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“Three shalt be the number thou shalt count,
and the number of the counting shalt be three.
Four shalt thou not count, neither count thou
two, excepting that thou then proceed to three.

Five is right out.”
— BOOK OF ARMAMENTS, 2:18-20,
Monty Python and the Holy Grail.






Abstract

In this work, three-body bound states were studied in finite volume using an Effective Field
Theory framework. The finite volumes under consideration are cubic volumes with periodic
boundary conditions. The Effective Field Theory framework used in this work employs
only contact interactions and is particularly well suited for studies of universal properties,
i.e. properties independent of the details of the interaction on short distances. A particular
example in the three-body sector is the Efimov effect, the emergence of a geometrically spaced
bound state spectrum.

In the first part, systems of three identical bosons are investigated. As a consequence of the
breakdown of the spherical symmetry to cubic symmetry, the partial waves of the bound state
amplitude are coupled. An infinite set of coupled integral equations for these partial waves
is derived. These equations have to be solved numerically in order to obtain the binding
energies in the finite volume. The dependence of the energies on the box size is calculated
and the results are explicitly verified to be renormalized. Results for positive and negative
scattering lengths are shown. The effects of higher partial waves are investigated. The
behavior of shallow trimers near the dimer energy as well as deeply bound trimers is studied.
The shallowest state investigated crosses the dimer energy at a certain volume and behaves
like a scattering state for smaller volumes. Numerical evidence for a universal scaling of the
finite volume corrections is provided.

Subsequently, the formalism is extended to systems of three nucleons. This case provides the
main motivation for this work due to its applicability to Lattice Quantum Chromodynamics
(QCD) calculations of the triton. Such calculations always take place inside a finite volume
which makes control over the corresponding effects crucial for an understanding of results
from the lattice. For the triton, there are two coupled channels already in the infinite volume
corresponding to two different spin-isospin combinations. An infinite set of coupled integral
equations for the partial waves of the bound state amplitudes is derived. The renormal-
ization of all results is again explicitly verified. The physical triton inside a finite volume
is investigated as well as the triton spectrum for unphysical pion masses. The former case
qualitatively shows the same behavior as the three-boson case, and the volume dependence
is calculated. The smallest volumes investigated are of the order of magnitude typical for
present day Lattice calculations. The motivation for the latter part is twofold. On the one
hand, Lattice QCD calculations are performed at pion masses larger than the physical one
for computational reasons. On the other hand, it has been conjectured that QCD is close
to the critical trajectory for an infrared renormalization group limit cycle, in which case the
Efimov effect would occur for a critical pion mass. Close to this critical pion mass, the triton
has excited states. The behavior of the ground state and of the excited states inside a finite
volume is investigated for various pion masses around the critical one. The excited states
cross the energy of the bound di-nucleon, as it was already observed for the shallowest bosonic
trimer. The results for the ground state were used to provide strong numerical evidence for
a universal scaling of the finite volume corrections.






Zusammenfassung

In dieser Arbeit wurden gebundene Zusténde von drei Teilchen in endlichen Volumina mit
der Methode der Effektiven Feldtheorie untersucht. Die betrachteten endlichen Volumina
sind kubische Volumina mit periodischen Randbedingungen. Die Effektive Feldtheorie, die
in dieser Arbeit verwendet wurde, verwendet ausschliefllich Kontaktwechselwirkungen und
ist besonders gut geeignet um die universellen, d.h. von den Details der Wechselwirkung
bei kurzen Abstéinden unabhéngigen, Eigenschaften eines Systems zu untersuchen. Ein
spezielles Beispiel fiir eine solche Eigenschaft im Drei-Korper-Sektor ist der Efimov-Effekt,
das Auftreten eines Spektrums gebundener Zustdnde mit einem konstanten Quotienten be-
nachbarter Bindungsenergien.

Im ersten Teil werden Systeme aus drei identischen Bosonen untersucht. Da die sphérische
Symmetrie zur kubischen Symmetrie reduziert ist, sind die Partialwellen der Amplitude des
gebundenen Zustands gekoppelt. FEin System aus unendlich vielen gekoppelten Integral-
gleichungen fiir diese Partialwellen wird hergeleitet. Diese Gleichungen miissen numerisch
gelost werden um die Bindungsenergie im endlichen Volumen zu erhalten. Die Abhéangigkeit
dieser Energien von der Kastengrofle wird berechnet und es wird explizit gezeigt, dass die
Ergebnisse renormiert sind. Es werden Ergebnisse sowohl fiir positive als auch fiir negative
Streuldngen gezeigt. Die Effekte durch die Beimischung hoéherer Partialwellen werden unter-
sucht. Sowohl das Verhalten schwach gebundener Zustiande nahe der Dimer-Energie als auch
tief gebundener Zustdnde wird studiert. Der am schwéchsten gebundene der untersuchten
Zustande tiberschreitet die Dimer-Energie bei einem bestimmten Volumen und verhalt sich
fiir kleinere Volumina wie ein Streuzustand. Numerische Belege fiir ein universelles Skalieren
der Korrekturen durch das endliche Volumen werden présentiert.

Anschlielend wird der Formalismus auf Drei-Nukleon-Systeme erweitert. Dieser Fall liefert
die Hauptmotivation fiir diese Arbeit, da die Ergebnisse auf Berechnungen des Tritons mit
Hilfe der Gitter-Quantenchromodynamik (QCD) angewendet werden kénnen. Solche Rech-
nungen verwenden stets ein endliches Volumen, was Kontrolle iiber die entsprechenden Ef-
fekte unverzichtbar fiir das Versténdnis der Ergebnisse macht. Im Falle des Tritons gibt es
zwei gekoppelte Amplituden bereits im unendlichen Volumen, die zwei verschiedenen Spin-
Isospin-Kombinationen entsprechen. Ein System aus unendlich vielen Integralgleichungen
fir die Partialwellen der entsprechenden Amplituden wird hergeleitet. Es wird wiederum
explizit nachgewiesen, dass alle Ergebnisse renormiert sind. Das physikalische Triton in
einem endlichen Volumen wird ebenso untersucht wie das Tritonspektrum bei unphysikalis-
chen Pionmassen. Im ersten Fall wird die Volumenabhéangigkeit berechnet und qualitativ das
gleiche Verhalten beobachtet wie im bosonischen Fall. Die kleinsten untersuchten Volumina
sind von einer Grofle die typisch ist fiir aktuelle Gitterrechnungen. Die Untersuchung des
zweiten Falls ist zweifach motiviert. Zum einen werden aus numerischen Griinden Gitter-
QCD-Rechnungen stets bei Pionmassen durchgefiithrt die grofier sind als die physikalische.
Zum anderen wurde die Vermutung aufgestellt, dass sich die QCD in der Néhe der kritischen
Trajektorie fiir einen infraroten Renormierungsgruppen-Grenzzyklus befindet. In diesem Fall
wiirde bei einer kritischen Pionmasse der Efimov-Effekt auftreten, und in der Nédhe dieser kri-
tischen Pionmasse besifle das Triton angeregte Zustinde. Das Verhalten des Grundzustands
und der angeregten Zusténde in einem endlichen Volumen wird fiir verschiedene Pionmassen
in der Nahe des kritischen Werts untersucht. Die angeregten Zusténde iiberqueren die En-



ergie des gebundenen Zwei-Nukleon-Zustands, dhnlich dem Verhalten das im bosonischen
Fall fiir den am schwéchsten gebundenen Zustand beobachtet wurde. Die Ergebnisse fiir den
Grundzustand wurden verwendet um starke numerische Belege fiir ein universelles Skalieren
der Volumen-Korrekturen zu liefern.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is known to be the underlying theory of nuclear physics
since almost forty years. It describes the strong interaction as an interaction between fun-
damental fermions, the quarks, that is mediated by vector-bosons called gluons. The notion
that all the hadrons, the strongly interacting particles, observed in nature are composite
objects of quarks and anti-quarks took long to develop. The first step in this direction was
the development of the “Eightfold Way” [GM62, Ne’61] in the early sixties. In it, all known
hadrons are arranged in multiplets of what today is called the SU(3) flavor symmetry. Group
theoretical considerations led to the constituent quark model, where baryons are described
as bound states of three quarks, while mesons are interpreted as quark—anti-quark bound
states [GM64]. The Eightfold Way predicted the up-to-then unobserved Q-particle and its
mass. This prediction was experimentally confirmed a few years later [BT64].

However, two problems remained unsolved. The first was that wave functions of the baryons
seemed to violate the Pauli principle. That is, the wave functions of, e.g., the AT, is
completely symmetric, but should be antisymmetric. To solve this, it was assumed that each
quark comes in one of three colors. It was then postulated that the color wave function of a
hadron is always antisymmetric. This also answered the second question, namely why no free
quarks are observed. A satisfactory explanation of this postulate, that is called confinement,
is to date still not found and maybe the largest unanswered question in QCD.

A striking experimental confirmation for the compositeness of hadrons was provided in 1969
by deep inelastic scattering experiments [BT69b, BT69a]. From these experiments could be
inferred that nucleons contain pointlike charged particles. These particles were shown to
carry the quantum numbers of the hypothetical quarks. This evidence for the existence of
quarks paved the way for QCD. It was formulated by promoting the color symmetry to a
gauge symmetry [FGML73]. The quantization of such non-abelian gauge theories was known
since 1967 [FP67]. In 1973, Gross and Wilczek [GW73] and Politzer [Pol73] proved that
QCD is asymptotically free, i.e. that the effective charge decreases at higher energies. This
explains why the deep-inelastic scattering experiments were able to probe quasi-free quarks
inside hadrons, while on the other hand the strong interaction is indeed strong on the length
scale of fm relevant to nuclear physics.

Since then, many experimental tests have been carried out that all confirm QCD as the
underlying theory of strong interactions. Nonetheless, the determination of nuclear proper-
ties directly from the fundamental interaction of quarks and gluons remains a challenge in
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theoretical physics. In particular, the coupling constant of QCD is too large to allow for a
pertubative treatment of the theory in the energy regime of nuclear physics.

Nuclear physics has therefore resorted to describing the hadrons as effective degrees of free-
dom. Phenomenological models were successfully used to describe nuclear properties. How-
ever, a model independent approach relying directly on QCD was highly wanted. It could be
found with the formulation of Effective Field Theories (EFTs). EFTs employ a separation of
scales to describe the effective degrees of freedom in a model-independent and systematically
improvable manner.

An example for an EFT of QCD, Chiral Perturbation Theory [Wei79, GL84, GL85, BKM95] is
an expansion around the limit of massless quarks in the masses of the quarks or, equivalently,
the masses of the lightest mesons, and in small momenta. This allows to control the pion-
mass dependence of hadronic observables, which will be put to use in the course of this work.
YEFT has been successfully used to describe the masses and the scattering properties of
mesons as well as pion photoproduction off nucleons (see [BMO07] for a review). In recent
years, there has been much effort to derive few-nucleon potentials from a Chiral Effective
Theory (see, e.g., [Epe06]).

A different approach employs the unnaturally largeness of the neutron-proton scattering
lengths compared to the underlying length scale of ~ 1.4 fm given by the inverse pion mass.
This separation of scales is employed by describing the nucleons in an EFT (sometimes called
#EFT) that uses only contact interactions and that corresponds to an expansion in the
natural length scale over the unnaturally large scattering lengths [KSW98a, KSW98b, vK97,
vK99]. The theory was subsequently extended to the three-nucleon systems [BvK98, BHvK9S,
BHvKO00]. All three-nucleon observables depend to leading order only on three parameters.
By fixing these to the two two-body scattering lengths and the neutron-deuteron scattering
length, the binding energy of the triton can be predicted to a remarkable accuracy of 6%
already at leading order [BHvKO00]. Exploiting that calculations in this theory are easier
than in YEFT, the pion-mass dependence of three-nucleon observables were studied in #EFT
with xEFT providing the necessary input parameters [HPPO07]. In the present work, this
program will be extended by placing the three nucleons inside the finite volume.

Such an EFT for resonantly interacting particles has the feature of universality, i.e. inde-
pendence of the details of the underlying interaction at short distances. Therefore, there are
phenomena that can be observed in any physical system with a large two-body scattering
length. For example, if the scattering length is positive, there exists a shallow two-body
bound state. In the np-system, this shallow bound state is identified as the deuteron. More
complicated universal properties are present in the three-body system. For instance, Efimov
predicted in 1970 that a sequence of geometrically spaced three-body bound states exists in
the limit of infinite scattering length [Efi70, Efi79]. For a review on the universal properties
of resonantly interacting few-body systems see [BHO06].

This Efimov effect was experimentally confirmed through its impact on the recombination
rate of ultracold cesium atoms [KMW™05]. In such ultracold atomic atoms, the scattering
length can be tuned by varying an external magnetic field through a so-called Feshbach
resonance. This possibility to experimentally fine-tune the scattering length to unnaturally
large values has resparked the interest in systems of resonantly interacting particles on the
experimental as well as on the theoretical side.



In nuclear physics, the triton and its isospin partner, the 3He nucleus can be interpreted as
Efimov states. In the three-body sector of #EFT, the theory is on the critical trajectory
for an ultraviolet renormalization group limit cycle [BHvKO00]. The EFT for three identical
bosons has the same ultraviolet behavior [BHvK99b, BHvK99a] and will therefore serve as a
model case in this work.

A complimentary approach to the determination of nuclear properties is Lattice QCD. In
this technique, going back to an idea of Wilson [Wil74], a discretized version of QCD in
Euclidean space-time is solved numerically. This requires an enormous computational effort
that is tackled by large CPU clusters dedicated to that task. When converting Lattice QCD
results to physical results, three limits have to be taken. Firstly, the discretization has to
be removed. Secondly, the calculations necessarily take place inside a finite volume. The
possibility to perform a smooth extrapolation to the infinite volume was one of the main
motivations for this work. Thirdly, Lattice QCD calculations are performed at unphysical
quark masses due to numerical restrictions. The EFT approach is well suited to help perform
these limits. The discretization introduces an ultraviolet cutoff that is present in the EFTs
as a regulator anyway. In particular, the pion mass dependence is, as stated above, well
under control in Chiral Perturbation Theory. The control over finite volume effects in the
three-body sector is the scope of this work.

Lattice QCD has recently entered a stage where quantitative predictions become possible. For
a recent review on the status of nuclear physics from Lattice QCD see [BDOS10]. The ground
state masses of the mesons and the baryons can be well reproduced by modern lattice calcula-
tions, while the calculation of excitation spectra remains challenging. In the purely mesonic
sector, the isospin-symmetric pion-pion scattering length was determined with remarkable
precision and agrees well with the value derived from experimental results. For meson-baryon
interactions, only certain channels are at the moment accessible. In particular, pion-nucleon
scattering observables have not been calculated up to now. Lattice calculations of baryonic
interactions are complicated by a strong exponential decay of the signal-to-noise ratio in Eu-
clidean time. In the nucleon-nucleon interaction, the present results indicate natural values
for the scattering lengths. This is in contrast to the unnaturally large values at physical
pion mass. This behavior is explained by a conjecture of Braaten and Hammer [BH03| that
QCD can be tuned to the critical trajectory of an infrared limit cycle by slightly varying
the quark masses or, equivalently, the pion mass. The pion masses investigated in Lattice
QCD are far away from this critical trajectory, therefore the nucleon-nucleon interaction is
not resonant in these cases. Quantitative results for few-baryon systems have only recently
been obtained for the first time [BT09]. A proof of principle for calculations of three-nucleon
systems with the quantum numbers of the triton was provided. As soon as these calculations
reach a quantitative level, the possibility of a smooth infinite volume extrapolation as it is
provided in this work will be crucial for the interpretation of the results.

As an additional motivation for the present work serves the two-body case. Here, Liischer
was able to show that the finite volume dependence of the result is not only an obstacle
but also encodes infinite volume scattering properties [Liis91b, Liis9lal. Liischer’s general
field theoretic approach relies on the fact that the two-body amplitude can be obtained
analytically. Therefore, an analoguous formula for three-body sector, where the amplitude
can in general only be determined numerically, is not to be expected. The finite volume
results presented in this work, however, will implicitly depend on infinite volume scattering
parameters.
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Some properties of three-body systems in finite boxes have been studied previously. For
systems where no bound states are present, Tan determined the ground-state energy of three
bosons [Tan07]. This result has been generalized to systems with N bosons with repulsive or
weakly attractive interactions [BDS07, DS08]. These formulas were put to use in the analysis
of few-boson results from Lattice QCD. Also, systems of three identical fermions in the
unitary limit of infinite scattering length inside a finite cubic box have been studied [PC07].
In this system, there are no bound states in the infinite volume due to the Pauli principle.

Chiral effective field theory has also been implemented on the lattice. Using this theory,
Epelbaum et al. were able to derive several properties of the three- and four-nucleon sys-
tem [EKLMO09]. In particular, they were also able to derive the volume dependence of the
triton energy in their approach.

Cubic volumes are not the only finite volumes that have been considered so far. When
performing experiments with cold atomic gases, the atoms are located inside traps. These
traps can be idealized to a harmonic oscillator potential. For certain atomic species, it is
possible to experimentally tune the scattering length of the atoms by virtue of a so-called
Feshbach resonance. This allows for experimental access to the regime of universal physics.
Therefore, much effort is being put into the study of particles inside such a harmonic oscillator
potential. EFTs are being used to derive, for example, energy spectra of particles with large
scattering lengths inside harmonic oscillator potentials. As a particular example, the three-
particle spectrum at the unitary limit was worked out by Werner and Castin [WC06]. The
generalization to systems of IV particle systems with large scattering length inside a harmonic
oscillator potential is currently in progress.

The present work is focussed on the investigation of finite volume effects for three-body
bound states. The case of three identical bosons will serve as a model case [KH09, KH10].
Subsequently, the formalism is extended to the three-nucleon case.

This thesis is organized as follows. In Chapter 2, the method of Lattice QCD will be in-
troduced as well as Liischer’s formula. In the second part of this introducatory chapter, the
concept of EFT is introduced in detail. The application of EFTs to systems of resonantly
interacting particles is discussed and universal properties of the two- and three-body sector,
including the Efimov effect, are presented in detail. The #EFT as special case for nucle-
onic systems is also described. The finite volume formalism for three identical bosons will
be derived in Chapter 3. Here, also the numerical methods needed to solve for the binding
energies will be discussed. The corresponding results are shown in Chapter 4. In particular,
the possibility of a universal scaling of the finite volume corrections will be investigated. Af-
ter the study of this model case, the formalism is extended to the three-nucleon system in
Chapter 5. Results for the triton are presented in Chapter 6. Apart from the physical triton
in finite volume, the pion-mass dependence of the triton spectrum was studied as well. The
final chapter summarizes the main results and provides an outlook on how to proceed in the
study of finite volume effects in the three-body sector.



Chapter 2

Effective Field Theory and Finite
Volume Theories

The fundamental theory of strong interactions is Quantum Chromodynamics (QCD). This
theory describes the interactions of quarks and gluons. In nature, however, quarks and gluons
are always confined in hadrons. In particular, these are quark-antiquark bound states called
mesons, like the pion, and three-quark bound states called baryons, like the nucleon. The
strong coupling of QCD makes the direct calculation of hadronic properties by a perturbative
approach impossible. In the last decades, two model-independent ways to circumvent this
problem have emerged. The first is to solve a discretized Euclidean version of QCD numer-
ically, an approach called Lattice (QCD, that will be described in more detail in Section 2.1.
Secondly, the Effective Field Theory (EFT) approach has been used to describe the effec-
tive degrees of freedom of the strong interaction, namely mesons and baryons. A general
introduction to Effective Field Theories and their application to nuclear physics is given in
Section 2.2.

2.1 Lattice QCD

The Lagrangian of QCD is given in terms of the quark fields ¢ and the gauge fields A associated
with the color group SU(3) as

_ 1
ﬁQCD = ZQf(l?_ mq)Qf - §trF;wF'uV7 (2'1)
f

with the covariant derivative D, = 0, —igA, and the field strength tensor F},, = 9, A, —
0, A, —iglA,A,]. The summation here is over the six different quark flavors. The Lagrangian
is invariant under the gauge transformations Q(z) € SU(3), where the fields transform as

q — Q(z)q, (2.2a)
Ay — Q2)A, Q0 (z) —1[0,Q(x)] Qf (z). (2.2b)

On the energy scale of hadronization, the coupling constant of QCD is of order 1. This
makes a perturbative treatment of the quark-gluon-interaction leading to confined hadrons

5
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impossible. A non-perturbative way to gain quantitative results on hadron properties directly
from QCD was pointed out by Wilson in 1974 [Wil74]. At present, this technique that goes
by the name of Lattice QCD, is the only way to determine hadronic properties directly from
QCD. For a review on the current status of obtaining nuclear physics from Lattice QCD,
see [BDOS10].

The main idea of Lattice QCD is to rewrite the path integral of QCD
1 s
(©) =5 [ DiD4DAOlg.q, A0 (2.3
7 = / DgDqDAe", S = / dtd*zLqep (2.4)

such that it becomes accessible for a numerical treatment. The strongly oscillating phase
factor e hinders the convergence of the integrals. To remedy this, the theory is analytically
continued to imaginary time. Thus, Lattice QCD is formulated in Euclidean rather than
Minkowski space-time. In imaginary time, the phase fator becomes e ™. For positive action,
this serves as a convergence factor. But still, the path integral measure corresponds to an
infinite number of integrations. For the numerical calculations, space-time therefore has to be
discretized. The lattice spacing will be denoted b. A typical size for the lattice spacing is at
present b < 0.12 fm. Due to the finiteness of computer memory, only a finite number of lattice
points can be used. This places every lattice calculation inevitably inside a finite volume.
Most calculations are performed in a cubic volume with periodic boundary conditions, while
the extend in Euclidean time is in general much larger. State-of-the-art lattice calculations
use volumes of 323 x 256 in lattice units. In physical units, typical volume side lengths for
present lattice calculations are 2.5 — 4 fm.

The finite lattice spacing introduces a minimal accessible wave length. It therefore corre-
sponds to an ultraviolet cutoff that regulates the theory. Such a cutoff is always present in
EFT. Therefore, effects from the finite lattice spacing are not considered in this work. The
finite volume, on the other hand, modifies the infrared physics of the system. These effects
have to be removed by extrapolating to the infinite volume.

The fermions in this approach are residing on the lattice sites. The discretization of fermions
is a challenging task because of the so-called fermion doubling problem. A naive discretization
of the fermion field yields 16 light fermion fields. In order to resolve this, the fermionic part
of the action has to be modified. Several of these lattice fermion actions are now on the
market. Of special interest in modern lattice calculations are fermionic actions that respect
a Lattice version of chiral symmetry. Examples are Kogut-Susskind fermions, domain wall
fermions and overlap fermions.

The gauge fields are given by elements of the gauge group residing on the links between
adjacent lattice sites. Gauge invariant quantities can be formed by building closed loops. In
particular, the squares with minimal area are called plaquettes. The gauge action can be
given by summing the real part of the trace of the plaquette over all possible plaquettes. The
continuum limit of this action is indeed the Yang-Mills action, as the plaquettes are reduced
to Wilson loops if the lattice spacing goes to zero. In the lattice path integral, the integration
over the gauge fields has to be replaced by an integration over the gauge group for each link.
The integrational measure is given by the Haar measure of the group, which guarantees gauge
invariance.
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The functional integration over the fermionic part of the action can be carried out by recog-
nizing that this part of the Euclidean QCD action is always a quadratic form gD(U)q of the
fermion fields. The price for this, however, is that in this case the calculation of the fermion
determinant det(D(U)TD(U)) is required. When calculating expectation values of fermionic
operators, it is necessary to invert the fermion matrix D(U). Both tasks are numerically
expensive. Even worse, the inversion problem is the more ill-conditioned the smaller the
quark masses are. For this reason, Lattice QCD calculations are carried out at quark masses
greater than the physical ones. Higher quark masses correspond to larger pion masses, as
stated by the Gell-Mann-Oakes-Renner relation m, ~ m2. Pion masses of about 250 MeV
are typical in present day lattice calculations. The remaining integration over possible gauge
field configuration still involves ~ 10° degrees of freedom. Integrations of this dimesionality
are performed in a Monte Carlo approach.

Current Lattice calculations are able to reproduce ground state masses of mesons and baryons
to good accuracies. Two-body states are also investigated. The extraction of two-body
scattering parameters is made possible by Liischer’s formula that will be discussed in the
following.

By generalizing a result from non-relativistic quantum mechanics to quantum field theory,
Liischer was able to derive a powerful connection between the volume dependence of two-
body states inside finite cubic volumes on the one side and the scattering amplitude in
infinite volume on the other side [Liis91b]. Before stating Liischer’s formula, it is important
to understand how energy levels and, in particular, masses can be extracted from correlation
functions.

Inside a finite volume, momentum quantization dictates that the energy spectrum is discrete.
In particular, the scattering continuum in the infinite volume corresponds to well separated
energy levels. The position of the finite volume scattering levels depends on the size of the
volume under consideration.

The pion two-point function, C+(t), is generated by a source and a sink for a pion of the
form 7 (%, t) = u(Z, t)y5d(T,t) by

Coi(t) = Z(O\w‘(f, )7 (0,0)|0), (2.5)

where the sum runs over all lattice sites. This corresponds to a projection on zero momentum
states. The time evolution of the pion fields is given by the Hamiltonian. Inserting a complete
set of states yields

e—mﬂt

2 large t 2mn ’

—Ent
Cre (1) = D 5 {00 (&,0)|m) (nl* (@, 0)]0) —> A
n z

where in the large t limit only the contribution from the lowest lying state survives. This large
time behavior allows to extract the pion mass by fitting an exponential decay. A different
method is to identify a plateau in the so called Effective Mass function, which is defined
as the logarithm of the ratio of correlation functions at different times. It is important to
note that, in practice, the signal-to-noise ratio strongly decreases with time. Therefore, the
simulations parameters always have to be tuned such that there is a large enough window in
Euclidean time that allows to clearly identify such a plateau.
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Figure 2.1: The function S(x) as it appears in the version of Liischer’s formula given in
Eq. (2.7).

In order to investigate two-body scattering states, four-point correlators like

Crine(t) = <7r‘(f, (7, t)7r+(6,0)7r+(6,0)>

-
"L.)y

(2.6)

have to be computed. In large volumes, the difference between the energies of the interacting
and non-interacting two-body levels is supposed to be small in comparison to the total energy
of the system, which is dominated by the meson masses. This difference is extracted from a

ratio of correlation functions by

Crtnt(t) _AEt
B 0t
C+ (t)CWJr (t) large t 0¢

This shift is connected to a momentum p by

AEy = Ey — 2m, = 2\/p? + m2 — 2m,.

For this p-value, pcot d(p) can be obtained from Liischer’s formula

1 oL\ 2 <Ay
pcotd(p) = ES ((g) ) ; S(z) = ;ZB e AmA. (2.7)

For a short introduction into scattering theory that includes the definition of the scattering
phase §(p), see Subsection 2.2.3. In the definition of S, the limit A — oo is implicit. The
function S is plotted in Figure 2.1. By varying the volume, different values of p are obtained
and consequently it is possible to map out the momentum dependence of the scattering phase
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shift. The formula has been derived in a fully relativistic framework. However, there are two
caveats. Firstly, the formula only holds below any inelastic thresholds, which would render
the scattering phase complex. Secondly, in the derivation was assumed that the volume is
large compared to the range of the interaction. Since this range is for nucleonic interactions
given by m_!, Liischer’s method can only be applied to lattice calculations with m,L > 1.

Liischer’s method is frequently applied when studying two-body scattering in lattice calcula-
tions. As an example, results for the I = 2 pion-pion scattering length a!=2 are quoted here.
This system is very cleanly accessible for Lattice calculations, allowing for a very precise
extraction of al=~2. The value given by the NPLQCD collaboration is [BT08]

mral=? = —0.04330 £ 0.00042,

ihaviviy

while a recent determination by the ETM collaboration yielded [FJR10]

myal=? = —0.04385 + 0.00028 =+ 0.00038,

where the first error is statistical and the second is an estimate of systematic uncertainties.
There are no direct experimental constraints for these values. However, the scattering length
can be determined very precisely from high energy scattering data in a dispersion theoretical
approach by virtue of the Roy equations [Roy71]. The result is [CGLO1]

myal=? = —0.0444 + 0.0001,

T

which is in good agreement with both values obtained from the Lattice.

The nucleon-nucleon interactions were also studied in Lattice calculations. For the pion
masses used in these calculations, however, the accidental fine tuning that renders the NN
scattering lengths unnaturally large is not expected to be present. Indeed, the calculations
yielded scattering lengths of natural size [BBOS06]. The strong pion-mass dependence of the
N N-interactions can be understood from a renormalization group point of view, that will be
explained in more detail in Section 6.2.

The EFT approach described in the second part of this chapter is well suited to assess the
effects of finite volume physics. The form of Liischers formula given above was derived in an
EFT for two-nucleon interactions by Beane et al. [BBPS04].

Liischer’s method of phase shift determination can be extended in order to obtain resonance
properties from the volume dependence of energy levels on the lattice [Liis91a]. Recently,
this has been used to study the A(1232) resonance [BLMRO0S8, BLRMOS].

First results of three- and four-body systems from Lattice QCD are now reported. A proof
of principle for lattice calculations in the triton channel was recently provided [BT09]. As
can be seen from Figure 2.2, a conclusive extraction of the triton binding is not yet possible.
Nonetheless, with the increasing computational resources dedicated to this field, Lattice QCD
might be used for studies of few-nucleon systems at physical quark masses a decade from now.

2.2 Effective Field Theory (EFT)

Effective Field Theory (EFT) is a powerful tool that can be applied to a vast variety of physical
systems. In the following, the general concept of Effective theories will be introduced. The
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Figure 2.2: Effective Mass plot for the difference between the ground state energy in the
triton channel and three times the nucleon mass. The band corresponds to the identified
plateau. Figure taken from [BDOS10].

application of this approach to the theory of strong interactions is discussed in detail in
Subsection 2.2.2. The EFTs under consideration in this work describe systems of resonantly
interacting particles, like the few-nucleon system at very low energies. Such systems exhibit
universal properties, such as the Efimov effect, that will be highlighted in Subsection 2.2.3.

2.2.1 An Introduction to Effective Theories

Effective Theories provide a model-independent way to describe low-energy properties of a
physical system by exploiting a separation of scales in the problem. This separation allows
to describe the relevant low-energy degrees of freedom and their interactions explicitly, while
the unresolved short-distance physics are absorbed into a few low-energy constants.

As an example, consider an object with mass m in a height h above earth’s surface. Its
potential energy can be well described by V' = mgh, where ¢ is an acceleration constant.
This, however, is just an Effective Theory for Newton’s gravitational theory. This theory
yields Wewton = —GMm/(R + h), where G is the gravitational constant, and M and R are
mass and radius of the earth. Since it is assumed that h < R, there is a separation of scales
that can be exploited. Expanding VNewton in powers of h/R yields an irrelevant constant,
a linear term m(GM/R?)h and corrections of higher order. The combination GM/R? gives
just the acceleration constant g.

This small example already illustrates several key features of Effective theories. First of all,
the separation of scales alluded to above is used to construct one or more small dimensionless
parameters. The small parameters provide a way to keep track of the accuracy of the Effective
Theory by a so-called power-counting scheme. The power-counting is what makes Effective
Theories systematically improvable, because the corrections from higher order terms become
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smaller order by order. Moreover, this provides a way to estimate the accuracy of the result,
which is of the order of the first omitted term, namely (h/R)? in the example above. Secondly,
it can be seen how effects from high-energy scales are incorporated into a low-energy constant,
namely g. The low-energy constants can in principle be calculated from the fundamental
theory. In practice, however, this is not always possible because the fundamental theory is
not known or because the underlying theory is too complicated. An example for the first case
is the Standard Model, which is supposed to be an Effective Theory itself. An example for
the second case is Quantum Chromodynamics (QCD), the theory of strong interactions, that
will be discussed in more detail below. In these cases, the low-energy constants have to be
determined by matching observables to experimental input. In nuclear physics, also results
from Lattice QCD might be used to fix the low-energy constants [Nec08].

Another reason for the tremendous success of the Effective Theory approach is universality.
Because the short-range behavior of the theory is hidden in the low-energy constants, systems
with similar long-range behavior are described by the same Effective Theory. The results from
such a theory are then universal in the sense that they are valid for all systems with this
long-range behavior. This allows for a wide range of applications of the EFT technique to
systems with very different length scales, such as particle physics, nuclear physics and physics
of ultracold gases and Bose-Einstein condensates.

Effective Field Theory (EFT) is the application of the Effective Theory method to a field
theory. Historically, EFTs have often been found before the corresponding fundamental the-
ory was discovered. A particular example for this is found in the theory of weak interactions.
In 1934, Fermi proposed a four-fermion contact interaction as a model for weak interactions.
Three decades later, Glashow, Salam and Weinberg discovered electroweak theory, in which
the weak interaction is mediated by the exchange of W- and Z-bosons. Due to their large
masses, these fields can be integrated out reproducing just Fermi’s contact interaction with
the correct coupling constant. Therefore, the success of Fermi’s theory could be explained a
posteriori by the fact that Fermi guessed the correct Effective Theory for weak interactions.
The technique of integrating out heavy intermediate fields will be revisited in this work when
pionless Effective theory will be introduced.

2.2.2 EFTs of QCD

Historically, the EFT approach was formalized in the field of nuclear physics. The motivation
for this was to overcome the stage of phenomenological descriptions of hadronic and nuclear
properties and establish model-independent formulations of the strong interactions for the
effective degrees of freedom, namely the hadrons.

There are two EFTs describing the strong interaction in different energy regimes. These are
Chiral Effective Field Theory (YEFT) and the pionless EFT (#EFT). The former exploits the
smallness of the light quark masses in QCD in comparison to hadronic scales. In the limit of
massless light quarks, the QCD Lagrangian (2.1) exhibits a SU(3) 1, xSU(3) g symmetry called
chrial symmetry. This symmetry is broken spontaneously as well as explicitly, the latter due
to the quark mass terms. The spontaneous breaking of chiral symmetry gives rise to massless
Goldstone bosons. These are identified with the pions, kaons and the 7 particle. All of these
obtain masses as soon as quark masses are introduced. In yEFT, hadronic observables are
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expanded around the chiral limit in powers of the small parameters
m7r7p
47 frymy,’

where the low-energy scales are the small pion mass m,; and the typical momentum p of
the considered process. The high-energy scales are given by the pion decay constant f, =
92.4 MeV and the mass of the p meson m, ~ 770 MeV. The expansion in the pion-mass is
equivalent to an expansion in quark masses due to the Gell-Mann—Oakes—Renner relation,
m2 ~ my.

In the purely mesonic sector, YEFT is perturbative. The inclusion of baryons introduces a
new energy scale in to the problem, specifically the baryon mass in the chiral limit. This
demands to be taken into account by the power counting scheme. To present date, several
ways to define a consistent power counting scheme in the presence of baryons are on the
market. Nonetheless, the single-nucleon sector is also accessible for a perturbative treatment.
This is not the case for two or more nucleons, as can be seen by the existence of bound
states. These states correspond to poles in the scattering amplitude, a behavior that can not
be generated in a perturbative expansion.

Summarizing, YEFT provides a systematic access to the quark mass dependence of hadronic
observables. This will be put to use in Section 6.2 where the pion-mass dependence of the
triton spectrum in finite volume will be discussed.

The #EFT is the specifically built to deal with the fact that two nucleons interact resonantly.
Resonantly interacting means that the two-body scattering length is large compared to the
natural length scale of the system. This applies not only to nuclear physics but also, for
example, to ultracold gases of certain atomic species. The EFTs describing systems of reso-
nantly interacting particles share certain universal properties. Therefore, the generalities of
this special class of EFTs and its application to nuclear physics, namely #EFT, are described
in the following subsection.

2.2.3 EFTs for resonantly interacting particles

The two-body scattering length is a parameter describing the low-energy scattering properties
of a system. For a precise definition, some basic concepts of scattering theory will be reviewed
in the following. The stationary wave function for an elastic scattering process
- elkr
Upl) = 7 f(6)S

is the sum of an incoming plane wave and an outgoing spherical wave. In this expression, r =
|7 and k = |k|. The parameter k relates to the energy of the scattering process by E = k2 /2m.
The factor fi(6) which describes the angular distribution of the outgoing wave is called the
scattering amplitude. The scattering amplitude completely determines the differential cross
section via

(2.8)

do

— = |fx(0)*. 2.9

&= 1fu0) 29)

The dependence of the scattering amplitude on the scattering angle can be expanded in
Legendre polynomials, yielding the so-called partial-wave expansion

Fe(0) = (20 + 1) fo(k) Py(cos 0). (2.10)

£=0
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Probability conservation, or unitarity in the field theory language, poses a powerful constraint
on the form the partial amplitudes fy. Exploiting this constraint, they can be shown to be

of the form )

fe(k) = W7

where the functions §, are known as scattering phase shifts. The phase shifts are real for
elastic scattering. For low scattering energies, i.e. near the threshold, the phase shifts behave
as 0p ~ k2T1. Accordingly, the dominant contribution near threshold comes from the ¢ = 0-
or s~-wave. The combination k cot dy is then finite and can be expanded in even powers of the
small quantity k as

(2.11)

1 1,5 2n
keotdy = ——+ -k +) Pk (2.12)
n=2

This expansion is called the effective range expansion. The parameters of this expansion are
the scattering length a, the effective range rg and the shape parameters P,,. For £ # 0, similar
expansions exist for the quantities k2t cot §y. At threshold, the cross section is completely
determined by the scattering length to be ¢ = 4mwa? for distinguishable particles and twice as
large for indistinguishable particles.

In order to decide whether a given scattering length is large, it has to be compared to the
natural length scale of the problem. For low-energies, the scattering amplitude fi can be
expanded in powers of the momentum k. Since f; has the dimension of a length, a length
scale is included to make the expansion coefficients dimensionless, yielding

(fe/1) = ao + a1 (k1) + ag(k)* + ... (2.13)

For a generic potential, there exists a length scale [ such that the coefficients a,, are of order 1.
This length scale is called the natural low-energy length scale.

A scattering length that is much larger than the natural low-energy length scale of the system
is called unnaturally large. There are several examples for systems with unnaturally large
scattering lengths. A bosonic example is a system of “He atoms that interact via the van der
Waals force. The natural length scale for this interaction of He atoms is given by l,qw =~ 10ag,
where ag is the Bohr radius. The scattering length, on the other hand, is a ~ 200a¢ and
therefore an order of magnitude larger. Other examples for atoms with unnaturally large
scattering length are ®°Rb, '33Cs and the triplet channel of %Li. In the scattering of a-
particles, the scattering length a ~ 5 fm is significantly larger than the natural length scale
[ =~ 1.4 fm set by one-pion exchange. As has been stated, the unnaturally large scattering
length present in both channels of the neutron-proton interaction makes it possible to apply
this EF'T also to N N-interactions as will be described below.

In all of the previous examples, the unnatural size of the scattering length is the result of an
accidental fine tuning. The fundamental constants of nature have values in such a way that
the long range part of the interaction is dominated by the unnaturally large scattering length.
There are also ways to tune the scattering length to an unnaturally large value by adjusting
experimental parameters, a technique called experimental fine-tuning. A prominent example
where such an experimental fine tuning is possible are Feshbach resonances. In systems where
a Feshbach resonance is present, an external magnetic field can be used to tune the scattering
length over many orders of magnitudes. This method has become widely used for the study
of universal properties in ultracold atomic systems in the course of the last years.
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If an unnaturally large scattering length is present, this separation of scales can be well
exploited by describing the system by an Effective Field Theory. The leading order of this
EFT is given by setting the expansion parameter [/a to zero. This can be achieved by taking
two limits. The resonant limit is taken by letting a — 400, depending on the sign of a.
This limit is most useful to study universal properties of the system, since the leading order
EFT becomes scale-independent. The scaling limit, which will be used throughout this work,
corresponds to setting [ = 0 in leading order and leaving the scattering length unchanged.
The advantage of this formulation is that the physical scattering length is reproduced already
at leading order.

In the scaling limit, the interactions are reduced to contact interactions. To leading order,
these contact interactions are momentum-independent. This corresponds to truncating the
effective range expansion (2.12) after the first term. Accordingly, leading order scattering is
described by the scattering length alone. Because of this, the scaling limit is sometimes also
called the zero-range limit.

When setting k cot 09 = —1/a, the scattering amplitude fy as given in Eq. (2.11) has a pole
at k = 1i/a for positive scattering length. This pole corresponds to a shallow two-body bound
state with binding energy

h2

By=——s.
ma

(2.14)

This binding energy obtains corrections when incorporating higher orders of I/a into the
theory.

In the three-body sector, systems in the scaling limit also exhibit universal properties. For
illustration, the variable K = sgn(F)+/mE /h? representing the energy of the system is plot-
ted against the inverse scattering length for a system of three identical bosons in Figure 2.3.1
Note that both axes are scaled by a power 1/4 in order to show more of this plane. The K = 0
axis is the threshold for 3-atom scattering, denoted AAA. For positive scattering lengths, the
shallow dimer described above is the threshold for the breakup of three-body bound states.
For energies greater than the dimer binding energy, scattering between a single atom and a
physical dimer, denoted AD, is possible. Of particular interest for the present work is the
spectrum of three-body bound states, or trimers. There are infinitely many trimers present
in this theory. A specific physical system has a fixed value of the scattering length a, cor-
responding to a vertical line. Where this line intersects the trimer branches, a three-body
bound state is present. The resonant limit corresponds to the K-axis. In this limit, the sys-
tem contains infinitely many trimers with an accumulation point at threshold. Moreover, the
binding energies E}") are spaced geometrically and the ratio is given by a universal number,
namely

E(n+1)
%)zﬁmzma (2.15)
Er

The universal constant sy has a numerical value of 1.00624 ... This remarkable behavior of

the trimer energies is called the Efimov effect and was predicted already in the 1970s. It was
observed experimentally for the first time a few years ago using ultracold atomic gases that
were tuned to the resonant limit with the help of a Feshbach resonance. The Efimov effect

Because such a theory is prominently used in the description of ultracold atomic gases, the bosons will be
referred to as atoms in the following. Accordingly, the shallow two-body bound state described in the previous
paragraph will be called dimer.
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bK

AD

1/a
) AD

Figure 2.3: The plane spanned by the inverse scattering length 1/a and K =
sign(E)(m|E|/h?)'/? for the 3-body problem. The allowed regions for atom-dimer scattering
states and three-atom scattering are marked AD and AAA, respectively. The lines labeled T’
are the infinitely many branches of Efimov trimers. The shaded area marks the threshold for
trimer breakup. Note that the axes have been scaled in order to show more trimer branches.

is the signature of a discrete scaling symmetry in the three-body sector. A single three-body
parameter is needed to fix the position of one of the trimer branches and therefore, because
of the discrete scaling symmetry, all trimer branches. In the EFT formulation, this discrete
scaling symmetry means that the EFT is close to an ultraviolet renormalization group limit
cycle. Accordingly, there will be need for a single three-body input to determine the cutoff
dependence of the three-body interaction. This will be discussed in detail in Section 3.1.

In the following, it will be shown how to apply the previously described approach in order
to describe the interaction of two or more nucleons, yielding the so-called #EFT. Because
of isospin symmetry, there are two independent two-body scattering lengths governing the
N N-interaction in few-nucleon systems. They correspond to proton-neutron scattering in the
isospin-triplet 1.5y and isospin-singlet 3S; channel and are denoted as and a;, respectively.
Experimentally, they are found to be a; = —23.8 fm and a; = 5.4 fm. Both are large
compared to the natural length scale of NN-interactions which is determined by the pion
mass via [ = h/(myc) =~ 1.4 fm. As described above, an unnaturally large positive scattering
length implies the existence of a shallow two-body bound state. In the 3S; channel, this bound
state is identified as the deuteron with its small binding energy By = 2.2 MeV. Comparing
this value to the prediction from Eq. (2.14), yields a discrepancy of 37%. This shows the
importance of range corrections in this channel.

The description of nucleonic interactions by this EFT naturally extends to the three-nucleon
sector along the lines discussed before. The Efimov trimers discussed there are in this ap-
proach identified with the triton and the *He nucleus. In the latter, the Coulomb interaction
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between the two protons is important. Therefore, it will not be considered in this work. As
described above, a single three-body input is needed to fix the Efimov spectrum. By using
the neutron-deuteron scattering length as input, the binding energy of the triton is predicted
to an accuracy of 6% already at leading order. In the calculations presented in this work, the
input will mostly be given by the triton binding energy in infinite volume.



Chapter 3

EFT for three identical bosons in
finite volume

In this chapter, it is shown how to apply the framework of Effective Field Theory as described
in the previous chapter to the problem of three identical bosons. After a short review of
the infinite volume case, the development of the finite volume formalism is described in
detail. Starting from the effective Lagrangian, an integral equation for the central three-
body quantity, namely the boson-diboson scattering amplitude, is derived. After taking into
account the consequences of the cubic symmetry of the finite volume, a set of coupled integral
equations describing three-boson bound states is obtained. In the final section, the numerical
methods needed to calculate binding energies from these equations are discussed in detail.

3.1 Infinite volume

In this section, the treatment of bound-states of three resonantly interacting identical bosons
in infinite volume within the framework of Effective Field Theory is presented. A detailed
review can be found in [BH06].

The most intuitive way to describe a system of three identical bosons that interact resonantly
is to use a Lagrangian density including 2- and 3-boson contact interactions:
. 1

Econtact = TZJT <Zat + §V2> ¢ - 9742(1/1%)2 - %(W?ﬁ)g (31)
The only degree of freedom in this Effective Field Theory is the boson field . For simplicity,
units are chosen such that 7 =m = 1 here and in the following. However, it is very difficult
to numerically calculate observables from this Lagrangian. In practice, it is useful to employ
the fact that the 2-body subsystem is solvable analytically. This can be done by including
an auxiliary diboson field d [BHvK99b, BH06]. The Lagrangian then reads to leading order

. 1 g2 g2 g3
— ot Z\2 J2 at g I2 [ gta2 _ I3 gt )T
L=1 <28t + 5 V > P+ 1 d'd 1 <d v+ h.c.) 36d AT, (3.2)

By solving the equation of motion for the field d and inserting the solution back into Eq. (3.2),
it can be seen that this Lagrangian is indeed equivalent in the 2- and 3-body sector to the one

17
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Figure 3.1: Feynman rules for the Lagrangian in Eq. (3.2).
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Figure 3.2: Dressing of the bare dimer propagator with bosonic loops. The thick solid line
depicts the full dimer propagator.

given in Eq. (3.1). This Lagrangian corresponds to the zero-range limit. Corrections from
finite range can be taken into account by including higher order terms into the Lagrangian.

The Feynman rules derived from the Lagranian (3.2) are shown in Fig. 3.1. The bare dimer
propagator is a constant, corresponding to no propagation in space or time. By dressing
this quantity with bosonic loops as shown in Fig. 3.2, one obtains the full dimer propagator
when solving the corresponding integral equation. The loop integration has to be regulated
by a momentum cutoff. The explicit dependence on the cutoff and the two-body coupling
constant go can be eliminated by a renormalization procedure in favor of a low-energy datum.
This can be the two-body scattering length a or the binding momentum of the physical dimer,
if applicable. The resulting full dimer propagator D is

-1
D(E) = 32—”[1 -Vv-FE

3.3
g5 |a (33)

For a > 0, this propagator has a pole at F = —1/a?, which is just the leading order result
for the energy of the physical dimer state.

The central quantity in the three-body sector of this EFT is the boson-diboson scattering
amplitude. It determines all three-body observables and is given as the solution of an inho-
mogeneous integral equation, depicted diagramtically in Fig. 3.3. For the treatment of this
integral equation, it is of practical use to put the bosonic legs on-shell while the diboson
legs remain off-shell. This introduces the total energy of the system, F, as an additional
parameter. The loop integrals have again to be regulated by a cutoff. The resulting cutoff
dependence is compensated by making the three-body coupling constant g3 cutoff dependent
as well. For convenience, a dimensionless function H(A) is introduced by setting

93 = ——5 H(A). (3.4)
By investigating the ultraviolet behavior of the theory it can be shown that H depends
log-periodically on A via [BH06]

cos [sg log(A/A,) + arctan sg
cos [sp log(A/A.) — arctan sq]

H(A) = (3.5)
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Figure 3.3: Integral equation for the boson-diboson amplitude. The single lines denote the
boson propagator and the double lines denote the full dimer propagator.

Here, sg ~ 1.00624 ... is a universal constant and A, =~ 2.62k, is a three-body parameter
that can be fixed from a trimer binding energy or any other three-body datum. The choice
of A, fixes the position of the Efimov trimer branches as shown in Fig. 2.3. Rescaling A,
by a factor exp(m/sg) leaves all observables invariant. Up to this freedom, the dimensionless
combination A,a characterizes a given system. This behavior of the coupling constant comes
about because the three-body sector of the theory in the resonant limit lies on the critical
trajectory of an ultraviolet renormalization group limit cycle.

In order to illustrate the RG limit cycle, consider the dimesionless three-body coupling

For several values of a and Ay, the A-dependence of g3 is shown in Fig. 3.4. By letting
A — o0, the trajectories mapped out for the different physical systems are all focused on the
limit cycle given by H(A), given by the solid line.

Bound states appear as poles in the boson-diboson scattering amplitude at the trimer binding
energy. Matching the residues of this pole on both sides of the integral equation and projecting
on s-waves yields a homogeneous integral equation for the bound state amplitude that serves
as a consistency condition. Values of the energy parameter F, for which this integral equation
has a solution, are interpreted as trimer binding energies. The resulting trimer spectrum is
the Efimov spectrum that has been described in the previous chapter. The question how this
spectrum changes inside a finite cubic volume is one of the main motivations for the present
work.

3.2 Finite volume

In this section, the derivation of an infinite set of coupled equations for the partial waves of
the bound state amplitudes in finite volume is presented. Placing a system inside a finite
volume leads to the quantization of momenta. Along with this comes the breakdown of the
rotational symmetry of the infinite volume to the point symmetry of the finite volume. The
consequences of these modifications are described in detail in the following.
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Figure 3.4: RG trajectories for different physical systems characterized by a fixed value of A,
and several values of the scattering length a. Shown is the dimensionless 3-body coupling as
a function of the cutoff. The solid line is the RG limit cycle given by H(A). For A — oo, the
trajectories are approaching the limit cycle. Figure taken from [BHOG].

3.2.1 Consequences of momentum quantization

The finite volumes considered in this work are cubic boxes with side length L and periodic
boundary conditions. Inside such volumes, momenta are quantized and can only take the

discrete values
L 2T, 3
p=—imn,nel. (3.6)
L
There is now a minimal accessible momentum. Accordingly, the infrared properties of the
system are modified. On the other hand, the finite volume does not affect the ultraviolet
behavior of the amplitudes. Therefore, the renormalization of the theory is the same in the
infinite and the finite volume case. Of course, this statement only holds under the premise
that the momentum cutoff A is large compared to the momentum scale set by the size of the
volume, namely 27 /L, such that the infrared and the ultraviolet regime of the theory are
well separated. In the numerical calculations presented in this work, the renormalization was
done in the infinite volume and the consistent renormalization of the finite volume results
was always verified explicitly.

As in the infinite volume case, all informations on physical observables in the three-body
sector are encoded in the boson-diboson scattering amplitude. This amplitude is determined
by the same inhomogeneous integral equation depicted in Fig.3.3 as in the infinite volume.
But, due to momentum quantization, the momenta running around in the loops can only
take discrete values. Accordingly, a discrete sum over the loop momenta has to be performed
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instead of a continuous integration. The summation has to be regulated by a momentum
cutoff A.

For the diboson lines in the three-body equation depicted in Fig. 3.3, the full, interacting
diboson propagator D has to be used. This quantity corresponds to the exact two-body
scattering amplitude. This quantity has to be recalulated in the finite volume case since its
derivation involves a loop integration. This integration is also replaced by a discrete sum
that can be evaluated analytically. For a diboson with energy FE, the propagator is given by

-1

pE) =22 Ry L Z Lav=r| (3.7)
#6

In the limit . — oo, this expression reduces to the full dimer propagator in the infinite
volume case given in Eq. (3.3).

Having obtained the full diboson propagator, the integral equation for the boson-diboson
scattering amplitude can be written down explicitly. Using the diagrammatical representation
in Fig. 3.3 and the Feynman rules in Fig. 3.1 derived from the effective Lagrangian (3.2), one
obtains

7 92 1 93

A -Gz

+/dQO _32

~ 27rZ3

[ 1 93
4 E— p2/2—qO—(p+d)2/2
D(E —qo + ¢*/4)

X A(7, k; B).
q0 — ¢%/2 (75 E)

Here, p’ (E) is the momentum of the incoming (outgoing) diboson, while the momentum of
the incoming (outgoing) boson is —F (—k). The bosonic legs have been put on shell but the
diboson legs remain off-shell. This introduces the total energy E of the system as a parameter
of the equation. The integration over the unquantized loop energy can be performed by virtue
of the residue theorem. This yields the sum equation

i 2 i 8 . Lo
AR E) = -2 Ze(0. ) + 75 Y. Ze(.0d(e BJAG F B). (3.9)
qe2rz3
with L OH(A
Zp(p.k) = [(p2+ﬁ-12+ k2—E) + 152)], (3.10)

where H(A) is given in Eq. (3.5), and d(¢; E) = ?’;—JD(E — 3/44¢%).
2

If the energy FE is near a trimer energy Eén) < 0, the amplitude A exhibits a simple pole and

the dependence on the momenta separates:

A(p, k; E) — E(ﬁ)E( )) + regular terms, as E — E?S"). (3.11)
— L3
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Matching the residues on both sides of Eq. (3.9), the bound-state equation

F(p) = L3 > 2y (0.0 dla: BS) F(@) (3.12)

qe 271 73

is obtained. This equation serves as a consistency condition. Values of the energy F, for
which this homogeneous sum equation has a solution, are identified with the energies E?()") of
the trimer states.

3.2.2 Consequences of cubic symmetry

In the infinite volume case, only s-wave bound states are formed. However, in a finite cubic
volume, the spherical symmetry of the infinite volume is broken to a cubic symmetry. In
the language of group theory, the infinitely many irreducible representations of the spheri-
cal symmtery group O(3) are mapped onto the five irreducible representations of the cubic
group O. The representations of the spherical symmetry group are now reducible and can
therefore be decomposed in terms of the five irreducible representations of the cubic group.
On the other hand, a quantity v, transforming according to the irreducible representation s
of O can be written in terms of the basis functions of the spherical symmetry, i. e. the
spherical harmonics Y7, via

Ys(F) =Y Run(r) Ko (7) Z Ra(r
0t

, (3.13)

where 7 = 7/|F] and t is an additional index needed if the representation labeled by ¢ ap-
pears in the irreducible representation s more than once [vdLB47]. The linear combinations
Ky of spherical harmonics are called “kubic harmonics” [vdLB47]|. The values of the coef-
ficients Cézzn are known for values of ¢ as large as 12 [AC65]. Details on the construction of
these functions together with the group theoretical background are presented in Appendix A.

In order to make contact with the infinite volume formalism, Eq. (3.12) is rewritten using
Poisson’s resummation formula in three dimensions. This identity states that, when summing
over all possible integer vectors, the sum over function values equals the sum over the Fourier

transformed function, i.e.
S ry =" fm), (3.14)

neL3 mez3
where f = Jps d3y 27V £ (i) is the Fourier transform of f. Applying the identity (3.14)
to Eq. (3. 12) yields
F(p) = 7T2 > / dy eI Z 00 (0, 5)d(y: E) F(@). (3.15)
neL3

The term with 7 = 0 yields the infinite volume equation , while the other terms of the infinite
sum may be seen as corrections due to momentum quantization and the breakdown of the
spherical symmetry. The explicit recovery of the infinite volume term is useful for bound
states, since in this case the analytic structure of the amplitude, i.e. the pole at the binding
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energy, is identical and only the position of the pole is changed. This approach may be
inappropriate for states belonging to the continuous scattering region of the infinite volume.

In order to evaluate the angular integration in Eq. (3.15), all quantities with angular depen-
dence are expanded in terms of the basis functions of the irreducible representations of O(3),
namely in spherical harmonics. The amplitude F itself is assumed to transform under the
trivial representation Ay of the cubic group, since the £ = 0 representation is solely contained
in A;. The amplitude can therefore be written as

l
FB) =Y Fulp)Ka,up Zth p) Y, Y (). (3.16)

0.t m=—/

The sum runs over those values of ¢ associated with the A;-representation of O. The first
values are £ = 0,4,6,8,... Since the first occasion where an /-value appears more than once
is £ = 12, the summation over the multiplicity and hence the index ¢ will be suppressed in
the following. Also, the index A; will be dropped.

The only angular dependence of the quantity Zg(p,q) is on the cosine of the angle 6
between p' and ¢. Therefore, Zg(p, ¢) can be expanded in Legendre polynomials P (cos 057).
These polynomials can in turn be expressed in spherical harmonics via the addition theorem,
yielding

o0

Z y)Pr(cos Oz Z Z(Z

=0

P)Yem(9)-  (3.17)

The exponential function in Eq. (3.15) can be rewritten using the identity

3¢
@¢

o) 14
m Y 1 Ge(LIly) Y Vi (R)Yam (D), (3.18)
/=0

m=—{
where j; is the spherical Bessel function of order ¢.

With these expansions at hand, the angular integration in Eq. (3.15) can be performed.
The integral over the three spherical harmonics depending on ¢ yields Wigner 3-7 symbols
or, equivalently, Clebsch-Gordan symbols. Projecting on the fth partial wave results in an
infinite set of coupled integral equations for the quantities Fy:

4 A
Fyp) == | dyy* |2\, (0 p)d(y: BSY) 5—Fuy)
T Jo B 20+ 1
(Al gl 6// e/ e// e Oglm/ R
H ZMZ ZZ <0 0 0> <m’ m” 0> Cro o) (3.19)
Z ! 1 g "
ﬁeyéﬁ
EERCERNY 0 o
X\/ 20+ 1 if Jer (L|7ily) E(n)(p y)d(y; Es ) Fe(y) |-

The ¢/ sum runs over the partial waves associated with the A; representation. The quantity
Zg) (p,y) can be calculated from Eq. (3.17) to be

1 2+y? - F H(A
ZO(p,y) = (20 +1) [p—y@g (p +;’q >+ 152)5@0]. (3.20)
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ZfiGZS % (nm + YVZ,—m)
|7i|=n
n €:0,m:O|€:4,m:O|€:4,m:4
101 606 96.23 81.33
1001 9126 —94.05 20.69
3501 39678 118.67 —15.73

Table 3.1: Integer vector sums over real combinations of Yy, for a given absolute value
n (“angular sums”). For higher partial waves, the value of the sum is smaller and the
contribution of the partial wave is suppressed.

Here, @, is a Legendre function of the second kind. The three-body contact interaction
contributes only to the s-wave, as expected.

Since the bound states in the infinite volume are s-wave states, Eq. (3.19) is specialized to
the case £ = 0, yielding

A sin n
Fo(p) :%/o dyy’ {Z;&)( y)d(y: B5") ( > L,L“ ‘y> Fo(y)

RezZ3
70
+2VT Y Z Z i i (L)Y o () 7,0 (0, 9) 5 B Corm P ()|
nEZ3f' 4,6,.
0

(3.21)
The specialization of Eq. (3.20) to the case £ = 0 reads

2 2
0) 1 pP+py+y —E\  H(A)
Zy (p,y) = prl <p2 " + Az (3.22)

The second line of Eq. (3.21) indicates admixtures from higher partial waves. Since the leading
term in the expansion of the spherical Bessel function is 1/(L|7i|y), these contributions are
suppressed by at least a/L. They will therefore be small for volumes not too small compared
to the size of the bound state. Moreover, contributions from higher partial waves will be
kinematically suppressed for shallow states with small binding momentum. This is ensured
by the spherical harmonic in the second line of Eq. (3.21). For higher partial waves, the
angular sum yields smaller prefactors relative to the s-wave (¢ = 0) for a given absolute
value n (see Table 3.1). Only for small lattices, i.e. when a/L is large, this behavior is
counteracted by terms stemming from the spherical Bessel function and higher partial waves
may contribute significantly.

Therefore, it is reasonable to neglect the contributions of higher partial waves in a first
approach. This yields a homogeneous integral equation for Fj:

4 (A n sin(L|7|y
R =2 [ a2, o) (14 X T R e
nezs
ﬁeyéﬁ

This means to consider only the effects of momentum quantization for the s-wave. Eq. (3.23)
can now be solved numerically in order to yield the bound state spectrum. The numerical
methods used to do so are outlined in Section 3.3.
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Of course, it is necessary to assess the size of the corrections brought about by the inclusion
of higher partial waves. The next higher partial wave in the representation A; is £ = 4. In
order to take this partial wave into account, the sum over ¢ in Eq. (3.21) is truncated after
¢' = 4, yielding an inhomogeneous term containing the amplitude Fy. This amplitude is the
solution of Eq. (3.19), specialized to ¢ = 4, where we will only consider terms containing Fj
and F} itself. The resulting coupled equations are

4 (A sin(L|7
Fyly) = —/ dyy*Z), (0, y)d(y; Y [( > T 7ly) > Foly)
™ Jo 3 ‘ ‘

ez’
0
+2V7 > ja(Lliily) (Yao(n)Cao + Yaa()Caa + Ya,—4(0)Ca ) Fa(y) |,
nez?
A0
(3.24a)
4 A 4 sin(L|7i]y)
Fy(y)Cao = — | dyy?z% d(y; E) CyoF.
W00 = 3= [ Wiz ety Z S ) Gk
n#O
+2V7 Y ja(Lliily)Yao(R) Fo(y )}
nEZ_i3
7i#£0
(3.24Db)
The Bessel function of order 4 is given by
202 — 21 4522 +1
Ja(z) = % coszx + (@ 5;5 +105) sinz. (3.25)

Its oscillating behavior demands for a careful numerical treatment, that will be discussed in
Section 3.3. The function Zgl) is given by the specialization of Eq. (3.20) as

55z 35x3 1 5 A r—1
= =T — (3= 1 — .
Qa(z) 51 PRBT: (3 — 302" + 35z*) 0g<x+1>

The Eqgs. (3.24) are solved in a coupled channel approach that is also discussed in the following
section.

3.3 Numerical methods

The integral equations derived in the previous section have to be solved numerically in order
to determine the binding energies in the finite volume. The numerical methods needed to do
so are presented in the following.

The starting point for a first numerical treatment of the formalism is the homogeneous integral
equation Eq. (3.23). The first step is to transform this equation into a finite-dimensional
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Figure 3.5: Schematic overview of the numerical procedure.

problem. Due to the oscillatory nature of the integrand, it is not sensible to use a finite
number of sampling points. Instead, a set of basis functions is specified. The choice of basis
functions is guided by the knowledge of the bound-state amplitude in the infinite volume
case. Asymptotically, the amplitude behaves like [BHvK99b, BHO6]

1
Fo(p) — 508 (so log(p/p+)) ,
with the universal number sy = 1.00624... and a momentum scale p,. The bound-state
amplitude obtained by the infinite volume formalism has precisely such a form, with only a

few zeros in the interval [0; A]. Therefore, the basis functions chosen are Legendre functions P,
with logarithmic arguments as follows:

&(p) = %a(zlogxpm +1)-1). (3.27)

These basis functions are orthogonal with respect to the scalar product

A p2 1
| arEr 6006 0) = 0g2) 555 (328)

The amplitude Fy in (3.23) is replaced by its expansion in the basis functions Z‘;’;O fi&(p)
and the ¢th component is projected out using the scalar product. The resulting equation

log 2
Z Ki;i(E)fj, (3.29)

with
4 A , A
Kz‘j(E)=—/ dyy [/
™ Jo 0

can be interpreted as a matrix equation when truncating the set of basis functions.

o | sin(Llly) Y
L6200y >]d<y,E>(1+ﬁ§3 )60,
A#0
(3.30)
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A necessary and sufficient condition for the existence of a non-trivial solution of Eq. (3.29) is

log 2
Values of F that fulfill this condition are interpreted as binding energies in the finite volume.
This is only a valid interpretation if the truncation of the basis and the neglect of the higher
partial waves induce only small corrections for the result. In practice, the use of 40 basis

functions is sufficient to yield results independent of the basis size.

A schematic overview on the numerical procedure is given in Fig. 3.5. The values of the
parameter E for which the condition (3.31) is satisfied are found via Ridders’ root finding
algorithm. This requires the calculation of K;;(E) in each iteration. To save numerical effort,
it is possible to expand the kernel around the binding energy in the infinite volume if the
shift in the binding energy is small. The expansion is done up to first order:

dK;; E— E®

(E—E*), for ——— < 1. (3.32)

Ki;(E) ~ Ki;(E>®
2( ) 2]( )+ dE e Eo>

Naively, this expansion should work for shifts of 10-20%. The applicability of the expansion
will be discussed in the next chapter where results obtained using the expanded kernel are
compared to results of full calculations.

In the following, details on the numerical methods used to calculate the kernel matrix ele-
ments K;;(E) as defined in Eq. (3.30) are presented. This is represented by the box on the
right hand side in Fig. 3.5. The calculation of a single matrix elements involves a summation
over integer vectors. The term for the zero-vector is just an integration over the variable. For
vectors unequal zero, a Fourier-Integral has to be evaluated. This requires to sample the in-
tegral kernel without the oscillating term, to perform a discrete Fourier transform (DFT) and
applying enpoint corrections. The sampling step requires an integration over the variable p
for each sampled point.

The integration over p in the sampling is performed using a logarithmically distributed Gauss-
Legendre quadrature with 64 points. The integration over y for the 7 = 0 term of the
summation is done with a Gauss-Legendre quadrature with 64 points.

For 7i # 0, the integrand of the y-integration is strongly oscillating due to the sin(L|7|y) term.
This motivates to evaluate this integral using the Fast Fourier Transformation technique
(FFT). The computation of Fourier integrals via FFT as well as the idea of FFT itself are
explained in detail in Appendix B. The technique presented there takes care of some subtleties
that hinder approaching this problem by a naive discretization of the integral. The sampling
for the FFT is the most time-consuming part of the calculation. The number of points to
sample, M, is determined by the highest “frequency” that is to be accessed. The frequencies
in the present case are the values of L|7i|. The highest possible frequency is connected to M
and the integration range given by the cutoff A by

. A L7 max| A
L|7 max] i Sto= M> ’:7”‘ (3.33)
For realistic values of these parameters, namely box sizes of a few a, an |fiyax| of about 3000
and cutoff values of several hundred ¢!, a typical value for M is 220 or about one million

sampled points.
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Figure 3.6: Convergence of the summation over all vectors 7 € Z? in Eq. (3.30) in a specific
example. Plotted are the intermediate sums for all |7i| < R for values of R up to 3500.

A summation over three-dimensional integer vectors of a quantity depending only on the
absolute value of the vector involves, when naively done, a lot of double counting. To cir-
cumvent this, an ordered list with absolute values that are possible for vectors in Z? and
their multiplicity has been created. The result of the summation can be viewed as converged
when going to absolute values of about 5000. For radii from about 2000 on, the intermediate
sums oscillate around the converged result. To reduce runtime, the result of the summation
is calculated as a mean of 15 intermediate sums for radii from 2750 to 3500 (Fig. 3.6).

The inclusion of higher partial waves requires the solution of coupled integral equations. This
is done in a coupled channel-like approach. The vectors containing the expansion coefficients
of Fy and Fj with respect to the basis functions (3.27) are combined into a single vector.
This vector again has to fulfill an eigenvalue equation similar to the truncated version of
Eq. (3.29), that can be solved by the previously described methods. The kernel matrix K of
the eigenvalue equation then consists of four blocks

(3.34)

The matrix K in the upper left is identical to the matrix (3.30). The other matrices can be
derived from the integrands in Eq. (3. 24) and read

KD (E == %Z:S/ dyy® [/ d +A @2, )}d( BIHT) (3.35a)

70
X (Y30(1)Cao + Yaa (1) Cag + Ya, —4(1)Cy—4)&5(y),

2

K) - ey [ [ 2 o0 )|t Exi(aia Ve )

n;é(]
(3.35b)
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@ 4 A , A 2 | @ } ' <l snl(L\n\y))
K (E) = 37T/0 dyy [/ dp _’_Aéz(p)ZE (p,y)|d(y; E) 3 gZ:S Liily i(y)
0

(3.35¢)

The spherical Bessel function of order 4 requires a careful numerical treatment. The form
(3.25) is not suited for small arguments since, in this case, large cancellations take place that
are reflected in large numerical noise in the FFT. Therefore, the y-integration is split at yeut-
The value of yeyt is determined on runtime depending on the present values of A and ||
such that a polynomial expansion of j4 can be used to good approximation for y < yeut. For
each absolute value |7i|, the integration from 0 to ycyt is performed using a Gauss-Legendre
quadrature with 64 points, while the integration from gy, to A is done by the FFT technique.

In the summation over 7 in the formulae for KM (3.35a) and K®) (3.35b), the only depen-
dence on the angular part of 7 is in the spherical harmonics. Accordingly, an ordered list was
created with the angular sum evaluated for each absolute value |fi|. This drastically reduces
the runtime of the code.

The calculation of the matrix elements has been performed on the cluster of the Helmholtz-
Institut fiir Strahlen- und Kernphysik (HISKP) at the University of Bonn.

As has been stated above, the number of sampling points for the FFT is the parameter with
the largest influence on the runtime. When using the expanded integral kernel, the matrix
and the derivative matrix have to be calculated only once. For a typical sample size of 220,
this takes about 100 minutes. When going to smaller volumes, the shifts in the binding energy
become larger and the Taylor expansion of the integral kernel breaks down. In this case, it
is inevitable to recalculate the kernel matrix in each iteration of the root finding algorithm.
This amounts to 10 to 15 evaluations of the kernel matrix and a runtime of 8 to 10 hours per
data point. The higher numerical effort needed when including the ¢ = 4 wave is reflected in
an increased runtime. It is approximately four times as large as in the s-wave only case due
to the coupled channel approach.

With this formalism at hand, it is now possible to study the bound-state spectrum of systems
with three identical bosons. The results of these calculations are presented in the following
chapter.






Chapter 4

Results for three-boson bound
states in finite volume

Using the formalism laid out in the previous section, energy levels of three-boson bound states
in finite cubic volumes of varying side lengths have been calculated. In the following, results
for systems with negative and positive scattering length are presented. Of particular interest
is whether the finite volume reslts show universal features and how the universal features
of the infinite volume are modified when going to the finite volume. For convenience, the
dependence of the energies on the boson mass m is reinstated in this chapter.

4.1 Positive scattering length

First, results for systems with @ > 0 are presented. In this regime, a physical diboson state
with binding energy Fp = —1/(ma?) exists. This energy is therefore identical with the
threshold for the break-up of a trimer into a diboson and a single boson. In the following,
five states with different energies in the infinite volume, including shallow as well as deeply
bound states, will be investigated exemplarily:

la: E$° = —1.18907/(ma?), A.a = 5.66,
Ib: E$° = —27.4427/(ma?), A.a = 5.66,
Ie:  E$° = —9440.91/(ma?), A.a = 5.66,
II: E$° = —5.04626/(ma?), A.a = 1.66,
I: E* = —11.1322/(ma?), A.a = 3.66.

Here, EX° is the trimer energy in the infinite volume. Note that the states Ia, Ib and Ic
appear in the same physical system characterized by A,a = 5.66. For each of these states,
its energy in a finite cubic volume has been calculated for various values of the box side
length L. In order to verify the consistent renormalization of our results, the calculation
was carried out for several cutoff momenta A. For each cutoff, the three-body interaction
parameterized by H(A) has been adjusted such that the infinite volume binding energies are
identical to the values given above for all considered cutoffs A. If our results are properly

31
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Figure 4.1: Variation of the trimer energy F3 with the side length L of the cubic volume for
the states IT (left) and III (right). Plotted are three datasets for different values of the cutoff
parameter A, together with the 1/(Aa) bands. The point a/L = 0 corresponds to the infinite
volume limit.

renormalized, the finite volume results for the different cutoffs should agree with each other
up to an uncertainty of order 1/(Aa) stemming from the finiteness of the cutoff.

The results for the states II and III are depicted in Fig. 4.1 for box sizes between L = 6a
and L = a/2. The values obtained for different cutoffs indeed agree with each other within
the depicted uncertainty bands. Note that these bands do not represent corrections from
higher orders of the EFT. For both states, the infinite volume limit is smoothly approached.
As the volume becomes smaller, the energy of the states is more and more diminished. This
corresponds to an increased binding with decreasing box size, i.e. the finite volume “squeezes”
the bound state.

In the infinite volume, state III is more deeply bound than state II. Naively, one therefore
expects the former to have a smaller spatial extent than the latter. The size of the state can
be estimated via the formula (—mE°)~'/2, yielding 0.45a for state IT and 0.3a for state II1.
Hence, a given finite volume should affect state II more strongly than the smaller state III.
This behavior can indeed be observed. For example, considering a volume with side length
L = 2a, the energy of state II deviates 10% from the infinite volume value, whereas the
corresponding difference for state III is less than one percent. On the other hand, the energy
shift of state IIT amounts to 10% for a smaller volume with a side length of roughly 1.3a.
This behavior is summarized in Table 4.1.

For both states, we can now form the dimensionless number r = —mEgoLfo% , where Lqgy is
the box size at which the energy differs by 10% from the infinite volume value. This yields
r =~ 20 for state II and r ~ 19 for state III. The approximate equality of the two values of
r may indicate the presence of universal scaling in the finite volume version of the Effective
Theory.

In Fig. 4.2, the three datasets obtained for state II are plotted again, this time compared
to the results from calculations performed using the expansion of the kernel described in
Section 3.3. For more results obtained using this expanded kernel see Ref. [KH09]. For large
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| State | @ | 1o [ m | Ib |
ES° ma? —1.18907 | —5.04626 | —11.1322 | —27.4427
E3(L = a) ma? —4.6 —11.1 —14.66 —27.6
Srel 287% 120% 32% 0.6%
Llo%/a 6 2 1.3 0.79
Ligow/a 2.32 1.09 0.71 0.47

Table 4.1: For the states Ia, II, IIT and Ib, the infinite volume energy E5° and the energy in
a finite volume with side length L = a are shown together with the relative deviation from
the infinite volume value d,; = (E3(L = a) — E$°)/E$°. Also given are the box sizes leading
to an energy shift of 10% and 100%, respectively.
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Figure 4.2: Variation of the trimer energy F3 with the side length L of the cubic volume for
state II. Plotted are three datasets for different values of the cutoff parameter A, together
with the 1/(Aa) bands, and one dataset obtained using a Taylor expanded version of the
integral kernel.

values of the box size L, the results of both calculations agree with each other. For volumes
smaller than 1.7a, the result of the calculation with expansion deviates from the result of the
full calculation. For this volume size, the full result differs from the infinite volume binding
energy by about 20%. Accordingly, the expansion employed for the integral kernel is not
applicable any longer. In Fig. 4.2, results are only depicted for volumes with L > a. For
smaller volumes, the results of calculations using the expansion become cutoff dependent,
and are hence not properly renormalized anymore.

In Fig. 4.3, we show our results for the two states la and Ib. These states belong to the same
physical system characterized by A.a = 5.66. The volume dependence of the two states is
shown for box sizes between L = 6a and L = a/2. The curve corresponding to the more
deeply bound state Ib shows a behavior that is similar to the one observed for the states II
and III. The binding energy remains constant until the volume is small enough to affect the
state. This is the case for volumes with L ~ 0.9a. When going to even smaller volumes, the
energy of the state is more and more diminished.

The behavior of the shallow state Ia is different. In the region L & a, the binding is not further
increased. The results for smaller volumes show a sharp rise of the three-body energy. The
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Figure 4.3: Variation of the trimer energy FEs with the side length L of the cubic volume
for the states Ia (upper curve) and Ib (lower curve). Plotted are three datasets for different
values of the cutoff parameter A, together with the 1/(Aa) bands (circles: A = 200a~";
squares: A = 300a~!; diamonds: A = 400a~!). The solid line depicts the diboson energy.

| L/a | Aa | Es(L)md®>, (=04 | FEs3(L)ma®’, (=0 | Fomd® |
1.25 200 —4.30392 —4.24545 —3.53099
200 —4.57097 —4.57753
1 300 —4.60298 —4.60872 —5.07581
400 —4.59579 —4.60056
0.9 200 —4.31223 —4.27927 —6.068

Table 4.2: Energies E3(L) of state Ia for box sizes near L = a calculated with and without
admixture of the £ = 4 amplitude. The dimer energy FEs is shown for comparison.

energy of the state becomes positive near L = 0.67a. State Ia is close to the threshold for
boson-diboson scattering in the infinite volume located at Ep = —1/(ma?). For comparison,
we calculated the energy of the physical diboson according to [BBPS04]. The resulting curve
is the solid line in Fig. 4.3. Like the energy of the three-body bound states, the energy of the
diboson is diminished in finite volumes. For volumes of the size L ~ 1.2a, the energy of the
three-body state Ia becomes larger than the diboson energy and starts to grow. This behavior
is consistent with the observation that states are always shifted away from the threshold in
a finite volume. In the two-body sector, for example, continuum states have been shown to
have a power law dependence on the volume, while the volume dependence of bound states
is dominated by exponentials [BBPS04]. The data shown for state Ia can be explained by
an exponential for L > a, which characterizes the state as a bound state. For L < a, the
data is consistent with a power law, indicating the state indeed behaves like a boson-diboson
scattering state if its energy is above the diboson energy. However, as has been remarked
in Section 3.2.2, the formalism developed in this work is tailored to investigate the behavior
of bound states. Other techniques might be needed for a clean access to the boson-diboson
scattering sector.

The other investigated states do not show such a transition since their energy is well below
the diboson energy for all considered volumes. It is unclear whether other states would show
a similar behavior for smaller box sizes. If this is not the case, the transition from bound to
unbound would occur only for states with infinite volume binding energies up to a critical
value. For a conclusive analysis of the nature of the described transition, more data is still
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‘ L/a ‘ Aa ‘ E3(L)ma?, (=0,4 ‘ E3(L)ma?, (=0 ‘ Orel ‘
1 200 —11.86 —11.15 6.4%
400 —11.79 —11.08 6.4%
0.7 200 —19.06 —20.70 -7.9%
400 —18.97 —20.64 -8.1%

Table 4.3: Energies E3(L) of state II for box sizes L = a and L = 0.7a calculated with and
without admixture of the ¢ = 4 amplitude. Also given is the relative deviation d,¢ between
the two energies for each parameter set.

needed. In the investigation of three-nucleon bound states, a similar behavior showed up.
This will be discussed in Chapter 6. It would be interesting to see whether such a transition
can be seen in lattice data for a state that is very close to the diboson threshold in the infinite
volume.

Since the size of the finite volumes where the state crosses the diboson energy is comparable
to the size of the state itself, the breaking of the spherical symmetry might be a relevant
effect here. To assess the influence of the higher partial waves, calculations including the
next partial wave contributing to the trivial representation of the cubic group, namely ¢ = 4,
were performed. The energies of state Ia obtained by this method are summarized and
compared to the s-wave only results in Table 4.2. For L = 1.25a, the state is still below
the dimer state. The inclusion of the higher partial wave leads to a small downward shift
in the energy. For L = a, we have performed calculations using 3 different cutoffs. The
results for different cutoffs agree to two significant digits indicating the results are properly
renormalized, but the binding is slightly reduced by the ¢ = 4 contribution. For L = 0.9a,
the effect of the higher partial wave is again a small downward shift. All results show only a
deviation of about 1% from the s-wave only result. In summary, we find that the correction
from the £ = 4 admixture is extremely small. Moreover, the corrections are in the same
order of magnitude as the finite cutoff uncertainty of the calculation. In order to establish an
estimate of typical corrections from higher partial waves, additional calculations including the
¢ = 4 contributions for the more deeply-bound state II have been performed. The resulting
energies are given in Tab. 4.3. The investigated box sizes are about three times larger than
the state itself. The contribution of the higher partial wave is now several percent. This is still
a small correction but considerably larger than the finite cutoff uncertainty. This suggests
that the extremely small corrections for state la are related to its unusual behavior. The
dominance of the s-wave may be associated with the closeness of the state to the threshold.

Since the shallow state Ia is more affected by a given finite volume than the more deeply
bound state Ib, the ratio of the energies of the states is changing. In the infinite volume,
this ratio is 23.08. For L = 1.5a, just before the shallow state crosses the dimer energy,
the ratio has decreased to 7.4. Note that this ratio differs from the discrete scaling factor
exp(2m/sp) ~ 515 even in the infinite volume limit. This behavior is expected for shallow
states close to the bound state threshold [BHO06]. The ratio exp(27/sp) will be approached
when deeper states are considered. For example, the infinite volume ratio of state Ib and the
much more deeply bound state Ic is 344 and thus already closer to the discrete scaling factor
515.

If we assume that the combination r = —mFg5° L%O% is indeed a universal number, we are able
to predict Lqgy for the states Ia and Ib. The resulting predictions are Ly =~ 0.85a for state Ib



36 Chapter 4. Results for three-boson bound states in finite volume

Aa = 4500 Aa = 400
L/a E3(L) ma2 67”6[ E3 (L) ma2 5rel
0 —9440.91 - —9401.32 -
1 —9440.91 0% —9401.36 ~107°
0.75 —9440.91 0% —9400.53 ~10°°
0.5 —9440.91 0% —9399.38 0.02%

Table 4.4: Energy Fs3 of state Ic for different volume sizes L and two different cutoffs A. The
relative deviation from the infinite volume value 6, = (E3 — ES°)/ES° is also given.

and Lqgy ~ 4a for state la. The energies calculated for these volumes are E3(L = 0.85a) ~
29.1/(ma?), corresponding to an 8% shift, for state Ib and E3(L = 4a) =~ 1.55/(ma?),
corresponding to a 30% shift. It should be noted, however, that universal behavior is strongly
modified for states close to the threshold already in the infinite volume.

In addition, the dimensionless combination 7’ = —mEgoLfoo% was formed. Here, Lyggy is
the box side length where the energy of the state is twice the infinite volume value. These
values can also be found in Table 4.1. The values obtained are r’ = 6.4,6.0,5.6,6.0 for the
states Ia, II, IIT and Ib, respectively. Using the value from state II to predict Lqpgy for the
other states yields 2.25a for state Ia, which is close to the actual value of 2.32a. For state I11
and Ib, the prediction works even better, yielding 0.71a and 0.47a, repectively. The actual
value is 0.73a for state III and is exactly as predicted for state Ib. These findings support
the assumption that the finite volume corrections obey universal scaling relations.

In the infinite volume case, Efimov was able to derive a formula for the binding energies using
a hyperspherical formalism. The binding energies are the solutions of

mEs +1/a* = e (") exp(A(€)/sg) k2, (4.1)

where Fj3 is the energy of the state measured from the 3-boson threshold that appears also
in the variable £ given by tan¢ = —ay/mF3. The universal function A(£) can be parameter-
ized [BHKO03]. Thus, the binding energies are fixed as soon as the binding momentum r, of
the nyth Efimov trimer is known. If the finite volume effects are indeed universal, it should
be possible to find the binding energies in a finite volume by solving an equation similar
to (4.1), where the universal function A depends now also on the size of the volume under
consideration.

The states Ia and Ib appear in the same physical system characterized by A,a = 5.66. In this
system, an even more deeply bound state, denoted state Ic, is present. In the infinite volume,
the energy of this state is E5° = —9401.32/(ma?). This corresponds to a binding momentum
of 97a~"'. Since this is already comparable to the momentum cutoffs of a few hundred inverse
scattering lengths employed before, an additional, much larger cutoff of 4500 ¢~ was used
for calculations of this state. The three-body force for this cutoff has been fixed such that
the energy of the most shallow state Ia is reproduced. The resulting energy of state Ic is then
—9440.91/(ma?). This differs from the energy obtained using the smaller cutoff by 0.4%.
This difference can be attributed to effects stemming from the finiteness of the cutoff. The
energy of this state has been calculated for finite volumes of the sizes L = a, L = 0.75a and
L = 0.5a. The results of this calculations are summarized in Table 4.4. The values obtained
using the large cutoff Aa = 4500 show no effect of the finite volume at all. From the infinite



4.2. Negative scattering length 37

-8gf‘ T T T*T'T;T N T 1 7T T N T T T T: ii‘ T L' ‘ ‘E
-12F e NI -6 . NIl
B T - @ i
C . i C ]
_16—7 . n '12f - N
o~ B ] Nes N ® b
g 201 - € _f ]
™ - i c“"‘18? ]
N - ] wl - ]
-241 e 7 C ® ]
L | A=200a" ] 24F | * A=200a" 3
280 | a A-3004 g -l /\=300a'i .
L = 1 ] C . - - 1
S e N L O
0 0.5 1 1.5 2 0 0.5 1 15 2

alL alL

Figure 4.4: Variation of the trimer energy FE3 with the side length L of the cubic volume
for the states NI (left) and NII (right). Plotted are three datasets for different values of the
cutoff parameter A, together with the 1/(Aa) bands. The point a/L = 0 corresponds to the
infinite volume limit.

volume binding energy, the size of the state can be estimated via (771]53?")_1/2 to be 0.01a.
Therefore, no visible effect is expected since the finite volume is fifty times larger than the
state itself. However, for the smaller cutoff Aa = 400, there are very small deviations from
the infinite volume energy. But these deviations are smaller than the uncertainty stemming
from the finiteness of the cutoff, which is estimated to be of order 1/(Aa) = 0.25%.

4.2 Negative scattering length

In the following, systems with negative two-body scattering length will be investigated. In
this regime, the two-body interaction is attractive but no diboson bound state exists in the
infinite volume limit. The only possible breakup process for a three-boson bound state is
therefore the breakup into three single bosons. The threshold for this process is £ = 0. As
in the case with positive scattering length, we choose states with different energies in the
infinite volume:
NI: E$* =-9/(ma?), Aa = 5.55,
NII:  E$° = —4/(ma?), Ava = 4.23,
NIIL: B = —0.2/(ma?),  A.a = 2.60.

Here, E5° is the trimer energy in the infinite volume. For each of these states, its energy in a
finite cubic volume has been calculated for various values of the box side length L. In order to
check the consistent renormalization of the results, the calculation was carried out for several
cutoff momenta A. For each state, the three-body interaction parameterized by H(A) has
been adjusted such that the infinite volume binding energies given above are reproduced for
all considered cutoffs.

The results for the states NI and NII are shown in Fig. 4.4 for box sizes between L = 2a
and L = a/2. The results for the state NIII with box sizes between L = 8a and L = a/2



38 Chapter 4. Results for three-boson bound states in finite volume

- “a NI

-6 - ]

- . .

Ng -12F . -
= - .
ul®  f ]
-18j s ]

- | * A=200d" .

[ | " A=300a" ]

240 |« A=4004 i
:\ Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il \]'

0 0.5 1 15 2

al/L

Figure 4.5: Variation of the trimer energy Fs with the side length L of the cubic volume
for the state NIII. Plotted are three datasets for different values of the cutoff parameter A,
together with the 1/(Aa) bands.

| State | NI | NI | NOI |
ES° ma? -9 —4 —0.2
E3(L = a)ma® || —11.6 | —8.7 | —6.7
Orel 29% | 118% | 3250%
Ligy/a 12 | 18 7.2
Ligon/a 07 | 1.05 | 42

Table 4.5: For the states NI, NII and NIII, the infinite volume energy ES$° and the energy in
a finite volume with side length L = a are shown together with the relative deviation from
the infinite volume value 0,¢; = (E3(L = a) — ES°)/ES°. Also given are the box sizes leading
to an energy shift of 10% and 100%, respectively.

are depicted in Fig. 4.5. The energies obtained using different cutoffs agree with each other
within the bands representing uncertainties due to finite cutoff effects. This verifies the proper
renormalization of the finite volume theory. All three states smoothly approach the infinite
volume limit. As the box size becomes smaller the energy of the state is more and more
diminished. This corresponds to the intuitive picture that the finite volume “squeezes” the
bound state. The overall behavior resembles the behavior in the positive scattering length
case as described in the previous section.

Naively, the more deeply bound a state is in the infinite volume, the smaller is its spatial
extent. Estimating the size via the formula (—mFE$°)~Y/? yields a/3 for state NI, a/2 for
state NII, and 2.2a for state NIII. A given finite volume should therefore affect state NII
more than state NI, and state NIII should be the most affected. When considering a cubic
volume with side length L = a, we find the energies given in Table 4.5. The relative deviation
of state NI is indeed four times smaller than the shift for state NIIT and a hundred times smaller
than the shift for the shallow state NIII. On the other hand, the box length Ly, for which
the energy of each states deviates 10% from its infinite volume value, is smaller the more
deeply bound a state is. These values are also given in Table 4.5.

As for positive scattering length, the dimensionless combination r = —mEgoLfo% was inves-
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tigated in order to look for hints of universal behavior in the finite volume theory. The value
r =~ 13 was obtained from the data for state NI. This value is used to predict Loy = 1.8a
for state NII and Lqg = 8a for state NIII. These predictions are in good agreement with
the explicitly calculated values shown in Table 4.5. The 10% deviation for the shallowest
state can, as was already state for the shallowest state with positive scattering length, be
attributed to the largeness of non-universal effects close to the threshold. Again, also the
dimensionless combination, 1’ = —mEgoLfoo% was formed. For the three investigated states,
Ligoy is also given in Table 4.5. The value for the state NI yields ' & 4.4. This value
corresponds to a predicted Lqpgy = 1.05a for state NII and Lqpgy = 4.7a for state NIII. The
value for state NII is as predicted, whereas the value for state NIII is again about 10% off
the prediction from universal scaling.

For states far away from the threshold, the regimes of negative and positive scattering length
are expected to be governed by the same scaling factor. Therefore, the dimensionless com-
bination r should, for such deeply bound states, have a common value for both signs of a.
For positive scattering lengths, state Ib is an example of a rather deeply bound state. For
this state, Ligy is found to be 0.79a. This leads to r = 16.8. The very deeply bound state Ic
experiences a 10% shift for a volume with side length 0.0427a, corresponding to r = 17.2.
With regard to the vast difference of binding energies, the value r &~ 17 may be seen as the
universal value for this dimensionless variable. For negative scattering lengths, a state with
E$° = —27/(ma?) is present without need for a three-body force when setting A.a = 8.54.
The energy of this state is shifted by 10% in a volume with side length 0.73a, yielding r = 14.4.
The values of r for these three states with different signs of the scattering length are indeed
close to each other. This behavior provides numerical evidence for the universality of finite
volume effects for both positive and negative scattering lengths.

In this chapter, the bound state spectrum in a finite volume was calculated for different
physical systems with positive and negative scattering length. The renormalization of the
results was verified explicitly. For small shifts up to 15%, an expanded version of the integral
kernel can be used to reduce the numerical effort. Typically, the binding energy increases
as the box size is reduced. One state showed a peculiar threshold crossing behavior that is
not associated with the neglect of higher partial waves and will be further investigated. The
effects from higher partial waves are accessible, but require a careful numerical treatment.
They were shown to be typically in the order of several percent. Finally, the results provided
numerical evidence for a universal scaling of the finite volume effects. Building on these
results, the formalism was extended to describe the three-nucleon system.






Chapter 5

EFT for three nucleons in finite
volume

The study of the Efimov effect in finite cubic volumes is of particular interest for three-nucleon
systems. The Efimov trimers can be identified as the isospin doublet containing the triton
and the 3He nucleus. Because the Coulomb interaction complicates the study of the latter,
the focus of this work is on the triton. Following the strategy outlined in the bosonic case,
the effects of momentum quantization and the breakdown of rotational symmetry lead to an
infinite set of coupled integral equations.

5.1 Lagrangian and Nucleon-Dinucleon Amplitudes

In the three-nucleon sector, additional degrees of freedom, namely spin and isospin of the
nucleon, have to be taken into account. The general structure of the EFT describing the
short-ranged nucleonic interactions, however, strongly resembles the EFT for three identical
bosons.

As was stated in Subsection 2.2.3, there are two scattering channels present in NN scattering
due to the spin and isospin degrees of freedom. One is the spin-singlet, isospin-triplet (*Sp)
channel, the other one is the spin-triplet, isospin-singlet (3S1) channel. In the latter exists
a shallow two-body bound state, the deuteron. In both channels, the two-body scattering
length is large compared to the natural length scale of the system given by m_'. Accordingly,
instead of a single auxiliary diboson field, the Lagrangian will feature two di-nucleon fields
corresponding to the two scattering channels.

The Lagrangian of the three-nucleon EFT is to leading order given by [BHvKO00]

1 I
Loy =N <z’8t + §v2> N+ %TTTT + %szs

(5.1)
9T (P AT = 95 (it T
= (T N 72002N+h.c.) = (S N aszJrh.c.).

Here, NV is the isospin doublet containing the neutron and the proton field. The di-nucleon
field T has the quantum numbers of the deuteron, namely spin 1 and isospin 0. Accordingly,

41



42 Chapter 5. EFT for three nucleons in finite volume

S is the di-nucleon in the 'Sy channel. The & (7) are the Pauli matrices in spin (isospin)
space, respectively. Up to now, no isospin breaking effects have been incorporated into this
framework. The leading order lagrangian corresponds to the zero-range model. Effects from
finite range can be incorporated as higher orders of the Effective Theory.

The two coupling constants in (5.1) have to be matched to two two-body inputs. These can
be the scattering lengths or, in case of gp, the binding energy of the deuteron. As stated in
Subsection 2.2.3, range corrections are important in order to reproduce the deuteron binding
energy when using the scattering length as input. Since the present work is concerned with
leading order calculations only, the deuteron binding energy will be the preferred input in
order to correctly reproduce the breakup threshold for the three-nucleon bound state. In the
spin-quartet channel of the three-body sector, this is sufficient to renormalize the theory. In
the spin-doublet channel that contains the triton, however, the amplitudes calculated with
this theory show a strong cutoff dependence. The case of three identical bosons provides
the remedy to this problem: An additional three-body force is needed. As it was shown
in [BHVKO00], a single SU(4)-symmetric three-body interaction is sufficient to renormalize the
theory. To leading order, this interaction is given by

2H(A L im 1 o
L3 body = _% <g%NT(T AT -GN + zgrgs (N'(T-5)!(S- )N + hic)

(5.2)
+g2NT(S-7)I(S- T)N).

As in the three-boson case, the dimensionless function H(A) needs one three-body datum as
additional input.

SU(4)-symmetry is a generalization of the SU(2)xSU(2) symmetry of spin and isospin that
was introduced by Wigner in 1937 [Wig37]. Although, in order to be an exact symmetry,
the two-body scattering lengths have to be equal, their unnatural largeness makes it an
approximate symmetry that is satisfied to a high degree in the spectra of nuclei. Group
theoretical arguments show that the three-body force given in Eq. (5.2) is the only such
force that can be written down to leading order and that the force itself has to be SU(4)-
symmetric. In Section 6.2, a possible scenario explaining the approximate SU(4)-symmetry
of nuclear physics will be discussed.

The renormalization of the theory absorbs the high-energy behavior of the underlying theory
into a few low-energy coefficients. The finite volume, on the other hand, modifies the infrared
properties of the system. As has been argued in Chapter 3, the renormalization from the in-
finite volume should therefore also apply in the finite volume. This is under the premise that
the ultraviolet regime, characterized by the momentum cutoff A, and the infrared regime,
characterized by the scale of momentum quantization 27/L, are well separated. In Chap-
ter 4, the renormalization of the results for three identical bosons was explicitly shown. The
renormalization of the results from the three-nucleon sector has also been explicitly verified.
This will be shown in the next chapter where the results are presented.

In analogy to the three-boson case, it is necessary to calculate the full di-nucleon propagators
in finite volume. These quantities are obtained by dressing the constant bare propagators
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Figure 5.1: Coupled integral equations for the dinucleon-nucleon scattering amplitudes in the
S = % channel. Single lines denote nucleons, the shaded (full) bars correspond to dinucleons
in the 357 (1Sp) channel. For the sake of simplicity, the three-body force has been omitted
in this diagrammatical representation.

with nucleonic loops. The result is

-1

st | 1 1 1 =
Dg7(E) = —— a——\/—E—kzzﬁe Lv=E\| (5.3)
9gsr | 4s,T ez J
740

where Dg (Dr) denotes the spin-singlet (spin-triplet) di-nucleon propagator and ag r is the
two-nucleon scattering length in the corresponding channel. In the triplet channel, it is
advantageous to use the deuteron binding momentum +/m B, instead of the inverse scattering
length. The volume dependent term in the full propagator vanishes in the limit L — oo, thus
reproducing the infinite volume result.

The triton is a %Jr state. In order to investigate this bound state, the nucleon-dinucleon
scattering amplitudes with the appropriate quantum numbers have to be written down. Since
the triton can be seen as a single neutron interacting with a proton-neutron pair in either the
38, or the 1Sy partial wave, there are two relevant amplitudes. These are the amplitude with
an incoming and outgoing dinucleon field T (denoted tp in the following) and the amplitude
with an incoming dinucleon field S and an outgoing field T (denoted tg). The two amplitudes
are coupled and the corresponding integral equation is depicted diagramatically in Fig. 5.1.
In this diagrammtical representation, the contributions from the 3-body force (5.2) have been
omitted for sake of simplicity. As in the three-boson case, the loop momenta are quantized
due to the finite volume resulting in loop sums rather than loop integrals. For the internal

di-nucleon lines, the full di-nucleon propagators (5.3) have to be used.

In order to write down the integral equation explicitly, kinematics are assigned as follows.
The ingoing nucleon line has momentum —p and spin (isospin) « (a). The outgoing nucleon
line has momentum —k and spin (isospin) S (b). Both nucleons are on shell. The ingoing
(outgoing) di-nucleon carries momentum p’ (E) and remains off-shell. This introduces the total
energy of the system, F, as an additional parameter of the amplitude. The spin component
of ingoing (outgoing) spin-triplet fields is denoted ¢ (j), while the isospin component of the
ingoing (outgoing) spin-singlet field is A (B).

With these conventions, the spin-isospin structure of the tree-level diagrams in Fig. 5.1 can
be calculated. The results are
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(@) NT—>NT:  g3(070%)apdu
(b) NS NS:  g20a5(7874) 0
() NT—NS: grgs(09)as (%)a
(d) NS—NT: grgs(07)ap (T4)a

The momentum space part of all these diagrams reads i/(E — (p? + - k+ k?%)). The spin-
isospin structure of the contact interactions derived from (5.2) is identical in the cases (a)
and (b). In the cases (c) and (d), an additional factor % is present. The momentum space
part of the contact interaction is given by —i2H(A)/A2.

After these preparations, the integral equations for the amplitudes ¢t7 and tg can be written
down. The integration over the unquantized energy of the internal nucleon can be performed
via the residue theorem. The result is

o | . 2H(A
t7(0,k; B)gy =97 (070" )ap S <ZE(P= k) - A(2 )>
. i L 2H(A .
+ LY 8n (0Fol)a, (zE<p,q-> - Ag )> dr(q; E)t5(q, k; E)))
gez?
+ L3 Z 8 g—T(Ui) (7 ae | ZE(P. H(A) ds(q; VS (g, k E))P
ay ac J) 3A2 S(Q7 )S (qa ) )cb
gezs 98
(5.4a)
o . L 2H(A
G B =gsar (00)an () (20 - 200 )
9s H(A (G T
1703 87 M)y (e (205 - 257 ) ol DX Y
qez3
_ N 2H (A N
+ L7 8w (197 ac (ZE(PMT) - A(g )> ds(q; B)tg (q, ks )3
qez?
(5.4b)
where
-2 -7 2 -1
Zp(p, k) = [p Y k4 k E] (5.5)

and dsr(q; E) = ggT/(Sﬂ) Dsr(E — 3/4¢*). Note that the two equations transform into
each other under S < T. This is a signature of the approximate SU(4)-symmetry of NN-
interactions discussed above.

In the vicinity of a bound state with binding energy Bs, the amplitudes t( i1 develop a
simple pole in the energy. Moreover, the incoming and outgoing quantum numbers separate:

(Az 7
Ad)j, = 7 o (ma ( )
tg7T)j(p7k;E)al)ﬁ - E+Bg

+ regular terms, as £ — —Bsy (5.6)

!This is to be read as a summarizing notation for t?ﬂ and t7.
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Using this behavior in Egs. (5.4) and comparing the residues of the poles on both sides yields
two coupled equations for the bound state amplitudes Fg r:

P15 =571 3 (e (2,50 - 5 ) drtas -y FH@
qer? (5.7a)

0o e (-5~ 257 ) dstas - BaS @1]

3A?

F: =871 L [0 (e (25,50 = (5 ) ot ~Bo) @

ger? i (5.7b)
#2025 ) dstas - oS @]

Here, the amplitudes have been redefined in order to absorb the ratios of coupling constants
appearing in Egs. (5.4) by

Fh %f% and F& — g—ng‘. (5.8)

The next step is to project Eqgs. (5.7) on total spin % and total isospin % by

(Fr)iy”
(Fs)ty"

(0" )maar Otza (fv%): (5.9a)
Omeer (T30 (F5), - (5.9b)

Here, ms and t3 are the 3-components of the triton in spin and isospin space, respectively.
In order to perform the projection explicitly, the following relations for Pauli matrices are
employed:

(0")ma(0"0")ay = =(0® ), and (5.10)

(O'i)msa(ai)aw = 35m5'y- (5.11)

The resulting coupled equations for the S = % bound state amplitudes in finite volume are

Fr@p = snL Y [( 2D+ 211(1&)) dr(a; By Fr (@)}
Gez’ (5.12a)
+ <3Z_33 (P, q) — 2igA)> ds(q; —Bs)fs@gs}
Fs(p)s = 8L~ %[ <3Z By (P, @) — —B3)Fr(q) ( |
qe 5.12b

+(-2 B?,(p,cz)ﬂ%f‘)) ds(a; ~B) Fs(@ ]

The spin and isospin indices will be supressed in the following. In the next section, the cubic
symmetry of the system is employed to make Eqs. (5.12) accessible for a numerical treatment.
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5.2 Consequences of cubic symmetry

In a finite cubic box, spherical symmetry is broken down to cubic symmetry. As a conse-
quence, the infinitely many irreducible representations of the double cover of the rotational
group, SU(2), become reducible in terms of the eight irreducible representations of the dou-
ble cover of the cubic group, 20O. The triton is mainly, and for this work we will assume
solely, a j = % state. This partial wave is contained in the Gf representation, which also
contains j = 7/2,9/2,... [Joh82]. Assuming that the triton amplitude in finite volume trans-
forms under the Gf representation, it is possible to decompose it into the different partial
waves [vdLB47, BLMROS] as

(GY)
Fi= > Y FUy chtmj ljm;). (5.13)
i=55

The coefficients C’jtmj can be determined by explicitly decomposing the reducible represen-
tations of SU(2) in terms of the irreducible representations of 20 [BLMROS8]. The sum over ¢
is needed if a partial wave is contained more than once. Since this is not the case for partial
waves less than 13/2, this index will be omitted in the following. The vectors |jm;) are given
by

IES

) 1 1

= Y Y C it sm e lss), (5.14)
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where the C’s are Clebsch-Gordan coefficients, The [¢m) are spherical harmonics and |$s) is
a spin—% spinor. The sign of £(j) = j+ % has to be chosen such that the result is even in order
to get the positive parity of the triton. Details on the construction of the basis functions
together with the group theoretical background are presented in Appendix A.

With the expansion in spherical harmonics, the angular dependence of the bound state am-
plitude has been explicitly extracted. In order to make use of this, the sums over integer
vectors in Egs. (5.12) are rewritten into sums of integral equations using Poisson’s resumma-
tion formula (3.14). After expanding Z_p,(p,q) as in Eq. (3.17) and the exponential from
Poisson’s formula as in Eq. (3.18), the angular integration can be performed analytically.

Performing the angular integrations and projecting out the Jth partial wave yields an infinite
set of coupled equations:
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(5.15)
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The partial waves of Z are given by

l
ZY, (0.y) Pyt + B3>

1
20+ 1 _])_ng< Y

where @ is a Legendre function of the second kind. Note that the first term in Eq. (5.15)
reproduces the infinite volume result.

(5.16)

This equation is now specialized to the J = % case:
(3) A @)
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The lowest partial wave that is mixed with J = % is the 7 = 7/2 wave. Since the leading term
in the expansion of the Bessel functions in Eq. (5.17) is 1/(L|7i|y), the contributions from
higher partial waves are suppressed by at least a/L. They will be small for volumes not too
small compared to the size of the bound state. Moreover, contributions from higher partial
waves will be suppressed kinematically for shallow states with small binding momentum.
This is ensured by the spherical harmonic in the second term of Eq. (5.17). Only for small
lattices, i.e. when a/L is large, this behavior is counteracted by terms stemming from the
spherical Bessel function jy;)(L|7ily) and higher partial waves may contribute significantly.
Therefore, the contributions from higher partial waves are neglected for a first approach.
This is encouraged by the results for the bosonic case that were presented in Chapter 4. In
this case, calculations including one more partial wave yielded corrections on the percent
level even for small volumes [KH10]. Thus, only two coupled integral equations remain to be
solved.

(5.17)

The numerical methods needed to solve the coupled integral equations are described in Sec-
tion 3.3. In addition, a coupled channel approach is used to solve both equations simultane-
ously. This approach has also been outlined in the description of the bosonic case, where it
has been used to solve for two partial wave amplitudes simultaneously. In the three-nucleon
case, however, the structure of the equations allows for the calculation of four matrix elements
at once. Thus, the runtime is not increased in contrast to the s-wave onl bosonic case. The
calculation of a single data point for the triton in finite volume takes about 8 to 10 hours.
The results are presented in the following chapter.






Chapter 6

Results for three-nucleon bound
states in finite volume

The framework described in the previous chapter has been used to calculate the finite volume
energy of the triton. After presenting the results for the physical triton, the pion-mass
dependence of the triton spectrum is studied. This is motivated by the possibility that QCD
lies close to the critical trajectory for an infrared limit cycle in the 3-nucleon sector. In order
to study this conjecture with the methods of Lattice QCD, finite volume effects have to be
under control.

6.1 The triton in finite volume

In the following, the results for the energy of the triton for cubic volumes with various side
lengths L are presented. In order to verify that the results are renormalized, two data sets
have been produced. For one set, the cutoff was set to A = 600 MeV and the three-body
coupling was chosen such that the triton binding energy, B5° = 8.48182 MeV, is reproduced
in the infinite volume. For the other set, the cutoff was set such that there is no need for a
three-body force to obtain the correct triton binding energy in the infinite volume. This is
always possible due to the ultraviolet renormalization group limit cycle.

Fig. 6.1 shows the triton binding energy for finite cubic volumes with side lengths ranging
from 17 fm down to 2 fm. As has been stated in Section 2.1, volumes of 2.5 — 4 fm are typical
for present day lattice calculations. The values from the two data sets are in good agreement,
indicating that our results are indeed renormalized. For large volumes, the deviation of the
triton energy from its infinite volume value is small. When going to volume side lengths
smaller than about 10 fm, the energy of the state strongly decreases. At Ligpgy = 5.62 fm,
the shift is already 100%.

The dependence of the energy on L can be nicely fitted to a function of the form E(L) =
E(L = x) — b#, thus corresponding to the volume dependence of a two-body bound
state [BBPS04, Lee]. This exponential decay was also observed in Chiral Effective Theory
calculations on the lattice [EKLMO09]. As in the bosonic case, the dimensionless variable
r' = mEgoL%OO% is formed in order to investigate the aspect of universality. The resulting
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Figure 6.1: Triton energy for different side lengths of the finite cubic volume. Plotted are to
data sets obtained with two different renormalization procedures. The horizontal line is the
infinite volume triton binding energy.

number is 7/ = 6.47. This value is comparable to the value obtained in the bosonic case.
More data points for this dimensionless combination are obtained from the ground state of
the triton for varying pion mass, which will be investigated in the following section.

6.2 Pion-mass dependence of the triton spectrum

In 2004, Braaten and Hammer conjectured that QCD is close to the critical trajectory for
an infrared renormalization group (RG) limit cycle [BHO03]. The theory can be tuned on
the critical trajectory by varying the light quark masses or, equivalently, the pion mass. The
closeness to the critical trajectory explains the success of the leading order #EFT-calculations
in the three-nucleon sector, which correspond to Efimov’s program. This is because on the
critical trajectory, the scattering lengths in boths channel diverge simultaneously. Such a
behavior is indeed consistent with chiral extrapolations to pion masses larger than the physical
one. The closeness to the critical trajectory of physical QCD explains the unnatural largeness
of the scattering lengths which places the theory close to the unitary limit. Moreover, the
ultraviolet RG limit cycle that appears in #EFT would be a signature of the infrared limit
cycle of QCD. At the critical pion mass, nuclear physics would be exactly SU(4)-symmetric,
and Wigner’s approximate SU(4) symmetry can be seen as a remnant of this.

The two-nucleon scattering lengths as; can be extrapolated to unphysical pion masses using
XEFT [BBSvKO02, BS03, EMGO3]. The results suggest that the two scattering lengths might
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Figure 6.2: Pion-mass dependence of the triton energy. Plotted are the results for three
different volumes and two different renormalization procedures alongside the infinite volume
curve.

indeed diverge at pion masses not much larger than the physical pion mass. It should be
noted, however, that these results come with large error bands due to two not well determined
low-energy constants. The mass difference between up- and down-quark can be used in these
calculations as an additional tuning parameter to render both scattering lengths infinite at
the same critical pion mass m<it,

If both scattering lengths diverge at the same pion mass, the Efimov effect occurs. There
are two two-body bound states directly at threshold and a below a tower of geometrically
spaced three-body bound states with an accumulation point at threshold. This means that
the triton gets excited states for pion masses close to the critical one.

An earlier publication [HPPO07] used a particular scenario of YEFT results where the sin-
glet and triplet scattering length diverge simultaneously at a critical pion mass m&it =
197.8577 MeV. For this scenario, the input quantities for the low-energy EFT using only
contact interactions where determined for various pion masses. The input quantities are
two two-body scattering length or, if applicable, the pole position of the two-body bound
state, and one three body datum, for example the triton ground state binding energy or the

neutron-deuteron scattering length.

In the following, the study of [HPPO07] is extended to finite volumes. As stated above, no
additional input is needed to produce renormalized finite volume results. The pion mass
dependence of the triton ground state is shown in Fig. 6.2 for volumes with side lengths of
3, 4 and 5 fm. Such sizes are typical in present day lattice calculations. Again, two data sets
are plotted that were obtained using two different methods to fix the three-body coupling
as described above. The most pronounced effect of the finite volume is a strong downward
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Slopes for data set
L/fm | HA)=0 | A = 3000 MeV

00 0.0783 0.0783
4.925 0.0467 0.0467
3.94 0.0644 0.0639
2.955 0.0770 0.0838

Table 6.1: Slopes obtained by linear fits to the pion-mass dependence of the triton energy in
finite and infinite volume near the critical pion mass as shown in Fig. 6.2.

my | BS° [ MeV | ES°/By | Ligoy / fm | E3(Ligoy) / MeV | 1’
phys. | 8.48 3.8 5.62 16.95 6.47
190 4.31 93 7.62 8.63 6.03
195 3.85 613 8.05 7.69 6.01
196 3.74 1,407 8.13 7.50 5.97
197 3.65 6,374 8.25 7.30 5.98
200 3.41 26,368 8.52 6.80 5.97
205 3.14 2,092 8.82 6.29 5.90

Table 6.2: Numerical evidence for universal scaling of the finite volume corrections. For
different pion masses, the triton ground state energy in infinite volume, ES°, is given in MeV
and in units of the binding energy By of the physical two-body bound state. Further given
is the volume size L;yyy yielding a shift of 100% with the corresponding energy Fs(Ljgoy in
MeV. Finally, the dimensionless combination r’ = mE?‘fOL%OO% is shown.

shift, as was expected from the results for the triton at the physical point. However, there
is a more subtle effect which is a modification of the slope of the almost linear pion-mass
dependence. This effect is summarized in Table 6.1.

The effect on the slopes is supposedly due to the vast difference of the triton ground state
energies for different pion masses when expressed in the intrinsic energy scale of the system,
namely the binding energy of the physical two-body bound state. The infinite volume energy
of the triton for the six investigated pion masses in units of the physical two-body bound
state is given in Table 6.2. The physical two-body bound state is the deuteron for m, < mcit
and the spin-singlet dibaryon for m, > m&t. The different binding energies, however, are
spread over more than three orders of magnitude in terms of the intrinsic energy scale of the

system.

This vast difference offers the possibility to study the presence of universal scaling for the
triton ground state. For the various investigated pion masses, the box sizes Liggy vielding
an energy shift of 100% compared to the infinite volume value ES° are given in Table 6.2.
The values of r' = mEgoLfoo% obtained for the six different unphysical pion masses differ by
about 1% from the central value 5.98. The very good agreement between the different values
of 1’ strongly suggests that the finite volume corrections are subject to universal scaling. The
central value found for the six ground states differs from the value found for the physical
triton, ' = 6.47, by 8%. This can be explained by comparing to the bosonic case. Here, the
universal behavior has been found to be obscured for states close to the threshold. As can
be seen from Table 6.2, all the ground states near the critical pion mass are rather deeply
bound states. The physical triton has an infinite volume binding energy of ES° (mE™*) ~ 4B,
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L/fm | B{Y/MeV | By/MeV L/fm | B{Y/MeV | By/MeV
% 0.052 0.047 % 0.016 0.006
19.7 | 0.742 0.486 206 | 0.383 0.198
14.8 | 0.890 0.823 19.7 | 0.686 0.431
14.4 | 0.884 0.865 14.8 | 0.761 0.753
14.2 N/A 0.888 14.4 N/A 0.794
L/tm | B{Y/MeV | B,/MeV L/fm | B{Y/MeV | By/MeV
00 0.009 5.7 x 10~% o0 0.038 1.3 x 1074
395 | 0.184 0.105 20.6 | 0.355 0.182
27.6 | 0.240 0.211 19.7 | 0.625 0.407
264 | 0233 0.231 15.6 |  0.662 0.651
26.2 N/A 0.234 15.4 N/A 0.668

Table 6.3: Volume dependence of the first excited state of the triton for pion masses of
my = 190 MeV (upper left), 195 MeV (upper right), 197 MeV (lower left) and 200 MeV
(lower right). The two-body energy has been obtained by the method described in [BBPS04].

in units of the deuteron binding energy Bs. This renders the physical triton a rather shallow
trimer for which the universal scaling is obscured.

The behavior of the first excited state when put inside a finite volume differs from the
behavior of the ground state. For large volumes, the state remains again unaffected at first.
When going to smaller volumes, the energy starts to strongly decrease. But eventually the
“breakup threshold”, i.e. the energy of the two-body bound state in finite volume, becomes
equal to the three-body energy. For pion masses smaller than m&it, the two-body bound
state corresponds to the deuteron, while for m, > m&t there is a bound state in the
1 So-channel and the deuteron has become a virtual state. For even smaller volumes, the
excited three-body bound state has disappeared. This is shown in Fig. 6.3, in which the
energies of the two-body bound states in finite volume are calculated according to [BBPS04].
Supposedly, the state has crossed into the scattering regime where it would be driven away
from threshold. We previously observed such a behavior in our investigation of three-boson
bound states inside finite volumes [KH10]. The volume dependence for the investigated pion
masses is summarized in Table 6.3. Whether there is a universal relation between the binding
energy in infinite volume and the volume size, at which the state disappears, is an interesting
question that will be investigated in the future.

The very weakly bound second excited state, that appears in the infinite volume for pion
masses very close to the critical one, could not be observed for the volumes with side lengths
of several fm that were investigated and has by the above reasoning crossed the threshold
already at some much larger volume.

In this chapter, the physical triton was investigated as well as the triton spectrum for un-
physical pion masses close to the critical pion mass. The renormalization of the finite volume
results was explicitly verified. All states experience a downward shift when decreasing the
volume size. For the ground states, the slope of the pion-mass dependence is slightly mod-
ified by the finite volume. A possible explanation for this is that, when varying the pion
mass, the binding energy of the ground states varies over several orders of magnitude when
expressed in terms of the intrinsic energy scale of the system. Strong numerical evidence for
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Figure 6.3: Pion-mass dependence of the triton spectrum for the infinite volume (upper left)
and finite volumes with side lengths of L = 29.6,19.7,14.8 fm (upper right, lower left, lower
right, respectively). The blue dashed lines are the energies of the physical di-nucleon state.
The infinite volume plot is taken from [HPPOT7].

a universal scaling of the finite volume corrections has been provided. In particular, given an
infinite volume binding energy, the volume corresponding to a 100% shift in the energy can
be inferred with high accuracy. The excited states of the triton showed the threshold crossing
behavior that was already observed for shallow three-boson bound states and will be further
investigated. The next step is the inclusion of higher partial waves, which is straightforward
but numerically tedious. The knowledge of the volume dependence of the triton binding en-
ergy is crucial to the understanding of lattice simulations in this channel. Since, in contrast
to the two-body sector, the three-body amplitude can only be determined numerically, the
generalization of Liischer’s formula (2.7) to three-body systems cannot be written down in
closed form. Nonetheless, the infinite volume scattering properties are implicitly encoded in
the volume dependence of the finite volume states.



Chapter 7

Summary and Outlook

In this work, bound-states of resonantly interacting three-body systems were investigated
inside a finite cubic volume with periodic boundary conditions. Since the s-wave scattering
length is large compared to the natural length scale of the interaction, such systems are well
suited for an description within an Effective Field Theory. This approach also allowed for
the study of universal behavior of the finite volume corrections. Universality in this context
means independence of the details of the underlying interaction.

At first, systems of three identical bosons were studied in order to gain an initial under-
standing of Efimov physics in finite volumes. To this end, an infinite set of coupled integral
equations for the partial waves of the bound state amplitude was derived from the leading
order Lagrangian of the EFT. The coupling of the different partial waves is a consequence of
the breakdown of rotational symmetry inside the finite cubic volume. The numerical methods
needed to determine binding energies from these equations were discussed in detail.

Specializing to the £ = 0 case, the spectrum has been calculated for both positive and negative
scattering lengths. It was explicitly demonstrated that the finite volume results are correctly
renormalized. For small shifts of up to 15%, an expansion can be used to reduce the numerical
effort. Typically, the binding of all three-body states increases as the box size is reduced.

The spectrum for positive and negative scattering length was studied in detail and numerical
evidence for a universal scaling of the finite volume effects has been provided. The scaling
properties can be quantified by the dimensionless product r (r') of the three-body binding
energy in the infinite volume limit and the square of the box side length corresponding to
a finite volume shift of 10% (100%) of the infinite volume energy. For states sufficiently far
away from the threshold, numerical evidence was obtained that the values of r and ' approach
universal numbers for both signs of the scattering length. These findings suggest that the
finite volume properties of deeper states can be obtained by a simple rescaling and do not
require explicit calculations. A more detailed analysis of this issue along the lines of [BHKO03]
is a future project.

For positive scattering lengths, a system with a spectrum containing three states was inves-
tigated. The state closest to the dimer energy, which constitutes the break-up threshold for
three-body bound states, drastically changes its behavior as soon as its energy becomes equal
to the dimer energy in finite volume. At this point, the energy of the shallowest three-body
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state starts to grow and eventually becomes positive. The observed behavior is consistent
with exponential suppression of the finite volume corrections below the dimer energy and
power law suppression above.

The effect of the admixture of the ¢ = 4 partial wave has been investigated for two different
three-body states for box sizes of the order of the state’s size. For a generic state well seperated
from the threshold, corrections of the order of a few percent were found for volumes about
three times as large as the state itself. For the state closest to threshold, the effect of this
admixture turned out to be surprisingly small. For volumes about as large as the state itself,
the shift was found to be less than 1%. As the finite cutoff corrections for this state are about
the same size, a more quantitative study requires an improved treatment of these corrections.
The small effect of higher partial waves might be associated with the closeness of the state
to the threshold.

Subsequently, the formalism was extended to systems of three nucleons inside a finite cubic
volume. Due to the additional degrees of spin and isospin, there are now two independent
two-body scattering channels. Each channel is characterized by a scattering length, both
of which happen to be unnaturally large. There are two bound state amplitudes with the
quantum numbers of the triton. The equations governing these amplitudes are coupled. The
decomposition into partial waves is more involved due to the coupling of spin and angular
momentum. After overcoming these additional complications, an infinite set of coupled equa-
tions for the partial waves of the bound state amplitude were derived analoguously to the
bosonic case.

Neglecting higher partial waves as in the case of three bosons, the triton energy was calcu-
lated for several finite volumes in the order of magnitude typical for present Lattice QCD
calculations. The results were explicitly verified to be renormalized. The overall behavior of
the triton state was found to be similar to that in the bosonic case. That is, decreasing the
box size leads to an increased binding.

Additionally, the triton spectrum was investigated near the critical pion mass where both
scattering lengths might diverge simultaneously. For the ground states, strong numerical
evidence for a universal scaling of the finite volume effects was provided. The dimensionless
combination 7’ seems to be a universal number. For states with binding energies ranging
over more than three orders of magnitude when expressed in terms of the intrinsic energy
scale of the system, the values that have been found for r’ agree within about 1%. For
every excited state, there is a volume size for which the state crosses the threshold. This
means that its energy becomes equal to the energy of the bound two-nucleon state in this
specific volume, and the state can not be found below the two-body energy when further
decreasing the volume size. For the first excited state, this has been studied quantitatively.
The second excited state always has already crossed the threshold when reaching volumes
even a magnitude larger than those which are used in present day lattice calculations.

The next step is the inclusion of higher partial waves in the nucleonic case, which is straightfor-
ward but numerically tedious. Also, since range corrections are sizable in the N N-interaction,
higher orders of the EFT should be included in the framework. Finite temperature effects
should also be taken into account, as lattice calculations are always performed at small,
non-zero temperatures.

The framework should be extended in order to describe scattering states. Since, in this case,
the analytic structure of the infinite and finite volume amplitude is different, it is not sensible
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to use Poisson’s equation. With such a framework, it would be possible to investigate, for
example, nucleon-deuteron scattering in finite volumes. The results could subsequently be
compared to the two-body Liischer formula in order to look for effects from the three-body
force.

With high statistics lattice QCD simulations of three-baryon systems within reach [B*09],
the calculation of the structure and reactions of light nuclei appears now feasible within the
intermediate future [BDOS10]. The results of this work demonstrate that the finite volume
corrections for such simulations are calculable and under control. It was shown that this is
also the case if the conjecture of an infrared renormalization group limit cycle in QCD for
quark masses slightly larger than the physical values [BH03] is tested.






Appendix A

Representations of the Cubic group

This appendix gives an overview on the cubic group O, its double cover 20 and the theory
of their representations. The informations given here are an important ingredient in the
formalism laid out in this work, as they serve to disentangle the contributions from different
partial waves. The discussion given here relies on [Joh82] and [BLMROS|.

A.1 The Cubic Group and its double cover

The cubic group O is the point group of rotational symmetries of a cube. The group has 24
elements falling in five conjugacy classes. These are, in the notation nC,,, where n is the
number of elements in this class and m the order of each element:

e [: identity

e 3(C5: rotations by 7w about three coordinate axes

e 6C'y: rotations by 5 about three coordinate axes

e 8C'3: rotations by :l:%7r about four body diagonals

6CY%: rotations by m about diagonals connecting centers of opposing edges

Since O is a finite group, the number of its conjugacy classes equals the number of its
irreducible representations (irreps). These are the trivial representation Ap, the alternating
representation Ao, F, the fundamental representation 77 and 75, which is connected to T}
in the same way as As is connected to A;. The characters of these irreps are summarized in
Table A.1. The dimension of the irrep can be read off from the character of the identity.

The double cover of the cubic group is constructed by adding a negative identity J for 2
rotations. This is analoguous to the construction of the spin group SU(2) from the rotational
group SO(3). Of course, this comes as no surprise. Since the cubic group is a subgroup of the
continuous rotational group SO(3), the double cover of O has to be a subgroup of the double
cover of SO(3). The double cover 20 contains 48 elements. The extension by a negative
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T13Cy | 6Cy | 8C5 | 6C7
A |1 1 1 1 1
Ay |1 1 | =1 1 | -1
E |22 o0 |-1]o0
T3] -1 1| o0 |-1
7 | 3| —1 —1 0 1

Table A.1: Characters of the irreducible representations of O. The character of the identity
gives the dimension of the representation.

Il J [6Cy]8C;]8Cs ]| 6Cs | 6C% | 12C}
Gil2]-2] 0 | —1] 1 |=vV2]| V2 0
Gy |2 -2 0 | -1 1 V2 | =V2 | 0
H |4]—-4] 0 1 | -1 0 0 0

Table A.2: Characters of the irreducible representations of 20. The character of the identity
gives the dimension of the representation.

identity J, which corresponds to a rotation about 27, yields two new conjugacy classes plus
the negative identity itself. Thus, the double cover has eight irreps, namely the five of the
cubic group and three more. These are labelled G, G5 and H. The irreps G and G are
again related as are A; and As. The conjugacy classes of 20O and their characters for the
three additional irreps are given in Table A.2.

The rotational group SO(3) has infinitely many irreps, labeled by non-negative integers ¢ =
0,1,2,..., with dimension 2¢+ 1. These representations become (in general) reducible under
the action of the cubic group and can be decomposed in terms of the five irreps of O. This
decomposition is the subject of the next section.

The double cover of the rotational group, namely SU(2), has the same irreps as SO(3) and
infinitely many additional irreps labeled by half-integer values j = %, 3/2,5/2,..., with di-
mension 25 + 1. Accordingly, these representations can also be decomposed in terms of irreps
of 20. But, in order to preserve the completeness relations of O, the additional reducible
representations can only contain the three additional irreps of the double cover of the cubic

group.

A.2 Decomposition of reducible representations

A given representation of SO(3), labeled by ¢, acts on a 2¢ + 1-dimensional vector space. A
basis of this vector space is given by |¢m), where m runs from —¢ to ¢. The reducibility of
the representation means that there are subspaces which are invariant under irreps of O. In
the following will be shown how to construct bases for these subspaces.

In order to perform the decomposition of the representation ¢ of SO(3), the projection oper-
ator

(P ) = > (RM)as DY, (R), (A1)



A.2. Decomposition of reducible representations 61

is defined, where the sum runs over all group elements R. The RT) is the matrix that
respresents R in the irrep I and the Dfnm,(R) are Wigner’s D-function associated with R
when it is considered as a rotation. The indices «, 3 run over the dimensionality of the irrep I,
while m and m’ run, as usual, from —/ to £. The matrix form of the irreps is as follows:

e A;: R =1forall Re O
o Ay: RM2) = _1if R is in the conjugacy class 6Cy or 6CY, R(2) — 1 otherwise

e . There are six different matrices in this representation. Each matrix is real and
represents four elements of O:
— R®) =1 for the identity and the matrices in 3C5

— RE) = o3 for the two rotations in 6C4 about the z-axis and the two rotations in
6CY, about axes orthogonal to the z-axis

— RE) = —cos(n/3)1 —sin(r/3)o; for rotations as above, with the z-axis replaced
by the z-axis

— RW) = —cos(n/3)1 + sin(r/3)o; for rotations as above, with the z-axis replaced
by the y-axis

— R®) = —cos(n/3)1 + isin(w/3)oy for the four rotations in 8C3 with angle =
(—%’r) if the axis vector has an odd (even) number of minus signs.

— RE) = —cos(r/3)1 — isin(r/3)oy for the remaining four rotations in 8C3, corre-

sponding to switching the sign of the rotation angles in the description above.

e T7: For each group element, the representation is given by the corresponding rotation
matrix in SO(3).

e T5: Like T, with an additional minus sign for the elements from the conjugacy classes
6Cy and 6CY.

The basis vectors spanning the invariant subspaces are then obtained by acting with the
linear operator (A.1) on an arbitrary linear combination v of the |¢m)

(65’576)7?1 = NZ(Par‘éz)mm”ﬁm" (AQ)

Different bases are mapped out by fixing different values of § and letting « run from 1 to the
dimension of I'. The normalization constant A is fixed such that the basis is orthonormal

S (en () = drvrdava. (A.3)

m

If I is not part of ¢, then the application of the projector on any v yields 0. If the repre-
sentation I' enters multiple times in ¢, an additional orthogonalization of the generated basis
vectors is necessary. The eigenvectors needed in this work are, in the notation from above,
e1:0 and 414, Both are given as linear combinations of the |[¢m) in Table A.3.

The extension to the decomposition of representations j of the double cover of SO(3), namely
SU(2), is then straightforward. For integer values of j, the decomposition yields identical
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I' 7 « et
A 0 1 0,0)
A 401 (|4, -4) +|4,4)) + Y2 4,0)
G, 1o |3, 3)
1 1
2 ‘57_§>
Gi 3 1 BE-D+ S
9 _@‘Z Z>_@‘Z —1
6 1272 6 12 2

Table A.3: Basis functions of A; (Gy) for the two lowest partial waves in terms of |[jm;).

results as in the case above. Only the additional representations of the double cover, corre-
sponding to half-integer values, have to be considered. These can in turn only be reducible
in terms of the irreps of 20 that are not contained in O, namely G, Gy and H.

Eq. (A.1) is generalized for the double cover to

(Pai ) = > (RT)osD? L (R). (A.4)
Re20

The matrices of the three additional irreps is given in the following.

e G: For each group element, the matrix is given by the corresponding SU(2) matrix.
e Gy: As in G, with sign changes for the conjugacy classes 6Cs, 6C% and 12CY.

e H: For each group element, the matrix is given by the corresponding matrix in the

j = 2 representation of SU(2).

As in the SO(3) case, the basis is produced by acting with the projector (A.4) on a linear
combination of the basis vectors |jm;) as defined in Eq. (5.14). In Table A.3, the basis

G1,3 . . . .
vectors eq 2, a = 1,2, and, for convenience, the basis vectors of the next higher partial

G1,2 . . o . .
wave, eq 2, o = 1,2 are given as linear combinations of the spinors |jm;). The table for all

irreps of 20 for partial waves up to j = 4 can be found in [BLMROS)]



Appendix B

Numerical Evaluation of Fourier
Integrals

The formalism laid out in this work requires the computation of integrals with a rapidly
oscillating kernel. This problem can be solved with high numerical efficiency by applying a
method based on the use of Fast Fourier Transform (FFT). This technique is described in
Section B.1. Its application to the evaluation of Fourier integrals is depicted in Section B.2.
The presentation given here follows [PTVF07], wherein many more details on the method
and additional references can be found.

B.1 Fast Fourier Transform (FFT)

For a discrete sample of data, f,, with n = 0,..., N — 1, the discrete Fourier Transform
(DFT) is defined as
N-1
hiy =Y fae®™ /N p =0, N -1 (B.1)
n=0

When implemented naively, this is a rather expensive process of the order O(n?). In 1965,
however, an algorithm put forward by Cooley und Tukey became widely known under the
name of Fast Fourier Transform (FFT) [CT65]. This algorithm allowed the computation of a
DFT in O(N logy N). Since then, many different algorithms have been found with the same
complexity. The method of Cooley and Tukey has been previously discovered and forgotten,
the first time by Gauf} in 1805 [Gau66]. The FFT algorithm relies on a divide-and-conquer
strategy. The algorithm described in the following is the original Cooley-Tukey version.

Assuming N is even, consider splitting the sum into sums over odd and even indices

N/2—-1 N/2—-1
hy = Z fzmez27rk 2m/N + Z f2m+lez27rk (2m—+1)/N
! =0 (B.2)
N/2-1 N/2—1

_ Z f z27rkm/(N/2 z27rk/N Z f2 227rkm/ N/2)

63
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(@ | 000 (b) 000
001 100
010 010
011 110
100 001
101 101
110 - 011
111 111

Figure B.1: Illustration of the Cooley-Tukey FFT algorithm for a sample of size N = 8.
(a) The bit reversal. (b) Subsequent combination of adjacent blocks into four DFTs of
length 2, two DF'Ts of length 4 and the final DFT of the complete sample.

Clearly, the sums in the last line are just the DFTs of the data with even and odd index,
respectively. By this means, the values hj are obtained for k¥ = 0,...,(N/2) — 1. The
remaining N/2 values are obtained by noting that for k > N/2

ei27r(k+N/2)/N _ _ei27rk/N
= )

while the sums remain unchanged due to the periodicity of the DFT. Therefore, flipping the
sign in front of the second sum yields the missing values.

By setting NV to a power of 2, this procedure can be carried out recursively down to a DFT
of size 1, which is just the identity operation. The sample can always be increased to a size
which is a power of 2 by padding the array with zeros.

From an algorithmic point of view, it is convenient to rearrange the sample such that there
is one block containing the originally even indices and another one collecting the odd indices.
This should be done in such a manner that it holds in every level of the recursion. The way
to achieve this is surprisingly simple. When writing an index in binary notation, the last
bit characterizes whether the index is odd (the last bit is 1) or even (the last bit is 0) in
the upmost level of the recursion. For the next level, this is determined by the penultimate
bit, and so forth. Therefore, by inverting the order of the bits and rearranging the data
points accordingly, the blocks of even-indexed and odd-indexed data that are to be merged
at a certain step in the algorithm are always adjacent. This makes it easy to implement the
algorithm iteratively instead of recursively. In addition, it allows to perform the algorithm
in-place, i.e. using the input array as output array, lowering the memory cost by a factor 2.
The rearrangement procedure is called bit-reversal. The strategy of Cooley-Tukey algorithm
is illustrated in Figure B.1. There are log, N stages where odd- and even-indexed blocks are
combined into a single DFT. At each merging stage, there O(N) operations are necessary.
This renders the total algorithm to be of order O(N logy N).



B.2. Computing Fourier Integrals 65

B.2 Computing Fourier Integrals

As has been stated above, the FFT is a powerful device to perform a DFT. In the framework
presented in this work, it is necessary to compute integrals of the form

A A
IS:/O h(y) sin(wy)dy, Ic:/o h(y) cos(wy)dy, (B.3)

where h is a smooth real function. Such integrals arise from the Bessel functions in Eq. (3.19).
The integrals I; and I. can be seen as the imaginary and real part, respectively, of

A
I, = / h(y)e™?dy. (B.4)
0
It is desirable to apply the FFT method in order to evaluate this integral.

The intuitive approach is to replace the integral by a sum like

M—-1 .
I~A Z h;e'™Yi, (B.5)
=0

where A = %, y; = jA and h; = h(y;). For the special values of w

2mm

the sum can then be evaluated using the FFT method via

M—-1
I(wm) = A Y hie™IM = ADFT (ho, ..., har-1)],,, - (B.7)
=0

This procedure is surprisingly inaccurate. The reason for this is the oscillatory nature of
the integrand. If w is large enough to yield several cycles inside the integration range, [
typically becomes very small. In this case, it is easily dominated by the truncation error
introduced by the approximation with a sum. This truncation error is moreover dominated
by the combination wA, which can be as large as 7, as can be seen from Eq. (B.6).

It is therefore necessary to significantly reduce the truncation error. To do so, approximate
the function h(y) for a given y by an interpolation on the h;. This may be in written down

as M) ~ ﬁ%hﬂf’ <y —ij> n Z s (y —ij> . (B.8)

je{endpoints}

The function v (s) can be seen as a kernel function of the interpolation. It is characteristic
for the employed interpolation scheme. For all schemes holds ¢(0) = 1 and t(+m) = 0 for
m =1,2,..., in order to reproduce the sampling points exactly. For a linear interpolation,
for example, 1(s) is just piecewise linear, rising from 0 to 1 for s between —1 and 0, and
falling from 1 to 0 for s between 0 and 1. For higher order interpolation schemes, 1(s) is
given by piecewise polynomials, joined at integer values of s where the set of points used for
the interpolation changes discretely.
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Near the endpoints of the integration interval [0, A], the interpolation scheme has to be non-
centered in order to achieve the same accuracy. This is taken into account by the second sum
with the kernels ¢;(s). The number of endpoints included in this second sum is determined
by the interpolation scheme, and the index j reflects the dependence on the distance from the
edge of the integration interval. The endpoint kernels ¢; are actually the differences between
the true endpoint kernels and (s) such that the first sum runs over all points, which will
prove to be convenient.

The integral operator fOA dy exp(iwy) is now applied to Eq. (B.8). After interchanging sum-
mation and integration and changing variables to s = (y—y;)/A in the first sum and s = y/A
in the second sum, the relation

M
T=A|\W()> hie"’+ > hja;(6) (B.9)
j=0 j€{endpoints}
is obtained. Here, # = wA and
W(9) = / ds e%4)(s) (B.10)
a;(8) = / dse (s — 7). (B.11)

The integrals can be extended to infinite range since the interpolation kernels vanish far away
from s = 0. Egs. (B.10) and (B.11) can be worked out once for any given interpolation scheme.
In this work, cubic interpolation was used. As this is a symmetric scheme, it follows that
1 (s) = 1(—s), which renders W (f) real. The «; at the right end of the interval are related
to those on the left, also by symmetry, since ap—;(0) = exp(iM0)a(0) = exp(iwA)aj(0).
The results for cubic order are given by [PTVF07]

2
W) = <63+T49> (3 —4cos @ + cos 20),

(—42 4+ 562) + (6 + 02)(8cos § — cos26)  (—120 + 663) + (6 + 6?)sin 20

ag(f) = oo 4+ el |
on(6) = 14(3 — 62) _6;‘(16 +62) cos N Z,309 - 5(2;I 62) sinH’
an() = —HB =) 2924(6 +6%)cosh 120+ 22(;; ) sinf
as(0) = 2(3 — 6?) —62(2 +6%) cos b N z’69 _ (6;—9492) sin ¢

The first sum in Eq. (B.9) is evaluated with FFT. To this end, an N > M is chosen which is a
power of 2. The sample is filled up with zeros for M +1 < 7 < N. Then, the sum can be done
for the special frequencies 6,, = AZ™ 7 = 0,1,...,(N/2) — 1. Eq. (B.9) is a prescription
how to apply endpoint corrections to the sum that is done via FFT. The result for general w
is then obtained by interpolation. In general, an oversampling by a factor of 4, i.e. N > 4M,
is advantageous such that the sampling in frequency space is fine enough to allow for an
accurate interpolation. The value of M determines the highest possible frequency, as the
largest possible value of wA is just below 7, and therefore

wM Wimax /A
Wmax 5 T = M > m;X .

(B.12)
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The algorithm laid out in this section is a central mechanism in obtaining the numerical
results presented in this work.
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