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Activity of fungal and bacterial endophytes for the biological control of the root-knot 
nematode Meloidogyne graminicola in rice under oxic and anoxic soil conditions 

Two endophytic Fusarium moniliforme isolates Fe1 and Fe14, an endophytic bacterium 
Bacillus megaterium Bm and a rhizosphere Trichoderma isolate T30 with known antagonistic 
activity toward the root-knot nematode Meloidogyne graminicola were studied for bio-
enhancement of rice under glasshouse conditions.  

The level of colonization of Fe1 and Fe14 in the rice root under oxic and anoxic soil 
environments was investigated. The fungi were inoculated twice to the rice seeds using seed 
treatment and soil drenching methods at a rate of 106 cfu/ seed and 105 cfu/ seedling 
respectively. Both Fe1 and Fe14 isolates colonized well in the rice roots under oxic and 
anoxic soil water regimes with colonization rate ranged between 50-89%. The fungi colonized 
all parts of the roots though the preferable zone was the root periphery. The level of 
colonization decreased over time, from 56% after 8 weeks to 27% after 12 weeks of 
incubation. Both isolates did not show consistent effect on the growth of rice.  

The mechanisms of action of the endophytic F. moniliforme isolate Fe14 was studied 
intensively under glasshouse conditions. In these experiments, Fe14 was also inoculated twice 
by seed coating and soil drenching techniques. The fungus reduced nematode penetration into 
the rice root significantly by up to 55% compared to the control. In a split-root experimental 
design, the fungus showed induced systemic resistance in rice when one half of the root 
system was treated with fungal spores while the other half was inoculated with the root-knot 
nematode. Root exudates from fungal treated plants showed repellent effect toward M. 
graminicola in a plastic test chamber. Fe14 also altered nematode development expressing by 
significantly higher number of males in fungal treated plants. Furthermore, Fe14 reduced the 
number of females and number of eggs per female compared to those of the control treatment. 
In addition, Fe14 exhibited high level of biocontrol under anoxic soil conditions by reducing 
the total number of nematodes in the endorhiza significantly by 45%. 

Influence of inoculation time and method on biocontrol efficacy of Fe14 was also evaluated. 
In the first test, the ability of Fe14 for early protection of M. graminicola was tested in 
comparison to other antagonistic fungi. Out of the five fungi tested, F. moniliforme Fe1 and 
Fe14, F. oxysporum Fo162, Fusarium F28 and Trichoderma T30, only Trichoderma T30 was 
able to reduce nematode infestation in rice seedlings when both nematode and fungi were 
inoculated at sowing.  However, Fe14 remained its biocontrol activity against the rice root-
knot nematode 10 weeks after fungal inoculation. The effectiveness of different inoculation 
methods of Fe14 was also investigated. Both seed treatment and soil drenching methods led to 
similarly significant reductions in nematode damage. Double inoculations of Fe14, one at 
sowing and the other one repeated three weeks later did not result in significantly higher 
biocontrol level compared to single inoculation at sowing.  

To enhance biocontrol efficacy, Fe14 was combined with Trichoderma T30 and the 
endophytic bacterium B. megaterium Bm in various greenhouse experiments. The three 
antagonists were first tested for their compatibility in vitro. No clear mutual exclusive was 
observed in any pair tests. Dual application of Fe14 and T30 in vivo reduced nematode 
infestation significantly compared to the control but the difference between single and 
combined treatments was not significant. Similarly, when Fe14 was combined simultaneously 
or in a staggered time manner with T30 and Bm, galling severity caused by M. graminicola 
significantly reduced by 20-70% compared to the control. However, none of the combinations 
led to significantly higher level of biocontrol compared to single applications and thus, single 
treatments of each biocontrol agent was adequate. 



Wirksamkeit pilzlicher und bakterieller Endophyten für die Bekämpfung der 
Wuzelgallennematode Meloidogyne graminicola an Reis unter aeroben und anaeroben 

Bedingungen 

 

Für die biologische Kontrolle von Meloidogyne graminicola unter kontollierten Bedingungen 
wurden zwei endophytische Isolate von Fusarium moniliforme (Fe1 und Fe14), ein 
endophytisches Bakterium Bacillus megaterium Bm und ein Rhizosphärenisolat Trichoderma 
T30 mit bekannten antagonistischen Wirkungen genutzt. 

Die Kolonisationsraten von Fe1 und Fe14 in der Reiswurzel unter aeroben und anaeroben 
Bedingungen wurden untersucht. Der Pilz wurde zweimal an die Reissamen inokuliert, 
jeweils durch Samenbeizung und Tauchinokulation mit einer Rate von 106 cfu/ Samen und 
105 cfu/ Pflanze. Beide Isolate Fe1 und Fe14 kolonisierten die Reiswurzeln undter anaeroben 
und aeroben Bedingungen mit Raten von 50 bis 89%. Der Pilz kolonisierte alle Teile der 
Wurzel, wobei die hauptsächliche Besiedlung an der Wurzelperipherie lag. Die Kolonisation 
ging über die Zeit zurück, von 56% nach 8 Wochen auf 27% nach 12 Wochen 
Inkubationszeit. Beide Isolate zeigten keinen Effekt auf das Wachstum der Reispflanzen. 

Die Wirkungsweise des Endophyten F. moniliforme Isolat Fe14 wurde unter 
Gewächshausbedingungen intensiv untersucht. In diesen Experimenten wurde der Pilz 
ebenfalls zweimal durch Samenbeizung und Tauchinokulation zu den Pflanzen gegeben. Der 
Pilz reduzierte die Nematodenpenetration signifikant um bis zu 55% im Vergleich zur 
Kontrolle. Durch ein experimentelles Design in welchem die Wurzeln räumlich voneinander 
getrennt wurden, wurde eine induzierte Resistenz an Reis nachgewiesen. Hierbei wurde nur 
eine Hälfte des Wurzelsystems mit Sporen des Endophyten behandelt und die andere Hälfte 
mit Nematoden inokuliert. Wurzelexudate der pilzlich behandelten Pflanzen zeigten eine 
abweisende Wirkung gegen M. graminicola in Plastiktestkammerversuchen. Fe14 verursachte 
eine Verschiebung des Geschlechtsverhältnisses. Die Anzahl der Weibchen und die Anzahl 
der Eier pro Weibchen wurde im Vergleich zur Kontrollvariante reduziert. Zusätzlich wurde 
eine sehr starke biologische Konrolle durch Fe14 unter anaeroben Bedingungen erziehlt. Die 
Anzahl der Nematoden in der Endorhiza wurde um 45% reduziert. 

Der Einfluß der Inokulationszeit und -methode auf biologische Kontrollaktivität von Fe14 
wurde ebenfalls untersucht. Im ersten Test wurde die Fähigkeit von Fe14 für die frühzeitige 
Kontrolle von M. graminicola im Vergleich zu anderen antagonistischen Pilzen untersucht. 
Von den fünf getesteten Pilzen, F. moniliforme Fe1 und Fe14, F. oxysporum Fo162, Fusarium 
F28 und Trichoderma T30, konnte nur Trichoderma T30 die Nematodenpopulation 
reduzieren, wenn Nematode und Pilz zur Saat inokuliert wurden. Die Effektivität 
verschiedener Inokulationsmethoden wurde an Fe14 ebenso untersucht. Sowohl die 
Samenbeizung als auch die Tauchinokulation führten zur signifikanten Reduktion der 
Nematodenpopulation. 

Um die biologische Kontrollaktivität zu erhöhen, wurde Fe14 mit Trichoderma T30 und B. 
megaterium kombiniert. Dadurch wurde die Vergallung der Wurzeln um 20-70% signifikant 
reduziert, jedoch zeigten sich keine Unterschiede in der Reduktion der Nematodenpopulation 
durch einzel oder kombinierte Inokulation der verschiedenen Organismen. 
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CHAPTER 1: General introduction 

1. The rice crop  

1.1 General information 

Rice is the most important cereal crop worldwide since it provides staple food for more 

than half of the world’s population (FAO, 2009). Of the 25 species distributed in parts 

of Asia, Africa, Australia, Central and South America, only Oryza sativa L. and O. 

glaberrima Steud are cultivated extensively. The Asian rice, O. sativa, is grown 

worldwide and was believed to have been domesticated in the northeast and southeast 

regions of the continent around 5000 years ago. Asia now accounts for more than 90% 

(622 million tons) of world rice production with China, India and Indonesia producing 

more than half of the total volume (FAOSTAT, 2008). 

The genus Oryza belongs to the tribe Oryzeae of the family Poaceae (Gramineae). The 

species O. sativa consists of numerous ecotypes and several genetic groups. The 

ecotypes are divided into the indica, japonica and javanica types based on 

morphological and physiological criteria. The traditional varieties of indica, most 

widely distributed in Africa, are grown as a rainfed crop and on submerged land in the 

tropics. The japonica ecotype includes the varieties growing in tropical upland regions 

and temperate zones. The javanica ecotype is well adapted to tropical, rainfed 

cultivation and to subtropical, submerged cropping (Schalbroeck, 2001) 

1.2 The rice plant 

O. sativa (2n = 24) is an annual grass with erect stems and a terminal panicle bearing 

hermaphroditic flowers. Mature plants consist of a root system, stem, 3-10 productive 

tillers bearing panicles and about 10-20 leaves.  

The roots are massed in the first 20 - 25 cm of soil. Root depth may be as little as 15 cm 

in heavy soils and can reach more than 50 cm in light soils. The presence of large, 

intercellular spaces in the cortical parenchyma of the roots enables their oxygenation 

and gives them the ability to grow under flooded conditions.  
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The growth cycle of rice can be divided into three phases: vegetative, reproductive and 

ripening. The vegetative phase stretches from germination to the end of tillering. The 

reproductive phase covers panicle initiation, rise of the panicle up the stem (booting), 

emergence of the panicle (heading), flowering and fertilization. The ripening 

(maturation) phase starts after fertilization, continues through grain filling, and 

terminates at harvest time. The varieties are usually classified according to the length of 

the growth cycle into early or short-cycle rice (90 to 120 days), medium-cycle rice (120 

to 150 days) and late or long-cycle rice (more than 150 days). The differences in growth 

duration are determined by changes in the length of the vegetative phase. For example, 

IR64 which matures in 110 days has a 45-day vegetative phase, whereas IR8 which 

matures in 130 days has a 65-day vegetative phase (IRRI knowledge bank a) 

1.3 Rice cropping systems and cultivation techniques 

By taking the water supply as the point of reference, five main types of cultivation can 

be distinguished: upland, low land rain-fed, irrigated, deep water and tidal wetlands rice 

(CORIFA, FAO). 

Upland rice cultivation implies that the water is supplied by rainfall or ground water. 

Upland rice is grown on the plains as well as on variably sloping land at all altitudes. 

This cropping system covers only 9% of the rice area in Asia whereas in Africa it 

accounts for 60% of the rice area (Schalbroeck, 2001). 

In lowland rain-fed rice, water supply to the rice plants is intermittently provided by 

rainfall, runoff or underground water. The rain-fed lowland rice fields are usually 

bunded. The bunds serve to retain floodwaters, as well as rainwater which falls during 

the growing season. Rain-fed lowland rice may suffer at times from both drought and 

flooding. 

Irrigated rice plants are constantly supplied with full water levels throughout the 

growing season. Water in the rice fields is controlled by bunds, with a system of 

irrigation canals and drains. The water may be supplied via streams, rivers, or 

underground water from wells. In many irrigated rice areas, rainfall supplements 
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irrigation water. This is the most widespread system in Asia where 93% of the area 

under rice is irrigated. 

Deepwater and floating rice are grown in the low lying lands of the deltas of large rivers 

such as the Mekong in Vietnam, Cambodia and Thailand, the Ganges-Brahamaputra-

Megna in Bangladesh and along the Niger River in West Africa. The varieties adapted 

to the deeply flooded areas are sometimes referred to as floating rice. These varieties are 

characterized by their ability to grow under water inundation to a depth of 1 - 4 m and 

are therefore fast-growing varieties (up to 20 cm/day). The plant elongates with 

increasing water depth, but retains a rooted foot hold in the soil. Floating rice varieties 

also form adventitious roots from the nodes which are able to absorb nutrients directly 

from the floodwater (Schalbroeck, 2001). Occurring over a small area is the tidal 

wetland ecosystem which is located near sea coasts and inland estuaries. This rice 

system is directly or indirectly influenced by tides. 

Crop establishment practices in rice vary from direct sowing of dry, wet, or shallow-

flooded soils to the establishment of seedlings in a seedbed or nursery followed by 

transplanting. Direct sowing is a common practice in upland and lowland rice 

production when water is in short supply at the start of cultivation. In upland rice 

cultivation, sowing is timed to let the plants develop strong roots before a possible dry 

period and to make sure that flowering takes place in the rainy season and maturity 

coincides with the following dry season. The seed rate ranges from 30 - 120 kg/ha with 

the average of 60-80 kg/ha. 

In irrigated rice cultivation, the sowing date is less dependent on rainfall. If the rice field 

is dry at the start of cultivation, it is sown with dry seeds. Conversely, if the rice field is 

under water (a practice which allows for early weed control), direct sowing must be 

carried out with germinated seeds because the seeds need a high oxygen environment 

during germination. In this case, the technique can be called wet seeding. Germinated 

seeds for wet seeding are broadcast at the rate of 100 - 200 kg of seeds/ha in 2 - 5 cm of 

water. The water level is kept at 3-5 cm until the plants are 15 - 20 cm tall to encourage 

tillering. The water level is then raised to a height of 10 - 20 cm.  
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Raising plants in a nursery or seed bed and then transplanting them is the most common 

method of establishing an irrigated rice crop. The surface area of the nursery and that of 

the rice field are roughly in the proportion of 1 to 25; 30 - 60 kg of seed are needed per 

ha of transplanted rice, according to the varieties used and the chosen spacing. There are 

several kinds of rice nurseries such as “Modified Mat Nursery” or “Reduced Area Wet 

bed Nurseries”. The choice of nursery type depends on the area, space, quality of seeds 

and other techniques and equipment. Transplanting can be done mechanically or 

manually. Rice seedlings grown in a nursery are pulled and transplanted into puddled 

and leveled fields 15-40 days after seeding (IRRI knowledge bank a). 

2.  Nematode parasites 

2.1 Diversity of plant parasitic nematodes  

Many species of nematodes are associated with rice but only a few are considered as 

economically important pests (Bridge et al., 2005).  The plant parasitic nematodes of 

rice can be divided into two groups according to the plant parts infected: the stem, leaf 

and root nematodes. One of the foliar parasites Ditylenchus angustus, or the “Ufra 

nematode”, occurs mainly in river deltas on both deepwater and lowland rice in 

Bangladesh, Myanmar, Vietnam, India and Malaysia. The nematode causes yellowish 

or whitish splash patterns on the invaded areas of leaf sheaths, retards panicle formation 

and spikelet filling processes and consequently causes yield loss up to 30% per field in 

the North-eastern states, Assam and West Bengal of India (Prasad et al., 1987). White 

tip disease caused by Aphelenchoides besseyi Christie, was recorded in rice producing 

regions of Asia and Africa. Infected plant mature late and have sterile white panicles. 

Yield loss in infected fields varies from 4.9% in USA by up to 50% in China (Bridge et 

al., 2005). 

Important root parasites include species of Meloidogyne and Hirschmaniella. 

Hirschmaniella species, known as rice root nematodes occur in the majority of rice 

growing regions. They are migratory endoparasites of roots. Unspecific above ground 

symptoms make it difficult to diagnose the causal agent instantly and thus the level of 

actual damage may be underestimated, and is often incorrectly attributed to poor soil 



Chapter 1                        General introduction 

5 

fertility or other abiotic stress. Roots invaded by Hirschmaniella spp. turn yellowish 

brown and rot. It has been estimated that Hirschmaniella can cause up to 25% of yield 

loss in an infected field (Bridge et al., 2005). All nematodes belong to the genus 

Meloidogyne cause swellings and galls in the root system. The yield loss depends on the 

level of infection, which is largely a function of the amount of time the rice root grows 

under non-flooded conditions. The root-knot nematode Meloidogyne graminicola, one 

of the most important sedentary nematode in rice, will be discussed more detailed in the 

next section.  

2.2 The rice root-knot nematode Meloidogyne graminicola 

The rice root-knot nematode belongs to the family Heteroderidae and is one of the most 

economically important nematodes affecting rice. It has been reported to cause 

significant yield losses of 20-50% in many regions of rice production: India, 

Bangladesh, Philippines, Thailand, Vietnam, Cambodia and Indonesia (Manser, 1968; 

Prasad et al., 1987; Arayarungsarit, 1987; Netscher and Erlan, 1993; Prot et al., 1994; 

Cuc and Prot, 1992; Soriano and Reversat, 2003; Padgham et al., 2004). M. 

graminicola, like other root-knot nematodes causes swellings and galls in the root 

systems. Infected rice root tips show swollen and hooked like symptoms. The nematode 

can retard plant growth, cause unfilled spikelets, reduce tiller development and cause 

chlorosis and wilting symptoms under upland and intermittently flooded conditions.  

The life cycle of M. graminicola varies considerably in different environments, ranging 

from a very short life cycle of 19 days at temperatures ranging from 22-29oC in 

Bangladesh (Bridge and Page, 1982) to up to 51 days in some regions in India (Rao and 

Israel, 1973). The nematode experiences 4 molts throughout its life cycle. The first molt 

takes place inside the egg and newly hatched juveniles accumulate round the roots in the 

zone of elongation. Most juveniles also hatch inside the gall and re-infect the same root 

by moving to a new feeding site (Mulk, 1976). Females of M. graminicola remain 

within the galled roots and eggs are deposited in the cortex inside the egg masses.  Up 

to 50 females can be found in a single gall, indicating that the level of infestation can be 

very high (Bridge et al., 2005).  
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Figure 1.1: Life cycle of the rice root-knot nematode Meloidogyne graminicola.   

(a) Second stage juveniles penetrate the roots closely behind the root tip and migrate to 

the vascular cylinder; immature female (b) and a male (c) of the J3 larval stage; females 

(d) and males (e) in the J4 stage; the male (h) changes its shape in the last molt and leaves 

the root; (g) the female lays its eggs in a gelatinous matrix (IRRI knowledgebank b). 

The second stage juvenile of M. graminicola is the infective stage. The juveniles enter 

the rice roots behind the root tips and start feeding when they reach the cortex where 

they swell and become sedentary. Root-knot nematodes induce changes in the cells 

around their head to increase their nutritional value. Cells fed on by juveniles enlarge 

and their nuclei repeatedly divide to form multinucleate “giant cells”. The nuclei within 

giant cells become polyploidy, further increasing the metabolic capacity of the feeding 

site. These cells provide a constant supply of nutrients to the nematode (Trudgill, 1997). 

The sex of juveniles is not predetermined. Those developing under limited nutrient 

supply conditions and poorly developed giant cells or faced with a resistant variety 

become males whereas those with normal giant cells become females. This adaptation is 

thought to prevent the population from increasing to large self-limiting densities, 

thereby preventing the host from being killed (Trudgill, 1997). This mechanism is also 

used to increase genetic diversity and to help form races able to overcome resistant 

varieties. Study on the effect of inoculations with single juveniles on release of progeny 

of M. graminicola confirmed that this species is able to reproduce by parthenogenesis. 
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71-73% of the seedlings released second stage juvenile progeny after 84 days 

inoculation with single juvenile (Reversat and Fernandez, 2004). 

Juveniles survive at temperatures of 20-26oC for up to 5 months in bare soil (Bridge and 

Page, 1982). M. graminicola was found to survive longer at 20oC compared to 26oC 

(Soomro, 1994). The survival rate is also affected by moisture, osmotic pressure, pH 

and other environmental factors.  

M. graminicola, like many other species of Meloidogyne has a wide host range. 

However this nematode mostly affects gramineous species like rice, wheat, sorghum 

and grasses. The nematode is also frequently reported to be an important pest in rice-

wheat cropping systems in South Asia such as Nepal, Bangladesh, Pakistan and India 

(Sharma, 2001; Bridge at al., 2005; Pokharel et al., 2006). The root-knot nematode is a 

possible causal candidate contributing to the observed yield decline in Nepal rice-wheat 

cropping systems. However, proper management is often neglected due to a lack of 

conspicuous above ground symptoms (Bridge et al., 2005; Pokharel et al., 2006). Other 

agricultural crops such as peanut, onion or potato can be alternative hosts for this 

nematode. M. graminicola can cause serious damage to rice seedlings and consequently 

cause significant yield loss in upland and lowland rain-fed rice. Moreover, the nematode 

possesses the capacity to infect, survive, and re-infect the rice root as soils fluctuate 

between oxic and anoxic states (Gaur et al., 1996; Sharma, 2001; Bridge et al., 2005). 

Initial infection occurs at planting. Flooding then prevents the nematode from further 

entering the rice plants. However, whenever water recedes, M. graminicola again 

reactivates and infects plants and can cause devastating damage (Bridge and Page, 

1982; Padgham et al., 2003). The nematode can develop, reproduce and complete many 

life cycles within the rice roots for the entire crop period once established, regardless of 

the soil oxygen level. It has been reported that the density of second stage juveniles of 

M. graminicola is 2 to 10 times higher in rice growing under anoxic conditions than that 

of rice growing in oxic conditions (Tandingan et al., 1996; Soriano et al., 2000).  
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2.3 Current control status of the rice root-knot nematode 

Different management strategies have been used to control plant parasitic nematodes 

with various degrees of success. The use of chemical nematicides, either fumigants or 

nonfumigants is an effective and simple approach. However, most chemical nematicides 

are highly toxic to humans and animals and have negative effects on the environment 

when misused (Sikora and Fernandez, 2005). In addition, the high cost of chemical 

control restricts the use of nematicides in low input crops like rice or it is only 

applicable on a small scale such as seedbed or nursery treatment (Prasad and Rao, 

1976a, 1976b). Cultural practices used to control the rice root-knot nematode include 

crop rotation, fallowing, flooding or incorporation of organic amendments (Rahman, 

1990; Rahman and Miah, 1993; Prot et al., 1994; Prot and Matias, 1995; Debanand et 

al., 1999). Other control measure such as using neem can be effective but application of 

mulches is quite complex and their use is limited to specific region. These control 

options are usually not cost effective and are not applicable in many regions where: 1) 

rice is a mono crop, 2) organic matter is not available, 3) the method is expensive or 4) 

long term flooding of the soil is not possible. The wide host range of M. graminicola 

also limits crop rotation in many situations. Resistant lines of rice against root-knot 

nematodes have been reported (Soriano et al., 1999). However, no resistant commercial 

varieties are available on the market. Therefore, the development of an effective and 

cost saving alternative control option against the rice root-knot nematode is highly 

desired. 

3. Biological control of plant parasitic nematodes 

Biological control of plant parasitic nematodes has been defined as a reduction in 

nematode population density which is accomplished through the action of living 

organisms other than nematode resistance to host plants. It occurs naturally, through the 

manipulation of the environment or following the introduction of antagonists (Sikora, 

1992). Biological control is a promising alternative to expensive and toxic nematicides, 

limited and inadequate cultural control practices and the lack of resistant varieties. In 

order to apply biocontrol technology successfully, the following issues must be 
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considered: 1) which organism is the most effective under local conditions, 2) which 

crop is suitable for biological control, 3) which is the targeted nematode species and 4) 

how to apply the biocontrol agents in IPM systems to optimize control levels 

(Neuenschwander et al., 2003).  

Biological control of plant parasitic nematodes using their natural enemies has been 

studied extensively in the last two decades and many successful cases have been 

reported but few are used in the field. The use of arbuscular mycorhizal fungi (AMF), 

rhizobacteria, endophytic bacteria, rhizosphere and endophytic fungi as biological 

control agents has been well documented on many food, vegetable and cash crops 

(Hallmann and Sikora, 1994a; Schuster et al, 1995; Niere et al., 1999; Pocasangre, 

2000; Meyer et al., 2000; Khan et al., 2001; Sharon et al., 2001; Masadeh et al., 2004; 

Reimann, 2005; Vu et al., 2005; Rumbos et al., 2006; zum Felde et al., 2006; Dababat 

and Sikora, 2007; Mendoza, 2008; Chaves et al., 2009; Elsen et al., 2009; Le et al., 

2009). The application of biological control agents for the control of plant parasitic 

nematodes is often targeted at the planting material such as in seed treatment, seed bed 

incorporation, seedlings and banana suckers drenching or at transplanting time to 

increase effectiveness and reduce the cost of treatment (Sikora, 1992; Sikora et al., 

2007). 

The soil is a nourishing environment for a vast number of micro fauna and flora. 

Natural soil ecosystems contain a certain spectrum of biodiversity which is considered 

important in protecting a plant from disease and nematode attack. Bacteria and fungi are 

among the most dominant soil-borne groups and some of them have shown great 

potential as biological control agents for plant parasitic nematodes. Natural antagonists 

interfere with the nematode’s ability to find, penetrate and complete its life cycle in the 

host, through direct competition, antibiotics as well as through the induction of systemic 

resistance (Stirling, 1991; Sikora, 1992; Kerry, 2000; Sikora et al., 2007).  

Many bacterial species have been evaluated for their antagonistic activity against a wide 

range of plant parasitic nematodes. Bacteria can be isolated from plant tissues, soil, and 

plant debris or from the nematode body. Well studied bacteria include Pasteuria 
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penetrans, species of Bacillus and Pseudomonas or Burkholderia cepacia (Chen and 

Dickson, 1998; Qiuhong et al., 2006). Various modes of action of the bacteria toward 

plant parasitic nematode have been demonstrated: parasitism, interference with 

nematode-host recognition, competition for nutrients and induced systemic resistance 

(Hasky-Günther et al., 1998; Siddiqui and Mahmood, 1999; Hallmann, 2001; Sikora et 

al., 2007). In many cases, antibiotics or the toxic secondary metabolites produced 

during fermentation processes show nematicidal activity. In addition, some bacterial 

strains such as B. firmus, P. penetrans and Burkholderia cepacia are available on the 

market as biocontrol agents (Meyer and Roberts, 2002).  

Several fungal species are known to be egg pathogens of plant parasitic nematodes. 

More than 150 fungal species have been isolated from cysts, females or eggs of 

nematodes but only a small fraction have been tested (Kerry, 1988). Among those, 

Paecilomyces, Trichoderma, Podochia (syn. Verticillium) and Fusarium are the most 

well studied genera (Jatala, 1986; Kerry, 2000; Rumbos et al., 2005; Sikora et al., 2007; 

Kiewnick, 2009). The egg pathogens Paecilomyces lilacinus and P. marquandii have 

proven antagonistic activity towards eggs and give good nematode control in several 

crops such as tomato and banana. For example, the isolate Paecilomyces lilacinus 251 

showed high biocontrol level against M. incognita in tomato (Rumbos et al., 2006) and 

against R. similis in banana (Mendoza and Sikora, 2009). Furthermore, the genus 

Trichoderma is worldwide in occurrence and is easily isolated from soil and organic 

matter. Some Trichoderma species such as T. virens, T. viride, T. harzianum have been 

used to successfully control the root-knot nematode on vegetable crops such as tomato 

or bell pepper (Windham et al., 1989; Spiegel and Chet, 1998; Meyer et al., 2000; 

Sharon et al., 2001). In addition, Trichoderma species are also frequently reported for 

their growth promoting effect on the host plants. Other fungi such as Cylindrocarpon 

destructans (Crump, 1987) and Dactylella oviparasitica (Olatinwo et al., 2006) have 

been also demonstrated to be antagonistic fungi of nematodes. 

Arbuscular mycorhizal fungi (AMF) are obligate symbionts which colonize the roots of 

about 80% of vascular plants. The AMF enhance growth and survival of many plant 

species through improvement of water and nutrient uptake by the hosts. Moreover, 
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AMF can also reduce the occurrence and effect of soil pathogens. Therefore, numerous 

studies on the potential of AMF as biocontrol agents against wide range of plant 

parasitic nematodes have been carried out (Masadeh et al., 2004; Reimann et al., 2008; 

Elsen et al., 2009). AMF protect plants from nematode attack through several modes of 

action such as induced systemic resistance, competition for nutrients and space within 

the host plants as well as enhancement of plant growth and health. 

Research has recently shifted from the above to fungal antagonists that reside 

endophytically in the host plants (Pocasangre et al., 2001; Sikora et al., 2007, Hallmann 

et al., 2009). There are four possible forms of activity of endophytic fungi on a specific 

plant and nematode: 1) having no effect on plant growth and nematode infection, 2) 

being pathogenic to the plant with no effect on nematodes, 3) being pathogenic to plant 

and nematodes, 4) promoting plant growth and nematode control activity (Schuster et 

al., 1995). Several fungal endophytes have been studied for the biocontrol of root 

nematodes and success has been recorded under greenhouse conditions. For example, a 

mutualistic strain of Fusarium oxysporum (Fo162) which was isolated from field tomato 

in Kenya has been shown to reduce root-knot nematode gall formation and egg masses 

on tomato (Sikora, 1992; Hallmann and Sikora, 1994b, 1996; Dababat and Sikora, 

2007). Fo162 also significantly reduced the infestation of the burrowing nematode 

Radopholus similis on banana while promoting plant growth (Vu et al., 2006; Mendoza 

and Sikora, 2009). Other endophytic F. oxysporum or Trichoderma species isolated 

from banana roots also showed high level of biocontrol against R. similis under field 

conditions (zum Felde et al., 2006). 

However, until now, there have been few investigations on the interaction between 

endophytes and nematodes on gramineous species. The study on the interaction between 

the fungal shoot endophyte Acremonium species and nematodes on tall fescue showed 

lower rates of reproduction of several species of plant parasitic nematodes (Kimmons et 

al., 1990; West et al., 1988). There has also been limited research on the biological 

control of M. graminicola in rice, despite its widespread occurrence in major rice 

producing areas. These studies have been primarily aimed at controlling the parasite in 
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the rhizosphere before it penetrates the root (Debanand et al., 1999; Duponnois et al., 

1997; Singh et al, 2007).  

Recently, Padgham and Sikora (2007), Singh et al. (2007) and Le et al. (2009) have 

demonstrated that endophytic bacteria and fungi isolated from the rice root can reduce 

M. graminicola infestation in rice. However, the study of endophyte-based control 

systems that are effective in oxic and anoxic environments is non existent. Therefore, 

the development of a model biocontrol system that can be applied to the important 

nematodes of rice like M. graminicola and Hischmaniella would be of great importance 

for growers. 

4. Scope of the study 

The overall goal of the present study was to investigate the activity of isolates of the 

endophytic fungus Fusarium moniliforme (Fe1 and Fe14), the endophytic bacterium 

Bacillus megaterium (Bm) and the rhizosphere fungus Trichoderma (T30) for the 

biological control of the rice root-knot nematode Meloidogyne graminicola under oxic 

and anoxic soil water environments. The specific objectives of the study were to: 

1) Investigate the colonization activity of the endophytic isolates of Fusarium 

moniliforme Fe1 and Fe14 in rice roots under oxic and anoxic environments. 

2) Determine the effect of the endophytic fungi Fe1 and Fe14 on rice growth 

3) Ilucidate the mechanisms of action of Fe14 toward M. graminicola under oxic 

soil conditions. 

4) Study the influence of inoculation time and method of application on biocontrol 

efficacy of Fe14 

5) Evaluate the biocontrol activity of combined applications of Fe14 with the 

endophytic bacterium Bacillus megaterium Bm, and the rhizosphere fungus 

Trichoderma T30 
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CHAPTER 2: General materials and methods 

General materials and methods are described in this chapter whereas specific techniques 

and procedures employed in individual experiments are described within the respective 

chapters. 

1. Biological control agents 

1.1 Fungal isolates 

1.1.1 Origin 

Five fungal strains, mainly isolated from Vietnam soils were used in various tests 

against M. graminicola  

Table 2.1: The biological control agents used in this study 
 

Code Isolates Host plants Origin 

Fe1 Fusarium moniliforme Rice root Vietnam  

Fe14 Fusarium moniliforme Rice root Vietnam  

F28 Fusarium moniliforme Rice rhizosphere Vietnam  

T30 Trichoderma Rice rhizosphere Vietnam  

Fo162 Fusarium oxysporum 162 Tomato root Kenya  

The endophytic fungi Fe1 and Fe14 were isolated from the cortical tissue of surface 

disinfected rice roots. F28 and T30 were isolated from the rhizosphere of rice roots 

grown in Vietnamese soil samples (Le et al., 2009). The antagonistic isolate Fusarium 

oxysporum Fo162 was isolated from the root cortex of a tomato plant growing in 

Kenyan soil.  

1.1.2 Culturing and storage of the fungi 

All of the fungi were stored at -80oC in Cryobank storage vials (CRYOBANK TM, 

MASTE Group Ltd., Merseyside, UK). Inoculum of each fungus for experimental 

purposes was prepared by transferring a frozen Cryobank bead stored at -80oC and 
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streaking it over a Petri dish containing 100% PDA (Potato Dextrose Agar) 

supplemented with 150 ppm of the antibiotics Streptomycin sulphate and 

Chloramphenicol to suppress bacterial contamination. The fungal cultures were 

incubated at 25oC in darkness for 3-4 weeks for production of spores. On the test day, 

10 ml of tap water was added to the culture plate and the mycelia and conidia were 

scraped from the mycelia surface with a Drigalski spatula. The suspension was passed 

through a four-layer cheese cloth to separate fungal spores from mycelia. The spore 

concentration was determined using a Fuchs-Rosental hemacytometer and then adjusted 

to the desired density with tap water. 

1.2 Bacterial isolate 

1.2.1 Origin 

The bacterium Bacillus megaterium isolate Ni5SO11 (Bm) used in this research 

originated from a rice plant growing in soil of a rice producing region in Taiwan 

(Padgham and Sikora, 2007).  

The bacterial inoculum was stored in glycerol solution at -20oC. For short term use, the 

bacterium was stored at 4oC on 100% TSA. 

1.2.2 Culturing 

The B. megaterium inoculum was produced by first pre-culturing the bacteria on 100% 

TSA at 28oC for 24 hours. A loop full of bacteria was then transferred to a sterilized 

liquid culture of TSB which was placed on a rotary shaker (120 rpm, 28oC) 1 day prior 

to inoculation. The bacterial culture was then centrifuged at 5000 rpm for 20 minutes 

and the bacterial pellet was re-suspended in quarter-strength Ringer’s solution. Bacterial 

density was adjusted to a double optic density at 560 nm, and the bacterial suspension 

was then diluted 10 times with Ringer’s solution. The final concentration of B. 

megaterium was approximately 107 cfu/ ml, as determined by dilution plating. 
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1.2.3 Determination of colonial forming unit (cfu) 

The actual concentrations of the bacterial and fungal suspensions were determined using 

a spiral plater (Eddy-Jet, IUL Instruments, Germany). The bacterial solution after 

adjusted with ¼ Ringer solution was diluted 10, 100 and 1000 times. Then, the original 

and diluted bacterial solutions were placed in the spiral plater and a subsample of 37.3 

μl was automatically plated on 50 % Tryptic Soy Agar (TSA) for bacteria or 100% PDB 

for fungi. The number of colonies was counted everyday for a period of 14 days. CFU 

was then determined using a counter mat supplied by the manufacturer. 

2. Nematode 

2.1 Origin and culture of M. graminicola 

A population of M. graminicola isolated from upland rice in Bangladesh was supplied 

by Dr. John Bridge, CABI, United Kingdom. It was maintained on the susceptible rice 

variety BR11 growing in autoclaved soil under glasshouse conditions at 28oC ± 5, 12-hr 

light period in the Section of Nematology in Soil Ecosystems, Phytomedicine, INRES, 

University of Bonn. Five to six week-old seedlings grown in sterilized sandy soil were 

inoculated with freshly hatched juveniles (J2) to obtain inoculum for experiments. The 

infected plants were ready for egg extraction after 8 weeks. Plants were watered daily 

and fertilized weekly with full strength Yoshida solution. 

2.2 Preparation of nematode inoculum 

Approximately one week prior to nematode inoculation, nematode infected rice plants 

were removed from soil of the stock culture and washed with tap water. Root systems 

were cut into small pieces and macerated for 3 minutes in 1% sodium hypochlorite 

NaOCl (Hussey and Barker, 1973) in a blender with alternative intervals of 10 seconds 

macerating and 30 seconds pause to release eggs from egg sacs. The suspension was 

poured onto a 45 μm mesh sieve placed on top of 25 μm sieve where eggs were 

collected. The nematode eggs were washed under running tap water for about 9 minutes 

to remove excessive NaOCl solution. The egg suspension was then gently transferred 

onto a double layer milk filter placed over a sieve and then submerged into water in a 
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plastic tray. The tray was kept at 25oC for 7-10 days to allow egg hatching. On the test 

day, fresh second stage juveniles (J2) were collected for inoculation. 

2.3 Determining nematode penetration rate 

The roots were washed carefully to remove all the soil particles. Roots were placed in 

100 ml plastic vials and then submerged in 1% Fuchsine acid solution (Sikora and 

Schuster, 2000). Approximate 8 vials containing these root samples were placed in a 

microwave oven and then heated for about 3 minutes. The stained roots were then kept 

in the cold room at 4oC overnight to intensify the staining process. To determine the 

number of nematodes inside the roots, the Fuchsine acid solution was first removed 

from the vial, and the roots were washed gently under running tap water. Roots were 

then cut into 1 cm small pieces and macerated for 2 minutes by a commercial blender 

(Ultra Turrax). The macerated root suspension was diluted up to 100 ml in tap water 

and a 10 ml subsample was taken to determine the number of nematodes that penetrated 

using a binocular microscope.  

3. Culture media 

10% and 100% Potato Dextro Agar media (PDA) were used for fungal isolations and 

spore production in all experiments. The culture media, unless otherwise specified 

contained 150 ppm of Streptomycin and Chlorophenicol to prevent bacterial 

contamination. 

100% Potato Dextrose Agar (DIFCO) 

24 g  Potato Dextrose Broth  

18 g   Agar 

1000 ml  Deionized water 

10% PDA medium contains 

2.4 g  PDB 

18 g  Agar 

1000 ml  Deionized water 
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Tryptic Soy Agar (TSA)  

15 g   Agar 

30 g   Tryptic Soy Broth (TSB)  

1000 ml  Deionized water 

Tryptic Soy Broth (TSB) 

30 g   Tryptic Soy Broth (TSB)  

1000 ml  Deionized water 

Root stain solution  

2 g Fuchsine acid powder + 198 ml water  

Lactic acid solution 

1750 ml Lactic acid 

126 ml  Glycerine 

124 ml  Tap water 

1% of the Fuchsine acid added to lactic acid solution 

4. Seed coating 

Rice seeds were surface sterilized in 75% ethanol for 45 seconds and then in 1.5% 

NaOCl for 5 minutes followed by several rinses in sterilized tap water. The sterilized 

seeds were then pre-germinated on wet filter paper placed in 9 cm Petri dishes in the 

dark at 28oC for 3-5 days. The fungal mycelia and spores were coated onto these 3-day 

old germinating seeds using a 2% methyl cellulose solution over a 2 hour-period of 

constant agitation. 

To determine the cfu of Fusarium moniliforme isolate per seed, a coated seed was first 

placed in 10 ml of sterilized tap water. This suspension was vortexed well and then 

diluted to factors of 10, 100 and 1000 times. Colony forming units of all of these 

suspensions was determined using the spiral plater as described previously.  
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5. 

6. 

7. 

Plant growing conditions 

All experiments were conducted under greenhouse conditions at 28oC (± 15), 12-hr light 

period and with 20-50% humidity. The rice variety BR11, an irrigated rice variety from 

Bangladesh was used in all experiments. 

Soil preparation 

A mixture of sand and field soil (v/v=2:1) was used for all experiments. The substrate 

was always autoclaved at 121oC for 60 minutes. The soil was given a period of at least 7 

days to allow for the soil to release any toxic gases produced during autoclaving. 

Fertilizer 

A quarter-strength Yoshida solution (Yoshida, 1976) was used to fertilize the seedlings 

when they developed the third leaf. Half strength Yoshida solution was used from week 

3 to week 5. After 5 weeks rice plants were fertilized with full strength Yoshida 

solution. The pH of the Yoshida solutions was always adjusted to 5.0 using 32% HCl or 

3 M KOH solution. 

Table 2.1: Composition of fertilizer solution (Yoshida, 1976) 

Elements Reagents Concentration of element nutrient 
solution (mg/L)

N NH4NO3 40.00
P NaH2PO4.2H2O 10.00
K K2SO4 40.00
Ca CaCl2 40.00
Mg MgSO4.7H2O 40.00
Mn MnCl2.4H2O 0.50
Mo (NH4)6Mo7O24.4H2O 0.05
B H3BO3 0.20
Zn ZnSO4.7H2O 0.01
Cu CuSO4.5H2O 0.01
Fe FeCl3. 6H2O 2.00  
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8. Statistical analysis 

All data were subjected to analysis of variance using SPSS 11.5 for Windows. 

Differences among treatments were tested using one way analysis of variance 

(ANOVA) followed by T-test for mean comparison if the F-value was significant. Mean 

comparisons were analyzed by Least Significant Difference (LSD) at the 5% level of 

significance. After verifying homogeneity of variances, the data of repeated experiments 

were pooled for statistical analysis when appropriate; otherwise data was transformed 

and analyzed. Graphic presentations were made with Microsoft Excel. 
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CHAPTER 3: Endophytic colonization and growth promotion in rice 

1. Introduction 

The genus Fusarium is a common soilborne fungus and is widely distributed in 

cultivated soils around the world. It includes a large diversity of species which can be 

either pathogenic or non-pathogenic to crop plants (Alabouvette et al., 2001; Olivian et 

al., 2003). Some species such as F. oxysporum, F. solani or F. moniliforme are 

important pathogens in many crops such as tomato, rice, maize and other vegetable 

crops. However, some of them were also demonstrated to live endophytically in the root 

tissue and display non-pathogenic symptoms on the hosts. These endophytic strains are 

often considered mutualistic and are an important source for biological control 

(Backman and Sikora, 2008; Sikora et al., 2007).  

One of the best studied endophytes used for biological control against a wide range of 

plant pathogens is F. oxysporum. The fungus resides in healthy plant tissues without 

causing any damage. The evidence that non-pathogenic endophytic F. oxysporum 

isolates are able to reduce Fusarium wilt can be traced back in the early 1970s (Smith 

and Snyder, 1971; Toussoun, 1975). Since then, many strains of F. oxysporum have 

been studied for their ability to control Fusarium wilt disease in many crops worldwide 

(Biles and Martyne, 1989; Kroon et al., 1991; Minuto et al. 1995; Leeman et al., 1996; 

Olivian and Alabouvette, 1997, 1999; Fuchs et al., 1999; Alabouvette et al., 2001; 

Olivian et al., 2003). More recently, endophytic strains of F. oxysporum have been 

reported to successfully control a wide range of plant parasitic nematodes in different 

crops. Their biological control activity and colonization behavior in these host plants 

have been studied (Hallmann and Sikora, 1994; Niere et al., 1999, Niere, 2001; 

Pocasangre, 2000; Vu et al., 2006; zum Felde et al., 2006; Dababat and Sikora, 2007; 

Mendoza and Sikora, 2009). 

In comparison to F. oxysporum, F. moniliforme Sheldon is also a common soil fungus 

and is often reported as an economically important pathogen in several crops such as 

maize and rice. This species is one of the most prevalent fungi associated with maize 

kernels in many maize producing regions in the world (Yates et al., 1997). The ability 
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of this seedborne and soilborne fungus to affect germination, seedlings and subsequent 

disease development is controversial. Many authors claimed that F. moniliforme is an 

important seedborne pathogen of maize whereas other researchers reported that this 

fungus has no significant effect on the growth, development and yield of maize (van 

Wyk et al., 1988). Many studies have been conducted on pathogenic strains of F. 

moniliforme whereas a few investigations have been conducted on non-pathogenic 

strains. The first report on nonpathogenic F. moniliforme for its biocontrol ability to 

control Fusarium disease in gladioli dated back in 1980. The nonpathogenic F. 

moniliforme isolate M-685 demonstrated high levels of biocontrol activity against 

Fusarium rot (Magie, 1980). Since then, only one more report by van Wyk et al. (1988) 

has been published on the use of endophytic F. moniliforme for biological control of 

stem and ear rot disease in maize caused by F. graminearum. The authors demonstrated 

that pre-inoculation of maize with an isolate of F. moniliforme increased the fresh 

weights of seedlings while decreasing the stem and ear rot incidence. Studies on the 

biological control potential of F. moniliforme against plant parasitic nematodes in 

general or against M. graminicola in particular have not been investigated. 

The biocontrol activity of non-pathogenic fungi toward plant parasitic nematodes is 

always linked to the colonization potential of the endophytic fungus used. Effective root 

colonization is also believed to be essential for biocontrol of fungal diseases 

(Handelsman and Stabb, 1996). Colonization of mutualistic F. oxysporum isolates in the 

host plants was reported to be important when direct effects of the antagonist on the 

target nematode have been detected and is suspected to be the mechanism responsible 

for nematode control (Niere, 2001; Vu, 2005 and Dababat and Sikora, 2007). The 

ability of mutualistic endophytic fungi to colonize the host plant therefore is important 

for their establishment, reproduction and survival and finally for their antagonistic 

activity (Speijer, 1993). The positive relationship between the level of colonization of F. 

oxysporum 162 in banana or tomato roots and their biocontrol activity against 

Radopholus similis (Vu, 2005; Mendoza, 2008) or M. incognita (Dababat and Sikora, 

2007; Mendoza and Sikora, 2009) respectively, has been demonstrated. To achieve a 

high level of biocontrol, the endophytic fungi should be applied to the host plant for a 

sufficient period of time to facilitate their colonization, propagation and reproduction in 
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the endorhiza before host plant exposure to the nematode. In comparison, other authors 

elucidated that effective biocontrol is not necessarily connected with high rate of 

colonization (Niere, 2001). This may indicate that indirect mechanisms of action may 

also be involved in root-knot nematode control. 

When applying biological control agents to plants, it is extremely important to ensure 

that they are not pathogenic to other rotation crops (Kerry and Evan, 1996). Although 

some F. oxysporum isolates are considered to be important antagonists to plant parasitic 

nematodes (Hallmann and Sikora, 1994; Sikora, 2003; Sikora et al., 2007), other strains 

are known to be important causal agents of Fusarium wilt disease (Olivian and 

Alabouvette, 1999; Olivian et al., 2003). There are only a few reports on the influence 

of non-pathogenic strains of F. moniliforme on crop plants (Magie, 1980; van Wyk et 

al., 1988) and none exist in rice. It is thus necessary to investigate the pathogenicity of 

the tested isolates before using them for biocontrol. 

In addition, any positive effects of the multualistic fungi on the growth of the plant are 

of great interest. Some biological control agents such as mycorhiza, Trichoderma spp 

and Fusarium demonstrated growth promotion effects on the host plants (Niere et al. 

1999; Pocasangre, 2000; Elsen et al., 2003). However, many others have been also 

reported to have neutral effects on the growth of host plant either in short or long term 

inoculation (Vu, 2005; Dababat, 2007). 

The rice plants in some cropping systems like irrigated, lowland rain-fed or floating rice 

live most of their life under aquatic environments (Schalbroeck, 2001). The oxygen is 

brought down to the root tissue through the arenchyma tissue allowing rice plants to 

grow also under anoxic soil condition (Colmer, 2003). This special feature also enables 

some mutualistic endophytic microorganisms like fungi, bacteria as well as nematodes 

to survive over long periods of time under anoxic conditions (Verma et al., 2001; 

Bridge et al., 2005). Basically, if endophytic fungi demonstrate an ability to thrive in the 

rice root under flooded conditions, they should also interact negatively with pathogens 

and pest such as the root nematode. 
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The objectives of these experiments were to study the isolates Fe1 and Fe14 in relations 

to their: 

1) colonization efficiency under oxic and anoxic soil conditions 

2) colonization behaviour in different parts of the root  

3) colonization over time 

4) pathogenic potential  

5) effects on rice growth 
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2. Experimental designs 

2.1 Colonization under oxic and anoxic environments 

The rice root-knot nematode is a sedentary endo-parasite which is highly adapted to 

both oxic (non-flooded) and anoxic (flooded) conditions. Therefore, it is strategically 

important to find antagonists that can establish and retain biocontrol activity in the rice 

root under anoxic soil conditions. In previous screening tests, the endophytic fungi 

Fusarium moniliforme isolates Fe1 and Fe14 demonstrated high levels of biocontrol 

against M. graminicola (Le et al., 2009). In the present study, the colonization of rice 

roots by Fe1 and Fe14 under oxic  and anoxic soil conditions was investigated. The 

experiment was a two-way factorial design, consisting of fungal inoculated or non-

inoculated rice treatments, with or without soil flooding following fungal treatment. 

The mycelia and spores of  Fe1 and Fe14 were coated onto 3-day old germinating seeds 

in a 2% methyl cellulose solution over a 2 hour period of agitation (See chapter 2). The 

coated seeds were then planted in experimental pots measuring 7x7x8 cm containing 

300 g of sterilized soil (see chapter 2, 6). Rice plants were initially grown for 4 weeks 

under aerobic condition. After 4 weeks, half number of the pots were subjected to either 

flooding or non-flooding conditions for 2 more weeks. To quantify colonization by the 

fungus inside the root after this period of time, the roots were washed and surface 

sterilized in 1.5% NaOCl for 3 minutes followed by several rinses in sterilized tap 

water. Root systems were then cut into 1.5 cm long sections. Root pieces were placed 

on 10% PDA Petri plates and assessed for frequency of endophytic colonization. Fungal 

colonies growing out of the root pieces were identified based on morphological 

characteristics that clearly resembled the initial isolates used (Fe1 and Fe14).  

2.2 Colonization in different root zones under oxic and anoxic conditions 

The experiment was conducted with both isolates Fe1 and Fe14 using the same coating 

and inoculation procedures as described in section 2.1 of this chapter. 

Four weeks after sowing, the roots were removed, sterilized and cut under aseptic 

conditions in 3 different parts: zone – 1 next to the root periphery, zone – 2 middle of 
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the root and zone 3 - near the stem base. For each zone, 10 root pieces of 1.5 cm length 

were cut and mounted onto two plates of 10% PDA. The presence of endophytic fungi 

growing out of the cut ends were analyzed in 2-day intervals for 14 days. 

2.3 Root colonization of Fe14 over time under oxic conditions 

This experiment was conducted to study colonization efficiency of Fe14 over time 

under oxic soil conditions. The fungal biomass was coated onto the germinating rice 

seeds and then the seeds were planted into the experimental pots as previously described 

(section 2.1). However, rice plants remained under oxic soil conditions until the end of 

the experimental period. The frequency of fungal colonization was assessed after 8, 10 

and 12 weeks following the same experimental procedures as described in section 2.1 of 

this chapter. 

2.4 Pathogenicity 

Fe1 and Fe14 were tested for their pathogenicity on rice plant over a period of 5 months 

because different symptoms also develop later in the growth cycle of rice. The same 

seed coating technique as described in section 2.1 was applied in this experiment. Seeds 

coated with 2% methyl cellulose served as the control. Plants were grown for 5 months 

under greenhouse conditions and then harvested. The plants were examined weekly for 

disease symptoms. Pathogenic strains of F. moniliforme cause an economically 

important disease of rice, the bakanae disease. The common symptoms caused by this 

fungus such as foot rot, sheath rot were checked weekly for 20 weeks. Symptoms on 

panicle were not examined due to the longevity of the experiment under greenhouse 

conditions. 

After harvesting, root and shoot weight and the length of stems were recorded. Fungal 

endophytic colonization was examined in the stem, leaves and roots. These tissues were 

surface disinfected in 0.5% NaOCl for 1 minute followed by several rinses in sterilized 

tap water. The sterilized stem or leaf sections of 1.5 cm were cut and mounted onto 10% 

PDA Petri dishes.  
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2.5 Effects on plant growth 

The two endophytic fungi Fe1 and Fe14 increased the root and/or shoot weight of the 

rice plants in some earlier experiments. The effect on root weight and shoot weight were 

more obvious than on shoot heights. However, growth promotion effects of the two 

endophytic Fusarium isolates were not consistent. Therefore, growth promotion of the 

endophytes over short and long term time periods was investigated in glasshouse under 

both oxic and anoxic soil conditions. 

The fungal biomass of either Fe1 or Fe14 was coated onto the germinating rice seeds in 

the same manner as in previous tests (see section 2.1). Inoculation with tap water served 

as the control. Four weeks after sowing, experimental plants were subjected to oxic and 

anoxic conditions. In the first period, the plants were harvested 2 weeks after flooding 

(i.e. 6 weeks after sowing) whereas in the second period, the experiment was terminated 

8 weeks after flooding (i.e. 12 weeks after sowing). Root, shoot weights and the stem 

length were recorded. All stems and root systems were then dried in an oven at 65oC for 

48 hours. Dry root and shoot weight was also recorded. The experiment consisted of 2-

way factorial design, with and without fungi under oxic or anoxic soil conditions and 

each treatment was replicated 7 times. 
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3. Results 

3.1 Colonization under oxic and anoxic soil environments 

Colonization of both isolates was very high under both soil water environments, ranging 

from 50 to 89% (Fig. 3.1). The recovery rate of the isolate Fe1 was slightly lower than 

that of the isolate Fe14 in both soil water regimes. The colonization rate of Fe14 ranged 

from 81% in non-flooded to 89% under flooded soil conditions whereas that of Fe1 was 

in the range of 50-60%. The isolate Fe14 was recovered in all roots of  the treated plants 

(Data not shown). There was no evidence of colonization of the two Fusarium isolates 

in non-treated rice plants that served as controls. 
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Figure 3.1: Colonization of the endophytic fungus Fusarium moniliforme isolates Fe1 
and Fe14 in rice roots 6 weeks after fungal inoculation and 2 weeks after 
exposure to oxic or anoxic conditions (n=12).  

3.2 Colonization in different root zones under oxic and anoxic soil conditions 

Colonization efficiency of Fe1 and Fe14 in different root zones under oxic and anoxic 

soil conditions were investigated. In general, the colonization rate of Fe1 and Fe14 was 

very high, ranging from 78-93% (Table 3.1).  
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Table 3.1: Colonization efficiency of the endophytic Fusarium moniliforme isolates 
Fe1 and Fe14 in different root zones under oxic and anoxic soil conditions. Zone-1: 
next to the root periphery; zone-2: middle of the root; zone-3: near the culm base 
(n=12). 

Oxic Anoxic Oxic Anoxic
Zone-1 91 83 93 91
Zone-2 88 90 83 82
Zone-3 86 83 88 78

Root zone
Level of colonization (%)

Fe1 Fe14

 

Taking the soil water regime into account, there was no significant difference in 

colonization rate between the two isolates. Colonization was higher in zone-1 near the 

root tip. It was lower in the zone-2 middle of the root, and was lowest near the culm 

base, zone-3. However, these differences were not significant. 

3.3 Level of colonization over time  

Level of colonization of the isolate Fe14 over time was tested under oxic condition for a 

period of 3 months. Figure 3.2 showed that colonization decreased steadily over time. It 

was highest 8 weeks after inoculation with a recovery rate of 56%. The percentage of 

root colonization decreased 10 weeks after inoculation and was reduced to 27% after 12 

weeks. 
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Figure 3.2: Level of root colonization of Fusarium moniliforme Fe14 in rice over 12 
weeks under oxic soil environment (n=5).

3.4 Pathogenicity 

The result showed that Fe1 and Fe14 did not alter the growth and development of rice 

and did not cause any disease symptoms. Inoculation with Fe1 and Fe14 resulted in 

slightly higher root weights and shoot height compared to those of the control plants. 

However, this difference was not significant among treatments. The fungal isolates were 

not recovered from the internal tissues of the stem nor the leaves. Typical symptoms 

associated with pathogenic strains of F. moniliforme (stunting or elongated seedlings) 

were not observed during the experimental time (Table 3.2). 

Table 3.2: Influence of the endophytic fungus Fusarium moniliforme isolates Fe1 and 
Fe14 on the growth of rice and on the development of disease symptoms. 

Treatments Fresh shoot 
weight (g)

Fresh root 
weight (g)

Shoot 
length (cm)

Disease 
symptom 
on leave

Disease 
symptom 
on stem

Fungal 
recovery on 

root (%)

Fe1 11 10.4 41.2 nd nd 24
Fe14 9.07 11.3 40.4 nd nd 32

Control 8.25 11.7 38.8 nd nd 0  

(nd: not detected) 
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3.5 Effect on the rice growth 

Inoculation of the two fungal isolates did not result in significant changes in growth of 

rice compared to that of the control. The fresh root weights of the treated plants were 

slightly higher than that of the non-treated plants under oxic soil conditions whereas 

growth was slightly lower in the fungal treated plants under anoxic conditions (Table 

3.3). However, these differences were not significant. The fresh and dry shoot weights 

of the control plants were slightly higher under flooded conditions than those of fungal 

inoculated plants but again not significant. There was also no significant difference in 

the dry root and shoot weights of all treatments under the same oxic or anoxic 

conditions. Taking soil environment into account, the rice grown in anoxic conditions 6 

weeks after sowing had significantly heavier roots and shoots than those grown in oxic 

soil. In comparison, there was no significant difference between each growth parameter 

under both soil water environments 12 weeks after sowing. 

Table 3.3: Effect of the mutualistic fungi Fusarium moniliforme Fe1 and Fe14 on 
growth of rice 

Treatment

NF F NF F NF F NF F NF F

Fe1 0.97 ab 1.35 ab 0.90 1.24 0.09 0.12 0.19 0.22 32 37
Fe14 1.04 b 1.25 b 0.95 1.16 0.11 0.10 0.20 0.10 32 36
Control 0.66 a 1.81 a 0.86 1.49 0.09 0.23 0.18 0.26 31 38
P-value ≤  0.05 ≤  0.05 ns ns ns ns ns ns ns ns

Fe1 2.68 3.54 2.37 2.13 0.58 0.50 0.52 1.06 30 39
Fe14 2.65 4.53 2.50 2.63 0.44 0.62 0.59 0.97 34 40
Control 2.64 2.29 2.81 2.60 0.64 1.32 0.46 0.56 33 33
P-value ns ns ns ns ns ns ns ns ns ns

Fresh root 
weight (g)

Fresh shoot 
weight (g)

12 weeks after sowing

6 weeks after sowing

Dry root 
weight (g)

Dry shoot 
weight (g)

Stem height 
(cm)

 (F: Flooding, NF: non-flooding; ns: not significant difference) 
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4. Discussion 

4.1 Colonization under oxic and anoxic soil environments 

The level of colonization of an antagonist on a host plant has been considered important 

for biocontrol efficacy against plant parasitic nematodes (Hallmann and Sikora, 1994). 

Many strains of non-pathogenic Fusarium oxysporum have been found to reduce 

nematode infection on banana (Niere et al., 1999, Pocasangre, 2000; Vu, 2000; zum 

Felde et al., 2006; Mendoza, 2008) and tomato (Dababat and Sikora, 2007, Sikora et al., 

2007). Colonization of endophytic fungi is believed to be important for biocontrol 

efficacy, especially when direct effects of the antagonists on the target organism have 

been detected (Niere, 2001; Vu, 2005). Dababat and Sikora (2007) demonstrated that 

the endophytic mutualistic Fusarium oxysporum isolate Fo162 successfully colonized 

the endorhiza of tomato plants, including Fusarium wilt resistant varieties and level of 

colonization was closely related to biocontrol. Similarly, Vu (2005) reported high level 

of colonization of Fo162 along with high level of biocontrol against the burrowing 

nematode Radopholus similis on banana.  

In the present experiment, colonization of both Fusarium isolates Fe1 and Fe14 was 

very high regardless of  the soil conditions. Fungal endophytes, including Fusarium spp. 

have been isolated from rice (Fisher and Petrini, 1992; Tian et al., 2004; Vallino et al, 

2009). This endophytic community is believed to have antagonistic potential against 

plant pests and pathogens. However, studies on the colonization of these beneficial 

fungi in rice under both oxic and anoxic conditions are non-existent. In the present 

study it was shown for the first time that a fungal endophyte is capable of surviving for 

a long period of time in rice under anaerobic conditions. The results proved the 

hypothesis that the arenchyma tissue translocated oxygen in the roots under anoxic 

conditions that can support potentially beneficial aerobic organisms such as endophytic 

fungi (Verma et al., 2001). 

The level of colonization of the two endophytic isolates Fe1 and Fe14 suggests that 

these two fungi might be able to compete antagonistically with the rice root-knot 

nematode once they are trapped together in the root tissue under anoxic soil conditions. 
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This finding is important because it might lead to high biocontrol activity under anoxic 

soil condition when no other control measures are available. 

4.2 Colonization in different root zones under oxic and anoxic conditions 

The high colonization rate in all parts of the root system under both oxic and anoxic 

conditions demonstrated the ability of these two isolates to survive in the rice root under 

anaerobic conditions. Interestingly a slightly higher rate of colonization was observed 

near the root tips. The results are similar to the findings reported by Olivian and 

Alabouvette (1997). In an experiment conducted on tomato using a non-pathogenic 

strain of Fusarium oxysporum, colonization was mainly observed in the root hairs 24 

hours after the fungal inoculation. After that, there was no preferential zone for 

colonization. The higher colonization rate of the fungi just behind the root tips is an 

important finding because the root section just behind the root tip is usually the zone of 

nematode penetration (Bridge et al., 2005). 

The results suggested the possibility of a direct effect of the endophytic fungi on the 

nematode early in the disease cycle or competition for space between the endophytes 

and the nematode inside the root.  

4.3 Colonization of Fe14 over time  

Colonization of  the endophyte Fe14 was high but decreased steadily over time after the 

intial fungal application. The same tendency was obtained by Dababat and Sikora 

(2007) when they studied the colonization behaviour of the mutualistic fungus F. 

oxysporum Fo162 in tomato. They demonstrated that recovery of the endophyte 

decreased over time eventhough antagonism of the fungus against the root-knot 

nematode M. incognita in tomato was still active. Similar results were reported by Niere 

(2001) who re-isolated F. oxysporum 1 and 5 months after fungal inoculation from 

banana plants and observed that colonization decreased significantly after 5 months. In 

contrast, Mendoza (2008) reported that the colonization rate of Fo162 increased with 

time when inoculated to banana plants in greenhouse trials. Vu (2005) also reported 

very high colonization rates of 4 endophytic Fusarium oxysporum isolates on banana 

after 14 weeks of inoculation. The level of endophytic colonization of the Fusarium 
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depended on the fungal strain used and was affected by banana cultivars used (Speijer, 

1993; Hallmann and Sikora, 1994; Pocasangre, 2000; Niere et al., 1999; Vu, 2005; zum 

Felde et al., 2006). 

As previously discussed, colonization potential of the endophytic fungi was considered 

to be important when direct effects of the fungi on the nematode or pathogen were 

detected (Alabouvette et al., 2001; Niere, 2001). On the other hand, it was also 

elucidated that high levels of colonization did  not always indicate high biocontrol 

efficacy (Niere, 2001). In this case, other indirect mechanisms of action are involved 

instead of the direct effect of the antagonist on the target pathogen. The present study is 

the first to show that a non-pathogenic and mutualistic antagonist, Fe14 establised well 

in the rice root but that colonization decreased slowly over time.  

4.4 Pathogenicity  

Fusarium is abundant in soil ecosystems. This genus is also frequently detected in the 

plant tissues in almost all crops and regions. Many species are important pathogens in 

agriculture such as F. oxysporum, F. solani, F moniliforme. However, some of them 

also live asymptomatically inside plant roots. Determining pathogenicity of a potential 

biological control agent is an important step before applying such an agent to a crop. 

The fungal disease caused by F. moniliforme in rice is often referred as foot rot or 

bakanae disease. This disease can be observed in the seedbed or in the field. The 

symptoms may appear in the seedling stage with abnormal elongation or stunting of the 

stem or in later stage empty panicles. The rice plants may also turn yellow during the 

vegetative stage (Mew and Gonzales, 2002). 

Long term study of the two isolates Fe1 and Fe14 in rice showed that these isolates 

were not pathogenic to rice. Typical disease symptoms on the root, stem or grain never 

appeared. Moreover, plant growth and development was also not affected when the 

isolates were introduced to rice. In addition, the fungi were not recovered in the stem 

and leaf tissues. It was stated that pathogenic strains usually colonize all parts of maize 

such as stem, leaf and grain (Yates et al., 1997, Bacon et al., 2000). Since the 

endophytes Fe1 and Fe14 never produced disease symptoms on rice, their absence in 
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the stem and leaves were also expected. Therefore, it could be concluded that the two 

isolates Fe1 and Fe14 were not pathogenic to rice. 

4.5 Effect of endophytic fungi on the growth of rice 

The effect of biological control agents on plant health is important especially of 

seedlings because it has an impact on yield over time. It is also desirable to have a 

biocontrol agent that can effectively promote the growth of the seedling making it more 

tolerant to nematode infection.  

In the present study, inoculation of rice plants with the fungal endophytes slightly 

increased the root and shoot weights under non-flooded conditions while slightly 

decreasing plant weights under flooded conditions. Overall, there was no significant 

difference amongst treatments at the same soil water condition, either in short term or 

long term studies.  

Some biological control agents have been reported to enhance plant growth in different 

plants. Non-pathogenic Fusarium strains promoted banana growth in different banana 

cultivars (Niere et al., 1999; Pocasangre, 2000; Vu, 2005; zum Felde et al., 2006, 

Mendoza, 2008). Moreover, growth promotion effect of the biocontrol agents on host 

plants were reported on AMF (Elsen et al., 2003) and endophytic Trichoderma (zum 

Felde, 2006) on banana. In comparison, endophytic fungi having antagonistic potential 

may not influence the growth of the host plant. Dababat (2007) observed no growth 

effect of Fo162 on tomato plants even though this fungus caused high levels of 

biocontrol against M. incognita. This type of effect is also expected as the biocontrol 

agents were first selected according to their biocontrol activity and not for growth 

promotion.  

There was however an interaction between growth parameters of rice and the soil water 

environments as seen in significant increases of growth under oxic soil conditions. This 

result was expected since BR11 obtained from Bangladesh is an irrigated variety.  
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5. Conclusion 

In this chapter, the ability of F. moniliforme isolates Fe1 and Fe14 to colonize the 

endorhiza of rice and influence the growth of rice under oxic and anoxic environment 

was studied. Pathogenicity also was investigated. Based on the results the following 

conclusions can be drawn: 

1) F. moniliforme isolates Fe1 and Fe14 have a high capacity to colonize the 

endorhiza of rice under both oxic and anoxic soil conditions especially during the 

important seedling stages of growth 

2) Fe1 and Fe14 colonized well in different root zones with colonization slightly 

higher in the zone behind the root tip which is important for direct interaction at the 

site of J2 penetration 

3) High levels of colonization of Fe14 persisted over time and therefore can have 

activity to many life cycles of M. graminicola 

4) Both isolates showed no bakanae disease symptoms over long periods of time 

proving the non-pathogenicity of the strains 

5) Inoculation of Fe1 and Fe14 did not result in significant influence on rice growth 

 

 



Chapter 4          Modes of action of F. moniliforme Fe14 toward M. graminicola in rice 

36 

 CHAPTER 4: Modes of action of endophytic Fusarium moniliforme 
Fe14 toward Meloidogyne graminicola in rice 

1. Introduction 

The use of micro-organisms in controlling plant pests and diseases including plant 

parasitic nematodes has become an important alternative to chemical and traditional 

cultural practices, especially in regions where these control measures are not suitable 

such as in monocultured rice production systems. Extensive research has been carried 

out on biological control of nematodes in the last two decades. The reasons for this shift 

are: 1) the lack of resistance, 2) shorter rotations and 3) toxicity of nematicides to many 

non-target living organisms and their high cost. In many non-cash crops like rice 

effective control measures are not adaptable.  

Plant parasitic nematodes have many natural enemies such as insects, viruses, fungi and 

bacteria. The source of antagonists may come from the soil, plant tissues or even from 

the nematode body and eggs. However, the soil, being a rich ecosystem with millions of 

bacteria and fungi, remained until recently the most important source of antagonists. 

Now stress is being placed on rhizosphere and endophytic plant habitats for novel 

antagonists. 

Mode of action studies are one of the most important aspects of biological control 

research because it helps to understand the biology of the pest or disease and the 

infection processes through which weak links could be broken to favour biocontrol. 

Biochemical analysis and genetic aspects also are important for breeding, transgenic 

development and detection of specific chemical compounds for control. Antagonists 

have different mechanisms that act against plant parasitic nematodes including: 

predation, parasitism, pathogenesis, competion, repellence or induced systemic 

resistance (Stirling, 1991; Sikora, 1992; Hallmann and Sikora, 1994; Hasky-Günther 

and Sikora, 1995; Schuster et al., 1995; Kerry, 2000; Reitz et al., 2001; Reitz and 

Sikora, 2001, Diedhiou et al., 2003; Fravel et al., 2003; Vu et al; 2006; Dababat and 

Sikora, 2007; Padgham and Sikora, 2007; Rumbos et al., 2006; Sikora et al., 2007; 

Elsen et al., 2008; ). Some fungi such as Trichoderma or Paecilomyces spp. produce 
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toxins that kill or inhibit the development of the eggs, prevent egg hatching or are toxic 

to the nematode after hatching (Jatala et al., 1980; Dube and Smart, 1987; Kiewnick and 

Sikora, 2006; Siddiqui et al., 2000; Khan et al., 2001; Mendoza et al., 2006; Kiewnick, 

2009). Plants can also activate protective mechanisms upon contact with 

microorganisms and through induced or aquired resistance to reduce pest attack (Vu et 

al., 2006; Dababat and Sikora, 2007a). 

Scientists working on biological control of plant parasite nematodes now consider 

fungal endophytes potentially important due to microbial-plant interactions that may 

have direct and indirect control activity. Endophytes are microorganisms that reside 

inside plant tissues that have either multualistic, pathogenic or non-pathogenic effects 

on plant development and health. Some of these organisms, especially endophytic fungi 

have been well studied. For example, biocontrol potential of the mutualistic Fusarium 

oxysporum Fo162 against a range of plant parasitic nematodes has been extensively 

studied on different crops such as banana, tomato, pepper, melon and squash under 

greenhouse conditions (Vu, 2005; Dababat and Sikora, 2007b; Mendoza and Sikora, 

2008; Mehjivar and Sikora, 2010). Antagonistic activity of endophytes against several 

important nematodes like M. incognita and R. similis expressed through different modes 

of action such as interference with juvenile pentration, repellence through alteration of 

root exudates or lack of attraction. Some of these mechanisms are triggered by induction 

of systemic resistance (Hallmann and Sikora, 1998; Vu et al., 2006; Dababat and 

Sikora, 2007a). 

Only a limited number of investigations have been carried out on the mechanisms of 

biological control of the rice root-knot nematode M. graminicola with microbial 

endophytes. The endophytic bacterium Bacillus megaterium Ni5SO11 isolated from 

rice roots demonstrated high levels of biocontrol against M. graminicola in rice through 

prevention of penetration and the production of toxic metabolites that inhibited egg 

hatching and juvenile mobility (Padgham and Sikora, 2007).  However, the mode of 

action of antagonistic endophytic fungi toward the rice root-knot nematode have not 

been studied. Therefore, understanding the mode of action of endophytic fungal 

antagonists, their behaviour in different environments and interaction with other living 
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organisms is the key to success in biocontrol of the rice root-knot nematode. The 

objectives of the following research conducted with Fe14 were to investigate: 

1) efects on juvenile penetration 

2) existent of induced systemic resistance 

3) repellent activity and effects on nematode mobility 

4) influences of the endophyte on nematode development 

5) effects of the mutualistic fungus on nematode reproduction 

6) biocontrol activity under oxic and anoxic soil environments 
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2. Experimental design 

General methods are presented in chapter 2. Only specific changes in design are given 

in this chapter. 

2.1 Juvenile penetration 

In this experiment, combining endophyte seed coating and soil drenching methods with 

the endophyte was applied to test for compatibility. Fungal biomass of Fe14 was coated 

onto the pre-germinated rice seeds using 2% methyl cellulose at a rate of 106 spores per 

seed at sowing. Rice seeds coated with only methyl cellulose served as the control. (See 

chapter 2). The coated seeds were planted in experimental pots measuring 7x7x8 cm 

filled with 300 g of autoclaved sandy soil. Three weeks later, additional 5 ml of fungal 

suspension containing 5x 107 spores were drenched into 3 holes made around the root 

system of each rice seedling. One week after the second fungal inoculation, 2 ml of tap 

water containing 1000 J2 were inoculated in the rhizosphere of each plant. The 

experiment was harvested 2 weeks after the nematode inoculations. All plants were 

uprooted and washed. Fresh root and shoot weights were recorded and then the roots 

were stained with 1% Fuchsine acid. The stained roots were cut into small pieces and 

macerated in a commercial blender for 3 minutes (See chapter 2). The root suspension 

was made up to 100 ml and a 10 ml aliquot was taken to count the number of penetrated 

nematodes. The experiment was conducted twice. 

2.2 Induced systemic resistance 

A split-root experiment was designed to study the presence of induced systemic 

resistance. Rice seeds were surface sterilized and pre-germinated on wet filter paper for 

3 days (See chapter 2). Germinating rice seeds were then sown in the experimental pots 

filled with 300 g autoclaved sandy soil. Five weeks after sowing, rice seedlings were 

uprooted and washed carefully. Each root system was split into two equal parts. Each 

half was put through a hole in the bottom of an experimental pot and planted into 2 

separate pots placed at the bottom (Fig. 4.1). The roots in the two bottom pots were 

spatially separated and covered with soil and then individually treated. One week after 
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root splitting, the roots growing in one pot of the experimental apparatus were 

inoculated with 5x106 spores of F. moniliforme strain Fe14 by drenching 5 ml of fungal 

suspension into 3 holes made around the root system. This pot is called the Inducer side. 

The other half of the root system of the same apparatus was treated with water and is 

called the Responder side. Plants with both root halves treated with water served as 

controls. Fungal inoculation was repeated 2 weeks later in the Inducer side while tap 

water was added to the Responder side and also to the control plants. 

 

 

Inoculated with 5x106 
spores of Fe14, twice 

- Inducer side 

Inoculated with 800 J2 
of M. graminicola 
- Responder side 

Figure 4.1: Design of split-root apparatus used to determine Fusarium moniliforme 
Fe14 induced systemic resistance against Meloidogyne graminicola in 
rice. 

One week after the second fungal inoculation, 800 J2 of M. graminicola were added to 

the Responder side of each system. The experiment consisted of two treatments: 1) 

Inducer side treated with water and Responder side inoculated with M. graminicola, and 

2) Inducer side inoculated with Fe14 and Responder side inoculated with M. 

graminicola. 

The experiment was terminated 3 weeks after nematode inoculation. Each experimental 

apparatus was carefully washed to collect all roots in the two pots separately. Gall 

number was determined in the Responder side. After counting the galls, colonization of 

Fe14 was examined in both root systems. The experiment consisted of 6 replicates and 

was conducted twice. However, in the second experiment, rice plants were grown for 6 



Chapter 4          Modes of action of F. moniliforme Fe14 toward M. graminicola in rice 

41 

weeks before splitting the rice root due to a longer period needed for plant growth 

caused by cooler temperature in the greenhouse. 

2.3 Repellent effect of the root exudates  

Rice seeds were surface sterilized, pre-germinated and then coated with fungal biomass 

of Fe14 as previously described (Chapter 2). Seeds coated with only methyl cellulose 

served as controls. Endophyte treated rice seeds were planted in experimental pots and 

additional fungal spores were inoculated 3 weeks later at a rate of 105 spores per gram 

soil. Control plants were treated with tap water. The rice seedlings were grown under 

greenhouse conditions for 4 weeks where they were watered daily and fertilized weekly 

with Yoshida solution. To collect root exudates, rice plants were not watered for 2 days 

to keep them just below the permanent wilting stage. Then 200 ml of tap water were 

added to each pot and the water was allowed to percolate through the soil and out of the 

bottom holes into the trays placed underneath. The root exudates were collected in 

separate bottles for the control plants and for Fe14 treated plants. In total, there was 

about 600 ml of root exudate solution collected from each treatment. The two exudate 

solutions were filtered through Whatman paper (Schleicher & Schuell MicroScience-

Germany).  

Small plastic chambers measuring 12x2x2 cm (figure 4.2) were filled with 

approximately 80 g of sterilized fine sand which was obtained by sieving sand through a 

sieve with an aperture of 250 µm and then autoclaved. The sand was moistened with 

sterilized tap water to facilitate nematode movement. The experiment was designed as 

followed: 1) both sides inoculated with exudates from control plants; 2) both sides 

inoculated with root exudates from Fe14 treated plants; 3) one side with root exudates 

from Fe14 treated plants, one side with root exudates from control plants; 4) the 

absolute control, both sides with tap water. A 1 ml suspension containing 1000 J2 was 

pipetted onto the middle of the chamber and 1 ml of the root exudates was drenched 

onto each side of the chamber arm. A plastic cover was gently place on top of the 

chamber and the two ends were carefully wrapped with parafilm to prevent moisture 

loss. One ml of sterilized tap water was added daily to each chamber end to maintain a 

stable moisture level. All plastic chambers were placed in the greenhouse at a mean 
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temperature of 28oC for 7 days. For evaluation, the chambers were gently opened and 

the sand in each 1.5 cm section from the middle was carefully collected into a 50 ml test 

tube filled with 20 ml tap water.  The number of the nematodes in each tube was 

determined in sub samples of 2 ml aliquot after stirring and setting out of the sand. This 

experiment was conduced twice and each treatment was replicated 6 times. 

 

Figure 4.2: Design of the plastic chamber used to investigate the influence of root 
exudates from rice treated with Fusarium moniliforme Fe14 on 
Meloidogyne graminicola movement. 

2.4 Nematode development and reproduction 

A series of experiments were conducted to investigate the influence of Fe14 on the 

development and reproduction of M. graminicola after penetration. The speed of 

nematode development in different life stages, the male to female ratio and the 

reproduction capacity of the female were studied. 

In the first set of experiments on development, combined seed treatment and soil drench 

method was used for inoculation of Fe14 as previously described in section 2.1 of this 

chapter. One week after the second fungal inoculation, 2 ml of a suspension containing 

1000 J2 was added into 3 holes made around the root of each rice seedling. The 

nematodes were allowed to penetrate the rice roots for 3 days to synchronize their 

development. All rice seedlings were then uprooted and washed carefully and then 
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transplanted into new experimental pots filled with 300 g of sterilized sandy soil. Rice 

seedlings were watered daily and fertilized weekly with Yoshida solution. The 

experiment was terminated 6 weeks after nematode inoculation. All roots were washed 

and stained with 1% Fuchsine acid and then stored at 4oC. For evaluation of the 

nematode development, the roots were cut into small pieces and macerated to expose 

the nematodes in the root cortex. The number of nematodes in 3 stages: juveniles, 

female and male were counted under microscopes. The experiment conducted twice 

with 7 replicates in experiment 1 and 11 replicates in experiment 2. 

Reproduction experiments followed the same procedure as described above in which 

nematode development was synchronized. The experiment was harvested 4 weeks after 

nematode inoculation. The roots were weighed and then stained with 1% Fuchsine acid. 

The stained roots were examined under a stereomicroscope and single females were 

removed from the root with tweezers and then placed in a cavity slide (d=4 cm) 

containing 5 ml of 0.1 M NaCl solution. Fifteen females were randomly selected per 

root system. The females were then gently crushed using a small needle and the 

suspension containing eggs in 0.1 M NaCl was vortexed for 3-5 seconds to open the egg 

sacs. The average number of eggs per female was determined in a sub sample of 1 ml 

egg suspension.  

2.5 Biological control activity under oxic and anoxic soil conditions 

Rice seeds were surface sterilized and then pre-germinated as described in section 4 of 

chapter 2. The fungal isolate Fe14 was inoculated twice to rice seedlings as described in 

the previous section. One week after the second fungal inoculation, 1000 J2 of the root-

knot nematode were inoculated to each rice seedling. Three days later, nematode 

development was synchronized by uprooting plants, washing them very carefully and 

transferring to new experimental pots which were divided into two parts. In the flooded 

part, the experimental pots were slowly submerged in water for 3 days prior to 

transplanting to allow for anaerobic conditions. The non-flooded part was kept under 

aerobic conditions. Eight weeks after transplanting, the experiment was terminated. All 

plants were uprooted and washed carefully. Fresh root and shoot weights were recorded 

and then roots were stained with 1% Fuchsine acid. The stained roots were cut into 
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small pieces and macerated by a commercial blender to expose nematodes from the root 

cortex. The root suspension was made up to 100 ml and a 10 ml aliquot was taken to 

count the number of nematodes inside the root.  
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3. Results 

3.1 Juvenile penetration 

Inoculation of rice seedlings with the endophytic fungus F. moniliforme Fe14 4 weeks 

in advance of M. graminicola introduction resulted in a significant 55% reduction in 

penetration of the nematode (Fig 4.3). 
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Figure 4.3: Influence of Fusarium moniliforme isolate Fe14 on Meloidogyne 
graminicola penetration of rice when the endophyte was allowed to 
establish 4 weeks before nematode inoculation. * = significantly different 
from the control based on the T-test (P≤0.05; n=14).  

3.2 Induced systemic resistance 

The ability of Fe14 to induce systemic resistance was investigated in this study by 

applying the fungus to the Inducer side and inoculating M. graminicola in the 

Responder side of a split-root rice plant. Application of Fe14 to the Inducer side 

significantly reduced nematode invasion to the Responder side. 

In the first experiment, there was a large decrease of up to 60% whereas in the second 

experiment the reduction reached 38% (Fig. 4.5).  
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Figure 4.4: Influence of Fusarium moniliforme Fe14 inoculation to the Inducer side on 
M. graminicola penetration in the Responder side of a rice split-root 
system. A and B are the first and the second experiments respectively. * = 
significantly different from the control based on the T-test (P≤0.05, n=7). 
Bars represented standard errors of the mean. 
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3.3 Repellent effect of root exudates 

One week after nematode inoculation in the middle of the chamber, the movement of 

the nematode toward the two sides of the plastic chamber was significantly affected by 

root exudates from differently treated plants. The number of nematodes that moved to 

the side treated with root exudates from Fe14 treated plants was significantly lower by 

46-62% in the sections of 1.5 – 3.0 cm to 4.5-6.0 cm from the middle point compared to 

the number of nematodes that moved to the side treated with root exudates from control 

plants. The number of nematodes that remained in the middle part was not significantly 

different between the two sides of the test chamber (Fig. 4.6).  
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Figure 4.5: Effect of Fusarium moniliforme Fe14 root exudates (Fe14) and root 
exudates from control plants on Meloidogyne graminicola movement in 
fine sand after 7 days. Means with * are significantly different within one 
set of columns based on the T test (P≤0.05; n=12). Bars represented 
standard errors of the mean.  

There were no significant differences in nematode movement when both sides of the 

chamber were inoculated with root exudates from Fe14, exudates from uninoculated 

plants or with only water (Fig. 4.7) 
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Figure 4.6: Effect of Fusarium moniliforme Fe14 root exudates (Fe14); root exudates 
from control plant (CO) and water (W) on migration of Meloidogyne 
graminicola in fine sand after 7 days. Means with * are significantly 
different within one set of columns based on the T-test (P≤0.05; n=12).  

3.4 Nematode development and reproduction 

Treatment of rice plants with Fe14 altered the number of female and male inside the 

root. The number of males in vermiform was significantly higher in the roots treated 

with Fe14 when compared to that of the control. The number of females on the contrary 

was lower in roots of Fe14 treated plant. The male to female ratio in the Fe14 treated 

plant was much higher than that in the control plants (Fig. 4.8A). 

When the experiment was repeated, males in vermiform were not observed but the 

number of female was also significantly lower in the Fe14 treated plants compared to 

the control treatment (Fig. 4.8B). 
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Figure 4.7: Influence of Fusarium moniliforme Fe14 on development of Meloidogyne 
graminicola in rice root 6 weeks after synchronized nematode infestation. 
A: male to female ratio; B: number of juveniles and females. Columns 
with * indicate significant difference from the control based on the T-test, 
ns: not significant. Bars represented standard errors of the mean.  
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Colonization of rice root by Fe14 influenced nematode female fecundity by reducing the 

number of eggs per female by 30% compared to that of control plant. However the 

reduction was not significantly different.  
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Figure 4.8: Number of eggs per female of Meloidogyne graminicola in rice roots 
treated with the endophyte Fusarium moniliforme Fe14. ns: not significant 
difference based on T-test (P≤0.05, n=5). 

3.5 Biological control activity under oxic and anoxic soil conditions 

Biocontrol caused by Fe14 was very high under both soil water environments (Fig. 

4.10). Under oxic soil conditions, Fe14 significantly reduced nematode population in 

the rice endorhiza by 60%. The level of biocontrol of Fe14 was slightly lower under 

anoxic soil conditions but it was still significantly different to the control. In general, 

nematode population inside the root was smaller under anoxic soil conditions compared 

to oxic soil environments. 
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Figure 4.9: Effect of colonization of the non-pathogenic endophytic Fusarium 
moniliforme isolate Fe14 on the root-knot nematode Meloidogyne 
graminicola population in rice 8 weeks after nematode inoculation under 
oxic and anoxic soil environments. Means with * are significantly 
different within one set of columns based on the T-test (p ≤ 0.05, n=10). 
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4. Discussion 

4.1 Effect of Fe14 on the nematode penetration 

The mutualistic endophyte Fusarium moniliforme isolate Fe14 significantly reduced 

nematode penetration into the rice root. Penetration of the nematode was reduced 

significantly by 55% two weeks after inoculation when the fungus colonized the rice 

plants. The results demonstrated high level of early protection of the seedling against 

the nematode mediated by the endophytic fungus. This is the first time that an 

endophytic fungi have been shown to be antagonistic to the root-knot nematode in rice. 

However, other researchers have shown that the endophytic fungi can reduce nematode 

penetration in other crops (Hallmann and Sikora, 1994a, b; Niere et al., 1999; 

Pocasangre, 2000; Sankaranarayana et al., 2001; Dieuhiou et al., 2003; zum Felde et al., 

2004; Vu, 2005; Dababat, 2007). For instance, the mutualistic endophyte Fusarium 

oxysporum Fo162 reduced penetration of Meloidogyne incognita in tomato and 

Radopholus similis in banana by 28% to 41% respectively (Vu, 2005; Dababat, 2007). 

Many studies have elucidated that fungal endophytes may alter chemical or physical 

properties of the root exudates or interact with the plants to produce chemical or 

hormone complex compounds which repel or interfere with nematode attraction (Diez 

and Dusenbury, 1989; Viljoen et al. 2006; Dababat and Sikora, 2007). The mechanism 

by which the fungus reduces nematode penetration will be discussed in more detail in 

the following sections. 

4.2 Induced systemic resistance 

In split-root experiments, Fe14 demonstrated induced systemic resistance to M. 

graminicola. The application of Fe14 to one side of the split-root system resulted in a 

significant reduction of M. graminicola infestation in the other side. This clearly shows 

that protection by Fe14 is the result of a mode of action coupled with induced systemic 

resistance to the root-knot nematode in rice. 

Induced systemic resistance (ISR) is commonly defined as “a phenomenon whereby 

resistance to infectious disease is systemically induced by localized infection or 
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treatment with microbial components or products or by a diverse group of structurally 

unrelated organic and inorganic compounds. The activity of the inducing agents is not 

due to antimicrobial activity per se or their ability to be transformed into antimicrobial 

agents. However, antimicrobial agents can induce resistance, and they provide 

protection from the time of application until ISR is fully expressed” (Kuc’, 2000). ISR 

can be triggered by exogenous application of virulent or avirulent pathogens, plant 

growth promoting rhizobacteria and various chemicals including salicylic acid, 

jasmonic acid, benzothiadiazole-7-carbothioc acid S-methyl ester (BTH), 2,6-dichloro 

isonicotinic acid (DCINA) and β-aminobutyric acid (BABA) (Kuc, 2001; Oka and 

Cohen, 2001; Ramamoorthy et al., 2001). ISR can be local or systemic when the entire 

plant becomes protected against later infections (van Loon, 1997).  

Induced systemic resistance by non-pathogenic micro-organisms has been demonstrated 

against fungi, bacteria and viruses in a wide range of plants such as Arabidopsis, bean, 

cucumber, radish and tomato (in review paper by van Loon et al., 1998). ISR was also 

reported for non-pathogenic Fusarium oxysporum isolates against Fusarium wilt disease 

on several vegetable crops (Mandeel and Barker, 1991; Alabouvette et al., 1993; Fuchs 

et al., 1997). For example, Fuchs et al. (1997) used the non-pathogenic F. oxysporum 

strain Fo47 to control Fusarium wilt incidence in tomato and demonstrated the presence 

of an induced systemic resistance signal.  

In biocontrol of plant parasitic nematodes, ISR has been frequently reported. This 

mechanism was first found when using rhizobacteria in potato and tomato (Hansky-

Günther et al., 1998; Reitz et al., 2000, 2001; Munif et al., 2001; Hauschild et al., 2004). 

Later, Siddiqui and Shaukat (2002, 2004) also reported systemic resistance induced by 

the rhizobacteria Pseudomonas aeruginosa and P. influorescens against the root-knot 

nematode M. incognita on tomato. Moreover, ISR was reported with the arbuscular 

mycorrhizal fungi (AMF) in bioprotection of banana against the burrowing nematode R. 

similis (Elsen et al., 2008) or with bacteria for biocontrol of several plant parasitic 

nematodes (van Loon et al., 1998; Reitz and Sikora, 2001; Mwangi et al., 2002; 

Siddiqui and Shaukat, 2004). 
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Recently, ISR has been demonstrated to be the main component of the overall 

mechanism of action of mutualistic fungal endophytes involved in biocontrol of plant 

parasitic nematodes. Vu et al. (2006) demonstrated that inoculation of the mutualistic 

endophyte F. oxysporum Fo162 to one side of a banana split-root system led to the 

reduction of Radopholus similis infection in the other side. Similarly, Dababat and 

Sikora (2007) showed induced systemic resistance in tomato plants against M. incognita 

when treated with F. oxysporum Fo162 in a split-root experiment. 

So far, there have been relatively few studies on the biochemical nature of the induced 

systemic resistance mechanism. In a study conducted by Jagdale et al., 2009, 

entomopathogenic nematodes and their symbiotic bacteria were reported to induce 

systemic resistance to plants via systemically activating the production of key defense 

enzymes: P-peroxidase, G-peroxidase and higher catalyse activities. Moreover, Selim 

(unpublished data, 2010) has recently demonstrated that the ISR involves the release of 

chemical compounds in the Responder root exudates that affect nematode-host 

recognition behavior. 

The present study clearly demonstrated that Fe14 stimulates ISR which is involved in 

setting off additional mechanisms responsible for its biocontrol activity in rice. 

4.3 Repellent effect of root exudates 

The reduction in migration of M. graminicola towards the fungi-treated roots compared 

with the non-treated roots in the present study demonstrated the influence of changes in 

the root exudates on the host finding ability of the root-knot nematode. 

It has been well known that nematodes are attracted to plant roots (Prot, 1980; Prot and 

Van Gundy, 1981) and root exudates (Riddle and Bird, 1985; Viglierchio, 1961). 

Nematode orientation behavior can be characterized as taxis (directed movement 

towards the stimulus source) or kinesis (change of rate of movement in relation to 

stimulus intensity) (Perry, 1996). The stimulatory effect of root exudates on nematode 

host finding and egg hatching is well documented (Jones, 1960; Klinger, 1965; Webster, 

1969; Edmunds and Mai 1976; Prot, 1980; Nordmeyer and Sikora, 1982; Pline and 

Dusenbery, 1987; Dababat and Sikora, 2007). Webster (1969) demonstrated that egg 
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hatching of cyst (Heterodera spp.) and gall forming nematodes (Meloidogyne spp.) in 

the soil was stimulated by exudates of some plants. Furthermore, plant parasitic 

nematodes are capable of directed orientation, ie klinotaxis, towards a plant stimulus 

(Klingler, 1965; Nordmeyer and Sikora, 1983; Pline and Dusenbery, 1987) and they 

move towards concentration gradients (Prot, 1980). The attraction of nematodes to a 

redox potential on the root surface has been one of several theories explaining the host 

finding ability of nematodes. However, the distance of this redox potential that could be 

recognized by a nematode is limited to a distance of 1 mm (Klinger, 1965) with a power 

of 20-30 mV/mm (Jones, 1960). 

There have been relatively few experiments performed on the behavior of plant-

parasitic nematodes in response to their host root exudates. Grundler et al. (1991) 

demonstrated the aggregation and pre-infectional exploratory behaviour of H. schachtii 

J2 in response to mustard root exudates under in vitro conditions. They did not observe 

any nematode orientation and assumed that the J2 reached the attractant source by 

random movement. In contrast, Clemens et al. (1994) observed that higher 

concentrations of root exudate attractants induced H. schachtii orientation. Their results 

supported the occurrence of two behavioral searching states, stimulated and 

unstimulated that are due to external (e.g. chemicals, nutrient medium composition, 

temperature, light, etc) or internal (e.g. physiological stage, age, hunger, etc) factors in 

the host-parasite interaction. In addition, only a few host or non-host specific 

compounds mediating the attraction of host to nematode are known. For instance, maize 

roots exude cyclic hydroxamic acids, one of which (2,-4-dihydroxy-7-methoxy-1,4-

benzoxazin-3-one) attracts Pratylenchus zeae at concentrations in host exudates. Such 

compounds may be involved when endophytes are present (Chitwood, 2002). 

Amino acids and carbon dioxide are the most attractive chemicals to nematodes in the 

root exudates (Bird, 1959; Klingler, 1963; Pline and Dusenbery, 1987; Prot, 1980). Diez 

and Dusenbury (1989) suggested that carbon dioxide is the principle means by which 

nematodes locate host roots. Both glutamic acid and aspartic acid tended to repel 

Ditylenchus dipsaci at concentrations of 1:1000 and attract them at 1:100 000 (Jones, 

1960). Edmunds and Mai (1966) showed that Pratylenchus penetrans was preferentially 
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attracted to the high carbon dioxide emission of fungal infected roots. Similarly, Pline 

and Dusenbery (1987) illustrated that a sudden increase in CO2 concentration caused an 

increase in locomotion of M. incognita and a decrease in the frequency of changes of 

direction. The threshold was about 0.01 % vol CO2/vol gas when the baseline 

concentration was very low and 0.05% CO2 when the baseline concentration was 1% 

CO2. Furthermore, Nordmeyer and Sikora (1983) demonstrated that penetration of 

Heterodera daverti into subterranean clover roots was increased by a short exposure of 

the roots to a culture filtrate of Fusarium avenaceum because the culture filtrate 

increased the ion efflux of the clover roots by softening the root tissue and thereby 

enabled the nematode to penetrate more easily.  

Root exudates can also have repellent effects to plant parasitic nematodes. Diez and 

Dusenbury (1989) reported that the root exudates from tomato plants having a repellent 

effect to M. incognita contained chemicals that showed up as different peaks in HPLC 

analysis. It was shown that root exudates appeared to contain only repellent activity 

because the other volatile stimuli were not captured by the described assay. Similarly, 

repellent effect of root exudates from tomato plants treated with non-pathogenic 

endophytic F. oxysporum strain 162 to M. incognita was reported by Dababat and 

Sikora (2007). However, inoculation of endophytic fungi to plants did not always result 

in repellent effects toward plant parasitic nematodes. For example, Viljoen et al. (2006) 

reported that the inoculation of the endophyte F. oxysporum to tissue culture banana 

plants did not alter host preference of Radopholus similis. These authors suggested that 

the reduction of nematode infection due to fungal treatment may occur at later stages, 

the so-called post infection stage. 

The present study demonstrated that root exudates from Fe14 inoculated plants repelled 

or lacked of attractants to the root-knot nematode, indicating that Fe14 root exudates 

might contain chemicals, hormone or enzymes which are physio-chemically different 

from control plant exudates. This finding was similar to the results obtained by 

Padgham and Sikora (2007) on rice using an endophytic bacterium Bacillus 

megaterium. They demonstrated that rice plants treated with the bacterium negatively 

affected the host finding ability of M. graminicola.  
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4.4 Nematode development and reproduction 

The endophyte F. moniliforme isolate Fe14 influenced M. graminicola development 

causing the production of a higher number of males in the Fe14 treated plants. The sex 

ratio in nematodes can vary and is greatly influenced by both genetic and environmental 

factors of which the latter is more profound and of interest for nematode control 

(Johnson and Viglierchio, 1969; Triantaphyllou, 1973; Papadopoulou and 

Triantaphyllou, 1982; Grundler et al., 1991). In general, the non-genetic factors 

affecting sex ratio are initial inoculum (Evans and Fox, 1977), host plant growth stage 

and resistance level (Trudgill et al., 1967, Berge et al., 1974, Lelivelt and Hoogendoorn, 

1993; Sijmons, 1993; Anwar and McKenry (2000)), nutrient availability and the quality 

of giant cells (Ferris et al., 1984; Grundler et al., 1991; Sijmons, 1993) 

Meloidogyne species are able to reproduce by mitotic parthenogenesis and when the 

environment is favourable, most juveniles will develop into females (Trudgill, 1997). It 

is necessary to consider root-knot nematode behavior during the early stages of the 

infection process in order to understand the interrelation between the host and nematode 

development and reproduction. First of all, the second stage juveniles are attracted to 

the zone of elongation, where they penetrate the root and then migrate intercellularly. 

This process involves both mechanical force and enzymatic secretions from the 

nematode. Once the nematode reaches the zone of differentiation, procambial cells 

adjacent to the head of the nematode develop into "giant cells" in response to signals 

from the nematode. These large, multinucleate, metabolically active cells serve as a 

permanent source of nutrients for the endoparasite and the nematode now is regarded as 

a nutrient sink (Williamson and Hussey, 1996). The quality of giant cells is an 

important factor determining male to female ratio (Ferris et al., 1984). Grundler et al. 

(1991) showed that the sucrose and amino acid contents of the synctia affected cyst 

nematode H. schachtii development and the male to female ratio. When the 

environment is favourable, most juveniles developed into females.  

Furthermore, the resistance level of the host is also an important factor determining 

male to female ratio. High resistance normally leads to low number of females 

indicating poor development status. Lelivelt and Hoogendoorn (1993) demonstrated that 
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populations of Heterodera schachtii in resistant varieties of sugar beet consisted of 

more males than females. Rice et al. (1987) conducted an experiment to investigate the 

effect of the resistant gene H7 in potato against the cyst nematode Globodera 

rostochiensis and reported that the feeding site became necrosis and eventually 

collapsed. Ten days after penetration, the majority of nematodes remained in the later 

second or early third juvenile stage and the few nematodes that developed on H7 potato 

plants were mostly males, a sign of poor nutrition for the nematode. 

In the present experiment, the significantly higher number of males in Fe14 treated 

plant might be attributed the poor quality of giant cells or the systemic resistance 

induced by the colonization of Fe14 in the endorhiza. This finding is particularly 

important because males are a non infective reproductive stage and thus higher numbers 

of males or lower numbers of females will lead to lower nematode populations and less 

damage to the root. 

Moreover, the percentage of juveniles in plants treated by F. moniliforme Fe14 in the 

present study was higher than in control plants. This suggests a suppressive interaction 

between the fungal endophyte and the plant which prolongs the time needed to complete 

the life cycle of M. graminicola. Similar effects of the endophytic F. oxysporum on 

development of the burrowing nematode R. similis on banana and of the root-knot 

nematode M. incognita on tomato were reported by Niere (2001) and Vu (2005) and 

Dababat (2007) respectively. . 

Female fecundity or the egg production rate is an important determinant of nematode 

reproduction and population development and is influenced by environmental 

conditions and host status. In the present study, Fe14 not only reduced juvenile 

penetration but also altered the reproduction capacity of the females. The lower number 

of eggs per female in Fe14 treated plants suggested a post infection influence of the 

fungus on the nematode inside the host plant. Ferris et al. (1984) and Anwar and 

McKenry (2000) demonstrated that egg production rates of M. arenaria differed 

amongst grape varieties indicating a direct influence of the host physiology on female 

fecundity. 
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The effect of the biocontrol agent Pochonia chlamydosporia (syn. Verticillium 

chlamyclosporium) on the egg laying capacity of female nematodes was demonstrated 

by Kerry (1990). Number of eggs per beet cyst nematode was 90% lower when plants 

were treated with P. chlamydosporia compared to that of the control. In comparison, the 

mutualistic F. oxysporum Fo162 displayed no effect on female fecundity of M. 

incognita on tomato (Dababat, 2007). However, there are other mechanisms that the 

fungal antagonists can use to influence female fecundity. For examples, P. 

chlamydosporia affects H. schachtii by reducing the numbers or sizes of females or 

causing high infection rate of eggs (Kerry et al., 1982).  

4.5 Biological control activity under oxic and anoxic soil conditions  

The mutualistic endophytic F. moniliforme isolate Fe14 was able to reduce M. 

graminicola infection effectively under both soil water environments. Many studies on 

the biological control of a wide range of plant parasitic nematodes have been conducted 

under aerobic conditions (see previous sections of this chapter for more discussions). 

However, no research exists under anaerobic conditions. Therefore, this is the first 

report of a micro-organism that exhibits high levels of biocontrol activity against a plant 

parasitic nematode under anoxic soil environments. The findings are very important 

because it demonstrates the potential of using biological control technology against M. 

graminicola or other parasites such as Hirschmaniella species that are highly adapted to 

anoxic conditions under which other conventional control measures such as chemicals 

do not work or cannot be applied. 

The infestation, development and reproduction of M. graminicola under different soil 

water regimes have been well studied (Bridge and Page, 1982; Prot and Matias, 1995; 

Soriano et al., 2000; Padgham et al., 2003). In general, the total nematode number is 

greater but the root galling index is lower under the flooded than non flooded conditions 

(Prot and Matias, 1995; Tandigan et al., 1996; Soriano et al., 2000). This fact can be 

explained by greater food supply due to better plant growth under flooding conditions, 

the tolerance of rice cultivars to the nematode or the limited spread of nematode 

infestation within the root system resulting in greater development of the nematode in 

the endorhiza. In comparison, the nematode is adversely affected in roots subjected to 
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long flooding periods over 5 months due to the depletion of root oxygen supply in the 

old roots (Bridge and Page, 1982) and this probably explains the smaller number of 

nematode under flooding conditions in our experiment. 

5. Conclusion 

The mechanisms responsible for the biocontrol activity of the non-pathogenic 

endophyte F. moniliforme Fe14 were investigated through different types of 

experiments. From the experimental results it can be concluded that: 

1)  Fe14 reduced significantly nematode penetration of rice roots under oxic 

conditions 

2)  Induced systemic resistance was clearly demonstrated when Fe14 colonized rice in 

split-root study 

3) Root exudates from Fe14 treated plants have a repellent activity against M. 

graminicola in the absence of rice indicating changes in the root exudates or a 

release of toxic substances produced or induced by Fe14  

4)  Fe14 altered M. graminicola development and reproduction represented by a 

higher number of males or lower number of females as well as less eggs per 

female in the Fe14 treated plants and therefore directly influenced nematode 

parasitism 

5)  Fe14 exhibited high levels of biocontrol under anoxic soil conditions  
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 CHAPTER 5: Importance of inoculation time and method of 
application 

1. Introduction  

Biocontrol efficacy is usually inconsistent due to various abiotic and biotic factors and 

the complex interactions between these factors after application. Important factors 

affecting biocontrol are inoculum production and the form of application. It has been 

demonstrated that biocontrol of various plant parasitic nematodes depends on the 

inoculum density, time and forms of application (Vu, 2005; Dababat and Sikora, 2007). 

Most researchers used fungal and bacterial inoculum in the range of 105-108 cfu/ g soil 

to control nematodes (Vu, 2005; Padgham and Sikora, 2007; Dababat, 2007; Mendoza, 

2008). In addition, the methods of application also vary considerably. Some researchers 

applied fungi or bacteria by soil drenching or soil incorporation (Hallmann and Sikora, 

1994; Vu, 2005; Dababat, 2007; Mendoza, 2008) while others coated the seeds with 

biocontrol agents (Padgham and Sikora, 2007).  

Time of antagonist introduction is an important factor in governing its efficacy. 

Protection of plant at the seedling stage from nematode infection is very important for 

subsequent production and yield. The seedling is the most susceptible stage to pest and 

disease infection because it is not fully developed and therefore unable to confront 

adverse biotic and abiotic factors effectively. Thus, many agrochemicals or biological 

control agents are developed to protect plants in this early stage.  

Cabanillas and Barker (1989) reported that Paecilomyces lilacinus was more effective 

in protecting tomato against M. incognita when it was delivered before transplanting or 

at transplanting than after plants were infected by nematodes. Similar results were 

obtained when tomato or banana plants were treated with the mutualistic endophyte 

Fusarium oxysporum Fo162 at transplanting (Vu, 2005, Mendoza et al., 2006; Dababat 

and Sikora, 2007). In comparison, post-planting application of biocontrol agents, 

especially in the case of endophytes does not always lead to high levels of biocontrol 

since the establishment of a biocontrol agent in the endorhiza or the rhizosphere is a 
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prerequisite for the control of endoparasitic nematodes (Vu, 2005; Mendoza et al., 2006; 

Dababat and Sikora, 2007). 

 However, not all biocontrol agents are able to protect seedlings due to lack of 

rhizosphere competency. Therefore, finding the right organisms, optimal application 

time and the form of application is essential to improve biocontrol efficacy. For 

example, with many endophytes, a certain period is required for the control agent to 

establish and interact with the host plants so as to express effective control efficacy (Vu, 

2005; Dababat and Sikora, 2007). Understanding the biochemical and ecological 

interactions is the key to successful biocontrol. 

Adequate application form is an essential part of biocontrol because it influences 

survival and colonization of the biocontrol agent. Antagonists including fungi and 

bacteria can be applied in the form of spore suspensions or living cells with or without 

metabolites. In the case of endophytes, the biocontrol agents should be applied in 

advance before exposing the plants to nematode because they need time to establish and 

reproduce inside the endorhiza of the host plants. The objectives of this chapter were to: 

1) Investigate the ability of fungal antagonists to protect plants in the seedling 

stages 

2) Determine the optimal inoculation time 

3) Compare soil drenching and seed coating methods for effectiveness 
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2. Experimental design 

General materials and methods are described in chapter 2. Only specific changes in 

methodology are given in this chapter. 

2.1 Fungal and nematode inoculation at sowing 

Three endophytic fungal isolates, F. moniliforme Fe1 and Fe14, F. oxysporum Fo162 

and two rhizosphere isolates Fusarium F28 and Trichoderma T30 were tested for their 

ability to provide early protection of rice seedlings against M. graminicola infection. 

Seed treatment technology was applied in this study. Rice seeds were first surface 

sterilized and pre-germinated as described in chapter 2. The fungal biomass of each 

isolate was then mixed with 2% methyl cellulose and then coated to the germinating 

seeds for 2 hours (See chapter 2). Seeds coated with methyl cellulose alone served as 

the control. The coated seeds were then sown in experimental pots measuring 7x7x8 cm 

filled with 300 g of autoclaved sandy soil. After treatment, two seeds of each treatment 

were examined for colony forming unit (cfu) attached by shaking them vigorously in 10ml 

sterilized tap water. The cfu was determined using the Jetset spiral plater (See chapter 2). 

The cfu per coated seed was approximately 106 for each fungal isolate. Immediately after 

sowing, fresh second stage juvenile (J2) of M. graminicola were drenched onto the soil at a 

rate of 250 J2/pot (approx. 1 J2/ g soil). The pots were kept moist to ensure J2 migration 

and plant growth. Three weeks after sowing, the rice seedlings were uprooted and washed 

carefully under tap water to remove adhering soil. Fresh root weight was recorded and the 

number of galls was counted using a magnifying glass.  

The experiment was repeated with only 2 isolates Fe14 and T30 based on the effects 

obtained in the first test. The treatments were conducted in the same manner. 

2.2 Long term biocontrol activity  

The endophytic Fusarium moniliforme isolate Fe14 was previously studied for its 

biocontrol activity when it was inoculated to the rice seeds using seed treatment 

technique 4 weeks after sowing. The current experiment was conducted to examine 
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whether the endophyte maintained its biocontrol activity against M. graminicola over 

time. 

The fungal biomass of the isolate Fe14 was coated to the pre-germinating rice seeds as 

previously described in the section 2.1 of this chapter. The second fungal inoculation 

was made three weeks later by soil drenching. Ten weeks after the second fungal 

inoculation, 1000 J2 were inoculated into the rhizosphere of a rice plant through 3 holes 

made with a plastic rod around the stem base. The experiment was terminated two 

weeks later. All roots were washed and then stained with 1% Fuchsine acid. The 

penetration rate of M. graminicola was determined as previously described in chapter 4, 

section 2.1.  

2.3 Drenching versus seed treatment 

Control efficacy of Fe14 was evaluated using different forms of fungal inoculation: seed 

coating, soil drenching or a combination of both. The methods of seed coating or soil 

drenching have been described in chapter 2 and also in other chapters. The experiment 

was designed with 5 treatments, namely: coating (Cg), drenching (D), coating and soil 

drenching (Cg+D), drenching twice (2xD) and the control treatment (C). For the 

combination of seed coating and soil drenching, the fungal biomass was firstly coated to 

the pre-germinating seeds and three weeks later, additional fungal spores were drenched 

to the experimental pots.  For the double soil drenching treatment (2xD), the first drench 

of fungal spores was made at sowing and then repeated three weeks later at a dose of 

5x106 spores/seedlings each time. Four weeks after sowing, all rice seedlings were 

inoculated with M. graminicola at a density of 500 J2/ plant.  The experiment was 

harvested 6 weeks after nematode inoculation. Roots were washed and stained with 1% 

Fuchsine acid and the number of nematodes inside the root was counted under 

binoculars. 
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3. Results 

3.1 Fungal and nematode inoculation at sowing 

Inoculation of rice seeds at sowing with the endophytic isolates Fo162, Fe1 and Fe14 

provided no protection from root-knot nematode infestation. The rhizosphere isolates 

F28 and Trichoderma T30 reduced galling severity by 7% and 19% respectively. 

However, there was no significant difference between treatments (Fig. 5.1).  
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Figure 5.1: Effect of the fungal endophytes Fusarium oxysporum Fo162, Fusarium 
moniliforme Fe1 and Fe14 and rhizosphere antagonists Fusarium F28 and 
Trichoderma T30 on galling severity caused by Meloidogyne graminicola 
in rice root when the nematode was applied at sowing. Bars represented 
standard errors of the mean, ns: not significantly different according to the 
LSD test (P≤0.05; n=7). 

Moreover, growth of rice seedling was slightly reduced in treatments with both 

nematode and fungal inoculations. Fungal inoculation alone did not influence the rice 

shoot weight and root weight significantly. The height of rice plants was not affected by 

fungal or nematode inoculation (Table 5.1) 
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Table 5.1. Effect of seed treatments with the endophytes Fusarium oxysporum Fo162 
and F. moniliforme isolates Fe1 and Fe14 and the rhizosphere antagonists 
Trichoderma T30 and Fusarium F28, and nematode inoculation at sowing on 
growth of rice 3 weeks after sowing. 

Root weight 
(g)

Shoot weight 
(g)

Shoot height 
(cm)

Root weight 
(g)

Shoot weight 
(g)

Shoot height 
(cm)

Control 0.26 a 0.17 ab 20.5 ab 0.22 a 0.17 20 a

T30 0.27 a 0.19 a 21.5 a 0.21 ab 0.18  21 a

F28 0.22 ab 0.16 ab 20.0 ab 0.24 a 0.16 20 a

Fo162 0.18 bc 0.14 bc 18.0 bc 0.18 b 0.16 20 a

Fe14 0.15 c 0.10 ce 16.0 c 0.20 ab 0.16 20 a

Fe1 0.14 c 0.09 e 16.0 c 0.17 b 0.15 18 b

P -value 0.000 0.000 0.005 0.038 ns 0.001

With M. graminicola Without M. graminicola

Treatment

Means in the same column followed by the same letters are not significantly different 

according to the LSD test (P ≤ 0.05, n = 7). ns: not significantly different. 

In the second seed treatment experiment, only Fe14 and T30 were selected for the test 

on their ability to provide early protection for the rice plant. Seed treatment of Fe14 did 

not lead to a decrease in galling whereas the Trichoderma isolate T30 reduced galling 

severity significantly when compared with the control and Fe14 treatments (Fig. 5.2). 
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Figure 5.2: Effect of the endophyte Fusarium moniliforme Fe14 and the rhizosphere 
Trichoderma T30 applied as seed treatment at sowing on Meloidogyne 
graminicola infestation in rice. Means with the same letters are not 
significantly different based on LSD test (P≤0.05; n=7). Bars represented 
standard errors of the mean. 

Seed treatment with Fe14 or T30 slightly increased root weight whereas the shoot height 

was similar amongst all treatments. The shoot weight of rice seedlings treated with T30 

was slightly higher compared to that of the control and Fe14 treatments (Table 5.2).  

Table 5.2: Effect of seed treatment with the endophyte Fusarium moniliforme Fe14 and 
the rhizosphere Trichoderma T30 on growth of rice 3 weeks after sowing when 
Meloidogyne graminicola was inoculated at sowing. 

Treatment Root weight (g) Shoot weight (g) Shoot height (cm)

Control 0.5 0.30 20.6
T30 0.49 0.39 22.6
Fe14 0.39 0.30 22.8

P-value ns ns ns
(ns: not significantly different based on LSD test (P≤0.05; n=7)) 
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3.2 Long term biocontrol activity 

Nematode penetration was reduced approximately 55% when the nematode was 

introduced to the rice plants treated with the mutualistic fungus F. moniliforme Fe14 ten 

weeks earlier.  
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Figure 5.3: Effect of fungal isolate Fusarium  moniliforme Fe14 inoculated to rice roots 
for 10 weeks before Meloidogyne graminicola was introduced. * = 
significantly different based on the T-test (P≤0.05; n=7). Bars represented 
standard errors of the mean. 

3.3 Drenching versus seed treatment 

The form of inoculation affected the level of biocontrol toward the rice root-knot 

nematode. In general, all methods of application reduced nematode infestation 

significantly by 19-35% when compared to the control treatment. Seed coating or soil 

drenching alone protected the plants from infection better than when the fungus was 

applied to rice by a combination of seed coating and soil drenching (Figure 5.4).  
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Figure 5.4: Effect of application form of the fungal isolate Fusarium moniliforme Fe14 
as a seed coating (Fe14Cg), coating and soil drenching (Fe14Cg+D), 
drenching (Fe14 D), drenching twice (Fe14 2D) and the control (C), on 
Meloidogyne graminicola population densities in rice root. Means with the 
same letters are not significantly different based on LSD test (P≤0.05; 
n=7). Bars represented standard errors of the mean. 



Chapter 5                   Importance of inoculation time and method of Fe14 for biocontrol 

70 

4. Discussion 

4.1 Fungal and nematode inoculation at sowing 

All of the fungal isolates, except the Trichoderma T30 did not protect rice seedling from 

M. graminicola infestation when introduced simultaneously at sowing. The slightly 

higher gall number in the endophytic fungi treated plant was probably due to the low 

level of the endophytes in the endorhiza when the nematode was penetrating. 

Inoculation of rice with the fungal isolates F28 and T30 slightly reduced the nematode 

infestation to the rice root. This could be explained by the fact that these two isolates 

were rhizosphere fungi. Their mode of action is different than the endophytic fungi 

which need time to colonize the root for biocontrol activity. The isolates F28 and T30 

might produce antimicrobial substances that distracted the host finding of the nematode 

in a very short time or are pathogenic to the J2. The endophytic fungi Fe1, Fe4 and 

Fo162 did not reduce nematode infestation. The results of this experiment are in 

agreement with that of Vu (2005) and Dababat Sikora (2007). They demonstrated that 

the endophytic fungus F. oxysporum Fo162 expressed no immediate protection to the 

plant when exposed to nematode simultaneously at inoculation time. As endophytes, the 

fungi need time to establish inside the root tissue and interact with the rice roots before 

they can express their biocontrol activity. 

Some species of Trichoderma have been demonstrated biocontrol activity toward root-

knot nematodes (Windham et al., 1989; Meyer et al., 2001; Sharon et al., 2001). The 

lower number galls formed in plants treated with T30 could be explained by the direct 

effect of toxic substances secreted by the isolate or the disturbance of root exudates 

caused by this fungus (Lorito et al., 1996). 

4.2 Long term biocontrol activity 

The mutualistic fungus F. moniliforme Fe14 showed long term biocontrol activity 

against M. graminicola in rice. A reduction in galling severity was still observed when 

the nematode was introduced to rice plants pre-inoculated with Fe14 ten weeks earlier. 

Similar results were reported by Vu (2005) when she investigated the biocontrol activity 
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of 4 endophytic F. oxysporum isolates A1, Fo162, W5W2 and H-20 against the 

burrowing nematode R. similis on banana. High biocontrol activity was still obtained 

when the fungi were pre-incubated 14 weeks in banana. Niere (2001) also observed high 

biocontrol activity of the endophytes F. oxysporum over a 5 months period. The results 

of the present study demonstrated that the mutualistic fungus Fe14 grew and developed 

well in the endorhiza and retained high levels of antagonism toward M. graminicola 

over time. 

4.3 Drenching versus seed treatment 

Forms of application are important in biological control. Depending on the antagonists, 

such as fungi, bacteria or the place where they reside, the forms of application may vary 

accordingly. In the present study, it was shown that application techniques either by 

seed coating and/ or soil drenching significantly influenced biocontrol level. The seed 

coating, combined coating and soil drenching or drenching twice gave similar levels of 

biocontrol.  

For biocontrol technology, seed treatment is regarded as the most economical method 

for several reasons. First of all, it provides early protection to the seeds before plants are 

actually exposed to various biotic and abiotic stresses in the field. Secondly, seed 

treatment requires small amounts of inoculum and thereby reduces the overall cost of 

application (Harman, 1991; Sikora et al., 2003; Elzein et al., 2006). In the present 

experiment, it was clearly shown that seed treatment using the endophytic mutualistic 

Fe14 worked well in biocontrol of the rice root-knot nematode. This finding is 

important because seed treatment allows application of biocontrol agents on a large 

scale to seed with relatively low application cost. 

Similarly, soil drenching is also a common method of biocontrol application in intensive 

production systems such as in the greenhouse or nursery because of high labor 

requirement. However, the efficacy is also high with soil drenching method. Studies 

conducted on the soil drenching method using the endophytic F. oxysporum Fo162 

showed that the technique was adequate to give high level of biocontrol against 

Radopholus similis in banana or against M. incognita in tomato if the endophyte has 
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time to establish before being exposed to the nematode in the field (Vu, 2005; Dababat 

and Sikora, 2007).  

Multiple applications of Fe14, either combining seed coating and soil drenching or 

drenching twice did not significantly increase the overall level of nematode control over 

that obtained with a single inoculation at sowing. The results demonstrated that the 

biocontrol activity of endophyte only obtained when it has up to 4 weeks time to 

colonize the roots before nematode inoculation. Similar results were reported by 

Dababat and Sikora (2007) when they studied the effect of single or dual applications of 

the mutualistic endophytic F. oxysporum Fo162 for biocontrol of M. incognita on 

tomato. They demonstrated that single application of the antagonist at sowing is 

adequate to obtain high level of biocontrol. In comparison, Mendoza and Sikora (2009) 

suggested a dual application of the egg pathogen Paecilomyces lilacinus PL 251 with an 

endophyte F. oxysporum Fo162 was necessary for effective biocontrol of the burrowing 

nematode R. similis on banana. The egg pathogen reduces nematode infection potential 

in the soil and gives the endophyte time to establish. The effect of single or multiple 

inoculations on biocontrol efficacy is probably dependent on the modes of action of the 

antagonists. For instance, Fo162, being an endophyte, requires a period of time to 

establish and express its biocontrol activity inside the host plant whereas PL 251 must 

be present in the rhizosphere with a substantial amount in order to infect eggs. 

Therefore multiple applications can be important if used strategically. In the present 

study, dual inoculation of Fe14, which did not lead to higher level of biocontrol, also 

adds to overall costs of the treatment and therefore is not recommended. The results 

suggest that seed treatment with fungal endophyte would be important for rice sown in 

seed beds before going to the field for transplanting. This would give the endophyte 

time to establish in the endorhiza before it can express its biocontrol activity against the 

nematode. 
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5. Conclusion 

The biocontrol efficacy of the endophyte F. moniliforme Fe14 against M. graminicola 

in rice was evaluated under different inoculation time and methods. From the 

experimental results the following conclusions can be made: 

1)  Fe14 requires an establishment period in the endorhiza in order to achieve high 

levels of biocontrol against the root-knot nematode 

2)  Fe14 retained high levels of biocontrol over time 

3)  Both seed treatment and soil drenching technique are effective inoculation 

methods to obtain colonization although seed treatment is recommended due to 

lower labour and application cost 

4)  Single inoculation of Fe14 is adequate to achieve high levels of biocontrol over 

time 
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 CHAPTER 6: Influence of multiple combinations of microbial 
antagonists on biocontrol activity 

1. Introduction 

Numerous microbes are antagonistic to plant pests and pathogens and some of these 

micro-organisms have been demonstrated to suppress plant parasitic nematode 

populations (Sikora 1992; Kerry, 2000; Meyer and Roberts, 2002; Sikora et al., 2007). 

Despite a substantial amount of research on the antagonistic potential of microbes, the 

application of biological control agents in the field is still limited. Reasons for this 

drawback include inconsistent performance, complicated interactions with other 

organisms in the endo- and rhizosphere and slower action of the control agents 

compared to pesticides (Meyer and Roberts, 2002). In addition, mass production, 

formulation, registration, marketing, delivery and application techniques can complicate 

commercialization of microbial based biocontrol agents (Kerry, 2000; Meyer and 

Roberts, 2002). Only a few products are available for nematode management on the 

market including Burkhoderia cepacia, Trichoderma virens, Paecilomyces lilacinus 

strain 251, Bacilus firmus, Pasteria penetrans and Pochonia chlamydosporia (syn. 

Verticilium chlamydosporum) (Meyer and Roberts, 2002; Mendoza, 2008). To 

overcome inconsistent performance of biocontrol agents and to improve biocontrol 

efficacy, combinations of more than one microbe are recommended (Mao et al., 1998; 

Kerry, 2000; Meyer et al., 2001; Mendoza and Sikora, 2009; Sikora et al., 2010). 

Soil ecosystems harbor millions of living organisms from microscopic to megascopic 

scales. The activity of one organism is usually affected by others besides the common 

influence of abiotic factors. It was discovered that nematode suppressive soils usually 

contain a wide range of natural enemies that attack their nematode host at different 

stages in the life cycle (Kerry 1990; zum Felde et al., 2006).  Each organism may kill 

relatively few nematodes but the combined effects of several antagonists may suppress 

nematode population. Therefore, many nematologists consider that combination 

application of different antagonists with different modes of action can increase 

effectiveness of integrated nematode management programs (Kerry, 1990, Sikora, 1992; 

Sikora et al., 2007). 
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The in vitro inhibition test is a common method to study antagonism between two or 

more organisms. Compatibility is observed when the growth of one isolate does not 

inhibit that of the other in the same culture medium. Inversely, when the growth of an 

organism slows down or is limited by the presence of the other, the two microorganisms 

are said to be incompatible. There are several ways of assessing the interaction, among 

those, the interaction category set by Stahl and Christensen (1992) has been widely 

accepted and has been used in this study. Neutral intermingling occurs when two 

microorganisms grow and develop normally in the dual culture. Both of them can 

overgrow each other in the Petri dish. In contrast, the interaction is the deadlock type 

when one of the two isolates inhibits the growth of each other whereby a distinct zone 

appears between the 2 tested organisms. Antibiotics or metabolites produced by one 

may inhibit the growth of the other. One isolate is said to replace the other when its 

mycelia partially or completely covers those of the other (Stahl and Christensen, 1992). 

In an attempt to improve the stability, intensity and reliability of biocontrol, numerous 

authors have studied the effect of combining biocontrol agents on biocontrol of plant 

parasitic nematodes (reviewed by Meyer and Roberts, 2002). In many cases, the 

combinations led to an increase in biocontrol level (Guetsky et al. 2001, Guetsky et al. 

2002, Meyer and Roberts 2002). Combinations of biocontrol agents against nematodes 

include the use of fungi with fungi (Sikora and Hoffmann-Hergarten, 1993; Khan et al. 

1997, Duponnois et al. 1998, Hojat Jalali et al. 1998, Chen et al. 2000, Masadeh et al., 

2004; zum Felde et al., 2006; Mendoza et al., 2006, Chaves et al., 2009) and fungi with 

bacteria (Maheswari and Mani 1988; de Leij et al. 1992; Siddiqui and Mahmood 1993; 

Esnard et al., 1998; Perveen et al. 1998; Chen et al. 2000, Mendoza and Sikora 2009; 

Chaves et al., 2009). Most combinations involved two organisms, but few used 

combinations of three or more organisms (Esnard et al. 1998; Chen et al. 2000; zum 

Felde et al., 2006; Mendoza and Sikora, 2009). However, combinations are not always 

synergistic or beneficial, as antagonism can occur between biocontrol organisms, and 

lead to unchanged control levels (Zaki and Maqbool 1991, Viaene and Abawi 2000) or 

even to lower control (Esnard et al. 1998, Chen et al. 2000, Meyer et al., 2001, Masadeh 

et al., 2004), when compared to individual applications of biocontrol agents. 
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Although combinations using several biological control agents have been extensively 

studied in biological control of plant parasitic nematodes results are always 

unpredictable due to the complication of the behaviour and interaction of the antagonists 

with other organisms. The objectives of these studies were to determine the: 

1) In vitro compatibility of Fusarium moniliforme Fe14, Trichoderma T30 and 

Bacillus megaterium Bm 

2)  Efficacy of simultaneuos applications of three biological control agents Fe14, 

T30 and Bm on M. graminicola 

3) Biocontrol effect of sequential applications of Fe14, T30 and Bm on M. 

graminicola 
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2. Experimental design 

2.1 In vitro compatibility of Fe14, T30 and Bm 

Compatibility of pairs of the antagonists in vitro was tested using a dual culture technique. 

Cultures of test fungi were grown on 100% PDA medium for ten days whereas the 

bacterium was multiplied on TSA and then TSB for one day (See chapter 2).  

The compatibility between Fe14 and T30 was determined by cutting a disc of each of 

the antagonistic colonies (6 mm Ø) using a sterilized plug and placing them 4 cm away 

from each other on a 100% PDA plate. To determine the compatibility between the 

bacterium Bacillus megaterium Bm with either one of the two fungi, the bacterial 

isolate was streaked across the middle of a 100% PDA plate using a sterile plastic loop 

in a cross form. Then 4 plugs of the same fungus were placed at the outer edge of each 

quadrant of the cross.  

Control plates were inoculated with only one of the two fungi or the bacterium. All 

plates were incubated in darkness at 25oC for 5 days. Compatibility was determined 

when colonies were close to merging. Radial growth was measured every 2 days until 

day 10 and compared with colony growth on the control plates. Morphological changes 

in the antagonists and the merging zones were examined under light microscopes. The 

interaction between fungus-fungus and bacterium-fungus was classified as: (1) neutral 

intermingling, (2) deadlock and (3) replacement (Stahl and Christensen, 1992). Each 

treatment was replicated 5 times and the experiment was conduced twice. 

2.2 Multiple applications of antagonists with different modes of action at sowing  

The influence of multiple applications of different biocontrol agents was tested in two 

sets of experiments. In the first experiment, the endophyte Fe14 was combined with the 

egg pathogen T30 for the biocontrol of the root-knot nematode. Rice seeds were 

sterilized and pre-germinated as previously described in chapter 2. At sowing, the soil 

of the planting hole was drenched with 5x107 spores of either T30 or Fe14 or 2.5x107 

spores each of both T30 and F14. Pots treated with tap water served as controls.  Fungal 

inoculation was repeated by another drench three weeks later. Four weeks after sowing, 
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2 ml of tap water containing 1000 J2 were inoculated to each seedling. The nematode 

inoculum was applied into 3 holes around the rhizosphere. The plants were water daily 

and fertilized weekly with the Yoshida solution. The experiment was terminated three 

weeks later. Rice roots were washed carefully and the fresh root weights were recorded. 

Nematode infection level was assessed by counting the number of galls in each root 

system. 

In the second set of experiment, one more biocontrol agent, the endophytic bacterium 

Bm was applied together with Fe14 and T30 followed the same experimental procedure 

as in the first experiment. Spores of Fe14 and T30 were collected and concentrations 

were adjusted to 107 spores/ ml. Cells of Bm were also extracted and then also adjusted 

to a concentration of 107 cfu/ ml using ¼ strength Ringer solution. Rice seeds were 

sown in experimental pots containing 250 cm3 of sterilized sandy soil. Each rice seed 

received 5 ml of one bacterial or fungal solution containing 5x107 cfu or 2.5 ml of each 

antagonist in combined treatments (2x 2.5x 107 cfu) (See chapter 2 for more detail of 

the culturing and determination of cfu of fungal and bacterial solution). Three weeks 

later, a second fungal or bacterial inoculation was applied. Control plants received the 

same amount of tap water or quarter strength Ringer solution. One week after the 

second inoculation of the fungi or the bacterium, 1000 J2 of M. graminicola were 

inoculated to each rice plant. The experiment was harvested three weeks after nematode 

inoculation. All plant roots were washed carefully and fresh root weight was recorded. 

Level of nematode infection was determined by counting number of galls per gram of 

root. Each treatment was replicated 8 times and the experiment was conducted twice. 

2.3 Sequential application of Fe14, T30 and Bm 

In this study, Fe14, Bm and T30 were applied to rice seeds and seedlings in a staggered 

time manner. Previous experiments and citations in the literature showed that 

Trichoderma is an egg pathogen to plant parasitic nematodes, including Meloidogyne 

species. Therefore, in this experiment, spores of T30 were mixed with nematode eggs in 

sterilized sandy soil to simulate the egg-pathogenic conditions in the field.  
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Rice seeds were surface sterilized and then pre-germinated on wet filter paper for 3 

days. The germinating seeds were sown into experimental pots and were immediately 

inoculated with Fe14 and/ or Bm at concentrations of 5x107 spores or cfu per seed 

respectively. Rice seedlings in combined treatment received each time 2.5 ml of both 

fungal and bacterial suspensions of the same concentration. Additional fungal or 

bacterial inoculation was made 3 weeks later by soil drenching with 5x107 cfu of each.  

Two weeks after sowing (i.e. two weeks after inoculating the rice seeds with Fe14 or 

Bm), a concentration of 105 spores of Trichoderma T30 was incorporated 

simultaneously with 20 nematode eggs per gram of sterilized sandy soil. The soil was 

mixed well with small amount of water and added to experimental pots and left for two 

weeks in the greenhouse. These pots were maintained at the same moisture level to 

facilitate the fungal activity and the living of nematode. 

Four weeks after sowing, all rice seedlings which were pre-inoculated twice with Fe14 

or/and Bm and control plants were transplanted to the pots containing the mixture of 

T30, eggs and/or J2 of M. graminicola. The experiment consisted of a control and 7 

treatments: Bm, T30, Fe14, Fe14+Bm, Fe14+T30, T30+Bm and Bm+Fe14+T30 (All). 

Galling severity was assessed three weeks after nematode inoculation. Each treatment 

was replicated 8 times and the experiment was conducted twice. 
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3. Results 

3.1 In vitro compatibility of Fe14, T30 and Bm 

Compatibility of the antagonists Fe14, T30 and Bm with each other was studied using a 

dual inoculation technique on PDA medium. In culture plates, growth of T30 was 

slightly faster than that of Fe14 and the interaction between two isolates was of the 

deadlock type (Fig 6.1). Observations under the light microscope revealed no 

morphological changes in the mycelia of either fungus. Deadlock or self-inhibition also 

occurred in plates inoculated with cultures of only Fe14. In comparison, neutral 

intermingling was observed in dual culture of T30+Bm and T30+T30. Mycelia of T30 

completely overgrew lines of the bacterium Bm while colonies of Fe14 were separated 

by Bm lines in the same plate. 

 

Figure 6.1: In vitro compatibility of Fusarium moniliforme (Fe14), Trichoderma (T30) 
and Bacillus megaterium (Bm) on Potato dextrose agar plates after 
incubation at 25oC in darkness for 14 days. 

In this experiment, the growth rate of the 2 fungal strains Fe14 and T30 was measured 

every 2 days until day 10. The average growth rate of Fe14 and T30 was 1.5 and 3 cm 
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respectively. The growth rate of Bm was slow and did not exceed 1 mm of the original 

streak on the culture medium (Data not shown). The slow growth rate of Fe14 in the 

presence of Trichoderma on the same plate indicated a slight inhibition effect of T30 

over Fe14.  

3.2 Multiple applications of antagonists with different modes of action at sowing  

Multiple applications of the two isolates Fe14 and T30, when applied individually or in 

combination reduced the root-knot nematode galling significantly. Combination of Fe14 

and T30 significantly lowered nematode galling 67% over that of the control. However, 

the level of biocontrol was not significantly different between the single or combined 

inoculations (Figure 6.2). 
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Figure 6.2: Effect of single or combined application of Trichoderma isolate T30 and 
the endophytic fungus Fusarium moniliforme Fe14 on the infection of 
Meloidogyne graminicola in rice. Vertical bars represent standard errors of 
the means. Columns having the same letters are not significantly different 
based on the LSD test (p ≤ 0.05, n=7). 

In the second experiment, all forms of inoculation reduced M. graminicola infestation. 

Applications of one or two antagonists (Bm, Fe14, T30, Fe14+T30; Bm+T30) reduced 

gall formation significantly by 20-38%. Combination of Fe14 and T30 lowered nematode 

infestation but the reduction was not significant compared to the control (Fig. 6.3). 
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Figure 6.3: Effect of individual or multiple applications of Fusarium moniliforme 
(Fe14), Trichoderma (T30) and Bacillus megaterium (Bm) on 
Meloidogyne graminicola infestation in rice roots 7 weeks after sowing 
under greenhouse conditions. Vertical bars represent standard errors of the 
means. Columns having the same letters are not significantly different 
based on the LSD test (p ≤ 0.05, n=16). 

In general, the three biological control agents, when applied individually or in 

combination to rice plants did not affect growth of rice significantly. Root weight, shoot 

weight and shoot height however was improved in most treatments. Only the bacterium 

B. megaterium Bm increased the shoot weight of rice significantly over the control and 

Fe14 treated plants (Table 6.1). 
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Table 6.1: Effect of single or simultaneous application of Bacillus megaterium (Bm), 
Fusarium moniliforme (Fe14) and Trichoderma (T30) on growth of rice 7 weeks 
after planting under glasshouse conditions. 

Treatments Root weight (g) Shoot weight (g) Shoot height (cm)

Bm 1.04 0.99 b 29
Fe14 0.78 0.79 a 27
T30 0.92 0.89 ab 29
Bm+T30 0.89 0.84 ab 25
Fe14+Bm 0.90 0.91 ab 27
Fe14+T30 0.86 0.86 ab 26
Control 0.81 0.81 a 25
P value ns 0.039 ns

Columns having the same letters in a column are not significantly different based on 
the LSD test (p ≤ 0.05, n=16). 

3.3 Sequential applications of Bm, Fe14 and T30  

All fungal or bacterial treatments in experiments 1 and 2 reduced nematode infection. In 

the first experiment, all inoculation methods reduced the nematode infestation 

significantly by 25-78% compared to that of non-treated control (Table 6.2). 

Combination of Fe14 and T30 resulted in highest biocontrol level of 68% galling 

reduction. Single inoculation of Bm reduced nematode infection significantly by 70% 

whereas the reduction caused by the single application of T30 was 25%. Except for the 

combination of Fe14 and T30, the combination of other antagonists did not result in 

significant reduction compared to that of individual application of each antagonist. 

In experiment 2, treatment with both T30+Bm reduced galling severity caused by M. 

graminicola significantly by up to 55% whereas combinations of Fe14+T30 or Fe14+Bm 

slightly reduced nematode infection compared to that of the control (Table 6.2). 
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Table 6.2: Effect of single or sequential applications of Fusarium moniliforme (Fe14), 
Trichoderma (T30) and Bacillus megaterium (Bm) on Meloidogyne graminicola 
infestation to rice 7 weeks after sowing under glasshouse conditions.  

 

M. graminicola 
/g root

Reduction 
(%)

M. graminicola  /g 
root

Reduction 
(%)

T30 62 d 33   95 b 51
Fe14+Bm+T30 49 b 47 - -
Fe14+Bm 31 b 55 159 a 19
Fe14 37 bc 60 171 a 12
T30+Bm 37 bc 60   88 b 55
Fe14+T30 20 cd 68 175 a 10
Bm 28 bc 70   153 ab 22
Control 93 a - 195 a -

Treatments
Experiment 2Experiment 1

 

Columns having the same letters are not significantly different based on the LSD test (p 

≤ 0.05, n=7). 

Single application or sequential combination of the three antagonists did not 

significantly influence the growth of rice (Table 6.3). In most treatments, inoculations 

of biocontrol agents slightly increased rice root and shoot weights. Rice treated with 

both Bm+Fe14 had significant higher root weight and slightly higher shoot weight 

compared to that of control. The same tendency was observed in single treatment of 

Fe14 and combination of Fe14+T30. However, none of the treatments affected rice 

shoot height.  
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Table 6.3: Effect of single or sequential applications of Bacillus megaterium (Bm), 
Fusarium moniliforme (Fe14) and Trichoderma (T30) on growth of rice 7 weeks 
after planting under glasshouse conditions. 

Treatments Root weight (g) Shoot weight (g) Shoot height (cm)
Fe14 1.07 bc 1.04 ab 36.2
Bm 0.92 abc 1.24 ab 35.9
T30 0.57 a 0.94 a 35.6
Fe14+Bm 1.23 c 1.18 ab 32.8
Fe14+T30 1.03 bc 1.11 ab 34.2
T30+Bm 0.78 ab 1.21 ab 35.3
Fe14+Bm+T30 1.00 abc 1.35 b 35.7
Control 0.63 ab 0.97 a 33.7
P value 0.000 0.000 ns  

Columns having the same letters are not significantly different based on the LSD test 

(p≤0.05, n=7). 
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4. Discussion 

4.1 In vitro compatibility of Fe14, T30 and Bm 

Compatibility of different antagonists amongst one another is an important factor when 

different biocontrol organisms are combined in a treatment system. In this experiment, 

growth rate of T30 when alone in 100% PDA was fastest. The growth of Bm did not 

exceed 3 mm of the original streak on culture medium which was expected for a 

bacterium. Slow growth of Fe14 in the presence of Trichoderma in the same plate 

suggested a slight inhibition effect of T30 on this isolate. Trichoderma T30 probably 

produced antimicrobial compounds that influenced the growth of Fe14. However, T30 

did not overgrow or cover mycelia of Fe14 but a deadlock zone was produced. This 

phenomenon was the most common interaction between two species cultured in the 

same plate. Deadlock also occurred between colonies of the same fungus as in the case 

of Fe14+Fe14 and this interaction is referred to as self-inhibition. Thus, a general 

judgement on compatibility of Trichoderma and the endophytic fungus Fe14 and the 

bacterium Bm from the dual culture test was difficult. The in vitro inhibition activity 

was tested in vivo in the following sections to validate the in vitro compatibility and 

investigate their biological interactions because Fe14 and Bm are endophytes while 

Trichoderma was previously demonstrated to be present only in the rhizosphere and 

thus, they occupy different niches. In addition, their different modes of action, if 

compatible would also improve nematode biocontrol efficacy. 

4.2 Multiple applications of antagonists with different modes of action at sowing  

The isolates Fe14 and T30 when applied alone or in combination significantly reduced 

M. graminicola infestation to rice. However, combination of Fe14 and T30 did not lead 

to greater biocontrol efficacy compared to single treatment of T30. Biocontrol levels 

ranging from negative over neutral to positive were reported in combinations of 

different biocontrol agents in controlling plant parasitic nematodes. Some researchers 

observed greater effects when combining Furasium and Trichoderma species in a 

biocontrol system. For examples, zum Felde et al. (2006) reported that inoculation of 

the endophytic Fusarium and Trichoderma isolates to banana suckers to control R. 
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similis improved biocontrol level significantly when compared to individual treatments 

under field conditions. Similarly, Mendoza and Sikora (2009) demonstrated greater 

effects when the endophyte F. oxysporum Fo162 was combined with Paecilomyces 

lilacinus in controlling Radopholus similis in banana. In their study, F. oxysporum 

showed induced systemic resistance while P. lilacinus was the nematode egg-pathogen. 

Diverse modes of action are likely to result in greater biocontrol efficacy when the 

antagonisms are applied in combination (Gutsy et al., 2001; de Boer et al., 2003). 

In contrast, combination of some biocontrol agents might reduce overall biocontrol. For 

example, Meyer et al. (2001) demonstrated that combinations of Burkholderia cepacia 

and Trichoderma virens did not result in greater biocontrol level than the single 

treatment. The reason for this decreased effect was suggested to be due to the 

antagonism of biocontrol agents to each other. In comparison, the combination of T. 

virens and B. cepacia to control fungal diseases in corn, tomato and pepper was reported 

to improve control over that obtained when each agent was applied alone (Mao, 1998a, 

b). Masadeh et al. (2004) also obtained the same tendency when combining the AMF 

fungus Glomus intraradices and T. viride in biocontrol of root-knot nematodes in 

tomato. The combination of these two fungi however did not result in synergistic effects 

toward M. hapla and M. incognita in greenhouse experiments. The reason for this lower 

effect was believed to be due to the antagonism of biocontrol agents to each other.  

In the present experiment, the combination of F. moniliforme and Trichoderma reduced 

galling severity significantly but it was not better than the single treatment, suggesting 

that combination would not improve the level of biocontrol. 

Previous studies have demonstrated that individual applications of Trichoderma, F. 

moniliforme or B. megaterium reduced the penetration of M. graminicola into rice roots 

(Padgham and Sikora, 2007; Le et al., 2009). In this study on simultaneous application, 

all single and combined applications of these three antagonists reduced nematode 

infestation significantly by 20-38%. The only exception was the combined treatment 

Fe14+T30, where the effect was not significantly different from the control.  
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Many studies have been conducted on the effect of combining antagonists with different 

modes of action against plant pathogens (Meyers and Roberts, 2002). However, the 

degree of success varies substantially. While many combined treatments have resulted 

in greater effects (de Leij et al., 1992; Guetsky et al., 2001; Meyer et al.; zum Felde et 

al., 2005; Mendoza and Sikora, 2008; Chaves et al., 2009), some actually reduced the 

level of biocontrol when compared to single treatment (Esnard et al., 1998; de Boer et 

al., 1999; Meyer et al., 1998; Chen et al., 2000). 

Scientists prefer a control system where antagonistic activity is optimized. Since the soil 

is a complex ecosystem where many organisms reside and interact with one another, 

combination of biological agents is believed to be a good option to protect the plants in 

different stage of development through different modes of action. 

De Leij et al. (1992) demonstrated synergistic activity when the egg pathogenic fungus 

Pochodia chlamydosporia (syn. Verticilium chlamydosporium) and the bacterial 

parasitic Pasteuria penetrans were combined in soil in controlling M. incognita in 

tomato. A combination of the two agents caused the largest reduction in galling. 

Similarly, Mendoza and Sikora (2009) reported the same effect when the egg pathogen 

Paecilomyces lilacinus isolate 251 was combined with the endophyte F. oxysporum 

Fo162 and the pathogenic bacterium B. firmus to control R. similis in banana. The 

biocontrol level was improved when more antagonists were combined but not 

synergistically. However, in the present study, the combination of biocontrol agents did 

not result in greater level of biocontrol compared to individual treatments. This was 

probably due to competition for nutrients and space inside the root zone between Fe14 

and Bm or the antimicrobial effect of T30 on the other antagonist as observed in the in-

vitro dual culture test. Combinations may not be beneficial, as antagonism can occur 

between biocontrol organisms, and lead to unchanged control levels (Zaki and Maqbool 

1991, Viaene and Abanoi 2000) or even to lower control (Esnard et al. 1998, Chen et al. 

2000), when compared to individual applications of biocontrol agents. 
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4.3 Sequential application of Fe14, T30 and Bm 

In this study, antagonists were combined in a staggered time manner, Fe14 and Bm at 

sowing and before transplanting and T30 incorporated with M. graminicola eggs. 

Trichoderma species are known as egg pathogens of wide range of plant parasitic 

nematodes and  the biocontrol activity of Trichoderma has been extensively studies and 

can be considered one of the best studied biocontrol agents (Meyer et al., 2001; 

Masadeh et al., 2004; zum Felde et al., 2006; Dababat, 2007). In this set of experiments, 

Trichoderma spores and eggs of M. graminicola were mixed in the soil and left for a 

period of 2 weeks so that Trichoderma could infect the nematode eggs in the plant-free 

soil. Fe14 and Bm as endophytes need a certain period of time to colonize and establish 

inside the root zone for example after applied to rice seedbeds. By doing this, the effect 

of each antagonist against M. graminicola in and outside the root zone might be 

optimized. The experimental results showed that the combination of Fe14 and T30 

significantly reduced nematode infestation by 68%. Other combinations of Fe14+Bm, 

Bm+T30 also significantly reduced galling severity compared to the control. However, 

the difference was not significant among these treatments. These results are similar to 

those obtained in the previous experiment in the section 3.2 in which no additive or 

synergistic effects were observed in combined applications of the antagonists. Mendoza 

and Sikora (2009) demonstrated that sequential combination of P. lilacinus PL 251 and 

endophytic F. oxysporum Fo162 significantly reduced nematode penetration compared 

to the single inoculation but the activity was not additive or synergistic. Likewise, zum 

Felde et al. (2006) illustrated that multiple combinations of endophytic F. oxysporum 

and Trichoderma resulted in significant reduction of R. similis penetration in banana. 

Other authors also applied multiple control agents and obtained improved control. In 

comparison, Meyers et al. (2001) did not observe greater biocontrol efficacy when they 

combined P. fluorescens. 

It was suggested that antagonism between biocontrol agents may occur. Sequential 

application of Trichoderma T30 and B. megaterium Bm also reduced nematode 

infestation significantly in the present test. However, the combined inoculation was not 



Chapter 6  Control of M. graminicola by multiple combinations of microbial antagonists 

90 

better compared to single treatment. Therefore, single treatments of each biocontrol 

agent were adequate.  

5. Conclusion 

The biological control activity of individual or combined applications of the endophytic 

F. moniliforme Fe14 with Trichoderma T30 and the endophytic bacterium B. 

megaterium Bm was investigated. From the experimental results the following 

conclusions can be made: 

1)  A single application of Fe14, T30 and Bm was sufficient to reduce M. 

graminicola infection significantly 

2)  Simultaneous applications of Fe14 with T30 and Bm did not lead to significant 

increase in level of biocontrol and thus is not recommended 

3)  Similarly, combined applications of Fe14 with T30 and Bm in different time 

manner are not recommended due to the non-significant results compared to 

individual treatments 
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SUMMARY AND RECOMMENDATIONS 

Investigations on biological control of the root-knot nematode M. graminicola in rice 

are poorly documented. Therefore, the findings of the present research are particularly 

important and can be summarized as follow:  

1) The endophytic F. moniliforme isolates Fe14 and Fe14 extensively colonized rice 

roots under both oxic and anoxic soil conditions and persisted in the root tissues 

over a 5 months period at a strong level.  

2) Neither Fe1 nor Fe14 displayed pathogenic symptoms after 5 months exposure 

nor promoted rice growth. 

3) Fe14 reduced penetration of the nematode to the rice roots but also reduced 

nematode development and reproduction.  

4) Root exudates from Fe14 treated plants altered host finding ability of M. 

graminicola indicating physiological changes in the rice root or the release of 

toxic substances.  

5) Induced systemic resistance was demonstrated for the first time in rice with an 

endophyte in a split-root system design. Biocontrol therefore resulted from 

initiation of induced systemic resistance coupled with changes in host finding 

ability.  

6) Fe14 exhibited high levels of biocontrol under anoxic soil conditions. The 

findings demonstrated for the first time the potential of applying endophyte 

biological control technology in different soil water regimes. 

7) Seed treatment as well as soil drenching was demonstrated to be effective 

methods of fungal inoculation for successful endophytic colonization and 

biocontrol.  

8) Single application was adequate to achieve high level of biocontrol.  
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9) The endophyte Fe14 isolate requires an incubation period to colonize endorhiza 

and improve establishment before biocontrol can take place. Therefore seed 

treatment combined with seedbed production is recommended for optimum use 

of this biocontrol system. 

10) Combinations of the endophyte Fe14 with different biocontrol agents such as 

the egg pathogen Trichoderma or the endophytic bacterium Bacillus megaterium 

did not lead to greater levels of biocontrol compared to individual treatments 

and thus are not recommended. 

11) The present study not only demonstrated great potential of applying biocontrol 

technology against M. graminicola in rice but also leads to the possibility of 

developing a model of biocontrol system against other important pests under 

different soil water regimes. 
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