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Abstract 

Pathogenic Mycobacteria persist in an early endosome-like compartment by interfering with 

late endosomal fusion mediating factors. Studies have unraveled some of the mechanisms 

employed by mycobacteria to create a niche for themselves in macrophages, but it is widely 

accepted that they possess an arsenal of weapons to impede phagosome genesis. 

M. marinum has gained importance in recent years, as a model organism to study 

mycobacterial pathogenesis due to its phylogenetic closeness to M. tuberculosis. The 

infection it causes in its natural hosts display characteristic features of tuberculosis, exhibiting 

blocking of phagosome maturation and granuloma formation.  

To gain insight into the genes required for the inhibition of phagosome maturation, M. 

marinum transposon mutant library representing knock outs covering the entire genome was 

sifted for mutants defective in inhibiting phagosome maturation by designing an elegant 

screen, which employs magnetic separation. In this process we identified a number of mutants 

unable to inhibit phagosome maturation and characterised in detail one of these mutants 

(mutant P1). The colony morphology and sequence analysis revealed that the interrupted gene 

of mutant P1 (pmiA) is likely to be involved in lipid metabolism. The mutant also had a 

reduced intracellular survival as inferred from the in vitro bacterial survival experiments in 

HMDM and using mice as an in vivo model. The mutant completely reverted to its wild-type 

phenotype when complemented with the respective gene from wild-type M. marinum. Thin 

layer chromatography on the lipids isolated from the mutant showed that the disruption of the 

gene pmiA in mutant P1 leads to the loss of a glycolipid of the outer envelope of M. marinum 

(Robinson N et al., Infect Immun. 2007 Feb;75(2):581-91). 

The missing glycolipid was further characterised to be a phenolic glycolicpid (PGL) using 

mass spectrometry and nuclear magnetic resonance spectroscopy. In order to prove that the 

lipid is capable of inhibiting phagosome maturation, it was extracted from wild-type M. 

marinum, coated on to hydrophobic beads and chased into human monocyte derived 

macrophages (HMDM). Characterising the phagosomes containing the beads by western blot 

analysis and immunofluorescence microscopy proved the lipid to be a key molecule employed 

by virulent mycobacteria to inhibit phagosome maturation.  

Phagosomes were characterised employing an efficient adenoviral transfection system 

harbouring Rab-GFP fusion proteins to transfect primary phagocytes. This transfection 
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system enables phagosome maturation to be studied efficiently by fluorescence microscopy in 

live cells, in contrast to immunostaining which can be performed only on fixed cells.  

The gene pmiA involved in the biosynthesis of the phenolic glycolipid shows little homology 

with the gene sequences available through genome databases. It also does not display any 

signature sequences of proteins with known functions. Therefore, an attempt was made to 

study its interacting proteins by using Histidine-tag pull down assay. Proteins interacting with 

pmiA were analyzed by mass spectrometry. A methyl transferase and an isocitrate lyase, both 

enzymes critically involved in lipid biosynthesis were found to interact with pmiA. Our 

results prove that genes involved in the synthesis of this phenolic glycolipid are ideal 

pharmacological targets to design drug interventions against tuberculosis. 
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 1  Introduction 

1.1 Tuberculosis 

Tuberculosis (TB) is a chronic infectious disease which has afflicted humanity for over 

35,000 years. Its etiological agent Mycobacterium tuberculosis (Mtb) has accounted for 

more human deaths than any other pathogen to date. TB is also an old disease in terms 

of its documentation. Descriptions of the pulmonary lesions in patients who had died of 

consumption were clearly documented by the French physician Rene Theophile 

Hyacinthe Laennec in his landmark work “A treatise on disease of the chest” in 1821. 

Another French physician Jean-Antoine Villemin published in 1868 “Etudes sur la 

Tuberculosis” (studies on tuberculosis) identifying the infectious nature of tuberculosis. 

Villemin had also provided proof of transmissibility of the disease. The job of 

identifying the causative agent of TB was left to Robert Koch, who announced his 

discovery at a meeting of the Physiological Society of Berlin on 24 March 1882. Koch’s 

contributions to the study of TB were enormous. The staining technique developed by 

Koch still remains an important tool in diagnosing TB. These documentations prove the 

antiquity of the TB (Daniel, 2006). TB continues to have a devastating impact globally, 

claiming the lives of approximately 2 million people yearly worldwide. Every year 8 

million people become newly infected with the Mtb and has been noted that a person 

becomes infected with the bacilli every second (WHO, 2006). These staggering 

statistics remain true despite the fact that TB is one of the first infectious diseases for 

which a vaccine and drugs became available. 

1.1.1 TB Pathogenesis 

TB predominantly develops in the lung. Mtb is transmitted by the expulsion of nasal 

droplets from an infected individual to an uninfected one. These droplets containing the 

bacilli are able to reach the alveoli of the respiratory tract. Alveolar macrophages and 

probably dendritic cells (DC), which screen the mucosa for foreign organisms, ingest 

the tubercle bacilli. The alveolar macrophages are usually equipped to destroy any 

invading pathogen. Virulent mycobacteria have devised mechanisms to survive in the 

hostile environment of these macrophages. Therefore, these alveolar macrophages serve 

as mobile habitat. It is widely postulated that alveolar macrophages in the airways, are 

stimulated to invade the lung epithelium following internalization of inhaled bacteria. 
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The invading macrophages loaded with the bacilli produce tumour necrosis factor alpha 

(TNF-α) and other inflammatory chemokines, resulting in the recruitment of successive 

waves of neutrophils, natural killer (NK) T-cells, CD4+ T-cells and CD8+ T-cells. Each 

of these cells produces their own complement of cytokines and chemokines that amplify 

cellular recruitment, resulting in the remodelling of the infection site. This 

inflammatory cascade is regulated and superseded by a specific cellular immune 

response that is linked to the production of interferon gamma (IFN-γ). At this stage the 

bacteria multiply inside the macrophages, leading to the recruitment of more and more 

macrophages and inflammatory cells. This marks the formation of stable granuloma. 

More mature phase granulomas show marked neo-vascularization and develop an 

extensive fibrotic capsule that delineates the margin between the macrophages, 

granulocytes, foamy macrophages and giant cells. The granulomas thus formed can be 

either progressive or non-progressive. Progressive granulomas in the later stages lose 

their vascular appearance and become necrotic leading to the development of caseous 

necrosis. Caseous necrosis starts in the centre of the granuloma, as a result of killing of 

macrophages in which the bacilli multiply. The size of the caseous lesion is proportional 

to the bacillary load. One of the most intriguing observations is the relative distribution 

of bacteria and bacterial products. Several studies noted that although bacteria were 

found in the central necrotic region of the lesion, a significant proportion of bacteria 

were associated with macrophages in the peripheral leukocytic infiltrate. These 

macrophages have been found bordering the necrotic region and outside the fibrotic 

capsule. One possible explanation could be that the macrophages walling the caseous 

center ingest the bacteria escaping from the edge of the caseum.  

The human tuberculosis granuloma is the product of a cellular immune response to 

various mycobacterial components. In AIDS patients diminished capacity to mount a 

CD4+ dependent T-cell response correlates with reduced granuloma forming capacity 

and consequently a reduced ability to prevent metastasis of infection. Although studies 

indicate that granuloma structures deal with the containment of infection and 

transmission as a breakdown of immunoregulation, mycobacteria have a vested interest 

in driving transmission (Russell, 2007). How does Mtb influence this process to 

maximize its survival and subsequent transmission under strong immune pressure? The 

propensity of virulent mycobacteria to invade host macrophages by inhibiting 
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phagosome maturation (PM) is considered central for the pathogen’s effective 

pathogenicity, latency and transmission. 

1.2 Virulent Mycobacteria Inhibit Phagosome Maturation  

Mtb and other virulent mycobacteria lik Mycobacterium bovis, Mycobacterium avium 

and Mycobacterium marinum dwell in macrophages by modifying the phagosome 

according to their requirements and thus preventing PM. This is a signature mechanism 

of virulent mycobacteria. A deeper understanding of the different signalling events 

involved in PM is necessary for the evaluation of mycobacterial principles that 

participate in the inhibition of PM. 

1.2.1 Phagosome Maturation 

The process by which cells internalize large foreign particulate matter is termed 

phagocytosis, which was first popularized by Ilya Metchnikoff by the end of the 19th 

century. Immunity to many microbial infections depends on the phagocytosis of 

invading bacteria by specialised phagocytes (Macrophages, DCs and neutrophils) into a 

plasma membrane derived intracellular vacuole or phagosome. The resulting 

phagosomes then undergo a series of fission and fusion events that modify the 

composition of the limiting membrane and their contents by a sequence that resembles 

the progression of the endocytic pathway. This process is termed phagosome 

maturation.  

Immediately after phagosome formation, the limiting membrane of the phagosome 

resembles the plasma membrane. Recently proteomic analysis of latex bead containing 

phagosomes has identified endoplasmic reticulum being another source of membrane, 

but this proposal is still under debate (Gagnon et al., 2002); (Desjardins, 2003); (Touret 

et al., 2005). As such the phagosome does not evince bactericidal activity. It undergoes 

a complete overhaul, resulting in massive changes in its composition due to a 

progressive maturation process. This process depends critically on the interaction of the 

phagosome with the endocytic pathway; which is a continuum of organelles ranging 

from early endosomes (EE) to lysosomes. Phagosomes undergo transient fusion/fission 

events with the organelles of the endocytic pathway, which are accompanied by 

selective transfer of tracers from the lumen of endosomes to phagosomes. These 

observations have led to the proposal of a “kiss and run” hypothesis (Desjardins, 1995).   
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The first endocytic organelle phagosomes engage with is the EE or the sorting 

endosomes (SE). Several studies indicate that the early phagosomes and EE coalesce. 

These vacuoles are often tubulovesicular and can be typically recognised by the 

presence of Rab5 GTPase, early endosomal antigen 1 (EEA1) and transferin receptors 

(Tfr). The lumen of EE is relatively poor in proteases and is mildly acidic with a pH of 

6.0. From EE or SE cargo can be either sorted out to the recycling endosomes 

earmarked by the presence of Rab11 GTPase or to the late endosome (LE). Killing of 

pathogens and MHCII presentation of antigens to T-cells can be accomplished only if 

the cargo is sorted to the late phagosomes which resemble the LE. These LEs are more 

acidic with a pH of 5.5 and are comparatively enriched in hydrolytic enzymes. LEs can 

be identified by their multivesicular nature, the presence of Rab7 GTPase, Rab9 

GTPase, lysobisphosphatidic acid and lysosome associated membrane protein (LAMP) 

(Vieira et al., 2002). Rab7 is considered vital for the interaction of phagosomes with LE 

by associating itself with dynein-dynactin (microtubule associated motor complex), 

through Rab7 interacting lysosomal protein (RILP). The motors promote the extension 

of tubules towards the late endocytic compartment (Jordens et al., 2001). The final stage 

in the phagosomal degradation pathway is the formation of phagolysosomes by fusing 

with lysosomes. The lysosomes contain the bulk of the proteases and lipases and are 

extremely acidic (pH < 5.5). Lysosomes contain LAMPs and hydrolytic enzymes such 

as cathepsin-D, β-galactosidase etc. These enzymes facilitate the degradation of the 

pathogen and in the loading of peptides on to MHCII. NADPH oxidase also assembles 

in the phagosomes catalysing the formation of reactive oxygen intermediates. It also 

contributes an optimal environment for the activation of proteases. Due to different 

stages PM appears as a complex biological process that is nevertheless performed 

elegantly (Vieira et al., 2002). 

1.2.2 Methods to Study Phagosome Maturation 

Different stages of phagosome maturation have been analysed by investigating the 

proteins that are present on the phagosome/endosome. As described earlier (1.2.1), each 

stage is marked by the presence of different Rab GTPases. Therefore, Rab GTPases can 

be used as markers to study PM (Deretic et al., 1997).  PM has been studied on isolated 

phagosomes of infected phagocytes, using autoradiography and western blot analysis. 

However, fluorescence microscopy is at the present time, probably the most widely 
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used imaging technique to study association of stage-specific proteins with the 

phagosomes/endosome, as it enables the molecular composition of the structures being 

observed to be identified through the use of fluorescently-labelled probes of high 

chemical specificity such as antibodies. These bind stably and specifically to their 

corresponding antigen, they are invaluable as probes for identifying a particular 

molecule in cells, tissues or biological fluids.  Antibody molecules can be used to locate 

their target molecules accurately in cells. When the primary antibody itself or the 

secondary anti-immunoglobulin antibody is labelled with a fluorescent dye the 

technique is known as immunoflurescence microscopy. However, use of antibodies is 

mainly confined to studies of fixed specimens because of the difficulties of introducing 

antibody complexes into living specimens. Non-specific binding of antibodies to 

different proteins of the cell is also possible, which can mislead the investigator. For 

proteins that can be extracted and purified in reasonable amounts, these difficulties can 

be circumvented by directly conjugating a fluorophore to a protein and introducing this 

back into a cell. It is assumed that the fluorescent analogue behaves like the native 

protein and can therefore serve to reveal the distribution and behaviour of this protein in 

the cell. 

An exciting new development in the use of fluorescent probes for biological studies has 

been the development of the use of naturally fluorescent proteins as fluorescent probes. 

The jellyfish Aequorea victoria produces a naturally fluorescent protein known as green 

fluorescent protein (GFP). The gene for this protein has been cloned and can be 

transfected into other organisms. This can provide a very powerful tool for localizing 

regions in which a particular gene is expressed in an organism, or in identifying the 

location of a particular protein. Surprisingly, in many cases these chimeric proteins 

preserve their original function. It is therefore often possible to use this technique to 

visualize the intracellular distribution of a protein. An outstanding advantage of the 

GFP technique is that living, unstained samples can also be observed. There are 

presently several variants of GFP which provide spectrally separable emission colours 

(Heim and Tsien, 1996). 

Gene delivery into primary macrophages is a major hurdle in the use of GFP-fusion 

proteins to study protein distribution in these cells. As they are terminally differentiated 

cells and do not divide, retroviral vectors fail to transfect efficiently (Haddada et al., 

1993). Hence PM has not been studied using protein markers fused to fluorescent 
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proteins in primary macrophages. A better transfection protocol would greatly enable 

researchers to study PM in primary phagocytes.  

1.2.3 Intracellular Signals Targeted by Virulent Mycobacteria to Inhibit 
Phagosome Maturation 

The fact that pathogenic mycobacteria dwell in a hostile environment of the 

macrophages, occupying a naive phagosomal compartment and avoiding the default 

pathway of phagosome maturation was first demonstrated by Armstrong and Hart using 

tracers that end up in the phagolysosomes (Armstrong and Hart, 1975). Phagocytosis of 

mycobacteria involves multiple receptors. The mode of entry has been considered to 

predetermine the subsequent fate of mycobacteria. Mycobacteria opsonised with 

specific antibodies and taken up via Fcγ receptors end up in phagolysosomes. However, 

experiments blocking individual receptors did not show differential trafficking.  Early 

studies have defined the markers of phagosomes containing mycobacteria. Table: 1 

gives a detailed compilation of proteins and lipids studied till date. The most salient 

features of  mycobacterial phagosomes are that they fail to acidify below pH 6.2 and are 

characterised by the absence of lysosomal associated membrane proteins (LAMP), 

lysosomal hydrolases, reduced levels of ATPase and retention of early endosomal 

markers Rab5 (Russell, 2001); (Via et al., 1997).  Phagosomes containing mycobacteria 

were found to tether TACO or mouse coronin. This was thought to be a reason for the 

defective PM. Other independent groups either found coronin insufficient to halt 

mycobacterial phagosomes from maturing or could not confirm the role of coronin. 

Recent studies indicate that mycobacteria effectively arrest phagolysosomal biogenesis 

by suppressing sphingosine 1-phosphate regulated cytosolic Ca2+ rise ((Malik et al., 

2001); (Malik et al., 2003)), which in turn hinders recruitment of Phosphoinositol-3-

kinase (PI3K) or yeast hVPS34 to the phagosomal membrane. Aberrant mustering of 

hVPS34 inhibits tethering of EEA-1 or Hepatocyte growth factor-regulated tyrosine 

kinase substrate (Hrs) to the mycobacterial phagosome (MP), leading to an obstruction 

in the delivery of lysosomal ingredients from trans golgi network to the MP (Deretic et 

al., 2004). Actin is an important factor that mediates the fusion of phagosomes with the 

organelles of the endocytic pathway. Pathogenic mycobacteria are capable of disrupting 

the actin filament network surrounding the mycobacterial phagosome (Guerin and de 

Chastellier, 2000). This disruption of actin nucleation surrounding the MP has been 
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observed to be complemented by the addition of selected lipids (arachidonic acid, 

phosphoinositol-4,5-bisphosphate (PtdIns(4,5)P2), ceramide, sphingosine and 

sphingosine-1-phosphate) at low and high ATP concentrations. Another important 

molecule in PM is cAMP. Levels of cAMP in phagosomes are regulated by protein 

kinaseA (PknA). Lowering cAMP or inhibiting PknA leads to increased actin 

nucleation and phagosome-lysosome fusion and thereby increased killing of pathogenic 

mycobacteria (Kalamidas et al., 2006).   M. avium and Mtb containing phagosomes also 

become gradually depleted for selective cell surface derived glycoproteins and probably 

mycobacteria themselves revert back to reside in immature phagosomes from 

phagolysosome (Pietersen et al., 2004). Mycobacteria thus target multiple signalling 

events in a disciplined fashion using their complex machinery. Understanding the 

armoury used by mycobacteria to prevent PM is imperative in designing new 

therapeutics or vaccines to tackle TB.  

Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

Maturation markers 

Cathepsin D + +a Lysosomal hydrolase (Sturgill-Koszycki et al., 1996) 

CD63 (LIMP-1) + − Lysosomal marker (Clemens and Horwitz, 1995) 

V1 H+ATPase (E 

subunit) 

+ − Head group of vacuolar 

H+ATPase (ATP 

hydrolysis), acidification of 

phagosome 

(Sturgill-Koszycki et al., 1994) 

Vo H+ ATPase (16-

kDa proteolipid; 

110-kDa accessory 

protein) 

+ − Transmembrane portion of 

vacuolar H+ATPase (H+ 

translocation), acidification 

of phagosome 

(Fratti et al., 2003b); (Sturgill-

Koszycki et al., 1996) 

LAMP-1, LAMP-2 + +/−b Lysosomal markers (Clemens and Horwitz, 1995); (Xu 

et al., 1994) 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

Mannose 6 

phosphate receptor  

+ − Lysosomal hydrolase 

trafficking 

(Xu et al., 1994); (Barker et al., 

1997) 

Transferrin receptor 

(TfR) and 

transferrin 

+c +c Recycling endosome 

markers and iron delivery 

(Clemens and Horwitz, 1996); 

(Sturgill-Koszycki et al., 1996); (Via 

et al., 1997); (Kelley and Schorey, 

2003) 

Small GTP-binding proteins 

ARF6 +c +c Endosomal trafficking, 

actin remodeling, cell 

shape 

(Niedergang et al., 2003) 

LRG-47 +d +d Specifically induced by 

IFNγ 

(MacMicking et al., 2003) 

Rab2 +e ND ER to golgi traffic (Garin et al., 2001) 

Rab4 −e,f,g −e,f Recycling endosome, fast 

recycling 

(Garin et al., 2001), (Via et al., 

1997)f 

Rab3c +e ND Unknown (Garin et al., 2001) 

Rab5 +h +h Early endosome fusion (Via et al., 1997) 

Rab7 + − Late endosome transport (Via et al., 1997) 

Rab9 +f −f Late endosome to TGN 

retrograde transport 

(Fratti et al., 2003b); (J. Chua et al., 

unpublished data)f 

Rab10 +e,f +f Unknown (Garin et al., 2001)f 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

Rab11a + + Recycling endosome (Fratti et al., 2003b) 

Rab11b +e ND Recycling endosome (Garin et al., 2001) 

Rab14 +e,f,i +f,i Unknown (Garin et al., 2001); (J. Chua et 

al.,unpublished data)f 

Rab22 +f,i +f,i Unknown (J. Chua et al., unpublished data)f 

Rab interacting proteins 

Guanine nucleotide 

dissociation 

inhibitor (GDI) 

− + Maintains Rab5 in GDP-

bound (inactive) form 

(Fratti et al., 2003a) 

EEA1 + − Early endosome tethering 

molecule 

(Fratti et al., 2001) 

Rabaptin-5 − − Rab5 effector (Fratti et al., 2001) 

Rab7-interacting 

lysosomal protein 

(RILP) 

+j ND Dynein motor endosomal 

movement 

(Harrison et al., 2003) 

SNAREs and interacting proteins 

Cellubrevin +k +k Recycling endosome v-

SNARE 

(Fratti et al., 2002) 

Endobrevin + + Recycling endosome v-

SNARE 

(R.A. Fratti et al., unpublished data)
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

N-ethylmaleimide-

sensitive fusion 

protein (NSF) 

+ + ATPase essential for 

membrane fusion 

(Fratti et al., 2002) 

alpha-soluble NSF 

attachment protein 

(αSNAP) 

+ + NSF adaptor essential for 

membrane fusion 

(Fratti et al., 2002) 

SNAP23 + + Plasma membrane, early 

endosome t-SNARE 

(Fratti et al., 2002) 

Syntaxin 3 + + Plasma membrane t-

SNARE 

(Fratti et al., 2003b) 

Syntaxin 4 +c +c Plasma membrane and 

endosome t-SNARE 

(Vergne et al., 2004b); (R.A. Fratti 

et al., unpublished data) 

Syntaxin 6 + − TGN t-SNARE (Fratti et al., 2003b) 

Syntaxin 7 + + Late endosome t-SNARE (Defacque et al., 2000); (R.A. 

Frattiet al., unpublished data) 

Syntaxin 8 + + Early endosome, late 

endosome t-SNARE 

(Fratti et al., 2003b) 

Syntaxin 13 + + Early endosome t-SNARE (Fratti et al., 2001), (Defacque et 

al., 2000) 

 

Cytoskeleton proteins and motors 

Actin +e − Microfilaments (Anes et al., 2003), (Garin et al., 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

2001) 

Annexins +l +/−l Unknown (Diakonova et al., 1997), (Pittis et 

al., 2003) 

Coronin/TACO +m +m Actin-binding protein 

participating in 

phagocytosis 

(Pieters, 2001)n; (Tailleux et al., 

2003) 

Dynein and 

dynactin 

+ ND Microtubule motor (Blocker et al., 1997) 

Ezrin/moesin + ND Actin assembly (Defacque et al., 2000) 

Kinesin + ND Microtubule motor (Blocker et al., 1997) 

Myosins + ND Actin motor (Al-Haddad et al., 2001) 

Tubulin +e ND Microtubules (Garin et al., 2001) 

Signaling proteins 

Calmodulin +n − Ca2+-binding sensor (Malik et al., 2001) 

CaMKII/Phospho 

CaMKII 

+n − Calmodulin effector 

protein kinase 

(Malik et al., 2001) 

 

 

Lipids and lipid modifying enzymes 

Cholesterol ND +o Lipid rafts (Gatfield and Pieters, 2000) 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

Diacylglycerol 

(DAG) 

+j ND Signaling lipid on plasma 

membrane 

(Botelho et al., 2000) 

Lysobisphosphatidi

c acid (LBPA) 

+ − Late endosome, 

multivesicular bodies 

(Fratti et al., 2001), (Fratti et al., 

2003a) 

Phosphatidylinositol 

3-phosphate (PI3P) 

+p +/−p Signaling lipid on 

endosomes 

(Vieira et al., 2001); (J. Chua et al., 

unpublished data)p 

Phosphatidylinositol 

4-phosphate (PI4P) 

−f −f Precursor of PI(4,5)P2 (J. Chua et al., unpublished data)f 

Phosphatidylinositol 

4,5-bisphosphate 

(PI(4,5)P2)Z 

+f,q +f,q Signaling lipid on plasma 

membrane 

(Botelho et al., 2000); (J. Chua et 

al., unpublished data)f 

Phosphatidylinositol 

3,4,5-trisphosphate 

(PI(3,4,5)P2) 

+f,q,r +f,q,r Signaling lipid on plasma 

membrane 

(Marshall et al., 2001); (J. Chua et 

al., unpublished data)f,r 

MTM1 − − PI3P phosphatase (J. Chua et al., unpublished data)f 

MTMR3 + + PI3P phosphatase (J. Chua et al., unpublished data)f 

Phosphatidylinositol 

3-Kinase (p85 unit), 

Type I 

+j,q ND Regulatory subunit, 

synthesis of PI(3,4,5)P3 

(Marshall et al., 2001) 

Phosphatidylinositol 

3-Kinase (hVPS34), 

Type III 

+s +s Catalytic subunit, 

synthesis of PI3P 

(Fratti et al., 2001),(Vieira et al., 

2001) 

Phosphatidylinositol 

phosphate kinase 

+j,q ND Synthesis of PI(4,5)P2 (Botelho et al., 2000) 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

(PIKIα), Type I 

Phospholipase C 

(PLCγ) 

+j,q ND Signaling enzyme 

recruited to the plasma 

membrane 

(Botelho et al., 2000) 

PTEN −j ND Terminates PI(3,4,5)P3 

signal, produces PI(4,5)P2

(Marshall et al., 2001) 

SHIP1 +j,q ND Terminate PI(3,4,5)P3 

signal, produces PI(3,4)P2

(Marshall et al., 2001) 

Biosynthetic pathway 

Calnexin + + ER chaperone (Gagnon et al., 2002), (Tailleux et 

al., 2003) 

Calreticulin +t ND ER chaperone (Gagnon et al., 2002), (Henry et al., 

2004))t 

Sphingomyelin + − Sphingolipid made in 

Golgi 

(Fratti et al., 2003b) 

Antigen presentation and recognition 

CD1a, b, and c +u +u Lipid antigen presentation (Schaible et al., 2000) 

MHC class I +/−v +/−v Cytosolic antigen 

presentation 

(Clemens and Horwitz, 1995) 

MHC class II +/−v +/−v Endosomal antigen 

presentation 

(Clemens and Horwitz, 1995), 

(Ullrich et al., 2000) 
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Table 1  Regulators of membrane trafficking and maturation markers on mycobacterial phagosomes 

Protein or lipid 
Latex Bead 
phagosome 

Mycobacter
Phagosome

Cellular function or 
location References 

Toll-like receptors 

(TLR) 

+ ND Pathogen-associated 

molecular patterns 

recognition and initiation 

of innate immune 

responses 

(Underhill et al., 1999)  

aImmature intermediate form. 
bVariable results. 
cSyntaxin 4, ARF6, and TfR accumulate on mycobacteria phagosomes, whereas they are transiently 
present on latex bead phagosomes. 
dLRG-47 expression is induced in IFNγ-activated macrophages. 
eProteomic analysis of purified latex bead phagosomal preparations (Garin et al., 2001). 
fTime-lapse 4D confocal microscopy with GFP fusion protein in RAW-transfected cells. 
gRab4 was not detected on mycobacteria and latex bead phagosomes by Western blot on isolated 
phagosomes (Via et al., 1997). However, it was detected on latex bead phagosomes using a 
proteomic approach (Garin et al., 2001). 
hRab5 accumulates on mycobacterium phagosomes but not on latex bead phagosomes. 
iDifferent dynamics between latex bead and mycobacterium phagosomes. 
jIgG-opsonized 3-μm beads used for model phagosome (instead of 1-μm beads). 
kCellubrevin is present on both mycobacteria and latex bead phagosomes, but a putative degradation 
product is present on mycobacteria phagosomes. 
lLess annexin I, VI, VII, and XI on mycobacteria phagosomes than on latex bead phagosomes. 
mCoronin, termed TACO by Pieters and colleagues, appears to be selectively accumulated on 
mycobacterial phagosomes (Pieters, 2001). 
nDead mycobacteria used for model phagosome (instead of 1-μm latex beads). 
oCholesterol enrichment during mycobacteria entry into macrophages. 
pTime-lapse confocal microscopy with GFP fusion protein probe for PI3P in RAW-transfected cells. 
Different dynamic and profiles between 1-μm latex bead and mycobacteria phagosomes (J. Chua et 
al., unpublished data). 
qPresent on phagocytic cups but absent upon completion of the phagosomal closure. 
rPI(3,4,5) P3 is present on phagocytic cups of mycobacteria and IgG-opsonized 3-μm beads but not on 
complement-opsonised 1-μm bead phagosomes. 
sWestern blot of isolated phagosomes shows that hVPS34 is present on latex bead and mycobacteria 
phagosomes but at different time points. 
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tYFP-tagged ER targeting and retrieval sequence of calreticulin failed to colocalize with erythrocyte 
phagosomes (Henry et al., 2004). 
uCD1a and c are found on mycobacterial phagosomes, whereas CD1b is found only on 
phagolysosomes. 
vDifferent profiles depending on the macrophages (human versus murine and resting versus IFNγ-
activated). 

Adapted from (Vergne et al., 2004a) 

1.3 Genetic Tools to Study Mycobacterial Virulence Factors 

The first condition of Koch’s molecular postulates was to isolate a mutant bacterium 

with a phenotype that differs from wild-type phenotype. This postulate was fulfilled 

with the isolation of BCG (bacillus Calmette-Guèrin) by Calmette and Guèrin in 1908. 

To prove that a phenotype such as virulence is caused by the presence and expression of 

specific gene, it is necessary to (i) isolate a mutant bacterium with a phenotype that 

differs from the wild-type phenotype, (ii) to clone the wild-type gene and (iii) by 

introducing the wild-type gene back into the mutant bacterium, to reproduce the wild-

type phenotype. These points have been considered by molecular biologists as Koch’s 

molecular postulates. Methods to fulfil molecular postulates of Koch, namely to clone 

the wild-type gene and introducing the wild-type gene back into the mutant bacterium, 

to reproduce the wild-type phenotype were not possible until quite recently.  Unique 

characteristics of mycobacteria like that of its slow growth rate and unusually rich lipid 

cell envelope were major obstacles in the development of genetic methodologies to 

study this organism (Jacobs and Bloom, 1994).  

Approaches for studying mycobacterial pathogenesis include (a) analysis of 

mycobacterial gene expression under specific growth  and environmental conditions, (b) 

the use of information derived from genome determinations to identify homologues of 

virulence genes of other organisms, (c) generation of mutations in specific genes 

hypothesised to be involved in pathogenesis and comparison of intracellular survival 

and growth between mutant and wild-type strains, and (d) screening of libraries of 

randomly generated mutants for altered ability to survive and grow intracellularly.  

1.3.1 Gene Expression Analysis  

In past years studies on mycobacterial gene expression during its growth in different 

environments have augmented our understanding of mycobacterial physiology. Many of 
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these studies have been performed on mycobacteria grown under in vitro conditions 

designed to simulate in vivo situations. However, advancements in molecular biological 

techniques have enabled investigators to use animals or human cells in culture to 

analyze in vivo gene expression.  

Investigators have used complementary DNA (cDNA) subtractive hybridization to 

identify genes differentially expressed by bacteria grown in various environments or 

closely related bacterial species. This method subtracts out common cDNA molecules 

and leaves cDNA molecules corresponding to genes that are differentially expressed or 

uniquely expressed by mycobacteria in a specific environment. cDNA-RNA subtractive 

hybridization was used to identify differentially expressed genes by comparing 

messenger RNA (mRNA) levels in virulent Mtb strain (H37Rv) with that of an avirulent 

Mtb strain (H37Ra) (Kinger and Tyagi, 1993). In another study, cDNA-cDNA 

subtractive hybridization was used to compare differential gene expression patterns of 

M. avium grown in macrophages compared to that of M. avium grown in broth. This is 

the only published study in which c-DNA subtractive hybridization was performed on 

cultured primary macrophages (Plum and Clark-Curtiss, 1994). Selective capture of 

transcribed sequences, an improvement of c-DNA subtractive hybridization was 

developed for analysing bacterial gene expression during growth in HMDM (Graham 

and Clark-Curtiss, 1999). This technique was also used to study the genes expressed by 

Mtb and M. avium in common that are important for survival and growth in HMDM 

(Hou et al., 2002). 

Another approach for identifying genes that are differentially expressed in specific 

environments has been the generation of libraries of DNA fragments cloned into 

plasmids upstream of a promoterless reporter gene. The principle of this assay is that 

some of the clones in the library will possess promoter sequences which can be induced 

in response to specific environmental conditions resulting in the expression of the 

reporter gene. The reporter gene should encode a product which is stable and easy to 

assay in mycobacteria. Reporter genes namely, cat, lacZ, phoA and xylE have been used 

by different groups (Kinger and Tyagi, 1993). More recently gene encoding GFP has 

been extensively used by several groups to assess induction of the respective genes in 

response to various environmental conditions. In contrast to other reporter genes, GFP 

does not require the addition of substrates or cofactors, thus allowing this reporter to be 

used when studying live bacteria.  In addition to facilitating studies on broth grown 
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bacteria, GFP reporter systems have been used to study gene expression in 

mycobacteria growing in cultured cells and in animal tissues. A GFP reporter system 

was also used in promoter trap libraries of M. marinum DNA fragments, leading to the 

identification of virulent genes expressed specifically in granulomas (Ramakrishnan et 

al., 2000). 

The most desirable way to assess gene expression in Mtb growing in a specific 

environment would be to analyse every possible ORF in the genome. This capability is 

the premise and the promise of DNA microarray analysis (Clark-Curtiss and Haydel, 

2003). These microarray based studies typically use expression data to make inferences 

about the biological functions of regulated genes – a strategy proven to be fruitful in 

other organisms. Most microarray based mycobacterial studies have focused on in vitro 

conditions thought to mimic infections (i.e. starvation, iron limitation, exposure to nitric 

oxide or hypoxia (Betts et al., 2002); (Ohno et al., 2003); (Hampshire et al., 2004); 

(Bacon et al., 2004). DNA microarray analyisis for studying mycobacterial gene 

expression in vivo is technically challenging due to the requirement of large amounts of 

total RNA in order to generate cDNA probes. However, a few groups have succeeded in 

overcoming technical hurdles, enabling comprehensive analysis of genes expressed in 

vivo. Mtb expression patterns in the context of macrophage were first examined by 

Schnappinger and colleagues (Schnappinger et al., 2003). More recently the 

transcriptome signature of Mtb in human pulmonary tuberculosis was elegantly studied 

on clinical lung samples using DNA microarray analysis (Rachman et al., 2006). 

Although gene expression studies are of value and interest, there are important 

limitations in the design and interpretation of expression experiments. (i) These studies 

represent snapshots in time. Altering the expression of a gene might have consequences 

at a much later point during the course of infection. (ii) Transcriptional changes in a 

gene could be responses to a variety of stimuli. (iii) Although the upregulation of a gene 

might suggest an important role in infection, this is certainly not always true. Therefore 

complementary approaches are needed to dissect the roles of individual genes (Murry 

and Rubin, 2005). 

1.3.2 Comparative Genomics 

Determination of the complete nucleotide sequence of Mtb H37Rv (Cole et al., 1998), 

Mtb CDC1551, M. avium (http://www.tigr.org), M. bovis, M. marinum 



   
23

(http://www.sanger.ac.uk) and M. leprae (Cole et al., 2001) genomes has provided a 

means to compare these genomes and has revealed features of the genomes that were 

previously unknown. Comparison of genomes has also provided information that should 

be useful for further understanding of the basis for attenuation of strains such as Mtb 

H37Ra and M. bovis BCG. By identifying sequences that have been deleted or disrupted 

in the attenuated strains and the subsequent knock out of specific genes in these 

sequences in wild-type Mtb or M. bovis or introducing these genes into the attenuated 

strains, investigators were able to evaluate the contributions of specific genes to 

virulence (Clark-Curtiss and Haydel, 2003). Recent work has suggested that strain 

comparisons will continue to yield significant insights into pathogenesis. Genomic 

deletions and alterations are likely to be present in most clinical strains and there are 

evidences that these alterations might affect the severity of the disease outcome (Kato-

Maeda et al., 2001a; Kato-Maeda et al., 2001b); (Tsolaki et al., 2004). Studies have 

been carried out to show that some strains, such as the Texas HN878 strain, as well as 

several other Beijing strains, kill mice more rapidly than the sequenced reference strains 

(Manca et al., 1999); (Lopez et al., 2003). These results complement epidemiological 

evidence, supporting the increased prevalence of Beijing strains (Glynn et al., 2002).  

Although strain variability has important biological consequences, limited knowledge is 

available on the mechanisms of pathogenesis that are common to all strains.  Analysis 

of variation has limited ability to illuminate shared characteristics (Murry and Rubin, 

2005). 

1.3.3 Generation of Mutations in Specific Genes 

The tubercle bacillus has been extremely successful at holding its own virulence secrets 

hostage. However, development of several efficient mutagenesis strategies has greatly 

assisted in identifying Mtb virulence factors. In order to decipher the roles of genes 

identified through gene expression analysis or comparative genomics approach, 

candidate genes have to be mutated as a complementary approach.  

Targeted knock out of specific genes in mycobacteria has been achieved by using linear 

substrates, counterselectable plasmid delivery systems and phage delivery systems. 

Earlier long linear substrate: ∼ 20 kb of homologous flanking DNA was used to create a 

mutant. More recently, allelic exchange mutants have been created by electroporating 
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short, linear plasmids harbouring the respective genes interrupted by Kanamycin or 

Hygromycin resistant markers (Clark-Curtiss and Haydel, 2003). Counterselectable 

plasmid delivery systems have greatly improved the efficiency of isolating targeted 

mutations in mycobacteria. The most common allelic exchange mutagenesis procedure 

currently being used with mycobacteria involves a two-step selection method 

employing the counterselectable properties of the sacB gene, which is lethal to 

mycobacteria in the presence of sucrose (Pelicic et al., 1996a, 1996b). After the first 

selection on an antibiotic containing solid medium, clones are propagated in liquid 

medium to facilitate second crossover needed for allelic exchange followed by selection 

on sucrose. This procedure has been used extensively to generate numerous mutants.  

The development of conditionally replicating mycobacteriophages provides another 

genetic strategy to generate targeted deletion mutations via allelic exchange. The 

mycobacteriophage delivery system involves the use of temperature-sensitive shuttle 

phasmids that can replicate as plasmids in E. coli and as phages in mycobacteria. These 

phasmids are able to infect and replicate as phage particles in M. smegmatis at 30°C 

(permissive temperature), but fail to replicate in bacterial host cells (e.g. Mtb) at the 

nonpermissive temperatures, 37°C (TM4-based) or 38.5°C (D29-based), thereby 

allowing transposon delivery or generation of defined deletion mutations by allelic 

exchange (Bardarov et al., 1997). 

1.3.4 Analysis of Mutant Library 

Transposon mutagenesis is a procedure that generates stable, single insertions which 

can be subsequently linked to the disrupted gene. Transposon mutagenesis is achieved 

by using a transposon, a DNA element that can move from its original site on a DNA 

molecule to a random site in the same or different DNA molecule. The transposition 

event, i.e., the transfer of the transposon from one site to another is mediated by a gene 

encoding for transposase. In addition to carrying the transposase, the transposon carries 

a selectable marker gene, such as an antibiotic resistance gene. Thus to generate a 

library of transposon-inserted mutants, the transposon is introduced into the host 

bacterium by means of a delivery vector that cannot replicate in the host organism. The 

transposon will hop from the delivery vector to the chromosome of the host bacterium. 

The bacterial cells in which the delivery vector is introduced are plated on medium 

containing selective agent. Only those cells in which the transposon has stably inserted 
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will give rise to colonies. By collecting large sets of colonies from such an experiment, 

a library of transposon mutants can be assembled. Because transposon-mediated 

mutagenesis can potentially allow for insertions in every gene of a bacterial 

chromosome, transposon mycobacterial mutant libraries have been constructed in 

different mycobacterial strains and species. Several advances in molecular 

mycobacteriology have enabled analysis of multiple mutants rather than performing 

individual experiments with each mutant.  

Signature tagged mutagenesis (STM) marked a new era in the generation of transposon 

mutant libraries and in the subsequent screening of bacterial virulence gene mutants in 

appropriate animal models. This novel system uses a pool of uniquely oligonucleotide-

tagged transposons for mutagenesis, thus allowing individual transposons to be 

identified by hybridization to the signature oligonucleotide tag after insertion into the 

genome. Therefore, pools of mutants can be used to infect animals in an effort to 

identify strains with attenuated virulence. STM has been successfully used to identify 

numerous virulence genes in numerous pathogens including Mtb (Clark-Curtiss and 

Haydel, 2003). 

Additional approaches DeADMAn (Designer arrays for defined mutant analysis) and 

TraSH (transposon site hybridization) for screening transposon pools have been recently 

developed. These methods rely on microarray hybridization for the analysis of mutant 

abundance, which provides a more quantitative approach than radiolabelling used by 

STM. All these screens have been so far employed to study genes involved in the fitness 

of mycobacteria in the host. They use a very narrow definition of virulence. These 

screens identify genes that are required for bacterial survival and growth in the host. 

Survival and growth, though necessary to cause disease, are by no means the only 

functions associated with causing it (Murry and Rubin, 2005). Specific screens to 

identify virulent genes involved in arresting PM in macrophages, which is considered 

central for the TB pathogenesis, will greatly assist in understanding the virulence 

mechanisms of mycobacteria. 

1.4  Mycobacterial Factors Disrupting Phagosome Maturation 

Though several host cell mechanisms in the inhibition of phagosome maturation have 

been proposed, the explanation of how mycobacteria accomplish a safe haven for 

themselves in the macrophages remains elusive. Generating genetic tools to study 
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mycobacteria have lead to identification of virulence factors involved in the inhibition 

of PM. Early studies by Goren and colleagues have shown that Mtb uses its sulphur-

containing-lipid to inhibit PM (Goren et al., 1976), but this was later attributed to a 

technical problem. Cord factor or trehalose dimycolate (TDM) a characteristic lipid of 

Mtb caused a delay in phagosomal acidification (Indrigo et al., 2003). Phosphoinositols 

are part of another mycobacterial lipid family which includes lipoarabinomanan (LAM) 

and phosphoinositol mannoside (PIM). Phagocytised LAM coated beads have similar 

properties as that of MP, including reduced acidification and reduced acquisition of late 

endosomal markers. LAM also inhibits PI3kinase dependent pathway between TGN 

and phagosomes. LAM also prevents the recruitment of EEA-1 another important factor 

in PM. Improper recruitment of EEA-1 leads to reduced Ca2+ flux (Vergne et al., 

2003). This explains in part the mycobacterial inhibition of Ca2+/calmodulin complex 

as shown by Kusner and colleagues (Malik et al., 2001; Malik et al., 2003). 

Phosphoinositol mannosides (PIM) are similar to the mammalian phosphoinositol lipids 

and hence preferentially enhance fusion of MPs with early endosomes by competing 

with phosphoinositol-3-phosphate (PI3P) (Vergne et al., 2004b). Studies have also 

postulated possible roles for mycobacterial urease (Gordon et al., 1980). In addition, a 

secreted mycobacterial lipid phosphatase (SapM) was identified by Vergne and 

colleagues which is held responsible for hydrolyzing PI3P, leading to inhibition of PM 

(Vergne et al., 2005).  Eukaryotic-like serine/threonine mycobacterial protein kinase G 

is said to prevent transfer of mycobacteria to lysosomes, suggesting that virulent 

mycobacteria have evolved eukaryotic-like signal transduction mechanisms (Walburger 

et al., 2004). It is reasoned that close apposition of mycobacteria to the phagosomal 

membrane hampers MP maturation (de Chastellier and Thilo, 1998). This concept was 

expanded by the observation that cholesterol depletion with methyl-β-cyclodextrin 

loosened the close apposition of phagosomal membrane and bacterium and resulted in 

fusion with lysosomes (de Chastellier and Thilo, 2006). ESAT-6 and CFP-10 might also 

have additional roles in inhibiting PM as evinced from studies conducted using M. 

marinum (Tan et al., 2006). Discrepancies arising from different groups and recent 

screens to identify genes involved in the inhibition of PM suggest involvement of more 

than one effector molecule in the retardation of MP maturation (Pethe et al., 2004); 

(Stewart et al., 2005). Most of the studies emphasise the participation of the 

mycobacterial cell envelope lipids in the inhibition of PM. 
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1.5 Unique Cell Envelope and Lipids of Mycobacteria 

Mycobacteria are a family of eubacteria that belong to a group of Gram-positive 

bacteria containing GC-rich DNA (Cole et al., 1998). These bacteria produce cell walls 

of a unique structure, containing meso-diaminopimelic acid as the diamino acid in the 

peptidoglycan. Interestingly the muramic acid residue is N-glycosylated in 

mycobacterium, in contrast to the N-acetlyation found in most other bacteria. An 

important feature of the cell wall is the presence of a unique polysaccharide, 

arabinogalactan (AG), which is substituted by characteristic long chain fatty acids, 

namely the mycolic acids containing 70-90 carbon atoms (Brennan and Nikaido, 1995).  

Mycolic acids 

Mycolic acids are high molecular weight α-alkyl, β-hydroxy fatty acids. They primarily 

appear as esters of AG, but are also in extractable lipids namely as trehalose 6-6’- 

dimycolate (TDM or cord factor). Mycolic acid structures can be separated into 

meromycolate moiety and the α-branch. They have the largest α-branch (C20 to C25). In 

the main chain (the meromycolic acid moiety), they contain one or two groups which 

may be double bonds or cyclopropane rings that are capable of producing "kinks" in the 

molecule; they may contain oxygen functions additional to the β-hydroxy group; and 

they may have methyl branches in the main carbon backbone (Fig: 1). The 

cyclopropane rings in the meromycolate chain are mediated by specific methyl 

transferases (Barry et al., 1998); (Glickman et al., 2000). Knocking out the genes 

coding for these methyltransferases leads to loss of oxygenated mycolic acids and 

cyclopropanation on major mycolic acids, difference in colony morphology and reduced 

virulence (Dubnau et al., 2000); (Glickman et al., 2000). These observations also 

implicate the fine structure of mycolic acid subclasses in the interaction of mycobacteria 

with the host immune system. 
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Fig1: Structure of mycolic acids from mycobacteria adapted from (Brennan and Nikaido, 1995) 

Lipoarabinomanan (LAM) 

Mycobacteria also contain soluble immunologically active arabinomanan (Azuma et al., 

1970). Studies showed that LAM contains glycerol, inositol and phosphate in addition 

to arabinose, mannose, lactate, succinate, palmitate and tuberculostearate, which were 

identified much earlier (Hunter and Brennan, 1990). LAM is a multiglycosylated 

extension of PIMs. The arabinose termini of LAM from Mtb is capped with mannose 

residues and termed as mannose lipoarabinomanan (ManLAM) (Chatterjee et al., 1992). 

In contrast, the LAM of the rapidly growing species M. smegmatis is devoid of mannose 

caps and is termed arabinose lipoarabinomanan (AraLAM) (Prinzis et al., 1993). LAM 

exhibits a wide spectrum of immunoregulatory functions. Earlier data using LAM of M. 

leprae and AraLAM from a rapidly growing mycobacterium species were interpreted as 

a suggestion that LAM suppresses immune responses, thus contributing to pathogenesis 

of tuberculosis and leprosy. These data include LAM-induced abrogation of T-cell 

activation (Kaplan et al., 1987), inhibition of γ-interferon mediated activation of murine 

macrophages (Sibley et al., 1988), scavenging of potentially cytotoxic oxygen free 

radicals, and inhibition of protein kinase C activity (Chan et al., 1991). Although 

AraLAM evoked a large array of cytokines associated with macrophages, such as TNF-

α (Chatterjee et al., 1992), granulocyte macrophage colony stimulating factor, and 

interleukins-la, lb, 6, and 10 (Barnes et al., 1992), this was frequently interpreted as a 
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contributor to the disease processes: for example, the production of fever, weight loss, 

and tissue necrosis was emphasized in the case of TNF-α. More recently, however, 

ManLAM, which is present in strains of Mtb, was found to be much less potent in 

evoking TNF-α, in contrast to AraLAM found in non-virulent species (Chatterjee et al., 

1992). Similarly, AraLAM, but not ManLAM, was found to activate the early response 

genes (including c-fos and the genes for TNF-α) in macrophages (Roach et al., 1993). 

Additionally, ManLAM could stimulate phagocytosis by interacting with the Man 

receptor (Schlesinger, 1993). These results now suggest that Mtb strains become 

phagocytised efficiently but survive within the host macrophages because their 

ManLAM does not activate these phagocytes (Brennan and Nikaido, 1995). Moreover, 

recently it was shown that Mtb LAM inhibited cytosolic calcium rise thereby blocking 

the acquisition of late endosomal and lysosomal markers. 

Waxes, Acylated Trehaloses and Sulpholipids 

Several slowly growing mycobacteria contain an array of waxes, generally long-chain 

diols [phthiocerols A and B, phthiodiolone, phthiotriol; phthiocerol A is a mixture of 3-

methoxy-4-methyl-do-(and tetra)-triacontane-9,11-diols] in which long chain fatty acids 

namely mycocerosic acid or its isomer phthioceranic acid are esterified to both hydroxyl 

groups. Three other families of trehalose-based lipids have been implicated in the 

pathogenesis of tuberculosis (Brennan and Nikaido, 1995), (i) cord factor, (ii) the 

simpler acylated trehaloses [containing a combination of saturated straight-chain C16-

C19, C21-C25 mycocerosate, C24-C2s mycolipanolic, and C25-C27 mycolipenic fatty 

acids: for example, 2, 3-di-O acylated trehalose isolated from Mtb, (iii) and  the 

sulfolipids (trehalose 2´-sulfate acylated with hydroxyphthioceranic, phthioceranic, and 

saturated straight-chain fatty acids). The cord factor can produce granulomatous 

inflammation and thymic atrophy when injected into mice (Ozeki et al., 1997) in 

addition to affecting membrane fusion in model systems (Spargo et al., 1991) and 

toxicity for mitochondria (Glickman and Jacobs, 2001). Mutants that failed to produce 

or secrete the phthiocerol containing PDIM (Phthiocerol di mycocerosate) failed to 

replicate in the lungs and were hypothesized to be necessary for organ specific 

replication (Camacho et al., 1999); (Cox et al., 1999). Sulfolipid of Mtb was the first 

lipid to be shown to inhibit PM. Thus, all these waxes are thought to be significant for 

the successful pathogenesis. 
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The Extractable Lipids of Cell Wall 

The search for dominant antigens on the surfaces of various mycobacteria, especially 

"atypical" (or nontuberculous saprophytic) mycobacteria, was stimulated by the 

infections caused by these bacteria in immunocompromised patients (Horsburgh and 

Selik, 1989). This led to the definition of a remarkable army of cell wall glycolipids 

(Brennan, 1989). The major classes of such extractable glycolipids include 

lipooligosaccharides (LOS), phenolic glycolipids (PGLs), and glycopeptidolipids 

(GPLs)  

Members of the LOS class of glycolipids were first found in M. kansasii and later in M. 

malmoense, M. szulgai, M. gordonae, and M. butyricum. They are composed of variable 

residues of xylose, 3-O-methyl rhamnose, fucose and a novel N-acylamino sugar (N-

acylkansosamine) linked to a common tetra glucose core, which itself contains an α,α´-

trehalose moiety at the end (Figure: 2). The terminal glucose residue of the α,α´-

trehalose unit is usually acylated at positions 3, 4, and 6 by 2,4-dimethyl tetra decanoic 

acid residues ("R" in Figure2 ) (Brennan and Nikaido, 1995). Very recently LOS 

biosynthetic gene cluster was identified in M. marinum and it was also shown that LOSs 

play an important role in sliding motility, biofilm formation, and infection of host 

macrophages (Ren et al., 2007). 

Another class of mycobacterial glycolipids are glycopeptidolipids (GPLs) [described as 

"C-mycosides" in earlier literature]. As shown in Figure 5, the head group is a short 

peptide, D-Phe-D-allo Thr-D-Ala-L-alaninol and the alaninol is substituted by a 3, 4-di-

O-methyl-L-rhamnose. The hydroxyl group of the D-allothreonine residue carries an 

oligosaccharide substituent; its most proximal portion is usually α-L-rhamnopyranosyl-

(1-2)-6-deoxy-L-talopyranose. The amino group of D-phenylalanine residue is 

substituted by a fatty acid residue. GPLs are the major cell surface antigens of the M. 

avium, M. intracellulare, M. scrofulaceum group, and they can be subdivided into 31 

distinct serotypes based on the serospecific GPLs. GPL has been suggested to protect 

mycobacterial cells within the phagolysososmes. It is also shown that GPL from M. 

avium serovar 4 inhibits PM whereas GPL from serovar 9 does not inhibit PM. 

Additionally it is also reported that the inhibition is mediated through mannose receptor 

(Shimada et al., 2006).  
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Another class of glycolipids is more correctly termed glycosylphenolphthiocerol 

dimycocerosates, although the term PGL is generally used (Brennan, 1989); (Besra et 

al., 1991); (Dobson et al., 1990); (Gaylord and Brennan, 1987). This class includes 

"mycoside A" of M. kansasii, "mycoside G" of M. marinum, and "mycoside B" of M. 

bovis in the earlier literature. Their structure (Figure: 2) is characterized by a very large 

hydrophobic moiety, containing a C36 phenolic diol substituted by two molecules of 

typically C34 fatty acid, mycocerosate. The oligosaccharide part contains from one to 

four sugar residues, and the sugars are usually not very hydrophilic, often consisting of 

deoxy sugars that are multi-O-methylated. PGL is thought to contribute to the 

intracellular survival of M. leprae within macrophages of individuals with lepromatous 

leprosy through its ability to scavenge oxygen radicals. The variable oligosaccharide 

constituents of these glycolipid antigens are usually of sufficient antigenicity as to 

evoke corresponding specific antibodies and thereby allow serodiagnosis of individual 

mycobacterioses and leprosy (Gaylord and Brennan, 1987). PGL is apparently not 

found in the sequenced strains of Mtb thought to be due to a frame shift mutation 

between two genes encoding polyketide synthases pks1-15 (Constant et al., 2002). 

Although not produced by the laboratory strains of Mtb, epidemiologically more 

prevalent Beijing strains produce PGL and are shown to be more virulent. PGL was also 

shown to inhibit production of proinflammatory cytokines in bone marrow derived 

mouse macrophages, which were previously stimulated with apolar lipids of an Mtb 

pks1-15 mutant (Reed et al., 2004). 
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Fig 2: Structure of three major classes of extractable glycolipids of the mycobacterial cell wall 

adapted from (Brennan and Nikaido, 1995).  

1.6 Analysis of Mycobacterial Lipids 

The introduction of the new spectroscopic and chromatographic techniques since the 

early 1960s has revolutionised the approaches to the analysis of these relatively 

intractable natural compounds. Thin layer (TLC), gas and high performance liquid 

chromatographic techniques (HPLC) allow the preparation of reproducible lipid profiles 

and the rapid small-scale isolation of individual components. Radio labelling of lipids 

with specific radiolabelled substrates combined with chromatography aids in the 

biochemical characterisation of the lipid. Mycobacterial lipids are radiolabelled by 

growing mycobacteria in a medium containing specific substrates which are radioactive. 

Lipids are radiolabelled when bacteria uses the radioactive substrate to synthesise the 



   
33

lipid. These lipids can be extracted using organic solvents and analysed by 

chromatography.  

Thin Layer Chromatography 

TLC is the most commonly used chromatographic technique to generate lipid profiles. 

It is a simple, quick, and inexpensive procedure that gives a quick answer as to how 

many lipid components are in a mixture. TLC is also used to support the identity of a 

compound in a mixture by comparing the retention factor (RF) value of the sample with 

that of a standard. A TLC plate is a sheet of glass, metal, or plastic which is coated with 

a thin layer of a solid adsorbent (usually silica or alumina). A small amount of the 

mixture to be analysed is spotted near the bottom of this plate. The TLC plate is then 

placed in a shallow pool of a solvent in a developing chamber so that only the very 

bottom of the plate is in the liquid. This liquid, or the eluent, is the mobile phase, and it 

slowly rises up the TLC plate by capillary action. As the solvent moves past the spot 

that was applied, equilibrium is established for each component of the mixture between 

the molecules of that component which are adsorbed on the solid and the molecules 

which are in solution. In principle, the components will differ in solubility and in the 

strength of their adsorption to the adsorbent and some components will be carried 

farther up the plate than others. When the solvent has reached the top of the plate, the 

plate is removed from the developing chamber, dried, and the separated components of 

the mixture are visualised. Visualisation is done using reagents that react with the lipid 

or the sugars of glycolipids etc to give colours to the spots. When the samples are 

coloured, spots can be seen with naked eye. Alternatively plates can be viewed under 

UV-light. In the case that lipids are radiolabelled X-ray films can be placed over the 

plate and later developed to reveal the spots.  

Mass spectrometry and Nuclear magnetic resonance spectroscopy facilitate the precise 

determination of the masses and functional groups of the lipid to be analysed. Most of 

the mycobacterial lipids have been structurally characterized employing these two 

techniques. 

Mass Spectrometry 

Mass spectrometry is unlike most other forms of spectroscopy or spectrometry that are 

concerned with non-destructive interactions between molecules and electromagnetic 
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radiation. A mass spectrometer converts sample molecules into ions in the gas phase, 

separates them according to their mass to charge ratio (m/z) and sequentially records the 

individual ion current intensities at each mass - the mass spectrum. The principle of the 

mass spectrometer is simple though details vary enormously. Atoms from the material 

to be studied are ionized, accelerated to a known energy by passing through a potential 

difference, and then passed through a magnetic field which separates particles with 

different momentary. The ions can be produced by bombarding atoms in the residual 

gas with an electron beam in the ion source. The (positively charged) ions are then 

accelerated by the voltage which can be adjusted to choose ions of the desired mass. 

Some of the ions pass through a slit and enter a region with a uniform magnetic field. If 

voltage is chosen correctly, ions of the appropriate mass are deflected by the magnetic 

field, pass through a second slit, and are detected in an ion collector. The amplified 

signal from the ion collector is a measure of the ion current. These ion current 

intensities are drawn in histogram form taking the most intense ion current as 100%, the 

values of m/z versus percentage relative intensity. The mass peaks can be compared 

with standards to identify compounds or with the theoretical mass of a compound. 

Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance, or NMR, is a phenomenon which occurs when the nuclei 

of certain atoms are immersed in a static magnetic field and exposed to a second 

oscillating magnetic field. Some nuclei experience this phenomenon, and others do not, 

dependent upon whether they possess a property called spin. All nuclei that contain odd 

numbers of protons or neutrons have an intrinsic magnetic moment and angular 

momentum. The most commonly measured nuclei are hydrogen-1 (the most receptive 

isotope at natural abundance) and carbon-13, although nuclei from isotopes of many 

other elements can also be observed. NMR studies magnetic nuclei by aligning them 

with a very powerful external magnetic field and perturbing this alignment using an 

electromagnetic field. The resulting response to the external perturbing electromagnetic 

magnetic is the phenomenon that is exploited in nuclear magnetic resonance 

spectroscopy. 

1.7 Mycobacterium marinum as a Model  

Although some genetic tools for studying Mtb are now available, it remains a difficult 

organism to work with. This has turned many investigators towards related organisms. 
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M. marinum has become increasingly useful as a model organism. It causes fatal 

infection in fresh and salt water fish as well as amphibians. In humans it is the causative 

agent of a disease called swimming pool granuloma (Wolinsky, 1992); (Collins et al., 

1985). A recent case study expands the spectrum of infection caused by M. marinum to 

granulomatous pulmonary disease in humans (Lai et al., 2005).  Signature mechanisms 

of tuberculosis disease initiation, namely retardation of PM and granuloma formation 

are conserved between M. marinum and M. tuberculosis (Barker et al., 1997). Faster 

growth of M. marinum compared to that of M. tuberculosis and its phylogenetic 

closeness to M. tuberculosis complex have been exploited to some extent. Utilising 

M. marinum as a model, granuloma-specific expression of virulence proteins from the 

glycine rich PE-PGRS family (Ramakrishnan et al., 2000) and MmW04 gene involved 

in intracellular survival and pigmentation have been identified (Gao et al., 2003a). 

Studies using M. marinum mutants helped to identify kasB as a novel drug target in 

mycobacteria. This gene is required for full elongation of mycolates. The respective 

mutants have increased permeability of their cell walls with the consequence of 

impaired growth within macrophages (Gao et al., 2003b) and loss of acid fastness in 

Mtb (Bhatt et al., 2007). A M. marinum virulence factor as yet not found in other 

virulent mycobacteria is the escape from their phagosome to the cytosol and a capability 

for cell to cell spreading by polymerising actin of the host cell (Stamm et al., 2003). 

The archetypical mycobacterial pathological feature of granuloma formation in tissues 

has been addressed in an elegant study using M. marinum. It was shown that existing 

granulomas fail to eliminate invading naïve mycobacteria that traffic to them (Cosma et 

al., 2004). More recently additional roles for ESAT-6 (Early secreted antigen) and CFP-

10 (Culture filtrate protein) in impeding PM and the essentiality of Erp (exported 

repetitive protein) in mounting an initial infection have been established using M. 

marinum (Cosma et al., 2006); (Tan et al., 2006). The diversity of possible approaches 

used in these studies validates the utilization of M. marinum as a model to study 

mycobacterial pathogenesis. It was one of the aims of this work to apply a genetic 

screen to M. marinum and ask whether the genes involved in the important 

mycobacterial virulence trait, namely inhibition of PM, can be identified and further 

studied. 
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 2  Objectives 

The objective of this study was to identify and characterise mycobacterial virulence 

factors that are involved in the inhibition of PM.  

The availability of mycobacterial genomes have facilitated several genetic screens, 

designed to identify genes implicated in the infection process. Although it is likely that 

the resulting list of genes from such screens contain mediating factors arresting PM, the 

lists are too complex to identify such components directly. Moreover, the lysosomal 

milieu is clearly bacteriostatic and only weakly bacteicidal for Mtb. Therefore, using 

bacterial death to identify mutants defective in arresting PM will be misleading and will 

be masked by other deleterious mutations. Hence, the primary objective was to design a 

screening technique to sift through a pool of mycobacterial mutants for mutants 

particularly defective in inhibiting PM. This objective was to be addressed using 

M. marinum as a model for other virulent mycobacteria, namely Mtb. 

As with any other screening techniques validity of the screen can be assessed only by 

demonstrating atleast some of the mutants have the predicted phenotype. In order to 

study the phenotype of the mutants the maturation status of the phagosomes containing 

mutants has to be analysed. Therefore one of the aims of this thesis was also to develop 

necessary tools to study phagosome maturation.   

Finally, the resulting lists of genes from genetic screens are less informative unless the 

effector molecules the genes directly or indirectly codes for is known. Therefore, 

investigations were carried out to pin down the effector molecules encoded by the 

affected genes of the mutants that directly inhibit PM.  
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 3  Materials and Methods 

3.1 Materials 

3.1.1 Instruments Used 

Name of the Instrument Brand Name Manufacturer 

β-Scintillation counter 1217 Rackbeta  LKB Wallac 

Agarose gel electrophoresis 

apparatus 

Mini-sub Cell GT Bio-Rad 

Capillary electrophoresis 

sequencer 

ABI PrismTM 310 Genetic 

Analyzer 

Applied Biosystems 

Cell mill MM2000 Retsch 

Centrifuge Table top: Sepatech 15Biofuge Heraeus 

CO2 Incubator Hera cell 240 Heraeus 

Electroporator E. coli pulser Biorad 

Flowcytometer FACScanTM Becton Dickinson 

Fluorescence microscope IX81 Olympus 

Gel documentation apparatus Geldoc 2000 Bio-Rad 

Heating Plate (TLC) Thermoplate S Desaga/Sarstadt 

Hybridization oven OV1 Biometra 

Laminar air flow bench Herasafe KSP15 Heraeus 

Mass spectrometer Q-TOF 2 Micromass 



   
38

NMR spectrometer AMX 500 Bruker 

pH meter Multical WTW 

Shaker incubator InnovaTM 4200 New Brunswick  Scientific 

Sodium dodecyl sulphate - 

Polyacrylamide agarose gel 

electrophoresis (SDS-PAGE) 

apparatus  

Mini Protean II Bio-Rad 

Sonicator bath Sonorex TK30 Bandelin 

Spectrophotometer SmartSpecTM Plus Bio-Rad 

Thermal block Thermomixer Comfort Eppendorf 

Thermal Cycler PTC200 MJ Research 

Tissue culture microscope CKX41 Olympus 

UV-Cross Linker UVC500 UV cross linker Hoefer 

Vacuum blot apparatus 

(Southern Blot) 

Vacuum Blotter Apligene 

Vortexer Reax2000 Heidolph 

Water Bath Type: 1002 Geselschaft für Labortechnik  

Weighing  Balance Genius Sartorius 

Western Blot apparatus  Mini Trans Blot Bio-Rad 

X-ray film developer  Agfa Curix 60 Agfa 
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3.1.2 Chemicals, Media and other Accessories Used 

Chemicals and accessories Manufacturer 

β-galactosidase assay kit Boehringer Mannheim, Germany 

14C palmitate supplemented Middlebrook 7H12 

medium 

BACTEC, Becton Dickinson, MD, USA  

Acetic acid Merck KGaA, Darmstadt, Germany 

Agarose Seakem ME, Lonza GmbH, Wupertal, Germany 

Alexa568 dextran Molecular Probes, Invitrogen GmbH, Karlsruhe, 

Germany 

Alexa568 transferrin  Molecular Probes, Invitrogen GmbH, Karlslruhe, 

Germany 

Alexa594 anti mouse IgG Molecular Probes, Invitrogen GmbH, Karlsruhe, 

Germany 

Ampicillin Sigma-Aldrich Chemie, Steinheim, Germany 

Carboxyl- 14C p-hydroxy benzoic acid American Radiochemicals, Cologne, Germany 

Cationic lipid transfection reagent 

(Lipofectamine) 

Invitrogen GmbH, Karlsruhe, Germany 

CDP star detection kit GE Healthcare Europe GmbH, Munich, Germany 

Cell scrapper Greiner bio-one, Frickenhausen, Germany 

Chloroform Merck, Darmstadt, Germany 

Copper sulphate Roth, Karlsruhe, Germany 

Cover slip Engelbrecht, Edermünde, Germany 
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Cytochalasin B Sigma-Aldrich Chemie, Steinheim, Germany 

Di chloromethane Merck KGaA, Darmstadt, Germany 

DIG DNA labelling kit Roche Applied Science, Mannheim, Germany 

DMEM (Dulbecos minimum essential medium) Gibco, Invitrogen GmbH, Karlsruhe, Germany 

DTT (dithiothreitol) Sigma-Aldrich Chemie, Steinheim, Germany 

EDTA (ethylene diamine tetraacetic acid)  Roth, Karlsruhe, Germany 

EGTA (ethylene glycol tetraacetic acid)  Roth, Karlsruhe, Germany 

Enhanced chemiluminescence (ECL)  Kit GE Healthcare Europe GmbH, Munich, Germany 

Entellan Merck KGaA, Darmstadt, Germany 

Eppendorf tubes Sarstedt, Nümbrecht, Germany 

Ethanol Roth, Karlsruhe, Germany 

FITC (fluorescein isothiocyanate) Sigma-Aldrich Chemie, Steinheim, Germany 

Foetal bovine serum (FBS) Sigma-Aldrich Chemie, Steinheim, Germany 

Gateway cloning system Invitrogen GmbH, Karlsruhe, Germany 

Gelatine Merck KGaA, Darmstadt, Germany 

Glass slide Engelbrecht, Edermünde, Germany 

High fidelity DNA polymerase from 

Thermococcus kodakaraensis (KOD DNA 

polymerase) 

Novagen, Merck KGaA, Darmstadt, Germany 

High performance thin layer chromatography Merck KGaA, Darmstadt, Germany 
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(HPTLC) Plate, Silica gel 60 20x10cm 

Histopaque (ficoll for isolating peripheral blood 

monocytes) 

Sigma-Aldrich Chemie, Steinheim, Germany 

Hydrochloric acid Merck KGaA, Darmstadt, Germany 

Hygromycin Boehringer Mannheim 

Hyper film GE Healthcare Europe GmbH, Munich, Germany 

Imidazole Merck KGaA, Darmstadt, Germany 

Infusion cloning Kit Clontech, CA, USA 

Iodomethane Merck KGaA, Darmstadt, Germany 

Kanamycin Sigma-Aldrich Chemie, Steinheim, Germany 

Klenow polymerase New England Biolabs GmbH, Frankfurt, Germany 

Lysozyme Sigma-Aldrich Chemie, Steinheim, Germany  

MACS (Magnetic cell sorting) columns  Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany 

Magnesium chloride Sigma-Aldrich Chemie, Steinheim, Germany 

Magnet Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany 

Dynal, Biotech ASA, Oslo, Norway 

Magnetic agarose beads Qiagen, Hilden, Germany 

Maleic acid Merck, Darmstadt, Germany 

Mannitol Sigma-Aldrich Chemie, Steinheim, Germany 
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Methanol Roth, Karlsruhe, Germany 

Middlebrook 7H10 agar Becton Dickinson, MD, USA 

Middlebrook 7H9 broth Becton Dickinson, MD, USA 

Miltenyi basic beads (iron dextran micro beads) Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany 

Molybdate phosphoric acid Roth, Karlsruhe, Germany 

Mouse anti-EEA-1 BD Biosciences, Heidelberg, Germany 

Mouse anti-LAMP1 BD Biosciences, Heidelberg, Germany 

Mouse anti-LAMP2 Southern Biotech, Alabama, USA 

Mouse anti-Rab5 BD Biosciences, Heidelberg, Germany 

Mouse-anti-β galactosidase Abnova, Taipei City, Taiwan  

Multi-well tissue culture plates Nunc, IL, USA 

My one beads (hydrophillic beads) Dynal Biotech ASA, Oslo, Norway 

Ni-NTA (Nickel-nitrilotriacetic acid) Qiagen, Hilden, Germany 

N-lauryl sarcosine Serva, Heidelberg, Germany 

Oleic acid albumin dextrose complex (OADC) Becton Dickinson, MD, USA 

Opti-MEM 1 medium Invitrogen GmbH, Karlsruhe, Germany 

Parafilm Pechiney Plastic Packaging, IL, USA 

Paraformaldehyde Sigma-Aldrich Chemie, Steinheim, Germany 
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PBS (phosphate buffer saline) Biochrom, Berlin, Germany 

PCR purification kit Qiagen, Hilden, Germany 

Perchloric acid Merck, Darmstadt, Germany 

Petriperm Greiner Bio-one, Frickenhausen, Germany 

Petroleum ether Merck KGaA, Darmstadt, Germany 

PIPES (piperazine-N,N’- bis ethansulfonic acid) Sigma-Aldrich Chemie, Steinheim, Germany 

Plasmid mini-prep kit Qiagen, Hilden, Germany 

PMSF (phenylmethylsulphonyl fluoride) Sigma-Aldrich Chemie, Steinheim, Germany 

Polystyrene fluorescent beads Bangs Laboratories inc, IN, USA 

Potassium chloride (KCl) Merck KGaA, Darmstadt, Germany 

Potassium hydroxide (KOH)  Merck KGaA, Darmstadt, Germany 

Primers MWG Biotech, Martinsried, Germany 

Prolong anti-fade gold Molecular Probes, Invitrogen GmbH, Karlsruhe, 

Germany 

Protease inhibitor Roche Applied Science, Mannheim, Germany 

Protein estimation kit Perbio Science GmbH, Bonn, Germany 

PVDF membrane GE Healthcare Europe GmbH, Munich, Germany 

Rabbit anti-EGFP Molecular Probes, Invitrogen GmbH, Karlslruhe, 

Germany 

Restriction endonucleases New England Biolabs, Frankfurt, Germany 
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RPC-18 beads (hydrophobic beads) Dynal Biotech ASA, Oslo, Norway 

RPMI-1640 medium (Roswell Park Memorial 

Institute medium) 

Biochrom, Berlin, Germany 

Saponin Sigma-Aldrich Chemie, Steinheim, Germany 

Scintillation fluid Zinsser Analytic, Berkshire, UK 

Serum Free medium for macrophages Gibco, Invitrogen, USA 

Sodium bi carbonate Merck KGaA, Darmstadt, Germany 

Sodium chloride (NaCl) Merck KGaA, Darmstadt, Germany 

Sodium dodecyl sulphate (SDS) Serva, Heidelberg, Germany 

Sodium hydroxide (NaOH) Merck KGaA, Darmstadt, Germany 

Sucrose Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Sulphuric acid (H2SO4) Merck KGaA, Darmstadt, Germany 

Syringe Omnifix, B Braun, Melsungen, Germany 

Syringe needle BD Microlance, Becton Dickinson 

Taq polymerase Qiagen, Hilden, Germany 

Tetra-n-butyl ammonium hydrogen sulphate Merck KGaA, Darmstadt, Germany 

Thinlayer chromatography (TLC) plate silica gel 

60 20x20cm 

Merck KGaA Darmstadt, Germany 

Tissue culture flasks Nunc, IL, USA 
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Toluene Roth, Karlsruhe, Germany 

Triethanolamine Sigma-Aldrich Chemie, Steinheim, Germany 

Tris Roth, Karlsruhe, Germany 

TRITC (tetramethylrhodamine-5-isothiocyanate) Sigma-Aldrich Chemie, Steinheim, Germany 

Tween 20 Sigma-Aldrich Chemie, Steinheim, Germany 

Whatmann3 Paper  Schleicher and Schüll, Germany 

X-ray film Fujifilm, Düsseldorf, Germany 

X-ray film cassette Siemens, Germany 

Zwittergent 3-12 Calbiochem, Merck KGaA Darmstadt, Germany 

 

3.1.3 Oligonucleotides 

Name Sequence Use 

ARB1 5’-GGCCACGCGTCGACTAGTAC 

NNNNNNNNNN-‘3 

Sequencing of Mutants 

ARB2 5’-GGCCACGCGTCGACTAGTAC -3’ Sequencing of Mutants 

P1_1064F1 5’-TGCGGCCGCTCTAGATGCGG 

TCAGGTATGTCAGCA–3’ 
Trans complementation of mutant P1 

P1_8007R2 5’-GGGGGATCCACTAGTCTATC 

GACGCTGGCGCAT–3’ 
Trans complementation of mutant P1 

P1N_del_F1 5’-TGCGGCCGCTCTAGACGATG 

AGTTGTGGGCGAA-3’ 
Construction of Nested deletion 

plasmids 
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P1N_del_F2 5’-TGCGGCCGCTCTAGAATGCG 

ACATCAGTTCGGG–3’ 
Construction of Nested deletion 

plasmids 

P1N_del_F3 5’-TGCGGCCGCTCTAGAATGAT 

AGAATCTCACTAC–3’ 
Construction of Nested deletion 

plasmids 

P1N_del_R1 5’-GGGGGATCCACTAGTGTGAG 

CGGCGGCGTCCCG–3’ 
Construction of Nested deletion 

plasmids 

P1N_del_R2 5’-GGGGGATCCACTAGTGTGGA 

GTCGCATCGGCGC–3’ 
Construction of Nested deletion 

plasmids 

P1N_pQE10_BD_F2 5’-TCACCATACGGATCCGATAG 

AATCTCACTAC - 3’ 
Cloning pmiA into an expression vector 

P1N_pQE10_BD_R1 5’-CAGCTAATTAAGCTTTTAAT 

TACGTCGGGCGCC-3’ 
Cloning pmiA into an expression vector 

P1N_pQE18_BD_F1 5’-ACTATGAGAGGATCCATGAT 

AGAATCTCACTAC-3’ 
Cloning pmiA into an expression vector 

P1N_pQE18_BD_R2 5’-GAGATCGGAAGATCTCAGGG 

GTATAGGTGTAAT-3’ 
Cloning pmiA into an expression vector 

Rab_BD-

infusion_fwd1 

5’-TCTTGTCGACCTCGAGCAGG 

TCGTTACATAACT-3’ 

Cloning of Rab5- and Rab7-EGFP 

fusion proteins into pENTRY vector 

Rab_BD-

infusion_rev1 

5’-TAGCGAGCTCTCTAGCCAGA 

CATGATAAGATAC-3’ 

Cloning of Rab5- and Rab7-EGFP 

fusion proteins into pENTRY vector 

RPCRa1 5’-CTTGCTCTTCCGCTTCTTCT C-3’ Sequencing of Mutants 

RPCRa2 5’-CTCTACACCGTCAAGTGCGAAGAG-

3’ 

Sequencing of Mutants 

RPCRb1 5’-CAGGCACGTCGAGGTCTTTC -3’ Sequencing of Mutants 

RPCRb2 5’-CTTTCAGATGGATGGCGTAG -3’ Sequencing of Mutants 
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3.1.4 Plasmids 

Name Marker Description Source 

pGPC330 

(pEGFP-Rab11b) 

Kanar Plasmid containing Rab-11b GFP fusion 

protein construct 

(Rzomp et al., 2003) 

pGPC15 (pOLYG) Hygr E.coli – Mycobacteria shuttle vector with a 

Hygromycin resistance cassette 

(Ó Gaora et al., 1997) 

pGPC331 

(pENTRY) 

Kanar  Invitrogen 

pGPC335 (pGreen 

Lantern-Rab5a) 

Ampr Plasmid containing Rab-5a GFP fusion 

protein construct 

Generously provided by 

Craig Roy, Yale 

University, New Haven, 

Connecticut 

pGPC336 (pGreen 

Lantern-Rab7) 

Ampr Plasmid containing Rab-7 GFP fusion 

protein construct 

Generously provided by 

Craig Roy. 

pGPC352 Hygr pmiA spanning region cloned into pOLYG 

used for trans-complementation 

From this work 

pGPC358 Ampr Rab11b-GFP containing adenoviral vector From this work 

pGPC359 Ampr Rab5a-GFP containing adenoviral vector From this work 

pGPC360 Ampr Rab7 containing adenoviral vector From this work 

pGPC363 Ampr pmiA cloned into pQE10 (n-terminal his-

tag) 

From this work 

pGPC364 Ampr pmiA cloned into pQE18 (c-terminal his-

tag) 

From this work 

pGPC369 Hygr PCR Nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 
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pGPC370 Hygr PCR nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 

pGPC371 Hygr PCR Nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 

pGPC372 Hygr PCR Nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 

pGPC373 Hygr PCR Nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 

pGPC374 Hygr PCR Nested deletion fragments of pmiA 

spanning region cloned into pOLYG 

From this work 

pGPC81 Ampr Adenoviral vector Kindly provided by 

Andreas Untergasser 

pQE10 Ampr His tag expression vector Qiagen 

pQE16 Ampr DHFRS (dihydrofolate reductase)-His-tag 

; expression vector 

Qiagen 

pQE18 Ampr His-tag  expression vector Qiagen 

pUC4K kanar Vector with kanamycin resistance 

cassette 

Pharmacia 

 

3.1.5 Bacterial Strains 

Strain Characteristics Source 

E. coli DH5α F-(φ80dΔlacZM15) Δ (lacZYA-argF)U169 

deoR 

Invitrogen GmbH, Karlsruhe, 

Germany 

E. coli NM554 MC1061 recA13 NEB, Frankfurt, Germany 
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M. marinum 

(ATCC 927) 

Mycobacterium marinum strain isolated from 

fish 

Dept Microbiologie, Instituut voor 

Tropische Genes Kunde, 

Antwerpen, Belgium 

M. marinum 

mutants 

Transposon mutant library generated in M. 

marinum (ATCC927) 

(Rybniker et al., 2003) 

 

3.1.6 Cell Lines 

Cell Line Characteristics Source 

HEK 293 Human embryonic kidney cell line  (Graham et al., 1977) 

 

3.2 Methods 

3.2.1 Culturing Human Monocyte Derived Macrophages (HMDM) 

Buffy coats were obtained from the University clinic blood bank, University of Cologne. 

The buffy coat obtained from a 500ml blood donation of the same day was split into two 

50ml tubes. It was further diluted 1:1 with RPMI medium. The diluted buffy coat was 

layered on a 15ml histopaque gradient. The discontinuous gradient was centrifuged at 

1600rpm for 40 minutes and the centrifuge was brought to halt without applying brakes. 

Monocytes layered in the interface were carefully transferred out into a fresh 50ml tube. 

The isolated monocytes were then washed with RPMI twice by centrifuging at 900rpm for 

10 minutes. The monocytes were counted using a Neubauer chamber and adjusted to a 

density of 3x106cells/ml with tissue culture (TC) medium [RPMI containing 5% foetal 

bovine serum (FBS)]. These cells were plated on serum opsonised TC flasks, dishes or 

petriperms as required. The monocytes were allowed to adhere on to the base overnight at 

37oC in a 5% CO2 atmosphere. After an overnight incubation the cells were washed with 

pre-warmed RPMI medium to remove the non-adherent cells. The adherent cells were 

allowed to differentiate into macrophages for another 6 days. Cells were renewed with TC 



   
50

medium (RPMI containing 5% FBS) every second day. The differentiated macrophages 

were used for further experiments. 

3.2.2 Screening for Mutants Incompetent in Retarding Phagosome Maturation 

3.2.2.1 Preparation of Single Cell Suspension of Mycobacteria for Infection 

More than 4000 colonies of transposon mutants grown on a 7H10 agar plate were scraped 

off using a cell scraper and suspended in 7H9 broth in a 15ml tube. Bacteria were washed 

with phosphate buffer saline (PBS) three times by centrifuging at 5000rpm. The bacterial 

pellet was then resuspended in 1ml of RPMI. A small amount of glass beads of 0.2mm 

diameter were added and shaken on a mill for 5min to disrupt the clumps. Glass beads and 

the bacterial clumps were removed by centrifuging at a low speed of 600rpm for 5min. 

After centrifugation the supernatant was collected without disturbing the pellet. The 

collected supernatant was then passed through a 27 gauge needle three times. The 

bacterial suspension was then centrifuged at 600rpm for 5min to make sure that there were 

no bacterial clumps left. Optical density (OD) was measured on a spectrophotometer at 

600nm. The OD values were used as a measure for the number of bacterial cells. This 

bacterial suspension was used to infect HMDM.  

3.2.2.2 Endocytosis of Iron Dextran Beads 

3x106 HMDM were seeded on 10 petriperms (Tissue culture dish with a hydrophilic 

membranous base) and pulsed with 0.5ml of 1:10 diluted colloidal iron dextran particles 

(Miltenyi basic beads) suspended in TC medium (RPMI). Micro beads (Miltenyi basic 

beads) were pulsed for one hour at 37oC in a CO2 incubator. After one hour HMDM were 

washed with RPMI repeatedly (three times) to remove the non-endocytosed beads. The 

endocytosed beads were further chased for another 2hrs. After the chase HMDM 

monolayers were rinsed with RPMI once and used for infection. 

3.2.2.3 Infection of Iron Dextran Pre-fed HMDM with M. marinum Transposon 

Mutants 

HMDM that were pre-fed (3.2.2.2) with microbeads infected with 3x107 transposon 

mutants prepared as described in section 3.2.2.1. HMDM were pulsed with bacterial 

suspension in TC medium (RPMI) for 2hrs at 37oC. After 2hrs the macrophage culture 

was washed with RPMI to remove the non-phagocytosed bacteria. Three repeated 
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washings were done. HMDM were replenished with RPMI containing 5% FBS. The 

phagocytosed bacteria were then chased overnight at 37oC in a 5% CO2 atmosphere.  

3.2.2.4 Isolation of Phagolysosomes Containing M. marinum Mutants and 

Phagolysosomal Marker 

Buffers Used 

Equilibration Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 1mM DTT and 
 10μM Cytochalasin B. 

Lysis Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 220mM Mannitol; 
 68mM Sucrose. 

Wash Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 1mM DTT. 

After an overnight chase HMDM were rinsed twice with PBS. 750µl of equilibration 

buffer was added to the cells followed by incubation on ice for 20min. After the 

incubation 250µl lysis buffer was added and HMDM were scrapped off using a rubber 

policeman and collected in a 2ml tube (eppendorf). The collected cell suspension was 

passed through a 23 gauge needle at least 15 times. 100µl of the homogenized cell 

suspension was kept aside for β-galactosidase assay. The remaining fraction was applied 

on a mini-MACS column mounted on a magnet. The MACS column was pre-equilibrated 

with wash buffer before applying the sample. A fraction of the flow-through was saved 

for β-galactosidase assay. The column was washed three times with wash buffer. The 

washings were collected and saved. The column was next removed from the magnet to 

release the bound organelles and 1ml of 7H9 medium was flushed through using a piston. 

The flow-through containing the mutant phagosomes was collected and a sample was kept 

aside for β-galactosidase assay and the remaining centrifuged at 15,000rpm for 2min. The 

pellet was resuspended in 200µl of 7H9 broth and 100µl of the suspension was plated on 

to two 7H10 agar plates. The inoculated agar plates were then incubated at 30oC for 5 

days until the colonies became just visible. Colonies were scraped off and treated as 

described to obtain a single cell suspension (3.2.2.1) and used for HMDM infection. The 

screen was repeated a total of three times. From the third screen 100 individual clones 
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were picked and inoculated individually on 7H10 agar plates. Subcultures of these clones 

were again inoculated on 7H10 agar plates and used to prepare frozen stocks at -80oC. 

3.2.3 Southern Blot Analysis 

3.2.3.1 Extraction of Mycobacterial Chromosomal DNA  

Buffers 

Lysis Buffer 

25% Sucrose; 50mM Tris pH 8.0; 1mM EDTA. 

TE Buffer 

10 mM Tris-HCl pH 7.5; 1 mM EDTA.  

A loop of mycobacteria grown on 7H10 agar plate was taken and suspended in 400µl lysis 

buffer in an eppendorf tube and vortexed well. A small amount of glass beads was added 

to the bacterial suspension which was then agitated in a cell mill (Retsch MM2000) for 

2min at maximum amplitude. The tubes were removed from the mill 10µl lysozyme 

(40mg/ml) was added to each followed by incubation on ice for 5min. After the 

incubation 4µl ProteinaseK (10mg/ml), 40µl 0.5M EDTA and 16µl sarcosyl (35%) were 

added and incubated on ice for further 1hr, followed by an overnight incubation at 50°C. 

Next morning the cell debris was removed by spinning at 15,000rpm for 5min discarding 

the pellet. The supernatant was collected in a separate tube and 0.5 volume of 7.5M 

ammonium acetate was added before centrifugation at 15,000rpm for 30min to precipitate 

DNA. The DNA pellet was washed with 500µl 70% ethanol by centrifuging at 15,000rpm 

for another 30min. The pellet was dried and resuspended in 50µl TE buffer. OD was 

measured to quantify the DNA obtained. 

3.2.3.2 Restriction Enzyme Digestion and Blotting 

Buffers 

Denaturation Buffer 

1.5M NaCl and 0.5M NaOH 

Neutralization Buffer 

0.5M Tris/HCl pH 7.0 and 3M NaCl 

20X SSC Buffer  

3M NaCl; 0.3M sodium citrate and pH adjusted to 7 
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Hybridization Buffer 

Formamide 50%; 5X SSC; 2% Blocking reagent; 0.1% N-Lauryl sarcosine; 0.02% 
 SDS. 

4μg of extracted chromosomal DNA of wild-type (WT) M. marinum or mutants isolated 

and was digested with BamHI endonuclease. The restricted DNA was separated by 

electrophoresis on an agarose gel. The DNA in the gel was fragmented by submerging the 

gel in 0.25M HCl for 10min followed by a brief washing with distilled water. After 

fragmentation DNA was denatured by incubating the gel in denaturation buffer for 15min 

at RT. After 15min the solution was changed and a fresh solution of denaturation buffer 

was added and incubation continued for another 30min at RT followed by a washing with 

distilled water. After denaturation the gel was neutralised by placing it in neutralisation 

buffer at RT for 15min. The incubation was repeated with a fresh change of neutralisation 

buffer. 

Whatman3 paper and nylon membrane (NytranN) were cut to the size of the gel and 

equilibrated by dipping in 2X SSC buffer and placed on a vacuum blot apparatus. The gel 

was placed over the membrane and 55-60mbar vacuum was applied to initiate transfer for 

60min. The gel was not allowed to dry by adding 20X SSC buffer on top of the gel. After 

the transfer the membrane was removed, washed once with 2X SSC buffer and the DNA 

was crosslinked in a UV cross linker apparatus (UVC500 UV cross linker) before pre-

hybridization by incubating the membrane in hybridization buffer for 4hrs at 42°C.  

3.2.3.3 Digoxigenin (DIG) Labelling and Hybridization 

A probe specific for the aph gene was prepared by restricting the aph gene from PUC4K 

plasmid with pstI. Restriction fragments were separated by electrophoresis on a 0.7% 

agarose gel. A band of approximately 1.5kb size corresponding to the aph gene was sliced 

out of the gel. DNA was extracted from the gel slice and purified using Qiagen gel 

extraction kit following the manufacturer’s protocol. The extracted DNA was denatured 

by boiling for 10min and immediately cooled down to -20°C. Hexanucleotide mix, dNTP 

labelling mix and klenow polymerase were added to the DNA and incubated at 37°C 

overnight. The reaction was stopped by adding 2µl of 0.2M EDTA. The DIG labelled 

DNA was further purified using Qiagen PCR purification kit.  Following the addition of 

the probe, hybridization to the filter cross-linked DNA was done in hybridization buffer 

for a brief period at 80°C and overnight at 42°C. Thereafter the hybridization membrane 
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was washed with 2X SSC buffer containing 0.1%SDS twice at RT (5min each wash), 

followed by washing with 0.2X SSC buffer containing 0.1%SDS twice at 68°C (15min 

each wash). Finally the membrane was developed using CDP star luminescence detection 

reagent. 

3.2.3.4 Enhanced Chemiluminescence (ECL) Detection 

Buffers 

Buffer 1 

Maleic acid 0.1 M, NaCl 0.15 M in water and pH adjusted to 7.5 with 1N NaOH. 

Wash Buffer  

Buffer 1 + 0.3% Tween 20 

Buffer 2 

Blocking buffer diluted 1:10 in buffer1  

Buffer 3 

Tris/HCl 0.1M; NaCl 0.1M, MgCl2 50 mM in water and pH adjusted to 9.5 

The hybridized membrane was washed with wash buffer and then incubated in buffer2 for 

30min. Anti-DIG-alkaline phosphatase conjugated antibody was diluted 1:10000 in 

buffer2 and the membrane was incubated in this solution for 30min. After the incubation 

the membrane was washed with wash buffer twice (15minutes each). Washing was 

followed by equilibration in buffer3 for 5min. The blot was transferred on to a polythene 

sheet and the ready to use CDP star substrate solution was added and incubated at 37°C 

briefly. The excess substrate solution was removed and washed gently with buffer3. The 

polythene sheet was sealed and exposed on to X-ray film in the dark for different time 

periods.  

3.2.4 Cloning by Homologous Recombination using “Infusion Kit” 

Buffers 

TE Buffer 

10 mM Tris-HCl pH 7.5; 1 mM EDTA.  

3.2.4.1 Cloning 

Plasmid was restricted with suitable restriction enzymes and mixed with fragments of 

PCR amplified using a high fidelity polymerase from Thermococcus kodakaraensis (KOD 
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DNA Polymerase) in a 2:1 vector/insert molar ratio according to the recommendations of 

the manufacturer (Clontech). The final volume was made up to 10µl. The 10µl mixture 

was added to an “Infusion” reaction tube. The reaction mix was incubated at 42oC for 

30min and then immediately stopped on ice. The reaction mix was diluted by adding 40µl 

of TE buffer.  

3.2.4.2 Transformation 

3µl of the diluted reaction mix was transformed into “Infusion blue” (Clontech) competent 

cells. The transformation was done by heat shocking the cells at 42oC in a water bath for 

45sec followed by incubation on ice for one minute. Then 450µl of SOC medium was 

added to the tube and it was incubated at 37oC for 1hr. After 1hr 100µl of the cells were 

plated on a LB agar plate containing 50µg/ml ampicillin. The plates were incubated at 

37oC overnight. Next day the colonies grown on the plate were picked and inoculated into 

LB broth containing 50µg/ml ampicillin for plasmid DNA preparation.  

3.2.4.3 Plasmid Preparation  

Bacterial culture was centrifuged to obtain the bacterial pellet and the plasmid was 

isolated using Qiagen mini prep kit as per the manufacturer’s protocol. The plasmids were 

checked for the inserted gene fragment by restricting them with appropriate restriction 

enzymes and electrophoresing on 0.7% agarose gel with appropriate size standards. 

3.2.5 Western Blot Analysis 

Buffer 

Transfer Buffer 

Methanol 400ml; Glycine 28.8g; Tris 6.6g 

Blocking Buffer 

PBS containing 0.5% Gelatin and 0.1% Tween20 

Protein samples were separated on a SDS-PAGE. Hybond-PVDF membrane was pre-

wetted in 100% methanol for 5sec followed by water for 5min and then equilibrated in 

transfer buffer for 10min. Membrane was not allowed to dry. The SDS gel was also 

equilibrated in transfer buffer for 10min. A fibre pad was wetted in transfer buffer and 

placed on the transfer chamber.  Over the pad two Whatman3 paper sheets of the size of 

the gel dipped in transfer buffer was placed. The gel was placed upon the stack and the 
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membrane over the gel. The membrane and gel were sandwiched with another 2 sheets of 

whatman3 paper wetted with transfer buffer. The transfer chamber was closed and placed 

on ice. Transfer was done at 250mA for 90min. The membrane was then washed with 

PBS, blocked by incubating in blocking buffer overnight on an orbital shaker and then 

was washed three times (5min each wash) with PBS containing 0.1% Tween20 at RT. 

Primary antibody diluted appropriately in PBS containing 0.1% Tween20 was added to 

the membrane and incubated for 60min at RT. Membrane was washed three times (5min 

each wash) with PBS containing 0.1% Tween20 at RT. Following the washing the 

secondary antibody was diluted appropriately in PBS containing 0.1% Tween 20 and 

added to the membrane and incubated for 60min at RT with constant agitation. Membrane 

was washed three times (5min each wash) with PBS containing 0.1% Tween20 at RT. 

Membrane was placed on a polythene sheet and ECL reagents mixed in a 1:1 ratio were 

added on to it and the polythene sheet was sealed at all sides. Membrane was developed 

by placing polythene bag containing the membrane on a cassette and exposed to an X-ray 

film (Hyperfilm) for 5-60min in dark.  

3.2.6 Rab5-, Rab7- and Rab11-GFP Adenoviral Vector Construction  

3.2.6.1 Cloning of Rab-GFP into Adenoviral Vectors 

Mammalian expression plasmids containing N-terminal fusions of human Rab-GTPases 

tagged to green fluorescent protein (p-Greenlantern-Rab5 and –Rab7) constructs were a 

kind gift from Craig Roy (Boyer centre for Molecular Microbiology and Immunology, 

Yale University School of Medicine, New Haven, Connecticut). Fusion constructs 

pEGFP-Rab11b/Rab11a (Rzomp et al., 2003) was generously provided by Marci A. 

Scidmore (Dept of Microbiology and Immunology, Cornell University, Ithaca, New 

York). Rab5- and Rab7-GFP adenoviral constructs were made by homologous 

recombination (In-fusion kit) (3.2.4.1). Rab5- and Rab7-GFP gene constructs were 

amplified from plasmids pGPC335 and pGPC336 using primers Rab_BD-infusion_fwd1 

and Rab_BD-infusion_rev1. High fidelity polymerase with a proof reading activity (KOD 

DNA Polymerase) was used to amplify the fragments by PCR. The amplified Rab5- and 

Rab7-GFP fusion genes were purified using Qiagen PCR purification kit and cloned into 

pENTRY vector (pGPC331) by homologous recombination (In-fusion cloning kit) 

(2.2.4.l). 
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A Rab11-GFP gene fragment was excised from the plasmid received from M. Scidmore 

using restriction enzymes AseI and MluI. The purified fragment and the XbaI and XhoI 

digested pENTRY vector were blunt ended with klenow polymerase before ligation using 

T4 DNA ligase at RT and transformation into E.coli NM554. The cloned Rab-GFP 

fusions in pENTRY vectors were recombined into an adenoviral vector pGPC81 using 

Gateway system and transformed into E.coli DH5α.  

Following were the adenoviral vectors obtained after recombining the individual pENRY 

vectors containing Rab-GFP constructs into pGPC81. 

pGPC358; Rab11b 

pGPC359; Rab5a 

pGPC360; Rab7 

3.2.6.2 Transfection of HEK 293 Cells to Produce Adenoviral Rab-GFP Constructs 

Human embryonic kidney cell line (HEK 293 cell line) generated by transformation 

human embryonic kidney cell cultures with sheared adenovirus 5 DNA was used to 

generate Rab-GFP fusion adenoviral constructs (Graham et al., 1977). 3µg of plasmids 

pGPC358, pGPC359 and pGPC360 were digested with PacI restriction enzyme. 

Restricted plasmids were purified using Qiagen PCR purification kit. Purified linearised 

plasmids were mixed with 500µl of TC medium (Opti-MEM l) and incubated at RT for 5 

min. At the same time 45µl of cationic lipid transfection reagent (LipofectamineTM) was 

suspended in 2.5ml of Opti-MEM l and incubated at RT for 5min. Opti-MEM l containing 

the restricted plasmid and lipofectamine were mixed and incubated at RT for 20min. The 

mixture was carefully added on to a monolayer of 293 cells in a 25cm2 TC flask and the 

cells were incubated overnight at 37oC in a 5% CO2 atmosphere. Following overnight 

incubation the medium was removed and renewed with fresh medium and incubation 

continued for another day at 37oC in a 5% CO2 incubator. The following day the 

monolayer was dispersed and transferred to a 75cm2 TC flask. The cells were incubated 

until the monolayer started disrupting and cells were found floating in the medium. Cells 

were scrapped off using a cell scrapper and the cell suspension was transferred to a 50ml 

centrifuge tube. Cells were frozen and thawed repeatedly for three times to release the 

virus particles. After freezing and thawing, cell debris was removed by centrifugation at 
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4000 rpm for 10min. Virus titre in the supernatant was determined and virus stocks were 

frozen in aliquots at -80oC. 

3.2.7 Transfection of HMDM and Mouse Dendritic Cells with Rab-GFP 
Adenoviral Vectors  

1 x 106 monocytes isolated from buffy coat, dendritic cells isolated from mouse or mouse 

peritoneal macrophages in TC medium (RPMI containing 5% FBS) were seeded on glass 

coverslips placed in 6 well plates. HMDM were used for transfection on the 6th day of 

culture, dendritic cells were transfected on the 4th day and activated mouse peritoneal 

macrophages on the same day of isolation. Cells cultured on glass coverslips were 

transfected with respective Rab-adenovirus particles suspended in RPMI without FBS at 

an MOI of 100:1. Followed by the addition of virus particles, plates containing the cell 

seeded glass coverslips were centrifuged on a plate centrifuge at 2500rpm for 120min. 

After centrifugation the medium was removed and the cells were replenished with RPMI 

containing 5% FBS. Cells along with virus particles were incubated overnight at 37oC in a 

5% CO2 atmosphere. Cells were viewed under a fluorescence microscope (IX81 

Olympus) for detection of GFP-fluorescence. Cells were also analysed by flowcytometry 

(FACS Calibur) to determine the transfection efficiency. The transfected cells were 

further used to study mycobacterial PM. 

3.2.8 Staining using Antibodies and Immunofluorescence Microscopy 

Buffers 

Permeabilisation/Wash Buffer 

5% BSA and 2% saponin or 0.5% poly ethylene glycol in PBS 

Fixation Buffer 

4% Paraformaldehyde in PBS 

HMDM differentiated on glass cover slips were infected with FITC or TRITC labelled 

mycobacteria at an MOI of 1:1 or pulsed with fluorescent beads (approx 10beads/cell) and 

then fixed using fixation buffer for 20min at RT. Fixation buffer was removed and the 

cells were washed with PBS three times. Cells were permeabilised by incubating in 

permeabilisation buffer at RT for 40min. A 10µl drop of antibody diluted in wash buffer 

containing PBS (antibody dilutions were chosen as per manufacturer’s instruction) was 

placed on a strip of parafilm. Glass coverslips containing permeabilised cells were 
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inverted on the drop of antibody placed on parafilm. Cells were incubated with antibody 

at RT for 1hr. Cells were then washed with wash buffer three times. After washing 

secondary antibody conjugated to a fluorophore (Alexa594, Alexa488) was diluted in 

wash buffer and a 10µl drop of the dilution was placed on a strip of parafilm. Again glass 

coverslips containing the cells were placed on the drop and incubated at RT for 1hr 

followed by washing with wash buffer thrice. The cover slips were then mounted on a 

glass slide over a drop of anti-bleach reagent (Entellan or Prolong anti-gold) and left 

overnight at RT. The following day cells were viewed under an Olympus IX80 

immunofluorescence microscope using a 60X oil immersion lens.  

Rab-GFP adenovirus transfected cells were infected with mycobacteria or pulsed with 

beads, fixed with fixation buffer, washed and mounted on glass slides as described above 

before being viewed under the microscope. 

3.2.9 Staining of Mycobacterium with FITC or TRITC 

Buffers 

Sodium bicarbonate Buffer pH 9.0 

8.4g sodium bicarbonate in 1 litre distilled water pH adjusted with 1N NaOH 

5x107 WT or mutant M. marinum cells were suspended in 200µl of 0.1M sodium 

bicarbonate buffer pH 9.0, containing 1mg/ml FITC or 0.1mg/ml TRITC. Bacteria were 

incubated with the fluorescent dye at 30°C for 30 minutes. After incubation the excess dye 

was removed by three repeated washings with PBS. Bacteria were then resuspended in TC 

medium (RPMI) treated as described earlier to make single cell suspension (3.2.2.1) and 

then used for macrophage infections. 

3.2.10 Growth Rate of M. marinum 

6 well plates were seeded with 2x106 monocytes isolated from buffy coat and allowed to 

differentiate into HMDM for 7 days. HMDM cultures were then infected with WT, P1 and 

P1 (pGPC352) at a MOI of 10:1. The number of bacteria was calculated from the OD 

values obtained and a predetermined standard curve. HMDM infected with bacteria were 

incubated at 37°C for 2hrs. Cells were then washed thoroughly with TC medium (RPMI) 

to remove extracellular bacteria and further incubated at 37oC. At different time points 

(2hrs, 24hrs, 48hrs, 72 hrs and 96hrs) cells infected with all three bacterial strains were 

lysed using 0.1% SDS for 10min, neutralized using 20%BSA and plated on 7H10 agar 
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plates. 7H10 agar plates were incubated at 30°C for 5 days for enumerating colony 

forming units (CFU). The CFU count obtained after 2hrs was considered as time zero post 

infection.  

3.2.11 Flowcytometric Analysis of Cells Expressing EGFP-Rab 

Rab-GFP adenoviral vector infected HMDM, mouse macrophages or mouse dendritic 

cells were washed and collected in tubes. The cells were incubated with antibodies 

specific for markers of macrophages and dendritic cells at concentrations recommended 

by the manufacturer at 4°C for 30min in PBS with 5% FBS. The cells were then washed 

with PBS. Cells were then analysed on a fluorescence activated cell sorter (FACScanTM). 

The results were recorded using software (CELLQuestTM) and expressed as percentage of 

fluorescent cells. 

3.2.12 Trans-Complementation of the Mutant P1 

A 3.8 kb region from M. marinum harbouring the putative pmiA gene was PCR amplified 

using primers P1_1064F1 and P1_8007R2. The PCR product was purified using Qiagen 

PCR purification kit and eluted with 30µl of water. 5µl of the product was electrophoresed 

on a 0.7% agarose gel to verify the product size. This PCR fragment was cloned into XbaI 

and SpeI digested pOLYG plasmid by homologous recombination technique (In-fusion 

cloning kit; See section 2.2.4.1) to yield pGPC352 conferring resistance to hygromycin. 

Plasmid pGPC352 was transformed into electroporation competent P1 mutant cells by 

applying an electric pulse of 2.5Kv. Following electroporation the cells were suspended in 

7H9 medium and incubated at 30°C for 4hrs on a shaker incubator. Then the cells were 

selected on a 7H10 agar plate containing 30µg/ml kanamycin and 50µg/ml hygromycin. 

Colonies were picked from the plates and analysed for the presence of the plasmid 

pGPC352 by a PCR reaction using primers P1_1064F1 and P1_8007R2.  

Nested-deletion DNA fragments were generated from the 3821bp M. marinum fragment 

in pGPC352 using a combination of internal PCR primers. The amplified fragments were 

cloned into pOLYG in the same way as described earlier to yield pGPC369, 370, 371, 

372, 373 and pGPC374 (Fig-3). These plasmids were transformed into the mutant P1 as 

described before for analysis of functional complementation.  
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3.2.13 Radiolabelling of Mycobacterium 

M. marinum WT and mutants were metabolically labelled with [1-14C] palmitic acid by 

growing bacteria in 7H12 medium (BACTEC) containing 1µCi [1-14C] palmitic acid. 

Bacteria were cultured for five days at 30oC before being used for experiments. Phenolic 

glycolipids of mycobacteria were labelled by pulsing a three day old mycobacterial 

culture with [carboxyl – 14C] p-hydroxy benzoic acid (0.7µCi/ml). After pulsing with 

[carboxyl – 14C] p-hydroxy benzoic acid the culture was further grown for another two 

days before it was harvested.  

3.2.14 Quantitative Analysis of Mutants Reaching the Phagolysosmes 

Bacterial cultures were transferred to 15ml centrifuge tubes and centrifuged at 5000rpm 

for 10min. The bacterial pellets obtained were suspended in 5ml TC medium (RPMI) and 

washed by centrifugation at 5000rpm for 10 min. The washing was repeated once again. 

Supernatants were discarded and the pellets resuspended in 1ml of 7H9 broth. To the 

bacterial suspensions a little amount of sterile glass beads was added and the 

mycobacterial clumps were dispersed on a cell mill (Retsch MM2000) for 5min followed 

by centrifugation at 600rpm for 5min to remove the remaining bacterial clumps. The 

supernatants were aspirated and passed through a 27G needle 3 times. The CFU was of 

bacteria was calculated as described previously from the OD measurements and a standard 

curve. The density of the bacterial suspensions was adjusted as required using TC medium 

(RPMI).  

HMDM grown as described previously (see section 3.2.1) were infected with 

radiolabelled bacteria at an MOI of 1:1 and chased overnight into PL along with iron 

dextran beads as PL marker. Following the chase, bacteria present in PL along with the 

iron dextran beads were selected on a MACS column (for a detailed protocol see section 

3.2.2). 100µl of the isolated PL fraction was added to 2ml of scintillation fluid in 

scintillation vials. The scintillation vials were then placed in a β-scintillation counter 

(1217 Rackbeta) to determine the counts per minute (CPM). 

3.2.15 Mice Infection 

Specific pathogen-free C57BL/6 mice were infected intravenously with 4x105 viable M. 

marinum WT, mutants P1 and complemented P1 (pGPC352). At 1 and 2 weeks after 
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infection five mice from each group were sacrificed by cervical dislocation and their liver 

and spleen excised aseptically. Liver and spleen were weighed and small equal samples of 

each liver and spleen were fixed in 4% formaldehyde for histopathology. Remaining liver 

and spleen samples were taken in a mortar and a little amount of white sand was added 

and the organs homogenized with a pestle. 5ml of sterile water was added to the 

homogenized suspension and transferred to a 15ml tube. The homogenized organ 

suspension was centrifuged at 400rpm to remove the tissue debris. The supernatant was 

transferred to another 15ml tube and centrifuged at 5000rpm to pellet the bacteria. The 

bacterial pellet was resuspended in 1ml 7H9 broth. Serial dilutions were made in 7H9 

medium and 20µl of the diluted samples dropped on 7H10 agar plates. The inoculated 

7H10 agar Plates were incubated for 5 days and CFU were counted. 

3.2.16 Mycolic Acid Extraction and Analysis 

3.2.16.1 Solvent Extraction 

Methanolic esters of mycolic acids were prepared from [1-14C] palmitate labelled bacteria. 

Bacteria (WT or mutant) grown in [1-14C] palmitate containing medium were collected in 

15ml tube. To the bacterial pellet 1ml methanol, 1ml 30% aqueous KOH and 0.1ml 

toluene were added. The mixture was incubated at 75oC overnight, was cooled and 

acidified to pH1 by adding 3.6% HCl. Three extractions were performed with 1ml 

petroleum ether each time. The petroleum ether layers were pooled and evaporated to 

dryness by passing over a mild stream of nitrogen. Once dried the mycolic acids were 

methanolated by adding 1ml of Dichloromethane, 1ml catalyst solution (0.8g NaOH and 

3.39g Tetra-n-butyl ammonium hydrogen sulphate in 100ml water) and 25µl 

Iodomethane. The mixture was mixed for 30min and the upper layer was removed and the 

bottom layer dried under nitrogen. The dried fatty acids were dissolved in 3:1 chloroform 

and methanol (Valero-Guillen et al., 1986). 

3.2.16.2 TLC Analysis  

Mycolic acid samples were spotted on a silica high performance thin layer 

chromatography (HPTLC) plates (20x10cm silica gel 60 HPTLC plates). Petroleum ether 

(bp 60-80°C) and Acetone in a 95:5 v/v ratio were used as mobile phase to chromatograph 

the samples. After the mobile phase reached 3/4th of the TLC plate, the plate was removed 

from the chamber, dried and placed in a cassette and an X-ray film was placed over the 
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plate. The cassette containing the plate was left undisturbed for 4 days and then the film 

was removed in the dark and developed using an X-ray film developing machine (Agfa 

Curix60). 

3.2.17 Non-Polar Lipid Analysis 

3.2.17.1 Extraction 

Bacteria were grown in 10ml 7H9 middle brook liquid broth for 5 days. The culture was 

centrifuged at 5000rpm for 10min and the medium was removed. 1ml of methanol – 0.3% 

NaCl (100: 10) was added to the cell pellet. Non polar lipids were extracted from the 

bacterial suspension using petroleum ether (3x 1ml). The petroleum ether extracts were 

pooled and dried under nitrogen. The dried lipid was dissolved in CHCl3 – CH3OH (3:1) 

(Dobson et al., 1985). 

3.2.17.2 Analysis by TLC 

The lipid samples were spotted on a silica HPTLC plate (20x10cm silica gel 60 HPTLC 

plates) and chromatographed using CHCl3 – CH3OH – water (90:10:1) as mobile phase. 

Lipid spots were visualized by dipping the chromatographed TLC plate in a solution 

containing CuSO4 (10%) and 8% perchloric acid or in a solution containing 0.2% 

anthrone in concentrated sulphuric acid (to detect glycolipids) followed by charring at 

180°C over a hot plate (Thermoplate S). 

3.2.18 Extraction of a Lipid Species from WT M. marinum Missing in Mutant P1 

WT M. marinum was grown in 100ml of 7H9 Middle Brook broth for 5 days. The cells 

were harvested by centrifuging at 5000rpm for 10min. The bacterial cells were left in 

CHCl3–CH3OH (2:1 v/v) for 2 days. Then cells were pelletted down by centrifugation and 

the chloroform – methanol supernatant was stored separately from the cells. Cells were 

extracted twice with CHCl3–CH3OH (1:1); each extraction was carried out for 24hrs. The 

extractions were pooled and washed twice with normal saline (0.9% NaCl in water). The 

aqueous layer was removed and the organic layer was dried under nitrogen.  

The extracted lipids were re-dissolved in CHCl3–CH3OH (3:1 v/v) and chromatographed 

on a preparative silica gel TLC plate (20x20cm silica gel 60 TLC plate). CHCl3 – CH3OH 

– water (90:10:1 v/v) was used as mobile phase (Constant et al., 2002). After 
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chromatography staining for the lipids was performed by dipping the sides of the TLC 

plate in a solution containing CuSO4 (10%) and perchloric acid (8%) followed by charring 

at 80°C over a hot plate (Thermoplate S) to visualize the lipid spots. The lipid spot 

corresponding to the lipid missing in the mutant was marked and the corresponding silica 

gel band was scraped off from the unstained region of the TLC plate using a scalpel and 

taken in a 50ml tube. 

The lipid was further extracted from the silica matrix using CHCl3 – CH3OH (1:1 v/v). 

The extraction was performed three times. The pooled extracts were centrifuged at 

5000rpm to remove any silica gel. The extracts were dried under nitrogen and dissolved 

1ml of CHCl3 – CH3OH (3:1 v/v). This solution was transferred to a 1.5ml eppendorf tube 

and centrifuged at 15,000rpm for 2 min to remove any silica particles. The remaining 

solution was transferred to another pre-weighed 2ml eppendorf and dried under nitrogen. 

Once dried the lipid present was weighed and stored at -20°C until use. 

3.2.19 Structural Elucidation of the Lipid Missing in Mutant P1 by Mass and 
NMR Spectrometry 

ESI-TOF (Electro spray ionisation- time of flight) -mass spectra were recorded in positive 

ion mode on a Q-TOF 2 mass spectrometer (Micromass, Manchester, UK) equipped with 

a nanospray source. Analytes were dissolved in chloroform : methanol and were injected 

into the mass spectrometer by glass capillaries using a capillary voltage of 1000 V and a 

cone voltage of 50 V. Instrument calibration was done with a mixture of sodium iodide 

and caesium iodide dissolved in 50% aqueous 1-propanol. 

1H-NMR Spectra were recorded in CDCl3 on a Bruker AMX 500 Instrument at 500 MHz 

3.2.20 Coating of Beads with Mycobacterial Lipids. 

10µl (0.5mg) of RPC-18 beads (Dynal) or fluorescent polystyrene beads were placed in a 

1.5ml eppendorf tube and 500µl 0.1M NaHCO3 buffer pH 9 was added. Beads were 

washed by pipetting up and down carefully and the tube was placed on magnet (Dynal) 

for 2min. With beads captured to the wall next to the magnet, the buffer was removed. 

This procedure was repeated twice. The bead suspension was added to tubes in which 

PGL-1 or PGL-2 lipids were dried (1mg of lipid), followed by sonication in a sonicator 

bath for 10min. The suspension was further incubated at 37oC for 2hrs with intermittent 
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sonication for 5min. The tube containing beads and lipid was placed again on magnet to 

remove buffer. The lipid coated beads were suspended in 1ml of PBS containing 5% BSA 

and incubated at 37oC for 1hr to block the unbound sites of the beads. The lipid coated 

beads were then washed with 1ml of serum free medium (SFM) twice as described above. 

The lipid coated beads were then suspended in 1ml of SFM.  

Fluorescent polystyrene beads were coated with lipid using the same procedure described 

above but the washing of the beads was done by centrifugation at 1200g for 15min instead 

of the magnetic separation. 

3.2.21 Characterisation of Phagosomes Containing Lipid Coated Beads.  

Buffers  

Equilibration Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 1mM DTT and 
 10μM Cytochalasin B. 

Lysis Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 220mM Mannitol; 
 68mM Sucrose. 

Wash Buffer 

50mM Pipes buffer pH7.0; 50mM KCl; 2mM MgCl2; 5mM EGTA; 1mM DTT. 

Elution Buffer  

10mM triethanolamine; 10mM acetic acid; 1mM EDTA; 0.25M sucrose 

HMDM were cultured in TC flasks as described earlier (see section 2.2.1). Cells were 

washed with SFM twice and placed in 2ml of SFM medium. A suspension of 100µl PGL-

1 coated beads, PGL-2 coated beads (prepared as described above), uncoated RPC-18 

beads (hydrophobic) or Myone beads (hydrophilic) was added to the cells in each TC 

flask. Uncoated beads were treated in the same way as coated beads except that no lipid 

was added. Cells with beads were incubated at 37oC in a 5% CO2 atmosphere for 1hr. 

After 1hr cells were washed with SFM three times to remove non-phagocytosed beads. 

HMDM along with beads were further chased by incubating overnight at 37oC in a 5% 

CO2 atmosphere. Macrophages were then washed with PBS once followed by the addition 

of 1.5ml equilibration buffer. The cells were then incubated on ice for 20min before 500µl 

lysis buffer was added. HMDM were then scraped off using a rubber policeman and 

collected in a 2ml eppendorf tube. The collected cell suspension was passed through a 23 
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gauge needle at least 15 times. 100µl of the homogenized cell suspension was kept aside 

for analysis. The eppendorf tubes containing the cell lysate were then placed on a magnet 

stand (Dynal) for 2min. Phagosomes containing the beads were captured on the wall of 

the tube, while the remaining fraction was removed and stored for analysis. The captured 

bead fraction was washed twice with 500µl of elution buffer and was finally suspended in 

200µl of phagosome elution buffer. 

The fractions stored were subjected to western blot analysis (section 3.2.5). After 

transferring the proteins on to PVDF membrane the blots were probed for Rab5 and β-

galactosidase using the respective antibodies. Fluorescent polystyrene beads coated with 

PGL-1 and PGL-2 were chased (as described earlier in this section 3.2.21) into HMDM 

grown on glass cover slips and the cells were marked for different phagosomal markers 

(see section 3.2.8 for protocol) and investigated under a fluorescence microscope. 

3.2.22 Cloning, Expression and Purification of PmiA-Protein 

3.2.22.1 Cloning 

Gene pmiA was amplified from WT M. marinum using primers P1N_pQE18_BD_F1 and 

P1N_pQE18_BD_R2 for cloning into vector pQE10 and primers P1N_pQE10_BD_F2 

and P1N_pQE10_BD_R1 for vector pQE18. The amplified fragments were purified using 

Qiagen PCR purification kit and cloned in frame with the 6X Histidine (His) tag into 

plasmids pQE10 (N-terminal His-tag) and pQE18 (C-terminal His-tag) by homologous 

recombination (In-fusion kit) to yield plasmid pGPC363 and pGPC364 respectively. The 

recombination reactions were transformed into BD-fusion blue cells supplied along with 

the kit (see section 3.2.4). The clones were selected on LB plates containing 50µg/ml 

ampicillin. Clones were picked and analysed for inserts. Clones containing inserts were 

sequenced to confirm the correct fusion of the pmiA ORF to the His tag. Clones C777 

(pmiA in pQE10) and C778 (pmiA in pQE18) were chosen for further use.  

3.2.22.2 Expression 

To express the gene pmiA in E. coli, a 10ml LB broth with 50µg/ml ampicillin was 

inoculated with a colony of C777 and C778 containing the pmiA plasmid and grown at 

37°C overnight. The overnight culture was transferred to a 100ml LB broth containing 

50µg/ml ampicillin and incubated at 37°C until the culture reached an OD of 0.8. E. coli 
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cells were induced by adding 100µl of IPTG (Isopropyl β-D-1-thiogalactopyranoside) and 

further incubated for 3hrs. The cells were harvested by centrifuging for 15min at 

5000rpm. The cell pellets were stored at -80°C until use.  

3.2.22.3 Purification 

Buffers 

Buffer A 

1M NaCl, 10mM Imidazole and 50mM Tris pH 8.0 

To purify the protein the cell pellet was thawed, suspended in 5ml of Buffer A, 300µl of 

lysozyme (40mg/ml stock solution) was added and incubated on ice for 30min. A small 

amount of glass beads of 0.2mm diameter were added and the suspension was agitated on 

a mill for 5min to disrupt the cells. Glass beads were allowed to sediment and the 

supernatant was transferred to another tube and centrifuged for 20min at 10000rpm/min. 

The pellet was suspended in 5ml buffer A containing 1% Zwittergent 3-12, 1mM PMSF 

and incubated for 1hr at 20°C and centrifuged again at 10000rpm for 10min. Pellets were 

stored at -20°C. The supernatant was incubated with 1ml 50% Ni-NTA for 1hr at RT. Ni-

NTA was washed twice with 4ml buffer A containing 1% Zwittergent 3-12 and twice with 

buffer B (same as buffer A but the pH is 6.0) with 1% Zwittergent 3-12. Elution was done 

in a cold room (+4°C). The protein was eluted from Ni-NTA resin using 0.5ml buffer B 

containing 1% zwittergent and 250mM imidazole. Elution was repeated 5 times. The 

amount of protein was estimated using Pierce assay following the protocol of the 

manufacturer. The protein was further analysed on a 10% SDS-PAGE.  

3.2.23 Capturing Proteins Interacting with PmiA. 

3.2.23.1 Preparation of Proteins from Mycobacterial Lysate 

Buffers 

Interaction Buffer 

50mM NaH2PO4; 300mM NaCl; 20mM Imidazole; 0.005% Tween20 and pH adjusted 
to 8.0. 

Wash Buffer 

50mM NaH2PO4; 300mM NaCl; 20mM Imidazole; 0.1% Tween20 and pH adjusted to 
8.0. 
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M. marinum protein whole cell soluble protein solution was prepared from a cell pellet 

obtained from a 5 day old 500ml culture. The liquid culture was centrifuged at 5000rpm 

for 15min to obtain the bacterial pellet. The pellet was suspended in 9ml interaction buffer 

with 1ml EDTA free protease inhibitor cocktail. The cell suspension was distributed into 

eppendorf tubes and a small amount of glass beads was added and agitated on a mill for 

30min to completely disrupt the cells. Unbroken cells and glass beads were removed by 

centrifuging at 600rpm for 5min.  The supernatant was collected and stored at -80°C until 

use. 

3.2.23.2 His-Tag Pull Down Assay 

Native proteins expressed and purified from C777 and C778 were immobilized on to 

magnetic agarose beads by incubating 30µg of protein with 100µl magnetic agarose beads 

in protein binding buffer at 22°C in a hybridization oven. The tubes were then placed on a 

magnet stand (Dynal) to separate the magnetic beads immobilized with protein. The 

supernatant was removed and the beads were washed once with 500µl interaction buffer. 

500µl of M. marinum protein solution was mixed with pmiA protein bound to the 

magnetic agarose beads and incubated for 1hr at 22°C in a hybridization oven. The tubes 

were again placed on a magnet and the supernatant was removed. The beads were washed 

twice with 500µl wash buffer. The agarose beads left in the tube were stored at -20°C 

until use. The proteins interacting with pmiA were analyzed by separating the proteins on 

a SDS-PAGE. His-tag-DHFRS (dihydrofolate reductase) protein (expressed and purified 

from pQE16 plasmid) was used as a negative control in these experiments.   
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 4  Results 

4.1 Magnetic Separation of Phagolysosomes from Subcellular Components 

In order to isolate phagolysosomal fractions iron dextran micro beads which are proved to 

be delivered to the phagolysosomes were chased into HMDM. HMDM containing iron 

dextran beads were lysed carefully and the cell components were passed through a MACS 

column under strong magnetic field. The cellular fraction that adhered to the magnetic 

column was eluted and further analysed. Experiments were performed to prove that the 

micromagnetic beads reach the lysosomal vacuoles and the isolated fractions were 

phagolysosomes. The isolated PL fraction was subjected to western blot analysis by 

probing with LAMP- 1 and EEA-1 antibody. As expected the PL fraction isolated did not 

contain EEA-1 but LAMP-1 effectively marked the isolated PL fraction as depicted in 

(Fig-3).  
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Figure 3: Western Blot Analysis of lysosomal fraction recovered by magnetic separation.  

HMDM were pulsed with ‘basic microbeads’ (Miltenyi Biotech) for one hour followed by a chase 
for two hours (lanes D-F) or overnight (lanes G-I); lanes A-C: control macrophages without 
beads. After the chase, macrophages were lysed (lanes A, D, G) and magnetic separation of 
subcellular compartments was done following the same procedure as for the selection of M. 
marinum mutants incompetent in retarding phagosome maturation. Lanes B, E, H: macrophage 
lysate fraction not binding to magnetic column (flow-through). Lanes C, F, I: organelle fraction 
binding to magnetic column in the absence (C) or presence (F, I) of ‘basic microbeads’. 
Following SDS-PAGE and blotting, membranes were probed with LAMP-1, EEA-1 or GAPDH 
antibody and developed by enhanced-chemiluminescence analysis.  
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4.2 Screening for M. marinum Mutants Permitting Phagosome Maturation 

To decipher the mycobacterial genes ascribed to inhibit PM, a screen to isolate Tn5367 

transposon inserted mutants defective in inhibiting PM was established (Fig-4). We 

designed the screen using our own experience that M. marinum can endure the hostile 

phagolysosomal milieu for a long duration (24 hours, data not shown). The screen was 

based on the presumption that mutants disabled to inhibit PM would be enriched in the 

phagolysosome (PL) along with the PL markers. Transposon insertion mutants were 

chased together with magnetic microbeads into the phagocytic pathway of human 

monocyte derived macrophages (HMDM). After an overnight chase the plasma membrane 

of HMDM was lysed under carefully controlled conditions, preserving the intracellular 

organelles. The homogenate containing the subcellular components was then passed 

through MACS columns under a magnetic field which retained the magnetic beads in the 

PL inside the column. The column was next removed from the magnetic field and the 

mutants were eluted along with the PL marker. A β-galactosidase assay of the eluted and 

the flow-through fractions revealed that the eluted fraction was strongly enriched in 

phagolysosomes (Fig-5). The lysosomal fraction was plated on 7H10 agar and incubated 

for five days. Bacterial colonies grown on the plate were scraped off, pooled, carefully 

dispersed to yield a single cell suspension and used to infect a fresh culture of HMDM. 

The selection was repeated three times for further enrichment of mutants allowing PM. 

After the final selection 100 individual colonies were picked for further investigation. 
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Figure 4: Screening for mycobacterial mutants permitting phagosome maturation.  

Phagosomal processing of mycobacterial mutants with defects in PM inhibition. EE, early 
endosome; LE, late endosome; WT bacteria will remain in a Rab5-positive vacuole, whereas heat 
killed bacteria and mutants with defects in PM will be processed into a LAMP1-positive, vATPase-
positive and cathepsin D-positive phagolysosome (PL). M. marinum transposon mutant library was 
chased together with magnetic microbeads to the PL and those mutants proceeding to the PL 
were selected on a MACS column under a strong magnetic field. 
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Figure 5: β-galactosidase assay performed with macrophage lysate (MP lysate), flow through 
after passing the lysate through MACS column, the washings of the column and the eluted 
phagosomal fraction for all three selections. 

4.3 Defining Transposon Insertion Sites by Sequence and Southern Blot 
Analysis 

In order to define transposon disrupted regions and to identify independent insertions in 

identical genes or loci, 79 of the 100 mutants selected for their inability to prevent PM 

were analysed by sequencing the transposon inserted locus. Southern blot analysis was 

also performed to confirm that each mutant had only a single transposon insertion and to 

identify mutants with transposon insertions in the same gene (Fig-6). The sequences 

obtained were BLASTed against the available M. marinum sequence database of Sanger 

(www.sanger.ac.uk). Since M. marinum genes are not annotated, a homology search was 

done against the Mycobacterium tuberculosis database available through TIGR CMR 

using the BLASTX function (www.tigr.org). ‘Rv’ numbers are used to represent the genes 

identified. Analysis revealed that the insertions were not spread across the genome (Fig-

5). The most striking feature was that transposon inserted regions in 15 of the mutants 

could not be mapped to the available M. marinum genome database of Sanger, although 

similar genes, albeit with low probability scores were identified in other mycobacterial 

genomes. Interestingly, 50% of the insertions were mapped to genes influencing the 
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constitution of the cell envelope of mycobacteria (Listed in Table-2). The significance of 

the mutations is highlighted by the fact that insertions in the same gene or related genes in 

independent mutants were frequently found. Our results in general describing the diversity 

of mycobacterial genes involved in retarding PM are in accordance with previous reports. 

Genes coding for fadD proteins, transporters and genes of the PE/PPE gene family also 

appeared in our screen as was the case in previous screens (Pethe et al., 2004); (Stewart et 

al., 2005). Interestingly a mutant having a transoposon insertion in a gene involved in 

isoprenol biosynthesis as identified by Pethe et al was also identified through our screen. 

Moreover, we had taken utmost care to disperse bacterial clumps into single bacilli. This 

enabled us to identify genes coding for membrane proteins and secretory proteins. Under 

representation of such proteins in genetic screens has been speculated to be due to cross 

presentation by Stewart et al. Our screen also identified genes contributing to the 

resistance of mycobacteria to the killing by macrophages as reported by others 

independently (Sassetti and Rubin, 2003); (Miller and Shinnick, 2001); (Gao et al., 2004); 

(Raynaud et al., 2002); (Haydel and Clark-Curtiss, 2006); (He et al., 2003) (see Table-2 

for details). 

Table – 2: List of Mutants obtained through the screen, their putative function and 

their M. tuberculosis homologue. 

mutant putative function 
Mtb H37Rv 
hom. 

N68 mmpL4 Rv0450c  
N4R mmpS4 Rv0451c 
N43 chorismate pyruvate-lyase Rv2949c  
N33 fadD22, Probable Acyl-CoA Synthetase Rv2948c  
N8 hypothetical protein Rv1259 Rv1259 

N93 PPE family Rv0355c 
N29 PPE family Rv1918c  
N67 galT gal-1-P uridylyltransferase Rv0618 
N34 POSSIBLE TRANSMEM-BRANE PROTEIN Rv0514 
N69 hypothetical protein Rv1134 Rv1134 
N95 hypothetical protein Rv0007 Rv0007 
N21 PPE family Rv1918c 
N10 PPE family Rv1918c 
N61 PPE family Rv2356c  
N32 hypothetical protein Rv0326 Rv0326 
N47 hypothetical protein Rv3829c Rv3829c 
P3 PPE family Rv1548c 
N5 PPE family Rv1135c 

N75 PPE family Rv1135c 
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N76 Unknown function Rv0213c 
N77 Unknown function Rv0213c 
N27 unknown function Rv3897c 
N40 cell division protein ftsh Rv3610c 
N66 unknown function Rv0365c 
N6 unknown function Rv0365c 
N9 unknown function Rv0365c 

N15 unknown function Rv1735c 
N13L PE_PGRS family Rv3388 
N70 hyp. prot. toxin prod & resist. Rv2959c 
N28 unknown function Rv1776c 
N48 hyp. protein, electron transport Rv1882c 
N45 possible transmem. prot. Rv1888c 
N30 unknown function Rv0037c 
N16 PPE family Rv1918c  
N37 rnhB, ribonuclease HII Rv2902c 
N71 unknown function Rv1111c 
N78 hyp. prot. metalloendopeptidase Rv1977 
N18 possible membrane protein Rv0677c 
N81 PE_PGRS family Rv3652  
P1 unknown function Rv2229c 

N100 hyp. prot. stress response Rv2624c 
N39 unknown function Rv0004 

N13R PE-PGRS family protein Rv3812  
N24 fadD22 Acyl-CoA Synthetase Rv2948c 
N63 polyketide synthase Rv0405 
N20 hyp. prot. helicase activity Rv1179c 
N64 unknown function Rv0538 
N84 fadE25 acyl-coA dehydrogenase Rv3274c 
N83 fadD35, Acyl-CoA Synthetase Rv2505c 
N14 unknown function Rv1291c  
N44 PPE protein family Rv3533c 
N82 unknown function Rv0841c 
N65 hyp. prot Cell envelope Rv1145 
N22 cell envelope, toxin production Rv1115 
N73 PGRS family Rv0335c  
N97 hyp. prot. cell envelope Rv1057 
N23 unknown function Rv2347c 
N99 Transport and binding proteins Rv3239c  
N12 Cysteine synthase/cystathio-ninebeta-synthase Rv1336  
N74 ompATb Rv0899 
N38 plcB: phospolipases C Rv2350c 
N92 bifunctional short chain isoprenyl diphosphate synthase Rv3398c  
N4L unknown function Rv3860 
N36 hyp. prot. cell envelope Rv3881c 
N1 hypothetical phage protein spyM18_0725  
N2 unknown function no homology 

N19 prob. cyclase histidine biosynthesis Rv1605 
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N3 hyp. prot. transport Rv0849 

N31 unknown function no homology 
N35 hyp. prot. transport Rv0849 
N41 putative transporter Nocardia pnf1810 
N42 peptide synthetase Rv0101  
N46 unknown function Rv2100 
N62 hyp. prot. fatty acid and phospholipid metabolism Rv2800 
N7 unknown function no homology 

N72 unknown function Rv0523c 
N91 unknown function Rv1944c 
N94 unknown function Rv3668c 

 

 

Figure 6: Southern blot analysis of M. marinum transposon mutants. DNA was isolated from 
mutants separated on agarose gel, transferred onto nitrocellulose membrane and hybridized to an 
aph gene. Lanes 6, 8 and 11 show mutants having transposon insertion in the same gene.  

 

           1     2   3  4  5  6  7  8  9 10  11   12   13    14   

10Kb 

8Kb 

6Kb 

5Kb 

4Kb 

3.5Kb 

3Kb 

Hit within 500bp distance

Hit within 5000bp distance

Hit within 10000bp distance

No strict homology found in M. marinum M strain genome 



   
75

 

Figure 7: Distribution of selected mutants on the M. marinum M strain genome map. 
Transposon insertion sites and genomic locations were determined by sequencing and BLAST 
analysis (http://www.sanger.ac.uk/cgi-bin/blast/submitblast/m_marinum). 

4.4 Adenoviral Vectors to Track the Endocytic / Phagocytic Pathway 

Rab5 and Rab7 Green fluorescent protein constructs were received from Dr. Craig Roy 

and Rab11 GFP construct was received from Dr. Marci Scidmore. These genes were re-

cloned and packed into an adenoviral vector. Adenoviral vectors harbouring the Rab-GFP 

fusion proteins were used to transfect HMDM. An efficient transfection in HMDM was 

achieved with an MOI of 100:1 when the cells were spin infected. The cells were scanned 

under a fluorescence microscope. Cells expressing GFP were also quantified by FACS 

(Fig-9). In order to confirm that the Rabs were expressed as GFP tagged proteins, western 

blot analysis was performed. The blots were probed with an anti-GFP antibody followed 

by ECL detection. Analysis proved that the Rab-GTPases were expressed as GFP-fusion 

proteins as shown in figure (Fig-8) 

The functionality of the Rab GTPases was assessed by chasing fluorescent dextran and 

transferin (Tf) in HMDM transfected with respective Rab-GFP adenoviral vectors, 

followed by evaluation under a fluorescent microscope. When fluorescent dextran was 

chased for 2 minutes followed by fixation, vacuoles containing dextran were marked by 

the presence of Rab5-GFP indicating early endosomes (Fig-9), whereas in Rab7-GFP 

transfected HMDM, dextran chased for 30min was present in compartments marked with 

Rab7-GFP signifying late endosomes (Fig-9). Similarly Rab11-GFP marker for recycling 
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endosomes was present in organelles containing Tf, when Tf was chased in HMDM for 5 

minutes (Fig-9). These observations ascertain that the Rab-GFP fusion proteins expressed 

in HMDM using adenoviral transfections were functional or at least co-localised with the 

functional wild-type proteins. The same was also confirmed in mouse DCs and 

macrophages (Fig-9). 

 

Figure 8: HMDM were transfected with Rab5 (I: A-C), Rab7 (I: D-F), Rab11a (I: G-IRab11b (II: A-
C) adenoviral constructs for different time points (overnight, 48hrs and 72 hrs). Following 
transfection, cells were lysed and equal amounts of protein was loaded on SDS-PAGE. Gel was 
blotted onto PVDF membrane and probed with antibody against GFP. Cell lysate from cells 
transfected with an empty adenoviral vector (II: D-F) and macrophage lysate (II: G-I) without 
adenoviral transfection were used as negative controls. 

 

Fig 9: FACS analysis of Rab-GFP fusion transfected cells 

Mouse macrophages, Mouse dendritic cells and HMDM were transfected with Rab-GFP 
adenoviral constructs by spin and without spin infection and analysed by FACS. Black curve 
indicates transfection by spin, grey curve indicates transfection without spin and dotted lines 
indicate non-transfected cells. Numbers over the histogram indicate percentage of cells 
transfected by spin/ percentage of cells transfected without spin. 
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Figure 10: Functional characterisation of adenoviral Rab constructs by fluorescent microscopy 

Mouse dendritic cells, macrophages and HMDM were transfected with Rab-GFP adenoviral constructs 
and chased with dextran and transferin. Fig depicts co-localisation of dextran with Rab5-GFP after a 
5min chase (A-C), Transferin (Tf) with Rab11b-GFP after a 5min chase (D-F) and Dextran with Rab7-
GFP after a 30min chase (G-I) 
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4.5 Immunofluorescence Microscopy of HMDM Infected with Mutants  

We employed the above described Rab5- and Rab7-GFP fusion proteins and LAMP-1 

antibody staining to characterize the wild-type M. marinum (WT) and mutant containing 

phagosomes. Immunofluorescence micrographs revealed that WT containing phagosomes 

were indeed found to retain Rab5 (Fig-11A) even after an overnight chase, whereas 

LAMP-1 (Fig-11C) and Rab7 (Fig-11E) were excluded. In contrast, phagosomes 

containing mycobacteria were observed to co-localise with Rab7 and LAMP-1 (Fig-11F 

and 11D). One of the six randomly selected mutants screened (P1) had severely reduced 

capacity to resist PM. 69 + 4% of the P1 phagosomes acquired Rab7  and 73 + 3% 

LAMP-1  compared to 13 + 2%, 22 + 2% respectively of WT bacteria, when 100 

phagosomes of WT and P1 mutant were enumerated each (see Fig–12 and table-3 for 

details). This indicated that the interrupted gene in this mutant has a vital function in 

preventing PM. The gene has been given the provisional name phagosome maturation 

inhibition A (pmiA). 
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Figure 11: Phagosome-phenotypic characterization by fluorescence microscopy. 

HMDM expressing Rab5-GFP (A and B) and Rab7-GFP (E and F) were infected with WT and 
mutant P1labelled with TRITC and observed for co-localisation of the mycobacterial phagosome 
with the phagosomal markers. LAMP-1 staining was done on HMDM infected with WT and 
mutant P1 labelled with FITC (C and D). Phagosomes containing mutant P1 co-localise with 
late endosomal markers Rab7 and LAMP-1 (D and F) but do not co-localise with the early 
endosomal marker Rab5 (B) whereas phagosomes containing WT do not co-localise with the 
late endosomal markers(C and E) but co-localise with Rab5 (A). 

 

 

 

A

B

C

D

E

F

A

B

C

D

E

F

Rab5 / WT 

LAMP-1 / WT 

Rab7 / WT 

Rab7 / P1 

LAMP-1 / P1 

Rab5 / P1 

Merge 
Phagosomal 

Marker Bacteria 



   
80

 

 

 

 

 

 

 

 

 

 

Figure 12: Analysis of co-localisation data of WT and mutant M. marinum with endocytic markers. 
Values indicate the means and standard deviations of percentages of phagosomes containing 
WT- , P1- and complemented P1[pGPC352] M. marinum co-localised with LAMP-1 (white boxes), 
Rab7 (black boxes) and Rab5 (grey boxes). Data are the mean of three independent experiments, 
with a minimum of 100 phagosomes counted per experiment for each sample.  

Table-3: p values of percentage bacteria co-localising with phagosomal markers 

  WT P1 P1[pGPC352] 

  Lamp-1 Rab7 Rab5 Lamp-1 Rab7 Rab5 Lamp-1 Rab7 Rab5 

P1 <0.001 <0.001 <0.001 - - - <0.001 <0.001 <0.001 

P1[pGPC352] 0.138 0.165 0.576 redundant - - - 

Statistical analyses of data from each time point were performed by one-way ANOVA post hoc range 
test and pairwise multiple comparisons with Tamhane's T2 corrections assuming nonequal variances. 
P-values are indicated. 
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4.6 Mutant P1 is Attenuated in HMDM  

Our results prove that the WT was able to multiply in HMDM. WT M. marinum did not 

grow well nor was there a drastic cell death until day three. This observation is in 

correlation with the recent study by Kent et al (Kent et al., 2006). After 72hrs a rapid 

increase in multiplication of WT was observed, whereas the virulence of the mutant P1 

was severely attenuated in HMDM. After a slight increase during the first 24hours a rapid 

decrease in viability of the mutant P1 was observed. By contrast the complemented 

mutant P1(pGPC352) had a similar growth pattern to that of the WT (Fig-13). Decline in 

the survival of the mutant was as expected and could be attributed to the defect in the 

inhibition of PM. Although a significant reduction in growth of P1 was observed in 

HMDM, P1 growth in 7H9 broth was not inhibited, as shown in Fig-14 neither was a 

growth difference between P1 and WT observed on 7H10 agar medium. 

 

Figure 13: Survival of M. marinum WT, P1 and P1(pGPC352) in human monocyte derived 
macrophages. Macrophages were infected with a MOI of 10:1, incubated at 37oC and lysed for 
CFU counting at indicated time points. The graph shows the mean values of two independent 
experiments with duplicate determinations of each time point in each experiment. Error bars 
indicate the standard deviation.  
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Figure 14: Growth of mutant P1 and WT M. marinum in 7H9 broth.  

7H9 broth was inoculated with WT or mutant P1 and at different time interval OD was measured 
and the values plotted. 

4.7 Bioinformatics Analysis of Transposon Inserted Gene of Mutant P1 

Sequencing of the transposon insertion site in the P1 mutant showed that the transposon 

had inserted in a gene for which the function has not been described. The insertion site 

was mapped to a sequence highly similar (97% sequence identity) to ORF MM3386 in the 

M. marinum ATCC BAA-535 genome. Neither the putative peptide sequence of 203 

amino acids of M. marinum ATCC 729 nor the putative 197 amino acids of MM3386 

were found to have significant similarities to genes in any other genome in the current 

databases (NCBI, EBI and TIGR-CMR). No signature patterns, domains, repeats, motifs 

or other features could be predicted with confidence except for a RGD motif in the 

putative peptide sequence using the latest SMART (Simple Modular Architecture 

Research Tool) at EMBL, the latest BLAST engines at NCBI or the latest releases of the 

PROSITE search engine at http://www.expasy.ch/tools/scanprosite. RGD is the single 

letter code for arginine-glycine-aspartate. This tripeptide motif is normally found in 

proteins of the extracellular matrix. Since the mutant disrupted in this gene is unable to 

inhibit phagosome maturation the gene was named pmiA (phagosome maturation 

inhibition). Downstream to the gene pmiA are putative hydroxylase and carboxylase genes 

with opposite polarity, which could possibly be involved in fatty acid metabolism (Cole et 

al., 1998). A sketch of the organisation of the genes is shown in figure (Fig-15).  
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Figure 15: Physical map of pmiA (MM3386) in M. marinum ATCC 729 and the adjacent putative 
hydrolase (MM3387) and carboxylase (MM3388) genes. The numbering of the ORFs relates to 
the M. marinum ATCC BAA-535 strain sequenced at the Sanger Institute. The M. marinum 
ATCC 729 chromosomal fragments cloned in this study for complementation analysis of the 
mutation in mutant P1 are indicated in shaded bars below the gene graphs. The Genbank 
accession number is indicated.  

4.8 Trans-complementation of P1 and Co-elution of 14C Labelled Bacterial 
Cells with Lysosomal Marker  

The region spanning the transposon insertion site was cloned into a pOLYG shuttle 

vector, electroporated into P1 and selected on plates containing hygromycin and 

kanamycin. To examine whether the reconstitution of the disrupted gene restored WT 

phenotype, HMDM were infected with 14C palmitate labelled bacteria (WT, WT heat 

killed, P1 and P1[pGPC352]) then  pulsed and chased with  marker for phagolysosome 

(PL) and selected on MACS column under magnetic field as performed for transposon 

mutant screen. Bacteria that co-elute with the PL marker were quantified on a β-

scintillation counter. As shown in figure (Fig-16) the majority of the heat killed 

M. marinum co-elute with the PL marker, whereas only a minor fraction of the WT co-

elute with PL. In control a significant fraction of P1 was observed to co-elute with the PL 

marker whereas the trans-complemented P1[pGPC352] and P1[pGPC374] were restored 

to WT levels. We could infer from these observations that the mutant P1 was not 

competent enough to resist PM and when reconstituted with the respective gene was able 

to regain its lost phenotype. To narrow the range of genes affected by the transposon 

insertion and responsible for the phenotypic change in P1, a set of nested deletions in the 
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complementation plasmid was generated. The range of WT chromosomal sequences 

covered by the nested plasmids is also shown in figure (Fig-15). Plasmid pGPC374 

harbouring just 1332 bp of WT sequence spanning pmiA and no other putative 

mycobacterial ORF is sufficient to restore the WT phenotype as less than 5% of P1 

bacterial cells harbouring this plasmid co-eluted with the PL marker. These results 

confirm that the transposon interrupted gene pmiA itself is responsible for the inhibition of 

PM and eliminates the involvement of any polar effects on the neighbouring genes. 

 

Figure 16: Co-elution of bacterial cells with lysosomal marker. 

M. marinum WT, mutant P1 and complemented mutant P1[pGPC352] were metabolically 
labelled with 14C palmitate. HMDM were infected with live strains and with heat killed wild-type 
(WTHK) as indicated. Macrophages were pulsed and chased with lysosomal marker (micro 
beads). Subcellular homogenate was applied to a MACS column under a strong magnetic field. 
After removing non-specifically retained organelles by washing the phagosomes containing 
lysosomal marker were eluted. The fraction of bacteria that co-eluted along with the PL marker 
were quantified on a β-scintillation counter. The values above the columns denote the 
percentage of cells co-eluting with lysosomal marker. 
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4.9 In vivo Survival of P1 in Mice 

The ATCC 927 M. marinum strain used in this study has been shown to be able to cause 

systemic infection in mice (Kent et al., 2006). Therefore a mouse model was used to 

evaluate the efficiency of the mutant P1 to survive in vivo. C57BL/6 mice were 

intravenously challenged with WT, P1 and P1[pGPC352]. Mice were sacrificed one and 

two weeks post infection and the number of bacteria in spleen and liver were determined 

(Fig-17A and 17B). Analysis of colony forming units recovered from infected mice by 

one way ANOVA for liver and spleen and each week separately showed that the capacity 

to maintain viable bacterial cells in the infected organs was significantly diminished in the 

mutant P1 compared to both WT and P1[pGPC352]; p-values, p < 0.004 for livers first 

and second week, p < 0.001 for spleens first week and p < 0.011 for spleens second week. 

In accordance with previous findings M. marinum WT undergoes a steady decline in 

viability, which was significantly more rapid in P1 infected animals. This is attributed to 

the loss of virulence in P1.  
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Figure 17: In vivo survival of M. marinum mutant P1 in mice. 

C57BL/6 mice were challenged intravenously with an inoculum of 4 x 105 CFU per mouse of M. 
marinum WT, P1 and P1[pGPC352]. After infection, liver and spleen were excised, 
homogenized and the homogenate diluted and plated on 7H10 agar. Box plots of liver and 
spleen CFUs recovered from livers and spleen of 5 mice for each time point infected with WT, 
P1 and P1[pGPC352] are shown. The symbol (*) indicates an 'extreme' value and the symbol 
(Ơ) an 'outlier'. 
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4.10 Histopathology of Infected Organs 

Mycobacterium marinum mutant P1 showed significantly reduced pathological changes in 

C57BL/6 mouse livers. The capacity of P1 to induce granuloma formation was clearly 

attenuated, as the number and extent of the epitheloid granulomas was reduced in the 

mutant in comparison both to the WT and P1[pGPC352], especially in the second week. 

However, P1[pGPC352] infected animals demonstrated a more variable number of 

granulomas than WT. The majority of the granulomas were developed in the lobules and 

fewer in the portal tracts. Granulomas in P1 infected animals also showed more and 

stronger signs of inflammation around the granulomas; i.e. mainly lymphocytes and few 

granulocytes. A striking feature of the liver sections of WT and P1[pGPC352] infected 

animals was the severe endothelialitis which was only marginal in P1 infected animals 

(Fig.-18). One of the five WT infected livers was entirely necrotic with widespread 

hepatocyte damage. Necrosis in the granulomas was observed in none of the animals in 

the other groups. The spleens demonstrated pathological changes to a lesser extent. In the 

second week the red and white pulp of the spleen of WT infected showed in two out of 

five animals very few granulomas, in two out of five none and in one animal the entire 

spleen was necrotic. Among the P1[pGPC352] infected animals five out of five spleens 

demonstrated few small granulomas in the white pulp. In contrast, the P1 infected animals 

showed normal histology and no granulomas except in one animal. 
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Figure 18: Representative micrographs of the histopathology of infected organs. Magnification 
of each panel is 400X. Granuloma morphology in M. marinum-infected C57BL/6 mice. Mice 
were intravenously infected with 4 x 105 CFU of M. marinum WT, P1, P1[pGPC352] and 
sacrificed 2 weeks post infection. Liver sections were stained with HE. (A) and (B) large 
epithelioid granulomas in a WT-infected and in a P1[pGPC352]- -infected mouse. (C) Smaller, 
less well organized granulomas in P1-infected mouse. (D) and (E) endothelialitis in a WT and 
P1[pGPC352] -infected mouse. (F) Signs of endothelialitis absent in a P1-infected mouse 
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4.11  Non-Cording Phenotype and Lipid Profile 

Unexpectedly, P1 when recovered from the organs of mice produced flat, smooth and 

transparent colonies. WT bacteria retained their rough colony morphology and the 

complemented P1[pGPC352] reverted back to WT morphology to a greater extent (Fig-

19), confirming that the altered colony morphology of P1 was due to the disruption of the 

gene pmiA. We investigated whether the mycolic acid profile of P1 was altered. The 

mycolic acid patterns were as described before and no significant differences were 

observed in P1 when compared to that of the wild-type (Fig-20). Hence we undertook a 

more systematic approach to study lipid profiles as explained by Dobson et al (Dobson et 

al., 1985). When highly hydrophobic outer layers of lipids were extracted using petroleum 

ether and analysed on TLC a lipid moiety in WT could be resolved, which was missing in 

the mutant P1 and was restored in the complemented P1[pGPC352] (Fig-21).  These 

results indicate a function for the gene pmiA in lipid metabolism or transport.  

 
Figure 19: Colony morphology of mutant bacterial cells. 

Bright field microscopy of M. marinum WT-, P1- and P1[pGPC352]-colonies; 7 days after 
recovery from mouse organs and seeding onto 7H10 agar. After passage through mouse 
organs P1 produced flat, smooth and translucent colonies. P1[pGPC352] regained WT 
characteristics to a greater extent. The scale bar in all images is equal to 0.1 mm. 

WT P1 P1[pGPC352] WT P1 P1[pGPC352] 
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Figure 20: Mycolic acid profile of WT and mutant P1. 

Mycolic acids were extracted from WT and mutant P1 labelled with 14C palmitate and 
chromatographed on a TLC plate. Fig shows the different mycolic acids present in WT and mutant 
P1   

 

Figure 21: Lipid profile of mycobacterial cell wall.  

Non-polar lipids non-covalently bound to the cell wall of M. marinum WT, P1 and P1[pGPC352] 
were isolated using petroleum ether and separated by thin layer chromatography (TLC). The 
chromatogram was developed by treating with phosphoric acid followed by charring. The black 
arrow indicates a lipid fraction present in WT and P1[pGPC352] but missing in the mutant P1.  

 

 

 

WT P1WT P1

α-methoxymycolic acid 

Keto-mycolic acid 

α-mycolic acid 

WT P1 P1[pGPC352] WT P1 P1[pGPC352]  



   
91

4.12   Characterization of the Lipid Missing in Mutant P1 

The lipid absent in mutant P1 was purified from a lipid extract of WT using preparative 

TLC. The purified lipid was subjected to electrospray mass spectrometry (ES/MS). This 

analysis revealed a series of sodiated molecular ion peaks at 1516, 1530, 1544, 1558, 

1572, 1586, 1600, 1614 m/z (Fig-22). The same peaks were also observed in a study 

where two of the  three terminal sugars were truncated by knocking out a gene involved in 

glycosylation of phenolic glycolipid (PGL) (Perez et al., 2004). It is also know from 

earlier studies that PGL of M. marinum is 3-O-methyl rhamnose glycosylated 

phenolphthiocerol.  In order to further confirm the nature of the sugar, PGL was subjected 

to mild acid hydrolysis and the sugar and the lipid moieties were separated on a 

preparative TLC plate. The sugar moiety was extracted, purified and analysed by MS. A 

peak was observed at 191m/z (Fig-24) which corresponds to the mass of the predicted 

sugar moiety. Using the structure derived from ES/MS analysis, a NMR spectrum was 

predicted for PGL using ChemDraw® 8.0 (Cambridgesoft Corp.). The NMR spectrum 

obtained (Fig 25B) from the purified PGL matched with that of the predicted spectrum 

(Fig-25A). Two unshielded doublets were observed at 6.97 and 7.10ppm corresponding to 

the proton resonance of the phenolic group of PGL-1. At least two singlets were observed 

in the region of the resonances of OCH3 protons linked to the sugar moiety between 3.5 

and 3.6ppm. A signal at 1.25 ppm corresponding to the polymethylenic CH2 units was 

also noted. The resonances of the terminal CH3 protons were observed at 0.8-1.00 ppm. 

Also the resonance of the methine (CH) proton of the esterified β-glycol and the methoxy 

group of phenolphthiocerol were observed at 4.83 and 3.32 ppm respectively (Perez et al., 

2004). From these observations the chemical structure of PGL-1 was derived (Fig-23). 

The lipid missing in the mutant P1 was also characterized biochemically. WT and P1 

mutant were grown in liquid broth pulsed with [14C] palmitate or [14C] p-hydroxy benzoic 

acid, a known precursor of PGL. The lipids of the membrane and the cytoplasm were 

extracted separately from the bacterial pellet following a previously described protocol 

(Sulzenbacher et al., 2006).   [14C] palmitate labelled cells showed up many lipids of the 

outer envelope and the inner cytoplasm except for one lipid spot missing in the mutant P1 

(Fig-26). When labelled with [14C] p-hydroxy benzoic acid, very clearly only one lipid 

spot corresponding to the missing lipid spot of the mutant P1 was found to co-migrate 

with the M. marinum specific lipids labelled with [14C] palmitate. This radioactive species 
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was again absent in the mutant P1 (Fig-27), confirming that the lipid contains a p-hydroxy 

benzyl moiety. These data collectively prove that the missing lipid spot in mutant P1 is a 

PGL.  

 

 

 

 

 

 

 

Figure 22: Mass spectrum of the lipid missing in mutant P1. 

The lipid spot missing in mutant P1 was purified and subjected to ES/MS analysis. The figure 
represents the mass speaks corresponding to that of phenolic glycolipid. 

 

Figure 23: Chemical structure of the characterized Phenolic Glycolipid of M. marinum. 

The chemical structure was derived from the mass values obtained from ES/MS analysis.  
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Figure 24: Mass spectrum of the sugar component of PGL-1 

PGL-1 was subjected to acid hydrolysis to yield the sugar. The sugar moiety was purified from a 
preparative TLC plate and subjected to MS analysis. The figure shows a mass peak at 191.2 m/z 
corresponding to that of the sugar moiety present in PGL-1.  
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Fig – 25 B: Obtained NMR spectra of PGL-1 

Fig – 25 A: Predicted NMR spectrum of PGL-1 
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Figure 26: TLC profile of lipids of WT and mutant P1 

Lipids were extracted from WT and P1 grown in 7H12 medium containing 14C palmitic acid and 
chromatographed on TLC. Arrow indicates PGL-1 found missing in mutant P1 

 

 

Figure 27: Lipids of WT and mutant P1 labelled with 14C p-hydroxybenzoic acid 

WT and mutant P1 were grown in 7H9 medium pulsed with 14C p-hydroxybenzoic acid and lipids 
extracted and chromatographed on TLC plate. Arrow indicates PGL-1 of WT labelled with 14C p-
hydroxybenzoic acid whereas it is absent in mutant P1. 
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4.13  M. marinum PGL Inhibits Phagosome Maturation 

The mutant P1 was unable to inhibit PM and failed to synthesise PGL. PGL analysis by 

radioactive labelling and TLC were also performed with other mutants (N33, N43, N68 

and N70) obtained through the screen. These mutants had transposon insertions in genes 

involved or possibly involved in PGL biosynthesis. Interestingly these mutants also failed 

to produce PGL. Therefore, we asked if PGL on its own could inhibit PM. To prove this 

hypothesis, PGL purified from M. marinum was coated on to fluorescent polystyrene 

beads which were then chased in HMDM overnight. As controls uncoated beads and 

beads coated with a lipid migrating below the PGL on TLC which is also present in the 

mutant were chased in HMDM separately. Following the chase the cells were stained for 

LAMP-2 and Rab5 and viewed under a fluorescence microscope. As expected higher 

percentages of phagosomes containing plain beads and control lipid coated beads were 

LAMP-2 positive compared to that of PGL coated beads. In contrast, phagosomes 

containing PGL-1 coated beads contained Rab5 as demonstrated by immunofluorescence 

microscopy (Fig-28). 

To further prove that M. marinum PGL inhibits PM, hydrophobic magnetic beads coated 

with PGL or control lipid, uncoated beads and hydrophilic magnetic beads were chased 

into HMDM and, using the same protocol used to isolate mutants ending up in the 

phagolysosomes, the cells were lysed and the phagosomes containing magnetic beads 

were isolated under a magnetic field. The isolated fractions were subjected to western blot 

analysis. Following electrophoretic transfer to polyvinylidene difluoride (PVDF) 

membrane, this was probed with antibody against Rab5 and β-galactosidase and further 

detected by electro-chemiluminescence (ECL) analysis. This revealed that the phagosomal 

fraction containing PGL coated beads were highly reactive with Rab5 antibody compared 

to that of the controls (Fig-29), denoting that the PGL coated beads are held up in an early 

endosome like phagosome. By contrast PGL phagosomal fraction did not react with anti-

β-galactosidase antibody. These results indicate that M. marinum PGL is capable of 

inhibiting PM on its own. Moreover, a defect in the biosynthesis of PGL by the mutant P1 

could be contributing for its inefficiency in restricting PM. 
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Figure 28: Characterization of phagosomes containing PGL-1 coated beads by fluorescence 
microscopy. 

PGL-1-, control lipid-coated and uncoated fluorescent beads were chased into HMDM overnight 
and stained for PL marker LAMP-2 (A-C) and early phagosomal marker Rab5 (D-F). 
phagolysosomes containing PGL-1 coated bead stained for LAMP-2 but did not stain for early 
phagosomal marker Rab5 (F), whereas phagosomes containing uncoated beads and control lipid 
coated bead stained for LAMP-2 (A, B) but did not stain for Rab5 (D, E). 
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Figure 29: Western blot analysis of phagosomes containing PGL-1 

Hydrophobic magnetic beads were coated with PGL-1 and chased into macrophages followed by 
isolation of phagosomes containing beads, which were lysed and separated on a SDS-PAGE, 
transferred on to PVDF membrane and probed with anti-β galactosidase and anti-Rab5 
antibodies. 

A- Macrophage lysate 

B- Phagosomes containing plain beads 

C- Lysate of macrophages chased with beads coated with a lipid of mycobacteria also present in 
mutant P1. 

D- Phagosomes containing beads coated with a lipid of mycobacteria also present in mutant P1     

E- Lysate of macrophages chased with beads coated with PGL-1 

D- Phagosomes containing beads coated with a PGL-1 

 

4.14  Functional Characterization of the Gene pmiA 

Database search using the available search engines and analysis of the gene sequence and 

the predicted protein sequence using bioinformatics tools as described above did not 

return significant hits. Therefore, to study the involvement of gene pmiA in the 

biosynthesis of PGL an attempt was made to identify its binding partner proteins if any. 

The protein PmiA was expressed as a histidine fusion protein immobilized on magnetic 

agarose beads. These beads were used to pull out the interacting partner(s) of PmiA from 

a lysate of mycobacterial proteins. As a control DHFRS-His tag protein was expressed 

from a plasmid immobilized on to magnetic agarose beads and allowed to bind with 

mycobacterial proteins. Proteins bound to the beads were resolved on SDS PAGE. 

Interacting proteins specific for pmiA were excised from SDS PAGE gel and were given 

for mass finger printing (Fig-30). Interestingly, MALDI-MS results unveil the pmiA 

interacting proteins to be a methyl transferase and isocitrate lyase. A similar methyl 
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transferase has been earlier shown to be responsible for the cyclopropanation of mycolic 

acids, major fatty acids of mycobacterium species. Isocitrate lyase is considered important 

for the glyoxylate shunt pathway used by M. tuberculosis during its period of latency, in 

order to derive its energy through fatty acid metabolism. These results, though 

preliminary, substantiate the role of PmiA in lipid biosynthesis. 

 

Figure 30: SDS-PAGE showing proteins possibly interacting with PmiA 

PmiA was expressed as his-tag fusion protein, bound to magnetic agarose beads and allowed to 
interact with slurry of mycobacterial proteins. The proteins bound to PmiA were separated on 
SDS-PAGE.  
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 5  Discussion 

5.1 Mycobacterial Genes Possibly Involved in the Inhibition of Phagosome 
Maturation 

Virulent mycobacteria hijack macrophages and interfere with the intracellular signalling 

to reside within a specialised phagocytic compartment. In order to understand the genes 

contributing to the inhibition of PM, we performed a screen to select for the transposon 

inserted M. marinum mutants localising in the PL. Although many genetic approaches 

have been used to elucidate the mechanisms of mycobacterial pathogenesis, studies using 

mutant strains are considered to be more effective than other strategies (Murry and Rubin, 

2005). Investigations using transposon mutant pools have been successfully used by 

different groups to examine genetic needs for mycobacterial virulence in vivo in mice, 

survival in macrophages, to identify genes involved in arresting PM and acidification of 

phagosomes. Are there multiple genes involved in the inhibition of PM? Using our screen 

we identified genes related to lipid and protein metabolism, transport, cell wall associated 

proteins, genes belonging to PE/PPE (Proline-Glutamine / Proline-Proline-Glutamine 

domains) gene family and many unknown or hypothetical genes, implying diverse and 

multiple genetic requirement. Identification of mutants with insertions in genes involved 

in isoprenoid biosynthesis pathway by us and Pethe et al. indicates the extent of 

biochemical machinery employed by mycobacteria to facilitate the inhibition of PM 

(Pethe et al., 2004).  

5.1.1 Genes Belonging to PE/PPE Gene Family 

Identification of genes belonging to the PE/PPE gene families has been a common feature 

in different genetic screens done to study different aspects of mycobacterial pathogenesis 

and our screen is not an exception. This family of genes is remarkable in that it is 

composed of 100 homologous genes only in mycobacteria (Brennan and Delogu, 2002). 

The PE and PPE gene families of M. tuberculosis encode large multi-protein families (99 

and 69 members respectively) of unknown function. These protein families comprise 

about 10% of the coding potential of the genome of M. tuberculosis. The PE family is 

characterized by the presence of a proline-glutamic acid (PE) motif at positions 8 and 9 in 

a much conserved N-terminal domain of approximately 110 amino acids. Similarly, the 

PPE family also contains a highly conserved, but unique, N-terminal domain of 
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approximately 180 amino acids, with a proline-proline-glutamic acid (PPE) motif at 

positions 7–9. Although the N-terminal domains are conserved within each family, there 

is very little N-terminal homology between the two different families. The C-terminal 

domains of both of these protein families are of variable size and sequence. They also 

frequently contain repeat sequences of different copy numbers. Both the PE and PPE 

protein families can be divided into subfamilies according to the homology and presence 

of characteristic motifs in their C-terminal domains. The largest subfamily (65 members) 

of the PE family is the polymorphic GC-rich-repetitive sequence (PGRS) subfamily. It 

contains proteins with multiple tandem repeats of a glycine-glycine-alanine (Gly-Gly-Ala) 

or a glycine-glycine-asparagine (Gly-Gly-Asn) motif in the C-terminal domain (Cole et 

al., 1998); Campus et al., 2002). 

Although the function of the 168 members of the PE and PPE protein families has not 

been established, various hypotheses have been advanced. The fact that these genes 

encode about 4% of the total protein species in the organism (if all genes are expressed) 

suggests that they most probably fulfil important functions in the organism. Genes of 

PE/PPE gene family are speculated to have varied functions from antigenic variation to 

resistance to being killed in macrophages and granulomas (Li et al., 2005); (Cole et al., 

1998); (Brennan and Delogu, 2002); (Ramakrishnan et al., 2000). The most widely 

supported theory suggests the involvement of these proteins in antigenic variation due to 

the highly polymorphic nature of their C-terminal domains (Gey van Pittius et al., 2006).  

In earlier studies using transposon mutant libraries and differential fluorescence induction 

(DFI), to screen for virulent genes associated with inhibiting PM, mycobacterial survival 

during infection and granuloma formation, a number of hits has been mapped to genes 

belonging to GC rich PE and PPE gene families (Pethe et al., 2004); (Sassetti and Rubin, 

2003); (Ramakrishnan et al., 2000). A PPE gene of M. avium (Rv1787) was also shown to 

provide resistance to killing by macrophages and the mutant was reported to be delivered 

to PL. Using our screening technique we were able to identify four distinct interruptions 

in genes homologous to Rv1918c (PPE 35). Mutants N10 and N21 had independent 

insertions in the same locus and in N16 and N29 the transposon had inserted in a distant 

region but all of their sequences shared homology with Rv1918c and within their own 

group. Two separate insertions in N5 and N75 were mapped to another PPE gene 

(Rv1135c). In mutants N13 and N81 genes homologous to PE-PGRS genes were 

inactivated. PE-PGRS (proline-glutamine – polymorphic GC rich repetitive sequence) 
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gene interrupted in N13 shared homology with MAG24-1 (Rv2328), MAG24-2 and 

MAG24-3 which are postulated to contribute to the microbe’s persistence in granulomas 

[Ramakrishnan, 2000]. Identification of PE/PPE genes in every aspect of mycobacterial 

pathogenesis demands extensive research to define the functional role of the genes 

belonging to this gene family which are abundantly distributed throughout the 

mycobacterial genomes. 

5.1.2 Membrane Transporters  

RND proteins (resistance, nodulation, and cell division proteins) are a family of multi-

drug resistance pumps that recognize and mediate the transport of a great diversity of 

cationic, anionic, or neutral compounds, including various drugs, heavy metals, aliphatic 

and aromatic solvents, bile salts, fatty acids, detergents, and dyes. RND pumps are large 

proteins ranging from 800 to 1,100 amino acids that are characterized by the presence of 

12 transmembrane domains (TMD) and two extracytoplasmic loops of approximately 300 

amino acids located between the first and second TMD and the seventh and eighth TMD 

(Paulsen et al., 1996).  RND proteins have been reported in the genomes of organisms 

from all major kingdoms of life. Mycobacterial membrane protein large (MmpL) family 

of proteins belongs to the RND (resistance, nodulation and cell division) permease 

superfamily transporters (Tseng et al., 1999). The M. tuberculosis genome contains 13 

genes coding for MmpLs (Cole et al., 1998). A mutant with a transposon insertion in 

mmpL7 has been shown to be defective in transporting PDIM (Cox et al., 1999), 

(Camacho et al., 2001) and MmpL8 transports a precursor molecule to outer cell envelope 

for the synthesis of sulfolipid (Domenech et al., 2005). Of all the mmpL mutants 

previously evaluated in M. tuberculosis mutants, in mmpL4 and mmpL7 were the only 

mutants showing impaired growth during the initial phase of infection in mice. ORF 

Rv0450c codes for MmpL4 while the adjacent Rv0451c is a small gene termed mmpS. 

Both are associated with four of the 13 mmpL genes (mmpL1, mmpL2, mmpL4 and 

mmpL5) identified so far (Domenech et al., 2005). It is noteworthy that our screen isolated 

two mutants N68 and N4R in ORFs identical to Rv0450c and Rv0451c respectively. 

Isolation of mutants having insertions in mmpL4 and its neighbour mmpS could imply that 

these two genes are together involved in transport of a molecule which could be involved 

in interfering with the early innate immune responses of the host i.e. arresting PM. This 

hypothesis is in agreement with the notion that the protein MmpS may be a functional 
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equivalent of the periplasmic membrane fusion protein (MFP), which are associated with 

RND efflux pumps of gram negative bacteria (Domenech et al., 2005). 

5.1.3 Porins 

The porins of M. tuberculosis are medically the most relevant porins. Mycobacterial cell 

envelope is highly hydrophobic and porins are thought to be the key proteins for the 

uptake of hydrophilic drugs.  This view is based on the fact that three out of the four 

current first line TB drugs, namely isoniazid, ethambutol and pyrazinamide, are small and 

hydrophilic molecules (Niederweis, 2003). An open reading frame (Rv0899), 

corresponding to the OmpA family of outer membrane proteins has been located and 

named as OmpATB (Senaratne et al., 1998). OmpATB is postulated to be the major 

active porin at growth conditions with low pH. ompATB mutant had a reduced virulence 

in macrophages and in mice. The reduced virulence of ompATB mutant has been 

attributed to the acidic milieu of the phagocytic vacuoles and is reasoned that higher 

expression of OmpATB at lower pH could help the bacteria survive in such acidic 

conditions (Raynaud et al., 2002). Selection of a mutant N74 having an insertion in a gene 

homologous to Rv0899 from our screen corroborates the above finding.  

5.1.4 β-Propeller Protein 

Our screen also identified mutant with a transposon insertion in a gene homologous to 

Rv1057. Rv1057 shares similarities with surface layer proteins of Mehanosarcina. 

Bioinformatic evaluation has found Rv1057 encoding for the only seven-bladed β-

propeller in the M. tuberculosis genome. β-propeller proteins perform extremely 

diversified functions including enzyme catalysis, signal transduction, ligand binding, 

transport, mediation of protein-protein interactions, control of cell division, and 

modulation of gene expression. Using selective capture of transcribed sequence (SCOTS) 

Rv1057 was found to be expressed during early phase of M. tuberculosis growth in 

macrophages (Haydel and Clark-Curtiss, 2006). 

5.1.5 FtsH 

We also obtained mutants with transposon insertions in genes encoding for FtsH protease 

(N27 – Rv3610c). FtsH is an ATP dependent endopeptidase believed to have a role in the 

quality control of membrane proteins. E.coli FtsH protease is shown to maintain a balance 
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between SecY and SecE production in order to form a stable translocon (Ito and Akiyama, 

2005). FtsH is also studied to be an important regulator for the production of membrane 

lipid components in E.coli (Ogura et al., 1999). In M. tuberculosis FtsH is characterised as 

an immunodominant antigen (Amara et al., 1998) and expression of the M. smegmatis 

ftsH gene in E.coli, led to a proteolytic active product that was toxic to E. coli and resulted 

in growth arrest and filamentation of the bacteria (Anilkumar et al., 2004). In 

mycobacteria FtsH is thought to have diverse functions helpful for adaptation to life inside 

the host.  Investigating the membrane proteins regulated by FtsH in mycobacteria and 

their possible role in regulating the membrane lipids of mycobacteria might result in the 

usage of FtsH as a potential antibiotic target. 

5.1.6 Genes Encoding Unknown/Hypothetical Proteins 

Another common appearance in genetic screens has been the category of genes of 

hypothetical/unknown functions. In a recent study of genes upregulated in pulmonary 

tissue samples from TB patients, the majority of upregulated genes in Mtb were those of 

unknown functions (Rachman et al., 2006). This is paralleled by our study finding that 

more than 30% of the genes identified are also of unknown function. A closer look at 

these genes revealed that a significant number (10) of these genes have orthologues in the 

M. tuberculosis genome and are annotated there as putative membrane proteins. It is of 

particular interest that N66, N6, N9 and N15 had independent insertions in the same ORF 

of an unknown gene. The H37Rv homologue of this gene is designated as Rv0365c. The 

only study addressing this gene showed an increased resistance to killing by human 

macrophages when expressed in the avirulent M. smegmatis (Miller and Shinnick, 2001). 

Our study also yielded mutants of note, bearing transposon insertions in genes sharing 

homology with Rv3881c (N36) and Rv1038c (N23). Gao and colleagues had already 

pinned on a region between Rv3866 and Rv3881c in a screen to isolate M. marinum 

transposon mutants failing to cause haemolysis, Rv3881c is a conserved hypothetical 

alanine and glycine rich protein and the authors reported that disruption of the M. 

marinum homologue of Rv3881c led to a severely attenuated phenotype in macrophages 

and in vivo (Gao et al., 2004). Rv1038c (Esxj) belongs to the ESAT-6 protein family 

mentioned above. The significance of the Rv1038c has been shown before in a study 

using 2D-Gel electrophoresis and mass spectrophotometry of secreted proteins of the 

virulent Mtb H37Rv and the less virulent H37Ra strain. One of the three spots identified 
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in this study shared homology with Rv1038c, Rv2347c, Rv2346c and Rv3620c. These 

genes carry multiple inactivating mutations in the less virulent H37Ra strain (He et al., 

2003).  

5.1.7 Genes Involved in Biosynthesis of Cell Envelope Associated Lipids 

The mycobacterial cell wall has high and complex lipid content. Consistently, a high 

proportion of mycobacterial genes are believed to be involved in lipid metabolism and 

transport (Cole et al., 1998). A number of mycobacterial lipids has been implicated in 

mycobacterial pathogenesis (Asselineau and Laneelle, 1998). Numerous roles have been 

attributed to PGLs, including the resistance of M. leprae to killing by macrophages (Neill 

and Klebanoff, 1988) and the predilection of M. leprae to peripheral nerves (Ng et al., 

2000). Importantly hypervirulent M. tuberculosis W-Beijing strain produces PGL and 

inhibits innate immune responses and shows hyperlethality in mice [Reed, 2004]. In 

particular the genes fadD26 and fadD28 have been implicated in the biosynthesis of 

phthiocerol dimycocerosate (PDIM) (Camacho et al., 2001) and have been isolated in a 

previous similar screen by Pethe et al (Pethe et al., 2004). fadD28 mutant was also found 

by Rengarajan et al., by screening Mtb for mutants unable to survive in macrophages 

(Rengarajan et al., 2005). In an alternative screen using M. bovis BCG fadD28 mutant was 

again found to have a reduced fitness in macrophages (Stewart et al., 2005). In contrast, 

our screen did not yield mutants in fadD28 itself, but in genes that in the M. tuberculosis 

genome are located in a proximal region, i.e. two of the mutants (N24, N33) in genes 

corresponding to fadD22 (Rv2948c) were interrupted and a third mutant had transposon 

insertion in the gene immediately upstream of fadD22 (Rv2949c). The gene fadD22 is 

present upstream of a polyketide synthase (pks15/1, Rv2947c) which has been found to 

contribute to the elongation of p-hydroxybenzoate to p-hydroxyphenylalkonic acid in 

mycobacterial strains producing phenolic glycolipid. H37Rv and related clinical strains of 

M. tuberculosis do not produce phenolic glycolipid due to a frame shift mutation between 

pks15 and pks1. The immediate upstream gene (Rv2949c) to fadD22 was recently 

characterised as chorismate pyruvate-lyase responsible for the conversion of chorismate to 

p-hydroxybenzoate which is likely to be the sole source of p-hydroxybenzoic acid in 

mycobacteria (Stadthagen et al., 2005). A role for p-hydroxybenzoic acid derivatives (p-

HBAD) secreted by all virulent strains of mycobacteria including H37Rv in mediating 

virulence has been suggested (Constant et al., 2002). Isolation of mutants with insertions 
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in fadD22 and Rv2949 (chorismate pyruvate-lyase) suggests that, fadD22 and Rv2949 

along with pks15/1 could be together involved in the production of phenolic glycolipids. It 

is also possible that p-HBAD synthesised by Rv2949 from chorismate could arbitrate the 

arrest of PM and thereby mediate virulence as proposed by Constant et al. (Constant et al., 

2002). Selection of multiple mutants with disruption in genes involved in PGL synthesis 

and its secreted precursor, p-HBAD, may indicate that PGL, p-HBAD or both could 

facilitate mycobacteria to reside in immature phagosomes. The screen also provided a 

mutant with a transposon insertion in a gene homologous to Rv2959c. This gene has been 

discovered to catalyze the o-methylation of the hydroxyl group located on carbon 2 of the 

rhamnosyl residue linked to the phenolic group of PGL and p-HBAD produced by 

M. tuberculosis (Perez et al., 2004). Isolation of this particular mutant having an insertion 

in a gene identical to Rv2959c from the PL fraction prompts us to hypothesise that an 

unaltered structure of PGL or p-HBAD is required by mycobacteria to accomplish a niche 

in the phagosome. Though further understanding of these mutants and elucidation of the 

mechanism by which PGL, p-HBAD or both mediate the arrest of PM is needed, from 

these observations it seems highly likely that these glycolipids play a cooperative role in 

preventing PM.  

5.2 Other Genes of Importance 

We also obtained two mutants (N76 and N77) harbouring separate insertions in a gene 

encoding a probable methyltransferase which could be involved in fatty acid biosynthesis. 

In another mutant (N92) a gene homologous to Rv3398 (idsA) was interrupted. The 

encoded gene product of Rv3398 belongs to a novel unique class of, ω,E,E-farnesyl 

diphosphate synthases involved in isoprenoid biosynthesis pathways. It is claimed to be 

unique as it is the first eubacterial ω,E,E-farnesyl diphosphate synthase that does not have 

four amino acids between the aspartate residues of the FARM and that has features of the 

archaeal CLD region (Dhiman et al., 2004). Sassetti et al., observed attenuated in vitro 

growth in a mutant having a disruption in Rv3398 (Sassetti and Rubin, 2003), but in our 

study a difference in in vitro growth could not be observed. Earlier Pethe et al., in their 

attempt to identify mutants unable to prevent PM identified three independent insertions 

in an operon of five genes having roles in isoprenol biosynthesis or modifications. One of 

the insertions was reported to be in an intergenic region upstream of idsB (Pethe et al., 

2004).  
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Another mutant N47 having an insertion in a gene homologous to an Mtb gene coding for 

a probable phytoene dehydrogenase was also identified. These results indicate that the 

isoprenol metabolic pathway is important for virulent mycobacteria in a phagolysosomal 

environment. 

Mutants with transposon insertions in genes involved in amino acid metabolism and 

nucleotide metabolism were also observed. Upregulation of genes of the amino acid 

metabolism pathway has been attributed to a nutrient deprived environment and 

upregulation of nucleotide metabolism and nucleotide repair genes are considered to be 

the consequence of an atmosphere enriched in agents that damage nucleic acids (Rachman 

et al., 2006).  

Our results describing the diversity of mycobacterial genes involved in retarding of PM 

are in general in accordance with previous reports (Pethe et al., 2004); (Stewart et al., 

2005). Any discrepancies in genes identified could be due to the difference in 

mycobacterial strains, cell culture system and infection or other experimental conditions 

used in the studies.  

(1) Mycobacterial strains – for instance our screen yielded genes related to PGL synthesis 

in contrast to identification of genes related to PDIM synthesis using strains of 

M. tuberculosis [Pethe, 2004] and M. bovis BCG Pasteur (Stewart et al., 2005). (2) Cell 

culture system used – Different intensities of staining for lysosomal membrane 

glycoproteins and cathepsin-D staining in different cell systems have been observed 

(Clemens, 1996); (Xu et al., 1994). The discrepancies have been attributed to the different 

cell culture systems used (HMDM and bone marrow derived mouse macrophages). It is 

also reasoned that nitric oxide is readily induced in mouse macrophages but not in 

HMDM on stimulus with mycobacteria (Clemens, 1996). (3) Earlier studies have 

performed infections for shorter time periods; instead, our experiments were aimed at later 

stages of PM. This could lead to the identification of different subsets. Further 

M. tuberculosis phagosomes are said to exhibit heterogeneity in macrophages, even within 

the same macrophage, as observed from staining for different phagosomal markers 

(Clemens, 1996). Hence mutants were chased for longer duration in order to maintain 

maximum possible homogeneity. Moreover clumps of mycobacteria have been observed 

by us and others to proceed to the PL (Clemens and Horwitz, 1995). It has also been 

studied that phagosomes containing multiple hydrophobic beads mature in contrast to a 
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single hydrophobic bead, which possesses a close and tight apposition to the phagosomal 

membrane (de Chastellier and Thilo, 1997). We took utmost care to disperse the clumps 

into single bacilli to perform the screen. Therefore we were able to isolate PL mutants in 

which gene coding for secreted and many membrane proteins were disrupted. In the 

screens done by other groups, underrepresentation of such genes has been speculated to be 

due to cross complementation (Stewart et al., 2005).  

In spite of the differences observed many of the genes identified through our screen have 

been identified by others individually as virulent genes in other mycobacterial species 

including Mtb. Identified genes were also found to have an effect on the survival fitness of 

mycobacteria in macrophages. This proves the validity of our screen and the usage of M. 

marinum as a model organism to study mycobacterial virulence principles. Moreover, our 

genetic screen corroborates the hypothesis that multiple effectors cooperate in establishing 

a niche in the phagosomes of the host’s phagocytes (Russell, 2001).  

5.3 Efficient Transfection System to Study Phagosome Maturation 

Different Rab-GTPases mark different stages of PM. Therefore Rab-GTPases are useful 

markers to study PM. Retroviral Rab-GFP fusion constructs have been used in J774 

macrophage cell line and bone marrow derived mouse macrophages to study MP (Kelley 

and Schorey, 2003, 2004). Primary HMDM are terminally differentiated cells and they are 

unable to divide, thus it is impossible to deliver a gene using retroviral vectors. Instead, 

adenoviral viral vectors are attractive vehicles among other viral vectors for gene delivery, 

as they are able to transfect a large variety of cells including those in quiescent state. They 

have also been used in gene therapy experiments to transfect macrophages (Haddada et 

al., 1993); (Schneider et al., 1997). Therefore, Rab-GFP fusion adenoviral constructs were 

designed to transfect macrophages. Flowcytometric analysis on the transfected cells 

revealed excellent transfection potency of the Rab-GFP adenoviral constructs. Moreover, 

these constructs were also capable of transfecting primary mouse dendritic cells and 

activated peritoneal macrophages effectively. 

5.4 Mutant P1 is Defective in Inhibiting Phagosome Maturation 

The validity of a screen can be assessed only by demonstrating that at least some of the 

mutants have the predicted phenotype (Pethe et al., 2004). We looked for the co-

localisation of phagosomal markers Rab5 and Rab7 and LAMP1 with phagosomes 
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containing mutant as the arrest of PM has been shown to occur between stages controlled 

by Rab5 and Rab7 (Via et al., 1997). Immunofluorescence microscopy identified a mutant 

P1 of which approximately 70% of the phagosomes acquired markers of late endosomes 

and were not found to retain the early endosomal marker Rab5.  Co-elution of 

radiolabelled bacteria with PL marker showed enrichment of the P1 in PL compared to 

that of the WT and the P1[pGPC352], signifying PM.  As expected for mutants defective 

in preventing PM, P1 has a diminished survival in macrophages and is severely attenuated 

in vivo in mice. Histopathological analysis of the P1 infected organs showed reduced 

pathological changes with fewer granulomas in liver and spleen, a macrophage mediated 

reaction.  Together these results strongly suggest that the gene pmiA that is inactivated in 

P1 takes part in modulating PM. 

5.5 Gene pmiA is Involved in Phenolic Glycolipid Biosynthesis 

The most striking observation was that P1 when recovered from the organs of mice 

produced flat, smooth and transparent colonies. Lipid biosynthesis and fatty acid 

modifying genes have been found to be upregulated in an intracellular milieu up to twice 

the activity of the normal level. From these observations it has been inferred that 

M. tuberculosis undergoes immense changes in cell envelope composition upon infection 

and that these microbes are capable of mobilising mechanisms to evade host immune 

responses by modifying lipid and cell wall components (Rachman et al., 2006). Our 

observations substantiate this hypothesis. Altered colony morphology of the mutant P1 

was due to a defect in cording as observed microscopically. Correlation between virulence 

and cording has long been appreciated. Virulent mycobacteria form braided serpentine 

cords as noted by Koch. The cord forming capacity is attributed to multiple cell envelope 

lipids. In M. tuberculosis cording requires cycloproponation of mycolic acids while in 

M. marinum disruption of kasB leads to non-cording colonies (Glickman et al., 2000); 

(Gao et al., 2003b). Although mycolic acid synthesis is unaffected in our mutant P1, a 

systematic lipid profiling identifies a lipid of the outer cellular envelope in the WT that is 

missing in the mutant P1. When complemented the mutant regains the lipid moiety. These 

results suggest a function for the gene pmiA in lipid metabolism or transport which would 

also correspond closely to the analogy based assumption that adjacent putative hydrolase 

(MM3387) and carboxylase (MM3388) genes that are presumably involved in fatty acid 

metabolism (Cole et al., 1998). The mycobacterial cell envelope is composed of an 
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unparalleled variety of complex lipids. Very little knowledge is available on the genetics 

of these lipids and their physiological role. Our results reveal the involvement of a so far 

uncharacterised gene adjacent to a putative hydrolase and carboxylase genes in lipid 

metabolism. Moreover, biochemical characterization of lipids of bacteria grown in 7H9 

broth containing [14C] p-hydroxy benzoic acid and structural characterization of the lipid 

missing in mutant P1 by ES/MS and NMR reveal that the lipid is a phenolic glycolipid. M. 

marinum along with other virulent strains are known to produce phenolic glycolipids. 

Although not much is known about the physiological role of PGL produced by M. 

marinum in particular, numerous roles have been attributed to PGLs in general, including 

the resistance of M. leprae to killing by macrophages (Neill and Klebanoff, 1988) and the 

predilection of M. leprae to peripheral nerves (Ng et al., 2000). Importantly hypervirulent 

M. tuberculosis W-Beijing strain produces PGL and inhibits innate immune responses and 

shows hyperlethality in mice (Reed et al., 2004). Recently it was also shown that many of 

the clinical isolates possess an intact pks15/1 region, which has been clearly shown to be 

important for the biosynthesis of PGL. Considering the fact that PGL is not secreted by all 

the strains of M. tuberculosis it is likely that an alternative molecule could be involved in 

hampering PM. In this regard, our screen identified genes related to PGL, whereas other 

screens prompted genes related to PDIM synthesis. These at first sight conflicting results 

can be brought together if it is considered that M. marinum utilizes PGL instead of PDIM 

for inhibition of PM. In a general sense, it has been suggested that lack of one virulence 

factor might be compensated by the over production of other factors (Constant et al., 

2002). Following that line of argument PGL and PDIM could be used interchangeably by 

virulent mycobacteria. The mutants defective in PGL biosynthesis were also found to be 

enriched in the PL.  It is compelling to speculate from these results along with the 

identification of many more mutants defective in PGL synthesis through our screen that 

PGL could be an inhibitor of phagosome maturation. 

5.6 PGL Inhibits Phagosome Maturation 

Previous reports have shown that mycobacterial lipids including PGL can modify 

membranes (Sut et al., 1990) and also prevent actin nucleation, a prerequisite for PM 

(Anes et al., 2003). In addition, the glycolipids PIMs are shown to mediate selective 

fusion with early endosomes and yet another glycolipid LAM prevents mycobacterial 

phagosomes from fusing with late endosomes. All these reports implicate mycobacterial 
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lipids as key factors in the prevention of PM. As discussed earlier our screen identified 

mutants having transposon insertions in genes presumably involved in the synthesis of 

PGL or its precursors. Our work identifies a novel gene pmiA that has a role to play in the 

synthesis of PGL. These evidences prompted us to track the phagosomes containing PGL-

coated beads. As expected, PGL-coated beads were restricted to early endosome like 

phagosomes. Phagosomes containing PGL-coated beads were marked by the presence of 

Rab5-GTPase, a marker for early endosomes and devoid of mature β-galactosidase a 

hydrolytic enzyme characteristic for lysosomes. Immunofluorescence microscopy for 

LAMP-2 confirmed that the PGL-coated beads retarded phagosome maturation. These 

data lead highly convincingly to the conclusion that M. marinum PGL is an important 

molecule employed by the pathogen to create a niche for itself in macrophages, an 

unknown function till date.  

The cellular events in the host cell permitting this niche remain ill-defined. PGL of 

M. leprae has been found to scavenge oxygen radicals generated upon IFN-γ stimulation. 

This is considered to be important for the intracellular persistence of M. leprae. Infection 

of bone marrow derived macrophages with a Mtb Beijing strain that produces PGL and a 

mutant defective in the synthesis of PGL revealed an inverse correlation between PGL 

production and the level of secretion of the pro-inflammatory mediators TNF-α, IL-6, IL-

12 and MCP-1 (monocyte chemotactic protein-1). Also, PGL from Beijing strain was able 

to inhibit innate immune responses by down regulating pro-inflammatory cytokines 

induced by apolar lipids of H37Rv (Reed et al., 2004). Furthermore, it is known that 

activation of macrophages with IFN-γ leads to maturation of MP (Via et al., 1998). 

Moreover, M. avium containing phagosomes acidify upon treatment with IFN-γ, resulting 

in PM (Schaible et al., 1998). Taking these observations together it can be speculated that 

by down regulating pro-inflammatory cytokines PGL probably inhibits macrophage 

activation, thereby arresting PM.  

Recently cytokines have been implicated in the modulation of phagosome maturation by 

modulating Rab-GTPase expression. IL-12 increases expression of Rab7 and IL-6 induces 

Rab-5 (Bhattacharya et al., 2006).  In antigen presenting cells cytokines are mainly 

regulated via Toll like receptor (TLR) signalling. It is also known that TLRs are recruited 

to phagosomes upon phagocytosis and they have a critical role in phagosomal processing 

through their downstream signalling (Underhill et al., 1999). It has also been documented 
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that knock down of TLRs and its adaptor molecule Myd88 result in impaired PM (Blander 

and Medzhitov, 2004). Moreover, p38 MAP kinases stimulated upon TLR activation 

dissociate Rab5 from the phagosome through the activation of guanosine dissociation 

inhibitor (GDI) (Blander, 2007). Taking these findings and our observation that Rab5 does 

not dissociate from phagosomes containing PGL coated beads into consideration, it is 

perceivable that PGL interferes with TLR signalling cascade thereby arresting PM (Fig-

31). M. marinum is one of the mycobacterial species producing PGL and was structurally 

characterised by Dobson and colleagues (Dobson et al., 1990) but the functional 

characteristics of M. marinum PGL remained undefined to date. This work for the first 

time demonstrates inhibition of PM by PGL, an important trait of mycobacterial 

pathogenesis. 

 

Fig 31: Possible intracellular targets of PGL. 

Mycobacteria undergo receptor mediated phagocytosis, but the phagosomes containing 
mycobacteria or phenolic glycolipid (PGL) coated beads do not fuse with late endosomes (LE) and 
lysosomes (Lys). However, they interact with early endosomes (EE) and acquire markers of EE, 
namely Rab5. Toll like receptors (TLR) are the likely candidate receptors to recognise PGL. TLRs 
are recruited to the phagosomes and are activated on recognition of its ligand. Upon activation of 
the TLR adaptor protein namely myeloid differentiation factor 88 (MyD88) transduce a cascade of 
signalling events leading to the activation of p38 mitogen activated kinase (p38 MAPK), 
extracellular signal-regulated kinase 1 and 2 (ERK 1 / 2), c-Jun NH2-terminal kinase (JNK) and 
translocation of NF-κB (Nuclear factor-κB). The signalling cascade leads to the induction of pro-
inflammatory cytokines. Pro-inflammatory cytokines modulate the expression of fusion mediating 
Rab-GTPases (Rab5 and Rab7). Moreover, p38 MAPK phosphorylates guanine dissociation 
factor which in turn dissociates Rab5 from the phagosome permitting maturation. It is possible that 
PGL interferes with TLR signalling at different levels in the TLR signalling cascade (shown using 
red lines), thus impairing phagosome maturation. 

IRAK

TRAF-6

TAK-1

p38 MAPK

ERK-1/2

JNK

GDI

Rab5

MyD88

TLR

Rab 5 

dissociation

NFκB Nucleus

EE

LE

Pro-inflammatory Cytokines

Rab5, Rab7 
expression

Lys

IRAK

TRAF-6

TAK-1

p38 MAPK

ERK-1/2

JNK

GDI

Rab5

MyD88

TLR

Rab 5 

dissociation

NFκB Nucleus

EE

LE

Pro-inflammatory Cytokines

Rab5, Rab7 
expression

Lys



   
113

5.7 PmiA, its Interacting Partners and their Function in Lipid Metabolism 

A novel gene has been identified which participates in the biosynthesis of PGL. The gene 

and its protein product do not share any significant homology with the known genes or 

proteins identified so far. Therefore, an attempt was made to identify its interacting 

partners using a His-tag pull down assay. His-tagged PmiA pulled down two proteins 

namely a methyl transferase and isocitrate lyase (ICL). A similar Mtb methyl transferase 

has been earlier proved to be responsible for the terminal cyclopropanation of mycolic 

acids. It is plausible that these methyl transferases are involved in the methylation of PGL.  

There is accumulating evidence suggesting that mycobacteria subsist primarily on fatty 

acids rather than on carbohydrates. When bacteria are grown on fatty acids as the principal 

carbon source, replenishment of citric acid cycle intermediates (anaplerosis) occurs via the 

glyoxylate cycle, which converts acetyl-coA derived from β-fatty acid oxidation to 

oxaloacetate. ICL, the first enzyme in the glyoxylate cycle, is upregulated in dormant 

cultures of Mtb under low oxygen tension. In addition, icl expression is upregulated 

during infection of macrophages [Graham and Clark-Curtiss, 1999; Sturgill-Koszycki, 

1997]. Mtb genome contains two genes coding for ICL icl1 and icl2. An icl1 knock out 

mutant was still able to cause acute infection but failed to establish a chronic infection. 

Mycobacteria lacking both icl1 and icl2 were unable to grow on fatty acids or in 

macrophages (Munoz-Elias and McKinney, 2005). Moreover, ICL1 is proposed to have 

dual function in glyoxylate cycle and in methyl citrate cycle through which propionyl-coA 

derived from β-fatty oxidation of odd chain carbon atoms is detoxified. A link between 

ICL and pmiA remains to be established. It has been reported that anaerobic bacteria such 

as Pseudomonas sp degrade phenol to p-hydroxybenzoate via carboxylation (Tschech and 

Fuchs, 1987). p-hydroxybenzoate is also a precursor for PGL synthesis (Stadthagen et al., 

2005). It is possible that ICL along with pmiA and other enzymes is also involved in the 

degradation of hydroxybenzoyl-coA derived upon phenol catabolism. These results 

demonstrate that PmiA along with other proteins could function as a complex in the 

biosynthesis of PGL. 
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 6  Conclusion 

The persistence of Mycobacterium tuberculosis in humans depends predominantly on its 

ability to survive within the host macrophages. This ability also assists the bacilli to survive in 

the host for extended time periods in a state of clinical latency. Virulent mycobacteria using 

their currently ill-defined pathogenic principles achieve this phenomenon by inhibiting 

phagosome maturation in macrophages.  

This thesis demonstrates an elegant screen using Mycobacterium marinum to identify 

mycobacterial genes orchestrating the inhibition of phagosome maturation. A number of 

genes having possible roles in arresting fusion of phagosomes with lysosomes have been 

identified using this screening technique. Further, a novel gene pmiA involved in the 

biosynthesis of an outer envelope glycolipid has been discovered to play a major role in 

stalling phagosome maturation and this glycolipid is characterised to be a phenolic glycolipid 

(PGL). Moreover, for the first time PGL is shown to be a key factor in the modulation of 

phagosome maturation.  

Mycobacterial lipids have long been thought to play key roles in the pathogenesis of 

tuberculosis. This study reemphasises mycobacterial lipids as dominant pathogenic principles 

in mycobacterial pathogenesis. Mycobacterial strains producing PGL downregulate pro-

inflammatory cytokines therefore are considered to be more virulent than the strains that do 

not produce PGL. It is conceivable that PGL arrests phagosome maturation either by diverting 

intracellular signalling or by interfering with intracellular signalling leading to cytokine 

induction.   

This finding that PGL inhibits phagosome maturation stimulates follow-up studies to identify 

receptors and signal transduction pathways targeted by PGL for immunomodulation and 

inhibition of phagosomal processing. This study also portrays genes participating in the 

synthesis of PGL as ideal targets for developing anti-tuberculosis drugs and also highlights 

PGL as a possible antigen for vaccine development. 
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 8  Abreviations 

αSNAP Alpha-soluble NSF attachment protein 

AG Arabinogalactan 

AIDS Acquired immune deficiency syndrome 

Amp Ampicillin 

AraLAM Arabinose Lipoarabinomanan 

ATCC American type culture collection 

ATP Adenosine tri phosphate 

ATPase Adenosine tri phosphatase 

BCG Bacillus Calmette-Guèrin 

BSA Bovine serum albumin 

Ca2+ Calcium 

CaMKII Calmodulin complex II 

cAMP Cyclic adenosine mono phosphate 

CFP-10 10 kilo dalton Culture filtrate protein  

CFU Colony forming units 

CPM Counts per minute 

CuSO4 Copper Sulphate 

DAG Diacylglycerol 

DC Dendritic cells 

DeADMAn Designer arrays for defined mutant analysis 

DFI Differential fluorescence induction 

DHFRS Dihydrofolate reductase 

DIG Digoxigenin 

DMEM Dulbecos minimum essential medium 

DNA Deoxy ribo nucleic acid 

DTT Dithiothreitol 

E.coli Escherichia coli 

ECL Enhanced chemiluminescence (?) 

EDTA Ethylene diamine tetraacetic acid 
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EE Early endosomes 

EEA1 Early endosomal antigen 1 

EGTA Ethylene glycol tetraacetic acid 

EMBL European Molecular Biology Laboratory 

ER Endoplasmic Reticulum 

ES/MS Electrospray mass spectrometry 

ESAT-6 Early secreted antigen 

ESI-TOF Electro spray inonisation – time of flight 

FACS Fluorescence activated cell sorter 

FBS Foetal bovine serum 

FITC Fluorescein isothiocyanate 

GAPDH Glycerinaldehyde-3-phosphate- dehydrogenase 

GC Guanosine Cytosine 

GDI Guanine nucleotide dissociation inhibitor 

GFP Green Fluorescent protein 

Gly-Gly-Ala Glycine-Glycine-alanine 

Gly-Gly-Asn Glycine-glycine-asparagine  

GPLs Glycopeptidolipidis 

GTP Guanosine tri phosphate 

GTPase Guanosine tri phosphatase 

HCl Hydrochloric acid 

HEK Human embryonic kidney

His Histidine 

HMDM Human Monocyte Derived Macrophages 

HPLC High performance liquid chromatographic 

HPTLC High performance thin layer chromatography 

Hrs Hepatocyte growth factor-regulated tyrosine kinase substrate

H2SO4 Slulphuric acid 

Hyg Hygromycin 

ICL Isocitrate lyase 
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IFN-γ Interferon gamma 

IgG Immunoglobulin G 

IL Interleukin 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

Kana Kanamycin 

Kb Kilo bases 

KCI Potassium chloride 

kDa Kilo dalton 

KOD Thermococcus kodakaraensis polymerase

KOH Potassium hydroxide 

Kv Kilo volt 

LAM Lipoarbinomanan 

LAMP Lysosome asscociated membrane protein 

LB Luria-Bertani 

LBPA Lysobisphosphatidi c acid 

LE Late endosome 

LOS Lipooligosaccharides 

M. avium Mycobacterium avium 

MACS Magnetic cell sorting 

MALDI Matrix assisted laser desorption/ionization 

ManLAM Mannose Lipoarabinomannan 

MCP-1 Macrophage chemotactic protein-1 

MFP Membrane fusion protein 

Mg Magnesium 

MgCI Magnesium Chloride 

MHC Major Histocompatibility complex 

MmpLs Mycobaterial membrane protein large 

mmpS Mycobacterial membrane protein small 

MOI Multiplicity of Infection 

MP Mycobacterial phagosome 
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mRNA Messenger RNA 

MS Mass spectrometry 

Mtb Mycobacterium tuberculosis 

NaCl Sodium Chloride 

NADPH Nicotinamide adenine dinucleotide phosphate 

NaHCO3 Sodium bi carbonate 

NaHPO4 Sodium hydrogen phosphate 

NaOH Sodium hydroxide 

Ni-NTA Nickel-nitrilotriacetic acid 

NK Natural killer 

NMR Nuclear Magnetic Resonance 

NSF N-ethylmaleimide-sensitive fusion protein 

OADC Oleic acid albumin dextrose complex 

OD Optical density 

OmpA Outer membrane protein A 

ORF Open reading frame 

PI3K Phosphoinositol-3-kinase 

PI3P Phosphoinositol-3-phosphate 

PBS Phosphate buffer saline 

PCR Polymerase chain reaction 

PDIM Phthiocerol di mycocerosate 

PE Proline-Glutamine 

PE-PGRS Proline-glutamine – polymorphic GC-rich repetitive sequence 

PGL Phenolic Glycolipid 

PGRS Polymorphic GC-rich-repetitive sequence (?) 

p-HBAD P-hydroxybenzoic acid derivatives 

PI3P Phosphatidylinositol 3-phosphate 

PIM Phosphoinositol mannoside 

PIPES Piperazine-N,N´-bis ethansulfonic acid (?) 

PknA Protein kinaseA 
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pks Polyketide synthase 

PL Phagolsosome 

PM Phagosome maturation 

pmiA Phagosome maturation inhibition A 

PMSF Phenylmethylsulphonyl fluoride 

PPE Proline-Proline-Glutamine  

ppm Parts per million 

PtdIns(4,5)P Phosphoinositol-4,5-bisphosphate 

PVDF Polyvinylidene difluoride 

RF Retention factor 

RGD Arginine-glycine-aspargine  

RILP Rab7-interacting lysosomal protein 

RNA Ribo nucleic acid 

RND Resistance, nodulation, and cell division proteins 

rpm Rotations per minute 

RPMI Roswell Park Memorial Institute medium 

RT Room temperature 

SapM Secreted mycobacterial lipid phosphatase 

SCOTS Selective capture of trancribed sequence 

SDS Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate Poly acrylamide gel electrophoresis 

SE Sorting endosomes 

SFM Serum free medium 

SMART Simple Modular Architecture Research Tool 

STM Signature tagged mutagenesis 

TB Tuberculosis 

TC Tissue culture 

TDM Trehalose dimycolate 

TE Tris EDTA 

Tf Transferrin 
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Tfr Transferrin receptor 

TGN Trans Golgi network 

TLC Thinlayer chromatography 

TLR Toll like receptor 

TMD Transmembrane domains 

Tn Transposon 

TNF-α Tumor necrosis factor alpha 

TraSH Transposon site hybridization 

TRITC Tetramethylrhodamine-5-isothiocyanate 

UV Ultra violet 

WHO World health organisation 

WT Wild-type 

WTHK Wild-type heat killed 

YFP Yellow fluorescent protein 
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