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Analysis of functional candidate genes for meat quality and carcass traits  

in pigs 

 

Twelve genes, BVES, SLC3A2, AHNAK, ZDHHC5, CS, LYZ, KERA, COQ9, UN (a non-

annotated EST), EGFR, VTN and ZYX, whose candidacy for traits related to water-holding 

capacity of meat arises from their trait-dependent differential expression and/or trait 

correlated expression, were selected for analysis. Based on in silico analysis SNPs were 

detected, confirmed by sequencing and used for genotyping. For the first eleven genes, the 

SNPs were genotyped in ca. 1,800 animals from 6 pig populations including commercial 

herds of Pietrain (PI(a/b)), Pietrain x (German Large White x German Landrace) 

(PIF1(a/b/c)), and German Landrace (DL(a/b)) and one experimental F2-population Duroc 

x Pietrain (DUPI). For ZYX, the SNPs were genotyped in 870 animals from 4 pig 

populations including PI, DL, F1 and PIF1. Comparative and genetic mapping established 

the location of BVES on SSC1, of SLC3A2, AHNAK and ZDHHC5 on SSC2, of CS, LYZ 

and KERA on SSC5, of COQ9 on SSC6, of UN on SSC7, of EGFR on SSC9, of VTN on 

SSC12 and of ZYX on SSC18 respectively, coinciding with QTL regions for carcass and 

meat quality traits. BVES, SLC3A2, AHNAK, CS, LYZ, UN, VTN and ZYX revealed 

association with drip loss and also with several other measures of carcass and meat quality 

traits. KERA was associated with loin eye area and pH. Moreover, several carcass fatness 

traits and meat quality traits such as meat color and thawing loss were associated with 

COQ9 and EGFR. However, none of the candidate genes showed a significant association 

to a particular trait across all populations. This may be due to breed specific effects that are 

related to the differences in carcass and meat quality of these pig breeds. This study reveals 

statistic evidence for a link of genetic variation at these loci or close to them with 

phenotypic variation and promotes those twelve candidate genes as functional and/or 

positional candidate genes for carcass and meat quality traits  

 

 

 

 



 

Analyse von funktionalen Kandidatengenen für Fleischqualität und 

Schlachtkörpermerkmale in Schweinen 

 

Zwölf Gene, BVES, SLC3A2, AHNAK, ZDHHC5, CS, LYZ, KERA, COQ9, UN (ein 

unannotiertes EST), EGFR, VTN und ZYX, deren Kandidatenstatus für Merkmale des 

Wasserbindungsvermögens von Fleisch auf ihrer merkmalsabhängigen differentiellen 

Expression und/oder merkmalskorrelierten Expression beruht, wurden für die Analyse 

ausgewählt. Basierend auf in silico-Analysen wurden SNPs detektiert, die durch 

Sequenzierung bestätigt und  dann zur Genotypisierung verwendet wurden. Für die ersten elf 

Gene wurden die SNPs in ca. 1.800 Tieren aus sechs Schweinepopulationen genotypisiert; 

dazu gehörten kommerzielle Herden der Rassen Pietrain (PI(a/b)), Deutsche Landrasse 

(DL(a/b)) und eine Drei-Rassen-Kreuzung aus Pietrain x (Deutsches Edelschwein x Deutsche 

Landrasse) (PIF1(a/b/c)) sowie eine experimentelle F2-Population aus Duroc x Pietrain 

(DUPI). Für ZYX wurden die SNPs in 870 Tieren aus vier Schweinepopulationen genotypisiert; 

dazu gehörten PI, DL, F1 und PIF1. Genetische Kartierung etablierte die Lage von BVES auf 

SSC1, von SLC3A2, AHNAK und ZDHHC5 auf SSC2, von CS, LYZ und KERA auf SSC5, von 

COQ9 auf SSC6, von UN auf SSC7, von EGFR auf SSC9, von VTN auf SSC12 und von ZYX 

auf SSC18, jeweils in Regionen, die mit QTL-Regionen für Schlachtkörper- und 

Fleischqualitätsmerkmale zusammenfallen. BVES, SLC3A2, AHNAK, CS, LYZ, UN, VTN und 

ZYX ließen sowohl Assoziationen mit Tropfsaftverlust als auch mit verschiedenen anderen 

Messgrößen für Schlachtkörper- und Fleischqualitätsmerkmale erkennen. KERA war mit der 

Kotelettfläche und dem pH-Wert assoziiert. Außerdem waren verschiedene Schlachtkörper-

Fettmerkmale und Fleischqualitätsmerkmale wie z.B. OPTO und Auftauverlust mit COQ9 und 

EGFR assoziiert. Allerdings zeigte keines der Kandidatengene eine signifikante Assoziation 

mit einem bestimmten Merkmal in allen Populationen. Dies könnte an den rassenspezifischen 

Effekten liegen, die die Unterschiede in der Schlachtkörper- und Fleischqualität dieser 

Schweinerassen bedingen. Diese Studie zeigt statistische Hinweise auf eine Verbindung von 

genetischer Variation an oder in der Nähe dieser Loci und phänotypischer Variation. Dies 

bestätigt die zwölf Kandidatengene als funktionale und/oder positionelle Kandidatengene für 

Schlachtkörper- und Fleischqualitätsmerkmale. 
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Introduction 1

1. Introduction 

 

During the last decades, intensive selection for rapid lean growth in pigs induced a shift in 

muscle metabolism towards a more glycolytic and less oxidative fiber type. With regard to 

this, unfavorable genes correlated to altered meat quality are also selected (Cameron, 1990; 

Weiler et al. 1995). One of the most significant problems the pork industry has to face is a 

lack of consistency in water-holding capacity (WHC). Pork with the extreme defect PSE 

(pale, soft and exudative) can lose as much weight as 10% (Melody et al. 2004). Surveys 

conducted in the USA in 2003 indicate that 15.5% of the produced pork was PSE (Stetzer 

and McKeith, 2003), which is estimated to cost the pork industry $100 million annually 

due to the inferior quality of the PSE pork (Carr et al. 1997). However, the frequency of 

PSE pork has been reduced since the discovery of the major gene ryanodine receptor 1 

(RYR1; the Halothane locus), which has been shown to cause PSE (Fujii et al. 1991). The 

selection against PSE meat was performed by eliminating the homozygous genotype ‘nn’ 

(stress susceptible) of the RYR1 gene. But since this allele also had positive effects on lean 

muscle deposition (Tor et al. 2001; Lengerken et al. 2002), the percentage of heterozygous 

animals still remained. Although the frequency of PSE pork is not a big problem anymore, 

the pig industry still needs to improve the trait WHC in pork.  Since WHC can be 

measured directly via the measure “drip loss”; it has been a significant parameter of 

research attention. Interestingly, some studies showed that drip loss had high correlations 

to the routinely recorded meat quality traits such as pH and conductivity (Lee et al. 2000; 

Borchers et al. 2007), while moderate correlations were found to carcass fatness traits 

(Mörlein et al. 2007; Ponsuksili et al. 2008a). Drip loss and related traits had low to 

moderate heritability ranging from 0.10 to 0.37, indicating that the environmental factors 

had strong effects on the traits (Sellier, 1998; van Wijk et al. 2005). However, genes and 

mutations affecting economic traits have already been proposed in marker assisted 

selection plans in pigs and other successful applications might be derived from the 

identification of new mutations and their inclusion in advanced selection approaches 

(Rothschild and Plastow, 1999; van der Steen et al. 2005). Previously, the studies of gene 

expression profiles revealed a large number of genes differentially expressed in groups 
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with high/low drip loss and high/low pH, or with expression correlated with drip loss. 

These studies revealed relevant biological pathways and were a source of candidate genes 

(Ponsuksili et al. 2008a, b).  

In order to gain more knowledge and provide useful data for marker assisted breeding 

schemes and finally to improve pig production in the future, the present study was 

undertaken by selecting candidate genes from previous studies (Ponsuksili et al. 2008a, b) 

based on their functions and/or location on QTL regions related to meat or carcass quality 

traits. Therefore, the objective of this study is, to identify and analyze loci that may contain 

genetic variation underlying the meat quality and carcass traits in pigs. 
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2. Literature review 

 

Marketing of food in general and meat in particular has changed considerably during the 

last decades. In general, the price for pigs is based on the carcass quality (carcass weight 

and lean meat percentage), while no regard is paid to meat quality. Carcass and meat 

quality are considered to be reversely correlated (Huff-Lonergan et al. 2003), meaning that 

improving leanness would lead to the reduction of meat quality (e.g. high leanness is 

associated with undesired bright color, low pH and high drip loss). Since then meat quality 

has become more important while the carcass quality has been consistent. In the current 

pig price system in Germany, which supports the breeding and management aims, price 

additions are only allowed up to 58% of lean meat. More leanness is not paid for (Kallweit 

et al. 2007). Also, the amount of pork sold in butcher shops is decreasing while the amount 

of pre-packed pork in grocery stores and discounters is growing. This allows the customer 

to visualize meat quality by color and drip loss if the packages are transparent and have 

been stored in the counter for some time. Both carcass and meat quality are complex and 

multivariate properties which are influenced by multiple interacting factors. These include 

genetic and environmental factors (Rosenvolt and Andersen, 2003). In order to develop 

more comprehensive strategies for reducing the variation found in pork quality, the 

biochemistry underlying postmortem metabolism must be defined. 

 

2.1 The conversion of muscle to meat 

The main role of muscle is to provide a means of locomotion through carefully 

orchestrated contraction/relaxation cycles. This whole cycling process is modulated by 

fluctuations in cytosolic calcium (Ca2+) levels. At contraction-induced levels, Ca2+ 

“instigates” conformational changes in the thin filaments and allows myosin to bind actin 

molecules. In order for muscle to relax, Ca2+ is removed from the sarcoplasm, via an ATP 

dependent Ca2+ pump, and is resequestered in the sarcoplasmic reticulum (SR), thereby 

removing the ability of Ca2+ to induce contraction. ATP is the source of energy for 

breaking actomyosin cross-bridges and for maintaining the Ca2+ pump of the sarcoplasmic 

reticulum, whereas Ca2+ is a primary regulator of contraction (Figure 1) (reviewed by 
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Bowker et al. 2000). Thus, ATP and Ca2+ can be considered two major players in muscle 

contraction and metabolism. 

 

 

 

 

 

 

 

 

 

 

Figure 1: The contraction/relaxation of muscle in living animal 

 

In postmortem muscle, the tissue attempts to maintain homeostasis by maintaining cellular 

ATP concentrations, because ATP production is necessary to keep the muscle in the 

relaxed state but due to circulatory failure following exsanguination, muscle lacks the 

oxygen required for oxidative metabolism. Consequently, muscle glycogen is metabolized 

via anaerobic glycolysis, thus phosphorylating ADP to replenish ATP. Anaerobic 

glycolysis is less efficient at generating ATP than aerobic metabolism. Thus, as 

postmortem metabolism continues, glycogen and ATP levels decline, and lactic acid 

accumulates, lowering the muscle pH. Because less ATP is available, the formation of 

actomyosin bonds shortens sarcomeres and increases muscle tension, signaling the onset of 

rigor mortis. Rigor mortis is complete when the ATP supply is exhausted; thus, 

actomyosin crossbridges cannot be broken and the muscle is relatively inextensible (Figure 

2). This process results in an overall pH decline from 7.4 in living muscle to an ultimate 

pH (pHu) of about 5.4 to 5.7 at 24 h post mortem in normal pig longissimus muscle 

(reviewed by Bowker et al. 2000; Melody et al. 2004). The rate and extent of pH decline 

during the conversion of muscle to meat significantly impact the development of fresh 

meat quality attributes. The onset of rigor mortis at high temperature and low pH causes 
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the denaturation of approximately 20% of the sarcoplasmic and myofibrillar protein. 

Abnormally low pH reduces the net charge of myofibrillar proteins, and the attraction 

moves filaments closer together and forces water out of the myofilament lattice. Moreover, 

sarcoplasmic protein solubility declines with decreasing pHu and contributes to paler pork 

color. The rate and extent of postmortem pH decline significantly influence protein 

characteristics and thus critically affect pork quality development (Bee et al. 2007; 

Scheffler and Gerrard, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The conversion of muscle to meat 
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2.2 Major genes affecting pig meat quality 

In pig the most frequently observed deviation from normal meat quality is the so-called 

PSE (pale, soft and exudative) meat. This tendency to produce PSE pork was closely 

associated with porcine stress syndrome (PSS), a condition synonymous with human 

malignant hyperthermia (MH). Pigs susceptible to MH display hypermetabolism, elevated 

body temperature, and muscle rigidity upon exposure to the anesthetic halothane 

(Lengerken et al. 2002; Melody et al. 2004).  

The halothane (HAL) gene locus, the name referring to the exposure of halothane gas used 

to screen for stress-susceptible pigs, has two alleles: the normal dominant allele (N) and 

the mutant recessive allele (n). The causative polymorphism is the SNP at position 1843 

(C>T) in the skeletal muscle ryanodine receptor (RYR1) that maps to SSC 6, leading to an 

amino acid change from Arginine to Cysteine (Fujii et al.1991). The RYR1, or Ca2+-

release channels in MH-susceptible pigs are hypersensitive to agents that stimulate opening, 

thus allowing longer open time probability and resulting in enhanced Ca2+-release and 

greater twitch tension, resulting in sustained contraction and metabolism. This defect in 

Ca2+-concentration has important consequences for production and meat quality traits. The 

HAL mutation may contribute to leanness and heavy muscling by causing spontaneous 

muscle contraction and greater energy utilization, leading to work-induced muscle 

hypertrophy and limiting fat deposition. However, the positive effects of the mutant allele 

on performance is negated by an increased risk for stress-induced death and high 

susceptibility to acute stress prior to slaughter, which may manifest in an accelerated rate 

of pH decline and the production of PSE pork (Essen-Gustavsson et al. 1992; Fernandez et 

al. 2002)  

The second major gene effecting pig meat quality is the rendement napole (RN) gene, 

whose name referres to a method of estimating ham yield. It was first noticed in France 

that meat from Hampshire pigs often had extremely low pH and a much lower yield of a 

cured-cooked ham product called the “Paris Ham”. Once termed the “Hampshire Effect,” 

the effect was found to be dominant (Monin and Sellier, 1985). Further analysis has shown 

that the RN- allele increases the amount of glycogen in white muscle by about 70%. The 

existence of the RN locus was mapped to SSC 15 (Milan et al. 1996). The identification of 
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the causative mutation revealed that the gene involved is a new member of a gene family 

coding one of the regulatory subunits of the AMP-activated protein kinase complex 

(named PRKAG3). The test for the RN- mutation is being used to remove the defect from 

primarily Hampshire based lines (Le Roy et al. 2000; Milan et al. 2000). Interestingly, 

additional mutations within the gene have been discovered and are of importance to the 

industry (Ciobanu et al. 2001). 

The HAL and RN genes are called major genes for carcass and meat quality traits in pigs 

as their strong effect on those properties (Figure 3) has been confirmed in studies on 

various breeds and lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The effect of major genes (HAL and RN) on meat quality 

 

The deleterious genotype of RYR1 was very quickly eliminated from many breeders’ 

herds through the use of the HAL-1843™ molecular genetic test (Fujii et al. 1991). Despite 

this, considerable differences in meat and carcass quality are observed in animals of the 

same breed and the same genotype at the locus RYR1. This fact demonstrates that the 

RYR1 locus is indeed a major gene affecting carcass and meat quality, but additional 
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genetic factors are involved (Lengerken et al. 2002). Thus it is necessary to identify other 

genes affecting the phenotypic differentiation between animals with respect to these traits.  

The understanding of the previously explained metabolic processes taking place in the 

muscle post mortem may suggest the way to identify sources of candidate genes. The 

hypothesis is that if we can detect the genes in calcium signaling pathways or oxidative-

glycolytic phosphorylation pathways that can reduce the rate of pH decline or the genes in 

extracellular matrix pathways that protect muscle proteins stronger against degradation 

during the postmortem stage, it might help to improve meat quality especially in terms of 

water-holding capacity. 

 

2.3 The correlation between carcass and meat quality traits 

Meat quality comprises factors relevant for the perception and nutritional and sensory 

properties. The latter can be measured by means of technological indicators such as pH, 

conductivity, color, drip loss, cooking loss, thaw loss, or shear force. Most of these 

parameters are correlated with or dependent on each other e.g. drip loss has a strong 

positive correlation with conductivity (Lee et al. 2000; Ponsuksili et al. 2009). Moreover, 

many studies report the correlation between carcass and meat quality traits, the same 

findings correspond to the positive phenotypic correlation that exists between the carcass 

fatness and water-holding capacity of meat (Estévez et al. 2004; Suzuki et al. 2005; Kušec 

et al. 2003; Ponsuksili et al. 2009) (Table 1).   

 

Table 1: Correlation coefficients between meat and carcass quality traits1  
 pH24 OPTO CON24 DRIP FA ABF 
OPTO 0.45***      
CON24 0.04 0.11**     
DRIP −0.22*** −0.31*** 0.27***    
FA 0.12** 0.09* −0.12** −0.27***   
ABF 0.05 0.02 −0.14** −0.19*** 0.82***  
LEA 0.02 −0.09* 0.16*** 0.18*** −0.11** −0.18*** 
*p<0.05; **p<0.01; ***p<0.001  
1Ponsuksili et al. (2009) 
LEA = loin eye area, FA = fat area, ABF = fverage back fat, OPTO = meat color, pH24 = pH at 24 hours 
p.m., CON24 = conductivity at 24 hours p.m., DRIP = drip loss 
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This is not surprising as all traits are quantitative traits controlled by several loci but 

several traits may also be influenced by the same or linked loci (Haley et al. 1994; Liu et al. 

2007). Therefore, the association study of candidate genes for meat quality traits may 

reveal statistic evidence linked to them or related traits.  

 

2.4 The candidate gene approach for carcass and meat quality 

There are some major problems that breeders encountered when attempting to breed for 

improved carcass and meat quality: (i) these traits are to some extent negatively correlated 

(Huff-Lonergan et al. 2003), (ii) most of the traits can only be measured post mortem, 

which makes prior breeding selection difficult and (iii) the consumers' as well as the 

producers' conception of high meat quality is not uniform and their expectations are 

changing continually (Dekkers, 2004; Kallweit et al. 2007; Ponsuksili et al. 2009). The 

identification of genes that regulate carcass and meat quality traits, the so-called marker-

assisted selection (MAS), will assist in efficient meat production and facilitate the 

resolution of existing production problems.  

Candidate genes may be identified based on knowledge of physiology, biochemistry or 

pathology, which clearly indicates the mechanism of the trait (‘direct candidate’ approach). 

Indirect approaches to identify candidate genes are: (i) the ‘positional candidate’ approach,  

which combines linkage information for a particular trait and mapping information on 

genes exhibiting particular functional properties and/or patterns of expression (‘functional 

candidates’); and (ii) the ‘comparative mapping’ approach, which combines the results of 

reverse genetics efforts and information on genes mapped in the corresponding synteny 

group in other species (Kim et al. 2000). To date, by using these techniques, many 

candidate genes have been investigated to identify genes affecting economic traits. Jennen 

et al. (2007) summarized a large number of potential candidate genes for meat quality traits 

based on their function regarding muscle development and metabolism in the QTL areas of 

the Duroc-Pietrain (DUPI) population (Table 2). In addition, more recent approaches to 

detect candidate genes are based on the analyses of differences in the expression profiles in 

particular subsets of cells/tissues and/or individuals with certain phenotypes (Te Pas et al. 

2005; Cagnazzo et al. 2006; Wimmers et al. 2007; Ponsuksili et al. 2008a).  
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Table 2: Potential candidate genes mapped on porcine chromosomes containing meat 

quality quantitative trait loci (QTL) regions of the Duroc-Pietrain (DUPI) population1 
SSC  Trait  Gene  Gene description  

AK1  Adenylate kinase 1  
CAPN3  Calpain 3  
IGF1R  Insulin-like growth factor 1 receptor  
LHX3  LIM homeobox 3  

1 pH, 
conductivity,  
meat color  

TPM1  Tropomyosin alpha, skeletal muscle  
ACTN3  Actinin alpha 3  
CAST  Calpastatin  
CKMT2  Creatine kinase, mitochondrial 2  
FTH1  Ferritin, heavy polypeptide 1  

2 pH, 
conductivity,  
drip loss, 
meat color  

IGF2  Insulin-like growth factor 2  
  MYOD1 Myogenic differentiation 1 

ACTB  Beta Actin  
ALDOA  Aldolase A  
ATP2A1  ATPase, Ca2+ transporting, cardiac muscle, fast twitch 1  
BCL7B  B-cell CLL/lymphoma 7B  

3 drip loss  

HUMMLC2B  Myosin regulatory light chain 2  
ATF4  Activating transcription factor 4  
ATP5B  ATP synthase, H+ transporting mitochondrial F1 complex  
LIMA1  LIM domain and actin binding 1  
IGF1  Insulin-like growth factor 1  

5 drip loss  

MYBPC1  Myosin-binding protein C  
  MYF5 Myogenic factor 5 

CKM  Muscle creatine kinase  
GYS1  Glycogen synthase 1  
RYR1  Ryanodine receptor 1  
TGFB1  Transforming growth factor, beta 1  

6 shear force  

TNNT1  Troponin T type 1  
CALM1  Calmodulin 1  
MYH7  Myosin heavy chain beta slow  
NDRG2  N-myc downstream-regulated gene 2  
PKM2  Pyruvate kinase, muscle  

7 cooking loss  

RPS10  Ribosomal protein S10  
GDF8; MSTN  Growth differentiation factor 8; myostatin  
MYOM2  Myomesin (M-protein) 2  
SARCOSIN  Sarcomeric muscle protein  
DES  Desmin  

15 pH  

MYL1  Fast skeletal myosin alkali light chain 1  
CAPZA2  Capping protein (actin filament) muscle Z-line, alpha 2  
IFRD1  Interferon-related developmental regulator 1  
IGFBP3  Insulin-like growth factor binding protein 3  
PGAM2  Phosphoglycerate mutase 2  

18 drip loss  

PRKAG2  Protein kinase, AMP-activated, gamma 2 non-catalytic subunit  
1Jennen et al. (2007) 
 
Beside two major genes (RYR1 and RN), mutations in several other genes have been 

associated with meat quality parameters with side or direct effects also on lean meat 

deposition, carcass and growth traits for some of them (Ciobanu et al. 2004; Otto et al. 
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2007; Wimmers et al. 2007). Genes involved in the regulation of the energy balance, 

glycogen metabolism and glycolysis of the skeletal muscle have been reported to associate 

with carcass or meat quality parameters. Candidate genes coding for muscle enzyme 

isoforms involved in the glycolytic pathway were tested for their association with meat 

quality parameters and production traits. For example, significant association was observed 

for the muscle phosphoglycerate mutase 2 (PGAM2) gene and ham weight (Fontanesi et al. 

2008). The muscle pyruvate kinase (PKM2) gene was associated with average daily gain, 

lean cuts, backfat thickness, feed:gain ratio (Fontanesi et al. 2008), glycolytic potential, pH 

and drip loss (Sieczkowska et al. 2009). The skeletal muscle glycogen synthase (GYS1) 

gene was associated with pH (Zuo et al. 2007). Moreover, it has been known that meat 

quality affected by genetic factors relates back to the prenatal formation of muscle tissue 

(myogenesis), which are regulated by the myogenic regulatory factors (MRF) gene family. 

The MRF gene family consists of four structurally related transcription factors myogenin; 

MYOD1(MYF3), MYF4, MYF5 and MYF6 regulate both skeleton muscle fiber 

development and postnatal hypertropic growth (TePas and Soumillion, 2001). Therefore, 

The MRF gene family is considered as strong candidate gene fore carcass and meat quality 

traits. For example, MYOD1 was significantly associated with intramuscular fat (Verner et 

al. 2007). MYF4 was related with carcass meat weight (loin and ham), loin eye area 

(Ciesĺak et al. 2000). MYF5 was significantly associated with loin weight (Verner et al. 

2007), drip loss, water holding capacity and meat color (Liu et al. 2007), intramuscular fat 

and pH (Liu et al. 2008).   

 

2.5 The functional genomics approach 

Functional genomics includes function-related aspects of the genome itself such as 

mutation and polymorphism (such as SNP) analysis, as well as measurement of molecular 

activities. Tracing of gene expression process of the investigated trait in different stages or 

genetic background can contribute to a better understanding of the molecular architecture 

and find out the detailed clues that candidate gene tells. In general, important biological 

features of traits are directly reflected by transcript pattern, and quantitative traits were 

usually the consequence of the structure of genetic regulatory networks and the parameters 
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that control the dynamics of those networks (Frank, 2003). The genetic analysis of 

variation in gene expression would provide valuable models for studying complex and 

quantitative traits (Cheung and Spielman, 2002). Apparently, the variations of traits are 

directly depending on the variations of transcriptome and proteome rather than the 

variation of genomic DNAs. The genes responsible for the variation of gene expression 

process are also responsible for the variation of trait, and the candidate gene governing the 

major genetic component of trait variation can be mined from the pattern of gene 

expression profiles.  

The functional genomics approach will provide the opportunity to investigate global 

changes in known or unknown genes expression in muscle and to associate them with 

phenotypic characteristics, and these new approaches will generate new candidate genes to 

be tested for marker-assisted selection to improve livestock production. Instead of focusing 

only on the discovery of a single gene or DNA markers that co-segregate with a qualitative 

traits, in recent times the researchers focused their interests on elucidating complex traits 

by the detection of the large-scale molecular gene expression profiles, gene clusters and 

networks that are characteristics of a biological process or of a specific phenotype (Tuggle 

et al. 2007).  

To date, some researchers began to consider or use this approach for seeking candidate 

genes in different fields. For instances, by using this strategy, functional candidate genes 

for muscle development in bovine fetuses (Crosier et al. 2002), genetic resistance for 

mastitis in cows (Schwerin et al. 2003), nutrient transformation in cattle (Schwerin et al. 

2006), responses for anabolic agents in heifers (Reiter et al. 2007), fat characteristics in 

pigs (Li et al. 2008), immune responsiveness in pigs (Ponsuksili et al. 2008c), levels of 

androstenone in boars (Moe et al. 2008), congenital splay leg syndrome in piglets (Maak et 

al. 2009), placental development in sows (Zhou et al. 2009) and  Haemephilus parasuis 

infection in porcine spleen (Chen et al. 2009). Furthermore, gene expression profiling 

approach has been used up to now by some groups to better understand the changes in 

gene expression during porcine muscle growth and development using samples from 

different pig breeds (Te Pas et al. 2005; Zhao et al. 2005; Reecy et al. 2006; Cagnazzo et al. 

2006). An example is the study of Wimmers et al. (2007), who reported  an association of 
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functional candidate genes (ANK1, bR10D1, CA3, EPOR, HMGA2, MYPN, NME1, 

PDGFRA, ERC1, TTN) arising from their differential expression in prenatal muscle 

development depending on meat quality and carcass traits in several pig breeds. The 

identification of differentially expressed genes for muscle growth and development may be 

of high importance also for both genetic and physiological studies related to pig meat 

quality. The first aim when looking at gene expression in muscle is to get a better 

understanding of biochemical characteristics of the tissue (muscle type), which influence 

meat quality traits. Papers have been published recently on embryonic and reproductive 

tissues (Blomberg et al. 2006; Green et al. 2006) on porcine brain (Nobis et al. 2003) liver 

and adipose tissue (Hausman et al. 2006) and one study combined microarray analysis, 

SNP detection within expression candidates, and association and physical mapping 

analyses to find liver genes affecting carcass traits (Ponsuksili et al. 2005). The 

development of genomic application in animal science may allow the discovery of gene 

networks and classes of genes that affect and are key drivers of a specific physiological 

state or a specific phenotype of a quantitative trait.  

Previously, the study in transcriptome profiles of M. longissimus dorsi of pigs providing 

meat with high and low water-holding capacity offers insight into the biological processes 

in the muscle and the maturing meat and their influence on meat quality (Ponsuksili et al. 

2008a), further study by the same group combined trait correlated expression, expression 

QTL analysis to find biological pathways and candidate genes affecting water-holding 

capacity of muscle in pigs (Ponsuksili et al. 2008b), therefore the aim of the present study 

was to determine the association of sequence variation of selected candidate genes derived 

from their expression profiles with carcass and meat quality traits in pigs. 

 

2.6 Source of candidate genes 

Expression profiles of M. longissimus dorsi were compared between the two extreme 

groups of six discordant sib pairs (selected from 572 F2 animals of a cross of Duroc and 

Pietrain [DUPI]) with 4.14 ± 0.77 vs 0.9 ± 0.77% drip (mean ± standard deviation) 

(P<0.0001) as well as between groups with high/low pH at 24 hour p.m. (data not show) 

employing Affymetrix GeneChip porcine genome array and were validated by real-time 
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PCR. Expression profiling revealed 789 differential expressions of transcripts between 

high and low WHC group at p < 0.05 (Ponsuksili et al. 2008a). Moreover, expression 

profiling and eQTL analysis conducted on 74 F2 animals of the DUPI resource population 

showed 1,279 transcripts with trait correlated expression to WHC. Negatively correlated 

transcripts were enriched in functional categories and pathways like extracellular matrix 

receptor interaction and calcium signalling. Transcripts with positive correlation 

dominantly represented biochemical processes including oxidative phosphorylation, 

mitochondrial pathways, as well as transporter activity (Ponsuksili et al. 2008b). Therefore, 

the large number of genes expressed represents a source of candidate genes that could 

influence carcass and meat quality traits. In this study, a shortlist of 12 candidate genes 

was established based on (i) known function of the particular gene and/or (ii) the position, 

giving preference to those genes located in QTL regions for carcass and meat quality traits 

(Table 4).  

 

Table 3: Candidacy of selected candidate genes for carcass and meat quality traits 
Description Candidacy for carcass and meat quality traits Gene 

symbol  Expression  
(fold changes/correlation) 

Function Position  
(QTL regions) 

BVES blood vessel 
epicardial 
substance 

negative correlated with 
drip loss (r=-0.81) 
(Ponsuksili et al. 2008b) 

plays an important role in 
development of cardiac and 
skeletal muscle tissues  
(Smith and Bader, 2006) 

SSC1 (backfat thickness, 
pH) (de Koning et al. 2001; 
Evans et al. 2003; Liu et al. 
2007) 

SLC3A2 solute carrier 
family 3, 
member 2 

negative correlated with 
drip loss (r=-0.43) 
(Ponsuksili et al. 2008b) 

encodes a cell surface, 
transmembrane protein, 
mediates integrin-
dependent signaling related 
to normal cell growth 
(Feral et al. 2005) 

SSC2 (backfat thickness, 
loin muscle area, drip loss) 
(Harmegnies et al. 2006; 
Thomsen et al. 2004; Liu et 
al. 2007) 

AHNAK AHNAK 
nucleoprotein 

up-regulation in the high 
drip loss group (1.40) 
(Ponsuksili et al. 2008a) 

positive correlated with 
drip loss (r=0.53) 
(Ponsuksili et al. 2008b) 

mediates cellular 
localization and interaction 
with L-type Ca2+ channels, 
calcium-binding S100B 
protein, as well as actin of 
thin filaments for muscle 
contraction (Hohaus et al. 
2002; Haase et al. 2004) 

SSC2 (backfat thickness, 
loin muscle area, drip loss) 
(Harmegnies et al. 2006; 
Thomsen et al. 2004; Liu et 
al. 2007) 

ZDHHC5 zinc finger, 
DHHC-type 
containing 5 

negative correlated with 
drip loss (r=-0.49) 
(Ponsuksili et al. 2008b) 

required for 
palmitoyltransferase 
activity (Fukata et al. 2004)

SSC2 (backfat thickness, 
loin muscle area, drip loss) 
(Harmegnies et al. 2006; 
Thomsen et al. 2004; Liu et 
al. 2007) 
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Table 3: Candidacy of selected candidate genes for carcass and meat quality traits 

(continued) 
Description Candidacy for carcass and meat quality traits Gene 

symbol  Expression  
(fold changes/correlation) 

Function Position  
(QTL regions) 

CS citrate 
synthase 

negative correlated with 
drip loss (r=-0.38) 
(Ponsuksili et al. 2008b) 

a Krebs tricarboxylic acid 
cycle enzyme, found in 
nearly all cells capable of 
oxidative metabolism 
(Kohn et al. 2005) 

SSC5 (backfat thickness, 
pH, drip loss, meat color, 
shear force) (Harmegnies 
et al. 2006; Thomsen et al. 
2004; Milan et al. 2002) 

LYZ lysozyme  up-regulation in the high 
drip loss group (1.70) 
(Ponsuksili et al. 2008a) 

anti-microbial agent 
(Gorbenko et al. 2007) 

SSC5 (backfat thickness, 
pH, meat color) 
(Harmegnies et al. 2006; 
Thomsen et al. 2004; Milan 
et al. 2002) 

KERA Keratocan up-regulation in the high 
pH24 group (2.34) 
(Ponsuksili et al. 2008a) 

a member of the small 
leucine-rich proteoglycan 
(SLRP) family, may be 
important in developing 
and maintaining for the 
structure of extracellular 
matrix (Iozzo, 1998) 

SSC5 (backfat thickness, 
pH, meat color) (Malek et 
al. 2001) 

COQ9 coenzyme Q9 
homolog (S. 
cerevisiae) 

negative correlated with 
drip loss (r=-0.47) 
(Ponsuksili et al. 2008b) 

involved in the 
biosynthesis of coenzyme 
Q, a crucial component of 
the oxidative 
phosphorylation process in 
mitochondria (Johnson et 
al. 2005) 

SSC6 (backfat thickness, 
pH, drip loss, meat color) 
(Edwards et al. 2008; de 
Koning et al. 2001; Kim et 
al. 2005) 

UN  non-
annotated 
EST  
(probe set ID: 
Ssc.25503.1.
S1_at) 

down-regulation in the 
high drip loss group (1.51) 
(Ponsuksili et al. 2008a) 
negative correlated with 
drip loss (r=0.58) 
(Ponsuksili et al. 2008b) 

unknown SSC7 (backfat thickness, 
loin muscle area, loin 
weight, pH, meat color, 
shear force) (Liu et al. 
2007; Harmegnies et al. 
2006; Su et al. 2004) 

EGFR epidermal 
growth factor 
receptor  

positive correlated with 
drip loss (r=0.67) 
(Ponsuksili et al. 2008b) 

a receptor for members of 
the epidermal growth 
factor family, leads to cell 
proliferation (Herbst, 2004)

SSC9 (backfat thickness) 
(Kim et al. 2006) 

VTN vitronectin down-regulation in the 
high drip loss group (2.86) 
(Ponsuksili et al. 2008a) 
 

promotes cell adhesion and 
spreading, inhibits the 
membrane-damaging 
(Schar et al 2008) 

SSC12 (loin muscle area, 
meat color) (Milan et al. 
2002; Yue et al. 2003; 
Thomsen et al. 2004) 

ZYX zyxin up-regulation in the high 
drip loss group (1.35) 
(Ponsuksili et al. 2008a) 

modulates the cytoskeletal 
organization of actin 
bundles (Nix et al. 2001) 

SSC18 (backfat thickness, 
pH, drip loss) (Malek et al. 
2001;  de Koning et al. 
2001) 
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3. Materials and methods  

 

3.1 Materials 

3.1.1 Animals and phenotypes 

Genomic DNA and phenotypic data were obtained from animals of commercial purebred 

and crossbred herds including German Landrace (DL) (line a; n=290 and b; n=192) and 

Pietrain (PI) (line a; n=259 and b; n=190), German Large White x German Landrace (F1; 

n=188) and PIF1 (line a; n=481, b; n=331 and c; n=338) as well as an experimental F2-

population based on a reciprocal cross of Duroc x Pietrain (DUPI; n=417). In this study, 

samples and phenotypic data from nine pig herds were collected. The sampling of the first 

seven herds took place in commercial slaughter houses in the Netherlands and Germany in 

2003-2004, including two herds (PI(a) and PIF1(a)) from the breeding company 

(Bundeshybridzuchtprogramm; BHZP) and five herds (DUPI, PIF1(b), PI(b), F1 and 

DL(b)) from the research farm at the university of Bonn, Germany.  Samples and data from 

another two commercial herds (PIF1(c) and DL(a)) were collected at the slaughter house at 

the research institute for the biology of farm animals (FBN), Germany in 2005-2007. The 

carcass and meat quality data were collected according to the guidelines of the 

Zentralverband der Deutschen Schweineproduktion e.V. (ZDS, 2004); their definition is 

shown in Table 4. For association studies, the selected SNPs within BVES, CS, EGFR, 

ZDHHC5, SLC3A2, COQ9, AHNAK, UN, LYZ, VTN and KERA were genotyped using 

around 1,800 animals from 6 pig populations including PI(a), PIF1(a,b,c), DL(a) and DUPI. 

For the ZYX gene, the SNPs were genotyped in 870 animals from PI(b), DL(b), F1 and 

PIF1(b). 

 

Table 4: Definitions of traits related to carcass and meat quality as analysed in this study 
Traits Definitions of traits 
loin eye area (LEA) [cm2] Area of M. longissimus dorsi (Mld) at 13th/14th rib 
fat area (FA) [cm2] Fat area on Mld at 13th/14th rib 
meat to fat ratio (MFR) Ratio of meat and fat area 
shoulder fat depth (BF1) [cm] Depth of fat and skin on muscle, mean of 3 measures at thickest point 
fat depth at 10th rib (BF2) [cm] Depth of fat and skin on muscle, mean of 3 measures at thinnest point 
loin fat depth (BF3) [cm] Depth of fat and skin on muscle, mean of 3 measures at thinnest point 
average back fat (ABF) [cm] Mean value of shoulder fat depth, back fat tenth rib and loin fat depth 
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Table 4: Definitions of traits related to carcass and meat quality as analysed in this study 

(continued) 
Traits Definitions of traits 
meat color (OPTO) Meat color 24 h p.m. in Mld at 13th/14th rib; OPTO star 
pH1 pH value in Mld at 13th/14th rib 45 minute post mortem (p.m.) 
pH24 pH value in Mld at 13th/14th rib 24 hour p.m. 
conductivity1 (CON1) Conductivity in Mld at 13th/14th rib 45 minute p.m. 
conductivity24 (CON24) Conductivity in Mld at 13th/14th rib 24 hour minute p.m. 
shear force (SF) [N] Shear force was measured by the Instron-4310 equipment 
drip loss (DRIP) [%] % of weight loss of Mld collected at 24 h p.m., held for 48 h at 4°C 
cooking loss (COOK) [%] % of weight loss of Mld incubated in water at 75°C for 50 minutes 
thaw loss (THAW) [%] % of weight loss of Mld frozen at −20°C 

 

Table 5: Data collection pig populations and traits measured with mean and standard 

deviations 
 DUPI 

(n=417) 
PI(a) 

(n=259) 
PIF1(a) 
(n=481) 

PIF1(b) 
(n=331) 

PIF1(c) 
(n=338) 

DL(a) 
(n=290) 

PI(b) 
(n=190) 

F1 
(n=188) 

DL(b) 
(n=192) 

No. of 
sire 

5 16 10 57 116 39 43 27 31 

No. of 
litters 

44 64 232 114 141 283 99 108 104 

No. of 
slaughter 
days 

51 7 11 37 63 77 66 50 89 

LEA 50.99 ± 
5.51 

59.30 ± 
6.83 

51.92 ± 
6.00 

54.40 ± 
4.91 

53.51 ± 
4.99 

43.02 ± 
4.34 

60.38 ± 
5.46 

43.29 ± 
4.94 

43.73 ± 
5.15 

FA 16.04 ± 
3.15 

- - 14.34 ± 
2.50 

14.70 ± 
3.06 

20.71 ± 
3.47 

11.82 ± 
2.14 

21.45 ± 
3.40 

20.73 ± 
3.32 

MFR 0.32 ± 
0.07 

- - 0.26 ± 
0.05 

0.28 ± 
0.07 

0.49 ± 
0.11 

0.20 ± 
0.04 

0.50 ± 
0.11 

0.48 ± 
0.10 

BF1 3.35 ± 
0.44 

- - 2.98 ± 
0.41 

3.37 ± 
0.44 

3.71 ± 
0.46 

3.03 ± 
0.45 

3.76 ± 
0.52 

3.53 ± 
0.46 

BF2 1.64 ± 
0.31 

- - 1.46 ± 
0.27 

1.91 ± 
0.37 

2.10 ± 
0.36 

1.47 ± 
0.27 

1.94 ± 
0.37 

1.87 ± 
0.38 

BF3 1.34 ± 
0.34 

- - 1.04 ± 
0.29 

1.33 ± 
0.37 

1.86 ± 
0.43 

0.82 ± 
0.26 

1.77 ± 
0.42 

1.70 ± 
0.41 

ABF 2.11 ± 
0.31 

1.84 ± 
0.31 

2.61 ± 
0.41 

1.83 ± 
0.27 

2.20 ± 
0.33 

2.57 ± 
0.36 

1.77 ± 
0.27 

2.49 ± 
0.38 

2.37 ± 
0.35 

OPTO 68.57 ± 
5.69 

72.45 ± 
6.54 

70.39 ± 
8.83 

67.24 ± 
5.97 

68.03 ± 
6.52 

69.88 ± 
5.82 

62.45 ± 
7.19 

65.72 ± 
6.08 

67.68 ± 
7.21 

pH1 6.56 ± 
0.21 

6.48 ± 
0.18 

6.24 ± 
0.26 

6.48 ± 
0.26 

6.14 ± 
0.33 

6.32 ± 
0.28 

6.09 ± 
0.38 

6.47 ± 
0.21 

6.60 ± 
0.18 

pH24 5.51 ± 
0.10 

5.53 ± 
0.13 

5.57 ± 
0.11 

5.51 ± 
0.09 

5.48 ± 
0.09 

5.48 ± 
0.11 

5.49 ± 
0.08 

5.50 ± 
0.08 

5.52 ± 
0.10 

CON1 4.36 ± 
0.62 

4.53 ± 
0.68 

2.91 ± 
0.60 

4.29 ± 
0.74 

5.14 ± 
1.75 

4.31 ± 
0.75 

5.89 ± 
3.37 

4.25 ± 
0.52 

4.07 ± 
0.54 

CON24 2.82 ± 
0.85 

3.25 ± 
0.84 

3.45 ± 
0.95 

3.13 ± 
1.14 

5.45 ± 
2.19 

3.98 ± 
1.71 

4.85 ± 
2.65 

2.63 ± 
0.78 

2.52 ± 
0.89 
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Table 5: Data collection pig populations and traits measured with mean and standard 

deviations (continued) 
 DUPI  PI(a) PIF1(a)  PIF1(b) PIF1(c) DL(a)  PI(b)  F1 DL(b) 
SF 35.44 ± 

6.98 
38.14 ± 

7.86 
38.13 ± 

7.28 
41.83 ± 

7.59 
- - - - - 

DRIP 2.10 ± 
0.96 

1.47 ± 
0.76 

1.94 ± 
0.79 

2.67 ± 
1.42 

5.51 ± 
2.15 

4.48 ± 
2.04 

- - - 

THAW 8.09 ± 
1.98 

7.50 ± 
2.61 

9.08 ± 
3.97 

8.77 ± 
1.89 

- - - - - 

COOK 24.97 ± 
2.13 

23.80 ± 
2.16 

25.39 ± 
2.07 

25.24 ± 
1.85 

- - - - - 

 

3.1.2 Equipments 

Vortex   G-560E Scientific Industries Inc., USA 

Centrifuge   5417C  Eppendorf-Netheler-Hinz GmbH, Hamburg 

Centrifuge   Z320  Hermle-Labortechnik, Wehingen 

Heater    FDB02AD Techne (Cambridge) Ltd., England 

UV transilluminator TFML-40 LTF-Labortechnik GmbH & CO. KG, Wasserburg 

Pyrosequencer  PSQ96MA Biotage, Sweden 

Vacuum prep tool PyroMarkQ96 Biotage, Sweden 

PCR thermocycler  HBPX 110 Thermo Electron GmbH, Ulm 

Spectrophotometer ND-1000 Nanodrop technologies, USA 

Working chamber HS12  Heraeus instruments, Hanau 

Sequencer  ABI3130 Applied Biosystems, USA 

Power supply  GFS200/400 Phamacia, Sweden 

Electrophoresis box - Angewandte  Gentechnologische Systeme GmbH, 
Heidelberg 

 

3.1.3 Buffers, chemicals, reagents and kits  

For PCR and sequencing 

dNTPs     Promega, Mannheim 

Buffer (10X)    Sigma-Aldrich, Taufkirchen 

Oligonucleotide primer  Sigma-Aldrich, Taufkirchen 

Taq polymerase    Sigma-Aldrich, Taufkirchen 
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Agarose    Sigma-Aldrich, Taufkirchen 

TAE (50X)    Tris 2 M 

     Acetic acid 57% (v/v) 

     EDTA, pH8.0 0.05 M 

PCR purification kit    QIAGEN, Hilden 

For Pyrosequencing technique 

Binding buffer pH 7.6   10 mM Tris-HCl 

2M NaCl 

1mM EDTA 

0.1% Tween 20 

Annealing buffer (1X), pH 7.6 20 mM Tris-Acetat 

2 mM MgAc2 

Denaturation solution   0.2 M NaOH 

Washing buffer, pH7.6   10 mM Tris-Acetat 

Streptavidin sepharose   GE healthcare, München 

Pyro Gold Q96 reagents   QIAGEN, Hilden 

For single base extension technique  

Shrimp Alkaline Phosphatase (SAP)  Fermentas, St. Leon-Rot 

Exonuclease I, E.coli (ExoI)  Fermentas, St. Leon-Rot 

SNaPshot multiplex kit  Applied Biosystems, USA 

Hi-Di Formamide   Applied Biosystems, USA 

GeneScan 120 LIZ Size Standard Applied Biosystems, USA 

 

3.1.4 Software 

Primer3 v. 0.4.0 (Rozen and Skaletsky, 2000) 

Multalin (Corpet, 1988) 

BioEdit v.7.0.9 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) 

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) 

PedCheck (O'Connell and Weeks, 1998) 
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CRI-MAP v. 2.4 (Green et al. 1990) 

AutoDimer (Vallone and Butler, 2004) 

PyroMark Assay Design Software 2.0 (QIAGEN GmbH, Hilden) 

PSQ96MA 2.1.1 (Biotage, Sweden) 

Gene Mapper v. 4.0 (Applied Biosystems, USA) 

SAS v.9.1 (SAS Institute Inc., USA) 

JMP genomics v. 3.1 (SAS Institute Inc., USA) 

 

3.2 Methods 

 

3.2.1 Screening for polymorphism sites 

In silico analysis by comparing several sequences from the database revealed the possible 

targets for PCR amplification. The putative SNPs were confirmed by comparative 

sequencing of PCR fragments in a SNP discovery panel of unrelated animals including one 

animal each of the breeds German Landrace, German Large White, and Pietrain. The 

screening primers used in this study are shown in Table 6. The polymerase chain reactions 

were performed in a 25 µl volume containing 50 ng DNA of the respective panel sample, 

1× PCR buffer (with 1.5 mM MgCl2), 250 µM of each dNTP, 0.2 µM of each primer and 

0.5 U of Taq DNA polymerase. The PCR procedures were performed under the following 

conditions: initial denaturing at 94 °C for 5 min followed by 40 cycles of 30 sec at 94 °C, 

30 sec at 60 °C and 1 min at 72 °C and a final elongation of 8 min at 72 °C. The PCR 

products were purified using the PCR purification kit (QIAGEN) and comparatively 

sequenced in both directions using an ABI3130 sequencer.  

 

3.2.2 Genotyping 

SNPs were selected for genotyping based on suitability of the surrounding sequences to 

design primers for either pyrosequencing or single base extension assays, position in 

regions with potential function, exon-intron structure and preference for those causing 

amino acid exchange. For association studies, the selected SNPs within BVES, CS, EGFR, 

ZDHHC5, SLC3A2, COQ9, AHNAK, UN, LYZ, VTN and KERA were genotyped using 
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around 1,800 animals from 6 pig populations including PI(a), PIF1(a,b,c), DL(a) and DUPI. 

For the ZYX gene, the SNPs were genotyped in 870 animals from PI(b), DL(b), F1 and 

PIF1(b). Two genotyping techniques were used in this study (Table 7). The SNPs in 

SLC3A2, AHNAK, CS, VTN, LYZ, KERA and ZYX were genotyped by pyrosequencing 

technique. The target PCR products were prepared using the Vacuum Prep Tool. Therefore, 

3 µl Streptavidin Sepharose beads were added to 37 µl Binding buffer (10 mM Tris-HCl 

pH 7.6, 2 M NaCl, 1 mM EDTA, 0.1% Tween 20) and mixed with 20 µl PCR product and 

20 µl high purity water for 5 min at room temperature using a Vortex mixer. The beads 

containing the immobilised templates were captured onto the filter probes after applying 

the vacuum and then washed with 70% ethanol for 5 sec, denaturation solution (0.2 M 

NaOH) for 5 sec and washing buffer (10 mM Tris-Acetate pH 7.6) for 5 sec. The vacuum 

was switched off and the beads released into a PSQ 96 well plate containing 40 µl 

annealing buffer (20 mM Tris-Acetate, 2 mM MgAc2 pH 7.6) with 0.5 µM sequencing 

primer. The samples were heated to 80°C for 2 min and then allowed to cool down to room 

temperature. The sequencing reaction was performed using the Pyro Gold Reagent Kit in 

the PSQ96MA Pyrosequencing instrument according to the manufacturer’s instructions.  

On the other hand, the SNPs within BVES, EGFR, COQ9 and UN were genotyped by 

single base extension (SBE) technique. 5 µl target PCR product were purified by mixing 

them with 0.67 U Exonuclease I (ExoI) and 1.67 U shrimp alkaline phosphates (SAP) 

(Fermentas), then incubating them for 1 hour at 37°C and 15 min at 75°C. SBE was 

performed using the SNaPshot® multiplex kit (Applied Biosystems) in a volume of 5 µl 

(containing 0.02 µM of the synthethic clean DNA template, 0.2 µM primer mix, and 0.2 

µM SNP primer extension premix) for 25 cycles (96°C 10 sec, 50°C 5 sec, 60°C 30 sec). 

The SBE products were purified again by adding 0.5 U SAP, and then incubating them for 

1 hour at 37°C and 15 min at 75°C. 0.5 µl SBE products were added to 9.25 µl Hi-Di 

formamide and 0.25µl GeneScan-120 LIZ size standard (Applied Biosystems). The 

genotypes were determined using the ABI 3130 DNA Analyzer (Applied Biosystems). 
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Table 6: Screening primers used in this study 
Gene symbol Acc. No Screening primers Product 
BVES NM_001144112.1 Fwd. ATGAGACCACCTGCGAAAAC 

Rvs.  CCCCGAAGAAACTGGTGTAA 
852 bp 

Fwd. CTGCCATGGCCTTACTCACT 
Rvs.  TTGCTGCAACACAAGGTAGC 

648 bp NM_214276.1 

Fwd. GCTCAGTGCAGCCATTACAG 
Rvs.  CCTGTTCCAGGAGGACATTG 

674 bp 

CS 

CK464063.1 Fwd. ATGGCCACGCAGTACTAAGG 
Rvs.  GGGAAAGAGGAGCCAGATTC 

704 bp 

Fwd  GAATCGCAGGAGAAAACAGC 
Rvs.  CCGTAGCTCCAGACGTCACT 

909 bp 

Fwd  CGCAGCATGTCAAGATCACT 
Rvs.  CAGTCCTCCGTTGATGCAG 

908 bp 

EGFR NM_214007.1 

Fwd  ACCCCCACTACCAGAACTCC 
Rvs.  TGGCTTATCCTCTTGCACCT 

859 bp 

ZDHHC5 CK464654.1 Fwd. CTTGGGAGACTCAGGCATTC 
Rvs.  CAGGGGTTAAGGAAGGGAAG 

693 bp 

Fwd. GAGACCTAGCGAGCCTGAAG 
Rvs.  AGAGCAGCAGCTGGTAGAGC 

660 bp SLC3A2 EU587016.1 

Fwd. GGCTTCTGACCTCCTCTGTG 
Rvs.  CCTCATAGGGCTCCAGGTTC 

528 bp 

CN156459.1 Fwd. AGCCAAGTCTCTGGGTCTCTC 
Rvs.  TAGCTTACGTCCCTGCTTGC 

606 bp COQ9 

DN104150.1 Fwd. ACTGCCAAGCAGGTGAAGTC 
Rvs.  TCCTGCAACATGTGCTAGTGT 

707 bp 

AHNAK BX922331.2 Fwd. GGGGTGGATATCAACTTCCCTA 
Rvs.  GTCAGCTCCACCTCAGGAAG 

617 bp 

UN (unknown) NW_001886512.1 Fwd. GCTGTTTCACGGCAAGAATC 
Rvs.  CGCACCTTTGTTGTTCTGAG 

385 bp 

Fwd. GGTCTATGATCGGTGCGAGT 
Rvs.  GACCAACAATAATTCTCTTAGCAAACT 

622 bp LYZ NM_214392.1 

Fwd. TCCGAAGCAAGAGCATAAGG 
Rvs.  CTTTTTACAGCATGCATAAATTCAC 

621 bp 

VTN NM_214104.1 Fwd. GTGTGACGAGCTGTGCTCTTAC 
Rvs.  TCCCACTGCACAGCTCTTCCTC 

292 bp 

KERA XM_001927128.1 Fwd. TGGTATCTTTATCTTGAAAACAATCTG 
Rvs.  ATTGTGCTGCAGGTCAAGAAG 

309 bp 

Fwd. GCCCAAAGTGAATCCTTTCC 
Rvs.  GAAGTGCGTTTGGCTCTGA 

562 bp BP440079.1 

Fwd. CCCAGGGATAAAGTGAGCAG 
Rvs.  GTTGCACTTCTCCAGGGTGT 

921 bp 

ZYX 

BW975440.1 
Fwd. CAACAGCTGATGCAGGACAT 
Rvs.  ACTGATGGGGAATGGATCTG 

676 bp 
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Table 7: Details of genotyping primers, methods, and genotyped SNPs 
Gene  Genotyping primers Product method Polymorphism 

For. TGTTTGGCCAAGTGGGAAAG 
Rev. biotin-GATATGTGACAGGCATTAACTGC 
Seq. GAATATTTCAAATTAATAGC 

152 bp Pyroseq
. 

c.240A>C LYZ  

For. TGTGCAAAGAGGGTTGTCAG 
Rev. biotin-GTTAATTATATCACAAGAAAATTGGAAGG 
Seq. GGTTGTCAGAGATCCAC 

87 bp Pyroseq
. 

c.365A>T 

VTN For. GTGTGACGAGCTGTGCTCTTAC 
Rev. biotin-TCCCACTGCACAGCTCTTCCTC 
Seq. CTACCAGAGCTGCTGC 

366 bp Pyroseq
. 

c.154A>G 
c.156C>T 

KERA  For. TGGTATCTTTATCTTGAAAACAATCTG 
Rev. biotin-ATTGTGCTGCAGGTCAAGAAG 
Seq. CATTCCTGAGAAGCCATT 

309 bp Pyroseq
. 

c.303C>T 

UN 
(unknown) 

For. GCTGTTTCACGGCAAGAATC 
Rev. CGCACCTTTGTTGTTCTGAG 
Seq. CGGATTGTAAGTGGATTCTCTTCTC 

385 bp SBE g.1,022,434G
>T 

Fwd. GGGGTGGATATCAACTTCCCTA 
Rvs. biotin-GGCCTTGGAGCTCTTCAGGTC 
Seq1.CTAAAGCAGAGGCCAGC 
Seq2. TCAATTTTTCCAAACC 

210 bp Pyroseq
. 

c.12907A>G 
c.13014G>T 

AHNAK 

Fwd. biotin-CACCGCTCAAATTCCTTCAG 
Rvs. GTCAGCTCCACCTCAGGAAG 
Seq. ACCAAAGGTACCAAATT 

320 bp Pyroseq
. 

c.13281A>G 
c.13290A>C>G 
c.13294C>T 

Fwd. CCCTGGGAGGTGCTTTCC 
Rvs. biotin-CCCTTGGGGTGTCCACTG 
Seq1. GGTGCTTTCCCTC 

190 bp Pyroseq
. 

c.279C>T ZYX 

Fwd. biotin-TGAGGTCCCCATACAGCTCC 
Rvs. GGCTTGGTATTGGACTTGGAAA 
Seq2. CTCCCAGGCCTCCAT 
Seq3. TGGAAATGAATGGCG 

463 bp Pyroseq
. 

c.399A>G 
c.522A>G 

BVES Fwd. ATGAGACCACCTGCGAAAAC 
Rvs. CCCCCATACAAAGTCCATCT 
Seq. [6T]GGGTTGGTTCTTCCAACTACTCT 

205 bp SBE c.186G>T 

Fwd. CAGCATGTTTGGGAATGATG 
Rvs. CTACGCTTTTGAGCCTGCTT 
Seq.[12T]GATACTGCATTTTGTGACCCA 

223 bp SBE c.453A>G COQ9 

Fwd. TTGGAAAACGCAACACTCAA 
Rvs. TCTGACCAGGTTGAGCACAC 
Seq. [17T]GAGAGGCCACGACAGGAACG 

308 bp SBE +1247A>T 

CS Fwd. biotin-ACTTAAAAGACATTTTGGCTGACC 
Rvs. ATTCCTCGTTCGGTCTTAATTCTG 
Seq. CTGGCTTGCTCCTTAGGT 

55 bp Pyroseq
. 

c.120G>T 

ZDHHC5 Fwd. ATGCCCCTCGTACTAGTTCCTCCT 
Rvs. biotin-CGTCGGGCTTGCCAAAAC 
Seq. GGGCAAGACTCCACT 

102 bp Pyroseq
. 

c.1803C>T 

SLC3A2 Fwd. TGCCATGGGATGAATCCAG 
Rvs. biotin-AGCCAGGGTCTCCGCTCT 
Seq. GCACCTTAGGACCTGT 

200 bp Pyroseq
. 

c.1326A>G 
c.1336Indel 
[AGC] 

EGFR Fwd. ACCCCCACTACCAGAACTCC 
Rvs. TGGCTTATCCTCTTGCACCT 
Seq. [27T]GACCCTTACAGATGCCGTTTGA 

859 bp SBE c.3543A>G 
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3.2.3 Genetic mapping 

The regional assignments of all loci were performed in the DUPI population, the data were 

firstly checked for any genotyping errors by using Pedcheck (version 1.1) (O'Connell and 

Weeks, 1998), then using the CRI-MAP package (version 2.4). Two-point and multi-point 

procedures were used for linkage mapping (Green et al. 1990). 

 

3.2.4 Association study 

The association between genotypic and phenotypic variation was analyzed using a general 

mixed model (PROC Mixed, SAS v. 9.1; SAS Inc., Cary, NC, USA). The analyses were 

done for each gene separately within each of the pig populations. Apart from the fixed 

effect of genotype, the model included the fixed effect of sex for carcass traits for PI(a), 

PIF1(a) and DUPI and the random effect of sire (sire x dam in DUPI), the random effect of 

slaughter date for meat quality traits and slaughter weight as a covariate for carcass traits, 

respectively. The RYR1 genotype and the interaction between the genotype of candidate 

genes and RYR1 genotypes were included as a fixed effect in the PI(b) and PIF1(b,c) lines. 

If the candidate genes had more than one polymorphism (VTN, LYZ, AHNAK, SLC3A2, 

COQ9, ZYX), the haplotype phase between SNPs was inferred using the expectation-

maximization algorithm (PROC Haplotype, SAS v. 9.1). The association analyses were 

done using the diplotypes, i.e. combinations of haplotypes, as fixed effects instead of 

genotype in the models described above. Only those animals whose haplotype pairs were 

assigned with the probability 1 were used. The genotype distribution in commercial pig 

populations were tested for Hardy-Weinberg equilibrium by a χ² test. Least square mean 

values for the genotypes and diplotypes were compared by t-test and p-values were 

adjusted by the Tukey-Kramer correction.  
 

The model for association analysis was: 

Yijklmno =  µ  +  GENOj + SEXk + RYR1l  + (GENO x RYR1)jk + sirem + sladaten + 

SLAEWo + eijklmno 

Where: 

Yijklmno   = the phenotype traits measured on the individual i (see table 4)   
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µ    = the overall mean of the trait 

GENOj        = the fixed effects of SNP genotype for each gene j (see table 7) 

SEXk           = the fixed effects of gender for carcass traits k (k=1; male, 2; 

female) (this parameter was excluded from the model for PI(b), 

PIF1(b), PIF1(c) and DL(b) because only male animal available) 

RYR1l       = the fixed effects of RYR1 genotype for PI(b), PIF1(b) and PIF1(c) 

(l=1; homozygous MHS susceptibility mutation, 2; MHS 

heterozygous carrier and 3; MHS free homozygous wild type) (this 

parameter was excluded from the model for PI(a), PIF1(a) and DUPI 

because only homozygous wild type animal available) 

(GENO x RYR1)jl  = the interaction between the j-th SNP genotype and the l-th RYR1 

genotype 

sirem          = the random effect of sire m (in DUPI, this parameter was replaced 

by family) (m = Id of sire in commercial lines or m = Id of family in 

DUPI) 

sladaten    = the random effect of slaughter date n for meat quality traits 

SLAEWo       = carcass weight o as covariance for carcass traits 

eijklmno                 = the residual error associated with the observation 
 

Additive genetic effect of each locus was estimated as half of the difference between the 

homozygous groups: a = 1/2(BB-AA), with A and B that indicate the first and the second 

allele of the analysed markers, respectively. The dominance effect was estimated as the 

difference between the heterozygous group and the average of the 2 homozygous groups in 

each locus: d = AB-1/2(AA+BB). The estimates of effects were tested by t-test on 

significant deviation from zero. Correction for multiple testing, to allow correction for the 

fact that a large number of traits were analysed with a large number of SNP (2100 tests 

were performed in this study), and hence a high probability of false positive results, a 

pFDR correction was applied (JMP genomics v. 3.1) (Table 66). Principal component (PC) 

was analyzed using a factor analysis technique (PROC Factor, SAS v. 9.1). PC partitions 

the total variation into unrelated sets containing correlated fractional values (Table 67-75). 
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4. Results 

 

4.1 Molecular characterization and detection of polymorphisms 

4.1.1 The blood vessel epicardial substance (BVES)  

The porcine BVES mRNA sequence (Acc. No: NM_001144112.1) consists of 2326 bp 

including 161 bp of 5’ untranslated region (UTR), 984 bp of coding region and 1181 bp of 

3’UTR. The porcine BVES protein consists of 327 amino acids which show 92% 

homology to the human (Acc. No: NP_009004.2), 91% to the cattle (Acc. No: 

XP_590718.3) and 87% to the mouse (Acc. No: NP_077247.1). The comparative analysis 

between porcine BVES mRNA sequence and porcine genomic DNA sequence (Acc. No: 

CU407220.2) revealed 8 exons. One silence SNP (c.186 G>T) was found in the coding 

region of exon2, and was selected for genotyping (Figure 4).  

 

 

 

 

 

 

 

 

Figure 4: Structure of porcine BVES gene 

 

4.1.2 The solute carrier family 3, member 2 (SLC3A2)  

Two overlapping porcine expressed sequence tags (ESTs) (Acc. No: EU587016.1 and 

BP141705.1) provided the complete porcine SLC3A2 cDNA sequence which contains 

1912 bp including 159 bp of 5’UTR, 1695 bp of coding region and 58 bp of 3’UTR. The 

porcine SLC3A2 protein consists of 564 amino acids which show 79% homology to the 

human (Acc. No: NP_001012682.1), 82% to the cattle (Acc. No: NP_001019659.2) and 

73% to the mouse sequence (Acc. No: NP_001154885.1). The comparative analysis 

between the porcine SLC3A2 cDNA sequence and the porcine genomic DNA sequence 
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(Acc. No: FP340373.2) revealed 10 exons. Six polymorphism sites were detected within 

coding regions including three SNPs in exon7 (c.1103A>G, c.1113C>T and c.1119C>T), 

one SNP in exon8 (c.1200C>G) and one SNP (c.1326A>G) and one Indel polymorphism 

(c.1336indel[AGC]) in exon9. The SNP at position c.1103A>G causes an amino acid 

exchange from Arginine to Histidine (p.Arg368His) and the Indel polymorphism 

(c.1336indel[AGC]) leads to the addition or removal of one amino acid Serine (p.Ser446-). 

For this candidate gene, two polymorphisms (c.1326A>G and c.1336indel[AGC]) located 

in the conserved domains for trehalose synthase (TreS) (an enzyme involved in the 

glycogen metabolism) were selected for genotyping (Figure 5). 

 

 

 

 

 

 

 

 

 

Figure 5: Structure of porcine SLC3A2 gene 

 

4.1.3 The AHNAK  

The structure of the porcine AHNAK gene can be deduced by comparison of the full-

length human AHNAK mRNA sequence (Acc. No: NM_001620.1), porcine EST (Acc. No: 

BW975869.1) and the porcine genomic DNA sequence (FP102338.2). The comparative 

analysis revealed 5 exons covering 250 bp of 5’UTR, 13509 bp of coding sequence and 

871 bp of 3’UTR. The porcine AHNAK protein consists of 4502 amino acids which show 

63% homology to the human (Acc. No: NP_001611.1), 69% to the horse (Acc. No: 

XP_001916358.1) and 63% to the mouse (Acc. No: NP_033773.1). Five SNPs 

(c.12907A>G, c.13014G>T, c.13281A>G, c.13290A>C>G and c.13294C>T) were 

detected within the coding region of exon5. The SNP at position c.12907A>G effects an 
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amino acid exchange from Isoleucine to Valine (p.Ile4303Val). All Five SNPs were 

genotyped for further association analysis (Figure 6). 

  

 

 

 

 

 

 

 

 

Figure 6: Structure of porcine AHNAK gene 

 

4.1.4 The zinc finger, DHHC domain containing 5 (ZDHHC5) 

The comparison of human ZDHHC5 mRNA sequence (Acc. No: NM_015457.2) and 

several porcine ESTs (Acc. No: DT320938.1, BX671032.2, gnl|ti|2132872638, 

gnl|ti|2132873247, gnl|ti|2132872202, CK464654.1) and the porcine genomic DNA 

sequence (CU914175.2) suggested the structure of porcine ZDHHC5 gene containing 12 

exons, 252 bp of 5’UTR, 2151 bp of coding region and 333 bp of 3’UTR.  

 

 

 

 

 

 

 

 

Figure 7: Structure of porcine ZDHHC5 gene 
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The porcine ZDHHC5 gene encodes 716 amino acids which show 97% similarity to the 

human (Acc. No: NP_056272.2), 95% to the cattle (Acc. No: XP_612592.4) and 97% to 

the mouse (Acc. No: NP_659136.1). Two SNPs were detected, one located in the coding 

area of exon11 (c.1803C>T) and another one located in the 3’UTR (+2161A>C). The 

silent SNP c.1803C>T was genotyped for association analysis (Figure 7).  

 

4.1.5 The citrate synthase (CS) 

The porcine CS mRNA (Acc. No: NM_214276.1) consists of  1437 nucleotides including 

6 bp of 5’ UTR, 1395 bp of coding region and 36 bp of 3’UTR. The porcine CS protein 

consists of 464 amino acids which show 96% homology to the human (Acc. No: 

NP_004068.2), 96% to the cattle (Acc. No: NP_001038186.1) and 95% to the mouse (Acc. 

No: NP_080720.1). The comparative analysis between porcine CS mRNA sequence and 

porcine genomic DNA sequence (Acc. No: CU498845.2) revealed 11 exons. Three SNPs 

were detected including one silent SNP (c.120G>T) located within the coding region of 

exon3 and two SNPs located in the 3’UTR (+1578A>G and +1622A>G).  

 

 

 

 

 

 

 

 

 

Figure 8: Structure of porcine CS gene 

 

The coding area of porcine CS gene contains several conserved domains for several 

features related to the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate 

(OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA 
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or Krebs cycle). Therefore, the SNP c.120G>T was genotyped for association analysis 

(Figure 8).  

 

4.1.6 The Lysozyme (LYZ) 

The porcine LYZ mRNA sequence (Acc. No: NM_214392.1) consists of  1239 bp 

including 34 bp of 5’ untranslated region (UTR), 447 bp of coding region and 758 bp of 

3’UTR. The coding region encodes 148 amino acids which show 71% homology to the 

human (Acc. No: NP_000230.1), 65% to the cattle (Acc. No: NP_001073808.1) and 72% 

to the mouse (Acc. No: NP_038618.1). The comparative analysis between porcine mRNA 

sequence and genomic DNA sequence (Acc. No: CU469188.2) revealed the structure of 

porcine LYZ gene that contains 4 exons. Screening for the SNP showed 4 SNPs within the 

coding region, including two SNPs in the exon2 (c.240A>C and c.255C>T) and another 

two SNPs in the exon3 (c.365A>T and c.370C>T). All SNPs located in the area of 

conserved domains such as a catalytic site, a catalytic cleft and a Ca2+-binding site. Among 

these SNPs, a SNP c.365A>T causing an amino acid exchange from Glutamin to Leucine 

(p.Gln122Leu). For association analysis, two SNPs (c.240A>C and c.365A>T) were 

selected for genotyping (Figure 9). 

 

 

 

 

 

 

 

 

 

 

Figure 9: Structure of porcine LYZ gene 
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4.1.7 The Keratocan (KERA) 

The porcine KERA mRNA sequence (Acc. No: XM_001927128.1) consists of  2027 bp 

including 34 bp of 5’UTR, 1092 bp of coding region and 900 bp of 3’UTR. The coding 

region encodes 363 amino acids which show 90% homology to the human (Acc. No: 

NP_008966.1), 91% to the cattle (Acc. No: NP_776335.1) and 86% to the mouse (Acc. No: 

NP_032464.1). The comparative analysis between porcine KERA mRNA sequence and 

porcine genomic DNA sequence (Acc. No: CU468030.2) revealed 2 exons. Screening for 

SNP showed three silent SNPs (c.303C>T, c.315A>C and c.528A>G) located in the 

coding region of exon1 and also located in the area of Leucine rich repeat (LRR) domains 

that involved in protein-protein interactions. For association analysis, a SNP c.303C>T 

was selected for genotyping (Figure 10). 

 

 

 

 

 

 

 

 

 

 

Figure 10: Structure of porcine KERA gene 

 

4.1.8 The coenzyme Q9 homologue (COQ9) 

Three overlapping of porcine ESTs (Acc. No: DT332099.1, CN156459.1 and DN104150.1) 

provided the complete porcine COQ9 cDNA sequence which contains of 1625 bp 

including 9 bp of 5’UTR, 954 bp of coding region and 662 bp of 3’UTR. The porcine 

COQ9 gene encodes 317 amino acids which show 92% similarity to the human (Acc. No: 

NP_064708.1), 87% to the cattle (Acc. No: NP_001039767.1) and 87% to the mouse (Acc. 

No: NP_080728.1). The comparison between porcine COQ9 cDNA sequence and porcine 
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genomic DNA sequence (Acc. No: FP326735.2) revealed 9 exons. Four SNPs were 

detected including two silent SNPs within coding region of exon4 (c.453A>G) and of 

exon6 (c.639G>T) and another two SNPs (+1247A>T and +1484C>T) in the 3’UTR. The 

SNPs in the coding region located in the conserved domain “diverge_rpsU” which is found 

in a number of Alphaproteobacteria and involved with the regulation of the initiation of 

protein translation. In this study, two SNPs (c.453A>G and (+1247A>T) were genotyped 

for association analysis (Figure 11).  

 

 

 

 

 

 

 

 

Figure 11: Structure of porcine COQ9 gene 

 

4.1.9 Unknown (UN ) 

For unknown gene (non-annotated EST, Affymetrix probe set ID: Ssc.25503.1.S1_at), a 

SNP (g.1,022,434G>T) was detected at the position 1,022,434 of porcine genomic 

sequence (Sus scrofa chromosome 7 genomic contig, Acc. No: NW_001886512.1) which 

located in the area 20503 bp far from 5' flanking side of the putative pig RGMA sequence. 

This SNP was genotyped for association analysis. 

 

4.1.10 The epidermal growth factor receptor (EGFR) 

The porcine EGFR mRNA sequence (Acc. No: NM_214007.1) consists of  5038 bp 

including 126 bp of 5’UTR, 3630 bp of coding region and 1282 bp of 3’UTR. The coding 

region encodes 1209 amino acids which show 88% homology to the human (Acc. No: 

NP_005219.2), 92% to the cattle (Acc. No: XP_592211.3) and 87% to the rat (Acc. No: 

NP_113695.1). The structure of porcine EGFR gene was deducted by comparison of 
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porcine EGFR mRNA sequence, human EGFR mRNA sequence (Acc. No: NM_005228.3) 

and human genomic DNA sequence (Acc. No: AC006977.3, AC073324.6) revealed 28 

exons. The coding area of porcine EGFR gene contains several conserved domains for 

several features involved in signaling pathways leading to a broad range of cellular 

responses including cell proliferation, differentiation, migration, growth inhibition, and 

apoptosis. Screening for SNP showed three SNPs including one silent SNP (c.3543A>G) 

in the coding region of exon28 and two SNPs (+3782A>G and +3802C>T) in the 3’UTR. 

For association analysis, a SNP c.3543A>G was selected for genotyping (Figure 12). 

 

 

 

 

 

 

 

 

 

Figure 12: Structure of porcine EGFR gene 

 

4.1.11 The vitronectin (VTN) 

The porcine VTN mRNA sequence (Acc. No: NM_214104.1) consists of  1547 bp 

including 48 bp of 5’ untranslated region (UTR), 1380 bp of coding region and 119 bp of 

3’UTR. The coding region encodes 459 amino acids which show 71% homology to the 

human (Acc. No: NP_000629.3), 70% to the cattle (Acc. No: NP_001030222.1) and 69% 

to the mouse (Acc. No: NP_035837.1). The comparative analysis between porcine mRNA 

sequence and genomic DNA sequence (Acc. No: FP565711.1) revealed the structure of 

porcine VTN gene that contains 8 exons. Three SNPs (c.154A>G, c.156C>T and 

c.382C>T) were detected within the coding region of exon2. Among these SNPs, two 

SNPs (c.154A>G and c.156C>T) located in the area of Somatomedin B domain involved 

in the regulation of proteolysis. Especially, the SNP c.154A>G effects an amino acid 
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change from Threonine to Alanine (p.Thr52Ala). For association analysis, two SNPs 

(c.154A>G and c.156C>T) were selected for genotyping. 

 

 

 

 

 

 

 

 

Figure 13: Structure of porcine VTN gene 

 

4.1.12 The Zyxin (ZYX) 

The overlapping of porcine ESTs (Acc. No: AJ680915.1, BP440079.1, EH008233.1 and 

BW975440.1) provided the full-length porcine ZYX cDNA sequence which contains of 

1874 bp including 71 bp of 5’UTR, 1707 bp of coding region and 96 bp of 3’UTR. The 

porcine ZYX gene encodes 568 amino acids which showed similarity to 88% of human 

(Acc. No: NP_001010972.1), 90% of cattle (Acc. No: NP_001071569.1) and 84% of 

mouse (Acc. No: NP_035907.1).  

 

 

 

 

 

 

 

 

Figure 14: Structure of porcine ZYX gene 

 



Results 35

The comparison between porcine ZYX cDNA sequence and porcine genomic DNA 

sequence (Acc. No: CU929961.2) revealed 10 exons. At the 3’ region of ZYX gene 

contains “LIM” domains involved in protein-protein interaction. Three silent SNPs were 

detected and genotyped including two SNPs in exon3 (c.279C>T and c.399A>G) and one 

SNP (c.639G>T) in exon5 (Figure 14). 

 

Table 8: Detected SNPs, location and method used for genotyping 
Acc. No. Gene symbol Confirmed SNP  Amino acid exchange 
NM_001144112.1 BVES c.186G>T (genotyped) - 
EU587016.1, BP141705.1 SLC3A2 c.1103A>G 

c.1113C>T 
c.1119C>T 
c.1200C>G 
c.1326A>G (genotyped) 
c.1336Indel[AGC] (genotyped) 

Arginine Histidine 
- 
- 
- 
- 
[Serine] 

BX922331.2 AHNAK c.12907A>G (genotyped) 
c.13014G>T (genotyped) 
c.13281A>G (genotyped) 
c.13290A>C>G (genotyped) 
c.13294C>T (genotyped) 

Isoleucine Valine 
- 
- 
- 
- 

BX671032.2, CK464654.1 ZDHHC5 c.1803C>T (genotyped) 
+2161A>C 

- 
- 

NM_214276.1 CS c.120G>T (genotyped) 
+1578A>G 
+1622A>G 

- 
- 
- 

NM_214392.1 LYZ c.240A>C (genotyped) 
c.255C>T  
c.365A>T (genotyped) 
c.370A>G 

- 
- 
Glutamine Leucine 
- 

XM_001927128.1 KERA c.303C>T (genotyped) 
c.315A>C 
c.528A>G 

- 
- 
- 

CN156459.1, DN104150.1 COQ9 c.453A>G (genotyped) 
c.639G>T  
+1247A>T(genotyped) 
+1484C>T 

- 
- 
- 
- 

NW_001886512.1 UN g.1,022,434G>T (genotyped) - 
NM_214007.1 EGFR c.3543A>G (genotyped) 

+3782A>G 
+3802C>T 

- 
- 
- 

NM_214104.1 VTN c.154A>G (genotyped) 
c.156C>T (genotyped) 
c.382C>T 

Threonine Alanine 
- 
- 

BP440079.1, BW975440.1 ZYX c.279C>T (genotyped) 
c.399A>G (genotyped) 
c.522A>G (genotyped) 

- 
- 
- 
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The average length of a PCR product was 654 bp and the average SNP per base pair was 1: 

361, two loci (BVES and UN) contained just one SNP whereas other loci contained two to 

five SNPs. Most SNPs were detected in coding regions, and some SNPs (CS, EGFR, 

COQ9 and ZDHHC5) were also detected in 3’UTR regions. The transitions detected in 

SLC3A2, AHNAK, LYZ and VTN, resulted in amino acid substitutions. Total, twenty one 

SNPs and one Indel were selected for genotyping; four of twelve genes were genotypes by 

single base extension technique, the other eight by pyrosequencing technique (Table 8). 

 

4.2 Association analysis of candidate genes with carcass and meat quality traits 

4.2.1 Association analysis of BVES  

4.2.1.1 Genotype and allele frequencies of BVES c.186G>T 

Genotype and allele frequencies of BVES c.186G>T are shown in Table 9. In PIF1(a,b) 

and DL the genotype distribution was not in Hardy-Weinberg equilibrium since the 

number of heterozygous animals was higher than expected (P<0.05). In PI, the ‘G’ allele 

occurred with higher frequency (0.58), whereas in the other populations the ‘G’ allele 

segregated with lower frequency (≤0.45).  

 

Table 9: Genotype and allele frequencies of BVES c.186G>T in pigs 
Genotype frequency Allele frequency Populations GG GT TT G T HWE 

DUPI (n=287) 0.08 0.45 0.46 0.31 0.69  
PI (n=231) 0.36 0.43 0.21 0.58 0.42 NS 
PIF1(a) (n=291) 0.16 0.57 0.27 0.45 0.55 * 
PIF1(b) (n=305) 0.12 0.53 0.34 0.39 0.61 * 
PIF1(c) (n=335) 0.12 0.52 0.36 0.38 0.62 NS 
DL (n=268) 0.03 0.41 0.56 0.23 0.77 * 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.1.1 The effects of BVES c.186G>T on phenotypic traits in pigs 

The association analysis of c.186G>T for meat quality and carcass traits revealed 

significant associations with DRIP and pH24 in PIF1(b) and DUPI respectively (Table 10). 

Animals with the genotype ‘GG’ had higher DRIP than animals with the genotype ‘TT’ 

(P<0.05) in PIF1(b). The heterozygous genotype ‘GT’ led to a higher BF3 than the 
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homozygous genotype ‘TT’ in PIF1(b). In DUPI, animals with the genotype ‘GT’ had 

lower pH24 than animals with the genotype ‘TT’ (P<0.01). 

 
Table 10: Least square means (LSM) and standard errors (SE) for meat quality traits across 

BVES c.186G>T in pigs 
Least square means (LSM) (SE/n) Traits Populations GG GT TT P-value 

pH24 DUPI 5.48ab (0.02/19) 5.48a (0.01/116) 5.52b (0.01/118) 0.0075 
BF3  PIF1(b) 0.98cd (0.05/38) 1.09c (0.03/162) 1.00d (0.03/105) 0.0304 
DRIP PIF1(b) 3.07c (0.24/38) 2.59cd (0.16/161) 2.47d (0.18/103) 0.0495 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.2 Association analysis of SLC3A2  

4.2.2.1 Genotype and allele frequencies of SLC3A2 c.1326A>G  

The allele and genotype frequencies of c.1326A>G are shown in Table 11. The presence of 

the allele ‘A’ was very high (≥0.71) across all populations. In all commercial pig 

populations, the genotype distribution was in Hardy-Weinberg equilibrium. In general, the 

frequency of the genotype ‘GG’ was very low (≤0.08) compared to the other genotypes 

‘AG’ (0.08-0.48) and ‘AA’ (0.47-0.92). 

 

Table 11: Genotype and allele frequencies of SLC3A2 c.1326A>G in pigs 
Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=285) 0.47 0.48 0.05 0.71 0.29  
PI (n=221) 0.68 0.30 0.02 0.83 0.17 NS 
PIF1(a) (n=282) 0.92 0.08 - 0.96 0.04 NS 
PIF1(b) (n=307) 0.58 0.36 0.07 0.76 0.24 NS 
PIF1(c) (n=303) 0.66 0.30 0.04 0.81 0.19 NS 
DL (n=260) 0.52 0.40 0.08 0.72 0.28 NS 

** P<0.01 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.2.2 The effects of SLC3A2 c.1326A>G on phenotypic traits in pigs 

The study revealed an association of c.1209A>G with carcass traits (Table 12). Animals 

carrying the homozygous genotype ‘AA’ had lower MFR and BF3 than the heterozygous 

animals in PIF1(b) and DL (P<0.05) respectively.  
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Table 12: Least square means (LSM) and standard errors (SE) for carcass traits across 

SLC3A2 c.1326A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

MFR PIF1(b) 0.26c (0.01/178) 0.28d (0.01/109) 0.27cd (0.01/20) 0.0352 
BF3 DL 1.78c (0.05/134) 1.94d (0.05/105) 1.84cd (0.10/21) 0.0226 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.2.3 Genotype and allele frequencies of SLC3A2 c.1336Indel[AGC]  

For the Indel polymorphism (‘D’ representing the deletion of ‘AGC’ and ‘I’ representing 

the insertion of ‘AGC’), the appearance of the heterozygous ‘DI’ was more frequent than 

expected in PIF1 (a,b,c). The range of frequency of ‘D’ was changing widely from 0.81 (in 

DL) to 0.34-0.35 (in DUPI and PI). In DUPI, PI and PIF1(a), the presence of the 

homozygous ‘DD’ was lowest (0.00-0.12), whereas in PIF1 (b,c) and DL the homozygous 

‘II’ occurred with lowest frequency (0.02-0.20) (Table 13). 

 

Table 13: Genotype and allele frequency of SLC3A2 c.1336Indel[AGC] in pigs 
Genotype frequency Allele frequency Populations DD DI II D I HWE 

DUPI (n=285) 0.07 0.53 0.40 0.34 0.66  
PI (n=221) 0.12 0.46 0.42 0.35 0.65 NS 
PIF1(a) (n=282) - 0.84 0.16 0.42 0.58 *** 
PIF1(b) (n=303) 0.26 0.58 0.16 0.55 0.45 ** 
PIF1(c) (n=303) 0.23 0.57 0.20 0.51 0.49 * 
DL (n=260) 0.65 0.33 0.02 0.81 0.19 NS 

* P<0.05, ** P<0.01, *** P<0.01 
NS = not significant  
HWE = Hardy-Weinberg equilibrium 
 
4.2.2.4 The effects of SLC3A2 c.1336Indel[AGC]on phenotypic traits in pigs 

The analysis of c.1336Indel[AGC] revealed significant associations with various measures 

of carcass fatness traits in PI, PIF1(a,b,c) and DL (Table 14). In PI, animals with 

homozygous deletion ‘DD’ had higher ABF than heterozygous animals, whereas in 

PIF1(a,b) the homozygous insertion ‘II’ provided the lowest ABF (P<0.05). For traits 

related to fat content such as BF2 and FA, the deletion ‘D’ tends to be associated with high 

fat content in PIF1(b) (P<0.05); this observation was opposite compared to the DL line, in 

which the homozygous insertion ‘II’ provided highest BF1 (P<0.01). Moreover, the 
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analysis also revealed significant associations with various measures of meat quality traits 

in PIF1(a,b,c) and DL. Animals having homozygous ‘II’ offered highest COOK and SF in 

PIF1(a), while animals having homozygous ‘DD’ had highest THAW and lowest PH24 in 

PIF1(b) and highest CON1 in PIF1(c). In DL the deletion ‘D’ tends to be associated with 

low DRIP (P<0.05).  

 
Table 14: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across SLC3A2 c.1336Indel[AGC] in pigs 
Least square means (LSM) (SE/n) Traits Populations DD DI II P-value 

ABF PI 1.87c (0.06/27) 1.75d (0.04/101) 1.82cd (0.04/93) 0.0402 
ABF PIF1(a) 2.67c (0.05/69) 2.65c (0.04/179) 2.49d (0.06/34) 0.0228 
SF PIF1(a) 37.22a (1.15/66) 38.50c (0.88/173) 42.14bd (1.42/31) 0.0061 
COOK PIF1(a) 25.20c (0.41/66) 25.56cd (0.33/173) 26.40d (0.48/31) 0.0443 
ABF PIF1(b) 1.90c (0.03/79) 1.83cd (0.02/175) 1.78d (0.04/49) 0.0458 
BF2 PIF1(b) 1.54c (0.03/79) 1.45cd (0.02/175) 1.40d (0.04/49) 0.0169 
FA PIF1(b) 14.88c (0.31/79) 14.27cd (0.23/175) 13.78d (0.37/49) 0.0389 
THAW PIF1(b) 9.39a (0.25/76) 8.64b (0.20/164) 8.34b (0.30/48) 0.0016 
pH1 PIF1(b) 6.55c (0.03/79) 6.45d (0.02/175) 6.51cd (0.04/49) 0.0220 
pH24 PIF1(b) 5.49c (0.01/79) 5.51cd (0.01/175) 5.53d (0.01/49) 0.0422 
CON1 PIF1(c) 5.63c (0.25/69) 5.04d (0.20/172) 5.29cd (0.26/62) 0.0310 
BF1 DL 3.73c (0.04/168) 3.68a (0.05/86) 4.22bd (0.17/6) 0.0098 
DRIP DL 4.37c (0.24/167) 4.83cd (0.31/86) 6.44d (0.78/6) 0.0173 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.2.5 Diplotype and haplotype frequencies of the SLC3A2  

In almost all populations, except PIF1 (a) and DL, the haplotype ‘H2’ was more frequent 

than the other two haplotypes (‘H1’ and ‘H3’), which results in the diplotype ‘H1/H2’ 

becoming the major diplotype observed in most of the commercial pigs, whereas in DUPI 

and PI, the main diplotypes were ‘H2/H2’ or ‘H2/H3’ (Table 15). 
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Table 15: Diplotype and haplotype frequencies of SLC3A2 gene in pigs 
Haplotype DUPI 

(n=285) 
PI  

(n=221) 
PIF1(a) 
(n=264) 

PIF1(b) 
(n=304) 

PIF1(c) 
(n=303) 

DL  
(n=260) 

AD [H1] 0.05 0.18 0.52 0.31 0.32 0.53 
AI [H2] 0.66 0.65 0.44 0.45 0.49 0.19 
GD [H3] 0.29 0.17 0.04 0.24 0.19 0.28 
Diplotype       

H1/H1 - 0.02 0.24 0.08 0.08 0.28 
H1/H2 0.07 0.24 0.61 0.34 0.37 0.21 
H1/H3 0.02 0.09 0.02 0.12 0.11 0.28 
H2/H2 0.40 0.42 0.13 0.16 0.20 0.02 
H2/H3 0.46 0.22 - 0.24 0.19 0.12 
H3/H3 0.05 0.02 - 0.06 0.04 0.08 

 

4.2.2.6 The effects of the SLC3A2 haplotype on phenotypic traits in pigs 

The association analysis between haplotype and carcass and meat quality traits confirmed 

the results described in the previous sections, especially with the effect of Indel 

c.1336Indel[AGC]. According to the results, the diplotype ‘H2/H2’ is related with lower 

ABF and BF2 in PIF1(a,b); in contrast it is related with higher BF1 in DUPI. For meat 

quality traits, the diplotype ‘H2/H2’ is associated with lower THAW in PIF1(b). In PIF1(a), 

the diplotype ‘H2/H2’ is associated with higher SF. Moreover, the diplotype ‘H1/H2’ 

animals had lower pH1 than the diplotype ‘H1/H1’ animals in PIF1(b). In PIF1(c), the 

diplotype ‘H1/H1’ had higher CON1 than the diplotype ‘H1/H2’ and ‘H2/H3’ (Table 16).  

 

Table 16: Least square means (LSM) and standard errors (SE) for carcass and meat quality 

traits across haplotypes of SLC3A2 in pigs 
 BF1 ABF SF BF2 pH1 THAW CON1 
 DUPI PIF1(a) PIF1(a) PIF1(b) PIF1(b) PIF1(b) PIF1(c) 

H1/H1 - 2.67c  
(0.06/64) 

37.27a  
(1.21/61) 

1.50cd  
(0.06/24) 

6.62c  
(0.05/24) 

9.59ac  
(0.39/23) 

6.27c  
(0.37/24) 

H1/H2 3.45cd  
(0.12/21) 

2.64cd  
(0.04/161) 

38.64abc  
(0.94/155) 

1.45c  
(0.03/103) 

6.45d  
(0.03/103) 

8.69d  
(0.23/99) 

5.13d  
(0.23/113) 

H1/H3 2.81c  
(0.22/6) 

2.73cd  
(0.14/5) 

36.10abcd  
(3.10/5) 

1.61d  
(0.05/36) 

6.50cd  
(0.04/36) 

9.30c  
(0.35/35) 

5.60cd  
(0.32/33) 

H2/H2 3.43d  
(0.05/114) 

2.49d  
(0.06/34) 

42.38bd 
(1.45/31) 

1.40c  
(0.04/49) 

6.51cd  
(0.04/49) 

8.33bd  
(0.30/48) 

5.28cd  
(0.26/62) 

H2/H3 3.29cd  
(0.05/130) - - 1.45cd  

(0.03/72) 
6.49cd  
(0.03/72) 

8.57d  
(0.26/65) 

4.96d  
(0.26/59) 

H3/H3 3.40cd  
(0.14/14) - - 1.47cd  

(0.06/20) 
6.55cd  
(0.05/20) 

9.28a  
(0.43/19) 

5.36cd  
(0.53/12) 

P-value 0.0291 0.0432 0.0102 0.0376 0.0287 0.0241 0.0156 
c-d P<0.05, a-b P<0.01 
Within columns, values with the same letter are not significantly different 
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4.2.3 Association analysis of AHNAK  

4.2.3.1 Genotype and allele frequencies of AHNAK c.12907A>G 

The distribution of AHNAK c.12907A>G is displayed in Table 17. There was a large 

range in the frequency of the allele ‘A’ from 0.07 to 0.41 when comparing PI to DUPI, 

whereas in PIF1 (a,b,c) and DL the range of the allele ‘A’ was between 0.12 and 0.15. In 

all commercial pig populations, the frequency of the genotype ‘AA’ was very low (0.00-

0.02) compared to the other genotypes ‘AG’ (0.14-0.27) and ‘GG’ (0.72-0.86). In addition, 

a significant deviation from the Hardy-Weinberg equilibrium was found in PIF1(a) 

(P<0.05). 

 
Table 17: Genotype and allele frequencies of AHNAK c.12907A>G in pigs 

Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=406) 0.15 0.51 0.34 0.41 0.59  
PI (n=242) - 0.14 0.86 0.07 0.93 NS 
PIF1(a) (n=349) - 0.24 0.76 0.12 0.88 * 
PIF1(b) (n=303) 0.02 0.23 0.75 0.14 0.86 NS 
PIF1(c) (n=331) 0.01 0.27 0.72 0.14 0.86 NS 
DL (n=288) 0.02 0.26 0.72 0.15 0.85 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.3.2 The effects of AHNAK c.12907A>G on phenotypic traits in pigs 

The results of the association analysis of AHNAK c.12907A>G are summarized in Table 

18. Analysis of carcass traits revealed an association with BF2 in PIF1(c) and with ABF, 

BF1, BF3, MFR, FA and LEA in DUPI. Analysis of meat quality traits revealed an 

association with OPTO in DL and with THAW in DUPI. The homozygous genotype ‘GG’ 

animals had lower LEA than the heterozygous animals in PIF1(a) but the opposite effect 

was found with BF2 in PIF1(c). In DUPI, animals carrying the ‘G’ allele produced higher 

carcass fat contents, which was found to be most pronounced in the trait MFR; animals 

with genotype ‘GG’ had the highest MFR (P<0.001). For meat quality traits, the 

homozygous genotype ‘GG’ animals had higher OPTO and THAW than the heterozygous 

animals in DL and DUPI (P<0.05). 
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Table 18: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across AHNAK c.12907A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

LEA DUPI 50.82cd (0.66/62) 51.05c (0.40/208) 49.66d (0.45/136) 0.0143 
FA DUPI 15.90c (0.37/62) 16.12c (0.22/208) 16.88d (0.25/136) 0.0091 
MFR DUPI 0.32c (0.01/62) 0.32ac (0.01/208) 0.35bd (0.01/136) 0.0005 
BF1 DUPI 3.27c (0.06/62) 3.39cd (0.04/208) 3.47d (0.04/136) 0.0135 
BF3 DUPI 1.28c (0.04/62) 1.35cd (0.03/208) 1.42d (0.03/136) 0.0122 
ABF DUPI 2.04a (0.04/62) 2.13ab (0.02/208) 2.19b (0.03/136) 0.0048 
THAW DUPI 7.85cd (0.33/62) 8.02c (0.24/204) 8.51d (0.26/132) 0.0424 
LEA PIF1(a) - 51.77c (0.77/72) 50.33d (0.65/255) 0.0149 
BF2 PIF1(c) - 1.84c (0.04/88) 1.94d (0.03/239) 0.0488 
OPTO DL - 68.34c (0.71/71) 70.36d (0.46/185) 0.0131 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.3.3 Genotype and allele frequencies of AHNAK c.13014G>T 

In Table 19 the allele and genotype frequencies of AHNAK c.13014G>T are shown. 

AHNAK c.13014G>T occurred in all pig population with the frequency of ‘G’ varying 

from 0.11 in PI to 0.59 in DUPI. In all commercial pig populations, the genotype 

distributions seem to be in the same trend, where the genotype ‘GG’ occurred with lower 

frequency compared to the genotype ‘GT’ and ‘TT’ respectively. However, the lowest 

frequency of a genotype was observed for the genotype ‘TT’ in DUPI. Moreover, the 

numbers of heterozygous animals were more frequent than expected in DUPI, PI and 

PIF1(a). 

 

Table 19: Genotype and allele frequencies of AHNAK c.13014G>T in pigs 
Genotype frequency Allele frequency Populations GG GT TT G T HWE 

DUPI (n=407) 0.31 0.57 0.12 0.59 0.41  
PI (n=242) - 0.23 0.77 0.11 0.89 * 
PIF1(a) (n=349) - 0.29 0.71 0.14 0.86 ** 
PIF1(b) (n=303) 0.05 0.34 0.61 0.22 0.78 NS 
PIF1(c) (n=331) 0.05 0.38 0.57 0.24 0.76 NS 
DL (n=287) 0.09 0.39 0.51 0.29 0.71 NS 

* P<0.05, ** P<0.01  
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
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4.2.3.4 The effects of AHNAK c.13014G>T on phenotypic traits in pigs 

The analysis of AHNAK c.13014G>T revealed significant associations with carcass traits 

and/or meat quality traits in PI, PIF1(b,c) and DUPI (Table 20). Highly significant effects 

were found on ABF, BF1, MFR and FA in DUPI (P<0.001), where carriers of the ‘T’ 

allele produced higher fat contents. The association observed for BF3 and FA are 

consistent in that way in PI, PIF1(c) and DUPI. Moreover, the ‘T’ allele carriers also 

produced higher COOK, pH24 and DRIP in PI, PIF1(b) and DUPI respectively (P<0.05). 

 

Table 20: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across AHNAK c.13014G>T in pigs 
Least square means (LSM) (SE/n) Traits Populations GG GT TT P-value 

COOK PI - 23.33c (0.33/55) 24.00d (0.22/186) 0.0474 
LEA DUPI 50.88c (0.51/125) 50.86c (0.39/233) 48.82d (0.69/49) 0.0210 
FA DUPI 15.87a (0.28/125) 16.15b (0.22/233) 17.78b (0.38/49) 0.0001 
MFR DUPI 0.32a (0.01/125) 0.32a (0.01/233) 0.37b (0.01/49) <0.0001 
BF1 DUPI 3.32a (0.05/125) 3.38a (0.04/233) 3.60b (0.06/49) 0.0009 
BF3 DUPI 1.31a (0.03/125) 1.35ac (0.03/233) 1.48bd (0.04/49) 0.0050 
ABF DUPI 2.08a (0.03/125) 2.13a (0.02/233) 2.27b (0.04/49) 0.0005 
DRIP DUPI 2.01c (0.12/124) 2.11cd (0.10/227) 2.48d (0.16/48) 0.0393 
BF3 PIF1(b) 0.91c (0.08/14) 1.01cd (0.03/104) 1.09d (0.02/185) 0.0294 
pH24  PIF1(b) 5.46c (0.02/14) 5.50 cd (0.01/104) 5.51d (0.01/185) 0.0424 
FA PIF1(c) 12.68c (0.81/17) 14.82d (0.31/125) 14.85d (0.26/187) 0.0341 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.3.5 Genotype and allele frequencies of AHNAK c.13281A>G 

Table 21 gives the allele and genotype frequencies of AHNAK c.13281A>G. The 

frequency of the allele ‘A’ varied from 0.15 in DL to 0.52 in PI. The ‘AA’ genotype 

segregation in DUPI, PIF1(a,b,c) and DL was low (0.01-0.12) compared to PI (0.25). In 

addition, a X2 test showed significant disequilibria (P<0.05) in all PIF1 lines.  
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Table 21: Genotype and allele frequencies of AHNAK c.13281A>G in pigs 
Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=408) 0.09 0.37 0.54 0.28 0.72  
PI (n=251) 0.25 0.54 0.21 0.52 0.48 NS 
PIF1(a) (n=375) 0.03 0.53 0.44 0.29 0.71 *** 
PIF1(b) (n=315) 0.12 0.63 0.24 0.44 0.56 *** 
PIF1(c) (n=336) 0.07 0.58 0.36 0.35 0.65 *** 
DL (n=290) 0.01 0.28 0.71 0.15 0.85 NS 

* P<0.05, ** P<0.01, *** P<0.001 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.3.6 The effects of AHNAK c.13281A>G on phenotypic traits in pigs 

The effects of AHNAK c.13281A>G on carcass and meat quality traits are shown in Table 

22. In DUPI, the effect of AHNAK c.13281A>G on ABF, BF1, BF3, FA indicated that the 

‘G’ allele tends to associate with lower backfat thickness and also lower MFR. The 

homozygous genotype ‘GG’ was associated with high LEA in DL. For meat quality, the 

homozygous genotype ‘AA’ was associated with the lowest DRIP and the allele ‘A’ 

decreased pH1 in DUPI (P<0.05), whereas the heterozygous genotype ‘AG’ animals had 

lower DRIP and CON24 in DL (P<0.01). Moreover, the heterozygous animals also had 

higher OPTO in PIF1(b) and DL (P<0.05) when compared to the homozygous ‘GG’ 

animals.  

 
Table 22: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across AHNAK c.13281A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

FA DUPI 17.51a (0.43/37) 16.44ab (0.25/152) 16.06b (0.24/219) 0.0134 
MFR DUPI 0.36a (0.01/37) 0.33ab (0.01/152) 0.32b (0.01/219) 0.0032 
BF1 DUPI 3.56c (0.07/37) 3.43cd (0.04/152) 3.34d (0.04/219) 0.0187 
BF3  DUPI 1.44cd (0.05/37) 1.41c (0.02/152) 1.32d (0.03/219) 0.0140 
ABF DUPI 2.23c (0.05/37) 2.17cd (0.03/152) 2.09d (0.03/219) 0.0140 
pH1 DUPI 6.47c (0.03/37) 6.53cd (0.02/152) 6.57d (0.02/219) 0.0279 
DRIP DUPI 2.61c (0.42/36) 2.17cd (0.11/147) 2.04d (0.11/217) 0.0187 
OPTO PIF1(b) 66.73cd (1.00/38) 68.15c (0.50/200) 66.18d (0.74/76) 0.0375 
LEA DL - 42.07c (0.63/73) 43.75d (0.49/182) 0.0100 
OPTO DL - 71.18c (0.73/82) 69.41d (0.52/205) 0.0281 
CON24 DL - 3.66c (0.23/82) 4.14d (0.18/205) 0.0457 
DRIP DL - 3.89a (0.27/82) 4.67b (0.21/204) 0.0051 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 
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4.2.3.7 Genotype and allele frequencies of AHNAK c.13290A>C>G 

In Table 23 the frequencies of alleles and genotypes for the triallelic SNP c.13290A>C>G 

is shown.  In commercial pig populations, the presence of the ‘C’ allele was very low 

(0.00-0.05) compared to that in DUPI (0.18). The ‘G’ allele was the major allele in all 

populations with frequencies between 0.53 and 0.77. The homozygous genotype ‘GG’ 

segregated with high frequencies (0.46-0.57) in DUPI, PI and PIF1(b,c), whereas in PIF1(a) 

and DL the major genotype was ‘AG’ with frequencies between 0.47 and 0.48. Moreover, 

the appearances of the genotypes ‘AC’ and ‘CG’ were very low in commercial pigs 

compared to those in DUPI. In addition, the rare genotype ‘CC’ was only found in DUPI 

with a very low frequency (0.01) and the frequency of the ‘AC’ genotype was also higher 

than expected.  

 
Table 23: Genotype and allele frequencies of AHNAK c.13290A>C>G in pigs 

Genotype frequency Allele frequency Populations AA AC CC CG GG AG A C G HWE 

DUPI (n=405) - 0.11 0.01 0.23 0.49 0.16 0.13 0.18 0.69  
PI (n=251) 0.04 - - - 0.57 0.39 0.23 - 0.77 NS 
PIF1(a) (n=374) 0.12 0.03 - 0.01 0.36 0.48 0.37 0.02 0.61 NS 
PIF1(b) (n=314) 0.09 - - 0.03 0.46 0.42 0.3 0.01 0.68 NS 
PIF1(c) (n=335) 0.08 0.02 - 0.02 0.47 0.41 0.3 0.02 0.69 NS 
DL (n=290) 0.17 0.03 - 0.07 0.26 0.47 0.42 0.05 0.53 NS 

*** P<0.001 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.3.8 The effects of AHNAK c.13290A>C>G on phenotypic traits in pigs 

The association analysis of the triallelic SNP c.13290A>C>G revealed significant 

associations with various measures of carcass and meat quality traits (Table 24). Almost all 

significant differences were found between the heterozygous genotype ‘AG’ and the 

homozygous genotype ‘GG’ and/or the rare heterozygous genotypes ‘AC’ and ‘CG’. The 

results indicate that the ‘G’ allele tended to associate with low backfat thickness. The 

genotype ‘GG’ tended to produce carcasses with lower ABF in PIF1(a,b) and also produce 

higher CON1 in DL. The rare genotype ‘AC’ tended to increase the pH in both stages (pH1 

and pH24) in PIF1(a,c). 
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Table 24: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across AHNAK c.13290A>C>G in pigs 
Least square means (LSM) (SE/n) Traits Populati

ons AA AG AC CG GG 
P-

value
ABF PIF1(a) 2.59cd (0.06/43) 2.68c (0.04/180) 2.85c (0.10/10) 2.77cd (0.13/5) 2.59d (0.04/136) 0.0137
pH24 PIF1(a) 5.60cd (0.02/43) 5.57c (0.02/179) 5.66d (0.04/9) 5.53cd (0.05/5) 5.57cd (0.02/136) 0.0233
BF2 PIF1(b) 1.55cd (0.05/29) 1.50c (0.03/133) - 1.48cd (0.11/8) 1.41d (0.02/143) 0.0338
BF3 PIF1(b) 1.13cd (0.05/29) 1.08c (0.03/133) - 0.95cd (0.11/8) 0.99d (0.03/143) 0.0165
ABF PIF1(b) 1.93c (0.05/29) 1.86cd (0.02/133) - 1.79cd (0.10/8) 1.78d (0.02/143) 0.0159
THAW PIF1(b) 9.86c (0.39/26) 8.83d (0.23/130) - 9.72cd (0.69/8) 8.83d (0.23/132) 0.0239
pH1 PIF1(c) 6.18cd (0.06/27) 6.12c (0.04/137) 6.59c (0.17/6) 5.94d (0.14/6) 6.15cd (0.03/158) 0.0388
LEA DL 44.24cd (0.73/44) 42.63c (0.53/121) 42.81cd (1.89/5) 45.10d (1.00/20) 42.83cd (0.62/67) 0.0457
CON1 DL 4.20c (0.12/49) 4.28c (0.10/135) 4.37cd (0.24/9) 4.51cd (0.16/21) 4.54d (0.11/76) 0.0427
c-d P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.3.9 Genotype and allele frequencies of AHNAK c.13294C>T 

The distribution of the ‘C’ allele varied from 0.58 in DL to 0.87 in DUPI. The homozygous 

genotype ‘CC’ was the major genotype found in DUPI, PI and PIF1(b,c) while in PIF1(a) 

and DL, the presence of heterozygous pigs was more frequent (0.49). However, low 

frequencies of homozygous ‘TT’ animals were observed across all pig populations (0.00-

0.17) (Table 25). 

 

Table 25: Genotype and allele frequency of AHNAK c.13294C>T in pigs 
Genotype frequency Allele frequency Populations CC CT TT C T HWE 

DUPI (n=405) 0.73 0.27 - 0.87 0.13  
PI (n=253) 0.57 0.39 0.04 0.76 0.24 NS 
PIF1(a) (n=373) 0.40 0.49 0.10 0.65 0.35 NS 
PIF1(b) (n=316) 0.48 0.42 0.09 0.70 0.30 NS 
PIF1(c) (n=336) 0.49 0.43 0.08 0.71 0.29 NS 
DL (n=290) 0.34 0.49 0.17 0.58 0.42 NS 

NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.3.10 The effects of AHNAK c.13294C>T on phenotypic traits in pigs 

Significant associations of AHNAK c.13294C>T are displayed in Table 26. The effects on 

ABF, BF2 and BF3 in PIF1(a,b) and MFR in DL indicated that the ‘C’ allele decreased 

fatness and increased leanness. For meat quality traits, the homozygous genotype ‘CC’ 

offered the highest CON1 when compared to other genotypes in DL (P<0.01) and tended 
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to produce carcasses with lower pH24 in PIF1(b). The genotype ‘CC’ animals had lower 

THAW than the heterozygous animals in PIF1(a) but this difference was not found in 

PIF1(b) where the homozygous genotype ‘TT’ showed the highest THAW. 

 

Table 26: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across AHNAK c.13294C>T in pigs 
Least square means (LSM) (SE/n) Traits Populations CC CT TT P-value 

ABF PIF1(a) 2.60c (0.04/150) 2.69d (0.04/184) 2.61cd (0.06/39) 0.0192 
THAW PIF1(a) 8.52c (0.46/141) 9.68d (0.42/177) 8.70cd (0.75/38) 0.0470 
BF2 PIF1(b) 1.42c (0.02/152) 1.50d (0.03/134) 1.55cd (0.05/29) 0.0168 
BF3 PIF1(b) 0.99c (0.02/152) 1.08d (0.03/134) 1.13cd (0.06/29) 0.0086 
ABF PIF1(b) 1.79c (0.02/152) 1.86d (0.02/134) 1.93d (0.05/29) 0.0061 
pH24  PIF1(b) 5.50c (0.009/152) 5.52d (0.010/134) 5.49cd (0.018/29) 0.0454 
THAW PIF1(b) 8.87c (0.23/141) 8.83c (0.23/131) 9.86d (0.38/26) 0.0195 
LEA DL 43.32cd (0.57/88) 42.51c (0.52/124) 44.32d (0.72/45) 0.0463 
MFR DL 0.48cd (0.01/88) 0.51c (0.01/124) 0.46d (0.02/45) 0.0263 
CON1 DL 4.53c (0.10/98) 4.29d (0.10/142) 4.20d (0.12/50) 0.0095 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.3.11 Diplotype and haplotype frequencies of AHNAK  

When combining five SNPs to construct a haplotype, six possible haplotypes were 

segregating in PIF1(b,c) and DL, being named H1 (AGGGC), H2 (GGGCC), H3 

(GGGGC), H4 (GTAGC), H5 (GTGAT) and H6 (GTGGC). Five haplotypes were detected 

in PIF1(a) and PI (H1, H3, H4, H5 and H6). Four haplotypes were detected in DUPI (H1, 

H2, H4 and H5) (Table 27). The major diplotype in PI was ‘H4/H4’, whereas in all PIF1 

lines the most frequent diplotype was ‘H4/H5’. For DL and DUPI, the main diplotypes 

detected in this study were ‘H5/H5’ and ‘H1/H4’ respectively. 
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Table 27: Diplotype and haplotype frequencies of the AHNAK gene in pigs 
Haplotype PI (n=149) PIF1(a) 

(n=278) 
PIF1(b) 
(n=259) 

PIF1(c) 
(n=315) 

DL  
(n=255) 

DUPI 
(n=390) 

AGGGC[H1] 0.07 0.11 0.13 0.14 0.14 0.40 
GGGCC[H2] - 0.02 0.01 0.01 0.05 0.20 
GGGGC[H3] 0.05 - 0.06 0.08 0.09 - 
GTAGC[H4] 0.51 0.29 0.44 0.35 0.15 0.27 
GTGAT[H5] 0.23 0.34 0.30 0.29 0.41 0.13 
GTGGC[H6] 0.13 0.20 0.04 0.11 0.14 - 
Diplotypes       

H1/H1 - - 0.02 - - 0.15 
H1/H2 - - - - 0.03 0.14 
H1/H3 - - - 0.03 0.03 - 
H1/H4 - 0.11 0.16 0.16 0.05 0.25 
H1/H5 0.08 - 0.08 0.09 0.17 0.13 
H1/H6 - 0.04 - - 0.03 - 
H2/H4 - - - - - 0.09 
H2/H5 - 0.03 - - 0.04 0.12 
H3/H4 0.10 - - 0.10 0.03 - 
H3/H5 0.02 - 0.02  - - 
H4/H4 0.40 0.04 0.14 0.08 - 0.09 
H4/H5 - 0.27 0.37 0.26 0.17 0.04 
H4/H6 0.22 0.20 0.09 0.13 0.08 - 
H5/H5 0.06 0.12 0.12 0.09 0.20 - 
H5/H6 0.12 0.14 - 0.08 0.14 - 
H6/H6 - 0.04 - - - - 

 

4.2.3.12 The effects of AHNAK haplotypes on phenotypic traits in pigs 

Some traits were found to have a significant relation with the AHNAK haplotype (Table 

28). In PIF1(a), pH24 was significantly associated with the AHNAK haplotype, in the 

form that the diplotype ‘H1/H4’ offered lower values than the diplotype ‘H2/H5’ (P<0.05). 

In DL, the animals carrying the diplotype ‘H1/H6’ had higher LEA than the ‘H4/H5’ 

animals (P<0.05). Moreover, in the DUPI population, the AHNAK haplotype affected 

LEA, in the way that the diplotype ‘H1/H5’ offered higher values than the diplotype 

‘H4/H5’. The animals bearing the diplotype ‘H1/H1’ had lower carcass fatness (BF1, BF3, 

ABF and FA) than the ‘H4/H4’ animals. Finally, different haplotypes were also in 

association with MFR, the animals with the diplotype ‘H4/H5’ had the highest MFR.   
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Table 28: Least square means (LSM) and standard errors (SE) for carcass and meat quality 

traits across haplotypes of AHNAK in pigs 
 LEA FA MFR BF1 BF3 ABF pH24 LEA 
 DUPI DUPI DUPI DUPI DUPI DUPI PIF1(a) DL 

H1/H1 50.41cd 
(0.70/55) 

15.82c 
(0.39/55) 

0.32c 
(0.01/55) 

3.26c 
(0.07/55) 

1.28c 
(0.05/55) 

2.04a 
(0.04/55) - - 

H1/H2 50.93cd 
90.70/54) 

15.93cd 

(0.40/54) 
0.32c 
(0.01/54) 

3.36cd 
(0.07/54) 

1.33cd 
(0.05/54) 

2.11ab 
(0.04/54) - 47.15cd 

(1.93/5) 

H1/H3 - - - - - - - 43.81cd 
(1.49/8) 

H1/H4 50.25cd 
(0.57/93) 

16.08c 
(0.32/93) 

0.32c 
(0.01/93) 

3.40cd 
(0.05/93) 

1.39cd 
(0.04/93) 

2.14ab 
(0.03/93) 

5.55c 
(0.03/30) 

41.30cd 
(1.39/10) 

H1/H5 52.10c 
(0.78/47) 

16.08cd 
(0.44/47) 

0.31a 
(0.01/47) 

3.34cd 
(0.07/47) 

1.32cd 
(0.05/47) 

2.10ab 
(0.05/47) - 43.85cd 

(0.81/37) 

H1/H6 - - - - - - 5.63cd 
(0.04/12) 

46.62c 
(1.60/7) 

H2/H4 49.15cd 
(0.87/32) 

16.51cd 
(0.49/32) 

0.34abcd 
(0.01/32) 

3.40cd 
(0.08/32) 

1.47cd 
(0.06/32) 

2.18ab 
(0.05/32) - - 

H2/H5 51.23cd 
(0.81/45) 

16.09cd 
(0.46/45) 

0.32c 
(0.01/45) 

3.32cd 
(0.08/45) 

1.29cd 
(0.05/45) 

2.07ab 
(0.05/45) 

5.67d 
(0.04/8) 

43.39cd 
(2.08/4) 

H3/H4 - - - - - - - 44.79cd 
(1.57/7) 

H4/H4 49.39cd 
(0.83/32) 

17.65d 
(0.47/32) 

0.36d 
(0.01/32) 

3.60d 
(0.08/32) 

1.48d 
(0.05/32) 

2.27b 
(0.05/32) 

5.55cd 
(0.04/10) 

41.86cd 
(1.71/6) 

H4/H5 47.00d 
(1.45/15) 

18.06cd 
(0.81/15) 

0.39bd 
(0.02/15) 

3.65cd 
(0.14/15) 

1.53cd 
(0.09/15) 

2.30ab 
(0.09/15) 

5.57cd 
(0.02/73) 

40.86d 
(0.81/34) 

H4/H6 - - - - - - 5.59cd 
(0.02/56) 

42.61cd 
(1.11/16) 

H5/H5 - - - - - - 5.61cd 
(0.03/32) 

44.13cd 
(0.73/44) 

H5/H6 - - - - - - 5.57cd 
(0.03/39) 

43.70cd 
(0.88/28) 

H6/H6 - - - - - - 5.56cd 
(0.04/12) - 

P-value 0.0273 0.0193 0.0005 0.0237 0.0197 0.0090 0.0200 0.0110 
c-d  P<0.05, a-b  P<0.01 
Within columns, values with the same letter are not significantly different 

 

4.2.4 Association analysis of ZDHHC5  

4.2.4.1 Genotype and allele frequencies of ZDHHC5 c.1803C>T 

In all pig populations, the appearance of the ‘C’ allele was very high (0.77-0.91). In PIF1 

(b,c) and DL, the ‘C’ allele was distributed with the same frequency (0.91), whereas in PI 

and PIF1(a) the allele distributions were almost the same (0.86 vs. 0.87). In general, the 

frequency of the genotype ‘TT’ was very low compared to the other genotypes ‘CT’ and 

‘CC’. However, the deviation of the genotype distribution from Hardy-Weinberg 
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equilibrium was detected in PIF1(a), where the heterozygous genotype was more frequent 

than expected (Table 29). 

 

Table 29: Genotype and allele frequency of ZDHHC5 c.1803C>T in pigs 
Genotype frequency Allele frequency Populations CC CT TT C T HWE 

DUPI (n=279) 0.54 0.46 - 0.77 0.23  
PI (n=248) 0.73 0.25 0.02 0.86 0.14 NS 
PIF1(a) (n=264) 0.73 0.27 - 0.87 0.13 * 
PIF1(b) (n=397) 0.83 0.17 - 0.91 0.09 NS 
PIF1(c) (n=334) 0.82 0.18 - 0.91 0.09 NS 
DL (n=277) 0.84 0.15 0.01 0.91 0.09 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.4.2 The effects of ZDHHC5 c.1803C>T on phenotypic traits in pigs 

The results of the association analysis of ZDHHC5 c.1803C>T with carcass and meat 

quality traits are shown in Table 30. Because of the very low frequency of the genotype 

‘TT’ in PI and DL, it was removed from the association analysis. For carcass traits, the 

homozygous genotype ‘CC’ was associated with lower MFR and FA in DUPI and higher 

BF1 in PIF1(b). For meat quality traits, the genotype ‘CC’ was associated with higher 

OPTO and COOK in PIF1(c) and PI. In DUPI, the genotype ‘CC’ was associated with 

lower COOK (P<0.05). The most significant association was found with DRIP in DL 

(P<0.001) where the homozygous genotype ‘CC’ animals had lower DRIP than the 

heterozygous animals. 

 
Table 30: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across ZDHHC5 c.1803C>T in pigs 
Least square means (LSM) (SE/n) Traits Populations CC CT P-value 

MFR DUPI 0.32a (0.007/133) 0.34b (0.008/98) 0.0233 
FA DUPI 16.11c (0.28/133) 16.94d (0.31/98) 0.0233 
COOK DUPI 24.46c (0.26/133) 25.06d (0.27/98) 0.0337 
COOK PI 23.98c (0.23/180) 23.19d (0.32/63) 0.0121 
BF1 PIF1(b) 3.01c (0.03/246) 2.87d (0.06/51) 0.0359 
OPTO PIF1(c) 68.23c (0.55/275) 66.25d (0.98/59) 0.0480 
DRIP DL 4.30a (0.20/231) 5.41b (0.33/42) 0.0004 
c-d P<0.05, a-b  P<0.01  Within rows, values with the same letter are not significantly different 
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4.2.5 Association analysis of CS  

4.2.5.1 Genotype and allele frequencies of CS c.120G>T 

Table 30 shows the genotype and allele frequencies of CS c.120G>T. The ‘G’ allele was 

prevalent (0.76-0.98) across all pig populations. The homozygous genotype ‘GG’ was the 

major genotype found in all populations, while the rare genotype ‘TT’ was detected only in 

PIF1(c) and DL. Moreover, there were disequilibria in the genotype distribution in DL 

(Table 31). 

 

Table 31: Genotype and allele frequencies of CS c.120G>T in pigs 
Genotype frequency Allele frequency Populations GG GT TT G T HWE 

DUPI (n=277) 0.79 0.21 - 0.89 0.11  
PI (n=248) 0.96 0.04 - 0.98 0.02 NS 
PIF1(a) (n=264) 0.86 0.14 - 0.93 0.07 NS 
PIF1(b) (n=297) 0.89 0.11 - 0.94 0.06 NS 
PIF1(c) (n=337) 0.74 0.25 0.02 0.86 0.14 NS 
DL (n=277) 0.55 0.43 0.03 0.76 0.24 ** 

** P<0.01  
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.5.2 The effects of CS c.120G>T on phenotypic traits in pigs 

The association analysis of CS c.120G>T revealed significant associations with various 

carcass traits in PI, PIF1(a,b) and DL (Table 32). Only two genotypes ‘GG’ and ‘GT’ were 

used to analyse associations due to the very low frequency of the genotype ‘TT’, which 

was found only in PIF1(c) and DL. The homozygous genotype ‘GG’ was associated with 

lower carcass fatness in PIF1(b) and DL. In PI, the homozygous genotype ‘GG’ was 

associated with lower LEA. For meat quality traits, the genotype ‘GG’ was associated with 

lower DRIP in PIF1(a) and also related with lower CON1 and higher pH1 in PIF1(c). 
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Table 32: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across CS c.120G>T in pigs 
Least square means (LSM) (SE/n) Traits Populations GG GT P-value 

LEA PI 58.00c (0.58/238) 61.67d (1.53/10) 0.0136 
DRIP PIF1(a) 1.94a (0.09/227) 2.39b (0.16/37) 0.0015 
FA PIF1(b) 14.18c (0.20/264) 15.21d (0.45/33) 0.0252 
pH1 PIF1(c) 6.18a (0.03/248) 6.07b (0.04/83) 0.0081 
CON1 PIF1(c) 5.07c (0.16/248) 5.55d (0.22/83) 0.0295 
BF3 DL 1.79a (0.04/152) 1.93b (0.05/118) 0.0069 
ABF DL 2.52c (0.03/152) 2.62d (0.03/118) 0.0239 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.6 Association analysis of LYZ  

4.2.6.1 Genotype and allele frequencies of LYZ c.240A>C 

In Table 33 the frequencies of alleles and genotypes for c.240A>C is shown. In all 

populations, the ‘A’ allele occurred with low frequencies (0.17-0.34), resulting in the 

frequency of animals having the ‘AA’ genotype also being low (0.00-0.11). In general, the 

appearance of the homozygous genotype ‘CC’ was more frequent than that of the 

genotypes ‘AC’ and ‘AA’.  

 

Table 33: Genotype and allele frequencies of LYZ c.240A>C in pigs. 
Genotype frequency Allele frequency Population AA AC CC A C HWE 

DUPI (n=404) - 0.42 0.58 0.21 0.79  
PI (n=232) 0.04 0.27 0.69 0.17 0.83 NS 
PIF1(a) (n=378) 0.03 0.29 0.68 0.17 0.83 NS 
PIF1(b) (n=315) 0.07 0.37 0.57 0.25 0.75 NS 
PIF1(c) (n=321) 0.06 0.38 0.56 0.25 0.75 NS 
DL (n=252) 0.11 0.47 0.42 0.34 0.66 NS 

NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.6.2 The effects of LYZ c.240A>C on phenotypic traits in pigs 

For LYZ c.240A>C, the homozygous genotype ‘AA’ was associated with lower pH1 and 

higher OPTO in PIF1(a) and PIF1(b). The heterozygous ‘AC’ animals had lower DRIP and 

CON24 than the homozygous ‘AA’ animals in PI and the homozygous ‘CC’ animals in 

PIF1(a) respectively (Table 34). 
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Table 34: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across LYZ c.240A>C in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AC CC P-value 

DRIP PI 2.13a (0.28/9) 1.32b (0.17/62) 1.53ab (0.15/161) 0.0030 
pH1 PIF1(a) 6.03ac (0.08/12) 6.28bcd (0.03/108) 6.24abd (0.02/258) 0.0106 
CON24 PIF1(a) 3.61cd (0.31/11) 3.23c (0.18/106) 3.53d (0.16/257) 0.0156 
OPTO PIF1(b) 71.23ac (1.29/22) 66.58bcd (0.64/115) 67.71abd (0.52/178) 0.0028 
c-d P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.6.3 Genotype and allele frequencies of LYZ c.365A>T 

In Table 35 the frequencies of alleles and genotypes for c.365A>T are shown. The ‘A’ 

allele occurred with high frequencies (0.59-0.98) across all pig populations. In general, the 

homozygous genotype ‘AA’ was the major genotype, while the minor genotype ‘TT’ was 

detected only in DUPI, PI and PIF1(b,c). In PIF1(a), the genotype distribution deviated 

from Hardy-Weinberg equilibrium. 

 

Table 35: Genotypes and allele frequency of LYZ c.365A>T in pigs. 
Genotype frequency Allele frequency Population AA AT TT A T HWE 

DUPI (n=403) 0.66 0.33 0.02 0.82 0.18  
PI (n=230) 0.36 0.46 0.18 0.59 0.41 NS 
PIF1(a) (n=378) 0.63 0.37 - 0.81 0.19 *** 
PIF1(b) (n=318) 0.73 0.26 0.02 0.86 0.14 NS 
PIF1(c) (n=316) 0.59 0.34 0.07 0.76 0.24 NS 
DL (n=261) 0.95 0.05 - 0.98 0.02 NS 

*** P<0.001  
NS = not significant  
HWE = Hardy-Weinberg equilibrium 
 

4.2.6.4 The effects of LYZ c.365A>T on phenotypic traits in pigs 

Significant associations of c.365A>T with ABF and LEA were found in PI and PIF1(c) 

respectively, where the homozygous genotype ‘TT’ animals had highest ABF and the ‘T’ 

allele tended to decrease LEA. For meat quality, the heterozygous genotype ‘AT’ tended to 

relate with higher CON1, whereas the homozygous genotype ‘TT’ pigs had highest 

CON24 in DUPI. Animals containing the genotype ‘TT’ had higher THAW than the 
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heterozygous animals in PIF1(b). Moreover, the ‘T’ carriers tended to produce carcasses 

with lower pH1 (Table 36).  

 

Table 36: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across LYZ c.365A>T in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AT TT P-value 

CON24 DUPI 2.99abc (0.07/261) 2.85acd (0.09/131) 3.76bd (0.29/8) 0.0047 
pH1 DUPI 6.56c (0.02/261) 6.52cd (0.02/131) 6.40d (0.07/8) 0.0472 
ABF PI 1.78abc (0.04/83) 1.77acd (0.03/106) 1.92bd (0.05/41) 0.0121 
CON1 PI 4.42c (0.11/83) 4.65d (0.10/106) 4.43cd (0.13/41) 0.0444 
LEA PIF1(c) 53.85c (0.42/186) 53.01cd (0.53/106) 51.12d (1.11/22) 0.0494 
THAW PIF1(b) 8.93cd (0.20/221) 8.55c (0.26/76) 10.79d (0.81/5) 0.0153 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.6.5 Diplotype and haplotype frequencies of LYZ  

In Table 37 the frequencies of diplotypes and haplotypes of LYZ is shown. Three 

haplotypes segregated across all pig populations, including AA (H1), CA (H2) and CT 

(H3). In general, the haplotype ‘CA’ occurred with high frequencies (0.42-0.63). 

Haplotype combination revealed six possible diplotypes in this study and there were some 

differences in the frequencies of diplotypes in each pig population. The main diplotype 

found in DUPI was ‘H1/H2’ whereas the main diplotype in PI was ‘H2/H3’. For PIF1(a,b), 

the major diplotype was ‘H2/H2’. In addition, in PIF1(c) and DL the most frequent 

diplotype was ‘H1/H2’. 

 

Table 37: Diplotype and haplotype frequencies of the LYZ gene in pigs 
Haplotype DUPI 

(n=285) 
PI  

(n=221) 
PIF1(a) 
(n=264) 

PIF1(b) 
(n=304) 

PIF1(c) 
(n=303) 

DL  
(n=260) 

AA[H1] 0.21 0.17 0.17 0.25 0.25 0.34 
CA[H2] 0.61 0.42 0.64 0.60 0.51 0.63 
CT[H3] 0.18 0.41 0.19 0.15 0.24 0.03 

Diplotypes       
H1/H1 - 0.04 0.03 0.08 0.06 0.11 
H1/H2 0.34 0.14 0.23 0.29 0.27 0.45 
H1H3 0.08 0.11 0.06 - 0.12 0.02 
H2/H2 0.31 0.18 0.37 0.44 0.27 0.39 
H2/H3 0.25 0.34 0.31 0.17 0.21 0.03 
H3/H3 0.02 0.18 - 0.02 0.07 - 
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4.2.6.6 The effects of the LYZ haplotype on phenotypic traits in pigs 

The study revealed an association of the LYZ haplotype with CON24 in DUPI and PIF1(a). 

In DUPI, the diplotype ‘H3/H3’, which occurred with the lowest frequency, had the 

highest CON24, which was not seen in PIF1(a). In PIF1(a), the ‘H2/H2' animals had higher 

CON24 than ‘H1/H2’ animals (P<0.05). LYZ haplotype effects on DRIP, pH1 and OPTO 

were found in PI, PIF1(a) and PIF1(b) respectively, where the ‘H1/H1’ animals provided 

high DRIP and OPTO values in PI and PIF1(b) respectively. In contrast, the 

‘H1/H1’animals had lower pH1 than the ‘H1/H2’ animals in PIF1(a). In DL(a), the 

diplotype ‘H1/H3’ had the lowest OPTO (Table 38). 

 

Table 38: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across haplotypes of LYZ in pigs 
CON24 DRIP pH1 CON24 OPTO OPTO  DUPI PI PIF1(a) PIF1(a) PIF1(b) DL(a) 

H1/H1 - 2.16c 
(0.29/9) 

6.03c 
(0.08/12) 

3.55cd 
(0.30/11) 

71.27ac 
(1.25/22) 

69.58c 

(1.18/27) 

H1/H2 2.94cd 
(0.09/137) 

1.45cd 
(0.19/32) 

6.30d 
(0.04/83) 

3.10c 
(0.18/81) 

66.63b 
(0.71/80) 

70.18a 

(0.62/113) 

H1/H3 2.87c 
(0.15/33) 

1.21d 
(0.20/26) 

6.18cd 
(0.06/22) 

3.46cd 
(0.24/18) - 61.34bd 

(2.57/5) 

H2/H2 3.05cd 
(0.09/124) 

1.51cd 
(0.18/41) 

6.24cd 
(0.03/136) 

3.51d 
(0.16/124) 

67.46d 
(0.59/121) 

69.99c 
(0.65/99) 

H2/H3 2.83c 
(0.09/98) 

1.58cd 
(0.16/78) 

6.25cd 
(0.03/114) 

3.48cd 
(0.17/88) 

67.99cd 
(0.86/47) 

70.62c 

(2.04/8) 

H3/H3 3.75d 
(0.30/8) 

1.44cd 
(0.18/41) - - 70.93cd 

(2.53/5) - 

P-value 0.0185 0.0212 0.0137 0.0231 0.0101 0.0228 
c-d P<0.05, a-b  P<0.01 
Within columns, values with the same letter are not significantly different 

 

4.2.7 Association analysis of KERA  

4.2.7.1 Genotype and allele frequencies of KERA c.303C>T 

The distribution of the allele ‘A’ was 0.41, 0.31, 0.30, 0.28, 0.28 and 0.23 in DUPI, PI, 

PIF1(a), PIF1(b), PIF1(c) and DL respectively (Table 39). In general, low frequencies of 

the homozygous 'CC' animals were detected in all populations. However, a difference in 

the major genotype was found in some populations, in DUPI and PI the heterozygous 'CT' 

animals were more frequent than ‘TT’ animals, in contrast the homozygous 'TT' animals 
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were more frequent than heterozygous animals in other populations.  Moreover, the allele 

distribution deviated from Hardy-Weinberg equilibrium in PI and PIF1(b). 

 

Table 39: Genotype and allele frequencies of KERA c.303C>T in pigs 
Genotype frequency Allele frequency Populations CC CT TT C T HWE 

DUPI (n=413) 0.14 0.54 0.32 0.41 0.59  
PI (n=247) 0.07 0.49 0.44 0.31 0.69 * 
PIF1(a) (n=421) 0.07 0.45 0.47 0.30 0.70 NS 
PIF1(b) (n=329) 0.05 0.46 0.50 0.28 0.72 * 
PIF1(c) (n=318) 0.08 0.41 0.52 0.28 0.72 NS 
DL (n=268) 0.05 0.37 0.59 0.23 0.77 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.7.2 The effects of KERA c.303C>T on phenotypic traits in pigs 

An effect of KERA c.303C>T on carcass traits was found with LEA in DL where the 

homozygous ‘TT’ animals had higher LEA than the heterozygous animals. For the analysis 

of meat quality, the significant effects were detected with pH in both stages in PI, there the 

‘C’ carriers tended to produce meat with higher pH1 and the animals with genotype ‘CC’ 

had higher pH24 compared to the heterozygous animals (Table 40). 

 

Table 40: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across KERA c.303C>T in pigs 
Least square means (LSM) (SE/n) Traits Populations CC CT TT P-value 

pH1 PI 6.54c (0.05/17) 6.49cd (0.03/121) 6.44d (0.03/109) 0.0358 
pH24 PI 5.60c (0.03/17) 5.52d (0.01/121) 5.53cd (0.01/109) 0.0273 
LEA DL 44.21cd (1.38/10) 44.02c (0.56/89) 42.51d (0.50/141) 0.0324 
c-d  P<0.05, a-b  P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.8 Association analysis of COQ9  

4.2.8.1 Genotype and allele frequencies of COQ9 c.453A>G 

Allele and genotype frequencies of COQ9 c.453A>G are displayed in Table 41. The 

distribution of the allele ‘A’ varied from 0.36 in PI to 0.55 in PIF1(b). In all populations, 

the frequencies of the heterozygous genotype ‘AG’ were higher than those of the 
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genotypes ‘AA’ and ‘GG’. In DUPI and PIF1(b), the ‘AA’ genotype occurred with higher 

frequency than the ‘GG’ genotype. In contrast, in PI, PIF1(a,c) and DL, the frequency of 

the ‘AA’ genotype was lower than that of the ‘GG’ genotype. Moreover, significant 

disequilibria in allele distribution was found in PIF1(a). 

 

Table 41: Genotype and allele frequencies of COQ9 c.453A>G in pigs 
Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=287) 0.22 0.62 0.16 0.53 0.47  
PI (n=229) 0.11 0.51 0.38 0.36 0.64 NS 
PIF1(a) (n=284) 0.13 0.54 0.33 0.40 0.60 * 
PIF1(b) (n=305) 0.31 0.47 0.21 0.55 0.45 NS 
PIF1(c) (n=333) 0.15 0.51 0.34 0.40 0.60 NS 
DL (n=266) 0.22 0.50 0.28 0.47 0.53 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.8.2 The effects of COQ9 c.453A>G on phenotypic traits in pigs 

The effects of COQ9 c.453A>G on different phenotypes are shown in Table 42. In PIF1(b), 

pigs carrying the ‘AA’ genotype produced higher fatness trait values, including BF2, MFR 

and FA compared to those having the ‘AG’ or ‘GG’ genotype, which is the most 

pronounced of all effects that were found on FA (P<0.001). In addition, the ‘A’ carriers 

had increased pH1 in DUPI; in PI the heterozygous animals tended to produce meat with 

higher SF than the homozygous ‘GG’ animals.  

 

Table 42: Least square means (LSM) and standard errors (SE) for meat quality and carcass 
traits across COQ9 c.453A>G in pigs 

Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

pH1 DUPI 6.63c (0.04/45) 6.52cd (0.02/164) 6.49d (0.03/44) 0.0311 
SF PI 37.10cd (1.89/25) 40.23c (1.40/117) 37.91d (1.49/86) 0.0334 
FA PIF1(b) 15.16a (0.28/96) 14.07b (0.24/144) 13.84b (0.32/65) 0.0004 
MFR PIF1(b) 0.28c (0.01/96) 0.26d (0.01/144) 0.26d (0.01/65) 0.0305 
BF2 PIF1(b) 1.53c (0.03/96) 1.45d (0.02/144) 1.44d (0.04/65) 0.0433 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 
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4.2.8.3 Genotype and allele frequencies of COQ9 +1247A>T  

Table 43 gives the allele and genotype frequencies of COQ9 +1247A>T. The distribution 

of the allele ‘A’ varied from 0.45 in PIF1(b) to 0.64 in PI. In all populations, the 

frequencies of the heterozygous genotype ‘AG’ were higher than those of the ‘AA’ and 

‘TT’ genotypes. In DUPI, PI and PIF1 (a,c), the genotype ‘TT’ animals were less frequent 

than the ‘AA’ animals. Moreover, significant disequilibria in allele distribution was found 

in PIF1(a). 

 

Table 43: Genotype and allele frequencies of COQ9 +1247A>T in pigs. 
Genotype frequency Allele frequency Populations AA AT TT A T HWE 

DUPI (n=287) 0.29 0.66 0.05 0.62 0.38  
PI (n=229) 0.38 0.51 0.11 0.64 0.36 NS 
PIF1(a) (n=284) 0.33 0.54 0.13 0.60 0.40 * 
PIF1(b) (n=305) 0.21 0.47 0.31 0.45 0.55 NS 
PIF1(c) (n=333) 0.30 0.52 0.17 0.56 0.44 NS 
DL (n=266) 0.24 0.47 0.29 0.48 0.52 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.8.4 The effects of COQ9 +1247A>T on phenotypic traits in pigs 

COQ9 +1247A>T significantly influenced FA (P<0.001) in PIF1(b); the ‘TT’ pigs offered 

higher FA and BF2 compared to those having the ‘AT’ or ‘AA’ genotype. In DUPI, the ‘T’ 

allele reduced backfat thickness (ABF and BF1). The results showed that BF1 is highly 

related to COQ9 +1247A>T (P<0.001). On the other hand, the effects of this SNP on MFR 

and LEA indicated that the ‘T’ allele also increased carcass leanness. For meat quality, 

COQ9 +1247A>T was associated with SF, OPTO and THAW in PI, DL and DUPI 

respectively. In the LD muscle, pigs carrying the ‘AT’ genotype tended to have higher SF 

value than pigs carrying the ‘AA’ genotype. In addition, higher values for OPTO were 

found in ‘AT’ animals compared to ‘TT’ animals. THAW of homozygous ‘TT’ pigs was 

higher than in ‘AT’ or ‘AA’ pigs (Table 44). 
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Table 44: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across COQ9 +1247A>T in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AT TT P-value 

LEA DUPI 49.64c (0.59/78) 50.79cd (0.45/165) 54.04d (1.61/10) 0.0218 
MFR DUPI 0.34c (0.008/78) 0.33c (0.006/165) 0.27d (0.022/10) 0.0181 
BF1 DUPI 3.49ac (0.05/78) 3.34abd (0.04/165) 2.96bc (0.15/10) 0.0008 
ABF DUPI 2.19ac (0.03/78) 2.10abd (0.03/165) 1.88bcd (0.10/10) 0.0043 
THAW DUPI 8.11a (0.30/78) 8.06a (0.24/165) 10.54b (0.72/10) 0.0027 
SF PI 37.91c (1.49/86) 40.23d (1.40/117) 37.10cd (1.89/25) 0.0334 
FA  PIF1(b) 13.84a (0.32/65) 14.07a (0.24/144) 15.16b (0.28/96) 0.0004 
MFR PIF1(b) 0.26c (0.01/65) 0.26c (0.01/144) 0.28d (0.01/96) 0.0305 
BF2 PIF1(b) 1.44c (0.04/65) 1.45d (0.02/144) 1.53d (0.03/96) 0.0433 
OPTO DL 69.11cd (0.75/65) 70.86c (0.56/124) 68.71d (0.70/77) 0.0226 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.8.5 Diplotype and haplotype frequencies of COQ9  

Table 45 displays the distribution of the COQ9 haplotypes in different pig populations. 

Four haplotypes were observed in this study, including AA (H1), AT (H2), GA (H3) and 

GT (H4). Three haplotypes were found in DUPI, PIF1(c) and DL, whereas only two 

haplotypes were observed in PI and PIF1(a,b). In general, the base haplotypes in all 

populations were ‘H3’ and ‘H2’, but there were the additional haplotypes ‘H1’ in DUPI 

and ‘H4’ in PIF1(c) and DL. 

 

Table 45: Diplotype and haplotype frequencies of the COQ9 gene in pigs 
Haplotype DUPI 

(n=138) 
PI  

(n=229) 
PIF1(a) 
(n=284) 

PIF1(b) 
(n=305) 

PIF1(c) 
(n=332) 

DL  
(n=266) 

AA [H1] 0.19 - - - - - 
AT [H2] 0.36 0.36 0.40 0.55 0.40 0.47 
GA[H3] 0.45 0.64 0.60 0.45 0.57 0.48 
GT [H4] - - - - 0.03 0.05 

Diplotypes       
H1/H1 0.06 - - - - - 
H1/H2 0.29 - - - - - 
H1/H3 0.32 - - - - - 
H2/H2 0.11 0.11 0.13 0.31 0.15 0.22 
H2/H3 - 0.51 0.54 0.47 0.49 0.43 
H2/H4 - - - - 0.02 0.07 
H3/H3 0.22 0.38 0.33 0.21 0.30 0.24 
H3/H4 - - - - 0.04 0.03 
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4.2.8.6 The effects of the COQ9 haplotype on phenotypic traits in pigs 

The association analysis of the COQ9 haplotypes revealed a significant association with 

BF1 in DUPI, SF in PI, BF2, FA and MFR in PIF1(b) and LEA and OPTO in DL. In PI, 

the meat of animals with the diplotype ‘H2/H3’ had the highest SF values. In DUPI, 

animals having the ‘H1/H2’ diplotype had higher BF1 than the ‘H2/H2’ animals. Moreover, 

animals having the ‘H2/H2’ diplotype had the highest values of BF2, FA and MFR in 

PIF1(b). In DL, animals having the ‘H3/H4’ diplotype had lowest LEA; in contrast, the 

‘H3/H4’ diplotype offered the highest OPTO values (Table 46). 

 

Table 46: Least square means (LSM) and standard errors (SE) for carcass traits across 

haplotypes of COQ9 in pigs 
BF1 SF BF2 FA MFR LEA OPTO  DUPI PI  PIF1(b) PIF1(b) PIF1(b) DL DL 

H1/H1 3.45cd   
(0.17/8) - - - - - - 

H1/H2 3.44c 
(0.10/40) - - - - - - 

H1/H3 3.44cd 
(0.09/44) - - - - - - 

H2/H2 2.98d 
(0.15/15) 

37.10cd 
(1.89/25) 

1.53c 
(0.03/96) 

15.16a 
(0.28/96) 

0.28c 
(0.01/96) 

43.41c 
(0.66/51) 

68.49c 

(0.80/59) 

H2/H3 - 40.23c 
(1.40/117) 

1.45d 
(0.02/144) 

14.07b 
(0.23/144) 

0.26d 
(0.01/144) 

43.09c 
(0.54/104) 

70.53cd 
(0.60/115) 

H2/H4 - - - - - 42.30abcd 
(1.07/16) 

69.68cd 

(1.41/18) 

H3/H3 3.56cd 
(0.15/31) 

37.91d 
(1.49/86) 

1.44cd 
(0.04/65) 

13.84b 
(0.32/65) 

0.26d 
(0.01/65) 

43.58a 
(0.66/58) 

69.06cd 
(0.76/65) 

H3/H4 - - - - - 38.04bd 
(1.60/6) 

74.45d 
(1.95/9) 

P-value 0.0354 0.0334 0.0433 0.0004 0.0305 0.0185 0.0209 
c-d P<0.05, a-b P<0.01 
Within columns, values with the same letter are not significantly different 

 

4.2.9 Association analysis of UN  

4.2.9.1 Genotype and allele frequencies of UN g.1,022,434G>T 

The genotype and allele frequencies of UN g.1,022,434G>T are shown in Table 47. The 

major allele across all populations except DL was the ‘G’ allele, resulting in the 

frequencies of the homozygous  genotype ‘GG’ and the heterozygous genotype ‘GT’ being 

higher than those of the homozygous genotype ‘TT’; whereas in DL the homozygous 
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genotype ‘GG’ had a lower frequency than the other two genotypes. Moreover, a genotype 

distribution that fit into Hardy-Weinberg equilibrium was found only in PI.  

 

Table 47: Genotype and allele frequencies of UN g.1,022,434G>T in pigs. 
Genotype frequency Allele frequency Populations GG GT TT G T HWE 

DUPI (n=285) 0.32 0.54 0.14 0.59 0.41  
PI (n=228) 0.80 0.20 - 0.90 0.10 NS 
PIF1(a) (n=288) 0.49 0.50 0.01 0.74 0.26 *** 
PIF1(b) (n=305) 0.33 0.54 0.13 0.60 0.40 * 
PIF1(c) (n=329) 0.39 0.56 0.05 0.67 0.33 *** 
DL (n=266) 0.17 0.56 0.27 0.45 0.55 * 

* P<0.05, *** P<0.001 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.9.2 The effects of UN g.1,022,434G>T on phenotypic traits in pigs 

Among parameters for carcass traits, UN g.1,022,434G>T was associated with several 

fatness traits in PIF1(b,c) and DUPI (Table 48). Most of the significant differences were 

found between the homozygous ‘GG’ and the heterozygous ‘GT’, whereas the 

homozygous ‘TT’ was not significantly different. In PIF1(c), pigs bearing the genotype 

‘GG’ had higher backfat thickness traits (FA, BF1 and ABF) than the heterozygous pigs 

(P<0.05).  

 

Table 48: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across UN g.1,022,434G>T in pigs 
Least square means (LSM) (SE/n) Traits Populations GG GT TT P-value 

BF2 DUPI 1.57c (0.04/77) 1.67d (0.03/136) 1.57cd (0.06/39) 0.0203 
BF3 DUPI 1.26c (0.04/77) 1.39d (0.03/136) 1.38cd (0.06/39) 0.0170 
ABF DUPI 2.05c (0.03/77) 2.15d (0.03/136) 2.14cd (0.05/39) 0.0324 
DRIP PI 1.47c (0.15/182) 1.73d (0.17/46) - 0.0318 
SF PI 38.04b (1.12/181) 42.03a (1.49/46) - 0.0012 
FA PIF1(c) 15.28c (0.30/129) 14.51d (0.26/183) 13.82cd (0.81/16) 0.0480 
BF1 PIF1(c) 3.45c (0.04/129) 3.33d (0.03/184) 3.34cd (0.10/16) 0.0337 
BF2 PIF1(c) 1.95c (0.03/129) 1.90cd (0.03/184) 1.70d (0.09/16) 0.0347 
ABF PIF1(c) 2.25c (0.03/129) 2.18d (0.02/184) 2.10cd (0.08/16) 0.0485 
pH24 DL 5.45c (0.07/40) 5.50d (0.01/134) 5.47cd (0.02/62) 0.0214 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 
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In DUPI, pigs bearing the genotype ‘GG’ had lower backfat thickness traits (ABF, BF2 

and BF3) than the heterozygous pigs (P<0.05). In addition, lower DRIP and SF were found 

in pigs with the ‘GG’ genotype compared to those with the ‘GT’ genotype in PI. In DL, the 

homozygous ‘GG’ animals had lower pH24 than the heterozygous animals (P<0.05). 

 

4.2.10 Association analysis of EGFR  

4.2.9.1 Genotype and allele frequencies of EGFR c.3543A>G 

The allele and genotype frequencies of EGFR c.3543A>G are shown in Table 49. EGFR 

c.3543A>G occurred in all pig populations with frequencies varying from 0.33 in DL to 

0.73 in PIF1(a). Moreover, the appearance of the heterozygous genotype was lower than 

expected in PI. Low frequencies of the homozygous ‘GG’ animals were observed in PI and 

PIF1(a,b,c) whereas in DUPI and DL, the homozygous genotype ‘AA’ occurred with low 

frequencies. From the three genotypes (‘AA’, ‘AG’ and ‘GG’), the ‘AA’ genotype was 

predominant in PI and PIF1(a), whereas in PIF1(b,c) the major genotype was the 

heterozygous ‘AG’. 

 

Table 49: Genotype and allele frequencies of EGFR c.3543A>G in pigs. 
Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=277) 0.18 0.58 0.23 0.48 0.52  
PI (n=215) 0.51 0.35 0.14 0.69 0.31 ** 
PIF1 (a) (n=279) 0.53 0.41 0.06 0.73 0.27 NS 
PIF1 (b) (n=305) 0.28 0.49 0.23 0.52 0.48 NS 
PIF1 (c) (n=290) 0.28 0.54 0.17 0.56 0.44 NS 
DL (n=252) 0.12 0.44 0.45 0.33 0.67 NS 

** P<0.001 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.10.2 The effects of EGFR c.3543A>G on phenotypic traits in pigs 

The effects of the EGFR c.3543A>G on different phenotypes are shown in Table 50.  In 

general, this SNP was related to various carcass fatness traits in DUPI. Results showed that 

the ‘G’ allele increased backfat thickness, especially in BF3 (P<0.01). Moreover, pigs 

carrying the ‘AA’ genotype appeared to have higher LEA compared to the ‘AG’ pigs 

(P<0.05). However, in PIF1(b) the heterozygous pigs had higher BF1 than the ‘GG’ pigs.  
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In addition, the meat of the animals having the ‘AA’ genotype had higher CON24 and 

lower OPTO values compared to the heterozygous animals in PIF1(a) and PI respectively, 

whereas in DUPI the meat of the heterozygous pigs appeared to have high THAW 

(P<0.05). 
 

Table 50: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across EGFR c.3543A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

LEA DUPI 52.38c (0.83/42) 49.96d (0.49/142) 50.15cd (0.69/59) 0.0321 
BF3 DUPI 1.19ac (0.06/42) 1.35abd (0.03/142) 1.48cb (0.05/59) 0.0011 
ABF DUPI 2.02c (0.05/42) 2.12cd (0.03/142) 2.19d (0.04/59) 0.0403 
THAW DUPI 8.04cd (0.41/42) 8.38c (0.28/142) 7.59d (0.35/59) 0.0461 
OPTO PI 71.35c (0.99/110) 73.70d (1.05/75) 71.37cd (1.39/30) 0.0330 
CON24 PIF1(a) 3.54a (0.17/147) 3.20b (0.18/111) 3.45ab (0.26/17) 0.0138 
BF1 PIF1(b) 2.99ab (0.05/86) 3.07a (0.04/148) 2.89b (0.05/71) 0.0117 
pH24 PIF1(b) 5.53c (0.01/86) 5.50d (0.01/148) 5.50d (0.01/71) 0.0475 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.11 Association analysis of VTN 

4.2.11.1 Genotype and allele frequencies of VTN c.154A>G 

The major allele of VTN c.154A>G across all commercial pig populations was the allele 

‘A’ whereas the ‘A’ allele was slightly lower than the ‘G’ allele in DUPI; therefore the 

homozygous genotype ‘AA’ or the heterozygous genotype ‘AG’ was more frequent than 

the homozygous genotype ‘GG’ in commercial populations, but in DUPI, the animals with 

the genotype ‘AA’ were least frequent.  In addition, the genotype distribution deviated 

from Hardy-Weinberg equilibrium in PIF1(b) (Table 51). 

 
Table 51: Genotype and allele frequencies of VTN c.154A>G in pigs. 

Genotype frequency Allele frequency Populations AA AG GG A G HWE 

DUPI (n=356) 0.19 0.53 0.28 0.46 0.54  
PI (n=222) 0.36 0.50 0.15 0.60 0.40 NS 
PIF1 (a) (n=292) 0.50 0.38 0.12 0.69 0.31 NS 
PIF1 (b) (n=291) 0.46 0.45 0.08 0.69 0.31 NS 
PIF1 (c) (n=313) 0.42 0.50 0.09 0.67 0.33 * 
DL (n=240) 0.57 0.37 0.07 0.75 0.25 NS 

* P<0.05 
NS = not significant HWE = Hardy-Weinberg equilibrium 
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4.2.11.2 The effects of VTN c.154A>G on phenotypic traits in pigs 

Table 52 represents the effects of VTN c.154A>G on the traits analyzed in PIF1(a,b,c) and 

DUPI. VTN c.154A>G was associated with ABF in DUPI; lower ABF was found in pigs 

with the ‘AA’ genotype and higher ABF was seen in ‘GG’ pigs (P<0.05). Moreover, 

several meat quality traits were found to be associated with this SNP by the change of the 

homozygous ‘AA’ to the heterozygous ‘AG’ genotype; the animals carrying the ‘AA’ 

genotype had lower muscle pH24 and COOK than the ‘AG’ animals in PIF1(a) and PIF1(b) 

respectively. In DUPI, the animals carrying the ‘AA’ genotype had highest OPTO and 

CON24. In addition, higher DRIP was found in ‘AA’ animals compared to ‘GG’ animals 

in PIF1(a) (P<0.05). Also, there seemed to be a tendency of low pH1 and CON1 values in 

heterozygous pigs compared to ‘GG’ and/or ‘AA’ pigs in PIF1(c) and DUPI.  

 

Table 52: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across VTN c.154A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

ABF DUPI 2.06c (0.04/63) 2.14cd (0.03/149) 2.18d (0.04/84) 0.0499 
CON1 DUPI 4.38cd (0.10/63) 4.23c (0.08/149) 4.43d (0.09/84) 0.0443 
CON24 DUPI 3.08c (0.11/63) 2.77d (0.08/149) 2.86cd (0.10/84) 0.0219 
OPTO DUPI 70.55c (0.90/63) 68.27d (0.75/149) 68.20d(0.87/84) 0.0143 
pH24 PIF1(a) 5.57a (0.02/145) 5.61b (0.02/112) 5.60ab (0.03/35) 0.0097 
DRIP PIF1(a) 2.10c (0.12/145) 1.87cd (0.12/113) 1.73d (0.16/35) 0.0122 
COOK  PIF1(b) 25.02c (0.22/133) 25.54d (0.22/136) 25.68cd (0.33/33) 0.0198 
pH1 PIF1(c) 6.17c (0.03/128) 6.09d (0.03/152) 6.25c (0.07/26) 0.0240 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.11.3 Genotype and allele frequencies of VTN c.156C>T 

Table 53 represents the genotype and allele frequencies of VTN c.156C>T. The data from 

all pig populations indicated that the major allele was the allele ‘T’, resulting in the 

heterozygous genotype ‘CT’ and the homozygous genotype ‘TT’ being more frequent than 

the homozygous genotype ‘CC’; especially in DUPI this genotype was not detected. A 

deviation from Hardy-Weinberg equilibrium was observed in PIF1(c). 
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Table 53: Genotype and allele frequencies of VTN c.156C>T in pigs. 
Genotype frequency Allele frequency Populations CC CT TT C T HWE 

DUPI (n=356) - 0.21 0.79 0.11 0.89  
PI (n=222) 0.15 0.50 0.36 0.40 0.60 NS 
PIF1 (a) (n=292) 0.12 0.38 0.50 0.31 0.69 NS 
PIF1 (b) (n=291) 0.08 0.45 0.46 0.31 0.69 NS 
PIF1 (c) (n=308) 0.07 0.48 0.45 0.31 0.69 * 
DL (n=240) 0.07 0.37 0.57 0.25 0.75 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.11.4 The effects of VTN c.156C>T on phenotypic traits in pigs 

For VTN c.156C>T, only two genotypes (‘CT’ and ‘TT’) were detected in DUPI, whereas 

the ‘CC’ genotype was seen in the other populations. The different genotypes of this SNP 

had effects on several carcass and meat quality traits. In DUPI, the results showed that BF2 

is dependent on the genotype, the ‘TT’ pigs producing higher carcass fatness and lower 

leanness. For meat quality traits, the ‘TT’ pigs also had lower pH24 and COOK compared 

to ‘CT’ pigs in PIF1(a) and PIF1(b). On the other hand, the ‘T’ carriers had increased pH1 

and DRIP in DUPI and PIF1(a) respectively (Table 54).  

 

Table 54: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across VTN c.156C>T in pigs 
Least square means (LSM) (SE/n) Traits Populations CC CT TT P-value 

pH24 PIF1(a) 5.60cd (0.03/35) 5.61c (0.02/111) 5.57d (0.02/146) 0.0160 
DRIP PIF1(a) 1.73c (0.16/35) 1.88cd (0.12/112) 2.10d (0.12/146) 0.0160 
COOK PIF1(b) 25.72cd (0.39/24) 25.53c (0.23/138) 25.04d (0.22/140) 0.0325 
MFR DUPI - 0.32c (0.010/66) 0.34d (0.006/230) 0.0394 
BF2 DUPI - 1.56c (0.05/66) 1.66d (0.03/230) 0.0456 
pH1 DUPI - 6.50c (0.03/66) 6.57d (0.02/230) 0.0271 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 
4.2.11.5 Diplotype and haplotype frequencies of VTN  

When combining two SNPs to construct a haplotype, three haplotypes were segregating in 

DUPI (b) and PIF1(c), whereas in the other populations only two haplotypes could be 

found (Table 55). The major haplotype across all populations was ‘AT’, being named ‘H1’, 
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whose frequencies varied from 0.45 in DUPI to 0.75 in DL. Five diplotypes were found in 

DUPI and PIF1(c) whereas the other populations contained only three diplotypes. In 

commercial pigs, the diplotypes ‘H1/H1’ or ‘H1/H2’ were the major diplotypes whereas in 

DUPI, the main diplotype was ‘H1/H3’. 

 

Table 55: Diplotype and haplotype frequencies of the VTN gene in pigs 
Haplotype DUPI 

(n=138) 
PI  

(n=229) 
PIF1(a) 
(n=284) 

PIF1(b) 
(n=305) 

PIF1(c) 
(n=332) 

DL  
(n=266) 

AT [H1] 0.45 0.60 0.69 0.69 0.66 0.75 
GC [H2] 0.11 0.40 0.31 0.31 0.31 0.25 
GT [H3] 0.44 - - - 0.03 - 

Diplotypes       
H1/H1 0.19 0.36 0.50 0.46 0.42 0.57 
H1/H2 0.12 0.49 0.38 0.45 0.45 0.37 
H1/H3 0.41 0.15 0.12 0.08 0.04 0.07 
H2/H2 - - - - 0.07 - 
H2/H3 0.09 - - - 0.02 - 
H3/H3 0.19 - - - - - 

 

4.2.11.4 The effects of VTN haplotypes on phenotypic traits in pigs 

The effects of the VTN haplotype on the phenotype are shown in Table 56. The association 

between haplotype and phenotype traits confirmed the results described in the previous 

sections indicating that VTN has a significant relation with some traits. For example pH1, 

DRIP and COOK. In DUPI, the diplotype ‘H1/H3’ provided highest fatness (BF2 and FA) 

and also provided highest MFR and pH1. Moreover, the diplotype ‘H1/H1’offered lowest 

pH24 and COOK in PIF1(a and b) but associated with highest DRIP in PIF1(a). 
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Table 56: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across haplotypes of VTN in pigs 
BF2 MFR FA pH1 pH24 DRIP COOK  DUPI DUPI DUPI DUPI PIF1(a) PIF1(a) PIF1(b) 

H1/H1 1.60c 
(0.04/68) 

0.33cd 
(0.01/68) 

16.27cd 
(0.35/68) 

6.53c 
(0.03/68) 

5.57c 
(0.02/145) 

2.11c 
(0.12/145) 

25.02c 
(0.22/133) 

H1/H2 1.59cd 
(0.05/44) 

0.31c 
(0.01/44) 

15.79c 
(0.42/44) 

6.50c 
(0.03/44) 

5.61d 
(0.02/111) 

1.88cd 
(0.12/112) 

25.53d 
(0.23/129) 

H1/H3 1.71d 
(0.03/146) 

0.34d 
(0.01/146) 

16.85d 
(0.27/146) 

6.59d 
(0.02/146) - - - 

H2/H2 - - - - 5.60cd 
(0.03/35) 

1.73d 
(0.16/35) 

25.71cd 
(0.39/24) 

H2/H3 1.54c 
(0.06/32) 

0.32cd 
(0.01/32) 

15.75c 
(0.50/32) 

6.51c 
(0.04/32) 

- - - 

H3/H3 1.66cd 
(0.04/66) 

0.34cd 
(0.01/66) 

16.79cd 

(0.35/66) 
6.56cd 

(0.03/66) 
- - - 

P-value 0.0031 0.0294 0.0483 0.0331 0.0123 0.0134 0.0262 
c-d P<0.05, a-b P<0.01 
Within columns, values with the same letter are not significantly different 

 

4.2.12 Association analysis of ZYX 

4.2.12.1 Genotype and allele frequencies of ZYX c.279C>T 

Allele and genotype frequencies of ZYX c.279C>T are shown in Table 57. In general, the 

‘C’ allele was a major allele resulting in the homozygous genotype ‘CC’ being more 

frequent than the genotypes ‘CT’ and ‘TT’ respectively. However, in F1 the frequency of 

heterozygous animals was higher than that of the homozygous ‘CC’ animals and the 

genotype distribution was not in Hardy-Weinberg equilibrium because the number of 

heterozygous animal was higher than expected (P<0.05). 

 

Table 57: Genotype and allele frequencies of ZYX c.279C>T in pigs. 
Genotype frequency Allele frequency Population CC CT TT C T HWE 

PIF1 (n=300) 0.68 0.29 0.03 0.83 0.17 NS 
DL (n=192) 0.55 0.38 0.07 0.74 0.26 NS 
F1 (n=188) 0.43 0.51 0.07 0.68 0.32 * 
PI (n=190) 0.80 0.18 0.02 0.89 0.11 NS 

* P<0.05 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
4.2.12.2 The effects of ZYX c.279C>T on phenotypic traits in pigs 
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The association analysis of c. 279 C>T for carcass traits revealed significant associations 

with various measures of carcass fat as well as pH24 and OPTO in PI (Table 58). 

Significant differences were only found between the homozygous `CC´ and the 

heterozygous `CT´ genotypes, whereas the rare homozygous genotype `TT´ was not 

significantly different. The genotype `CC´ was associated with higher backfat thickness as 

well as higher pH24 and OPTO value in PI. 

 

Table 58: Least square means (LSM) and standard errors (SE) for meat quality and carcass 

traits across ZYX c.279C>T in pigs 
Least square means (LSM) (SE/n) Traits Population CC CT TT P-value 

BF1 PI 3.11c (0.05/152) 2.86d (0.09/35) 2.92cd (0.25/3) 0.0265 
BF2 PI 1.51a (0.03/152) 1.34b (0.05/35) 1.17ab (0.15/3) 0.0037 
BF3 PI 0.88c (0.03/152) 0.73d (0.05/35) 0.81cd (0.14/3) 0.0158 
ABF PI 1.83a (0.03/152) 1.64b (0.05/35) 1.65ab (0.15/3) 0.0023 
OPTO PI 63.61c (0.86/152) 59.48d (1.45/35) 57.74cd (3.98/3) 0.0223 
pH24 PI 5.51c (0.01/152) 5.46d (0.02/35) 5.42cd (0.05/3) 0.0194 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.12.3 Genotype and allele frequencies of ZYX c.399A>G 

Table 59 represents the genotype and allele distribution of ZYX c.399A>G. The presence 

of the allele ‘A’ was higher than that of the allele ‘G’ across all populations varying from 

0.78 in F1 to 0.93 in PI, resulting in the homozygous genotype 'AA' being more frequent 

than the genotypes ‘AG’ and ‘GG’. However, a genotype distribution that fit Hardy-

Weinberg equilibrium was detected only in PIF1. 

 

Table 59: Genotype and allele frequencies of ZYX c.279C>T in pigs. 
Genotype frequency Allele frequency Population AA AG GG A G HWE 

PIF1 (n=300) 0.67 0.25 0.09 0.79 0.21 NS 
DL (n=192) 0.87 0.04 0.09 0.89 0.11 *** 
F1 (n=188) 0.70 0.16 0.14 0.78 0.22 *** 
PI (n=190) 0.89 0.09 0.02 0.93 0.07 *** 

*** P<0.001 
NS = not significant HWE = Hardy-Weinberg equilibrium 
4.2.12.4 The effects of ZYX c.399A>G on phenotypic traits in pigs 
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Significant associations of the SNP c.399A>G are displayed in Table 60. The homozygous 

genotype of the minor allele `G´ is associated with significant higher least square means of 

fat measures (FA, BF3 and ABF) in DL. 

 

Table 60: Least square means (LSM) and standard errors (SE) for carcass traits across 

ZYX c.399A>G in pigs 
Least square means (LSM) (SE/n) Traits Population AA AG GG P-value 

FA DL 20.38c (0.41/159) 21.91cd (1.11/8) 22.43d (0.82/16) 0.0259 
BF3 DL 1.68c (0.05/159) 1.85cd (0.15/8) 1.95d (0.11/16) 0.0294 
ABF DL 2.36c (0.05/159) 2.55cd (0.12/8) 2.55d (0.09/16) 0.0328 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.12.5 Genotype and allele frequencies of ZYX c.522A>G 

In Table 61 the frequencies of alleles and genotypes for ZYX c.522A>G are shown. In all 

populations, the ‘A’ allele occurred with low frequency (0.03-0.24), resulting in the 

frequency of animals having the ‘AA’ genotype also being low (0.00-0.11). In general, the 

appearance of the homozygous genotype ‘GG’ was more frequent than that of the 

heterozygous genotype ‘AG’ and the homozygous genotype ‘AA’. Moreover, only in 

PIF1(b) and PI were the genotype distributions in Hardy-Weinberg equilibrium. 

 

Table 61: Genotype and allele frequencies of ZYX c.522A>G in pigs. 
Genotype frequency Allele frequency Population AA AG GG A G HWE 

PIF1 (n=300) 0.08 0.34 0.59 0.24 0.76 NS 
DL (n=192) 0.06 0.07 0.87 0.10 0.90 *** 
F1 (n=188) 0.11 0.21 0.68 0.21 0.79 *** 
PI (n=190) - 0.07 0.93 0.03 0.97 NS 

*** P<0.001 
NS = not significant 
HWE = Hardy-Weinberg equilibrium 
 

4.2.12.6 The effects of ZYX c.522A>G on phenotypic traits in pigs 

The effects of ZYX c.522A>G on carcass traits are displayed in Table 62. The results 

confirmed the effects from c.399A>G but this SNP shows a higher level of significance. 
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The homozygous genotype ‘AA’ is associated with significantly higher least square means 

of fat measures (FA, MFR, ABF and BF3) in DL. 

 

Table 62: Least square means (LSM) and standard errors (SE) for carcass traits across 

ZYX c.522A>G in pigs 
Least square means (LSM) (SE/n) Traits Populations AA AG GG P-value 

FA DL 23.71a (0.96/10) 19.36b (0.88/12) 20.41b (0.38/144) 0.0012 
MFR DL 0.58a (0.03/10)  0.43b (0.03/12) 0.48b (0.01/144) 0.0013 
BF3 DL 2.22a (0.12/10) 1.56b (0.08/12) 1.69b (0.04/144) 0.0001 
ABF DL 2.73a (0.11/10) 2.28b (0.10/12) 2.36b (0.04/144) 0.0016 
c-d P<0.05, a-b P<0.01 
Within rows, values with the same letter are not significantly different 

 

4.2.12.7 Diplotype and haplotype frequencies of ZYX  

After combining three SNPs to construct a haplotype, two to four haplotypes were 

segregating across the populations. In detail, in DL, only two haplotypes segregated (H1 

and H4), three haplotypes, including H1, H3 and H4 segregated in PI, whereas in F1 and 

PIF1 four haplotypes (H1, H2, H4 and H5) could be detected. Moreover, different 

diplotype frequencies were observed across all populations. In general, the diplotype 

‘H1/H1’ was the major diplotype found in PIF1, DL and PI, whereas in F1 the diplotype 

‘H1/H4’ was more frequent than the other diplotypes (Table 63). 
 

Table 63: Diplotype and haplotype frequencies of ZYX in pigs. 
Haplotype PIF1 (n=300) DL (n=192) F1 (n=188) PI (n=190) 
CAG [H1] 0.66 0.76 0.55 0.82 
CGA [H2] 0.16 - 0.10 - 
CGG [H3] - - - 0.07 
TAG [H4] 0.13 0.24 0.23 0.11 
TGA [H5] 0.05 - 0.12 - 
Diplotypes     

H1/H1 0.61 0.52 0.29 0.71 
H1/H3 - - - 0.10 
H1/H4 0.29 0.42 0.54 0.19 
H2/H2 0.04 - - - 
H2/H5 0.06 - 0.12 - 
H4/H4 - 0.06 0.05 - 
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4.2.12.8 The effects of the ZYX haplotype on phenotypic traits in pigs 

The analysis of the ZYX haplotypes revealed some significant associations with carcass 

and meat quality traits that are displayed in Table 64. In PIF1, animals having the 

diplotypes ‘H1/H1’ or ‘H1/H4’ had lower pH24 than the ‘H2/H2’ animals, and the ‘H1/H’ 

animals also had lower DRIP than the ‘H2/H5’ animals. Moreover, lower fat measures 

(ABF and BF2) and were associated with the diplotype ‘H1/H4’ in PI. The diplotype 

‘H1/H4’ provided highest LEA in PI. 

 

Table 64: Least square means (LSM) and standard errors (SE) for carcass traits across 

haplotypes of ZYX in pigs 
 pH24 DRIP LEA ABF BF2 
 PIF1 PIF1 PI PI PI 
H1/H1 5.50c (0.01/94) 2.47c (0.19/94) 59.65c (0.68/110) 1.81c (0.04/110) 1.48cd (0.04/110) 
H1/H3 - - 58.33c (1.48/15) 1.82cd (0.08/15) 1.60c (0.08/15) 
H1/H4 5.50c (0.01/45) 2.60cd (0.23/45) 63.38d (1.18/30) 1.61d (0.07/30) 1.33d (0.07/30) 
H2/H2 5.60d (0.03/6) 2.37cd (0.52/6) - - - 
H2/H5 5.51cd (0.03/9) 3.84d (0.45/9) - - - 
P-value 0.0191 0.0365 0.0097 0.0247 0.0326 
c-d P<0.05, a-b P<0.01 
Within columns, values with the same letter are not significantly different 

 

4.3 Genetic mapping 

Twenty eight full-sib families of the DUPI resource population were used for genetic 

mapping. Assignments of these twelve genes resulting from the two-point linkage analysis 

are shown in Table 65, together with the proximal and distal linked markers, LOD scores, 

and recombination fractions. BVES was assigned to SSC1, between the markers S0312 

and SW2166. The result showed that three candidate genes, including SLC3A2, AHNAK 

and ZDHHC5, are located closely together on SSC2 in between the markers SW2623 and 

SW240. Another three candidate genes (CS, LYZ and KERA) were assigned to SSC5. 

COQ9 mapped to SSC6 between the markers S0035 and S0087. UN was assigned to SSC7 

between the markers SW175 and S0115. In addition, EGFR is close to marker S0295. The 

assignment of VTN revealed its location on SSC12 in between the markers SW874 and 

SW605. Finally, ZYX was mapped to SSC18 between the markers SY4 and SW1808. 
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Table 65: Genetic mapping results 
Gene SSC. Proximal 

linked 
loci 

Rec. 
fraction 

LOD Kosambi 
cM 

Distal 
linked 
loci 

Rec. 
fraction 

LOD Kosambi 
cM 

BVES 1 S0312 0.01 54.67 1.40 SW2166 0.21 7.88 20.9 
SLC3A2 2 SW2623 0.11 11.30 12.4 AHNAK 0.02 19.32 2.1 
AHNAK 2 SLC3A2 0.02 19.32 2.1 ZDHHC5 0.10 15.31 9.9 
ZDHHC5 2 AHNAK 0.10 15.31 9.9 SW240 0.11 22.87 14.0 
CS 5 SWR453 0.11 5.73 9.0 SW2425 0.08 9.01 6.0 
LYZ 5 S0092 0.13 23.0 9.7 SW1134 0.05 7.09 4.6 
KERA 5 SW1954 0.07 36.41 7.2 SW967 0.18 14.21 17.5 
COQ9 6 S0035 0.21 4.00 31.8 S0087 0.19 6.25 27.5 
UN 7 SW175 0.11 29.76 11.4 S0115 0.15 17.67 17.2 
EGFR 9 S0295 0.38 0.26 43.6 - - - - 
VTN 12 SW874 0.25 3.71 28.7 SW605 0.17 4.49 17.9 
ZYX 18 SY4 0.03 61.25 2.4 SW1808 0.15 7.42 8.5 
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5. Discussion 

 

In this study, candidate genes were derived from their expression profiles determined in 

previous studies (Ponsuksili et al. 2008a,b); a shortlist of twelve genes was selected based 

on known function of the particular gene and/or its map position, giving preference to 

those genes located in QTL regions for meat quality traits. Up to date, many groups have 

used this strategy (functional genomic approach) for seeking candidate genes in different 

fields. For example, carcass and meat quality traits in pigs (Ponsuksili et al. 2005; 

Wimmers et al. 2007; Li et al. 2008), levels of androstenone in boars (Moe et al. 2008), 

immune responsiveness in pigs (Ponsuksili et al. 2008c), splay leg syndrome in piglets 

(Maak et al. 2009), anabolic agents responsiveness in heifers (Reiter et al. 2007) and 

nutrient transformation in cattle (Schwerin et al. 2006). Whereas other research groups 

have selected candidate genes based only on a physiologic basis and/or previously 

identified QTL regions, this approach may be difficult in the process of choosing specific 

genes from numbers of potential candidates for complex traits. In general, important 

biologic features of traits are directly reflected by transcript patterns, therefore the study of 

gene expression profiles can contribute to a better understanding of the molecular 

architecture and discover the detailed clues candidate genes provide for complex traits such 

as meat quality. Previously, expression profiles of the M. longissimus dorsi were compared 

between groups of animals exhibiting extreme differences in DRIP or pH24. The various 

techniques of expression profiling revealed a number of genes with phenotype-associated 

differential expression and provided functional categories of differentially regulated 

transcripts. The transcripts being up-regulated at high drip loss belong to groups of genes 

functionally categorized as genes of membrane proteins, signal transduction, cell 

communication, response to stimulus and cytoskeleton. Among genes down-regulated at 

high drip loss, the functional groups of oxidoreductase activity, lipid metabolism, and 

electron transport were identified. Therefore, six candidate genes (VTN, UN, LYZ, KERA, 

AHNAK and ZYX) were selected for further analysis in this study. The microarray 

expression levels of VTN and UN were down-regulated, LYZ, AHNAK and ZYX were 

up-regulated at high drip loss, whereas KERA was up-regulated at pH24 (Ponsuksili et al. 
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2008a). On the other hand, another six candidate genes (BVES, SLC3A2, ZDHHC5, CS, 

COQ9, EGFR) analysed in this study arise from their expression being correlated with 

water holding capacity (WHC). Previously, the expression analysis of M. longissimus 

dorsi-RNAs of 74 F2-animals of a DUPI resource population showed 1,279 transcripts 

whose expression data were correlated with WHC. Negatively correlated transcripts were 

enriched in functional categories and pathways like extracellular matrix receptor 

interaction and calcium signalling. Transcripts with positive correlation dominantly 

represented biochemical processes including oxidative phosphorylation, mitochondrial 

pathways, as well as transporter activity. BVES, SLC3A2, CS, ZDHHC5 and COQ9 

revealed negative correlation with drip loss (r = -0.81, -0.43, -0.38, -0.49 and -0.47 

respectively; P≤0.001). EGFR and AHNAK showed positive correlation with drip loss (r = 

0.66 and 0.53; P<0.0001) (Ponsuksili et al. 2008b).  Thus these genes were used for further 

analyses, including identifying polymorphic sites, genotyping and mapping in order to 

evaluate their potential role as functional and/or positional candidate genes for carcass and 

meat quality, especially water holding capacity.  

 

5.1 SNP detection 

The polymorphism analysis of PCR fragments obtained from cDNA of twelve candidate 

genes, that were on average 654 bp in length, revealed an average of one polymorphic site 

per 361 bp. Almost all polymorphisms  were situated in coding regions, some SNPs were 

also detected in the 3’UTRs of CS, EGFR, COQ9 and ZDHHC5.  Fahrenkrug et al. (2002) 

detected one SNP per 184 bp in porcine ESTs, while Jungerius et al. (2003) found one 

SNP per 108 bp in coding and non-coding porcine genomic sequences. Moreover, 

Nonneman and Rohrer (2002) detected one SNP per 120 bp of non-coding sequence, while 

Sawera et al. (2000) detected one SNP per 220 bp in transcribed regions. The difference in 

numbers of the detected SNPs might be due to the differences in the panel of animals used 

to detect polymorphisms. In this study, a small number of commercially relevant breeds 

were used to detect SNPs including one animal each of the breeds Pietrain, German Large 

White and German Landrace. Most of the polymorphisms detected here were found to be 

segregating in the commercial populations. Twenty-two out of 38 polymorphisms were 
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selected for genotyping based on suitability of the surrounding sequences to design primers, 

position in regions with potential function, exon-intron structure and preference for those 

causing amino acid exchange. 

 

5.2 Association analysis of candidate genes 

5.2.1 The analysis of BVES 

Blood vessel epicardial substance (BVES) is a membrane protein that is widely expressed 

throughout development and adulthood in several tissues including skeletal muscle. BVES 

is the prototypical member of the Popeye domain containing (popdc) gene family (Andrée 

et al. 2000; Smith and Bader, 2006). Structurally, it comprises a short intracellular N-

terminus, three transmembrane helices that are necessary for membrane insertion and a 

long extracellular C-terminal domain. While BVES has a highly conserved primary amino 

acid sequence among different species, there are no studies identifying any protein domain 

linked to any molecular or cellular function. Functionally, BVES plays a role at cell 

junctions to establish and/or modulate cell adhesion or cell-cell interactions in epithelial 

cell types in a Ca2+-independent manner (Wada et al. 2001; Osler et al. 2005; Lin et al. 

2007). It has been known that a proteolytic degradation of several cell adhesion proteins 

takes place post mortem which is linked with the generation of drip channels (Huff-

Lonergan and Lonergan, 2005). The present study revealed an association of BVES to BF3 

and drip loss in PIF1(b), while an effect on pH24 was found in DUPI. A significant 

additive effect was observed for DRIP, while for BF3 a significant dominance effect was 

revealed. The location of BVES also supports these findings, since the gene is located on 

SSC1 (between marker S0312 and SW2166) in a region containing QTL for loin eye area 

and average backfat thickness in Berkshire x Yorkshire resource population (Thomsens et 

al. (2004). Moreover, QTL areas for carcass fatness traits (BF1, BF2, BF3 and ABF), meat 

color (OPTO), pH and conductivity (CON24) were detected in DUPI population (Liu et al. 

2007) (Figure 15).  
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Figure 15: The location of BVES on SSC1  
(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 

 

5.2.2 The analysis of SLC3A2 

The SLC3A2 (solute carrier family 3, member 2) gene is a member of the solute carrier 

family and encodes a cell surface transmembrane protein. Functionally, it plays a 

significant role in regulating integrin-mediated functions and regulates amino acid 

transport (Palacin and Kanai, 2004; Feral et al. 2005). SLC3A2 is reported as a cis-

regulated functional positional candidate gene for drip loss (r = -0.43) (Ponsuksili et al. 

2008b). In this study, two polymorphisms of SLC3A2 were studied. The first was a SNP at 

position 1326 (c.1326A>G) relative to the start codon, This SNP did not affect the protein 

sequence. However, effects on some carcass traits (MFR and BF3) were found in PIF1(b) 



Discussion 77

and DL. A significant dominance effect was found for BF3. Another polymorphism of 

SLC3A2 was the insertion/deletion of the three nucleotides “AGC” at position 1336 

(c.1336Indel[AGC]), where the deletion resulted in one amino acid “Serine” being 

removed from the protein sequence at position 446 (p.Ser446-) in the area of the conserved 

domain for trehalose synthase (TreS). The SLC3A2 mutation c.1336Indel[AGC] may 

interfere with the glycogen metabolism, since the TreS plays a key role in the utilization of 

trehalose for the production of glycogen (Pan et al. 2008). The association study of 

c.1336Indel[AGC]) showed associations with several traits related to carcass fatness in PI, 

PIF1(a,b) and DL. The effect on ABF is consistent in several breeds, where the ‘DD’ 

genotype provide higher backfat (PI, PIF1(a,b)). A significant dominance effect was found 

for ABF in PI, while additive effects for ABF were found in PIF1(a,b), the ‘D’ was 

associated with an increase in ABF. For meat quality, effects on water binding properties 

(DRIP, THAW, COOK) were found in PIF1(a,b) and DL. The ‘D’ decreased COOK and 

DRIP in PIF1(a) and DL respectively, whereas in PIF1(b) it was associated with an 

increase in THAW. Effects on pH and CON1 were found in PIF1(b) and PIF1(c) 

respectively. Significant dominance effects were found for pH1 and CON1 in PIF1(b) 

PIF1(c) respectively, while significant additive effects were detected for SF and pH24 in 

PIF1(a) and PIF1(b) respectively. The association of the ‘DD’ genotype with both high 

backfat and high water holding capacity in this study is in agreement with the general 

overall findings by Huff-Lonergan et al. (2003), who reported a positive relationship 

between these two traits. Comparative mapping revealed that pig chromosome 2 (SSC2) 

(Figure 16) shares homology with human chromosome 11 (HSA11). Moreover, SLC3A2 

was genetically assigned to SSC2 (in accordance with the localization of human SLC3A2 

to HSA11q13), where a number of QTL areas were reported, e.g. for backfat thickness 

(DUPI population; Liu et al. 2007, 2008; Berkshire x Yorkshire population, Thomsen et al. 

2004), loin eye area (Thomsen et al. 2004), and drip loss (Berkshire x Yorkshire, Malek et 

al. 2001; commercial population; van Wijk et al. 2006) and pH24 (Meishan x Pietrain 

population; Lee et al. 2003). 
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5.2.3 The analysis of AHNAK 

AHNAK, a 700 kDa protein, is expressed in a variety of cells and has been implicated in 

different cell-type-specific functions (Gentil et al. 2001; Borgonovo et al. 2002; Haase et al. 

2004). In muscle cells, AHNAK is localized at the sarcolemma membrane and T-tubules 

(Gentil et al. 2003). Recently, the carboxyl-terminal AHNAK domain was identified to 

link the Ca2+ channels to the actin-based cytoskeleton (Hohaus et al. 2002) and to exert a 

stabilizing effect on muscle contractility via its interaction with the actin of the thin 

filaments (Haase et al. 2004). Moreover, AHNAK is an activator for phospholipase C-γ 

(PLC-γ), an enzyme in cellular signal transduction involved in cell growth, proliferation 

and metabolism. (Lee et al. 2004). The activation of PLC-γ mediates several cellular 

responses, including cytoskeletal rearrangements that lead to protection of the plasma 

membrane in response to mechanical stress (Ryan et al. 2000; Ruwhof et al. 2001). 

AHNAK play a role in membrane repair process through interaction with partner proteins, 

including the annexin2/S100A10 complex and dysferlin (Huang et al. 2007) Therefore, 

AHNAK is an abundant muscular protein with possible important functions associated 

with structural support of the plasma membrane. The study in human muscle biopsies 

revealed that expression of AHNAK was associated with low maximal oxygen uptake 

(Vo2max), increased with aging, and decreased with exercise training. AHNAK thus seems 

to reflect poor muscle fitness (Parikh et al. 2008). It has been known that a high proportion 

of type 1 fibers (slow-twitch muscle fibers) is associated with a high Vo2max (Matolin et al. 

1994). This opens up the interesting implication that AHNAK could also represent a link to 

micro-structure of muscle and finally meat quality. Microarray analysis and qPCR showed 

that AHNAK was up-regulated in the high drip loss group (Ponsuksili et al. 2008a). In this 

study, all five SNPs were related with carcass traits, especially LEA, ABF and BF3. FA, 

MFR, BF1 and ABF were highly significant with the SNP c.13014G>T (P<0.001). The 

SNP c.12907A>G was also highly associated with MFR (P<0.001). Moreover, almost all 

meat quality traits except SF were associated with AHNAK. In particular, the trait DRIP 

was associated with the SNPs c.13014G>T and c.13281A>G (P<0.05). The AHNAK 

effects on carcass and meat quality traits are mainly additive effect for example the ‘G’ 

allele of SNP c.13014G>T or the ‘G’ allele of c.13281A>G decreased both carcass fatness 
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and DRIP in DUPI. Interestingly, the association of ‘GG’ genotype of both SNPs 

c.13014G>T and c.13281A>G with both low DRIP and low ABF in DUPI population are 

in contrast with the general findings that reported a negative relationship between these 

two traits (Huff-Lonergan et al. 2003; Ponsuksili et al. 2009). The AHNAK haplotype 

showed associations mainly to carcass traits, the most pronounced of all effects was found 

on MFR (P<0.001). Moreover, AHNAK is located on SSC2 (Figure 16) in accordance 

with the localization of human AHNAK to HSA11q12 (Kudoh et al. 1995), in a QTL 

region for drip loss. The QTL for drip loss in this region was found in other studies (DUPI 

population; Liu et al. 2007, 2008, Berkshire x Yorkshire population; Malek et al. 2001, 

commercial population; van Wijk et al. 2006). The correlation between drip loss and 

AHNAK is high (r = 0.53; P<0.0001) and the eQTL for AHNAK indicates a cis-acting 

mode of regulation with genome-wide significance (LOD score = 6.4; F = 18.2) 

(Ponsuksili et al. 2008b). Moreover, QTL for loin eye area (Thomsen et al. 2004) and 

pH24 (Meishan x Pietrain population; Lee et al. 2003) were reported. 

 

5.2.4 The analysis of ZDHHC5 

The zinc finger, DHHC domain containing 5 (ZDHHC5) gene is a member of the ZDHHC 

gene family, at least 24 members have been identified in mammalian genome (Fukata et al. 

2004), which encodes palmitoyl acyltransferase enzymes (PATs), the enzymes responsible 

for protein palmitoylation (Roth et al. 2002; Fukata et al. 2004). It has been known that 

protein function is affected by its expression level, localization, interaction with other 

proteins, and its posttranslational modifications. Many proteins can be modified by 

palmitolation on cysteine residues. Palmitoylation serves a number of important biological 

roles including affect on the localization, trafficking, degradation of a protein and activity 

of many signaling proteins (Draper and Smith, 2009; Leong et al. 2009), protein stability, 

as well as protein-protein and protein-lipid interaction (Dunphy and Linder, 1998; Resh, 

1999; Putilina et al. 1999). The study revealed an association of ZDHHC5 c.1803C>T to 

COOK in PI and DUPI, BF1 in PIF1(b), OPTO in PIF1(c) and DRIP in DL. The other 

effects on MFR and FA were found in DUPI. In particular, the ZDHHC5 c.1803C>T was 

highly associated with drip loss (P = 0.0004), the homozygous genotype ‘CC’ animals had 
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lower DRIP than the heterozygous animals in DL. Previously, the negative correlation 

between drip loss and ZDHHC5 expression in DUPI was reported (r = -0.49) (Ponsuksili et 

al. 2008b). ZDHHC5 was mapped on SSC2 closed to AHNAK (Figure 16), coinciding 

with QTL areas for backfat thickness, loin eye area (DUPI population; Liu et al. 2007, 

2008, Berkshire x Yorkshire; Thomsen et al. 2004), drip loss (Liu et al. 2007, 2008, 

Berkshire x Yorkshire population; Malek et al. 2001, commercial population; van Wijk et 

al. 2006) and pH24 (Meishan x Pietrain (MP) population; Lee et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: The location of SLC3A2, AHNAK and ZDHHC5 on SSC2 
(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 
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5.2.5 The analysis of CS 

Citrate synthase (CS) is a key regulator of aerobic energy production in cells; it is an 

enzyme in the mitochondrial matrix. Functionally, it catalyzes the condensation of Acetyl-

CoA and oxaloacetate to citrate and CoA in the first step of the citric acid cycle. CS 

activity was measured to determine the relationship between fiber composition and muscle 

oxidative capacity (Chaudhary et al. 1992; Delp and Duan, 1996; Papinaho et al. 1996; 

Kohn et al. 2005). Mattson et al. (2002) showed that activity of CS in hamster skeletal 

muscle was strongly correlated with muscle fiber types in the rank order of type IIA (r = 

0.68; P<0.001), type I (r = 0.44; P<0.018) and type IIB (r = -0.55; P = 0.002), similar to the 

rat (Delp and Duan, 1996). Henckel et al. (1997) reported that the activity of CS was 

positively correlated with lean meat content, muscle capillarity and heme pigment in M. 

longissimus dorsi of Danish Landrace and Yorkshire pigs. Moreover, a study in bulls 

revealed that CS activity in “red” muscle (supraspinatus) was higher than “white” or “mix” 

muscles (semitendinosus and longissimus dorsi) (Vestergaard et al. 2000). A study in 

turkeys and pigs showed that slow-growing animals had higher CS activity than fast-

growing animal as well as “red” muscle had higher CS activity than “white” muscle. Also 

the “white” muscle showed a rapid pH decline shortly after slaughter (Oksbjerg et al. 2000; 

Werner et al. 2005).  Recently, a study in bulls from three breeds (Belgian Blue, Limousin 

and Aberdeen Angus) revealed that the bulls with the highest drip loss (Belgian Blue bulls), 

also had the lowest CS activity (Cuvelier et al. 2006). Strong CS activity might help to 

maintain the quality of meat in terms of water-holding capacity indirectly by maintaining 

the amount of ATP in muscle during the early postmortem stage and lowering the rate of 

pH decline (Huff-Lonergan and Lonergan 2005). Therefore, the gene encoding the CS 

protein may take part in controlling meat quality. Previously, the study of gene expression 

profiles in pig muscle revealed that CS had negative correlation with drip loss (r = -0.38; 

P≤0.001) (Ponsuksili et al. 2008b), indicates that pig’s muscle with high aerobic 

metabolism (or high CS expression) relates to low drip loss.  In this study, we observed 

associations of CS with LEA in PI, DRIP in PIF1(a), FA in PIF1(b), pH1 and CON1 in 

PIF1(c), BF3 and ABF in DL. The relationship of the CS polymorphism to loin eye area or 

fat area traits in pigs is not unexpected, base on the reported role of CS in muscle fiber 
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composition. Under physiological conditions, the number of capillaries per fiber is 

positively correlated to fiber diameter, indicating a proliferation of capillaries to 

compensate for fiber hypertrophy (Wang et al. 1993). Positive correlation between the 

activity of citrate synthase and the number of capillaries was found by Henckel et al. 

(1997). Moreover, the CS gene was mapped to pig chromosome 5p12-p13 (Chaudhary et 

al. 1992) in the QTL regions (Figure 17) for pH24 (commercial population; Harmegnies et 

al. 2006), drip loss (Berkshire x Yorkshire population; Thomsen et al. 2004) and backfat 

thickness (Meishan x Large White; Milan et al. 2002) 

 

5.2.6 The analysis of LYZ 

Lysozyme (LYZ) was mapped to pig chromosome 5p11 (Chaudhary et al. 1997) which has 

been confirmed by our genetic mapping result (Figure 17). The location of LYZ coincides 

with QTL regions for QTL for pH24, meat color (commercial population; Harmegnies et al. 

2006) and drip loss (Berkshire x Yorkshire population; Thomsen et al. 2004). A QTL for 

conductivity at 24 hour p.m. is also located downstream nearby this area (Meishan x 

Pietrian population; Lee et al. 2003). LYZ belongs to a family of enzymes which damage 

bacterial cell walls by catalyzing the hydrolysis of the β-(1,4)-glycosidic linkage between 

n-acetylglucosamine and the muramic acid of the peptidoglycan layer. LYZ displays 

antimicrobial, antitumoral and immunomodulatory properties, which have been 

extensively studied (Ibrahim et al. 2001; Gorbenko et al. 2007). However, the function of 

LYZ relating to meat quality is poorly understood. As previously published, the expression 

level of LYZ in M. longissimus dorsi was up-regulated in the high drip loss group (fold 

change 1.70; P = 0.04) (Ponsuksili et al. 2008a). The study of the cellular model for 

induction of drip loss in meat by Lambert et al. (2001) showed that anoxia/ischemia, which 

represents the situation in muscle cells upon slaughter, may lead to drip loss. 

Anoxia/ischemia is characterized by an increased concentration of cellular free Ca2+, cell 

swelling and an elevated production of reactive oxygen species (ROS), which affects the 

muscular content of osmolytes and cell water. Sanoudou et al. (2004) reported that 

antioxidant enzymes play key roles in the cell, protecting it against ROS. The study of 

transcriptional profiles of postmortem human skeleton muscle revealed that antioxidant 
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enzymes were up-regulated (Sanoudou et al. 2004). Liu et al. (2006a,b) found that LYZ 

suppresses ROS generation and oxidant stress response gene transcription and provides 

protection against acute and chronic oxidant injury. Therefore, it can be reasoned that LYZ 

up-regulation in the high drip loss group occurs due to the cellular response to high 

oxidative stress. In this study, we detected a SNP (c.365A>T) causing an amino acid 

exchange from Glutamin to Leucine (p.Gln122Leu), located in a conserved domain of 

LYZ which includes several features such as a catalytic site, a catalytic cleft and a Ca2+-

binding site (Oasba and Kumar, 1997; Permyakov and Berliner, 2000). For the association 

study of LYZ, two SNPs were genotyped (c.240A>C and c.365A>T). The SNP c.240A>C 

was associated with meat quality traits only, including OPTO, pH1, CON24 and DRIP 

(P<0.05). Significant additive and dominance effects were observed for DRIP in PI, pH1 in 

PIF1(a) and OPTO in PIF1(b), while for CON24 in PIF1(a) only significant dominance 

effect was revealed. The SNP c.365A>T was associated with LEA, ABF, pH1, CON(1,24), 

THAW and DRIP (P<0.05). Significant additive and dominance effects were found for 

CON24 in DUPI, ABF in PI, THAW in PIF1(b), while only significant effects were 

detected for pH1 in DUPI and LEA in PIF1(c), and only a significant dominance effect 

was detected for CON1 in PI. The haplotype of LYZ showed associations with the same 

traits that were effected by the SNP c.240A>C. Interestingly, LYZ showed a consistent 

association with CON24 in DUPI and PIF1(a). LYZ is probably involved in releasing the 

charge of liquid contents of muscle cells during the postmortem protein degradation, since 

there is evidence for the disruption of the membrane integrity due to the insertion of LYZ 

into the lipid bilayer which induces the release of the aqueous contents (Posse et al. 1994). 

 

5.2.7 The analysis of KERA 

Keratocan (KERA) is a keratan sulfate proteoglycan of the extracellular matrix (ECM). 

The gene KERA, which encodes the core protein keratocan, is a class II member of the 

small leucine rich repeat proteoglycan (SLRP) gene family (Iozzo, 1998). It is known that 

SLRP modulate tissue organization, cellular proliferation, matrix adhesion, growth factor 

and cytokine responses, and sterically protect the surface of collagen type I and II fibrils 

from proteolysis (Melrose et al. 2008). The ECM is a major determinant in tissue water-
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holding capacity (WHC), since proteoglycans have a negative charge density (high pH) 

which draws water into the tissue and creates a water compartment (Velleman, 2000). The 

gene expression level of KERA was up-regulated at pH24 (Ponsuksili et al. 2008a). In this 

study, three associations were found, including LEA and pH of both stages (P<0.05). A 

significant additive effect was detected for pH1, while for pH24 significant additive and 

dominance effect were detected in PI. Furthermore, the position of KERA was located on 

SSC5 (Figure 17) in the QTL region for backfat thickness and pH24 (Berkshire x 

Yorkshire population; Malek et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The location of CS, LYZ and KERA on SSC5 
(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 
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5.2.8 The analysis of COQ9 

The COQ9 (coenzyme Q9 homologue) gene encodes an enzyme that is required for the 

biosynthesis of coenzyme Q (Johnson et al. 2005), which is well defined as a crucial 

component of the oxidative phosphorylation process in mitochondria which converts the 

energy in carbohydrates and fatty acids into ATP (Crane 2001). In the early postmortem 

stage, the supply of oxygen in muscle is depleted thus, a shift from aerobic to anaerobic 

metabolism and an increase in the accumulation of lactic acid leads to a pH decline thereby 

influencing the water holding capacity in muscle (Huff-Lonergan and Lonergan 2005). On 

the other hand, strong coenzyme Q activation might help to maintain the ATP content in 

muscle, thus decreasing the rate of the pH decline. Beside its roll in the energy metabolism, 

the reduced form of coenzyme Q can protect cells from oxidative stress, by exerting its 

antioxidant function either directly on superoxide radicals or indirectly on lipid radicals 

(Lenaz et al. 1998; Kucharská et al. 2004). Thus it may relate to meat quality due to the 

high levels of antioxidants in the meat influencing the activity of µ-calpain which affects 

proteolysis and early postmortem shear force (Huff-Lonergan and Lonergan 2005). The 

COQ9 gene was mapped to the human chromosome 16q13 which comparative mapping 

locates on SSC6 (Figure 18) in QTL areas of carcass fatness traits (Meishan x 

Yorkshire  population; Paszek et al. 2001, Meishan x Pietrain population; Yue et al. 2003), 

loin eye area, fat area (DUPI population; Liu et al. 2007, 2008), conductivity at 24 hour 

p.m. (Duroc x Berlin miniature pig population; Wimmers et al. 2006), pH1 (White Duroc x 

Chinese Erhualian population; Duan et al. 2009), pH24 (commercial population; Kim et al. 

2005) and drip loss (commercial population; de Koning et al. 2001, Hampshire x Landrace; 

Markljung et al. 2008, DUPI population; Liu et al. 2008). Previously, COQ9 was also 

reported as a cis-regulated functional positional candidate gene for drip loss (r = -0.47) 

(Ponsuksili et al. 2008b). The polymorphisms c.453A>G and +1247A>T had the same 

allelic frequencies in PI, PIF1(a) and PIF1(b), a feature that suggests that they present high 

linkage disequilibria in each of the three breeds, thus c.453A>G and +1247A>T showed 

the same effect on SF in PI and on BF2, FA and MFR in PIF1(b). Another effect of 

c.453A>G was found on pH1 in DUPI, while the +1247A>T was associated with OPTO in 

DL and ABF, BF1, FA, MFR, LEA and THAW in DUPI. Considering these results, the 
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COQ9 effects on carcass traits are mainly additive effect for example the ‘A’ allele of SNP 

+1247A>T increased carcass fatness (ABF and BF1 in DUPI, FA in PIF1(b)). Some 

significant dominance effects were found for SF, THAW and OPTO. The association 

analysis between haplotypes and phenotype traits confirmed the results from the single 

SNP and provided a new significant association with LEA in DL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: The location of COQ9 on SSC6 
(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 

 

5.2.9 The analysis of UN 

Unknown locus (UN) (a non-annotated EST; Affymetrix probe set ID: Ssc.25503.1.S1_at) 

was not in a coding area of any known gene (no significant similarity found by using ORF 
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and BLASX), with a SNP (g.1,022,434G>T  Acc. No: NW_001886512.1) located 20 kb 

from the 5' flanking side of the putative pig RGMA sequence. The expression level of UN 

was down-regulate in high drip loss group and showed high negative correlation with drip 

loss (r = -0.58) (Ponsuksili et al. 2008a,b). Moreover, the genetic mapping result revealed 

the location of UN on SSC7 (Figure 19) in QTL areas for backfat thickness, cooking loss 

(DUPI population; Liu et al. 2007), loin eye area (DUPI population; Edwards et al. 2008) 

shear force (commercial population; Harmegnies et al. 2006) and pH24 (Meishan x 

Pietrain population; Yue et al. 2003, Large White x Meishan population; Su et al. 2004), 

therefore this locus was considered a positional candidate gene. Here, effects of this locus 

on pH, DRIP and SF were found. A significant additive effect was detected for BF2 in 

PIF1(c), the ‘G’ allele increased BF2. Significant dominance effects were detected for BF2 

and pH24 in DUPI and DL respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: The location of UN on SSC7 
(Our own genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig 
qtl database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-
Morgan; cM) 
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5.2.10 The analysis of EGFR  

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that 

constitutes one of four members of the erbB family of tyrosine kinase receptors. Binding of 

EGFR to its cognate ligands leads to autophosphorylation of receptor tyrosine kinases and 

subsequent activation of signal transduction pathways that are involved in regulating 

cellular proliferation, differentiation, and survival (Herbst, 2004). Ligand-independent 

phosphorylation of receptors can be induced directly by exposure to hydrogen peroxide 

(H2O2, a generation of reactive oxygen species; ROS) and also by different oxidative 

stress-inducing agents (Rosette and Karin, 1996; Finkel, 1998). Meves et al. (2001) 

reported that EGFR phosphorylation responses to oxidative stress which linked to 

intracellular H2O2 levels. The most compelling evidence in favour of a role of the 

cytoskeleton in EGF-induced signal transduction has been obtained by the finding that the 

EGFR itself is an actin-binding protein (den Hartigh et al. 1992). It was demonstrated that 

a member of the small leucine rich repeat proteoglycan (SLRP) family (the family of 

keratocan), decorin is specifically interacts with the EGF receptor (EGFR) and causes a 

sustained activation of the EGFR (Iozzo, 1999). An early signal generated by the activation 

of EGFR upon ligand binding is a transient increase in the cytosolic concentration of free 

calcium ion ([Ca2+]cyt) (Villalobo et al. 2000). Entry of extracellular Ca2+, and Ca2+ release 

from intracellular stores, both appear to contribute to the generation of the EGF-mediated 

[Ca2+]cyt spike (Hughes et al. 1991; Peppelenbosch et al. 1992; Schalkwijk et al. 1995). 

Early post mortem higher Ca2+ concentration causes rapid contraction, an increase in the 

rate of muscle metabolism, and accelerated pH decline with resulting higher drip (Huff-

Lonergan and Lonergan, 2005). Previously, EGFR was one of the gene sets associated 

with calcium signaling pathways that showed a high positive correlation with drip loss (r = 

0.67) (Ponsuksili et al. 2008b). In this study, EGFR showed significant associations with 

OPTO in PI, CON24 in PIF1(a), BF1 and pH24 in PIF1(b), while in DUPI it was 

associated with ABF, BF3, MFR, LEA and THAW. Significant additive effects were 

detected for LEA, ABF, BF3, MFR in DUPI and pH24 in PIF1(b), while significant 

dominance effects were detected for LEA, THAW in DUPI, OPTO in PI and BF1 in 

PIF1(b). Comparative and genetic mapping revealed the location of EGFR on SSC9 
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(Figure 20) linked closely to a QTL area for backfat thickness (Yorkshire population; Kim 

et al. 2006). A QTL for loin eye area was also located nearby upstream of the EGFR 

position (DUPI population; Liu et al. 2007). 

 
Figure 20: The location of EGFR on SSC9 

(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 

 

5.2.11 The analysis of VTN 

Vitronectin (VTN) is a multifunctional glycoprotein found in plasma and the extracellular 

matrix. It is a component of the urokinase system (Kricker et al. 2003; Lynn et al. 2005). 

Functionally, VTN promotes cell adhesion and spreading and modulation of cell 

morphology, inhibits the membrane-damaging effect of the terminal cytolytic complement 

pathway, and binds to several serpin serine protease inhibitors (Kjaergaard et al. 2007; 
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Schar et al 2008). Furthermore, it was demonstrated that insulin-like growth factor-binding 

protein-4 (IGFBP-4) proteolytic degradation regulated by vitronectin (Mazerbourg et al. 

2000). The study in human revealed that complexes comprising IGF and IGF-binding 

proteins bound to the extracellularmatrix (ECM) protein vitronectin significantly enhance 

cellular functions relevant to wound repair (Hyde et al. 2004; Upton et al. 2008). In this 

study, we detected a SNP in the somatomedin B (SMB) domain of VTN, which binds to 

the urokinase receptor on the cell surface, promoting cell adhesion (Blasi, 1997; Chapman 

and Wei, 2001). The somatomedin B domain of vitronectin binds to plasminogen activator 

inhibitor-1 (PAI-1), and stabilizes it. Thus vitronectin serves to regulate proteolysis 

initiated by plasminogen activation (Zhou et al. 2003). This SNP (c.154A>G) that effects 

an amino acid exchange from a polar amino acid to a non-polar amino acid (p.Thr52Ala) 

might alter the function of this domain. Here, effects on pH and DRIP were observed that 

may be due to interference with the cell adhesion. For SNP c.154A>G, significant additive 

effects were detected for ABF, OPTO in DUPI, DRIP in PIF1(a) and COOK in PIF1(b), 

while significant dominance effects were detected for CON1 and CON24 in DUPI. For 

SNP c.156C>T, a significant additive effect was found for DRIP in PIF1(a). The mapping 

result revealed the position of VTN on SSC12 (Figure 21) in the QTL regions of carcass 

and meat quality traits i.e. meat color (Bergshire x Yorkshire population; Malek et al. 2001, 

commercial population; Harmegnies et al. 2006), diameter of muscle fiber (Duroc x Berlin 

miniature pig population; Wimmers et al. 2006), backfat thickness (Bergshire x Yorkshire 

population; Thomsen et al. 2004), loin eye area (Duroc x Berlin miniature pig population; 

Ponsuksili et al. 2005) and pH24 (Duroc x Pietrain population; Edwards et al. 2008). 

According to the PigQTL database, no QTL for drip loss was detected in this area.  
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Figure 21: The location of VTN on SSC12 

(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 

 

5.2.12 The analysis of ZYX 

Zyxin (ZYX) is one of the proteins in focal adhesions along the actin fibers and interacts 

with the actin cross linking protein α-actinin. ZYX has been postulated to play a role in 

actin organization, signal transduction (Macalma et al. 1996; Nix et al. 2001), cellular 

response to mechanical stress (Yoshigi et al. 2005) and cell-cell adhesion (Hansen and 

Beckerle, 2006). Structurally, ZYX has a N-terminal domain which interacts with SH3 

domains of proteins involved in signal transduction, and a C-terminal LIM-domain 

comprising three copies of a cysteine- and histidine-rich motif known to mediate protein-

protein and/or protein-DNA interactions involved in the regulation of cell proliferation and 
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differentiation (Hoffman et al. 2003). Due to the involvement of ZYX in cell structure and 

cell interconnection, ZYX is a candidate gene for carcass and meat quality traits in pigs. 

Three SNPs (c.279C>T, c.399A>G and c.522A>G) of ZYX were analysed. The SNP 

c.279C>T showed significant associations with carcass fatness traits (BF1, BF2, BF3 and 

ABF), OPTO and pH24 in PI, whereas the other two SNPs were associated with BF3 and 

ABF in DL. For the SNP c.279C>T, a significant additive effect was found for BF2, the 

‘C’ allele increased BF2. The ‘G’ allele of SNP c.399A>G and ‘A’ allele of SNP 

c.522A>G increased carcass fatness (ABF and BF3). Furthermore, the ZYX haplotype 

showed significant associations with ABF and BF2 in PI, which corresponds to the results 

obtained for the SNP c.279A>C and also revealed new significant associations with DRIP 

and pH24 in PIF1(b) (P<0.05). The result of the genetic mapping showed that the ZYX 

gene is located on SSC18 (Figure 22) in the area of several QTL affecting carcass and meat 

quality traits such as average backfat (Berkshire x Yorkshire population; Malek et al. 2001), 

drip loss (commercial population; de Koning et al. 2001) and cooking loss (DUPI 

population; Liu et al. 2007) as well muscle fiber diameter (Duroc x Berlin miniature pig 

population; Wimmers et al. 2006). Moreover, several other candidate genes were also 

reported in this region including CAPZA2 (capping protein muscle Z-line, alpha 2), IFRD1 

(Interferon-related developmental regulator 1), IGFBP3 (insulin-like growth factor binding 

protein 3) PGAM2 (phosphoglycerate mutase 2) and PRKAG2 (protein kinase, AMP-

activated, gamma 2 non-catalytic subunit) (Jennen et al. 2007).  
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Figure 22: The location of ZYX on SSC18 

(Comparative map and RH map derived from Meyers et al. (2005): distance given in centi-Rays; cR, our own 

genetic map: distance between markers expressed in centi-Morgan; cM and QTL map based on pig qtl 

database: http://www.animalgenome.org/cgi-bin/QTLdb/SS/draw_chromap: distance given in centi-Morgan; 

cM) 

 

5.3 A hypothesis to explain the role of candidate genes in meat quality 

The individual candidate genes showed different effects on a particular trait such as pH, 

conductivity and drip loss. It has been reported that drip loss has a strong negative 

correlation with pH and a positive correlation with conductivity (Lee et al. 2000; Estévez 

et al. 2004; Suzuki et al. 2005). In general, most of these parameters are correlated with or 

dependent on each other (Lee et al. 2000; Ponsuksili et al. 2009). This is not surprising as 

all traits are quantitative traits controlled by several loci and/or several traits are influenced 

by the same or linked loci (Haley et al. 1994; Liu et al. 2007). Previously, Ponsuksili et al. 

(2008b) reported a number of transcripts with trait-correlated expression to drip loss. 
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Positively correlated transcripts were enriched in functional categories and pathways like 

extracellular matrix receptor interaction and calcium signaling. Transcripts with negative 

correlations dominantly represented biochemical processes including oxidative 

phosphorylation, mitochondrial pathways, as well as transporter activity (Figure 23). Many 

studies have shown that the degradation of the cytoskeleton and other structural proteins 

play an important role in drip loss at the postmortem stage (Melody et al. 2004; Lonergan 

and Lonergan, 2005; Zhang et al. 2006; Scheffler and Gerrard, 2007). Moreover, higher 

Ca2+ concentration present in muscle fibers early post mortem is a source for the activation 

of Ca2+ dependent protease, phosphatases and phospholipases like the calpain system 

which influences drip production. Increased cytoplasmic Ca2+ levels are also observed due 

to excessive exercises. This may initiate vicious cycles of cell degradation because of the 

Ca2+ dependent activation of proteolytic enzymes such as calpain that by themselves digest 

structural elements of the muscle fibers leading to membrane damage, leakage of 

intracellular water and proteins and further accumulation of Ca2+ (Armstrong, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Functional pathways related to meat quality in terms of drip loss 
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The hypothesis is that if the genes in the extracellular matrix receptor interaction pathway 

promote muscle proteins that can better withstand degradation during the postmortem stage 

and the genes in the calcium signaling and/or the oxidative phosphorylation pathway 

maintain the ATP levels in muscle post mortem or reduce the rate of the pH decline, it 

might help to improve the meat quality, especially the water holding capacity. 

In the present study, the candidate genes can be separated into two groups.  The first group, 

LYZ, AHNAK, ZYX and EGFR, was reported as genes up-regulated or positively 

correlated with drip loss. In this group, only LYZ, AHNAK and ZYX were found to be 

significantly associated with drip loss in at least one pig population (P<0.05). The second 

group, genes down-regulated or negatively correlated with drip loss consists of VTN, UN, 

BVES, SLC3A2, CS, ZDHHC5 and COQ9. KERA, a gene up-regulated at high pH24 can 

be assigned to the same group of genes negatively correlated with drip loss, since it is 

known that drip loss is negatively correlated with pH. Six of these eight genes were 

significantly associated with drip loss in at least one pig population, including VTN, UN, 

BVES, SLC3A2, CS (P<0.05) and ZDHHC5 (P<0.001). In total, nine out of twelve genes 

were associated with drip loss in this study. Some genes expression levels showed 

correlation with drip loss but did not show association with drip loss trait, indicating that 

not all differentially expressed genes are polymorphic or the direct cause for a trait. Those 

genes effects may be strongly dependent on the environmental effects that can mask an 

association. In general, heritability estimates for drip loss are quite low, varying from 0.08-

0.30 depending on the method of drip measurement or the breed (Sellier, 1998; Sonesson 

et al. 1998; van Wijk et al. 2005; Suzuki et al. 2005; Hermesch et al. 2000). 

Moreover, individual candidate genes can be assigned to 3 main groups (calcium signaling, 

metabolic properties and structural properties) according to their functions as described in 

the previous section. The 'calcium signaling' group includes EGFR and AHNAK. The 

'metabolic properties' group includes CS and COQ9 which are both involved in the 

oxidative metabolism. The 'structural properties' group includes BVES, SLC3A2, KERA 

and ZYX. The rest of the candidate genes were assigned to a 'other properties' group. Some 

candidate genes may have special functions such as antioxidant (LYZ and COQ9) or cell 

membrane repair (AHNAK). In the early post mortem stage, muscle cells are confronted 
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with oxidative stress and increased Ca2+ and radical oxygen species levels, which can 

destroy the cell structure/membrane (Lambert et al. 2001; Sanoudou et al. 2004). Therefore, 

the positive or negative correlation between the candidate genes expression levels and drip 

loss may indicate that their cellular functions are connected to the response to oxidative 

stress (Figure 24). Muscle structural and metabolic properties expressed during life affect 

meat quality at post mortem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Hypothetical model for candidate genes in drip loss1 formation  
1Drip loss is usually expressed as a percent, gives an indication of water loss (difference in weight between 0 

and 72 hours post mortem) (Honikel, 1998) 

 

Although, most of our twelve candidate gene were selected based on their function that 

may related to meat quality, also many significant associations with carcass traits were 

detected. This is not surprising, because there are many studies reporting the correlation 

between carcass and meat quality traits (Estévez et al. 2004; Suzuki et al. 2005; Kušec et al. 
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2003; Ponsuksili et al. 2009); drip loss for example had strong positive correlations with 

loin eye area and conductivity at 24 hour p.m. and strong negative correlations with 

average backfat thickness, fat area, meat color (OPTO) and pH at 24 hour p.m. (Table 1) 

(Ponsuksili et al. 2009). However, none of the genes showed significant associations for a 

particular trait across all populations. This may be due to breed-specific effects that are 

related to the extreme muscle phenotypes of the pig breeds or may be due to incomplete 

linkage disequilibria with causal mutations and/or to effects in the context of DNA 

variation at other interacting loci. The deviations from HWE that were observed for most 

genes in some crossbred populations are likely because of differences of the allele 

frequencies in the parental lines; deviations from HWE observed in purebreds is 

potentially due to selection. This may indicate that selection of different pig breeds took 

place due to different strategies (Goliásová and Wolf, 2004; Otto et al. 2007). In general, 

the Pietrain is very popular as a terminal sire, because it is renowned for its very high yield 

of lean meat and it is well known that German Landrace is a good maternal line (Mörlein 

et al. 2007). During the past few decades, advances in molecular genetics have led to the 

identification of multiple genes or genetic markers associated with genes that affect traits 

of interest in livestock, including genes for single-gene traits and QTL or genomic regions 

that affect quantitative traits. This has provided opportunities to enhance response to 

selection, in particular for traits that are difficult to improve by conventional selection (low 

heritability or traits for which measurement of phenotype is difficult, expensive, only 

possible late in life, or not possible on selection candidates) (Dekkers, 2004). Heritabilities 

of meat quality traits are relative low. Borchers et al. (2007) reported heritability of drip 

loss equal to 0.14 in Pietrain pigs after the MHS gene was corrected. Heritability of 0.37 

for initial pH value in Pietrain pig was reported (Knapp et al. 1997). Suzuki et al. (2005) 

reported heritability for drip loss, cooking loss and pH in Duroc pigs were 0.14, 0.09 and 

0.07 respectively. Shear force is a high heritable trait (h2 = 0.54) in commercial pigs 

(Lindholm-Perry et al. 2009). In this study, q-values obtained for all 194 significant 

associations at p-value less than 0.05 varied from 0.06 to 0.41. This should be taken into 

account when interpreting the results. But the q-values derived from the FDR analysis 

provide a conservative estimate of the proportion of results that are falsely positive. Ideally, 
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these q-values should be small. However, in this study, some of the analyzed carcass and 

meat quality traits are correlated, especially carcass fatness traits (BF1, BF2, BF3, ABF, 

FA, MFR) are stronly correlated with each other. Therefore when SNP-traits association 

analyses are performed, the SNPs often showed significant associations with related traits. 

That means that correcting for the number of tests made (2100) is very stringent, because 

trait correlation is not taken into account. In this case, principal component (PC) analysis 

was suggested to reduce a whole set of correlated variables of carcass and meat quality to 

uncorrelated linear functions of the original variables without a significant loss of 

information (Karlson, 1992). The results of the PC analysis in this study are presented in 

Table 67-75 for carcass and meat quality parameters. In fact already ≤ 8 PC explain about 

90% of the total variation. That indicates that a correlation for 2100 tests is too stringent. 

Principal component analyses suggest a reduction of number of test to 1280 corresponding 

to higher nominal values for significance thresholds. Assuming a q-value of 0.25 as a 

threshold, 26 significant associations still remained at p-value less than 0.01. Considering 

these results found that AHNAK was highly associated with MFR (SNP c.12907A>G, 

c.13014G>T and haplotype; P<0.001) and carcass fatness (ABF, FA, BF1) (SNP 

c.13014G>T; P<0.001), ZDHHC5 c.1803C>T was highly associated with DRIP (P<0.001), 

COQ9 was highly associated with FA (SNP c. 453A>G, +1247A>T and haplotype) and 

BF1 (SNP +1247A>T), and ZYX was associated with BF3 (SNP c.522A>G; P<0.001). 

Moreover, these candidate genes show mainly additive effect therefore, they could be 

recommended for further study or integrated in selection for particular trait. The current 

association studies revealed statistic evidence for a link between the genetic variation at 

these loci or close to them and carcass and meat quality traits. The study also used the 

knowledge about their role in physiology and/or their mapping to support the findings. The 

results of this study give strong evidence for the potential for marker assisted selection for 

carcass and meat quality.  

 

5.4 Future prospect 

One of the main limitations to the dissection of economically important traits in livestock 

species has been the lack of a sufficient number of genetic markers for the development of 
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high-density and high-throughput assays for association studies. The genetic regulation of 

quantitative traits is complex and the identification of the genes that underlie genetic 

variation requires large numbers of genetic markers, such as microsatellites or SNPs. To 

date, many QTL (quantitative trait loci) have been localized to large chromosomal regions 

in several species of domestic animals, including the pig (Hu and Reecy, 2007; Rothschild 

et al. 2007). The need for more genetic markers is also supported by the extent of linkage 

disequilibrium (LD) in the pig genome, which has been estimated to extend from as little 

as 40-60 kb up to 400 kb in the commonly used commercial pig breeds, such as Duroc, 

Landrace and Large White (Jungerius et al. 2005; Amaral et al. 2008). It has been 

predicted that a marker density of 5-10 markers per cM (centiMorgan) will be needed to 

conduct whole genome association studies in the pig (Amaral et al. 2008; Du et al. 2007). 

In recent years, new sequencing technologies have emerged which offer great promise for 

marker discovery due to their ability to efficiently generate large amounts of sequence data, 

both in terms of time and cost. They are usually referred to as “second generation” or “next 

generation” sequencing technologies and include the Illumina Genome Analyzer 

(previously Solexa) and Roche's 454 FLX system, these instruments have been widely 

used for genome sequencing and re-sequencing and SNP discovery (Morozova and Marra, 

2008). The pig SNP chip includes already validated SNPs as well as SNPs identified de 

novo. The high density 60K SNP chip will be an extremely valuable tool for the pig 

genomics community for a variety of applications including QTL and LD mapping, 

association studies and genomic selection (Morozova and Marra, 2008; Ramos et al. 2008) 

This study revealed many significant effects on carcass and meat quality traits that could 

be integrated in the SNP array for further study. Therefore, future research in pig genetics 

and meat quality will be the availability of the sequenced genome and large-scale DNA 

arrays or SNP chips to perform low cost genome scan. It is foreseeable that the emerging 

functional genomics technologies will allow the identification and mapping of functional 

allelic variants affecting meat quality and animal performance in commercial populations. 

The increasing value of genomics and the potential of genomics to increase the control 

both of qualitative characteristics of meat and of many economically important 
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physiological functions are expected to further contribute to improve meat and carcass 

quality in pig. 
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6. Summary 

 

The present work was carried out to analyse candidate genes derived from their differential 

expression and/or trait correlated expression with water holding capacity. Twelve genes, 

BVES, SLC3A2, AHNAK, ZDHHC5, CS, LYZ, KERA, COQ9, UN (a non-annotated EST), 

EGFR, VTN and ZYX were selected based on their known function and/or their mapping to 

QTL regions for carcass and meat quality traits. For the identification of polymorphisms, 

in silico analysis was performed which then suggested the target areas for amplification. 

Thirty seven SNPs and one Indel polymorphism were confirmed by sequence alignment 

using a panel of unrelated animals (one each of Pietrain, German Large White and German 

Landrace). Twenty-two out of these thirty-eight polymorphisms were selected randomly 

for genotyping. For the association studies, the SNPs of the first eleven genes were 

genotyped in ca. 1,800 animals from 6 pig populations including commercial herds of 

Pietrain (PI(a/b)), Pietrain x (German Large White x German Landrace) (PIF1(a/b/c)), and 

German Landrace (DL(a/b)) and one experimental F2-population Duroc x Pietrain (DUPI). 

For ZYX, the SNPs were genotyped in 870 animals from 4 pig populations including PI, 

DL, F1 and PIF1. The assignments of all loci were performed in the DUPI population. The 

genetic mapping established the location of BVES on SSC1, of SLC3A2, AHNAK and 

ZDHHC5 on SSC2, of CS, LYZ and KERA on SSC5, of COQ9 on SSC6, of UN on SSC7, 

of EGFR on SSC9, of VTN on SSC12 and of ZYX on SSC18 respectively, coinciding with 

QTL regions for carcass and meat quality traits. Sixteen phenotypic traits including seven 

carcass traits (LEA, FA, MFR, BF1, BF2, BF3 and ABF) and nine meat quality traits 

(OPTO, pH1, pH24, CON1, CON24, SF, DRIP, COOK and THAW) were used to 

determine the association with candidate genes. All genes showed at least three 

associations at P<0.05. In particular, nine genes (BVES, SLC3A2, AHNAK, ZDHHC5, CS, 

LYZ, UN, VTN and ZYX) were associated with the trait DRIP.  

In detail, the association analysis of BVES showed effects on BF3, DRIP (P<0.05) and 

pH24 (P<0.01). For SLC3A2, two polymorphisms were genotyped. The SNP c.1326A>G 

had effects on MFR and BF3 (P<0.05), whereas the Indel c.1336Indel[AGC] was 

associated with FA, BF1, BF2, ABF, pH1, CON1, SF, DRIP, COOK and THAW (P<0.05). 
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When combining the two polymorphisms to construct a haplotype, some traits (BF1, BF2, 

ABF, pH1, SF and THAW) were found to have significant relations with a certain 

genotype. For AHNAK, five SNPs were genotyped, including c.12907A>G, c.13014G>T, 

c.13281A>G, c.13290A>C>G and c.13294C>T (Acc. No: BX922331.2). In general, all 

five SNPs were related with carcass traits, especially LEA, ABF and BF3. FA, MFR, BF1 

and ABF were highly significantly affected by the SNP c.13014G>T (P<0.001). The SNP 

c.12907A>G was also highly associated with MFR (P<0.001). Moreover, almost all meat 

quality traits except SF were associated with AHNAK. In particular, the trait DRIP was 

associated with the SNPs c.13014G>T and c.13281A>G (P<0.05). The AHNAK haplotype 

showed associations mainly with carcass traits, the most pronounced of all effects was 

found on MFR (P<0.001). The analysis of ZDHHC5 revealed significant associations with 

FA, MFR, BF1, OPTO and COOK (P<0.05) and exhibited a highly significant association 

with DRIP (P<0.001). For CS, beside the effects on DRIP, associations with LEA, FA, 

BF3, ABF, pH1 and CON1 were also detected (P<0.05). For LYZ, two SNP were 

genotyped (c.240A>C and c.365A>T). The SNP c.240A>C was associated only with meat 

quality traits, including OPTO, pH1, CON24 and DRIP (P<0.05), whereas the SNP 

c.365A>T was associated with LEA, ABF, pH1, CON, THAW and DRIP (P<0.05). The 

haplotype of LYZ showed associations with the same traits that were affected by the SNP 

c.240A>C. For KERA, three associations were found, including LEA and the pH of both 

stages (P<0.05). The analysis of two SNPs (c.453A>G and +1247A>T) in COQ9 revealed 

significant associations with various measures of carcass and meat quality traits. The SNP 

c.453A>G was associated with FA, MFR, BF2, pH1 and SF, whereas the SNP +1247A>T 

was associated with nearly all carcass traits and OPTO, SF and THAW. The haplotype 

effects of COQ9 were nearly the same that were found in the SNP +1247A>T. 

Interestingly, FA was highly influenced by both of the SNP and the haplotype of COQ9 

(P<0.001), BF1 was highly associated with the SNP +1247A>T (P<0.001), whereas OPTO 

was highly related with the COQ9 haplotype (P<0.001). The analysis of UN showed 

significant associations with carcass fatness traits and pH24, SF and DRIP (P<0.05). For 

EGFR, several significant associations were detected, including LEA, BF1, BF3, ABF, 

OPTO, pH24, CON24 and THAW (P<0.05). In VTN, two SNPs (c.154A>G and c.156C>T) 
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were studied. The effects of the SNP c.154A>G were detected on ABF and meat quality 

traits such as OPTO, pH, CON, DRIP and COOK (P<0.05), whereas the SNP c.156C>T 

had effects on MFR, BF2, pH, DRIP and COOK (P<0.05). The association analysis 

between the VTN haplotype and phenotypic traits confirmed the effect of the SNP 

c.156C>T and also showed a new significant association with FA (P<0.05). Finally, three 

SNPs (c.279C>T, c.399A>G and c.522A>G) of ZYX were analysed. The SNP c.279C>T 

showed significant associations with carcass fatness traits (BF1, BF2, BF3 and ABF), 

OPTO and pH24, whereas the other two SNPs were associated with FA, BF3 and ABF. 

Furthermore, the ZYX haplotype showed significant associations with ABF, BF2 and pH24 

which corresponds to the results obtained for the SNP c.279A>C and also revealed a new 

significant association with DRIP (P<0.05) and LEA (P<0.01).  

The individual candidate genes showed different effects on a particular trait, which, as is 

reported, are correlated with each other. However, none of the genes showed significant 

associations for a particular trait across all populations. This may be due to breed-specific 

effects that are related to the extreme muscle phenotypes of the pig breeds or may be due 

to incomplete linkage disequilibria with causal mutations and/or to effects in the context of 

DNA variation at other interacting loci; this is not unexpected as the traits analysed are 

quantitative traits controlled by several loci.   

In conclusion, twelve candidate genes were investigated, the polymorphisms were detected 

and also the regional assignments were performed. The study used knowledge about their 

physiological roles to support their putative involvement in the genetic regulation of 

carcass and meat quality traits. The association study of twelve candidate genes revealed 

statistic evidence for a link between the genetic variation at these loci or close to them and 

carcass and meat quality traits.  
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Zusammenfassung 

 

Die vorliegende Arbeit analysiert Kandidatengene, die aufgrund ihrer differentiellen 

Expression und/oder ihrer von dem Merkmal Wasserbindungsvermögen abhängigen 

Expression ausgewählt wurden. Zwölf Gene, BVES, SLC3A2, AHNAK, ZDHHC5, CS, LYZ, 

KERA, COQ9, UN (ein unannotiertes EST), EGFR, VTN und ZYX wurden basierend auf 

ihrer bekannten Funktion und/oder ihrer Zuordnung zu QTL-Regionen für Schlachtkörper- 

und Fleischqualitätsmerkmale ausgewählt. Zur Identifikation von Polymorphismen wurde 

eine in silico-Analyse durchgeführt, die Zielgebiete für die Amplifikation nahelegte. 37 

SNPs und ein Indel-Polymorphismus wurden durch das Sequenzalignment einer Auswahl 

nicht-verwandter Tiere (jeweils ein Pietrain, Deutsches Edelschwein und Deutsche 

Landrasse) bestätigt. Von 38 Polymorphismen wurden 22 zufällig für die Genotypisierung 

ausgewählt. Für die Assoziationsstudien wurden die SNPs der ersten elf Gene in ca. 1.800 

Tieren aus sechs Schweinepopulationen genotypisiert. Dazu gehörten kommerzielle Herden 

der Rassen Pietrain (PI(a/b)), Deutsche Landrasse (DL(a/b)) und der Drei-Rassen-Kreuzung 

Pietrain x (Deutsches Edelschwein x Deutsche Landrasse) (PIF1(a/b/c)) sowie eine 

experimentelle F2-Population aus Duroc x Pietrain (DUPI). Für ZYX wurden die SNPs in 870 

Tieren aus vier Schweinepopulationen genotypisiert; dazu gehörten PI, DL, F1 und PIF1. Die 

Zuordnungen aller Loci wurden in der DUPI-Population durchgeführt. Die genetische 

Kartierung zeigte, dass BVES auf SSC1, SLC3A2, AHNAK und ZDHHC5 auf SSC2, CS, 

LYZ und KERA auf SSC5, COQ9 auf SSC6, UN auf SSC7, EGFR auf SSC9, VTN auf 

SSC12 und ZYX auf SSC18 lokalisiert sind, jeweils in QTL-Regionen für Schlachtkörper- 

und Fleischqualitätsmerkmale. Sechzehn phänotypische Merkmale, darunter sieben 

Schlachtkörpermerkmale (LEA, FA, MFR, BF1, BF2, BF3 und ABF) und neun 

Fleischqualitätsmerkmale (OPTO, pH1, pH24, CON1, CON24, SF, DRIP, COOK und 

THAW) wurden mit den Kandidatengenen assoziiert. Alle Gene zeigten mindestens drei 

Assoziationen mit P<0,05. Insbesondere waren neun Gene (BVES, SLC3A2, AHNAK, 

ZDHHC5, CS, LYZ, UN, VTN und ZYX) mit dem Merkmal DRIP assoziiert. 

Die Assoziationsanalyse von BVES zeigte im Einzelnen einen Effekt auf BF3, DRIP 

(P<0,05) und pH24 (P<0,01). Für SLC3A2 wurden zwei Polymorphismen genotypisiert. 
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Der SNP c.1326A>G hatte einen Effekt auf MFR und BF3 (P<0,05), während der Indel 

c.1336Indel[AGC] mit FA, BF1, BF2, ABF, pH1, CON1, SF, DRIP, COOK und THAW 

(P<0,05) assoziiert war. Aus den beiden Polymorphismen wurde ein Haplotyp konstruiert 

und einige Merkmale (BF1, BF2, ABF, pH1, SF und THAW) zeigten signifikante 

Zusammenhänge mit einem bestimmten Genotyp. Für AHNAK wurden fünf SNPs 

genotypisiert; darunter waren c.12907A>G, c.13014G>T, c.13281A>G, c.13290A>C>G 

und c.13294C>T (Acc. No: BX922331.2). Generell standen alle fünf SNPs mit 

Schlachtkörpermerkmalen in Verbindung, vor allem LEA, ABF und BF3. FA, MFR, BF1 

und ABF waren hoch signifikant mit dem SNP c.13014G>T (P<0,001). Der SNP 

c.12907A>G war außerdem stark assoziiert mit MFR (P<0,001). Ferner waren alle 

Fleischqualitätsmerkmale außer SF mit AHNAK assoziiert. Vor allem das Merkmal DRIP 

zeigte eine starke Assoziation mit dem SNP c.13014G>T und c.13281A>G (P<0,05). Der 

AHNAK-Haplotyp zeigte hauptsächlich Assoziationen zu Schlachtkörpermerkmalen. Der 

deutlichste Effekt wurde auf MFR (P<0,001) gefunden. Die Analyse von ZDHHC5 ließ 

siginifikante Assoziationen mit FA, MFR, BF1, OPTO und COOK (P<0,05) erkennen und 

zeigte eine hoch signifikante Assoziation mit DRIP (P<0,001). Für CS wurden, neben dem 

Effekt auf DRIP, weitere Assoziationen mit LEA, FA, BF3, ABF pH1 und CON1 entdeckt 

(P<0,05). Für LYZ wurden zwei SNPs genotypisiert (c.240A>C und c.365A>T). Der SNP 

c.240A>C war nur mit Fleischqualitätsmerkmalen assoziiert, darunter OPTO, pH1, 

CON24 und DRIP (P>0,05), während der SNP c.365A>T mit LEA, ABF, pH1, CON, 

THAW und DRIP (P>0,05) assoziiert war. Der Haplotyp von LYZ zeigte Assoziationen 

mit denselben Merkmalen, die von dem SNP c.240A>C beeinflusst wurden. Für KERA 

wurden drei Assoziationen gefunden ( LEA und beide pH-Werten (P<0,05)). Die Analyse 

von zwei SNPs (c.453A>G und +1247A>T) in COQ9 ließ signifikante Assoziationen mit 

verschiedenen Messgrößen für Schlachtkörper- und Fleischqualitätsmerkmale erkennen. 

Der SNP c.453A>G war mit FA, MFR, BF2, pH1 und SF assoziiert, während der SNP 

+1247A>T mit nahezu allen Schlachtkörpermerkmalen und OPTO, SF und THAW 

assoziiert war. Die Haplotypeneffekte von COQ9 waren nahezu identisch mit den Effekten, 

die im SNP +1247A>T gefunden wurden. Interessanterweise wurde FA durch beide SNPs 

und den Haplotyp von COQ9 stark beeinflusst (P<0,001). BF1 war stark assoziiert mit dem 
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SNP +1247A>T (P<0,001), während OPTO stark vom COQ9-Haplotyp abhängig war 

(P<0,001). Die Analyse von UN zeigte signifikante Assoziationen mit Schlachtkörper-

Fettgehaltsmerkmalen und pH24, SF und DRIP (P<0,05). Für EGFR wurden verschiedene 

signifikante Assoziationen gefunden, darunter LEA, BF1, BF3, ABF, OPTO, pH24, 

CON24 und THAW (P<0,05). In VTN wurden zwei SNPs (c.154A>G und c.156C>T) 

untersucht. Effekte des SNPs c.154A>G konnten auf ABF und Fleischqualitätsmerkmale 

wie OPTO, pH, CON, DRIP und COOK festgestellt werden (P<0,05), während der SNP 

c.156C>T Effekte auf MFR, BF2, pH, DRIP und COOK hatte (P<0,05). Die 

Assoziationsanalyse zwischen dem VTN-Haplotyp und den Phänotyp-Merkmalen 

bestätigte die Effekte des SNPs c.156C>T und zeigte außerdem eine neue signifikante 

Assoziation mit FA (P<0,05). Schließlich wurden drei SNPs von ZYX analysiert 

(c.279C>T, c.399A>G and c.522A>G). Der SNP c.279C>T zeigte signifikante 

Assoziationen mit Schlachtkörper-Fettgehaltsmerkmalen (BF1, BF2, BF3 und ABF), 

OPTO und pH24, während die beiden anderen SNPs mit FA, BF3 und ABF assoziiert 

waren. Weiterhin wies der ZYX-Haplotyp signifikante Assoziationen mit ABF, BF2 und 

pH24 auf, was mit den Ergebnissen für den SNP c.279C>T korrespondiert und es zeigte 

sich außerdem eine neue signifikante Assoziation mit DRIP (P<0,05) und LEA (P<0,01). 

Die individuellen Kandidatengene zeigten verschiedene Effekte auf bestimmte Merkmale, 

die, soweit aus der Literatur bekannt, miteinander korreliert sind. Allerdings zeigte keines 

der Gene signifikante Assoziationen mit einem bestimmten Merkmal in allen Populationen. 

Dies könnte an den rassenspezifischen Effekten liegen, die zu dem extremen 

Muskelphänotyp der Schweinerassen beitragen, an einem unvollständigen 

Kopplungsungleichgewicht mit kausalen Mutationen und/oder an Effekten im Kontext von 

DNA-Variationen an anderen interagierenden Loci. Dafür spricht, dass die analysierten 

Merkmale quantitative Merkmale sind, die von verschiedenen Loci kontrolliert werden. 

Fazit: Es wurden zwölf Kandidatengene untersucht, Polymorphismen ermittelt und 

regionale Zuordnungen durchgeführt. Mit dem Wissen um ihre physiologische Rolle 

unterstützt diese Studie die putative Beteiligung der Kandidatengene an der genetischen 

Regulation von Schlachtkörper- und Fleischqualitätsmerkmalen. Die Assoziationsstudien 

der zwölf Kandidatengene zeigten statistische Beweise für einen Zusammenhang von 
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genetischer Variation an oder in der Nähe dieser Loci mit Schlachtkörper- und 

Fleischqualitätsmerkmalen. 
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8. Appendix 

 

Table 66: P-value, Q-value, additive and dominance effects of individual SNP 
Polymorphisms Traits Populations P-value Q-value a (± se) d (± se) 
BVES c.186G>T pH24 DUPI 0.0075 0.3435 0.02(0.01) -0.02(0.01) 
BVES c.186G>T BF3 PIF1(b) 0.0304 0.3622 0.01(0.03) 0.09(0.04)* 
BVES c.186G>T DRIP PIF1(b) 0.0495 0.4111 -0.30(0.12)* -0.18(0.16) 
SLC3A2 c.1326A>G MFR PIF1(b) 0.0352 0.3698 0.005(0.01) 0.01(0.01) 
SLC3A2 c.1326A>G BF3 DL(a) 0.0226 0.3435 0.03(0.05) 0.13(0.07)* 
SLC3A2 c.1336Indel[AGC] ABF PI(a) 0.0402 0.3914 -0.02(0.03) -0.09(0.04)* 
SLC3A2 c.1336Indel[AGC] ABF PIF1(a) 0.0228 0.3435 -0.09(0.03)* 0.07(0.04) 
SLC3A2 c.1336Indel[AGC] SF PIF1(a) 0.0061 0.3070 2.46(0.77)** -1.18(0.92) 
SLC3A2 c.1336Indel[AGC] COOK PIF1(a) 0.0443 0.4052 0.60(0.24)* -0.24(0.28) 
SLC3A2 c.1336Indel[AGC] ABF PIF1(b) 0.0458 0.4068 -0.06(0.02)* -0.01(0.03) 
SLC3A2 c.1336Indel[AGC] BF2 PIF1(b) 0.0169 0.3435 -0.07(0.03)** -0.02(0.03) 
SLC3A2 c.1336Indel[AGC] FA PIF1(b) 0.0389 0.3892 -0.56(0.22)* -0.06(0.28) 
SLC3A2 c.1336Indel[AGC] THAW PIF1(b) 0.0016 0.1399 -0.53(0.16)** -0.21(0.21) 
SLC3A2 c.1336Indel[AGC] pH1 PIF1(b) 0.0220 0.3435 -0.02(0.02) -0.07(0.03)* 
SLC3A2 c.1336Indel[AGC] pH24 PIF1(b) 0.0422 0.4018 0.02(0.01)* 0.01(0.01) 
SLC3A2 c.1336Indel[AGC] CON1 PIF1(c) 0.0310 0.3622 -0.17 (0.15) 0.42(0.18)* 
SLC3A2 c.1336Indel[AGC] BF1 DL(a) 0.0098 0.3435 0.24(0.09)** -0.29(0.10)** 
SLC3A2 c.1336Indel[AGC] DRIP DL(a) 0.0173 0.3435 1.04(0.39)** -0.57(0.42) 
SLC3A2 haplotype BF1 DUPI 0.0291 0.3622 Non-est Non-est 
SLC3A2 haplotype ABF PIF1(a) 0.0432 0.4018 Non-est Non-est 
SLC3A2 haplotype SF PIF1(a) 0.0102 0.3435 Non-est Non-est 
SLC3A2 haplotype BF2 PIF1(b) 0.0376 0.3808 Non-est Non-est 
SLC3A2 haplotype pH1 PIF1(b) 0.0287 0.3622 Non-est Non-est 
SLC3A2 haplotype THAW PIF1(b) 0.0241 0.3435 Non-est Non-est 
SLC3A2 haplotype CON1 PIF1(c) 0.0156 0.3435 Non-est Non-est 
AHNAK c.12907A>G LEA DUPI 0.0143 0.3435 -0.58(0.37) 0.82(0.44) 
AHNAK c.12907A>G FA DUPI 0.0091 0.3435 0.49(0.20)* -0.27(0.25) 
AHNAK c.12907A>G MFR DUPI 0.0005 0.0830 0.01(0.01)** -0.01(0.01) 
AHNAK c.12907A>G BF1 DUPI 0.0135 0.3435 0.10(0.03)** 0.02(0.04) 
AHNAK c.12907A>G BF3 DUPI 0.0122 0.3435 0.07(0.02)** -0.002(0.03) 
AHNAK c.12907A>G ABF DUPI 0.0048 0.2733 0.07(0.02)** 0.02(0.03) 
AHNAK c.12907A>G THAW DUPI 0.0424 0.4018 0.33(0.16)* -0.16(0.19) 
AHNAK c.12907A>G LEA PIF1(a) 0.0149 0.3435 Non-est Non-est 
AHNAK c.12907A>G BF2 PIF1(c) 0.0488 0.4094 Non-est Non-est 
AHNAK c.12907A>G OPTO DL(a) 0.0131 0.3435 Non-est Non-est 
AHNAK c.13014G>T COOK PI(a) 0.0474 0.4088 Non-est Non-est 
AHNAK c.13014G>T LEA DUPI 0.0210 0.3435 -1.03(0.41)* 1.01(0.48)* 
AHNAK c.13014G>T FA DUPI 0.0001 0.0554 0.95(0.23)*** -0.68(0.26)* 
AHNAK c.13014G>T MFR DUPI <0.0001 0.0554 0.03(0.01)*** -0.02(0.01)** 
AHNAK c.13014G>T BF1 DUPI 0.0009 0.1246 0.14(0.04)*** -0.08(0.04) 
AHNAK c.13014G>T BF3 DUPI 0.0050 0.2733 0.09(0.03)** -0.04(0.03) 
AHNAK c.13014G>T ABF DUPI 0.0005 0.083 0.10(0.02)*** -0.05(0.03) 
AHNAK c.13014G>T DRIP DUPI 0.0393 0.3895 0.24(0.09)* -0.13(0.11) 
AHNAK c.13014G>T BF3 PIF1(b) 0.0294 0.3622 0.09(0.04)* 0.02(0.05) 
* P<0.05, ** P<0.01, *** P<0.001 
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Table 66: P-value, Q-value, additive and dominance effects of individual SNP (continued) 
Polymorphisms Traits Populations P-value Q-value a (± se) d (± se) 
AHNAK c.13014G>T pH24  PIF1(b) 0.0424 0.4018 0.03(0.01)* 0.01(0.01) 
AHNAK c.13014G>T FA PIF1(c) 0.0341 0.3631 1.08(0.42)* 1.05(0.50)* 
AHNAK c.13281A>G FA DUPI 0.0134 0.3435 -0.73(0.25)** -0.34(0.30) 
AHNAK c.13281A>G MFR DUPI 0.0032 0.2126 -0.02(0.01)** -0.005(0.01) 
AHNAK c.13281A>G BF1 DUPI 0.0187 0.3435 -0.11(0.04)** -0.02(0.05) 
AHNAK c.13281A>G BF3  DUPI 0.0140 0.3435 -0.06(0.03)* 0.03(0.03) 
AHNAK c.13281A>G ABF DUPI 0.0140 0.3435 -0.07(0.03)** 0.004(0.03) 
AHNAK c.13281A>G pH1 DUPI 0.0279 0.3622 0.05(0.02)** 0.01(0.02) 
AHNAK c.13281A>G DRIP DUPI 0.0187 0.3435 -0.29(0.10)** -0.15(0.12) 
AHNAK c.13281A>G OPTO PIF1(b) 0.0375 0.3808 -0.28(0.60) 1.7(0.73)* 
AHNAK c.13281A>G LEA DL(a) 0.0100 0.3435 Non-est Non-est 
AHNAK c.13281A>G OPTO DL(a) 0.0281 0.3622 Non-est Non-est 
AHNAK c.13281A>G CON24 DL(a) 0.0457 0.4068 Non-est Non-est 
AHNAK c.13281A>G DRIP DL(a) 0.0051 0.2733 Non-est Non-est 
AHNAK c.13290A>C>G ABF PIF1(a) 0.0137 0.3435 Non-est Non-est 
AHNAK c.13290A>C>G pH24 PIF1(a) 0.0233 0.3435 Non-est Non-est 
AHNAK c.13290A>C>G BF2 PIF1(b) 0.0338 0.3622 Non-est Non-est 
AHNAK c.13290A>C>G BF3 PIF1(b) 0.0165 0.3435 Non-est Non-est 
AHNAK c.13290A>C>G ABF PIF1(b) 0.0159 0.3435 Non-est Non-est 
AHNAK c.13290A>C>G THAW PIF1(b) 0.0239 0.3435 Non-est Non-est 
AHNAK c.13290A>C>G pH1 PIF1(c) 0.0388 0.3892 Non-est Non-est 
AHNAK c.13290A>C>G LEA DL(a) 0.0457 0.4068 Non-est Non-est 
AHNAK c.13290A>C>G CON1 DL(a) 0.0427 0.4018 Non-est Non-est 
AHNAK c.13294C>T ABF PIF1(a) 0.0192 0.3435 0.002(0.03) 0.09(0.04)* 
AHNAK c.13294C>T THAW PIF1(a) 0.0470 0.4088 0.09(0.39) 1.07(0.51)* 
AHNAK c.13294C>T BF2 PIF1(b) 0.0168 0.3435 0.06(0.03)* 0.01(0.04) 
AHNAK c.13294C>T BF3 PIF1(b) 0.0086 0.3435 0.07(0.03)* 0.02(0.04) 
AHNAK c.13294C>T ABF PIF1(b) 0.0061 0.3070 0.07(0.03)** 0.003(0.03) 
AHNAK c.13294C>T pH24  PIF1(b) 0.0454 0.4068 -0.003(0.01) 0.03(0.01)* 
AHNAK c.13294C>T THAW PIF1(b) 0.0195 0.3435 0.50(0.19)** -0.53(0.24)* 
AHNAK c.13294C>T LEA DL(a) 0.0463 0.4069 0.50(0.41) -1.31(0.54)* 
AHNAK c.13294C>T MFR DL(a) 0.0263 0.3578 -0.01(0.01) 0.04(0.01)** 
AHNAK c.13294C>T CON1 DL(a) 0.0095 0.3435 -0.16(0.06)** -0.08(0.08) 
AHNAK haolotype LEA DUPI 0.0273 0.3599 Non-est Non-est 
AHNAK haolotype FA DUPI 0.0193 0.3435 Non-est Non-est 
AHNAK haolotype MFR DUPI 0.0005 0.0830 Non-est Non-est 
AHNAK haolotype BF1 DUPI 0.0237 0.3435 Non-est Non-est 
AHNAK haolotype BF3 DUPI 0.0197 0.3435 Non-est Non-est 
AHNAK haolotype ABF DUPI 0.0090 0.3435 Non-est Non-est 
AHNAK haolotype pH24 PIF1(a) 0.0200 0.3435 Non-est Non-est 
AHNAK haolotype LEA DL(a) 0.0110 0.3435 Non-est Non-est 
AHNAK haolotype CON1 DL(a) 0.0242 0.3435 Non-est Non-est 
AHNAK haolotype OPTO DL(a) 0.0097 0.3435 Non-est Non-est 
ZDHHC5 c.1803C>T MFR DUPI 0.0233 0.3435 Non-est Non-est 
ZDHHC5 c.1803C>T FA DUPI 0.0233 0.3435 Non-est Non-est 
ZDHHC5 c.1803C>T COOK DUPI 0.0337 0.3622 Non-est Non-est 
ZDHHC5 c.1803C>T COOK PI(a) 0.0121 0.3435 Non-est Non-est 
* P<0.05, ** P<0.01, *** P<0.001 
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Table 66: P-value, Q-value, additive and dominance effects of individual SNP (continued) 
Polymorphisms Traits Populations P-value Q-value a (± se) d (± se) 
ZDHHC5 c.1803C>T BF1 PIF1(b) 0.0359 0.3704 Non-est Non-est 
ZDHHC5 c.1803C>T OPTO PIF1(c) 0.0480 0.4089 Non-est Non-est 
ZDHHC5 c.1803C>T DRIP DL(a) 0.0004 0.0830 Non-est Non-est 
CS c.120G>T LEA PI(a) 0.0136 0.3435 Non-est Non-est 
CS c.120G>T DRIP PIF1(a) 0.0015 0.1399 Non-est Non-est 
CS c.120G>T FA PIF1(b) 0.0252 0.3517 Non-est Non-est 
CS c.120G>T pH1 PIF1(c) 0.0081 0.3435 Non-est Non-est 
CS c.120G>T CON1 PIF1(c) 0.0295 0.3622 Non-est Non-est 
CS c.120G>T BF3 DL(a) 0.0069 0.3371 Non-est Non-est 
CS c.120G>T ABF DL(a) 0.0239 0.3435 Non-est Non-est 
LYZ c.240A>C DRIP PI(a) 0.0030 0.2126 -0.30(0.13)* -0.51(0.15)***
LYZ c.240A>C pH1 PIF1(a) 0.0106 0.3435 0.11(0.04)** 0.14(0.05)** 
LYZ c.240A>C CON24 PIF1(a) 0.0156 0.3435 -0.04(0.14) -0.34(0.16)* 
LYZ c.240A>C OPTO PIF1(b) 0.0028 0.2114 -1.76(0.67)** -2.89(0.86)***
LYZ c.365A>T  CON24 DUPI 0.0047 0.2733 0.39(0.15)* -0.52(0.16)** 
LYZ c.365A>T  pH1 DUPI 0.0472 0.4088 -0.08(0.04)* 0.04(0.04) 
LYZ c.365A>T  ABF PI(a) 0.0121 0.3435 0.07(0.03)* -0.08(0.03)* 
LYZ c.365A>T  CON1 PI(a) 0.0444 0.4052 0.004(0.07) 0.22(0.09)* 
LYZ c.365A>T  LEA PIF1(c) 0.0494 0.4111 -1.36(0.59)* 0.52(0.76) 
LYZ c.365A>T  THAW PIF1(b) 0.0153 0.3435 0.93(0.40)* -1.31(0.45)** 
LYZ haplotype CON24 DUPI 0.0185 0.3435 Non-est Non-est 
LYZ haplotype DRIP PI(a) 0.0212 0.3435 Non-est Non-est 
LYZ haplotype pH1 PIF1(a) 0.0137 0.3435 Non-est Non-est 
LYZ haplotype CON24 PIF1(a) 0.0231 0.3435 Non-est Non-est 
LYZ haplotype OPTO PIF1(b) 0.0101 0.3435 Non-est Non-est 
LYZ haplotype OPTO DL(a) 0.0228 0.3435 Non-est Non-est 
KERA c.303C>T  pH1 PI(a) 0.0358 0.3704 -0.05(0.02)* -0.003(0.03) 
KERA c.303C>T  pH24 PI(a) 0.0273 0.3599 -0.04(0.02)* -0.05(0.02)* 
KERA c.303C>T  LEA DL(a) 0.0324 0.3622 -0.85(0.70) 0.66(0.81) 
COQ9 c.453A>G  pH1 DUPI 0.0311 0.3622 -0.07(0.03)* -0.04(0.03) 
COQ9 c.453A>G  SF PI(a) 0.0334 0.3622 0.41(0.86) 2.73(1.06)* 
COQ9 c.453A>G  FA PIF1(b) 0.0004 0.083 -0.66(0.19)*** -0.43(0.26) 
COQ9 c.453A>G  MFR PIF1(b) 0.0305 0.3622 -0.01(0.00)* -0.01(0.01) 
COQ9 c.453A>G  BF2 PIF1(b) 0.0433 0.4018 -0.05(0.02)* -0.04(0.03) 
COQ9 +1247A>T LEA DUPI 0.0218 0.3435 2.2(0.86)* -1.05(0.90) 
COQ9 +1247A>T MFR DUPI 0.0181 0.3435 -0.03(0.01)** 0.02(0.01) 
COQ9 +1247A>T BF1 DUPI 0.0008 0.1208 -0.27(0.08)*** 0.11(0.08) 
COQ9 +1247A>T ABF DUPI 0.0043 0.2645 -0.15(0.05)** 0.06(0.05) 
COQ9 +1247A>T THAW DUPI 0.0027 0.2114 1.21(0.37)** -1.27(0.39)** 
COQ9 +1247A>T SF PI(a) 0.0334 0.3622 -0.41(0.86) 2.73(1.06)* 
COQ9 +1247A>T FA  PIF1(b) 0.0004 0.083 -0.66(0.19)*** -0.43(0.26) 
COQ9 +1247A>T MFR PIF1(b) 0.0305 0.3622 0.01(0.00)* -0.01(0.01) 
COQ9 +1247A>T BF2 PIF1(b) 0.0433 0.4018 0.05(0.02)* -0.04(0.03) 
COQ9 +1247A>T OPTO DL(a) 0.0226 0.3435 -0.20(0.49) 1.95(0.71)** 
COQ9 haplotype BF1 DUPI 0.0354 0.3698 Non-est Non-est 
COQ9 haplotype SF PI(a) 0.0334 0.3622 Non-est Non-est 
COQ9 haplotype BF2 PIF1(b) 0.0433 0.4018 Non-est Non-est 
* P<0.05, ** P<0.01, *** P<0.001 
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Table 66: P-value, Q-value, additive and dominance effects of individual SNP (continued) 
Polymorphisms Traits Populations P-value Q-value a (± se) d (± se) 
COQ9 haplotype FA PIF1(b) 0.0004 0.0830 Non-est Non-est 
COQ9 haplotype MFR PIF1(b) 0.0305 0.3622 Non-est Non-est 
COQ9 haplotype LEA DL(a) 0.0185 0.3435 Non-est Non-est 
COQ9 haplotype OPTO DL(a) 0.0209 0.3435 Non-est Non-est 
UN g.1,022,434G>T BF2 DUPI 0.0203 0.3435 0.003(0.03) 0.10(0.04)** 
UN g.1,022,434G>T BF3 DUPI 0.0170 0.3435 0.06(0.03) 0.07(0.04) 
UN g.1,022,434G>T ABF DUPI 0.0324 0.3622 0.05(0.03) 0.05(0.03) 
UN g.1,022,434G>T DRIP PI(a) 0.0318 0.3622 Non-est Non-est 
UN g.1,022,434G>T SF PI(a) 0.0012 0.1329 Non-est Non-est 
UN g.1,022,434G>T FA PIF1(c) 0.0480 0.4089 -0.73(0.43) -0.04(0.48) 
UN g.1,022,434G>T BF1 PIF1(c) 0.0337 0.3622 -0.05(0.05) -0.07(0.06) 
UN g.1,022,434G>T BF2 PIF1(c) 0.0347 0.3671 -0.12(0.05)* 0.07(0.06) 
UN g.1,022,434G>T ABF PIF1(c) 0.0485 0.4089 -0.07(0.04) 0.01(0.05) 
UN g.1,022,434G>T pH24 DL(a) 0.0214 0.3435 0.004(0.01) 0.04(0.01)** 
EGFR c.3543A>G LEA DUPI 0.0321 0.3622 -1.12(0.56)* -1.3(0.62)* 
EGFR c.3543A>G BF3 DUPI 0.0011 0.1329 0.14(0.04)*** 0.01(0.04) 
EGFR c.3543A>G ABF DUPI 0.0403 0.3914 0.09(0.03)* 0.02(0.04) 
EGFR c.3543A>G THAW DUPI 0.0461 0.4069 -0.23(0.24) 0.56(0.27)* 
EGFR c.3543A>G OPTO PI(a) 0.0330 0.3622 0.01(0.67) 2.34(0.95)* 
EGFR c.3543A>G CON24 PIF1(a) 0.0138 0.3435 -0.05(0.12) -0.29(0.15) 
EGFR c.3543A>G BF1 PIF1(b) 0.0117 0.3435 -0.05(0.03) 0.13(0.05)** 
EGFR c.3543A>G pH24 PIF1(b) 0.0475 0.4088 -0.02(0.01)* -0.01(0.01) 
VTN c.154A>G  ABF DUPI 0.0499 0.4123 0.06(0.02)* 0.02(0.03) 
VTN c.154A>G  CON1 DUPI 0.0443 0.4052 0.03(0.06) -0.18(0.07)* 
VTN c.154A>G  CON24 DUPI 0.0219 0.3435 -0.10(0.07) -0.21(0.09)* 
VTN c.154A>G  OPTO DUPI 0.0143 0.3435 -1.18(0.48)* -1.11(0.62) 
VTN c.154A>G  pH24 PIF1(a) 0.0097 0.3435 0.02(0.01) 0.02(0.01) 
VTN c.154A>G  DRIP PIF1(a) 0.0122 0.3435 -0.19(0.07)* -0.04(0.1) 
VTN c.154A>G  COOK PIF1(b) 0.0198 0.3435 0.33(0.16)* 0.19(0.21) 
VTN c.154A>G  pH1 PIF1(c) 0.0240 0.3435 0.02(0.05) -0.09(0.06) 
VTN c.156C>T  pH24 PIF1(a) 0.0160 0.3435 -0.02(0.01) 0.02(0.01) 
VTN c.156C>T  DRIP PIF1(a) 0.0160 0.3435 0.18(0.07)* -0.04(0.10) 
VTN c.156C>T  COOK PIF1(b) 0.0325 0.3622 -0.34(0.19) 0.15(0.24) 
VTN c.156C>T  MFR DUPI 0.0456 0.4068 Non-est Non-est 
VTN c.156C>T  BF2 DUPI 0.0394 0.3895 Non-est Non-est 
VTN c.156C>T  pH1 DUPI 0.0271 0.3599 Non-est Non-est 
VTN haplotype BF2 DUPI 0.0031 0.2126 Non-est Non-est 
VTN haplotype MFR DUPI 0.0294 0.3622 Non-est Non-est 
VTN haplotype FA DUPI 0.0483 0.4089 Non-est Non-est 
VTN haplotype pH1 DUPI 0.0331 0.3622 Non-est Non-est 
VTN haplotype pH24 PIF1(a) 0.0123 0.3435 Non-est Non-est 
VTN haplotype DRIP PIF1(a) 0.0134 0.3435 Non-est Non-est 
VTN haplotype COOK PIF1(b) 0.0262 0.3578 Non-est Non-est 
ZYX c.279C>T  BF1 PI(b) 0.0265 0.3578 -0.09(0.13) -0.15(0.15) 
ZYX c.279C>T  BF2 PI(b) 0.0037 0.2364 -0.17(0.08)* 0.002(0.09) 
ZYX c.279C>T  BF3 PI(b) 0.0158 0.3435 -0.03(0.07) -0.12(0.08) 
ZYX c.279C>T  ABF PI(b) 0.0023 0.1910 -0.09(0.07) -0.10(0.08) 
* P<0.05, ** P<0.01, *** P<0.001 
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Table 66: P-value, Q-value, additive and dominance effects of individual SNP (continued) 
Polymorphisms Traits Populations P-value Q-value a (± se) d (± se) 
ZYX c.279C>T  OPTO PI(b) 0.0223 0.3435 -2.94(2.03) -1.19(2.31) 
ZYX c.279C>T  pH24 PI(b) 0.0194 0.3435 -0.05(0.02) -0.002(0.03) 
ZYX c.399A>G BF3 DL(b) 0.0259 0.3578 0.14(0.05)* 0.04(0.15) 
ZYX c.399A>G ABF DL(b) 0.0328 0.3622 0.10(0.04)* 0.10(0.12) 
ZYX c.399A>G FA DL(b) 0.0259 0.3578 1.03(0.41)* 0.50(1.14) 
ZYX c.522A>G BF3 DL(b) 0.0001 0.0554 -0.27(0.06)*** -0.40(0.13)** 
ZYX c.522A>G ABF DL(b) 0.0016 0.1399 -0.19(0.05)*** -0.27(0.11)* 
ZYX c.522A>G FA DL(b) 0.0012 0.1329 -1.65(0.48)*** -2.70(0.95)** 
ZYX c.522A>G MFR DL(b) 0.0013 0.1350 -0.05(0.02)** -0.10(0.03)** 
ZYX haplotype pH24 PIF1(b) 0.0191 0.3435 Non-est Non-est 
ZYX haplotype DRIP PIF1(b) 0.0365 0.3742 Non-est Non-est 
ZYX haplotype LEA PI(b) 0.0097 0.3435 Non-est Non-est 
ZYX haplotype ABF PI(b) 0.0247 0.3477 Non-est Non-est 
ZYX haplotype BF2 PI(b) 0.0326 0.3622 Non-est Non-est 
* P<0.05, ** P<0.01, *** P<0.001 

 

Table 67: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in DUPI pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 31.34 12.20 11.01 7.36 6.72 5.85 5.33 4.01 3.61 3.34 
Cumulative (%) 31.34 43.55 54.55 61.91 68.63 74.48 79.82 83.83 87.44 90.78 
LEA -0.25 -0.03 0.34 -0.55 0.62 -0.13 0.28 -0.05 -0.10 -0.05 
FA 0.89 0.09 0.11 -0.08 0.04 -0.03 0.06 0.04 -0.11 -0.04 
MFR 0.89 0.10 -0.06 0.19 -0.24 0.03 -0.09 0.05 -0.06 -0.01 
BF1 0.81 0.13 0.11 -0.10 0.08 0.09 -0.02 0.03 0.06 -0.25 
BF2 0.75 0.21 0.01 -0.16 0.19 0.15 -0.04 -0.13 -0.05 0.27 
BF3 0.86 0.19 -0.08 -0.01 0.07 -0.02 -0.02 0.07 0.06 0.07 
ABF 0.94 0.20 0.03 -0.10 0.13 0.09 -0.03 0.00 0.03 0.00 
OPTO 0.13 -0.42 0.62 0.35 0.14 0.08 -0.07 0.05 0.32 0.31 
pH1 0.27 -0.73 -0.19 -0.03 0.23 0.23 0.19 0.14 0.23 -0.01 
pH24 0.17 -0.26 0.69 0.06 -0.18 -0.19 0.07 0.46 -0.25 -0.16 
CON1 -0.06 0.47 0.17 0.09 -0.32 0.15 0.77 -0.01 0.08 0.13 
CON24 -0.26 0.56 0.50 0.16 0.18 -0.23 -0.23 -0.07 -0.04 0.21 
SF -0.27 0.14 0.51 0.15 0.05 0.67 -0.11 -0.23 -0.05 -0.30 
DRIP -0.31 0.66 -0.13 0.06 0.22 -0.05 -0.06 0.36 0.43 -0.21 
THAW -0.16 0.12 -0.39 0.55 0.49 0.23 0.11 0.25 -0.35 0.09 
COOK -0.39 0.14 -0.02 -0.55 -0.22 0.45 -0.22 0.36 -0.06 0.26 
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Table 68: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in PI(a) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 23.57 17.50 12.50 9.87 7.93 6.91 6.41 5.24 4.16 4.06 
Cumulative (%) 23.57 41.07 53.57 63.44 71.37 78.28 84.69 89.93 94.09 98.15 
LEA 0.11 -0.45 0.09 0.69 0.29 0.32 -0.18 -0.19 0.08 0.20 
ABF -0.22 -0.64 0.19 0.29 0.25 -0.32 0.23 0.42 -0.01 -0.17 
OPTO 0.86 0.18 0.04 -0.04 0.13 -0.07 0.09 0.25 0.01 0.17 
pH1 0.20 -0.30 -0.69 -0.10 -0.03 0.52 0.03 0.27 -0.19 -0.11 
pH24 0.85 0.17 0.09 -0.08 0.05 0.04 -0.04 0.19 0.31 0.11 
CON1 0.00 0.18 0.66 0.21 -0.46 0.40 0.32 0.10 -0.04 -0.07 
CON24 0.17 0.67 0.20 0.09 0.53 0.15 -0.08 -0.04 -0.10 -0.38 
SF -0.06 0.63 -0.37 0.43 0.04 -0.17 0.36 0.00 -0.24 0.23 
DRIP -0.62 0.29 0.29 -0.11 0.09 0.10 -0.42 0.38 -0.16 0.27 
THAW -0.59 0.01 0.03 -0.38 0.41 0.25 0.43 -0.03 0.23 0.17 
COOK -0.50 0.44 -0.39 0.35 -0.18 0.01 -0.10 0.19 0.41 -0.13 
 

Table 69: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in PIF1(a) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 22.30 16.60 12.53 9.88 8.77 7.03 5.88 5.73 4.50 3.70 
Cumulative (%) 22.30 38.90 51.43 61.31 70.08 77.11 82.99 88.71 93.21 96.91 
LEA 0.08 -0.01 -0.26 -0.79 0.44 0.19 0.03 0.15 0.18 0.08 
ABF -0.06 -0.65 0.34 0.27 -0.07 0.41 0.21 0.32 0.19 0.17 
OPTO -0.54 0.40 0.42 -0.09 0.08 -0.39 -0.05 0.25 -0.08 0.36 
pH1 -0.77 0.11 -0.13 0.04 -0.04 -0.23 0.27 -0.09 0.41 -0.21 
pH24 -0.53 0.30 0.44 0.12 0.23 0.31 -0.39 -0.13 0.22 -0.06 
CON1 0.69 0.31 0.44 0.00 0.10 0.08 -0.15 -0.13 0.05 -0.09 
CON24 0.49 0.25 0.58 -0.08 0.14 -0.09 0.50 -0.12 0.06 -0.03 
SF -0.26 0.72 -0.06 0.04 -0.06 0.33 0.18 0.39 -0.23 -0.24 
DRIP 0.68 0.24 -0.14 0.16 -0.14 -0.26 -0.20 0.42 0.35 -0.05 
THAW 0.06 -0.10 -0.23 0.51 0.80 -0.12 0.06 0.08 -0.08 -0.03 
COOK 0.18 0.64 -0.46 0.26 -0.08 0.26 0.14 -0.22 0.15 0.35 
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Table 70: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in PIF1(b) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 26.19 16.09 12.34 8.11 6.91 5.72 4.39 4.13 3.52 3.13 
Cumulative (%) 26.19 42.28 54.62 62.73 69.63 75.35 79.74 83.87 87.39 90.51 
LEA -0.20 0.25 0.11 0.61 -0.61 -0.07 -0.09 0.31 -0.04 0.10 
FA 0.83 0.13 -0.02 -0.14 -0.08 -0.17 -0.14 0.46 0.02 -0.02 
MFR 0.82 -0.01 -0.07 -0.41 0.22 -0.11 -0.08 0.27 0.04 -0.07 
BF1 0.74 0.21 0.08 0.29 -0.02 0.07 -0.04 -0.27 0.23 -0.30 
BF2 0.72 0.25 -0.02 0.33 -0.03 0.07 -0.04 -0.02 -0.01 0.07 
BF3 0.77 0.07 -0.05 0.00 0.10 -0.05 0.24 -0.13 -0.27 0.41 
ABF 0.91 0.21 0.01 0.26 0.03 0.04 0.05 -0.20 0.02 0.01 
OPTO 0.13 -0.48 0.69 0.08 0.14 0.18 -0.02 0.17 -0.06 0.07 
pH1 0.11 -0.75 -0.29 0.11 -0.07 0.03 0.21 0.04 0.25 0.27 
pH24 0.18 -0.22 0.80 -0.07 -0.08 0.11 0.15 0.02 -0.30 -0.18 
CON1 -0.17 0.59 0.32 -0.04 0.13 0.12 0.52 0.22 0.38 0.01 
CON24 -0.19 0.71 0.34 -0.20 -0.11 0.19 0.02 -0.12 -0.06 0.18 
SF -0.18 -0.06 0.61 0.24 0.43 -0.23 -0.38 -0.06 0.25 0.22 
DRIP -0.19 0.77 -0.10 -0.21 0.08 -0.12 -0.20 0.01 -0.06 0.12 
THAW -0.11 0.12 -0.36 0.29 0.42 0.70 -0.14 0.21 -0.10 0.00 
COOK -0.32 0.17 -0.15 0.47 0.49 -0.45 0.26 0.11 -0.23 -0.13 
 

Table 71: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in PIF1(c) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 33.76 26.93 8.08 6.60 5.80 4.40 4.28 3.50 3.04 1.87 
Cumulative (%) 33.76 60.69 68.77 75.38 81.17 85.57 89.85 93.35 96.39 98.27 
LEA -0.50 0.11 0.74 0.07 -0.20 0.32 0.00 0.20 0.04 -0.02 
FA 0.84 0.00 -0.13 -0.16 -0.32 0.34 -0.04 0.16 0.08 -0.01 
MFR 0.87 -0.03 -0.37 -0.16 -0.19 0.18 -0.03 0.04 0.06 0.01 
BF1 0.77 -0.03 0.18 0.22 0.13 -0.29 -0.33 0.30 0.15 0.03 
BF2 0.73 0.17 0.35 -0.11 0.15 0.06 0.24 -0.37 0.28 -0.01 
BF3 0.82 0.08 0.18 0.07 0.00 -0.01 0.16 -0.02 -0.50 -0.03 
ABF 0.93 0.09 0.29 0.08 0.12 -0.12 0.00 -0.01 -0.02 0.00 
OPTO 0.06 -0.66 -0.13 0.06 0.61 0.28 0.19 0.19 0.04 0.03 
pH1 0.04 -0.88 0.14 -0.10 -0.16 -0.06 0.05 -0.03 -0.04 0.41 
pH24 0.11 -0.53 -0.10 0.75 -0.14 0.19 -0.14 -0.24 0.01 -0.03 
CON1 0.01 0.72 -0.16 0.36 -0.19 -0.15 0.43 0.16 0.13 0.12 
CON24 -0.03 0.86 -0.08 0.15 0.21 0.23 0.00 0.09 -0.08 0.13 
DRIP -0.03 0.84 -0.02 -0.04 0.15 0.14 -0.34 -0.19 -0.03 0.20 
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Table 72: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in DL(a) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 33.98 22.98 9.00 7.43 7.32 4.56 3.95 3.04 2.86 2.39 
Cumulative (%) 33.98 56.97 65.97 73.40 80.72 85.28 89.23 92.27 95.13 97.52 
LEA -0.58 -0.05 0.11 0.52 0.56 0.16 -0.05 0.09 0.20 -0.01 
FA 0.69 0.28 0.03 0.57 -0.22 0.07 -0.18 0.01 0.14 0.04 
MFR 0.83 0.22 -0.02 0.20 -0.45 -0.03 -0.10 -0.04 0.01 0.03 
BF1 0.66 0.24 0.04 -0.36 0.40 -0.17 -0.37 -0.07 0.10 0.10 
BF2 0.72 0.26 -0.02 0.18 0.31 0.29 0.07 -0.08 -0.43 -0.05 
BF3 0.79 0.23 -0.06 -0.12 0.05 0.03 0.41 0.21 0.26 -0.07 
ABF 0.87 0.27 0.00 -0.18 0.29 0.04 0.04 0.06 0.05 -0.01 
OPTO 0.37 -0.43 0.56 0.23 0.13 -0.41 0.26 -0.23 -0.03 0.07 
pH1 0.26 -0.79 -0.08 -0.10 -0.03 0.34 0.08 -0.06 0.06 0.41 
pH24 0.24 -0.53 0.67 -0.11 -0.09 0.10 -0.24 0.29 -0.05 -0.06 
CON1 -0.27 0.57 0.52 -0.22 -0.12 0.37 0.05 -0.32 0.15 -0.09 
CON24 -0.37 0.72 0.33 -0.03 -0.07 -0.02 0.15 0.29 -0.14 0.21 
DRIP -0.31 0.83 0.01 0.05 0.04 -0.13 -0.05 -0.05 0.01 0.26 
 

Table 73: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in DL(b) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 38.29 13.87 12.40 9.57 7.19 5.61 3.79 3.36 3.00 2.74 
Cumulative (%) 38.29 52.15 64.55 74.13 81.32 86.93 90.72 94.09 97.08 99.82 
LEA -0.35 -0.28 0.54 0.56 0.34 0.03 0.24 0.10 0.01 0.08 
FA 0.84 -0.20 0.12 -0.04 0.06 0.22 0.36 0.06 -0.20 -0.01 
MFR 0.86 -0.03 -0.21 -0.35 -0.13 0.15 0.16 0.02 -0.16 -0.06 
BF1 0.79 0.08 0.24 0.02 0.19 -0.21 0.04 -0.47 0.09 -0.03 
BF2 0.76 -0.09 0.25 0.23 0.09 -0.15 -0.36 0.23 -0.21 -0.19 
BF3 0.84 -0.07 0.06 -0.05 -0.16 0.06 -0.01 0.24 0.37 0.24 
ABF 0.95 -0.02 0.22 0.07 0.05 -0.12 -0.11 -0.03 0.11 0.00 
OPTO 0.18 0.81 -0.20 0.30 0.06 0.06 0.18 0.12 0.18 -0.31 
pH1 0.26 -0.17 -0.62 0.21 0.49 0.43 -0.19 -0.08 0.04 0.06 
pH24 0.16 0.88 0.10 0.13 0.03 0.03 -0.06 -0.01 -0.23 0.34 
CON1 -0.20 0.19 0.17 -0.68 0.62 -0.14 0.02 0.16 0.04 -0.01 
CON24 -0.22 0.17 0.72 -0.21 -0.12 0.56 -0.16 -0.09 0.06 -0.11 
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Table 74: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in PI(b) pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 37.61 20.75 10.64 8.97 6.65 4.82 4.39 2.92 2.00 1.09 
Cumulative (%) 37.61 58.36 69.00 77.97 84.62 89.44 93.83 96.76 98.76 99.85 
LEA -0.25 0.05 0.76 -0.28 0.50 0.01 0.16 0.06 0.01 -0.01 
FA 0.81 0.14 -0.16 0.11 0.47 -0.14 0.11 0.18 -0.06 0.00 
MFR 0.82 0.12 -0.44 0.21 0.20 -0.12 0.02 0.11 -0.05 0.02 
BF1 0.66 0.43 0.10 -0.18 -0.34 0.11 0.45 0.00 -0.10 -0.03 
BF2 0.70 0.23 0.24 -0.27 -0.15 0.12 -0.46 0.28 0.05 0.02 
BF3 0.82 0.14 0.06 -0.12 0.17 -0.18 -0.15 -0.43 0.15 -0.01 
ABF 0.86 0.37 0.15 -0.23 -0.19 0.05 0.04 -0.06 0.00 0.00 
OPTO 0.35 -0.39 0.47 0.44 -0.29 -0.43 0.09 0.11 0.13 0.04 
pH1 0.47 -0.74 -0.07 -0.05 0.07 0.35 0.15 0.00 0.18 0.21 
pH24 0.32 0.21 0.36 0.73 0.06 0.38 -0.10 -0.11 -0.10 -0.03 
CON1 -0.36 0.80 -0.16 0.18 0.05 0.10 0.12 0.11 0.37 -0.06 
CON24 -0.45 0.82 0.07 0.06 0.00 -0.14 -0.04 -0.05 -0.08 0.28 
 

Table 75: Proportion of variance explained by each principle component (PC) and 

standardized loadings of the first ten PCs in F1 pigs 
Principle 
component (PC) 1 2 3 4 5 6 7 8 9 10 

Total variance (%) 42.30 13.54 11.33 8.61 6.62 4.78 4.46 3.57 2.48 2.21 
Cumulative (%) 42.30 55.84 67.17 75.78 82.40 87.18 91.64 95.21 97.69 99.90 
LEA -0.60 0.03 0.10 0.69 0.21 -0.18 -0.09 0.19 0.16 0.05 
FA 0.86 -0.01 -0.08 0.13 -0.06 -0.22 0.23 0.25 0.21 -0.11 
MFR 0.90 -0.02 -0.12 -0.25 -0.17 -0.08 0.21 0.09 0.08 -0.10 
BF1 0.82 0.02 -0.01 0.08 0.24 0.17 -0.33 -0.22 0.20 -0.19 
BF2 0.78 0.06 -0.12 0.42 0.03 -0.11 0.02 0.03 -0.41 -0.09 
BF3 0.89 0.06 -0.06 0.01 0.02 0.09 0.01 0.02 0.05 0.44 
ABF 0.95 0.05 -0.07 0.18 0.13 0.08 -0.15 -0.09 -0.02 0.05 
OPTO 0.30 -0.13 0.80 0.00 -0.14 0.35 -0.10 0.32 -0.05 -0.04 
pH1 -0.05 -0.79 0.01 0.25 0.23 0.27 0.40 -0.16 0.02 -0.01 
pH24 0.29 -0.07 0.80 -0.08 0.10 -0.42 0.07 -0.27 0.00 0.04 
CON1 -0.06 0.68 0.10 -0.21 0.63 0.12 0.24 0.10 -0.04 -0.03 
CON24 -0.07 0.71 0.16 0.38 -0.40 0.21 0.24 -0.23 0.07 -0.02 
 


