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2. Abbreviations 

AdOVA Adenovirus.OVA 

AdeGFP Adenovirus.eGFP-Luc 

AICD activation induced cell death 

Alum Aluminum hydroxide 

aOTI activated OT-I 

aOTII activated OT-II 

APC Antigen presenting cell 

AP Alkaline phosphatase 

BSA Bovine serum albumin 

cDNA complementary DNA 

CLN cervival lymph node 

CLP common lymphoid precursor 

CloLip Clodronate Liposome 

CMP common myeloid precursor 

CTL cytotoxic T lymphocyte 

DC Dendritic cell 

DNA Desoxyribonucleic acid 

DT Diphteria Toxin 

DTH delayed type hypersensitivity 

DTR Diphteria Toxin Receptor 

ELISA Enzyme linked immunosorbent 

assay 

EM Electron microscopy 

eGFP enhanced GFP 

ER endoplasmatic reticulum 

FACS fluorescent associated cell 

sorting/screening 

FCS Fetal calf serum 

GBM Glomerular basement membrane 

GFP Green fluorescent protein 

GN Glomerulonephritis 

Hel Hen egg lysozyme 

HEV high endothelial venule 

HPLC high pressure liquid 

chromatography 

HRP Horseradish peroxidase 

 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

ILN inguinal lymph node 

i.p. intra-peritoneal 

i.v. intravenous 

LPS Lipopolysaccharide 

Luc Firefly Luciferase 

mAb monoclonal antibodies 

MACS magnetic associated cell sorting 

MFI mean fluorescence intensity 

MHC major histocompatibility 

MLN mesenteric lymph node 

MMP Matrix metalloproteinase 

MW Molecular weight 

NOH Nephrin OVA-Hel 

nOTI naïve OT-I 

nOTII naïve OT-II 

OD optical density 

o.n. over night 

OVA Ovalbumin 

PAMP pathogen associated molecular 

pattern 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PRR Pattern recognition receptor 

RLN renal lymph node 

RNA Ribonucleic acid 

SA Streptavidin 

s.c. sub-cutaneous 

Spl Spleen 

TCR T cell receptor 

TLR Toll-like receptor  

TGF transforming growth factor 

wks weeks 

wt wild type 
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3. Abstract and Summary 
Immune mediated glomerulonephritis (GN) is a major cause renal inflammation 

leading to terminal kidney failure. B cells and autoantibodies are well known to 

contribute to the progression of glomerular disease. The role of CD8+ T cells, however, 

remains to be clarified, partially because of lack of suitable disease models. 

To investigate this question, a transgenic murine model system was created by 

expressing a membrane-bound model antigen (OVA-HEL) under the control of the 

nephrin promoter specifically on glomerular podocytes (NOH mice). These cells would 

then be targets of adoptively transferred OVA- or HEL-specific lymphocytes. NOH 

mice could therefore be used as a model for antigen specific attacks of the cellular or 

humoral immune response. This approach has been used successfully in the past to 

elucidate mechanisms in other autoimmune diseases, e.g. Diabetes Type I and 

Autoimmune Encephalomyelitis.  

CD8+ OVA-specific T cells were activated exclusively in the renal draining lymph node 

in a DC dependent fashion, indicating cross-presentation of glomerular antigen 

whereas CD4+ OVA-specific T cells remained inactive after adoptive transfer. 

In contrast to the Diabetes models, even high numbers of OVA-specific CD8+ T cells 

alone only inflicted minor glomerular damage. Co-injection of OVA-activated OVA-

specific CD4+ T helper cells induced influx of antigen specific T cells and inflammatory 

mononuclear cells and resulted in renal immunopathology. The infiltrate was 

predominantly periglomerular, similar to the histological changes seen in rapid 

progressive forms of glomerulonephritis. The infiltrate was dominated by myeloid 

dendritic cells (DC) expressing CD11c, CD11b and the costimulatory markers CD40 

and CD86, proinflammatory DC of the Gr-1hiCX3CR1lo phenotype and also contained 

antigen-specific CD8+ and CD4+ T cells. DC activation and CD8+ T cell effector function 

strongly depended on the availability of CD4+ T cell help. Persisting infiltration led to 

podocyte dysfunction and glomerulosclerosis. CD8+ T cell priming in the kidney 

lymph node as well as inflammation within the kidney required the presence of DCs, 

as demonstrated by ablation of CD11c+ cells in NOH x CD11c-diphteria toxin receptor 

mice, which allow deletion of DCs upon injection of diphtheria toxin. Within infiltrates, 

proinflammatory cytokines and the chemokines CCL2, 3, 4 and 5 as well as their 

correlating receptors were detected on infiltrating leukocytes.  

These findings demonstrate that T cells specific for glomerular antigens can induce 

kidney immunopathology and structural damage reminiscent of rapid and crescentic 

types of glomerulonephritis. 
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4. Introduction 

4.1 T cell development and function 

T cells take part in every major aspect of the adaptive immune response. In homeostasis, 

regulatory T cells actively tolerize other immune cells to prevent autoimmunity. During 

infection, CD4+ T helper cells orchestrate immune effector functions by governing production 

of antibodies and activating CD8+ T cells to become cytotoxic T lymphocytes that can 

specifically destroy infected cells by recognizing antigenic structures of the pathogen.  

Initial activation of T cells is mediated by so called “professional antigen-presenting cells” 

such as dendritic cells (DC), B cells and to some extent macrophages or even specialized 

parenchymal body cells (e.g. liver sinusoidal endothelial cells).1  

T cells in homeostasis and immunity 

T cells, an abbreviation of the term "T lymphocytes", generally can be divided into three 

major subsets: CD4+ T helper cells are key organizers of the adaptive immune response. 

Most immune reactions crucially depend on the presence of activated CD4+ helper cells, 

which can guide the immune systems to tailor responses against pathogens as diverse as 

parasites, bacteria, fungi, viruses or even abnormal body cells such as cancer. CD8+ 

cytotoxic T killer cells are specialized in detecting and removing infected or malignant body 

cells, which host pathogens inside the cells or have degenerated into tumour cells. Activated 

cytotoxic T lymphocytes can specifically detect those defective cells and remove them by cell 

lysis or apoptosis induction while leaving neighbouring cells, which have not been infected, 

intact. Immunosuppressive regulatory T cells, which are a specialized form of CD4+ T cells, 

are responsible for silencing autoreactive immune cells in homeostasis and for shutting down 

immune reactions once they have cleared an infection to prevent collateral tissue damage by 

overshooting immune reactions. 

Naïve, resting T cells circulate the blood and lymphoid organs in large numbers with each 

cell showing different and highly specific reactivities to distinct antigenic patterns. Each cell 

recognizes a specific peptide fragment based on their receptor, the T cell receptor (TCR). 

During T cell development in the thymus, each cell creates a highly individual receptor by a 

process called somatic recombination. Due to the unique structure of each TCR and the high 

numbers of T cells circulating the body, T cells can react to a broad spectrum of antigenic 

patterns. TCRs are used by the T cells as the main receptor for T cell activation. The ligand 

for the TCR is a complex of antigen presenting molecules called major histocompatibility 

complex (MHC) and small peptide structures (8-15 amino acids), which are being presented 

on the MHC molecules. In general, two different classes of cell bound MHC exist:  
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• MHC-I molecules are expressed on any cell throughout the body, presenting 

endogenous peptide fragments of proteins, which are synthesized within the cell and are 

responsible for the activation of CD8+ T cells.  

• MHC-II molecules are present almost exclusively on a specialized subset of cells called 

professional antigen presenting cells (APC) and are responsible for the activation of 

CD4+ T cells. These cells sample antigens by phagocytosis, receptor mediated 

endocytosis or pinocytosis and present those antigens after degradation on MHC-II or by 

a process termed cross-presentation also on MHC-I, depending of the uptake 

mechanism and the intracellular compartment where the antigen is located to after 

uptake (e.g. vesicular compartments such as stable early endosomes or lysosomes).2  

 

Since the genetic rearrangement of TCR-genes, which is known as somatic recombination, is 

a process that is virtually completely random, many developing T cells in the thymus show 

high levels of autoreactivity. Therefore, it is imperative for an organism to delete these cells 

before they leave the thymus and enter the periphery. In the thymus, developing cells are 

scanned by medullary thymic epithelial cells (mTEC) and selected in a two step process. To 

ensure that only T cells with functional TCR leave the thymus, T cell precursors are first 

selected for their ability to positively match their TCR to the MHC molecules on the mTEC 

(positive selection). In the second step, cells that show strong interactions with unloaded 

MHC are eliminated to prohibit unspecific T cell activation. Furthermore, mTEC are able to 

present a broad variety of proteins from any cell type throughout the body by using a specific 

transcription factor called AIRE3, which activates transcription of a wide selection of organ-

specific genes. T cells reacting to peptides generated from those proteins are identified as 

autoreactive and are also eliminated (negative selection).  

Although this process, which is termed as central tolerance4, prevents highly autoaggressive 

cells from reaching the circulation, not all self-reactive T cells are eliminated.  T cells which 

are showing only low or intermediate reactivity to self antigens are allowed to leave the 

thymus, making it necessary for the body to apply additional mechanisms of tolerance 

induction to prevent activation of those cells and to suppress autoimmunity. This process, 

called peripheral tolerance5, 6, is a multi-step mechanism that includes three different 

concepts, depending on the reactivity of the cells to the self-antigens. 

Antigens which are either occluded from the immune system by physical barriers (so called 

immunological privileged sites, e.g. brain, eye cavity, testis or uterus)7 or that are only 

detected with very low affinity are commonly being ignored by the immune system, not 

leading to an activation of immune cells. However, any access of the adaptive immune cells 

to immunological privileged sites generally leads to massive autoimmunity, showing that 

sequestered antigens cannot be used for the induction of peripheral tolerance.8 
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Antigens, which are readily accessible to the immune system but only lead to low-level 

activation of adaptive immune cells, induce a defective activation followed by a state of 

cellular paralysis termed anergy.9 Those cells could only be reactivated by very strong 

signals, so that these cells would ignore self-antigens, but still could react to highly infectious 

pathogens. However, it is crucial for the organism to actively shut down those cells once the 

infection is cleared to prevent autoimmunity.10 

Antigens that are recognized by adaptive immune cells with medium or high affinity lead to a 

state of transient activation of these cells.11, 12 However, for full immunogenic activation it is 

necessary for the antigen presenting cells to provide further costimulatory signals, a concept 

that will be discussed in more detail below addressing the development and function of APC.  

The improper activation of lymphocytes leads to a process called activation induced cell 

death (AICD).5, 13 Lymphocytes that become activated in the absence of proper survival 

signals start dividing (clonal expansion), but shortly die after having undergone few rounds of 

proliferation (clonal exhaustion). These autoreactive clones would therefore be finally deleted 

from the system.14 

Additionally to the tolerance mechanisms described above which could be seen as passive 

tolerance mechanisms, there is also induction of active tolerance either by specialized, 

tolerance inducing T cells (regulatory T cells)15 or by soluble, tolerance inducing factors such 

as TGF-β or IL-1016-18, which are secreted by various immune cells or tissue cells 

suppressing inflammatory reactions. 

  

After having described the development of T cells and the concept of tolerance induction 

during homeostasis, the following passage will describe the events following immunogenic 

activation of T cells and their effector functions. 

 

Generally, the first step of T cell activation is thought to happen in the secondary lymphoid 

organs (spleen, lymph nodes, specialized lymphoid tissues19).  

Antigen presenting cells, mostly tissue dendritic cells, constitutively sample antigens and 

migrate from peripheral tissues to the lymphoid organs, where they present those antigens to 

bypassing T cells.20, 21 Furthermore, antigen-presenting cells also reside in the lymphoid 

organs and sample antigens that enter the organs by the lymph flow. In the absence of 

inflammatory signals, those APC are functionally immature and lack costimulatory molecules 

that would lead to full immunogenic activation of the T lymphocytes. During an ongoing 

infection, APC receive maturation signals, enabling them to activate T cells and to trigger an 

adaptive immune response.22, 23 24 
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Activated CD4+ T cells perform a variety of immune effector functions, depending on the 

costimulatory signals they receive. Generally, CD4+ T helper cells can differentiate into three 

distinct subsets:  

• Th1 cells are responsible for activating macrophages to clear bacterial infections 

residing in vesicular compartments such as Mycobacterium tuberculosis.25 Secondly, 

they activate B cells to become antibody secreting plasma cells, producing IgG2a and 

IgG2b, which are highly efficient antibodies for opsonizing circulating antigens, 

marking them for phagocytic cells and activate complement.26 Last but not least, Th1 

cells activate APC to upregulate costimulatory molecules necessary for activation of 

CD8+ cytotoxic T cells. Th1 cells require the presence of IL-12 and IFN-γ during their 

activation.27 

 

• Th2 cells are responsible for the induction of immune responses against parasites, 

inducing a strong B cell activation and production of IgM and IgE, the latter being a 

crucial factor in the activation of mast cells, which together with basophilic and 

eosinophilic granulocytes form the main defence against parasite infections. Th2 cells 

require the presence of IL-4 during their activation.28, 29 

 

• Th17 cells have only very recently been discovered as a third class of helper cells. 

Their immunological function is still a matter of debate, although it is becoming clear 

that they are induced early in adaptive immune response and seem to be involved in 

the defence against extracellular bacteria by recruiting and activating neutrophilic 

granulocytes to an infection. Th17 cells require the presence of IL-6 and TGF-β 

during their activation and probably also during their effector phase in the peripheral 

tissue.30, 31 

 

Activation of CD8+ T cells requires stringent control mechanisms due to their high potential 

for causing major tissue damage if activated inadvertently. Therefore, most antigens require 

a triage of activated DC, a matching CD4+ Th1 cell and antigen specific CD8+ T cells, before 

a CTL response is commenced.32-34 In the first step, the DC has to be activated by 

inflammatory signals such as endogenous danger signals or toll like receptor ligands 

(licensing)35, 36, inducing a maturation of the DC, leading to an enhanced migration of the 

cells from the periphery to the secondary lymphatic tissues37 and upregulation of 

costimulatory molecules like e.g. B7.1 / B7.2 (CD80/86), which bind to the activating receptor 

CD28 on the T cell surface.38, 39 Furthermore, mature dendritic cells also upregulate CD40 

ligand, which is a crucial interaction partner in the cross-talk between CD4+ T helper cells 

and APC.40-43 Mature APC also stabilize antigen loaded MHC-II complexes on their cell 
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surface, therefore enabling the cell to efficiently present antigens they collected in the 

periphery over a period of several hours in the secondary lymphatic tissue.21 This allows 

bypassing CD4+ T cells, which randomly scan APC in the lymph nodes until they find an 

interaction partner, to detect DC carrying the matching antigen, which leads to a stable 

interaction between the DC and the T cell.44 This interaction subsequently activates the CD4+ 

T cell, which in turn also gives further activation signals back to the APC.44 Fully activated 

DC upregulate further markers necessary for CD8+ T cell activation such as  

4-1BBL.45 If such a matured DC encounters a matching CD8+ T cell, these cells also form 

stable interactions lasting for several hours, leading to immunogenic activation of the  

CD8+ T cell, which in turn starts proliferating and developing into CTL effector cells.44 

Although most antigens require CD4+ T cell help to induce efficient CD8+ responses, some 

highly infectious antigens, e.g. viral antigens derived from Influenza or LCMV, are capable of 

activating DC in the absence of T cell help, inducing activated CTL. However, this activation 

is somewhat limited, since the CD8+ T cells primed without T cell help fail to produce 

sufficient T cell memory responses.46-48 

4.2 Dendritic cell function and development 

Dendritic cells are the major fraction of antigen presenting cells responsible for the induction 

of T cell responses. DCs were described as early as 1973 by Steinman and Cohn49, but it 

was not until the early 1980s that the cells were linked to their function in T cell activation.50 

Much has been learned since then about the development and different functional properties 

of those cells.  

Today, two classes of DC are being described: conventional dendritic cells (cDC) are 

responsible for activating and guiding T cell responses as will be discussed in detail below; 

plasmacytoid dendritic (pDC) cells have been described as a sort of effector dendritic cell, 

responding to viral infections by secreting large amounts of anti-viral cytokines like type I 

interferons, but do not seem to play a major role in activation of naïve T cells.  

The major hallmark for identifying dendritic cells besides their morphology is the expression 

of a distinct set of receptors. Conventional DC express high levels of CD11c, which is also 

known as the integrin αxβ2, a cell adhesion molecule binding to intracellular adhesion 

molecule-1 (ICAM-1) as well as a receptor for complement product iC3b (CR4).51 DCs also 

express basic levels of MHC-II, marking them as professional antigen presenting cells and to 

some extent also low levels of CD80/CD86. Several markers have been identified in the past 

that characterize different functional stages of cDC, although it is still an open debate, to 

what extent these cells might also represent different independent lineages of DC.  
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Markers commonly used for differentiation of DC are CD8α, CD4, CD11b, DEC205 and also 

to some extent F4/8052. These markers are not exclusive for DC and can also be found on 

T cells (CD4, CD8) or monocytes/macrophages (CD11b, F4/80).53 Although all cDC are 

thought to arise from a common bone marrow progenitor, these markers allow to differentiate 

between cells coming from a common lymphoid precursor (CLP) in the thymus and a 

common myeloid precursor (CMP) emigrating directly from the bone marrow.54 Commonly, 

CLP derived cells express CD4 and/or CD8 and also show rearrangement of their Ig-HDJ 

gene cluster. Flt3 ligand (FMS-like tyrosine kinase 3 ligand) is a crucial factor to induce DC 

differentiation in homeostatic DC development.55 If absent, CMP cells develop into 

monocytes/macrophages and CLP cells into T cells, B cells and natural killer cells.54 

In the steady state, CLP as well as CMP give rise to a common pre-DC precursor, which is 

thought to be the main source of DC residing secondary lymphatic organs. Phenotypically, 

these precursor cells express CD117, CX3CR1 and CD11b but not MHC-II, which they gain 

later during DC development. These pre-DC also lack markers commonly found on 

monocytes such as CD115, Gr-1 and F4/80, which can also give rise to DC in peripheral 

tissues and especially under inflammatory conditions.54, 56-61 

Dendritic cells in peripheral tissues form a tight network of sentinel cells, continuously 

sampling and trafficking antigens to the lymphatic tissues to maintain peripheral tolerance or 

to activate adaptive immune cells in the case of an infection. Peripheral tissue DC derive 

from CMP cells as well as mononuclear cells. Therefore, they commonly express CD11b as 

well as CX3CR1 together with CD11c and MHC-II.56, 62-64 

During an inflammatory reaction, mononuclear cells are being recruited from the blood 

stream into the periphery, enhancing the innate immune response already at very early 

timepoints.65 Blood monocytes consist of two different, distinct subsets, which can be 

discriminated by their expression levels of Gr-1 as well as the chemokine receptors CX3CR1 

and CCR2.56 Gr-1loCCR2loCX3CR1hi monocytes (Gr-1lo monocytes) are described as steady 

state precursor cells for tissue resident macrophages and dendritic cells in the periphery. 

They constitutively traffic the blood vessels of peripheral tissues, whereas Gr-

1hiCCR2hiCX3CR1lo monocytes (Gr-1hi monocytes) shuttle back to the bone marrow where 

they differentiate into Gr-1lo monocytes.60 During an ongoing inflammation, the Gr-1hi 

monocytes also accumulate at the site of inflammation, a process that is highly dependent on 

chemokine receptors CCR2 and CCR6.66 Chemokines are a large class of small proteins 

with high chemotactic potential, differentially regulating leukocyte traffic throughout the body, 

depending on the expression patterns of their target receptors. CCR2 has been described to 

mediate release of Gr-1hi monocytes from the bone marrow as well as tissue infiltration, 

whereas CCR6 seems to be of some importance for guiding infiltrating cells to the site of 

inflammation once the monocytes have left the bloodstream.66, 67 Recruitment of 
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inflammatory Gr-1hi monocytes has been described in various model systems, e.g. 

artherosclerosis68, allergic airway inflammation69, peritoneal inflammation56 or Salmonella 

induced gut inflammation.70 

As professional antigen presenting cells, dendritic cells activate CD4+ as well as CD8+  

T cells. As already pointed out above, various routes of antigen uptake and processing exist, 

determining the way antigen is presented on the cell surface.71 Especially activation of CD8+ 

T cells is based on specialized mechanistic features specific for APC, enabling these cells to 

present exogenous antigen on MHC-I molecules, which under normal circumstances have 

been thought to be reserved only for presentation of cell-endogenous antigens and loading in 

the endoplasmatic reticulum. This so called cross-presentation is achieved by shuttling 

antigens into special compartments termed stable early endosomes (SEE), which contain 

MHC-I and direct antigen processing and MHC-I dependent presentation of antigen on the 

cell surface.2 Up to today, the best-defined subset of cross-presenting DC is characterized by 

the expression of CD8α+ and DEC205+. These cells are mainly found in secondary lymphatic 

tissues and are thought to be the major source for activation (either tolerogenic or 

immunogenic) of CD8+ T cells.72 

Dendritic cell function is highly dependent on the maturation state of the cell, which is 

determining the signals the DC can provide either by cell-cell contacts or by secreting soluble 

mediators such as cytokines. Immature dendritic cells express low levels of MHC, only little 

amounts of costimulatory molecules but various receptors for antigen uptake (e.g. scavenger 

receptors, mannose receptor or DEC205).54 Immature DC can act as tolerance inducers by 

secreting IL-10, a cytokine inhibiting immunogenic activation of T cells and favouring 

activation of regulatory T cells22, 73-75. They also carry receptors for DC activation such as the 

Toll-like receptor family (TLR). 

TLR were first described in 1996 by Lemaitre et al in Drosophila melanogaster, showing that 

TLR mutants were highly susceptible to fungi infection.76 In the following, it became clear, 

that the TLR-receptor family was designed to detect a broad variety of microbial derived 

patterns, so called pathogen-associated molecular patterns (PAMP) specifically found only in 

microbial organisms. Therefore, these receptors can be described as pattern recognition 

receptors (PRR).77 Such patterns include e.g. bacterial derived glycolipids such as 

lipopolysaccharide, double stranded RNA as found during replication of RNA viruses, CpG 

DNA motives which are specific for bacterial DNA or lipopeptides such as Pam3Cys found on 

bacterial cell surfaces. Since all these patterns are specific for microbial organisms, the 

receptors allow DC to distinguish between antigens derived from host cells and foreign 

antigens derived from potentially pathogenic organisms, a concept described by Charles 

Janeway in 1992 as infectious non-self versus non-infectious self discrimination.78 However, 

this concept had to be revised over the past few years, since it has become clear, that not 
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any microbial encounter induces an immune response (e.g. in the gut which is harbouring a 

total of approximately 3kg of bacteria) and that even under sterile inflammatory conditions 

APCs can commence T cell responses. The refined model, termed the ‚danger- model’ by 

Polly Matzinger in 199479, also includes the context in which antigen is taken up by the APC. 

Antigens taken up in the absence of tissue damage or tissue damaging infection would not 

be considered harmful and therefore would not induce activation and maturation of the APC, 

whereas necrotic cell death, early innate inflammatory mediators or complement factors 

could be sensed by the APC and would be detected as an alarm signal.35, 80, 81 

Dendritic cells that have received maturation signals undergo major changes in cell 

morphology and function. While resting DC show a branched, dendrite morphology and take 

up large amounts of antigens from their surroundings, maturing DC retract those dendrites 

and upregulate chemokine receptor CCR782, 83, which targets them to migrate to high 

endothelial venules (HEV), which are the entry point to the lymphatic system. Also, they stop 

their antigen sampling activity and start upregulating MHC and costimulatory molecules, e.g. 

for Th1 induction the DCs upregulate CD40 and start secretion of IL-12, which is a Th1 

promoting factor.  

DCs in Glomerulonephritis 

As T cells have been described to be involved in autoimmune kidney disease, the 

involvement of renal dendritic cells also has become a question of great importance due to 

the direct link between DC function and T cell activation. Kidney dendritic cells have first 

been described by Krüger et al in 2004.52 Phenotypically, they resemble monocyte derived 

DC, expressing CD11c and MHC-II marking them as DC, intermediate levels of CD11b and 

F4/80 and also to some extent B7 molecules. Functionally, they show lower phagocytic 

activity compared to macrophages and no effector function in terms of NO production. 

However, they efficiently prime T cells in mixed allogenic lymphocyte reactions, proving their 

function as APC. Kidney DC show a wide and regular distribution in the tubulointerstitial 

space and upon NTN induced inflammation accumulate at the site of cellular infiltrates.52 

Kidney resident DC also express high levels of CX3CR1, marking them as monocyte derived 

cells of the Gr-1lo phenotype. The interstitial DC form a tight network, therefore making them 

perfect sentinel cells for sampling any antigen reabsorbed by proximal tubular epithelial 

cells.62, 63 Kidney resident DC have been described to be tolerogenic in homeostasis but cells 

isolated from inflamed kidneys showed properties of maturing DC.55 This view is further 

supported by studies showing that early depletion of dendritic cells in nephrotoxic nephritis, 

which is a model for rapid progressive crescentic glomerulonephritis, aggravates 

development of renal disease. Resident renal DC also induce IL-10 in CD4+ T cells ex vivo, 

showing their potential to act as inducers for immunosuppression.84 
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In contrast, kidney resident DC have also been described to be the main producer of  

TNF-α, IL−6 and proinflammatory chemokines such as RANTES and MCP-1 in early renal 

ischemia-reperfusion injury, indicating functional duality in immunity and tolerance depending 

on their state of activation.85, 86 The cross-talk between CD4+ T cells and APC is one of the 

major tissue-damaging factors in renal ischemia reperfusion injury, since a blockage of B7 

signalling ameliorates chronic organ damage.87, 88 Allograft rejection is also induced by 

migration of kidney resident DC into the renal lymph node followed by priming of T cells 

against kidney tissue antigens. Since this migration is CCR7 dependent, blocking of CCL19 

signalling, which is the chemokine ligand for CCR7, substantially prolongs allograft survival.89 

In addition, the requirement of B7 signalling has been reported in other nephritis models. In 

NTN, blockage of CD80/86 leads to attenuated infiltration of leukocytes and attenuated 

development of glomerulonephritis.90 

4.3 Chemokines and homing of immune cells 

Chemoattractant proteins have first been described in 1987 with the discovery of IL-8. Since 

then, more than 50 of such chemokines have been discovered, most of them due to their 

association with inflammatory responses. The first chemokine receptor described was the  

IL-8 receptor in 1991.91 Up to now, more than 20 different receptors have been identified, 

belonging to four different families, based on different Cystein-motives commonly found 

within the members of each family (C,CC, CXC,CX3C). The chemokine network is an ancient 

system already found in D. melanogaster and is not only used for immune system 

organization and cellular homing of leukocytes, but also plays an important role in various 

developmental processes during ontogeny.92 The chemokine CXCL12 (SDF-1), which binds 

to the receptor CXCR4, is involved in brain and cardiac formation as well as in B cell 

development and homing inside lymph nodes.93 All known chemokine receptors belong to 

the receptor family of G-protein coupled 7-Helix transmembrane receptors. 

Chemokines are major roadsigns in leukocyte traffic during homeostasis and inflammation. 

CCR7 is the most important receptor in recruiting cells from peripheral tissues into the 

secondary lymphatic system.83, 94 It is commonly expressed on DC which are leaving the 

tissue and is markedly upregulated upon DC maturation.83 CCR7 ligands CCL19 (ELC) and 

CCL21 (SLC) are expressed by endothelial cells of high endothelial venules, which are the 

entry points for leukocytes to the lymphatic system. Upon inflammation, CCR7 ligands are 

upregulated to enhance migration of the APC into the lymph nodes.83 Naïve T cells also may 

enter the lymphatic system by using CCR7, however, CXCR3, CXCR4 and CXCR5 can 

substitute for CCR7 in T cell and NK cell traffic to LN.95 
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Chemokines also direct cellular locations inside tissues. CXCR4 signalling is essential in 

organization of lymph follicles, B cell homing and development. T cell homing into lymph 

follicles is mediated by CXCR5 / CXCL13 (BCA-1) signals similar to CCR7.94 CXCL13 can be 

detected inside B cell follicles and mantle but not in T cell zones, therefore directing contact 

between B cells and T cells in the lymph node.94, 96 Dendritic cells can also specifically attract 

naïve T cells by secretion of CCL19/CCL21 (ELC/SLC).96 DCs also produce chemokines 

such as CXCL9, CXCL10, CXCL11 (MIG, IP-10, ITAC) upon activation leading to an 

attraction of Th1 cells via CXCR3, a process which might be highly relevant in CTL priming to 

provide efficient T cell help during CTL priming.97 Antigen specific DC contact blocks T cells 

from exiting peripheral tissue and induces downregulation of CCR7 and upregulation of 

CCR5 and CXCR6.98 Also, sphingosin-1-phosphate (S1-P) signaling, which is essential for 

exiting lymphoid tissues is downregulated to restrain cells in the lymph nodes during the 

initial priming phase. S-1P signalling is restored after approximately four cell divisions, 

allowing effector lymphocytes to exit the lymphatic tissues and migrate into the periphery.95 

Certain chemokines have been associated with homing properties of leukocytes into 

peripheral tissues. In homeostasis, CCR4 and CCR8 are supposedly being used for skin 

homing of leukocytes.99, 100 Cells migrating into gut tissue are commonly found to express 

CCR6. This tissue specific imprinting is mediated by DC coming from the target tissue. As an 

example, DC from Peyer’s patches induce CCR9, Langerhans cells induce CCR4 and CCR8 

in T cells.95 

Another factor in tissue homing which is especially important for homeostatic migration of 

monocytes into peripheral tissues is the Fractalkin-receptor (CX3CR1).64 Fractalkin is 

produced by endothelial cells and is known to have strong adhesive effects on leukocytes 

and therefore allowing them to stick inside peripheral tissues.101 Another feature described 

specifically for tissue resident CX3CR1+DC is their extensive ability to sample antigens by 

protruding long dendrites even through endothelial barriers sealed by tight junctions, e.g. the 

gut lumen, a process which has been described as antigen snorkelling.64 

 

Different types of immune reactions are closely linked to chemokine expression patterns.  

Classical chemoattractant receptors such as C5a or C3a receptors recruit cells of the innate 

immune response such as neutrophils and eosinophils and also induce production of TNF-α 

and acute phase proteins.95 Monocytes commonly express CCR1, CCR2, CCR6, with CCR2 

playing a special role in emigration of cells from the bone marrow and invasion into inflamed 

tissues.56, 58, 65, 67, 102 

T cells show differential expression of chemokine receptors depending on their functional 

state. Naïve T cells express CCR7 and CXCR4/CXCR5, guiding them to secondary lymphoid 

organs and bringing them into contact with APC. Activated CD4+ T helper cells express 
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either CCR5/CCL5, CCL3, CCL4 (RANTES, MIP-1), CXCR3/CXCL10 (IP-10) if they are of 

Th1 type101, 103 or CCR3/CCL11 (Eotaxin) and CCL13 (MCP-4) if they are of Th2 type.104 

CCR4 and CCR8 have also been reported to be linked to Th2 responses, but rather 

determines homing capacities to skin.99 CCR3/CCL11 signalling is closely linked to allergic 

inflammation and induces recruitment of Th2 cells as well as eosinophils. Chemokines also 

polarize T helper cell responses. CCL26 actively agonizes CCR3 but antagonizes CCR2, 

CXCL9 agonizes CXCR3 but antagonizes CCR3.95 CCR5 is also a chemokine receptor 

found on activated CD8+ T cells.101, 103 Once activated, T cells lose CCR7 and CXCR5 and 

gain CXCR3 and CCR5 or CCR3. Expression of these inflammatory chemokine receptors in 

T cells strongly depends on IL-12 signaling.105 Memory T cells differentially express CCR7: 

central memory are CCR7+ and home to secondary lymphoid organs, effector memory  

T cells are CCR7- and quickly develop into effector cells in the periphery if reactivated.106 

Activated T cells also express inflammatory chemokines CCL3 (MIP-1α), CCL4 (MIP1-β) and 

CCR5 (RANTES) early upon activation.95  

 

Tab. 1: Chemokines and chemokine receptors expressed by leukocytes 

HOMEOSTASIS INFLAMMATION 
 

Receptors Chemokines Receptors Chemokines 

DC CCR1, CCR4, CCR5, 

(CCR7), CX3CR1 
CCL19, CCL21 

CCR1, CCR2, 

CCR5, CCR6, 

CCR7 

CCL19, CCL21, 

CCL17, CXCL9, 

CXCL10, CXCL11 

Monocytes CCR1, CCR2, CCR5, 

CCR6, CX3CR1 
- CCR2 

CCL2, CCL3, 

CCL4, CXCL9 

B cells CXCR4, CXCR5 CCL17, CCL19, CCL21  CCL17 

T cells CCR7, CXCR4, CXCR5, 

CCR4, CCR8 (skin) 
-   

-Th1   CCR5, CXCR3 CCL3, CCL4, CCL5 

-Th2   CCR3, CCR4 CCL13 

-CD8   CCR5, CXCR3 CCL4, CCL5 

 

Chemokines have also been linked to various immune mediated diseases. In experimental 

autoimmune encephalitis, a mouse model for multiple sclerosis, CCL2, CCL3, CCL4 as well 

as CXCL10 are readily detectable in neural lesions. CCL3 has been linked to the acute 

phase of the disease, whereas CCL2 has been reported to be more important for relapse.  

In allograft rejection, the acute phase infiltrate consists of monocytes and neutrophils 

recruited by CXCL2 (MIP-2), KC and CCL. In the late phase, CXCL9, CXCL10 and CXCL11 

as well as CCL4 and CCL5 lead to the infiltration of T cells. Knockout of these chemokine 

signals show significantly enhanced graft survival.107 Development of allergic asthma highly 

depends on Th2/CCR3 activation. Rheumatoid arthritis is linked to CCR2/CCL2, but also the 
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block of CCR1/CCR5 signalling by the inhibitor met-RANTES is effective in suppressing the 

inflammation.108 Pulmonary fibrosis depends on CXCR3 and IFNγ,109 CXCR3 has also been 

described in the activation of human myofibroblasts.110  

Chemokines in renal disease 

Chemokines have also been identified to be involved in development of renal disease. After 

renal transplantation, antibody mediated CCL19 block prevents allograft rejection and 

enhances graft survival. However, the outcome is not enhanced in CCR7-/- recipients, 

indicating that migration of organ resident leukocytes facilitates graft rejection.89 

CXCR3+ cells are part of any renal infiltrate detectable in renal biopsies from patients with 

IgA nephropathy, lupus nephritis, and membranoproliferative glomerulonephritis.111 In vitro 

studies show that tubular epithelial cells, which have been activated by TNF-α or IFN-γ, 

express T cell attracting chemokines CCL5 and CXCL10.112 In nephrotoxic nephritis, CXCR3 

ligands are also found in renal tissue. CXCR3-/- mice show significantly ameliorated disease 

development, however, T cells isolated from these mice proved to be fully functional in 

effector T cell development, indicating impaired trafficking rather than functional defect of T 

cells in vivo.113 

 

CCR1 and CCR5 have also been reported to be expressed in glomerular and interstitial 

lesions from various patients with different forms of glomerulonephritis. Also, urinary 

excretion of CCL3, CCL4 and CCL5 could be detected, indicating increased expression due 

to the renal inflammation.114 However, in mouse nephrotoxic nephritis, CCR5-/- mice show an 

aggravated disease phenotype, presumably due to an overshooting CCR1 reaction. 

Blockage of CCR1 signalling using the CCR1 inhibitor BX471 in CCR5-/- mice leads to an 

attenuation of renal disease, resulting in less infiltration of inflammatory cells into the organ 

and reduced crescent formation.115 

 

Chemokine induced monocyte infiltration also seems to be of some importance in nephritis 

development. For example, in Apoferritin-Nephritis, a model for immune complex induced 

nephritis, CCR2+ and CCR5+ inflammatory monocytes are abundantly found in inflamed renal 

tissue.116 

 

Podocytes have also been reported to express various receptors for both CC and CXC 

chemokines in vitro and in vivo; however, their involvement in renal disease development 

has yet to be determined.117 
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4.4 Glomerulonephritis disease phenotypes: an overview 

To clarify the overall aim of this study, it is necessary to introduce the various forms of renal 

disease in detail and to elucidate the involvement of T cells in the different disease 

phenotypes. As summarized by Kurts, et al, there is evidence for the involvement of T cells in 

almost any form of renal disease. Furthermore, all different types of misguided T cell 

responses can induce glomerular disease, including cytokine mediated disease, 

autoantibody formation, immune complex deposition, activation of macrophages or CD8+  

T cells.118 CD4+ T helper cells can act as key players in all types of renal disease by 

activating either B cells or DC. T cells have been described in human diseases like IgA 

nephropathy, diffuse proliferative GN, crescentic GN, Lupus nephritis and anti-neutrophil 

cytoplasmic antibody (ANCA)-nephritis. Also, the loss of active immune regulation by 

regulatory T cells has been described as a possible cause for the induction of GN.119 CD8+ T 

cells seem to be involved in the pathology of some forms of nephritis, although the evidence 

is somewhat less clear compared to other mechanisms of renal autoimmune disease 

development. Their involvement has been described as pathogenic in Lupus nephritis120, rat 

NTN121 and experimental autoimmune nephritis.122 However, the exact mechanisms of T cell 

mediated GN still remain an open debate.  

 

The various forms of renal autoimmune diseases can be classified into four major groups, 

depending on the major cause of disease: 1. Allergies, termed type I hypersensitivity 

reactions, involving formation of autoreactive IgE and activation of mast cells. 2. Type II 

hypersensitivity reactions by formation of autoreactive, complement activating antibodies, 

e.g. IgM, IgG1 and IgG3; 3. Type III hypersensitivity reactions involve the formation of 

immune complexes. 4. Cellular responses such as delayed type hypersensitivity (DTH) are 

termed type IV hypersensitivity reactions including activation of CD4+ and CD8+ T cells. 

Type I Hypersensitivity: Allergy 
 

 

Fig. 1 Th2-type response in renal disease. CD4+ T cells are activated and differentiate into Th2 helper 

cells, activating B cells to produce IgE (left). Th2 cells migrate to the kidney and together with 

activated Eosinophils and Mast cells can damage the podocytes by release of cytokines (left, right)  
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Little is known about the role of mast cell activation in renal inflammatory disease, although 

these cells are constitutively present in the kidney, albeit in low numbers. However, there is 

at least some evidence, that classical Th2 responses and IgE formation lead to cytokine 

mediated podocyte damage e.g. via IL-4, IL-10 or IL-13.118, 123, 124 Podocytes express 

receptors IL4-Ra and IL13-Ra1/2 and show activation of STAT6 and NFκB signalling 

cascade in vitro, however, the functional consequences in vivo yet remain to be 

determined.125, 126 Also, human podocytes express chemokine receptors CCR4, CCR8, 

CCR9, CCR10, CXCR1, CXCR3, CXCR4 and CXCR5 in vitro and are capable of IL-8 

production, these factors may also influence podocytic stress responses induced by 

chemokine signals upon inflammation.127 

Type II Hypersensitivity: Autoantibodies 
 

 

Fig.2 Antibody mediated kidney inflammation. CD4+ T cells are activated and differentiate into Th1 

helper cells, activating B cells to produce IgG2a/c (left). Autoreactive antibodies enter the kidney via 

the bloodstream and bind to their target structures, e.g. the basement membrane, and trigger 

complement activation (right).  

 

The classical form of antibody induced renal disease is found in patients with the so called 

Goodpasture syndrome, mediated by antibodies directed against the α3 chain of type 4 

collagen, which is an integral part of the glomerular basement membrane (GBM), causing 

severe kidney and lung autoimmunity. Since the epitope is so well defined, there are several 

rodent model systems to mimic anti-GBM nephritis by immunization against collagen 

α-chain. Although the necessity of the primary antibody response is undoubted, there is also 

evidence that local T cell responses are involved in disease progression as well, since 

adoptive transfer of antibodies alone is not sufficient to cause renal disease.128 Similarly, in 

active Heymann nephritis129, antibodies against renal cortical antigens are deposited 

between the GBM and podocytes, also triggering complement activation. Depletion of CD8+ 

T cells seems to be beneficial in some cases, showing a possible role for cytotoxic T cell 
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responses in renal injury.122 Another type of antibody mediated renal disease is the so-called 

IgA nephropathy. T helper cells are used in this case to class-switch antibody producing B 

cells to generate IgA. Depletion of CD4+ T cells leads to reduced deposition of IgA and 

amelioration of disease, but no impairment of circulating IgA. Also, transfer of autoantibodies 

alone fails to induce nephropathy, suggesting an organ specific activation of T cells in the 

kidney. Similar to the anti-GBM model, depletion of CD8+ T cells attenuates progression of 

disease.130 However, IgA nephropathy is unlikely to be a classical type II hypersensitivity 

reaction, since only IgA1 induces weak activation of complement, therefore the 

immunopathological mechanisms most likely differ from anti-GBM GN and may well also 

involve T cell mediated immune responses.  

Type III Hypersensitivity: Immune Complex formation 
 

  

Fig.3 Immune complex mediated kidney inflammation. CD4+ T cells are activated and differentiate into 

Th1 helper cells, activating B cells to produce antibodies against soluble antigens (left). Immune 

complexes enter the kidney via the bloodstream and precipitate in the basal membrane, activating 

complement factors and local macrophages and granulocytes (right).  

 

Type III hypersensitivity reactions are immune reactions not targeting the kidney directly, 

rather the organ damage can be seen as a bystander reaction due to the local trapping of the 

immune complexes in the glomerular basement membrane. In membrane proliferative GN 

(passive Heymann Nephritis131), CD4 helper cells activate B cells to produce antibodies 

against soluble antigens, immune complex deposition in GBM leads to activation of 

complement and recruitment of phagocytes via MCP-1, RANTES, CCR1, CCR2, and 

CCR5.132 Immune complexes act mainly via FCγRI and FCγRIII.133 However, complement 

activation cannot be the only factor promoting disease progression, since it has been shown 

that C1q deficient mice are more prone to kidney disease in a model of accelerated GBM-

nephritis.134 
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Also, a role for T cell mediated immunity has been suggested, since their depletion 

attenuates disease.135-137 A special form of membranous nephritis is the post-streptococcal 

GN, where antibodies are formed against streptococcal antigens. These immune complexes 

then locate to the GBM and lead to recruitment of granulocytes. In the model of accelerated 

NTN, immune complexes are formed by immunizing animals against sheep immunoglobulins 

followed by a challenge with sheep IgG directed against kidney cortex antigens of the target 

animal133, 134, 138.  In lupus nephritis, anti-DNA antibodies induce systemic immune complex 

formation. However, the progression of renal disease is highly dependent on CD4+ T cells 

and cannot be explained solely by the activation of complement factors and macrophages. In 

fact, lupus nephritis seems to be based on a heterogeneous and complex immunopathology, 

involving mixed Th1/Th2 reaction130, 139, 140, IFN-γ effector function141-143 and possibly also 

loss of regulatory T cell function. It is most likely, that systemic lupus is a mixed reaction of 

type II, type III and possibly type IV hypersensitivity altogether, involving many different 

aspects of immune activation and most likely also CD4+ and CD8+ T cell responses. 

Similarly, in Wegener Granulomatosis, the formation of anti-neutrophil cytoplasmic antibodies 

(ANCA) lead to a systemic vasculitis also targeting the kidney, however, secondary 

responses in the kidney also depended on macrophage activation and a Th1 type T cell 

response.144 

Type IV Hypersensitivity: Cellular immune responses / DTH 
 

 

Fig. 4 DTH response in renal disease. CD4+ T cells are being activated against antigens with kidney 

tropism and differentiate into Th1 type helper cells and travel to the kidney. Furthermore, these cells 

would then activate B cells similar to type II and III responses (autologous phase) (left). Activated 

CD4+ T cells then activate local APC and phagocytic cells such as monocytes/macrophages, inducing 

a release of proinflammatory cytokines and reactive oxygen species (ROS) (middle). Autoantibodies 

travel to the kidney via the bloodstream and enhance cellular immune responses (right). 
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The involvement of T cells has been described in human rapid progressing GN already more 

than two decades ago.145,146 The animal model of rapid progressive crescentic nephritis 

induced by injection of nephrotoxic sheep or rabbit sera (nephrotoxic nephritis or NTN) 

against renal cortex antigens is by far one of the most well studied renal disease phenotypes 

and has closely been linked to anti-renal T cell responses. In NTN, Th1 cells activate local 

macrophage response and trigger the release of ROS and TNF-α, leading to a type IVa 

hypersensitivity reaction of the DTH type. Ablation of macrophages in CD11b-DTR mice 

attenuates progression of crescentic GN, reducing crescent formation, proteinuria and serum 

creatinine and also renal fibrosis.147 NTN highly depends on IL-12 signaling148 and local 

antigen presentation on MHC-II not exclusively from hematopoietic cells but also from tubular 

cells or mesangial cells which upregulate MHC-II molecules upon inflammation.149 Also, 

podocytes have been described to upregulate CD80/86 molecules upon LPS stimulation in 

vivo, suggesting a direct influence of the renal parenchymal cells on kidney infiltrating T 

cells.150 However, NTN disease progression is highly dependent on CD80/CD86 signalling 

for leukocyte recruitment and glomerular injury. Blockage of CD80/86 by monoclonal 

antibodies leads to attenuated infiltration of leukocytes and less severe GN.90 Also, CD80/86 

blockage ameliorates chronic organ damage after cold ischemia/reperfusion injury.87, 88 

 

Also, it is known that functional regulatory T cells can counteract anti-GBM nephritis.119 The 

involvement of CD8+ T cells is far less understood and seems to depend on the model 

organism used. Depletion of CD8+ T cells was beneficial in rats but not in  

mice121, 151 and MHC-I mediated antigen presentation in mice does not seem to contribute to 

renal disease progression.152 

 

Fig. 5 CTL response in renal disease. CD4+ and CD8+ T cells are being activated against antigens 

with kidney tropism and differentiate into Th1 type helper cells and CTL and travel to the kidney. (left). 

Activated Local APC present target antigens to infiltrating CD4+ T cells, leading to a secretion of 

proinflammatory mediators and chemokines, inducing further inflammation of cells and formation of 

cellular infiltrates. CD8+ T cells infiltrate the renal tissue and perform CTL effector functions, targeting 

kidney cells. 
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Little is understood so far about the role of CD8+ T cells in renal disease. As already pointed 

out above, CD8+ T cells are likely to be involved in many renal autoimmune diseases to a 

variable degree, although the underlying mechanism yet remained unclear.  

In lupus nephritis, a major fraction of kidney infiltrating lymphocytes persists of CD8+ T cells 

and are linked to progression of renal disease.120 Adriamycin (Doxorubicin), an anthracycline 

antibiotic used in cancer therapy, induces so-called Adriamycin nephropathy, primarily a non-

immune proteinuric glomerulopathy, which mostly resembles focal segmental 

glomerulosclerosis. However, in late stages of the disease CD4+ and CD8+ T cells infiltrate 

the tubulointerstitium and may influence progression of disease.153 Blockage of CD40 

signalling by injection of monoclonal anti-CD40 antibodies (MR1) protects the kidney against 

lupus nephritis and Adriamycin nephropathy, leading to significantly reduced renal 

inflammation, expression of proinflammatory chemokines (MCP-1, RANTES), proteinuria and 

renal fibrosis.154 In mesangioproliferative GN (anti-Thy1 Nephritis), the injection of the 

antibody against Thy1.1, a marker found on T cells as well as mesangial glomerular cells in 

rats induces mesangiolysis and compensatory cell growth. Interventional studies depleting 

CD4+ and CD8+ T cells showed an attenuation of disease, however the mechanistic basis is 

not understood.155, 156 

The best evidence for a role of CD8+ T cells in induction and progression of renal disease is 

the finding that CTL play a major role in primary interstitial nephritis157-159, where CD8+ T cells 

have directly been linked to progression of renal damage. However, the kidney seems to be 

somewhat better protected against cell mediated autoimmune reactions compared to e.g. 

pancreatic β-islet cells, which are a lot more susceptible to destruction by CD8+ T cells.160 It 

has been shown that renal tubular epithelial cells are able to induce tolerance in CD4+  

T cells.161 

Interstitial nephritis development is highly dependent on the presence of reactive CD4+  

T cells, a hallmark also of the T cell induced GN in NOH mice as will be discussed below.  

 

Taken together, these studies suggest that T cell effector functions seem to play an 

important role in the development of renal disease. The formation of periglomerular 

infiltration including T cells seems to be an early event in various forms of GN. Progression of 

these infiltrates may occur after rupture of Bowman’s capsule followed by crescent formation 

and glomerulosclerosis.162 

T cells produce effector cytokines like IFN-γ and TNF-α, which are directly linked to severity 

of GN development. IL-12 and TNF-α knockout-mice show attenuated renal disease. Also 

induction of Th2 responses by in vivo cytokine injection attenuates GN development.163-167  

Recruiting signals such as CXCR3/CXCL10, which is a T cell homing signal, have been 

described as essential factors in NTN.113 Similarly, CXCR3 has been described in the 
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development of human GN as well111 but can also express T cell attracting chemokines 

RANTES and IP-10 upon inflammation.112 The role for IFN-γ signaling is less clear, a dual 

role has been described, either aggravating166, 168 or ameliorating138 renal disease, depending 

on timing and cosignals like IL-10.169 Overall, the outcome of renal disease is directly linked 

to the strength of the cellular immune reaction and therefore the prognosis of renal 

disease.170 

4.5 Aim of this study 

The concept of autoimmunity has been described by Paul Ehrlich more than a decade ago 

as ‚horror autotoxicus’, the misled activation of autoreactive effector cells as well as the 

formation of autoantibodies against self-antigens. Much has to be learned still about the 

underlying mechanisms, although there has been some recent major advances in 

understanding the cellular mechanisms that can lead to e.g. Diabetes type I171, 172 and T cell 

mediated encephalomyelitis.173, 174 

Renal autoimmune diseases are a complex and heterogeneous cluster of disease 

phenotypes, which can be divided into two major groups, namely glomerulonephritis (GN) 

and interstitial nephritis, regarding the microanatomical location of the inflammation.  

Almost all parts of the immune system have been described to contribute to autoimmune 

kidney disease, but only for some such as autoreactive IgG, immune complex deposition and 

CD4+ T cell mediated delayed type hypersensitivity (DTH) responses, the underlying 

mechanisms are beginning to be better understood.  

Especially the role of T cells has been a matter of controversy for decades145, 175-177 with 

evidence evolving that they may be involved in various forms of glomerulonephritis and 

interstitial nephritis to a variable degree. However, most of the evidence is either indirect or is 

coming from interventional studies that do not specifically target T cell responses, therefore 

the exact sequence of events of T cell mediated GN yet remains unsolved.  

With the NOH mouse model it was possible for the first time to specifically investigate such  

T cell responses. In this thesis, the consequence of CTL mediated T cell damage as well as 

the functional role of T helper cells was addressed by adoptively transferring these cells into 

NOH mice. Also, the functional role of DCs in the development of T cell mediated nephritis 

was further investigated, depleting those cells at different disease stages and evaluating the 

outcome on renal disease development.   

Development of GN was monitored by histopathological changes of the renal tissue 

architecture, immunohistochemistry and flow cytometry to quantitatively and qualitatively 

dissect the inflammatory reactions inside the organ and quantitative analysis of kidney 

filtration to assess renal loss of function induced by the inflammation.  
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5. Materials and Methods
Equipment 
5417R (Eppendorf, Hamburg) 
AbiPrism7000® Sequence detection system (Applied 
Biosystems, Darmstadt)  
Analysenwaage Explorer (Ohaus, MA Bradford, USA) 

Autoklav Infection control (Belimed GmbH, Mühldorf)  

Axioskop (Zeiss, Jena, Germany) 

Bestrahlungsgerät Biobeam2000 (MCP Medical 
International GmbH, Berlin) 

CO2 begaster Inkubator Heraeus B 5061 EK-CO2 
(Heraeus, Hanau) 

Cryostat Leica CM1900 (Leica, Mainz) 
Dispenser HandyStep (Brand GmbH, Wertheim) 

ELISA reader MR5000 (Dynatech, VA Chantilly, USA) 

Eppendorfpipetten 1-10µl, 5-40µl, 40-200µl, 200-
1000µl, 1-5ml (Eppendorf, Hamburg) 
12-Kanal-Pipette (Eppendorf, Hamburg) 

FACS-Gerät FACS Canto II®; LSR II®, DiVa® (Becton-
Dickinson, Heidelberg) 
Flüssigstickstofftank XLC 810 HE (MVE Biological 
Systems, MN Burnsville, USA) 
Hämozytometer Neubauer (Novoglas, Bern CH) 

IVC Mauskäfige (Tecniplast, Hohenpeißenberg) 

Julabo TW8 (Mitlacher, Mainz) 

Labormikroskop DMIL (Leica, Hamburg) 

Magnetrührer MR 3001 (Heidolph, Schwabach)  
Mikroskopkamera BX-FLA F-View (Olympus, 
Hamburg) 
Mikrotom RM2125 (Leica, Wetzlar) 

Mikrowelle Micromat 241 (AEG, Nürnberg) 

Mini-PROTEAN Tetra Electrophoresis System (Biorad, 
München) 
Multifuge 3 SR (Heraeus, Hanau) 

Nanodrop Spectrophotometer (Thermo Fisher 
scientific, Wilmington, DE, USA) 
PALM® MicroBeam IP 230V Z laser microdissection 
microscope (P.A.L.M, Bernried) 
ph-Meter PHM210 (Radiometer, Copenhagen) 

Pipettierhilfe Pipetus standard / accu (Hirschmann, 
Herrenberg) 
Rotlichtlampe Infrafil (Phillips, Hamburg) 

Power supply EPS301 (Amersham, Straubing) 

Sterile Werkbank Heraeus HeraSafe HS15 Air 
(Heraeus, Hanau) 

Systemmikroskop IX71 mit U RFL-T UV-Lampe u. 
Fluoreszenzfiltern (Olympus, Hamburg) 

Vortex Genie 2 (Bender & Hobein, Zürich, CH) 
Wasserbad Typ 1083 (GFL, Burgwedel) 

 

Wasserdeionisierungs-Anlage EASYPURE® II UV 
(Barnstead, MA Boston, USA) 

Zentrifugen Megafuge 1.0R (Heraeus, Hanau) 

Consumables 
24x 50 mm (Menzel-Gläser) 
18x 18 mm (Marienfeld) 

Einfrierröhrchen 1,8ml Volumen (Nr.3-63401, Nunc, 
Wiesbaden) 
Einmalkanülen 0,4 x 12mm Sterican (Braun, 
Melsungen) 
0,7 x 30mm 22 G x 11/4 Luer-Lock Sterican (Braun, 
Melsungen) 
0,8 x40mm 21 G x11/4 Luer-Lock Sterican (Braun, 
Melsungen) 
Einmalspritzen 1/2/5/10/20ml (Braun, Sterican) 

ELISA-Platten 96-Vertiefungen-Flachbodenplatte 
(Maxi-Sorp, Nunc, Wiesbaden) 
Eppendorfreaktionsgefäße 2ml/1,5ml/0,5ml 
(Eppendorf, Hamburg) 
FACS Röhrchen (BectonDickinson Labware, NJ., 
USA) 
FALCON –Röhrchen 15 ml Bluecap Polypropylen 
(BectonDickinson Labware, NJ., USA) 
50 ml Bluecap Polypropylen (BectonDickinson 
Labware, NJ., USA) 
15ml PP, 50ml PP (Greiner, Frickenhausen) 

Glaspipetten 2 ml, 5 ml, 10ml, 25ml Cellstar 
(Greiner,Nürtingen) 
Objektträger SuperFrost/Plus 25x 75x 1mm (Menzel-
Gläser) 
Parafilm (American National Can, USA) 

Pipettenspitzen 1-10µl (kristall) (Roth, Karlsruhe, 
Karlsruhe) 
10 µl-100µl (gelb) (Roth, Karlsruhe, Karlsruhe) 

100-1000µl (blau) (Roth, Karlsruhe, Karlsruhe)  
Polyethylene membrane covered slides (P.A.L.M., 
Bernried) 
Sterilfilter 0,2µm, steril, rotrand (Schleicher & 
Schuell,Dassel) 
Stoffwechselkäfige (Tecniplast, Hohenpeißenberg) 

Tissue-Tek Cryomold® Biopsy (Miles, USA) 

Zellsieb Falcon 40µm Nylon, steril (Becton Dickinson, 
USA) 
Zellkulturflaschen 25cm2/50ml, 75 cm2/250ml (IBS 
integra Biosciences)  
Zellkulturplatten 6,12,24 Vertiefungsplatten, flach 
(CorningCostar, Bodenheim) 

Reagents 
Aceton (Merck, Darmstadt) 
Acrylamid for SDS page (Roth, Karlsruhe) 
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Aluminiumhydroxid (Sigma, München) 

Ammoniumchlorid (Roth, Karlsruhe) 
Ammoniumpersulfat (Roth, Karlsruhe) 

Bradford Reagenz (BioRad, München) 

β-Mercaptoethanol (Sigma, München) 

BSA Fraction V, low endotoxin cell culture grade, 
(Rinderserumalbumin) (PAA, Darmstadt) 
CaliBRITE® APC-beads (BD, Heidelberg) 

Carboxyfluorescein succinimidyl ester (CFSE) 
(Invitrogen, Karlsruhe) 
CD3/CD28 T cell stimulation beads (Invitrogen, 
Kalrsruhe) 
Clodronate liposomes (Department of Molecular Cell 
Biology, Amsterdam, Netherlands) 
Collagenase D (Roche, Mannheim) 

Coomassie brilliant blue (Sigma, München) 

Cresylviolett (Sigma, München) 

Diaminobenzidin tablets (DAB) (Sigma, München) 

Dabco (Sigma, München) 
Dimethylsulfoxid (DMSO) (Roth, Karlsruhe) 

Diphteria Toxin (Sigma, München) 

DNAse I (Roche, Mannheim) 

dNTPs (Invitrogen, Karlsruhe) 

Ethylendiamin-tetraessigsäure Na2-Salz x 2xH2O 
(EDTA) (Sigma, München) 
Ethylenglycol-bis(2-aminoethyl)-tetraessigsäure 
(EGTA) (Merck, Darmstadt) 
Essigsäure (Roth, Karlsruhe) 

Ethanol (EtOH) (AppliChem, Darmstadt) 

fetales Kälberserum (PAN Systems GmbH, Nürnberg) 

Formaldehydlsg. 39% (Sigma,München) 
L-Glutamin 200mM (Gibco, Paisley, UK) 

Glyzin (Roth, Karlsruhe) 

Hämatoxilin solution (Sigma, München) 

HEPES (Roth, Karlsruhe) 

Histoclear (Roth, Karlsruhe) 

Histokit (Roth, Karlsruhe) 

Hoechst-33342 (Invitrogen, Karlsruhe) 

Isopropanol (2-Propanol) (AppliChem, Darmstadt) 
Mowiol (Hoechst, Bad Soden) 

Natrium-Acetat (Roth, Karlsruhe) 

Natrium-Azid (Roth, Karlsruhe) 

Natriumcarbonat (Na2CO3) (Roth, Karlsruhe) 

Natriumhydrogencarbonat (NaHCO3) (Roth, 
Karlsruhe) 
Natriumchlorid (NaCl) (Roth, Karlsruhe) 

Natrium-Citrat (Roth, Karlsruhe) 

Natriumhydrogencarbonat (NaHCO3) (Roth, 
Karlsruhe) 

 

Natriumdihydrogenphosphat (NaH2PO4 x 2xH2O) 
(Roth, Karlsruhe) 
Natriumdodecylsulfat (SDS) (Roth, Karlsruhe) 

NaOH, Plätzchen (Roth, Karlsruhe) 
Neufuchsin (Merck, Darmstadt)  

o-Phenylendiamin (OPD) (Sigma,München) 

Ovalbumin, Grade V (Sigma,München) 

Pikrinsäure (Sigma, München) 

Penicilin (Merck, Darmstadt) 

Perjodsäure (Sigma, München) 

Proteinase Complete Inhibitor (Roche, Mannheim) 
Proteinase K (Roche, Mannheim) 

Random hexamer Primer (nvitrogen, Karlsruhe) 

Reverse Transcriptase (Invitrogen, Karlsruhe) 

Salzsäure (HCI), konzentriert (Merck, Darmstadt) 

Saponin aus Tequilla bark (Sigma, München) 

Schiff’s reagenz (Merck, Darmstadt) 

Schwefelsäure (H2SO4), 95% (Merck, Darmstadt) 

SIINFEKL-peptide (Pineda, Berlin) 
Sirius-Rot (Sigma, München) 

Serum (Ziege) (Vector Labs, Peterborough, UK) 

Streptavidin-Meerrettichperoxidase (Dianova, 
Hamburg) 
Streptomycin (Sigma, München) 

SYBRGreen® (Sigma, München) 

TEMED (Roth, Karlsruhe) 

Tissue Tek® (EMS, PA Hatfield, USA) 

Tris-(hydroxymethyl)-aminomethan (Tris) (Roth, 
Karlsruhe) 
Tris/HCl (Roth, Karlsruhe) 

Trypanblau (Sigma,München) 
Tween®-20 (Polyoxyehtylsorbitan-Monolaurat) 
(GERBU, Darmstadt) 
Wasserstoffperoxid (H2O2), 30% (Merck, Darmstadt) 

Xylol (Roth, Karlsruhe) 

Antibodies 
Polyclonal rabbit anti-OVA (home-made) 
biotinylated goat anti-rabbit Ab (Vector Labs, 
Peterborough, UK) 
biotinylated goat anti-mouse Ab (Dianova, Hamburg)  

CD4 (clone GK1.5), CD8α (53-6.7), CD11c (HL3), I-Ab 
(AF6-120.1), CD11b (M1/70), Vα2 (B20.1), Vβ5  
(MR9-4), CD69 (H1.2F3), CD86 (GL1), CD40 (3/23), 
IL-12p40 (C17.8), IFN-g (XMG1.2) (eBioscience, (San 
Diego, USA), Fc-block (24G2) 
Ki-67 (SP6) (ThermoFisher, Dreieich) 

IL-2 ELISA Rat-anti mouse monoclonal,  
Capture: JES6-1A12 Detection: JES6-5H4 
Actin rabbit anti-mouse (20-33) (Sigma, München) 

MACS antibodies: CD4 (L3T4), CD11c (N418)  
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“Kits” 
Avidin / Biotin blocking kit (Vector Labs, Peterborough, 
UK) 
ABC-Kit for Streptavidin-HRP Labeling (Vector Labs, 
Peterborough, UK) 
ABC-Kit for Streptavidin-AP Labeling (Vector Labs, 
Peterborough, UK) 
Fixation/Permeabilization Kit with BD GolgiPlug® 
Pharmingen (CA San Diego, USA) 
RNeasy microRNA preparation kit (Qiagen, Hilden) 

IFN-g ELISA kit, (R&D Systems, Wiesbaden) 

Albumin ELISA kit (Bethyl Lab, Montgomery, TX, USA) 

MLV-RT kit (Invitrogen, Karlsruhe) 

Primers 
CCR5 :   fw-cctagccagaggaggtgagaca    

rev-ccttgaaaatccatcctgcaa 

CCR2 :   fw-acctgtaaatgccatgcaagt    
  rev-tgtcttccatttcctttgatttg 

CCL2 (MCP-1) :  fw-ggctcagccagatgcagttaa   
rev-cctactcattgggatcatcttgct 

CCL3 (Mip-1a) :  fw-tgaaaccagcagcctttgct   
  rev-gatctgccggtttctcttagtca 

CCL4 (Mip-1b) :  fw-tgctcgtggctgccttct    
rev-gagggtcagagcccattgg 

CCL5 (RANTES):fw-gcaagtgctccaatcttgca    

       rev-cttctctgggttggcacaca 

Buffers and solutions 
Bufferes were stored at room temperature if not 
indicated otherwise. Water was purified using a water 
deionizer and buffers were autoklaved if necessary. 
ELISA coating buffer: 8,401g NaHCO3 in aqua dest. 
ad 1l, pH adjusted with NaOH to pH 8,2, storage 4°C 
ELISA washing buffer: 0,1% (v/v) Tween20 was 
dissolved in 1x PBS, storage 4°C 
ELISA blocking buffer: 1% (w/v) BSA was dissolved 
in 1x PBS, storage 4°C 
Erythrocyte Lysis Puffer: 0,83% (w/v) Ammonium-
chloride, 10mM Tris/HCl pH9,0 was added until final 
pH7,5 was reached, storage -20°C 
FACS-buffer: 0,1% (w/v) BSA, 0,01% NaN3 in 1x 
PBS, storage 4°C. 
4xNEM-buffer: 25mg NEM, 66%H2O, 33% Glycin, 
0,1% Bromphenolblue 
 

 

 

 

 
 

 

OPD-substrate buffer: 15,6g NaH2PO4 x 2xH2O and 
14,7g Tri-Na-Citrat x 2xH2O were dissolved in aqua 
dest ad 500 ml and pH adjusted to pH5,0. 1mg/ml 
OPD and 1µl/ml H2O2 were added directly before 
usage. 
PAS staining solution: 2% periodic acid in aqua dest 

Paraformaldehyd (PFA): 4% 39% Formalin solution 
was diluted 1:10 using 1xPBS Picro-Sirius red 
staining solution: 0,1g Sirius red, 90mL picric adic 
(liquid),10ml aqua dest 
Phosphate lysis buffer: 20mM NaPO4 pH8.0, 
140mM NaCl, 3mM MgCl2, 0,5%NP-40. Proteinase 
complete inhibitor tablets and 1mM DTT were added 
freshly directly before usage. 
10x Phosphate buffered saline (PBS): 402g NaCl, 
78g NaH2PO4 x2H2O, aqua dest. ad 5 l. Working 
solution was diluted 1:10, storage 4°C 
RT-buffer: 8µl 5xFS Buffer, 4µl 0,1M DTT, 2µl RNase 
out, 2µl MLV-RT 
2xSDS-gel sample buffer: 250mM Tris/HCl pH6,8, 
6,6% SDS, 40mM DTT in aqua dest 
SDS-gel running buffer: 25mM Tris,190mM Glycin, 
3,5mM SDS in aqua dest 
1xTBS: 20 mM Tris and 150 mM NaCl were dissolved 
in aqua dest, pH was adjusted with HCl to pH7,6 
TBST-buffer: 10mM Tris/HCl pH7,5, 140mM NaCl, 
0,05% Tween20.  
Trypan blue: 0,01% (w/v) Trypan blue and 0,001% 
(w/v) Na-Azid were dissolved in 1xPBS. 
Western Blot buffer: 25mM Tris,190mM Glycin, in 
aqua dest 
Cell culture media were purchased from Gibco 
(Invitrogen, Karlsruhe). RPMI1640 was used as 
standard cell culture medium. 

Glutamin: L(+)-Glutamin was dissolved in 1xPBS to a 
final concentration of 200mM. 

Fetal calf serum (FCS): ultralow endotoxin, to 
inactivate active complement factors, FCS was 
incubated for 30 min at 56°C, storage -20°C  
Pen/Strep: Penicilin was dissolved in 1x PBS with a 
final concentration of 6mg/ml, Streptomycin was added 
with a concentration of 10mg/ml.  
Standard cell culture media (used for all cell culture 
experiments): RPMI 1640, 10% FCS, 2mM L(+)-
Glutamin, 6mg/ml Penicilin und 10mg/ml Streptomycin. 
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Methods 

General mouse maintenance. C57/Bl6, NOH, OT-I Rag-/-, OT-II and CD11c-DTR mice178 

were bred and maintained in the animal facilities of the University of Bonn (HET) under SPF 

conditions. Animals were housed in type2long IVCs and provided weekly with fresh water 

and food. Mice between 8 and 16 wk of age were used for experiments in accordance with 

local animal experimentation guidelines. All animals were backcrossed to C57/Bl6 for 10 

generations before usage.  

 

Generation of transgenic NOH mice. The 715 bp XhoI – HindIII fragment containing the rat 

insulin promoter was excised from the pOVA/HEL plasmid used to generate ROH transgenic 

mice179, which contained cDNA for the human transferrin receptor membrane domain, for the 

ovalbumin (aa 161-407), the HEL gene and an SV40 poly A tail. It was replaced with the 

human nephrin promoter, which had been amplified from the plasmid nephrin/PCR2.1180 

using the primers GACAGAGGTGGGAGAATTACTT and ACAGCGCCCGCTGCCAGC, and 

was then ligated into the blunted 5.7 kb pOVA/HEL fragment. A 3.79 kb PvuI–BamHI 

fragment was cut out and injected into pronuclei of fertilized C57/Bl6 oocytes. The correct 

nucleotide sequence of the transgene was verified by sequencing. 

 

Characterization of Ovalbumin expression in NOH mice. Tissue specific OVA expression was 

addressed by various methods. OVA antigen was either detected directly by 

immunohistochemical staining of various tissues, western blot analysis of tissue 

homogenates or indirectly by cross-presentation to OT-I cells in the lymphoid tissue.  

For OVA-immunohistochemistry, kidneys were fixed in 4% formalin overnight and 1µm 

paraffin sections were cut. Antigen was retrieved with 5mg/ml proteinase type XXIV for 

15min at 37°C. After 30min block in 5% goat serum, sections were incubated with 

homemade polyclonal rabbit anti-OVA Ab (1:500 in 5% goat serum) overnight at 4°C. Binding 

was visualized by biotinylated goat anti-rabbit Ab diluted 1:200 in 5% goat serum for 30min, 

and revealed by ABC-AP Kit followed by Neufuchsin and hematoxylin counterstaining, and 

analysis was performed using an Axioskop.  

Western blot analysis was performed after preparing tissue lysates, mechanically dissolving 

the tissue in phosphate lysis buffer, incubating the samples for at least one hour on ice 

afterwards. Samples were centrifuged for 10min at 14.000rpm and supernatant taken 

(soluble protein fraction). Protein concentration was estimated by Bradford protein assay 

using a Nanodrop spectrophotometer. Equal amounts of total protein were incubated in 2x 

SDS-sample buffer and incubated at 99°C for 3min. 4xNEM was added and 20µl/sample was 

loaded on a 10% SDS-gel. Samples were run with 17mA for stacking and 34mA for 

separation. Western blot was performed by blotting the proteins on a PVDF membrane at 
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250mA and 80V for 90minutes. The membrane was blocked with 5% milk powder in TBST 

over night. The following morning, the blot was washed two times in TBST for 5-10 min and 

incubated with an OVA-specific polyclonal rabbit serum (1:5000 in TBST). Blots were 

washed two times for 10min in TBST and secondary anti-rabbit-HRP antibody was added, 

incubating the blot for 20-30minutes. Blots were washed four times for 10min in TBST. 

Detection was carried out by adding 400µl of ECL Western blotting substrate, incubating the 

blot for 2-3 minutes, removing surplus substrate and detecting luminescence by x-ray nefilm 

exposure. To ensure comparable protein amounts of the different tissues loaded on the gel, 

Actin was stained as in internal quantification control using Actin specific primary antibodies 

instead of rabbit anti-OVA serum. 

Cross presentation was analyzed in various tissue draining lymph nodes and spleen by 

injecting CFSE-labelled OT-I cells i.v. into NOH mice, analyzing their proliferation 48hrs 

afterwards. In brief, OT-I cells were prepared from donor mice, isolating spleen and lymph 

nodes and preparing single cell suspensions. Cells were incubated in 10ml PBS+0,1% BSA, 

adding CFSE stock (5mM) in a ratio of 1:1000. Labelling was stopped by adding 40ml 

PBS+10% FCS, washing the cells two times before injection. Mice were injected with 2x106 

OT-I cells and proliferation was measured 48hrs later.  

 

Isolation and transfer of cells. T cells were isolated for adoptive transfer from spleen and LN 

of OT-I and OT-II donor mice. Single cell suspensions were prepared by mashing the organs 

through a 50µm cell strainer. Isolates were centrifuged at 1400rpm for 5min and pellets 

resuspended in 2ml Erythrocyte lysis buffer for 7min. Cells were washed once with PBS and 

counted for living cells. OT-I and OT-II fractions were determined by flow cytometry analysis 

of a small aliquot, staining cells for Vα2, Vβ5, CD8α or CD4 respectively. Cells were injected 

using 5x106 of each cell type if not indicated otherwise.  

 

Isolation of primary DCs and T cells from kidney tissue. Kidneys were injected with 

RPMI1640 containing 1mg/ml CollagenaseD and 0.2mg/ml DNAseI and incubated for 1 hour, 

mechanically breaking up the tissue in smaller fragments in intervals of 20min using syringe 

pistils and vigorous pipetting. Cell suspensions were washed in PBS once to remove 

CollagenaseD and DNAseI and centrifuged at 1400rpm for 7min. Pellets were resuspended 

in Erythrocyte lysis buffer for 7min, washed once and resuspended in 5ml PBS.  Undigested 

tissue fragments and kidney tubular cells were removed by sedimentation as described.181 

Samples were either taken directly for flow cytometry analysis or purified for ex vivo 

cocultures, using nanobead-labeled antibodies. Magnetic bead separation was done 

according to the manufacturer’s instructions. Purity was 80 to 90%. 
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Cell culture. To generate activated OT-I and OT-II, cells were stimulated in vitro prior to 

adoptive transfer. Single cell T cell suspensions were isolated as described above. For 

activation of OT-I cells, SIINFEKL-peptide-loaded, irradiated splenocytes were added to the 

culture in a ratio of 10:1. In brief, splenocytes from 2-3 wt mice per OT-I mouse were 

prepared and resuspended in standard cell culture medium. For peptide loading, SIINFEKL-

peptide was added with a final concentration of 100ng/ml. Cells were incubated at 37°C for 

20min, centrifuged at 1200rpm for 5-7min and resuspended in RPMI1640 for irradiation. 

Cells were irradiated with an energy dose of 20-25Gy, centrifuged as described and 

resuspended in standard cell culture medium. OT-I T cells were cocultured with the 

splenocytes for 4-5 days and activation of T cells was measured by flow cytometry analysis 

of activation markers (e.g. CD69) prior to injection.  

OT-II cells were isolated from donor mice as described above and single cell suspensions 

were prepared from spleen and LN in PBS. Cells were centrifuged as described, 

resuspended in standard cell culture medium with a concentration of approximately  

10x106 cell/ml and Ovalbumin was added with a final concentration of 1-2mg/ml, depending 

on the endotoxin level of the individual Ovalbumin stock. Cells were cultured for 4-5 days and 

activation of T cells was measured by flow cytometry analysis of activation markers (e.g. 

CD69) prior to injection.  

Coculture experiments of DC isolated from NOH mice and OT-II cells were performed as 

follows. Kidneys from NOH mice were digested with CollagenaseD and DNAseI and DCs 

were prepared from the single cell suspensions as described above. OT-II single cell 

suspensions were prepared from spleen and LN of OT-II donor mice. Both cell populations 

were purified by magnetic associated cell sorting (MACS), using nanobead-labeled 

antibodies. Magnetic bead separation was done according to the manufacturer’s instructions. 

Purity was usually 80 to 90% as determined by flow cytometry analysis. Cells were seeded in 

96-well plates, coculturing 1x105 DC with 2.5x105 OT-II cells in a total volume of 250µl 

standard cell culture medium for 4 days. Cytokine production was measured by ELISA or 

intracellular flow cytometry analysis respectively.  

 

Depletion of DC and Monocytes. To deplete CD11c+ cells, mice were backcrossed to CD11c-

DTR mice. For depletion, 4ng/g bodyweight of Diphteria toxin were injected i.p. into the mice. 

Depletion efficiency was assessed by flow cytometry analysis as described. Clodronate 

Liposome mediated depletion of phagocytic cells was accomplished by i.v. injection of 200µl 

of Clodronate Liposomes (kindly provided by N. van Rooijen, Amsterdam). 
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Immunization of mice. Immunization of mice was performed by weekly injections of mixtures 

containing 100µl Aluminium hydroxide + 100µg/mouse Ovalbumin in 100µl PBS. Mice were 

injected i.p. 

 

Flow cytometry. Cells were isolated as described. For flow cytometry analysis, single cell 

solution of cells were resuspended in 100µl FACS-Buffer. Staining antibodies were added in 

a standard ratio of 1:400 for qualitative or 1:200 for quantitative expression analysis and 

incubated for 20-30min at 4°C. Cells were washed with FACS-Buffer and centrifuged with 

1200rpm for 5min. Pellets were resuspended in 100-500µl FACS buffer (5x106 cells/ml 

estimated final concentration). 100ng/ml Hoechst-33342 was added for exclusion of dead 

cells. For quantitative cell count analysis, 2x104 CaliBRITE® APC-beads were added as 

internal reference. Flow cytometry was performed on a FACSCanto® II or LSRII® and data 

analysis with Flow-Jo® software (Tristar, Ashland, OR). Cell sorting was performed on a 

FACSVantage®. For intracellular staining, cells were cultured for 5h with 1 µl/ml Golgi-Plug®. 

T cells were restimulated for 4hrs at 37°C with CD3/CD28 beads in 250µl standard cell 

culture medium before GolgiPlug® incubation. Cells were treated with 24G2 hybridoma 

supernant to block Fc receptors and stained for surface markers as described above. 

Stained cells were fixed with 2% PFA for 20min, washed with PBS and subsequently BD-

Perm/wash® buffer (Intracellular staining kit). Cells were resuspended in 100 µl with BD-

Perm/wash® buffer and incubated for 5min at 4°C to allow permeabilization. Antibodies for 

intracellular staining were added in a ratio of 1:200, stained for 20-30min and washed two 

times using BD-Perm/wash® buffer. Cells were resuspended in FACS buffer and analyzed as 

stated above.  

 

Laser capture microdissection. 8µm cryosections of mouse kidney tissue were mounted on 

PET covered slides and prepared for alcohol based cresylviolet acetate staining by air-drying 

the sections for 1min and subsequent incubation for 2min in pre-cooled 75% EtOH. For 

staining, sections were dipped for 20s in 1% cresylviolet acetate dissolved in EtOH. Finally, 

slides were washed in 75% and 100% EtOH for 30s each to remove surplus cresyl violet. 

Sections were air-dried for 10min before microdissection. Tissue was excised using a PALM® 

MicroBeam IP 230V Z microscope for laser pressure catapulting as described previously.182 

Infiltrates were marked as indicated, cutting out mononuclear cells from the periglomerular 

space. Cells from interstitial areas from wt animals were isolated as controls.  
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ELISA measurements. Cytokine ELISAs were performed as two step-sandwich ELISAs using 

capture / detection antibodies for high sensitivity and specificity. ELISA plates were coated 

using 100µl/well of primary antibody solution (1:500 in ELISA coating buffer) over night at 

4°C. Plates were washed three times using ELISA wash buffer and plates were blocked for 

1h adding 200µl/well ELISA blocking buffer. 100µl of cell culture supernatants were added 

and incubated over night at 4°C. For development, plates were washed the following day for 

three times using ELISA wash buffer, biotinylated secondary antibody was added 1:500 in 

100µl ELISA blocking buffer for at least two hours at room temperature or over night at 4°C. 

Plates were washed three times using ELISA wash buffer and Streptavidin-horse radish 

peroxidase was added 1:1000 in 100µl PBS, incubating plates for one hour. Plates were 

washed three times using ELISA wash buffer and 100µl OPD-Substrate buffer was added for 

ELISA development. To stop staining reaction, 100µl of 1M H2SO4 were added and samples 

were measured at 490nm. For quantification, standard dilutions were prepared in a range 

between 80-0.3125ng/ml for IL-2 and between 6-0.1875 ng/ml IFN-γ. All samples were 

measured in duplicates.  

For OVA-specific IgG ELISA measurement from mouse sera, plates were coated over night 

at 4°C with Ovalbumin (1mg/ml stock, 1:40 in ELISA coating buffer). Plates were washed 

three times using ELISA wash buffer and plates were blocked for 1h adding 200µl/well 

ELISA blocking buffer. For titre determination, sera were added in 1:1 dilution series of at 

least 8 dilution steps, using 100µl/well. Serum samples were incubated over night at 4°C. For 

development, plates were washed the following day for three times using ELISA wash buffer, 

biotinylated goat-anti Mouse IgG was added 1:1000 in 100µl ELISA blocking buffer for at 

least two hours at room temperature or over night at 4°C. Plates were washed three times 

using ELISA wash buffer and Streptavidin-horse radish peroxidase was added 1:1000 in 

100µl PBS, incubating plates for one hour. Plates were washed three times using ELISA 

wash buffer and 100µl OPD-Substrate buffer was added for ELISA development. To stop 

staining reaction, 100µl of 1M H2SO4 were added and samples were measured at 490nm. 

Titres were measured at an OD490 of 0.2. 

 

Real time RT-PCR. RNA was isolated from sorted cells or tissues collected using laser 

microdissection by RNeasy microRNA preparation kit according to manufacturer’s protocol. 

20µl of RNA were mixed with 2µl random hexamer primers and 2µl dNTP mix and 16µl RT-

buffer were added. Samples were incubated at 65°C for 5min for cDNA synthesis. Real time 

PCR was performed using the following settings: 40 cycles of 15sec denaturation at 95°C, 

1min primer annealing and elongation at 60°C as described.183 1.5µl cDNA was used with 

2.5µl (0.9µM) specific primers and 12.5µl of 2x Platinum SYBRGreen® qPCR Supermix. All 

samples were run in duplicates and normalized to 18S rRNA. 
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Histological analysis and scoring. For overview staining, tissues were fixed in 4% PFA 

overnight and embedded in paraffin by automated embedding. Sections were cut using a 

standard manual microtome. 5µm sections were stained with periodic acid-Schiff (PAS) or 

Sirius red. Sections were deparafinized by incubating them in Xylol, 100% Isopropanol and a 

descending EtOH row (100%, 96%, 80%, 75%, two times each). PAS staining was carried 

out incubating the slides in PAS staining solution for 30min. Samples were washed with 

water two times for 2-3min and stained with Schiff’s reagent for up to 60min. Samples were 

washed in warm water for approximately 5min, counterstained with Haematoxylin for 5min 

and nuclei were stained blue by washing the samples three times for 2min in distilled water.    

Sirius red staining was performed by Haematoxylin staining for 5min. Samples were dipped 

shortly in 1% HCl in EtOH and nuclei were stained blue by washing the samples three times 

for 2min in distilled water. Samples were incubated in Sirius staining solution for 20min. 

Surplus Sirius solution was removed by incubating the slides in 100% EtOH and Xylol for two 

times each. Samples were covered with Histokit for coverslipping.  

Extent of mononuclear infiltration was semiquantitatively determined in PAS-stained sections 

using the following score: 0, no infiltration; 0.5 periglomerular infiltrates discontinuous or less 

than 3 layers; 1, continuous periglomerular infiltration with at least 2 cell layers; 2, severe 

infiltration with >4 layers; 3, severe infiltration plus crescents of Bowman's capsule or 

glomerular sclerotic lesions. A minimum of 50 glomeruli per section was counted. 

 

For immunohistochemistry, 5-7µm cryosections were cut from Tissue Tek® embedded tissue 

samples snap-frozen in liquid nitrogen. Sections were fixed, incubating them for 7min in ice-

cold Acetone. Sections were air dried for 15min and rehydrated in PBS. Samples were 

incubated using a Biotin/Streptavidin blocking kit according to manufacturer’s protocols to 

block endogenous Biotin, which would result in unspecific staining. Unspecific protein binding 

was blocked by 30min incubation with 1% BSA in PBS. Biotinylated primary antibodies were 

incubated for 60min at room temperature or over night at 4°C and washed in PBS three 

times for 5min. ABC-Kit for Streptavidin-HRP labelling was added for 30min, slides were 

washed in PBS three times for 5min. DAB was dissolved in TBS according to manufacturer’s 

protocol and 10µl H2O2 were added. Slides were incubated with DAB solution and staining 

intensity was checked every 30 seconds. The reaction was abrogated placing the slides in 

distilled water, washing them two times. Nuclei were stained using Haematoxilin staining, 

incubating the samples for 5min in Haematoxilin solution and washing them three times for 

2min in distilled water. Sections were left to fully dry and were covered with Histokit for 

coverslipping. 
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Electron microscopy. Tissue samples were fixed for EM, using Karnovsky’s fixative  

(4%PFA & 2%Glutaraldehyd) for at least two days. Samples were washed two times for 

20min with 0,2M Cacodylat-buffer and further fixed with 2% (w/v) Osmiumtetroxid in 

Cacodylat-buffer for 2 hours. Samples were washed two times for 20min with 0,2M 

Cacodylat-buffer, dehydrated in 50% EtOH two times for 20min and contrasting reaction 

performed with Uranylacetat in70%- Ethanol for 45min. Samples were again dehydrated in 

an increasing EtOH gradient, incubating samples in 80%, 96% and Ethanol (abs) for 20min 

each. For tissue embedding, samples were placed in Propylenoxid two times for 30min and 

incubated in increasing Araldite concentrations, using Araldite : Propylenoxid 1 : 1 mix, 3:1 

mix for 1h each and pure Araldite over night. Tissues were placed in gelatine capsules and 

polymerized for 48hrs at 60°C. Contrasting of ultra-thin sections was performed using Lead 

acetate according to Reynolds. Sections were 60-70nm and cut using an Ultracut UCT. 

Pictures were taken using a EM900 electron microscope. 

Miscellaneous 

Statistical analysis. T-test analysis was done using Prism Software (GraphPad, San Diego, 

USA). Results were given as mean ± standard deviation; * p<0.05; ** p<0.01; *** p<0.001. 

 

Urine collection. Urine was collected from mice over night using metabolic cages, providing 

the mice with fresh drinking water. To guarantee sufficient quantities of urine, all mice of a 

group were placed overnight in the same cage. 

 

Creatinine measurement. Creatinine was measured using routine diagnostic methods 

according to Jaffé.184 Creatinine clearance was calculated as follows: 

€ 

c(Urine) mg /dl[ ]
c(Blood) mg /dl[ ]

*V ml[ ]* 1
t min[ ]
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6. Results 

6.1 NOH mouse model 
To investigate the role of specific T cells in autoimmune renal inflammation, Emma E. 

Hamilton-Williams generated a transgenic mouse expressing the model antigens Ovalbumin 

(OVA) and Hen egg lysozyme (HEL) together with the Transferrin receptor (Tfr) 

transmembrane domain under the podocyte specific Nephrin promoter. The construct  

(Fig. 6A) was injected into fertilized oocyte pronuclei of C57/Bl6 mice. To characterize the 

Nephrin-OVA/Hel mice (NOH), the expression of Ovalbumin on glomerular podocytes was 

assessed by immunohistochemistry (Fig. 6B). Staining revealed a specific expression of 

Ovalbumin in podocytes of NOH mice. Western blot analysis revealed expression of 

Ovalbumin in kidney tissue, but no other organ (Fig. 6C). Note that the NOH-Ovalbumin of 

NOH was slightly bigger compared to OVA due to the Tfr-HEL segment fused to the 

Ovalbumin. 

 
 

Fig.6 Generation and characterization of NOH mice. (A) Construct used for the generation of NOH 

mice. (B) Immunohistochemical staining of a glomerulus from a NOH mouse (left) and wt control 

(right). OVA expression was revealed using anti-OVA polyclonal rabbit serum and Alkaline 

phosphatase-Neufuchsin staining, nuclei were stained with Haematoxilin. Original magnification was 

x1000. (C) Western blot analysis of NOH mice. Tissue samples from indicated organs were taken and 

lysed. Proteins were loaded on an SDS-gel and blotted subsequently. 100ng of purified OVA was used 

as positive control (+). OVA was detected by an anti-OVA polyclonal rabbit serum followed by anti-

rabbit HRP secondary Ab. (K=kidney, Lu=lung, Li=liver, Br=brain, LN=lymph node, Pa=pancreas, 

Th=thymus, Sp=spleen) 
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6.2 Activation of OVA-specific CD8+ T cells in renal lymph node 

To investigate the activation of T cells in the renal lymph node, CFSE-labelled OT-I T cells 

were injected into NOH mice and wt controls. Activation of OT-I cells could only be detected 

in renal lymph nodes of NOH mice but neither in other secondary lymphatic tissues nor in 

RLN of wt control animals. OT-I cells proliferated up to four cell divisions 2 days after 

intravenous injection of the cells and showed a significant upregulation of the early activation 

marker CD69, which was lost again subsequently from the cell surface during cell division 

(Fig. 7), consistent with previous studies.185 

 

Fig.7 Activation of OT-I cells was detected only in renal lymph node of NOH mice. 2x106 CFSE-

labelled OT-I cells were injected i.v. into NOH mice and wt controls. Mice were sacrificed on day 2 and 

lymph nodes and spleen were taken for analysis. T cell activation was determined by cell proliferation 

analysis and CD69 expression.  

Furthermore, T cell activation was analyzed in a second line of transgenic NOH mice to rule 

out artificial effects induced by the transgene construction. Proliferation patterns in secondary 

lymphoid organs were essentially the same in both lines (Fig. 8A,B), albeit the activation was 

significantly lower in the second mouse line compared to NOH mice. These mice were 

therefore termed NOHlo mice. Activation of OVA-specific CD4+ T cells (OT-II) could not be 

detected in vivo (Fig. 8C) neither by proliferation nor by measuring upregulation of CD69 in 

either of the two mouse lines. Taken together, these findings suggest a kidney specific 

activation of T cells by the podocyte expressed Ovalbumin.  
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Fig.8 Activation of OT-I cells but not OT-II cells in NOH and NOHlo mice. (A) Statistical analysis of 

data shown in Fig. 7. (B) Proliferation of OT-I cells in NOHlo mice. CFSE-labelled OT-I cells were 

injected as described above and their proliferation in LN and spleen was determined 2 days later.  

(C) Activation of OT-II cells was analyzed the same way as before, CD69 upregulation was measured 

as a marker of cell activation. In vitro activated OT-II cells were used as positive control.  

6.3 CTL release antigen from renal tissue and enhance priming of 
naive T cells in renal LN 

In the next step, activated OVA-specific CTL were injected into NOH mice to test whether 

these cells are sufficient to induce kidney inflammation and glomerular damage. In contrast 

to other models, where activated OT-I cells were fully capable of mediating cytotoxic T cell 

damage186, only little infiltration was detectable in NOH mice injected with in vitro activated 

OT-I cells. However, even small numbers of infiltrating CTL are sufficient to cause cytotoxic 

tissue damage as described previously for CTL mediated damage of pancreatic β-islet cells 

of RIP-mOVA mice. This damage would be accompanied by an enhanced release of antigen 

from dying podocytes that might then subsequently lead to an enhanced cross presentation 

of antigen and activation of naïve OT-I cells in the renal lymph node.186 Indeed, also in NOH 

mice the activation of naïve OT-I cells was markedly increased after challenge with aOTI as 

seen by enhanced proliferation and increased upregulation of CD69 (Fig. 9A-D). The same 

experiment was performed in NOHlo mice, which showed only very low levels of constitutive 

T cell activation. However, the cross-priming efficiency was markedly increased after 

challenge with activated OT-I cells also in these mice (Fig. 9E,F). These findings indicated 

that indeed the CTL seemed to be capable of damaging OVA-carrying podocytes and 

therefore releasing antigen for cross-presentation to naïve OT-I cells. However, at this stage 

it was not possible to rule out the alternative explanation, that the activated T cells provided 

proinflammatory signals influencing the maturation state of the dendritic cells, which would 

also lead to an enhanced cross-priming of naïve CD8+ T cells. 
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Fig. 9 Activation of naive OT-I cells is enhanced by CTL-mediated damage in NOH mice. 5x106 in vitro 

activated OT-I cells were injected into NOH mice and wt controls. 2 days later, naïve CFSE-labelled 

OT-I cells were injected and analyzed for activation as described above 2 days later. (A) Proliferation 

and CD69 expression of CFSE-labelled OT-I cells in the RLN of NOH and wt mice after challenge with 

in vitro activated OT-I cells. Data are representative for 2 individual experiments in groups of 3 mice. 

(B) Histograms of CD69 expression on adoptively transferred OT-I of unchallenged (filled histogram) 

or OT-I challenged (empty histogram) NOH mice compared to wt mice. (C,D) statistical analysis of 9A 

and 9B. Experiments were performed with 3 mice per group. (E,F) Same experimental setup as above 

performed in NOHlo mice. Data are representative for 2 independent experiments in groups of 3 mice. 
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6.4 OT-I and OT-II T cells do not induce early DC maturation in RLN  

To test whether the activated T cells also had an influence on the OT-I activation, DC 

isolated from the RLN were analyzed for the expression of costimulatory molecules. Neither 

activated OT-I (Fig. 10A), nor OT-II cells (Fig. 10B) induced significant functional maturation 

of DC as judged by expression patterns of CD40 and CD86. Since the activated OT-I cells 

failed to induce maturation of DC, we concluded that the CTL indeed released OVA antigen 

by cytotoxic damage. 

 

Fig. 10 Maturation state of lymph node DC after adoptive T cell transfer. DC were isolated from RLN 

of NOH and wt control mice 3 days after adoptive transfer of 5x106 (A) activated OT-I cells or  

(B) activated OT-II cells. Cells were stained for CD11c and MHC-II (I-Ab) to identify DC and for CD40 

and CD86 as activation markers. Results shown are representative for 2 independent experiments 

performed in groups of 3 mice.   

6.5 Antigen released by CTL is presented to OT-II cells by renal DC  

To investigate the effect of the CTL mediated antigen release directly in the kidney, the 

interaction between T cells and renal DC was assessed by an ex vivo coculture of renal DC 

and T cells after CTL challenge of NOH mice. Higher availability of antigen could lead to an 

enhanced T cell / DC interaction in kidney tissue, however, previous studies showed that the 

kidney does not harbour cross-presenting DC under steady state conditions.187 Therefore it is 

likely, that mainly the interaction between T helper cells and DC is influenced by increased 

antigen levels. To test this hypothesis, DC were purified using magnetic associated cell 

sorting (MACS) of CD11c+ cells from kidney single cell suspensions of NOH and wt mice with 

and without previous aOTI challenge. These cells were then cocultured with naïve OT-II cells 

and 4 days later T cell activation was measured by cytokine ELISA against IL-2 and IFN-γ. 
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IL-2 could not be detected in any of the cocultures (Fig. 11A). However, a significant 

increase of IFN-γ production could be detected in cocultures with DC from aOTI-challenged 

NOH mice (Fig. 11B), showing that indeed the ability of the renal DC was enhanced to prime 

T cell responses after release of antigen by the CTL. Taken together, these results 

demonstrated that CTL mediated damage leads to increased presentation of glomerular 

antigen.  

 

Fig. 11 Coculture of DC and OT-II cells after challenge with activated OT-I. DC were isolated from 

NOH and wt control mice 2 days after adoptive transfer of 5x106 in vitro activated OT-I cells. Cells 

were purified by MACS and 2x105 CD11c+ cells were co-cultured with 4x105 naïve OT-II cells. On d4, 

cell culture supernatants were taken and analyzed by ELISA for IL-2 and IFN-γ. (A) IL-2 ELISA. In 

vitro stimulated OT-II cells incubated with CD3/CD28 microbeads for 48 hrs were used as positive 

control. (B) IFN-γ ELISA . Means were calculated from three individual mice per group; ELISA 

measurements were done in duplicates. Results shown are representative for 2 independent 

experiments in groups of 3 mice. 

6.6 Joint attack of CD8 and CD4 T causes renal inflammation  

One possible explanation for the surprising finding, that even high numbers of activated OT-I 

cells only induced very mild renal immunopathology might be the lack of licensing by T cell 

helper cells.188-190 As described earlier, T helper cells play a major role in the development of 

autoimmune kidney disease as it has been shown mostly in the model of serum induced 

nephrotoxic nephritis.191-197 Since OT-II cells were not activated in vivo in the NOH mouse 

system, the cells were pre-activated in vitro in a culture with OVA-loaded splenocytes for  
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4 days. Virtually all activated OT-II cells showed an activated phenotype expressing CD69. 

Furthermore, the cells expressed IFN-γ but neither IL-4 nor IL-17, showing that the cells were 

of a Th1 phenotype as it has been shown in previous studies (Fig.12).198  
 

 

Fig. 12 Cytokine expression pattern of in vitro activated OT-II cells. Single cell suspensions were 

prepared from LN and spleen of OT-II donor mice. Cells were cultured in the presence of 2mg/ml 

Ovalbumin for 4 days. Cells were stained for CD4 as well as TCR-chains Vα2 and Vβ5 to identify 

 OT-II cells and CD69 to analyze their activation state. Functional analysis was performed by 

intracellular cytokine staining.  

The co-injection of pre-activated OT-II together with naïve OT-I cells resulted in a renal 

inflammation visible by formation of periglomerular infiltrates consisting of mononuclear cells 

on d7 (Fig. 13A,B). Between 15 and 20% of the glomeruli showed focal, periglomerular 

mononuclear infiltrates in all NOH recipient mice after 7 days, as opposed to wt controls, 

indicating that the infiltration was antigen-specific. No intraglomerular infiltration could be 

observed during that time-point, Glomeruli showed enlarged parietal cells and thickening of 

the Bowman’s capsule membrane (Fig. 13B). Adoptive transfer of either naïve or activated 

OT-I or OT-II cells alone failed to induce any detectable immunopathology (Fig. 13C,D). 

These findings demonstrated that CD8+ T cells together with CD4+ T cells were able to 

induce an inflammatory reaction in the kidney, leading to an accumulation of cells around, 

but not within the glomeruli at early time points after adoptive transfer.  



Results 
 
 

-39- 
 

 

Fig. 13 Immunopathology of NOH mice after adoptive transfer of OT-I and OT-II cells. 5x106 naïve  

OT-I and 5x106 activated OT-II cells were injected alone or together in NOH and wt control mice. 

Kidney sections were stained with PAS. (A) Representative overview of infiltrated kidney from a NOH 

mouse. Original magnification x40. (B) High-magnification picture from the same mouse. Original 

magnification x200. (C,D) Semiquantitative analysis of kidney sections by histological scoring. The 

frequency (C) of glomeruli surrounded by mononuclear infiltrates was determined in PAS-stained 

kidney sections. Histological score (D) was defined as follows: 0, no infiltration; 0.5 periglomerular 

infiltrates discontinuous or less than 3 layers; 1, continuous periglomerular infiltration with at least 2 

cell layers; 2, severe infiltration with >4 layers; 3, severe infiltration plus crescents of Bowman's 

capsule or glomerular sclerotic lesions. A minimum of 50 glomeruli per section was counted. Results 

are representative for 4 independent experiments in groups of 3-5 mice. 

6.7 OT-II but not OT-I cells induce functional maturation of renal DC 

To elucidate the outcome of the OT-II helper cell response, the functional properties of renal 

DC after challenge with activated OT-I and OT-II cells were further investigated. DC were 

isolated from renal tissue of NOH and wt control mice after injection of T cells and analyzed 

for the expression levels of costimulatory molecules. Furthermore, isolated cells were stained 

for the marker Gr-1, which has been described as a marker present on organ infiltrating 



Results 
 
 

-40- 
 

inflammatory monocyte subsets.199-202 Upregulation of costimulatory molecules CD40  

(Fig. 14A,C) and CD86 (Fig. 14B,D) was detectable only on DC from NOH mice, which had 

been challenged with activated OT-II alone or together with OT-I. Activated OT-I cells did not 

induce any maturation of DC (Fig. 14A-D). Notably, OT-II cells also lead to an antigen 

specific infiltration of CD11c+I-Ab+Gr-1+ cells, but those cells were of a somewhat less mature 

phenotype, expressing only base levels of CD40 and CD86 (Fig. 14A,B). These findings 

demonstrated that DC activation was dependent on OT-II but not OT-I cells, and that the 

latter augmented DC activation, presumably by release of OVA antigen and therefore 

increased interaction between OT-II cells and DC. 

 

Fig. 14 Renal DC activation by OT-II cells. 5x106 activated T cells were injected into NOH and wt 

control mice. DC were isolated from kidney tissue on d3 and stained for CD11c and MHC-II (I-Ab) to 

identify DC, for Gr-1 to distinguish between resident and inflammatory subsets and for CD40 (A) and 

CD86 (B) as activation markers.  

 

Fig. 15 Statistical analysis of data shown in Fig. 14 (A) Statistical analysis of CD40 expression by MFI 

of total DC isolated from renal tissue. (B) Statistical analysis of CD86 expression of total DC isolated 

from renal tissue. Experiments were performed twice with individual groups of 3 mice. 
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In the next step, production of IL-12 by DC was analyzed, which has been described before 

as a key factor in renal inflammatory disease.192, 193, 195 Mice were treated as described above 

and stained for IL-12 in DC. The IL-12 expression pattern was similar to the expression of 

costimulatory molecules and was highly dependent on the presence of activated OT-II cells 

(Fig. 16). The activation of DC was even enhanced when activated OT-I cells were co-

injected, presumably due to the higher amount of available Ovalbumin released by the CTL, 

enhancing the interaction between DC and OT-II cells.  

 

Fig. 16 Renal DC produce IL-12 in an OT-II dependent fashion. DC were isolated after adoptive 

transfer of T cells as described above. Cells were stained for CD11c and MHC-II (I-Ab) to identify DC, 

cytokine production was measured by intracellular IL-12 staining. Dot plots shown are representative 

of 2 independent experiments in groups of 3 mice.  

6.8 Histological characterization of periglomerular infiltration 

To elucidate the composition of the periglomerular infiltrates, immunohistochemical analysis 

was performed on kidney cryosections to identify the cellular components of the renal 

infiltration. The stainings were positive for CD8α (Fig. 17A), CD4 (Fig. 17B), CD11c 

 (Fig. 17C), CD11b (Fig. 17D), MHC-II (I-Ab allotype) (Fig. 17E) and CD86 (Fig. 17F) within 

periglomerular infiltrates and therefore revealed a cellular composition of both T lymphocytes 

and monocyte/macrophage-like cells such as DCs and macrophages. CD86 staining 

indicated that infiltrating CD11c+ cells were indeed DC-like cells. B220 was not detectable, 

indicating that neither B cells nor plasmacytoid DC were part of the infiltration. Similar to the 

PAS staining, no immune cells were detectable inside the glomeruli. 
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Fig. 17 Immunohistochemical staining of periglomerular infiltration in NOH mice. 5µm kidney 

cryosections NOH mice treated with 5x106 naïve OT-I and activated OT-II cells. Mice were sacrificed 7 

days after adoptive transfer of T cells. Histochemical stainings shown are representative for all mice 

carrying periglomerular infiltration. Staining was performed for (A) CD8α, (B) CD4, (C) CD11c,  

(D) CD86, (E) MHC-II (I-Ab) and (F) CD11b by using biotinylated mAbs followed by SA-HRP/DAB 

staining. Nuclei were stained with haematoxilin.  

6.9 Infiltration of CTL into the kidney and activation of effector 
function depends on interaction between Th cells and DCs 

The histological analysis of the infiltrates indicated a considerable influx of immune cells into 

the renal tissue. Quantitative flow cytometry analysis was performed to determine absolute 

numbers of infiltrating cells. OT-I cell numbers were about 10-fold increased in NOH mice 

injected with both OT-I and OT-II cells compared to wt controls (Fig. 18A). NOH mice, which 

had been injected with OT-I cells alone, showed even less OT-I cells in kidney as well as in 

spleen when compared to the wt controls in 3 out of 3 experiments (Fig. 18A,C). Functional 

activation of CD8+ T cells was also highly dependent on OT-II cells, as shown by IFN-γ 

production of OT-I cells isolated from renal tissue (Fig. 18B). Infiltration was tissue specific, 

since neither the ratio (Fig. 18C) nor the absolute numbers of OT-I cells were increased in 
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the spleen of NOH mice compared to wt mice, indicating that the increase in cell numbers in 

the kidney was not due to a systemic expansion of the OT-I cells, but rather a site specific 

effect. Intrarenal OT-II cell numbers also increased in NOH mice, however this infiltration was 

independent of the presence of OT-I cells (Fig. 18D). These findings demonstrated that OT-I 

T cells were functionally dependent on the presence of CD4+ T cell help and that OT-II  

T cells acted upstream of OT-I, since their infiltration did not depend on the presence of OT-I. 

 

Fig. 18 Infiltration of T lymphocytes into renal tissue of NOH mice. 5x106 naïve OT-I cells were 

injected alone or together with 5x106 activated OT-II cells into NOH mice and wt control animals. Cells 

were isolated from renal tissue 7 days later and quantified by flow cytometry. (A) Total cell numbers of 

OT-I CD8+ T cells isolated from kidneys of NOH mice and wt controls. (B) Intracellular staining of  

IFN-γ in OT-I cells isolated from kidney tissue of NOH and wt mice on d7. (C) OT-I T cell fraction 

isolated from spleen single cell suspensions. (D) Total cell numbers of OT-II CD4+ T cells isolated from 

kidneys of NOH mice and wt controls. Results shown are representative for 2 independent 

experiments performed in groups of 3 mice. 

6.10 aOT-II cells induce effector function of infiltrating OT-I cells 

To investigate whether the kidney-infiltrating CTL were also functional effector cells, 

intracellular cytokine staining for IFN-γ was performed on OT-I cells isolated from renal 

tissue. Indeed, OT-I cells that had been co-injected together with in vitro activated OT-II cells 

showed significantly more production of IFN-γ after restimulation when isolated from renal 

tissue of NOH mice, but not from wt controls (Fig. 19). OT-I cells, which had been injected in 

the absence of OT-II help, showed no significant upregulation of IFN-γ. This result showed 

that the kidney infiltrating OT-I cells indeed were not only increased in number, but also were 

able to perform effector functions depending on the presence of cognate T cell help. 
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Fig. 19 IFN-γ production of kidney infiltrating OT-I cells depends on OT-II. 5x106 OT-I cells were 

injected alone or together with 5x106 activated OT-II cells into NOH mice and wt control animals. Cells 

were isolated from renal tissue 7 days later and quantified by flow cytometry. T cells were stained for 

CD8α, Vα2 and Vβ5 to identify OT-I cells. IFN-γ production was assessed by intracellular cytokine 

staining. Results shown are representative for 3 independent experiments performed in groups of 3 

mice.  

6.11 Increase of intrarenal OT-I cell numbers is independent of their 
local proliferation 
To address the question whether OT-I cells underwent a secondary expansion in renal 

tissue203 or were only recruited from the blood stream, proliferation of lymphocytes isolated 

from renal tissue was assessed by staining for the cell cycle protein Ki-67, which has been 

described as a marker for proliferating cells.204, 205 Ki-67 was well detectable in in vitro 

activated OT-II cells on d3, which served as positive controls. In comparison, OT-I cells 

isolated from NOH mice never showed positive Ki-67 staining even if co-injected with 

activated OT-II cells (Fig. 20 A,B), indicating that there was no expansion of this cell fraction 

upon infiltration into the kidney tissue.  
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Fig. 20 OT-I cells do not proliferate upon infiltration of NOH kidneys. 5x106 naïve OT-I cells were 

adoptively transferred alone or together with 5x106 activated OT-II cells into NOH and wt control mice. 

7 days after adoptive transfer, T cells were isolated from kidney tissue and stained for CD8α, Vα2 and 

Vβ5 to identify OT-I cells. Proliferation was measured by intracellular Ki-67 staining. In vitro activated 

OT-II cells were used as positive, naïve OT-II cells as negative control.  

6.12 Conventional CD8α– DCs are an abundant and essential 
component of the periglomerular infiltrate  

DC represented another major component of the periglomerular infiltration. To further dissect 

the functional properties of these cells, renal DCs from NOH mice were isolated in the first 

step and compared with DC derived from wt animals regarding their phenotypical properties 

to rule out functional defects of these cells by the transgene. Indeed, renal DCs of NOH and 

wt mice showed comparable expression levels of phenotypical and functional DC markers 

such as CD11c, MHC-II (I-Ab), CD86 and CD40 (Fig. 21), indicating that the NOH transgene 

did not alter the renal DC. In the next step, DC-subtype analysis was performed. Cells were 

screened for CD8α expression, which has been described as a marker for crosspresenting 

DC.206-208 CD8α-CD11b+ conventional DC were considered to be of myeloid origin and 

B220+Gr-1+ cells were considered to be plasmacytoid DC, representing cytokine producing 

effector DC209 secreting e.g. type-I interferons. A 2-fold increase in the CD11chiCD11bhi as 

well as the CD1cloCD11bhi sub-population could be observed (Fig. 22 A, Fig. 23), indicating 

infiltration of conventional DC as well as macrophages. Also, these cells expressed the 

marker Gr-1 (Fig. 22B, Fig.23), which has been described as a marker for neutrophilic 

granulocytes but also short-lived inflammatory effector cells as stated above.199, 200, 210 

Notably, the amount of CD11chiCD1bint cells was not altered significantly, indicating that 

these cells are likely to be the kidney resident DC.  
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Fig. 21 Phenotyping of DC isolated from NOH mice. Renal and splenic DC were isolated from 

untreated NOH and wt animals and analyzed by flow cytometry. Histogram overlays were performed 

as follows: light grey histogram = unstained control, dark grey histogram = wt control, black line = NOH 

 

Fig. 22 Conventional CD8α- DC and Macrophages represent major subpopulations in kidney 

infiltrates. NOH mice and wt controls were injected with 5x106 naïve OT-I and activated OT-II cells. 7 

days later, DC and Macrophages were isolated from the kidney tissue and analyzed by flow cytometry. 

(A) Cells were stained for CD45 and MHC-II (I-Ab) to identify APC and for CD11c and CD11b to 

identify DC subtypes. (B) Expression of Gr1 on CD11b cells (left 2 dot-plots) and of CD11c vs. Gr1 on 

CD11bhi cells (right 2 dot-plots) from A.  
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Fig. 23 Statistical analysis of Fig. 22. Results shown are representative for 3 independent sets of 

experiments performed in groups of 3 mice.  

6.13 Inflammatory DC express lower levels of CX3CR1 compared to 
kidney resident DC 

Kidney resident DC have been described previously to form a tight network consisting of 

cells expressing high levels of CX3CR1.211 Inflammatory monocyte derived DC expressing 

high amounts of Gr-1 are also known to express lower levels of CX3CR1. Therefore, DC 

isolated from NOH and wt mice were analyzed for CX3CR1 expression 7 days after adoptive 

transfer of OT-I and OT-II T cells. Indeed, similar numbers of CD11c+I-Ab+Gr-1loCX3CR1hi 

cells were found in kidneys of NOH mice challenged with OT-I and OT-II cells compared to 

wt animals (Fig. 24A), but in contrast a significant increase in CD11c+I-Ab+Gr-1hiCX3CR1lo 

cells could be detected upon T cell induced inflammation. (Fig. 24B). These findings further 

support the view, that T cells caused infiltration of inflammatory monocytes differentiating into 

inflammatory DC.  
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Fig. 24 T cell mediated infiltration of CX3CR1loGr-1hi DC into kidneys of NOH mice. NOH and wt mice 

were injected with 5x106 OT-I and OT-II cells. 7 days after injection, DC were isolated from the kidney 

and analyzed by flow cytometry analysis. Cells were stained for CD11c and MHC-II (I-Ab) to identify 

dendritic cells and for Gr-1 and CX3CR1 to distinguish between resident and infiltrating cells. (A) Total 

cell numbers of Gr-1loCX3CR1hi cells (B) Total cell numbers of Gr-1hiCX3CR1lo cells. 

6.14 Kidney infiltrating dendritic cells do not contain CD8α+ DC or 
plasmacytoid DC 

Next, renal infiltrates were analyzed for the presence of plasmacytoid DC or conventional 

CD8α+ DC. Therefore, mice were treated as described above, cells were isolated and 

stained for pDC-Markers Gr-1 and B220 and for CD8α on I-Ab+CD11c+ cells. Neither cell 

population was detectable in the DC fraction isolated from NOH, nor from wt animals on d7  

(Fig. 25), indicating that these cells do not contribute to the early pathological steps of T cell 

mediated renal inflammation in our model. Notably, CD11c+CD8α+ cells were readily 

detectable in the MHC-II negative cell fraction as will be described in more detail below.  
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Fig. 25 Neither pDC nor conventional CD8+ DC are part of the periglomerular infiltration. NOH mice 

and wt controls were injected with 5x106 OT-I and OT-II cells. 7 days later, DC and macrophages 

were isolated from the kidney tissue and analyzed by flow cytometry. Cells were stained for CD45 

CD11c and MHC-II (I-Ab) to identify DC and co-stained for Gr-1 and B220 to identify pDC (left panel) 

or for CD8α to identify CD8α+ DC (right panel).  

6.15 CD8+ T cells express CD11c upon kidney infiltration 

To further investigate the finding of CD11c+CD8α+I-Ab- cells, these cells were analyzed to 

identify their origin and function. Notably, these cells expressed CD8α to similar levels than 

CD8+ T cells. Therefore, cells were co-stained for CD3ε, which is a subunit of the TCR 

signalling complex and for MHC-II (I-Ab) as a marker for DC. Virtually all CD11c+CD8α+ cells 

expressed CD3ε but no MHC-II, marking them as T lymphocytes rather than APC (Fig. 26A). 

These cells have been described before as activated CTL212-214, therefore also in our system 

these cells were T cells rather than CD8α+ DC. Consistent with the previous results, the 

amounts of CTL as well as conventional DC isolated from kidney tissue were significantly 

increased in NOH mice compared to wt, whereas the amount of CD8α+ DC was very low and 

remained unaltered upon infiltration (Fig. 26B). 
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Fig. 26 Kidney infiltrating CTL express CD11c. NOH mice and wt controls were injected with 5x106 

OT-I and OT-II cells. 7 days later, cells were isolated from kidney tissue and stained for CD11c,  

MHC-II (I-Ab), CD8α and CD3ε. (A) Expression of CD8α vs. CD3ε on CD11c+ cells. Dot plots shown 

are representative for 3 experiments performed in groups of 2-3 mice (B) Absolute cell numbers of 

kidney infiltrating cells. CTL were defined as CD8α+CD3ε+CD11c+ cells, CD8+ DC were defined as 

CD11c+I-Ab+CD8α+CD3ε- cells, CD8α- DC were defined as CD11c+I-Ab+CD8α-CD3ε- results shown 

are representative for 3 independent experiments performed in groups of 2-3 mice 

6.16 Chronic persistence of periglomerular infiltrates causes 
structural and functional kidney damage 

To investigate progression of renal disease, long term experiments were performed by 

injecting the mice with naïve OT-I and activated OT-II cells and analyzing them 4 weeks 

later. Surprisingly, the mice neither showed any histopathological damage, nor 

periglomerular infiltrates, nor could any infiltrating cells be detected by flow cytometry. Most 

likely, the short live-span of the activated OT-II cells without the proper reactivation in vivo 

may have been responsible for this phenomenon. To circumvent this problem, T cells were 

injected repetitively on a weekly basis, analyzing the mice 4 weeks after the first injection. In 

2 out of 5 experiments, mice developed severe histopathological symptoms, showing 

pronounced tubulointerstitial infiltration by mononuclear cells, intratubular protein casts, focal 

tubular atrophy and focal segmental glomerular sclerosis with retraction of the glomerular tuft 

to the vascular pole. (Fig. 27A,B). Sirius red staining revealed fibrotic areas within the 

infiltrates (Fig. 27C). Also, staining for α-smooth muscle actin (α-SMA) revealed presence of 

myofibroblasts within periglomerular infiltrates (Fig. 27D). Also, staining for Collagen type IV 

revealed deposition of extracellular matrix proteins at the later stages of disease, but not at 

timepoints as early as d7 (Fig. 27 E,F). These findings indicated chronic tubulointerstitial 

damage and also to some extent development of renal fibrosis.  
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Fig. 27 Repetitive OT cell injection causes functional and structural kidney damage in NOH mice. 

5x106 naïve OT-I and 5x106 activated OT-II cells were injected into NOH and wt control mice in weekly 

intervals. Mice were sacrificed after 4 wks and kidneys analyzed by histology. (A,B) PAS staining, 

originals as indicated. (C) Sirius red staining for fibrotic areas. (D) α-SMA staining by 

immunohistochemistry, α-SMA was stained with DAB, nuclei with methyl green staining.  

(E) Immunohistochemical staining of a Collagen type IV a NOH mouse on d7 after adoptive transfer 

(Collagen = red, nuclei = blue). (F) Collagen type IV staining of a NOH mouse on day 28. Collagen 

was stained using a polyclonal rabbit serum followed by Alkaline phosphatase - Neufuchsin staining, 

original magnification was x100. Typical results are shown for all histological pictures, mice were 

analyzed in groups of 3 mice.  

6.17 Immune mediated kidney damage leads to albuminuria 

Urinary protein excretion is commonly used as quantitative readout to display the amount of 

renal damage. In NOH mice treated with OT-I and OT-II cells, total protein levels only 

increased about 2-fold on day 7, which is relatively low compared to other disease models 

such as nephrotoxic nephritis, where proteinuria is increased up to 30-fold. Therefore, 
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albumin excretion was used as a more sensitive marker for renal disease. This method is 

commonly used in clinical diagnostics215, 216 and has also been described in mouse models 

as marker for renal disease.217 Albumin levels increased over time when OT-I and OT-II cells 

were co-injected, leading up to a 40-fold increase on d7 and a 400-fold increase on d28 (Fig. 

28A). Injection of activated OT-I cells only led to a much lower increase in albuminuria up to 

d28, mice injected with activated OT-II cells showed no pathological protein excretion (Fig. 

28A). SDS-gel electrophoresis of urine showed that increase of protein secretion was size 

selective. No significant amounts of higher MW proteins like e.g. Ig-class molecules could be 

found in the urine (Fig. 28B). 

 

Fig. 28 T cell mediated renal inflammation leads to albuminuria. 5x106 OT-I and OT-II cells were 

injected into NOH and wt control mice as indicated. (A) Urinary Albumin levels were determined by 

ELISA at day 0, d7, d14 and d28, values were normalized against urinary creatinine. Mice from each 

group were pooled in metabolic cages over night to obtain sufficient amounts of urine for analysis. 

Results shown are representative for 2 individual sets of experiments. (B) native SDS gel 

electrophoresis performed on 50 µl urine samples collected from NOH and wt mice injected with 5x106 

nOTI and aOTII cells on d7. Proteins were stained with Coomassie blue. Arrow indicates the size of 

Albumin. Results shown are representative for 2 independent experiments. 

6.18 Renal inflammation does not alter creatinine clearance 

Functional impairment of the kidney is accompanied by loss of filtration which can be 

measured e.g. by creatinine clearance, which is another standard clinical parameter to 

determine glomerular filtration. Standard laboratory values for mice range between 

120-170 ml/min.218  

As depicted below (Fig.29), creatinine clearance measurements showed now significant 

differences between wt, NOH and NOHlo mice. We concluded that alterations in creatinine 

clearance were not strong enough to overcome the high variability of the assay.  
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Fig. 29 Creatinine clearance measurement. 5x106 naïve OT-I and activated OT-II cells were injected 

into NOH, NOHlo and wt control mice. On d7, mice were placed in metabolic cages o.n. for 12 hrs to 

collect urine samples. Sera were taken the following morning, urine sample volumes were measured 

and creatinine concentration was measured from sera and urine to calculate clearance values.   

6.19 Ultrastructural analysis of periglomerular infiltration 

Electron microscopy is commonly used to depict ultrastructural changes of the glomerulus. 

To address the role of periglomerular infiltration, EM-analysis was performed on NOH and wt 

control mice treated with OT-I and OT-II cells. Podocytes of the NOH mice appeared 

unaltered on day 7 (Fig. 30A), showing neither effacement nor fusion of foot processes. 

Mesangial cells as well as basement membranes also seemed unaltered (Fig. 30B). 

However, parietal cells of Bowman’s capsule appeared activated with an increased number 

of organelles and oedematous cytoplasm (Fig. 30B). On day 28, some Glomeruli showed 

multiple cell layers of parietal cells, indicating crescent formation at later timepoints  

(Fig. 30C). Mononuclear cell infiltrates were clearly visible on day 7 (Fig. 30B) and day 28 

(Fig. 30C), but were more pronounced and embedded in increased extracellular matrix at the 

latter time-point. Ultrastructural changes in podocytes were still not detectable even after 

 4 wks of renal inflammation. Glomerular capillaries showed regular endothelial cells, 

basement membranes and podocytes. Bowman’s capsule membrane was thickened. 

However, intimate contacts between podocytes and parietal cells were detectable in multiple 

glomeruli (Fig. 30B-D). These findings demonstrated that primary damage of T cells was not 

due to a direct effect on the podocytes by infiltrating T cells, but nevertheless the 

lymphocytes still induced glomerular pathology. 
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Fig. 30 EM Analysis of periglomerular infiltration. (A,B) Sections of NOH mice injected with 5x106 

naïve OT-I cells or 5x106 activated OT-II cells 7d before analysis. (A) Capillary of the Glomerular tuft 

lined with podocytes. C = capillary, F = foot process, Ly = lymphocyte, M = mesangial cell, Po = 

podocyte (B) Parietal cells, basement membrane and mononuclear infiltrates. BM = basement 

membrane, E = erythrocyte, MnC = mononuclear cell, Pa = parietal cell. Arrows indicate podocyte-

parietal bridges. (C,D) Sections of NOH mice injected weekly with 5x106 OT-I cells or 5x106 activated 

OT-II on day 28. (C) Parietal cells, basement membrane and mononuclear infiltrates, note formation of 

glomerular crescent and thickening of basement membrane, Cr = crescent. (D) Glomerulus on day 28 

showing periglomerular infiltration, membrane thickening and various podocyte-parietal bridges 

(arrows). 

6.20 Renal inflammation induces OVA expression in the parietal cell 
layer of Bowman’s capsule 

As described above, T cell induced inflammation leads to substantial changes in glomerular 

architecture. The intimate contact between parietal cells and podocytes has been described 

earlier219 as well as a relocation of podocytes to the Bowman’s capsule.220 Both ways it would 

be possible that Ovalbumin would be present in the Bowman’s capsule cell layer and 

therefore far more easily accessible for T cell mediated immune responses. To test whether 

OVA was present in the parietal cells, Immunohistochemical staining was performed on 

paraffin sections of NOH mice on d7 and d28 after adoptive T cell transfer. On d7 parietal 

cells expressed no or only little amounts of OVA (Fig. 29A). However, the antigen was 

readily detectable on parietal cells of infiltrated glomeruli at later timepoints (Fig. 29B). 
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Fig. 29 Ovalbumin expression in parietal cells of NOH mice. (A) Immunohistochemical staining of a 

glomerulus from a NOH mouse on d7 after adoptive transfer of 5x106 naïve OT-I and 5x106 activated 

OT-II cells. (B) Immunohistochemical staining of a glomerulus from a NOH mouse on d28 after 

adoptive transfer of 5x106 naïve OT-I and 5x106 activated OT-II cells. Mice were repetitively injected 

on a weekly basis. OVA expression was revealed using an anti-OVA polyclonal rabbit serum followed 

by an Alkaline phosphatase-Neufuchsin staining, nuclei were stained with Haematoxilin. Original 

magnification was x1000. 

6.21 Early depletion of DC and Macrophages leads to aggravation of 
renal inflammation 

It is likely that homeostatic DC and infiltrating DC possess differential functional properties. 

As it has been reported earlier, homeostatic DC play an important role in cross- 

tolerance207, 221, 222, whereas invading DC rather mediate inflammatory responses201, 223 as it 

has been shown e.g. for resident kidney DC.224 To investigate the role of the inflammatory 

DC, NOH were backcrossed to CD11c-DTR mice225, which therefore could be used to 

selectively deplete CD11c+ cells by injection of Diphteria toxin. Unfortunately, these mice 

developed severe side effects after injection of DT from d5 on. Only in 1 out of 4 experiments 

mice injected with OT-I and OT-II T cells developed a far more severe pathology after early 

depletion of DC on d0 compared to undepleted control animals; in the other experiments the 

mice died regardless if T cells were co-injected with the DT or not. Therefore, in the next step 

Clodronate-Liposomes (CloLip) were used, which depleted most of the circulating monocytes 

and also tissue-resident macrophages and DC.226 
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Fig. 32 Histological and flow cytometry analysis of CloLip depleted mice. NOH and wt mice were 

injected with CloLip followed by coinjection of 5x106 nOT-I and aOT-II cells. (A-C) PAS-histology, 

original magnification x40. Representative pictures of each group were taken. (D) Flow cytometric 

analysis of renal infiltrating DC/monocytes. Cells were stained for CD11c and MHC-II to identify DC 

and for Gr-1 to analyze infiltrating cells of monocyte origin. Representative dot plots are shown. 

Experiment was performed in groups of 3 mice.  

Depletion of cells with Clodronate-Liposomes before adoptive T cell transfer resulted in an 

aggravated renal inflammation compared to undepleted NOH mice (Fig. 32A,B). This effect 

was not due to a general infiltration of cells, since wt control animals did not show any signs 

of renal inflammation (Fig. 32C). Moreover, not only even higher amounts of DC were 

present in the CloLip-treated NOH mice, but these cells also strongly expressed Gr-1, 

identifying them as inflammatory DC of monocytic origin (Fig. 32D). Furthermore, additionally 

to the inflammation of monocyte-derived cells, there was also a significantly increased 

infiltration of T cells detectable in CloLip depleted animals. Compared to undepleted NOH 

mice, which had received OT-I and OT-II cells, depleted mice showed a two-fold increase in 

OT-I (Fig. 33A) and a 1.5-fold increase in OT-II cell numbers (Fig. 33B). However, 

Clodronate-Liposomes also induced unspecific immigration of CD8+ and CD4+ T cells into the 

kidney to some extent (Fig. 33A,B). Taken together, these findings indicate that depletion of 

DC and other phagocytic cells in the kidney at early time points induced a severely 

aggravated renal immunopathology, leading to a massive infiltration of inflammatory 

monocytes as well as T cells into the renal tissue.  
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Fig. 33 Infiltration of T cells after Clodronate-Liposome mediated depletion of phagocytic cells. NOH 

and wt mice were treated as described above. T cell infiltration was assessed by flow cytometry 

analysis. Cells were stained for CD8α, Vα2 and Vβ5 to identify OT-I cells (A) and CD4, Vα2 and Vβ5 

to identify OT-II cells. (B) 2x104 CaliBRITE® beads were added as internal reference standard before 

flow cytometry analysis to determine total cell numbers. Experiment was performed in groups of 3 

mice. 

6.22 Depletion of DC abrogates priming of T cells in RLN 

Early depletion of DC not only influences local immune responses in the target organ, but 

also priming of cells in the draining lymph node.225, 227 The effects of the DC depletion on  

T cell priming were addressed by proliferation studies, depleting DC in the CD11c-DTR mice 

before transfer of CFSE-labelled OT-I cells, assessing their proliferation 2 days afterwards. 

Depletion efficiency was also determined by staining for CD11c+ cells in the RLN. DC 

Depletion efficiency was about 85%. Proliferation of OT-I cells was almost completely 

abrogated in DC depleted NOHxCD11c-DTR mice but not in NOH or wt control animals  

(Fig. 34). To rule out unspecific effects of the DT or the CD11c-DTR transgene, DT treated 

NOH as well as undepleted NOHxCD11c-DTR mice were used as control groups. These 

controls showed no significant differences in proliferation compared to NOH mice (Fig. 35). 
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Fig. 34 DC depletion and proliferation of OT-I T cells. 2x106 CFSE labelled OT-I cells were injected 

into NOH, NOHxCD11c-DTR and wt control mice. DC were depleted by injection of 4ng/g mouse weight 

Diphteria toxin i.p. on d0. DC depletion efficiency was determined 2 days later in the RLN. Proliferation 

was measured in CD8α+Vα2+Vβ5+ cells. Histograms shown were gated only on CFSE positive cells. 

 

Fig. 35 Statistical analysis of data shown in Fig. 34. Depletion and proliferation assays were 

performed as described. Proliferation indices were calculated from total CD8α+Vα2+Vβ5+ cells. Data 

shown are representative for 2 independent experiments in groups of 3 mice. 
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6.23 Depletion of DC in effector phase abrogates kidney infiltration 

To test the effect of DC depletion at later time-points, DC were depleted in the same mice 5 

days after adoptively transferring the T cells. It was likely that because of DC being a major 

fraction of the renal infiltrates, they would also be involved in the orchestration of the 

periglomerular infiltrates. NOHxCD11c-DTR mice showed cell infiltrates comparable to NOH 

mice when challenged with naïve OT-I and activated OT-II cells (Fig. 36, 37C and 38A,B). 

However, depletion of the CD11c+ cells by DT injection 5 days after T cell injection resulted in 

a 90% loss of DC from the kidney (Fig. 36). This loss of dendritic cells from the kidney also 

resulted in disaggregation of the periglomerular infiltrates (Fig. 37A and 38A,B). Mice 

showed an almost complete clearance of the infiltrates (Fig. 38A) with a significant reduction 

also in severity of the singular infiltrates (Fig. 38B). Lack of infiltration was not due to an 

unspecific effect of the DT treatment or the CD11c-DTR transgene, since the correspondent 

control groups showed no reduced infiltration on d5 (Fig. 37 B-D and Fig. 38 A,B). These 

findings suggested that CD11c+ cells were essential for the maintenance of periglomerular 

infiltrates and that the loss of these cells resulted in a rapid resolution of those infiltrates.  

 

Fig. 36 DT mediated depletion of CD11c+ cells from kidney on d5 after adoptive transfer of T cells. 

NOH, NOHxCD11c-DTR and wt mice were injected with 5x106 OT-I and OT-II cells. On d5, mice were 

injected with DT. Kidneys were analyzed by flow cytometry for CD11c and eGFP to quantify DC 

present in the renal tissue. 2x104 CaliBRITE® beads were added as internal reference standard. 
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Fig.37 Histology of mice after CD11c+ depletion on d5. Mice were injected with 5x106 naïve OT-I and 

activated OT-II cells. DT depletion was performed by injection of 4ng/g mouse weight Diphteria toxin i.p. 

on day 5 as indicated. Mice were sacrificed on d7 and kidneys analyzed by PAS histology. Pictures 

shown are representative for two experiments performed in groups of 3 mice. (A) NOHxCD11c-DTR 

mouse injected with DT. Original magnification x40. (B) NOH mouse with DT injection. Original 

magnification x40. (C) CD11c-DTR mouse without DT injection. Original magnification x40. (D) NOH 

mouse without DT injection. Original magnification x40. All scale bars equal 400µm. 

 

Fig. 38 Statistical analysis of data shown in Fig. 37. The frequency of glomeruli surrounded by 

mononuclear infiltrates was determined in PAS-stained kidney sections. Scoring of infiltration 

frequency and severity was performed as described in Fig. 13. Data shown represent 2 independent 

experiments performed in groups of 2-6 mice.  
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6.24 Immunization against OVA aggravates renal inflammation 

 

Fig. 39 ELISA for OVA-specific IgG in mouse serum after adoptive transfer of nOT-I and aOT-II. NOH 

and wt control mice were injected with 5x106 naïve OT-I and activated OT-II T cells. Sera were taken 

on day 7 by bleeding from the tail vein. Injections were repeated weekly and mice were sacrificed on 

day 28. Sera were taken for analysis of OVA-specific IgG. IgG levels were determined by ELISA. 

Positive control sera were taken from wt mice immunized with OVA/Alum for 28 days as described 

above. 

Long-term experiments performed with adoptive transfer of OT-I and OT-II cells not only led 

to cellular kidney infiltrates, but also induced OVA-specific IgG responses, probably by 

transferring minute amounts of either soluble or cell bound Ovalbumin from the activated  

OT-II cell cultures (Fig. 39). NOH mice showed almost no induction of anti-OVA IgG on d7 

(Titre0.2 1:20), whereas wt animals already showed significantly increased levels of anti-OVA 

IgG at this early stage (Titre0.2 1:128) (Fig. 39A). On day 28, wt mice featured high titres of 

OVA-IgG (Titre 1:9000) and also NOH mice showed increased IgG-Titres (Titre 1:1500) if 

injected with OT-I and OT-II T cells on a weekly basis (Fig. 39B). Notably, the overall IgG 

response in NOH mice was approximately 5-fold lower compared to wt control animals at 

early as well as at late time-points, indicating that these mice are at least partially tolerant for 

Ovalbumin regarding their endogenous B cell repertoire. However, increased IgG levels 

indicated that at least at late stages of renal disease an involvement of humoral immune 

responses in renal damage could not be completely ruled out. These findings demonstrated 

that the adoptive transfer of T cells not only induced cellular infiltration into the kidney, but 

also lead to an OVA-specific antibody response, albeit NOH mice developed a somewhat 

weaker antibody response compared to wt control animals. 

To test the hypothesis whether these OVA-specific antibodies contribute to the development 

of renal disease, NOH mice were immunized using i.p. injections of soluble Ovalbumin 

together with aluminum hydroxide which is known to be a mainly Th2 inducing adjuvant.228 
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Immunization of NOH and wt control mice was performed on d0 together with injection of  

OT-I and OT-II cells. OVA/Alum injections were then repeated in weekly intervals. Mice that 

had received T cells without being immunized additionally developed renal infiltrates from d7 

on and showed an aggravated disease phenotype after 28 days. (Fig. 40B and Fig. 41). 

However, the severity of renal infiltration was markedly increased when mice were also 

immunized with OVA/Alum (Fig. 40A and Fig. 41). This effect could not have been due to 

the Alum-injection itself, since mice injected only with OVA/Alum did not develop any renal 

pathology (Fig. 41). Furthermore, the increased renal inflammation was not due to an 

enhanced activation of OT-I or OT-II cells alone, since OVA/Alum injected together with 

either of these cell types alone failed to induce periglomerular infiltrates (Fig. 40C,D and Fig. 

41). Renal pathology was restricted to OVA-transgenic animals, indicating that the effect was 

antigen specific and not due to unspecific activation of the OVA-responsive T cells (Fig. 39). 

Taken together, these findings show that immunization of NOH mice with Ovalbumin 

contributes to the development of renal disease, but that antibodies alone are not sufficient to 

induce a renal immunopathology. 

 

Fig. 40 Histology of NOH mice after OVA/Alum immunization and T cell transfer. NOH and wt mice 

were injected with 5x106 OT-I and OT-II cells as indicated. Mice were immunized with OVA/Alum using 

1:1 suspensions of 100µg/ml OVA and Alum. (A) NOH kidney on d28, injected with OT-I, OT-II and 

OVA/Alum. (B) NOH kidney on d7 after OT-I and OT-II injection. (C) NOH kidney on d28, injected with 

OT-I and OVA/Alum. (D) NOH kidney on d28, injected with OT-II and OVA/Alum. Experiment was 

performed in groups of 3-4 mice.  
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Fig. 41 Histological score and statistical analysis of data shown in Fig. 40. Mice were injected with 

5x106 OT-I and OT-II cells as indicated in weekly intervals together with OVA/Alum immunization as 

indicated. Experiment was performed in groups of 3-4 mice. 

6.25 CCR2 and CCR5 are expressed in periglomerular infiltrates 

Chemokines are key players in cell recruitment and migration. Real time PCR analysis for 

various chemokines and chemokine receptors was performed to investigate which signals 

may be important for the development of periglomerular infiltrates. Mononuclear infiltrating 

cells and tubulointerstitial cells were isolated by laser catapult microdissection from NOH or 

wt control mice after adoptive T cell transfer. Cryosections of tissues from NOH and wt mice 

treated with naïve OT-I and activated OT-II cells were contrasted with cresylviolet and 

infiltrates were cut out as depicted below, interstitial cells were cut out as controls (Fig. 42). 

 

Fig. 42 Cresylviolet staining of NOH and wt cryosections. NOH and wt control mice were injected with 

5x106 OT-I and OT-II cells. On day 7, mice were sacrificed and kidneys taken for cryoembedding in 

liquid nitrogen and cryohistology. 7µm sections were stained with cresylviolet and regions of interest 

were cut out by laser catapult microdissection as indicated. Only areas enclosed by the green lines 

were isolated for analysis. A minimum of 20 tissue fragments was collected per mouse. 

Representative pictures are shown; experiment was performed in groups of 3 mice. 
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In the next step, RNA was extracted from the excised tissue fragments and expression of 

chemokines and chemokine receptors was assessed. To quantify and normalize the varying 

amounts of total RNA isolated from the different tissues, 18S rRNA was used as internal 

reference. Differential chemokine expression was analyzed between groups of NOH and wt 

mice as shown in Fig. 42. Compared to cells isolated from wt animals, periglomerular 

infiltrates in NOH mice showed high expression levels of CCR5 (Fig. 43A) and also high 

levels of CCR2 (Fig. 43B) as well as their related chemokines CCL3 (MIP-1α), CCL4  

(MIP-1β), CCL5 (RANTES) (Fig. 43A) and MCP-1 (CCL2) (Fig. 43B). 

 

Fig. 43 Increased mRNA expression of CCR5, CCR2 and their ligands in periglomerular infiltrates of 

NOH mice. cDNA was synthesized from RNA isolated from dissected fragments shown in Fig. 42. 

Expression levels of chemokines and receptors were assessed by real time PCR. (A) Relative 

expression of CCR5 and CCR5-ligands compared between NOH and wt animals after adoptive T cell 

transfer. (B) Relative expression for CCR2 and CCR2 ligands compared between NOH and wt 

animals. Data shown are representative for 2 independent experiments performed in groups of 3 mice.  

To further investigate the possible mechanisms of T cell infiltration into the tissue, OT-I and 

OT-II cells were sorted from renal tissue of NOH and wt mice and their expression profile for 

chemokines and chemokine receptors was analyzed. OT-I cells isolated from NOH mice 

showed about 7-fold increased CCR5 expression compared to cells isolated from wt animals 

(Fig. 44A). Notably, only few cells could be isolated from the control animals, which 

presumably were recirculating blood T cells rather than tissue infiltrating CTL. OT-II cells only 

showed little alterations of chemokine receptor expression with about a twofold increase in 

CCR5. However, OT-II cells expressed high levels of the CCR5 ligands CCL3 (MIP1-α) and 

CCL4 (MIP-1β) and also to some extent CCL5 (RANTES) (Fig. 44B). CCR2 and CCR7 

expression remained unaltered in both OT-I and OT-II cells. (Fig. 44A,B) 



Results 
 
 

-65- 
 

 

Fig. 44 mRNA expression of CCR5, CCR5 ligands, CCR2 and CCR7 in OT-I and OT-II T cells. NOH 

and wt control mice were injected with 5x106 OT-I and OT-II cells. On day 7, mice were sacrificed and 

T cells isolated from kidney single cell suspensions by FACS sorting or flow cytometry analysis.  

(A,B) RNA was isolated from OT-I (A) or OT-II (B) cell fractions after sorting for CD8α, CD4, Vα2 and 

Vβ5 positive cells, transcribed into cDNA and analyzed by real time PCR for expression of chemokines 

and chemokine receptors. Data shown are representative for 2 individual experiments performed in 

groups of 3 mice. (C) T cells were stained for CD8α, Vα2 and Vβ5 to identify OT-I cells, for CD4, Vα2 

and Vβ5 to identify OT-II cells and for CCR5 using a mouse monoclonal primary antibody followed by 

anti-mouse FITC secondary Ab. MFI were calculated to determine CCR5 expression levels. 

Experiment was performed in groups of 3 mice.  

To test whether the elevated chemokine receptor expression also resulted in higher 

expression of the chemokine receptors on cell surface, T cells were isolated from renal tissue 

of NOH and wt control mice and stained for CCR5. OT-I cells showed a significant increase 

in CCR5 expression on the cell surface if isolated from NOH transgenic mice compared to 

cells isolated from kidneys of wt animals. OT-II cells did not show significant alterations in 

CCR5 expression similar to the mRNA expression levels (Fig. 44B). Taken together, these 

findings demonstrated that recruitment of CD8+ T cells into the kidney tissue was likely to be 

a CCR5 mediated process and that CD4+ T cells were capable of producing the analogous 

ligands. High levels of CCR2 and CCL2 were also present in the infiltrates as shown by laser 

microdissection, but were absent from both CD8+ and CD4+ T cells. 
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7. Discussion 

Characterization of NOH mice and the induction of T cell responses 

With the NOH model described in this thesis, it was possible to provide direct evidence for 

the ability of T cells to mediate glomerular injury similarly seen in other models e.g. for rapid 

progressive GN or MRL-lpr lupus nephritis. Until now, there has been only indirect evidence, 

leading to controversy about the involvement of T cells, in particular for CD8+ T cells.  

 

In contrast to previously existing GN model systems, the tissue specific expression of the 

OVA-HEL antigen in NOH mice allows to specifically investigate T and B cell responses by 

selective adoptive transfer. In this model CD4+ and CD8+ T cells jointly induced renal 

inflammation, which was characterized by primary periglomerular infiltrates containing T cells 

and APC at early timepoints. These infiltrates then could lead to progressive kidney damage 

when T cells were injected repetitively. The induction of renal disease was highly dependent 

on the intrarenal crosstalk between DCs, CD8+ and CD4+ T cells. 

Consistent with previous studies, the kidney seemed to be very well protected against T cell 

mediated injury in the NOH model.229 T cell activation under normal circumstances leads to 

cross-tolerance as previously demonstrated in other models expressing OVA, like the Rip-

mOVA model, in which only fully activated CTL induced diabetes or renal inflammation.229-233 

However, OT-I cells could be effectively rescued by CD4 T cells, which were able to prevent 

cross-tolerance.234-237 

 

Similar to the Rip-mOVA model, where OVA-antigen is expressed in tubular epithelial cells, 

glomerular antigen in NOH mice was cross presented in the kidney draining lymph node, 

where it lead to activation and proliferation of the highly reactive OT-I cells. However,  

MHC-II restricted antigen presentation was incapable of activating OT-II cells in NOH mice. 

This may be explained by low affinity of OT-II cells and their need of high antigen doses for 

activation, as previously suggested.235  

The route of antigen uptake and transport to the renal lymph node was not addressed in this 

study. However, two possible mechanisms have been suggested in the literature: First, that 

small blood antigens are constitutively filtrated and are therefore reabsorbed from the 

primary urine by proximal tubular epithelial cells and subsequently transported by passive 

lymph flow and/or DC migration to the lymph node as it has been shown before for filtrated 

antigens.238 In this case, podocyte-bound Ovalbumin shed from the cell surface would be 

reabsorbed and could serve for T cell priming by APCs. However, an attempt to detect 

Ovalbumin in the urine by western blot analysis was unsuccessful, presumably because the 

amount of antigen was below the threshold of detection. 
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The second mechanism suggested in the literature has been reported for CX3CR1+ DC, 

which represent also the major fraction of kidney resident DC. These cells have been shown 

to be capable of transepithelial antigen uptake, by extending protrusions through tight 

junctions into the intestinal lumen or the alveolar space, in order to sample antigen from 

otherwise inaccessible sites.239, 240 However, although CX3CR1 DCs are a major part of the 

interstitial DC residing in the kidney, dendritic protrusions into the intratubular space have not 

yet been reported. In addition to these two published mechanisms, it is conceivable that 

podocytes may relocate to Bowman’s capsule and thereby permit adjacent interstitial DCs to 

directly acquire antigen. However, during homeostasis, OVA-positive cells were absent from 

the parietal epithelium. It remains to be examined whether this occurs in periglomerular 

inflammation. 

Specific functions of CD4+ and CD8+ T cells in NOH mice 

The inability of OT-II cells to become activated in vivo in this model had to be circumvented 

by their in vitro preactivation. Only OVA antigen doses above 100 µg/ml sufficed for such 

activation, giving rise only to Th1 type helper cells expressing IFN-γ if not additionally treated 

by cytokines. As suggested by previous studies, the type of T cell help may determine 

outcome of renal immunopathology. It has been shown, that Th1 cells are closely linked to 

development of rapid progressing forms of GN241 leading to crescent formation and 

glomerulosclerosis241-244, whereas Th2 cells rather induce nephrotic symptoms e.g. by 

inducing cytokine mediated podocyte damage.245, 246 Similarly, also in our model the Th1 type 

response lead to a rapid progressing form of nephritis including infiltration of immune cells 

into the kidney, loss of glomerular filtration, crescent formation, tubular atrophy and 

glomeruloscerosis.  

There is also evidence evolving demonstrating a possible role for the newly discovered Th17 

CD4+ T cells, however their involvement in nephritis induction has to be further elucidated. 

Th2 type responses have closely been linked to development of nephrotic syndrome, leading 

to severe proteinuria and podocyte damage by cytokines such as IL-13.241, 244, 246, 247 

However, a similar pathology could not be observed in NOH mice after adoptive transfer of  

T cells. In vitro differentiated Th2 cells also induced periglomerular infiltrates but no 

aggravated proteinuria or persisting renal inflammation.248 

 

As shown by the injection of activated OT-I cells, CD8+ T cells specific for a glomerular 

antigen were able to perform CTL effector functions, and to release antigens from damaged 

podocytes. NOH mice already showed constitutive activation of naïve OT-I cells, so that the 

increased antigen amount only induced moderate enhancement of T cell proliferation. 

Therefore, this experiment was performed also in the NOHlo mouse line, which had been 
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generated using the same construct, but expressed lower levels of Ovalbumin, resulting in 

lower constitutive activation of OT-I T cells. When NOHlo mice were challenged with activated 

OT-I cells, proliferation and CD69 expression of naïve T cells was increased in NOHlo mice to 

a greater extent compared to NOH mice. No signs of DC maturation were evident in LN as 

well as in kidney after injection of activated OT-I shown by surface staining of CD86 and 

CD40, indicating that indeed the enhanced priming resulted from increased MHC-I 

presentation, rather than from higher costimulatory activation.  

This indirect proof of the higher antigen presentation by renal dendritic cells induced by the 

CTL mediated damage was further supported by the ex vivo coculture experiments, showing 

increased activation of CD4+ T cells by IFN-γ production. IL-2 could not be detected in the 

culture supernatant, presumably because of consumption by the activated OT-II cells, which 

require IL-2 as proliferation-promoting factor.  

 

As already stated above, the infiltration and kidney damage induced by activated CD8+  

T cells alone was only minor in contrast to the pancreas-OVA model systems, where 

activated CTL completely destroyed pancreatic β-islet cells, and caused Diabetes type I.249 

Various possibilities exist why specific T cells were targeted less efficiently to podocytes than 

to pancreatic islets.  

To mount a productive CTL response, it has been shown in various model systems, that 

tissue-bound antigens, which are being cross-presented, always induce cross-tolerance in 

the absence of CD4+ T cell help and that only few strong exogenous antigens such as viral 

antigens are able to directly mount an immunogenic activation of CD8+ T cells.231 250-253 

Furthermore, even activated CTL would distribute throughout the whole body, unspecifically 

infiltrating only peripheral tissues they could gain access to easily. Without inflammation, 

cells would not receive specific tissue homing signals such as adhesion molecules on 

activated endothelium or chemokine signals, making it difficult for the cells to identify their 

target tissue. Therefore, one possible role for the CD4+ T cells may be the specific 

recruitment of the CD8+ T cells into the kidney. An initial contact between the activated OT-II 

cells and tissue resident renal DCs which have acquired OVA-antigen would induce the 

release of proinflammatory signals, which would actively recruit other immune cells such as 

inflammatory monocytes, CD4+ T cells or CD8+ T cells into the kidney. 

Another possible reason for the minor damage induced by the activated OT-I cells might 

result from sequestration of the OVA-antigen. Podocytes, which line the capillary loops of the 

glomerular capillary tuft, are well secluded and difficult to access for bypassing immune cells, 

since it has been shown that vascular endothelia and basement membranes constitute 

effective barriers restricting access of CTL to tissue bound antigens.254 Similarly, tubular 

antigens also have shown to be sequestrated and therefore being protected against T cell 
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mediated immune responses.255 Cells, which form the periglomerular infiltrates would have to 

pass both the external membrane of Bowman’s capsule as well as the parietal epithelial cell 

layer. Only prolonged persistence of these infiltrates could lead to enhanced access of cells 

by release of e.g. matrix metalloproteinases (MMP), which would loosen up these barriers 

and therefore allowing the CTL access into the Glomeruli and to the podocytes, provided that 

glomerular leakage also leads to a defect of primary filtration and loss of urinary drain.256 

Another explanation of how renal disease progresses from periglomerular infiltration to 

glomerular damage may be a direct attack of the CTL on the OVA-expressing cells in the 

parietal layer of the Bowman’s capsule. Although it is still yet unclear, how the OVA is 

sensed by the local DC in the onset of the disease, OVA-expressing cells could be observed 

at d28 the Bowman’s capsule in infiltrated glomeruli. Either, parietal cells take up large 

amounts of Ovalbumin from the podocytes upon inflammation due to the intimate contact 

between podocytes and parietal cells257 or the podocytes relocate to Bowman’s capsule as it 

has been described recently in a model of experimental crescentic nephritis.258 It is also 

possible, that inflamed parietal cells acquire podocyte-like properties. These cells would 

therefore be by far more accessible to the CTL, being only protected by the basal membrane. 

 

Infiltration of the OT-II CD4+ T cells was independent of CD8+ T cells and just depended on 

the presence of OVA-antigen in the kidney, leading to an accumulation of OT-II cells. In 

contrast to the existing nephritis models relying on Th1 T cells like e.g. NTN-induced GN, the 

presence of the T helper cells alone was not sufficient to trigger a DTH-like 

immunopathology, showing the specific role for CD8+ T cells in our model system.  

CD4+ T cells provide local activation signals, leading to an activation of the renal immune 

network as well as sending out recruiting signals by inducing a proinflammatory milieu. 

These signals led to a maturation of renal DC, inducing cell bound costimulatory molecules 

on the APC as well as secretion of proinflammatory cytokines such as TNF-α and IL-12. The 

presence of Gr-1hi DC indicated recruitment of inflammatory monocyte precursors, although 

at least at the early stages of disease development these cells seem to be less mature 

compared to kidney resident Gr-1lo DC. To follow the differentiation process of these 

monocyte-derived precursors into either DC-like or macrophage like cells, in vivo tracing 

experiments using congenic or fluorescent markers may facilitate following the development 

of these cells.  

Since the infiltrating as well as the kidney-resident DC have been described as non-cross-

presenting conventional CD8-CD11b+ dendritic cells238, these cells could not provide signals 

to infiltrating CTL by MHC-mediated cell-cell contact. However, activation of those cells 

triggered release of IL-12, which has been described as an activating factor for CTL in 

peripheral tissues. For example, tumor infiltrating CD8+ T cells are activated by local IL-12 to 
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perform anti-tumor effector functions.259-261 Furthermore, IL-12 has been described as a 

protective factor for T cells against activation induced cell death (AICD).262 In Toxoplasma 

gondii infection, IL-12 triggers IFN-γ production and cytotoxic activity in CD8+ T cells.263  

In autoimmune thyroiditis, IL-12 is one of the major factors driving in vivo activation of 

effector T cells leading to inflammatory lesions of the thyroid.264  

 

The periglomerular infiltrates were a major hallmark of T cell-induced nephritis in NOH mice. 

In human kidney biopsies from GN patients, similar infiltrates are frequently observed, but up 

to now the pathomechanism underlying their development remained unclear. The NOH 

model suggests that periglomerular infiltrates are closely linked to T cell mediated 

inflammatory reactions in the kidney, since the formation of the infiltrates was highly 

dependent on the presence of both OT-I and OT-II cells. Furthermore, CD4+ as well as CD8+ 

T cells were also abundantly present within the infiltrates together with mature dendritic cells 

and presumably also macrophages. This might be of diagnostic as well as therapeutic value, 

since selective inhibition of T cell activation or of cellular infiltration into the kidney may be 

more selective than unspecific anti-inflammatory treatments, such as corticosteroids.  

The accumulation of cells in the kidney resulted from organ-specific recruitment rather than 

systemic expansion, further supporting the view that local inflammatory reactions drive the 

development of renal disease in NOH mice. CD8+ T cells in the absence of CD4+ T cells not 

only failed to infiltrate kidney tissue, but rather were also deleted from the system, indicating 

that CD4+ T cells were vital for rescuing OT-I cells, and that the activation of OT-I cells in the 

absence of OT-II cells induced cross-tolerance. However, tolerance induction in kidney could 

not be observed directly due to the very low amount of OT-I cells that could be isolated from 

kidneys of OT-I treated NOH mice. Furthermore, functional activation of OT-I cells was highly 

dependent on the presence of OT-II cells as shown by intracellular measurement of IFN-γ 

production. However, since IL-2 could not be detected in OT-II cells neither by ex vivo ELISA 

nor by intracellular cytokine staining, the exact mechanism how the CD4+ T cells activate the 

CD8+ T cells remains to be determined, although IFN-γ as well as IL-12 have been shown to 

be able to stimulate CD8+ T cells.265, 266 However, IFN-γ has also been described as a 

regulatory factor for T cell responses, responsible for AICD267 and that CD11b+ cells 

responding to IFN-γ are also able to limit T cell responses in vivo.266 Taken together, this 

might explain the necessity for the repetitive injection of OT-I and OT-II T cells to induce 

progressive renal inflammation to circumvent IFN-γ mediated tolerance induction, which may 

contribute to preventing overshooting T cell responses.  

 

Local accumulation of OT-I and OT-II cells could be explained either by recruitment from the 

bloodstream or local secondary expansion inside kidney tissue. To address renal 
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proliferation of the T cells in vivo, cells were isolated from infiltrated organs and stained for 

Ki-67, which is a cell cycle protein of yet unknown function, which nevertheless can be used 

to detect dividing cells. No Ki-67+ OT-I cells could be isolated from kidney tissue, indicating 

that inflammatory cells indeed invaded the renal tissue from the blood stream rather than 

undergoing local expansion.  

The role of dendritic cells in T cell induced nephritis in NOH mice 

Renal dendritic cells in homeostasis and inflammation only show properties of conventional 

CD8- DC. However, kidney resident dendritic cells can be distinguished from the 

inflammatory cells invading the renal tissue upon T cell induced inflammation. Infiltrating cells 

express higher levels of CD11c and CD11b and also show markers of inflammatory 

monocytes, expressing Gr-1 and low levels of CX3CR1, which in contrast is highly expressed 

on kidney resident DC. Also, CD11b+CD11c-Gr-1hi cells, presumably resembling 

macrophages, are clearly detectable in the infiltrates.  Taken together, macrophages and 

dendritic cells were a major component of the renal infiltrates.  

 

The absence of CD8+ dendritic cells from kidney tissue in both homeostasis and 

inflammation suggested that the dendritic cells did not directly interact with the infiltrating 

CD8+ T cells. Furthermore, absence of B220+Gr-1+ DC suggested, that also no plasmacytoid 

dendritic cells invaded the kidney upon inflammation and therefore DC effector functions like 

secretion of type I interferons was not involved in the induction of renal disease.  

 

However, upon inflammation, CD11c+CD8+ DCs were clearly detectable in cells isolated from 

renal tissue. However, these cells were CD3ε+ but not MHC-II+, identifying them as T cells, 

rather than CD8+ dendritic cells, a phenomenon already described by others.268 One 

explanation might be the involvement of CD11c in the recruitment of the T cells into 

peripheral tissues. CD11c has been described to be a binding factor for leukocytes to 

activated endothelia and would therefore provide a homing signal to allow extravasation of 

cells at the site of inflammation.269  

 

The outcome of CD11c+ cell depletion or depletion of DC/macrophages by DTR or 

Clodronate-Liposomes varied depending on the timing of depletion versus adoptive T cell 

transfer. Early depletion of these cells abrogated effective priming of CD8+ T cells in the renal 

lymph node between d0 and d2 after depletion. However, kidneys isolated on d7 after 

adoptive T cell transfer clearly showed an aggravated disease phenotype with high-number 

infiltrations of inflammatory monocytes as well as T cells into the renal tissue. Although early 

priming was impaired by the DT-mediated DC depletion, Clodronate-Liposome depletion 



Discussion 
 
 

-72- 
 

clearly showed that removal of phagocytic cells (resident DC / macrophages) before adoptive 

T cell transfer was proinflammatory. However, it is also clear that Clodronate-Liposome 

depletion resembles a rather unspecific approach for depletion of DC, only targeting 

subfractions that are highly phagocytic. Furthermore, systemic depletion of phagocytes leads 

to substantial body-wide cell death of phagocytes, presumably releasing proinflammatory 

danger signals, which may induce maturation as well as recruitment of leukocytes and also a 

prolonged imbalance between Gr-1hi and Gr-1lo monocytes. This view is also further 

supported by the unspecific infiltration of OT-I and OT-II T cells into the kidney of non-

transgenic wildtype animals. Nevertheless, the data presented here is supported by a study 

showing that repetitive DT mediated depletion of CD11c+ cells in a model of nephrotoxic 

nephritis also aggravated disease, showing the role of organ resident, anti-inflammatory 

DC.270 It is likely, that the balance between regulatory DC and proinflammatory DC 

determines the outcome of tolerance and autoimmunity, although several other mechanisms 

such as local suppressive factors provided by the tissue, or infiltration by regulatory T cells 

might also play an important role. 

 

In contrast, DT mediated depletion of CD11c+ cells on d5 after adoptive T cell transfer led to 

an almost total resolution of renal infiltration and to 90% reduction of renal DC numbers. DT 

mediated depletion would target infiltrating CD11c+ cells as well as organ resident DC; 

however, the almost complete loss of DC from the organ seemed to be sufficient to abrogate 

renal inflammation, showing the essential function of the DC in the T cell mediated kidney 

infiltration. This phenomenon cannot be explained by impaired priming of T cells, since on 

d5, a substantial amount of T cells had undergone priming and had developed into effector 

cells. It should be noted, however, that depletion of CD11c+ cells also targets subsets of 

macrophages carrying CD11c, at least in the spleen.271 Therefore also the effector cells 

responsible for DTH may be compromised. CD8+ T cells, although carrying CD11c upon 

activation, would not be targeted by the Diphteria toxin, since they had been transferred from 

a DTR-negative OT-I donor.  

Functional relevance of cell mediated renal inflammation in NOH 
mice 

The model introduced in this study directly links T cell mediated renal inflammation to 

structural and functional damage of the kidney. T cells induced infiltration of inflammatory 

cells into the renal tissue, forming periglomerular accumulations of leukocytes. Glomeruli 

enclosed by these infiltrates showed stress reactions to varying degrees. Depending on the 

severity of the infiltration, parietal epithelial cells showed signs of activation, as evident by a 

marked increase in cell body size and accumulation of vesicular structures within the 
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cytoplasm, presumably being transcytotic vesicles. Furthermore, the parietal cells formed 

intimate contacts with glomerular podocytes, a pathological feature that has already been 

described in a model of accelerated NTN, leading to structural podocyte damage and 

crescent formation.257 Direct podocyte damage such as foot process effacement or fusion 

could not be detected by ultstrastructural electron microscopy analysis, indicating protection 

of these cells from the T cell mediated attack at this early stage of disease. Also, there is only 

little evidence for deposition of immune complexes, arguing against a primary involvement of 

immunoglobulins in the development of renal inflammation. 

In long term studies, where NOH mice were repetitively challenged with OT-I and OT-II cells, 

the primary immune infiltrates led to progression of disease, including destruction of the 

glomerular architecture and, equally important, structural damage to the tubular system.  

 

The primary lesions described at the early stages of disease are commonly observed yet 

unexplained in various human kidney diseases, e.g. lupus nephritis272, rapid-progressing 

GN254 and in chronic allograft reaction following kidney transplantation.273 From the data 

presented in this study, these infiltrates are likely to be part of the early events of cellular 

immune-mediated kidney inflammation, showing for the first time a possible role in the 

development of full-blown GN. It needs to be emphasized, however, that the 

immunopathology observed in the NOH model does not mimic any distinct human GN form 

in all respects. Nevertheless, it may help understanding the periglomerular inflammatory 

component that occurs in many GN entities. 

 

The development of the renal pathology observed over time is similar in human disease as 

well as the according animal model systems, leading to formation of cellular crescents, 

protein casts, tubular atrophy and focal glomerular sclerosis. Also, the matrix deposition as 

well as the α-smooth muscle actin staining (α-SMA) suggested that there are myofibroblasts 

present in the inflamed regions, which led to deposition of extracellular matrix material and 

formation of microfibrotic areae. The origin and exact function of these cells still has to be 

determined and was beyond the scope of this study, although it has been suggested that 

epithelial cells might be able to redifferentiate into fibroblasts or that the cells might be of 

hematopoietic origin recruited by CCL2 signaling.274, 275 

Functional damage of the kidney was assessed by measuring albumin excretion and 

creatinine clearance. Loss of renal function was only slowly developing over time, showing a 

gradual increase in urinary albumin without reduced clearance rates, showing that renal 

damage did not lead to terminal loss of function followed by renal failure during the time 

observed. Increased albumin secretion indicated selective loss of the podocyte barrier.276 

However, standard creatinine diagnostics are neither sensitive nor accurate enough, to 
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detect subtle changes in creatinine levels which would have been expected in the moderate 

renal inflammation in NOH mice and which could only be addressed by high-sensitive HPLC 

measurements.277 

The role of antibodies in T cell induced nephritis in NOH mice 

Since antibodies have been described to play a major role in various forms of kidney 

disease, it was important to address their functional involvement in the NOH nephritis model 

as well. The data presented in this study suggest that primary infiltration of immune cells is 

totally independent of immunoglobulin deposits in the glomeruli. In the long term 

experiments, however, at least a partial contribution of OVA-specific IgG could not be 

completely excluded, since serum samples taken from these animals showed gradual 

increase of OVA-specific IgG. This is not surprising, since activated OT-II cells would activate 

OVA-specific B cells, which have taken up Ovalbumin in the renal lymph node. Furthermore, 

in addition to the endogenous OVA expressed in the NOH mice, it could not be completely 

ruled out that minute amounts of Ovalbumin were cotransferred with the in vitro activated 

OT-II cells that would lead to the activation of B cell responses.  

Although antibodies may contribute to the progression of renal disease in NOH mice after T 

cell induced kidney inflammation, they could not be the cause of renal tissue damage, since 

immunization experiments showed that antibodies alone or with either subset of T cells failed 

to induce nephritis in NOH mice. Furthermore, NOH mice show at least partial tolerance in 

OVA-antibody formation with titres approximately ten times lower compared to wild type 

animals, further supporting the view that antibodies are unlikely to be the leading 

pathomechanism in the NOH model. 

These experiments further support the view, that neither antibodies directed against 

glomerular antigen nor activation of CD8+ or CD4+ T cells alone were sufficient for the 

induction of glomerular immunopathology in the NOH model. 

Chemokine signalling in NOH mice 

The specific recruitment and migration of inflammatory cells is a major hallmark of any 

cellular immune reaction. As shown in this study, CD4+ T cells specific for a glomerular 

antigen specifically invade the renal tissue, sending out recruitment signals to attract other 

inflammatory immune cells such as monocytes or activated CD8+ T cells, presumably by the 

induction of CCR2 ligands which have been described being responsible for migration of 

inflammatory blood monocytes278-280 and CCR5 ligands, which have recently described to 

specifically guide CD8+ T cells to sites of CD4+ T cell-DC interactions in lymphoid organs.281 

CCR5 has also been described as a major factor in T cell mediated allograft rejection, e.g. in 

transplanted blood vessels282 and has also been described to be involved in the development 
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of renal disease, yet the existing studies about the exact role are somewhat  

controversial.279, 283 The present study suggests a direct involvement of CCR5-mediated 

CD8+ T cell recruitment into kidney tissues, by showing enhanced expression of CCR5 on 

OT-I cells and CCL3, CCL4 and CCL5 on kidney infiltrating OT-II cells. T cell dependent 

recruitment has also been suggested by early studies of interstital nephritis models, yet the 

exact mechanism still had to be determined.284 Direct proof of a role of CCR5 in recruitment 

of OT-I cells, however, would require blockade experiments, or the use of OT-I cells 

backcrossed to CCR5 knockout mice. 

Summary and conclusion 

With the NOH model, several new insights into cell mediated kidney diseases could be 

obtained, such as the first direct evidence for an involvement of CD8+ T cells in the induction 

and development of glomerulonephritis, or the critical dependency on the functional presence 

of dendritic cells within the renal tissue. The defined onset of disease together with the slow 

progress made it possible to elucidate the sequence of events in high detail, by dissecting 

functional properties of T cells and DCs. The model also may be of some relevance to 

diagnostics of glomerulonephritis, because it offers a possible role for the involvement of 

periglomerular infiltrates in progression of renal disease, which are also commonly observed 

in human renal biopsies of nephritis patients.  

In terms of a novel therapeutic approach, the NOH model has identified several new possible 

targets to break the chain of events in an ongoing T cell reaction in the kidney by targeting 

molecules like IL-12 or recruiting chemokines such as CCL3, 4 and 5. However, their degree 

of involvement in the development of GN has not been addressed in this study and therefore 

would need further investigation.  
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Fig. 45 Development of T cell mediated glomerulonephritis in NOH mice. (A) Renal antigen is being 

transported to the lymph node and leads to activation of T cells. (B) Activated T cells infiltrate the 

kidney. CD4 T cells contact local DC, this contact leads to production of proinflammatory signals and 

release of chemokines. (C) CTLs infiltrating the renal tissue induce cellular damage and lead to 

release of further antigen. (D) More T cells and inflammatory DC enter the renal tissue, forming 

periglomerular infiltrates that may subsequently progress to renal tissue damage and kidney fibrosis.
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