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3. Gutachter: Prof. Dr. Helmut Harbrecht

Tag der Promotion: 3. September 2012

Erscheinungsjahr: 2012
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Zusammenfassung

Die numerische Simulation von Kontaktproblemen ermöglicht Vorhersagen komplexer
Prozesse in vielen Bereichen der Mechanik und Biomechanik. Die Genauigkeit der nu-
merisch bestimmten Approximation hängt dabei wesentlich von der Wahl des Lösungs-
verfahrens und der Diskretisierung ab. In dieser Arbeit beschäftigen wir uns mit dem
Aspekt der Diskretisierung in Ort und Zeit für statische und dynamische Kontaktpro-
bleme, bei denen sich die deformierbaren Materialien linear elastisch verhalten. Insbe-
sondere leiten wir einen neuen effizienten residuenbasierten a posteriori Fehlerschätzer
für die Diskretisierung im Ort her und stellen eine neue Zeitdiskretisierungsmethode vor.

Für die effiziente Simulation statischer Kontaktprobleme ist eine adaptive Finite-Ele-
mente-Diskretisierung von großem Vorteil. Bei adaptiven Diskretisierungsmethoden wer-
den mit Hilfe sogenannter a posteriori Fehlerschätzer Bereiche lokalisiert, in denen eine
Verfeinerung des Gitters für die Fehlerreduktion erforderlich ist. Um sicherzustellen, dass
ein a posteriori Fehlerschätzer den Fehler nicht überschätzt, sollte er nicht nur zuverlässig
sein, das heißt den Fehler nach oben beschränken, sondern auch eine untere Schranke
des Fehlers liefern. Ein solcher Fehlerschätzer heißt effizient.

Betrachtet man lineare Probleme, bei denen keine Nebenbedingungen gefordert werden,
so gibt es eine direkte Beziehung zwischen dem Fehler und dem linearen Residuum, aus
der sich effiziente Fehlerschätzer ergeben. Fordert man hingegen Nebenbedingungen, wie
zum Beispiel beim Kontaktproblem oder dem verwandten Hindernisproblem, ist die Be-
ziehung zwischen dem Fehler und dem linearen Residuum gestört. Dadurch überschätzt
das lineare Residuum den Fehler und der Fehlerschätzer ist nicht mehr effizient. Da Feh-
lerschätzer basierend auf dem linearen Residuum numerisch leicht zu berechnen sind, ist
es wünschenswert, das Konzept der residuenbasierten Fehlerschätzer auf Kontakt- und
Hindernisprobleme zu erweitern. Bei der Analyse der wenigen in der Literatur bekannten
residuenbasierten Fehlerschätzer für Kontakt- und Hindernisprobleme stellt sich heraus,
dass eine Anpassung des Fehlermaßes unter Berücksichtigung der zweiten Unbekannten
des Systems, der Zwangskraft, von zentraler Bedeutung für den Beweis der Effizienz des
Fehlerschätzers ist.

In dieser Arbeit gelingt es uns, einen neuen effizienten residuenbasierten Fehlerschätzer
für Kontaktprobleme herzuleiten. Wir beweisen Zuverlässigkeit und Effizienz in 2D
und 3D für lineare finite Elemente auf Gittern aus Tetraedern beziehungsweise Drei-
ecken. Dabei nehmen wir an, dass die Abstandsfunktion zum Hindernis eine lineare
Finite-Elemente-Funktion ist. Im allgemeineren Fall, in dem wir eine beliebige Abstands-
funktion im H

1
2 auf dem Kontaktrand haben, können wir die Zuverlässigkeit des Feh-

lerschätzers beweisen.

Wir untersuchen das Verhalten unseres residuenbasierten Fehlerschätzers anhand zahl-
reicher numerischer Experimente. Für spezielle Beispiele in 2D und 3D vergleichen wir
die auf adaptiven Gittern numerisch berechnete Kontaktspannung mit der analytischen
Lösung. Auf Gittern, die mit Hilfe unseres residuenbasierten Fehlerschätzer generiert
sind, ist der relative Fehler in den Kontaktspannungen schon bei einer sehr geringen
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Anzahl Knoten am tatsächlichen Kontaktrand stark reduziert. Dies gilt nicht nur für
Gitter aus Simplizes, für die wir Effizienz und Zuverlässigkeit beweisen, sondern auch
für Gitter aus Vierecken und Hexaedern. Für beliebige Startgitter aus Hexaedern, Te-
traedern, Prismen und Pyramiden und unterschiedliche Abstandsfunktionen vergleichen
wir die experimentelle Konvergenzrate des Fehlerschätzers für adaptive und uniforme
Verfeinerung. Des Weiteren untersuchen wir die Struktur der adaptiv generierten Gitter
und den Einfluss der verschiedenen lokalen Fehlerschätzerbeiträge.

Im zweiten Teil der Arbeit befassen wir uns mit der Wahl einer geeigneten Zeitdis-
kretisierung für dynamische Kontaktprobleme. Da weder eine analytische Lösung des
dynamischen Kontaktproblems in 3D noch eine Existenztheorie bekannt sind, spielen
strukturerhaltende Eigenschaften wie zum Beispiel die Energieerhaltung eine wesentliche
Rolle bei der qualitativen Bewertung von Zeitdiskretisierungen. Eine Zeitdiskretisierung,
die für ihre strukturerhaltenden Eigenschaften bei Problemen ohne Nebenbedingungen
bekannt ist, ist das Newmarkverfahren. Wendet man das Newmarkverfahren auf dynami-
sche Kontaktprobleme an, so kommt es allerdings zu Oszillationen in den Geschwindig-
keiten und Kontaktspannungen und zu einem Energieanstieg. Daher ist eine Anpassung
des Newmarkverfahrens an dynamische Kontaktprobleme erforderlich. Wir analysieren
die Gründe, die zu den genannten unphysikalischen Effekten des Newmarkverfahrens
führen. Des Weiteren vergleichen wir verschiedene Modifikationen des Newmarkverfah-
rens, die für dynamische Kontaktprobleme in der Literatur zu finden sind.
Wir stellen eine neue Methode für die Zeitdiskretisierung dynamischer Kontaktprobleme
vor, die basierend auf dem Newmarkverfahren die Oszillationen in den Kontaktspannun-
gen und den Energieanstieg verhindert und zusätzlich ein physikalisch motiviertes Up-
date der Geschwindigkeiten ermöglicht. Der zentrale Bestandteil unserer neuen Methode
ist die implizite Berechnung der Aufprallzeiten für jeden Kontaktknoten des ortsdiskre-
ten Systems mit Hilfe eines Prädiktorschritts. Mittels dieser Aufprallzeiten kann eine
Änderung der Geschwindigkeiten im Moment des Aufpralls berücksichtigt werden, was
mit einer klassischen Zeitdiskretisierung nicht möglich ist. Diese neue Zeitdiskretisierung,
wie auch einige andere in der Literatur vorgestellte Methoden, sind Elemente einer Fa-
milie von modifizierten Newmarkverfahren abhängig von matrixwertigen Parametern.
In unserer Analyse zeigen wir, welchen Einfluss die Wahl der matrixwertigen Parame-
ter auf das Verhalten der Energie, der Kontaktspannungen und der Geschwindigkeiten
hat. Numerische Beispiele in 3D ergänzen die theoretische Analyse der verschiedenen
Zeitdiskretisierungen.
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Promotionsstipendium sowie für die Finanzierung der Teilnahme an Konferenzen. Für
die Bereitstellung einer hervorragenden Infrastruktur und weiterer finanzieller Mittel
danke ich dem Institut für Numerische Simulation der Rheinischen Friedrich-Wilhelms-
Universität und dem Institute of Computational Science der Università della Svizzera
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Introduction

The simulation of contact problems provides insight into many complex processes in,
e.g., mechanics or biomechanics. The accuracy of the numerical approximation depends
strongly on the choice of the solver and the discretization methods. In this work we deal
with the aspects of discretization in space and time of static and dynamic contact prob-
lems. In particular, we derive a new efficient residual-type a posteriori error estimator
for static contact problems and a new space-time connecting discretization scheme for
dynamic contact problems in linear elasticity.

Residual-type a posteriori error estimators for contact problems

We consider a discretization in space by means of linear finite elements. In order to
reduce the computational costs without sacrificing the accuracy of the numerical solution,
an adaptive mesh generation is highly advantageous. For the detection of the critical
regions, where the mesh has to be refined in order to improve the accuracy of the
numerical solution, a posteriori error estimators are used. A posteriori error estimators
should be reliable, i.e., give an upper bound of the error. If the error estimator also
constitutes a lower bound of the error, it is called efficient. The efficiency of the error
estimator ensures that the accuracy is achieved with an almost minimal amount of grid
points. Due to these reasons, a reliable and efficient a posteriori error estimator for
contact is desirable.

For linear elliptic problems, where no constraints are imposed, the standard residual
a posteriori error estimator is reliable and efficient. This estimator is very common
due to its easy computation. The proofs of upper and lower bound are based on the
equivalence ‖Rlin

m ‖−1 . ‖u−um‖1 . ‖Rlin
m ‖−1 between the linear residual and the error.

This relation is disturbed if constraints are imposed as, e.g., in contact problems or the
closely related obstacle problems. Therefore, the linear residual overestimates the error
and the standard residual error estimator is not efficient. However, in the literature
one can find residual-type a posteriori error estimators which extend the concept of the
standard residual estimator to contact and obstacle problems.

We present the basic ideas of selected residual-type estimators for contact and obstacle
problems found in the literature and we explain the difficulties arising in their construc-
tion. For the Signorini problem and the simplified Signorini problem residual-type a
posteriori error estimators can be found in [HN05, HN07]. These error estimators have
been derived for the two-dimensional case and the gap function g = 0. Unfortunately,
upper and lower bounds are non-optimal for the a posteriori error estimator proposed
in [HN05]. For the closely related obstacle problem residual-type a posteriori error es-
timators are given in [CN00,Vee01,FV03,NSV03,NSV05,MNvPZ07]. The first efficient
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Introduction

residual-type a posteriori error estimator for obstacle problems with optimal upper and
lower bounds is presented in [Vee01]. Therein the error measure is given in terms of the
solution and the second unknown of the system, the constraining force which turns the
inequality into an equality. A so-called Galerkin functional, which considers the error
in the constraining force as well as in the solution, takes the role of the linear residual.
This ansatz has been applied and further developed in, e.g., [FV03,NSV03,NSV05,MN-
vPZ07]. In these works the definition of a suitable constraining force depending on the
discrete solution is of great importance.
In this thesis we derive a new efficient residual-type a posteriori error estimator for con-
tact problems. Inspired by [FV03, MNvPZ07] we define a suitable constraining force
depending on the discrete solution. It is a functional which mimics the properties of the
continuous constraining force and is computable from the discrete solution and given
data. The resulting Galerkin functional enables localization of error estimator contri-
butions to the free-boundary zone and to the area where no actual contact occurs. We
note that in contrast to obstacle problems the constraints are imposed in a subset of
the boundary instead of in the whole domain. Therefore, the a posteriori analysis for
contact problems is quite different to the case of obstacle problems. The contributions of
our new residual-type a posteriori error estimator are motivated by inherent properties
of the solution as, e.g., the fulfillment of the complementarity condition. If no actual
contact occurs the error estimator coincides with the standard residual error estimator
for linear elliptic problems. We prove reliability and efficiency in 2D and 3D if the
gap function is discrete. Even for arbitrary, non-discrete gap functions the reliability is
proven.
The proofs of upper and lower bound are given for meshes of simplices. However, numer-
ical examples show the performance of the new residual-type a posteriori error estimator
for meshes of hexahedra, prisms, and pyramids, too. We compare the rate of convergence
of the error estimator on adaptively and uniformly refined grids. For special examples in
2D and 3D we compare the contact stresses computed on adaptively refined grids with
the exact contact stresses. Furthermore, the structure of the adaptively refined grids
and the relevance of the different error estimator contributions are analyzed by means
of different numerical experiments in 3D.

Time discretization schemes for dynamic contact problems

In the numerical simulation of dynamic contact problems the construction of a suitable
time discretization scheme is of crucial importance. Due to the non-smooth character of
dynamic contact problems, classical time discretization schemes cannot be applied in a
straightforward way. Therefore, several methods have been proposed which adapt classi-
cal time discretization schemes to the case of contact problems; see, e.g., [AB08,Mor99,
HTS+76,TP93,LC97,KROM99,LL02,DKE08,KLR08,HHW08,KW09a,DEP11]. Since
up to now no existence results for the hyperbolic system of dynamic contact problems
are available, the quality of time discretization schemes of contact problems is measured
by means of physical properties of the time-discretized system. Besides the displace-
ments, velocities and contact stresses, the energy and momentum conservation and the
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persistency condition are relevant.
In this work we focus on modifications of the classical Newmark scheme. The classi-
cal Newmark scheme is very common in continuum mechanics as it is of second or-
der consistency and conserves the energy in the unconstrained case. Unfortunately,
in the case of contact constraints, the classical Newmark scheme evokes oscillations in
the contact stresses, the displacements and the velocities at the contact boundary and
even energy blow-ups may occur which spoil the accuracy of the solution. We give a
deeper insight into the causes of these instabilities. Further, we present and compare
selected modifications of the Newmark scheme which can be found in the literature,
see [LC97,KROM99,DKE08,KLR08,HHW08]. Each of this methods has its advantage
concerning the stability of contact stresses or the course of energy. We illustrate these
properties by means of numerical examples in 3D.
We present a new space-time connecting discretization scheme for dynamic contact prob-
lems which is based on the Newmark scheme. It avoids oscillations in the contact stresses,
is provably dissipative and allows for a physically motivated update of the velocities. We
find out that by means of the predictor step used in [DKE08] the impact times of the
single nodes can be computed implicitly. By means of these impact times, the change in
the velocity in the moment of impact can be taken into account. This is not possible in
classical time discretization schemes. Further, we show that this new time discretization
scheme as well as other methods proposed in, e.g., [KROM99, DKE08] are elements of
a family of modified Newmark schemes depending on matrix-valued parameters. We
discuss the influence of different choices of the matrix-valued parameters on the course
of energy and the behavior of the contact stresses and velocities. Numerical examples
in 3D complement the theoretical analysis.

Outline

This thesis is structured as follows. The first chapter deals with the strong and weak
formulation of the Signorini problem. The equations of linear elasticity are deduced from
the general equations of motion and constitutive laws of elastic materials. Further, we
derive the linearized non-penetration condition. With regard to the validation of numer-
ical experiments we shortly comment on analytic solutions of contact problems. Besides
the Signorini contact problem, the simplified Signorini problem and the closely related
obstacle problem are stated. At the end of Chapter 1 we give the weak formulation of
the Signorini problem and we recall existence and uniqueness results.
The aim of Chapter 2 is to explain the difficulties arising in the construction of residual-
type a posteriori error estimators for contact and obstacle problems. Therefore, we
review the standard residual error estimator for linear elliptic problems without con-
straints and present the basic ideas of residual-type a posteriori error estimators for
obstacle and contact problems which can be found in the literature.
Chapter 3 is devoted to our new residual-type a posteriori error estimator. The definition
of the quasi-discrete contact force density and the corresponding Galerkin functional is
introduced. We give the proofs of reliability and efficiency.

3
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In Chapter 4 several numerical examples illustrate the performance of our new residual-
type a posteriori error estimator for contact. For special examples the analytical contact
stresses and the radius of the contact zone are compared with the corresponding quanti-
ties computed on adaptively refined grids. The structure of the adaptively refined grids,
the relevance of the local error estimator contributions and the experimental order of
convergence are investigated for different examples in 3D.
In the final chapter we deal with the discretization in time of dynamic contact problems.
After introducing the strong and weak formulation of dynamic contact problems we ex-
plain the difficulties arising in the construction of suitable time discretization schemes.
Chapter 5 provides a detailed comparison of time discretization schemes for dynamic
contact problems which can be found in the literature. We present our new space-time
connecting discretization scheme for contact problems.

Publications

Finally, we note that several results of this thesis have already been published as article
or preprint. The presentation and comparison of the modified Newmark schemes in
Section 5.2 has been accepted for publication in Applied Numerical Mathematics. It
can be found in the preprint [KW09a]. Our new space-time connecting discretization
scheme has been published in Computer Methods in Applied Mechanics and Engineering,
see [KW11]. Just recently, the results concerning our new residual-type a posteriori error
estimator have been presented in a shortened version in the preprint [KVW12].
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1 Static contact problems in linear elasticity

This chapter deals with the strong and weak formulation of static contact problems. We
mainly focus on one-body contact problems in linear elasticity. Nevertheless, in Section
1.1.1 we derive the equations of motion and the constitutive laws of elastic materials in
general. The special case of linearized elasticity is considered in Section 1.1.2.
The condition of non-penetration of solid bodies which is enforced in the case of contact
problems is derived in Section 1.2.1. In Section 1.2.2 the Signorini contact problem
is stated along with some examples for which the contact stresses can be computed
analytically. We make use of these analytic solutions in Chapter 4 for the evaluation of
the numerical results. In Section 1.2.3 we present the closely related simplified Signorini
problem and the obstacle problem. As we will see in Section 2.2.3 and 2.2.2 similar
difficulties arise in the derivation of residual-type a posteriori error estimators for the
Signorini problem, the simplified Signorini problem and the obstacle problem.
Finally, in Section 1.3 we give the weak formulation of the Signorini problem with several
useful definitions. Notably, the constraining force density is introduced in Section 1.3.1
which is of interest for the following results.

1.1 Equations of equilibrium and constitutive laws

In continuum mechanics the materials are modeled as continuous mass. Although the
microscopic structure is ignored this models are highly accurate as long as the length
scales are large enough comparative to interatomic distances. The two main areas of
continuum mechanics are solid and fluid mechanics. The area of solid mechanics is fur-
ther subdivided into elasticity and plasticity. The field of fluid mechanics splits up in
Newtonian and Non-Newtonian fluids. Materials which have solid and fluid character-
istics are described by so-called rheological models which combine elastic, plastic and
viscous phenomena. Elastic materials as, e.g., rubber return quickly to their initial state
when applied stresses are released whereas plastic materials as, e.g., plasticine stay de-
formed after release of applied stresses. Often materials behave elastically up to a special
amount of applied stresses and afterwards the reaction is plastic. In this work we are
interested in the elastic reaction of materials. Our focus lies on the special case of linear
elastic materials. However, we briefly introduce nonlinear elasticity because numerical
methods for linear elasticity might be inspiring for the related area of nonlinear elasticity.

1.1.1 Elasticity

If we bear force on a deformable body as, e.g., stretching an elastic band, the body
undergoes a certain deformation. We aim to determine this deformation field caused

5



1 Static contact problems in linear elasticity

by the reaction of the elastic body to given forces. In a first step we give a precise
definition of the deformation and the closely related displacement. We motivate the
definition of a strain tensor which measures the deformation of a body resulting in a
change of form and size compared to rigid body motions. In the deformed configuration
the important stress principle of Euler and Cauchy (Axiom 1.1.1) states the existence
of interior surface tractions which fulfill the laws of momentum balance. Based on this
axiom Cauchy’s theorem (Theorem 1.1.1) introduces a stress tensor field and derives
a partial differential equation relating the stress tensor field to the applied forces in
the deformed configuration. As the deformed configuration is unknown we transform
the equilibrium equation to the reference configuration. Finally, we derive constitutive
equations in elasticity which relate stress and strain tensor. The equilibrium equation
together with the constitutive law gives rise to a boundary value problem where the
applied forces are given and the deformations are unknown. In this section we follow
mainly the lines of [Cia88, Sän05, Bro95]. For further presentations we refer the reader
to, e.g., [Gur81,EGK08,Ogd84,FdV79,Ant05].

The undeformed body is identified with its reference configuration, represented by a
domain Ω ⊂ Rd. We assume the domain to be a Lipschitz domain, i.e., an open,
bounded, connected subset of the Euclidean space with Lipschitz boundary Γ := ∂Ω.
Each material particle in the closure Ω̄ is identified with a point x = (x1, ..., xd)

T .
Throughout this work we denote all quantities which refer to tensors of order ≥ 1 by
bold symbols as, e.g., the displacements u which are vector-valued. Their components
are printed in normal type and are indicated by subindices, e.g., ui. The Einstein
summation convention is used for all repeated indices and ei denotes the Cartesian basis
vectors of Rd such that, e.g., u = uiei. For a function depending on the variable x ∈ Rd,
the partial derivative with respect to xj , j = 1, .., d is abbreviated with ∂j . The symbol
for the identity mapping and its matrix representation is id. In this section we consider
the full-dimensional case d = 3.

A deformation of the reference configuration Ω̄ is a vector field

ϕ : Ω̄ −→ Rd, x 7→ ϕ(x),

that is smooth enough, injective except possibly on the boundary of the set Ω, and
orientation preserving. The gradient of the deformation ϕ = ϕiei is given by the matrix

∇ϕ := (∂jϕi)1≤i,j≤d.

It follows from the orientation preserving property that ∇ϕ(x) ∈ Rd×d+ := {M ∈ Rd×d |
detM > 0}. The deformation ϕ measures each kind of movement even rigid deforma-
tions like rotations and translations which do not lead to a change in form or size. Rigid
deformations are defined by

ϕ(x) := Qx+ a,

where a ∈ Rd and Q ∈ O+ is an orthogonal matrix with detQ = 1. Let us consider two
points x and x+ δx where |δx| is an infinitesimal distance, changing their positions to
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1.1 Equations of equilibrium and constitutive laws

ϕ(x) and ϕ(x+δx). The distance between the two points in the deformed configuration
is given by

ϕ(x+ δx)−ϕ(x) = ∇ϕ(x)δx+ o(|δx|)
and the square of the euclidean distance | · | is

|ϕ(x+ δx)−ϕ(x)|2 = δxT∇ϕ(x)T∇ϕ(x)δx+ o(|δx|2).

If ∇ϕ(x) = Q the deformation causes no change in the distance between x and x+ δx.
Thus, the (right) Cauchy–Green strain tensor C := ∇ϕT∇ϕ is a measure of the strain
evoked by the deformation. Another measure of the strain is the Green–St. Venant strain
tensor E := 1

2(C−id), quantifying the local deviation of the deformation ϕ from a rigid
body motion.
The displacement field is given by the mapping u : Ω̄ −→ Rd related to the deformation
by u := ϕ − id. Inserting the definition of the displacements in the Green-St. Venant
strain tensor leads to the following strain-displacements relation

E(u) =
1

2

(∇(u)T + ∇(u) + ∇(u)T∇(u)
)
. (1.1)

In the deformed body the stress principle of Euler and Cauchy holds, which is the
foundation of continuum mechanics. We set Ω̄ϕ := ϕ(Ω̄) and xϕ := ϕ(x). The later
are called Euler variables. The corresponding volume and area elements are denoted by
dxϕ and daϕ. Further, we assume that the deformation of the body is due to volume
forces and surface tractions on the Neumann boundary ΓϕN ⊂ ∂Ωϕ which is an open
measurable subset of the boundary. They are represented by the densities fϕ : Ωϕ → Rd
and πϕ : ΓϕN → Rd. The principle of Euler and Cauchy, see [Cia88, Axiom 2.2-1], states
the existence of surface tractions in the interior of the body such that equilibrium of
momentum and angular momentum is obtained locally. The vector field of interior
surface tractions is called Cauchy stress vector.

Axiom 1.1.1. Principle of Euler and Cauchy
Consider a body in its deformed configuration Ω̄ϕ, subjected to applied forces represented
by the densities fϕ : Ωϕ → Rd and πϕ : ΓϕN → Rd. Then there exists a vector field

tϕ : Ω̄ϕ × Sd−1 → Rd, (xϕ,n) 7→ tϕ(xϕ,n),

where Sd−1 = {v ∈ Rd | |v| = 1} such that

• For any subdomain Aϕ ⊂ Ω̄ϕ, and at any point xϕ ∈ ΓϕN ∩ ∂Aϕ where the unit
outward normal vector nϕ to ΓϕN ∩ ∂Aϕ exists,

tϕ(xϕ,nϕ) = πϕ(xϕ).

• Balance of linear momentum: For any subdomain Aϕ ⊂ Ω̄ϕ,∫
Aϕ
fϕ(xϕ)dxϕ +

∫
∂Aϕ

tϕ(xϕ,nϕ)daϕ = 0,

where nϕ denotes the unit outward normal vector along ∂Aϕ.
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1 Static contact problems in linear elasticity

• Balance of angular momentum: For any subdomain Aϕ ⊂ Ω̄ϕ,∫
Aϕ
xϕ × fϕ(xϕ)dxϕ +

∫
∂Aϕ

xϕ × tϕ(xϕ,nϕ)daϕ = 0.

The following theorem asserts a linear dependence of the Cauchy stress vector on its
second argument n ∈ Sd−1, i.e., at each point xϕ ∈ Ω̄ϕ there exists a symmetric tensor
T ϕ(xϕ) ∈ Rd×dsym , called Cauchy stress tensor, such that tϕ(xϕ,n) = T ϕ(xϕ)n for all
n. Further, the tensor field T ϕ and the given volume forces and surface tractions are
related by a partial differential equation in Ωϕ and by a boundary condition on ΓϕN .

Theorem 1.1.1. Cauchy’s theorem
Assume that the applied body force density fϕ : Ω̄ϕ → Rd is continuous, and that the
Cauchy stress vector field tϕ : Ω̄ϕ×Sd−1 → Rd is continuously differentiable with respect
to the variable xϕ ∈ Ω̄ϕ for each n ∈ Sd−1 and continuous with respect to the variable
n ∈ Sd−1 for each xϕ ∈ Ω̄ϕ. Then the principle of Euler and Cauchy implies the
existence of a continuously differentiable symmetric tensor field

T ϕ : Ω̄ϕ → Rd×dsym , xϕ 7→ T ϕ(xϕ),

such that the Cauchy stress vector satisfies

tϕ(xϕ,n) = T ϕ(xϕ)n, ∀xϕ ∈ Ω̄ϕ,n ∈ Sd−1,

and such that

−divϕT ϕ(xϕ) = fϕ(xϕ), ∀xϕ ∈ Ωϕ

T ϕ(xϕ)nϕ = πϕ(xϕ), ∀xϕ ∈ ΓϕN
(1.2)

where nϕ is the unit outward normal vector along ΓϕN and divϕ := ∂jT
ϕ
ijei is the diver-

gence of the vector field with respect to xϕ.

Proof. See [Cia88, Theorem 2.3-1]. qed.

Cauchy’s theorem gives rise to the equations of equilibrium (1.2) in the deformed con-
figuration with respect to the Euler variables xϕ = ϕ(x). Unfortunately, the deforma-
tion is the sought-after quantity of our system. Thus, we need to express the equa-
tions in terms of the Lagrange variables x. The relations between the force densities
in reference and deformed configuration are given by f(x) = (det∇ϕ(x))fϕ(xϕ) and
π(x) = (det∇ϕ(x))|∇ϕ(x)−Tn|πϕ(xϕ). For the transformation of the stress tensor
T ϕ(xϕ) depending on Euler variables into a stress tensor T (x) depending on Lagrange
variables we use the Piola transform

T (x) = (det∇ϕ(x))T ϕ(xϕ)∇ϕ(x)−T , xϕ = ϕ(x).

The resulting stress tensor in the reference configuration is called first Piola-Kirchhoff
stress tensor. The advantage of the Piola transform is the relation between the diver-
gences of T ϕ and T and between the area elements daϕ and da; see, e.g., [Cia88, Theorem
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1.1 Equations of equilibrium and constitutive laws

1.7-1]. Thus, leading to the following equations of equilibrium in the reference configu-
ration

−div T (x) = f(x), x ∈ Ω

T (x)n = π(x), x ∈ ΓN ;
(1.3)

see, e.g., [Cia88, Theorem 2.6-1]. Unfortunately, the first Piola-Kirchhoff stress tensor
is not symmetric. Thus, it is common to use the so-called second Piola-Kirchhoff stress
tensor

Σ(x) := ∇ϕ(x)−1T (x) = (det∇ϕ(x))∇ϕ(x)−1T ϕ(xϕ)∇ϕ(x)−T , xϕ = ϕ(x).
(1.4)

As we will see in Theorem 1.1.2, the symmetry of the second Piola-Kirchhoff stress tensor
simplifies the relation between the stress and strain tensors. In the reference configu-
ration in terms of the second Piola-Kirchhoff stress tensor the equations of equilibrium
are given by

−div(∇ϕ(x)Σ(x)) = f(x), x ∈ Ω

∇ϕ(x)Σ(x)n = π(x), x ∈ ΓN ;
(1.5)

see, e.g., [Cia88, Theorem 2.6-2].

In order to determine the deformation or displacement from (1.5) we need to express
the stress tensor in terms of deformation. This is done by the constitutive equation
which relates stress and strain tensor depending on the material properties. A material
is elastic if the Cauchy stress tensor solely depends on x and on the gradient of the
deformation ∇ϕ. Equivalently, a material is elastic if each of the Piola-Kirchhoff stress
tensors solely depends on x and ∇ϕ. Thus, for all x ∈ Ω̄ there exists a so-called response
function Σ̂ : Ω̄× Rd×d+ → Rd×dsym , (x,∇ϕ(x)) 7→ Σ̂(x,∇ϕ(x)) such that

Σ(x) := Σ̂(x,∇ϕ(x)), x ∈ Ω̄.

The objectivity, also called material frame indifference, is an axiom which states the
invariance of a physical quantity under a change of observer. The response function Σ̂
fulfills the axiom of material frame indifference if and only if there exists a mapping
Σ̃ : Ω̄× Rd×dspd → Rd×dsym , where Rd×dspd is the space of symmetric positive definite matrices,
so that

Σ̂(x,F ) = Σ̃(x,F TF ), ∀F ∈ Rd×d+ ,x ∈ Ω̄;

see, e.g., [Cia88, Theorem 3.3.-1]. Thus, we get a stress-strain relation between the
second Piola-Kirchhoff stress tensor and the right Cauchy-Green strain tensor

Σ(x) = Σ̂(x,∇ϕ(x)) = Σ̃(x,∇ϕ(x)T∇ϕ(x)) = Σ̃(x,C(x)).

Further, we make the assumption of isotropy. A material is isotropic if the stress response
does not depend on a direction, i.e., the material has no preferential direction. Expressed
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1 Static contact problems in linear elasticity

in terms of the response function to the second Piola-Kirchhoff stress tensor at a point
x ∈ Ω̄ we get the relation

Σ̂(x,FQ) = QT Σ̂(x,F )Q, ∀F ∈ Rd×d+ ,Q ∈ O+,

cf., [Cia88, Section 3.4]. Under this assumption we get a more precise form for the
response function of a general isotropic elastic material as formulated in the following
theorem.

Theorem 1.1.2. Constitutive equation for an isotropic material
Let the material be elastic, frame-indifferent and isotropic. Given an arbitrary defor-
mation ϕ : Ω̄ → Rd, then the second Piola-Kirchhoff stress tensor at a point x is given
by

Σ(x) = Σ̂(x,∇ϕ(x)) = Σ̃(x,C(x)),

where the response function Σ̃(x, ·) : Rd×dspd → Rd×dsym is of the form

Σ̃(x,C) =

2∑
i=0

γi(x, trC, tr Cof(C),detC)Ci, (1.6)

where γi(C) are scalar-valued functions of x and of the principal invariants of the
Cauchy-Green strain tensor C.

Proof. See, e.g., [Cia88, Theorem 3.6.-2]. qed.

The theorem is a consequence of the Rivlin-Erickson representation theorem. The stress-
strain relation (1.6) is in general highly nonlinear. From now on we assume the reference
configuration to be in a natural state, i.e., Σ̃(x, id) = 0. In the following theorem the
stress-strain relation close to the reference configuration C = id is investigated.

Theorem 1.1.3. Let Ω be a reference configuration in natural state of an elastic, frame-
indifferent and isotropic material. We assume the coefficients γi, appearing in (1.6), to
be continuously differentiable with respect to the principal invariants of the Cauchy-Green
strain tensor. Then there exist functions λ(x), µ(x) : Ω̄→ R so that

Σ(x) = Σ̃(x,C(x)) = λ(x)trE(x)id+ 2µ(x)E(x) + o(x,E(x))

where E = 1
2(C − id) is the Green-St. Venant strain tensor.

Proof. See, e.g., [Cia88, Theorem 3.7-1]. qed.

If we further assume the material to be homogeneous, which means that the response
function is independent of the point x ∈ Ω̄, we get λ(x) = λ and µ(x) = µ. These
constants are called Lamé constants. Ignoring the terms of higher order we get the
stress-strain relation of St. Venant-Kirchhoff materials

Σ̃(E) = λtrE(x)id+ 2µE(x). (1.7)
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Inserting (1.7) in (1.5) and exploiting E(x) = E(u(x)), we get in terms of displacement
field

−div((id+ ∇u)Σ̃(E(u))) = f in Ω

(id+ ∇u)Σ̃(E(u))n = π on ΓN .
(1.8)

By definition, St. Venant-Kirchhoff materials can only be used for small strains. Thus,
it is common to linearize the Green-St. Venant strain tensor as well which leads to the
linear elastic constitutive equation, see Section 1.1.2.
The deformation should be invertible and orientation preserving det∇ϕ(x) > 0. But
in the definition of the stress tensor this has not been considered. However, under the
assumption of small deformations, det∇ϕ(x) should be close to det id = 1.
We would expect an infinite stress if large deformations cause detϕ(x) → 0+. This
property is usually expressed in terms of the so-called stored energy function which
exists for hyperelastic materials.

Definition 1.1.1. A material is called hyperelastic if there exists a stored energy function
W : Ω̄ × Rd×d+ → R such that for the first Piola-Kirchhoff stress tensor the following
relation is valid

T (x) = T̂ (x,F ) =
∂W

∂F
(x,F ), ∀x ∈ Ω̄,F ∈ Rd×d+ .

The functional Jelast(ψ) :=
∫

ΩW (x,∇ψ(x)) dx defined for a smooth mapping ψ is called
elastic energy and the functional

J (ψ) :=

∫
Ω
W (x,∇ψ(x)) dx−

(∫
Ω
f ·ψ dx+

∫
ΓN

π ·ψ da
)

(1.9)

is the total energy.

We note that a stationary point of the total energy is the solution of (1.3), cf., [Cia88,
Theorem 4.1-1]. The relation between the second Piola-Kirchhoff stress tensor and the
stored energy is given in [Cia88, Theorem 4.2-2] and the stored energy function for the
special St. Venant Kirchhoff material can be found in [Cia88, p. 190].
For hyperelastic materials we assume an infinite energy caused by a deformation ϕ in
order to annihilate volume

W (x,∇ϕ(x))→ +∞ if det∇ϕ→ 0+.

A stored energy function fulfilling this assumption is given for so-called Ogden materials

W (∇ϕ) :=

I∑
i=1

ai(tr∇ϕT∇ϕ)γi/2 +

J∑
j=1

bjtrCof(∇ϕT∇ϕ)δj/2 + Γ̄(det∇ϕ)

with ai, bj > 0, γi, δj ≥ 1 and Γ̄ : (0,∞) → R is a convex function satisfying Γ̄(δ) → ∞
for δ → 0+. In [Cia88, pp. 189 ff.] further examples of stored energy functions are listed.
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1 Static contact problems in linear elasticity

1.1.2 Linearized elasticity in 3D and 2D

In linear elasticity small displacements and small strains are assumed allowing for lin-
earization of the strain-displacement relation as well as of the stress-strain relation, thus
simplifying the equations of motion. The magnitude of strains and displacements de-
pends on the applied forces as well as on material properties. Iron steel which has a high
elastic modulus (E = 210kN/mm2) is typically modeled as linear elastic material.
In Section 1.1.1 the Green-St. Venant strain tensor E is given in terms of the displace-
ments u. For small displacements we may neglect the quadratic terms leading to the
linearized strain tensor

ε(u) :=
1

2

(∇uT + ∇u) . (1.10)

Furthermore, in Section 1.1.1 we derived the stress-strain relation of St. Venant Kirch-
hoff materials which is designed for small strains. Inserting (1.10) in (1.7) we get the
constitutive equation in linearized elasticity

σ(ε(u)) = λ trε(u) id+ 2µε(u) (1.11)

which is called Hooke’s law. We note that the strain and the stress tensor are both
symmetric. The Lamé constants λ and µ are expressed in terms of the material constants
Young’s modulus E and Poisson ratio ν as follows

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

The Young’s modulus also called tensile modulus or elastic modulus is the ratio of the
uniaxial stress over the uniaxial strain. The Poisson ratio is the ratio of the lateral
contraction to the longitudinal strain of a bar under pure extension. We refer to [Gur81,
pp. 202 ff.] and [Cia88, pp. 123 ff.] for examples about the determination of material
constants. By means of a fourth order material tensor H, called Hooke’s tensor with
the entries

Hijkl =
E

2(1 + ν)
(δikδjl + δilδjk) +

Eν

(1 + ν)(1− 2ν)
δijδkl (1.12)

we may reformulate (1.11) to

σij(u) = Hijklεkl(u), 1 ≤ i, j, k, l ≤ 3. (1.13)

Hooke’s tensor is symmetric
Hijkl = Hjilk = Hlkij ,

elliptic, i.e., there exists a constant a0 such that

Hijklζijζkl ≥ a0ζijζkl

for all symmetric {ζij}3i,j=1 and it is bounded, i.e., there exists a constant A0

Hijklζijζkl ≤ A0ζijζkl.
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1.1 Equations of equilibrium and constitutive laws

for all symmetric {ζij}3i,j=1 .

Replacing Σ̃ by σ and approximating ∇ϕ = id+∇u by id in (1.8) we get the equations
of linearized elasticity

−divσ(u) = f on Ω

σ(u)n = π on ΓN .
(1.14)

For a formal derivation of (1.14) by means of a linearization of the operator of nonlinear
elasticity defined as the left hand sides of (1.5), we refer to [Cia88, Theorem 6.2-1].
The elastic energy of the linearized elastic problem caused by the displacements u is
given by

Jelast(u) =
1

2

∫
Ω
σ(u) : ε(u) dx

where we use the Frobenius inner product A : B := AijBij . We note that the elastic
energy defines a symmetric bilinear form a(ψ,ψ) :=

∫
Ω σ(ψ) : ε(ψ) dx. The total energy

corresponding to the displacements u is given by

J (u) =
1

2
a(u,u)−

(∫
Ω
f · u dx+

∫
ΓN

π · u da
)
. (1.15)

The displacement u fulfilling the equations (1.14) is a stationary point of the total energy
(1.15).
Due to the symmetry of the linearized strain tensor (1.10) and the linearized stress tensor
(1.13) we have only six different components in each of these tensors. Thus, it is more
convenient to express the linearized strain and stress tensor as vectors with the entries

ε =



ε11

ε22

ε33

2ε12

2ε23

2ε13

 , σ =



σ11

σ22

σ33

σ12

σ23

σ13


and accordingly Hooke’s tensor may be represented by a symmetric 6× 6 matrix

H =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


such that

σ = Hε.

Each body can be considered as a three-dimensional object. However, for special prob-
lems like, e.g., plane strain or plane stress it is advantageous or even necessary to reduce
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the dimensionality. For a schedule of these special cases we refer to [Bat86, pp.160-161].
In the present work when dealing with 2D linear elasticity we refer to plane strain. The
plane strain assumption is fulfilled if the three-dimensional body has a large extension
in one direction, is fixed at the ends, and is exposed to forces which are perpendicular to
this direction and do not vary along the length. Typical examples are retaining dams,
culverts and tunnels. There is no displacement in the third coordinate direction and the
strain components ε33, ε13, ε23 vanish. Thus, it is sufficient to consider an arbitrary cross
section. In this two-dimensional case the strain and stress vectors and Hooke’s tensor
reduce to

ε =

 ε11

ε22

2ε12

 , σ =

 σ11

σ22

σ12

 , H =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 . (1.16)

1.2 Contact problems

The aim of this section is to state the Signorini problem and to give some examples for
which the exact contact stresses are known. In Chapters 2, 3 and 4 we solely deal with
the Signorini problem. However, as the one-body contact problem is a simplification we
have to consider two-body contact problems when analyzing the physical properties of
the dynamic system in Chapter 5. Therefore, we derive the linearized non-penetration
condition based on the general formulation as two-body contact problem.

In Section 1.2.3 we present the closely related simplified Signorini problem and the
obstacle problem for which we discuss existing residual-type a posteriori error estimators
in Sections 2.2.2 and 2.2.3.

1.2.1 Contact constraints

When two-solid bodies ΩS and ΩM come into contact they deform, transmit forces but do
not penetrate each other. As the actual contact zone depends on the deformations of the
bodies, which are unknowns of the system we do not know in advance which points on ΓSC
and ΓMC are coming into contact. In this section we primarily derive an approximation
of the exact non-penetration condition. Further, we comment on frictional effects which
may be considered additionally.

We assume a bijective mapping Φ : ΓSC → ΓMC to be given, which relates every point on
ΓSC to a potential contact point on ΓMC . Such a mapping Φ may be obtained by means of
a closest point projection Φ(x) := argminy∈ΓMC

|x− y|, see, e.g., [Lau02,Wri02, Chapter

3]. The distance between points x and Φ(x) is given by

g(x) := |x−Φ(x)|

and the direction vector is

ν(x) :=
x−Φ(x)

|x−Φ(x)| .
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The relative displacement in normal direction is the difference in displacements on ΓSC
and ΓMC

[u] · ν :=
(
uS − uM ◦Φ

)
· ν.

Here, we adopted the notation from the theory of mortar finite elements, where S and
M stand for slave and master sides. With the above definitions we get a non-penetration
condition

[uν ] ≤ g, (1.17)

where we used the abbreviation uν := u · ν. The question under which conditions Φ is
a good choice or (1.17) is a good approximation of the exact non-penetration condition,
respectively, has been answered in [Eck96, Lemma 1.3]. Under the following conditions

• the displacements and strains are small in both bodies, |ui(x)|, |εij(x)| < ε

• the contact boundaries are close to each other, i.e., |g(x)| < 2ε

• the curvature of the potential boundaries is bounded

• ν(x) ≈ νS(x) ≈ νM (x), where νS(x) and νM (x) are the unit outward normals of
ΓSC and ΓMC

for all x ∈ ΓSC , the non-penetration condition (1.17) defined by the bijective mapping
Φ is a good approximation in the sense that the error to the exact non-penetration
condition is of order ε3/2. Due to these assumptions (1.17) is called linearized non-
penetration condition. We refer also to [KO88, Chapter 2] for the linearization of the
exact non-penetration condition.
For theoretical and numerical investigation of multibody contact problems in linear
elasticity we refer to [Wri02, Lau02, BGK87, BBHL99, WK03, HMW05, HW05, Kra09,
DK09]. In this work we mostly deal with one-body contact problems, describing the
contact of a deformable body with a rigid obstacle. The relative displacement [u] is
replaced by u because the rigid obstacle does not move. Usually, the linearized non-
penetration condition

uν ≤ g (1.18)

is used if the material of the deformable body is assumed to be linear elastic because
the assumption of small displacements and strains is made in linear elasticity as well as
for the linearization of the non-penetration condition.
In the case of non-linear elasticity where the assumption of small displacements is not
fulfilled, the linearized non-penetration condition is replaced by an incremental con-
tact condition; see, e.g., [KO88, Chapter 2]. In each iteration step of the solution of
the underlying non-linear equation the incremental contact condition is a linearized
non-penetration condition like (1.18) with respect to the deformation of the previous
iteration. In [Lau02] a closest point projection is used in each iteration step. Another
possibility is to compute the signed distance function which is characterized by the
Eikonal equation in a preprocess. Thus, in each iteration step the non-penetration con-
dition is obtained by the evaluation of the signed distance function with respect to the
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deformation of the previous iteration, [KM11]. Even in linear elasticity an incremental
contact condition should be applied for complex geometries.
The non-penetration condition is a constraint, hence evoking constraining forces which
we call contact forces. In terms of the boundary stresses σ̂(u) := σ(u)n the linearized
non-penetration condition evokes compressive stresses σ̂ν := σ̂ · ν in the direction ν of
the constraint along the actual contact boundary. We note that in the case of two-body
contact the contact forces on both sides have to be equal, opposite and collinear due to
Newton’s axiom of action and reaction. The boundary stresses σ̂T := σ̂−σ̂ν ·ν orthogonal
to σ̂ν ·ν are assumed to be zero in an idealized contact problem where frictional effects are
neglected. We refer to σ̂T as frictional or tangential contact stresses because ν is assumed
to be an approximation of the unit outward normal on ΓC . In a more realistic contact
situation frictional effects should be incorporated; see, e.g., [Lau02,Wri02,Eck96,KO88].
The most common models of friction are the Coulomb friction law

uT = 0⇒ |σ̂T (u)| ≤ F|σ̂ν(u)|
uT 6= 0⇒ σ̂T (u) = −F|σ̂ν(u)| uT|uT |

(1.19)

and the Tresca friction law where σ̂ν in (1.19) is replaced by a given function κ(x). We
call uT tangential displacement corresponding to the tangential stresses. The coefficient
of friction F has to be measured experimentally. It may depend on several factors, e.g.,
the material, the roughness of the surface, the local pressure, the temperature and the
humidity. We refer to, e.g., [Wri02, Chapter 4.2.8] where friction laws are computed
from the roughness on the microscale by means of homogenization techniques.

1.2.2 Signorini contact

In this section we state the strong formulation of the one-body contact problem in linear
elasticity, called Signorini contact problem. Furthermore, we give some exact solutions
which we use later for the evaluation of our numerical results in Chapter 4.
The Signorini contact problem describes the contact of a linear elastic body with a rigid
obstacle. The non-penetration is modeled by the linearized non-penetration condition
(1.18) and frictional effects are ignored. Thus, we get the boundary value problem from
the equations of linear elasticity (1.14) and the primal and dual constraints presented in
Section 1.2.1 and we add a Dirichlet boundary condition on ΓD.

Problem 1.2.1. Strong formulation of the Signorini contact problem

− divσ(u) = f in Ω (1.20)

σ̂(u) = π on ΓN (1.21)

u = uD on ΓD (1.22)

uν ≤ g on ΓC (1.23)

σ̂ν(u) ≤ 0 on ΓC (1.24)

(uν − g) · σ̂ν(u) = 0 on ΓC (1.25)

σ̂T (u) = 0 on ΓC (1.26)
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1.2 Contact problems

The boundary is subdivided in three pairwise disjoint parts, the Neumann boundary
ΓN which is an open subset of Γ, the Dirichlet boundary ΓD which is a closed subset
of Γ and the potential contact boundary ΓC which is also a closed subset. As the
boundary segments are disjoint, ΓD ∩ ΓC = ∅. As usual, we assume that the actual
contact boundary, where uν = g, is a strict subset of the potential contact boundary.
The condition (1.25) in Problem 1.2.1 is called complementarity condition and ensures
that the compressive contact stresses (1.24) are zero if no contact occurs. We note that
although we are dealing with linear elasticity and a linearized non-penetration condition
Problem 1.2.1 is nonlinear and non-differentiable. This is due to the a priori unknown
contact boundary.

Consequently, it is far from trivial to find an analytic solution of contact problems. For
a special problem Hertz [Her81] derived the solution of contact stresses σ̂ν and normal
displacements uν in the actual contact zone. In the engineering literature, cf., [Joh85],
some more academic examples of contact problems with exact solutions of displacements
on ΓC or stresses may be found. In the following we present the Hertzian contact problem
and two examples of contact between an elastic and a rigid body, taken from [Joh85]. In
these examples the contact between rigid and elastic bodies is enforced by the application
of a vertical load P on the top of the rigid body. In contrast, our model problem (Problem
1.2.1) stated above is a one-body contact problem where the rigid obstacle is motionless.
However, the contact stresses in the contact zone are the same and are used for the
evaluation of our numerical solutions in Sections 4.2.1 and 4.2.2.

P

�x2

b b

x1

1

(a) Rigid punch

P

�x2

b b

x12↵

1

(b) Rigid wedge

Figure 1.1: Indentation of elastic half-space

For the following two-dimensional examples we choose ν = e2, so that σ̂2 = σ̂ν and
xT = x1. As first example we consider the indentation of a linear elastic two-dimensional
half-space by a rigid flat punch, see Figure 1.1(a). In x1-direction the punch ranges from
−b to b so that the distribution of the contact stresses is given by

σ̂2(x) =
P

π(b2 − x2
1)

1
2

. (1.27)
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1 Static contact problems in linear elasticity

Theoretically, the pressure is infinite where the edges of the punch x1 = ±b indent.
For details about the derivation of (1.27) and formulas describing the motion of the
elastic contact surface, we refer to [Joh85, Chapter 2.8]. In the second example a two-
dimensional wedge indents a linear elastic half space, see [Joh85, Chapter 5.2]. The
semi-angle α of the wedge has to be close to 90◦, see Figure 1.1(b), such that the theory
of linear elasticity is valid. The half of the width of the contact strip is

b =
P (1− ν2)

E cotα
, (1.28)

where E and ν are the Young’s modulus and the Poisson ratio, cf. Section 1.1.2, and
the distribution of the contact stresses is given by

σ̂2(x) =
E cotα

(1− ν2)2π
ln

b+
(
b2 − x2

1

) 1
2

b−
(
b2 − x2

1

) 1
2

 . (1.29)

The value of (1.29) is infinite at the apex of the wedge. For the three-dimensional
indentation by a blunt cone, we refer to [Lov39,Sne48,HS45].
Originally, the Hertzian contact problem [Her81] describes the contact between two linear
elastic spherical bodies of dimension d = 3 with radii RS , RM , Young’s moduli ES , EM

and Poisson ratio νS , νM . Here, we consider the extreme case, the contact of a linear
elastic cube (RS =∞) and a rigid ball (EM =∞), see Figure 1.2 for a schematic view of
a cross-section. We choose ν = e3, so that σ̂3 = σ̂ν and xT = x− x3e3. If the rigid ball

P

RM

�x3

b b

x1

1

Figure 1.2: Cross-section of Hertzian contact

is pressed against the linear elastic cube by a load P , the radius of the actual contact
zone is

b =

3PRM
(

1−
(
νS
)2)

4ES


1
3

, (1.30)

and the pressure distribution is

σ̂3(x) =
3P

2πb3
(
b2 − |xT |2

) 1
2 , (1.31)
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1.2 Contact problems

such that the largest contact stress in the origin is

σ̂3(0) =
3P

2πb2
. (1.32)

For more details about the Hertzian contact problem we refer to [Joh85, Chapter 3.4]
and [Hub04,SH83,Yun91].

1.2.3 Simplified Signorini contact and obstacle problem

In this section we present two problems which are closely related to the Signorini prob-
lem, the simplified Signorini problem and the obstacle problem. The simplified Signorini
problem is often used in the numerical analysis of contact problems, e.g., in the develop-
ment of a posteriori error estimators, instead of the Signorini problem. The underlying
partial differential equation of the simplified Signorini problem and the obstacle problem
is the Poisson equation. Furthermore, the constraints imposed in the obstacle problem
are valid in the whole domain. However, numerical methods applied to the obstacle
problem may be used for contact problems, too.

Problem 1.2.2. Simplified Signorini problem

−∆u = f in Ω

∇u · n = π on ΓN

u = uD on ΓD

u ≤ g on ΓC

∇u · n ≤ 0 on ΓC

(u− g)(∇u · n) = 0 on ΓC

Problem 1.2.3. Obstacle problem

−∆u ≥ f in Ω

u ≥ g in Ω

(u− g)(−∆u− f) = 0 in Ω

u = uD on ∂Ω

In both problems a solution u : Ω → R is sought-after. We note that for obstacle
problems the Dirichlet value has to be compatible with the constraints, i.e., uD ≥ g.
In the obstacle problem, cf., [Rod87, EGK08], the domain is divided in two regions
where either the Poisson equation is solved or u = g. This is in contrast to the Signorini
problem where the a priori unknown contact stresses influence the solution in the interior
like Neumann boundary conditions. Thus, academic examples of exact solution can be
constructed more easily; see, e.g., the examples in [NSV03,BC04].
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1 Static contact problems in linear elasticity

The most common application of an obstacle problem is a membrane which is con-
strained to lie above an obstacle. However, problems of this kind appear in many other
applications as, e.g., the pricing of options.

1.3 Weak formulation, existence and uniqueness

In this section we derive the weak formulation of the Signorini problem and introduce
several important definitions. Moreover, we comment on existence and uniqueness re-
sults.

1.3.1 Weak formulation

This section introduces the different weak formulations of the Signorini problem as vari-
ational inequality, variational inclusion, minimization problem and saddle point formu-
lation.

Let u be the solution of Problem 1.2.1 and v a trial function which is assumed to be
sufficiently smooth and fulfilling the Dirichlet condition as well as the non-penetration
condition vν ≤ g. Further, we assume f ∈ L2(Ω) and π ∈ L2(ΓN ). We multiply (1.20)
with v − u and integrate over Ω

−
∫

Ω
divσ(u) · (v − u) dx =

∫
Ω
f · (v − u) dx.

Then, we apply Green’s formula, exploit the Neumann boundary condition (1.21) and
v − u = 0 on ΓD∫

Ω
σ(u) : ε(v − u) dx =

∫
Ω
f · (v − u) dx+

∫
ΓC

σ̂(u) · (v − u) da+

∫
ΓN

π · (v − u) da.

The trial function is assumed to fulfill the non-penetration condition, so that

σ̂ν(u)(vν − uν) = σ̂ν(u)(vν − g + g − uν)
(1.25)

= σ̂ν(u)(vν − g) ≥ 0.

As we consider the frictionless case σ̂T = 0, the integral over the contact boundary
is greater or equal zero (

∫
ΓC
σ̂(u) · (v − u) da ≥ 0), so that the solution u fulfills the

following variational inequality∫
Ω
σ(u) : ε(v − u) dx ≥

∫
Ω
f · (v − u) dx+

∫
ΓN

π · (v − u) da. (1.33)

The requirements of regularity of a solution of (1.33) are less than for the strong for-
mulation where u ∈ C2(Ω̄). In order to define the weak solution space we need some
basic definitions and results, which can be found, e.g., in [KO88, Eck96]. We define for
p ∈ [1,∞], m ∈ N0 the Sobolev space Hm,p(Ω) as the set of all functions v ∈ Lp(Ω) such
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1.3 Weak formulation, existence and uniqueness

that for every multi-index α = (α1, ..., αd) ∈ Nd0 with |α| = α1 + ...+ αd ≤ m, the weak
partial derivative Dαv belongs to Lp(Ω)

Hm,p(Ω) :={v ∈ Lp(Ω) | ∀α ∈ Nd0, |α| ≤ m

∃Dαv ∈ Lp(Ω) ∀ζ ∈ C∞0 (Ω)

∫
Ω
vDαζ dx = (−1)|α|

∫
Ω
Dαvζ dx }

where Dαζ := ∂α1
1 ...∂αnn ζ.

We only use the case p = 2, hence we abbreviate Hm,2 with Hm. The space Hm equipped
with the scalar product

〈v, ϕ〉Hm(Ω) :=
∑
|α|≤m

〈Dαv,Dαϕ〉L2(Ω) =
∑
|α|≤m

∫
Ω
Dαv ·Dαϕdx (1.34)

is a Hilbert space. The corresponding norm is

‖v‖Hm(Ω) =

〈v, v〉L2(Ω) +
∑

0<|α|≤m

〈Dαv,Dαv〉L2(Ω)

1/2

. (1.35)

It is also possible to define Sobolev spaces Hs of fractional order s ∈ R+
0 , s = [m] + l

with 0 < l < 1 called Sobolev-Slobodětskij space; see, e.g., [Wlo82]. Sobolev spaces of
fractional order often occur for functions defined on the boundary Γ of Ω. As we are
mainly concerned with H1(Ω) we give the definition of Hs(Γ) for 0 < s < 1

Hs(Γ) = {v ∈ L2(Γ) | ‖v‖Hs(Γ) <∞}
by means of the Slobodětskij norm

‖v‖Hs(Γ) =

(
‖v‖2L2(Γ) +

∫
Γ

∫
Γ

|v(x)− v(y)|2
|x− y|(d−1)+2s

dx dy

)1/2

. (1.36)

The following theorem justifies the definition of weak boundary values as, e.g., Dirichlet
values.

Theorem 1.3.1. Trace theorem
Let Ω ⊂ Rd be a Lipschitz domain. The mapping

C0,1(Ω̄)→ C0,1(Γ),

u 7→ u|Γ,
defined by u|Γ(x) = u(x) for x ∈ Γ can be extended to

H1(Ω)→ H
1
2 (Γ),

u 7→ Υ(u).

Thus, it is
‖Υ(u)‖

H
1
2 (Γ)
≤ C‖u‖H1(Ω) ,

where the constant C depends on the domain.
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1 Static contact problems in linear elasticity

Proof. See, e.g., [Ada75,Wlo82,Eva10]. qed.

As our solution spaces are d-dimensional we write them in bold characters H1(Ω) :=
(H1(Ω))d, L2(Ω) := (L2(Ω))d and H1/2(Γ) = (H1/2(Γ))d. Let Υ|ΓK for K ∈ {D,N,C}
be the restrictions of Υ on ΓK , then the subspace of all functions in H1(Ω) fulfilling the
Dirichlet boundary condition is given by

H := {v ∈H1(Ω) | Υ|ΓD(v) = uD}.

Further, we need the subspace

H0 := {ϕ ∈H1(Ω) | Υ|ΓD(ϕ) = 0}

and its dual H∗. We emphasize that H0 is the space of all functions H1(Ω) with
Υ|ΓD(ϕ) = 0 on the subset ΓD of Γ, not on the whole boundary Γ. Whenever it is clear
from the context that the restriction to the boundary requires the trace operator we
omit the special notation of the trace Υ.

The non-penetration condition is given in direction ν. As the absolute value of the
direction of constraints ν(x) is assumed to be |ν(x)| = 1, it follows from Hölder’s

inequality that u|ΓC · ν ∈ H
1
2 (ΓC). Especially for frictional contact problems it is

convenient to decompose H
1
2 (ΓC) in H

1
2 (ΓC)×H

1
2
T (ΓC) with uν = u|ΓC · ν ∈ H

1
2 (ΓC)

and uT = u|ΓC − uνν ∈ H
1
2
T (ΓC). For a gap function g ∈ H

1
2 (ΓC) we define the

admissible set

K := {v ∈H | vν ≤ g on ΓC}

where the order relation ≤ has to be understood in the sense of almost everywhere,
see [KO88, Chapter 5] for a precise definition.

The following theorem claims the existence of contact stresses in the dual H−
1
2 (Γ) of

H
1
2 (Γ) fulfilling a generalization of Green’s formula.

Theorem 1.3.2. Trace theorem for stresses
Let Ω be a Lipschitz domain. We define S := {σ ∈ R3×3

sym | σij ∈ L2(Ω) and ∂jσij ∈
L2(Ω)}. Then there exists a uniquely determined linear continuous mapping Π from S
into H−

1
2 (Γ) such that

Π(σ) = σ̂ if σ ∈ C1(Ω̄)

and such that the following generalized Green’s formula holds for every σ ∈ S and every
v ∈H1(Ω) ∫

Ω
σ : ∇v dx+

∫
Ω

divσv dx = 〈Π(σ),Υ(v)〉− 1
2
, 1
2
,Γ

where 〈·, ·〉− 1
2
, 1
2
,Γ denotes the duality pairing on H−

1
2 (Γ)×H 1

2 (Γ).

Proof. See, e.g., [KO88]. qed.
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1.3 Weak formulation, existence and uniqueness

We write σ̂ instead of Π(σ) if it is clear from the context that σ̂ ∈ H− 1
2 (Γ). Similar

to the decomposition of H
1
2×H

1
2
T it is possible to decompose the dual space H−

1
2×H−

1
2

T .

From now on, we avoid the intricate notation of norms and scalar products with the
spaces in the subindex. The L2-norm and its scalar product are denoted by ‖·‖ and 〈·, ·〉
without any subindex. The duality pairing between H1 and its dual H−1 is given by
〈·, ·〉−1,1 and the corresponding norms are ‖ · ‖1 and ‖ · ‖−1. The duality pairing between

H
1
2 and its dual H−

1
2 is denoted by 〈·, ·〉− 1

2
, 1
2

and the corresponding norms are ‖ · ‖ 1
2

and ‖ · ‖− 1
2
. Restrictions to subdomains are indicated by a further subindex, e.g., ‖ · ‖1,ω

for ω ⊂ Ω. Further, we recall the definition of the symmetric bilinear form

a(·, ·) :=

∫
Ω
σ(·) : ε(·) dx (1.37)

which corresponds to the elastic energy, compare Section 1.1.2. Now we have defined
everything to state the weak formulation of the Signorini problem.

Problem 1.3.1. Variational inequality of the Signorini problem
Let f ∈ L2(Ω), π ∈ L2(ΓN ). Then we seek a solution u ∈ K, such that

a(u,v − u) ≥ 〈f ,v − u〉+ 〈π,v − u〉ΓN ∀v ∈ K. (1.38)

It follows from Korn’s inequality (Lemma 1.3.1) and from the properties of Hooke’s
tensor, see Section 1.1.2, that a(·, ·) is elliptic.

Lemma 1.3.1. Korn’s inequality
Let Ω be a Lipschitz domain and meas(ΓD) > 0, then there exists a positive constant
c > 0 which depends on the domain, so that∫

Ω
ε(v) : ε(v) dx ≥ c‖v‖21.

Due to the ellipticity of a(·, ·) it is possible to write the weak formulation 1.3.1 as
constrained minimization problem.

Problem 1.3.2. Minimization problem of Signorini contact
Let J (·) be the energy functional, defined in (1.15). Then we seek a solution u ∈ K
such that

J (u) = min
v∈K
J (v). (1.39)

We define the indicator functional

IK(v) = IK(vν) :=

{
0 , if v ∈ K,
∞ , else,

(1.40)

which is lower semi-continuous and convex because K is a convex set. It leads to a
further characterization of the solution of Problem 1.3.1 as the minimum of

(J + IK)(u) = min
v∈H

(J + IK)(v) (1.41)
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1 Static contact problems in linear elasticity

over the whole space H. In [ET76, Proposition 2.2] it is proven that the solution of
(1.39) solves the variational inequality

a(u,v − u) + IK(v)− IK(u) ≥ 〈f ,v − u〉+ 〈π,v − u〉ΓN ∀v ∈H. (1.42)

The indicator functional is not differentiable but we may define the subdifferential of
IK.

Definition 1.3.1. Subdifferential
Let H be a Hilbert space and ϑ : H → R∪{−∞,∞}. Further, let u ∈ H with ϑ(u) 6= ±∞.
Then the subdifferential of ϑ in u is given by

∂subϑ(u) = {u∗ ∈ H−1 | ϑ(v)− ϑ(u) ≥ u∗(v − u) ∀v ∈ H}.
Exploiting the definition of the subdifferential we can reformulate the variational in-
equality (1.42) as variational inclusion

0 ∈ a(u,ϕ)− 〈f ,ϕ〉 − 〈π,ϕ〉ΓN + ∂subIK(u)(ϕ) ∀ϕ ∈H0 (1.43)

where

∂subIK(uν) =

{
0 , if uν < g ,

[0,∞) , if uν = g.

We define λ ∈ ∂subIK(u) as the element of the subdifferential fulfilling the variational
inclusion

〈f ,ϕ〉+ 〈π,ϕ〉ΓN − a(u,ϕ) = 〈λ,ϕ〉−1,1 ∀ϕ ∈H0. (1.44)

From a physical point of view λ has the meaning of a constraining force density which we
call contact force density. Comparing (1.44) with the generalization of Green’s formula
(Theorem 1.3.2) we get

〈λ,ϕ〉−1,1 = −〈σ̂(u),ϕ〉− 1
2
, 1
2
.

For details about the equivalent formulations as variational inequalities (1.38), (1.42),
variational inclusion (1.43) or minimization problems (1.39), (1.41) we refer to [ET76,
Chapter 2].
It is also possible to give a saddle point formulation of contact problems. Therefore, we
define the space of positive Lagrange multipliers

M+ := {ψ ∈ H− 1
2 (ΓC) | 〈ψ, vν〉− 1

2
, 1
2
≥ 0 ∀vν ∈ H

1
2 (ΓC), vν ≥ 0}

and the bilinear form
c(ψ,v) := 〈ψ, vν〉− 1

2
, 1
2
,ΓC

.

The saddle point

(u, µ) ∈H×M+, L(u, ψ) ≤ L(u, µ) ≤ L(v, µ) ∀v ∈H, ∀ψ ∈M+

of the Lagrangian

L : H×M+ → R, L(v, ψ) := J (v,v) + c(ψ,v)− 〈ψ, g〉− 1
2
, 1
2
,ΓC

is the solution of the following system of equations
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1.3 Weak formulation, existence and uniqueness

Problem 1.3.3. Saddle point formulation of the Signorini contact
Find u ∈H and µ ∈M+, such that

a(u,ϕ) + c(µ,ϕ) = 〈f ,ϕ〉+ 〈π,ϕ〉ΓN ∀ϕ ∈H0

c(ψ,u) ≤ 〈ψ, g〉− 1
2
, 1
2
,ΓC

∀ψ ∈M+.

In [HHN96, Theorem 9.4] is proven that the solutions u of Problems 1.3.3 and 1.3.1 are
equivalent and that µ = −σ̂ν(u).

1.3.2 Existence and uniqueness

The existence and uniqueness of the solution of the weak formulation of the Signorini
problem follows from the Theorem of Lions and Stampacchia [LS67].

Theorem 1.3.3. Theorem of Lions and Stampacchia
Let X be a Hilbert space and Y ⊂X non-empty, closed and convex. If the bilinear form
b : X×X → R is continuous and elliptic and the linear form F : X → R is continuous,
then the variational inequality

b(u,v − u) ≥ F (v − u) ∀v ∈ Y (1.45)

has a unique solution which depends continuously on F .

Proof. See, e.g., [KS80, Theorem 2.1]. qed.

In the case of the Signorini problem the Hilbert space is H and the closed and convex
subset is the admissible set K. The bilinear form b(·, ·) in (1.45) is replaced by a(·, ·),
defined in (1.37), and we set F (v − u) = 〈f ,v − u〉 + 〈π,v − u〉ΓN . From Korn’s
inequality follows that the bilinear form a(·, ·) used in (1.38) is elliptic. Further, a(·, ·) is
continuous due to the boundedness of Hooke’s tensor, see Section 1.1.2. Thus, it follows
from Theorem 1.3.3 that the Problem 1.3.1 has a unique solution. Regularity results
have been proven in [Sch89, Kin81] under stronger assumptions on the smoothness of
the domain and the data. For the case of two-body contact problems we refer to,
e.g., [BGK87].
The weak formulations of the simplified Signorini problem and the obstacle problem
give rise to the same type of variational inequalities, hence the existence and uniqueness
follows from Theorem 1.3.3, too; see, e.g., [Rod87].
Variational inequalities like (1.45) are called elliptic variational inequalities of the first
kind whereas (1.42) is an elliptic variational inequality of the second kind. The weak
formulation of the Signorini problem with Tresca friction, see Section 1.2 gives rise to
an elliptic variational inequality of the second kind. The indicator functional in (1.42)
is replaced by the friction potential. The existence and uniqueness follow from an-
other Theorem of Lions and Stampachia; see, e.g., [LS67,Glo84]. If the frictional effects
are described by Coulomb friction instead of Tresca friction we get a quasi-variational
inequality. Under the assumption of a sufficiently small coefficient of friction F the exis-
tence of a solution has been proven in [Eck96,NJH80]. In [NJH80] the quasi-variational
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1 Static contact problems in linear elasticity

inequality has been perceived as fixed point mapping which is of special interest for
numerical solution methods. In each iteration step a problem with Tresca friction has
to be solved and under further assumptions on the mesh size even the uniqueness of the
discrete solution can be proven, see [Has83,LPR91].
We note that the case of non-linear elastic materials is more involved even without
constraints because the energy (1.9) is usually non-convex. An existence result of a
one-body contact problem in non-linear elasticity with exact non-penetration condition
can be found in [Sch02].
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2 Finite element approximation and error
estimation

This chapter deals with the discrete approximation by means of linear finite elements.
The accuracy of the discrete solution depends highly on the underlying mesh. Thus, the
construction of a posteriori error estimators enabling an appropriate choice of a mesh is
essential for the numerical approximation. We here focus on residual-type a posteriori
error estimators which are favorite due to the easy computation of the error estimator
contributions. Unfortunately, the residual is no adequate measure of the error in the
case of variational inequalities in contrast to linear equations. In Sections 2.2.2 and 2.2.3
we discuss existing residual-type error estimators for obstacle and contact problems.

2.1 Discrete formulation of the Signorini problem

We assume a polygonal domain resolved by a mesh m, consisting of elements e ∈ m which
are triangles or quadrilaterals in 2D and tetrahedra, hexahedra, prism or pyramids in
3D. Any two elements are either disjoint or share a node, an edge or a face. The
boundary segments ΓD,ΓC ,ΓN are resolved by the mesh, meaning that their boundaries
∂ΓC , ∂ΓN , ∂ΓD are either nodes or edges. The set of nodes p is given by Nm and we
distinguish between the set ND

m of nodes on the Dirichlet boundary, the set NN
m of nodes

at the Neumann boundary, the set NC
m of nodes at the potential contact boundary and

the set of interior nodes N I
m where p ∈ Ω. Let he := diam(e) be the diameter of an

element and %e the radius of the incircle of an element. The minimal angle of an element
should be bounded away from zero. Thus, there exists a constant ς := maxe∈m

he
%e
� ∞

which is a measure of the shape-regularity. A family of meshes {mj}∞j=0 is called shape-
regular if the constants of shape-regularity ςj for all meshes mj are uniformly bounded,
i.e., c := supj ςj �∞. We call h := maxe∈m he the meshsize of the mesh m.

For the finite element approximation of H one uses continuous and piecewise polynomial
functions with respect to the underlying mesh m. In this work we consider approxima-
tions by means of linear finite elements. The space with incorporated Dirichlet values
uD is

Hm := {vm ∈ C0(Ω̄) | ∀e ∈ m, vm|e ∈ P 1(e) and vm(p) = uD(p) ∀p ∈ ND
m }.

Further, we need the space of all linear finite elements which are zero on the Dirichlet
boundary

Hm,0 := {ϕm ∈ C0(Ω̄) | ∀e ∈ m, ϕm|e ∈ P 1(e) and ϕm(p) = 0 ∀p ∈ ND
m }
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2 Finite element approximation and error estimation

and its dual H∗m. The nodal basis functions of the finite element spaces are denoted by
φp hence a discrete vector quantity has the representation

vm =
∑
p∈Nm

vm,i(p)φpei

where we used the Einstein summation convention for repeated indices. We define the
discrete admissible set by pointwise constraints

Km := {vm ∈Hm | vm,ν(p) ≤ gm(p) ∀p ∈ NC
m } (2.1)

where vm,ν(p) := vm(p) · ν(p) and the discrete gap function gm is a finite element
approximation of g on ΓC .

Problem 2.1.1. Discrete variational inequality of the Signorini problem
Find um ∈ Km fulfilling the variational inequality

a(um,vm − um) ≥ 〈f ,vm − um〉+ 〈π,vm − um〉ΓN ∀vm ∈ Km.

The discrete problem formulation of the obstacle problem follows in the same way, except
the constraints are enforced at all nodes in the domain. The unique solvability of the
discrete Signorini problem (Problem 2.1.1) as well as of the discrete obstacle problem
follows just as in the continuous case from Theorem 1.3.3 with the spaces X = Hm

and Y = Km. For the discretization of variational inequalities and convergence results

u
h→0−→ um we refer to, e.g., [Glo84, KO88, HHN96]. A priori error estimates have been

proven in, e.g., [BHR77, HH81, BBHL99, Hil00, CHLS02, HL02, HW05] for a sufficiently
regular continuous solution u. Further assumptions concern the regularity of the domain
and data, the uniformity of the family of meshes and the choice of the Lagrange multiplier
space. Most of these results are for two-body contact problems and are based on the
saddle point formulation giving the discretization error in terms of both unknowns, the
displacement and the Lagrange multiplier.

Problem 2.1.2. Discrete saddle point formulation of the Signorini problem
Find um ∈Hm and µm ∈M+

m, such that

a(um,ϕm) + c(µm,ϕm) = 〈f ,ϕm〉+ 〈π,ϕm〉ΓN ∀ϕm ∈Hm,0

c(ψm,um) ≤ 〈ψm, gm〉− 1
2
, 1
2
,ΓC

∀ψm ∈M+
m

where c(ψm,um) := 〈ψm, um,ν〉− 1
2
, 1
2
,ΓC

.

There are different choices for the discretization of the Lagrange multiplier µm, by means
of piecewise constant or linear functions or by so called dual basis functions ξp, fulfilling
the biorthogonality property∫

ΓC

ξpφq da = δpq

∫
ΓC

φq da ∀p, q ∈ NC
m .
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2.2 Residual-type a posteriori error estimators

The dual Lagrange multipliers have been introduced in [Woh00] for mortar finite elements
and applied to two body contact in [WK03]. In [HW05] an a priori error estimate is
given for two-body contact problems based on dual Lagrange multipliers. Therein ν is
assumed to be constant on ΓC and the space of suitable Lagrange multipliers is

M+
m :=

ψm =
∑
p∈NC

m

ψm(p)ξp | 〈ψm, ϕm,ν〉− 1
2
, 1
2
,ΓC
≥ 0 if ϕm,ν |ΓC ≥ 0

 .

We note that due to the biorthogonality property the weak constraint c(ψm,um) ≤
〈ψm, gm〉− 1

2
, 1
2
,ΓC

equals the pointwise non-penetration condition (2.1) for gm ∈ Hm. The

domain is assumed to be polyhedral and the number of points on ΓC where a change
between actual and non-actual contact occurs is assumed to be finite. Then the following

optimal a priori error estimate holds for u ∈H 3
2

+β(Ω), 0 < β ≤ 1
2

‖u− umj‖1 + ‖µ− µmj‖− 1
2
,ΓC
≤ Ch

1
2

+β

j |u| 3
2

+β

where |u| 3
2

+β is the semi-norm. For an a priori error estimate for contact problems with

Coulomb friction we refer to [HR07].

2.2 Residual-type a posteriori error estimators

Usually, in the numerical simulation of physical problems no information about the
regularity of the solution is given a priori. The solution may be more or less regular
in different regions of the domain and even singularities may occur. Increasing the
number of grid points near the critical region improves the accuracy. The detection of
those critical regions is feasible due to a posteriori error estimators which do not require
regularity assumptions on the solution as a priori error estimators.
A posteriori error estimators should be reliable and efficient. Reliable means that the
error estimator gives an upper bound of the error. This upper bound is global which is
due to the fact that upper bounds involve the inverse of the differential operator which is
a global operator. In an adaptive mesh-refinement process the accuracy of the solution
can be estimated by a reliable a posteriori error estimator. In order to ensure that the
error estimator does not overestimate the error so that the accuracy is achieved with
an almost minimal amount of grid points, the error estimator has to be a lower bound
of the error, too. Such error estimators are called efficient. The lower bound should be
local in order to reproduce the spatial distribution of the error.
We concentrate on the topic of a posteriori error estimators. For theoretical details
about the adaptive strategy, i.e., marking strategy, mesh refinement techniques and
convergence results for linear elliptic PDE’s we refer to [Ver96, SS05, NSV09] and the
references cited therein. Convergence results for obstacle problems can be found in,
e.g., [BCH07,PP10].
An overview over different types of error estimators for linear elliptic boundary value
problems can be found in [Ver96,Ver98,AO00]. The most common error estimator is the
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2 Finite element approximation and error estimation

residual error estimator which is obtained by an L2-representation of the residual. It is
an explicit error estimator which can be easily computed from the given data and the
discrete solution. In Section 2.2.1 we present the proof of upper and lower bound of the
residual error estimator for the equation of linear elasticity. The extension of residual
error estimators to variational inequalities is not straightforward because for it the linear
residual is no measure of the error. We will explain this difficulty in detail in Section
2.2.2. However, error estimators of residual type have been derived for obstacle problems
in [CN00, Vee01, NSV03, NSV05, MNvPZ07] and for contact problems in [HN05, HN07]
which are presented in Sections 2.2.2 and 2.2.3.

Another explicit error estimator, often used in engineering application, is given by the
difference between ∇um and a better approximation of ∇u which is usually obtained by
averaging techniques. Such error estimators have been analyzed for obstacle problems
in [BC04].

A posteriori error estimators are called implicit if they require the solution of auxiliary
discrete problems which should be simpler to evaluate than the original problem; see,
e.g., [AO00, Chapter 6]. Examples of obstacle problems can be found in [WW10,BHS08]
and for contact problems in [Woh07,WW09].

Hierarchical error estimators evaluate the residual of the computed finite element solution
with respect to another finite element space corresponding to higher order elements or to
a refined grid. In order to reduce the computational costs a hierarchical splitting of the
enhanced finite element space is used. Hierarchical error estimators have been developed
for obstacle problems in [Kor96,KZ11,ZVKG11], see also [SV07].

We here focus on residual-type a posteriori error estimators.

2.2.1 Residual error estimator for linear elliptic problems

The aim of this section is to explain the idea of residual error estimators for linear elliptic
problems and to get familiar with the notation and the technical details of the proofs
of upper and lower bound. In view of the new residual-type a posteriori error estimator
for contact problems which is presented in Chapter 3 we consider the equation of linear
elasticity. The continuous solution solves the variational equation

a(u,ϕ) = 〈f ,ϕ〉+ 〈π,ϕ〉ΓN ∀ϕ ∈H0 (2.2)

and in the discrete setting the equation

a(um,ϕm) = 〈f ,ϕm〉+ 〈π,ϕm〉ΓN ∀ϕm ∈Hm,0 (2.3)

has to be solved. We define Rlin
m ∈H∗ as the residual〈

Rlin
m ,ϕ

〉
−1,1

:= 〈f ,ϕ〉+ 〈π,ϕ〉ΓN − a(um,ϕ)

=a(u− um,ϕ)
(2.4)
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2.2 Residual-type a posteriori error estimators

of the linear equation and call it linear residual. The corresponding norm of Rlin
m is given

by

‖Rlin
m ‖−1 := supϕ∈H0

〈Rlin
m ,ϕ

〉
−1,1

‖ϕ‖1
.

It follows from the positive definiteness of Hooke’s tensor and from Korn’s inequality
that the error in the H1-norm ‖u− um‖1 is bounded by the norm of the residual

‖u− um‖1 . ‖Rlin
m ‖−1. (2.5)

Here and in the following, we neglect the constants in the error bounds; we write | · | . | · |
for a relation | · | ≤ C| · |. Conversely, it follows from the boundedness of the bilinear
form a(·, ·) that the norm of the residual is bounded by the error

‖Rlin
m ‖−1,ω . ‖u− um‖1,ω (2.6)

for each open subset ω of Ω. Unfortunately, ‖Rlin
m ‖−1 is not a computable quantity.

By means of its L2-representation and due to the Galerkin orthogonality we find a
computable upper bound of ‖Rlin

m ‖−1. For the lower bound the properties of bubble
functions are employed.
The discrete and continuous equations (2.2) and (2.3) imply the Galerkin orthogonality

a(u− um,ϕm) = 0 ∀ϕm ∈Hm. (2.7)

because of Hm,0 ⊂ H0. Thus, we have
〈Rlin

m ,ϕ
〉
−1,1

=
〈Rlin

m ,ϕ− Imϕ
〉
−1,1

for Imϕ ∈
Hm,0. For the upper bound it would be desirable to choose a quasi-interpolation operator

Imϕ :=
∑

p∈Nm\ND
m

cp(ϕ)φp (2.8)

which fulfills an L2-approximation property (Lemma 2.2.1). Usually, the Clément type

quasi-interpolation operator with cp(ϕ) :=

∫
ωp
ϕdx∫

ωp
1 dx

is used. Here ωp is the union of all

elements sharing the node p and is called patch. In the following sections different choices
of quasi-interpolation operator are used. Thus, the definition of cp(ϕ) varies in this work.
For details about the Clément interpolation we refer to [Clé75,Car06]. In Section 2.1 we
introduced the notation e for an element of the mesh m and he for the diameter of an
element. Accordingly, we denote a side of an element by s and the diameter of the side
is hs. Here and in the following, elements e and sides s are understood as elements of
the mesh m and as subdomains of Ω̄, too. We set

ωs :=
⋃
s⊂∂e

e

ω̃s :=
⋃

s∩e 6=∅

e

ω̃e :=
⋃

e∩ẽ6=∅

ẽ.
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2 Finite element approximation and error estimation

Lemma 2.2.1. L2-approximation property
Let Imϕ be defined as in (2.8), then for all ϕ ∈ H0 and all elements e and sides s of the
mesh m the following L2-approximation properties hold

‖ϕ− Imϕ‖e . h‖ϕ‖1,ω̃e

‖ϕ− Imϕ‖s . h
1
2 ‖ϕ‖1,ω̃s

where the constants depend on the shape parameter ς.

Proof. The proof follows from the Poincaré inequality and the trace inequality, see e. g.
[Ver99,Ver11b]. qed.

For vector-valued functions Im is defined by applying Im to the components of the
function.

Next, for a clear presentation we define the so-called jump terms which are either the
difference between the stresses σ|e(um) · n and σ|̃e(um) · n of two neighboring elements
e and ẽ where n is the unit outward normal to the common side s in the interior of Ω or
the difference between the given Neumann data π and the boundary stress σ̂|e(um) at
a Neumann boundary side s

JI(um) := (σ|̃e(um)− σ|e(um))n

JN (um) :=π − σ̂|e(um).
(2.9)

If the equation of linear elasticity is replaced by the Laplace equation the jump terms J
have to be replaced by the difference in gradients which are denoted by

[[∇um]]I := (∇|̃eum −∇|eum) · n
[[∇um]]N :=π −∇|eum · n.

(2.10)

We assume the faces of pyramids, prisms and hexahedra to be planar such that for all
kinds of elements the unit outward normals n are constant. Further, we abbreviate
r(um) := divσ(um) + f which is sometimes called element or interior residual. With
these notations we derive the residual a posteriori error estimator〈
Rlin

m ,ϕ
〉
−1,1

=
〈
Rlin

m ,ϕ− Imϕ
〉
−1,1

=
∑
e∈m

∫
e
r(um) · (ϕ− Imϕ) dx

+
∑
s∈m

(∫
s∩Ω

JI(um) · (ϕ− Imϕ) dx+

∫
s∩ΓN

JN (um) · (ϕ− Imϕ) dx

)

.

∑
e∈m

h2
e‖r(um)‖2e +

∑
s⊂Ω

hs‖JI(um)‖2s +
∑
s⊂ΓN

hs‖JN (um)‖2s

 ‖ϕ‖1
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2.2 Residual-type a posteriori error estimators

where we used the Cauchy-Schwarz inequality and the L2-approximation property. Thus,

it is proven that the error estimator η :=
(∑

e∈m η
2
e

) 1
2 with the local contributions

ηe :=

h2
e‖r(um)‖2e +

∑
s⊂∂e∩Ω

hs‖JI(um)‖2s +
∑

s⊂∂e∩ΓN

hs‖JN (um)‖2s

 1
2

(2.11)

bounds the error.
For the converse proof that the error estimator is bounded by the residual the bubble
functions are a very helpful device. We define the element bubble functions for an
element e by

Ψe := c
∏
p∈e
φp (2.12)

where we assume c :=
(

max
x∈e

∏
p∈e φp

)−1
such that 0 ≤ Ψe(x) ≤ 1 and the side bubble

functions for a side s by

Ψs := c
∏
p∈s
φp (2.13)

where we assume c :=
(

max
x∈e

∏
p∈s φp

)−1
such that 0 ≤ Ψs(x) ≤ 1, see e.g. [Ver11a].

Basic properties of element bubble functions:

• suppΨe ⊂ e

•
∫
e Ψe ∼

∫
e 1 ∼ hde

• ‖Ψe‖e ∼ h
d
2
e

• ‖∇Ψe‖e ∼ h−1
e ‖Ψe‖e ∼ h

d−2
2

e

Basic properties of side bubble functions:

• suppΨs ⊂ ωs

•
∫
s Ψs ∼

∫
s 1 ∼ hd−1

s

• ‖Ψs‖s ∼ h
d−1

2
s

• ‖Ψs‖ωs ∼ h
d
2
s

• ‖∇Ψs‖ωs ∼ h−1
s ‖Ψs‖ωs ∼ h

− 1
2

s ‖Ψs‖s
These properties follow from explicit computation and scaling arguments and will be
sufficient for the subsequent calculation as long as we consider linear finite elements on
triangles or tetrahedra. Otherwise we need some more general properties of the bubble
functions.
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2 Finite element approximation and error estimation

Lemma 2.2.2. Properties of bubble functions
For all polynomials w defined on e and s, respectively, the following inequalities hold

‖w‖2e .
∫
e
Ψew

2 . ‖w‖2e
‖Ψew‖1,e . h−1

e ‖w‖e

‖w‖2s .
∫
s
Ψsw

2 . ‖w‖2s

‖Ψsw‖1,ωs . h
− 1

2
s ‖w‖s

‖Ψsw‖ωs . h
1
2
s ‖w‖s.

The constants depend on the reference elements, on the bubble functions on the reference
elements and on the shape parameter ς but they are independent of w and hs, he.

Proof. See, e.g., [Ver96, Lemma 3.3] or [AO00, Section 2.3.1]. The fact that
∫
e Ψew

2

defines a norm on the finite-dimensional space of polynomials is an essential ingredient
of the proof. qed.

In the vector-valued case, each component of the bubble functions Ψe,Ψs is defined as in
(2.12), (2.13). Let f̄ be a discrete approximation of f whose components f̄i are piecewise
constant on each e ∈ m. The corresponding element residual r̄(um) := divσ(um) + f̄
can be bounded as follows

‖r̄(um)‖2e .
∫
e
(r̄(um))2Ψe =

〈
Rlin

m , r̄(um)Ψe

〉
−1,1,e

+

∫
e
(f̄ − f)r̄(um)Ψe

≤ ‖Rlin
m ‖−1,e‖r̄(um)Ψe‖1,e + ‖f̄ − f‖e‖r̄(um)Ψe‖e

. ‖Rlin
m ‖−1,eh

−1
e ‖r̄(um)‖e + ‖f̄ − f‖e‖r̄(um)‖e.

(2.14)

Dividing the last expression by h−1
e ‖r̄(um)‖e and using the triangle inequality ‖r(um)‖e ≤

‖r̄(um)‖e + ‖f − f̄‖e we get the desired result on each element

he‖r(um)‖e . ‖Rlin
m ‖−1,e + he‖f̄ − f‖e. (2.15)

As f̄i has been defined as arbitrary piecewise constant functions we may replace them
by the best approximation inf f̄i‖f̄i− fi‖. This term is formally assumed to be of higher
order o(h).
The part of the error estimator involving the jump terms of interior sides s can be
estimated similar to (2.14)

‖JI(um)‖2s .
∫
s
JI(um)JI(um)Ψs

.
〈
Rlin

m ,JI(um)Ψs

〉
−1,1,ωs

−
∫
ωs

r(um)JI(um)Ψs

. ‖Rlin
m ‖−1,ωs‖JI(um)Ψs‖1,ωs + ‖r(um)‖ωs‖JI(um)Ψs‖ωs

. ‖Rlin
m ‖−1,ωsh

− 1
2

s ‖JI(um)‖s + ‖r(um)‖ωsh
1
2
s ‖JI(um)‖s.

(2.16)
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2.2 Residual-type a posteriori error estimators

Dividing by h
− 1

2
s ‖JI(um)‖s and applying (2.15), we get the desired estimate

h
1
2
s ‖JI(um)‖s . ‖Rlin

m ‖−1,ωs + hs‖f̄ − f‖ωs .

Let π̄ be a piecewise constant approximation of π one can deduce in the same way

h
1
2
s ‖JN (um)‖s . ‖Rlin

m ‖−1,ωs + hs‖f̄ − f‖ωs + h
1
2
s ‖π̄ − π‖s.

Thus, the efficiency of the error estimator follows from (2.6).

2.2.2 Residual-type error estimators for obstacle problems

In this section we present residual-type error estimators for obstacle problems and discuss
the difficulties arising in the construction.
In Section 1.2.3 we presented the strong formulation of obstacle problems and we already
mentioned in Section 1.3.2 that the weak formulation gives rise to a variational inequality
whose existence and uniqueness follows from the Theorem of Lions and Stampacchia.
For the ease of presentation and to be conform to the presented literature we assume in
this section uD = 0 on ΓD = ∂Ω. Thus, the variational inequality reads as

Find u ∈ K such that 〈∇u,∇(v − u)〉 ≥ 〈f, v − u〉 ∀v ∈ K (2.17)

where K := {v ∈ H0 | v ≥ g} and g ≤ 0 on ∂Ω. Similar to (1.44) there exists a
distribution Λ ∈ H∗ which turns the variational inequality (2.17) into an equation

〈Λ, ϕ〉−1,1 := 〈f, ϕ〉 − 〈∇u,∇ϕ〉 ∀ϕ ∈ H0

and which has the meaning of a contact force density. For obstacle problems, where the
constraints hold in the domain, the contact force density coincides with the Lagrange
multiplier. We refer to Λ as Lagrange multiplier and note that 〈Λ, ϕ〉−1,1 ≤ 0 for all
ϕ ≥ 0. In the discrete setting the constraints are enforced at each node, i. e., u(p) ≥ g(p)
∀p ∈ Nm. The discrete Lagrange multiplier Λm ∈ H∗m is defined by

〈Λm, ϕm〉−1,1 := 〈f, ϕm〉 − 〈∇um,∇ϕm〉 ∀ϕm ∈ Hm,0 (2.18)

with 〈Λm, ϕm〉−1,1 ≤ 0 for all ϕm ≥ 0. We note that the extension of Λm to a functional
in H∗ is not unique. A straightforward choice could be

〈Λm, ϕ〉−1,1 := 〈f, ϕ〉 − 〈∇um,∇ϕ〉 ∀ϕ ∈ H0. (2.19)

Comparing (2.19) with the definition of the linear residual (2.4) we see that 〈Λm, ϕ〉−1,1 =〈
Rlin

m , ϕ
〉
−1,1

. If the discrete solutions um and Λm approximate the continuous solutions
u and Λ, the linear residual will not tend to zero as Λ 6= 0. Therefore, the linear residual
is no appropriate error measure as in the linear case, see Section 2.2.1. It overestimates
the error. The relation between

〈
Rlin

m , ϕ
〉
−1,1

and 〈∇(u− um), ϕ〉 is disturbed

〈∇(u− um), ϕ〉 =
〈
Rlin

m , ϕ
〉
−1,1
− 〈Λ, ϕ〉−1,1 ∀ϕ ∈ H0. (2.20)
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However, in the first residual-type error estimator of ‖u − um‖1 for obstacle problems
[CN00] the same contributions ηe as in (2.11) occur for all elements e regardless of
whether the solution coincides with the obstacle in the element or not. Unfortunately,
the disturbed relation between the linear residual and the error precludes to give a lower
bound of the error exclusively in terms of ηe. The remaining error estimator contributions
in [CN00] account for the differences between the discrete and continuous obstacles and
the interelement jumps [[∇gm]]I of the discrete obstacle. The latter contribution is
restricted to the coincidence set where um = gm avoiding overestimation in areas where
the obstacle is inactive. This first attempt to distinguish between coincidence and non-
coincidence sets has been further developed and significantly improved in [NSV03,FV03,
NSV05,MNvPZ07]. For the proof of the upper bound suitable test functions have been
inserted in the variational inequality. For this purpose a special positivity preserving
interpolation operator has been introduced which is further investigated in [NW02].
This interpolation operator gives rise to higher order stability estimates and has been
employed for residual-type error estimates for obstacle problems in the L∞-norm, see
[NSV03] and [NSV05].
The Lagrange multiplier Λ as well as the displacement field u are both unknowns of the
obstacle problem. Further, the Lagrange multiplier is directly related to the coincidence
set. In the region where u > g a linear equation is solved and the Lagrange multiplier
is zero, so that we might expect a residual error estimator as in the linear case. In the
coincidence set where u = g the displacement is fixed and thus changing the data f affects
the Lagrange multiplier which is given by Λ = f+∆g in a distributional sense. The first
residual-type error estimator considering this structure of obstacle problems can be found
in [Vee01]. Therein the error is measured in both unknowns ‖u−um‖1+‖Λ−Λm‖−1. It is
worth to mention that it is the first residual-type a posteriori error estimator for obstacle
problems for which the efficiency has been proven. Accordingly, the linear residual is
replaced by a Galerkin functional whose abstract definition is given by

〈Gm, ϕ〉−1,1 := 〈∇(u− um),∇ϕ〉+ 〈Λ− Λm, ϕ〉−1,1 (2.21)

= 〈f − Λm, ϕ〉−1,1 − 〈∇um,∇ϕ〉 ∀ϕ ∈ H0. (2.22)

In practice 〈Λm, ϕ〉−1,1 still needs to be specified as there is no unique extension of
Λm ∈ H∗m defined in (2.18) to a functional in H∗. The choice (2.19) of Λm as functional
on H0 would lead to 〈Gm, ϕ〉−1,1 = 0 and is thus inappropriate. In [Vee01] the bilinear
form

〈ψm, ϕm〉m :=
∑
p∈Nm

ψm(p)ϕm(p)

∫
Ω
φp

corresponding to the lumped mass matrix and thus sometimes called lumped L2-scalar
product is used. The discrete variational inequality

〈∇um,∇(vm − um)〉 ≥ 〈fm, (vm − um)〉m ∀vm ∈ Km (2.23)

where fm is a discrete approximation to f is solved. From the linear residual of this
variational inequality (2.23) by means of the lumped L2-scalar product

〈Λm, ϕm〉m := 〈fm, ϕm〉m − 〈∇um,∇ϕm〉 ∀ϕm ∈ Hm,0 (2.24)
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a function Λm ∈ Hm,0 is defined with node values Λm(p) :=
〈Λm,φp〉m∫

Ω φp
. This function

is in L2 and hence a functional on H0 by means of the standard L2 scalar product,
i.e., 〈Λm, ϕ〉−1,1 :=

∫
Ω Λmϕ. The fact that Λm is a discrete function with Λm(p) ≤ 0 is

advantageous for the proof of upper and lower bounds. The error measure is bounded
by the dual norm of the Galerkin functional plus an additional term

‖u− um‖21 + ‖Λ− Λm‖2−1 . ‖Gm‖2−1 + 〈Λm − Λ, u− um〉−1,1 . (2.25)

Thus, upper bounds of ‖Gm‖−1 and 〈Λm − Λ, u− um〉−1,1 are derived. The proof of the
upper bound of the Galerkin functional is similar to the proof of the upper bound of the
linear residual in Section 2.2.1. This is due to the fact that the Galerkin functional is
the residual of the linear equation

〈∇um,∇ϕ〉 = 〈f − Λm, ϕ〉−1,1 ∀ϕ ∈ H0, (2.26)

with given Λm of (2.19). We refer to [Bra05] for an abstract analysis of residual-type
error estimators for obstacle problems based on this perception (2.26). We note that in
the presented works linear finite elements on simplices are taken such that ∆um = 0.
Due to (2.26) the error estimator contribution considering the interior residual changes
to hs‖f −Λm‖ωs . In a region where um 6= gm this contribution coincides with the one for
linear elliptic equations because Λm(p) = 0 if um(p) 6= gm(p). If the obstacle is an affine
function the discrete Lagrange multiplier should tend to the given force density in the
coincidence set provided f is well approximated by fm. In this sense this contribution is
localized. The error estimator η :=

∑
s∈m ηs is side-based with the contributions

η2
s := h

1
2
s ‖[[∇um]]I‖2s + hs‖f − Λm‖2ωs

+ h2
s‖∇Λm‖2ωs

(2.27)

for affine obstacles. The additional term h2
s‖∇Λm‖ωs measures the consistency error

of the discrete choice of Λm and vanishes in the non-contact set. If no contact occurs
the error estimator coincides with the standard residual error estimator for linear elliptic
equations. Besides the proof of the upper bound also the lower bound is proven in [Vee01]
and also the case of non-affine obstacles is treated. One of the three additional error
estimator contributions for general obstacles accounts for the interelement jumps of the
discrete obstacle ‖[[∇(um − gm)]]I‖s like in [CN00]. The other ones take care of the
quality of approximation of g by gm, the contribution ‖(g − um)+‖1,ωs penalizes um 6> g
which may occur if g−gm > 0 and the contribution

∫
ωs

(−Λm)(g−gm)− penalizes Λm 6= 0
if g − gm < 0.
In [NSV03] a quasi-discrete Lagrange multiplier Λ̃m replaces Λm of (2.24) in the Galerkin
functional. This quasi-discrete Lagrange multiplier Λ̃m is a functional on H0, computed
from the discrete solution, and given data and mimics the properties of the continuous
Lagrange multiplier enabling localization of error estimator contributions to the non-
contact area. Therefore, the discrete Lagrange multiplier obtained by (2.24) is modified
for all elements where the surrounding elements do not belong to the coincidence set. We
do not go into further details because we are interested in error estimators for the error
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2 Finite element approximation and error estimation

in the H1-norm and pointwise error estimators require different techniques. We rather
analyze the error estimator of [MNvPZ07] where the idea of defining a quasi-discrete
Lagrange multiplier according to the different kinds of contact regions has been improved
for estimating the error in the H1-norm of parabolic obstacle problems. Therein the

partition of unity is used
〈

Λ̃m, ϕ
〉
−1,1

=
∑

p∈Nm

〈
Λ̃m, ϕφp

〉
−1,1

and the definition of

each
〈

Λ̃m, ϕφp

〉
−1,1

depends on the properties of the node with respect to their contact

status. This ansatz for the quasi-discrete Lagrange multiplier is taken from [FV03]. The
set of nodes is subdivided into full-contact nodes, non-contact nodes and the remaining
free boundary nodes. For non-contact nodes um > gm holds in the whole patch ωp and〈

Λ̃m, ϕφp

〉
−1,1

is set to zero. Full-contact nodes p fulfill um = gm in the patch ωp and

Rlin
m ≤ 0. The latter property means that modifying the discrete solution locally does

not improve the resolution. In fact, let K̃p := {v + um | 0 ≤ v ∈ H1
0 (ωp)} and consider

the local problem:

Find U ∈ K̃p such that 〈∇U,∇(V − U)〉 ≥ 〈f, V − U〉 ∀V ∈ K̃p.

If um is locally not improvable we have U = um and〈
Rlin

m , v
〉
−1,1

= 〈f, v〉 − 〈∇um,∇v〉 ≤ 0 ∀v ∈ H1
0 (ωp).

In the case of full-contact nodes the quasi-discrete Lagrange multiplier is defined as〈
Λ̃m, ϕφp

〉
−1,1

:=
〈
Rlin

m , ϕφp
〉
−1,1

and otherwise set to
〈

Λ̃m, ϕφp

〉
−1,1

:=
∫
ωp
spϕφp with

sp :=
〈Rlin

m ,φp〉−1,1∫
ωp
φp

. We note that sp coincides with the node value of a discrete Lagrange

multiplier obtained by lumping the mass matrix and that sp = 0 for non-contact nodes.
Thus, we have Λ̃m ≤ 0. This choice of Λ̃m replaces Λm in the abstract definition of the
Galerkin functional (2.21). Thus, the following Galerkin functional

〈Gm, ϕ〉−1,1 := 〈∇(u− um),∇ϕ〉+
〈

Λ− Λ̃m, ϕ
〉
−1,1

=
〈
Rlin

m − Λ̃m, ϕ
〉
−1,1

(2.28)

is used in [MNvPZ07]. Exploiting the definition of Λ̃m we deduce 〈Gm, ϕφp〉−1,1 = 0
for full-contact nodes. Therefore, the error estimator contributions bounding the dual
norm of the Galerkin functional have no contributions from the full-contact zone. For
the nodes at the free boundary we have

〈Gm, ϕφp〉−1,1 :=
〈
Rlin

m , ϕφp

〉
−1,1
−
∫
ωp

spϕφp

=
〈
Rlin

m , ϕφp

〉
−1,1
−
〈
Rlin

m , φp

〉
−1,1

∫
ωp
ϕφp∫

ωp
φp

=
〈
Rlin

m , (ϕ− cp(ϕ))φp

〉
−1,1
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2.2 Residual-type a posteriori error estimators

with cp(ϕ) :=

∫
ωp
ϕφp∫

ωp
φp

. Accordingly, the quasi-interpolation operator used in [FV03,

MNvPZ07] is given by

Im(ϕ) :=
∑
p∈Nm

cp(ϕ)φp.

We note that due to the partition of unity the resulting error estimator is based on
patches instead of elements. However, the error estimator contributions obtained from
the upper bound of ‖Gm‖−1 are similar to ηe in the linear elliptic case. The additional er-

ror estimator contribution which bounds the second term
〈

Λ̃m − Λ, u− um
〉
−1,1

in (2.25)

is a kind of discrete complementarity condition sp
∫
ωp

(um − gm)φp for all free boundary

nodes. Unfortunately, no lower bound is proven for this additional contribution. Finally,
we note that the proof of the lower bound in terms of [[∇um]]I is not as easy as for the
linear elliptic case. A special linear combination of bubble functions on elements and
sides has to be constructed such that the additional term

〈
Rlin

m , cp(ϕ)φp
〉
−1,1

occurring
in the Galerkin functional due to the quasi-discrete Lagrange multiplier at free boundary
nodes disappears while keeping the properties of a side bubble function. This construc-
tion has already been used in [FV03]. An upper bound for general obstacles has also
been shown in [MNvPZ07] with similar terms as in [Vee01]. For an abstract analysis of
error estimation by means of modified Lagrange multipliers we refer to [NvPZ10].

2.2.3 Residual-type error estimators for contact problems

In contrast to obstacle problems only few a posteriori error estimators for contact prob-
lems exist. Due to the localization of the constraints to a subset of the boundary the
finite element analysis of error estimators for contact problems is significantly different
from the one for obstacle problems. In the following we present the residual-type a
posteriori error estimators of [HN05,HN07].

In [HN05] an a posteriori error estimator for a simplified Signorini problem (Problem
1.2.2) is derived. The two-dimensional case with obstacle g = 0 is studied. The basic
idea of [HN05] is to apply a (d−1)-dimensional version of the special positivity preserving
interpolation operator of [CN00] at the contact boundary.

In [CN00] the constants cp(ϕ) occurring in the quasi-interpolation operator Im(ϕ) :=∑
p∈Nm

cp(ϕ)φp are mean values on symmetric domains around interior nodes p and
the boundary is assumed to be a homogeneous Dirichlet boundary. Thus, a (d − 1)-
dimensional version of the special positivity preserving interpolation operator is straight-
forward within segments at the contact boundary. However, at vertices and at the
(d−2)-dimensional boundary of ΓC modifications are required. Unfortunately, the error
estimator contributions stemming from these nodes give rise to a non-optimal upper
bound involving a constant C(h) =

√
−ln(h). Apart from the standard residual error

estimator contributions ηe, contributions measuring the violation of the complementarity
condition and the negativeness of ∇um ·n occur. The lower bound of the contribution ac-
counting for the complementarity condition is non-optimal with a constant C(h) = h−

1
2 .
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2 Finite element approximation and error estimation

Residual-based a posteriori error estimators for a Signorini problem (Problem 1.2.1) can
be found in [HN07]. The two-dimensional case with gap function g = 0 is considered.
While the starting point in [HN05] is the variational inequality, the error estimators
of [HN07] are given for the saddle point formulation (Problem 1.3.3). Thus, the error is
measured in primal and dual variables ‖u−um‖1+‖µ−µm‖− 1

2
,ΓC

. The discrete Lagrange

multipliers are continuous piecewise affine functions. The bilinear form c(·, ·) describing
the weak formulation of the constraints in the saddle point formulation (Problem 1.3.3)
is defined in two ways. One is the usual L2-scalar product on the boundary representing
the mass matrix and the other corresponds to the lumped mass matrix.
For both saddle point formulations residual-type a posteriori error estimators are pro-
posed. Apart from the usual contributions ηe as in the linear case, contributions mea-
suring the non-positivity of the Lagrange multiplier ‖(µm)−‖e, the violation of the com-
plementarity condition

∫
e−(µm)+um,ν and the difference between the piecewise linear

Lagrange multiplier and the piecewise constant contact stresses ‖µm +σ(um)‖e belong to
the a posteriori error estimator. In the second case where the bilinear form is defined by
lumping, the Lagrange multiplier is always positive such that the contributions ‖(µm)−‖e
do not exist. For the proof of the upper bound of ‖u−um‖1 +‖µ−µm‖− 1

2
,ΓC

integration

by parts and the Clement-type quasi-interpolation operator (2.8) as in the linear case
is used. Further, the complementarity condition and the sign condition of the Lagrange
multiplier are exploited. In the proof of the lower bound µ ∈ L2(ΓC) is assumed.
Up to now, there exists no residual-type a posteriori error estimator for contact problems
based on a suitable definition of a contact force density associated to the discrete solution
and a Galerkin functional as for obstacle problems. We follow this issue and present a
new a posteriori error estimator in the next section.
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3 A new residual-type a posteriori error
estimator for the Signorini problem

In this chapter we introduce a new residual-type a posteriori error estimator for contact
problems. We prove reliability and efficiency for dimensions d = 2, 3 and meshes of
simplices. Even for arbitrary, non-discrete gap functions the reliability is proven.
The error is measured in terms of both unknowns, the displacements and the contact
force densities, compare [Vee01]. Inspired by [FV03,MNvPZ07] a quasi-discrete contact
force density and a Galerkin functional is defined, see also Section 2.2.2.
The local error estimator contributions stemming from areas where no constraints are
imposed or are active coincide with the local error estimator contributions of a standard
residual error estimator for linear elliptic problems. In the areas where actual contact
occurs we get an additional error estimator contribution measuring the fulfillment of a
kind of complementarity condition. A similar contribution occurs in the upper bound of
the error estimator proposed for obstacle problems in [MNvPZ07]. We achieve to prove
that this contribution is a local lower bound of the error measure.
We note that just recently, we wrote a preprint [KVW12] where the results of Chapters
3 and 4 have been presented in a shortened version.

3.1 Definitions and main results

In this section we motivate the definition of the quasi-discrete contact force density which
is used for the definition of the Galerkin functional and the error measure. Further the
error estimator contributions are presented and we state the upper and lower a posteriori
estimates but postpone the proofs to Section 3.2 and 3.3.

3.1.1 Quasi-discrete contact force density and the Galerkin functional

We derive the definition of the quasi-discrete contact force density. It mimics the proper-
ties of the continuous contact force density λ while computed from the discrete solution
and given data. We note that in the case of contact problems we distinguish between
the Lagrange multiplier which is a functional on H

1
2 (ΓC) and the contact force density

which is a functional on H0.

We start with some preliminary definitions and recall the properties of the continuous
contact force density. In Section 2.2.1 the patch ωp the union of all surrounding elements,
open with respect to Ω, has been defined. The corresponding diameter is abbreviated
with hp := diamωp and the union of all sides of elements belonging to ω̄p is denoted by
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3 A new residual-type a posteriori error estimator for the Signorini problem

γp. We call the union of all sides in the interior of ωp, not including the boundary of
ωp, skeleton and denote it by γp,I . For the intersections between Γ and ∂ωp ∀p ∈ Γ we
distinguish between the three following types

γp,C := ΓC ∩ ∂ωp
γp,N := ΓN ∩ ∂ωp
γp,D := ΓD ∩ ∂ωp.

We assume the unit outward normal ν to be constant on ΓC and choose the coordinate
system such that e1 = ν. Then the discrete admissible set (2.1) is given by

Km = {vm ∈Hm | vm,1 ≤ gm on ΓC}. (3.1)

In the following, we make use of the representation

〈λ,ϕ〉−1,1 =

d∑
i=1

〈λi, ϕi〉−1,1

of the contact force density with the components

〈λ1, ϕ1〉−1,1 := −〈σ̂1(u), ϕ1〉− 1
2
, 1
2
,ΓC

〈λi, ϕi〉−1,1 := −〈σ̂i(u), ϕi〉− 1
2
, 1
2
,ΓC

= 0, i ∈ {2, .., d}

where we exploited that the tangential stresses are zero in the frictionless case. From
the variational inequality (1.33) and Green’s formula follows 〈σ̂(u),v − u〉ΓC ≥ 0 and
thus

〈λ,v − u〉−1,1 ≤ 0 ∀v ∈ K. (3.2)

The discrete contact force density coincides with the linear residual as functional on
Hm,0, compare Section 2.2.2

〈λm,ϕm〉−1,1 := 〈f ,ϕm〉 − a(um,ϕm) + 〈π,ϕm〉ΓN =
〈
Rlin

m ,ϕm

〉
−1,1

∀ϕm ∈Hm,0.

(3.3)
In order to investigate λm further, we use integration by parts like in Section 2.2.1

〈λm,ϕm〉−1,1

=

d∑
i=1

∑
p∈Nm

〈λm, ϕm,i(p)φpei〉−1,1

=
d∑
i=1

∑
p∈Nm

∫
γp,I

JI(um) · ϕm,i(p)φpei +
d∑
i=1

∑
p∈Nm

∫
ωp

r(um) · ϕm,i(p)φpei

+
d∑
i=1

∑
p∈NN̄

m

∫
γp,N

JN (um) · ϕm,i(p)φpei −
d∑
i=1

∑
p∈NC

m

∫
γp,C

σ̂(um) · ϕm,i(p)φpei

(3.4)
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3.1 Definitions and main results

for all ϕm ∈Hm,0. Here, we use the notation N N̄
m for the set of all nodes on Γ̄N .

In the support of φp for all interior and Neumann boundary nodes no constraints are
imposed such that we have for all i = 1, .., d

0 =

∫
γp,I

JI(um) · φpei +

∫
ωp

r(um) · φpei

=
〈
Rlin

m , φpei

〉
−1,1

∀p ∈ N I
m

(3.5)

and

0 =

∫
γp,I

JI(um) · φpei +

∫
ωp

r(um) · φpei +

∫
γp,N

JN (um) · φpei

=
〈
Rlin

m , φpei

〉
−1,1

∀p ∈ NN
m .

(3.6)

At the contact boundary in tangential direction homogeneous Neumann boundary con-
ditions hold because the constraints are solely imposed in direction ν = e1. Additionally
to (2.9) we define the tangential jumps at the contact boundary JCT (um) := σ̂T (um) and
we get a similar equation like (3.6) for p ∈ NC

m and i 6= 1

0 =

∫
γp,I

JI(um) · φpei +

∫
ωp

r(um) · φpei +

∫
γp,N

JN (um) · φpei −
∫
γp,C

JCT (um) · φpei

=
〈
Rlin

m , φpei

〉
−1,1

.

(3.7)

Thus, (3.4) reduces to

〈λm,ϕm〉−1,1 =
∑
p∈NC

m

∫
γp,I

JI1 (um) · ϕm,1(p)φp +
∑
p∈NC

m

∫
ωp

r1(um) · ϕm,1(p)φp

+
∑
p∈NC

m

∫
γp,N

JN1 (um) · ϕm,1(p)φp −
∑
p∈NC

m

∫
γp,C

σ̂1(um) · ϕm,1(p)φp

(3.8)

which motivates the representation

〈λm,ϕm〉−1,1 =

d∑
i=1

〈λm,i, ϕm,i〉−1,1

with

〈λm,1, ϕm,1〉−1,1 := 〈λm,ϕm〉−1,1

〈λm,i, ϕm,i〉−1,1 := 0, i ∈ {2, .., d}.

As
〈Rlin

m , φpe1

〉
−1,1

= 〈λm,1, φp〉−1,1 ≥ 0 which follows from the discrete variational
inequaliy the linear residual is no adequate measure of the error, see also Section 2.2.2.
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3 A new residual-type a posteriori error estimator for the Signorini problem

We replace the linear residual by a Galerkin functional

〈Gm,ϕ〉−1,1 := a(u− um,ϕ) +
〈
λ− λ̃m,ϕ

〉
−1,1

where λ̃m is a quasi-discrete contact force density depending on the discrete solution and
data and reflecting the properties of λ as, e.g., in [FV03, MNvPZ07]. We note that λm

given by (3.8) has no direct relation to the contact stresses σ̂(um) like the continuous
contact force density 〈λ,ϕ〉−1,1 = −〈σ̂(u),ϕ〉− 1

2
, 1
2
,ΓC

. This is due to the fact that a

node at the contact boundary is responsible for the displacement at the boundary as
well as in the interior. In other words, the reaction to the non-penetration condition is
not restricted to the boundary; it is blurred into the interior. The quasi-discrete contact
force density λ̃m ∈H∗ should be related to a functional on H

1
2 (ΓC). Therefore, we take

the node values of a discrete contact force density obtained by lumping the boundary

mass matrix sp :=
〈λm,1,φp〉−1,1∫

γp,C
φp

=
〈Rlin

m,1,φp〉−1,1∫
γp,C

φp
and define a quasi-discrete contact force

density

〈
λ̃m,1, ϕ1

〉
−1,1

:=

∫
ΓC

 ∑
p∈NC

m

spφp

ϕ1

=

∫
ΓC

 ∑
p∈NC

m

〈
Rlin

m,1, φp
〉
−1,1∫

γp,C
φp

φp

ϕ1

=
∑
p∈NC

m

〈
Rlin

m,1, φp

〉
−1,1

cp(ϕ1)

(3.9)

with cp(ϕ1) :=

∫
γp,C

ϕ1φp∫
γp,C

φp
. Further, the sign condition

〈
λ̃m,1, ϕ1

〉
≥ 0, for all ϕ1 ≥ 0,

compare (3.2), follows from sp ≥ 0. Another possibility to define a quasi-discrete contact
force density is to exploit the fact that σ̂1(um) is an L2-function on ΓC . Therefore, we
set

〈Rm,1, ϕ1〉−1,1 :=
〈
Rlin

m,1, ϕ1

〉
−1,1

+

∫
ΓC

σ̂1(um)ϕ1

=
∑
p∈Nm

∫
γp,I

JI1 (um)ϕ1φp +
∑
p∈Nm

∫
ωp

r1(um)ϕ1φp +
∑
p∈NN̄

m

∫
γp,N

JN1 (um)ϕ1φp

(3.10)

so that especially the following relation holds

〈Rm,1, φp〉−1,1 =

∫
γp,I

JI1 (um)φp +

∫
ωp

r1(um)φp +

∫
γp,N

JN1 (um)φp.
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By means of this abbreviation we define a further alternative of a quasi-discrete contact
force density

〈
λ̃m,1, ϕ1

〉
−1,1

:=

∫
ΓC

∑
p∈NC

m

(
〈Rm,1, φp〉−1,1∫

γp,C
φp

− σ̂1(um)

)
φpϕ1

=
∑
p∈NC

m

(
〈Rm,1, φp〉−1,1 cp(ϕ1)−

∫
ΓC

σ̂1(um)ϕ1φp

)

with the same mean value cp(ϕ1) :=

∫
γp,C

ϕ1φp∫
γp,C

φp
as before. Of course, we set

〈
λ̃m,i, ϕi

〉
−1,1

=

0 for i 6= 1.

In order to get the right cancellations in the Galerkin functional and localization of the
error estimator contributions we combine the local contributions of both choices of quasi-
discrete contact force densities depending on the contact status of the nodes. Inspired
by [FV03,MNvPZ07], we use the partition of unity〈

λ̃m,ϕ
〉
−1,1

=
∑
p∈NC

m

〈
λ̃m,1, ϕ1φp

〉
−1,1

. (3.11)

The actual contact nodes with um,1(p) = gm(p) are classified into two types, the full-
contact nodes p ∈ N fC

m with

• um,1 = gm on γp,C

• σ̂1(um) ≤ 0 on γp,C ,

fulfilling the properties of the continuous solution uν and σ̂ν on the contact boundary,
see Problem 1.2.1, and the remaining actual contact nodes which are called semi-contact
nodes p ∈ N sC

m . For a full-contact node p ∈ N fC
m we set〈

λ̃m,1, ϕ1φp

〉
−1,1

:= 〈Rm,1, φp〉−1,1 cp(ϕ1)−
∫
γp,C

σ̂1(um)ϕ1φp

= spcp(ϕ1)

∫
γp,C

φp −
∫
γp,C

σ̂1(um)(ϕ1 − cp(ϕ1))φp

(3.12)

and for a semi-contact node p ∈ N sC
m we define〈

λ̃m,1, ϕ1φp

〉
−1,1

:=
〈
Rlin

m,1, φp

〉
−1,1

cp(ϕ1) = spcp(ϕ1)

∫
γp,C

φp. (3.13)

We may also use the definition (3.13) of
〈
λ̃m,1, ϕ1φp

〉
−1,1

for nodes which are no actual

contact nodes because sp = 0 if um(p) 6= gm(p).
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3 A new residual-type a posteriori error estimator for the Signorini problem

As we have already seen in (2.28) the Galerkin functional is the difference between the
quasi-discrete contact force density and the linear residual. Inserting the definition of
λ̃m,1 for full-contact nodes we get

〈Gm,1, ϕ1φp〉−1,1 =
〈
Rlin

m,1 − λ̃m,1, ϕ1φp

〉
−1,1

= 〈Rm,1, (ϕ1 − cp(ϕ1))φp〉−1,1 .

From the definition of Rm,1, compare (3.10), follows that the part
∫
γp,C

σ̂1(um)ϕ1φp

cancels out, avoiding that σ̂1(um) contributes to the error estimator. This is justified by
the fact that the discrete contact stress and discrete displacement at full-contact nodes
have the same properties as the exact solution.

It will turn out that in order to prove an upper and lower bound of the error measure
‖u − um‖1 + ‖λ − λ̃m‖−1 we need specific choices of cp(ϕ) for semi- and full-contact

nodes. For full-contact nodes we use cp(ϕ1) :=
∫
s̄ ϕ1φp∫
s̄ φp

where s̄ ⊂ γp,C is a side in γp,C

fulfilling the following condition

∫
s̄(u1 − um,1)φp∫

s̄ φp
≥
∫
s(u1 − um,1)φp∫

s φp
∀s ⊂ γp,C

if g = gm and otherwise

∫
s̄((u1 − um,1) + (um,1 − g)+)φp∫

s̄ φp
≥
∫
s((u1 − um,1) + (um,1 − g)+)φp∫

s φp
∀s ⊂ γp,C .

For semi-contact nodes p ∈ N sC
m we take cp(ϕ1) =

∫
γ̃p,C

ϕ1φp∫
γ̃p,C

φp
, where γ̃p,C is a strict subset

of γp,C , such that for every two different nodes p1 ∈ γp,C and p2 ∈ γp,C , γ̃p1,C∩ γ̃p2,C = ∅.
The motivation for a subset γ̃p,C can be found in the fact that at least one of the
conditions um,1 = gm and σ̂1(um) ≤ 0 is not fulfilled on the entire set γp,C .

We note that we can choose any of the above examples of cp(ϕ) for nodes p ∈ NC
m which

are no actual contact nodes.

3.1.2 Error estimator and main results

The error estimator for which we prove efficiency and reliability in the following sections
consists of the contributions
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3.1 Definitions and main results

η1 :=

( ∑
p∈Nm

η2
1,p

) 1
2

, η1,p := hp‖r(um)‖ωp ,

η2 :=

( ∑
p∈Nm

η2
2,p

) 1
2

, η2,p := h
1
2
p ‖JI(um)‖γp,I ,

η3 :=

( ∑
p∈NN̄

m

η2
3,p

) 1
2

, η3,p := h
1
2
p

∥∥JN (um)
∥∥
γp,N

,

η4 :=

( ∑
p∈NC

m

η2
4,p

) 1
2

, η4,p := h
1
2
p ‖JCT (um)‖γp,C ,

η5 :=

( ∑
p∈NC

m \N fC
m

η2
5,p

) 1
2

, η5,p := h
1
2
p ‖σ̂1(um)‖γp,C ,

η6 :=

( ∑
p∈NsC

m

η2
6,p

) 1
2

, η6,p := (spdp)
1
2 ,

η7 :=

( ∑
p∈NsC

m ∪N fC
m

η2
7,p

) 1
2

, η7,p :=



(
sp
∫
γp,C

φp

∫
γ̃p,C

(g−gm)+φp∫
γ̃p,C

φp

) 1
2

if p ∈ N sC
m(

sp
∫
γp,C

φp

( ∑
s⊂γp,C

∫
s(g−gm)+φp∫

s φp

)) 1
2

if p ∈ N fC
m

η8 := ‖(um,1 − g)+‖ 1
2
,ΓC

.

We denote the positive part of a function by (ϕ)+ := max{ϕ, 0} and the negative part
by (ϕ)− := max{−ϕ, 0} such that (ϕ) = (ϕ)+ − (ϕ)−. The abbreviation dp in η6 stands
for

dp :=

∫
γ̃p,C

(gm − um,1)φp. (3.14)

Thus, η6 reminds of a complementarity condition. In fact, for a semi-contact node spdp
would be a complementarity condition with respect to the quasi-discrete contact force

density
〈
λ̃m,1, (gm − um,1)φp

〉
−1,1

if γ̃p,C was replaced by γp,C . We note that in contrast

to the residual error estimator in Section 2.2.1 the local error contributions are defined
on patches instead of elements. In the absence of any contact, we have η6 = η7 = η8 = 0
and η5 has contributions from all potential contact nodes such that η is a residual
error estimator for linear elliptic boundary value problems where the potential contact
boundary is replaced by a Neumann boundary with π = 0. If contact occurs such an
error estimator for linear equations would overestimate the error because the expected
boundary stresses in the actual contact zone are non-zero. The contributions η7 and
η8 deal with the case g 6= gm where η7 is responsible for the case g > gm, meaning
that contact is achieved for gm but not for g and η8 cares about the converse case that
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3 A new residual-type a posteriori error estimator for the Signorini problem

g ≤ gm where the non-penetration condition with respect to g is violated. The different
structure of η7,p and η8,p is due to the fact that the difference between um,1 and g is
computable while the difference between u1 and gm is not known. The contributions η5

and η6 are localized to semi-contact nodes and nodes which are not actually in contact.
In the case that the mesh consists of simplices we prove the following Theorems in
Sections 3.2 and 3.3.

Theorem 3.1.1. Reliability of the error estimator
Let u and um be the continuous and discrete solutions of Problem 1.3.1 and Problem
2.1.1, respectively, and λ the continuous contact force density and λ̃m the quasi-discrete

contact force density defined in Section 3.1.1. Then the error estimator η :=
(∑8

k=1 η
2
k

) 1
2

defined above is reliable
‖u− um‖1 + ‖λ− λ̃m‖−1 . η.

Theorem 3.1.2. Local lower bounds
Let f̄ and π̄ be piecewise constant approximations of f and π, respectively, then we get
the following estimate

ηk,p . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp + h
1
2
p ‖π̄ − π‖γp,N

for k = 1, 2 with p ∈ Nm, for k = 3 with p ∈ N N̄
m , for k = 4 with p ∈ NC

m and for k = 5
with p ∈ NC

m \N fC
m .

Under the assumption that each p ∈ N sC
m has a neighboring interior node p ∈ N I

m and
for a suitable extension of gm to a finite element function ḡm ∈ Hm on Ω, the following
estimate holds for η6,p

η6,p . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp + h
1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,C

where for simplicity we supposed that the actual contact boundary is a strict subset of
the potential contact boundary.

We recall that hp‖f̄−f‖ωp and h
1
2
p ‖π̄−π‖γp,N are formally assumed to be of higher order.

The additional error estimator parts η7,p and η8,p do not give rise to a lower bound of the
error as the gap function is a given data, not related to the solution. But they cannot be
neglected in the upper bound because all the other error estimator contributions might
be zero whereas the real problem is not solved due to gm 6= g, compare Examples 4.1
and 4.2 in [Vee01].
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3.2 Reliability of the error estimator

3.2 Reliability of the error estimator

In this section we give the proof of Theorem 3.1.1. The Galerkin functional 〈Gm,ϕ〉−1,1 :=

a(u−um,ϕ)+
〈
λ− λ̃m,ϕ

〉
−1,1

defined by means of the quasi-discrete contact force den-

sity plays an essential role in the upper bound of the error. The error in the contact
force densities ‖λ− λ̃m‖−1 is bounded by means of ‖Gm‖−1 and ‖u−um‖1. This follows
from the definition of the Galerkin functional, the boundedness of the bilinear form, i.e.,
a(ϕ, ϕ̃) ≤ ‖ϕ‖1‖ϕ̃‖1 for all ϕ, ϕ̃ ∈H and Young’s inequality

‖λ− λ̃m‖2−1 =

 sup
ϕ∈H1

0 (Ω)

(
〈Gm,ϕ〉−1,1 − a(u− um,ϕ)

)
‖ϕ‖1

2

. ‖Gm‖2−1 + ‖u− um‖21.

(3.15)

If we evaluate the Galerkin functional for u−um and exploit the ellipticity of the bilinear
form a(·, ·) on H0, we obtain

‖u− um‖21 . a (u− um,u− um)

= 〈Gm,u− um〉−1,1 −
〈
λ− λ̃m,u− um

〉
−1,1

≤ ‖Gm‖−1‖u− um‖1 −
〈
λ− λ̃m,u− um

〉
−1,1

≤ 1

2
‖Gm‖2−1 +

1

2
‖u− um‖21 +

〈
λ̃m − λ,u− um

〉
−1,1

,

such that

‖u− um‖21 . ‖Gm‖2−1 + 2
〈
λ̃m − λ,u− um

〉
−1,1

. (3.16)

Thus, the error in the displacements is bounded by the dual norm of the Galerkin func-
tional and a duality pairing between the contact force densities and the displacements.
In Section 3.2.1 we show that ‖Gm‖−1 is bounded by the error estimator and we deal
with the second term in Sections 3.2.2 and 3.2.3 depending on the kind of gap function.
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3 A new residual-type a posteriori error estimator for the Signorini problem

3.2.1 Upper bound of the Galerkin functional

For the proof of the upper bound of ‖Gm‖−1 we reformulate 〈Gm,ϕ〉−1,1 appropriately

〈Gm,ϕ〉−1,1 (3.17)

= a(u− um,ϕ) +
〈
λ− λ̃m,ϕ

〉
−1,1

(3.18)

= 〈f ,ϕ〉+ 〈π,ϕ〉ΓN −
〈
λ̃m,ϕ

〉
−1,1
− a(um,ϕ) (3.19)

=
d∑
i=1

∑
p∈Nm\NC

m

〈
Rlin

m,i, ϕiφp

〉
−1,1

+
d∑
i=2

∑
p∈NC

m

〈
Rlin

m,i, ϕiφp

〉
−1,1

(3.20)

+
∑
p∈NC

m

(
〈Rm,1, ϕ1φp〉−1,1 −

∫
ΓC

σ̂1(um)ϕ1φp −
〈
λ̃m,1, ϕ1φp

〉
−1,1

)
(3.21)

=
d∑
i=1

∑
p∈Nm\NC

m

〈
Rlin

m,i, (ϕi − cp(ϕi))φp
〉
−1,1

+
d∑
i=2

∑
p∈NC

m

〈
Rlin

m,i, (ϕi − cp(ϕi))φp
〉
−1,1

(3.22)

+
∑
p∈NC

m

〈Rm,1, (ϕ1 − cp(ϕ1))φp〉−1,1 −
∑

p∈NC
m \N fC

m

∫
ΓC

σ̂1(um)(ϕ1 − cp(ϕ1))φp. (3.23)

Here we added the equations (3.5), (3.6) and (3.7) multiplied with constants cp(ϕi) and
exploited the definition of λ̃m. For Dirichlet nodes we set cp(ϕi) = 0 and for all other
non-contact nodes and all contact nodes with i 6= 1 we choose the constants

cp(ϕi) :=

∫
ωp
ϕiφp∫

ωp
φp

.

This mean value has been used for an a posteriori error estimator in [FV03]. It fulfills
the L2-approximation properties

‖ϕ− cp(ϕ)‖ωp . hp‖∇ϕ‖ωp
‖ϕ− cp(ϕ)‖γp . h

1
2
p ‖∇ϕ‖ωp .

(3.24)

For the proof of (3.24) one defines ψ := ϕ− cp(ϕ) so that due to the definition of cp(ϕ),∫
ωp
ψφp =

∫
ωp

(ϕ − cp(ϕ))φp = 0. As the local approximation cp(ϕ) preserves constants

c we have ψ = (ψ − c) − 1∫
ωp
φp

∫
ωp

(ψ − c)φp. Applying Poincaré’s inequality with the

mean value c of ψ we get the result

‖ϕ− cp(ϕ)‖ωp = ‖ψ − c‖ωp +

(∫
ωp

1
) 1

2

(∫
ωp
φp

) 1
2

‖ψ − c‖ωp . ‖ψ − c‖ωp . hp‖∇ϕ‖ωp .
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3.2 Reliability of the error estimator

The second inequality follows from the first by means of the scaled trace inequality.
For Dirichlet nodes we have at least one edge or side s ⊂ γp,D, where the test function
ϕ is zero, therefore, we can deduce ‖ϕφp‖ωp . hp‖∇ϕ‖ωp directly from the Poincaré-
Friedrichs inequality. For the constants cp(ϕ) defined in Section 3.1.1 for semi- and
full-contact nodes the L2-approximation properties hold, too. We note that this kind
of mean value over a (d − 1)-dimensional subset has been used for a posteriori error
estimators in [SV07] and we give the proof.

Lemma 3.2.1.

For an arbitrary function ϕ and cp(ϕ) =

∫
γ̄p,C

ϕφp∫
γ̄p,C

φp
where γ̄p,C is a subset of γp,C as, e.g.,

s̄ or γ̃p,C , the following L2-approximation properties hold

‖ϕ− cp(ϕ)‖ωp . hp‖∇ϕ‖ωp (3.25)

‖ϕ− cp(ϕ)‖γ̄p . h
1
2
p ‖∇ϕ‖ωp . (3.26)

Proof. The local approximation cp(ϕ) preserves constants and for ψ := ϕ− cp(ϕ) holds∫
γ̄p,C

ψφp = 0. Therefore, we have ψ = ψ− 1∫
γ̄p,C

φp

∫
γ̄p,C

ψφp = (ψ−c)− 1∫
γ̄p,C

φp

∫
γ̄p,C

(ψ−
c)φp for an arbitrary constant c. We assume diam(γ̄p,C) ' diam(γp,C) ' diam(ωp) = hp

and choose c :=

∫
ωp
ψ

|ωp| . Then applying first the triangle inequality, second Hölder’s

inequality, third the scaled trace inequality

(
‖ · ‖γp . h

− 1
2

p ‖ · ‖ωp + h
1
2
p ‖∇ · ‖ωp

)
and fi-

nally the Poincaré inequality with mean value zero, we get the desired estimate

‖ψ‖ωp . ‖ψ − c‖ωp +

∥∥∥∥∥ 1∫
γ̄p,C

φp

∫
γ̄p,C

(ψ − c)φp
∥∥∥∥∥
ωp

. ‖ψ − c‖ωp +

(∫
ωp

1
) 1

2

(∫
γ̄p,C

φp

) 1
2

‖ψ − c‖γ̄p,C

. ‖ψ − c‖ωp +
h
d/2
p

h
(d−1)/2
p

(
h
− 1

2
p ‖ψ − c‖ωp + h

1
2
p ‖∇ψ‖ωp

)
. hp‖∇ϕ‖ωp .

The proof of the second inequality (3.26) follows directly from the first one by applying
the scaled trace inequality. qed.

With the help of these L2-approximation properties we are able to derive the upper
bound of the dual norm of the Galerkin functional in terms of the error estimator.

Lemma 3.2.2. Let the Galerkin functional and the quasi-discrete contact force density
be defined as in Section 3.1.1, then

‖Gm‖−1 .

(
5∑

k=1

η2
k

) 1
2

. (3.27)
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3 A new residual-type a posteriori error estimator for the Signorini problem

Proof. Inserting the definition of Rlin
m,i and Rm,i in (3.17), applying Hölder’s inequality

and the L2-approximation properties (3.24) and (3.25, 3.26) we get

〈Gm,ϕ〉−1,1

=

d∑
i=1

∑
p∈Nm

(∫
γp,I

JIi (um)(ϕi − cp(ϕi))φp +

∫
ωp

ri(um)(ϕi − cp(ϕi))φp
)

+
d∑
i=1

∑
p∈NN̄

m

∫
γp,N

JNi (um)(ϕi − cp(ϕi))φp +
d∑
i=2

∑
p∈NC

m

∫
γp,C

JCi (um)(ϕi − cp(ϕi))φp

−
∑

p∈NC
m \N fC

m

∫
ΓC

σ̂1(um)(ϕ1 − cp(ϕ1))φp

≤
d∑
i=1

∑
p∈Nm

(
‖JIi (um)‖γp,I‖(ϕi − cp(ϕi))φp‖γp,I + ‖ri(um)‖ωp ‖(ϕi − cp(ϕi))φp‖ωp

)

+

d∑
i=1

∑
p∈NN̄

m

(∥∥JNi (um)
∥∥
γp,N
‖(ϕi − cp(ϕi))φp‖γp,N

)

+
d∑
i=2

∑
p∈NC

m

(∥∥JCi (um)
∥∥
γp,C
‖(ϕi − cp(ϕi))φp‖γp,C

)
+

∑
p∈NC

m \N fC
m

(
‖σ̂1(um)‖γp,C ‖(ϕ1 − cp(ϕ1))φp‖γp,C

)

.
d∑
i=1

∑
p∈Nm

(
h

1
2
p ‖JIi (um)‖γp,I‖∇ϕi‖γp,I + hp ‖ri(um)‖ωp ‖∇ϕi‖ωp

)

+
d∑
i=1

∑
p∈NN̄

m

(
h

1
2
p

∥∥JNi (um)
∥∥
γp,N
‖∇ϕi‖γp,N

)
+

d∑
i=2

∑
p∈NC

m

(
h

1
2
p

∥∥JCi (um)
∥∥
γp,C
‖∇ϕi‖γp,C

)

+
∑

p∈NC
m \N fC

m

(
h

1
2
p ‖σ̂1(um)‖γp,C ‖∇ϕ1‖γp,C

)

≤


∑
p∈Nm

(
‖JI(um)‖γp,Ih

1
2
p

)2
 1

2

+

∑
p∈Nm

(
‖r(um)‖γp,Ihp

)2 1
2

+

 ∑
p∈NN̄

m

(
‖JN (um)‖γp,Nh

1
2
p

)2
 1

2

+

 ∑
p∈NC

m

(
‖JCT (um)‖γp,Ch

1
2
p

)2
 1

2
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3.2 Reliability of the error estimator

+

 ∑
p∈NC

m \N fC
m

(
‖σ̂1(um)‖γp,Ch

1
2
p

)2
 1

2


∑
p∈Nm

‖∇ϕ‖2ωp

 1
2

.

(
5∑

k=1

ηk

)
‖∇ϕ‖Ω .

(
5∑

k=1

η2
k

) 1
2

‖ϕ‖1,Ω.

Dividing the inequality by ‖ϕ‖1 we get
〈Gm,ϕ〉−1,1

‖ϕ‖1 .
(∑5

k=1 η
2
k

) 1
2

for each ϕ ∈H0 and

taking the supremum on both sides we get the desired result. qed.

3.2.2 Upper bound in the case of a discrete gap function

In this section we derive the upper bound of
〈
λ̃m − λ,u− um

〉
−1,1

in the case gm = g.

We have 〈λi, ϕi〉 =
〈
λ̃m,i, ϕi

〉
= 0 for i 6= 1 and 〈λ1, um,1 − u1〉−1,1 ≤ 0 because Km ⊂ K

if gm = g. Thus, it remains to bound
〈
λ̃m,1, u1 − um,1

〉
−1,1

. From the definition of the

quasi-discrete contact force density λ̃m,1 (3.11, 3.12, 3.13) follows

〈
λ̃m,1, u1 − um,1

〉
−1,1

=
∑
p∈NsC

m

(
spcp(u1 − um,1)

∫
γp,C

φp

)

+
∑
p∈N fC

m

(
spcp(u1 − um,1)

∫
γp,C

φp

)

−
∑
p∈N fC

m

(∫
γp,C

σ̂1(um) (u1 − um,1 − cp(u1 − um,1))φp

)
.

(3.28)

The first sum in (3.28) is bounded by η6

∑
p∈NsC

m

sp

∫
γp,C

φp

∫
γ̃p,C

(u1 − um,1)φp∫
γ̃p,C

φp

=
∑
p∈NsC

m

(
sp

∫
γp,C

φp

∫
γ̃p,C

(u1 − g)φp∫
γ̃p,C

φp
+ sp

∫
γp,C

φp

∫
γ̃p,C

(g − um,1)φp∫
γ̃p,C

φp

)

.
∑
p∈NsC

m

spdp

where we exploit u1 ≤ g, g = gm and

∫
γp,C

φp∫
γ̃p,C

φp
is a computable constant independent of

hp if γ̃p,C is always a fixed fraction of γp,C .
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3 A new residual-type a posteriori error estimator for the Signorini problem

For a full-contact node p, we have u1 ≤ g = gm = um,1 which implies u1 − um,1 ≤ 0 and,
therefore, cp(u1 − um,1) ≤ 0. As further sp ≥ 0 we have spcp(u1 − um,1) ≤ 0 such that
the second sum is bounded by zero.

In order to estimate the third sum we decompose it into a sum of integrals over sides.
We exploit σ̂1(um) constant on each side as we assumed meshes of simplices and cp(u1−
um,1) =

∫
s̄(u1−um,1)φp∫

s̄ φp
≥

∫
s(u1−um,1)φp∫

s φp
for each side s in γp,C

−
∑
p∈N fC

m

∫
γp,C

σ̂1(um)(u1 − um,1 − cp(u1 − um,1))φp

=
∑
p∈N fC

m

∑
s⊂γp,C

−σ̂1(um)

∫
s
(u1 − um,1 − cp(u1 − um,1))φp︸ ︷︷ ︸

≤0

≤ 0.
(3.29)

Thus, we have 〈
λ̃m − λ,u− um

〉
−1,1
. η2

6 =
∑
p∈NsC

m

spdp. (3.30)

Putting together (3.15), (3.16), (3.27) and (3.30) we have the proof of Theorem 3.1.1 if
g = gm.

3.2.3 Upper bound for a general gap function in H
1
2

In the foregoing section we used the fact, that um,1 ≤ g if gm = g in order to get an upper

bound of
〈
λ̃m − λ,u− um

〉
−1,1

. This condition may not hold for an arbitrary function

g ∈ H 1
2 (ΓC). However, it is possible to give an upper bound of the error measure by

means of the error estimator for arbitrary gap functions. For this purpose, we define a
function

u∗m,1 = min{um,1|ΓC , g} ∈ H
1
2 (ΓC)

and a harmonic extension w̃ of w := um,1−u∗m,1 ∈ H
1
2 (ΓC) so that the stability estimate

(see, e.g., [Ste08], pp. 70–71)

‖um,1 − u∗m,1‖1 . ‖um,1 − u∗m,1‖ 1
2
,ΓC

(3.31)

holds. We set u∗m,1 := um,1 − w̃ ∈ H. In a first step we find an upper bound of

〈λ1, um,1 − u1〉. Therefore, we use
〈
λ1, u

∗
m,1 − u1

〉
−1,1

≤ 0 as u∗m,1 ≤ g, the Young’s
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3.2 Reliability of the error estimator

inequality and (3.31)〈
λ1, um,1 − u∗m,1 + u∗m,1 − u1

〉
−1,1

≤
〈
λ1, um,1 − u∗m,1

〉
−1,1

=
〈
λ1 − λ̃m,1, um,1 − u∗m,1

〉
−1,1

+
〈
λ̃m,1, um,1 − u∗m,1

〉
−1,1

≤ 1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖um,1 − u∗m,1‖21 +

〈
λ̃m,1, um,1 − u∗m,1

〉
−1,1

.
1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖um,1 − u∗m,1‖21

2
,ΓC

+
〈
λ̃m,1, um,1 − u∗m,1

〉
−1,1

.

Therefrom we deduce〈
λ1 − λ̃m,1, um,1 − u1

〉
−1,1
.

1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖(um,1 − g)+‖21

2
,ΓC

+
〈
λ̃m,1, um,1 − u∗m,1 + u1 − um,1

〉
−1,1

(3.32)

exploiting the identity

(um,1 − u∗m,1)|ΓC = (um,1 − g)+|ΓC . (3.33)

We make use of the relation

(um,1 − u∗m,1 + u1 − um,1) = (um,1 − g)+ + (u1 − um,1)

= (um,1 − g)+ + (u1 − g) + (g − um,1)

≤ (um,1 − g)+ + (g − um,1)

= (um,1 − g)− = (g − um,1)+

(3.34)

which holds on ΓC to give an upper bound of
〈
λ̃m,1, um,1 − u∗m,1 + u1 − um,1

〉
−1,1〈

λ̃m,1, um,1 − u∗m,1 + u1 − um,1
〉
−1,1

=
∑
p∈NC

m

〈
λ̃m,1,

(
um,1 − u∗m,1 + u1 − um,1

)
φp

〉
−1,1

≤
∑
p∈NsC

m

(
spcp

(
(g − um,1)+

) ∫
γp,C

φp

)

+
∑
p∈N fC

m

(
spcp

(
(g − um,1)+

) ∫
γp,C

φp

)

−
∑
p∈N fC

m

(∫
γp,C

σ̂1(um)
(
(u1 − um,1) + (um,1 − g)+ − cp

(
(u1 − um,1) + (um,1 − g)+

))
φp

)
(3.35)
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3 A new residual-type a posteriori error estimator for the Signorini problem

In the case of semi-contact nodes we exploit that (gm − um,1) = (gm − um,1)+ so that

(g−um,1)+ = (g−um,1 +gm−gm)+ ≤ (gm−um,1)+ +(g−gm)+ = (gm−um,1)+(g−gm)+.

Thus, we have for the first sum in (3.35)

∑
p∈NsC

m

(
spcp

(
(g − um,1)+

) ∫
γp,C

φp

)

.
∑
p∈NsC

m

spdp +
∑
p∈NsC

m

(
spcp

(
(g − gm)+

) ∫
γp,C

φp

)
≤ η2

6 + η2
7.

(3.36)

In the case of full-contact nodes we have um,1 = gm on γp,C so that (g − um,1)+ can be
replaced by (g − gm)+ in the second sum of (3.35)

∑
p∈N fC

m

(
spcp

(
(g − um,1)+) ∫

γp,C

φp

)

=
∑
p∈N fC

m

(
spcp

(
(g − gm)+

) ∫
γp,C

φp

)
≤ η2

7.

(3.37)

The third sum of (3.35) is bounded by zero which follows from the definition of cp(ϕ)
and s̄ for full contact nodes in the same way as in (3.29)

−
∫
γp,C

σ̂1(um)
(
(u1 − um,1) + (um,1 − g)+ − cp

(
(u1 − um,1) + (um,1 − g)+

))
φp ≤ 0.

Thus, it follows〈
λ1 − λ̃m,1, um,1 − u1

〉
−1,1
.

1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖(um,1 − g)+‖21

2
,ΓC︸ ︷︷ ︸

η2
8

+ η2
6 + η2

7.
(3.38)

Putting together (3.15), (3.16), (3.27) and (3.38) we have the proof of Theorem 3.1.1 if

g ∈ H 1
2 (ΓC).

3.3 Efficiency of the error estimator

In this section we give the proof of Theorem 3.1.2.
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3.3 Efficiency of the error estimator

3.3.1 Lower bound in terms of the contributions η1,p, ..., η4,p

The proof of lower bounds in terms of the contributions η1,p, ..., η4,p is very similar to
the one given in Section 2.2.1. In fact Gm plays the role of Rlin

m and the properties of
the bubble functions, compare Lemma 2.2.2, are used.
We start with the contribution of the interior residual η1,p = hp‖r(um)‖ωp . Let f̄ be
defined as in Theorem 3.1.2 with constant components f̄i and r(um) = divσ(um)+f the
interior residual with the approximation r̄(um) = divσ(um) + f̄ . The element bubble
functions Ψe as defined in Section 2.2.1 are zero on the sides of the elements so that∫
s σ̂(um)Ψe = 0. Therefrom and due to the properties of the element bubble functions

we obtain

‖r̄(um)‖2e .
∫
e
(r̄(um))2Ψe

=

∫
e
r(um)r̄(um)Ψe +

∫
e
(f̄ − f)r̄(um)Ψe

= 〈Gm, r̄(um)Ψe〉−1,1,ωp
+

∫
e
(f̄ − f)r̄(um)Ψe

≤ ‖Gm‖−1,ωp‖r̄(um)Ψe‖1,e + ‖f̄ − f‖e‖r̄(um)Ψe‖e
. ‖Gm‖−1,ωph

−1
e ‖r̄(um)‖e + ‖f̄ − f‖e‖r̄(um)‖e,

for a node p and an element e ⊂ ωp. Dividing the last expression by h−1
e ‖r̄(um)‖e, using

the triangle inequality for ‖r(um)‖e ≤ ‖r̄(um)‖e + ‖f − f̄‖e and

‖Gm‖−1,ωp ≤ ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp , (3.39)

which follows from the definition of the Galerkin functional by means of the triangle
inequality and the boundedness of the bilinear form, we get on each element

he‖r(um)‖e . ‖Gm‖−1,ωp + he‖f̄ − f‖e
. ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + he‖f̄ − f‖e.

Due to the shape-regularity, which implies that the number of elements belonging to a
patch is bounded, it follows

hp‖r(um)‖ωp . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp , (3.40)

where we assume hp ≈ he.
Next, we consider η2,p. In order to prove that the error measure is locally bounded by
the inner jump terms we exploit the properties of the side bubble functions Ψs of an
interior side s ⊂ γp,I

‖JI(um)‖2s .
〈Gm,J

I(um)Ψs

〉
−1,1,ωp

−
∫
ωs

r(um)JI(um)Ψs

. ‖Gm‖−1,ωp‖JI(um)Ψs‖1,ωs + ‖r(um)‖ωs‖JI(um)Ψs‖ωs

. ‖Gm‖−1,ωph
− 1

2
s ‖JI(um)‖s + ‖r(um)‖ωsh

1
2
s ‖JI(um)‖s.

(3.41)
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3 A new residual-type a posteriori error estimator for the Signorini problem

Dividing by h
− 1

2
s ‖JI(um)‖s we get for each side

h
1
2
s ‖JI(um)‖s . ‖Gm‖−1,ωp + hs‖r(um)‖ωs

from which follows by (3.40) and the shape-regularity

h
1
2
p ‖JI(um)‖γp,I . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp

where we assume hs ≈ hp.
Finally, the local lower bounds in terms of η3,p and η4,p follow in the same way as in
(3.41)

h
1
2
p ‖JN (um)‖γp,N . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp + h

1
2
p ‖π̄ − π‖γp,N

h
1
2
p ‖JCT (um)‖γp,C . ‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp .

Thus, Theorem 3.1.2 is proven for η1,p, ..., η4,p.

3.3.2 Lower bound in terms of the contribution η5,p

In this section we show that η5,p is a local lower bound of the error for all nodes

p ∈ NC
m \NfC

m . In the foregoing section we exploited the relation between the Galerkin
functional and the quantities occurring in the error estimator contributions, e.g., JI(um).
Similarly, we make use of the relation between the Galerkin functional and the boundary
stresses; see, e.g., (3.17).
Let p̄ ∈ NC

m \N fC
m be an arbitrary but fixed node. In the following, s denotes a side which

belongs to γp̄,C . We take the side bubble function Ψse1 as test function in (3.17)∑
p∈NC

m \N fC
m

∫
ΓC

σ̂1(um)Ψsφp

= −〈Gm,Ψse1〉−1,1 +
∑

p∈Nm\NC
m

〈
Rlin

m,1,Ψsφp

〉
−1,1

+
∑
p∈NC

m

〈Rm,1, (Ψs − cp(Ψs))φp〉−1,1 +
∑

p∈NC
m \N fC

m

∫
ΓC

σ̂1(um)cp(Ψs)φp

= −〈Gm,Ψse1〉−1,1 +
∑
p∈Nm

∫
ωs

r1(um)Ψsφp

−
∑
p∈NsC

m

spcp(Ψs)

∫
γp,C

φp −
∑
p∈N fC

m

〈Rm,1, φp〉 cp(Ψs).

(3.42)

If the side s is not contained in any patch γp,C of semi- or full-contact nodes p, the two
last terms are zero and we can proceed similar to (3.41). Otherwise, in order to get rid
of the last two terms we replace Ψs by a suitable function θs such that cp(θs) = 0 for all
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3.3 Efficiency of the error estimator

semi- and full-contact nodes. The value cp(·) for a semi-contact node p depends on γ̃p,C
which is a strict subset of γp,C , compare Section 3.1.1. If γp,C consists of two intervals
we choose the inner third of γp,C containing p as γ̃p,C . If γp,C is a union of triangles
we refine each triangle once uniformly and generate γ̃p,C as the 2D patch enclosing p
with respect to this subgrid. For example in Figure 3.1 the dark blue region is γ̃p,C
for p = p1. For a side s with the nodes {pi}i=1,..,n we denote the sides of the subgrid
containing pi by si and the middle part by sM , see Figure 3.1. For the function θs we

•p2

•p1

•
p3

s

sMs2 s3

s1

s1

p1
•• ••

s2

p2

sM

s

1

(a) Subgrid of an interval

•p2

•p1

•
p3

s

sMs2 s3

s1

s1

p1
•• ••

s2

p2

sM

S

1

(b) Subgrid of a triangle

Figure 3.1: Subgrid of boundary patches γp,C

make the following ansatz

θs =

(
n∑
i=1

aiΨi + aMΨM

)
(3.43)

where n is the number of nodes of the side s and Ψi and ΨM are side bubble functions
to si and sM . The coefficients are determined so that

1.
∫
s 1 =

∑
p∈Nm\N fC

m

∫
s θsφp

2.
∫
si
θsφpi = 0 for all pi semi-contact nodes

3.
∫
s θsφpi = 0 for all pi full-contact nodes with s = s̄.

As p̄ is not a full-contact node there is at least one contribution in the right hand side of
the first condition. Inserting the ansatz (3.43) in the aforementioned conditions we get
a solvable system of equations with n + 1 coefficients (degrees of freedom) aM , ai, i =

{1, .., n} and n + 1 conditions. At this point the special choice of cp(ϕ) :=

∫
γ̃p,C

ϕφp∫
γ̃p,C

φp
as

59



3 A new residual-type a posteriori error estimator for the Signorini problem

mean value on γ̃p,C for semi-contact nodes becomes clear because the choice cp(ϕ) =∫
γp,C

ϕφp∫
γp,C

φp
as mean value over the whole patch γp,C would lead to a contradiction of

the conditions. In the second condition si would be replaced by s and the condition∫
s θsφpi = 0 for all pi of the side s would imply

∑
p∈Nm\N fC

m

∫
s θsφp = 0 so that the first

condition could not be fulfilled.
As we assumed a mesh of simplices, σ̂1(um) is constant on s so that cp(θs) = 0 implies
cp(σ̂1(um)θs) = 0 and it follows from the first condition

‖σ̂1(um)‖2s =
∑

p∈Nm\N fC
m

∫
s
σ̂1(um)σ̂1(um)θsφp. (3.44)

Putting together (3.44), (3.42) with test function σ̂1(um)θs instead of Ψs and exploiting
the conditions cp(σ̂1(um)θs) = 0 for all actual contact nodes we end up with

‖σ̂1(um)‖2s =
∑

p∈Nm\N fC
m

∫
s
σ̂1(um)σ̂1(um)θsφp

= −〈Gm, σ̂1(um)θse1〉−1,1,ωp̄
+

∫
ωs

r1(um)σ̂1(um)θs

≤ ‖Gm‖−1,ωp̄‖σ̂1(um)θs‖1,ωs + ‖r1(um)‖ωs‖σ̂1(um)θs‖ωs

. ‖Gm‖−1,ωp̄h
− 1

2
s ‖σ̂1(um)‖s + h

1
2
s ‖r1(um)‖ωs‖σ̂1(um)‖s.

(3.45)

In the last line of (3.45) we used the properties of the bubble functions (see Section
2.2.1) on the subgrid and the fact that γ̃p,C is a fixed portion of γp,C so that hs = chsi

for a mesh-independent constant c. We divide by h
− 1

2
s ‖σ̂1(um)‖s leading to

h
1
2
s ‖σ̂1(um)‖s . ‖Gm‖−1,ωp̄ + hs‖r(um)‖ωs .

By means of the triangle inequality and the shape-regularity, the upper bounds (3.39)
and (3.40) of ‖Gm‖−1,ωp̄ and ‖r(um)‖ωp̄ we get

h
1
2
p ‖σ̂1(um)‖γp̄,C . ‖u− um‖1,ωp̄ + ‖λ− λ̃m‖−1,ωp̄ + hp̄‖f̄ − f‖ωp̄ .

Thus, we have proven Theorem 3.1.2 for η5,p̄ with p̄ ∈ NC
m \N fC

m .

3.3.3 Lower bound in terms of the contribution η6,p

We derive a lower bound of the local error measure in terms of the local contributions
of η6,p = (spdp)

1
2 . If sp = 0 or (gm − um,1)(q) = 0 for all neighboring nodes of p we have

η6,p = 0. Therefore, we assume sp > 0 and (gm − um,1)(q) > 0 for at least one node on
γp,C . Let q̂ be a node which fulfills (gm − um,1)(q̂) ≥ (gm − um,1)(q) for all neighboring
nodes q of p. Due to sp > 0 we have (gm − um,1)(p) = 0. As we consider boundary
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Figure 3.2: Construction of the linear combination of −τ in 2D

meshes of triangles or intervals the discrete functions are piecewise linear. Using Taylor
expansion around (gm − um,1)(p) = 0 leads to

(gm − um,1)(q̂)

= ∇|ŝ(gm − um,1) · (q̂ − p) . hp∇|ŝ(gm − um,1) · τ (3.46)

where ŝ ⊂ γp,C is a side containing the nodes q̂ and p and τ is the unit tangential vector
pointing from p to q̂. The corresponding element is denoted with ê.
First, we deal with a node p at a convex edge of the boundary. We assumed in Theorem
3.1.2 that the node p has at least one neighboring node in the interior. (This condition
means that p belongs to more than one triangle for d = 2 and more than two tetrahedra
for d = 3.) Thus, there exists another element e ⊂ ωp with a boundary side s ⊂ ∂ωp ∩Γ.
We define an extension from gm to a function in Hm by ḡm(q) = um,1(q) for all q ∈
Nm\NC

m . Due to the definition of ḡm, we have

∇|e(ḡm − um,1) · τ int = 0. (3.47)

For the gradients in direction τ bd pointing from p to a neighboring boundary node q 6= q̂
we have

∇|e(ḡm − um,1) · τ bd ≥ 0. (3.48)

In the case d = 2 the line given by p and the vector τ int divides the plane into half-planes
with τ on one side and τ bd and −τ on the other side, see Figure 3.2. Therefore,

− τ = ατ int + βτ bd (3.49)

with β > 0 and α arbitrary. If d = 3 imagine a plane Pτ,τint spanned by τ and τ int. The
cut of the plane with an opposite side s defines a unit vector τ bd := β1τ bd,1 + β2τ bd,2
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Figure 3.3: Construction of the linear combination of −τ in 3D

with β1, β2 ≥ 0 and τ bd,1, τ bd,2 are the vectors along the edges of the side s starting in
p, compare Figure 3.3. The line τ int divides this plane Pτ,τint such that −τ and τ bd lie
in one half-plane and (3.49) holds with β > 0 and α arbitrary. Putting together (3.47),
(3.48) and (3.49), we get

−∇|e(ḡm − um,1) · τ ≥ 0 (3.50)

and therefore adding (3.50) to (3.46) gives rise to

(ḡm − um,1)(q̂) = ∇|ŝ(ḡm − um,1) · (q̂ − p)

. hp(∇|̂e (ḡm − um,1)−∇|e(ḡm − um,1)) · τ . (3.51)

For a contact node p at a concave edge the vector pointing from p in direction −τ goes
through another element e belonging to ωp. Due to the construction of ḡm such that
(ḡm − um,1) (q) ≥ 0 for all q ∈ Nm, we have

−∇|e(ḡm − um,1) · τ ≥ 0

and therefore, we can add this gradient in (3.46) getting the same result (3.51) as in the
convex case.
Let e0 = ê, en = e and ei, i = 1, .., n−1 be the elements between e0 and en. The common
sides of two neighboring elements are denoted with si = ei−1 ∩ ei. For vm ∈ Hm the
difference in the gradients only occur in normal direction due to the continuity of finite
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3.3 Efficiency of the error estimator

element functions. Thus, the Euclidean norm |∇|̂evm −∇|evm| is bounded in terms of
the interelement jumps [[∇vm]]I defined in (2.10).

|∇|̂evm −∇|evm| ≤ |∇|e0vm −∇|e1vm|+ |∇|e1vm −∇|e2vm|+ . . .+ |∇|en−1vm −∇|envm|

.
n∑
i=1

h
−(d−1)

2
p ‖[[∇vm]]I‖si

. h
−(d−1)

2
p ‖[[∇vm]]I‖γp,I

(3.52)

Combining (3.51) and (3.52) with vm = ḡm − um,1 gives rise to

(gm − um,1)(q̂) . h
−d+2

2
p

(
h

1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,I

)
.

As (gm − um,1)(q) ≤ (gm − um,1)(q̂) for all q ∈ γp,C we conclude

dp =

∫
γp,C

(gm − um,1)φp . h
d−1
p h

−d+2
2

p

(
h

1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,I

)
. h

d
2
p

(
h

1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,I

)
.

For the upper bound of spdp we use Hölder’s inequality and scaling arguments such that

spdp

=

∫
γp,I

JI1 (um)φp +
∫
ωp
r1(um)φp +

∫
γp,N

JN1 (um)φp −
∫
γp,C

σ̂1(um)φp∫
γp,C

φp

∫
γp,C

(gm − um,1)φp

. h−d+1
p

‖JI1 (um)‖γp,I ‖φp‖γp,I︸ ︷︷ ︸
≈h

d−1
2

p

+ ‖r1(um)‖ωp ‖φp‖ωp︸ ︷︷ ︸
≈h

d
2
p

+
∥∥JN1 (um)

∥∥
γp,N
‖φp‖γp,N︸ ︷︷ ︸
≈h

d−1
2

p

+‖σ̂1(um)‖γp,C ‖φp‖γp,C︸ ︷︷ ︸
≈h

d−1
2

p

 ·
∫
γp,C

(gm − um,1)φp

. (η2,p + η1,p + η3,p + η5,p) · h
− d

2
p ·

∫
γp,C

(gm − um,1)φp

.
(
‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp

)(
h

1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,I

)
.

(
‖u− um‖1,ωp + ‖λ− λ̃m‖−1,ωp + hp‖f̄ − f‖ωp + h

1
2
p ‖[[∇(ḡm − um,1)]]I‖γp,I

)2

(3.53)

63



3 A new residual-type a posteriori error estimator for the Signorini problem

Thus, we have proven Theorem 3.1.2. We note that we would get the additional

contribution h
1
2
p ‖π̄−π‖γp,N if the actual contact boundary was not a strict subset of the

potential contact boundary.

Remark 3.3.1. If we consider the simplified Signorini problem (Problem 1.2.2), [[∇um]]I

is the jump term. Hence, by means of the triangle inequality and the local lower bound
of the error measure in terms of ‖[[∇um]]I‖ we can estimate (3.53) further

spdp .

(
‖um − u‖1,ωp + ‖λ̃m − λ‖−1,ωp + hp‖f̄ − f‖ωp + h

1
2
p ‖[[∇ḡm]]I‖γp,I

)2

. (3.54)

For the proof of (3.54) we exploited the node values of the extension ḡm(q) at nodes which
are no potential contact boundary nodes. As we assume that the actual contact boundary
is a strict subset of the potential contact boundary only the node value of the extension
ḡm(q) at one neighboring interior node is relevant for the proof of (3.54). Thus, if gm
is an affine function over a planar boundary it can be extended to an affine function ḡm
over the whole domain by defining ḡm(q) at one interior node neighboring to p, so that

h
1
2
p ‖[[∇ḡm]]I‖γp,I = 0. In this sense we may regard h

1
2
p ‖[[∇ḡm]]I‖γp,I as measure of the

non-linear part of gm.
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4 Numerical studies

The aim of this chapter is to show the numerical performance of our new residual-type
a posteriori error estimator for contact problems. We have derived the error estimator
for meshes of triangles and tetrahedra in Chapter 3. However, we see in Section 4.2
that the error estimator performs very well for different types of elements as hexahedra,
pyramids or prisms.
In Section 4.1 we deal with some implementation aspects. It is noteworthy that the
implementation of our new residual-type a posteriori error estimator fits in the framework
of a standard residual error estimator because only a few contributions have to be added.
In Section 4.2 we illustrate the performance of the new residual-type a posteriori error
estimator. We investigate the adaptively refined grids and we compare the experimental
order of convergence on adaptively and uniformly refined grids. In Sections 4.2.1 and
4.2.2 we consider the problems given in Section 1.2.2 for which we know the analytic
contact stresses and the radius of the actual contact zone. Thus, we give the relative error
of both quantities computed on sequences of adaptively refined grids to show the quick
error reduction. In Section 4.2.3 the relevance and the distribution of the different local
error estimator contributions are investigated for several examples in 3D with different
kinds of obstacles.

4.1 Implementation aspects

The implementation of the new residual-type a posteriori error estimator has been carried
out in the framework of the finite element toolbox UG [BBL+97] and the obstacle toolbox
OBSLIB++, see [Kra00].

4.1.1 Implementation of the error estimator

In the following, we denote by mk the mesh after k-times of adaptive mesh-refinement.
An adaptive mesh-refinement process consists of the following steps

0© Set k = 0. Choose an initial coarse mesh m0 and set a tolerance.

1© Solve the discrete problem on mk.

2© Estimate the error by means of the local error estimator contributions ηe for each
element e.

3© Mark the elements depending on the magnitude of their local error estimator
contributions ηe if the estimated global error is above the tolerance. Otherwise
stop the process.
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4© Refine the mesh mk  mk+1, set k = k + 1 and go to step 2.

Although the reliability and efficiency of the error estimator is proven for meshes of
triangles or tetrahedra, respectively, we test the performance of the error estimator
for different kinds of elements. Hence, the starting grids (Step: 0©) may consist of
quadrilaterals, hexahedra, prisms and pyramids as well. We solve the discrete variational
inequalities (Step: 1©) with a non-smooth multigrid method, see [Kor97,Kra00].
As the computation of the error estimator contributions η1, η2, η3 are like in the standard
residual error estimator it is appropriate to use a hierarchy of classes, see Figure 4.1. In
the base class of all kinds of error estimators the error estimator contributions for all
elements are summed up in order to check if the given tolerance is achieved or not. If
the given tolerance is not reached yet the elements are marked for refinement depending
on the marking strategy (Step: 3©). In our numerical experiments we use a mean value
strategy. An element ẽ is marked for refinement if

η2
ẽ ≥ θ2

∑
e∈m

η2
e∑

e∈m
1

where ηe are the local estimator contributions of the elements and θ is a given parameter
which we set to θ = 1.1 in our numerical experiments. We recall that our error estimator
is based on patches instead of elements. Further below we explain how the contributions
to the elements can be computed.

Base class for all error estimators:
• check if tolerance reached
• marking strategy
• . . .

6

Base class for residual-type error estimators:
• element contributions of ⌘1, ⌘2, ⌘3

• . . .

6

Class for residual-type error estimator for contact:
• element contributions of ⌘4, ⌘5, ⌘6, ⌘7, ⌘8

• . . .

1

Figure 4.1: Hierarchy of classes for residual-type error estimator for contact

In the base class for residual-type error estimators, the element contributions of η1, η2, η3

are computed. These are the contributions of the standard residual error estimator for
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linear elliptic equations, see Section 2.2.1. The class of our new residual-type a posteriori
error estimator is derived from the base class for residual-type error estimators. It
remains to compute the additional error estimator contributions η4, η5, η6, η7, η8. In
other words, the implementation of the new residual-type a posteriori error estimator
can be added to an existing implementation of the standard residual error estimator.

For the computation of the error estimator contributions η2, η3, η4, η5, the stresses σ(um)
have to be computed from the gradients of um and from Hooke’s tensor, compare Section
1.1.2. As the discrete solution is given by

um(x) =
∑
p∈Nm

um,i(p)φp(x)ei,

the first derivatives of the nodal basis functions φp have to be computed. We recall that
we use the Einstein summation convention for repeated indices. Usually, the nodal basis
functions φ̂p on the reference element ê and the transformation T : ê→ e are given. The
inverse of T denoted by T−1 maps points x in e on points x̂ = T−1(x) in ê. The nodal
basis function φp is given by the chain φp = φ̂p ◦ T−1. Hence, the partial derivative of
φp is

∂φp
∂xi

(x) =

(
∂φ̂p
∂x̂k
◦ T−1(x)

)
· ∂(T−1(x))k

∂xi
.

The Jacobian matrix ∇T−1 is computed from the Jacobian matrix ∇T and the cor-
responding determinant det(∇T ) by means of ∇T−1(x) = (∇T )−1(x̂) = (∇T )−1 ◦
T−1(x) and (∇T )−1 = 1

det(∇T )
adj(∇T ).

The computation of divσ(um) occurring in the error estimator contribution η1 if quadri-
laterals, hexahedra, prisms or pyramids are used needs the second derivatives of the
discrete solution. For example, in the two-dimensional case the first component of the
divergence of the stresses is

(divσ(um))1 =
∂σ11(um)

∂x1
+
∂σ12(um)

∂x2

=
∂

∂x1
(H11ε11(um) +H12ε22(um) + 2H13ε12(um))

+
∂

∂x2
(H31ε11(um) +H32ε22(um) + 2H33ε12(um))

= H11
∂

∂x1

(
∂um,1
∂x1

)
+H12

∂

∂x1

(
∂um,2
∂x2

)
+H13

∂

∂x1

(
∂um,1
∂x2

+
∂um,2
∂x1

)
+H31

∂

∂x2

(
∂um,1
∂x1

)
+H32

∂

∂x2

(
∂um,2
∂x2

)
+H33

∂

∂x2

(
∂um,1
∂x2

+
∂um,2
∂x1

)
where εij are the components of the strain tensor (1.10) and Hij are the components
of the matrix representation of Hooke’s tensor defined in (1.16). The second partial
derivatives of the nodal basis functions in terms of φ̂p and the transformation T−1 are
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given by

∂2φp
∂xi∂xj

(x) =
∂2(φ̂p ◦ T−1)

∂xi∂xj
(x)

=
∂

∂xi

((
∂φ̂p
∂x̂l
◦ T−1(x)

)
· ∂(T−1(x))l

∂xj

)

=

(
∂2φ̂p
∂x̂lx̂k

◦ T−1(x)

)
· ∂(T−1(x))k

∂xi
· ∂(T−1(x))l

∂xj

+

(
∂φ̂p
∂x̂l
◦ T−1(x)

)
· ∂

2(T−1(x))l
∂xj∂xi

.

Hence, the first and second derivatives of the nodal basis functions on the reference
element and of the inverse transformation are needed. As we do not have the inverse
transformation, the computation of the second derivative of T−1 is not straightforward.
Exemplarily, we consider the two-dimensional case. As explained above ∇T−1(x) =
(∇T )−1 (x̂) and

(∇T )−1 =
1

det(∇T )

(
(∇T )22 −(∇T )12

−(∇T )21 (∇T )11

)
.

Thus, in order to compute the second derivative of ∇T−1, the derivatives of (∇T )ij

and of det(∇T ) are required. For example, the second partial derivative
∂(T−1(x))

1
∂x1∂x1

is
computed from

∂

∂x1
(∇T−1)11(x)

=
∂

∂x1

(
(∇T )22 ◦ T−1(x) · 1

det(∇T ) ◦ T−1(x)

)
=

1

(det(∇T ) ◦ T−1(x))2

{(
∂

∂x̂i
(∇T )22 ◦ T−1(x)

)
· ∂(T−1(x))i

∂x1
· det(∇T ) ◦ T−1(x)

−(∇T )22 ◦ T−1(x) · ∂
∂x̂i

det(∇T ) ◦ T−1(x) · ∂(T−1(x))i
∂x1

}
.

In our implementation of the error estimator we loop over all elements. For each ele-
ment e we compute

∫
e (r(um))2 dx by means of the first and second derivatives of the

transformation and the basis functions on the reference element as explained above. As
the error estimator is based on patches and an element occurs in each patch of its nodes,
we weight the element contribution

∫
e (r(um))2 dx by the number of nodes belonging to

e.
For each element we loop over the sides to compute the remaining error estimator con-
tributions. Depending on the kind of side, interior side, Neumann boundary side or
potential contact boundary side, we compute the integral of the square of the stresses
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or jump terms over the side and weight it by the number of corresponding nodes. Ex-
emplarily, we consider η5. The side contribution

∫
s (σ̂1(um))2 da has to be weighted by

the number of nodes p ∈ Nm\N fC
m belonging to this side s. Therefore, we loop over the

nodes to check if they are semi- or full-contact nodes or not in actual contact. Nodes are
full-contact nodes if all neighboring nodes belonging to the potential contact boundary
are in actual contact. Therefore, a list of patches which assigns all neighboring nodes to
a node is convenient.
The classification of contact nodes is also required for the computation of the error
estimator contribution η6. For a semi-contact node p on a side s, we compute sp and
the part of dp belonging to the side s. Instead of generating a subgrid as used in the
proof of the lower bound, see Figure 3.1, we may compute the integral of (gm − um,1)φp
over a strict subset as, e.g., a fourth of the triangle containing the node p. We proceed
in the same way for the computation of the side contributions to η7.

4.1.2 Evaluation and visualization

We shortly comment on the evaluation and visualization of the quantities which we
investigate in the following sections for different numerical experiments.
In order to analyze our new residual-type error estimator in detail, we analyze the
structure of the adaptively refined grid and the distribution of the local error estimator
contributions. Therefore, we implemented a routine to write the grid and the data in a
vtk file format. Thus, it can be visualized in paraview.
We do not have the exact solution u on Ω of our examples. But for some examples we
know the exact contact stresses, compare Section 1.2.2. As already explained in Section
3.1.1 there is no obvious discrete counterpart of the contact stresses. We make use of the
node values sp of the discrete contact force density obtained by the lumped L2-scalar
product to define a numerical approximation of the exact contact stresses

sm :=
∑
p∈NC

m

spφp. (4.1)

This quantity defines a functional on H
1
2 (ΓC)

〈sm, ϕm,1〉− 1
2
, 1
2
,ΓC

=

∫
ΓC

 ∑
p∈NC

m

spφp

ϕm,1,

see also (3.9). We compare the exact contact stresses and the approximation sm for the
examples presented in Sections 4.2.1 and 4.2.2.
As we do not have the exact solution we do not know the error of our numerical solution.
Therefore, in order to investigate further the performance of our new residual type error
estimator, we analyze the rate of convergence of the error estimator instead of the error
on adaptively and uniformly refined grids. We note that h ' (#Nm)−

1
d for a uniform

grid. Let mk and mk+1 be the grids of two successive steps of adaptive refinement.
The corresponding sets of nodes are Nmk , Nmk+1

and the error estimators are ηk and
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ηk+1. Then the experimental order of convergence eoc, fulfilling ηk = (#Nm,k)
−eoc and

ηk+1 = (#Nm,k+1)−eoc is given by

eoc :=
ln(ηk)− ln(ηk+1)

ln(#Nm,k+1)− ln(#Nm,k)
. (4.2)

This formula can be derived as follows

ηk

ηk+1 =

(
#Nm,k

#Nm,k+1

)−eoc

⇔ ln
(

ηk

ηk+1

)
= −eoc ln

(
#Nm,k

#Nm,k+1

)
⇔

(
ln(ηk)− ln(ηk+1)

)
= −eoc (ln(#Nm,k)− ln(#Nm,k+1)) .

4.2 Numerical results

In this section we present several numerical examples to show the performance of our
new residual-type error estimator for contact. We analyze the structure of the adaptively
refined grids and the experimental order of convergence (4.2) for the adaptive strategy
compared to uniform refinement.
In the first two sections we compute the numerical solution of the examples given in
Section 1.2.2, compare Figures 1.1 and 1.2, in an adaptive mesh refinement process
based on our new estimator for contact. For these examples we compute the analytic
contact stresses and the radius of the actual contact zone. Hence, we give the relative
error of both quantities and we visualize the exact contact stresses and the numerical
approximation (4.1). It is the aim of adaptive mesh refinement by means of a posteriori
error estimators to make possible a good approximation of the solution with a small
number of nodes compared to uniform refinement. Therefore, the relative errors are
plotted against the number of actual contact nodes for meshes generated by means of
our new residual-type error estimator (Section 3.1.2) and by means of the standard
residual error estimator (Section 2.2.1).
In the last section we study the new estimator in more detail. For this purpose, we
analyze the relevance and the distribution of the different local error estimator contri-
butions.

4.2.1 2D examples with analytically given distribution of contact stresses

In Section 1.2.2 we presented two examples of contact between a rigid and an elastic
body for which the distribution of the contact stresses is given analytically. In order to
model these examples by one-body contact problems we consider a unit quadrilateral
with the edges (0, 0), (0, 1), (1, 0), (1, 1) which is moved towards the obstacle by means
of Dirichlet values. We apply Dirichlet boundary values −0.01 in x2-direction and 0.0
in x1-direction at the top of the quadrilateral. The force density and the Neumann
values are zero. The material of the quadrilateral is assumed to be linear elastic with
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the Poisson ratio ν = 0.25 and the Young’s modulus E = 3 · 105. We note that the unit
of the stresses is the same as the unit chosen for the Young’s modulus, e.g., kN

mm2 . The
potential contact boundary is the lower edge of the quadrilateral and the direction of
constraints is ν = −e2.

In the first example, where the elastic quadrilateral comes into contact with a rigid punch
the contact constraints uν ≤ g = 0 are imposed in a strip of the length 0.125 between
0.4375 and 0.5625 and in the second example where the contact with a wedge (α ≈ 79◦)
is modeled, g(x1) = 0.2 · (x1 − 0.5) if x1 ≥ 0.5 and g(x1) = −0.2 · (x1 − 0.5) otherwise.
We refer to these examples by Example 1 and Example 2, respectively.

We note that the load P applied to the rigid body in the examples of Section 1.2.2
coincides with the integral of the contact stresses over the contact boundary

∫
ΓC
σ̂ν dx1.

Thus, we solve the contact problem on a very fine grid in a preprocess to get a good
approximation of the total contact forces. In this way we get the value 1549.10 for
Example 1, enabling the computation of the exact contact stresses

σ̂exact
ν (x) =

1549.10

π((0.0525)2 − x2
T )

1
2

. (4.3)

in the open interval (0.4375, 0.5625) for xT . At the points x with xT = 0.4375 or
xT = 0.5625 where the edges of the punch indent the elastic quadrilateral the value of
the exact contact stresses would be infinite.

The starting grids of our experiments are uniformly refined meshes, consisting of either
triangles (512 elements) or quadrilaterals (256 elements). Subsequently, the adaptive
refinement process has been carried out 15 times. The experiment is called Example
1A if the starting grid consists of quadrilaterals and Example 1B if the starting grid is
made of triangles. The final system has 540, 924 degrees of freedom in Example 1A and
438, 334 degrees of freedom in Example 1B.

Figure 4.2 shows the final grid and zooms in the contact area in Example 1A. The
refinement is symmetric and the smallest elements are located in the semi-contact zone
and the neighboring area where discontinuities are expected. Figure 4.3 shows the grid
after 15 steps of refinement in Example 1B. In Figure 4.3(a) we have zoomed in the
contact area and in Figure 4.3(b) we have further zoomed in the area where the right
edge of the punch indents the elastic body. Although the structure is similar to the one
with a starting grid made of quadrilaterals the grid is less symmetric which is due to the
alignment of the triangles on the starting grid. However, the solution (Figure 4.3(c)) is
symmetric.

In Figure 4.4 the error estimator is plotted against the number of nodes for uniformly
(blue line) and adaptively (red line) refined grids with a logarithmic scale on both axis.
The experimental order of convergence (4.2) is given by the slopes of the graphs. For
both experiments the final eoc is about 0.5 for the adaptive strategy compared to ≈ 0.25
for the uniform refinement.

In Figure 4.5 we compare the node values sp with the exact values of the contact stresses
σ̂exact
ν (p). As we can see the values sp (red dots in Figure 4.5) coincide very well with

the exact contact stresses (blue dots in Figure 4.5). Next, we consider the relative error
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Figure 4.2: Example 1A: Final grid and zooms in the area around the actual contact
boundary. The nodes mark the edges of the contact zone.
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(a) Zoom in contact area of final grid

(b) Zoom in contact area of final grid where the edge of the punch indents
the elastic body

(c) Component u2 of the solution

Figure 4.3: Example 1B
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(b) Example 1B

Figure 4.4: Estimator plotted against #Nmk (logarithmic scales)
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Figure 4.5: Contact stresses
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(b) Example 1B

Figure 4.6: Relative error of pressure for sm computed on grids which are adaptively
refined by means of our residual estimator for contact (res. est. contact) and
the standard residual estimator (std. res. est.) plotted against #NaC

mk
(loga-

rithmic scales)

in the L2-norm
‖sm(x)− σ̂exact

ν (x)‖ΓC
‖σ̂exact

ν (x)‖ΓC
, (4.4)

plotted against the number of actual contact nodes in each adaptive refinement step.
The red line in Figure 4.6 shows the relative error of sm computed on adaptively refined
grids which are generated by means of our residual-type error estimator for contact. The
blue line shows the relative error of sm computed on grids which are adaptively refined
with the help of the standard residual error estimator, see Section 2.2.1. Using our new
residual-type a posteriori estimator for contact we get a relative error of ≈ 3 · 10−3 with
solely 666 actual contact nodes in Example 1A and 380 in Example 1B, respectively. If
the mesh is refined by means of the standard residual error estimator the same quality
of approximation is obtained with 4, 898 actual contact nodes in Example 1A and 5, 714
in Example 1B, respectively.

In Example 2, where the rigid wedge indents the elastic quadrilateral, the cotangens of
the angle α of the rigid wedge and the load applied to the rigid body, compare Figure
1.1(b) in Section 1.2.2, enter the formulas for the exact computation of the radius of
the contact zone and the contact stresses. As in the foregoing example the load is given
by the integral of the contact stresses over the contact area

∫
ΓC
σ̂ν dx1 computed in a

preprocess on a very fine grid. It amounts to 872.19. The cotangens of the angle of the
wedge is 0.2. Putting these values and ν = 0.25 and E = 3 · 105 in the formula (1.28) in
Section 1.2.2 we get the radius b = 0.01362796875 of the contact zone.

If the starting grid consists of quadrilaterals we call the experiment Example 2A and
if the starting grid is made of triangles we refer to it by Example 2B. The adaptive
refinement process has been carried out 14 times. The number of degrees of freedom is
510,588 in Example 2A and 512,850 in Example 2B.

Figures 4.7 and 4.8 show zooms in the contact area for Example 2A. The refined grid
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is symmetric and the smallest elements can be found mainly in the area where the tip
of the wedge indents the elastic quadrilateral. At this point the exact normal stresses
would be infinite. However, in small areas around the free boundary zone the elements
have been refined very often, too, as can be seen in Figure 4.8(b). Just as in Example
1 the adaptively refined grid based on a starting grid of triangles is less symmetric, see
Figure 4.9(a), although the solution is symmetric (Figure 4.9(b)).
The convergence of the error estimator on adaptively and uniformly refined grids is
shown in Figure 4.10. The experimental order of convergence is about 0.502 for the
adaptively refined grid and 0.436 and 0.399, respectively, for the uniformly refined grid.

In Figure 4.11 the exact normal stresses σ̂exact
ν (p) (blue dots), computed by means of

formula (1.29) in Section 1.2.2, are compared to the corresponding numerically computed
quantities sp (red dots). The values coincide very well. The L2-norm of the relative error
between sm(x) and σ̂exact

ν (x) as defined in (4.4) is given by the red lines in Figure 4.12
plotted against the number of actual contact nodes. The blue lines in Figure 4.12 refer
to the same relative error but sm is computed on a mesh where the adaptive refinement is
determined by the standard residual error estimator (Section 2.2.1). For both methods
of adaptive refinement Figure 4.13 shows the relative error between b and the numerically
computed radius of the contact zone plotted against the number of actual contact nodes.
In order to visualize that the adaptive refinement process by means of the standard
residual error estimator requires much more nodes in order to obtain the same accuracy
as by means of our residual-type estimator for contact we have chosen logarithmic scales
in Figures 4.12 and 4.13.

4.2.2 3D example with analytically given distribution of contact stresses

The final example presented in Section 1.2.2 of a contact problem for which exact formu-
las of the contact stresses (1.31) and the radius of the contact zone (1.30) are given is a
special case of the Hertzian contact problem, see Figure 1.2. We compare the exact and
numerically computed values of contact stresses and radius of contact zone and we show
the grids which are adaptively refined by means of our new residual-type error estimator
for contact.
The Hertzian contact problem is modeled by a linear elastic cube which is pushed against
the obstacle by means of Dirichlet values. We apply Dirichlet values −0.005 in x3-
direction and 0.0 in x1- and x2-direction at the top of the cube. As in the 2D examples
the Neumann values and the force density is set to zero and we use the same material
constants E = 3 · 105 and ν = 0.25. The potential contact boundary is the bottom of
the cube and the direction of constraints is ν = −e3. The gap function describing the
distance between the elastic cube and the rigid ball with radius RM and midpoint m
is given by g =

√
(RM )2 − (x1 −m1)2 − (x2 −m2)2 + m3. For the computation of the

distribution of the contact stresses the value of the load P is needed. It is computed
in a preprocess on a very fine grid and amounts to 88.28. The radius of the rigid ball
representing the obstacle is RM = 0.75. Thus, the exact radius of the contact zone is
0.615142, computed by (1.30).
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(a) Zoom of final grid

(b) Zoom in contact area of final grid

Figure 4.7: Example 2A
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(a) Zoom in contact area of final grid

(b) Zoom in right side of contact area of final grid

Figure 4.8: Example 2A
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(a) Zoom in contact area of final grid

(b) Component u2 of the solution

Figure 4.9: Example 2B
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Figure 4.10: Estimator plotted against #Nmk (logarithmic scales)
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Figure 4.11: Contact stresses
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Figure 4.12: Relative error of pressure for sm computed on grids which are adaptively
refined by means of our residual estimator for contact (res. est. contact)
and the standard residual estimator (std. res. est.) plotted against #NaC

mk
(logarithmic scales)
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(b) Example 2B

Figure 4.13: Relative error of radius of contact zone computed on grids which
are adaptively refined by means of our residual estimator for contact
(res. est. contact) and the standard residual estimator (std. res. est.) plotted
against #NaC

mk
(logarithmic scales)

We consider two experiments Example 3A where the starting grid is a uniform mesh of
hexahedra (64 elements) and Example 3B where the starting grid is a uniform mesh of
tetrahedra (384 elements). The final grids have been 10 times adaptively refined. The
number of degrees of freedom is 4,871,271 in Example 3A and 6,044,778 in Example 3B,
respectively.

In Figure 4.14(a) we show a zoom of the actual contact boundary of the adaptively refined
grid of Example 3A. The free boundary is refined more often as the area around full-
contact nodes. In contrast, the adaptive refinement by means of the standard residual
error estimator, see Figure 4.14(b), does not distinguish between the free boundary and
the full-contact area. In this case the actual contact boundary is overrefined.

Figures 4.15(b) and (c) show zooms of the actual contact boundary of the adaptively
refined grids by means of our residual-type estimator for contact and by means of the
standard residual estimator where the starting grids consist of tetrahedra. The grid is
less symmetric as in Example 3A where the starting grid is made of hexahedra. Just as
in the 2D examples of Section 4.2.1 this is due to the alignment of the tetrahedra on the
starting grid. However, the solution in Figure 4.15(a) is symmetric.

For both experiments, Example 3A and 3B, the rates of convergence of our new residual
estimator for contact have been plotted in Figure 4.16 for the adaptively refined grids
as well as for the uniformly refined grids. Although the experimental order of conver-
gence for the adaptive refinement strategy is better as for the uniform refinement, the
advantage is less as in the 2D examples of Section 4.2.1. The reason might be found in
the regularity of the solutions. In both examples of Section 4.2.1 the contact stresses
are expected to grow up to infinity where the edges of the punch or the tip of the wedge
indent the elastic body. In contrast, the contact stresses σ̂ν(x) of the Hertzian contact
problem are always finite, compare (1.31). The contact stresses in Example 3A and 3B
can be seen in Figure 4.17.
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4 Numerical studies

(a) New residual-type estimator for contact

(b) Standard residual estimator

Figure 4.14: Example 3A: Zoom in contact area of final grid
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4.2 Numerical results

(a) Component u3 of the solution

(b) New residual-type estimator for contact

(c) Standard residual estimator

Figure 4.15: Example 3B: Solution and zoom in contact area of final grid
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(b) Example 3B

Figure 4.16: Estimator plotted against #Nmk (logarithmic scales)

The L2-norm of the relative error (4.4) between sm(x) and σ̂exact
ν (x) is plotted against

the number of actual contact nodes in Figure 4.18 for both kinds of starting grids. As
in the foregoing examples the red line shows the relative error of sm computed on grids
which have been adaptively refined by means of our residual-type estimator for contact.
The blue lines in Figure 4.18 represent the same quantity for sm computed on grids
which have been adaptively refined by means of the standard residual error estimators.
In order to illustrate that by means of our residual estimator for contact less nodes are
required to obtain the same accuracy in the contact stresses as by means of the standard
residual error estimator we have chosen logarithmic scales in Figure 4.18.

In Figure 4.19 we show the relative error between sp and the exact contact stress σ̂ν(p),
compare formula (1.32), at the node p = (0.5, 0.5, 0.0) where the north pole of the rigid
ball indents the elastic cube. The quantity is plotted against the number of contact
nodes for both methods of adaptive refinement by means of our new residual-type error
estimator (red line) and the standard residual estimator (blue line). In Example 3A the
decay of the error is very similar for both methods. However, in order to obtain the same
accuracy the standard error estimator requires more actual contact nodes. In Example
3B the relative error does not decay continuously.

A similar behavior that the relative error increases in between can be observed for the
relative error between b and the numerically computed radius of the actual contact zone,
see Figure 4.20. For both methods of adaptive refinement by means of our residual-type
estimator for contact and the standard residual estimator the relative error is the same
if the starting grid consists of hexahedra. In contrast, the relative error decays more
rapidly in Example 3B when using our residual-type estimator for contact. Just as in
Figure 4.18 we have chosen logarithmic scales in Figure 4.19 and Figure 4.20 for the
illustration of the decay of the relative errors as a function of the number of actual
contact nodes.
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4.2 Numerical results

(a) Example 3A (b) Example 3B

Figure 4.17: Contact stresses
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Figure 4.18: Relative error of pressure for sm computed on grids which are adaptively
refined by means of our residual estimator for contact (res. est. contact)
and the standard residual estimator (std. res. est.) plotted against #NaC

mk
(logarithmic scales)
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Figure 4.19: Relative error of pressure at the node p = (0.5, 0.5, 1.0) computed on grids
which are adaptively refined by means of our residual estimator for contact
(res. est. contact) and the standard residual estimator (std. res. est.) plotted
against #NaC

mk
(logarithmic scales)
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(b) Example 3B

Figure 4.20: Relative error of the radius of the contact zone computed on grids which
are adaptively refined by means of our residual estimator for contact
(res. est. contact) and the standard residual estimator (std. res. est.) plotted
against #NaC

mk
(logarithmic scales)
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4.2 Numerical results

4.2.3 Relevance of the different error estimator contributions

In this section we analyze our residual-type estimator for contact in more detail. There-
fore, we generate sequences of adaptively refined grids by means of our residual-type
error estimator for different contact problems in 3D. We choose different kinds of start-
ing grids consisting of tetrahedra, hexahedra, or primarily of prisms or pyramids. We
analyze the relevance of the different error estimator contributions ηi and the distribu-
tion of their local contributions ηi,p. We examine the structure of the refined grids and
we have a look at the development of the number of actual, semi- and full-contact nodes
in the steps of adaptive refinement. Further, we compare the rate of convergence of the
estimator on adaptively and uniformly refined grids.

We consider five different experiments. In each of them the domain of computation is
a unit cube of linear elastic material with the Young’s modulus E = 5 · 102 and the
Poisson ratio ν = 0.3. The given force density f is set to zero and the Neumann values
are also zero. One side of the cube is the Dirichlet boundary and the opposite side is
the potential contact boundary so that the body can be pressed against the obstacle
by means of non-zero Dirichlet values in direction of the obstacle. The remaining sides
are Neumann boundary sides. The direction of constraints ν is perpendicular to the
potential contact boundary. The Dirichlet values in direction ν are set to 0.05 or 0.08
depending on the obstacle. For the other directions we choose zero Dirichlet values.

Example 4: g = 0 in a strip

The first two examples are 3D counterparts of the 2D examples in Section 4.2.1. In
the first example the elastic body comes into contact with the obstacle in a strip of the
width 0.6. Therefore, the gap function is g = 0 within this strip and set to g = 0.5 on
the remaining potential contact boundary. We refer to this experiment as Example 4.

The problem is solved on three different kinds of starting grids, consisting of either
tetrahedra, hexahedra or primarily of prisms. For this example Figure 4.21 shows the
experimental order of convergence for the adaptive strategy and for the uniform refine-
ment depending on the kind of starting grid. The best rate of convergence is obtained
for a starting grid of hexahedra.

The magnitude of the different error estimator contributions varies strongly. While in
the first step of refinement the error estimator contributions η1, η2, η4, η5 are larger than
102, the error estimator contributions η6, η7, η8 are at most in a range of 10−2. We note
that the edges of the strip where g = 0 do not coincide with edges on the starting grid
such that both cases gm > g and g > gm occur.

In Figure 4.22 the decay of the square of the dominant error estimator contributions η2
1

(yellow line, referred to as “element residual”), η2
2 (red line, referred to as “inner jump”),

η2
4 + η2

5 (blue line, referred to as “contact stress”) and the sum
∑8

k=1 η
2
k (black line) is

visualized. In the case the grid consists of tetrahedra, the error estimator contribution η1

vanishes and η2 mainly determines the adaptive refinement process. If the starting grid
consists primarily of prisms, η1 is dominant. Compared to η1 and η2, the contribution
η5 is small. Its influence is restricted to the free boundary zone as can be seen in Figure
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(a) Starting grid of tetrahedra
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(b) Starting grid of hexahedra
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(c) Starting grid of prisms

Figure 4.21: Example 4: Estimator plotted against #Nmk (logarithmic scales)

4.23 in the steps k = 2, 4, 6 of adaptive refinement. However, in this example, η5 is
not the only responsible for the refinement of the elements in this region. Near the free
boundary zone, where the edges of the punch indent the elastic body, the local error
estimator contributions η2

1,p and η2
2,p are of the same magnitude as η2

5,p in the fourth
refinement step which can be seen in Figure 4.24 in a cross-section through the body.

If the starting grid consists primarily of prisms the development of the number of actual
contact nodes, denoted by NaC

mk
and semi- and full-contact nodes is visualized in Figure

4.25. On the final grid the number of actual contact nodes is about half of the number of
the potential contact nodes although the area of actual contact is more than fifty percent
of ΓC . This confirms once again that the actual contact boundary is not overrefined.

Example 5: a pyramid as obstacle

In the second example of this section, called Example 5, the obstacle is a pyramid so that
the tip of the pyramid indents the elastic cube, see Figure 4.27(a). The angle between a
triangular side and the base of the pyramid is 45◦.

We choose starting grids made of hexahedra or primarily of pyramids. The experimental
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Figure 4.22: Example 4: Dominant estimator contributions plotted against #Nmk (log-
arithmic scales)

order of convergence for the adaptive strategy in contrast to the uniform refinement, see
Figure 4.26, demonstrates clearly the merit of the error estimator. For both variants
of starting grids Figures 4.27(c) and 4.28(a) show the solution −uν on the adaptively
refined grids around the actual contact boundary. In Figure 4.28(b) we see the solution
−u · ν on the adaptively refined grid in a diagonal cut through the contact area.
The elements have been refined most frequently along the cross where the edges of the
pyramid indent the elastic body and around the free boundary zone, which is given by
the curved lines surrounding the cross. In Figure 4.27(b) the status of the contact nodes,
full-contact nodes (red), semi-contact nodes (white) and the remaining potential contact
nodes (blue) on the final grid after 9 steps of adaptive refinement, is visualized.
Just as in the foregoing example the largest error estimator contributions for the adaptive
refinement are η1, η2 and η5. In the first refinement step the value of η1 is in the
range of 103 and goes down to 10−1 in the last refinement step. In step 6 the local
contributions η1,p vary between 0.07 and 0.0. The distribution of the local contributions
η2

1,p in refinement step 6 can be seen in Figure 4.29(a). The value of η2 is in the range

of 102 in the first refinement step and about 10−1 in the last refinement step. The
local contributions η2

2,p in refinement step 6 differ between 0.02 and 10−9, see 4.29(b).
From Figure 4.29 we can deduce that the refinement of the cross where the edges of
the pyramid indent the elastic body is due to η1 and η2. The contribution η5 is mainly
responsible for the adaptive refinement around the free boundary zone. The distribution
of the local contributions η2

5,p in refinement step 6 is given in Figure 4.29(c). The local

contributions have a maximal value of 7 · 10−3. We note that in this refinement step η6

is already in a very small range of 10−11.

Example 6: a ball as obstacle

In the next experiment, called Example 6, the obstacle is a ball like in Section 4.2.2.
This time we choose a grid of hexahedra. Figure 4.30(a) and (b) shows the final grid of
the contact boundary as well as projected on the obstacle and Figure 4.30(c) shows a
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(a) Adaptive refinement step k = 2

(b) Adaptive refinement step k = 4

(c) Adaptive refinement step k = 6, zoom in one edge

Figure 4.23: Distribution of the local contributions η2
5,p in Example 4 with a starting

grid of prisms
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(a) η2
1,p

(b) η2
2,p

Figure 4.24: Refinement step k = 4 in Example 4 with a starting grid of prisms
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Figure 4.25: Ratio of the number of actual, semi- and full-contact nodes to the number
of potential contact nodes in the adaptive refinement steps k = 1, ..., 7 in
Example 4 with a starting grid of prisms
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(b) Starting grid of hexahedra

Figure 4.26: Example 5: Estimator plotted against #Nmk (logarithmic scales)

diagonal cut through the cube after seven steps of adaptive refinement. In Figure 4.31 we
see the rate of convergence of the error estimator for adaptive and uniform refinement.

On the basis of this example we have a closer look at the error estimator contributions
η5, η6, η8 which are related to the contact constraints. Exemplarily, we pick refinement
step 4, see Figure 4.32(a) for the grid around the actual contact boundary. The largest
of these error estimator contributions is η5 with local values of η2

5,p up to 0.02 in the
free boundary zone, see Figure 4.32(b). From the definition of η6 we know that the
local contributions are restricted to the free boundary zone which can be seen in Figure
4.32(c). As the ball which is the obstacle is convex, the finite element approximation gm
is greater than or equal to g so that η8,p is non-zero in the whole actual contact zone,
see Figure 4.32(d). In this refinement step the values of η6,p and η8,p are already very
small.

Example 7: a hat as obstacle

Next, we consider an example where both additional error estimator contributions η7

and η8 are non-zero. The obstacle looks like a hat; see, e.g., Figure 4.33(b). We call this
experiment Example 7 and choose starting grids of pyramids or tetrahedra. For both
kinds of starting grids the rate of convergence of the estimator is shown in Figure 4.34.

We consider the choice of a starting grid consisting primarily of pyramids in more detail.
The final grid and the solution can be seen in Figure 4.33. The distribution of the local
error estimator contributions η2

5,p, η
2
6,p, η

2
7,p and η2

8,p which are related to the contact
constraints is visualized in Figure 4.35 in the fourth adaptive refinement step. As in all
foregoing examples the most important of these error estimator contributions is η5 with
a maximal local value of 0.03 for η2

5,p in refinement step 4. From the definition of η6 it
is clear that the local contributions are restricted to the free boundary zone, see Figure
4.35(c). Due to the shape of the hat and the structure of the grid the error estimator
contributions η7,p and η8,p are also located near the free boundary zone, compare Figure
4.35(d) and (e).
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4.2 Numerical results

(a) Final grid of contact boundary projected on obstacle,
zoomed in actual contact area

(b) Contact status of nodes on final grid: full-
contact (red), semi-contact (white)

(c) Solution (−uν) on final grid around the actual contact
boundary; ranges between −0.05 (blue) and 0.0 (red)

Figure 4.27: Example 5 with starting grid of pyramids
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(a) Solution (−uν) on final grid around the actual contact
boundary; ranges between −0.05 (blue) and 0.0 (red)

(b) Solution (−u · ν) on final grid in diagonal cut through contact area;
ranges between −0.05 (blue) and 0.0 (red)

Figure 4.28: Example 5 with starting grid of hexahedra
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(a) η2
1,p in refinement step 6; values of η2

1,p range between 0.0
(blue) and 0.07 (red)

(b) η2
2,p in refinement step 6; values of η2

2,p range
between 10−9 (blue) and 0.02 (red)

(c) η2
5,p on the contact boundary in refine-

ment step 6; values of η2
5,p range be-

tween 10−9 (blue) and 0.007 (red)

Figure 4.29: Example 5 with starting grid of pyramids
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(a) Final grid of contact boundary

(b) Final grid of contact boundary projected on obstacle

(c) Final grid in a diagonal cut

Figure 4.30: Example 6 with starting grid of hexahedra
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Figure 4.31: Estimator plotted against #Nmk (logarithmic scales) in Example 6 with
starting grid of hexahedra

(a) Grid in refinement step 4 (b) η2
5,p in refinement step 4

(c) η2
6,p in refinement step 4 (d) η2

8,p in refinement step 4

Figure 4.32: Example 6 with starting grid of hexahedra; view on the contact boundary

97



4 Numerical studies

(a) Final grid of contact boundary

(b) Final grid of contact boundary projected on obstacle

(c) Solution (−u · ν)

Figure 4.33: Example 7 with starting grid of pyramids
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(a) Starting grid of pyramids
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(b) Starting grid of tetrahedra

Figure 4.34: Example 7: Estimator plotted against #Nmk (logarithmic scales)

Example 8: a wave as obstacle

If we choose a sinus wave as obstacle (Example 8) the importance of the additional error
estimator contribution η8 gets evident. The starting grid consists of hexahedra. The
grid projected from the contact boundary on the obstacle is shown for the starting grid
and after three refinement steps in Figure 4.36. Due to the length of the sinus waves
and due to the meshsize of the hexahedra on the starting grid the grid around three of
the four contact regions is well resolved but not of the fourth one on the left side. There
the local error estimator contributions η2

8,p are non-zero, see Figure 4.36(c), and induce
further refinement and hence the detection of contact.

Example 9: “smiley”

In our final example (Example 9) we choose an obstacle such that the refined mesh
represents a smiley on the contact surface. Depending on the starting grids the smileys
look different. Figure 4.37 shows the adaptively refined grids of the contact boundary
after two, four and six steps of refinement for starting grids consisting primarily of
pyramids or hexahedra.
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(a) Grid in refinement step 4 (b) η2
5,p in refinement step 4

(c) η2
6,p in refinement step 4 (d) η2

7,p in refinement step 4

(e) η2
8,p in refinement step 4

Figure 4.35: Example 7 with starting grid of pyramids; view on the contact boundary
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(a) Starting grid projected on the obstacle (b) Adaptively refined grid projected on the obstacle
in refinement step 3

(c) η2
8,p on the contact boundary in refinement step 3

Figure 4.36: Example 8 with starting grid of hexahedra
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Figure 4.37: Grid of the contact boundary in Example 9 in refinement steps 2, 4, 6; left:
starting grid of pyramids; right: starting grid of hexahedra
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5 Discretization in time of dynamic contact
problems

The inherently non-smooth character of dynamic contact problems in linear elastic-
ity [EJK05] turns the construction of suitable time integration schemes into a highly chal-
lenging task, as classical time discretization schemes cannot be applied in a straightfor-
ward way [AB08,Mor99,HTS+76,TP93,LC97,KROM99,LL02,DKE08,KLR08,HHW08,
KW09a,DEP11]. In fact, many aspects which are all related to the non-smoothness orig-
inating from the contact interface have to be considered when constructing a time inte-
gration scheme. Besides solution related quantities as displacements, boundary stresses
and velocities, which are obviously influenced by the non-penetration constraint, struc-
tural properties as energy and momentum conservation, symplecticity, and the hidden
constraint, the persistency condition may be relevant. It is especially the interaction
of all these aforementioned quantities, properties and constraints which complicates the
construction of an appropriate integration scheme.
During the last decades numerous different time discretization schemes for elastodynamic
contact problems have been developed; see, e.g., [HTS+76,TP93,LC97,KROM99,LL02,
DKE08,KLR08,HHW08] each of them showing different advantages and disadvantages
with respect to the above introduced criteria. Especially in the earlier works classical
time-discretization schemes are improved by adding corrections to the velocities, accel-
erations and contact stresses, cf. [HTS+76, TP93, LL02] whereas recently the interplay
of space and time discretization with respect to the energy conservation and the stabil-
ity of the contact stresses has been considered. In [LC97] the focus lies on the energy
conservation which is achieved by enforcing a discrete persistency condition instead of
the non-penetration condition. A reason for the instability occurring in the contact
stresses can be found in the double role of the contact nodes as degrees of freedom for
the boundary and the interior. Therefore, modifications to the discretization in space are
applied in the algorithms presented in [KLR08,HHW08,DEP11] whereas in [DKE08] a
predictor step removes the artificial influence of the discretization in space to the contact
stresses. Most of the above mentioned time discretization schemes are modifications of
the classical Newmark scheme [New59]. Unfortunately, in the case of contact constraints,
the classical Newmark scheme leads to instabilities at the contact boundary and energy
blow-ups. In Section 5.2 we give a deeper insight into the causes of these instabilities and
we present selected algorithms [KROM99, DKE08, LC97, KLR08, HHW08]. Therefore,
we follow the lines of our article [KW09a]. We note that recently in [DEP11] a further
comparison of some time integration schemes for contact problems has been published.
In Section 5.3, we present our new space-time connecting discretization scheme which
has been published in [KW11].
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5 Discretization in time of dynamic contact problems

We note that another important approach for time-discretization schemes in mechanics
are variational integrators [HLW06,KMOW00] which focuses on the symplectic structure.
A recent approach, applied to contact problems, can be found in [GSO10].

5.1 Dynamic contact problems in linear elasticity

In this section, we give the strong and the weak formulations of the dynamic contact
problem in linear elasticity. An important aspect in the time discretization of dynamic
contact problems is the conservation of the physical properties in the discrete system.
Therefore, we cannot solely consider the idealized one body contact problem as in the
foregoing chapters. We discuss the conservation properties and comment on existence
and uniqueness results.

5.1.1 Strong and weak formulation of dynamic contact problems

Dynamic contact problems describe the time-dependent contact, e.g., a collision, between
two solid bodies. In the case of two-body contact problems both bodies ΩS and ΩM are
deformable and the sought displacement field is u = (uS ,uM ). The displacements
depend on the spatial variable x ∈ Ω and on the temporal variable t ∈ [0, T ] where [0, T ]
is the observed time interval. The velocity is denoted by u̇ and the acceleration is given
by ü. The linearized non-penetration condition for two-body contact problems is given
by [uν ] ≤ g on ΓSC , see Section 1.2.1. From Newton’s axiom of action and reaction follows
the balance of forces σ̂(uM ◦ Φ) = −σ̂(uS) on ΓSC where Φ is the bijective mapping
between the potential contact boundaries, see Section 1.2.1. Hence, we get the general
formulation of the dynamic frictionless two-body contact problem in linear elasticity

Problem 5.1.1. Strong formulation of the dynamic two-body contact problem

ρü− divσ(u) = f in Ω× [0, T ] (5.1)

σ̂(u) = π on ΓN × [0, T ] (5.2)

u = uD on ΓD × [0, T ] (5.3)

σ̂(uM ◦Φ) = −σ̂(uS) on ΓSC × [0, T ] (5.4)

[uν ] ≤ g on ΓSC × [0, T ] (5.5)

σ̂ν(u) ≤ 0 on ΓSC × [0, T ] (5.6)

([uν ]− g) · σ̂ν(u) = 0 on ΓSC × [0, T ] (5.7)

σ̂T (u) = 0 on ΓSC (5.8)

u(x, 0) = u0(x) in Ω (5.9)

u̇(x, 0) = u̇0(x) in Ω (5.10)

where ρ is the density. We focus on frictionless contact. However, we comment shortly
on the extensibility of the presented time discretization schemes to frictional contact
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5.1 Dynamic contact problems in linear elasticity

later on. In the case of dynamic two-body contact problems the Coulomb friction law
(1.19) changes to

[u̇T ] = 0⇒ |σ̂T (u)| ≤ F|σ̂ν(u)| on ΓSC × [0, T ]

[u̇T ] 6= 0⇒ σ̂T (u) = −F|σ̂ν(u)| [u̇T ]

|[u̇T ]| on ΓSC × [0, T ]
(5.11)

where [u̇T ] := u̇ST − u̇MT ◦Φ is the jump of the velocities in tangential direction.
A collision of the solid bodies can be caused by the application of a force density f ,
Dirichlet values uD or initial values for displacements u0(x) and velocities u̇0(x). For
the ease of presentation, we restrict our considerations to the case of prescribed initial
velocities in normal direction and set f = 0, ΓD = ∅ and u0(x) = 0. Therefore, the whole
boundary is divided into the potential contact boundary where the non-penetration
condition is enforced and the Neumann boundary where we assume π = 0.
The weak formulation of the dynamic contact problem is a hyperbolic variational in-
equality which is derived from the strong formulation via integrating by parts

〈ρü,ϕ〉+ a (u,ϕ) = 〈σ̂(u),ϕ〉ΓC ∀ϕ ∈H0 (5.12)

taking ϕ = v − u as test function, exploiting the non-penetration condition, the sign of
σ̂ν(u) and the fact that the tangential stresses are assumed to be zero

Problem 5.1.2. Weak formulation
For every t ∈ (0, T ] find u(·, t) ∈H with ü(·, t) ∈ L2(Ω), so that

〈ρü,v − u〉+ a(u,v − u) ≥ 0 ∀v ∈ K (5.13)

with K :=
{
v ∈H | [v] · ν ≤ g on ΓSC

}
. In contrast to the static case, for the dynamic

contact problems in linear elasticity many questions regarding the solution like existence,
uniqueness and regularity are still open, cf. [EJK05]. Only for the special case that the
underlying equation is the wave equation an existence and uniqueness result is given
in [LS84] and a result on the weak solvability can be found in [Kim89]. The mathe-
matical difficulty results mainly from the non-smoothness in time of the velocities and
displacements at the contact boundary. However, if the material is assumed to be linear
viscoelastic existence results can be derived, see [EJK05] and the references cited therein.
For dynamic viscoelastic contact problems satisfying the Kelvin-Voigt constitutive law
the stability under perturbation of the initial data has been studied in [KDS09].
We assume that a solution u of Problem 5.1.2 exists. For a clear presentation we define
〈F (u), ·〉 := a(u, ·) and we set ρ = 1. By means of the subdifferential, see Definition
1.3.1, of the indicator functional IK(·) defined in (1.40) we can reformulate (5.13) as
variational inclusion

0 ∈ 〈ü,ϕ〉+ 〈F (u),ϕ〉+ ∂subIK(u)(ϕ) ∀ϕ ∈H0, (5.14)

like in (1.43) for the case of static contact problems. In Section 1.3 we already noted
that the element of the subdifferential λ ∈ H∗ fulfilling the variational inclusion, see
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5 Discretization in time of dynamic contact problems

(1.44), has the meaning of a constraining force density, called contact force density.
This interpretation is of crucial importance for understanding the difficulties connected
to the discretization in time and space. Here and in the following, we use a different
notation. We define the contact force density corresponding to Problem 5.1.2 as follows

〈F con(u),ϕ〉 := 〈ü,ϕ〉+ 〈F (u),ϕ〉 ∀ϕ ∈H0. (5.15)

Hence, Newton’s equation of motion for the constrained case is given by

ü = −F (u) + F con(u). (5.16)

We recall that the contact force density and the contact stresses, respectively, are a priori
unknown and have to be determined as part of the solution process. On the basis of
equation (5.16) discretization schemes are derived. We note that Newton’s equation of
motion (5.16) is the Euler-Lagrange equation to the Lagrangian function

L(u, u̇) :=
1

2
〈u̇, u̇〉 − 1

2
a(u,u)− IK(u).

The whole energy E(u) = 1
2 〈u̇, u̇〉 + 1

2a(u,u) of the system is given by the sum of the
kinetic energy Ekin(u̇) := 1

2 〈u̇, u̇〉 and the elastic potential energy.

5.1.2 Conservation properties

We discuss the influence of the contact constraints on the conservation properties. As
the one-body contact problem is an unphysical idealization we have to consider the case
of two-body contact problems. Further, we assume the solution u to be sufficiently
smooth.
The proof of the conservation of the linear momentum L(u) :=

∫
Ω u̇ dx follows from

(5.12) by means of a constant trial function w(
dL(u)

dt

)
·w =

∫
Ω
ü ·w dx

= −
∫

Ω
σ(u) : ε(w)︸ ︷︷ ︸

0

dx+

∫
ΓSC

σ̂(uS)w da+

∫
ΓMC

σ̂(uM )w da

=

∫
ΓSC

σ̂(uS)(w −w) da = 0.

(5.17)

For the angular momentum D(u) :=
∫

Ω u× u̇ dx we take the trial function v = w × u
where w is constant. This leads to(

dD(u)

dt

)
·w =

∫
Ω
ü · (w × u) dx

= −
∫

Ω
σ(u) : ε(w × u) dx︸ ︷︷ ︸

0

+

∫
ΓSC

w · [σ̂(uS)× (uS − uM ◦Φ)] da.

(5.18)
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5.2 Selected algorithms based on the Newmark scheme

The last term disappears if the contact stresses σ̂(uS) are parallel to (uS−uM ◦Φ). Due
to the approximation of the geometric non-penetration condition by means of the lin-
earized non-penetration condition, see Section 1.2, usually, this condition is not fulfilled
exactly.
Finally, we consider the whole energy E(u) = 1

2 〈u̇, u̇〉+ 1
2a(u,u) of the system.

dE(u)

dt
=

∫
Ω
σ(u) : ε(u̇) dx+

∫
Ω
ü · u̇ dx

=

∫
ΓSC

σ̂(uS)(u̇S − u̇M ◦Φ) da

This relation follows by means of (5.12) with u̇ as trial function. Hence, it is evident
that the energy is conserved if the persistency condition

σ̂ν(uS)
d

dt
([uν ]− g) = 0 (5.19)

is fulfilled. This condition states that the relative velocities in normal direction have
to be zero at the actual contact boundary. It is easy to imagine that these relative
velocities are zero if the contact boundaries stick together. But as we will see later on it
is difficult to realize this condition in the fully discrete setting. In the case of friction,
when σ̂T (uS) 6= 0 holds, we can deduce that friction evokes dissipation, due to the fact

that either [u̇T ] = 0 or σ̂T (uS) = −F|σ̂ν(uS)| [u̇T ]

‖ [u̇T ] ‖ , see [KW09b]. For the proof of

dissipativity in the case of viscoelastic materials we refer to [Kla11].

5.2 Selected algorithms based on the Newmark scheme

One of the most common time discretization schemes in structural dynamics is the
classical Newmark scheme. Unfortunately, in the case of contact constraints, the classical
Newmark scheme evokes oscillations in the contact stresses, the displacements and the
velocities at the contact boundary and even energy blow-ups may occur which spoil
the accuracy of the solution. Reasons can be found in the interaction of the time and
space discretization, in the violation of the persistency condition and in the discrete
change of the velocity at the moment of impact. We give a deeper insight into the
causes of these instabilities in Section 5.2.1. In order to avoid this unstable behavior of
the discrete evolution, many time discretization schemes, especially modifications of the
Newmark scheme have been developed. We follow the lines of our article [KW09a] to
present selected approaches and to discuss the ideas and the pros and cons of the different
algorithms in a unifying framework. By means of numerical results for one- and two-body
contact problems we demonstrate the merits and drawbacks of the different algorithms.

5.2.1 Classical Newmark scheme for contact problems

Let τ > 0 denote a discrete time step size and the solution at the discrete time tn =
t0 + n · τ is un. The classical Newmark scheme, which is based on Taylor expansion of
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5 Discretization in time of dynamic contact problems

the displacements and the velocities, is given by

un+1 = un + τ u̇n +
τ2

2

(
(1− 2β)ün + 2βün+1

)
u̇n+1 = u̇n + τ

(
(1− γ)ün + γün+1

)
.

(5.20)

The parameters γ and 2β can be chosen from the interval [0, 1]. The special choice
2β = γ = 1/2 leads to an algorithm conserving energy, linear momentum and angular
momentum [HLW06,ST92] in the unconstrained case. For this choice of parameters the
method is of second order consistency.
In the following, we use the relation between the accelerations and the forces, which is
given by Newton’s equation of motion (5.16). We define F 1/2(un,un+1) := 1

2F (un) +
1
2F (un+1) and reformulate (5.20) for 2β = γ = 1/2 to

un+1 = un + τ u̇n − τ2

2

(
F 1/2(un,un+1)− 1

2
F con(un)− 1

2
F con(un+1)

)
(5.21)

u̇n+1 = u̇n − τ
(
F 1/2(un,un+1)− 1

2
F con(un)− 1

2
F con(un+1)

)
. (5.22)

As F con(un+1) is part of the solution, (5.21) has to be understood as the variational
inclusion

0 ∈ un+1 − un − τ u̇n +
τ2

2

(
F 1/2(un,un+1)− 1

2
F con(un) +

1

2
∂subIK(un+1)

)
.

This is a slight abuse of notation, that we will employ in this chapter.
The conservation of linear momentum can be verified easily. Therefore, we take a con-
stant trial function w and we assume un,un+1 to be sufficiently smooth

(L(un+1)−L(un)
)
·w = −τ

1

2

∫
Ω
σ(un) : ε(w)︸ ︷︷ ︸

=0

dx+
1

2

∫
Ω
σ(un+1) : ε(w)︸ ︷︷ ︸

=0

dx


+ τ

1

2

∫
ΓSC

σ̂ν(un) · [w] · ν︸ ︷︷ ︸
=0

da+
1

2

∫
ΓSC

σ̂ν(un+1) · [w] · ν︸ ︷︷ ︸
=0

da

 .

(5.23)

But unfortunately, due to the additional contact force density, the desirable energy
conserving property of the classical Newmark scheme does not hold for the case of
contact. This can be seen by taking the difference of the energy in two successive time
steps. Combining equations (5.21) and (5.22), we derive

E(un+1)− E(un) =

∫
Ω

(
1

2
F con(un) +

1

2
F con(un+1)

)
(un+1 − un) dx

=

∫
ΓSC

(
1

2
σ̂ν(un) +

1

2
σ̂ν(un+1)

)
[un+1 − un] · ν da.

(5.24)
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5.2 Selected algorithms based on the Newmark scheme

We do not have energy conservation in the case of frictionless contact unless [un+1 −
un] · ν = 0 where (σ̂ν(un) + σ̂ν(un+1)) 6= 0 at the contact boundary. This condition
can be understood as a discrete variant of the persistency condition. But, as far as we
know, no algorithm exists which is able to fulfill both the non-penetration condition and
a kind of persistency condition, ensuring the energy conservation simultaneously.
Numerical experiments show that the classical Newmark scheme leads to energy blow-
ups, spoiling the overall accuracy. In [KROM99] the contact forces are treated fully
implicitly, leading to the following algorithm which we call contact-implicit Newmark
scheme.

Algorithmus 5.2.1. Contact-implicit Newmark scheme

un+1
pred = un + τ u̇n (5.25)

un+1 = un+1
pred −

τ2

2

(
F 1/2(un,un+1)− F con(un+1)

)
(5.26)

u̇n+1 = u̇n − τ
(
F 1/2(un,un+1)− F con(un+1)

)
(5.27)

It can be proven that this algorithm is dissipative, thus avoiding energy blow-ups. The
change of the total energy between two successive time steps is

E(un+1)− E(un) =

∫
Ω
F con(un+1)(un+1 − un) dx ≤ 0

which follows from un ∈ K and the variational inequality (F con(un+1),un+1 − v) ≤ 0
for all v ∈ K.
Until now, we only analyzed the time discrete system and figured out that the energy
is not conserved. As we already mentioned in the introduction, another disadvantage of
the classical Newmark scheme is the occurrence of oscillations at the contact boundary.
The causes for these undesirable oscillations can be found in the interaction of the
discretization in time and space. Therefore, we have a look at the space-time discrete
system. We denote the mass matrix by M . The space-discrete first equation of the
classical Newmark scheme in the case of contact (5.21) is given by

Mun+1
m = M (unm + τ u̇nm)− τ2

4
M

(F − F con)(unm) + (F − F con)(un+1
m )︸ ︷︷ ︸

expected equilibration

 . (5.28)

In the continuous case, to ensure the non-penetration condition, the contact force density
F con equilibrates F at the contact boundary in normal direction. Therefore, we would
expect in the discrete version (F − F con)(unm) · ν + (F − F con)(un+1

m ) · ν = 0 at the
contact boundary. But in the space-discrete case we have entries in the mass matrix
at the contact boundary although in the continuous case the boundary has measure
zero. Thus, the constraining force F con to the non-penetration condition also reacts
to M([unm + τ u̇nm]) · ν at the contact boundary if this part evokes penetration of the
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5 Discretization in time of dynamic contact problems

two bodies. The problem is that this contribution to F con has no realistic physical
meaning and it evokes the oscillations in the contact forces as can be seen from a simple
combination of the two lines of the Newmark scheme under the assumption of [un+1

m ]·ν =
[unm] · ν which holds in the case of continuous contact

[u̇n+1
m ] · ν = [u̇nm] · ν − τ

(
F

1/2
rel (unm,u

n+1
m )− 1

2
F con(unm)− 1

2
F con(un+1

m )

)
· ν

= [u̇nm] · ν + τ

(
2

τ2

(
[un+1

m − (unm + τ u̇nm)]
))
· ν

= −[u̇nm] · ν. (5.29)

This zigzagging in the velocities [u̇n+1
m ] · ν is translated to the contact force density by

means of [unm + τ u̇nm] · ν.
Unfortunately, these oscillations also occur for the contact-implicit Newmark scheme
(Algorithm 5.2.1), see [DKE08, Section 2.2].

5.2.2 Prediction of the contact boundary

In [DKE08] Deuflhard et al. present a contact-stabilized Newmark scheme whose par-
ticular feature is the stable behavior of the contact forces. A special predictor step
which is added to the contact-implicit Newmark scheme (Algorithm 5.2.1) prevents the
unphysical part of the contact forces.
As already explained, the oscillations at the contact boundary originate from the un-
wanted interaction of space and time discretization. In order to overcome this deficiency,
step (5.25) is replaced by the variational inclusion

0 ∈ un+1
pred − (un + τ u̇n) + ∂subIK(un+1

pred) (5.30)

which we call predictor step. This variational inclusion requires the evaluation of the
normal trace of an L2-function which is not possible in general. But corresponding to
the fact that the discrete boundary gets assigned to a mass, finite element functions
have boundary values. The solution un+1

pred of (5.30) is the same as the L2-projection

of (5.25) onto the admissible set K. As un+1
pred of (5.30) is already contained in the

admissible set K, [un+1
pred] · ν is a predictor of [un+1] · ν. If [un+1

pred] · ν = [un+1] · ν at the

actual contact boundary, the artificial part of F con(un+1) · ν is removed, compare the
discussion to equation (5.28), and the contact force density F con(un+1) · ν equilibrates
F 1/2(un,un+1) · ν in (5.26) which corresponds to Newton’s Axiom of the equilibrium of
forces. Further, the force equilibrium directly implies [u̇n+1] · ν = [u̇n] · ν which means
that there is no zigzagging as in the classical Newmark scheme.
We define − τ2

2 P con(un+1
pred) ∈ ∂subIK(un+1

pred) as the element of ∂subIK(un+1
pred) fulfilling(

τ2

2
P con(un+1

pred),ϕ

)
=
(
un+1

pred − un − τ u̇n,ϕ
)
. (5.31)

This notation directly leads us to the following formulation of the contact-stabilized
Newmark scheme.
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Algorithmus 5.2.2. Contact-stabilized Newmark scheme

un+1
pred = un + τ u̇n +

τ2

2
P con(un+1

pred) (5.32)

un+1 = un+1
pred −

1

2
τ2
(
F 1/2(un,un+1)− F con(un+1)

)
(5.33)

u̇n+1 = u̇n − τ
(
F 1/2(un,un+1)− F con(un+1)

)
(5.34)

Here, the change in the total energy between two successive time steps is

E(un+1)− E(un) =∫
Ω
F con(un+1)(un+1 − un) dx+

∫
Ω
P con(un+1

pred)(un+1
pred − un+1) dx ≤ 0

(5.35)

which follows from the variational inequalities to (5.32) and (5.33), see [DKE08, Theorem
2.2]. Therewith the algorithm is dissipative. Moreover, the algorithm conserves the linear
momentum.
In our article [KW09b] the contact-stabilized Newmark method is extended to the case
of friction. Therein we use the time-discretized friction law

[un+1
T − unT ] = 0⇒ ‖σ̂T (un+1)‖ ≤ F|σ̂ν(un+1)| on ΓSC × [0, T ]

[un+1
T − unT ] 6= 0⇒ σ̂T (un+1) = −F|σ̂ν(un+1)| [un+1

T − unT ]

‖ [un+1
T − unT ] ‖

on ΓSC × [0, T ].

(5.36)

In a same manner as in (5.35) the dissipation of the algorithm in the frictional case can
be proven, due to the implicit treatment of the contact and frictional stresses [KW09b].
As the normal and tangential stresses influence each other, the stability of the normal
stresses due to the predictor step is very important for the frictional effects. The arising
discrete (quasi-)variational problems are solved with a non-smooth multiscale method
for Coulomb friction [Kra09, KW09b]. Therein the non-linearities are resolved directly
without any dependency on penalty parameters.
In the case of viscoelastic materials described by the Kelvin-Voigt model consistency
results for the contact-stabilized Newmark scheme are given in [KSD10] and an adaptive
time step control is proposed in [KSD11].
An application of the contact-stabilized Newmark scheme to contact problems in non-
linear elasticity can be found in [GKW10].

5.2.3 Enforcing a discrete persistency condition

In [LC97] Laursen and Chawla present an algorithm which conserves energy, linear
momentum and angular momentum. They use the time discretization scheme

un+1 = un + τ u̇n + ατ2
(
αün+1 + (1− α)ün

)
u̇n+1 = u̇n + τ

(
αün+1 + (1− α)ün

)
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proposed in [ST92] with α = 1/2. This corresponds to the classical Newmark scheme
with the parameters 2β = γ = 1/2.

With the same arguments as in (5.17) or (5.23), respectively, the conservation of the
linear momentum follows. Laursen and Chawla use their algorithm for the computation
of large deformation and so, they do not approximate the non-penetration condition by
a linearized non-penetration condition, see Section 1.2. Therefore, the conservation of
the angular momentum (5.18) is given, too. As we know from (5.24), a discrete kind of
the persistency condition (5.19) has to be fulfilled in order to conserve the energy in the
case of contact. Laursen and Chawla enforce

1

τ
· [un+1 − un] · ν ≤ 0 (5.37)

whenever contact or penetration occurred in the foregoing time step. Let µν be the
corresponding Lagrange multiplier. Then µν

1
τ · [un+1 −un] · ν is a so-called algorithmic

persistency condition.

To reformulate the algorithm proposed by Laursen and Chawla in our setting, let
F con(un,un+1) correspond to the Lagrange multiplier µν .

Algorithmus 5.2.3.

un+1 = un + τ u̇n − τ2

2

(
F 1/2(un,un+1)− F con(un,un+1)

)
u̇n+1 = u̇n − τ

(
F 1/2(un,un+1)− F con(un,un+1)

)
The authors of [LC97] use penalty and augmented Lagrangian methods to solve the
arising variational inequalities. The extension of this algorithm to frictional contact can
be found in [CL98].

5.2.4 Removing the discrete mass from the contact boundary

In the previously presented algorithms the boundary gets assigned to a mass due to the
discretization in space although in the continuous case the boundary has measure zero.
The interplay of the discrete mass at the contact boundary and the time discretization
evokes artificial contact forces as already explained in Section 5.2.1, see for example
equation (5.28). Khenous et al. [KLR06,KLR08] introduce a mass redistribution method,
in which mass from the contact boundary is moved to the interior. Thereby, the entire
mass, the moment of inertia and the center of gravity remain the same. To keep the
complexity as low as possible, the zero entries of the standard mass matrix are kept.
The redistributed mass matrix M̃ is computed as minimization problem of the distance
to the standard mass matrix M under the constraints mentioned above. The method
is proposed for one-body contact problems but is easily extendable to two-body contact
problems.

In [KLR06, KLR08] the discretization takes place first in space, second in time. The
linearized non-penetration condition is enforced. We indicate quantities belonging to
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5.2 Selected algorithms based on the Newmark scheme

the part with mass by (·)M and without mass by (·)6M . We denote the stiffness matrix
corresponding to the bilinear form a(·, ·) by A. Further, the node values of the discrete

Lagrange multiplier weighted by the mass are denoted by µν,p, so that um =

(
um,M

um,6M

)
is the solution of the following space-discrete system(

M̃ 0
0 0

)(
üm,M

üm, 6M

)
+

(
AM,M AT

6M,M

A6M,M A 6M,6M

)(
um,M

um, 6M

)
=
∑
p∈ΓC

µν,p

(
0
ν(p)

)
(5.38)

with the initial values um(p, 0) = u0
m(p) and u̇m(p, 0) = u̇0

m(p). It is a coupled system
in the variables with and without mass

M̃üm,M +AM,Mum,M =−AT
6M,Mum,6M

A 6M,Mum,M +A 6M, 6Mum, 6M =
∑
p∈ΓC

µν,p · ν(p). (5.39)

The second equation is a variational inequality

(vm, 6M − um, 6M )TA 6M, 6Mum, 6M ≥ −(vm, 6M − um,6M )TA 6M,Mum,M .

The system (5.39) is well-posed and has a unique solution, see [KLR06, Theorem 3.1].

For the discretization in time the authors of [KLR06,KLR08] test the Crank-Nicholson
method as well as the Newmark method with the parameters β = γ = 1/2. Inde-
pendently of the method, the redistributed mass matrix reduces the oscillations in the
contact force density as well as the changes in the total energy. The Newmark scheme
with γ = β = 1/2

un+1 = un + τ u̇+ τ2

2 ü
n+1 (5.40)

u̇n+1 = u̇n + τ
2 (ün + ün+1)

takes the accelerations purely implicitly in the first step. Combining (5.40) and (5.38)
leads to the following equation for the computation of the displacements.

Algorithmus 5.2.4.(
M̃ + τ2

2 AM,M
τ2

2 A
T
6M,M

τ2

2 A 6M,M
τ2

2 A6M,6M

)(
un+1
m,M

un+1
m,6M

)
=

(
M̃(unm,M + τ u̇nm,M )

0

)
+
τ2

2
MF con

(
un+1
m

)
with

MF con

(
un+1
m

)
=
∑
p∈ΓC

λp,ν

(
0
ν(p)

)
.

Unfortunately, this algorithm requires extra computational costs, as the redistribution of
the mass matrix necessitates a minimization problem under constraints in the dimension
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of the mass matrix. Hager et al. [HHW08] circumvent this problem by using special
quadrature formulas on so-called macro-elements to compute the mass redistribution.

To explain the macro-elements, we assume a mesh Th of the domain Ω to be given. The
small strip of all elements Th ∈ Th which have an edge or a face on Γ̄C is denoted by
ΩC and the remaining elements of Th constitute ΩI . Each macro-element TH ∈ TH is
either an element Th ∈ ΩI or a union of an element Th ∈ ΩI with elements Th ∈ ΩC .
The quadrature formula used on the macro-elements has no quadrature points placed in
ΩC ∪ Γ̄C , which directly implies that the new mass matrix M̃ has no entries for basis
functions at the contact boundary. Furthermore, the quadrature formula is chosen such
that it is exact on each macro-element TH ∈ TH for all quadratic functions on TH . Due
to these properties of the quadrature formula, the redistributed mass matrix M̃ leads to
the same total mass, center of gravity and moment of inertia as given by the standard
mass matrix M .

As we already know from the algorithm of Khenous et al., the modified mass matrix
reduces the oscillations in the contact stresses. Further, Hager et al. use the method of
modified mass matrix in the algorithm of Laursen and Chawla. In particular, the discrete
persistency condition is enforced instead of the non-penetration condition. Therefore,
the whole energy is conserved if the kinetic energy is computed with the redistributed
mass matrix Ẽkin := 1

2 u̇M̃u̇. The algorithm is given by

Algorithmus 5.2.5.

(
M̃ + τ2

4 AM,M
τ2

4 A
T
6M,M

τ2

4 A 6M,M
τ2

4 A 6M, 6M

)(
un+1
m,M

un+1
m, 6M

)

=

(
M̃(unm,M + τ u̇nm,M )

0

)
−
(

τ2

4 AM,M
τ2

4 A
T
6M,M

τ2

4 A 6M,M
τ2

4 A6M,6M

)(
unm,M
unm,6M

)
+
τ2

2
MF con

(
unm,u

n+1
m

)

u̇n+1
m = −u̇nm +

2

τ
(un+1

m − unm)

where F con(unm,u
n+1
m ) is the constraining force density to the constraint (5.37) which is

enforced if contact occurred in the previous time step.

In [HHW08] this algorithm is designed for frictional contact problems with the time-
discretized friction law (5.36). For the numerical resolution of the contact and frictional
constraints, a primal-dual active set strategy is used.

We note that the modified mass lumping method has been further analyzed in, e.g.,
[HW09,DE09,DE11] and recently, the method has been investigated in a central differ-
ence scheme [DEP11].
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5.2.5 Comparison and interpretation of the basic ideas

The classical Newmark scheme with 2β = γ = 1/2 leads to oscillations in the energy
for contact problems. In [KROM99] Kane et al. use the classical Newmark scheme with
purely implicit treatment of the contact force density, see also [PKMO02]. It can be
proven that this method is dissipative. But unfortunately, there are still oscillations in
the contact forces. Deuflhard et al. [DKE08] improve this contact-implicit Newmark
method with regard to the oscillations in the contact forces. One explanation for these
oscillations is the interplay of the discretization in space and time. In the continuous
case the force density F has to be equilibrated by means of the contact force density
F con such that penetration is avoided. After discretization in space and time, if [un +
τ u̇n] · ν provokes penetration, see (5.28), we have an artificial force with no physical
meaning which has to be equilibrated by F con. In [DKE08] an additional predictor step
which avoids the appearance of these unphysical contact forces is introduced. Numerical
examples show a stable behavior of the contact forces.

From the point of view of Khenous et al. [KLR08] it is not simply the interaction of
the time and space discretization which evokes the oscillations but the special energy
conserving property of the time discretization in the unconstrained case together with
the discretization in space. If for example a node is stopped at the contact boundary,
its kinetic energy would be definitely lost. Thus, the energy conserving scheme makes
the velocities oscillate (5.29) to keep the corresponding part of the kinetic energy. Con-
sequently, not only the velocities oscillate but also the energy and especially the contact
forces. Khenous et al. remove the mass from the contact boundary. This method reduces
the oscillations in the contact forces significantly. But setting up the discrete system
requires additional numerical effort as the redistributed mass matrix is computed via a
minimization problem under constraints. In contrast, the predictor step in [DKE08] only
requires a discrete L2-projection onto the discrete admissible set. Moreover, the discrete
L2-projection can be applied easily also in the case of changing spatial discretizations,
which means that the discretization can take place first in time, second in space with
adaptive refinement in each time step. This is not the case in [KLR08]; they use the
method of lines. In both methods numerical examples show that the energy tends to be
conserved for smaller mesh and time steps sizes. But in the algorithm of Deuflhard et
al. the dissipativity can be proven.

Laursen and Chawla allow the penetration of the bodies in order to get energy conser-
vation [LC97]. At points, where the two bodies penetrated each other in the foregoing
time step further penetration is stopped by enforcing the discrete persistency condition.
The discrete persistency condition implies that the difference quotient is zero at con-
tacting points and therefore, the energy is conserved. The simultaneous treatment of
the non-penetration condition and the persistency condition seems to be a too great
demand in the discrete setting. A discrete persistency condition can be fulfilled if the
two bodies are allowed to penetrate each other, whereby smaller time-step sizes cause
less penetration.

As this method conserves the energy exactly and the mass redistribution method of
Khenous et al. reduces the oscillations in the contact forces, Hager et al. [HHW08] com-

115



5 Discretization in time of dynamic contact problems

bine both ideas and introduce a new less expensive method to compute a redistributed
mass matrix.

5.2.6 Numerical comparison

We consider numerical simulations to demonstrate the behavior of the different pre-
sented algorithms. Therefore, we implemented the algorithms for linear elastic one- and
two-body contact problems in 3D, although mostly 2D examples are found in the orig-
inal literature. First, we show numerical examples of the classical Newmark scheme,
the contact-implicit Newmark scheme (Algorithm 5.2.1), the contact-stabilized New-
mark scheme (Algorithm 5.2.2), Algorithm 5.2.3 where the discrete persistency condi-
tion is enforced, and of different algorithms using a redistribution of the mass matrix
(as Algorithm 5.2.4 and Algorithm 5.2.5). Second, we comment on the similarities and
differences, the advantages and disadvantages of the methods.

The implementation has been carried out within the framework of the finite element
toolbox UG [BBL+97] and the obstacle toolbox OBSLIB++ [Kra00]. Therein, the discrete
variational inequalities are solved with a monotone multigrid method which treats the
non-linearities efficiently [Kor97,Kra00].

As there is no analytical solution for a three-dimensional dynamic contact problem in
linear elasticity, we cannot compare numerical and analytical solutions to validate the
algorithms. Therefore, we are interested in the physical behavior of the system, which
is reflected by displacements, velocities, energy and contact forces. In the foregoing
sections we analyzed and compared the different algorithms and figured out that the
temporal evolutions of energy, contact forces, contact stresses, and velocities at the
contact boundary are crucial points to examine.

For the numerical examples we use two different geometries, see Figure 5.8. The unit
ball, Geometry A, consists of a four times uniformly refined mesh of pyramids and is
used for one-body contact problems, meaning that the ball comes in contact with a rigid
foundation. The initial distance to the foundation is zero at the south pole. Geometry
B is used for two-body contact problems. The side lengths of the cubes are 1.4 and 1.0,
respectively. The mesh of hexahedra is also four times uniformly refined and the initial
distance between the two bodies at the south pole is zero. The Poisson ratio is ν = 0.3
and the Young’s modulus is E = 2 · 105 in Geometry B and E = 5 · 102 in Geometry
A. As in Section 5.1.1 assumed, the density is set to ρ = 1 and contact is enforced by
means of an initial velocity which amounts to −2 for the ball in the one-body contact
problem and −2 for the upper body and 2 for the lower body in the two-body contact
problem. The time step size is chosen to τ = 5 · 10−3 for the one-body contact problem
and τ = 5 · 10−4 for the two-body contact problem. We note that the parameters are
dimensionless in our simulations.

Classical Newmark scheme

We start with the classical Newmark scheme for the two-body contact problem. In
Figure 5.3(a) the cyan colored line indicates the corresponding course of energy. The
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(a) Geometry A (b) Geometry B

Figure 5.1: Meshes

(a) cyan: classical Newmark; green (dots):
contact-implicit Newmark; red (circles):
contact-stabilized Newmark; blue (dia-
monds): Algorithm 5.2.3

(b) cyan: Algorithm 5.2.4; green (dots):
contact-implicit with redistributed mass;
red (circles): contact-stabilized Newmark;
blue (diamonds): Algorithm 5.2.5

Figure 5.2: Total contact force
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(a) E = 1
2
u̇Mu̇+ 1

2
uAu; cyan: classical New-

mark; green (dots): contact-implicit New-
mark; red (circles): contact-stabilized New-
mark; blue (diamonds): Algorithm 5.2.3

(b) E = 1
2
u̇Mu̇ + 1

2
uAu; cyan: Algorithm

5.2.4; green (dots): contact-implicit New-
mark with redistributed mass; red (circles):
contact-implicit Newmark with zero entries
in the mass matrix at the contact bound-
ary but not redistributed; blue (diamonds):
Algorithm 5.2.5

(c) Ẽ = 1
2
u̇M̃u̇ + 1

2
uAu; cyan: Algorithm

5.2.4; green (dots): contact-implicit New-
mark with redistributed mass; blue (dia-
monds): Algorithm 5.2.5

Figure 5.3: Energy related to initial value
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(a) blue (diamonds): classical Newmark; green
(dots): contact-implicit Newmark ;red (cir-
cles): contact-stabilized Newmark

(b) straight red line: distance; cyan (circles):
Algorithm 5.2.3; magenta (squares): Algo-
rithm 5.2.4; green (dots): contact-implicit
with redistributed mass; blue (diamonds):
Algorithm 5.2.5

Figure 5.4: Relative displacement

(a) blue (diamonds): classical Newmark; green
(dots): contact-implicit Newmark ;red (cir-
cles): contact-stabilized Newmark

(b) red (circles): Algorithm 5.2.3; magenta
(squares): Algorithm 5.2.4; green (dots):
contact-implicit with redistributed mass;
blue (diamonds): Algorithm 5.2.5

Figure 5.5: Relative velocity
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(a) classical Newmark (b) contact-implicit Newmark (c) contact-stabilized New-
mark

(d) Algorithm 5.2.3 (e) Algorithm 5.2.4 (f) contact-implicit with redis-
tributed mass

(g) Algorithm 5.2.5

Figure 5.6: Contact stresses at time step n = 37
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increase is up to 3.5% of the initial amount. The blue line with diamonds in Figure
5.4(a) shows the trajectory of the relative displacement [un+1] ·ν and the blue line with
diamonds in Figure 5.5(a) shows the trajectory of the relative velocity [u̇n+1] · ν of an
arbitrarily chosen point which gets into contact. In the beginning the relative velocity
shows the uniform zigzagging as expected from (5.29). In the end, when the points
bounce and finally detach, the zigzagging is irregular. Here, the increase of the energy
may play a role. Even the displacements show some irregularities during and after the
process of detaching. The development of the total contact force is shown in Figure
5.2(a) indicated by the cyan colored line. To have a closer look at the behavior of the
contact stresses, we show the contact stresses in an arbitrarily chosen time step in Figure
5.6(a). As we want to exclude undesirable effects stemming from the mortar method,
the contact stresses are taken from the one-body contact problem.

Contact-implicit Newmark scheme (Algorithm 5.2.1)

In Figure 5.3(a) the green dotted line shows the course of energy for the two-body
contact problem using the contact-implicit Newmark scheme of Kane et al. As stated in
Subsection 5.2.2 this method is dissipative. The relative loss of energy is around 0.16%.
Most of the loss of energy is due to the moment of impact. Similar as in the classical
Newmark scheme we still have the oscillations in the relative velocities (see green line
with dots in Figure 5.5(a)). This can be calculated in the same way as in (5.29). But
in contrast to the classical Newmark scheme during the process of detaching there is no
bouncing in the relative displacements (see Figure 5.4(a), green line with dots) and the
amplitudes of the oscillations are more moderate. In the classical Newmark scheme the
relative velocity oscillates between −12 and 12, whereas in the contact-implicit Newmark
scheme the largest oscillation in the relative velocities after the detaching is between 2
and 5, see Figure 5.5(a). The development of the total contact force is shown in Figure
5.2(a) indicated by the green line with dots. There are still oscillations but the amplitude
is very small compared to the classical Newmark scheme. Figure 5.6(b) shows the contact
stresses at an arbitrarily chosen time step for the one-body contact problem. Oscillations
can be observed, where the contact stresses are large.

Contact-stabilized Newmark scheme (Algorithm 5.2.2)

In Figure 5.3(a) (red line with circles) the dissipative behavior (5.35) of the contact-
stabilized Newmark scheme of Deuflhard et al. can be seen. The system looses more
energy during the process of detaching than during impact. The loss of energy is around
0.4%. In Section 5.2.2, we explained that due to the predictor step the zigzagging of
the relative velocities during contact is removed. The relative velocity remains the same
during contact. But after detaching there are some oscillations. This can be seen in
Figure 5.5(a) (red line with circles). As expected from the name of the method the
contact forces do not show any oscillations (Figure 5.2(a), red line with circles).

The smooth behavior of the contact stresses is shown in Figure 5.6(c) for the numerical
example of the one-body contact problem.
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Algorithm 5.2.3, enforcing a discrete persistency condition

Algorithm 5.2.3 of Laursen and Chawla is the contact-implicit Newmark scheme with
the discrete persistency condition as constraint instead of the non-penetration condition.
Therefore, the energy is conserved (blue line with diamonds in Figure 5.3(a)). The
trajectory of the relative displacement in Figure 5.4(b) (cyan colored line with circles)
reminds of the contact-implicit and contact-stabilized Newmark scheme, but the relative
displacements evoke penetration of the two bodies as the non-penetration condition is
not enforced. The straight red line indicates the initial gap at the chosen node. The
behavior of the relative velocity, Figure 5.5(b) (red line with circles) also reminds of the
contact-implicit Newmark scheme but the amplitudes are larger. In Algorithm 5.2.3 the
constraints [un+1] · ν ≤ [un] · ν have to be enforced when contact or penetration has
occurred in the previous time step. Therefore, [un+1]·ν = [un]·ν whenever the constraint
in time step n+1 is active. Substituting this in (5.29) leads to [u̇n+1]·ν = −[u̇n]·ν which
means that the amplitude of the oscillation corresponds to the amount of the relative
velocity before contact occurred. The temporal evolution of the contact forces (Figure
5.2(a), blue line with diamonds) and contact stresses (Figure 5.6(d)) are worse in the
sense of more oscillations and larger amplitudes than for the contact-implicit Newmark
scheme but still better than for the classical Newmark scheme.

Algorithms using a redistribution of the mass matrix

In this subsection, we deal with three different algorithms using the idea of the redis-
tributed mass, as firstly proposed in [KLR06]. Therein Khenous et al. use a Newmark
scheme with the parameters β = γ = 1/2, see Algorithm 5.2.4. However, Algorithm 5.2.5
of Hager et al. is the contact-implicit Newmark scheme with a redistributed mass and
combined with Algorithm 5.2.3, which means that in the unconstrained case the algo-
rithm corresponds to the classical Newmark scheme with the parameters 2β = γ = 1/2
as in all the other presented methods. First, we investigate Algorithm 5.2.4, second, the
contact-implicit Newmark scheme with redistribution of the mass, which is Algorithm
5.2.5 with the non-penetration condition instead of the persistency condition and finally,
Algorithm 5.2.5 with the persistency condition.

For the computation of the redistribution of the mass matrix such that the whole mass
of the system and the center of gravity are conserved we use an Uzawa method.

In all the three subsequent algorithms we consider two different ways to compute the
kinetic energy which is part of the whole energy. Usually, the kinetic energy is computed
as Ekin = 1

2 u̇Mu̇, where M is the standard mass matrix. However, in [HHW08] the

kinetic energy was computed with the help of the redistributed mass matrix M̃ , i.e.,
Ẽkin := 1

2 u̇M̃u̇, which means that the velocities at the potential contact boundary are
simply ignored, whereas the strains are taken into account for the elastic energy, be-
cause the stiffness matrix corresponds to the standard mass matrix M . As long as a
node remains in contact, the displacements do not change and therefore, the difference
quotient 1

τ

(
[un+1 − un] · ν

)
is zero, but the algorithms provide non-zero velocities, see

Figure 5.4(b). Even at nodes which are not actually in contact the velocities are ignored.
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The whole energy corresponding to Ẽkin is denoted by Ẽ .

Algorithm 5.2.4:
The whole energy Ẽ relative to the initial amount is shown in Figure 5.3(c) by the cyan
colored line. Although there is no proof of dissipativity for this algorithm, the energy al-
ways decreases in this numerical example. The relative loss of energy amounts to 11.5%,
which is about 30 times of the relative loss of energy caused by the contact-stabilized
Newmark scheme. The course of the energy E relative to the initial amount can be seen
in Figure 5.3(b) by the cyan colored line. The loss of energy amounts to nearly 9% of
the initial amount. It is not always dissipative. The behavior of the relative velocity
(Figure 5.5(b), magenta colored line with squares) is very similar to the contact-implicit
Newmark scheme. The evolution of the contact forces and contact stresses, respectively,
is smooth, which can be seen in Figure 5.2(b) (cyan colored line) and Figure 5.6(e).

Contact-implicit Newmark scheme with redistributed mass:
The energy Ẽ related to the initial value can be seen in Figure 5.3(c) (green line with
dots). The loss of energy is up to 0.12%. In contrast, the energy E increases heavily
up to 15%, see Figure 5.3(b) (green line with dots). To check if the redistribution of
the mass to the interior is responsible or not for this energy blow-up we make another
experiment replacing M̃ in the algorithm by the standard mass matrix with zero entries
at the contact boundary but without redistribution of the mass in the interior. How-
ever, the behavior in the course of energy is similar, see Figure 5.3(b) (red line with
circles). The green lines with dots in Figures 5.4(b) and 5.5(b) show the trajectories of
the relative displacements and velocities at a fixed node. After detaching the amplitude
of the oscillations in the relative velocity at the contact boundary is very large. Similar
to the foregoing algorithm the contact forces (green line with dots in Figure 5.2(b)), and
contact stresses, Figure 5.6(f), are smooth.

Algorithm 5.2.5:
As the persistency condition is enforced in Algorithm 5.2.5, the energy is conserved if
the kinetic energy is computed with the redistributed mass matrix, see blue line with
diamonds in Figure 5.3(c). Energy conservation does not hold if we use the standard
mass matrix for the computation of the kinetic energy, see blue line with diamonds in
Figure 5.3(b). The energy blow-up amounts up to 10%. Just as in the algorithm of
Laursen and Chawla the displacements evoke penetration (blue line with diamonds in
Figure 5.4(b)). The red straight line is the initial distance between the two bodies at the
observed node. During contact the amplitude of the oscillations of the relative velocity
(blue line with diamonds 5.5(b)) at the contact boundary is the same as in Algorithm
5.2.3 but after detaching the amplitude tops any of the other algorithm as the value of
the relative velocity in normal direction changes between −18 and 22. The total contact
forces, blue line with diamonds in Figure 5.2(b), are smooth, but if we have a closer
look at the contact stresses for the one-body contact problem the stresses show slight
oscillations, Figure 5.6(g).
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Conclusion

Apart from the classical Newmark scheme all the algorithms show a similar behavior
of the relative displacements at contact nodes. But in Algorithms 5.2.3 and 5.2.5 the
non-penetration condition is violated. Using the classical Newmark scheme we observe
some kinks in the process of detaching.

In all the algorithms the relative velocities at the contact boundary show oscillations
at some time. The contact-stabilized Newmark scheme is the only one which does not
evoke oscillations in the relative velocities during the actual contact phase. Once a node
is in contact the relative velocity remains the same. After detaching there are a few
oscillations as in the contact-implicit Newmark scheme, Algorithm 5.2.3 and Algorithm
5.2.4. The other algorithms show more oscillations with larger amplitudes after detach-
ing, especially Algorithm 5.2.5. During contact the two algorithms enforcing the discrete
persistency condition instead of the non-penetration condition evoke oscillations in the
relative velocities, which have an amplitude of the amount of the relative velocities be-
fore contact occurred. This numerical observation can be easily verified by reformulating
the velocity update u̇n+1 = −u̇n + 2

τ (un+1 − un) and exploiting [un+1] · ν = [un] · ν
whenever constraints are active. For all other algorithms the amplitude of the relative
velocity is less or equal to the amount of the relative velocity before contact occurred.
Unfortunately, none of the investigated algorithms shows the desirable behavior of the
relative velocities, which should be zero in the case of contact to fulfill the persistency
condition.

The behavior of the velocities influences the energy. The energy of the classical Newmark
scheme oscillates and increases up to 3.5% in our example, whereas the contact-implicit
and contact-stabilized Newmark schemes are provably dissipative. The relative loss of
energy amounts to 0.16% and 0.4%. In Algorithm 5.2.3 the energy is conserved because
the discrete persistency condition is enforced. The same holds for Algorithm 5.2.5 if the
kinetic energy is computed with the redistributed mass matrix. Depending on whether
the kinetic energy is computed with the standard or the redistributed mass matrix the
energy may increase or decrease in the different algorithms employing a redistribution
of the mass matrix.

The total contact forces show a smooth behavior for the contact-stabilized Newmark
scheme and all variants of algorithms using a redistribution of the mass matrix (see Fig-
ure 5.2(b)). The contact stresses reflect this stable behavior, except for Algorithm 5.2.5,
where the persistency condition is enforced. There are slight oscillations in the con-
tact stresses. Using the contact-implicit Newmark scheme we observe some oscillations
in the contact stresses and forces. In Algorithm 5.2.3 there are even more oscillations
and of course the classical Newmark scheme shows so much oscillations with such large
amplitudes that the real behavior can be recognized hardly.
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5.3 A family of space-time connecting discretization schemes
with local impact detection

As explained in the foregoing section the performance of classical time discretization
schemes based on Taylor expansion like the classical Newmark scheme is disturbed se-
riously by the non-smoothness of the displacements and velocities in time at the actual
contact boundary.

On impact, further displacement is abruptly avoided and the velocity should be zero, if
the point is not detaching immediately. In the time-continuous setting the zero value of
the velocity is a consequence of the constant value in time of the displacements during
contact, i.e., uν = g. Unfortunately, a classical time discretization scheme is not able
to reproduce this property. Therefore, both constraints, the non-penetration condition
and the persistency condition (5.19), meaning that either the contact stresses or the
velocities at the contact boundary are zero, have to be enforced separately.

For an adaptation of classical time discretization schemes to dynamic contact problems it
would be desirable to localize the moment of impact where regularity cannot be expected.
For a one-dimensional object it would be possible to detect the moment of impact and in
consequence to choose a suitable time step. But for an arbitrary two or three-dimensional
object we have an infinite number of points coming into contact at individual times.
Although in the discrete setting, the number of contact nodes is finite, still each contact
node has its own impact time and the actual contact zone is part of the solution process
and not known a priori.

To illustrate this difficulty, let us consider one time step [t, t+ τ ]. Within this time step,
different nodes p1,p2, . . . on the contact boundary might become active (i.e. in contact)
or inactive at different sub-times t ≤ t + τ1 ≤ · · · ≤ . . . ≤ t + τ . On the one hand, a
subdivision of the time intervall [t, t+τ ] into [t, t+τ1], [t+τ1, t+τ2], . . . is out of question
since the number of nodes on the contact boundary might become arbitrarily large due
to refinement in space. On the other hand, each single impact of a boundary node gives
rise to a non-smooth event, i.e., an abrupt change of the velocity, which has to be dealt
with carefully.

A choice of very small time step sizes may reduce the error caused by the time discretiza-
tion but is numerically very expensive as for each time step the whole non-linear system
has to be solved. This disadvantage might be significantly reduced by an adaptive time
step control as, e.g., in [KSD10], but close to an impact still many time steps have to be
used if a standard time discretization is employed.

Therefore, we follow the lines of our article [KW11] to present our new space-time
connecting discretization scheme which due to a predictor step allows for the implicit
computation of individual impact times for each node on the contact interface. These in-
formation from the space discrete setting incorporated in the time discretization provide
reasonable approximations to the displacements, the contact stresses and the veloci-
ties at the contact boundary. The displacements fulfill the non-penetration condition,
the contact stresses are stable as in [DKE08] and the computation of the velocities is
motivated by the persistency condition.
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5 Discretization in time of dynamic contact problems

This space-time connecting discretization scheme as well as other methods proposed for
contact problems are elements of a family of modified Newmark schemes depending on
matrix-valued algorithmic parameters α,β. In our analysis we show for which choice of
parameters the resulting algorithms are dissipative and we discuss the influence of the
choice of parameters on the stability of the contact stresses as well as on the behavior of
the velocities. Consequently, we provide a unifying theory for some contact-related and
dissipative modifications of the classical Newmark scheme.

5.3.1 Time discretization depending on local impact times

For the derivation of the algorithm we consider a one-body contact problem discretized
in space. In the following, the discrete quantities for displacement, velocity, acceleration
and force have to be understood as vectors of the dimension #Nm · d. The matrices M
and A are the mass matrix and the stiffness matrix representing (·, ·) and a(·, ·) in the
basis of linear finite elements and the chosen Cartesian coordinate systems. We assume
the mass matrix to be lumped.

In Section 5.2.2 we presented the contact-stabilized Newmark scheme [DKE08] which en-
ables a prediction of the actual contact zone. We may use this idea to compute individual
impact time step sizes τ∗(p) ≤ τ which gives us useful information for corrections of the
contact-velocities. In the fully discrete setting the predictor step (5.32) in Algorithm
5.2.2 is

Mun+1
m,pred = Munm + τMu̇nm +

τ2

2
MP con

(
un+1
m,pred

)
. (5.41)

Here and in the following, we set e1(p) := ν(p). As M is a diagonal matrix the effects
of the constraints are restricted to the contact boundary in the predictor step. For each
contact node p ∈ NC

m and the corresponding direction of constraint e1(p) exists an
impact time step size τ∗(p), fulfilling

un+1
m,pred(p) · e1(p) = unm(p) · e1(p) + τ∗(p)u̇nm(p) · e1(p).

The relation between the impact time step size τ∗(p) and the linear residual correspond-
ing to the discrete variational inequality of the predictor step is given by

τ2

2

(
MP con

(
un+1
m,pred

))
(p) · e1(p) = (τ∗(p)− τ) ((Mu̇nm) (p) · e1(p)) ≤ 0 (5.42)

for each node p ∈ NC
m . We define a (#Nm ·d)× (#Nm ·d) diagonal matrix τ ∗ with d×d

block diagonal matrices such that

ei(p) · τ ∗ · ei(p) =

 τ∗(p), if p ∈ NC
m and i = 1

τ, otherwise

and

τ = τ id.
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5.3 A family of space-time connecting discretization schemes with local impact detection

With this notation we reformulate equation (5.41) to

Mun+1
m,pred = Munm + τMu̇nm +M (τ ∗ − τ ) u̇nm = Munm + τ ∗Mu̇nm.

We define a family of modified Newmark schemes which makes use of the local impact
time step sizes τ∗(p). The family depends on additional (#Nm · d)× (#Nm · d) diagonal
matrices α and β where the entries of the d× d diagonal matrices α(p) are given by

ei(p) ·α(p) · ei(p) =

 α(p), if p ∈ NC
m and i = 1

0, otherwise.

The choices for α(p) are discussed in the following and it will turn out that good choices
for β depend on α.

Algorithmus 5.3.1. Family of modified Newmark schemes

Mun+1
m,pred =Munm + τMu̇nm +M (τ ∗ − τ ) u̇nm (5.43)

Mun+1
m =Munm + τMu̇nm + βM (τ ∗ − τ ) u̇nm

− τ2

2

(
1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

)
−α 2

τ2
M (τ ∗ − τ ) u̇nm

)
(5.44)

Mu̇n+1
m =Mu̇nm

− τ
(

1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

)
−α 2

τ2
M (τ ∗ − τ ) u̇nm

)
(5.45)

We remind the reader that the term −MF con

(
un+1
m

)
is a priori unknown and computed

as part of the solution process of the variational inequality corresponding to (5.44).

Analogously, the term − τ2

2 MP con

(
un+1
m,pred

)
= −M (τ ∗ − τ ) u̇nm is a priori unknown

and computed as part of the solution process of the variational inequality corresponding
to (5.43). We note that despite the lumping of the mass matrix the non-penetration
condition influences the displacements in the whole body due to the elastic reaction in
(5.44).
We derive suitable choices for the parameters α(p) and β(p). We first investigate the
dependence of the course of energy on the parameters α(p) and β(p) as well as the sta-
bility of the contact stresses, which lead to some conditions on the parameters. Finally,
the precise determination of the parameters is motivated by the persistency condition
(5.19) which says that the velocities at the contact boundary should be zero during a
contact phase.
It is well-known that up to now, no time-discretization for contact-problems exists which
conserves the energy while enforcing the non-penetration condition without numerical
instabilities showing up in the contact stresses. Therefore, we analyze the family of
modified Newmark schemes under the aspect of dissipativity. We compute the difference
of energy between two successive time steps in the following proposition.
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5 Discretization in time of dynamic contact problems

Proposition 5.3.1. The difference in energy E(u) between two successive time steps is

E
(
un+1
m

)
− E (unm) =

(
un+1
m − unm

)
·MF con

(
un+1
m

)
+α

2

τ2

(
un+1
m − unm

)
·M (τ ∗ − τ ) u̇nm

+ β
2

τ2

(
un+1
m,pred − un+1

m

)
·M (τ ∗ − τ ) u̇nm

+ β (β − id)
2

τ2
(τ ∗ − τ ) u̇nm ·M (τ ∗ − τ ) u̇nm.

Proof. We need the following reformulations derived from Algorithm 5.3.1

Mu̇n+1
m −Mu̇nm = −τ

(
1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

)
−α 2

τ2
M (τ ∗ − τ ) u̇nm

)
=

2

τ

(
Mun+1

m −Munm − τMu̇nm − βM (τ ∗ − τ ) u̇nm
)

Mu̇n+1
m +Mu̇nm =

2

τ

(
Mun+1

m −Munm − βM (τ ∗ − τ ) u̇nm
)

to compute the difference in energy between two successive time steps

E
(
un+1
m

)
− E (unm)

=
1

2
u̇n+1
m ·Mu̇n+1

m − 1

2
u̇nm ·Mu̇nm +

1

2
un+1
m ·Aun+1

m − 1

2
unm ·Aunm

=
1

2

(
u̇n+1
m + u̇nm

)
·M

(
u̇n+1
m − u̇nm

)
+

1

2

(
un+1
m + unm

)
·A
(
un+1
m − unm

)
= −

(
un+1
m − unm − β (τ ∗ − τ ) u̇nm

)
·(

1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

)
−α 2

τ2
M (τ ∗ − τ ) u̇nm

)
+

1

2

(
un+1
m − unm

)
·A
(
un+1
m + unm

)
=
(
un+1
m − unm

)
·MF con

(
un+1
m

)
+
(
un+1
m − unm

)
·α 2

τ2
M (τ ∗ − τ ) u̇nm

− β (τ ∗ − τ ) u̇nm ·
2

τ2
M
(
un+1
m − unm − τ u̇nm − β (τ ∗ − τ ) u̇nm

)
=
(
un+1
m − unm

)
·MF con

(
un+1
m

)
+
(
un+1
m − unm

)
·α 2

τ2
M (τ ∗ − τ ) u̇nm

− β 2

τ2
M (τ ∗ − τ ) u̇nm ·

(
un+1
m − unm − τ u̇nm − (τ ∗ − τ ) u̇nm

)
+ β

2

τ2
(τ ∗ − τ ) u̇nm ·M (β − id) (τ ∗ − τ ) u̇nm
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5.3 A family of space-time connecting discretization schemes with local impact detection

=
(
un+1
m − unm

)
·MF con

(
un+1
m

)︸ ︷︷ ︸
〈1〉

+α
2

τ2

(
un+1
m − unm

)
·M (τ ∗ − τ ) u̇nm︸ ︷︷ ︸

〈2〉

+ β
2

τ2

(
un+1
m,pred − un+1

m

)
·M (τ ∗ − τ ) u̇nm︸ ︷︷ ︸

〈3〉

+ β (β − id)
2

τ2
(τ ∗ − τ ) u̇nm ·M (τ ∗ − τ ) u̇nm︸ ︷︷ ︸

〈4〉

.

qed.

The variational inequality corresponding to (5.44) implies the sign condition
(
un+1
m − vm

)
·

MF con

(
un+1
m

)
≤ 0 and therefore, 〈1〉 ≤ 0. In the same way the sign condition(

un+1
m,pred − vm

)
·M (τ ∗ − τ ) u̇nm ≤ 0 follows from (5.43), so that 〈3〉 ≤ 0 for β ≥ 0.

As long as 0 ≤ β(p) ≤ 1 for all p ∈ NC
m , 〈4〉 ≤ 0 because M is a positive definite

matrix. Only 〈2〉 cannot be treated in such a straightforward way and requires more
consideration. It follows from (5.42) that (M (τ ∗ − τ ) u̇nm) (p) ≤ 0 for all p ∈ NC

m .
Thus, α(p) has to be chosen such that α(p)

((
un+1
m (p)− unm(p)

)
· e1(p)

)
≥ 0. We dis-

tinguish between actual contact nodes, i.e., un+1
m (p) · e1(p) = gm(p) which are either

already in contact or where impact occurs, i.e.,
(
un+1
m (p)− unm(p)

)
·e1(p) ≥ 0 and those

nodes which are not in contact, i.e., un+1
m (p) · e1(p) 6= gm(p). We recall that we like

to choose α such that the velocities at actual contact boundary nodes are zero, i.e.,
u̇n+1
m (p) · e1(p) = 0 as motivated by the persistency condition. Therefore, if we have

no actual contact un+1
m (p) · e1(p) 6= gm(p) we choose α(p) = 0 so that the velocity is

not changed. If we have an actual contact node, i.e.,
(
un+1
m (p)− unm(p)

)
· e1(p) ≥ 0 we

choose α(p) ≥ 0. We conclude that the aim to avoid energy blow-ups restricts the choice
of the parameters α(p) and β(p). We have to choose 0 ≤ β(p) ≤ 1 and 0 ≤ α(p) for an
actual contact node and α(p) = 0 for a node which is not in contact.

Apart from the energy, the linear momentum and the angular momentum should be
constants of the physical system. Due to the fact that we use a linearized non-penetration
condition we cannot expect conservation of angular momentum, compare Section 5.1.2.
But the linear momentum L (um)·ei := Mu̇m ·ei for all i = 1, . . . , d is conserved even for
the classical Newmark scheme in the case of contact. We verify that this result also holds
for the family of modified Newmark schemes independent of the choice of parameters
α(p) and β(p). Therefore, we have to assume a two-body contact problem because the
one-body contact problem where a body comes into contact with a rigid foundation is
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an idealized situation

ei ·
(L (un+1

m

)
−L (unm)

)
= −τ

1

2
ei ·Aunm︸ ︷︷ ︸

=0

+ ei ·
1

2
Aun+1

m︸ ︷︷ ︸
=0

− ei ·MF con

(
un+1
m

)︸ ︷︷ ︸
=0

−α 2

τ2
ei ·M (τ ∗ − τ ) u̇nm︸ ︷︷ ︸

=0

 = 0 ∀i = 1, . . . , d.

(5.46)

The expressions ei ·Aum are zero because ei is constant. In the case of two-body contact
the contact force density on both contacting zones have the same value but opposite sign

such that they sum up to zero. As τ2

2 P con

(
un+1
m,pred

)
(p)·e1(p) = (τ∗(p)− τ) u̇nm(p)·e1(p)

is also a constraining force density which is equal on both contacting sides the last
expression in (5.46) sums up to zero, too.
In the contact-stabilized Newmark scheme the predictor is used in the computation of
the solution

Mun+1
m = Mun+1

m,pred −
τ2

2

(
1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

))
. (5.47)

Hence, the contact forces MF con

(
un+1
m

)
solely equilibrate the elastic reaction 1

2Au
n
m +

1
2Au

n+1
m which is evoked by the non-penetration condition, compare the discussion in

Section 5.2.2. To get stable contact stresses like in the contact-stabilized Newmark
scheme we choose α(p) = 1− β(p) such that equation (5.47) and (5.44) are the same.
Therefore, it suffices to choose a set of parameters α(p) with 0 ≤ α(p) ≤ 1 which is zero
if p is not an actual contact node. We derive a choice of α(p) for an actual contact node
p, motivated by the idea to improve the velocities such that the velocity at an actual
contact node is zero as expected from the persistency condition. We consider only nodes
which are active in the predictor step because otherwise α(p) (τ ∗ − τ ) u̇nm(p) · e1(p) = 0
independent of the choice of α(p). Therefore, un+1

m (p)·e1(p) = un+1
m,pred(p)·e1(p) = gm(p)

which implies that force equilibrium
(

1
2Au

n
m + 1

2Au
n+1
m −MF con

(
un+1
m

))
(p)·e1(p) = 0

holds and the velocity update (5.45) reduces to

u̇n+1
m (p) · e1(p) = u̇nm(p) · e1(p) +

2

τ
α(p) (τ∗(p)− τ) u̇nm(p) · e1(p)

=

(
1 + α(p)

2

τ
(τ∗(p)− τ)

)
u̇nm(p) · e1(p).

(5.48)

Therefrom we get u̇n+1
m (p) · e1(p) = 0 if we choose α(p) = τ

2(τ−τ∗(p)) . For τ∗(p) ≤ τ
2 we

have α(p) ≤ 1 which is necessary for the dissipativity of the algorithm. If τ∗(p) ≥ τ
2 we

keep α(p) = 1 which we get for τ∗(p) = τ
2 from α(p) = τ

2(τ−τ∗(p)) . This choice of α(p)

for τ∗(p) > τ
2 does not enforce the velocity to be zero, i.e., u̇n+1

m (p) · e1(p) = 0, but
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5.3 A family of space-time connecting discretization schemes with local impact detection

Figure 5.7: θ(p) : u̇n+1
m (p) · e1(p) = θ(p)u̇nm(p) · e1(p) is plotted against η(p) : τ∗(p) =

η(p)τ

we get the maximum reduction of the absolute value of the velocity. We note that if a
node p is already in contact, i.e., unm(p) · e1(p) = gm(p), it follows τ∗(p) = 0 ≤ τ

2 such
that u̇n+1

m (p) · e1(p) = 0 which means that the velocities are zero at all nodes which
are in contact in the actual and the foregoing time step. In Figure 5.7 (red line) the
factor θ(p) fulfilling u̇n+1

m (p) ·e1(p) = θ(p)u̇nm(p) ·e1(p) is plotted against η(p) fulfilling
τ∗(p) = η(p)τ .
We call Algorithm 5.3.1 with the above described choice of α(p) and β(p) improved
contact-stabilized Newmark scheme.

Algorithmus 5.3.2. Improved contact-stabilized Newmark scheme

Mun+1
m,pred = Munm + τ ∗Mu̇nm

Mun+1
m = Mun+1

m,pred −
τ2

2

(
1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

))
Mu̇n+1

m = Mu̇nm − τ
(

1

2
Aunm +

1

2
Aun+1

m −MF con

(
un+1
m

)
−α 2

τ2
M (τ ∗ − τ ) u̇nm

)
In the following, we present other choices of α and β which arise from the foregoing
discussions. If possible we relate the resulting algorithms to existing methods proposed
for dynamic contact problems in the literature. For the simplest choice α = 0 and
β = 0, where no parameter dependence is given, the ansatz reduces to the contact-
implicit Newmark scheme as used in [KROM99]. This method is dissipative but gives
rise to artificial contact stresses because α(p) 6= (1−β(p)). The contact stresses oscillate
during a contact phase because the sign of the velocity changes in each time step if
un+1
m (p) · e1(p) = unm(p) · e1(p) as explained in Section 5.2.1. The magenta colored line

in Figure 5.7 illustrates this effect.
The contact-stabilized Newmark scheme is recovered by the choice α = 0 and β = id.
This method is energy dissipative and the velocity remains the same during a contact
phase u̇n(p)·e1(p) = u̇n+1(p)·e1(p), see Figure 5.7 (green line). This is closely connected
to the stability of the contact stresses and therefore very advantageous but it is not the
behavior we would expect from the persistency condition.
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In the improved contact-stabilized Newmark scheme we choose α(p) = 1 and β(p) =
(1− α(p)) = 0 if τ∗(p) ≥ τ

2 . Therefore, the question arises what happens if we take the
same choice α(p) = 1 for each actual contact node with un+1

m (p) · e1(p) = un+1
m,pred(p) ·

e1(p) = gm(p) without regarding τ∗(p). The relation between the old and new velocity
(5.48) changes to

u̇n+1
m (p) · e1(p) =

(
1 +

2

τ
(τ∗(p)− τ)

)
u̇nm(p) · e1(p). (5.49)

In the case τ∗(p) ≤ τ
2 the velocity changes the sign pointing into the direction of detach-

ment (compare Figure 5.7, cyan colored line) which leads to oscillations in the contact
stresses as in the contact-implicit Newmark scheme. In Figure 5.7 as well as in the
numerical examples we refer to this algorithm by “α = {1, 0}”, because α(p) is either 1
or 0 if the node is in contact or not.

Another obvious choice of α(p) is 1
2 and β(p) = (1 − α(p)) = 1

2 for each potential
contact node. From the improved contact-stabilized Newmark scheme we know that
α(p) = 1

2 implies u̇n+1
m (p) · e1(p) = 0 if the body is already in contact (τ∗(p) = 0)

and un+1
m,pred(p) = gm(p). Choosing α(p) = 1

2 for impact nodes (τ∗(p) 6= 0) reduces the

velocity as long as un+1
m (p) = un+1

m,pred(p) = gm(p), see Figure 5.7 (dark blue line) but
not as much as in the improved contact-stabilized Newmark scheme. No oscillations are
provoked as for the choice α(p) = 1. Due to α = β = 1

2id the mass matrix can be
employed without lumping to get a dissipative scheme and the expressions 〈2〉 and 〈3〉
in the difference of energy between two successive time steps (see proof of Proposition
5.3.1) sum up to

〈2〉+ 〈3〉 = α
(
un+1
m,pred − unm

)
·MP con

(
un+1
m,pred

)
≤ 0.

The fact, that no difference is made in the choice of α(p) for non-contact and contact
nodes leads to a dependence of the new velocity u̇n+1

m (p) on the predictor un+1
m,pred(p)

u̇n+1
m =

un+1
m,pred − unm

τ
− τ

(
1

2
M−1Aunm +

1

2
M−1Aun+1

m − F con

(
un+1
m

))
(5.50)

even if the predictor is in contact un+1
m,pred(p) = gm(p) but not the solution un+1

m (p) 6=
gm(p). This dependence seems not to be reasonable. In the numerical results in Section
5.3.3 we see that potential contact nodes p ∈ NC

m exist which are active for the predictor
un+1
m,pred but not for the solution un+1

m . We like to remark that the velocity update (5.50)
has also been used in [Kla11].

5.3.2 Implementation aspects

Before we give numerical results for the time discretization schemes studied in the pre-
vious section we like to shortly comment on implementation aspects. If not other-
wise stated all numerical experiments have been carried out in the obstacle toolbox
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5.3 A family of space-time connecting discretization schemes with local impact detection

OBSLIB++ [Kra00] in the framework of the finite element toolbox UG [BBL+97]. The
variational inequalities (5.43) and (5.44) have been solved with a monotone multigrid
method [Kor97, KK01]. We note that the predictor step (5.43) needs only marginal
computing time due to the lumped mass matrix.
For the modifications concerning the velocity in the algorithms with α 6= 0 we first
compute the velocity

u̇n+1
m = u̇nm − τ

(
1

2
M−1Aunm +

1

2
M−1Aun+1

m − F con

(
un+1
m

))
(5.51)

as in the methods with α = 0 and in a second step we correct this velocity (5.51)
depending on the choice of α as follows:

1. α(p) - improved contact-stabilized Newmark scheme

for all p ∈ NC
m which are active for the predictor and the solution

• if un+1
m,pred(p) · e1(p) ≤

(
unm(p) + τ

2 u̇
n
m(p)

)
· e1(p), set the velocity to

u̇n+1
m (p) := 0

• otherwise set rm(p) ·e1(p) := − τ2

2 P con

(
un+1
m,pred

)
(p) ·e1(p), which is the

linear residual corresponding to the variational inequality of the predictor
step, and add − 2

τ2rm(p) · e1(p) to u̇n+1
m (p) · e1(p) computed in (5.51)

2. α = 1/2

u̇n+1
m =

un+1
m,pred − unm

τ
− τ

(
1

2
M−1Aunm +

1

2
M−1Aun+1

m − F con

(
un+1
m

))
3. α = {1, 0}

for all p ∈ NC
m which are active for the predictor and the solution

• set rm(p) · e1(p) := − τ2

2 P con

(
un+1
m,pred

)
(p) · e1(p), which is the linear

residual corresponding to the variational inequality of the predictor step,
and add − 2

τ2rm(p) · e1(p) to u̇n+1
m (p) · e1(p) computed in (5.51)

Remark 5.3.1. Rothe’s method and mesh refinement
Up to now, for the derivation and the analysis of the algorithms we assumed a fixed mesh
in space over all time steps because it enables a straightforward proof of the dissipativity
of the algorithm. However, the presented time-discretizations can be used in the context
of Rothe’s method which means that we may discretize first in time, second in space, al-
lowing for remeshing in each time step. Fortunately, neither the contact-stabilization nor
the velocity corrections are adversely affected if the mesh is changed between time steps n
and n+1 but the proof of dissipativity is not guaranteed. Let ũnm be the representation of
the solution unm on another mesh which is generated by coarsening and refinement. Then
ũnm is not necessarily contained in the admissible set Km corresponding to the new mesh.
This problem can be solved by replacing ũnm with an admissible solution ũnm,admissible in
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(a) Geometry 1 - The marked node
is used for evaluating displace-
ments and velocities, see Figure
5.12.

(b) Geometry 2

Figure 5.8: Geometries and meshes

the algorithm to compute un+1
m . Such an admissible solution can be easily generated by

a projection of ũnm onto the admissible set. Then E(un+1
m )− E(ũnm,admissible) ≤ 0. In this

sense the algorithm is still dissipative, but E(ũnm,admissible) 6= E(unm) in general.

5.3.3 Numerical results

In this section we demonstrate the numerical behavior of the different elements of the
family of modified Newmark schemes (Algorithm 5.3.1) as explained in Section 5.3.1.
We denote the different methods by the chosen parameters. This means that α(p)
refers to the so-called improved contact-stabilized Newmark scheme (Algorithm 5.3.2)
emphasizing that the parameters are individually chosen for each node p. The contact-
stabilized Newmark scheme is denoted by α = 0, the contact-implicit Newmark scheme
by α, β = 0 because it is the only analyzed scheme which does not fulfill the property
α = (1− β). The two other methods presented in Section 5.3.1 are called α = 1/2 and
α = {1, 0} because α = 1 holds only for active contact nodes.

Since up to now no existence results for the hyperbolic system of dynamic contact prob-
lems are available, we measure the quality of temporal discretization schemes as usual
along structural indicators as conservation of energy, displacements and velocities at the
contact interface, stability of the contact stresses and closely related to it the number of
contact nodes. In our numerical examples we consider one-body contact problems with
different time-step sizes. The material constants are chosen to be E = 5 · 102, ν = 0.3
and ρ = 1. The meshes of the geometries shown in Figure 5.8 consist of hexahedra. In
Geometry 1 the rounded side comes into contact with a plane rigid foundation. In Figure
5.8(b) the domain of computation is the block and the obstacle is a real tibial head. If
not indicated otherwise we have chosen Geometry 1, four times uniformly refined with
12,552 degrees of freedom, for the subsequent numerical studies.
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Figure 5.9: Energy related to the initial value

As we know from Section 5.3.1 all five time discretization schemes are dissipative which
can be seen in Figure 5.9(a) for a time step size of τ = 5 · 10−6. The major amount of
energy loss is due to the moment of impact except for the contact-stabilized Newmark
scheme (α = 0) where it is the moment of detaching. For this choice of time step and
mesh size the methods with α, β = 0 and α = {1, 0} loose more energy than the other
methods. It seems as if the curves of energy loss for the methods with α = 1/2 and α(p)
coincide but in Figure 5.9(b) a zoom shows that they are slightly different which is due
to the different velocities. The dependance of the energy loss on the choice of time step
and mesh size will be discussed later.

In contrast to the course of energy the behavior of the contact forces of all different
methods obviously classifies the five methods into more and less stable algorithms. The
contact forces appearing in the method with α, β = 0 and α = {1, 0} oscillate very often,
see Figure 5.10(a), as expected from the discussion in Section 5.3.1 about the changing
of sign in the velocities. The three other methods (α = 0, α = 1/2 and α(p)) show a
stable behavior of the contact forces (Figure 5.10(b)) and the lines seem to coincide for
all three methods. But as can be seen in the zoom (Figure 5.10(c)) the method α = 1/2
gives rise to small kinks. Closely related to the oscillations and the different behavior of
the contact forces is the number of contact nodes during the evolution and the difference
in the number of nodes which are active for the predictor and for the solution. In Figure
5.11(a) we see that the number of contact nodes oscillates strongly for α, β = 0 and
α = {1, 0}. Due to this unstable behavior of the contact forces and contact nodes for
these two methods we restrict our further discussion to the remaining three methods.
In all the remaining methods (α(p), α = 0, α = 1/2) we have a predictor step. We
analyze the number of contact nodes which are active for the predictor but not for the
solution (Figure 5.11(b)) and the other way round which are active for the solution
and not for the predictor (Figure 5.11(c)). The number of contact nodes which are
active for the solution but not for the predictor (Figure 5.11(c)) is zero for the contact-
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Figure 5.10: Contact forces
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Figure 5.12: Velocity and displacement at a single contact node

stabilized Newmark scheme (α = 0), i.e., the active set of the solution is a subset of the
active set of the predictor. In fact, this is important to avoid oscillations in the contact
forces. The two other methods show a small number of nodes which are active for the
solution but not for the predictor (Figure 5.11(c)), especially during impact. It seems
as if this behavior has no adverse effect on the contact forces due to the modification of
the velocities. In Figure 5.11(b) for α = 0 it is conspicuous that during the process of
detaching the number of active nodes for the predictor is much larger as the number of
active nodes for the solution. This is due to the velocity which remained the velocity of
impact during the contact phase. A discrepancy between the predictor and the solution
for active nodes in the predictor step enlarges the loss of energy as follows from 〈3〉 in
the proof of Proposition 5.3.1 which in turn explains why the large part of energy loss
is due to the moment of detaching in the method with α = 0 in contrast to the others.

In Figure 5.12 we show the trajectories of velocities (Figure 5.12(a)) and displacements
(Figure 5.12(b)) at a single contact node which is depicted in Figure 5.8(a). The velocity
is set to zero immediately for the method with α(p). Nodes where τ∗(p) > τ

2 also occur.
At such nodes the velocities would be zero one time step later as always for the method
with α = 1/2 (blue line).

Due to the good behavior of the improved contact-stabilized Newmark scheme (α(p))
concerning contact forces and velocities it is our favorite method and we restrict our
further more detailed studies to this special method and a comparison to the method
with α = 0.

A closer look at the process of detaching for the number of contact nodes, for the
contact forces and the displacements themselves (Figure 5.12(b)) foreshadows that the
body detaches earlier using the new method with α(p) instead of the method with α = 0.
This effect would be welcome because in [DEP11] it is shown for a 1D problem that the
contact-stabilized Newmark scheme detaches later than the exact solution. Therefore,
we compute the example of [DEP11, Section 3.1] where an elastic 1D bar of length
L = 10 is dropped from a height h0 = 5 with a starting velocity −v0. The amount of the
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Figure 5.13: 1D example - displacements at the moment of detaching

starting velocity is chosen to v0 = 10, the elastic modulus is E = 900 and the density is
set to ρ = 1. The exact solution at the single contact node is given by

u(x, t) :=



h0 − v0 · t, if t ≤ h0
v0

0 if h0
v0
≤ t ≤

(
h0
v0

+ 2 · Lc0
)

v0 ·
(
t−

(
h0
v0

+ 2 · Lc0
))

if
(
h0
v0

+ 2 · Lc0
)
≤ t

where c0 =
√

E
ρ is the wave speed. We choose the time step size τ = 5 ·10−3 and a mesh

size of h = 0.1 to compute the numerical solutions in a Matlab implementation. The
black line refers to the exact solution, the green dotted line to the solution with α = 0
and the red line to the solution with α(p) in Figure 5.13 which shows a zoom around
the detaching time plotted against the number of time steps. Although the method
with α(p) does not coincide with the exact solution it is closer to it than the solution
computed with the help of the contact-stabilized Newmark scheme (α = 0).

As indicated in the beginning of this section the course of energy depends on the choice of
time step sizes and mesh sizes. Therefore, we present a small numerical study in Figure
5.14. For both methods (α(p) and α = 0) smaller mesh sizes decrease the loss of energy.
Smaller time step sizes do not affect the loss of energy so significantly. Having again a
closer look at the proof of Proposition 5.3.1 we see that the entries of the mass matrix
corresponding to the contact boundary heavily influence the loss of energy. Therefore,
it is obvious that a smaller mesh size decrease the loss of energy.

In the first column of Figure 5.15 we see the contact stresses for the improved contact-
stabilized Newmark scheme at discrete times nτ . The displacements at the contact
boundary can be seen in the second column and the velocities in the third column. For
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Figure 5.14: Energy related to initial value dependent on different time step and mesh
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the computation we have chosen Geometry 1 five times uniformly refined and the time
step size τ = 5 · 10−4. The smoothness of the contact stresses is obvious. The velocities
are zero at the actual contact boundary due to the construction of our algorithm and
except in the process of detaching the behavior is also very smooth. However, especially
during the process of detaching, our improved contact-stabilized Newmark scheme (α(p))
shows a significantly better behavior of the velocities with respect to their stability
compared to the contact-stabilized Newmark scheme (α = 0). This can be seen in Figure
5.16 where the velocities for both methods with a time steps size of τ = 5·10−4 are plotted
at different time steps n. Here, the color of the plots is adapted to the maximum and
minimum value of all the different plots which are compared. The oscillations occurring
in the method with α = 0 are due to the artificial behavior during contact where the
velocities remain the velocities of impact which have the wrong sign for detaching.
As the main advantage of the improved contact-stabilized Newmark scheme (α(p)) is the
correction of the velocity at the contact boundary, we show the velocities for a problem
with a very complex gap function (Figure 5.17). Here a cube gets into contact with a
tibial head, see Figure 5.8(b). Due to the complexity of this obstacle we cannot use
a linearized non-penetration condition, see Section 1.2. Therefore, a signed-distance
function is used as explained in [KM11]. For the sake of completeness, the first two rows
in Figure 5.17 show the contact stresses and displacements for the same time steps n as
the velocities. The time step size is τ = 5 · 10−3. Just as in the foregoing example the
velocities are zero in the case of contact and the contact forces do not oscillate.
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(a) n = 50 (b) n = 50 (c) n = 50

(d) n = 100 (e) n = 100 (f) n = 100

(g) n = 150 (h) n = 150 (i) n = 150

(j) n = 200 (k) n = 200 (l) n = 200

Figure 5.15: α(p): Contact stresses, displacements and velocities
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(m) n = 250 (n) n = 250 (o) n = 250

(p) n = 300 (q) n = 300 (r) n = 300

(s) n = 350 (t) n = 350 (u) n = 350

(v) n = 400 (w) n = 400 (x) n = 400

Figure 5.15: α(p): Contact stresses, displacements and velocities
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(a) α(p), n = 414 (b) α = 0, n = 414

(c) α(p), n = 424 (d) α = 0,n = 424

(e) α(p), n = 430 (f) α = 0,n = 433

(g) α(p), n = 433 (h) α = 0,n = 442

Figure 5.16: Velocities during process of detaching; τ = 5 · 10−4
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(a) Contact stresses, n = 26 (b) Displacements, n = 26 (c) Velocities, n = 26

(d) Contact stresses,n = 36 (e) Displacements, n = 36 (f) Velocities, n = 36

(g) Contact stresses,n = 46 (h) Displacements, n = 46 (i) Velocities, n = 46

Figure 5.17: α(p); complex obstacle; τ = 5 · 10−3
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(j) Contact stresses,n = 56 (k) Displacements, n = 56 (l) Velocities, n = 56

(m) Contact stresses,n = 70 (n) Displacements, n = 70 (o) Velocities, n = 70

Figure 5.17: α(p); complex obstacle; τ = 5 · 10−3
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