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1 General Introduction: mitochondrial DNA and why 
we want to know 

 

The earliest diversifications of land plants occurred up to 500 Mio years ago and are 

still unresolved. So far it is commonly accepted that bryophyte-like organisms were the 

first land plants (Kenrick and Crane 1997; Wellman et al. 2003). The green algae order 

Charales comprises the closest living relatives to these land plants (Malek et al. 1996; 

Karol et al. 2001; Turmel et al. 2003), but the relations between the three 

morphologically and genetically very different bryophyte groups - liverworts, mosses, 

and hornworts - and all tracheophytes are still widely debated. Recent studies based on 

molecular data support the relationship of liverworts as sisters to all other land plants 

(Qiu et al. 1998), and the rare hornworts as sisters to all tracheophytes (Knoop 2004; 

Groth-Malonek et al. 2005), therefore resolving bryophytes as a paraphyletic lineage 

(see also Mishler 1986; Mishler et al. 1994). However, another recent study proposed a 

monophyly of bryophytes, based on chloroplast protein sequences (Nishiyama et al. 

2004).  

Why is it so difficult to obtain a clear morphological or genetic picture of these 

relationships? Very likely the diversification of liverworts, mosses and hornworts into 

separate classes took place in only a short period of geological time, so that the 

backbone nodes of phylogenetic trees including all three classes are lying close together 

on relatively short internode branches and timescales. After their establishment, the 

three groups developed independently of each other with possibly fast radiations, and 

probably very different grades of differentiation and extinction rates. The worst 

problem to resolve these very old phylogenetic backbone events is the lack of 

informative, conserved characters which developed some 400 to 500 Mio years ago. 

Morphological features seem to provide controversial conclusions for that matter. 

Palaeobotany on the other hand provides abundant tracheophyte fossils (Forey et al. 

2004), but lacks ancient bryophyte macrofossils. Only few mesofossils are discussed as 

potential liverworts, mosses, of hornworts (Edwards 2000; Kenrick 2003; Wellman et 

al. 2003). Consequently, the reconstruction of evolution through analyses of molecular 



Introduction 
 

2 

data is not only necessary but very likely the only way to resolve the problem. Every 

plant carries three genomes: the nuclear genome, the chloroplast genome (plastome), 

and the mitochondrial genome (chondriome). For the understanding of land plant 

evolution all three genomes are subject to close interrogations.  

 

To obtain a reasonable theory for the phylogeny of all land plants, a major problem that 

has to be addressed are the different ages of the plant clades. A group aged as much as 

450 mio years has to be compared to recently developed groups like the angiosperms 

(120 mio y). Direct comparison is only possible, if homologous regions can be analysed 

that have very slow rates of evolution, so that enough original information is still 

conserved. In this thesis the focus lies on the extension of data sets and development of 

new markers for the analysis of lower land plant relationships, with emphasis on 

“bryophytes”, mostly liverworts. This group is very likely the oldest group of all land 

plants (Qiu et al. 1998), and therefore vital for the understanding of land plant 

evolution. 

The is chondriome known as the most slowly evolving plant genome (Wolfe et al. 1987; 

Palmer and Herbon 1988) and therefore a promising candidate for the understanding of 

early land plant evolution. The chondriome of the liverwort Marchantia polymorpha 

was the first fully sequenced land plant chondriome (Oda et al. 1992a), followed by the 

angiosperm thale-cress Arabidopsis thaliana (Unseld et al. 1997). At present, only six 

further chondriomes are completely sequenced, all of them from angiosperms: sugar 

beet Beta vulgaris (Kubo et al. 2000), rapeseed Brassica napus (Handa 2003), rice 

Oryza sativa (Notsu et al. 2002), maize Zea mays (Clifton et al. 2004), wheat Triticum 

aestivum (Ogihara et al. 2005), and tobacco Nicotiana tabacum (Sugiyama et al. 2005). 

In addition, chondriome sequences of a few related algae are available, notably from the 

Charales alga Chara vulgaris, the probably closest living relative of the land plant 

lineage (Turmel et al. 2003), and Chaetosphaeridium globosum, a Coleochaetales alga 

(Turmel et al. 2002), candidate for a sister group to the Charales-land plant clade (Karol 

et al. 2001). The chondriome of Chara is 68 kb in size with 68 genes and 27 introns; 

Chaetosphaeridium encodes 67 genes and 11 introns within its 56 kb of mitochondrial 

DNA. In contrast to that, the Arabidopsis chondriome comprises only 57 genes 

including 23 introns in 367 kb (Unseld et al. 1997) , therefore increasing the amount of 
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“junk” DNA, but decreasing the number of genes (still) encoded on the mitochondrial 

genome. Brassica napus, like Arabidopsis a member of the Brassicaceae, has a 

chondriome of “only” 222 kb, therefore making it hard to find conclusive phylogenetic 

patterns in the reorganisation events of the plant mitochondrial DNA, which are 

probably mainly a result of frequent genomic recombination. The chondriomes of 

angiosperms in general are very variable in size and are known to be as large as 

2.400 kb in the Cucurbitaceae (Ward et al. 1981). 

Land plant chloroplast genomes (plastomes) are circular DNAs consisting of a Large 

Single Copy Region (LSC) and a Small Single Copy Region (SSC) which are separated 

by two Inverted Repeats (IR). The succession of the genes in LSC and SSC is highly 

conserved and structural changes occur usually as a varying expansion of the IR regions 

and therefore the duplication of some genes more or less, i.e. in the hornwort 

Anthoceros formosae (Kugita et al. 2003a). The transfer of genes to the nucleus, a 

frequent phenomenon in angiosperm mitochondria, is rarely observed for the plastome, 

the rpoA gene in Physcomitrella patens is an interesting exception (Sugiura et al. 2003). 

The overall sizes of the 21 fully sequenced land plant plastomes varies only slightly in 

the size range of 117 to 163 kb (Kim and Lee 2004), with the exception of the parasitic 

non-photosynthetic Orobanchaceae Epifagus virginiana, which contains a very reduced 

chloroplast genome of only 70 kb (Wolfe et al. 1992). Interestingly, organisation and 

gene content of algal plastomes can vary to a much higher degree, and reaches from 89 

kb in Codium fragile (Manhart et al. 1989) to up to 1500 kb in Acetabularia (Simpson 

and Stern 2002).  

 

The main differences of the two organelle genome types are the organisation of the 

genes and the size of the intergenic sequences. In fact, the “slow” evolution of the 

chondriomes is restricted to the very low mutation rate of protein coding exon regions. 

Its structural changes like disruptions of gene continuities (Palmer and Herbon 1988), 

and much higher mutation rates in non-coding DNA like introns or spacers between 

genes, could provide valuable tools for phylogenetic analyses on class and order level, 

as will be shown partially in this thesis. 
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Chapter 2 of this study refers to a newly established mitochondrial locus for 

phylogenetic analyses, the nad4 gene. This gene was tested for its potential to resolve 

issues of basal land plant phylogeny on the example of the liverworts, probably the 

earliest diverging group of bryophytes. The secondary structure of the nad4 group II 

intron conserved in liverworts is presented here with its folding pattern for the first time. 

A smaller part of the chapter is assigned to the study of the nad4 homologues in mosses, 

hornworts and tracheophytes. The intron content and conservation pattern of nad4 over 

all land plants could lead to further insights into the evolution and relationships of the 

major land plant groups. 

 

Chapter 3 describes an extended study of the nad5 gene that was already established as 

a phylogenetic marker locus in mosses and ferns, and became an effective phylogenetic 

tool in all lower land plants, including liverworts and hornworts. This study includes the 

sequencing of several newly analysed liverworts and the revision of the folding pattern 

of the group I intron included in this gene, which is a frequently sequenced locus shared 

by liverworts and mosses, and has been found to exhibit some unusual features in the 

liverwort genus Pellia, where it is singificantly smaller than in other liverworts. It also 

includes a correlation of the phylogenetic topology with a combined dataset derived 

from nad5, nad4, the cloroplast rps4 and rbcL genes, partially derived from sequences 

obtained from public databases.  

 

Chapter 4 is a study of the evolution of non-coding regions of the mitochondrial 

genome. This is an approach that has been used frequently on chloroplast or nuclear 

DNA but is completely new for plant mitochondrial DNA, which is known to present 

very few stable gene continuities in angiosperms. This aspect had not been investigated 

in non-tracheophytes so far. Two different gene clusters were analysed – the nad5-

nad4-nad2 and trnA-trnT-nad7 regions – and revealed several interesting features 

shown for the first time in lower land plants, including the loss and possible regain of a 

trnT gene in one of the spacer regions. 

 

Chapter 5 focuses on the evolution of nad7, a pseudogene restricted to liverworts and so 

far the only known land plant case of a highly conserved mitochondrial nad gene (of the 
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typical mitochondrially encoded group of nad1, nad2, nad3, nad4, nad4L, nad5, nad6, 

nad7, and nad9) that underwent a transfer of the functional copy from the mitochondrial 

genome (chondriome) into the nucleus. The study of pseudogene development gives 

new insights into the mechanisms of unconstrained DNA evolution in different groups 

of liverworts and their relationship to each other. 

 

All chapters are independent of each other and can principally be read in any order. 

They are accompanied by a general introduction into the special aspects of 

mitochondrial DNA and the phylogeny of lower land plants (Chapter 1), and followed 

by a synopsis (Chapter 6). Literature references for all parts can be found at the end of 

the thesis. 



 

2 The mitochondrial nad4 gene  

2.1 Introduction 
 

The mitochondrial nad4 gene encodes subunit 4 of the NADH ubiquinone 

oxidoreductase, which is also known as complex I of the mitochondrial respiratory 

chain. All subunits are highly conserved in their amino acid sequence because of the 

vital importance of this protein complex. Most of the at least 34 subunits are encoded in 

the nuclear genome, but the subunit genes nad1, nad2, nad3, nad4, nad4L, nad5, nad6, 

nad7, and nad9 are encoded on the chondriome of all land plants (Knoop 2004). The 

only exception known so far is the nad7 gene of the complex thalloid liverwort 

Marchantia polymorpha (Oda et al. 1992a) (see chapter 5). 

Some of these genes have been used for phylogenetic analyses, especially nad5 (see 

Chapter 3) and nad2 (Beckert et al. 2001). Both genes are disrupted through trans-

spliced introns in angiosperms (Knoop 2004 and therein). In contrast to that, all of the 

three group II introns that occur in the nad4 gene of angiosperms are cis-arranged, the 

two downstream introns are found to be occasionally and independently lost (Fig. 2-1). 

Only the generally conserved 5’-intron is universally present in mosses (Pruchner et al. 

2001). In the absence of the angiosperm-type introns, an alternative group II intron is 

exclusively conserved in liverworts. 

 

i548i461 i976 i1399

 
Fig. 2-1. Graphical overview of the nad4 gene in land plants, adapted from Prucher et al. 2001. Shaded 
circles indicate angiosperm group II introns, the open circle designates the group II intron that is 
conserved in liverworts. The line beneath the graphic delineates the analysed region of the gene. 
 

The usefulness of nad4 as a phylogenetic marker was tested on the bryophyte group of 

liverworts, because liverworts were so far rather poorly sampled for phylogenetic 

studies based on mitochondrial data (Beckert et al. 1999). Other studies on liverworts 

included only data from chloroplast and nuclear genomes (e.g. Samigullin et al. 1998).  

During the last two years one other mitochondrial gene (nad5, see chapter 3) gained 

attention for phylogenetic studies and was included in the first large scale liverwort 
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phylogenies (Davis 2004; Forrest and Crandall-Stotler 2004; Crandall-Stotler et al. 

2005; Forrest and Crandall-Stotler 2005). This gene includes a group I intron in 

liverworts, large parts of which were often excluded from the analyses. 

 

2.2 Material and Methods  

2.2.1 General methods and strategies 

Fresh bryophyte material was collected by S. R. Gradstein, H. Groth, M. Groth-

Malonek, J. Heinrichs, M. Lindner, Y.-L. Qiu, M. Schwertfeger, and M. Shimamura. 

Sterile culture specimens were obtained by courtesy of Prof. H. Becker, Saarbrücken. 

Fern DNAs were prepared from living plants from the Botanical Garden Bonn. 

Vouchers are deposited in the herbarium of the Dept. of Molecular Evolution, IZMB, 

University Bonn and/or in the Herbarium Goettingen (GOET) (Table 2-3). Additional 

DNA was prepared in the former Knoop laboratory in Ulm. Additional sequences that 

were included for the analyses are listed with their respective accession number from 

Genbank (NCBI), outgroup data for the mosses are given in chapter 2.3.2, table 2-3. 

Total nucleic acids were extracted from green plant material in the presence of cetyl-

trimethyl-ammonium-bromide (CTAB) (modified after Doyle and Doyle 1990). PCR 

amplification assays contained 1 µl template DNA or cDNA (approximately 10 ng – 

0.5 µg), 1 unit Taq-DNA-Polymerase (Genaxxon) or Silverstar-Taq (Eurogentec), 5 µl 

corresponding 10x PCR buffer, 2-3 mM MgCl2, 200 µM dNTPs each, 0.2 mM of each 

primer, 2-4 % DMSO, and double distilled water added up to 50 µl. A typical 

amplification assay included: initial denaturation at 92 °C for 1 min, followed by 10 

cycles: 92 °C 1 min, 57 °C to 50 °C for 1 min, 72 °C for 2 min, followed by 30 cycles 

of 92 °C 1 min, 50 °C for 1 min, 72 °C for 2 min – 2.5 min, and a final step of synthesis 

for 15 min at 72 °C. Primers used for the DNA assays are given in table 2-2. PCR-

fragments were sequenced directly on an ABI 3100 capillary sequencer using the 

BigDye TM Terminator Cycle Sequencing v2.0 kit (PE Biosystems), or cloned into the 

pGEM-T Easy vector (Promega) and sequenced on an ALF Express II (Amersham 

Biosciences) using the Sequenase Cy5 dye Terminator kit or the Flourescent Labelled 

Primer Cycle Sequencing kit (Amersham Biosciences), or were commercially 

sequenced (Macrogen Inc., Korea). 
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Sequences were aligned with BioEdit 7.0.1 (Hall 1999) and MEGA3 (Kumar et al. 

2004), using the implemented Clustal algorithm, and manually adjusted. Graphics were 

designed with OpenOffice 2.0 (www.openoffice.org, Sun Microsystems Inc.) and 

MEGA3.  

To obtain a phylogenetic tree, at first the best fitting evolution model for the data set 

was estimated by Modeltest 3.7 (Posada and Crandall 1998), with the preference of the 

implemented AIC (Akaike Information Criterion) over the also included hLRTs 

(hierarchical Likelihood Ratio Test) for the final choice of the most appropriate model, 

following the recommendation of Posada and Buckley (Posada and Buckley 2004). 

Phylogenetic analyses were carried out by Bayesian Inference approach:  

implementation in MrBayes 3.1 (Huelsenbeck and Ronquist 2001) with the following 

parameters: all partitions unlinked, two independent runs with: four parallel chains, one 

heated chain, 1.000.000 generations, every 100th tree sampled, burnin set to 6.000 trees, 

which was estimated after the conversion of the two independent runs, model 

parameters see table 2-1.  

 

Table 2-1: Models implemented in MrBayes for liverwort phylogeny based on the nad4 gene 

character set 
(partition) 

model selected by AIC 
(modeltest 3.1) parameters implemented in MrBayes 

exons nad4 GTR+I+G revmatpr = fixed(2.0757, 3.7931, 0.3069, 0.9919, 11.3371, 1.0000) 
statefreqpr = fixed(0.2585, 0.2132, 0.1959, 0.3324), shapepr= exponential(0.8181) 
pinvarpr = fixed(0.2145), ratepr= variable, nst = 6, rates = gamma 

intron nad4 TVM+G revmatpr = fixed(0.9545, 2.4145, 0.3375, 0.8789, 2.4145, 1.0000) 
statefreqpr = fixed(0.2455, 0.2434, 0.3026, 0.2085), shapepr= exponential(0.7358) 
pinvarpr = fixed(0), ratepr= variable, nst = 6, rates = gamma 
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2.2.2 The phylogenetic study on nad4 in liverworts: Outgroup selection 

The selection of an outgroup for the phylogenetic study on liverworts was tested with 

Charophyte algae, the closest ancestors to land plants: Chara vulgaris in combination or 

without Chaetosphaeridium globosum. The nad4 gene of Chaeotsphaeridium is intron-

less, whereas Chara carries one group II intron that is a positional homologue to the 

angiosperm intron nad4i976, which is not present in liverworts. This intron sequence 

was excluded from the analysis, but, apart from the good statistical separation of the 

algal outgroup, several ingroup clusters were only weakly supported. This effect was 

even more pronounced when both algae were included in the study. On the other hand, 

mosses are considered to be an early diverging land plant group like liverworts, and 

have been used as alternative outgroup in other phylogenetic liverwort studies, although 

these studies analyse different loci for their phylogenies (Davis 2004; Forrest and 

Crandall-Stotler 2004). Mosses carry a single group II intron in the nad4 gene that is a 

homologue to the angiosperm intron nad4i461, which is absent in liverworts. These 

intron sequences were excluded from the dataset prior to phylogenetic analysis, 

resulting in the selection of four intronless mosses as outgroups for the presented study.  

Moss sequences represent a suitable outgroup for the exon analysis, but a large part of 

the liverwort dataset is comprised of the group II intron nad4i548. No possible outgroup 

for the liverwort intron could be identified, as this intron is unique for liverworts in all 

land plants and Charophytes analysed, and the most similar introns from the fully 

sequenced chondriome of the liverwort Marchantia, nad7i336 and rpl2i28, were not 

well alignable and gave no suitable results as an outgroup, and could also add an 

artificial bias towards the Marchantiopsida as the group closest to the selected outgroup 

intron. 
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Table 2-2: Primers for PCR assays of the land plant mitochondrial nad4 gene 

primer designation 
and location primer sequence 

location on the  
Marchantia polymorpha chondriome  

nad4  from 6469 to 8855 
nad4upliver agg aag cct tat tat ttt ggt gat cc 6531…6556 
n4up aca gcc aaa ttt car ttt gtg gaa 6655…6678 
n4upv2 aaa ttt car ttt gtg gaa ann ntt cga tgg ctt cc 6661…6695 
n4uphw1 aay atc aat ttt tat wtr ggt ata gay gg 6703…6731 
n4MOSSi1up ctt tca tga ttg ctg trt tty gc 6851…6873 
n4i+ att att ata ggn gtw tgg ggt tcy 6931…6958 
n4i- gtc trg aac ccc awa cnc cta taa 6931…6958 
n4MOSSi1do ata ttt gta rat cag tgg ttc ctg 7951…7974 
n4+hw tta tta acc aca gaa ttt agt gag 7974…8000 
n4-hw ccr ctc act aaa ttc tgt ggt taa 7974…8000 
n4i23-.cy5 aat att tgg cgc cgc tca cta aat tct g 7984…8012 
n4+1  gts aaa gtg cct atg gta cca gt  8043…8065 
n4+1v2 gts aaa gtg cct atg gta cca gtt cat att tgg 8043…8075 
n4-1  gtc gct tca gga aac atg gg 8175…8194 
n4-1v2 aac ata cca ata gtc acn nna ttc ata tga gct ac 8304…8338 
n4-1v2kurz aca tac caa tag tca caa aat tca aat gg 8309…8337 
 n4+2hw aac ata cag gga att gra ggt agc at 8346…8371 
n4uphw2 agc agc ttt atc ggg gaa ttt cty 8550…8575 
n4-2 tam gcs gcg cct aaa atc atc cc 8628…8650 
n4dohw1 cca aaa acc aca cga tta tat arc c 8659…8683 
n4dov2 tcc atg ttg cac taa gtt act tac gga ngt atg cat 8808…8843 
n4do  tya ats aaa ttt tcc atg ttg cac 8832…8855 
intron n4i461  between 6929 and 6930 
n4i1+  ggg tag tct tgt gtg taa gca tag approx. 120 bp from 5’-end of intron 
n4i1- ctg tag gta ccc act ccc ttc tc approx. 70 bp from 3’-end of intron 
intron n4i548  between 7014 and 7916 
nad4i2+ gca tgg ggt gtt cta tgt aaa gc 7067…7089 
n4mittei2do ccc tta gca gaa tca tgt ccg t 7514…7535 
nad4i2- aac ctc aac tac cca ata aaa cc 7876…7898 
intron n4i976  between 8343 and 8344 
n4i976up gca gca cgg ctc tac gga g approx. 290 bp from 5’-end of intron 
n4i976dov1 (A) ccc ata ttc tga aac gaa ggc a approx. 360 bp from 3’-end of intron 
n4i976dov2 (D) cga ata gga ttg tgc cgt caa tgg approx. 340 bp from 3’-end of intron 
intron n4i1399 no internal primers available between 8766 and 8767 
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Table 2-3: Taxa used for the phylogenetic analyses of the mitochondrial nad4 gene in liverworts 

Phylogeny Species collection number Accession number 
and sequence length 

Blasiopsida Blasia pusilla L. J. Heinrichs 2291 2254 bp 
Haplomitriopsida Haplomitrium mnioides (Lindb.) Schust. M. Shimamura s.n. 2208 bp 
Jungermanniopsida Frullania tamarisci (L.) Dumort. J. Heinrichs 4382 2133 bp 
        leafy I / Lejeunea cavifolia (Ehrh.) Lindb. Ulm-collection s.n. 2247 bp  
        Porellales Lepidolaena hodgsoniae Grolle MGM031218-02SC 2265 bp  
 Porella platyphylla (L.) Pfeiff. J. Heinrichs 4383 2315 bp  
 Ptilidium pulcherrimum (G.Web) Vainio Heinrichs & Gradstein 4395 2231 bp  
 Radula complanata (L.) Dum. MGM031218-14SC 2301 bp  
       leafy II / Anthelia julacea (L.) Dumort. J. Heinrichs s.n. 2263 bp 
       Jungermanniales Bazzania trilobata (L.) Gray Ulm-collection s.n. AJ310800, 2157 bp 
 Calypogeia muelleriana (Schiffner) K. Müller J. Heinrichs 4375 2243 bp 
 Diplophyllum albicans (L.) Dumort. J. Heinrichs 4371 2174 bp 
 Gymnomitrion concinnatum (Lightf.) Corda J. Heinrichs 4394 2322 bp  
 Harpanthus flotovianus (Nees) Nees J. Heinrichs 4390 2276 bp  
 Herbertus sendtneri (Nees) Lindb. J. Heinrichs 4377 2202 bp 
 Jamesoniella autumnalis (DC.) Steph. Ulm-collection s.n. 2192 bp 
 Lophocolea cuspidata MGM 2323 bp 
 Mylia taylorii (Hook.) Gray J. Heinrichs 4387 2146 bp 
 Nardia scalaris Gray J. Heinrichs 4389 2225 bp  
 Plagiochila asplenioides (L.) Dumort. J. Heinrichs & H. Groth 4369 2134 bp  
 Scapania nemorea (L.) Grolle J. Heinrichs 4372 2206 bp  
 Trichocolea tomentella (Ehrh.) Dumort. MGM031218-03SC 2231 bp  
 Tritomaria quinquedentata (Huds.) H.Buch J. Heinrichs 4381 2188 bp  
      simple thalloids I / Fossombronia alaskana Steere & Inoue MGM031218-07SC 2253 bp  
      Fossombroniales Fossombronia pusilla (L.) Nees Ulm-collection s.n. 2232 bp 
 Noteroclada confluens Taylor ex Hook. & Wilson live culture Goettingen 2240 bp 
 Pellia endiviifolia (Dicks.) Dum.  MGM031218-12SC 1730 bp  
 Symphyogyna brasiliensis live culture Goettingen 2240 bp 
 Symphyogyna brogniartii SC 2321 bp 
      simple thalloids II / Aneura pinguis (L.) Dumort. MGM031218-01SC 2182 bp  
      Metzgeriales Apometzgeria spec. Ulm-collection s.n. 2308 bp 
 Metzgeria furcata (L.) Dumort. J. Heinrichs 4384 2304 bp 
Marchantiopsida / Asterella blumeana (Nees) Pandé Srivastava et Khan. MGM031218-06SC 2265 bp 
      complex Bucegia romanica Radian Ulm-collection s.n. 2313 bp 
      thalloids Conocephalum conicum (L.) Underw. Groth & Schwertfeger s.n.  2203 bp 
 Corsinia coriandrina (Spreng.) Lindb. Ulm-collection s.n. AJ310801, 2151 bp 
 Lunularia cruciata (L.) Dum. ex Lindb. Groth & Schwertfeger s.n.  AJ310803, 2151 bp 
 Marchantia polymorpha L. -- NC 001660, 2387 bp 
 Monoclea gottschei Lindb. live culture Goettingen 2223 bp 
 Monosolenium tenerum Griff./Sunita Kapila & SS Kumar live culture Goettingen 2258 bp 
 Oxymitra incrassata (Brotero) Sérgio & Sim-Sim MGM031218-11SC 2295 bp 
 Reboulia hemisphaerica (L.) Raddi MGM031218-04SC 2172 bp 
 Riccia breidleri Steph. ML-030826 2268 bp 
 Riccia fluitans L. Ulm-collection s.n. AJ310802, 2155 bp 
 Ricciocarpos natans (L.) Corda MGM031218-05SC 2265 bp 
 Riella spec. Ulm-collection s.n. 2086 bp  
 Sphaerocarpos donnellii Aust. Ulm-collection s.n. 2210 bp  
 Targionia hypophylla L. Ulm-collection s.n. 2124 bp  

Apotreubia nana (S. Hatt. & Inoue) S. Hatt. & Mizut.  LF198/ Long 30451 2263 bp  

Treubia lacunosa (Colenso) Prosk. lenta Taylor ex Prosk. 
LF28/Stotler&Crandall-Stotler 
4561 (ABSH) 2318 bp  

Treubiopsida 

Treubia pygmea 
LF30/Stotler&Crandall-Stotler 
4582 (ABSH) 2290 bp  

s.n. = sine numero (lat.), “without number”, meaning here without explicit collection or voucher number 
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2.3 Results and Discussion 

2.3.1 The nad4 gene in liverworts 

The nad4 gene in all liverworts investigated was found to carry only one universally 

conserved intron (Fig. 2-2). This intron, nad4i548, has already been described as 

conserved in liverworts, but absent in mosses (Pruchner et al. 2001). Its folding pattern 

(Fig. 2-3) reveals the structure of a group II intron (Michel et al. 1989). 

   

i548

n4up 
n4upv2

n4upliver

n4i2+ n4i2-

n4mittei2do

n4+1
n4+1v2

n4do

n4dov2

n4-1 n4-1v2
n4-1v2kurz

 
 
Fig. 2-2: Overview of the mitochondrial nad4 gene in liverworts. The group II intron is indicated by a 
pinhead. Intron designation relies on the nucleotide position in the nad4 gene of the reference liverwort 
Marchantia polymorpha after which the intron is inserted. Primer locations and directions are symbolized 
by arrows. Primers underneath the bar are located in exon regions, primers above the bar are located in 
the intron. 
 

2.3.1.1 Structure and conservation of the group II intron nad4i548 

Group II introns are catalytic RNAs which are capable of excising themselves out of 

pre-mRNA (splicing). Several of them encode the ORF (open reading frame) of a 

Reverse Transcriptase (RT) which catalyzes the splicing process (maturase activity). 

The RT is also necessary for the retroelement activity of several introns, the ability to 

reinsert the spliced intron into another region of the genome.  

Organellar group II introns in land plants are usually located in highly conserved genes 

like nad5 or cox1 in mitochondria, or petD and trnT in chloroplasts. They tend to lose 

the RT encoding ORFs, an effect that is not exclusive to angiosperms but was already 

noted in mosses (Dombrovska and Qiu 2004). In the single completely sequenced 

chondriome of an early land plant, the liverwort Marchantia polymorpha, only 9 out of 

24 group II introns carry an ORF, and all of them are restricted in their appearance to 

liverworts only (Turmel et al. 2003 and therein). In contrast to that, only one intact ORF 

remains in angiosperms (mat-R), in the intron nad1i725. Interestingly, only one of all 

mitochondrial group II introns is shared between Marchantia and angiosperms 
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(nad2i718), and only one group II intron, nad3i152, is shared by Marchantia and the 

green alga Chara, which still carries an intact ORF in this alga, but not in the liverwort.  

The present study confirms the occurrence of the intron nad4i548 (Fig. 2-3) as restricted 

to liverworts. It is composed of all six domains typical for group II introns (e. g. Michel 

and Dujon 1983; Michel et al. 1989; Robart and Zimmerly 2005) including the hairpin 

structure of domain V that is highly conserved and used for intron identification (Knoop 

et al. 1994). It does not carry an ORF in its domain IV.  

The presented folding pattern has been extrapolated from the alignment of 50 liverworts 

(see table 2-3 for the species names). Structural features of domain I assign it to the 

subgroup A1, which is the usual type for plant mitochondrial introns (Toor et al. 2001).  
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Fig. 2-3. Folding of group II intron (subgroup IIA1) nad4i548, unique for liverworts. Arrows 
indicate beginning and end of the intron. Roman numbers indicate the six intron domains. * loop is 
inverted in Monoclea and Oxymitra: CCTTTT; ** insertion of ACGGA in Treubia, *** insertion of GAG 
in Oxymitra, **** insertion of ACC in Frullania and Lejeunea. EBS: exon binding site, IBS: intron 
binding site; γ−γ’ indicates a tertiary single-base-pair interaction, +G near EBS1 indicates δ−δ’ pairing 
with the first nucleotide of the 3’-exon. 
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The size variation of the intron is very small in complex thalloid liverworts, with a 

median size of 899 bp, ranging from 894 to 903 bp. The largest liverwort group, the 

leafy liverworts, have the same median size, but a deviation from 873 to 912 bp, with 

the exception of Frullania, which has a singular deletion in the loop of domain IV that 

reduces the intron size to 818 bp. The most variable size is visible in simple thalloid 

liverworts, with a size range from 845 bp to 925 bp around a median of 892 bp. One 

exception from this is Symphyogyna brasiliensis with only 826 bp, mostly due to two 

deletions in the domain IV. Both deletions are not shared by its sister species 

Symphyogyna brogniartii.  

 

Of the 51 analysed liverworts only Pellia endiviifolia exhibits a series of major 

differences in the folding pattern of the intron structure. This species is a member of the 

simple thalloid liverworts, the most variable group; an assignment that is not contested 

by morphological or molecular studies. Its intron is only 660 bp long, which is more 

than 200 base pairs shorter than the average size (Fig. 2-4). This is mostly due to 

reduced loop sizes of domains II, IV and VI. In addition to that, some parts of the 

remnants of these loops are different to the sequences of other liverworts and therefore 

difficult to align. There are three regions in domain I where nucleotides are missing 

from non-loop structure elements (shaded gaps in figure 2-4). Two nucleotides are 

missing from domain VI, only six bases upstream of the A nucleotide necessary for the 

lariat formation of the intron during the splicing process. Six of these deletions are 

located in the forth subdomain of domain I, which carries the exon binding sites EBS1 

and EBS2. One of the deletions is located in the main stem of the subdomain, leading to 

an alternative folding pattern for this stem as shown in figure 2-4. Combined with 

another deletion and the insertion of three bases in the core circle of the subdomain 

these findings suggest a different stereometry of the affected subdomain, mostly in the 

angles of the hairpin structures around the core circle. 
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Fig. 2-4: Folding of group II intron nad4i548 for Pellia endiviifolia. Shaded regions depict deletions of 
the Pellia intron relative to the liverwort intron nad4i548 consensus pattern in figure 2-2. Boxed bases in 
domain I are: C à mismatch, putative editing site, GG à mismatch, UAC à insertion. Asterisk: loss of 
the original loop, replacement by mutated flanking bases.  
 

The impact of these differences on Pellia is not known, because no cDNA sequences for 

direct comparison are available. As no ORF is included in domain IV of this intron (like 

in all liverworts), the loss of large parts of this domain should be rather indifferent. 

Provided that the gene analysed here is indeed the only copy of nad4 encoded on the 

genomes of Pellia, it is likely that the intron is spliced normally, because nad4 exon 

sequences seem not affected. It could also be possible, that a second copy of the gene, 

including a “normal” intron, is encoded either on the chondriome or in the nuclear 

genome. The only known land plant case of a second copy of a nad-gene is the example 

of nad7 in the liverwort Marchantia polymorpha, which is a pseudogene on the 

chondriome, but has a functional copy in the nuclear genome (see also chapter 5). In 

that case, no mitochondrial intron but a nuclear intron was identified in the nuclear copy 

of nad7, and the nucleotide sequence of the two gene versions were clearly 

distinguishable. Even though no evidence for multiple gene-versions or pseudogenes 

has been found in Pellia, this possibility can not be ruled out. 
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Interestingly, this reduced size of introns is also prominent in Pellia sequences of the 

nad5 intron nad5i753, which is a group I intron (see chapter 3), and probably also in the 

group II intron of the mitochondrial trnS which has been only partially sequenced 

(Davis 2004). Possibly, this is a pattern that extends to all mitochondrial introns in 

Pellia. However, it definitely does not extend to the next closely related genus 

Noteroclada that was also sequenced in this study. A study of the chloroplast trnK 

intron including Pellia (Hausner et al. 2006) noted only two mispaired stem nucleotides 

in domain I, no large indels are mentioned. As no other chloroplast intron sequences are 

available from Genbank, no general point can be made about Pellia introns here, but it 

should be analysed whether the “reduced size effect” is restricted to mitochondrial 

introns. To gain knowledge about the extension of the phenomenon, more intron-

containing genes and more species should be analysed including different taxonomic 

ranks. As only two genera are described from the Pelliaceae, Pellia and Noteroclada, 

other species of the genus Pellia should be investigated for further studies. 

 

2.3.1.2 RNA editing in liverworts: studies on nad4 

 
DNA sequences do not always mirror the amino acid composition of the encoded 

protein. Differences are due to the splicing of introns and another very important 

mechanism, the RNA editing. The kind of editing that is typical for land plant 

organelles is the change of C to U (see Fig. 2-5), probably established through a 

deamination reaction. It occurs in all major land plant 

groups in differing degrees, with the exception of one 

group of liverworts, the complex thalloids (Steinhauser et 

al. 1999). 

 

Fig. 2-5: Chemical structure of the nucleotide bases Cytosin and 
Uracil. RNA editing in land plants is based on the exchange of these 
two bases.  
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Fig. 2-6: RNA editing in the mitochondrial nad4 gene in liverworts. Columns denote the putative 
editing sites: amino acid translated from the DNA sequence, number of the amino acid counted in relation 
to Marchantia, residue that would result from the edtiting 
 
Another, but much rarer type of RNA editing is the “reverse” editing, the exchange 

from U to C, which is essential to remove stop codons that disrupt the CDS. This type 

has been found in hornworts, where it is necessary to correct stop codons in more than 

half of the genes in the case of the chloroplast genome (Yoshinaga et al. 1996; 

Yoshinaga et al. 1997; Kugita et al. 2003b), and is rather frequent in ferns (Vangerow et 
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al. 1999; Wolf et al. 2004), but very rare in gymnosperms and angiosperms (Hiesel et al. 

1994; Freyer et al. 1997). Nevertheless, it has been found in both mitochondrial and 

chloroplast genomes, although the amount is much higher in mitochondria. 

 

In this study we analysed the largest scale liverwort data set regarding the existence of 

RNA editing sites of a mitochondrial gene. Still, no evidence could be found for any 

RNA editing in complex thalloid liverworts, as was already proposed earlier. Putative 

Editing sites in simple thalloid and leafy liverworts were identified by comparison with 

the Marchantia polymorpha chondriome and its related taxa. All findings are presented 

in figure 2-6. 

 

The full size protein as deduced from the Marchantia polymorpha chondriome sequence 

is 496 amino acids (aa) long. The average number of amino acids that were checked for 

editing sites is 438 aa per taxon, which is almost 90 % of the proposed gene length. In 

this region a total of 120 putatively edited nucleotide sites were identified, 47 of which 

are unique to a single species. They result in 103 changed amino acids, meaning that 

more than every fifth aa of nad4 is target for RNA editing in at least one liverwort 

species. All proposed nucleotide changes are C to U editings. 

The highest number of putative editing sites was identified in Haplomitrium with 53 

edited aa, comprising almost every 8th aa of the analysed region (Fig. 2-6). This is an 

extraordinarily large amount, with an even slightly higher ratio than the findings from 

the nad5 gene, where an average of every 9th aa is edited in this genus (Groth-Malonek 

et al. 2005), rendering it the most strongly editing species in that study, which also 

included hornwort, fern, and angiosperm sequences in comparison.  

However, the confirmation of the proposed editing sites by the analysis of cDNA 

sequences from the same taxa should be added in further experiments. 

2.3.1.3 A phylogenetic study in liverworts: the usefulness of nad4 as a novel 

marker gene  

 
The phylogeny of all liverworts based on molecular data has come into focus only 

recently (Davis 2004; He-Nygren et al. 2004; Forrest and Crandall-Stotler 2005). 

Mostly chloroplast and nuclear loci were used for these approaches, and only one single 
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mitochondrial locus, the nad5 gene, has been included in some studies, where large 

parts of its intron are usually excluded from the study because of missing parts or 

alignment problems .  

This phylogenetic approach presented here (Fig. 2-7) includes for the first time a 

liverwort taxon sampling over all major subgroups that is solely based on a 

mitochondrial gene, and that includes one mitochondrial group II intron (see 

chapter 2-1).  

The study is meant to establish whether the nad4 gene is an adequate locus for 

phylogenetic analyses in liverworts, based on the assumption that this very ancient land 

plant group could be well understood by the use of highly conserved and slowly 

evolving DNA sequences like genes from the chondriome (Wolfe et al. 1987). 

 

OVERALL TOPOLOGY 

The basal-most branching event (Fig. 2-7) supports the bifurcation of the 

morphologically simple thalloid Blasia and the rest of all liverworts. Blasia has been 

proposed to be placed in basal position of the complex thalloid clade by recent genetic 

approaches (Davis 2004; Forrest and Crandall-Stotler 2004), or treated as a simple 

thalloid liverwort of the order Metzgeriales by morphological analyses (Renzaglia 1982; 

Schuster 1992) or rbcL analysis (Wheeler 2000). Other studies placed Blasia in a basal 

position to the rest of the liverworts (Stech and Frey 2001; He-Nygren et al. 2004), 

classified as a separate class Blasiopsida. In this study Blasia is placed in an unranked 

relationship with three other groups. One of them are the complex thalloid liverworts 

(Marchantiopsida), that are considered a well defined monophyletic group in most 

studies, and usually placed as sister to the rest of the liverworts. Another clade is formed 

by the combined taxa of the Haplomitriopsida and Treubiopsida. All species of this 

group are very rare, and tend to have a high genetical distance from the rest of the 

liverworts, resulting in very long branches and potential misplacing due to long branch 

attraction. The third unranked clade is comprised of all Jungermanniopsida, including 

the two growth forms of the simple thalloids and the leafy liverworts. 
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Fig. 2-7: Phylogeny of liverworts based on the mitochondrial nad4 gene. Dotted lines are branches 
without statistical support >90 % through Bayesian Posterior Probabilities. Thin lines are weakly 
supported nodes (95-99 %), strong lines have maximum support (100 %). 
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MARCHANTIOPSIDA 

The basal-most group, which is not supported in an unequivocal position, but strongly 

supported as a clade, is comprised of the Marchantiopsida (complex thalloid liverworts), 

including 16 taxa from 15 genera (Fig. 2-8). This group represents only about 5 percent 

of all liverwort species, and is genetically very homogenous. Other molecular 

approaches to obtain a phylogeny of the complex thalloid liverworts included nuclear 

(LSU) rDNA genes (Boisselier-Dubayle et al. 1997; Boisselier-Dubayle et al. 2002), 

nuclear 18S rDNA (Bopp and Capesius 1996; Capesius and Bopp 1997), the 

combination of nucLSU and chloroplast trnL-trnF-spacer (Wheeler 2000), or 

chloroplast rbcL (Lewis et al. 1997). All studies exhibited low support for most 

subgroups and / or conflicting results, with the exception of one recent all-liverwort 

approach involving 8 loci (five chloroplast, one mitochondrial, two nuclear) that 

included a relatively large set of 12 taxa plus the reconsidered former simple thalloid 

liverworts of the Blasiaceae, Blasia and Cavicularia (Forrest and Crandall-Stotler 

2005). 
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Fig. 2-8: Backbone phylogeny of liverworts based on the mitochondrial nad4 gene. Some clades are 
collapsed for enhanced visuality. Subtree includes additional taxonomic descriptions. Dotted lines are 
branches without statistical support >90 % through Bayesian Posterior Probabilities. Thin lines are 
weakly supported nodes (95-99 %), strong lines have maximum support (100 %). Complete tree see 
figure 2-7. 
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In this study (Fig. 2-8) the clade exhibits strong support for several branches within the 

Marchantiopsida clade that could give further insights into the phylogeny of this 

liverwort group. The basalmost branch is comprised of Corsinia and Lunularia in a 

strongly supported relationship alongside with Sphaerocarpos. This placement of 

Lunularia and Sphaerocarpos was already proposed several times (mentioned above) 

and seems to be a valid assessment of the earliest-diverging complex thalloids. Corsinia 

has formerly been placed in the crown group (Boisselier-Dubayle et al. 2002), but 

exhibited the same strong relationship with Lunularia in an approach using nad5 data 

(Beckert et al. 1999). As those nad5 sequences were obtained using the same DNA 

samples as in this nad4 study, alternative DNA samples should be tested to confirm this 

placement. Riella is taxonomically placed in the subclass Sphaerocarpidae, together 

with Sphaerocarpos (Frey and Stech 2005). However, no unambiguous monophyletic 

Sphaerocarpidae-clade could be identified here (Fig. 2-8), but there is also no support 

for a paraphyletic or polyphyletic relationship. Riella has in fact been shown in a 

monophyletic group with Sphaerocarpos by a phylogenetic approach using only nuclear 

sequences (Wheeler 2000). The next diverging branch is composed of two members of 

the Marchantiaceae, Marchantia and Bucegia. The placement of this family in a rather 

basal position of the complex thalloids has also been proposed before, albeit with only 

moderate support (Wheeler 2000; Boisselier-Dubayle et al. 2002). One part of the 

crown group consists of the monophyletic family Aytoniaceae (Asterella and Reboulia). 

The genus Asterella has previously been discussed as a polyphyletic group in this 

family (Long et al. 2000), but the placement of the family as a monophyletic clade was 

strongly supported in that study, as it is here. Another part of the crown group is a well 

supported clade formed by the four members of the order Ricciales. This order is 

comprised of two families, the Oximitriaceae and the Ricciaceae, including the only two 

genera Riccia and Ricciocarpos. The monophyly of the family Ricciaceae is not fully 

supported here, as Oxymitra is placed in an unsupported position between the two 

genera, suggesting a possibly polyphyletic family. Nevertheless, the order Ricciales is 

strongly supported as a monophyletic group. A new taxon that has not been included in 

in the previous analyses is the genus Monosolenium (Monosoleniacae), which is 

taxonomically placed in the suborder Marchantiineae of the order Marchantiales. 

Monosolenium clusters together with Targionia, the single member of the suborder 
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Targioniineae sampled in this survey. This suborder consists of a single family with the 

single genus Targionia, and should probably be included in the suborder 

Marchantiineae as no clear placement in a sistergroup relationship to the other 

subclasses can be postulated, at least on genetical basis. Two other unsupported crown 

group taxa are Conocephalum, a Marchantiineae taxon, and Monoclea, which is 

considered to be a member of the order Monocleales, but is clearly nested here within 

the Marchantiales clade (Fig. 2-8). Monocleales have been morphologically described 

by the absence of ventral scales in the gametophyte and the occurrence of a massive seta 

(Crandall-Stotler and Stotler 2000), and especially the rather simple thalloid 

appearance. As these are autapomorphic characters for a Marchantiopsiid liverwort, no 

connection between the orders Marchantiales, Ricciales, or Sphaerocarpiidae/ 

Sphaerocarpales can been made. In this molecular approach no sistergroup relationship 

to any of them was supported. As many morphogical features, especially in the complex 

thalloid liverworts, show reduced states that are not easily identified as homoplastic 

(Boisselier-Dubayle et al. 1997; Boisselier-Dubayle et al. 2002), genetic data could shed 

some light on the matter, as there are many more character states available from DNA 

than from morphological approaches. The data of this study do not support a separate 

placement of Monoclea in an order Monocleales, but rather suggest a placement within 

the Marchantiales. The order Marchantiales itself is clearly paraphyletic if the order 

Ricciales is regarded as a valid taxonomic unit. To improve the knowledge of these 

unclear relationships more data, especially from further loci, should be analysed. 

 

HAPLOMITRIOPSIDA / TREUBIOPSIDA 

This clade is comprised of three taxa of the Treubiopsida and one of the 

Haplomitriopsida (Fig. 2-7). They tend to be placed on the basis of all liverworts, either 

Treubiopsida alone (Stech and Frey 2001) or in combination together (Crandall-Stotler 

et al. 2005) or have a different placement with Haplomitriopsida connected to the 

simple thalloid liverworts (Stech and Frey 2001). Morphologically, the placement is still 

debated, and they have been placed with Blasia as separate orders Haplomitriales, 

Treubiales and Blasiales at the basis of the class Jungermanniopsida, subclass 

Metzgeriidae  (Crandall-Stotler and Stotler 2000). The latest molecular and taxonomic 

studies positioned Blasia at the basis of the complex thalloid clade, and the 
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Haplomitriopsida/Treubiopsida group in a separate cluster as the earliest diverging 

group of all liverworts (e. g. Forrest and Crandall-Stotler 2004; Frey and Stech 2005). 

Both groups clearly exhibit an extensive genetic distance to the rest of the liverworts, 

and Haplomitrium is also known for its high degree of RNA editing (Groth-Malonek et 

al. 2005), a feature that is either lost or has not yet evolved in Marchantiopsida 

(Steinhauser et al. 1999). In this study no placement of this group can be proposed, but a 

joint placement of both classes is supported so far. 

 

JUNGERMANNIOPSIDA (SIMPLE THALLOID & LEAFY LIVERWORTS) 

This class can be divided into two morphologically distinct groups, the simple thalloid 

and the leafy liverworts (Metzgeriidae vs. Jungermanniidae, respectively), the latter 

comprising approximately 95 % of all extant liverwort taxa (Fig. 2-7). Recent studies 

revealed that some morphological features, especially the simple thalloid state, have 

evolved several times during evolution, as for instance the occurrence of simple thalloid 

vegetative phases in some leafy liverworts, and are therefore possible homoplastic 

characters. The simple thalloid taxa of this study are separated in three well supported 

clades: simple thalloids Ia, Ib, and II (Fig. 2-7). The placements of clade II as a sister 

group to the subclass Jungermanniidae renders the simple thalloid taxa paraphyletic 

(Crandall-Stotler and Stotler 2000). This agrees with recent genetic studies (Davis 2004; 

Forrest and Crandall-Stotler 2004; Crandall-Stotler et al. 2005; Forrest and Crandall-

Stotler 2005) and led to the proposal of a distinct separation of one superclass for the 

simple thalloid clade I and another superclass for clade II in connection with the leafy 

liverworts (Frey and Stech 2005), accompanied by a superclass for the Marchantiopsida 

including Blasia and another one for the Treubiopsida/Haplomitriopsida clade. It should 

be noted, that the simple thalloids clade Ia is composed of the strongly supported clade 

of the two genera Noteroclada and Pellia, which are morpho-taxonomically placed in 

the family Pelliaceae and were resolved together in several molecular analyses 

(Crandall-Stotler et al. 2005; Forrest and Crandall-Stotler 2005), but were recently 

regarded as an unclear relationship based on very different versions of rbcL sequences 

available from public databases (Heinrichs et al. 2005; Frey and Stech 2005). The nad4 

data of this study concur with the placement of Noteroclada and Pellia in a close 

relationship (Fig. 2-7). 



Chapter 2: The mitochondrial nad4 gene 
 

25 

JUNGERMANNIIDAE (LEAFY LIVERWORTS) 

This group is the most taxon-rich group of all liverworts, and is comprised of several 

well supported subgroups (Fig. 2-7). Basalmost are two subclades referred to as leafy Ia 

and leafy Ib, that are taxonomically circumscribed as the order Porellales, which was 

recently expanded to include the former Radulales and also Ptilidium and Lepidolaena 

based on a rbcL phylogeny (Heinrichs et al. 2005). In that study no statistical support 

for this grouping was evident, but the circumscription as Porellales originated rather 

from the separation of the suggestively combined but unsupported clades of the rbcL 

phylogeny from a well supported sister clade Jungermanniales. The present study based 

on nad4 data cannot contradict this placement, as there is no apparent difference to the 

unsupported placement of Ptilidium or Lepidolaena in this study (Fig. 2-7). The strong 

support of a Lejeunea-Frullania clade, however, has been proposed before by 

morphological and genetic studies (Crandall-Stotler and Stotler 2000 and therein). The 

high support for the clade composed of Radula and Porella mirrors their placement in 

the former order Porellales sensu Schljakov (1972) as equally ranked suborders, rather 

than the placement of Radula in a separate order Radulales parallel to Porellales 

(Frullania, Lejeunea, Porella) (Crandall-Stotler and Stotler 2000, later referred to as 

CSS).  

The crown group of the phylogeny is composed of the group leafy II that is subdivided 

in three clades A, B, C, and the basal placed genus Mylia (Jungermanniaceae s.str.) 

(Fig. 2-7). This taxon has not been included in recent large scale phylogenetic 

approaches of liverwort phylogeny, but, relating to two phylogenetic approaches 

analysing the Lophoziaceae and related families using chloroplast data (Schill et al. 

2004; Yatsentyuk et al. 2004), the placement of Mylia should be in clade C. However, 

Mylia has been designated as clade D, because no affiliation to any of the clades A, B, 

or C is supported in this study (Fig. 2-7). Clade B consists of Jamesoniella, Scapania, 

Tritomaria, and Diplophyllum in a strongly supported relationship. Jamesoniella and 

Tritomaria are genera of the family Lophoziaceae sensu Schill (this family is included 

in the Jungermanniaceae sensu CSS), Scapania and Diplophyllum are genera of the 

family Scapaniaceae sensu Schill, or divided into the two families Scapaniaceae and 

Diplophyllaceae sensu Potemkin (1999). The close relationship of the latter two taxa is 

supported in this study (Fig. 2-7). The relationship of Jamesoniella (subfamily 
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Jamesonielloideae) and Tritomaria (subfamily Lophozioideae) is paraphyletic, with the 

placement of the Scapaniaceae as a crown group, which is identical to the findings of 

Schill et al. (2004). In that study the inclusion of the Scapaniaceae in the Lophoziaceae 

was considered premature. The results of these nad4 data strongly support at least a 

close relationship of all four genera. 

Clade C consists of Gymnomitrion (suborder Jungermanniineae, Gymnomitriaceae), 

Nardia (suborder Jungermanniineae, Jungermanniaceae), Harpanthus (suborder 

Lophocoleineae, Geocalycaceae), Anthelia (suborder Antheliineae, Antheliaceae), and 

Calypogeia (suborder Lepidoziineae, Calypogeiaceae). Clade A includes Plagiochila 

(suborder Lophocoleineae, Plagiochilaceae) and Lophocolea (Lophocoleineae, 

Geocalycaceae sensu CSS (incl. Lophocoleaceae)) in a strongly supported clade, 

accompanied by Bazzania (suborder Lepidoziineae, Lepidoziaceae), Herbertus 

(suborder Herbertineae, Herbertaceae), and Trichocolea (order Lepicoleales sensu CSS, 

suborder Lepicolaeninae, fam. Trichocoleaceae) (Fig. 2-7). 

The strong support of the Plagiochilaceae (Plagiochila) and Geocalycaceae 

(Lophocolea) is mirrored with rbcL data (Heinrichs et al. 2005), but that study does not 

include the genus Harpanthus that is placed in clade C here (Fig. 2-7), in accordance 

with the data from Davis (2004). The family concept of the Geocalycaceae is clearly in 

need of a taxonomic revision, as it appears to be a polyphyletic group in independent 

studies. Further polyphyletic groups identified here are the suborder Lepidoziineae 

(Calypogeia and Bazzania), and the order Lepicoleales sensu CSS (Trichocolea, leafy 

II, Lepidolaena leafy Ia). These findings are congruent to the results of Davis (2004)  

and Heinrichs et al. (2005), and support them with data from an independent new locus 

on the mitochondrial genome.  

 

CONCLUSION 

In conclusion it can be said, that the nad4 gene is indeed useful to establish 

phylogenetic relationships in liverworts, but the topology of the resulting tree is lacking 

a well supported backbone. The main groups were identified with rather high statistical 

support. In comparison with other studies concerning liverworts, the complex thalloids 

exhibited a better statistical support for the topology when based on nad4 data. This 

could be very useful to establish a well resolved phylogeny for this group with a larger 
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taxon sampling, probably in connection with other molecular markers. This approach 

could also be used to gain more support for the backbone phylogeny.  

 

2.3.2 The nad4 gene in mosses 

 

In a previous study concerning the intron distribution of bryophyte mitochondria 

compared to flowering plants (Pruchner et al. 2001) nad4 amplicons of two mosses 

were sequenced for the first time: Timmia and Takakia. Both taxa exhibited a single 

intron: nad4i461 (Fig. 2-8), which is also present in angiosperms. These findings 

supported the taxonomic position of the enigmatic genus Takakia as a moss. The genus  
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Fig. 2-8: Overview of the mitochondrial nad4 gene in mosses. The group II intron is indicated by a 
pinhead. Intron designation relies on the nucleotide position in the nad4 gene of the reference liverwort 
Marchantia polymorpha after which the intron is inserted. Primer locations and directions are symbolized 
by arrows. Primers underneath the bar are located in exon regions, primers above the bar are located in 
the intron. 
 

has been placed as a liverwort in earlier studies (e.g. Schuster 1984), until moss-like 

sporophytes were discovered (Smith and Davison 1993). Molecular studies supported 

the latter placement (Hedderson et al. 1998; Pruchner et al. 2001; Beckert et al. 2001).  

An extension of the nad4 data set for mosses in this study (Tab. 2-4) verifies the 

conservation pattern of nad4i461, and includes a first analysis of the phylogenetic 

potential of the nad4 locus in mosses. The intron distribution of 13 nad4 sequences of 

mosses is shown in figure 2-7. In all species only the intron nad4i461 has been found, 

including Takakia. This supports the taxonomic placement of this genus within the 

mosses, as has been shown by phylogenetic approaches using nad2 and nad5 data 

(Beckert et al. 2001).  
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Table 2-4: Taxa used for the phylogenetic analyses of the nad4 gene in mosses 

Phylogeny Species collection 
number 

Accession 
number and 

sequence 
length nad4 

Accession 
number and 

sequence length 
rbcL 

Accession 
number and 

sequence 
length rps4 

Andreaeopsida Andreaea nivalis Hook. Muhle140897-3 2052 bp 
AF478199 

1354 bp 
(rupestris) 

AJ617675 
568 bp 

(rupestris) 

Sphagnopsida Sphagnum fallax Klinggr. Muhle180597-2 2022 bp AB013673 
1305 bp 

AF307004 
569 bp 

(tenerum) 

Takakiopsida Takakia lepidozioides Hatt. et H. 
Inoue Qiu97126 AJ409092 

1990 bp 
AF244565 

1200 bp 
AJ269687 

609 bp 

Tetraphidopsida Tetraphis pellucida Hedw. Ulm-collection 
s.n. 2036 bp AF478203 

1347 bp 
AF231896 

561 bp 

Bryopsida Bartramia halleriana Hedw. Muhle140897-6 2032 bp (VK) AF491009 
1285 bp 

AF265358 
602 bp 

 Buxbaumia aphylla Hedw. Muhle070398-1 1938 bp AY118230 
1297 bp 

AY137677 
584 bp 

 
Diphyscium sessile Lindb. Muhle191097-2 1999 bp (VK) 

AY312928 
1315 bp 

(foliosum) 

AJ251065 
609 bp 

(foliosum) 
 

Fissidens cristatus Wilson & Mitt. Muhle200497-3 2034 bp 
AF226810 

1329 bp 
(mooreae) 

AF223056 
588 bp 

(subbasilaris) 
 

Isothecium alopecurum (Hedw.) 
Spruce Muhle291197-6 2035 bp 

AB029385 
1428 bp 

(Platyhypnidium 
riparioides) 

AY306933 
570 bp 

(myosuroides) 

 Mnium hornum Hedw. Muhle090897-2 2036 bp AF226820 
1347 bp 

AF023796 
601 bp 

 Physcomitrella patens (Hedw.) 
Bruch & Schimp. 

Ulm-collection 
s.n. 2036 bp AP005672 

1428 bp 
AF223044 

586 bp 
 

Timmia bavarica Hessl. Muhle1611197-1 AJ409093 
2029 bp 

AJ275185 
1334 bp 

(austriaca) 

AF223035 
588 bp 

(austriaca) 
 Ulota crispa (Hedw.) Brid. Muhle200497-6 2029 bp AY631208 

1346 bp 
AF306972 

570 bp 
 
VK stands for sequences obtained earlier in the laboratory of V. Knoop. Alternative species for rbcL and rps4 analyses are given in 
italics. 
 

A recent approach for the classification of mosses has been published by Goffinet and 

Buck (2004), where several rearrangements especially regarding the class level were 

made, as well as the establishments of five superclasses. The taxonomic placement of 

the genus Takakia in a separate superclass, or the arrangement of the classes 

Sphagnopsida and Andreaeopsida in superclasses that include only one class, 

respectively, mirrors the still ongoing search for the relationship between the earliest 

diverging mosses, based on the extremely different morphology of these plants. 

Usually, it is agreed upon the placement of Sphagnum, Takakia, often combined with 

Andreaea, as the basal-most branches of the phylogenetic tree (e. g. Beckert et al. 2001; 

Cox et al. 2004). An identical topology was obtained by midpoint rooting (see also 

Figs. 2-9, 2-10).  
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Fig. 2-9: Phylogenetic tree based on the mitochondrial nad4 gene in mosses. The tree was obtained by 
Neighbor-joining using Kimura-2-Parameter distances, pairwise gap deletions, uniform rates among sites, 
and 10.000 bootstrap replicates; bootstrap values above 70 are given next to the respective nodes. 
Systematic classification is adopted from Goffinet and Buck 2004.   
 

The relationships of the early diverging classes Tetraphidopsida, Andreaeopsida, 

Sphagnopsida, and Takakiopsida are not resolved in this tree, although there is a well 

supported distinction between them and the class Bryopsida, which comprises the 

majority of the taxa in this tree and of all mosses. In this class the topology exhibits a 

well supported backbone. No separation of the subclass Bryidae is supported, but this 

group is known to be paraphyletic (Goffinet and Buck 2004 and therein). The overall 

arrangement of the taxa is in congruence with previous studies on mosses (Beckert et al. 

2001; Cox et al. 2004), and could therefore very well constitute a novel marker for moss 

phylogeny. The statistical support for the topology is definitely competitive to other 

markers with the same taxon sampling, like rbcL or rps4 (Fig. 2-10).  

 

 

 

 

 
 

 
 

 
Fig. 2-10: Phylogenetic tree based on the mitochondrial rbcL in mosses (left) and rps4 (right). Taxon 
sampling is based on the data for the nad4 gene (Fig. 2-9). The tree was obtained by Neighbor-joining 
using Kimura-2-Parameter distances, bootstrap values above 70 are given next to the respective nodes. 
Systematic classification is adopted from Goffinet and Buck 2004.   
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It should be noticed, however, that the spacer region located upstream of the nad4 gene, 

between nad5 and nad4, is less than half the size of the gene studied here, and exhibits 

very good statistical support as well (see chapter 4, also in: Rein, Groth-Malonek, 

Knoop: “Mitochondrial gene spacers as novel phylogenetic markers: a case study in 

mosses”, under revision). 

2.3.3 The nad4 gene in hornworts 

 
Hornworts are the smallest and rarest group of bryophytes, with only about 100 taxa 

worldwide. Nevertheless, they comprise a key link to the understanding of the 

phylogeny of all land plants because of their widely debated placement, e.g. at the basis 

of all land plants (Mishler et al. 1994; Garbary and Renzaglia 1998) versus the 

placement as the sister group to all tracheophytes (Lewis et al. 1997; Groth-Malonek et 

al. 2005). A large part of this discussion originates from the morphological aspect that 

hornworts have no stem and leaves but a thallus, which at a first glance reminds of a 

complex thalloid liverwort. As the acquisition of hornwort DNA is also rather difficult 

due to the scarcity of these plants, only few taxa, if any, were included in recent 

molecular studies, with only few exceptions (Cargill et al. 2005 and therein; Duff and 

Moore 2005; Duff 2006). 

The sequences of hornwort DNA studied here (table 2-5), are restricted to few 

fragments of the gene, and span almost the whole exon region, but do not include 

complete sequences of the identified introns. Nevertheless, the overall gene structure as 

known so far can be depicted as in figure 2-11.  

 

Table 2-5. Overview of nad4 hornwort sequences used for intron identification. 

Species Intron Accession number and sequence length 

Anthoceros agrestis Paton nad4i461, present DQ267609, 278 bp, intron: bases 190-278 

Anthoceros agrestis Paton nad4i548, absent AJ409090, 317 bp 

Anthoceros agrestis Paton nad4i976, present AJ409091, 506 bp, intron: bases 1-191 

Megaceros spec. nad4i1399, absent 276 bp 

 

Two group II introns were identified in the nad4 gene of hornworts. One of them, the 

intron nad4i461, is present in mosses and angiosperms in the same location (Fig. 2-11). 
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Fig. 2-11: Overview of the mitochondrial nad4 gene in hornworts. Group II introns are indicated by 
pinheads. Intron designation relays to the nucleotide position in the nad4 gene of the reference liverwort 
Marchantia polymorpha after which the intron is inserted. Primer locations and directions are symbolized 
by arrows. Primers underneath the bar are located in exon regions, primers above the bar are located in 
introns. 
 
Even without the full sequence available, it can reasonably be proposed that they are 

vertically transferred homologues, as this pattern is known from other introns in nad5 

(nad5i230 and nad5i1455, respectively). The second intron found in nad4 of hornworts 

is nad4i976. An intron in this position of the reading frame is known from angiosperms, 

where it can occasionally be lost, as has been shown in lettuce (Geiss et al. 1994). 

Hence, this intron, which is absent in mosses and liverworts, may be seen as an 

additional synapomorphy of a hornwort-tracheophyte clade. However, this is obscured 

by the fact that a positional homologue is present in the alga Chara. This resembles the 

case of the intron rps3i74, which is also known from the Chara chondriome, missing in 

the liverwort Marchantia, and conserved in some angiosperms, e.g. Arabidopsis 

(Turmel et al. 2003). The possibility that the positional homologues in Chara are of 

rather xenolog origin, and are not related to the introns identified in higher plants or 

hornworts, respectively, cannot be ruled out here, but could possibly be concluded by 

detailed comparisons of complete intron sequences in future studies.     
 

2.3.4 The nad4 gene in lycophytes and ferns 

This study shows for the first time the intron distribution of the mitochondrial nad4 

gene in two polypod ferns (Fig. 2-12, table 2-5) and in fragments of lycophyte 

sequences (table 2-5 and V. Knoop, pers. comm., figure 2-14). 
 

Table 2-5. Overview of nad4 lycophyte and monilophyte sequences used for intron identification. 

Species Voucher number concerning intron Accession number and length 
Asplenium scolopendrium GF050421 i461 present, i548 absent, 

i976 present, i1399 absent 
DQ267606, 4873 bp 

Dryopteris uniformis  BGBN 22023 i461 present, i548 absent, 
i976 present, i1399 absent 

4741 bp 

Isoetes velata MP040402 i976 absent DQ304074, 562 bp 
Huperzia selago GS991028 i976 absent DQ304072, 562 bp 
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Both species, Asplenium and Dryopteris, carry two group II introns in their nad4 gene 

(Fig. 2-12), which are placed in the reading frame in identical positions as two 

angiosperm introns. One of them, nad4i461, is also conserved in mosses (chapter 2.3.2), 

i976

n4i976up n4i976dov1(A)
n4i976dov2(D)

n4up 
n4upv2

i461

n4i1+ n4i1-

n4i+/-
n4+1
n4+1v2

n4do

n4dov2

n4-1 n4-1v2
n4-1v2kurz

n4dohw1

 
Fig. 2-12: Overview of the mitochondrial nad4 gene in Asplenium and Dryopteris. Group II introns 
are indicated by circles. Intron designation relays to the nucleotide position in the nad4 gene of the 
reference liverwort Marchantia polymorpha after which the intron is inserted. Primer locations and 
directions are symbolized by arrows. Primers underneath the bar are located in exon regions, primers 
above the bar are located in introns. 
 
hornworts (2.3.3), and lycophytes (V. Knoop, unpublished data); nad4i976 has been 

found in hornworts, but not in lycophytes. In the light of the considerations above, this 

may reflect a secondary loss in the lycophyte clade. The alignment of the amino acid 

translation of the fern nucleotide sequences reveals 9 stop codons in Asplenium and 8 

stop codons in Dryopteris (Fig. 2-13). Compared to the protein sequence of the 

liverwort Marchantia polymorpha, all of them are likely to be removed by reverse RNA 

editing, the change from U to C. This would mean a rescue of TGA (stop) through the 

change to CGA (R, arginine), and of TAA and TAG (stops) to CAA or CAG (Q, 

glutamine), respectively. 
 

A. scolo. TI*WLPHSNINFIIGIDXTLLSLAVLTMSSILIRILVGWSCIEGFNKEYIIAFSIGESFMIAVSRMPDTSPLHVFFESVLILMS  
D. uni.   ..R...........X..G.......S..............S....E.............T..........L....X.....S..  
M.poly.   ..R...Y.....Y....GIS.FFVI..TFLTP.C....FYSVKSYK...M...F.C...L...FCSL.LLIFY........P.F  
 
A. scolo. ITIGVRGSR*RKIRAAH*FLSHTPPGSVFMLLAISLIFF*TGTTDLHISLTTESSEWR*ILPRLAFLASFPXXVPMVXVHIRXP  
D. uni.   .........*.......*.....................*...I..............*.......................L.  
M.poly.   .I...W...Q...K..YQ.FLY.LM..LL.....LF...Q......Q.L....F..R.Q..LWI..F...SVK....P...WL.  
 
A. scolo. EAHVEXLTAGFVILAGIPXKLGTYGFLRFSVPMFXXATLYFTPFVYTLSVIAITYTLPTTIR*IDLKKIIAYSSVAYMNFVTTG  
D. uni.   ...X.V...........LS...........................................*.....................  
M.poly.   .....AP...S......LL...........I...PE........I........I..SL....Q.............H.....I. 
  
A. scolo. MSSSNIQGIEGSILPTSSHGLVLLALSSCVGALYD*YKT*PVRYYGGPASTMPNFPTIPLLSTPANMSLPGTSSSIGEFPILVG  
D. uni.   ...................................*...*............................................  
M.poly.   .F.L..........LML.....SS..FL.......RH..RI.K....LV....I.S..F.FF.L..........F....L....  
 
A. scolo. AF*KNSLVATSAALGMILGAAYSPWLYNRVVFGNFKPNFILKFSDSNRREVLIFLPFIAGVIWMGVYPEVFLECMHTSVSNS  
D. uni.   ..*...............................................................................  
M.poly.   ..QR......L............L.....................L............V......................L  
 

Fig. 2-13: Alignment of the nad4 gene protein sequence of the liverwort Marchantia polymorpha with 
the amino acid translation of the nucleotide sequences of Dryopteris uniformis and Asplenium scolo-
pendrium. Amino acids identical to the uppermost line are indicated by dots, potential editing sites are 
given in bold letters, stop codons are marked by asterisks. X stands for not translatable positions due to 
ambiguities in the nucleotide sequence.  
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The occurrence of stop codons in the amino acid translation is typical for mitochondrial 

fern sequences, as can also be seen in the fern nad5 sequences (Vangerow et al. 1999). 

Reverse editing is known from hornworts, rather common in ferns, and much rarer 

again in angiosperms. Usually it is much less frequent than the “normal” land plant 

editing, the change from C to U (see also chapter 2.2). 

 

2.3.5 Overview of the intron distribution in nad4 for all land plants   

 

The findings of this study on the mitochondrial nad4 gene in land plants are combined 

in figure 2-14, as an overview of all identified introns.    

 

angiosperms

monilophytes

lycophytes

hornworts

mosses

liverworts

Chara

i461

i548

i1399

i976

 
 

Fig. 2-14: Overview of intron distribution in the mitochondrial nad4 gene in land plants. Circles 
indicate group II introns, grey circles stand for introns that can occasionally be lost in angiosperms. Intron 
designation relays to the nucleotide position of the CDS after which the intron is placed, in reference to 
the Marchantia polymorpha Genbank entry NC_001660, adopted after Dombrovska and Qiu (2004). The 
phylogenetic tree is extrapolated from recent studies about land plant phylogeny. 
 
 
Four group II introns are known to interrupt the coding region of the mitochondrial 

nad4 gene in land plants (fig. 2-14). One of these introns, nad4i548, is unique for 

liverworts, and is the first mitochondrial group II intron studied extensively for this 

bryophyte group. 
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Another intron, nad4i976, is already conserved in Chara (Fig. 2-14), yet not in 

Chaetosphaeridium. It has not been detected in any liverwort or moss sequence, but 

homologues have been identified in hornworts (V.Knoop, unpublished), monilophytes 

(this study), and angiosperms (e.g. Unseld et al. 1997). No evidence was found for its 

occurrence in Isoetes, a lycophyte, but as this group is very diverse in its conservation 

of introns despite its low number of species, the data should be regarded here with 

special caution before generalizing the data for the whole lycophyte group. The intron 

can also be occasionally lost from angiosperm mitochondria (Gass et al. 1992). 

The intron nad4i461 has been observed in all mosses, hornworts, lycophytes, 

monilophytes, and angiosperms studied (Fig. 2-14). This conservation pattern is 

identical to the nad5 introns nad5i230 and nad5i1455 (Groth-Malonek et al. 2005), even 

though nad5i1455 evolved into a trans-splicing intron in angiosperms. An almost 

identical pattern was also shown for nad1i728 (Dombrovska and Qiu 2004), which is 

reported to be absent from nad1 of the gymnosperm Ephedra (southern blot analyses in 

Qiu et al. 1998) and whose conservation state is unknown for Isoetes (Dombrovska and 

Qiu 2004). This tendency to conserve and vertically inherit introns that occur as early in 

the land plant evolution as in mosses is an indication for a phylogeny that is based on 

the early divergence of liverworts from the rest of the land plants, and mosses and 

hornworts in a basal position to tracheophytes. Hornworts are proposed to be even more 

closely connected to tracheophytes than mosses (Lewis et al. 1997; Samigullin et al. 

2003; Groth-Malonek et al. 2005), one reason for that is the sharing of the intron 

nad5i1477 (which is absent in monilophytes, trans-splicing in angiosperms). Other 

argumentations are based on their morphological affinity to the potentially intermediate 

fossils between bryophytes and tracheophytes like Hornea (Campbell 1924), and 

chemical similarities regarding cell-wall xylans (Carafa et al. 2005). 

The fourth intron identified in nad4 is nad4i1399, a strictly tracheophyte intron that has 

been shown to occur in lycophytes (V. Knoop, pers. comm.) and angiosperms 

(Fig. 2-14), and has probably been secondarily lost in monilophytes. It is also 

occasionally absent in some angiosperms (Gass et al. 1992; Geiss et al. 1994). 

 

The overall pattern of the intron distribution in the nad4 gene (Fig. 2-14) can be applied 

for the following reconstruction of the land plant phylogeny: the closest ancestor to land 
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plants is the Charales alga Chara, as the angiosperm intron nad4i976 is already 

conserved here. The earliest bifurcation of the phylogenetic tree occurs between 

liverworts (loss of nad4i976, autapomorphic gain of nad4i548) and the rest of the land 

plants. Mosses comprise the earliest diverging branch of the non-liverwort lineage, and 

acquire the intron nad4i461, but lose nad4i976. Hornworts follow in a paraphyletic 

relationship, as the sistergroup to all tracheophytes. They do possess the Charales intron 

nad4i461. The tracheophytes lineage places lycophytes as the basal-most group, which 

gains nad4i1399, but loses nad4i461 again. Monilophytes as the paraphyletic next group 

and the sister group to spermatophytes, share their two introns with angiosperms, but do 

not carry nad4i1399. Actually, the intron distribution is identical to the hornworts.  

Obviously, both angiosperm introns nad4i976 and nad4i1399 that are not always 

conserved in angiosperms seem to be rather less continuously conserved in older plant 

groups as well (Fig. 2-14). As only two complete monilophyte sequences and few parts 

of lycophytes were analysed in this study, it is possible that the apparent loss of any of 

the introns is a phenomenon restricted to some taxa of these plant groups, as it is the 

case in angiosperms. Further analysis of additional species of this gene could shed light 

on this problem. This of course applies to hornworts as well. In the case of liverworts 

and mosses the taxon sampling is considered to be widespread enough to refuse the 

option of the inheritance of these two introns at an earlier time than proposed here. 

 



 

3 The nad5 gene revisited: Six years after Beckert et 
al. (mosses) and Vangerow et al. (ferns): new 
insights into a now highly popular marker for lower 
land plant phylogeny 

 

3.1 Introduction 
 

Analyses of the mitochondrial nad5 gene in land plants did not begin with phylogenetic 

approaches, but with the discovery of two trans-splicing group II introns in angiosperms 

(Knoop et al. 1991; Pereira et al. 1991), which are separated by a very small exon of 

only 22 nucleotides (Fig. 3-1). They are accompanied by two “normaly” splicing cis-

arranged introns in angiosperms, nad5i230 and nad5i1872. 

Following this line, the ancestors of the trans-splicing introns were identified in lower 

land plants (Malek et al. 1997). One of them, nad5i1455, was found in the fern 

Asplenium, where it is not trans-splicing, but cis-arranged. The other one, nad5i1477, is 

absent in this species, but present in the lycophyte Isoetes, where it is extraordinary 

small with only 434 bp, and in the bryophyte Anthoceros (hornwort) with a size of 2391 

bp, where it is cis-arranged in both cases (Malek and Knoop 1998). The complete 

sequencing of a liverwort chondriome (Marchantia polymorpha, Oda et al. 1992a) lead 

to the finding of a unique group I intron, nad5i753, which is absent in vascular plants.  
 

nad5

i230 i391 i753 i881 i1242
i1455T

i1477T
i1872

K LU D
 

Fig. 3-1: Overview of the nad5 gene structure in land plants. Group I intron depicted as square, group 
II introns as circles. Distruption of the gene in angiosperms through trans-splicing introns is marked by 
zig-zag-lines. Grey shaded introns are conserved in angiosperms. Nad5i391 is present only in Huperzia 
selago, nad5i753 is conserved in liverworts and mosses, nad5i881 is present in some hornworts, 
nad5i1242 is carried by most ferns (monilophytes). 
 

The introduction of the mitochondrial nad5 gene as a tool for phylogenetic analysis 

started with an investigation of bryophytes, including all three groups: liverworts, 

mosses, and hornworts (Beckert et al. 1999). In that study the intron nad5i753 was also 

found in mosses, rendering it the only known mitochondrial intron shared by liverworts 
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and mosses so far. No complete moss chondriome sequence is as yet available for 

comparison. Additionally, a novel group II intron nad5i881 (Fig. 3-1) was identified in 

one of two hornworts included in that study (present in Anthoceros husnotii, missing in 

Phaeroceros spec.). This partial conservation pattern in hornworts was also confirmed 

by recent data (Duff 2006), where it is only found in the supposedly earliest-diverging 

hornwort Leiosporoceros and its closest related genera Anthoceros, Folioceros, and 

Sphaerosporoceros, but not in the crown group composed of the genus Phaeroceros, 

which would indicate a secondary loss of the intron nad5i881 in hornworts. The study 

by Beckert et al. (1999) also established nad5 for the first time as a valuable 

phylogenetic marker gene for bryophytes, as the analyses established a clear distinction 

of all three major bryophytes groups and some good statistical support for new insights 

into the subclass and order relationships of mosses. 

Following this promising beginning, another phylogenetic study was published in the 

same year (Vangerow et al. 1999) concerning a large scale phylogenetic approach on 

ferns and fern allies. In that study, another group II intron (nad5i1242, figure 3-1) was 

newly identified that is conserved only in ferns and lycophytes, with the exception of 

the genera Ophioglossum and Equisetum. The nad5 gene of the lycophyte Huperzia 

selago contains an additional group II intron, nad5i391, that is very similar to 

nad5i1242, and has only been found in this species.  

The usefulness of the very slowly evolving sequences of the mitochondrial DNA 

(Wolfe et al. 1987; Palmer and Herbon 1988) for phylogenetic studies was shown 

before by a approach using coxIII  (Malek et al. 1996). Soon other studies started to 

utilise the novel locus nad5 for the analysis of phylogenetic relationships of other plant 

groups, like the identification of Charales instead of Coleochaetales as the extant sister 

group to all land plants (Karol et al. 2001), or a study on the Pinaceae (Wang et al. 

2000). In recent years, bryophytes, which were rather poorly analysed before by 

molecular methods, became the focus of several new studies, some of them 

implementing the nad5 gene. This applies to mosses (Cox et al. 2004; Goffinet et al. 

2004; Bell and Newton 2004), and, in a lesser extend, to liverworts (Davis 2004; 

Crandall-Stotler et al. 2005; Forrest and Crandall-Stotler 2005), the latter two focussing 

on one group of liverworts, the simple thalloids. The latest study of the intron 

distribution in nad5 over all major land plant groups identified two of the angiosperm 
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introns, the cis-arranged nad5i230 and the trans-spliced nad5i1455, as cis-arranged and 

already conserved as early as in mosses. 

This study analyses the present data available in public databases and reviews the 

folding pattern of the group I intron nad5i753 published earlier by Beckert et al. (1999). 

It combines already published data sets from liverworts with sequences from new taxa, 

and correlates the resulting phylogeny to a multi-gene approach based on nad5, nad4, 

and the chloroplast genes rbcL and rps4 (see also chapter 4 for detailed analyses on a 

multi-gene approach on complex thalloid liverworts).  
 

3.2 The nad5 gene in liverworts: combined data from several 
labs 

 

3.2.1 Material and Methods 

DNA extraction and PCR assay strategies see chapter 2.2.1 “General methods and 

strategies”. Taxa used for PCR assays and additional sequences that were used for 

correlation and alignments are shown with their respective accession number from 

Genbank (NCBI), and/or their respective sequence length (table 3-2). Primers used for 

the DNA assays are published in (Beckert et al. 1999).  

Parameters for the phylogenetic analyses implemented in MrBayes see chapter 2.2.1, 

exceptions are: 1.000.000 generations, every 100th tree sampled, burnin set to 8.000 

trees, model parameters see table 3-1.  
 

Table 3-1: Models implemented in MrBayes for nad5 phylogeny in liverworts 

character set 
(partition) 

model selected by 
AIC 

(modeltest 3.1) 
parameters implemented in MrBayes 

exons nad5 GTR+I+G revmatpr = fixed(2.2952, 4.9628, 0.4582, 1.0251, 15.4857, 1.0000) 
statefreqpr =fixed(0.2344, 0.2105, 0.2030, 0.3521), shapepr= exponential(0.7328) 
pinvarpr = fixed(0.1915), ratepr= variable, nst = 6, rates = gamma  

intron nad5 GTR+G revmatpr = fixed(0.6775, 2.9705, 0.2405, 0.5448, 1.7513, 1.0000) 
statefreqpr = fixed(0.2934, 0.2297, 0.2157, 0.2612), shapepr= exponential(0.8643) 
pinvarpr = fixed(0), ratepr = variable, nst = 6, rates = gamma  

exons nad4 GTR+I+G revmatpr = fixed(2.0757, 3.7931, 0.3069, 0.9919, 11.3371, 1.0000) 
statefreqpr = fixed(0.2585, 0.2132, 0.1959, 0.3324), shapepr= exponential(0.8181) 
pinvarpr = fixed(0.2145), ratepr= variable, nst = 6, rates = gamma 

intron nad4 TVM+G revmatpr = fixed(0.9545, 2.4145, 0.3375, 0.8789, 2.4145, 1.0000) 
statefreqpr = fixed(0.2455, 0.2434, 0.3026, 0.2085), shapepr= exponential(0.7358) 
pinvarpr = fixed(0), ratepr= variable, nst = 6, rates = gamma 

rbcL GTR+I+G revmatpr = fixed(2.4998, 7.3054, 0.7947, 2.3309, 13.5614, 1.0000) 
statefreqpr = fixed(0.2921, 0.1562, 0.1933, 0.3584), shapepr = exponential(1.1534) 
pinvarpr = fixed(0.4775), ratepr= variable, nst = 6, rates = gamma 

rps4 TVM+I+G revmatpr = fixed(1.5391, 7.2094, 0.2991, 1.6475, 7.2094, 1.0000) 
statefreqpr = fixed(0.3892, 0.1275, 0.1696, 0.3137), shapepr = exponential(1.1591) 
pinvarpr = fixed(0.2227), ratepr= variable, nst = 6, rates = gamma 
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Table 3-2: Taxa used for the phylogeny of liverworts including the nad5 gene. 

Taxonomy Taxon nad5 nad4 rbcL rps4 
Jungermanniopsida Frullania moniliata (Reinw., Blume & Nees) Mont. AY688752 

1800 bp --- AY507401 
1364 bp --- 

     Porellales 
Frullania tamarisci (L.) Dumort. 2491 bp 2133 bp AY302453 

1042 bp 
AY462349 

576 bp 
     (leafy I) 

Lejeunea cavifolia (Ehrh.) Lindb. 
2493 bp 2247 bp AY548102 

1309 bp 

AY462363 
567 bp 

(catanduana) 
 

Lepidolaena hodgsoniae Grolle 
2502 bp 2265 bp 

AY462310 
1038 bp 
(taylorii) 

AY462368 
576 bp 
(taylorii) 

 Porella navicularis (Lehm. et Lindenb.) Lindb. AY688767 
1209 bp 

2315 bp 
(platyphylla) 

AY507420 
1474 bp 

AY462387 
576 bp 

(platyphylla) 
 

Ptilidium pulcherrimum (G.Web) Vainio 2498 bp 2231 bp AY302460 
1042 bp 

AY462388 
576 bp 

 
Radula complanata (L.) Dum.  2301 bp AY302461 

1042 bp 
AY608104 

589  bp 
     Jungermanniales Anastrophyllum michauxii (F. Weber) H. Buch ex A. 

Evans 
AY688743 
1800 bp --- AY507390 

1473 bp 
AY507433 

603 bp 
     (leafy II) 

Anthelia julacea (L.) Dumort --- 2263 bp --- AY608044 
589 bp 

 

Bazzania trilobata (L.) Gray 

AJ622815 
2503 bp 

AJ310800 
2157 bp 

L11056 
1624 bp 

AY608048 
589 bp 

(B. spec.) 
 

Calypogeia muelleriana (Schiffner) K. Müller 2490 bp 2243 bp U87065 
1347 bp 

AY608052 
589 bp 

 

Diplophyllum albicans (L.) Dumort. 
2489 bp 2174 bp 

AY507397 
1416 bp 

(obtusifolium) 

AY608060 
589 bp 

 
Gymnomitrion concinnatum (Lightf.) Corda 2517 bp 2322 bp --- AY608065 

589 bp 
 

Harpanthus flotovianus (Nees) Nees 
2486 bp 2276 bp --- 

AY608069 
589 bp 

(scutatus) 
 Herbertus sendtneri (Nees) Lindb. 

 2202 bp 
AY507404 
1467 bp 
(alpinus) 

AY462353 
569 bp 

 Jamesoniella autumnalis (DC.) Steph. AJ000700 
1774 bp 2192 bp AY462303 

1038 bp 
AJ251066 

744 bp 
 

Lophocolea cuspidata  
--- 2323 bp AY149854 

1052 bp 

AF231889 
640 bp 

(heterophylla) 
 Mylia taylorii (Hook.) Gray --- 2146 bp --- --- 
 

Nardia scalaris Gray 
--- 2225 bp 

AY462316 
1038 bp 

(assamica) 

AY608092 
589 bp 

 
Plagiochila asplenioides (L.) Dumort. 

AJ000704 
1799 bp 2134 bp AY699996 

1380 bp 
AY547693 

609 bp 
 

Scapania nemorea (L.) Grolle 
AJ000706 
1780 bp 2206 bp AY507423 

1484 bp 
AY507464 

603 bp 
 Schistochila appendiculata (Hook.) Dum. ex Trev. AY688770 

1801 bp --- AY507424 
701 bp 

AY507465 
587 bp 

 

Trichocolea tomentella (Ehrh.) Dumort. 
2499 bp 2231 bp 

AY608040 
1090 bp 

(tomentosa) 

AY608118 
589 bp 

 
Tritomaria quinquedentata (Huds.) H.Buch 2479 bp 2188 bp AY700003 

1380 bp 
AY608119 

589 bp 
     Fossombroniales Calycularia crispula Mitt. AY688747 

1822 bp --- AY507395 
1469 bp 

AY507437 
603 bp 

     (simple thalloids I) Fossombronia angulosa (Dicks.) Raddi. AY688750 
1313 bp 

2253 bp 
(alaskana) 

AY507398 
1499 bp 

AY507440 
603 bp 

 
Fossombronia pusilla (L.) Nees 

AJ000699 
1747 bp 2232 bp AF536231 

1347 bp 
AY608062 

587 bp 
 Hymenophyton flabellatum (Labill.) Dumort. AY688755 

1712 bp --- AY507406 
1499 bp 

AY462357 
575 bp 

 Jensenia connivens (Colenso) Grolle AY734748 
1794 bp --- AY688782 

1496 bp 
AY507450 

602 bp 
 Jensenia spinosa (Lindbg. & Gott.) Grolle AY734747 

1790 bp --- AY734689 
1515 bp 

AY734698 
728 bp 

 Moerckia flotoviana (Nees) Schiffn. AJ223717 
1800 bp --- 

AY507412 
1468 bp 
(blyttii) 

AY507454 
603 bp 
(blyttii) 

 
Noteroclada confluens Taylor ex Hook. & Wilson 

AJ622816 
2489 bp 2240 bp AY688784 

1493 bp 
AY688797 

655 bp 
 Pallavicinia rubristipa Schiffn. AY734753 

1790 bp --- AY734693 
1437 bp 

AY734702 
724 bp 

 Pallavicinia xiphoides (Hook. f. & Tayl.) Trev. AY734752 
1758 bp --- AY734692 

1499 bp 
AY734700 

754 bp 
  

 
Pellia endiviifolia (Dicks.) Dum. 
 
 

2476 bp 1730 bp AY688786 
701 bp 

AY688800 
659 bp 

 Symphyogyna brasiliensis Nees & Mont. 
1618 bp 2240 bp 

AY734694 
1504 bp 

(marginata) 

AY734703 
601 bp 

(marginata) 
 Symphyogyna brogniartii AY734754 

1501 bp 
(marginata) 

2321 bp AY688789 
1469 bp 

AY608112 
589 bp 



Chapter 3: The nad5 gene revisited: new insights  
 

40 

Taxonomy Taxon nad5 nad4 rbcL rps4 
     Metzgeriales Aneura pinguis (L.) Dumort. AY688744 

1785 bp 2182 bp AY507391 
1461 bp 

AY608043 
579 bp 

     (simple thalloids II) Apometzgeria frontipilis  2308 bp 
(spec.) --- AY608045 

589 bp 
 Metzgeria conjugata Lindb. AJ000703 

1769 bp 
2304 bp 
(furcata) 

AY507411 
1471 bp 

AY507453 
603 bp 

 Riccardia capillacea (Steph.) Meenks & DeJong AY688768 
1785 bp --- --- --- 

Blasiopsida 
Blasia pusilla L. 2444 bp 2254 bp AF536232 

1347 bp 
AY507436 

603 bp 
Marchantiopsida Asterella blumeana (Nees) Pande Srivastava et 

Khan. --- 2265 bp 
U87064 
1347 bp 
(tenella) 

--- 

(complex thalloids) 
Bucegia romanica Radian 

AJ001031 
1794 bp 2313 bp --- --- 

 
Conocephalum conicum (L.) Underw. 2495 bp 2203 bp AY688778 

1353 bp 
AY688791 

725 bp 
 

Corsinia coriandrina (Spreng.) Lindb. 
AJ622813 
2492 bp 

AJ310801 
2151 bp --- --- 

 Lunularia cruciata (L.) Dum. ex Lindb. AJ001002 
1792 bp 

AJ310803 
2151 bp 

U87077 
1347 bp 

AY688795 
985 bp 

 Marchantia polymorpha L. NC_001660 
2682 bp 

NC_001660 
2387 bp 

NC_001319 
1428 bp 

NC_001319 
609 bp 

 
Monoclea gottschei Lindb. 

AJ622814 
2474 bp 2223 bp AY507414 

1343 bp 
AY507455 

549 bp 
 Monosolenium tenerum Griff./Sunita Kapila & SS 

Kumar 2499 bp 2258 bp --- --- 

 Oxymitra incrassata (Brotero) Sergio & Sim-Sim --- 2295 bp --- --- 
 

Reboulia hemisphaerica (L.) Raddi 2490 bp 2172 bp AY462326 
1038 bp 

AY688801 
741 bp 

 
Riccia fluitans L. --- AJ310802 

2155 bp --- AY608107 
567 bp 

 

Riccia breidleri Steph. 
--- 2268 bp 

AY507422 
1068 bp 

(huebeneriana) 

AY507463 
549 bp 

(huebeneriana) 
 Ricciocarpos natans (L.) Corda AJ001032 

1789 bp 2265 bp U87089 
1347 bp 

AJ251062 
815 bp 

 Riella spec. --- 2086 bp --- --- 
 

Sphaerocarpos donnellii Aust. 

AJ001033 
1797 bp 2210 bp 

AY507425 
1482 bp 

(texanus) 

AY608110 
580 bp 

(texanus) 
 

Targionia hypophylla L. 
AJ001001 
1793 bp 2124 bp AY507427 

1353 bp 
AY688805 
1153 bp 

Haplomitriopsida 
Haplomitrium mnioides (Lindb.) Schust. 

AJ409111 
2479 bp 2208 bp AB013678 

1317 bp 
AY507444 

600 bp 
 Haplomitrium gibbsiae (Steph.) Schust. AY688753 

1793 bp --- AY688781 
1307 bp 

AY688793 
790 bp 

Treubiopsida Apotreubia nana (S. Hatt. & Inoue) S. Hatt. & Mizut.  2451 bp 2263 bp --- --- 
 Treubia lacunosa (Colenso) Prosk. lenta Taylor ex 

Prosk. 2465 bp 2318 bp AY507428 
1403 bp 

AY507468 
603 bp 

 
Treubia pygmaea Schust. 2465 bp 2290 bp AY507429 

1280 bp 
AY507469 

603 bp 
Bryophyta 

Andreaea rupestris Hedw. 

AJ001227 
1948 bp 

2052 bp 
(nivalis) 

AY312925 
1295 bp 
(wilsonii) 

AJ617675 
840 bp 

 Sphagnum fallax Klinggr.   AJ622817 
2083 bp 2022 bp 

AF231887 
1482 bp 

(palustre) 

AF231893 
639 bp 

(cuspidatum) 
 

Takakia lepidozioides Hatt. et H. Inoue 
AJ291553 
1952 bp 

AJ409092 
1990 bp 

AY312936 
1312 bp 

AF306950 
570 bp 

 
Tetraphis pellucida Hedw. 

AJ224855 
1637 bp 2036 bp --- AF231896 

636 bp 
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3.2.2 Structure and conservation of the group I intron nad5i753  

The gene structure of the mitochondrial nad5 gene is rather simple in liverworts: only 

one intron, nad5i753, has been identified, and is carried unanimously by all liverworts 

(and mosses). The analysis of its consensus sequence over 51 liverwort species 

(table 3-2) reveals the folding pattern of a group I intron, as was previously published 

by Beckert et al. (1999). This earlier study presented a secondary structure deduced 

from the alignment of 15 liverworts and 30 mosses, drawn from the example of the 

moss Brachythecium rutabulum.  

As more data from liverworts are available today, a reassessment of the folding pattern 

has been made to fully incorporate all information into a structural estimation of 

nad5i753 exclusively for liverworts (Fig. 3-2).  

The splicing of group I introns requires two highly conserved nucleotides: a U 

preceding the 5’ splice site, and a G preceding the 3’ site (Burke 1988). Both 

nucleotides are present in nad5i753 (marked in bold letters, figure 3-2).  
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Fig. 3-2: Secondary structure of group I intron nad5i753 in liverworts. Grey arrows indicate splice 
sites. Intron sequence is based on a consensus sequence of 51 liverworts, folding pattern adapted from 
Beckert et al. (1999). Length variations, mismatches restricted to few taxa, and other notable exceptions 
are included in boxes, with the respective taxa designations shortened from species names in table 2-1. 
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The regions designated as L6 (L = loop) and L8 are very variable in length and folding 

structure, and were therefore not included in the consensus figure. Correlating this 

updated folding pattern with the one published in Beckert et al. (1999), most of the core 

nucleotide sequences are identical. Nevertheless, novel indels were now identified in 

L1, L2, and P5 (P = pair, Fig. 3-2). The single nucleotide indel between P2 and P3 is 

unique to the three Treubiopsida species (Fig. 3-2). Interestingly, this taxonomically 

difficult liverwort group is considered to be closely related to another unusual liverwort 

class, the Haplomitriopsida, which is also included in this study with two taxa, but does 

not show this particular indel. The occurrence of multiple indels is frequent in group I 

introns, and usually does not collide with the correct splicing process (Burke 1988; 

Quandt and Stech 2005 and therein). 

P3 and P7 each exhibit one highly conserved C/A mismatch, which could indicate 

potential editing sites. The C would in that case be edited to a U, and reconstitute a U-A 

base pairing. However, these mismatches are conserved in all liverworts including the 

complex thalloids, which are incapable of RNA editing and are not able to repair these 

particular mismatches.  

One genus in this comprehensive study exhibited a distinctly different sequence: the 

simple thalloid genus Pellia. The sequence from Pellia endiviifolia was the only one 

included in the taxa selection for the phylogenetic approach, but sequences from three 

species were available for the reconstruction of the intron folding pattern: in addition to 

P. endiviifolia, P. appalachiana (1396 bp, Genbank Accession: AY688762) included a 

complete intron sequence, albeit with several ambiguities towards the 3’ end, and one 

P. epiphylla sequence (1611 bp, AY688764) was lacking only very few nucleotides of 

the intron, also on the 3’ side.  

The reconstruction of the secondary structure reveals a nucleotide sequence for the first 

domain P1/L1 (Fig. 3-3) that differs from the liverwort consensus sequence (Fig. 3-2) in 

all three Pellia species, comprising a different, larger loop L1 in Pellia appalachiana, 

and an additional hairpin structure in P. epiphylla and P. endiviifolia. The second 

domain consisting of P2 and L2 exhibits a shape rather similar to the consensus, but the 

actual nucleotide sequence is almost completely different, and these differences are 

conserved in all Pellia species (Fig. 3-3). In addition to that, the folding structure and 

sequence of P5 displays a succession of variants (Fig. 3-3), with a different sequence 
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but rather consensus-like structure in Pellia appalachiana, a more pronounced terminal 

stem in P. epiphylla, and the longest terminal stem in P. endiviifolia. 

The regions that are variably sized in the consensus structure, L6 and L8, are peculiar in 

Pellia as well, as L6 is almost doubled in size, whereas L8 is comprised of roughly 

30-40 % of the average number of nucleotides from to other liverworts.  
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Fig. 3-3: Secondary structure of group I intro n nad5i753 in the liverwort genus Pellia. Grey arrows 
indicate splice sites. Intron sequence is based on a consensus sequence of 51 liverworts, folding pattern 
adapted from Beckert et al. (1999). Pellia-specific structure differences to the liverwort consensus are 
added for P1/L1, P2/L2, and P5. Nucleotide numbers of the three size-variable regions are given in boxes.  
 

As much as the identified structural peculiarities suggest a rather basal position of 

P. appalachiana in a potential phylogeny of the genus Pellia, which then gains 

additional indels in further taxa, this topology is not retrieved in a study focussing on 

simple thalloid liverworts (Forrest and Crandall-Stotler 2005). A phylogenetic study of 

Pellia based on isozyme and nuclear trnL-spacers is available, including unfortunately 

only European taxa (Fiedorow et al. 2001). Additional sequencing, e.g. of the nad5 gene 

intron from further Pellia species, could improve the knowledge about intron evolution 

in this unusual genus. 

Interestingly, the effect of very reduced sizes of variable regions is not restricted to the 

one group I intron nad5i753 in Pellia. Unique patterns of evolution have also been 
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observed in the group II intron nad4i548 conserved in the mitochondrial nad4 gene (see 

chapter 2), where the intron is reduced to 660 bp, compared with a median size of 

approximately 900 bp in other liverworts. A possible third example for Pellia is the 

group II intron which is exclusively conserved in the mitochondrial trnS of liverworts, a 

locus that has been partially sequenced by Davis (2004) for phylogenetic studies.  

The second and only other genus of the family Pelliaceae is Noteroclada, which has 

been included in this study. It sequence shows none of the patterns that were observed 

in Pellia.  

To confirm the correct splicing of the intron nad5i753 in Pellia despite of the different 

secondary structure (Fig. 3-3), cDNA analyses are necessary. It would also be possible 

to postulate the occurrence of a second gene copy containing an intron similar to the 

other liverworts that exists in parallel to the observed version. However, no evidence 

has been found to support this latter hypothesis. 

 

3.2.3 The nad5 gene as a phylogenetic marker in liverworts 

3.2.3.1 Material and methods: Sequence selection 

The nad5 gene is the longest protein coding region of the land plant chondriome, with 

approximately 670 encoded amino acids. The potential of the mitochondrial nad5 gene 

as a locus for phylogenetic analyses in bryophytes has been shown for the first time by 

Beckert et al. (1999). These analyses have been based on sequences that were composed 

of approximately 1100 bp reading frame plus the intron nad5i753, which has a size of 

an additional 700 bp, the so called K-L region (Fig. 3-4). This region was chosen due to 

the fact that two trans-splicing introns disrupt the continuity of the gene in angiosperms 

on the 3’ side of the selected portion (Fig. 3-4). During the last two years the locus was 

additionally exploited for liverworts by Davis (2004) and Forrest (Crandall-Stotler et al. 

2005; Forrest and Crandall-Stotler 2005). The sequences obtained by Forrest et al. were 

focused on a broad taxon sampling in a taxonomically difficult subgroup of the 

liverworts, the simple thalloids, as mentioned before. The data produced by Davis were 

more widely sampled in a taxonomical sense, but in all cases the maximum extension of 

the sequences equalled the K-L region. It was even often restricted to sequences of the 

intron, as in many cases of the data obtained by Davis. In a recent study (Groth-
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Malonek et al. 2005) the previously analysed part of the gene was extended to the U-D 

region (Fig. 3-4), because no trans-splicing was detected in liverworts, as well as none 

of the introns that were conserved in angiosperms. This led to an addition of 

approx. 700 bp to the former sequence length, increasing the amount of data available 

for phylogenetic studies. 

nad5

i753

K LU D
 

 
Fig. 3-4: Graphical overview of the nad5 gene in liverworts. The group I intron is depicted as a square. 
Disruption of the gene in angiosperms through trans-splicing introns is marked by zig-zag-lines. K-L 
spans the region sequenced in previous studies (approx. 1800 bp), U-D spans the region analysed in 
Groth-Malonek et al. (2005) and this study (approx. 2500 bp). See figure 3-1 for comparison. 
 

The analysis of all available data from the public database GenBank (NCBI) displayed 

significant differences in sequence length, ranging from 370 bp to 1800 bp. Preliminary 

trials to obtain a large scale taxon sampling for a comprehensive liverwort study on 

nad5 revealed additional problems due to differences in the phylogenetic placement of 

sequences obtained by different labs from the same taxon, as for instance in the cases of 

Monoclea, Ptilidium, or Porella. Additionally, sequences for some taxa were available 

in parallel from different sources, but of differing quality, as they included for example 

unlikely frame shifts in the coding region (e.g. Conocephalum) that were not identified 

in other sequences of the same taxon, or clusters of ambiguities, which reduces the 

confidence in the correctness of the flanking sequence. Finally, empirical trials with 

different data sets showed that the length of the sequences is strongly correlated to the 

statistical support obtained for the backbone of the resulting topology.  

Therefore a selection was made out of the 134 sequences available (combined count 

from published data deposited by the respective authors in Genbank, and data available 

from my studies). Duplicate sequences from the same taxon were reduced to one 

sequence, which was selected using the following criteria: 1) the smallest amount of 

ambiguous nucleotides and frame shifts, 2) the longest sequence, 3) the most likely 

placement in the phylogenetic tree compared to other molecular liverwort studies, if 

ambiguous. All sequences shorter than 1200 bp were excluded from the study. This 
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particular restriction was chosen by empirical weighting of sequence length versus 

taxon sampling. The maximum amount of taxa from the same genus was reduced to 

two, to prevent a weighting of the tree towards a single subgroup. This selection led to a 

data set of 51 liverworts including all major subgroups with a reasonable number of 

taxa (table 3-2).  

For the selection of a suitable outgroup several combinations were evaluated. The 

primary testing of mosses as an outgroup was an obvious choice, as they also share the 

intron nad5i753 and could therefore provide equal sized sequences (see chapter 2 for 

similar reflections about the nad4 phylogeny). The four selected sequences from 

Takakia, Sphagnum, Andreaea, and Tetraphis were obtained from the K-L region of 

nad5 (Fig. 3-4), and comprise taxa that are placed on basal branches in moss topologies. 

They were also used successfully as outgroup in other studies (e.g. Forrest and 

Crandall-Stotler 2004). Other potential taxa for the outgroup were the algae Chara and 

Chaetosphaeridium, whose chondriome sequences are completely available in Genbank 

(Turmel et al. 2002; Turmel et al. 2003). Including them in the data set resulted in a 

reduction of the coherence of the overall topology. This lead to a pull-down of Pellia to 

the basis of the liverworts, when exon and intron sequences were used for the 

phylogenetic approach, or alternatively the loss of any support for the Marchantiopsida 

cluster (complex thalloids), when intron-less sequences were analysed. This occurred 

independently of the inclusion or exclusion of the selected mosses, and was 

accompanied by an increase of the number of supported nodes when no algae were 

included in the data set and/or intron and exon sequences were analysed, respectively. 

Therefore the above mentioned four mosses were chosen as the best fitting outgroup for 

this phylogenetic approach on liverworts, based on the mitochondrial nad5 gene data 

selected before.     

3.2.3.2 Results and discussion of the nad5 liverwort topology 

The selected data set was phylogenetically analysed using a Baysian approach (see Mat. 
& Meth.), which resulted in the topology presented in figure 3-5 (see also chapter 2 for 
a similar approach on nad4 data). The backbone of this tree is very strongly supported, 
presenting a clear division between the mosses and the liverworts. The basal-most clade 
of the liverworts (Figs. 3-5) is represented by a combined cluster of the Haplo-
mitriopsida (two taxa) and the  Treubiopsida (three taxa). 
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Fig. 3-5: Phylogenetic tree based on the mitochondrial nad5 gene in liverworts. Baysian Posterior 
Probabilities are given on the respective nodes if exceeding 90 %. Thick lines indicate strong statistical 
support of the topology (PP=100), thin lines denote moderate support (95<PP>99), dotted lines 
circumscribe nodes that are not statistically supported. The same topology was obtained by Neighbour 
joining method, albeit with sometimes weaker support of the nodes by Bootstrap values. Taxonomic 
designations follow Davis et al. (2004) and Frey and Stech (2005). Black diamonds accompany taxa that 
were present in Beckert et al. (1999), open circles indicate sequences that span the U-D region, unmarked 
taxa were taken from Genbank. 
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The combined placement of these liverwort groups on the basis of all liverworts has 

been proposed before based on chloroplast data  (Forrest and Crandall-Stotler 2004) and 

with a three-genome-approach (Forrest and Crandall-Stotler 2005). The placement of 

Haplomitrium without Treubiopsida varied in different studies, with a placement on the 

basis of all liverworts (morphology, Schuster 2000) or on the basis of the simple 

thalloids (review, Crandall-Stotler and Stotler 2000), or inside the simple thalloid I 

clade (chloroplast, He-Nygren et al. 2004). It is not unequivocal whether the combined 

placement of the two classes on the basis of the topology could result from long-branch 

attraction of the Haplomitriopsida towards the Treubiopsida. However, all three taxa 

from the Treubiopsida clade present rather moderate branch lengths (Fig. 3-5). A 6 bp 

indel in the variable region between P7 and P10 of the intron nad5i753, which is 

exclusively conserved in Haplomitriopsida and Treubiopsida, additionally supports the 

notion of a genuine sistergroup relationship, but is not unequivocal in its origin (Fig. 

3-6). 

 
complex thalloids:      A------------TA 
or alternatively:         AA-----------TA 
Blasia:                  AAA----------TA 
leafy I: only Porella and Lejeunea  -------------TA 
leafy II without Trito., James., Schisto -----------TATA 
leafy II: only Bazz., Gymno.   ---------TATATA 
Haplomitrium gibbsiae    ---TATACA------ 
Haplomitrium mnioides    ---TCTACG------ 
Apotreubia, Treubia lac., Treubia pyg. ---TAGACA------ 
all other taxa, incl. mosses:   ---------------  
 

Fig. 3-6: Section of the alignment of the intron nad5i753 in liverworts. Dashes stand for gaps. Taxa 
see table 3-2. 
 

The second basal clade of the nad5 phylogeny (Fig. 3-5) is composed of Blasia, the 

single member of the “simple-thalloid-like” Blasiopsida, and the complex thalloid 

liverworts (Marchantiopsida). Their molecular connection has been recently proposed 

by different studies (e.g. Wheeler 2000; Davis 2004), but obtained no statistical support 

for its suggestive placement in this topology (Fig. 3-5). The complex thalloid liverworts 

are well supported as a separate clade, but internal nodes are mostly lacking.  
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The upper part of the tree is composed of the Jungermanniopsida (Fig. 3-5), which 

include the morphologically rather different groups of the simple thalloid 

(Metzgeriidae) and the leafy liverworts (Jungermanniidae). The distiction of these 

subgroups is sometimes problematic, as the morphological traits include simple thalloid 

vegetative phases in some Jungermanniidae, and leafy, or nodal, morphology in some 

Metzgeriidae (Crandall-Stotler et al. 2005 and therein). Molecular studies, which are 

usually based on loci independent from morphological characters, revealed a 

partitioning of the simple thalloid liverworts into a paraphyletic lineage composed of 

two groups, the so called simple thalloids I and II (Davis 2004). In the phylogeny 

derived from the mitochondrial nad5 gene (Fig. 3-7), members of both groups were 

analysed. Jungermanniopsida as a whole were identified as a strongly supported 

monophyletic clade, which is divided into two subclades, placing the simple thalloids I 

as sistergroup to the rest of the Jungermanniopsida. The simple thalloid I clade includes 

both genera of the Pelliaceae, Noteroclada and Pellia, albeit with no statistical support 

for a definite placement as sister taxa (Fig. 3-7). Pellia is placed on a very long branch, 

which is likely due to the singular sequence variety of this species concerning the intron 

nad5i753 (see chapter 3.2.2). A comparative phylogenetic approach based solely on 

exon sequences led to a decrease of the overall statistical support of the otherwise 

similar topology (and is therefore not shown here), but exhibited a well supported 

combined placement of Pellia and Noteroclada due to strong exon similarities.  
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Fig. 3-7: Liverwort phylogeny derived from the mitochondrial nad5 gene, with leafy and complex 
liverworts, Haplomitriopsida, Treubiopsida, and mosses as collapsed clades for enhanced visibility, full 
tree presented in figure 3-5. 
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The second group of the simple thalloids is nested with strong support in the leafy 

liverworts clade. This tripartite cluster is composed of the leafy clades I and II and the 

simple thalloid II, with unclear relation to each other. Schistochila is placed with 

moderate support on the basis of the simple thalloid clade (Fig. 3-5), although it is of 

leafy appearance and has been shown to reside on the basis of the leafy II clade (or its 

equivalent) in several studies (Davis 2004; Forrest and Crandall-Stotler 2004; He-

Nygren et al. 2004). Ptilidium, the proposedly basal-most taxon of the leafy I clade, is 

also not supported in its placement (Fig. 3-5). The phylogenetic analysis based on nad5 

data is probably not high enough to resolve these nodes. Another study restricted to 

rbcL data exhibits the same lack of statistical support (Heinrichs et al. 2005).      

The leafy clade I is composed of three clades, annotated as A, B, C (Fig. 3-5) following 

the proposal of Davis (2004). These subclades are highly supported and confirm earlier 

findings of these clusters, as has also been shown by nad4 data (for detailed analysis see  

chapter 2: The nad4 gene in liverworts).  

3.2.3.3 Extended taxon sampling and a multi-gene approach 

Rather few taxa were sampled from some clades, e.g. leafy IIA or the simple 

thalloids II. Additionally, the placement of taxa like Schistochila and Ptilidium is no 

unequivocally resolved (Fig. 3-5). As the addition of taxa to the nad5 data set resulted 

in the reduction of statistical support due to the inclusion of rather short sequences, an 

enhanced taxon sampling was combined with the addition of three further molecular 

loci: the mitochondrial nad4 gene (chapter 2), the chloroplast gene rbcL (ribulose-

bisphosphat-carboxylase, large subunit), which was tested independently for liverwort 

phylogeny (Heinrichs et al. 2005), and the chloroplast rps4 gene (small ribosomal 

subunit protein 4), which also proved to be useful for this approach (Knoop, in 

revision). 

The extended taxon sampling included 63 liverwort species that were phylogenetically 

analysed, using a Bayesian approach implementing independent modelling of six 

different partitions of the data set (Tabs. 3-1, 3-2). This resulted in a highly supported 

backbone that supports most of the previously proposed liverwort groups, including the 

paraphyletic simple thalloids I and II (Fig. 3-8). Only the leafy I group is based on a 

weak node. 
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Fig. 3-8: Phylogenetic tree based on nad5, nad4, chloroplast rps4 and rbcL in liverworts. Baysian 
Posterior Probabilities are given on the respective nodes if exceeding 90 %. Thick lines indicate strong 
statistical support of the topology (PP=100), thin lines denote moderate support (95<PP>99), dotted lines 
represent branches that are not statistically supported. Bold straight taxa are added to the taxon sampling 
of figure 3-5, underlined species are supported in a different position compared to figure 3-5. 
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Additional support was also gained in the Marchantiopsida clade (Fig. 3-8), where the 

addition of five species and, more importantly, at least 2000 bp additional data resulted 

in an internal backbone that has not been present in the nad5 phylogeny. This is most 

likely based primarily on the nad4 data which were shown to enhance support for this 

group (see chapter 2). 

Better support was also gained for the simple thalloid I clade, where Calycularia is the 

only taxon without at least moderate support. Two species from the genus Pallavicinia 

are clearly paraphyletic (Fig. 3-8). This concurs with a study previously presented by 

Crandall-Stotler et al. (2005) that included three species of this genus, which were 

resolved in a polyphyly. The mentioned study focuses on simple thalloid liverworts in 

both morphological and molecular analyses, but does only suggest a broader taxon 

sampling for this problematic situation. This genus should probably be subject of a 

morphological review, as molecular data do not support it as a monophyletic group. A 

second possibility could also be a mix-up of DNA or sequences prior to the analyses, as 

they were not produced independently but from the same laboratory. Independent 

analyses, including different plant vouchers, should therefore be added.  

The topology of the rest of the Juntermanniopsida is very well resolved with few 

exceptions (Fig. 3-8). One of them is the still unclear position of Ptilidium to the clades 

leafy I and leafy II, with a slight tendency towards the leafy I clade (Fig. 3-8). The other 

one is the now different placement of Schistochila, which has been located close to the 

simple thalloid clade II in the nad5-only phylogeny (Fig. 3-5). This taxon is now placed 

in a sistergroup relationship with the tripartite crown group of the leafy II clade, which 

reflects the placement of this species previously proposed by other studies (Davis 2004; 

He-Nygren et al. 2004), albeit complemented with the intermediately placed taxon 

Mylia, that is as yet only represented by nad4 data in this analysis. Its position was also 

not resolved in an phylogenetic approach restricted to nad4 data (chapter 2). 
 

3.3 Discussion of nad5 as a useful marker for land plant 
phylogeny 

 

The here presented study was aimed firstly as a review of the so far available 

publications based on the mitochondrial nad5 gene in all land plants (chapter 3.1), and 
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secondly as a closer look into its development as a standard liverwort marker, where it 

represents the singular mitochondrial locus investigated on a larger scale so far except 

for the nad4 gene introduced with the studies in this work (chapter 2). The revision of 

the secondary structure of the included intron nad5i753 could assist in future studies of 

the gene, to prevent alignment problems of such unusual examples like the observed 

Pellia sequences.  

 

Apart from additional Pellia species, which would be of interest due to their peculiar 

intron features, some interesting taxa are still missing from the data set, whose 

placements in liverwort phylogenies are still unresolved. One of these cases is the genus 

Pleurozia, which has been morphologically placed as a highly isolated lineage of the 

Jungermanniidae (Crandall-Stotler and Stotler 2000), but was surprisingly resolved as 

sister to the simple thalloid II clade in recent molecular studies (Davis 2004; He-Nygren 

et al. 2004). Few morphological characters, like the lenticular apical cell, do indeed link 

Pleurozia to this clade, but most features are rather similar to Jungermanniid characters 

(Crandall-Stotler et al. 2005 and therein). For Pleurozia there is already a nad5 

sequence available, but its inclusion into the data set resulted in no conclusive 

placement, probably due to its restricted size of only 852 bp.  

A very interesting taxon would also be Cavicularia. It constitutes a sister genus to the 

isolated Blasia, which is placed on the basis of all Marchantiopsida (complex thalloids), 

although its appearance resembles a simple thalloid liverwort (see also chapters 2, 4, 

and 5). The highly supported, but isolated placement of Blasia could be confirmed with 

an additional supporting branch, provided its sister taxon is included in the phylogeny. 

Leafy liverworts are a very speciose group, comprising at least 5500 species worldwide 

(Frey and Stech 2005); many of them are rare and endemic. Therefore it would be 

impossible to sample all leafy taxa that could potentially be of interest for liverwort 

phylogenies. Nevertheless, a couple of isolated genera were sampled that are as yet 

unsatisfactorily resolved by the presented phylogenies. These taxa are usually placed 

basal to well supported subclades, like Ptilidium, Schistochila, and Mylia in the here 

presented phylogeny based on nad5 data. Other genera of unresolved relation would be 

Adelanthus, Syzygiella, and Jamesoniella, which tend to cluster together basal to the 

leafy II B clade, although they are morphologically positioned in different families. 
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From leafy I (Porellales) there is also a very rare taxon missing, Jubula, that should be 

resolved as sister to the Lejeuneaceae, according to morphological studies (Weis 2001). 

Even if used as the single marker gene for a phylogenetic approach, the nad5 gene can 

provide enough information to obtain a strong backbone phylogeny, and also support 

several internal nodes, in the probably earliest diverging land plants, the liverworts.  

The obtained topology is highly congruent to comparable molecular liverwort 

phylogenies (Davis 2004; He-Nygren et al. 2004; Forrest and Crandall-Stotler 2005), 

including the well supported paraphyly of the Metzgeriidae (simple thalloid) taxa. This 

is especially true when not only the intron, but also major parts of the exons are 

included in the data set. In a combination with other loci, it provided a very well 

resolved topology of liverworts, and should probably be included in all future 

phylogenetic studies of large scale approaches concerning this plant group.  

 



 

4 Evolution patterns of mitochondrial DNA: highly 
divergent development of intergenic regions 
(spacers) in bryophytes 

 

4.1 Introduction 
 
Plant mitochondrial DNA is known for its highly conserved exon sequences but a much 

less conserved structure regarding the arrangement of its genes (Palmer and Herbon 

1988). These observations were mostly derived from the comparison of angiosperm 

chondriome sequences or algal counterparts, but only one complete sequence of a non-

angiosperm land plant is known, the chondriome of the liverwort Marchantia 

polymorpha (Oda et al. 1992a). This study aims at the understanding of chondriome 

evolution in lower land plants, and concentrates on two gene clusters: first, the 

combination of two tRNAs, potentially flexible and small genes that are located 

upstream of an important and highly conserved nad gene; second, the physical linkage 

of three nad genes that are proposed to be conserved on the mitochondrial DNA of all 

land plants (Knoop 2004 and therein), in contrast to tRNAs that can be lost in favour of 

nuclear encoded genes or import of chloroplast alternatives. Both gene clusters are 

known to be disrupted in several angiosperms (e.g. Unseld et al. 1997).  

 

4.2 The gene cluster trnA-trnT-nad7: conservation vs. loss of a 
tRNA in bryophytes 

 
The mitochondrial gene cluster trnA(UGC)-trnT(GGU)-nad7 is conserved in the 

Charophyte algae Chara vulgaris (Turmel et al. 2003) and Chaetosphaeridium 

globosum (Turmel et al. 2002). TrnA encodes the tRNA for alanine (anti-codon UGC), 

trnT the one for threonine (anti-codon GGU). Nad7 encodes subunit 7 of the NADH 

ubiquinone oxidoreductase, complex I of the mitochondrial respiratory chain. The same 

gene continuity is found in the moss Physcomitrella patens (Fig. 4-1).  
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                          trnAfor nad7back

nad7trnTtrnA

trnTfor trnTrev

  
   

Fig. 4-1: Gene arrangement of the mitochondrial gene cluster trnA-trnT-nad7 in green algae and 
Physcomitrella. White arrows indicate the orientation of the respective genes on the chondriome; black 
arrows indicate the location of the primers used for PCR amplification assays.  
 

An identical gene order was identified in the liverwort Marchantia polymorpha (Oda et 

al. 1992a), with the extraordinary exception that the trnT gene is arranged in the 

opposite orientation. Nevertheless, it is indeed the same gene encoding for the same 

trnT(GGU), as can be seen by alignment of the sequences and comparison of the 

anticodon (fig. 4-2). This gene cluster is not existent in angiosperms, because none of 

the fully sequenced chondriomes of other land plants contains a homologue of either of 

both tRNAs (Unseld et al. 1997; Kubo et al. 2000; Notsu et al. 2002; Handa 2003; 

Sugiyama et al. 2005; Ogihara et al. 2005).  

4.2.1 Material and Methods 

DNA extraction and PCR assay strategies see chapter 2.2.1 “General methods and 

strategies”. Taxa used for PCR assays and additional sequences that were used for 

correlation and alignments are shown with their respective accession number from 

Genbank (NCBI), and/or their respective sequence length (tables 4-1 and 4-2). Primers 

used for the DNA assays are published in (Beckert et al. 1999).  

Taxonomic classification follows recent literature for mosses (Goffinet and Buck 2004) 

and for liverworts (Crandall-Stotler and Stotler 2000; Frey and Stech 2005). DNA and 

RNA were differentially precipitated in the presence of 3 M lithium acetate. 

OmniScriptTM Reverse Transcriptase (Qiagen) was used for cDNA synthesis.  

Primer sequences used for PCR of the gene cluster trnA-trnT-nad7 were trnAfor (5’- tcg 

gtt caa vtc cga tcg tt cca - 3’), nad7back (5’- acc atg agc agc wgg rtg ttg agg - 3’), 

trnTfor (5’- cat ggt aag gga aag gtc tcc -3’), and trnTrev (5’- gga ggc ctt tcc ctt acc 

atg - 3’).  
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Table 4-1: Taxa analysed for the mitochondrial trnA-trnT-nad7 gene cluster 
 

Taxonomy Species Voucher number or DNA 
signature 

Accession 
number 

green algae Chara vulgaris L. -- NC_005255 
Herbertus sendtneri (Nees) Lindb. J. Heinrichs 4377 870 bp 
Anthelia julacea (L.) Dumort. J. Heinrichs s.n. 897 bp 

LIVERWORTS 
   Jungermanniopsida / 
   leafy 
 

Porella platyphylla (L.) Pfeiff. J. Heinrichs 4383 581 bp 

   Jungermanniopsida / 
   simple thalloid I 
 

Fossombronia pusilla (L.) Nees Ulm-collection s.n. 872 bp 

 Noteroclada confluens Taylor ex Hook. & 
Wilson 

live culture Goettingen 911 bp 

   simple thalloid II Metzgeria furcata (L.) Dumort. J. Heinrichs 4384 891 bp 
Marchantia polymorpha L.  --- / Grewe s.n. NC_001660/ 

confirmation-
seq.: 1911 bp 

Bucegia romanica Radian Ulm-collection s.n. 1926 bp 
Lunularia cruciata (L.) Dum. ex Lindb. Groth & Schwertfeger s.n. 650 bp  

(only 5’ seq.) 
Corsinia coriandrina (Spreng.) Lindb. Ulm-collection s.n. 1307 bp 

(only 3’ seq.) 
Asterella blumeana (Nees) Pandé 
Srivastava et Khan. 

MGM031218-06SC 699 bp 

Conocephalum conicum (L.) Underw. Groth & Schwertfeger s.n. 707 bp 
Monoclea gottschei Lindb. live culture Goettingen 700 bp 
Oxymitra incrassata (Brotero) Sérgio & 
Sim-Sim 

MGM031218-11SC 710 bp 

Riccia breidleri Steph. ML-030826 709 bp 
Targionia hypophylla L. Ulm-collection s.n. 709 bp 

   Marchantiopsida / 
   complex thalloid 
 

Monoselenium tenerum Griff./Sunita Kapila 
& SS Kumar 

live culture Goettingen 704 bp 

   Haplomitriopsida/ 
   Treubiopsida 

Treubia lacunosa (Colenso) Prosk. lenta 
Taylor ex Prosk. 

LF28 / Stotler&Crandall-
Stotler 4561 (ABSH) 

411 bp 

Dawsonia spec. Pruchner s.n. 632 bp MOSSES 
   Polytrichopsida Pogonatum urnigerum (Hedw.) P. Beauv. Muhle170997-15 627 bp 
   Takakiopsida Takakia lepidozioides Hatt. et H. Inoue Qiu97126 553 bp 
   Bryopsida     
           Funariidae 

Physcomitrella patens (Hedw.) Bruch & 
Schimp. 

--- / Ulm-collection s.n. 
 

AB035479 / 
confirmation-
PCR: 579 bp 

           Dicraniidae Ditrichum cylindricum (Hedw.) Grout Muhle281097-2 579 bp 
Mnium hornum Hedw. Muhle090897-2 443 bp 
Pohlia nutans (Hedw.) Lindb. Muhle090897-4 430 bp 

           Bryidae 
 

Homalia trichomanoides  (Hedw.) Schimp. Muhle291197-3 572 bp 
Hygrohypnum ochraceum (Turner ex 
Wilson) Loeske 

Muhle191197-4 572 bp           Hypnidae 
 

Leskea polycarpa Hedw. Muhle231197-1 336 bp 
s.n. = sine numero (lat.), “without number”, meaning here without explicit collection or voucher number 

 

Phylogenetic analyses of complex thalloid liverworts were carried out by Bayesian 

Inference approach: estimation of appropriate models for each partition of the data set 

by Modeltest 3.7 (Posada and Crandall 1998) using the Akaike Information Criterion 

(AIC), and implementation in MrBayes 3.1 with the following parameters: all partitions 

unlinked, two independent runs with: four parallel chains, one heated chain, 500.000 

generations, every 100th tree sampled, burnin set to 4.000 trees, taxa used for the study 

see table 4-2, model parameters see table 4-3.  
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Table 4-2:  

Taxa and accession numbers for Marchantiopsida (complex thalloid liverworts) phylogeny 
 

Taxonomy Species nad4 nad5 rbcL rps4 
Blasiopsida 
(outgroup) 

Blasia pusilla 2254 bp 2444 bp AF536232 
1347 bp 

AY507436 
603 bp 

Marchantia polymorpha NC_001660 
2387 bp 

NC_001660 
2682 bp 

X04465 
1428 bp 

X04465 
609 bp 

Bucegia romanica 2313 bp AJ001031 
1794 bp 

n.a. n.a. 

Lunularia cruciata  AJ310803 
2151 bp 

AJ001002 
1792 bp 

U87077 
1347 bp 

AY688795 
985 bp 

Asterella blumeana  2265 bp n.a. U87064 
1347 bp 
(A. tenella) 

n.a. 

Conocephalum conicum 2203 bp 2495 bp AY688778 
1353 bp 

AY688791 
725 bp 

Monoselenium tenerum 2258 bp 2499 bp n.a. n.a. 

Marchantiidae  
          
Marchantiales  
                    
Marchantiineae 

Reboulia haemisphaerica 2172 bp 2490 bp AY462326 
1038 bp 

AY688801 
741 bp 

Corsiniineae Corsinia coriandrina AJ310801 
2151 bp 

2492 bp n.a. n.a. 

Targioniineae Targionia hypophylla  2124 bp AJ001001 
1793 bp 

AY507427 
1353 bp 

AY688805 
1153 bp 

          Monocleales Monoclea gottschei  2223 bp AJ622814 
2474 bp 

AY507414 
1343 bp 

AY507455 
549 bp 

Riccia breidleri 2268 bp n.a. AY507422 
1068 bp 
(R. huebeneriana) 

AY507463 
549 bp 
(R. huebeneriana) 

Riccia fluitans AJ310802 
2155 bp 

n.a. n.a. AY608107 
567 bp 

Ricciocarpos natans 2265 bp AJ001032 
1789 bp 

U87089 
1347 bp 

AJ251062 
815 bp 

          Ricciales 

Oxymitra incrassata 2295 bp n.a. n.a. n.a. 
Riella spec. 2086 bp n.a. n.a. n.a. Sphaerocarpidae     

    Sphaerocarpales Sphaerocarpos donnellii 2210 bp AJ001033 
1797 bp 

AY507425 
1482 bp 
(S. texanus) 

AY608110 
580 bp 
(S. texanus) 

 
n.a.: Sequence unknown, no data available from Genbank 
 
Table 4-3: Models implemented in MrBayes for Marchantiopsida phylogeny 

character set 
(partition) 

model selected by AIC 
 (modeltest 3.1) 

parameters implemented in MrBayes 

exons nad4 TVM+I revmatpr = fixed(1.6572, 1.7718, 0.0486, 0.7804, 1.7718, 1.0000) 
statefreqpr = fixed(0.2540, 0.1755, 0.1775, 0.3930)  
pinvarpr = fixed(0.8515), ratepr = variable, nst = 6, rates = equal 

intron nad4 K81uf+I revmatpr = fixed(1.0000, 1.1822, 0.3570, 0.3570, 1.1822, 1.0000) 
statefreqpr = fixed(0.2777, 0.2206, 0.2885, 0.2132)  
pinvarpr    = fixed(0.8042), ratepr = variable, nst = 6, rates = equal 

exons nad5 TVM+I revmatpr = fixed(3.8621, 3.6031, 0.2463, 1.6726, 3.6031, 1.0000) 
statefreqpr = fixed(0.2394, 0.1737, 0.1940, 0.3929)  
pinvarpr = fixed(0.7948), ratepr = variable, nst = 6, rates = equal 

intron nad5 K81uf+I revmatpr = fixed(1.0000, 1.0653, 0.4322, 0.4322, 1.0653, 1.0000) 
statefreqpr = fixed(0.3547, 0.2017, 0.2158, 0.2278)  
pinvarpr = fixed(0.7771), ratepr = variable, nst = 6, rates = equal 

rbcL GTR+I+G revmatpr = fixed(2.1881, 3.2360, 1.0473, 2.5230, 8.4993, 1.0000) 
statefreqpr = fixed(0.2907, 0.1590, 0.2153, 0.3350), pinvarpr = 
fixed(0.4018) 
shapepr = exponential(0.3241), ratepr = variable, nst = 6, rates = gamma 

rps4 GTR+I+G revmatpr = fixed(1.7185, 3.5430, 0.3349, 0.9751, 2.2087, 1.0000) 
statefreqpr = fixed(0.4160 0.1250 0.1198, 0.3392), pinvarpr = 
fixed(0.4557) 
shapepr = exponential(0.7078), ratepr = variable, nst = 6, rates = gamma 
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4.2.2 Results for the trnA-trnT-nad7 intergenic region 

 

PCR assays of the region between trnA and nad7 and the respective sequencing of the  

resulting PCR products identified trnT sequences in ten mosses and four liverworts, that 

are conform to the consensus cloverleaf folding pattern (Fig. 4-2). In all cases the same 

anticodon was conserved as GGU. Only few differences were found between the 

species, most notably a mismatch in the acceptor stem that occurs in some basal mosses 

and the liverwort Marchantia. The more common type of the base pairing observed in 

this acceptor stem is a combination of U and A, the respective mismatch a C and A 

combination, occurring in basal mosses and the liverworts that carry a trnT gene.  

 

 

 

Fig. 4-2. The trnT(GGU) RNA structure. The anticodon 
GGU is boxed. The tRNA sequence as shown is identical 
in Physcomitrella, Ditrichum, Leskea, Mnium, Pohlia, and 
Homalia, differences in other species are indicated by 
nucleotide positions: nucleotid number 4 is exchanged 
from U to C in Takakia, Marchantia, Bucegia, Corsinia, 
Lunularia, nucleotid 14: A to G in Hygrohypnum, 
nucleotid 15: G to A in Pogonatum, and Dawsonia, 
nucleotid 26: A to G in Takakia, nucleotid 43: A to G in 
Dawsonia, nucleotid 47: U to C in Marchantia, Bucegia, 
Corsinia, and Lunularia, nucleotid 66: U to C in 
Marchantia, Bucegia, Corsinia, Lunularia, Pogonatum, 
Takakia, and Dawsonia. 
 

The PCR assays on the trnA-nad7 region and sequencing of the resulting PCR products 

revealed a loss of the trnT gene in all major groups of liverworts, with the exception of 

four taxa of the complex thalloid liverworts: Marchantia itself, accompanied by an 

additional taxon of the Marchantiaceae, Bucegia, and the two less closely related taxa 

Corsinia and Lunularia (Fig. 4-3).  
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Fig. 4-3: Graphical overview of the gene cluster trnA-trnT-nad7 in the alga Chara and in the 
investigated bryophytes, plotted on a potential phylogenetic tree derived from recent independent 
molecular analyses of liverwort relationships. Dotted lines indicate not clearly resolved branching events. 
Details for the analysed taxa are given in table 4-1. 
     

As only a few taxa of one liverwort group (complex thalloids) carry the inverted trnT 

gene, a phylogenetic method was used to establish the relationship of those species with 

each other (fig. 4-4). Two mitochondrial (nad5, nad4) and two plastid genes (rps4, 

rbcL) were combined in a dataset and analyzed using a 6-model combination with a 

Bayesian Posterior Probabilities approach (see table 4-3 and methods).  
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Fig. 4-4: Phylogeny of Marchantiopsida, inferred from the combined data set of nad4, nad5, rbcL, and 
rps4. Bayesian Posterior Probability values > 85% are indicated on the respective nodes, black diamonds 
indicate the presence of the inverted trnT gene, white diamonds refer to sequences without trnT. Taxa 
without diamonds were not sampled in this spacer study. 
 

The Marchantiopsida group is shown here with Blasia as the basalmost taxon, as was 

established by other recent liverwort phylogenetic analyses based on molecular data 

(Wheeler 2000; Davis 2004; Forrest and Crandall-Stotler 2004). The complex thalloid 

group is known to be more conserved in its DNA sequences than other liverwort groups, 

and therefore its phylogenetic resolution in larger liverwort phylogenies is rather poor. 

This is the reason for the strictly complex thalloid taxon sampling for figure 4-4, as the 

inclusion of non-complex taxa reduces the resolution of the statistical support of the 

phylogeny. 

No PCR products for the gene cluster trnA-trnT-nad7 could be obtained from 

hornworts, a bryophyte group that is very distinct from liverworts and mosses, nor from 

any tracheophytes. 

 

4.2.3 Discussion of the evolution of the gene region trnA-trnT-nad7 

 

The removal of trnT from the gene cluster trnA-trnT-nad7 seems to be restricted to 

liverworts. In fact, it could also be argued that mosses show a very close affinity to 

green algae in this case and therefore strengthen a theory of mosses as the earliest land 
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plants. Although the relationships of all bryophyte groups and tracheophytes are widely 

debated, this particular possibility has been clearly refused by several studies favoring 

either a monophyly of all bryophytes (e. g. Garbary et al. 1993; Nishiyama et al. 2004), 

or different constructs of a polyphyly with hornworts as the basalmost group (e. g. 

Malek et al. 1996; Nickrent et al. 2000; Renzaglia et al. 2000), or the most widely 

believed hypothesis of liverworts as the earliest land plants (Qiu et al. 1998; Kugita et 

al. 2003a; Groth-Malonek et al. 2005).  

As no PCR products could be obtained from hornworts, the third bryophyte group, it is 

possible that the gene continuity is already disrupted here. On the other hand, hornwort 

DNA sequences are not easily deduced from homologous genes of other plants, because 

they exhibit an extraordinary amount of editing sites including the “reverse” editing 

from U to C and the more frequent plant organelle editing from C to U. For that reason, 

predictions of primer sequences from known DNA sequences or conserved amino acids 

are very unreliable for hornworts and often lead to a difficulty in amplifying PCR 

products. Missing data could therefore reflect a PCR assay problem instead of a 

disruption of the gene cluster. This could be verified by Southern blot analysis, where, 

in the case of a conserved gene continuity, probes for all three genes would then 

hybridize to the same restriction fragment on the blotting membrane. As tRNA genes 

provide only very short probes for hybridization and the amount of RNA editing in all 

three genes is not known, this experiment could be rather difficult to establish. A much 

more promising approach is the attempt to sequence a complete hornwort chondriome, 

as is already in progress in other laboratories. 

But if the previously assumed theory is indeed correct and hornworts don not share the 

gene continuity of trnA-trnT-nad7 with mosses and green algae, then this would be an 

indication for the following scenario: the common ancestor of the first land plants 

derived from Charales algae like Chara and inherited the whole intact cluster (Fig. 4-3). 

After the divergence of liverworts from the rest of the land plants (the non-liverwort 

lineage) the common ancestor of all liverworts experienced a rearrangement of this 

locus and transferred the trnT gene to a hitherto unknown location. The earliest 

diverging group of the non-liverwort lineage would then be the mosses, which share the 

intact gene cluster with Chara and the presumed ancestor of all land plants. After the 

divergence of the ancestor of all hornworts from the mosses, the gene cluster is 
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disrupted and completely lost (Fig. 4-3), also in the ancestor of the tracheophyte lineage 

that stands presumably in a sistergroup relationship with hornworts (Groth-Malonek et 

al. 2005).  

Interestingly enough, both tRNAs are missing from all known angiosperm chondriomes. 

Their removal could have taken place as early as in hornworts, or sometime during the 

early evolution of tracheophytes like lycophytes or ferns. As none of the angiosperms 

are from an early lineage, as for instance Amborella or Nympheales, it could also be a 

loss restricted to a few angiosperms.  

The insertion or possible inversion of the inversely oriented trnT gene, however, is 

presumably at least one independent gain in several complex thalloid liverworts. The 

phylogenetic relationships of complex thalloid liverworts are not clear due to a 

relatively small number of taxa and morphological characters, although several 

molecular approaches have been tried, including nuclear (LSU) rDNA genes 

(Boisselier-Dubayle et al. 1997; Boisselier-Dubayle et al. 2002), nuclear 18S rDNA 

(Bopp and Capesius 1996; Capesius and Bopp 1997), the combination of nucLSU and 

chloroplast trnL-trnF-spacer (Wheeler 2000), or chloroplast rbcL (Lewis et al. 1997). 

The results were mostly weakly supported or contradicting. A recent approach 

involving 8 loci (five chloroplast, one mitochondrial, two nuclear located) combined 

previously used loci with a set of 12 taxa plus the reconsidered former simple thalloid 

liverworts Blasia and Cavicularia (Forrest and Crandall-Stotler 2005).  

In conclusion of these studies a few assumptions were made: The two monospecific 

genera Blasia and Cavicularia form the basalmost group of the complex thalloid 

liverworts and should be used as an outgroup for further analyses. They are followed 

presumably by Sphaerocarpos, Neohodgsonia, and Lunularia, in unresolved relations. 

The next group is formed by the Marchantiaceae in a sister group relationship to an 

unresolved crown group that includes the Ricciales.  

A study of the new locus nad4 in liverworts (see chapter 2) indicated a relatively high 

amount of information in the complex thalloid taxa. Based on the available nad4 taxon 

sampling, an additional dataset was obtained from three further genes (nad5, and the 

chloroplast genes rbcL and rps4). The combined data were then phylogenetically 

analysed (see material and methods). As shown in figure 4-4, the basalmost complex 

thalloid liverworts after the divergence of Blasia are indeed Sphaerocarpos and 
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Lunularia (Neohodgsonia was not sampled here), and Corsinia, the latter two in a 

highly supported sister relationship. Sphaerocarpos is a member of the subclass 

Sphaerocarpidae, which is sister to the subclass Marchantiidae. Riella is sampled here 

as a second member of the former group, and is placed on the next following branch 

with moderate support. This suggests a potential paraphyly in the Sphaerocarpidae, but 

the data are not conclusive here, especially as only nad4 sequences were obtained from 

Riella (table 4-2). The only taxa that were sampled for the trnA-trnT-nad7 study from 

this basal group of complex thalloids so far are Corsinia and Lunularia, which share the 

occurrence of the inverted trnT gene. Also no Blasia sequence could be obtained. 

Therefore it is not possible to ascertain whether the trnT occurrence is restricted to the 

subclass Marchantiidae, or whether it extends to the subclass Sphaerocarpidae or to the 

supposedly earliest diverging Blasiopsida.  

The next diverging group of the complex liverworts are the two members of the 

Marchantiaceae, Marchantia and Bucegia. Both carry the trnT gene between trnA and 

nad7. The following crown group is composed of the two members Asterella and 

Reboulia of the family Aytoniaceae, which is strongly supported as a monophyletic 

group, and an unresolved combination of three members of the Marchantiales, four 

members of the Ricciales, and one member of the monogeneric order Monocleales. 

Seven of these ten taxa were sampled for this study, and none of them carries the trnT 

gene in its trnA-nad7 spacer. 

The overall topology of the phylogenetic tree in figure 4-4 is in congruence with former 

studies (mentioned above), although this particular and rather extended taxon sampling 

did not occur in any of these analyses. In conclusion of the results three scenarios are 

possible: 1) The re-insertion of trnT into the trnA-nad7 spacer occurred at an early stage 

of the evolution of complex thalloid liverworts, possible after the divergence of Blasia 

or after the divergence of the Marchantiidae subclass, followed by a secondary loss later 

in the crown group. 2) If the phylogenetic studies were lacking sufficient taxon 

sampling to obtain a true version of the complex thalloid liverwort evolution, the group 

of the four trnT carrying taxa could in fact be monophyletic, and the gain of trnT would 

be a singular event in a distinct basal marchantiid subgroup. 3) The reinsertion of the 

trnT gene could be a frequent event in complex thalloid liverworts, which has not been 

discovered because of the low taxon sampling of 11 species out of the complex thalloid  
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liverwort group that comprises approximately 17 families, 32 genera and 350 species 

(Frey and Stech 2005).  

At the moment the first scenario seems the most likely one as the topology of the 

phylogenetic study is assumed to be correct. However, the possibility of a frequent gain 

and loss of the trnT can not be dismissed, as the mechanism of the process itself is not 

clear, and the circumstances that led to the event could occur several times in the 

evolution of liverworts, or any plants for that matter. The likeliness of such an event is 

especially high in this spacer region, because the mitochondrial nad7 gene that is 

flanking this region is a pseudogene in Marchantia (Oda et al. 1992a) and presumably 

also in other liverworts (see chapter 6). As the functional version of the gene was 

transferred to the nucleus (Kobayashi et al. 1997), the 5’- region of the mitochondrial 

gene has not necessarily to be this conserved any more, as it does not have to encode 

promotor sequences. Interestingly, the mitochondrial pseudogene is still transcribed at 

least in the case of Marchantia (Takemura et al. 1995) despite the proposed reinsertion 

of the trnT gene. 

 

The trnT gene itself is also a very interesting case. It is clearly a trnT(GGU) gene that is 

very similar to the moss and algae mitochondrial trnT(GGU) genes, because not only 

the anticodon but almost the complete sequence is identical in these plants. It is 

therefore assumed here that the inverse trnT found in some liverworts is indeed the 

same gene or a copy of the original trnT that was inherited vertically from the common 

ancestor of all land plants.  

One notable exception of the sequence homologies is the occurrence of a mismatch in 

the acceptor stem in liverworts and some mosses. The nucleotide C of the C-A 

mismatch could be exchanged with a U by RNA editing and rescue the mismatch in this 

way. This is likely in the case of the mosses, but no editing ability was detected in one 

subgroup of liverworts, the complex thalloid liverworts (Marchantiopsida) (Steinhauser 

et al. 1999). All liverworts that were shown to carry a trnT gene in the spacer between 

trnA and nad7 are members of that group. Therefore a rescue of the mismatch is 

supposedly impossible. The occurrence of mismatches in the stem regions of tRNA 

structures seems in fact to be rather regular for Marchantia, as 18 of the 27 species of 

mitochondrially encoded tRNAs have mismatches in one or more stem parts (compare 
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Oda et al. 1992b), although in most cases this is restricted to the proximal pair of the 

anticodon stem or the distal pair of the D-loop arm, positions with rather low influence 

on the overall folding structure.  

It should be noticed that the trnT(GGU) gene detected in the spacer between trnA and 

nad7 is the only trnT gene encoded on the Marchantia chondriome. No tRNA species 

for the codon recognition of ACR (also threonine) was identified (Oda et al. 1992b). It 

is likely that the missing tRNAs are encoded on the nuclear genome and imported from 

the cytoplasm into the mitochondrion. Alternatively, another possibility to compensate 

for the missing codon recognition of ACR could be a “two out of three” mechanism, 

that could lead to the recognition of ACR via the single available trnT(GGU) 

(Lagerkvist 1978). 

 

4.3 The gene cluster nad5-nad4-nad2  

 

The genes nad5, nad4, and nad2 are highly conserved mitochondrial genes coding for 

subunits of complex I of the respiratory chain. These three genes are identically 

arranged in a gene cluster in the chondriomes of the streptophyte algae Chara vulgaris 

and Chaetosphaeridium globosum as well as in the liverwort Marchantia polymorpha 

(Fig. 4-5).  

 

nad5 nad4 nad2

nad5rb2F nad4lb2R nad4rb1F nad2lb1R
 

Fig. 4-5: Graphical overview of the nad5-nad4-nad2 gene cluster. Circles stand for introns identified 
in the genes in different land plants, zig-zag-lines illustrate the disruption of the genes in angiosperms 
through trans-splicing introns. Arrows indicate the location of primers used in PCR assays. 
 

They are even co-transcribed in the latter (Nozato et al. 1993). The gene arrangement is 

not only broken up in angiosperms, even more so, nad5 and nad2 are individually 

disrupted in their gene continuities by trans-splicing introns. As can be judged from the 

complete mitochondrial sequence of Arabidopsis thaliana and other angiosperm 

mitochondria, all three genes and/or their respective parts are located in different 
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sequence environments on the chondriomes. Tracing the break-up of this gene cluster 

could give interesting insights into the evolution of lower land plant chondriomes. 

 

4.3.1 Material and Methods 

Methods used for the study of this gene cluster are identical to the ones used for the 

analysis of the gene cluster trnA-trnT-nad7 (see chapter 4.2 and chapter 2.2). Primer 

sequences for the nad5-nad4-nad2 gene cluster were nad5rb2F (5’- ggt gct att gaa atc 

ttg ggt cc - 3’), nad4lb2R (5’- aca aag aat aam gag ata cca tct ata cc - 3’), nad4rb1F 

(5’ - gga gtt att tgg atg ggt gtt tac - 3’), nad2lb1R (5’ - aac act aag taa acc aag cca acy 

cac - 3’). Additional internal primers were used to obtain complete sequences.  

Taxa sampled for this study are given in table 4-4. 

 

4.3.2 Results for the nad5-nad4-nad2 gene cluster 

 

The spacer between nad5 and nad4 is only 57 base pairs long in Chara, the probably 

closest extant ancestor of land plants (Karol et al. 2001). In Chaetosphaeridium, another 

charophyte alga, which is rather less closely related to land plants (Turmel et al. 2002), 

this spacer is also conserved and even smaller with only 15 bp. The complete 

chondriome sequence of the complex thalloid liverwort Marchantia polymorpha (Oda 

et al. 1992a) exhibits the same gene continuity but a much larger intergenic region with 

1311 bp in size.  

This study extended the taxon sampling with four other liverworts, and included for the 

first time sequences of three mosses, two hornworts and the quillwort Isoetes (Tab. 4-4), 

to establish an overview for the evolution of the conserved nad5-nad4 spacer over all 

three bryophyte classes and an early tracheophyte.  

PCR assays of the gene cluster resulted in very different sizes of the intergenic region in 

the major bryophyte groups (fig. 4-6, tab. 4-4). The analysed region is much larger in 

land plants than in algae, and is comprised of 1000 to 1300 bp in liverworts, as was 

known already from Marchantia, with the longest sequences found in complex thalloids 

and significantly shorter spacers in the leafy liverwort Frullania and the simple thalloid 

Metzgeria. This liverwort spacer is disrupted by a sequence that is homologous to intron 
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i783 of the cob gene. This gene encodes apocytochrome B, a highly conserved 

mitochondrial gene that is present in Marchantia as an intronless pseudogene version 

and a functional copy that carries three introns.  

It should be noticed that the taxon Blasia is controversially discussed in its taxonomic 

placement. This genus has been treated as a simple thalloid liverwort in morphological 

studies and has been reconsidered as closely connected to complex thalloid liverworts in 

recent molecular studies. The sequence of Blasia’s  nad5-nad4 spacer is even longer 

than the two other sampled complex thalloid liverworts, with an extension of an 

additional 14 bp compared to Marchantia, and 2 bp compared to Riccia, respectively. 

This supports other molecular analyses proposing a close relationship of this genus with 

complex thalloids. 

 

Table 4-4. Taxa sampled for the nad5-nad4-nad2 gene cluster study and spacer length inferred 
from the obtained sequences.  

Taxonomy Species 
length &  

accession number 
nad5-nad4 spacer 

length &  
accession number 
nad4-nad2 spacer 

Chara vulgaris 57 bp 
NC_005255 

44 bp 
NC_005255 

Charophyta 
  

Chaetosphaeridium globosum 15 bp 
NC_004118 

18 bp 
NC_004118 

Marchantia polymorpha 1311 bp 
NC_001660 

26 bp 
NC_001660 

liverworts  
      Marchantiopsida 
           complex thalloids      Riccia fluitans 1323 bp 

DQ098657 
26 bp 

DQ098663 
           Blasiales Blasia pusilla 

 1325 bp 26 bp 

       Jungermanniopsida 
           simple thalloids           

Metzgeria furcata  1047 bp 
DQ098658 

26 bp 
DQ098664 

           leafy Frullania brasiliensis 1052 bp 
DQ098659 

26 bp 
DQ098665 

Sphagnum fallax  637 bp 
DQ098673 

26 bp 
DQ098666 

Physcomitrella patens  617 bp 
DQ098674 

26 bp 
DQ098667 

mosses 

Mnium hornum  621 bp 
DQ098676 

26 bp 
DQ098668 

Anthoceros agrestis  3328 bp 
DQ098661 

26 bp 
DQ098669 

hornworts  

Megaceros spec. 2885 bp 
DQ098662 

26 bp 
DQ098670 

Lycopodiopsida Isoetes lacustris  no PCR product 17 bp 
DQ098671 

 

The nad5-nad4 spacer is significantly smaller in mosses than in liverworts, with a size 

of approx. 600 bp (fig. 4-6, tab. 4-4). No significant similarities to other sequences were 

identified in this spacer region. An extended taxon sampling (Rein, Groth-Malonek, 

Knoop: “Mitochondrial gene spacers as novel phylogenetic markers: a case study in 

mosses”, in preparation) shows an easily alignable region that contains a high amount of 



Chapter 4: Evolution patterns of mitochondrial DNA: spacer development 
 

69 

variable sites, and which could be a putatively useful novel marker for phylogenetic 

approaches in mosses. 

 

nad5 nad4 nad2

nad5 nad4 nad2

nad5 nad4 nad2

nad5 nad4 nad2

nad4 nad2??? Isoetes

hornworts
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liverworts

Chara

nad6

2900-3300 bp
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1000-1300 bp 26 bp

26 bp
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17 bp
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Fig. 4-6. Graphical overview of the mitochondrial gene cluster nad5-nad4-nad2. Grey boxes indicate 
homologies of spacer fragments with other identified elements of mitochondrial DNA. 
 

The nad5-nad4 spacer in hornworts is even larger with up to 3300 bp in size (fig. 4-6). 

Part of the spacer is a region with a high similarity to the nad6 gene. This region is 

disrupted by frame shifts and stop codons, rendering it a pseudogene (not shown here). 

This is the first known case of a nad6 pseudogene in land plants, where it is usually one 

of the highly conserved mitochondrial genes that are not transferred to the nucleus but 

functionally encoded on the chondriome (see Knoop 2004 and therein).  

No PCR product could be obtained from the intergenic region between nad5 and nad4 

in the lycophyte Isoetes, or other tracheophytes. 

 

The region between nad4 and nad2 is comprised of just 44 bp in Chara and 18 bp in 

Chaetosphaeridium. This study revealed a spacer of a highly constant size in all three 

bryophyte groups with exactly 26 bp, which is not only co-transcribed in complex 

thalloid liverworts like Marchantia (Nozato et al. 1993), but also in the leafy liverwort 

Frullania tamarisci, as could be shown by PCR on cDNA. 

This spacer is even smaller in the early diverging tracheophyte Isoetes with only 17 

base pairs (fig. 4-6). No other tracheophyte PCR product could be obtained. 

 

4.3.3 Discussion of the evolution of the gene region nad5-nad4-nad2 

 

The situation in the gene cluster nad5-nad4-nad2 is very different to that in the trnA-

trnT-nad7 cluster as all three genes are highly typical mitochondrial genes and are 
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present and functional on the chondriome in all land plants, in contrast to the early 

transfer of mitochondrial tRNAs to the nucleus, and the special case of the decay of the 

nad7 pseudogene in liverworts. Although these three nad genes are functionally 

connected and even co-transcribed in different liverworts, their gene continuity is lost in 

higher plants. The results of my study show that even two spacers as closely connected 

as in this gene cluster can undergo very different styles of evolution.  

 

The smaller spacer between nad4 and nad2 is conserved in size in all three main groups 

of bryophytes: liverworts, mosses, and hornworts (Fig. 4-6). It is even smaller than its 

counterpart in green algae, which is a clearly surprising discovery.  

Seen in direct comparison, the Chara chondriome has a size of 68 kb, whereon 68 genes 

are encoded (Turmel et al. 2003), and Marchantia with a very similar gene content 

exhibits a chondriome size of 186.6 kb (Oda et al. 1992a), almost three times as large. 

This increased size is partly based upon the aquisition of several introns, but mainly on 

the size increase of non-coding spacer regions between genes. Therefore a reduction of 

a spacer and its high conservation over different bryophyte groups, as seen in the case 

of the nad4-nad2 spacer, is in contrast to the typical picture of mitochondrial DNA 

evolution.  

Interestingly, the further size reduction in the tracheophyte Isoetes could be expected, as 

this genus generally exhibits a very unusual pattern of its chondriome evolution. It is 

known to preferentially carry very small introns (Malek and Knoop 1998; Pruchner et 

al. 2002), that are still homologous in position and structure to their counterparts in 

other plant groups, but lack large parts of variable regions like domain IV in group II 

introns. Isoetes seems to employ mechanisms to reduce the size of its chondriome 

through the reduction of non-coding features, or otherwise lacks mechanisms that 

enlarge these parts. This rule possibly applies to its intergenic regions as well, and 

therefore leads to this very small spacer between nad4 and nad2 (Fig. 4-6). As no PCR 

products could be obtained from other lycophytes like Huperzia or Lycopodium, which 

do not exhibit this kind of evolution (at least as far as is known from nad5 and nad2 

studies), no general point can be made about the conservation of this gene continuity in 

early tracheophytes. It is assumed, however, that the gene arrangement is broken up 

sometime before the evolution of angiosperms, as no further PCR products could be 
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obtained from ferns (e.g. Equisetum, Psilotum, Asplenium, Dicksonia), or gymnosperms 

(e.g. Gnetum, Welwitschia, Ginkgo, Pinus,  Abies), either. 

 

The spacer between nad5 and nad4 is clearly a different case, as it is much expanded in 

all land plant groups compared to Chara. Liverworts, which are set apart from other 

land plants by the occurrence of several unique introns in their chondriome, exhibit a 

spacer region that is about 20 times longer than the algal counterpart. Much of this 

spacer is composed of a sequence that is very similar to the second intron of 

Marchantia’s cob gene, an intron that is so far known from Marchantia polymorpha 

only (Oda et al. 1992a). Similiarities to this intron could be identified in all obtained 

liverwort sequences, albeit with a significant part of the intron missing in the 

Jungermanniopsid taxa Frullania and Metzgeria. This indicates that the original cob 

intron (one of three group II introns restricted to Marchantia in this gene) was gained by 

the common ancestor of all liverworts, as is similarly assumed for instance in the cases 

of nad4i548 (chapter 2), nad7i336 or nad7i1113 (chapter 5), and that a copy of this 

intron not only inserted itself into cob, but also into the spacer between nad5 and nad4 

in an early stage of the evolution of liverworts, predating the diversification of 

Jungermanniopsida (simple thalloid and leafy liverworts) and Marchantiopsida 

(complex thalloid liverworts).  

The respective intergenic region in mosses is comprised of only approx. 600 bp that 

include no similarities to other introns, but is nevertheless around ten times as long as 

the algae spacer. This locus could be a valuable new tool for phylogenetic analyses in 

the moss lineage as it is short but yet very variable. Its main disadvantage would be the 

fact that no close outgroup is available, as this spacer region developed very differently 

in all bryophyte groups, and can not be aligned over any two groups out of liverworts, 

mosses, or hornworts.  

The most expanded spacer region between nad5 and nad4 that could be amplified with 

a PCR assay has been detected in two hornworts, comprising a spacer of 2900 bp and 

3300 bp, respectively. These sequences already carry evidence for the interruption of 

the gene continuity, as a degenerated version of nad6 has been identified between nad5 

and nad4. Nad6 encodes for a rather small subunit of complex I of only 

approx. 200 amino acids, with almost the full-length reading frame still being 
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discernible in both hornworts, albeit disrupted by frame shifts and stop codons. It is 

frequently found in different positions on the chondriome relative to other genes, as for 

instance in a co-transcribed position downstream of the gene encoding subunit 6 of 

ATP-synthase (atp6) in maize (Haouazine-Takvorian et al. 1997) or downstream of 

mitochondrial rps4 in tobacco (Sugiyama et al. 2005). A 3’-severed sequence of nad6 

encoding 100 amino acids has also been identified in a secondary copy on the 

Marchantia polymorpha chondriome (Yamato et al. 1993). It is not clear whether the 

identified copy in the hornwort spacer was functional at any point, or where the actually 

functional nad6 gene is located on the hornwort chondriome, as no complete sequence 

is available from any hornwort taxon. Nevertheless it can be postulated that the 

insertion of nad6 in the nad5-nad4 spacer did at least lead to a further size increase, that 

could eventually lead to a disruption of the gene continuity. No PCR products could be 

obtained from any tracheophyte taxon, not even from Isoetes, which exhibits a 

conserved nad4-nad2 gene linkage (Fig. 4-6). If the theory that hornworts are ancestors 

to the tracheophytes is correct, as postulated recently with molecular approaches (Lewis 

et al. 1997; Groth-Malonek et al. 2005), based on chemical analyses (Carafa et al. 

2005), or derived from the comparison with fossil data of Rhynia and Hornea as early 

as 1924 (Campbell 1924), we would see here the slow development of a gene cluster 

disruption on the way from Charophyte algae to tracheophytes, frozen in different 

stages of its development, presented by several taxa of every major group of 

bryophytes. 

 

4.3.4 Conclusion 

The selected gene clusters trnA-trnT-nad7 and nad5-nad4-nad2 analysed in this study 

show very different aspects of the evolution of mitochondrial DNA. The rearrangement 

of genes, like the insertion of a nad6 pseudogene in a hornwort spacer (Fig. 4-6), the 

loss of tRNAs, shown here as the loss of trnT in some liverworts (Fig. 4-3), and insights 

into the origin of parts of intergenic regions, like the similarity of large parts of the 

nad5-nad4 spacer with an cob-intron (Fig. 4-6), are all typical mitochondrial 

developments that were formerly only known from angiosperms, as no comparable 

study was available for lower land plants.  
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This study includes data from all major bryophyte groups and an early tracheophyte. 

The evolutionary step from bryophytes to tracheophytes seems to be accompanied by an 

increase in structural changes of the chondriome, as no conservation of any of the 

analysed spacers could be found. The single exception is the nad4-nad2 spacer, but this 

finding was restricted to one small group of lycophytes, the quillworts (Isoetes), and 

only one species therein (Fig. 4-3). 

It is also noteworthy that the evolutionary pattern is very distinct and different in all 

three major bryophyte groups: liverworts, mosses, and hornworts. Liverworts, 

especially complex thalloids, tend to expand their spacers much more than mosses, and 

hornworts even more so. In the case of the nad5-nad4 spacer, the latter seem to be 

already on the way to disrupt the spacer through the insertion of another gene, and the 

destiny of the whole gene cluster trnA-trnT-nad7 is unknown here.  

In the cases where the spacer is still conserved in differrent bryophyte groups, an 

alignment of these spacers between them is not possible, not just due to the different 

size of the spacers but to the very differing nucleotide sequences. In contrast to that, the 

alignment of sequences from a single group is rather straightforward, especially in 

mosses. 

Further studies could continue here and obtain data from non-angiosperm tracheophytes 

to complement the knowledge about these mitochondrial regions with data from a 

broader range of all land plants. 

 



 

5 Evolution of a pseudogene: the mitochondrial 
 nad7 gene in liverworts 

 

5.1 Introduction 
 
Plant mitochondrial DNA underwent frequent structural changes. These interesting 

processes are only recently exploited as possibilities to gain further understanding of the 

evolution of lower land plants (Groth-Malonek and Knoop 2005). Former analyses of 

angiosperm mitochondria concentrated mainly on gene transfer from the mitochondrial 

genome (chondriome) to the nucleus. Such transfers of single genes from the 

chondriome to the nuclear genome are known to occur frequently and independently in 

angiosperms (Adams et al. 1999; Adams et al. 2000; Palmer et al. 2000; Adams and 

Palmer 2003). Mostly, genes for proteins of the small (rps) or large (rpl) ribosomal 

subunits are affected, only rarely components of the respiratory chain, such as cox2 

(Nugent and Palmer 1991). However, several genes are known to be universally 

conserved in the mitochondrial genome of embryophytes, from green algae to 

angiosperms (Knoop 2004). Notably, this includes nine nad genes coding for subunits 

of the NADH ubiquinone oxidoreductase, complex I of the respiratory chain.  

One noteworthy exception is the nad7 gene, which is a mitochondrial pseudogene in 

Marchantia polymorpha, a complex thalloid liverwort (Oda et al. 1992a). In this case, a 

nuclear copy is functional and the mitochondrial version has become a pseudogene due 

to the mutational introduction of six stop codons (Takemura et al. 1995; Kobayashi et 

al. 1997). It could be proposed that these stop codons are rescued by RNA editing, as is 

common for instance in hornworts. Most liverwort groups are known to be capable of 

RNA editing (Steinhauser et al. 1999), but this does not include the complex thalloids 

like Marchantia.  

The mitochondrial nad7 gene in land plants carries three to four group II introns in 

angiosperms (Fig. 5-1), ancestral homologues of two of them are conserved in mosses 

(Pruchner et al. 2001). Two unrelated group II introns are present in the mitochondrial 

nad7 pseudogene of Marchantia polymorpha (Oda et al. 1992a). The functional nuclear 

copy of nad7 in Marchantia is 5’-extended to provide an appropriate target sequence for  



Chapter 5: Evolution of a pseudogene: nad7 in liverworts 
 

75 

organellar import, and this aminoterminal extension of the reading frame is interrupted 

by a typical spliceosomal nuclear intron (Kobayashi et al. 1997). No further introns 

were identified, expectedly none of the mitochondrial group II introns. As it must be 

assumed that the nuclear copy originated from the mitochondrial nad7 gene, this could 

be an indication that the transfer to the nucleus was mediated via a mature intron-less 

mRNA. An alternative would be a very ancient transfer event that took place when no 

organellar introns where yet acquired. Although the mitochondrial nad7 gene is actively 

transcribed in Marchantia as was shown through northern blot analysis, no splicing of 

the two introns was detectable (Takemura et al. 1995). The secondary structures of these 

introns are mostly conform with the group II intron consensus, but in both cases intron 

and exon binding sites are not completely compatible (Takemura et al. 1995). As no 

other plant group with a functional mitochondrial nad7 gene shares these particular 

introns, it is as yet unclear whether they were correctly spliced at any time in evolution. 

Their insertions could possibly even have mediated the process of pseudogene 

degeneration, as a non-spliceable intron would prevent the translation of a correct amino 

acid sequence, and so decided the fate of the mitochondrial copy that remained in 

coexistence after the transfer of a nad7 copy to the nucleus. Alternatively, splicing 

function may have been lost after pseudogene degeneration or, as a third alternative, 

both introns could have been inserted into Marchantia’s mitochondrial nad7 gene only 

after its evolvement into a pseudogene. 

The focus of this study was to extend our knowledge about nad7 in liverworts with 

special emphasis on the aspect of the evolution of a pseudogene. 

 

Several molecular data support the assumption of liverworts as the earliest land plants 

(Qiu et al. 1998; Groth-Malonek et al. 2005). They share a serial sister group 

relationship with mosses, hornworts and tracheophytes (Groth-Malonek et al. 2005). 

Earlier analyses show that nad7 of mosses do not possess any stop codons in their 

reading frame and therefore very likely represent a functional mitochondrial nad7 

(Pruchner et al. 2001), which also generally holds true for angiosperms. The closest 

ancestors to land plants are Charophyte algae, of which the chondriomes of Chara 

vulgaris (Turmel et al. 2003) and Chaetosphaeridium globosum (Turmel et al. 2002) are 

fully sequenced. Both species carry functional nad7 genes in their mitochondria as well. 
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Obviously the mitochondrial nad7 pseudogene evolved after the diversification of the 

liverwort group, and is restricted to them. 

Liverworts (Marchantiophyta) are divided into up to five clades based on morphological 

and recently published genetic data (Davis 2004; Crandall-Stotler et al. 2005; Forrest 

and Crandall-Stotler 2005; Frey and Stech 2005). The earliest diverging group is 

supposedly formed by the enigmatic groups of Haplomitriaceae and/or Treubiaceae, 

albeit with generally weak support in the phylogenetic analyses. The complex thalloids 

such as Marchantia are a second clade with a sister group status to the rest of the 

liverworts, which are divided into two clades of simple thalloids, and finally the 

monophyletic leafy liverworts (Fig. 5-2). Alternatively the Haplomitrium/Treubia group 

may be an early lineage of the simple thalloids.  

An insight into the evolution of the nad7 pseudogene could also enlighten our 

knowledge about liverwort phylogeny in general. 

 

5.2 Material and Methods 
 

DNA extraction and PCR assay strategies see chapter 2.2.1 “General methods and 

strategies”. Taxa used for PCR assays and additional sequences that were used for 

correlation and alignments are shown with their respective accession number from 

Genbank (NCBI), and/or their respective sequence length (table 5-1). DNA and RNA 

were differentially precipitated in the presence of 3 M lithium acetate. OmniScript TM 

Reverse Transcriptase (Qiagen) was used for cDNA synthesis. Primers used for the 

DNA assays were n7i336up (5’- ggt agg act ctc gta att gga ttg c -3’) and n7i1113do (5’- 

gtt gta ttc acc cag aca ata acc -3’), primers for the cDNA assay were nad7up.2 (5’- gga 

cct caa cay cct gct gct cat gg -3’) and nad7do2 (5’- tct atc tac ctc tcc aaa cac aat -3’). 

Five of the six mitochondrial nad7 stop codons of Marchantia are located between the 

two liverwort-specific introns nad7i336 and nad7i1113. This exon is therefore an 

attractive region for sequence studies, and could show evidence for pseudogenes in 

other liverwort taxa. Assuming that the two introns would be conserved, two intron-

based primers (nad7i336up and nad7i1113do) were designed to ensure amplification of 

the mitochondrial copy in the analysed liverworts rather than a potential nuclear 

version, and to establish whether both introns are conserved in liverwort groups other 
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than complex thalloids. In addition to that, primers at the beginning and the end of the 

mitochondrial reading frame were used to amplify cDNA of Haplomitrium. 

 

Table 5-1: Taxa and sequences included in this study 
Taxonomy Species Voucher Accession number 

Haplomitriopsida Haplomitrium mnioides (Lindb.) Schust. M. Shimamura s.n. 1321 bp 
cDNA: 891 bp 

Marchantiopsida / 
Blasiopsida 

Blasia pusilla L. J. Heinrichs 2291 1081 bp 

Marchantia polymorpha L. chondriome --- NC 001660 
5668 bp 

Marchantia polymorpha L.  
nuclear nad7 

--- 1942 bp 
Kobayashi et al. 

(1997) 
Bucegia romanica Radian Ulm-collection s.n. 1325 bp 

Conocephalum conicum (L.) Underw. Groth & Schwertfeger 
s.n. 

1316 bp 

Monosolenium tenerum Griff./Sunita Kapila & 
SS Kumar 

live culture 
Goettingen 

1322 bp 

Marchantiopsida  
    s.str. 

Lunularia cruciata (L.) Dum. ex Lindb. Groth & Schwertfeger 
s.n. 

1282 bp 

Jungermanniopsida    
    simple thalloids 

Aneura pinguis (L.) Dumort. MGM031218-01SC 1198 bp 

Lepidolaena hodgsoniae Grolle MGM031218-02SC 1352 bp 
Calypogeia muelleriana (Schiffner) K. Müller J. Heinrichs 4375 1232 bp 
Frullania tamarisci (L.) Dumort. J. Heinrichs 4382 1233 bp 
Harpanthus flotovianus (Nees) Nees J. Heinrichs 4390 1230 bp 

Jungermanniopsida    
    leafy liverworts 

Scapania nemorea (L.) Grolle J. Heinrichs 4372 1233 bp 
Charophyta Chara vulgaris L. ---           1182 bp 

          NC_xxx 
Spermatophyta Arabidopsis thaliana L.  --- NC_000932 

6083 bp 

 

5.3 Results  
 

The amplification and sequencing of the nad7 region between the two liverwort-specific 

introns nad7i336 and nad7i1113 (Fig. 5-1) was successful for several species, including 

members of all main groups of liverworts.  

nad7up.2 nad7do2

nad7i336up nad7i1113do

i336 i1113i140 i209 i676 i917

nad7

 
Fig. 5-1. Graphical overview of the nad7 gene in land plants, adapted from Prucher et al. 2001. Dotted 
lines delineate the 5’-extension of the nuclear nad7 copy of Marchantia polymorpha, including one 
nuclear type intron (pentagon). Shaded circles indicate group II introns that are conserved in angiosperm 
chondriomes, the open circle designates an intron that is lost in tobacco. Squares represent group II 
introns identified in Marchantia, here shown to be generally present in liverworts. Asterisks indicate the 
position of six stop codons in the mitochondrial nad7 gene of Marchantia polymorpha, which render it a 
pseudogene. Two primer binding sites located in exons are indicated by arrows below the gene, two 
intron-based binding sites are shown above the respective introns. 
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The exon 2 sequence of Haplomitrium is intact (Fig. 5-2). The alignment of its putative 

amino acid sequence with the respective sequences of Marchantia, the thale-cress 

Arabidopsis and the moss Physcomitrella show no stop codons (Fig. 5-2), but several 

RNA editing sites that were confirmed by cDNA sequence comparison in the case of 

Haplomitrium. 

 
Arabid. mt    HSLALTTHAMDVGALTPFLWAFEEREKLLEFYERVSGARMHASFIRPGGVAQDLPLGLCRDIDSFTQQFASRIDELEEMSTGNRIWK  
Physco. mt    .L.........................................Y.........M....SE..FL...........I...L.N..... 
Haplo.  mt    .L............P....................P.......Y..............SE..SP...............L.N..... 
March.  nuc   .L.S.......................MM..........L..AY.........M....SE..FL...........I...L.N..... 
March.  mt    .L.......I..................*..............Y......G.......SE..FL..............K*.N...*. 
Chara   mt    .L.........................................Y..............SE.LFL...........V...L.N.....  
         
Arabid. mt    QRLVDIGTVTAQQAKDWGFSGVMLRGPGVCWDSRRAAPYDVHDQSDLDVPVGTRGDRYDRYCIRIEEMRQSLRII-VQCLNQMPSGM 
Physco. mt    ..............L...........S.....L.KS.....YN.LSF.........C..............I...-M.......... 
Haplo.  mt    ..............V........S..S.....L.KS.....Y.RL.F.........C..............I...-M.........V 
March.  nuc   .......V..GEE.M......P....S.IK..L...S...CY.KLEF.I.......C....LV........I...-A....D..N.. 
March.  mt    ..............V...........S....NL.K*.L...Y.RL.FE.--...R.C....Y.........I...IM.......... 
Chara   mt    ..............M...........S..S..L.K......Y.KVEF.........C.....V............-........... 
 
Arabid. mt    IKADDRKLCPPSRCRMKLSMESSIHHFELYTEGFSVPASSTYTAVEAPKGEFGVFLVSNGSNRPYRRKIRAPGSAHSQGLDSMSKHH  
Physco. mt    .............SQ..Q....L....K................................T.....C......F..L....F.....  
Haplo.  mt    .......PR....SQ..Q.T..L...LKPH...V....P..H..................T.....C.T....F..L..........   
March.  nuc   .......IT....TQ..Q....L....K.....YH...GA..............Y.....T.....C......FG.L....F..... 
March.  mt    ........G.TA.S...Q....L....K....SV..R.............*.........T.....C..T...F..L....F.....   
Chara   mt    .............SQ..Q....L....K.....V.........C..........Y.....T.....C......F..L....F..... 

 

Fig. 5-2. Amino acid sequence alignment of the mitochondrial nad7 gene exon 2 of Haplomitrium and 
selected taxa (angiosperm Arabidopsis thaliana, moss Physcomitrella patens, liverwort Marchantia 
polymorpha, alga Chara vulgaris). Stop codons are indicated by asterisks, editing sites in Haplomitrium 
identified by DNA-cDNA-comparison are marked with bold letters. Amino acids identical to the 
uppermost line are indicated by dots, dashes represent alignment gaps. Mitochondrial nad7 genes are 
given as “mt”, a nuclear copy as “nuc”.  
 
The basalmost genus of the group of the complex thalloids liverworts is Blasia, an 

enigmatic species that was widely considered to be a simple thalloid liverwort and was 

recently linked to the complex thalloids by morphological and genetic studies. In Blasia 

a large part of the analysed exon sequence is missing (Fig. 5-3), and this loss is 

accompanied by a shift of the reading frame. Therefore, Blasia has indeed a nad7 

pseudogene, but not due to stop codon introduction through point mutations.  

Nad7 fragments from other marchantiopsid species show closer similarity to the 

Marchantia sequence (Fig. 5-3). All members of the complex thalloid group, including 

Marchantia, carry stop codons in their nad7 reading frames. Intriguingly, one of them is 

shared by all members of the group and the basal-most Jungermanniopsiid liverwort 

Aneura (S 3728), two further stops are shared by all Marchantiopsida except for 

Lunularia (S3483 and S 4064). Nine other stop codons are unique to single species and 

distributed over the whole second exon of the nad7 gene (Fig. 5-3). 
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Fig. 5-3: Graphic overview of the nad7 exon region between the introns nad7i336 and nad7i1113 for 
Marchantia polymorpha and 12 other liverworts. Asterisks represent stop codons (S), arrows indicate 
indels (ID) that result in frame shifts, black boxes depict indels (ID) that do not represent frameshifts but 
codon losses or gains. Their respective positions are indicated by the Marchantia polymorpha nucleotide 
position of the nad7 gene on the 5’ side of the stop codons and indels. Dotted lines circumscribe the loss 
of a major part of the exon in Blasia. Phylogenetic relationships of the taxa are shown to the left, 
summarizing findings from several recent studies.  
 

The reading frames of taxa from the groups of simple thalloid and leafy liverworts are 

disrupted by several indels, as well as the reading frames of the complex thalloid 

liverworts Monosolenium and Lunularia (Fig. 5-3). Three indels are shared by all 

Jungermanniopsiid taxa: ID 3551 (+2), ID 3764 (+5), ID 3902 (-25), all constituting 

frame shifts, respectively. One other frame shifting indel is shared between the simple 

thalloid Aneura and the basal leafy liverwort Lepidolaena (ID 3856 (+4)). Indels that do 

not result in frame shifts are much rarer (black boxes in Fig. 5-3). One of them, 

ID 3704 (+3), is again shared between Aneura and Lepidolaena, another one is present 

in all Marchantiopsida (ID 3878 (+3)).  

 

5.4 Discussion of the evolution of nad7 in liverworts 
 

The nad7 gene is one of the most conserved genes of the plant mitochondrial genome, 

and therefore its development into a pseudogene and the existence of a functional 

nuclear copy is a rare case with land plants. In fact, this is the only known event of 

functional gene transfer from the mitochondrion in non-angiosperm land plants, and the 

only one that involves one of the nine mitochondrially encoded nad-genes. The transfer 
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event is apparently restricted to liverworts, because a presumably functional 

mitochondrial version is known from both Chara (Turmel et al. 2003) and mosses 

(Pruchner et al. 2001).  

As mentioned before, the Chara nad7 gene is intron-free, and all analyzed mosses share 

the group II introns nad7i140 and nad7i209 with flowering plants (Fig. 5-1). 

Marchantia shares none of these introns, but carries two different group II introns. 

Although the mitochondrial pseudogene of Marchantia is transcribed, both introns are 

not spliced (Takemura et al. 1995).  

The situation is quite different in the case of the rare liverwort Haplomitrium mnioides, 

which has recently been proposed as a member of the earliest diverging group of all 

liverworts (Forrest and Crandall-Stotler 2004; Forrest and Crandall-Stotler 2005). Its 

cDNA was obtained using primers at the end of the coding sequence (CDS), the 

respective DNA sequence for exon 2 was obtained with primers anchoring in both 

liverwort introns. The PCR and the RT-PCR products document both the presence of 

the two liverwort-type introns and their functional splicing. The alignment of all 

obtained liverwort sequences clearly documents the occurrence of both introns in all 

liverwort taxa. Several base exchanges of C to T were found in Haplomitrium when 

DNA and cDNA sequences were compared, indicating an exchange of C to U on 

mRNA level (Fig. 5-2). This kind of RNA editing is common in all land plants, with the 

exception of complex thalloid liverworts. Haplomitrium is known to have an unusually 

extensive amount of editing sites in nad5, another mitochondrially encoded nad-gene 

(Groth-Malonek et al. 2005). In the case of nad7, there is evidence for a high amount of 

RNA editing as could be expected from a functional mitochondrial gene of this taxon. 

Therefore, it is assumed here that nad7 is a functional mitochondrial gene in the 

liverwort Haplomitrium.  

This is not the case for Blasia, which morphologically resembles a simple thalloid 

liverwort, but is on the molecular and ultrastructural level more closely related to 

complex thalloid liverworts like Marchantia (Renzaglia and Duckett 1987; Garbary and 

Renzaglia 1998). Recent studies of liverwort phylogeny place Blasia as the basalmost 

branch of the complex thalloid (Marchantiopsida) clade (Davis 2004; Forrest and 

Crandall-Stotler 2004; Forrest and Crandall-Stotler 2005), where it is occasionally 

referred to as the separate class Blasiopsida (Stech and Frey 2001). In the case of the 
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mitochondrial nad7 gene a unique feature was found in Blasia: it was the only sequence 

lacking a large portion of exon 2, resulting in a frame shift and ultimately in a putative 

pseudogene (Fig. 5-3). No stop codons were detected, and no further frame shifts could 

be found. All other analysed complex thalloid taxa share a different mode of 

pseudogene evolution: they carry stop codons. Marchantia is the most stop-rich taxon 

sequenced here, with 5 stop codons distributed over exon 2 (Figs. 5-2 and 5-3). 

Bucegia, a second member of the same family as Marchantia (Marchantiaceae), shares 

three of these stops (S 3483, S 3728, S 4064), and features a single stop that is unique 

for Bucegia (S 3728). The less closely related taxa Monosolenium and Conocephalum 

share all three conserved stop codons without the occurrence of new ones, but in the 

case of Monosolenium an additional three indels were detected. All three indels 

constitute frame shifts, as they are the size of only one single nucleotide. The even 

further distant Lunularia shares only one stop codon (Fig. 5-3, S 3728), has a unique 

stop codon in addition to that, and includes also two single-nucleotide indels. Therefore, 

only one of the stop codons, S 3728, is conserved in all surveyed complex thalloid 

liverworts. This stop actually occurs in Aneura as well, which is a member of the 

earliest diverging branch of the Jungermanniopsida, the sister group of the 

Marchantiopsida, and could therefore be the earliest occurring stop codon in the 

pseudogene evolution of nad7. Interestingly, the large gap that was found in Blasia is, 

when aligned with other liverwort sequences, placed in a region that includes the 

position of this highly conserved stop codon. If Blasia’s placement as the earliest 

diverging taxon of the complex thalloid clade is correct, then it can be postulated that 

the transfer of a functional nad7 copy to the nucleus must have occurred before the 

evolution of the whole complex thalloid liverwort clade including Blasia. Only the 

lifting of any evolutionary constraint from the mitochondrial nad7 due to the occurrence 

of a functional version in the nucleus can allow for a pseudogene in the mitochondrial 

genome. 

Aneura, which is, as a simple thalloid liverwort, a member of supposedly early 

diverging groups of the Jungermanniopsida, shows the extraordinary high number of 

16 indels in the nad7 exon 2. All further taxa show fewer indels, from three 

(Calypogeia) up to nine (Lepidolaena), and occasionally stop codons. All 

Jungermanniopsid liverwort sequences share three frame shifts in the analysed exon 
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(Fig. 5-3), and all of them are constituting frame shifts. An interesting difference 

between the frame shifts found in Marchantiopsida and Jungermanniopsida is their size. 

All four Marchantiopsid indels are comprised of only one nucleotide. In the case of the 

23 identified Jungermanniopsida indels, only two of the indels in the sequence of 

Aneura are this small, and also another indel of Harpanthus, a leafy liverwort, has this 

size. Single-nucleotide indels are very rare, and they can often be linked to sequencing 

errors, especially in coding regions. This can not be totally ruled out here, as it was not 

possible to obtain and sequence a multitude of clones from some species (e.g. 

Monosolenium), which should be obtained to prove the correctness of the sequences. 

However, if any combination of these particular indels (Fig. 5-3, ID 3587, ID 3647, ID 

3695, ID 3738, ID 3798, ID 3831, ID 3863, ID 3952, ID 3977) would be excluded from 

the overall picture, all sequences involved would still represent pseudogenes due to 

different indels or stop codons. Nevertheless, the occurrence of positionally identical 

stop codons and indels that are present in taxonomically linked species points 

furthermore to a rather correct estimation of the situation in the mitochondrial nad7 

gene in liverworts. 

 

CONCLUSION 

All liverwort nad7 sequences investigated here were shown to be pseudogenes with the 

notable exception of Haplomitrium, the taxon that has been proposed to be the earliest 

diverging branch of the liverwort phylogeny (Forrest and Crandall-Stotler 2005). The 

nad7 gene of this taxon undergoes typical organellar RNA editing (Fig. 5-2) and group 

II intron splicing, and is proposed to represent the functional mitochondrial gene. 

Necessarily, the complete reading frame needs to be fully sequenced for ultimate 

clarity, since mutations in the flanking regions cannot be completely ruled out.  

The observations support the model that both introns were present in a functional 

mitochondrial nad7 gene of an extinct liverwort ancestor and were correctly spliced at 

that time. Their appearance obviously predates the occurrence of stop codons in the 

nad7 gene, if the proposed liverwort phylogeny is correct. Three reported mismatches 

of exon binding sites (EBS) 1 & 2 of nad7i1113 are proposed to prevent its splicing in 

Marchantia (Takemura et al. 1995). The flanking exon site including intron binding 

sites (IBS) 1 & 2 was aligned with several angiosperm and moss data (not shown). 
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IBS1 & 2 of Marchantia are identical to the homologous exon region in several species, 

including Arabidopsis, tobacco, the moss Takakia, and Haplomitrium. Therefore the 

proposed mismatches, if correctly predicted, are derived from mutations of the exon 

binding sites in the intron. In contrast to that, the single mismatch that was reported for 

nad7i336 IBS1 is very likely an exon located mutation in Marchantia, because the 

corresponding nucleotide in the EBS1 was proposed to be a U, and all moss and 

angiosperm sequences share a corresponding A, whereas the Marchantia sequence 

displays a mismatching C. 

Taken the knowledge that the introns were obtained before a pseudogene developed, 

they could still have been inserted into the gene before or after the nuclear transfer. It is 

also not clear on which point in early plant evolution that transfer occurred, because no 

nuclear PCR product could be obtained from any taxon, although primers were designed 

from Marchantia’s nuclear nad7 sequence, and all analysed taxa were tested, including 

DNA of Marchantia polymorpha. Also no contradiction could be found for the model 

that the transfer process was mediated by mature mRNA, as was proposed by 

Kobayashi (1997). Indeed that process was frequently proposed, e.g. for the transfer of 

cox2 to the nucleus in legumes (Adams et al. 1999) and for rps10 in angiosperms 

(Adams et al. 2000), which was independently transferred several times. In the cases of 

angiosperms the nuclear version was always found to resemble the mature mRNA, 

because the nuclear sequence contained edited versions of the putative editing sites 

discovered on the mitochondrial DNA. This comparison is not useful for Marchantia, 

because the marchantiid liverworts do not edit their mitochondrial RNA, and therefore 

no distinction between DNA and mature mRNA sequence is possible except for the 

occurrence of introns. To obtain more information about the history of nuclear nad7 in 

liverworts, it is necessary to analyze the nuclear versions of simple thalloid or leafy taxa 

that are known to be capable of RNA editing. 

It seems rather likely that the pseudogenisation of the mitochondrial version took place 

after the divergence of the basal Haplomitrium-clade, supporting the recent theory of 

the Haplomitrium/Treubia clade as the earliest diverged group of all liverworts. Still, an 

independent loss of the mitochondrial nad7 function in the two large liverwort groups 

Marchantiopsida (complex thalloids) and Jungermanniopsida (simple thalloids and leafy 

liverworts) can not be ruled out, although it is not the most parsimonious explanation. 
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The loss of a large part of exon 2 in Blasia versus the development of stop codons and 

frame shifts in the rest of the liverworts are very likely independent events, that were 

only possible because an alternative gene version was already in place in the nucleus 

and, most importantly, functional. The question remains, whether Haplomitrium or even 

Chara already carry a nad7 copy in their nuclear genome, and whether it is already 

fused with a targeting sequence for the mitochondrion, which would be obligatory for a 

functional replacement, and was found for cox2 in soybean (Nugent and Palmer 1991) 

and other legumes (Adams et al. 1999; Palmer et al. 2000). In the case of nad7, a 

nuclear type intron was indeed detected in the functional gene copy, accompanied by a 

5’-extension, which probably comprises the targeting sequence for the transport of the 

resulting protein into the mitochondrion (Kobayashi et al. 1997). 

 

 



 

6 Synopsis 
 
Mitochondrial DNA in land plants: very slowly evolving gene sequences vs. rampant 

gene relocation and loss - what do we learn from the studies presented here?  

This study concentrated (mostly) on the presumably earliest land plant groups, the 

bryophytes. Few molecular data have previously been accumulated from these 

organisms compared for instance to flowering plants, and most of them were obtained 

for pure phylogenetic studies, leaving particular modes of organelle genome evolution 

anappreciated. The evolution of such peculiar aspects as RNA editing, which is known 

from chloroplast and mitochondrial DNA of flowering plants, began already in 

bryophytes. As the editing frequency is much higher in mitochondrial than in 

chloroplast RNA, the study of selected additional mitochondrial genes in the earliest 

land plants promised further insights. 

A major part of this thesis, chapter 2, is dedicated to the analysis of a novel marker 

gene, nad4, following its evolution from algae to angiosperms. Many parallels can be 

drawn between this gene and the already well understood nad5 gene, which developed 

from a gene of interest for intron-splicing studies in angiosperms into a renowned 

phylogenetic tool for bryophytes and non-flowering plants. Both genes, nad4 and nad5, 

have been shown to represent useful loci for phylogenetic analyses in liverworts 

(chapters 2 and 3), in the case of nad4 here shown for the first time. The nad5 gene 

exhibits an extraordinaryly high degree of RNA editing in such unique liverworts as 

Haplomitrium, and a significant number of reverse editing events in hornworts and 

ferns, and the same holds true for nad4 (chapter 2). This supports the notion that a 

species, which reveals an elevated number of editing sites in one gene, is also prone to 

show the same picture in other genes, rendering this phenomenon lineage specific rather 

than an effect unique for single mitochondrial loci. The detailed analysis of nad4 editing 

sites in 51 liverworts (chapter 2) also supports the previously noted hypothesis that no 

RNA editing occurs at all in the complex thalloid liverworts, and again no evidence for 

reverse U-to-C-editing has been found in any liverwort. Combining all data regarding 

this subject in early land plants with the phylogenetic studies incorporated in chapters 2 

to 5 of this thesis, it can be concluded that the C-to-U-RNA editing developed in the 

common ancestor of all land plants, and is present to a very high degree in a member of 
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the potentially earliest diverging liverwort lineage: Haplomitrium. The missing 

evidence for editing events in complex thalloid liverworts reflects a potential secondary 

loss in this distinct and clearly monophyletic group. As the probably earliest diverging 

extant member of mosses, the genus Takakia, likewise exhibits a very high RNA editing 

rate, it could be postulated that the common ancestor of all land plants, which would 

also be the common ancestor of liverworts and mosses in our proposed land plant 

phylogeny, would similiarily exhibit much RNA editing. The general mechanism of 

land plant RNA editing has not been revealed so far, but current theories converge on 

the point that a number of nucleotide-sequence-specific RNA-binding proteins must be 

involved, because the observed editing events are extremely site specific in the analysed 

angiosperms. Assuming that the basal placement of Haplomitrium and Takakia is 

reflecting the real evolution of land plants, both could have inherited the ancestral 

RNA-binding protein(s). No reverse U-to-C-editing was found in either liverworts or 

mosses. This phenomenon appears for the first time in hornworts. Interestingly enough, 

Leiosporoceros, which is considered the possibly earliest diverging hornwort lineage, 

displays a very small degree of RNA editing compared with the average levels in 

hornworts.  

Another form of “editing” RNA naturally is the splicing of introns. Organellar introns 

are distinguished by their secondary structure into the very differing groups I and II. 

Group I introns constitute the predominant type in green algae, and are present in 

parallel with group II introns in early land plants, whereas angiosperms carry only 

group II introns in their chondriomes, with a unique exception in Peperomia. A member 

of each group has been analysed in detail in the presented study, based on liverworts in 

both cases for enhanced comparability. The simple thalloid genus Pellia exhibited 

surprising differences in both the group I intron in nad5 (chapter 3) and the group II 

intron in nad4 (chapter 2), considerably reducing the size of the two introns. This is the 

first case of such an occurrence in non-tracheophytes, this effect has only been noticed 

before in the lycophyte Isoetes on several occasions, including a group II intron in nad5. 

Therefore special attention was given to these unique features (chapter 2 and 3). 

Apart from their structure, the analysed introns were also part of phylogenetic studies 

obtained to gain insights into the phylogeny of liverworts (chapter 2 and 3), and, in the 

case of nad4, also with a small taxon sampling for mosses (chapter 2). These data were 
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compared to results from studies about another aspect of molecular evolution that can 

be studied most favourably on mitochondrial DNA: the rearrangement of genes and the 

evolution of the spacers that separate them (chapter 4). This study includes a first 

approach towards mitochondrial spacer regions in non-tracheophytes, starting out from 

a comparison of shared gene clusters between green algae and liverworts, and leading to 

interesting insights into very different developments of closely located spacers in the 

gene cluster nad5-nad4-nad2 (chapter 4). This includes a study on the varying 

occurence of a tRNA gene in complex liverworts in the gene cluster trnA-trnT-nad7 

(chapter 4), a plant group that is otherwise known to have extremely conserved gene 

sequences. 

Last, but not least, another peculiarity has been closely observed which is also so far a 

unique study in lower land plants: the evolution of the nad7 pseudogene (chapter 5), 

providing an interesting view on the evolutionary mechanisms within plant 

chondriomes. It becomes clear that some liverwort groups, like the simple thalloids and 

the leafy liverworts (Jungermanniopsida), undergo a rather faster deconstruction of a 

pseudogene, involving the multiple occurence of frameshifts as is known from 

angiosperms, opposed to the very slow disintegration of the nad7 gene in complex 

thalloid liverworts, which merely includes the introduction of stop codons, leaving the 

gene sequence otherwise intact.  

 

Combining all data gained from many different angles about the evolution of early land 

plants, it becomes obvious that bryophytes are by no means one land plant group 

separate from tracheophytes. Indeed all details proved that “bryophytes” are clearly 

divided into three very different groups, liverworts, mosses, and hornworts, each of 

them exhibiting their own typical style of evolution, maybe seen best in the spacer study 

reported in chapter 4.  
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Outlook 

 

Linking the presented findings on bryophytes to the most basal tracheophytes, the 

lycophytes and ferns, would be the next step in the evolutionary order. In that regard 

hornworts are of particular importance, as the analyses presented here helped to 

accumulate even more indications supporting them as the most closely related 

bryophyte group to tracheophytes.  

 

Another very important step would be the sequencing and detailed analysis of a data set 

that is comprised of the complete chondriomes of several land plants, including such 

unusual liverworts like Pellia and Haplomitrium, and of course the first chondriome 

sequences of mosses, hornworts, lycophytes, ferns, and gymnosperms. This latter group 

has also not been included in the studies presented here, and sequences from these 

plants should be added to the data sets in further studies. 

 

Clearly, this study has shown the way for a couple of interesting projects in the future, 

answering a few questions, but also never ceasing to produce new ones, always on the 

way to a more accurate picture of the true evolution of early land plants,  

 

or, to say it with Charles Darwin’s words: 

„There will come a time, though I shall not live to see it, when we will have a fair 

representation of the genealogy of all living organisms“.   

 

 
 
 
 



 

7 Summary 
 

Mitochondrial DNA in land plants is characterised by very slowly evolving gene 
sequences in contrast to a very variable genome structure displaying frequent gene 
relocations and transfers. Studies in this thesis address different aspects of chondriome 
evolution with a focus on early land plants. The mitochondrial nad4 gene was 
established as a novel phylogenetic marker for liverworts, including an analysis of the 
secondary structure of the group II intron nad4i548 conserved in these plants. A review 
of the already well known mitochondrial nad5 gene is accompanied by a revision of the 
folding structure of the included group I intron nad5i753, revealing peculiarities unique 
for the liverwort genus Pellia. A phylogenetic study on liverworts is reported, which 
combines the novel nad4 sequences with nad5 data from several labs, and the 
chloroplast genes rbcL and rps4, resulting in a well supported topology. The gene 
continuities of the gene clusters nad5-nad4-nad2 and trnA-trnT-nad7 were of special 
interest regarding the variability of the mitochondrial genome in the earliest diverging 
land plant lineages, and revealed very different patterns of evolution in the analysed 
spacers and among different plant groups. Loss and potential regain of the trnT gene 
was found in liverworts. Finally, studies on the degeneration of nad7 into a pseudogene 
in liverworts identified different modes of sequence degeneration in the major liverwort 
subclades. 
 
 
Zusammenfassung 
 

Die mitochondriale DNA der Landpflanzen ist charakterisiert durch sehr langsam 
evolvierende Gensequenzen, die im Gegensatz zu einer durch häufige Umordnungen 
und Gen-Transfers bedingt sehr variablen Genomstruktur stehen. In dieser Dissertation 
werden verschiedene Aspekte der Chondriom-Evolution angesprochen, der 
Schwerpunkt liegt bei den frühen Landpflanzen. Das mitochondriale Gen nad4 wird als 
neuer phylogenetischer Marker für die Lebermoose etabliert, was eine Analyse der 
Sekudärstruktur des in dieser Pflanzengruppe konservierten Gruppe II Introns nad4i548 
einschließt. Ein Überblick über das bereits gut bekannte mitochondriale Gen nad5 wird 
begleitet von einer Revision der Faltungsstruktur des darin enthaltenen Gruppe I Introns 
nad5i753, bei der ungewöhnliche Besonderheiten der Lebermoosgattung Pellia deutlich 
wurden. Eine phylogenetische Studie der Lebermoose, die sowohl die neuen nad4 
Sequenzen als auch nad5 Daten verschiedener Arbeitsgruppen und die chloroplastidären 
Gene rbcL und rps4 vereinigt, führt zu einer gut gestützten Topologie. Die Reihenfolge 
der Gene in den Gen-Gruppierungen nad5-nad4-nad2 und trnA-trnT-nad7 sind von 
besonderem Interesse für Untersuchungen der Variabilität des mitochondrialen Genoms 
in den am frühesten divergierenden Gruppen der Landpflanzen. Ihre Untersuchung führt 
zu der Präsentation sehr unterschiedlicher Evolutionsmodelle in den analysierten 
Spacern und verschiedenen Pflanzengruppen. Hierbei wird der Verlust und potentielle 
Wiedergewinn des trnT Gens in Lebermoosen gezeigt. Desweiteren führen Studien der 
Degeneration des nad7 Gens zu einem Pseudogen in Lebermoosen zu der 
Identifizierung von unterschiedlichen Arten der Sequenzdegeneration in den 
Großgruppen der Lebermoose. 



 

8 General Appendix 
 
This appendix constitutes a short overview over the media and buffer used as well as 
their respective receipts (table 9-1).  
 
Chemicals and plastics were obtained from Applichem, Roth, Labomedic, Sarstedt, 
Sigma, and Merck. Primers were synthesised by Invitrogen, Qiagen Operon, 
biomers.net, or Metabion. 
 
Table 9-1: Media and buffer receipts 
 
Medium / Buffer Component Final concentration 

EDTA-Na4 1 mM 1 x TE-Buffer (pH 8.0) 
Tris 10 mM 
Tris 0.9 M 
Boric acid 0.2 M 

10 x TBE-Buffer (pH 8.0) 

EDTA-Na4 20 mM 
cresol red 0.04 % (w/v) 3 x Loading Dye for agarose gels 
Ficoll 13.0 % (w/v) 
NaCl 1 % (w/v) 
tryptone 1 % (w/v) 

LB medium (Luria broth):  
complete mix, composed of: 

yeast extract 0.5 % (w/v) 
                for solid Petri dishes add: agar agar 1.5 % (w/v) 
                for selective media add: Ampicillin 100 µg/ml 

KCl 2.5 mM 
NaCl 10 mM 
MgCl2 10 mM 
MgSO4 10 mM 
glucose 20 mM 
tryptone 2 % (w/v) 

SOC medium (pH 7.0) 

yeast extract  0.5 (w/v) 
CTAB 2 % (w/v) 
NaCl 1.4 M 
EDTA-Na4 20 mM 
Tris-HCl 100 mM 

CTAB buffer 

PVP 40 1 % (w/v) 
                add immediately before use: β−Mercaptoethanol 100 mM 

Tris (pH 8.0) 25 mM 
EDTA- Na4 10 mM 
glucose 50 mM 

Buffer 1 for manual plasmid preparation 
(Bibdo 1) 

lysozyme 4 mg / ml 
NaOH 0.2 N Bibdo 2 
SDS 1 % (w/v) 
Potassium acetate 3 M Bibdo 3 
acetic acid 11.5 % (v/v) 

 
 
Additional kits used for plasmid preparation were obtained from Macherey-Nagel, 
Qiagen, or Eppendorf.  
 
Procedures followed the provided instructions given in the manuals of all kits.
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