 1/4 (4 spots), GFP 

1/8 (4 spots) , GFP 1/16 (4 spots) and H2O/DMSO (50 spots) were spotted to be used as 

negative control for determination of hybridisation background during the statistical 

analysis. Housekeeping genes, known as tubulin (8 spots), ubiquitin (8 spots), β-actin (6 

spots) and actin (8 spots) were also added as positive control. 
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Figure 6: BPSA array lay out of the experimental slides 
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Table 1: The spotted clone’s information for bovine pre-implantation specific array (BPSA) 
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
MTCO1 

 
Homo sapiens cytochrome oxidase subunit 1 

 
LOC347799 

 
Oxidoreductase activity 

MTCO2 Homo sapiens cytochrome oxidase subunit II LOC348871 Oxidoreductase activity 
ATP5A1 Homo sapiens alpha subunit ATP synthase isoform  NM_004046 ATP binding 
LGALS3 Homo sapiens lectin,galactoside-binding,soluble 3 BC001120 Sugar binding 
FN1 Bos taurus fibronectin mRNA K00800 Protein binding 
KRT18 Bos taurus keratinl8 XM_582930 Structural molecule activity 
C72 EST _ Unknown  
C109 Bos taurus Gamma non-muscle actin BQ640955 Unknown 
C110 EST _ Unknown 
C100 EST _ Unknown 
C3 Primary structure of bovine 1.715 satelite DNA V00124 Unknown 
C149 EST _ Unknown 
GNAS Homo sapiens adenylate cyclase-stmulation G-protein NM_002070 Nucleotide binding 
SLC25A5 Bos taurus adenine nucleotide translocator 2 AB065433 Transporter activity 
EEF1A1 Bos taurus elongation factor 1 alpha1 BTA238405 Protein amino acid binding 
S100A10 Homo sapiens calpactin 1 light chain NM_002966 Calcium ion binding 
ANXA2 Bovine calpactin 1 heavy chain protein M14056 Calcium ion binding 
CCT3 Homo sapiens chaperonin containing TCP1,  AB208882 Unfolded protein binding 
KRT8 Homo sapiens epithelial cytokeratin type II NM_005556 Protein binding 
ANXA3 Bos taurus annexin A3 NM_001035325 Calcium ion binding 
CLIC1 Homo sapiens chloride intracellular channel 1 NM_001288 Protein binding 
HNRPA1 Homo sapiens heterogeneous nuclear ribonucleoprotein Al XM_010852 DNA binding 
BRP44L Homo sapiens brain protein 44 like NM_016098 Unknown 
DUSP16 Bos taurus MAPK phosphatase-7 XM_592862 kinase phosphatase activity 
C180 EST _ Unknown 
SLC25A3 Rattus norvegicus mitochondrial phosphate carrier protein  LOC498541 Unknown 
SPUVE Homo sapiens protease serine 23 NM-007173 Protein coding 

HSPA8 Bos taurus 70 Kd heat shock cognate protein NM_174345 Unfolded protein binding 
C12orf14 Homo sapiens tera protein NM_007126 Protein binding 
KIAA 764 Bos taurus KIAA1 764 protein LOC514116 Unknown 
2C16 EST _ Unknown 
7C25 EST _ Unknown 
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Table 1: Continued  
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
NAP1L1 

 
Homo sapiens nucleosome assembly protein 1 like 1 

 
NM_004537 

 
Nucleosome assembly 

TCF7L2 Mus musculus HMG boxtranscription factor NM_009333 Transcription factor activity 
1C19 EST - Unknown 
N-PAC Bos taurus cytokine-like nuclear factor n-pac NM_001040568 Decarboxylating activity 
1026A EST - Unknown 
1026B EST - Unknown 
NY-REN-58 Homo sapiens NY-REN-58 antigen NM_016122 protein binding 
1c4 EST BTRPPST1 Unknown 
PAIP1 Bos taurus polyadenylate binding protein -interacting 1 NM_001034636 Unknown 
2c9 EST - Unknown 
4c20 EST - Unknown 
PSCD2 Homo sapiens pleckstrin Sec7 and coiled/coil domains2 NM_004227 phosphatidylinositol binding 
1c14 EST - Unknown 
CTNNDI Bos taurus Catenin (cadherin asso. Protein)delta 1 XM_612939 Unknown 
ESTBb4c2 EST - Unknown 
ESTBb4c3 EST - Unknown 
CAPZA1 Capping protein, muscle Z -line alpha 1 CK410523 Unknown 
GA17 Rattus norvegicus dendritic cell protein XM_215794 Unknown 
HMGN2 Mus musculus high mobilitygroup nucleosomal binding P2 NM_008251 DNA binding 
ESTBb8c5 EST - Unknown 
FLJ23320 Hypothetical protein FLJ23320 BQ038041 Unknown 
SMARCC1 Homo sapiens SWI/SNF related actin dependent regulator  NM_003074 DNA binding 
ESTBb8c9 EST - Unknown 
HMGB2 Homo sapiens high mobility group box 2 NM_002129 DNA binding 
SC5DL Bos taurus sterol 05 desaturase like NM_001035356 oxidoreductase activity 
MGC21654 Homo sapiens unknown MGC21654 CV876071 Unknown 
NUP160 Homo sapiens nucleoporin l60 kda D83781 Transporter activity 

KLHDC2 Homo sapiens kelch domain containing 2 NM_015483 protein binding 
FMO1 Homo sapiens flavin containing monoxygenase 1 BC014341 Electron transport 
TBX Homo sapiens TATA box binding protein  32 kDa NM_016283 DNA binding 
TBX3 EST - Unknown 
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Table 1: Continued  
 
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
IFN 

 
Bos taurus interEeron tau (IFN-tau-c3) gene 

 
NM_001015511 

 
Hormone activity 

RXRA Homo sapiens retinoid X receptor alpha NM_002957 Transcription factor activity 
RXRB Homo sapiens retinoid X receptor beta DQ100361 Transcription factor activity 
RXRG Homo sapiens retinoid X receptor gamma NM_001009598 Transcription factor activity 
IGFIR Bos taurus insulin like growth factor 1 receptor XM_606794 Receptor activity 
GJA1 Bos taurus connexin 43 NM_174068 Gap junction activity 
Q8 Bos taurus gene for MHC dass 1 heavy cham XM_604652 Receptor activity 
GAPD Bos taurus glyceraldehyde-3-phosphate dehydrogenase BC102589 NAD binding 
ACTB Bos taurus beta actin DQ066897 Protein binding 
H2AFZ Bovine mRNA for histone H2A.Z X52318 DNA binding 
NOS3 Homo sapiens endothelial Nitic oxide synthase NM_000603 Ion binding 
NOS2A Bos taurus inducible nitric oxide synthase mRNA AF340236 Ion binding 
CDX1 Homo sapiens caudal type homeo box transcription factor 1 NM_001804 Transcription factor activity 
HSPCB Bos taurus heat shock cognate 90 kDa protein 1, beta NM_174345 Unfolded protein binding 
IL1-ß Bovine interleukin 1-beta M35589 Cytokine activity 
Na/K-ß2 Bos taurus Na,K-ATPase beta 2 subunit U45944 Sodium/potassium-exchanging ATPase activity 
OCT-4 Homo sapiens Oct-4 gene promoter sequence NP_002692 Transcription factor activity 
HK Bos taurus hexokinase 1 mRNA HSA297527 Hexokinase activity 
PGK Human mRNA encoding phosphoglycerate kinase V00572 ATP binding 
Tubulin Homo sapiens alpha tubulin, mRNA Bc008659 Nucleotide binding 
Zo-1 Human tight junction (zonula occludens) protein ZO-1 L14837 Protein amino acid binding 
Xist Bos taurus X-inactive specific transcript AF104906 X chromosome inactivation 
Poly A B.taurus mRNA for poly(A) polymerase X63436 Transferase activivty 
B TUBIQ Bos taurus gene for polyubiquitin Z18245 Protein modification 
Hsp70-1 Bos taurus 70 kDA heat-shock protein U09861 Unfolded protein binding 
IGFII-R Bovine cation-independent mannose 6-phosphate receptor J03527 Receptor activity 
Bax Bos taurus apoptosis regulator bax-alpha mRNA U92569 Apoptosis regulator activity 

Glut-4 Bos taurus mRNA for glucose transporter type4 D63150 Transporter activity 
Lamin Homo sapiens lamin B1 XM_003777 Tight junction 
Dc-II Bos taurus type 2 desmocollin  II mRNA M81190 Protein binding 
Glut-1 Bos taurus glucose transporter type I M60448 Transporter activity 
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Table 1: Continued  
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
GPI 

 
Homo sapiens glucose phosphate isomerase 

 
AY324386 

 
Growth factor activity 

DC-III Bos taurus desmocollin (Dsc3) mRNA L33774 Protein binding 
PALKO B.taurus mRNA for plakophilin Z37975 Intermediate filament binding 
Globin Bos taurus alpha globin gene AJ242798 Transporter activity 
Glut-2 Bos taurus glucose transporter 2 mRNA AF308828 Transporter activity 
E-cad Bos taurus e-cadherin (CDH1) mRNA AY508164 Protein binding 
Glut-3 Bos taurus glucose transporter 3 mRNA AY033938 Transporter activity 
gp130 Human membrane glycoprotein gp130 mRNA M57230 Receptor activity 
Zn-SOD Bovine mRNA for Cu-Zn superoxide dismutase X54799 Antioxidant activity 
AP2 Bos taurus intestinal alkaline phosphataseII AF052230 Alkaline phosphatase activity 
AP3 Bos taurus intestinal alkaline phosphatase III AF052226 Alkaline phosphatase activity 
DNMT Bos taurus cytosine-5-methyltransferase AY173048 Transferase activivty 
IGFBP-2 Bos taurus insulin-like growth factor binding protein 2 NM_174555 Insulin-like growth factor binding 

CSF1 Bos taurus colony stimulating factor 1 NM_174026 Growth factor activity 

GPX Bos taurus ciliary body glutathione peroxidase AF080228 Hydrolase activity 

Catalase Homo sapiens catalase AY028632 Catalse activity 

IGFBP-3 Bos taurus insulin-like growth factor binding protein-3 AF305199 Insulin-like growth factor binding 
IL-6 Bos taurus interleukin 6 (interferon, beta2) NM_173923 Cytokine activity 
IGFBP-4 Bos taurus insulin-like growth factor-binding protein 4 AF448849 Insulin-like growth factor binding 
FGF4 Bos taurus (hst) gene U15969 Growth factor activity 
Na/K-a1 Bos taurus partial mRNA for Na/K ATPase alpha-1 AJ496457 Sodium/potassium-exchanging ATPase activity 
FGFR2 B.taurus mRNA for FGF-receptor Z68150 Receptor activity 
Na/K-a2 Bos taurus partial mRNA for Na/K ATPase alpha-2 NM_000702 Sodium/potassium-exchanging ATPase activity 
bFGF Bovine basic fibroblast growth factor M13440 Growth factor activity 
Pan zo-1 Homo sapiens tight junction protein 1 (zona occludens 1) NM_003257 Protein binding 
Na/K-a3 Mus musculus ATPase, Na+/K+ transporting, alpha 3 BC027114 Sodium/potassium-exchanging ATPase activity 
Histon 4 Bos taurus histone H4.1 mRNA AF001288 DNA binding 

Occludin Bos taurus occludin AY589500 Tight junction 
JAM Bos taurus junctional adhesion molecule AF111714 Tight junction 
Na/K-ß1 Mus musculus ATPase, Na+/K+ transporting, beta 1 NM_009721 Sodium/potassium-exchanging ATPase activity 
GCS Homo sapiens glutamate-cysteine ligase, catalytic subunit NM001498 Nucleic acid binding 

 
 



Materials and Methods  

 
48

Table 1: Continued  
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
TGF-a 

 
Homo sapiens transforming growth factor, alpha 

 
NM_003236 

 
Growth factor activity 

5S B.taurus 5S rRNA X57170 Protein biosynthysis 
Activin A Bos taurus beta A inhibin/activin precursor gene U16238 Growth factor activity 
TGF-ß2 Homo sapiens transforming growth factor, beta 2 NM_003238 Growth factor activity 
BTP Bos taurus trophoblast protein-1 mRNA M31557 Hormone activity 
OSTF1 Bos taurus osteoclast stimulating factor 1 NM_174409 Protein binding 
Activin B Bos taurus beta B inhibin/activin precursor, gene U16241 Growth factor activity 
PDGFR-a Homo sapiens platelet-derived growth factor receptor NM_006206 Receptor activity 
CREP Bos taurus cyclic AMP responsive element binding protein AF006042 Transcription factor activity 
Activin R-I Bos taurus activin receptor typeI U43208 Receptor activity 
Aromatse B.taurus CYP19 mRNA for aromatase Z32741 Ion binding 
Activin R-IIa Bos taurus activin receptor type IIB precursor U57707 Receptor activity 
CTCF Bos taurus CCCTC-binding factor gene AY205566 Nucleic acid binding 

Cycline A B.taurus mRNA for cyclin A X68321 Cell cycle activity 

GH Bovine mRNA for growth hormone V00111 Hormone activity 

Activin R-IIb Bos Taurus activin receptor type II U58095 Receptor activity 

Cycline B Bos taurus mRNA sequence L26548 Cell cycle activity 
HIF 2a Bos taurus mRNA for endothelial PAS domain protein AB018399 Transcription factor activity 
PRDX1 Bos taurus peroxiredoxin 1 NM_174431 Oxidoreductase activity 
PGF Bos taurus placental growth factor NM_173950 Growth factor activity 
INF α3 DNA coding of bovine interferon-alpha 3 E00135 Unknown 
PRDX2 Bos taurus peroxiredoxin 2 NM_174763 Oxidoreductase activity 
Trof.1 INF B.taurus gene for trophoblast type I interferon X65539 Hormone activity 
INF α4 DNA coding of bovine interferon-alpha 4 E00136 Unknown 
Inhibin A Bos taurus Inhibin A subunit A14416 Cytokine activity 
TMSB10 Bos taurus thymosin, beta 10 (TMSB10), mRNA NM_174623 Actin binding 
INF ß2 DNA coding of bovine interferon-beta 2 E00138 Unknown 

INF ß3 DNA coding of bovine interferon-beta 3 E00139 Unknown 
Inhibin B Bos taurus Inhibin B subunit A14418 Cytokine activity 
rpL 37 Bos taurus ribosomal protein L37 S79980 Protein biosynthesis 
INF δ DNA coding of bovine interferon-gamma E01329 Unknown 
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Table 1: Continued 
 
Code Gene name Accession number Function 
 
TGF ß1 

 
Bovine transforming growth factor-beta-1 

 
M36271 

 
Growth factor activity 

TNF α Bos indicus tumor necrosis factor alpha AF011927 Signal transduction 
Plau Bos taurus plasminogen activator, urokinase NM_174147 Signal transduction 
ZFX Bos taurus Zfx mRNA D84097 DNA binding 
VEGF Bovine heparin-binding vascular endothelial growth factor M32976 Growth factor activity 
C-mos Bos taurus c-mos (c-mos) mRNA AY630920 Protein kinase 
HPRT Mus musculus hypoxanthine guanine phosphoribosyl T1 BC083145 Transferase activivty 
HOX B7 Homo sapiens homeobox B7 NM_004502 Transcription factor activity 
GDF9 Bos taurus partial mRNA for growth and differentiation F9 AJ302697 Growth factor activity 
Mater Bos taurus maternal antigen that embryo require mRNA AY721594 ATP binding 
BMP15 Bos taurus bone morphogenetic protein 15 mRNA AY304484 Growth factor activity 
Survivin Bos taurus apoptosis inhibitor survivin mRNA AY606044 Ion binding activity 
CDX1 Caudal type homeo box transcription factor 1 NM_001804 Transcription factor activity 
ARF1 Bos taurus ADP-ribosylation factor 1 NM_176653 Protein binding 

Glut-synt Bos taurus glutamate-ammonia ligase pseudogene NG_002443 Metabolism 
U2 Human U2 small nuclear RNA gene K02227 Unknown 
Hox C9 Homo sapiens homeobox C9 NM_006897 Transcription factor activity 
ApoA1 Bos taurus apolipoprotein A1 NM_174242 lipid binding 
Trf Bos taurus transferrin mRNA U02564 Ion binding activity 
Cdx 2 Homo sapiens caudal type homeobox transcription factor 2 NM_001265 Transcription factor activity 
U3 Bos taurus U3 small nuclear RNA AF176810 Unknown 
Igl Primula beesiana internal transcribed spacer 1 AF396689 Unknown 
Bcl2 Bos taurus bcl-2 mRNA U92434 Apoptosis regulator activity 
Ped Bos taurus MHC class I 4221.1 gene AJ010865 Unknown 
Hox B9 Homo sapiens homeobox B9 NM_024017 Transcription factor activity 
P53 Bos taurus p53 tumor suppressor phosphoprotein NM_174201 Transcription factor activity 
ADCY1 Bos taurus adenylate cyclase 1 NM_174229 Ion binding 

Bcl-XL Bos taurus clone 1.1 anti-apoptotic regulator Bcl-xL AF245487 Apoptosis regulator activity 
FGF2 Bos taurus fibroblast growth factor 2 NM_174056 Growth factor activity 
CSF1 Bos taurus colony stimulating factor 1 (macrophage NM_174026 Growth factor activity 
SLC2A3 Bos taurus solute carrier family 2 NM_174603 Transporter activity 
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Table 1: Continued 
 
Code 

 
Gene name 

 
Accession number 

 
Function 

 
Glut-Dehy 

 
Bos taurus glutamate dehydrogenase 1 

 
NM_182652 

 
Metabolism 

ITPR1 Bos taurus inositol 1,4,5-triphosphate receptor NM_174841 Receptor activity 
MSX1 Bos taurus msh homeo box homolog 1 NM_174798 Transcription factor activity 
MMP9 Bos taurus matrix metalloproteinase 9 NM_174744 Ion binding 
SPARC Bos taurus secreted protein, acidic, cysteine-rich NM_174464 Ion binding 
SMCX Bos taurus SMCX protein AF032367 DNA binding 
AQP8 Bos taurus aquaporin 8 mRNA AY743596 Transporter activity 
P14 Bos taurus P14 (p14) mRNA AF037349 Binding 
Fibronectin Bos taurus fibronectin mRNA K00800 Protein binding 
AchE Bos taurus acetylcholinesterase T-subunit precursor AF061813 hydrolase activity 
Ledgf Bos taurus lens epithelium-derived growth factor AF474175 DNA binding 
CHRNA3 Bos taurus cholinergic receptor, nicotinic, alpha 

polypeptide3 
NM_174719 Ion transport 

DBI Bos taurus diazepam binding inhibitor NM_181038 lipid binding 
HOXD4 Homo sapiens homeobox D4 NM_014621 Transcription factor activity 

PRNP Bos taurus prion protein NM_181015 GPI anchor binding 
PENK Bos taurus proenkephalin NM_174141 Opioid peptide activity 
PCSK1 Bos taurus proprotein convertase subtilisin/kexin type 1 NM_174412 Proteolysis 
PTGER3 Bos taurus prostaglandin E receptor 3 NM_181032 Receptor activity 
CPE Bos taurus carboxypeptidase E NM_173903 Proteolysis 
TNF Bos taurus tumor necrosis factor receptor  member 1A NM_174674 Receptor activity 
NDUF Bos taurus NADH dehydrogenase (ubiquinone) NM_176660 oxidoreductase activity 
UQC B.taurus mRNA for ubiquinol-cytrochrome-c reductase X59693 oxidoreductase activity 
NSEP Bos taurus nuclease sensitive element binding protein 1 NM_174815 DNA binding 
tnf Bos taurus tumor necrosis factor (ligand) member 5 NM_174624 Receptor activity 
MLC Bos taurus 155 kda myosin light chain kinase homolog S57131 ATP binding 
RAB Bos taurus RAB3A, member RAS oncogene family NM_174446 Nucleotide binding 
PIK Bos taurus phosphoinositide-3-kinase,  alpha polypeptide NM_174574 Transferase activivty 

CSNK Bos taurus casein kinase 2, alpha 1 polypeptide NM_174635 ATP binding 
PLAUr Bos taurus plasminogen activator, urokinase receptor NM_174423 Receptor activity 
MAPK Bos taurus similar to dual specificity protein phosphatase 16 XM_592862 kinase phosphatase activity 
Mn-SOD Cow manganous superoxide dismutase mRNA L22092 Ion binding 
LIF Bovine DNA for leukemia inhibitory factor D50337 Cytokine activity 
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3.3.2 Target preparation 

 

3.3.2.1 RNA isolation and first strand synthesis 

 

Once the respective biopsies were classified by the pregnancy phenotypes, they were 

categorized into three groups. Group one are those derived from blastocysts resulting in no 

pregnancy, group 2 those derived from blastocysts that ended with resorption and group 3 

those resulting in calf delivery.  

mRNAs isolation was performed using equivalents of pooled embryos (n=10 biopsies) and 

first strand synthesis were all carried as mentioned in section (3.3.1.1) above  except the 

use of 20 mM of T7 Oligo d(T)21 primer [TCTAGTCGACGGCCAGTGAATTGTAATAC 

GACTCACTATAGGGCG(T)21] in this case. This T7 oligo d(T)21 primer has the T7 

promoter sequence at its 5’-end which is recognized by RNA polymerase during in vitro 

transcription. 

 

3.3.2.2 Second strand synthesis and global PCR amplification 

 

This reaction has been carried out by using DOP PCR master kit. In addition to the 20 µl of 

first strand cDNA product, 40 µl of 2 X DOP PCR master mix, 1.0 µl of DOP primer (5’- 

CCGACTCGAG NNNNNN ATGTGG-3’), 1.0 µl of T7 oligo d(T)21 primer, and 16.0 µl 

water were added and properly mixed. This reaction was heated at 95 °C for 5 min to 

denature the sample and activate the polymerase, followed by one cycle of denaturation at 

95 °C for 30 sec and annealing at 30 °C for 90 sec. Unspecific primer annealing is achieved 

up to this step through application of relatively low annealing temperatures of 30 °C. 

Subsequently the temperature was increased at 0.2 °C/sec until it reached 72 °C and 

incubated for 3 minutes at this temperature. To this end, second strand synthesis was 

completed and 1 µl each of DOP and T7 primers were added. Then, the global PCR 

amplification was continue for the last 10 cycles at 94 °C for 30 sec, 60 °C for 30 sec and 

72 °C for 3 min. This reaction was terminated after final extension at 72 °C for 7 min and 

kept at 7 °C holding temperature. All reactions of amplification were carried out by using 

iCycler. 
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3.3.2.3 Purification of PCR products 

 

DNA purification was performed by using a phenol chloroform extraction system. Equal 

volumes of phenol/chlorophorm/isoamyl alcohol was added to the 80 µl cDNA and mixed 

well before centrifuged at 14000 rpm for 15 min. The upper phase was carefully transferred 

to a new 2 ml tube to which 1 µl of glycogen, 0.5 volumes (v/v) of 5M NH4OAc, and 2.5 

volumes of ethanol were added and incubated at –20°C for 30 minutes. At the end of 

incubation time, the tubes were centrifuged at 14000 rpm for 20 min and the supernatant 

was discarded. The pellet was then washed with 500 µl of 70 % cold ethanol, centrifuged 

for 10 min at 14000 rpm and the alcohol was removed carefully. Finally the pellet was air 

dried and dissolved in 12 µl RNase free water for subsequent reaction. 

 

3.3.2.4 In vitro transcription and RNA amplification  

 

In vitro transcription was carried using AmpliScribe T7 transcription kit with some 

modifications of the manufacturer’s protocol. Briefly, 2 µl of 10 X reaction buffer, 2 µl 

dNTP (100 mM each of ATP, CTP, GTP and UTP), 2 µl of DTT and 2 µl of T7 RNA 

polymerase were added to the 12 µl cDNA preparation, mixed well and incubated at 42 °C 

for 3 h. At the end of incubation, 1 µl of DNase was added and incubated at 37 °C for 30 

min. Then the amplified RNA (aRNA) was purified using RNeasy Mini kit according to 

manufacturer’s recommendations. Finally the aRNA was eluted in 30 µl RNase free water 

from which 8 µl were taken to estimate the yield and purity of aRNA by UV absorbance 

reading. 

 

3.3.2.5 Aminoallyl labelling and dye coupling 

 

For array hybridisation experiments, aRNA prepared as mentioned above was used for 

indirect labelling using the CyScribe post labelling kit. For this, 3 µg each of constructing 

aRNA in 10 µl volume, 1.5 µl random primer and 1.5 µl anchored oliogo(dT) were added 

and incubated at 70 °C for 5 min followed by incubating the reaction tube at room 

temperature for 10 min. Then 10 µl of master mix, containing 4 µl of 5 X first strand 
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buffer, 2 µl of 0.1 M DTT, 1.5 µl of dNTP mix, 1.5µl aminoallyl dUTP and 1µl CyScript 

reverse transcriptase was added to the reaction and incubated at 42 °C for 90 minutes. At 

the end, 2 µl of 2.5 M NaOH were added to the reaction to hydrolyse the mRNA and 

incubated at 37 °C for 15 minutes. Finally 10 µl of 2 M HEPES were added. The products 

were purified with the CyScribeTM GFX purification kit. The purified cDNA was then 

eluted in 60 µl 0.1 M sodium bicarbonate. The dye coupling reaction was performed by 

mixing the aminoallyl labelled cDNA with either of the dyes. The reaction was incubated at 

room temperature and in the dark for 1.5 h. At the end of the incubation, non reacting dyes 

were quenched by adding 15 µl of 4 M hydroxylamine solution and further incubated for 15 

min at the same conditions. The combined reaction was then purified with CyScribeTM 

GFX purification kit. The sample was finally eluted in 60 µl elution buffer. Following GFX 

purification, Cy3-and Cy5-labelled cDNAs were combined into one tube. Then the target 

was speed-vacuum centrifuged in speedvac centrifuge. 

 

3.3.3 Hybridization procedure 

 

3.3.3.1 Prehybridization of the slides 

 

To avoid non specific binding by deactivating the amine groups on the slide surfaces, the 

slides were blocked for 20 min with prehybridization buffer (3 X SSC, 1 % BSA) kept at 

55 °C. The slides were then immersed in boiling water to denature the probes and wash 

unbound DNA from the slide surfaces, followed by immediate immersion in cold water and 

isopropanol consecutively. Then the slides were dried by centrifugation at ≥2000 rpm for 2 

min before stored in a dry, light proof environment at room temperature. 

 

3.3.3.2 Hybridization of the arrays  

 

Shortly before hybridisation, array slides were treated with the prehybridization buffer as 

mentioned before. The dried target was then resuspended in pre-warmed (42 oC) 

hybridization solution (15 µl hybridization buffer, 30 µl 100% formamide, and 15 µl DEPC 

water) according to the recommendation of the company (Amersham Bioscience, Freiburg, 
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Germany). 1 µl of yeast tRNA (4 mg/ml, Sigma) and 1 µl of poly (dA) (8 mg/ml, 

Amersham) were also added to avoid non specific hybridisation. This mixture was 

incubated at 95 °C for 5 min to denature the target. After brief centrifugation, the target was 

put on the array slide and covered with glass cover slips. The slide was put in the 

hybridisation cassette (TeleChem, Inc, CA, USA) and placed in the hybridisation chamber 

(GFL, Dülmen, Germany) at 42 °C and incubated for 16-20 h. 

 

3.3.3.3 Washing the slides 

 

At the end of incubation period, the slides were washed twice with 2X SSC,0.1%SDS 

buffer for 5 min at 42°C followed by sequential washing by 1x SSC, 0.2x SSC and 0.1x 

SSC for 5 min each at room temperature. Finally slides were shortly rinsed in millipore 

water and then isopropanol for one min of each. Slides were then shortly centrifuged to dry 

and scanned immediately. 

 

3.4 Image capture and data analysis 

 

Slides were scanned by a GenePix 4000B scanner. Features were analyzed using GenePix 

Pro Version 4.0 software. The statistical analysis of the microarray’s data was performed 

using SAM (Significant Analysis for Microarray), a free software program developed at 

Stanford University. First, a loess normalization of the data was performed using 

GPROCESSOR freeware to eliminate uninformative data. A mean of log2 ratio of the 

biopsies from various groups (no pregnancy /calf delivery and resorption /calf delivery) 

using normalized data was then calculated for the replicates to obtain one value per clone. 

Finally ratios were submitted to SAM analysis. The above experiments were then repeated 

with reverse-labeled cDNA samples. Heatmap were generated using HeatMap Builder. 

Heatmap reflects normalized gene expression ratios and is organized with individual 

hybridization for each experiment. Hierarchical clustering was carried out for up and down 

regulated genes using the clustering programme (Cluster & TreeView) written by Michael 

Eisen at the Eisen lab (http://rana.lbl.gov/index.htm). Average linkage clustering algorithm 
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was employed. Genes expressed equally in both samples were not included in the 

hierarchical clustering. 

 

3.5 Quantitative real-time PCR analysis. 

 

3.5.1 Plasmid isolation and preparation of serial dilution 

 

Plasmid DNA containing the insert of each of the selected genes was used as standard for 

real-time PCR assay. For this the PCR products were amplified using the specific primers 

(Table 2) and then ligated into pGEM-T vector. After transformation in DH5α Escherichia 

coli, the positive colonies were cultured overnight at 37 oC in 5 ml LB-broth containing 

ampicillin. The recombinant Escherichia coli cultures were pelletted by centrifuging at 

12000 rpm for 1 min. Plasmid DNA was isolated by using the GenElute plasmid Miniprep 

kit, following the manufacturers instructions. Briefly, the cells were resuspended with 200 

µl of the resuspension solution, mixed thoroughly by vortexing and the cells were lysed by 

incubating with 200 µl of lysis solution for 4 min. The cells debris was precipitated by 

adding 350 µl of neutralization or binding buffer and centrifuiged at 12000 rpm for 10 min. 

In the mean time, columns were prepared by using column preparation solution. The 

cleared lysates were added to the prepared column and centrifuged at 12,000 rpm for 1 min 

and the flow through was discarded. The columns were again washed with 750 µl of 

washing solution and centrifuged at 12000 rpm for 1 min and the fllow through was 

discarded. Finally the plasmid DNA was eluted by adding 60 µl of distilled water. The 

isolated plasmid DNA was sequenced to confirm the sequence of gene of interest. 

The concentration of the plasmid DNA was estimated by reading the absorbance A260/280 

using Ultrospec™ 2100 pro UV/Visible Spectrophotometer. The plasmid concentration 

(ng/µg) was converted in number of copies (molecules) using the following program: 

www.molbiol.ru. Then serial dilutions were prepared for each clone from 101 up to 108 

copy number in 50 µl volumes. 
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3.5.2 Quantitative real-time PCR  

 

Quantitative real-time PCR was used to confirm the differentially expressed genes revealed 

by microarray experiments. Real-time PCR reactions were conducted in an ABI Prism ® 

7000 SDS instrument and SYBER green was used as a double-strand DNA-specific 

fluoresecent dye. Prior to quantification, primer optimisation was performed for both 

forward and reverse primers. Specific primer level combinations with lower threshold cycle 

(CT) value and without primer-dimer formation were selected for subsequent PCRs. 

Quantitative analyses of biopsies cDNA were performed in comparison with the bovine 

GAPDH gene (endogenous control), and were run in separate wells. Standard curves were 

generated for both target and internal control genes using serial dilution of plasmid DNA 

(101-108 molecules). Polymerase chain reactions were performed in 20 µl reaction volume 

containing 9 µl of 2.5 X RealMasterMix/20X SYBR Solution, optimal levels of forward 

and reverse primers and 2 µl cDNA. Each PCR was run for a particular biopsy group in 

duplicate to control the reproducibility of quantitative results. An universal thermal cycling 

parameter (10 s at 50 oC, 10 min at 95 oC, 45 cycles of 15 s at 95 oC and 60 s at 60 oC) was 

used for the quantification of each gene. After the end of the last cycle, a melting curve was 

generated by starting the fluorescence acquisition at 60 oC and taking measurements every 7 

sec until the temperature reached 95 oC. Final quantification analysis was performed using 

the relative standard curve method (User bulletin # 2 ABI PRISM 7700 SDS, 

Http://docs.appliedbiosystems.com/pebiodocs/04303859.pdf) and results were reported as 

the relative expression to the calibrator cDNA after normalization of the transcript amount 

to the endogenous control. 

 

3.6 Immunofluorescence staining of oocytes and embryos 

 

In vitro produced bovine immature and mature oocytes, zygotes; 2-cell, 4-cell, 8-cell, 

morula and blastocyst stage embryos were washed three times in PBS and fixed in 4 % 

(w/v) paraformaldehyde in PBS overnight at 4 °C. The fixed specimens were permeabilized 

during 2.5 h incubation in 0.5 % (v/v) Triton-X100 in PBS. In order to inhibit non-specific 

binding of the antibodies, samples were subsequently blocked in 3 % (w/v) bovine serum 
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albumin (BSA) in PBS for 1h. The oocytes and embryos were then incubated for 1 h at 39 

°C with 1:100 dilution of anti-MSX1 primary polyclonal antibody. After three consecutive 

washes with PBS, oocytes and embryos were further incubated for 1 hour with 1:100 

dilutions of secondary anti-rabbit IgG FITC conjugated antibody. Negative controls were 

processed in the same manner except that the primary antibody was omitted. In order to 

visualize the nucleus of the cells, oocytes and embryos were finally incubated with 

0.5µg/ml propidium iodide. After an ultimate washing with PBS, oocytes and embryos 

were mounted on glass slides (Menzel GmbH & Co KG, Braunschweig, Germany) in 

Vectashield mounting medium, protected with coverslip, sealed with nail polish and 

examined under confocal laser scanning microscope. 
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Table 2: Details of primers used for quantitative real time PCR 

 

Gene name Gene Bank accession 

number 

Forward primer Reverse primer Product 

size (bp) 

 

GAPDH 

EEF1A1 

PTTG1 

TNF 

CD9 

HNRNPA1 

AKR1B1 

PLAC8 

COX-2 

PLAU 

TXN 

ODC1 

ANXA2 

ATP5A1 

MSX1 

KRT8 

 

BC102589 

BTA238405 

NM_004219 

AF011927 

NM_173900 

BC052296 

M31463 

NM_016619 

AF031698 

L03546 

AF104105 

NM_174130 

NM_174716 

M22465.1 

NM_174798 

X12877 

 

 

  

5´-ACCCAGAAGACTGTGGATGG-3´ 

 5´-CCATGGCATATTAGCACTTGGTT-3´ 

 5´-GAAGAGCACCAGATTGCGC-3´ 

 5´-GTGAAGTCGCTCAGTCGTGC-3´  

 5´-CACATCAGTCCAACCCAGAC-3´ 

 5´-TGGACTCCAGGTCACAACACA-3´ 

 5´-CGTGATCCCCAAGTCAGTGA-3´ 

 5´-CGGTGTTCCAGAGGTTTTTCC-3´ 

 5´-ATCTACCCGCCTCATGTTCCT-3´ 

 5´CATCTACAGGAGGCATCGAGG-3´ 

 5´- ATGGTGAAACAGATTGAGAAG-3´ 

 5´- CAAAGGCCAAGTTGGTTTTAC-3´ 

 5´-CGTGCTCCAGCTAACAGTTCT-3´ 

 5-´AAGCTTCAAATCCAGCCAAGAA-3´ 

 5´-AAGGTATCCACAGTCCCCAGC-3´  

 5´-CACCAGTTCCAAGCCTGTGG-3 

  

3´ ACGCCTGCTTCACCACCTTC-5´ 

 3´-GCTTACACCCTGGGTGTGA-5´ 

 3´-GTCACAGCAAACAGGTGGCA-5´ 

 3´-TCTACAAGGCGGGAGACCTG-5´ 

 3´-AATCGGAGCCATAGTCCAAC-5´ 

 3´-CTTCAGGGTGATGCCAGGTT-5´ 

 3´-AATCCCTGTGGGAGGCACA-5´ 

 3´-AAGATGCCAGTCTGCCAGTCA-5´ 

 3´-GGATTAGCCTGCTTGTCTGGA-5´ 

 3´GTCGGAGTTAAGCCGTGACTG-5´ 

 3´- CGTTGGAATACTTTTCAGAGAGAGAA-5´ 

 3´-CAGAGATGGCCTGCACAAAG-5´ 

 3´-GGAAAGCCAGGTAATGCGTA-5´ 

 3´-TTGTCTCACGTTATCAGCCAACA-5´ 

 3´-TCTGCCTCTCCTGCAAAGTTC- 5´ 

 3´-TCAGGTCTCCTGTGCAGATGC- 5´ 

 

247 

214 

204 

170 

146 

121 

152 

163 

187 

162 

154 

201 

139 

127 

180 

176 
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4 Results 

 

4.1 Microarray experiments 

 

4.1.1 Array characterization  

 

In the present study we used two different cDNA arrays. The first is the BlueChip cDNA 

array which was kindly provided by the Department of Animal Science, Laval University, 

Canada. This array contained 4928 spots in two sub-arrays per slide. Each sub-array is 

composed of 2304 randomly selected clones obtained from four different suppression 

subtractive hybridizations (SSH). First SSH: GV oocytes subtracted from somatic tissues, 

second SSH: GV oocytes subtracted from Day-8 blastocyst, third SSH: Day-8 blastocyst 

subtracted from GV oocytes and fourth SSH: Day-8 blastocyst subtracted from somatic 

tissues. 

The second array is bovine preimplantation specific custom cDNA array which prepared in 

our lab. This was constructed being enriched with bovine preimplantation stage specific 

clones. The majority of the clones are generated from different developmental stages of 

bovine preimplantation embryos using stage specific cDNA library construction (Ponsuksili 

et al. 2001), suppressive subtractive hybridisation (SSH) (Ponsuksili et al. 2002) and 

differential display (Tesfaye et al. 2003). In addition to these, some specific clones that are 

known to be expressed during embryo preimplantation development stage have also been 

amplified with gene specific primers and included in the array. A total of 219 genes and 

EST probes were used as a probe in this array. The genes in this array have been classified 

based on the available information for the bovine, human and mouse species in the gene 

data bank. Even some of the information has been generated from non bovine species, 

functional conservation of genes has been assumed in the absence of bovine specific gene 

information. Therefore, based on this assumption, they were classified functionally into 20 

major categories (Figure7). As has been indicated in the figure, the majority of known 

genes were comprised of genes in the protein binding, transcription factor activity, DNA 

and nucleotide binding, transporters activity and ion binding categories. About 16 % of the 
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genes and ESTs have not yet been classified for their function either in the bovine or other 

species. 
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Figure 7: Distribution of genes present on in-house-produced cDNA microarray according 

to functional groups. 

 

4.1.2 Differential gene expression profiles  

 

During each experiment a series of six hybridization experiments (three biological 

replicates with dye swap) were conducted to minimize false positive expression changes 

and to identify genes truly differentially expressed (q ≤ 0.10) between biopsies derived 

from blastocysts resulting in no pregnancy, resorption or calf delivery. The scatter plots of 

the replicates showing the reproducibility between biological or technical replicates are 

shown in Figure 8 A and B and 9 A and B. The heatmap (Figure 10 A and B) represents the 

overall view of the expression levels of genes on BlueChip and bovine preimplantation 

specific custom arrays during comparison between the two experiments (No pregnancy vs. 

calf delivery and resorption vs. calf delivery). All differentially expressed genes were 
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classified based on their functions according to criteria of gene ontology consortium 

classifications (http://www.geneontology.org). The resulting data were supplemented with 

additional information from Entrez Gene (http:www.ncbi.nlm.nih.gov/entrez/query.fcgi?db 

=gene).  
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(A)                                                                                                      (B) 

Figure 8: Scatter plots of the replicates with dyeswap showing the log2 of median signal intensity of cye3 and cye5, (A) 

                is the three biological replicates and (B) is the dyeswap of these replicates. 
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SAM Plotsheet 

 

                  

(A)                                                                                                                                 (B) 

Figure 9: SAM plotsheet for repeated experiments using dyeswap showing the reproducibility between replicates (C) and (D). 

               The red colur showing the up-regulated genes and the green colur showing the down-regulated. 
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                                        (A)                                                                                                                               (B) 

Figure 10: Heatmap showing the normalized gene expression ratios and is organized with individual hybridization for the 

triplicate hybridizations for each experiments using BlueChip cDNA array (A) and duplicate hybridizations using 

bovine preimplantation specific custom cDNA array (BPSA) (B) arranged along the x axis, with normalized 

expression ratios depicted by color intensity such that highest expression corresponds to the bright red, and the lowest 

expression corresponds to bright green.  
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4.1.3 Experiment 1: Transcriptional analysis of biopsies derived from blastocysts resulting 

in no pregnancy (G1) versus calf delivery (G3) 

 

A cDNA array analysis between G1 and G3 biopsy groups revealed that a total of 52 genes 

(41 from Bluechip and 11 from BPSA array) was differentially regulated between the two 

groups. 46 and 6 clones were up- and down-regulated, respectively, in G1 compared with 

G3 (1.5≤fold change≤4.7). These differentially regulated genes represent three functional 

categories. The classification of the differentially regulated genes according to function is 

shown in figure. 11. The identity, database accession number, fold change difference and 

the functional category of differentially regulated genes are given in Table 3.  

 

No pregnancy vs. Calf delivery

 

Figure 11: Ontology classification for differentially expressed transcripts between biopsies 

derived from blastocysts resulting in no pregnancy and calf delivery. The known 

genes were classified functionally based on the Gene Ontology Consortium 

classification (http://www.geneontology.org)  

 

The expression of the unknown genes and novel transcripts showed profiles similar to those 

of the annotated genes, as determined by tree hierarchical clustering analyses (Figure 12).  

 

 

Protein binding 25% 

Protein  
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 15% 

Metabolism 
12. 5% 
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binding 5% 

Others 37.5% 

Genes with 

known 

function 77% 

Genes with 
unknown function 
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transcripts 11.5% 
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Figure 12: Hierarchical clustering for the differentially expressed genes between biopsies 

derived from blastocysts resulted in no pregnancy (G1) vs. calf delivery (G3). 

The columns represent the replicates. The rows represent 46 genes found to be 

up regulated (red colur) and 6 genes down regulated (green colur) in no 

pregnancy. The rows showing the accession number, symbol, fold change and 

function for each gene. 
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Table 3: List of differentially regulated genes in blastocyst biopsies resulting in no pregnancy (G1) compared to calf delivery (G3) 

at a false discovery rate (FDR) ≤ 10 %. 

Gene Name Accession No. Fold change Function 
 

1-Up regulated  
 
Homo sapiens KIAA 1093 protein mRNA (KIAA1093) 
Bovine aldose reductase mRNA, 3 end (AKR1B1) 
Homo sapiens Protease serine 23 (PRSS23) 
Bos taurus elongation factor 1 alpha 1 (EEF1A1) 
Homo sapiens tubulin alpha ubiqutous mRNA (K-ALPHA1) 
Homo sapiens acetyl CoA transferse-like protein (ACAT2) 
Homo sapiens mRNA, differentially expressed in malignant melanoma 
2314_6_338 
Bos taurus BAC CH240-118E9 
Homo sapiens ARP2 actin-related protein 2 homolog (yeast) (ACTR2) 
Bos taurus acidic ribosomal protein P2 mRNA, complete cds 
Bos taurus Isolate FL405 mitochondrion, partial genome 
2212_6_236 
Bos taurus ribosomal protein, large P2 (RPLP2) 
Arabidopsis thaliana T-DNA flanking sequenze, left border,clone 
Bovine Actin mRNA, 3 end (LOC404122) 
Homo sapiens nuclear phosphoprotein similar to S.cerevisiae (PWP1) 
Homo sapiens dehydrogenase/reductase SDR family (DHRS8) 
Homo sapiens Aldose A, Fractose-biphosphate,transcript (ALDOA) 
2310_6_334 
Homo sapiens Coenzyme Q7 homolo,ubiquinone (yeast) (COQ7) 
Homo sapiens S100 calcium binding protein A14 (S100A14) 
Bos taurus, clone RP42-518P7, complete sequence 
Bos taurus glutathione peroxidase 4 (GPX4) 
Bos taurus mRNA for similar to ribosomal protein S3a (RPS3A) 
S.scrofa mRNA encoding G-beta like protein (GNB2L1) 
265_6_47 
2020_5_404 
 

 
 
XM_039385 
M31463 
NM-007173 
BTA238405 
BC008659 
AF356877 
AJ293390 
 
AC150515 
NM_005722 
C008659 
AY308069 
 
NM_174788 
AJ552096 
K00623 
NM_007062 
BC016367 
BC016800 
 
BC003185 
BC005019 
AC129959 
NM_174770 
AB099017 
Z33879 
 

 
 

5.0 
4.7 
4.7 
4.5 
4.5 
4.5 
3.8 
3.8 
3.5 
3.4 
3.4 
3.4 
3.4 
3.0 
3.0 
3.0 
2.8 
2.8 
2.8 
2.8 
2.7 
2.7 
2.7 
2.6 
2.6 
2.6 
2.6 
2.6 

 
 
Nucleotide binding 
Carbohydrate metabolism 
Protein coding 
Protein amino acid binding 
Microtubule-based process 
Lipid metabolism 
Unknown 
Novel 
Unknown 
Protein binding 
Protein biosynthesis 
Unknown 
Novel 
Protein biosynthesis 
Pollen tube growth 
Actin cytoskeleton 
Transcription 
Progestrone metabolism 
Unknown 
Novel 
Protein metabolism and modification 
Calcium ion binding 
Unknown 
Regulation of inflammatory response 
Protein biosynthesis 
Negative regulation of translation 
Novel 
Novel 
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Table 3: (Continued). 

Gene Name Accession No. Fold change Function 
 

Homo sapiens hypothetical protein (MGC3207) 
Homo sapiens chaperonin containing TCP1, subunit 8 theta (CCT8) 
Homo sapiens G antigen, family C, 1 (GAGEC1) 
Homo sapiens mRNA ;cDNA DKFZp762M2311 (FADS1) 
Homo sapiens Pitutary tumor-transforming 1 (PTTG1) 
2311_6_335 
Bos taurus CD9 antigen (p24) (CD9) 
Bos taurus msh homeo box homog 1 (drosophila) (MSX1) 
Homo sapiens RIO kinase 3(yeast) (RIOK3) 
Bos taurus Polyubiqutin 
Bos taurus ferritin, heavy polypeptide 1 (FTH1) 
Homo sapiens occludin (OCLN) 
Bovine gamma non muscle actin 
Human mRNA encoding phosphoglcerate kinase 
Bos Taurus annexin A2(ANAX2) 
Bovine primary structure of 1.715 satelite DNA 
Bos taurus Tumor necrosis fator alpha gene (TNF) 
Bovine alpha subunit ATP synthase isoform mRNA (ATP5A1) 
 

2- Down regulated  
 

Homo sapiens ribosomal protein L8 (RPL8) 
Bovine mRNA fragment for cytokeratin A (no. 8) (KRT8) 
Bos taurus Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) 
Heterogeneous nuclear ribonucleoprotein A1 (HNRPA1) 
Bos taurus thioredoxin mRNA (TXN) 
Bos taurus similar to acidic ribosomal phosphoprotein PO (RPLPO) 
 
 

BC001703 
BC012584 
NM_007003 
AL512760 
XM_869468 
 
M81720 
NM_174798 
NM_003831 
Z18245 
NM_174062 
NM_002538 
X60733.1 
V00572 
NM_174716 
V00124 
AF011927 
M2246.1 
 
 
 
BC000047 
X12877 
NM_174731 
XM_010852 
AF104105 
AB098748 
 

2.6 
2.6 
2.6 
2.5 
2.5 
2.5 
2.4 
2.4 
2.4 
2.4 
2.4 
2.2 
2.0 
1.9 
1.5 
1.5 
1.5 
1.5 

 
 
 

0.6 
0.5 
0.5 
0.5 
0.5 
0.3 

 

Cellular biosynthesis 
Unfolded protein binding 
Unknown 
Oxidreductase activity 
Protein amino acid binding 
Novel 
Protein binding 
Transcription factor 
Chromosome segregation 
Protein modification 
Negative regulation of cell proliferation 
Plasma membrane 
Actin cytoskeleton 
Glycolysis 
Calcium ion binding 
Unknown 
Signal transduction 
ATP binding 
 
 
 
Protein biosynthesis 
Protein amino acid Phosphorylation 
Protein binding 
DNA binding  
Response to oxidative stress 
Protein biosynthesis 
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4.1.4 Experiment 2: Transcriptional analysis of biopsies derived from blastocysts resulted 

in resorption (G2) versus calf delivery (G3) 

 

A comparison between G2 and G3 group of biopsies showed that 58 genes were 

differentially regulated (44 from BlueChip and 14 from BPSA array) between G2 and G3. 

37 genes were up-regulated in G2 and 21 genes down-regulated compared with G3 (1.6 ≤ 

fold change ≤ 6). These differentially regulated genes represent three functional categories. 

The classification of the differentially regulated genes according to function is shown in 

figure 13. The identity, database accession number, fold change difference and the 

functional category of differentially regulated genes are indicated in Table 4..  

 

 

Resorption vs Calf delivery

 

Figure 13: Ontology classification for differentially expressed transcripts between biopsies 

derived from blastocysts resulting in resorption and calf delivery. The known 

genes were classified functionally based on the Gene Ontology Consortium 

classification (http://www.geneontology.org)  

 

The hierarchical clustering analysis has enabled to correlate the expression of those ESTs 

and genes with unknown function to those of the annotated genes (Figure 14). 
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Figure 14: Hierarchical clustering for the differentially expressed genes between biopsies 

derived from blastocysts ended with Resorption (G2) vs. calf delivery (G3). The 

columns represent the replicates. The rows represent 37 genes found to be up-

(red colour) and down-(green colour) regulated respectively in biopsies derived 

from blastocysts resulted in resorption. The rows showing the accession 

number, gene symbol, fold change and function category of each gene. 
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Table 4: List of differentially regulated genes in biopsies obtained from blastocysts resulted in resorption (G2) compared to calf 

delivery (G3) at a false discovery rate (FDR) of ≤ 10%. 

Gene Name Accession No. Fold change Function 
 

1-Up regulated  
 
Bovine aldose reductase mRNA, 3' end (AKR1B1) 
Protease serine 23 (PRSS23) 
Homo sapiens actin, gamma 1 (ACTG1) 
Homo sapiens ribosomal protein S15 (RPS15) 
Homo sapiens stromal cell-derived factor 2 (SDF2) 
Homo sapiens tubulin alpha ubiquitous mRNA (K-ALPHA1) 
Homo sapiens occludin (OCLN) 
Bovine mRNA fragment for cytokeratin A (no. 8) (KRT8) 
Bos taurus mRNA for similar to ribosomal protein S12 (RPS12) 
Homo sapiens acetyl CoA transferase-like protein (ACAT2) 
Homo sapiens coenzyme Q7 homolog, ubiquinone (yeast) (COQ7) 
Homo sapiens membrane interacting protein of RGS16 (MIR16) 
Bos taurus mRNA for similar to ribosomal protein L26 (RPL26) 
Bos taurus ribosomal protein, large P2 (RPLP2) 
Bos taurus isolate 65 NADH dehydrogenase subunit 1 (ND1) 
Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) 
Bos taurus mRNA similar to translationally controlled tumor (TPT1) 
Bos taurus clone RP42-351K5, complete sequence 
B.taurus mRNA, alternative polyadenylation signals 
Homo sapiens dehydrogenase/reductase SDR family (DHRS8) 
Sus scrofa G-beta like protein (GNB2L1) 
Homo sapiens ARP2 actin-related protein 2 homolog (yeast) (ACTR2) 
Primery structure of bovine 1.715 satelte 
Homo sapiens protasome (prosome, macropain) 26S subunit (PSMD1) 
Bos taurus mRNA for similar to ribosomal protein S14 (RPS14) 
Homo sapiens ribosomal protein S5 (RPS5) 
Bos taurus Polyubiqutin 
 

 
 
 
M31463 
NM_007173 
NM_001614 
NM_001018 
BC000500 
BC0089 
NM_002538 
X12877 
AB099081 
AF356877 
BC003185 
BC025273 
AB098829 
NM_174788 
AF490528 
NM_004396 
AB099031 
AC092727 
X56933 
BC016367 
NM_214332 
NM_005722 
V00124 
NM_002807 
AB099089 
NM_001009 
Z18245 
 

 
 
 

6.0 
5.0 
4.5 
4.0 
4.0 
4.0 
3.6 
3.5 
3.5 
3.5 
3.5 
3.0 
2.9 
2.9 
2.9 
2.9 
2.9 
2.9 
2.8 
2.6 
2.5 
2.5 
2.5 
2.3 
2.3 
2.3 
2.3 

 

 
 
 
Carbohydrate metabolism 
Protein coding 
Structural constituent of Cytoskeleton 
Protein biosynthesis 
Protein amino acid glycosylation 
Microtubule-based process 
Structural molecule activity 
Protein amino acid phosphorylation 
lipid metabolism 
Protein metabolism and modification 
Protein amino acid glycosylation 
Protein biosynthesis 
Protein biosynthesis 
Secretory pathway 
Progesterone metabolism 
Protein binding 
Unknown 
Unknown 
Unknown 
Negative regulation of translation 
Protein biosynthesis 
Protein binding 
Unknown 
Transcription factor activity 
Protein biosynthesis 
Protein modification 
Protein biosynthesis 
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Table 4: (Continued) 

Gene Name Accession No. Fold change Function 
 

Bovine actin mRNA, 5' end 
Homo sapiens chloride intracellular channel 1 (CLIC1)  
Proteasome (prosome, macropain) 26S subunit, non-ATPase 
Bos taurus acidic ribosomal phosphoprotein PO (RPLPO) 
Homo sapiens heat shock 60kDa protein 1 (chaperonin) (HSPD1) 
Bos taurus ribosomal protein L3 (Rpl3) 
Bos taurus isolate FL396 mitochondrion, partial genome 
Human mRNA encoding phosphate kinase (PGK1) 
Bovine alpha subunit ATP synthase isoform mRNA (ATP5A1) 
Bos taurus annexin A2 (ANAX2) 
 
2-Down regulated 
 
Homo sapiens caudal type homeo box transcription factor 2 (CDX2) 
Homo sapiens Hypothetical protein FLJ23320 (THAP9) 
Bos taurus homeo box B7 (HOXB7) 
1630_4_420 
1131_1_1020 
Bos taurus ornithine decarboxylase (ODC1) 
Bos taurus thioredoxin (TXN) 
Bos taurus bone morphogenetic protein 15 (BMP15) 
Bovine mRNA for histone H2A.Z 
Heterogeneous nuclear ribonucleoprotein A1 (HNRPA1) 
Homo sapiens testes development-related NYD-SP20 (NYD-SP20 
Homo sapiens placenta-specific 8 (PLAC8) 
Bos taurus BTAB2MDS3 beta-2-microglobulin (B2M) 
Bos taurus prostaglandin G/H synthase-2 (PGHS-2) (COX2)  
2271_6_295 
Homo sapiens RAN, member RAS oncogene family (RAN) 
 

 
K00622 
NM_001288 
NM_002807 
AF013214 
BC002676 
NM_174715 
AY308068 
V00572 
M2246.1 
NM_174716 
 
 
 
NM_001265 
NM_024672 
NM_174342 
 
 
NM_174130 
AF104105 
AY304484 
X52318 
XM_010852 
NM_032598 
NM_016619 
AY325771 
AF031698 
 
BC14901 
 

 
2.3 
2.3 
2.3 
2.0 
2.0 
2.0 
2.0 
1.8 
1.5 
1.5 

 
 
 

0.73 
0.73 
0.70 
0.57 
0.55 
0.55 
0.55 
0.55 
0.50 
0.50 
0.50 
0.45 
0.45 
0.40 
0.40 
0.40 

 

 
Actin cytoskeleton 
Protein amino acid binding 
Transcription factor activity 
Protein biosynthesis 
Unfolded protein binding 
Protein biosynthysis 
Unknown 
Glycolysis 
ATP binding 
Calcium ion binding 
 
 
 
Transcription factor 
Nucleic acid binding 
Transcription factor 
Novel 
Novel 
Polyamine biosynthesis 
Response to oxidative stress 
Growth factor 
DNA binding 
DNA binding 
Unknown 
Unknown 
Protein binding 
Oxidoreductase activity 
Novel 
Unknown 
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Table 4: (Continued). 

Gene Name Accession No. Fold change Function 
 

Homo sapiens chromosome 5 clone RP11-425E13 
Homo sapiens nucleoplasmin 2 variant 2 (NPM2) 
Bos taurus arachidonate 15-lipoxygenase (ALOX15) 
Sus scrofa mRNA for destrin (DSTN) 
Bos taurus urokinase-type plasminogen activator (PLAU) 
 
 

 
AC114318 
AY262114 
NM_174501 
D90053 
L03546 

 

 
0.38 
0.38 
0.36 
0.35 
0.30 

 

 
Unknown 
Chromatin remodeling 
Carbohydrate metabolism 
Cytokinesis 
Signal transduction 
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4.2 Validation of differentially gene expression   

 

For confirming the results of microarray, two approaches were used. The first is is 

quantitative real-time PCR (qPCR) where a total of 15 selected genes (AKR1B1, ANXA2, 

ATP5A1, CD9, COX-2, EEF1A1, HNRPA1, KRT8, MSX1, ODC1, PLAC8, PLAU, 

PTTG1, TNF, TXN), are quantified in independent biopsy samples from the three groups 

(Figure 15 A, B and C). The primer sequences for these genes are mentioned in table 2. In 

general the quantitative real time PCR confirmed the expression of 87% (13/15) of the 

genes generated from the array hybridization, while the expression profiles of 3% (2/15) 

(ANXA2 and ATP5A1) were not in agreement with the microarray results The second is in 

silico analysis to check relevant expression profile data for that particular gene from 

literature and data bank. The results of four genes were confirmed. These includes the 

caudal-related homeobox protein (CDX2) which is crucial for placental development (Hall 

et al. 2005), phosphoglycerate kinase (PGK1) showing overexpression as a result of high 

glucose level (Mohan et al. 2002), polyubiquitin which is involved in programmed cell 

death (PCD) (Herskko and Ciechanover 1998) and Protease serine 23 (PRSS23) gene 

whose its specific function is unknown (Gene data Bank).  
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Figures 15A to C: Quantitative real time PCR confirmation of selected transcripts between 

biopsies derived from blastocysts resulting in no pregnancy versus calf delivery (A) and 

resorbed embryos versus calf delivery (B) and those resulting in no pregnancy and resorbed 

embryos versus calf delivery (C). 
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As shown in the above figures, confirmation analysis using real time PCR for 5 genes 

namely: PTTG, EEF1A1, TNFα and CD9 has shown that the transcripts were 3.9, 3.2, 1.2 

and 2.2 fold high expressed in G1 group respectively compared to those G3 group. 

Interestingly, MSX1 was not detected at all in the G3 group (Figure 15A). Similar analyse 

for four genes COX2, PLAC8, PLAU and ODC1 have confirmed 9.6, 26.1, 4.3 and 3.1 

times respectively more expression in the G3 group compared to G2 group (Figure 15B). 

Further confirmation of genes which were differentially regulated between both 

experiments showed that AKR1B1 gene was 28 and 2.1 fold more abundant in G1 and G2 

group respectively. On contrary TXN gene was abundant at 19.2 and 3.3 fold in G3 and G1 

group respectively compared to G2. The same trend was observed for HNRNP gene which 

was at 2.7 and 2.1 fold more abundant in G3 and G1 respectively compared to G2. Finally 

KRT8 has shown expression of 3 and 2 fold change in G2 and G3 group, respectively 

compared to the G1 (Figure 15C).  

 

4.2.1 Comparison of expression levels obtained from microarray experiment and real time 

PCR 

 

Overall the differential expression detected by the two methods was comparable (Figure 16 

and 17). However among the differentially expressed genes confirmed by real-time PCR 

some genes showed notable expression difference between the two methods (AR, TRX, 

PLAC 8 and COX2).  
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Figure 16: Comparison between results obtained by microarray and real time PCR for the 

first experiment (Calf delivery vs. no pregnancy). 
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Figure 17: Comparison between results obtained by microarray and real time PCR for the 

second experiment (Calf delivery vs. resorption). 
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4.3 Immunohistochemical localization of MSX1 

 

In order to further investigate some candidate genes at the protein level, MSX1 gene was 

selected. It has been shown that this gene is up regulated in the biopsies derived from 

blastocysts resulting in no pregnancy compared to those resulting in calf delivery (Table 3). 

Moreover the result obtained from real time PCR showed that this gene is not expressed in 

the biopsies leading to calf delivery (Figure 15 A). For this, immunohistochemistry was 

used localize the expression of MSX1 protein in in-vitro produced bovine embryos. MSX1 

was found to be distributed in fine discrete granulae uniformly in the cytoplasm of 

immature oocytes (a). Staining was distributed at the periphery of the cytoplasm of matured 

oocytes (b). In zygote stage embryo (c), MSX1 was predominantly in the cytoplasm and the 

staining was most intensive towards the nucleus. Throughout the preimplantation period 

(2C, 4C, 8C, 16C and morula) the staining was apparently more concentrated around the 

nuclei, whereas the ICM in blastocyst (i) showed weaker labelling for MSX1 than the 

trophectoderm (Figure 18) 
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Figure 18: Subcellular localization of MSX1 protein in bovine oocytes and in preimplantation embryos [immature oocytes (a), 

matured oocytes (b), zygote (c), 2-cell (d), 4-cell (e), 8-cell (f), 16-cell (g), morula (h) and blastocyst (i) stages]. Control 

(j) was stained without primary anti-MSX1 antibody. Red arrows indicate concentrated localization of MSX1 protein. 

The figure is representative of 8-10 oocytes or embryos stained from each developmental stage. Nuclei are stained by 

propidium iodide (red). Scale bars represent 20 µm. 
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5 Discussion  

 

The major reproductive waste in farm animals is early embryo loss, i.e. the anomalous 

development of embryos and/or an aberration of placentation (Cross et al. 1994). Precise 

knowledge of gene expression profile during preimplantation will enable to get insight into 

the molecular mechanisms controlling early embryonic survival and contribute to the effort 

aiming to improve the ever declining fertility in cattle (Lazzari et al. 2002, Lonergan et al. 

2003, Farin et al. 2004, Wrenzycki et al. 2005). In the present study we have compared the 

transcriptional profile of blastocyst biopsies related to the fate of the embryo after transfer 

resulting in either no pregnancy, resorption or calf delivery. The study was performed using 

biopsies after blastocyst splitting, which is a unique possibility to eliminate genetic 

variability as a factor potentially affecting the results of gene expression analysis (Klein et 

al. 2006). The results showed that 46 genes were up-regulated in blastocysts resulted in no 

pregnancy, while 6 genes were down-regulated when compared with calf delivery (G1 vs. 

G3). In the second experiment (G2 vs. G3), 37 and 21 genes were up- and down-regulated, 

respectively, in blastocysts resulted in resorption when compared with blastocyst resulted 

in calf delivery.  

We selected genes related to embryo death or survival to interpret comprehensive genes 

expression, because previous data had revealed their importance in early embryo 

development. 

 

5.1 Genes highly abundant in blastocysts resulted in no pregnancy (G1) 

 

Tumor necrosis factor TNF (inflammatory cytokine) which is known to be involved in fetal 

resorption or embryo loss (Silen et al. 1989, Chaouat et al. 1990, Gendron et al 1990, Sidhu 

and Bollon 1993, Chaouat 1994) is found to be up-regulated in blastocysts biopsy resulted 

in no pregnancy. The pathophysiology of TNF mediated fetal loss remains unclear. 

Elevated TNF restricts ICM proliferation in blastocyst and changes the ratio of 

mononucleated to multinucleated trophoblast cells (Whiteside et al. 2003). Moreover, TNF 

is reported to lead to cell apoptosis through cell-autonomous defects which is one of the 

intra-embryonic causes of death in the preimplantation period in mouse because of making 
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it unable to carry out specific housekeeping functions (Copp 1995, Lozano et al. 2001). 

These findings suggest a mechanism by which increased expression of TNF during 

trophoblast differentiation may be detrimental to pregnancy. It is important to recognize 

that low levels of TNF may be required for normal fetal and placental development, while 

elevated levels that occur in pathological settings, e.g., tissue damage or infection, may 

contribute to fetal defects. Further studies are needed to clarify the compartmentalization 

and role of this cytokine in both normal and abnormal gestation (Silver 1994). The ability 

to resist TNF depends on the de novo induction of specific gene products which can be 

induced by TNF (Gordon et al. 1992). In the present study some genes which are related to 

TNF have also been found to be differentially regulated including elongation factor 1 a1 

(EF1A1)  

 

EF1A1 is a part of elongation factor-1 complex which includes EF-1ß and EF-1γ and 

promotes GTP-dependent binding of aminoacyl-tRNAs to ribosomes during peptide 

elongation (Tatsuka et al. 1992). This gene showed a strong expression in the bovine 

immature oocyte (El-Halawany et al. 2004). As EF1A1 is a component of protein 

translation apparatus, therefore, its high expression level at immature oocyte is consistent 

with the fact that the oocyte shows a high rate of transcription and translation resulting in 

formation of RNAs and protein used for immediate oocyte growth and for storage (Fair et 

al. 1997). This gene has been shown to be upregulated in tumor cells (Gordon et al. 1992, 

Starkey and Levy 1995). Our result may provide an explanation for the selective anti-

apoptotic advantage of the elevated levels of EF1a1 observed during tumor (Grant et al. 

1992, Scheuner et al. 2001), where this gene is found to be up-regulated in blastocysts 

biopsy resulted in no pregnancy compared to calf delivery group. On contrary to our result, 

the analysis of the expression patterns of EF1A1 in bovine embryos demonstrated a 

dramatic decrease of this gene in bad quality in vitro embryos compared to good qualities 

in vitro and in vivo produced embryos (El-Halawany et al. 2004). Most of the studies of the 

role of EF1A1 in mammals have been in adult or postimplantation period. Accordingly, the 

EF1A1 protein level was found to be high in 18-day mouse embryo but gradually declined 

with postnatal age (Khalyfa et al. 2001). A decrease in EF1A1 mRNA level was also 

observed from fetal (20-day old) to adult rat brain (Lee et al. 1992). The agreement and 
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contrary of the expression pattern of this gene between the present study and in the 

previous studies could predict different roles in bovine preimplantation development which 

need further investigation.  

 

The bovine MSX1 (formerly Hox-7.1) was found to be upregulated in biopsies derived 

from blastocysts resulting in no pregnancy by 2.4 fold compared to those resulting in calf 

delivery. Our result is in accordance with the resulted obtained by Pavlova et al. (1994) 

who have reported that MSX1 is expressed at high levels in uterine epithelial cells of non 

pregnant mice, and these cells undergo pronounced changes in morphology in response to 

embryo implantation and show a concomitant decrease in MSX1 levels. Furthermore 

MSX1 was found to be expressed at sites where cellular proliferation and programmed cell 

death occur suggesting its participation in programmed cell death (PCD) (Marazzi et al. 

1997, Tribulo et al. 2004). This transcript is detected in several developing organs in 

vertebrates, including the facial primordia, particularly at the sites where epithelial–

mesenchymal interactions occur during organogenesis (Liu et al. 2004). Overexpression of 

MSX1 suppressed cell growth and cell cycle progression in human ovarian cancer cell line 

as found by Park et al. (2001). So far no reports are available on the role of MSX1 in 

mammalian preimplantation development. Our immunohistochemistry results suggest the 

potential involvement of this protein in bovine embryogenesis. Further investigation will be 

necessary to identify the regulatory mechanism of this gene in bovine preimplantation 

embryo.  

 

Pituitary tumor transforming gene (PTTG1), is a novel oncogene whil is expressed at low 

level in normal human adult and fetal tissues (Zhang et al. 1999) and abundantly in most 

tumors, including those of the pituitary (Yu and Melmed 2001), ovary and testis (Puri et al. 

2001), kidney, liver and endometrial tissue (Kakar 1998). PTTG1 mRNA is found to be 

expressed in a stage-specific manner in spermatocytes and spermatides during rat 

spermatogenesis (Pei 1999). PTTG1 is important for maintaining chromosome stability, 

cell cycle progression, and appropriate cell division as found by Wang et al. (2001) who 

reported that PTTG1 -/- mouse embryo fibroblasts exhibited aberrant cell cycle progression 

with prolonged G2-M phase and binucleated and multinucleated nuclei with increased 
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aneuploidy. Overexpression of PTTG1 induces cellular transformation and promotes tumor 

formation in nude mice and stimulates expression of the Bax gene which induces apoptosis 

in a human embryonic kidney cell line (Hamid and Kakar 2004). In accordance with this, 

PTTG1 was found to be up-regulated in embryos resulting in no pregnancy by nearly 4 fold 

change compared to those resulted in calf delivery.  

 

CD9 gene which expressed in blastocysts and endometrium epithelial cells in man and in 

bovines (Xang and Maclaren 2002) was found to play a role in inhibiting embryo 

implantation (Liu et al. 2006). This is in agreement with our results showing the up- 

regulation of CD9 in biopsies derived from blastocyst resulting in no pregnancy. Given the 

fact of striking similarities between embryogenesis and biology of cancer cells, especially 

in the process of invasion, CD9 might be involved in embryo invasive behaviours (Liu et 

al. 2006). The glycoprotein CD9 is a widely expressed member of the transmembrane-4-

superfamily (TM4SF; also called tetraspanians) as found by Maecker et al. (1997). Several 

TM4SF members, including CD9, CD81, CD82 and CD63 are involved in cell proliferation 

and differentiation, adhesion, motility and cancer. CD9 is considered to be critical in 

fertilization, because CD9 null mice showed complete sterility due to the deficiency in egg-

sperm fusion (Kaji et al. 2000, Miyado et al. 2000). 

 

5.2 Genes up-regulated in biopsies of blastocysts resulting in no pregnancy (G1) and 

resorption (G2) compared to calf delivery (G3) 

 

The aldose reductase (AKR1B1) gene which is known for its 20α-Hydroxysteriod 

dehydrogenase activity was found to be up-regulated in both biopsies derived from 

blastocysts resulting in no pregnancy and resorption. The aldose reductase gene was found 

to be strongly expressed in the endometrium at the time of luteolysis in bovine (Madore et 

al. 2003), suggesting its potential involvement in pregnancy failure. The enzyme of this 

gene is known to have two different activities namely; metabolising progesterone, which is 

found to be important to implantation (Jurisicova and Acton 2004) and synthesizing PGF2α 

and subsequently terminating pregnancy. Aldose reductase is also known to cause 

apoptosis in some type of cells like cardiomyocyte being induced by sorbitol as a response 



Discussion 
 

84

to hyperosmotic pressure (Galvez et al. 2003). On contrary high glucose in culture media 

could lead to up-regulation of aldose reductase and subsequent accumulation of sorbitol in 

cytoplasm and activate apoptotic pathways (Wirtu et al. 2004). This hypothesis is in 

agreement with the result reported by Pampfer et al. (1997) that nuclear fragmentation in 

rat blastocysts exposed to high glucose and TNF  

 

Phosphoglycerate kinase (PGK1), a key enzyme in glycolysis and encoded from the X 

chromosome is found to be upregulated in G1 and G2 biopsies compared to the G3 group. 

High level glucose concentration which triggers apoptosis during preimplantation in murine 

embryos (Riley et al. 2004) has led to the overexpression of this gene (Mohan et al. 2002). 

This is in accordance with what was found by Pampfer et al. (1997) who reported that 

exposure of embryo to high glucose level lead to nuclear fragmentation in blastocyst as 

mentioned above. 

 

 

Figure 19: Pathways of glucose metabolism and related factors influencing embryonic 

development (Wirtu et al. 2003). 
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Figure 20: Nuclear fragmentation in blastocysts exposed to high glucose and TNF 

                 (Pampfer et al. 1997) 

 

One of the genes showing unclear trend is cytokeratin A 8 (KRT8). This gene had shown 

high expression in biopsies resulting in resorption compared to those ended with calf 

delivery. On the other hand it showed low expression in biopsies derived from blastocysts 

resulting in no pregnancy compared to calf delivery one. This gene belongs to the 

cytokeratins which constitute the main group of intermediate filaments. They assemble as 

many as 30 different proteins (Moll et al. 1982). It has been shown that the expression of 

different cytokeratin polypeptides changes in many vertebrates during development, 

adulthood, regeneration and hyper-proliferation, suggesting that each one plays a distinct 

role in cell life (Kallionen et al. 1995). Cytokeratin 8 is the early and fundamental keratin 

expressed together with keratin 18 during development of many vertebrates (Jackson et al. 

1980, 1981), and the main keratin present in hyperproliferative human cells (Moll et al. 

1982). Cytokeratin 8 plays a fundamental role in natural morphogenetic movement such as 

gastrulation (Torpey et al. 1992). Neverthless there is evidence that in some vertebrates 

such as in mice, a genetic deficiency of cytokeratin 8 allows a perfect gastrulation, but 

leads to high lethality at the neonatal stage (Brock et al. 1996). It is also known that 

cytokeratin 8 deficient mice develop a severe disease of the gastrointestinal tract mainly 

characterised by colorectal hyperplasia and inflammation (Loranger et al. 1997).  
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Similarly in the present study, the polyubiquitin gene which has been shown to be 

upregulated in tumor cells (Llovera et al. 1994), was found to be up-regulated in both, the 

biopsies resulting in no pregnancy and those ending in resorption compared to those 

derived from blastocysts resulting in calf delivery. During development, a large number of 

cells die in a predicted spatial and temporal of programmed cell death (PCD), or apoptosis. 

This process is crucial for differentiation and involves programmed regulation of gene 

expression. One of the first genes known to be involved in PCD is the polyubiquitin gene 

that is up-regulated during the metamorphosis of the hawk moth (Herskko and Ciechanover 

1998). In the same study it has been shown that the ubiquitin system is implicated in the 

immune response, development and PCD. Abnormalities in ubiquitin-mediated processes 

have been shown to cause pathological conditions, including malignant transformation. 

Interestingly, it has been found that elevated concentration of TNF triggers the enhanced 

the expression of ubiquitin gene as found by Costelli et al. (1993) and Garcia-Martinez et 

al. (1993).  

 

Protease serine 23 (PRSS23) gene transcription was upregulated 4.7 and 5 fold change in 

G1 and G2 respectively compared to G3 group. This gene encodes a member of the trypsin 

family of serine proteases which are the largest class of mammalian proteases; many of 

these enzymes exert their reaction on matrix degradation (Salamonsen 1999). Even 

Protease serine 23 belongs to this family but its specific function is still unknown as 

reported by NCBI (http://www.ncbi.nlm.nih.gov/entrez/). 

 

5.3 Genes up-regulated in biopsies from blastocysts resulting in calf delivery (G3) 

compared to resorption (G2) 

 

Prostaglandins (PGs) which are involved in the process of blastocyst implantation 

(Psychoyos et al. 1995, Lim et al. 1997) by increasing endometrial vascular permeability 

and subsequent decidualization (Kennedy 1994), are known to be produced by both the 

endometrium and the blastocyst, where the former is thought to be the major source of the 

prostaglandins involved in implantation (Snabes and Harper 1984, Wang et al. 2002, Huang 

et al. 2004). PGs produced by embryos may be involved in other functions during the 
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preimplantation period such as modulation of the endometrial implantation site (Wakuda et 

al. 1999). This may support our findings in which higher cyclooxygenase-2 (COX-2) which 

converts arachidonic acid into prostaglandins was detected in biopsies derived from 

blastocysts resulting in successful pregnancy and calf delivery. COX-2 deficiencies in mice 

showed multiple female reproductive failures, including implantation defects (Lim et al. 

1997) 

Study by Charpigny et al. (1997) showed that COX-2 protein was localized in trophoblast 

cells than in the inner cell mass. This may suggest that this gene is necessary for the 

elongation process that is the result of an intense proliferation of trophoblastic cells and 

subsequent implantation (Psychoyos et al. 1995). Moreover, higher expression of COX-2 

during the time of the implantation window suggested an important role for the 

prostaglandins released by the embryo in mediating interactions with the uterus (Charpigny 

et al. 1997, Wang et al. 2002). 

 

                                  

Figure 21: Cox-2 immunodetection in 10-17 days old ovine embryos (Charpigny et al. 

1997). 

In addition to the time of implantation, the expression of COX-2 was studied in 

preimplantation periods of various species. In bovine embryos, COX-2 expression appears 

transient and is associated with the first cleavages, since a decrease in the concentration 

occurs at the morula stage (Gurevich and Shemesh 1994). Similar study in mouse embryos 

found that COX-2 was at a low level at the zygote stage and was maintained at a high level 

from 2-cell to blastocyst stage (Tan et al. 2005).  
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The homeobox-containing gene family plays a pivotal role in regulating, patterning and 

axial morphogenesis in the developing embryo. The caudal-related homeobox protein 

CDX2 is a transcriptional regulator essential for trophoblast lineage, functioning as early as 

implantation. The CDX2 gene is the earliest trophoblast-specific transcription factor 

reported to date (Roberts et al. 2004, Tolkunova et al. 2006). CDX2 is required for proper 

trophectoderm in mice (Strumpf et al. 2005). At the blastocyst stage, CDX2 mRNA was 

confined to trophectoderm (TE) and absent from inner cell mass (ICM) cells in mouse 

embryos (Deb et al. 2006). An earlier gene targeting approach has demonstrated that CDX2 

null embryos fail to implant, suggestive of a major defect in TE development 

(Chawengsaksophak et al. 1997, Rossant 2001). The same authors show that the 

implantation failure was due to a loss of TE epithelial integrity and/or increased incidence 

of apoptosis in TE cells. Therefore, CDX2 is one of the genes crucial for placental 

development, by which its aberrations in embryo can result in implantation or placental 

defect (Hall et al. 2005). Similarly, CDX2 was found at higher level in biopsies derived 

from blastocysts resulting in calf delivery (G3) compared to those ended with resorption.  

 

Ornithine decarboxylase (ODC1), an enzyme which converts ornithine to putrescine, plays 

an important role in diverse biological processes, including cell growth, differentiation, 

transformation and apoptosis (Pendeville et al. 2001). In the present study ODC1 gene 

product was found to be lower in biopsies from blastocysts resulting in resorption 

compared to those resulting in calf delivery. This result in complete agreement with what 

was found by Pendeville et al. (2001) who have shown that mice embryos lacking ODC1 

develop normally to the blastocyst stage and implant but die shortly thereafter, before the 

onset of gastrulation. Also it has been found that scheduled administration of 

difluoromethylornithine DFMO (a potent inhibitor of ODC1) during pregnancy in mice 

induces resorption of embryos when introduced at gestational days 7 and 8 (Fozard et al. 

1980). This means that eliminating ODC1 function by gene targeting compromises early 

mouse embryonic development (Pendeville et al. 2001). These studies together with our 

result lead us to speculate that this gene plays an important role during pregnancy 

establishment. 
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The Plasminogen activators (PAs) are serine proteases which convert the inactive 

plasminogen to the active protease plasmin (Aflalo et al. 2004). PAs are thought to play a 

role in regulating extracellular proteolysis associated with gametogenesis, fertilization, and 

early embryonic development (Strickland et al. 1976). Plasminogen and its activators and 

inhibitors participate in the implantation process in human (Khamsi et al. 1996) and in rat 

(Aflalo et al. 2004). Plasminogen activators (PLAU) was found to be localized in mouse 

ovary and implanting embryo (Sappino et al. 1989). The activity of PLAU was lowest in 

two-cell-stage rat embryos and increased as embryos developed into blastocysts (Harvey et 

al. 1995, Aflalo et al. 2004). This gene provides trophoblast cells with an efficient 

mechanism to trigger the localized production of plasmin; a protease that can catalyze the 

degradation of all components of the extracellular matrix, such as is needed for endometrial 

disruption accompanying implantation and early growth of the embryo (Sappino et al. 

1989). In our study we found that PLAU was up-regulated in biopsies derived from 

blastocysts resulting in calf delivery by more than 4 fold compared to those biopsies from 

blastocysts ended with resorption. This in accordance with other studies in mouse and rat 

(Sappino et al. 1989, Harvey et al. 1995, Aflalo et al. 2004) and cow (Whiteside et al. 2001) 

which have shown the involvement and importance of PLAU in implantation, particularly 

in the invasion process, where the reduction of this gene is associated with implantation 

failure in mice (Axelrod 1985). It has been reported that mouse blastocyst and trophoblast 

produce PAs activity at a time that corresponds to the period of trophoblastic invasiveness 

(Strickland et al. 1976). These findings support the assumption that blastocyst PLAU 

activity is important for proper implantation and subsequent pregnancy establishment.  

 

Plac8 gene which is known as invasion-specific gene was found to be up-regulated in 

blastocysts resulting in calf delivery by more than 26-fold compared to those resulting in 

resorption. Similar studies in bovine have reported that Plac8 is highly expressed in 

endometrium of pregnant cows compare to non-pregnant ones (Galaviz-Hernandez et al. 

2003, Klein et al. 2006), suggesting its potential role in placenta development and fetus 

maternal interface. This gene has shown a ratio of 15-fold change in placenta to embryo in 

microarray assays (Tanaka et al. 2000). 
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5.4 Genes up-regulated in biopsies derived from blastocysts resulting in calf delivery (G3) 

compared to no pregnancy (G1) and resorption (G2) 

 

Thioredoxin (TXN) is a ubiquitous protein disulfide reductase, and known to be involved in 

the implantation of mouse embryos (Bing et al. 2003). Moreover, it was found to be a 

response to oxidative stress to protect the in vitro embryo development in bovine (Bing et 

al. 2003) and mouse (Nonogaki et al. 1991). TXN is believed to be early pregnancy factor 

(EPF) (Cavanagh and Morton 1994), as it is expressed in the preimplantation embryo 

(Clarke 1997). Others suggest that TXN is part of the components that are required for the 

expression of EPF (Di Trapani et al. 1997).  

 

The heterogeneous nuclear RNA-binding proteins (HNRNP) constitute a family of over 20 

proteins (Dreyfuss et al. 1993). The RNP proteins are thought to be involved in the 

processing reactions required to generate mature mRNA and they also play an important 

role in export of mRNA from nucleus (Michael et al. 1995). The association of hnRNP 

proteins with RNA begins as the nascent pre-mRNA emerges from the RNA polymerase II 

transcription machinery and remains through processing and export of mRNA (Dreyfuss et 

al. 1993). In particular HNRPA1, one of the most abundant nuclear proteins, revealed a 

number of properties that suggest its involvement in many aspects of RNA metabolism 

(Weighardt et al. 1995). In our study HNRPA1 gene was abundant at 2.7 and fold more in 

biopsies resulting in calf delivery compared to those resulting in resorption. Previous study 

in our lab (El-Halawany et al. 2004) which employed a quantitative real-time PCR to 

profile the HNRNP1 gene in bovine pre-implantation embryos showed that the highest 

expression is at the 2-cell stage and further down regulated until morula stage with a slight 

increase at blastocyst stage. Vautier et al. (2001) reported that following transcription 

activation of one-cell mouse embryos HNRPA1 protein concentrates in the pro-nuclei, 

making use of carrier-mediated transport pathway suggesting that HNRPA1 transport 

appears to be coupled to transcription dependent modification of the protein.  
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5.5 Comparison of expression levels obtained from microarray experiment and real time 

PCR 

 

Overall the differential expression detected by the two methods was comparable (Figure 14 

and 15). However among the differentially expressed genes confirmed by real-time PCR 

some genes showed notable differences of expression between the two methods (AKR1B1, 

TXN, PLAC8 and COX-2), as it has been reported by other investigators (Rajeevan et al. 

2001). This may be due to the fact that array results can be influenced by each step of the 

complex assay, from array manufacturing to sample preparation. Furthermore, the mode of 

background subtraction and normalisation of the raw data could result in normalized values 

that are too low or too high (Rajeevan et al. 2001, Bauersachs et al. 2004). 

 

In conclusion, we have identified genes with recognized and potential roles in pregnancy 

and genes whose functions yet need to be defined in this event. Several of these genes have 

been implicated in previous reports as being associated with embryo loss or survival during 

preimplantation period. Factors discussed in this study may be explained individually, but 

the simultaneous expression and interactions of these molecules may be important for 

elucidating how embryo death occurres and subsequently embryo loss. The identification of 

unique genetic markers for the onset of pregnancy signifies that genome-wide analysis 

coupled with functional assays is a promising approach to resolve the molecular pathways 

required for successful pregnancy. Normalizing the expression patterns of these genes may 

improve full term survivability of IVP cattle embryos. Future research to optimize 

establishment and maintenance of pregnancy in cattle should focus on cross-talk between 

the endometrial cells and conceptus and improve placentation to ultimately result in 

successful pregnancy past the embryonic period, when pregnancy loss is likely to occur. 
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6 Summary 

 

The present study was carried out, (i) to compare transcriptional activity of embryo 

biopsies derived from blastocysts resulting in different pregnancy phenotypes after transfer 

to recipients, (ii) to identify differentially regulated genes between three biopsy groups and 

(iii) to do further functional analysis for the selected candidate gene at protein level. 

For microarray experiments, biopsies (30-40% of the intact embryo) containing both inner 

cell mass and trophectoderm cells were taken from IVP day 7 blastocysts (n=118) and 60-

70% part were transferred to recipients after re-expansion. Based on the success of 

pregnancy, biopsies were pooled in three groups, namely; those resulting in no pregnancy 

(G1), in resorption (G2) as in calf delivery (G3). Transcriptional analysis of these groups of 

biopsies (with three biological and three technical replicates for each group) was performed 

using two different cDNA arrays. The first is BlueChip cDNA array which contained 4928 

spots in two sub-arrays per slide. Each sub-array is composed of 2304 randomly selected 

clones obtained from four different suppression substractive hybridizations (SSH). First 

SSH: GV oocytes subtracted from somatic tissues, second SSH: GV oocytes subtracted 

from Day-8 blastocyst, third SSH: Day-8 blastocyst subtracted from GV oocytes and fourth 

SSH: Day-8 blastocyst subtracted from somatic tissues. 

The second array is a home-made bovine preimplantation specific custom cDNA array (219 

clones). The majority of the clones is generated from different developmental stages of 

bovine preimplantation embryos using stage specific cDNA library construction, 

differential display and suppressive substractive hybridisation. In addition to these, some 

specific clones that are known to be expressed during embryo pre-implantation 

development were also amplified with gene specific primers and included in the array. The 

genes in this array have been classified based on the available information for the bovine, 

human and mouse species in the gene data bank. Therefore, they were classified 

functionally into 20 major categories. The majority of the known genes was comprised of 

genes in protein binding, transcription factor activity, DNA and nucleotide binding, 

transporters activity and ion binding categories. About 15.9 % of the genes and ESTs have 

not been classified yet for their function either in the bovine or other species.  
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For array hybridization, approximately 3µg of amplified RNA from pools of biopsies (each 

10 biopsies) was used as a template in reverse transcription reactions incorporating amino-

modified dUTPs into cDNA using CyScribeTM post-labelling kit (Amersham Bioscience, 

Freiburg, Germany). The synthesized cDNAs from the G1, G2 and G3 group were 

differentially labelled using N-hydroxysuccinate-derived Cy3 and Cy5 dyes. Slides were 

scanned by a GenePix 4000B scanner and images were analysed using GenePix Pro 

Version 4.0 software. Data were normalized and finally analysed to obtain the differentially 

expressed genes. The above experiments were then repeated with reverse-labelled cDNA 

samples as dye-swaps.  

A cDNA array analysis between G1 and G3 biopsy groups revealed that a total of 46 and 6 

clones were up- and down-regulated, respectively in G1 group compared with G3 (41 from 

BlueChip and 11 from home made array) (1.5 ≤ fold change ≤ 4.7). These differentially 

regulated genes represent genes with known function (77%), ESTs (11.5%) and novel 

transcripts (11.5%). The genes with known function include those which are involved in 

protein binding (25%), protein biosynthesis (15%), metabolism (12.5%), transcription 

(5%), calcium binding (5%) and those with other function (37.5%). On the other hand a 

comparison between G2 and G3 groups of biopsies showed that 37 and 21 clones were up-

and down-regulated, respectively, in G2 compared with G3 (44 from BlueChip and 14 from 

home made array) (1.6 ≤ fold change ≤ 6). These differentially regulated genes represent 

those transcripts with known function (79%), ESTs (5%) and novel transcripts (16%) 

Genes with known function include those genes involved in protein binding (20%), protein 

biosynthesis (20%), metabolism (13%), transcription (9%), growth factor (5%) and those 

with other function (34%).  

All differentially regulated genes were classified based on their functions according to 

criteria of gene ontology consortium classifications. The expression of those unknown and 

novel ESTs showed profiles similar to one or the other of the annotated genes, as 

determined by tree hierarchical clustering analyses. Quantitative real-time PCR was used to 

confirm the results of microarray experiments. A total of 15 selected genes (AKR1B1, 

ANXA2, ATP5A1, CD9, COX-2, EEF1A1, HNRPA1, KRT8, MSX1, ODC1, PLAC8, 

PLAU, PTTG1, TNF, TXN), was quantified in independent biopsy samples from the three 

groups using quantitative real-time PCR (qPCR) to verify the results obtained by array 
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hybridization. In general, the quantitative real-time PCR confirmed the expression of 87% 

(13/15) of the genes generated from the array hybridization while the expression profile of 

3% (2/15) (ANXA2 and ATP5A1) was not in agreement with the microarray results. Four 

genes namely PTTG1, EEF1A1, TNF and CD9 have shown 3.9, 3.2, 1.2 and 2.2 fold more 

abundant, respectively in biopsies resulting in no pregnancy group compared to those 

resulting in calve delivery. Interestingly, MSX1 was not detected at all in the calf delivery 

group. Similarly four genes COX-2, PLAC8, PLAU and ODC1 were found to be 9.6, 26.1, 

4.3 and 3.1 times respectively more abundant in biopsies resulted in calf delivery compared 

to those from blastocysts resulted in resorption. Four transcripts (AKR1B1, TXN, 

HNRPA1 and KRT8) which were found to be differentially regulated in both experiments 

were also validated with real time PCR. The AKR1B1 transcript was found to be abundant 

at 13.6 and 2.1 fold more in biopsies resulting in no pregnancy and resorption, respectively 

compared to calf delivery. On the other hand, TXN transcript was abundant at 19.2 and 3.3 

fold in biopsies derived from blastocysts resulting in calf delivery and no pregnancy 

respectively compared to those ended up in resorption. The same trend was observed for 

HNRPA1 gene which was abundant at 2.7 and 2.1 fold more in biopsies resulting in calf 

delivery and no pregnancy respectively compared to those resulting in resorbed embryos. 

Finally KRT8 has been shown expression of 3 and 2 fold changes in resorption and calf 

delivery groups, respectively compared to the no pregnancy group. Overall the differential 

expression detected by the two methods was comparable. However, among the 

differentially expressed genes confirmed by real-time PCR some genes showed notable 

expression difference between the two methods (AKR1B1, TXN, PLAC 8 and COX-2).  

The transcription factor gene MSX1 transcript was further investigated at the protein level 

using immunohistochemistry throughout preimplantation stage embryos. The protein 

product was found dispersed in the cytoplasm in immature and mature oocytes stages, with 

a reduced fluorescence signal after maturation. Starting from late zygote stage until the 

blastocyst stage the protein is found to be localized around the nucleus. At the blastocyst 

stage, more intensive staining was detected in the trophectoderm cells compared to the 

inner cell mass cells. 

In conclusion, we generated direct candidates of blastocyst specific genes which may play 

an important role in determining the fate of the embryo after transfer. 
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