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ABSTRACT

One of the central parts in the study of combinatorial optimization is to classify the
NP-hard optimization problems in terms of their approximability. In this thesis we
study the Minimum Vertex Cover (Min-VC) problem and the Minimum Dominat-
ing Set (Min-DS) problem in the context of so called power law graphs. This family
of graphs is motivated by recent findings on the degree distribution of existing real-
world networks such as the Internet, the World-Wide Web, biological networks and
social networks. In a power law graph the number of nodes yi of a given degree i is
proportional to i−β, that is, the distribution of node degrees follows a power law. The
parameter β > 0 is the so called power law exponent.

With the aim of classifying the above combinatorial optimization problems, we are
pursuing two basic approaches in this thesis. One is concerned with complexity theory
and the other with the theory of algorithms. As a result, our main contributions to
the classification of the problems Min-VC and Min-DS in the context of power law
graphs are twofold:

• Firstly, we give substantial improvements on the previously known approxima-
tion lower bounds for Min-VC and Min-DS in combinatorial power law graphs.
More precisely, we are going to show the APX-hardness of Min-VC and Min-DS
in connected power law graphs and give constant factor lower bounds for Min-
VC and the first logarithmic lower bounds for Min-DS in this setting. The results
are based on new approximation-preserving embedding reductions that embed
certain instances of Min-VC and Min-DS into connected power law graphs.

• Secondly, we design a new approximation algorithm for the Min-VC problem
in random power law graphs with an expected approximation ratio strictly less
than 2. The main tool is a deterministic rounding procedure that acts on a half-
integral solution for Min-VC and produces a good approximation on the subset
of low degree vertices. Moreover, for the case of Min-DS, we improve on the pre-
viously best upper bounds that rely on a greedy algorithm. The improvements
are based on our new techniques for determining upper and lower bounds on
the size and the volume of node intervals in power law graphs.
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4 introduction

During the last two decades the advent of computerized high-throughput methods
and powerful tools for data processing and visualization has led to a rapid growth and
better availability of real-world data sets and representations in the form of networks.
Moreover, the recent developments in the analysis of large-scale real-world networks
have a great impact on the fields of mathematics, statistics, physics, sociology, biology
and computer science and have been a main driver for numerous new developments
in the fields.

In fact, this particular line of investigations have also sparked a whole new area
of research—called network science or network theory—that focuses solely on the prop-
erties, the analysis and the modeling of large-scale networks associated to complex
real-world systems. Another specialized branch in the field of biology is the area of
systems biology at the intersection of biology, statistics and bioinformatics, where re-
search is conducted on the structure and function of biological networks1. The main
aim of all these relatively new branches of research is to get a better understanding of
the emergence, significance, structure and function of complex real-world systems.

In order to assess the structure and organization of the corresponding networks
(or graphs), typical statistical parameters (or graph invariants) such as the diameter, the
clustering coefficient and the degree distribution have been measured and compared to
the expected values in certain random graph models2. Topological network analyses
have been applied to a variety of real-world graphs such as the World-Wide Web, the
Internet, collaboration and online social networks, protein-protein interaction networks and
other large-scale graphs of systems in nature and in technology.

It turned out that many large-scale real-world graphs are significantly different from
instances generated by the classical random models with respect to the above graph
invariants. As opposed to the classical random models, the diameter in real-world
networks is often very small (or even ultra small), the clustering coefficient is large
and—most strikingly—a power law distribution of node degrees is observed. These
observations raised the need for new graph models that are suited to cope with these
structural properties.

1 Biological networks include e. g. metabolic networks, signaling pathways, protein-protein interaction net-
works, neuronal networks, food webs and gene regulatory networks.

2 Among the most prominent and most widely used model of random graphs, that serves to mimic the
topological structure of “typical” networks, is the classical G(n,p) model due to Gilbert [Gil59] and
Erdős and Rényi [ER60].
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From an algorithmic point of view, the challenges in the analysis of real-world net-
works are twofold. On the one hand, some of the graph invariants mentioned above
are relatively easy to compute, but the sheer size of the graph may rise the need for
sub-linear time algorithms that output good approximate solutions very fast. On the
other hand, there exist also more sophisticated graph properties that are (up to now)
computationally intractable3. The latter includes, for example, questions concerning
the existence of tightly knotted node clusters, the identification and placement of key-
nodes and a number of covering problems. Technically speaking, the main hurdles
are the large graph instances of real-world systems and the computational hardness
or inherent intractability of the combinatorial problems which are defined by the anal-
ysis task. These challenging circumstances gave rise to a whole new approach in the
analysis of graphs in the context of complex real-world systems [AB02; New03; DM03;
DM04; NW06; Boc+06; PV07; Lov09].

In the following we give more explicit examples of large-scale real-world networks
and introduce some topological features that distinguish them from regular graphs or
uniform random graphs. Moreover, we will introduce mathematical models that were
designed to capture these topological properties qualitatively and quantitatively.

1.1 MODEL ING REAL -WORLD NETWORKS

Many systems in nature, society and technology consist of a large number of dynam-
ical units—or system elements—and of more or less complex modes of interactions
or interconnections between the elements of the system. A natural first approach to
capture the global properties of such a system is to model it as a graph consisting of
nodes (or vertices) and interconnecting links (or edges). In the adjacency matrix represen-
tation of a graph the rows and columns correspond to the vertices and an edge exists
between two vertices if the corresponding matrix entry is non-zero. This provides
a very simple and at the same time informative representation of a complex system,
even though the sometimes complex interactions—dependent on time, space or other
constraints—are reduced to be represented as a single number in the adjacency matrix
of the graph.

3 By computational intractability, we mean that the defined problem cannot be solved deterministic
algorithm in running time that is bounded by a polynomial in the size of the input.
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Let us give some prominent and notorious examples of existing large-scale graphs
or networks. The World-Wide-Web is a graph with web pages representing the nodes
and hyper-links between pages representing the edges (Size comparison: The
index records ∼ 45 billion individual web pages as of June 22, 2013). In the backbone of
the Internet routers are connected through physical data wires (Size comparison: The
IPv4-Internet consist of ∼ 1.3 billion active IP-addresses by the end of 2012). In the
context of social networks, a communication graph is formed via the exchange of emails,
phone calls, instant messages, et cetera, within a group of people (Size comparison:
Monthly active users were ∼ 1.11 billion as of March 31, 2013). Regarding
biological networks, prominent examples are protein-protein interaction networks where
proteins are represented as nodes and interaction or co-expression of two proteins is
denoted by an edge (Size comparison: The protein interaction network of the fruit fly
drosophila melanogaster consists of ∼ 5000 proteins with ∼ 200 000 known interactions).

Next, we are going to introduce and discuss some of the observed topological fea-
tures that distinguish complex real-world networks from regular graphs as well as
from uniform random graphs.

small-worlds and the clustering coefficient. The study of dynamical
processes across large-scale real-world networks suggested the existence of bridging
edges that connect distant areas of the networks via a small number of ’hops’ and
thus allow for fast traversal of information inside the network.

In the 1960’s Travers and Milgram [Mil67; TM69] conducted a series of experiments
in the context of social networks where they asked randomly selected people to send
letters to a distant target person, identified only by his or her name and rough location.
The letters could only be send to individuals which the current holder of the letter
knows by first name and which, by any chance, were closer to the target person.
Travers and Milgram kept track of the letters and the number of steps for the letters to
reach their final destination. The general presumption was that the letters would take
several hundreds of steps. But for those letters which finally arrived, the surprising
result was that the average number of links needed to reach the target person was
only six. The finding was then described as the phenomenon of the “six degrees of
separation” of a network which also directly induced that the corresponding graphs
have a small diameter. More generally, networks that displayed such a characteristic
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were said to satisfy the so called “small world” property or were simply termed “small
worlds”.

This property was observed later for a number of other real-world networks—also
biological and technological systems—such as the neuronal network of the round-
worm C.elegans, protein interaction networks, gene networks, power grids and net-
works of co-authorship in scientific publications [WS98; New01b; New01a; Wat03;
Bor+04; NSH04].

As we will see from a theorem by Bollobás and Fernandez de la Vega [BF82] (cf.
Theorem 2.4 in Section 2.4.2), classical random graphs also share the property of
having a relatively small diameter, i. e. a small average shortest path length in relation
to the graph size. An additional special characteristic of many real-world networks is
that they are also heavily clustered, which is expressed by high values of the so called
clustering coefficient of the underlying graph. This is a feature that is not captured by
graph instances generated by the classical uniform random models such as the G(n,p)
model or the G(n,M) model due to Gilbert [Gil59] and Erdős and Rényi [ER60].

In order to cope with this lack of modeling capabilities, Watts and Strogatz raised
the idea and a possibility of constructing random graphs that mimic this important
feature of real-world networks. In their seminal paper from 1998 on the “Collective
Dynamics of ’Small-World’ Networks” Watts and Strogatz [WS98] initiated the important
field of modeling large-scale real-world networks by random graphs, which itself
are defined by simple constructional rules. Instead of the usual diameter diam(G)

of a graph G, Watts and Strogatz considered the average distance between all pairs
of nodes L(G) =

∑
{u,v}⊂V ,u 6=v d(u, v)/

(
n
2

)
and the clustering coefficient C(G)—which

describes how well connected the neighborhood of a node or a set of nodes is (cf.
Section 2.3.2).

The proposed random model for small-world networks generates graphs that have
simultaneously a small value of L(G) like random graphs, and a high clustering coeffi-
cient C(G) like regular lattices. Furthermore, small-world networks can be seen as an
intermediate between regular graphs and random graphs. Figure 1.1 shows the tran-
sition of a regular ring graph into a small-world graph and further into a random graph,
only by increasing the probability that an edge changes one or two of its endpoints.

The introduction of small-world network models presented a major step towards a
more sophisticated modeling of large-scale real-world networks. However, further in-
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Regular Ring Graph Small-World Graph Random Graph

p = 0 p = 1
Increasing Rewiring Probability p

Figure 1.1: From left to right, the rewiring probability of an edge is increased, that is, the
probability of an edge to change one or two of its endpoints. In this way, the initial
regular ring graph with large diameter is transformed into a small-world graph
by introducing short-cuts. A rewiring probability close to 1 finally transforms the
initial graph into a random graph.

vestigations elucidated another special characteristic of many real-world that regards
the distribution of node degrees. The crucial observation was that the degree distri-
bution is often well approximated by a power law distribution.

power-law degree distributions . The usual perception in the study of net-
worked systems is that of homogeneous networks, meaning that all nodes of the network
are topologically similar, like in regular lattices or uniform random graphs. In partic-
ular this means that the distribution of node degrees is binomial or Poisson4 in the limit
of large graph sizes. The new and remarkable observation was that the distribution
of node degrees in real-world networks is often well approximated by a power law
distribution—that is, the number of nodes yi of a given degree i is proportional to i−β,
where β > 0. The parameter β is the so called power law exponent and a graph which
has this property is called power law graph.

Empirical studies verified a power law distribution of node degrees for a large num-
ber of existing real-world networks such as the Internet, the World-Wide Web, protein-

4 For the definition and depiction of binomial and Poisson distributions see Section 2.2, Equation 2.1 and
Equation 2.2 together with Figure 2.1 and Figure 2.2, respectively.
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protein interaction networks, gene regulatory networks, peer-to-peer networks, mo-
bile call networks, et cetera [FFF99; Kle+99; Kum+00; Bro+00; KL01; JAB01; Gue+02;
Sig+03; Eub+04b; Ses+08]. Typical values of the power law exponent lie within the
range 2 < β < 3 (e. g. β = 2.38 for the WWW [Bro+00], β = 2.4 for protein-protein
interaction networks [Jeo+01]). But there also exist examples of real-world networks
with a power law exponent β 6 2 or β > 3, e. g. for distributional food webs (β = 1.05,
[MS00]), statistical investigations of book sales in the US (β = 3.51, [Hac67; NW06])
and networks of human sexual contacts (β = 3.4, [Lil+01]).

A simple empirical indicator, for whether the node degrees of a system follow a
power law, is the observation of a straight line on a log-log plot of the degree dis-
tribution. Figure 1.2 shows the protein-protein interaction network of the flowering
plant arabidopsis thaliana along with the corresponding node degree distribution that
follows a power law with exponent β = 1.8.

Historically, power law distributions had also been observed considerably earlier in
various contexts ranging from linguistics to economics and further to social sciences.
For example, power law behavior in different data sets was shown for the distribution
of income across a population by Pareto [Par96], for the distribution of city sizes
in terms of the number of inhabitants by Auerbach [Aue13], for word frequencies
in books by Estoup [Est16] and for citations amongst academic literature by Lotka
[Lot26]. The idea of associating power law distributions with real-life systems—and
especially its popularization—is generally attributed to the American linguist Zipf
[Zip35; Zip49]. A system subject to power law behavior is therefore also often said to
follow Zipf’s law and an associated Zipfian distribution is observed on the data set.

Let us now introduce the background and the definitions of some modeling ap-
proaches for power law graphs that emerged in the fields of physics, computer science
and mathematics.

mathematical models for power law graphs . At the latest since the mas-
sive computer-aided acquisition of real-world data and evaluation of the associated to-
pological information by computerized methods—accompanied by the publication of
the works of Barabási and Albert [BA99]; Faloutsos, Faloutsos, and Faloutsos [FFF99];
Kleinberg et al. [Kle+99] in 1999—the idea of the ubiquity of massive power law
graphs with small diameter and large clustering coefficient was pervasive in the fields
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Figure 1.2: Protein-protein interaction network of the flowering plant arabidopsis thaliana along
with the according degree distribution. The corresponding power law exponent is
β = 1.85.

of computer science, mathematics and physics. In subsequent studies the aim was to
describe these properties of real-world networks mathematically and to propose new
and suitable models to generate graphs that display these properties quantitatively
and qualitatively.

The model of “preferential attachment” or the concept of “the rich get richer” is most
often referred to as a potential mechanism underlying the emergence of graphs with
a power law distribution of node degrees—so called scale-free networks or power law
graphs. The modern revival of these ideas is attributed to the work of the physicists
Barabási and Albert [BA99], who also coined the terms “preferential attachment” and



1.1 modeling real-world networks 11

“scale-free network”. Indeed, very similar ideas had been mentioned and described
considerably earlier by Yule [Yul25], Simon [Sim55] and de Solla Price [Pri65; Pri76].
In particular, de Solla Price was the first to proposed a mechanism of preferential
attachment under the name “cumulative advantage”. The recently popular description
of preferential attachment is due to Barabási and Albert [BA99], but the model was
later more rigorously and mathematically defined by Bollobás and Riordan [BR05].

The mechanism features the role of evolutionary growth and rewiring processes
in the emergence of power law graphs. In the formal definition, a new vertex is
introduced one at a time and is connected to the existing graph via a prescribed
number of edges. The probability of an edge to an already existing vertex is not
uniform but dependent on the current degree of the target vertex. Based on this
idea of preferential attachment, other models were proposed that—for example—take
into account an initial attractiveness of nodes in the growth process [DMS00; DEM01;
BO04] or that introduce new nodes by copying and rewiring existing nodes [Kum+00].
But preferential attachment is only one of several mechanisms that are capable of
generating graphs with power law degree distributions.

Besides the above evolving models, there also exist so called static models for gener-
ating power law graphs. In this approach a power law degree sequence is given as
an input and a graph instance representing this distribution is generated in a random
fashion. Among the most widely known models of this kind is the ACL-model due
to Aiello, Chung, and Lu [ACL01]. In this model the given degree sequence is of the
form y1,y2, . . . ,ym, where yi is the number of vertices of degree i. This number is
roughly given by yi ≈ eα/iβ, where eα is a normalization constant which determines
the size of the graph. While this model is potentially less accurate than the detailed
description of a growth process of an evolving graph it has the advantage of being
robust and general, that is, structural properties that are true in this model will be
true for the majority of graphs with the given degree sequence.

All of the above models are well motivated and there exists a large body of liter-
ature on mathematical foundations and applications [BA99; ACL00; BR05; Eub+04b;
MPS06]. In this thesis, however, we will focus on the ACL-model in order to charac-
terize the computational complexity of some combinatorial optimization problems on
power law graphs. The motivation for this theoretical research issue is presented in
the upcoming section, along with some practical applications.
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1.2 COMB INATOR IAL OPT IM IZAT ION & APPL ICAT IONS

From the analysis of real-world networks, there exists practical evidence which entails
that combinatorial optimization in power law graphs is easier than in general graphs.
For example, Park and Lee [PL01] showed for the efficient placement of filters in
route-based distributed packet filtering on power-law Internet topologies, that the greedy
heuristic for the vertex cover problem generally outperforms the constant-factor ap-
proximation algorithm. Moreover, in connection with the optimal placement of sen-
sors for disease detection inside social networks, Eubank et al. [Eub+04b] studied
near-optimal dominating set problems and found that for a class of bipartite random
power law graphs the problem admits a (1+ o(1))-approximation.

A natural question now arises whether these observations and results can be trans-
lated into provable guarantees for a more general class of power law graphs. If this
is the case, one has to identify structural properties of power law graphs that allow
for the design of efficient algorithms or better approximation algorithms. For the
case that this is not apparent, one would like to prove fundamental results on the
computational hardness of the problem. An especially interesting case would be if
this classification depends on the graph parameters (e. g. the power law exponent) of
instances in the graph class under study. This would imply the existence of a phase
transition in the hardness of approximation as the power law exponent varies over a
range of values.

One of the central parts in the study of combinatorial optimization is to classify the
NP-hard optimization problems in terms of their approximability. In this thesis we
will focus on two combinatorial covering problems in graphs, namely the Minimum

Vertex Cover (Min-VC) problem and the Minimum Dominating Set (Min-DS) prob-
lem. In order to define the problems, let G = (V ,E) be a graph with vertex set V and
a set of edges E.

The Min-VC problem is one of the most well-studied problems in combinatorial
optimization. A vertex cover of a graph G = (V ,E) is a set of vertices C ⊆ V such that
each edge e ∈ E of G has at least one endpoint in C. The Min-VC problem is the
problem of finding a vertex cover of minimum cardinality in a graph. The problem
is known to be NP-hard due to Karp’s original proof presented in [Kar72] and APX-
complete due to Papadimitriou and Yannakakis [PY91]. Moreover, Dinur and Safra
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[DS05] showed that Min-VC cannot be approximated within a factor of 1.3606, unless
P = NP, and Khot and Regev [KR08] showed the inapproximability within 2− ε for
any ε > 0 as long as the Unique Games Conjecture (UGC) holds true.

Another well known optimization problem is Min-DS. On a graph G = (V ,E) a
dominating set is a subset of verticesD ⊆ V such that every vertex in V \D is connected
to D by at least one edge e ∈ E. The Min-DS problem asks for a dominating set of
minimum cardinality |D|. This problem is known to be NP-hard by a reduction from
the Set Cover problem. Moreover, the result of Raz and Safra [RS97] rules out the
existence of an approximation algorithm for general graphs with an approximation
factor better than c · log |V | for some c > 0, unless P = NP.

In the following, we list some applications of the two problems in the context of
analyzing real-world graphs or networks:

• Identifying Key Players in Social Networks: In the investigation of epidemic
spreading of diseases across networks of travel routes or the spreading of in-
formation inside online social networks, a natural question arises about how to
efficiently place key nodes at key positions inside a network such as to reach
and to effect all or most of the remaining nodes[PV01; Eub+04a; Bor06; Kit+10;
Wan+11]. Here, the feasibility of a solution also heavily depends on the number
of key nodes needed in order to cover the whole network and thus this num-
ber is often tried to be minimized. Questions like these quickly resemble or are
equivalent to classical NP-hard optimization problems, i. e. minimum covering
and domination problems such as Min-VC and Min-DS.

• Clustering in Complex Networks: In the analysis of ad hoc and multi-hop wire-
less networks, solutions to Min-DS are sought in order to cluster the graph into
well distinguished parts. Here, the elements of a dominating set serve as cluster-
heads and the neighborhood of each cluster-head comprises a cluster in the
graph [CLL04; BB06]. Under the general assumption that functionally similar
or related vertices are also highly connected, the clustering provides valuable
insights on the organization of the network. This may reveal a hidden modu-
lar organization of the nodes and may also help to classify nodes of unknown
function [GN02; For10; LF12].
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• Conflict Resolving in Multiple Sequence Alignments: In the context of multiple
sequence alignments (MSA) a conflict graph consists of vertices representing gap
blocks in the alignment and edges that are drawn between conflicting blocks.
A solution to Min-VC in the conflict graph now corresponds to a minimum
number of gap blocks such that the MSA ignoring these blocks is conflict free
[RSG99].

• Broadcasting and Routing in Wireless Networks: For the broadcasting of in-
formation inside a wireless network with nodes of limited transmission radius,
a small dominating set with low maintenance cost is used to significantly re-
duce or to eliminate communication overhead for retransmissions. At the same
time the covering property of the dominating set allows for reliable broadcasting
[SSŽ02]. Furthermore, connected dominating sets may serve as virtual backbones
of a wireless network to find and to update efficient routes for package trans-
mission inside the network [DB97; WL99; WGS01].

• Complexes and Domination in Protein-Protein Interaction Networks: In the
large-scale identification of protein complexes in yeast protein-protein interac-
tion graphs and hypergraphs, solutions to Min-VC are used to choose a set of
candidate bait proteins—that is, proteins that are directly associated to a protein
complex [RTP04]. The number and distribution of protein complexes, which is
the set of proteins expressed by the genome at a given time under defined condi-
tions, is used to characterize the proteome of the model organism. Furthermore,
in [Mil+11] connected dominating sets are sought in protein-protein interaction
networks to identify proteins with a central topological and biological role. This
may lead to insights on the communication structure and signaling pathways
inside the network.

• Robustness and Vulnerability of Complex Networks: The robustness of a net-
work describes how resilient the connectivity structure is when the network is a
target of node and edge deletions [Coh+00; AJB00]. The Min-VC problem can
be formulated as the problem of finding a minimum-cardinality set of vertices
whose deletion makes the network edge-free. Hence, the minimum number of
vertices needed to completely disconnect the network can be translated into a
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robustness-measure. It was shown that Peer-to-Peer networks and co-authorship
networks are highly robust against Min-VC-attacks while online social networks
and e-mail communication networks are rather vulnerable [Li+12].

• Clique Extraction in Biological Networks: In the analysis of genetic microarray
data the corresponding gene co-expression networks consist of nodes representing
genes and weighted edges which express the amount of correlation between
genes. A crucial task is reduce the high dimensionality of the data (>12 000
nodes) by grouping and extracting similarly expressed genes. This can be inter-
preted as a problem of extracting cliques from the network and can be attacked
by solving the complementary dual problem Min-VC [Bal+05; Che+05].

We conclude this introductory chapter with an outlook on the organization and
main results of this thesis.

1.3 ORGAN IZAT ION OF THE THES I S AND MA IN RESULTS

First of all, in Figure 1.3, we present a chapter dependence diagram for the relations
between the various parts of this thesis. The thesis is organized as follows:

• In Chapter 2, we fix the notions and notations used throughout this thesis. This
includes basic definitions from probability theory, graph theory and random
graph theory. Moreover, we will introduce the concept of random graphs and
power law graphs (PLG) and state basic results regarding structural properties
of those families of graphs. Especially, we present the definition of the G(α,β)
model for generating graphs with a given power law degree distributions—so
called (α,β)-PLG.

• In Chapter 3, we introduce complexity classes of decision and optimization prob-
lems that are relevant for the classification results of this thesis. Furthermore, we
define reductions between decision and optimization problems and show how
to relate the hardness of approximation of decision problems with the hardness
of approximation of optimization problem.
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Figure 1.3: A chapter dependence diagram for the various parts of this thesis. In Figure 1.4
on page 19, we also give a detailed dependence diagram.

• In Chapter 4, we provide the necessary instruments to analyze hardness of ap-
proximation results that rely on the properties and existence of multi-prover proof
systems (e. g. utilized by Feige [Fei98] to prove approximation lower bounds for
the Set Cover and Min-DS problem) and probabilistically checkable proof systems
(e. g. utilized by Austrin, Khot, and Safra [AKS09] to prove approximation lower
bounds for bounded degree Min-VC) for certain problems in NP.

• In Chapter 5, we introduce the Hybrid problem defined by Berman and Karpin-
ski [BK99] which is used in reductions to prove hardness of approximation re-
sults for bounded occurrence constraint satisfaction problems. Moreover, Chap-
ter 5 presents techniques proposed by Berman and Karpinski [BK99] in order to
obtain approximation hardness results for bounded occurrence constraint satis-
faction problems and graph problems on instances with bounded degree. In par-
ticular, this reduction technique provides the current best explicit lower bounds
on the approximability of Min-VC on degree d-bounded graphs for d = {3, 4, 5},
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which will be used in Chapter 6 to obtain new lower bounds for Min-VC in
power law graphs.

• In Chapter 6, we prove the APX-hardness of Minimum Vertex Cover (Min-VC)
in connected power law multigraphs in theG(α,β) model for 0 < β < βmax ≈ 2.48
(for β > βmax, (α,β)-PLGs are not connected anymore). This partially resolves
an open question posed by Ferrante, Pandurangan, and Park [FPP08]. Further-
more, we give explicit approximation lower bounds for this problem. Our results
are based on reductions from bounded degree instances and the corresponding
explicit lower bounds in the general case. Our reductions consist of multigraph
embeddings of bounded degree graphs into (α,β)-PLG, based on appropriate
wheel constructions. We also extend the G(α,β) model for power law graphs
and consider degree distributions where β is of the form βf = 1± 1/f(n), for a suf-
ficiently fast growing function f(n). We show that these distributions converge
to those of (α,β)-PLG for β = 1 and can be seen as a combinatorial variant of
the evolving preferential attachment model for power law graphs.

• In Chapter 7, we study the approximation complexity of Minimum Dominating

Set (Min-DS) in (α,β)-PLG. Our contributions to characterization and classifica-
tion of this problem are twofold: On the one hand, we give the first logarithmic
lower bounds for the approximability of this problem for the parameter range
0 < β 6 2, based on a reduction from the Set Cover problem combined with the
logarithmic lower bound for Set Cover given by Feige [Fei98]. This improves
over the previously known constant factor approximation lower bounds given by
Shen et al. [She+12], which are based on reductions from the bounded degree
Min-DS problem. On the other hand it was also shown in [She+12] that, for
β > 2, the Min-DS problem in (α,β)-PLG admits a constant factor approxima-
tion upper bound, that is, for this range of the model parameter the problem is
in the class APX. We improve on this result by giving new upper bounds on the
approximation ratio of an algorithm based on the greedy strategy for Min-DS.
In [She+12], membership of Min-DS in (α,β)-PLG in APX was shown by con-
structing a lower bound for the optimum and an upper bound for the greedy
solution separately. We obtain our new results by relating the cost and structure
of an optimum solution to those of a greedy-based solution. This sophisticated
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analysis yields improved upper bounds for almost the whole range β > 2. Fi-
nally, we take a very close look at the phase transition at β = 2. Similar as in
Section 6.8 and Section 6.9 we extend the power law model and consider the case
when βf = 2+ 1

f(n) is a function of the graph size n which converges to 2 from
above. We obtain the following surprising result: For every function f(n) with
f(n) = ω(log(n)) (i.e. when βf converges fast enough), Min-DS in (α,βf)-PLG
still provides a logarithmic approximation lower bound and, for every function
f(n) with f(n) = o(log(n)), the problem is in APX.

• Chapter 8 deals with the approximability of Min-VC on random power law
graphs in the G(α,β) model. More precisely, we show that the Min-VC problem
can be approximated with an expected approximation ratio strictly less than 2.
This possibility may be ruled out for the general case due to the conjecture by
Khot and Raman [KR02], and the result of Khot and Regev [KR08] which states
that there exists no 2− ε approximation for Min-VC under this conjecture. We
construct an approximation algorithm for Min-VC with an expected approxi-
mation ratio of 2 − f(β) which, in the limit of large graph sizes, improves on
the currently best upper bound of 2 − Θ(1/

√
logn) for the general case due to

Karakostas [Kar09]. The result is obtained by combining the linear program-
ming approach for Min-VC due to Nemhauser and Trotter [NT75] with a new
deterministic rounding procedure which achieves an approximation ratio of 3/2
on a subset of low degree vertices. For this subset, we show that the expected
contribution to the cost of the associated linear program is sufficiently large.

Figure 1.4 provides a more detailed view on the organization and conceptual asso-
ciations between the various chapters of the thesis.

The next chapter will provide the necessary background as well as the basic notions
and notations that facilitate the understanding of the topics presented in this thesis.
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(Chapters 2 & 3) and the chapters in the upper layer summarize techniques and
previous results that are used to obtain our main results (Chapters 4 & 5).
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We start with the definition of the most basic notions and notations that are used in
the sequel.

2.1 BAS IC NOT IONS AND NOTAT IONS

The sets of integers, positive integers and natural numbers will be denoted by Z =

{0, 1,−1, 2,−2, . . . }, N0 = {0, 1, 2, . . . } and N = N0\{0}, respectively. The sets of real
numbers and positive real numbers will be denoted by R and R+.The sets of rational
numbers and positive rational numbers will be denoted by Q and Q+. For a natural
number n ∈ N, we define the sets [n] = {1, 2, . . . ,n}, [n]0 = {0} ∪ [n] and [0] = ∅ in
short notation. We denote the power set of a set A, i. e. the set of all possible subsets
of A including the empty set ∅ and the set A itself, by P(A). By Pk(A) we denote the
set of all subsets of cardinality k. A multiset is defined as a 2-tuple (A,m) where A
is a set and m : A → N. The set A is called the underlying set of elements and the
function m defines the number of occurrences m(a) for each element a ∈ A. For a
real number x ∈ R, we denote by bxc the largest integer not greater than x and by dxe
the smallest integer not less than x. For a real number x ∈ R+, we denote by log(x)
the logarithm of x to the base 2 and by ln(x) the logarithm of x to the base e.

asymptotic notation. The asymptotic notation, or Bachmann-Landau notation, is
a family of notations that was introduced by Bachmann [Bac94] and Landau [Lan09]
in order to describe the limiting behavior of mathematical functions. In the realm
of computational complexity theory, this notation is used to classify the behavior of
algorithms in response to changes of the input size. Typically, the performance or
efficiency of an algorithm is defined in terms of its time and space complexity and is
measured as a function of the input length, i. e. a function t : N→N with t(n) being
the maximum number of basic operations performed or register space used by the
algorithm on inputs of length n.

In the remainder of this thesis, we will make use of the following notations for the
classification of functions. Let f(n) and g(n) be two functions f,g : N → N. We say
that



2.2 probability theory 23

• f(n) ∈ O(g(n)) if there exist a constant c > 0 and n0 ∈ N such that f(n) 6
c · g(n) holds for all n > n0,

• f(n) ∈ Ω(g(n)) if there exist a constant c > 0 and n0 ∈ N such that g(n) · c 6
f(n) holds for all n > n0,

• f(n) ∈ ω(g(n)) if there exist a constant c > 0 and n0 ∈ N such that g(n) · c <
f(n) holds for all n > n0,

• f(n) ∈ Θ(g(n)) if there exist a constants c1 > 0, c2 > 0 and n0 ∈ N such that
c1 · g(n) 6 f(n) 6 c2 · g(n) holds for all n > n0,

• f(n) ∈ o(g(n)) if for all ε > 0, there exist nε ∈ N such that |f(n)| 6 |ε · g(n)|
holds for all n > nε, and

• f(n) ∼ g(n) if for all ε > 0, there exist nε ∈ N such that
∣∣∣ f(n)g(n) − 1

∣∣∣ < ε holds for
all n > nε.

By a slight abuse of notation, in the following we write f(n) = O(g(n)) instead of
f(n) ∈ O(g(n)) and likewise for all the asymptotic notations defined above.

2.2 PROBAB I L ITY THEORY

The aim of this section is provide the basic definitions of probability and to introduce
different kinds of probability distributions that may occur when one measures the
degree distribution of real-world networks or the distribution of data points in other
real-world systems. We start with the definition of a probability space.

probability spaces . A probability space is a triple (Ω,F , Pr) consisting of elemen-
tary events or states ω which are collected in the non-empty set Ω, a σ-algebra F ,
which is the system of observable subsets or events E ⊆ Ω and a measure Pr, which
assigns a probability Pr(E) ∈ [0, 1] to all E ∈ F . Furthermore, a system F of subsets
E ∈ Ω is called σ-algebra on Ω if

1. ∅,Ω ∈ F ,

2. E ∈ F implies that Ec := Ω \ E ∈ F ,
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3. E1,E2, · · · ∈ F implies that
⋃∞
i=1 Ei ∈ F .

The pair (E,F) is a field of sets, called a measurable space. A map Pr : F → [0, 1] is
called probability measure if Pr(Ω) = 1 and for all E1,E2, · · · ∈ F with Ei ∩ Ej = ∅ for
i 6= j we have

Pr

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

Pr(Ei) .

random variables and expectation. Let (Ω,F , Pr) be a probability space
and (E, E) a measurable space. An (E, E)-valued random variable is a function X : Ω→ E

which is (F , E)-measurable, i. e. for every subset B ∈ E , its preimage X−1(B) ∈ F .
When the space E is the real line R, most commonly the σ-algebra E is chosen to
be the Borel σ-algebra B(R) and X is called a real-valued random variable or simply a
random variable.

The probability distribution of a random variable X is captured by its cumulative distri-
bution function (CDF) FX(x) = Pr(X 6 x). The complementary cumulative distribution func-
tion (CCDF) is defined as FX(x) = Pr(X > x) = 1− FX(x). A function fX : R→ [0,∞) is
called the probability density function (PDF) of X if Pr(a 6 x 6 b) =

∫b
a fX(x)dx.

In case of a discrete random variable X, a discrete probability distribution is character-
ized by its probability mass function (PMF) fX(x) = Pr(X = x) = Pr({ω ∈ Ω | X(ω) = x }),
where for the total probability

∑
x∈R fX(x) = 1 holds and where fX(x) = 0 for all

x /∈ X(Ω).
In general, if X is a random variable defined over a probability space (Ω,F , Pr), the

expected value of X is defined as

E[X] =

∫
Ω
Xd Pr =

∫
Ω
X(ω)Pr(dω) .

probability distributions . A discrete random variable X is said to have a
binomial distribution with parameters n ∈N and p ∈ [0, 1] if

Pr(X = x) =

(
n

x

)
px(1− p)n−x and Pr(X 6 x) =

bxc∑
i=0

(
n

i

)
pi(1− p)n−i , (2.1)
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for x = 0, 1, . . . ,n (cf. Figure 2.1). The expected value is E(X) = n · p.
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Figure 2.1: Plot of the probability mass and the cumulative distribution function of a binomial
distribution as functions of the parameters n and p according to Equation 2.1.

A discrete random variable X is said to have a Poisson distribution with parameter
λ > 0 if

Pr(X = x) =
λx

x!
e−λ and Pr(X 6 x) = e−λ

bxc∑
i=0

λi

i!
, (2.2)

for x = 0, 1, . . . (cf. Figure 2.2). The expected value is E(X) =
∑∞
x=1 x

λx

x! e−λ = λ.
A (continuous and real-valued) random variable X is said to have a normal (or

Gaussian) distribution with parameters µ ∈ R and σ2 > 0 if

Pr(X = x) =
1√
2πσ2

e−
(x−µ)2

2σ2 and Pr(X 6 x) =
1√
2π

∫x
−∞ e−t2/2 dt , (2.3)

for x ∈ R (cf. Figure 2.3).
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Figure 2.2: The probability mass and the cumulative distribution function of a Poisson distri-
bution as functions of the parameter λ according to Equation 2.2.

A random variable X is said to have a log-normal distribution with parameters µ ∈ R

and σ2 > 0 if

Pr(X = x) =
1

x
√
2πσ2

e−
(ln(x)−µ)2

2σ2 and Pr(X 6 x) =
1√
2πσ2

∫x
0

1

t
e−

ln(t−µ)2

2σ2 dt , (2.4)

for x ∈ [0,∞) (cf. Figure 2.4).
A random variable X is said to have a exponential distribution with parameter λ > 0

if

Pr(X = x) =

λ e−λx, x > 0

0, x < 0

and Pr(X 6 x) =

1− e−λx, x > 0

0, x < 0

, (2.5)

for x ∈ [0,∞) (cf. Figure 2.5).
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Figure 2.3: The probability density and the cumulative distribution function of a normal dis-
tribution as functions of the parameters µ and σ2 according to Equation 2.3.

A random variable X is said to have a Pareto distribution with parameters α > 0 and
xmin > 0 if

Pr(X = x) =

α
xαmin
xα+1

, x > xmin

0, x < xmin

and Pr(X 6 x) =

1−
(

x
xmin

)−α
, x > xmin

0, x < xmin

,

(2.6)

for x ∈ [xmin,∞) (cf. Figure 2.6).
A random variable X is said to have a power law distribution with parameters α > 0

and xmin > 0 if

Pr(X = x) =
α− 1

xmin

(
x

xmin

)−α

and Pr(X 6 x) = 1−
(

x

xmin

)−α+1

, (2.7)

for x ∈ [xmin,∞) (cf. Figure 2.7).
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Figure 2.4: The probability density and the cumulative distribution function of a log-normal
distribution as functions of the parameters µ and σ2 according to Equation 2.4.
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Figure 2.5: The probability density and the cumulative distribution function of a exponential
distribution as functions of the parameter λ according to Equation 2.5.
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Figure 2.6: The probability density and the cumulative distribution function of a Pareto distri-
bution as functions of the parameters α and xmin according to Equation 2.6.
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Figure 2.7: The probability density and the cumulative distribution function of a power law
distribution as functions of the parameters α and xmin according to Equation 2.7.
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2.3 GRAPH THEORY

This section gives an introduction to the graph theory terminology and notation used
throughout this thesis. We start by giving a short outline of the historic beginnings of
graph theory.

2.3.1 Introduction

Historically, the Seven Bridges of Königsberg is one of the first problems in graph theory
and was posed in natural language by the middle of the 18th century. The formal
problem description goes back to the famous mathematician Leonard Euler, who was
confronted with the question if there exists a round trip through the city of Königsberg
which passes every bridge of the city exactly once (see [Eul41]). Euler assigned points
to the different districts of the city and lines to the bridges connecting those districts,
and thus obtained a clearly structured schematic representation of the problems initial
situation in form of an undirected graph (cf. Figure 2.8).

(a)

A

B

C

D

ba

c d

f

g

e

(b)

Figure 2.8: Find a tour trough the city of Königsberg, using every bridge that crosses the river
Pregel exactly once. The setting of the Seven Bridges of Königsberg problem in a
first drawing by Euler [Eul41] (Figure 2.8a) and its schematic representation as a
undirected graph (Figure 2.8b).
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This is one of the first examples for the application of graphs for the formal descrip-
tion and as a method of solution of real-world problems. Further milestones in the
history of graph theory are listed below:

• In 1847 Kirchhoff [Kir47] introduced the concept of graphs for the investigation
of electronic circuits.

• In 1857 Cayley [Cay57] considered a special class of graphs, so called trees, in
connection with the enumeration of isomers of saturated hydrocarbons.

• Also in 1857 Hamilton invented the Icosian Game and an improved variant called
the Traveller’s Dodecahedron1 and thereby introduced the well known Hamilto-
nian Cycle problem on graphs (cf. [BLW86; Bol98]).

• In the middle of the 19th century Francis Guthrie [Gut54] formulated the four-
color conjecture while coloring the map of counties in England. The conjecture,
published by his brother Frederick, claims that four colors would suffice to color
every planar map such that any two adjacent fields have different colors [Gut80].
As it turned out, the four-color conjecture could not be proven after several
attempts until the computer-aided proof by Appel and Haken [AH76] in 1976.

In the 20th century graphs are ubiquitous representations of biological, technologi-
cal, social and information systems and graph analysis—along with the tools of graph
theory—is applied in each of these fields to understand the structure, function and
organization of the networks under study. Let us now turn to the basic definitions in
the realm of graph theory.

2.3.2 Basic Definitions

In what follows, we introduce the basic notations and invariants in connection with
the notion of graphs that are used throughout this thesis. For a more detailed and
complete introduction to graph theory see e. g. the textbooks by Bollobás [Bol98] and
Diestel [Die10].

1 A feasible solution for this game is a round-trip along the edges of the dodecahedron that visits every
node exactly one and ends at a node adjacent to the starting node.



32 background

graphs and multigraphs . An undirected graph is a 2-tuple G = (V ,E) of finite
sets V ,E with V ∩ E = ∅ and such that E ⊆ P2(V). The elements of V(G) are regarded
as the vertices or nodes of the graph G, the elements of E(G) are the undirected edges or
lines of G. An undirected edge e ∈ E is usually denoted as an unordered pair e = {u, v}
and we say that e is incident to the nodes u and v. Two edges are called adjacent if they
share a common node as an endpoint, whereas two nodes are adjacent when there
is an edge connecting the two nodes. If all vertices of a graph are pairwise adjacent
the graph is complete and a complete graph on n vertices is denoted as Kn. A graph
G = (V ,E) is called simple if E does not contain multiple edges with the same incident
nodes or self-loops e = {u,u}. By extending the notion of the set of edges to multisets,
the corresponding multigraph is allowed to contain multiple parallel edges and self-loops
e = {u,u}.

The vertex set of a graph G is referred to as V(G) and its edge set E(G), independent
of the names of the two sets as denoted in the tuple. Throughout this thesis, we set
the cardinality of the vertex set |V(G)| := n, which is also referred to as the order of G,
denoted as |G|. Graphs of finite or infinite order are also called finite or infinite graphs,
respectively. The cardinality of the edge set is |E(G)| := m, also denoted as ‖G‖. The
set of adjacent nodes to some node v is called the neighborhood of v and is denoted by
N(v) := {u ∈ V | {u, v} ∈ E }. For a subset V ′ ⊆ V , we set N(V ′) :=

⋃
v∈V ′ N(v) \ V ′.

We define the degree d(v) as the number of edges incident to v. The number δ(G) :=
min{d(v) | v ∈ V } is the minimum degree of G, the number ∆(G) := max{d(v) | v ∈ V }

is the maximum degree of G. If all of the vertices v ∈ V(G) are of the same degree k the
graph G is called k-regular. The number d(G) := 1

|V |

∑
v∈V d(v) is the average degree of

G, and clearly δ(G) 6 d(G) 6 ∆(G).

isomorphic graphs and subgraphs . Let G = (V ,E) and G ′ = (V ′,E ′) be two
graphs. We call G and G ′ isomorphic, G ' G ′, if there exists a bijection ϕ : V → V ′

with {u, v} ∈ E ⇔ {ϕ(u),ϕ(v)} ∈ E ′ for all u, v ∈ V . The map ϕ is then called an
isomorphism.

Let G = (V ,E) be a finite (undirected) graph. A graph H = (V ′,E ′) with V ′ ⊆ V and
E ′ ⊆ E is called subgraph of G, H ⊆ G. Moreover, we define an edge-induced subgraph
G[E ′] := (V[E ′],E ′) with V[E ′] :=

⋃
{u,v}∈E ′{u, v}, i. e. the subgraph that contains exactly

the edges e ∈ E ′ and all incident vertices. Analogously, we define a node-induced
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subgraph G[V ′] := (V ′,E[V ′]) with E[V ′] := { {u, v} ∈ E | {u, v} ⊆ V }, i. e. the subgraph
that contains exactly the nodes V and all edges of G that connect nodes of V . A
subgraph H ⊆ G is called spanning subgraph if V ′ spans all of G, i. e. V ′ = V .

paths and trees . A path of length l in a graph G = (V ,E) is a sequence P =

v1, v2, . . . , vl, vl+1 of l+ 1 vertices vi ∈ V such that every two subsequent vertices in P
are adjacent in G. A path is called simple if the vertices of the sequence are pairwise
different. The sequence C = v1, v2, . . . , vl, v1 is called a cycle of length l in G. The
distance d(u, v) of two vertices u, v in G is the length of a shortest path from u to v.
If no such path exists, we set d(u, v) := ∞. The maximum distance between any two
vertices of G is called the diameter of G, denoted as diam(G).

A non-empty graph G is called connected if the there exists a path between any
two vertices of G. For any subset U ⊆ V where G[U] is connected, we may also call
the subset U connected. A maximal subset U, such that G[U] is connected, is called
a component of G. A graph without cycles, i. e. an acyclic graph, is called forest. A
connected forest is called tree and the vertices of degree 1 are called its leaves.

special subsets . Pairwise non-adjacent vertices or edges are called independent
and—more generally—a subset of vertices or edges is called independent set of vertices
or edges, if no two of its elements are adjacent. A vertex cover of G is a subset of
vertices C ⊆ V such that each edge has at least one endpoint in C. A dominating set in
G is a subset of vertices D ⊆ V such that for each v ∈ V either v ∈ D or D∩N(v) 6= ∅.
A matching of a graph G is a subset M ⊆ E of edges which are pairwise not adjacent
in G. A clique of a graph G is a subset L ⊆ V of vertices such that every pair of vertices
from the subset are adjacent.

directed graphs . A directed graph is a 2-tuple G = (V ,A) of finite sets with
A ⊆ V × V denoting the set of directed edges or arcs of G. A directed edge e ∈ A is
denoted as an ordered pair e = (u, v), an we say that e is directed from its source node
u to its target node v. The two arcs (u, v) and (v,u) are called reversals of each other.
We define the in-degree d+(v) and the out-degree d−(v) as the number of ingoing and
outgoing arcs of v, respectively. All the definitions here hold, in slight variations, for
both directed and undirected graphs.
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(a) (b) (c) (d)

Figure 2.9: Examples for an undirected simple graph (Figure 2.9a), an undirected multigraph
(Figure 2.9b), a directed simple graph (Figure 2.9c) and a directed multigraph with
a self-loop (Figure 2.9d).

hypergraphs . Another generalization of the graphs introduced above are the so
called hypergraphs H = (V ,E), where E ⊆ P(V) \ ∅ is the set of hyperedges—that is,
edges connecting an arbitrary number of vertices. In a directed hypergraph a directed
hyperedge e ∈ E is denoted as an ordered pair (X, Y), where X ⊆ V ,X 6= ∅ and
Y ⊆ V \X. The set X is called the source of the directed hyperedge and Y is called the
target.

clustering coefficients . Besides the graph invariants mentioned above, one
of the defining properties of many real-world graphs is the clustering coefficient C(G),
which describes how well connected the neighborhood of a node or a set of nodes
is. Following Watts and Strogatz [WS98], given a simple undirected graph G = (V ,E)
and a vertex v, the local clustering coefficient Cv(G) is defined by

Cv(G) = 2
|{ {u,w} | u,w ∈ Nv, {u,w} ∈ E }|

d(v)(d(v) − 1)
.

Since d(v) denotes the number of edges incident to v, the denominator of the equation
above is the maximum possible number of edges between neighbors of v. Note that
0 6 Cv(G) 6 1 and that the value of Cv(G) quantifies how close the neighbors of v are
to being a clique (see Figure 2.10).
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Figure 2.10: Graphs of increasing local clustering coefficient Cv at a vertex v.

For the global clustering coefficient we have two possible definitions, namely

C(G) = C1(G) =
1

n

∑
v∈V

Cv(G)

and

C(G) = C2(G) =

∑
v∈V (d(v)(d(v) − 1))Cv(G)∑

v∈V (d(v)(d(v) − 1))
.

The first definition follows Watts and Strogatz [WS98] and represents some kind of
an average value over averages, which is often not very informative. The second
definition, which is also sometimes termed the transitivity ratio of a graph, is a related
concept that places more weight on the nodes of higher degree and has the following
natural equivalent form that also applies to multigraphs.

C2(G) =
# of pairs of adjacent edges {v,u}, {v,w} where {u,w} is an edge

# of pairs of adjacent edges {v,u}, {v,w}
,

or equivalently,

C2(G) =
3× # of triangles

# of pairs of adjacent edges
.

In order to illustrate the difference between the two definitions of the clustering coef-
ficient C1(G) and C2(G) consider the graph G on n vertices shown in Figure 2.11.
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Figure 2.11: An example of a graph that has considerably differ-
ent values for the two definition of the global cluster-
ing coefficient C1(G) and C2(G). It is easy to see that
the local clustering coefficient is Cu(G) = Cv(G) =
2
n−1 for the vertices u and v, and Cx(G) = 1 for all
other vertices. For the global clustering coefficient it
follows that C1(G) = 1− o(1) and C2(G) ∼ 2/n.

u v

G

degree distributions . Another characteristic property of graphs is its under-
lying degree distribution or degree sequence. The (non-cumulative) degree distribution
fd(k) is defined to be the fraction of nodes with degree k, that is, for a graph over
n vertices with yk vertices of degree k, fd(k) = yk

n . More formally, let G = (V ,E)
be a graph and k = 1, 2, . . . , then, if we pick a vertex v ∈ V uniformly at random,
Pr(d(v) = k) = fd(k).

The degree sequence of a graph is defined in two different ways, namely the d-
degree sequence and the y-degree sequence. First, let G = (V ,E) be a graph with
maximum degree ∆. Then, the y-degree sequence is defined as y(G) = (y1,y2, . . . ,y∆),
where yi is the number of vertices of degree i. Second, let n be the number of ver-
tices in G. Then, the d-degree sequence is defined as d(G) = (d(v1),d(v2), . . . ,d(vn)),
where the vertex degrees d(vi) are ordered such that the sequence is monotonic non
increasing.

In the upcoming section we are going to introduce the concept of random graph
models that aim to describe how “typically observed” graphs emerge and how they
look like.

2.4 RANDOM GRAPH THEORY

We are going to introduce the standard models for uniform random graphs. Moreover,
we will summarize some previous results that characterize the structure of uniform
random graphs. This small extract from the huge field of random graphs theory will
be suited to point out the differences and similarities between the classical uniform
random graphs and random power law graphs.
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2.4.1 Introduction and Basic Definitions

The research on the theory of random graphs was initiated by Erdős and Rényi—and
independently by Gilbert—in the late 1950’s when the first formal definitions of a
random graph were presented in the seminal papers [ER59] and [Gil59]. The overall
aim in this branch of research was to investigate the properties of a ’typical’ graph
with a fixed number of labeled vertices, and to devise mathematical models that gen-
erate such graphs in a random fashion. In fact, random graph theory is not the study
of graphs, but the study of a family or a probability space of graphs. Such a graph
class consists of many different graphs, each of which is associated with a probability
denoting the likelihood of occurrence.

The G(n,p) model due to Gilbert [Gil59] describes a random graph family on n
vertices where en edge between any two vertices occurs with probability p. In the
Erdős-Rényi model an equal probability is assigned to all graphs over a vertex set
[n] = {1, 2, . . . ,n} with exactly M edges. The Erdős-Rényi model is therefore often
also referred to as the G(n,M) model for random graphs.

In other words, Erdős and Rényi [ER59] considered the probability space Gn,M of
all
(
N
M

)
graphs with vertex set [n] and M edges, where N =

(
n
2

)
is the number possible

edges between vertices of the vertex set [n]. By assigning an equal probability to each
element, the set Gn,M is made into a probability space and the graph Gn,M ∈ Gn,M will
denote a random element of this probability space.

In order to have a similar notation for the G(n,p) model, a family of graphs or
probability space Gn,p is defined as follows: Let {Xij | 1 6 i < j 6 n } be an array
of independent and identically distributed (i.i.d.) Bernoulli random variables, with
Pr(Xij = 1) = p and Pr(Xij = 0) = 1− p, and let Gn,p ∈ Gn,p be the random graph
on vertex set [n] in which an edge connects vertices i and j if Xij = 1. This means,
in order to construct a random graph Gn,p ∈ Gn,p, we draw edges with probability
p, independent of each other. Erdős and Rényi also noted in [ER60] that in the Gn,p

model introduced by Gilbert, the number of edges is a random variable with expec-
tation p

(
n
2

)
. Thus, for M ∼ p

(
n
2

)
= pN, the two models Gn,p and Gn,M are almost

interchangeable.
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Now let Gn,M ∈ Gn,M or Gn,p ∈ Gn,p be a random graph in the G(n,M) model
or G(n,p) model, respectively. We say that Gn,• has a certain property P with high
probability (w.h.p.) if

Pr(Gn,• has property P)→ 1 ,

as n → ∞. The interesting case in the Gn,M model is when the number of edges is a
function of n, i. e. M =M(n), or—for the Gn,p model—if p is a function of n.

Another way to generate a random graph on n vertices is to employ a stochastic
process that starts on a graph with n vertices and no edges, and that, with each
step the process, adds an edge from the set of possible edges. Formally, a graph
process G̃n = (Gn,t)

N
t=0 on a vertex set [n] is a nested sequence of graphs, Gn,0 ⊂

Gn,1 ⊂ · · · ⊂ Gn,N such that Gn,t has precisely t edges. The space G̃n of random
graph processes consists of all N! graph processes on the vertex set [n]. We note here,
that the distribution of Gn,t as a random graph process stopped at time t is precisely
the distribution of an element Gn,t ∈ Gn,t. This means, elements Gn,M ∈ Gn,M can
be viewed as a state or snapshot of a random graph process G̃n at time t = M.
Furthermore, a random graph process has a natural interpretation as a dynamic Markov
process that acts on a sequence of graphs Gn,0, . . . ,Gn,N. Given a sequence of graphs
or steps Gn,0, . . . ,Gn,t at time t, the next step Gn,t+1 is obtained by adding one of the
N− t remaining possible edges to Gn,t uniformly at random.

2.4.2 Results on Classical Random Graphs

The following theorem presents a fundamental result of Erdős and Rényi—stated
in a slightly different form in [ER59]—about the property of connectedness of certain
random graphs Gn,M ∈ Gn,M.

Theorem 2.1 (Erdős and Rényi [ER59]).
Let Mω = n/2 · (logn+ω), where ω = ω(n) is a function of n. If ω→ −∞ then a typical
Gn,Mω is disconnected, while if ω→∞, a typical Gn,Mω is connected.

In the study of the evolution of random graphs, Erdős and Rényi showed for a
number of fundamental graph properties that there exist sharp thresholds on the
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corresponding parameters, such that graphs with a parameter size slightly less that
this threshold are very unlikely to have the property, while graphs of size slightly
above this threshold almost surely (a.s.) have the property. This is known as a phase
transition of a property within a family of random graphs or within a random graph
process. Erdős and Rényi [ER60] proved that the component structure of a random
graph process undergoes such a phase transition if t ∼ n/2 in a random graph process
G̃n or if p = 1/n for a graph Gn,p ∈ Gn,p. We state the following theorem.

Theorem 2.2 (Erdős and Rényi [ER60]).
Let Gn,p ∈ Gn,p, c > 0 be a constant and set p = c/n.

(i) If c < 1, then w.h.p. every component of Gn,p is of order O(logn).

(ii) If c > 1, then w.h.p. Gn,p has a component with (γ(c) + o(1))n vertices, where γ(c) >
0, and all of the remaining components are of order O(logn).

If a component of order Θ(n) as described above in part (ii) of Theorem 2.2 ex-
ists, this component is called the giant component of the random graph Gn,p. For the
case c � 1 the giant component has a large highly connected subgraph, which is
sometimes termed as the core of the graph.

Let y1, . . . ,y∆ be the degree sequence of a graph, where yi is the number of vertices
of degree i and ∆ is the maximum degree. In the Gn,p model, for p being a constant,
the degree sequence of Gn,p is well approximated by a sequence of n i.i.d. Binomial
random variables with probability p and mean n · p (cf. Section 2.2 and Equation 2.1
on page 24). For p = c/n, with c being a constant, the degree sequence is close to a
sequence of n i.i.d. Poisson random variables with mean c (cf. Equation 2.2 on page
25). As noted by Bollobás and Riordan [BR05], the following theorem holds regarding
the degree distribution of a graph Gn,p ∈ Gn,p.

Theorem 2.3.
Let yi be the number of vertices of degree i in Gn,p ∈ Gn,p where p = c/n and c > 0 a constant.
Then for i = 0, 1, . . .

Pr
(
(1− ε)

ci e−c

i!
6
yi
n
6 (1+ ε)

ci e−c

i!

)
→ 1

as n→∞.
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As defined in Section 2.3 on page 33 the diameter of a graph is the maximum length
of a shortest path between to vertices. The diameter of a random graph is a property
which has been studied in great detail (cf. Bollobás [Bol81], Bollobás and Fernan-
dez de la Vega [BF82], Chung and Lu [CL01]). In the Gn,p model, if pn

logn → ∞ and
logn

log(pn) → ∞, then the diameter of Gn,p ∈ Gn,p is asymptotic to logn
log(pn) w.h.p. Further-

more, we write here a result on the diameter of random regular graphs, which closely
resembles a result on random power law graphs that will be stated in Section 2.5.

Let 3 6 r 6 n be a fixed constant and let n · r be even. Then Gn,r-reg denotes the
family of random r-regular graphs on n vertices. We state the following simplified
form of the main theorems from [BF82].

Theorem 2.4 (Bollobás and Fernandez de la Vega [BF82]).
Let r > 3 and ε > 0 be fixed. Then, for the diameter of Gn,r-reg ∈ Gn,r-reg, the following holds
as n→∞:

Pr
(
(1− ε)

logn
log(r− 1)

6 diam(Gn,r-reg) 6 (1+ ε)
logn

log(r− 1)

)
→ 1 .

Now, we are going to introduce another family of graphs which is also adapted to
modeling typical graphs stemming from large-scale real-world systems.

2.5 POWER - LAW GRAPHS

Recently the study of large-scale real-world networks revealed common topological sig-
natures and statistical features that are not easily captured by classical uniform random
graphs—such as generated by the G(n,p) and G(n,M) introduced in Section 2.4.

2.5.1 Introduction

Within the interdisciplinary study of complex networks one of the most interesting
properties of the graphs under study is the so called scale-freeness, a property that con-
tains a set of features such as small (and ultra-small) diameters, large clustering coef-
ficients and particular distributions of node degrees. In contrast to uniform random
graphs that exhibit a binomial or Poisson distribution of node degrees, this family is



2.5 power-law graphs 41

characterized by the property of having a power law degree distribution. This means
that the number of nodes yi of a given degree i is proportional to i−β, where β > 0 is
the so called power law exponent. The corresponding graphs of this class are therefore
called power law graphs or—with a stronger focus on the set of features that define
scale-freeness—scale-free networks. Figure 2.12 shows a comparison of a random graph
in the G(n,p) model and a random power law graph, both with the same numbers of
vertices and edges.

Erdős-Rényi Random Graph Random Power-Law Graph

vs.

Figure 2.12: Comparison of a random graph in the G(n,p) model due to Erdős and Rényi
[ER60] and Gilbert [Gil59] versus a random power law graph in the generalized
preferential attachment model on n vertices and m edges, with n = 42 and m =
56.

Starting in 1999 Kumar et al. [Kum+00; Bro+00], Kleinberg et al. [Kle+99; KL01] and
Faloutsos, Faloutsos, and Faloutsos [FFF99; Sig+03] measured the degree sequence
of the World-Wide Web and independently observed that it is well approximated
by a power law distribution. In the sequel, this was verified for a large number of
existing real-world networks such as protein-protein interaction networks, gene regulatory
networks, peer-to-peer networks, e-mail networks, mobile call networks, social networks et
cetera [JAB01; Gue+02; EMB02; Ses+08; Eub+04b].

In fact, power law distributions in real-world data sets had also been observed
considerably earlier. For example for the distribution of income, city sizes, word fre-
quencies and for citations of academic literature [Par96; Aue13; Est16; Lot26]. Besides
these and other early investigations, the idea of associating power law distributions
with real-life systems and also the popularization of this idea is generally attributed
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to the American linguist Zipf [Zip35; Zip49]. Zipf considered the frequency of occur-
rence of words in a natural language and observed a power law distribution. He is
also the originator of the widespread term Zipf’s Law as a synonym for power law be-
havior, and associated power law distribution is therefore often referred to as a Zipfian
distribution.

2.5.2 Basic Definitions

First, we will give a non-stochastic definition of a power law relationship. A finite
sequence y = (y1,y2, . . . ,yn), with yi ∈ R and ordered such that y1 6 y2 6 . . . 6 yn,
follows a power law or exhibits a scaling relationship if

i = c · y−αi ,

where i is the rank of yi, c is a normalizing constant and α is the scaling index.
In a stochastic context, assuming an underlying probability model Pr for a non-

negative random variable X, let FX(x) = Pr(X 6 x) denote the cumulative distribution
function (CDF) of X, and letFX(x) = Pr(X > x) = 1− F(x) be the complementary cumu-
lative distribution function (CCDF) of X. A random variable X or its corresponding
distribution function FX is said to follow a power law if, as x→∞,

Pr(X > x) = 1− F(x) ∼ c · x−α ,

for constants 0 < c < ∞ and a α > 0. Here, f(x) ∼ g(x) means that the limit of the
ratio f(x)/g(x) goes to 1 as x → ∞. The constant α of a distribution following a power
law is also referred to as the power law exponent.

If a random variable X has a power law distribution, then a doubly logarithmic plot
of the CCDF of X asymptotically yields a straight line of slope −α. This fact can be
used as an empirical test for whether a random variable X follows a power law on
a given sample2. In Figure 2.13 we show a linear plot of the CCDF of a power law
distribution in comparison with a log-log plot of the same CCDF.

2 This observation has already been made by Auerbach [Aue13] for the distribution of city sizes in 1913.
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Figure 2.13: Left: A plot of the CCDF Pr(X > x) = x−α of a power law distribution with
α = 1.5 ( ), α = 2 ( ) and α = 3 ( ). Right: A doubly logarithmic plot of the
same CCDF yielding a straight line of slope −α.

One specific power law distribution is the Pareto distribution, which was introduced
by Pareto [Par96] in 1896 as a mathematical argument to explain the distribution of
income inside a population. It satisfies

Pr(X > x) =
(x
k

)−α
,

for some constants α > 0 and k > 0. Figure 2.14 shows a plot of the above CCDF of
the Pareto distribution on a linear scale and a log-log scale.

In the following, we describe some random graph models that aim to explain how
power law degree distributions in evolving graphs arise.

2.5.3 Evolving Models

The model of “preferential attachment” is most often referred to as a potential mecha-
nism underlying the emergence of scale-free graphs and features the role of evolution-
ary growth or rewiring in the construction process. Also known under the name of
“cumulative advantage”, the model was first mentioned and described by Yule [Yul25],
Simon [Sim55] and de Solla Price [Pri65; Pri76]. Later this concept was reintroduced
to a broader audience by Barabási and Albert [BA99] and was more rigorously and
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Figure 2.14: Left: A plot of the CCDF Pr(X > x) = (x/2)−α of a Pareto distribution with α = 1.5
( ), α = 2 ( ) and α = 3 ( ). Right: A doubly logarithmic plot of the same
CCDF yielding a straight line of slope −α.

mathematically defined by Bollobás and Riordan [BR05]. In the model, a newly intro-
duced vertex will connect to already existing vertices with a probability depending
on their current degree. This principle of network growth is therefore customary
described as a phenomenon of “the rich get richer” or preferential attachment.

the barabási-albert model . Let us now give a slightly more formal descrip-
tion of the preferential attachment model introduced by Barabási and Albert [BA99].
Starting on an initial seed graph with a small number m0 of vertices, at each time
step t, a new vertex vt along with m 6 m0 edges is added to the existing graph.
The m edges are added randomly to m different vertices and the probability that vt
connects to a vertex vi is proportional to the degree dt(vi) of vi at time t, i. e. the
probability of an edge {vt, vs} at time t is given by

Pr(i = s) =
dt(vs)∑

vj∈V ,vj 6=vs dt(vj)
.

However, the model description above gives rise to some problems, as pointed out
by Bollobás and Riordan [BR05, pp. 7-10]. The first problem is the initial situation of a
seed graph onm0 vertices and no edges, since the attachment probability is dependent
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on the vertex degrees, which are all 0 in the initial situation. The second problem is
with the preferential attachment rule for the case m > 2. Suppose we add m > 2

edges at time t+ 1. Since the above description does not allow to add the edges one
by one independently, we must fully describe the probability that one specific set S
out of the

(
t
m

)
possible sets—consisting of vertices of the previous step—is chosen to

be connected by the newly added edge. This probability is not uniquely specified by
giving the marginal probabilities that vi ∈ S for each vertex vi from time step t.

the lcd model . In order to be able to prove results for preferential attachment
random graphs, Bollobás and Riordan [BR05] defined a precise random graph model—
the LCD model—satisfying the description of Barabási and Albert [BA99]. In this
model, multi-edges and self-loops are allowed and can be interpreted for example in
the context of the WWW that two websites can have multiple links between them and
also links to themselves. Bollobás and Riordan considered a fixed sequence of vertices
v1, v2, . . . and defined inductively a random graph process (G

(t)
1 )t>1 so that G(t)

1 is a
graph on the vertex set V = { vi | 1 6 i 6 t }. The initial situation is the empty graph
G

(0)
1 or the graph G(1)

1 with one vertex and one self-loop. Given the graph G(t−1)
1 at

time t− 1, the graph G(t)
1 is formed by adding the vertex vt and a single edge {vt, vi}.

The target index i is chosen randomly with

Pr(i = s) =


d(vs)
2t−1 for 1 6 s 6 t− 1

1
2t−1 for s = t ,

where d(vs) is the degree of vs in G(t−1)
1 . In other words, an edge e = {vt, vi} is con-

structed with probability proportional to the degree of vi and counting e as already
contributing to the degree of vt. For m > 1, m edges originating at vt are added one
by one and counting all the previous edges and the fixed end of the current edge
as already contributing to the node degrees. These precise rules lead to a equivalent
alternative definition, where the graph process (G(t)

m )t>0 is defined by running the pro-
cess (G

(t)
1 )t>0 on a sequence v ′1, v

′
2, . . . , and to construct the graph G(t)

m from G
(mt)
1 by

identifying the vertices v ′1, v
′
2, . . . , v

′
m to form the single vertex v1, v ′m+1, v

′
m+2, . . . , v

′
2m
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to form the vertex v2, and so on. In this way, G(t)
m is defined in terms of a much simpler

object G(mt)
1 and results about G(t)

m can be proven in terms of G(mt)
1 .

Another important property, which also gave the model its name, is the following:
While G(t)

m is a dynamic process, the distribution of the graph G(n)
m obtained at a par-

ticular time t = n has a simple static description, namely the linearized chord diagram
(LCD) description defined in [BR04]. A LCD with n chords, or equivalently, an n-
pairing is a partition of the set {1, 2, . . . , 2n} into pairs, which yields a number of (2n)!/
(n!2n) n-pairings. A pair is formed by a chord of a LCD L, that is, a line connecting
two points of the set {1, 2, . . . , 2n}. Moreover, every chord is said to have a left and
right endpoint. Figure 2.15 shows a LCD with n chords over 2n points.

. . .

2n points

n chords

L :

Figure 2.15: A linearized chord diagram L with n chords over 2n points, as defined by Bol-
lobás and Riordan [BR04].

A graph φ(L) from a LCD L is generated as follows: starting from the left, vertex v1
is formed by accumulating all endpoints to the right including the first right endpoint
of a chord. All further endpoints up to the next right endpoint form vertex v2, and so
on. The edge set of the graph φ(L) is generated by replacing each chord by an edge
joining the vertices corresponding to the two endpoints of the chord (see Figure 2.16).

Now let G(n)m denote the probability space of random graphs in the LCD model over
the set [n], where a random element G(n)

m ∈ G(n)m has the distribution of the process
described above. Bollobás and Riordan [BR04] and independently Cohen and Havlin
[CH03] proved the following property regarding the diameter and connectedness of
random graphs G(n)

m ∈ G(n)m .
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v1 v2 v3 v4 v5 v6

φ(L) :

L :

Figure 2.16: A LCD L and its corresponding graph φ(L). The edges of φ(L) are generated by
joining the vertices corresponding to the two endpoints of a chord in L.

Theorem 2.5 (Bollobás and Riordan [BR04],Cohen and Havlin [CH03]).
For any fixed m > 2 and a real number ε, w.h.p. G(n)

m ∈ G(n)m is connected and has a diameter
satisfying

(1− ε)
logn

log logn
6 diam(G

(n)
m ) 6 (1+ ε)

logn
log logn

.

other preferential attachment models . Based on the vague description
of the Barabási-Albert model and the formal description of the LCD model, a number
of other preferential attachment models have been introduced. For example, Doro-
govtsev, Mendes, and Samukhin [DMS00] and independently Drinea, Enachescu, and
Mitzenmacher [DEM01] proposed a variation of the Barabási-Albert model with initial
attractiveness which is a numerical constant that is added to the neighboring probabil-
ity of a newly introduced node. This model was made precise along the lines of the
LCD model by Buckley and Osthus [BO04] and hence is called the Buckley-Osthus
model. Furthermore, Kumar et al. [Kum+00] proposed a model for the graph structure
of the WWW where a new vertex is added to the graph by copying an already added
vertex and changing some of its links. The links are dependent on a copy factor which
determines if the link connects to a vertex chosen uniformly at random or if the link
destination is copied from the prototype vertex. Hence, this model is also called the
“copying model”.
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All the above models are designed to explain how power law degree distributions
arise. A general drawback of these evolving models is that they are intrinsically hard
to analyze. For example, it is very hard to specify the probability of an edge in a gen-
erated graph instance, since every static instance of the evolving process is dependent
on all previous steps. This is hindering, especially, when attempting to derive approx-
imability results for combinatorial optimization problems for a family of power law
graphs. More generally speaking, the difficulty lies in the task of deriving structural
properties of the graph instances generated by these models. For this purpose, a sec-
ond class of models for power law graphs was introduced where the target degree
distribution is fully specified and fixed in the beginning.

2.5.4 Static Models

Motivated by the behavior of massive graphs derived from data in telecommunica-
tions, Aiello, Chung, and Lu [ACL00; ACL01] proposed a graph model that ensures
a power law degree distribution by fixing a degree sequence via two parameters α,β
and then to take the space of random graphs with this degree sequence. Thus their
approach somehow complements the above evolving models in that it does not aim
to explain how power laws arise, but—given that a graph has a power law degree
sequence—allows to derive structural properties and statistical features which hold
with asymptotically high probability (that is, a probability tending to 1 as the size of
the graph goes to ∞). Furthermore, the derived results are true not only for certain
instances of the random graph model, but for the majority of graphs with the given
degree sequence. This model will be referred to as the G(α,β) model or ACL model for
random power law graphs, and the corresponding graph class will be denoted as Gα,β.
A graph or random element from this graph class is denoted by Gα,β ∈ Gα,β. This
graph model will be the underlying model for studies and the results of this thesis.

the aiello-chung-lu model . In this section we describe in detail the random
G(α,β) model proposed by Aiello, Chung, and Lu [ACL01]. The G(α,β) model con-
siders a random graph with the following degree distribution and maximum degree
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∆ =
⌊

eα/β
⌋

: Depending on two given values α and β, for each 1 6 i 6 ∆ there are yi
vertices of degree i with

yi =


⌊

eα
iβ

⌋
if i > 1 or

∑∆
i=1

⌊
eα
iβ

⌋
is even,

beαc+ 1 otherwise.

Here, i and yi satisfy logyi = α− β log i. The value of the parameter α corresponds
to the logarithm of the size of the graph and the parameter β can be interpreted as
the log-log growth rate.

Let Gα,β be the family of all undirected graphs with multi-edges and self-loops on
n =

∑∆
i=1 yi vertices which have yi vertices of degree i (1 6 i 6 ∆). The number

of vertices and edges of Gα,β ∈ Gα,β can be computed as n =
∑∆
i=1

⌊
eα

iβ

⌋
and m =

1
2

∑∆
i=1

⌊
eα

iβ−1

⌋
, respectively. As in [ACL01], in the following we will work with the

real numbers eα
iβ

, eα/β instead of their integer counterparts when β > 2. In this case
the error is a lower order term3 in the size of the graph. When dealing with the
parameter range 0 < β < 2, we will give a detailed error term analysis whenever the
above numbers are rounded down to integers.

According to [ACL00; ACL01], the parameters n,m,α and β are related roughly as
follows:

n ≈


ζ(β)eα if β > 1

αeα if β = 1

e
α
β

1−β if 0 < β < 1

and m ≈


1
2ζ(β− 1)eα if β > 2

1
4αe

α if β = 2

1
2
e
2α
β

2−β if 0 < β < 2

In order to define the random graph model, we consider α to be large and β to be
fixed and define that G(α,β) is the distribution on Gα,β obtained in the following way,
given a target d-degree sequence d(Gα,β) = (d(v1), . . . ,d(vn)) (cf. [ACL01]):

1. Generate a set L of d(v) distinct copies of each vertex v according to the degree
sequence.

3 For example, when considering the number of vertices, the error is at most eα/β which is in o(n) (cf.
[ACL01, p. 6]).
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2. Generate a random matching on the elements of L.

3. For each pair of vertices u and v, the number of edges joining u and v in Gα,β ∈
Gα,β is equal to the number of edges in the matching of L which join copies of u
to copies of v.

Figure 2.17 shows the generation of edges, self-loops and multi-edges in the result-
ing graph Gα,β ∈ Gα,β of the random model described above.

. . . . . . . . . . . .

d(v) = 1 d(v) = 2 d(v) = 3

V :

L :

edge multi-edgeself-loop

Figure 2.17: Generation of edges, self-loops and multi-edges via random matching in the ran-
dom model for Gα,β ∈ Gα,β as described by Aiello, Chung, and Lu [ACL01].

We conclude this section with a formal definition of a power law graph in the model
described above.

Definition 2.1 ((α,β)-power law graph ((α,β)-PLG)).
A graph Gα,β = (V ,E) is called a (α,β)-PLG where multi-edges and self-loops
are allowed if the maximum degree is ∆ = beα/βc and the number of vertices of
degree i is

yi =


⌊

eα
iβ

⌋
if i > 1 or

∑∆
i=1

⌊
eα
iβ

⌋
is even

beαc+ 1 otherwise.

In order to point out the differences and similarities between the classical uniform
random graphs and random power law graphs, in the following section we mention
some previous results on structural properties of random power law graphs.
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2.5.5 Results on Static Power Law Graphs

We start with some previous results on the component structure of graphs Gα,β ∈ Gα,β,
so called (α,β)-power law graphs.

connected components . In the context of random graphs with prescribed
degree sequences, Molloy and Reed [MR95; MR98] investigated the existence of gi-
ant components for random graphs with a fixed number (λi + o(1))n of vertices of
degree i, where

∑
i λi = 1. They showed that a giant component emerges when

Q =
∑
i>1 i(i− 2)λi > 0 and provided that for the maximum degree ∆, ∆ < n1/4−ε

holds. Moreover, a giant component almost surely (a.s.) does not exist for the case
when Q =

∑
i>1 i(i− 2)λi < 0 and ∆ < n1/8−ε.

Aiello, Chung, and Lu [ACL01] computed the sum Q for the case of (α,β)-PLG as
follows:

Q =

eα/β∑
i=1

i(i− 2)

⌊
eα

iβ

⌋

≈
eα/β∑
i=1

eα

iβ−2
− 2

eα/β∑
i=1

eα

iβ

≈ (ζ(β− 2) − ζ(β− 1)) eα if β > 3.

As a critical point the value β0 ≈ 3.478 is considered, which is a solution to ζ(β− 2) −

ζ(β− 1) = 0. Especially if β > β0, we have for the above sum that Q < 0 and a.s. no
giant component emerges.

Next, we summarize the results of Aiello, Chung, and Lu [ACL01] regarding the
component structure of graphs Gα,β ∈ Gα,β for different values of β.

Theorem 2.6 (Aiello, Chung, and Lu [ACL01]).
Let Gα,β ∈ Gα,β be an (α,β)-PLG, then the following holds for the connectivity and the
existence of a giant component of the graph:

1. For β > β0 ≈ 3.478, Gα,β a.s. has no giant component. When β < β0 ≈ 3.478, there
is a.s. a unique giant component.



52 background

2. For β = β0 ≈ 3.478, the situation corresponds to the phase transition of the connec-
tivity of random graphs in the G(n,p) model with p = 1/n, as described in Section 2.4
and Theorem 2.2.

3. For 2 < β < β0, the second largest components are a.s. of size Θ(logn). For any
2 6 x < Θ(logn), there is a.s. a component of size x.

4. When β = 2, the second largest components are a.s. of size Θ
(

logn
log logn

)
. For any

2 6 x < Θ
(

logn
log logn

)
, there is a.s. a component of size x.

5. For 1 < β < 2, the second largest components are a.s. of size Θ(1). The graph is a.s.
not connected.

6. For β = 1, there is a nontrivial probability for both cases that the graph is connected or
disconnected.

7. For 0 < β < 1, the graph is a.s. connected.

diameter . Another important graph invariant under study is the diameter of ran-
dom power law graphs, that is, the length of a longest shortest path in the graph. Lu
[Lu01] determined the diameter of random power law graphs in the G(α,β) model
for all β > 0. The results are summarized in the following theorem:

Theorem 2.7 (Lu [Lu01]).
Let Gα,β ∈ Gα,β be a random power law graph in the G(α,β) model. For the diameter
diam(Gα,β) the following holds:

(i) For 0 < β < 2, almost surely diam(Gα,β) 6 2
⌊

1
2−β

⌋
+ 5 .

(ii) For β > 2, almost surely diam(Gα,β) = Θ(logn) .

The second result (ii) implies that there exist two constants c1 and c2 such that

c1 · logn 6 diam(Gα,β) 6 c2 · logn .

Currently there is a big gap between c1 and c2 and it is an open question whether the
limit limn→∞ diam(Gα,β)

logn exists and—if the answer is yes—what the value would be.
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We finish the background chapter with some bibliographical notes and suggestions
for further reading.

2.6 B IBL IOGRAPH IC NOTES

For further reading on the topics in Section 2.1—in particular regarding the asymp-
totic notation—we refer the reader to sections in the following textbooks: [Knu97,
Section 1.2.11, pp. 107-123], [Sip97, Section 7.1, pp. 226-228] and [Cor+09, Section 3.1,
pp. 41-50]. The definitions in Section 2.2 follow standard introductions to probability
theory, e. g. found in the monograph by Feller [Fel71] or the book by Grinstead and
Snell [GS98]. For a more detailed and complete introduction to graph theory and ran-
dom graph theory (Section 2.3 and Section 2.4) see e. g. the monographs by Bollobás
[Bol98] and Diestel [Die10].

In Section 2.4.2 we present some standard results in the context of random graphs.
The proof of Theorem 2.1 on page 38 regarding the connectedness of random graphs
in the G(n,M) model can be found in [ER59]. The proof of Theorem 2.2 on page 39

regarding the phase transition of component sizes in the G(n,p) model appeared in
[ER60]. A reformulation of Theorem 2.3 on page 39 describing degree distributions
in the G(n,p) model is found in [BR05]. Regarding the diameter of regular random
graphs, the proof of Theorem 2.4 on page 40 can be found in [BF82].

Section 2.5 introduces the concept of power law graphs along with the basic def-
initions and formal descriptions of generative model. For further reading, we rec-
ommend the survey articles by Mitzenmacher [Mit03]; Bollobás and Riordan [BR05];
Li et al. [Li+05]; Newman [New05]; Chung and Lu [CL06]; Simkin and Roychowd-
hury [SR11]. Moreover, we present some previous results in the context of power law
graphs in Section 2.5.5. The proof of Theorem 2.5 on page 46 appeared in [BR04];
the proof of Theorem 2.6 on page 51 can be found in [ACL01] and the proof of Theo-
rem 2.7 on page 52 can be found in [Lu01].
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The main purpose of computational complexity theory is to classify computational
problems according to their inherent difficulty. Especially this means to classify the
problems into those that are efficiently solvable and to those that are not. In the con-
text of computational resources, efficiently solvable means for a certain problem that
there exists an algorithm which produces an exact solution and runs in deterministic
polynomial time. The class P consists of all problems that are solvable in determin-
istic polynomial time, and while many computational problems are known to be in
P, there are many other problems where one cannot decide whether they are in P or
outside of P. Among the latter type of problems there are many which are known
to be in the class NP, which is the class problems whose solutions can be verified in
polynomial time.

In the following two sections we will introduce the notions and notations of compu-
tational decision and optimization problems along with the precise definition of the
classes P and NP and certain subclasses of NP optimization problems. Then we will
provide a set of techniques to prove the hardness of approximation of NP optimization
problems.

3.1 DEC I S ION PROBLEMS AND THE CLASSES P AND NP

We start with the definition of decision problems. Let Σ be a finite alphabet, we de-
fine a string s of length n over Σ as a mapping s : [n] → Σ. A decision problem is
a set Π ⊆ Σ∗ of strings over Σ. A string s is a yes-instance for Π if s ∈ Π and a
no-instance if s /∈ Π. By Π we denote the set of all no-instances of Π. As in com-
mon notation, we denote by P the class of decision problems which are decidable in
deterministic polynomial time and by NP the class of decision problems for which
a non-deterministic polynomial-time bounded Turing Machine (TM) exists. Let t(n)
be an arbitrary function, we denote by DTIME(t(n)), NTIME(t(n)) the deterministic
and non-deterministic time complexity classes, and by DSPACE(t(n)), NSPACE(t(n)) the
deterministic and non-deterministic space complexity classes. We define

NP :=
⋃

t(n)∈nO(1)

NTIME(t(n))
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and

P :=
⋃

t(n)∈nO(1)

DTIME(t(n)) .

Intuitively, NP is the class of all decision problems where the yes-instances have ef-
ficiently verifiable proofs. More precisely, these proofs are verifiable in polynomial
time by a deterministic TM. The inclusion P ⊆ NP is obvious, but if NP ⊆ P holds is
still—at the time of writing this thesis—a big open question.

In order to give a formal notion of probabilistic computation, we shortly introduce
the concept of probabilistic Turing Machines (PTM). A probabilistic Turing Machine is
a non-deterministic Turing Machine which randomly chooses between the available
transitions at each computational step according to some probability distribution. As
a consequence, a probabilistic Turing Machine has a stochastic output in form a ran-
dom variable. Let t(n) be an arbitrary function, we denote by ZTIME(t(n)) the set of
languages for which there is a PTM that always returns the correct answer and runs
in expected polynomial time. We define class ZPP :=

⋃
t(n)∈nO(1) ZTIME(t(n)).

In order to define reductions among decision problems, let Σ be a finite alphabet
and Π,Π ′ ⊆ Σ∗ be two decision problems. We say that Π is polynomial-time reducible
to Π ′, Π 6p Π ′, if and only if there exists a polynomial-time computable function
f : Σ∗ → Σ∗ such that for all x ∈ Σ∗ we have that x ∈ Π if and only if f(x) ∈ Π ′. A
decision problem Π is NP-hard if for all decision problems Π ′ ∈ NP, Π ′ 6p Π. The
decision problem Π is NP-complete if Π ∈ NP and, additionally, Π is NP-hard.

3.2 OPT IM IZAT ION PROBLEMS AND

SUBCLASSES OF NPO

We give the definition of an optimization problem. An optimization problem is a tu-
ple (I,F , cost, goal), where I ∈ Σ∗ is the set of instances, F is a collection of sets
F(I) ∈ Σ∗ × Σ∗ of feasible solutions for each instance I ∈ I, cost is a cost function
cost : F(I) → Σ∗ assigning a cost cost(F) to every feasible solution F ∈ F(I), and
goal ∈ {min, max} is the optimization goal. If goal = min, we speak of a minimization
problem, and if goal = max, we speak of a maximization problem. For every instance
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I ∈ I, we call a feasible solution F ∈ F(I) optimal if cost(F) = minF ′∈F(I) cost(F ′) or if
cost(F) = maxF ′∈F(I) cost(F ′) for a minimization problem or a maximization problem,
respectively. This optimal solution is denoted by OPT(I). The optimal value opt(I)
of an instance I ∈ I is the cost of an optimal solution OPT(I) of the corresponding
optimization problem. An optimization problem Π = (I,F , cost, goal) is an NP opti-
mization problem if the following holds:

• The set of instances I is recognizable in deterministic polynomial time.

• For all I ∈ I and F ∈ F(I), there exists a polynomial p such that |I| 6 p(|F|) and
the question if F ∈ F(I) can be decided deterministically in time polynomial in
|F|.

• For all I ∈ I and F ∈ F(I), the cost function cost(F) can be evaluated determinis-
tically in time polynomial in |F|.

An optimization problem is a P optimization problem if for each instance I ∈ I, an
optimal solution can be computed in time polynomial in the size of the instance |I|.
The class NPO is the set of all NP optimization problems, and the class PO is the set
of all P optimization problems.

Let Π be an NP optimization problem. Given an instance I ∈ I and a feasible
solution F ∈ F(I), we define the performance ratio of F with respect to I as

R(I, F) = max
{

cost(F)
opt(I)

,
opt(I)
cost(F)

}
.

We have that R(I, F) > 1 and R(I, F) is close to 1 if F is close to the optimum solution
OPT(I). Now let Π be an NP optimization problem and let A be an algorithm that,
for any instance I ∈ I of Π, returns a feasible solution FA ∈ F(I). Given an arbitrary
function r : I → (1,∞), we say that A is an r(I)-approximate algorithm for Π if for any
instance I ∈ I a performance ratio of R(I, FA) 6 r(I) is verified for every FA ∈ F(I). If
A is a polynomial time r(I)-approximate algorithm for Π ∈ NPO, then the ratio R(I, FA)
is also called the approximation ratio of the approximation algorithm A and, equivalently,
the problem Π ∈ NPO is said to be approximable within r(I).

We define the following complexity classes for NP optimization problems Π ∈ NPO
(i. e. subclasses of NPO):
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• Π belongs to the class PO if it is optimally solvable within polynomial time; i. e.
there exists an polynomial time algorithm A with R(I, FA) = 1 for Π.

• Π belongs to the class PTAS if it admits a polynomial time approximation scheme;
i. e. there exists a polynomial time algorithm A such that for every instance I
and every n ∈ N, A(I,n) returns a feasible solution F with R(I, FA) 6 1+ 1/n

and whose time complexity is bounded by a polynomial in O(|I|f(n)) for some
f : N→N.

• Π belongs to the class APX if it is approximable within c, for some constant c > 1;
i. e. Π admits a polynomial time approximation algorithmAwith approximation
ratio c.

The inclusion PO ⊆ PTAS ⊆ APX ⊆ NPO is obvious, and it is also clear that these
inclusions are strict if P 6= NP.

3.3 APPROX IMAT ION PRESERV ING REDUCT IONS AND

EMBEDD ING REDUCT IONS

A number of inapproximability results for optimization problems were shown via re-
ductions. For this purpose, several different kinds of reductions between optimization
problems have been proposed (see e. g. [Cre97]). For our purposes it is sufficient to
define the notion of approximation-preserving reductions among combinatorial optimiza-
tion problems, so called AP-reductions.

Definition 3.1 (Approximation-Preserving Reduction).
Let Π = (I,F , cost, goal) and Π ′ = (I ′,F ′, cost ′, goal ′) be two NP optimization
problems. We say that Π AP-reduces to Π ′, denoted by Π 6AP Π

′, if there exist
two functions f : {0, 1}∗ ×Q+ → {01, }∗ and g : {0, 1}∗ × {0, 1}∗ ×Q+ → {01, }∗ and a
constant α > 1 such that for every fixed β ∈ Q+ the following properties hold:

1. For every instance I ∈ I of Π, then f(I,β) = I ′ ∈ I ′ and if F(I) 6= 0, then
F ′(I ′) 6= 0.

2. For all F ′ ∈ F ′(I ′), we have F = g(I, F ′,β) ∈ F(I).
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3. For every I ∈ I and F ′ ∈ F ′(I ′), an approximation ratio R ′(I ′, F ′) 6 β with
respect to Π ′ implies that R(I, F) 6 1+α · (β− 1).

4. The functions g and f are computable in polynomial time.

An important property is that the classes APX and PTAS are closed under AP-
reductions. That is, assuming that Π 6AP Π

′, then Π ′ ∈ APX implies Π ∈ APX and
Π ′ ∈ PTAS implies Π ∈ PTAS. In order to define complete problems for some subclasses
of NPO, let C be a class of NP optimization problems. An optimization problem Π is
C-hard if for all optimization problems Π ′ ∈ C, Π ′ 6AP Π. The optimization problem
Π is C-complete if Π ∈ C and, additionally, Π is C-hard.

For the sake of completeness, we give also the definition of L-reductions which is
due to Papadimitriou and Yannakakis [PY91].

Definition 3.2 (L-Reduction).
Again, let Π = (I,F , cost, goal), Π ′ = (I ′,F ′, cost ′, goal ′) be two NP optimization
problems. We say that Π L-reduces to Π ′, denoted by Π 6L Π ′, if there exist
two functions f : {0, 1}∗ ×Q+ → {01, }∗ and g : {0, 1}∗ × {0, 1}∗ ×Q+ → {0, 1}∗ and
constants α,β > 0 such that for every instance I ∈ I of Π the following properties
hold:

1. The function f produces an instance I ′ = f(I) ∈ I ′ of Π ′ with opt ′(I ′) 6
α · opt(I). And if F(I) 6= ∅, then F ′(I ′) 6= ∅

2. For all F ′ ∈ F ′(I ′), the function g produces a solution F = g(I, F ′) ∈ F(I) of
Π with |cost(F)− opt(I)| 6 β · |cost ′(F ′)− opt ′(I ′)|, where |F ′| 6 p(|I|) for some
polynomial p.

3. The functions g and f are computable in polynomial time.

The main difference is that the class PTAS is closed also under L-reductions, but it is
an open question whether the class APX is also closed under L-reductions. Crescenzi
[Cre97] conjectured that this is not the case.

In Section 6.4.1, we will introduce a special kind of embedded-approximation-preserving
reductions that are defined for combinatorial optimization problems on graphs that in-
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herit a certain structural property. Reductions of this kind will enable us to transfer
approximation hardness results for combinatorial optimization problems on general
graphs to the case of power law graphs.

3.4 GAP PROBLEMS

In the main results of this thesis, we consider exclusively optimization problems, but, in
order to characterize the computational complexity of a problem, it is more convenient
to consider decision problems. The aim of this section is to show the connection of
hardness of approximation of decision problems and the hardness of approximation
of optimization problems. Therefore, we introduce the notion of so called promise
problems and gap problems.

Promise problems are a natural generalization of decision problems, where only a
subset of inputs are considered as valid instances. More precisely, in the formulation
of a promise problem we are given the set of yes-instances and no-instances and do
not care about inputs outside of the union of the two sets.

Let us start with the formal definition of a promise problem.

Definition 3.3 (Promise Problem).
A promise problem Π is a pair (Πyes,Πno), where Πyes,Πno ⊆ {0, 1}∗ and Πyes∩Πno =
∅ such that all elements in Πyes are accepted and all elements in Πno are rejected.
The set Πyes ∪Πno is called the promise.

The elements of Πno are called no-instances and the elements of Πyes are called yes-
instances. For the remaining inputs {0, 1}∗ \ (Πyes ∪ Πno) there are no requirements
on the output. Decision problems are a special case of promise problems, where
Πyes ∪Πno = {0, 1}∗.

Polynomial time reductions can easily be extended to promise problems Π,Π ′ by
giving a polynomial-time computable mapping that maps yes-instances of Π to yes-
instances Π ′ and no-instances of Π to no-instances of Π ′. A promise problem Π =

(Πyes,Πno) is NP-hard if all problems in NP can be polynomial time reduced to Π.
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With this notion at hand, we can give an alternate characterization of the classes P
and NP in terms of the decidability of membership of an input x in the sets Πyes and
Πno. Consider the following definition of the class P:

Definition 3.4.
The promise problem Π = (Πyes,Πno) is in the class P if it is solvable in deter-
ministic polynomial time, that is, there exists a polynomial time algorithm A such
that the following conditions hold:

Completeness: x ∈ Πyes ⇒ A(x) = 1

Soundness: x ∈ Πno ⇒ A(x) = 0 ,

For the characterization of the class NP the requirement of efficient verification is
adapted in an analogous way. In this case the deciding algorithm acts as a verifier that,
on input x and given a membership proof π, decides whether to accept or reject.

We give the following definition of the class NP:

Definition 3.5.
The promise problem Π = (Πyes,Πno) is in the class NP if there exists a polynomial
p and a polynomial time algorithm V such that the following two conditions hold:

Completeness: x ∈ Πyes ⇒ ∃π, V(x,π) = 1

Soundness: x ∈ Πno ⇒ ∀π, V(x,π) = 0 ,

where π is a proof of length at most p(|x|).

In order to characterize the reducibility among promise problems, we say that a
promise problem Π = (Πyes,Πno) is polynomial time reducible to Π ′ = (Π ′yes,Π ′no)
if and only if there exists a polynomial time computable mapping f : {0, 1}∗ → {0, 1}∗

such that for every x ∈ Πyes (x ∈ Πno) it holds that f(x) ∈ Πyes (f(x) ∈ Πno). Inputs or
queries that violate the promise Πyes ∪Πno are not allowed.

Let us now introduce the notion of gap problems, which are promise decision prob-
lems intended to capture the difficulty of a corresponding (approximate) optimization
problem. Gap problems are a special type of promise problems in which there exists
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a gap between the yes-instances and no-instances. In case that the corresponding op-
timization problem Π is a maximization problem, there are yes-instance objects that
have a relatively high optimum value and no-instance objects that have a relatively
low optimum value. This gap is typically described with respect to two bounding
functions a,b : {0, 1}∗ → R that are computable in polynomial time.

Consider the following definition of [a,b]-gap problems:

Definition 3.6.
Let Π = (I,F , cost, goal) be an optimization problem and a < b ∈ Q+. The
corresponding [a,b]-gap problem of Π is the following promise decision problem,
denoted by Gap-Π[a,b] = (Πyes,Πno):

Πyes =

{ I ∈ I | opt(I) > b }, if goal = max

{ I ∈ I | opt(I) < a }, if goal = min,

and

Πno =

{ I ∈ I | opt(I) < a }, if goal = max

{ I ∈ I | opt(I) > b }, if goal = min .

The following lemma shows the important connection between the hardness of ap-
proximation of decision problems and the hardness of approximation of optimization
problems.

Lemma 3.1.
Let Π[a,b] be a promise decision problem corresponding to an optimization problem Π with
a < b. If Gap-Π[a,b] is NP-hard, then there is no α-approximation algorithm for Π with
α < b/a, assuming P 6= NP.

We conclude the chapter with some bibliographic notes. In particular, we give some
pointers to the corresponding sections of introductory textbooks, which deal with the
topics presented in this chapter.
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3.5 B IBL IOGRAPH IC NOTES

The notations and definitions of decision and optimization problems, presented in
Section 3.1 and Section 3.2, can be found in a more complete context in the textbooks
by Cormen et al. [Cor+09, Section 34.2, pp. 979-983] and Sipser [Sip12, Section 7.3-7.5,
pp. 241-271].

Regarding the different kinds of reductions between optimization problems defined
in Section 3.3, an introduction to approximation-preserving reductions can be found
in [Cre97; Cre+99] and L-reductions were originally defined in [PY88; PY91]. A text-
book covering these topics is by Ausiello et al. [Aus+99].

For a survey on promise problems with applications, we refer the reader to the
survey of Goldreich [Gol06]. A definition and some examples for the use of gap
problems are given in the monograph by Goldreich [Gol08, Section 10.1.1.2, pp. 446-
449].
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To give a first intuition for the characterization of mathematical proofs and proof
systems, let us quote from the textbook by Goldreich [Gol08][Chapter 9, p. 350]:

The commonly agreed principles of reasoning are associated with a ver-
ification procedure that distinguishes proper applications of these princi-
ples from improper ones. A line of reasoning is considered valid with re-
spect to such fixed principles (and is thus deemed a proof) if and only if it
proceeds by proper applications of these principles. Thus, a line of reason-
ing is considered valid if and only if it is accepted by the corresponding
verification procedure.

This concept is best illustrated by the formal notion and notation of a proof system. In
the common notation of a proof system, the verification procedure is represented by
a personification called the verifier. The proof is presented to the verifier in form of a
string, which is provided by the so called prover. The verifier then examines the proof
and decides if it is valid or not.

We will start with an introduction to interactive proof systems, where the reasoning
between the verifier and the prover is interactive.

4.1 INTERACT IVE PROOFS

By interactive we mean that the verifier and the prover are deterministic functions that
go through rounds of reasoning where the verifier asks a question to the prover and
gets a response. The next question and response is computed as a function of the
input based on the questions and responses of the previous rounds. For any k > 0,
a k-round interaction of two deterministic functions f,g : {0, 1}∗ → {0, 1}∗ on input
x ∈ {0, 1}∗ is denoted by 〈f,g〉(x) and is a sequence of strings defined as follows:

a1 = f(x)

a2 = g(x,a1)

. . .

a2i+1 = f(x,a1, . . . ,a2i) for 2i < k

a2i+2 = g(x,a1, . . . ,a2i+1) for 2i+ 1 < k .
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The output f(x,a1, . . . ,ak) ∈ {0, 1} at the end of the interaction between verifier and
prover is denoted by outf〈f,g〉(x).

Let us first give an alternative definition of the class NP in terms of deterministic proof
systems. This will serve as the canonical formulation of a proof system with efficient
verification procedures.

Definition 4.1 (Deterministic proof systems).
A language L is in NP or, equivalently, has a k-round deterministic interactive proof
system for some k > 0 if and only if there exists a polynomial-time deterministic
TM V (a verifier) that on input x,a1, . . . ,ai can have a k-round interaction with any
function P (a prover) such that the following two conditions hold:

Completeness: x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗, s.t. outV〈V ,P〉(x) = 1

Soundness: x /∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗, outV〈V ,P〉(x) = 0 .

Now we consider the case of a probabilistic verifier whose questions are computed
using a probabilistic algorithm and whose conclusions are error-prone with some
error probability. The probability of accepting a proof for a wrong statement can
be non-zero but should be “small”, whereas the rejection of a proof for a wrong
statement is required to be with “good” probability, independent of the strategy used
by the prover. We give the following definition of the class IP[k], that is, the set of
languages that have a k-round interactive proof system with probabilistic verifier.

Definition 4.2 (Interactive proof systems).
For any k > 1, a language L is in IP[k] if and only if there exists a probabilistic
polynomial-time TM V that can have a k-round interaction with a function P :

{0, 1}∗ → {0, 1}∗ such that the following two conditions hold:

Completeness: x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗, s.t. outV〈V ,P〉(x) = 2/3

Soundness: x /∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗, outV〈V ,P〉(x) = 1/2 .

The class IP is defined as IP =
⋃
c>1 IP[nc].
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Note here, that the probabilities 2/3 and 1/2 in the above definition can be replaced by
probabilities arbitrary close to 1 and 0, respectively, by repeating the whole procedure
several times in order to achieve the desired probability. The full characterization of
the class IP was a long standing open question until the following result from 1992.

Theorem 4.1 (Shamir [Sha92]).

IP = PSPACE .

In other words, Theorem 4.1 states that the proofs that can be verified by an inter-
active probabilistic verifier in polynomial time are exactly those proofs that can be
generated within polynomial space, so that the class of languages having interactive
proof systems is PSPACE.

In order to assess the full power of interactive proof systems, Ben-Or et al. [Ben+88]
defined so called multi-prover interactive proof systems with more that one prover. One
important assumption is that the provers do not communicate once the verifier has
send his first query. They may communicate with each other before the interaction
with the verifier starts, especially they can agree upon a shared strategy. Furthermore,
in each round of interaction, the verifier sends a query to each provers and each prover
sends a response.

The set of languages with multi-prover interactive proof systems is called MIP and
is defined analogously to definition 4.2. Note here that we may assume that there
are exactly two provers in a multi-prover interactive proof system, since allowing a
polynomial number of proves does not change the class.

Clearly, IP ⊆ MIP due to the fact that the verier can always ignore one prover. More-
over, it turns out that the class MIP is strictly larger than IP unless PSPACE 6= NEXP.
The following theorem due to Babai, Fortnow, and Lund [BFL91] states that that the
class of languages having two-prover interactive proof systems is nondeterministic ex-
ponential time.

Theorem 4.2 (Babai, Fortnow, and Lund [BFL91]).

MIP = NEXPTIME .

This result paved the way for the celebrated PCP theorem, which can be seen as a
“scaled-down” version of Theorem 4.2. In Section 7.4.3 we will analyze the one-round
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multi-prover proof systems used by Feige in the proof of logarithmic lower bounds for
the Set Cover problem (cf. [Fei98]) in order to proof a first logarithmic lower bound
for the Minimum Dominating Set problem on power law graphs in Chapter 7.

4.2 PROBAB I L I ST ICALLY CHECKABLE PROOFS

This new notion of probabilistically checkable proof systems (PCP) coincides with the
notion of multi-prover interactive proof systems for the case of only a one-round
interaction between the verifier and provers.

Let us first give the definition of a restricted probabilistic verifier (PCP verifier) that
has oracle access to a proof π over some alphabet Σ and has randomness complexity
r : N→N and query complexity q : N→N. That is, the verifier may use at most r(n)
random bits and queries at most q(n) bits of the proof π.

Definition 4.3 (PCP Verifier).
A (r(n),q(n))-probabilistic verifier is a probabilistic polynomial time TM V that acts
on input x ∈ {0, 1}n, and has oracle access to a proof π over Σ.

(i) r(n) denotes the maximal number of random bits used by V on of size n.

(ii) q(n) denotes the maximal number of queries used by V on of size n.

We let Vπ(x) denote the random variable representing the output of V on input x
and with random access to proof π.

A PCP verifier is said to be non-adaptive if it decides on all of its queries before it
enters the query state and receives the answers of any of its queries.

Figure 4.1 shows a (r(n),q(n))-restricted probabilistic verifier in form of a proba-
bilistic Turing Machine (PTM, cf. Section 3.1). The PTM may request the information
of individual locations of the proof π via a q(n) queries. With each query q(i) it re-
ceives the corresponding bit πq(i) of the proof π. Moreover, the PTM has read-only
access to a tape of length r(n), which contains r(n) random bits that may be used on
a given input x of length n.

We are now ready to give the following definition of probabilistically checkable
proofs with (r(n),q(n))-probabilistic verifiers.
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. . .

q(n) queries

Verifier V

Proof π:

Input x ∈ {0, 1}n Output Vπ(x)

. . .

$ $ $ $ $ $ $ . . .r(n) random bits:

Figure 4.1: A (r(n),q(n))-restricted probabilistic verifier with access to r(n) random bits and
oracle access to a proof π via q(n) queries.

Definition 4.4 (Probabilistically checkable proof systems).
A language L is in the class PCPc(n),s(n)(r(n),q(n)) or, equivalently, has a probabilis-
tically checkable proof system if there exists a non-adaptive (r(n),q(n))-probabilistic
verifier that, on input x and oracle access to a proof π, satisfies the following
properties:

Completeness: x ∈ L⇒ ∃π, s.t. Pr[Vπ(x) = 1] > c(n)

Soundness: x /∈ L⇒ ∀π, Pr[Vπ(x) = 1] 6 s(n) .

The complexity class PCP is the class of languages that have efficient (r(n),q(n))-
probabilistic verifiers and is defined as PCP1,1/2(log(n),O(1)). There exists a common
shorthand notation for this class, i. e. PCP1,1/2(log(n),O(1)) = PCP(log(n),O(1)). The
famous PCP-theorem states that every language in NP has highly efficient (r(n),q(n))-
probabilistic verifiers.

Theorem 4.3 (The PCP-Theorem [AS98; Aro+98]).

NP = PCP(log(n),O(1)) .
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4.3 HARDNESS OF APPROX IMAT ION

One of the most important consequences of the PCP-theorem is that it shows approx-
imation hardness for many NP optimization problems, i. e. that computing approxi-
mate solutions is no easier than computing exact solutions.

For constants q ∈ N and ε > 0, consider the gap problem Gap-Max-qSat[1−ε,1]

which refers to instances that are a sequence of q-variable CNF formulas. The yes-
instances are sequences that are simultaneously satisfiable, whereas the no-instances
are sequences for which no assignment satisfies more than a 1 − ε fraction of the
clauses in the sequence. Arora et al. [Aro+98] proved the following

Theorem 4.4 (Arora et al. [Aro+98]).
The following three conditions are equivalent:

1. There exists a constant q such that NP ⊆ PCP(log(n),q) (Theorem 4.3).

2. There exists a constant q such that Gap-Max-qSat[1/2,1] is NP-hard.

3. There exists a constant ε > 0 such that Gap-Max-3Sat[1−ε,1] is NP-hard.

We conclude the chapter with some bibliographic notes.

4.4 B IBL IOGRAPH IC NOTES

For a comprehensive introduction to interactive proof systems, multi-prover proof
systems and probabilistically checkable proof systems, we recommend the reader to
the textbooks by Goldreich [Gol08, Chapter 9, pp. 349-415] and Arora and Barak
[AB09, Chapter 8, pp. 127-150; Chapter 11, pp. 205-220].

The proof of Theorem 4.1 on page 68 is due to Shamir [Sha92]. The proof of Theo-
rem 4.2 on page 68 is due to Babai, Fortnow, and Lund [BFL91]. The original proofs
of the PCP-theorem (Theorem 4.3 on page 70) as well as for Theorem 4.4 appeared in
[AS98; Aro+98].

For a different and more simple proof of the PCP-theorem—using expander graphs
and gap amplification techniques—we refer the interested reader to [Din07; RS07].
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In this chapter we will focus on results regarding the hardness of approximation of
optimization problems (or constraint satisfaction problems (CSP)) restricted to instances
with bounded occurrences of variables or—in case of graph problems—restricted to
instances of bounded degree. Especially, we will present a sequence of results that in
the end proves hardness of approximation of the problems Max-IS and Min-VC.

5.1 THE MAX -E 3L IN 2 PROBLEM

Let us first introduce the notion of constraint satisfaction problems (CSP) which are a
generalization of satisfiability problems, such as the 3Sat problem, that allow clauses
of arbitrary form and may also depend on more than 3 variables.

Definition 5.1 (Constraint satisfaction problem (CSP)).
A CSP is defined as a tuple Π = (X,D,C), where

• X = {x1, . . . , xn} is the set of variables or domain variables;

• D = {D1, . . . ,Dn} is the set of domains, containing a finite set of possible
values for the corresponding variable;

• C = {C1, . . . ,Cm} is the set of constraints.

A state of the CSP is defined by an assignment σ : X→ D that assigns to every variable
a value from its domain. A constraint Ci which depends on a specific set of variables
xi1 , . . . , xik is any subset Ci ⊆ Di1 × · · · ×Dik that specifies the combinations of values
that are allowed by the constraint. The number k is called the arity1 of the constraint.
We say that an assignment σ satisfies constraint Ci if Ci(σ) = 1. By val(Π) we denote
the maximum number of satisfied constraints over all σ, which can be defined as

val(Π) = max
σ

(∑m
i=1Ci(σ)

m

)
.

1 If all constraints Ci ∈ C of a CSP Π have arity at most k, we call Π a kCSP and denote it by kΠ. If all
constraints have arity exactly k, we denote the problem by EkΠ.
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We say that the CSP Π is satisfiable if val(Π) = 1 and the corresponding assignment σ
is called a solution for Π.

In order to prove the hardness of approximation of the problems Max-IS and Min-
VC, we start with the definition of the CSP Max-E3Lin2 which will be the starting
point of the reduction.

Problem 1 (The Max-E3Lin2 problem).

input : A system of linear equations Lwith n variables {x1, . . . , xn}, and the equa-
tions over three variables are of the form xi ⊕ xj ⊕ xk = cijk mod 2.

output : An assignment σ : {x1, . . . , xn}→ {0, 1}.

objective : Maximize the number of satisfied equations in L.

The hardness of the above problem is due to the famous result of Håstad [Hås01],
which characterizes the class NP in terms of the existence of PCP verifiers with low
query complexity (cf. Section 4.2). The result is summarized in the following theorem:

Theorem 5.1 (Håstad’s 3-bit PCP).
For every ε,η > 0 the class NP is in the class PCP1−ε,1/2+η(O(logn), 3). That is, for every
language L ∈ NP there exists a PCP verifier V that, on input x, uses O(logn) random bits,
queries exactly 3 bits of the proof π and evaluates a linear predicate on the 3 bits such that the
following holds:

Completeness: x ∈ L⇒ ∃π, s.t. Pr[Vπ(x) = 1] > 1− ε

Soundness: x /∈ L⇒ ∀π, Pr[Vπ(x) = 1] 6 1/2+ η .

When viewing the bits of the proof π as boolean variables, then the tests of the
verifier can be viewed as system of linear equations where each equation is of the
form x⊕ y⊕ z = b mod 2. From this characterization, we immediately obtain the
hardness of approximation of the problem Max-E3Lin2 as a corollary.

Corollary (due to Theorem 5.1).
For every ε,η > 0 the problem Gap-Max-E3Lin2[1−ε,1/2+η] is NP-hard.

By Lemma 3.1 we conclude that there exists no approximation algorithm for Max-
E3Lin2 with an approximation ratio less than 1−ε

1/2+η ≈ 2, unless P = NP. This result
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is tight since a random assignment to the variables satisfies half of the equations in
expectation and thus provides a trivial 2-approximation.

Now we will focus on the setting of bounded occurrence CSP and the results pre-
sented by Berman and Karpinski [BK99; BK01; BK03]. In order to achieve the results,
Berman and Karpinski constructed special instances of the problem Max-E3Lin2 with
a mixed set of equations over two and three variables and, moreover, a bounded oc-
currence of variables in the system of linear equations. Because of the occurrence of
equations of different lengths, this variant of the 3Occ-Max-E3Lin2 problem will be
called Hybrid.

Let us first describe the so called r-regular amplifiers, which are the basic elements
in the construction of the restricted instances of the Hybrid problem.

5.2 AMPL I F I ERS

In [PY91] Papadimitriou and Yannakakis introduced the concept of amplifier graphs,
that generalize a specific class of expander graphs that are used in proving inapprox-
imability results (see also [Pap94]). We present here the definition used by Berman
and Karpinski [BK99] to construct the bounded occurrence instances of the Hybrid

problem.

Definition 5.2 (Amplifier).
Let G = (V ,E) be a graph and X ⊂ V a subset of vertices.

• G is an amplifier for a vertex set X ⊂ V if it contains no bad sets for X, that
is, for all A ⊂ V , we have for the cut-size of the set A, |cut(A)| < min { |X ∩
A|, |X−A| }.

• An amplifier G for X ⊂ V is called r-regular if for each vertex u ∈ X, N(u) =

r− 1, and for each v ∈ V \X, N(v) = r.

• Let G be a r-regular amplifier for X ⊂ V , then the vertices u ∈ X are called
contact vertices and the vertices v ∈ V \X are called checker vertices.

Figure 5.1 shows amplifier constructions from the definition above for various val-
ues of |X|.
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Figure 5.1: Examples of 3-regular amplifiers for |X| = 4, 5, 6, 8, where the black nodes ( )
denote checker vertices in X and the gray nodes ( ) denote contact vertices in
V \X.

The following theorem shows a result by Berman and Karpinski on the existence
and constructibility of 3-regular amplifiers.

Theorem 5.2 (Berman and Karpinski [BK99]).
For a set of n vertices, a 3-regular amplifier with 7n nodes and 10n edges can be constructed
in random linear time.

The amplifiers constructed in Theorem 5.2 have a special structure and are therefore
also customary described as wheels. Figure 5.2 shows an example construction for
n = |X| = 8. Note that the edges are added in such a way that they constitute a
Hamiltonian cycle as the rim of the wheel and a perfect matching among all the checker
vertices.

Now we introduce the Hybrid problem and state a theorem regarding the hardness
of approximation of a bounded occurrence variant of this problem.

5.3 THE HYBR ID PROBLEM

In [BK99] (see also [BK01; BK03]), Berman and Karpinski introduced the so called
Hybrid problem in order to achieve new lower bounds for bounded occurrence CSP.
The Hybrid problem can be seen as a variant of the CSP Max-E3Lin2 with constraints
over two and three variables. Let us first give a formal definition of the Hybrid

problem.
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Figure 5.2: A 3-regular amplifier for |X| = 8 with 7n nodes and 10n edges, constructed by the
means of Theorem 5.2. The black nodes ( ) denote the checker vertices and the
gray nodes ( ) denote the contact vertices.

Problem 2 (The Hybrid problem).

input : A system of linear equations Lwith n variables {x1, . . . , xn}, m2 equations
over two variables, and m3 equations over three variables.

output : An assignment σ : {x1, . . . , xn}→ {0, 1}.

objective : Maximize the number of satisfied equations in L.

Now, to introduce the bounded occurrences of variables, Berman and Karpinski
constructed special instances of Hybrid which are similar to instances of the 3Occ-
Max-E3Lin2 problem but again with a mixed set of equations as in the definition
above. For these bounded occurrence instances of Hybrid, Berman and Karpinski
proved the following hardness result.

Theorem 5.3 (Berman and Karpinski [BK99]).
For every constant ε > 0, there exist bounded occurrence instances of Hybrid with 42n
variables,m2 = 60n equations over two variables, andm3 = 2n equations over three variables
such that each variable occurs exactly 3 times and it is NP-hard to decide which of the following
two conditions holds:
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(i) There exists an assignment σ that satisfies at least (62− ε)n equations;

(ii) Every assignment σ satisfies at most (61+ ε)n equations.

The result is obtained via a polynomial time reduction from the Max-E3Lin2 prob-
lem to the Hybrid problem. Let us give an outline of the proof of Theorem 5.3:

We start from an instance of Max-E3Lin2 with 2n equations. By Theorem 5.1 we
know that it is NP-hard to distinguish instances where (2 − ε)n equations can be
satisfied from instances where at most (1+ η)n equations can be satisfied. We replace
this instance Max-E3Lin2 by an instance of the same problem where each variable
occurs in at least n equations. This is done by replicating the original equations
in an appropriate way. Then each variable xi is replaced by a r-regular amplifier Wi

(cf. Section 5.2), where r is the new number of occurrences of the variable. That is,
given that a variable occurred m times, we replace the original occurrences of the
variable by a graph of newly created contact variables/vertices and then add 6m so
called checker variables/vertices. To the original 2n equations of length 3, we add for the
remaining checker variables new equations of the form xij⊕xik = 0. More precisely, for
each amplifier Wi, the equations are formed by choosing a random bipartite matching
on each chain of 6 checker vertices separating two contact vertices.

This yields a new system of equations L where each variable occurs exactly three
times. Moreover, L consists of 2n equations of length 3 and 60n equations of length 2.
This is the exact characterization of an instance of the Hybrid problem as described
in the initial setting of Theorem 5.3. Moreover, due to Theorem 5.2, the r-regular
amplifiers can be constructed efficiently and, together with the result of Theorem 5.1,
the theorem follows.

The inapproximability result of Theorem 5.3 served as a starting point for many
other results regarding bounded occurrence CSP and problems on bounded degree
graph instances. We are especially interested in the results that regard the bounded
degree variants of Max-IS and Min-VC, which will be presented in the following.

5.4 HARDNESS OF APPROX IMAT ION

A number inapproximability results were proved by Berman and Karpinski via reduc-
tions that involved the bounded occurrence Hybrid instances described above. We
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will present here the results for Max-IS and Min-VC for degree d-bounded instances
and d ∈ {3, 4, 5}. Let d-Max-IS (d-Min-VC) denote instances of Max-IS (Min-VC) on
degree d-bounded graphs. The following theorem is due to Berman and Karpinski
[BK03].

Theorem 5.4 (Inapproximability of d-Max-IS ([BK03])).
For every ε > 0, the following holds:

• 3-Max-IS is NP-hard to approximate within 98
97 − ε ;

• 4-Max-IS is NP-hard to approximate within 50
49 − ε ;

• 5-Max-IS is NP-hard to approximate within 50
49 − ε .

More precisely, Berman and Karpinski showed that for every ε > 0, it is NP-hard
to decide whether an instance of 3-Max-IS on 200n nodes has an independent set of
size at least (98− ε)n or at most (97+ ε)n and whether an instance of 4-Max-IS on
104n nodes has an independent set of size at least (50− ε)n or at most (49+ ε)n. The
result is obtained via polynomial time reductions from the Max-E3Lin2 problem to
the Hybrid problem and further to the d-Max-IS problem. Let us give an outline of
the proof for the case of 4-Max-IS:

We start from an instance of Max-E3Lin2 and construct the corresponding Hybrid

instance using r-regular amplifiers as in the proof of Theorem 5.3. Given this initial
situation, we construct a 4-Max-IS instance G based on the graph of the Hybrid in-
stance L. For each variable x in L that corresponds to an amplifier node, we create
an edge ex = {x0, x1} with endpoints x0 and x1 corresponding to the possible values
of x. For each amplifier edge {x,y} in L, we connect the endpoints of the edges ex
and ey via edges {x0,y1} and {x1,y0}. For every contact variable x, we also create an
additional direct contact dx = {x̆0, x̆1} that is connected to the endpoints of ex via edges
{x0, x̆1} and {x1, x̆0}.

Now let c be an equation in L of the form x ⊕ y ⊕ z = b. For each c we form
an equation quadruple qc of nodes, that is, a set of four nodes that correspond the
four assignments of variables that yield one of the two outcomes of b. The nodes are
labeled αβγ, which corresponds to an equation α⊕ β⊕ γ = b mod 2. Each node
is then connected to the direct contact endpoints that correspond to their negated
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variable values, i. e. x̆¬α, y̆¬β and z̆¬γ. Additionally, the four nodes of qc are connected
via two arbitrary disjoint edges. Now, for every equation c of the form x⊕ y⊕ z = b
there is a corresponding subgraph Ac = qc ∪ dx ∪ dy ∪ dz. Now let Jαβγ = {x̆α, y̆β, z̆γ}
and let Iαβγ = Jαβγ ∪ {the node with label αβγ}. Berman and Karpinski showed that
every maximum independent set Ac is of the form Iαβγ. Moreover, an independent
set I in the graph G can be normalized in such a way that every pair has exactly one
element in I and an equation quadruple contains an element of I if and only if the
corresponding equation is satisfied by the values given to the variables.

In this way, the Hybrid instance L with 6n equations is transformed into a graph G
that has 8 · 6n pairs, corresponding to equations of length 2, and 2n q-quadruples, cor-
responding to equations of length 3. Altogether, we transformed the original instance
of Max-E3Lin2 over 2n equations into an instance of 4-Max-IS over 50n equations
and, together with the corollary of Theorem 5.1, the theorem follows.

The Max-IS instanceGwith maximum degree 4 described above can be transformed
into an instance with maximum degree 5. Therefore, the same inapproximability
result holds for the case of 5-Max-IS. The proof for 3-Max-IS is along the same lines
as the outline presented above but needs a different construction of the subgraphs
corresponding to the equations of length 2 and 3 in the Hybrid instance. Because of
the complementary relationship between the two problems Max-IS and Min-VC, we
immediately get the following corollary of Theorem 5.4.

Corollary (due to Theorem 5.4).
For every ε > 0, the following holds:

• 3-Min-VC is NP-hard to approximate within 103
102 − ε ;

• 4-Min-VC is NP-hard to approximate within 55
54 − ε ;

• 5-Min-VC is NP-hard to approximate within 55
54 − ε .

In the following Chapter 6, we will use the above results for d-Min-VC to obtain
new lower bounds for the Min-VC problem on power law graphs. We conclude the
present chapter with some bibliographic notes.
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5.5 B IBL IOGRAPH IC NOTES

The material presented in this chapter is based on publications by Berman and Karpin-
ski [BK99; BK01; BK03]. The formulation of the Hybrid problem and the full proof
of the hardness of approximation result in Theorem 5.3 on page 78 is presented in
[BK99]. The concept of amplifier graphs is due to Papadimitriou and Yannakakis
[PY91], whereas the formal definition on page Definition 5.2 and the proof of Theo-
rem 5.2 regarding the existence and constructibility of regular amplifiers appeared in
[BK99].

Regarding the inapproximability of the Max-IS problem and the Min-VC problem
on degree d-bounded graphs with d ∈ {3, 4, 5}, a series of improvements appeared
in [BK99; BK01; BK03]. The explicit approximation lower bounds presented in Theo-
rem 5.4 on page 80 are due to [BK03].
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6.1 INTRODUCT ION

The Minimum Vertex Cover (Min-VC) problem is one of the most well-studied prob-
lems in combinatorial optimization. A vertex cover of a graph G = (V ,E) is a set of
vertices C ⊆ V such that each edge e = {u, v} of G has at least one endpoint in C.
The Min-VC problem is the problem of finding a vertex cover of minimum cardinal-
ity in a graph. The Min-VC problem is known to be NP-hard due to Karp’s original
proof [Kar72] and APX-complete due to Papadimitriou and Yannakakis [PY91], which
implies that the problem is hard to approximate to within some constant factor.

A 2-approximation on general graphs is relatively easy to achieve by computing a
maximal matching and taking the endpoints of each of its edges into the vertex cover.
Since the maximal matching touches all vertices and each edge of the graph needs at
least one of its endpoints in the vertex cover, a 2-approximative solution is obtained.
Furthermore, there exits strong evidence that this approximation ratio is best possible
in general graphs (see Section 6.2).

In the context of real-world networks, on the other hand, there exists practical evi-
dence that the Min-VC problem and other combinatorial optimization problems are
easier to solve. For example, Park and Lee [PL01] showed for the efficient placement
of filters in route-based distributed packet filtering on power-law Internet topologies, that
the greedy heuristic for the Min-VC problem generally outperforms the constant-
factor approximation algorithm. A natural question now arises, whether there exist
any provable guarantees that Min-VC is indeed easier to solve on general power law
graphs. In particular, one wants to know if there exists a PTAS in this case, that is, an
approximation algorithm with approximation ratio arbitrarily close to 1.

In this chapter, we will somehow complement the above practical findings for the
more general class of power law graphs, and show that the Min-VC problem cannot
be approximated with a ratio arbitrarily close to 1. To be more precise, we will show
the APX-hardness of Min-VC in connected (α,β)-PLG multigraphs for 0 < β < βmax ≈
2.48 and therefore rule out the existence of a PTAS. Furthermore, we give explicit
approximation lower bounds for this problem.

Note here that in Chapter 8 we will construct an approximation algorithm for the
Min-VC problem with an expected approximation ratio of 2− f(β) for random (α,β)-
PLG, where f(β) is a strictly positive function of the model parameter β. Here f(β)
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does not depend on the size |V | of the graph and thus—for large graph sizes—our
approximation ratio falls below current upper bounds for Min-VC in general graphs
(which is 2−Θ (1/

√
logn) as stated by Karakostas [Kar09]).

6.2 PREV IOUS RESULTS

In this section we will summarize previous results on the approximability and hard-
ness of approximation of Min-VC on general graphs and power law graphs. Before
we start, let us first give the formal definition of the Min-VC problem.

Problem 3 (Minimum Vertex Cover (Min-VC)).

input : A graph G = (V ,E).

output : A vertex cover of G, i. e. a set C ⊆ V such that each edge {u, v} ∈ E has
at least one endpoint in C.

objective : Minimize |C|.

approximability and hardness in general graphs . The Min-VC prob-
lem is known to be NP-complete due to Karp’s original proof [Kar72] and APX-
complete due to Papadimitriou and Yannakakis [PY91], which implies that the prob-
lem is hard to approximate to within some constant factor. Moreover, the problem is
closely related to the Maximum Independent Set problem, which can be stated as
follows:

Problem 4 (Maximum Independent Set (Max-IS)).

input : A graph G = (V ,E).

output : An independent set of G, i. e. a set I ⊆ V such that each edge {u, v} ∈ E
has at most one endpoint in I.

objective : Maximize |I|.

As we see from the above definitions, for every graph G, a solution of the Min-
VC problem is the complement of a solution to the Max-IS problem. However, the
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behavior of the two problems in terms of the approximability and approximation
ratios is rather different.

For the Min-VC problem, the value for the approximation ratio is basically at most
2. A ratio of 2− ln lnn

2 lnn has been found independently by Monien and Speckenmeyer
[MS85] and Bar-Yehuda and Even [BE85] and an improvement to 2 − Θ(1/

√
logn) is

due to Karakostas [Kar09]. In the case of Max-IS the value is at least n1−ε as shown
by Håstad [Hås99], which has been further improved to n

2(logn)3/4+ε
by Khot and Pon-

nuswami [KP06]. As mentioned above, a simple 2-approximation can be obtained by
computing a maximal matching and taking all the endpoints of the edges this matching
into the cover.

Regarding approximation lower bounds, Håstad [Hås01] showed that the general
Min-VC problem cannot be approximated within a factor of 7/6, assuming P 6= NP.
Under the same assumption, Dinur and Safra [DS05] improved the inapproximability
factor to 1.3606. Moreover, Khot and Regev [KR08] proved inapproximability within
2 − ε for any ε > 0 as long as the Unique Games Conjecture (UGC) holds true. The
conjecture is based on statements regarding the power of unique 2-prover-1-round games
presented in [Kho02]. This means that in the general case the achieved approximation
ratios are conjectured to be essentially best possible and hence the simple constant
upper bound cannot be improved.

For this reason Min-VC has been considered for certain restricted problem in-
stances, along with properties that allow for improved performance guarantees for
these restricted instances. Since our reductions in this chapter will map from bounded
degree Minimum Vertex Cover (d-Min-VC) to Min-VC on power law graphs, we
present here some previous results regarding problem instances where the maximum
degree is bounded by a constant.

approximability and hardness in bounded degree graphs . For the case
of degree d-bounded graphs, Hochbaum [Hoc83] presented a 2− 2/d approximation
algorithm, which was improved to 2− logd+O(1)

d by Halldórsson and Radhakrishnan
[HR94] and further improved to 2− (1− o(1))2 ln lnd

lnd by Halperin [Hal02]. The result
of Halperin also essentially matches the lower bound 2 − (2 + od(1))

log logd
logd due to

Austrin, Khot, and Safra [AKS09] for large values of d. Like in the general case, this
lower bound is dependent on the UGC.
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When establishing new approximation lower bounds for the Min-VC problem on
power law graphs, we are also interested in explicit lower bounds for the cases of a
small degree bounds, i. e. d = 3, 4, 5. For this reason, in Table 6.1, we list here some of
the results due to Berman and Karpinski [BK99; BK03] for d-Max-IS and d-Min-VC.
In Chapter 5 we presented the general technique that is used to obtain the above lower

Table 6.1: Inapproximability factors for d-Max-IS and d-Min-VC in degree d-bounded graphs
for d = 3, 4, 5 due to Berman and Karpinski [BK99; BK03].

d-Max-IS
lower bound

d-Min-VC
lower bound

d = 3 98/97 103/102

d = 4 50/49 55/54

d = 5 50/49 55/54

bounds. In Section 6.6 and Section 6.7 we will apply these explicit lower bounds in
order to establish new inapproximability results for Min-VC in power law graphs.

approximability and hardness in power law graphs . In a series of pa-
pers Ferrante, Pandurangan, and Park [FPP08] and Shen, Nguyen, and Thai [SNT10;
She+12] studied the approximation hardness of classical optimization problems such
as Min-VC, Max-IS and Minimum Dominating Set (Min-DS) in combinatorial power
law graphs in the ACL model and showed NP-hardness and APX-hardness for simple
(α,β)-PLG and (α,β)-PLG multigraphs, respectively.

In Table 6.2 we list some of the main results of [She+12], in particular the previously
best approximation lower bounds for Min-VC and Min-DS in (α,β)-PLG and (α,β)-
PLG multigraphs for β > 1.

Let us now give an overview of our contributions and new results of the present
chapter, regarding the classification of Min-VC in power law graphs.

6.3 OVERV I EW AND OUR RESULTS

In this chapter, we show the APX-hardness of Min-VC in connected (α,β)-PLG multi-
graphs for 0 < β < βmax ≈ 2.48 and give explicit approximation lower bounds for this
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Table 6.2: Previously known lower bounds due to Shen et al. [She+12] for the inapproximabil-
ity of Min-DS under condition P 6= NP and for Min-VC under UGC on disconnected
(α,β)-PLG with β > 1.

Problem (α,β)-PLG multigraphs (α,β)-PLG

Max-IS 1+ 1
140(2ζ(β)3β−1)

− ε 1+ 1
1120ζ(β)3β

− ε

Min-DS 1+ 1
390(2ζ(β)3β−1)

1+ 1
3120ζ(β)3β

Min-VC 1+
2
(
1−(2+oc(1))

log logc
logc

)
(
ζ(β)cβ+c

1
β

)
(c−1)

1+
2−(2+oc(1))

log logc
logc

2ζ(β)cβ(c+1)

problem. For β > βmax, (α,β)-PLG are not connected anymore. As in [She+12], our
reductions consist of multigraph embeddings of bounded degree graphs into (α,β)-
PLG, based on appropriate wheel constructions that embeds any graph bounded de-
gree graph Gd into a connected power law multigraph Gα,β. We also extend the model
of (α,β)-PLG to a functional case and consider degree distributions where β is of the
form βf = 1± 1/f(n) for a sufficiently fast growing function f(n). These distributions
converge to those of (α,β)-PLG for β = 1 and can be seen as a combinatorial variant
of the evolving models for power law graphs introduced in Section 2.5.3. We show
that our new inapproximability results for the case β = 1 in the original model also
hold for this functional model.

organization of the chapter . The chapter is organized as follows. The em-
bedding reduction of Shen et al. [She+12] will be presented in detail in Section 6.4.
In Section 6.5 an outline of our methodology for the reduction is presented, i. e. we
describe an algorithm for the wheel construction of a general embedding technique
of d-bounded graphs into connected (α,β)-PLG. In Section 6.6 we give the detailed
description of our reduction from Min-VC in d-bounded degree graphs to Min-VC
in connected (α,β)-PLG for the parameter β in the interval β ∈ (1,βmax]. Section 6.7
deals with the case β ∈ (0, 1] and gives the details of the reduction of Min-VC in
d-bounded degree graphs to Min-VC in d-bounded degree graphs which provide a
perfect matching and then further to Min-VC in connected (α,β)-PLG. Furthermore,
we give a thorough error term analysis for this case.
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Figure 6.1 shows the global organization of the chapter, pointing to the different
ranges and the phase transitions dependent on the model parameter β.

0 1 2 βmax

Section 6.7 Section 6.6

Section 6.7.2 Section 6.6.2

Figure 6.1: Chapter guide with respect to the phase transitions and different ranges of the
model parameter β.

For all the above cases, we prove explicit lower bounds for the approximability of
Min-VC in (α,β)-PLG which only depend on the degree bound d, the parameter β
and on the lower bounds εd for d-bounded Min-VC. The resulting inapproximability
factors are summarized in Table 6.3.

Table 6.3: Inapproximability factors of Min-VC in connected (α,β)-PLG multigraphs for the
three half-open intervals between 0 and βmax.

Inapproximability factors

β ∈ (0, 1] 1+ εd
1+2d

β ∈ (1, 2] 1+ εd

1+d· (ζ(β)−1)·(d+1)
β−1

2

β ∈ (2,βmax) 1+ εd

1+d(d+1)β
(

1

2β+1
+ζ(β)−1− 1

2β
− 1

(d+1)β

)

In order to show the interdependence of the lower bounds and the parameters d, εd
and β, Figure 6.2 presents a comparison of the resulting inapproximability factors
for various d and the corresponding lower bounds εd for d-bounded Min-VC on the
subintervals β ∈ (0, 1], β ∈ (1, 2] and β ∈ (2,βmax].

To illustrate the behavior of the inapproximability factor at the phase transition
points, in Figure 6.3 we plot the inapproximability factors over the whole interval
(0,βmax] for d = 3 with 1 + εd = 103/102 and for d = 4, 5 with 1 + εd = 55/54. As
mentioned in Section 6.2, the lower bounds εd are due to Berman and Karpinski
[BK03] and the general technique for obtaining lower bounds for bounded occurrence
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Figure 6.2: Comparison of the inapproximability factors for Min-VC in connected (α,β)-PLG
multigraphs for various d and lower bounds 1+ εd on the subintervals β ∈ (0, 1],
β ∈ (1, 2] and β ∈ (2,βmax).

CSPs is presented in Chapter 5. The points of discontinuity (jumps) correspond to the
phase transitions at β = 1 and β = 2, treated in Section 6.7.2 and Section 6.6.2.
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Figure 6.3: Plot of the inapproximability factor for Min-VC in connected (α,β)-PLG multi-
graphs for d = 3 with 1+ εd = 103/102 ( ) and for d = 4, 5 with 1+ εd = 55/54
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Now we are going to introduced the notions and methods used in this chapter and
some preliminary results.

6.4 PREL IM INAR I ES

We start with the presentation of techniques and results that regard the hardness and
inapproximability of combinatorial optimization on power law graphs.

6.4.1 Approximability of Combinatorial Optimization Problems on Power-Law Graphs

The NP-hardness for a certain class of combinatorial optimization problems in power
law graphs was shown by Ferrante, Pandurangan, and Park [FPP08] in 2008.

np-hardness of combinatorial optimization problems with optimal

substructure property. Ferrante, Pandurangan, and Park [FPP08] showed that
if a optimization problem is NP-hard on simple general graphs and satisfies the so
called optimal substructure property, then it is also NP-hard on simple (α,β)-PLG. The
property mentioned above is defined as follows:

Definition 6.1 (Optimal Substructure Property).
Let Π be a NP-hard optimization problem that takes a graph G as input. Π has
the optimal substructure property if and only if every optimal solution OPT of Π
on G contains an optimal solution OPT[C] of Π on each of the graphs maximal
connected components.

A number of important combinatorial optimization problems satisfy the above prop-
erty, in particular the Min-VC problem, the Min-DS problem and the Max-IS prob-
lem. In order to prove NP-hardness of the above optimization problems, Ferrante,
Pandurangan, and Park [FPP08] showed how to embed any simple undirected graph
G = (V ,E) into a simple undirected (α,β)-PLG Gα,β = (Vα,β,Eα,β) with β > 0 such
that G is a set of maximal connected components of Gα,β and |Vα,β| = poly(|V |). Al-
together, they obtained the following theorem on the NP-hardness of optimization
problems with optimal substructure property on simple (α,β)-PLG.
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Theorem 6.1 (Ferrante, Pandurangan, and Park [FPP08]).
Let Π be an optimization problem on graphs with the optimal substructure property. If Π is
NP-hard on simple general graphs, then for all β > 0, Π is NP-hard also on simple undirected
(α,β)-PLG.

Note that the embedding construction for the above theorem only produces discon-
nected (α,β)-PLG. Therefore, an open question regarding the hardness in connected
and simple (α,β)-PLG is posed in [FPP08]. Next, we are going to present the first
inapproximability results that were shown for the case of (α,β)-PLG.

apx-hardness and explicit lower bounds . In a series of papers [SNT10;
She+12] Shen et al. showed the APX-hardness of several optimization problems with
optimal substructure property on disconnected (α,β)-PLG multigraphs and presented
the first explicit approximation lower bounds for the problems that are summarized
in Table 6.2.

In order to achieve the lower bounds, Shen, Nguyen, and Thai [SNT10] proposed
a cycle-based embedding technique to embed any d-bounded graph Gd into a PLG
Gα,β ∈ Gα,β with β > 1. The most important feature of this embedding construction
is that the graph Gd will be a set of maximal components in Gα,β and combinatorial
optimization problems with the optimal substructure property (see Definition 6.1) are
polynomially solvable in the residual graph Gα,β \Gd and that |Gα,β| = O(|Gd|).

Let us give a brief description of the embedding construction presented in [SNT10;
She+12]. With β given by the instance, the embedding is constructed by the algorithm
Cyclic_Embedding, which embeds any d-bounded graph Gd into a power law graph
Gα,β ∈ Gα,β. Let τ(i) = beα/iβc− ni be the number of leftover degrees i with ni = 0 if
i > d.

Considering step 4 of the algorithm, a ~d-regular cycle (RC~d
n) is defined as follows:

Definition 6.2 (~d-regular cycle (RC~d
n)).

Let ~d = (d1, . . . ,dn) be a degree sequence (vector) on n vertices. A ~d-regular cycle
RC

~d
n consists of two cycles, each of size n, where the two i-th vertices of degree di

are adjacent via di − 2 multi-edges.

An example of a ~d1-regular cycle RC~d
n is shown in Figure 6.4.



6.4 preliminaries 93

Algorithm 6.1 : Cyclic_Embedding
Input : d-bounded graph Gd = (V ,E).
Output : Power law graph Gα,β with Gd embedded as a maximal component.

(1) Choose α such that eα = max16i6d{ni · iβ} and eα/β > d;
forall the v ∈ V ,d(v) = 1 do

(2) Construct bτ(1)/2c separate cliques K2;

forall the v ∈ V ,d(v) = 2 do
(3) Construct a cycle of size τ(2);

forall the v ∈ V , 2 6 d(v) = i 6
⌊

eα/β
⌋

do

(4) Construct a ~d-regular cycle where ~d is a vector composed of 2bτ(i)/2c
i-elements, for all i satisfying τ(i) > 0;

(5) For all leftover isolated vertices L with τ(i) − 2bτ(i)/2c = 1, construct a
~k-branch-~d-cycle, where ~k (~d) is a vector composed of the vertices in L with odd
degrees (even degrees), respectively;

As we see from Figure 6.4 and step 4 of algorithm 6.1, vertices of the same residual
degree are paired in the construction of the ~d1-regular cycle and the remaining iso-
lated vertices with τ(i) − 2bτ(i)/2c = 1 are processed in step 5 of the algorithm. Here
a ~k-branch-~d-cycle is constructed where ~k (~d) is a vector composed of the vertices in
L with odd degrees (even degrees), respectively. We give the following definition of a
~k-branch-~d-cycle (~k-BC~d

n):

Definition 6.3 (~k-branch-~d-cycle (~k-BC~d
n)).

Let ~d = (d1, . . . ,dn), ~k = (k1, . . . ,km) be the two degree vectors of the remaining
even degrees (di) and odd degrees (ki). A ~k-branch-~d-cycle consists of n vertices
such that each vertex on the cycle has residual degree di, and of |~k|/2 branches.
Note that, in any case, the number of residual vertices |~k| of odd degree is even,
such that on each branch two vertices of odd degree are matched by an edge
and all remaining residual degrees are even. The even residual degrees are then
realized via self-loops (cf. Figure 6.5).

In this framework Shen et al. [She+12] proposed the following definition of an
embedded-approximation-preserving reduction.
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RC
~d
n

Figure 6.4: The double wheel construction RC
~d
n for the embedding of degree d bounded

graphs into combinatorial power law graph due to Shen et al. [She+12]. The con-
struction shown in the figure is an example for d = 5 and n = 12.

Definition 6.4 (Embedded-Approximation-Preserving Reduction).
Let Π be an optimization problem on graphs with the optimal substructure prop-
erty. A reduction from a graph instance G of Π to an instance on a power law
graph Gα,β is called embedded-approximation-preserving if it satisfies the following
two properties:

(i) G is a subset of maximal connected components of Gα,β.

(ii) For any optimal solution OPT(Gα,β) of Π on Gα,β, we have that the cost

opt(Gα,β) 6 c · opt(G) ,

where c is a constant that corresponds to the growth of the optimal solution.

The following theorem shows how to relate the ε-inapproximability of optimization
problem Π on general graphs G to an inapproximability-factor ρ of Π on (α,β)-PLG.

Theorem 6.2 (Shen et al. [She+12]).
Let Π = {I,F , cost, goal} be an optimization problem with optimal substructure property
and ε-inapproximability on general graphs G. If there exists an embedded-approximation-
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~k-BC~d
n

Figure 6.5: Example of the residual wheel construction ~k-BC~d
n in order to realize the residual

degrees of the sequence d1, . . . ,d∆ in the construction due to Shen et al. [She+12].

preserving reduction from G to an (α,β)-PLG Gα,β, then we can extract the following bounds
on the inapproximability factor ρ of Π on Gα,β:

ρ 6


ε·c

(c−1)ε+1 , if Π is a maximization problem, i. e. goal = max

ε+c−1
c , if Π is a minimization problem, i. e. goal = min .

Proof. Suppose there exists an ρ-approximation algorithm A for Π on Gα,β. Let A =

val(A(G)) and B = val(A(Gα,β \G)) be the sizes of solution produced by A on G and
Gα,β \G, respectively, and let A∗ = opt(G) and B∗ = opt(Gα,β \G) their corresponding
optimal values. Since there exists an embedded-approximation-preserving reduction
from G to Gα,β, we have that B∗ 6 (c − 1)A∗. With completeness it follows that
opt(G) = A∗ ⇒ opt(G ′) = B∗ and with the soundness property one can obtain a lower
bound for ρ, dependent on goal ∈ {min, max}, as follows:

• If goal = max, the following holds since B 6 B∗ and B∗ 6 (c− 1)A∗

A∗ +B∗ 6 ρ(A+B)

⇐⇒ A∗ 6 ρ ·A+ (ρ− 1)B∗

⇐⇒ A∗ 6 ρ ·A+ (ρ− 1)(c− 1)A∗ .
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Furthermore, we assumed that Π is hard to approximate within ε on G. This
yields that A∗ > ε ·A and therefore

A∗ <
ρ ·A∗

ε
+ (ρ− 1)(c− 1)A∗ ⇔ ε · c

(c− 1)ε+ 1
.

• If goal = min, the following holds since B∗ 6 B

A+B 6 ρ(A∗ +B∗)

⇐⇒ A 6 ρ ·A∗ + (ρ− 1)B∗

⇐⇒ A 6 ρ ·A∗ + (ρ− 1)(c− 1)A∗ .

Since A > ε ·A∗, this yields

ε < ρ+ (ρ− 1)(c− 1)⇔ ε+ c− 1

c
.

This relation allowed Shen et al. to transfer the known inapproximability results of
the above mentioned combinatorial optimization problems for the case of d-bounded
graphs to the case of power law graphs as summarized in Table 6.2.

6.4.2 Connectivity and Expected Cut Sizes

In the course of this chapter, we will deal with the expected cut sizes in the random
PLG model G(α,β) while we establish connectivity in the embedding construction
of the reduction. We are going to show that the expected number of edges between
any two components of a graph Gα,β ∈ Gα,β is linear in the size of the smaller com-
ponent. This fact will be used to motivate our connected embedding construction in
Section 6.5.2.

Consider the random PLG model G(α,β) introduced in Section 2.5.4. For a given
degree sequence d1, . . . ,dn ′ , let the set L of vertex copies be defined as L =

⋃n ′
i=1 Li
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with Li = {vi,1, . . . , vi,di}. Note that in the case of an (α,β)-PLG, the degree sequence
is

1 . . . 1︸ ︷︷ ︸
beαc

. . . j . . . j︸ ︷︷ ︸⌊
eα
jβ

⌋ . . . ∆ =
⌊

eα/β
⌋

.

Now let n =
∑n ′

j=1 dj, and letMn denote the set of all matchings on the set L. Further-
more, for v, v ′ ∈ L, letMn

v,v ′ be the set of all matchings which contain the edge {v, v ′}.
We have

|Mn| =
n!

2n/2 ·
(
n
2

)
!

and |Mn
v,v ′ | =

(n− 2)!
2(n−2)/2 · (n−22 )!

.

Hence, the probability for an edge e = {v, v ′} to be an element of a random matching
M over n vertices is

Pr(e = {vi, vj} ∈Mn) =
|Mn

v,v ′ |

|Mn|
=

(n−2)!
2(n−2)/2·(n−22 )!

n!
2n/2·(n2 )!

=
1

n− 1
.

Thus we obtain the following result.

Lemma 6.1.
Consider the random PLG model G(α,β) and let A,B be disjoint subsets of vertices of the
resulting PLG. Then the expected number of edges between A and B is

E(#edges between A and B) =

(∑
w∈A d(w)

)
·
(∑

u∈B d(u)
)∑

v∈V d(v)
.

6.5 OUTL INE OF THE METHOD

Let us give an outline of the methods used in this chapter.
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6.5.1 Lower Bound Technique

In order to obtain approximation lower bounds for the Minimum Vertex Cover prob-
lem in connected (α,β)-PLG, we will construct for each parameter β ∈ [0,βmax) as
well as for the functional cases β = 1 ± 1

f(n) polynomial-time reductions Rβ from
Min-VCd, that is Min-VC in d-bounded graphs, to Min-VCα,β. Rβ embeds any d-
bounded graph Gd into a connected multigraph Rβ(Gd) = Gα,β, which consists of a
multigraph copy µ(Gd) of Gd attached to a multigraph wheel W. Furthermore, all the
degree 1 nodes of Gα,β are attached to wheel nodes of W. In the case 1 < β < βmax, it
is sufficient to choose µ(Gd) = Gd for the embedding. For 0 < β 6 1, we have to con-
struct a multigraph copy of Gd in order to artificially increase the node degrees inside
Gd and to be able to choose a vertex cover in µ(Gd) independent of the embedding.
In any case the size of the fully composed Gα,β will be linear in the size of Gd.

Let us now describe how the multigraph copy of Gd is constructed and which
approximation lower bounds can obtained under this construction.

min-vc in bounded degree graphs which provide a perfect matching

We will now describe the polynomial time reduction from Min-VCd to Min-VCPMd+2.
Given a graph Gd of maximum degree d with a vertex set V = {v1, . . . , vn}, we con-
struct the graph G̃d+2 = (Ṽ , Ẽ) as follows:

1. The set of vertices Ṽ consists of four disjoint copies of the vertex set V , namely
Ṽ := V1 ∪ V2 ∪ V3 ∪ V4 with Vi = {vi,j, 1 6 j 6 n}, i = 1, . . . , 4.

2. Ẽ := E1 ∪ E2 ∪ P, where G1d = (V1,E1) and G2d = (V2,E2) are disjoint copies of Gd,
i. e. Ei = { {vi,j, vi,l} | {vj, vl} ∈ E }.

3. P :=
⋃n
j=1{ {v1,j, v3,j}, {v3,j, v4,j}, {v4,j, v2,j}, {v3,j, v2,j}, {v1,j, v4,j} }.

The construction is shown in Figure 6.6. Let RPM be this reduction, i. e. for any d-
bounded degree graph Gd, RPM(Gd) = G̃d+2. Now suppose C is a vertex cover in G̃d+2
with C = C1 ∪C2 ∪C3 ∪C4, where Ci = C∩ Vi, 1 6 i 6 4. We observe that C1 and C2
are vertex covers of G1d and G2d, respectively. Furthermore, for every j ∈ {1, . . . ,n} the
following holds for any vertex cover C on G̃d+2 (see also Figure 6.6):

• If v1,j ∈ C and v2,j ∈ C, then C also contains one of the nodes v3,j, v4,j.
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+

G̃d+2

Figure 6.6: Example G̃d+2 after the construction step of reduction RPM that converts any d-
bounded graph Gd into a (d+ 2)-bounded graph which provides a perfect match-
ing M (e. g. via the thick edges of the set P). The nodes + denote covering vertices
and − denote non-covering vertices.

• If v1,j 6∈ C and v2,j 6∈ C, then C contains both nodes v3,j, v4,j.

• If v1,j ∈ C and v2,j 6∈ C—or vice versa—, then C contains both nodes v3,j, v4,j.

Hence,

|C| = |C1|+ |C2|+ |C1 ∩C2|+ 2 · |V \ (C1 ∪C2)|+ 2 · |C14C2|

= 3 · |C14C2|+ 3 · |C1 ∩C2|+ 2 · |V \ (C1 ∪C2)|

= 1 · |C14C2|+ |C1 ∩C2|+ 2 · |V |

= |C1 ∪C2|+ 2 · |V | . (6.1)

From Equation 6.1, we get that a minimal vertex cover is obtained by choosing C1 = C2
and minimizing the cardinality of this set and thereby minimizing the cardinality of
C1∪C2. Hence, we can restrict ourselves to vertex covers Cwith the property C1 = C2,
i. e. C1 and C2 being copies of the same vertex cover Cd in Gd. Thus, we obtain the
following lemma for the construction described above.

Lemma 6.2.
There is a polynomial time algorithm T which transforms any vertex cover C = C1 ∪ C2 ∪
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C3 ∪C4 of a graph G̃d+2 = RPM(Gd) into a vertex cover C ′ = T (Gd,C) of G̃d+2 such that
C ′1 = C

′
2 = argmin{ |C1|, |C2| } and |C ′| = min{ |C1|, |C2| }+ 2 · |V | 6 |C|.

Proof. Without loss of generality let |C1| 6 |C2|, |C1| = k and C1 = {v1,1, . . . , v1,k}. If
v1,j ∈ C and v2,j ∈ C, then either v3,j ∈ C or v4,j ∈ C and we are done.

If v1,j 6∈ C and v2,j ∈ C, we have that v3,j ∈ C and v4,j ∈ C and we transform the
cover C into a cover C ′, with |C ′| 6 |C|, by setting v1,j, v2,j 6∈ C ′ and v3,j, v4,j ∈ C ′. If
v1,j ∈ C and v2,j 6∈ C, again we have that v3,j ∈ C and v4,j ∈ C and we set v1,j, v2,j 6∈ C ′

and v3,j, v4,j ∈ C ′.

resulting lower bound. We will now give an estimate of the resulting lower
bound of the reduction. Suppose that Min-VCd is hard to approximate within ap-
proximation ratio 1 + εd. Furthermore, suppose that algorithm A is a polynomial
time (1+ ε)-approximation algorithm for Min-VCPMd+2. Then the algorithm B, which
on input Gd constructs the vertex cover C̃ = T ◦ A ◦ RPM(Gd) =

⋃4
i=1 C̃i and then

returns C̃1, is an approximation algorithm for Min-VCd. We have,

|C̃| 6 (1+ ε) ·OPT(G̃d+2) = (1+ ε) · (OPT(Gd) + 2n) . (6.2)

Furthermore, due to the proof of the previous Lemma 6.2, |C̃| = |C̃1|+ 2n. Thus from
Equation 6.2, we obtain

|C̃1| 6 (1+ ε) ·OPT(Gd) + ε · 2n 6 ((1+ ε) + d · 2ε) ·OPT(Gd) ,

where the second inequality holds due to the fact that OPT(Gd) > n
d . Thus it must

be that εd 6 (d · 2+ 1) · ε. Finally we note that if Gd has maximum degree at most d,
then the maximum degree of G̃d+2 = RPM(Gd) is at most d+ 2. Altogether we obtain
the following result.

Theorem 6.3.
Suppose that Min-VCd is hard to approximate within approximation ratio 1 + εd. Then
Min-VCPMd+2 is hard to approximate within approximation ratio 1+ εd

1+2d .
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6.5.2 Embedding Technique

We let Γ denote the set of neighbors of Gd in the wheel W of the embedding con-
struction and let W1 denote the set of wheel nodes which are adjacent to at least one
degree 1 node in Gα,β (see Figure 6.7).

WGd

Γ

W1

degree i degree i
+
1

de
gr

ee
i
+
2

Figure 6.7: Embedding construction of the reduction Rβ. Any d bounded graph Gd is attached
to a multigraph wheel W (more precisely, to a subset of vertices Γ ) with a number
of edges linear in |Gd|. The residual degrees of the power law degree sequence
are realized inside W in a cyclic increasing order via degree 1 vertices and multi-
edges. W1 ∈ V(W) denotes the subset of wheel nodes which have a degree 1 vertex
attached.

The rest of the wheel nodes is used to implement the power law degree sequence
by systematically constructing multi-edges between nodes of similar target degree.

Due to the different behavior of the power law distributions at the phase transition
points of the parameter β, we have to distinguish the two cases 1 < β < βmax ≈ 2.48
and 0 < β 6 1.

For 1 < β < βmax, we construct the PLG Gα,β = µ(Gd) ∪W in such a way that the
set Γ of neighbors of Gd in the wheel W satisfies Γ ⊆ W1 and |Γ | = Θ(n). This means
every neighbor of nodes from Gd in the wheel is also adjacent to at least one node
of degree 1. Neighbors of degree 1 nodes have the property that every vertex cover
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either contains this node or all its degree 1 neighbors. This implies that any optimum
vertex cover COPT in Gα,β contains the set Γ , and hence the intersection of COPT with
µ(Gd) corresponds to an optimum vertex cover COPT

d in Gd.
In the case 0 < β 6 1, and also in the functional cases β = 1− 1

f(n) and β = 1+ 1
f(n) ,

the behavior of the power law distributions is rather different. In these cases, the
number of degree 1 nodes in (α,β)-PLG is not sufficient to attach a degree 1 node
to every neighbor of µ(Gd) in W. Hence, we cannot guarantee anymore that every
optimum vertex cover in Gα,β contains an optimum vertex cover in Gd. Furthermore,
in order to obtain that |Gα,β| = O(|Gd|), the nodes of µ(Gd) must have high degree in
Gα,β. Since the set Γ is too small to realize this degree of nodes in Gd via parallel edges
into Γ , we need to replace the edges inside Gd by sufficiently many multi-edges. In
order to keep track of the node-degrees and to implement the power law distribution,
we will first map Gd to a graph G̃d+2 which contains a perfect matching. This allows
us to increase the node degrees inside G̃d+2 in a controlled manner, namely pairwise
along the edges of a perfect matching. Then we construct Gα,β = Rβ(Gd) in such a
way that |Γ | = o(n).

This means in the cases 0 < β 6 1 and in the functional cases β = 1 − 1
f(n) and

β = 1 + 1
f(n) , our reduction from Min-VCd to Min-VCα,β is the composition of a

reduction from Min-VCd to Min-VCPMd+2, that is Min-VC restricted to (d+ 2) bounded
degree graphs which provide a perfect matching, and a reduction from Min-VCPMd+2
to Min-VCα,β. We will show that any approximation algorithm for Min-VCα,β also
yields an approximation algorithm with almost the same approximation ratio for the
problem of constructing a minimum size vertex cover for Gα,β which contains the set
Γ . This special version of the vertex cover problem for graphs Gα,β = Rβ(Gd) will be
denoted as M̂in-VCα,β.

In both cases, our polynomial time reduction from Min-VCd to Min-VCα,β has the
following general structure.

1. Map Gd to a multigraph µ(Gd).
In the case β > 1, µ(Gd) is equal to Gd. In the case 0 < β 6 1 and in the functional
cases β = 1− 1

f(n) and β = 1+ 1
f(n) , we first apply our polynomial time reduction from

Min-VCd to Min-VCPMd+2, i. e. the Min-VC problem restricted to (d + 2)-bounded
degree graphs which provide a perfect matching. This yields a graph G̃d+2 of size 4 · |Gd|
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which contains a perfect matching M. Then we replace the edges of M by multi-edges
such as to increase the degree of nodes in G̃d+2 appropriately.

2. Choose the parameter α as small as possible such that each node in µ(Gd) can
be connected to a set Γ ⊆W, where |µ(Gd)| 6 vol(Γ) and |Γ | = o(n).

3. Construct the set of wheel-nodes W.
Assign to every node v in µ(Gd)∪W a target node degree dα,β(v), i. e. the desired degree
in the power law degree distribution. Generate the edges (multi-edges) from µ(Gd) to
the set Γ ⊂ W. The wheel will be constructed in such a way that wheel nodes of the
same degree always form an induced connected subgraph in W.

4. Connect the degree 1 nodes to the wheel W.

5. Construct edges inside W such that the resulting multigraph is an (α,β)-PLG.

In order to keep track of the node degrees and the edges being already constructed in
steps 1–5 of this reduction, we make use of the notion of the residual degrees dr(v) of
nodes v in the graph Gα,β.

As we see from the above description of the embedding construction, the embed-
ding algorithm partitions the wheel nodes w ∈ W into the subsets W1 ⊆ W, Γ ⊆ W1

and W \W1. In step 3 of the embedding construction, a target degree and residual
degree is assigned to every node v ∈ µ(Gd) and w ∈ W, respectively dα,β(v),dα,β(w)

and dr(v),dr(w). Then the nodes of µ(Gd) and the degree 1 nodes are attached to
the wheel W, where the residual degrees of v ∈ µ(Gd) are resolved immediately and
the residual degrees of w ∈ W are updated. The completion step 5 of the reduction
consists of the algorithm Fill_Wheel, which we will describe now. This algorithm
gets as an input the set of wheel nodes W with residual degrees dr(w) for all w ∈W.
It generates the missing edges degree wise in a cyclic order by placing multi-edges
between nodes of similar degree (cf. Figure 6.8).

If wj,1, . . . ,wj,nj are the nodes of degree dα,β(wj,l) = j in the wheel W, then the
following invariant will be maintained.
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degree i

degree i+ 1

degree i
+ 2

Wheel

Figure 6.8: Procedure Fill_Wheel that realizes the residual degrees on the wheel nodes in W.

Invariant 1.
In every stage of the construction, for every j ∈ {1, . . . ,∆},dr(wj,1) 6 . . . 6 dr(wj,nj)
and dr(wj,nj) − dr(wj,1) 6 1.

We are now ready to give the pseudo-code description of the algorithm Fill_Wheel on
page 105. This completes the description of our reduction and embedding technique.

Next, we are going to treat the dependency of the above reduction techniques with
regard to the model parameter β. Especially, we will distinguish between the cases
where 0 < β 6 1 and 1 < β < βmax ≈ 2.48.

6.6 THE CASE β > 1

We will now consider the case when the parameter β is in the range 1 < β < βmax ≈
2.48. We distinguish the subcases 1 < β < 2, β = 2 and 2 < β < βmax which differ by
the choice of the intervals and the analysis of the construction.

We will make use of the notion of an interval in a PLG. Let Gα,β = (V ,E) an (α,β)-
PLG. An interval of nodes in Gα,β is a set [a,b] = { v ∈ V | a 6 d(v) 6 b }, where
1 6 a 6 b 6 ∆ =

⌊
eα/β

⌋
. Firstly, we consider the case when 1 < β < 2.

6.6.1 Subcase 1 < β < 2

Given a degree d bounded graph Gd, we construct Gα,β = Rβ(Gd) as follows. Let W
be the set of wheel nodes, W1 ⊆W is the set of nodes w ∈W which are adjacent to at
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Algorithm 6.2 : Fill_Wheel
Input : The set of wheel nodes {wj,l} ∈ V(W) with j ∈ {3, . . . ,∆}, l ∈ {1, . . . ,nj} and

residual degrees dr(wj,l).
Output : A graph W with residual degrees dr(wj,l) = 0.

for j = 3, . . . ,∆ do
while dr(wj,nj) > 0 do

choose l min such that dr(wj,l) is max;
if l < nj then

generate edge {wj,l,wj,l+1};
dr(wj,l) := dr(wj,l) − 1;
dr(wj,l+1) := dr(wj,l+1) − 1;

else if l = nj,dr(wj,1) > 0 then
generate edge {wj,l,wj,1};
dr(wj,l) := dr(wj,l) − 1;
dr(wj,1) := dr(wj,1) − 1;

else if l = nj,dr(wj,1) = 0, j < ∆ then
generate edge {wj,l,wj+1,1};
dr(wj,l) := dr(wj,l) − 1;
dr(wj+1,1) := dr(wj+1,1) − 1;

else
take degree 1 node w1 and generate edge {wj,l,w1};
dr(wj,l) := dr(wj,l) − 1;
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least one node of degree 1. Furthermore, let nj be the number of nodes of degree j in
the graph Gd. The set Γ of neighbors of Gd in the wheel should satisfy Γ ⊆ W1 ⊆ W.
We let nj be the number of nodes of degree j in the graph Gd and we want to choose
W1 = [j0,∆] as small as possible such as to meet the following requirements:

1. Sufficient amount of node degree in the wheel:

beαc+n 6
∆∑
j=j0

(j− 2) ·
(⌊

eα

jβ

⌋
−nj−1

)
.

2. Enough degree 1 nodes: beαc > |Γ |, which holds if

beαc >
∆∑
j=j0

(⌊
eα

jβ

⌋
−nj−1

)
.

3. Node degrees of Gd:
⌊

eα
jβ

⌋
> nj−1 for all j = 2, . . . ,d+ 1.

The first constraint ensures that a sufficient amount of node degree is available
in the set W1, such as to let all the nodes from Gd and all the degree 1 nodes be
adjacent to nodes from W1. The second constraint guarantees that every node in the
neighborhood Γ of Gd can have least one degree 1 node adjacent to it. Since we may
assume that Gd does not contain any node of degree 1 and since every node in Gd
will have one neighbor in Γ , the third constraint ensures that the degree distribution of
the embedded graph µ(Gd) fits into the power law distribution of the fully composed
graph Gα,β. Considering constraint 3, the following lemma shows how to choose the
size parameter α in order to achieve the requirement.

Lemma 6.3.
If
⌊

eα
(d+1)β

⌋
> n, then the requirement 3 is satisfied.

Proof. Recall that the function f(n) =
⌊

eα
jβ

⌋
has negative slope for all β > 0. Hence,

we have that
⌊

eα
jβ

⌋
>
⌊

eα
(j−1)β

⌋
. And since nj 6 n, for all j = 1, . . . ,d, the lemma

follows.



6.6 the case β > 1 107

Hence we choose eα = (d + 1)βn to fulfill the constraint. Let us now consider
constraint 1. In order to minimize the size of W1, we want to choose j0 as large as
possible. This yields the following alternate version of requirement 1, which omits
the subtraction of the term nj−1.

1*.
∑∆
j=j0

(j− 2) ·
⌊

eα
jβ

⌋
> n+ beαc.

The above inequality is equivalent to

eα ·

([
x

2−β

]∆
j0

− 2 · ζ(β)

)
> n+ (d+ 1)β ·n

⇐⇒ ∆2−β − j2−β0 > (2−β) ·
(
1+

1

(d+ 1)β
+ 2 · ζ(β)

)
. (6.3)

Lemma 6.4.
Inequality 6.3 holds for j0 = ∆− h(n) with h(n) = ∆u, 1 > u > β− 1.

Proof. We give a proof for the special case 1
2−β = l ∈ Z. In this case the requirement

is equivalent to

∆2−β − const. > (∆− h(n))2−β

⇐⇒
(
∆2−β − const.

) 1
2−β
> ∆− h(n)

⇐⇒ ∆− q
(
∆
1/l
)
> ∆− h(n),

where q is a polynomial of degree l− 1 = 1
2−β − 1 = β−1

2−β .

Hence, we can choose the parameter u =
1+(β−1)

2 = β
2 and W1 = [∆− ∆u,∆] and

obtain |W1| =
∑∆
j=∆−∆u

⌊
eα
jβ

⌋
= o

(
|Gα,β|

)
= o(n). We are now ready to give the pseudo-

code description of our reduction in the case 1 < β < 2 in algorithm Reductionβ>1 on
page 108.

resulting lower bound. We will now give an estimate of the resulting lower
bound of our reduction. Suppose Min-VCd is hard to approximate within 1 + εd.
Furthermore, suppose thatAβ is an approximation algorithm for Min-VCα,β on (α,β)-
PLG with an approximation ratio of 1+ εβ. This yields an approximation algorithm
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Algorithm 6.3 : Reductionβ>1
Input : Gd = (V ,E) degree d bounded graph with V = {v1, . . . , vn} such that

2 6 dGd(v1) 6 . . . 6 dGd(vn) 6 d
Output : (α,β)-PLG Gα,β = (Vα,β,Eα,β) with Vα,β = V ∪W

(1) choose u = β
2 ;

(2) let α = min
{
α ′
∣∣∣[∆−∆u,∆]| > n and

⌊
eα

(d+1)β

⌋
> n
}

;

(3) nj := ]nodes of degree j in Gd (j = 2, . . . ,d); /* Generate wheel nodes */

Vα,β := Vd ∪W (W =
⋃∆
j=1W(j) with

W(j) =
{
wj,l

∣∣∣1 6 l 6 ⌊eα
jβ

⌋
−nj−1

}
, j = 1, . . . ,∆);

(4) Generate edges {wj,l,wj,l+1} (j = 2, . . . ,∆ and l = 1, . . . , |W(j)|); /* Generate rim

edges */
Generate edges {wj,|W(j)|

,wj+1,1} and one edge {w∆,1,w2,1} (j = 2, . . . ,∆);
let dr(wj,l) := j− 2 (j = 2, . . . ,∆, 1 6 l 6 |W(j)|);
/* Generate edges from Gd to W */

(5) for (c = 1, j = ∆−∆u; c 6 n; j++) do
for (l = 1; l < |W(j)| ∧ c 6 n; l++, c++) do

Generate an edge {vc,wj,l} and set dr(wj,l) := dr(wj,l) − 1;

/* Connect degree 1 nodes */
(6) for (j = ∆−∆u, c1 = 0; j < ∆∧ c1 < beαc; j++) do

for (l = 1; l < |W(j)| ∧ c1 < beαc; l = (l == |W(j)|?1 : l+ 1)) do
Generate one edge {w1,c,wj,l} and set c1 := c1 + 1,dr(wj,l) := dr(wj,l) − 1;

/* Generate remaining edges */
(7) Apply algorithm Fill_Wheel;

let Eα,β be the union of E and the set of all edges generated in steps (4)-(7);
return (Vα,β,Eα,β)
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Ad for Min-VCd. As we have seen before, we may assume that on given input Rβ(Gd),
algorithm Aβ constructs a vertex cover which consists of a cover Cd in Gd, the set W1

of nodes which are adjacent to degree 1 nodes and a cover on the set W \W1. Since
the wheel W is constructed in such a way that an optimal cover can be computed in
polynomial time, we may assume that Aβ constructs a cover Cd ∪W1 ∪OPT(W \W1).
Furthermore, we assume that Ad on input Gd returns the cover Cd. By the above
assumptions, we have that

|Cd|+ |W1|+ |OPT(W \W1)| 6 (1+ εβ) · (|OPTd|+ |W1|+ |OPT(W \W1)|)

⇐⇒ |Cd| 6 (1+ εβ) · |OPTd|+ εβ · (|W1|+ |OPT(W \W1)|) (6.4)

We will now use the fact that any optimal cover on W \W1 can be transformed into
an optimal cover that consists of every second wheel node. Since |W \W1| = ζ(β) ·
(d+ 1)β ·n−n− eα−o(n), we obtain from inequality 6.4 that

|Cd| 6 (1+ εβ) · |OPTd|+ εβ ·
(
o(n) +

(ζ(β) − 1) · (d+ 1)β ·n−n− o(n)

2

)
6 (1+ εβ) · |OPTd|+ εβ ·

(
o(n) +

(ζ(β) − 1) · (d+ 1)β − 1− o(1)
2

· d · |OPTd|
)

= |OPTd| ·
(
1+ εβ ·

(
1+ o(1) +

(ζ(β) − 1) · (d+ 1)β − 1− o(1)
2

· d
))

,

and hence the following result.

Theorem 6.4.
Suppose that Min-VCd is hard to approximate within approximation ratio 1+ εd. Then, for
1 < β < 2, Min-VCα,β is hard to approximate within approximation ratio

1+ εβ = 1+
εd

1+ d · (ζ(β)−1)·(d+1)
β−1

2

.

We are now going to consider the case when β = 2, and show that one can obtain
the same approximation lower bound as in Theorem 6.4.
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6.6.2 Subcase β = 2

For this case again we choose the set W1 to reside in the interval [j0,∆] and consider
the following corresponding optimization problem, resembling the requirements 1, 1*
and 3.

minimize j0,

subject to
⌊

eα

(d+ 1)β

⌋
>n, and

∆∑
j=j0

(j− 2) ·
⌊

eα

jβ

⌋
>n+ beαc. (6.5)

Suppose we first choose α such that the inequality

eα > (d+ 1)β · (n+ 1) (6.6)

holds. Then the first constraint holds as well. For β = 2, assuming inequality 6.6, we
have the following chain of implications, starting from inequality 6.5:

(6.5) :
∆∑
j=j0

(j− 2) ·
⌊

eα

jβ

⌋
> n+ beαc

⇐=
∆∑
j=j0

eα

j
− (∆− j0 + 1) − 2

∆∑
j=j0

eα

j2
> n+ eα

⇐=
∆∑
j=j0

1

j
−
∆− j0 + 1

eα
− 2

∆∑
j=j0

1

j2
>

1

(d+ 1)β
−
1

eα
+ 1

⇐= ln(∆) − ln(j0) −
∆− j0 + 1

eα
− 2 · ζ(2) > 1

(d+ 1)β
−
1

eα
+ 1

Hence we choose j0 = e
α
2−c with c = 2 + 1

(d+1)β
+ 2 · ζ(2) = O(1). This implies

|W1| = o(n), and thus we obtain the same lower bound as for the case 1 < β < 2,
stated in Theorem 6.4, namely
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Theorem 6.5.
Suppose that Min-VCd is hard to approximate within approximation ratio 1+ εd. Then, for
β = 2, Min-VCα,β is hard to approximate within approximation ratio

1+ εβ = 1+
εd

1+ d · (ζ(β)−1)·(d+1)
β−1

2

.

We proceed to the case β > 2.

6.6.3 Subcase β > 2

For the case 2 < β < βmax = inf{x | ζ(x − 1) − 2ζ(x) 6 0} ≈ 2.48 we consider the
following construction. The wheel of the embedding is constructed in such a way that
the setW1, i. e. the set of neighbors of degree 1 vertices, consists of all the wheel nodes
of degree > 3. This yields |W1| =

∑∆
j=3

(
eα
jβ

−nj−1

)
and |W \W1| =

eα
2β

−n1 =
eα
2β

. We
obtain

|Cd| 6 (1+ εβ)OPTd + εβ

(
1

2
· eα

2β
+ ζ(β) eα−n− eα−

eα

2β

)
= (1+ εβ)OPTd + εβ · eα

(
1

2β−1
+ ζ(β) −

1

(d+ 1)β
− 1−

1

2β

)
6 OPTd

(
1+ εβ

(
1+ (d+ 1)βd

(
1

2β+1
+ ζ(β) − 1−

1

2β
−

1

(d+ 1)β

)))
.

If instead we choose |W1| =
∑∆
j=4

(
eα
jβ

−nj−1

)
, then we obtain |W \W1| = eα

2β
−

n1︸︷︷︸
=0

+ eα
3β

−n2. This yields

|Cd| 6 (1+ εβ)OPTd

+ εd

(
eα
(
ζ(β) − 1−

1

2β
−
1

3β

)
+ eα

1+ 2−β + 3−β

2
−n+

n1 +n2
2

)
= OPTd

(
1+ εβ

(
1+ (d+ 1)β · d

(
ζ(β) −

1

2
−

1

2β+1
−

1

3β · 2

)
−n+

n1 +n2
2

))
.

We obtain the following theorem.
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Theorem 6.6.
Suppose that Min-VCd is NP-hard to approximate within approximation ratio 1+ εd. Then,
for 2 < β < βmax = inf{x | ζ(x− 1) − 2ζ(x) 6 0} ≈ 2.48, Min-VCα,β is hard to approximate
within approximation ratio

1+
εd

1+ d(d+ 1)β
(

1
2β+1

+ ζ(β) − 1− 1
2β

− 1
(d+1)β

) .

The next section covers the case when 0 < β 6 1. In particular, we will have to
use techniques presented in Section 6.5.1 in order to construct a valid embedding
reduction.

6.7 THE CASE β 6 1

We consider now the case 0 < β 6 1. Again we construct a polynomial time reduction
which embeds any d-bounded graph Gd into an (α,β)-PLG Gα,β. Since in the case
0 < β 6 1, the nodes of Gd need to have high degree in the fully composed graph
Gα,β, we will first map the graph Gd to a (d+ 2)-bounded degree graph G̃d+2, which
provides a perfect matching M. Then the edges of M are duplicated in order to
increase the degree of vertices in G̃d+2. The reduction technique for this special case
is described in Section 6.5.1. We start with the subcase 0 < β < 1.

6.7.1 Subcase 0 < β < 1

We are now ready to consider the subcase 0 < β < 1. We start by giving an estimate of
the cardinality of node intervals [x∆,y∆] in an (α,β)-PLG Gα,β ∈ Gα,β. Although the
rounding errors in the case β < 1 can be of order Θ(|Gα,β|), as pointed out by Aiello,
Chung, and Lu in [ACL01, p.6], our estimates will enable us to choose the interval
sizes appropriately and to obtain explicit lower bounds for Min-VCα,β.

The following lemma provides both upper and lower bounds on the cardinality of
the interval [x∆,y∆].
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Lemma 6.5 (Sizes of Intervals).
Let 0 < β < 1 and let Gα,β = (V ,E) be an (α,β)-PLG. For every 0 < x < y < 1, the
cardinality of the interval [x∆,y∆] = { v ∈ V | x∆ 6 dα,β(v) 6 y∆ } is in[

∆

1−β

(
y1−β − x1−β

)
− (y− x)∆− 1 ,

∆

1−β

(
y1−β − x1−β

)
+

(
1

xβ
−
1

yβ

)]
.

Proof. We first observe that

|[x∆,y∆]| =
y∆∑
j=x∆

⌊
eα

jβ

⌋
∈

 y∆∑
j=x∆

eα

jβ
− (y− x)∆− 1 ,

y∆∑
j=x∆

eα

jβ

 .

Since, for 0 < β < 1, 1
χβ

is a convex function, we obtain

y∆∑
j=x∆

eα

jβ
∈

[
eα ·
∫y∆
x∆
χ−βdχ , eα ·

(∫y∆
x∆
χ−βdχ+

(
1

(x∆)β
−

1

(y∆)β

))]

=

[
eα ·

[
χ1−β

1−β

]y∆
x∆

, eα ·

([
χ1−β

1−β

]y∆
x∆

+

(
1

(x∆)β
−

1

(y∆)β

))]

=

[
∆

1−β

(
y1−β − x1−β

)
,
∆

1−β

(
y1−β − x1−β

)
+

(
1

xβ
−
1

yβ

)]
.

We want to choose 0 6 x < y < z 6 1 in such a way that the vertices of G̃d+2 will be
contained in the interval [x∆,y∆] and the vertices of Γ will be contained in the interval
(y∆, z∆]. The preceding Lemma 6.5 shows that, in order to achieve |Gα,β| = O(n), we
have to choose y = Ω(1). The next lemma shows that we can even choose y = 1−o(1)

and x = o(1), which then implies |[x∆,y∆]| = (1− o(1)) · |Gα,β|.

Lemma 6.6.

Let x = d+1
∆ ,y =

(
1+ 1

∆1−β

)− 1
2−β and z = 1. Then we have that |[x∆,y∆]| = (1− o(1)) ·

|Gα,β|. Furthermore, the following inequality regarding the interval size holds

∆∑
j=y∆+1

⌊
eα

jβ

⌋
· (j− 2) > (d− 1) ·n . (6.7)
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Proof. Due to the previous Lemma 6.5, we have that

|[x∆,y∆]| >
∆

1−β

((
1+

1

∆1−β

)−1−β2−β

−

(
d+ 1

∆

)1−β)
− y∆.

We cannot apply Lemma 6.5 directly to the interval [x∆,y∆], since the rounding error
(y− x)∆ is of order Ω(∆) = Ω(|Gα,β|) in this case. Instead, we apply the Lemma 6.5
to the complement of [x∆,y∆] in Gα,β:

|[x∆,y∆]| = |Gα,β|− |(y∆,∆]|−
d∑
j=1

⌊
eα

jβ

⌋

> |Gα,β|−
∆

1−β

(
1−

(
1+

1

∆1−β

)−1−β2−β

)
︸ ︷︷ ︸

=o(1)

−

(
1+

1

∆1−β

) β
2−β

+ 1−Θ(eα).

Since |Gα,β| = Θ(∆), we obtain |[x∆,y∆]| = (1− o(1)) · |Gα,β|. Now we show that for
this choice of x and y, the main inequality 6.7 of this lemma holds as well. We start
from the following inequality:

∆∑
j=y∆+1

⌊
eα

jβ

⌋
(j− 2) > (d− 1)n .

This is transformed into

∆∑
j=y∆+1

⌊
eα

jβ

⌋
(j− 2) >

∆∑
j=y∆+1

eα

jβ
(j− 2) − (∆− y∆− 1)︸ ︷︷ ︸

=(1−y)∆−1=o(∆)

=

∆∑
j=y∆

eα

jβ
(j− 2) −

eα

(y∆)β
(y∆− 2) − o(∆)

> eα
(∫∆

y∆
χ1−βdχ− 2

∫∆
y∆
χ−βdχ− 2

(
1

yβ
− 1

))
−

eα

(y∆)β
(y∆− 2) − o(∆).
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Now we are going to use the fact that 2(y−β − 1) eα = o(∆) and have

∆∑
j=y∆+1

⌊
eα

jβ

⌋
(j− 2) > eα

([
χ2−β

2−β

]∆
y∆

− 2

[
χ1−β

1−β

]∆
y∆

)
−

eα

(y∆)β
(y∆− 2) − o(∆)

= eα
(
∆2−β

2−β
−

(y∆)2−β

2−β
−
2∆1−β

1−β
+
2(y∆)1−β

1−β

)
︸ ︷︷ ︸

1=z=
(
1+ 1

∆1−β

) 1
2−β y

−
eα

(y∆)β
(y∆− 2)︸ ︷︷ ︸

=Θ(y1−β∆)

−o(∆)

= eα


(
1+ 1

∆1−β
− 1
)
y2−β∆2−β

2−β
−Θ

(
∆1−β

)−Θ(∆) .

Now using the observation that eα∆1−β = eα eα
1−β
β = ∆, we finally yield

∆∑
j=y∆+1

⌊
eα

jβ

⌋
(j− 2) > eα

y2−β∆1+β

2−β
−Θ (∆) = eα

y2−β∆1+β

2−β
(1− o(1)) .

Therefore,
∑∆
j=y∆+1

⌊
eα
jβ

⌋
· (j− 2) = ω(∆). And since (d− 1)n = O(n) = O(∆), inequal-

ity 6.7 holds and the lemma follows.

The next lemma shows for the size of the fully composed graph that |Gα,β| = (1+

o(1)) ·n.

Lemma 6.7.
Let Gα,β ∈ Gα,β be a power law graph and α = min{α ′ | |[x∆,y∆]| > n }, where x = d+1

∆ and

y =
(
1+ 1

∆1−β

)− 1
2−β . Then, the size of the interval it holds that |[x∆,y∆]| = (1+ o(1)) ·n.

Proof. For α = min{α ′ | |[x∆,y∆]| > n }, we have that

|[x∆,y∆]| = (1− τ(α)) · ∆

1−β
> n ,
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where τ(α) = o(1). Hence

α = min
{
α ′
∣∣∣∣α ′ > β ·(ln

(
1−β

1− τ(α ′)

)
+ ln(n)

)
and

∆

1−β
∈ Z

}
= β ·

(
ln
(
1−β

1− o(1)

)
+ ln(n)

)
+ o(1) ,

which implies that |Gα,β| =
∆
1−β = n · 1−β

1−o(1) ·
eo(1)
1−β = (1+ o(1))n.

We obtain a polynomial time reduction from Min-VCd to Min-VCα,β for the case
0 < β < 1 in algorithm Reductionβ61 on page 117.

resulting lower bound. Let us now give an estimate of the resulting lower
bound for this reduction. Suppose that Min-VCPMd+2 is NP-hard to approximate within
approximation ratio 1+ ε0. Let Gd = (Vd,Ed) be the d-bounded degree graph and
Gα,β = R(Gd). Let |Vd| = n and let W denote the wheel in the composed graph Gα,β.
We have |W| 6 c ·n. Let Γ be the neighborhood of Gd in Gα,β with |Γ | = γ = o(n).

Suppose thatA is a polynomial time approximation algorithm for Min-VC in power
law graphs with an approximation ratio 1+ ε. On input Gα,β = R(Gd), algorithm A
constructs a vertex cover C = Cd ∪ CW with Cd = C ∩ Vd and CW = C ∩W. Since,
in our construction, no vertex from W is able to cover any edge in Gd, Cd is a vertex
cover of Gd.

Let OPT denote a minimum cost vertex cover of Gα,β. Let OPTd = OPT ∩ Vd and
OPTW = OPT∩W. Then |C| 6 (1+ ε) ·OPT, |Cd| > n/d and

|OPT| = |OPTd ∪OPTW | 6 |OPTd|+ |OPTW |+ |Γ |

6 (1+ o(1)) · (|OPTd ∪OPTW |) = (1+ o(1)) · |OPT| .

Hence the approximation algorithm B, which on input Gα,β first computes the cover
C = A(Gα,β) and then replaces CW by the union of Γ and an optimum vertex cover
for W \ Γ (which can be computed efficiently by dynamic programming due to our
construction), has approximation ratio (1 + ε0) · (1 + o(1)) for the instances Gα,β =

Gd ∪W = R(Gd) of Min-VC.
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Algorithm 6.4 : Reductionβ61
Input : Gd = (V ,E) a d-bounded graph with V = {v1, . . . , vn} such that

2 6 dGd(v1) 6 . . . 6 dGd(vn) 6 d
Output : (α,β)-PLG Gα,β = (Vα,β,Eα,β) with Vα,β = V ∪W

(1) let G̃d+2 = RPM(Gd) = (Ṽ , Ẽ); /* Generate the Perfect Matching Graph */

let M̃ = {e1, . . . , e2n} be a perfect matching in G̃d+2;

(2) let α := min
{
α ′
∣∣∣|[x∆,y∆]| >

∣∣∣G̃d+2∣∣∣}; /* Choose α, x and y */

let x := d+1
∆ and y :=

(
1+ 1

∆1−β

)− 1
2−β ;

(3) Assign degrees dα,β(vi) to the nodes vi of G̃d+2
such that x∆ 6 dα,β(vi) 6 y∆, respecting the (α,β) power law;
let dr(vi) = dα,β(vi) − dG̃d+2

(vi);
for i = 1, . . . , 2n do

let ei = {vi1 , vi2};
Replace ei by min{dr(vi1),dr(vi2)}− 1 parallel edges;
Update dr(vi1),dr(vi2) accordingly;

let µ(Gd) be the resulting multigraph;
(4) nj := ]nodes vi with dα,β(vi) = j in G̃d+2 (j = 2, . . . ,∆);
Vα,β := Ṽd+2 ∪W (W =

⋃∆
j=1W(j) with

W(j) =
{
wj,l

∣∣∣1 6 l 6 ⌊eα
jβ

⌋
−nj−1

}
(j = 1, . . . ,∆);

(5) Generate edges {wj,l,wj,l+1} (j = 2, . . . ,∆ and l = 1, . . . , |W(j)|);
Generate edges {wj,|W(j)|

,wj+1,1} and one edge {w∆,1,w2,1} (j = 2, . . . ,∆);
let dr(wj,l) := j− 2 (j = 2, . . . ,∆, 1 6 l 6 |W(j)|);

(6) for (c = 1, j = y∆+ 1; c 6 4n; j++) do
for (l = 1; l < |W(j)| ∧ c 6 4n; ) do

Generate min{dr(vc),dr(wj,l)} parallel edges between vc and wj,l;
Update dr(vc),dr(wj,l) accordingly;
if dr(wj,l) = 0 then j++;
if dr(vc) = 0 then c++;

(7) Connect the nodes w1,l to
⋃
y∆<j6∆W(j); /* c.f. step (6) of Reductionβ>1 */

(8) Apply algorithm Fill_Wheel;
let Eα,β be the set of edges generated in steps (3)-(8);
return (Vα,β,Eα,β);
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We will now show that algorithm B has also a similar approximation ratio for a
slightly modified optimization problem:

Problem 5 (M̂in-VC).

input : d-bounded degree graph Gd.

output : Vertex cover C for R(Gd) = Gd ∪W such that Γ ⊆ C.

objective : Minimize |C|.

Let ÔPT(Gd) denote an optimum solution for instance Gd of this modified optimiza-
tion problem. Furthermore let OPT(Gd) and OPT(W \ Γ) denote minimum cost vertex
covers for Gd and the graph W \ Γ , respectively. Then

ÔPT(Gd) = OPT(Gd)∪ Γ ∪OPT(W \ Γ) .

We observe that if OPT = OPTd ∪OPTW is an optimum vertex cover for Gα,β = R(Gd),
then

|OPTd| 6 |OPT(Gd)|+ |Γ | .

We have |ÔPT(Gd)| 6 |OPT|+ |Γ |+O(1) = (1+ o(1)) · |OPT|. We show that algorithm
B ′ has approximation ratio (1+ o(1)) · (1+ ε) for the modified optimization problem.
Then we can conclude that

|Cd ∪ Γ ∪OPT(W \ Γ)| 6 (1+ o(1)) · (1+ ε) · ÔPT(Gd)

= (1+ o(1)) · (1+ ε) · |OPT(Gd)∪ Γ ∪OPT(W \ Γ)| ,

which yields

|Cd| 6 (1+ o(1)) · (1+ ε) · |OPT(Gd)|+ ε · |Γ ∪OPT(W \ Γ)| .
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Now since |Γ ∪OPT(W \ Γ)| 6 |W| 6 c ·n and |OPT(Gd)| > n/d, we obtain
|Γ ∪OPT(W \ Γ)| 6 c · d · |OPT(Gd)| and therefore

|Cd| 6 (1+ o(1)) · (1+ ε+ ε · c · d) · |OPT(Gd)| ,

and thus ε · (1+ c · d) > (1− o(1)) · ε0. For our choice of the parameters x,y, z we
obtain c = o(1), and thus the following theorem holds.

Theorem 6.7.
If Min-VCd is hard to approximate within approximation ratio 1+ εd, then for 0 < β < 1,
Min-VCα,β is hard to approximate within approximation ratio 1+ εd

1+2d .

Now we are going to consider the case β = 1.

6.7.2 Subcase β = 1

The case β = 1 differs from the case 0 < β < 1 in how we choose the intervals
[x∆,y∆] and (y∆, z∆]. Nevertheless, we will obtain the same lower bound as in the
case 0 < β < 1. We start with the proof of the following lemma.

Lemma 6.8 (Sizes of Intervals).
Let Gα,β ∈ Gα,β be an (α,β)-PLG with β = 1. Then for all 0 < x < y 6 1, the size of the
interval [x∆,y∆] = { v ∈ V(Gα,β) | x∆ 6 d(v) 6 y∆ } satisfies

|[x∆,y∆]| ∈
[
(ln(y) − ln(x) − (y− x+ 1)) · eα , eα ·(ln(y) − ln(x)) +

(
1

x
−
1

y

)]
.

Proof. First we give a bound for the rounding error of the sum
∑y∆
j=x∆

⌊
eα
j

⌋
, namely

y∆∑
j=x∆

eα

j
− (y− x+ 1) ·∆ 6

y∆∑
j=x∆

⌊
eα

j

⌋
6

y∆∑
j=x∆

eα

j
.
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For the sum
∑y∆
j=x∆ j

−1, we get the following bounds:

y∆∑
j=x∆

1

j
∈

[∫y∆
x∆
χ−1dχ ,

∫y∆
x∆
χ−1dχ+

(
1

x∆
−
1

y∆

)]

=

[
ln(y∆) − ln(x∆), ln(y∆) − ln(x∆) +

(
1

x∆
−
1

y∆

)]
=

[
ln(y) − ln(x) , ln(y) − ln(x) +

(
1

x∆
−
1

y∆

)]
,

and thus the lemma follows.

In the case β < 1 we have mapped the graph Gd to a subinterval [x∆,y∆) = { v ∈
V(Gα,β) | x∆ 6 d(v) < y∆ }, where 0 < x < y < 1 and x,y are constant. However, in
the case β = 1 the size of such an interval is Θ (eα) which is o(|Gα,1|). This means we
have to choose the interval bounds in a different way.

Lemma 6.9.
Let Gα,β = (V ,E) be an (α, 1)-PLG. For 0 6 c ′ < c 6 1 and parameters x = e−(1−c ′)α,y =

e−(1−c)α with c, c ′ being constant, the size of the set [x∆,y∆] = { v ∈ V | x∆ 6 d(v) 6 y∆ }

satisfies

|[x∆,y∆)| = (1− o(1))(c− c ′) ·α eα = Θ (α eα) .

Proof. Due to the preceding Lemma 6.8, the following holds

|[x∆,y∆]| > eα ·(ln(y) − ln(x) − (y− x+ 1))

= eα ·((1− c ′) − (1− c))α−O(1))

= (1− o(1)) · (c− c ′)α eα .

The next lemma shows that if we choose α as small as possible such as to be able
to embed Gd into the interval [x∆,y∆], then we obtain |[x∆,y∆]| = (1+ o(1))n.
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Lemma 6.10.
For x = 1

e(1−c ′)·α
,y = 1

e(1−c)·α
and α = min{α ′ | |[x∆,y∆)| > n }, we get the following

bounds on the size of the interval [x∆,y∆).

n 6 |[x∆,y∆)| 6 n+ t(n) ,

where t(n) = by∆c− dx∆e+O(1) and especially t(n) = o(n).

Proof. The equation t(n) = by∆c− dx∆e+O(1) follows directly from the choice of x
and y. It remains to show that t(n) = o(n). From t(n) = o(|Gα,β|) and |[x∆,y∆)| =
Θ(|Gα,β|), we obtain t(n) = o(|[x∆,y∆)|). The inequality n 6 |[x∆,y∆)| 6 n+ t(n)

then implies n = Θ(|[x∆,y∆)|), whence t(n) = o(n).

Finally we show that we can choose the set Γ = (y∆, z∆] with z = c ′′∆, where
c ′′ = c+ o(1).

Lemma 6.11.
Let 0 6 c ′ < c < 1 be constants and c ′′ = c+ 1

α , and let x = e(c
′−1)α,y = e(c−1)α and

z = e(c
′′−1)α. Then |(y∆, z∆]| = o(α eα) and

z∆∑
j=y∆+1

⌊
eα

j

⌋
· (j− 2) = ω

(
|Gα,β|

)
.

Proof. Using the preceding Lemma 6.10, we have that

|(y∆, z∆]| = |[y∆, z∆]|−
⌊

eα

y∆

⌋
6 eα ·(c ′′ − c) ·α+ e(1−c)α− e(1−c

′′)α

= eα+ e(1−c)α− e(1−c
′′)α

= o
(
|Gα,β|

)
.
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Furthermore,

z∆∑
j=y∆+1

⌊
eα

j

⌋
· (j− 2) >

z∆∑
j=y∆+1

eα

j
· (j− 2) − (z− y)∆ · (z∆− 2)

=

z∆∑
j=y∆

eα

j
· (j− 2) − (z− y)∆ · (z∆− 2) −

eα

y∆

> eα ·((z− y+ 1)∆− 2(ln(z∆) − ln(y∆)))

− (z− y)∆ · (z∆− 2) −
eα

y∆
− 2

(
1

y∆
−
1

z∆

)
= (1− o(1)) · e2α

= ω (α eα) .

This means, for β = 1, we basically obtain the same polynomial time reduction
from Min-VCd to Min-VCα,β as in the case 0 < β < 1. The only difference is how we
choose the parameters x,y, z. Altogether, we obtain the following result.

Theorem 6.8.
If Min-VCd is hard to approximate within ratio 1+ εd, then for β = 1, Min-VCα,β is hard
to approximate within approximation ratio 1+ εd

1+2d .

We investigate now the phase transition point for β = 1. This is done by defining
the parameter β = βf = 1± 1

f(n) as being a function only dependent on the number of
nodes n, and thus converging to 1 from below (above) as n → ∞. We start with the
case β = 1− 1

f(n) .

6.8 THE FUNCT IONAL CASE β = 1 − 1
f (n )

First, let us give a precise description of the model of an (α,βf)-PLG for βf = 1− 1
f(n) .
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Definition 6.5 ((α,βf)-PLG for βf = 1− 1
f(n) ).

Let f(n) be a monotone increasing unbounded function. For βf = 1 − 1
f(n) , an

(α,βf)-PLG Gα,βf ∈ Gα,βf is a multigraph with n nodes which has the following
properties:

(1) The maximum degree of Gα,βf is ∆f =
⌊

eα/βf
⌋

.

(2) There are
⌊

eα

jβf

⌋
nodes of degree j, with j = 1, . . . ,∆f.

Thus, in the above definition of an (α,βf)-PLG, the number of vertices in a graph
Gα,βf ∈ Gα,βf satisfies the equation n =

∑∆f
j=1

⌊
eα

jβf

⌋
. In this section we will show

that the approximation lower bound for Min-VCα,1 also holds for the functional case
β = 1− 1

f(n) . We achieve this by showing that the quantities of the crucial parameters
(maximum degree, sizes of intervals) of (α,βf)-PLG in the functional case converge
to those in the case β = 1 and general (α,β)-PLG. Let us start by giving an outline of
the main steps. First we ask when the single terms 1

i1−f(n)
−1 that appear in the sum∑∆f

j=1

⌊
eα

jβf

⌋
converge to the terms 1

i . The differences between the single terms in the
functional and the non-functional case, i. e. the local errors, are

1

i
f(n)−1
f(n)

−
1

i
=
i
1
f(n) − 1

i
6
n

1
f(n) − 1

i
.

We have that log
(
n1/f(n)

)
=

log(n)
f(n) and hence, for f(n) = ω(logn), the nominator

converges to 0. Another estimate of the local error can be obtained by the following
bounds.

i1/f(n) − 1

i
6
∆1/f(n) − 1

i
=

(
n

f(n)

) 1
f(n)

− 1 .

In the next step, we are going to deal with the global error, i. e. we consider the sum

∆∑
i=1

eα

iβ
= eα ·

e
α· f(n)
f(n)−1∑
i=1

1

i
f(n)−1
f(n)

!
= n .
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We will show that this sum differs from the according sum of the terms 1/i in the
non-functional case by an amount of α eα f(n)

f(n)−1

(
e

α
f(n)−1 −1

)
, which is a lower oder

term provided f(n) = ω(α).
Finally, we will also give bounds on the rounding error, which results when we

replace the terms beα /jβc by their fractional counterparts.

detailed description. Let us now give a detailed description of the steps out-

lined above. We let ∆f =

⌊
eα·

f(n)
f(n)−1

⌋
and ∆ = beαc. Thus, we have that ∆f =⌊

eα · e
α

f(n)−1

⌋
= (1 + o(1)) · ∆, provided that f satisfies f(n) = ω(α). In the case

βf = 1 − 1
f(n) , we have n =

∑∆f
j=1

⌊
eα

jβf

⌋
and we want to give upper and lower bou-

nds for this term. Since ∆f = (1+ o(1))∆, we obtain

∆∑
j=1

eα

jβ
− (1+ o(1))∆ 6

∆f∑
j=1

eα

jβ
−∆f 6

∆f∑
j=1

⌊
eα

jβ

⌋
6

∆f∑
j=1

eα

jβ
.

The right-hand side of this inequality, i. e. the upper bound, can be further bounded
and rearranged as follows.

∆f∑
j=1

eα

jβ
=

∆∑
j=1

eα

jβ
+ (∆f −∆) ·

eα

∆β
=

∆∑
j=1

eα

jβ
+ o(1) ·∆ · eα

∆
1− 1
f(n)

=

∆∑
j=1

eα

jβ
+ o(1) · eα ·∆

1
f(n) =

∆∑
j=1

eα

jβ
+ o(1) · eα · e

α
f(n)

=

∆∑
j=1

eα

jβ
+ o(1) · (1+ o(1)) · eα ,

where the last equality holds again due to the fact that f(n) = ω(α). Thus we obtain
the following lemma.
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Lemma 6.12.
If f(n) = ω(α), then

∆∑
j=1

eα

jβ
− (1+ o(1))∆ 6

∆f∑
j=1

⌊
eα

jβ

⌋
= n 6

∆∑
j=1

eα

jβ
+ o(1) ·∆ .

We also need similar bounds for the sizes of intervals. It turns out that we can
restrict ourselves to intervals [a(n),b(n)] in (α,β)-PLG where b(n) 6 beαc, instead of

b(n) 6 ∆f =

⌊
eα·

f(n)
f(n)−1

⌋
in the functional case.

Lemma 6.13.
Suppose f(n) = ω(α). Let a,b : N→N such that for all n, 1 6 a(n) < b(n) 6 beαc. Then

b(n)∑
j=a(n)

eα

jβ
− (b(n) − a(n) + 1) 6 |[a(n),b(n)]| =

b(n)∑
j=a(n)

⌊
eα

jβ

⌋
6

b(n)∑
j=a(n)

eα

jβ
.

The next lemma gives the desired bounds for the sizes of intervals in the functional
case βf = 1 − 1

f(n) . The upper and lower bounds are sums of terms eα
j instead of

eα

jβf
. Afterwards we will use this result to show that we can actually choose the same

parameters x∆,y∆, z∆ as in the case β = 1.

Lemma 6.14 (Convergence of Sizes of Intervals).
For each pair of functions a,b : N→N with 1 6 a(n) < b(n) 6 ∆f, we have

b(n)∑
j=a(n)

eα

j
−

n

log(n)
6 |[a(n),b(n)]| 6 (1+ ε(n)) ·

b(n)∑
j=a(n)

eα

j
, (6.8)

where ε(n) = n
1

f(n)−1 . Especially ε(n) = o(1) for f(n) = ω(log(α)), which implies

(1− o(1))

b(n)∑
j=a(n)

eα

j
6 |[a(n),b(n)]| 6 (1+ o(1))

b(n)∑
j=a(n)

eα

j
.

Proof. The second inequality in Equation 6.8 holds if for each j, 1

j
1− 1
f(n)

6 (1+ ε(n)) · 1j ,

i. e. j
1
f(n) 6 1+ ε(n) ⇔ j 6 (1+ ε(n))f(n) ⇐ ∆f 6 (1+ ε(n))f(n). This last inequality
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is equivalent to e
α

f(n)−1 6 1+ ε(n) and after taking the logarithm, we have α
f(n)−1 6

f(n) · ln(1+ ε(n)). Since f(n) = ω(α), we obtain ε(n) > e
α

f(n)−1 −1 = n
1−o(1)
f(n)−1 , hence

for ε(n) = n
1

f(n)−1 we obtain

b(n)∑
j=a(n)

eα

j
− (b(n) − a(n) + 1) 6 |[a(n),b(n)]| 6 (1+ ε(n)) ·

b(n)∑
j=a(n)

eα

j
. (6.9)

We have b(n) − a(n) + 1 6 ∆f = (1+ o(1)) ·∆. Now we consider inequality 6.9 for the
special case when a(n) = 1 and b(n) = ∆f. We obtain:

(1+ o(1))

∆∑
j=1

eα

j
− (1+ o(1))∆ =

∆f∑
j=1

eα

j
− (1+ o(1))∆ 6 n = |[1,∆f]| ,

which implies n = (1+ o(1)) ·α eα.

Now let x = 1

e(1−c ′)α
,y = 1

e(1−c)α
, z = 1

e(1−c ′′)α
with 0 6 c ′ < c < c ′′ = c + 1

α .
Combining Lemma 6.14 with the proof of Lemma 6.8, we obtain

(c− c ′)α eα−
n

log(n)
6 |[x∆,y∆]| 6

(
(c− c ′)α eα+

1

x∆
−
1

y∆

)
· (1+ o(1))

and

eα−
n

log(n)
−

eα

(y∆)βf
6 |(y∆, z∆]| 6

(
eα+

1

z∆
−
1

y∆

)
· (1+ o(1)) ,

which yields |[x∆,y∆]| = (1± o(1))(c− c ′)α eα and |(y∆, z∆]| = o(α eα). Now choose
c = 1− 1

α and c ′ = d+1
∆ . Then

∆∑
j=y∆+1

⌊
eα

jβf

⌋
(j− 2) >

∆∑
j=y∆

eα

jβf−1
−
1− y

2
∆2 − 2(1+ o(1)) eα

> eα
∫ z∆
y∆
χ
1/f(n)dχ−

(
1+ o(1) −

1

e

)
∆2

2

= eα
f(n)

f(n) + 1

(
∆
1+ 1
f(n) − (y∆)

1+ 1
f(n)

)
−

(
1+ o(1) −

1

e

)
∆2

2

=
1− e−1−o(1)

2
eα
(
2+ 1
f(n)

)
= ω

(∣∣Gα,βf

∣∣) .
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Hence we can map G ′d to the interval [x∆,y∆] and choose Γ ⊆ (y∆, z∆] (note that we
choose ∆ = beαc instead of ∆f =

⌊
eα/βf

⌋
) and obtain the same hardness result as in

the case β 6 1 when β is a constant. We have the following result.

Theorem 6.9.
Suppose Min-VCd is hard to approximate within ratio 1+ εd. Let f : N → N be a function
such that f(n) = ω(log(n)). Then for βf = 1− 1

f(n) , the problem Min-VCα,βf is hard to
approximate within approximation ratio 1+ εd

1+2d .

Lastly, we consider the second functional case when β = 1+ 1
f(n) , that is, the model

parameter β converges to 1 from above.

6.9 THE FUNCT IONAL CASE β = 1 + 1
f (n )

It turns out that even in the functional case β = 1+ 1
f(n) , we obtain the same hardness

result as in the case β 6 1. This is especially interesting since we have the phase
transition at β = 1, which is also reflected by our hardness results for β being a
constant. Again, our result is based on an estimate of the sizes of intervals [a(n),b(n)].

Lemma 6.15.
Let βf = 1+ 1

f(n) with f(n) = ω(α), and let ∆f =
⌊

eα/βf
⌋

. Then for each j ∈ {1, . . . ,∆f},

1

jβf
∈
[
1

j
− τ(n) ,

1

j

]
,

where τ(n) = 2
1/f(n)−1

21+1/f(n)
. Especially, τ(n)→ 0 as n→∞.

Proof. We have 1
jβf
∈
[
1
j − t(j),

1
j

]
for t(j) = 1

j −
1
jβ

= jβf−1−1

jβf
. It suffices to show

that t(j) 6 τ(n) = 2
1/f(n)−1

21+1/f(n)
. Since for fixed n, the derivative of the function x 7→

x
1/f(n)−1

x1+1/f(n)
= x−1 − x

−1− 1
f(n) is equal to −x−2 +

(
1+ 1

f(n)

)
x
−2− 1

f(n) 6 0, the inequality
t(j) 6 t(2) = τ(n) holds, and thus the lemma follows.
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If we combine this result with our techniques from previous sections, the resulting
estimate for sizes of intervals is rather weak. For the number of nodes of the α,β-PLG,
we obtain

α eα

1+ 1
f(n)

−
e
(
1+

f(n)
f(n)+1

)
α+O(1)

21+1/f(n)
6 |[1,∆f]| 6 (1± o(1))α eα .

We will make use of the following estimate of the local rounding errors.

Lemma 6.16.
For every j ∈ {1, . . . ,∆f}, we have that 1

j
1+ 1
f(n)

∈
[

1

n
1
f(n)

· 1j , 1j

]
.

Proof. We just observe that 1

j
1+ 1
f(n)

= 1
j ·

1

j1/f(n)
, and the function x 7→ 1

x1/f(n)
is mono-

tone decreasing.

This gives the following estimate of sizes of intervals.

Lemma 6.17 (Sizes of Intervals).
In the case βf = 1 + 1

f(n) , for any 1 6 a < b 6 ∆f =
⌊

eα/βf
⌋

, the size of the interval
[a,b] = { v ∈ V(Gα,β) |a 6 d(v) 6 b } is in[

1

n
1
f(n)

· eα ·(ln(b) − ln(a)) − (b− a+ 1) , eα ·(ln(b) − ln(a)) + eα ·
(
1

a
−
1

b

)]
.

Since for f(n) = ω(ln(n)), we have the convergence n
1
f(n) → 1 as n → ∞) and

obtain the following estimates.

Corollary.
For f(n) = ω(ln(n)), the number of nodes of an (α,βf)-PLG Gα,βf satisfies |[1,∆f]| =
(1± o(1)) · α eα. Furthermore, for the parameters x = 1

e(1−c ′)α
,y = 1

e(1−c)α
, z = 1

e(1−c ′′)α

with 0 6 c ′ < c < c ′′ = c + 1
α , we have that |[x∆f,y∆f]| = (1 ± o(1)) · |[1,∆f]| and

|(y∆f, z∆f]| = (1± o(1) eα = o(|Gα,βf |).

Now we show that if we choose the parameters x,y, z such that z = 1, then the
amount of node-degree in the interval (y∆f, z∆f] suffices to connect all the nodes
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from G̃d as well as the degree 1 nodes. Namely, choose c ′′ = 1, c = 1− 1
α . Then we

obtain

∆f∑
j=y∆f+1

⌊
eα

jβf

⌋
(j− 2) >

∆f∑
j=y∆f

eα

j
· 1

n1/f(n)
· (j− 2) − (j− 2)

=
eα

n1/f(n)
· (1− y)∆f −

2 eα

n1/f(n)
·

∆f∑
j=y∆f+1

1

j

= (1− o(1)) ·
(
1−

1

e

)
· eα

(
1+

f(n)
1+f(n)

)

= ω
(∣∣Gα,βf

∣∣) .

Finally we obtain the following result.

Theorem 6.10.
Suppose Min-VCd is hard to approximate within ratio 1+ εd. Let f : N → N be a function
such that f(n) = ω(log(n)). Then for βf = 1+ 1

f(n) , the problem Min-VCα,βf is hard to
approximate within approximation ratio 1+ εd

1+2d .

We conclude the present chapter with a short summary of the results, an outlook
on further research and some bibliographic notes.

6.10 SUMMARY AND FURTHER RESEARCH

In this chapter, we have given explicit lower bounds for the approximability of Min-
VC in connected (α,β)-PLG. It remains an important open question to close the gaps
between inapproximability and approximability bounds of the underlying problems.
We also believe that our results for the two functional cases β = 1± 1

f(n) can be ex-
tended to hold for any βf = β± 1

f(n) with 0 < β < βmax ≈ 2.48. It would also be
interesting to study the approximation complexity of various network design prob-
lems on power law graphs, e. g. the Steiner Tree Problem and related problems.
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7.1 INTRODUCT ION

In the research of epidemic spreading of diseases across networks of travel routes and
networks of social contacts [PV01; Eub+04a] or the broadcasting of information inside
large wireless networks [SSŽ02], a natural question arises about how to efficiently
place key nodes at key positions inside a network such as to reach and to effect all or
most of the remaining nodes. Here, the feasibility of a solution also heavily depends
on the number of key nodes needed in order to cover the whole network and thus this
number is often tried to be minimized. Questions like these quickly resemble or are
equivalent to classical NP-hard optimization problems, i. e. minimum covering and
domination problems in the context of graph theory.

In this chapter we will focus on the Minimum Dominating Set (Min-DS) problem
on graphs. On a graph G = (V ,E) a dominating set is a subset of vertices D ⊆ V such
that every vertex in V \D is connected to D by some edge in E. The Min-DS problem
then asks for a dominating set of minimum cardinality |D|. There exist approximation
algorithms that achieve an approximation ratio of lnn, with n being the size of the
graph. This is essentially tight due to the lower bound of lnn by Feige [Fei98] under
the assumption that NP * DTIME(nO(log logn)).

For the case of power law graphs, the situation is not perfectly clear. One the one
hand there is a result by Eubank et al. [Eub+04b] that gives a (1+o(1))-approximation
(a PTAS) for the special case of the so called near-optimal Min-DS problem on a class
of bipartite random power law graphs. On the other hand, there is a result of Shen
et al. [She+12] that rules out the possibility of a PTAS for general (α,β)-power law
graphs ((α,β)-PLG), by proving a constant factor approximation lower bound for the
unconstrained Min-DS problem. In particular, this leaves a large gap between the
known upper bounds of lnn for arbitrary graphs and the known lower bounds on
power law graphs.

In this chapter, we will close this gap (up to a constant factor) by showing that there
exists noΩ(lnn)-approximation for Min-DS on (α,β)-PLG, for 0 < β 6 2. Our results
are based on a reduction from the Set Cover instances used in the reduction of Feige
[Fei98] and also hold for the case of connected (α,β)-PLG.
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7.2 PREV IOUS RESULTS

Let us first give a formal definition of the Minimum Dominating Set problem.

Problem 6 (Minimum Dominating Set (Min-DS)).

input : A graph G = (V ,E).

output : A dominating set of G, that is, a set D ⊆ V such that for all v ∈ V either
v ∈ D or D∩N(v) 6= ∅.

objective : Minimize |D|.

Now we are going to summarize known results in approximability and hardness of
approximation of Min-DS.

approximability and hardness in general graphs . The Minimum Dom-
inating Set problem is known to be L-reducible to the Set Cover problem and vice
versa (see e. g. [Kan92]), which means that any result on the approximability of Set

Cover provides the same result also for Min-DS. The Set Cover problem is one of
Karp’s 21 NP-complete problems and was shown to be NP-complete in [Kar72]. The
formal definition of the problem is as follows:

Problem 7 (Set Cover (SC)).

input : A pair (U,S), with a set of ground elements or universeU = {x1, x2, . . . , xn}
and a family of subsets S = {S1,S2, . . . ,Sm} ⊆ U, where

⋃
i={1,...,m} Si = U.

output : A set cover C ⊆ {1, 2, . . . ,m} such that
⋃
j∈C Sj = U.

objective : Minimize |C|.

In case of the weighted Set Cover problem, there is a weight function w : S → R+ and
each subset Si ∈ S is associated with a weight w(Si). We want to find a minimum cost
set cover C ⊆ {1, 2, . . . ,m}, where the cost is defined as the total weight

∑
j∈C w(Sj).

The Set Cover problem was one of the first problems for which approximation
algorithm were designed and the corresponding approximation ratios were analyzed.
In 1974 Johnson [Joh74] showed that the greedy algorithm, that repeatedly selects
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the subset Si ∈ S which covers the larges number of remaining uncovered elements,
achieves an approximation ratio of lnn. The same result was shown by Lovász [Lov75]
using a linear programming relaxation of the problem and this approach was ex-
tended to the weighted case by Chvátal [Chv79]. A (tight) analysis of the lower order
terms of the approximation ratio was provided by Srinivasan [Sri95] for the linear
programming formulation, and by Slavík [Sla97] for the greedy algorithm.

The first inapproximability result for Set Cover was provided by Lund and Yan-
nakakis and followed from work on probabilistically checkable proof systems (PCP) and
the notion of multi-prover interactive proofs (see Section 4.1 and Section 4.2). In 1994,
Lund and Yannakakis [LY94] showed that the Set Cover problem cannot be approx-
imated within an approximation ratio of 1/4 logn unless NP ⊂ DTIME(nO(poly logn)),
and that there exists no probabilistic algorithm with approximation ratio better than
1/2 logn, unless NP ⊂ ZTIME(nO(poly logn)). The proof is based on a reduction from
efficient two-prover proof systems for the class NP.

In order to obtain hardness results under weaker complexity assumptions, subse-
quent work was aimed at optimizing the proof systems used in the reduction. The
focus was on reducing the error of the proof system, that is, reducing the proba-
bility of accepting false proofs while maintaining small values for the number of
provers, the cardinality of the alphabet and the number of random bits used by the
verifier. In 1995, Raz [Raz95; Raz98] provided an improved analysis of two-prover
proof systems which implied that Set Cover cannot be approximated within log n/4
unless NP ⊂ DTIME(nO(log logn)), and that there exists no probabilistic algorithm with
approximation ratio better than log n/2, unless NP ⊂ ZTIME(nO(log logn)). Later in
the same year, Naor, Schulman, and Srinivasan [NSS95] provided an efficient de-
randomization of the probabilistic reduction and closed the gap between the results
under the assumptions NP ⊂ DTIME(nO(log logn)) and NP ⊂ ZTIME(nO(log logn)). They
showed that the Set Cover problem cannot be approximated within log n/2 unless
NP ⊂ DTIME(nO(log logn)).

The celebrated result of Feige [Fei98] finally closed the gap between the known
lnn approximation ratio and the above hardness result of log n/2. Feige showed that
the upper bound is tight up to lower-order terms under the assumption that NP *
DTIME(nO(log logn)), which means that the known upper approximation bounds are
essentially best possible. The result is based on a new reduction from multi-prover
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proof systems, which were designed specifically for this purpose. In Section 7.4.3 we
will take a close look at the reduction due to Feige and extract certain bounds on
the parameters of the construction that enable us to achieve first logarithmic lower
bounds for the Min-DS problem on power law graphs.

Note that it is not known if under the assumption P 6= NP hardness of approxi-
mating Set Cover within a ratio of lnn can be shown. However, under this weaker
assumption, Raz and Safra [RS97] ruled out the existence of an approximation algo-
rithm with an approximation ratio better than c · logn for some constant c > 0.

approximability and hardness in power law graphs . In connection with
the optimal placement of sensors for disease detection inside social networks, Eu-
bank et al. [Eub+04a] studied near-optimal dominating set problems—namely (1− ε)-
Minimum Dominating Set, where ε > 0 is a given constant denoting the fraction
of nodes that can be neglected for the construction of an optimal dominating set—in
bipartite random power law graphs. On the positive side, Eubank et al. [Eub+04a]
found that for a class of bipartite random power law graphs the problem (1− ε)-Min-
DS admits a PTAS, i. e. they presented a simple greedy algorithm which achieves a
(1+ o(1))-approximation on these instances.

On the contrary, Ferrante, Pandurangan, and Park [FPP08] and Shen, Nguyen, and
Thai [SNT10; She+12] studied the approximation hardness of Minimum Vertex Cover

(Min-VC), Maximum Independent Set (Max-IS) and Min-DS in combinatorial power
law graphs in the G(α,β) model and showed NP-hardness and APX-hardness for sim-
ple (α,β)-PLG and (α,β)-PLG multigraphs, respectively. In Table 7.1 we list some of
these results, especially the previously best lower bound for Min-DS in (α,β)-PLG
and (α,β)-PLG multigraphs for β > 0 and β > 1, respectively.

7.3 OVERV I EW AND RESULTS

In this chapter we study the approximation complexity of Min-DS in (α,β)-PLG. We
give first logarithmic lower bounds for the approximability of this problem for the
parameter range 0 < β 6 2. Our results are based on a reduction from the Set Cover

problem combined with the logarithmic lower bound for Set Cover given by Feige
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Table 7.1: Previously known lower bounds for the inapproximability of Max-IS and Min-DS
in PLG under condition P 6= NP, Min-VC under UGC in disconnected power law
graphs with β > 1 due to Shen et al. [She+12].

Problem (α,β)-PLG multigraphs (α,β)-PLG

Max-IS 1+ 1
140(2ζ(β)3β−1)

− ε 1+ 1
1120ζ(β)3β

− ε

Min-DS 1+ 1
390(2ζ(β)3β−1)

1+ 1
3120ζ(β)3β

Min-VC 1+
2
(
1−(2+oc(1))

log logc
logc

)
(
ζ(β)cβ+c

1
β

)
(c−1)

1+
2−(2+oc(1))

log logc
logc

2ζ(β)cβ(c+1)

[Fei98]. The previously known results were the constant factor lower bounds given by
Shen et al. [She+12], which were based on reductions from the bounded degree Min-
DS. It was also shown in [She+12] that, for β > 2, Min-DS in (α,β)-PLG is in APX.
We improve on this result by giving new upper bounds on the approximation ratio
of an algorithm based on the greedy algorithm for Min-DS. In [She+12], membership
of Min-DS in (α,β)-PLG in APX was shown by constructing a lower bound for the
optimum and an upper bound for the greedy solution separately. We obtain our new
results by relating the cost and structure of an optimum solution to those of a greedy-
based solution. This sophisticated analysis yields improved upper bounds for almost
the whole range β > 2. Finally, we take a very close look at the phase transition at
β = 2. Similar as in Section 6.8 and Section 6.9 we extend the power law model and
consider the case when βf = 2+ 1

f(n) is a function of the graph size n which converges
to 2 from above. We obtain the following surprising result: For every function f(n)
with f(n) = ω(log(n)), i. e. when βf converges fast enough, Min-DS in (α,βf)-PLG
still provides a logarithmic approximation lower bound, and for every function f(n)
with f(n) = o(log(n)), the problem is in APX. The summary of main results of this
chapter is given in Table 7.2.

organization of the chapter . The chapter is organized as follows. In Sec-
tion 7.4 we give an outline of our methods and the embedding constructions on which
our reductions are based. In Section 7.4.3 we take a close look at U. Feige’s original re-
duction from 5Occ-Max-E3Sat (5 Occurrence Maximum E3-Sat) to the Set Cover

problem [Fei98] and the standard reduction from the Set Cover to the Minimum
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Table 7.2: Summary of the main results of this chapter: Approximation lower bounds and
approximation upper bounds for Min-DS on (α,β)-PLG for certain ranges of the
parameter β. The parameter d is chosen minimally such as to satisfy the constraint
given in Theorem 7.5.

Approximation Lower Bound

0 < β < 1 Ω
(

ln(n) − ln
(

1
1−β

))
β = 1 Ω (ln(n))

1 < β < 2 Ω (ln(n) − ln(ζ(β)))
β = 2 Ω (ln(n) − ln(ζ(β)))

β = 2+ 1
f(n) , f(n) = ω(log(n)) Ω (ln(n) − ln(ζ(β)))

Approximation Upper Bound

β = 2+ 1
f(n) , f(n) = o(log(n)) APX

β > 2
ζ(β)−1

ζ(β)−
∑d−1
j=1 j

−β

β > 2.729 ζ(β)−
ζ(β−1)
2

1−
ζ(β−1)
2

Dominating Set problem. As a result of this section, we obtain sufficient information
about the degree distribution of the resulting Min-DS instances GU,S . In Section 7.4.4
we describe our lower bound techniques together with the scaling method for the
realization of a power law degree sequence.

Starting with Section 7.5, we present new lower bounds on the approximability of
Min-DS in (α,β)-PLG for the different ranges of the parameter β. The case 0 < β < 1
is treated in Section 7.5, based on a precise rounding error analysis for the terms that
determine the lower approximation bound. A similar analysis is used for the case
β = 1 in Section 7.6. The Section 7.7 deals with the case 1 < β < 2. We describe
how to rescale the degree distribution of instances GU,S in order to embed them into
an (α,β)-PLG Gα,β ∈ Gα,β. We also apply our scaling technique for the case β = 2 in
Section 7.8 together with a slightly different analysis.

In Section 7.9 we present new upper bounds for the case of β > 2 and provide a
detailed comparison of the previous and new upper bounds in terms of the parameter
β. In Section 7.10 we consider the functional case when the parameter βf = 2+ 1

f(n)

is a function of the graph size n which converges to 2 from above. Figure 7.1 shows
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the global organization of the chapter, pointing to the different ranges and the phase
transitions dependent on the model parameter β.

0 1 2

Section 7.5 Section 7.7

Section 7.6 Section 7.8

Section 7.9

Figure 7.1: Chapter guide with respect to the phase transitions and different ranges of the
model parameter β.

7.4 OUTL INE OF THE METHOD

Let us give an outline of the methods and constructions used in this chapter.

intervals and volumes . In the following we will introduce notations of inter-
vals of nodes inside an power law graph Gα,β ∈ Gα,β and of the volume of such an
interval. From [ACL00; ACL01] we have that in an (α,β)-PLG Gα,β = (Vα,β,Eα,β)

with maximum degree ∆ =
⌊

eα/β
⌋

the number of nodes |Vα,β| = n =
∑∆
i=1

⌊
eα
iβ

⌋
and

the number of edges |Eα,β| = m = 1
2

∑∆
i=1

⌊
eα
iβ

⌋
satisfy

n ≈


ζ(β) eα if β > 1

α eα if β = 1

e
α
β

1−β if 0 < β < 1

and m ≈


1
2ζ(β− 1) eα if β > 2

1
4α eα if β = 2

1
2

e
2α
β

2−β if 0 < β < 2

An interval of nodes in Gα,β is a set [a,b] = { v ∈ V | a 6 d(v) 6 b }, where 1 6 a 6
b 6 ∆ =

⌊
eα/β

⌋
. Furthermore, let |[a,b]| be the number of nodes inside the interval

[a,b]. For the volume of an interval [a,b] we define vol([a,b]) =
∑b
j=a

⌊
eα
jβ

⌋
· j, i. e. the

sum of node degrees of nodes inside of the interval.
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7.4.1 Lower Bound Technique

In order to obtain logarithmic approximation lower bounds for the Minimum Domi-
nating Set problem in (α,β)-power law graphs, we construct reductions from Min-DS
in graphs, which is basically as hard to approximate as the Set Cover problem. It is
well known [PM81; BM84; Kan92] that Set Cover instances (U,S) with universe U
and set system S can be translated into instances GU,S of Min-DS in graphs, where
VU,S = I ∪U, {i, j} ∈ EU,S ,∀i, j ∈ I and {i,u} ∈ EU,S ,∀i ∈ I,u ∈ Si. Consider a feasible
solution C = {Si | i ∈ D},D ⊆ I, for the Set Cover problem, then D is a dominating
set for GU,S with |D| = |C|. This can be seen as follows: for each u ∈ U there is an
i ∈ I such that u ∈ Si and since {i,u} ∈ EU,S , u is dominated by i. Furthermore, since
D is nonempty, each i ∈ I is adjacent to some vertex j ∈ D in GU,S . Conversely, let D
be a dominating set for GU,S with some u ∈ D ∩U, i. e. not all of the dominating set
vertices in D correspond to sets in S. It is possible to construct a dominating set D ′

such that |D ′| 6 |D| and D ′ ⊆ I by replacing each u ∈ D ∩U by a neighbor i ∈ I of u
in GU,S . Now C = {Si | i ∈ D ′} is a feasible solution of the Set Cover problem with
|C| = |D ′| 6 |D|.

Our reductions map those graphs GU,S , which are stemming from Set Cover in-
stances (U,S) to (α,β)-power law graphs Gα,β. In this construction, nodes of the
graph GU,S are connected to a set Γ of degree 2 nodes, and those are again connected
to the residual graph Gα,β \ (GU,S ∪ Γ). The set Γ enforces any reasonable dominating
set in the fully composed graph Gα,β to contain a dominating set of the graph GU,S .

Another important property of our constructions is that the residual graph Gα,β \

(GU,S ∪ Γ) contains a sufficiently small set X of vertices which dominate every node in
Gα,β \GU,S . It is precisely this property which enables us to obtain logarithmic lower
bounds for the approximability of Min-DS in (α,β)-PLG, instead of the previously
known constant lower bounds due to Shen et al. [She+12].

The next elementary step in this construction is the implementation of the power law
degree distribution. Therefore, we need to know the degree distribution in the graph
GU,S . In Section 7.4.3 we will take a close look at Feige’s original construction and
obtain upper and lower bounds for the degrees of nodes in the graph GU,S , where
(U,S) is a Set Cover instance in the construction. We apply our construction only to
those Set Cover instances (U,S) = FSC(ϕ), where ϕ is a 5Occ-Max-E3Sat instance
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and FSC is the reduction from [Fei98]. We show that the Min-DS instances GU,S have
the following property: There exist constants 0 < a < b < 1 such that for every Set

Cover instance (U,S) with (U,S) = FSC(ϕ), the node degrees of all vertices in GU,S

are contained in the interval
[
Na,Nb

]
, where N is the number of vertices of GU,S .

7.4.2 Embedding Technique

We construct a map which embeds every graph GU,S—where (U,S) is a Set Cover in-
stance from Feige’s hardness result—into an (α,β)-PLG Gα,β. Let GU,S = (VU,S ,EU,S)

with |VU,S | = N. The graphs GU,S have the following property: There exist constants
0 < a < b < 1 such that for all v ∈ VU,S , Na 6 dU,S(v) 6 Nb. The power law
graph Gα,β = (Vα,β,Eα,β) has the vertex set Vα,β = VU,S ∪ X ∪ Γ ∪ V1 ∪W, where
X ⊆ [x∆,y∆] = { v ∈ Vα,β | x∆ 6 dα,β(v) 6 y∆ } is the set of nodes chosen to be able
to dominate all the nodes in Gα,β \GU,S , V1 is the set of degree 1 nodes and W the
set of remaining nodes of the targeted degree sequence. Gα,β is constructed such that
each node in VU,S has precisely one neighbor in Γ ⊆W, and every u ∈ Γ has precisely
one neighbor in VU,S . This is motivated by the connectivity properties of random
graphs Gα,β ∈ Gα,β in the G(α,β) model, i. e. the expected number of edges between
subgraphs induced by two vertex subsets, as discussed in Section 6.4.2 in Chapter 6.
Furthermore, each node w ∈ W is adjacent to precisely one node in X and every de-
gree 1 node is adjacent to a node in X, whereas each v ∈ X has at least one degree 1
neighbor. Thus, the set X is chosen to be able to dominate every vertex in W and all
the degree 1 nodes in V1, i. e. all the vertices of the residual graph Gα,β \GU,S . The
construction and partition of the vertex set described above is shown in Figure 7.2.

In order to be able to monitor the current status of implementing the power law
degree distribution inside the graph Gα,β, we keep track of the residual degrees dr(·) of
nodes in X∪W ∪V1. We are now ready to formulate the algorithm for the embedding
construction of our reduction (see algorithm Construct_PLG on page 142).

The last two steps of algorithm Construct_PLG are calling the procedure Fill_Wheel

on the sets which may still have residual degrees after the completion of the previous
steps. The procedure Fill_Wheel gets as an input a set of nodes V with residual
degrees dr(v) > 0,∀v ∈ V and generates the missing edges degree wise in a cyclic
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Γ ⊆ V2

GU,S

W

X

Figure 7.2: The main construction for the embedding of a Min-DS (Set Cover) instance GU,S
into a (α,β)-PLG. In the resulting graph the nodes ∈ X are dominating the
sets W ∪ V1, separating the dominating set in GU,S from the dominating set in
Gα,β \GU,S .

order. Let vj,1, . . . , vj,nj be the nodes with target degree dα,β(vj,l) = j in the set V , then,
in every stage of the construction, for every j ∈ {1, . . . ,∆},dr(vj,1) 6 . . . 6 dr(vj,nj)

and dr(vj,nj) − dr(vj,1) 6 1 (for a more detailed description see also Section 6.7 and
algorithm Fill_Wheel on page 105).

Figure 7.3 shows an example of how intervals of uniform residual degrees are filled
by the procedure Fill_Wheel and how the problems of uneven interval-lengths and
uneven residual degrees are resolved at the borders of the intervals.

degree i

degree i+ 1

degree i
+ 2

Wheel

Figure 7.3: Procedure Fill_Wheel realizes the residual degrees on the wheel nodes in W and
X.
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Algorithm 7.1 : Construct_PLG
Input : GU,S = (VU,S ,EU,S) with |VU,S | = N.
Output : Power law graph Gα,β = (Vα,β,Eα,β) with Vα,β = VU,S ∪X∪W ∪ V1 ∪ V2,

|Vα,β| = n and EU,S ⊆ Eα,β.

choose α, x,y such that |[x∆,y∆]| > n and |[Na,Nb]| > N;
set X := [x∆,y∆], W := [3,∆] \ (VU,S ∪X) and Γ := ∅;
set Vα,β := VU,S ∪X∪W ∪ V1 ∪ V2;
for i = 1, . . . ,N(= |VU,S |) do

map si ∈ VU,S with ti ∈ V2 \ Γ and set Eα,β := Eα,β ∪ {si, ti}, Γ := Γ ∪ {ti};
choose v ∈ X with maximum dr(v) > 0 and set Eα,β := Eα,β ∪ {ti, v};
update dr(ti) and dr(v);

foreach u ∈ V1 ∪ V2,dr(u) > 0 do
choose v ∈ X with maximum dr(v) > 0 and set Eα,β := Eα,β ∪ {u, v};
update dr(t) and dr(v);

foreach w ∈W do
choose v ∈ X with maximum dr(v) > 0 and set Eα,β := Eα,β ∪ {w, v};
update dr(w) and dr(v);

Fill_Wheel(W); /* realizes residual degrees on W and X */
Fill_Wheel(X);
return Gα,β = (Vα,β,Eα,β);

Since X ⊆ [x∆,y∆] and x∆ and y∆ are chosen such that the number of edges
vol([x∆,y∆]) =

∑∆
j=x∆

⌊
eα
jβ

⌋
· j suffices to connect X to all nodes in Vα,β \ X, we may

have residual degrees for some v ∈ X and call Fill_Wheel(X). Furthermore, we call
Fill_Wheel(W) since we have that all w ∈ W are connected only via a single edge to
the set X and w ∈ W were chosen to have targeted degrees in the interval [3,∆], i. e.
dα,β(w) ∈ [3,∆] and thus dr(w) ∈ [2,∆− 1].

Depending on the parameter β, we will show how to choose x and y in such a way
that the set X becomes sufficiently small to be included in any feasible dominating set
and such that the size of X is bounded from above by a lower bound of the size of
any dominating set in GU,S . Hence, any dominating set D ′ in Gα,β can be efficiently
transformed into a dominating set D of size |D| 6 |D ′| such that D = DU,S ∪X, where
DU,S ⊆ VU,S is a dominating set of GU,S .
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7.4.3 Feige’s Lower Bound for Set Cover

The starting point for establishing our new lower bounds is the logarithmic lower
bound of Feige [Fei98] for the approximability of the Set Cover problem. For each
Set Cover instance (U,S), we embed the associated Min-DS instance GU,S into an
(α,β)-PLG Gα,β. In order to implement the power law degree distribution, we need
to know the degree distribution of the graph GU,S . Therefore we briefly review Feige’s
construction.

Feige constructs a k-prover proof system for the problem 5Occ-Max-E3Sat. Con-
sider a 3CNF formula ϕ with n variables such that each variable occurs at most 5
times in ϕ. One can assume that either the formula is satisfiable, or no assignment
satisfies more than an ε-fraction of the clauses simultaneously. The k-prover proof
system works as follows: It chooses k codewords of length l = Θ(log logn), weight
l/2 and pairwise Hamming distance > l/3. The verifier picks l clauses C1, . . . ,Cl from ϕ

independently uniformly at random. Independently, from each such clause Ci it picks
one variable xi of Ci uniformly at random. For each 1 6 i 6 k, the verifier sends to
the prover i those l/2 clauses Cj for which the associated bit of prover i’s codeword is 1
and those l/2 variables xj for which the associated bit of prover i’s codeword is 0. The
provers return their answers, and based on this the verifier determines its output. The
construction of the associated Set Cover instances makes use of some combinatorial
building blocks called partition systems.

According to Feige [Fei98], a partition system B(m,L,k,d) consists of a ground set
B of cardinality |B| = m and L partitions p1, . . . ,pL of B into k disjoint subsets pj,h ⊂ B.
The defining property of these partition systems is that each cover of B by subsets pj,h
which uses sets from pairwise different partitions must consist of at least d subsets.
Feige gives a randomized construction of such partition systems with L ≈ (logm)c, k
being any number smaller than ln(m/3) · ln ln(m) and d = (1− f(k)) · k · ln(m), with
some function f(k) with f(k) −→ 0 as k −→∞. That construction yields partitions for
which w.h.p. all the sets have the same size.

We show that the same result is obtained by making use of random permutations.
But now in this case, for each partition pj, the sets pj,h always have the same size
m/k (provided k < m). Namely, choose a random permutation πj ∈R Sm and let
pj,h = {πj((h− 1)m/k+ 1), . . . ,πj(k · m/k)}. Suppose now, we cover B with d subsets
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pj1,h1 , . . . ,pjd,hd from pairwise different partitions. Then for a given point v ∈ B, the
probability that v is covered by at least one of these subsets is

P(point v ∈ B is covered by at least one of these d sets)

= 1−

d∏
i=1

P
(
v is not in position 1, . . . ,m/k in permutation πj

)
= 1−

((m−1
m/k

)
·
(
m
k

)
! ·
(
m− m

k

)
!

m!

)d

= 1−

(
(m− 1)! ·

(
m− m

k

)
!(

m− 1− m
k

)
! ·m!

)d

= 1−

(
m ·
(
1− 1

k

)
m

)d
= 1−

(
1−

1

k

)d
.

This is precisely the property of the randomized construction which has been used
in the analysis of the construction. So, from now on, we assume that all sets of a
partition pj have the same size m/k.

resulting set cover instances ([Fei98]). For a given 5Occ-Max-E3Sat for-
mula ϕ with n variables and together with the property that either ϕ is satisfiable or
no assignment satisfies more than an ε fraction of the clauses, an Set Cover instance
(U,S) is constructed as follows:

• R is the set of random strings used by the verifier in the k-prover proof system.
The number of random strings is |R| = R = (5n)l.

• |U| = mR with m = (5n)
2l
ε , hence |U| = (5n)l(1+

2
ε).

• For each r ∈ R, Br(m,L,k,d) is a partition system with L = 2l.

• Q = nl/2 ·
(
5n
3

)l/2
is the number of different queries the verifier may ask to a

prover.

• S contains for every triplet (q,a, i) a set Sq,a,i, where q is a query, i is (the
index of) a prover and a is the prover’s answer. The set Sq,a,i is defined as
Sq,a,i =

⋃
r : (q,i)∈r B(r,ar, i).
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Hence, the number of sets in S is Q · k and each set is of cardinality
√
R · m/k. We

have to give an estimate for the number of sets in which a point, i. e. an element of U,
occurs. For each prover i, for each query q, each point in Br with |Br| = m occurs in 2l

sets Sq,a,i. Hence, the total degree of points, which equals the number of occurrences
of this point in sets of S, is 2l ·Q.

from set cover to dominating set. Let (U,S) denote a Set Cover instance
with U = {u1, . . . ,u|U|} and S =

{
S1, . . . ,S|S |

}
. Let GU,S be the undirected graph with

set of vertices VU,S = U ∪ S and set of edges EU,S = { {Si,uj} | uj ∈ Si } ∪ { {Sj,Sl} |

Sj ∩ Sl 6= ∅ }. We observe that each set cover C ⊆ S is a dominating set in GU,S . On the
other hand, let D ⊆ VU,S be a dominating set in GU,S with D = DU ∪DS ,DU = D∩U
and DS = D ∩ S. If we replace each ui ∈ DU by an arbitrary set Sj with ui ∈ Sj, the
resulting set D ′ is a dominating set with DS ⊆ D ′ ⊆ S and |D ′| 6 |D|. Hence, in this
sense, we can say that dominating sets in GU,S correspond to set covers C for U,S.

In the construction, the parameter l satisfies l = Θ(log logn). If N0 = |U|+ |S | is
the number of nodes of GU,S , then—up to logarithmic factors, N0 ≈ nl +nl(1+2/ε), the
degree of element nodes u ∈ U is d(u) ≈ nl, each set contains nl(1/2+2/ε) elements
and there are ≈ nl sets. The degree of set nodes in GU,S is bounded by the sum
of the cardinality of that set and the number of sets in the instance (U,S), which is
|S | ≈ nl(1/2+2/ε). Hence we obtain the following result that is used in the sequel.

Lemma 7.1.
Let FSC denote the reduction from 5Occ-Max-E3Sat to the Set Cover problem, and for a
given Set Cover instance (U,S) = f(ϕ) let GU,S be the associated Min-DS instance as
described above. If N0 is the number of nodes of GU,S , then for every node v in GU,S , the node
degree of v in GU,S satisfies Na0 6 dU,S(v) 6 Nb0 , where 0 < a < b < 1 and

b = (1+ o(1)) ·
1
2 +

2
ε

1+ 2
ε

= (1+ o(1)) · ε+ 4
2ε+ 4

.

7.4.4 Reduction Construction and Scaling

With these notions and results at hand, we will now describe our reduction to achieve
new logarithmic lower bounds for approximability of the Minimum Dominating Set
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problem in (α,β)-PLG. We distinguish several cases depending on the range of the
parameter β. For the cases 0 < β < 1, 1 < β < 2 and β = 2 our construction involves
rescaling of the instances GU,S , which has the effect of shifting the degree interval[
Na,Nb

]
towards the left end of the full interval [1,∆]. It turns out that for the case

β = 1 we can omit the scaling and directly implement the power law distribution.

bounds on optima in GU ,S . Let (U , S ) be an instance of the Set Cover prob-
lem which is an image (U , S ) = FSC(ϕ , ε) of some 5Occ-Max-E3Sat instance ϕ
under Feige’s reduction FSC with parameter ε > 0. Suppose the number of nodes of
GU ,S is N0. Let OPT(GU ,S ) denote a minimum cardinality dominating set of GU ,S .
Then

|OPT(GU ,S ) | 6 k · N
ε
2+ε
0

or

|OPT(GU ,S ) | > (1 − ε) · k · N
ε
2+ε
0 · ε

2 + ε
· 2−

ε
2+ε · (ln(N0) − O(1)) ,

where k is the number of provers in Feige’s k-prover proof system. Recall that the
3CNF formula ϕ with FSC(ϕ) = (U , S ) is either satisfiable, or no assignment satisfies
more than an ε fraction of its clauses. Furthermore, as a result of Lemma 7.1, the node
degrees in GU ,S are contained in the interval

[
Na
0 ,Nb

0

]
, with 0 < a < b < 1 being

constant.

scaling . In the three cases 0 < β < 1, 1 < β < 2 and β = 2, it turns out that
we have to rescale the degrees of nodes in GU ,S in order shift the interval associated
to GU ,S towards the left end of the full interval. This enables us to get a feasible
lower bound for the size of a dominating set in GU ,S and, at the same time, prevents
overlapping of the intervals [Na ,Nb ] and [x∆ , y∆]. For this purpose, we replace
GU ,S by the graph GdU ,S which consists of Nd−1

0 disjoint copies of the graph GU ,S (cf.
Figure 7.4).

Here, d is a parameter of our construction. The graph GdU,S has the following
properties:

• The number of nodes is N := Nd0 .
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Na Nb

GU,S

N
a/dN

b/d

0

GU,S

GU,S GU,S. . .

Nd−10 copies

⇒

Figure 7.4: Scaling of the graph GU,S by replacing the graph GU,S with the graph GdU,S , which
consists of Nd−10 disjoint copies of the graph GU,S .

• The node degrees are contained in the interval
[
Na/d,Nb/d

]
.

• Let OPT(GdU,S) denote an optimum dominating set of GU,S . Then

|OPT(GdU,S)| 6 N
d−1
d · k ·N

1
d

ε
2+ε = k ·N

1
d(d−1+

ε
2+ε)

or

|OPT(GdU,S)| > (1− ε) · k ·N
1
d

ε
2+ε · ε

2+ ε
· 2−

ε
2+ε

(
ln
(
N
1
d

)
−O(1)

)
N
d−1
d

= k · ε(1− ε)
2+ ε

· 2−
ε
2+ε ·N

1
d(d−1+

ε
2+ε)

(
ln
(
N
1
d

)
−O(1)

)
.

construction of Gα,β . Let us now describe how the fully composed graph
Gα,β ∈ Gα,β is constructed. We choose α and the parameters d, x,y such as to sat-
isfy the following three constraints:

1.
∣∣∣[Na/d,Nb/d

]∣∣∣ > N.

2. |[x∆,y∆]| = o
(
N
d−1
d

)
,

where N
d−1
d is a lower bound for the size of an optimum dominating set in GU,S .
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3.
y∆∑
j=x∆

⌊
eα

jβ

⌋
· j = vol(|x∆,y∆|) > ζ(β) · eα,

i. e. the total volume of the set [x∆,y∆] is large enough such that [x∆,y∆] can
dominate the wheel W as well as all the degree 2 nodes, which are matched to
nodes in the graph GU,S .

Constraint 1 is implied by the following stronger constraint (1’):

(1’)
eα

N
bβ
d

> N.

In all of the following cases, we work with constraint (1’) instead of 1 and obtain the
following bound for the parameter α:

eα > N1+
bβ
d .

In order to minimize the value of the parameter α, and thereby the overall graph size,
we choose eα = N1+

bβ
d .

7.5 THE CASE 0 < β < 1

Let us now consider the case 0 < β < 1. Here, we will make use of the scaling
technique described above. Furthermore, in this case we have to choose parameters
x,y of the interval X = [x∆,y∆] carefully in order to obtain a logarithmic lower bound.
The next lemma provides an estimate for the size of the interval |[x∆,y∆]| and the
volume vol([x∆,y∆]).

Lemma 7.2.
Let Gα,β ∈ Gα,β be an (α,β)-PLG with 0 < β < 1. Then, for all 0 < x < y 6 1, the size and
the volume of the interval [x∆,y∆] satisfies

|[x∆,y∆]| ∈
[
∆

1−β

(
1− x1−β

)
−

(
1

xβ
− 1

)
− (2− x)∆,

∆

1−β

(
1− x1−β

)]
and

vol([x∆,y∆]) > ∆2
(
1− x2−β

2−β
−
1

2
+
x2

2

)
−∆

(
1− x1−β −

1

2
+
x

2

)
.
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Proof. Regarding the requirement of constraint 2, we have

|[x∆,y∆]| ∈

 y∆∑
j=x∆

eα

jβ
− (y− x+ 1)∆,

y∆∑
j=x∆

eα

jβ

 ,

where

y∆∑
j=x∆

eα

jβ
∈

[
eα
∫y∆
x∆

1

jβ
dj− eα

(
1

(x∆)β
−

1

(y∆)β

)
, eα
∫y∆
x∆

1

jβ
dj

]

=

[
eα
[
j1−β

1−β

]y∆
x∆

−
eα

∆β

(
1

xβ
−
1

yβ

)
, eα

[
j1−β

1−β

]y∆
x∆

]

=

[
eα∆1−β

1−β

(
y1−β − x1−β

)
−

(
1

xβ
−
1

yβ

)
,

eα∆1−β

1−β

(
y1−β − x1−β

)]
=

[
∆

1−β

(
y1−β − x1−β

)
−

(
1

xβ
−
1

yβ

)
,
∆

1−β

(
y1−β − x1−β

)]
.

In order to fulfill the volume requirement of constraint 3, we also take into account
the rounding error resulting when we replace the sum

∑y∆
x∆

⌊
eα
jβ−1

⌋
by
∑y∆
x∆

eα
jβ−1

. The
sum of node degrees of nodes in [x∆,y∆] is

vol([x∆,y∆]) =
y∆∑
x∆

⌊
eα

jβ

⌋
· j ∈

[
y∆∑
x∆

eα

jβ−1
−

(
y∆(y∆− 1)

2
−
x∆(x∆− 1)

2

)
︸ ︷︷ ︸

rounding error

,
y∆∑
x∆

eα

jβ−1

]
,

where

y∆∑
x∆

eα

jβ−1
∈

[
eα
∫y∆
x∆
j1−β dj− eα

(
(y∆)1−β − (x∆)1−β

)
, eα
∫y∆
x∆
j1−β dj

]

=

[
eα
[
j2−β

2−β

]y∆
x∆

−∆
(
y1−β − x1−β

)
, eα

[
j2−β

2−β

]y∆
x∆

]

=

[
∆2

2−β

(
y2−β − x2−β

)
−∆

(
y1−β − x1−β

)
,
∆2

2−β

(
y2−β − x2−β

)]
.
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We choose y = 1 and obtain

|[x∆,∆]| ∈
[
∆

1−β

(
1− x1−β

)
−

(
1

xβ
− 1

)
− (2− x)∆,

∆

1−β

(
1− x1−β

)]
.

The volume of that interval is then estimated as

vol([x∆,∆]) >
∆2

2−β

(
1− x2−β

)
−∆

(
1− x1−β

)
−

(
∆(∆+ 1)

2
−
x2∆2 − x∆

2

)
=

∆2

2−β

(
1− x2−β

)
−
∆2

2
+
x2

2
∆2 −∆

(
1− x1−β −

1

2
+
x

2

)
= ∆2

(
1− x2−β

2−β
−
1

2
+
x2

2

)
−∆

(
1− x1−β −

1

2
+
x

2

)
. (7.1)

which finishes the proof.

We use the scaling technique with scaling parameter d, hence, we want to choose
α such that eα > N

d+bβ
d . Since N

d−1
d is a lower bound for the optimum in GdU,S , we

have N
d−1
d = e

d−1
d+bβ ·α = e(1−δ)α, where we can choose 1− δ arbitrary close to 1. The

size of the interval [x∆,∆] is of order ∆(1− x1−β), hence we want to choose x such
that ∆(1− x1−β) = eα/β · ep with α

β · p < (1− δ)α, i. e. p < (1− δ)β. So suppose we
choose x such that p = (1 − δ ′)β, where 1 − δ ′ can be chosen arbitrary close to 1.
Furthermore, the interval [x∆,∆] needs to provide sufficient volume to dominate the
rest of the graph, i. e. (using our volume estimate of Equation 7.1) we require that

∆2
(

1

2−β
−
1

2
− x2−β

(
1

2−β
−
xβ

2

))
> ∆ .

This yields the requirement 1
2−β − 1

2 − x
2−β

(
1
2−β − xβ

2

)
> 1

∆ , which is implied by

1−
1

∆
(

1
2−β − 1

2

) > x2 .
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Combining this with the upper bound requirement for the size of the interval, we
obtain

(
1−

1−β

eα
(
1
β−(1−δ ′)

)
) 1
1−β

6 x <

1− 1(
1
2−β − 1

2

)
· eα/β

1/2

. (7.2)

We observe that 1
1−β > 1 >

1
2 for β ∈ (0, 1), and furthermore α

β − (1− δ ′)α < α
β . Hence

we can choose x such that Equation 7.2 holds. Thus for this choice of x we have
|[x∆,∆]| = o

(
N
d−1
d

)
and vol([x∆,∆]) > |Gα,β|, fulfilling the constraints 2 and 3. We

have OPT(Gα,β) = (1+ o(1))OPT(GdU,S), and furthermore N =
(
|Gα,β| · (1−β)

) dβ
d+bβ .

Altogether we obtain the following result.

Theorem 7.1.
For 0 < β < 1, the Minimum Dominating Set problem on α,β-power law graphs is hard
to approximate within

(1− ε)ε

2+ ε
·
(
1

2

) ε
2+ε

·
(

β

d+ bβ
·
(

ln(|Gα,β|) − ln
(

1

1−β

))
−O(1)

)
.

7.6 THE CASE β = 1

In the case β = 1, we can omit the scaling and directly embed the graph GU,S into a
PLG Gα,β. We proof the following lemma.

Lemma 7.3.
Let Gα,β ∈ Gα,β be an (α,β)-PLG with β = 1. Then, for all 0 < x < y 6 1, the size and the
volume of the interval [x∆,y∆] satisfies

|[x∆,y∆]| ∈
[

eα ln
(
1

x

)
−

(
1

x
− 1

)
, eα ln

(
1

x

)]
and

vol([x∆,y∆]) ∈
[
∆2
(
1

2
− x+

x2

2

)
−
1− x

2
∆, (1− x)∆2

]
.
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Proof. For a given x ∈ [0, 1], the size of the interval [x∆,∆] = { v ∈ V(Gα,β) | x∆ 6

dα,β(v) 6 ∆ } satisfies

|[x∆,∆]| ∈

[
eα∑
x eα

eα

j
− (1− x) eα,

eα∑
x eα

eα

j

]

⊆
[

eα (ln(eα) − ln(x eα)) − eα(
1

x
− 1) · 1

eα
, eα · ln

(
1

x

)]
=

[
eα ln

(
1

x

)
−

(
1

x
− 1

)
, eα ln

(
1

x

)]
.

The volume
∑∆
x∆

⌊
eα
j

⌋
· j of that interval is

vol([x∆,∆]) ∈

[
∆∑
x∆

eα−j,
∆∑
x∆

eα
]

⊆
[

eα(1− x)∆−

(
∆(∆+ 1)

2
−
x∆(x∆+ 1)

2

)
, eα(1− x)∆

]
=

[
∆2
(
1

2
− x+

x2

2

)
−
1− x

2
∆, (1− x)∆2

]
.

Hence for every x < 1 being bounded away from 1, the volume of the interval [x∆,∆]
is ω(|Gα,1|). Recall that in order to achieve N0 6

∣∣[Na0 ,Nb0
]∣∣, it suffices to choose α

sufficiently large such that N0 6 eα

N
bβ
0

= eα
Nb0

. Hence suppose we have N1+b0 = eα. This

implies eα
Nb0

= eα·
1
1+b . Thus it suffices to choose x such that ln

(
1
x

)
= o

(
eα·

b
1+b

)
.

The size of the PLG is |Gα,β| = α eα, and from N1+b0 = eα, we obtain N0 = e
α
1+b =(

|Gα,β|

ln(Gα,β)

) 1
1+b . Hence, we obtain the following lower bound for the case β = 1.

Theorem 7.2.
For β = 1, the Minimum Dominating Set problem on α,β-power law graphs is hard to
approximate within

(1− ε)ε

2+ ε
·
(
1

2

) ε
2+ε

·
(
(1− o(1)) ln(|Gα,β|)

1+ b
−O(1)

)
.
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7.7 THE CASE 1 < β < 2

We consider the case 1 < β < 2 and the following lemma.

Lemma 7.4.
Let Gα,β ∈ Gα,β be an (α,β)-PLG with 1 < β < 2. Then, for all 0 < x < y 6 1, the size and
the volume of the interval [x∆,y∆] satisfies

|[x∆,y∆]| ∈
[
∆(y− x)

(
1

yβ
− 1

)
, ∆
y− x

xβ

]
and

vol([x∆,y∆]) >
β− 2x2−β + (2−β)x2

2 · (2−β)
− o(1) .

Proof. For 1 < β < 2, we have for the size of the interval [x∆,y∆] that

|[x∆,y∆]| ∈
[

eα

∆β
(y− x)∆

1

yβ
− (y− x)∆,

eα

∆β
(y− x)∆

1

xβ

]
=

[
∆(y− x)

(
1

yβ
− 1

)
, ∆
y− x

xβ

]
.

The volume vol(|x∆,y∆|) =
∑y∆
j=x∆

⌊
eα
jβ

⌋
· j can be estimated as follows:

vol(|x∆,y∆|) > eα
y∆∑
j=x∆

j1−β − rβ

= (1− o(1)) eα ·
∫y∆
x∆
j1−β dj− rβ

= (1− o(1)) eα ·
[
j2−β

2−β

]y∆
x∆

− rβ

= (1− o(1)) eα · eα
2−β
β ·y

2−β − x2−β

2−β
− rβ

= (1− o(1))∆2 · y
2−β − x2−β

2−β
− rβ ,
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where rβ =
∆2(y2)−x2)

2 +
∆(y+x)
2 is an upper bound for the rounding error. Hence,

we obtain vol([x∆,y∆]) = ω(|Gα,β|) provided we choose x and y in such a way that
y2−β−x2−β

2−β − rβ > 0. Let us choose y = 1. Then we have

y2−β − x2−β

2−β
− rβ =

1− x2−β

2−β
−
1− x2

2
− o(1) =

β− 2x2−β + (2−β)x2

2 · (2−β)
− o(1) .

Now, we want to choose x ∈ (0, 1) such that β − 2x2−β + (2 − β)x2 > 0. This
inequality holds for x < (β/2)

1
2−β , since β/2 < 1.

For our choice of α, we have that N
d−1
d = eα·

d−1
d+bβ , and hence constraint 2 holds if

the following constraint is satisfied:

∆ · y− x
xβ

=
y− x

xβ
· e
α
β = o

(
eα·

d−1
d+bβ

)
.

Hence, for our choice of y = 1 and x < (β/2)
1
2−β , this last constraint is satisfied if

α
β < α ·

d−1
d+bβ , i. e. d > (b+1)β

β−1 .

resulting lower bound. Since the parameter α is chosen such that eα = N1+
bβ
d ,

we have
∣∣Gα,β

∣∣ = ζ(β) ·N1+bβd and thus obtain the following bounds on the size of an

optimum dominating set for Gα,β. Let |Gα,β|
ζ(β) = φ, then

|OPT(Gα,β)| 6
(
φ

d
d+bβ

)d−1
d
k
(
φ

d
d+bβ

) 1
d ·

ε
2+ε

= k

(
φ
d−1+ ε

2+ε
d+bβ

)
or

|OPT(Gα,β)| > k

(
φ
d−1+ ε

2+ε
d+bβ

)
(1− ε)ε

2+ ε

(
1

2

) ε
2+ε (

ln
(
φ

d
d+bβ

1
d

)
−O(1)

)
.

Altogether, we obtain the following theorem.
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Theorem 7.3.
For 1 < β < 2, the Minimum Dominating Set problem on α,β-power law graphs is hard
to approximate within

(1− ε) · ε
2+ ε

·
(
1

2

) ε
2+ε

·
ln
(∣∣Gα,β

∣∣)− ln(ζ(β))
d+ bβ

.

7.8 THE CASE β = 2

For the case β = 2, we state a slightly different version of Lemma 7.4.

Lemma 7.5.
Let Gα,β ∈ Gα,β be an (α,β)-PLG with β = 2. Then, for all 0 < x < y 6 1, the size and the
volume of the interval [x∆,y∆] satisfies

|[x∆,y∆]| ∈
[√

eα · y− x
yβ

,
√

eα · y− x
xβ

]
and

vol([x∆,y∆]) = (1− o(1)) eα ln
(
1

x

)
.

Proof. We give an estimate of the size of the interval [x∆,y∆] and of the volume of
that interval. We have that

|[x∆,y∆]| ∈
[
∆
y− x

yβ
,∆
y− x

xβ

]
=

[√
eα · y− x

yβ
,
√

eα · y− x
xβ

]
.

The volume of the interval [x∆,y∆] is

vol([x∆,y∆]) = (1− o(1))

y∆∑
j=x∆

eα

jβ
· j

= (1− o(1)) eα (ln(y∆) − ln(x∆))

= (1− o(1)) eα
(

ln
(
1

x

)
− ln

(
1

y

))
.
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We choose y = 1 and obtain

vol([x∆,y∆]) = (1− o(1))

y∆∑
j=x∆

eα

jβ
· j = (1− o(1)) eα

(
ln
(
1

x

)
− 0

)
. (7.3)

In Equation 7.3, in order to satisfy constraint 3, we want to choose x such that
ln
(
1
x

)
> ζ(β), i. e. x 6 1

eζ(β)
. Then the volume of the interval [x∆,∆] suffices to

dominate the rest of the graph, where the size of the interval [x∆,∆] satisfies |[x∆,∆]| ∈[
∆1−x1 ,∆1−x

xβ

]
. Now, for the setting of the interval [Na/d,Nb/d], we do not want to

occupy space that is needed for our embedding and the choice of the interval [x∆,∆].
Therefore, the two intervals [x∆,∆] and [Na/d,Nb/d] need to be node disjoint and hence
we want to choose the scaling parameter d such that Nb/d < x∆.

For x = 1
eζ(β)

, we have x∆ = eα/β−ζ(β). Furthermore, the sizeN of the graph GdU,S sat-

isfies N = |GdU,S | 6 eα
d

d+bβ . This yields the following bound for the scaling parameter
d:

N
b/d < x∆ ⇐⇒ eαb·

1
d+bβ < eα/β−ζ(β) ⇐⇒ d >

α · b
α/β− ζ(β)

− bβ .

resulting lower bound. Constraint (1’) yields the following bound for the
size of the power law graph: eα > N1+

bβ
d . Thus we choose eα = N1+

bβ
d which

implies
∣∣Gα,β

∣∣ = ζ(β) ·N1+
bβ
d . Thus, we obtain the following bounds for the size of

an optimum dominating set for Gα,β. Let |Gα,β|
ζ(β) = φ, then

|OPT(Gα,β)| 6
(
φ

d
d+bβ

)d−1
d
k
(
φ

d
d+bβ

) 1
d

ε
2+ε

= k

(
φ
d−1+ ε

2+ε
d+bβ

)
or

|OPT(Gα,β)| > k

(
φ
d−1+ ε

2+ε
d+bβ

)
(1− ε)ε

2+ ε

(
1

2

) ε
2+ε (

ln
(
φ

d
d+bβ

1
d

)
−O(1)

)
.

Hence, we obtain the following result.
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Theorem 7.4.
For β = 2, the Minimum Dominating Set problem on α,β-power law graphs is hard to
approximate within

(1− ε)ε

2+ ε
·
(
1

2

) ε
2+ε

·
ln
(∣∣Gα,β

∣∣)− ln(ζ(β))
d+ bβ

.

We are now going to discuss the case β > 2 and present improved approximation
upper bounds for this case.

7.9 NEW UPPER BOUNDS FOR β > 2

For β > 2, the Min-DS problem on (α,β)-PLG is in APX. This was already observed
by Shen et al. [She+12]. They showed that in that case, there exists an efficient approx-
imation algorithm with approximation ratio (ζ(β) − 1/2)/(ζ(β) −

∑t0
j=1

1/jβ) for some
t0 = O(1). In this section we will give an explicit upper bound, based on our tech-
niques of estimating sizes and volumes of intervals in (α,β)-PLG.

Lemma 7.6.
If vol([x∆,∆]) =

∑∆
j=x∆

⌊
eα
jβ

⌋
· j < beαc, then |[x∆,∆]| is a lower bound on the size of a

dominating set in Gα,β.

Proof. Let D be a dominating set in Gα,β, and let D1 = D ∩ [x∆,∆] and D2 = D \D1.
Suppose |D2| < |[x∆,∆] \D1|. Since ∀v ∈ D2,u ∈ [x∆,∆] \D1 we have dα,β(v) <

dα,β(u), this implies vol(D2) < vol([x∆,∆] \D1) and thus vol(D) < vol([x∆,∆]) < beαc,
a contradiction.

The lower bound on the size of a dominating set in Gα,β given in the following
Lemma 7.7 was also used in a somewhat different formulation by Shen et al. [She+12].

Lemma 7.7.
If vol([x∆,∆]) =

∑∆
j=x∆

⌊
eα
jβ

⌋
· j <

∑x∆−1
j=1

⌊
eα
jβ

⌋
, then |[x∆,∆]| is a lower bound on the size of

a dominating set in Gα,β.

Proof. Suppose that vol([x∆,∆]) < |[1, x∆− 1]| and that D,D1,D2 are the same as in
the proof of Lemma 7.6. Again we obtain vol(D2) < vol([x∆,∆] \D1), which implies
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vol(D) < vol([x∆,∆]) < |[1, x∆− 1]. Thus the volume of D is not sufficient to dominate
the subset [1, x∆− 1], a contradiction.

In order to demonstrate the power and the limitations of this lower bound, we want
to determine the value min{ x | vol([x∆,∆]) < beαc }.

In the case β > 2, we consider the following estimates of sizes of intervals and the
node degree, i. e. the volume, that is available in such intervals.

y∆∑
x∆

1

jβ−1
∈

[∫y∆
x∆

1

jβ−1
dj−

(
1

(x∆)β−1
−

1

(y∆)β−1

)
,
∫y∆
x∆

1

jβ−1
dj

]

=

[[
j2−β

2−β

]y∆
x∆

−

(
1

(x∆)β−1
−

1

(y∆)β−1

)
,
[
j2−β

2−β

]y∆
x∆

]

=

[
y2−β − x2−β

2−β
∆2−β −

((
x1−β − y1−β

)
∆1−β

)
,
y2−β − x2−β

2−β
∆2−β

]
.

For the size of the interval |[x∆,y∆]| =
∑y∆
x∆

eα
jβ

we get

|[x∆,y∆]| ∈ eα
[
∆1−β

1−β

(
y1−β − x1−β

)
−∆−β

(
1

xβ
−
1

yβ

)
,
∆1−β

1−β

(
y1−β − x1−β

)]
= eα · eα

1−β
β

[
x1−β − y1−β

β− 1
−
1

∆

(
1

xβ
−
1

yβ

)
,
x1−β − y1−β

β− 1

]
=

[
∆
x1−β − y1−β

β− 1
−

(
1

xβ
−
1

yβ

)
,∆
x1−β − y1−β

β− 1

]
.

We consider the case x = 2/∆,y = 1. We obtain |[2,∆]| = ζ(β) eα− eα = (ζ(β) − 1) eα

and

∆∑
j=2

eα

jβ
· j ∈

[
eα
((

∆
2

)β−2
− 1

β− 2
∆2−β −

((
∆

2

)β−1
− 1

)
∆1−β

)
, eα

(
∆
2

)β−2
− 1

β− 2
∆2−β

]
.

For the interval [d,∆] we obtain

∆∑
j=d

⌊
eα

jβ

⌋
j 6 ∆2

(
∆
d

)β−2
− 1

β− 2
=

1

β− 2

(
e
2α
β eα

β−2
β

dβ−2
− e

2α
β

)
= (1− o(1))

eα

dβ−2(β− 2)
.
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We obtain the following estimate for the size of the interval [1,d− 1]:

|[1,d− 1]| =
d∑
j=1

⌊
eα

jβ

⌋
>

d∑
j=1

eα

jβ
− (d− 1)

> eα ·

(∫d−1
1

j−β dj−
(
1−

1

(d− 1)β

))
− (d− 1)

= eα ·
(
(d− 1)1−β − 1

1−β
−

(
1−

1

(d− 1)β

))
− (d− 1)

= eα ·

(
1− 1

(d−1)β−1

β− 1
− 1+

1

(d− 1)β

)
− (d− 1) .

Hence, we want to determine the smallest d > 2 such that

1

dβ−2 · (β− 2)
<

(d− 1)β − (d− 1) − (β− 1)(d− 1)β +β− 1

(β− 1)(d− 1)β
.

We observe that 1+ 1
2β
> 1

3β−2(β−2)
for β > β2 ≈ 2.48, 1+ 1

2β
+ 1
3β
> 1

4β−2(β−2)
for

β > β3 ≈ 2.44 and 1+ 1
2β

+ 1
3β

+ 1
4β
> 1

5β−2(β−2)
for β > β4 ≈ 2.40. This gives the

following upper bounds for the approximability of Min-DS on (α,β)-PLG for β > 2.

Lemma 7.8.
For k ∈ {2, 3, 4} let βk = min

{
β
∣∣∣∑k

j=1
1
jβ
> 1

kβ−2(β−2)

}
. Then we have β2 ≈ 2.48, β3 ≈

2.44 and β3 ≈ 2.40. For k ∈ {2, 3, 4}, for β > βk, the Minimum Dominating Set problem
in (α,β)-PLG is hard to approximate within approximation ratio

(
ζ(β) − 1

2

)
· (β− 2) · (k+

1)β−2.

7.9.1 Improved Analysis

We will now significantly improve the analysis based on the lower bounds from
Lemma 7.6. Instead of just giving upper and lower bounds on the size of an opti-
mum dominating set and a greedy solution separately, we will explicitly relate upper
and lower bound to each other.
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Let Gα,β be an (α,β)-PLG with β > 2. Let W be the set of neighbors of degree 1
nodes of degree at least 2 in Gα,β and let M be the set of degree 1 nodes in Gα,β which
are adjacent to another degree 1 node. Let R = V \ (W ∪ { v ∈ V | dα,β(v) = 1 }).

Then there exists some c = cβ > 0 not depending on α such that |W| > c · eα. This
implies |R| 6 (ζ(β) − c− 1) eα.

Lemma 7.9.
If Gα,β is a connected (α,β)-PLG with β > 2 and W and R are defined as above, then there
exists an optimum dominating set OPT in Gα,β with OPT = OPTR ∪W ∪M ′, where OPTR
is an optimum dominating set for the induced subgraph Gα,β[R] on R and M ′ ⊂ M is of
cardinality |M ′| = |M|

2 .

The maximum degree in Gα,β[R] is at most ∆. We consider the dominating set D =

W ∪DGr ∪M ′ where DGr is a dominating set for Gα,β[R] constructed by the greedy
algorithm and M ′ ⊂M is a subset of size |M|

2 dominating M. The approximation ratio
is at most

ln(∆+ 1) · |OPTR|+ |W|+
|M|
2

|OPTR|+ |W|+
|M|
2

6
α
β · |OPTR|+ |W|+

|M|
2

|OPTR|+ |W|+
|M|
2

.

We can further improve this bound as follows. Since R = V \ (W ∪V1) and |OPTR| 6 |R|,
the approximation ratio is at most

max

r · |OPTR|+ |W|+
|M|
2

|OPTR|+ |W|+
|M|
2

∣∣∣∣∣∣ |OPTR| 6 |R|,

r = min
{
α
β , |R|

|OPTR|

}
 .

case 1 :
(
r = α

β

)
This means that αβ 6

|R|
|OPTR|

, i. e. |OPTR| 6
β
α · |R|. The upper bound

for the approximation ratio is monotone increasing in |OPTR|, hence it is bounded by

α
β ·

β
α · |R|+ |W|+

|M|
2

β
α · |R|+ |W|+

|M|
2

=
|R|+ |W|+

|M|
2

β
α · |R|+ |W|+

|M|
2

.
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case 2 :
(
r =

|R|
|OPTR|

< α
β

)
Here, we have |OPTR| >

β·|R|
α and obtain

r · |OPTR|+ |W|+
|M|
2

|OPTR|+ |W|+
|M|
2

=
|R|+ |W|+

|M|
2

|OPTR|+ |W|+
|M|
2

6
|R|+ |W|+

|M|
2

β
α · |R|+ |W|+

|M|
2

.

Now we need to construct an upper bound for the term |R|+|W|+
|M|
2

β
α ·|R|+|W|+

|M|
2

. Recall that the

volume of a set of nodes U ⊆ V is defined as vol(U) =
∑
u∈U dα,β(u). We consider the

following two cases.

case i : (ζ(β− 1) − 1 < 1) In this case, the volume of nodes of degree at least 2
does not suffice to dominate all the degree 1 nodes. Hence in this case, M 6= ∅. We
obtain the following lower bound for the cardinality of M.

|M| > eα−(ζ(β− 1) − 1) eα = (2− ζ(β− 1)) eα .

Nevertheless, we will use the upper bound |R| 6 (ζ(β) − 1) eα. Since the term

|R|+ |W|+
|M|
2

β
α · |R|+ |W|+

|M|
2

is monotone increasing in |R|, we obtain an approximation ratio of

ρ(β) =
|R|+ |W|+

|M|
2

β
α · |R|+ |W|+

|M|
2

6
(ζ(β) − 1) eα+ (2−ζ(β−1)) eα

2
β
α · (ζ(β) − 1) eα+ (2−ζ(β−1)) eα

2

=
ζ(β) −

ζ(β−1)
2

1−
ζ(β−1)
2

.

In Figure 7.5 we plot the above approximation ratio in comparison to the ratio
ζ(β)−1/2
ζ(β)−1 of Shen et al. [She+12] for values of the parameter β > 2.75.
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0
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ρ(β)
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β

β = 2.869
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our result
Shen et. al.

Figure 7.5: Plot of the approximation ratios ζ(β)−
ζ(β−1)
2

1−
ζ(β−1)
2

(our result) in comparison to ζ(β)− 1
2

ζ(β)−1

(Shen et al. [She+12]) for β > 2.75.

case ii : (ζ(β − 1) − 1 > 1) In this case, the volume of the nodes of degree at
least 2 suffices to dominate the degree 1 nodes. Now, we construct a lower bound for
|W | as follows:

|W | > min{ |[d , ∆] | | vol([d , ∆]) > eα }

= min


ζ(β) − d−1∑

j=1

1

jβ

 eα

∣∣∣∣∣∣
ζ(β − 1) −

d−1∑
j=1

1

jβ−1

 eα > eα

 .

Hence, in this case, the approximation ratio is bounded by

ρ ′(β) =
ζ(β) − 1

β
α · |[1,d− 1]|+ |[d,∆]|

=
ζ(β) − 1

ζ(β) −
∑d−1
j=1

1
jβ

,

where d = min{d ′ | vol([d ′,∆]) > eα }.
Altogether, we obtain the following theorem.
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Theorem 7.5.
For 2 < β 6 2.729, the Min-DS problem on (α,β)-PLG is approximable within approxima-
tion ratio ρ ′(β) and for β > 2.729 within approximation ratio ρ(β), where d = min{d ′ |
vol([d ′,∆]) > eα } and

ρ ′(β) =
ζ(β) − 1

ζ(β) −
∑d−1
j=1

1
jβ

and ρ(β) =
ζ(β) −

ζ(β−1)
2

1−
ζ(β−1)
2

In Figure 7.6 we present a plot of the above approximation ratios ρ(β) and ρ ′(β) in
the valid ranges for certain choices of the parameter d.

0

10

20

ρ(β)

2, 4 2, 5 2, 6 2, 7
β

2.729

our result
Shen et. al.

Figure 7.6: Comparison of our approximation ratio to the previous approximation ratio of
Shen et al. [She+12]

In what follows, we are going to analyze the functional dependencies of the param-
eter β at the phase transition point β = 2.
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7.10 THE FUNCT IONAL CASE β f = 2 + 1
f (n )

We consider now the case when the parameter β is a function of the size n of the power
law graph, converging to 2 from above. In the preceding sections we have shown that
for β 6 2, there is a logarithmic lower bound for the approximability of the Minimum

Dominating Set problem in (α,β)-PLG. On the other hand, for β > 2 the problem is
in APX (cf. Shen et al. [She+12] and the previous Section 7.9). Thus we may now have
a closer look at this phase transition at β = 2. Similar as in the previous Chapter 6,
we consider the case when the value of the parameter β is a function of the size n of
the power law graph such that this function converges to 2 from above. Surprisingly
we will obtain a very tight phase transition of the computational complexity of the
problem, depending on the convergence rate of the function. Let us first give a precise
description of the model.

Definition 7.1 ((α,βf)-PLG for βf = 2+ 1/f(n)).
Let f : N → N be a monotone increasing unbounded function. For βf = 2+ 1

f(n) ,
an (α,βf)-PLG is an undirected multigraph Gα,βf with n nodes and maximum
degree ∆f =

⌊
eα/βf

⌋
such that for j = 1, . . . ,∆f =

⌊
eα/βf

⌋
, the number of nodes of

degree j in Gα,βf equals
⌊

eα

jβf

⌋
.

Especially, this means that the total number of nodes in Gα,βf is
∑∆f
j=1

⌊
eα

j2+1/f(n)

⌋
= n.

In order to study the computational complexity of the Minimum Dominating Set

problem in (α,βf)-power law graphs, we consider two cases for βf = 2 + f(n)−1,
namely, f(n) = ω(log(n) and f(n) = o(log(n)). We begin with the case f(n) =

ω(log(n).

7.10.1 The Case f(n) = ω(log(n))

For the case f(n) = ω(log(n)), we prove the following theorem regarding the inap-
proximability of Min-DS in (α,βf)-power law graphs.
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Theorem 7.6.
For βf = 2+ f(n)−1 with f(n) = ω(log(n)), the Min-DS problem on (α,βf)-PLG is hard
to approximate within

(1− ε) · ε
2+ ε

·
(
1

2

) ε
2+ε

·
ln
(∣∣Gα,β

∣∣)− ln(ζ(β))
d+ bβ

.

Proof. The proof of the above theorem is structured as follows. First, we will first
prove two auxiliary lemmas regarding the convergence of terms j−βf and the size and
volume of the interval X = [x∆f,y∆f]. Then we consider the requirements 1–3 and
show how to choose the parameters α,d, x,y in order to satisfy the requirements.

convergence of terms j−βf . We start by showing the convergence of the terms
j−βf , i. e. we prove the following auxiliary lemma.

Lemma 7.10 (Convergence).
Let βf = 1+ 1

f(n) with f(n) = ω(α), and let ∆f =
⌊

eα/βf
⌋

. Then for each j ∈ {1, . . . ,∆f},

j−βf ∈
[

1

n1/f(n)
· 1
j2

,
1

j2

]
.

Proof of Lemma 7.10. First we give an additive bound for the terms j−βf .

1

jβf
=

1

j
2+ 1
f(n)

∈
[
1

j2
− τ(n),

1

j2

]
,

where

τ(n) = max

{
1

j2
−

1

j
2− 1
f(n)

∣∣∣∣∣ j = 1, . . . ,∆f
}

= max

{
j
1
f(n) − 1

j
2+ 1
f(n)

∣∣∣∣∣ j = 1, . . . ,∆f
}

.
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We consider the function x 7→ h(x) := x
1
f(n)−1

x
2+ 1
f(n)

= x−2 − x
−2− 1

f(n) . Its derivative is

d
dxh(x) =

d
dx
x
1
f(n)−1

x
2+ 1
f(n)

= −2x−3 +
(
2+ 1

f(n)

)
x
−3− 1

f(n) . The condition h(x) < 0 is equiva-

lent to 1+ 1
2f(n) < x

1
f(n) . We observe that the derivative attains its maximum at x = 2.

We have

h ′(2) < 0 ⇐⇒
(
1+

1

2f(n)

)f(n)
< 2 .

We observe that limn→∞ (1+ 1
2f(n)

)f(n)
= e1/2 < 2. Thus we obtain

τ(n) =
21/f(n) − 1

22+1/f(n)
.

Now we give a multiplicative bound as follows. We have

1

jβf
=
1

j2
· j2−βf = 1

j2
· 1

j1/f(n)
∈
[

1

n1/f(n)
· 1
j2

,
1

j2

]
.

sizes of intervals . Let us now give sufficiently precise estimates of sizes and
volumes of intervals in the functional case. We prove the following lemma.

Lemma 7.11 (Size and Volume of the Intervals).
Let βf = 2+ 1

f(n) and X = [x∆f,y∆f]. We have the following bounds on the size and the
volume of the interval:

|[x∆f,y∆f]| ∈[
eα

f(n)+1
2f(n)+1 ·

(
1

x
−
1

y

)
− (y− x)∆f, eα

f(n)+1
2f(n)+1 ·

(
1

x
−
1

y

)
+ eα

1
2f(n)+1 ·

(
1

x2
−
1

y2

)]
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and

vol([x∆f,y∆f]) ∈[
eα(ln(y) − ln(x))

n
1
f(n)

−
(y2 − x2)∆2f + (x+ y)∆f

2
, eα(ln(y) − ln(x)) + eα

(
1

x∆f
−

1

y∆f

)]
.

Proof of Lemma 7.11. For β = 2, our technique based on integration yields the follow-
ing estimate of sizes of intervals:

y∆∑
j=x∆

1

j2
∈

[∫y∆
x∆
j−2 dj,

∫y∆
x∆
j−2 dj +

1

(x∆)2
−

1

(y∆)2

]

=

[
1

x∆
−
1

y∆
,
1

x∆
−
1

y∆
+

1

(x∆)2
−

1

(y∆)2

]
,

and with ∆ = eα/2, we get for the size of the interval |[x∆,y∆]| =
∑y∆
j=x∆

eα
j2

|[x∆,y∆]| ∈
[

eα/2 ·
(
1

x
−
1

y

)
, eα/2 ·

(
1

x
−
1

y

)
+
1

x2
−
1

y2

]
.

We combine this with the multiplicative bound and obtain the following estimate of
the size of intervals in the case βf = 2+ 1

f(n) .

|[x∆f,y∆f]| =
y∆f∑
j=x∆f

⌊
eα

jβf

⌋

∈

e
α
1+ 1
f(n)

2+ 1
f(n)

(
1

x
−
1

y

)
− (y− x)∆f, e

α
1+ 1
f(n)

2+ 1
f(n)

(
1

x
−
1

y

)
+ e

α

(
1− 1

1+ 1
2f(n)

)(
1

x2
−
1

y2

)
=

[
eα

f(n)+1
2f(n)+1

(
1

x
−
1

y

)
− (y− x)∆f, eα

f(n)+1
2f(n)+1

(
1

x
−
1

y

)
+ eα

1
2f(n)+1

(
1

x2
−
1

y2

)]
.
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Especially, we obtain the following estimate on the size of Gα,βf :

|[1,∆f]| ∈
[

eα− eα
f(n)+1
2f(n)+1 − eα

f(n)
2f(n)+1 +1, eα− eα

f(n)+1
2f(n)+1 + eα

1
2f(n)+1 eα

2f(n)
2f(n)+1 − eα

1
2f(n)+1

]
= [(1− o(1)) eα, (2− o(1)) eα] .

This estimate can be refined as follows:

∆f∑
j=1

⌊
eα

jβf

⌋
∈

 ∆f∑
j=1

eα

jβf
−∆f,

∆f∑
j=1

eα

jβf


⊆

 1

n1/f(n)
·
∆f∑
j=1

eα

j2
−∆f,

∆f∑
j=1

eα

j2


⊆ [(1− o(1)) · ζ(2) eα, ζ(2) eα] ,

where the last inclusion holds for f(n) = ω(log(α)). The volume of the interval
[x∆f,y∆f] can be estimated as follows:

vol([x∆f,y∆f]) =
y∆f∑
x∆f

⌊
eα

jβf

⌋
· j

∈

y∆f∑
x∆f

eα

jβf−1
− (x∆f + (x∆f + 1) + . . .+ y∆f) ,

y∆f∑
x∆f

eα

jβf−1


=

y∆f∑
x∆f

eα

jβf−1
−

(y2 − x2)∆2f + (x+ y)∆f
2

,
y∆f∑
x∆f

eα

jβf−1

 .

Since jβf−1 = j1+
1
f(n) , j = x∆f,y∆f, we use Lemma 6.17 in Section 6.9 from the previous

chapter and obtain that the volume vol([x∆f,y∆f]) is within the interval[
eα(ln(y) − ln(x))

n
1
f(n)

−
(y2 − x2)∆2f + (x+ y)∆f

2
, eα(ln(y) − ln(x)) + eα

(
1

x∆f
−

1

y∆f

)]
.
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We are now well prepared to compute the parameters α,d, x,y of our embedding
GU,S 7→ Gα,βf for the functional case βf = 2+ 1

f(n) , f(n) = ω(log(n)), and to finish up
the proof of Theorem 7.6. Recall that we want to choose the values of the parameters
α,d, x,y such as to meet the following requirements:

1.
∣∣∣[Na/d,Nb/d

]∣∣∣ > N.

2. |[x∆f,y∆f]| = o
(
N
d−1
d

)
, where N

d−1
d is a lower bound for the size of an optimal

dominating set in GU,S .

3.
∑y∆f
j=x∆f

⌊
eα

jβf

⌋
· j = vol ([x∆f,y∆f]) > ζ(2) · eα.

Considering constraint 1, we want to get an estimate for the value
∣∣∣[Na/d,Nb/d

]∣∣∣.
Note that eα·

1
2f(n)−1 ·∆2f = eα·

f(n)+1
2f(n)+1 ·∆f = eα. Thus our estimate of interval sizes yields

∣∣∣[Na
d ,N

b
d

]∣∣∣ ∈ [eα
(
1

N
a
d

−
1

N
b
d

)
−
(
N
b
d −N

a
d

)
, eα

(
1

N
a
d

−
1

N
b
d

)
+ eα

(
1

N
2a
d

−
1

N
2b
d

)]
In order to satisfy constraint 1, for a given d, we want to choose α such that

∣∣∣[Na/d]∣∣∣ > eα
(
1

N
a
d

−
1

N
b
d

)
−
(
N
b
d −N

a
d

)
⇐⇒ eα

(
N
b−a
d − 1

)
−
(
1−N

a−b
d

)
> N1+

b
d .

Hence we choose

eα ≈ N1+
b
d ⇐⇒ α ≈

(
1+

b

d

)
· ln(N) .

If we now choose d > (b+1)βf
βf−1

, then the constraint 2 holds, and for y = 1 and x > 0 such
that x∆f > N

b/d, constraint 3 holds as well. Thus, we obtain asymptotically the same
approximation hardness result as for the case β = 2 and the theorem follows.

Let us now consider the case when f(n) = o(log(n)).
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7.10.2 The Case f(n) = o(log(n)).

In the case f(n) = o(log(n)), the hardness of Min-DS shows a surprising phase tran-
sition and we yield the following theorem.

Theorem 7.7.
For βf = 2+ f(n)

−1 with f(n) = o(log(n)), the Min-DS problem on (α,βf)-PLG is in APX.

Proof. We consider the case when f(n) is a “slowly growing” function, namely f(n) =
o(log(n)). In that case, n1/f(n) −→∞ as n −→∞. For x∆f 6 j 6 y∆f, we obtain

1

j
1+ 1
f(n)

=
1

j
· 1

j
1
f(n)

6
1

j
· 1

(x∆f)
1
f(n)

=
1

j
· 1

x
1
f(n)

· 1

eα·
1

2f(n)+1

,

and therefore

vol([x∆f,∆f]) 6 eα · ln
(
1

x

)
· 1

x
1
f(n)

· 1

eα·
1

2f(n)+1

,

which yields the requirement ln(1/x)
x1/f(n)

> c · eα·
1

2f(n)+1 . This is equivalent to

ln ln
(
1

x

)
+

1

f(n)
· ln
(
1

x

)
> ln(c) +

α

2f(n) + 1
,

which means the following: In order to dominate the remaining vertices of the graph
with vertices from [x∆f,∆f], we have to choose ln (1/x) > α/2, i. e. 1/x > eα/2. This gives
the following lower bound for the size of that interval:

|[x∆f,∆f]| > eα
f(n)+1
2f(n)+1

(
e
α
2 −1

)
−

(
1−

1

e
α
2

)
e

α

2+ 1
f(n)

> (1− o(1)) e
α
2

(
1+

f(n)+1

f(n)+1/2

)
.

This lower bound for the size of [x∆f,∆f] converges to eα as n → ∞, which means
there exists some c > 0 such that |[x∆f,∆f]| > c · |Gα,βf | in order to be a dominating
set. Hence, each dominating set in Gα,βf is of cardinality at least c · |Gα,βf | and thus
we obtain the result.
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7.11 SUMMARY AND FURTHER RESEARCH

In this chapter we studied the approximation complexity of Min-DS in (α,β)-PLG.
The main result of this chapter is a first logarithmic lower bound for the approx-
imability of Min-DS for the parameter range 0 < β 6 2. The result is based on a
reduction from the Set Cover problem combined with the logarithmic lower bound
for Set Cover given by Feige [Fei98]. For β > 2, we presented an improvement of the
approximation upper bounds given by Shen et al. [She+12] for the greedy algorithm
for Min-DS. We obtain our new results by relating the cost and structure of an opti-
mum solution to those of a greedy-based solution. This sophisticated analysis yields
improved upper bounds for almost the whole range β > 2. Finally, we investigated
the phase transition at β = 2. For this purpose, we extended the power law model and
considered the case when βf = 2+ 1

f(n) is a function of the graph size n which con-
verges to 2 from above. Surprisingly, for every function f(n) with f(n) = ω(log(n)),
i. e. when βf converges fast enough, Min-DS in (α,βf)-PLG still provides a logarith-
mic approximation lower bound. For every function f(n) with f(n) = o(log(n)), the
problem is in APX.

The further improvements on both lower and upper approximation bounds are im-
portant open questions in the area, especially the upper approximation bounds for
β 6 2. Another interesting problem concerns the approximability of PLG optimiza-
tion problems on random or quasi-random instances.

7.12 B IBL IOGRAPH IC NOTES

The material and the results presented in this chapter are based on the following
publication: Mikael Gast, Mathias Hauptmann, and Marek Karpinski. “Inapprox-
imability of dominating set in power law graphs.” In: Computing Research Repository
(CoRR) preprint arXiv:1212.3517 [cs.CC]; also submitted to Theoretical Computer Science
(Dec. 2012), pp. 1–23. arXiv: 1212.3517.

The approximation lower bound for Set Cover presented in Section 7.4.3 is due to
Feige [Fei98].

http://arxiv.org/abs/1212.3517
http://arxiv.org/abs/1212.3517
http://arxiv.org/abs/1212.3517
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Regarding our results, the proofs of the main theorems (Theorem 7.1 on page 151;
Theorem 7.2 on page 152; Theorem 7.3 on page 154; Theorem 7.4 on page 156;The-
orem 7.5 on page 162; Theorem 7.6 on page 164; Theorem 7.7 on page 170) also
appeared in [GHK12b].
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8.1 INTRODUCT ION

Apart from having certain structural properties, such as a power law degree distribu-
tion, high clustering coefficient, small-world characteristics and self similarity, there
exists practical evidence that combinatorial optimization in PLG is easier than in gen-
eral graphs [PL01; GMS03; Eub+04b; KSG06]. For example, Park and Lee [PL01]
showed for the efficient placement of filters in route-based distributed packet filtering
on power-law Internet topologies, that the greedy heuristic for the Min-VC problem
generally outperforms the constant-factor approximation algorithm.

A natural question now arises whether these observations and results can be trans-
lated into provable guarantees for a more general class of power law graphs. In order
to get a positive answer to this question, one has to identify structural properties of
power law graphs that allow for the design of efficient algorithms or for approxima-
tion algorithms with better approximation ratios.

In this chapter we study the approximability of the Min-VC problem in the random
power law graph model of Aiello, Chung, and Lu [ACL01]. Let us first repeat the
formal definition of the Minimum Vertex Cover problem.

Problem 8 (Minimum Vertex Cover (Min-VC)).

input : A graph G = (V ,E).

output : A vertex cover of G, i. e. a set C ⊆ V such that each edge {u, v} ∈ E has
at least one endpoint in C.

objective : Minimize |C|.

The problem is known to be NP-complete due to Karp’s original proof [Kar72] and
APX-complete due to Papadimitriou and Yannakakis [PY91]. Moreover, Dinur and
Safra [DS05] showed that Min-VC cannot be approximated within a factor of 1.3606,
unless P = NP, and Khot and Regev [KR08] conjectured the inapproximability within
2− ε for any ε > 0 as long as the Unique Games Conjecture (UGC) holds true.
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8.2 OVERV I EW AND RESULTS

In this chapter, we show that the Min-VC problem can be approximated with an
expected approximation ratio < 2 in random (α,β)-power law graphs. The formal
definition of random power law graphs Gα,β ∈ Gα,β in the G(α,β) model is given in
Section 2.5.3. We prove the following theorem.

Theorem 8.1.
For β > 2, there exists a polynomial time algorithm which approximates the Minimum Ver-
tex Cover problem in random power law graphs Gα,β ∈ Gα,β in the G(α,β) model with an
expected approximation ratio of

ρ = 2−
ζ(β) − 1− 1

2β

2βζ(β− 1)ζ(β)
,

where ζ(β) =
∑∞
i=1

1
iβ

is the Riemann zeta function.

We also give a refined analysis for the case of the parameter β > 2 and obtain the
following improvement in the limit of large graph sizes.

Theorem 8.2.
For β > 2, the Minimum Vertex Cover problem in random power law graphs Gα,β ∈ Gα,β

in the G(α,β) model can be approximated with expected asymptotic approximation ratio of

ρ ′ = 2−

(
ζ(β) − 1− 1

2β

)
ζ(β− 1)

ζ(β− 1)ζ(β)

1−
ζ(β− 1) −

(
1+ 1

2β−1

)
ζ(β− 1)

3
 .

The improvement for the asymptotic approximation ratio ρ ′ is due to a refined
estimation of a lower bound on the size of a half-integral solution for the LP-relaxation
formulation of Min-VC. In Figure 8.1 the two upper bounds ρ and ρ ′ of Theorem 8.1
and Theorem 8.2 are shown as functions of the parameter β > 2.

organization of the chapter . The chapter is organized as follows. In Sec-
tion 8.3 we give some background on the Min-VC problem and briefly describe
the LP-relaxation and the half-integrality property of Min-VC used in the theorem by
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Figure 8.1: Comparison of first ( ) and second ( ) analysis in terms of the parameter β,
for β > 2. Particularly, the approximation ratio ρ ′ yields an improvement over the
ratio ρ for β > 2.322.

Nemhauser and Trotter [NT74] and a corollary that provides an approximation ra-
tio of 2 for the problem. Section 8.5 presents our new approximation algorithm for
Min-VC in random (α,β)-PLGs. The algorithm basically consists of a deterministic
rounding procedure on a half-integral solution for Min-VC. We show that this round-
ing procedure yields an approximation ratio of 3/2 on the subgraph induced by the
low degree vertices of the power law graph and a 2-approximation on the residual
subgraph. In Section 8.6, we show how to achieve a better approximation ratio for
Min-VC, given the deterministic rounding algorithm together with certain bounds on
the size of a half-integral solution and the rounded integer solution. In Section 8.7
we construct upper and lower bounds on the expected size of the half-integral solu-
tion in the induced subgraph of low degree vertices and prove our first main theorem
(Theorem 8.1). In Section 8.8, we present a refined analysis which consists of better
estimates for the above upper and lower bounds in the limit of large graph sizes. We
conclude the chapter by giving a short summary and further research in Section 8.9
and some bibliographic note in Section 8.10.
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8.3 PREL IM INAR I ES

In this section we introduce the notions and notations that will be used in this chap-
ter. Let us first introduce the LP-relaxation formulation proposed by Nemhauser and
Trotter and the notion of the half-integrality property of Min-VC. Later, we state the
Nemhauser and Trotter Theorem (NTT) and show how to obtain good approximate
solutions for Min-VC through the half-integrality property.

8.3.1 LP-Relaxation and Half-Integral Solutions

One of the most well known results regarding the Min-VC problem is the half-
integrality property of the LP-relaxation of the classical integer programming formu-
lation of Min-VC. This was first described by Nemhauser and Trotter in their 1974

paper [NT74]. One year later, and only three years after the publication of Karp’s fa-
mous list of NP-complete problems in 1972 [Kar72], Nemhauser and Trotter presented
a reduction of the problem of finding a vertex cover in an arbitrary graph G to the
problem of finding a vertex cover in a subgraph of G whose total weight does not ex-
ceed too much the cost of any of its vertex covers. The reduction—published in their
seminal paper [NT75]—makes use of the half-integrality property of Min-VC and
additionally adds new structural properties to the Min-VC problem in general. For
example: the total weight of the graph G after applying the reduction of Nemhauser
and Trotter can be used to better analyze the performance of approximate solutions,
i. e. we may assume that the optimal solution OPT has cost opt > w(V)

2 and are then
able to compare this to an approximate solution.

Nemhauser and Trotter [NT75] considered the following LP-relaxation of the integer
programming formulation of Min-VC, which also applies to the weighted Min-VC
problem:

minimize
n∑
i=1

wixi,

subject to xi + xj > 1, for each edge {vi, vj} ∈ E,

xi > 0, for each vertex vi ∈ V .
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They proved the following theorem.

Theorem 8.3 (Nemhauser and Trotter [NT75]).
There exists a polynomial-time algorithm which gets as an input a graph G = (V ,E) together
with a weight function w : V → Q+ and partitions the set of vertices V into three subsets
V1,V1/2,V0, such that

(i) if C is an α-approximate solution for Min-VC on the induced subgraph G[V1/2], then
V1 ∪C is an α-approximate solution for Min-VC on G, for all α > 1, and

(ii) the weight of any vertex cover C ′ inG[V1/2] is at least 1/2 ·
∑
v∈V1/2

w(v) = 1/2 ·w(V1/2).

The first observation is that there always exists an optimal solution x for the above
LP-relaxation which is half-integral, i. e. for all i, xi ∈ {0, 1/2, 1}. Then the algorithm
partitions the set of vertices into subsets V1,V1/2,V0 ⊆ V , such that vi ∈ V1 if xi = 1,
vi ∈ V1/2 if xi = 1/2 and vi ∈ V0 if xi = 0 in the half-integral solution. We note
that an optimal half-integral solution can be computed efficiently since this problem
corresponds to solving the Min-VC problem on a bipartite graph G ′ = (V ∪ V ′,E ′)
which is generated from the original graph1. Here, V ′ is a copy of the original vertex
set V and E ′ = { {vi, v ′j} | {vi, vj} ∈ E }. Furthermore, Nemhauser and Trotter showed
that at least one optimal vertex cover in G contains the set V1, that each vertex in V0
has all its neighbors in V1 and—moreover—that each cover in G has weight at least
w(V1) + 1/2 ·w(V1/2). From this it follows that at least one optimal vertex cover in G
consists of the set V1 and an optimal cover in the subgraph G[V1/2] induced by V1/2.
Figure 8.2 shows the partition and the interconnections of the vertex set generated in
the algorithmic step of Theorem 8.3.

Hochbaum et al. [Hoc+93] observed—as a direct corollary of Theorem 8.3—that
an integer solution y, obtained by setting yi = 1 for all vertices vi ∈ V1/2 ∪ V1 and
yi = 0 for all vi ∈ V0, is a 2-approximate solution for the Min-VC problem in G. Our
approximation algorithm for Min-VC will make use of a more sophisticated rounding
procedure on a half-integral solution x in order to achieve an approximation ratio of
3/2 on a large subset of low degre vertices and a 2-approximation on the residual
graph.

1 This follows directly from the theorem of Kőnig [Kőn16; Kőn31], which states that the problems of
computing maximal matchings and minimum vertex covers on bipartite graphs are equivalent and can
be solved in polynomial time (see also Biggs, Lloyd, and Wilson [BLW86]).
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V0

...

V1

...

V1/2

...

Figure 8.2: Partition of the vertex set V into a independent set V0 connected to vertices of the
set V1 as generated in the algorithmic step of Theorem 8.3.

8.4 OUTL INE OF THE METHOD

Let us now give an outline of the methods used to obtain the main results of this chap-
ter. That is, the design of an approximation algorithm with expected approximation

ratio 2−
ζ(β)−1− 1

2β

2βζ(β−1)ζ(β)
for the Min-VC problem in (α,β)-PLG for β > 2, and, moreover,

a refined analysis yielding an improved asymptotic approximation ratio in the limit.
The algorithm can be outlined as follows. On instance Gα,β ∈ Gα,β, the algorithm

starts with a half-integral solution x : V → {0, 1/2, 1} of the associated LP-relaxation of
Min-VC and uses some deterministic rounding procedure to generate an integral so-
lution y : V → {0, 1}. We show that for the set V∗ =

⋃
v : d(v)∈{1,2} ({v}∪N(v)) of degree

1 and degree 2 vertices and their neighbors in Gα,β, the rounding procedure satisfies
y(V∗) 6 3/2 · x(V∗), i. e. we prove that the rounding procedure achieves an approxi-
mation ratio of 3/2 on the induced graph Gα,β[V

∗] of the subset V∗ ⊆ V . Furthermore,
we show that the total value of the initial half-integral solution x(V∗) on this subset
is “large” in expectation and with respect to G(α,β), such that the contribution of
the rounding procedure affects the global approximation ratio of Min-VC on Gα,β in
a positive way. This last step involves a probabilistic analysis of the random graph
model G(α,β) and aims to provide tight lower bounds on the expected value E[x(V∗)]

and to construct an upper bound for the value x(V).
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Figure 8.3 shows an overview of the proof of our first main theorem (Theorem 8.1
on page 175). Especially, we also point to the lemmas and auxiliary theorems which
are used in the various steps of the main proof.

Theorem 8.3
Start with half-integral solution x of
the LP-relaxation, x : V → {0, 1/2, 1}

1.

Algorithm 8.1
Perform deterministic rounding
on x to produce y : V → {0, 1}

2.

Lemma 8.1 & Lemma 8.2
Show that integer solution y
satisfies y(V∗) 6 3/2 · x(V∗)

3.

Lemma 8.4 & Theorem 8.4
Prove lower bound on the size
of a half-integral solution, i. e.

E[x(V∗)] > eα

2β
·
ζ(β)−1− 1

2β

ζ(β−1)

4.
Lemma 8.8
Prove upper bound on the
size of a half-integral solu-

tion, i. e. x(V) 6 1/2 · ζ(β)eα

5.

Lemma 8.3
Build convex combination E(ρ) =

E
(
3
2 ·

x(V∗)
x(V) + 2 · x(V)−x(V∗)

x(V)

)6.

Theorem 8.1
Substitute the terms x(V∗) and
x(V) by the corresponding lower
bound or upper bound, respec-

tively. Altogether this yields
an expected approximation

ratio ρ 6 2 −
ζ(β)−1− 1

2β

2βζ(β−1)ζ(β)

7.

Figure 8.3: Overview of the proof for the first main theorem (Theorem 8.1) for the expected
approximation ratio of Min-VC in random (α,β)-PLG, where β > 2. The proof
of the second main result in Theorem 8.2 goes along the same lines, except for a
different estimate of the lower bound for x(V∗) in step 4.

Next, we present a detailed description of the approximation algorithm outlined
above.

8.5 APPROX IMAT ION ALGOR ITHM

In this section, we describe our deterministic rounding procedure on Gα,β = (V ,E)
for Gα,β ∈ Gα,β (cf. algorithm Deterministic_Rounding on page 182). First, the algo-
rithm processes all degree 1 and degree 2 nodes of the vertex subset V ′ = L ∪N(L),
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where L = { v ∈ V | (d(v) = 2, x(v) = 1/2)∨ (d(v) = 1) }. On this subset, the algorithm
provides a rounded integral solution y with y(V ′) 6 3/2 · x(V ′). Furthermore, we
show that y(V∗ \V ′) 6 4/3 · x(V∗ \V ′) and y(V \V∗) 6 2 · x(V \V∗) is achieved for the
remaining subsets of vertices. Whenever the algorithm processes a vertex v, y(v) is
either set to 0 or 1 and the vertex itself is marked as processed.

The analysis of the algorithm Deterministic_Rounding is provided by the following
Lemma 8.1 and Lemma 8.2. First, we will show that the algorithm indeed generates
an integer solution on the set of degree 1 vertices and their high-degree neighbors, as
well as on all degree 2 vertices u with x(u) = 1/2 in the initial half-integral solution
and their corresponding neighborhood.

Lemma 8.1.
The assignment y generated by the algorithm Deterministic_Rounding is an integer solu-
tion and satisfies y(u) = 1 for all u ∈ V ′ with d(u) > 3.

Proof. The y value of any high-degree neighbor of degree 1 vertices is set to 1 in step
(1) of the algorithm.

Since either step (3) or (4) is processing every single degree 2 vertex v ∈ V with
x(v) = 1/2, there are no leftover vertices v ∈ V ′ of degree 2 with fractional values x(v).

Assume that there is a vertex u ∈ V ′,d(u) > 3 and x(u) = y(u) = 1/2. Then u
has at least one degree 2 neighbor v1 with x(v1) = 1/2. Because of step (3) and (4) of
the algorithm, v1 must have been processed by another degree 2 vertex v2, setting
y(v1) = 1. This again introduces another neighbor w of v2 with y(w) = 1 and leads
to the situation of a path uv1v2w described in step (2). In this case, the algorithm sets
y(u) = 1 and thus we have a contradiction to the above assumption.

The next lemma shows that the deterministic rounding algorithm achieves an ap-
proximation ratio of 3/2 on the induced subgraph Gα,β[V

∗] where V∗ is the set of
vertices of degree 1 and 2 including their corresponding neighborhood, i. e. V∗ =⋃
v : d(v)∈{1,2} ({v}∪N(v)).

Lemma 8.2.
The assignment y generated by the algorithm Deterministic_Rounding satisfies y(V∗) 6
3/2 · x(V∗).
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Algorithm 8.1 : Deterministic_Rounding
Input : Gα,β = (V ,E), x : V → {0, 1/2, 1}.
Output : y : V → {0, 1}.

forall the v ∈ V do
y(v) := x(v); mark v as unprocessed;
/* when y(v) is changed in steps (0)-(5), v will be marked as processed */

(0) compute G ′[L∪N(L)], L = { v ∈ V | (d(v) = 2, x(v) = 1/2)∨ (d(v) = 1) };
(1) forall the v ∈ V with d(v) = 1 do

/* let u be the neighbor of v in Gα,β */
set y(v) = 0; set y(u) = 1;

(2) forall the P = uv1v2w ⊂ G ′ unprocessed, d(u) > 3,d(v1) = d(v2) = 2 do
/* let u,w be the neighbors of v1, v2 in Gα,β, respectively */
set y(u) = y(w) = y(v1) = 1; set y(v2) = 0;

(3) forall the v ∈ V ′ unprocessed, d(v) = 2∧ ∃u ∈ N(v),d(u) > 3 do
/* let u,w be the neighbors of v in Gα,β */

(3.1) else if u unprocessed, w processed then
set y(v) = 0; set y(u) = 1;

(3.2) else if both u,w unprocessed then
set y(v) = 0; set y(u) = y(w) = 1; /* x(u) > 1/2 and x(w) > 1/2 */

(3.3) if both u,w processed then
set y(v) = 0;

(3.4) else if u processed, w unprocessed then
set y(v) = 0; set y(w) = 1; /* y(u) = 1 already set and x(w) > 1/2 */

(4) forall the v ∈ V ′ unprocessed, d(v) = 2 do
(4.1) else if u unprocessed, w processed then

set y(v) = 0; set y(u) = 1;

(4.2) else if both u,w unprocessed then
set y(v) = 0; set y(u) = y(w) = 1; /* x(u) > 1/2 and x(w) > 1/2 */

(4.3) if both u,w processed then
set y(v) = 0;

(4.4) else if u processed, w unprocessed then
set y(v) = 0; set y(w) = 1; /* y(u) = 1 already set and x(w) > 1/2 */

(5) forall the v ∈ V unprocessed do
if x(v) = 1/2 then

set y(v) = 1; /* y(v) = min{1, 2 · x(v)} */
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Proof. The algorithm partitions the graph induced by V∗ into edge-disjoint subgraphs,
namely stars, whose leaves are degree-1 vertices, and simple paths of length 6 4. We
show that for each such subgraph Pi, y(Pi) 6 3/2 · x(Pi). Furthermore, we show that
y(v) = 1 for each v ∈ V∗ which is contained in more than one such subgraph.

In step (1) of the algorithm all degree 1 vertices and their neighbors are processed.
In step (2) the subgraphs are unprocessed paths Pi of length 3. Since the path

Pi = u v1 v2 w contains two disjoint edges {u, v1}, {v2,w}, x(Pi) > 2 and particularly
x(v2) + x(w) > 1. Therefore, y(Pi) = 3 6 3/2 · x(Pi) holds via mapping the paths of
the form >1/2 1/2 >1/2 >0 7→ 1 1 0 1 (where the gray color indicates a processed

vertex) and y restricted to Pi (denoted as y�Pi) is a vertex cover for Pi.
In step (3) all paths Pi = u v w are processed, where at least one of u,w is of

degree > 3. In cases (3.1)–(3.4) the algorithm considers all possible combinations of
some of these nodes being already processed.

In case (3.1) u is marked unprocessed, w is already processed and x(u) > 1/2. The
rounding algorithm sets y(v) = 0 and y(u) = 1, mapping >1/2 1/2 1 7→ 1 0 1 ,
again yielding a vertex cover y�Pi for Pi with y(Pi) 6 x(Pi).

In case (3.2) we have that both u,w are marked as unprocessed and since x(v) = 1/2

we have that x(u) > 1/2 and x(w) > 1/2. The rounding algorithm sets y(v) = 0,y(u) =
y(w) = 1, mapping >1/2 1/2 >1/2 7→ 1 0 1 , and since x(u) > 1/2 and x(w) > 1/2 we
have that y(Pi) 6 4/3 · x(Pi).

In case (3.3) both u,w are marked as processed and therefore y(u) = y(w) = 1, since
u,w are adjacent to processed degree one or degree two vertices other than v. The
algorithm sets y(v) = 0, mapping 1 1/2 1 7→ 1 0 1 . Hence y�Pi is a vertex cover
for Pi with y(Pi) 6 x(Pi).

In case (3.4) u is already processed and w is still marked unprocessed. Since x(v) =
1/2 we have that x(w) > 1/2. The rounding algorithm sets y(v) = 0 and y(w) = 1,
mapping 1 1/2 >1/2 7→ 1 0 1 , and since x(w) > 1/2 it yields a vertex cover y �Pi for
Pi with y(Pi) 6 x(Pi).

Step (4) considers all remaining unprocessed vertices of degree 2. If v is such a
vertex with neighborhood N(v) = {u,w}, the sub-cases (4.1)–(4.4) are treated analogously
to cases (3.1)–(3.4) and the mapping x 7→ y achieves y(Pi) 6 4/3 · x(Pi) on the considered
paths Pi.
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After steps (0)–(4) of the algorithm there may still be some remaining high-degree
vertices u ∈ V∗,d(u) > 3 with x(u) = y(u) = 1/2. These are treated separately (and
rounded to y(u) = 1 together with all other vertices in V \ (V ′ \ V∗)) in step (5) of the
algorithm. We have to argue that y(V∗) 6 3/2 · x(V∗) still holds true.

We consider first the case that u ∈ V ′,d(u) > 3 and x(u) = y(u) = 1/2. Then u has
a neighbor v of degree 6 2 with x(v) = 1/2 and y(v) = 1, and since y(u) = 1/2 we have
d(v) = 2. Let v2 be the other neighbor of v, then d(v2) = 1 (since otherwise the second
neighbor w of v2 would give rise to a path of length 3, containing also u and hence
would have been processed in step (2)). But then locally on the set {u, v, v2} we have
the mapping 1/2 1/2 1/2 7→ 1/2 1 0 7→ 1 1 0 with a local ratio of 4/3.

Let us now assume u ∈ V∗ \ V ′,d(u) > 3 and x(u) = y(u) = 1/2. Then every degree
2 neighbor v has x(v) 6= 1/2, hence x(v) = 1, and therefore y(v) = 1. We show that
v /∈ V ′, i. e. that v was not processed by the algorithm and can be treated as a part of
a subgraph disjoint to G ′ in Gα,β. Let w ∈ N(v) be the second neighbor of v besides
u. Then x(w) = 0 since otherwise (in case x(w) > 1/2) we could decrease x(v) from
1 to 1/2 and would still have a feasible half-integral solution, which would contradict
the optimality of x. Therefore v,w /∈ V ′, which means that v,w are not processed by
the algorithm. Rounding y(u) = 1, mapping 1/2 1 7→ 1 1 , yields a vertex cover
y� {u, v} with y({u, v}) 6 4/3 · x({u, v}).

We conclude that the assignment y : V 7→ {0, 1} is a vertex cover of Gα,β with y(V∗) 6
3/2 · x(V∗) and y(V \ V∗) 6 2 · x(V \ V∗).

Now we are going to describe how to obtain the overall approximation ratio of the
algorithm described and analysed above.

8.6 EXPECTED APPROX IMAT ION RAT IO

The next task is to combine the above findings on the approximation ratio in the
induced subgraphs Gα,β[V

∗] and Gα,β[V \ V∗] to achieve an (expected) approximation
ratio for Min-VC on the whole initial graph Gα,β.

The following lemma shows how to retrieve an expected approximation ratio of the
algorithm Deterministic_Rounding for Min-VC in random (α,β)-power law graphs
Gα,β.



8.7 first analysis for β > 2 185

Lemma 8.3.
If the rounding scheme x 7→ y satisfies y(V∗) 6 3/2 · x(V∗) and y(V \ V∗) 6 2 · x(V \ V∗),
then this gives an approximation ratio of

y(V)

OPT
6
y(V)

x(V)
6
x(V∗)

x(V)
· 3
2
+
x(V \ V∗)

x(V)
· 2 .

In order to apply Lemma 8.3 and to derive an expected approximation ratio for the
algorithm, in the following we will give a lower bound on E[x(V∗)] and an upper
bound on x(V). The next lemma provides a first lower bound on x(V∗) in terms of the
number of high-degree vertices adjacent to vertices of degree 1 and 2.

Lemma 8.4.
Let Gα,β[V

∗] be the subgraph of Gα,β induced by V∗. For every optimal half-integral solution
x for the Min-VC LP-relaxation, the size of the half-integral solution restricted to V∗ is lower-
bounded by the size of the high-degree neighborhood of degree 1 and degree 2 vertices:

x(V∗) >
1

2
·
∣∣ {u ∈ V | d(u) > 3∧ ∃v ∈ N(u),d(v) ∈ {1, 2} }

∣∣ .

Proof. Let V∗ = X ∪ Y,X = { v ∈ V | d(v) ∈ {1, 2} } and Y = {u ∈ V | d(u) > 3∧ ∃v ∈
N(u),d(v) ∈ {1, 2} }. Let E(X, Y) be the set of edges between the subsets X and Y.
Choose some arbitrary function f : Y → E(X, Y) such that for every u ∈ Y, f(u) = {u, v}
for some v ∈ X adjacent to u. f(Y) consists of pairwise disjoint paths Q1, . . . ,Qm of
length 6 2, such that each path contains one or two vertices from Y. This implies
x(V∗) > m > |Y|

2 .

In the next sections, we are going to compute the explicit expected approximation
ratios of the algorithm Deterministic_Rounding for the case when β > 2.

8.7 F I RST ANALYS I S FOR β > 2

In our first analysis, we will estimate the expected number of high-degree vertices ad-
jacent to vertices of degree 1 or 2, which—combined with the preceding Lemma 8.4—
gives a lower bound on E[x(V∗)]. We will prove the following theorem:
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Theorem 8.4.

E[x(V∗)] >
1

2
·E
[∣∣ {u ∈ V | d(u) > 3∧ ∃v ∈ N(u),d(v) ∈ {1, 2} }

∣∣]
=
1

2
·
∑

u : d(u)>3

η(u) (8.1)

>
eα

2β
·
ζ(β) − 1− 1

2β

ζ(β− 1)
, (8.2)

where η(u) is the probability that u ∈ V has a neighbor in the set of vertices of degree 1 or 2.

In order to provide bounds on the probability η(u) for a vertex u of degree d of
having a neighbor of degree 1 or 2, we consider how edges are generated in the
random matching procedure of the distribution G(α,β):

In the random model for (α,β)-PLG described in Section 2.5.4, d(u) copies of u are
randomly matched with the copies of the remaining vertices v ∈ V , v 6= u. We use the
following lower bound on η(u).

Lemma 8.5.
For every u with d(u) > 3, η(u) > 1

2β−1·
∑∆
i=1

1

iβ−1

.

Proof. We will give an estimate on the probability that the first copy of u, in the
random matching generation of Gα,β, matches to a vertex of degree 2. We have that

η(u) > Pr(the first copy of u is neighbor of a degree 2 node)

=
2 · #deg-2-nodes(∑

v∈V d(v)
)
− 1

>
2 · eα

2β∑∆
i=1 i · eα

iβ

=
1

2β−1∑∆
i=1

1
iβ−1

,

where ∆ = eα/β is the maximum degree of Gα,β.
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In Equation 8.1 we substitute η(u) by the bound given in Lemma 8.5 and obtain:

E[x(V∗)] >
1

2
·
∑

u : d(u)>3

η(u)

=
1

2
·

(
∆∑
i=1

eα

iβ
− eα−

eα

2β

)
· 1

2β−1 ·
∑∆
i=1

1
iβ−1

=
eα

2β
·
∑∆
i=1

1
iβ

− 1− 1
2β∑∆

i=1
1

iβ−1

. (8.3)

We will now show that in Inequality 8.3 we can replace the two sums
∑∆
i=1

1
iβ

and∑∆
i=1

1
iβ−1

by ζ(β) and ζ(β− 1), respectively. We make use of the following lemma.

Lemma 8.6.
For any real numbers A,B,a,b > 0, AB >

A+a
B+b if and only if AB >

a
b .

Recall that ζ(β) =
∑∞
i=1

1
iβ

is the Riemann zeta function. Therefore, in order to
show

E[x(V∗)] >
eα

2β
·
ζ(β) − 1− 1

2β

ζ(β− 1)
,

we will show that the following inequality holds∑∆
i=1

1
iβ

− 1− 1
2β∑∆

i=1
1

iβ−1

>

∑∆+1
i=1

1
iβ

− 1− 1
2β∑∆+1

i=1
1

iβ−1

.

Due to Lemma 8.6, it is sufficient to show that there exists a ∆0 such that for all ∆ > ∆0
the following holds

∑∆
i=1

1
iβ

− 1− 1
2β∑∆

i=1
1

iβ−1

>

1
(∆+1)β

1
(∆+1)β−1

=
1

∆+ 1
.

This is provided by the following lemma.
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Lemma 8.7.
There exists a ∆0 > 8 ,such that for all ∆ > ∆0,∑∆

i=1
1
iβ

− 1− 1
2β∑∆

i=1
1

iβ−1

>
1

∆+ 1
.

Proof. The above inequality is equivalent to

∆∑
i=1

1

iβ
− 1−

1

2β
>

∆∑
i=1

1

∆+ 1
· 1

iβ−1

⇐⇒
∆∑
i=1

(
1

iβ
−

1

∆+ 1
· 1

iβ−1

)
> 1+

1

2β

⇐⇒
∆∑
i=1

∆+ 1− i

(∆+ 1)iβ
> 1+

1

2β
. (8.4)

Suppose ∆ > 8, then the sum on the left-hand side of the Inequality 8.4 is bounded
by the sum of the terms with indices i = 1, 2, 4, 8, that is

∆∑
i=1

∆+ 1− i

(∆+ 1)iβ
>

∆

∆+ 1
+

∆− 1

(∆+ 1)2β
+

∆− 3

(∆+ 1)4β
+

∆− 7

(∆+ 1)8β

=
∆8β + (∆− 1)4β + (∆− 3)2β +∆− 7

(∆+ 1)8β
. (8.5)

Using Inequality 8.5 and the fact that 1 + 1
2β

=
(∆+1)8β+(∆+1)4β

(∆+1)8β
, in order to prove

Inequality 8.4 it is sufficient to show the following:

∆8β + (∆− 1)4β + (∆− 3)2β +∆− 7

(∆+ 1)8β
>
(∆+ 1)8β + (∆+ 1)4β

(∆+ 1)8β

⇐⇒ (∆− 3)2β +∆− 7>8β + 2 · 4β.

This is valid for ∆ > 8β+2·4β+6·2β+7
1+2β

. Hence we choose ∆0 =
⌈
8β+2·4β+6·2β+7

1+2β

⌉
.

This completes the proof of Theorem 8.4. The next lemma provides an upper bound
for x(V), which is the size of a half-integral solution on the complete vertex set V .
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Lemma 8.8.
Let x(V) be the value of a half-integral solution on V . Then the following inequality holds:

x(V) 6
1

2
· ζ(β) eα .

Proof. In order to achieve the above upper bound for x(V), we construct a feasible
half-integral solution for Gα,β by setting x(v) = 1/2 for all v ∈ V where 1/2 ·

∑
v∈V 6

1/2 · ζ(β) eα.

Now let us restate the main Theorem 8.1 and finish the proof.

Theorem.
For β > 2, the algorithm Deterministic_Rounding approximates the Minimum Vertex

Cover problem in random power law graphs Gα,β ∈ Gα,β in the G(α,β) model with an
expected approximation ratio of

ρ = 2−
ζ(β) − 1− 1

2β

2βζ(β− 1)ζ(β)
.

Proof. The algorithm Deterministic_Rounding achieves an approximation ratio of 3/2
for Min-VC in the subgraph Gα,β[V

∗] and a ratio of 2 in Gα,β[V \ V∗]. Therefore, the
approximation ratio of the algorithm on Gα,β can be expressed in expectation as

ρ 6 E

[
3

2
· x(V

∗)

x(V)
+ 2 · x(V) − x(V

∗)

x(V)

]
= E

[
2−

1

2
· x(V

∗)

x(V)

]
.

Due to Theorem 8.4 and Lemma 8.8, we have that E[x(V∗)] > 1
2 ·

(
ζ(β)−1− 1

2β

)
eα

2β−1ζ(β−1)
and

x(V) 6 1
2 · ζ(β) eα. This yields

E

[
x(V∗)

x(V)

]
>

1
2 ·

(
ζ(β)−1− 1

2β

)
eα

2β−1ζ(β−1)

1
2 · ζ(β) eα

=
ζ(β) − 1− 1

2β

2β−1ζ(β− 1)ζ(β)
,

and therefore

ρ 6 2−
1

2
·
ζ(β) − 1− 1

2β

2β−1ζ(β− 1)ζ(β)
= 2−

ζ(β) − 1− 1
2β

2βζ(β− 1)ζ(β)
.
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In the next section, we give a better estimate of the lower bound for x(V∗) in
Lemma 8.4. The new estimate is based on the probability that a high degree ver-
tex is adjacent to some vertex subset U. In particular, we will consider the case when
U is the set of degree 1 and degree 2 vertices. The improved resulting lower bound,
however, is only valid asymptotically as the graph size n approaches∞.

8.8 REF INED ANALYS I S

We will now refine the analysis of algorithm Deterministic_Rounding on page 182

by giving a better estimate on the probability η(u,U) of a high-degree node u being
adjacent to a vertex in a given set U ⊆ V , i. e. a vertex of degree one or two. Again,
we will first obtain a bound on the expected approximation ratio of the algorithm in
terms of the partial sums

∑∆
i=1

1
iβ

and
∑∆
i=1

1
iβ−1

and then show that these can be
replaced by ζ(β) and ζ(β− 1), respectively.

Lemma 8.9.
For every u with d(u) > 3 and U ⊆ V ,

η(u,U) >

∑∆
i=1

eα

iβ−1
− e

α
β + 1∑∆

i=1
eα

iβ−1

1−(∑∆
i=1

eα

iβ−1
− d(U) − 6+ 1∑∆

i=1
eα

iβ−1
− 6+ 1

)3 .

Proof. For a given set U of vertices from Gα,β we let d(U) =
∑
v∈U d(v). Furthermore

let η(u,U) be the probability that u is connected to at least one node in U. Recall how
Gα,β is constructed in the G(α,β) model. For each node u of degree d(u), d(u) copies
are introduced and then a random perfect matching on the set L of all these copies is
constructed. This random perfect matching is generated by first choosing a neighbor
for the first node in L uniformly at random, then choosing a neighbor for the next
unoccupied node in L uniformly at random, and so on. This distribution does not
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depend on the order of nodes in L. Thus, we may assume that copies corresponding
to vertex u are the first d(u) nodes in L. We obtain

η(u,U) = Pr(u matches to U)

=

d(u)∑
j=1

Pr(j-th copy for node u is the first one matching to U)

=

d(u)∑
j=1

Pr(copies 1, . . . , j− 1 not connected to U and copy j conn. to U)

=

d(u)∑
j=1

Pr

 copies 1, . . . , j− 1 neither connected to U nor

to any copies of u and copy j connected to U


=

d(u)∑
j=1

d(U)∑∆
i=1

eα
iβ−1

− 2(j− 1) − 1

j−1∏
k=1

(∑∆
i=1

eα
iβ−1

− d(u) − d(U) − (k− 1)∑∆
i=1

eα
iβ−1

− 2(k− 1) − 1

)
.

Now define N =
∑∆
i=1

eα
iβ−1

. We have

η(u,U) =
d(u)∑
j=1

d(U)

N− 2j+ 1

j−1∏
k=1

N− d(U) − d(u) − (k− 1)

N− 2k+ 1

>
d(u)∑
j=1

d(U)

N− 2j+ 1

(
N− d(U) − d(u) − (j− 1)

N− 2j+ 1

)j−1

>
d(u)∑
j=1

d(U)

N

(
N− d(U) − 2d(u) + 1

N− 2d(u) + 1

)j−1

=
d(U)

N

1−
(
N−d(U)−2d(u)+1
N−2d(u)+1

)d(u)
1−

N−d(U)−2d(u)+1
N−2d(u)+1


=
d(U)

N

[
1−

(
N− d(U) − 2d(u) + 1

N− 2d(u) + 1

)d(u)]
· N− 2d(u) + 1

d(U)

=
N− 2d(u) + 1

N

[
1−

(
N− d(U) − 2d(u) + 1

N− 2d(u) + 1

)d(u)]
.
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Since the function
(
N−d(U)−2d(u)+1
N−2d(u)+1

)d(u)
is monotone decreasing in d(u) it follows that

we can choose d(u) = 3 in order to obtain a lower bound on η(u,U), which yields

η(u,U) >
N−∆+ 1

N

[
1−

(
N− d(U) − 2 · 3+ 1

N− 2 · 3+ 1

)3]

=

∑
i=1

eα
iβ−1

− e
α
β +1∑

i=1
eα
iβ−1

1−(∑i=1
eα
iβ−1

− d(U) − 6+ 1∑
i=1

eα
iβ−1

− 6+ 1

)3 .

Because of Equation 8.1 we have E[x(V∗)] > 1/2 ·
∑
u : d(u)>3 η(u,U) and we obtain

the following approximation ratio of the algorithm Deterministic_Rounding:

ρ 6 E

[
2−

1

2

x(V∗)

x(V)

]

6 2−
1

2

(∑∆
i=1

eα
iβ

− eα− eα
2β

) ∑∆
i=1

eα

iβ−1
−e
α
β+1∑∆

i=1
eα

iβ−1

[
1−

(∑∆
i=1

eα

iβ−1
−d(U)−6+1∑∆

i=1
eα

iβ−1
−6+1

)3]
1
2

∑∆
i=1

eα
iβ

= 2−

(∑∆
i=1

1
iβ

− 1− 1
2β

)(∑∆
i=1

1
iβ−1

− ∆
eα + 1

eα

)
(∑∆

i=1
1

iβ−1

)(∑∆
i=1

1
iβ

)
1−(∑∆

i=1
1

iβ−1
−
d(U)
eα − 5

eα∑∆
i=1

1
iβ−1

− 5
eα

)3
(8.6)

We observe that the terms
∑
i=1

eα
iβ

and
∑
i=1

eα
iβ−1

converge to ζ(β) and ζ(β − 1)

respectively as α → ∞. Furthermore, 2∆eα , 1eα → 0 (α → ∞). Hence the upper bound
on the expected approximation ratio in inequality (8.6) converges to

ρ ′ 6 2−

(
ζ(β) − 1− 1

2β

)
· ζ(β− 1)

ζ(β− 1) · ζ(β)

1−
ζ(β− 1) −

(
1+ 1

2β−1

)
ζ(β− 1)

3
 .

Thus we obtain the following theorem:
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Theorem.
For all β > 2 and ε > 0 the Minimum Vertex Cover problem in random power law graphs
Gα,β ∈ Gα,β can be approximated within expected approximation ratio

ρ ′ 6 2−

(
ζ(β) − 1− 1

2β

)
· ζ(β− 1)

ζ(β− 1) · ζ(β)

1−
ζ(β− 1) −

(
1+ 1

2β−1

)
ζ(β− 1)

3
+ ε .

We conclude this last main chapter with a short summary, directions for further
research and some bibliographic notes.

8.9 SUMMARY AND FURTHER RESEARCH

Let us give a short summary of the findings of this chapter. In Section 8.5 we presented
a new approximation algorithm for Min-VC in (α,β)-PLG with expected approxima-
tion ratio of

ρ 6 2−
ζ(β) − 1− 1

2β

2βζ(β− 1)ζ(β)

in our first analysis of Section 8.7. Moreover, in Section 8.8 we showed an expected
asymptotic approximation ratio of

ρ ′ 6 2−

(
ζ(β) − 1− 1

2β

)
ζ(β− 1)

ζ(β− 1)ζ(β)

1−
ζ(β− 1) −

(
1+ 1

2β−1

)
ζ(β− 1)

3
 .

The algorithm itself basically consists of a deterministic rounding procedure on
an optimal half-integral solution x that produces a rounded integer solution y. We
showed that this rounding procedure yields an approximation ratio of 3/2 in the sub-
graph Gα,β[V

∗] induced by the low-degree vertices and a 2-approximation in the resid-
ual graph Gα,β[V \V∗]. Furthermore, we proved upper and lower bounds on the total
value of the initial half-integral solution x for the vertex set V and V∗, respectively.
These bounds for the vertex subsets, together with the acheived approximation ratios
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on the corresponding induced subgraphs, yield the above expected approximation
ratios.

Further research is aimed on improving the upper and lower bounds presented in
the analysis of the algorithm in order to provide further improvements on the overall
approximation ratio. Furthermore, an extension of the capabilities of the determinis-
tic rounding procedure to larger vertex subsets and including higher vertex degrees
would be feasible to achieve better approximation factors.

8.10 B IBL IOGRAPH IC NOTES

The material and the results presented in this chapter are based on the following
publication: Mikael Gast and Mathias Hauptmann. “Approximability of the vertex
cover problem in power law graphs.” In: Computing Research Repository (CoRR) preprint
arXiv:1204.0982 [cs.DS]; also submitted to Theoretical Computer Science (2012), pp. 1–16.
arXiv: 1204.0982.

The LP-relaxation formulation of Min-VC and the proof of existence and com-
putability of half-integral solutions (Theorem 8.3 in Section 8.3.1 on page 178) is due
to Nemhauser and Trotter [NT75]. Furthermore, the observation that rounding on
half-integral solutions yield good approximations for Min-VC is due to Hochbaum
et al. [Hoc+93].

The proofs of our main theorems (Theorem 8.1 on page 175 and Theorem 8.2 on
page 175) and the auxiliary theorem (Theorem 8.4 on page 185) also appeared in
[GH12].
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http://arxiv.org/abs/1204.0982
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In this thesis we have shown the APX-hardness of the Minimum Vertex Cover

(Min-VC) problem in connected (α,β)-PLG multigraphs for 0 < β < βmax ≈ 2.48 and
therefore rule out the existence of a PTAS. This partially answered an open question
posed by Ferrante, Pandurangan, and Park [FPP08]. We gave explicit approximation
lower bounds for the various ranges of the model parameter β. Furthermore, we pre-
sented a detailed analysis of the phase transition for β = 1 by extending the model of
(α,β)-PLG to a functional case where the parameter is of the form βf = 1± 1/f(n). For
a sufficiently fast growing function f(n), we showed that our new inapproximability
results for the case β = 1 in the original model also hold for this functional model. It
remains an important open question to close the gaps between inapproximability and
approximability bounds of the underlying problems. We also believe that our results
for the two functional cases β = 1± 1

f(n) can be extended to hold for any βf = β± 1
f(n)

with 0 < β < βmax ≈ 2.48.
Then we studied the approximation complexity of the Minimum Dominating Set

(Min-DS) problem in connected (α,β)-PLG. Particularly, we gave the first logarithmic
lower bounds for the approximability of this problem for the parameter range 0 < β 6
2. Our results are based on a reduction from the Set Cover problem combined with
the logarithmic lower bound given by Feige [Fei98]. Thereby we also improve over
the previously known constant factor lower bounds due to Shen et al. [She+12] for
the case of disconnected (α,β)-PLG. For β > 2 we show that Min-DS in (α,β)-PLG
is in APX and improve on the approximation upper bounds of Shen et al. [She+12]
for a greedy algorithm for Min-DS. Finally, we take a very close look at the phase
transition at β = 2 and considered the case when βf = 2+ 1

f(n) is a function of the
graph size n which converges to 2 from above. We obtained the surprising result that
for every function f(n) with f(n) = o(log(n)), the problem is in APX and for every
function f(n) with f(n) = ω(log(n)) Min-DS provides a logarithmic approximation
lower bound as in the case 0 < β 6 2. The further improvements on both lower and
upper approximation bounds are important open questions in the area, especially the
upper approximation bounds for β 6 2.

Finally, we constructed an approximation algorithm for the Min-VC problem with
an expected approximation ratio of 2− f(β) for random (α,β)-PLG, where f(β) is a
strictly positive function of the model parameter β. In particular f(β) does not de-
pend on the size |V | of the graph and thus—for large graph sizes—our approxima-
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tion ratio falls below current upper bounds for Min-VC in general graphs (which is
2−Θ (1/

√
logn) and due to Karakostas [Kar09]). The result is based on a deterministic

rounding procedure that acts an a given half-integral solution for Min-VC. Further re-
search is aimed on improving the upper and lower bounds on the size of half-integral
solutions in (α,β)-PLG. This would provide further improvements on the overall ap-
proximation ratio. Moreover, an extension of the capabilities of the deterministic
rounding procedure to higher degree vertices would be helpful for achieving good
approximation factors on larger vertex subsets.
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GLOSSARY

APX the class of all NP optimization problems that ad-
mit a polynomial time approximation algorithm
with constant approximation ratio

C(G) the global clustering coefficient of a graph G
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d(G) the average degree of a graph G

d(v) the degree of a vertex v
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G = (V ,E) a graph consisting of vertices and edges

N the set of natural numbers N0 \ {0}

N0 the set of natural numbers {0, 1, 2, . . .}
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NP the class of decision problems Π for which a non-
deterministic polynomial time Turing Machine
exists

NPO the class of all NP optimization problems

NSPACE the class of non-deterministic space complexity

NTIME the class of non-deterministic time complexity

P the class of decision problems Π that are decid-
able in deterministic polynomial time

Π a decision or optimization problem

Π the set of no-instances of a decision problem Π

PO the class of all P optimization problems

PTAS the class of all NP optimization problems that ad-
mit a polynomial time approximation scheme

Q the set of rational numbers

Q+ the set of positive rational numbers

R the set of real numbers

R+ the set of positive real numbers

Σ a finite alphabet

V(G) the set of vertices of a graph G

Z the set of integers {0, 1,−1, 2,−2, . . .}

ZPP the class of decision problems Π for which a non-
deterministic probabilistic Turing Machine exists
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ZTIME the class of non-deterministic probabilistic time
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