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“If phylogenetic inference is to be a science, we must
consider its methods guilty until proven innocent.”

(Joseph Felsenstein, 1978)

For the two people I love most.
Thank you for showing me the beauty of life.

MY SON LUCA & MY GIRLFRIEND BIRTHE.
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Chapter 1

General Introduction

Contents
1.1 The Importance of Alignment Quality . . . . . . . . . . . . . 1

1.2 Alignment Algorithms – Advantages and Disadvantages . . 2

1.2.1 Progressive algorithms . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Consistency based algorithms . . . . . . . . . . . . . . . . . . 3

1.2.3 Incorporation of secondary structure information . . . . . . . 4

1.2.4 Phylogenomic data . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Alignment Masking – An interface between alignment and
tree reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The Ant Tree of Life – Grown on different alignments
seeded from identical data . . . . . . . . . . . . . . . . . . . . 5

1.5 AliGROOVE – Phylogenetic topologies in the light of align-
ment quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Learning by Doing – Simulations to search for systematic
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 New software tools . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 The Importance of Alignment Quality

The final goal of every phylogenetic analysis is to reconstruct most efficiently taxon
relationships from underlying data. Yet, little attention has been paid to the role
of alignment accuracy and its impact on tree reconstruction [1]. The success of
phylogenetic analyses depends strongly on the algorithmic assumptions of the pri-
mary and secondary homology assessment [2]. The primary homology assessment
in molecular phylogenetics comprises two main steps: i) the identification of homol-
ogous sequences, and ii) the classification of positional homology among them [1,2].
In both steps of the primary assessment, alignment algorithms are used to deter-
mine the respective homology hypotheses. In the first step of the primary homol-
ogy assessment, similar sequences are identified through sequence comparisons by
alignment algorithms like BLAST (Basic Local Alignment Search Tool) [3–5]. Sub-
sequently, efficient alignment algorithms are used to allocate positional similarity
among sequences [2]. Therefore, multiple sequence alignments are statements of
primary homology in phylogenetic analyses [1, 2, 6, 7].
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Unfortunately, similarity and homology are not necessarily corresponding [2,
8]. Similarity of character states can either be due to common ancestry or due to
convergence [2,9,10]. Alignment algorithms can not differentiate between positional
similarity of sequences and evolutionary homology. Most of them rely by necessity
on maximizing sequence similarity [2], but the maximization of sequence similarity
without considering evolutionary homology can lead to incorrectly aligned sequence
positions due to random similarity among sequences.

The primary homology assessment forms the basis for the derivation of the sec-
ondary homology hypotheses, a result of the tree reconstruction process. Due to
the dependence of tree reconstruction on the primary homology assessment, the
influence of incorrect alignment sections can not be completely corrected by tree
model algorithms [2]. As consequence, incorrect alignment sections can distort tree
topologies even if model assumptions are chosen correctly. It is important to keep in
mind that each alignment itself is a set of homology hypotheses. Some hypotheses
are correct, others might not [11]. The degree of alignment accuracy is strongly
influenced by the chosen alignment algorithm and its parameter settings. As men-
tioned by Ogden and Rosenberg [1], topological accuracy decreases if alignment
errors increase. Ogden and Rosenberg [1] have also shown that alignment inaccu-
racy has a stronger negative impact on tree reconstruction if data sets are derived
from more pectinate topologies with unequal branch lengths than on balanced, ul-
trametric topologies with equal branch lengths. For that reason, it can be concluded
that the success of phylogenetic analyses depends as strong on alignment accuracy
than on model assumptions of the phylogenetic reconstruction itself (e.g. [1,12–15]).
Alignment quality should therefore receive the most possible attention and concern
in phylogenetic analyses.

1.2 Alignment Algorithms – Advantages and Disadvan-
tages

There are different kinds of sequence data in molecular phylogenetics. Some data
consist of conservative or highly variable sequences, others of sequences with highly
variable and conserved sequence regions (mosaic genes like ribosomal structure
genes). Some sequences are long, others are short, some data sets have missing
data, like EST libraries, and some display a much higher degree of substitution
rates than others. To infer positional homology among sequences, alignment al-
gorithms have to convert raw sequences of different length to sequences of equal
length (or raw sequences of equal length to longer sequences of equal length) [1].
For this purpose, alignment algorithms have to place gaps to compensate insertions
and deletions among sequences [1]. The decision to place a gap or not depends on
the respective algorithm and its setup.

The diversity of different published alignment algorithms is enormous. For that
reason, it is important to find an appropriate alignment algorithm and an appro-
priate parameter setup most suitable for the respective data set. Over the last two
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decades, the area of multiple sequence alignments (MSA) has undergone a major
transformation [16]. Especially progressive, iterative optimization strategies and
the use of consistency-based scoring algorithms have become mainstream trends in
phylogenetics [16].

1.2.1 Progressive algorithms

Progressive alignment algorithms [17–19] consist of simple, but computationally
very efficient alignment heuristics [16]. They align given sequences pairwise to each
other in the order given by a pre-calculated distance topology [2,16] and are imple-
mented in most recent alignment methods [16,20], like ClustalW [21], HMMER [22],
MUSCLE [23], MAFFT [24], and T-COFFEE [20]. A main disadvantage of the pro-
gressive algorithm is that sequences once aligned will not be re-aligned in the further
alignment progress, even if sequences later added stand in conflict with previously
aligned ones [2, 16]. This is especially a problem of progressive, non-iterative align-
ment methods like ClustalW [21]. Progressive, iterative methods like MAFFT [24]
or MUSCLE [23] re-align each sequence of a multiple sequence alignment on the
basis of a new topology until the iteration steps consistently fail to improve the
alignment [2,16,23,24]. The implementation of iterative alignment steps to progres-
sive algorithms has led to a strong improvement of alignment accuracy in benchmark
tests [2, 25, 26]. Another disadvantage of all progressive alignments lies in the use
of predefined gap penalties. Different penalty values of mismatch, gap opening, gap
extension, and affine gap costs can lead to different alignments [11].

1.2.2 Consistency based algorithms

Consistency based alignment algorithms try to find the alignment that agrees the
most with different pairwise alignments [16]. T-COFFEE [20] for example, a pro-
gressive, consistency based alignment method, creates a primary library of weights
relative to pairwise sequence identity obtained from a global (ClustalW [21]) and a
local (Lalign [27]) alignment. Followed by an extension phase, T-COFFEE generates
an extended library of final weights to find the multiple alignment that best fits the
alignments in the primary library [16,20,25]. Afterwards, the T-COFFEE algorithm
uses the information of the extended library to make a progressive alignment which
considers all single executed pairwise alignments [20]. Another consistency based
alignment method is Dialign-T, a segment-based alignment approach. Dialign-T
combines also local and global alignment features [28, 29], but aligns only statis-
tically significant and consistent similarities of sequences. Sequence parts without
observable similarity at the primary sequence level are left unaligned [30].

While T-COFFEE seems to perform better for global alignments, Dialign-T
tends to produce better local ones [30]. An advantage of both methods towards
progressive, iterative or non-iterative alignments is the avoidance of arbitrary gap
costs. Furthermore, both consistency based methods have shown good performance
in many benchmark tests [16,25,26,29,30], but did not outperform iterative, progres-
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sive alignment methods. For example, T-COFFEE performed ”detectably worse” in
a benchmark test of Morrison [2] if sequence identity was lower than 50%. A main
disadvantage of consistency based approaches is their high need of computational
memory [16,30]. The use of T-COFFEE, for example, is actually limited to 50 taxa
on a normal desktop computer [20].

1.2.3 Incorporation of secondary structure information

Another new generation of alignment methods like MXSCARNA [31] or RNAsalsa
[32] includes functional information of secondary structure sequences into the align-
ment process. For genes with conserved secondary RNA structure,e.g. ribosomal
RNA genes, it was shown that an inclusion of secondary structure information can
lead to considerably improved alignment quality [33].

1.2.4 Phylogenomic data

Phylogenomic sequences pose further challenges: i) Large sequence size makes it
impossible to apply standard alignment methods where computation time is pro-
portional to sequence length, and ii) genomic rearrangements have to be taken into
account [30].

1.3 Alignment Masking – An interface between align-
ment and tree reconstruction

As described in section 1.1 and 1.2, no alignment method is perfect, because all
methods have to use heuristics [16]. As mentioned, the best choice of an appropriate
alignment method is not only dependent on the alignment algorithm itself, but
also on the chosen gap penalty values [11]. Highly variable sequence regions (e.g.
loop regions of secondary structure genes) are more difficult to align. The same
applies to sequences of unequal lengths or to data sets which contain a high amount
of missing data (e.g. EST data). Random sequence similarity due to convergent
character states of strongly derived taxa can also reduce alignment quality and
therefore distort the identification of positional homologies [34,35].

As described in section 1.1, random sequence similarity or ambiguously aligned
sequence regions are derived from the primary homology assessment. As a con-
sequence of the dependence on the primary assessment, the effect of erroneously
aligned sequence sections cannot be fully compensated by the tree reconstruction
method. Therefore, ambiguously aligned sequence sections and random sequence
similarity can negatively influence phylogenetic reconstructions and lead to defec-
tive estimation of substitution model parameters [34]. Especially if data sets are very
large (e.g. phylogenomic data), the negative alignment effects on model estimation
and tree reconstructions do not disappear, but become evident more intensely [34].
Therefore, it is necessary to detect and remove erroneously aligned sections before
tree reconstruction. Alignment masking approaches are methods which meet this
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requirement. The effect of two masking methods, ALISCORE [34] (a parametric ap-
proach) and GBLOCKS [36] (a non parametric approach), on alignment quality and
tree reconstruction is described in chapter 2: ”Masking of randomness in sequence
alignments can be improved and leads to better resolved trees”. This section gives
furthermore the first comprehensive characterisation of the most recent amino-acid
masking algorithm implemented in ALISCORE [35].

1.4 The Ant Tree of Life – Grown on different alignments
seeded from identical data

Despite the attempts to propose a robust sister group of all extant ants [37–41],
it is still doubtful which ant subfamily constitutes the first split in the ant tree of
life. Rabeling et al. [40] presented a Bayesian tree with resolved single inter- and
intra subfamily relationships and a nearly unresolved Maximum Likelihood topology
which proposed Martialinae as the earliest branch within the ant tree of life. While
the position of Martialinae was highly supported by Bayesian analyses, the best
Maximum Likelihood tree could resolve this placement only with moderate boot-
strap support. Previous molecular studies had proposed the subfamily Leptanillinae
as a sister group of all other extant ants [37–39]. Rabeling et al. [40] did not name the
used alignment method, nor the way in which they identified an excluded ambigu-
ously aligned sequence section before tree reconstruction. Therefore, it is possible
that the placement of Martialinae suggested by Rabeling et al. [40] could be due
to i) inferior sequence alignments or confounding effects of randomized alignment
sections, or ii) an insufficient number of boostrap replicates (ML approach) and/or
an insufficient number of Bayesian generations.

Chapter 3, ”Improved phylogenetic analyses corroborate a plausible position
of Martialis heureka in the ant tree of life”, describes a re-analysis of Rabeling
et al.’s data. The re-analysis is coupled with parametric alignment masking and
thouroughly performed phylogenetic analyses which comes to different conclusions
for the ant tree of life than Rabeling et al. [40]. The study of chapter 3 is another
example about the positive impact of alignment masking on data quality and gives
an impression of how results from the tree reconstruction should be handled.

1.5 AliGROOVE – Phylogenetic topologies in the light
of alignment quality

As shown in chapter 2 and 3, alignment masking increases tree-likeness of given
data by reducing the influence of data noise on tree reconstructions. However,
while masking methods are commonly efficient in detecting ambiguously aligned
sequence blocks, all methods more or less lack the ability to detect heterogeneous
sequence divergence within sequence alignments. The sliding window approach of
ALISCORE as described by Misof and Misof [34] and Kück et al. [35], for example
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is unable to identify randomized alignment blocks if ambiguously aligned positions
are not present in more than ≈20% of sequences [34]. This is a main disadvantage
of masking approaches, because undetected heterogeneous sequence divergence can
result in a strong bias in tree reconstructions, like long branch attraction (first
described by Felsenstein [42] on a four taxon case).

AliGROOVE implements an adaption of the ALISCORE masking algorithm
which can help to detect strongly derived sequence regions that can have a negative
influence on tree reconstruction methods. Therefore, the AliGROOVE algorithm
provides the possibility to highlight taxa which will most likely be misplaced in
trees and thus negatively influence the tree-likeness of given data. Chapter 4, ”Ali-
GROOVE: a new tool to visualize the extent of sequence similarity and alignment
ambiguity in multiple alignments”, gives a detailed description of the AliGROOVE
algorithm and the possibility of tagging branches as an indirect estimation of re-
liability of a subset of possible splits guided by a topology. The performance of
the AliGROOVE algorithm was tested on simulated and empirical data. First test
results are already shown and discussed in chapter 4.

1.6 Learning by Doing – Simulations to search for sys-
tematic errors

Considering the tree reconstruction process, the first task is the choice of an appro-
priate tree reconstruction method. The method should be robust to model viola-
tions and efficiently recover the topology of the underlying tree [43]. There are four
main groups of reconstruction methods which are commonly used in phylogenetic
analyses: Neighbor Joining, Maximum Parsimony, Maximum Likelihood (ML) and
Bayesian approaches. Maximum Likelihood and Bayesian analyses are normally
more accurate in tree reconstruction than Maximum Parsimony and Neighbor Join-
ing methods [1].

Maximum Likelihood and Bayesian analyses clearly outperform Maximum Parsi-
mony if the data include heterogeneous or heterotachous substitution rates [44–46].
Maximum Parsimony does not account for multiple substitutions and among-site
rate variation (ASRV) of substitution rates and becomes inconsistent if evolution-
ary rates are heterogeneous. This applies especially for distantly related sequences
[47,48]. Although statistical properties of Maximum Parsimony are not completely
understood, it is commonly assumed that Maximum Parsimony will find the cor-
rect topology under a finite number of characters when the evolutionary rate is
constant [49]. Nevertheless, Maximum Parsimony can be inconsistent under that
condition, because the probability of a single substitution on a short interior branch
is often lower than multiple parallel substitutions on longer branches [50]. This case
of inconsistency is true with a small extent of sequence divergence, too.

However, examining theoretical studies and comparative tests on Maximum Like-
lihood and Bayesian analyses, Maximum Likelihood turns out as the first choice for
phylogenetic tree reconstructions. As mentioned in chapter 3, Bayesian analyses
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tend to overestimate signal and give high support values even if the data is unin-
formative [51, 52]. It is shown from simulated data, that Bayesian analyses have a
much higher type I error rate than Maximum Likelihood, especially in cases of model
misspecification [52]. Another disadvantage of Bayesian analyses is the unknown in-
fluence of subjective prior assumptions on Bayesian tree reconstructions [53].

Chapter 5: ”Long branch effects distort Maximum Likelihood phylogenies in sim-
ulations despite selection of the correct model” shows that the success of Maximum
Likelihood depends not only on the degree of alignment quality, but also on the rela-
tion of branch length differences of underlying topologies. This is especially the case
if branch length relations are strongly divergent in the true topology that shall be
reconstructed. To avoid long branch effects it is important to know the influence of
internal and terminal long branches on Maximum Likelihood behavior under various
model violations. The study of chapter 5 tested the robustness of Maximum Like-
lihood towards different classes of long branch effects in multiple taxon topologies.
To test the robustness of Maximum Likelihood, one must know the true evolution-
ary history of sequences. Therefore, the study of chapter 5 used simulated fixed
data sets under two different 11-taxon trees and a broad range of different branch
length conditions to infer the reconstruction success of Maximum Likelihood with
sequence alignments of different length. The data was then re-analysed with Maxi-
mum Likelihood under i) true–, ii) estimated–, and iii) violated model assumptions
about among-site rate variation. Simulation studies have previously been used by
numerous studies to examine tree reconstruction success under various conditions
(e.g. [43,52,54–61]), but the study of long branch effects is new.

Although the simulation study of chapter 5 gives no information on the impact
of alignment accuracy on tree reconstruction, it shows the influence of branch length
differences on tree reconstruction if the underlying alignment is completely correct.
As perfect alignments will never be available in reality, it can be suspected, that the
negative effects of incorrect model assumptions on tree reconstruction will be much
more dramatic in empirical data.

1.7 New software tools

The realization of the studies described in chapter 2–5 would not have been possible
without the development of numerous scripts. Smaller scripts were used for data
handling like data extraction, data summary, data concatenation, data conversion,
or program execution. Larger pipeline scripts were needed to execute complete
data analyses, starting with data simulation, performing of phylogenetic analyses,
till data evaluation and result plotting. All programs developed for this thesis are
written in Perl. Some of the most important scripts and pipelines which have been
written for the accomplishment of this thesis or which have been written for other
studies are listed and described in chapter 6: ”Developed Software and help scripts
(published/unpublished)” and attached as electronic appendix.
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Abstract: Methods of alignment masking, which refers to the technique of
excluding alignment blocks prior to tree reconstructions, have been successful in
improving the signal-to-noise ratio in sequence alignments. However, the lack of
formally well defined methods to identify randomness in sequence alignments has
prevented a routine application of alignment masking. In this study, we compared
the effects on tree reconstructions of the most commonly used profiling method
(GBLOCKS) which uses a predefined set of rules in combination with alignment
masking, with a new profiling approach (ALISCORE) based on Monte Carlo re-
samplin within a sliding window, using different data sets and alignment methods.
While the GBLOCKS approach excludes variable sections above a certain threshold
which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of
parameter space and therefore more objective.

ALISCORE was successfully extended to amino acids using a proportional model
and empirical substitution matrices to score randomness in multiple sequence align-
ments. A complex bootstrap resampling leads to an even distribution of scores of
randomly similar sequences to assess randomness of the observed sequence simi-
larity. Testing performance on real data, both masking methods, GBLOCKS and
ALISCORE, helped to improve tree resolution. The sliding window approach was
less sensitive to different alignments of identical data sets and performed equally
well on all data sets. Concurrently ALISCORE is capable of dealing with different
substitution patterns and heterogeneous base composition. ALISCORE and the
most relaxed GBLOCKS gap parameter setting performed best on all data sets.
Correspondingly Neighbor-Net analyses showed the most decrease in conflict.

Alignment masking improves signal-to-noise ratio in multiple sequence align-
ments prior to phylogenetic reconstruction. Given the robust performance of align-
ment profiling, alignment masking should routinely be used to improve tree recon-
structions. Parametric methods of alignment profiling can be easily extended to
more complex likelihood based models of sequence evolution which opens the pos-
sibility of further improvements.

Keywords: Alignment Masking, ALISCORE, GBLOCKS, Data Quality, Sig-
nal-to-Noise Ratio
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2.1 Introduction

Multiple sequence alignments are an essential prerequisite in alignment based phylo-
genetic reconstructions, because they establish fundamental homology assessments
of primary sequence characters. In consequence, alignment errors can influence
the correctness of tree reconstructions [1, 62, 63]. To deal with this problem at
the level of sequence alignment, different approaches and alignment software tools
have been developed, but despite major advances, alignment quality is still mostly
dependent on arbitrary user-given parameters, e.g. gap costs, and inherent fea-
tures of the data [2, 16]. In particular when sequences are highly divergent and/or
length variable, sequence alignment and the introduction of gaps become a more and
more complex enterprise and can currently not be fully governed by formal algo-
rithms. The major problem is that finding the most accurate alignment parameters
in progressive and consistency based alignment approaches is difficult due to the in-
complete knowledge of the evolutionary history of sequences and/or heterogeneous
processes along sequences [25]. As a result, problematic sequence alignments will
contain sections of ambiguous indel positions and random similarity.

To improve the signal-to-noise ratio, a selection of unambiguous alignment sec-
tions can be used. It has been shown that a selection of unambiguously aligned
sections, or alignment masking [64], improves phylogenetic reconstructions in many
cases [62, 65, 66]. However, a formally well defined criterion of selecting unambigu-
ous alignment sections or profiling multiple sequence alignments was not available.
To fill this gap, different automated heuristic profiling approaches of protein and
nucleotide alignments have been developed. GBLOCKS [36] is currently the most
frequently used tool. The implemented method is based on a set of simple prede-
fined rules with respect to the number of contiguous conserved positions, lack of
gaps, and extensive conservation of flanking positions, suggesting a final selection
of alignment blocks more “suitable” for phylogenetic analysis [36,67]. The approach
does not make explicit use of models of sequence evolution and is subsequently
referred to as a “non-parametric” approach.

The recently introduced alternative profiling method, ALISCORE [34], identifies
randomness in multiple sequence alignments using parametric Monte Carlo resam-
pling within a sliding window and was successfully tested on simulated data. ALIS-
CORE was first developed for nucleotide data, but has been extended here to amino
acid sequences. The program is freely available from http://aliscore.zfmk.de. In
short, within a sliding window an expected similarity score of randomized sequences
is generated using a simple match/mismatch scoring for nucleotide or an empirical
scoring matrix for amino acid sequences (see Methods), actual base composition,
and an adapted Poisson model of site mutation. The observed similarity score is
subsequently compared with the expected range of similarity scores of randomized
sequences. Like GBLOCKS it is independent of tree reconstruction methods, but
also independent of a priori rating of sequence variation within a multiple sequence
alignment. Because of its explicit use of, although rather simple, models of sequence
evolution, ALISCORE can be called a parametric method of alignment masking.

http://aliscore.zfmk.de
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Table 2.1: Data sets used for analyses. mtI: mitochondrial data set I; mt II: mito-
chondrial data set II; EST: EST data set; 12S+16S rRNA: mitochondrial ribosomal data
set. Type: Kind of sequence type. AA: Amino acid sequences; NUC: Nucleotide sequences.
N genes: Number of genes per data set. N species: Number of species per data set. N
cons. clades: Number of considered clades (selected). Data source: dbEST: EST database
of NCBI; unpublished sequences provided by KM (K. Meusemann), BMvR (B. Reumont),
FR (F. Roeding), TB (T. Burmester) and JD (J. Dambach).

Data set Type N genes Taxon N species N cons. clades Data source

mtI AA 11 Eukaryota 17 12 NCBI/SwissProt
mtII AA 5 Eukaryota 24 15 NCBI/SwissProt
EST AA 51 Arthropoda 26 7 dbEST; KM/BMvR/FR/TB
12S+16S NUC 2 Arthropoda 63 9 NCBI/JD

It has been demonstrated that both methods correctly identify randomness in
sequence alignments, although to a very different extent [34, 36, 67]. A comparison
of their performance on real data is however missing. Both masking methods sug-
gest a set of alignment blocks suitable for tree reconstructions. These alignment
blocks should have a better signal-to-noise ratio and this should lead to better re-
solved trees and increased support values. Therefore, we used these predictions to
assess the performance of both masking methods by comparing reconstructed Max-
imum Likelihood (ML) trees. Additionally, our analyses compared the sensitivity
of tree reconstruction given both profiling approaches in relation to different data
and alignment methods. Different test data sets were aligned with commonly used
alignment software (CLUSTALX 1.81 [21], MAFFT 6.240 [24], MUSCLE 3.52 [23],
T-COFFEE 5.56 [20], and PCMA 2.0 [68]).

For protein alignments, we used two data sets of mitochondrial protein coding
genes that differ in their sequence variability and number of taxa, and an EST data
set of mainly ribosomal protein coding genes, including missing data of single taxa.
For nucleotide alignments, we tested the performance of ALISCORE and GBLOCKS
on highly variable 12S+16S rRNA sequence alignments (Tab. 2.1).

2.2 Methods

2.2.1 Data sets

We used four different types of real data sets in combination with different align-
ment approaches, three mitochondrial (mt) and one nuclear (nu) data set (Fig. 1).
Complete mt protein coding sequences of 11 genes were downloaded for eukaryotes
from SwissProt and GenBank. Six genes (COII, COIII, ND2, ND3, ND4L, ND6)
show high sequence variability compared to the less variable genes (COI, Cytb, ND1,
ND4, ND5). The first mt data set (mtI) included protein sequences of all chosen
mitochondrial genes of 17 taxa. The second mt data set (mtII) comprised the five
less variable genes out of data set mtI but with 24 taxa, corresponding to Talavera
& Castresana [67]. The third mitochondrial data set (12S+16S) included nearly
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complete 12S+16S rRNA sequences for 63 arthropod taxa. The nuclear data set
(EST) was compiled from 51 mainly ribosomal protein coding genes from Expressed
Sequence Tags (ESTs) of 26 arthropod taxa. These were selected from published
(dbEST, NCBI) and unpublished EST data (Meusemann, v. Reumont, Burmester,
Roeding, unpubl.). The data comprised representatives of all majors arthropod
clades including water bears (Tardigrada) and velvet worms (Onychophora). A
definitive tree of arthropods has not been established yet, therefore we restricted
our comparison on tree resolution and bootstrap support values for selected clades.
We remark that increased resolution and support might not reflect a real improve-
ment of phylogenetic signal-to-noise ratio, but we consider this comparison as a
good approximation in which the bootstrap values are used as approximation of
tree-likeness in the data.

2.2.2 Alignments

All genes were aligned separately, each data set using MAFFT 6.240 [24], MUSCLE
3.52 [23], CLUSTALX 1.81 [21], and T-COFFEE 5.56 [20] with default parameters.
Since the number of taxa of the rRNA data was too high for T-COFFEE, PCMA
2.0 [68] was used instead which aligns more similar sequences with the CLUSTAL
algorithm and less similar sequences with the T-COFFEE algorithm. Each alter-
native alignment was profiled once with ALISCORE and with all three possible
gap predefinitions of GBLOCKS in which either no gaps (GBLOCKS(none)), all
gaps (GBLOCKS(all)), or positions which have in less than 50% of sequences a gap
(GBLOCKS(half)) are allowed. Thus, five different sets per alignment method were
used in tree reconstructions: a) unmasked, b) three different GBLOCKS masked,
and c) ALISCORE masked. This was conducted for all four data sets (mtI, mtII,
12S+16S, EST). Using ALISCORE, alignments were screened separately with 2,000
randomly drawn pairwise comparisons and a window size w = 6. Within its scor-
ing function gaps were treated like ambiguous characters on nucleotide level. On
amino acid level we used the BLOSSUM62 substitution matrix.Positions identified
by ALISCORE or suggested by GBLOCKS as randomly similar were removed and
single genes were concatenated for each data set and each approach. Percentage of
remaining positions after masking was plotted for each alignment and masking ap-
proach (Fig. 2.1), in total for 1,104 single alignments (see electronic supplementary
File ES1).

2.2.3 Split Networks

Split decomposition patterns were analyzed with SplitsTree 4 [69], version 4.10.
We used the Neighbor-Net algorithm [70] and uncorrected p-distances to generate
Neighbor-Net graphs from concatenated alignments of each data set before and after
exclusion of randomly similar sections.
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2.2.4 Tree reconstructions

Maximum likelihood (ML) trees were estimated with RAxML 7.0.0 [71] and the
RAxML PTHREADS version [72]. We conducted rapid bootstrap analyses and
search for the best ML tree with the GTRMIX model for rRNA data and the
PROTMIX model with the BLOSUM62 substitution matrix for amino acid data
with 100 bootstrap replicates each. Twenty topologies with bootstrap support values
of all three GBLOCKS masked, ALISCORE masked, and unmasked alignments were
compared for each single data set. Majority rule was applied for all GBLOCKS
masked, ALISCORE masked, and unmasked topologies to investigate consistency of
selected clades. Clades below 50% bootstrap support were considered as unresolved.

2.3 Results

2.3.1 ALISCORE algorithm for amino acid data

As for nucleotide sequences [34], ALISCORE uses a sliding window approach on pairs
of amino acid sequences to generate a profile of random similarity between two se-
quences. In contrast to the algorithm with nucleotide data, ALISCORE employs the
empirical BLOSUM62 matrix, Q, (or alternatives of it, PAM250, PAM500, MATCH)
to score differences between amino acids, Qij . Pairs containing indels and any amino
acid are defined by using the value of a comparison of stop codons and any amino
acid defined within Q. The observed score within a window of pairwise comparisons
is generated by summing scores of single site comparisons. Starting from a multi-
ple sequence alignment of length L, sequence pairs (i, j) are selected for which the
following procedure is executed: In a sliding window of size w at position k, a sim-
ilarity score S(k) is calculated comparing positions (i(k), j(k)),∀ k ∈ (1, 2, . . . , L),
using the following simple objective function:

S(k) =
k+w−1∑
p=k

Qij(p)

Observed scores are compared to a frequency distribution of scores of randomly sim-
ilar amino acid sequences with length given by the window size. The generation of
randomly similar sequences follows the Proportional model [73], which is an adap-
tation of a simple Poisson model of change probability, adapted for observed amino
acid frequencies, but still assuming that the relative frequencies of amino acids are
constant across sites:

Proportional : Pij(t) =

{
πj + (1− πj)e−µt (i = j)

πj + (1− e−µt) (i 6= j)

with Pij(t) as the probability of change from amino acid i to j, πj the frequency
of amino acid j, µ the instantaneous rate of change, and t the branch length/time.
Different to the algorithm used with nucleotide sequences in which scores are adapted
to varying base composition along sequences and among sequences, the frequency
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distribution of scores of randomly similar sequences is only produced once for amino
acid data. The frequency distribution is generated by: 1) collecting frequencies of
amino acids of the complete observed data set, 2) generating 100 bootstrap resamples
of this amino acid frequency distribution and 100 delete-half bootstrap resamples of
each of the 100 complete bootstrap resamples, and 3) by using these 10,000 delete-
half bootstrap resamples to generate 1,000,000 scores of randomly similar amino
acid sequences with length given by the window size. This complex resampling
leads to an even distribution of scores of randomly similar sequences. The frequency
distribution of randomly similar sequences is used to define a cutoff c(α = 0.95) to
assess randomness of the observed sequence similarity within the sliding window.
Matching indels are defined as Qij = c/w. The principle of the complete scoring
process is described in [34].

2.3.2 Testing performance on real data

2.3.2.1 Extent of identified randomly similar blocks

Compared to GBLOCKS, using ALISCORE resulted in the exclusion of fewer posi-
tions in most data sets (Fig. 2.1). GBLOCKS identified fewer randomized positions
only for the highly diverse 12S+16S rRNA data with the GBLOCKS(all) option.
For each data set, the percentage of identified randomly similar sections differed on
average between 1% and 5% for each multiple sequence alignment when ALISCORE
was applied, and between 1% and 9% when GBLOCKS was used. Most alignment
sites were discarded by the default option GBLOCKS(none).

2.3.2.2 ML trees and Neighbor-Net analyses

Resulting ML trees and Neighbor-Net graphs were examined under two different
aspects: 1) We compared trees of all unmasked alignments with trees of differently
masked alignments per data set to analyze the influence of each masking method
on data structure and presence/absence of selected clades (Fig. 2.2).

2) We compared bootstrap values of corresponding trees (Tab. 2.2) and Neighbor-
Net graphs (Fig. 2.3) of unmasked and differently masked alignments to see if align-
ment masking improves the signal-to-noise ratio in the predicted way.

In general, ALISCORE masked alignments resulted in consistent ML topologies
among identical but differently aligned sequence data. The ALISCORE algorithm
performed in most cases better or at least equal well than the best GBLOCKS set-
tings (GBLOCKS(all), GBLOCKS(half)). Application of GBLOCKS(none) yielded
less congruent trees.

Amino acid data While plants, fungi, metazoans, and included subtaxa were
fully resolved in unmasked trees of dataset mtI, sister group relationships between
major clades (Fungi, Metazoa, Amoebozoa) could not be resolved without align-
ment masking. If alignments were masked according to the ALISCORE profile, all
ML trees showed a sister group relationship between fungi and metazoans. In the
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Figure 2.1: Percentage of identified non randomized positions X-axis: Used data
sets. Y-axis: Average percentage of “non randomly similar” positions per data set after
alignment masking. GBLOCKS(none): brown; GBLOCKS(half): orange; GBLOCKS(all):
green; ALISCORE (blue). A list of all single values is given in the electronic supplementary
File ES1.
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Table 2.2: Averaged bootstrap support [%] of selected clades of each data set
(mtI, mtII, EST, 12S+16S). Inferred from majority rule ML trees for all GBLOCKS
profiles (Gb(none), Gb(half), Gb(all)), ALISCORE (Al), and Unmasked (Unm). Values
are averaged across different alignment methods per masking approach.

Data set Selected clades Gb(none) Gb(half) Gb(all) Al Unm

mtI

Plant 63.8 82.0 77.5 81.5 97.0
Viridiplantae 99.8 99.5 99.8 100.0 100.0
Streptophyta 100.0 100.0 100.0 100.0 100.0
(Rhodophyta,Plant) 68.5 92.0 88.5 82.8 96.8
Fungi 100.0 100.0 100.0 100.0 100.0
(Ascomycota,Blastocladiomycota) 100.0 100.0 100.0 100.0 100.0
Metazoa 100.0 99.5 99.3 100.0 85.8
Bilateria 93.3 100.0 100.0 100.0 100.0
Gastroneuralia 100.0 100.0 100.0 100.0 100.0
Deuterostomia 73.0 99.8 100.0 99.8 100.0
(Fungi,Metazoa) 100.0 62.5 75.0 76.0 0.0
((Fungi,Metazoa),Amoebozoa) 41.3 17.3 46.3 24.0 0.0

mtII

Plant 0.0 0.0 0.0 0.0 0.0
Viridiplantae 0.0 0.0 0.0 0.0 0.0
Streptophyta 100.0 100.0 100.0 100.0 100.0
Chlorophyta 0.0 0.0 0.0 0.0 0.0
Rhodophyta 99.5 93.5 98.5 97.5 97.8
(Rhodophyta,Plant) 0.0 0.0 0.0 0.0 0.0
Amoebozoa 0.0 0.0 0.0 0.0 14.3
Fungi 100.0 100.0 100.0 100.0 93.3
(Ascomycota,Blastocladiomycota) 100.0 100.0 100.0 100.0 96.2
Metazoa 100.0 100.0 100.0 100.0 100.0
Bilateria 100.0 100.0 100.0 100.0 100.0
Gastroneuralia 98.5 100.0 100.0 100.0 88.5
Deuterostomia 69.3 94.5 98.8 95.5 73.3
(Fungi,Metazoa) 87.3 70.5 64.8 79.3 67.5
((Fungi,Metazoa),Amoebozoa) 0.0 0.0 0.0 0.0 0.0

EST

Chelicerata 0.0 50.8 57.5 24.8 0.0
Pancrustacea 97.8 99.5 100.0 100.0 0.0
(Cirripedia,Malacostraca) 56.0 58.5 79.5 85.0 0.0
Hexapoda 0.0 46.5 66.8 52.8 0.0
Collembola 98.8 99.5 99.8 100.0 0.0
Nonoculata 18.8 74.5 72.8 84.3 0.0
Ectognatha 88.0 55.8 76.8 75.3 0.0

12S+16S

Campodeidae 17.5 89.3 98.8 97.0 99.8
Diplura 0.0 87.8 96.8 92.5 94.3
Archaeognatha 0.0 59.8 85.3 75.8 47.5
Decapoda 0.0 38.5 38.0 81.8 73.3
Dictyoptera 0.0 38.0 39.3 45.3 49.5
Collembola 0.0 97.5 99.3 97.5 96.0
Odonata 57.8 100.0 100.0 99.3 100.0
Japygidae 29.8 99.5 99.0 100.0 100.0
Hymenoptera 0.0 88.0 84.3 83.8 24.8
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case of the T-COFFEE alignment, the Amoebozoa were placed as sister group to
Fungi+Metazoa. The alignment masking of GBLOCKS(all) and GBLOCKS(half)
led to comparatively resolved topologies. The GBLOCKS(none) option reduced
signal in the data (Fig. 2.2). Bootstrap values as measurement of data structure in-
creased after alignment masking in particular for deep nodes (clade (Fungi,Metazoa)
and ((Fungi,Metazoa),Amoebozoa), see Tab. 2.2). After alignment masking, Neigh-
bor-Net graphs showed less conflict (Fig. 2.3).

For the mtII data set we were not able to recover monophyletic plants and
Amoebozoa as sister group to Fungi+Metazoa. The sister group relationship be-
tween Fungi and Metazoa was fully resolved in all ALISCORE, GBLOCKS(all),
and GBLOCKS(none) masked data sets. GBLOCKS(none) and GBLOCKS(half)
masked alignments supported in several instances implausible clades (Fig. 2.2).
Bootstrap support values marginally increased after alignment masking (Tab. 2.2).
Neighbor-Net graphs as well showed only marginal reduction of conflicts after align-
ment masking (Fig. 2.3).

Unmasked EST data did not yield well supported resolved trees. Most ALIS-
CORE masked alignments led to clearly improved resolution of ‘traditionally’ recog-
nized clades (e.g. Chelicerata, Hexapoda, Pancrustacea). If alignments were masked
using GBLOCKS(all) or GBLOCKS(half), tree resolution increased likewise. Us-
ing the GBLOCKS(none) masking option did not improve resolution compared to
other masked alignments (Fig. 2.2). Considering bootstrap values as measurement
of tree-likeness, GBLOCKS(all), GBLOCKS(half), and ALISCORE improved tree-
likeness of the data (Tab. 2.2). Except for the default GBLOCKS(none) setting,
Neighbor-Net graphs showed a substantial decrease of conflict after alignment mask-
ing (Fig. 2.3).

Nucleotide data Again, ALISCORE and GBLOCKS(all) masking improved tree-
likeness of the 12S+16S nucleotide alignments at the taxonomically ordinal level.
ALISCORE outperformed GBLOCKS(all) and GBLOCKS(half) in all instances.
GBLOCKS(none) clearly performed worst (Fig. 2.2, Tab. 2.2).

2.4 Discussion

Parametric and non-parametric masking methods were successful in identifying
‘problematic’ alignment blocks. In general removal of these blocks prior to tree
reconstruction improved resolution and bootstrap support. We interprete these
results as an improvement in signal-to-noise ratio. For data set mtI and mtII we
assumed clade validity congruently to Talavera & Castresana [67]. For the EST data
set, traditionally accepted clades were only recovered for masked data sets in con-
trast to the unmasked approach, e.g. Pancrustacea [74–82], Malacostraca [83–85],
Hexapoda [74, 75, 77, 80–82, 86–90], Ectognatha [77, 81, 86, 87, 89, 91] or Collem-
bola [77, 81, 86–90], see (Fig. 2.4). A detailed review on these clades including
morphological, neuro-anatomical and palaeontological evidence has been recently
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Figure 2.2: Average percentage of resolved clades within single data sets. On
the left: Occurrence of selected clades (Tab. 2.2–2.3) of each data set (mtI, mtII, EST,
12S+16S), inferred from majority rule ML trees. On the right: Total occurrence of
all considered clades [%] for each data set, averaged across all four alignment methods.
GBLOCKS(none): brown; GBLOCKS(half): orange; GBLOCKS(all): green; ALISCORE:
blue; Unmasked: red.
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Figure 2.3: Neighbor-Net graphs. Neighbor-Net graphs generated with SplitsTree 4.10
based on concatenated supermatrices of unmasked (left), ALISCORE masked (middle),
and GBLOCKS(none) masked (right) data. mtI, mtII and EST networks depend on a T-
COFFEE alignment, the 12S+16S rRNA network on a PCMA alignment. Neighbor-Nets
were calculated with uncorrected p-distances. All inferred Neighbor-Net graphs are given in
the electronic supplementary File ES1. Tree like structures in these graphs indicate distinct
signal-like patterns in the corresponding alignment. Graphs generated from ALISCORE
data sets are more tree-like. Lack of information leads to star-like graphs, conflicting signal
produces cobwebs.
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published in Edgecombe [92] and Grimaldi [93]. An improved data structure after
alignment masking is also supported by more distinct split patterns (Fig. 2.3).

Alignment masking further reduced sensitivity of tree reconstructions to differ-
ent alignment methods. The method implemented in GBLOCKS has the potential
to overestimate the extent of divergent or ambiguously aligned positions, especially
in partial gene sequences and gappy multiple sequence alignments like EST data or
rRNA loop regions. Masking with the GBLOCKS(none) option tended to result in
suboptimal node resolution and support values (Fig. 2.2 and Tab. 2.2–2.3). In the
case of the 12S+16S rRNA data, GBLOCKS(none) masking even reduced signal
strength. This phenomenon is clearly evident in Figure 2.3, where the split decompo-
sition pattern appears most fuzzy in the GBLOCKS(none) Neighbor-Net graph. We
conclude that the incongruence between GBLOCKS(none)– and remaining masked
trees may have resulted from conservative and stringent default parameters settings
of GBLOCKS, in which all gap including positions were removed and only large
conserved blocks were left. While the higher amount of conflicting signal in un-
masked multiple sequence alignments clearly based on noisy data, it seems that the
GBLOCKS(none) masking discarded too many informative positions.

The ALISCORE and GBLOCKS(all) approach performed quite similar and best
on all data sets. This demonstrates that even a predefined set of rules suffices to
extract randomness within sequence alignments. Talavera & Castresana [67] showed
this already in their extensive analyses of GBLOCKSs performance.

The use of large data sets in phylogenomic analyses resulted in a tremendous
increase of molecular data, but also in an increase of sampling error which could
even bias seemingly robust phylogenetic inference [94]. Several such cases have
been reported [95–97]. Therefore, it is important to establish a reliable alignment
masking approach to cope with systematic errors in multiple sequence alignments.
Our analyses showed that the sliding window approach will be a useful profiling tool
to guide alignment masking.

ALISCORE optionally uses a BLOSUM62 or various PAM matrices to score
differences between amino acid sequences, or a simple match/mismatch score for
differences between nucleotide or amino acid sequences. It uses a simple modified
Poisson model of character state change (called Proportional for amino acids [73],
adapted for uneven base composition and sequence selection) in its resampling proce-
dure to generate a null distribution of expected scores of randomly similar sequences.
These scoring models and resampling processes are not very realistic, but however
performed well in our analyses.

A recently published alternative approach, NOISY, uses a qnet-graph of se-
quence relationships to assess randomness of single positions [62]. The approach uses
Monte Carlo resampling of single columns to compare fit of random data columns on
a qnet-graph with the fit of observed data columns. The NOISY method appears
as a fast and better alternative to the GBLOCKS approach, but a comparative
analyses of its performance with the sliding window approach remains to be done.

We demonstrate for empirical data that alignment masking is a powerful tool to
improve signal-to-noise ratio in multiple sequence alignments prior to phylogenetic
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Figure 2.4: Schematized cladograms inferred from the unmasked and masked
EST data set. Schematized cladograms (best ML trees, majority rule) inferred from
the T-COFFEE aligned EST data set a) unmasked b) masked with ALISCORE consid-
ering selected clades. Quotation marks indicate non-monophyly of clades. Color code:
Outgroup (tardigrades), onychophorans, myriapods: grey; chelicerates: green; crustaceans:
red; hexapods: blue (proturans, diplurans, collembolans: royal-blue; ectognath hexapods:
dark-blue).
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Table 2.3: Average percentage of resolved clades (selected). Inferred from ma-
jority rule ML trees, averaged across different alignment methods. Values are given for
all GBLOCKS profiles (Gb(none), Gb(half), Gb(all)), ALISCORE (Al), and Unmasked
(Unm).

Data Gb(none) Gb(half) Gb(all) Al Unm

mtI 91.7 91.7 93.8 93.8 83.8
mtII 58.3 56.7 58.3 60 58.3
EST 57.1 85.7 96.4 85.7 0
12S+16S 16.6 86.1 88.9 97.2 77.7

reconstruction. Masking multiple sequence alignments makes them additionally less
sensitive towards different alignment algorithms. Our study also shows, that the
scoring algorithm for amino acid data implemented in ALISCORE performs well.

The ALISCORE (parametric) approach is independent of a priori rating of se-
quence variation and seems to be more capable to handle automatically different
substitution patterns and heterogeneous base composition.

It will be a matter of further analyses, whether an extension of the sliding window
approach to more realistic likelihood models of change and Monte Carlo resampling
will further improve the performance. However, it would be conceivable to imple-
ment a more explicit model based approach in GBLOCKS as well. The advantage of
improved parameterizing GBLOCKS could be a significant gain in speed compared
to the sliding window approach. The best approach should be the most efficient
one in terms of computational time and increased reliability of trees, the latter one
admittedly hard to assess.

2.5 Additional Files

• Electronic supplementary file ES1 — Detailed analytical results of
chapter 2

– Detailed results including lists of the percentage of remained positions af-
ter alignment masking per data set and alignment method. Given are all
considered clades and corresponding bootstrap values (> 50%) per data
set, alignment method and (un)masked approach as well as all Neighbor-
Net graphs

– Format: XLS

– Size: 757 KB

– View: Excel Viewer or Libre Office Calculator

• Electronic supplementary file ES2 — Presentation of the ALIS-
CORE algorithm and the results of chapter 2
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– The presentation was given 2009 within the status seminar of the “Deep
Metazoan Phylogeny (DMP)” project and describes the ALISCORE al-
gorithm, results of chapter 2, and gives a perspective of the AliGROOVE
algorithm described in chapter 4

– Format: PDF

– Size: 1.6 MB

– View: PDF Viewer

• Electronic supplementary file ES3— Publication (Kück et al. (2010)
[35])

– Corresponding publication to the study of chapter 2

– Format: PDF

– Size: 875.6 KB

– View: PDF Viewer
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Abstract: Martialinae are pale, eyeless and probably hypogaeic predatory
ants. Morphological character sets suggest a close relationship to the ant subfamily
Leptanillinae. Recent analyses based on molecular sequence data suggest that Mar-
tialinae are the sister group to all extant ants. However, by comparing molecular
studies and different reconstruction methods, the position of Martialinae remains
ambiguous. While this sister group relationship was well supported by Bayesian
partitioned analyses, Maximum Likelihood approaches could not unequivocally re-
solve the position of Martialinae. By re-analysing a previous published molecular
data set, we show that the Maximum Likelihood approach is highly appropriate
to resolve deep ant relationships, especially between Leptanillinae, Martialinae and
the remaining ant subfamilies. Based on improved alignments, alignment masking,
and tree reconstructions with a sufficient number of bootstrap replicates, our results
strongly reject a placement of Martialinae at the first split within the ant tree of
life. Instead, we suggest that Leptanillinae are a sister group to all other extant
ant subfamilies, whereas Martialinae branch off as a second lineage. This assump-
tion is backed by approximately unbiased (AU) tests, additional Bayesian analyses
and split networks. Our results demonstrate clear effects of improved alignment
approaches, alignment masking and data partitioning. We hope that our study il-
lustrates the importance of thorough, comprehensible phylogenetic analyses using
the example of ant relationships.

Keywords: Maximum Likelihood, Ant Tree of Life, Bayesian Analyses, Mar-
tialinae
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3.1 Introduction

Recently, a spectacular and rare new subfamily of ants was described from the
Brazilian Amazon with new implications for the ant tree of life. The monotypic
subfamily, Martialinae was characterized by a single worker that shows remarkable
morphological features [40]. It is a small, blind, pale, and most likely hypogaeic
predator that lives either in the leaf-litter stratum or directly within the soil. Some
morphological characters, such as the absence of eyes and frontal lobes, fully exposed
antennal sockets, and a flexible promesonotal suture, indicate a closer relationship to
the also small, eyeless, subterranean, and predatory ant subfamily, Leptanillinae [98].
Other characters, like a strongly reduced clypeus and long forceps-like mandibles,
justify the establishment of a taxon Martialinae [40]. More important, this new
subfamily was presented as a putative sister group to all other extant ants on the
basis of the molecular analyses of three nuclear genes, the small and large nuclear
subunits 18S and 28S rRNA and elongation factor EF1aF2 [40]. Previous molecular
studies had proposed the subfamily Leptanillinae as a sister group of all other extant
ants [37–39]. The proposed sister group relationship of leptanillines suggested in
these studies, as well as the one presented for Martialinae by Rabeling et al. [40],
is of high significance for a better understanding of ant relationships and ground
plan characters. These results strongly support the scenario of a small, eyeless, and
hypogaeic predator as an ancestor of modern ants [37,38,40], but contradict previous
morphological studies, which assumed that ancestral ants were larger, more wasp-
like, epigaeic foragers with well-developed eyes [99–102]. Therefore, the phylogenetic
position of Martialinae and Leptanillinae within the ant tree of life still awaits a clear
resolution.

Rabeling et al. [40] presented a Bayesian tree with resolved single inter- and intra
subfamily relationships and proposed Martialinae as the earliest branch (posterior
probability 0.91) within the ant tree of life. Recent studies have shown that Bayesian
analyses tend to overestimate the potential signal within data and provide high
support values, even if the data is completely uninformative [51, 52]. Furthermore,
Bayesian approaches show a much higher type I error rate (the possibility that
erroneous conclusions will be drawn more often), especially in the case of model
misspecification [52]. Bayesian posterior probability values are substantially higher
than corresponding bootstrap values [51, 52, 103, 104]. Suzuki, Glazko & Nei [51]
showed in simulation studies that Bayesian support values “can be excessively liberal
when concatenated gene sequences are used”. Bootstrap values are in general more
conservative and more reliable in assessing the robustness of phylogenetic trees which
should be preferable in phylogenetic analyses [51,52,104]. Therefore, we suggest that
topologies inferred with Maximum Likelihood (ML) analyses in combination with
a sufficient number of bootstrap replicates provide a more realistic picture of the
underlying signal.

We re-analysed the data of Rabeling et al. [40] using partitioned and unpar-
titioned ML approaches with a sufficient number of bootstrap replicates. Despite
the mentioned criticisms on Bayesian analyses, we additionally conducted compa-
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rable Bayesian analyses to see whether any of our Bayesian topologies support the
relationships found by Rabeling et al. [40], especially with respect to deep splits.
For alignment masking we applied the software ALISCORE. Recent studies have
shown that alignment masking of positions that can not be aligned unambiguously
is strongly recommended to improve the signal-to-noise ratio in multiple sequence
alignments prior to tree reconstruction. Several automated software tools have been
developed [34–36, 62, 64] that offer a more comprehensible alignment masking than
a manual exclusion of sites. ALISCORE is a parametric masking approach that
identifies randomised alignment sections by using a Monte Carlo resampling within
a sliding window [34, 35]. The approach assumes that the score of inaccurate and
ambiguous alignment sections will not be distinguishable from randomly similar
aligned sequences. Therefore, ALISCORE compares the score of originally aligned
sequences with scores of randomly drawn sequences of similar character composi-
tion. ALISCORE has been successfully tested both in simulations [34] and on real
data sets [35], and has been used in recent molecular phylogenetic studies [105–109].

3.2 Materials and Methods

3.2.1 Data set

We used molecular data previously published by Rabeling et al. [40]. In accordance
to [40], we used the data matrix of Brady et al. [37] kindly provided by S. Brady. We
added respective sequences of Martialis heureka [40] from GenBank (http://www.
ncbi.nlm.nih.gov/). The data set comprised three genes of 152 taxa subdivided
into 21 ant subfamilies and 11 outgroup taxa. Sequence data included elongation
factor 1-alpha F2 (EF1aF2, nuclear protein coding gene), 18S rRNA and 28S rRNA
(nuclear ribosomal genes).

3.2.2 Alignment

Single genes were aligned separately using the local L-ins-i algorithm of MAFFT
version 6.717 [110]. The L-ins-i algorithm is an iterative progressive algorithm
which outperformed other methods in benchmark tests [25, 26]. Each of the three
sequence alignments (18S, 28S, and EF1aF2) was screened for randomised sections
with ALISCORE [34] using all possible pairwise comparisons and a window size w
= 6. Within ALISCORE, gaps were treated as ambiguous characters. Randomised
sections (28S rRNA: 725 base positions (bp); 18S rRNA: 14 bp) were excluded with
ALICUT [111]. In the EF1aF2 alignment, no randomised positions were detected.
Single genes were concatenated using FASconCAT version 1.0 [112]. The concate-
nated supermatrix of the masked approach included 4,315 characters while the un-
masked supermatrix comprised 5,054 characters. All alignments (phylip format)
and the respective character partitions are provided as eclectronic supplementary
files ES4 – ES7.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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3.2.3 Phylogenetic reconstructions

3.2.3.1 Split networks

We computed NeighbourNetworks [69,70,113] with SplitsTree 4.10 [69] to visualise
the data structure of the unmasked and masked alignments. NeighborNetworks
were calculated applying uncorrected p-distances for the unmasked alignment and
the masked alignment used for the masked-partitioned analyses. NeighborNetwork
graphs give an indication of noise, signal-like patterns and conflicts within a multiple
sequence alignments.

3.2.3.2 Maximum Likelihood Analyses

We estimated a Maximum Likelihood (ML) topology for the unmasked supermatrix
and the masked supermatrix in non-partitioned analyses with RAxML [71] using
RAxMLHPC-PTHREADS [72], version 7.2.6. A third topology was reconstructed
from the masked supermatrix with four partitions according to the setup described
for the Bayesian analyses in Rabeling et al. [40] with the RAxMLHPC-HYBRID
[114], version 7.2.6. The first partition included the 18S, the second partition the
28S. The third partition comprised the 1st and 2nd codon position of EF1aF2,
the fourth partition included the 3rd codon position of EF1aF2. We identified
the correct reading frame and excluded the first position of the EF1aF2-alignment.
Therefore, the EF1aF2-alignment was 1 bp shorter (516 bp) than that described in
Rabeling et al. [40].

We conducted rapid bootstrap analyses and a thorough search for the best ML
tree using GTR+Γ with 5,000 bootstrap replicates. We evaluated the number of
necessary bootstrap replicates a posteriori for each data set according to the boot-
stop criteria based on the Weighted Robinson-Foulds (WRF) distance criterion [115]
using RAxML 7.2.6 for the extended majority-rule (MRE) consensus tree criterion.
We chose a cutoff value of 0.01 to ensure a sufficient number of bootstrap replicates.
In final trees, clades with a bootstrap support (bs) below 50% were considered unre-
solved. All analyses were performed on HPC LINUX clusters of the ZFMK, Bonn,
Germany. Trees were edited with the software TreeGraph 2 [116].

To test alternative placements of Martialinae and Leptanillinae as suggested by
Rabeling et al. [40], we exchanged the position of Martialinae and Leptanillinae
in our best trees (unmasked, masked-unpartitioned and masked-partitioned). We
compared alternative tree topologies by performing an AU test [117] for each data
set. Therefore, we optimised branch lengths for alternative topologies. Subsequently,
we calculated per site log Likelihood scores using RAxML 7.2.6. AU tests were
performed with CONSEL [118], version v0.1i.

3.2.3.3 Bayesian Analyses

Bayesian phylogenies were calculated using MrBayes [119, 120] for three data sets
also used in our ML analyses. Topologies were inferred from (i) the unmasked



30
Chapter 3. Improved phylogenetic analyses corroborate a plausible

position of Martialis heureka in the ant tree of life

superalignment (ii) the masked superalignment, non-partitioned and (iii) the masked
superalignment with four partitions according to [40] and our ML analyses. Similar
to Rabeling et al., we used MrBayes v3.2 (an unreleased version of MrBayes; the
source code was downloaded from the current version system in January, 2011).
Convergence of parameters of the Bayesian analyses was assessed with the software
Tracer v1.5 [121].

We chose the sequence evolution model GTR+Γ for all three data sets (i) – (iii)
for accuracy of comparison with our ML analyses. Parameters of the model (i.e.,
base frequencies, transition/transversion ratio, and rate variation shape parameter)
were unlinked across partitions. According to Rabeling et al., Metropolis coupling
was used with eight chains per analysis and a temperature increment of 0.05 [40].
For analysis (i) and (ii) we ran 30 million generations with a sample frequency
of 200. For analysis (iii) we ran 28,130,500 generations with a sample frequency
of 100. After checking all analyses for parameter convergence in Tracer v1.5, we
discarded a burn-in of 10% for each analysis. After discarding the burn-in, majority
rule consensus trees with posterior probabilities were calculated from all sampled
trees within MrBayes. All analyses were performed on HPC LINUX clusters of the
ZFMK, Bonn, Germany. Trees were edited with the software TreeGraph 2 [116].

3.3 Results

3.3.1 Alignment masking, number of bootstrap replicates and like-
lihood scores

Alignment masking remarkably improved data structure, which is visualised by com-
paring split networks derived from the unmasked and masked alignments. The split
(NeighborNet) network [69, 70, 113] from the masked alignment obviously showed
less conflict than the split network from the unmasked alignment, especially within
subfamilies of formicoids. Nevertheless, conflicting signal is obvious, e.g. within
poneroids or dorylomorphs (Fig. 3.1).

We determined the number of sufficient bootstrap replicates for our ML anal-
yses using the ‘bootstopping criterion’ according to Pattengale et al. [115] (see
method section). Our unmasked data set converged after 2,400 bootstrap repli-
cates, our masked-unpartitioned data set after 3,400 bootstrap replicates, and the
masked-partitioned data set after 4,100 bootstrap replicates applying the Weighted
Robinson-Foulds (WRF) distance criterion [115] with an extended majority-rule
(MRE) consensus tree criterion and a cutoff value of 0.01. Thus, the number of
5,000 bootstrap replicates chosen for our ML analyses had been sufficient for all of
our data sets.

Our partitioned ML analysis of the masked data set clearly outperformed the
masked-unpartitioned data set in terms of likelihood scores (masked-partitioned:
ln = −49230.716; masked-unpartitioned: ln = −52002.229).
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network based on the masked alignment which was used for the masked-partitioned analyses.
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3.3.2 Phylogenetic relationships

3.3.2.1 Placement of Leptanillinae and Martialinae

All ML and Bayesian topologies suggested a clade including Leptanillinae + all re-
maining ant subfamilies with maximum support (Fig. 3.2–3.4, Tab. 3.1, and App. A:
Fig. A.1–A.6). Martialinae always split off as a second branch and form a clade with
poneroids and monophyletic formicoids. Applying an approximately unbiased test
(AU test) [117] for all ML topologies, the Null hypothesis (H0) assumes that either
Leptanillinae as a sister group of remaining Formicidae and Martialinae as second
branch in the ant tree of life or vice versa, are not significantly different. While
H0 was not significantly rejected for our unmasked data set (p = 0.120), both ML
topologies of our masked data sets significantly outperformed H0. Both AU tests of
the masked and the masked-partitioned data set significantly rejected H0 (masked:
p < 0.0001; masked-partitioned: p = 0.046). Leptanillinae as the first split within
the ant tree of life was also supported by our split network analyses. Both split
networks (masked and unmasked) showed less conflict for Leptanillinae as the first
split than for Martialinae (Fig. 3.1).

3.3.2.2 Relationships of poneroids and formicoids

None of our topologies recovered a clade poneroids, except the Bayesian topology de-
rived from the unmasked data set (0.86 bpp, see App. A: Fig. A.1). Further, all ML
and Bayesian topologies failed to resolve the relationships between Agroecomyrmeci-
nae, Amblyoponinae, Paraponerinae, and Proceratiinae. Conflicting signal among
these subfamilies is seen in both split networks, but the masked network shows
less conflict (Fig. 3.1b). In contrast to our unmasked data, all masked approaches
resolved a (Ponerinae, formicoids) clade with weak bootstrap and high Bayesian
support values (masked-unpartitioned: 57% bs, 0.97 bpp; masked-partitioned: 68%
bs, 1 bpp; Fig. 3.3,3.4, Tab. 3.1, and App. A: Fig. A.2– A.3). A formicoid clade was
maximally supported in all topologies (100% bs, 1 bpp).

Within formicoids, a dorylomorph clade was recovered in all our trees (100%
bs, 1 bpp; Fig. 3.2–3.4, Tab. 3.1 and App. A: Fig. A.1–A.6). Four of six topolo-
gies suggested a clade dorylomorphs + formicoids. However, in the ML masked-
unpartitioned topology, the placement of dorylomorphs remained unresolved. In
the unmasked Bayesian topology, a clade dorylomorphs + Pseudomyrmecinae was
present, but with weak support (see App. A: Fig. A.1). Concerning the relation-
ships between dolichoderomorphs, Myrmeciinae, and Pseudomyrmecinae, we did
not obtain an unequivocal resolution from any topology. The relationships between
Formicinae, Myrmicinae and ectaheteromorphs were not resolved by our ML topol-
ogy of the unmasked data set, whereas the trees of both masked approaches showed
weak node support for a clade Myrmicinae + ectaheteromorphs (unpartitioned: 73%
bs; partitioned: 67% bs). This clade was also resolved in all Bayesian topologies
with moderate support (see App. A: Fig. A.1–A.3).
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Figure 3.2: ML topology inferred from the unmasked, unpartitioned data set.
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masked alignment), majority rule, 5,000 bootstrap replicates. Quotation marks indicate
non-monophyly.
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tree, of the masked-partitioned analysis (739 positions excluded from the unmasked align-
ment + one bp to correct the reading frame), majority rule, 5,000 bootstrap replicates.
Quotation marks indicate non-monophyly.
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Table 3.1: Selected clades with bayesian posterior probability [bpp] and boot-
strap support [bs] values recovered in our Bayesian (Bayes) and Maximum
Likelihood (ML) topologies. Clade 1 (Leptanillinae,(Martialinae, remaining ants)) and
(Martialinae(poneroid/formicoid clade)) are resolved in all Bayesian and ML topologies.
Poneroids are not monophyletic with the exception of the unmasked, Bayesian topology
(weakly supported). Amblyoponinae are only monophyletic within the Bayesian masked-
partitioned topology. A clade (Ponerinae, formicoids) with a subsequent paraphyly of
poneroids, is suggested by all masked topologies with high Bayesian posterior probability
(bpp) but low bootstrap (bs) support. Dorylomorphs are monophyletic with exception of
the masked-unpartitioned ML topology.

Bayes posterior probabilities [bpp] ML bootstrap support [bs]

unmasked masked masked-part. unmasked masked masked-part.

Clade 1 1 1 1 100 100 100
Clade 2 1 1 1 90 93 93
poneroids 0.86 – – – – –
Amblyoponinae – – 0.77 – – –
(Ponerinae,formicoids) – 0.97 1 – 57 68
formicoids 1 1 1 100 100 100
dorylomorphs 1 1 1 100 100 100

3.4 Discussion

A clade Leptanillinae + all remaining ant subfamilies is highly supported in all
our ML and Bayesian analyses. This result is significant with AU tests for the
masked-unpartitioned and masked-partitioned approach. Our split network analyses
similarly corroborate this scenario. This is also congruent to earlier molecular studies
[37,38], but contradicts the results of Rabeling et al. [40]. Based on our re-analyses
of the respective data set [40] and other molecular studies [37–39,41,122], we suggest
that, at present, it seems unlikely that Martialinae are the sister group to all other
recent ant subfamilies.

The placement of Martialinae suggested by Rabeling et al. [40] could be due to
inferior sequence alignments or confounding effects of randomized alignment sec-
tions. The MAFFT-L-ins-i algorithm applied in our study was shown to be one
of the most accurate available alignment algorithms, and can be considered to be
the best choice for sequence alignments [25, 26]. Still, 739 alignment positions were
identified by ALISCORE as potentially randomised and therefore excluded. ALIS-
CORE and subsequent alignment masking increased the signal-to-noise ratio within
the data, but influenced our tree topologies only marginally. However, a positive
effect of the masking approach is clearly shown by a strong decrease of contradictory
signal within the masked alignment, especially for deeper splits (Fig. 3.1). Partition-
ing of the masked data set leads to an increased likelihood score, and higher node
resolution within formicoids. Martialinae are again resolved as the second branch
(cf. Fig. 3.2-3.4, Tab. 3.1, and App. A: Fig. A.1–A.6) avoiding possible artifacts due
to noise.

Discrepancies between our results and the results of Rabeling et al. [40] could
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further be explained by an insufficient number of boostrap replicates (ML approach)
and an insufficient number of Bayesian generations. They conducted 500 bootstrap
replicates for the ML approach [40] versus 5,000 bootstrap replicates in our study.
Pattengale et al. [115] showed in a recent study on ’bootstopping’ that the number
of bootstrap replicates for accurate confidence values is strongly dependent on the
data set. In testing the performance and accuracy of bootstrap criteria on real DNA
alignments, they showed that a range of 100 – 500 bootstrap replicates is usually
sufficient. Still, in some cases a much higher number of up to 1,200 replicates was
necessary to deliver support values that are equally robust as those in the reference
tree with 10,000 replicates. Most differences between reference and ’bootstopped’
topologies occurred on poorly supported branches (< 75% bs). Since the bootstrap
support in the ML tree of Rabeling et al. [40] for a clade Martialinae + remaining
ants is only 76.2%, 500 replicates might have been insufficient. In contrast, our
support values derived from 5,000 bootstrap replicates are evaluated and confirmed
by a posteriori ’bootstop tests’ (see results). As mentioned above, single data sets
of earlier studies [37, 38] propose Leptanillinae as a sister lineage to all other ants.
However, it should be considered that the subfamily Martialinae was just discovered
in 2008. Therefore, Moreau [41] combined data sets of Brady et al. [37], Moreau
et al. [38], and Rabeling et al. [40] to a supermatrix in which the relationship of
Leptanillinae and Martialinae was unresolved.

Our analyses showed that an exclusion of randomised sections improved the
resolution between Ponerinae and the formicoids (Fig. 3.3, 3.4, 3.1, and App. A:
Fig. A.2, A.3, A.5, A.6). Alignment masking led to a placement of Ponerinae next
to formicoids (Tab. 3.1). Discrepancies between low bs and high bpp support values
seem to confirm typical observations considering Bayesian analyses [51,52,103,104].
The relationships between the Amblyoponinae, Agroecomyrmecinae, Paraponerinae,
and Proceratiinae remain unresolved in most of our topologies. Only the Bayesian
topology of the masked-partitioned data set show monophyletic Amblyoponinae with
weak support (Tab. 3.1). Thereby, Amblyoponinae branch off as a third split (0.84
bpp) within the ant tree of life. The monophyly of Amblyoponinae has been favoured
by earlier studies [37–39,41]. Therefore, we conclude that more genes are necessary
to robustly resolve an amblyoponine clade as well as relationships between Amblyo-
poninae, Agroecomyrmecinae, Paraponerinae, and Proceratiinae. All our topologies
highly support a dorylomorph clade. Our unmasked and masked-partitioned topol-
ogy and both Bayesian topologies derived from our masked approaches corroborate
a placement of the dorylomorphs next to the remaining formicoids. This hypothesis
stands in concordance with other studies [37,38,40]. Finally, the non-monophyly of
cerapachyines within the dorylomorphs is consistent with these studies.

Compared with Brady et al. [37], the inclusion of Martialinae reduce the branch
lengths for leptanillines and formicids, although the branch separating ants from
the aculeate outgroup Hymenoptera still remains relatively long. However, with
current methods and the available data, it is not possible to assess putative long
branch artifacts like discussed in Brady et al. [37]. It is possible that new molecular
sequence data might ’improve’ the current ant tree of life. It is possible that a data
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set with most signal coming from rRNA genes might not be sufficient to support
a robust ant tree (cf. Fig. 3.1). For a deeper insight into subfamily relationships,
multi-gene analyses of genomic/EST data and a more exhaustive taxon sampling
combined with improved phylogenetic approaches seem indispensable.

3.5 Additional Files

• Electronic supplementary file ES4 — Unmasked alignment file

– The unmasked suppermatrix alignment in phylip format (18S, 28S, and
EF1aF2), generated with the local L-ins-i algorithm of MAFFT version
6.717 [110]

– Format: PHY

– Size: 808.1 KB

– View: Bioedit, Seaview or Texteditor

• Electronic supplementary file ES5 — Masked alignment file for the
masked-unpartitioned analyses

– The masked suppermatrix alignment in phylip format (18S, 28S, and
EF1aF2), generated with the local L-ins-i algorithm of MAFFT version
6.717 [110] and screened for randomised sections with ALISCORE [34]

– Format: PHY

– Size: 691.6 KB

– View: Bioedit, Seaview or Texteditor

• Electronic supplementary file ES6 — Masked alignment file for the
masked-partitioned analyses

– The masked suppermatrix alignment in phylip format (18S, 28S, and
EF1aF2), generated with the local L-ins-i algorithm of MAFFT version
6.717 [110] and screened for randomised sections with ALISCORE [34]

– Format: PHY

– Size: 691.5 KB

– View: Bioedit, Seaview or Texteditor

• Electronic supplementary file ES7 — Character partition file

– Character partition file (plain text format) for the masked alignment used
for the masked-partitioned analyses

– Format: TXT

– Size: 691.6 KB

– View: Texteditor
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• Electronic supplementary file ES8— Publication (Kück et al. (2011)
[123])

– Corresponding publication to the study of chapter 3

– Format: PDF

– Size: 386 KB

– View: PDF Viewer
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Abstract: The detection of ambiguously aligned sequence sections through
alignment masking methods has become a widely accepted tool to reduce signal
noise and to increase tree-likeness of given data sets. A main disadvantage of all
masking methods is their insensitivity in detecting heterogenous sequence diver-
gence within sequence alignments. With AliGROOVE, we propose a tool that can
visualize heterogeneous sequence divergence or alignment ambiguity related to sin-
gle taxa or subsets of taxa within alignments. The method prepares profiles of
sequence similarity for all pairwise comparisons by using an adaptive implementa-
tion of the sliding window approach whic was first introduced in the ALISCORE
masking method. The sliding window approach offers the possibility to identify taxa
which are robustly supported in topologies, bu show predominantly randomized se-
quence similarity in comparison to other taxa. The removal of these taxa can lead
to an increase of alignment quality and tree-likeness of data which in turn improve
the reliability of tree reconstructions. AliGROOVE was tested on simulated and
empirical data. The results show that that the sliding window approach has some
predictive power, therefore we consider this characteristic as a major advantage over
all character based masking approaches in phylogenetics.

Keywords: Alignment Masking, ALISCORE, Data Quality, Tree-Likeness,
Sequence Similarity, Alignment Ambiguity
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4.1 Introduction

Alignment masking as a measure of reducing noise in sequence alignments is regu-
larly applied in phylogenetics. The idea behind masking blocks of sequence align-
ments is that the influence of missing and/or ambiguously aligned blocks of sequence
alignments in subsequent tree reconstructions are reduced [34–36,62,67] by increas-
ing the tree-likeness of the data. Simulations and analysis of alignment masking of
empirical data corroborate the correctness of this idea. Basically, complete blocks
of alignments are masked applying either arbitrarily chosen thresholds of sequence
variability within alignment columns (e.g. Gblocks [36, 67] and REAP [64]) or ap-
plying a sliding window approach to identify blocks of predominately high alignment
ambiguity (Aliscore [34, 35]). All methods inherently exclude complete alignment
blocks instead of subset of taxa blocks, thus masking potentially valuable data for
subsets of taxa.

Additionally, all methods are relatively insensitive in detecting heterogeneous
sequence divergence within sequence alignments. This is an important deficiency
of masking methods, because heterogeneous sequence divergence can cause strong
biases in tree reconstructions, for example long branch effects. Therefore, a method
which can visualize heterogeneous sequence divergence or alignment ambiguity re-
lated to single taxa or subsets of taxa within alignments would thus be a useful
complement to masking approaches. It offers the chance to identify taxa which will
most likely be misplaced in trees and which negatively influence the tree-likeness
of the data. An ideal would be to be able to place a question mark at suspicious
branches within a tree.

For this purpose, we developed AliGROOVE, a new tool to visualize the extent
of sequence similarity and alignment ambiguity in multiple alignments which can
help to detect strongly derived sequences that, most probably, will negatively influ-
ence tree reconstruction methods. We implemented an adaptation of the recently
published ALISCORE masking algorithm [34, 35]. ALISCORE uses a parametric
Monte Carlo resampling within a sliding window to generate profiles of sequence
similarity for all pairwise sequence comparisons. These profiles consist of site scores
ranging from -1 indicating full random similarity to +1, non-random similarity. Ali-
GROOVE summarises site scores of profiles of sequence simility normalized over the
whole alignment length from each pairwise comparison and translates the obtained
scoring distances between sequences into a similarity matrix (Fig. 4.1). It thus de-
livers information on heterogeneous sequence similarity within the alignment. The
colour of each box in the matrix represents the obtained sum of similarity scores
between two sequences. Red indicates that ambiguously aligned sequence positions
dominate between two sequences while blue indicates the opposite. The more pos-
itive or negative the total similarity score between two sequences, the darker the
corresponding colour.

The ALISCORE algorithm has been successfully tested in simulations and on
real data sets [34, 35]. As a result, ALISCORE was used for alignment masking
in recent molecular phylogenetic studies [105–109]. We used simulated data to see
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Figure 4.1: Graphical User Interface (GUI) of AliGROOVE. AliGROOVE can be
directly started via command line or by use of a graphical user interface (GUI). Gaps in
multiple sequence alignments can be treated either as fifth state or as ambiguity character.
When AliGROOVE is used with a GUI, single process information will be shown in separate
process window and can be directly saved as textfile (above). Sequence divergences obtained
from single pairwise comparisons are shown in the output window after the process run
(bottom).



4.1. Introduction 45

whether our extension to AliGROOVE is sensitive enough to pick up predomi-
nantly, ambiguously aligned single taxa or groups of taxa. Additionally, we applied
AliGROOVE on two empirical data (one mitochondrial and one nuclear data set).

4.1.1 AliGROOVE algorithm

The algorithm of AliGROOVE is based on the scoring sheme of ALISCORE [34,35].
ALISCORE uses a sliding window approach to compare two sequences for random
similarity within the sliding window. In short, first, the observed mismatch within
the sliding window is recorded and secondly, compared with scores of same window
size generated by permutations of character states within the sliding window and
a predefined neighborhood. If the observed score is better than 95% of all gener-
ated permutations, it is considered non-random, otherwise indistinguishable from
random similarity. Positions within the sliding window receive a positive sign if
non-random and a negative if random. Each position will receive a number of signs
corresponding to the size of the sliding window which will finally be summed up and
normalized by the sliding window size for each position. A profile of sequence sim-
ilarity between two sequences will thus show sections in which these two sequences
might show non-random similarity and sections of random similarity expressed by
negative signs. The AliGROOVE algorithm generates an average over all sites for
each pairwise comparison excluding globally invariant sites within the alignment
and records these values in a similarity matrix for all pairwise comparisons for a
given set of sequences. The entries in this similarity matrix express the average
amount of non-random versus random similarity in pairwise comparisons and can
thus illustrate heterogeneous signal in the data.

The algorithm is based on either simple match/mismatch scores for nucleotide
sequences or on the BLOSUM62 matrix to score aminoacid matches/mismatches.
It is thus a relatively simple scoring regime but turned out efficient in simulations
and empirical data [34,35,105–109,123].

The AliGROOVE pairwise similarity scores can be directly used to tag poten-
tially unreliable relationships within topologies. To define the reliability of single
internal branches, AliGROOVE calculates the average similarity score from all sin-
gle pairwise similarity scores between taxa which are connected by the respective
branch. To determine the reliability of terminal branches, AliGROOVE calculates
the average pairwise similarity score from all single similarity scores between the
terminal branch and remaining taxa. The tagging of branches is effectively an indi-
rect estimation of reliability of a subset of all possible splits guided by a topology.
Calculated reliabilities of single branches are shown colorized in a new tree outfile.
The colouring of each branch depends on the obtained similarity score. The tagging
colour scheme is identic with the colour scheme that is used for the sequence simi-
larity matrix. An example of the AliGROOVE tagging algorithm is given in Figure
4.2.
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Figure 4.2: Example of the AliGROOVE tagging algorithm. Single Branch relia-
bilities of the given six taxon topology are calculated by using the corresponding sequence
similarity matrix. Single reliabilities of the six terminal branches (S1, S2, S4, S5, S7, and
S8) are calculated from all single similarity scores between a terminal taxon and the re-
maining taxa. Single Reliabilities of the three internal branches (S3, S6, S9) are calculated
by averaging the total pairwise similarity scores between taxa which are connected by the
respective branch.
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4.2 Material and Methods

4.2.1 Simulated data

To test the efficiency of AliGROOVE to detect heterogeneous taxa, we designed two
sets of nucleotide data (set A and B) under different 11-taxon topologies (Fig. 4.3–
4.4). The topology of the first set up (set A) contains two long terminal branches
(LtB) (Fig. 4.3). The second setup (set B) contained two long internal branches
(LiB), separated by one short internal branch (SiB) (Fig. 4.4). While lengths of
SiB and remaining branches (RB) are kept constant (LSiB = 0.01, LRB = 0.1),
alignments are generated for each of two different branch lengths of either LiB or
LtB (LLiB ∨ LLtB = 0.9, 1.5). Sequence length of each alignment was set to 10,000
base positions (bp). All alignments were generated with INDELible v.1.01 [124]
using the Jukes-Cantor model (JC) of sequence evolution and a mixed-distribution
model of Γ + I for ASRV. All data were simulated with ASRV, shape parameter
α = 1.0, and a proportion of invariant sites ρinv = 0.3. ASRV was modelled using
a continuous Γ-rate distribution while indel events were not simulated.

Trees of simulated data were inferred with PhyML_3.0_linux64 [125, 126]. We
analyzed the data with a mixed-distribution model (JC+Γ+I) and correct parameter
values (α = 1.0, ρinv = 0.3). The number of relative substitution rate categories
was set to four (c = 4) and tree topologies and branch lengths were optimized.
Maximum Likelihood analyses were performed and evaluated with a Perl pipeline,
and ran on a Linux Cluster with HP ProLiant DL380 G5 blades (Dual quad core
Intel Xeon E5345, 2.33 GHz, 2x 4MB L2-cache, 1333 MHz Bus, 32 GB RAM). For
each branch length-combination, we generated 100 data replicates and recorded the
frequencies of correct and incorrect tree reconstructions using correct alignments
and substitution models.

4.2.2 Empirical data

We used AliGROOVE on two kinds of empirical data sets: i) on a masked nucleotide
alignment of 148 concatenated nuclear 18S and 28S rRNA arthropod sequences
(4102 bp) published by Reumont et al. [81], and ii) on a concatenated unmasked
and masked supermatrix alignment (5082 bp) of five mitochondrial genes (Atp6,
CoxI, CoxII, CoxIII, and Cytb) downloaded from the NCBI genome data base for
53 chelicerate ingroup taxa and 8 myriapod outgroup taxa. Single mitochondrial
genes were aligned with ClustalW [21]. The best ML topology of the mitochondrial
data set was estimated using PhyML_3.0_linux64 [125, 126] and the GTR+Γ+I
model with 1,000 bootstrap replicates. For the mt data, we compared the results
of the AliGROOVE approach on the unmasked and masked data. Additionally, we
compared tree reconstructions with all taxa and with a data subset in which most
divergent taxa identified by AliGROOVE had been removed. We used a resolution
score, the total summ of bootstrap values above 50 divided by the number of internal
nodes, to compare resolution of trees.
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Implementation of AliGROOVE

AliGROOVE is implemented in Perl and runs on Linux, Mac OS, and Windows
operating systems. It can be used via command line or graphical user interface
(GUI) (Fig. 4.1). The GUI of AliGROOVE is based on QT, a cross-platform
application and GUI framework in C++. AliGROOVE is freely available from
http://software.zfmk.de or upon authors request.

4.3 Results

4.3.1 Testing performance on simulated data

Our goal was to show that suspiciously placed taxa or nodes can be associated with
high scores of randomness. We simulated sequence alignments under two different
topological conditions (see Material and Methods) and applied the AliGROOVE
algorithm. Both settings represented 11-taxa trees containing either (A) terminal
or (B) long internal branches.

In set A, we simulated multiple data with increasing terminal branch lengths of
two taxa and recorded the frequencies of correct and incorrect tree reconstructions.
It turns out that as long as terminal branches are correctly placed in the tree using
the ML approach with correct model specifications, these terminal branches (L5, L6)
show positive (non-random) scores with taxon neighbors in the tree (Fig. 4.3). How-
ever, at a terminal branch length of 90x in relation to the internal branch lengths the
average similarity score between these long terminal branches and taxon neighbors
in the tree drops to only slightly positive scores and the frequency of inferring the
correct tree is at 0.53 compared to inferring an incorrect tree with 0.47. It is thus a
matter of chance to infer the correct tree, despite correct sequence alignment and the
application of the correct substitution model. If taxa with long terminal branches
do not have positive scores with other taxa, they are most frequently misplaced.
Using the AliGROOVE approach, we would tag these branches as suspicious.

In set B, we simulated multiple data increasing two internal branch lengths
and recorded possible errors in tree reconstructions. Again, as soon as these two
internal branches join taxa with on average negative scores, tree reconstructions
were predominantly not correct (Fig. 4.4). For example in set B taxon T7 or T8
are connected to taxon T5 or T6 via a suspiciously long branch. In set B taxa T7
and T8 become monophyletic instead of being paraphyletic in relation to taxa T9
and T10. In this special case, the two long internal branches overwrite the signal
between taxon T7 and T8. Using the ALIGROOVE approach, we would tag the
two long internal branches as suspicious and would also place a tag on the common
branch of T7 and T8.
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Figure 4.3: AliGROOVE performance on simulated data of topology A. If the
length of both long terminal branches (LtB) is 90x in relation to the internal branch lengths
(LtB = 0.9) the average similarity score between these long terminal branches and taxon
neighbors in the tree drops to only slightly positive scores. Despite correct substitution
model assumptions the frequency of inferring the correct topology is droped to 0.53. If
both LtB’s are strongly increased (LtB = 1.5), both long branches do not have positive
scores with other taxa and are most frequently misplaced despite correct substitution model
assumptions (0.66).
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Figure 4.4: AliGROOVE performance on simulated data of topology B. If the
length of both long internal branches (LiB) is 90x in relation to interior internal branch
length (LiB = 0.9) the average similarity score of taxa (L5 and L6) between these long
internal branches and taxon neighbors in the tree drops to only slightly positive scores. De-
spite correct substitution model assumptions the frequency of inferring the correct topology
is droped to 0.59. If both LiB’s are strongly increased (LiB = 1.5), both taxa (L5 and L6)
do not have positive scores with other taxa (except to themselves) and are most frequently
misplaced as monophyletic group despite correct substitution model assumptions (0.72).
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4.3.2 Testing performance on empirical data

4.3.2.1 Mitochondrial Data

In the unmasked data set AliGROOVE analyses identified nearly all Acariformes se-
quences as strongly derived to each other and to the remaining chelicerate sequences
(Fig. 4.5), while pairwise comparisons without Acariformes sequences achieved in
most cases positive similarity scores. The bootstrap support for the resolved clade
’Acariformes and Ricinulei’ was below 50%. Only Unionicola and Walchia re-
ceived positive similarity scores if compared with non-Acariformes sequences. While
Walchia showed weak positive similarity scores to three other Acariformes genera
(Unionicola, Ascoschoengastia, and Leptotrombidium), sequences of the Unionicola
were only scored positive in comparisons with Acariformes sequences if compared
to Walchia. Our Maximum Likelihood (ML) topology received maximum bootstrap
support for a sister group relationship of Walchia and Ascoschoengastia, next to
Leptotrombidium. The resolution score (RS) of this tree was RS = 77.33. Removing
the red branches of the unmasked data and reapting tree reconstructions did not
improve the resolution score (RS = 77.1). Several additional branches appear not
tagged in red, indicating that there is still quite some noise in the data. In com-
parison, the masked data contained much less noise, but is also characterized by a
lower resolution score.

4.3.2.2 Nuclear Data

AliGROOVE identified the sequences of Remipedia and Cephalocarida as most di-
vergent within the masked alignment (Fig. 4.6). Both taxa show long branches in the
time-heterogeneous consensus tree of Reumont et al. [81] and are placed with only
moderate support in this tree. The Cephalocarida clustered even within Hexapods
in the time-homogeneous consensus tree of Reumont et al. [81]. While the remipede
sequence scored weakly positive in most sequence comparisons, nearly all pairwise
comparisons with Cephalocarida received negative similarity scores. The highest
extent of random similarity was found between Remipedia and Cephalocarida. The
AliGROOVE algorithm clearly identified the most problematic sequences in the data
set.

4.4 Discussion

Tree reconstruction approaches in particular Maximum Likelihood approaches are
extremely efficient in translating structure in sequence alignment data into trees.
However, even these best available approaches can become inconsistent if signal in
the data is heterogeneous or if assumptions about substitution processes are clearly
misspecified. In these cases, seemingly robust reconstructions might be biased. An-
other matter of concern is the decrease of robustness values of tree reconstructions
using bootstrapping or posterior probabilities if the data is very noisy or not tree-
like. Alignment masking has been put forward to improve the tree-likeness of the
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Figure 4.5: AliGROOVE performance on a unmasked mitochondrial alignment
of five mitochondrial genes. Nearly all Acariformes sequences are identified as strongly
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iformes and Ricinulei’ is also not sufficient supported (boostrap support below 50%).
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Figure 4.6: AliGROOVE performance on a masked nucleotide alignment of 148
concatenated nuclear 18S and 28S rRNA arthropod sequences. While the sequence
of Cephalocarida was identified as strongly derived in all sequence comparisons, the sequence
of the Remipedia emerged as little more similar to remaining sequences. Both taxa show
long branches in the time-heterogeneous and time-homogeneous consensus tree of Reumont
et al. 2009 [81] (branch length relations and support values below 0.7 bayesian posterior
probability are not shown here). While the Remipedia clustered always next to other
Crustaceans, the Cephalocarida clustered even within Hexapods in the time-homogeneous
consensus tree. In both topologies, the placement of Cephalocarida and Remipedia shows
only weak support (below 0.7 bayesian posterior probability).
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alignment data. The basic idea of masking is the filtering of noisy alignment blocks
prior to tree reconstructions. It has been shown that this masking is successful
in improving the signal-to-noise ratio in sequence alignments. Here we show that
the sliding window approach as it is used in ALISCORE [34] can be used to iden-
tify single taxa or subsets of taxa which show predominantly randomized sequence
similarity in comparison to other taxa. Removal of these taxa can potentially also
increases the tree-likeness of the data and thus help to improve the reliability of
tree reconstructions. The basic idea is that single taxa can be misplaced or induce
strong biases in tree reconstructions due to their strong sequence divergence. This
misplacement can even be robustly supported by bootstrapping or posterior prob-
ability values. Our approach offers the chance to identify taxa which are robustly
placed in trees but show predominatly randomized sequence similarity to other taxa.

The sequences of the Cephalocarida specimen of the study of Reumont et al. [81]
shows predominantly randomized sequence similarity in most pairwise comparisons.
We would therefore predict, that these sequences do not help to robustly place the
taxon in the tree of arthropods. Reumont et al. [81] report exactly this as the time-
homogeneous approach placed Cephalocarida within Enthognatha next to Nonocu-
lata (Protura + Diplura), the time-heterogeneous analysis clustered Cephalocarida
as sister group to Branchiopoda (Fig. 4.6). Although congruent with some morpho-
logical data [127], the clade Branchiopoda + Cephalocarida is only weak supported
in the time-heterogeneous consensus tree of Reumont et al. [81] and is in conflict
with other recent molecular studies [128,129]. In the data of Reumont et al. [81] se-
quences of Remipedia also show high sequence divergence. The position of this taxon
as a sistergroup to Branchiura and Cirripedia received low node support in the anal-
yses of Reumont et al. [81] as it would have been predicted from the AliGROOVE
similarity matrix. This phylogenetic position is also in conflict with another recent
molecular studies [130]. Thus, the AliGROOVE approach demonstrates is usability
with this data.

The mitochondrial data of chelicerates clearly shows strong heterogeneity in the
similarity matrix. Specimens of Acariformes display mostly random similarity to
all other sequences in the data and it would have been predicted from this pattern,
that these sequences can not be robustly placed in the tree or are potentially mis-
placed despite robust support (Fig. 4.5). Again, this is exactly what we see in the
tree reconstructions, as Acariformes are sistergroup to Ricinulei and together with
Parasitiformes sistergroup to Pycogonida with low support which is considered im-
plausible by many specialists. However, removal of these sequences did not improve
resolution in this case.

The simulation results and the analyses of empirical data show that the sliding
window approach has some predictive power, therefore we consider this characteristic
a major advantage over all character based masking approaches in phylogenetics. It
also offers the possibility of excluding taxa based on a formal argument in comparison
with excluding taxa based exclusively on the evaluation of branch lengths.
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Abstract: The aim of this study was to test the robustness and efficiency
of Maximum Likelihood with respect to different long branch effects on multiple
taxon trees. We simulated data of different alignment lengths under two different
11-taxon trees and a broad range of different branch length conditions. The data
was analyzed with Maximum Likelihood under the true model parameters as well
as estimated and incorrect assumptions about among-site rate variation. If length
differences between connected branches strongly increase, tree inference with the
correct likelihood model assumptions can fail. Incorporating among-site rate es-
timates of mixed-distribution models (Γ+I) increases the robustness of Maximum
Likelihood in comparison with models using only Γ. The results show that for some
topologies and branch lengths the reconstruction success of Maximum Likelihood
under the correct model is still low for alignments with a length of 100,000 base
positions. Interestingly, too low values of the shape parameters can lead to a reduc-
tion of long branch effects. Altogether, the high confidence that is put in Maximum
Likelihood trees is not always justified even if alignment lengths exceed 10,000 base
positions.

Keywords: Maximum Likelihood, Long Branch Attraction, Model Assump-
tions, Rate Heterogeneity, Parameter Estimation
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5.1 Introduction

Maximum likelihood (ML) tree inference has been shown to be statistically consis-
tent for binary trees with finite branch and infinite sequence lengths when model
and model parameter assumptions are correct [42, 131–134]. Thus, ML tree infer-
ence will converge on the true tree as more and more data are accumulated [60,134].
Additionally, ML is said to be robust against model violations [42, 43, 60, 135–138]
and thus, even oversimplified likelihood models are said to find the correct tree in
most instances if branch lengths are well balanced [139].

Undoubtedly, the ML method is more robust and more efficient than other meth-
ods (e.g. [42, 43, 45, 58, 60, 135, 136, 140–146]). This has led to a widespread appli-
cation and acceptance of ML tree inference. The degree of robustness and efficieny
has however mainly been accessed using 4-taxon tree simulations. Setups in which
ML methods can potentially fail or become inefficient on trees with more than four
taxa have not been studied in great detail (e.g. [54, 56, 61, 147]). Thus, we address
the robustness and efficiency of ML methods to different long branch effects in an
11-taxon setup. We show that ML methods indeed reconstruct correct topologies
in a wide parameter range, but we also discovered instances in which ML meth-
ods reconstruct the wrong tree for relatively long alignments even under correct
model assumptions. Exactly these effects have not been studied previously and are
probably frequent in empirical data.

It is well known that if among-site rate variation (ASRV) is ignored in tree
reconstruction, the ML approach underestimates substitution rates, which becomes
progressively worse with increasing evolutionary distances [148]. Ignoring ASRV
makes ML tree inference susceptible to long branch attraction [43, 47, 55, 57, 58,
60, 133, 138, 140, 142, 145]. Therefore, ASRV is, apart from considering multiple
substitutions, the most important advance brought by model-based reconstruction
methods. Three possibilities to account for rate variation are the “invariant sites
model (I)”, the “Γ distributed rates model” (α shape parameter) and a combination
of both models (Γ+I). The invariant sites parameter assumes an estimated fraction
of sites as invariable while remaining sites are assumed to evolve at an equal rate.
Under the Γ-model, rate variation among sites is modelled using a Γ distribution.

Older studies argue that combining both models (Γ+I) to a mixed-distribution
model should lead to a significant improvement of the heterogeneity estimation in
comparison to invariable sites- or Γ-model estimates alone [58, 59, 136, 149, 150].
However, recently published studies relied on the exclusive application of the re-
stricted Γ-model (e.g. [108, 130, 151–153]). One argument is, that parameters of
the Γ- and invariant sites model cannot be optimized independently. This can lead
to problems during model parameter optimization due to multiple optima in the
likelihood function [154, 155]. The shape parameter of the Γ distribution and the
invariant sites estimation are indeed strongly correlated and subject to large sam-
ple variance [59, 149, 156]. The correlation makes it difficult to distinguish between
truly invariable and slowly evolving sites, especially in the case of alignments with a
small number of sequences. However, if many taxa are included (N>20), the mixed-
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distribution model can be reliably estimated [59, 156]. Parameter correlation can
also be seen as an advantage. Erroneous estimates of one parameter can be compen-
sated by the other. Erroneous estimates of both together can fit the data such that
the likelihood score changes only marginally [59]. Such an error compensation of
rate estimates is not possible under Γ-model estimation alone. We have addressed
the important question whether Γ+I models are superior over pure Γ models and
whether the parameters could be estimated correctly for a taxon set of just 11 taxa.
Furthermore, we investigated how deviations from the simulated Γ parameter effects
the reconstruction success.

No model can be assumed to be entirely correct for real data [145]. Effects
of Long branch attraction (LBA) are therefore not only theoretical concepts, but
also real phenomena [65, 147, 157]. The “classical case of long branch attraction”
(Fig. 5.1a) which is caused by the misleading effect of parallel substitutions on long
branches [42] is well studied and affects mainly the maximum parsimony method.
In a topology of more than four taxa, the classical case can be categorized into
different subclasses. (i) The case in which two short terminal branches are grouped
together because the rest of the tree constitutes two long branches on either side of
the two short branches, shall be referred to LBA class I (Fig. 5.1b). In this case,
the long branch effect might not be immediately obvious since the long branches are
hidden and are made up of larger groups of taxa. (ii) The case in which two long
teminal taxa or large groups of taxa leed to random errors in the topology is referred
to as LBA class II. Finally, the case in which the two long terminal branches are
incorrectly grouped together shall be refered to as LBA class III (Fig. 5.1c). For
infinitely long sequences, ML should still reconstruct the correct tree in all of these
scenarios, but the robustness and efficiency might vary. Even though it seems at first
sight that the three cases should yield comparable reconstruction successes under
the ML method, considerably different reconstruction successes are obtained in this
study.

5.2 Material and Methods

5.2.1 Simulations

We designed two sets of data simulations under different topologies (Fig. 5.2). The
first set was characterized by a stepwise elongation of two terminal non neighboring
branches (BI2) for different internal branch lengths (BI1) (Fig. 5.2a), the second
set was characterized by a stepwise elongation of two internal branches (BI2) for
different lengths of an intermediate internal branch (BI1) (Fig. 5.2b). Trees con-
sisted of 11 taxa in which lengths of all remaining branches (RB) are kept constant
(LRB = 0.1). For each length of BI1 (0.01, 0.05, 0.1, 0.3, 0.5), we increased the
length of BI2 from 0.1 to 1.5 in steps of 0.2. Thus, branch length ratios BI2/BI1

ranged from three to 150. All alignments were generated with INDELible v.1.01 [124]
using the Jukes-Cantor model (JC) of sequence evolution and a mixed-distribution
model of Γ+I for ASRV. All data were simulated with ASRV, shape parameter
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Figure 5.1: Subclasses of the “classical long branch attraction”. (a) The “classical
long branch attraction” case and three subclasses in the presence of more than 4 taxa: (b)
class I effect: two short terminal branches (StB), separated by a short internal branch (SiB)
are grouped together, the rest of the tree is found at the ends of two long internal branches
(LiB) on either side of the two short branches. (c) class III effect: Two long terminal
branches (LtB) are attracted in direct analogy to the “classical” case (a).



60
Chapter 5. Long branch effects distort Maximum Likelihood

phylogenies in simulations despite selection of the correct model

α = 1.0, and a proportion of invariant sites ρinv = 0.3. ASRV was modelled using
a continuous Γ-rate distribution while indel events were not simulated. For each
branch length-combination of BI1 and BI2, we simulated the evolution of 100 data
replicates for each sequence length (2,000, 3,000, 4,000, 10,000 and 100,000 bp).
The JC model has been chosen for the simulations (i) since it is better understood
than other models of sequence evolution and (ii) since LBA effects are expected to
be worse under more complicated models.
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Figure 5.2: Two sets of simulations. Given model topology for a) Topology A: stepwise
elongation of two terminal branches (BI2) under different ancestral branch lengths (BI1)
and b) Topology B: stepwise elongation of two internal branches (BI2) under different
lengths of an intermediate branch (BI1).
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Table 5.1: The used model parameter settings of ASRV for Maximum Likeli-
hood analyses. Single settings included either Γ or Γ+I parameters (fixed or estimated).
Simulated ASRV as well as model parameter setting for additional simulations/analyses of
alignment length of 100,000 base positions are highlighted bold.

Γ I

JC + 0.1
JC + 0.1 + 0.3
JC + 1.0
JC + 1.0 + 0.3
JC + 100
JC + 100 + 0.3
JC + estimate
JC + estimate + 0.3
JC + estimate + estimate

5.2.2 Maximum Likelihood Analyses

Trees were inferred with the Jukes-Cantor (JC) model under different parameter
settings using PhyML_3.0_linux64 [125, 126] (Tab. 5.1). We analyzed the data
either (i) with a mixed-distribution model (JC+Γ+I) or (ii) with Γ distributed rates,
but without estimating a fraction of invariant sites (JC+Γ). The Γ shape parameter
α was either estimated from the data or set to α = 0.1, α = 100, or α = 1.0 (correct
simulated value) in which α = 100 is assumed as an approximation to non-ASRV.
The fraction of invariant sites was set to ρinv = 0.3 or estimated (Tab. 5.1). For
the alignment length of 100,000 bp, reconstruction was only performed under the
correct model parameters. The number of relative substitution rate categories was
set to four (c = 4) and tree topologies and branch lengths were optimized (heuristic
search). Maximum likelihood analyses were performed and evaluated with a Perl
pipeline for automated long branch tests, and ran for three months on a Linux
Cluster with HP ProLiant DL380 G5 blades (Dual quad core Intel Xeon E5345,
2.33 GHz, 2x 4MB L2-cache, 1333 MHz Bus, 32 GB RAM).

5.2.3 Scoring

Wrong topologies were classified into LBA class I, II and III effects (Fig. 5.2). Wrong
topologies for which only one branch had been misplaced were collectively classified
as “random topological errors” (class II).

5.3 Results

Selected results of ML reconstuctions for α = 0.1 under the mixed-distribution
model (Jukes-Cantor+Γ+I) and the Γ distributed model (JC+Γ) are shown in Fig-
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ure 5.3a and Figure 5.3b. Each individual plot corresponds to a fixed internal branch
length of BI1 (Fig. 5.2), specific model assumptions and an increase of two neigh-
bouring branches (BI2) for alignment lengths of 2,000, 3,000, 4,000, and 10,000
base positions (bp). Complete results are presented as electronic supplementary file
ES9. Branch length combinations for which class I-III effects predominate among
observed model assumptions are listed in Table 5.2 and plotted in Figure 5.4. Fig-
ure 5.5 illustrates the reconstruction success for topologies A and B when model
assumptions are correct and the alignment length is 100,000 bp.

5.3.1 Topology A

If the true proportions of invariant sites (ρinv = 0.3) and ASRV (α = 1.0) are
assumed for datasets of topology A, ML is able to infer predominantly correct trees
(Fig. 5.2a) under most of the ancestral branch lengths (BI1 > 0.01) even if terminal
branch lengths are extremely long. However, ML performs worse if the proportion
of invariant sites and/or ASRV are not assumed (Fig. 5.4 and Tab. 5.2). ML also
performs worse if a proportion of invariant sites has not been included at all. In
both instances, “classical long branch effects” of long terminal branches (class III)
and other random topological errors (class II) are present independent of alignment
lengths.

While topological random errors (class II) predominate tree inference even under
correct model assumptions (α = 1.0; ρinv = 0.3) and moderate sequence lengths of
10,000 bp when BI1 is very small (BI1 = 0.1), ML correctly resolves nearly all trees
under these conditions when sequence lengths are extended to 100,000 bp (Fig. 5.5a).
In general, the performance of ML inference is mostly afflicted by distinct branch
length differences, less so by wrong model assumptions.

5.3.2 Topology B

Even if the true proportion of invariant sites (ρinv = 0.3) and ASRV (α = 1.0) are
assumed, ML is not able to infer correct trees of topology B (Fig. 5.3b) if the internal
branch lengths BI1 are small (BI1 = 0.01) and the internal branch lenghths BI2

are large (BI2 ≥ 1.3) (Fig. 5.2b, 5.4, and Tab. 5.2). Wrong trees do not disappear
when sequence alignment lengths rise to 100,000 bp (Fig. 5.5b). The occurrence
of of LBA class I is more frequent when model assumptions are misspecified, in
particular when the proportion of invariant sites is not estimated.

5.3.3 Maximum Likelihood Values

Likelihood values of single trees become higher if among site rate variation is consid-
ered. Within single parameter setups all trees affected by long branch artifacts show
nearly identical likelihood scores as correct resolved topologies of corresponding se-
quence lengths. Likelihood values of all reconstructed trees corresponding to the
results of Figure 5.4 are shown in the electronic supplementary file ES10. Distinct
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Figure 5.3: Typical examples for correct and wrong topologies (“classsic long
branch effects” (class III), “hidden long branch effects” (class I), and “random
errors” (classII)). Inferred from 100 simulation repeats for each branch length combina-
tion and alignment length. Each individual plot corresponds to a fixed branch length of
BI1 = 0.01 (Fig. 5.2) and fixed reconstruction scheme with the models JC+Γ (α = 0.1)
or JC+Γ+I (α = 0.1; ρinv = 0.3). Branch length differences increase from left to right by
increasing BI2 in discrete elongation steps (0.1-1.5). Four successive data points (belonging
to one cell in the plot) correspond to four alignment lengths (10,000, 2,000, 3,000, 4,000).
Alignment corresponding branch lengths of BI2 are shown above each subfigure. The y-
axis depicts the reconstruction success of the 100 simulation repeats (N) for a) Topology A
(Fig. 5.2a) and b) Topology B (Fig. 5.2b).
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Figure 5.4: Plots of long branch attraction (LBA). Ranges of branch length differ-
ences between BI1 and BI2 (see Fig. 5.2) in which LBA dominated tree reconstruction
under investigated model assumptions are summarized over all alignment lengths. Domi-
nated ranges are displayed in bar charts, based on the selected α value (100, 1.0, 0.4, 0.1 ↪→
y-axis) and the inclusion or exclusion of an invariant sites model (JC+Γ or JC+Γ+I). Note
that if Γ was estimated alone, alpha was accurate estimated to 0.4. Domination ranges
found under JC+Γ are shown for each α in the upper bars, domination ranges investigated
under JC+Γ+I in the lower bars. Single bars correspond to fixed ranges of lengths for BI1

and BI2 in which lengths of BI2 increase from 0.1-1.5 within each box (x-axis; lower scale).
Length of BI1 increases with each box from 0.01-0.5 (x-axis; upper scale). a) Domination
of “classical long branch effects” (class III) and “random errors” (class II) found in topology
A (Fig. 5.2a), b) domination of “hidden long branch effects” (class I) found in topology B
(Fig. 5.2b).
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Table 5.2: Single domination ranges refer to specific α values. Length categories
of BI2 to fix lengths of BI1 (0.01, 0.05, 0.1, 0.3, 0.5) in which LBA class I-III dominate
tree reconstructions of corresponding topologies A and B (Fig. 5.2) when the invariant sites
model is ignored (JC+Γ) or included (JC+Γ+I). If Γ was estimated alone, α was estimated
to 0.4. Domination of “classical long branch effects” (class III) and “random errors” (class
II) appears in reconstructions of Topology A (Fig. 5.2a) “hidden long branch effects” (class
I) dominate tree reconstructions under certain branch lengths of Topology B (Fig. 5.2b).

JC+Γ class I Γ BI1 BI2

100 0.01 0.3 → 1.5
0.05 0.5 → 1.5
0.1 0.7 → 1.5
0.3 1.3 → 1.5
0.5 1.5 → 1.5

1.0 0.01 0.5 → 1.5
0.05 0.9 → 1.5
0.1 1.1 → 1.5

JC+Γ (estimated) 0.4 0.01 0.7 → 1.5
0.05 1.3 → 1.5
0.1 1.5 → 1.5

0.1 0.01 0.7 → 1.5
0.05 1.3 → 1.5

class II Γ BI1 BI2

100 0.01 0.3 → 0.5
1.0 0.01 0.5 → 1.1

JC+Γ (estimated) 0.4 0.01 0.7 → 1.5
0.1 0.01 0.5 → 1.5

class III Γ BI1 BI2

100 0.01 0.7 → 1.5
0.05 0.9 → 1.5
0.1 0.9 → 1.5
0.3 1.3 → 1.5

1.0 0.01 1.3 → 1.5
0.05 1.3 → 1.5
0.1 1.3 → 1.5

JC+Γ+I class I Γ BI1 BI2

100 0.01 0.3 → 1.1
1.0 0.01 1.3 → 1.5

class II Γ BI1 BI2

100 0.01 0.5 → 1.5
1.0 0.01 0.7 → 1.5

JC+Γ (estimated) 0.4 0.01 0.7 → 1.5
0.1 0.01 0.5 → 1.5

0.05 1.5 → 1.5



66
Chapter 5. Long branch effects distort Maximum Likelihood

phylogenies in simulations despite selection of the correct model

(a)

(b)

JC+Γ+I
α = 1.0
ρinv = 0.3
BI1 = 0.01

Correct Class I Class II

100

50

0

N

0

10

20

30

40

50

60

70

80

90

100

BI2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

JC+Γ+I
α = 1.0
ρinv = 0.3
BI1 = 0.01

100

50

0

N

BI2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

0

10

20

30

40

50

60

70

80

90

100

Correct Class III Class II

Figure 5.5: Reconstruction success of Maximum Likelihood. a) Topology A
(Fig. 5.2a) and b) Topology B (Fig. 5.2b) under alignment lengths of 100,000 base po-
sitions if model assumptions are identic to the simulated parameters (α = 1.0; ρinv = 0.3).
Branch lengths differences increase from left to right by increasing BI2 in discrete elonga-
tion steps (0.1-1.5) while BI1 is kept constant (0.01). The y-axis depicts the reconstruction
success of the 100 simulation repeats (N).
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differences in likelihood scores between wrong and correct topologies could not be
observed in many cases if the ML parameters were equal.

5.4 Discussion

For alignment lengths in the range of 2,000-10,000, the reconstruction success was
investigated for different fixed as well as estimated model parameters (ρinv and α).
As expected, our results show that incorporating rate heterogeneity into analyses
leads to an increased reconstruction success of ML, which has also been observed in
previous studies (e.g. [59,136,139,147,150]).

If ASRV is considered either by the Γ-distribution (JC+Γ) or the invariant sites
model (α = 100; ρinv = 0.3), ML performs better with the invariant sites proportion
model than with the Γ distribution model. The inclusion of a mixed-distribution
model (JC+Γ+I) again fits our data much better than a Γ distribution or invariant
sites proportion model alone. By using a mixed-distribution model, ML recovered
the correct topologies under a wide range of branch lengths. This supports the
results of Sullivan et al. 1999 [59] as well as Anderson and Swofford [136] who
showed that ML recovers topologies best if a Γ+I model is used.

For a combination of very short BI1 and long BI2, ML performs poorly, even if
a mixed-distribution model is used in the reconstruction (Fig. 5.4). Interestingly, we
found that ML becomes more robust and efficient when analyses are performed with
a lower than the correct value of α even in (Γ+I) models than simulated, especially
in cases of “hidden” (class I) and “classical long branch effects” (class III). It could
be envisaged, that a lower value of α leads to an overcompensation for multiple
substitutions which in turn leads to the effect that convergent substitutions on long
branches are not erroneously identified as homologies.

ML is not able to recover the true tree for the topology B with large length
differences between short (BI1) and long branches (BI2) (Figure 5b), even if the
correct model is specified. This class of topologies has not been investigated before
and constitutes a new example for which ML efficiency is low even for long align-
ments. For the case of 4 taxa, the “inverse Felsenstein zone” is a well known example
of reduced ML efficiency where alignment lengths of 100,000 bp are required for an
80% chance to recover the correct topology [60]. It can be expected, that our topol-
ogy and setup yields an similarly “inefficient valley of death” to the one found for
the “inverse Felsenstein zone” [60]. Since we can soon regularly expect data sets of
the size of complete genomes, it would be interesting to investigate the extents of
this valley, i.e. the necessary alignment length for which ML will reliably find the
correct tree. For the topology A which corresponds to the classical Felsenstein zone
(Fig. 5.2a), ML recovers the true tree efficiently. Our results for this topology are
consistent with those found by Swofford et al. [60].

It is also interesting to note, that estimates of model parameters are very accu-
rate for the Γ+I models used in the reconstruction. This high accuracy is found for
all branch lengths and topologies even in those cases for which the reconstruction
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success is low (see electronic supplementary file ES11). This excludes model mis-
specification as the source of phylogenetic inaccuracy in our study and is consistent
with the observation that wrong topologies also occur if the true model parame-
ters have been specified. Sullivan et al. [59] argued, that the number of taxa is
important for the correct estimate of the shape parameter and the number of in-
variable sites, mainly due to stochastic errors in small samples. The observation
that 11 taxa already allow us to find good estimates of the parameters in question
could be explained by longer alignments in this study. Further, Sullivan et al. [158]
demonstrated on 4-taxon trees that estimates of the Γ distribution can be strongly
influenced by topologies which involve long internal branches. This correlation was
not found in our analyses.

This study also confirms the expected correlation between the proportion of
invariant sites and the shape parameter α if parameters are estimated. If no in-
variant sites are assumed in the reconstruction, this model deficiency is partially
compensated by a lower estimated value of the shape parameter, which results in
an increased number of sites with low and very low substitution rates. Since this
compensation is only partial and leads to an overestimation of substitution rates
for a certain number of sites, the reconstruction success is lower compared with the
application of a Γ+I model.

Our results show that the risk of obtaining a wrong topology increases even
if ML is used in the reconstruction process and that this risk highly depends on
branch length relations in the true topology that shall be reconstructed. Putting
this together, we assume that Phillipe et al.’s [159] statement “probably most of the
deep phylogenetic events are misplaced through artifacts” is not entirely wrong.

5.5 Additional Files

• Electronic supplementary file ES9 — Detailed results of all ML tree
reconstructions

– Complete overview of the reconstruction success of all ML analyses

– Format: PDF

– Size: 219.1 KB

– View: PDF Viewer

• Electronic supplementary file ES10 — Detailed results of investi-
gated likelihood scores

– Investigated Likelihood values of all ML analyses

– Format: PDF

– Size: 313.9 KB

– View: PDF Viewer
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• Electronic supplementary file ES11 — Detailed results of model pa-
rameter estimates

– Investigated parameter estimates of all ML analyses

– Format: TDF

– Size: 114.1 KB

– View: PDF Viewer

• Electronic supplementary file ES12 — Presentation of the results of
chapter 5

– The presentation about the study of chapter 5 was given 2011 within the
Systematics conference in Berlin, 2011

– Format: PDF

– Size: 2.3 MB

– View: PDF Viewer
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6.1 FASconCAT: Convenient handling of data matrices

6.1.1 Introduction

Today, data concatenation into supermatrices is a frequently used task in phyloge-
netic approaches. Data concatenation has been employed in rRNA analyses [81,160],
in analyses using ’mixed’ nucleotide alignments combining rRNA sequences like 18S
and 28S as well as protein coding genes [37,38,161], in analyses based on nucleotide
and amino acid alignments or in phylogenomic studies [106,162,163]. The handling
of different required file formats is often extensive and time consuming and different
scripts or programs are often necessary. Most common formats are FASTA [164],
NEXUS [165], CLUSTAL [166] and PHYLIP [167]. To consider structure informa-
tion of unpaired (loop) and paired (stem) regions using e.g. ribosomal RNA genes,
most programs like RNAsalsa [32], MrBayes [120], PHASE [168] and RAxML [71]
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accept structure information in ’dot-bracket’ format. Recent concatenation tools
like CONCATENATOR [169] can only concatenate and convert sequence data from
FASTA to NEXUS and vice versa and are unable to handle additional structure
information. Moreover, concatenation is mostly restricted to a limited number of
gene aligments. With FASconCAT, we provide a new software tool for easy and fast
data handling.

FASconCAT is implemented in Perl and runs on Windows PCs, Mac OS and
Linux operating systems. It can be used via command line or by terminal menu
options. The main menu of FASconCAT is subdivided into two parts, separated by
a dashed line (Fig. 6.1). The upper component constitutes of a list of all possible
options and their associated commands for adjustment. The lower part shows the
actual parameter settings of FASconCAT. All default parameters can be optionally
changed, and the new setting configuration will be displayed in the lower part of
the menu.

The software is designed to concatenate different data formats of nucleotide and
amino acid alignments (sequence or artificially, e.g. RY coded) as well as “dot-
bracket” structure information of identical taxa into one supermatrix file. It can
also be used as a simple data converter if just one file is provided. FASconCAT
can handle FASTA, CLUSTAL and PHYLIP input files. No unique input format
is required. Sequences must have equal length within each file. FASTA, NEXUS
and PHYLIP can be chosen either as multiple or single output format. The output
files can be directly implemented into software like PAUP* [170], MrBayes [120] or
RAxML [71]. FASconCAT optionally creates NEXUS files with command blocks
applicable in MrBayes [120]. Among other things this option is very convenient
for partitioned or mixed DNA/RNA analyses. Furthermore, it provides informa-
tion about supermatrix partitions (single ranges) which can be used in partitioned
analyses.

6.1.2 Concatenation of data

Sequence data, with or without structure information, are concatenated either by
taking all appropriate files in the folder or by user specification. With FASconCAT,
it is also possible to concatenate amino acid and nucleotide alignments into one su-
permatrix. Missing taxon sequences in single files are considered and replaced either
by ’N’ (nucleotide sequences), ’X’ (amino acid sequences) or by ’.’ (dots, structure
strings in ’dot-bracket’ format), dependent on their associated data level. FAScon-
CAT can read sequences in interleaved and non-interleaved format. The number of
files for concatenation is not limited. The computation time rather depends on the
computer hardware and the random access memory (RAM). For example, the con-
catenation of ten files comprising 108 taxa with a length of 1,000 bp each requires
between 0.5 (default option) and 3.4 seconds (’NEXUS’ option) on a normal desktop
computer (see Appendix D (manual) for more information). Creating NEXUS files
is the most time consuming option. Every user can individually choose favoured
options to optimize time performance. If no options are specified, FASconCAT runs
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Figure 6.1: Main menu of FASconCAT. The menu is subdivided into a command
block (upper half) and a setting block (lower half). Users can specify their setting by using
single commands via menu options or by typing multiple commands directly via the start
command line of FASconCAT.
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under default which is the most time saving setting.
FASconCAT delivers useful accompanying information about the supermatrix

and all single input files. As default, information is given for the partitions of the
concatenated data set (fragment range) and the number of concatenated sequences
per taxon. Additional information is provided by specifying several options, for
example the number of sequence characters, sequence-type, number of gaps, a list of
unpaired (loop) and paired (stem) positions (see Appendix D (manual) for detailed
instructions). A schematic overview is given in Figure 6.2.

6.1.2.1 Default options

With standard options, FASconCAT takes all available input files (CLUSTAL,
FASTA, PHYLIP) within the script placed folder and concatenates them into a
supermatrix in FASTA format. Provided structure sequences in ’dot-bracket’ for-
mat (one per file) are concatenated as well. Default information are accessorily
provided (see above).

6.1.2.2 Additional options: -f, -i, -n and -p

With option -f, individual input files can be defined by the user. Additional infor-
mation on the supermatrix and the input files, e.g. base composition of nucleotide
sequences or the amount of gaps, can be activated by option -i. With -n, NEXUS
files are generated that can be directly used in PAUP* [170] or MrBayes [120].
With typing -n -n, a complete set up for MrBayes is created. It can be easily mod-
ified as favoured by the user. With option -p, FASconCAT additionally provides
an output in PHYLIP format, either with non-interleaved sequences and restricted
taxon names up to ten signs (-p) or relaxed, with non-interleaved sequences and no
restriction for taxon names (-p -p).

An example for FASconCAT usage could be: The user has three sequence align-
ment files in the same folder where FASconCAT is located, one in FASTA, the second
in PHYLIP and the third in CLUSTAL format. The user wants to concatenate all
alignments into a supermatrix in FASTA format and obtain all possible information
via command line in a terminal on a LINUX system. FASconCAT has to be started
as follows:

perl FASconCAT.pl -i -s <enter>

6.1.3 Data conversion

Sequence formats can be simply converted by running FASconCAT just with one
input file.

6.1.4 Discussion

FASconCAT is a new, convenient tool for concatenation of sequence files. FAScon-
CAT is easy to use and not limited in number of input files or input sequences.
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>Tax1
AGGCCCTCCCGT
>Tax2
AGGCTTG?N-NT
>Tax3
AGGTTTG?CGTT

3 2490
Tax1 RWLFS
Tax2 RWLVS
Tax3 RWLVS
     RWFFS
     RWFVS
     RWFFS

CLUSTAL X
Tax1 ATRGGYCGY
Tax2 ?TRGGYCGR
        **
Tax1 TAY---TCY
Tax2 TNY-NNGCY

FASTA PHYLIP CLUSTAL

FASconCAT

Input
file 1 file 2 file 3

>Tax1
AGGCCCTCCCGTAA
>Tax2
AGGCTTG?N-NTAA
>structure
(((....))..)..

FASTA

file 1 file 2

InputA B

>Tax1
AATATAGCCTTGTA
>Tax2
AATATT-CNNTGTA
>structure
..((...(...)))

FASTA

FASconCAT

Output

FASTA; optionally PHYLIP / NEXUS 
[incl. PAUP/MrBayes commands]

SUPERMATRIX

>Tax1
AGGCCCTCCCGTRWLFSRWFFSATRGGYCGYTAY---TCY
>Tax2
AGGCTTG?N-NTRWLVSRWFVS?TRGGYCGRTNY-NNGCY
>Tax3
AGGTTTG?CGTTRWLVSRWFFSNNNNNNNNNNNNNNNNNN

Output

SUPERMATRIX

>Tax1
AGGCCCTCCCGTAAAATATAGCCTTGTA
>Tax2
AGGCTTG?N-NTAAAATATT-CNNTGTA
>structure
(((....))..)....((...(...)))

Info file 1

Info file 1 + optionally [ - i ]

Info file 2

Single files INPUT/OUTPUT and supermatrix

default:
number of taxa
range of single partitions / genes

optionally [-i]:
sequence types
no. of gaps
no. of ambiguities
nucleotide states
total number of characters
amount of missing data
etc. 

for structure strings:
no. of unpaired characters 
no. of paired characters 

Structure-string
(((....))..)....((...(...)))

Loop positions
4 5 6 7 10 11 13 14 15 16 
19 20 21 23 24 25   

Stem positions
17 28 18 27 22 26 1 12 2 
9 3 8

Stem pairings
17:28,18:27,22:26,1:12,
2:9,3:8 

FASTA; optionally PHYLIP / NEXUS 
[incl. PAUP/MrBayes commands]

Structure information of the
supermatrix

Figure 6.2: Schematic overview of FASconCAT. A: Three input files with different
format (FASTA; PHYLIP, NEXUS), a nucleotide sequence alignment, an amino acid align-
ment and a nucleotide alignment with the third position RY recoded, are concatenated into
a supermatrix (FASTA format, default). Additionally, an information file (Info file 1) is
provided containing a list of concatenated sequences (taxa) and range information of single
genes in the supermatrix (default). Optionally, additional information can be obtained by
specific commands. B: Two input files, nucleotide alignments with a structure string are
concatenated into a supermatrix. Specifiying the -i option, additional information about
the percentage of unpaired (loop) and paired (stem) positions, is provided (Info file 1).
A second information file is obtained, containing the concatenated structure string, the
position of loop and stem positions and relatated stem pairings (Info file 2).
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Running on UNIX and Windows operating systems, the software reads several in-
put formats, considers structure information, provides several output formats and
optionally complete set up blocks at once, e.g. for analyses in MrBayes. It facili-
tates data handling, it is time saving in generating data matrices and in convert-
ing file formats and delivers many useful additional information about the input
sequences. Detailed information and instructions are provided in the manual of
FASconCAT (Appendix D). The manual (Appendix D) also includes some tests
about computation time of FASconCAT on a normal desktop computer. Help is
provided for every option. FASconCAT is simple to use and freely available from
http://fasconcat.zfmk.de or upon request from the corresponding author. The FAS-
conCAT script and a corresponding presentation from a FASconCAT lecture of a
regular course within the molecular biology department of the ZFMK are also added
as electronic supplementary files ES13 and ES14.

6.2 ALICUT

ALICUT is an additional tool to the ALISCORE software which removes all ALIS-
CORE identified random sequence similarity positions (rss) in multiple sequence
alignments of given FASTA file(s) that are listed in the FASTA file corresponding
"List" outputfile(s) of ALISCORE. Additionally, ALICUT generates a listfile in-
cluding percentages of remaining positions of each input file. If structure sequences
are implemented, ALICUT can automatically remain randomised stem positions or
replace their corresponding character position by dots if characters are identified as
non-randomised (see Appendix E (manual) for more information). Actual version:
ALICUT v1.0 [111]. Processes of ALICUT were used inter alia in the studies of
Reumont et al. [81], Letsch et al. [33, 160], Meusemann et al. [107], and Kück et
al. [35, 123]. The script and a presentation of ALICUT are deposited as electronic
supplement files ES16 and ES17.

6.3 BHoEMe

BHoEMe (“bootstrap homoplasy excess method”) is an automatized approach of
a method which was first described by Seehausen [171]. The script is written in
Perl and enables an identification of phylogenomic inconsistency of a hybrid taxon
which introduces homoplasies in parts of a phylogenetic tree constructed from AFLP
genotypes. By reconstructing a tree with and without the putative hybrid taxon,
and recording the difference that its inclusion makes to the bootstrap support for
each node, the homoplasy effect of a putative hybrid taxon can be investigated for
each node and compared to a distribution of non-hybrid effects generated by adding
and removing in turn each other taxa in the tree. Actual version: BHoEMe v0.1
beta.

http://fasconcat.zfmk.de


6.4. SusEX 77

6.4 SusEX

SusEX (“subsequence extractor”) finds subsequences in FASTA alignments specified
by user predefined start and end strings. Identified substrings are printed out in
single FASTA files. Actual version: SusEX v0.1 beta [172].

6.5 ESTa

ESTa (“EST adjustment”) downloads the actual EST-summary list for all taxa with
more than 1.000 EST database entries from the NCBI data base and compares them
with entries from an earlier downloaded listfile. New EST entries are given out as
separate textfile and the new listfile provides the basis for the next EST adjustment
from NCBI. Actual version: ESTa v0.1 beta [173]. Processes of ESTa was used in
the study of Meusemann et al. [107]. The ESTa script is deposited as electronic
supplement file ES18. A short documentation of ESTa is given in Appendix F.

6.6 TaxEd

TaxEd (“taxon editor”) converts all taxa information of downloaded NCBI sequences
into a more simplified and standardised information format. Actual version: TaxEd
v0.1 beta [174]. Processes of ESTa was used in the study of Meusemann et al. [107].

6.7 LoBraTe

LoBraTe (“long branch test”, [175]) handles simulations of different long branch ef-
fects (LBA) under different Maximum Likelihood model and parameter settings to
identify reasons of inconsistencies of the Maximum Likelihood approach relative to
LBA. Beside the stepwise increase of terminal and internal branches of given asym-
metric and symmetric topologies and the simulation of sequence alignments based
on each topologie with INDELible, the pipeline starts Maximum Likelihood analysis
under PhyML, identifies long branch topologies of classes I, II and III, numbers of
symmetric splits for the right and wrong relationships of each calculated topology,
executes special likelihood ratio and chi square tests and performs a parametric
bootstrap analyses. All results are given out as vector grafik plots. LoBraTe was
used for the simulation analyses of chapter 5 and 4. Actually, a mathematical al-
gorithm is tested with LoBraTe for its efficiency to detect long branch attraction
between trongly derived taxa. A floatchart of the LoBraTe process pipeline and its
output plots is shown in Appendix B.

6.8 RAxTAX

RAxTAX [176] is designed to execute a full phylogenetic analyses starting from
raw sequence data and ending by a full Maximum Likelihood analysis. Included
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steps are execution of a multiple sequence alignment (selectively MAFFT-L-ins-i,
MAFFT-G-ins-i, MAFFT-E-ins-i, T-COFFEE, DIALIGN-TX or MUSCLE), align-
ment refinement, alignment masking (ALISCORE), removing of ALISCORE iden-
tified random sequence similarities (ALICUT), gene concatenation (FASconCAT)
and Maximum Likelihood tree reconstruction (RAxML). RAxTAX is also able to
read in a user specified textfile in which single listed sequences are excluded after
each reconstruction step to identify sequences which are potential “problematic” in
reference to tree reconstruction, e.g. long branch effects. Processes of RAxTAX was
used inter alia by the study of Kück et al. [123]. Flowcharts about single process
steps, starting commands, and an overview of input and output file formats are
given in Appendix C.

6.9 SecSITe

SecSITe (“secondary structure impact test”, [177]) is a pipeline to identify the impact
of rRNA secondary structure consideration in alignment and tree reconstruction.
SecSITe can be used for simulated and real data sets. Processes of SecSITe was
used by Letsch et al. [33].

6.10 SPIPES

SPIPES (“small pipe”, [178]) is a pipeline to identify the effect of alignment mask-
ing approaches in regard to alignment structure improvement. SPIPES executes
from raw data four different alignment approaches (MAFFT-L-ins-i, MUSCLE, T-
COFFEE, ClustalW), afterwards it masks each alignment either with GBLOCKS
or ALISCORE, cuts out randomised sequence sections, concatenates each gene rel-
ative to alignment method and masking approach and finally executes a Maximum
Likelihood method (RAxML) of each supermatrix. Summarised info are sampled in
extra textfiles. SPIPES was used for the processes publicated by Kück et al. [35].

6.11 Additional Files

• Electronic supplementary file ES13 — FASconCAT v1.0

– Sequence Concatenation Software

– Format: PL

– Size: 46.9 KB

– View: Texteditor

• Electronic supplementary file ES14 — Presentation of the Software
FASconCAT v1.0
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– The presentation was used to introduce FASconCAT within a regular
course of the molecular biology department of the ZFMK (2010), specified
on phylogenetic methods, algorithms and analyses

– Format: PDF

– Size: 625.6 KB

– View: PDF Viewer

• Electronic supplementary file ES15 — Publication (Kück & Meuse-
mann (2010) [112])

– Publication of the FASconCAT sequence concatenation software descr-
ibed in chapter 3 and appendix D

– Format: PDF

– Size: 619.4 KB

– View: PDF Viewer

• Electronic supplementary file ES16 — ALICUT v1.0.pl [111]

– An ALISCORE complementation script to remove ALISCORE identified
randomized sequence sections.

– Format: PL

– Size: 46.9 KB

– View: Texteditor

• Electronic supplementary file ES17 — Presentation of ALICUT v1.0

– The presentation was used to introduce ALICUT within a regular course
of the molecular biology department of the ZFMK (2010), specified on
phylogenetic methods, algorithms and analyses

– Format: PDF

– Size: 180.4 KB

– View: PDF Viewer

• Electronic supplementary file ES18 — ESTa v0.1.beta

– A script to download database entries from the NCBI data base

– Format: PL

– Size: 4 KB

– View: Texteditor
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7.1 The Effect of Alignment Masking on Phylogenetic
Analyses

It has been shown in chapter 2, ”Masking of randomness in sequence alignments
can be improved and leads to better resolved trees”, that alignment masking is a
powerful approach to improve signal-to-noise ratio in multiple sequence alignments
before tree reconstruction. Parametric and non-parametric methods have success-
fully identified incorrectly aligned sequence sections. The identification and removal
of these sections make alignment accuracy less dependent on chosen alignment al-
gorithms and lead to improved node resolution and boostrap support values in tree
reconstructions. The improvement of node resolution and bootstrap support values
was especially noticeable in reconstructions of deep node relationships. Therefore,
the selection of more reliable alignment sections through alignment masking reduces
the sensitivity of substitution models, which was additionally demonstrated in the
analysis in chapter 3, ”Improved phylogenetic analyses corroborate a plausible po-
sition of Martialis heureka in the ant tree of life”. Given the robust performance of
alignment masking on alignment accuracy, it should routinely be used to improve
tree reconstructions.

The parametric masking approach of ALISCORE is, in opposite to the non-
parametric GBLOCKS approach, independent of a priori rating of sequence varia-
tion and seems to be more capable to handle automatically different substitution
patterns and heterogeneous base composition. Furthermore, the ALISCORE algo-
rithm does not overestimate the amount of randomized aligned sequence sections [34]
which seems especially common through the exclusion of all gap containing align-
ment sites under the conservative GBLOCKS default setting. The ALISCORE algo-
rithm can be easily extended to more complex likelihood based models of sequence
evolution which opens the possibility of further improvements.
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Despite all advantages of masking methods, chapter 4,”AliGROOVE: a new tool
to visualize the extent of sequence similarity and alignment ambiguity in multi-
ple alignments”, describes also the inability of recent masking algorithms to detect
strong heterogeneous sequence divergence in sequence alignments. This is an impor-
tant drawback of recent masking algorithms, because negative effects of undetected
heterogeneous sequence divergence like effects of long branch attraction are still the
most problematic kinds of biases in recent phylogenies (e.g. [81, 150,151,179–183]).
As shown in chapter 5, ”Long branch effects distort Maximum Likelihood phyloge-
nies in simulations despite selection of the correct model”, even Maximum Likelihood
methods can fail to resolve the correct topology if signal in the data is heterogeneous.
As shown in chapter 4, the sliding window approach as it is used in ALISCORE
can be used to identify single taxa or subsets of taxa which show predominantly
random sequence similarity in comparison to other taxa. Removal of these taxa can
potentially increase the tree-likeness of the data as well and thus help to improve
the reliability of tree reconstructions. The simulation results and the analyses of
empirical data of chapter 4 show that the sliding window approach has some predic-
tive power. This characteristic is considered as a major advantage over all character
based masking approaches in molecular phylogenetics. It also offers the possibility
of excluding taxa based on a formal argument in comparison with excluding taxa
based exclusively on the subjective evaluation of branch lengths. However, the re-
sults of chapter 4 and 2 indicate also, that the scoring scheme of the ALISCORE
algorithm, which is based either on simple match/mismatch scores for nucleotide
sequences or on the BLOSUM62 matrix to score aminoacid matches/mismatches, is
a relatively simple scoring regime. It turned out to be efficient in simulations and
empirical data [34,35,105–109], but it will be a matter of further analyses if an ex-
tension of the sliding window approach to more realistic likelihood models of change
and Monte Carlo resampling will further improve the performance of ALISCORE
as well as AliGROOVE.

Anyway, through the use of large, phylogenomic data sets, which will be com-
mon in near future, the associated danger of decreased alignment acurracy and
phylogenetic inference makes it important to establish a reliable alignment mask-
ing approach to cope with systematic errors in multiple sequence alignments. The
analyses of chapter 2 and 3 demonstrate that the sliding window approach will be
a useful profiling tool to guide alignment masking.

7.2 The Effect of Long Branches and chosen Model Pa-
rameters on Maximum Likelihood Reconstructions

The simulation results of chapter 5 show that the risk of obtaining a wrong topol-
ogy increases with branch length differences, even if Maximum Likelihood is used
in the reconstruction process with the correct simulation model. The study demon-
strates that this risk highly depends on branch length relations in the true topology
that shall be reconstructed. Long branches lead to substitutional saturation along
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sequences, which increases the risk that the loss of conserved signal reduces the
chances for correct tree reconstruction. Maximum Likelihood was not able to re-
cover the correct tree for a topology with large length differences between short
and long internal branches, even if the correct model was specified. Wrong topolo-
gies did not even disappear when sequence alignment length rises to 100,000 base
positions. Altogether, the study seems to confirm the assumption of Phillipe and
Laurent (1998) [159] that “probably most of deep phylogenetic events are misplaced
through artifacts”. However, the study of chapter 5 demonstrates also, that Maxi-
mum Likelihood is very robust to fluctuations of conserved signal if rate heterogene-
ity is incorporated into the analysis. The new observations agree with previously
performed studies (e.g. [59, 136, 139, 147, 150]). If among-site rate variation is con-
sidered by a mixed-distribution model, Maximum Likelihood recovered the correct
topology under a wide range of branch lengths in accordance with older publica-
tions [58, 59, 136, 149, 150]. The study of chapter 5 is consistent with the expected
positive correlation between the proportion of invariant sites and the shape param-
eter α if parameters are estimated.

Recently published studies relied on the exclusive application of the restricted
Γ-model [108,130,151–155]). The assumption that the estimation of ASRV is much
more predictable if the Γ-model is used as single estimator could not be confirmed
by the study of chapter 5. If no invariant sites are assumed for the reconstruction,
this model deficiency is partially compensated by a lower estimated value for the
shape parameter, which implies an increased number of sites with low and very
low substitution rates. Since this compensation is only partial and leads to an
overestimation of substitution rates for a certain number of sites, the reconstruction
success is lower compared with the application of a Γ+I model. If among-site rate
variation is considered either by the Γ-distribution or the invariant sites model,
ML performs even better with the invariant sites proportion model than with the
Γ-distribution model.

The assumption that estimates of the Γ-distribution can be strongly influenced
by topologies which involve long internal branches [158] was not confirmed in the
study of chapter 5. Estimates of model parameters are found to be very accurate for
the Γ+I models used in the tree reconstructions, even in those cases for which the
reconstruction success is low. This excludes model misspecification as the source
of phylogenetic inaccuracy in this study and is consistent with the observation that
wrong topologies also occur if correct model assumptions have been specified. What
is lacking to the model are additional information about the “true” branch lengths.

Anyway, for a combination of very short and long branches, ML performs poorly,
even if a mixed-distribution model is used in the reconstruction.

7.3 Perspectives

Yet, the focal point in molecular phylogenetics has been given rather on the extrac-
tion of data quantity than on the production of data quality. A high accumulation
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of sequence data, like phylogenomic data, is not capable of suppressing systematic
biases. Indeed quite the opposite is true. The risk that systematic biases negatively
influence phylogenetic analyses increases as more data become available. The influ-
ence of systematic biases increaes again if evolutionary substitution models are not
chosen suitably for underlying data. Substitution models with too many parameters
can lead to an overestimate of the evolutionary history of underlying data while the
assumption of undercharged parameters can result into the opposite. In both cases,
the chance of identifying an incorrect topology continues to increase. Evolutionary
substitution models which most fit with underlying data are often hard to detect.
Even the most suitable model represents only a rough approximation to the actual
evolutionary history of sequence data. Therefore, it is not surprising that current
reconstruction methods are not able to perfectly differentiate between phylogenetic
informative and non-informative signal. Inconsistencies of reconstruction methods
on finite data sets due to incorrect model assumptions can be seen as a major draw-
back of molecular phylogenetic analyses [184]. Another problem of currently tree
reconstruction methods is the dependency on arbitrary tree and model parameter
search heuristics which often lead to suboptimal trees instead of the correct topology.

For that purpose, a reliable identification of erroneously placed taxa after the
tree reconstruction process would be desireable. Whether the sliding window ap-
proach can be sensitive enough to safely fill this gap has to be shown in further
analyses. Another attempt to identify incorrect taxon placements in topologies
could be the identification of random similarity between closely resolved taxa via
inferred branch length distances. The possibillity of random sequence similarities
increases with increased branch length distances. In the most extreme case, the ex-
ponent µ∗ t (substitution rate multipled by divergence time) of evolutionary models
goes into infinity. In this case, the probability that similar character states are due
to common ancestral states is, e.g. under Jukes Cantor, decreased to 1/4. This
means that sequence similarity of corresponding taxa is indistinguishable from ran-
dom. A comparison of likelihood scores obtained for similar character states under
two conditions: i) with the inclusion of investigated branch length distances and
ii) under infinite branch length assumptions, could provide information whether se-
quence similarity between taxa depends potentially on common ancestral states or
on random processes. First test analyses on simulated data have been performed
with LoBraTe, but further investigations are necessary to give a clear statement.

However, even if erroneously placed taxa could be reliable identified after tree
reconstruction, it is left unclear if a definite phylogenetic assignment of these taxa
can be made certain for ever. With the use of recent evolutionary substitution
models, systematic bias will always have a negatively influence on tree reconstruction
methods, especially if taxa are highly derived.

While most of the theoretical research in molecular systematics concentrates on
the accuracy and improvement of phylogenetic reconstruction methods, the influence
of alignment accuracy on tree reconstructions has been paid comparatively little
attention. This is astonishing if one assumes that alignment accuracy can have
a strong influence on tree reconstruction. Therefore, a better understanding and
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further development of alignment and masking heuristics should be rather essential
tasks in phylogenetics for the future. Especially as millions of euros are invested
each year in europe for phylogenetic research.

On the basis of high quality alignments, the use of invariants, hadamard con-
jugations, or split techniques could be good alternatives to recently used tree re-
construction methods like Maximum Likelihood or Bayesian approaches. Unfor-
tunately, invariants and hadamard-conjugations are currently computationally not
feasible for larger data sets (e.g. hadamard-conjugations can only handle data sets
with less than 16 taxa). Search heuristics like the quasi-biclique techniques could
be a good starting point to make invariants and hadamard-conjugations less com-
plex and time consuming. Surely, the most important advantage of invariants to
hadamard-conjugations is certainly the resignation of evolutionary models. Another
target for phylogenetic analyses offer split techniques in which an improved scoring
scheme for split detection could lead to robust and reliable split-topologies.
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A.1 Bayesian majority rule consensus topologies
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Figure A.1: Unmasked, unpartitioned data set. Bayesian (majority rule consensus)
topology inferred from the unmasked, unpartitioned data set with 5,000 bootstrap repli-
cates (GTR+Γ, 28,130,500 generations, sample frequency 100, burn-in (10%) discarded; see
method section Chapter 3). The tree was rooted with Pristocera.
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Figure A.2: Unmasked, unpartitioned data set. Bayesian (majority rule consen-
sus) topology inferred from the masked, unpartitioned data set with 5,000 bootstrap repli-
cates (GTR+Γ, 30 million generations, sample frequency 200, burn-in (10%) discarded; see
method section Chapter 3). The tree was rooted with Pristocera.
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Figure A.3: Unmasked, unpartitioned data set. Bayesian (majority rule consen-
sus) topology inferred from the masked, partitioned data set with 5,000 bootstrap repli-
cates (GTR+Γ, 30 million generations, sample frequency 200, burn-in (10%) discarded; see
method section Chapter 3). The tree was rooted with Pristocera.
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Figure A.4: Unmasked, unpartitioned data set. Maximum Likelihood (majority
rule consensus) topology inferred from the unmasked, unpartitioned data set with 5,000
bootstrap replicates (-f a; GTR+Γ, see method section Chapter 3). The tree was rooted
with Pristocera.
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Figure A.5: Masked, unpartitioned data set. Maximum Likelihood (majority rule
consensus) topology inferred from the masked, unpartitioned data set with 5,000 boot-
strap replicates (-f a; GTR+Γ, see method section Chapter 3). The tree was rooted with
Pristocera.
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Figure A.6: Masked, partitioned data set. Maximum Likelihood (majority rule consen-
sus) topology inferred from the masked, partitioned data set with 5,000 bootstrap replicates
(-f a; GTR+Γ, see method section Chapter 3). The tree was rooted with Pristocera.
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LoBraTe

B.1 Flowchart of the LoBraTe Process Pipeline

LoBraTe (Long Branch Test) is a process pipeline designed to infer the behaviour of
different branch lengths on Maximum Likelihood inference under different evolution-
ary model assumptions. Additionally, LoBraTe calculates branch length relations of
correct and incorrect relationships with a special mathematical algorithm including
a likelihood ratio test and chi square test. LoBraTe is actually used to test the
mathematical algorithm for its efficiency to identify long branch attraction between
strongly derived taxa. LoBraTe was also used for the simulation analyses of chapter
5 and 4. For chapter 5, over 800,000 simulations are automatically analyzed with
LoBraTe.
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Figure B.1: Overview of the LoBraTe simulation and analyse processes.
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Appendix C

RAxTAX

C.1 Flowchart of the RAxTAX Process Pipeline

RAxTAX is a process pipeline is designed to execute a full phylogenetic analyses
starting from raw sequence data and ending by a full Maximum Likelihood analysis.
Figure C.1 gives an schematic overview about optional and stringent starting com-
mands and the handling of an optional given taxon-restriction inputfile. Figure C.2
shows all single subprocesses of a full RAxTAX analysis in which only concatenated
data is completely analysed. Parallel to this, RAxTAX can completely analyse all
single masked and unmasked files within the same process run.

Restriction File
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Raw Data
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 process run have to be 
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Figure C.1: Schematic overview about input and output of RAxTAX.
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Figure C.2: Overview of all subprocesses during a complete RAxTAX analysis.
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Manual FASconCAT

D.1 Introduction

FASconCAT is designed to concatenate sequence alignment files into one super-
matrix file in a convenient manner. The supermatrix, for which different output
formats are selectable (FASTA, PHYLIP, NEXUS) can be directly used for phy-
logenetic purposes. It considers standard nucleotide sequence alignments, recoded
nucleotide sequences (e.g. with the third position of a codon RY coded), and amino
acid alignments. Provided structure strings (in dot-bracket format), often used e.g.
in ribosomal RNA analyses, are recognized and concatenated as well. FASconCAT
can handle input files in PHYLIP, CLUSTAL and FASTA format in one single run,
there has to be no unique input format. Within a sequence file, sequences must
have equal length. The software extracts taxon specific associated gene- or struc-
ture sequences out of given input files and links them to one string. Missing taxon
sequences in single files are replaced either by ’N’ (nucleotide data), ’X’ (amnino
acid data) or by ’.’ (structure strings in ’dot-bracket’ format), dependent on their
taxon associated data level. It is possible to concatenate nucleotide and amino acid
files into one supermatrix file. FASconCAT can read sequences in interleaved and
non-interleaved format. For given FASTA files, the program tolerates line breaks in
sequences, but not in sequence (taxon) names. Sequence names may only include
alphanumeric signs, underscores (_) and blanks. FASconCAT will issue an error
prompt and die if any non-alphanumeric sign is encountered in sequence names.

FASconCAT was written on Linux and works on WindowsPCs, Mac OS and
Linux running systems. Input files originating from Windows, CRFL line feeds
should be converted into Unix (LF) line feeds in advance, especially, if the user
changes the operating system. This can be done in several editors like e.g. Bioedit,
Notepad++ or Scite. FASconCAT usually replaces them, but might not succeed in
every instance.

Ambiguities and indels are allowed. Any other sign in sequences, except for
those covered by the universal DNA/RNA or amino acid code, will also lead to an
error prompt. Structure information (e.g. of ribosomal RNA sequences) are also
recognized, analyzed and concatenated. Structure information should be present in
each file once and associated with equal taxon names, e.g. “structure”. Otherwise,
the software will interrupt with a specific error prompt. FASconCAT provides ad-
ditionally information about each input file and the new concatenated supermatrix
in .xls format. The file includes single range information of each gene (gene frag-
ment or partition) and a list of all concatenated sequences. If structure strings have
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been included, it lists the number and percentage of unpaired and paired alignment
positions of each single file and the supermatrix file. Optionally, extended infor-
mation is provided. The extended information setting includes reports about e.g.
base composition of single files and the supermatrix file for nucleotide data. Fur-
ther, if structure strings in dot-bracket format have been included, the concatenated
structure composition of loop and stem positions are printed in a separate .txt file
(-i, see below). For a more detailed report about additional information see section
’Usage/Options’.

As another option, FASconCAT can generate NEXUS files of concatenated se-
quences, either with commands which can be directly executed in PAUP or MrBayes,
or without any specific commands. It is also possible to generate output files in
PHYLIP format with relaxed– (unlimited signs) or strict (limited up to ten signs)
sequence names while sequences are always printed out as non-interleaved. FAS-
conCAT can be started directly via command line or indirectly, guided by menu
options.

D.2 Usage/Options

To run FASconCAT, open the terminal of your running system. Move through your
directory path to the folder where FASconCAT and input files are placed. Type the
name of your FASconCAT version, followed either by a blank and a) your demand
options in one row to start FASconCAT directly or b) followed by pressing <enter>
to get into the FASconCAT menu. Notice that all input files have to be located
in the FASconCAT including folder. To execute FASconCAT, a Perl interpreter
must be installed on the current system. Linux and Mac OS systems do not need a
subsequent installation because the Perl interpreter is usually included as a standard
tool. Unfortunately, Windows users have to install a Perl interpreter ex post. We
recommend the ActivePerl interpreter which can be downloaded for free under:

• http://activeperl.softonic.de/

D.2.1 Start FASconCAT via menu

D.2.1.1 Open the menu under Windows

Open a prompt (DOS) terminal on your Windows system and navigate to the folder
where FASconCAT and files are located <cd your_path. . .>. Then open FAScon-
CAT:

• C:\FASconCAT_Folder> FASconCAT_v1.0.pl <enter>

D.2.1.2 Open the menu under Linux/Mac

Open a terminal and navigate to the folder where FASconCAT and files are located
<cd your_path. . .>. Then open FASconCAT:

• user@user:\~/FASconCAT_Folder> perl FASconCAT_v1.0.pl <enter>

http://activeperl.softonic.de/
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D.2.1.3 Menu handling

The main menu of FASconCAT is subdivided into two parts separated by a dashed
line. The upper component constitutes all possible options and their associated
commands for adjustment. The lower part shows the current parameter setting of
FASconCAT.

Figure D.1: Menu of FASconCAT

If you like to change the default parameter setting, type the option associated com-
mand into the command line and press <enter>. The new setting configuration
will be displayed in the lower part of the menu. If the parameter configuration is
completed, FASconCAT can be started by typing “s” and pressing <enter>. For
getting help type “h” and press <enter>, to return to the main menu type “b” and
press <enter>. To quit the program type “q” and press <enter>.

D.2.2 Start FASconCAT via single command line

FASconCAT can be directly started via command line. Therefore, commands and
chosen options has to be typed in one row in the terminal. Start FASconCAT via
command line simplifies the implementation of FASconCAT into complex process
pipelines. Move through your directory path to the folder where FASconCAT and
your files are located and type the name of the FASconCAT version, followed by a
blank and the demand options with a minus (-) sign in front of each. Then press
<enter>. Make sure you write the input options correctly, for example “-i” and
not “- i”. Otherwise FASconCAT will not start working but instead open the main
menu.
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• C:\FASconCAT_Folder> perl FASconCAT_v1.0.pl -h <enter> ↪→ help menu

• C:\FASconCAT_Folder> perl FASconCAT_v1.0.pl -s <enter> ↪→ start FAS-
conCAT under default

Table D.1: FASconCAT via command line: options

General options Command

Help menu -help
Preface -a
Start FASconCAT -s

Parameter options Command Default

Defined input files -f none
Dispense all infos -i none
PHYLIP output (strict) -p none
PHYLIP output (relaxed) -p -p none
NEXUS output (blank) -n none
NEXUS output (MrBayes) -n -n none

D.2.3 Options

FASconCAT runs with several additional parameter options. Unknown commands
are ignored.

* NOTE: Described commands are valid if the single command line is used. Working menu
guided, type all options without “-”, for example “i” instead of “-i”.

D.2.3.1 -f option

FASconCAT asks for user defined input files before concatenation starts. After
starting the program via the “s” command, it will display a list of all files in FASTA
(.fas), PHYLIP (.phy) and CLUSTAL (.aln) format which are located in the software
folder with an associated list number (Table D.2). The user can define specific files
for concatenation, regardless of the file format! Type the file associated number of
selected files, separated by comma without blanks, in one row and press <enter>. If
only one input file is chosen, FASconCAT converts it to the selected output format.
By typing b and <enter>, FASconCAT will skip back to the main menu.

• COMMAND: 2,3,4 <enter> ↪→ only the PHYLIP and CLUSTAL files will
access the concatenation process
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Table D.2: Example list of selectable files for specific file concatenation.

Listnumber Filename

1 example_file_1.fas
2 example_file_2.phy
3 example_file_3.aln
4 example_file_4.aln
5 example_file_5.aln

D.2.3.2 -i option

FASconCAT provides useful additional information about the supermatrix file and
all single input files, e.g. base composition of nucleotide sequence files, the amount
of gaps of each file or the amount of missing data. This option needs a little more
computation time, depending on the data set. Therefore, this option is not included
within the default setting. All additional information is listed in Table D.3.

D.2.3.3 -n option

With the “-n” option, FASconCAT generates an additional NEXUS file (.nex) which
can be directly loaded into PAUP, MrBayes or other NEXUS file using programs.
With the “-n -n” option, FASconCAT generates not only a NEXUS file with imple-
mented taxa sequence blocks, but rather an executable file for Bayesian analyses
with the software MrBayes. For that reason we integrated a presetting of parame-
ters which seems to be a good start point for Bayesian analyses. This can be easily
changed manually by using any text editor. If a structure string in dot-bracket
format is given while dots code unpaired (loop) positions and brackets code paired
positions (stems), FASconCAT automatically compiles a partition set for MrBayes
with separate charset for stem and loop regions. Table D.4 gives an overview of the
integrated setup for MrBayes. To choose the MrBayes option via the FASconCAT
menu, the “n” command has to be selected twice. If FASconCAT is started directly
via command line, type “-n”, respectively “-n -n”.

* NOTE: Currently, partition blocks for different gene partitions are not implemented! For
this purpose, the user have to modify the NEXUS file manually. However, it is planned to
implement command blocks for a partinioned gene analysis in the next version.

D.2.3.4 -p option

With the “-p” option, FASconCAT additionally generates an output in PHYLIP
(.phy) format. The PHYLIP format can be printed either strictly with non-inter-
leaved sequences and restricted sequence names (up to 10 signs) or relaxed (no
restriction in sign number for sequence names). To choose the strict PHYLIP op-
tion the “p” command has to be selected once, for the relaxed PHYLIP format twice.
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Table D.3: List of default & additional information within the .xls outputfile under the
-i option

Default information Supermatrix file input files

Single fragment ranges yes no
Number of concatenated sequences per taxon yes no

Additional information

Number of taxa yes yes
Number of sequence characters yes yes
Data type (nucleotide/amino acid) yes yes
Number of single nucleotide characters yes yes
Number of gaps yes yes
Number of ambiguity characters yes yes
Number of inserted replacement characters yes yes
Number of missing taxa per fragment no yes
Number of inserted replacement strings yes yes
Number of characters in total yes no
Number of amino acid characters no yes
Percent & total number of nucleotides yes no
Percent & total number of gaps yes no
Percent & total number of ambiguities yes no
Percent & total number of inserted replacements yes no
Percent & total number of loop characters yes yes
Percent & total number of stem characters yes yes
Percent & total number of missing data (?) yes yes
List of loop positions yes no
List of stem pairing positions yes no

* NOTE: The number of ambiguities is set = 0 if nucleotide AND amino acid
files are concatenated, since it is currently not possible to distinguish between amino
acids and ambiguities.
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Table D.4: Overview of all MrBayes setup parameters in the NEXUS output under the
“-n -n” option. Structure partition parameters are only printed out by given structure
information.

MrBayes commands Setup

Number of generations 2000
Print frequency 100
Sample frequency 100
Number of chains 4
Save branch lengths yes
Set autoclose yes
No warnings yes
Unlink statefrequency all
tratio all
Shape all
Number of substitution 6
Rates gamma
Sump burnin 20
Number of sump runs 2
Sumt burnin 20
Number of sumt runs 2
Inputfilename FcC_smatrix.nex

Structure partition

Set partition looms
partition looms 2: loops, stems
lset 1 nucmodel= 4by4
lset 2 nucmodel= dublet
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If FASconCAT is started directly via command line, type “-p”, respectively “-p -p”.

* NOTE: Bioedit can only properly open PHYLIP files where a) no or maximally one
blank is in front of the number of sequences (first line of a PHYLIP file) and where b)
all sequence names have exactly 10 signs (including blanks). It is not possible to edit a
PHYLIP file with short (< 10 signs) or with relaxed sequence names (> 10 signs). See
section D.4.

D.3 Internals

D.3.1 Input/Output

FASconCAT is able to import three different file formats. The number and formats
of the output files depend on chosen parameter settings. Table D.5 gives a summary
of possible input and output formats.

Table D.5: Overview of possible input and output formats under given parameter options.

Input format Ending

FASTA .fas/.fasta
PHYLIP .phy
CLUSTAL .aln

Chosen options Output files Contens

all options FcC_smatrix.fas Supermatrix in FASTA format
-p or -p -p FcC_smatrix.phy Supermatrix in PHYLIP format
-n or -n -n FcC_smatrix.nex Supermatrix in NEXUS format
all options FcC_info.xls Concatenation information (restricted)
-i FcC_info.xls Concatenation information
-i FcC_structure.txt Structure information *
(* structure strings were present in input files)

D.3.2 Computation time

The computation time of FASconCAT depends on the data amount and on chosen
options. Even for phylogenomic data sets, the computation time will be in ac-
ceptable manner on a normal desktop computer. Providing an additional PHYLIP
output does not prolong the computation time. The most time consuming step is
the compilation of NEXUS output files. Choosing all possible information (“-i”) is
only little more time expensive than the default setup. Following examples give an
impression about the computation time with different kinds of data amount and
usage options. We simulated two series of tests using INDELIBLE, with different
numbers of sequences.
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The first test includes 26 nucleotide sequences, the second 108. Per test series,
seven concatenation processes were conducted. They differed in the length of used
data sets (100 - 100,000 bp). This was repeated for five different output options. Per
concatenation process, ten data sets with identical alignment length were used. The
computation time was measured for each single concatenation process and output
option (Table D.6 and D.7).

Table D.6: Computation time of FASconCAT considering different sequence lengths
and output options for 26 sequences per data set (test 1).

Distinct concatenation processes

N data sets 10 10 10 10 10 10 10
Single lengths [bp] 100 500 1,000 10,000 25,000 50,000 100,000
Supermatrix [bp] 1,000 5,000 10,000 100,000 250,000 500,000 1,000,000

Output options Computation time [sec]

Default 0.2 0.1 0.1 0.5 1.2 2.4 4.8
PHYLIP 0.1 0.1 0.2 0.6 1.2 2.4 4.9
Default + all info 0.2 0.3 0.5 4 9.7 19.7 40.1
PHYLIP + all info 0.1 0.3 0.5 3.9 9.7 19.8 40.1
NEXUS 0.2 0.4 0.9 16.1 75.8 281.9 1321.6

Table D.7: Computation time of FASconCAT considering different sequence
lengths and output options for 108 sequences per data set (test 2).

Distinct concatenation processes

N data sets 10 10 10 10 10 10 10
Single lengths [bp] 100 500 1,000 10,000 25,000 50,000 100,000
Supermatrix [bp] 1,000 5,000 10,000 100,000 250,000 500,000 1,000,000

Output options Computation time [sec]

Default 0.3 0.4 0.5 2.3 5.5 11.3 21.4
PHYLIP 0.3 0.4 0.5 2.3 5.5 11 21.9
Default + all info 0.5 1.1 1.9 16.6 42.8 89.1 180.5
PHYLIP + all info 0.4 1.1 1.9 16.8 43.2 88.7 156.8
NEXUS 0.5 1.7 3.4 69.3 320.5 1172.5 5583.4
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D.3.3 Error reports

FASconCAT checks each input file according to correct format and forbidden se-
quence and structure characters. This subsection gives a short explanation for pos-
sible reasons to all implemented error reports.

* NOTE: Each error allocates FASconCAT to stop all running processes; FASconCAT will
abort with an specified error message.

D.3.3.1 Taxon in filename.fas not in FASTA format!

The filename.fas file is not in a FASTA format typical manner. FASconCAT reads
sequences of FASTA files, either if they are in one line, or with line interruptions
(blocks). Sequence names must be in one line and start with an “>”! Each line
must end with a line break. Table D.8 gives an example of both acceptable FASTA
formats.

Table D.8: Known FASTA formats in non-interleaved (format 1) and interleaved format
(format 2).

FASTA format 1

>Name_sequence_1
AGCTCCCGTCCTTTG–AGA–GTGTCCTTTCCT
>Name_sequence_2
AGCTCCGGCCCTTTG–AGA–GTGTCCTTTCCT
>Name_sequence_n
AGCTCCCGTCCTTTGGAGAGGTGTCCTTTCCT

FASTA format 2

>Name_sequence_1
AGCTGTCCTTTCTTG–AGA–GTGTCCTTTCCT
GGGGCCCTTTC–GGTTTTCCCCGTCCTTTCCT
>Name_sequence_n
AGCTGTCCTTTCTTGCAGACGTGTCCTTTCCT
GGGGCTTCAAGTTTTCCCCCGGGTCCTTTCCT

D.3.3.2 filename.aln is not a CLUSTAL format!

The filename.aln file is not in a CLUSTAL format typical manner. Each line must
end with a line break. Table D.9 shows a typical CLUSTAL format.
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Table D.9: Example of a CLUSTAL formatted input file.

CLUSTAL format

CLUSTAL X (1.81) multiple sequence alignment
<line break>
<line break>
Name_sequence_1 AGGGCCCTTGCGCTTGCTTCC
Name_sequence_2 AGGGCCCTTGCGCCTGCTTCC
Name_sequence_n AGGCCCCTTGCGCCGGCTTCC
<line break>
<line break>
Name_sequence_1 ATTTCCCTTGGGCTTGCTTCC
Name_sequence_2 ATTTCCCTTGGGCCTGCTTCC
Name_sequence_n ATCTCCCTTGGGCCGGCTTCC

D.3.3.3 filename.phy is not a PHYLIP format!

The filename.phy file is not in a PHYLIP format typical manner. Each line must
end with a line break. Table D.10 shows a typical PHYLIP file in interleaved format
with restricted sequence names (10 signs at maximum).

Table D.10: Example of a interleaved PHYLIP formatted input file.

PHYLIP format (interleaved)

6 40
Name_sequence_1 AGGGCCCTTG CGCTTGGCCC
Name_sequence_2 AGGGCCCTTG CGCCTCCCCC
Name_sequence_n AGGCCCCTTG CGCCGCCCGG
<line break>

ATTTCCCTTG GGCTTCCCCC
ATTTCCCTTG GGGGGCCTCC
ATCTCCCTTG GGCCGGGGGC

D.3.3.4 Unknown input format of filename!

Something in your input file is completely wrong. Please check your input file for
correct format.

D.3.3.5 Sequence name missing in filename!

Maybe you have forgotten the sequence name,the “>” in front of the sequence name,
or your FASTA format is completely wrong. See also Table D.8 for known FASTA
formats.
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D.3.3.6 Sequence missing in filename!

Either you have forgotten the sequence or an additional line-break in your FASTA
file, or your FASTA format is completely wrong. See Table D.8 for known FASTA
formats.

D.3.3.7 Sequence name sequence_name in filename involves forbidden
signs!

Sequence names may only include alphanumeric signs, underscores (_) and blanks,
everything else is not allowed. If the sequence names are correct, check the input
format in common.

D.3.3.8 Sequences of filename have no equal length!

FASconCAT allows sequences within the same input file only if they have equal
length.

D.3.3.9 Multiple sequence names of sequence_name in filename!

Identical sequence names are not allowed in the same input file, because FASconCAT
concatenates sequences on the basis of them. Two equal names in one file cannot
be assigned correctly.

D.3.3.10 Sequence of filename involves forbidden signs in sequence_na-
me!

Ambiguities and indels are recognized. Any other sign in sequences, except for
those covered by the universal DNA/RNA or amino acid code, is not allowed. If the
sequence signs are correct, check the input format in common.

D.3.3.11 filename involves multiple structure sequences!

Multiple structure strings in one input file are not allowed. FASconCAT can con-
catenate only one structure string per file, which is sufficient for most phylogenetic
analyses.

D.3.3.12 Additional structure sequence of sequence_name in filename
not allowed!

FASconCAT can handle only one structure strings per file. For that reason, single
structure strings must have identical names. Maybe your files have one structure
string, but the names are not identical. Check the names of the structure strings.
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D.4 Important Notes

Please recognize following notes. Most points will be implemented into FASconCAT
in the future.

• Since the current version cannot distinguish between ambiguities and amino
acids, the amount of ambiguities is not calculated, if nucleotide AND amino
acid alignments are concatenated. Then, the amount of ambiguities is set
= 0%.

• Currently, command blocks for a partitioned gene analyses are not imple-
mented. Only a command block for a partitioned analyses of stems and loops
is implemented. The implementation of command blocks for a partitioned
gene analysis is planned, currently the user has to manually modify the Nexus
file.

• The read of input alignments in NEXUS format is currently not implemented,
but planned in the near future.

• Bioedit can only properly open PHYLIP files if a) no or maximally one blank
is in front of the number of sequences (first line of a PHYLIP file) and where b)
all sequence names have exactly 10 signs (including blanks). It is not possible
to edit a PHYLIP file with short (< 10 signs) or relaxed sequence names (> 10
signs). If more than one blank is in front of the number of sequences,
Bioedit gives an error prompt (Unknown file format). If sequence names
are < 10 signs, a part of the sequence is written into the sequence name! If
one (or more) sequence name is > 10 signs, Bioedit crashes. Therefore, the
PHYLIP output of FASconCAT a) has no blank or any other sign in front
of the sequence number! (Several editors might include more blanks or a tab
in front of the sequence number.) b) FASconCAT fills up sequence names
with blanks to exactly 10 signs. Using option (-pp), FASconCAT fills up all
sequence names with blanks which are shorter than the longest sequence name.
To watch the supermatrix in the relaxed PHYLIP format, use e.g.:

– Seaview
http://pbil.univ-lyon1.fr/software/seaview.html
Seaview can display PHYLIP files, regardless of sequence names length
(shorter or longer than 10 signs), without any problem.

– mesquite
http://mesquiteproject.org/mesquite/mesquite.html

– MEGA
http://www.megasoftware.net/

– geneious
http://www.geneious.com/
A test version if for free available.

http://pbil.univ-lyon1.fr/software/seaview.html
http://mesquiteproject.org/mesquite/mesquite.html
http://www.megasoftware.net/
http://www.geneious.com/
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Relaxed sequence names (length not restricted) can be handled properly by
e.g. the Maximum likelihood software RAxML.

• The output of the information (.xls) file is programmed along to English
language standards. Therefore, users with systems or programs in German,
should open this in an appropriate editor and replace ’.’ (dot) by a ’,’ (comma)
(change e.g. 58.5 to 58,5). Otherwise, numbers with decimals might be
wrongly displayed. Alternatively, users can edit the software preferences and
change the language into English.

D.5 License/Help-Desk/Citation

FASconCAT v1.0 was developed by Patrick Kück in 2010. It is implemented in Perl
and freely available from http://fasconcat.zfmk.de. It can be distributed and/or
modified under the terms of the GNU General Public License as published by the
Free Software Foundation; either 2 of the license, or (at your option) any later
version.
This program is distributed with the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public Li-
cense for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

If you have any problems, error-reports or other questions about FASconCAT, feel
free and write an email to fasconcat@web.de which is the official help desk email
account for FASconCAT.

For further free downloadable programs from our institute visit:
http://software.zfmk.de.

If you use FASconCAT please cite:

Kück P, Meusemann K (2010) FASconCAT: Convenient handling of data matri-
ces. Mol Phylogenet Evol 56:1115-1118.

http://fasconcat.zfmk.de
fasconcat@web.de
http://software.zfmk.de
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Manual ALICUT

E.1 Introduction

ALICUT [111] is an additional tool to the ALISCORE software [34, 35] which re-
moves all ALISCORE identified random sequence similarity positions (rss) in mul-
tiple sequence alignments of given FASTA file(s) that are listed in the FASTA file
corresponding “List" outputfile(s) of ALISCORE. Additionally, ALICUT generates
a listfile including percentages of remaining positions of each input file. If structure
sequences are implemented, ALICUT can automatically remain randomised stem
positions or replace their corresponding character position by dots if characters are
identified as non-randomised. ALICUT can be used via graphical user interface
(GUI) or terminal options. To use the ALICUT GUI version, PERL-TK has to be
installed.

Figure E.1: ALICUT as GUI and terminal version.
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E.2 Usage/Options

To start ALICUT, open the terminal window of your running system. Navigate
through your directory path to the folder where ALICUT is located. Type the name
of your ALICUT version, followed either by a blank and your demand options in one
row to start ALICUT directly or followed by pressing enter to get into the ALICUT
menu. Notice that all input files have to be located in the ALICUT including folder.
To execute ALICUT a Perl interpreter must be installed on the current run system.
Linux and Mac systems do normally not need a subsequent installation because the
interpreter is a standard tool included in that systems in advance. Unfortunately,
Windows users have to install a Perl interpreter ex post. We would recommend the
ActivePerl interpreter which can be downloaded for free under:

• http://activeperl.softonic.de/

E.2.1 Start ALICUT via menu

E.2.1.1 Open the menu under Windows

Open a prompt (DOS) terminal on your Windows system and navigate to the
folder where ALICUT and the ALISCORE input and output files are located <cd
your_path. . .>. Then open ALICUT:

• C:\ALICUT_Folder> ALICUT_v1.0.pl <enter>

E.2.1.2 Open the menu under Linux/Mac

Open a terminal and navigate to the folder where ALICUT and the ALISCORE
input and output files are located <cd your_path. . .>. Then open ALICUT:

• user@user:~/ALICUT_Folder> perl ALICUT_v1.0.pl <enter>

E.2.1.3 Menu handling

The main menu of ALICUT (Fig. E.2) constitutes all possible options and their
associated commands for adjustment.

To change the default parameter setting type the option associated command
into the command line and press <enter>. After finishing parameter configuration
FASconCAT can be started by typing “s” and pressing <enter>. For getting help
type “h” and press <enter>, to return to FASconCAT type press <enter>, to quit
the program type “q” and press <enter>.

E.2.2 Start ALICUT via single command line

ALICUT can directly started by command line commands in one row which simpli-
fies the implementation of ALICUT into complex process pipelines. Move through
your directory path to the folder where ALICUT and your ALISCORE input and

http://activeperl.softonic.de/
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Figure E.2: Menu of ALICUT.

output files are located and type the name of the ALICUT version, followed by a
blank and the demand options with a minus (-) sign in front of each. Then press
<enter>. Make sure you write the input options correctly. Otherwise ALICUT will
not start working but instead open the menu. An overview of all ALICUT options
is shown in Table E.1.

• user@user:~/ALICUT_Folder> perl ALICUT_v1.0.pl -h <enter> ↪→ help
menu

• user@user:~/ALICUT_Folder> perl ALICUT_v1.0.pl -s <enter> ↪→ start
under default

Table E.1: Overview of option codes via single command line start

Info options Command

Help menu -h
Preface -p
Start -s

Parameter option Default

Remain stem positions -f none
Exclude stem positions -r -r yes

E.2.2.1 -r Option

If structure sequences are implemented into the ALISCORE masked FASTA infiles,
ALICUT can automatically remain randomized stem positions. To remain random-
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Table E.2: Example of the additional information file “ALICUT_info.xls”.

Used List File Used FASTA File bp before bp after Rem. bp %

Hex_16S_LIST_random.txt Hex_16S.fas 487 394 80,9
Hex_28S_LIST_random.txt Hex_28S.fas 1221 1056 86,5
Hex_COI_LIST_random.txt Hex_COI.fas 436 436 100

ized stem positions use the “-r” option via single command line or type “r” <enter>
via menu options. Under default, ALICUT replaces the corresponding character
positions of randomized stem positions by dots if these characters are identified as
non-randomised.

* NOTE: Only one structure sequence per FASTA input file is allowed.

E.2.3 Additional Information files

ALICUT provides useful additional information of all single restricted FASTA files
including percentages of remaining positions (“ALICUT_info.xls”) and structure
sequence information (“ALICUT_Struc_info.txt”). Table E.2 and E.3 gives an ex-
ample of the construction of the additional information files.

E.3 Input/Output

ALICUT is able to import FASTA files and ALISCORE “LIST” outfiles. The ALIS-
CORE inputfile(s) and ALISCORE “List" outputfile(s) must be together in the same
folder as ALICUT. The ALISCORE “List" outfile(s) must contain the ALISCORE
identified randomized sequence similarity (RSS) positions in one single line, sepa-
rated by one whitespace sign. ALICUT can handle unlimited FASTA files in one
single run. ALICUT reads the FASTA infile(s) and ALISCORE “List" outfile(s),
excludes the ALISCORE identified RSS positions listed, and saves the restricted
sequences as a new FASTA file marked by the prefix “ALICUT_”. An important
condition for the restriction of the masked FASTA infile(s) is, that the ALISCORE
“List" outfile(s)” have the corresponding FASTA infile name as prefix (see for ex-
ample Tab. E.2). In the best case, the FASTA infile(s) and ALISCORE “List"
outfile(s)” are not changed since the execution of ALISCORE. Table E.4 and E.5
give a summary of correct input formats.

* NOTE: If two “List" files are generated from an equal named FASTA file (e.g. the first
“List" file includes ALSICORE identified RSS along a NJ tree while the second “List" file
includes identified RSS positions identified by all single comparisons) the first ALICUT
outfile will be overwritten by the second one.
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Table E.3: Example of the additional information file “ALI-
CUT_Struc_info.txt”.

Original structure information idetified in testfile.fas

-Number of characters: 19
-Number of single loop characters: 9
-Number of paired stem characters: 5

-Paired stem positions: 1:19
2:18
3:16
6:14
7:13

-Loop positions: 4
5
8
9
10
11
12
15
17

Table E.4: Known FASTA formats in non-interleaved (format 1) and interleaved
format (format 2).

FASTA format 1

>Name_sequence_1
AGCTCCCGTCCTTTG–AGA–GTGTCCTTTCCT
>Name_sequence_2
AGCTCCGGCCCTTTG–AGA–GTGTCCTTTCCT
>Name_sequence_n
AGCTCCCGTCCTTTGGAGAGGTGTCCTTTCCT

FASTA format 2

>Name_sequence_1
AGCTGTCCTTTCTTG–AGA–GTGTCCTTTCCT
GGGGCCCTTTC–GGTTTTCCCCGTCCTTTCCT
>Name_sequence_n
AGCTGTCCTTTCTTGCAGACGTGTCCTTTCCT
GGGGCTTCAAGTTTTCCCCCGGGTCCTTTCCT
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Table E.5: Known ALISCORE “List" outfile” format.

1 12 13 14 15 22 23 24 25 26 30 . . . 1000

E.4 License/Help-Desk/Citation

ALICUT v1.0 is written/developed in Perl by Patrick Kück in 2009. It is imple-
mented in Perl and a free software. It can be distributed and/or modified under
the terms of the GNU General Public License as published by the Free Software
Foundation; either 2 of the license, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public Li-
cense for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

If you have any problems, error-reports or other questions about ALICUT feel
free and write an email to ali_score@web.de which is the official help desk email
account for the software. For further free downloadable programs from our institute
visit:
http://software.zfmk.de.

If you use ALICUT please cite:
Kück P., ALICUT, a Perlscript which cuts ALISCORE identified RSS. Depart-

ment of Bioinformatics, Zoologisches Forschungsmuseum A. Koenig (ZFMK), Bonn,
Germany, version 1.0 edition [111].

E.5 Copyright

c© by Patrick Kück, October 2009

http://software.zfmk.de
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Short Documentation ESTa

F.1 General Information

“ESTa.pl” is written in PERL and downloads the actual EST-summary list from the
NCBI-Genbank (http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html) for
taxa with more than 1.000 EST database entries. The actual list will be stored in
a EST database listfile (“EST-request_(NCBI).txt”). Database entries of an earlier
downloaed database listfile are replaced if an earlier version and the ESTa perlscript
are placed in the same folder. In addition to the “EST-request_(NCBI).txt” file,
new database entries are printed out in a separate text file “New_EST_entries.txt”,
too.

F.2 General Usage

To start ESTa open the terminal window of your running system, navigate through
your directory path to the folder where ESTa is located, and execute ESTa by
typing the name of the ESTa version followed by <enter>. Be sure that an internet
connection exist.

• C:\ESTa_Folder> perl ESTa_v0.1.beta.pl <enter> ↪→ Windows

• user@user:~/ESTa_Folder> perl ESTa_v0.1.beta.pl <enter> ↪→ Linux/Mac

F.3 Output-files

F.3.1 “EST-request_(NCBI).txt”

• The file “EST-request_(NCBI).txt” contains the following structure:
“Taxon” <space> => <space> “Number of EST entries found in the NCBI
database <newline>

• “EST-request_(NCBI).txt” lists all taxa with more than 1.000 entries in the
NCBI-database

• The “EST-request_(NCBI).txt” entries are listed alphabetically by taxon na-
me

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
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F.3.2 “New_EST_entries.txt”

• The file “New_EST_entries.txt” contains the following structure:
“Taxon” <space> => <space> “Number of EST entries found in the NCBI
database <newline>”

• The “New_EST_entries.txt” file lists all EST entries which which have chan-
ged since the last database update

• The “New_EST_entries.txt” entries are listed alphabetically by taxon name
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List of Abbreviations

Table G.1: List of abbreviations used in this thesis

Abbreviation Definition

α Shape Parameter of the Gamma Distribution Model
Γ Gamma Distribution Model
ρ Proportion of Invariant Sites
12S Small Mitochondrial Ribosomal Subunit
16S Large Mitochondrial Ribosomal Subunit
AA Amino Acid Sequences
Al ALISCORE (Alignment Masking Software)
AU test Approximately Unbiased Test
ASRV Among-Site Rate Variation
BI1 Branch Increase 1
BI2 Branch Increase 2
bs Bootstrap Support Value
bpp Bayesian Posterior Probability Value
bp Base Positions
c Relative Substitution Rate Categories
COI Cytochrom Oxidase I
COII Cytochrom Oxidase II
COIII Cytochrom Oxidase III
Cytb Cytochrom b
dbEST Expressed Sequence Tags Database
EST Expressed Sequence Tags
EF1aF2 Elongation Factor 1-alpha F2
Fig Figure
GB Giga byte
Gb GBLOCKS (Alignment Masking Software)
GHz Gigahertz
GUI Graphical User Interface
H0 Null Hypothesis
HPC High performance computing
I Invariant Sites Model
JC Jukes Cantor
ML Maximum likelihood
MB Megabyte
MSA Multiple Sequence Alignment
LBA Long Branch Attraction
LiB Long Internal Branch

Continued on next page
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Table G.1 – continued from previous page
Abbreviation Definition

LtB Long Terminal Branch
MRE Extended Majority-Rule Consensus Tree
mtI Mitochondrial Data Set 1
mtII Mitochondrial Data Set 2
N Number
NC Nucleotid Sequences
NCBI National Center for Biotechnology Information
ND1 NADH Dehydrogenase Subunit 1
ND2 NADH Dehydrogenase Subunit 2
ND3 NADH Dehydrogenase Subunit 3
ND4 NADH Dehydrogenase Subunit 4
ND4L NADH Dehydrogenase Subunit 4L
ND5 NADH Dehydrogenase Subunit 5
ND6 NADH Dehydrogenase Subunit 6
RB Remaining Branches
RS Resolution Score
RNA Ribonucleine acid
rRNA ribosomal RNA
sec Seconds
SiB Small internal Branch
StB Small Terminal Branch
Tab Table
Un Unmasked
ZFMK Zoologisches Forschungsmuseum A. Koenig, Bonn
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List of Electronic Supplementary
Files

• Electronic supplementary file ES1 — Detailed analytical results
(chapter 2)

• Electronic supplementary file ES2 — Presentation of the ALIS-
CORE algorithm and the results (chapter 2)

• Electronic supplementary file ES3 — Publication (Kück et al. [35])
(chapter 2)

• Electronic supplementary file ES4 — Unmasked alignment file (cha-
pter 3)

• Electronic supplementary file ES5 — Masked alignment file for the
masked-unpartitioned analyses (chapter 3)

• Electronic supplementary file ES6 — Masked alignment file for the
masked-partitioned analyses (chapter 3)

• Electronic supplementary file ES7 — Character partition file (chap-
ter 3)

• Electronic supplementary file ES8 — Publication (Kück et al. [123])
(chapter 3)

• Electronic supplementary file ES9 — Detailed results of all ML tree
reconstructions (chapter 5)

• Electronic supplementary file ES10 — Detailed results of investi-
gated likelihood scores (chapter 5)

• Electronic supplementary file ES11 — Detailed results of model pa-
rameter estimates (chapter 5)

• Electronic supplementary file ES12 — Presentation of the results
(chapter 5)

• Electronic supplementary file ES13 — Perlscript FASconCAT v1.0
(chapter 6)
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• Electronic supplementary file ES14 — Presentation of the Software
FASconCAT v1.0 (chapter 6)

• Electronic supplementary file ES15 — Publication of FASconCAT
(Kück & Meusemann [112]) (chapter 6)

• Electronic supplementary file ES16 — Perlscript ALICUT v1.0.pl
[111] (chapter 6)

• Electronic supplementary file ES17 — Presentation of ALICUT v1.0
(chapter 6)

• Electronic supplementary file ES18 — Perlscript ESTa v0.1.beta
(chapter 6)
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Summary

Considering the final goal of every phylogenetic analysis, the reconstruction of taxon
relationships from underlying data, little attention has been paid to the role of align-
ment accuracy and its impact on tree reconstruction. Multiple sequence alignments
are statements of primary homology in phylogenetic analyses . In the first step of
the primary homology assessment, similar sequences are identified through sequence
comparisons by alignment algorithms like BLAST (Basic Local Alignment Search
Tool), while subsequently efficient alignment algorithms are used to allocate po-
sitional similarity among sequences. Unfortunately, alignment algorithms can not
differentiate between positional similarity of sequences and evolutionary homology,
which can lead to incorrectly aligned sequence positions due to random similarity
among sequences. Due to the dependence of tree reconstruction on the primary
homology assessment, the influence of incorrect alignment sections can negatively
influence phylogenetic reconstructions and lead to defective estimation of substitu-
tion model parameters, especially if data sets are very large. The degree of alignment
accuracy is strongly influenced by the chosen alignment algorithm and its parameter
settings. Ambiguously aligned sequence sections and random sequence similarity can
negatively influence phylogenetic reconstructions and lead to defective estimation of
substitution model parameters.

Alignment masking approaches are methods which detect and remove erro-
neously aligned sections before tree reconstruction. The effect of two masking meth-
ods on alignment quality and tree reconstruction is described in chapter 2 of my
PhD thesis. This section gives furthermore the first comprehensive characterisation
of the most recent amino-acid masking algorithm implemented in ALISCORE, one
of the two masking approaches tested in this chapter. Another example about the
positive impact of alignment masking on data quality is given in chapter 3 which
describes a re-analysis of a previously published data set to resolve the Ant Tree of
Life. The re-analysis is coupled with parametric alignment masking and thouroughly
performed phylogenetic analyses which comes to different conclusions than the pre-
viously published study. While masking methods are commonly efficient in detecting
ambiguously aligned sequence blocks, all methods more or less lack the ability to de-
tect heterogeneous sequence divergence within sequence alignments. This is a main
disadvantage of masking approaches, because undetected heterogeneous sequence
divergence can result in a strong bias in tree reconstructions. Chapter 4 gives a
detailed description of a new developed algorithm and the possibility of tagging
branches as an indirect estimation of reliability of a subset of possible splits guided
by a topology. The performance of the new algorithm was tested on simulated and



140 Appendix I. Summary

empirical data.
Considering the tree reconstruction process, the first task is the choice of an

appropriate tree reconstruction method. Examining theoretical studies and com-
parative tests Maximum Likelihood turns out as the first choice for phylogenetic
tree reconstructions. Chapter 5 shows that the success of Maximum Likelihood de-
pends not only on the degree of alignment quality, but also on the relation of branch
length differences of underlying topologies. The study of chapter 5 tested the ro-
bustness of Maximum Likelihood towards different classes of long branch effects in
multiple taxon topologies by using simulated fixed data sets under two different 11-
taxon trees and a broad range of different branch length conditions with sequence
alignments of different length.

The realization of the studies described in chapter 2–5 would not have been
possible without the development of numerous scripts. Some of the most important
scripts and pipelines which have been written for the accomplishment of this thesis
or which have been written for other studies are listed and described in chapter 6.
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Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst, keine anderen Quellen und
Hilfsmittel als die angegebenen benutzt und die Stellen der Arbeit, die anderen
Werken dem Wortlaut oder Sinn nach entnommen sind, kenntlich gemacht habe.

Diese Arbeit hat in dieser oder ähnlichen Form keiner anderen Prüfungsbehörde
vorgelegen.

December 15, 2011
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