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die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
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Zusammenfassung

Die vorliegende Doktorarbeit handelt von supermassereichen schwarzen Löchern
(SMSL), ihrem Wachstum und dem Einfluss, den sie auf ihre Wirtsgalaxien und deren
Kugelsternhaufensysteme ausüben. Um die geleistete Arbeit in einen umfassenden
wissenschaftlichen Kontext einordnen zu können, werden im ersten Teil dieser Dok-
torarbeit die relevanten wissenschaftlichen Grundlagen dargelegt. Gleichzeitig wird
ein umfangreicher Überblick über den gegenwärtigen Stand der Forschung schwarzer
Löcher vermittelt. Zunächst wird im Rahmen der allgemeinen Relativitätstheorie die
Physik dieser Objekte betrachtet (Kapitel 1). Dabei wird auf eine aktuelle Arbeit von
Andrew Hamilton Bezug genommen. Diese gestattet es, Eigenschaften schwarzer
Löcher anschaulich und zugleich mathematisch korrekt zu erläutern. Im Anschluss
werden alle möglichen Bahnen in einer Schwarzschild Metrik diskutiert auf denen sich
Objekte bewegen können. So wird eine Verbindung zwischen der Physik schwarzer
Löcher und den Prozessen, die zu ihrem Wachstum führen, hergestellt. Diverse
SMSL Wachstumsprozesse werden erläutert (Kapitel 2), nachdem auf beobachtbare
Skalierungsrelationen eingegangen wurde. So enthält die Steigung, aber auch die
statistische Streuung dieser empirischen SMSL Skalierungsrelationen, wertvolle Infor-
mationen über den Ursprung und das Wachstum schwarzer Löcher.

Im zweiten Teil dieser Doktorarbeit (Kapitel 3) stehen die Ergebnisse der eigenen
Forschung im Vordergrund. Zunächst wird ein Wachstumsprozess betrachtet, bei dem
Sterne durch Relaxation im Drehimpulsraum zu Trajektorien hin diffundieren, welche
letztendlich im unmittelbaren Einflussbereich des SMSL münden. Die Sterne werden
dabei von Gezeitenkräften zerrissen und ein Teil der stellaren Materie wird akkretiert.
Bei der verwendeten Methode handelt es sich um direkte N-Körperrechnungen. Es
wird gezeigt, dass die Einfallrate von Sternen nicht hoch genug ist, um das Wachstum
sehr massereicher schwarzer Löcher signifikant zu beeinflussen. Dennoch können von
SMSL zerrupfte Sterne einen erheblichen Anteil am Wachstum schwarzer Löcher im
unteren Massenbereich von 104-105M⊙ beigetragen haben. Interessanterweise scheint
die Masse des SMSL keinen großen Einfluss auf die Einfallrate von Sternen zu haben.
Die Ergebnisse wurden im MNRAS Journal publiziert.

Im darauf folgenden Kapitel 4 wird eine selbstentwickelte Software vorgestellt,
welche den Einfluss von Galaxien, zentralen schwarzen Löchern und weiteren Ef-
fekten auf die Erosionsrate von Kugelsternhaufensystemen untersucht. Zum ersten
Mal konnte eine weitreichende Verallgemeinerung der dynamischen Reibungsformel
von Chandrasekhar eingebaut werden. Diese basiert nicht mehr auf der Annahme
einer Maxwellschen Geschwindigkeitsverteilung. Des Weiteren berücksichtigt sie,
dass der Beschleunigungsvektor der dynamischen Reibung nicht anti-parallel zum
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Geschwindigkeitsvektor stehen muss. Bereits in den ersten Rechnungen mit dieser
Software haben sich Hinweise auf eine neue Phase in der Entwicklung von Kugel-
sternhaufensystemen finden lassen. So wird anfänglich eine große Anzahl von
Kugelsternhaufen durch starke Gezeitenschocks innerhalb der Galaxie zerstört. Der
Einfluss massereicher schwarzer Löcher auf die zeitliche Erosionsrate und Gesam-
tanzahl zerstörter Kugelsternhaufen wird diskutiert. Darüberhinaus lassen sich die
flachen Anzahldichteprofile von Kugelsternhaufensystemen in elliptischen Galaxien,
sowie das Nichtvorhandensein von Kugelsternhaufen in der kompakten Zwerggalaxie
M 32, einer Satellitengalaxie der Andromedagalaxie, erklären. Die Ergebnisse wurden
in einem zweiten Artikel im MNRAS Journal veröffentlicht.

Im dritten und letzten Teil dieser Doktorarbeit wird zunächst die numerische Im-
plementierung eines schwarzen Loches inklusive voll relativistischer Einfangbedin-
gungen erläutert. Anhand der relativistischen Perihel-Präzession des Merkurs und
dem Verschmelzungsprozess zweier schwarzer Löcher getestet, wird die Strategie zur
Durchführung eines weiteren, zukünftigen Projektes mit dieser Software vorgestellt.
Dabei geht es um das Wachstum massereicher schwarzer Löcher durch stellare
Trümmerteile von erodierten Sternhaufen. Schlussendlich wird auch noch die Bedeu-
tung bereits gewonnener Erkenntnisse für die sogenannte spezifische Frequenz von
Kugelsternhaufen in elliptischen Galaxien diskutiert.
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Summary

The main subjects of the underlying PhD study are supermassive black holes
(SMBHs), their growth and the influence they exert on vast globular cluster systems.
In the first part of this work I provide a comprehensive overview of black hole
related research. In this way the own findings can be connected to a broader scientific
background. Simultaneously, the current state of SMBH research is summarized. The
physics behind black holes will be presented first (Chapter 1). This is done by introduc-
ing a fully general relativistic concept for visualizing black holes. It was developed by
Andrew Hamilton. Afterwards, I will discuss all possible trajectories in a non-rotating
Schwarzschild metric. In this way the link between the physics of black holes and
various SMBH growth processes, which belong to the domain of astrophysics, can
be established. However, before summarizing different growth scenarios, the most
important scaling relations are described (Chapter 2). The slope and intrinsic scatter of
these empirical correlations contain information about the SMBH growth history.

In the second part of this PhD study I focus on my own results. In Chapter 3, I will
investigate the flux of stars which enter loss cone trajectories through angular momen-
tum diffusion. The inferred results are based on direct N-body computations which
are presented in Brockamp et al. (2011). Depending on the mass of the central SMBH,
stars on loss cone orbits can either be swallowed as a whole, or tidally disrupted. In
the latter case some fraction of the unbounded star becomes accreted. It is found that
the tidal disruption rate of stars is nearly independent of the SMBH mass. Angular
momentum diffusion is not sufficient to fuel the growth of the most massive black
holes. However, it can influence the growth history of SMBHs in the lowest mass range
spanning 104-105M⊙.

In the following Chapter 4 I present a newly developed computer code, which is
called MUESLI. It numerically integrates the equation of motion of individual globular
clusters (GCs) in elliptical galaxies by taking GC disruption processes into account.
MUESLI thus evaluates the erosion rate of whole globular cluster systems. Several
aspects which influence the GC erosion rate like the tidal field of the host galaxy,
SMBHs and dynamical friction (DF) are considered. For the first time an extensive
generalization of Chandrasekhar‘s dynamical friction formula is implemented into
N-body software. It does not only handle non-Maxwellian velocity distributions,
but can also treat dynamical friction forces which are not anti-parallel to the velocity
vector. Already the first computations indicated a new phase in the evolution of whole
globular cluster systems. Depending on the strength of the tidal field of the host galaxy,
a huge fraction of GCs is destroyed rapidly through tidal shocking. The influence of
the central SMBH on the fraction of destroyed GCs is discussed. Additionally, the
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performed computations naturally explain the central shallow number density profiles
of GCs systems as well as the non existence of GCs around the compact dwarf galaxy
M 32, which is a satellite of the Andromeda galaxy. The presented results are based on
Brockamp et al. (2014).

The implementation of a relativistic SMBH with fully general relativistic capture con-
ditions into the MUESLI code is treated in the last part of this PhD study. After testing
it by means of reproducing the precession rate of Mercury as well as by computing a
binary black hole inspiral, the basic strategy for realizing a further loss cone project
is described. Finally, I present first results which were obtained with MUESLI for the
shaping of the GC specific frequency versus the absolute galaxy luminosity.
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Chapter 1

General Black Hole Dynamics

1.1. Black Holes

“Abandon hope, all ye who enter here.”

Dante Alighieri (1265-1321), The Divine Comedy

Black holes are the most powerful objects which are known, capable of swallowing
light and matter without the chance of a recurrence. The first ideas concerning astro-
physical objects which appear dark were presented by the geologist John Michell in
1784. Based on a Newtonian treatment of the propagation of light, Michell (1784) calcu-
lated that objects with a given mass, M•, and critical size, rs, which satisfy the relation:

rs =
2GM•

c2
≈ 3

(

M•
M⊙

)

km, (1.1)

would appear invisible for external observers. This is due to an escape velocity which
equals the velocity of light. Although Michell‘s model of a dark star is frequently
used for educational purposes and reproduces some features of black holes, it has
actually nothing in common with a realistic black hole whose interior is physically
disconnected from the outside. It is a pure mathematical coincidence that Michell’s
critical radius corresponds to the Schwarzschild radius of a (non rotating) black hole.

The actual concept behind black holes as solutions to Einsteins field equations was
pioneered by Karl Schwarzschild during his military service on the Eastern Front in the
First World War. Schwarzschild (1916) found the solution of a non-rotating black hole,
although his model was frequently dismissed as physically irrelevant (even by Einstein
himself) due to a divergence of physical quantities at the locus of the Schwarzschild
radius. In 1958, David Finkelstein introduced a method which allowed to remove
these (unphysical) divergences at rs through a coordinate transformation (Finkelstein,
1958). Five years later, Roy Kerr generalized the Schwarzschild solution to rotating
black holes (Kerr, 1963) and in the year 1964 John Wheeler introduced the name black
hole during a public lecture. Before that lecture, black holes were termed frozen stars.

Apart from increasing observational evidence for the existence of black holes, i.e.
the discovery of quasars (Schmidt, 1963), the next milestones in theoretical black hole
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research were initiated by Jacob Bekenstein and Stephen Hawking. Bekenstein (1973)
and Hawking (1974) established a fundamental relation between the area, A = 4πr2

s ,

and the entropy of a black hole S = kA/
(

4l2
p

)

, where k is the Boltzmann constant and

lp the Planck length. This insight offers first clues about deep fundamental relations
between the nature of gravity, thermodynamics, geometry, and quantum mechanics.
It has been recognized that there are no objects which can store more entropy than a
black hole of equal size and that the maximal amount of entropy scales with the surface
and not the volume.

Today, black holes are the cornerstones in the search for a united theory of
gravity and quantum mechanics. Recent approaches (e.g. van Raamsdonk (2010);
Papadodimas & Raju (2013); Maldacena & Susskind (2013)) yield deep insights into
the emergence of space-time itself and the interaction between gravity and quantum
mechanics under the extreme conditions within a black hole.

In the following discussion the physics behind non-rotating black holes will be
explained by making use of the river or waterfall model for black holes which was
developed by Hamilton & Lisle (2008). It is based on a coordinate transformation
of the Schwarzschild metric into Gullstrand-Painlevé coordinates. Its generalization
to rotating black holes will not be discussed in detail here but can also be found in
Hamilton & Lisle (2008). This model explains all essential aspects of black holes like
the apparent freeze of time at the horizon, the membrane like nature of the horizon,
tidal forces and the inevitability of a central singularity.

The great benefit of the river model for black holes is that it treats space as a fluid (i.e.
the river) on a flat background spacetime. However, the flat background spacetime can
not be experienced by observers which are moving in the river. These observers can
only measure distances, angles and time scales relative to objects which are also part
of the river. The river itself can stretch and posses a curl or twist vector at each point.
The space i.e. the river drains into the black hole and the objects within this reference
frame obey the laws of special relativity.

Following Hamilton & Lisle (2008), the metric of a non-rotating black hole in
Schwarzschild coordinates is

ds2 = −
(

1 − 2M•
r

)

dt2 +
dr2

1 − 2M•
r

+ r2
(

dθ2 + sin θ2dφ2
)

, (1.2)

where ds is the line element and the constants c and G are set to one. M• is the mass of
the black hole. Evidently, at scales of the Schwarzschild radius, rs = 2M•, the metric
exhibits a coordinate singularity as the second term diverges. Schwarzschild coordi-
nates are defined in such a way that the “observer” remains at rest far outside the black
hole. She/he only records events which were made by local probes and which sent
her/him all the information. Obviously, she/he does not receive (useful) information
from a probe which has fallen into a black hole. By the coordinate transformation:

t f f = t −
∫ ∞

r

β (r′)

1 − β (r′)2
dr′, θ̃ = θ, φ̃ = φ, r̃ = r (1.3)
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1.1. Black Holes

the Schwarzschild metric in Schwarzschild coordinates can be converted into
Gullstrand-Painlevé coordinates:

ds2 = −dt2
f f + (β (r) dt f f )

2 + 2β (r) dt f f dr + dr2 + r2dθ2 + r2 sin θ2dφ2. (1.4)

The function

β (r) =

(

2M•
r

) 1
2

(1.5)

is the velocity of radially infalling space (in units of G = c = 1) as measured from the
flat background spacetime. Obviously, an observer in the flat background spacetime
and which is decoupled from the radial inflow of space is purely fictitious and has no
meaning in reality. Nevertheless, his/her observations yield useful information for the
visualization and understanding of the physics of black holes, especially within their
horizons. In the following discussion we take the role of this omniscient watcher. An
analogous black hole river model with a physically meaningful reference frame can be
found in Braeck & Grøn (2013). As can be seen from Equation 1.4, the spatial part of the
metric is nothing else than the flat metric of spherical coordinates. The Schwarzschild
spacetime is well defined within the Schwarzschild radius i.e. the event horizon of the
black hole. At the position of the Schwarzschild radius, rs, the velocity of the infalling
space is β (rs) = 1, i.e. it corresponds to the speed of light.

Within this picture, non-rotating black holes can be easily explained1. See also
Figure 1.1 for an illustrative model of the river model of non-rotating black holes.
The event horizon (Schwarzschild radius) is the ultimate boundary of a black hole.
Everything can enter the event horizon of a black hole, but nothing can escape. This
behaviour is reminiscent of a one-way membrane. The event horizon is the place
where the velocity of infalling space equals the speed of light. At the horizon, a photon
with zero angular momentum and which is radially directed outwards might be
trapped forever owing to compensating velocities. However, the tiniest perturbation
would cause its plunge into the hole. Observers which are part of the space river
will never see how accreted matter passes the horizon. Instead, all inflowing material
(apparently) seems to freeze in time owing to a diverging photon recovery timescale
at the horizon. Photons which are emitted very close to the horizon need longer and
longer to reach distant observer because they have to move against the accelerating
space-river. This generates the impression of time which asymptotically freezes at the
horizon. It is often claimed that in return the infalling probe sees the whole (infinite)
future of the universe in an instant of time. This claim is completely wrong. Only if
the probe manages to stay at the horizon at the speed of light it would see the infinite
future of the universe according to the laws of special relativity. However, with such a
kind of engine at hand it would not require a black hole for doing so.

The infalling probe passes the event horizon without realizing it and in finite
time. The situation is similar to a fish which crosses a critical distance just before the
threshold of a turbine shaft where the flowing water exceeds his maximal speed of

1Space does not spiral inwards as one might suggest for the case of a rotating black hole. Instead, the
infalling space possesses a twist vector at each point which induces a shear moment on any object.
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Figure 1.1. In the reference frame of the flat background spacetime (in units of G = c = 2M• =
1) the color coded infall velocity of space, β (r), is plotted as a function of the radius. Below rs,
even photons are swept away by the infalling space. An outgoing ray at the exact position of the
horizon will never reach an observer at save distances. This explains why all forms of infalling
matter seem to freeze in time when approaching the horizon of a black hole. The parabolic form
has no physical meaning and is used for illustrative purposes only. In reality space falls radially
inwards from all directions.

movement. The fish would not be able to detect anything special at the point of no
return.

Below rs, β (r) exceeds the speed of light and everything is rushed deeper into the
hole. Although the velocity of infalling space is greater than c (as measured from
the flat background spacetime), the infalling probe does not measure superluminal

6



1.2. Trajectories around Black Holes

motions since it is part of the river itself. The probe itself can neither stay at rest
nor escape as this would require superluminal speeds in contradiction to the laws
of special relativity. From its perspective, the sphere of darkness (i.e. the so called
illusory horizon) grows during infall since material in front of it becomes increasingly
redshifted (Hamilton & Lisle, 2008; Hamilton, 2012). The probe will never see how
material in front of it crashes onto the singularity. Simultaneously, the sphere of causal
contact which is the region from which information can still reach the infalling probe
(i.e. its own particle horizon) decreases continuously. This means that even quantum
communication breaks down on even smaller length scales during infall, in a process
which is termed “asymptotic silence” (Andersson et al., 2005).

Finally, at the position of the central singularity the infalling probe “unites” with
the illusory horizon. Everything is crushed out of existence at the singularity/illusory
horizon as space collapses arbitrarily fast (limr→0 β (r) = ∞). There is nothing which
can prevent this form of ultimate collapse as the transmission speed of forces required
to generate a repulsive force/pressure are always limited by the speed of light. Once
inside a black hole, the infall into the singularity is inevitable as the progression of time
itself.

1.2. Trajectories around Black Holes

1.2.1. 1/r Potential

After having introduced the physical concept behind a black hole in § 1.1, the possible
types of trajectories around these objects will be summarized in this section. In
this manner a link between the physics of black holes itself and their gravitational
influence on their surrounding (i.e. relevance to astrophysics) can be established. As
a by-product, a simple but fully relativistic capture criterion for particles (e.g. stars)
by non-rotating Schwarzschild black holes can be derived (§ 1.2.3). Its generalization
to rotating Kerr black holes can be found elsewhere (e.g. Novikov & Frolov 1989; Will
2012).

In order to illustrate the uniqueness of trajectories in a Schwarzschild metric, it is use-
ful to first discuss all allowed trajectories in a static Keplerian (V (r) ∝ −1/r) potential.
By writing the total energy E of a particle of mass m in polar coordinates as:

E =
m

2
ṙ2 + V (r) +

m

2
r2φ̇2, (1.6)

where mr2φ̇2/2 = L2/
(

2mr2
)

is the centrifugal potential and L = mr2φ̇ is the angular
momentum, one can define the sum

Veff = V (r) + L2/
(

2mr2
)

(1.7)

as the effective potential. Depending on the total energy E of a particle, one discrim-
inates four different trajectories, sketched as T0 − T3. The situation is illustrated in
Figure 1.2.
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Figure 1.2. Effective potential for a Keplerian point potential. No particle with finite angular
momentum can pass the angular momentum barrier as Veff → ∞ for r → 0.

• T0: Veff = E < 0 The minimum energy is given by the criterion ṙ =

−
√

2(E−Veff)
m = 0 and thus r = const. The particle revolves on a circular orbit

with fixed radius R0.

• T1: Veff < E < 0 The particle is bound and moves on an elliptical orbit. The
minimal distance RP is called pericenter while the maximal distance Ra is known
as the apocenter. All bound orbits are closed2.

• T2: E = 0 The intersection between bound and unbound orbits. The form of the
orbit corresponds to a parabola.

2There exist only two potentials, the Keplerian and the harmonic oscillator potential V (r) ∝ r2, where all
bound trajectories are generally closed.
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1.2. Trajectories around Black Holes

• T3: E > 0 A particle on a hyperbolic trajectory reaches the minimal radius R1 and
then recedes back to infinity.

For positive L > 0 and r → 0, the centrifugal potential grows unlimited and prevents
particles from reaching r = 0.

1.2.2. Schwarzschild Black Hole Potential

An impassable angular momentum barrier is absent in general relativistic black hole
potentials. The plunge of a particle into the central singularity of a black hole is
inescapable, once the angular momentum of the particle is less than a given (but
always finite) threshold scale. This criterion is derived in detail below but can also be
found in several textbooks (e.g. Misner et al. 1973; Novikov & Frolov 1989).

The gravitational field of a non-rotating black hole is spherically symmetric and the
trajectory of a nearby particle can be assumed to lie on a plane specified by the co-
ordinates r and φ. The emission of gravitational waves is not taken into account.
Furthermore, it is assumed that infalling particles induce no back-reaction on the
Schwarzschild metric i.e. by turning it into a Kerr metric. Following Novikov & Frolov
(1989), the equation of motions of particles around a non-rotating black hole have the
form:

(

dr

cdt

)2

=

(

1 − rs
r

)2
[

Ẽ2 −
(

1 − rs
r

)

(

1 + L̃2 r2
s

r2

)]

Ẽ2
(1.8)

(

dφ

cdt

)

=

(

1 − rs
r

)

L̃rs

Ẽr2
. (1.9)

The parameters Ẽ = E/
(

mc2
)

and L̃ = L/ (mrs) correspond to the specific total energy
and angular momentum of the particle. The Schwarzschild radius rs = 2GM•/c2 is
proportional to the mass M• of the black hole. When particles approach the pericenter
or apocenter of a black hole, the first time derivative of the radius has to be zero, i.e.
dr

dt
= 0. At these extremal points, Ẽ2 −

(

1 − rs
r

)

(

1 + L̃2 r2
s

r2

)

= 0. The function

Veff(r) =
(

1 − rs

r

)

(

1 + L̃2 r2
s

r2

)

(1.10)

is often called the effective potential. It allows to characterize all classes of trajec-
tories for free floating test particles, analogous to the Newtonian case (§ 1.2.1). The
specific energy and angular momentum of the particle are conserved quantities as the
Schwarzschild metric is invariant under angular coordinate and time transformations.
All allowed trajectories (T0 − T5) are illustrated in Figure 1.3 for particles with different
specific energies but the same specific angular momentum L̃ = 2.6. They are summa-
rized below:

• T0 & T1 represent stable classes of bound orbits. They are not closed and are
subject to orbital precession. A particle at the exact location of the local minimum
(T0) has a circular motion.
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Figure 1.3. In this figure the effective potential with specific angular momentum L̃ = 2.6 is

plotted as a function or r/rs . As long as L̃ ≥
√

3, there are several classes of allowed trajectories
in a Schwarzschild space-time (T0 − T5). Approaching particles with (squared) specific energies
above the global maximum of Veff(r) at T3 will be swallowed by the black hole.

• T2 symbolizes unbound orbits with a hyperbolic shape.

• T3 represents a unique class of unstable circular orbits at the global maximum of
Veff. An arbitrary small perturbation will either send the particle into the singular-
ity of the black hole or expel it to infinity. These orbits do not occur in Newtonian
physics.

• Particles above the maximum of the effective potential (T4) will either be swal-
lowed or escape forever. These trajectories are also impossible in Newtonian
physics.

• Trajectories of particles which are generated at the Schwarzschild radius and
which are later swallowed by the black hole correspond to class T5.

Particles on a path towards the black hole and which have crossed the plunge radius,
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Figure 1.4. The effective potential Veff(r) plotted as a function of L̃. The plunge radius con-

verges to rplunge = 1.5rs if L̃ → ∞. Stable circular orbits can only exist for r ≥ 3rs and L̃ ≥
√

3.
The thick black curve traces the maximum of the effective potential. If the specific angular

momentum is smaller than L̃ <
√

3, the effective potential becomes monotonic and particle
trajectories either end inside the black hole or have to point towards infinity.

rplunge, will inevitably be absorbed by the horizon. The effective potential, Veff(r), has
its global maximum at rplunge. A 3D phase space plot (Figure 1.4) illustrates the shape

of the effective potential as a function of r and L̃. The plunge radius is obtained by
solving:

dVeff

dr
= 0 = r2 − 2L̃2rsr + 3L̃2r2

s . (1.11)

The two solutions r± = rs

[

L̃2 ± L̃
√

L̃2 − 3
]

represent the global maximum of Veff(r)

at r− = rplunge (black thick line in Fig. 1.4) and the local minimum of the curve at r+.

Unstable circular orbits exist only for r− > 1.5rs and L̃ >
√

3 since limL̃→∞

(

rplunge

)

=

1.5rs. Circular orbits which are stable can only exist for r+ > 3rs and L̃ >
√

3. The
maximal conversion efficiency, ǫ, of gravitational binding energy into heat/radiation
of an almost circular accretion flow (L̃ (r) ∝

√
r) around a non-rotating black hole is
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therefore restricted by the limit3:

ǫ = ∆E/
(

mc2
)

=
√

Veff

∣

∣

∣

r→∞
−
√

Veff

∣

∣

∣

r=3rs,L̃=
√

3

= 1 −
√

(

1 − rs

3rs

)(

1 + 3
r2

s

9r2
s

)

≈ 0.06. (1.12)

Accreted matter on circular orbits which passes this limit will enter the unstable
regime. From then on, gravitational binding energy can no longer be converted into
heat/radiation as the matter plunges within a light crossing timescale rs/c into the
black hole. The innermost stable circular orbit (ISCO), which also marks the inner
boundary of the accretion disk, can be (indirectly) inferred via X-ray spectroscopy of
accreting black holes (see e.g. Reynolds 2013; Brenneman 2013 and references for a
review on this topic).

Particles which approach the black hole with a specific angular momentum less
than L̃ =

√
3 will always be captured. In this case the effective potential becomes a

monotonic decreasing function (see Figure 1.4) and there are no stable orbits altogether.

1.2.3. Loss Cone Trajectories

The plunge radius, rplunge, which is always larger than 1.5 times the Schwarzschild
radius can therefore be used in SMBH growth studies as the effective boundary of the
black hole i.e. as a general capture criterion. As discussed in § 1.2.2, there is no way a
particle (without self propulsion) can prevent its final infall, once it passed rplunge in

the direction of the black hole i.e. r < rplunge. Given the case that L̃ <
√

3, one only has
to check whether the particle is moving in direction of the black hole. The parameter
rplunge depends on the velocity and position vectors~r and ~v of each particle. A general
relativistic capture criterion can be defined as:

{

r < rplunge = rs

[

L̃2 − L̃
√

L̃2 − 3
]

, L̃ =
∣

∣

∣

m~r×~v
mrs

∣

∣

∣
= 1

rs
|~r ×~v| : L̃ ≥

√
3

~r ·~v < 0 : L̃ <
√

3
(1.13)

However, nature is complex and the usage of point particles and Equation 1.13 in
numerical investigations must be considered carefully. In reality, a Sun like or red giant
star would be tidally disrupted outside the Schwarzschild radius (or even outside the
plunge radius, rplunge) of a M• < 108M⊙ black hole. Significant amounts of mass can
be blown away in such tidal disruption events (TDEs) and the observed energy release
is enormous (Zauderer et al., 2011). In addition to that a star might become gravita-
tionally unbound close to a black hole without being on a trajectory of the kind T4

3The amount of extractable energy (measured at infinity) for maximal rotating black holes lies between
∆E/

(

mc2
)

≈ 0.04 (retrograde motion in the equatorial plane) and ∆E/
(

mc2
)

≈ 0.4 (prograde motion
in the equatorial plane) (Novikov & Frolov, 1989). High resolution sub-mm VLBI observations of M87
revealed that a retrograde accretion flow is not compatible with observations subject to a source size of
5.5rs. This is smaller than the innermost stable circular orbit for retrograde accretion when corrected for
gravitational lensing effects (Doeleman et al., 2012). A spinning black hole with a prograde accretion
disk seems to match the observations.
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1.2. Trajectories around Black Holes

(§ 1.2.2). In general, the physics behind TDEs are complex. Their occurrence depends
on many parameters (e.g. M•, its spin, stellar structure) (MacLeod et al., 2012). The us-
age of a disruption radius rdis > rplunge > rs instead of the general relativistic criterion
(Equation 1.13) might be a more reasonable strategy for numerical tidal disruption in-
vestigations of solar like stars around black holes less massive than M• < 108M⊙. The
disruption radius is defined as:

rdis = gr⋆

(

M•
M⋆

) 1
3

, (1.14)

where r⋆ is the radius and M⋆ the mass of the star. The parameter g accounts for
several physical effects like the spin of the black hole (Kochanek, 1992; Lai et al., 1994;
Ivanov & Chernyakova, 2006). In a first order approximation, g = 1. The situation
changes when treating compact remnants and/or very massive black holes in excess
of 108M⊙. In this case the tidal disruption radius, rdis, lies within the event horizon of
the black hole and Equation 1.13 instead of Equation 1.14 should be used. The relevant
radius, rcap, where the object becomes either swallowed or tidally unbound has to be
defined in consideration of the numerical problem.

Regardless of the exact fate of the stars around SMBHs (i.e. if they are disrupted or
swallowed as a whole) one can introduce the concept of the loss cone. The loss cone
defines a special region in velocity space which is defined by the loss cone angle, θlc.
The symmetry axis of θlc points in direction of the SMBH and a particle on a loss cone
trajectory will either be disrupted, swallowed or scattered onto a different orbit (if there
is a binary SMBH) within one orbital timescale, i.e. crossing time Tcross = r/v. The
concept behind the loss cone is illustrated in Figure 1.5.

Figure 1.5. The concept of the loss cone. A star of mass M⋆ will be swallowed as a whole
or tidally destroyed when crossing a characteristic radius, rcap. Depending on the mass of the
black hole, rcap can either be the plunge radius, rplunge, from which the plunge into the black
hole is inescapable (Equation 1.13), or the tidal disruption radius, rdis (Equation 1.14). The
figure is taken from Brockamp et al. (2011).

One great challenge in astrophysics is the understanding of the related evolution of
cosmic structures and massive black holes. It is important (i) to uncover all processes
which are responsible for the refilling of the black hole loss cone and (ii) to understand
how growing black holes affect their environment. Finally (iii), to quantify the amount
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of mass on loss cone orbits in different cosmic environments. In Section 2.1 empirical
scaling relations between the properties of galaxies (§ 2.1.1) and the mass of their central
SMBHs (§ 2.1.2) will be introduced. Black hole scaling relations yield important obser-
vational constraints on all proposed SMBH growth mechanisms. Afterwards, some of
the proposed black hole growth processes are summarized in Section 2.2. This allows
to place the results of the underlying PhD study in the broader picture of black hole
growth processes.
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Chapter 2

SMBH Scaling Relations

& Growth Processes

2.1. SMBH Scaling Relations

One of the most important discoveries concerning the related evolution of galaxies
and their central black holes was made once high resolution telescopes, e.g. the Hub-
ble Space Telescope (HST), became operational. The observed correlations between
SMBHs and galaxies contain informations about their common evolution. In the fol-
lowing sections, basic properties of galaxies (§ 2.1.1) and SMBH mass measurement
methods (§ 2.1.2) will be presented before summarizing several important SMBH scal-
ing relations (§ 2.1.3).

2.1.1. Galaxies

Definition

The answer to the question “what defines a galaxy” is anything but trivial. Following
the suggestions by Kroupa (1998) and Forbes & Kroupa (2011), it is assumed for the
sake of this PhD study that a galaxy is a bound and dynamically stable stellar system
with a two-body relaxation timescale, Trel, greater than one Hubble time, H−1

0 . Trel is the
time until the memory of initial conditions are lost by gravitational deflections between
field stars. The smoother the potential of a galaxy, the longer is the relaxation timescale.
As a first order approximation, Trel can be defined as:

Trel ≈
0.1N

ln (N)
Tcross, (2.15)

where N is the number of stars and Tcross = R/v is the typical crossing timescale of
the galaxy. The derivation of Equation 2.15 can be found in numerous textbooks, e.g.
Binney & Tremaine (2008). Merging or interacting stellar systems out of the equilib-
rium state are called “interacting/merging galaxies” if their progenitors fulfilled these
conditions.
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General Properties

Galaxies cover a huge range of masses and sizes, from dwarf elliptical galaxies
with Mgal = 107M⊙ and effective radii Re ≈ 100pc up to brightest cluster galaxies

(BCG) with masses approaching Mgal = 1013M⊙ (e.g. the BCG inside Abell 3827, see
Carrasco et al. 2010) and Re up to several dozen kpc. The effective radius Re is the
projected (2D) radius within which half of the optical light is emitted. Galaxies are
composed of stars and stellar remnants. Depending on their type they also contain an
interstellar medium (ISM) in several physical states, from a dusty and cold molecular
phase up to a hot X-ray emitting plasma. Their metallicity content is positively
correlated to the galaxy mass. Another very important component of a galaxy is an
entity which is called “dark matter (DM)”. Dark matter within galaxies and even larger
structures should be defined as the discrepancy between the expected gravitational
dynamics derived from the total baryonic mass content and actual observations. Up to
now there is no general consensus whether the nature of DM should be explained by (i)
weakly interacting particles (WIMPs) (Feng, 2010), (ii) condensed galaxy sized scalar
fields from the early universe (Magaña & Matos, 2012), or (iii) a modification of the
known laws of gravity in the weak curvature regime (Milgrom, 1983; Kroupa, 2012).
Apart from that, galaxies often contain star formation regions, star clusters, spatially
extended globular clusters systems (Harris et al., 2013) and supermassive black holes
at their centers (Magorrian et al., 1998).

Galaxies can be classified into three morphology types (elliptical, spiral/disk and
irregular) which themselves can be divided into several subclasses (Hubble sequence).
Most galaxies in the universe with stellar masses above Mgal = 1010M⊙ are rotationally
supported disk galaxies (Kroupa, 2014). Nevertheless, the main focus of this PhD study
lies on elliptical galaxies, hence the physical properties of spiral and irregular galaxies
will not be the subject of this discussion.

Elliptical Galaxies

Elliptical galaxies are commonly observed in high density environments like galaxy
clusters. Only at first glance, elliptical galaxies seem to be featureless stellar systems
with old stellar populations. Indeed, they have a complex internal structure and often
display shells or ripples (Malin & Carter, 1980) revealing their turbulent formation and
interaction history. Contrary to spiral galaxies, the present-day star formation rate in
elliptical galaxies is strongly reduced. Spectacular exceptions are some of the brightest
cluster galaxies inside cooling flow clusters (e.g. the Phönix cluster, see McDonald et al.
2012) with huge reservoirs of molecular gas (Edge, 2001), star formation rates as high as
102 − 103M⊙yr−1 (Hicks & Mushotzky, 2005; McDonald et al., 2012) and filamentary
structures around them (Fabian et al., 2008). The “typical” elliptical galaxy does
not contain significant amounts of cold gas but is often embedded within an X-ray
emitting halo. The integrated X-ray emission stems from discrete stellar sources like
low-mass X-ray binaries (LMXBs) and hot gas. In the most massive elliptical galaxies,
a corona of hot plasma is responsible for the majority of the total X-ray luminosity
(Brown & Bregman, 2001).
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2.1. SMBH Scaling Relations

Observations of elliptical galaxies also reveal a correlation between the effective ra-
dius, Re, total luminosity, L, and line of sight velocity dispersion, σ||. The line of
sight velocity dispersion is measured from Doppler broadened spectral lines. The line
broadening is mainly subject to the motion of stars in the gravitational potential of the
galaxy and due to numerous orbiting binary stars within these galaxies. Following
Jorgensen et al. (1996), this empirical relation has the form:

log10

(

Re

kpc

)

= (1.24 ± 0.07) log10

(

σ||
km/s

)

−

(0.82 ± 0.02) log10

( 〈I〉e

L⊙/pc2

)

+ ζ, (2.16)

where instead of L, the mean surface brightness, 〈I〉e ≡ 0.5L/
(

πR2
e

)

(Binney & Tremaine, 2008), is often used. The parameter ζ is a calibration con-
stant. Elliptical galaxies populate a plane within a 3D coordinate system with axes
log10 Re, log10 σ|| and log10 〈I〉e. This plane is known as the fundamental plane of
elliptical galaxies and is defined in Equation 2.16. The fundamental plane and some
of its 2D projections (such that the projected plane resembles a line) allow to evaluate
physical quantities of elliptical galaxies by only measuring a few parameters. The
most famous 2D projections are the Faber-Jackson and Kormendy relation. From the
Faber-Jackson relation, which correlates σ|| and L, one can obtain the total luminosity
of the galaxy from spectral line broadening, i.e. σ||. It is particularly important for
inferring galaxy distances. The Kormendy relation correlates the surface brightness,
Ie (R = Re), to the half light radius, Re.

Elliptical galaxies have different shapes Eκ, where κ = 10 · (1 − b/a), a is the semi-
major axis and b is the semi-minor axis. The deprojected 3D shape can be symmetric,
axis-symmetric (prolate or oblate) or triaxial. Very massive elliptical galaxies often
have a triaxial structure (Bak & Statler, 2000; Fasano et al., 2010).

There are several ways how the overall (2D) surface brightness profiles of elliptical
galaxies can be approximated by analytical regressions. Among them are the Sérsic and
the Nuker law. Following Sersic (1968) and Ciotti & Bertin (1999), the Sérsic profile has
the form:

In(R) = Ie exp

{

−bn

[

(

R

Re

) 1
n

− 1

]}

. (2.17)

The Sérsic index, n, specifies the optical light concentration towards the center of the
galaxy. It has typical values in the range 1 < n < 10. The parameter bn is a dimension-
less normalization quantity which is defined in such a way that the emitted light within
Re contributes half of the total luminosity. Ie corresponds to the surface brightness at
Re. Alternatively, the surface brightness profile can also be well approximated by the
Nuker profile (see e.g. Lauer et al. 1995, 2007). The Nuker profile is based on a power-
law regression with inner and outer slope parameters, γ and β, as well as a parameter
α controlling the sharpness of the transition (Lauer et al., 1995):

I(R) = 2(β−γ)/α Ib

(

Rb

R

)γ
[

1 + (R/Rb)
α](γ−β)/α

(2.18)
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The break radius, Rb, is located at the intersection of both profiles where the curvature
of the brightness profile is maximized. Ib is the brightness at Rb. Depending on α, β, γ
and the break radius, Rb, one can introduce another characteristic radius, the so called
cusp radius, Rγ. It is relevant for e.g. black hole related research and is defined to be:

Rγ ≡ Rb

(

1
2 − γ

β − 1
2

)
1
α

. (2.19)

In spite of these very general properties of elliptical galaxies, there are distinctions
between low and high mass elliptical galaxies. Low mass elliptical galaxies which
are fainter than MV > −20.5 typically have disky isophotal shapes and steeply ris-
ing density profiles towards the center as given by Equation 2.17 or by Equation 2.18
in form of an unresolved break radius. They are also subject to rotation with dimen-
sionless rotation parameters vrot/σ|| ≥ 0.51 (Kormendy & Bender, 1996; Faber et al.,
1997). The more massive and luminous elliptical galaxies (MV < −22) have a boxy ap-
pearance, i.e. their isophotes (=lines of constant brightness) resemble rectangles. These
elliptical galaxies are mostly pressure-supported, i.e. “hot” stellar systems without sig-
nificant rotation (Faber et al., 1997). The stars move along trajectories without a com-
mon sense of rotation. Often there is a pronounced transition or break in the overall
surface-brightness profile I (r) at a certain radius Rbreak (Trujillo et al., 2004; Lauer et al.,
2007; Kormendy & Bender, 2009) when compared to Equation 2.17. The break radius
can also be determined by using a Nuker law (Equation 2.18). Usually, the size of
the break radius corresponds to a few percent of Re. The brightness profile within
Rbreak resembles a plateau and is much flatter than that of the outer stellar halo. If
the central stellar light profile within Rbreak becomes shallower than a power-law pro-
file, I(R) ∝ R−γ, with index γ < 0.3, the galaxy is termed to be a core-type galaxy
(Lauer et al., 1995). Break radii of galaxies like M87 or M60 are of the order of a few 100
pc (Lauer et al., 2007). In some brightest cluster galaxies Rbreak can reach several kpc in
size (McNamara et al., 2009; Postman et al., 2012), up to 10-20kpc in the most extreme
brightest cluster galaxies like IC 1101 (Dressler, 1979) and Holm 15A (Lopez-Cruz et al.,
2014). The difference in total luminosity which can be obtained by subtracting the
measured light profile from the outer profile being extrapolated inwards, is called the
light deficit, Ldef. A cored density profile of a real galaxy is shown in Figure 2.6. It is
taken from Postman et al. (2012)4. The break radius which can be either obtained from
a core-Sérsic fit (Trujillo et al., 2004) or a Nuker law fit (Lauer et al., 1995) should not
be confused with the cusp radius, Rγ, which lies inside Rbreak and which is defined
in Equation 2.19. For the sake of this study the core radius is defined to be the cusp
radius as long as the inner power-law profile is flatter than I(R) ∝ R−0.3. Most fa-
mous core formation scenarios involve binary or multiple SMBH evolution processes
(Makino 1997; Merritt & Poon 2004; Kulkarni & Loeb 2012, § 2.2.3). Elliptical galaxies
with the largest cores are therefore promising candidates for hosting the most massive
SMBHs in the universe, sometimes with masses exceeding 1010M⊙ (McNamara et al.,
2009; McConnell et al., 2011; Hlavacek-Larrondo et al., 2012) and maybe even 1011M⊙
(Lopez-Cruz et al., 2014).

4Source downloaded from the arXiv preprint server.
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Figure 2.6. The cored density profile (black dots) of the brightest cluster galaxy inside the
Abell 2261 galaxy cluster. The thin dotted line represents a Sérsic n=4 profile given by Equa-
tion 2.17. The arrows mark the position of the break radius. The area between the thin dotted
profile which is obtained from a Sérsic fit of the stellar envelope and the measured brightness
profile (solid black line) corresponds to the light deficit, Ldef ≈ 2 · 1010L⊙. The figure is taken
from Postman et al. (2012).

2.1.2. SMBH Mass Measurements

All direct SMBH mass measurements rely on the temporal/kinematical properties of
luminous matter close to the black hole. From the inferred velocities, these methods
apply Newton’s laws of gravity to infer the central SMBH mass. A complete description
of all existing SMBH mass determination techniques is far beyond the scope of this PhD
thesis. Hence, only the three most important methods are briefly mentioned.

• MASERs: Under the right circumstances (e.g. a radio continuum emitting AGN
and the presence of particular molecules), some SMBHs are surrounded by cir-
cumnuclear disks containing MASERs. A MASER is a molecular cloud with
stimulated spectral line emission at a particular frequency. The characteristic
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frequency of these MASERs becomes shifted by the Doppler effect due to their
motions around the black hole. In this way one can constrain the central poten-
tial/SMBH mass and in some cases the geometry of the disk itself. In the galaxy
NGC 4258 (M 106) several MASERs orbit a M• = 3.79 (±0.01) · 107M⊙ black hole
(Herrnstein et al., 2005). The disk which contains these MASERs is not flat but
warped (Herrnstein et al., 2005). MASER spectroscopy belongs to the most pre-
cise SMBH mass measurement techniques.

• Gas Dynamics: Although elliptical galaxies are usually depleted of significant
amounts of dust and molecular gas, roughly 20% of them (Tran et al., 2001) har-
bor nuclear dusty disks within their central regions (e.g. M 87 or NGC 4261).
Even without MASERs, such tori can be used as tracers of the gravitational po-
tential and allow to determine the mass of the central dark object. This is done
by finding the model which reproduces the spectroscopically inferred kinemat-
ics most accurately. In these models the central SMBH mass and disk inclination
are treated as free parameters. The density profile (required to evaluate the grav-
itational contribution from surrounding matter) is obtained from the observed
surface brightness profile. Dust/gas disks are well suited for spectroscopic mea-
surements due to their high surface brightness. Furthermore, their kinematics can
be probed to small scale distances (e.g. 40 pc for M87, Walsh et al. 2013) where the
Keplerian contribution of the black hole potential strongly dominates over the
enclosed stellar/gas mass. The measurement of the Keplerian rise in the rota-
tion velocity is one reason why this technique belongs to the most robust black
hole mass determinations. However, the kinematics might be influenced by non-
gravitational forces and in- or outflowing gas complicates the interpretation of
the measurements.

• Stellar Dynamics: The motion of a star is governed by the overall gravitational
potential. In the Galactic Center, where the nearest SMBH is located, the study
of individual stellar Keplerian orbits allows to constrain the central black hole
mass to be M• = 4.31 (±0.06 ± 0.36) · 106 M• (Gillessen et al., 2009). The sec-
ond (larger) error value results from distance uncertainties. SMBH mass mea-
surements at extragalactic distances become more challenging as individual stel-
lar orbits can not be resolved. Instead, these measurements have to rely on
the velocity dispersion profile which is obtained from broadened spectral lines.
Secure SMBH mass determinations based on stellar dynamics can only be per-
formed if the resolution scale is significantly smaller than the sphere of influence,
Rinfl ≡ GM•/σ2

||. This radius marks the projected distance where the circular

velocity equals the line of sight velocity dispersion, σ||. Only deep within Rinfl,

the Keplerian r−0.5 rise in the velocity profile becomes evident. Merritt (2013)
suggests that a resolution scale of at least 0.1Rinfl is required in order to detect
the Keplerian rise in the velocity profile caused by the central black hole. SMBH
mass measurements based on stellar dynamics become even more ambitious in
very massive core-type elliptical galaxies. Here, the low central surface bright-
ness complicates efforts to obtain spectral information because stars deep within
Rinfl contribute much less to the line of sight velocities. If the Keplerian rise in
velocity is not evident in the data, the contribution of the SMBH mass has to be
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2.1. SMBH Scaling Relations

disentangled from the rest of the galactic matter. In this case additional factors
must be included in the modeling: (i) The velocity distribution in cored density
profiles can be tangentially biased (Quinlan & Hernquist, 1997; McConnell et al.,
2012) i.e. dominated by circular orbits which reduces the observed line of sight
velocity dispersion. (ii) In anisotropic and triaxial host galaxies the radial ve-
locity dispersion depends on the line of sight and stars occupy different orbits
(van den Bosch & de Zeeuw, 2010). Finally (iii), the extended matter distribution
might also display a varying mass to light ratio, Υ, along r (Gebhardt & Thomas,
2009; McConnell et al., 2013). In some cases stellar dynamical mass determina-
tions differ from those obtained from gas dynamical methods. The central SMBH
mass inside M87 ranges from M• = 3.5 ±0.9

0.7 ·109M⊙ (gas dynamics) (Walsh et al.,
2013) up to M• = 6.6 ±0.6

0.6 ·109 M• (stellar dynamics) (Gebhardt et al., 2011).

SMBH mass measurements which are based on pure general relativistic effects instead
of conventional Newtonian based potential calculations will become feasible in the
near future. Intercontinental sub-mm interferometry (also known as the “Event
Horizon Telescope”) will open an independent mass measurement method from direct
size constraints of the SMBH shadow for a few particular cases of nearby and radio
loud sources (Doeleman et al., 2009; Johannsen et al., 2012). The shadow of a black
hole corresponds to the last stable orbit for massless particles (i.e. 1.5rs, Section 1.2.2)
and appears as a dark silhouette within the bright accretion disk. It is related to the
mass and spin of the black hole and appears enlarged by gravitational lensing effects.

2.1.3. SMBH Demographics

M• − L, σ, Mbulge Relations

Empirical SMBH scaling relations yield valuable information on the mutual evolution
histories of galaxies and their central SMBHs. One of the first SMBH scaling relations
was reported by Kormendy & Richstone (1995). They discovered that central SMBH
masses positively correlate with the absolute B-band bulge magnitude. Follow-up
work not only increased the sample of SMBH measurements but also demonstrated
that other wavelength bands, especially the K-band, are much better suited for the
usage in luminosity-SMBH scaling relations. In the K-band, the (red) bulge compo-
nent can be disentangled from the bluish disk structure and the scatter in M• − LK

becomes smaller than in the empirical M• − LB relation (Marconi & Hunt, 2003;
Ferrarese & Ford, 2005). This also means that the central SMBH mass correlates more
closely with the bulge component of a galaxy.

Of similar impact as M• − L is a different scaling relation which was discovered in
the year 2000 by Ferrarese & Merritt (2000) and Gebhardt et al. (2000). It is known
as the M• − σ relation and was continuously updated in the following years by sev-
eral studies, e.g. Tremaine et al. (2002); Ferrarese & Ford (2005); Gültekin et al. (2009);
Schulze & Gebhardt (2011); McConnell & Ma (2013). According to McConnell & Ma
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Figure 2.7. The figure is taken from McConnell & Ma (2013). It shows the most recent compi-
lation of galaxies used for the M• − σ relation including disk galaxies (blue), elliptical galaxies
(red) and brightest cluster galaxies (green). Evidently, BCGs contain the most massive black
holes. The individual data points are also labeled with respect to the used SMBH mass measure-
ment method. As can be seen, SMBH masses obtained from the MASER spectroscopy technique
(red and blue triangles) have the smallest y-error values (§ 2.1.2).

(2013), the effective velocity dispersion, σ, can be defined as:

σ2 =

∫ Re

Rmin
I(r)

(

v2 (r) + σ2
|| (r)

)

dr
∫ Re

Rmin
I(r)dr

, (2.20)

where the radial velocity, v(r), and the line of sight velocity dispersion, σ||(r), are inte-
grated from Rmin out to the effective radius, Re. There is no general consensus whether
to use Rmin = 0 or Rmin = Rinfl (McConnell & Ma, 2013). In the former case, σ might
be strongly biased by the high central velocities in the immediate vicinity of the black
hole. I(r) is the surface brightness profile. The most recent M• − σ power-law re-
gression (McConnell & Ma, 2013), including late and early type galaxies and by using
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2.1. SMBH Scaling Relations

Rmin = Rinfl, is given by:

log10

(

M•
M⊙

)

= 8.32 (±0.05) + 5.64 (±0.32) log10

(

σ

km/s

)

. (2.21)

This relation is also shown in Figure 2.7. Figure 2.7 is taken from McConnell & Ma
(2013). Inasmuch as the velocity dispersion σ and total luminosity are tracers of
the total bulge mass, a direct relation between Mbulge and M• is also reasonable.
McLure & Dunlop (2002); Marconi & Hunt (2003); Häring & Rix (2004) found that the
central SMBH mass constitutes ≈ 0.0012 − 0.002 of the total bulge mass.

Scaling relations like M• − L, σ, Mbulge point to a common evolution scenario of both
central black holes and galaxies. Nowadays, there exist several different explanations
for the origin of these empirical relations. They range from self-regulated-gas-accretion
models (Silk & Rees, 1998), scenarios where the tidal disruption of stars drive the
growth of massive black holes (Zhao et al., 2002) up to mass assembly via hierarchical
merger events in cold dark matter halos (Malbon et al., 2007; Jahnke & Macciò, 2011).
In the latter scenario even extreme mass ratios, M•/Mbulge, average out and the mean
becomes similar to the observed scaling relations. However, there is evidence against
these Lambda-CDM based hierarchical merger models (McConnell & Ma, 2013). They
generically predict a decreasing amount of scatter towards the high mass end of the
SMBH/galaxy population (subject to an enhanced merger rate) whereas observations
indicate a constant scatter (McConnell & Ma, 2013). See also Shannon et al. (2013) for
constraints on the gravitational wave background from pulsar timing. The obtained
limits seem to be incompatible with Lambda-CDM based predictions. SMBH growth
processes will be investigated in more detail in Section 2.2. Additionally, § 2.2 estab-
lishes the relationship to the work presented in this PhD thesis.

M• − Ldef, Rbreak, NGC Relations

Besides the M• − L, σ, Mbulge relations, there are other empirical correlations which
yield insights into the interaction between galaxies and their central SMBHs. Scal-
ing relations between M• and properties of the galactic centers were reported by
Kormendy & Bender (2009) and Rusli et al. (2013). Several of their results were also
discussed in previous studies, e.g. Lauer et al. (2007). These scaling relation correlate
M• with the light deficit, Ldef, the size of the break radius, Rbreak, or the (core-)cusp ra-
dius, Rγ (§ 2.1.1). In one popular scenario the observed shallow core profiles of massive
galaxies are carved out by binary or multiple SMBH coalescence after merger events
of whole galaxies. The SMBHs reduce first their angular momentum relative to each
other by dynamical friction forces when moving through an entity of field stars. Once
the orbital speeds of the black holes become larger than the velocity dispersion of their
host galaxy, they enter the second phase, sometimes called the ejection driven phase.
In this phase the two black holes form a hard binary which ejects stars (preferentially
on eccentric orbits) and carves out a central stellar mass deficit. Finally, gravitational
wave emission becomes dominant and causes the black holes to coalesce. Remaining
stars move preferentially on circular orbits (Quinlan & Hernquist, 1997). More detailed
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information on SMBH merging processes are presented in Section 2.2.3. Therefore,
indirect evidence for black hole merging processes comes from core-type galaxies
with a tangentially biased velocity distribution (= dominated by circular orbits) within
their inner most center. An impressive example is the 800pc core of NGC 4889 with
a tangentially biased velocity dispersion and a M• ≈

(

2.1±1.6
1.5

)

· 1010M⊙ black hole
(McConnell et al., 2012). The galaxy experiences further dynamical heating in its core
if the kick velocity of the merged black hole, through the anisotropic emission of gravi-
tational waves, is large. The central light/mass deficit as well as the core size becomes
even larger (Boylan-Kolchin et al., 2004; Merritt & Poon, 2004). The M•− Ldef, M•− Rγ

and M• − Rbreak relations will play a role in constraining merger histories of galaxies
which can then be confronted with predictions of cosmological simulations. However,
it should be noted that there are additional processes which might also contribute in
the shaping of the observed shallow light profiles of very massive elliptical galaxies.
These involve strong quasar feedback, quenching the star formation rate during the
early evolution of elliptical galaxies (Martizzi et al., 2012) and star-accreting SMBHs
(Merritt & Vasiliev, 2011). Due to its relevance for the underlying PhD thesis, the last
aspect will be discussed in more detail in § 2.2.2.

Another empirical scaling relation with high significance for this work was unveiled
by Burkert & Tremaine (2010) and Harris & Harris (2011). Their discovery was a linear
relationship between the total number of globular clusters, NGC, and the mass of
the central black hole. There is ongoing debate, whether M• and NGC are indirectly
related through the bulge mass of their host galaxies (Rhode, 2012) or if GCs contribute
directly to SMBH feeding processes (Capuzzo-Dolcetta & Vicari, 2005; Gnedin et al.,
2014). Globular clusters belong to the oldest fossils of galaxies. They represent the tip
of the iceberg of an ancient population of star clusters which have been eroded since
then and which formed the halo star population (see e.g. Kroupa & Boily 2002 and
Chapter 4). The temporal evolution of these cluster systems, particularly in relation to
different galactic environments and SMBH masses, will be presented in Chapter 4 of
this PhD study.

2.2. SMBH Growth Processes

The most massive black holes must have grown quickly. Optical and infrared surveys
like the Sloan Digital Sky Survey (SDSS) have uncovered the existence of quasars with
accretion disc luminosities LD > 1013L⊙ up to redshifts of z ≈ 7. The current record
holder is the quasar ULASJ1120+0641 with a luminosity of LD = 6 · 1013L⊙ at redshift
z = 7.1 (Mortlock et al., 2011). The mass of its central black hole can be independently
estimated by using the Eddington limit5:

LEdd = 1.3 · 1038

(

M•
M⊙

)

erg/s ≈ 33000

(

M•
M⊙

)

L⊙ (2.22)

5At the Eddington limit the radiation force (i.e. pressure force of the photons) counterbalances the gravi-
tational force of the black hole. The Eddington limit applies to spherical symmetric cases.
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2.2. SMBH Growth Processes

as well as by applying a technique which bases on the measured MgII line width. Emis-
sion lines like MgII are broadened due to high velocities (≈ 0.01c) in the immediate
vicinity of the SMBH and can be used as tracers of its mass. Both methods predict a
central SMBH mass of M• = 2 · 109M⊙ at a time when the universe was only 770 Myr
old (Mortlock et al., 2011). However, the exact age depends on the cosmological pa-
rameters which are assumed to be Ωm = 0.26, ΩΛ = 0.74, H0 = 72km/s/Mpc. Massive
black holes like the one in ULASJ1120+0641 pose a challenge to all proposed SMBH
formation scenarios owing to a Salpeter timescale which is difficult to reconcile with
initial seed black holes of only a few solar masses. This is the typical remnant mass of
an O-star. The Salpeter timescale (Salpeter, 1964; Ghisellini et al., 2013):

ts = 450

(

ǫD

1 − ǫ

)(

LEdd

LD

)

Myr, (2.23)

is the time until the black hole doubles its mass through gas accretion. Following
Ghisellini et al. (2013), ǫ = ǫB + ǫD is the total efficiency parameter. It consists of a
disk component, ǫD , i.e. the energy conversion efficiency within the accretion disk and
a magnetic component, ǫB, which is the energy conversion efficiency of gravitational
binding energy into magnetic fields/jets. By assuming ǫ = ǫD = 0.1, a M• = 10M⊙
seed black hole as well as Eddington limited gas accretion, the black hole would
need 27-28 Salpeter timescales (1.4 · 109 years) to grow up to M• = 2 · 109M⊙. This is
twice as much as its estimated age. Either, the initial seed black hole was much more
massive (of the order of 105 M•), the energy conversion factor is very low (ǫ < 0.1),
or a significant amount of gravitational binding energy is dissipated away in form
of channelized magnetic outflows (ǫB ≥ ǫD) (Fabian et al., 2014). Rapidly rotating
black holes complicate this problem owing to efficiency parameters which can in
principle rise up to ǫ = 0.4. However, they may also be efficient in converting a
significant amount of accretion disc energy into magnetic fields/jets and thus decrease
the Salpeter timescale. If e.g. ǫ = 0.1 is equally distributed into ǫB and ǫD, the Salpeter
timescale is sufficiently short to grow up billion solar mass black holes very rapidly.

In addition, there are studies which claim to explain the emergence of massive
(M• > 10M⊙) initial seed black holes. Massive seeds would facilitate the growth of
black holes up to 109M⊙ in the highly redshifted universe. The most famous ideas
are: (i) black hole remnants from quasistars or population III stars (Dotan et al., 2011;
Latif et al., 2013), (ii) runaway mergers in dense stellar systems (Portegies Zwart et al.,
2004; Devecchi & Volonteri, 2009) and (iii) the direct collapse of protogalactic gas
clouds (Latif et al., 2013).

In the following sections I will not continue to focus on specific formation theories of
initial seed black holes but instead on SMBH growth processes in general. There exists
a variety of different physical processes capable of refilling empty loss cone trajectories
with different forms of matter. Several of these mechanisms act in combination
but their efficiency also depends on their astrophysical environment. They can be
grouped into three different regimes: Gas accretion, tidal disruption of stars and SMBH
merging processes. The forth section (§ 2.2.4) summarizes two new ideas related to
the growth of SMBHs. These concepts, still at the very earliest stages of development,
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were uncovered by the author of this thesis. Only one of these ideas is published
in Brockamp et al. (2014). The following sections provide the link between my own
results and how these outcomes have to be related to a broader scientific context.

2.2.1. Gas Accretion

Bondi Accretion of Hot Gas

The simplest forms of gas accretion models were already developed in the forties, at
this time they aimed to explain the growth of stars instead of black holes. Pioneered by
Bondi & Hoyle (1944) and Bondi (1952), these spherical symmetric accretion flows are
also known as Bondi-Hoyle accretion models. They quantify the accretion rate onto a
compact object embedded within a non-rotating gas atmosphere which is stabilized by
pressure. Nowadays, Bondi-Hoyle accretion models are also applied to SMBHs located
in the central and densest parts of the hot (106−8K) gaseous environment of elliptical
galaxies, galaxy groups or even whole galaxy clusters. The gaseous atmosphere has

a variable sound velocity, vs(r), and satisfies the equation of state, p/p∞ = (ρ/ρ∞)λ

(Bondi, 1952). Here p∞ and ρ∞ are the pressure and density at large distances away
from the compact object and λ is a positive constant. By assuming steady state con-
ditions such that the accretion rate does not influence the gravitational field of the
compact object, the amount of inflowing mass is Ṁ = 4πr2

s ρ(rs)v(rs) (Bondi, 1952).
The radius rs is the sonic point at which the ingoing flow turns from sub- to super-
sonic speeds. Once the gas passes this sonic point, its plunge into the central object is
unavoidable as long as one neglects additional heating processes like SMBH jets. By
combining the equation of state with Bernoulli’s equation for fluid dynamics, explicit
expressions for vs(rs), ρ(rs), rs and Ṁ can be derived6:

Ṁ = 4πc(λ)
ρ∞G2M2

•
v3

s,∞

. (2.24)

Here, c(λ) is a function depending solely on λ (e.g. c(5/3) = 1/4)) and vs,∞ is the
sound velocity at large distances. As pressure and temperature are related over the
ideal gas equation, the Bondi accretion rate can also be expressed in terms of gas
temperature. The characteristic radius where the gravitational escape velocity exceeds
the ambient sound velocity is known as the Bondi radius, rb ≡ 2GM•/v2

s,∞. Inside rb,
physical gas properties like density and sound velocity increase. The Bondi radius is
related to the sonic point by rs/rb = (5 − 3λ) /8. For a few particular cases of very
massive and nearby black holes, the Bondi radius, being of the order of approx. 100
pc, can be resolved with the Chandra telescope (e.g. inside NGC 3115, Wong et al. 2011).

The concept behind Bondi accretion becomes complicated when considering
rotating gas atmospheres. Generally, the overall accretion rate becomes affected

6A detailed derivation of the Bondi accretion rate can be found in the lecture notes ”Radiative Gas Dy-
namics (Winter Quarter 2011)“ from B. Ryden, Ohio State University. The following equations con-
cerning (hot) Bondi accretion are taken from there.
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(Narayan & Fabian, 2011), and depending on the gas viscosity a central torus or accre-
tion disk might develop due to the angular momentum barrier (see Narayan & Fabian
2011 and references for more details). While the occurrence of luminous and radia-
tively efficient accretion discs around SMBHs is suppressed, jet formation is favored
(Fabian & Rees, 1995; Allen et al., 2006). Nuclear X-ray luminosities are often orders
of magnitude below their theoretical maximal allowed values. See Wong et al. (2011)
for the peculiar case of NGC 3115. These are the typical characteristics of Advection
Dominated Accretion Flows (ADAFs). ADAFs exist in two states. In this first regime
which is relevant for the physics of active galactic nuclei (AGNs) in the local universe,
the gaseous medium is optically thin and the cooling time of the gas exceeds the infall
timescale. In the second regime the gas is optically thick and the photon diffusion
time is much shorter than the inflow timescale. In both cases a large fraction of
thermal energy is advected. Black holes with their event horizons (i.e. negative heat
capacities) are the only objects capable of swallowing (kinetic) energy without any
visible signs in contrast to objects whose interiors are not disconnected from our
spacetime (Narayan & McClintock, 2008).

However, even though ADAFs are radiatively inefficient, they are capable of
generating powerful jets. The observed jet powers correlate with Bondi accretion
rates obtained from observations of the gas temperature, density and SMBH mass
(Allen et al., 2006). It is therefore believed that radio loud elliptical galaxies with
massive central SMBHs are fed by Bondi accretion from a hot gaseous atmosphere.
However, it is under debate whether Bondi accretion is also sufficient enough to
power jets of the most energetic radio galaxies (Pjet ≈ 1046erg/s) in the local universe.
These radio galaxies are often associated with brightest cluster galaxies. The most
extreme known representative is MS0735 (McNamara et al., 2005) which hosts an
energetic radio outburst with a total energy of Etot ≈ 1062erg. This release of energy
during one AGN outburst is similar to the total energy of 1011 type 1a supernovae
and corresponds to the rest mass energy m = E/c2 = 6 · 107M⊙. While Rafferty et al.
(2006) and McNamara et al. (2011) claim that Bondi accretion from the hot component
of the ISM can not fuel the most powerful jets inside BCGs and that instead they must
be generated from cold gas accretion, Fabian (2012) points out a different view. The
efficiency of Bondi accretion depends on M2

•. The usage of the locally calibrated SMBH
scaling relations like M• − L and M• − σ (§ 2.1.3) to evaluate SMBH masses in BCGs
as done by Rafferty et al. (2006) and McNamara et al. (2011) might systematically yield
too small values (Hlavacek-Larrondo et al., 2012).

Cold Gas Accretion

While Bondi accretion from the hot ISM continuously increases black hole masses
and powers radio loud AGNs in the local universe, its role during the formation and
growth of initial seed black holes in the highly redshifted universe (e.g. z > 15) is
debated (Volonteri & Rees 2005; Rees & Volonteri 2007 and references therein). Instead,
it is commonly believed that accretion from cold gas reservoirs must have been respon-
sible for the dominant part of SMBH mass gain. Gas is assumed to be in the cold state
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as long as its temperature is below the virial temperature Tvir ∝ GM(< r)m/(rkB),
where kB is the Boltzmann constant and m the mean mass of the gas particles. The
virial gas temperature can be derived by relating the potential energy to the thermal
energy. If the gas is cold i.e. T < Tvir, it has to be rotationally supported, otherwise it
would fall directly into the galactic nucleus.

Most of the SMBH mass gain by cold gas accretion occurs during the luminous
quasar phase at high redshifts (Di Matteo et al., 2012). The optical light of some quasars
is sometimes obscured by cold gas and dust clouds within their host galaxies and one
has to use infrared telescopes in order to identify them. By assuming a constant mass
to energy conversion efficiency (e.g. ǫ = 10%), the quasar luminosity function can be
integrated in order to obtain the SMBH mass density (Soltan, 1982; Kelly & Merloni,
2012). The inferred SMBH mass density from integration of the quasar luminosity
function can than be compared with the local SMBH mass function evaluated from the
M• − σ relation, measured stellar velocity dispersions and the spatial distribution of
galaxies (see Kelly & Merloni 2012 for a review). Both SMBH mass densities are similar
to each other indicating that cold gas accretion during the initial quasar phase was a
dominant driver of SMBH mass growth. However, there are several caveats in this
argument which will be addressed later.

The quasar luminosity function and hence the active phase of the most massive
black holes peaked in the early universe (Hasinger et al., 2005; Kelly & Shen, 2013)
at times when galaxies were gas rich. Less-powerful active galactic nuclei (AGNs)
like Seyfert galaxies peaked at successively lower redshifts. This is known as cosmic
downsizing of the AGN activity. A quasar is the most energetic representative of a
broad class of active galactic nuclei. In some cases the gas accretion rate of the central
SMBH reaches several earth masses per second. This corresponds to an increase of
its event horizon by several centimeter per second. Their corresponding luminosities,
sometimes of the order P ≈ 1048erg/s (Ghisellini et al., 2009), are produced in accretion
discs comparable in size to that of the solar system. Upper limits on the size can be
obtained from changes in the disk luminosity, i.e. by relating luminosity fluctuations to
the light crossing timescale of the source, i.e. ∆r = ∆t · c.

Accretion discs of quasars are very thin and radiatively efficient. Typical thickness to
size ratios are of the order of 0.1-3% (Narayan & Quataert, 2005). Thin and radiatively
efficient accretion discs form when thermal energy is radiated away on timescales
which are smaller than the advection timescale (Narayan & Quataert, 2005). This is the
characteristic timescale in which matter becomes advected into the black hole. Only
thin and radiatively efficient accretion discs are able to convert significant amounts
of potential energy into radiation. The matter to energy conversion efficiency reaches
up to ǫ = 40% for prograde motion around a maximal rotating black hole (§ 1.2.2).
Matter loses angular momentum by friction forces. These forces are also responsible
for the conversion of potential energy into heat/radiation. However, the exact details
of angular momentum redistribution processes within accretion discs around black
holes are complicated. Their modeling requires to combine several physical processes
simultaneously. These are GR effects (e.g. frame dragging), magnetic fields, turbulent
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cells, radiation and heat transport and outflows/jets (Abramowicz & Fragile, 2013).
In order to power quasar like luminosities, the accretion discs must be continuously
replenished by new matter. According to orientation-based unified models of AGNs
(Urry & Padovani, 1995), the accretion discs are fed from surrounding tori of molecular
gas and dust. Typical tori have sizes between 1− 102 pc (Tristram & Schartmann, 2011).
Depending on the line of sight, the active galactic nucleus appears as a Type 1 quasar
or Seyfert galaxy (broad emission lines, center visible), Type 2 quasar/Seyfert galaxy
(narrow emission lines, central broad-line-region blocked from view through dust) or
blazar (line of sight points towards jet). However, the orientation-based unified AGN
model was recently challenged by an analysis of 170.000 AGNs which were observed
with the Wide-field Infrared Survey Explorer (WISE) satellite (Donoso et al., 2013).
The new findings indicate that Type 2 AGNs preferentially inhabit denser galactic
environments. The simple unification picture of AGNs which is solely based on the
orientation parameter only is incompatible with these observations and it is suggested
that more complex processes are involved.

Accretion flows which do not radiate away most of their thermal energy are much
thicker (and hotter) and more reminiscent of radiatively inefficient accretion flows (Sec-
tion 2.2.1). They usually operate at low accretion rates well below the maximal allowed

Eddington limit, LEdd = 1.3 · 1038
(

M•
M⊙

)

erg/s.

Feedback Processes and Constraints on the SMBH Growth History

One crucial test for investigating whether gas accretion processes are the dominant
driver of SMBH mass growth is to confront gas accretion model predictions with
actual observed SMBH demographics (§ 2.1.3). In the picture proposed by Silk & Rees
(1998), the so called co-evolution picture, accreting black holes produce large amounts
of energy in form of radiation, jets and outflows. This stimulates star formation by
compressing molecular clouds which then collapse and form new stars. Active galactic
nuclei are often associated with star forming galaxies (Mullaney et al., 2012). On the
other hand, once the black hole becomes massive and powerful enough, its activity also
suppresses star formation and its own supply of matter. Strong AGN activity overheats
the gas such that it does not collapse into stars or the central galactic nucleus. In this
way, SMBHs self-regulate their own growth and that of their host galaxies. Without
energetic feedback from central AGN, elliptical galaxies would have quite different
properties than observed (Dubois et al., 2013). Recent observations confirm that AGNs
above a given X-ray threshold luminosity of LX ≈ 1044erg/s start to suppress star
formation efficiently (Page et al., 2012).

Gas accretion/feedback processes can explain the emergence of tightly coupled
relations between properties of the host galaxy like mass, velocity dispersion or
(more generally) binding energy of the bulge and M• (Silk & Rees, 1998; King, 2003).
However, additional challenges arise from the complexity of nature. Dynamical
processes like galaxy interactions and mergers must also be taken into consideration
when trying to explain these empirical relations (Di Matteo et al., 2005; Hopkins et al.,
2007; Younger et al., 2008). Nevertheless, while gas accretion/feedback scenarios seem

29



to be the most promising ansatz for establishing the strongly coupled galaxy-SMBH
relations, several open questions remain.

There is growing evidence (i) for deviations or at least significant scatter from empiri-
cal scaling relations at the high mass end of the SMBH mass function (McConnell & Ma,
2013). (ii) Furthermore, Kormendy & Ho (2013) found that SMBH masses scale dif-
ferently with varying galaxy constituents. (iii) Hlavacek-Larrondo et al. (2012) claim
that M• − L or M• − σ based mass estimates in BCGs which are located in cool core
galaxy clusters systematically underestimate the true SMBH mass by a factor of ten.
(iv) This is supported by independent studies from Mathews & Guo (2011). They
calculated the injected AGN energy into the gaseous atmospheres of galaxy clusters by
comparing the gas profiles with those obtained from cluster formation models without
feedback. Mathews & Guo (2011) found that the central SMBHs within massive galaxy
clusters like Abell 478 and Abell 1413 released Etot ≈ 3 · 1063erg of energy during
≈ 7 billion years of cluster lifetime. Such an enormous release of energy corresponds
to the equivalent (chemical) energy of 5 · 107 Milky Way masses of bituminous coal
and must be related to black holes much more massive than any SMBH observed
so far in our cosmic neighbourhood. SMBHs of enormous proportions, sometimes
exceeding M• = 1011M⊙, must also be present in some core-type BCGs like Holm 15A
(Lopez-Cruz et al., 2014) if their central stellar light deficits were carved out by binary
or multiple black hole evolution in the past. Other studies like Ghisellini et al. (2009);
McNamara et al. (2009); Kelly & Shen (2013); Walker et al. (2014); Trakhtenbrot (2014)
also indicate the existence of an extremely heavy population of black holes.

(v) Finally, van den Bosch et al. (2012) presented evidence that even small galaxies
can contain black holes with masses much above the prediction from any scaling
relation. They claimed that the putative black hole within the compact and fast rotating
galaxy NGC 1277 contains a M• = 17 · 109M⊙ black hole which corresponds to 70% of
the bulge mass and 20% of the total mass of the galaxy. This is a factor of one hundred
above the prediction of the Mbulge − M• relation. While some astrophysicists cast
doubt on the inferred black hole mass in NGC 1277 (Emsellem, 2013), others explain it
by a black hole which was ejected during a merger event within the central brightest
cluster galaxy NGC 1275 and was then captured by the much smaller galaxy NGC 1277
(Shields & Bonning, 2013). However, van den Bosch et al. (2012) claims that NGC 1277
might only represent the tip of an iceberg of a population of extremely massive black
holes within small galaxies. They also found several galaxies with similar physical
properties like NGC 1277 which might also host ultramassive black holes. Fabian et al.
(2013) already speculates that such a population of UMBHs would not be compatible
with number density counts of bright quasars and would imply a major challenge to
all existing SMBH growth and formation theories.

As a matter of fact all SMBH growth channels must be taken into account in order to
understand the evolution of SMBHs. There are at least two different concepts which do
not depend on gas accretion scenarios but which also claim to explain empirical scaling
relations. They are discussed in the following sections. Furthermore, two new ideas
related to SMBH growth processes are presented in this thesis. One idea is presented
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in Brockamp et al. (2014). The other idea might naturally explain SMBH masses much
in excess of the prediction of any scaling relation as it postulates that under given
circumstances (which have to be constrained in follow up studies) a SMBH might enter
a non regulated growth mode7.

2.2.2. Stellar Accretion

The feeding of SMBHs do not only proceed via gas accretion and SMBH merging pro-
cesses, but also by tidal disruption or the swallowing of stars and compact remnants.
There are three principle ways the loss cone (§ 1.2.3) of a massive black hole can be
refilled with stellar mass objects. These mechanisms will be described in the following
(subsub-)sections.

Relaxation

Stars exchange energy and angular momentum during gravitational two-body de-
flections. If one of the participatory stars loses enough energy its orbit will shrink
such that it reaches the tidal disruption radius where the star becomes gravitationally
unbound due to tidal forces. Alternatively, if the central black hole is very massive
and/or the star is very compact (e.g. a white dwarf) it will plunge deep into the
relativistic regime where it will finally be swallowed by the black hole (§ 1.2.3). The
dynamics which govern the refill of the loss cone by (pure) relaxation processes are
highly complicated as they depend on numerous aspects: (i) The mass and spin of
the black hole (Wang & Merritt, 2004; Kesden, 2012), (ii) the graininess of the stellar
distribution within the influence radius of the black hole (i.e. the relaxation timescale),
(iii) the central slope of the galactic density profile which can also change with
time (Baumgardt et al., 2004a; Brockamp et al., 2011), (iv) the mass spectrum of the
stars (Baumgardt et al., 2004b) and (v) dynamical heating (Baumgardt et al., 2004a;
Brockamp et al., 2011).

The basics behind relaxation driven loss cone refilling by equal mass stars are
explained below. A more detailed study of tidal disruption rates based on numerical
investigations is carried out in Chapter 3. The didactic structure of this paragraph
(subsub-section) is based on Brockamp et al. (2011) and equations concerning the
angular momentum diffusion concept which was developed in Frank & Rees (1976)
are taken from Brockamp et al. (2011), i.e. Chapter 3.

If a stars has a pericenter distance which is smaller than the capture radius of the
black hole, it will be swallowed or tidally disrupted within one crossing timescale.
Obviously, the velocity vectors of all stars which move on such loss cone orbits are
grouped together in a very narrow region which is known as the loss cone. The loss
cone as well as the loss cone angle, θlc, are graphically illustrated in Figure 1.5. Accord-

7David Merritt pointed out in private communication that he had similar ideas before this PhD thesis
was written. Ideas related to runaway black hole growth were also discussed in Hernandez & Lee
(2010) and in a different context involving a Compton-cooled runaway growth in Walker et al. (2014).
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ing to Frank & Rees (1976), θlc is defined within the sphere of influence (of the SMBH),
rH , as:

θlc ∝
( rcap

r

)
1
2

. (2.25)

Without a mechanism which changes the angular momentum vectors of stars, a fully
occupied loss cone would be depleted quickly. This would happen on a dynamical
timescale, tcross. Afterwards, the capture rate would drop to zero. However, one mech-
anism which permanently changes the angular momentum distribution of stellar mass
objects is two body relaxation. According to Frank & Rees (1976), the velocity vector of
a star is shifted by the amount:

θDiff ∝

(

tcross

trel

) 1
2

, (2.26)

per dynamical timescale through accumulated gravitational interactions. At a particu-
lar radius which is called the critical radius, rcrit, angular momentum driven diffusion
changes the velocity vectors of stars by amounts which are comparable to the loss cone
angle, θlc, itself:

θlc

θDiff

∣

∣

∣

∣

∣

r=rcrit

= 1. (2.27)

Within rcrit, θlc > θDiff, and stars are diffusively deflected onto loss cone trajectories.
It takes several orbits to reduce their angular momentum until they enter such a loss
cone trajectory. Therefore, the loss cone within rcrit stays empty most of the time.
For this reason it is called the empty loss cone regime. At distances larger than rcrit,
θlc < θDiff, and stars exchange so much angular momentum that they typically drift
in- and outwards the loss cone during one crossing timescale (Frank & Rees, 1976). An
additional enhancement of relaxation through e.g. the presence of massive perturbers
would not increase the stellar capture rate. This regime is called the full loss cone-
or sometimes pinhole regime. Most captures have their origin in the empty loss cone
regime and thus they are expected to have huge binding energies.

The simplifying assumption is made that all stars have the same mass and that they

follow a power-law number density profile, n(r) = nc

(

r
rH

)α
≡ n0rα, inside the gravi-

tational influence radius of the black hole. Here, α is the negative slope parameter and
nc is the number density at rH . The critical radius can be calculated by making use of
Eq. 2.25 and Eq. 2.26 which are inserted into Eq. 2.27:

rcrit ∝

(

rcap M2
•

M2
⋆n0

) 1
4+α

. (2.28)

For trel, which appears in Eq. 2.26, I used the relaxation time from Spitzer & Harm
(1958); Spitzer (1987). Finally, the flux of stars onto loss cone orbits can now be obtained
from Equation 17 from Frank & Rees (1976) and by exchanging the velocity dispersion,
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σ(r), with r
tcross

:

Ċ ∝
θ2

lcr3n(r)

tcross

∣

∣

∣

∣

∣

r=rcrit

=
θ2

Diffr
3n(r)

tcross

∣

∣

∣

∣

∣

r=rcrit

. (2.29)

Ċ can be further specified by substituting r = rcrit and by using the power law density
profile, n(r ≤ rcrit) = n0rα:

Ċ ∝ G
1
2 M

1
2• rcapn0r0.5+α

crit . (2.30)

However, if the central black hole mass exceeds M• = 107M⊙, the derived Equa-
tion 2.30 should not be used any longer to predict the stellar loss cone flux. In this case
there are huge numbers of stars around and within the influence radius of the black
hole and the overall potential is very smooth. The critical radius becomes larger than
the gravitational influence radius of the SMBH and the velocity distribution within rcrit

does not longer follow a Keplerian one.

If the black hole mass exceeds M• = 107M⊙, a different loss cone angle, θ2
lc ≈

rcaprH

r2 ,
has to be used (Frank & Rees, 1976). Furthermore, the capture radius is of the order of
the Schwarzschild-radius, i.e. rcap ≈ rs =

2GM•
c2 . This formalism can now be applied to a

concrete example of growing black holes inside isothermal ρ(r) = σ2

2πGr2 density profiles
as done by Zhao et al. (2002). From Equation 2.29 one obtains the mass accretion rate:

Ṁ = 〈m〉 Ċ ∝
θ2

lcr3 〈m〉 n(r)

tcross
= ρ(r)r2σθ2

lc ≈
σ5

Gc2
·
( rH

r

)2
, (2.31)

where rH = GM•
σ2 is used for the influence radius and ρ(r) = 〈m〉 n(r) is the stellar mass

density. By assuming that the majority of loss cone stars emerges from the black hole
influence radius, rH , the ratio rH/r in Eq. 2.31 neutralizes and the integrated final black
hole mass (after the time t f ) becomes:

M•(t f ) =
∫ t=t f

t=0
Ṁ(r = rH)dt ≈ 108M⊙ ·

( σ

200kms−1

)5
(

t f

H−1
0

)

. (2.32)

This expression closely follows the M• − σ relation. However, it must be noted that
there exist alternative analytical approaches to derive the flux of loss cone stars per unit
time in isothermal cusps (see e.g. Chapter 6.1.3 in Merritt 2013) which yield smaller
values. Firstly, in the derivation of Equation 2.32, stars were assumed to be swallowed
as a whole. Secondly, the loss cone is assumed to be permanently replenished and the
isothermal cusp is immune to dynamical heating. In Chapter 3 the relaxation driven
approach for the origin of the M• − σ relation is confronted with results obtained in
direct N-body experiments. At least for a Sérsic (n = 4) density profile it is found that
the relaxation driven refill of the loss cone is far too inefficient to establish the M• − σ
relation. See also § 2.2.1 & § 2.2.3 for alternative ways to explain this empirical relation.

Centrophilic Orbits

In perfectly spherical and homogeneous galaxies there are only two principle ways
how stars can be swallowed by the central SMBH. They can enter loss cone trajectories
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through diffusion in energy or angular momentum space (§ 2.2.2) or they might have
occupied such orbits early on. In a process called orbit draining such stars would
be destroyed within one crossing timescale. By neglecting initial orbit draining and
relaxation driven diffusion which becomes anyway inefficient for cases of very massive
galaxies with central cores, the loss cone would not be replenished (Wang & Merritt,
2004; Brockamp et al., 2011). This is related to the fact that all components of the
angular momentum vector ~L of a star are conserved because the force ~F(~r) = F(r)~rr
depends only on radius.

The situation is different in axis-symmetric galaxies where torques from the
anisotropic potential induce changes in two of the three components of the angular
momentum vector of a star. If one assumes that the galaxy is symmetric around the
z-axis, the Hamiltonian can be written as:

H = 0.5

(

p2
r + p2

z +
p2

φ

r2

)

+ Φ (r, z) , (2.33)

where pr = ṙ, pz = r2φ̇, pφ = ż are the momenta and Φ (r, z) is the potential
(Binney & Tremaine, 2008). From Hamilton’s equations it follows that the quantity
ṗφ = − ∂H

∂φ has to be zero as Equation 2.33 does not depend on φ. The z-component,

Lz = pφ, is therefore a conserved quantity while the other two components are not.

If one assumes a population of stars with low angular momentum, Lz, such that
the Lz component alone is smaller than the critical angular momentum of a loss cone
trajectory (or even zero), these stars might be destroyed after some time by the black
hole. They would fulfill oscillations in the other two components of the angular
momentum vector (while still preserving Lz) and enter loss cone trajectories (Merritt,
2013). Such orbits are called centrophilic orbits.

In the case of a triaxial galaxy which is even less symmetric, significant numbers of
stars are on centrophilic orbits i.e. orbits which do not avoid the galactic center and
where all components of the angular momentum vector change sign. The exact details
of the orbital families in triaxial galaxies are complex. The dominant factors which
contribute are the radial distance, shape and density profile of the elliptical galaxy as
well as the presence of a central SMBH. The latter can also destroy the triaxial shape
over time (Merritt & Quinlan, 1998; Holley-Bockelmann et al., 2002). In the special case
of a perfect ellipsoid, i.e. separable Stäckel model, there are tube and regular box orbits
(de Zeeuw, 1985). These regular box orbits have a non-vanishing probability density at
the center and they can come arbitrarily close to a central SMBH. They are centrophilic.
The unique characteristics of box orbit stars are that they have no fixed sense of
rotation, they come to rest for an instant of time at a given equipotential surface and
their trajectories fill the interior of these surfaces uniformly in a time averaged manner.
The triaxial shape is maintained by box orbits and they occupy a large fraction of
all orbits (of the order O(1)). In my own triaxial galaxy computations the angular
momentum vectors of 25% of all particles change sign. In cuspy triaxial mass distribu-
tions, particles/stars become trapped by resonant orbits which fulfill linear relations
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between their fundamental frequencies νx, νy, νz of the form nνx + lνy + mνz = 0
with n, l, m ∈ N (Merritt & Valluri, 1999). The time averaged particle trajectories
become restricted to membrane like structures. Overlapping resonances give rise to
irregular (chaotic) motions. The angular momentum vectors of particles on chaotic
orbits are not preserved as well. However, the motions of particles within the grav-
itational influence radius of the black hole are generally regular. Trajectories within
the influence radius that do not preserve any component of the angular momentum
vector are called pyramid orbits (Merritt & Vasiliev, 2011; Merritt, 2013). Pyramid or-
bits have a significant influence on the black hole feeding rate (Merritt & Vasiliev, 2011).

The flux of stars onto loss cone trajectories in triaxial galaxies is strongly enhanced
compared to spherical (where it is zero) and axis-symmetrical galaxies (a stellar
capture every 103 − 106, see Vasiliev & Merritt 2013) due to their low symmetry
state. While angular momentum diffusion is the main source for loss cone refill in
spherical galaxies, it might be of secondary relevance in triaxial galaxies or galaxies
with otherwise strongly reduced symmetries. However, quantitative predictions are
extremely difficult to obtain and the full problem can only be tackled with numerical
studies. In the pioneering work of Merritt & Vasiliev (2011) it was found that the
swallowing rate of a several billion solar mass black hole in a triaxial galaxy might be
as high as one star every few years.

This might significantly contribute to the formation of shallow core profiles of ellip-
tical galaxies (§ 2.1.1). The accretion rate of stars in giant elliptical galaxies might also
be used to probe the nature of the dark massive objects sitting at the centers of these
galaxies itself. Every other compact object than a black hole without a spacetime sepa-
rating horizon, less entropy and a positive heat capacity would not be able to swallow

the kinetic impact energy, E = z (1 + z)−1 M⊙c2 ≈ 1054erg, of a solar like star (being of
the order of its rest mass when measured at infinity) without any noticeable outburst.

Here z is the gravitational redshift at the surface and the photon recovery timescale
(i.e. the time it takes until emission from the putative surface reaches the distant
observer) diverges only with ln(z + 1). In a related study Narayan & McClintock
(2008) excluded the existence of a surface on SgrA∗ by showing that its expected
surface luminosity would be too dim given its current gas accretion rate. Thus
Narayan & McClintock (2008) found indirect evidence for the existence of an event
horizon.

Massive Perturbers

Orbital draining from centrophilic orbits and relaxation driven loss cone refilling
processes are complicated by the presence of massive perturbers. It makes sense to
separate the treatment of massive perturbers into two different regimes. In the first
regime perturber masses Mmp are much smaller than the mass of the galactic nucleus,
Mnc, whereas in the second regime Mmp ≈ Mnc.

First, some concepts behind the Mmp << Mnc regime will be presented: All ob-
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jects inside a galactic nucleus being more massive than the typical field star population
(〈m〉 ≈ 0.5 M⊙) are massive perturbers. Such objects are stellar remnants, gas and
molecular clouds, star clusters, globular clusters or even intermediate mass black holes
(IMBHs). In § 2.2.2 the concept behind the relaxation driven loss cone refill was intro-
duced. A crucial quantity in the diffusion theory is θDiff (Equation 2.26) which itself
depends on the relaxation timescale Trel. The relaxation timescale becomes modified
(smaller) by the presence of massive perturbers. Following Merritt (2013), the relax-
ation timescale of a multi component mass distribution is given by:

Trel =
0.34σ3

G2ρm̃ ln Λ
, (2.34)

where σ is the one dimensional velocity dispersion, ln Λ the Coulomb logarithm and

ρm̃ = ρ

∫

n(m)m2 dm
∫

n(m)m dm
=
∫

n(m)m2 dm. (2.35)

Here n(m) dm refers to the total number of objects within the mass interval m to m +
dm. ρm̃ can be separated into a field star and massive perturber component i.e.

ρm̃ = ρm̃
∣

∣

stars
+ ρm̃

∣

∣

mp
. (2.36)

Scattering processes (and loss cone refilling by diffusion) are dominated by massive
perturbers as long as ρm̃

∣

∣

mp
> ρm̃

∣

∣

stars
(Merritt, 2013).

The situation is complicated by additional aspects: (i) The diffusive refill of the loss
cone through angular momentum transfer is most efficient within the critical radius,
but rcrit itself depends on the existence of massive perturbers. (ii) In galactic nuclei
with similar properties to that of the Milky Way, the number of massive perturbers like
globular clusters or giant molecular clouds is effectively zero at distances of the order
of the critical radius rcrit ≈ 2 − 3 pc (Merritt, 2013). Outside rcrit and within the pinhole
regime an enhanced relaxation rate owing to the presence of massive perturbers does
not increase the capture rate. This is related to a loss cone which is already full. How-
ever, massive perturbers within the inner most 100 pc strongly enhance the binary star
- SMBH interaction and thus contribute indirectly to the ejection of hypervelocity stars
(Perets et al., 2007). (iii) Scattering processes by massive perturbers become less effi-
cient if they are extended (e.g. gas clouds). The Coulomb logarithm, ln Λ, for extended
bodies with half mass radii, RH, is defined by Binney & Tremaine (2008) as:

ln Λ = ln
bmax

max
(

RH, Gmmp/v2
typ

) , (2.37)

where the maximum impact parameter bmax can be approximated by the galactocentric
distance r. Assuming bmax = 2RH = 3 pc, vtyp = 200 km/s, the corresponding
Coulomb logarithm, ln Λ ≈ 0.7, is small compared to that of much more compact
objects. In conclusion, the stellar accretion rate is expected to be modestly influenced
by the presence of massive perturbers in galactic nuclei similar to that of the Milky
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Way (Perets et al., 2007; Merritt, 2013).

However, stellar accretion rates can be significantly increased by massive perturbers
which have masses comparable to that of the nucleus itself (Liu & Chen, 2013). The
loss cone refilling timescale decreases by a factor of up to 102 (compared to isolated
galaxies) during galaxy mergers, close encounters between galaxies or the presence
of a secondary SMBH close to the galactic nucleus (see § 2.2.3). This proceeds via
two mechanisms (Liu & Chen, 2013). Relaxation driven diffusion within rcrit becomes
enhanced by changes of the angular momentum distribution and the overall reduction
of the symmetry leads to the formation of centrophilic orbits.

2.2.3. SMBH Merging

While there exists indisputable proof for SMBH growth via gas accretion (§ 2.2.1)
and strong evidence for the occurrence of tidal disruption events (e.g. Komossa 2002;
van Velzen et al. 2011; Cenko et al. 2012, § 2.2.2), the third postulated SMBH growth
channel via SMBH merging is less well established. Nevertheless, indications for the
occurrence of SMBH mergers exists: (i) The longevity and stability of cosmic jets with
sizes of kpc up to Mpc scales (Machalski et al., 2008) is maintained by the huge angular
momentum J• = jGM2

•/c of rotating SMBHs, where j ∈ [0, 1] is the dimensionless
spin parameter. The rotational energy of the black hole is extracted via the Blandford
and Znajek mechanism (Blandford & Znajek, 1977)8. However, some galaxies display
X-shaped jets which change their direction almost instantaneously. Such a sudden
change in jet direction signalizes a spin flip of the central black hole during an SMBH
merger (Merritt & Ekers, 2002; Komossa, 2003). (ii) Luminous elliptical galaxies have
central shallow cores (§ 2.1.1) which are believed to result from SMBH-SMBH merging.
These scenarios will be investigated in more detail below. (iii) By timing analysis of
the OJ287 blazar light curve a model was established which postulates two orbiting
SMBHs with a 12 year orbital period in our rest frame (Valtonen et al., 2008). Every
time the secondary black hole intersects the accretion disc of the more massive primary
black hole, it generates an optical outburst. This model predicted the timing of the last
outburst in September 2007 with an accuracy of 1 day (Valtonen et al., 2008). If this
model holds up, the eccentric black hole binary inside OJ287 will merge within the
next 104 years.

In this section the overcome of the black hole angular momentum barrier is investi-
gated. The starting point are two separated SMBHs in two previously merged galaxies.
Under ordinary circumstances (M• << MGAL) the processes which reduce the angular
momentum of these black holes can be divided into three overlapping regimes. In the
first regime, SMBHs reduce their angular momentum by drag forces in viscous gas
rich environments and/or dynamical friction (DF). For the sake of this paragraph gas
physics are neglected and ”dry“ mergers of galaxies are considered.

8Within the ellipsoidal shaped ergosphere, spacetime is forced to move around the black hole and spin
energy can be extracted from magnetic fields which are wound up and amplified.
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A moving black hole induces a density perturbation in the stellar distribution behind
its path. This perturbation which is sometimes called a wake, gravitationally attracts
the SMBH and reduces its orbital energy and angular momentum. This process is called
dynamical friction (Chandrasekhar, 1943). The black hole gradually spirals inwards. In
its most simple form, the de-acceleration by DF is given by Chandrasekhar’s (standard)
dynamical friction formula for a Maxwellian velocity distribution (Binney & Tremaine,
2008):

~a = −4πG2M•ρ (~r) ln (Λ)

v3

[

erf (X)− 2X
√

(π)
exp(−X2)

]

~v, (2.38)

where X = v/(
√

2σ), σ is the one dimensional velocity dispersion and ~v is the velocity
of the black hole. Following Binney & Tremaine (2008), the inspiral timescale Tinspiral

can be derived for the idealized situation of a spherical homogeneous galaxy with an
isotropic velocity distribution9. The de-acceleration force is anti-parallel to the SMBH
velocity vector and Equation 2.38 can be applied to derive the equation of motion:

dL

dt
= −Fr = −rM• |~a| . (2.39)

Assuming an isothermal density profile ρ(r) = v2
c /
(

4πGr2
)

for the galactic density

profile, where vc =
√

2σ is independent of the radial coordinate as well as a constant
Coulomb logarithm, the equation of motion can be further simplified by using L =
M•rv. By integrating Equation 2.39, the following expression for the inspiral time of
SMBHs on circular orbits can be derived:

Tinspiral ≈
4 Gyr

ln Λ

(

r (t = 0)

10 kpc

)2(109 M⊙
M•

)(

σ

100 km/s

)

(2.40)

The inspiral timescale for a SMBH of mass M• = 109 M⊙ at r (t = 0) = 10 kpc into
the galactic nucleus of a galaxy with σ = 200 km/s is of the order of one billion years
(assuming ln (Λ) = 6).

However, this treatment of DF serves only as a coarse estimate for the timescale
until a SMBH reaches the galactic center. Most astrophysical applications require a
more detailed treatment of DF due to the following reasons: (i) Elliptical galaxies,
especially those which are undergoing mergers, are not spherical. (ii) The velocity
distribution is anisotropic, preferentially tangential biased at small radii and radially
biased at large radii. Henceforth, the direction of acceleration by DF is not anti-parallel
to the velocity vector of the SMBH. Consequently, Equation 2.38 has to be replaced by
a 3D generalization (see Chapter 4). Finally, (iii) the Coulomb logarithm, ln Λ, is not
constant but a function of the galactocentric distance and density profile which itself
becomes influenced by the SMBH.

Once the secondary SMBH approaches the gravitational influence radius of the
primary black hole, DF gradually loses its significance and becomes replaced by

9A velocity distribution is isotropic if all eigenvalues σr, σφ, σθ of the velocity dispersion tensor, σ2
ij =

vivj − vivj, are equal.
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2.2. SMBH Growth Processes

another process. At scales of the influence radius, both SMBHs form a hard binary
(Merritt, 2013). The velocity of the smaller SMBH starts to exceed the local velocity
dispersion σ. This is the second regime. In this second phase the gravitational slingshot
effect removes stars from the binary and reduces the separation between the two black
holes. For the sake of completeness it should be mentioned that there are numerical
investigations (Khan et al., 2014) indicating that this second binary evolution phase is
absent in the evolution of over-massive black hole binaries with masses comparable
to those of their host galaxies (e.g. NGC 4486B (Magorrian et al., 1998) or NGC 1277
(van den Bosch et al., 2012)). Nevertheless, for ”typical“ SMBH binaries the gravita-
tional slingshot effect can be explained as follows. Stars can gain or lose energy during
a gravitational encounter with the SMBH binary. If a star loses energy it will come
even closer to the binary such that there will be a second, more violent gravitational
interaction. This procedure can be repeated until a star gains enough energy to become
unbound to the binary or even the whole galaxy. Depending on the degree of rotation
of the galactic nucleus and orientation of the binary black hole, its eccentricity and
alignment with respect to the angular momentum vector of the nucleus can change
(Sesana et al., 2011; Gualandris et al., 2012).

In spherical host galaxies, the central SMBH binary depletes all stars which come

close enough. This happens on a crossing timescale Tcross ≈ 40
(

R3
H/MGAL

)0.5
Myr

of the galaxy, where the half mass radius, RH, is given in pc and the dynamical mass
of the galaxy, MGAL, in M⊙. Disconnected from additional stellar supply, the binary
would stall, unable to reduce its remaining angular momentum. This is known as
the final parsec problem, although the stalling radius is not fixed to one parsec. This
problem is claimed to be solved as long as the shape of the host galaxy deviates from
spherical symmetry (Khan et al., 2013) due to a reservoir of stars on centrophilic or-
bits (§ 2.2.2) with large eccentricities. But see also Vasiliev et al. (2013) for a critical view.

SMBH binary evolution depletes the centers of galaxies by the preferential removal
of galactic center stars and those on eccentric orbits from further out. Therefore,
they transform cusps into shallow cores (Makino, 1997; Merritt & Poon, 2004;
Kulkarni & Loeb, 2012) and decrease the amount of eccentric orbits, i.e. increase the
tangential anisotropy. According to Kormendy & Bender (2009), the stellar mass/light
deficit (≡ Mdef) correlates nearly linearly with the mass of the central black hole(s).
Therefore, galaxies with the most pronounced cores are promising candidates for
hosting the most massive black holes in the universe (§ 2.1.1). But not only the mass
deficit, also the size of the core should be related to the influence radius and hence
to the mass of the black hole. This was recently confirmed by Rusli et al. (2013) and
McConnell et al. (2012). In the case of NGC 4889, the size of the core overlaps with the
influence radius and the region where the velocity distribution is tangentially biased.

For the sake of this paragraph it is now assumed that stellar encounters successively
reduce orbital momentum of the (binary) black holes so that they enter the gravitational
radiation dominated phase. In this final phase angular momentum is radiated away in
form of gravitational waves until coalescence. The energy and angular momentum
which is carried away by gravitational waves depends on the semi-major axis, a, and
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eccentricity, e. Following Peters (1964):

PGW =
dE

dt
= −32G4

5c5

(M•1M•2)
2 (M•1 + M•2)

a5 (1 − e2)
7
2

(

1 +
73

24
e2 +

37

96
e4

)

. (2.41)

Gravitational wave emission of SMBH binaries just before merging can easily exceed
the brightest electromagnetic sources in the whole universe. The OJ287 system with a
primary mass of M•1 = 1.8 · 1010 M⊙, secondary mass of M•2 = 1.4 · 108 M⊙, eccen-
tricity e = 0.66 and semi-major axis a = 11500 AU (Valtonen et al., 2008), generates
PGW, OJ287 ≈ 2 · 1048 erg/s. This corresponds to 5 · 104 times the electromagnetic output
of the Milky Way. Without taking GW emission into account, the outburst of the OJ287
system in 2007 would have occurred 20 days later than observed (Valtonen et al., 2008).

The last step is the final merger. All perturbations of the newly formed black hole
are radiated away as it settles down into a Kerr-metric. Depending on the mass
ratio and spin distribution of the progenitor holes, the gravitational waves are not
emitted isotropically (Campanelli et al., 2007a; Pretorius, 2005; Brügmann et al., 2008;
Sundararajan et al., 2010) and the spin axis can change. This phenomenon is called
spin flip. In some extreme configurations, the newly formed black hole kicks out of
the galactic center due to momentum conservation. The kick can exceed the escape
velocity of the galaxy (Campanelli et al., 2007a). However, the received kick velocity
might be lowered afterwards if the perturbed black hole emits gravitational waves in
the opposite direction to its velocity vector (Rezzolla et al., 2010). The size of the stellar
core can be further increased by dynamical heating and the lowering of the central
potential (Gualandris & Merritt, 2008). Galaxies where such ejection scenarios are
discussed are NGC 1275 (Shields & Bonning, 2013) and the BCG inside the Abell 2261
cluster (Postman et al. 2012, Figure 2.6)10.

It is expected that in the near future the direct detection of low frequency gravita-
tional waves with a pulsar timing array (Manchester et al., 2013) will directly probe the
collision rate of massive black holes.

2.2.4. Loss Cone Refilling by Phase Space Smearing & Runaway Growth

The observable quasar luminosity function (§ 2.2.1) implies the bulk of SMBH growth
to have occurred early on. In this section I want to present two new ideas concerning
SMBH growth processes which might have been realized during the evolution of
the first galaxies and their SMBHs. The first idea might explain over-massive black
holes (§ 2.2.1) far in excess of the predictions of any known scaling relation due to
an unregulated phase of SMBH growth. The other idea which was developed in
Brockamp et al. (2014) might be relevant for the linear relationship between globular
clusters and the mass of the black hole (§ 2.1.3).

10On the other hand the pronounced core inside A 2261 may signal the presence of an extraordinary
massive black hole as indicated in a different context in Hlavacek-Larrondo et al. (2012)
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2.2. SMBH Growth Processes

The first idea shares similarities with simple toy models designed to infer SMBH
mass accretion rates in infinite halos of constant density (Shapiro & Teukolsky, 1983;
Hernandez & Lee, 2010). They rely on the accretion of unbound matter with respect
to the SMBH, i.e. E = Ekin − GM•/r > 0 and they consider back-reaction effects
due to the mass which becomes trapped by the SMBH. Under certain circumstances,
a black hole can enter an unregulated growth mode which feeds upon itself. Fol-
lowing (Shapiro & Teukolsky, 1983; Hernandez & Lee, 2010), the mass accretion rate

Ṁ = 16 (6π)1/2 G2M2
•ρ0/

(

σc2
)

can be obtained by calculating the response of the
mass density profile to the presence of the black hole and by using Ṁ ∝ ρAσ. Here
A is the cross section of the black hole for non relativistic particles (i.e. massive parti-
cles) which is corrected for gravitational focussing (relevant for unbound matter) and
σ is the overall (constant) velocity dispersion. The mass accretion can be integrated to
obtain (Hernandez & Lee, 2010):

M• (t) =
M•0c2σ

c2σ − 16 (6π)1/2 G2ρ0M•0t
, (2.42)

where M•0 the initial black hole mass and ρ0 the unperturbed density. Evidently,

M• (t) diverges after some finite time, tdiv = c2σ/
(

16 (6π)1/2 ρ0M•0

)

. It seems ques-

tionable whether this runaway process yields a satisfactory approach for explaining
over-massive black holes. It relies on constant density profiles and galaxies are not
infinitely large and massive. Furthermore, the variable t in Equation 2.42 should not
be extrapolated beyond a half mass crossing timescale of the galaxy/halo which is
usually smaller than tdiv.

However, this simple treatment illustrates that there can exist black hole accretion
processes which feed upon themselves. The new idea can be understood as follows.
Particle trajectories within a collapsing proto-galaxy (2Ttot/|Wtot| < 1) and without
a seed black hole are determined by the mass distribution M(~r, t). During collapse,
the radial part of the velocity dispersion tensor σr dominates. Particles on mostly
radial orbits pass through the center of the galaxy. M(~r, t) evolves and settles down
into a static configuration under the influence of violent relaxation. The situation
might behave differently if this galaxy harbors an initial seed black hole which traps
matter. The presence of the black hole causes a relocation of mass. The relocation of
mass implies that objects on particular orbits would have to response to the increase
of enclosed mass, M(r, t) + M•(t). This is the case when matter on highly eccentric
trajectories but from further out becomes trapped by the black hole. Objects which
are affected in this way would enter even more eccentric orbits and the likelihood
for a SMBH capture increases. In addition to that, gravitational focussing being
relevant for unbound particles effectively increases the black hole cross section to

A = 4π (c/v∞)2 r2
s ≈ 4π (c/σ)2 r2

s (Novikov & Frolov, 1989) and enhances its accretion
rate. The mass accretion in turn quadratically increases the cross section A ∝ r2

s as
rs ∝ M•. Both processes, the relocation of mass and the quadratical increase of the black
hole cross section fuel each other and under the right circumstances a black hole might
enter a runaway growth mode. It has to be investigated whether this process works in
reality and if it is related to the presence of over-massive black holes in small compact

41



galaxies like NGC 1277 (§ 2.2.1). However, the (prospective) quantitative investigation
of this process is numerically challenging, due to the immense difficulty of handling
dynamical processes operating at scales of a few Schwarzschild radii up to the size of
the galaxy (a few kpc).

The second proposed SMBH growth channel is related to eroding star and globu-
lar clusters (GCs). Currently, it is debated whether the linear NGC − M• relationship
(§ 2.1.3) is a consequence of GCs being actively involved in the growth of SMBHs or not
(Rhode, 2012; Capuzzo-Dolcetta & Vicari, 2005; Gnedin et al., 2014). Brockamp et al.
(2014) found evidence that eroding GCs might contribute to loss cone refilling pro-
cesses, albeit quantitative accretion rates have to be obtained in future studies. During
the first few orbits, a significant fraction of GCs becomes eroded due to strong tidal
fields close to the galactic center. This episode is called a tidal disruption dominated phase
(TDDP). The internal energy of the cluster increases through tidal shocking and they
start to lose mass. Former cluster stars become trapped by the galactic potential but
they still follow the overall path of the GC. However, these stars dilute over the phase
space as time proceeds, like a shot charge which disperses. Most clusters which are dis-
rupted during the TDDP are on highly eccentric orbits (Brockamp et al., 2014). Escaped
cluster stars might repopulate loss cone trajectories. Although quantitative numbers
are missing, the rapid evolution of the TDDP is compatible with the fast mass accretion
episodes of SMBHs in the early universe. See also § 5.1 where the first steps are taken
in order to carry out systematically such a loss cone study.
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Brockamp, M., Küpper, A. H. W., Thies, I., Baumgardt, H., & Kroupa, P. 2014, MNRAS,
441, 150

43





Chapter 3

Tidal Disruption Rate of Stars by SMBHs

As described in depth in the previous Chapter 2.2, there exist several SMBH feeding
processes. Black holes grow through the accretion of gas, SMBH mergers and, depend-
ing on their mass, through tidal disruption or swallowing of whole stars. This chapter
which is based on Brockamp et al. (2011) examines in much greater detail the flux of
stars which are driven by relaxation processes onto loss cone orbits11. I concentrate on
the least massive black holes where relaxation driven effects are enhanced due to small
relaxation timescales. The disruption rate of stars by SMBHs is calculated numerically
with a modified version of Aarseth’s NBODY6 code. A detailed description of NBODY6
can be found in the Appendix A.1. The effects of other loss cone refilling processes like
centrophilic orbits in non-symmetrical potentials or massive perturbers are neglected.
There exist several different approaches to obtain the relaxation driven tidal disruption
rate of stars by SMBHs. Each method has its own advantages and disadvantages.
One great advantage of direct N-body integrations is their ability to take dynamical
processes like the wandering of the black hole, dynamical cluster heating and cusp
formation into account.

The whole Chapter 3 is based on Brockamp et al. (2011). Compared with
Brockamp et al. (2011), three modifications are made: (i) The abstract and the
first appendix of Brockamp et al. (2011) have been removed and some formulations
have been improved, (ii) the second appendix can be found at the end of this thesis, see
Appendix B. (iii) The third appendix of Brockamp et al. (2011) is partially implemented
into this chapter.

To eliminate any confusion with the overlapping topic of my Diploma thesis, it
must be explicitly stated that for this PhD study (i) all computations were recalculated
with the NBODY6 software and that (ii) much larger N-body computations containing
up to (2.5 − 5) · 105 particles were included. Furthermore (iii), I used a different
extrapolation method for scaling these models to astrophysical systems including new
estimates for the tidal disruption rate and (iv) I performed a much more sophisticated
analysis as well as interpretation of the results.

11This chapter has been published, apart from minor changes which are described in the text, in the
MNRAS journal (Vol. 418, pp. 1308-1324).
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3.1. Introduction

The evolution of supermassive black holes (SMBHs) and their host galaxies is at
present one of the key problems of astrophysics. Motivated by empirically found
scaling relations between properties of galaxies in terms of velocity dispersion
σ (Gebhardt et al., 2000; Ferrarese & Merritt, 2000; Gültekin et al., 2009), luminos-
ity L (Kormendy & Richstone, 1995; Ferrarese & Ford, 2005), bulge mass MBulge

(Magorrian et al., 1998; Häring & Rix, 2004), central light deficit Ldef (Lauer et al., 2007;
Kormendy & Bender, 2009; Hopkins & Hernquist, 2010), total number of globular
clusters NGC (Burkert & Tremaine, 2010) and the mass of their central black holes M•,
there is a substantial need to understand the related evolution of both SMBHs and
their hosts. In order to constrain galaxy formation models and to answer the question
as to what powers the growth of SMBHs over cosmic times, all forms of matter
which are accreted must be taken into account. This becomes more urgent as recent
studies have found evidence for deviations from the general scaling relations for the
most-massive and for the least-massive black holes (Lauer et al., 2007; Gebhardt et al.,
2011; Kormendy et al., 2011).

Gas accretion is thought to be the most dominant driver of SMBH growth (Soltan,
1982). Modern studies (Yu & Tremaine, 2002) estimate the black hole mass density from
the spatial distribution and from the measured stellar velocity dispersions in elliptical
galaxies in combination with the M• − σ relation. The SMBH mass density is then
compared with the observed quasar luminosity function in order to yield constraints
on the accretion efficiency parameter ǫ as well as on the growth history. In order to
make these studies even more accurate, the impact of other feeding modes like merging
supermassive black holes and stellar captures must also be taken into account. Simul-
taneously the luminous gas accretion history of low-mass SMBHs (M• ≈ 105 − 107 M⊙)
is harder to measure especially at large redshifts as they never approach luminosities
comparable to those of quasars. It is even plausible that low-mass SMBHs gain most
of their mass by tidal disruption events (Milosavljević et al., 2006). Therefore, it is
important to infer the stellar capture rate for as many astrophysical systems of interest
as possible, for all relevant SMBH masses using both theoretical and when possible
numerical approaches. In order to avoid confusion regarding the terminology of the
capture and disruption rate we note that the former expression is used for the general
number of stars/particles which are either swallowed as a whole or disrupted outside
the event horizon in a given time, i.e. independent of the mass of the SMBH. The latter
one is explicitly used for situations in which stars are tidally disrupted before they
would enter the event horizon.

In this paper we present the disruption rate of stars by SMBHs with masses in
the lower range up to M• . 107 M⊙ (Graham & Spitler, 2009) embedded inside
realistic stellar density profiles. These results are obtained by self-consistent direct
N-body integrations and increase the hitherto probed region of direct numerically
inferred disruption rates. Pioneered by Baumgardt et al. (2004a,b); Baumgardt et al.
(2006) for intermediate-mass black holes (IMBHs) at the centers of globular clusters,
our calculations can be applied to a larger sample of systems. Our findings should
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3.1. Introduction

be regarded as complementary to other contributions (Duncan & Shapiro, 1983;
Magorrian & Tremaine, 1999; Amaro-Seoane et al., 2004) where the impact of tidal
disruption events is shown to be significant and therefore should not be neglected in
considering the question of what powers the growth of black holes.

There are several mechanism by which stars are driven into the loss cone of a black
hole. In spherical stellar distributions, where the relaxation time Trel is comparable
to or smaller than the present age of the universe (Freitag et al., 2008)12, t0, two-body
relaxation induces a steady change in the angular momentum space distribution of
stars such that some of them will drift to very eccentric orbits with pericentre distances
smaller than the black hole capture radius (Frank & Rees, 1976; Lightman & Shapiro,
1977). In much larger systems like the most-massive elliptical galaxies which are
thought to be triaxial in shape (Kormendy & Bender, 1996), stars on box orbits can
cross the central region arbitrary close to the SMBH (Binney & Tremaine, 2008) such
that they become disrupted or swallowed as a whole for the case of a very massive
SMBH. Merritt & Vasiliev (2011) concluded that the feeding mode of very massive
SMBHs, like M87 (Gebhardt & Thomas, 2009), is currently dominated by stellar
captures. The true rates could be even higher since their analysis takes only stellar
orbits within the black hole influence radius rH into account, whereas stars within the
loss cone but from much further away should reach the black hole, too, as long as the
critical radius rcrit (a quantity which is defined in Eq. 3.45) remains larger than rH .
Norman & Silk (1983); Poon & Merritt (2001, 2002); Merritt & Poon (2004); Berczik et al.
(2006) provide additional information on the dynamics of SMBHs and stellar capture
rates in triaxial potentials.

Observed disruption events (Ulmer 1999; Komossa 2002; Halpern et al. 2004;
Komossa et al. 2004; Esquej et al. 2008; Gezari et al. 2008; Cappelluti et al. 2009;
Gezari et al. 2009; Komossa et al. 2009; van Velzen et al. 2011 and references therein),
support the view that tidal disruptions contribute to the growth history of SMBHs. To
which magnitude this is the case is a major aspect of this study.

The paper is organized as follows. In § 3.2 we will shortly explain the concept by
which stars are driven by angular momentum diffusion into the “loss cone” of the
SMBH. This formalism is applied to spherical stellar distributions with arbitrary slope
parameters of the density profile. § 3.3 describes the NBODY6 code that we used. We
will specify the scale-free models and motivate the very large set of performed simula-
tions required to obtain the disruption rate of stars by SMBHs in the nuclei of galaxies.
The results will be given in § 3.4 while more detailed information regarding the dy-
namics of the simulations will be part of § 3.5. In § 3.6 the procedure how to scale the
obtained results to realistic astrophysical systems as well as the number of expected
tidal disruption events will be specified. A critical discussion of potential error sources
in § 3.7 is followed by a summary of our main findings in § 3.8.

12For the purposes of this study we do not discriminate between t0 and one Hubble time H−1
0 and assume

H−1
0 ≈ t0 = 13.7 · 109 yr (Komatsu et al., 2009).
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3.2. Theory

Frank & Rees (1976) calculate that massive black holes can grow not only by swallow-
ing stars which lose their energy via dynamical relaxation, but also by swallowing stars
on very eccentric orbits. The change of the stellar distribution in angular momentum
space is expected to progress much faster than the change in energy space. The velocity
vectors of stars must lie close together as long as they have pericentre distances which
are smaller than the capture radius of the SMBH. This narrow region in velocity space
is defined to be the loss cone. The symmetry axis of the loss cone angle, θlc, points
towards the SMBH. Within the influence radius of the black hole, where the velocity
distribution is Keplerian (∝ r−0.5), θlc is defined to be

θlc ∝

(

2rcap

3r

) 1
2

(3.43)

according to Frank & Rees (1976). For r ≥ rH , a different formula is required. In
the following discussion we leave it unspecified if stars are swallowed or disrupted
at the capture radius. A general capture radius, rcap, can be specified for all purposes
(Novikov & Frolov, 1989; Binney & Tremaine, 2008). Without dynamical relaxation, a
full loss cone in a spherical galaxy would be emptied within a crossing time scale, tcross.
However, dynamical relaxation changes permanently the angular momentum distri-
bution of stars. These gravitational two-body deflections give rise to changes in the
velocity vectors by small amounts θDiff per crossing time (Frank & Rees, 1976):

θDiff ∝

(

tcross

trel

) 1
2

. (3.44)

At the critical radius, rcrit, drifts of the velocity vector equal the loss cone angle, θlc:

θlc

θDiff

∣

∣

∣

∣

∣

r=rcrit

= 1. (3.45)

Assuming a number density profile13 n(r) = n0rα within rcrit ≤ rH and considering
equal mass stars, an expression for the critical radius

rcrit ∝

(

rcap M2
•

M2
⋆n0

) 1
4+α

(3.46)

is obtained by inserting Eq. 3.43 and Eq. 3.44 into Eq. 3.45. Spitzer’s relaxation formula
(Spitzer & Harm, 1958; Spitzer, 1987) is used for the relaxation time trel. The Coulomb
logarithm is neglected.

The stellar capture rate can be derived by using eq. 17 from Frank & Rees (1976)14:

Ċ ∝
θ2

lcr3n(r)

tcross

∣

∣

∣

∣

∣

r=rcrit

=
θ2

Diffr
3n(r)

tcross

∣

∣

∣

∣

∣

r=rcrit

, (3.47)

13The parameter n0 can be substituted by n0 = ncr−α
H into the more common number density nc at the

influence radius rH .
14We replace v(r) ∝ r

tcross
.
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3.3. Description of the N-body Models

For a density profile n(r ≤ rcrit) = n0rα the stellar disruption rate Ċ is obtained by
substituting r = rcrit:

Ċ ∝ G
1
2 M

1
2• rcapn0

(

rcap M2
•

M2
⋆n0

) 0.5+α
4+α

. (3.48)

For the case of very massive SMBHs the critical radius exceeds the influence radius and
Eq. 3.46 must be modified according to Frank & Rees (1976):

rcrit ∝
(

rcaprHn0

)− 1
1+α . (3.49)

We assume the velocity dispersion to be σ2 ∝
GM(r)

r ∝ Gn0M⋆r2+α and use the same
formalism (Eq. 3.47) to derive Eq. 3.49. The capture rate for rcrit > rH becomes

Ċ ∝ rcaprHn
3
2
0 G

1
2 M

1
2
⋆

(

rcaprHn0

)− 2+3α
2(1+α) . (3.50)

For simplicity we adopt the number density profile to be n(r ≤ rcrit) = n0rα and
thus assume α to remain constant. Real galactic nuclei with SMBHs more massive
than 107 M⊙ can deviate from pure power-law profiles at radii r ≤ rcrit, whereas the
inner density profiles of large elliptical galaxies are nevertheless well approximated by
simple power-law profiles (Trujillo et al., 2004). Eq. 3.50 is valid for −3 < α < −1.

These equations which are derived from the very general angular momentum dif-
fusion concept of Frank & Rees (1976), will lose their applicability for systems where
the stellar phase space is not well-occupied with sufficient amounts of low angular
momentum stars. Gaps in the phase space distribution, for example carved out by
binary-SMBH evolution must first be repopulated, whereas the relaxation driven re-
filling process may take longer than one Hubble time H−1

0 for large elliptical galaxies.
Hence for these systems the two-body relaxation driven capture rate will be strongly
suppressed (Merritt & Wang, 2005).

3.3. Description of the N-body Models

In the following sections the computations and results will be specified. We make use of
conventional N-body units (Heggie & Mathieu, 1986). For readers being unexperienced
with these units, a very short overview is given below.

3.3.1. N-body Units

The set of N-body units is defined by

G = M = 1 (3.51)

where G is the gravitational constant and M the total mass. In a gravitationally bound
system which is in virial equilibrium (rvir = 1), the total energy E is E = − 1

4 . N-body

timescales which are used as the time base for the computations are defined to be tcross

2
√

2
.

Here tcross =
2r
σ is the crossing time of the particles at r = rvir. The 3D half mass radius
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(≈ 1.35 times the half light radius re) for a constant M
L -ratio is usually scaled to equal

rvir = 1. It is of the order of kpc scales in physical units for real elliptical galaxies. For
example one N-body timescale would correspond to t = 7.8 · 106 yr in physical units
for a spherical bulge or galaxy of Sérsic type (n=4, see § 3.3.2) with a half mass radius
of 0.65 kpc and total stellar mass M = 109 M⊙. In § 3.6.1 and Appendix B the detailed
procedure how the computational results are transformed from N-body to physical
units is given.

3.3.2. Generation of the Models

The observed surface brightness profiles In(r) of bulges and elliptical galaxies are well
approximated by the following Sérsic law (Sersic, 1968; Caon et al., 1993):

In(r) = Ie exp

{

−bn

[

(

r

re

) 1
n

− 1

]}

. (3.52)

The parameter n, also known as the Sérsic index, specifies the strength of light
concentration towards the center of the galaxy. Ie = I(re) corresponds to the surface
brightness at the half light radius, whereas bn is defined in a way that half of the total
light is emitted within re (Ciotti & Bertin, 1999). The 2D density profile is obtained from
the surface brightness profile by using a mass-to-light ratio, which for our purposes is
assumed to be constant along the radial distance to the center of the galaxy.

A Sérsic density profile is chosen for the initial state of the models. These N-body
models are set up using the same method as described in Hilker et al. (2007). First, the
2D Sérsic models are deprojected into 3D density distributions using Abel’s integral
equation. From the 3D density profile, ρ(r), the potential, φ(r), can be deduced. By
assuming an overall isotropic velocity distribution, the velocities of the particles are
derived with the help of eq. 4.46a from Binney & Tremaine (2008). The program is
modified by adding a 1/r-potential of the black hole of mass M• = 0.01 in N-body
units (Heggie & Mathieu, 1986)15. This step guarantees that the N-body models are in
equilibrium. The cut off radius for the models is chosen to be 20 times the half mass
radius.

3.3.3. Nbody6 Numerical Dynamics Software

The up to date version of NBODY6 (Aarseth, 1999, 2003) with Graphical Processing Unit
(GPU) support is used for the direct N-body integrations. A black hole is added by a
SMBH particle of mass M• = 0.01. It is implemented into the models at the center
of mass while being initially at rest. Particles which fall below the limit of the capture
radius rsim

cap are removed from the simulations while their masses are added to the SMBH

particle. The capture radius rsim
cap remains constant16. To ensure correct dynamics, the

SMBH particle receives the center of mass velocity after the capture event.

15The differences between a 1/r-potential and a realistic Schwarzschild or Kerr black hole potential are
completely insignificant for distances of several hundred rcap away from the black hole. This is typi-
cally the distance where the innermost particles are located.

16In reality the capture radius would change as well as the total number of capture events. However in
order to simplify our extrapolation formalism to realistic galaxies and due to the fact that the mass
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Figure 3.8. Scale-free density profiles of different Sérsic models.

3.3.4. The Need for a Large Set of Simulations

In order to extrapolate many scale-free models to astrophysical systems which contain
some orders of magnitudes more stars than are possible to be simulated with direct
N-body integration methods on modern GPUs, the relaxation driven effects in angu-
lar momentum and energy space as well as every other N dependent systematic effect
(see § 3.5.1 & § 3.5.2) must be determined. This can be achieved by simulating mod-
els with different numbers of particles but otherwise identical physical parameters. In
doing so several particle models following a Sérsic n = 4 density profile are gener-
ated. It is desirable to simulate these models for as many different black hole config-
urations as possible in order to use the formalism in § 3.6.1 for the extrapolation to
the black hole of interest, hence increasing the computational effort considerably. The
masses of the particles mi = N−1 are always scaled to ensure ∑i mi = 1 in N-body
units (Heggie & Mathieu, 1986). N=15×1 k, 15×2 k, 10×5 k, 5×10 k, 5×25 k, 2×50 k,
2×75 k and one model containing each 100 k, 150 k, 250 k and 500 k particles are gener-
ated and simulated. All these models are simulated forward in time up to 100 N-body
timescales for three different black hole capture radii rsim

cap = 2, 4, 8 · 10−7. Energy values

and relative energy errors |∆E| =
∣

∣

∣

E(tn)−E(tn−1)
E(tn−1)

∣

∣

∣
are evaluated directly with the NBODY6

software and controlled every new N-body timescale. The relative energy errors usu-

gain of the black hole within T = 100 NBODY timescales is limited to the order of a few percent, it is
assumed to be constant.
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ally not exceeded values of |∆E| = 10−8 − 10−4. A few models had to be discarded
afterwards as they suffered from repetitive energy errors in excess of |∆E| = 10−2. To
guarantee unbiased capture rates we also discarded models in which the position of
the black hole was offset by a distance d ≥ 0.1 from the density center of the particle
distribution. The statistical significance of the low N models is increased by simulating
as many models as possible. The required time for the computations of all simulations
exceeds a timespan of seven months on five modern GPUs.

3.4. Results
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Figure 3.9. The capture rates per one N-body time unit for the three computed black hole
capture radii, evaluated from the total amount of swallowed particles within the timespan of
T = 50, 75 & 100 N-body time units. These values are best fitted by the power-law function
Ċ(N) = aNb, here N refers to the total number of simulated particles.

For each capture radius, rsim
cap = 2, 4, 8 · 10−7, the number of swallowed particles is

plotted in Fig. 3.9 as a function of the total number of particles. Moreover, the capture
rate per N-body timescale is obtained by dividing the total number of captured parti-
cles within T = 50, 75, 100 N-body integration times by these values. The number of
captures averaged over all runs are then approximated by a power-law function

Ċ(N) = aNb (3.53)

with the help of the Marquardt-Levenberg minimization method and independently by
a grid scanning algorithm minimizing the Chi-square error statistics. The parameters
a, b must be positive and the boundary condition Ċ(N)|N=0 = 0 requires no offset.
To reduce the correlation between the parameters a and b to zero, we normalize the

power-law function Ċ(N) = a′ (N/N̄L)
b

during fitting. The denominator N̄L refers to
the logarithmic mean. The resulting effect can be seen in Fig. 3.10. These uncorrelated
values17 are used for the extrapolation to realistic values. The justification for using

17To simplify the extrapolation formalism, the renormalized constant of proportionality a′ and its error is

afterwards transformed back to a = a′

N̄b
L

. This does not affect the correlation coefficient ρ = 0 between

a, b.
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3.4. Results

T rsim
cap a(10−5) b χµ Q

50 2 · 10−7 16.76± 3.11 0.79 ± 0.02 0.82 0.79
4 · 10−7 17.95± 2.89 0.82 ± 0.01 1.06 0.36
8 · 10−7 25.08± 3.92 0.82 ± 0.01 1.41 0.02

75 2 · 10−7 10.63± 1.95 0.82 ± 0.02 1.01 0.45
4 · 10−7 14.46± 2.09 0.83 ± 0.01 1.13 0.25
8 · 10−7 18.15± 2.51 0.83 ± 0.01 1.41 0.02

100 2 · 10−7 8.73± 1.33 0.83 ± 0.01 0.83 0.79
4 · 10−7 10.98± 1.49 0.84 ± 0.01 1.12 0.26
8 · 10−7 14.41± 1.97 0.85 ± 0.01 1.57 0.01

Table 3.1. Fit parameters of the power-law approximation (Eq. 3.53) for the simulated Sérsic
n = 4 models. The black hole capture radii and timescales T are given in N-body units. χµ =

χ2/µ corresponds to the reduced Chi-Square values, µ are the degrees of freedom and Q =
Γ(0.5µ, 0.5χ2) the χ2-probability function which estimates the likelihood of the power-law fit.

a power-law approximation for the capture rate Ċ(N) from the simulations comes
from Eq. 3.48 when replacing n0 = Nρ0 and M⋆ = N−1. Poisson square root errors√

Nc are assumed for all values and Nc is the total number of captured particles. The
results can be found in Table 3.1. Additionally, the reduced Chi-Square values χµ

and the χ2-probability function Q(µ, χ2) are calculated in order to test the validity of
a power-law approximation for the capture rate. Given the values in Table 3.1, the
hypothesis of a power-law function seems to be a reasonable assumption. However,
for the determination of the error values of parameters a, b the square root errors

√
Nc

are rescaled slightly by the values
√

χµ from Table 3.1 to obtain χµ = 1. Otherwise
the quoted error values would be underestimated for the case of χµ ≥ 1 (Press et al.,
1992)18.

The advantage of numerical simulations over analytical expressions like Eq. 3.48
are given in the ability to take dynamical aspects like cusp formation, dynamical
heating (§ 3.5.1) and a wandering SMBHs (§ 3.5.2) into account. These depend strongly
on time and on the total number of particles and may influence the capture rate
Ċ(N). The predicted power-law index of Eq. 3.48 is therefore not expected to exactly
match the value obtained from the simulations. In fact Eq. 3.48 would only predict

Ċ(N) ∝ N
4.5+2α

4+α ≈ N0.6 for α ≈ −1.5 compared to Ċ(N) ∝ N0.83 from the computations.
The difference is caused by stronger dynamical evolution and cluster heating in
low number particle simulations accompanied by a decrease in the total number of
particles falling into the black hole. Models containing many more particles have much
smoother potentials and relaxation driven effects (notably cluster heating) need longer
to influence (decrease) the capture rate (Fig. 3.11). Consequently the exponent b of
the power-law function which approximates the number of captured particles of the
total set of simulations becomes larger than expected from Eq. 3.48. These dynamical
processes are reflected by the values of a, b at different timescales. The constant of
proportionality a decreases in time, whereas the slope parameter b is consistent with a
small increase from b ≈ 0.80 at time T = 50 up to b ≈ 0.83 at time T = 75. Thus the
exponent of the power-law function which approximates the capture rates becomes

18Chapter 15.1
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Figure 3.10. The error ellipses for the models after T = 100 before (left) and after (right) renor-
malization. The shape of the error ellipses becomes nearly circular which proofs the parameters
to be uncorrelated.

slightly larger, whereas the constant of proportionality decreases. Moreover, the T = 50
values may still be influenced by initial conditions. There are minor changes in b from
T = 75 to T = 100.

For the purpose of this study the rate Ċ is assumed, within the statistical uncertainty,
to remain unchanged when extrapolated to larger values of N. This assumption can
only hold if the phase space is already well occupied with sufficient amounts of low
angular momentum stars. This is a necessary condition for the steady diffusion pro-
cess of stars into the loss cone. The capture rates of the Sérsic n = 4 models are found
to be maximal at the beginning of the simulations in contrast to Sérsic n = 2 models
with their much shallower density profiles (Fig. 3.11). This demonstrates the above as-
sumption to be credible, at least for galactic nuclei containing SMBHs less massive than
107 M⊙. In such galaxies the diffusively refill of any small gap with radius rgap << rH

would anyway occur on a timescale shorter than a Hubble time (Merritt, 2005). Addi-
tionally, one can show that the inequality

Trefill = θ2Trel << H−1
0 (3.54)

is fulfilled up to SMBHs of order 107M⊙ and hence our result, Ċ ∝ N0.83, should
yield realistic values when extrapolated to such black holes: By assuming the radius
r at which particles can enter loss cone orbits without being scattered away through
interactions with other stars to be rcrit ≈ rH

∣

∣

M•=107M⊙
, the loss cone angle θ can be
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Figure 3.11. Time evolution of the capture rates for Sérsic n = 4 & n = 2 models. The statistical
significance of the latter ones is increased by averaging over three simulations.

evaluated from Eq. 3.43. For the constant of proportionality f we use f = 2 in ac-
cordance with Frank & Rees (1976). By assuming r ≈ rH , M⋆ ≈ 1M⊙, the relaxation
time to be Trel ≈ H−1

0 (Freitag et al., 2008) and estimating all other relevant parame-
ters from the M• − σ relation (Ferrarese & Ford, 2005), one obtains the desired result
Trefill ≈ 4 · 10−6 · H−1

0 << H−1
0 . The observed strong N dependence (b=0.83) may be-

come irrelevant or absent for black holes more massive than 107M⊙, especially if they
have core profiles. For these systems the loss cone refilling timescale Trefill ≈ θ2

lcTrel,
becomes very long. Once the initially filled loss cone becomes emptied within a few
crossing times, the capture rate Ċ would stagnate at insignificant values as long as
there is no re-population mechanism more efficient than angular momentum diffusion
(Merritt & Wang, 2005; Merritt, 2005).

This effect can be illustrated by simulating Sérsic n = 2 models. These have a slower
dynamical evolution, a different cusp and cluster heating timescale and a reduced
population of low angular momentum stars compared to the Sérsic n = 4 models.
In this way, qualitative limitations on the number of capture events for core-type
galaxies with shallow central density profiles (Fig. 3.8) can be obtained. Even though
the extended outer profiles of the most-massive elliptical galaxies are conform with a
large Sérsic index n, the ’depleted’ core-type central regions (this is where the relevant
black hole physics take place) are more similar in their appearance to the shallow
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centers of low n models19. A strongly reduced disruption rate in comparison to the
Sérsic n = 4 models is evident in these computations. The enlarged radius of influence
rH and therefore the difference in the extrapolation formalism to realistic galaxies can
not compensate these differences. Moreover, in the largest simulated Sérsic n = 2
models, the capture rate stagnate first around insignificant values. It starts increasing
(Fig. 3.11) afterwards, accompanied by the relaxation driven formation of a cusp
and a population of stars with sufficiently low angular momentum. If we assume
this behaviour to persist unchanged up to even larger numbers of particles, i.e. to
large core-type galaxies where no cusps can form on timescales shorter than H−1

0 ,
these numerical findings confirm analytical predictions (Wang & Merritt, 2004) in a
qualitative way. The capture rate of stars in large core-type galaxies is very low, as long
as the diffusive refill of the angular momentum space with a sufficient number of stars,
i.e. the cusp formation timescale, takes longer than a Hubble time.

Finally the here performed simulations of the Sérsic n = 4 models strongly support
the scenario of Frank & Rees (1976) in which stars are driven into SMBHs via diffusion
in angular momentum space and not only by diffusion in energy space. From the most
elementary considerations of energy diffusion and by assuming the two-body relax-
ation time to be Trel ∝ N

ln(N) , one would expect Ċ(N) = dN
dt ∝ N · T−1

rel ∝ ln(N). Such a

small increase of the capture rate with N is incompatible with our results.

3.5. Dynamics & Scaling Issues

The capture rate is influenced by several dynamical processes which are described be-
low.

3.5.1. Cusp Formation and Cluster Expansion

The process of relaxation strongly influences the dynamics of stars around a SMBH. In
Bahcall & Wolf (1976) the relaxation driven evolution of the stellar density profile near
a SMBH is determined. It is found that the energy which some stars loose through
near encounters is balanced by an outgoing flux of energy if the slope of the density
profile is α = −1.75. The required time to form such an equilibrium density B&W
profile strongly depends on the relaxation time which becomes larger the smoother a
gravitational potential is (Spitzer, 1987).

The α = −1.75 profile is compatible with the present N-body models only up to
N = 25 − 50 k where relaxation is strongest and the statistical scatter is large. The
N > 50 k models, which allow a more precise measurement of α, are found to be in
the developing stage towards more cuspy profiles. In Fig. 3.12 the time dependent

19This is also one reason which complicates the discrimination between ’true’ cores, formed by the dy-
namical evolution of massive binary black holes and those in which only the outer envelopes are
modified by near encounters. In the latter case the outer profile extrapolated to inwards radii would
suggest the existence of a core (Hopkins & Hernquist, 2010). The binary black hole mechanism may
also be accompanied by other processes lowering the central stellar density (Merritt & Vasiliev, 2011;
Schawinski et al., 2006).
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Figure 3.12. Time evolution of the central slope parameter α plotted for the 50 k, 150 k and
250 k models. The linear trend (solid line) is only drawn for the 150 k and 250 k models, while
the first one (fixed black hole) was simulated forward in time up to T = 200.

central slope parameter α within r = 0.004 is plotted for some models. The radius r
is chosen to be 20% smaller than the time and model-averaged black hole influence
radius20 in order to ensure that the slope parameter is not determined for radii larger

20See Appendix B for information regarding the determination of rH .
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than rH at the beginning of the simulation when the mass and influence radius of
the black hole is smallest. In order to obtain the central slope parameter α, it is
inappropriate to calculate the density profile ρ(r) ∝ rα from given shells of thickness
∆r and densities ρ(r + ∆r). Unfilled shells, especially in low N models, would strongly
bias the determination. In order to circumvent this difficulty, the cumulative mass

function M(r) ∝ rβ ∝
∫ r′

0
r2ρ0rαdr is calculated and the density slope parameter

α = β − 3 (equating coefficients) is determined from the measured β. This approach
is tested by Monte-Carlo simulations in which several thousand models of particles
following a ρ ∝ r−1.75 distribution are realized. For each of these models the central
slope parameter α within r = 0.004 is calculated. The models are scaled such that the
number of particles within r = 0.004 is equal (within the statistical scatter) to those
of the 25 k, 50 k, 75 k, 150 k and 250 k simulations. The standard deviation σ from the
obtained normal distribution21 of central slope parameters is then taken as a reasonable
estimate for the statistical error in addition to the one obtained from the fit itself. In
Fig. 3.13 the time evolution of the mass profiles of two models are plotted.

In order to estimate the dependence of a wandering black hole on cusp formation
processes and finally the capture rate, simulations of fixed black holes are desirable.
Such simulations are realized by making use of a modified NBODY1 code (see §3.5.3
for more details regarding the capture rates). Within the large statistical errors, no
significant difference in the density profiles between the free floating and fixed black
hole is identified for the 50 k model. This is not an unexpected finding since the most
bound particles, which are also the particles with the highest probability of being
captured, are expected to follow the motion of the black hole. However a rigorous
statistical evaluation is beyond the scope of this study.

While the capture rate is increased by cusp formation, dynamical heating counteracts
by reducing the central density. The cluster starts to expand by decreasing the absolute
value of its binding energy due to increasingly more strongly bound particles which
are losing energy by relaxation. These particles, which may finally be swallowed by
the black hole, are transferring their kinetic energy to other particles. This heating is
illustrated by the time evolution of the Lagrange radii (Fig. 3.14). As a consequence the
capture rate is expected to depend strongly on the density profile close to the black hole
(Eq. 3.48).

In reality mass segregation of heavier bodies being relevant for multi-mass
systems (Alexander & Hopman, 2009; Baumgardt et al., 2004b; Morris, 1993;
Preto & Amaro-Seoane, 2010), stellar collisions (Bailey & Davies, 1999; Dale et al.,
2009), a significant fraction of primordial binary stars (Hopman, 2009), torques from
anisotropic matter distributions acting as massive perturbers (Perets et al., 2007), star
formation by gas inflow (Hopkins & Quataert, 2010) and the possible presence of
IMBHs (Baumgardt et al., 2006) would complicate the dynamics of stars close to a

21Actually very small particle numbers within r = 0.004 bias the power-law density-approximation and
the distribution of central slope parameters becomes asymmetric with a tail towards very large values.
This may partially account for some extreme outliers especially in low N models, whereas for larger
models the distribution becomes more symmetric and the expectation values µ center around α =
−1.75.
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Figure 3.13. Mass profiles of two models. The thin dashed black line represents the gradient of
the B&W profile while the thick dashed black line (only drawn for T=0) displays the unaltered
Sérsic n = 4 model. The first error on α corresponds to the fitting error while the second one to
the statistical error inferred from Monte Carlo simulations. The profiles and thus α are evaluated
for radii r ≤ 0.004. For more informations see the text below.

SMBH even more. These effects are also expected to accelerate the dynamical evolution
and to enhance the number of stellar disruption events. Newly formed stars may
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Figure 3.14. A comparison between the time evolution of several Lagrange radii for three
different simulated models. As expected from theory, the Lagrange radii evolve faster to larger
values in simulations containing fewer particles. The fluctuations are statistical in nature. The
position of the black hole is used as the reference center.

replace those lost by tidal disruptions while tidal torques from IMBHs or a second
SMBH are expected to refill the loss cone efficiently. Recoiled black holes should also
enforce a burst of stellar disruptions (Stone & Loeb, 2011). In nature the relaxation
driven B&W cusp formation takes very long and is expected to exceed one Hubble
time H−1

0 for black hole masses larger than 107 M⊙ (Freitag et al., 2008).

3.5.2. Wandering Black Hole

In the simulations the SMBH particle responds to the interaction with other particles
which causes the SMBH to wander. This might affect the formation of a density cusp
and influence the capture rate (Baumgardt et al., 2004a). Chatterjee et al. (2002) gives a
very detailed overview of the relevant forces acting on a SMBH. They are summarized
below.

The here performed simulations differ only in two ways from the N-body simula-
tions done by Chatterjee et al. (2002). The black hole is allowed to swallow particles
and the forces are unsoftened. The SMBH moves around the common center of mass
due to the gravitational interaction with particles bound to it, whereas unbound
particles are forcing the black hole to wander in a way which resembles the Brownian
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motion of molecules. The latter process is the dominant contribution to the wandering
of the black hole (see Fig. 3.15).

The situation is now complicated by the possible occurrence of violent three body
encounters, e.g the interaction between the black hole, a strongly bound particle in
orbit around it and another one. Recoil events force the black hole and its surrounding
particles to move outwards. The mass fraction, m

M•
, is usually orders of magnitudes

larger in any performed N-body simulation than it is in a realistic nucleus of a galaxy.
And, because the recoil effect becomes stronger for a larger fraction m

M•
and for smaller

capture radii rsim
cap , wandering of the SMBH in the N-body models is expected to modify

the processes leading to the formation of a cusp. Consequently, the simulated capture
rate may become affected. If the recoil kick of the SMBH particle is strong enough
to eject it out of the density center or even from the whole cluster, the capture rate
would drop significantly. This is expected, due to obvious reasons, to happen more
likely in simulations with low particle numbers. As a consequence the extrapolated
N-dependent capture rate would be strongly biased and the best fitted slope parameter,
b, may be too large. Therefore, the actual position of the SMBH particle is compared to
the density center of the matter distribution for every simulated model and at every
new N-body time unit. The black hole particle is not considered in the calculation of
the density center which is determined by the method described in Casertano & Hut
(1985). If the position of the black hole and the density center are offset from each other
by d = 0.1 in N-body units, the simulation is removed and replaced by a different one.
In nearly all simulations this offset is smaller than 10−3 − 10−2. This guarantees that
the results are not biased by displaced black holes in the low N models.

But even by removing those few models where ”unnatural“ kicks and displaced
black holes are observed, the wandering of the black hole itself might affect the capture
rate. The wandering radius can be determined by the standard deviation of the normal
distribution (Fig. 3.15). It is found to be comparable in size to the influence radius
rH = 0.005 (for the 250 k model) and becomes gradually smaller for larger particle
numbers i.e. smaller mass fractions m

M•
.

A first clue about the degree to which the wandering black hole affects the results
can be obtained by a closer look at the energies of accreted particles. If only parti-
cles are swallowed which are strongly bound i.e. have the most negative energies,
the effect of Brownian motion on the capture rate is expected to be rather small,
since the cloud of strongly bound particles moves together with the black hole. In
Fig. 3.16 the initial energy distribution for two models is shown. Also plotted is the
fraction of the accreted particles to the total number of particles within a given energy
bin. Evidently only the most strongly bound particles are captured. If the energy
E = −M•m

r + 0.5mv2
m + 0.5M•v2

M• of the particle of mass m and black hole is negative,
shortly before it enters the capture radius and is removed, the particle is gravitationally
bound to the SMBH. In our models the vast majority of particles are gravitationally
bound to the black hole, e.g. the fraction of bound particles centers around 100% in the
low-N models and 85 - 95% in the largest-N models.
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Figure 3.15. The 100 binned (∆d = 0.001) x, y, z-positions of the SMBH particle with a capture
radius rsim

cap = 4 · 10−7 for the 500 k, 250 k and 75 k model. In the last row the sum of these values
is plotted and approximated by a normal distribution. The probability distributions are well
approximated by a Gaussian underlining the character of the Brownian motion. The relevant
length scale d is given in units of the virial radius rvir = re = 1. The SMBH particle in the 75 k
model experienced a minor kick during the integrations.

We therefore conclude that a wandering black hole does not bias the capture rate in
a way that would make it unrealistic when extrapolated to real IMBHs and SMBHs.
The performed simulations automatically contain the gradual change in the number of
accreted particles which are influenced by the wandering of the black hole. Our largest
N-computations already approach realistic IMBHs embedded in globular clusters.
To resolve all doubts that the steep dependence on N of the capture rate, Ċ ∝ N0.83,
is not caused by the systematics of the wandering black hole, especially in low N
models, direct N-body simulations with fixed black holes (§ 3.5.3) are performed.
For completeness it should also be mentioned that the N-body models include two
additional effects: (i) A restoring force which arises between the black hole and the
overall potential of the stellar distribution, especially if it has a cuspy density center,
and (ii) a dynamical frictional force when the black hole passes through the cloud of
particles (Chandrasekhar, 1943; Chandrasekhar, 1943b,c; Chatterjee et al., 2002).
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3.5. Dynamics & Scaling Issues

1

10

100

1000

10000

N
(E

)

50k

1e-5

1e-4

1e-3

0.01

0.1

1

-0.01-1-100

N
C

A
P(

E
)/

N
(E

)

E/m

500k

-0.001-0.1-10

Figure 3.16. In the upper two figures the binned specific energy E
m distributions of the 50 k,

rsim
cap = 4 · 10−7 and 500 k, rsim

cap = 4 · 10−7 models are plotted. The lower diagrams depict the ratio
of captured particles to total number of particles within the given energy bins. Evidently only
the particles with the most negative energy i.e. the most strongly bound particles are accreted
as expected from theory. The upper and lower (black) lines represent the error uncertainties.

3.5.3. Fixed Black Hole

Simulations with fixed black holes are realized by using NBODY1. Unfortunately it
is impossible in NBODY6 to fix the SMBH particle to a specific location while simul-
taneously using all of its computational benefits. On the other hand the usage of an
independent N-body software implementation reduces the possibility of systematic er-
rors. The NBODY1 simulations are performed on special-purpose, GRAPE-6A boards
(Fukushige et al., 2005) at the stellar Populations and Dynamics Research Group in
Bonn. The black hole is mimicked by an (unsoftened) external 1

r potential which is di-
rectly implemented into the code. Particles which cross the capture radius are removed,
while their masses are added to the mass of the black hole. To circumvent collisions be-
tween field particles, a small softening parameter ǫ = 10−4 is used. Additionally, some
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Figure 3.17. Results of the simulations with a fixed black hole. Strongly bound particles which
needed to be removed artificially to prevent slow downs or a computational crash are not con-
sidered in the evaluation of the slope. Note the excellent agreement with the results obtained
for the more realistic NBODY6 computations (Fig. 3.9).

strongly bound particles around the external potential are erased artificially (the num-
ber corresponds to roughly 30% of the total number of ”true” capture events) in order
to prevent gradual slow downs, large energy errors and/or the complete crash of the
simulations. The energies of all removed particles are handled carefully to ensure a cor-
rect energy output. Due to these limitations and the much smaller sample of simulated
models, the NBODY1 computations are not used for the extrapolation to realistic galax-
ies but only for a rough comparison to the much more advanced NBODY6 simulations.
In Fig. 3.17 the results are plotted. Despite the large simplifications of the NBODY1
computations, the power-law index b of the capture rate, Ċ ∝ Nb, agrees, within the
statistical uncertainties, closely with the index obtained with the much more sophisti-
cated NBODY6 simulations with free moving SMBHs. As a consequence a (strongly)
wandering black hole particle does not bias the low N results in a way which would
be dangerous when extrapolating these to astrophysical systems harboring many more
stars than particles in our simulations. Of course this behaviour may change for initial
black hole masses different from the one M•(t = 0) = 0.01 used in these computations.
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3.6. Discussion

3.6. Discussion

3.6.1. Scaling to Realistic Galaxies

The so-far presented results must be scaled to astrophysical systems in order to infer
the rates at which stars are disrupted by central, supermassive black holes. From the
following relation

rcap

rH

∣

∣

∣

sim
=

rcap

rH

∣

∣

∣

astro
, (3.55)

which must be necessarily fulfilled, the capture radii, rcap, for the corresponding black
holes of interest must be determined. In order to scale to astrophysical systems, we use
the M• − σ relation from Schulze & Gebhardt (2011),

(

M•
M8

)

= 1.51

(

σ

200km s−1

)4.32

, (3.56)

and the expression for the radius of influence,

rH =
GM•

σ2
, (3.57)

to calculate rH for a SMBH of given mass,

rH ≈ 13.1

(

M•
M8

)0.54

[pc]. (3.58)

Here M8 corresponds to 108M⊙ and for reasons of computational feasibility we ne-
glected the intrinsic scatter of the M• − σ relation. This is useful when dealing with
averaged quantities like the impact of stellar disruptions for the growth history of the
majority of SMBHs. Some studies may instead be interested in individual systems and
the extrapolation formalism can easily be replaced by direct measurements of M•, rH

and σ instead of using the values from the M• − σ relation. This also holds for the
choice of the relevant tidal disruption radius,

rcap = gr⋆

(

M•
M⋆

) 1
3

, (3.59)

where g is a parameter depending on the stellar polytrope, mass, spin of the SMBH
and trajectory of the star. Black holes below 107M⊙ and solar like stars are well
approximated by g ≈ 1 (Kochanek, 1992).

The relevant astrophysical timescale is obtained through the computation of the
crossing time tcr(rH) =

2rH

σ(rH)
at the influence radius rH of the black hole in comparison

with that of our numerical integrations. The number of disruption events within the
given timescale is obtained from the derived capture rate 22 Ċ(N, rsim

cap ) = a(rsim
cap )Nb.

22The capture rates Ċ(N) from the numerical computations are normalized to one N-body time unit and
must be scaled down to one crossing time-scale at the influence radius in order to become synchronized
with the astrophysical timescale tcross.
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Here N refers to the total number of (real) stars with the averaged mass M⋆ in the bulge
component or whole elliptical galaxy. It is assumed to be N = 100M•

M⋆
in accordance

with our numerical integrations, whereas a(rsim
cap ) is extrapolated to the black hole

mass of interest by using the T = 100 values for the parameters a23. The parameter
b is assumed to be unrelated to the capture radius and is hence taken to be constant
at b = 0.83 ± 0.01. In fact Eq. 3.48 predicts the slope parameter b to be unrelated
to the capture radius. Nevertheless a minor change in b towards smaller vales of
rsim

cap cannot be rejected given the b values of Table 3.1 at T = 100. This might be
explained by a combination of timing issues, simplified assumptions of our analytical
approach or is purely statistical in nature. Therefore, the parameter b is extrapolated
(by linear and power-law regressions) down to the required values of rsim

cap in order to

test its impact on the capture rates. The impact is found to be moderate because rsim
cap

has to be extrapolated down to rsim
cap = (0.06 − 0.07) · 10−7 (depending on the used

M• − σ-relation) for the largest black hole with 107M⊙. While the capture rate would
be unaffected for the least-massive black holes, it would drop by a factor of 2 for the
most-massive ones. Increasing uncertainties of these values due to the propagation of
error analysis strongly overlaps with those of fixed b. For the purposes of this study
we therefore assume the parameter b to be independent of rsim

cap and refer the reader to
§ 3.7 for a more critical discussion on that topic as well as of the improvements left for
future work.

Finally for an individual galactic nucleus hosting a SMBH of mass M•, with a radius
of influence rH , velocity dispersion σ(r = rH), capture radius rcap and a stellar popu-
lation with the mean mass M⋆, a very general expression for the capture rate inferred
from the numerical integration can be obtained by applying Eq. 3.57:

Ċastro = 0.00061

(

M•
M⋆

)0.95

r−1.36
H r0.36

⋆ g0.36σ (3.60)

The validity of Eq. 3.60 covers the parameter range of IMBHs as well as SMBHs up to
M• ≈ 107 M⊙. In the following section we explicitly make use of the M• − σ relation
and assume only solar like stars as well as g = 1.

3.6.2. Disruption Rates of IMBHs & SMBHs

By applying the extrapolation formalism from section §3.6.1, the integrations yield the
following expression for the capture rate of real astrophysical galaxies:

Ċ(M•) = 6.29 · 10−8

(

M•
M⊙

)0.45
[

yr−1
]

. (3.61)

For comparison the results are also extrapolated according to an older version of the
M•− σ relation from Ferrarese & Ford (2005) to illustrate the dependence of the capture

23At least three different capture radii must be simulated to allow for non linear extrapolation of the
parameter a(rsim

cap ). This is required for the extrapolation to different black hole sizes/masses.
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3.6. Discussion

rate on systematic black hole mass determinations:

Ċ(M•) = 3.54 · 10−7

(

M•
M⊙

)0.35
[

yr−1
]

. (3.62)

These results holds for nonrotating isotropic galaxies or globular clusters with cuspy
inner density profiles ρ(r) ∝ rα, where the density power-law index is α ≈ −1.5.
Eq. 3.61 and 3.62 should not be applied to black holes with masses larger than 107M⊙.
The uncertainties correspond to about 50% of the values (see Table 3.2). The interested
reader is referred to Appendix B for a much more detailed description of how the
numerical results are extrapolated to realistic galaxies. The astrophysical disruption
rates of stars (including the statistical uncertainties) for some exemplary black holes
are summarized in Table 3.2. We also calculate the disruption rates for IMBHs in order
to compare them with previous simulations (Baumgardt et al., 2004a).

The expected number of tidal disruption events in galactic nuclei containing black
holes of 106 to 107M⊙ inferred from the numerical integrations are in good agreement
with recent optical based surveys (van Velzen et al., 2011)24. While their study yields
the rate for tidal flares per galaxy to be Ċ = 3(+4

−2) · 10−5yr−1, the results obtained from

the present simulations give Ċ = 3.0(±1.4) − 8.3(±4.2) · 10−5yr−1 for black holes in
the mass range 106 to 107M⊙.

The simulations also offer some clues about the growth of IMBHs and SMBHs in the
lower mass range. We observe only a modest impact of the black hole mass on the
capture rate. For a mass range over four orders of magnitude, the capture rate increases
only by a factor 25-60 depending on the used scaling relation. The relaxation driven
growth of massive black holes by stellar disruptions is thus only important for IMBHs
and SMBHs up to several 105M⊙. IMBHs should easily double their mass within a few
Gyr in perfect agreement with earlier studies (Baumgardt et al., 2004a). More massive
black holes must have grown by different processes rather than the relaxation driven
infall of stars, in good agreement with the findings of Yu & Tremaine (2002) and gas
accretion and feedback models (Silk & Rees, 1998; Fabian, 1999; Murray et al., 2005)25.

Our findings exclude any relevance for establishing the M• − σ relation from stellar
disruptions in density profiles similar to those of the simulations. This is due to the
relatively small capture rate and hence large doubling times (T2D > H−1

0 ) for black
holes more massive than 106M⊙. If for example the initial mass of a SMBH is strongly
under-massive with respect to the M• − σ relation, the feeding from tidal disruptions
events alone might not be sufficient enough to bring it close to the observed relation
for galaxies at z ≈ 0. On the other hand if stellar disruptions dominate the growth of
the least-massive black holes there is no obvious reason why these black holes should
follow the M• − σ relation. By now assuming the M• − σ relation to be established for
a primordial gas rich globular cluster (or galactic nucleus), which nowadays remains in
isolation and without gas to drive new star formation, the resulting IMBH (or SMBH,

24ArXiv Version V1 for actual TD rate.
25The growth of the very early population of SMBHs may also be dominated by stellar disruptions in

isothermal cusps (Zhao et al., 2002). See the information in the text below.
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Schulze & Gebhardt (2011)

M•(106M⊙) Ċ(10−5yr−1) T2D(H−1
0 ) L̄(ergs−1)

0.001 0.14± 0.06 0.11 ± 0.05 3.9 ± 1.7 · 1039

0.01 0.38± 0.17 0.39 ± 0.18 1.1 ± 0.5 · 1040

0.05 0.8± 0.4 0.9 ± 0.4 2.2 ± 1.0 · 1040

0.1 1.1± 0.5 1.4 ± 0.7 3.0 ± 1.4 · 1040

0.25 1.6± 0.8 2.3 ± 1.1 4.5 ± 2.2 · 1040

0.5 2.2± 1.0 3.4 ± 1.6 6.2 ± 3.0 · 1040

1 3.0± 1.4 4.9 ± 2.4 8.4 ± 4.1 · 1040

2 4.0± 2.0 7.3 ± 3.6 1.1 ± 0.6 · 1041

4 5.5± 2.7 11 ± 5 1.6 ± 0.8 · 1041

10 8.3± 4.2 18 ± 9 2.4 ± 1.2 · 1041

Ferrarese & Ford (2005)

M•(106M⊙) Ċ(10−5yr−1) T2D(H−1
0 ) L̄(ergs−1)

0.001 0.40± 0.17 0.04 ± 0.02 1.1 ± 0.5 · 1040

0.01 0.90± 0.40 0.16 ± 0.07 2.6 ± 1.2 · 1040

0.05 1.6± 0.7 0.46 ± 0.21 4.5 ± 2.1 · 1040

0.1 2.0± 0.9 0.72 ± 0.34 5.8 ± 2.7 · 1040

0.25 2.8± 1.3 1.3 ± 0.6 8.0 ± 3.8 · 1040

0.5 3.6± 1.7 2.0 ± 1.0 1.0 ± 0.5 · 1041

1 4.6± 2.2 3.2 ± 1.5 1.3 ± 0.6 · 1041

2 5.8± 2.8 5.0 ± 2.5 1.7 ± 0.8 · 1041

4 7.4± 3.7 7.9 ± 3.9 2.1 ± 1.0 · 1041

10 10.3± 5.2 14 ± 7 2.9 ± 1.5 · 1041

Table 3.2. The expected number of stellar disruption events Ċ for solar like stars by super-
massive black holes up to M• ≤ 107M⊙. For comparison our numerical results are extrapolated
according to an older version of the M• − σ-relation (Ferrarese & Ford, 2005) and the most re-
cent one (Schulze & Gebhardt, 2011). Within a factor of two they agree with each other. T2D is

the time needed to double the initial mass of the black hole in units of the Hubble time H−1
0 .

Only one half of the stellar mass is assumed to become accreted by the black hole (Rees, 1988).
Finally the time averaged mean luminosity L̄ = 0.5ǫĊM⊙c2 of these black holes is calculated by
assuming the efficiency parameter of matter to energy conversion to be ǫ = 0.1. The motivation
behind is to compare these energies with potentially detectable left overs of relativistic out-
flows which may become deposited into the surrounding medium after tidal disruption events
(Crocker & Aharonian, 2011; van Velzen et al., 2011). However the deposited energy strongly
depends on the formation rate of relativistic jet outflows and may be significantly overestimated
by us (Bower, 2011). Nevertheless these deposited energies might be relevant for studies aiming
to make a robust detection of dark matter annihilation signals in galactic bulges, dwarf galaxies
or globular clusters hosting a central black hole. These results have relevance for galaxies with
cuspy density profiles with slope parameters α ≈ −1.5 within the inner most few pc.

at least if it is not too massive) should nowadays be more massive than expected from
the M• − σ relation due to subsequent tidal disruption events. It is very tempting to
connect these results to the case of ω-Centauri (Noyola et al., 2010). Tidal disruption
events might therefore have implications for the search and existence of IMBHs in
globular clusters. Of course in order to proof its relevance for IMBHs, the use of the
M• − σ relation in the extrapolation formalism from numerical simulations to galactic
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3.7. Critical Discussion and Outlook for Future Work

nuclei (Appendix B) must be replaced by more direct observational data because the
extrapolated values strongly depend on the validity of this scaling relation. Tidal
disruption events complicate the understanding of the relevant processes which drive
the evolution of galaxies and their central black holes. Especially as the impact of
disruption events for the mass growth of black holes strongly depends on their initial
mass.

In spite of this it might be interesting to relate these findings to a recent study
Kormendy et al. (2011) in which observational evidence for secular growth processes
of black holes in disks and pseudobulges is found. The capture rate for rotation-
supported models like rotating bulges or pseudo bulges should be enhanced compared
to nonrotating models. These objects are expected to form from rotating bar instabil-
ities (Kormendy & Kennicutt, 2004) and the relative velocities between two or more
particles are generally lower. Therefore, two-body relaxation processes would be even
stronger.

However the overall picture of black hole growth across cosmic times by tidal
disruptions might be complicated even more due to the dynamical evolution of the
density profile and a variable fraction of the initial stellar mass which finally becomes
accreted by the black hole. Our conclusions regarding the growth history of IMBHs
and SMBHs events should only hold for density profiles resembling those of our simu-
lations and by assuming that a fraction of one half (or more) of the initial stellar mass
becomes accreted by the black hole (Rees, 1988). In fact some effects can considerably
reduce this fraction and complicate the efforts to estimate the significance of tidal
disruption events for the overall growth history of black holes. Recent hydrodynamical
simulations suggest that for loss cone stars on nearly parabolic orbits, most of the
stellar matter is ejected within the first orbit and then later on due to powerful shocks
which may be energetic enough to ignite thermonuclear reactions unbinding large
amounts of stellar mass (Brassart & Luminet, 2008; Guillochon et al., 2009). Secondly
and especially relevant for black holes in the lower mass range, accretion luminosities
far in excess of the Eddington limit (Strubbe & Quataert, 2011) may blow away most of
the remaining gas. In the end the growth of these black holes due to tidal disruption
events may be insignificant even for very large capture rates of several events per 106yr.

3.7. Critical Discussion and Outlook for Future Work

To the best of our knowledge this study reports for the first time the expected tidal dis-
ruption rate of stars by SMBHs up to 107M⊙ obtained by direct N-body integrations.
N-body computations offer a large amount of advantages over analytical studies. They
can handle several physical effects simultaneously while most analytical studies are
forced to simplify at least some of the dynamics. On the other hand direct N-body in-
tegrations aiming to infer astrophysically relevant numbers of stellar disruption events
are confronted by their own limitations and difficulties. In this section we will critically
review limitations of our own simulations as well as improvements and ideas left for
future work.

69



1. In Table 3.2 we calculate among other values the required timescale T2D for dou-
bling the mass of a black hole of given initial mass. This timescales is computed
from the total number of captures averaged over 100 N-body time units (see Ta-
ble 3.1). We recommend the reader to regard the doubling time T2D only as some
reference guide. When expressed in physical time, our simulations last only a
fraction of one H−1

0 (between several 107 and one 109 years) and may not rep-
resent much longer time episodes. Moreover, we assumed one half of the dis-
rupted star to be accreted by the black hole. There exist two effects that can re-
duce the amount of stellar matter which finally becomes swallowed by the black
hole. First, if the tidal stripping occurs from a nearly parabolic orbit, hydrody-
namical simulations suggest one half of its mass to be lost within its first path
(Guillochon et al., 2009) and large quantities of the remaining mass to be blown
away by shocks and thermonuclear reactions later on (Brassart & Luminet, 2008).
Second, very small black holes might temporarily generate luminosities far in
excess of the Eddington limit (Strubbe & Quataert, 2011) and most of the remain-
ing matter may finally be blown away instead of being swallowed by the black
hole. This would invalidate our conclusions regarding the growth history of small
black holes where we assumed one half of the stellar mass to be accreted. Never-
theless the inferred capture rate should be valid for all galaxies or stellar clusters
with density profiles comparable to our simulated ones.

2. With current generations of GPUs it is unthinkable to simulate galaxy models
with realistic numbers of stars with direct N-body integration methods. The
only way to obtain stellar disruption rates for SMBHs in the centers of galaxies
is to simulate as many models as possible to infer all relevant N-dependent
systematics affecting this rate. Afterwards, the results can be extrapolated.
However it is important not to do this for only one given black hole capture
radius but for many black hole configurations. Therefore, all these simulations
must be repeated for several capture radii rsim

cap in order to extrapolate them
according to the formalism in § 3.6.1 to the black hole of interest. We calculate
the capture rate for black hole masses in the range 103−7 M⊙. Due to the highly
nonlinear Eq. 3.56 we had to extrapolate parameter rsim

cap from Table 3.1 down to

rsim
cap ≈ 0.07 · 10−7. The usage of three different black hole capture radii is thus

the minimal requirement to obtain useful values under the assumption that the
parameter a(rsim

cap ) from Eq. 3.53 follows a power-law distribution26 with positive
parameters and no offset.

There is no question that future studies must redo these simulations for different
capture radii to constrain a(rsim

cap ) even more precisely. However this is a very
time consuming task. The complete set of our Sérsic n = 4 simulations took
more than seven months to compute on five modern GPUs. Despite the large
amount of needed computing power, direct integration methods like NBODY6
may exceed their limitations when the capture radius falls significantly below
10−7 in N-body units, especially if the mass of the black hole particle is of the

26a(rsim
cap ) is specified in Eq. B.3.
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3.7. Critical Discussion and Outlook for Future Work

order of one percent or more of the total mass27. In addition to that the statistics
may worsen (due to a limited number of capture events) and must be balanced
by even more simulations.

In our computations no severe rsim
cap dependence of the parameter b is evident, in

accordance with theoretical considerations (Eq. 3.48 & 3.50)28. Therefore, we as-
sumed it to be constant. However we cannot exclude per se any deviation at very
small capture radii. A systematic decrease in the parameter b for even smaller
values of rsim

cap would only reduce the tidal disruption events of the more massive
SMBHs in our sample. We plan to tackle this problem as well as to constrain the
parameters a(rsim

cap ) and b even more precisely in the future.

3. In this study effects from general relativity are neglected. The relevant tidal
disruption radius of a SMBH for solar like stars is several times larger than its
Schwarzschild radius and relativistic effects should become strongly suppressed
for radii r >> rs. This makes our assumption of neglecting GR credible.
Nevertheless a fully relativistic treatment of a black hole potential yields a deeper
gravitational potential than a purely Newtonian one, thus being more attractive
for compact bodies like stars to be captured by the SMBH. On the other hand
particle scattering by a relativistic potential may result in stronger deflection,
perhaps powerful enough to reject some stars from the immediate vicinity of the
black hole thereby decreasing the capture rate. The next generation of N-body
integrators is expected to be sophisticated enough to address these aspects
(Aarseth, 2007).

Kerr black holes, i,e, rotating spacetimes with angular momentum, J•, should be

taken into account as well. Depending on their spin parameters, j = J•
M•

, as well
as the trajectories of stars, the likelihood for a capture event is not equally dis-
tributed as the Kerr-metric is not invariant under angular coordinate transforma-
tion. A Kerr black hole inside a nonrotating (pressure-supported) stellar distribu-
tion might lose angular momentum. This effect might lower the spin parameter
over time.

4. A crucial quantity for extrapolating our numerical results to astrophysical sys-
tems is the black hole radius of influence rH . For its evaluation we use the kine-
matic determination (Appendix B). We observe this radius to be roughly five to six
times smaller than the dynamical radius rg. This is the radius at which the mass
in stars/particles equals the mass of the black hole. If interested readers plan to
rescale our models by replacing the M• − σ relation by directly measured data of
rH for some galaxies, it is very important that they also use the same influence
radii as the ones used in our simulations and not the dynamical radii.

5. The capture rate from our numerical results should not be applied to SMBHs
above 107M⊙. The refill of the loss cone takes a timespan of the order Trefill ≈

27Private communication with Sverre Aarseth.
28According to the theory of angular momentum diffusion, parameter b only depend on the slope param-

eter of the density profile.
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θ2
lcTrel. The refill of the loss cone is much faster in N-body integrations than in na-

ture, since the potentials are more cuspy and relaxation times are shorter than in
reality. Therefore, our simulations have only relevance for galactic nuclei where
the loss cone refilling times are much shorter than H−1

0 . For black holes signifi-
cantly more massive than 107M⊙, i.e. with very large particle numbers and very
smooth potentials, the critical radius exceeds the size of the influence radius and
Eq. 3.48 has to be replaced by Eq. 3.50. The latter one predicts a different behavior
for Ċ(N) such that the numerically found capture rate should not be extrapolated
to black holes in excess of 107M⊙. By inserting the relevant values from or com-
putational findings to the systems of interest, Eq. 3.48 predicts the critical radius
not to exceed the influence radius for black holes less massive than 107M⊙, thus
showing our simulations to be governed by processes rcrit < rH .

6. One could even criticize the black hole mass M•(t = 0) = 0.01 used for our nu-
merical computations to be too high as the black hole mass fraction in realistic
galaxies is a factor of a few smaller (Magorrian et al., 1998). Nevertheless most of
the relevant dynamics happens at distances of the order of the influence radius rH

whereas we use the radius of influence for the extrapolation to realistic galaxies.
The choice of M•(t = 0) = 0.01 is therefore not expected to change the capture
rate significantly. In this context the usage of different capture radii instead of
different initial masses M•(t = 0) for the extrapolation to the wide set of astro-
physical SMBHs should be justified, too. The strict relation between mass and
capture radius of a black hole enables variation of the latter one while keeping
the former one constant in the scale-free N-body simulations. The great advan-
tage of this strategy is given in equal black hole influence radii, crossing times,
cusp formation timescales etc. simplifying the extrapolation formalism consider-
ably. The same holds true for the overall Sérsic n = 4 profiles. Not every outer
bulge component or elliptical galaxy profile resembles that of a Sérsic n = 4 i.e.
de Vaucouleurs profile. Mostly relevant for the direct number of capture events
is the density profile close to rH. For relaxation times smaller than one H−1

0 the
formation of a cusp (up to α = −1.75) is expected. Such a gradual change of the
density profile is also found in the numerical simulations. Hence our simulations
cover a large space of isotropic, nonrotating density profiles for black hole masses
up to 107 M⊙.

7. We only treat single-mass systems while galactic cores are known to be multiple-
mass systems featuring additional processes like mass segregation, star forma-
tion, binary evolution, torques from anisotropic matter distributions, resonances
etc. Stellar remnants like neutron stars would not be disrupted outside the event
horizon and could probe much deeper potentials than solar like stars, thus com-
plicating the gravitational dynamics and making relativistic correction terms in-
escapable. They would also disappear without any visible counterpart when fi-
nally captured.

8. Finally our numerical simulations should only be regarded as a first (very)
limited approach to a systematical scan of capture rates in galaxies. It would
be important to extent these studies by simulating the same models for even
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3.8. Conclusion

smaller capture radii rtext and longer timescales in order to reduce the need of
extrapolation. It would be important to take into account rotating and triaxial
stellar density profiles around the SMBH and to decrease the still rather large un-

certainties. Direct N-body simulations of isothermal ρ(r) = σ2

2πGr2 spheres, which
might represent the initial phases of elliptical galaxies and bulges best, should
be performed as well. Zhao et al. (2002) found evidence for strong black hole
growth in isothermal cusps. By assuming rcap ∝ rs =

2GM•
c2 , rewriting Eq. 3.47 to

Ċ(r) ∝ ρ(r)r2σθ2
lc by using rH = GM•

σ2 and θ2
lc =

2rcaprH

r2 for very massive SMBHs,

one obtains Ċ(r) ∝ σ5

Gc2 ·
(

rH
r

)2
. Under the assumption that the capture rate is

dominated by stars from rH , the r dependence cancels out and the final mass

of the black hole is M•(t f ) =
∫ t=t f

t=0 Ċ(r = rH)dt ≈ 108M⊙ ·
(

σ
200kms−1

)5 ( t f

H−1
0

)

.

This relation is indeed in very close agreement to the observed M• − σ relation
(Zhao et al., 2002). Therefore, stellar captures might contribute significantly to
the growth of SMBHs in the past, especially if the loss cone refill is enhanced by
mergers and/or triaxial stellar distributions.

Despite some of the details stated above, the here reported simulations represent
(the first) systematic estimate for the capture rate by SMBHs of stars in galaxies with
cuspy inner density profiles. This work should be followed up by simulating different
capture radii rsim

cap as well as density profiles, taking relativistic correction terms into
account, and by trying to find ways to infer the numbers of disruption/capture events
for SMBHs with mass > 107 M⊙.

3.8. Conclusion

We performed direct N-body simulations to obtain the number of disruption events of
stars by SMBHs which are presumed to exist in the centers of most galaxies. A modi-
fied NBODY6 code was used. All computations were processed by several GPUs over
several months integration time. The initial density profiles of the models were chosen
to follow nonrotating isotropic Sérsic n = 4 profiles. We calculated numerous models
with different particle numbers but otherwise equal physical parameters in order to
ensure good statistics. This is required because all systematic effects depending on the
total number of particles must be specified in order to extrapolate the simulations to
realistic galaxies by using the formalism presented in § 3.6.1. The rates at which stars
are captured are found to be nearly independent of the mass of the black hole. Thus
only the growth over cosmic times of IMBHs and of the least massive SMBHs may be
dominated by stellar disruptions. The expected tidal disruption rate is a few events ev-
ery 105 years per galaxy for black holes in the mass range up to 107 M⊙. The feeding by
stars from density profiles similar to the ones computed here bears no implications for
establishing scaling relations between very massive black holes and their host galaxies.
This is in agreement with conventional gas accretion/feedback models. On the other
hand the growth history of the least massive black holes might be governed by more
than one feeding mode (gas and star accretion). This might have implications for the
search and existence of potential IMBHs in globular clusters and minor galaxies. As-
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suming these scaling relations (e.g. the M• − σ relation) to be established shortly after
their primordial gas rich phase billions of years ago, the nuclear black holes would
continue their growth by the subsequent disruption of stars. Depending on the initial
conditions, the black hole masses could nowadays lie well above the predicted values
of the M• − σ relation as long as the globular cluster remains in isolation29. On the
other hand the continuous monitoring and search for tidal disruption events in glob-
ular clusters (e.g. in the Virgo Cluster) should constrain the fraction of those clusters
hosting a central IMBH. By assuming 25000 globular clusters with a central black hole
in the mass range M• = 103 − 104M⊙ in the Virgo Cluster of galaxies, there should be
one disruption event every 10 − 25 years. Finally the performed computations indi-
cate that the growth history of IMBHs and low mass SMBHs is diverse and not only
governed by one process, i.e. gas accretion. However it needs to be pointed out that
there exist effects which might reduce the fraction of stellar matter which finally be-
comes accreted by the black hole. We assumed one half of a captured star’s mass to be
swallowed (Rees, 1988), whereas a smaller fraction would result in even slower growth
rates. Thus our conclusions regarding the growth history may change if small black
holes gather only tiny fractions of the total initial stellar mass. Future studies can use
the reported capture rate Ċ(M•) to deduce more realistic growth rates Ṁ(M•) by tak-
ing more appropriate values for the fraction of accreted matter into account. It would
also be interesting to extend these studies to the most-massive black holes as well as
constraining the capture rate for different profiles.

29The relevant velocity dispersion σ should therefore not increase.
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Chapter 4

Erosion of Globular Cluster Systems

by SMBHs

Globular clusters belong to the oldest fossils of galaxies. The origin of the empirical
linear relationship between the number of globular clusters and the mass of the central
black hole (§ 2.1.3) is under debate. It is even not clear to what degree globular clusters
or more generally star clusters influenced the growth of SMBHs. Vice versa one could
ask the question to what degree the globular cluster distribution is influenced by
the presence of a central SMBH. In this Chapter 4 which is based on Brockamp et al.
(2014), I describe a new computer program that was designed to answer some of
these questions30. It is named MUESLI, which stands for Multi-Purpose Elliptical
Galaxy SCF + Time-Transformed Leapfrog Integrator. Like a real muesli, it consists
of several well chosen ingredients which can easily be replaced, modified, omitted
or added. The integral components of this software were developed in collaboration
with Andreas Küpper, Ingo Thies, Holger Baumgardt and Pavel Kroupa. Inasmuch
as erosion processes of GCs are complex and do not only depend on the presence
of a central SMBH, all relevant internal and external effects (e.g. stellar evolution,
relaxation and dynamical friction) were incorporated into the software. By applying
MUESLI to a representative sample of elliptical galaxies, it is found that the GC number
density profiles are centrally flattened in less than a Hubble time. In addition to that
I discovered that by using different threshold mass/luminosity scales in observations
of the GC number density profile, the erosion based flattening scenario can be directly
tested. The inferred erosion rate depends primarily on a galaxy’s mass, half-mass
radius (i.e. its averaged density) and the initial velocity distribution. Ultimately, the
absence of GCs around M 32 could be explained and entirely new phenomena like the
tidal disruption dominated phase have been uncovered.

Chapter 4 is based on Brockamp et al. (2014). Compared with Brockamp et al. (2014)
two modifications were made: (i) The abstract has been removed and (ii) the appendix
is implemented as a new section into this chapter. Finally, I would like to mention
that primary software testing, the development of analysis tools as well as programs
required for model generation were the most time intensive part of this PhD study.

30This chapter has been published, apart from minor changes which are described in the text, in the
MNRAS journal (Vol. 441, pp. 150-171).
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However, only a small fraction of all the performed software tests, namely those which
are of scientific interest, are documented in this thesis. Moreover, a detailed description
of two essential parts of the MUESLI software, namely the SCF and the TTL integration
method are described in the Appendices A.2 and A.3.

4.1. Introduction

Globular clusters (GCs) are among the oldest objects in galaxies. They can provide a
wealth of information on the formation and evolution histories of their host galaxies
as well as on cosmological structure formation (Searle & Zinn, 1978; Marks & Kroupa,
2010; Harris et al., 2013). This paper is a first step in connecting and understanding
properties of GC systems, their host galaxies and their central supermassive black
holes.

Surveys of elliptical galaxies show radial GC profiles to be less concentrated when
compared to the galactic stellar light profiles (Harris & Racine 1979; Forbes et al.
1996; McLaughlin 1999; Capuzzo-Dolcetta & Mastrobuono-Battisti 2009 and refer-
ences therein). An impressive example is the 10 kpc core in the spatial distribution
of GCs in NGC 4874, one of the two dominant elliptical galaxies inside the Coma
cluster (Peng et al., 2011). Two competing scenarios attempt to explain these cored
distributions. In one scenario, the core originated from processes operating at the
onset of galaxy formation in the very early universe (Harris, 1986, 1993). The other
scenario assumes that GCs were formed co-evally with the field stars with a cuspy
distribution, i.e. comparable to the galactic stellar light profile. In this second scenario,
the observed cores in the GC distributions are caused by the subsequent erosion and
destruction of globular clusters in the nucleus of the galaxy itself (Capuzzo-Dolcetta,
1993; Baumgardt, 1998; Vesperini, 2000; Vesperini et al., 2003). It is this scenario we
would like to shed light on with this study.

However, taking all the relevant processes that affect the GC erosion rates in
elliptical galaxies into account is numerically challenging. This is due to the fact
that there are several internal and external processes acting simultaneously on the
dissolution of globular clusters, such as two-body relaxation, stellar mass loss and
tidal shocks (Gnedin & Ostriker, 1997; Vesperini & Heggie, 1997; Fall & Zhang, 2001;
Baumgardt & Makino, 2003; Gieles et al., 2006). In this study, we present a new code
named MUESLI to investigate several processes that dominate cluster erosion: (i) tidal
shocks on eccentric GC orbits and relaxation driven dissolution, and their dependence
on the anisotropy profile of the GC population, (ii) tidal destruction of GCs due to a
central super-massive black hole (iii) stellar evolution and (iv) orbital decay through
dynamical friction. That is:

(i) GCs lose mass when stars get beyond the limiting Jacobi radius, rJ , and become
unbound to the cluster. Two-body relaxation will cause any GC to dissolve with
time. The dissolution time depends on the mass and extent of the GC as well as the
strength of the tidal field (Baumgardt & Makino, 2003). GCs on very eccentric orbits are
particularly susceptible for disintegration within a few orbits owing to the strong tidal
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4.1. Introduction

forces near the galactic center. In radially biased velocity distributions, large fractions
of orbits are occupied by such eccentric, i.e. low angular momentum orbits, and the
overall destruction rate of globular clusters is strongly enhanced over the isotropic
case. The same holds for triaxial galaxies when GCs move on box orbits (Ostriker et al.,
1989; Capuzzo-Dolcetta & Tesseri, 1997; Capuzzo-Dolcetta & Vicari, 2005).

(ii) The gradient of the potential which is relevant for the destruction of GCs
is increased by the presence of supermassive black holes. SMBHs are commonly
found in the cores of luminous galaxies (Magorrian et al., 1998; Lauer et al., 2007)
and the connection between SMBHs and globular clusters is of particular interest.
Burkert & Tremaine (2010) and Harris & Harris (2011) found empirical relations
between the total number of GCs and the mass of the central black hole. The origin
of this linear M• − NGC relation is under debate. See Harris et al. (2014) for a most
recent version of the M• − NGC relation and comparison to other globular cluster/host
galaxy relations. There is some evidence that M• and NGC are indirectly coupled over
the properties of their host galaxies (Rhode, 2012), however a direct causal link cannot
be ruled out owing to the difficulty of studying the growth of SMBHs from accreted
cluster debris.

(iii) Another effect is mass loss by stellar evolution (SEV). SEV decreases the globular
cluster mass most significantly during an initial phase of roughly 100 Myr. In this
period, O and B stars lose most of their mass through stellar winds and supernovae
(e.g. de Boer & Seggewiss 2008). Over a Hubble time, a stellar population loses about
30-40% of its mass due to stellar evolution (Baumgardt & Makino, 2003).

(iv) Finally, massive objects like globular clusters lose energy and angular mo-
mentum due to dynamical friction (DF) when migrating through an entity of
background particles. GCs will gradually approach the center of the galaxy where
they are destroyed efficiently as described above. In low-luminosity spheroids
(L ≈ 1010L⊙), decaying GCs might also merge together and contribute to the growth
of nuclear star clusters (Tremaine et al., 1975; Agarwal & Milosavljević, 2011; Antonini,
2013; Gnedin et al., 2014). Among other quantities, the efficiency of DF depends
on the departure of the host galaxy from spherical symmetry (Peñarrubia et al.,
2004), and becomes largest for low angular momentum orbits (Pesce et al., 1992;
Capuzzo-Dolcetta & Vicari, 2005).

Like a real muesli, our Multi-Purpose Elliptical Galaxy SCF + Time-Transformed
Leapfrog Integrator (MUESLI) consists of several well-chosen ingredients. MUESLI

has a high flexibility and is designed for computing GC orbits and erosion rates
in live galaxies. It can handle spherical, axisymmetric and triaxial galaxies with
arbitrary density profiles, velocity distributions and central SMBH masses for which
no analytical distribution functions exist. Since the potential of the galaxy is com-
puted self-consistently, the code can handle time evolving potentials due to e.g. the
interaction of the galaxy and a central black hole (Merritt & Quinlan, 1998) or even
non-virialized structures.
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MUESLI is designed to constrain the field-star and GC formation efficiencies in
the early universe. This can be done by relating the computational outcomes with
observations of the GC specific frequency, SN , which is the number of observed glob-
ular clusters normalized to total mass/luminosity of the host galaxy (Georgiev et al.,
2010; Harris et al., 2013; Wu & Kroupa, 2013). The U-shaped SN distribution, being
highest for the least massive and most massive galaxies, traces the impact of feedback
processes operating in different galactic environments. However, the quantitative
examination of these processes requires knowledge about the total fraction of GCs
eroded over time.

In this first paper, we provide detailed information about the code and about
N-body model generation, and we show results from the code testing. We apply
our code to erosion processes of GCs inside spherical galaxies with Hernquist and
Sérsic profiles, isotropic and radially biased velocity distributions and central SMBHs.
This is done for four representative galaxies. These galaxies cover a wide range of
masses (MGAL ≈ 109 − 1012M⊙), sizes (Re ≈ 102 − 104pc) and central SMBH masses
(M• ≈ 106 − 1010M⊙). Erosion rates in axisymmetric and triaxial galaxies, as well as
nuclear star cluster and SMBH growth processes by cluster debris are reserved for later
publications.

The present paper is organized as follows. The MUESLI code and the dynamics gov-
erning globular cluster dissolution and disruption processes are specified in § 4.2. At
the end of this section we introduce the initial conditions of the GCs and discuss the
generation of the underlying galaxy models. Extensive tests of the code are carried out
in § 4.3. Results are presented in § 4.4, followed by a critical discussion (§ 4.5). The
main findings are summarized in § 4.6.

4.2. Method

In the following, we briefly describe the main ingredients of MUESLI. These ingredients
can easily be modified, exchanged or upgraded, making MUESLI a versatile platform
for the study of GC dynamics in elliptical galaxies and related problems.

4.2.1. SCF Integration Method and Scaling Issues

The computations are performed with the self-consistent field (SCF) method
(Hernquist & Ostriker, 1992). The SCF algorithm uses a basis-function approach
to evaluate an expression for the potential φ from the underlying matter configuration.
The orders n, l of the radial and angular expansion terms can be adjusted to match the
type of galaxy. In the underlying study we restrict ourselves to spherically symmetric
galaxies. The usage of l > 0 in spherical galaxy models can result in inhomogeneities
and unphysical drifts of the angular momentum vectors. Therefore, n = 30, l = 0
is adopted for the main computation of the spherical galaxies of this study, while
n = l ≥ 10 is chosen for axisymmetric and triaxial galaxies. Tests are performed in
§ 4.3.1 and § 4.3.2.
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4.2. Method

The particle trajectories are integrated forward in time with the time-transformed
leapfrog (TTL) scheme (Mikkola & Aarseth, 2002) combined with an iteration method
to account for the inclusion of external (velocity-dependent) forces. These forces are
the dynamical friction force (§ 4.2.2) and post-Newtonian forces allowing us to mimic
general relativistic effects arising from the central SMBH. Post-Newtonian terms are
not relevant for GC destruction processes as they occur on distances much larger than
event horizon scales where GR effects are negligible and so we do not consider them
for this study.

While the code uses conventional model units, MGAL = RH = G = 1, the relevant
globular cluster quantities (§ 4.2.3) as well as the dynamical friction force (§ 4.2.2)
are defined in physical dimensions. The scaling of time, mass and size is performed
during computations.

4.2.2. GC Dissolution Mechanisms

We aim at quantifying the relevance of internal and external effects like stellar evolu-
tion, relaxation driven evolution of GCs in tidal fields, tidal disruption through shocks
and dynamical friction for shaping a cored GC distribution.

Stellar Evolution and Two-Body Relaxation

Stellar evolution reduces the cluster mass most significantly during an initial phase
of roughly 100 Myr. During this period, the most massive stars lose mass through
stellar winds and supernovae (e.g. de Boer & Seggewiss 2008). We implemented the
combined scheme for stellar evolution and energy-equipartition driven evaporation in
tidal fields from Baumgardt & Makino (2003). Compared to the long-term dynamical
evolution, SEV decreases the initial cluster mass nearly instantaneously by 30%
(Baumgardt & Makino 2003, their Fig. 1). Therefore, initial SEV can be taken into
account by using a constant GC mass correction factor of 0.70 (Baumgardt & Makino
2003, their Equation 12).

On the other hand, two-body relaxation causes a more continuous mass loss (Hénon,
1961; Baumgardt & Makino, 2003; Heggie & Hut, 2003). Due to two-body encounters,
stars gain enough energy so that they can leave the cluster. In the long term, this
process leads to the dissolution of any star cluster. The process of relaxation-driven
mass loss is accelerated when globular clusters are embedded in the external tidal field
of a host galaxy as the potential barrier for escape is lowered (Chernoff & Weinberg,
1990; Baumgardt & Makino, 2003). In this case, a star may separate from the GC when
passing beyond a characteristic radius, commonly known as the Jacobi radius, rJ (e.g.
King 1962; Spitzer 1987). When the cluster moves on a non-circular orbit the tidal field
strength varies with time, and so does the Jacobi radius. With growing eccentricity
of the cluster’s orbit, the extrema between the Jacobi radius at perigalacticon, where
it is smallest, and apogalacticon increase (see e.g. Küpper et al. 2010b; Webb et al. 2013).
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Baumgardt & Makino (2003) suggests that the time dependent mass loss rate of GCs
in tidal fields can be approximated by a linear function. A few modifications were
added to account for arbitrary galactic density profiles and changing GC orbits caused
by dynamical friction. This is done by first computing the galactocentric distance,
rG, and velocity, vG =

√
a · rG, where a = |~a (~r)| is the acceleration at the posi-

tion of the globular cluster. Then, the dissolution time is calculated using Eq. 7 of
Baumgardt & Makino (2003),

tDISS

[Myr]
= β

(

N0

ln(0.02N0)

)γ rG

[kpc]

(

vG

220km/s

)−1

, (4.63)

for every cluster individually. The two parameters β and γ depend on the concentra-
tion of the globular clusters. We chose values of β = 1.91 and γ = 0.75 for our main
computations (as well as β = 1.21 and γ = 0.79 for a particular model), which have
been found to reproduce the mass evolution of clusters with a King density profile and
a W0 of 5.0. This is typical density profile among Milky-Way globular clusters (e.g.
McLaughlin & van der Marel 2005). Depending on the density profile of the respective
globular cluster, β and γ can change. The initial number of globular cluster stars, N0,
is approximated by N0 = mGC (t = 0) /0.547 (Baumgardt & Makino, 2003). We assume
that mass is lost linearly with time, so after each timestep, ∆t, the GC mass is reduced
by an amount ∆m = ∆t · mGC (t = 0) /tDISS. The galactocentric distance used in
Eq. 4.63 gets updated at each peri- or apocenter passage and we use the last pericenter
or apocenter distance for rG. In this way, our method reproduces the (1 − ǫ) scaling of
the lifetimes found by Baumgardt & Makino (2003) without having to calculate orbital
parameters.

In galaxies where the circular velocity vG varies with radius, we use an average of

the pericenter and apocenter velocity v =
(

vrapo + vrperi

)

/2 to account for the varying

circular velocity. Once the mass of a cluster is less than mGC = 102M⊙, it is assumed to
be dissolved.

Tidal Shocks

The variation of the tidal field does not only enhance the overall mass loss
rate but also increases the cluster’s internal energy (Gnedin & Ostriker, 1997;
Gnedin, Hernquist & Ostriker, 1999b). If the pericentre distance to the galac-
tic center is small, the energy input through tidal variation acts like a tidal
shock and the energy gain of the cluster is significant (Gnedin & Ostriker, 1999a;
Küpper et al., 2010a; Webb et al., 2013; Smith et al., 2013). In these cases, mass
loss of the cluster gets driven by tidal shocks leading to quick cluster dissolution
(Vesperini & Heggie, 1997; Gnedin & Ostriker, 1997; Gnedin, Hernquist & Ostriker,
1999b; Peñarrubia, Walker & Gilmore, 2009; Küpper et al., 2010b). We found that by
using a second disruption criterion in addition to § 4.2.2, we can compensate for the
underestimated mass-loss rate for clusters on very eccentric orbits within strong tidal
fields and obtain better fits to direct NBODY6 integrations. This criterion is derived be-
low:
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Figure 4.18. The ratio ζ = a(r+rH)−a(r−rH)
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/(
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)−1
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r potential. The

distance r is given in GC half-mass radii, rH . The approximation
∂2φ
∂r2 ≈ a(r+rH)−a(r−rH)

2rH
is ac-

curate down to a few rH and is almost exact for mass configurations with less steeply varying
gradients.

For quantifying the strength of tidal shocks we calculate the Jacobi radius, rJ , following
King (1962):

rJ =

(

GmGC

Ω2 − ∂2φ
∂r2

) 1
3

. (4.64)

Here, Ω = |~r×~v|
r2 is the cluster’s orbital galactocentric angular velocity. We approximate

the second spatial derivative of the galactic potential in Eq. 4.64 by

∂2φ

∂r2
≈ a(r + dr)− a(r − dr)

2dr
, (4.65)

where a(r) is the acceleration at galactocentric radius r and dr << r is a sufficiently
small distance away from the cluster center. We choose dr = rH to be the 3D half-mass
radius31 of the respective globular cluster. This approximation works well even for the
quickly declining 1/r potential close to the central SMBH (see Figure 4.18). If a GCs

31For galaxy specific quantities like the half mass radius, RH , we use capital letters.
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Figure 4.19. Temporal evolution of the cluster mass. The data were taken from a set of direct
N-body experiments of a number of star clusters on orbits with different eccentricities in the
tidal field of a galaxy. Clusters evolve from their initial masses of ≈ 3 × 104M⊙ towards disso-
lution. The clusters which are affected by the strongest tidal shocks (solid black, orange and red
lines) are subject to fast dissolution even though their initial values x = rH0/rJ started below
x = 0.5. The theoretically predicted mass evolutions as described in § 4.2.2 are shown with
dashed lines.

falls below the galactic center distance r = 2rH , rJ is taken to be the rJ at r = 2rH .
Equation 4.64 is valid for star clusters on eccentric orbits in arbitrary spherical poten-
tials (see also, e.g. Spitzer 1987; Read et al. 2006; Just et al. 2009; Küpper et al. 2010a;
Renaud, Gieles & Boily 2011; Ernst & Just 2013). It has been compared to N-body sim-
ulations of dissolving star clusters and found to well reproduce the radius at which
stars escape from the star cluster into the tidal tails (Küpper, Lane & Heggie, 2012).

We assume that a cluster is disrupted if its ratio x = rH
r J

is larger than x = 0.5 at any

point during its orbit32. This approach yields a safe lower limit on the disruption rate
as some cluster would be confronted with tidal fields even in excess of x = 0.5 at peri-
galacticon. The motivation behind using the limit x = 0.5 is subject to (i) observations
of GCs in the Milky Way and (ii) direct N-body computations. The majority of GCs in

32Furthermore, we assume that GCs passing a SMBH within their 3D half mass radii, rH , are disrupted as
well.
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Figure 4.20. Ratio of initial half-mass radius rH0 = 4pc over Jacobi radius rJ versus time t for
the models shown in Fig. 4.19. Depending on their orbits, the ratio x may temporarily reach
values of x > 0.5, but those clusters are subject to quick dissolution. Surviving clusters stay
well below our disruption threshold of x = 0.5 (dashed line) for the simulation length of 10
billion years.

the Milky Way are on eccentric orbits (Dinescu, Girard & van Altena, 1999). Most of
them have ratios, x, well below 0.2, while only one GC has x > 0.5 (Baumgardt et al.,
2010; Ernst & Just, 2013). The one cluster with x ≈ 0.55 is the low-mass globular
cluster Pal 5, which is thought to be in the very final stages of dissolution due to its
pronounced tidal tails (Odenkirchen et al., 2003; Dehnen et al., 2004). Observations
therefore suggest a limit of x = 0.5 to be reasonable. In addition to that we also
performed direct N-body computations with the NBODY6 code (Aarseth, 1999, 2003)
on the GPU computers of the SPODYR group at the AIfA, Bonn. We ran 32 simulations
of compact and massive star clusters (mGC > 104M⊙) on a range of orbits within a
galactic tidal field. We followed their dynamical evolution for 10 billion years or until
total dissolution, skipping the first 1 Gyr in which the clusters’ evolution is dominated
by the SEV processes and expansion as a consequence of rapid mass loss. See Fig. 4.19
for a representative sample. Also shown in Fig. 4.19 is the theoretically predicted mass
evolution using Eq. 4.63 and the disruption criterion x = 0.5. Our model clusters lie
in between a King profile with W0 = 5.0 and W0 = 3.0 so we had to use β = 1.21 and
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Figure 4.21. Mass evolution of a cluster with an apogalactic distance of 4 kpc and an orbital
eccentricity of 0.5 (thick solid line). Also shown are the theoretical mass evolutions for different
values of x. If x is chosen too small, the disruption by tidal forces is overestimated, if it is chosen
too large, the cluster survives for too long.

γ = 0.79 for this comparison33.
As can be seen in Fig. 4.20, some of the clusters evolve from initial ratios

x = rH0
r J

= 4pc
r J

≈ 0.3 quickly to x = 0.5 where they are destroyed very rapidly.

Only clusters with ratios well below x = 0.5 have a chance to survive for more than a
Hubble time. Similar results have also been found by Trenti, Heggie & Hut (2007) and
Küpper, Kroupa & Baumgardt (2008). Hence, N-body computations also suggest that a
value of xcrit = 0.5 is a conservative limit for our computations. This criterion shows in
a clear manner which areas in the phase space cannot be stably populated by clusters
of a given mass. Even more so, because we neglect in our treatment of disruption pro-
cesses that the half-mass radius grows with time when the clusters are initially tidally
underfilling (Gieles et al., 2010; Madrid, Hurley & Sippel, 2012; Webb et al., 2013). In
addition to that, it should be noted that the present study investigates GC dissolution
and disruption processes in spherical galaxies. Here the angular momentum of cluster
orbits, apart from dynamical friction, is a conserved quantity. A single GC not being

33To quantify the dependence of the overall GC system erosion rate on internal cluster profiles, computa-
tions with β = 1.91 and γ = 0.79 (i.e. W0 = 5.0) and β = 1.21 and γ = 0.79 (green line in Figure 4.26)
were performed.
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fully disrupted once the tidal field strength exceeds x = 0.5 would be destroyed within
the next few orbits.

As can be seen in Fig. 4.21, increasing x allows clusters on very eccentric orbits and
deep within the tidal field of their host galaxy to survive longer than for x = 0.5 and
longer than found in direct N-body simulations. Thus, we may then overestimate the
number of surviving clusters in the central part of the host galaxies. A value smaller
than 0.5 on the other hand may be too weak. Therefore, computations with more restrict
criteria (x = 0.8 and x = ∞ i.e. no tidal disruption) but otherwise identical physical
properties are performed as well. Our additional simulations allow us to constrain the
systematics introduced by our second disruption criterion.

Dynamical Friction

Massive objects moving through a background of particles will decelerate and lose
orbital energy by dynamical friction (DF) (Chandrasekhar, 1943). This effect may have
profound implications for the orbital evolution and, hence, the fate of globular clusters.
Our MUESLI code is designed to obtain the impact of DF on the destruction of GCs in
galaxies with isotropic and anisotropic velocity distributions as well as axisymmetric
and triaxial galaxies.

The equation of motion of a massive object like a globular cluster in a galaxy with
DF, is:

~aGC (~r) = −~∇φ(~r) +~aGC, DF (~r) . (4.66)

Here,~aGC is the total acceleration of the globular cluster, −~∇φ(~r) is the acceleration due
to the combined galactic and SMBH potential, while~aGC, DF describes the deacceleration
due to DF. Chandrasekhar’s dynamical friction formula has been extended to account
for ellipsoidal velocity distributions by Pesce et al. (1992) and~aGC, DF (~r) has the form:

~aGC, DF (~r) =− γ1 (~r) ṽ1 (~r)~e1 − γ2 (~r) ṽ2 (~r)~e2 (4.67)

− γ3 (~r) ṽ3 (~r)~e3 ,

where the dynamical friction coefficients γi (~r) can be written as:

γi(~r) =
2
√

2πρ (~r) G2mGC ln Λ

σ3
1 (~r)

(4.68)

×
∫ ∞

0

exp

(

− ṽ2
1(~r)/(2σ2

1 (~r))
1+u − ṽ2

2(~r)/(2σ2
2 (~r))

ǫ2
2+u

− ṽ2
3(~r)/(2σ2

3 (~r))
ǫ2

3+u

)

(

ǫ2
i + u

)

√

(1 + u)
(

ǫ2
2 + u

) (

ǫ2
3 + u

)

du.

The function Λ that appears in the Coulomb logarithm, ln Λ, can be obtained for bodies
with a finite size (Binney & Tremaine 2008, their Equation 8.2) by:

Λ =
bmax

max
(

rH , GmGC/v2
typ

) . (4.69)
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The maximum impact parameter bmax is approximated by the galactocentric distance r.
This approach yields a more realistic treatment than by assigning a constant value for
the Coulomb logarithm (Hashimoto et al., 2003; Spinnato et al., 2003). The validity of
Eq. 4.69 is restricted to Λ > 1 in order to prevent unphysical acceleration by DF. The
characteristic velocity is v2

typ ≈ GMGAL/RH. Here MGAL and RH correspond to the to-

tal mass and half mass radius of the galaxy. The parameter ǫ2
i which appears in Eq. 4.68

is given by the ratio of the eigenvalues σ2
i (~r) /σ2

1 (~r) of the velocity dispersion tensor
σ2

ij = vivj − vivj. For convenience, the velocity dispersion component with the largest

eigenvalue of σ2
ij is defined to be σ2

1 (r). The integral is evaluated numerically for each

integration timestep by using the Gauß-Legendre integration method in combination
with logarithmic mapping. The density ρ (~r) is obtained directly from the SCF algo-

rithm. The velocity components ṽi (~r) = cos θi |~vGC (~r)| with cos θi =
~ei·~vGC(~r)

|~ei|·|~vGC(~r)| are

obtained by the projection of the GC velocity vector ~vGC on to the normalized eigen-
vectors ~ei of the velocity dispersion tensor σ2

ij. The position dependent eigenvalues σi

and eigenvectors ~ei are calculated in hundreds of cubic segments which are part of a
5x5x5 mesh with logarithmically increasing resolution towards the center (see Fig. 4.22
for illustration). This is achieved by replacing the inner 27 out of 125 cubes by a second
5x5x5 grid. The procedure is repeated Gdepth ∈ N times. The innermost resolution scale

is Rres = 0.2Rmax0.6
Gdepth . The size Rmax of the outermost grid is chosen to encompass

the whole galaxy. In this way a variable DF force acting on GCs in an elliptical galaxy
is handled. The underlying galaxy models are specified in Section 4.2.3.
Grid based calculations are always affected by discontinuities/jumps in combination
with discreteness noise subject to finite number of cells and particles. In order to coun-
terbalance these systematics we apply the inverse distance weighting (IDW) method
(Shepard, 1968). Irregularities are smoothed out by first calculating the center of mass
of the particles in a box (which is used as the position of the box), local eigenvalues and
eigenvectors of σ2

ij. Boxes containing only few particles are left out of consideration. For

the spatial interpolation only cells within a radius corresponding to the galactocentric
distance of an orbiting GC are taken into account. To guarantee that the contribution
of the nearest box dominates, the weighting parameter p (also known as the power pa-
rameter) is calibrated in many N-body experiments to be p = 64. For testing issues
we refer to § 4.3.3. The eigenvalues and eigenvectors are calculated at the beginning
of the computations and for each time-scale the potential becomes updated by the SCF
algorithm.

4.2.3. Initial Conditions

Globular Cluster Mass and Size Distribution

The present-day GC mass spectrum, dN/dm ∝ m−β, can be characterized as a power-
law distribution with different exponents for characteristic mass scales (McLaughlin,
1994). Usually, it is well approximated by the exponents β = 0.2 below and β = 2
above a threshold mass of mTH = (1 − 2) · 105M⊙. This two-component power-law
distribution resembles a bell-shaped function when expressed in terms of the number
of globular clusters, dN, per constant logarithmic cluster-mass interval, d log10 m. For
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Figure 4.22. A 2D illustration of a 5x5x5 grid. The eigenvectors of the velocity dispersion
tensor are calculated in each cell. Grid cells are logarithmically refined towards the inner part
of a galaxy to guarantee sufficient resolution. The size of the outer grid is chosen to be 200 times
the size of the galactic half mass radius RH to encompass the whole galaxy.

the initial cluster mass function, we are using the single power-law distribution,

dN

dm
∝ m−2. (4.70)

It finds support by observations of young, luminous clusters in starburst galaxies
where the mass spectrum monotonically follows a (single) power-law profile with
slope β ≈ 2 (Battinelli et al., 1994; Zhang & Fall, 1999)34.

It is our aim to investigate whether dissolution of low mass clusters is responsible
for turning a power-law mass function into a bell shaped mass function (see also
Baumgardt 1998; Fall & Zhang 2001; Vesperini et al. 2003; McLaughlin & Fall 2008;
Elmegreen 2010) by cluster disruption processes, relaxation driven mass loss in tidal
fields and dynamical friction. Scenarios involving gas expulsion (Kroupa & Boily,
2002; Parmentier & Gilmore, 2007; Baumgardt et al., 2008) are not considered in our
main computations (with the exception of one model) and will be added in later
publications. The overall GC mass range is chosen to be mGC = 104 − 107M⊙. Clusters

34Recent investigations (Larsen, 2009) found that the initial mass distribution is also compatible with a
Schechter-type mass function with a particular turn-down mass in the high GC mass regime. However,
for simplicity we use a single power-paw mass function here, as the differences will be limited to the
high-mass end where only relatively few clusters are found.
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below104M⊙ are not considered, because in galaxies with an age of several Gyr, they
would have lost most (if not all) of their initial mass by energy-equipartition driven
evaporation (Baumgardt & Makino, 2003; Lamers et al., 2010).

Observations find no strong correlation between half-mass radius and mass for GCs
which are less massive than 106M⊙ (Haşegan et al., 2005; Dabringhausen et al., 2008).
The median 3D half-mass radius of GCs in typical early-type galaxies centers around
rH = 4pc (Haşegan et al., 2005; Jordán et al., 2005)35. The situation changes when the
clusters become more massive than a particular mass scale which is of the order of
106M⊙(Dabringhausen et al., 2008). Hence, we assume that they follow a trend given
by:

rH =

{

4pc : mGC . 1.0 · 106M⊙

4
(

mGC
106M⊙

)0.6
pc : mGC & 1.0 · 106M⊙

(4.71)

The influence of other primordial size relations for GC erosion processes is not consid-
ered in this paper.

Spatial Distribution of GCs

Having defined cluster masses and sizes, the GC space and velocity vectors have to be
distributed within the galaxies by making five underlying assumptions36:

1. The initial GC phase space distribution equals the one of the underlying galaxy
model

2. Initial GC masses and sizes do not depend on the distance to the galactic center

3. Accumulation of GCs through mergers or subsequent formation in star-forming
events is neglected.

4. The overall dynamics of the host galaxy are not influenced by globular cluster
evolution processes

5. All galaxy models are virialized and remain in isolation

For this study we created several realistic base models. We assume that the stars follow
a Sersic model (Sersic, 1968) with concentration n = 4 and constant mass-to-light
ratio, Υ. They were generated by the deprojection of 2D Sérsic profiles into 3D density
profiles. Afterwards, the density, potential and distribution function was calculated
on a logarithmically spaced grid configuration of size r ∈

[

10−4, 102
]

in model units,
G = RH = MGAL = 1. The distribution function for an anisotropic Osipkov-Merritt ve-
locity profile (Osipkov, 1979; Merritt, 1985) was calculated by making use of Equation
(4.78a) from Binney & Tremaine (2008). Here the velocity anisotropy parameter has the

form β(r) =
(

1 + R2
A/r2

)−1
and RA is the anisotropy radius. The particle positions

were distributed according to the density profile, while the normalized cumulative

35For the conversion re = 0.75rH (Spitzer, 1987) of the projected half light radius, re, to the 3D half-mass
radius, rH , the mass-to-light ratio, Υ(r), is assumed to be constant.

36The code allows for individual adjustment of these aspects.
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distribution function was used to allocate particle velocities. It was evaluated by the
transformation of the double integral into a single integral according to the substitu-
tion described in Merritt (1985)37. Central SMBHs of mass M• were implemented by
adding the term φBH = −M•/r to the potential of the underlying mass distribution.
Afterwards, all particles were inverted (and doubled) through the origin. In this
way the center of mass and density center were located at the point of origin and the
model stays at rest during computations. We also created galaxies following Hernquist

(Hernquist, 1990) and Jaffe (Jaffe, 1983) models. Scale factors a =
(

1 +
√

2
)−1

for

Hernquist and a = 1 for Jaffe models were used in order to fix the half mass radius to
one.

Finally, we generated an additional triaxially shaped model (required for testing
issues of the dynamical friction routine) with a central core and outer Sérsic n = 4
profile from cold collapse computations (Lynden-Bell, 1967; Aarseth & Binney, 1978;
van Albada, 1982; McGlynn, 1984; Merritt & Quinlan, 1998). A spherical distribu-
tion with a ρ ∝ r−1.5 density profile and virial ratio 2T/ |W| = 0 was set up for
0 < r < 2. It collapsed and settled down into a strongly triaxial configuration with
T =

(

a2 − b2
)

/
(

a2 − c2
)

= 0.53 within its half mass radius. Here T is the triaxiality
parameter and a, b, c are the three main axes of the ellipsoidal configuration. It was
evolved forward in time with the NBODY6 (Aarseth, 1999, 2003) code until virializa-
tion. The density center was shifted to the center of origin and the model was rescaled
to RH = 1. Models generated from collapse simulations are isotropic in their centers
and radially biased at large galactocentric distances.

In the scenario of hierarchical structure formation (but see also Samland 2004), where
smaller structures merge to build up larger objects such as elliptical galaxies (Toomre,
1977; White & Rees, 1978; Kauffmann et al., 1993; Steinmetz & Navarro, 2002), violent
relaxation causes the merger products to be centrally isotropic and radially biased at
large radii (Lynden-Bell, 1967). Our models agree with these cosmological predictions.

Related to the fact that a systematic scan over the fundamental plane of elliptical
galaxies is beyond the scope of this paper, we scaled our models to four representative
elliptical galaxies. These are M 32, NGC 4494, IC 1459 and NGC 4889. While M 32 is a
compact dwarf galaxy which is gravitationally bound to M 31, NGC 4889 is the most
massive and extended galaxy in our sample. It is a brightest cluster galaxy (BCG) and
defines together with NGC 4874 the gravitational center of the Coma cluster. The four
galaxies were chosen because they cover the full mass range of elliptical galaxies from
small compact dEs to giant BCGs. They lie (within 10%− 45% scatter) on the Re − MGAL

relation (Dabringhausen et al. 2008, their Equation 4) for low redshift bright elliptical
galaxies, bulges and very compact dwarf elliptical galaxies. We note that our results
concerning globular cluster erosion processes in M 32 like compact galaxies should
not be extrapolated to much more extended dwarf spheroidal galaxies with weaker
tidal fields (see Fig.2 in Dabringhausen et al. (2008) and § 4.4.1 in this paper). Com-
plementary to the galactic mass range, our representative galaxies host central SMBH

37Their Equation 11.
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Model Galaxy Example MGAL[109M⊙] Re[pc] RH[pc] M•[109M⊙] Ref.
MOD1 M 32 0.8 125 170 0.0025 1,2,3
MOD2 NGC 4494 100 3715 5000 0.065 4,5,6
MOD3 IC 1459 300 6000 8050 2.6 7,8
MOD4 NGC 4889 2000 25000 34000 20 9,10

Table 4.3. Adopted parameters for the simulated galaxies. RH = 1.35Re is used to calculate
the 3D half mass radius RH from the effective radius Re. References: (1) Magorrian et al. (1998);
(2) Rose et al. (2005); (3) Karachentsev et al. (2004); (4) Lauer et al. (2007) for Re and MGAL by
assuming Υ = 3; (5) Bender et al. (1994); (6) McConnell et al. (2011) black hole mass from M•−σ
relation; (7) Häring & Rix (2004), (8) Cappellari et al. (2002), (9) McConnell et al. (2012), (10)
McConnell et al. (2011)

with masses in the range of a few 106M⊙ (MOD1, i.e. M 32) up to 1010M⊙ (MOD4, i.e.
NGC 4889). The number of observed globular clusters ranges from 0 (M 32, Harris et al.
2013) to about 11.000 GCs (NGC 4889, Harris et al. 2009). The physical properties of all
four galaxy models are summarized in Table 4.3.

4.3. Testing

4.3.1. Discreteness Noise

When the potential becomes updated in time intervals ∆tup by the SCF algorithm,
fluctuations in the overall particle distribution give rise to irregular oscillations of
the virial ratio (Hernquist & Ostriker, 1992). Additionally, improper selection of the
expansion coefficients, especially the angular expansion order leads to multipole
induced precession.
We inferred the magnitude of these fluctuations, which inversely (∝ N−0.5) depend on
the particle number, by the computation of spherical and axisymmetric Sérsic n = 4
and Hernquist profiles. All models were evolved forward up to 100 N-body time units.
We varied the particle number (N = 2 · 105 and N = 4 · 106), the timescales of potential
evaluation (∆tup = 1 and ∆tup = 100) as well as the radial and angular expansion order
(between l = 0 and l = 20). In this way we were able to estimate the fluctuations and
their relevance for the accuracy of orbit integrations of elliptical galaxy models. For
testing purposes (only), the axisymmetric models were generated by simply reducing
the z-components by factors of two. Without adjusting particle velocities properly,
axisymmetric models generated in such a way are dynamically unstable. The only
reason for using them instead of existing virialized axisymmetric models generated
from cold collapse computations was subject to more controlled conditions required
for the evaluation of discreteness noise effects. Orbits in axisymmetric models were
therefore computed in fixed potentials i.e. by using ∆tup = 100.

Ideally, a test particle with zero velocity in z-direction has to orbit the galaxy without
changing its z-component. Hence, the maximal drift of the angular momentum vector
~L, i.e. the maximal angle αm between ~Lt0 and ~Lti

, was used as one criterion for the
accuracy of orbit integration. As an additional criterion we have used the standard
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Hernquist N ∆tup n l σc(r=0.1,1,10) αm(r=0.1,1,10)

spherical 2 · 105 1 30 0 0.002/0.006/0.003 0/0/0
spherical 2 · 105 100 30 0 0.0001/0.0001/0.0004 0/0/0
spherical 2 · 105 1 10 10 0.008/0.01/0.003 1.8/0.1/0.001
spherical 2 · 105 100 10 10 0.003/0.002/0.007 1.8/0.08/0.002
spherical 2 · 105 100 10 5 0.003/0.002/0.006 1.9/0.07/0.0006
axis-sym. 2 · 105 100 12 1 — 0/0/0
axis-sym. 2 · 105 100 12 2 — 0.06/0.008/0.0001
axis-sym 2 · 105 100 12 5 — 0.3/0.008/0.0007
axis-sym 2 · 105 100 12 10 — 0.1/0.02/0.001
axis-sym 2 · 105 100 20 20 — 0.09/0.03/0.003
spherical 4 · 106 1 30 0 0.0009/0.002/0.0005 0/0/0
spherical 4 · 106 100 30 0 0.00001/0.00002/0.00009 0/0/0
spherical 4 · 106 1 10 10 -/0.005/0.0003 -/0.01/0.0001
spherical 4 · 106 100 10 10 0.0001/0.0003/0.0003 1.4/0.02/0.0003
spherical 4 · 106 100 10 5 0.0001/0.0002/0.0003 1.4/0.01/0.0005
axis-sym. 4 · 106 100 12 1 — 0/0/0
axis-sym. 4 · 106 100 12 2 — 0.01/0.001/0.00002
axis-sym 4 · 106 100 12 5 — 0.03/0.001/0.0001
axis-sym 4 · 106 100 12 10 — 0.3/0.002/0.0001
axis-sym 4 · 106 100 20 20 — 0.3/0.003/0.0003

Sérsic n = 4 N ∆tup n l σc(r=0.1,1,10) αm(r=0.1,1,10)

spherical 2 · 105 1 30 0 0.001/0.0004/0.002 0/0/0
spherical 2 · 105 100 30 0 0.00003/0.00005/0.0002 0/0/0
spherical 2 · 105 1 10 10 0.005/0.02/0.003 1.7/0.03/0.002
spherical 2 · 105 100 10 10 0.001/0.002/0.01 0.4/0.04/0.001
spherical 2 · 105 100 10 5 0.001/0.002/0.01 0.3/0.08/0.0006
axis-sym. 2 · 105 100 12 1 — 0/0/0
axis-sym. 2 · 105 100 12 2 — 0.03/0.02/0.0004
axis-sym 2 · 105 100 12 5 — 0.01/0.02/0.0004
axis-sym 2 · 105 100 12 10 — 0.02/0.02/0.0005
axis-sym 2 · 105 100 20 20 — 0.02/0.02/0.002
spherical 4 · 106 1 30 0 0.0003/0.0009/0.0009 0/0/0
spherical 4 · 106 100 30 0 0.000004/0.00004/0.0004 0/0/0
spherical 4 · 106 1 10 10 0.002/0.002/0.02 0.6/0.009/0.0001
spherical 4 · 106 100 10 10 0.00007/0.0005/0.02 0.5/0.02/0.0003
spherical 4 · 106 100 10 5 0.00007/0.0005/0.02 0.5/0.02/0.0003
axis-sym. 4 · 106 100 12 1 — 0/0/0
axis-sym. 4 · 106 100 12 2 — 0.004/0.001/0.0001
axis-sym 4 · 106 100 12 5 — 0.007/0.002/0.0004
axis-sym 4 · 106 100 12 10 — 0.008/0.004/0.0005
axis-sym 4 · 106 100 20 20 — 0.01/0.005/0.0005

Table 4.4. Parameters of the discreteness noise evaluation. N specifies the total number of
particles and ∆tup is the characteristic timescale at which the overall potential becomes re-
evaluated by the SCF algorithm. The parameters n, l correspond to the order of the radial and
angular expansion terms. σc measures the standard deviation from circular motion at three
different radii (r=0.1,1,10) and αm traces the maximal angular deviation caused by multipole in-
duced precession at the same radial distances. It is given in radians. There is no dipole moment
induced precession (l=1) since all particles were initially inverted (and doubled) at the origin.
The main computations are performed with five times higher particle numbers than the largest
test models.
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deviation σc =
(

1
NI−1 ∑

NI
i=1(ri − r)2

)0.5
from circular motion at different galactocentric

distances r = 0.1, 1, 10. This quantity reveals the magnitude of potential fluctuations.

Apparently, relaxation arising from discreteness noise is sub-dominant when per-
forming integrations with high particle numbers (N ≥ 4 · 106) and by using low angular
expansion terms i.e. l = 0 for the computation of spherical galaxies. In axisymmetric
or triaxial galaxies torques from the overall matter configuration are orders of magni-
tudes larger than local anisotropies or discreteness noise. The integration inaccuracies
are listed in the Table 4.4. On the basis of tabulated data, several trends can be obtained.
The amplitude of discreteness noise effects are anti-correlated with the total number of
particles. Torques induced by angular multipole expansion affect mostly trajectories
with short orbital periods while the precession diminishes altogether by using low-
est order (spherical) terms. Converging solutions of the underlying density profile are
obtained with high radial order terms. For the parameter space of our main computa-
tion, radial orbit fluctuations correspond to only a few tens of parsec over timescales
of several billion years when scaled to the proportions of giant elliptical galaxies like
NGC 4889 (§ 4.2.3) and sub-parsec scales for the smallest galaxies.

4.3.2. The Conservation of the Space Phase Distribution

The order of the radial expansion coefficient, n, required to guarantee the conservation
of the initial space phase distribution is investigated in more detail in this section. For
that purpose we evolved spherical Hernquist, Jaffe and Sérsic models forwards in time
up to 100 N-body timescales (∆tup = 1). Several different values for the radial expan-
sion coefficients, n, were chosen. Afterwards, we compared the numerical outcomes
to the initial models in terms of density profiles, axis ratios at several Lagrange radii
(1,2,5,10,25,50,60,70,80,90%), radial38 and tangential velocity dispersion as well as ve-

locity anisotropy parameter, β(r) =
(

1 + R2
A/r2

)−1
. All profiles were found to be per-

fectly stable when represented by high radial n = 30 and lowest angular order (l = 0).
This is in agreement with the results obtained in § 4.3.1. These are the coefficients
adopted for the main computations39. For illustration the velocity dispersion profile of

an anisotropic Hernquist model with scale length a =
(

1 +
√

2
)−1

is compared to the

analytical profile in Fig. 4.23. The expansion coefficient evaluation of axisymmetric and
triaxial models is postponed. Mesh effects and the dynamical friction routine (§ 4.2.2)
are investigated and tested in the next section § 4.3.3.

4.3.3. Dynamical Friction and Grid Effects

The purpose of this section is two-fold. The DF routine itself has to be tested and com-
pared with analytical predictions of idealized DF problems. Systematic effects caused
by discreteness noise and grid selection effects have to be evaluated in isotropic and

38The radial velocity dispersion, σ2
r , is a sensible indicator for model stability by tracing minuscule insta-

bilities along r.
39The Hernquist base function of the SCF algorithm uses a different scale length a, hence a high radial

order is required for these models as well.
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Figure 4.23. Radial and tangential velocity dispersion profile of an anisotropic Hernquist
model (RA = RH = 1, N = 4 · 106) which was dynamically evolved over 100 N-body timescales.

Afterwards, we rescaled the model to RH = 1 +
√

2 in order to compare it with the analytical
velocity dispersion profile for anisotropic systems (Baes & Dejonghe, 2002). The usage of high
radial order terms (n = 30) in combination with lowest order (spherical) angular terms (l = 0)
yields accurate results.

anisotropic velocity distributions as well. In principle they can affect the computations
and the calculus of the velocity dispersion tensor which is required for the generalized
dynamical friction force (Eq. 4.67). We numerically evaluated the inspiral time tfric of
a GC on a circular orbit (r = 5kpc) by using Equation 4.67 as well as Chandrasekhar’s
(standard) dynamical friction formula for a Maxwellian velocity distribution:

~aGC =− 4πG2mGCρ (~r) ln (Λ)

v3
GC

× (4.72)

[

erf (X)− 2X
√

(π)
exp(−X2)

]

~vGC

Here X = vGC/(
√

2σ) and σ =
√

(

σ2
1 + σ2

2 + σ2
3

)

/3 is the one dimensional velocity

dispersion obtained from the eigenvalues of the local velocity dispersion tensor. The
numerical outcomes were then compared with analytical predictions of a decaying
(mGC = 107M⊙) GC orbit and plotted in Fig. 4.24. The spherical galaxy had an isotropic
velocity distribution, Jaffe density profile (Jaffe, 1983), total mass MGAL = 1011M⊙
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Figure 4.24. Decaying (circular) globular cluster (mGC = 107M⊙) orbit as a function of differ-
ent grid realizations and dynamical friction formulas. The standard DF computations match
the predicted value within 1% accuracy (top) while the triaxial generalization formula yields
slightly larger inspiral timescales tfric (bottom). The reason for this are discreteness noise effects
in the evaluation of the largest eigenvalue σ1 in combination with the use of σ3

1 in the denom-
inator of Equation 4.68. By replacing σ1 with the root mean square σ, which ideally should be
equal in isotropic models, the triaxial DF formula matches the analytical prediction (middle).
With regard to the difficulty of implementing highly nonlinear DF forces, a standard deviation
of 1% from the predicted value, tfric ≈ 22 Gyr, for Chandrasekhar’s (standard) formula and
4% for its triaxial generalization is an excellent result. Using even larger particle numbers than
N = 4 · 106 yields even more precise values.

94



4.3. Testing

and half mass radius RH = 5kpc, similar to the properties of NGC 4494 (§ 4.2.3). We
selected a Jaffe profile because of its analytical simplicity. Furthermore, it deviates from
the underlying base model of the SCF algorithm. In this way the reliance on higher
order base functions was automatically tested as well. We fixed the Coulomb logarithm
to ln Λ = 6 in order to ease the analytical calculation. Grid selection effects were inves-
tigated by carrying out integrations with N = 4 · 106 particles and several realizations
of the 5x5x5 grid (§ 4.2.2). Evidently Chandrasekhar’s (standard) dynamical friction
formula, its triaxial generalization and the analytical prediction yield (nearly) equal
inspiral times tinsp despite the highly nonlinear character of DF (Fig. 4.24). Owing to
the IDW interpolation method (§ 4.2.2), the chosen grid configuration does not have
any visible systematic effect on tinsp. And indeed, the differences in tinsp caused by
grid selection effects are only of the order of 200 million years, compared to ≈20 Gyr
absolute integration time, or 1% in relative terms. Without the IDW interpolation
method they are much bigger (of the order of 25%). The generalized triaxial DF
routine (Eq. 4.67) yields slightly larger (≈4%) inspiral times than the standard DF
formula. The reason for this are discreteness noise fluctuations in the evaluation of
the eigenvalues σi in combination with the systematic use of σ3

1 in the denominator of
Equation 4.68. By replacing (for test purposes in isotropic velocity distributions only)
the denominator σ3

1 with σ3, the curve matches the analytical prediction (Fig. 4.24).
Nevertheless, in axisymmetric or triaxial galaxies, the anisotropic velocity distribution
greatly overwhelms discreteness noise fluctuations.

To further explore mesh and discreteness noise effects in anisotropic velocity distri-
butions, we performed a second test. The orbits of 10,000 globular clusters in a strongly
triaxial galaxy with a cored density profile and a radially biased velocity distribution
at large distances (β ≈ 1) were evolved forward in time under the influence of the gen-
eralized dynamical friction force (Eq. 4.67). The generation of this particular model is
described in § 4.2.3. Total mass and scale of the galaxy were assumed to be identical
to the test before. For this test we restrict to tidal disruption processes from Eq. 4.64
and neglect the long term energy-equipartition driven evaporation. The cluster masses
and sizes were distributed according to the single power law mass spectrum (Eq. 4.70)
and present day half mass relation (Eq. 4.71). Discreteness noise and mesh effects were
artificially enhanced by computing a small number N = 5 · 105 model over 200 N-body
timescales (≈ 3.5 Gyr). Moreover, the overall potential was frequently updated by the
SCF algorithm in ∆tup = 1 intervals. We then compared the timescales until given frac-
tions of GCs were destroyed in computations with identical physical properties apart
from different grid size realizations. In this way mesh effects were isolated and ana-
lyzed. The numerical outcomes are shown in Figure 4.25. Evidently, the IDW interpo-
lation method narrows grid effects down to insignificant values. The implemented DF
routines yield credible results with insignificant errors.

4.3.4. Potential Fluctuations and their Relevance for GC Disruption

Finally, the performance of the disruption routine (§ 4.2.2) has to be evaluated. Notwith-
standing that the base functions as well as their derivatives are continuous, summing
up these functions might lead to wiggles along the radial direction. It may therefore
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Figure 4.25. Owing to the IDW interpolation method, different grid configurations no longer
have any discernible effects on the cluster tidal disruption rate. Rmax is the outermost mesh size
which affects the positioning of the inner grid cells.

be possible that the radial acceleration ar(r) as well as the evaluation of the Jacobi ra-
dius (Eq. 4.64) are affected and a cluster is incorrectly assumed to be destroyed by tidal
forces. To guarantee computational outcomes free of biased GC disruption rates, we
performed several test integrations by considering tidal disruption processes only, i.e.
by neglecting the long term relaxation driven mass loss. Isotropic Hernquist models
(N = 106, n = 30, l = 0, ∆tup = 1) with 5,000 randomly distributed clusters were
evolved forward in time. They were scaled to the physical properties of MOD1 (M 32)
and MOD4 (NGC 4889, Table 4.3), the two galaxies in our sample with the most extreme
GC-to-galaxy half mass ratios, rH/RH. For each of these models the Jacobian radius was
evaluated directly from the SCF algorithm as well as by using an analytical expression
for the radial acceleration. The differences in the total number of disrupted clusters Ndis

were below 0.05% (M 32) and 0.3% (NGC 4889). This corresponds to absolute discrep-
ancies of two and one globular cluster(s) respectively. Being so small in magnitude,
these fluctuations can be neglected, particularly because the main computations are
performed with twenty times higher particle numbers and without re-evaluation of the
potential.
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4.4. Results

In this section the main results of our computations are presented. They are divided
into three major parts. In § 4.4.1 we discuss general aspects of the globular cluster
erosion rate in various galaxies. We present evidence for a new phase in the evolution
of globular cluster systems. In the following section (§ 4.4.2) we discuss the formation
of cores in globular cluster systems. Finally, in § 4.4.3 we investigate the evolution of
the cluster mass function.

4.4.1. Globular Cluster Erosion Rate

In order to evaluate the importance of the various processes for the dissolution of GCs,
we performed 48 main computations plus additional 18 models which are required
to uncover more systematical effects. Each of these models consists of 2 · 107 stellar
particles and 20,000 GCs, distributed according to a power-law mass distribution as
given by Eq. 4.70 and the present-day half mass radius relation (Eq. 4.71). We chose
to model 20.000 GCs in order to obtain a good statistical significance of our results.
The GCs in all computed models (with one exception) have King density profile with
concentration parameters W0 = 5. This is a common quantity among globular clusters
(§ 4.2.2). For this study we assumed that the overall dynamics of the host galaxy are
not influenced by globular cluster evolution processes (§ 4.2.3) and hence all results
can be scaled to different total GC numbers. For each of the four representative
galaxies shown in Table 4.3 we calculated models with and without central SMBHs,
two different density profiles (Hernquist and Sérsic n = 4 models)40 and three different
velocity anisotropies (RA/RH = 0.25; 1; ∞), leading to 12 models per galaxy in total.
We chose RA/RH = 0.25 as the most radially biased model since below this limit
galaxies become unstable due to a lack of tangential pressure (Merritt & Aguilar, 1985).
The models with RA/RH = ∞ represent the isotropic case. The central SMBHs masses
were adopted from Table 4.3.

We evolved all models for 10 Gyr under the influence of the generalized dynamical
friction force. As described in § 4.2.2, clusters were assumed to be destroyed if: (i) the
strength of the tidal field, x = rH

r J
, exceeded x = 0.5, (ii) relaxation driven mass loss

in tidal fields (and SEV) decreases their masses below the limit mGC = 100M⊙. The
temporal evolution of the globular cluster destruction rate is plotted in Fig. 4.26 and
absolute numbers of destroyed GCs after 10 Gyr evolution are summarized in Table 4.5.

Tidal Disruption Dominated Phase

We want to emphasize the strong chronological aspect in the evolution of whole glob-
ular cluster systems which can be observed in our computations (Fig. 4.26). Significant
numbers of GCs are being torn apart early on, i.e. within a few crossing timescales

of the galaxy at its half mass radius, Tcross = 42.26
(

R3
H/MGAL

)0.5
Myr << THubble,

40While at large radii both models agree well with each other, Sérsic n = 4 models are centrally more
concentrated.
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Figure 4.26. The temporal evolution of the fraction of destroyed globular clusters. Most of the
destruction occurs at early times. Hence, we call this period the tidal disruption dominated phase
(TDDP). It is followed by a relaxation-driven dissolution phase. The destruction rate rises up
to 100% in models representing the least massive and compact galaxies (MOD1), independent
of their velocity distribution. The rate decreases to 50% in the most luminous and extended
galaxies (MOD4) with an isotropic velocity structure. The different colors (i.e. black solid, blue
long & red short dashed lines) represent the degree of radial anisotropy characterized by the
anisotropy radius RA of the Osipkov-Merritt models. Purple lines represent computations with
more stringent criteria for GC destruction through tidal shocks (§ 4.2.2). Even by using x = 0.8
or x = ∞ there is a TDDP in the most compact models (MOD1). With the exception of one
model (green solid line, upper right panel) GCs were assumed to have King profiles with a
concentration parameter W0 = 5.0. The green solid line illustrates the difference to a cluster
population having parameters between W0 = 3.0 and W0 = 5.0, or more precisely by using
β = 1.21 and γ = 0.79 in Equation 4.63 (§ 4.2.2).
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Model Example Galaxy Profile M•[109M⊙] χ0.25 χ1 χ∞

MOD4 NGC 4889 Hernquist 0 0.89± 0.01 0.64± 0.01 0.48 ± 0.01
MOD4 NGC 4889 Hernquist 20 0.90± 0.01 0.64± 0.01 0.48 ± 0.01
MOD4 NGC 4889 Sérsic n=4 0 0.93± 0.01 0.67± 0.01 0.49 ± 0.01
MOD4 NGC 4889 Sérsic n=4 20 0.94± 0.01 0.69± 0.01 0.50 ± 0.01
MOD3 IC 1459 Hernquist 0 0.98± 0.01 0.95± 0.01 0.75 ± 0.01
MOD3 IC 1459 Hernquist 2.6 0.98± 0.01 0.95± 0.01 0.75 ± 0.01
MOD3 IC 1459 Sérsic n=4 0 0.99± 0.01 0.95± 0.01 0.76 ± 0.01
MOD3 IC 1459 Sérsic n=4 2.6 0.99± 0.01 0.95± 0.01 0.77 ± 0.01
MOD2 NGC 4494 Hernquist 0 0.99± 0.01 0.96± 0.01 0.78 ± 0.01
MOD2 NGC 4494 Hernquist 0.065 0.99± 0.01 0.96± 0.01 0.78 ± 0.01
MOD2 NGC 4494 Sérsic n=4 0 1.00±0.00

0.01 0.97± 0.01 0.80 ± 0.01
MOD2 NGC 4494 Sérsic n=4 0.065 1.00±0.00

0.01 0.97± 0.01 0.80 ± 0.01
MOD1 M 32 Hernquist 0 1.00±0.00

0.01 1.00±0.00
0.01 0.98 ± 0.01

MOD1 M 32 Hernquist 0.0025 1.00±0.00
0.01 1.00±0.00

0.01 0.98 ± 0.01
MOD1 M 32 Sérsic n=4 0 1.00±0.00

0.01 1.00±0.00
0.01 0.99 ± 0.01

MOD1 M 32 Sérsic n=4 0.0025 1.00±0.00
0.01 1.00±0.00

0.01 0.99 ± 0.01

TD & DF only
MOD4 NGC 4889 Hernquist 0 0.37± 0.01 0.10± 0.01 0.06 ± 0.01
MOD4 NGC 4889 Hernquist 20 0.42± 0.01 0.13± 0.01 0.08 ± 0.01
MOD4 NGC 4889 Sérsic n=4 0 0.48± 0.01 0.17± 0.01 0.12 ± 0.01
MOD4 NGC 4889 Sérsic n=4 20 0.52± 0.01 0.20± 0.01 0.14 ± 0.01

Table 4.5. In this table the fraction of destroyed clusters (after 10 Gyr of evolution) defined

by the parameter χ RA
RH

=
Ndest(tend)

NGC(t0)
| RA

RH

are listed. Their Poisson errors were rounded upwards.

In the lower part of the table results from computations without energy-equipartition driven
evaporation and without SEV are presented. In this way the SMBH contribution to the TDDP
in very massive and extended galaxies like NGC 4889 is demonstrated.

which is Tcross = 3.3Myr for M 32 and Tcross = 187Myr for NGC 4889. This can be
seen in form of the steeply rising slope of the fraction of destroyed clusters at very
early times. Hence, we characterize it as the tidal disruption dominated phase (TDDP). In
isotropic galaxy models (MOD2-MOD4) with central SMBHs and Sérsic n = 4 density
profiles, approx. 10% (MOD4) to 40% (MOD2) of all GCs are destroyed within the
TDDP. During the TDDP, tidal shocks dominate cluster dissolution processes. It is
subsequently followed by a long term relaxation driven dissolution phase in which
surviving clusters lose mass more gently. The TDDP can be explained as follows. By
assuming the initial GC phase space distribution to equal that of the stellar component
of the host galaxy, significant numbers of clusters pass close to the galactic center
within their first orbit. Here tidal shocks cause rapid mass loss and destruction of GCs.
The creation of central cores in the radial globular cluster distribution proceeds rapidly
(§ 4.4.2). Evidently, the fraction of destroyed GCs depends on the mass and size of the
galaxy i.e. the tidal field. The TDDP is most pronounced in very compact and not so
massive galaxies and less efficient in very extended galaxies. However, we note that
M 32 (MOD1) is an extremely compact galaxy and should not be regarded as represen-
tative for common dSph galaxies. We note that there are dwarf elliptical galaxies with
much larger spatial scales than that of M 32. See also Figure 2 in Dabringhausen et al.
(2008). In such dEs the tidal field is much weaker and the fraction of destroyed GCs is
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Figure 4.27. The fraction of destroyed clusters versus galaxy mass. The individual data points
are listed in Table 4.5. The colored lines are obtained by a weighted cubic spline approximation.
The fraction of eroded GCs decreases with increasing galaxy mass. For comparison, we also
computed a dSph galaxy model (MGAL = 6 · 107 M⊙, RH = 500 pc) with a Sérsic n=1 density
profile and an isotropic velocity distribution (green data point, right upper panel). The erosion
rate after 10 Gyr in a dSph galaxy is strongly reduced compared to the more compact M 32 like
models. We ran computations with and without dynamical friction. We then used the mean
value for the fraction of destroyed clusters since DF has a substantial influence on the erosion
rate in this model and the neglection of DF backreaction effects on the stellar density profile
(§ 4.5, point vi) could lead to erroneous results.

strongly reduced. For comparison, we computed a dSph galaxy model with a Sérsic
n=1 density profile and isotropic velocity distribution (Figure 4.27). In this model we
found no indication for a pronounced TDDP but a strong contribution from dynamical
friction. It drives large amounts of GCs to the center where they would merge together
and form a nuclear star cluster.

To get a closer insight into the dynamics of the TDDP, we performed eight additional
computations with more stringent criteria (x = 0.8 or x = ∞) for GC disintegration
processes by tidal shocking. See the solid and dotted purple lines in Figure 4.26.
Evidently, the number of destroyed clusters during the TDDP decreases and the
overall slope rises less steeply. However, even by using x = ∞ there is evidence for the
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4.4. Results

occurrence of a TDDP in the most compact galaxy models MOD1. Interestingly, the
TDDP does not change the total fraction of destroyed GCs after 10 Gyr but affects the
temporal evolution/slope of disintegration processes. In § 4.5 we also critically review
our assumptions of initial cluster sizes and galaxy models which affect the strength
of the TDDP. In Section 4.4.1 we discuss the influence of secondary aspects like the
central SMBH and galactic density profile on the TDDP.

The influence of the host galaxy on the cluster disruption/dissolution rate becomes
also evident if we calculate the normalized arithmetic mean radius, RD/RH. RD/RH

is defined to be the averaged radius at which GCs in our computations were assumed
to be destroyed, either by tidal shocks or relaxation driven dissolution. RD/RH anti
correlates with the mass and size of the host galaxy and is largest in the compact
M 32-like galaxy (RD/RH ≈ 1.1) and lowest in the most massive and extended galaxy,
NGC 4889 (RD/RH ≈ 0.15).

The existence of a rapid phase in the evolution of GCs might be of strong relevance
for the fast build-up of a galaxy’s field-star population from eroding clusters. Further-
more, the existence of the TDDP might be relevant for SMBH growth processes in the
very early universe as some fraction of the debris might enter loss cone trajectories and
contribute to the feeding of the central black holes. Especially, as the majority of cluster
debris is gravitationally unbound with respect to the black hole potential and gravi-
tational focussing would enlarge its geometric cross section. Interestingly, the phase
space distribution of the field stars originating from such a TDDP should be comple-
mentary to the phase space distribution of the surviving globular clusters which is dis-
cussed in § 4.4.2.

Radial Anisotropy

The overall fraction of destroyed globular clusters in spherical galaxies with an
isotropic velocity distribution (and no central SMBH) depends on the mass and scale
of a galaxy (Table 4.5). While up to 100% of all GCs are destroyed in compact dwarf
galaxies like M 32, and 75 − 80% in mid-size galaxies, no more than 50% are eroded
over the course of 10 Gyr in the most massive and extended galaxies like NGC 4889
(MOD4). In Figure 4.27 the total fraction of dissolved GCs is plotted as a function of
the mass of the galaxy. As can be seen, the initial orbital anisotropy has a considerable
impact on the overall globular cluster erosion rate in massive elliptical galaxies.
Compared to the specific isotropic galaxy model MOD4 with a Sérsic n = 4 and
central SMBH, orbital anisotropy increases the fraction of destroyed clusters from 50%
(RA/RH = ∞) to 70% (RA/RH = 1) and 95% (RA/RH = 0.25). Different formation
or merger histories, and thus different degrees of radial anisotropy, may therefore be
a reason for considerable scatter in the total number of surviving GCs in observed
elliptical galaxies of similar size and mass.

The fraction of eroded GCs in compact dwarf elliptical galaxies like M 32 (MOD1)
centers around 100%. This number is insensitive to the initial velocity distribution. Our
computations naturally explain the absence of globular clusters around M 32. However,
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early GC stripping by M 31 might have occurred as well.

Density Profile and SMBHs

Secondary aspects like the density profile or central SMBH exert their action only in
very massive galaxies. On average the absolute erosion rate is 1-4% higher in the
centrally more peaked Sérsic n = 4 models. The strongest impact is observed in the
galaxy models MOD4 (Table 4.5). These differences can be explained by a higher initial
number density of GCs inside the centrally more concentrated Sérsic n = 4 models and
a steeper gradient of the tidal field.

The impact of SMBHs on the overall GC erosion rate after 10 billion years of
evolution is insignificant. The increase of the total destruction rate compared to models
without central SMBHs does not exceed the one percent level. This is of the same
order as the assumed Poisson error related to statistics. However, this does not mean
that SMBHs do not contribute to the exact sequence of GC dissolution processes inside
galactic nuclei. It is irrelevant for the overall GC erosion rate (after 10 Gyr) if clusters
were eroded continuously or disrupted by the central SMBH during a singe close
passage. In order to isolate the impact of SMBHs during the tidal disruption dominated
phase, computations without relaxation driven mass-loss and SEV were performed
(lower part of Table 4.5). Evidently, the M• = 2 · 1010M⊙ ultramassive black hole
inside the reference galaxy MOD4, which has similar physical properties like the BCG
NGC 4889, contributed significantly to the number of tidal disruptions.

Secondary aspects like the density profile or SMBH might also become relevant in
low density dwarf or irregular galaxies in which the overall gradient of the potential as
well as the fraction of tidally disrupted GCs are small.

Dynamical Friction

The influence of dynamical friction on the overall destruction rate in very massive el-
liptical galaxies is almost negligible. The reasons behind the sub-dominant impact of
DF on the GC destruction rate are three-fold:

1. GC masses are distributed according to a single power-law GC mass function
(§ 4.2.3). Most initial clusters masses are located at the low mass end of this dis-
tribution. Initial SEV further decreases their masses. However, the strength of
de-acceleration by DF is proportional to cluster masses (Eq. 4.67 & 4.68). Fig-
ure 4.28 compares the influence of DF in models with a single and a double
power-law initial cluster mass distribution but otherwise identical physical pa-
rameters. In the latter case, DF has a stronger influence on the overall GC erosion
rate due to GCs being preferentially more massive. We chose the threshold mass,
mTH = 2 · 105M⊙, with slopes β = 0.2 below and β = 2 above mTH.

2. Low mass clusters are particularly susceptible for relaxation driven mass loss. In
this way, their masses are continuously decreased so that dynamical friction gets
less important
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Figure 4.28. The fraction of destroyed clusters depends on the galaxy model, the initial cluster
mass distribution (i.e. single (SPD) vs double power-law distribution (DPD)) and dynamical
friction. The parameter ∆diff quantifies the difference in the fraction of destroyed GCs after 10
Gyr between models including DF and those where it was ignored.

3. Finally, the strength of DF is proportional to the distance dependent Coulomb
logarithm (Eq. 4.69) which becomes zero at small galactocentric distances.

The influence of DF on the overall destruction rate in models with a single power-
law cluster mass function is only evident (up to the percentage level) in computations
representing the dwarf compact elliptical galaxy M 32 (MOD1). But even in this galaxy,
the tidal field strongly dominates GC erosion processes. The only exception where
DF contributed significantly to GC erosion processes was observed in the dSph galaxy
model (Figure 4.27).

4.4.2. GC Core Formation in Giant Elliptical Galaxies

Galaxy observations reveal the spatial globular cluster distribution to be centrally less
peaked than that of the stellar light profile (Harris & Racine, 1979; Forbes et al., 1996;
McLaughlin, 1999; Capuzzo-Dolcetta & Mastrobuono-Battisti, 2009). In this section the
formation of core profiles as a consequence of globular cluster disintegration processes
in tidal fields will be investigated. The initial and final (after 10 Gyr) 2D number den-
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sity profiles are compared relative to each other. This is done for the representative
galaxies MOD2 (NGC 4494), MOD3 (IC 1459) and MOD4 (NGC 4889) in our sample
(§ 4.2.3). The initial population of 20,000 globular clusters was distributed according
to the phase space distribution of Sérsic n = 4 models with an isotropic and a radially
biased RA/RH = 1 velocity distribution and a central SMBH. The results are shown in
Fig. 4.29 from which the following conclusions can be drawn:

1. In all galaxies the central globular cluster distribution becomes flattened by ero-
sion processes. The outer GC number density profiles in isotropic distributions
remain intact and it follows that GC distributions around the most massive and
largest galaxies should have preserved their initial conditions. These results are in
agreement with findings by Vesperini (2000). Cores are more extended in isotropic
velocity distributions despite reduced numbers of destroyed clusters. The reason
behind this apparent contradiction is related to the existence of the larger num-
ber of GCs on eccentric orbits in radially biased velocity configurations. GCs
with large galactocentric distances also get close to the galactic center, where (at
least) the less massive globular clusters are efficiently eroded. In this way clus-
ters all along the radial distribution become affected over time while the overall
shape (i.e. slope) of the number density distribution is conserved. This observa-
tion is also consistent with earlier studies (e.g. Vesperini et al. 2003, their figure 5).
However, in velocity distributions of Osipkov-Merritt type with the most extreme
value RA/RH = 0.25, mean pericentric distances of GC orbits decrease with in-
creasing galactocentric distance, resulting in a steepening of the outer slope of
the GC distribution. This effect is illustrated by means of independent Monte-
Carlo Computations in Fig. 4.30. The final number density profile of such a radi-
ally biased Sérsic n=4 model with extreme anisotropy, RA/RH = 0.25, is plotted
in Fig. 4.31. The profile shows a less pronounced core than the corresponding
isotropic configuration (Fig 4.29). Although there are reports on galaxies in which
the globular cluster system profiles at large radii are indeed steeper than the sur-
face brightness profile of their host galaxies, e.g. NGC 4406 (M 86) (Rhode & Zepf,
2004; Capuzzo-Dolcetta & Mastrobuono-Battisti, 2009), such a highly radially bi-
ased (initial) GC configuration does not represent a plausible explanation, espe-
cially as the degree of radial anisotropy remains still very large at huge galacto-
centric distances. In the case of M 86 it was suggested by Rhode & Zepf (2004) that
tidal truncation induced by M 84 or even the potential well of the Virgo cluster is
responsible for the steep profile. The much flatter outer GCS profile of its compan-
ion M 84 might support this scenario (Capuzzo-Dolcetta & Mastrobuono-Battisti,
2009).

2. These observations have a profound impact for the study of GC systems. Efforts
to compute the number of eroded GCs by simply integrating the central number
deficit of clusters by comparison to the stellar light component might be biased.
The inferred values should be corrected for the influence of radial anisotropy,
mass and scale of the host galaxy.

3. A systematic study in which core sizes are obtained for comparison issues with
actual data of real galaxies must also include a threshold mass scale in order to
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Figure 4.29. Projected 2D number density profiles of globular cluster systems with isotropic
and radially biased (RA/RH = 1) velocity distributions. The slope of the initial GC configura-
tion (solid black curve) also corresponds to the stellar light profile of its host galaxy. In all cases
surviving globular cluster systems turn into centrally shallower configurations. Interestingly,
central core profiles seem to be less pronounced in radially biased configurations provided they
are compared to initial profiles (black lines). In anisotropic velocity configurations, GCs at large
spatial scales are eroded more efficiently and the shape of the number density profile is less af-
fected. Observational limitations are handled by using a GCs threshold mass (Mth = 2 · 105M⊙
in MOD4, Mth = 104M⊙ in MOD3 and MOD2). Core sizes become more pronounced when all
clusters are considered (purple curves with Mth = 102M⊙). However, core sizes in MOD3 and
MOD2 are close to the unfiltered values as the number of GCs below 104M⊙ is negligible (see
the cluster mass distribution in Fig. 4.34). We note that for comparison issues the blue lines are
rescaled by constant factors.
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Sé·rsic n=4, RA/RH=0.25
MOD4

R
pe

ri
[k

pc
]

R[kpc]

RA RH

1 10 100 400
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profile. The scaling factor is arbitrary and only serves for comparison issues.

mimic observational limitations. We found that core sizes depend on the imposed
threshold mass, Mth. This is related to the fact that massive GCs are less affected
by tidal fields. The effect is shown in Fig. 4.29 for the case of MOD4. Here the

106



4.4. Results

0.1

1

10

100

103

0.1 1 10 100

N
G

C
kp

c-2

R[kpc]

MOD3

RA/RH=∞
SMBH, Hernquist

t=0Gyr

t=1Gyr
—
-----

Figure 4.32. The central flattening of the GC number density profile progresses rapidly during
the TDDP. The blue dashed line corresponds to the GC number density profile after one billion
years of evolution. In order to emphasize the contribution from tidal shock driven cluster dis-
solution, mass loss through relaxation was neglected in this computation. The initial profile
follows a Hernquist model.

fraction of surviving GCs is largest and the effect is most pronounced. The pur-
ple dashed lines represent the unfiltered number density profiles (Mth = 102 M⊙)
whereas the blue lines correspond to GCs in excess of Mth = 2 · 105M⊙. This cor-
responds to the detection limit at the distance of NGC 4889. However, slope dif-
ferences between unfiltered and those with Mth = 104M⊙ are small in MOD2 and
MOD3, owing to a negligible fraction of GCs below 104M⊙ (Fig. 4.34). The initial
profiles (black solid lines) were rescaled to match the final profiles at large galac-
tocentric radii. We take from this figure that the observation of a mass dependent
core size of a globular cluster system might be proof of cluster dissolution as the
origin of the core (§ 4.1).

4. Core formation occurs on short cosmological timescales. Shortly after the TDDP
the GC number density profiles are centrally flattened (Fig. 4.32).

5. Despite the influence of radial anisotropy, cores are pronounced in less massive
galaxies, as here the percentage of disrupted clusters as well as the ratio RD/RH is
highest. However, spatially extended cores are also found in the most luminous
galaxies in the universe, and our computational results indicate that observed
GC profiles with central cores (Forbes et al., 1996) are created by disruption and
dissolution processes. To see if our computations are in agreement with observa-
tions, we plotted GC number density profiles for NGC 4889 (MOD4, blue lines)
by taking observational limitations into account. For a typical mass-to-V-band
light ratio ΥV = 1.5 (McLaughlin & van der Marel, 2005), mGC = 2 · 105M⊙ cor-
responds to the threshold mass below a GC would be undetected at the distance
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Figure 4.33. Final (3D) anisotropy profiles of the surviving GC population, β = 1 −
(σ2

θ + σ2
φ)/2σ2

r , as a function of the galactocentric radius. The error values are obtained by

the bootstrapping method. All GCs are weighted equally without discrimination of their
mass/luminosity. In all computed models the central velocity distribution becomes tangentially
biased. In configurations with initial radial anisotropy, the tangentially biased region develops
within the 3D half mass radius. For MOD2 and MOD3 only clusters above the mass threshold
mGC = 104M⊙ are taken into account (blue dashed curves). Unfiltered values are plotted in
MOD4.
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of D ≈ 100Mpc (Harris et al., 2009). As can be seen in Fig. 4.29, central flattening
is compatible with our models within the central few kpc. This is in agreement
with the inner parts of the galaxy r ≈ 3.5kpc (figure 6 in Harris et al. 2009) where
the GC number density profile becomes more shallow than the stellar light pro-
file of NGC 4889. However, in a more realistic scenario, erosion is only partly
responsible for the observed central shallow profiles, as in these galaxies’ major
merger events will also contribute to the spatial flattening of the radial GC density
profiles (Bekki & Forbes, 2006).

6. Our computations also reflect the preferential destruction of GCs on elongated
orbits and the consequences for the dynamics of the surviving globular cluster
system. After 10 Gyr of evolution, the central regions of the plotted models (Fig-
ure 4.33) show strong signs of a tangential bias subject to the preferential survival
of GCs on circular orbits. In models with initial radial anisotropy, a tangentially
biased region develops within the 3D half mass radius. At large distances the
radial anisotropy is reduced but still persists at significant levels.

Our computations demonstrate a relation between core sizes of globular cluster systems
and the host galaxies mass and velocity distributions. A quantitative evaluation of this
correlation will be an interesting task for a follow-up investigation.

4.4.3. Final Globular Cluster Mass Distribution

Fig. 4.34 shows the evolution of the globular cluster mass function (left-hand panels).
Results are plotted for three galaxies with Sérsic n = 4 density profiles, central SMBHs
and a radially biased velocity distributions. Evidently, a moderate degree of radial
anisotropy (RA/RH = 1) transforms initial power-law distributions into bell shaped
curves (upper and middle panels) with a peak at approx. 105M⊙. However, the
GC destruction rate in the most massive and extended galaxies (MOD4) is reduced
owing to weak tidal fields. Here, the total fraction of dissolved GCs is not high
enough to turn a power-law distribution into a bell shaped curve peaking at 2 · 105M⊙.
Stronger initial anisotropy or mass loss related to gas-expulsion (Kroupa & Boily,
2002; Baumgardt et al., 2008) might represent one solution to this discrepancy. Indeed,
including gas expulsion during the gas rich cluster phase results in a bell shaped
mass function after 10 Gyr of evolution. This is shown in Fig 4.34 in form of green
shaded histograms. In order to mimic the effects of gas expulsion on the embedded
cluster mass function, we applied Eq. 6,8,9 from Kroupa & Boily (2002). However,
even by considering gas expulsion, the distribution peaks at a few 104M⊙ instead
of 2 · 105M⊙. An additional effect which might naturally explain this discrepancy in
the most massive and extended galaxies is related to the idea, that BCGs are partly
grown from galaxy mergers of smaller constituents at high redshift. Furthermore, the
progenitor galaxies of the most massive ones today were initially much more compact
(see e.g. Trujillo et al. 2007, van Dokkum et al. 2008). Within these progenitor galaxies,
the cluster mass functions quickly transformed into a bell shaped form before they
merged together to form the BCG. Note the fast temporal evolution in Fig. 4.26 in the
less massive but more compact galaxies.
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Figure 4.34. Left panels: Initial (black) and final (blue histograms) globular cluster mass
functions. Error bars show Poisson uncertainties. A moderate degree of radial anisotropy
(RA/RH = 1) transforms initial power-law distributions into bell shaped curves (MOD2 and
MOD3). The inclusion of a primordial gas expulsion phase (green histograms and curve,
MOD4) contributes to the shaping of a bell shaped mass function even in the most massive
galaxies. Right panels: The globular cluster mean mass versus galactocentric distance obtained
for 2D radial binning. Uncertainties were derived via bootstrapping. Despite a large degree of
scatter MOD2 & MOD3 are compatible with a constant mean mass over a broad range of galac-
tocentric distances (see text for more details). The mean mass centers around (3 − 4) · 105M⊙
and is strongly affected by a small number of GCs more massive than a few 106M⊙. By assum-
ing a Schechter-type function for initial cluster masses with a particular turn-down mass in the
high GC mass regime, the final mean mass might naturally lower to 2 · 105M⊙. At least in spiral
galaxies in which the initial cluster mass distribution can be observed directly, it is compatible
with such a Schechter mass function (Larsen, 2009).

The relations between GC mean masses and galactocentric distances are plotted in
the right-hand panels of Fig. 4.34. Despite a large degree of scatter due to low number
statistics of surviving clusters, models MOD2 & MOD3 are in agreement with the
hypothesis of having a constant GC mean mass over a broad range of galactocentric
distances. The residual slope b which is obtained from a linear regression in the
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interval r ∈ [1 − 200] kpc is of the order of the one sigma error bar (b/∆b = 0.98,
MOD2) and (b/∆b = 1.1, MOD3) respectively. However, the hypothesis of a constant
GC mean mass over a large galactocentric distance is rejected for MOD4 (b/∆b = 2.8).
Our results imply that in order to reproduce observed GC properties of BCGs, their
merger history from more compact progenitors should be considered.

Although our computations were not designed to reproduce GC characteristics of
particular galaxies but instead to illustrate systematics, they already reproduce a lot
of observed features: a bell shaped mass distribution, a nearly constant globular clus-
ter mean mass over large galactocentric distances and shallow central number density
profiles.

4.5. Critical Discussion and Outlook for Future Work

In this section we will critically review our assumptions and results. This will ease the
efforts to identify potential weaknesses and help to improve follow-up studies.

1. The specific implementation of tidal shock and their relevance for disruption pro-
cesses (§ 4.2.2) requires the orbital angular momentum to be conserved or de-
creasing due to dynamical friction. This is because a globular cluster does not
necessarily become completely unbound by tidal shocks once the ratio of half
mass radius to Jacobi radius exceeds rH/rJ = 0.5. If the angular momentum is
conserved or monotonically decreasing (which is the case in spherical galaxies),
such a cluster will pass the same or an even stronger tidal field within the next
crossing timescale until it would become eroded. In all computed galaxies the
vast majority of crossing timescales is significantly below the total duration of
the integrations, thus yielding safe lower limits on the number of disruptions.
A more complicated situation emerges in galaxies deviating from spherical sym-
metry due to the existence of trajectories where the directional components of
the angular momentum vector change in time. In such galaxies, a GC passing
a region in which rH/rJ = 0.5 might not repeat doing so for a long time. The
criterion for disruption processes by tidal shocks in non-spherical galaxies repre-
sents a much more challenging task and will be part of future studies. We also
note that our disruption criterion was adjusted by means of direct NBODY6 inte-
grations in one particular galaxy model as well as by using one particular cluster
model. However, in order to compensate these shortcomings we changed the
parameter x to even higher values than x = 0.5 and discussed the systematics.
We found no quantitative differences in the outcomes. In addition to that our
SEV and relaxation driven dissolution implementation (§ 4.2.2) was calibrated in
direct N-body computations (Baumgardt & Makino, 2003) which are based on a
Kroupa IMF with lower and upper mass limits 0.1 M⊙ and 15 M⊙. The (initial)
mass loss through stellar evolution would increase by using a higher upper mass
limit. However, this would mostly affect the initial correction factor which has no
influence on the shape of the single power-law GC mass distribution (§ 4.2.3).

2. In our computations GC half mass radii were distributed according to relation
Eq. 4.71 and were then integrated by leaving their sizes unchanged. The strength

111



of tidal shocks and hence the efficiency of tidal disruption processes depends on
the compactness (i.e. size) of globular clusters. Therefore, the percentage of dis-
rupted GCs during the tidal disruption dominated phase depends on initial cluster
sizes. If GCs would be much more compact after their rapid gas expulsion phase,
the impact of the TDDP on the overall cluster erosion rate would be reduced.
In future studies more realistic initial conditions as well as cluster size evolution
should be included. However, the same criticism also applies to the used galaxy
models which in this study were assumed to be non-evolving. van Dokkum et al.
(2008) show that massive elliptical galaxies at high redshifts were more compact
than today. In more compact progenitor galaxies, the TDDP on the other hand
would be very pronounced and might quickly transform a single power-law clus-
ter mass function into a bell shaped form. After (dry) merging processes these
galaxies will inflate their sizes but the bell shaped cluster mass function should
remain unaffected. In conclusion, the efficiency of the TDDP depends on cluster
and galaxy size evolution.

3. Massive (elliptical) galaxies display a bimodal color distribution of globular clus-
ters which have different metallicities, kinematics and number density profiles
(Zepf & Ashman, 1993; Forbes et al., 1997; Brodie & Strader, 2006; Forbes et al.,
2012). These cluster populations are leftovers of different star-formation events.
The red and metal rich GC population is centrally more concentrated and fol-
lows the stellar light profile of its host galaxy, whereas the number density pro-
file of metal poor GCs is flatter and dominates the GC system at large distances.
Our computations address the evolution of the GC distribution which traces the
galaxy light and we neglect GC populations which were formed (or accreted) later
on.

4. The compact dwarf galaxy M 32 does not contain any globular clusters. Our
computations indicate that they might have been eroded in the strong tidal field
of this galaxy. The real stellar density profile of M 32 deviates at distances below
15 arcsec (≈ 55 pc) and above 100 arcsec (≈ 370 pc) from a Sérsic n = 4 profile
(Kent, 1987) which we used in our computations. The central density inside M 32
is even higher than the corresponding density of a n = 4 profile (see Figure 4 in
Kent 1987). This would result in an even stronger tidal field and an increase of
the actual disruption rate. Therefore, our results concerning the erosion rate in
compact M 32 like dwarf galaxies with Hernquist or Sérsic n = 4 density profiles
should hold for M 32 itself. However, these results should not be applied to “more
common” dwarf spheroidal galaxies (dSph) which are less massive, less dense
and which have shallower density profiles (e.g. n = 1). The GC erosion rate in
dSphs is reduced as indicated by the one computation with a Sérsic n = 1 density
profile (Figure 4.27).

5. As already mentioned our computations are governed by the stellar density pro-
files specified in § 4.2.3. The next logical extension would be to use the cumulative
density profiles from the stellar, dark matter and gas component. It has to be in-
vestigated whether the extended isothermal density profiles of DM halos would
significantly alter the GC erosion rate which is dominated by tidal effects deep
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within the galaxy where the stellar density dominates.

6. Dynamical friction (§ 4.2.2) is implemented as an external routine in the MUESLI

code. While this is a commonly used strategy in numerical investigations, care
has to be taken. By assuming GCs to be immune to dissolution processes, all of
them would accumulate within given time periods near the center of the galaxy,
driving the mass density upwards. In reality, DF is an energy conserving process
and while compact objects spiral inwards, stellar mass is driven outwards. These
back-reaction effects are not considered in this study. However, due to the sub-
dominant role of DF in our computations, back-reaction processes will have a
minor impact on the inferred results.

7. The main focus of this paper is about destruction rates of GCs by tidal shocks
and relaxation driven mass loss in tidal fields of spherically symmetric galax-
ies. We kept it simple and neglected the fate of dissolving GCs and how their
debris might affect internal dynamics of galaxies, e.g. by forming a nuclear
star cluster (Tremaine et al., 1975; Agarwal & Milosavljević, 2011; Antonini, 2013;
Gnedin et al., 2014). These issues as well as direct SMBH loss cone studies will
be part of later studies. To handle them with our MUESLI code requires detailed
understanding of GC dissolution mechanisms in evolving galaxies. Nevertheless,
our computations already indicate a chronological aspect in the erosion of glob-
ular cluster systems which might be of relevance for the fast build-up of massive
black holes in the early universe.

4.6. Conclusions

We developed a versatile code, named MUESLI, designed to investigate the dynamics
and evolution of globular cluster systems in elliptical galaxies. It uses the self-
consistent field method (SCF) with a time-transformed leapfrog scheme to integrate
orbits of field stars and GCs. In this way, velocity-dependent forces like dynamical
friction and post-Newtonian effects of central massive black holes can be handled
accurately. In order to be able to treat spherical galaxies with anisotropic velocity distri-
butions (as well as non-spherical galaxies), the code uses the ellipsoidal generalization
of Chandrasekhar’s dynamical friction formula (Pesce et al., 1992). The advantage of
MUESLI lies in its flexibility to evaluate the impact of complex physical processes on
the erosion rates of globular clusters (GC) in evolving galaxies.

In a first application, we have investigated if flat central cores in GC distributions
around massive elliptical galaxies result from tidal disruption events (TDEs) and clus-
ter dissolution processes through relaxation. Furthermore, we explored the question if
the strong tidal field within the compact dwarf galaxy M 32 is responsible for lack of
GCs in this galaxy.

We used a power-law distribution for the GC masses, and set the initial phase-
space distribution of the GCs equal to the stellar phase-space distribution of the
host galaxy. The rapid phase of gas expulsion was ignored with the exception of
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one model. We assumed two cluster dissolution channels: (i) A slightly modified
version of relaxation driven mass loss in tidal fields (which also handles SEV) from
Baumgardt & Makino (2003) was implemented. Once a cluster mass becomes less
than mGC = 100M⊙, it is assumed to be dissolved by relaxation. Additionally (ii), we
identified a tidal disruption criterion in terms of the ratio of cluster half-mass radius,
rH , to Jacobi radius, rJ , in that no cluster was able to survive for a significant amount
of time, when the ratio x = rH/rJ passed a threshold of x = 0.5. The condition for
globular cluster disruption in tidal fields was calibrated by means of direct N-body
experiments. For this purpose, we used the star cluster code NBODY6 to compute
the evolution of massive clusters on various orbits within the tidal field of a host galaxy.

We found that, after 10 Gyr of evolution, all computed GC systems show signs of
central flattening with the central core size depending in a non-trivial way on the mass,
scale and anisotropy profile of the host galaxy and threshold GC mass. Galaxies with
highly radially biased velocity distributions lose a significant fraction of clusters also at
large galactocentric radii. As a result the cores, in their central density profiles are less
pronounced than in galaxies with isotropic distributions. The primary factors which
determine the disruption rate of GCs are the half-mass radius and mass of the galaxy
and the initial degree of radial anisotropy of the GC system. For host galaxies with
an isotropic velocity distribution, the fraction of disrupted globular clusters is nearly
100% in very compact, M 32-like dwarf galaxies.

The rate is lowest in the most massive and extended galaxies (50%) like NGC 4889.
The arithmetic mean radius, RD, where most GC destruction occurred during the last
10 billion years, is roughly equal to the (3D) half-light radius RH in compact dwarf
ellipticals and drops to 0.15RH in massive elliptical like NGC 4889. An isotropic
initial velocity distribution is mostly preserved at large radius (R > RH), while the
GC velocity profile close to the galactic center become less radial or even tangentially
biased. Different degrees of initial radial anisotropy may be the reason for a consid-
erable scatter in the total number of GCs around more massive elliptical galaxies (see
Table 4.5). In compact M 32-like galaxy models with radial anisotropy no single GC
survived.

The influence of dynamical friction on the overall GC erosion rate in massive
elliptical galaxies is insignificant as long as the initial cluster mass function follows a
power-law distribution with slope β = 2. However, DF yields a small contribution
in compact dwarf ellipticals like M 32. Secondary effects like the density profile or
the presence of a central massive black hole manifest their influence only in the most
massive and extended galaxies. An ultramassive black hole with a mass above ten
billion solar masses inside a galaxy like NGC 4889 has a considerable impact on tidal
disruption processes. Its presence increases the total fraction of destroyed GCs during
the violent phase of tidal disruptions by 2% to 5% in absolute terms.

We also found that globular cluster erosion processes result in a bell shaped GC mass
function and a nearly constant relation between GC mean mass and galactocentric
distances as long as the galaxies are not too extended and radially biased. Observations
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of bell-shaped GC mass functions in extended galaxies may indicate that their GC
populations were formed in more compact building blocks of these galaxies, which
later merged to form the present-day host.

Finally, our results show a strong chronological aspect in the evolution of globular
cluster systems. That is, most tidal disruptions occur at early times, on dynamical
timescales of the host galaxy. Hence, we call this a tidal disruption dominated phase
in the evolution of globular cluster systems. Our simulations strongly suggest that
the number of GCs in most galaxies was much higher at their formation. Therefore,
depending on the fraction of stars in a galaxy which were born in globular clusters, the
debris of the disrupted clusters should constitute a significant amount of a galaxy’s
field population. In the extreme case that all stars in galaxies were born in globular
clusters, our study would imply that larger galaxies like NGC 4889 have to be the
merger product of many smaller galaxies and/or that the progenitor galaxies were
initially much more compact because otherwise 10-50% of its stellar mass would still
have to be locked up in globular clusters (Fig. 4.26). Given the fact that only about
0.1% of all stars seem to be locked up in globular clusters nowadays, our study prefers
building blocks of galaxies in the early universe to either have a small fraction of stars
being born in very massive globular clusters, or being relatively compact like M 32, or
having highly radially biased GC distributions.

Interestingly, we predict the field population coming from disrupted GCs to have
complementary orbital properties to the phase space distribution of the surviving
clusters. Moreover, we predict the centrally cored GC distributions around SMBHs to
be tangentially biased, and thus parts of the field star population to have a pronounced
radially biased component from cluster debris. The diffusion of this cluster debris in
phase space (in combination with gravitational focussing relevant for unbound matter)
might therefore contribute to the rapid growth of SMBHs in the early universe through
the refilling of the black hole loss cone. To which degree will be subject to a future study.
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Chapter 5

Outlook

5.1. SMBH Loss Cone Refilling through Eroding Globular

Clusters

The interaction between globular clusters, SMBHs and their host galaxies was investi-
gated in Chapter 4. We uncovered the existence of a violent phase in the evolution of
globular clusters which is called a tidal disruption dominated phase (TDDP). During this
phase large fractions of clusters on low angular momentum, i.e. on eccentric orbits,
were eroded owing to the presence of strong tidal fields near the galactic center. Two
separate aspects indicate that there might also be a direct connection to the growth of
SMBHs: (i) Field stars from eroding clusters are smeared over phase space but still
populate highly eccentric orbits which are susceptible for gravitational capture by the
black hole. (ii) The temporal evolution of the TDDP is comparable to the luminous
quasar phase.

In the future it has to be investigated to which degree stellar mass objects contribute
to the growth of SMBHs during the TDDP. If significant amounts of stars were accreted,
this might help to explain the empirical M• − NGC relation (see § 2.1.3). In addition to
that, it might also help to yield insights into the (presumably) correlated growth of
galaxies and SMBHs and the formation of field stars from eroding star clusters. In four
separate steps, I will describe how a feasibility study of the aforementioned processes
can be carried out.

5.1.1. Initial Conditions

In a first step a representative galaxy model including a central SMBH has to be se-
lected and computed with MUESLI. It should conform with the properties of observed
elliptical galaxies in the highly redshifted universe. These galaxies are compact i.e. they
have effective radii of the order of 1-3 kpc but are still very massive (Mgal ≈ 1011M⊙)
(Trujillo et al., 2007; van Dokkum et al., 2008). By assuming a given cluster phase space
distribution one can use MUESLI to obtain the position and velocity vectors of clusters
being eroded during the TDDP. For the sake of this feasibility study two modifications
should be taken into account:

(i) The background potential which is usually evaluated from the particle distribution
by means of a basis function approach, i.e. the SCF method, has to be replaced by an
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analytical potential. In this way discreteness noise effects are suppressed and there is
no need for time intensive testing. An analytical Hernquist profile (Hernquist, 1990) is
already implemented into MUESLI. The density ρ and potential φ of a Hernquist model
have the form:

ρ (r) =
Ma

2πr (r + a)3
, φ (r) = − GM

a + r
. (5.73)

Here, M is the mass of the galaxy and a = RH/
(

1 +
√

2
)

is a scale length which

depends on the (3D) half mass radius, RH.

(ii) The position and velocity vectors of clusters which are destroyed (or significantly
eroded) during their first orbits within the galactic nucleus have to be recorded
at apogalacticon for reasons which will become obvious in Section 5.1.3. Peri- or
apogalcticon passages can be identified by sign changes of the scalar product ~r ∗ ~v
(+ → − pericenter passage, + → − apocenter passage).

With the phase space distribution of eroded GCs at hand, the second step (§ 5.1.2)
can be performed.

5.1.2. Modeling of a Relativistic SMBH

The central black hole potential in the original MUESLI code is approximated with a
Keplerian 1/r-Potential. This is a sufficient approximation as long as one is interested
in the tidal destruction of GCs far away from the highly relativistic regime where the
Newtonian treatment breaks down (§ 1.2). The situation is entirely different in loss
cone studies where cluster debris (i.e. stars) can be swallowed by massive black holes
in excess of M• = 108M⊙. This is the typical SMBH mass in a massive (Mgal ≈ 1011M⊙)
elliptical galaxy. In the following paragraph I will describe the implementation of a
relativistic black hole into the modified version of MUESLI.

The first step consists of approximating the Schwarzschild metric with an effective
description in a flat space with a fixed global time i.e. the standart Cartesian framework
which is used for ordinary N-body computations. There are several ways how this can
be done: By making use of Modified-Newtonian potentials (MNPs) or alternatively
by using Post-Newtonian (PN) accelerations terms. Both approaches are implemented
into MUESLI. I will start with the description of the implemented Modified-Newtonian
potentials. Afterwards, I will discuss the Post-Newtonian accelerations terms. All per-
formed tests were conducted by making use of PN acceleration terms. The second step
is the implementation of a generalized capture criterion.

Modified-Newtonian Potentials

Despite their mathematical simplicity, MNPs reproduce a lot of general relativistic ef-
fects like the relativistic precession of planets around the Sun or even the free-fall be-
haviour of test particle in the gravitational field of a massive black hole. Unfortunately,
there is no MNP which traces all aspects of general relativity. For this reason I im-
plemented four different MNPs (plus the Keplarian potential) into MUESLI. They are
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labeled as φ0 − φ4 and can be individually selected depending to the requirement. In
this way one can also compare the numerical results relative to each other and obtain a
much higher confidence concerning the correct relativistic treatment of the black hole.
The SMBH is assumed to be fixed, nonrotating and always located at the origin of the
coordinate system. Hence one can write the acceleration of a test particle in the form:

~a(~r) = −∇φ(~r) = a(r) ·~r
r

. (5.74)

The function a(r) will be specified for all MNPs which are implemented into MUESLI.
The gravitational radius, rg = 0.5rs =

GM•
c2 , equals half the Schwarzschild radius, rs.

1. Newtonian Potential:

φ0(r) = −GM•
r

(5.75)

a0(r) = −GM/r2 (5.76)

The Newtonian case is useful for testing and comparing to direct N-body integra-
tions.

2. Paczynski-Wiita Potential

φ1(r) = − GM•
r − 2rg

(5.77)

a1(r) = − GM•
(r − 2rg)2

(5.78)

This potential was derived by Paczyńsky & Wiita (1980) and is often used for ac-
cretion disks and N-body studies (e.g. Chen et al. 2011). Both the potential and
the force diverge at r → rs.

3. Artemova, Bjoernsson and Novikov Potential (A)

φ2(r) =
GM•

rg

(

−1 +

(

r − 2rg

r

) 1
2

)

(5.79)

a2(r) = − GM•

r
3
2
(

r − 2rg

)
1
2

(5.80)

Here, the force diverges at the position of the horizon, i.e. r → rs (Artemova et al.,
1996).

4. Artemova, Bjoernsson and Novikov Potential (B)

φ3(r) =
GM•
2rg

ln

(

r − 2rg

r

)

(5.81)

a3(r) = − GM•
r(r − 2rg)

(5.82)

Both the force and the potential diverge at r → rs. It reproduces the correct free-
fall acceleration of test particles at a given position (Artemova et al., 1996).
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5. Wegg Potential

φ4(r) = −GM•

(

α

r
+

(1 − α)

r − βrg
+

γrg

r2

)

(5.83)

a4(r) = −GM•

(

α

r2
+

(1 − α)
(

r − βrg

)2
+

2γrg

r3

)

(5.84)

The coefficients are α = − 4
3

(

2 +
√

6
)

, β =
(

4
√

6 − 9
)

and γ = − 4
3

(

2
√

6 − 3
)

.

The potential and the force diverge at r → βrg. To a 1% accuracy this MNP
reproduces the correct general relativistic particle precession in the far field limit
(Wegg, 2012).

Post-Newtonian Correction Terms

The second strategy to account for relativistic effects is by making use of Post-
Newtonian correction terms:

~a = ~aPN0 + c−2 ·~aPN1 + c−4 ·~aPN2 + c−5 ·~aPN2.5 +O(c−6). (5.85)

Here c is the speed of light and~aPN0 is the acceleration of the Keplerian 1/r potential.
The implementation of the PN1, PN2 and PN2.5 term is realized by using the well tested
routine from the BHINT integrator (Löckmann & Baumgardt, 2008) which makes use
of the Post-Newtonian correction terms presented in Blanchet (2006). The acceleration
associated with the PN1 and PN2 terms is responsible for the relativistic perihelion
shift whereas the PN2.5 term accounts for energy and angular momentum loss through
gravitational wave emission.

Capture Condition

In order to evade problems with ’exploding’ accelerations when particles approach
horizon sized scales (especially when using MNPs), one has to effectively remove par-
ticles before they can enter the black hole. In all computations fully relativistic capture
conditions can be used. A detailed derivation and description can be found in § 1.2.2:

{

r < rplunge = rs

[

L̃2 − L̃
√

L̃2 − 3
]

, L̃ =
∣

∣

∣

m~r×~v
mrs

∣

∣

∣
= 1

rs
|~r ×~v| : L̃ ≥

√
3

~r ·~v < 0 : L̃ <
√

3
(5.86)

Alternatively, an orbit averaged capture radius, rplunge = 4rs, can be used as well. In
the next section I present two crucial tests which demonstrate the performance of the
modified MUESLI code which can study SMBH growth processes.

Testing

To demonstrate the performance of the implemented relativistic black hole, two crucial
test are performed. In both tests Post-Newtonian acceleration terms up to the PN2.5
order are used. The first test consists of reproducing the general relativistic contribu-
tion to the perihelion shift of the planet Mercury. Mercury fulfills 415 revolutions per
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century and following Weinberg (1972), general relativity predicts a positive precession
rate (i.e. precesses in direction of its motion) of its perihelion by:

∆δ = 43.03 arcsec/century. (5.87)

The orbital precession rate is defined in radians as:

∆δ = 2|δ
(

rp

)

− δ (ra) | − 2π. (5.88)

The parameters rp and ra are the perihelion and aphelion. All other contributions to
the observed perihelion shift of Mercury are neglected. These are gravitational pertur-
bations induced by the other planets and the flattening of the Sun. As can be seen in
Figure 5.35, the numerical outcomes of two computations with different accuracy pa-
rameters match the theoretical prediction of general relativity very well. It has to be
noted that due to a discrete time resolution only the local minima of the blue and red
curves have to match the analytical prediction (black curve).
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Figure 5.35. Numerical computations of Mercury’s perihelion shift (blue and red curve) com-
pared to the fully relativistic prediction (black curve). Owing to a discrete time resolution, the
exact identification of the sign shift of the scale product,~r ∗~v, at the perihelion passage is not
possible. Here, ~r is the position vector of Mercury and ~v is the velocity vector respectively.
Therefore, the inferred angle is usually above the prediction and only the local minima of the
numerically inferred ∆δ values have to agree with the black curve.

The second test is numerically much more challenging and involves the dynami-
cal evolution of a binary SMBH. It illustrates the performance of MUESLI when dealing
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Figure 5.36. Orbital evolution of two bound black holes until coalescence. Black curve cor-
responds to the prediction of GR whereas the blue curve represents the MUESLI computation.
The eccentricity (semi-major axis) evolution is plotted in the upper (lower) panel.

with highly relativistic orbits. The orbital separation between two black holes decreases
through the emission of gravitational waves. In the PN description the PN2.5 term is re-
sponsible for the orbital decay. Without the PN2.5 term (or alternatively by using a zero
mass for the secondary SMBH) the binary stalls and the eccentricity, ǫ, semi-major axis,
a, and specific energy, E, are conserved. Indeed, a test computation with MUESLI (up
to PN2.5 order) with a secondary SMBH mass, M•2 = 0, shows that ǫ and a were con-
stants of motions even at the last (6th) decimal of the output. The binary was evolved
forward in time over 104 orbital revolutions. This illustrates that the implemented TTL
integration method (Appendix A.3) is far superior to most conventional integrators.
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5.1. SMBH Loss Cone Refilling through Eroding Globular Clusters

The real test, however, is to compute the inspiral of a SMBH into a more massive black
hole. The starting point are two SMBHs (M•1 = 108M⊙ and M•2 = 106M⊙) with initial
eccentricity ǫ ≈ 0.5 and a semi-major axis a ≈ 4.3 · 10−3 pc. The numerical outcome
(Figure 5.36) is compared to the relativistic prediction in form of two coupled differ-
ential equations which have to be solved numerically. These equations are derived in
Peters (1964) by means of a Taylor expansion of the general relativistic field equations.
Following Peters (1964), the differential equations which describe the evolution of the
eccentricity and semi-major axis have the form:

dǫ

dt
= −304ǫG3 M•1M•2 (M•1 + M•2)

15c5a4 (1 − ǫ2)5/2

(

1 +
121

304
ǫ2

)

(5.89)

and
da

dt
= −64ǫG3 M•1M•2 (M•1 + M•2)

5c5a3 (1 − ǫ2)7/2

(

1 +
73

24
ǫ2 +

37

96
ǫ4

)

. (5.90)

In Figure 5.36 the predicted evolution of ǫ and a (black curves) until SMBH coales-
cence is compared to the numerical outcome of MUESLI (blue curves). The curves agree
within a 10% accuracy. The small but still present disagreement between the general
relativistic prediction and the numerical outcomes of MUESLI is related to three funda-
mental and one technical problem:

1. The Post-Newtonian treatment (of PN2.5 order) of general relativistic effects faces
limitations in strong gravitational fields r ≈ rs and at very high velocities v ≈ c.

2. Equations 5.89 and 5.90 do not represent exact solutions to the general relativistic
field equations as they are derived from an approximation method as well.

3. MUESLI computes the orbital decay of the secondary SMBH in the potential of a
fixed primary black hole. However, Equations 5.89 and 5.90 are relevant for bina-
ries which evolve around a common center of mass, not a fixed one. MUESLI is
not designed to compute the merger of nearly equal massive black holes. Instead
it is designed to investigate the accretion of stars. Here, the situation is entirely
different, as M⋆ << M•. In this case the common center of mass lies at the posi-
tion of the black hole.

4. Computations of SMBH in-spirals are very time intensive. Depending on the ini-
tial conditions, the secondary black hole usually goes through millions to billions
of orbital revolutions before it plunges into the more massive one. In the com-
putation presented in Figure 5.36, the black hole fulfilled more than 4.5 · 106 or-
bital revolutions. To compute such a huge number within a reasonable amount
of time, the accuracy of integration should be as low as possible. However, a
low accuracy might lead to inaccurate results. In Figure 5.37, the accuracy of or-
bital parameter evolution is plotted for different accuracy parameters. Only at
the highest precision (brown and blue curves), the numerical outcomes converge
and the agreement between prediction and numerical result improves. However,
even with high accuracy, there is still a discrepancy between the prediction and
the numerical outcomes as long as one computes the merger of two black holes
which start already in the highly relativistic regime (v(t = 0) ≈ c).
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Figure 5.37. Depending on the accuracy, the numerical outcome converges (blue and brown
curves). The parameter H is the maximal time step and A is the accuracy parameter (both
quantities are given in N-body units).

MUESLI yields credible results (within an order of 10% accuracy) when performing
SMBH merger computations. The merger of two SMBHs is an extreme scenario re-
quiring the computation of millions to billions of orbits before coalescence. However,
the proposed loss cone study of cluster debris is numerically less challenging and the
performance of MUESLI is even better suited for this kind of study. This is related to
two aspects: (i) The computation of a few (and not millions of) stellar orbital revolu-
tions is sufficient. Stars which do not fall into the black hole will not do so at all. In
the proposed feasibility study, effects like relaxation, tidal distortions of triaxial or axis-
symmetrical galaxy potentials or massive perturbers (§ 2.2.2) are neglected. Hence, the
angular momentum of a star is a conserved quantity and one has to compute only a
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few crossing/orbital timescales. (ii) The center of mass is located at the position of the
SMBH as M⋆ << M• and binary evolution around a common center of mass is no
issue.

5.1.3. Direct N-body Studies of Eroding Clusters

The 3rd step of this feasibility study consists of computing the 6D phase space dis-
tribution of a representative (eroding) star cluster. The tidal field of the host galaxy
must have identical physical properties like that used in step 1. The motivation behind
using a Hernquist profile for the direct N-body computation is related to the fact that
NBODY6 also features this background potential. The physical conditions of the cluster
(in terms of x = rH/rj, see Eq. 4.64 for the definition of rj) at perigalacticon must
equal the disruption criterion which is used in the MUESLI computation for the overall
cluster distribution. It makes sense to use a large (x > 1) value in order to ensure
that a significant fraction of the total mass becomes separated from the potential well
of the cluster. The output of the direct N-body computation has to be recorded after
the critical pericenter passage at apogalacticon. This is important for the following
reason: The smearing of cluster debris over phase space does not happen at the critical
pericenter passage where it experiences a powerful tidal shock in excess of x > 1, it
happens afterwards.

The velocities of all cluster stars have to be reduced by the amount of potential
(cluster) energy. This is a necessary correction as the (individual) cluster potential is
not considered in a MUESLI computation. Finally, the phase space distribution (i.e.
velocity and position vectors) of a representative sample of stars (e.g. n=1000) with
respect to the center of mass (of the cluster) have to be recorded.

5.1.4. SMBH Loss Cone Refilling by Eroding Cluster Debris

The 4th step is the final loss cone computation with the modified MUESLI code which
includes the relativistic SMBH framework. For this purpose a particle model has to
be created in which all destroyed GCs (evaluated in step 1) are replaced by the stel-
lar phase space distribution (at apogalacticon) which was evaluated in step 3. Particle
masses have to be weighed with respect to the former GC mass. In this way one can
also determine which kind of cluster contributes most significantly to the growth of
SMBHs. This is one big advantage compared to a simple loss cone study with equal
mass particles and a given phase space distribution. Another improvement is the pos-
sibility to investigate the effect of dynamical friction. DF influences the trajectories of
very massive GCs in the galactic center. Depending on the Coulomb logarithm, the
orbits of very massive GCs might circularize before they are destroyed. In order to
obtain meaningful statistics, thousands of eroded GCs have to be replaced by the ob-
tained particle distribution from the direct N-body computation (step 3). This results in
millions of particles which have to be integrated forward in time (with MUESLI) up to
several crossing times at the half mass radius of the galaxy. The potential and mass of
the galaxy (& SMBH) are the same as in step 1 and 3. By assuming that all stars form in
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clusters (see e.g. Kroupa 2005) one can scale the inferred SMBH accretion rate properly
to the mass of the galaxy to obtain the contribution of clusters to the growth of SMBHs
in the early universe. Future studies should also investigate the influence of different
velocity distributions and shapes of the galaxy on the growth rate.

5.2. Shape of the GC Specific Frequency versus Galaxy

Luminosity Relation

Notwithstanding that the main topic of this PhD study is about the dynamics of
SMBHs in galaxies, the developed MUESLI code can be applied to a broad sample
of astrophysical problems which are unrelated to black hole physics. In Mieske et al.
(2014) we investigated the influence of globular cluster erosion processes on the shape
of the relation between specific frequency, SN = NGC · 100.4(MV+15), and host galaxies
absolute V-band magnitude, MV . We restricted ourselves to the case of elliptical
galaxies only.

The specific frequency is not a constant function over MV , but it has a u-shaped
form (Forbes, 2005; Georgiev et al., 2010; Harris et al., 2013). It has a local minimum
at intermediate galaxy luminosity MV = [−20.5 : −17.5] and increases for the least
and most luminous (and massive) galaxies. This means that there is either a dispro-
portionate large number of globular clusters in the least and most luminous galaxies
or that there is a deficit of GCs in the intermediate mass regime. Two scenarios try to
explain the observed u-shape: (i) An environment-dependent variation of the field star
versus star cluster/globular cluster formation efficiency (Dekel & Birnboim, 2006) or
(ii) subsequent tidal erosion processes which might be more efficient in intermediate
mass galaxies. The latter idea dates back to Murali & Weinberg (1997) and Vesperini
(2000).

In Brockamp et al. (2014) (i.e. Chapter 4) we found that the size and mass of a galaxy
and therefore its averaged density, ρ, strongly affect the survival rate of globular
clusters. This result can be explained intuitively. A typical crossing timescale at

the half mass radius of a galaxy, RH, is proportional to
√

R3
H/MGAL. Here MGAL is

the dynamical mass of the galaxy. The number of GC pericenter passages during
a Hubble time is thus proportional to

√
ρ. Consequently, if the averaged density is

large, the cluster has to survive more pericenter passages than a GC on a similar orbit
in a less dense galaxy. In addition to that the Jacobi radius (Eq. 4.64) is smaller in
a dense and compact galaxy. Interestingly, the average density of elliptical galaxies
is not a constant function over the luminosity scale. It defines a similar u-shaped
relation as the specific frequency relation (Misgeld & Hilker, 2011; Mieske et al.,
2014). This has major implications for the shaping of SN through GC erosion. Of
course, the situation is complicated by the nonlinear dynamical friction force, the
initial mass and size distribution of GCs, the galactic density profile and the initial
velocity distribution. Nevertheless, by including all these effects, we found a nearly
linear relation (in fs − log(ρ) space) between the survival fraction of GCs, fs, and
the average density, ρ ≡ MGAL/R3

H. Therefore, our performed computations yield
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strong support to a picture in which GC erosion has shaped SN . Indeed, if the present
SN is corrected for the fraction of destroyed GC, the primordial relation becomes
flatter. By assuming a radially biased initial GC velocity distribution, it becomes
nearly flat. In summary, our results indicate that GC erosion strongly contributes to the
present-day shape of the GC specific frequency relation and must be taken into account.

However, a lot more needs to be done in order to obtain a complete picture of the re-
lated evolution of galaxy and globular cluster systems in general, and its relevance for
GC specific frequency in particular: (i) Future numerical studies must also take spiral
and dSph galaxies into account. (ii) The diverse aspects which are already discussed
in § 4.5 must be included in the analysis. (iii) Furthermore, more realistic settings in-
cluding time evolving potentials (i.e. galaxy growth through merging or accretion) as
well as GC distributions with different metallicities and kinematics (red and blue GCs)
must be included as well. Additionally, the strong dependency of erosion processes on
the averaged matter density should allow to perform a clean test of the dark matter
(DM) paradigm. If the M/L ratio of dSph is really as high as it is usually claimed, the
fraction of destroyed clusters should also be very large as they would fulfill more orbits
within a given time interval. It must be investigated if the observed large value of SN

is compatible with dSph galaxies being fully dominated by DM or not.
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Summary

Although their real power is unleashed within their horizon, massive black holes exert
their influence on the dynamics of gas and dust up to distances of hundreds of kpc.
Scaled down to an earth sized galaxy, the central black hole would not be bigger than
a marble, albeit its accretion powered jet might reach continental dimensions. There
is growing evidence that these compact objects have played (and are still playing) a
very important role in the formation of structures, including galaxies, groups or even
clusters of galaxies.

In the first part of this PhD thesis, I presented an outline of the present-day status
of black hole related research. This includes empirical scaling relations (§ 2.1.3) which
are important for theoretical model building and for constraining their limitations.
For example, the M• − Rbreak size relation yields useful information on the merger
history of SMBHs. I discussed all major SMBH growth channels (§ 2.2) which include
cold and hot gas accretion, stellar captures and SMBH merging, followed by two more
hypothetical processes uncovered during this PhD thesis.

In the second part of this thesis my own work in form of published papers is
presented. The first project (Chapter 3) calculated the (stellar) tidal disruption rate in
spherical galaxies hosting central black holes which are less massive than M• = 107M⊙.
Owing to the spherical symmetry of the host galaxy, the only contribution to the stellar
accretion rate comes from the relaxation driven refill of the loss cone. By means of
direct N-body computations with the NBODY6 software, the disruption rate is found
to be nearly independent of the central SMBH mass. This bears implications for the
SMBH growth history. While angular momentum diffusion of stars onto loss cone
orbits would have no influence on the mass accretion rate of the most massive SMBHs,
it might contribute to that of the least massive ones (M• = 104 − 105M⊙). We found
that the Galactic Center black hole might tidally disrupt a star every 15000 to 35000
years.

The second project (Chapter 4) was more extensive. We developed a new software
named MUESLI. MUESLI stands for Multi-Purpose Elliptical Galaxy SCF + Time-
Transformed Leapfrog Integrator. It has a large flexibility and its physical routines
can be easily replaced or upgraded. The code is designed to investigate the erosion
processes of globular clusters systems in elliptical galaxies. The following initial
conditions have an influence on the GC erosion rate and can be taken into account in
computations with the MUESLI software. These are: the mass, scale, shape, density and
velocity distribution of the host galaxy as well as its central SMBH, the initial mass and
velocity distribution of the GCs as well as individual cluster aspects like their sizes,
masses and concentration parameters. After selecting the initial conditions, individual
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GCs are integrated forward in time. Several internal and external dissolution mecha-
nism like (initial) gas-expulsion, stellar evolution, relaxation driven mass loss in tidal
fields, tidal shocks and a form of triaxial dynamical friction act in combination on the
cluster mass.

By applying MUESLI to a representative set of elliptical galaxies, we were able to
reproduce several observed features of these galaxies. (i) The shallow GC number
density profiles in massive elliptical galaxies, (ii) tangentially biased velocity distri-
butions in the central parts of a galaxy, (iii) the absence of GCs around M 32 and (iv)
a final bell shaped cluster mass function. We also found strong indications for the
existence of a rapid phase in the evolution of GC systems. We called this phase a tidal
disruption dominated phase (TDDP). By assuming the initial GC phase space distribution
to follow that of the galactic light, a large fraction of GCs passes close to the galactic
center within their first orbit. Especially low mass clusters on eccentric (low angular
momentum) orbits are destroyed quickly. The TDDP might therefore also contribute to
SMBH growth in the early universe. If the tidal debris of a GC on a very eccentric orbit
is smeared over phase space, some fraction of it might enter loss cone orbits.

The implementation and testing of a relativistic SMBH into the MUESLI code is pre-
sented in the third part of this PhD study. This is a necessary step in order to perform
the loss cone project of GC debris. Finally, I also discussed the contribution of cluster
erosion processes for the observed u-shaped specific frequency distribution of GCs in
elliptical galaxies.
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Küpper A. H. W., Kroupa P., Baumgardt H., Heggie D. C., 2010a, MNRAS, 401, 105
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A. N-body Methods

A.1. Nbody6

The NBODY6 software (Aarseth, 1999, 2003) is a versatile platform for investigating the
gravitational dynamics of stellar systems. NBODY6 was designed as a direct summation
code which means that every particle gravitationally interacts with every other particle.
It solves the equation of motion of the underlying N-body system:

mi~̈ri = −G
N

∑
j=1;j 6=i

(

mimj

(

~ri −~rj

)

∣

∣~ri −~rj

∣

∣

3

)

. (A.1)

Here, mi and~ri is the mass and the position vector of the ith particle. NBODY6 is well
suited for numerical investigations of stellar systems with relaxation timescales shorter
than the time scale of interest. This applies to star clusters or even the most inner parts
of galactic nuclei hosting the least massive SMBHs.

According to Aarseth et al. (2008), NBODY6 consists of three major elements:

1. Creating initial conditions

2. Integration of the Newtonian equation of motion

3. Data evaluation

In the following discussion I concentrate solely on part 2.

Due to the symmetry of gravitational forces and by assuming a model with N single
particles, a direct summation method has to evaluate

1

2
N(N − 1) ∼ N2 (A.2)

forces per time step. The quadratical increase of the required computing power poses a
computational challenge. It effectively limits the usable particle number to be N . 106

(Heggie & Hut, 2003). However, there are two strategies which speed-up direct N-body
integrations. Both are implemented into NBODY6: First of all (i), by assigning (synchro-
nized) individual time-steps, h, to all particles. Near mass concentrations where accel-
erations are large, the step size becomes smallest. In the outer parts of a stellar system
where the motion is governed by a low acceleration, a large step size is sufficient. The
following time-step criterion is implemented into NBODY6 (Aarseth et al., 2008):

h =









η

(

∣

∣

∣
~a(0)

∣

∣

∣

∣

∣

∣
~a(2)

∣

∣

∣
+
∣

∣

∣
~a(1)

∣

∣

∣

2
)

∣

∣~a(1)
∣

∣

∣

∣~a(3)
∣

∣+
∣

∣~a(2)
∣

∣

2









1
2

. (A.3)
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A. N-body Methods

Here, η is the accuracy parameter which is usually 0.02 (Aarseth et al., 2008) and~a(n) is
the time derivative of nth order of the acceleration. Secondly (ii), by making use of the
Ahmad-Cohen neighbour scheme (Ahmad & Cohen, 1973). The basic idea behind the
Ahmad-Cohen neighbour scheme is to group all forces which act on a particle into two
regimes which are then recalculated in different time intervals. This includes the N − 1
direct forces as well as those from an additional IMBH/SMBH. Forces which belong to
the first regime must be updated every new time step, h. These forces emanate from
nearby particles (or a nearby IMBH/SMBH), within the so called neighbour radius.
Relative particle positions from beyond the neighbour radius do not change as quickly
and their force contribution can be updated in more extended time intervals. External
forces from the potential of the host galaxy are treated like forces within the neighbour
radius.

The particles themselves are integrated forward in time by making use of the Hermite
integration scheme (Aarseth et al., 2008). The Hermite scheme is a predictor-corrector
method1. This integration scheme is capable to calculate the position

~rn+1 =~rn + ...+~a
(3)
n h5/120 (A.4)

and velocity,

~vn+1 = ~vn + ... +~a
(3)
n h4/24, (A.5)

up to the 5th and 4th order of a Taylor expansion series, respectively. However, it does

not use brute force to calculate ~a
(2)
n and~a

(3)
n directly. Instead, it first makes a predictor

step

~rn+1 =~rn +~vnh +
1

2
~a
(0)
n h2 +

1

6
~a
(1)
n h3 (A.6)

~vn+1 =~vn +~a
(0)
n h +

1

2
~a
(1)
n h2

in which~rn+1 and ~vn+1 are calculated up to low order. Afterwards, expressions for~a
(3)
n

and~a
(2)
n are evaluated from the predicted (at step n + 1) and old values (at step n). This

is the corrector step:

~a
(2)
n =

−6
(

~a
(0)
n −~a

(0)
n+1

)

− h
(

4~a
(1)
n + 2~a

(1)
n+1

)

h2

~a
(3)
n =

12
(

~a
(0)
n −~a

(0)
n+1

)

+ 6h
(

~a
(1)
n +~a

(1)
n+1

)

h3
. (A.7)

Finally, the high-order corrections are applied to the predicted values of~rn+1 and ~vn+1

(Eq. A.6) in order to obtain the solution at the 5th and 4th order of the Taylor expansion
(Eq. A.4 and A.5).

Hard binaries and strongly bound hierarchical systems, either in form of primordial
binaries or emerged from dynamical interactions, require special care. Hard binaries

1See e.g. Aarseth et al. (2008) for a more detailed description of the Hermite scheme.
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A.2. SCF Method

are handled with the KS regularization method (Kustaanheimo & Stiefel, 1965) which
bases on a coordinate transformation of the 3D treatment into a 4D coordinate system
with a new time coordinate. An example for another kind of regularization method can
be found in Appendix A.3. The dynamical evolution of the binary itself is integrated
forward in time with the KS method while its center of mass is numerically evolved
with the ordinary scheme. Hierarchical systems (e.g. two gravitationally bound bina-
ries) are treated with the chain regularization method (Mikkola & Aarseth, 1993). It
can be summarized as a method which regularizes the strongest two body interactions
and which adds the other force components as perturbations.

Additional physical processes that can be modelled with NBODY6 include a Post-
Newtonian treatment, Roche lobe overflow of interacting binaries, physical collisions
between stars, stellar mass loss, supernovae explosions and remnant formation as well
as gas expulsion.

A.2. SCF Method

The SCF algorithm (Hernquist & Ostriker, 1992) evaluates the potential and density
profile from a particle distribution, which itself can be taken, for example, from a cos-
mological large scale simulation. The SCF method allows to integrate these particles
forward in time by calculating the acceleration vectors at arbitrary positions from the
gradient of the obtained potential:

~a (~r) = −∇φ(~r). (A.8)

Depending on the numerical problem, the overall potential-density pair can be
re-evaluated (i.e. updated) in arbitrary time intervals. In this way the SCF method
handles time evolving galaxy potentials. In contrast to NBODY6 (Appendix A.1),
the SCF algorithm is a collision-less method well suited for investigating dynamics
of galaxies. The principle of the SCF algorithm and how it obtains an analytical
expression for φ from the particle distribution, is explained below.

Every density, ρ, and potential, φ, which are square-integrable on the unit-sphere,
can be expanded into radial and angular dependent functions. They form a complete
(and orthogonal) basis and following Hernquist & Ostriker (1992) they have the form:

ρ (~r) = ∑
nlm

Anlmρnlm (~r) (A.9)

φ (~r) = ∑
nlm

Anlmφnlm (~r) . (A.10)

Here, n, l, m specify the order of the expansion. With the help of the Poisson equation:

∇2φ (~r) = 4πρ (~r) , (A.11)

an explicit expression for these radial and angular dependent functions can be found.
However, before solving the Poisson equation, one first needs to specify boundary con-
ditions. Proper boundary conditions (for n, l, m = 0) should be selected by choosing
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A. N-body Methods

an underlying galaxy model which is already very close to the model one wishes to
expand. The SCF formalism which is implemented into the MUESLI code uses a Hern-
quist density-potential pair (Hernquist, 1990) as boundary conditions. They have the
form:

ρ000 =
MGALa

2πr (r + a)3
(A.12)

φ000 = −GMGAL

r + a
. (A.13)

Here, MGAL is the total mass and a = RH/
(

1 +
√

2
)

is a scale length which is

proportional to the 3D half mass radius, RH. For convenience, G = MGAL = a = 1 are
scaled to model units.

The solution of Eq. A.11 incorporates spherical harmonics and Gegenbauer polyno-
mials (Eq. 3.12 and 3.13 in Hernquist & Ostriker (1992)). Actually, the solution of the
angular dependent part is straightforward to obtain as spherical harmonics already de-
fine an orthogonal and complete basis set. By having explicit expressions for ρ (~r) and
φ (~r), one can calculate the density-potential pair up to a given order m, n, l ∈ N>0 from
all particles in the underlying model.

A.3. TTL Integrator

The simulation of few-body systems with arbitrary masses and separations is a great
challenge in numerical astrophysics (Mikkola & Aarseth, 2002). Velocity dependent
forces which occur e.g. in the PN treatment complicate these efforts. The reason for
this is as follows: Non-symplectic integrators like the Runge-Kutta (RK) method
usually do not preserve energy. A binary black hole system can artificially gain energy
over time so that the separation between the holes enlarges. Moreover, a general
mathematical criterion concerning energy conservation does not exist and in principle
it has to be tested by calculating ∆E = |E − E0| (during computations) for any problem
individually.

In the case that the Hamiltonian, H, is also the energy of the system, energy errors
are bounded from above in symplectic methods like the leapfrog integration technique.
The following inequality was derived in Hairer et al. (2003) for the leapfrog integration
method:

|Hn − H0| ≤ Ch2 + Cnhnt , 0 ≤ t = nh ≤ h−N . (A.14)

Here N, C1 and Cn are positive constants, h is the time step and t the time. However,
a necessary condition for (accumulated) energy errors which are bounded from above
(like in Eq A.14) is that forces do not depend on the velocity. This is not the case in
relativistic scenarios or cases where dynamical friction is involved.

Mikkola & Aarseth (2002) found a regularization method which allows to accurately
calculate the motion of objects with arbitrary mass ratios. It can also handle velocity
dependent forces which are important in the immediate vicinity of SMBHs. This

154



A.3. TTL Integrator

method is the time-transformed leapfrog (TTL) scheme and is shortly presented below:

In the TTL scheme, the set of two first-order equations

d~r

dt
= ~v,

d~v

dt
=~a (~r) (A.15)

is first transformed into a set of four first-order equations which can then be solved
more efficiently (Mikkola & Aarseth, 2002). The transformation is done in two steps: (i)
Through a substitution (i.e. time transformation) of the form:

ds = Ω (~r)dt. (A.16)

Here, Ω (~r) is a positive function which depends on the masses of the particles and
their separations. And (ii), by introducing an additional variable W = Ω. However,
the auxiliary variable is not directly obtained from the value Ω. Instead, it is evaluated
from the differential equation:

∂W

∂t
=

∂Ω

∂t
=

∂Ω

∂t
· ∂~r

∂~r
= ~v

∂Ω

∂~r
. (A.17)

In this way one obtains four differential equations:

(1.)
d~r

ds
=

~v

W
(2.)

d~t

ds
=

~1

W
(3.)

d~v

ds
=

~a

Ω
(4.)

∂W

∂t
= ~v

∂Ω

∂~r
(A.18)

which are solved with the leapfrog integration method presented in Mikkola & Aarseth
(2002) (their Equations 14-19). The additional effort involved in solving Eq. A.18, one
now has to solve four differential equations instead of two, is balanced by the fact that
one obtains a much more efficient and precise integration method which can handle
arbitrary mass ratios.
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B. Extrapolation to Astrophysical Galaxies

In the following part we give a more detailed description of the formalism by which the
here obtained capture rates (Table 3.1) can be scaled up to realistic bulges of galaxies or
elliptical galaxies.

1. From the relation
rcap

rH

∣

∣

∣

sim
=

rcap

rH

∣

∣

∣

astro
(B.1)

the required capture radius rsim
cap for a black hole of mass M• must be obtained by

using astronomical observations of individual galaxies or by making use of the
M•− σ relation from Schulze & Gebhardt (2011). If in the near future much larger
samples of measured SMBH masses allow for more accurate values, it will be no
problem to implement them into this formalism. By combining Eq. B.1 with the

disruption radius rcap = gr⋆
(

M•
M⋆

)
1
3 and the expression for the radius of influence

rH ≈ 13.1
(

M•
M8

)0.54
[pc] which is derived from the M• − σ scaling relation, rsim

cap

follows:

rsim
cap ≈ 4g · 10−9

(

M•
M8

)−0.2067

. (B.2)

It specifies the required capture radius in the scale-free N-body integrations for
the astrophysical black hole of interest. The function a(rsim

cap ) must be evaluated
from the values in Table 3.1:

a(rsim
cap ) = 0.023(±0.006)

(

rsim
cap

)0.363(±0.020)
(B.3)

yields a reasonable approximation1 for the extrapolation of the parameter a from
Eq. 3.53 to any desired rsim

cap . For the purpose of this paper the slope parameter

b = 0.83 is assumed to be independent of rsim
cap . As already mentioned in § 3.6.1

the parameter g accounts for the stellar model and mass of the black hole. It is of
the order of one (Kochanek, 1992; Lai et al., 1994; Ivanov & Chernyakova, 2006).
For simplicity we use g = 1 which is a reasonable assumption for nonrotating
black holes less massive than M• = 107M⊙ and solar mass stars. Eq. B.2 assumes
all stars to be disrupted before entering the horizon.

2. The dynamical timescale tsim of the N-body particles inside the sphere of influ-
ence rH has to be calculated according to tsim = 2rH

σ(r=rH)
≈ 0.008. It is used as a ref-

erence for timing issues when compared to the relevant astrophysical timescales
t. To ease the extrapolation of the numerical results to astrophysical systems, we

1Q = 0.89 without rescaling χµ = 1. Afterwards, the uncertainties are taken directly from the covariance
matrix. Renormalization induces the errors to be uncorrelated to each other.
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B. Extrapolation to Astrophysical Galaxies

compute the time averaged influence radius rH. Representative for all models we
calculate rH and tsim from the 25 k, 50 k, 75 k, 150 k and 250 k models. For the
calculation of the radius of influence we bin the particles in cylindrical shells of
thickness ∆r = 0.001 and measure for each configuration the one dimensional

velocity dispersion (line of sight velocity) σ2
i =

∑i v2
i,z

Ni
in order to obtain σ(r)2

sim.
Here Ni is the number of particles within each configuration. We choose the line

of sight axis to be parallel to the z-axis. Afterwards, σ2
bh,i = M•(t)

3Ni
·
(

∑
Ni
i=1

1
ri

)

is

calculated for each cylindrical shell to obtain σ(r)2
bh, here ri =

√

x2
i + y2

i + z2
i . The

factor 3 in the denominator is used for the normalization to the relevant line of
sight velocity inside the isotropic distribution. The radius of influence rH is then

calculated to be the radius at which
σ(r)2

sim

σ(r)2
bh

= 2. We note that in N-body units

G = 1. The position of the black hole is used as the reference center and the mass
gain of the black hole is taken into account. For the time averaged influence ra-
dius and velocity dispersion we obtain rH ≈ 0.005 and σ(r = rH) ≈ 1.26. The
black hole influence radius is 5 − 6 times smaller than the dynamical radius.

3. Afterwards, the astrophysical timescale tcr(rH) = 2rH
σ

∣

∣

astro
of the mass distribu-

tion within the influence radius must be obtained for the black hole of given

mass by using rH ≈ 13.1
(

M•
M8

)0.54
[pc] and σ ≈ 200

(

M8
1.5135

)0.23
[kms−1] from

Schulze & Gebhardt (2011).

4. The number of stars N in the astrophysical galaxy must be specified. For simplic-
ity we assume all stars having the same masses 〈M⋆〉 = 1M⊙. A coarse estimate
for the number of stars can be computed by:

N =
100M•
〈M⋆〉

. (B.4)

The choice of 〈M⋆〉 = 1M⊙ depends on the stellar mass function and seems to be
a reasonable assumption for galactic nuclei where mass segregation is important
(Freitag et al., 2006; Kroupa, 2001; Löckmann et al., 2010). The factor 100 accounts
for the fraction of bulge mass to black hole mass in accordance with our simula-
tions.

5. Finally the disruption rate of stars by massive black holes can be evaluated. In
a first step the numerically inferred number of captures Ċ(N) per N-body time
unit (Table 3.1) must be normalized to the relevant crossing time tsim = 0.008 (in
N-body time units) at the influence radius of the black hole. This dimensionless
number must afterwards be synchronized with the relevant timescale tcr(rH) of
the astrophysical galaxy. Consequently Ċ(N) · tsim has to be divided by tcr(rH)
in order to obtain the number of disrupted stars within the desired physical time
unit (e.g yr, Myr) for the black hole of interest:

Ċastro =
0.008 · a(rsim

cap )Nb

tcr(rH)
. (B.5)
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Our extrapolation formalism strongly depends on the M• − σ relation. More accurate
and numerous black hole measurements will improve this relation in the future. More-
over, we only treat errors from our simulations and neglected the intrinsic scatter of the
M• − σ relation for simplicity.
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