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Chapter 1

Introduction

1.1 Concepts

This dissertation deals with three important types of insurance: equity-linked life, pension

insurance and (pension) insurance guarantee funds.

Standard life insurance contracts, like a term or endowment insurance, provide either

survival benefits or death benefits or both. In equity-linked products these benefits are

linked to the performance of a portfolio, which is usually set up by the insurance company

and which consists of one or several underlying assets. Accordingly, these products offer the

policyholder the opportunity to participate in the financial markets. Another essential fea-

ture of equity-linked life insurance products is that they are usually equipped with certain

guarantees, which make up a substantial fraction of the life insurer’s liabilities. The two

main guarantee types are the minimum guarantee, where the policyholder is for instance

offered a guaranteed interest rate for his investment, and the surrender guarantee, which

entitles the policyholder to receive a certain cash amount when terminating the insurance

contract. In this dissertation both guarantee types are considered, where a particular em-

phasis is put on the surrender guarantee or surrender option.

A (private) pension insurance contract is a contract between the employee, the policy-

holder, and the employer, the insurer or often also called the sponsoring company. The

two major types of private pension insurance are the Defined Benefit (DB) and the Defined

Contribution (DC) pension plan. In a standard DC plan 1 the contributions are fixed. Con-

tributions are usually paid by both the employee and the employer (monthly or quarterly)

and usually constitute a constant percentage of the employee’s salary. These contributions

are paid to a (external) pension fund, which invests the contributions on behalf of the em-

ployee in financial assets. The pension payment is then determined as the market value

of these backing assets. Accordingly, like in equity-linked life insurance products the ben-

efits also crucially depend on the performance of a financial portfolio, thus on the earned

1We use the term standard in order to distinguish between those pension plans with hybrid features,
which also exist in practice.

1



2 Introduction

investment returns. However, the main difference is that the benefits further particularly

depend on the evolution of the salary of the insured. In a standard DB pension plan the

benefits are predefined, or more precisely the formula which specifies the benefits is known

in advance. This formula mainly takes the years of service, age and the salary of the em-

ployee into account. As in DC plans a (external) pension fund is set up to manage the

pension obligations. The main difference to the DC plan is that the contributions provided

to the pension fund are variable 2 and that only the employer earns the surpluses of the

pension assets. That is, unlike equity-linked life insurance products and DC pension plans

the benefits of the employees in the DB plan are not directly linked to the performance of

a financial portfolio. Althogh the pension payments differ, the DB and the DC plan have

in common that the employee’s salary is the main determinant of the benefits.

The main objective of an insurance regulator is to protect policyholders by ensuring

that promised benefits are paid to the latter, particularly in the case when the insurer is

in financial distress or insolvent. Similar to the banking industry, where depositors are

additionally protected by a deposit insurance, insurance guarantee funds have been set up

as a protection vehicle in many countries as well for the life and nonlife insurance field. 3

Insurance companies are often obliged to enter into these government-imposed protection

schemes. From the policyholder’s perspective insurance guarantee funds can be considered

as a reinsurance. Specifically, the insurance companies (the employer in case of a pension in-

surance) pay premiums to the insurance guarantee funds, which invest the premiums under

certain regulatory rules. If the insurance company is not able to pay the promised benefits

either due to financial distress or insolvency the insurance guarantee fund steps in, takes

the residual assets of the insurance company and provides the payments of the benefits up

to certain limits.4 In this thesis we consider a pension guarantee fund for private DB pen-

sion plans. The essential difference to other insurance guarantee funds is that the pension

guarantee fund only pays benefits if both the pension fund and the sponsoring company are

in financial distress.

1.2 Methodology

The term financial analysis encompasses in this dissertation the pricing of financial guaran-

tees in insurance, the (constrained) expected utility optimization and the expected utility

comparison.

In chapter 2 and chapter 3 we consider the corresponding insurance contracts as con-

2In private sector DB plans the contributions are mainly made by the employer and are often deficit
contributions, which means that the employer provides payments to the pension fund if the market value
of pension assets falls below the pension liabilities.

3For a detailled list of such insurance guarantee funds confer to Schmeisser and Wagner (2013).
4The benefit payments are usually capped, see for instance chapter 3



1.2. METHODOLOGY 3

tingent claims and apply option pricing techniques in a specific stochastic financial market

model to determine the market consistent value of the insurance contracts. For the equity-

linked life insurance contract we particularly extract the market consistent values of the

different guarantees, focussing on the surrender option value. An accurate pricing or mar-

ket consistent valuation of such guarantees is of paramount importance for any life insurance

company, not only for risk management, but also for regulatory purposes. For example in

Europe the new regulatory regime Solvency II requires insurers to disclose the market val-

ues of their guarantees on the liability side of their balance sheets. In particular, studying

surrender more closely is important since for instance European Union regulators have iden-

tified surrender risk as the main risk driver for life insurance companies after the interest

rate risk. In fact, the recent Quantitative Impact Study (QIS 5) showed that surrender

risk is the most important risk among life underwriting risks, see EIOPA (2011). For the

pension guarantee fund insurance the market consistent value of the insurance contract is

interpreted as the fair initial premium sponsoring companies should pay to the guarantee

fund for providing the pension insurance. The premium is particularly risk-based since it

takes both pension fund and sponsor risk into account. Consequently, such a premium does

not give pension funds and sponsoring companies adverse incentives to introduce risk into

the pension system. Another mechanism, which protects employees in DB plans, is that the

pension guarantee fund can itself prematurely terminate underfunded DB plans. We study

this mechanism in chapter 4 by applying a different methodology. We compute critical

funding ratios under which the pension guarantee fund prematurely terminates the insured

underfunded DB plan in a constrained expected utility optimization model. In chapter 5 we

study the underlying DB contract more closely and compare it to the DC pension contract.

As in the previous chapter, we assume that the policyholder has certain preferences and

that he can choose between a DB and a DC pension plan. The policyholder faces a tradeoff

between different types of risk, which are (more) present in one type of the pension plan

than in the other. Finally, we compare the pension plans by comparing the expected utility

the policyholder can achieve in either pension plan at the retirement date.

More specifically, in chapter 2 we closely study the valuation of a stylized equity-linked

life insurance contract with a surrender guarantee. In order to obtain accurate market con-

sistent values for such a contract one has to specify a model that adequately captures the

dynamics of the financial portfolio and that models the surrender behavior of the policy-

holder in a realistic manner. The second requirement is not compatible with the standard

assumption of a rational agent in the financial literature. In our context this is a policy-

holder who behaves monetary optimal in terms of only surrendering the contract when it

is financially optimal to do so. A large body of the behavioral economics literature rejects

this assumption. More importantly, the empirical literature in the life insurance field shows

that policyholders surrender due to both exogenous and endogenous reasons. Exogenous

reasons are mainly personal reasons, often driven by the own financial distress, while en-

dogenous reasons are financial factors which make it monetarily optimal to surrender the

contracts at appropriate moments. We model both exogenous and endogenous surrender in
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an intensity-based approach, where each type of surrender is modeled with a corresponding

surrender intensity. This modeling framework is also referred to as the rational expectation

framework, see e.g De Giovanni (2010). Moreover, an essential feature of (equity-linked)

life insurance products is that they usually have very long maturities. One important con-

sequence is that in the long run economic conditions typically change several times. These

changing economic conditions affect both the dynamics of the financial portfolio, in terms

of the market interest rate and its volatility, and also both the exogenous and endogenous

surrender behavior of the policyholder. To capture this important empirically observable

fact, we introduce a regime-switching model where the different regimes represent different

economic states.

In chapter 3 we develop a risk-based premium calculation model for the insurance pro-

vided by the largest pension guarantee fund, which is managed by the US Pension Benefit

Guarantee Corporation (PBGC). Although our analysis focuses on the american pension

insurance mechanism, the modeling framework can be readily applied to any government-

imposed pension guarantee fund. 5 More importantly, the qualitative results hold for any

insurance guarantee fund in general. One crucial problem most insurance guarantee funds

share is that their premium calculation is not risk-based. Specifically, most insurance guar-

antee funds charge either a flat or a volume-based premium, see chapter 3 and Schmeisser

and Wagner (2013). Such a premium calculation practice is not reasonable from the eco-

nomic perspective since it gives insurers the incentive to invest more riskily in order to

increase the market value of equity. A consequence of this adverse incentive is that less

risky insurers cross subsidize more risky ones. The most severe consequence of such an in-

effective premium calculation is that the insurance guarantee fund’s financial status might

deteriorate and become so poor that it could not provide the required payments to poli-

cyholders if some companies are in financial distress. Our calculation model for a pension

guarantee fund insurance takes account of the pension fund’s and sponsoring companie’s

investment policy and assumes that these are correlated. Moreover, it also takes account

of the fact that the pension guarantee fund has to provide payments only if both the pen-

sion fund and the plan sponsor are in financial distress, therefore we model this insurance

as a residual or secondary guarantee. In addition, our model allows for a further realistic

perspective that the pension fund can be terminated prematurely. Most importantly, this

premature termination is triggered by the poor financial status of the plan sponsor, which is

another realistic perspective since most pension fund terminations in practice are due to the

sponsoring companie’s underfunding. We study our pricing formula both theoretically and

particularly empirically by comparing the risk-based premiums for the largest American

DB plan sponsors.

In chapter 4 we study the other type of termination where an insured underfunded DB

pension plan is closed by the pension guarantee fund. This type of termination is called

5Such pension guarante funds exist for instance in Canada, the U.K., Japan, Germany, Switzerland or
Sweden



1.2. METHODOLOGY 5

involuntary termination. In this chapter we do not primarily focus on the US pension mech-

anism, although the US and Canadian pension guarantee funds serve as good examples for

our analysis. We propose a premature termination rule for a pension guarantee fund to

manage its financial guarantee and to protect policyholders. To this end we determine an

optimal termination ratio for an insured defined benefit (DB) pension plans in terms of

a critical funding ratio under which the pension fund is prematurely closed by the pen-

sion guarantee fund. In our model the guarantee fund pursues a social welfare motive and

acts in the interests of the pension beneficiaries by maximizing their expected utility. To

better manage its financial guarantee and to better protect the policyholders the pension

guarantee fund imposes two constraints for the insured DB plan: a shortfall probability

constraint (SPC) where the guarantee fund defines a maximum one-year shortfall proba-

bility and an expected shortfall constraint (ESC) where the guarantee fund predefines the

maximum one-year expected loss size of underfunded but not terminated DB plans. We

then solve this constrained one-year expected utility maximization problem and study how

the regulatory constraints and particularly the risk aversion of the beneficiaries affect the

optimal intervention rule.

In chapter 5 we compare the DB and the DC pension plan from the policyholder’s

perspective in a continuous time expected utility framework. In this framework we take the

essential tradeoff the policyholder faces when opting for one type of pension retirement plan

into account, that is the tradeoff between salary, asset price (investment risk) and portability

risk. As we described in chapter 1.1 the employee’s salary is the crucial component in

determining the benefits in either retirement plan, thus salary risk is present in both the

DB and DC plan. Moreover, the policyholder only bears investment or asset price risk

in a DC plan since in a DB plan the employee’s benefits are not directly linked to the

investment returns of the pension fund, thus only the employer participates in the surplus

of the pension fund, but also bears the entire investment risk. On the other hand portability

risk, the risk to lose parts of the benefits when changing the employer, is mainly present in

the DB plan because the benefits of the DC plan are determined as the market value of the

backing assets, which are usually transferable from one employer to another. In this chapter

we govern these main risk factors in a model with stochastic wages, stochastic job moving

and stochastic asset prices. We compare the DB and the DC plan by mainly computing

the indifference job switching intensity, that is the intensity which makes the policyholder

equally well off in expected utility terms in both pension plans. From this quantity we

infer the average number of job moves after which a DC pension plan is preferred as an

interesting statistic.



6 Introduction



Chapter 2

Valuation of Equity-Linked Life

Insurance Contracts with Surrender

Guarantees in a Regime-Switching

Rational Expectation Model1

2.1 Introduction

The surrender guarantee is a bonus right, which is included in most equity-linked life insur-

ance contracts. It gives the policyholder the opportunity to receive a certain cash refund

when walking away from the contract. The surrender decision of a policyholder can be

of two types. He can surrender exogenously due to personal reasons or endogenously by

observing that fluctuations in the financial environment make a surrender profitable from

a monetary point of view. Exogenous surrender is mainly explained by the emergency fund

hypothesis conjecturing that personal financial distress, especially unemployment forces the

policyholder to terminate the contract. The interest rate hypothesis, which states that pol-

icyholders lapse their contract to exploit rising market opportunities in terms of gaining

higher interest rates from alternative investments is the main hypothesis accounting for

endogenous surrender.

The valuation approaches of equity-linked life insurance products with surrender guar-

antees differ depending on which type of surrender is incorporated. The purely exogenous

surrender valuation approach by Bacinello (2003), where surrender rates are estimated

from historical lapse data, is at odds with the interest rate hypothesis and the estimated

funds needed to support the contract are too low on average. The most used approach is

the purely financial approach by Grosen and Jorgensen (2000), Bacinello (2005) and others

where the surrender option is modelled as an American style put option and its market value

is obtained by solving an optimal stopping problem. This approach completely neglects ex-

1This chapter is based on Uzelac and Szimayer (2014)

7
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ogenous surrender and it further relies on the unrealistic assumption that policyholders

make optimal surrender decisions. As a consequence the purely financial approach consid-

erably overestimates the funds needed to support the contract. A more realistic valuation

approach is done in the rational expectation framework allowing for both exogenous and

endogenous surrender. This was first applied by Albizzati and Geman (1994) and was more

recently studied by De Giovanni (2010) and Li and Szimayer (2014) in an intensity-based

approach. In particular, the empirical study of Kuo, Tsai and Chen (2003) supports the

rational expectation model as it shows that both the emergency fund hypothesis and the

interest rate hypothesis are significant, the first is statistically more significant while the

second is economically more significant. Consequently, these findings suggest that an accu-

rate pricing model of equity-linked products with surrender guarantees should model both

types of surrender.

Our main contribution is that we refine the rational expectation framework of De Gio-

vanni (2010) and Li and Szimayer (2014) by additionally including a regime-switching

model. In our model both the dynamics of the reference fund as well as exogenous and

endogenous surrender rates are linked to the corresponding economic state. The switch-

ing behavior of the economic states can be attributed to structural changes in the eco-

nomic conditions, changes in business conditions, changes in political situations, the impact

of economic news (financial or macroeconomic) and business cycles. The inclusion of a

regime-switching model is of practical importance as most equity-linked contracts with sur-

render guarantees are relatively long-dated compared with financial products. There can be

substantial fluctuation in economic variables, which affect as well the market value of the

reference fund as both exogenous and endogenous surrender decisions of the policyholders,

over a long period of time. In a numerical illustration, we consider 2 states and interpret

them as the business cycles recession and expansion. The example is further supposed to

show that our model can for instance incorporate both the emergency fund and the inter-

est rate hypothesis. By imposing a higher exogenous surrender rate in the recession state

we can incorporate the emergency fund hypothesis because personal financial distress is

more likely to occur in that state. Combining a procyclical endogenous surrender intensity

with a procyclical risk-free rate we can also incorporate the interest rate hypothesis since the

hypothesis states that endogenous lapse should be higher in states with higher interest rates.

Regime-switching models have become popular in actuarial science in recent years and

are particularly recommended by the American Academy of Actuaries and the Canadian

Institute of Actuaries, see Hardy (2001). The use of regime-switching models for pricing

and hedging long term guarantee products have been popularized by Hardy (2001), who

successfully fitted the model to monthly data from the Standard and Poor’s 500 and the

Toronto Stock Exchange indices using a discrete time regime-switching lognormal model.

Concerning the pricing of equity-linked life insurance products with surrender options, thus

far only Siu (2005) employed a Markov regime-switching model in a Black-Scholes Merton

economy, that is the volatility and the risk-free rate of the reference fund depend on the
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states of the economy, but are constant across states. However he also uses the less realistic

purely financial approach and provides approximate solutions for the free boundary value

problem. This chapter proposes the first valuation model for equity-linked products with

surrender guarantees, which does not only use regime-switches to model the evolution of

the market value of the reference fund, but most importantly, we also model the lapsing

dynamics more realistically by allowing the exogenous and endogenous surrender intensities

to change over time according to the evolution of the economy.

More specifically, we use a Markovian regime-switching model where the economic states

change according to the evolution of a continuous-time observable Markov chain. The refer-

ence fund is modelled as a Markov modulated diffusion process. The market incompleteness

resulting from the nontradability of the regime-switching risk is resolved by specifying a

unique martingale measure with the well-known Esscher transform. To model the surren-

der action of a representative policyholder we follow the intensity-based approach of Li and

Szimayer (2014). We also assume that the surrender intensity is bounded from below and

from above. The lower bound is given by the exogenous surrender intensity and represents

the rate of monetary suboptimal surrender. The upper bound represents the maximal sur-

render rate that is attributed when it is financially optimal to do so and is given by the sum

of the endogenous and exogenous surrender intensity. This way of modeling the surrender

intensity implies that the surrender intensity is a function of the contract value. Unlike

the model of Li and Szimayer (2014) the surrender intensity is regime-dependent in our

model, since both surrender intensities are also modulated by the continuous-time Markov

chain. Moreover, the American style surrender model is included in our setup as a special

case when the exogenous surrender intensity is set to zero and the endogenous surrender

intensity to infinity in either regime. To find the value of the insurance contract in the

corresponding state of the economy we establish a system of two coupled partial differential

equations (PDEs). This PDE system is nonlinear since the surrender intensities need to be

determined simultaneously with the contract values. The solution of this penalty problem

is obtained numerically by combining the Crank-Nicolson scheme with the penalty scheme

of Dai and You (2007) using a generalized Newton search algorithm proposed by Forsyth

and Vetzal (2002).

The rest of the chapter is structured as follows. In the next section we motivate the use

of a regime-switching model, especially for our application in the numerical analysis. In

section 2.3, we describe the model and the contract under consideration. The valuation of

the contract is carried out and theoretical comparative statics results are derived. In section

2.4 we explain the numerical methodology to compute the contract values. In section 2.5 we

study the contract closely through numerical examples. As already mentioned, we assume in

this experiment that the economic states are business cycles. We focus on the computation

of the value of the surrender guarantee and also compare our regime-switching rational

expectation model with the American style surrender model. Section 2.6 concludes.
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2.2 Some Empirical and Economic Motivation

In this section we empirically motivate a regime-switching model for our numerical example

where the two economic states are the business cycles recession and expansion. To this end,

we outline that stock market volatility tends to evolve countercyclically, while the risk free

rate tends to evolve procyclically. In addition, we motivate the emergency fund hypothesis

and the interest rate hypothesis.

Figure 2.1: Monthly 3-month Treasury bill secondary market rates in % from 1950-2010,
recession periods according to the NBER Business Cycle data are highlighted.

To highlight the cyclical behavior of the risk-free rate we use monthly 3-month US Trea-

sury bill data from the US financial data base. In figure 1 we compare the interest rates on a

3-month US Treasury bill with the NBER Business Cycle data. The period from 1961 until

1975 outlines that the risk-free interest rate can behave countercyclically because the high-

est interest rates were observed in the two recessions in this period, which would confirm

the results of King and Rebelo (1999). Nevertheless, in general we clearly observe that the

interest rates substantially increase during an expansion and substantially decrease during

a recession. More importantly, except the period mentioned above, the T-bill rates are on

average significantly higher in the expansion period preceding a recession. We conclude

that there is a tendency for a procyclical behavior and this tendency is especially clearly

observed in the long period from 1976-2010. A procyclical evolvement of the risk free rate is

also suggested by the majority of research studies, see for instance Blanchard and Watson

(1986), Fama and French (1988) or more recently Ang and Bekaert (2002a) and Ang and

Bekaert (2002b). A plausible argument for a procyclical risk-free rate is provided by Jouini

and Napp (2011) arguing that during bad states of the world there is a pessimistic bias in

the economy, whereas during good states of the world there is an optimistic bias.

To make some statements about the cyclical behavior of the volatility, we estimate the
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Figure 2.2: Estimated volatility of the S&P-500 daily log returns in % from 1950-2010 with
a GARCH(1,1) model, recession periods according to the NBER Business Cycle data are
highlighted.

volatility of the S&P 500 daily log returns from 1950 until 2010 with a GARCH(1,1) model,

and then again compare the volatility estimates with Business Cycle data. The estimated

volatility is depicted in figure 2. Having a closer look on the volatility and neglecting out-

liers like the stock market crash in 1987, we observe that the S&P 500 volatility has a clear

tendency to evolve countercyclically. Volatility rises significantly in longer recession peri-

ods like those from 1973-1975 or the recent financial crises from 2007-2009. On the other

hand, the volatility stays at a relatively low level during expansion periods like those from

1975-1980, 1983-1987 and especially the more recent expansion periods from 1991-1998 and

2003-2007. This observation seems to be fairly pronounced during the last 30 years. A

countercyclical stock market volatility is empirically confirmed by many researchers, see for

instance Schwert (1989) and Engle, Ghysels and Sohn (2008). One economic explanation

of this stylized fact is that monetary tightening causes both a recession and increases stock

market volatility.

We follow Dar and Dodds (1989)and Kuo et al. (2003) and consider the unemployment

rate as the main driver of the emergency fund hypothesis. We collect a data set of volun-

tary termination rates in life insurance contracts from the American Life Insurance Council

and acquire a sample of US unemployment rates from the Labour Force Statistics.2 The

evolution of both time series is shown in figure 3. The figure illustrates that the voluntary

termination rates significantly depend on the unemployment rates because both time series

have a tendency to move in the same direction. This observation, which motivates the emer-

gency fund hypothesis, is very pronounced during the long time horizon from 1977-2009.

More importantly, both time series are countercyclical as we observe that in general they are

substantially higher in recession periods preceding an expansion period and the peaks are

often reached in recession periods. Hence there is a clear tendency that the emergency fund

hypothesis is strongly related to the state of the economy suggesting to model exogenous

2As in Kuo et al. (2003) there two typical limitations in the data set. First we cannot distinguish between
pure lapse and surrender and second the lapse rates are obtained from different types of insurance products.
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Figure 2.3: US annual unemployment rates in % (dashed), US annual voluntary termination
rates in life insurance contracts in % (solid) from 1950-2010, recession periods according to
the NBER Business Cycle data are highlighted.

surrender as a function of the macroeconomic process.

Kuo et al. (2003) show within a cointegration analysis that the interest rate hypothesis

is statistically less significant than the emergency fund hypothesis. However, they point out

that the interest rate is economically more significant. In an impulse response analysis they

find shocks in the lapse rates respond substantially to shocks in the interest rate, whereas

the response to shocks of the unemployment rate is small. This result and the result of

procyclical risk-free rates gives rise to also incorporate the interest rate hypothesis into a

valuation model for an insurance product with a surrender guarantee.

2.3 Model

2.3.1 Regime-Switching, Financial and Insurance Risk

The starting point of our setup is an observable continuous-time two-state Markov chain

X = (Xt)t≥0 modelled under the real world measure P on a filtered probability space

(Ω,F ,F,P), that is used to describe the state of the economy. For the ease of exposition

we limit ourselves to the two-state case and mention that the subsequent analysis can be

readily extended to more states. The main argument for an observable Markov chain is

that the market interest rates are observable and the volatility of the reference fund can

be estimated with the quadratic variation of its logarithm, which is also observable, see

Erlwein, Mamon and Siu (2008).

The state space of this stochastic process can be conveniently described by the canonical

representation S = (e1 e2), with the two unit vectors e1 = (1 0)′ and e2 = (0 1)′, with ′
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denoting the transpose, see Buffington and Elliot (2002). The two-state Markov chain gen-

erates the filtration FX = (FXt )t≥0.

The dynamics of our economy are described by the transition matrix P(t) = (Pij(t))i,j=1,2

of X, with Pij(t) = P(Xt = ej|X0 = ei), i, j = 1, 2, j 6= i and t ≥ 0. The transition dynamics

are governed by Kolmogorov’s forward equation

dP

dt
(t) = P(t)A , P(0) = I2 , (2.1)

where I2 is the identity matrix in dimension 2 and the generator A is given by

A =

(
−η1 η1

η2 −η2

)
. (2.2)

The interpretation is that ηi denotes the intensity with which the economy jumps from

state i to state j, i = 1, 2 and i 6= j. In other words, during any time interval dt, there is

a time-invariant probability ηi dt that the process X changes from state i to state j. The

expected time the economy stays in state i is given by η−1
i . The generator A yields the

following decomposition for the stochastic differential of X dXt = A′Xt dt+ dMt, where M

is an FX-martingale, see Elliot, Aggoun and Moore (1994).

The financial market consists as usually of a risky non-dividend paying asset with a price

process S = (St)t≥0 and a riskless money market account with a price process B = (Bt)t≥0.

Under the real world measure P, the stochastic processes are governed by the stochastic

differential equations

dBt = r(t,Xt)B(t) dt, for 0 ≤ t ≤ T ,B0 = 1 , (2.3)

dSt = a(t, St, Xt)S(t) dt+ σ(t, St, Xt)S(t) dWt, for 0 ≤ t ≤ T , S0 ∈ R+ , (2.4)

where r denotes the possibly regime-dependent risk-free interest rate, a is the possibly

regime-dependent local rate of return and σ is the possibly regime-dependent volatility.3

The latter can be expressed more compactly by

rt = r(t,Xt) = (r1(t) r2(t))Xt , and σt = σ(t, St, Xt) = (σ1(t, St)σ2(t, St))Xt ,

for 0 ≤ t ≤ T , where ri(t) and σi(t, St) refer to the risk-free interest rate and volatility in

regime i, for i = 1, 2. Note that the risk-free rate is deterministic within a regime. Moreover

W refers to the standard Brownian motion under P, that is independent of X and gener-

ates the filtration FW = (FWt )t≥0. The extended financial market filtration is then given by

FW
∨

FX , which we call Z = (Zt)t≥0.

3The model is formally written as a local volatility regime-switching model. If we make the simplifying
assumptions that a,r and σ are constant within a regime, see section 5, then we have a regime-switching
lognormal financial market model.



14 Valuation of Equity-Linked Life Insurance Contracts with Surrender Guarantees

The financial market is free of arbitrage and incomplete, since the inclusion of the regime-

switching risk leads to an additional source of risk that is not traded. Mathematically

speaking, there exist infinitely many equivalent martingale measures. In general, there are

two ways to resolve the market incompleteness in our model. We could either add a so called

change of state security as an additional asset to complete the market, see Guo (2001) for

details, or we have to select a specific martingale measure. We opt for a well-established

approach in regime-switching models and select the Esscher martingale measure relying

on the Esscher transform as the unique martingale measure. It can be shown that the

martingale measure specified by the Esscher transform is the one that maximizes expected

power utility, see Elliot, Chan and Siu (2005). Now, following Elliot et al. (2005) we briefly

sketch the Esscher transform. First, define the regime-switching Esscher process θ = (θt)t≥0

by θt = θ(t,Xt, St) = (θ1(t, St) θ2(t, St))Xt. Then, the regime switching Esscher transform

Qθ ∼ P on Zt is given by

dQθ

dP

∣∣∣∣
Zt

=
exp

(∫ t
0
θudWu

)
EP
[

exp
(∫ t

0
θu dWu

)∣∣∣FXt ] , t ≥ 0,

where EP denotes the expectation taken under the real world measure. The Radon-Nikodym

derivative of the Esscher transform can be expressed as

dQθ

dP

∣∣∣∣
Zt

= exp

(∫ t

0

θu dWu −
1

2

∫ t

0

θ2
u du

)
, t ≥ 0. (2.5)

The risk-neutral regime-switching Esscher parameter θ̃(t,Xt, St) solves the martingale con-

dition

St = EQθ̃

[
exp

(
−
∫ T

t

ru du

)
ST

∣∣∣∣Zt] , t ≥ 0.

It can be shown that the above martingale condition implies that

θ̃(t,Xt, St) =
r(t,Xt)− a(t,Xt, St)

σ(t,Xt, St)
, t ≥ 0. (2.6)

Plugging θ̃ in (2.5) we get the Radon-Nikodym derivative of Qθ̃ with respect to P. Then,

by Girsanov’s theorem one has W θ̃ = W −
∫ ·

0
θ̃t dt is a standard Brownian motion under the

martingale measure Qθ̃, which is called the Esscher martingale measure. Finally we end up

with the usual risk-neutral dynamics of the reference fund S, i.e.

dSt = r(t,Xt)Stdt+ σ(t, St, Xt)St dW θ̃
t , t ≥ 0, (2.7)

where W θ̃ is a standard Brownian motion under Qθ̃. By construction of the change of mea-

sure X and W θ̃ are independent under Qθ̃ and the probability law of X remains unchanged

under the change of measure.
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The insurance market is modelled by the jump process H = (Ht)t≥0, with Ht = 1{τ≤t},

for 0 ≤ t ≤ T , where the random variable τ denotes the arrival of the death event of an

individual aged y at t = 0. The jump process H generates the filtration H = (Ht)t≥0 and

has intensity µ, which is called the mortality intensity. We follow the rationale of Li and

Szimayer (2014) and abstract from stochastic longevity since this plays a minor role for

equity-linked products with a similar payoff structure at death and survival. In addition

we make the assumption that, unlike the financial market, the insurance market is not

modulated by the Markov chain X. We do not include mortality regimes in our framework

since clear evidence that mortality risk is significantly linked to economic regimes has not

been found yet in the literature. In fact, the mortality intensity is a regime-independent

deterministic function of time and thus the mortality risk is unsystematic. This implies

that we can work under the suitably extended Esscher martingale measure on the enlarged

filtration G = Z
∨

H, where µ is the (Qθ̃,G)-intensity of the jump process H, A is the

(Qθ̃,G)-generator of the Markov chain X, and W θ̃ is a (Qθ̃,G)-standard Brownian motion,

see Ch. 6 of Bielecki and Rutkowski (2004) for details.

2.3.2 Insurance Contract and Surrender Action

The contract we consider is a stylized equity-linked life insurance contract with a simple roll

up minimum guarantee at death or survival and a surrender guarantee. The survival and

the death benefit both entitle the policyholder to additionally participate in a profitable de-

velopment of the risky asset. The surrender benefit is independent of the asset performance

and depends on time only, as in Bernard and Lemieux (2008). We further assume that

the policyholder pays a single premium P at the beginning of the contract with a maturity

date T , which is a reasonable assumption since most equity indexed annuities contain a

single premium payment, see Palmer (2006). When the policyholder survives time T and

the contract is still active, the payment to him is

Φ(ST ) = αP (1 + g)T + αP max

((
ST
S0

)
− (1 + g)T , 0

)
, (2.8)

where α denotes the percentage the initial premium is the provided with the minimum

guaranteed rate g and the policyholder participates in the performance of the underlying

asset. For an active contract the policyholder receives the death benefit

Γ(τ, Sτ ) = αP (1 + g)τ + αP max

((
Sτ
S0

)
− (1 + g)τ , 0

)
, (2.9)

when the individual on whom the contract is written dies at time τ < T . Specifically in case

of death or survival the policyholder is offered a minimum guarantee given by the first term

in (2.8) or (2.9) and he is offered a bonus option given by the second term. We also make

use of the standard assumption in practice that death is treated as a natural event and thus

it is reasonable to let the guaranteed rates be the same for either event. Furthermore, in

practice the surrender benefit is often independent of the reference fund return and thus
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we make the assumption that the policyholder obtains the following amount L(λ) at the

surrender time λ, see Bernard and Lemieux (2008),

L(λ) = (1− βλ)P (1 + h)λ, 0 ≤ t ≤ T . (2.10)

Here h refers to the minimum guaranteed rate at surrender and βλ is the penalty charge.

In Canada and the US regulation provides that h is not allowed to fall below g, see Bernard

and Lemieux (2008). The penalty is further assumed to be constant over one calendar year

and a decreasing function of time, see Palmer (2006).

The surrender action at a random time λ is described by the first arrival of a generalized

Markov modulated Poisson process with stochastic intensity γ, which depends on the current

state of the economy, the ratio of the surrender benefit L and the present value of the

contract V = (Vt)t≥0. We refer to γ as the (Qθ̃,G) intensity. The new crucial assumption

of our model is that exogenous and endogenous surrender depend on the current regime,

that is the current state of the Markov chain. More formally, the arrival of an exogenous

surrender is modelled with a Markov modulated Poisson process with intensity ρXt, where

the row vector ρ is given by ρ = (ρ1 ρ2). Endogenous surrender is also modeled with a

Markov modulated Poisson process with intensity ρE Xt 1{L(t)>V (t)}, where ρE = (ρE1 ρE2 )

is a again a row vector. Note that by definition the endogenous surrender intensity is 0

if it is not monetary optimal to surrender. The stopping time λ is the minimum of these

two conditionally independent random times. Assuming that exogenous and endogenous

surrender do not happen at the same time almost surely, the surrender intensity, that is the

intensity of λ, is just the sum of these two intensities and it can be written more compactly

as

γt =

{
ρXt , if L(t)

Vt
< 1 ,

(ρ+ ρE)Xt , if L(t)
Vt
≥ 1 ,

(2.11)

The first case in (2.11) corresponds to the exogenous surrender bound and the second is the

endogenous surrender bound. This formulation for the surrender intensity is inspired by

Dai and You (2007) and can be traced back to Stanton (1995). In addition the European

contract values and the American style contract values are included in this setup as limiting

cases. That is, the European contract values in the two states of the economy are obtained

by setting ρi = ρEi = 0, i = 1, 2, while the American style contract values are obtained by

setting ρi = 0 and sending ρEi ↑ ∞, i = 1, 2.

2.3.3 Contract Valuation

In this section we follow mainly Dai and You (2007) to derive a system of two coupled

partial differential equations using the balance law of financial economics. A system of cou-

pled partial differential equations is characterized by the property that the value function

in state i satisfies a partial differential equation that depends on the value functions of all

other states j 6= i. To find the contract value V = (Vt)t≥0 for an active contract, i.e. on the
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set {t < τ, λ}, we have to solve this PDE system and to correctly identify the state of the

economy. Note that if death or surrender occur at time t, t ∈ ]0, T [, the contract value is

trivially given by the death benefit, the surrender benefit respectively.

The balance law of financial economics is based on the no-arbitrage condition

r(t,Xt)Vt dt = EQθ̃ [dVt|Gt] , 0 ≤ t ≤ T, (2.12)

on the set {t < τ, λ}. On this set we can compute the following instantaneous probabilities

under the assumption that the stopping times τ and λ are conditionally independent of

each other:

(a) The conditional probability that death occurs over (t, t+ dt) and surrender does not

is µ(t)dt(1− γtdt) = µ(t)dt.

(b) The conditional probability that surrender occurs over (t, t+dt) while the death event

does not is γtdt(1− µ(t)dt) = γtdt.

(c) The conditional probability that both death and surrender occur over (t, t+ dt) is 0.

Next, suppose that the contract value at time t is of the form Vt = 1{t<λ,τ}v(t, St, Xt), on the

set {t < λ, τ}∩{t ≤ T}. Then the surrender intensity γ specified in (2.11) is a function of the

state variables t, v and x. Given that we are in state i, we can define vi(t, s) = v(t, s, ei) for a

suitably differentiable function vi : [0, T ]×R+ → R+, (t, s)→ vi(t, s), for i = 1, 2. Denoting

the row vector of contract values for an active contract as v(t, s) = (v1(t, St) v2(t, St)),

we can further write v(t, St, Xt) = v(t, St)Xt. Next, define γi depending on t and v by

γi : [0, T ]× R+ → R+, (t, v)→ γi(t, v), for i = 1, 2. Denoting the corresponding row vector

by γ(t, v) = (γ1(t, v) γ2(t, v)), we can write γt = γ(t, Vt, Xt) = γ(t, v(t, St)Xt))Xt. Now,

we compute the differential of v(t, St, Xt) by applying Ito’s product rule, using the fact

derived by Elliot et al. (1994) that Xt has the dynamics dXt = A′Xtdt+ dMt, where Mt is

a two-dimensional martingale with respect to the filtration G. We obtain that

dv(t, St, Xt) = Lv(t, St, Xt)dt+ v(t, St, Xt)dXt + σ(t, St, Xt)St dW θ̃
t

= Lv(t, St, Xt)dt+ v(t, St, Xt)A
′Xt dt+ v(t, St, Xt)dMt + σ(t, St, Xt)St dW θ̃

t , (2.13)

where the regime-dependent differential operator L is defined as

Lf(t, s, x) =
∂f(t, s, x)

∂t
+ r(t, x) s

∂f(t, s, x)

∂s
+

1

2
σ2(t, s, x) s2 ∂

2f(t, s, x)

∂s2
.

The differential operator in state i Li is then defined by

Lif(t, s) =
∂f(t, s)

∂t
+ ri(t)s

∂f(t, s)

∂s
+

1

2
σ2
i (t, s) s

2∂
2f(t, s)

∂s2
, i = 1, 2.

Next, we know that if either death or surrender occurs over (t, t + dt) the jump sizes are

predictable. In particular, the change in the payment liability if death occurs and surrender
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does not is given by Γ(t, St)− v(t, St, Xt) and by L(t)− v(t, St, Xt) if surrender occurs and

death does not. This implies that we can rewrite (2.12) as

r(t,Xt)v(t, St, Xt)dt =EQθ̃ [dv(t, St, Xt)|Zt] + (Γ(t, St)− v(t, St, Xt))µ(t)dt

+ (L(t)− v(t, St, Xt))γ(t, Vt, Xt)dt. (2.14)

Plugging (2.13) into (2.14) and using the fact that W θ̃
t and Mt are Qθ̃-martingales, we

obtain dt⊗ dQθ̃-a.s.

0 =Lv(t, St) + µ(t) Γ(t, St) + γ(t, Vt, Xt)L(t)

− (r(t,Xt) + µ(t) + γ(t, Vt, Xt))v(t, St, Xt) + v(t, St)A
′Xt . (2.15)

Since this has to hold for any t ∈ [0, T ), St ∈ R+ and Xt ∈ S we have that

0 =Livi(t, s) + µ(t)Γ(t, s) + γi(t, vi(t, s))L(t)

− (ri(t) + µt + γi(t, vi(t, s)))vi(t, s) + v(t, s)A′ei , (2.16)

for i = 1, 2. Also, by no arbitrage we must have vi(T, s) = Φ(s), for s > 0 and i = 1, 2.

Carrying out the matrix multiplication, we derive a system of two coupled PDEs, which we

summarize in proposition 2.3.1.

Proposition 2.3.1. On the set {t ≤ τ ∧ λ ∧ T} the contract value is given by

Vt = 1{λ>t,τ>t}
(
1{Xt=e1}v1(t, St) + 1{Xt=e2}v2(t, St)

)
+ 1{λ>t,τ=t} Γ(t, St) + 1{λ=t} L(t),

where the price functions vi, i = 1, 2, satisfy the following system of partial differential

equations

0 = L1v1(t, s) + µ(t)Γ(t, s) + γ1(t, v1(t, s))L(t)− (r1(t) + µ(t) + γ1(t, v1(t, s))) v1(t, s)

+η1 (v2(t, s)− v1(t, s)), (2.17)

0 = L2v2(t, s) + µ(t)Γ(t, s) + γ2(t, v2(t, s))L(t)− (r2(t) + µ(t) + γ2(t, v2(t, s))) v2(t, s)

+η2 (v1(t, s)− v2(t, s)), (2.18)

for (t, s) ∈ [0, T )× R+ with terminal conditions v1(T, s) = v2(T, s) = Φ(s), for s ∈ R+.

Subsequently we theoretically investigate the contract values in the two regimes. In

proposition 2.3.2 we show that some technical conditions can ensure that the contract value

is always greater in one state than in the other. The proof is given in the appendix. In

particular, the first two conditions that prominently depend on the delta and the convexity

of the contract value, will in general not hold globally.

Proposition 2.3.2. Assume the functions v1 and v2 in C1,2 are solutions to the coupled

PDE system in Proposition 2.3.1. Suppose that

(r2 − r1) (s
∂v1

∂s
− v1) ≥ 0 , (σ2

2 − σ2
1)
∂2v1

∂s2
≥ 0 , and ρ2 + ρE2 ≥ ρ1 + ρE1 ,
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then v1 ≤ v2 on [0, T ]× R+. In particular, if r1 = r2, σ1 = σ2 and ρ2 + ρE2 ≥ ρ1 + ρE1 then

v1 ≤ v2 on [0, T ] × R+, and, if ρ1 = ρ2, ρ1
E = ρ2

E, r1 = r2 and σ1 = σ2 then v1 = v2 on

[0, T ]× R+,

Finally we can give a very general comparative statics result for the endogenous surrender

intensities ρEi , i = 1, 2. Intuitively, a higher endogenous surrender intensity in state i

increases the likelihood of monetary optimal surrender, which increases the contract value

in either state of the economy. The following proposition states this fact precisely. The

proof is given in the appendix.

Proposition 2.3.3. Assume the functions v1 and v2 in C1,2 are solutions to the coupled

PDE system in Proposition 2.3.1. Further, assume that the functions ṽ1 and ṽ2 in C1,2

are also solutions to the coupled PDE system that is identical except for the endogenous

surrender parameters that are now given by ρ̃E1 , ρ̃E2 , respectively. Suppose that ρE1 ≤ ρ̃E1 and

ρE2 ≤ ρ̃E2 . Then we have ṽ1 ≥ v1 and ṽ2 ≥ v2.

For the other regime-switching parameters we cannot give such general results, but we

study their effects closely through numerical examples in section 4.

2.4 Numerical Methodology

To solve the PDE system (2.17) and (2.18) we need to determine reasonable boundary

conditions as a first step. We approach this by specifying the surrender intensities at the

boundary and using appropriate Neumann conditions for the partial derivatives. More

formally our specifications are

γi(t, vi) =(ρi + ρEi ),
∂vi(t, s)

∂s
= 0, s ↓ 0, t ∈ [0, T ), i = 1, 2, (2.19)

γi(t, vi) =ρi,
∂vi(t, s)

∂s
=
αP

S0

, s ↑ ∞, t ∈ [0, T ), i = 1, 2. (2.20)

The intuitive idea behind our assumptions above is as follows. If the reference fund value

is very small then for a realistic contract the surrender option will be almost surely in the

money until it is exercised, accordingly we assume the surrender intensity coincides with

the endogenous surrender bound. For a very small value of the reference fund changes in

s have no effect on the contract value since the bonus option is deep out of money and

the policyholder will almost surely receive the minimum guaranteed amount if he does not

surrender. If the reference fund reaches a very large value then the surrender option will

be deep out of the money, which implies that there are no incentives to surrender the

contract endogenously throughout the entire lifetime of the contract. In that case changes

in s will only affect the value of the bonus option and as this is deep in the money it will

approximately move linearly with the reference fund. Next we can plug (2.19) and (2.20)

separately in the PDE equation for state i in (2.16). Noting that by the above assumptions

the second derivative with respect to s diminishes, the determination of the boundary
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conditions reduces to solving a system of two coupled linear ordinary differential equations

(ODEs) for each boundary. Accordingly for s ↓ 0 we have the coupled ODE system

∂vi
∂t

+ µ(t)αP (1 + g)t + (ρi + ρEi )L(t)− (ri(t) + µ(t) + ρi + ρEi )vi + ηi (vj − vi) =0,

(2.21)

for t ∈ [0, T ), i 6= j = 1, 2 with the terminal condition v1(T ) = v2(T ) = αP (1 + g)T . For the

upper boundary we approximate s ↑ ∞ with a sufficiently large maximum value we denote

smax, then we obtain the following coupled ODE system

∂vi
∂t

+ r smax
αP

S0

+ µ(t)αP
smax
S0

+ (ρi L(t)− (ri(t) + µ(t) + ρi)vi + ηi (vj − vi) =0, (2.22)

for t ∈ [0, T ), i 6= j = 1, 2 with the terminal condition v1(T ) = v2(T ) = αP smax
S0

. These

ODE systems can be solved straightforwardly with a simple explicit scheme.

The next step is to solve the PDE system (2.17) and (2.18) subject to the terminal and

boundary conditions. It is important to emphasize that we need to solve a nonlinear coupled

PDE system since the surrender intensities are functions of the contract values and hence

need to be determined simultaneously with the latter for each time step and each state of

the economy. In this way, we need to solve a penalty problem, see Dai and You (2007). To

do so we first show how the solution of the PDE system is approximated for fixed surrender

intensities γi(t, vi), i = 1, 2 with the well-known Crank-Nicolson scheme. Then we apply a

generalized Newton iteration procedure, see Forsyth and Vetzal (2002), to simultaneously

compute the contract values and the surrender intensities in each state of the economy.

For the reason of computational efficiency we perform the log-transformation w = ln(s)

and set ui(t, w) = vi(t, s). The transformed PDE system is then given by

0 =
∂ui(t, w)

∂t
+ (ri(t)−

1

2
σ2
i (t, w))

∂ui(t, w)

∂w
+

1

2
σ2
i (t, w)

∂2ui(t, w)

∂w2
+ µ(t)Γ(t, y)

+γi(t, ui(t, w))L(t)− (ri(t) + µ(t) + γi(t, ui(t, w)) + ηi)ui(t, w) + ηiuj(t, w),(2.23)

(t, w) ∈ [0, T )× R, i 6= j = 1, 2 and terminal conditions u1(T,w) = u2(T,w) = Φ(ew).

To approximate (2.23) with we truncate the time domain [0, T ] in N equally spaced

time intervals ∆t and the log-price domain [wmin, wmax] into M subintervals of length ∆w,

where wmin denotes the minimum log-price and wmax the maximum log-price the reference

fund can attain. For each i = 1, 2, n = 0, ..N , m = 0, ...M let u
(n,m)
i denote the discretized

version of the contract value at node (n,m), where n is the time-point and m the log-price

step. In the sequel this definition applies to all parameters depending on (n,m). Applying
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the Crank-Nicolson scheme to approximate the coupled PDE system (2.23) we have

− biu(n+1,m−1)
i − ãi(n+1,m)u

(n+1,m)
i − b̃iu(n+1,m+1)

i − ηju(n+1,m)
j

= biu
(n,m−1)
i + a

(n,m)
i u

(n,m)
i + b̃iu

(n,m+1)
i + ηju

(n,m)
j + c

(n,m)
i + c

(n+1,m)
i , (2.24)

where

bi =− (r
(n)
i −

1

2
σ2
i

(n,m)
)

1

2∆w
+

1

2

σ2
i

(n,m)

(∆w)2
,

b̃i =

(
r

(n)
i −

1

2
σ2
i

(n,m)
)

1

2∆w
+

1

2

σ2
i

(n,m)

(∆w)2
,

a
(n,m)
i =−

(
2

∆t
+
σ2
i

(n,m)

(∆w)2
+ r

(n)
i + µ(n) + γ

(n,m)
i + ηi

)
,

ãi
(n+1,m) =−

(
− 2

∆t
+
σ2
i

(n+1,m)

(∆w)2
+ r

(n+1)
i + µ(n+1) + γ

(n+1,m)
i + ηi

)
,

c
(n,m)
i =µ(n)Γ(n,m) + γ

(n,m)
i L(n),

c
(n+1,m)
i =µ(n+1)Γ(n+1,m) + γ

(n+1,m)
i L(n+1).

In order to obtain the contract value at time point n in each state we have to solve a system

of 2(M − 1) linear equations in 2(M − 1) unknowns. We define

u(n) = (u
(n,M−1)
1 , u

(n,M−1)
2 , u

(n,M−2)
1 , u

(n,M−2)
2 , ..., u

(n,1)
1 , u

(n,1)
2 ) ′ , (2.25)

as the vector of contract values, which is first ordered by the regime number and then in

descending order of log-price steps. This enables us to write (2.24) compactly in matrix

notation as

D̃(n+1)u(n+1) = D(n)u(n) + d(n,n+1), (2.26)

where the 2(M − 1)× 2(M − 1) matrix D(n) is given by

D(n) =



a
(n,M−1)
1 η1 b1 0 0 0 0 . . .

η2 a
(n,M−1)
2 0 b2 0 0 0 . . .

b̃1 0 a
(n,M−2)
1 η1 b1 0 0 . . .

0 b̃2 η2 a
(n,M−2)
2 0 b2 0 . . .

...
...

. . . . . . . . . . . . . . .
...

0 0 . . . b̃2 η2 a
(n,2)
2 0 b2

0 0 0 . . . b̃1 0 a
(n,1)
1 η1

0 0 0 . . . 0 b̃2 η2 a
(n,1)
2


.

D̃(n+1) is simply obtained by replacing each diagonal entry a
(n,m)
i in D(n) by ãi

(n+1,m) and
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multiplying each by −1, and d(n,n+1) is given by

d(n,n+1) =



c
(n,M−1)
1 + c

(n+1,M−1)
1 + b̃1(u

(n,M)
1 + u

(n+1,M)
1 )

c
(n,M−1)
2 + c

(n+1,M−1)
2 + b̃2(u

(n,M)
2 + u

(n+1,M)
2 )

c
(n,M−2)
1 + c

(n+1,M−2)
1

c
(n,M−2)
2 + c

(n+1,M−2)
2

...

c
(n,1)
1 + c

(n+1,1)
1 + b1(u

(n,0)
1 + u

(n+1,0)
1 )

c
(n,1)
2 + c

(n+1,1)
2 + b2(u

(n,0)
2 + u

(n+1,0)
2 )


.

Note that d(n,n+1) depends via c(n,m) on γ
(n,m)
i , i = 1, 2, and that needs yet to be determined.

We solve the matrix equation (2.26) for u(n) and destack this vector into the two vectors

u
(n)
i = (u

(n,M−1)
i ...u

(n,1)
i ) ′, i = 1, 2, to obtain the contract values in state i at time point n.

The algorithm to determine γ(n,m) and u(n,m) works backwards starting at n = N − 1.

First we specify a starting value for the contract value in the corresponding state of the

economy at time point n. A natural candidate for the starting value at time point n is the

contract value in the corresponding state of the economy at the time point n+ 1. The next

step is to specify the surrender intensities γ
(n,m)
i , i = 1, 2 according to (2.11). Then we solve

the PDE system (2.23) with the Crank-Nicolson scheme as described above to determine

the new contract values. For each time step this procedure is repeated until the maximum

relative deviation of the contract values after the next iteration falls below a prespecified

tolerance level.

Specifically, denote uk̃i (n,m), the contract value in state i, i = 1, 2, at node (n,m) after

the k̃-th iteration run and γk̃i (n,m) is the surrender intensity in state i at node (n,m) after

the k̃-th iteration. Next define

εk̃i = max
m

|uk̃+1
i (n,m)− uk̃i (n,m)|
max(1, uk̃+1

i (n,m))
,

for i = 1, 2 and define εk̃ = max(ε1, ε2). That is, ε is the maximum relative deviation the

contract values can have in any of the two states after the k̃+1-th iteration run compared to

the k̃-th iteration. Finally, let ξ be the error tolerance in the iteration. Using this notation

the algorithm to determine simultaneously ui and γi, i = 1, 2 at time n = 0, 1, ...N − 1 for

each m = 1, ...M − 1 can be summarized as follows:

(a) take u0
i (n,m) = ui(n + 1,m) as a starting value, compare u0

i (n,m) with L(n), get

γ0
i (n,m)

compute u1
i (n,m) by solving the PDE system (2.23) with Crank-Nicolson

and compute ε0,

for k̃ = 1, ...k̃∗
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(b) compare uk̃i (n,m) with L(n) and get γk̃i (n,m)

(c) take each γk̃i (n,m) and solve PDE system (2.23) numerically to obtain uk̃+1
i (n,m)

(d) compute εk̃

(e) repeat steps 2 until 4 until εk̃ < ξ,

where k̃∗ is the last but one iteration.

2.5 Numerical Results

In this section we study the life insurance contract closely through numerical examples. We

assume that the two economic states represent the business cycles recession and expansion.

The recession state is denoted as state 1 and the expansion state as state 2, respectively. We

focus on the surrender option values in the two economic states and compare those for the

two surrender models, our regime switching rational expectation model and the American

style surrender model.4

The benchmark parametrization is as follows. The Standard and Poor’s 500 index is

the underlying with S0 = $1000. The single premium is P = $100 and the contract life

time is T = 10 years. We assume that the percentage the minimum guarantee is provided

with and the participation coefficient is α = 0.875, and the minimum guaranteed rates

are all equal and given by g = h = 0.02. The penalty rates are constant each calender

year with β1 = 0.05, β2 = 0.04, β3 = 0.02, β4 = 0.01 and βt = 0 for t ≥ 5. Next the

mortality intensity is assumed to follow the Makeham model µ(y) = A+Bcy for an y-aged

policyholder with A = 5.0758× 10−4, B = 3.9342× 10−5, c = 1.1029, see Li and Szimayer

(2014). The representative policyholder is assumed to be 40-aged at the moment he enters

into the contract. The switching intensities are estimated from the NBER business cycle

data from 2000 until 2010. We obtain the estimates η̂1 = 0.8889 and η̂2 = 0.2215. This

implies that the expected time the economy will stay in a expansion is about 4.5 years,

while the economy is expected to stay about 1.125 years in a recession state. For the

regime-switching parameters we make the following assumptions throughout this section:

ρ1 ≥ ρ2, ρE1 ≤ ρE2 , r1 ≤ r2, σ1 ≥ σ2. The first three assumptions are made such that

both the emergency fund hypothesis and the interst rate hypothesis hold. The procyclcial

risk-free rate and the countercyclical volatility are in line with empirical studies, see for

instance Engle et al. (2008) for a countercyclical volatility and Ang and Bekaert (2002 a,b)

for a procyclical risk-free rate. Note that we also assume for simplicity that the reference

fund volatility and the risk-free rate are constant within a regime, i.e σi(t, s) = σi and

ri(t) = ri for i = 1, 2, (t, s) ∈ [0, T ] × R+. Specifically, we set the exogenous surrender

intensities as ρ = (0.05 0.02). The endogenous surrender intensities in the two states are

ρE = (0.25 0.28) such that the endogenous surrender bound is the same in either state

4European and American option values are understood here in the presence of mortality risk.
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and equal to 0.3. This specification of the surrender intensities implies a monetary more

optimal surrender behavior in the expansion state. The volatilities are estimated by con-

structing a recession subsample and a expansion subsample for the Standard and Poor’s

500 daily log returns from 2000 until 2010. We have σ̂1 = 0.3397 and σ̂2 = 0.1728, which

are the annualized historical volatilities of the corresponding subsamples. For the risk-free

rate we assume r1 = 0.025 and r2 = 0.04. Finally the following values for the parameters

in the numerical approximation are used: ∆t = 1/50, N = T/∆t, M = 250, wmin = 0,

wmax = ln(5000), ∆w = (wmax − wmin)/M and ξ = 0.0001.

To better understand the contract intuitively we decompose it into its different com-

ponents in table 2.1. The European contract value is given by the value of the minimum

guarantee and the bonus option. The value of the surrender option is obtained as the differ-

ence between the contract value with surrender and the European contract value. Table 2.1

shows that the contract value in the recession state is about 2.31% higher than that in the

expansion state. This is primarily the result of the higher minimum guarantee value due to

the lower risk-free rate and a higher value for the bonus option due to the higher volatility

in the recession state. Moreover we notice that the value of the surrender option is about

11 % higher in the recession state for both our regime-switching rational expectation model

and the American style surrender model. This is the result of the countercyclical volatility

and the procyclical risk-free rate effect, which will be studied more closely in table 2.5 and

table 2.6 below. Note that in the regime switching rational expectation model the latter ef-

fects dominate the effect of monetary less optimal surrender behavior in the recession state.

Most importantly we clearly observe that the American surrender option values in either

regime are substantially, about 5 times larger than those in the regime switching rational

expectation model.

Minimum Bonus Surrender American
Guarantee (1) Option (2) Option (3) Surrender Option (4)

74.738 29.652 1.951 9.366
73.724 28.461 1.756 8.473

European Contract American
Contract Value Value Contract Value
(1)+(2) (1)+(2)+(3) (1)+(2)+(4)

104.390 106.341 113.756
102.185 103.941 110.658

Table 2.1: Decomposition of the contract values (in $) for the benchmark parameters in the
two economic states, the upper value corresponds to the value in the recession state and
the lower to that in the expansion state, respectively.

In table 2.2 we see how changes of the insurance parameters, the percentage the mini-



2.5. NUMERICAL RESULTS 25

mum guaranteed amount is provided with and the policyholder participates in the perfor-

mance of the reference fund α, the minimum guaranteed interest rate g and the interest

rate the surrender value grows with h, affect the value of the surrender option. A significant

decrease in α makes the holding of the contract less attractive and hence it substantially

increases the value of the surrender option in either state. On the other hand an increase

of g = h decreases the value of the surrender option in both states since the higher value of

the minimum guarantee dominates the increase in the cash surrender value L.

Surrender Option American Surrender Option

α = 0.8
7.097 14.053
6.635 12.997

g = h = 0.025
1.604 8.996
1.618 8.295

Table 2.2: Surrender Option values in the two economic states for different insurance pa-
rameters, the upper value corresponds to the value in the recession state and the lower to
that in the expansion state, respectively.

Now we study more closely the effect of the regime-dependent parameters on the sur-

render option values. In tables 2.3 and 2.4 we see how changes in the regime-dependent

surrender intensities affect the surrender option values in our rational expectation model,

while the American style option remains unaffected by assumption. In table 2.3 we observe

that increasing the endogenous surrender intensity ρEi increases the surrender option value

in either state. This is an immediate consequence of proposition 2.3.3. We see that the

endogenous surrender intensity in the expansion state ρE2 has a substantial effect on the

surrender option values, while the impact of the endogenous surrender intensity in the re-

cession state ρE1 is low. It is interesting to observe that when the policyholder surrenders

only exogenously in the recession state, i.e ρE1 = 0 and the endogenous surrender intensity

in the expansion state is low, i.e ρE2 ≤ 0.1, then the value of the surrender option can get

negative. This at first glance surprising result is explained by the fact that the surrender

option is exercised with a sufficient likelihood when it is out of the money, especially in the

recession state, while it is exercised with a too low likelihood when it is in the money.

In table 2.4 we see that both exogenous surrender intensities ρ1 and ρ2 have a very

strong impact on the values of the surrender option. In comparison to the previous table

we clearly observe that the surrender option values vary more with shifts of the exogenous

surrender intensities than with the endogenous surrender intensities. Moreover there is a

clear symmetric regime-impact of the exogenous surrender intensities on the option values.

More precisely, the exogenous surrender intensity in state 1 has a stronger impact on the

option value in state 1 than in state 2 and vice versa. This fact is fairly pronounced for the

exogenous surrender intensity in the recession state ρ1. We see that the surrender option
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ρE1 \ ρE2 0 0.1 0.2 0.5

0
-2.992 -0.551 0.814 2.514
-2.625 -0.472 0.742 2.143

0.2
1.330 2.719
1.373 2.535

0.5
2.816
2.658

Table 2.3: Surrender option values in the two economic states for various endogenous sur-
render intensities ρE2 in the first row and ρE1 in the first column, the upper value corresponds
to the value in the recession state and the lower to that in the expansion state, respectively.

values in either state substantially decrease with increasing exogenous surrender intensities.

This is not a general result but is explained by the fact that for this contract the surrender

option is on average out of the money and hence a higher exogenous surrender intensity

results in a more monetary suboptimal surrender behavior. This point further accounts

for considerably negative surrender option values if the exogenous surrender intensities are

high, that is ρ2 ≥ 0.03 and ρ1 ≥ 0.1.

ρ2 \ ρ1 0 0.03 0.1 0.3

0
6.210 4.758 1.947 -2.939
5.354 4.395 2.520 -1.135

0.03
1.690 -0.636 -4.538
1.284 -0.258 -3.137

0.1
-4.700 -7.157
-4.390 -6.089

Table 2.4: Surrender option values in the two economic states for various values of the
exogenous surrender intensities ρ1 in the first row and ρ2 in the first column, the upper
value corresponds to the option value in the recession state and the lower to that in the
expansion state, respectively.

Table 2.5 confirms that both volatilities σ1 and σ2 have a significant effect on the sur-

render option values, where we identify a stronger effect in the regime-switching rational

expectation model. For the latter there is an asymmetric regime impact on the surrender

option values, which is slight for shifts of σ1 and moderate for shifts of σ2. The asymmetric

regime impact means that the volatility in state i has a stronger effect on the option value

in state j than in state i. For the American option we identify a strong symmetric regime

impact for both volatilities σ1 and σ2. Besides the opposing regime impacts, it is interesting
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to see that the overall effect of the volatility also completely differs in the two surrender

models. While the surrender option values decrease with σi in the rational expectation

model, they increase with σi in the American style surrender model. The first result can be

explained by the effect that an increasing volatility increases the likelihood that the option

goes out of the money and hence increases the likelihood of monetary suboptimal surren-

der, which here dominates the opposing effect that an increasing volatility can also make

monetary optimal surrender more likely. For the American style surrender option only the

effect that an increasing volatility increases the likelihood for the surrender option to be

in the money plays a role since by assumption the policyholder behaves monetary optimal,

hence the American style surrender option values are increasing with the volatilities.

σ2\ σ1 0.10 0.20 0.30 0.40

0.10

4.463 3.891 3.139 2.344
(8.063) (8.572) (9.002) (9.415)

4.085 3.415 2.648 1.838
(7.603) (7.640) (7.695) (7.802)

0.20

2.227 1.728 1.283
(8.813) (9.276) (9.738)

2.183 1.682 1.145
(8.535) (8.659) (8.795)

0.30

0.476 0.135
(9.668) (10.189)

0.694 0.324
(9.430) (9.671)

Table 2.5: Surrender options values for the regime-switching rational expectation model
and the American style surrender model in the two economic states for various volatilities
σ1 in the first row and σ2 in the first column, the upper value corresponds to the value in
the recession state and the lower to that in the expansion state, respectively, the values in
brackets denote the American style surrender option values.

We learn from table 2.6 that the risk-free rate in the expansion regime has a stronger

impact on the surrender option values in both states and for both surrender models than

the risk-free rate in the recession state. Interestingly, for both surrender models we observe

an asymmetric regime impact of the risk-free rate, which is slight for shifts of r1 and very

pronounced for shifts of r2. For both surrender models the option values increase with the

risk-free rates. This is intuitive and in line with the interest rate hypothesis because a

higher risk-free rate increases the incentive to surrender the contract endogenously in order

to exploit profitable alternative investments.

Comparing table 2.3 through table 2.6 we notice that for this contract the surren-
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r1\ r2 0.02 0.03 0.04 0.05

0.02

0.432 1.143 1.932 2.602
(8.167) (8.629) (9.396) (10.260)

1.070 1.421 1.691 1.870
(8.071) (8.146) (8.442) (8.746)

0.03

1.177 1.934 2.622
(8.665) (9.402) (10.284)

1.571 1.826 1.968
(8.218) (8.514) (8.805)

0.04

1.937 2.663
(9.451) (10.305)

1.958 2.092
(8.619) (8.892)

Table 2.6: Surrender options values for the regime-switching rational expectation model
and the American style surrender model in the two economic states for various risk-free
rates r2 in the first row and r1 in the first column, the upper value corresponds to the value
in the recession state and the lower to that in the expansion state, respectively, the values
in brackets denote the American style surrender option values.

η2\ η1 0.20 0.50 1.50

0.10

-0.444 1.935 3.182
(9.815) (9.817) (9.253)

0.894 2.009 2.883
(8.126) (8.342) (8.455)

0.20

-1.498 0.898 2.664
(9.511) (9.545) (9.185)

-0.567 1.007 2.444
(8.175) (8.384) (8.493)

0.50

-3.147 -1.011 1.443
(9.167) (9.223) (9.081)

-2.637 -0.827 1.363
(8.465) (8.573) (8.609)

Table 2.7: Surrender options values for the regime-switching rational expectation model
and the American style surrender model in the two economic states for various switching
intensities η1 in the first row and η2 in the first column, the upper value corresponds to the
value in the recession state and the lower to that in the expansion state, respectively, the
values in brackets denote the American style surrender option values.
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der option values are always greater in the recession state in the American style surrender

model. This is the result of the symmetric regime impact of the countercyclical volatility

and the asymmetric regime impact of the procyclical risk-free rate. From table 2.5 and

2.6 we know that both effects are relatively value increasing, hence the surrender option

value is greater in the recession state. For the regime-switching rational expectation model

this result does not hold since the effect of monetary less optimal surrender in the recession

state and the slight asymmetric regime impact of the volatility, see also table 2.5, produce

a countereffect to the asymmetric risk-free rate effect. If the latter effects dominate, which

is for instance the case when the exogenous surrender intensity in the recession state is suf-

ficiently large or the risk-free rates coincide, see table 2.4 and table 2.6, then the surrender

option value is greater in the expansion state.

Finally we study the effect of the switching intensities η1 and η2 on the option values

in both surrender models in table 2.7. The surrender option values in the two states are

fairly sensitive with respect to changes in the switching intensities in the regime-switching

rational expectation model, while they are clearly less sensitive for the American style

surrender model. This can be explained by the property that the switching intensities

have a substantial effect on the average surrender behavior in the regime-switching rational

expectation model in the sense that they improve or deteriorate the average surrender

behavior. In particular, the surrender option values in the two states are increasing in η1

because the economy is expected to spend less time in the recession state, which on average

results in a monetary better surrender behavior of the policyholder. The line of reasoning

reverts for increases in η2. On the other hand for the American style surrender model the

degree of monetary optimal surrender is unaffected by the switching intensities since by

assumption the policyholder behaves monetary optimal. This explains the lower sensitivity

of the American option values. Unlike the regime-switching rational expectation model we

do not observe a clear monotonic effect of the switching intensities on the surrender option

values. However, for both surrender models higher values of ηi are leading to a more instable

economy coupling the option values while lower values of ηi are corresponding to a more

persistent economy decoupling the option values.

2.6 Conclusion

We propose a regime-switching rational expectation model, where both the market value

of a reference fund and the surrender intensity of a policyholder change randomly over

time according to the evolution of a continuous-time Markov Chain with a finite number

of states. The main contribution of this chapter is that it extends the rational expecta-

tion model of De Giovanni (2010) and Li and Szimayer (2014) by allowing both exogenous

and endogenous surrender to depend on the economic regime. Such economic regimes, can

represent for example financial market regimes with high or low volatility, macroeconomic

regimes with high or low interest rates or business cycles. More formally, we derive a cou-

pled system of two partial differential equations whose solutions characterize the contract



30 Valuation of Equity-Linked Life Insurance Contracts with Surrender Guarantees

values in the two economic states and establishe comparative statistics. This PDE system is

nonlinear since the surrender intensities are a function of the contract values and hence need

to be determined simultaneously with the latter. The solution of this penalty problem is

obtained numerically by combining the Crank-Nicolson scheme with a generalized Newton

search algorithm.

We performe extensive numerical experiments, where the economic states are consid-

ered as business cycles and the model parameters are set such that the emergency fund

and the interest rate hypothesis hold. Based on this experiment, we have the following

main results. First, the state of the economy has a significant impact on the contract

value and the surrender option value for both surrender models. The state impact is the

more pronounced the more persistent the economy is in the two economic states. It fur-

ther strongly depends on the difference between the regime-dependent paramter values and

how pronounced the symmetric or asymmetric regime impacts are. Second, the surren-

der option value is greater in the recession state in the regime-switching American style

surrender model, while in the regime-switching rational expectation model the surrender

option value can also be greater in the expansion state. Third, the surrender option val-

ues are substantially lower in our regime-switching rational expectation model than those

in the American style regime-switching surrender model in either state of the economy.

We further found that the exogenous surrender intensities have the strongest impact on

the surrender option values in our regime-switching rational expectation model. Finally,

if the exogenous surrender intensities are sufficiently high, especially that in the recession

state, the surrender guarantee can become negative in our model. In particular, the last

three results underline that an incorporation of the emergency fund hypothesis into a valua-

tion model is important in order to avoid a dramatic overpricing of the surrender guarantee.

The model presented in this chapter can be extended in several ways. A first possible

extension could be to allow the regime-dependent surrender intensities to be additionally

time-dependent. For example, one could assume that the surrender intensities are a de-

creasing function of time, that is policyholders are more likely to surrender when they are

younger. A second extension that arises is to model the reference fund dynamics more

realistically, e.g by including jumps when the state of the economy switches. From the the-

oretical perspective, it would be interesting to address the hedging problem in our setup.

Though we obtain an adequate risk premium for the macroeconomic risk the latter is only

justified by diversification arguments. A reasonable theoretical approach would be to follow

the rationale of Guo (2001) and to include regime-switching bonds in order to first com-

plete the extended financial market and then to derive hedging strategies for hedging the

regime-switching risk.
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2.7 Appendix

2.7.1 Appendix A: Proof of Proposition 2.3.2

Proof 2.7.1 (Proof of Proposition 2.3.2). The value functions v1 and v2 are the solutions of

the coupled PDE system in proposition 2.3.1 with terminal condition v1(T, s) = v2(T, s) =

Φ(s). Define the function z as their difference, i.e.: z = v2 − v1. It follows directly that

z(T, s) = v2(T, s) − v1(T, s) = Φ(s) − Φ(s) = 0. To obtain the dynamics of z take the

difference of the PDEs describing v2 and v1:

0 = L2v2 + µΨ + γ2L− (r2 + µ+ γ2) v2 + η2 (v1 − v2)

− (L1v1 + µΨ + γ1L− (r1 + µ+ γ1) v1 + η1 (v2 − v1))

= L2z − (r2 + µ+ γ1 + η1 + η2)z + (γ2 − γ1)(L− v2) + (L2 − L1)v1 + (r1 − r2)v1

= L2z − (r2 + µ+ γ1 + η1 + η2)z

+(γ2 − γ1)(L− v2) + (r2 − r1)

(
s
∂v1

∂s
− v1

)
+ (σ2

2 − σ2
1)
∂2v1

∂s2
.

In fact, we want to show that z ≥ 0 in turn implying v2 ≥ v1. For doing so, the last line of

the previous equation is of importance. Using, e.g., Feynman-Kac, the following sufficient

condition for z ≥ 0 can be obtained

0 ≤ (γ2(t, v2(t, s))− γ1(t, v1(t, s)))(L(t)− v2(t, s))

+(r2(t)− r1(t))
(
s
∂v1

∂s
(t, s)− v1(t, s)

)
+ (σ2

2(t, s)− σ2
1(t, s))

∂2v1

∂s2
(t, s) .

Now, we verify that all three summands are nonnegative. Addressing the first term consider

the case L ≥ v2. Then by specification of the exercise behaviour in (2.11) we see that

γ2 = ρ2 + ρE2 . By assumption γ1 ≤ ρ1 + ρE1 ≤ ρ2 + ρE2 , and thus the first summand is

nonnegative, i.e.: (γ2−γ1)(L−v2) ≥ 0. Consider the alternative case L < v2, then γ2 = ρ2.

By assumption ρ2 ≤ ρ1 and accordingly γ2 ≤ γ1. Also for this case we conclude that the first

summand is nonnegative, i.e.: (γ2 − γ1)(L − v2) ≥ 0. The second and the third summand

are nonnegative by assumption finishing the proof of the first assertion. The special case

r1 = r2, σ1 = σ2 and ρ2 + ρE2 ≥ ρ1 + ρE1 follows immediately. For ρ1 = ρ2, ρ1
E = ρ2

E,

r1 = r2, and σ1 = σ2 we obtain by the special case just discussed that v1 ≤ v2 and v2 ≤ v1

(after switching indices) implying the identity, i.e. v1 = v2.

2.7.2 Appendix B: Proof of Proposition 2.3.3

Proof 2.7.2 (Proof of Proposition 2.3.3). Define ρ̄ = (ρ + ρE)Xt and analogously ˜̄ρ. The

specification of the surrender intensity γ in (2.11) indicates that it is the maximal point of

the optimization problem

sup
g∈G

EQθ̃

[
e−

∫ T
0 r(t,Xt)+µ(t)+gtdt Φ(ST ) +

∫ T

0

e−
∫ t
0 r(u,Xu)+µ(u)+gudt

(
Γ(t, St)µ(t) + L(t) gt

)
dt

]
,
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where G = {g is Z-adapted : ρXt ≤ gt ≤ ρ̄ Xt}. Further, v(t, s, x) = (v1(t, s) v2(t, s))x as

given in proposition 2.3.1 is the value function of the optimization problem. Now, define the

set of admissible controls by G̃ = {g is Z-adapted : ρ̃ Xt ≤ gt ≤ ˜̄ρXt}. The solution of the

corresponding optimization problem is γ̃ with value function ṽ(t, s, x) = (ṽ1(t, s) ṽ2(t, s))x.

By assumption ˜̄ρ ≥ ρ̄ pointwise and thus G ⊆ G̃. Consequently, we have that the value

functions satisfy v(t, s, x) ≤ ṽ(t, s, x),



Chapter 3

A Risk-Based Premium: What does

it mean for DB Plan Sponsors?1

3.1 Introduction

In chapter 2 we have dealt with the market consistent valuation of a stylized equity-linked

life insurance contract in a regime-switching model. Specifically, we were concerned with

the pricing of some embedded options under mortality risk, that is a bonus option, which

is a call option, and especially a surrender option which represents an American stlye put

option. In the present chapter we also work in a contingent claim framework and derive

the market consistent value for the insurance provided by the Pension Benefit Guarantee

Corporation (PBGC). This market consistent value of the insurance is interpreted as the

fair risk-based premium a sponsoring company should pay to the PBGC. To determine this

risk-based premium we have to again price an embedded option, which in our application

turns out to be a down-out put option with rebate payments. Although the corresponding

insurance contract is also long dated and thus it would be realistic to incorporate mortality

and economic risk into the model as in the previous chapter, we neglect these sources of risk

and rather model the pension fund’s and the plan sponsor’s investment policy in a Black

Scholes setup. Unlike chapter 2 we are now able to derive a closed-form solution for the

corresponding embedded option. It is important to emphasize that although this chapter

focuses on the PBGC insurance, the subsequent model holds for any pension guarantee

fund, while the qualitative results carry over to any insurance guarantee fund in general.

The Pension Benefit Guaranty Corporation (PBGC) is a federal US corporation that

was created by Congress in the 1974 Employee Retirement Income Security Act (ERISA)

to provide pension insurance for participants in private defined benefit (DB) pension plans.

By law any sponsoring firm of a qualified DB plan is required to get into an insurance

contract with the PBGC. Broadly speaking, the PBGC can be considered as an insurance

guarantee fund with the main difference that its clients are not solely insurance compa-

1This chapter is based on Chen and Uzelac (2014)

33
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nies. The long-term financial viability of the PBGC has recently triggered hot discussion

after the termination of several severely underfunded pension plans. Some prominent cases

are Delphi, Lehman Brothers, Circuit City, GM and Chrysler, and some earlier cases like

Anchor Glass Container Corporation Service Retirement Plan, the Pension Plan of Bethle-

hem Steel Corporation and Subsidiary Companies, and the Polaroid Pension Plan. These

terminations have worsened the financial position of the PBGC dramatically. The PBGC

reported a year-end deficit of $21.9 billion and $23 billion in its 2009 and 2010 Annual

Report, although the PBGC still had a surplus of $9.7 billion in 2000. In fact, 2010 marked

the eighth straight year that the PBGC had been on the Government Accountability Of-

fice’s “high-risk” watch list. Experts warned that if the PBGC were forced to take over

the pension plans of massive companies, its deficit could be even more substantial and the

financial condition of the PBGC could be even worse.

There are a variety of drivers which have caused the severe deterioration of the PBGC’s

financial condition. One very important driver is the ineffective premium calculation. In

2010, about 70% of the PBGC premiums were flat 2 and 30% were variable rate premiums.
3 The flat part currently consists of a 42$ premium per participant while the variable rate

premium is solely based on the pension funds’ underfunding, i.e. the sponsoring companies

pay 0.9% of the underfunding of their pension funds. It is important to emphasize that

both the flat and variable premium fail to account for the overfunding of a pension fund,

the credit risk of the firm, asset allocation risk in the pension fund, and the correlation

between the assets of the firm and its pension fund. As already pointed out by Josh Got-

baum (director of the agency) in an interview in February 2011: “it is not fair to say to

businesses that are financially sound and have plans in good shape that they should pay

the same premiums as guys who are not.” In the academic literature, Bodie (2006) and

Wilcox (2006), Brown (2008) and Love, Smith and Wilcox (2009) point out a flat premium

implies that the PBGC insurance is mispriced and mispriced pension insurance gives firms

adverse incentives.4 The economic rationale is that the charge of a flat premium leads to

gains in market value of equity for more risky firms and thus gives sponsors the incentive

to invest more riskily and to underfund their pension funds. A further consequence is that

less risky sponsors and pension funds will subsidize more risky ones and therefore have an

incentive to withdraw from the pension system,5 see Stewart (2007).

A risk-based premium has been considered a possible solution to the adverse incen-

tive and cross subsidization problem. President George W. Bush advocated a risk-based

premium in his 2006 and 2007 government budget plan and in February 2011, President

2A flat premium charge is the practice in most of the existing insurance guarantee funds, see Schmeisser
and Wagner (2013).

3Since 2007 there exists a third premium component called annual termination premium, but thus far
this premium part is negligible, see pbgc.gov.

4Cummins (1988) applies the same argument to insurance guarantee funds in general.
5A pension fund could voluntarily drop out of PBGC when some specific criteria are fulfilled. See

pbgc.gov for details.
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Obama backed up the risked-based premium endorsed by Bush. The Obama’s budget does

not mention how to take into account the risks that different sponsors pose to their retirees

and to the PBGC. This authority to adjust premiums is given to the PBGC board. Josh

Gotbaum says “they would be based on the company and the plan. For example, company

risk might be determined by the company’s credit rating or the value of its debt securities.

Plan risk could be based on the nature of its asset base”. In the current stage, it is unclear

for the PBGC how to enforce a risk-based premium.

In this chapter, we extend Chen’s (2011) model to determine a risk-based premium for

the insurance provided by the PBGC by modeling the conventional way of a premature

termination, distress termination, instead of the less common involuntary termination. In

an involuntary termination, when the pension fund’s asset falls below or hits a pre-specified

regulatory threshold before or at the maturity date T , the underfunded pension fund will

be trusted by the PBGC. In a distress termination, the premature termination is triggered

by the underfunding of the sponsoring company. The distress termination mechanism is

motivated since 99% of all plan terminations until 1995 were distress terminations (see e.g.

Kalra and Jain (1997)) and the more recent OECD paper by Blome, Fachinger, Franzen,

Scheunstuhl and Yermo (2007) confirms that still the most part of terminations are of dis-

tress type. In addition, we consider a further realistic perspective by allowing for a capped

PBGC insurance payoff.

We are able to obtain an analytical valuation formula for the premium. More impor-

tantly, this is the first study using recent data that empirically illustrates which sponsors

could be charged a higher and which sponsors a lower premium. In particular, we acquired

the relevant data of the 100 largest American DB sponsors. Our analysis shows that the

premiums paid to the PBGC differ significantly according to the differences in the sponsor

and pension fund risks. The empirical results nicely illustrate that our risk-based premium

calculation does not give sponsors adverse incentives as an increase in pension fund or spon-

sor specific risks comes at the cost of paying a considerably higher premium to the PBGC.

The new practice of the PBGC to also charge a variable rate premium, which is solely based

on the underfunding of the pension funds, goes partly in the right direction to eliminate

adverse incentives and cross subsidization as our results show that the funding ratio is the

most significant driver of the risk-based premium. However, the variable rate premium

does not take into account that overfunded pension funds should be charged a significantly

lower premium than underfunded ones, a point which is an important implication of our

model. Moreover, our results suggest that other financial risk factors need to be taken

into account, in particular it is very important to also incorporate sponsor specific risks like

the leverage of the sponsoring companies in order to obtain an adequate risk-based premium.

The remainder of the chapter is organized as follows. The next section briefly reviews

the literature about insurance guarantee funds in general and about the PBGC insurance.

In the sections 3.3 and 3.4 we first model the insurance guarantee provided by the PBGC
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under distress termination and then derive the valuation formula for the risk-based premium

by using the contingent claim approach. In the following section some comparative statistics

based on the analytical formula in the previous section are exhibited. In the sections 3.6.1

and 3.6.2 we use the real data to determine and compare the risk-based premiums for the

100 largest DB pension funds in the US. The section 3.7 discusses a more general distress

termination procedure in which the premature termination of the pension fund is modeled

as the event that the pension fund assets and the assets of the sponsoring company fall

below the pension liabilities and the corporate debt. This model is used as a robustness

check for our proposed distress termination model. Finally, we present our conclusions in

section 3.8 and the detailed derivation of the risk-based premium calculation in section 3.9.

3.2 Literature Review

The academic literature about insurance guarantee funds in general is extensive. Cummins

(1988) employs an option pricing approach to determine risk-based premia for the insurance

guarantee fund under three different model assumptions. This model is extended by Duan

and Yu (2005) to a multi-period setting taking risk-based capital allocations into account.

Rymaszewski, Schmeisser and Wagner (2012) introduce the concept of utility-based premi-

ums. Moreover, Han, Lai and Witt (1997) address the problem of a system with ex post

charges 6 not being able to be organized in a truly risk-based way due to the fact that the

insolvent company, which may have been the most at risk, is typically not charged at all.

Yasui (2001) points out that ex ante levies have the advantage of enabling relatively quick

handling of insolvency cases, as funds for policyholder compensation are always available,

which is particularly important if large (insurance) companies go bankrupt.

Considering specifically the PBGC insurance, three strands of academic literature have

been developed. A recent strand is built by Romaniuk (2011), who studies the investment

problem of the PBGC. Another direction is to determine an optimal intervention policy

for the PBGC in terms of finding critical funding ratios such that the PBGC prematurely

terminates these underfunded DB pension plans. This was first studied by Kalra and Jain

(1997) and is also studied in this dissertation in chapter 4. Since Sharpe (1976) the eco-

nomically fair pricing problem of the PBGC insurance has also been widely analyzed in

the literature. The realistic but in practice less common involuntary termination case is

studied in a variety of papers. Most studies assume the term to maturity of the PBGC

insurance is known and also ignore that the pension fund can be closed prematurely due to

its underfunding, thus they model the PBGC insurance as a plain vanilla put option, see

Treynor (1977), Chen, Ferris and Hsieh (1994) and others. The premature termination is

first considered in Kalra and Jain (1997) and extended by Chen (2011) by modeling the

PBGC insurance as a secondary guarantee. This chapter studies the fair pricing problem

of the PBGC in the most relevant distress termination framework and can be seen as an

6In the context of the PBGC’s premium practice the variable rate premium is an ex post charge, while
the flat rate premium is as an ex ante charge.
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extension to the influential papers of Marcus (1987) and mainly of Lewis and Pennacchi

(1994). Marcus (1987) models the PBGC’s liability as a contingent forward, which allows

the PBGC to gain the surpluses from overfunded terminated plans. It is not very realistic

because the PBGC’s liability can even become negative in this model, but law does not

allow the PBGC’s liability to be negative. Lewis and Pennacchi (1994) extend the previous

literature by considering the PBGC liability as a contingent put option.

Our modeling framework clearly differs from the above authors. That is, we consider

the PBGC insurance from the perspective of a representative beneficiary who retires at a

specific nonrandom time in the future. Accordingly the PBGC liability becomes a down

and out put option in our model. In addition we incorporate the two realistic perspectives

of a secondary guarantee and of the capped PBGC insurance payoff, which are not covered

in Marcus (1987) or Lewis and Pennacchi (1994). Notwithstanding these differences with

Lewis and Pennacchi (1994) the economic implications of our models are similar. First, in

contrast to Marcus (1987), our models rule out a negative value for the PBGC liability.

Second, our models suggest that sponsors with better funded pension funds should pay less

premiums to the PBGC. Third, we also obtain the intuitive result that a sponsor with a

higher firm net worth should pay less premiums to the PBGC.

3.3 Model Setup

The basic model setup is based on Chen (2011) and most of the notation is drawn from

that paper. However, Chen (2011) models an involuntary distress termination while this

chapter considers distress termination.

We consider the pension insurance for a single-employer’s defined benefits pension plan.

Let us assume that the pension plan is issued at time t0 = 0 to a representative beneficiary

and that the benefits are paid out as a lump-sum payment BT at the beneficiary’s retire-

ment date T . In order to focus on the effect of the investment policy of the pension fund, of

the plan sponsor, and their possible default on the insurance of the PBGC, we assume that

the pension liability BT is deterministic. In other words, we assume that the plan sponsor

is obliged to pay a fixed pension benefit T years from now on. In chapter 5 we will model

BT stochastically, as a function of the beneficiary’s salary and years of service, and also

show how the usual life annuity payments can be converted into a lump-sum.

There is a risk free asset F and a traded risky asset A in the economy. The risk free

asset evolves according to

dFt = rFtdt, F0 = 1 (3.1)
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for a deterministic risk free rate r. The traded risky asset A evolves according to

dAt = rAtdt+ σAAtdW
Q1
t , A0 = a, (3.2)

where σA is the constant volatility σA > 0 andWQ1 is a standard Brownian motion under the

risk neutral probability measure Q. As the main focus of the paper is the determination of

the PBGC insurance premium, the asset processes have been expressed immediately under

the risk-neutral instead of the real-world probability measure, see also remark 3.3.1 for

a justification. Pension funds typically follow a rebalancing strategy in which the actual

asset allocation fluctuates closely around a given strategic asset allocation. To analyze

rebalancing and to take account of the plan’s investment portfolio, we assume that the

pension fund trades only in the risk free asset F and the risky asset A in a self-financing

way starting with initial wealth X0. Using π to denote the fraction of wealth invested in

the risky asset A and the remaining (1−π) fraction invested in the risk free asset F , we can

write down the following assets process of the pension fund under the risk neutral measure

Q:

dXt =rXtdt+ π σAXt dWQ1
t . (3.3)

Compared to (3.2), the volatility of the pension fund’s assets becomes πσA. For π = 0, the

pension fund invests in the risk-free assets only; and for π = 1, the pension fund invests in

the risky assets only.

We assume that the plan sponsor’s market value of assets also follow Black-Scholes dynamics

with a volatility σc > 0. Under the risk neutral probability measure Q, the market value of

assets evolves over time according to

dCt =rCtdt+ σcCt(ρdWQ1
t +

√
1− ρ2dWQ2

t ), C0 = c, (3.4)

where WQ2 is again a standard Brownian motion under the risk-neutral probability measure

Q, independent of WQ1 , and C0 is the initial value of the sponsoring company’s assets.

Note that the sponsoring corporation’s and the pension fund’s assets are correlated with a

correlation coefficient ρ ∈ (−1, 1).7 For ρ = 0, these two assets are uncorrelated.

Remark 3.3.1. We are going to use an option pricing approach to determine a risk-based

premium for the PBGC insurance. It is important to emphasize that this approach crucially

depends on the assumption that all cash flows in our model can be replicated. If we deviate

from this implicit assumption the only alternative to derive a risk-based premium would be

to rely on actuarial valuation techniques, which would require the specification of time and

state preferences. However, as in our context it is not really clear whose preferences should

be modeled we opt for the option pricing approach.

7We exclude the perfect correlation cases: ρ = 1 and ρ = −1. In these extreme cases, the pension fund
either invests directly in the stock of the sponsoring company or in a portfolio which is perfectly negatively
correlated with the sponsor’s assets. In both cases, the sponsor’s and the pension fund’s assets are fully
driven the randomness WQ1 . The valuation becomes simpler and differs from what we will present in the
remaining texts.
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3.4 The Distress Termination Framework

Distress termination is initiated by the plan sponsor by proving that it is unable to pay its

liabilities and to remain in business.8 In this simple distress termination model, we assume

that the plan sponsor defaults if the threshold εφC0e
gt, ε ≥ 1 and ε φ < 1, is hit. That

is, the sponsoring company initiates default if it is unable to pay its outstanding corporate

debt φC0 e
gt plus an additional buffer (ε− 1) C0 φ e

gt. The product φC0 is the initial debt

value and g the constant growth rate at which the debt level increases. The additional

buffer (ε−1)φC0 e
gt serves to partly or fully cover the possible underfunding of the pension

fund. Note that including the regulatory parameter ε > 1 can be interpreted economically.

The additional buffer can be understood as the moral obligation of the plan sponsor to

always be able to cover at least partly the deficits of the pension fund. From the economic

perspective only a small value for ε is reasonable since a firm that performs well and has a

sufficiently high net worth has no incentive to terminate its business. The inequality εφ < 1

is a technical condition which makes sure that the sponsoring company is not yet defaulted

at the contract-issuing time t = 0. As in Chen (2011) we formulate the termination event

in a standard barrier option framework and the termination time τ is constructed as the

first hitting time that the plan sponsor’s assets fall below or cross the threshold ε φC0 e
gt:9

τ = inf{t|Ct ≤ ε C0 φ e
gt}. (3.5)

If τ ≤ T , there is a permature/mature termination enforced by the regulator. If τ > T ,

the pension plan is naturally closed at the maturity date T .

We need to impose the constraint ε ≥ 1 to incorporate the realistic perspective that the

sponsoring company provides the primal support and the PBGC insurance is considered as

a secondary guarantee. Specifically, the sponsoring company will not provide the financial

support at all cost and its support depends on its own funding situation and the funding

situation of the pension fund:

• when the sponsoring company defaults, but the pension fund is sufficiently funded,

then the sponsoring company does not have to balance any deficits of the pension

fund;

• when the sponsor defaults and the pension fund is underfunded, then the sponsoring

company will fully cover the deficit if the buffer is sufficient or it will only partly cover

it if the deficits exceed the buffer.

The residual deficits that the sponsor cannot cover will become a financial burden on the

PBGC. This way of modeling distress termination is simplifying and it has two weaknesses.

8In practice, the plan sponsor has to meet one or more of four distress tests specified by ERISA. Our
framework mostly corresponds to the business continuation distress test, which is the most commonly used
one.

9Strictly speaking, the premature termination is not triggered by the sponsor’s underfunding, but due
to its poor financial condition.
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First, we could have inefficient termination, i.e. the pension fund is terminated though it

performs sufficiently well to cover the entire pension liabilities. It is important to note that

this scenario is possible as long as we do not jointly incorporate the distress and involuntary

termination case.10 Second, there could arise a scenario where the pension fund performs

very poorly, but the sponsoring company’s assets do not hit the threshold such that neither

the sponsor nor the PBGC covers the deficit in the pension liabilities. However these two

scenarios occur rarely in practice. First, as Bodie, Light, Morck and Taggart Jr. (1987) show

the DB plan’s funding degree is considerably positively related to the sponsoring company’s

long run profitability, therefore it is unlikely that the the DB plan is very well funded while

the plan sponsor is in financial distress. Second, if the sponsoring company is sufficiently

solvent while the DB plan is fairly underfunded, then the sponsoring company is required

to make considerable contributions to improve the pension fund’s funding status. More

importantly, this simple distress termination model has the advantage that we will obtain

closed-form solutions for the PBGC premium.

If the plan sponsor initiates distress termination prematurely or at maturity (τ ≤ T ), the

sponsor support and the insurance payoff of the PBGC occur already at τ . If the pension

plan is naturally terminated at maturity (τ > T ), both of the supports follow at time T .

Based on the above assumptions, we discuss the possible deficits the plan sponsor and the

PBGC need to cover for both cases: τ ≤ T ; and τ > T . In the former case, the assets of the

pension fund will be examined right at τ ≤ T . If we observe Xτ < BT e
−r(T−τ), 11 i.e. the

assets of the pension fund fall below the discounted promised pension payment, the pension

fund is underfunded and the deficits of the fund are (BT e
−r(T−τ) − Xτ ). In this scenario,

the sponsoring company is obliged to provide a primal support to the underfunded pension

fund. Whether the sponsor provides a partial or full support depends on the magnitude of

the underfunding. The size of this primal support is given by

SP (τ) =(BT e
−r(T−τ) −Xτ )1{Xτ<BT e−r(T−τ)}1{(BT e−r(T−τ)−Xτ )<(ε−1)φC0egτ}

+ (ε− 1)φC0e
gτ1{Xτ<BT e−r(T−τ)}1{(BT e−r(T−τ)−Xτ )>(ε−1)φC0egτ}, (3.6)

where 1{A} is the indicator which is 1 when event A occurs and 0 otherwise. The first term

on the right-hand side of (3.6) corresponds to the case in which the buffer is sufficient to

cover all the deficits of the pension fund. In this case, the covered deficit is the difference

between the discounted liability BT e
−r(T−τ) and the asset value of the pension fund Xτ .

The second term corresponds to the case in which the buffer is insufficient to cover all the

deficits of the pension fund. After paying back to its own debt holders, the corporate can

provide what still remains, i.e. (ε− 1)φC0e
gτ , to the beneficiary.

For τ > T , the sponsor guarantee at T is almost the same as that in Chen (2011) with

10By modeling the first hitting time as the minimum of the stopping time in Chen’s (2011) model and
our above specified stopping time we would eliminate inefficient termination.

11Since the payment follows at τ , we have adjusted the pension benefits to the discounted value accord-
ingly.
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the only difference that the value of CT is unknown and we know that the sponsors assets

have never hit the treshold ε φC0 e
gT . That is, the sponsoring company needs to provide

the guarantee

SP (T ) =(BT −XT )1{CT>φC0egT+(BT−XT )}1{XT<BT }

+ (CT − φC0e
gT )1{εφC0egT<CT<φC0egT+(BT−XT )}1{XT<BT }. (3.7)

We can express the entire support provided by the plan sponsor in the following compact

form:

SP = SP (τ)1{τ≤T} + SP (T )1{τ>T}. (3.8)

In addition to the sponsor support, the PBGC provides a secondary security to the

pension plans, i.e. it covers the residual deficits that the sponsoring company is unable to

cover. However, in practice the amount of residual deficits the PBGC covers is capped.

The inclusion of a cap is important since if a pension fund is terminated that is highly

underfunded the PBGC can only provide a not-too-high fraction of the retirement income.

A good example is Delphi where the retirees typically received pension payments ranging

from $3000 to $4000 a month, but a 55-year old retiree can receive at most $2025 from the

PBGC. Hence, we include an additional important perspective by allowing for a capped

payoff Ḡ, where we assume Ḡ < BT . We assume that Ḡ is the capped payoff binding for

the retirement date T . If there is a premature termination at τ < T , the capped amount is

correspondingly adjusted to Ḡe−r(T−τ). Denote the difference between the present value of

the pension liabilities and the buffer by BC(t) = BT e
−r(T−t) − (ε − 1)φC0 e

gt, t ∈ [0, T ],

then we can express the insurance of the PBGC at τ ≤ T as the minimum of the difference

between the residual deficit BC(τ)−Xτ and the capped amount Ḡe−r(T−τ). Formally the

insurance of the PBGC is then given by

G(τ) = min(BC(τ)−Xτ , Ḡe
−r(T−τ)) 1{Xτ<BC(τ)}

=(BC(τ)−Xτ ) 1{max(0,BC(τ)−Ḡe−r(T−τ))<Xτ<max(0,BC(τ))}

+Ḡe−r(T−τ)1{Xτ<max(0,BC(τ)−Ḡe−r(T−τ))}, (3.9)

where in the second step we just split the min function in the 2 possible cases.

If τ > T , the insurance payoff of the PBGC is once again described by the minimum

between the residual deficit and the capped amount. In this case, the residual deficit differs,

since now CT is unknown. We have

G(T ) =1{XT<BT }min
(
Ḡ,max(BT −XT − Φc(T ), 0)

)
= max

{
0, BT −XT − (CT − φC0e

gT )
}

1{εφC0egT<CT<φC0egT+BT−XT }

· 1{XT<BT }1{BT−XT−(CT−φC0egT )<Ḡ}

+ Ḡ1{εφC0egT<CT<φC0egT+BT−XT }1{XT<BT }1{BT−XT−(CT−φC0egT )>Ḡ}. (3.10)
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The PGBC balances the deficits of the pension fund only when the sponsoring company is

unable to cover the entire deficits, i.e. when εφC0e
gT < CT < φC0e

gT + BT − XT . The

size of the PBGC’s payoff depends on whether the capped amount Ḡ is binding. More

compactly, the insurance of the PBGC can be expressed as follows:

G = G(τ)1{τ≤T} +G(T )1{τ>T}. (3.11)

That is, the insurance payoff provided by the PBGC is a package of exotic put options.

3.4.1 A Risk-Based Premium

Usually periodic (yearly) premiums are charged by the PBGC for providing the insurance.

For simplicity, we assume that the PBGC receives an upfront premium for providing the

security to the beneficiary. The upfront premium corresponds to the today’s price of the

insurance claim (3.11) on pension fund’s and sponsoring company’s assets. In our context,

the risk-based premium of the PBGC insurance can be derived by computing the expected

discounted payment under the risk-neutral measure Q.

Proposition 3.4.1. The risk-based premium paid by the plan sponsor to the PBGC is the

expected discounted insurance payoff under the risk neutral probability measure:

G0 =EQ [e−rTG(T )1{τ>T}
]

+ EQ [e−rτG(τ)1{τ≤T}
]
, (3.12)

where EQ denotes the expected value under the risk-neutral measure Q. The closed-form

solution is given in the appendix.

Proof 3.4.2. A detailed derivation is provided in the appendix in section 3.9.

3.5 Comparative Statistics

Before we move to empirically illustrate our risk-based premium calculation for the 100

biggest DB pension funds in the US, we exhibit some comparative statistics. The purpose

of the analysis is to demonstrate the impact of several main parameters on the PBGC

premium. The premium is expressed as the percentage of the promised pension payment

BT . By changing only one parameter each time, we can better understand what role each

parameter plays in the PBGC premium. For this numerical calculation, we fix the relevant

parameters as follows:

ε =1.05, r = 0.05, σc = 0.25, φ = 0.6, g = r, π = 0.6,

X0 =100, BT = 240, σA = 0.20, C0 = 100, T = 15, ρ = 0.2, Ḡ = 120. (3.13)

Figure 3.1 plots the PBGC premium as a function of the promised pension payment BT

for diverse correlation coefficient ρ. As we have fixed the initial asset value of the pension
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Figure 3.1: Fair premium G0 as a function of BT for different ρ levels.

fund to 100, an increase in BT implies a deterioration of the funding situation of the pension

fund, see the next section. As a result, it becomes more likely that the pension fund’s ter-

minal asset XT is insufficient to provide the promised pension payment. Hence, the chance

that the PBGC needs to cover the possible deficits of the pension fund rises, which leads to

a higher PBGC premium. So underfunded pension funds are supposed to be charged with

a higher risk-based PBGC insurance premium. Furthermore, it can be read from Figure 3.1

that the premium increases in the correlation ρ between the pension fund’s and sponsor’s

assets. When the sponsor’s and the pension fund’s assets are strongly positively correlated,

the likelihood is high that the sponsoring company is unable to provide full/partial guar-

antee when the pension fund is already at default. These results imply that the sponsoring

company can free ride the PBGC much when the correlation coefficient is high.

How the volatility σc of the sponsor’s asset influences the premium is exhibited in Figure

3.2. The volatility σc might show a non-monotone effect on the premium, depending on

the regulatory parameter ε. However for a realistic scenario, say ε = 1.05, we obtain the

economically intuitive upward sloping curve for the premium as a function of σc, i.e. plan

sponsors who invest in more risky investment portfolios should be charged with a higher

premium for the PBGC insurance. A higher σc is more likely to cause the default of the

sponsoring company. Hence, the premium part upon premature termination increases in

σc. But it causes a simultaneous decrease of the premium part upon natural termination.

For a low regulatory parameter, the former effect seems to dominate. For a higher and less

realistic ε level (e.g. ε = 1.1 or ε = 1.15), an increase in σc could lead to a hump-shaped

curve for the premium. The impact of the sponsor’s assets volatility is most pronounced

for the more realistic ε level, ε = 1.05. In the same figure, we observe the negative relation

between the premium and the regulatory parameter ε. This parameter influences the prob-
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Figure 3.2: Fair premium G0 as a function of the volatility of the sponsor’s assets σc for different
ε levels.

ability of premature termination and how high the buffer owned by the sponsoring company

is to cover the deficits of the pension funds. The main effect is: the higher the ε level, the

more deficits the sponsor company can balance. Hence, an increase in ε leads to a smaller

insurance payoff of the PBGC, and consequently to a smaller PBGC premium.

In Figure 3.3, we observe the effect of φ on the PBGC premium for different σ values,

where φ is the initial leverage ratio of the the plan sponsor and σA drives the volatility of

the pension fund’s assets. It is observed that the PBGC premium is (weakly) hump-shaped

in the leverage ratio φ. The mainly increasing premium is primarily the result of an intu-

itive economic effect: the higher the leverage ratio, the more the sponsoring company needs

to serve the outstanding liability and therefore the more likely it is that the sponsoring

company will initiate distress termination before the retirement date, which increases the

premature premium part. The (weak) decrease for higher leverage ratios is due to two

effects. First there is a counter-effect that in our simple distress termination model a higher

leverage ratio means that the sponsoring company uses a higher buffer in absolute terms to

provide the primal guarantee. Second a higher φ also decreases the probability of natural

termination, which might decrease the premium in charge of natural termination. In the

same figure, we observe that the PBGC premium goes up in the volatility of the pension

fund. The more risky the pension fund’s portfolio, the more probably the pension fund

becomes underfunded. Therefore, it is of high likelihood that the PBGC needs to balance

the residual deficits of the pension fund. The PBGC premium rises.
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Figure 3.3: Fair premium G0 as a function of φ for different σ levels.

Finally in Figure 3.4 two apparent effects on the PBGC premium are demonstrated: the

increasing effect of the capped amount and the rising effect of the equity-holding (π) of the

pension fund. When the PBGC promises a higher capped amount Ḡ, it means a higher cost

for the PBGC. A higher equity holding has a similar effect as holding a more risky portfolio

for the pension fund. Therefore, the PBGC premium rises.

3.6 Empirical Example

In the following section we present an empirical example where we compute risk-based

premiums for a representative subsample of the 100 largest US corporates and their defined

benefit plans.The corresponding data set is obtained from P&I Investments. Representative

means that we include sponsors from all industry sectors in this subsample. It is important

to emphasize that the risk-based premiums we estimate can hardly be interpreted as real

risk premiums since as well our theoretical model relies on some simplifying assumptions as

does the estimation of the relevant parameters at hand. Nonetheless the major objective

of this empirical exercise is to illustrate how premiums sponsoring companies had to pay

would diverge if the premium calculation were risk-based.

3.6.1 Data and Estimation Methodology

Our data set contains the fair value of the pension plan assets, the benefit obligation, the

funding ratio, the total corporate asset value and the equity value of the sponsor and the

asset allocation of the pension fund for each sponsor.
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First of all, we have to resolve the heterogeneity in our sample. This is necessary because

the different firms have a different number of policyholders with different characteristics as

age, income etc., but our model yields a theoretical premium for a single representative

policyholder. This implies that we cannot readily infer the initial wealth of the pension

fund X0, the initial value of the firm C0 and the present value of the pension obligations

BT from the data set. That is why we normalize the initial wealth level X0 to 100 $ and

the initial asset value C0 to 300 $ for each sponsor in the sample.12 Then, to obtain an

adequate estimate for the lump sum payment to the beneficiary in T years BT in our model

we can use the observed funding ratio as the main input. First, we know that the funding

ratio is defined as the ratio of the initial asset value and the initial outstanding accrued

liability.13 More precisely, let R0 be the funding ratio and B0 the initial pension liability,

then R0 = X0

B0
⇔ B0 = R−1

0 X0. In addition, we know that the initial outstanding liability

in our model is simply given by the discounted pension liability BT , that is B0 = e−r TBT .

Equating the latter two equations we estimate BT as

B̂i
T =erT X0 (Ri

0)−1,

where the superscript i denotes the pension liabilities of sponsor i. Put differently, our

simplifications imply that the pension liabilities are a riskless asset under the risk-neutral

probability measure with initial value X0R
−1
0 .

12The sponsor’s initial asset value is set higher since in practice sponsors assets usually take significantly
higher values than those of pension funds.

13In chapter4 we model the funding ratio dynamically.
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To estimate the fraction invested in the risky asset we use the asset allocation data in

our sample. Our sample contains investment shares in equity, fixed income, alternatives,

real estate, private equity, hedge funds, cash and other investments. As the investments

within the different types of assets are not further characterized in the data set we classify

the asset classes as risky or riskless by relying on long-term empirical evidence. Specifically,

we classify investments in equity, private equity, hedge funds and real estate as investments

in the risky asset, while we characterize cash and fixed income investments as riskless,

since except hedge funds 14 the former have been significantly more volatile in the long

run, see for instance Eychenne, Martinetti and Roncalli (2011). For the other assets and

alternatives category in the sample, containing instruments like derivatives, commodities,

balanced funds etc., in most cases we cannot infer from the data if these are rather equity

or fixed income type investments. Nonetheless we cannot omit these categories because

they are not negligible for a significant number of companies, i.e because their pension

funds invest more than 10% in these categories. We decide to classify the half of them as

risky and the other half as riskless as we think that this produces the smallest bias. The

classification is summarized in table 1.

Risky Asset Class Riskless Asset Class
Equity Cash
Private equity Fixed income
Hedge funds Alternatives
Real Estate Other investments
Alternatives e.g Balanced Funds
Other investments
e.g Derivatives

Table 3.1: Classification of the assets into the risky and riskless asset class.

Then the fraction invested in the risky asset is estimated as

π̂i = πiE + πiPE + πiHF + πiRE +
1

2
(πiA + πiO),

where πiE denotes the observed percentage pension fund i invested in equity, analogously

πiPE is the share invested in private equity, πiHF the share in hedge funds, πiRE in real estate,

πiA the share in alternatives and πiO the share sponsor i invested in other assets.

To estimate the sponsor specific parameters as the leverage φ and the volatility of the

sponsor’s assets σc we generally need to estimate the market value of assets, which is defined

as the sum of the market value of liabilities and the market value of equity. The market

value of equity is easily determined because all sponsors in our sample are listed companies

14Hedge funds have on average a lower volatility than fixed income investments. However we consider
them still as more risky, particularly because they have a substantially higher loss potential, see for instance
Gaurav and Kat (2003).
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and thus equity data is readily available. However it is hard to observe the market value

of liabilities. That is why we follow the standard approach in the literature and consider

the book value of liabilities, which is given in the balance sheet data of a company, as a

proxy for the latter. Then we simply estimate the leverage as the ratio of the book value

of liabilities and the approximated market value of assets, that is

φ̂i =
LiB

LiB + Ei
M

,

where LiB denotes the observed book value of liabilities of sponsor i and Ei
M the observed

market value of equity, respectively.

For the estimation of the sponsor’s asset volatility σc we use a historical data approach.

The asset value is calculated as the sum of the market value of equity and the book value of

liabilities. The book value of liabilities is available quarterly from the balance sheet data,

so we construct a historical time series with quarterly data. For each data point and each

sponsor we observe the market value of equity and infer the book value of liabilities. Then

we compute the corresponding log returns for the estimated market value of assets. Even-

tually we estimate σic as the annualized volatility of these quarterly log return time series.

Finally we specify those parameters, which are not pension fund or sponsor specific.

Parameters as the regulatory parameter ε, the maximum amount the PBGC provides Ḡ

and the risk-free rate r are naturally not sponsor specific. The growth rate g of the sponsor

liabilities is not sponsor specific here since it is a drift coefficient, which has to coincide

with the risk-free rate under the risk-neutral probability measure. Other parameters like

the correlation ρ of the sponsor’s and pension fund assets and the volatility σ of the risky

asset A in our model are sponsor and pension fund specific, but it is very hard to obtain

adequate data to estimate them. Accordingly we keep these parameters constant across

sponsors and pension funds.

We approximate σ by the S&P-500 volatility. Note that the estimated volatility of the

pension fund i, which is given by π̂i σ̂A, still varies across pension funds because of the

different share invested in risky assets.

We specify Ḡ such that the PBGC can provide a significant fraction c of the maximum

pension liabilities in the sample, specifically we estimate

ˆ̄G = max
i
c B̂T

i
.

This ensures that the PBGC covers a large part of the deficits in case of termination for

any sponsor, which is in line with its legal obligation.
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The other parameters are specified in the next section.

3.6.2 Estimation Results

First we have the following nonspecific parameter estimates and specifications:

r = g = 0.0413; σ̂ = 0.2022; ρ = 0.5; T = 15;

ε = 1.05; ˆ̄G = 0.4 ∗ 282.371 = 112.948.

The risk-free rate is approximated by the T-bill yield of a 20-year bond on 12/31/2010, σA
is estimated as the annualized volatility of the S&P 500 daily log returns from 01/01/1996

until 12/31/2010. T = 15 is chosen because this is the average duration of pension liabil-

ities. ρ = 0.5 is taken from Lewis and Pennacchi (1994). ε is set as in the comparative

statics section. Note that this value satisfies the technical condition that no sponsor in our

subsample defaults at t = 0. Ḡ is specified such as described in the previous section, where

the maximum pension liabilities BT are those of the sponsor Goodyear Tire & Rubber and

the fraction of the maximum liabilities the PBGC can provide is set c = 0.4.

In table 3.2 below we present the sponsor and pension fund specific estimates for the

representative subsample. The leverages are estimated with the corresponding market and

balance sheet data on 12/31/2010 and the sponsors asset volatilities are estimated as de-

scribed in the previous section for a period ranging from 01/01/2001 until 31/12/2010 15

including 40 observation points for the approximated market value of assets. We normalize

the premium sponsors paid to the PBGC by considering the percentage premium per pen-

sion liability, that is G̃ = G0

BT
. Due to the different levels of BT , this ratio provides a better

statistic for the premium instead of the absolute premium G0.

First our estimation results illustrate that the percentage premiums per pension liability

differ significantly across sponsors and their pension funds. The message of this important

result is that if sponsor and pension fund risk are adequately taken into account then a

mainly flat premium, which is still the current practice at the PBGC, is not justifiable at

all.

More specifically, we see that the sponsor Bank of America pays the smallest percentage

premium per liability though it has at the same time the highest leverage. Due to the hump

shape of the premium as a function of leverage, the extremely high leverage dampens the

magnitude of the premium slightly, so does the very low asset volatility. More importantly

the very low premium is mainly justified because Bank of America has a very well funded

pension fund, which ensures that even if it goes bankrupt in the near future it will be very

likely that the corresponding pension liabilities can be met. The same justification also

15We cannot use a 15-year period for the historical estimation as some sponsors in our subsample were
not listed prior to 2000.



50 A Risk-Based Premium: What does it mean for DB Plan Sponsors?

applies to JP Morgan who pays the second smallest percentage premium per pension lia-

bility. On the other hand, Goodyear Tire&Rubber is clearly the sponsor carrying the most

sponsor and pension fund risk because it has the worst funded pension fund, a very high

leverage and a high investment share in risky assets. From the previous comparative statics

section and these two examples we see that the funding ratio α, which accounts for the

different sizes of the pension liabilities BT , seems to be the most significant factor deciding

the difference in the percentage premiums.

However our estimation results also confirm that other factors play a significant role

in explaining differences in the premiums. To see this we can for instance compare spon-

sors having the same funding ratio as Ashland and Coca Cola. We observe that Ashland

pays a percentage premium which is almost 3 times larger than that of Coca Cola. Here

the substantial difference is clearly explained by the relatively high leverage of Ashland,

which is about 2.7 times as large as that of Coca Cola and clearly dominates the effect of

the more risky pension fund of Coca Cola due to the higher investment share in risky assets.

Another striking example illustrating the significant effect of the leverage is the compari-

son between the sponsors Wells Fargo and Coca Cola. Though the former has a considerably

larger funding ratio, a substantially lower asset volatility and investment share in risky as-

sets, it pays a 0.2% greater percentage premium per liability. This is purely explained by the

very high leverage, which is more than 3 times larger than that of Coca Cola. Accordingly,

we identify the leverage as the second major risk factor, in particular the major sponsor spe-

cific risk factor, that accounts for differences in the premiums per unit liability in our model.

Although their effect is smaller in magnitude, the investment share in risky assets and

the sponsor’s asset volatility together can produce a considerable effect on the PBGC pre-

mium. To illustrate this point we compare the sponsors Eli Lilly and Exxon Mobil. Eli

Lilly has a moderately larger funding ratio and a slightly larger leverage than Exxon Mobil,

but pays a about 2.6 times greater percentage premium per liability. As these two opposite

effects nearly offset the significantly greater premium is mainly the result of the substan-

tially greater asset volatility and the considerably greater investment share in risky assets.

3.7 Extension: A More General Distress Termination

Model

A more realistic way to model distress termination is to model the default of the sponsoring

company as the event that the pension fund assets and the assets of the sponsoring company

fall below the pension liabilities and the corporate debt. More precisely, we could model

the first hitting time as
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Sponsor
ˆ̃ i
G

ˆ̃ i
G1 φ̂i σ̂c

i Ri
0 B̂i

T π̂i

3M 1.648 1.570 0.186 0.174 0.940 197.660 0.678
Aetna 6.372 10.470 0.696 0.146 0.901 206.215 0.755
American Electric 8.704 11.250 0.680 0.159 0.803 231.382 0.693
Ashland 8.704 9.992 0.578 0.186 0.754 246.419 0.470
AT&T 5.996 8.370 0.475 0.229 0.883 210.419 0.527
Bank of America 0.040 7.330 0.938 0.086 1.123 165.450 0.632
Baxter International 5.451 5.370 0.266 0.213 0.784 236.990 0.630
Boeing 7.016 7.800 0.579 0.166 0.833 223.049 0.459
Caterpillar 5.928 6.210 0.472 0.140 0.826 224.939 0.736
Coca-Cola 3.120 3.010 0.215 0.178 0.754 246.419 0.697
Consolidated Edison 5.878 5.910 0.634 0.075 0.749 248.064 0.763
Dominion Resources 2.863 5.160 0.551 0.147 1.137 166.831 0.656
Dow Chemical 7.773 8.140 0.542 0.147 0.749 248.064 0.593
Eli Lilly 5.890 5.970 0.315 0.197 0.861 215.795 0.808
Exxon Mobil 2.287 2.240 0.288 0.144 0.822 226.034 0.609
FedEx 3.027 3.150 0.287 0.186 0.918 202.396 0.500
General Dynamics 7.972 8.210 0.418 0.180 0.677 274.446 0.722
Goodyear Tire & Rubber 13.529 13.960 0.836 0.139 0.658 282.371 0.667
Hewlett-Packard 5.261 7.150 0.468 0.227 0.865 214.800 0.392
Honey International 7.068 7.370 0.396 0.189 0.813 228.536 0.732
IBM 4.007 5.170 0.331 0.230 0.980 189.592 0.528
JP Morgan 0.099 7.580 0.922 0.078 1.301 142.813 0.814
United Technology 3.690 3.810 0.332 0.170 0.916 202.838 0.614
Walt-Disney 4.731 4.750 0.305 0.174 0.703 264.296 0.600
Wells-Fargo 3.307 8.430 0.875 0.060 0.932 199.356 0.641

Table 3.2: The premiums are expressed as the percentage ratio of the estimated promised
benefit B̂i

T . The first column denotes the premium in the simple distress termination model

and the second column the one in the extended distress termination model. φ̂i and σ̂c
i are

estimated the debt ratio and asset volatility of sponsor i. π̂i is the estimated equity holding
of the pension fund i.
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τ = inf{t|Ct +Xt ≤ η(C0 φ e
gt +BT e

−r(T−t))}, (3.14)

where η ∈ (0, 1) is assumed.

Observe that unlike our simple distress termiantion model in this extended model the

sponsoring company can at most provide a partial support if distress is initiated through the

underfunding of the pension fund. The main advantage of this setup is that by construction

of the hitting time the scenario where the pension fund performs very poorly but neither the

sponsor nor the PBGC covers its deficits cannot arise. The price we have to pay for this more

realistic setup is that we can no longer obtain analytic solutions for the PBGC premium.

The problem is that we cannot derive the density and the distribution of the first hitting

time in closed form, since the distribution of the minimum of the sum of two log-normal

processes is unknown. Then the premium needs to be computed by Monte Carlo simulation.

We use the more realistic distress termination model as a robustness check for our sim-

ple distress termination model. The payoff functions, which we need for the simulation are

given in the appendix in section 3.9.2.

The second column in 3.2 displays the percentage premiums per pension liability for the

representative subsample. We observe that for most of the DB sponsors these premiums

are very similar to the ones in our simple distress termination model and more importantly

the extended distress termination model also confirms that the premiums differ significantly

across sponsors. However there are some significant deviations.

Firstly, one can see that sponsors with a very high leverage, especially those from the

banking industry, pay a substantially higher percentage premium in this extended distress

termination model. For example, the sponsors Bank of America and JP Morgan do no

longer have the smallest percentage premium, but they belong to the sponsors who would

pay a higher percentage premium in this extended distress termination model. The reason

for this deviation is that in our simple distress termination model the premium can be hump-

shaped in the leverage, see figure 3.3. Accordingly a very high leverage might dampen the

premium in this model, whereas the premiums increase in the leverage in the extended

distress termination model. This is because here only the effect that a higher leverage

increases the likelihood of premature termination is present. Secondly, we can observe that

the sponsor’s asset volatility has a stronger impact in the extended distress termination

model, for instance sponsors with a fairly high asset volatility like IBM or Hewlett Packard

pay a significantly higher percentage premium per pension liability. More generally, one can

further notice that the percentage premiums are higher in the extended distress termination

model, accordingly there is a tendency that the premiums in our simple distress termination

model are downward biased.
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3.8 Conclusion

In this chapter, we model the PBGC insurance taking account of distress termination, the

most common type of termination in practice: the premature termination of the pension

fund is caused by the underfunding of the sponsoring company. A risk-based premium is

determined for the valuation of the PBGC insurance. Assuming both the pension fund’s

and the plan sponsor’s assets follow Black-Scholes dynamics and are correlated, we obtain a

analytic pricing formula for the risk-based premium. We extend the literature dealing with

the fair pricing of the PBGC insurance in the distress termination framework by incorpo-

rating two realistic perspectives. First, the PBGC insurance is modeled as a secondary

guarantee and second we allow for a capped insurance payoff.

This chapter also provides an important empirical contribution since this is the first

study using recent data that empirically illustrates which sponsors could be charged a

higher and which sponsors a lower premium. Specifically, using a data set for the 100

largest American DB sponsors, we show that the premiums paid to the PBGC should differ

significantly according to the differences in the sponsor’s and pension fund’s risks. Most

importantly, our results illustrate that our risk-based premium calculation does not give

sponsors adverse incentives to introduce risk into the pension promises as an increase in

pension fund or sponsor specific risks comes at the cost of paying a higher premium to

the PBGC. The use of a variable rate premium which solely considers the underfunding

(and ignores the overfunding) of the pension funds in the premium calculation is partly

consistent with our results that the funding ratio is the most significant driver of the risk-

based premium. An important implication of our model is that overfunded pension funds

should be charged with a significantly lower premium than underfunded ones. Moreover

our results suggest that sponsor specific risks play a very important role in the risk-based

premium, where the leverage of the sponsoring company is the most pronounced sponsor

specific risk factor in our model.

3.9 Appendix

3.9.1 Derivation of the fair premium PBGC receives

The risk-based premium of the PBGC insurance can be decomposed into two parts:

(a) EQ
[
e−rTG(T )1{τ>T}

]
(b) EQ

[
e−rτG(τ)1{τ≤T}

]
.

In order to further calculate Part (a), we first rewrite

GT =Ḡ1{XT<BT }1{φεC0egT<CT<φC0egT+BT−XT−Ḡ}

+ max
{

0, (BT −XT − (CT − φC0e
gT ))1{XT<BT }

}
1{max{φεC0egT ,φC0egT+BT−XT−Ḡ}<CT<φC0egT+BT−XT }.
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We proceed to determine Part (a) as follows

EQ [e−rTG(T )1{τ>T}
]

=EQ [e−rTG(T )
]
− EQ [e−rTG(T )1{τ≤T}

]
=

∫ dx1

−∞

∫ dy2(x)

dy1

e−rT Ḡ
1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
dydx

+

∫ dx1

−∞

∫ dy3(x)

dy2(x)

e−rT max
{

0, BT −X0e
(r− 1

2
π2σ2)T+πσ

√
Tx − (C0e

(r− 1
2
σ2
c )T+σc

√
Ty − φC0e

gT )
}

· 1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
dydx−

∫ T

0

EQ[e−rTG(T )|τ = t]Q(τ ∈ dt)

where

dx1 =
ln BT

X0
− (r − 1

2
σ2
Aπ

2)T

πσA
√
T

dy1 =
ln φεC0egT

C0
− (r − 1

2
σ2
c )T

σc
√
T

dy2(x) =
ln max{φεC0egT ,φC0egT+BT−X0e

(r− 1
2π

2σ2A)T+πσA
√
Tx−Ḡ}

C0
− (r − 1

2
σ2
c )T

σc
√
T

dy3(x) =
ln φC0egT+BT−X0e

(r− 1
2π

2σ2A)T+πσA
√
Tx

C0
− (r − 1

2
σ2
c )T

σc
√
T

.

Hereby we have used the fact that
lnXt−(r− 1

2
σ2
Aπ

2)t

σAπ
√
t

and
lnCt−(r− 1

2
σ2
c )t

σc
√
t

follow the cumulative

bivariate normal distribution with correlation coefficient ρ. Further note the difference

between the real number π within the normal distribution function and the investment

strategy.

To compute
∫ T

0
EQ[e−rTG(T )|τ = t]Q(τ ∈ dt) we need to specify the stochastic processes

(XT , CT ) given τ = t and to use the density of the first hitting time τ . First, given τ , we

have:

Cτ = εφC0e
gτ =C0 exp

{(
r − 1

2
σ2
c

)
τ + σcW

Q
τ

}
⇒ WQ

τ =
ln(εφ)− (r − g − 1

2
σ2
c )τ

σc
.
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Next, we can write Xτ as

Xτ =X0 exp

{
(r − 1

2
σ2
A π

2)τ + σA πW
Q1
τ

}
=X0(εφ)

σAπρ

σc exp

{
(r − 1

2
σ2
Aπ

2)τ − σAπρ

σc
(r − g − 1

2
σ2
c )τ + σAπ

√
1− ρ2

√
τz

}
,

where in the second line we have used that WQ
τ is correlated with WQ1

τ with a correlation

coefficient ρ and z is a standard normally distributed random variable under Q independent

of WQ
τ and WQ1

τ . At time T , we have

CT =εφC0e
gτ exp

{(
r − 1

2
σ2
c

)
(T − τ) + σc(W

Q
T −W

Q
τ )

}
:=εφC0e

gτ exp

{(
r − 1

2
σ2
c

)
(T − τ) + σc

√
T − τy

}
:=κ(τ) exp{σc

√
T − τy}

with k(τ) := εφC0e
gτ exp

{(
r − 1

2
σ2
c

)
(T − τ)

}
and

XT =Xτ exp

{(
r − 1

2
π2σ2

A

)
(T − τ) + πσA(WQ1

T −W
Q1
τ )

}
=:Xτ exp

{(
r − 1

2
π2σ2

A

)
(T − τ) + πσA

√
T − τx

}
=:h(τ) exp

{
σθ
√

1− ρ2
√
τz
}

exp
{
θσ
√
T − τx

}
with h(τ) = X0(εφ)

σθρ
σc exp

{
(r − 1

2
σ2
Aπ

2)τ − σθρ
σc

(r − g − 1
2
σ2
c )τ
}

exp
{(
r − 1

2
π2σ2

A

)
(T − τ)

}
.

x and y are bivariate normally distributed with a constant correlation coefficient ρ. Both

x and y are independent of z, which implies that the joint density of (x, y, z), f(x, y, z) =

f(x, y) f(z).

Finally we compute the integral as∫ T

0

EQ[e−rTG(T )|τ = t]Q(τ ∈ dt)

=

∫ T

0

∫ ∞
−∞

1√
2π
e−z

2/2

∫ dx5(z,t)

−∞

∫ dy6(x,z,t)

dy5(t)

e−rT Ḡ
1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
dydxf(t)dzdt

+

∫ T

0

∫ ∞
−∞

1√
2π
e−z

2/2

∫ dx5(z,t)

−∞

∫ dy7(x,z,t)

dy6(x,z,t)

e−rT
(

max
{

0, BT − h(t)eσAπ
√

1−ρ2
√
tzeπσA

√
T−tx

−
(
κ(t) exp{σc

√
T − ty} − φC0e

gT
)}) 1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
dydxf(t)dzdt,
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where

dx5(z, t) =

ln BT

h(t) exp
{
σAπ
√

1−ρ2
√
tz
}

πσA
√
T − t

dy5(t) =
ln φεC0egT

κ(t)

σc
√
T − t

dy6(x, z, t) =
ln

max{φεC0egT ,φC0egT+BT−Ḡ−h(t) exp
{
σAπ
√

1−ρ2
√
tz
}

exp{πσA√T−tx}}
κ(t)

σc
√
T − t

dy7(x, z, t) =
ln

φC0egT+BT−h(t) exp
{
σAπ
√

1−ρ2
√
tz
}

exp{πσA√T−tx}
κ(t)

σc
√
T − t

The density of the first hitting time τ under Q is given by, see for instance Haug (2007)

f(t) =− ln(εφ)

σct
3
2

n

(
ln(εφ)− (r − 1

2
σ2
c − g)t

σc
√
t

)
, (3.15)

where n(t) = 1√
2π
e−t

2/2.

In order to compute Term (b), define first d1(τ) and d2(τ) by lettingXτ = max(0, BC(τ))

and Xτ = max(0, BC(τ)− Ḡe−r(T−τ)): Hence

d1(τ) =
ln
(

max(0,BC(τ))
X0

)
− σθρ

σc

(
ln(εφ)− (r − 1

2
σ2
c − g)τ

)
− (r − 1

2
σ2
Aπ

2)τ

σAπ
√

1− ρ2
√
τ

d2(τ) =
ln
(

max(0,BC(τ)−Ḡe−r(T−τ))
X0

)
− σAπρ

σc

(
ln(εφ)− (r − 1

2
σ2
c − g)τ

)
− (r − 1

2
σ2
Aπ

2)τ

σAπ
√

1− ρ2
√
τ

.
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Finally we obtain Term (b):

EQ [e−rτG(τ)1{τ≤T}
]

=EQ

[
e−rτ

(
(BC(τ)−Xτ ) 1{max(0,BC(τ)−Ḡe−r(T−τ))<Xτ<max(0,BC(τ))}

+Ḡe−r(T−τ) 1{Xτ<max(0,BC(τ)−Ḡe−r(T−τ))}

)
1{τ≤T}

]

=

∫ T

0

e−rsBC(s) (Φ(d1(s))− Φ(d2(s))) f(s)ds

−
∫ T

0

e−rsX0(εφ)
ρσAπ

σc exp

{(
r − 1

2
σ2
Aπ

2

)
s− σAπρ

σc

(
r − 1

2
σ2
c − g

)
s

}

·

(∫ d1(s)

d2(s)

exp{σAπ
√

1− ρ2
√
sz} 1√

2π
e−z

2/2dz

)
f(s)ds

+

∫ T

0

e−rT ḠΦ(d2(s))f(s)ds

where Φ(s) :=
∫ s
−∞

1√
2π
e−x

2/2dx.

3.9.2 PBGC insurance payoff in the extended distress termina-

tion model

Define Ut = Ct+Xt, t ∈ [0, T ], as the total value of the sponsor’s and pension fund’s assets.

If distress is initiated prematurely then the insurance of the PBGC is given by

G(τ) =(1− η) (BT e
−r(T−τ) + φC0 e

g τ ) 1{φC0 eg τ≤Cτ} 1{(1−η)Uτ≤Ḡ e−r(T−τ)}

+Ḡ e−r(T−τ) 1{φC0 eg τ≤Cτ} 1{(1−η)Uτ>Ḡ e−r(T−τ)}

+(BT e
−r(T−τ) −Xτ ) 1{φC0 eg τ>Cτ} 1{BT e−r(T−τ)>Xτ} 1{BT e−r(T−τ)−Xτ≤Ḡ e−r(T−τ)}

+Ḡ e−r(T−τ) 1{φC0 eg τ>Cτ} 1{BT e−r(T−τ)>Xτ} 1{BT e−r(T−τ)−Xτ>Ḡ e−r(T−τ)}.

In the first term we have used that at t = τ , Uτ = η (BT e
−r(T−τ)+φC0 e

g τ ). Further note

that the triggering of distress termiantion without sponsor default, i.e φC0 e
g τ < Cτ , imme-

diately implies that the pension fund must have defaulted, i.e the condition BT e
−r(T−τ) >

Xτ is then always satisfied. The first two terms correspond to the case where the sponsor

can provide a partial support, while the last two terms represent the case where both the

sponsor and the pension fund default, therefore the PBGC carries the entire burden of the

pension benefits.

Finally if τ > T the payoff of the PBGC insurance in the extended distress termination
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model can be written as

G(T ) = max
{

0, BT −XT − (CT − φC0e
gT )
}

1{φC0egT<CT } 1{XT<BT } 1{max{0,BT−XT−(CT−φC0egT )}<Ḡ}

+Ḡ 1{φC0egT<CT } 1{XT<BT } 1{max{0,BT−XT−(CT−φC0egT )}>Ḡ}

+(BT −XT )1{φC0egT>CT } 1{XT<BT } 1{BT−XT<Ḡ}

+Ḡ 1{φC0egT>CT } 1{XT<BT } 1{BT−XT>Ḡ},

where the interpretation of the different components is the same as in the case of premature

termination.



Chapter 4

An Optimal Termination Rule for a

DB Pension Guarantee 1

4.1 Introduction

In the previous chapter we have presented a risk-based premium calculation model for a

pension guarantee fund and we have argued that such a risk-based premium calculation

is an appealing approach to resolve some problems in the pension sector and thus to bet-

ter protect employees in DB pension plans. In that chapter we have closely studied the

distress termination mechanism, that is the termination of the pension fund is triggered

by the sponsoring companie’s poor financial status. This chapter is now devoted to the

involuntary termination mechanism where an underfunded pension fund is terminated by

the corresponding pension guarantee fund. The objective we pursue is to find an optimal

involuntary termination, that is an optimal timing of intervention for the guarantee fund.

Such an optmial intervention policy is a further protection mechanism for DB plan policy-

holders. It has the advantage that it is more applicable under current law in many countries.

Kalra and Jain (1997) argue that by law pension guarantee funds have no opportunity

to control the investment riskiness of the pension plans and they are not allowed to ad-

just premiums according to their changing financial status. Therefore the only means of

intervention a pension guarantee fund has to control its financial guarantee and to protect

policyholders is to prematurely terminate an insured underfunded DB pension plan. 2 The

pension guarantee fund can terminate and take over insured underfunded DB pension plans

prematurely instead of waiting until the plans become severely underfunded and are then

closed by their sponsoring companies, which would lead to even larger costs for the pension

guarantee fund.

1This chapter is based on Cheng and Uzelac (2014)
2The PBGC states that initiating a premature termination helps to protect the interests of plan ben-

eficiaries or of the PBGC insurance program, see pbgc.gov. However, there is no specified premature
termination rule stated by PBGC to follow.

59
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From the economic point of view two main arguments support an intervention policy.

Firstly, as already suggested in the previous chapter, there is a moral hazard problem be-

tween the sponsors and the pension guarantee funds. Cooper and Ross (2003) find that

introducing a pension guarantee fund creates a further incentive for the sponsors to under-

fund their DB pension plans and excessively increase pension fund investment risk while

taking advantage of the pension guarantee fund. A possible premature termination can

mitigate these adverse incentives of DB plan sponsors. Secondly, financially troubled spon-

sors contribute the minimum possible to DB pension plans, particularly by setting higher

interest rates for discounting pension liabilities, see Bodie et al. (1987). As we mentioned

in chapter 3, these authors also find that the DB pension plan’s funding degree and the

companie’s long-run profitability are considerably positively correlated. This implies that

financially troubled sponsoring companies are likely to not be able to meet their pension

obligations. Accordingly, a premature termination of such insured DB pension plans can

substantially reduce the liabilities of the pension guarantee funds.

The important question which needs to be addressed here is what the proper timing of

intervention is. Or in other words how underfunded should pension funds be in order to

be prematurely terminated? It is important to find the proper intervention timing since

on the one hand, terminating insured underfunded DB pension funds too early takes the

opportunity away from the funds to recover and the guarantee fund also loses potential fu-

ture premiums; on the other hand, a too late intervention is likely to result in considerably

larger liabilities for the pension guarantee fund. The latter is particularly the case since

largely underfunded pension funds mainly belong to financially troubled companies which

are likely to go bankrupt anyway, see Kalra and Jain (1997).

This chapter gives insights into the question above by first proposing a specified ter-

mination rule based on the funding status of the insured DB pension plan and finding an

optimal termination ratio for the insured DB pension fund. In particular, we take the risk

aversion of pension beneficiaries into account and we incorporate two regulatory constraints,

a shortfall probability constraint (SPC) and an expected shortfall constraint, (ESC) into

an expected utility maximization problem. The pension guarantee fund uses the regulatory

constraints to control its current and ongoing liabilities. The SPC puts a restriction on

the premature termination probability of the insured DB plan within a time horizon and

reflects some current solvency regulations, see e.g. Solvency II. The solvency risk of the

insured DB pension plan faced by the pension guarantee fund is controlled via adjusting

the acceptable shortfall probability. Besides, the pension beneficiaries are protected under

the SPC, which actually works as a security mechanism for protecting pension benefits,

see Broeders and Chen (2013). We further include the ESC constraint into the expected

utility maximization problem, which has the advantage that it can assess the size of the

expected losses of underfunded but not terminated pension plans and therefore it can better

identify DB pension funds with the highest cost of insolvencies, see Doff (2008). Although

this constraint is not used in the current regulatory practice, it reflects for instance the law
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imposed on the PBGC-initiated termination, which says that the PBGC may terminate

the pension plan in case the expected losses the PBGC incurs increase unreasonably if the

pension plan is not closed.

More specifically, our specified termination rule states that the insured DB pension plan

will be terminated and taken over by the pension guarantee fund once its funding ratio

goes down a critical funding ratio. To obtain the optimal critical threshold, we set up a

one-period model and maximize a power type utility function with the funding ratio as an

independent variable to capture the interests of pension beneficiaries. Actually we assume

the objective function of the pension guarantee fund is to maximize the beneficiaries ex-

pected utility. This is in so far reasonable as the fundamental goal of a pension guarantee

fund is to protect pension beneficiaries. The use of the funding ratio as the argument in the

utility function can on the one hand be motivated since this is a commonly used quantity in

industry and particularly regulatory practice. More importantly, this quantity recognizes

that what really matters in pension fund management is not the value of the assets on its

own, but how the assets value compares to the liabilities value in each point in time, see

Martellini and Milhau (2008).

We find that by considering the one-period expected utility maximization problem solely

with the SPC, the specified termination rule is only applicable to more risk averse pension

beneficiaries, but not to risk neutral and less risk averse ones. This result is to some extent

in line with the passive behavior of the PBGC, as Kalra and Jain (1997) mention that until

1995 only 1% of the pension plan terminations were initiated by the PBGC. After adding

the ESC into the maximization problem, the intervention policy is applied regardless of the

risk aversion of the pension beneficiaries. Moreover, in the case where the two constraints

are satisfied simultaneously, we obtain an optimal termination ratio which depends on the

risk aversion of the pension beneficiaries. For instance, in the benchmark case the optimal

termination ratio is 0.68 for risk neutral and less risk averse and 0.71 for more risk averse

pension beneficiaries. In the case where the two constraints are inconsistent, we propose a

suboptimal termination ratio, which does not depend on the risk preferences of the pension

beneficiaries.

Related studies are Archarya and Dreyfus (1989) and particularly Kalra and Jain (1997).

The former compute simultaneously premium policies and optimal dynamic termination

policies for banks in terms of a threshold assets-to-deposits ratio by minimizing the in-

surer’s net liabilities, below which an ailing bank should be closed. Kalra and Jain (1997)

recommend that the PBGC follows an intervention policy where the PBGC insurance is

considered as a down-and-out put option and the PBGC takes over a plan if the losses

from terminating it are smaller than the losses from continuing it. Unlike our model the ex-

ercise boundary, which is also based on a critical funding ratio, is endogenous in their model.

The remainder of the chapter is organized as follows. Section 4.2 models the termination
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rule and describes the expected one-period utility and the regulatory constraints considered.

Section 4.3 simplifies the utility maximization problem by deriving closed-form expressions

for the one-period expected utility and the two regulatory constraints. In addition, it is

shown that the constraints have monotonic properties. Section 4.4 provides a numerical

analysis where we first numerically solve the utility maximisation problem solely with re-

spect to the SPC and then add the ESC. Section 4.5 concludes the chapter and section 4.6

provides detailed calculations and proofs of the main results in the chapter.

4.2 Model Setup

As in the previous chapter we consider a DB pension plan for a single representative ben-

eficiary, which is insured by a pension guarantee fund at time t0 = 0. In this chapter we

do not model the pension fund’s assets and liabilities separately, but we directly model the

funding ratio of the insured DB pension plan, which is the ratio of the plan’s assets to its

accrued liabilities. We denote the funding ratio at time t by Rt. If Rt takes a value less than

1 then pension fund is underfunded. We assume the funding ratio Rt follows a geometric

Brownian motion (GBM) 3 under the market probability measure P, i.e., it is governed by

the stochastic differential equation (SDE)

dRt = µRRt dt+ σRRt dWt , R0 > 0 , (4.1)

where W is a standard 1-dimensional Brownian motion under P and µR > 0 and σR > 0

denote the drift and the volatility coefficients, respectively.

The pension guarantee fund uses a premature termination rule to intervene. Unlike

chapter 3, we exclude distress termination and solely consider involuntary termination as

the relevant premature termination mechanism. We further abstract from the financial

status of the sponsoring company and also from contributions the plan sponsor makes to its

DB pension fund. Accordingly, the premature termination solely depends on the funding

ratio of the corresponding pension plan. We consider a specific premature termination rule

which states that once the funding ratio of the insured DB pension plan Rt touches or falls

bellow a predefined termination ratio η, the insured DB pension plan is closed and taken

over by the pension guarantee fund. More precisely, the termination time τ is defined as

the first hitting time the funding ratio reaches the predefined termination ratio

τ := inf {t |Rt 6 η} . (4.2)

In our model, since we are not interested in the case where the premature termination

can never happen, i.e., τ = +∞, the termination ratio is naturally required to be strictly

larger than 0. In addition, we assume η < R0. It is a technical condition which makes sure

3We mention that if we would model the pension assets and pension liabilities separately as geometric
Brownian motions (GBMs), the dynamics of the funding ratio would still follow a GBM and our qualitative
analysis and results would carry over.
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that the pension plan is not terminated at the contract-issuing time t0 = 0. Finally we

require the termination ratio to be strictly smaller than 1, that is only underfunded pension

plans can be prematurely terminated. This assumption is economically reasonable since

employees involved in a fully funded DB pension plan can expect to receive full promised

benefits on their retirement and therefore there is no reason to terminate such a pension

fund. To summarize, the predefined termination ratio η is restricted to be chosen from the

set (0,min{R0, 1}).

The pension guarantee fund pursues a social welfare motive, since its primary goal is

that the employees get their promised pension benefits. 4 Accordingly, as the interests of

the pension guarantee fund and the representative beneficiary are strongly connected, we

assume in this chapter that the pension guarantee fund acts as an agent of the pension

beneficiary by maximizing the beneficiary’s expected utility. We use a power type utility

function with the funding ratio of the insured DB pension plan as the argument to capture

the interests of the representative beneficiary with a risk aversion parameter δ. The larger

the funding ratio is, the more confidence the pension beneficiary has to get the promised

pension benefits on his retirement date. So the beneficiary feels safer and his utility in-

creases in the funding ratio of the insured DB plan. The line of reasoning reverts for a

decreasing funding ratio.

In order to be consistent with the regulatory constraints that we will incorporate into

the model, e.g. the SPC restricts the probability of the insured DB pension plan to be

terminated within one period (i.e., one year), we set up a one-year utility maximization

problem and calculate the one-year expected utility of the representative beneficiary. 5 If

the premature termination is triggered within one year, we use the funding ratio at the

premature termination time τ in the power utility function, i.e., Rτ . Since the funding

ratio is assumed to be a continuous stochastic process, the latter exactly coincides with

the predefined termination ratio η, i.e., the expected utility in this case is then given by

E[U(Rτ )] = E
[
η(1−δ)

(1−δ)

]
if 0 < τ 6 1 . Otherwise, we use the funding ratio at year one as the

independent variable, which yields the expected utility E[U(R1)] = E
[
R

(1−δ)
1

(1−δ)

]
if τ > 1 . To

sum up, the one-year expected utility 6 consisting of two parts conditional on whether the

premature termination occurs within one year, can be written compactly as

E[U(Rτ∧{t=1})] = E
[

1{0<τ61}η
(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]
, δ > 0 and δ 6= 1 , (4.3)

where ∧ denotes the minimum of τ and t = 1 and 1X is an indicator which is 1 when event

4Salisbury’s (1996) argument of viewing the pension guarantee fund as a social insurance program with
intentional subsidies to the defined benefit system supports our point of view.

5The results remain qualitatively the same if we would consider a period which is longer than one year.
6Our model can also be understood in a multiperiod framework as a repeating one period model where

the pension guarantee fund renews the insurance contract and sets up the termination ratio η annually.
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X occurs and 0 otherwise.

As we mentioned in the introduction of this chapter, the premature termination is a way

used by the pension guarantee fund to manage its financial guarantee, in terms of lessening

potential insolvencies of ailing DB plans and consequently protecting the pension benefits in

the long run. The financial guarantee is further protected by regulatory constraints, which

put restrictions on the insolvency risk of the insured DB pension plan. In this chapter we

consider two regulatory constraints.The first constraint is the shortfall probability constraint

(SPC), which imposes a restriction on the one-year shortfall probability of the insured DB

pension plan. The probability that the premature termination is triggered within one year

is required to be less than a certain percentage, i.e. ε ∈ (0, 1], which is set up by the pension

guarantee fund. Formally, the constraint is written as

P (0 < τ 6 1) 6 ε, 0 < ε 6 1 . (4.4)

By fixing the maximum allowable shortfall probability the pension guarantee fund protects

its current financial status by controlling the probability it has to step in and cover the

pension deficits of an insured and underfunded pension fund within one year.

The SPC helps to reduce the number of current insolvencies the pension guarantee fund

would have to manage. However, the SPC does not measure the size of the potential losses

which can arise from underfunded but not terminated pension plans. We refer to these

pension plans as ongoing pension plans. As the deficits of such ongoing pension plans can

become large, the financial guarantee of the pension guarantee fund is exposed to a great

risk in the future.

To mitigate this drawback of the SPC, we incorporate an expected shortfall type con-

straint (ESC) as the second constraint. This constraint puts a restriction on the size of

expected deficits of the ongoing pension plan at year one. For simplicity, we assume that

the insured DB pension plan’s liabilities are constant within one year. With this assump-

tion the maximum expected deficits can be written as the pension liabilities multiplied by

a certain percentage q > 0, that is set up by the pension guarantee fund. Then the ESC

has the following expression

E
[
(1−R1)1{τ>1}1{R161}

]
6 q , (4.5)

The same type of ESC is considered in Shi and Werker (2012).7 By fixing the maximum

tolerable expected deficits, the pension guarantee fund protects its future financial status.

7However, they considered the restriction on the induced expected shortfall subject to the VaR constraint.
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4.3 Simplifying the Utility Maximization Problem

In this section we derive closed-form expressions for the one-year expected utility and the

two regulatory constraints.

Lemma 4.3.1. The one-year expected utility is calculated as follows:

E[U(Rτ∧{t=1})] = E
[

1{0<τ61}η
(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]

=
1

1− δ

[
η(1−δ)(Φ(A−B) + exp{2AB}Φ(A+B)

)
+R

(1−δ)
0 exp

{(
1− δ

)(
µR −

1

2
δσ2

R

)}
Φ
(
− A+B + σR(1− δ)

)
−R(1−δ)

0 exp

{
2AB + 2AσR(1− δ) + (1− δ)

(
µR −

1

2
δσ2

R

)}
Φ (A+B + σR(1− δ))

]
= u(η) , (4.6)

where A = 1
σR

ln
(
η
R0

)
, B =

µR− 1
2
σ2
R

σR
and Φ(·) denotes the standard normal cdf. The one-year

expected utility is a function of the termination ratio η ∈ (0,min{R0, 1}), denoted by u(η).

Appendix 4.6.1 provides a detailed derivation of u(η).

Lemma 4.3.2. The one-year shortfall probability is calculated as follows, see e.g. Haug

(2007),

P (0 < τ 6 1) = Φ(A−B) + exp {2AB}Φ(A+B)

= Φ

(
1

σR

(
ln

(
η

R0

)
− µR +

1

2
σ2
R

))
+

(
η

R0

)( 2µR
σ2
R

−1

)
Φ

(
1

σR

(
ln

(
η

R0

)
+ µR −

1

2
σ2
R

))
= P (η) (4.7)

which is a function of the termination ratio η ∈ (0,min{R0, 1}), denoted by P (η).

The one-year expected utility maximization problem with only the SPC can be written

as follows:

max
η∈(0,min{R0,1})

E
[

1{0<τ61}η
(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]
, δ > 0 and δ 6= 1 ,

subject toP (η) 6 ε , (4.8)

where 0 < ε 6 1 is set up by the pension guarantee fund.
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Lemma 4.3.3. The expected shortfall of the ongoing DB pension plan at year one is cal-

culated as follows:

E
[
(1−R1)1{τ>1}1{R161}

]
=Φ

(
− 1

σR
ln(R0)−B

)
− Φ (A−B)

− exp {2AB}
[
Φ(A+B)− Φ

(
2A+B +

1

σR
ln(R0)

)]
−R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
+R0 exp {µR}Φ (A−B − σR)

+R0 exp {µR + 2AB + 2AσR} [Φ(A+B + σR)

−Φ

(
2A+B +

1

σR
ln(R0) + σR

)]
= S(η), (4.9)

which is a function of the termination ratio η on the interval (0,min{R0, 1}), denoted by

S(η).

Appendix 4.6.2 provides a detailed derivation of S(η).

Then the one-year expected utility maximization problem with the two regulatory con-

straints can be written as follows:

max
η∈min{R0,1}

E
[

1{0<τ61}η
(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]
, δ > 0 and δ 6= 1 ,

subject to P (η) 6 ε and S(η) 6 q , (4.10)

where 0 < ε 6 1 and q > 0 are set up by the pension guarantee fund.

Next, we formally state the monotonic properties of the two regulatory constraints.

Proposition 4.3.4. The one-year shortfall probability is a continuous and monotonically

increasing function of the termination ratio η on the interval (0,min{R0, 1}), i.e. P (η),

with lim
η→0

P (η) = 0 and lim
η→min{R0,1}

P (η) = 1. Admissible termination ratios η̃ chosen from

the set (0,min{R0, 1}) which satisfy the SPC, i.e. P (η̃) 6 ε , ε ∈ (0, 1], are:

(1) in the case where ε = 1, η̃ ∈ (0,min{R0, 1});

(2) in the case where ε ∈ (0, 1), there exists a unique upper bound termination ratio η̄ε ∈
(0,min{R0, 1}) such that P (η̄ε) = ε and η̃ ∈ (0, η̄ε].

Proof 4.3.5. A Proof is given in appendix 4.6.3.

Proposition 4.3.6. The expected shortfall of the underfunded ongoing DB pension plan at

the end of year one is a continuous and monotonically decreasing function of the termination
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ratio η on the interval (0,min{R0, 1}), i.e. S(η), with lim
η→min{R0,1}

= 0 and lim
η→0

S(η) =

Φ

(
− 1

σR
ln(R0)−B

)
− R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
. Admissible termination

ratios η̂ chosen from the set (0,min{R0, 1}) which satisfy the ESC, i.e. S(η̂) 6 q, q > 0,

are:

(1) in the case where q > Φ
(
− 1
σR

ln(R0)−B
)
−R0 exp {µR}Φ

(
− 1
σR

ln(R0)−B − σR
)

,

η̂ ∈ (0,min{R0, 1});

(2) in the case where 0 < q < Φ
(
− 1
σR

ln(R0)−B
)
−R0 exp {µR}Φ

(
− 1
σR

ln(R0)−B − σR
)

,

there exists a unique lower bound termination ratio ηε ∈ (0,min{R0, 1}) such that

S
(
ηε
)

= q and η̂ ∈
[
ηε, (0,min{R0, 1})

)
.

Proof 4.3.7. The Proof is given in appendix 4.6.4.

It is important to learn from proposition 4.3.4 and proposition 4.3.6 that adjustments of

the termination ratio η have an opposite impact on the two regulatory constraints. That is,

setting a lower termination ratio decreases the shortfall probability, while at the same time

this increases the expected shortfall. Technically these properties imply that the sets of

admissible termination ratios for the two constraints may not overlap. From an economic

point view this raises the question of finding a suboptimal solution in the case the two

constraints are not satisfied simultaneously.

If for the given values of ε and q, the two sets of admissible termination ratios overlap, a

termination ratio in the overlap region which maximizes the one-year expected utility is an

optimal solution to the constrained utility maximization problem. In the case, where there

is no intersection between the two sets, the pension guarantee fund faces a tradeoff between

alleviating its current and future insolvencies. We introduce a suboptimal solution where

we define the best suboptimal termination ratio as the one which satisfies the SPC but

violates the ESC to the least extent. Accordingly, we give priority to the SPC since it has

been applied in the regulatory practice for pension plans and alleviating current financial

insolvencies of the pension guarantee fund is more urgent.

4.4 Numerical Analysis

The constrained optimization problems (4.8) and (4.10) cannot be solved in closed-form

and therefore we solve them numerically. To do so we first compute the constraint set,

which is available in closed-form, and then perform a numerical search algorithm to find

the maximum of the one-year expected utility given the constraint set. For the numerical

analysis at hand we fix the relevant parameters as follows:

µR = 0.03, σR = 0.2, R0 = 1.1, ε = 0.025, q = 0.03. (4.11)
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Figure 4.1: One-year expected utility as a function of the termination ratio η ∈ (0, 0.71] for
different risk aversion parameters δ.

In addition we choose the following risk aversion parameters:

δ1 = 0, δ2 = 0.6, δ3 = 2, δ4 = 5. (4.12)

The parameters serve for illustration purposes.

4.4.1 Utility Maximization with only the SPC

We start with the solution of the one-year expected utility maximization problem when only

the SPC is considered. With the given benchmark parameters the upper bound termination

ratio η̄ε is equal to 0.71. Figure 4.1 plots the one-year expected utility for different risk

aversion parameters over the constraint set, i.e. η ∈ (0, 0.71]. We see that for a risk neutral

and less risk averse pension beneficiary, i.e. δ1 = 0, δ2 = 0.6, the utility value is not sensitive

to changes of the termination ratio when the ratio is relatively small and as the termination

ratio approaches η̄ε, the one-year expected utility value decreases. In these cases, setting

the termination ratio relatively small is beneficial for the pension beneficiary, which gives

basically the same utility value to the beneficiary as if the termination ratio is set up

extremely close to 0 such that the premature termination is hardly triggered. If we take

termination costs into account, which exist in reality, e.g. administrative costs, setting the

termination ratio extremely close to 0 with nearly no premature termination control from

the pension guarantee fund is beneficial for both the pension beneficiary and the pension

guarantee fund. Hence if only the SPC is considered, a premature termination rule is not
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Figure 4.2: One-year expected utility as a function of the termination ratio η ∈ (0, 0.49] for
different risk aversion parameters δ when σR = 0.3.

applicable to risk neutral and less risk averse pension beneficiaries. Intuitively, since the

pension benefits paid out by the guarantee fund are subject to a limit set by law, risk neutral

and less risk averse pension beneficiaries prefer more the possibility that an underfunded

DB pension fund can recover and therefore they will receive full promised pension benefits

instead of being involved in a regulated DB pension plan with the possibility of losing

benefits when the pension fund is prematurely terminated and the pension deficits exceed

the legal guarantee limit. For the cases where the risk aversion parameters are relatively

large, i.e., δ3 = 2 , δ4 = 5, the one-year expected utility value remains nearly constant

when the termination ratio is relatively small, which is the same as in the cases where

δ = 0 and δ = 0.6, but it starts to increase as the termination ratio approaches the upper

bound. In such cases the one-year expected utility is maximized at η̄ε where the SPC is

binding. Intuitively, more risk averse beneficiaries prefer to have the premature termination

control from the pension guarantee fund since they are concerned about potential benefit

losses they might incur when an unregulated DB pension fund is terminated under distress

termination with severe pension deficits which are much beyond the guarantee limit. The

larger the termination ratio is set up, the safer the beneficiaries may feel since they are

more likely to receive full promised pension benefits under the premature termination.

In figure 4.2, we show how the volatility of the funding ratio process affects the chosen

optimal termination ratio. We increase σR from 0.2 to 0.35 and draw the one-year expected

utility for the same chosen risk aversion parameters. First, we see that the constraint set
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narrows as the volatility increases, i.e. η ∈ (0, 0.49]. Moreover, we observe that in the plot

of δ = 0.6 the one-year expected utility now increases as η approaches the upper bound

termination ratio, i.e. η̄ε = 0.49. Therefore setting the termination ratio at 0.49 instead

of extremely close to 0 maximizes the pension beneficiary’s one-year expected utility. It is

consistent with economic intuition. As volatility increases the probability that the financial

status of the pension fund deteriorates and the beneficiary loses benefits increases. This now

implies that even a less risk averse pension beneficiary looks for a premature termination

control from the pension guarantee fund to benefit from protection against potential losses in

their pension benefits. Accordingly, a larger volatility (uncertainty) of the DB pension plan’s

funding ratio can induce the premature termination rule used by the pension guarantee fund

to be applicable in more cases.

4.4.2 Adding the ESC

In this section, we add the ESC and consider the one-year expected utility maximization

problem (4.10). We calculate the lower bound termination ratio ηε, which is equal to 0.68,

so termination ratios which satisfy the ESC form the set [0.68, 1). We have already found

out the set of termination ratios which satisfy the SPC in section 4.1, i.e. (0, 0.71]. Figure

4.3 plots the one-year expected utility as a function of the termination ratio η over the

interval (0, 0.71] for different risk aversion parameters. The left and right vertical lines refer

to the lower bound ηε and the upper bound termination ratio η̄ε, respectively. The area in

between refers to the set of termination ratios which satisfy both constraints. Accordingly,

the constraint set turns out to be [0.68, 0.71] and the optimal termination ratio for risk

neutral and less risk averse pension beneficiaries changes to be the lower bound termination

ratio ηε. Although a risk neutral or less risk averse beneficiary would prefer to have no

premature termination control on the insured DB pension plan, the pension guarantee fund

sets up the lower bound termination ratio to better control its future financial guarantee.

It is important to note that this result always holds when the ESC constraint is binding

regardless of the SPC constraint. In other words, when the ESC constraint is satisfied a

premature termination rule always exists. For more risk averse beneficiaries, the optimal

termination ratio is still set at η̄ε.

Figure 4.4 plots the one-year expected utility over the interval of termination ratios

(0, 1) for different risk aversion parameters when q is set to be 0.015. Now with q = 0.015,

the lower bound termination ratio is calculated to be 0.8. The corresponding two sets of

termination ratios, which satisfy the SPC and the ESC are (0, 0.71] and [0.80, 1), respec-

tively. Hence, there is no termination ratio which satisfies the two regulatory constraints

simultaneously and therefore we need to rely on a suboptimal solution. As introduced in

section 4.3, a suboptimal termination ratio is defined to be the one which satisfies the SPC

but violates the ESC to the least extent. By relying on this suboptimal solution, we say that

protecting the guarantee fund’s current financial guarantee has priority so that the pension

guarantee fund pays more attention to the insolvency risk of the insured DB pension plan
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Figure 4.3: One-year expected utility as a function of the termination ratio η ∈ (0, 0.71] for
different risk aversion parameters δ when two admissible termination ratio sets overlap.

Figure 4.4: One-year expected utility as a function of the termination ratio η ∈ (0, 1)
for different risk aversion parameters δ when two admissible termination ratio sets do not
overlap.
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it faces currently. Moreover, violating the ESC to the least extent encourages the pension

guarantee fund to search for new funding or adjust its investment strategy in order to cover

unexpected pension deficits after one year. Therefore in this case where two admissible

termination ratio sets do not overlap, the suboptimal termination ratio is η̄ε = 0.71, which

does not depend on the risk aversion of the pension beneficiaries any more.

To summarize, the main result we learn from figure 4.3 and figure 4.4 is that by adding

the ESC a premature termination rule is applicable independent of the preferences of the

pension beneficiaries, thus even to risk neutral and less risk averse pension beneficiaries.

4.4.3 Utility Losses

Finally we briefly discuss the question what type of beneficiary is (most) affected by impos-

ing the additional regulation on the expected shortfall. To do so we compute the annualized

lose rate in utility, which is brought by the ESC constraint. Formally we compute this loss

rate lt0+1 as

lt0+1 = ln

(
u (η∗SPC&ESC)

u (η∗SPC)

)
, (4.13)

where u (η∗SPC&ESC) is the maximum value of the expected utility if both the SPC and the

ESC constraints are considered, while u (η∗SPC) denotes the value of the expected utility

evaluated at the optimal termination ratio under the SPC only8.

δ lt0+1 (SPC and ESC overlap) lt0+1 (SPC and ESC do not overlap)

0 -0.48 -1.07
0.6 -0.16 -0.34
2 0 0
5 0 0

Table 4.1: Annualized loss rates in basis points (bp) when the ESC constraint is added for
different risk aversion parameters. The second column gives the annualized loss rate if both
constraints are satisfied, i.e., q = 0.03, while the third column gives the annualized loss rate
for the case where both constraints are not satisfied, i.e., q = 0.015.

Table 4.1 shows that risk neutral and less risk averse beneficiaries suffer a loss in utility

from the additional regulation, while more risk averse beneficiaries are not affected by the

additional regulation. More specifically, we notice that the utility loss is largest for the risk

neutral beneficiaries and that it is larger for a suboptimal regulation where both constraints

are not satisfied simultaneously. The economic intuition behind this result is that the more

regulation a risk neutral and less risk averse beneficiary faces, the more disutility he obtains.

8Since we have discussed in subsection 4.1 that setting the termination ratio extremely close to 0 is
optimal for risk neutral and less risk averse beneficiaries, the corresponding utility is given by the limit as
the termination ratio η approaches 0, i.e., lim

η→0
u(η).
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In particular, these beneficiaries would prefer a fully unregulated DB plan since this has

the highest likelihood to pay out full pension benefits. More risk averse beneficiaries on

the other hand are more concerned about potential pension losses than the full pension

payment and therefore they are not harmed by additional regulation.

4.5 Conclusion

In this chapter we study when a pension guarantee fund should prematurely close an un-

derfunded DB pension plan in a one-year expected utility maximization model. We assume

that the pension guarantee fund (perfectly) acts in the interests of the pension beneficiaries

and maximizes a power type utility function of the beneficiaries, whose argument is the

funding ratio of the insured DB pension plan. In addition, we incorporate two regulatory

constraints into the maximization problem, the SPC, which reflects the current regulatory

practice, and the ESC, which better assesses the expected losses of ongoing DB pension

plans. The SPC and the ESC restrict current and ongoing-concern liabilities of the pension

guarantee fund, respectively. We find that the power type utility maximization problem

with the SPC solely cannot account for an intervention policy for risk neutral and less risk

averse pension beneficiaries. The inclusion of the ESC induces the premature termination

rule to be applicable to any pension beneficiary independent of his risk preferences. More

specifically, in our benchmark case where the two constraints overlap, we obtain an optimal

termination ratio of 0.68 for risk neutral and less risk averse beneficiaries and 0.71 for more

risk averse ones. In the end, in a utility loss analysis we show that adding the additional

ESC constraint worsens risk neutral and less risk averse beneficiaries’ utility, whereas more

risk averse beneficiaries are not harmed by this additional regulation.

As a possible extension of this chapter one could also consider a utility function which has

the loss aversion property, see Siegmann (2011) and the next chapter. A second extension

could be to provide a model which distinguishes between the short-term regulatory practice,

usually performed on an annual basis, and the long-term pension obligation horizon T and

derives an optimal dynamic intervention policy. More specifically, it would be interesting

to consider m = T regulatory annual tests of the shortfall probability and the expected

shortfall and to evaluate the expected utility at the long-term pension obligation horizon

time T . A similar modeling framework is considered in Shi and Werker (2012) for long-term

investors.
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4.6 Appendix

4.6.1 Derivation of Lemma 4.3.1

The one-year expected utility can be decomposed into two parts:

(a) E
[

1{0<τ61}η
(1−δ)

1−δ

]
(b) E

[
1{τ>1}R

(1−δ)
1

1−δ

]
Part (a) can be calculated as follows:

E
[

1{0<τ61}η
(1−δ)

1− δ

]
=
η(1−δ)

1− δ
P (0 < τ 6 1)

=
η(1−δ)

1− δ
(Φ(A−B) + exp {2AB}Φ(A+B)) ,

where A = 1
σR

ln
(
η
R0

)
, B =

µR− 1
2
σ2
R

σR
and Φ(·) is the cdf of a standard normal distribution.

The second equality uses the result of the one-year shortfall probability , i.e. P (0 < τ 6
1) = (Φ(A−B) + exp {2AB}Φ(A+B)), for η ∈ (0, R0). (See Lemma 4.3.2)

Part (b) can be calculated as follows:

E

[
1{τ>1}R

(1−δ)
1

1− δ

]
=

1

1− δ
E
[(

1− 1{0<τ61}
)
R

(1−δ)
1

]
=

1

1− δ

[
E
(
R

(1−δ)
1

)
− E

(
1{0<τ61}R

(1−δ)
1

)]
.

In the first equality, we use 1{τ>1} = 1 − 1{0<τ61}. Now the right hand side of the above

equation consists of two parts. The first one can be directly calculated by using the fact

that ln(R1) follows a normal distribution. So we have

E
(
R

(1−δ)
1

)
= R

(1−δ)
0 exp

{
(1− δ)(µR −

1

2
δσ2

R)

}
.

The second one can be split into two parts by using 1{0<τ61} = 1{inft∈[0,1]Rt6η} = 1{inft∈[0,1]Rt6η,R16η}+

1{inft∈[0,1]Rt6η,R1>η}:

E
[
1{0<τ61}R

(1−δ)
1

]
=E

[
1{inft∈[0,1]Rt6η,R16η}R

(1−δ)
1

]
+ E

[
1{inft∈[0,1]Rt6η,R1>η}R

(1−δ)
1

]
=E

[
1{R16η}R

(1−δ)
1

]
+ E

[
1{inft∈[0,1]Rt6η,R1>η}R

(1−δ)
1

]
=R

(1−δ)
0 exp

{
(1− δ)(µR −

1

2
δσ2

R)

}
Φ (A−B − (1− δ)σR)

+ E
[
1{inft∈[0,1]Rt6η,R1>η}R

(1−δ)
1

]
.
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In the last equality, we use the fact that ln(R1) follows a normal distribution.

The second part E
[
1{inft∈[0,1]Rt6η,R1>η}R

(1−δ)
1

]
can be calculated by using the Girsanov

theorem and the reflection principle:

E
[
1{inft∈[0,1]Rt6η,R1>η}R

(1−δ)
1

]
=E

[
1{inft∈[0,1]Bt+Wt≤A,B+W1>A}

R
(1−δ)
0 exp

{
(1− δ)(µR −

1

2
σ2
R) + (1− δ)σRW1

}]
=EP̃

[
exp {BW P̃

1 −
1

2
B2}1{inft∈[0,1]W

P̃
t ≤A,W P̃

1 >A}

R
(1−δ)
0 exp

{
(1− δ)σRW P̃

1

}]
=R

(1−δ)
0 exp

{
2AB − 1

2
B2 + 2σRA(1− δ)

}
EP̃
[
1{W P̃

1 ≤A}

exp
{
−BW P̃

1 − σR(1− δ)W P̃
1

}]
=R

(1−δ)
0 exp

{
2AB + 2AσR(1− δ) + (1− δ)

(
µR −

1

2
δσ2

R

)}
Φ (A+B + σR(1− δ)) ,

where W P̃
t is a standard Brownian motion under the probability measure P̃.

Finally, summing up all the parts gives the one-year expected utility function as a function

of the termination ratio η ∈ (0,min{R0, 1}), denoted as u(η), as follows:

u(η) =E
[

1{τ61}η
(1−δ)

1− δ

]
+ E

[
1{τ>1}R

(1−δ)
1

1− δ

]

=
1

1− δ

[
η(1−δ)

(
Φ(A−B) + exp{2AB}Φ(A+B)

)
+R

(1−δ)
0 exp

{
(1− δ)

(
µR −

1

2
δσ2

R

)}
Φ (−A+B + (1− δ)σR)

−R(1−δ)
0 exp

{
2AB + 2AσR(1− δ) + (1− δ)

(
µR −

1

2
δσ2

R

)}
Φ (A+B + σR(1− δ))

]
,

δ 6 0 and δ 6= 1.
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4.6.2 Derivation of Lemma 4.3.3

The expected shortfall of the underfunded ongoing pension plan at year one can be calcu-

lated as follows:

E
[
(1−R1)1{τ>1}1{R161}

]
= E

[
1{τ>1}1{R161}

]
− E

[
R11{τ>1}1{R161}

]
= E

[
1{R161}

]
− E

[
1{inft∈[0,1]Rt6η}1{R161}

]
− E

[
R11{τ>1}1{R161}

]
.

In the second equality, we use 1{τ>1} = 1− 1{0<τ61}.

The first term E
[
1{R161}

]
can be easily calculated by using the fact that ln(R1) follows a

normal distribution

E
[
1{R161}

]
= Φ

(
− 1

σR
ln(R0)−B

)
.

The second term E
[
1{inft∈[0,1]Rt6η}1{R161}

]
can be decomposed into two parts by using

1{inft∈[0,1]Rt6η} = 1{R16η} + 1{inft∈[0,1]Rt6η,R1>η} as follows:

(a) E
[
1{R16η}1{R161}

]
,

(b) E
[
1{inft∈[0,1]Rt6η,R1>η}1{R161}

]
.

Since the termination ratio η is chosen from the set (0,min {1, R0}), it is strictly smaller

than 1, so we have

E
[
1{R16η}1{R161}

]
= E[1{R16η}] = Φ(A−B),

where the second equality uses the fact that ln(R1) follows a normal distribution.

Part (b) can be calculated by using the Girsanov theorem and the reflection principle as

follows:

E
[
1{inft∈[0,1]Rt6η,R1>η}1{R161}

]
=E

[
1{inft∈[0,1]Wt+Bt6A,W1+B>A}1

{
W1+B6− 1

σR
lnR0

}]
=EP̃

[
exp

{
BW P̃

1 −
1

2
B2

}
1{inft∈[0,1]W

P̃
t 6A,W P̃

1 >A}1
{
W P̃

1 6− 1
σR

lnR0

}]
=EP̃

[
exp

{
2AB −BW P̃

1 −
1

2
B2

}
1{W P̃

1 6A}1
{
W P̃

1 >2A+ 1
σR

ln(R0)
}]

= exp {2AB}
[
Φ(A+B)− Φ

(
2A+B +

1

σR
ln(R0)

)]
.

The third term E
[
R11{τ>1}1{R161}

]
can be split into two parts by using 1{τ>1} = 1−1{0<τ61}

E
[
R11{τ>1}1{R161}

]
= E

[
R11{R161}

]
− E

[
R11{inft∈[0,1]Rt6η}1{R161}

]
.
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E
[
R11{R161}

]
is easily calculated by using the fact that ln(R1) follows a normal distribution

E
[
R11{R161}

]
= R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
.

E
[
R11{inft∈[0,1]Rt6η}1{R161}

]
can be further decomposed into two parts by using 1{inft∈[0,1]Rt6η} =

1{R16η} + 1{inft∈[0,1]Rt6η,R1>η} as follows:

(c) E
[
R11{R16η}1{R161}

]
,

(d) E
[
R11{inft∈[0,1]Rt6η,R1>η}]1{R161}

]
.

Since η chosen from the set (0,min {R0, 1}) is strictly smaller than 1 and ln(R1) follows a

normal distribution, part (c) can be easily calculated

E
[
R11{R16η}1{R161}

]
= E

[
R11{R16η}

]
= R0 exp {µR}Φ (A−B − σR) .

Part (d) can be calculated by using the Girsanov theorem and the reflection principle as

follows:

E
[
R11{inft∈[0,1]Rt6η,R1>η}]1{R161}

]
=E

[
R0 exp

{(
µR −

1

2
σ2
R

)
+ σRW1

}
1{inft∈[0,1]Wt+Bt6A,W1+B>A}

1{
W1+B6− 1

σR
ln(R0)

}]
=EP̃

[
R0 exp

{
µR −BσR −

1

2
σ2
R −

1

2
B2

}
exp

{
(B + σR)W P̃

1

}
1{inft∈[0,1]W

P̃
t 6A,W P̃

1 >A}1
{
W P̃

1 6− 1
σR

ln(R0)
}]

=EP̃
[
R0 exp

{
µR −BσR −

1

2
σ2
R −

1

2
B2 + 2A(B + σR)

}
exp

{
−(B + σR)W P̃

1

}
1{W P̃

1 6A}1
{
W P̃

1 >2A+ 1
σR

lnR0

}]
=R0 exp

{
µR + 2AB + 2AσR

}[
Φ(A+B + σR)

− Φ

(
2A+B +

1

σR
ln(R0) + σR

)]
.

Finally, summing up all the parts yields the closed-form expression for the ESC with for a

certain value q > 0 as a function of the termination ratio η ∈ (0,min {R0, 1}), denoted by
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S(η):

E
[
(1−R1)1{τ>1}1{R161}

]
=Φ

(
− 1

σR
ln(R0)−B

)
− Φ (A−B)

− exp {2AB}
[
Φ(A+B)− Φ

(
2A+B +

1

σR
ln(R0)

)]
−R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
+R0 exp {µR}Φ (A−B − σR)

+R0 exp {µR + 2AB + 2AσR}

[
Φ(A+B + σR)

− Φ

(
2A+B +

1

σR
ln(R0) + σR

)]
= S(η) 6 q.

4.6.3 Proof of Proposition 4.3.4

We have the following one-year shortfall probability as a function of the termination ratio

η ∈ (0,min{R0, 1})

P (η) = Φ (A−B) + exp {2AB}Φ (A+B)

= Φ

(
1

σR

(
ln
( η
R0

)
− µR +

1

2
σ2
R

))
+

(
η

R0

)( 2µR
σ2
R

−1

)
Φ

(
1

σR

(
ln
( η
R0

)
+ µR −

1

2
σ2
R

))
.

Since Φ(·) is a cdf P (η) is trivially continuous. The first derivative of P (η) with respect

to η is given as follows:

∂P (η)

∂η
=

2

ησR
exp {2AB} [n(A+B) + (A+B)Φ(A+B)]− 2

ησR
exp {2AB}AΦ(A+B),

(4.14)

where n(·) is the pdf of a standard normal distribution.

n(A + B) + (A + B)Φ(A + B) is a function of the termination ratio η ∈ (0,min{R0, 1})
which has the following properties

∂(n(A+B) + (A+B)Φ(A+B))

∂η
=

1

ησR
Φ(A+B) > 0 and

lim
η→0

(n(A+B) + (A+B)Φ(A+B)) = 0 .

Thus, n(A+B) + (A+B)Φ(A+B) is positive for η ∈ (0,min{R0, 1}), hence the first term
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in (4.14) is positive. Since A < 0 for the termination ratio η ∈ (0,min{R0, 1}), the second

term in (4.14) is negative. As a result we have ∂P (η)
∂η

> 0.

Next it is easy to see that as the termination ratio η approaches 0, the function has a

limit which is 0, i.e., lim
η→0

P (η) = 0, and as the termination ratio η approaches min{R0, 1}
we have

lim
η→min{R0,1}

P (η) = Φ

(
−
µR − 1

2
σ2
R

σR

)
+ Φ

(
µR − 1

2
σ2
R

σR

)
= 1 .

In the end, it is trivial to see that when the acceptable shortfall probability ε is 1, any

termination ratio from the set (0,min {R0, 1}) satisfies the SPC. The more interesting case

is when ε ∈ (0, 1). In this case the upper bound termination ratio is the solution of the

equation

P (η̄ε)− ε =0.

Bolzano’s theorem proves that there exist a solution η̄ε. The above proved monotonic-

ity property of P (η) implies that η̄ε is the unique solution. Since P (η) is monotonically

increasing, only termination ratios from the set (0, η̄ε] satisfy the SPC.

4.6.4 Proof of Proposition 4.3.6

We have the following expected deficits of the ongoing pension plan at year one

S(η) = E
[
(1−R1)1{τ>1}1{R161}

]
= Φ

(
− 1

σR
ln(R0)−B

)
− Φ (A−B)

− exp {2AB}
[
Φ(A+B)− Φ

(
2A+B +

1

σR
ln(R0)

)]
−R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
+R0 exp {µR}Φ (A−B − σR)

+R0 exp {µR + 2AB + 2AσR}

[
Φ(A+B + σR)

− Φ

(
2A+B +

1

σR
ln(R0) + σR

)]
,
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which is a continuous function of the termination ratio η ∈ (0,min {R0, 1}).
The expected deficit function S(η) can also be calculated as follows:

S(η) = E
[
(1−R1)1{τ>1}1{R161}

]
= E

[
(1−R1)1{inft∈[0,1]Rt>η}1{R161}

]
= E

[
(1−R1)1{inft∈[0,1]Rt>η}1{η<R161}

]
= E

[
E
[
(1−R1) 1{η<R161} 1{inft∈[0,1]Rt>η}|R1

]]
=

∫ 1

η

(1−R1)P (inft∈[0,1)Rt > η|R1)f̃R1dR1,

where f̃R1 denotes the pdf of the lognormal distribution of R1. The main step we have used

in this calculation is the law of iterated expectations. For each given funding ratio of the

insured DB pension plan at year one R1, the conditional probability of the pension plan

not to be terminated before year one P (inft∈[0,1)Rt > η|R1) decreases as η increases, hence

the integrand (1−R1)P (inft∈[0,1)Rt > η|R1) is nonnegative. Accordingly, ∂S(η)
∂η

< 0.

Next, as the termination ratio approaches min {R0, 1}, the limit of S(η) is 0 and as the

termination ratio approaches 0 we have

lim
η→0

S(η) = Φ

(
− 1

σR
ln(R0)−B

)
−R0 exp {µR}Φ

(
− 1

σR
ln(R0)−B − σR

)
.

If q > Φ
(
− 1
σR

ln(R0)−B
)
−R0 exp {µR}Φ

(
− 1
σR

ln(R0)−B − σR
)

, the ESC is trivially

satisfied for any termination ratio η ∈ (0,min {R0, 1}). If 0 < q < Φ
(
− 1
σR

ln(R0)−B
)
−

R0 exp {µR}Φ
(
− 1
σR

ln(R0)−B − σR
)

, one can show analogously to the previous proof that

there exists a unique lower bound termination ratio ηε ∈ (0,min {R0, 1}) such that S(ηε) = q

and admissible termination ratios, which satisfy the ESC, form the set [ηε,min {R0, 1}).



Chapter 5

Portability, Salary and Asset Price

Risk: A Continuous-Time Expected

Utility Comparison of DB and DC

Pension Plans1

5.1 Introduction

In the last two chapters we have analysed the insurance provided by the PBGC to defined

benefit plan sponsors and we have studied how a pension guarantee fund can optimally

intervene and terminate underfunded DB pension plans. In chapter 3 we have taken the

benefits of the DB policyholder as given and in chapter 4 we have abstracted from the bene-

fits and solely considered the funding ratio of the DB plan. In the present chapter we model

the underlying DB plan stochastically and compare it to its main counterpart, the Defined

Contribution (DC) plan, from the employee’s perspective. Unlike chapter 2 and chapter 3

we do not study the pricing of the insurance contracts, but we work in an expected utility

framework as in the last chapter and focus on the expected utility the employee can achieve

at his retirement date in either of the two pension contracts.

Defined Benefit (DB) and Defined Contribution (DC) plans are two important types

of private retirement plans in developed countries. In a DB plan, the employee’s pension

benefit is determined by a formula which takes years of service for the employer and wages

or salary into account. In a DC plan, sponsoring companies (and often also their employees)

pay a promised contribution to an external pension fund, which invests the contributions

in financial assets. The pension payment is then simply determined as the market value of

the backing assets. The DB plan was the dominant form of plan, but in the last decade the

number of DC plans has a steady upward-moving trend. For instance, according to the US

Flow of Funds Accounts, the division between assets held in private DB plans and private

1This chapter is based on Uzelac and Chen (2014)

81
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DC plans was 60% versus 40% in 1987, and in 2007 this division was reversed. In the UK,

Government Actuary’s Department observed that final salary DB plans constituted 92% of

all pension funds in 1979 and this number was reduced to 41% in 2005.

There are quite some significant tradeoffs between DB and DC plans, particularly when

it comes to what risks the employees bear. Bodie et. al. (1985) and Blake (2000) provide a

very extensive review on the tradeoffs. In this place, we want to emphasize three tradeoffs

with respect to investment, portability and salary risk. In a DB plan, the sponsoring com-

pany is responsible for providing promised (future) pension benefits to the employees. In

other words, the sponsoring company decides about investment policies in a pension fund

and consequently also bears the entire investment risks in a DB plan. In a DC plan, the

company does not ensure a promised pension payment to the employees. The employees

bear the entire investment risks. From the employees perspective, salary risk is present

in both the DB plan and the DC plan. In the former the employee bears the salary risk

because the defined benefits are usually directly linked to his salary, while in the latter the

amount of contributions the employee can make mainly depends on the development of his

salary. Portability risk is the risk, not to have the ability to transfer years of credited ser-

vice or accumulated benefits from one employer to another. It is widely accepted knowledge

that portability risk plays a minor role in DC plans, while it is considered as the driving

source of risk in single employer DB pension plans. Since the pension payment of a DC

plan mainly depends on the value of the backing assets, a DC plan can be easily ported

between job switchings. On the contrary, DB plan holders lose mostly part of their benefits

after changing jobs since most DB plans lack portability provisions.

In a DC plan the asset price risk is the most important risk factor since the accumulated

pension benefit of the employee is the market value of the contributions made while working

and the investment returns earned on the plan balances. Blake, Cairns and Wood (2001)

measure risk in the DC plan by computing VaR estimates during the accumulation phase.

They find that the asset allocation strategy mainly drives the asset price risk since the VaR

estimates are considerably more sensitive to the asset allocation strategy than to the choice

of the asset return model.

Portability risk is considered the main risk factor in DB plans, especially because of the

huge and increasing workforce mobility and the fact that only few single employer DB pro-

grams contain portability provisions2. Hall (1982) reports that workers in the US hold 10

or 11 jobs during their working lives. Blake (2000) mentions that fewer than 5% of workers

remain with the same employer and that the average worker in the UK changes jobs about

six times in a life time. Schrager (2009) further points out that job turnover has increased

substantially in the 1990’s compared to earlier decades. Blake and Orszag (1997) provide

2According to the Bureau of Labor Statistics Employee Benefits Survey in 1991 only 13% of full time
workers were covered by portability provisions (see Foster (1994) for the different categories of portability
provisions).
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a detailed analysis of portability risk. In particular, they quantify different types of porta-

bility losses like the cash equivalent loss and the backloading loss for different deterministic

wage paths and numbers of job moves in the UK. Specifically they report that even a low

number of job moves can cause huge portability losses, for instance someone changing jobs

once in a mid-career can lose up to 16% of the full service pension. A typical UK worker

moving six times in a career could end up with a pension of only 70 − 75% of a pension

of a worker with the same salary experience who remains in the same job for his whole career.

The main contribution of this chapter to the literature about the comparison of DB and

DC pension plans is that we provide a formal model for comparing the two major types of

private retirement plans by explicitly taking account of their most important risk factors

in the presence of stochastic wages, job moving and asset prices. We compare the DB

with the DC plan in an expected utility-based framework. Three frequently used utility

functions in the pension insurance literature are considered: power utility, mean-shortfall

and mean-downside deviation. The latter two utility functions penalize realizations of the

terminal pension payment below a threshold – demonstrating the loss-aversion property.

Under mean-shortfall, the penalty has a linear form. Mean-downside deviation punishes

the loss more severely and the loss takes a quadratic form. Our main means of comparison

is to compute the critical job switching intensity (from the DB plan) such that the benefi-

ciary is indifferent between the DB and the DC plan.

Our methodology to compare the two pension retirement plans is similar to that of

Siegmann (2011) who computes minimum funding ratios for the DB plan for the above

mentioned utility functions. In particular, we also make the pension outcomes comparable

by matching contributions in the two retirement plans. The main difference is that the

latter focuses on the time diversification effects in a DB plan and models a static pension

fund, while we model the DB plan from the perspective of a representative employee and

focus on the portability risk.

We confirm some results in the existing literature (e.g. Coco and Lopes (2011), Samwick

and Skinner (2004), Poterba, Rauh, Venti and Wise (2007) and Siegmann (2011)). First,

a rise in the salary growth rate increases the attractiveness of the DB plan, while a higher

salary volatility decreases its attractiveness. This reveals that the salary risk is more pro-

nounced in the (final) salary DB plan. Second, the DB plan is preferred by an older

beneficiary. It is mainly due to the fact that the overall portability loss becomes less severe

due to the shorter contract duration. Third, adjusting the contribution of the beneficiary

to a higher level makes the DC plan more attractive. Fourth, equity holding in a DC plan

plays a substantial role in the relative attractiveness of the retirement plans, but there does

not exist a clear dominating strategy for all the preferences.

Moreover, our model shows that portability losses substantially decrease the attractive-

ness of DB plans. In addition, by comparing the plans across utility functions we find that
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a mean-downside deviation beneficiary prefers the DB plan in most cases relatively more

than the mean-shortfall beneficiary. Our model further yields one striking result which is

inconsistent with the existing literature: the attractiveness of the DB plan can decrease in

the level of risk aversion and the DC plan can become most attractive for the most risk-

averse power-beneficiary. The rationale behind this most striking result is twofold. On the

one hand, portability risk is modeled as a jump risk which generates much disutility for

very risk-averse beneficiaries. On the other hand, the DC plan can offer better diversifi-

cation because it is not purely driven by the income risk (asset risk plays a decisive role too).

The remainder of the present chapter is organized as follows. Section 5.2 models the

pension payment in a DB and a DC pension plan. Additionally, we show how the contribu-

tions from these two plans can be matched. Section 5.3 determines analytically the expected

utility of the beneficiary in a DB plan (for DC plan we rely on a simulation technique).

Three utility functions are addressed: power utility, mean-shortfall and mean-downside de-

viation utility. In the subsequent section 5.4, the DB and DC plans are compared by mainly

determining the indifference job switching intensity. Section 5.5 concludes the chapter and

section 5.6 provides a detailed calculation for the propositions in the main text.

5.2 Model Setup

As in the last two chapters we consider a representative employee. The representative em-

ployee decides at t = 0 which pension plan he enters and he earns a pension benefit in T

years from now. For simplicity we assume that the employee keeps this retirement plan

until the retirement date.3 For the DC pension plan we assume that the pension benefits

are paid out as a lump sum, while the DB plan pays pension benefits as a life annuity, which

is also usually the case in practice. Moreover, we abstract from mortality risk during the

accumulation phase, inflation risk and sponsor bankruptcy.

The employee receives a salary which in our model is a continuous stochastic process

(St)t≥0. Furthermore, the employee is allowed to change jobs during his career. To simplify

the model setup, we assume that the employee changes a job only for exogenous reasons.

More precisely, we consider job changes due to personal reasons and exclude unemployment

and any kind of endogenous or strategic job moves. In other words, we assume that whenever

the employee changes a job, he is capable of finding a comparable job and his salary is not

affected by the job move. This rationale justifies the continuous salary process assumption

in the presence of job moving. The number of job moves is modeled as an (in)homogenous

Poisson process N(t)t≥0 with intensity λt ≥ 0.4 The expected or average number of job

moves between [0, t] is given by
∫ t

0
λu du. The salary process is assumed to follow a diffusion

process with a possibly time-varying drift coefficient, which allows to better capture some

3Our framework excludes the case in which the employee can switch between the DB and DC plan.
4That is, we allow for a possibly time-varying but deterministic intensity.
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empirically observed salary patterns, see the numerical analysis section. Accordingly,

dSt = µS(t)Stdt+ σSStdW
S
t , S0 = s (5.1)

where µS(t) ≥ 0 denotes the deterministic and possibly time-varying drift (trend in the

salary), σS > 0 is the constant volatility and W S is a standard Brownian motion, which is

assumed to be independent of N(t)t≥0 under the real world probability measure P.

Next, as in chapter 3 we assume that there are two assets in our economy, a riskless asset

F with price process (Ft)t≥0 and a risky non-dividend-paying asset A with price process

(At)t≥0, i.e

dFt = rFtdt, F0 = 1 (5.2)

dAt = µAAtdt+ σAAtdWt, A0 = a. (5.3)

The risky asset is modeled as a geometric Brownian motion where the standard Brownian

motion W is assumed to be possibly correlated with the standard Brownian motion of salary

process with the correlation coefficient ρ. Furthermore, it is independent of the number of

job moves, hence we have d[W,W S]t = ρ dt and d[W,N ]t = 0.

In the next subsections we model the pension income processes for the DB and DC

pension plan.

5.2.1 DB Pension Plan

The main goal of our modeling framework is to incorporate portability risk into a DB pen-

sion plan of a representative employee in the presence of stochastic salaries and stochastic

job moving. In practice, portability losses can be of two types. The major type is the cash

equivalent loss. DB payments usually depend positively on the product of earnings and

tenure. Since each of these tends to increase each year, much of the benefits are accrued

in the last years prior to retirement. However, if a worker leaves a firm the final pay used

to calculate the retirement benefits is the salary when he left the firm. As this salary is

usually lower than the salary prior to retirement, a so-called cash equivalent loss occurs.
5 The second type of portability loss is called the backloading loss. This is an additional

portability loss a worker switching jobs may suffer because contributions are backloaded in

one scheme but not in another, see Blake and Orszag (1997) for a detailed discussion about

the two types of portability losses.

The main factors determining the size of a portability loss are the ages at separation

and the estimated real growth rate of wages, see Blake and Orszag (1997). These authors

further illustrate that the portability losses are a hump shaped (inverse U shaped) function

in the age of the beneficiary. That is, portability losses are increasing in the early career,

5Accordingly, this shows that the salary risk and the portability risk are interconnected in practice.
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reach a maximum in the mid-career, decrease at the end of the career and are 0 at the re-

tirement date. We provide a simple model at hand which takes the ages at separation into

account and thus can capture the inverse U shaped structure of portability losses. However,

to keep our model simple we do not link the real growth rate of wages to the size of a

portability loss, therefore we do not quantify the size of each portability loss and neither

do we exactly distinguish between the two types of portability losses. In other words, the

simplifying assumption means that we treat the portability and the salary risk separately.

Nevertheless, we can capture average portability losses in different stages of a career and we

can also take the feature that portability losses increase with an increasing labor mobility

into account.

To do so, we introduce the pension adjusted salary process (S̃t)t≥0 and model this as

the jump diffusion

dS̃t = µS(t)S̃tdt+ σSS̃tdW
S
t + S̃t−dQt, S̃0 = S0, (5.4)

t− denotes the time immediately before a job move and Qt =
∑Nt

i=1 Yi is a compound

Poisson process. Yi, i = 1, ...Nt are i.i.d. random variables, independent of Nt and the

Brownian motions W and W S. The Yi’s are used to model the percentage changes in the

pension adjusted salary process when the employee changes his job. Intuitively, the pension

adjusted salary is the salary which is eligible for retirement benefits at time t after taking

the accumulated portability losses up to time t into account. More specifically, it contains

a continuous part given by the first two terms in (5.4), which describe the changes in the

pension income due to changes in the salary. The compound Poisson process captures the

portability risk, that is the loss in the pension income due to a job change. Accordingly,

we formally need to assume Yi < 0, i = 1, ...Nt. In addition, we assume that whenever the

employee changes a job, he loses a deterministic percentage 1 − βi, of his pension income,

i.e Yi = βi − 1 with 0 < βi < 1.

More specifically, to link the percentage loss to the ages at separation, we allow β to

be a deterministic function of time.6 In particular, we will assume that β is a piecewise

constant but time-varying function. Formally we define β as

β =
{
βj, tj ≤ t ≤ tj+1, j = 1...J

}
, (5.5)

where J denotes the number of career periods considered. In addition t0 = 0 and tJ = T .

Next, the stochastic differential equation (5.4) has the unique solution at time t = 0,

6In a more realistic setup, as suggested above the Yi’s would be stochastic and also directly depend
on the salary process S, particularly the trend of the salary µS(t). We could also include the trend in a
deterministic way to the Yi’s, but in order to keep the impact of the model parameters clear we stick to
our simple assumption.
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see e.g. Shreve (2004),

S̃T =s exp

{(∫ T

0

µS(u) du− 1

2
σ2
S T
)

+ σSW
S
T

} NT∏
i=1

βi

=s exp

{(∫ T

0

µS(u) du− 1

2
σ2
ST
)

+ σSW
S
T

}
exp

{
J∑
j=1

(N(tj)−N(tj−1)) ln (βj)

}
,

(5.6)

where in the second equation we have used the piecewise constant property of the jump size

β.

The DB plan we consider is a final salary DB plan. That is, we assume that the employee

receives a continuous annuity b(T ) which is the product of a pre-specified replacement rate

α, where 0 < α ≤ 1, and the terminal value of the pension adjusted salary, i.e b(T ) = α S̃T .

The crucial point is that in order to incorporate portability losses the retirement benefit

formula is based on the pension adjusted salary process instead of the salary process. To

make the DB plan and the DC plan comparable we are first going to convert the life annuity

of the DB plan into a lump sum. Formally the lump sum the beneficiary receives, which

we denote B(T ), can be determined as

B(T ) =

∫ ∞
T

b(T ) e−r (τ−T ) pτ dτ , (5.7)

where pτ is a continuous survival distribution function and τ is the time of death. We assume

that the annuity is paid up to maximum age T 1 and also use the simplifying assumption of

a constant mortality intensity µ. Then the lump sum can be computed as

B(T ) =

∫ T 1

T

b(T ) e−r (τ−T ) e−µ(τ−T )dτ

=
b(T )

r + µ

[
1− e−(r+µ) (T 1−T )

]
:= b(T ) a(T ), (5.8)

where a(T ) can be interpreted as the annuity factor.

5.2.2 DC Pension Plan

Unlike the DB pension plan, portability risk plays a minor role in DC plans as for the latter

the value of pension benefits is simply determined as the market value of the backing as-

sets. Therefore, benefits are easily transferable between jobs, see Zhang (2008). Moreover,

portability losses are unlikely to occur since DC plans are not backloaded and the contri-

bution rates are not tied to tenure and age of the workers (see Bodie, Marcus and Merton

(1986)). More importantly, the main economic argument for including portability risk into

a DC plan is that many moving workers may use their lump sum distributions for spending
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instead of reinvesting them in another retirement account (see e.g. Schultz (1995)). How-

ever, this argument has not been confirmed empirically, see Samwick and Skinner (2004).

Accordingly, for the DC plan we assume that job moving will not affect the pension income

of the representative employee. Instead as emphasized in the introduction, the employee in

a DC pension plan bears mainly the asset price risk which in a DB plan is mainly born by

the employer.

As we abstract from portability risk for the DC plan, the DC account value can be

modeled as a continuous stochastic process (Xt)t≥0. We model asset price risk as in chapter

3 and assume that the employee’s investment follows a rebalancing strategy. More specifi-

cally, the employee chooses at t = 0 a constant fraction π, 0 ≤ π ≤ 1 which will be invested

in the risky asset A and the remaining fraction (1 − π) is invested in the riskless asset F .

Then the DC account value is continuously rebalanced by a DC fund manager, that is at

any time 0 < t < T the amount πXt is invested in the risky asset and the remaining amount

in the riskless asset.

In order to capture the nature of the DC plan, we need to allow for contributions into

the employee’s account. We assume that the contributions are made by both the employee

and the employer, see section 5.4 for more details. These contributions represent cash

inflows into the DC account value. More specifically, we model a stylized DC plan where

the employee and the employer contribute continuously the amount c St dt, 0 ≤ c ≤ 1, to

the employee’s pension account and these contributions are also invested continuously over

time. In other words the employee and the employer contribute in each time period dt a

predetermined constant percentage c of the current employee’s salary to his DC account.

This implies that the DC account value evolves according to

dXt = Xt [(r + π σA θ) dt+ π σA dWt] + c St dt, X0 = c S0, (5.9)

where θ = (µA−r)
σA

denotes the market price of risk.

As the beneficiary in the DC plan receives a lump sum at the retirement date, the

pension benefit simply coincides with the terminal value of the DC account XT .

5.2.3 Matching the Employee’s contributions

In order to make the pension outcomes comparable we need to ensure that the employee

bears effectively the same costs in the two pension retirement plans.7 8 A way to achieve

this requirement is to assume that the employee contributes continuously the amount q St dt,

7We do not require the employers costs to be necessarily the same in the two retirement plans, since the
pension plans are compared from the employees perspective and in practice the costs the employer bears
in the two plans also differ.

8Of course this is just a theoretical assumption here. In reality employees in DC often bear higher costs
since they need to contribute periodically a fixed rate to the DC account, while the employees in a DB plan
often bear less costs as most of the contributions in the DB plan are variable deficit contributions and are
mainly covered by the employer.
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where q ≤ c denotes a constant percentage of the salary, in either retirement plan. In other

words, we assume that there is a one-to-one contribution match, i.e the employee makes

the same contributions in both retirement plans. The condition q ≤ c is needed because in

our modeling of the DC plan, c is used to denote the entire contribution rate provided by

the employer and the employee.

Then we determine the employee’s contribution rate q and the total contribution rate c

in the DC plan in two steps. In the first step, q is determined in the DB plan by linking

the employee’s contribution rate to the replacement rate α. This link is important since

the terminal payment in the DB plan crucially depends on the replacement rate. We

implicitly assume that all the contributions (employee and employer) in the DB plan are

incorporated in the replacement rate. This replacement rate is split into a replacement rate

αER, 0 ≤ αER ≤ 1, coming from the employer’s contribution and a replacement rate αEE,

0 ≤ αEE ≤ 1, coming from the employee’s contributions. That is, α = αER +αEE(q). More

specifically, we assume that the employer first sets the replacement rate αEE by fixing values

for the total replacement rate α and the replacement rate coming from his contributions αER.

Then he determines the employee’s contribution rate q such that on average the accumulated

employee contributions q
∫ T

0
Su du coincide with the self-financed pension income if the

employee stays with the employer, which is given by a(T )αEE ST . In particular, we assume

that the employer does not take any potential portability losses into account when setting

the employee’s contribution rate and therefore it is only the employee who bears the entire

costs of the portability losses. Formally, we link the employee’s contribution rate to his

replacement rate by requiring that

E
[
q

∫ T

0

Su du
]

= a(T )αEE E
[
ST
]
, (5.10)

which can be interpreted as the fair contribution condition in the DB plan.

In the following, we will assume that the salary trend is also a piecewise constant but

time-varying function, i.e µS =
{
µS,j tj ≤ t ≤ tj+1, j = 1...J

}
. Then the right hand

side of (5.10) becomes αEE a(T ) s exp{
∑J

j=1 µS,j (tj − tj−1)}. The left hand side can be

computed as

E
[
q

∫ T

0

Su du
]

=q

∫ T

0

s e
∫ u
0 µS(v) dv du

=q
J∑
j=1

∫ tj

tj−1

s e
∑j−1
k=1 µS,k (tk−tk−1) +µS,j(u−tj−1) du

=q · s ·
J∑
j=1

1

µS,j

(
e
∑j
k=1 µS,k (tk−tk−1) − e

∑j−1
k=1 µS,k (tk−tk−1)

)
,

where
∑j−1

k=1 ≡ 0 for j = 1. In the computation we have mainly used the Fubini theorem
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to interchange the order of integration and the piecewise constant property of the drift

coefficient. Finally we solve the equation above for q to obtain

q =
αEE a(T ) exp{

∑J
j=1 µS,j (tj − tj−1)}∑J

j=1
1

µS,j

(
e
∑j
k=1 µS,k (tk−tk−1) − e

∑j−1
k=1 µS,k (tk−tk−1)

) . (5.11)

Note that in case of a constant salary drift the matched employee contribution simplifies

to

q = a(T )αEE µS
(
1− exp(−µS T )

)−1
. (5.12)

The (fair) employee contribution rate q in equation (5.11) and (5.12) mainly depends on

the salary drift parameters and the length of the career periods. In particular, one can show

the the matched contribution rate increases with µS,j and decreases with T . Moreover, note

that our assumptions immediately ensure that q ≥ 0. The condition that q ≤ 1 requires

that the nominator in (5.11) is smaller than the denominator. This is the case for any

reasonable choice for the salary drift vector µS and contract maturity T .

In the second step, the total contribution rate c in the DC plan is determined by taking

the above specified employee’s contribution rate q and assuming that the employer simply

matches the employee’s contribution in the DC plan, i.e c = δ q, where δ ≥ 1 denotes the

matching factor.

5.3 Utility-Based Comparison

5.3.1 Utility Functions and Certainty Equivalents

We consider three frequently used utility functions in the financial and pension insurance

literature in our expected utility analysis: power utility, mean-shortfall and mean-downside

deviation.

For a payoff x, the power utility is defined as

u(x) =

{
1

1−γ x
1−γ, γ 6= 1

lnx, γ = 1
(5.13)

where γ is the constant coefficient of relative risk aversion. The power utility is abundantly

used in both theoretical and empirical research because of its nice analytical tractability.

More importantly, the use of the power utility is also motivated economically since the long-

run behavior of the economy suggests that relative risk aversion cannot depend strongly

on wealth, see Campbell and Viceira (2002). The certainty equivalent, that is the guaran-

teed amount of money that an economic agent would accept instead of the risky asset, i.e

u(CE) = E[u(x)], for the power utility is simply given CE(x) = (1 − γ)
(
E[u(x)]

) 1
1−γ

for
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γ 6= 1 and CE(x) = exp
{
E[u(x)]

}
for γ = 1.

The second utility function we consider, mean-shortfall is given by

u(x) =

{
x−R, x ≥ R ,

−η1 (R− x), x < R,
(5.14)

where R is the reference value, in our context this is the desired target pension income

of the employee. Loss aversion boils down to penalizing realizations of x below R with a

penalty parameter η1. This specification is a linearized version of that originally proposed

by Kahneman and Tversky (1979) and also used for instance by Benartzi and Thaler (2005).

The Certainty equivalent for the mean-shortfall utility is obtained by solving the equation

E[u(x)] = u(CE) for the gain and the loss side separately. Then one obtains

CE(x) =

{
E[u(x)] +R, E[u(x)] ≥ 0 ,

R−
(
− E[u(x)]

η1

)
, E[u(x)] < 0.

(5.15)

The last type of utility function, mean-downside deviation9 is comparable to mean-shortfall

with the essential difference that one uses a quadratic penalty specification. Large shortfalls

below the reference point R are penalized more severely:

u(x) =

{
x−R, x ≥ R

−η2 (R− x)2, x < R.
(5.16)

The mean-downside deviation utility is proposed by Boender (1997) in the pension fund

context and has since then been adopted in the ALM practice in the Netherlands (see e.g.

Siegmann (2011)). Finally the certainty equivalent of the mean-downside deviation utility

is given by

CE(x) =

{
E[u(x)] +R, E[u(x)] ≥ 0 ,

R−
√
−E[u(x)]

η2
, E[u(x)] < 0.

(5.17)

5.3.2 Expected Utility Results

As in the previous chapter we compute the expected utilities under the real world measure

P for the defined benefit pension plan. We are not able to compute the expected utilities

for the DC fund since the stochastic differential equation (5.9) is a sum of two stochastic

processes which does not admit a closed-form solution. Therefore, we solve this with an

Euler discretization scheme and compute the corresponding expected utilities with Monte

Carlo simulation. For the DB plan we further allow for a piecewise constant and time-

varying job switching intensity,i.e λ =
{
λj tj ≤ t ≤ tj+1, j = 1...J

}
.

9In the sequel we will frequently abbreviate the mean-shortfall utility as LA utility and the mean-
downside deviation utility as DD utility.
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Proposition 5.3.1 (Expected Utilities under the DB plan.). The expected utility for the

power utility function is given by

E[u(BDB
T )] =

1

1− γ
(α s a(T ) )1−γ exp

{
(1− γ) (

J∑
j=1

µS,j(tj − tj−1)− 1

2
σ2
S T ) +

1

2
(1− γ)2 σ2

S T

}
(5.18)

· exp

{
J∑
j=1

λj (tj − tj−1) (e(1−γ) ln (βj) − 1)

}
. (5.19)

For γ = 1 (log utility), we obtain

E[u(BDB
T )] = ln (a(T )α s ) +

(
J∑
j=1

µS(tj − tj−1)− 1

2
σ2
S T

)
+

J∑
j=1

λj(tj − tj−1) ln (βj) .

(5.20)

For the mean-shortfall we have

E[u(BDB
T )]

=
∞∑
k1=0

∞∑
k2=k1

· · ·
∞∑

kJ=kJ−1

[
α s a(T ) exp

{
J∑
j=1

µS,j(tj − tj−1)

}
J∏
j=1

β
(kj−kj−1)
j Φ(d1(k1, ..., kJ))

−RΦ(d2(k1, ..., kJ))− η1RΦ(−d2(k1, ..., kJ))

+ η1 α s a(T ) exp

{
J∑
j=1

µS,j(tj − tj−1)

}
J∏
j=1

β
(kj−kj−1)
j Φ(−d1(k1, ..., kJ))

]

×
J∏
j=1

λj (tj − tj−1)(kj−kj−1)

(kj − kj−1)!
e−λj (tj−tj−1), (5.21)

where Φ again denotes the cumulative distribution function of a standard normal distribution

and d1(k1, ..., kJ) and d2(k1, ..., kJ) are given by

d1(k1, ..., kJ) =
ln

α s a(T )
∏J
j=1 β

(kj−kj−1)

j

R
+ (
∑J

j=1 µS,j(tj − tj−1) + 1
2
σ2
S T )

σS
√
T

,

d2(k1, ...kJ) =d1(k1, ..., kJ)− σS
√
T .
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Finally for the mean-downside deviation utility we obtain

E[u(BDB
T )]

=
∞∑
k1=0

∞∑
k2=k1

· · ·
∞∑

kJ=kJ−1

[
α s a(T ) e

∑J
j=1 µS,j (tj−tj−1)

J∏
j=1

β
(kj−kj−1)
j Φ(d1(k1, ..., kJ))−RΦ(d2(k1, ..., kJ))

− η2R
2 Φ(−d2(k1, ..., kJ)) + 2η2Rα s a(T ) e

∑J
j=1 µS,j (tj−tj−1)

J∏
j=1

β
(kj−kj−1)
j Φ(−d1(k1, ..., kJ))

− η2(α s a(T ) )2e(2
∑J
j=1 µS,j (tj−tj−1)+σ2

S T )

J∏
j=1

β
2 (kj−kj−1)
j Φ(−d3(k1, ..., kJ))

]

×
J∏
j=1

λj (tj − tj−1)(kj−kj−1)

(kj − kj−1)!
e−λj (tj−tj−1), (5.22)

where

d3(k1, ..., kJ) =
ln

α s a(T )
∏J
j=1 β

(kj−kj−1)

j

R
+ (
∑J

j=1 µS,j(tj − tj−1) + 3
2
σ2
S T )

σS
√
T

.

Proof 5.3.2. The proof of the proposition is given in Appendix 5.6.

5.4 Numerical analysis

In our benchmark case we assume that the size of the portability losses β, the salary trend

µS and the job switching intensity λ are constant. The more realistic case, where these

parameters are time-varying is devoted as a sensitivity analysis to the next subsection.

We compare the DB and the DC pension plan mainly by computing the indifference job

switching intensity with a numerical search algorithm. This is the job switching intensity

which makes the employee equally well off in terms of the corresponding expected utility in

any of the two pension plans. We denote the indifference job switching intensity as λ∗. The

employee receives a higher expected utility from a lower value of λ as the overall portability

loss is smaller the less frequently he changes his job. It implies that the DB plan is more

attractive than the DC plan for values of λ < λ∗, while the DC plan is favored for values

of λ > λ∗. At λ = λ∗, the employee is indifferent between the two plans. Consequently, a

higher value of λ∗ implies that the DB plan becomes more attractive in more situations. Note

that if for a specific parameter combination there does not exist an indifference intensity, it

simply means that the DC plan is even preferable to a DB plan without portability losses,

which is the so-called cash balance pension plan.10 For our numerical analysis, we choose

10This is a so-called hybrid pension plan, which has the main features of DB plans but with the main
difference that pension benefits are portable.
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the following benchmark model parameters:

α = 0.2, αER = 0.15, µ = 0.0005, δ =
3

2
, S0 = 1000,

T =25, T 1 = 30, µS = 0.015, σS = 0.13, β = 0.95,

r = 0.02, µA = 0.055, σA = 0.25, ρ = 0.

Specifically, we assume that the employee makes a decision to enter one of the two retire-

ment plans at the age of 40 and he retires at 65. The replacement rate coming from the

employee’s contributions is αEE = 0.05. This implies that the employee’s contribution rate

q is approximately 5.2%. The values µS=0.015 and σS = 0.13 are empirically estimated by

Topel and Ward (1992). For the matching mechanism of the employee’s and the employer’s

contribution, we assume the standard matching mechanism in practice (see e.g Samwick

and Skinner (2004)): the employer contributes 0.5 $ on each dollar contributed by the em-

ployee. This implies that in our benchmark case the total contribution rate in the DC plan

is c = 7.8 % (= q δ). Furthermore, the correlation coefficient ρ between the salary process

and the risky financial asset is set to 0, following Davis and Willen (2000) who find a low

correlation for shocks in earnings and stock market returns. Most importantly, the value for

the portability loss size β is chosen to reflect the empirical estimates of Blake and Orszag

(1997). In particular, these authors estimated that a typical UK worker moving six times

in a career could end up with a pension of only 70 − 75% of a pension of a worker with

the same salary experience who remains in the same job for his whole career. The value

of β = 0.95 implies that a worker with six job changes only obtains 73.5%(= 0.956) of the

retirement income compared to one without job changes in our model.

We consider the following set of coefficient values for the risk aversion parameters, see

also Siegmann (2011) for similar values:

γ ∈ {1, 2, 4}, η1 = η2 ∈ {2.25, 5}. (5.23)

Furthermore, we assume that the reference point for the mean-shortfall utility and the

mean-downside deviation utility is a multiple of the value of the investment in the money

market account. In our benchmark case we choose R = 5 c s exp{r T}. We consider the

values π = 0.4, π = 0.57, π = 0.75, π = 0.75 and π = 0.9 for the fraction invested in risky

assets. The fraction π = 0.57 is our benchmark investment strategy, where the value is

estimated from DC pension asset allocation data for the US from Broadbent, Palumbo and

Woodman (2006).11 Finally we use the time discretization of dt = 1
12

for the Euler scheme

and n = 100000 simulation runs to evaluate the expected utilities of the DC pension plan.

Table 5.1 displays values for the indifference job switching intensity λ∗ for the three util-

ity functions and their corresponding risk aversion parameters under the four considered

investment strategies. An economically intuitive way to interpret this and the tables at

11The estimation method is the same as described in chapter 3.
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Utility Risk aversion π = 0.4 π = 0.57 π = 0.75 π = 0.9

CRRA γ = 1 0.3423 0.3169 0.3058 0.3088
γ = 2 0.2540 0.2690 0.3087 0.3673
γ = 4 0.0897 0.1724 0.3052 0.4309

LA η1 = 2.25 0.3068 0.2532 0.1929 0.1349
η1 = 5 0.2965 0.2504 0.1890 0.1399

DD η2 = 2.25 0.3526 0.3121 0.2831 0.2958
η2 = 5 0.3061 0.2801 0.2821 0.3442

Table 5.1: Values of λ∗ for the benchmark case.

hand is to compute the expected (average) number of job moves under which the DB plan

is still preferred by the employee, which is given by T × λ∗. For our benchmark investment

strategy π = 0.57 the DB plan is on average preferred in ascending order of the risk aversion

parameters up to 7, 6 and 4 job moves for the power utility, 6 job moves for the LA utility

and 7 and 6 job moves for the DD utility.

Furthermore, the table shows that the investment strategy has a huge impact on the

indifference job switching intensities for all utility functions, where the impact is most pro-

nounced for the most risk averse power beneficiary and the LA beneficiary. More specifically,

one observes that there is no clear dominating investment strategy. In our context, the best

investment strategy (among the four values of π) is the one with the lowest indifference job

switching intensity, which implies that the DC plan will be most frequently preferred. The

most risky strategy is best for the LA utility maximizer independent of his loss aversion.

Intuitively, the LA utility maximizer would choose the most risky strategy because gains

in the pension income through gains in the financial portfolio receive the highest weight

for this utility function. On the other hand, potential losses are not severely penalized,

therefore the LA utility maximizer tolerates the high financial risk. The investment strat-

egy π = 0.75 is best for a less loss averse DD utility maximizer and the least risk averse

power beneficiary. The benchmark investment strategy is preferred by the more loss averse

power beneficiary. More risk averse power beneficiaries (γ = 2 and γ = 4) find the most

conservative investment strategy best.

Next we fix the best investment strategies above and make a comparison across the

different utility functions. We can state the following two interesting points. First, the

DC plan is most attractive for the most risk averse power beneficiary since this beneficiary

would prefer the DC plan after 3 job moves on average. Second, comparing the two utility

functions with the loss aversion property we see that the DB plan is considerably more

attractive for the DD beneficiary. Compared to the best strategy of a LA beneficiary, he

would on average need to have 4 more job moves to prefer the DC pension plan. It is

important to note that the latter point holds for any investment strategy. Intuitively this is

because the DD beneficiary is more loss averse than the LA beneficiary, therefore he prefers
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to take less financial risk than his LA counterpart.

Most interestingly, table 5.1 reveals that in our model the DC plan can become sig-

nificantly more attractive with increasing risk aversion. It is particularly the case for the

more conservative investment strategies π = 0.4 and π = 0.57 and most pronounced for the

power beneficiary, which also accounts for the result above that the DC plan is most attrac-

tive for the most risk averse power beneficiary. This result is to some extent inconsistent

with the known result in the literature that DB plans relative attractiveness increases with

increasing risk aversion of the beneficiaries, see e.g Siegmann (2011). Our result can be

explained by two effects. First, and probably most importantly, portability risk is modeled

as a jump risk, which represents a substantial source of risk for risk averse pension benefi-

ciaries. Second, the DC plan offers a better diversification than the DB plan because the

benefits here do not only depend on the evolution of the salary process. This effect is the

more pronounced the lower the investment in the risky asset is and also the lower the corre-

lation between the risky asset and the salary process is. For a very high equity holding like

π = 0.9, however, the volatility of the financial portfolio, which is given by π σA, becomes

fairly high such that the financial risk dominates the portability and the salary risk in the

DB plan. Accordingly, for a very risky investment strategy the DB becomes significantly

more attractive with increasing risk aversion.

5.4.1 Sensitivity Analysis

In this subsection we investigate how far the more realistic model setup with a time-varying

portability loss size, salary trend and job switching intensity affects the above stated results.

As suggested in our model setup we assume the corresponding parameters to be piecewise

constant. Specifically we consider 3 time periods, where t = [0 10 20 25]. The first 10

years are referred to as the early career, the next 10 years as the mid-career and the last

5 years as the end of the career. In each case we let one parameter be time-varying while

keeping the other parameters constant.

In table 5.2 we compute the indifference job switching intensity for the more realistic

case of hump-shaped portability losses, i.e U-shaped portability loss size β, see Blake and

Orszag, Chapter 4 (1997). That is, portability losses are increasing up to the end of the

mid-career and reach a maximum there, reflected by the high portability loss size (β2 = 0.9),

while they are very small at the end of the career, accordingly β3 = 0.99. The portabil-

ity loss size at the early career is assumed to be the same as in our benchmark case, i.e

β1 = 0.95. We observe that our main results stated above, about the impact of the invest-

ment strategy, the effect of the risk aversion and also that DD beneficiaries relatively prefer

more DB plans than LA beneficiaries, remain unchanged. More specifically, we observe that

the more pronounced portability losses in the mid-career imply that the employee would

prefer the DC plan after 1 or 2 less job moves on average for any utility function. This

indicates that portability losses play a considerable role in the relative attractiveness of the
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DB plan.

Utility Risk aversion π = 0.4 π = 0.57 π = 0.75 π = 0.9

CRRA γ = 1 0.2721 0.2533 0.2413 0.2441
γ = 2 0.1989 0.2089 0.2431 0.2857
γ = 4 0.0631 0.1268 0.2288 0.3374

LA η1 = 2.25 0.2503 0.2032 0.1531 0.1102
η1 = 5 0.2501 0.2019 0.1528 0.1145

DD η2 = 2.25 0.2742 0.2447 0.2260 0.2321
η2 = 5 0.2360 0.2147 0.2179 0.2583

Table 5.2: Values of λ∗ for a piecewise constant and U-shaped portability loss size with
β = [0.95 0.9 0.99] (original β = 0.95).

In table 5.3 we compute the indifference job switching intensities for a piecewise constant

and time-decreasing salary trend. Specifically we assume that the employee’s salary growth

has the highest trend in the early career µS,1 = 2.25% and then this trend decreases grad-

ually in the mid-career (µS,2 = 1.75%) and the late career (µS,3 = 1%). With a piecewise

constant and time-decreasing salary drift we can capture the often, i.e for many workers,

empirically observed concave shape of the salary curve, see Blake and Orszag, Chapter 5

(1997). The main results observed in our benchmark case of a constant salary drift still

carry over. In addition we see that the higher salary growth rate in the early and mid-

career mainly leads to a slight increase in the relative attractiveness of the DB plan. The

corresponding economic effects are discussed in the next subsection in figure 5.1.

Utility Risk aversion π = 0.4 π = 0.57 π = 0.75 π = 0.9

CRRA γ = 1 0.3500 0.3257 0.3118 0.3148
γ = 2 0.2601 0.2733 0.3164 0.3692
γ = 4 0.0974 0.1797 0.3068 0.4370

LA η1 = 2.25 0.3247 0.2695 0.2032 0.1506
η1 = 5 0.3195 0.2687 0.2021 0.1595

DD η2 = 2.25 0.3773 0.3324 0.2972 0.2917
η2 = 5 0.3344 0.3050 0.2895 0.3442

Table 5.3: Values of λ∗ for a piecewise constant and decreasing salary trend with µS =
[0.0225 0.0175 0.01] (original µS = 0.015).

As a last robustness check we consider a deterministic and time-decreasing job switching

intensity λ. It is empirically confirmed that workers change jobs much more frequently when

they are younger than when they are older, see for instance Booth, Francesconi and Garcia-

Serrano (1997). Accordingly, we set λ = [0.3 0.2 0.1]. As we have fixed the job switching

intensity, we can now not report the indifference job switching intensity. Therefore we
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consider here the ratio of the certainty equivalents of the DB plan CEDB and that of the

DC plan CEDC as the relevant statistic. It has qualitatively the same meaning as the

indifference job switching intensity. That is, a ratio above 1 indicates that the DB plan is

relatively preferred to the DC plan and the opposite holds if this ratio is less than 1. Table

5.4 again confirms our benchmark results. Specifically, given the best investment strategy

is taken, less risk averse power beneficiaries and the DD beneficiaries relatively prefer the

DB plan, while the more risk averse power beneficiary and LA utility maximizers would opt

for the DC plan.

Utility Risk aversion π = 0.4 π = 0.57 π = 0.75 π = 0.9

CRRA γ = 1 1.1707 1.1339 1.1216 1.1185
γ = 2 1.0430 1.0615 1.1254 1.2099
γ = 4 0.8257 0.9379 1.1188 1.3342

LA η1 = 2.25 1.1179 1.0388 0.9632 0.9088
η1 = 5 1.1105 1.0256 0.9604 0.9150

DD η2 = 2.25 1.2814 1.1812 1.1223 1.1583
η2 = 5 1.2350 1.1616 1.1494 1.3493

Table 5.4: Values for the certainty equivalent ratio CEDB

CEDC
for a piecewise constant and

decreasing job switching intensity λ = [0.3 0.2 0.1].

5.4.2 Comparative Statics

In the following subsection we investigate the impact of the crucial contract parameters

more closely. To do so we fix our benchmark investment strategy π = 0.57, and set the risk

aversion parameters γ = 2 and η1 = η2 = 2.25. We investigate the impact of the salary

process, the career length and the employee’s contributions more closely. To better see the

effects of the parameters we consider our benchmark case with a constant salary trend,

portability loss size and constant job switching intensity.

Figure 5.1 shows values for the indifference job switching intensities λ∗ for different levels

of the salary drift µS. Note first that the employee’s contribution rate q will be adjusted

according to equation (5.12) for each value of µS. We observe the standard result in the

literature that an increase in the salary drift, i.e salary growth rate, makes the DB plan

more attractive, see e.g Coco and Lopes (2011). The salary drift has a higher impact on

the relative attractiveness of the DB plan for the two utility functions with loss aversion.

Intuitively, the impact of the salary drift depends on 3 effects in our model. First, for any

utility function a higher salary drift implies that it becomes more likely that the beneficiary

will receive a higher final salary, which leads to a higher retirement benefit in the DB plan.

Second, a higher salary drift also leads to higher contributions in absolute terms in the DC

plan. Third, the comparison matching condition (5.12) implies that the matched contribu-

tion increases with an increase in the salary drift. As the first effect slightly (moderately)
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dominates the second and third effect the DB plan becomes relatively more attractive for

any utility function.

Figure 5.1: Values for the indifference job switching intensity λ∗ for different levels of the
salary drift µS.

Figure 5.2 again shows a standard result in the literature. A higher salary volatility

decreases the relative attractiveness of the DB pension plan. This is most pronounced for

the power utility function, for the LA utility the salary volatility has a negligible impact

while for the DD utility the impact becomes fairly pronounced for higher levels of the salary

volatility. Intuitively, in general a higher salary volatility makes the final salary more un-

certain, in particular it increases the likelihood of a lower final salary and thus of a lower

pension benefit. This effect dominates the effect of more uncertain contributions in the

DC plan. More specifically, for the LA utility losses, i.e shortfalls below the target pension

income R, are not severely penalized. This implies that the LA beneficiary almost ignores

the higher risk of a loss which comes with an increase of the salary volatility, therefore the

effect of σS is negligible for him. For the DD utility however, losses are penalized more

severely, therefore for higher levels of σS (≥ 10%) an increase also considerably increases

the likelihood that the benefits fall below the target pension income. Accordingly, the rel-

ative attractiveness of the DB plan substantially decreases for higher values of the salary

volatility. Interestingly, there is a critical volatility level, here σS ≥ 15%, where the DD ben-

eficiary prefers the DC plan more than the LA beneficiary. In other words if the salary risk

is very high the DC plan can become more attractive for the more loss averse DD beneficiary.

Comparing figures 5.1 and 5.2 we can state that the evolution of the salary process af-

fects the DB retirements more than the DC pension retirements. This is intuitive as the DB

formula is solely based on the final salary whereas the DC pension plan also considerably
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depends on the investment performance of the financial portfolio.

Figure 5.2: Values for the indifference job switching intensity λ∗ for different levels of the
salary volatility σS.

In figure 5.3 we investigate the impact of the career length, or the maturity of the pen-

sion retirement contracts, on the relative attractiveness of the two pension retirement plans.

A longer (shorter) career length means that the employee enters into the retirement plan

when he is younger (older). Again recall that the employee’s contribution rate q is computed

for each T according to equation (5.12). One clearly sees that the longer the career length

of the employee, or the longer the maturity of the pension plan is, the considerably more

attractive the DC plan becomes for any utility function. Intuitively, for the older worker the

DB plan is considerably more attractive since the overall portability loss is also substantially

lower. On the other hand, the DC plan is less attractive because the employee has less time

to benefit from the equity premium and to contribute sufficient funds. These two effects

substantially dominate the effect that through the contribution matching condition (5.12)

the matched contribution rate decreases with the contract maturity. The line of reasoning

reverts for the younger employee.

Finally, we investigate how a change in the employee’s contribution rate q affects the

relative attractiveness of the two pension retirement plans. Therefore, we revert equation

(5.12) and compute for each level of q the corresponding employee’s replacement rate αEE.

αEE increases in q for given µS. We observe that the DC plan becomes substantially

more attractive with an increasing employee contribution rate q for any utility function

as the effect of a higher contribution dominates the effect of a higher replacement rate.

This is particularly the case because the employer contribution also increases with the

employee contribution in the DC pension plan, which is due to the matching mechanism.
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Figure 5.3: Values for the indifference job switching intensity λ∗ for different levels of the
career length T .

Most interestingly, we see that for contribution rates which converge to 0 the DB pension

plan is more attractive for any reasonable number of average job moves, while for higher

contributions rates, q ≥ 8.5%, the DC plan is always preferred in expected utility terms for

any utility function. This result is in line with Samwick and Skinner (2004) who emphasize

that primarily inadequate contributions lead to retirement incomes which are on average

lower than the DB counterparts, while adequate contribution rates result in a higher median

pension income under the DC plan. Samwick and Skinner (1997) even mention that a large

number of workers eligible for a DC plan fail to contribute. This figure nicely illustrates

that for these workers the DB plan is the better pension plan regardless of their preferences.

5.5 Conclusion

The present chapter models the most important properties from a representative bene-

ficiaries perspective in DB and DC plans: salary risk present in both the DB and DC

plan, portability losses in DB plans due to job switchings, and asset price risk born in

DC plans. We make comparisons between DB and DC plans by analyzing the expected

utility of the pension beneficiary under three preferences: power utility, mean-shortfall and

mean-downside deviation preferences. Most of our findings are consistent with the existing

literature. Independent of the preferences, the attractiveness of DB plan increases in the

salary growth rate and decreases in the salary volatility and the contract maturity. Our

model further indicates that portability losses considerably reduce the relative attractive-

ness of the DB plan. Moreover, we show that for the utility functions with the loss aversion

property, a mean-downside deviation beneficiary prefers the DB plan in most cases relatively
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Figure 5.4: Values for the indifference job switching intensity λ∗ for different levels of the
employee’s contribution rates q.

more than the mean-shortfall beneficiary. Finally we have a result, which is inconsistent

with existing findings. We find that the attractiveness of the DB plan can decrease in the

level of risk aversion. It is justified by the fact that the disutility caused by the portability

loss (jump risk) can be particularly severe for very risk averse beneficiaries.

This chapter can be extended by relaxing several assumptions. First, one could also

include endogenous or strategic job moves and unemployment in our setup by allowing

the salary process to have jumps. Second, the portability risk could be also modeled more

realistically by specifying the pension income at retirement as B(T ) =
∑N(T )

i=1 τi S(τi), where

τi denotes the time the employee has worked for employer i. Then the portability losses

could be defined as the difference of a pension income without job moves and the pension

income with job moves, i.e T S(T ) −
∑N(T )

i=1 τi S(τi). In this framework we would link the

portability risk to the salary risk and thus better capture the major type of portability losses,

the cash equivalent losses. Finally, one could allow the beneficiary to have a combination of

both, a DC and DB pension plan, or to change the pension plan at some time in his career.



5.6. APPENDIX: DERIVATION OF PROPOSITION 4.3.1 103

5.6 Appendix: Derivation of Proposition 4.3.1

a) Power Utility: u(x) = x1−γ

1−γ

The expected utility of the power utility is computed by using the independence between

W S and the increments of the Poisson process N(tj)−N(tj−1), j = 1, ..., J . 12. This implies

that the expectation in (5.6) factors, thus we can write the expected utility as

E[u(BDB
T )] =

1

1− γ
(a(T )α s)1−γ E

[
exp

{
(1− γ) (

J∑
j=1

µS,j(tj − tj−1)− 1

2
σ2
S T ) + σSW

S
T

}]

× E
[

exp

{
J∑
j=1

(N(tj)−N(tj−1)) (1− γ) ln (βj)

}]
To evaluate the first expectation we just use that the exponent is normally distributed to

obtain

E

[
exp

{
(1− γ) (

J∑
j=1

µS,j(tj − tj−1)− 1

2
σ2
S T ) + σSW

S
T

}]

= exp

{
(1− γ) (

J∑
j=1

µS,j(tj − tj−1)− 1

2
σ2
S T ) +

1

2
(1− γ)2 σ2

S T

}
.

Next one can show that

E[ecj (N(tj)−N(tj−1))] = exp {λj (tj − tj−1) (ecj − 1)} ,

for any time tj ≥ 0 and any piecewise constant cj, j = 1, ....J . Collecting the last two

expectations one ends up with (5.18).

b) Mean-Shortfall: u(x) = x−R for x ≥ R and u(x) = −η1(R− x) for x < R.

To compute the expected utility for the mean shortfall we mainly use the law of iterated

expectations, to first condition on the number of job moves N(tj) in every career period

j = 1, ...J and compute the standard Black Scholes expectation. In the second step we

derive the joint distribution of all job moves and evaluate the outer expectation. First we

have

E[u(BDB
T )] =E

[
E[1{BDBT ≥R}B

DB
T |N ]

]
− E

[
E[1{BDBT <R} η1 (R−BDB

T )|N ]
]

Conditioned on the number of job moves being kj up to career period j, where kj is an

increasing sequence, the two conditional expectations are standard Black Scholes integrals,

12Note that the independence of WS and the Poisson process N immediately implies this independence.
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therefore we have

E[1{BDBT ≥R} (BDB
T −R)|N(t1) = k1, ...N(tJ) = kJ ]

=α s a(T ) exp

{
J∑
j=1

µS,j(tj − tj−1)

}
J∏
j=1

β
(kj−kj−1)
j Φ(d1(k1, ..., kJ))−RΦ(d2(k1, ..., kJ));

E[1{BDBT <R}η1 (R−BDB
T )|N(t1) = k1, ..., N(tJ) = kJ ]

=− η1RΦ(−d2(k1, ..., kJ)) + η1 α s a(T ) exp

{
J∑
j=1

µS,j(tj − tj−1)

}

·
J∏
j=1

β
(kj−kj−1)
j Φ(−d1(k1, ..., kJ));

d1(k1, ..., kJ) =
ln

αsa(T )
∏J
j=1 β

(kj−kj−1)

j

R
+ (
∑J

j=1 µS,j(tj − tj−1) + 1
2
σ2
S T )

σS
√
T

,

d2(k1, ...kJ) =d1(k1, ..., kJ)− σS
√
T .

where Φ denotes the standard normal cdf.

Next we compute the joint distribution of the number of jumps in each career period as

P (N(t1) = k1, ..., N(tJ) = kJ)

=P (N(t1) = k1, N(t2)−N(t1) = k2 − k1, ..., N(tJ)−N(tJ−1) = kJ − kJ−1)

=
J∏
j=1

P (N(tj)−N(tj−1) = kj − kj−1)

=
J∏
j=1

λj (tj − tj−1)(kj−kj−1)

(kj − kj−1)!
eλj (tj−tj−1).

In the second step we have rewritten the number of jumps up to time point j in terms

of its increments. In the third equation we have then used the independence of the Poisson

process increments. In the last step we have used the law of a (in)homogeneous Poisson

process with a piecewise constant intensity.

Finally we use the distribution of the number of jumps in each career period and evaluate

the outer expectation by integrating over the range of possible jumps in each career period
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and obtain

E[u(BDB
T )]

=
∞∑
k1=0

∞∑
k2=k1

· · ·
∞∑

kJ=kJ−1

[
α s a(T ) e

∑J
j=1 µS,j (tj−tj−1)

J∏
j=1

β
(kj−kj−1)
j Φ(d1(k1, ..., kJ))−RΦ(d2(k1, ..., kJ))

− η2R
2 Φ(−d2(k1, ..., kJ)) + 2η2Rα s a(T ) e

∑J
j=1 µS,j (tj−tj−1)

J∏
j=1

β
(kj−kj−1)
j Φ(−d1(k1, ..., kJ))

− η2(α s a(T ) )2e(2
∑J
j=1 µS,j (tj−tj−1)+σ2

S T )

J∏
j=1

β
2 (kj−kj−1)
j Φ(−d3(k1, ..., kJ))

]

×
J∏
j=1

λj (tj − tj−1)(kj−kj−1)

(kj − kj−1)!
e−λj (tj−tj−1).

c) Mean-Downside Deviation: u(x) = x for x ≥ R and u(x) = −η2(R− x)2 for x < R

To compute the expected utility for the mean-downside deviation utility we simply need

to compute the additional conditional expectation

E[1{BDBT <R} (BDB
T )2|N(t1) = k1, ..., N(tJ) = kJ ]

=− η2(α s a(T ) )2e(2
∑J
j=1 µS,j (tj−tj−1)+σ2

S T )

J∏
j=1

β
2 (kj−kj−1)
j Φ(−d3(k1, ..., kJ));

d3(k1, ..., kJ) =
ln

α s a(T )
∏J
j=1 β

(kj−kj−1)

j

R
+ (
∑J

j=1 µS,j(tj − tj−1) + 3
2
σ2
S T )

σS
√
T

.

The other conditional expectations almost carry over from the ones for the mean-shortfall

utility, accordingly we eventually have

E[u(BDB
T )]

=
∞∑
k1=0

∞∑
k2=k1

· · ·
∞∑

kJ=kJ−1
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α s a(T ) e
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J∏
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β
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j Φ(d1(k1, ..., kJ))−RΦ(d2(k1, ..., kJ))

− η2R
2 Φ(−d2(k1, ..., kJ)) + 2η2Rα s a(T ) e

∑J
j=1 µS,j (tj−tj−1)

J∏
j=1

β
(kj−kj−1)
j Φ(−d1(k1, ..., kJ))

− η2(α s a(T ) )2e(2
∑J
j=1 µS,j (tj−tj−1)+σ2

S T )

J∏
j=1

β
2 (kj−kj−1)
j Φ(−d3(k1, ..., kJ))

]

×
J∏
j=1

λj (tj − tj−1)(kj−kj−1)

(kj − kj−1)!
e−λj (tj−tj−1).
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Chapter 6

Concluding Remarks

In this dissertation we study three very important types of insurance, equity-linked life,

pension insurance and the insurance provided by (pension) insurance guarantee funds.

When dealing with the pricing problem of equity-linked life insurance contracts with

surrender guarantees one has to take different sources of risk, as the financial risks like the

interest or volatility risk and insurance risks like mortality or longevity risk, into account.

In addition one has to model the surrender behavior of the policyholder. Concerning the

last point it is important to allow for both exogenous and endogenous surrender. Due to

the long maturities of these contracts, it is also important to capture the economic changes

which affect both the dynamics of the underlying financial portfolio and the surrender be-

havior of the policyholder. Our regime-switching rational expectation model in chapter 2,

where the regimes represent economic states, captures all these points and hence extends

the existing literature on the pricing of surrender options in equity-linked life insurance.

The main modeling contribution is that exogenous and endogenous surrender are linked to

the economic states. Specifically, we show that the economic state has a significant impact

on the contract and particularly surrender option value and that the American style sur-

render model, which relies on the assumption that policyholders behave monetary optimal,

substantially overestimates the surrender option value in any economic state.

Beside the modeling of the financial risk factors more realistically in a specific stochastic

model, one could also extend our regime-switching framework, which relies on two simplify-

ing assumptions: firstly, there are no jumps in the financial portfolio value when the regime

switches and secondly we can exactly observe the regime-switches. Dealing with the first

extension one would have to solve a coupled nonlinear system of partial integro differential

equations (PIDE’s). For the second extension one would assume that the economic regimes

follow a hidden markov chain (HMM) and use filtering techniques to back out the current

economic regime.

Insurance guarantee funds, which exist for many insurance types and in many countries,

have the shortcoming that their premium charges are not (sufficiently) risk-based. In chap-
107
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ter 3 we consider the largest pension guarantee fund, the US PBGC pension insurance, and

derive a risk-based premium in a contingent claim distress termination model. The distress

termination is the most common type of termination where the pension fund is terminated

by the sponsoring company due to its own financial distress. Apart from providing a formal

distress termination model with a closed-form solution for the risk-based premium we also

present an empirical analysis. With a dataset of the largest 100 US DB plan sponsors, we

illustrate our theoretical pricing formula and show that the premiums paid to the PBGC

differ substantially once sponsor and pension fund specific risks are taken into consideration.

As our regime-switching model in chapter 2, our distress termination model could also

be extended by modeling further financial risks stochastically. For instance a simple Vasicek

model for the short rate would probably still allow for at least semi-closed form solutions. A

more interesting theoretical extension would be to incorporate the variable deficit type con-

tributions DB sponsoring companies make into the pension fund and to study their impact

on the risk-based premium paid to the pension insurance guarantee fund. It would be also

very interesting to extend our empirical part. One could infer further interesting statistics

as the shortfall probability of the sponsoring companies and relate this to the premiums

they should pay to the PBGC according to our model. In addition, one could also perform

a more accurate econometric analysis with the data.

Although a risk-based premium for pension guarantee funds is very appealing from the

economic perspective and hence the corresponding authorities are encouraged to introduce

such a premium calculation, the law in many countries gives pension guarantee funds only

the possibility to intervene by closing underfunded pension funds. Accordingly, optimizing

the involuntary termination mechanism is the only means pension guarantee funds have

thus far to protect the employees in insured DB pension plans. In chapter 4 we derive the

optimal timing of intervention in terms of a critical funding ratio of an insured DB pension

plan, that is the funding ratio when the pension guarantee fund prematurely terminates

the underfunded pension plan and activates its financial guarantee. To this end, we assume

that the pension guarantee fund represents the interests of the policyholders and maximizes

their expected utilities subject to two constraints. The pension guarantee fund controls the

shortfall probability of insured DB plans and the expected losses of underfunded but not

terminated pension plans. By controlling these quantities the pension guarantee fund can

better manage its financial guarantee and thus additionally protect the employees. The

two main qualitative results of our analysis are: firstly, a premature termination is not

beneficial for risk neutral and less risk averse beneficiaries when only the SPC is considered,

whereas a premature termination rule is always applicable regardless of the risk aversion

of the beneficiaries when the ESC is included. Secondly, additional regulation in terms of

adding the ESC leads to disutility for risk neutral and less risk averse beneficiaries, while

more risk averse beneficiaries are not harmed by this additional regulation.

To compare (private) DB and DC pension plans one has to model a specific tradeoff since



Conclusion 109

the risks the employee bears differ or are not equally pronounced in the two pension plans.

It is also important to model the preferences of the policyholder. In chapter 5 we perform

a continuous-time expected utility comparison with different preferences in a model with

stochastic wages, stochastic job moving and stochastic asset prices. Our modeling frame-

work takes the driving risk factors into account, that is salary risk in both the DB and the

DC plan, portability risk in the DB plan and investment risk in the DC plan. In practice

one has observed a rapid demise of DB plans in the last two decades. Our findings that the

average portability losses significantly reduce the relative attractiveness of DB plans and

that DC pension plans offer better diversification through the participation in the invest-

ment portfolio account for this phenomenon. However, we also find that there are some

cases where the DB plan is the more appropriate pension plan. This is particularly the case

if the employee does not make sufficient contributons into the DC plan or an employee with

a not very volatile salary is fairly loss averse.

The last chapter can be extended by following Blake and Orszag (1997) and model

portability losses in our framework more realistically taking the two types of portability

losses, the cash equivalent losses and the backloading losses, better into account. Moreover

one could allow the policyholder to switch between the different pension contracts and for

instance compute the utility loss or gain if the employee switches from a DB to a DC

pension plan somewhere in the mid-career. Another interesting research question would be

to compare the standard DB and DC plan with hybrid pension plans like the cash balance

plan. The share of such hybrid contracts has grown in the last years and therefore it would

be intersting to illustrate some advantages these plans have over a standard DB plan.
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