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Abstract

We investigate properties of two- and three-body halo systems using effective field theory.
If the two-particle scattering length a in such a system is large compared to the typical
range of the interaction R, low-energy observables in the strong and the electromagnetic
sector can be calculated in halo EFT in a controlled expansion in R/|a|. Here we will focus
on universal properties and stay at leading order in the expansion.

Motivated by the existence of the P-wave halo nucleus 6He, we first set up an EFT
framework for a general three-body system with resonant two-particle P-wave interactions.
Based on a Lagrangian description, we identify the area in the effective range parameter
space where the two-particle sector of our model is renormalizable. However, we argue that
for such parameters, there are two two-body bound states: a physical one and an addi-
tional deeper-bound and non-normalizable state that limits the range of applicability of our
theory. With regard to the three-body sector, we then classify all angular-momentum and
parity channels that display asymptotic discrete scale invariance and thus require renor-
malization via a cut-off dependent three-body force. In the unitary limit an Efimov effect
occurs. However, this effect is purely mathematical, since, due to causality bounds, the
unitary limit for P-wave interactions can not be realized in nature. Away from the unitary
limit, the three-body binding energy spectrum displays an approximate Efimov effect but
lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we
discuss possible modifications in our halo EFT approach with P-wave interactions that
might provide a suitable way to describe physical three-body bound states.

We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-
particle S-wave interactions. Introducing external currents via minimal coupling, we calcu-
late observables and universal correlations for such systems. We apply our model to some
known and suspected halo nuclei, namely the light isotopes 11Li, 14Be and 22C and the
hypothetical heavy atomic nucleus 62Ca. In particular, we calculate charge form factors,
relative electric charge radii and dipole strengths as well as general dependencies of these
observables on masses and one- and two-neutron separation energies. Our analysis of the
62Ca system provides evidence of Efimov physics along the Calcium isotope chain. Exper-
imental key observables that facilitate a test of our findings are discussed.

Parts of this thesis have been published in:

• E. Braaten, P. Hagen, H.-W. Hammer and L. Platter. Renormalization in the Three-
body Problem with Resonant P-wave Interactions. Phys. Rev. A, 86:012711, (2012),
arXiv:1110.6829v4 [cond-mat.quant-gas].

• P. Hagen, H.-W. Hammer and L. Platter. Charge form factors of two-neutron halo
nuclei in halo EFT. Eur. Phys. J. A, 49:118, (2013), arXiv:1304.6516v2 [nucl-th].

• G. Hagen, P. Hagen, H.-W. Hammer and L. Platter. Efimov Physics around the neu-
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Chapter 1

Introduction

1.1 From the standard model to halo effective field

theory

A vast amount of physical phenomena in nature can be described within the so-called stan-

dard model (SM). Its fundamental degrees of freedom, the elementary particles, are ordered
in three generations of quarks and leptons and a set of exchange particles, describing their
interactions. The interactions are commonly divided into the electromagnetic, the weak,
and the strong sector, where the first two were successfully unified to the electroweak force.
Furthermore, within this picture, all elementary particles are point-like and their inertial
masses are generated by the Higgs mechanism, which introduces at least one additional
bosonic field. This mechanism was already proposed in 1964 by, among others, Higgs and
Englert [1–3]. Recent experiments at CERN confirmed the existence of such a so-called
Higgs field, awarding both authors the 2013 Nobel prize in physics.

The theory of strong interactions is usually referred to as quantum chromodynamics

(QCD). It describes how quark fields q interact with each other through gauge bosons G
called gluons. Since gluons carry color charge, they can interact with each other. The
fundamental object, the theory is mathematically based on, is the QCD-Lagrangian

LQCD(q, G) = q†fγ
0
(
iγµ
[
∂µ − igs

λa
2
Ga
µ

]
−mf

)
qf − 1

4
F a
µνF

µν
a ,

F a
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν ,

(1.1)

where we implicitly sum over all double indices. Thereby, the ranges for flavor indices
(f), color indices (a, b, c) and Lorentz indices (µ, ν) are {1, . . . 6}, {1, . . . 8} and {0, . . . , 3},
respectively. γµ are the four Dirac matrices and λa are the eight Gell-Mann matrices with
structure constants fabc. mf is the bare mass parameter for a quark of flavor f and gs is
the strong coupling constant.

In the course of the great progress in the understanding of nature, provided by the
SM, various new questions and problems came up. On the one hand, there are in a way
fundamental problems to the SM. For example, satisfying explanations for phenomena

1



2 CHAPTER 1. INTRODUCTION

related to the gravitational sector, such as gravitation itself or dark matter and dark
energy, are still missing. In addition to that, the unification of all forces remains a major
task in theoretical physics. In order to solve these problems, the SM has to be extended
in a hitherto unknown way. However, on the other hand, there is another category of
problems which has to do with the complexity of the interactions that are already included
in the SM. In particular, QCD, which, in principle, is described by eq. (1.1), is not fully
understood yet. The main problem comes from its running coupling constant gs. At large
energies gs becomes small such that perturbation theory is applicable. The quarks then
behave as free particles whose scattering processes can be calculated analytically and order
by order in terms of Feynman diagrams. This phenomenon is called asymptotic freedom

and was discovered in 1973 by Gross, Wilczek and Politzer [4, 5]. Calculated predictions
in this high-energy sector match very well with experimental data. However, in the low-
energy regime the situation is the exact opposite. Since gs becomes large, perturbation
theory can no longer be applied. Instead, the attractive force between quarks rises with
increasing distance. As a consequence, they can not be isolated and are confined into color
neutral objects. This confinement provides the basis for the existence of all hadrons but is
nether fully understood nor mathematically proven yet.

There are different approaches to this unresolved problem. One, for instance, is to use
a discretized version of eq. (1.1) and perform computer-based calculations [6, 7]. Thereby,
the continuous space time is replaced by a discrete lattice with less symmetries. Although
current results of this so-called lattice QCD look promising, limited computing power is a
major drawback. In order to get physical results, one namely has to consider the limit of
vanishing lattice spacing and physical masses, rapidly stretching state-of-the-art supercom-
puters to their limits. Thus, first principle lattice QCD calculations for nuclear systems
with many constituents such as the atomic nuclei of 22C or 62Ca, which are discussed in
this thesis, will stay out of reach in the foreseeable future.

Another approach that proved itself in practice is to use effective field theory (EFT).
Generally speaking, an EFT, such as chiral perturbation theory (ChPT) [8–10], is an
approximation to an underlying more fundamental theory. Ideally, it shares the same
symmetries and well describes observed phenomena within a certain parameter region.
The complex substructure and the number of the degrees of freedom in the original theory
typically are reduced within an EFT framework. Eventually, even the current SM will be
seen as an EFT as soon as the underlying, more fundamental theory is discovered.

The aim of this work is to set up a non-relativistic EFT for large scattering length and
apply it to a specific class of three-body systems called halo nuclei. The corresponding
effective field theory is called halo EFT. With respect to such systems, we first consider
a more general theoretical issue that came up recently, namely the question if and how
such halo systems can be generated through P-wave interactions. After that, we derive
and calculate concrete physical observables for S-wave halo nuclei with an emphasis on the
electromagnetic sector.
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1.1.1 Overview

The outline of this work is as follows: In sec. 1.2 we first give a brief introduction on EFTs
with large scattering length. Thereby, sec. 1.2.1 begins with a repetition of basic aspects
of scattering theory including the effective range expansion. Sec. 1.2.2 then proceeds with
a short review of the concept of large scattering length, universality, the phenomenon of
discrete scale invariance and the Efimov effect. An introduction to halo nuclei and halo
effective field theory with hitherto results in this area of research is presented in sec. 1.2.3.
In sec. 1.3 we specify the notational conventions that are used throughout this work.

In chapter 2 we investigate the question if and how halo nuclei or general two- and
three-body systems with large scattering length can be realized through two-particle P-
wave interactions. Therefore, in sec. 2.1 we first repeat fundamental properties of non-
relativistic EFTs with contact interactions on the Lagrangian level. Especially, we analyze
how possible contributions to the Lagrangian are constraint by the requirement of Galilean
invariance. Furthermore, equivalent ways of introducing auxiliary fields to our theory are
explained. Sec. 2.2 discusses already existing results for three-body systems with resonant
S-wave interactions. In particular, examples for systems exhibiting the Efimov effect are
given. The central question of chapter 2 then is how these results transfer to halo systems
with resonant P-wave interactions. In sec. 2.3 we address this issue in a more general
framework, by setting up an effective Lagrangian for a general three-body system with
such interactions. Solving the two- and the three-body problem in this system, we then
classify all channels that display discrete scale invariance. Finally, we discuss the possibility
of three-body bound states and the Efimov effect.

In chapter 3 we apply non-relativistic halo EFT with resonant S-wave interactions to
two-neutron halo nuclei. We proceed analogously to sec. 2.3, meaning that in sec. 3.1 we
first lay out the field theoretical formalism required for all subsequent calculations. The
introduced effective Lagrangian for a two-neutron halo system is then used in order to
solve the corresponding two- and three-body problem. In sec. 3.2 we extend our model
by allowing the charged core to couple to external currents via minimal coupling. Based
on the corresponding Lagrangian we then derive and calculate different electromagnetic
observables of two-neutron halo nuclei at leading order including form factors and elec-
tric charge radii in sec. 3.2.2. Moreover, we also investigate general correlations between
different observables (see sec. 3.2.3). Finally, in sec. 3.2.4 we present first results for pho-
todisintegration processes of halo nuclei. The methods are applied to some known and
suspected two-neutron halo nuclei candidates. Results are compared to experimental data
where available.

Chapter 4 encapsulates all the main results presented in this work. In addition, we give
a brief outlook to possible future theoretical as well as experimental work in halo EFT that
is related to the considered range of subjects.

All extended calculations are included in the appendix. Sec. A discusses the rele-
vant analytic properties of the appearing integral kernels. Applied numerical methods are
presented in sec. B. For the case of resonant two-particle P-wave interactions, explicit cal-
culations for the coupling of angular momenta in the three-particle sector can be found in
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sec. C. Furthermore, sec. D contains detailed calculations of required nontrivial Feynman
diagrams.

1.2 EFT with large scattering length

1.2.1 Scattering theory concepts

Before we start with our EFT analysis, we first briefly discuss some basic scattering theory
concepts [11] that will be applied throughout this work. In particular, we consider proper-
ties and relations between the scattering amplitude, the S-matrix and the T-matrix. These
quantities represent fundamental objects of scattering theory and are related to various
physical observables. The scattering amplitude e.g. completely determines the asymp-
totic behavior of the stationary wave function and its absolute value squared yields the
differential cross section.

We now assume that two distinguishable particles with reduced mass µ elastically scat-
ter off each other in on-shell center-of-mass kinematics. Then, for incoming and outgoing
relative three-momenta p and k, respectively, the relation p = |p| = |k| holds. If, further-
more, the potential has spherical symmetry, as it is the case for all the contact interactions
presented in this work, the scattering amplitude f can effectively be written as a function
that only depends on p and cos θ, where θ := ∢(p,k) is the scattering angle. f is related
to the T-matrix of the scattering process according to:

f(p, cos θ) =
µ

2π
T (p, cos θ) . (1.2)

Since cos θ ∈ [−1, 1] holds and the Legendre-polynomials Pℓ form a complete set of
functions on the interval [−1, 1], a decomposition into partial waves

f(p, cos θ) =
∑

ℓ

(2ℓ+ 1) f [ℓ](p)Pℓ(cos θ) (1.3)

can be performed, where ℓ ∈ {0, 1, 2, . . .}. A completely analogous equation holds for the
T-matrix. The relation between the partial wave coefficient f [ℓ] and the corresponding S-
matrix element reads S [ℓ](p) = 1+2ipf [ℓ](p). The unitarity of the S-matrix combined with
angular momentum conservation in each partial wave then implies |S [ℓ](p)| = 1. Without
loss of generality, we can thus write S [ℓ](p) = exp(2iδ[ℓ](p)), where the real angle δ[ℓ](p) is
called the phase shift. This leads to the well known relation:

f [ℓ](p) =
1

p cot δ[ℓ](p)− ip
. (1.4)

If the energy lies above any inelastic threshold, the phase shift becomes complex.
For exponentially bound potentials, such as the contact interactions used in this work,

one can show that the term p2ℓ+1 cot δ[ℓ](p) is analytic in p2 (see e.g. [12,13]). Consequently,
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it can be written in terms of a Taylor series in p2:

p2ℓ+1 cot δ[ℓ](p) = − 1

a[ℓ]
+
r[ℓ]

2
p2 + O(p4) . (1.5)

Eq. (1.5) is called the effective range expansion. Of course, it can only be a good approx-
imation in the low-energy regime. The first appearing low-energy constants a[ℓ] and r[ℓ]

are called scattering length and effective range, respectively. In order to match with the
left-hand side of eq. (1.5), their dimensions have to be [a[ℓ]] = −2ℓ− 1 and [r[ℓ]] = 2ℓ− 1.
Higher order coefficients in the expansion (1.5), which are called shape parameters, will not
be considered in this work. In case of P-waves, the quantity a[1] is usually also referred to
as the scattering volume. Combining eq. (1.4) and eq. (1.5) leads to:

f [ℓ](p) =
p2ℓ

− 1
a[ℓ]

+ r[ℓ]

2
p2 − ip2ℓ+1 + O(p4)

. (1.6)

This relation will be used in order to determine effective range parameters from the T-
matrix. Inserting eq. (1.2) into eq. (1.6), for example, yields:

− µ

2π
lim
p→0

p−2ℓ T [ℓ](p) = a[ℓ] . (1.7)

1.2.2 Universality, discrete scale invariance and the Efimov effect

As outlined in the previous sec. 1.2.1, the scattering of two particles can be described
by a few low-energy constants, the effective range parameters, given that the mentioned
requirements are met. Naively, one would expect that, with regard to their dimension, these
parameters should all be of the same order. Such a behavior would imply the existence a
natural low-energy length scale l such that e.g. for the S-wave case |a[0]| ∼ l and |r[0]| ∼ l
should hold. For P-waves, the corresponding conditions would be |a[1]| ∼ l3 and |r[1]| ∼ l−1.
Many physical systems indeed exhibit this kind of natural scaling.

However, there also exist diverse systems, where the scattering length is large compared
to the natural length scale. Such systems represent ideal candidates for a description within
a non-relativistic EFT framework with contact interactions. The required parameter fine-
tuning can either (i) simply occur by nature or (ii) be generated artificially by experimental
means:

(i) Systems with accidental parameter fine-tuning can e.g. be found in nuclear physics.
For example, the scattering length for two-neutron spin-singlet scattering was mea-
sured to be a

[0]
nn = −18.7(6) fm [14], whereas the corresponding effective range

r
[0]
nn = 2.75(11) fm [15] is approximately one order of magnitude smaller. Also hy-
pothetical hadronic molecules such as X(3872) and Y (4660), which were recently
discovered by the Belle collaboration [16, 17], are candidates for systems with acci-
dentally large scattering lengths [18,19]. Another even more prominent example are
halo nulcei, which are the main topic of this work and will be introduced in sec. 1.2.3.
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(ii) A class of systems that belongs to the second category are ultracold atomic or molec-
ular gases. Thereby, experimental tuning of the scattering length is achieved by
varying an external magnetic field, generating a so-called Feshbach resonance [20].
The basis for this mechanism is the existence of both an open and a closed channel
in the scattering of two particles. Modulating the external field, the depth of the
closed channel is tuned such that one of its bound-state energy levels moves as close
as possible to the threshold in the open channel. This way, a large scattering length
and an enhancement in the cross section is produced. Feshbach resonances have first
been observed in Bose–Einstein condensates of alkali atoms [21, 22].

The interesting observation for all those systems with large scattering length is that they
display universal features [23]. This means that observables, in terms of the low-energy
scattering parameters, only depend on the scattering length. For resonant S-wave scat-
tering, the simplest manifestation of universality is the existence of a shallow two-body
bound state. This can be understood as follows: Assuming that f [0] is the dominant con-
tribution to the scattering amplitude (1.3) and that |a[0]| ≫ |r[0]| holds, the existence of a
two-body bound state requires f [0] to have a pole at imaginary binding momentum p = iγ.
Consequently, the denominator in eq. (1.6) has to vanish according to:

0 = − 1

a[0]
+
r[0]

2
(iγ)2 − i(iγ) = −r

[0]

2

[
γ2 − 2

r[0]
γ +

2

a[0]r[0]

]
. (1.8)

The two possible solutions are:

γ± =
1

r[0]
±
√

1

(r[0])2

(
1− 2

r[0]

a[0]

)
≈ 1

r[0]

[
1 ∓ 1± r[0]

a[0]

]
=

{
+ 1
a[0]

− 1
a[0]

+ 2
r[0]

.
(1.9)

Consequently, there exists a bound state near the two-body threshold with binding energy
E(2) = (iγ+)

2/(2µ) = −1/(2µ(a[0])2). Except for the reduced mass, E(2) indeed only
depends on the scattering length. So far, universal features predominantly have been
investigated in the two- and three-particle sector.

Closely related to universality is the so-called unitary limit. It is characterized by
vanishing effective range parameters: 1/a[ℓ] → 0, r[ℓ]/2 → 0, etc. Thus, in terms of
parameter space, the regime of universality can be seen as the neighborhood of the unitary
limit. The word “unitary“ comes from the fact that, in the unitary limit, the only remaining
term in the expansion (1.6) is −ip2ℓ+1, which itself guarantees the unitarity of the S-matrix.

The three-particle sector of a theory can exhibit another interesting phenomenon called
discrete scale invariance. First of all, of course, there exists a trivial continuous scale
invariance: For any λ > 0, the rescaling of every kinematic variable (momenta, cut-offs,
energies, etc.), scattering parameter (scattering length, effective range, etc.) and mass by
powers of λ simply results in rescaling amplitudes and observables by powers of λ. By the
corresponding powers of λ we mean that if a quantity has dimension m, it is rescaled by
a factor of λm. This continuous scale invariance also holds if only all kinematic variables
and scattering parameters are rescaled. In the unitary limit, where all effective range
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parameters vanish, this in turn effectively reduces to a continuous scale invariance in the
kinematic variables. However, for some configurations in the three-particle sector, there
exists an additional discrete scale invariance in the unitary limit. Thereby, quantities such
as the scattering amplitude are scale-invariant for some specific number λ0 > 0, even if
only an appropriate subset of kinematic variables (for instance, take only the ultraviolet
momentum cut-off Λ) is rescaled. λ0 is called the discrete scaling factor. In terms of a
dimensionless three-body coupling H that depends on the cut-off, discrete scale invariance
is directly connected to an ultraviolet (UV) limit cycle in the renormalization group (RG)
[24]. If the UV cut-off runs through a λ0-cycle, the three-body coupling returns to its
original value: H(λ0Λ) = H(Λ). Only in the unitary limit discrete scale invariance is
exact. In the region of universality around this unique point it is only approximately valid.

Assuming that a three-body system exhibits discrete scale invariance and, in addition,
has a three-body bound state at the energy E = E(3) < 0, the existence of further bound
states at E(z) = λ2z0 E

(3) with z ∈ Z directly follows. Hence, there is a whole tower of
countably infinitely many three-body bound states forming a geometric spectrum which
is unbound from below and has an accumulation point at E = 0. This remarkable phe-
nomenon is known as the Efimov effect and was already predicted in 1970 [25]. Counter-
intuitively, it can even occur for so-called Borromean three-particle systems, where none
of the two-particle subsystems is bound. Phenomena in nature that are closely related to
the Efimov effect are often referred to as Efimov physics [26]. Details about the connection
between the Efimov effect and RG methods can e.g. be found in [27]. With the help of
the afore-mentioned Feshbach resonances in ultracold gases, the Efimov effect eventually
became experimentally accessible as it exhibits typical signatures in recombination rates.
The first Efimov three-body bound state was discovered 2005 in a 133Cs ensemble [28].
Subsequent experiments with 39K and 7Li gases then also confirmed the existence of an
Efimov spectrum with discrete scale invariance [29, 30]. Also for mixtures of atoms, such
as 87Rb-41K [31], the Efimov effect was found [32]. As a natural consequence of discrete
scale invariance, an exact Efimov effect is only present in the unitary limit. Of course,
this individual point in parameter space can not exactly be reached experimentally such
that at best an approximate accumulation point is observed. Moreover, any real Efimov
spectrum will be bound from below, since the entire theory is a low-energy approximation
and can not be extended to infinitely large binding momenta. Thus, a real experiment
within the universal regime will always at best detect an approximate Efimov effect with
a finite number of three-body Efimov states that are connected through an approximate
discrete scale invariance.

1.2.3 Halo EFT and halo nuclei

A prominent example for an EFT with large scattering length is halo EFT. Within a halo
EFT framework, a complex many-particle system, such as an atomic nucleus, is effectively
treated in terms of only a view degrees of freedom, namely a tightly bound core sur-
rounded by a halo of a few spectator particles. In contrast to ab initio approaches, which
try to predict nuclear observables from a fundamental nucleon-nucleon interaction, halo
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EFT essentially provides relations between different nuclear low-energy observables. When
information on the interaction between the core and the spectator particles is known, it
provides a framework that facilitates a consistent calculation of continuum and bound-
state properties. On the other side, it can also be used in the opposite direction, where the
knowledge of a sufficient number of few-body observables restricts the two-body scattering
properties. A technical advantage of halo EFT over a more fundamental theory, of course,
is that through the reduction of the number of fundamental fields the overall computational
complexity decreases significantly.

For many suspected halo nuclei, the spectator particles are simply weakly-attached
valence nucleons [33–36]. Usually, such halo nuclei are identified by an extremely large
matter radius or a sudden decrease in the one- or two-nucleon separation energy along
an isotope chain. Thus, they display a separation of scales which exhibits itself also in
low-energy scattering observables through a scattering length a that is large compared to
the range R of the core-nucleon interaction. The corresponding small ratio R/|a| can then
be used as an expansion parameter of the halo EFT [37–40]. With regard to the chart
of nuclides, natural candidates for halo nuclei are located along its proton- and neutron-
rich boundaries called drip lines. For a recent theoretical determination of those lines, see
e.g. ref. [41]. Nuclei along the proton drip line have a proton excess and predominantly
decay through proton emission, positron emission or electron capture. Isotopes at the
neutron drip line have a neutron excess. Their major decay channels are neutron emission
and beta decay. In fig. 1.1 the lightest known halo nuclei or halo nuclei candidates are given.
There seem to exist isotopes with one, two and even four spectator nucleons in the halo.
The determination of the properties of those isotopes poses one of the major challenges
for modern nuclear experiment and theory. The associated observables are an important
input to studies of stellar evolution and the formation of elements and provide insight into
fundamental aspects of nuclear structure. An up to date overview of the experimental and
theoretical state of the art in the field of halo nuclei can be found in the proceedings of a
recent Nobel Symposium on physics with radioactive beams [42].

Halo nuclei can also be examined under the aspects of Efimov physics and universal
features, which we discussed in sec. 1.2.2. Whether there exists any excited Efimov state
in the nuclear landscape is still unclear. The most promising system known so far is 22C,
which was found to display an extremely large matter radius [44] and is known to have a
significant S-wave component in the 20C-n subsystem [45]. In a previous work, Canham and
Hammer [46, 47] explored universal properties and the structure of such two-neutron halo
nuclei candidates to NLO in the expansion in R/|a|. They described the halo nucleus as
an effective three-body system consisting of a core and two loosely bound valence neutrons
and discussed the possibility of such three-body systems to display multiple Efimov states.
In addition matter density form factors and mean square matter radii were calculated.
Using this framework, Acharya et al. recently carried out a detailed analysis of the 22C
system [48]. The implications of the large 22C matter radius for the binding energy and the
possibility of excited Efimov states were discussed. For a selection of previous studies of
the possibility of the Efimov effect in halo nuclei using three-body models, see refs. [49–52].
A recent review can be found in [53]. However, typically only very few observables in these
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Figure 1.1: The lightest
known halo nuclei or halo nu-
clei candidates. The depicted
section (Z ≤ 10,N ≤ 14) of the
chart of nuclides is extracted
from ref. [43]. The proton- and
neutron-halo systems are lo-
cated at the corresponding drip
lines. Nuclides in light blue
cells qualify for a two-neutron
halo EFT analysis.

systems are accessible experimentally such that a definitive proof for an excited Efimov
state is yet to come.

1.3 Notation and conventions

The following conventions will be used throughout this work and are valid if not specified
otherwise. They will contribute to a convenient and consistent notation.

Particles: In this work, we consider systems of at most three scalar particles. Thereby,
two situations occur: the case with three distinguishable particle fields (ψ0, ψ1, ψ2) and the
case where two of them are equal (ψ0, ψ1, ψ1). We now present a convenient notation in
which both configurations can be treated within the same framework. Therefore, we first
define the set of possible scalar field indices I1 through:

I1 :=

{
{0, 1, 2} : (ψ0, ψ1, ψ2)

{0, 1, 1} = {0, 1} : (ψ0, ψ1, ψ1) .
(1.10)

In our theory, we allow two-particle S- or P-wave interactions between different scalar
particles. If all three particles are of different type, there are three possible pairs of two
different particles: (1, 2), (2, 0) and (0, 1). They are elements of I21 . In the case where two of
the three particles are of the same kind, there is only one such possible pair, i.e. (0, 1) ∈ I21 .
For a system of three particles, the specification of one index completely determines the
other two. We take advantage of this fact, by identifying a particle pair by the index of
the remaining third particle. The corresponding set I2 ⊂ I1 is defined through:

I2 :=

{
{0, 1, 2} = I1 : (ψ0, ψ1, ψ2)

{1} : (ψ0, ψ1, ψ1) .
(1.11)
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The identification can then be formalized via the mapping:

σ : I2 → I21 , σ(i) :=

{
(i1, i2) with i, i1, i2 cyclic : (ψ0, ψ1, ψ2)

(0, 1) : (ψ0, ψ1, ψ1) .
(1.12)

We use this rather mathematical approach, since it can be applied to a large class of three-
body systems. However, for reasons of readability, we will drop the redundant symbol σ
and simply use i1 = (σ(i))1 and i2 = (σ(i))2 or j = (σ(i))1 and k = (σ(i))2 implicitly in
subsequent considerations.

Masses: Considering the masses in the three-particle system, we take the mass of ψi to
be mi for all i ∈ I1. Furthermore, we define MΣ and MΠ as the sum and the product of
all three particle masses, respectively:

MΣ :=

{
m0 +m1 +m2 : (ψ0, ψ1, ψ2)

m0 + 2m1 : (ψ0, ψ1, ψ1)
, MΠ :=

{
m0m1m2 : (ψ0, ψ1, ψ2)

m0m
2
1 : (ψ0, ψ1, ψ1) .

(1.13)

Additionally, for all i 6= j ∈ I1, we define a number of mass-related quantities, namely
single- and two-particle masses mij and Mi, reduced masses µi and µ̄i, a total reduced
mass M̄ , dimensionless mass ratios ωij and angles φij . Their definitions read:

mij :=
MΠ

mimj

= MΣ −mi −mj , Mi := MΣ −mi ,

µi :=
MΠ

miMi
, µ̄i :=

miMi

MΣ
, M̄ :=

√
MΠ

MΣ
,

ωij :=
mij√
µiµj

=

√(
1 +

mij

mi

)(
1 +

mij

mj

)
> 1 ,

φij := arcsin(1/ωij) ∈ (0, π/2) .

(1.14)

Using these quantities will contribute to a more convenient and compact notation in subse-
quent calculations, especially within the three-particle sector. The definitions for mij and
ωij and φij are restricted to unequal indices i 6= j ∈ I1. Using the set of remaining third
indices (1.11), we can alternatively also label them by according to mi = mi1i2, ωi = ωi1i2
and φi = φi1i2 .

Using the definitions (1.14) one can straightforwardly deduce the identity

cot2 φi = ω2
i − 1 = (mi/M̄)2 , (1.15)

which, for the mass angles, implies the relation:

cos(φ0 + φ1 + φ1) = cos(φ0) cos(φ1) cos(φ2) − sin(φ0) sin(φ1) cos(φ2)

− sin(φ0) cos(φ1) sin(φ2) − cos(φ0) sin(φ1) sin(φ2)

=

√
ω2
0 − 1

√
ω2
1 − 1

√
ω2
2 − 1−

√
ω2
2 − 1−

√
ω2
1 − 1−

√
ω2
0 − 1

ω0ω1ω2

=
m0m1m2/M̄

3 − (m0 +m1 +m2)/M̄

ω0ω1ω2
= 0 .

(1.16)
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Since φ0 + φ1 + φ2 ∈ (0, 3π/2) holds, the only possible configuration for their sum is:

φ0 + φ1 + φ2 = π/2 . (1.17)

Consequently, the allowed parameter space for the three mass angles φ0, φ1 and φ2 can
be represented in a Dalitz-like Plot for the variables φ0, φ1 and φ2, where mi = cotφi M̄
reproduces the original masses. The relations (1.15)-(1.17) are valid for any three numbers
{m0, m1, m2} and thus, a priori, do not have physical significance. However, it turns out
that the quantities ωi and φi naturally appear in calculations of systems with three particles
such that their use is beneficial.

Energy and momenta: We label all four-momenta by upper bars. For example, a real
four-momentum reads p̄ ∈ R4. It has a zeroth component p0 ∈ R and a three-vector,
which is labeled as a bold type letter p ∈ R3. Furthermore, the modulus of such a
vector will be denoted as p := |p|. Unit vectors will be labeled by ei, where, of course,
(ei)j = δij holds. In addition, for a given three-vector p the corresponding unit vector reads
ep := p/p. The same conventions hold for four-dimensional space-time vectors x̄ ∈ R. In
later calculations we will often consider matrix elements that depend on four-momenta. In
order to compactify the notation,the following rules are used:

• If for a given function X(. . . , p̄, . . . ) the four-momentum p̄ is put on-shell, we define

X(. . . ,p, . . . ) := X(. . . , p̄, . . . )|on-shell condition for p̄ . (1.18)

The concrete form of the on-shell condition for p̄ depends on the chosen kinematics.
For the calculations in sec. 2.3, where two-particle P-wave interactions are consid-
ered, we will use center-of-mass kinematics with the on-shell condition (2.31). With
regard to two-neutron halo nuclei EFT with external currents, which is presented in
chapter 3, we will use more general kinematics with the condition (3.18).

• If a functionX(. . . ,p, . . . ) effectively only depends on the modulus of the three-vector
p = |p|, we will always use the redefinition

X(. . . , p, . . . ) := X(. . . , p · e3, . . . ) , (1.19)

where, of course, e3 could also be replaced by any other unit vector.

• If a function X(P̄ , . . . ), with P̄ = P̄ (E) being the total four-momentum of the halo
system, effectively only depends on the energy variable E, we define:

X(E, . . . ) := X(P̄ (E), . . . ) . (1.20)

• If, furthermore, for a function X(E, . . . ) the energy is fixed to a three-body binding
energy E = E(3), we simply drop this variable according to:

X(. . . ) := X(E(3), . . . ) . (1.21)

Two-body binding energies will be labeled by E(2).
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Three-body force: For any quantity F that implicitly depends on the three-body force
H̄ , we will use the following convention:

•F := F
∣∣
H̄=0 in the interaction

. (1.22)

Indices: Considering the indices of function or quantity X , such as X
[j1m1;j2m2|j3m3;j4m4]
ij ,

subscripts always represent particle types or particle channels, whereas superscripts denote
spatial components or angular momentum quantum numbers. The latter ones are always
written in square brackets [...|... ]. The optional line | in the middle separates the angular
momentum quantum numbers of the left, incoming state that corresponds to i from those
of the right, outgoing state that corresponds to j. If an incoming or outgoing state has
not yet been projected to angular momentum eigenstates, the corresponding side in the
square brackets is left empty. A Clebsch–Gordan coefficient (CGC) that couples angular
momenta j1 and j2 to J will be labeled by CJM

j1m1;j2m2
, where the remaining indices are the

magnetic quantum numbers.
With regard to angular momentum, we will use implicit lower and upper bounds in

summations over the quantum numbers ℓ and m according to:

∑

ℓ

(. . . ) :=
∞∑

ℓ=0

(. . . ) ,
∑

m

(. . . ) :=
ℓ∑

m=−ℓ
(. . . ) . (1.23)

We will use this short notation for total angular momenta (j and m), for orbital angular
momenta (ℓ and m) as well as for spin (S and s).



Chapter 2

Three-body halos with P-wave

interactions

The lightest two-neutron halo nucleus known so far is 6He [34,36]. As a three-body system
it contains the alpha particle 4He as a core, which is surrounded by two spectator neutrons.
The subsystem 5He is unstable such that 6He is Borromean. The 4He-n scattering reveals
a strong P-wave resonance. An analysis within an EFT framework of the 5He system can
be found in [37]. Also the many-body physics of spin-1/2 fermions interacting via resonant
P-wave couplings have been studied using mean-field approximations [54–58]. However,
such approximations fail to describe qualitatively new features that might occur if the P-
wave interactions are strongly resonant [59]. Thus, the question arises how a halo EFT can
be formulated in order to describe a bound three-body halo nucleus containing resonant
two-particle P-wave interactions. Furthermore, we want to understand if such a system, in
principle, can exhibit discrete scale invariance and the Efimov effect.

In this chapter, we address this question within a slightly modified approach, by drop-
ping the requirement for the three-particle system to be a halo nucleus. More generally,
we simply consider a system of three scalar particles with resonant two-particle P-wave
interactions and investigate the possibility of bound states and Efimov physics within its
three-particle sector. In this way, our ansatz also applies to atomic physics, which appears
beneficial, since again ultracold atoms provide a promising laboratory for experimental
studies. By modulating an external magnetic field, now the scattering volume a[1] can
be tuned to arbitrarily large values with the help of a P-wave Feshbach resonance near
threshold. The first experimental studies of such resonances used ultracold ensembles of
fermionic 40K atoms [60]. Also fermionic 6Li atoms and fermion-boson mixtures such as
40K-87Rb have been studied in this context [61–63]. Furthermore, binding energies and
inelastic collision rates of P-wave dimers have been measured [64, 65]. Since P-wave Fesh-
bach resonances in ultracold atoms usually are very narrow, precise experimental studies
with fine-tuned a[1] are challenging.

We also want to compare our findings for two-particle P-wave interactions with already
known results for the S-wave case. Therefore, in the following, we first shed some light
on the structure of the Lagrangian for such EFTs. Especially, we discuss allowed building

13
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blocks and explain the introduction of auxiliary fields in a very general manner.

2.1 Fundamentals of non-relativistic EFTs

In this section, we briefly repeat general basic properties of non-relativistic EFTs with
contact interactions. Therefore, we assume that the degrees of freedom of our theory are
N ∈ N distinguishable types of scalar fields {ψi : R4 → C|i ∈ {0, . . . , N−1}}. Every single
field ψi can either be bosonic or fermionic. Since we consider three-body halo systems, the
number of such fields is limited to N ≤ 3. The dynamics and interactions between the
scalar fields, are then described in terms of a Lagrangian L.

2.1.1 Galilean invariance

For a relativistic field theory, invariance under Lorentz-transformations is a fundamental
requirement. These transformations form the so-called Lorentz group. Since in this work all
appearing velocities are small compared to the speed of light, we only demand invariance
under the non-relativistic limit of the Lorentz group, the so-called Galilean group [66]. This
way, it is guaranteed that the physics in two inertial frames, connected through a Galilean
transformation, are the same.

2.1.1.1 Galilean group

First, we briefly recall the structure of the Galilean group. It is defined as the set G with
an operation ◦ : G × G → G given through:

G =
{
(R,v, ā) ∈ SO(3)× R3 × R4

}
,

(R,v, ā) ◦ (S,w, b̄) = (RS, v +Rw, ( 1 0
v R ) b̄+ ā) .

(2.1)

This composition is closed, associative, its identity element is (1, 0, 0) ∈ G and the inverse
of an element is: (R,v, ā)−1 =

(
RT,−RTv,−

(
1 0

−RTv RT

)
ā
)
∈ G.

2.1.1.2 Galilean invariants

Before performing a field quantization, our theory is formulated in terms of a fundamen-
tal Lagrangian L and an action functional S[ψ0, . . . , ψN−1] =

∫
R4 dx

4L(ψ0, . . . , ψN−1)(x̄),
which is the space-time integral over the Lagrangian. The stationary points of this ac-
tion are the physical field configurations that are realized in nature. Using Hamilton’s
principle then yields the Euler–Lagrange equations, which are the equations of motion for
the fields. Thus, requiring Galilean invariance directly translates to the invariance of the
action S[hψ0, . . . , hψN−1] = S[ψ0, . . . , ψN−1] under a general element h = (R,v, ā) of the
Galilean group. h acts on space-time vectors x̄ ∈ R4 according to (R,v, ā)x̄ = ( 1 0

v R ) · x̄+ ā.
Consequently, substituting x̄ 7→ hx̄ within a space-time integral

∫
R4 dx for any Galilean

transformation simply leads to an additional factor |1 ·det(R)| = 1 from the corresponding
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Jacobian. In order to ensure the invariance of the action integral, we thus require the La-
grangian to be invariant under G according to L(hψ0, . . . , hψN−1) = L(ψ0, . . . , ψN−1)◦h−1.
Hence, for setting up a general non-relativistic EFT framework, our task is to construct the
corresponding Lagrangian from Galilean-invariant building blocks that contain the scalar
fields.

We begin this procedure by analyzing how a scalar field ψi transforms under the ele-
ments of the Galilean group (2.1). The transformation rule reads:

ψi 7→ hψi = eimifh · (ψi ◦ h−1) , fh(x̄) = −1

2
v2(x0 − a0) + vT(x− a) . (2.2)

The unobservable phase factor contains the particle mass mi and the real function fh :
R4 → R, whose specific form is determined by combining the following two constraints:
First, it is required that the transformation (2.2) leaves the non-relativistic free propagation

part L(free)
i (ψi) = ψ†i (i∂0 +∇2/(2mi))ψi of the Lagrangian invariant. Second, eq. (2.2) also

has to give a representation of the Galilean group. In short, field transformations according
to (2.2) are a local U(1) symmetry of the free Lagrangian.

From eq. (2.2) we directly calculate the transformation behavior for derivatives of the
scalar fields:

∂µψi 7→ ∂µ(hψi)

= eimifh

{[(
−imiv

2

2
+ ∂0 − vTR∇

)
ψi
]
◦ h−1 : µ = 0

[
(imiv +R∇)j ψi

]
◦ h−1 : µ = j ∈ {1, 2, 3} ,

∇2ψi 7→ ∇2(hψi) = eimifh
[(
−m2

iv
2 + 2imiv

TR∇+∇2
)
ψi
]
◦ h−1 .

(2.3)

Using these transformation rules (2.2) and (2.3) one can demonstrate the invariance of the
free Lagrangian via:

L(free)
i (ψi) 7→ L(free)

i (hψi) = (hψi)
†
(
i∂0 +

∇2

2mi

)
(hψi)

=

[
ψ†i

(
miv

2

2
+ i∂0 − ivTR∇− miv

2

2
+ ivTR∇+

∇2

2mi

)
ψi

]
◦ h−1

= L(free)
i (ψi) ◦ h−1 .

(2.4)

Furthermore, the transformation rules (2.3) can be used in order to construct potential
Galilean invariants that contribute to the interaction part of the full Lagrangian. Clearly
any product of pairs of scalar fields ψ†iψi is manifestly Galilean-invariant. If derivatives
of the fields are included, Galilean invariance is less obvious. For example, the scalar
(i∇ψi)†(i∇ψi) is not Galilean-invariant, since eq. (2.3) leads to extra terms from imiv 6= 0.
In order to subtract these interfering terms, we first define a mass operator m̂ through
m̂ψi = miψi. In addition, for any operator τ we define ψi

↔
τ ψj = (τψi)ψj − (τψj)ψi.

Therewith we construct an invariant scalar that includes spatial derivatives:

(
ψi

(←→i∇
m̂

)
ψj
)†(

ψi

(←→i∇
m̂

)
ψj
)

. (2.5)
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Evidently, the expression (2.5) vanishes for i = j. Hence, from (2.5) one can only construct
P-wave interactions between distinguishable particles. However, this will suffice for the
systems that are considered in this work.

2.1.2 Auxiliary fields

We now consider a general non-relativistic theory for scalar particles {ψ0, . . . ψN−1} inter-
acting via contact coupling terms. The Lagrangian for such a theory can be written very
compactly in the way:

L = L(free) + L(int) , L(int) = −Ψ†GΨ = −
∑

α,β

Ψ†αGαβΨβ , (2.6)

L(free) =
∑N−1

i=0 L(free)
i describes the free propagation of the scalar fields. The vector Ψ in the

interaction part L(int) has components Ψα that are linear combinations of field products.
Their specific form is determined by the multi-index alpha. Note that this very general
notation (2.6) covers possible interactions between two fields ∝ (ψiψj)

†(ψiψj), three fields
∝ (ψiψjψk)

†(ψiψjψk), etc. In addition, also coupling terms with derivatives according
to (2.5) are allowed. The appearing hermitian matrix G with multi-indices α and β then
specifies how these different channels are coupled together in a Galilean-invariant manner.
Of course, G can be diagonal, as it will be the case in our later considerations. For this
section, we define the order of a field product Ψα to be the number of scalar field factors
it is composed of. In addition, we define the order |α| of a multi-index α as the order of
the corresponding field product Ψα. For instance, the P-wave interaction (2.5) consists of
two field products of order two.

For the calculation of matrix elements, it is often functional to introduce auxiliary
fields, which represent specific products of the scalar fields. An auxiliary field of this
type is called a dimer or a trimer if it represents a field product of order two or three,
respectively. As in this work we consider systems of at most three particles, only these
two cases will be relevant to us. However, since the effort will be the same, at this point
we proceed with a more general analysis including also higher order products, such as
tetramers, pentamers, etc. For instance, tetramers have been studied in the past for the
case of four identical bosons [67]. The crucial requirement for a modified Lagrangian with
general auxiliary fields is that after eliminating these fields via Euler–Lagrange equations,
the initial theory described by the Lagrangian (2.6) has to be reproduced. Consequently,
both theories will then describe the same physical dynamics for the fundamental degrees
of freedom {ψ0, . . . , ψN−1}.

2.1.2.1 Equivalent Lagrangians

Our method of equivalently rewriting the Lagrangian is based on Hubbard–Stratanovich
transformations. For each field product Ψα we introduce an auxiliary fields dα. We will
denote the vector of all these auxiliary fields by d and couple it to Ψ via an arbitrary
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invertible matrix A in the way:

L(int)
d = L(int) +

(
Ψ− Ad

)†
G
(
Ψ− Ad

)
= d†A†GAd − d†A†GΨ − Ψ†GAd . (2.7)

The Euler–Lagrange equations for the auxiliary fields then read:

0 =
∂L(int)

d

∂d†
= −A†G

(
Ψ−Ad

)
⇔ G

(
Ψ− Ad

)
= 0 . (2.8)

Integrating out d by inserting the equation of motion (2.8) into the Lagrangian (2.7), the
equivalence to the fundamental theory for the scalar fields (2.6) becomes obvious:

L(int)
d = L(int) +

(
Ψ− Ad

)†
0 = L(int) . (2.9)

Using this method, there are as many equivalent Lagrangians as there are invertible ma-
trices A. In this sense there exists a whole class of equivalent theories.

2.1.2.2 Equivalence up to higher orders

Using the Lagrangian (2.7), field products of arbitrary high order are coupled to auxiliary
fields. For later purposes, we only want to introduce auxiliary fields up to certain order,
in our case dimers and trimers, which are of order two and three, respectively. Thus, the
general task is to construct an equivalent Lagrangian in which only field products of order
|α| ≤ n are coupled to auxiliary fields d. One way to formalize this in a compact way
is to define a projection operator P which projects all quantities onto this subset of field
products via:

Pαβ := Θ(n− |α|) δαβ ⇒ P 2 = P , Ψ′ := PΨ , d′ := Pd ,

G′ := PGP , A′ := PAP , H := G−G′ .
(2.10)

The symbol ′ labels the projected quantities. The matrix H exactly contains all higher
order couplings. Θ is the Heaviside step function with the convention Θ(0) = 1. We now
construct the Lagrangian for the projected quantities very analogous to eq. (2.7):

L(int)
d′ = −Ψ′

†
G′Ψ′ +

(
Ψ′ −A′ d′

)†
G′
(
Ψ′ −A′ d′

)

−
(
C(Ψ)A′ d′

)†
H
(
C(Ψ)A′ d′

)

= d′
†
A′
†
G′A′ d′ − d′

†
A′
†
G′Ψ′ − Ψ′

†
G′A′ d′

− d′
†
A′
†
C(Ψ)†H C(Ψ)A′ d′ .

(2.11)

The only additional term in eq. (2.11) contains a field-dependent matrix C(Ψ) with com-
ponents C(Ψ)αβ := cαβΨαΨ

−1
β of order |α| − |β| in the fields. The only requirements on

the coefficients cαβ are:

cαβ = 0 if |β| > n or Ψα 6= ( product of ψi’s ) ·Ψβ

∧
∑

|β|≤n
cαβ = 1 . (2.12)



18 CHAPTER 2. THREE-BODY HALOS WITH P-WAVE INTERACTIONS

Consequently, there is a big freedom of choice in these coefficients. In later calculations,
for convenience, we will always choose cαβ = δγ(α),β such that the H couplings will only
be present in one specific channel γ(α). One can show that the Lagrangian (2.11) is again
Galilean-invariant.

In order to prove the equivalence of L(int) and L(int)
d′ , we first use (2.12) to deduce:

(
C(Ψ)Ψ′

)
α
=
∑

βγ

cαβ ΨαΨ
−1
β Pβγ Ψγ = Ψα

∑

|β|≤n
cαβ = Ψα

⇒ C(Ψ)Ψ′ = Ψ .

(2.13)

We now assume that the matrix resulting from G′ after dropping the vanishing rows and
columns is invertible. Using the short notation R′(Ψ) := G′−1C(Ψ)†H C(Ψ), the Euler–
Lagrange equations for the projected auxiliary fields derived from the Lagrangian (2.11)
read:

0 =
∂L(int)

d′

∂d′†
= −A′†G′

(
Ψ′ −

[
1−R′(Ψ)

]
A′ d′

)

⇒ A′ d′ =
[
1− R′(Ψ)

]−1
Ψ′ =

∞∑

k=0

R′(Ψ)kΨ′ = Ψ′ + R′(Ψ)Ψ′ + . . .

(2.14)

Thereby, in addition, we assumed that the higher order couplings are small in a way that
the geometric series of the matrix R′(Ψ) exists. Integrating out d′ by inserting the equation
of motion (2.14) into eq. (2.11) and using eq. (2.13) then yields:

L(int)
d′ = 0 − Ψ′

†
G′ [Ψ′ + R′(Ψ)Ψ′ + . . . ]

= −Ψ′
†
G′Ψ′ − Ψ′

†
C(Ψ)†H C(Ψ)Ψ′ + L(≥n+2)

= −Ψ†G′Ψ − Ψ† (G−G′)Ψ + L(≥n+2)

= L(int) + L(≥n+2) .

(2.15)

The additional contribution L(≥n+2) includes interactions that contain field products of
order ≥ n+2. Thus, the described method leads to additional many-body forces. Later in
this work we will introduce dimer fields of order n = 2, which consequently lead to extra
contributions of order ≥ 2 + 2 = 4 in eq. (2.15). Since we will only consider systems of at
most three particles, such four-particle interactions will not appear in any calculation and
can be dropped. Our method can be seen as a generalization of the diatom field trick that
is presented in [23] for three identical particles.

The introduced auxiliary fields dα can be made dynamical by adding extra terms
ηα d

†
α(i∂0 + ∇2/Mα)dα, analogous to the free Lagrangian L(free) for the scalar fields. In

this case, Mα is the mass of dα. A positive prefactor ηα corresponds to an ordinary, nor-
malizable dimer, whereas a negative ηα corresponds to a non-normalizable so-called ghost

field.
From now on we will use the short notations ∆ := A′†G′A′ and g := G′A′ for the

coupling constants and drop all remaining ′ symbols. Since G′ is hermitian, it has real
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eigenvalues and can be diagonalized by a unitary matrix. Choosing A′ to be proportional
to this matrix, we can always diagonalize ∆. Further redefining A′, even the modulus of
these eigenvalues can be equalized. On the contrary, also the matrix g can be diagonalized
by choosing A′ ∝ G′−1. In this way, g is even proportional to the unit matrix. In the case
where G is already diagonal, this leads to the fact that a theory with auxiliary fields can
be formulated in a way where all the differences in the couplings can be absorbed into ∆
or g. The entries of the other real diagonal matrix g or ∆ then are constant or of constant
modulus, respectively. All appearing couplings ∆, g and H are unobservable and, a priori,
unknown. In our renormalization scheme, they depend on an ultraviolet cut-off.

Performing a field quantization with commutator and anticommutator relations for
bosons and fermions, respectively, then yields the corresponding EFT framework. In the
following sections, we will consider theories with S- and P-wave two-particle interactions
that are constructed with the presented method.

2.2 S-wave interactions

2.2.1 Effective Lagrangian

Before we investigate possible Efimov physics for two-particle P-wave interactions, we
present some results for the S-wave case [23]. As an example we consider a system of three
distinguishable, non-relativistic, bosonic spin-0 fields (ψ0, ψ1, ψ2). We assume that each of
the three possible two-particle subsystems interacts resonantly via S-wave couplings. We
use the notational conventions, presented in sec. 1.3 with one- and two-particle index sets
I1 = {0, 1, 2} and I2 = I1. As explained in sec. 2.1.2, the two-body coupling terms can
be rewritten equivalently by introducing S-wave dimers as auxiliary fields. We label these
dimer fields by di with i ∈ I2.

The system of three interacting bosons is then described by the Lagrangian:

L = L(1) + L(2) , L(1) = L(free) =
∑

i∈I1

ψ†i

(
i∂0 +

∇2

2mi

)
ψi ,

L(2) =
∑

i∈I2

{
∆i d

†
i di − gi d

†
iψi1ψi2 + h. c.

}
.

(2.16)

Eq. (2.16) includes one- and two-particle contributions. The one-particle Lagrangian L(1)

simply describes the free non-relativistic propagation of the bosonic fields. The S-wave
coupling of these fields to auxiliary dimer fields is included in the two-particle contribution
L(2). It is constructed from an equivalent original theory without auxiliary dimer fields, via
the method that is explained in sec. 2.1.2.2. The bare coupling parameters ∆i and gi are
unknown and have to be renormalized. In our renormalization scheme, they depend on the
ultraviolet cut-off in the two-particle sector and can be expressed in terms of low-energy
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Figure 2.1: Dalitz-like plot
for the discrete scaling fac-
tor λ0 = eπ/s0 in a three-
boson system as a function of
the three rescaled mass angles
ϕi := φi/(π/2) ∈ (0, 1). λ0
displays a dihedral D3 sym-
metry due to invariance under
particle permutations. The
distances of a point to the
edges of the equilateral trian-
gle are ϕ0, ϕ1 and ϕ2. λ0 is
maximal in the center where
all three masses are equal.
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observables from the corresponding effective range expansion. In order to renormalize the
three-particle sector of this theory, the introduction of an appropriate three-particle contri-
bution would be required. Such a Lagrangian has also been applied to bosonic three-body
systems such as the hypothetical hadronic molecule Y (4660) [19, 68]. However, for the
general results that are presented in this section, three-body renormalization is irrelevant
and thus three-particle interactions are omitted.

2.2.2 Discrete scale invariance and the Efimov effect

For our considered system of three bosons, it turns out that the channel with total angular
momentum J = 0 exhibits discrete scale invariance and the Efimov effect [23]. Thereby,
the discrete scaling factor λ0 is given in terms of λ0 = eπ/s0 , where is0 is a purely imaginary
solution of the transcendental equation:

F(s) = 0 with F(s) := | det[1−K(s)]| , K(s) ∈ C3×3 ,

Kij(s) = ξ(φij)
Q0(φij, s)

sin φij
, Q0(φ, s) = πφ

j0(φs)

cos(π
2
s)

, ξ(φ) :=
1

π

1

cosφ
.

(2.17)

j0(x) = sin(x)/x is the zeroth spherical Bessel function. Eq. (2.17) can be derived in a
field theoretical approach with contact interactions as well as using Faddeev equations for a
short-range potential (see e.g. [69] or eq. (389) in [23]). Details about the function Q0 can
be found in appendix A.2.4. Interestingly, eq. (2.17) does not depend on the three particle
masses but only on the mass angles φ0, φ1 and φ2 = π/2−φ0−φ1. Thus, also its imaginary
solutions is0 only depend on these quantities. Furthermore, the equation is invariant under
any permutation of the three particles. For two-particle P-wave interactions, we will later
give an explicit derivation for the corresponding P-wave analogue of (2.17).



2.2. S-WAVE INTERACTIONS 21

Figure 2.2: The discrete
scaling factor λ0 = eπ/s0 as
a function of the mass ratio
A = m0/m1 with two equal
masses m1 = m2. At A = 1 all
three equal masses are equal
and λ0 = 22.69438 is maximal.
As the mass ratio vanishes λ0
approaches 1. For diverging
A, the discrete scaling factor
becomes 15.74250.
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Applying a root-finding algorithm to F , the quantities s0 and λ0 = eπ/s0 can be deter-
mined. In fig. 2.1 the discrete scaling factor λ0 depending on the three rescaled mass angles
ϕi := φi/(π/2) ∈ (0, 1) is given in terms of a Dalitz-like plot. The invariance under any par-
ticle permutations reflects itself in the dihedral D3-symmetry of the plot. As usual, the dis-
tances of a point in the Dalitz plot to the edges of the equilateral triangle are ϕ0, ϕ1 and ϕ2.
The origin in its center represents the equal-mass case m0 = m1 = m2 ⇔ ϕ0 = ϕ1 = ϕ2. At
this point, the discrete scaling factor λ0 = eπ/s0 = 22.69438 is maximal with s0 = 1.006238
being very close to unity. As wee see, λ0 decreases with growing distance to the equal
mass point. It is constant on the contour lines. However, their exact shape seems to be
nontrivial.

The three blue lines in fig. 2.1 represent the special case in parameter space where
two of the masses are equal mi = mj ⇔ ϕi = ϕj, leading to ϕk = [1 − ϕi]/2. They
all intersect in the center of the triangle. The center of all three edges represents the
limit mi = mj ≫ mk where s0 = 1.139760 and λ0 = 15.74250 holds. The three corners
represent the limit mi = mj ≪ mk, leading to s0 → ∞ and λ0 → 1. Assuming that
m1 = m2, λ0 can effectively only depend on one parameter, for example, the mass ratio
A := m0/m1. In fig. 2.2 λ0 is given as a function of A. The three mentioned characteristic
values λ0 = 1, 22.69438, 15.74250 are approached at A = 0, 1, ∞, respectively.

Solving a homogeneous coupled channel integral equation for dimer-particle scattering,
also the three-body energy spectrum can be determined. In fig. 2.3 we give a typical
plot for the trimer energies, revealing an Efimov spectrum. The states are arranged in
an infinite geometric series with an accumulation point at threshold and discrete scaling
factor λ0 = 2. As mentioned in sec. 1.2.2, signatures of these spectra were experimentally
observed in several ultracold atomic or molecular systems. Also an approximate discrete
scaling factor of λ0 ≈ 22.7 in the case of three equal bosons was confirmed [29].
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Figure 2.3: Schematic illustration of the bound-state spectrum for three bosons with S-
wave interactions. The trimer states display discrete scale invariance with an accumulation
point at threshold.

2.3 P-wave interactions

Inspired by the Efimov physics in the S-wave sector, in this section, we now investigate
the possibility of similar phenomena for resonant P-wave interactions. A former analysis
by Macek and Sternberg for spin-1/2 fermions in zero-range pseudopotentials suggested
that there indeed is an Efimov effect in the P-wave sector for JP = 1− [70, 71]. The aim
of our analysis is to use a field theoretical approach in order to add more clarity to this
issue and compare the results with the S-wave case. Furthermore, we also consider the
renormalization of the three-body problem for P-wave interactions.

The derivations and results in sec. 2.3 have in parts been published in [72].

2.3.1 Effective Lagrangian

First, we set up an EFT for three non-relativistic scalar spin-0 fields on the Lagrangian
level, where each two particles interact resonantly via P-wave couplings if they are distin-
guishable. Each particle can either be a boson or a fermion and we consider both the case
where all three particle types are different (ψ0, ψ1, ψ2) as well as the case where two of them
are equal (ψ0, ψ1, ψ1). We neglect P-wave couplings between identical particles, which are
possible in case of fermions. In order to apply our model to a wider set of three-body sys-
tems, we can also simply assume that the intrinsic spin of a single particle remains inactive
in all scattering processes. We use the notational conventions, presented in sec. 1.3 with
the corresponding one- and two-particle index sets I1 and I2. As explained in sec. 2.1.2,
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the two-body coupling terms can be rewritten equivalently by introducing spin-1 P-wave
dimers as auxiliary fields. Each such dimer di with i ∈ I2 has three spatial components
dai , where a ∈ {1, 2, 3} is the upper spacial index. The corresponding Lagrangian for our
theory then has one-, two- and three-particle contributions:

L = L(1) + L(2) + L(3) , L(1) = L(free) =
∑

i∈I1

ψ†i

(
i∂0 +

∇2

2mi

)
ψi ,

L(2) =
∑

i∈I2

{
d
†
i

[
∆i + ηi

(
i∂0 +

∇2

2Mi

)]
di

− gi µi d
†
i

(
ψi1

(←→i∇
m̂

)
ψi2
)

+ h. c.
}

,

L(3) = −H ψ†1 d
†
1 d1 ψ1 .

(2.18)

The one-particle Lagrangian L(1) = L(free) simply describes the free non-relativistic
propagation of the scalar fields.

The two-particle Lagrangian L(2) consists of two contributions. First, there is a term
analog to L(1), representing the free propagation of the dynamical dimer fields di. As
explained, sgn(ηi) = ±1 corresponds to a normalizable physical field or a non-normalizable
ghost field, respectively. The remaining contribution to L(2) includes the bare dimer-dimer
interaction and the coupling of a dimer to its two corresponding scalar fields. The specific
form of these P-wave couplings with spatial derivatives is due to the required Galilean-
invariance, which was discussed in sec. 2.1.1.2. It is directly transferred from the term
eq. (2.5). As mentioned before, by the choice of I2 from eq. (1.11), we implicitly neglect all
P-wave interactions between identical particles, even if they are possible in case of fermions.
The bare coupling parameters ∆i and gi are unknown and have to be renormalized. In our
renormalization scheme, they depend on the ultraviolet cut-off in the two-particle sector
and will be expressed in terms of low-energy observables from the effective range expansion.
The reduced mass factors µi are conventional and could just as well be absorbed in gi.

For simplicity, in the three-particle Lagrangian L(3) we chose the three-body force to
be only present in the d1ψ1-channel. According to the conditions (2.12), there also exist
other equivalent possibilities to introduce such a coupling. As mentioned before, L(2) and
L(3) are constructed via the methods that are explained in sec. 2.1.2.2.

We now calculate matrix elements in perturbation theory, where we construe the free
parts of the Lagrangian eq. (2.18) as the given theory and the remaining couplings as a
perturbation. Feynman diagrams are then evaluated in momentum space, where the time-
direction in all our diagrams points from the left to the right. Within a Feynman diagram,
single and double lines represent scalar particles and dimers, respectively. Propagators are
denoted by arrows and couplings by ellipses. White or filled symbols correspond to bare or
full quantities, respectively. Detailed calculations of more involved Feynman graphs and



24 CHAPTER 2. THREE-BODY HALOS WITH P-WAVE INTERACTIONS

their symmetry factors can be found in appendix D.2. Since we consider a non-relativistic
theory, the one-body properties are not modified by interactions. Thus, we proceed with
the two-body sector.

2.3.2 Two-body problem

= +

Figure 2.4: Diagrammatic representation of the integral equation for the full P-wave
dimer propagator iD. The white arrow represents the bare propagator. The bubble repre-
sents the self-energy −iΣ.

First, we consider the two-particle sector of our theory with P-wave interactions. Since,
in terms of Feynman diagrams, a dimer can split up into its two different components and
then recombine, we have to include all such possible loops in the calculation of the full
dimer propagator iD. A diagrammatic representation is given in fig. 2.4. iD depends on
the total four-momentum p̄ and, a priori, has components Dab

ij , where i and a (j and b) are
the particle type and spatial indices of the full dimer in the incoming (outgoing) channel.
The corresponding matrix integral equation then reads

iD = iΩ−1 (−iΣ) iD + iΩ−1 = i[Ω− Σ]−1 . (2.19)

The term Ω from the bare propagator and the self-energy Σ depend on the four-momentum
p̄ according to:

Ωabij (p̄) = δijδ
ab

[
∆i +

ηi
2µi

y2i (p̄)

]
, yi(p̄) =

√
2µi

(
p0 − p2

2Mi

+ iε

)
,

−Σabij (p̄) = δijδ
ab g

2
i µi
3π2

[
Λ3
i

3
+ Λiy

2
i (p̄) +

π

2
iy3i (p̄)

]
.

(2.20)

The function yi has the dimension of momentum. For a detailed calculation of the bubble
diagram Σ, see eq. (D.2) in appendix D.2.1. We note that both Σ and Ω are diagonal in
the spatial indices a and b and that the diagonal elements are independent of s, which then
directly transfers to the full dimer propagator via Dij = δijδ

abDi with diagonal elements:

Di(p̄) =
1(

∆i +
g2i µi
3π2

Λ3
i

3

)
+
(
ηi
2µi

+
g2i µi
3π2 Λi

)
y2i (p̄) +

(
g2i µi
6π

)
iy3i (p̄)

. (2.21)

The couplings ∆i, gi and the two-particle cut-offs Λi are not observable. Hence, we elimi-
nate them via a renormalization procedure. In the following, we therefore consider the low-
energy limit of the two-particle scattering amplitude, which can be written as an effective
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range expansion. The unknown quantities are then expressed in terms of the low-energy
parameters of this expansion.

2.3.2.1 Effective range expansion

Figure 2.5: Feynmangraph for the two-particle
scattering matrix element itij(p̄1, p̄2, k̄1, k̄2). i and
j are the particle-type indices. The sum over the
upper spatial indices a, b ∈ {1, 2, 3} is implicit.

i1, p̄1

i2, p̄2

j1, k̄1

j2, k̄2

a
i , P̄

b
j , P̄

In order to renormalize the full dimer propagator in eq. (2.21), we consider the scattering
of two particles, depicted in fig. 2.5. The incoming (outgoing) particles of type i1 and i2 (j1
and j2) have four-momenta p̄1 and p̄2 (k̄1 and k̄2). The full dimer propagator only allows
indices i, j ∈ I2 and is diagonal. Denoting its total four-momentum by P̄ = p̄1+p̄2 = k̄1+k̄2,
leads to the matrix element:

itij(p̄1, p̄2, k̄1, k̄2)

=

3∑

a,b=1

(−igi)
[
p1 −

mi1

Mi
P
]a
iδijδ

abDi(p̄1 + p̄2) (−igj)
[
k1 −

mj1

Mj
P
]b

= (−ig2i ) δij
[
p1 −

mi1

Mi
P
]
·
[
k1 −

mi1

Mi
P
]
Di(P̄ ) .

(2.22)

We now calculate the scattering amplitude in the center-of-mass frame. In these kine-
matics, the total four-momentum simply reads P 0 = p1

2/(2µi) = k1
2/(2µi) and P = 0.

Using the relative momentum p := p1 = −p2, the matrix element effectively only depends
on the modulus p = |p| and the angle cos θ := p1·k1

|p1|·|k1| . Using eq. (1.2), the scattering

amplitude can be written as

fi(p, cos θ) =
µi
2π

tii(p, cos θ) = −g
2
i µi
2π

p2 Di

( p2
2µi

, 0
)

cos θ . (2.23)

Comparing eq. (2.23) with the partial wave expansion (1.3) from cos θ = P1(cos θ), we
deduce that only P-waves contribute to the scattering amplitude as required:

(2ℓ+ 1) f
[ℓ]
i (p) = δ1ℓ

(
−g

2µi
2π

)
p2Di

( p2
2µi

, 0
)

. (2.24)

According to eq. (1.6) the scattering amplitude is directly related to the effective range
expansion. For simplicity, we will from now on drop the redundant partial wave index ℓ = 1
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in the labeling [ℓ] of all effective range parameters. Knowing that yi (p
2/(2µi), 0) = p we

use eq. (2.21), eq. (2.24) and eq. (1.6) in order to renormalize the unobservable couplings
and cut-offs in the dimer denominator according to:

− 1

ai
+
ri
2
p2 − ip3 + O(p4) = − 6π

g2µi

1

Di

(
p2

2µi
, 0
)

= − 6π

g2i µi

[(
∆i +

g2i µi
3π2

Λ3
i

3

)
+
( ηi
2µi

+
g2i µi
3π2

Λi

)
p2 +

(g2i µi
6π

)
ip3
]

.

(2.25)

Matching the coefficients on both sides of eq. (2.25) then directly yields the renormalization
conditions:

∆i +
g2i µi
3π2

Λ3
i

3
= − g2i µi

6π

(
− 1

ai

)
,

ηi
2µi

+
g2i µi
3π2

Λi = −g
2
i µi
6π

ri
2

. (2.26)

Since eq. (2.26) holds for all Λi > 0, it is also valid in the ultraviolet limit Λi → ∞. From
that requirement, we read off the asymptotic behavior of the coupling constants for large
cut-offs: Multiplying both equations with 1/g2i shows that ∆i/g

2
i has to scale like −Λ3

i and
ηi/g

2
i has to scale like −Λi in order to reproduce finite a 1/ai and ri. g

2
i > 0 then implies

ηi < 0. Due to this negative prefactor, the dimers di in eq. (2.18) must be ghost fields,
corresponding to a negative-probability states. Furthermore, even in the hypothetical case
ηi = 0 where the dimers would not be dynamical, the calculation of the P-wave self-energy
(see eq. (D.2)) introduces a term g2i µiΛi/(3π

2) ∝ Λi that contributes to the effective
range. This is different from the case of two-particle S-wave interactions where such terms
at leading order do not appear (see eq. (D.9)).

Inserting the renormalization conditions (2.26) into the formula for the full dimer prop-
agator (2.21), we end up with:

Di(p̄) = − 6π

g2i µi

1

− 1
ai

+ ri
2
y2i (p̄) − iy3i (p̄)

. (2.27)

If the interacting particles are atoms, one should keep in mind that they interact through
a short-range potential combined with a long-range van der Waals tail. In this case, the
denominator of the dimer propagator (2.27) would have to be modified by including a
term which is linear in yi. However, the conditions under which (2.27) is still a good
approximation have been studied by Zhang, Naidon and Ueda [73]. We will now analyze
the pole and residue structure of the full P-wave dimer propagator (2.27) as a function of
the scattering volume and the effective range.

2.3.2.2 Pole and residue structure

The geometry of the propagator-poles in eq. (2.27) is more involved then in the S-wave case.
Dropping the index i, the propagator has three, in general, complex poles in y, namely
{yn|n = 0, 1, 2}. Their positions on the first or second Riemann sheet and their residues
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{Zn|n = 0, 1, 2} depend on the effective range parameters a and r. A detailed analysis
is performed in sec. A.1.1.2, where the results are summarized in tab. A.4. It turns out
that there are always one or two unphysical poles on the first Riemann sheet, but only for
negative effective range r < 0 and a scattering length

r < 0 ∧ 1/a ∈ (0, |r|3/54) (2.28)

a physical pole on the first Riemann sheet exists. By (un-)physical we mean that the
pole has (non-)positive residue. In addition to the physical pole, in this parameter region,
there also exists one additional spurious pole on the first sheet with negative residue and
a deeper binding energy. We will refer to these two poles as the shallow and deep dimer,
respectively. The deep dimer corresponds to an unphysical non-normalizable state and
thus its binding energy E(2) . −|r|2/(18µ) sets a scale beyond which our theory can no
longer be applied. Hence, (2.27) is only valid for momenta that are much smaller than the
effective range, which recently was also pointed out by Nishida [74]. The impact of the
unphysical deep dimer on the three-particle sector will be discussed, among other aspects,
in sec. 2.3.3.

From a purely mathematical point of view, the emergence of such spurious poles is
due to the truncation of the effective range expansion. If the highest power of momentum
that appears in this expansion is N ∈ N, the full dimer propagator automatically has
N complex poles. Some of them might be located on the first Riemann sheet

√
C and

might be unphysical. Hence, taking into account higher and higher orders in the effective
range expansion only increases the number of spurious poles and thus even compounds the
problem. Moreover, also the ultraviolet behavior of the propagator would be changed. In
general, approximating a meromorphic function, such as the scattering amplitude, not by
an Laurent series but by an inverse polynomial expansion in its argument (see (1.6)), does
not seem to represent a proper treatment of the function with respect to its pole structure
and limiting behavior at infinity. In the context of this problem, pure S-wave interactions
seem to represent the only exceptional case: For vanishing effective range and negative
scattering length, there exists only one pole, which is indeed physical. Details about the
S-wave dimer structure can be found in sec. A.1.1.1.

2.3.3 Three-body problem

We proceed with considering the three-particle sector of our Lagrangian (2.18). First, we
calculate the amplitude Tij(p̄1, p̄2, k̄1, k̄2) for a scattering-process between a dimer and a
single particle, which is depicted in fig. 2.6. Thereby, the incoming dimer dai

† and particle
ψ†i have four-momenta p̄1 and p̄2 and the outgoing dimer dbj and particle ψj have four-
momenta k̄1 and k̄2, respectively.

2.3.3.1 Kinematics

Within this section, it suffices to calculate the T-matrix in the center-of-mass frame with
the four-momenta of the single particles being on-shell. Using four-momentum conservation
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Figure 2.6: Diagrammatic representation of the T-
matrix element iTij(p̄1, p̄2, k̄1, k̄2) for dimer-particle
scattering with two-particle P-wave interactions.

a
i , p̄1

i, p̄2

b
j, k̄1

j, k̄2

for the incoming and outgoing particles

p̄1 + p̄2 = k̄1 + k̄2 =: P̄ =

(
E
0

)
, (2.29)

we define relative four-momenta for the incoming and outgoing channel according to:

p̄ := P̄ − p̄1 = p̄2 , k̄ = P̄ − k̄1 = k̄2 . (2.30)

The on-shell condition for a single-particle propagator in the i-channel then reads:

p0 = p02 =
p2
2

2mi
− iε =

p2

2mi
− iε . (2.31)

The calculation of an off-shell T-matrix in an arbitrary frame is more involved but can
also be performed straightforwardly. Its kinematics will be presented in sec. 3.1.3.1 where
it is needed for the determination of electromagnetic observables in halo nuclei with two-
particle S-wave interactions. In general an arbitrary inertial frame is, of course, related to
the center-of-mass frame through a Galilean transformation.

With the definitions (2.29) and (2.30), the T-matrix can be rewritten in terms of only
the three quantities, namely the total four-momentum P̄ and the two relative four-momenta
p̄ and k̄:

Tij(P̄ , p̄, k̄) := Tij

(
P̄ − p̄, p̄, P̄ − k̄, k̄

)

⇔ Tij(p̄1, p̄2, k̄1, k̄2) = Tij

(
p̄1 + p̄2, p̄2, k2

)
.

(2.32)

The full dimer propagator in the chosen kinematics reads:

Di(P̄ , p̄) := Di

(
P̄ − p̄

)
= − 6π

g2i µi

1

− 1
ai

+ ri
2
y2i (P̄ , p̄) − iy3i (P̄ , p̄)

,

yi(P̄ , p̄) := yi

(
P̄ − p̄

)
=

√
2µi

(
E − p0 +

p2

2mi
− p2

2µ̃i
+ iε

)
.

(2.33)
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=

+

+

+

Figure 2.7: Diagrammatic representation of the integral equation for dimer-particle scat-
tering iT , represented by Feynman graphs. The homogenous part includes full dimer
propagators iD and integrations over the loop momenta

∫
d4q̄/(2π)4.

2.3.3.2 T-matrix integral equation

In fig. 2.7 the integral equation for the T-matrix is illustrated in terms of Feynman dia-
grams. Using Feynman rules in momentum space, it formally reads:

iT abij (P̄ , p̄, k̄) = iRab
ij (P̄ , p̄, k̄) +

∑

k∈I2

3∑

c=1

∫
d3q

(2π)3

∫ ∞

−∞

dq0

2π
iRac

ik (P̄ , p̄, q̄)

× i

q0 − q2

2mk
+ iε

iDk(P̄ , q̄) iT
cb
kj (P̄ , q̄, k̄) ,

(2.34)

where a detailed derivation of the interaction kernel

Rab
ij (P̄ , p̄, k̄) = −

[
ν κij (gigj)

(
k+

mj

Mi
p
)a(

p+ mi

Mj
k
)b

E − p0 + p2

2mi
− k0 + k2

2mj
− p2

2µj
− k2

2µi
− p·k

mij
+ iε

+ δ1iδ1jδ
abH

]
,

ν =

{
+1 : #fermions ≤ 1

−1 : #fermions > 1
, κij :=

{
1 : 2 types

(1− δij) : 3 types
,

(2.35)

is given in appendix D.2.2.
We now utilize the residue theorem in order to perform the q0-integration. Considering

the integrand in eq. (2.34), we note that the appearing single-particle propagator i/(q0 −
q2/(2mk) + iε) for real three momentum q has a single pole in the lower complex plane,
located at q0 = q2/(2mk)−iε. The more complicated pole structure of the full P-wave dimer
propagator Dk is discussed in detail in appendix A.1.1.2. As explained there, Dk(P̄ , q̄) =
Dk(P̄ − q̄) has no q0-poles in the lower complex half-plane if and only if the scattering
volume obeys

− 1/a ∈
(
min{0, r3/54},∞

)
\
{
max{0, r3/54}

}
. (2.36)
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The omitted point in parameter space max{0, r3/54} represents an unphysical configuration
with second order poles in the propagator. The condition (2.36) is less strict than (2.28),
which was identified as the physically reasonable one. However, for the subsequent analyti-
cal calculations in the three-particle sector we only require the validity of (2.36). Assuming
that also T cbkj (P̄ , q̄, k̄) has no q

0-poles in the lower complex half-plane, we apply the formula

∫ ∞

−∞

dq0

(2π)

i

q0 − q2

2mk
+ iε

f(q0) =
i

2π
(−2πi) f

( q2

2mk
− iε

)
= f

( q2

2mk
− iε

)
, (2.37)

to eq. (2.34). Thereby, f simply denotes the products of all functions in the integrand
except for the single-particle propagator. Formula (2.37) is valid because the q0 integration
contour can be closed through a lower arc. In the limit of infinite arc-radius this are does
not contribute to the integral, since the amplitude is assumed to fall of rapidly enough.
Using the conventions (1.18) and (1.20) from sec. 1.3 this leads to the on-shell T-matrix
integral equation:

T abij (E,p,k) = Rab
ij (E,p,k) −

∑

k∈I2

3∑

c=1

∫
d3q

(2π)3
Rac
ik (E,p,q)

× Dk(E,q) T
cb
kj(E,q,k) .

(2.38)

All appearing functions depend on the total energy E. The dimer only exhibits a de-
pendence on the modulus of the loop three-momentum, whereas the interaction kernel
depends on the moduli of the incoming and outgoing three-momenta as well as the polar
angle between them.

Although the residue theorem in the form (2.37) is only applicable to eq. (2.34) for
scattering parameters fulfilling the condition (2.36), the resulting T-matrix integral equa-
tion (2.38) can be analytically continued to the excluded parameter region. Formally, we
can thus interpret (2.38) as an integral equation for all scattering parameters, as long as
we keep in mind that, strictly speaking, eq. (2.36) is required and that the physically
reasonable region is restricted by the even sharper condition (2.28).

2.3.3.3 Angular momentum eigenstates

The matrix integral equation (2.38) only yields a formal solution for the Cartesian compo-
nents of the T-matrix. Since possible physical three-body bound states need to have good
angular quantum numbers, a projection onto total angular momentum eigenstates has to
be performed. Thereby, the total angular momentum J results from coupling the intrinsic
dimer spin S = 1 to the orbital angular momentum ℓ in the dimer-particle system. For
our model with P-wave interactions, this spin-orbit coupling is rather elaborate and will be
performed in several steps within the following sections, where extended calculations are
outsourced to appendix C. For a better readability, we drop particle type indices i, j, k and
interpret all equations as matrix equations in terms of the particle types if not otherwise
specified.
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Intrinsic dimer spin: First, we transform the spatial components of the P-wave dimer
field, and thus all other quantities appearing in the integral equation (2.38), into appro-
priate spin-triplet components for the incoming and outgoing channel. For both quantities
X ∈ {T,R}, this is achieved by conjugation with a unitary matrix according to:

A :=

(
−1√
2

−i√
2

0

0 0 1
1√
2

−i√
2

0

)
∈ U(3) , X [1|1] := AXA† , (2.39)

where the components read: X [1s1|1s2] = (AXA†)s1s2 =
∑3

a,b=1(A)
s1aXab(A†)bs2. The spin

indices sn can assume the three values −1, 0 and 1, which correspond to the states in the
spin triplet. Since the dimer propagator is diagonal in spacial indices, it commutes with A
and we can rewrite eq. (2.38) compactly as a matrix integral equation:

T [1|1](E,p,k) = R[1|1](E,p,k) −
∫

d3q

(2π)3
R[1|1](E,p,q)D(E,q) T [1|1](E,q,k) . (2.40)

Orbital angular momentum: With regard to the orbital angular momentum in the
dimer-particle system, we now perform a decomposition of the T-matrix and the interaction
kernel into spherical harmonics Yℓm (see sec. C.2 for more details). We formally expand
X ∈ {T,R} in terms of:

X [1s1|1s2](E,p,k) = X [1s1|1s2](E, p · ep, k · ek)
=: 4π

∑

ℓ1,m1

∑

ℓ2,m2

Y ∗ℓ1m1
(ep) X

[1s1;ℓ1m1|1s2;ℓ2m2](E, p, k) Yℓ2m2(ek)

⇒ X [1s1;ℓ1m1|1s2;ℓ2m2](E, p, k)

=

∫
dΩp√
4π

∫
dΩk√
4π

Yℓ1m1(ep) X
[1s1|1s2](E, p · ep, k · ek) Y ∗ℓ2,m2

(ek) .

(2.41)

In the last line, the orthonormality relation (C.6) was used. The prefactor of 4π is purely
conventional. It matches with standard definitions (see e.g. [11]) and is designed to compen-
sates the two Y00 = 1/

√
4π factors in the case of pure ℓ1 = ℓ2 = 0 orbital angular momen-

tum. Multiplying eq. (2.40) with Yℓ1m1(ep)Y
∗
ℓ2m2

(ek) and integrating over dΩpdΩk/(4π),
projects onto the appropriate contribution:

T [1s1;ℓ1m1|1s2;ℓ2m2](E, p, k) = R[1s1;ℓ1m1|1s2;ℓ2m2](E, p, k)

−
∫ ∞

0

dq q2 (4π)2

(4π)(2π)3

∑

ℓ3,m3

∑

s3

× R[1s1;ℓ1m1|1s3;ℓ3m3](E, p, q) D(E, q) T [1s3;ℓ3m3|1s2;ℓ2m2](E, q, k) .

(2.42)

The on-shell full dimer propagator D(E,q) appearing in eq. (2.40) effectively does not
display any angular dependence. It is a pure S-wave quantity. For notational convenience,
we then redefine

D[0](E, p) := − 4π

(2π)3
p2D(E, p) , (2.43)
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where the convention (1.19) was used. Note that the prefactor 4π/(2π)3p2 = p2/(2π2) from
the measure of the integration over the loop momentum as well as the relative minus sign
have been absorbed in D[0]. An explicit expression of the angular-decomposed interaction
kernel R[1s1;ℓ1m1|1s2;ℓ2m2] can be found in eq. (C.20) in sec. C.3.

Spin-orbit coupling: We are now in the position to couple the intrinsic dimer spin
with the orbital angular momentum to a total angular momentum. As is well known,
the coupling of general angular momenta is performed using Clebsch–Gordan coefficients
(CGC), which, in principle, are nothing else but the entries of a unitary matrix, describing
the change of orthonormal bases in the tensor product of Hilbert-spaces. For two angular
momenta j1 and j2 coupled to total angular momentum |j1 − j2| ≤ J ≤ j1 + j2, we label
the corresponding CGC by CJM

j1m1;j2m2
, where m1, m2 and M are the magnetic quantum

numbers. In the following, we will use several symmetries and properties of CGGs. They
are collected in appendix C.1. For a detailed discussion of CGCs, see e.g. ref. [75].

For X ∈ {T,R}, covering both the T-matrix and the interaction kernel, we define
projected quantities X [J1M1;1;ℓ1|J2M2;1;ℓ2] according to eq. (C.4). Multiplying eq. (2.42) with
CJ1M1

1s1;ℓ1m1
CJ2M2

1s2;ℓ2m2
and summing over all magnetic quantum numbers, we use the products-

formula (C.5) for the homogeneous part and end up with the projected T-matrix equation:

T [J1M1;1;ℓ1|J2M2;1;ℓ2](E, p, k) = R[J1M1;1;ℓ1|J2M2;1;ℓ2](E, p, k)

+

∫ ∞

0

dq
∑

ℓ3

ℓ3+1∑

J3=|ℓ3−1|

J3∑

M3=−J3

× R[J1M1;1;ℓ1|J3M3;1;ℓ3](E, p, q) D[0](E, q) T [J3M3;1;ℓ3|J2M2;1;ℓ2](E, q, k) .

(2.44)

The Wigner–Eckart theorem now implies that X ∈ {T,R} is diagonal in the total incoming
and outgoing angular momentum quantum numbers according to: X [J1M1;1;ℓ1|J2M2;1;ℓ2] =
δJ1J2δM1M2X [J1][ℓ1|ℓ2]. The rather elaborate analytic calculation of R[J1M1;1;ℓ1|J2M2;1;ℓ2], which
is performed in appendix C.4, directly displays this diagonality. Insertion into eq. (2.44)
leads to:

T [J ][ℓ1|ℓ2](E, p, k) = R[J ][ℓ1|ℓ2](E, p, k)

+

∫ ∞

0

dq

J+1∑

ℓ3=|J−1|
R[J ][ℓ1|ℓ3](E, p, q)D[0](E, q) T [J ][ℓ3|ℓ2](E, q, k)

⇔ T [J ](E, p, k) = R[J ](E, p, k) +

∫ ∞

0

dq R[J ](E, p, q)D[0](E, q) T [J ](E, q, k) .

(2.45)

Thus, channels with different total angular momentum J are decoupled and the interme-
diate orbital angular momentum ℓ3 is restricted to |J − 1| ≤ ℓ3 ≤ J + 1. In addition, it
becomes apparent (see sec. C.5 for details) that X ∈ {T,R} decomposes into blocks with
different parity quantum numbers P ∈ {+,−} according to X [J ] = X [J+] ⊕X [J−]. Hence,
we end up with the inhomogeneous one-dimensional matrix integral equation:

T [JP ](E, p, k) = R[JP ](E, p, k) +

∫ ∞

0

dq R[JP ](E, p, q)D[0](E, q) T [JP ](E, q, k) , (2.46)
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which can be seen as a P-wave analogue of the Skornyakov–Ter-Martirosian (STM) equation
in ref. [76]. The full dimer propagator D[0] is given in eqs. (2.43) and (2.27) and the
interaction kernels R[JP ] can be found in appendix C.5 in eqs. (C.37) and (C.38).

From the matrix integral equation (2.46), we know that the dimensions of the T-
matrix T [JP ] are simply those of the interaction kernel R[JP ]. Thereby, in terms of angular
momenta, the negative parity component R[J−] is a scalar function and incoming and
outgoing orbital angular momenta are ℓ1 = ℓ2 = J . R[J+] has a more complicated structure.
It is a 2×2 matrix. The matrix-elements describe all four possible combinations of incoming
and outgoing momenta ℓ1, ℓ2 ∈ {J − 1, J + 1}. However, for the special S-wave case
J = 0 the only non-vanishing matrix element is the lower right one, which has ℓ1 = ℓ2 =
J + 1. In this case, the matrix equation effectively is again a scalar one. In all cases,
the full matrix dimension d is obtained by a multiplication with the particle-type-related
dimension. Summarizing these results yields:

X [JP ](E, p, k) ∈ Cd×d , d := dd · dJP ,

dd := #I2 =

{
1 : 2 types

3 : 3 types
, dJP :=

{
1 JP ∈ {J−, 0+}
2 otherwise .

(2.47)

Another interesting consequence of eq. (C.37) and eq. (C.38) is that for an EFT with
P-wave interactions of type (2.18), the three-particle force H only appears in the 1+-
contribution to the T-matrix. Consequently, this is also the only channel, in which the
binding energy of possible three-body bound states can be affected by such a three-body
force. The common renormalization procedure for the three-particle sector, in which a
momentum cut-off Λ is introduced and a three-body bound-state energy is then fixated
to its physical value by fine-tuning H as a function of Λ, can thus only be applied to the
1+-channel. Renormalization in other JP -channels would require a modified three-body
force, e.g. higher order terms with additional derivatives would have to be included in the
L(3)-part of the Lagrangian (2.18). An alternative way to address this problem would be
to drop L(3) in the first place and simply add an effective three-body term to the projected
JP -contributions (C.37) and (C.38). Since for the set of problems tackled in this chapter
the exact position of a specific three-body bound state is irrelevant, we will set H = 0 in
the following.

2.3.3.4 Renormalization

Before we search for possible three-body bound states, we choose a normalization of the
T-matrix that eliminates the remaining, unobservable gi couplings. Since, in the end, pole-
positions are invariant under such normalization, we can equivalently solve the bound-state
equation for the redefined quantities:

∀X ∈ {T,R} : X̄ij := (gi
√
µi)
−1 Xij (gj

√
µj)
−1 ,

D̄i(E, p) := (gi
√
µi)

2Di(E, p) .
(2.48)
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With these definitions, all unobservable gi-factors in eq. (2.46) cancel and the kernel func-
tions assume a simpler form. Note that for a calculation of physical dimer-particle scat-
tering, the proper physical renormalization would be required, involving the multiplication
with appropriate wave function renormalization factors

√
Z, originating from the LSZ the-

orem [77]. They are given in sec. A.1.1.2. However, for all calculations in the P-wave sector
that are presented in this work, using eq. (2.48) suffices and yields simplified equations.

For simplicity, we will from now on only consider the case where two of the three par-
ticles are identical. With regard to eq. (2.47), this case has smaller matrix dimensions
and the kernel functions are less complex. Anyhow, the qualitative results and conclusions
will be the same in both cases. The only appearing channel then is i = j = k = 1 such
that we can drop these redundant indices. In addition, mass factors µi/µj = 1 cancel.
The corresponding T-matrix integral equation for a theory of two identical particles ψ1

interacting with a third one ψ0 via P-wave contact interactions then altogether reads:

T̄ [JP ](E, p, k)

= R̄[JP ](E, p, k) +

∫ ∞

0

dq R̄[JP ](E, p, q) D̄[0](E, q) T̄ [JP ](E, q, k) ,

D̄[0](E, p) =
3

π

p2

− 1
a
+ r

2
y2(E, p)− iy3(E, p)

,

y(E, p) =

√
2µ
(
E − p2

2µ̄
+ iε

)
,

R̄[J+](E, p, k) = ν
(−1)J

2J + 1

×
(
ΘJ−1 0

0 1

)
(

ω
(J−1)(2J+1)

2J−1
QJ−2− J( pk+

k
p
)QJ−1 +( ω

2J−1
+ J

ω
)QJ√

J(J+1)[ p
k
QJ−1− (ω+ 1

ω
)QJ + k

p
QJ+1]

√
J(J+1)[ k

p
QJ−1− (ω+ 1

ω
)QJ + p

k
QJ+1]

( ω
2J+3

+J+1
ω

)QJ − (J+1)( p
k
+ k

p
)QJ+1 +ω

(J+2)(2J+1)
2J+3

QJ+2

)
(
ΘJ−1 0

0 1

)
,

R̄[J−](E, p, k) = ν
(−1)J

2J + 1
ΘJ−1 (QJ+1 −QJ−1) ,

QJ = QJ(c(E, p, k)) , c(E, p, k) =
m0

pk

( p2
2µ

+
k2

2µ
− E − iε

)
,

ν =

{
+1 : ψ1 bosons

−1 : ψ1 fermions
, ΘJ =

{
1 : J ≥ 0

0 : J < 0 ,

µ =
m0m1

m0 +m1
, µ̄ =

m1(m0 +m1)

m0 + 2m1
, ω = 1 + A , A :=

m0

m1
.

(2.49)
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The appearing analytically continued Legendre-functions of second kind QJ are surveyed
in detail in sec. A.2 in the appendix.

2.3.3.5 Bound state equation

We are now in the position to search for possible three-body bound states, which manifest
themselves as poles of first order in the T-matrix. Assuming the existence of a three-body
bound state with negative binding energy E = E(3) < 0 and quantum number JP , the
T-matrix has a pole of first order at this position. The corresponding residue factorizes
into momentum dependent functions B according to:

T̄ [JP ](E, p, k) = −B
[JP ](p) · B[JP ](k)

†

E −E(3)
+ reg. . (2.50)

The term reg. represents an unspecified regular function in the energy. Also in the case
where T̄ [JP ] has no such pole, eq. (2.50) is still trivially fulfilled with B[JP ] = 0. Inserting
eq. (2.50) into eq. (2.49), multiplying with E−E(3) and taking the limit E → E(3), directly
yields the bound-state equation

B[JP ](p) =

∫ ∞

0

dq R̄[JP ](p, q) D̄[0](q)B[JP ](q) (2.51)

emerges. Its kernel functions are those of eq. (2.49). Note that, in accordance with our
convention (1.21), we dropped the energy variables E = E(3). In sec. B we discuss how
eq. (2.49) and eq. (2.51) can be solved numerically.

2.3.4 Discrete scale invariance and the Efimov effect

Introducing an ultraviolet momentum cut-off Λ, the bound-state equation (2.51) can be
discretized and solved numerically. This will be performed in sec. 2.3.4.2. However, in
the limit of large momenta its solutions B[JP ] can even be addressed in a semi-analytic
approach, which will be considered in the following sec. 2.3.4.1.

2.3.4.1 Discrete scale invariance

The asymptotic behavior of the solutions of the bound-state equation (2.51) can be used
in order to identify JP -channels which display discrete scale invariance. Discrete scale
invariance is a necessary condition for the occurrence of a hypothetical Efimov effect. In
order to determine all such channels, we first assume that the momentum p in eq. (2.51)
is much larger than any other physical scale, meaning

p ≫ max{1/| 3
√
a|, |r/2|, m0, m1, E

(3)} . (2.52)
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From the expansion (A.46) in appendix A.2.3, we see that for |c(p, q)| > 1, the QJ func-
tions that appear in the integral kernel fall of like 1/cJ+1. Thus, the dominant contri-
butions from R̄[JP ](p, q) to the q-integration in eq. (2.51) are those with |c(p, q)| . 1.
This condition holds for q ≈ p ≫ max{m0, m1, 1/| 3

√
a|, |r/2|, E(3)}. Hence, we can as-

sume that also q is much larger than any other scale in the problem. In this limit, the
functional expressions in eq. (2.51) assume simpler forms. We can write y(q) ≈ i

√
µ/µ̄ q

and, since
√
µ/µ̄ =

√
(ω − 1)(ω + 1)/ω2 = cosφ holds, the full dimer propagator reads

D̄[0](q) ≈ −3/(π cos3 φ q). Furthermore, in this limit, the argument of the Legendre func-
tions of second kind assumes the form c(p, q) ≈ (p/q + q/p− iε)/(2 sinφ). Consequently,
c and hence also the kernel function R̄[JP ] effectively only depend on the ratio x = p/q of
the momenta. This leads to the asymptotic equation:

B[JP ](p) =

∫ ∞

0

dq

q
K̄ [JP ]

(p
q

)
B[JP ](q) ,

K̄ [J+] = ξ[J
P ]
(
ΘJ−1 0

0 1

)
(

(J−1)(2J+1)
(2J−1) sinφ

QJ−2− J(x+ 1
x
)QJ−1 +( 1

(2J−1) sin φ
+J sinφ)QJ√

J(J+1)[xQJ−1− ( 1
sinφ

+sinφ)QJ + 1
x
QJ+1]

√
J(J+1)[ 1

x
QJ−1− ( 1

sinφ
+sinφ)QJ + xQJ+1]

( 1
(2J+3) sinφ

+(J+1) sinφ)QJ − (J+1)(x+ 1
x
)QJ+1 +

(J+2)(2J+1)
(2J+3) sin φ

QJ+2

)
(
ΘJ−1 0

0 1

)
,

K̄ [J−] = ξ[J
P ] ΘJ−1 (QJ+1 −QJ−1) , ξ[J

P ] := ν
(−1)J+1

2J + 1

1

π

3

cos3 φ
,

QJ = (QJ ◦ c)(x) , c(x) =
x+ 1/x

2 sinφ
, φ = arcsin(1/ω) .

(2.53)

Of course, we can now also interpret eq. (2.53) as an integral equation for all momenta p,
but, as we know, their solutions will only match with those of the physical one (2.51) if
the condition (2.52) is fulfilled. We note that eq. (2.53) does no longer depend on m0 and
m1 individually but only on the mass ratio A = m0/m1 or equivalently ω = 1 + A or the
angle φ.

Another big advantage of eq. (2.53) is that the integration over the kernel can be
disentangled with the help of a Mellin-transformation:

M[f ](s) :=

∫ ∞

0

dxxs−1f(x) , (2.54)

which is linear in the function f . The region 〈a, b〉 := {s ∈ C | a < Re(s) < b} where
the integral (2.54) converges and where the resulting Mellin-transform M[f ] is analytic is
called the fundamental strip. Applying eq. (2.54) on both sides of eq. (2.53), a substitution
x := p/q yields dp/q = dx/x and thus we end up with the ordinary homogeneous linear
equation:

B[JP ](s) = K[JP ](s) B[JP ](s) ⇔
[
1 − K[JP ](s)

]
B[JP ](s) = 0 . (2.55)

The functions B[JP ] := M[B[JP ]] and K[JP ] := M[K̄ [JP ]] are the Mellin transforms of the
wave function and the kernel, respectively. Using eq. (2.53) and the definition (A.56) of the



2.3. P-WAVE INTERACTIONS 37

translation operator T̂ with the property (A.62), the formal expression for the transformed
kernel in eq. (2.55) reads:

K[J+] = ξ[J
+]
(
ΘJ−1 0

0 1

)
(

(J−1)(2J+1)
(2J−1) sinφ

QJ−2− J(T̂−1+T̂1)QJ−1 +( 1
(2J−1) sinφ

+J sinφ)QJ√
J(J+1)[T̂−1QJ−1− ( 1

sinφ
+sinφ)QJ + T̂1QJ+1]

√
J(J+1)[T̂1QJ−1− ( 1

sinφ
+sinφ)QJ + T̂−1QJ+1]

( ω
2J+3

+J+1
ω

)QJ − (J+1)(T̂−1+T̂1)QJ+1 +ω (J+2)(2J+1)
2J+3

QJ+2

)
(
ΘJ−1 0

0 1

)
,

K[J−] = ξ[J
−]ΘJ−1 (QJ+1 −QJ−1) , QJ(s) = M[QJ ◦ c](s) .

(2.56)

Of course, the equations (2.55) and (2.56) are only valid in the corresponding fundamental
strips. Explicit formulas for the Mellin transforms QJ , in terms of hypergeometric series
or equivalent transcendental expressions, can be found in appendix A.2.4 in eq. (A.54) and
eq. (A.57), respectively.

With regard to the asymptotic bound-state equation (2.53), one can show that its
solutions can be written as:

B[JP ](p) =
1

2πi

∮

Γ

ds
[
1 − K[JP ](s)

]−1 C[JP ](s) p−s , (2.57)

where the closed integration contour
∮
Γ
ds =

∫ a+ε−i∞
a+ε+i∞ ds+

∫ b−ε+i∞
b−ε−i∞ ds lies within the funda-

mental strip 〈a, b〉. The missing upper and lower connecting line integrals in the contour are
infinitely far away and do not contribute, since the integrand falls off rapidly enough. The
basic methods used for the derivation of eq. (2.57) can e.g. be found up in [78], especially
see eqs. (8.5.19) and (8.5.43) therein. For J ≥ 1, the J+-channel has matrix dimension
2× 2 such that in this case eq. (2.57) can be seen as the higher dimensional generalization
of the original homogeneous one-dimensional case that is considered in [78]. The terms
C[JP ] and B[JP ] have the same matrix dimension. Furthermore, C[JP ](s) is also analytic in
〈a, b〉, though its specific functional dependence on s is irrelevant for our purposes.

Assuming that the inverse matrix
[
1 − K[JP ](s)

]−1
has at most countable many poles

sn in the fundamental strip 〈a+ ε, b− ε〉 which are all of first order, the residue theorem
implies:

B[JP ](p) =
∑

n∈N
C [JP ]
n p−sn , (2.58)

with some complex vectors C
[JP ]
n . For large momenta, the exponent sn with the smallest

real part then dominates the asymptotic behavior of the B[JP ]-function. These exponents
can simply be determined as the roots of the transcendental function:

F [JP ]
0 = {s ∈ 〈a+ ε, b− ε〉 |F [JP ](s) = 0} , F [JP ](s) :=

∣∣ det
[
1−K[JP ](s)

]∣∣ , (2.59)

which together with eq. (2.56) is the P-wave analogue of the bosonic S-wave case in
eq. (2.17).



38 CHAPTER 2. THREE-BODY HALOS WITH P-WAVE INTERACTIONS

Since the interaction kernel K [JP ] in eq. (2.53) is real-valued and obeys the symmetry
K̄ [JP ](1/x) = (K̄ [JP ](x))T, its Mellin-transform fulfills:

K[JP ](s∗) =

∫ ∞

0

dxxs
∗−1 K̄ [JP ](x) =

(
K[JP ](s)

)∗
,

K[JP ](−s) =

∫ ∞

0

dxx−s−1 K̄ [JP ](x) =

∫ ∞

0

dy

y2
ys+1 K̄ [JP ](1/y)

=

∫ ∞

0

dy ys−1 (K̄ [JP ](y))T =
(
K[JP ](s)

)T

⇒ F [JP ](s) = F [JP ](s∗) = F [JP ](−s) = F [JP ](−s∗) .

(2.60)

Consequently, the fundamental strip of K[JP ] is symmetric with respect to the imaginary

axis. Considering the root equation (2.59), we additionally conclude that sn ∈ F [JP ]
0 also

implies {±sn,±s∗n} ⊂ F [JP ]
0 , meaning that the set of exponents in (2.58) is symmetric

with respect to the real and the imaginary axis. Thus, if a root sn ∈ F [JP ]
0 has non-

vanishing real part, then either sn ∈ F [JP ]
0 or −sn ∈ F [JP ]

0 has negative real part, leading
to divergent asymptotic solutions (2.58). Hence, discrete scale invariance can only exist

for configurations where there are only purely imaginary roots sn ∈ F [JP ]
0 . More precisely

it emerges if and only if F [JP ]
0 = {±is0}, where s0 is real.

terms Mellin transform fundamental strip poles

(1) QJ−2 〈−J + 1, J − 1〉 ±(2N0 + J − 1)

(2) T̂−1QJ−1 〈−J − 1, J − 1〉 ±(2N0 + J)− 1

(3) T̂1QJ−1 〈−J + 1, J + 1〉 ±(2N0 + J) + 1
(4) QJ 〈−J − 1, J + 1〉 ±(2N0 + J + 1)

(5) T̂−1QJ+1 〈−J − 3, J + 1〉 ±(2N0 + J + 2)− 1

(6) T̂1QJ+1 〈−J − 1, J + 3〉 ±(2N0 + J + 2) + 1
(7) QJ+2 〈−J − 3, J + 3〉 ±(2N0 + J + 3)
(8) QJ−1 〈−J, J〉 ±(2N0 + J)
(9) QJ+1 〈−J − 2, J + 2〉 ±(2N0 + J + 2)

(4− 7) K[(J=0)+] 〈−J − 1, J + 1〉 = 〈−1, 1〉 ±(2N0 + 1)

(2− 7) K[(J=1)+] 〈−J + 1, J − 1〉 = 〈0, 0〉 ±(2N0)

(1− 7) K[(J≥2)+] 〈−J + 1, J − 1〉 ±(2N0 + J − 1)

(8− 9) K[(J≥1)−] 〈−J, J〉 ±(2N0 + J)

Table 2.1: Fundamental strips and poles of terms appearing in the Mellin-transformed
kernels (2.56). Due to the off-diagonal terms T̂−1Q0 and T̂1Q0 the channel with quantum
numbers JP = 1+ naively would have 〈0, 0〉 = ∅ and thus no Mellin transform would exist.

In order to identify all channels with F [JP ]
0 = {±is0}, we first have to determine the

symmetric fundamental strips of analyticity of the transformed kernel. As explained in
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appendix A.2.4, the Mellin transform QJ = M[QJ ◦ c] of a Legendre functions of second
kind is analytic in the strip 〈−J − 1, J + 1〉. More precisely it is even meromorphic in C

with countably infinitely many poles of first order, located on the real axis at the values
±(2N0 + ℓ + 1). From that, we can easily derive fundamental strips and singularities for
all the Mellin-transformed terms, appearing in eq. (2.56). In tab. 2.1 we summarize our
finding and also give combined results for the Mellin-transformed kernels K[JP ]. The case
JP = 1+ is special, since, a priori, the fundamental strips 〈−2, 0〉 and 〈0, 2〉 of the separately
appearing off-diagonal expressions T̂−1Q0 and T̂1Q0 are disjoint. However, analytically
continuing the two expressions, both strips can be brought to an overlap at the imaginary
axis, where the only remaining undefined point is a singularity at the origin s = 0.

Initially, another promising idea in order to deal with this problem was to search for
a specific similarity transformation of the kernel R̄[J+] 7→ OR̄[J+]O−1 in eq. (2.56) such
that all critical terms xQ0(c(x)) and 1/xQ0(c(x)) either cancel or only appear in the
combination (x + 1/x)Q0(c(x)) = 2 sinφ c(x)Q0(c(x)), whose Mellin transform, as shown
in eq. (A.63) in sec. A.2.4, is uncritical at s = 0 and has a non-empty fundamental strip
〈−1, 1〉. As we will see in the following paragraph, such a transformation can not exist.

However, using e.g. the orthogonal transformation-matrix O = 1/
√
2J + 1

(√
J+1

√
J

−
√
J
√
J+1

)

and the recursion relation (A.35) leads to an interesting cancellation of many terms in
the upper left matrix component of OR̄[J+]OT, though it complicates the structure of the
off-diagonal elements.

In figs. 2.2 and 2.3, the function F [JP ] from eq. (2.59) is plotted for complex arguments
s. Thereby, contour-plots for ψ1 being either bosons or fermions and for several JP -channels
are given. The mass ratio is fixed to A = m0/m1 = 1/4, as for such relatively small values,
the structure of the functions is easier to illustrate. Since the precise values of F [JP ](s)
are irrelevant for our purposes, we only have to understand the functional behavior by
tendency. It is encoded in the coloring via the rule: the brighter the shading, the larger
F [JP ](s). In particular, the dark and bright spots represent roots F [JP ](s) = 0 and poles
F [JP ](s) → ∞, respectively. Comparing the positions of the poles with the predictions from
tab. 2.1, in all cases, we find perfect agreement. Due to the properties of the determinant,
the function F [JP ] is invariant under similarity transformations of R̄[JP ]. This also holds for
the pole positions. Consequently, the mentioned agreement reveals that the existence of
any similarity transformation that would lead to a cancellation of pole contributions, and
hence would helpfully enlarge fundamental strips, is excluded. The vertical red lines bound
the fundamental strips and are always fixed to those singularities closest to the origin. In
the channel JP = 1+ this, a priori, leads to a vanishing fundamental strip, since s = 0
is singular. Furthermore, the symmetries (2.60) directly become apparent in the plots, as
they exhibit mirror-symmetry with respect to the real and imaginary axis.

We can now directly read off the cases in which the roots in the fundamental strip are
purely imaginary ±is0. For bosonic fields ψ1, J

P = 1+ is the only such channel, whereas
for ψ1 being fermions, imaginary roots appear for JP ∈ {0+, 1+, 1−, 2+}. This classification
of the channels remains stable if the mass ratio A is varied, whereas quantitatively, the
purely imaginary roots move towards the origin for increasing A. By contrast, the positions
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Table 2.2: Contour-plots of F [JP ] : C → [0,∞) from eq. (2.59) for bosonic fields ψ1 and
different JP -channels. The mass ratio is fixed to A = 1/4. The vertical red lines bound
the fundamental strips and dark and bright spots represent roots and poles, respectively.
The only channel with purely imaginary roots is JP = 1+.
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Table 2.3: Contour-plots of F [JP ] : C → [0,∞) from eq. (2.59) for fermionic fields ψ1 and
different JP -channels. The mass ratio is fixed to A = 1/4. The vertical red lines bound
the fundamental strips and dark and bright spots represent roots and poles, respectively.
The only channels with purely imaginary roots are JP ∈ {0+, 1+, 1−, 2+}.
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of the singularities are fixed to integer values and are independent of A. Figs. 2.2 and 2.3
only include plots for total angular momenta J ≤ 3. However, up to very high J ≥ 4,
we did not observe any further channel with roots on the imaginary axis. Although this
approach, of course, is not able to strictly prove the non-existence of such roots for all
J ≥ 4, we assume that cases listed above are the only ones. Thus, we end up with five
different channels, in which the asymptotic behavior of the solution to the bound-state
equation (2.51) is dominated by a purely imaginary exponent. Consequently, these are
also exactly the channels that display a discrete scale invariance and are qualified for the
possible emergence of an Efimov effect.
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Figure 2.8: Discrete scaling factor λ0 = eπ/s0 as a function of the mass ratio A = m0/m1

for all five cases. If the two identical particles ψ1 are bosons, discrete scale invariance
only shows up in the channel JP = 1+. For ψ1 being fermions, the allowed channels are
JP ∈ {0+, 1+, 1−, 2+}.

For all five sectors that display imaginary zeros is0, we can determine the numerical
value of s0 via a root-finding algorithm. The corresponding discrete scaling factor then
reads λ0 = eπ/s0. In fig. 2.8 it is plotted as a function of the mass ratio A = m0/m1 for all
identified channels. The exact functional dependencies seem to be nontrivial, however, λ0
vanishes for A→ 0 and grows exponentially for A > 1. Unlike in the S-wave case in fig. 2.2
λ0 has no maximum. Possible experimental evidence for discrete scale invariance, such as
the existence of multiple Efimov states, is most likely to be observed for a small discrete
scaling factors. We see that such values are approached if the third particle is much lighter
than the two identical ones. Comparing all five channels, we also note that the discrete
scaling factor is smallest if the two ψ1 are fermions and the JP -quantum numbers are 0+.
In tab. 2.4, numerical values for s0 and λ0 for exemplary mass ratios are given.
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A = m0/m1 1/8 1/4 1/2 1 2

ψ1 JP s0 λ0 s0 λ0 s0 λ0 s0 λ0 s0 λ0
bosons 1+ 2.951 2.90 1.905 5.20 1.161 14.97 0.660 116.7 0.360 6132
fermions 0+ 3.162 2.70 2.138 4.35 1.404 9.37 0.889 34.2 0.538 345
fermions 1+ 2.323 3.87 1.535 7.74 0.965 25.98 0.574 239.3 0.329 13978
fermions 1− 2.348 3.81 1.588 7.23 1.047 20.09 0.667 111.2 0.405 2338
fermions 2+ 2.491 3.53 1.441 8.85 0.837 42.56 0.505 501.9 0.302 32919

Table 2.4: Imaginary roots is0 of eq. (2.59) and the corresponding the discrete scaling
factors λ0 for exemplary mass ratios A = m0/m1 ∈ {1/8, 1/4, 1/2, 1, 2}. The green-shaded
case with λ0 = 2.70 will exemplarily be considered for the numerical determination of the
bound-state spectrum in sec. 2.3.4.2

2.3.4.2 Bound-state spectrum

As mentioned before, the bound-state equation (2.51) can also be solved numerically by
introducing a loop momentum cut-off Λ. A detailed description of our method is given in
appendix B. For most JP -channels, the resulting unphysical cut-off dependence vanishes
in the limit Λ → 0, since the wave function falls of rapidly enough. By contrast, this
limit does not exist for the five previously identified channels that display an asymptotic
discrete scale invariance. In these cases, three-body observables log-periodically depend on
Λ. In order to eliminate this dependence, renormalization can be performed by adding an
appropriate three-body force H(Λ). As demonstrated in eq. (C.37) in appendix C.3, our a
priori ansatz (2.18) for the three-body interactions L(3) can only renormalize the 1+ channel
of the three-body sector. In order to renormalize the other channels, couplings with higher
order derivatives would have to be included in L(3). For a given cut-off Λ and a three-body
binding energy E(3), the three-body term H is then fixed such that the corresponding
bound-state equation has a solution at exactly this desired energy E = E(3). However,
in this work, exact values of three-body bound-state energies E(3) are irrelevant, since we
only focus on general features of the spectrum, such as energy ratios and the existence of
an Efimov effect. Consequently, an inclusion of the three-body renormalization procedure
is not needed, which is why we neglect H .

In fig. 2.9 the numerically determined spectrum is given for ψ1 being bosons, quantum
numbers JP = 0+, a mass ratio A = m0/m1 = 1/8 and vanishing effective range r = 0.
As explained in sec. 2.3.3.2 the red-shaded area 1/a > 0 originates from analytically
continuing the P-wave bound-state integral equation from the blue-shaded area 1/a < 0
that is included in (2.36). A full classification of the parameter regions can be found in
tab. A.4 in sec. A.1.1.2. From a mathematical viewpoint, the plot displays a characteristic
Efimov spectrum, which looks similar to the S-wave case, depicted in fig. 2.3. In the unitary
limit, there is an infinite tower of trimer states with an accumulation point at threshold
and with exact discrete scale invariance. Calculating the energy ratios yields a discrete
scaling factor λ0 ≈ 2.70, which is in perfect agreement with the semi-analytic prediction
from tab. 2.4 from the previous section. Similar analyses in other channels revealed that
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Figure 2.9: Bound state spectrum for ψ1 =̂ bosons, JP = 0+, A = 1/8 and vanish-
ing effective range r = 0. The energies are expressed in terms of a rescaled parameter
sgn(E)

√
2µ|E| in arbitrary units [a.u]. Trimers energies lie below dimer energies and are

ordered in a geometric series with discrete scale invariance and an accumulation point at
the origin. In the red region, the dimer-particle scattering integral equation can not be
derived straightforwardly via the residue theorem and is obtained from an analytic con-
tinuation. In the red region, there are unphysical dimer poles on the first Riemann sheet.
For all scattering volumes, there are no dimer poles with positive residues on the physical
sheet.

the Efimov effect only occurs for ψ1 being bosons and JP ∈ {0+, 1+, 1−, 2+} or for ψ1 being
fermions and JP = 1+. In addition, also the determined energy ratios perfectly match
with the predictions for λ0(A) in fig. 2.8. These complete agreements provide a positive
consistency check for the semi-analytic approach chosen in sec. 2.3.4.1.

However, for P-wave interactions, the case of vanishing effective range seems to be
unphysical due to the so-called Wigner bound [79]. Thereby, the requirement of causality
leads to an upper bound on the effective range:

∀ρ ≥ R : r ≤ b(ρ) , b(ρ) := −2

ρ

[
1 +

ρ3

3a
− 1

5

(ρ3
3a

)2]
, (2.61)

where R is the range of the short-range potential. Since b′(ρ) = 2(3a− ρ3)2/(ρ2(3a)2) ≥ 0
holds, the function b is monotonically nondecreasing with an absolute minimum at b(R).
For large scattering volumes 3a ≫ R, the effective range is then bound from above ac-
cording to r ≤ −2/R < 0. Hence, for two-particle P-wave interactions, the unitary limit
is excluded by causality. Moreover, the dimer structure analysis in sec. A.1.1.2 shows that
the limit r = 0 always generates spurious dimer poles with complex or negative residues
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on the physical Riemann sheet, whereas physical poles with positive residue do not occur.
For these reasons, we now assume a negative effective range.

In fig. 2.10, the bound-state spectrum is plotted for ψ1 being bosons, quantum numbers
JP = 0+, a mass ratio A = m0/m1 = 1/8 and r < 0. The plot displays an approximate
Efimov spectrum with approximate discrete scaling factor λ0 ≈ 2.70. There is an infinite
tower of trimer states, which is again unbound from below but has no accumulation point
at threshold. Comparing figs. 2.9 and 2.10, now a window in parameter space 1/a ∈
(0, |r|3/54) exists where there is a physical pole with positive residue. We will refer to
this pole as the shallow dimer. However, from tab. A.4 we know that there is also a
deeper-bound dimer with negative residue on the physical sheet. Such a negative residue
corresponds to a non-normalizable solution that can not represent a physical state. Hence,
our theory can only be a good approximation above this deep dimer. Varying the scattering
volume towards 1/a→ |r|3/54, both the shallow and the deep dimer meet at the rescaled
energy sgn(E)

√
2µ|E|/(|r|/2)2 = −2/3 or equivalently E = −|r|2/(18µ). This energy can

be interpreted as the maximal range of applicability of our model with P-wave interactions.
Unfortunately, also for r < 0 all trimer states can only be found below the unphysical deep
dimer. Consequently, they do not represent physical three-body states and can not be
used for a proper physical renormalization of the three-body sector. We now present
several approaches we took into consideration in order to deal with the problems caused
by the spurious, unphysical deep dimer.

As it was recently shown for a system of three identical bosons interacting through
S-wave two-particle contact terms, a proper way to deal with spurious poles is to include
effective range corrections only order by order [80, 81]. For this purpose, the original full
dimer propagator is effectively written as an expansion in r[0], where each contribution
does not have any spurious poles. NnLO calculations in the three-particle sector then only
require the inclusion of N≤nLO contributions of this dimer expansion as building blocks
for Feynman diagrams. However, the essential difference in our P-wave case is that, due to
the form of the interaction, effective range corrections already appear at leading order [37].
In our calculation, this can also be seen from the quadratic term ∼ Λiy

2
i in the dimer self-

energy calculation (D.2) in sec. D.2.1, which requires a renormalization with the effective
range. Hypothetically setting r = 0 and interpreting this as in some way a leading order,
anyhow, would not lead to a better behavior of the full P-wave dimer propagator, since
already in this case, the propagator (2.27) has poles with complex residue on the physical
Riemann sheet. A detailed analysis of this case r = 0 is given in appendix A.1.1.2.

As another idea in order to get rid of the spurious poles, one can also treat the unitarity
term −iy3 in the denominator of eq. (2.27) as a perturbation. This method was recently
applied to 6He [82]. Assuming that the three-body cut-off Λ is sufficiently small, −iy3 is
negligible. In this approximation, indeed only the physical shallow dimer state remains.
However, such a propagator no longer obeys D(q → ∞) ∼ 1/q, which was crucial for the
derivation of discrete scale invariance in sec. 2.3.4.1. Correspondingly also the three-body
spectrum, obtained from solving the bound-state equation, does not display discrete scale
invariance. In particular, the trimer spectrum has no accumulation point at threshold.
Furthermore, for commensurable particle masses, the binding momentum of the first ap-
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Figure 2.10: Bound state spectrum for ψ1 =̂ bosons, JP = 0+, A = 1/8 and negative
effective range r = 0. The scattering volume and the energies are expressed in terms of
rescaled parameters (1/ 3

√
a)/(|r|/2) and sgn(E)

√
2µ|E|/(|r|/2)2. The trimers lie below

the dimers and are ordered in an approximate geometric series with approximate discrete
scale invariance. There is no accumulation point at threshold. In the red region, the
dimer-particle scattering integral equation can not be derived straightforwardly via the
residue theorem and is obtained from an analytic continuation. In the blue region there
are unphysical poles on the first Riemann sheet. In the red region, there is a shallow dimer
state with positive residue and a second deep dimer state with negative residue on the
physical sheet.
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pearing trimer state already exceeds the momentum cut-off, discarding it as unphysical.
Another fundamental drawback of this method is that unitarity is lost, which is actually a
requirement for the form (1.4) that was chosen for the scattering amplitude.

Considering the partial fraction decomposition (A.3), alternatively, one could also try
to cancel the unphysical residue contributions by adding suitable S-wave counter-terms.
However, such terms would have to be designed in a way that for small momenta, spuri-
ous poles are exactly eliminated but for large momenta the original dimer propagator is
reproduced in order to maintain the required asymptotic 1/q-dependence. In addition, the
interaction term iR from eq. (2.35), should not be changed. The existence of a correspond-
ing counter-term on the Lagrangian level that accomplishes all these requirements, seems
to be very unlikely.

In our model, the trimer states represent stable particles. Allowing the trimer to decay,
also complex binding-energy solutions of the bound-state equation (2.51) that lie above
the unphysical deep dimer, in principle, are possible. The imaginary part of the energy
can then be interpreted as the width of the trimer state. With respect to the spectrum
in fig. 2.10, trimers whose energies hit the deep dimer threshold could possibly survive as
trimer resonances in the region between the deep and the shallow dimer. Such resonances
could then also be used in order to renormalize the three-body sector. However, a priori, we
can not expect such resonances to exhibit discrete scale invariance or an accumulation point
at zero, since the considered limit (2.52) in sec. 2.3.4.1 is not applicable. Furthermore, such
resonances could decay into the unphysical deep dimers. On the technical side, the required
generalization of all calculations to complex E and the search for complex binding energies
represents a major extension to the formalism as well as to computational costs. At first
one would have to find an appropriate numerical approximation for the QJ -functions with
complex arguments, analogous to the finite expansion presented in sec. A.2.3.1 that holds
for real arguments. Furthermore, an intricate problem would then be to find the complex
binding energies in a reliable way. With regard to the numerical determination, as it is
discussed in appendix B, they can be expressed as the complex roots of eq. (B.3). Since
the mentioned bisection method fails as a complex root-finding algorithm, one natural al-
ternative would be the Newton method. This method begins with one starting value E0

and then calculates proceeding energies according to En+1 = En − f [JP ](En)/∂f
[JP ](En).

However, the determination of the derivative ∂f [JP ] would involve the numerical calcula-
tion of an inverse kernel matrix. Since, for our purposes, this is too expensive in terms
of computation time, an approximation through the secant method seems favorable. It
reads ∂f [JP ](En) = (f [JP ](En)− f [JP ](En−1))/(En −En−1) and needs two initial values E0

and E1. Since f
[JP ] is roughly an oscillating log-periodic function, both methods are only

good in the direct neighborhood of a complex root. Otherwise even its convergence is not
guaranteed. This requires a relatively precise guess for the initial values, further aggravat-
ing the numerical challenges. If the imaginary parts of the complex binding energies are
small, the roots of Re ◦ f [JP ] could already be a good approximation for the roots of f [JP ].
Therefore, Re ◦ f [JP ] and Im ◦ f [JP ] should have comparable magnitudes. Comparisons
between both functions on the real axis, nevertheless, indicated that this is not the case.
Thus, the determination of possible complex binding energies is involved and not part of
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this work.
Another idea would be to analyze if the spurious non-normalizable deep dimer state is

in a way decoupled from the remaining spectrum. For many quantum mechanical poten-
tials, such as the harmonic oscillator or the potential well, there exist discrete solutions to
the Schrödinger equation, which are non-normalizable. They are discarded, since normal-
izability is required and the spectrum of normalizable states already forms a complete set
in the corresponding Hilbert space. As demonstrated in sec. A.1.1.2, the shallow dimer has
positive residue. For resonant two-particle S-wave interactions, also the trimer states have
positive residue, what can be seen from eq. (3.52) in the following chapter. Thus, it would
be interesting to investigate if this also holds for resonant two-particle P-wave interactions
and if the continuum states together with all discrete positive-residue dimer and trimer
bound states already form a complete set in our field theoretical approach. Discarding all
remaining states with unphysical residue might then provide a method that restores the
physical applicability of our model in the trimer regime. The fact that in figs. 2.9 and 2.10
the trimer energies vanish as they hit the unphysical deep dimer energy, however, indicates
that the states can not be separated in this manner.

All obtained results and considerations for the two- and three-particle systems also hold
for corresponding halo systems as long as resonant two-particle P-wave interactions are in-
volved and our power counting scheme combined with the effective range expansion is used.
Thus, without extensive modifications, our method fails to describe bound three-particle
P-wave halo nuclei, while two-particle P-wave halo nuclei, in principle, are accessible. A
summary of our results will be given in chapter 4.



Chapter 3

Halo EFT with external currents

In this chapter, we consider non-relativistic halo EFT with resonant two-particle S-wave
interactions. With respect to electromagnetic properties of halo nuclei, halo EFT has also
been extended to include Coulomb effects [83] and electromagnetic currents [84–87]. Fur-
thermore, also coupled channel effects have been considered for two-body halo nuclei [88].
In the following sections, we extend these studies to two-neutron halo nuclei, where in
our model all three fields interact through resonant S-wave contact terms. We derive and
calculate form factors and charge radii relative to the core to leading order. In addition,
we calculate the dipole strength distribution for the photodisintegration of a two-neutron
halo. Moreover, we investigate general dependencies between physical observables in these
systems, yielding universal correlations. Our formalism is applied to current light as well
as heavy halo nuclei candidates.

The derivations and formulas appearing in secs. 3.1 and 3.2 have in parts been published
in [89]. This also includes the calculations of form factors and electric charge radii for the
light halo nuclei 11Li, 14Be and 22C in sec. 3.2.2.2 as well as the universal correlations in
sec. 3.2.3. The application of our two-neutron halo EFT with external currents to 62Ca
in sec. 3.2.3.1 represents the authors’ contribution to ref. [90], where the required input
parameters for this system were calculated by the coauthors via coupled-cluster methods.

3.1 Two-neutron halo EFT formalism

3.1.1 Effective Lagrangian

First, we set up a non-relativistic effective field theory in the strong sector for a core (c) with
spin 0 interacting with two neutrons (n) with spin 1/2. The core is described by a scalar

field ψ0 and the neutrons are described by a two-component spinor field ~ψ1 =
(
ψ1

ψ2

)
=
( n↑
n↓

)
.

Formally, these are again three fundamental degrees of freedom (ψ0, ψ1, ψ2).

We assume that all two-particle interactions are short-ranged and dominated by S-
wave resonances. If they are non-resonant, higher-partial wave interactions are suppressed
by three powers of R/|a|. An EFT formalism for the treatment of resonant interactions

49
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in higher partial waves in the two-body problem was developed in [37, 38]. With regard
to the three-body problem, this ansatz was combined with the Gamov shell model and
applied to 6He [82, 91]. However, as our analysis in sec. 2.3.4.2 indicated that P-wave
interaction without further modifications in the EFT framework are unable to generate
physical three-body bound states, we will not consider higher partial waves for our halo
nuclei analysis.

The interaction of the two neutrons is described by an auxiliary spin-0 dimer field
d0 and the core-neutron interaction is rewritten in terms of an auxiliary spin-1/2 dimer

field ~d1 =
(
d1
d2

)
=̂
( c↔n↑
c↔n↓

)
. The labeling and indices are chosen to simplify the notation

for the three-body equations derived below in sec. 3.1.3. Moreover, we allow for a three-
body contact interaction between the core and the two neutrons, which is mediated by a
spin-0 trimer auxiliary field t. Note that our choice to introduce auxiliary fields does not
necessarily imply bound states in the corresponding channels and merely is a convenient
way to introduce interactions.

We use the mass conventions (1.13), presented in sec. 1.3, where, of course, the two
distinguishable neutrons ψ1 and ψ2 have equal masses m1 = m2, leading toMΣ = m0+2m1

and MΠ = m0m
2
1.

The effective Lagrangian can then be written as the sum of one-, two- and three-body
contributions:

L = L(1) + L(2) + L(3) , L(1) = L(free) ,

L(free) =
∑

i∈I1

ψ†i

(
i∂0 +

∇2

2mi

)
ψi = ψ†0

(
i∂0 +

∇2

2m0

)
ψ0 + ~ψ†1

(
i∂0 +

∇2

2m1

)
~ψ1 ,

L(2) = ∆0 d
†
0d0 − g0

2

[
d†0 (

~ψT
1 P

~ψ1) + (~ψT
1 P

~ψ1)
† d0

]

+ ∆1
~d †1
~d1 − g1

[
~d †1
~ψ1 ψ0 + ψ†0

~ψ†1
~d1

]
,

L(3) = Ξ t† t − h
[
t† ψ0 d0 + (ψ0 d0)

†t
]

.

(3.1)

The matrix P projects the two neutrons on the spin-singlet. Its components are the
corresponding Clebsch-Gordon coefficients:

P s1s2 = C00
1
2
s1;

1
2
s2

⇒ P =
1√
2
( 0 1
−1 0 ) = −P † ,

PP † = 12/2 ⇒ Tr[PP †] = 1 ,

~ψT
1 P

~ψ1 =
1√
2
(ψ1ψ2 − ψ2ψ1) =

1√
2
(n↑n↓ − n↓n↑) .

(3.2)

The one-particle Lagrangian L(1) = L(free), simply describes the free non-relativistic
propagation of the scalar fields.

The two-body contribution L(2) includes the bare dimer propagators and the coupling
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of a dimer to two single particles. The bare parameters ∆0, g0, ∆1 and g1 depend on the
ultraviolet cut-off in the two-particle sector. Theses couplings have to be renormalized.
Additional dynamical dimer terms of the form ηi d

†
i

(
i∂0+

∇2

2Mi

)
di would contribute to effec-

tive range corrections but will not be considered in the following. The notation is chosen
in a way that the lower indices i = 0, 1 correspond to the nn and cn channel, respectively.

Finally, L(3) represents the three-body interaction, written in terms of a trimer auxiliary
field (see also [92]). It includes the bare trimer propagator and the coupling of the trimer
t to the d0-dimer and the core field ψ0. The bare parameters Ξ and h also depend on an
ultraviolet cut-off in the three-particle sector.

Writing the three-body interaction in this way will be convenient for the calculation
of deduced physical quantities such as the form factor. However, as mentioned before
there exists a whole class of equivalent theories in the three-particle sector. Integrating
out all auxiliary fields, one can demonstrate that different choices of L(2) and L(3) can
be transformed into the same theory without dimer and trimer fields up to four- and
higher-body interactions. Therefore, we first eliminate the trimer field t using the method
described in sec. 2.1.2.1. The classical equation of motion then yields:

L(3) 7→ −H(ψ0d0)
†(ψ0d0) , (3.3)

where H = h2/Ξ. Applying the equivalence principle described in sec. 2.1.2.2 for the dimer

fields ~d1 and d0 then finally leads to

L(2) 7→ − C1
0(ψ0

~ψ1)
†(ψ0

~ψ1)− C0
0(
~ψT
1 P

~ψ1)
†(~ψT

1 P
~ψ1) ,

L(3) 7→ −H0

(
ψ0 (~ψ

T
1 P

~ψ1)
)† (

ψ0 (~ψ
T
1 P

~ψ1)
)

+ L(≥4) ,
(3.4)

where C1
0 = g21/∆1, C

0
0 = 1/4 g20/∆0, and H0 = C0

0H/∆0. Thus, at LO, physical observ-
ables can only depend on these products of coupling constants. Therefore, they are not
independent. From the equivalence principle we furthermore know that gi and h can al-
ways be chosen positive. Without loss of generality we thus assume gi > 0 and h > 0 in
all subsequent calculations. The extra term L(≥4) includes all interactions of four or more
particles. Since in this work we only consider processes with at most three particles, we
can simply neglect L(≥4). Due to the equivalence principle, the trimer field could also have
been introduced in another channel, such as

L̃(3) = Ξ t† t − h
[
t† (~ψT

1 P
~d1) + (~ψT

1 P
~d1)
†t
]
, (3.5)

without changing any three-body observable. Moreover, the two-neutron halo Lagran-
gian (3.1) could also have been formulated completely analogous to eq. (2.16) without any
operator P . However, using the form (3.1) the spin-singlet projection is already imple-
mented on the Lagrangian level, simplifying some of the subsequent calculations.

In the following, we use Feynman rules in momentum space to calculate the properties
of the two-body systems cn, nn and the three-body system cnn. In all Feynman diagrams,
particles, dimers and trimers are denoted by single, double and triple lines, respectively.
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Whenever relevant, the core field will be represented by a dashed line. Propagators are
represented by arrows and couplings between particles, dimers and trimers by ellipses.
These symbols are empty if they correspond to bare and filled if they correspond to full,
interacting quantities. Detailed calculations of more involved Feynman graphs and their
symmetry factors can be found in appendix D.3. Since we consider a non-relativistic
theory, the one-body properties are not modified by interactions. Thus, we proceed with
the two-body sector.

3.1.2 Two-body problem

= +

Figure 3.1: Diagrammatic representation of the integral equation for the full dimer prop-
agator iD. The white arrow represents the bare propagator. The bubble represents the
self-energy −iΣ.

Analogue to the considerations in the P-wave sector, we again start with an analysis of

the two-body problem. Therefore, we calculate the full dimer propagator iD
[Sis1|Sjs2]
ij . As

mentioned before an index i, j = 0 corresponds to the nn-channel with Si,j=0 = 0 in spin-
singlet configuration and an index i, j = 1 corresponds to the cn-channel with Si,j=1 = 1/2
in spin-doublet configuration. The corresponding magnetic quantum numbers are labeled
by s1 and s2. In fig. 3.1, the iterative ansatz for iD is depicted in terms of Feynman
diagrams. The corresponding equation reads:

iD = i∆−1 (−iΣ) iD + iΞ−1 = i[∆− Σ]−1 . (3.6)

The self-energy Σ depends on the four-momentum p̄ according to:

−Σ
[Sis1|Sjs2]
ij (p̄) = δij δ

SiSjδs1s2
τig

2
i µi
π2

[
Λi +

π

2
iyi(p̄)

]
, τi :=

{
1/2 : i = 0

1 : i = 1 ,

yi(p̄) =

√
2µi

(
p0 − p2

2Mi
+ iε

)
.

(3.7)

The function yi has the dimension of momentum. A detailed calculation of Σ
[Sis1|Sjs2]
ij is

given in appendix D.3.1. It is diagonal both in the particle and in the spin indices. The

full dimer propagator then reads D
[Sis1|Sjs2]
ij = δijδ

s1s2Di with diagonal elements:

Di(p̄) =
1

(
∆i +

τig2i µi
π2 Λi

)
+
(τig2i µi

2π

)
iyi(p̄)

. (3.8)
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Note that the two spin components in the cn-channel are equal, which is due to the L(2)-
part of the Lagrangian (3.4). The couplings ∆i, gi and the two-particle cut-offs Λi are
not observable. We eliminate them via a renormalization procedure. In the following,
we therefore consider the low-energy limit of the two-particle scattering amplitude, which
can be written as an effective range expansion. Unknown quantities are then expressed in
terms of the scattering length.

3.1.2.1 Effective range expansion

In order to renormalize the full dimer propagator in eq. (3.8), we consider the scattering of
two particles. The corresponding Feynmandiagram fig. D.4 and its calculation can be found
in appendix D.3.2. If the incoming (outgoing) particles of type i1 and i2 (j1 and j2) have
four-momenta p̄1 and p̄2 (k̄1 and k̄2) and the total four-momentum is P̄ = p̄1+ p̄2 = k̄1+ k̄2,
then the matrix elements itij reads:

itij(p̄1, p̄2, k̄1, k̄2) = (−ig2i ) δij Di(p̄) . (3.9)

We now calculate the scattering amplitude in the center-of-mass frame. In these kine-
matics, the total four-momentum P̄ has P 0 = p1

2/(2µi) = k1
2/(2µi) and P = 0. Using

the relative momentum p := p1 = −p2 the matrix element now effectively only depends
on the modulus p = |p|. Using eq. (1.2), it can be written as

fi(p, cos θ) =
τiµi
2π

tii(p) = −g
2
i µi
2π

Di

( p2
2µi

, 0
)

. (3.10)

Comparing eq. (3.10) with the partial wave expansion (1.3), we check that only S-waves
contribute to the scattering amplitude:

(2ℓ+ 1) f
[ℓ]
i (p) = δ0ℓ

(
−τig

2µi
2π

)
Di

( p2
2µi

, 0
)

. (3.11)

According to eq. (1.6), the scattering amplitude is directly related to the effective range
expansion. For simplicity, we will from now on drop the redundant partial wave index ℓ = 0
in the labeling [ℓ] of all effective range parameters. Knowing that yi (p

2/(2µi), 0) = p holds,
we use eqs. (3.8), (3.11) and (1.6) in order to renormalize the unobservable couplings and
cut-offs in the dimer denominator according to:

− 1

ai
− ip + O(p2) = − 2π

τig
2
i µi

1

Di

(
p2

2µi
, 0
)

= − 2π

τig2µi

[(
∆i +

τig
2
i µi
π2

Λi

)
+
(τig2i µi

2π

)
ip

]
.

(3.12)

Matching the coefficients on both sides of eq. (3.12) directly yields the renormalization
condition:

∆i +
τig

2
i µi
π2

Λi = −τig
2
i µi
2π

(
− 1

ai

)
. (3.13)
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Furthermore, we see that the symmetry factor τi in the definition (3.10) of the scattering
amplitude is crucial for preserving unitarity. Since eq. (3.13) holds for all Λi > 0, it is also
valid in the ultraviolet limit Λi → ∞. From that requirement, we read off the asymptotic
behavior of the coupling constants for large cut-off: Multiplying with 1/g2i shows that
∆i/g

2
i , which is the coupling constant of the equivalent theory without dimers, has to scale

like −Λi in order to reproduce a finite 1/ai.
Inserting the renormalization condition (3.13) into the formula (3.8), we end up with

the renormalized full dimer propagator:

Di(p̄) = − 2π

τig
2
i µi

1

− 1
ai

− iyi(p̄)
. (3.14)

The leading correction to the propagator (3.14) is due to the effective range. As mentioned
before, it could be included by making the dimer fields dynamical. Such theories were
e.g. discussed in refs. [80,93–95]. Here, we stay at leading order in the EFT expansion and
neglect effective range corrections.

The geometry of the propagator-poles in eq. (3.14) can be understood straightforwardly.
Their location on the first or second Riemann sheet and whose residue depend on the
scattering length ai. A detailed analysis is performed in sec. A.1.1.1, where, for reasons of
completeness, also the case of non-vanishing effective range is considered. The results are
summarized in tab. A.2. It turns out that for ai > 0, a pole on the first sheet with positive
residue

Zi =
2π

τig2i µ
2
i

1

ai
(3.15)

exists. For ai < 0, there is no dimer-pole on the physical sheet.

3.1.3 Three-body problem

Figure 3.2: Diagrammatic representation of the T-
matrix element iTij(p̄1, p̄2, k̄1, k̄2) for dimer-particle
scattering within a two-neutron halo system.

i, p̄1

i, p̄2

j, k̄1

j, k̄2

We proceed with considering the three-particle sector of our two-neutron halo EFT,

beginning with the calculation of the amplitude T
[Sis1;Sis2|Sjs3;Sjs4]
ij (p̄1, p̄2, k̄1, k̄2) for dimer-

particle scattering. The corresponding Feynman diagram for is depicted in fig. 3.2. The
incoming dimer d†i and particle ψ†i have four-momenta p̄1 and p̄2, respectively. The outgoing
dimer dj and particle ψj have four-momenta k̄1 and k̄2, respectively. The lower particle-type
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indices i, j ∈ {0, 1} are those of the dimer fields. The upper indices s1, s2 ∈ {−S, . . . , S}
label the spin structure of the T-matrix. Within the two upper quartets, the left (right)
pair denotes the spin quantum numbers of the particle (dimer). For the incoming channel,
i = 0 represents the c-nn case where the core c and the nn-dimer are in spin-singlet
configuration S0 = 0. i = 1 corresponds to the n-cn configuration, in which both the
neutron n and the cn-dimer are spin doublets with S1 = 1/2. The index conventions in
the outgoing channel are completely analogous.

3.1.3.1 Kinematics

For later purposes, such as for the form factor calculation, we need to determine the full
T-matrix in arbitrary kinematics. In order to calculate it, we first use four-momentum
conservation

p̄1 + p̄2 = k̄1 + k̄2 =: P̄ =
(
P 0

P

)
=
(
E(P̄ )+ P2

2MΣ
P

)
, E(P̄ ) := P 0 − P2

2MΣ
, (3.16)

where the kinetic energy P2/(2MΣ) of the center of mass is subtracted in the definition of
E(P̄ ). Furthermore, we define shifted relative four-momenta

p̄ := p̄1 −
Mi

MΣ
P̄ ⇒ p̄1 =

Mi

MΣ
P̄ + p̄ , p̄2 =

mi

MΣ
P̄ − p̄ ,

k̄ := k̄1 −
Mj

MΣ
P̄ ⇒ k̄1 =

Mj

MΣ
P̄ + k̄ , k̄2 =

mj

MΣ
P̄ − k̄ ,

(3.17)

which correspond to a Galilean transformation of a general frame into the center-of-mass
frame. Using eq. (3.17), the on-shell conditions of a single-particle propagator in the i-
channel reads:

mi

MΣ
P 0 − p0 = p02 =

p2
2

2mi
− iε =

(
mi

MΣ
P− p

)2

2mi
− iε

⇒ p0 = ǫi(P̄ ,p) + iε ,

(3.18)

with the real part of the pole position being:

ǫi(P̄ ,p) :=
mi

MΣ

P 0 −
(
mi

MΣ
P− p

)2

2mi

. (3.19)

Since in most of the calculations in the following sections the total four-momentum of the
system P̄ remains invariant, we will simply write E = E(P̄ ) and ǫi,p = ǫi(P̄ ,p) in order to
avoid overlong notations. Deviations from this rule will be mentioned explicitly.

With the definitions (3.16) and (3.17), the T-matrix can be rewritten in terms of only
three quantities, namely the total four-momentum P̄ and the two relative four-momenta p̄
and k̄:

Tij(P̄ , p̄, k̄) := Tij

(Mi

MΣ

P̄ + p̄,
mi

MΣ

P̄ − p̄,
Mj

MΣ

P̄ + k̄,
mj

MΣ

P̄ − k̄
)

⇔ Tij(p̄1, p̄2, k̄1, k̄2) = Tij

(
p̄1 + p̄2,

mip̄1 −Mip̄2
MΣ

,
mj k̄1 −Mjk̄2

MΣ

)
.

(3.20)
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The full dimer propagator in the chosen kinematics reads:

Di(P̄ , p̄) := Di

(Mi

MΣ

P̄ + p̄
)

= − 2π

τig
2
i µi

1

− 1
ai

− iyi(P̄ , p̄)
,

yi(P̄ , p̄) := yi

(Mi

MΣ
P̄ + p̄

)
=

√
2µi

(
E + p0 − ǫi,p − p2

2µ̃i
+ iε

)
.

(3.21)

Using the conventions (1.18)-(1.20), the full propagator can be related to its on-shell version
Di(E,p) = Di(E, p) through:

Di(P̄ , p̄) = Di(E + p0 − ǫi,p, p) . (3.22)

3.1.3.2 T-matrix integral equation

=

+

+

+

Figure 3.3: Diagrammatic representation of the integral equation for dimer-particle scat-
tering iT , represented by Feynman graphs. The homogenous part includes full dimer
propagators iD and integrations over the loop momenta

∫
d4q̄/(2π)4. The three-particle

interaction is constructed using bare trimer propagators.

In terms of Feynman diagrams, the T-matrix integral equation has the form given in
figure 3.3. The corresponding equation reads:

iT
[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄) = iR

[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄)

+

1∑

k=0

∑

s5,s6

∫
d3q

(2π)3

∫ ∞

−∞

dq0

2π
iR

[Sis1;Sis2|Sks5;Sks6]
ik (P̄ , p̄, q̄)

× i

ǫk,q − q0 + iε
iDk(P̄ , q̄) iT

[Sks5;Sks6|Sjs3;Sjs4]
kj (P̄ , q̄, k̄) .

(3.23)

A detailed derivation of the interaction kernel

R
[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄)

= −
[

σ
[Sis1;Sis2|Sjs3;Sjs4]
ij gigj

E + p0 − ǫi,p + k0 − ǫj,k − p2

2µj
− k2

2µi
− p·k

mij
+ iε

+ δ0iδ0jH

]
(3.24)
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is given in appendix D.3.3. Thereby, the three-body coupling is rewritten in terms of
H = h2

Ξ
. From eq. (3.24) we see that for on-shell momenta, R effectively only depends on

E = E(P̄ ) and the three-momenta p and k. The spin structure of R is given in terms of
the factors:

(
σ
[00;00|00;00]
00 σ

[00;00| 12 s3;
1
2 s4]

01

σ
[ 12 s1;

1
2 s2|00;00]

10 σ
[ 12 s1;

1
2 s2| 12 s3;

1
2 s4]

11

)
=

(
0 C00

1
2 s3;

1
2 s4

C00
1
2 s1;

1
2 s2
−δs2s3δs4s1

)
. (3.25)

We now utilize the residue theorem in order to perform the q0-integration in eq. (3.23).
Considering the integrand, we note that the single-particle propagator i/(ǫk,q+ iε− q0) for
real momenta has a single pole in the upper complex plane. It is located at q0 = ǫk,q + iε.
As explained in appendix A.1.1.1, the full dimer propagator Dk(P̄ , q̄) has no q0-poles in
the upper complex half-plane. Assuming that also Tkj(P̄ , q̄, k̄) obeys this condition, we
apply the formula

∫ ∞

−∞

dq0

(2π)
f(q0)

i

ǫk,q − q0 + iε
=

(2πi)

(2π)
f(ǫk,q + iε)

i

(−1)
= f(ǫk,q + iε) (3.26)

to eq. (3.23). The term f simply denotes the products of all functions in the integrand
except for the single-particle propagator. Formula (3.26) is valid because the q0 integration
contour can be closed through an upper arc, which in the limit of infinite arc-radius does
not contribute to the integral. The reason for this is that the amplitude is assumed to fall
of rapidly enough. We thus end up with the T-matrix integral equation:

T
[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄) = R

[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄) −

1∑

k=0

∑

s5,s6

∫
d3q

(2π)3

× R
[Sis1;Sis2|Sks5;Sks6]
ik (P̄ , p̄,q) Dk(E, q) T

[Sks5;Sks6|Sjs3;Sjs4]
kj (P̄ ,q, k̄) .

(3.27)

3.1.3.3 Angular momentum eigenstates

In order to calculate matrix elements for dimer-particle scattering with specific total an-
gular momentum quantum numbers, we have to project the T-matrix in eq. (3.27) onto
total angular momentum eigenstates. This will be performed in several steps.

Spin-singlet coupling: Considering the intrinsic spins of the single particle and the
dimer field, we first project the incoming and outgoing states of the T-matrix (3.27) onto the
spin-singlet. An alternative coupling to the spin triplet will not be considered in this work.
For all three quantities the T-matrix, the interaction kernel and the spin-structure matrix

X ∈ {T,R, σ}, we thus use CGCs in order to define projected quantities X
[00;Si;Si|00;Sj ;Sj ]
ij

via eq. (C.4). Note that for the channel i = 0, which represents the c-nn configuration, both
spins are S0 = 0, which leads to a trivial projection with C00

00;00 = 1. The same statement
holds for the trivial outgoing channel j = 0. Multiplying eq. (3.27) with C00

Sis1;Sis2
C00
Sjs3;Sjs4
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and summing over all magnetic quantum numbers, we use the product identity (C.5) for
the homogeneous part and end up with the projected spin-singlet T-matrix equation:

T
[00;Si;Si|00;Sj ;Sj ]
ij (P̄ , p̄, k̄) = R

[00;Si;Si|00;Sj ;Sj ]
ij (P̄ , p̄, k̄) −

1∑

k=0

∫
d3q

(2π)3

× R
[00;Si;Si|00;Sk;Sk]
ik (P̄ , p̄,q) Dk(E,q) T

[00;Sk;Sk|00;Sj ;Sj ]
kj (P̄ ,q, k̄) .

(3.28)

Furthermore, using eq. (C.1) and eq. (C.3), one can directly deduce that σ
[00;Si;Si|00;Sj ;Sj ]
ij =

1− δ0iδ0j holds.

Orbital angular momentum: Since the particle spin is now coupled to the spin-singlet,
the upper particle indices are redundant. In the following, we will drop them and by

identifying Xij := X
[00;Si;Si|00;Sj ;Sj ]
ij for X ∈ {T,R}. The total angular momentum in the

dimer-particle scattering process is then nothing else but the orbital angular momentum.
We now perform a decomposition of the T-matrix and the interaction kernel into spherical
harmonics Yℓm, whose properties are described in appendix C.2. In contrast to the P-wave
case (2.41), this time we also need more general angular decompositions, where one of
the incoming or outgoing relative momenta remains off-shell. For instance, putting only p̄
on-shell, yields:

X(P̄ ,p, k̄) = X(P̄ , p · ep, k̄) =:
√
4π
∑

ℓ1,m1

Y ∗ℓ1m1
(ep) X

[ℓ1m1|](P̄ , p, k̄)

⇒ X [ℓ1m1|](P̄ , p, k̄) =

∫
dΩp√
4π

Yℓ1m1(ep) X(P̄ , p · ep, k̄) .

(3.29)

Due to symmetry reasons, the decomposition for an outgoing on-shell momentum k is
completely analogous. Assuming on-shell kinematics for both momenta, leads to the known
complete decomposition:

X(E,p,k) = X(E, p · ep, k · ek)
=: 4π

∑

ℓ1,m1

∑

ℓ2,m2

Y ∗ℓ1m1
(ep) X

[ℓ1m1|ℓ2m2](E, p, k) Yℓ2m2(ek)

⇒ X [ℓ1m1|ℓ2m2](E, p, k)

=

∫
dΩp√
4π

∫
dΩk√
4π

Yℓ1m1(ep) X(E, p · ep, k · ek) Y ∗ℓ2,m2
(ek) .

(3.30)

Analogue to the calculations in the P-wave sector, the on-shell full dimer propagator
D appearing in eq. (3.28) again does not display any angular dependence and is a pure
S-wave quantity. For notational convenience, we redefine

D[0](E, q) := − 4π

(2π)3
p2Di(E, q) , (3.31)
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where the convention (1.19) was used. Note that the prefactor 4π/(2π)3p2 = p2/(2π2) from
the measure of the integration over the loop momentum and also the relative minus sign
have been absorbed in D[0].

The angular-decomposed interaction kernel R can be determined using the decomposi-
tions (C.11), (C.12) and (C.13) that were already performed for the P-wave case. For the
off-shell interaction kernel, we write:

Rij(P̄ , p̄, k̄) = − (1− δ0iδ0j) gigj

[E + p0 − ǫi,p + k0 − ǫj,k]− p2

2µj
− k2

2µi
− pk ep·ek

mij
+ iε

− δ0iδ0jH

=
∑

ℓ1,m1

∑

ℓ2,m2

√
4π Y ∗ℓ1m1

(ep)
√
4π Yℓ2m2(ek)

× δℓ1ℓ2δm1m2

[
(1− δ0iδ0j) gigj

mij

pk
(−1)ℓ1Qℓ1(cij(P̄ , p̄, k̄))− δ0iδ0j H δ0ℓ1

]

=
∑

ℓ,m

√
4π Y ∗ℓm(ep)

√
4π Yℓm(ek)

×
[
(1− δ0iδ0j) gigj

mij

pk
(−1)ℓQℓ(cij(P̄ , p̄, k̄))− δ0iδ0j H δ0ℓ

]
.

(3.32)

The appearing analytically continued Legendre functions of second kind Qℓ and their prop-
erties and symmetries are discussed in detail in appendix A.2. Their arguments read:

cij(P̄ , p̄, k̄) :=
mij

pk

( p2
2µj

+
k2

2µi
− [E + p0 − ǫi,p + k0 − ǫj,k]− iε

)
. (3.33)

Using the notational conventions (1.18)-(1.20), this quantity can be related to its own
on-shell version cij(E, p, k) through:

cij(P̄ , p̄, k̄) = cij(E + p0 − ǫi,p + k0 − ǫj,k, p, k) . (3.34)

Only for on-shell momenta p0 = ǫi,p+ iε and k
0 = ǫj,k+ iε, eq. (3.32) represents a complete

decomposition into spherical harmonics. However, assuming that only p̄ is on-shell, we use
the orthogonality relation (C.6) and write:

R
[ℓm|]
ij (P̄ , p, k̄) =

√
4π Yℓm(ek)

×
[
(1− δ0iδ0j) gigj

mij

pk
(−1)ℓQℓ(cij(P̄ , p, k̄)) − δ0iδ0j δ

0ℓH
]

.
(3.35)

Recalling that Y00 = 1/
√
4π holds, the contribution with ℓ = m = 0 reads:

R
[00|]
ij (P̄ , p, k̄) = (1− δ0iδ0j) gigj

mij

pk
Q0(cij(P̄ , p, k̄)) − δ0iδ0j H . (3.36)

Again, an analogous equation holds for the outgoing momentum. If both p̄ and k̄ are on-
shell, we can either use eq. (3.35) with a further projection

∫
dΩk√
4π
Y ∗ℓm(ek) or simply directly
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read of the coefficients R[ℓ1m1|ℓ2m2] = δℓ1ℓ2δm1m2R[ℓ1] from eq. (3.32). Both methods yield
the same result:

R
[ℓ]
ij (E, p, k) = (1− δ0iδ0j) gigj

mij

pk
(−1)ℓQℓ(cij(E, p, k)) − δ0iδ0j δ

0ℓH . (3.37)

Assuming ℓ = 0 and inserting eq. (3.34) into eq. (3.36), from eq. (3.37) we thus derive the
useful relation:

R
[00|]
ij (P̄ , p, k̄) = R

[0]
ij (E + k0 − ǫj,k, p, k) . (3.38)

As we see, X ∈ {T,R} is diagonal in the total incoming and outgoing angular mo-
mentum quantum numbers X [ℓ1m1|ℓ2m2] = δℓ1ℓ2δm1m2X [ℓ1] in agreement with the Wigner–
Eckhart theorem. From eq. (3.37) we furthermore know that the three-body force only
contributes to the (ℓ = 0)-component of the T-matrix. With regard to the integral
equation (3.28), we now put p̄ and k̄ on-shell, integrate over

∫
dΩp/

√
4πYℓm(ep) and∫

dΩk/
√
4πY ∗ℓm(ek) and use the orthogonality relation (C.6) to derive the set of projected

equations:

T (P̄ , p̄, k̄) = R(P̄ , p̄, k̄) +
∑

ℓ,m

∫ ∞

0

dq R[|ℓm](P̄ , p̄, q)D[0](E, q) T [ℓm|](P̄ , q, k̄) ,

T [|ℓm](P̄ , p̄, k) = R[|ℓm](P̄ , p̄, k̄) +

∫ ∞

0

dq R[|ℓm](P̄ , p̄, q)D[0](E, q) T [ℓ](E, q, k) ,

T [ℓ](E, p, k) = R[ℓ](E, p, k) +

∫ ∞

0

dq R[ℓ](E, p, q)D[0](E, q) T [ℓ](E, q, k) .

(3.39)

Note that in all equations, the conventions (1.18)-(1.20) were used.

3.1.3.4 Renormalization

As we know from the LSZ-theorem (see e.g. ref. [77] for more details), the T-matrix has to
be renormalized with appropriate

√
Z-factors in order to determine the physical solutions

of the dimer-particle scattering process. The calculation of the corresponding dimer wave
function renormalization factors (3.15) can be found in appendix A.1.1.1. The renormalized
quantities then read:

∀X ∈ {T,R} : X̄ij := |Zi|
1
2 Xij |Zj|

1
2 , H̄ := |Z0|H ,

D̄i(E, p) := |Zi|−1Di(E, p) ,

zi :=
2π

µ2
i

1

|ai|
⇒ |Zi| =

zi
τig2i

.

(3.40)

With these definitions all unobservable gi-factors in eq. (3.39) either cancel or are absorbed
in the yet unknown three-body force H̄ . Absolute values |Zi| are only required in the i = 0
channel because a0 < 0 and thus Z0 < 0. This channel corresponds to the neutron-neutron
auxiliary dimer, which is unbound and thus actually requires no renormalization factor.
In this case eq. (3.40) simply provides a convenient redefinition of the amplitude but has
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no physical significance. The reduced residue factors zi will contribute to a more compact
notation. The resulting renormalized 2× 2 matrix integral equation then altogether reads:

T̄ [ℓ](E, p, k) = R̄[ℓ](E, p, k) +

∫ ∞

0

dq R̄[ℓ](E, p, q) D̄[0](E, q) T̄ [ℓ](E, q, k) ,

D̄
[0]
i (E, p) =

1

π µi zi

p2

− 1
ai
− iyi(E, p)

, yi(E, p) =

√
2µi

(
E − p2

2µ̄i
+ iε

)
,

R̄
[ℓ]
ij (E, p, k) = (1− δ0iδ0j)

√
zizj
τiτj

mij

pk
(−1)ℓQℓ(cij(E, p, k)) − δ0iδ0j δ

0ℓ H̄ ,

cij(E, p, k) =
mij

pk

( p2
2µj

+
k2

2µi
−E − iε

)
,

zi =
2π

µ2
i

1

|ai|
, τi =

{
1/2 : i = 0

1 : i = 1 .

(3.41)

As mentioned before, the only physically relevant element is T̄11, since all other matrix
elements would lead to an external D̄

[0]
0 dimer. Such as dimer would represent an external

bound two-neutron spin-singlet state that does not exist. T̄11 describes the spin-singlet
scattering of a neutron from a cn bound state. The cn-dimer has binding energy E

(2)
1 =

−1/(2µ1a
2
1). We use the relations (1.2)-(1.7) in order to calculate the scattering amplitude

f̄
[ℓ]
1 and the scattering length ā

[ℓ]
1 in the ℓ-th partial wave. They read:

f̄
[ℓ]
1 (p) =

1

p cot δ
[ℓ]
11(p)− ip

=
µ̄1

2π
T̄

[ℓ]
11

( p2

2µ̄1

+ E
(2)
1 , p, p

)
,

ā
[ℓ]
1 = − µ̄1

2π
lim
p→0

p−2ℓ T̄
[ℓ]
11

( p2
2µ̄1

+ E
(2)
1 , p, p

)
.

(3.42)

In sec. B we explain how eq. (3.41) and eq. (3.42) can be solved numerically.

3.1.3.5 Bound state equation

We are now in the position to search for possible three-body bound states, which manifest
themselves as poles of first order in the T-matrix. Assuming that a three-body bound state
with negative binding energy E = E(3) < 0 and total angular momentum ℓ exists, the T-
matrix has a pole of first order at this position and the corresponding residue factorizes
into momentum dependent functions B according to:

T̄ [ℓ](E, p, k) = −B
[ℓ](p) · B[ℓ](k)

†

E − E(3)
+ reg. . (3.43)
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The term reg. represents an unspecified regular function in the energy. Also in the case
where T̄ [ℓ] has no such pole, eq. (3.43) is still trivially fulfilled with B[ℓ] = 0. Inserting
eq. (3.43) into eq. (3.41), multiplying with E − E(3) and taking the limit E → E(3) then
yields the bound-state equation:

B[ℓ](p) =

∫ ∞

0

dq R̄[ℓ](p, q) D̄[0](q)B[ℓ](q) . (3.44)

Its kernel functions are those of eq. (3.41). Note that we used the convention (1.21). The
solution B[0] we call the wave function. Their numerical determination is discussed in
sec. B.

The generalized eigenvalue problem (3.44) can be solved, by introducing a loop mo-
mentum cut-off Λ. It turns out that for ℓ 6= 0, the resulting unphysical cut-off dependence
vanishes in the limit Λ → ∞, since the wave function falls of rapidly enough. By con-
trast, this limit does not exist for ℓ = 0, where the wave function displays an asymptotic
discrete scale invariance associated with a renormalization group limit cycle. In this case,
three-body observables log-periodically depend on Λ and an Efimov spectrum of three-
body bound-state energies exists. In other channels, there are now bound states. Since
for ℓ = 0 the unknown three-body force H̄ appears in R̄, we interpret it as a function
of the cut-off and use it to renormalize the channel. Thereby, for a given cut-off Λ and
a three-body binding energy E(3), the three-body term H̄ is fixed such that the bound-
state equation (3.44) has a solution at exactly this desired energy value E = E(3) (see
again sec. B). However, since the equation is homogenous, it can not provide the proper
renormalization of the wave function.

Another quantity that will be of use in subsequent calculations is the dimer-integral
over the wave-function:

β :=

∫ Λ

0

dq D̄
[0]
0 (q)B

[0]
0 (q) . (3.45)

This cut-off dependent quantity is fixed up to a complex phase, since its modulus can be
determined from the decomposition (3.43) of the renormalized T-matrix according to:

|β| = lim
E→E(3)

[
−(E − E(3))

∫ Λ

0

dq

∫ Λ

0

dq′ D̄
[0]
0 (E, q) T̄

[0]
00 (E, q, q

′) D̄
[0]
0 (E, q′)

] 1
2

. (3.46)

With regard to the bound-state equation (3.44), we then choose ℓ = 0, introduce the
momentum cut-off Λ and insert the trivial identity R̄[0] = •R̄[0] − H̄ e0 · e†0 yielding:

B[0](p) =

∫ Λ

0

dq •R̄[0](p, q) D̄[0](q)B[0](q) − (βH̄) e0 . (3.47)

Note that according to our convention (1.22), the symbol • indicates that the three-body
force H̄ is set to zero within the interaction term R̄.
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= +

Figure 3.4: Diagrammatic representation of the full trimer-dimer-particle coupling iG.
The right side of the equation contains the bare coupling and a part where a loop inte-
gral over the T-matrix appears. The later contribution contains all diagrams where the
intermediate particles interact before they split up into the outgoing dimer and the par-
ticle. The irreducible trimer-dimer-particle coupling can be obtained from iG by simply
neglecting the three-body force in the interaction kernel.

3.1.4 Trimer couplings

As building blocks for later calculations of electromagnetic observables we also need to
determine the irreducible matrix element of a trimer-state coupling to a dimer-particle
state or a three-particle state. By irreducibility we always mean that a corresponding
Feynman diagram can not be split up into a trimer propagator and a remaining part by
cutting only one trimer line. Before we determine these matrix elements, we first calculate
the full coupling Gi(P̄ , p̄1, p̄2) of an incoming trimer with total four-momentum P̄ to an
outgoing dimer and a single particle with four-momenta p̄1 and p̄2, respectively. Thereby,
analogous to the particle type indices of the T-matrix, i = 0 and i = 1 again corresponds to
the c-nn and n-cn spin-singlet configuration, respectively. The Feynman diagram belonging
to the described full coupling is depicted in fig. 3.4 as a sum of the bare coupling and a
contribution that contains all intermediate interactions of the particles. Note that due to
our specific choice of the three-particle interaction L(3) in eq. (3.1), the bare coupling only
appears in the channel i = 0.

Using four-momentum conservation and the general kinematics (3.16)-(3.19), the full
coupling can be re-expressed in terms of only two four-momenta, namely the total four-
momentum P̄ and the relative four-momentum p̄:

Gi(P̄ , p̄) := Gi

(
P̄ ,

Mi

MΣ
P̄ + p̄,

mi

MΣ
P̄ − p̄

)

⇔ Gi(P̄ , p̄1, p̄2) = Gi

(
P̄ ,

mip̄1 −Mip̄2
MΣ

)
.

(3.48)
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In these kinematics, the formal expression for the equation depicted in fig. 3.4 reads:

iGi(P̄ , p̄) = δ0i(−ih) +

1∑

k=0

∫
d3q

(2π)3

∫ ∞

−∞

dq0

2π
δ0k (−ih)

× i

ǫk,q − q0 + iε
iDk(P̄ , q̄) iTki(P̄ , q̄, p̄)

= −ih
[
δ0i −

∫
d3q

(2π)3
D0(E,q) T0i(P̄ ,q, p̄)

]

= −ih
[
δ0i +

∫ Λ

0

dq D
[0]
0 (E, q)

∑

ℓ,m

∫
dΩq Y

∗
00(eq)Yℓm(eq) T

[ℓm|]
0i (P̄ , q, p̄)

]

= −ih|Z0|
1
2

[
δ0i +

∫ Λ

0

dq D̄
[0]
0 (E, q) T̄

[00|]
0i (P̄ , q, p̄)

]
|Zi|−

1
2 .

(3.49)

Thereby, the integration over q0 was again performed using closed-contour integration
and the residue theorem. In addition, the angular decomposition of the T-matrix was
used. All possible dimer-particle loops and interaction as well as intermediate bare trimer
propagators are thus included in T̄ as it represents all the diagrams given in fig. 3.3.
Imposing the on-shell condition p0 = ǫi,p + iε and using X̄

[00|]
0i (P̄ , q,p) = X̄

[0]
0i (E, q, p)

eq. (3.49) assumes the form:

Gi(E,p) = −h|Z0|
1
2

[
δ0i +

∫ Λ

0

dq D̄
[0]
0 (E, q) T̄

[0]
0i (E, q, p)

]
|Zi|−

1
2 = Gi(E, p) . (3.50)

Note that again the conventions (1.18)-(1.20) were used. From eq. (3.50) we see that for
on-shell conditions, the full coupling effectively is a pure S-wave coupling and does not
display any angular dependence.

3.1.4.1 Trimer residue

= +

Figure 3.5: Diagrammatic representation of the full trimer propagator it. The right side
of the equation contains the bare coupling and a part where a loop integral over the full
trimer-dimer-particle coupling appears. The later contribution contains all diagrams where
the trimer splits up and the intermediate particles interact.

In order to renormalize external trimer legs, as they appear as incoming or outgoing
states within Feynman diagrams, we calculate the residue of the full trimer propagator.
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This propagator it(P̄ ), with P̄ being the total four-momentum, can be determined anal-
ogous to the calculation of the full dimer propagator presented in sec. 3.1.2. The cor-
responding equation is depicted in fig. 3.5 in terms of Feynman diagrams and formally
reads:

it(P̄ ) =
i

Ξ
+
i

Ξ

1∑

k=0

∫
d3q

(2π)3

∫ ∞

−∞

dq0

2π
iGk(P̄ , q̄)

× i

ǫk,q − q0 + iε
iDk(P̄ , q̄) δ0k(−ih)

i

Ξ

=
i

Ξ

[
1 − |Z0|

h

Ξ

∫ Λ

0

dq q2(4π)

(2π)3
G0(E, q) |Z0|−1D0(E, q)

]

=
i

Ξ

[
1 − |Z0|

h2

Ξ

∫ Λ

0

dq D̄
[0]
0 (E, q)

− |Z0|
h2

Ξ

∫ Λ

0

dq

∫ Λ

0

dq′ D̄
[0]
0 (E, q) T̄

[0]
00 (E, q, p) D̄

[0]
0 (E, q′)

]
.

(3.51)

Thus, also the full trimer propagator t(P̄ ) = t(E) is a pure S-wave quantity. Only the last
summand in eq. (3.51) has energy-poles, namely those of the S-wave part of the T-matrix.
The other two summands are regular functions in E. Consequently, we can multiply both
sides with E − E(3), take the limit E → E(3) and use eq. (3.46) in order to extract the
positive trimer residue:

Ztrimer = lim
E→E(3)

(E − E(3)) t(E) = |Z0|
h2

Ξ2
|β|2 > 0 . (3.52)

3.1.4.2 Irreducible trimer-dimer-particle coupling

We now have all essential ingredients that are needed in order to calculate the irreducible
renormalized trimer-dimer-particle coupling iḠ(P̄ , p̄). It will serve as a basic building block
in the calculation of form factors and photodisintegration observables of a cnn halo system.
Fig. 3.4 again gives a representation in terms of Feynman diagrams, where now forbidden
internal trimer propagators can be omitted by simply setting H̄ = 0 in the T-matrix. The
remaining trimer-irreducible diagrams exactly cover all contributing topologies. Further-
more, from the LSZ theorem we know that all external legs have to be renormalized with
appropriate factors of

√
Z. Since in the channel i there is an external trimer as well as an

external dimer, we define

Ḡi(P̄ , p̄) := Z
1
2
trimer

•Gi(P̄ , p̄) |Zi|
1
2

= − |βH̄|
[
δ0i +

∫ Λ

0

dq D̄
[0]
0 (E, q) •T̄

[00|]
0i (P̄ , q, p̄)

]

⇒ Ḡi(E,p) = − |βH̄|
[
δ0i +

∫ Λ

0

dq D̄
[0]
0 (E, q) •T̄

[0]
0i (E, q, p)

]
= Ḡi(E, p) ,

(3.53)
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where we used eqs. (3.49) and (3.52). Inserting eq. (3.39) into eq. (3.53), the off-shell
coupling is related to its on-shell version through the useful integral equation:

Ḡi(P̄ , p̄) = −|βH̄|
[
δ0i +

∫ Λ

0

dq D̄
[0]
0 (E, q) •R̄

[00|]
0i (P̄ , q, p̄)

+

1∑

j=0

∫ Λ

0

dq D̄
[0]
0 (E, q)

∫ Λ

0

dq′ •T̄
[0]
0j (E, q, q

′) D̄
[0]
j (E, q′) •R̄

[00|]
ji (E, q′, p̄)

]

=

[
1∑

j=0

∫ Λ

0

dq (−|H̄| |β|)
(
δ0j +

∫ Λ

0

dq′ D̄
[0]
0 (E, q′) •T̄

[0]
0j (E, q

′, q)

)

× D̄
[0]
j (E, q) •R̄

[00|]
ji (P̄ , q, p̄)

]
− |βH̄| δ0i

=
1∑

j=0

∫ Λ

0

dq Ḡj(E, q) D̄
[0]
j (E, q) •R̄

[0]
ji (E + p0 − ǫi,p, q, p) − |βH̄| δ0i .

(3.54)

In the last line we also applied the identity (3.38). If, in addition, p̄ is on-shell, eq. (3.54)
assumes matrix-form:

Ḡ(E, p) =

∫ Λ

0

dq •R̄[0](E, p, q) D̄[0](E, q) Ḡ(E, q) − |βH̄| e0 . (3.55)

For a trimer state with energy E = E(3), this is equivalent to the bound-state equa-
tion (3.47). Thus, the renormalized, trimer-irreducible on-shell coupling Ḡ(p) is basically
nothing else but the already known wave function B[0](p). However, the big advantage of
using the coupling (3.53) with eq. (3.46) over the wave function equation (3.47) is that
the coupling is directly determined from the T-matrix, and as such, is automatically nor-
malized correctly. For the following two-neutron halo systems, we numerically determined
both Ḡi(p) and B

[0]
i (p). Calculating their ratio αi(p) := Ḡi(p)/B

[0]
i (p), in all considered

cases revealed that relative deviations |αi(p)/α0(0) − 1| from a perfect proportionality of
both quantities were less than ∼ 10−7. In addition, for cut-offs Λ that are larger than
any other momentum scale in the system, Ḡ(p) turned out to be cut-off independent, as it
should. Both results provide a positive consistency check for our method.

3.1.4.3 Irreducible trimer-three-particle coupling

Based on the results of the previous sec. 3.1.4.2, we now also calculate the irreducible
trimer-three-particle coupling iM̄(P̄ , p̄0, p̄1, p̄2). This matrix element plays a crucial role
in the calculation of photodisintegration processes (cnn) + γ → c + n + n. Topologically,
it can be written as a sum of three contributions iM̄ =

∑2
i=0 iM̄i. The corresponding

representation in terms of Feynman diagrams is depicted in fig. 3.6. The incoming trimer
has four-momentum P̄ and the outgoing core and the two neutrons have p̄0 and p̄1, p̄2,
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= + +

(0) (1) (2)

P̄

p̄0

p̄1

p̄2

Figure 3.6: Diagrammatic representation of the irreducible trimer-three-particle coupling
iM̄ . The right side of the equation is the sum of three contributions iM̄ =

∑2
i=0 iM̄i, where

iM̄2 is the crossed version of iM̄1 and originates from the interchange p̄1 ↔ p̄2. The dashed
line represents the core field

respectively. With regard to the contribution iM̄i, four-momentum conservation

P̄ =

2∑

i=0

p̄i ⇒ p̄2 = P̄ − (p̄0 + p̄1) (3.56)

implies that the external single-particle leg and the opposite full dimer propagator, orig-
inating from the irreducible trimer-dimer-particle coupling, have four momenta p̄i and
P̄ − p̄i, respectively. Thus, we can write iM̄ in terms of only three four-momenta P̄ , p̄0 and
p̄1. For the remaining four-momentum p̄2, we use eq. (3.56) implicitly. In addition, if not
specified otherwise, from now on, for any quantity Xi with allowed lower indices i ∈ {0, 1},
we define a third one via X2 := X1. This will also contribute to short notation. Recalling
the kinematics (3.17), the contribution M̄i then reads:

iM̄i(P̄ , p̄0, p̄1) = iḠi

(
P̄ , (P̄ − p̄i)−

Mi

MΣ
P̄
)
|Zi|−

1
2

× iDi

(
P̄ , (P̄ − p̄i)−

Mi

MΣ
P̄
)
(−igi)

= iḠi

(
P̄ ,

mi

MΣ
P̄ − p̄i

)
D̄i

(
P̄ ,

mi

MΣ
P̄ − p̄i

) √zi
τi

.

(3.57)

Note that in the first line, |Zi|−
1
2 compensates the dimer renormalization factors in the

definition (3.53), since these legs are now internal full dimer propagators. Additionally,
in the channel i = 0, there is no factor 1/2 in front of (−ig0), since performing the
contractions, the diagram comes with an overall factor of (−ig0/2) (2Tr

[
PP †

]
) = −ig0.

This can directly be seen from the contractions that are performed in eq. (D.10) for the
outgoing particles in neutron-neutron scattering. Inserting the integral equation (3.54)
into eq. (3.57) yields:

M̄(P̄ , p̄0, p̄1) =
2∑

i=0

M̄i(P̄ , p̄0, p̄1) ,

M̄i(P̄ , p̄0, p̄1) =
[ 1∑

j=0

∫ Λ

0

dq Ḡj(E, q) D̄
[0]
j (E, q) •R̄

[00|]
ji

(
P̄ , q,

mi

MΣ
P̄ − p̄i

)

− |βH̄| δ0i
]
D̄i

(
P̄ ,

mi

MΣ
P̄ − p̄i

) √
zi/τi .

(3.58)
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Applying the identities (3.22) and (3.38) with

E +
mi

MΣ
P 0 − p0i − ǫi(P̄ ,

mi

MΣ
P− pi) = E +

p2
i

2mi
− p0i , (3.59)

the irreducible trimer-three-particle coupling (3.58) assumes the form:

M̄i(P̄ , p̄0, p̄1) =
[ 1∑

j=0

∫ Λ

0

dq Ḡj(E, q) D̄
[0]
j (E, q)

× •R̄
[0]
ji

(
E +

p2
i

2mi

− p0i , q,
∣∣ mi

MΣ

P− pi
∣∣
)

− |βH̄| δ0i
]

× D̄i

(
E +

p2
i

2mi

− p0i ,
∣∣ mi

MΣ

P− pi
∣∣
) √

zi/τi .

(3.60)

3.2 External currents

3.2.1 Effective Lagrangian via minimal coupling

In addition to the strong interactions between the neutrons and the core, we now extend
our model by including couplings to external electromagnetic currents. Therefore, we
assume that the charge of the core field ψ0 is Ze, whereas the two neutrons are, of course,
uncharged. Electromagnetic interactions are then included via a vector potential Aµ, where
the interaction terms are obtained by performing a minimal coupling

i∂µ 7→ i∂µ − Q̂Aµ ⇒ i∂0 7→ i∂0 − Q̂A0 ,

∇2 7→ (∇− iQ̂A)2 = ∇2 − iQ̂(∇ ·A) − i2Q̂A · ∇ − Q̂2A2
(3.61)

in the Lagrangian (3.1). This transformation insures gauge invariance. The quantity Q̂ is
the charge operator. Since in our case only the core has non-vanishing charge, Q̂ψ0 = Zeψ0

and Q̂~ψ1 = ~0 hold. For convenience, we choose Coulomb gauge (∇ ·A) = 0, canceling the
second term −iQ̂(∇ ·A) in the last line. Applying the minimal coupling rule (3.61), the
resulting effective Lagrangian assumes the form:
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L = L(1) + L(2) + L(3) , L(1) = L(free) + L(em) ,

L(free) = ψ†0

(
i∂0 +

∇2

2m0

)
ψ0 + ~ψ†1

(
i∂0 +

∇2

2m1

)
~ψ1 ,

L(em) = − Ze ψ†0A0 ψ0 − Ze
m0

ψ†0 A · i∇ψ0 − (Ze)2
2m0

ψ†0 A
2 ψ0 ,

L(2) = ∆0 d
†
0d0 − g0

2

[
d†0 (

~ψT
1 P

~ψ1) + (~ψT
1 P

~ψ1)
† d0

]

+ ∆1
~d †1
~d1 − g1

[
~d †1
~ψ1 ψ0 + ψ†0

~ψ†1
~d1

]
,

L(3) = Ξ t† t − h
[
t† ψ0 d0 + (ψ0 d0)

†t
]

.

(3.62)

Because we consider resonant S-wave interactions, only the scalar fields ψi are dynam-
ical and thus electromagnetic couplings do only appear in L(1) = L(free) + L(em). L(em)

contains all electromagnetic interaction terms and originates from the transformed L(free).
Non-minimal coupling terms would only contribute at higher orders and thus are not con-
sidered in our LO calculation.

Comparing the Lagrangians (3.1) and (3.62), we note that they only differ in the elec-
tromagnetic interaction term L(em). Thus, all momentum-space Feynman rules used in the
previous sections are valid further on and all derived calculations and quantities can be
reused. With regard to Feynman diagrams, we will keep to the conventions explained in
the end of sec. 3.1.1. Additional photon couplings will be represented by rectangles.

3.2.2 Electric form factor and charge radius

3.2.2.1 Formalism

Figure 3.7: Feynman diagram representing the ir-
reducible coupling iΓ̄ of an external electric source to
a trimer. The incoming and outgoing four-momenta
of the trimer are P̄ and K̄ respectively. The photon
has four-momentum transfer Q̄ = K̄ − P̄ .

P̄ K̄

Q̄

We have now all necessary tools to calculate the charge form factor FE and the electric
charge radius 〈r2E〉 of a cnn-system with resonant S-wave interactions. In this section,
we first give a derivation for FE. In general, the electromagnetic form factor can be
extracted from the matrix element of the electromagnetic current between an incoming
and an outgoing trimer state. On the Lagrangian level, the associated interaction term
in eq. (3.62) is L(em), where for the electric form factor, the only relevant contribution is
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−Ze ψ†0A0ψ0. With regard to Feynman graphs, it simply results in an additional factor
(−iZe). The term ∼ A · ∇ would only contribute to the magnetic form factor and, since
we just consider the coupling to a single external source, also the term ∼ A2, which is of
order e2, is neglected. Internal photons, which would contribute to Coulomb corrections
and would significantly complex the derivation of the T-matrix, are not included in our
model. The electric charge form factor is then related to iΓ̄, which is defined as the trimer-
irreducible coupling of a trimer to the zeroth component of the electromagnetic current,
through:

FE = (−iZe)−1 iΓ̄ . (3.63)

The coupling is depicted in fig. 3.7, where the incoming and outgoing trimer four-momenta
are P̄ and K̄, respectively. Four-momentum conservation, of course, implies Q̄ = K̄ − P̄
for the momentum transfer of the photon such that, in the first instance, iΓ̄ effectively only
depends on the two four-momenta P̄ and K̄. In the following, we determine iΓ̄ via the
LSZ reduction formula as it is presented in ref. [77]. That is, we sum all trimer-irreducible
diagrams, and renormalize the external trimer legs with factors

√
Ztrimer. We choose this

procedure in order to maintain consistency with all the other calculations presented in this
work. Note that there also exist alternative approaches. For instance, Kaplan, Savage and
Wise used an ansatz based on two- and three-point functions without explicitly introducing
trimer fields in order to determine the electromagnetic form-factor of the deuteron [96].
However, both methods are equivalent and yield the same results. Other analog calculations
for the charge form factor of the triton system (corresponding to a spin-1/2 core) also
previously have been carried out in a wave function based formalism [97, 98].

(1)

(1) (2)

(3)

Figure 3.8: Exemplary irreducible graph contributing to the trimer form factor. The
dashed line represents the core field which either (1) propagates parallel to the d0-dimer,
(2) is exchanged between d1-dimers or (3) appears within a d1-dimer loop.

In order to collect all the different topologies that contribute to iΓ̄, we consider the
typical irreducible graph shown in fig. 3.8. The photon can only couple to the core field c
indicated by dashed lines, but for the moment we suppress the photon-core coupling. The
d1-dimer also carries charge, but the photon coupling to d1 appears only at NLO where
the dimers are dynamical. Within the exemplary diagram, there are three positions for a
single core propagator to appear: c either

(0) propagates parallel to the d0-dimer,

(1) is exchanged between between two d1-dimers or

(2) appears within a d1-dimer loop.
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= + +

=

(1) (2) (3)

Figure 3.9: Diagrammatic representation of the three contributions to the irreducible
coupling iΓ̄ =

∑2
i=0 iΓ̄i of a trimer to an external electric source. (1), (2) and (3) labels

the parallel-, exchange- and loop-term, respectively.

In fact, these three cases are the only possibilities for a single core propagator to appear
in an arbitrary irreducible trimer graph. Thus, including the photon-core coupling and
summing over all such diagrams, the form factor can be written as the sum of three
contributions

FE =

2∑

i=0

FE,i , FE,i = (−iZe)−1 iΓ̄i ,

iΓ̄i(P̄ , K̄) =

∫
d4p̄

(2π)4

∫
d4k̄

(2π)4

× iḠi(P̄ , p̄) |Zi|−
1
2 iΓred

i (P̄ , K̄, p̄, k̄) |Zi|−
1
2 iḠi(K̄, k̄)

= (−iZe)
∫

d4p̄

(2π)4

∫
d4k̄

(2π)4
Ḡi(P̄ , p̄) Γ̄

red
i (P̄ , K̄, p̄, k̄) Ḡi(K̄, k̄)

(3.64)

corresponding to the cases (0), (1), and (2). In fig. 3.9 this decomposition of the trimer-
irreducible matrix element into three classes of diagrams is illustrated pictorially. A similar
classification of contributing Feynman diagrams has also been used for the calculation of
the electric form factor of the triton [98]. In all three contributions in fig. 3.9 the irreducible
trimer-dimer-particle coupling iḠ from eq. (3.53) appears naturally and is again represented
by the filled circles. This can be seen as the motivation behind the considerations we
performed in sec. 3.1.4 and especially in sec. 3.1.4.2. The factors |Zi|−

1
2 compensate the

renormalization of the external dimer legs in the definition (3.53). Those legs are now,
of course, internal full dimer propagators. The remaining terms iΓred

i represent the three
reduced graphs in the lower right in fig. 3.9. Their renormalized versions are defined as
usual, through:

Γ̄red
i := (Ze)−1 |Zi|−

1
2 Γred

i |Zi|−
1
2 . (3.65)

Detailed derivations for all three contributions to the form factor can be found in ap-
pendix D.3.4, where we refer to FE,0, FE,1 and FE,2 as the parallel term, exchange term
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and loop term, respectively. Assuming Breit frame kinematics, no energy is transferred by
the photon, i.e. P 0 = K0 and P2 = K2. Performing shifts in the loop four-momenta, all
three contributions are expressed through symmetric integrals that are even functions in
Q = |Q| = |K − P|. Q is the three-momentum transfer. As an even function, the charge
form factor in eq. (3.64) then effectively can only depend on Q2. Explicit expressions for
FE,0, FE,1 and FE,2 are given in eqs. (D.38), (D.52) and (D.69), respectively. The numerical
calculation of FE(Q

2) is explained in sec. B.
At Q2 = 0, the charge form factor is normalized to one. As demonstrated in the

following section, this normalization is automatically reproduced in our formalism. For
small momentum transfer, the form factor can be expanded in powers of Q2 as:

FE(Q
2) = 1− 〈r2E〉

3!
Q2 + O(Q4) , (3.66)

where 〈r2E〉 is the electric charge radius. In practice, we calculate the form factors for finite
momentum transfer and extract the charge radius 〈r2E〉 by numerically taking the limit

〈
r2E
〉

= −6 lim
Q2→0+

(∂FE)(Q
2) . (3.67)

Here, we have to keep in mind that in our effective theory the core and the neutrons are
treated as point-like. Their size enters only in counter terms that appear at higher orders.
In typical halo nuclei, however, the charge radius of the core can not be neglected. In
this work, we thus interpret the calculated radius as the charge radius of the cnn halo
nucleus relative to the charge radius of the core. In order to underline this interpretation,
we relabel it by δ〈r2E〉 := 〈r2E〉. Neglecting the relatively small charge radius of the neutron
〈r2E〉n = −0.115(4) fm2, which we extracted from ref. [99], the full charge radius 〈r2E〉cnn of
the cnn halo nucleus, then reads:

〈
r2E
〉
cnn

=
〈
r2E
〉
c
+ δ

〈
r2E
〉

, (3.68)

where we quadratically added our result to the charge radius of the core 〈r2E〉c. Thus,
δ〈r2E〉 = 〈r2E〉cnn − 〈r2E〉c holds. This prescription follows directly if the total charge distri-
bution is a convolution of the charge distributions of the halo and the core.

3.2.2.2 Results

In this section, we apply our two-neutron halo EFT formalism to concrete physical systems
and calculate form factors and relative charge radii δ〈r2E〉. Such differences of nuclear charge
radii δ〈r2E〉 were measured for a whole range of isotopes, see e.g. [100–104]. We compare
these results with our theory where it is applicable.

Our theory applies directly to two-neutron halo systems with JP = 0+ and with a
JP = 0+ core. Assuming that the spin of the core is inert due to the large mass of the
core compared to the neutrons, we can also consider more general systems with quan-
tum numbers JP , (J ± 1/2)P , and JP of the c-, cn-, and cnn-systems, respectively. The
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lightest known isotopes that would fall into this category are 10He, 11Li, 12Be, 14Be, 16C,
20C, 21C, 22C and 24O, where we used JP values from the National Nuclear Data Center
(NNDC) [105]. On the other hand, from sec. 1.2.3 we know that the lightest isotopes for
which there is either experimental evidence for their two-neutron-halo nature or which are
good candidates for such a system, are 6He, 11Li, 14Be, 17B and 22C. We apply our EFT
framework to the isotopes in the intersection of both sets, namely 11Li, 14Be and 22C. For
6He and 17B, the JP -quantum numbers indicate that P-wave contributions are dominant.

With regard to the input data for our model, the particle masses read m0 = mc and
m1 = mn, where mc and mn are the masses of the core and the neutron, respectively.
Furthermore, for a general isotope with atomic number Z, mass number A and mass mZ,A,

the energy SZ,Ak·n that is needed in order to separate k < A− Z neutrons form the isotope
is given through:

SZ,Akn = mZ,A−k + k ·mn − mZ,A . (3.69)

In our halo model with three point-like particles, the two-neutron separation energy equals
the total binding energy of the three-body system. Thus, for a bound or virtual cn-
dimer and a bound cnn-trimer the one- and two-neutron separation energies have to obey
Scnn2n > max(Scn1n, 0). We then use E

(2)
1 = −Scn1n and E(3) = −Scnn2n as input for the binding

energies in our model. We fix the values of all masses, and energies by taking data from
NNDC [105] unless noted otherwise. Furthermore, the cn-scattering length is determined
from the relation a1 = acn = sgn(Scn1n)/(2µcn|Scn1n|)1/2, with µcn = mcmn/(mc +mn). Thus,
cn-states with negative Scn1n are treated as virtual two-body states with negative scattering
length a1. This approximation corresponds to neglecting the imaginary part of the binding
momentum for resonances. For the nn-scattering length, we take the value a0 = ann =
−18.7(6) fm from Gonzales Trotter et al. [14].

Errors: Before we present results for 11Li, 14Be and 22C, we first discuss the different
types of errors in our calculation. There are three types of errors:

(i) Numerical errors: They are negligible.

(ii) Errors in the input variables: Experimentally determined input variables, such as
nuclear masses and separation energies, are used to fix our effective field theory
parameters. Their uncertainties can be propagated to the final results. The uncer-
tainties in the nuclear masses are relatively small and can be neglected. Uncertainties
in the separation energies are only quoted if they are larger than 1%. In the 22C sys-
tem, those separation energies are only poorly known such that errors of type (ii)
dominate.

(iii) Errors from higher orders: They come from operators that contribute at higher orders
in the EFT expansion. We note that errors of this type can never be provided in model
calculations, since no expansion scheme exists. In this sense, model calculations are
uncontrolled. Short of an explicit higher order calculation, one must use dimensional
analysis and naturalness to estimate their size. The expansion parameter of our
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theory Rcore/Rhalo is roughly R/|a|. In order to obtain better estimates, we compare
the typical energy scales Ehalo and Ecore of the neutron halo and the core, respectively.
To estimate Ehalo, we choose the one- or two-neutron separation energy Scn1n or Scnn2n .
The energy scale of the core is estimated by its excitation energy Ec

∗ or its one-
neutron separation energy Sc1n. The square root of the energy ratio Rcore/Rhalo ≈√

|Ehalo/Ecore| then yields an estimate for the expansion parameter of the effective
theory. In particular, if Rhalo is estimated from Ec

∗ or S
c
1n, this ratio quantifies the

quality of the structureless core approximation. For our error estimates, we then
take the largest value for Rcore/Rhalo that can be obtained this way. For 11Li and
14Be, these errors constitute the dominant error contribution, since the expansion
parameter Rcore/Rhalo is typically not much smaller than 1.

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Q2 [fm−2]Q2 [fm−2]

F E
(Q

2
)

11Li
14Be
22C

Figure 3.10: The charge form factor FE(Q
2) for the halo nuclei 11Li (left plot, blue solid

line), 14Be (left plot, red long-dashed line) and 22C (right plot, green dash dotted line)
relative to the core in leading order halo EFT. The estimated theory error for 11Li and
14Be is given by the shaded bands. For 22C, varying the separation energies within their
errors gives the shaded region. The vertical dashed lines indicate the breakdown scale from
explicit pion exchange.

Charge from factors: In fig. 3.10, the charge form factors calculated from eq. (3.64) are
depicted as a function of the momentum transfer Q2. For Q2 → ∞, the form factors vanish.
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c JPc mc [MeV] Ec
∗ [MeV] Sc1n [MeV] δ〈r2E〉 [fm2]

cn JPcn Scn1n [MeV] Scn1n/E
c
∗ Scn1n/S

c
1n δ〈r2E〉exp [fm2]

cnn JPcnn Scnn2n [MeV] Scnn2n /Ec
∗ Scnn2n /Sc1n

9Li 3
2

−
8406 2.69 4.06 1.7(6)

10Li (2−, 1−) −0.026(13) −0.102 −0.082 1.171(120) [100]
11Li 3

2

−
0.37 0.372 0.302

12Be 0+ 11201 2.10 3.17 0.4(3)
13Be (1

2

−
) −0.51(1) −0.492 −0.402 −−

14Be 0+ 1.27(13) 0.782 0.632
20C 0+ 18664 1.59 [106] 2.9(3) 1.7+∞−0.5
21C 1

2

+ −0.014(467) −0.092 −0.072 −−
22C 0+ 0.11(6) 0.262 0.202

Table 3.1: Effective theory parameters, estimates of the expansion parameter, and pre-
dicted electric charge radii relative to the core δ〈r2E〉 from eq. (3.67) for the halo nuclei
11Li, 14Be and 22C. Further explanations are given in the text.

At small momentum transfers, they approach unity as required by current conservation.
Numerical deviations from unity at vanishing Q2 are less than 10−5. This provides a
consistency-check for our calculation. For 11Li and 14Be, the estimated errors from higher
orders in the effective theory expansion dominate and are given by the shaded bands. For
22C, the shaded region originates from varying the binding energies within their errors.
Our effective theory does neither include explicit pion dynamics nor does it include the
structure of the core. Thus, it breaks breaks down for momentum transfers of the order of
the pion mass m2

π ≈ 0.5 fm−2 as indicated by the vertical dashed lines in fig. 3.10.

Electric charge radii: In tab. 3.1, we summarize the effective theory parameters and
give predictions for the charge radii relative to the core in 11Li, 14Be and 22C. Below, we
discuss our analysis for each halo nucleus in detail:

11Li: The 11Li halo nucleus and the 9Li core have both the quantum numbers JP = 3
2

−

while 10Li appears to have either JP = 2− or 1−. There is some evidence that
both S- and P-wave components contribute to the neutron halo [34]. However, we
analyze 11Li under the assumption that only the S-wave contributes in LO and test
the consistency of our assumption with the data. P-wave contributions then enter
in higher orders. The two-neutron separation energy of 11Li is 0.37 MeV and 10Li is
26(13) keV above the n-9Li threshold. Although the corresponding relative error of
∼ 50% on Scn1n appears large, it does not dominate the overall error, since observables
are sensitive to variations in Scnn2n − Scn1n, which has only a ∼ 3% error. The first
excitation energy of the 9Li ground state is 2.69 MeV and its one-neutron separation
energy is 4.06 MeV. Thus, the expansion parameter and the error can be estimated
as Rcore/Rhalo ≈

√
Scnn2n /Ec

∗ ≈ 0.37. Calculating the charge radius relative to 9Li
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via eq. (3.67) gives δ〈r2E〉 = 1.68(62) fm2, where the ∼ 40% uncertainty comes from
the expansion parameter. In ref. [100], the charge radius was measured with the
help of high precision laser spectroscopy. The experimental value of δ〈r2E〉exp =

1.171(120) fm2 is thus compatible with our calculation within the error bars.

14Be: The halo nucleus 14Be and its core 12Be are both in a JP = 0+ configuration, while
the quantum numbers of 13Be are less clear although there is some evidence for
JP = 1

2

−
. For our study, we assume that the 13Be dimer has also positive parity.

The binding energy of the 14Be trimer is Scnn2n = 1.27(13) MeV and the virtual 13Be
has Scn1n = −510(10) keV. The excitation energy of the 12Be core is Ec

∗ = 2.10 MeV
and its one-neutron separation energy is 3.17 MeV. Thus, the resulting expansion
parameter Rcore/Rhalo ≈

√
Scnn2n /Ec

∗ ≈ 0.78 is relatively large. Using eq. (3.67), our
effective theory then predicts a charge radius relative to 12Be of δ〈r2E〉 = 0.41(32) fm2

with an ∼ 80% error.

22C: There is some theoretical and experimental evidence that 22C is a pure S-wave halo
nucleus [44,45]. 22C and the 20C core both have JP = 0+, while 21C is in JP = 1

2

+
con-

figuration. The two-neutron separation energy Scnn2n = 0.11(6) MeV has a relatively
large error. Furthermore, 21C seems to be unbound, but Scn1n = −0.014(467) keV
is only poorly known. In ref. [106], a 2+ excited state at 1.588(20) MeV above the
ground state was observed. The one-neutron separation energy of 20C is 2.9(3) MeV.
We take the central values for Scnn2n and Scn1n, which are also roughly in accord with
the allowed parameter region predicted from a recent analysis of the matter radius
measurement [44] in the framework of the halo EFT [48]. Calculating the charge
radius relative to 20C via eq. (3.67) gives δ〈r2E〉 = 1.66+∞−0.49 fm2, where the uncer-
tainty now comes from varying the separation energies within their errors. Due to
the poorly known input data, Scn1n = Scnn2n is not excluded. Since for such values the
charge radius diverges towards positive infinity, the predicted value for δ〈r2E〉 can only
be bound from below, where the lower limit is 1.17 fm2. For the halo nuclei 14Be
and 22C, our results are true predictions and can be compared with measurements
as soon as the corresponding experimental data is available.

3.2.3 Universal correlations

Another interesting aspect of our two-neutron halo EFT with external currents is that it
can also be used in order to determine general correlations between different low-energy
observables. If the two-particle scattering lengths are large, such correlations are universal
and their corrections are again of order of R/|a|. With respect to masses and separation
energies, a general two-neutron halo nucleus has three free parameters in our model: the
core mass mc and the one- and two-neutron separation energies Scn1n and Scnn2n . By fix-
ing these three, all other three-particle observables, such as matter and charge radii, are
uniquely determined. We will now investigate the general functional dependencies of the
relative charge radius δ〈r2E〉 from eq. (3.67) on mc, S

cn
1n and Scnn2n .
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Figure 3.11: The electric charge radius relative to the core δ〈r2E〉 as a function of mass
ratio mc/mn for different binding energies Scn1n and Scnn2n .

In fig. 3.11, δ〈r2E〉 is given as a function of the mass ratio mc/mn for fixed energy values
Scn1n and Scnn2n . The charge radius is always positive and decreases for growing core mass
mc. This reflects that δ〈r2E〉, for the two-neutron halo system, originates from the recoil
effect of the charged core. For core masses below 2mn, the radius roughly falls of like
∼ 1/mc. Around mc ≈ 2mn, the slope changes and the charge radii drop even faster as
mc/mn increases.

In fig. 3.12, the dependence of the charge radius relative to the core on the separation
energies Scnn2n and 1 − Scn1n/S

cnn
2n is shown for a fixed mass ratio mc/mn = 10. The region

1 − Scn1n/S
cnn
2n < 1 corresponds to a bound cn-system, while 1 − Scn1n/S

cnn
2n > 1 implies that

the cn-system is unbound. In this region the cnn-system is Borromean. If 1−Scn1n/Scnn2n ≪ 1
holds, the cn-system is deeply bound and the three-body problem effectively reduces to
a two-body problem of cn and another neutron. As one would also naively expect, δ〈r2E〉
grows as both the binding energy for the three-body system Scnn2n and the binding energy of
the dimer-particle system Scnn2n −Scn1n decrease. However, the exact functional dependencies
on the 3 quantities mc, S

cnn
2n and Scn1n are more complicated. Also note that there is a

sudden increase in δ〈r2E〉 along the line 1 − Scn1n/S
cnn
2n = 1 where the cnn-system becomes

Borromean. This leads to a ridge along (Scnn2n − Scn1n)/S
cnn
2n = 1 that is most easily seen in

the contour lines. We summarize our results in chapter 4.
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Figure 3.12: The electric charge radius relative to the core δ〈r2E〉 as a function of the
two-neutron separation energy Scnn2n and the energy ratio 1− Scn1n/S

cnn
2n for fixed mass ratio

mc/mn = 10.

3.2.3.1 Calcium halo nuclei

We now calculate universal correlations for a concrete physical system, namely the hypo-
thetical neutron-rich calcium isotope 62Ca, consisting out of a 60Ca core and a two-neutron
halo. Both 60Ca and 62Ca are assumed to be in 0+ configuration. We will refer to 60Ca,
61Ca and 62Ca as the c-, cn- and cnn-system, respectively. In contrast to the light two-
neutron halo nuclei candidates 11Li, 14Be and 22C considered in sec. 3.2.2.2, it is still an
open question whether heavy two-neutron halos exist at all. Recently, there has been much
interest, both experimentally [107,108] and theoretically [109–111], in determining precise
values for masses, understanding shell evolution and locating the drip line in the neu-
tron rich calcium isotopes. Coupled-cluster calculations of neutron rich calcium isotopes
that included coupling to the scattering continuum and schematic three-nucleon forces,
suggested that there is an inversion of shell-model orbitals in 53,55,61Ca. In particular, it
was suggested that a large S-wave scattering length might occur in 60Ca-n scattering with
interesting implications for 62Ca.

In ref. [90] such coupled-cluster methods, combined with modern ab initio interactions
derived from chiral effective theory, were used in order calculate the phase shift δcn(p),
where p is the momentum in the center-of-mass frame of the cn-subsystem. Effects of
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three-nucleon forces were included schematically as density dependent nucleon-nucleon
interactions. The elastic scattering length acn and also the effective range rcn were extracted
by fitting a polynomial in p2 to the effective range expansion p cot δcn(p) = −1/acn+rcn/p

2+
O(p4), yielding acn = 54(1) fm and rcn = 9.0(2) fm. Thereby, the errors originate from
variations in the frequencies of spherical harmonic oscillator shells that are contained in the
Hartree–Fock basis used to solve the coupled-cluster equations. Details about this method
can e.g. be found in ref. [112]. The errors on the effective range from the degree of the
fitted polynomials are negligible to the given accuracy. Since acn is positive, the subsystem
61Ca is bound and we do not considered the case of 62Ca being a Borromean. However,
the following results for 62Ca observables, also in this case, would qualitatively remain the
same. In addition, the coupled-cluster analysis strongly supports the ground-state of 61Ca
having JP = 1/2+, as required. The scattering length is enhanced by about a factor of
six compared to the effective range. Thus, all two-body scattering lengths in the system
are large and we expect the three-body sector to display universal features associated with
Efimov physics. Assuming R ∼ rcn, the error from higher order corrections in R/|a| can be
estimated to be of order (rcn/acn)

2 ∼ 3%. Furthermore, the inverse effective range can be
used to estimate the breakdown scale Sdeep = 1/(µcnr

2
cn) = 0.52(2) MeV beyond which the

halo EFT with S-wave cannot be applied anymore. The obtained result for acn = 54(1) fm
and the core mass mc = 55901 MeV provide required input parameters for our halo EFT
analysis of the cnn-system. Three-body observables are then correlated to the two-neutron
separation energy Scnn2n , which is the only remaining free parameter in our model.

Regarding strong interactions, in fig. 3.13, we display the correlation between the two-
neutron separation energy Scnn2n of 62Ca and the 61Ca-n scattering length acn−n. Thereby,
acn−n is extracted from eq. (3.42) with the T-matrix calculated as the solution of the in-
tegral equation (3.41). In our case, the whole energy region between Scn1n ≈ 5− 8 keV and
the breakdown scale Sdeep ≈ 520 keV is available for Efimov states in 62Ca. As we see
in fig. 3.13 (a), within this region, the scattering length can take any value between −∞
and ∞. When the binding energy of the halo state 62Ca relative to the 61Ca-n thresh-
old vanishes, the scattering length becomes infinite. The additional divergence around
∼ 230 keV indicates the appearance of an additional state in the 62Ca spectrum. This
signature of Efimov physics is a consequence of the large scattering length in the cn- and
nn-subsystems. It is thus conceivable that 62Ca would display an excited Efimov state and
unlikely that it would not display any Efimov states. In fig. 3.13 (b), the rescaled scat-
tering length acn−n/acn is given for unphysically large energies. The asymptotic discrete
scale invariance is clearly recognizable. The approximate scaling factor of ∼ 256 is also in
agreement with the energy ratio of neighboring deep trimer energies obtained from solving
the corresponding bound-state equation (3.44).

As an example for universal correlations in the electromagnetic sector of the 62Ca
system, in fig. 3.14 the relative charge radius

√
δ〈r2E〉 is depicted as function of Scnn2n .

δ〈r2E〉 is determined from eq. (3.67) and diverges for vanishing two-neutron separation
energy, as expected. The function is monotonically nonincreasing and diverges for vanishing
separation energy. For a deeply bound three-body system, the total charge radius of 62Ca
given through eq. (3.68) is expected to be completely dominated by the 60Ca charge radius,



80 CHAPTER 3. HALO EFT WITH EXTERNAL CURRENTS

-400

-300

-200

-100

 0

 100

 200

 300

 400

101 102 103

-20

-15

-10

-5

 0

 5

 10

 15

 20

100 102 104 106 108 1010

Scnn2n [keV]

a
cn
−
n
[f
m
]

Scnn2n /Scn1n

a
cn
−
n
/a

cn
(a)(a)

(b)(b)

Figure 3.13: The 61Ca-n scattering length acn−n in the two-neutron halo system 62Ca,
with acn = 54(1) fm. (a) displays acn−n as a function of the two-neutron separation energy
Scnn2n with error bands (shaded regions) (b) gives a dimensionless rescaled version up to
unphysically large energies. It displays asymptotic discrete scale invariance with a factors
of ∼ 256. The breakdown scale Sdeep ≈ 520 keV of theory is represented by the vertical
lines.

since at leading order the photon does not couple to the neutrons and δ〈r2E〉 vanishes for
such binding energies. A summary of the presented results will be given in chapter 4.

3.2.4 Photodisintegration

3.2.4.1 Formalism

In this section, we calculate the photodisintegration amplitude iM̄γ of a two-neutron halo
nucleus breaking up into its three constituents: the core and the two neutrons. The
corresponding Feynman diagram is given in fig. 3.15. We choose the four-momenta for the
incoming trimer, the photon, the outgoing core and the two outgoing neutrons to be P̄ ,
Q̄, k̄0 and k̄1, k̄2, respectively. Four-momentum conservation for those five quantities then
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Figure 3.14: The relative
charge radius

√
δ〈r2E〉 of

the two-neutron halo sys-
tem 62Ca as a function
of the two-neutron separa-
tion energy Scnn2n , with core-
neutron scattering length
acn = 54(1) fm.

√
δ〈r2E〉

diverges as Scnn2n vanishes.
The shaded regions are the
error bands. The break-
down scale Sdeep ≈ 520 keV
of theory is represented by
the vertical line.
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Figure 3.15: Feynman diagram representing the
amplitude iM̄γ for a photoinduced breakup of a two-
neutron halo system. The incoming and outgoing
four-momenta of the trimer and the core and two
neutrons are P̄ and k̄0 and k̄1, k̄2, respectively. The
photon carries four-momentum transfer Q̄ = K̄− P̄ .

Q̄

P̄

k̄0

k̄1

k̄2

yields the relation:

P̄ + Q̄ =
2∑

i=0

k̄i . (3.70)

Thus, iM̄γ can effectively be written in terms of only four of the momenta. We choose P̄ ,
Q̄, k̄0 and k̄1 and use express k̄2 through k̄2 = P̄ + Q̄− (k̄0 + k̄1). Furthermore, imposing
on-shell conditions for all external particle legs leads to:

P 0 =
P2

2MΣ
+ E(3) , k0i =

k2
i

2mi
. (3.71)

The total energy in the breakup process then reads:

EΣ := P 0 +Q0 =
2∑

i=0

k2
i

2mi
⇒ Q0 = EΣ −E(3) − P2

2MΣ
. (3.72)

In order to split up the initial trimer-state, the energy of the photon has to be positive.
Thus, in contrast to the form factor calculation in sec. 3.2.2.1, we can not assume Breit-
frame kinematics where, by definition, no energy is transferred. Instead, we calculate the



82 CHAPTER 3. HALO EFT WITH EXTERNAL CURRENTS

process in the center-of-mass frame of the three fragments, which is also the center-of-mass
frame of the trimer and the photon:

P+Q = 0 =

2∑

i=0

ki . (3.73)

Without loss of generality we furthermore assume that Q points in 3-direction, implying
Q = Qe3. We can thus write M̄γ = M̄γ(EΣ, Q,k0,k1).

+=

(a) (b)

Figure 3.16: Diagrammatic representation of the amplitude iM̄γ for a Coulomb breakup
of a two-neutron halo system. The matrix element can be written as the sum of two contri-
butions iM̄γ = iM̄ (a)+iM̄ (b), where iM̄ (a) and iM̄ (b) exactly include all Feynman diagrams
without and with c-n FSI, respectively. In both contributions the trimer-irreducible trimer-
three-particle coupling iM̄ appears, which is depicted in fig. 3.6. iM̄ (b) also contains the
trimer-irreducible coupling of a trimer field to an external electric source as well as a full
trimer propagator. They are given in figs. 3.9 and 3.5, respectively

Based on the appearing couplings in the Lagrangian (3.62), the photodisintegration
process can be expressed in terms of the Feynman diagrams in fig. 3.16. All the graphs
that contribute to the full amplitude iM̄γ can be arranged into two classes. The first one
iM̄ (a) represents the sum of all diagrams without c-n final state interactions (FSI), whereas
the second one iM̄ (b) collects all graphs with those interactions. Note that the appearance
of the irreducible trimer-three-particle coupling iM̄ from fig. 3.6 leads to the fact that both
iM̄ (a) as well as iM̄ (b) include diagrams with n-n FSI. As we see, in addition, iM̄ (b) contains
the full trimer propagator from fig. 3.5 as well as the irreducible coupling of a trimer field to
an external electric source. An equation for the latter object in terms of Feynman graphs
was already given in fig. 3.9 where it was decomposed into three classes of terms. However,
the corresponding calculations presented in sec. 3.2.2.1 (and especially in sec. D.3.4) are
only valid in the Breit frame. Assuming center-of-mass kinematics (3.70)-(3.73), would
greatly complicate many of the performed steps. For instance, if no further approximations
are made, the two full dimer propagators in the loop contribution in fig. D.8 would have
poles in the loop-momentum on two shifted but intersecting spheres in R3. An analytic
calculation of this integral analogue to the Breit frame approach appears very involved. On
the other hand, an alternative numerical evaluation seems to be very expensive in terms
of computation time, since in the relatively large (P̄ , K̄)-parameter space each sampling
point would require a point by point evaluation. Therefore, we will from now on drop all
contributions with c-n FSI and only consider the first term iM̄ (a).
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Dipole matrix elements: In a real scattering experiment, often the so-called dipole

strength B(E1) is measured, which is the modulus squared of the dipole contribution to
the photodisintegration matrix element. In a quantum mechanical calculation such a con-
tribution can be obtained by inserting an electric dipole operator between the considered
initial and final states (see e.g. ref. [113, 114]). In our kinematics, the dipole operator
has the form |r̂|Y10(êr), where the spherical harmonic reads Y10(er) =

√
3/(4π) cos θr. In

order to extract the dipole contribution within our quantum field theoretical framework,
we follow a method that was recently used in ref. [84] for the determination of the B(E1)
strength for the photodisintegration of the one-neutron halo nucleus 11Be. Our calculation
represents a generalization of the used method to two-neutron halo nuclei. Thereby, the
dipole matrix element can effectively can be calculated from the full matrix element as√

3/(4π) times the coefficient in front of the term that is linear in Q. The additional
factor is required in order to match with the mentioned dipole operator definition. Thus,
the dipole matrix element reads:

M̄
(a)
E1 (EΣ,k0,k1) =

√
3/(4π) · (∂QM̄ (a))(EΣ, 0,k0,k1) . (3.74)

Performing an integration over the remaining final state momenta then yields the corre-
sponding dipole strength distribution:

dB(E1)

dEΣ
=

∫
d3k0

(2π)3

∫
d3k1

(2π)3
∣∣M̄ (a)

E1 (EΣ,k0,k1)
∣∣2

× δ
( k2

0

2m0

+
k2
1

2m1

+
(k0 + k1)

2

2m1

− EΣ

)
.

(3.75)

In terms of kinematic variables, dB(E1)/dEΣ only depends on the total energy EΣ. An
explicit formula is given in eq. (D.84) in sec. D.3.5 in the appendix. The required extraction
of the linear term and the momentum integration of final state can be found in secs. D.3.5.1
and D.3.5.2, respectively. With regard to the numerical determination of dB(E1)/dEΣ, the
integral kernel in eq. (D.84) has adverse properties. In sec. B we explain how the resulting
numerical problems can be controlled within our calculation.

3.2.4.2 First results

We are now in the position to calculate the dipole contribution to the photodisintegration
of concrete two-neutron halo nuclei, where all c-n FSI are neglected. Again, we apply our
model to the isotopes 11Li, 14Be and 22C that were already discussed in sec. 3.2.2.2 in
the context of form factors and charge radii. We transfer the discussion of the dominant
errors in these systems from this analysis. Required input parameters are again taken from
tab. 3.1.

In fig. 3.17, dipole strength distributions calculated from eq. (3.75) are depicted as
functions of the total energy EΣ. For

11Li and 14Be, the estimated errors from higher orders
in the effective theory expansion dominate and are given by the shaded bands. For 22C, the
shaded region originates from varying the binding energies within their errors, where, due
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Figure 3.17: The dipole strength distribution dB(E1)/dEΣ as function of the total energy
EΣ for the halo nuclei 11Li, 14Be and 22C (blue solid line, red long-dashed line and green
dash dotted line). The data points for 11Li are extracted from ref. [115]. Shaded bands
are the errors. For 11Li and 14Be, they are the estimated theory errors from higher order
contributions. For 22C, the band originates from varying the experimentally determined
separation energies within their uncertainties. The vertical lines represent the two-neutron
separation energies.

to the large uncertainties, also Scn1n → Scnn2n can not be excluded. In this limit, dB(E1)/dEΣ

diverges. For EΣ → 0+ or EΣ → ∞, the dipole strength distribution formally vanishes.
However, we have to keep in mind that our model with three structureless particles can
only be valid in low-energy regime. For all three isotopes, dB(E1)/dEΣ peaks near the
corresponding two-neutron separation energy. However, the exact functional dependency
seems to be nontrivial.

The dipole strength of 11Li has been measured at the RIPS [116] facility at RIKEN.
Thereby, the required 11Li beam was produced from the fragmentation of a 18O primary
beam with 100 MeV/nucleon. We extracted the corresponding data for the dipole strength
in 11Li from ref. [115]. The resultant data points are also given in fig. 3.17. The analysis
in ref. [115] is based on the assumption that the two-neutron separation energy of the halo
system is S

11Li
2n = 0.3 MeV, which is ∼ 20% smaller than our value 0.37 MeV. However, the

author of ref. [115] states that, for the latter case, the dipole strength is enhanced by only
6%, which can be neglected compared to our error estimate of ∼ 40% from the expansion
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parameter. Although the peak position and the shape of our curve and the data set are
compatible, our EFT result clearly underestimates the measured data points by roughly
a factor of 5. Since previous studies [113–115] indicated that neglecting parts of the FSI
typically leads to an underestimation of the dipole strength, we expect a full calculation
that includes the second contribution in fig. 3.16 to describe the data better. A calculation
of the corresponding matrix element iM̄ (b) remains future work [117]. A summary of the
presented results can be found in chapter 4.
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Chapter 4

Summary and outlook

In this thesis, we applied non-relativistic EFT with large scattering length to halo nuclei.
We investigated phenomena and calculated observables in the strong as well as in the
electromagnetic sector.

In chapter 2, we investigated the possibility of discrete scale invariance and the Efimov
effect in a three-body system with resonant two-particle P-wave interactions. We started
our analysis on the Lagrangian level in eq. (2.18) and demonstrated, how such a theory can
equivalently be rewritten via the introduction of P-wave auxiliary dimer fields. The two-
body problem can be renormalized using low-energy parameters from the effective range
expansion (see eq. (2.26)). Thereby, negative effective ranges can only be obtained by
introducing non-normalizable ghost fields. The structure of the resulting full dimer propa-
gator was analyzed with a method that can also be extended to higher partial waves. For
P-wave interactions, a physical shallow dimer only appears for r < 0 and 1/a ∈ (0, |r|2/58).
However, in this case also an unphysical deep dimer with negative residue emerges, limiting
the region of applicability in the two-body sector to energies E ≫ −|r2|/(18µ).

With respect to the three-body problem in our P-wave model, we considered a system
of two identical particles ψ1 resonantly interacting with a third one ψ0. We set up a
matrix integral equation for the T-matrix of dimer-particle scattering, where the coupling
of spin and orbital angular momenta lead to a decoupling of different JP channels. A
semi-analytic approach using Mellin transforms identified all channels exhibiting discrete
scale invariance. For ψ1 being fermions, those are JP ∈ {0+, 1+, 1−, 2+}. For bosonic ψ1

fields, JP = 1+ is the only such channel. In all five cases, we calculated the discrete scaling
factor λ0 as function of the mass ratio A = m0/m1 (see fig. 2.8). These channels require
renormalization, e.g. by adding appropriate cut-off dependent three-body coupling term
to the Lagrangian. Numerically solving the three-body bound-state equation yielded an
approximate Efimov spectrum, which in the unitary limit is exact. The occurrence of the
Efimov effect in the P-wave sector might also add insight into a general classification of
all three-body systems that display the Efimov effect. The results from the semi-analytic
approach were confirmed, providing a positive consistency check. The used methodology
can also be transferred to other configurations.

Unfortunately, the discovered Efimov effect seems to be of purely mathematical nature.

87



88 CHAPTER 4. SUMMARY AND OUTLOOK

First of all, causality bounds exclude the realization of the unitary limit by imposing r < 0.
For a negative effective range, however, trimer energies always lie below the mentioned
unphysical deep dimer state. A corresponding bound-state spectrum is depicted in fig. 2.10.
The physical shallow dimer only exists for 1/a ∈ (0, |r|2/58). Thus, our theory is only
suited to describe dimer-particle scattering in this parameter region and only for energies
E ≫ −|r2|/(18µ) around threshold. Consequently, a Lagrangian of type (2.18) with two-
particle P-wave interactions can not generate physical three-body bound states in our
formalism. This, in addition, also prevents a proper renormalization of those channels in
the three-body sector that exhibit discrete scale invariance. We discussed several possible
remedies to this problem. A promising one might be that the stable Efimov trimers below
the unphysical deep dimer survive as unstable resonances in the region between the deep
and the shallow dimer. However, such resonances probably will not display discrete scale
invariance, but, in principle, they could be used for the renormalization of the three-body
sector. The required generalization of our formalism to complex binding energies implies
major extensions of the applied numerical methods and is left for future work. Since
the spurious deep dimer state completely originates from the structure of the full dimer
propagator in the two-body problem, another reasonable approach would be to modify
the form of this propagator in a suitable way. Obviously, simply including interaction
terms and effective range parameters of higher orders would only increase the number of
spurious poles and thus compound the problem. However, one can argue that for small
binding momenta, the unitary cubic term can be neglected. While the resulting trimer
spectrum is free of spurious dimers, there are severe drawbacks of this approach. First
of all, unitarity is lost. Furthermore, the trimer spectrum does not display discrete scale
invariance or an Efimov effect anymore, since the modified asymptotic behavior of the
full P-wave dimer propagator significantly changes the structure of the T-matrix equation.
Consequently, without further modifications, the Efimov effect seems to be impossible for
P-wave interactions. This was also recently predicted by Nishida and Son in a different
formalism using scale dimension arguments for local operators [118]. Moreover, our P-wave
Lagrangian combined with the applied power counting scheme can not generate physical
three-body bound states. Our results hold for general bosonic three-body systems as well
as halo nuclei such as 6He.

In chapter 3, we then set up an EFT framework for two-neutron halo nuclei with
resonant S-wave interactions, meaning that the cn and nn S-wave scattering lengths are
much larger than the range of the interaction. We introduced auxiliary dimer and trimer
fields in the Lagrangian (3.1) and calculated the two- and three-body problem in the
strong sector. Thereby, the renormalization of the trimer propagator and the extraction
of the trimer wave function renormalization were discussed in detail. Performing minimal
coupling, we extended our formalism to the electromagnetic sector in order to describe the
electromagnetic structure of two-neutron halo nuclei.

With regard to physical observables, we chose Breit frame kinematics and first calcu-
lated the charge form factor and the electric charge radius of such halo systems to leading
order in the expansion in Rcore/Rhalo. The charge form factor receives contributions from
three different classes of diagrams. They are illustrated in fig. 3.9. In all three contribu-
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tions, the irreducible trimer-dimer-particle coupling from eq. (3.53) appears naturally. Our
calculation provides the correct normalization of the charge form factor at vanishing mo-
mentum transfer FE(0) = 1, as it is required by current conservation. Numerically, we find
deviations from unity to be less than 10−5. We then applied our formalism to the known and
suspected light halo nuclei 11Li, 14Be and 22C and discussed the dominant error contribu-
tions. The resulting charge radii are δ〈r2E〉11Li = 1.68(62) fm2, δ〈r2E〉14Be = 0.41(32) fm2 and
δ〈r2E〉22C = 1.66+∞−0.49 fm2. For 11Li, a comparison with the measured value 1.171(120) fm2

shows good agreement within the ∼ 40% uncertainty originating from the expansion pa-
rameter of our leading order calculation. The other charge radii are true predictions that
can be compared to future experiments. For a more quantitative comparison with exper-
iment, the extension to higher orders is clearly required. This includes the treatment of
effective range effects [80, 93, 95]. An inclusion of P-wave interactions for 11Li and 14Be
would require a proper treatment of the above-discussed problems related to three-body
systems with resonant P-wave interactions. To date, electron scattering experiments which
would give access to the charge form factor have not been carried out. Such experiments
are planned at FAIR (ELISe) [119]. However, ELISe is not part of the start version of
FAIR and corresponding experiments are far in the future.

Derived formulas in the strong and the electromagnetic sector were then used in order
to calculate universal correlations in two-neutron halo systems. First, we analyzed the de-
pendence of the charge radius on the core mass and the separation energies Scnn2n and Scn1n.
Our results are summarized in figs. 3.11 and 3.12. As expected, the charge radius decreases
with increasing core radius. However, the exact dependence for large core masses deviates
from a simple 1/mc dependence. Moreover, the charge radius increases as the energies
Scnn2n − Scn1n and Scnn2n decrease. In particular, we found a sudden increase of the charge
radius along the line Scn1n = 0 where the three-body system becomes Borromean. A better
understanding of these characteristics will require further studies. We then investigated
universal features of the heavy two-neutron halo candidate 62Ca. Thereby, required values
for model input parameters were borrowed from an analysis of 60Ca-n phase shift data
generated by coupled-cluster methods. This analysis indicated that the 60Ca-n scattering
length is positive and about 6 times larger than the effective range, justifying the appli-
cability of our framework. In fig. 3.13, we gave the 61Ca-n scattering length as a function
of the two-neutron separation energy Scnn2n , revealing discrete scale invariance. From con-
siderations based on the corresponding scaling factor of this system and the breakdown
scale of our halo EFT, we conclude that two Efimov states are possible in the 62Ca system
and that it is unlikely that this system possesses no bound state, i.e. is unbound. In
addition, in fig. 3.14, we gave the dependence of the relative charge radius δ〈r2E〉 as func-
tion of Scnn2n . As expected, δ〈r2E〉 diverges (vanishes) for vanishing (diverging) three-body
binding energy. Measurements of these observables will clearly pose a significant challenge
for experiment. For example, 58Ca is the heaviest Calcium isotope that has been observed
experimentally [120]. However, the planned FRIB might provide access to calcium isotopes
as heavy as 68Ca and thereby facilitate a test of our results [121].

Finally, we also derived formulas for the dipole strength in the Coulomb dissociation
of a two-neutron halo nucleus into its three fragments. The corresponding matrix element
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is illustrated in fig. 3.16 in terms of Feynman diagrams. It contains contributions from
two different classes of diagrams, namely those without and those with c-n final state pair-
interactions. A halo EFT calculation of the latter part requires the determination of the
irreducible photon-trimer coupling depicted in fig. 3.9 in the center-of-mass frame of the
three fragments. Since such a calculation is far from being straightforward, in this work,
we only considered the first-mentioned part. Analogue to the form factor calculation, we
applied our framework to 11Li, 14Be and 22C using the same input parameters and error
estimates. The results for dB(E1)/dEΣ as a function of the total energy EΣ are depicted
in fig. 3.17. dB(E1)/dEΣ approximately peaks at the two-neutron separation energy of the
halo system. In accordance with previous theoretical predictions that neglected some of
the FSI, our results for 11Li underestimate experimental data that was measured at the
RIPS facility at RIKEN. Thus, a consistent calculation including all final state interactions
is clearly needed [117]. Again, an extension to higher order effects such as effective range
corrections would contribute to a more quantitative halo EFT analysis of the considered
nuclei.



Appendix A

Kernel analytics

A.1 Structure of the full dimer propagator

In this section, we investigate the structure of the full dimer propagator and its singularities.
The challenge is to systematically understand the behavior of its poles and residues in
dependence of the scattering parameters. We perform our analysis in a rather elaborate
and formal approach. In this way, it can be easily applied to a large class of two-particle
interactions.

A.1.1 Pole geometry

We start our analysis by assuming that the inverse of the full dimer propagator D(p) with
four-momentum p̄ is a polynomial in

yi(p̄) =

√
2µi

(
p0 − p2

2Mi

+ iε
)

. (A.1)

This requirement is fulfilled for all theories considered in this work (see eq. (2.27) and
eq. (3.14)). For ease of notation, from now on, we drop the particle type indices and
simply write y = yi(p̄). First, we define a polynomial of degree N with its N + 1 complex
coefficients {α0, . . . αN} as

PN,~α(y) :=
N∑

n=0

αn y
n = αN

N−1∏

n=0

(y − yn) ,

PN,~α,0 := { y ∈ C |PN,~α(y) = 0 } = {y0, . . . , yN−1} ⊂ C .

(A.2)

The set PN,~α,0 is composed of the N complex zeros of the polynomial. Assuming that all
these roots are pairwise distinct, a partial fraction decomposition can then be performed
according to:

1

PN,~α(y)
=

N−1∑

n=0

1/Cn
y − yn

, Cn := αN

N−1∏

n 6=m=0

(yn − ym) ∈ C . (A.3)
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The derivative of the polynomial reads:

(∂yPN,~α)(y) =
N∑

n=1

αn n y
n−1 =

N−1∑

n=0

(n + 1)αn+1 y
n = PN−1,A~α(y) , (A.4)

where Anm := (n+1)δn+1,m. On the other hand, we can also use the product rule in order
to determine the derivative:

(∂yPN,~α)(y) = αN

[ N−1∏

n 6=m=0

(y − ym) + (y − yn) ∂y

N−1∏

n 6=m=0

(y − ym)
]

. (A.5)

This holds for all n ∈ {0, 1, . . . , N} and leads to the simple relation:

(∂yPN,~α)(yn) = Cn . (A.6)

Using the standard branch of the complex root and the formula (A.1), we deduce that
y ∈

√
C = { z ∈ C | arg(z) ∈ (−π/2, π/2] } holds. The poles of the first branch are the

physical ones. Poles of the second branch of the complex root y ∈ −
√
C are unphysical. In

terms of a complex signum sgn(z) := (sgn(Re(z)), sgn(Im(z))) ∈ σ2 with σ := {−, 0,+},
we can also characterize the two areas by

±
√
C = ±{ z ∈ C | sgn(z) ∈ {(0, 0), (0,+), (+,+), (+, 0), (+,−)} } . (A.7)

Thus, we divide the set of complex roots into two disjoint subsets PN,~α,0 = P
(1)
N,~α,0 ∪ P

(2)
N,~α,0

with P
(1)
N,~α,0 := PN,~α,0 ∩

√
C and P

(2)
N,~α,0 := PN,~α,0 ∩ (−

√
C) corresponding to the 2 branches

of the complex root. Introducing a Riemann surface, both branches can be connected
and the root becomes bijective. The first and second branch then corresponds to the first
and second Riemann sheet, respectively. For a four-momentum pole p̄ of the full dimer
propagator, p̄ ∈ y−1(yn) has to be fulfilled, where y−1(yn) ⊂ C4 simply denotes the fiber of

the polynomial root yn. If yn ∈ P
(2)
N,~α,0 holds, the fiber is empty.

The residue of a pole can be calculated according to:

Zn =
[
(∂p0D

−1)(p̄)
]−1

= [(∂yPN,~α)(y(p̄)) · (∂p0y)(p̄)]−1 =
1

µ

yn
PN−1,A~α(yn)

=
1

µ

yn
Cn

=
1

µαN

yn∏N−1
n 6=m=0(yn − ym)

=
1

µαN

1

yN−2n

∏N−1
n 6=m=0(1− ym

yn
)

.
(A.8)

In order for a pole yn to be physical with positive residue, the conditions yn ∈ P
(1)
N,~α,0 and

Zn > 0 have to be fulfilled. In the following concrete examples, we will calculate all poles of
the polynomial and check whether these two conditions are satisfied. For the applications
in this work, values of scattering parameters will always be chosen such that all poles yn
of the full dimer propagator are pairwise distinct and consequently of first order.

The, in general complex, dimer binding energy E
(2)
n , corresponding to a pole yn, reads:

E(2)
n :=

y2n
2µ

. (A.9)
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A.1.1.1 S-wave interactions

We now investigate the pole-structure of the renormalized full dimer propagator (2.27)
that results from two-particle S-wave interactions:

D(p̄) = − 2π

g2µ

1

− 1
a
+ r

2
y2(p̄) − iy(p̄)

=
1

P2,~α(y(p̄))
with ~α = −g

2µ

2π

(
−1/a
−i
r/2

)
.

(A.10)

In the last line we used the notation of eq. (A.2) with N = 2. In order to find the dimer
poles, we have to solve

− 1

a
+
r

2
y2 − iy = 0 , (A.11)

where the scattering length a and the effective range r are assumed to be real. We distin-
guish between two cases:

Vanishing effective range: First, we consider r = 0. Then the trivial case 1/a = 0 has
a root at zero. This point in parameter space is the unitary limit. For non-vanishing 1/a,
the only solution is:

y0 =
i

a
⇒ Z0 = − 2π

g2µ2

y0
−i =

2π

g2µ2

1

a
. (A.12)

In tabular tab. A.2 we give the positions of the poles yn, residues Zn and binding energies
E

(2)
n − iε from eq. (A.9) in the complex plane.

Non-vanishing effective range: In the case of non-vanishing effective range r 6= 0,
eq. (A.11) is a quadratic equation. In order to find its solutions, we first define i

r
(x+1) := y,

leading to:

0 = − 1

a
− 1

2r
(x+ 1)2 +

1

r
(x+ 1)

⇔ 0 = (x+ 1)2 − 2(x+ 1) +
2r

a
= x2 − κ , κ := 1− 2r

a
∈ R .

(A.13)

Table A.1: Poles of the full S-wave dimer prop-
agator as solutions of eq. (A.13) and eq. (A.11).
The solutions depend on the dimensionless param-
eter κ = 1− 2r/a.

κ ∈ x0
x1

y0
y1

(−∞, 0] i
√

|κ| 1
r

(
−
√

|κ|+ i
)

−i
√

|κ| 1
r

(√
|κ|+ i

)

[0,∞) −√
κ i

r

(
−√

κ+ 1
)

√
κ i

r

(√
κ + 1

)
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The explicit solutions of eq. (A.13) and eq. (A.11) are collected in tab. A.1, where we
also gave values for the corresponding pole positions yn = i

r
(x+1) of the full dimer propa-

gator eq. (A.10). From the pole positions, dimer binding energies can then be determined
according to eq. (A.9).

In order to extract the residues, we apply eq. (A.8) in the way

Zn =
1

µ

yn
P1,A~α(yn)

= − 2π

g2µ2

yn
ryn − i

= − 2π

g2µ2

1

r
(1 + 1/xn) . (A.14)

We are now able to read off the positions of the complex poles yn, residues Zn and binding
energies E

(2)
n −iε. They are summarized in tab. A.2. Parameters that would lead to double

poles are left out. There are cases where no poles on the physical sheet appear. If r = 0 or
if r < 0 and 1/a ∈ (1/(2r),∞) holds, all poles on the physical sheet have positive residue.
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sgn(yn)
sgn(Zn) r < 0 r = 0 r > 0

sgn(E
(2)
n − iε)
κ ∈ (−∞, 0) (0, 1) (1,∞) (1,∞) (0, 1) (−∞, 0)
1/a ∈ (−∞,− 1

2|r|) (− 1
2|r| , 0) (0,∞) (0,∞) (−∞, 0) (−∞, 0) (0, 1

2|r|) ( 1
2|r| ,∞)

(+,−) (1) (0,−) (2) (0,+) (1) (0,+) (1) (0,−) (2) (0,−) (2) (0,+) (1) (−,+) (2)
n = 0 (+,−) un (−, 0) un (+, 0) ph (+, 0) ph (−, 0) un (−, 0) un (+, 0) ph (−,+) un

(σ,−) lo (−,−) lo (−,−) lo (−,−) lo (−,−) lo (−,−) lo (−,−) lo (σ,−) lo
(−,−) (2) (0,−) (2) (0,−) (2) � � (0,+) (1) (0,+) (1) (+,+) (1)

n = 1 (+,+) un (+, 0) ph (+, 0) ph � � (−, 0) un (−, 0) un (−,−) un
(σ,+) up (−,−) lo (−,−) lo � � (−,−) lo (−,−) lo (σ,+) up

Table A.2: Positions of poles, residues and binding energies in the complex plane given in terms of sgn(yn), sgn(Zn) and

sgn(E
(2)
n − iε), respectively. We used κ = 1− 2r/a. The number (1) ((2)) denotes that yn is located on the physical, first

(unphysical, second) Riemann sheet and lo (up) means that the corresponding binding energy E
(2)
n − iε lies in the upper

(lower) complex half plane. A pole with physical (unphysical) residue Zn is labeled by ph (un). σ = {−, 0,+} is the set of
possible signs. Red columns mark regions in parameter space where poles on the physical sheet with binding energy in the
upper complex half plane exist, prohibiting the application of the residue theorem in the derivation of the dimer-particle
scattering integral equation. The other column-colors represent parameters where all poles on the first sheet have binding
energies in the lower complex half plane. Thereby, white (blue) marks the physical (unphysical) case where all first-sheet
poles have positive (non-positive) residue. Yellow represents the mixed case where first-sheet poles with both positive and
non-positive residues coexists.
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A.1.1.2 P-wave interactions

We now investigate the pole-structure of the renormalized full dimer propagator (2.27)
resulting from two-particle P-wave interactions:

D(p̄) = − 6π

g2µ

1

− 1
a
+ r

2
y2(p̄) − iy3(p̄)

=
1

P3,~α(y(p̄))
with ~α = −g

2µ

6π

(
−1/a
0
r/2
−i

)
.

(A.15)

In the last line we used the notation of eq. (A.2) with N = 3. In order to find the dimer
poles, we have to solve

− 1

a
+
r

2
y2 − iy3 = 0 . (A.16)

The scattering volume a and the effective range r are assumed to be real. Again we
distinguish between two cases:

Vanishing effective range: First, we consider r = 0. Then the trivial case 1/a = 0 has
a triple root at zero. This point in parameter space is the unitary limit. For non-vanishing
1/a, the solutions are:

yn = ζ−n (−i) 3
√

1/a , ζ := e
2πi
3 , n ∈ {0, 1, 2}

⇒ Zn =
1

µα3

1

yn
∏2

n 6=m=0(1− ym
yn
)

= − 6π

g2µ2

1

(−i)2 3
√
1/a

ζn

(1− ζ)(1− ζ∗)

=
6π

g2µ2

3
√
a

3
ζn .

(A.17)

In tabular tab. A.4 we give the positions of the poles yn, residues Zn and binding energies
E

(2)
n − iε from eq. (A.9) in the complex plane.

Non-vanishing effective range: In the case of non-vanishing effective range r 6= 0,
the solutions of eq. (A.16) are less obvious. We use the Cardano method in order to find
them [122]. Therefore, we first define i r

3

(
x− 1

2

)
:= y, eliminating the quadratic term

according to:

0 = − 1

a
−
(r
3

)3 3
2

(
x− 1

2

)2
−
(r
3

)3(
x− 1

2

)3

⇔ 0 =
(
x− 1

2

)3
+

3

2

(
x− 1

2

)2
+

33

ar3
=
(
x− 1

2

)2
(x+ 1) +

27

ar3

= x3 − 3

4
x+

1

4
+

27

ar3
= x3 − 3

4
x+

τ

4
, τ := 1 +

108

ar3
∈ R .

(A.18)

Since the coefficients of this polynomial are all real, it follows that if x is a solution, then
also x∗ is a solution. Consequently, among the at most three different complex solutions



A.1. STRUCTURE OF THE FULL DIMER PROPAGATOR 97

~x := (x0, x1, x2), at least one has to be real. Another property of the solutions can be
derived as follows: Assuming that xn(τ) is a solution of eq. (A.18) for τ we deduce

(−xn(τ))3 −
3

4
(−xn(τ)) +

1

4
(−τ) = −

(
xn(τ)

3 − 3

4
xn(τ) +

1

4
τ

)
= 0 . (A.19)

Consequently, −xn(τ) is a solution of eq. (A.18) for −τ . Due to this antisymmetry, it
suffices to understand the behavior of the poles for τ ≥ 0. For τ < 0, we simply use
~x(τ) = −~x(|τ |).

Following the Cardano method, the three concrete solutions of eq. (A.18) can be written
in terms of the parametrization:

~x =

(
ζ0u+ + ζ0u−
ζ1u+ + ζ2u−
ζ2u+ + ζ1u−

)
=

(
(u++u−)

− 1
2
(u++u−) + i

√
3

2
(u+−u−)

− 1
2
(u++u−)− i

√
3

2
(u+−u−)

)

with ζ = e
2πi
3 and u± :=

1

2

3

√
−τ ±

√
τ 2 − 1

⇒ x0 + x1 + x2 = 0 and u+u− =
1

4
.

(A.20)

Thereby, the cube root 3
√
z of a complex number z is the unique complex number which

is determined by the conditions ( 3
√
z)3 = z and arg( 3

√
z) ∈ [−π/6, π/6)∪ [5π/6, 7π/6). We

now distinguish between two different cases:

• τ ∈ (1,∞): In this case χτ := arccosh(τ) ∈ (0,∞) is well-defined and from eq. (A.20)
we see that u± is real, since the radicand of the square root is positive. This leads
to:

u± =
1

2

3

√
− coshχτ ±

√
cosh2 χτ − 1

=
1

2
3
√

−(coshχτ ∓ sinhχτ ) =
1

2
3
√
−e∓χτ = −1

2
e∓χτ/3

⇒ u+ ± u− = − 1

2

(
e−χτ/3 ± eχτ/3

)
=

{
− cosh(χτ/3)

sinh(χτ/3)

⇒ ~x(τ) =

( − cosh(χτ/3)
1
2
cosh(χτ /3)+i

√
3

2
sinh(χτ /3)

1
2
cosh(χτ /3)−i

√
3

2
sinh(χτ /3)

)

⇒ ~x(τ → ∞) = − 3

√
τ

4

(
1
ζ∗

ζ

)
and ~x(τ → 1+) =

( −1
1
2
1
2

)
.

(A.21)

Hence, we have a real root x0 < 0 and two complex conjugated roots x1,2 in the right
half plane. For large values of τ , the 3 roots form an equilateral, centered triangle,
which scales with 3

√
τ . In the limit τ → 1+ the 2 complex conjugated roots meet at

the positive real axis.
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• τ ∈ (0, 1): In this case φτ := arccos(τ) ∈ (0, π/2) is well-defined and u± has a
non-vanishing imaginary part, since the radicand of the square root in eq. (A.20) is
negative. We get:

u± =
1

2
3

√
−(τ ∓ i

√
1− τ 2) =

1

2
3
√

−(cosφτ ∓ i sinφτ )

=
1

2
3
√

−e∓iφτ = −1

2
e∓i

φτ
3

⇒ (u+ ± u−) = − 1

2

(
e−i

φτ
3 ± ei

φτ
3

)
=

{
− cos(φτ/3)

i sin(φτ/3)

⇒ ~x(τ) =

( − cos(φτ/3)
1
2
cos(φτ/3)−

√
3

2
sin(φτ/3)

1
2
cos(φτ/3)+

√
3

2
sin(φτ/3)

)
=

(
− cos(φτ/3)

cos((π+φτ )/3)
cos((π−φτ )/3)

)

⇒ ~x(τ → 1−) =

( −1
1
2
1
2

)
and ~x(τ → 0+) =

(
−

√
3

2
0√
3

2

)
,

(A.22)

where cos(π/3) = 1/2, sin(π/3) =
√
3/2 and standard addition and subtraction

theorems for trigonometric functions were used.

τ ∈
x0
x1
x2

y0
y1
y2

− 1
2 cosh(χ|τ |/3) + i

√
3
2 sinh(χ|τ |/3)

r

3 (−
√
3
2 sinh(χ|τ |/3)− i

2 (cosh(χ|τ |/3) + 1))

(−∞,−1] − 1
2 cosh(χ|τ |/3)− i

√
3
2 sinh(χ|τ |/3)

r

3 (
√
3
2 sinh(χ|τ |/3)− i

2 (cosh(χ|τ |/3) + 1))
cosh(χ|τ |/3)

r

3 i(cosh(χ|τ |/3)− 1
2 )

− cos((π − φ|τ |)/3)
r

3 i(− cos((π − φ|τ |)/3)− 1
2 )

[−1, 0] − cos((π + φ|τ |)/3)
r

3 i(− cos((π + φ|τ |)/3)− 1
2 )

cos(φ|τ |/3)
r

3 i(cos(φ|τ |/3)− 1
2 )

− cos(φτ/3)
r

3 i(− cos(φτ/3)− 1
2 )

[0, 1] cos((π + φτ )/3)
r

3 i(cos((π + φτ )/3)− 1
2 )

cos((π − φτ )/3)
r

3 i(cos((π − φτ )/3)− 1
2 )

− cosh(χτ/3)
r

3 i(− cosh(χτ/3)− 1
2 )

[1,∞) 1
2 cosh(χτ/3) + i

√
3
2 sinh(χτ/3)

r

3 (−
√
3
2 sinh(χτ/3) +

i

2 (cosh(χτ/3)− 1))
1
2 cosh(χτ/3)− i

√
3
2 sinh(χτ/3)

r

3 (
√
3
2 sinh(χτ/3) +

i

2 (cosh(χτ/3)− 1))

Table A.3: Solutions of eq. (A.18) and eq. (A.16) depending on the parameter τ = 1+ 108
ar3

.
The quantities χ and φ depend on τ and are given through χτ = arccosh(τ) ∈ (0,∞) and
φτ = arccos(τ) ∈ (0, π/2).

As expected, the vector ~x of the three complex roots continuously depends on the
parameter τ ≥ 0. Using the antisymmetry derived in eq. (A.19), we expand this continuity
to all τ ∈ R by relabeling x0 ↔ x2 for τ ≤ 0. In fig. A.1 we illustrate how the roots are
traveling through the complex plane dependent on the effective range parameters. Explicit
expressions are collected in tab. A.3, where we also gave values for the corresponding pole
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Figure A.1: Positions of the three complex roots of eq. (A.18) as a function of the
parameter τ = 1 + 108

ar3
∈ R. The dashed lines located at Re(x) = ±1/2 are useful in order

to determine the positions of the corresponding poles y and their residues Z. The dotted
lines at Im(x) = ±

√
3Re(x) indicate the asymptotic trajectories of the poles for diverging

τ .

positions yn = i r
3

(
xn − 1

2

)
of the full dimer propagator (A.15). From the pole positions,

the dimer binding energies are again determined via eq. (A.9).
In order to extract the residues, we apply eq. (A.8) in the way:

Zn =
1

µ

yn
P2,A~α(yn)

= − 6π

g2µ2

yn
ryn − i3y2n

= − 6π

g2µ2

1

r

1

xn +
1
2

. (A.23)

Using the scheme in fig. A.1, we are now able to read off the positions of the complex
poles yn, residues Zn and binding energies E

(2)
n − iε. They are summarized in tab. A.4,

where, due to double poles at τ = ±1, these particular parameter values are left out.
A comparison with the S-wave results from tab. A.2 reveals striking differences. Unlike
for S-wave interactions, there are always one or two poles on the first Riemann sheet.

However, only for parameters r < 0 and 1/a ∈ (0, |r|
3

54
) (yellow column) one of them has
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positive residue, namely y1. Nevertheless, in this case there is also a second pole y0 on the
physical sheet, which has negative residue and has a deeper binding energy. Thus, there is
no configuration of effective range parameters where all poles on the physical sheet have
positive residue.

In the derivation of the integral equation for dimer-particle scattering, the residue theo-
rem was applied in order to perform the energy integral of the loop momentum. Therefore,
it is crucial to understand, under which circumstances the binding energies E

(2)
n − iε of

all first-sheet poles lie in the lower complex half plane, no matter what their residues
are. Considering the results in tab. A.4, this is exactly the case if the parameters obey
(r = 0)∧ (1/a < 0) or (r < 0)∧ (τ ∈ (−1, 1)∪ (1,∞)) or (r > 0)∧ (τ ∈ (−∞,−1)∪ (−1, 1))
(yellow and blue columns in tab. A.4). In terms of the scattering volume, all these cases
can be combined as: −1/a ∈ (max{0, r3/54},∞) \ max{0, r3/54}. The omitted point
max{0, r3/54} represents configurations with unphysical poles of second order. For scat-
tering parameters outside this region, the integral equation for dimer particle scattering is
obtained by analytic continuation (red columns in tab. A.4).
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sgn(yn)
sgn(Zn) r < 0 r = 0 r > 0

sgn(E
(2)
n − iε)
τ ∈ (−∞,−1) (−1, 1) (1,∞) (1,∞) (−1, 1) (−∞,−1)

−1/a ∈ (−∞,− |r|3
54 ) (− |r|3

54 , 0) (0,∞) (0,∞) (−∞, 0) (−∞, 0) (0, |r|
3

54 ) ( |r|
3

54 ,∞)

(+,+) (1) (0,+) (1) (0,+) (1) (0,+) (1) (0,−) (2) (0,−) (2) (0,−) (2) (−,−) (2)
n = 0 (−,−) un (−, 0) un (−, 0) un (−, 0) un (+, 0) ph (+, 0) ph (+, 0) ph (+,+) un

(σ,+) up (−,−) lo (−,−) lo (−,−) lo (−,−) lo (−,−) lo (−,−) lo (σ,+) up
(−,+) (2) (0,+) (1) (+,−) (1) (+,−) (1) (−,+) (2) (−,+) (2) (0,−) (2) (+,−) (1)

n = 1 (−,+) un (+, 0) ph (+,−) un (+,−) un (−,+) un (−,+) un (−, 0) un (+,−) un
(σ,−) lo (−,−) lo (σ,−) lo (σ,−) lo (σ,−) lo (σ,−) lo (−,−) lo (σ,−) lo
(0,−) (2) (0,−) (2) (−,−) (2) (−,−) (2) (+,+) (1) (+,+) (1) (0,+) (1) (0,+) (1)

n = 2 (+, 0) ph (+, 0) ph (+,+) un (+,+) un (−,−) un (−,−) un (−, 0) un (−, 0) un
(−,−) lo (−,−) lo (σ,+) up (σ,+) up (σ,+) up (σ,+) up (−,−) lo (−,−) lo

Table A.4: Positions of poles, residues and binding energies in the complex plane given in terms of sgn(yn), sgn(Zn) and

sgn(E
(2)
n − iε), respectively. We used τ = 1+ 108/(ar3). The number (1) ((2)) denotes that yn is located on the physical,

first (unphysical, second) Riemann sheet and lo (up) means that the corresponding binding energy E
(2)
n − iε lies in the

upper (lower) complex half plane. A pole with physical (unphysical) residue Zn is labeled by ph (un). σ = {−, 0,+} is
the set of possible signs. Red columns mark regions in parameter space where poles on the physical sheet with binding
energy in the upper complex half plane exist, prohibiting the application of the residue theorem in the derivation of the
dimer-particle scattering integral equation. The other column-colors represent parameters where all poles on the first
sheet have binding energies in the lower complex half plane. Thereby, white (blue) marks the physical (unphysical) case
where all first-sheet poles have positive (non-positive) residue. Yellow represents the mixed case where first-sheet poles
with both positive and non-positive residues coexists.
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A.1.2 Cauchy principal value integrals

In this section, we discuss how loop momentum integrals with full dimer propagators, as
they, for instance, appear in the T-matrix integral equations (2.49) and (3.41), can be
evaluated in the limit ε→ 0+. Our method is based on the Cauchy principal value formula
PVc

∫ b
a
dx := limε→0+

{∫ c−ε
a

dx +
∫ b
c+ε

dx
}
. As explained in sec. A.1.1 we know that the

inverse on-shell dimer propagator has the form of a polynomial (A.3). This yields the
partial fraction decomposition:

D(E, q) =
N−1∑

n=0

1/Cn√
2µ
(
E − q2

2µ̄
+ iε

)
− yn

. (A.24)

In order to integrate over such a term, we first use the Sokhatsky–Weierstrass-theorem

lim
ε→0+

∫ b

a

dx
f(x)

x− (y ± iε)

=

{
PVy

∫ b
a
dxf(x)

x−y ± iπf(y) =
∫ b
a
dx f(x)−f(y)

x−y +
[
ln b−y

y−a ± iπ
]
f(y) : y ∈ (a, b)

∫ b
a
dx f(x)

x−y : y /∈ [a, b]

=

∫ b

a

dx
f(x)−Θ(a,b)(y)f(y)

x− y
+Θ(a,b)(y)

[
ln
b− y

y − a
± iπ

]
f(y) .

(A.25)

The generalized Θ-function reads:

ΘΩ(x) :=

{
1 : x ∈ Ω ⊂ C

0 : otherwise .
(A.26)

Also we added 0 = f(y)−f(y) in eq. (A.25) such that the point x = y becomes a removable
singularity and the Cauchy principal value transforms into a standard Riemann integral.
Assuming α ∈ R, β > 0 and γ ∈ C, we define ρ2 := (α−γ2)/β and use eq. (A.25) to derive
the formula:

lim
ε→0+

∫ b

a

dx
f(x)√

α− βx2 + iε− γ
= lim

ε→0+

∫ b2

a2
dz

(− 1
β
)(
√
α− βz + iε+ γ)f(

√
z)

2
√
z

z − α−γ2
β

− iε

= lim
ε→0+

∫ b2

a2
dz

g(z)

z − (ρ2 + iε)
with g(z) := (− 1

β
)(
√
α− βz + iε+ γ)

f(
√
z)

2
√
z

=

∫ b2

a2
dz

g(z)−Θ(a2,b2)(ρ
2)g(ρ2)

z − ρ2
+Θ(a2,b2)(ρ

2)

[
ln
b2 − ρ2

ρ2 − a2
+ iπ

]
g(ρ2)

=

∫ b

a

dx

[
f(x)√

α− βx2 − γ
+ Θ√C(γ) Θ(a2,b2)(ρ

2)
γ

β

2x

x2 − ρ2
f(ρ)

ρ

]

− Θ√C(γ) Θ(a2,b2) (ρ
2)
γ

β

[
ln
b2 − ρ2

ρ2 − a2
+ iπ

]
f(ρ)

ρ
.

(A.27)
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Thereby, we substituted z := x2 and used the identity g(ρ2) = Θ√C(γ) (−γ/β) f(ρ)/ρ.
We now apply eq. (A.27) to an integral over a full dimer propagator and a momentum-
dependent function f ε, which itself is well-behaving in the limit ε→ 0+. Doing so, we end
up with:

lim
ε→0+

∫ Λ

0

dq D(E, q) f ε(q) =
N−1∑

n=0

1

Cn
lim
ε→0+

∫ Λ

0

f ε(q)√
2µE − µ

µ̄
q2 + iε− yn

=

∫ Λ

0

dq

[
D(E, q) f 0(q) −

N−1∑

n=0

Θ√C(yn) Θ(02,Λ2)(q
2
n)

µ̄

µ

yn
Cn

2q

q2 − q2n

f 0(qn)

qn

]

+

N−1∑

n=0

Θ√C(yn) Θ(0,Λ2)(q
2
n)

µ̄

µ

yn
Cn

[
ln

Λ2 − q2n
q2n

+ iπ

]
f 0(qn)

qn
,

(A.28)

where q2n = q2n(E) := 2µ̄(E − E
(2)
n ). Consequently, Θ(0,Λ2)(q

2
n) = Θ

(E
(2)
n ,E

(2)
n +Λ2/(2µ̄))

(E)

holds, implying that the dimer energy E
(2)
n = y2n/(2µ) has to be real. Thus, in general

yn ∈ R ∪ iR is required. However, in all cases considered in sec. A.1.1.2 no real poles yn
were found. Consequently, extra contributions in eq. (A.28) can only appear if a pole yn
is purely imaginary, leading to a negative dimer binding energy E

(2)
n = −|yn|2/(2µ), as it

should. From that, we directly see that the energy E has to be larger than E
(2)
n in order for

Θ
(E

(2)
n ,E

(2)
n +Λ2/(2µ̄))

(E) to be non-vanishing. In addition, also the cut-off Λ has to be chosen

sufficiently large. In terms of the numerical evaluation of such dimer integrals, each extra
contribution in eq. (A.28), in the end, effectively simply corresponds to one additional
sampling point with complex weight-factor in the integral sum.

A.2 Legendre functions of second kind

In this section, we analyze the mathematical features of the analytically continued Legendre
functions of second kind {Qℓ : C \ {−1, 1} → C | ℓ ∈ N0}. They are defined through:

Qℓ(c) :=
1

2

∫ 1

−1
dx

Pℓ(x)

c− x
. (A.29)

We know that the appearing Legendre functions of first kind {Pℓ : [−1, 1] → R | ℓ ∈ N0}
build an orthogonal basis on the interval [−1, 1] and obey the symmetry:

Pℓ(−x) = (−1)ℓPℓ(x) . (A.30)

Thus, we directly deduce the symmetry of the Qℓ functions:

Qℓ(−c) =
1

2

∫ 1

−1
dx

Pℓ(x)

−c− x
= −1

2

∫ 1

−1
dx

Pℓ(−x)
c− x

= (−1)ℓ+1Qℓ(c) . (A.31)
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A.2.1 Recursion formula

The Legendre functions of first kind fulfill the orthogonality relation

∫ 1

−1
dxPℓ(x)Pℓ′(x) =

2

2ℓ+ 1
δℓℓ′ . (A.32)

They can be defined recursively through:

P0(x) = 1 , P1(x) = x ,

∀ℓ ≥ 2 : ℓ Pℓ(x) = (2ℓ− 1) xPℓ−1(x) − (ℓ− 1)Pℓ−2(x) .
(A.33)

Applying these formulas for the Qℓ functions, yields:

Q0(c) =
1

2

∫ 1

−1
dx

1

c− x
=

1

2
[ln(c+ 1)− ln(c− 1)]

=
1

2
[ln |c+ 1|+ i arg(c+ 1)− ln |c− 1| − i arg(c− 1)]

=
1

2
ln

∣∣∣∣
c+ 1

c− 1

∣∣∣∣+
i

2
[arg(c+ 1)− arg(c− 1)] ,

Q1(c) =
1

2

∫ 1

−1
dx

x

c− x
=

1

2

∫ 1

−1
dx

[
c

1

c− x
− 1

]
= cQℓ(c)− 1 ,

(A.34)

and the very same recursion relation:

ℓQℓ(c) =
1

2

∫ 1

−1
dx

ℓ Pℓ(x)

c− x
=

1

2

∫ 1

−1
dx

(2ℓ− 1) xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)

c− x

= (2ℓ− 1)
1

2

∫ 1

−1
dx

[
c

1

c− x
− 1

]
Pℓ−1(x) − (ℓ− 1)

1

2

∫ 1

−1
dx

Pℓ−2(x)

c− x

= (2ℓ− 1)

[
c
1

2

∫ 1

−1
dx
Pℓ−1(x)

c− x
− 1

2

∫ 1

−1
dxPℓ−1(x)

]
− (ℓ− 1)Qℓ−2(c)

= (2ℓ− 1) cQℓ−1(c) − (2ℓ− 1)δℓ0
1

2ℓ+ 1
− (ℓ− 1)Qℓ−2(c)

= (2ℓ− 1) cQℓ−1(c) − (ℓ− 1)Qℓ−2(c) , ∀ℓ ≥ 2 .

(A.35)

Applying eqs. (A.34) and (A.35), all Qℓ functions can be reconstructed from Q0, yielding
the convenient formula (see e.g. [122] p. 530):

Qℓ = PℓQ0 −
ℓ∑

k=1

1

k
Pk−1 Pℓ−k . (A.36)

In this equation, the terms Pℓ are the analytically continued Legendre functions of the first
kind.
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A.2.2 Analytic structure

Eq. (A.36) implicates that the analytic structures of Qℓ and Q0 the same. Since the
complex logarithm is analytic on C \ (−∞, 0], eq. (A.34) implies the analyticity of Q0 on
C \ (−∞, 1]. Considering only real arguments c ∈ R \ {±1}, yields:

lim
ε→0+

Qℓ(c± iε) = Pℓ(c) lim
ε→0+

Q0(c± iε)−
ℓ∑

k=1

1

k
Pk−1(c)Pℓ−k(c) ,

lim
ε→0+

Q0(c± iε) =
1

2
ln

∣∣∣∣
c+ 1

c− 1

∣∣∣∣+
i

2
lim
ε→0+

[arg(c+ 1± iε)− arg(c− 1± iε)]

=





1
2
ln c+1

c−1 +
i
2
[0− 0] : −1 < 1 < c

1
2
ln c+1

1−c +
i
2
[0−±π] : −1 < c < 1

1
2
ln c+1

c−1 +
i
2
[±π −±π] : c < −1 < 1

=

{
arctanh

(
1
c

)
: |c| > 1

arctanh (c) ∓ iπ
2

: |c| < 1 ,

(A.37)

where we used

∀z ∈ R : lim
ǫ→0+

arg(z ± iε) =

{
0 : z ≥ 0

±π : z < 0 .
(A.38)

Therefore, Q0 is also analytic on (−∞,−1]. Consequently, all Qℓ are analytic on C\ [−1, 1].
At the interval [−1, 1] they have a cut with logarithmic singularities at the boundaries ±1.

For the on-shell kinematics that are consider in this work, the argument of Q0 always
has the form cij(E, p, k)− iε, where the energy- and momentum-dependent quantity

cij(E, p, k) =
mij

p k

( p2
2µj

+
k2

2µi
− E

)
(A.39)

is real. Thus, in the physical limit of our theory ε→ 0+, we always have to take the lower
case of eq. (A.37)

lim
ε→0+

Q0(c− iε) =

{
arctanh (1/c) : |c| > 1

arctanh (c) + iπ
2

: |c| < 1
(A.40)

as proper building block for the integral kernel.

A.2.2.1 Geometry of singularities

As we have seen, the Qℓ functions have logarithmic singularities at ±1. In order to under-
stand their position in the momentum plane, we have to solve:

cij(E, p, k) =
mij

p k

( p2
2µj

+
k2

2µi
− E

)
= κ with κ ∈ {±1} . (A.41)

Defining the momentum vector ~x0 := (p, k)T, we first rescale it with the diagonal matrix
Dij

1 (E) := diag(
√

2µj|E|,
√

2µi|E| via ~x0 =: Dij
1 (E) ·~x1. In this way, eq. (A.41) transforms

into the quadratic form

~xT
1 ·N(κ sin φij) · ~x1 − sgn(E) = 0 , (A.42)
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where the symmetric 2×2 matrixN(a) := ( 1 a
a 1 ) has eigenvalues 1±a. It can be diagonalized

according to RTN(a)R = D2(a) with D2(a) := diag(1+a, 1−a) and a π/2-rotation matrix
R = 1/

√
2 ( 1 −1

1 1 ) ∈ SO(2). Since sin φij ∈ (0, 1) holds, both eigenvalues are positive. Using
~x1 =: R ·D2(κ sinφij)

−1/2 · ~x2 then yields:

(~x2)
2
1 + (~x2)

2
2 − sgn(E) = 0 . (A.43)

For negative energies, eq. (A.43) has no solution. If E > 0 holds, it represents a circle of
radius 1. This circle is transformed into centered ellipses under D2(κ sinφij)

−1/2 and that
afterwards are rotated by R. Within the ~x1 plane, the major and minor semiaxes of these
centered ellipses end at the points 1/

√
2(1∓ sinφij)(1, 1)

T, respectively. Under Dij
1 (E),

these points are mapped to 1/
√

1∓ sin φij(
√
µj |E|,

√
µi|E|)T in the p-k momentum plane.

Considering all channels, the length

Λ̄(E) := max
i 6=j

{√ (µi + µj)

1∓ sinφij
|E|
}

(A.44)

of the largest such semiaxes then determines a square [0, Λ̄(E)]2 that always surrounds the
area of logarithmic singularities. Note that the composed mapping Aijκ (E) := Dij

1 (E) · R ·
D2(κ sinφij)

−1/2, has the channel- and κ-independent determinant:

det[Aijκ (E)] = (2
√
µiµj |E|) · 1 · (1 + κ sin φij)

−1/2(1− κ sinφij)
−1/2

= 2mij sin φij(1− sin2 φij)
−1/2|E| = 2mij tanφij |E| = 2M̄ |E| .

(A.45)

A.2.3 Hypergeometric series

For real arguments c with |c| > 1, the Qℓ-functions from eq. (A.40) can also be expressed
in terms of hypergeometric series [122]:

Qℓ(c) =

√
π Γ(ℓ+ 1)

2ℓ+1Γ(ℓ+ 3
2
)

1

cℓ+1 2F1

[
ℓ

2
+ 1,

ℓ

2
+

1

2
; ℓ+

3

2
;
1

c2

]
=

√
π Γ(ℓ+ 1)

2ℓ+1Γ(ℓ+ 3
2
)

1

cℓ+1

×
∞∑

m=0

Γ(m+ ℓ
2
+ 1)

Γ( ℓ
2
+ 1)

Γ(m+ ℓ
2
+ 1

2
)

Γ( ℓ
2
+ 1

2
)

Γ(ℓ+ 3
2
)

Γ(m+ ℓ+ 3
2
)

1
c2m

Γ(m+ 1)

=

√
π Γ(ℓ+ 1)

2ℓ+1 Γ( ℓ+1
2
) Γ( ℓ+1

2
+ 1

2
)

1

cℓ+1

∞∑

m=0

Γ(2m+ℓ+1
2

) Γ(2m+ℓ+1
2

+ 1
2
)

Γ(m+ ℓ + 3
2
)

1
c2m

Γ(m+ 1)

=

√
π Γ(ℓ+ 1)

2ℓ+1
√
π 21−(ℓ+1) Γ(ℓ+ 1)

∞∑

m=0

√
π 21−(2m+ℓ+1) Γ(2m+ ℓ+ 1)

Γ(m+ ℓ+ 3
2
)

c−(2m+ℓ+1)

Γ(m+ 1)

=

√
π

2ℓ+1

1

cℓ+1

∞∑

m=0

Γ(2m+ ℓ+ 1)

22m Γ(m+ ℓ+ 3
2
) Γ(m+ 1)

1

c2m
.

(A.46)

For the gamma function we used the known relations:

Γ(z + 1) = z Γ(z) , Γ(z) Γ(z + 1/2) = 21−2z
√
π Γ(2z) . (A.47)
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A.2.3.1 Approximative expansion

For higher angular momentum numbers ℓ, the calculation of Qℓ with the help of eq. (A.36)
becomes numerically unstable for large |c|. This is due to the fact thatQ0 vanishes, whereas
all Pℓ diverge. Since |c| → ∞ holds for |E| → ∞ or p, k → {0,∞}, the case of large |c|
often occurs within a numerical calculation and therefore is worthy to by analyzed in more
detail.

In order to deal with the numerical problems, we first interpret the series (A.46) as a
Taylor expansion in 1/c and rewrite it in the way:

Qℓ =
∞∑

m=0

Qm
ℓ , Qm

ℓ (c) :=

√
π

2ℓ+1

1

cℓ+1
dmℓ

1

c2m
,

dmℓ :=
Γ(2m+ ℓ+ 1)

22m Γ(m+ ℓ+ 3
2
) Γ(m+ 1)

.

(A.48)

In this form, the Qℓ-functions are numerically stable for large |c|. Moreover, for a given
accuracy it suffices to only keep the lowest order terms of this series, saving computation
time.

In the following, we quantify the error of the aborting series (A.48). First, for allm ≥ 1,
we define the ratio of two succeeding coefficients:

ρmℓ :=
dmℓ
dm−1ℓ

=
(2m+ l)(2m+ ℓ− 1)

22 (m+ ℓ+ 1
2
)m

=

(
1 +

ℓ

2m

)

︸ ︷︷ ︸
∈ (1,∞)

(
1− ℓ+ 2

2ℓ+ 2m+ 1

)

︸ ︷︷ ︸
∈ (0,1)

⇒ 0 < 1− ℓ+ 2

2ℓ+ 3
≤ 1− ℓ+ 2

2ℓ+ 2m+ 1
< ρmℓ < 1 +

ℓ

2m
≤ 1 +

ℓ

2
.

(A.49)

Comparing the full function Qℓ with the aborting series, we narrow down their relative
deviation rnℓ := (Qℓ −Qn−1

ℓ )/Qℓ by using dm+n
ℓ = dmℓ

∏m+n
i=m+1 ρ

i
ℓ and eq. (A.49) via:

c2n rnℓ (c) =

∑∞
m=n d

m
ℓ

1
c2(m−n)∑∞

m=0 d
m
ℓ

1
c2m

=

∑∞
m=0 d

m+n
ℓ

1
c2m∑∞

m=0 d
m
ℓ

1
c2m

=

∑∞
m=0 d

m
ℓ

1
c2m

(∏m+n
i=m+1 ρ

i
ℓ

)
∑∞

m=0 d
m
ℓ

1
c2m




<
∑∞

m=0 d
m
ℓ

1
c2m

(
∏m+n

i=m+1 (1+ℓ/2))
∑∞

m=0 d
m
ℓ

1
c2m

=
(
1 + ℓ

2

)n

>
∑∞

m=0 d
m
ℓ

1
c2m

(
∏m+n

i=m+1 (1−(ℓ+2)/(2ℓ+3)))
∑∞

m=0 d
m
ℓ

1
c2m

=
(
1− ℓ+2

2ℓ+3

)n
.

(A.50)

The last two inequalities can only be performed for real arguments c. For such c ∈ R, the
relative deviation lies within the boundaries 0 ≤ rmin < rnℓ (c) < rmax < 1 as long as

n
√
rmin

1− ℓ+2
2ℓ+3

<
1

c2
<

n
√
rmax

1 + ℓ
2

(A.51)
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holds. Thus, for |c| >
√

(1 + ℓ/2)/ n
√
rmax, the relative error reads rnℓ (c) < rmax < 1. If,

as an example, we demand the relative error to be smaller than rmax = 1%, for |c| &

3.163
√
1 + ℓ/2 already the first order approximation Qℓ ≈ Q1

ℓ suffices to achieve this
accuracy.

A.2.4 Mellin transform

In our analysis of the scaling behavior and the three-body spectrum, we need the functions
Qℓ, which are the Mellin transforms of Legendre functions of second kind. Assuming that
their argument reads c(x) = (x + x−1)/(2 sinφ), we now present two equivalent formulas
for Qℓ(s) := M[Qℓ ◦ c](s).

Hypergeometric form: First, we derive an expression based on the hypergeometric
representation (A.46), yielding:

Qℓ(s) := M[Qℓ ◦ c](s) =

∫ ∞

0

dxxs−1(Qℓ ◦ c)(x)

=
√
π

∞∑

m=0

Γ(2m+ ℓ+ 1)

Γ(m+ ℓ+ 3
2
) Γ(m+ 1)

∫ ∞

0

dxxs−1(2c(x))−(2m+ℓ+1)

= sinℓ+1 φ

√
π

2

∞∑

m=0

Γ(2m+ ℓ+ 1)

Γ(m+ ℓ+ 3
2
) Γ(m+ 1)

sin2m φ

×
∫ ∞

0

dx 2 xs−1
(
x+ x−1

)−(2m+ℓ+1)
.

(A.52)

The last integral can be evaluated according to
∫ ∞

0

dx 2 xs−1
(
x+ x−1

)−(2m+ℓ+1)
=

∫ ∞

0

dx 2 xs+2m+ℓ
(
x2 + 1

)−(2m+ℓ+1)

=

∫ ∞

0

dy√
y
y

s+2m+ℓ
2 (y + 1)−(2m+ℓ+1) =

∫ ∞

0

dy
yα−1

(1 + y)α+β
= B(α, β)

=
Γ(α) Γ(β)

Γ(α+ β)
=

Γ(m+ ℓ+1+s
2

) Γ(m+ l+1−s
2

)

Γ(2m+ ℓ+ 1)
,

(A.53)

with α := m + (ℓ + 1 + s)/2 and β := m + (l + 1 − s)/2. Thereby, we used an integral
representation for the Beta-function B. Its convergence is only given in the parameter
region Re(α) > 0 and Re(β) > 0. In terms of s, these conditions translate to s ∈ 〈−1, 1〉,
where 〈a, b〉 := {s ∈ C | a < Re(s) < b}. In this fundamental strip, the Mellin transform

Qℓ(s) = sinℓ+1 φ

√
π

2

∞∑

m=0

Γ(m+ ℓ+1+s
2

) Γ(m+ ℓ+1−s
2

)

Γ(m+ ℓ+ 3
2
) Γ(m+ 1)

sin2m φ

= sinℓ+1 φ

√
π

2

Γ( ℓ+1+s
2

) Γ( ℓ+1−s
2

)

Γ(ℓ+ 3
2
)

2F1

[
ℓ+ 1 + s

2
,
ℓ + 1− s

2
; ℓ+

3

2
; sin2 φ

] (A.54)
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exists. An alternative way to determine this strip is to make use of the asymptotic behavior
of the Legendre-functions of second kind (A.46) via:

c(x) =

{
O(x−1) : x→ 0

O(x) : x→ ∞
⇒ (Qℓ ◦ c)(x) =

{
O(xℓ+1) : x→ 0

O(x−ℓ−1) : x→ ∞ .
(A.55)

The integral over xs−1(Qℓ ◦ c)(x) again only converges if s ∈ 〈−ℓ− 1, ℓ+ 1〉 holds.

Transcendental form: We can also find an analytic expression for the Qℓ that omits
the hypergeometric series (A.46). Defining a translation operator T̂a through

(T̂af)(s) := f(s− a) (A.56)

it reads:

Qℓ = Pℓ(ĉ)Q0 , ĉ :=
T̂−1 + T̂1
2 sinφ

, Q0(s) = πφ
j0(φs)

cos(π
2
s)

. (A.57)

Pℓ are now Legendre polynomials in the operator ĉ and j0(x) = sin(x)/x is the zeroth
spherical Bessel function. We prove eq. (A.57) by mathematical induction over ℓ ∈ N0:

ℓ = 0 : We begin with the first base case ℓ = 0. Defining φ± := π/2 ± φ ∈ (0, π), we
rewrite Q0 according to:

(Q0 ◦ c)(x) =
1

2
ln

(
1 + 2

ω
x+ x2

1− 2
ω
x+ x2

)
=

1

2

[
ζφ−(x)− ζφ+(x)

]
(A.58)

with ζφ(x) := ln(1 + 2 cosφ x + x2). The Mellin transform M[ζφ](s) = 2π
s

cos(φs)
sin(πs)

can be

found in [123]. Applying this to eq. (A.58), yields

Q0(s) =
π

s

cos(φ−s)− cos(φ+s)

sin(πs)
=

π

s

2 sin
(
φ++φ−

2
s
)
sin
(
φ+−φ−

2

)

2 sin
(
π
2
s
)
cos
(
π
2
s
)

=
π

s

sin(φs)

cos(π
2
s)

= πφ
j0(φs)

cos(π
2
s)

(A.59)

such that the singularity at the origin s = 0 is removable with Q0(0) = πφ. Thus, Q0

is analytic in the fundamental strip s ∈ 〈−1, 1〉. More precisely, Q0 is meromorphic in C

with poles at ±(2N0 + 1). Since P0(ĉ) = id holds, the case ℓ = 0 is proven.
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ℓ = 1 : From eq. (A.34) we know that Q1 ◦ c = c · (Q0 ◦ c − c−1) holds. The Mellin
transform of c−1 reads:

M[c−1](s) = 2 sinφ

∫ ∞

0

dx
xs−1

x+ x−1
= 2 sinφ

∫ ∞

−∞
dy

e(s+1)y

e2y + 1

= 2 sinφ (2πi)

∞∑

n=0

e(s+1)i(n+ 1
2
)π

2 e2i(n+
1
2
)π

= sin φ (2πi)
e(s−1)i

π
2

1− e(s−1)iπ
= πφ

j0(φ)

cos(π
2
s)

,

(A.60)

where the integral exists in fundamental strip s ∈ 〈−1, 1〉. Thereby, we deformed the
contour such that it encloses countably infinitely many poles on the upper imaginary axis
and afterwards applied the residue theorem, leading to a geometric series. Combining the
results (A.59) and (A.60), yields:

M[Q0 ◦ c− c−1](s) = Q0(s)−M[c−1](s) = πφ
j0(φs)− j0(φ)

cos(π
2
s)

. (A.61)

The singularities at s = ±1 are now removable, such the fundamental strip is enlarged to
〈−3, 3〉. Using the translation property

(x̂af)(x) := xa · f(x) ⇒ M[x̂af ] = T̂−aM[f ] (A.62)

of the Mellin transform and its linearity, we derive

Q1(s) = M[c · (Q0 ◦ c− c−1)](s) = (ĉM[Q0 ◦ c− c−1])(s)

=
πφ

2 sinφ

[
j0(φ(s+ 1))− j0(φ)

cos(π
2
(s+ 1))

+
j0(φ(s− 1))− j0(φ)

cos(π
2
(s− 1))

]

=
πφ

2 sinφ

j0(φ(s− 1))− j0(φ(s+ 1))

sin(π
2
s)

= (ĉQ0)(s) ,

(A.63)

with the intersected fundamental strip 〈−3− 1, 3− 1〉 ∩ 〈−3 + 1, 3 + 1〉 = 〈−2, 2〉. Note
that again the singularity at s = 0 is removable with Q1(0) = 2(1 − φ cotφ) such that
Q1 is even meromorphic in C with poles at ±(2N0 + 2). Since P1(ĉ) = ĉ holds, eq. (A.63)
proves the second base case.

{ℓ− 2, ℓ− 1} ⇒ ℓ : For ℓ ≥ 2, the inductive step can now be performed using the
recursion relation (A.33) and the translation property (A.62). Taking the Mellin transform
on both sides of eq. (A.35), yields:

Qℓ =
2ℓ− 1

ℓ
ĉQℓ−1 − ℓ− 1

ℓ
Qℓ−2 =

2ℓ− 1

ℓ
ĉ Pℓ−1(ĉ)Q0 − ℓ− 1

ℓ
Pℓ−2(ĉ)Q0

=

[
2ℓ− 1

ℓ
ĉ Pℓ−1(ĉ) − ℓ− 1

ℓ
Pℓ−2(ĉ)

]
Q0 = Pℓ(ĉ)Q0 ,

(A.64)

which proves eq. (A.57).
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Hence, in terms of analytic properties, Qℓ is meromorphic in C with countably infinitely
many poles of first order. They are located on the real axis at ±(2N0+ℓ+1). This leads to
a fundamental strip 〈−ℓ− 1, ℓ+ 1〉. Comparing the expression (A.57) with eq. (A.36), we
see that the extra term (−1)

∑ℓ
k=1

1
k
Pk−1Pℓ−k in (A.36) leads to an enlarger fundamental

strip, but effectively vanishes after performing a Mellin transformation.
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Appendix B

Kernel numerics

In this part of the appendix, we briefly discuss the numerical methods that were applied in
order to calculate the presented results. Within this work, all integrals were discretized via
the Gauss–Legendre integration method [124]. Calculations of determinants, eigenvalues,
eigenvectors and solutions of systems of linear equations as well as the bisection root
finding algorithm were all implemented using C++ with standard LAPACK routines. The
complex root finding in eq. (2.17) and in eq. (2.59) was performed using Mathematica. In
the following, we used all functions synonym with their discretized version.

T-matrix: In order to solve a T-matrix integral equation of type (2.49) or (3.41) nu-
merically, we first analytically perform the limit ε → 0+. Therefore, the analytically
continued Legendre functions of second kind Qℓ, appearing in R̄, have to be evaluated
at limε→0+ Qℓ(c − iε), where c is real. Corresponding analytic expression are derived in
appendix A.2.2, especially see eqs. (A.37) and (A.40). For total angular momenta ℓ ≥ 1,
these analytic expressions become numerically unstable in the limit |c| → ∞. However, for
arguments |c| > 1 the Qℓ-functions can be expanded in 1/c, as explained in sec. A.2.3.1.
We use such a finite expansion (A.48) in order to omit these instabilities. Thereby, we
always require errors to be less than 1% by taking into account appropriately high orders
in 1/c. Furthermore, in the limit ε → 0+, potential poles of the full dimer propagator D̄i

can move towards the loop momentum integration contour [0,Λ] if the energy lies above

the dimer threshold E > E
(2)
i . In sec. A.1.2, we explain how the corresponding integrals

are evaluated with the help of Cauchy principal value methods, leading to one additional
contribution for each momentum pole in D̄i. For the loop momentum cut-off Λ we chose
values Λ ∈ [105, 108].

As discussed in sec. A.2.2.1, there are also logarithmic singularities in the Qℓ-functions
if the energy E is positive. In terms of the loop momentum q, these singularities are
integrable and their location is bounded from above by Λ̄(E) < Λ from eq. (A.44). For
such energies, we split up the loop momentum interval according to [0,Λ] = [0, Λ̄(E)] ∪
[Λ̄(E),Λ]. If E < 0, we simply set Λ̄(E) = 0 and drop the first interval. With regard
to the second interval [Λ̄(E),Λ], the substitution q 7→ (eρ − 1) proved very beneficial for
the numerical convergence. Choosing Nq ∈ N sampling points and weights, the T-matrix

113
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integral equation is discretized in the momenta q, p and k, leading to the inhomogeneous
linear equation:

T̄ (E) = R̄(E) + R̄(E) D̄(E) T̄ (E) . (B.1)

R̄(E), D̄(E) and T̄ (E) are the matrix versions of the corresponding functions. They have
multichannel indices that specify the scattering channel as well as the momentum sampling
point and the additional pole contribution. If E > 0 holds, we use Nq/2 sampling points for
each [0, Λ̄(E)] and [Λ̄(E),Λ]. This leads to a denser distribution in the area of logarithmic
singularities, improving the numerical convergence. Solving eq. (B.1), the resulting matrix
T̄ (E) can be reinserted into the T-matrix equation in order to calculate arbitrary off-shell
elements T̄ij(E, p, k). These are e.g. used for the determination of the scattering amplitude
and the scattering length in eq. (3.42). Furthermore, the matrix T̄ (E) appears in the
numerical evaluation of the integrals (3.46) and (3.53). For calculations of this type, we
typically used Nq & 75 sampling points.

Bound states and renormalization in the three-body problem: For the numeri-
cal solution of the three-body bound-state equations (2.51) and (3.44), we discretize the
momenta completely analogous to the procedure that was used for the T-matrix. Since
the trimer energies obey E = E(3) < E

(2)
min := min{E(2)

i } ≤ 0, there are no additional dimer
poles and no logarithmic singularities in the loop momentum. The problem then appears
as a homogeneous system of linear equations:

B = R̄(E(3)) D̄(E(3))B . (B.2)

B is the bound-state vector and R̄(E(3)) and D̄(E(3)) are the kernel matrices. The eigen-
value problem (B.2) has nontrivial solutions at the energy E(3) if and only if

f(Λ, H̄, E(3)) = 0 with f(Λ, H̄, E) := det
[
1 − R̄(Λ, H̄, E) D̄(E)

]
, (B.3)

where we explicitly wrote out the H̄ and Λ dependencies of the kernel matrices. The
function f displays an oscillating behavior with logarithmic period until. For energies
larger than the cut-off it approaches unity. Its concrete form depends among other thins
on the choice of the sampling points and is physically irrelevant. Only the position of its
zeros represents a physical observable. We use eq. (B.3) in two ways. For a given Λ and
H̄ , where also the case of vanishing three-body force H̄ = 0 is not excluded, its roots in
the energy variable E give the spectrum of three-body bound states. On the other hand,
for prespecified cut-off Λ and binding energy E = E(3) we can interpret it as a function
in H̄. Searching the roots in H̄ then fixes the three-body force, renormalizing the cut-
off dependence in the three-body problem. For that purpose, it proved advantageous to
rewrite H̄ = (Λ2H̄)/Λ2 and then search for roots in the dimensionless rescaled three-body

force Λ2H̄. For energies below the deepest dimer state E < E
(2)
min, the values of f are

real. In this case, we apply the bisection method as a reliable root-finding algorithm. For
calculations in this sector, typically Nq & 30 sampling points sufficed.
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Form factor: From eq. (3.64), we know that the form factor can be written as the sum
of three contributions FE = FE,0+FE,1+FE,2 which correspond to the parallel-, exchange-
and loop-diagrams depicted in figs. D.6, D.7 and D.8, respectively. Their expressions in
eqs. (D.38), (D.52) and (D.69) are integrals over the two momenta p and k. A discretization
in both momenta leads to the quadratic form

FE(Q) = |β H̄|2
{
ρT ·

[
Y M
0 (Q) + Y M

1 (Q) + Y M
2 (Q)

]
· ρ

− 2 ρT · Y V
0 (Q) + Y S

0 (Q)
} (B.4)

in the vector ρ := |β H̄|−1 D̄[0] · Ḡ. In all three contributions, the appearing momentum
integrals were disrcetized with Np, Nk, Nq & 75 sampling points. For the internal angular
integrations, Nx, Ny, Nφ & 10 points sufficed. Thus, taking into account the overall number
of integrations in each form factor contribution, the total number of ΥM

i -function calls that
are required for the calculation of the form factor at one specific momentum transfer Q is
of the order & 107.

Dipole strength distribution: Considering formula (D.84) for the dipole strength of
the photodisintegration of a two-neutron halo system, we discretize the momentum inte-
gration in q and write the appearing matrix element as

M̄
(a)
E1 (EΣ, k0, k1, x0, x1) = (Ze)

√
3

4π
|βH̄|

×
[
ρT · Y V

E1(EΣ, k0, k1, x0, x1) − Y S
E1(EΣ, k0, k1, x0, x1)

]
,

(B.5)

where, again, the vector ρ := |β H̄|−1 D̄[0] · Ḡ was used. However, the vector- and scalar-
valued functions Y V

E1(EΣ, q, k0, k1, x0, x1) and Y
S
E1(EΣ, q, k0, k1, x0, x1) in the integral kernel

contain the term (∂Q)(c) = 1/(1 − c2), which has poles in the limit ε → 0+. These
poles depend on EΣ, E

(3) and on the integral variables q, k0, k1, x0, x1 in a rather intricate
way. Hence, an analytic calculation of the limit ε → 0+ would be very elaborate if not even
impossible. Furthermore, there are poles in the terms 1/(E(3)−EΣ+iε) and 1/(E(3)−EΣ+
iε)2. We thus calculate the integral for dB(E1)/dEΣ for finite values ε > 0 and numerically
perform the limit ε→ 0+. Thereby, one method is to simply take only one very small value
ε . 0.008, which requires a relatively large number of sampling points Nq & 400. Since
the algorithmic efficiency of some of the used routines is O(n3), one run typically takes
(400/75)3 ≈ 150 times longer than for the form factor case. Another method is to calculate
dB(E1)/dEΣ for about 10 different ε-values in the interval [0.001, 0.2], identify the linear
part of the curve and then extrapolate this part to ε = 0. A test revealed that both
methods give identical results if for the first method Nq is sufficiently large. However,
the advantage of the latter one is that, for total energies around EΣ ≈ Scnn2n , numerical
stability is already achieved for only Nq & 100. In comparison to a typical form factor
calculation this implies an only about 10 × (100/75)3 ≈ 50 times longer computation
time. Therefore, in practice we applied the latter method. For the remaining four angular
integrals, Nx0, Nx1, Ny, Nφ & 10 sampling points sufficed.
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Appendix C

Angular momentum coupling

In this section, we perform the projection of the integral kernel R onto states with definite
JP quantum numbers, where J is the total angular momentum and P is the parity. Follow-
ing the steps that are explained in sec. 2.3.3.3, we calculate the corresponding expressions
in detail. Since formulas pertaining to Clebsch–Gordan-coefficients CJM

j1s1;j2s2
and spherical

harmonics Yℓm will be frequently used, we first repeat some of their basic properties. For
a comprehensive overview, see e.g. ref. [75].

C.1 Clebsch–Gordan-coefficients

Completeness and symmetry: Since CGCs are the coefficients of a unitary matrix,
they fulfill the completeness relations

j1+j2∑

J=|j1−j2|

J∑

M=−J
CJM
j1m1;j2m2

CJM
j1m3;j2m4

= δm1m3 δm2m4 (C.1)

and ∑

m1

∑

m2

CJ3M3
j1m1;j2m2

CJ4M4
j1m1;j2m2

= δJ3J4 δM3M4 . (C.2)

Furthermore, they obey the symmetry properties:

Cj3m3

j1m1;j2m2
= (−1)j1+j2−j3Cj3,−m3

j1,−m1;j2,−m2
= (−1)j1+j2−j3Cj3m3

j2m2;j1m1

= (−1)j2+m2
√

(2j3 + 1)/(2j1 + 1)Cj1,−m1

j3,−m3;j2m2

= (−1)j1−m1
√

(2j3 + 1)/(2j2 + 1)Cj2,−m2

j1m1;j3,−m3

= (−1)j2+m2
√

(2j3 + 1)/(2j1 + 1)Cj1m1

j2,−m2;j3m3

= (−1)j1−m1
√

(2j3 + 1)/(2j2 + 1)Cj2m2

j3m3;j1,−m1
.

(C.3)
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Coupling of angular momenta: With the help of CGCs, matrix elements can be
coupled to quantities with definite total angular momentum. Therefore, we assume that
we have several of such quantities {X1, X2, . . . } with upper angular momentum indies
[j1m1; j2m2|j3m3; j4m4]. The coupling to total angular momentum is the performed ac-
cording to:

X
[J1M1;j1;j2|J2M2;j3;j4]
i :=

4∑

n=1

∑

mn

CJ1M1
j1m1;j2m2

X
[j1m1;j2m2|j3m3;j4m4]
i CJ2M2

j3m3;j3m4
. (C.4)

With the help of eq. (C.1), the product of such objects is coupled via:

6∑

n=1

∑

mn

CJ1M1
j1m1;j2m2

X
[j1m1;j2m2|j5m5;j6m6]
i X

[j5m5;j6m6|j3m3;j4m4]
j CJ2M2

j3m3;j3m4

=
∑

j7,j8

8∑

n=1

∑

mn

CJ1M1
j1m1;j2m2

X
[j1m1;j2m2|j5m5;j6m6]
i δm5m7δm6m8 δj5j7δj6j8

× X
[j7m7;j8m8|j3m3;j4m4]
j CJ2M2

j3m3;j3m4

=

j5+j6∑

J3=|j5−j6|

J3∑

M3=−J3

∑

j7,j8

δj5j7δj6j8
8∑

n=1

∑

mn

× CJ1M1
j1m1;j2m2

X
[j1m1;j2m2|j5m5;j6m6]
i CJ3M3

j5m5;j6m6

× CJ3M3
j7m7;j8m8

X
[j7m7;j8m8|j3m3;j4m4]
j CJ2M2

j3m3;j3m4

=

j5+j6∑

J3=|j5−j6|

J3∑

M3=−J3

X
[J1M1;j1;j2|J3M3;j5;j6]
i X

[J3M3;j5;j6|J2M2;j3;j4]
j .

(C.5)

C.2 Spherical harmonics

The spherical harmonics Yℓm are eigenfunctions of the angular momentum operator and
form a complete and orthonormal set of functions on the 2-sphere. We use a normalization
where the constant zeroth function reads Y00(ep) = 1/

√
4π. The spherical harmonics fulfill

the orthogonality relations:
∫

dΩq Yℓ1m1(ep) Y
∗
ℓ2m2

(ep) = δℓ1ℓ2δm1m2 ⇒
∫

dΩq Yℓm(ep) = δ0ℓδ0m
√
4π . (C.6)

Furthermore, they are related to Legendre functions of first kind Pℓ according to:

(2ℓ+ 1)Pℓ(ep · ek) = 4π
∑

m

Y ∗ℓm(ep) Yℓm(ek) . (C.7)

In combination with the formula for the conjugate of a spherical harmonic

Y ∗ℓm = (−1)m Yℓ,−m (C.8)
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the symmetry relations (C.3) of CGCs can be used in order to rewrite the known product-
formula for spherical harmonics:

Yℓ1m1 Yℓ2m2 =
√
(2ℓ1 + 1)(2ℓ2 + 1)/(4π)

∑

ℓ3,m3

Cℓ30
ℓ10;ℓ20

Cℓ3m3
ℓ1s1;ℓ2s2√

2ℓ3 + 1
Yℓ3m3

=
√

(2ℓ1 + 1)/(4π)(−1)ℓ1
∑

ℓ3,m3

Cℓ20
ℓ10;ℓ30

Cℓ3m3

ℓ1s1;ℓ2s2
Yℓ3m3

=
√

(2ℓ1 + 1)/(4π)(−1)ℓ1−m1

∑

ℓ3,m3

Cℓ30
ℓ10;ℓ20

Cℓ2,−m2

ℓ1M1;ℓ3,−m3
Yℓ3m3 .

(C.9)

C.3 Angular decomposition of the interaction kernel

With regard to angular momentum coupling in the case of two-particle P-wave interactions,
we first transform the on-shell integral kernel (2.35) with the help of relation (2.39), giving
the intrinsic dimer spin-singlet components:

R
[1|1]
ij (E,p,k)

= −
[
ν κij (gigj)

(
k Aek +

mj

Mi
pAep

)(
pAep + mi

Mj
k Aek

)†

E − p2

2µj
− k2

2µi
− pk ep ek

mij
+ iε

+ δ1iδ1j 1H
]

.
(C.10)

The kernel function R[1|1] can be expanded in terms of orbital angular momentum con-
tributions according to eq. (2.41). For the constant three-particle interaction −δ1iδ1j1H ,
this decomposition into spherical harmonics is trivial. It is based on the identity:

1 = 4π
∑

ℓ1,m1

∑

ℓ2,m2

Y ∗ℓ1m1
(ep) δ

0ℓ1 δ0ℓ2 δ0m1 δ0m2 Yℓ2m2(ek) . (C.11)

The remaining part, originating from two-particle interactions, has a complicated angu-
lar dependence. Consequently, its decomposition is more tricky. We begin with rewriting
the denominator:

1

E − p2

2µj
− k2

2µi
− pk ep ek

mij
+ iε

=:
∑

ℓ

(2ℓ+ 1)f [ℓ](E, p, k)Pℓ(ep ek) ⇒

f [ℓ](E, p, k) =
1

2

∫ 1

−1
dx

Pℓ(x)

E − p2

2µj
− k2

2µi
+ iε− pk x

mij

=
mij

pk

1

2

∫ 1

−1
dx

Pℓ(x)

−cij(E, p, k)− x
=

mij

pk
Qℓ(−cij(E, p, k))

=
mij

pk
(−1)ℓ+1Qℓ(cij(E, p, k)) , cij(E, p, k) :=

mij

pk

( p2
2µj

+
k2

2µi
− E − iε

)
.

(C.12)
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The appearing Legendre functions of first and second kind Pℓ and Qℓ and their properties
and symmetries are discussed in detail in sec. A.2. Here, we simply applied the formu-
las (A.29) and (A.32). Using the known relation (C.7) yields a preliminary decomposition
of the denominator:

1

E − p2

2µj
− k2

2µi
− pk ep ek

mij
+ iε

= (−4π)
mij

pk

∑

ℓ,m

(−1)ℓQℓ(cij(E, p, k))

× Y ∗ℓm(ep) Yℓm(ek) .

(C.13)

Its angular entanglement with the numerator will be resolved in the following. Therefore,
we write:

(
k Aek +

mj

Mi
pAep

)
·
(
pAep +

mi

Mj
k Aek

)†
=

√
µiµj

pk

mij

[ 1

ωij
(Aep)(Aek)

†
︸ ︷︷ ︸

(i)

+

√
µi
µj

p

k
(Aep)(Aep)

†
︸ ︷︷ ︸

(ii)

+

√
µj
µi

k

p
(Aek)(Aek)

†
︸ ︷︷ ︸

(iii)

+ωij (Aek)(Aep)
†

︸ ︷︷ ︸
(iv)

]
.

(C.14)

Using the definition (2.39), the appearing products of the matrix A with unit vectors in
spherical coordinates can be written as:

Aep =

(
−1√
2

−i√
2

0

0 0 1
1√
2

−i√
2

0

) (
sin θp cos φp
sin θp sinφp

cos θp

)
=

(
− 1√

2
sin θpe

iφp

cos θp
1√
2
sin θpe−iφp

)
=

√
4π

3

(
Y11(ep)
Y10(ep)
Y1,−1(ep)

)

⇒
[
(Aek)(Aep)

†]
s1s2

=
4π

3
Y ∗1s2(ep) Y1s1(ek) .

(C.15)

Inserting eqs. (C.14), (C.15) and (C.12) into eq. (C.10), we see that, after an appropriate
relabeling of the summation indices, four different products of spherical harmonics appear.
They correspond to the terms (i), (ii), (iii) and (iv) in eq. (C.14). In the following, we
rewrite and calculate all four parts separately. Thereby, we make use of the symmetry
properties of spherical harmonics and CGCs. Note that in our case all angular momentum
quantum numbers are integers such that for the CGC-symmetries (C.3), the signs of the
quantum numbers in the exponents of the (−1) factors do not matter.
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(i): We use eqs. (C.15), (C.8) and (C.9) to calculate:

Y ∗ℓ3m3
(ep) Yℓ3m3(ek)

[
(Aep)(Aek)

†]s1s2

=
4π

3
(−1)s1+s2 [Y1,−s1(ep) Yℓ3m3(ep)]

∗ Y1,−s2(ek) Yℓ3m3(ek)

=
4π

3
(−1)s1+s2

[√ 3

4π
(−1)1−(−s1)

∑

ℓ1,m1

Cℓ10
10;ℓ0C

ℓ3,−m3

1,−s1;ℓ1,−m1
Yℓ1m1(ep)

]∗

×
√

3

4π
(−1)1−(−s2)

∑

ℓ2,m2

Cℓ20
10;ℓ30

Cℓ3,−m3

1,−s2;ℓ2,−m2
Yℓ2m2(ek)

=
∑

ℓ1,m1

∑

ℓ2,m2

Cℓ10
10;ℓ30

Cℓ20
10;ℓ30

Cℓ3,−m3

1,−s1;ℓ1,−m1
Cℓ3,−m3

1,−s2;ℓ2,−m2
Y ∗ℓ1m1

(ep) Yℓ2m2(ek)

=
∑

ℓ1,m1

∑

ℓ2,m2

Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

Cℓ3m3

1s1;ℓ1m1
Cℓ3m3

1s2;ℓ2m2
Y ∗ℓ1m1

(ep) Yℓ2m2(ek) .

(C.16)

(ii): Again, eqs. (C.15), (C.8) and (C.9) imply:

Y ∗ℓ2m2
(ep) Yℓ2m2(ek)

[
(Aep)(Aep)

†]s1s2

=
4π

3
(−1)s1 [Y1,−s1(ep) Y1s2(ep) Yℓ2m2(ep)]

∗ Yℓ2m2(ek)

=
4π

3
(−1)s1 [Y1,−s1(ep)

×
√

3

4π
(−1)1

∑

ℓ3,m3

Cℓ20
10;ℓ30

Cℓ3m3
1s2;ℓ2m2

Yℓ3m3(ep)]
∗ Yℓ2m2(ek)

=
4π

3
(−1)1+s1

√
3

4π

∑

ℓ3,m3

Cℓ20
10;ℓ30

Cℓ3m3

1s2;ℓ2m2

×
√

3

4π
(−1)1−(−s1)

∑

ℓ1,m1

Cℓ10
10;ℓ30

Cℓ3,−m3

1,−s1;ℓ1,−m1
Y ∗ℓ1m1

(ep) Yℓ2m2(ek)

= (−1)1+ℓ2−ℓ3
∑

ℓ3,m3

∑

ℓ1,m1

Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

Cℓ3m3
1s1;ℓ1m1

Cℓ3m3
1s2;ℓ2m2

Y ∗ℓ1m1
(ep)Yℓ2m2(ek) .

(C.17)

(iii): We use eq. (C.17) from part (ii) in order to derive:

Y ∗ℓ1m1
(ep) Yℓ1m1(ek)

[
(Aek)(Aek)

†]s1s2

=
[
Y ∗ℓ1m1

(ek) Yℓ1m1(ep)
[
(Aek)(Aek)

†]s2s1]∗

= (−1)1+ℓ1−ℓ3
∑

ℓ3,m3

∑

ℓ2,m2

Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

Cℓ3m3

1s1;ℓ1m1
Cℓ3m3

1s2;ℓ2m2
Y ∗ℓ1m1

(ep)Yℓ2m2(ek) .

(C.18)
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(iv): This part can be calculated from part (i). According to eq. (C.16), we write:

Y ∗ℓ3m3
(ep) Yℓ3m3(ek)

[
(Aek)(Aep)

†]s1s2

= (−1)m3+m3

[
Y ∗ℓ3,−m3

(ep) Yℓ3,−m3(ek)
[
(Aep)(Aek)

†]s2s1]∗

=
∑

ℓ1,m1

∑

ℓ2,m2

Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

Cℓ3,−m3

1s2;ℓ1m1
Cℓ3,−m3

1s1;ℓ2m2
Yℓ1m1(ep)Y

∗
ℓ2m2

(ek)

=
∑

ℓ1,m1

∑

ℓ2,m2

Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

Cℓ3,−m3

1s2;ℓ1,−m1
Cℓ3,−m3

1s1;ℓ2,−m2
(−1)m1+m2Y ∗ℓ1m1

(ep)Yℓ2m2(ek).

(C.19)

Result: As we see, the parts (i)-(iii) have the same structure in terms of CGCs. Col-
lecting all parts and using the short notation Qℓ = Qℓ(cij(E, p, k)), we end up with:

R[1s1;ℓ1m1|1s2;ℓ2m2](E, p, k) =

∫
dΩp

4π

∫
dΩk

4π
Yℓ2m2(ep)R

[1s1|1s2](E,p,k) Y ∗ℓ2m2
(ek)

= −
[
νκij (gigj)

√
µiµj (−1)

∑

ℓ3,m3

(−1)ℓ3Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

×
([ 1

ωij
Qℓ3 −

√
µi
µj

p

k
Qℓ2 −

√
µj
µi

k

p
Qℓ1

]
Cℓ3m3

1s1;ℓ1m1
Cℓ3m3

1s2;ℓ2m2

+ ωijQℓ3 C
ℓ3,−m3

1s2;ℓ1,−m1
Cℓ3,−m3

1s1;ℓ2,−m2
(−1)m1+m2

)
+ δ1iδ1j δ

s1s2δ0ℓ1δ0ℓ2δ0m1δ0m2H
]

.

(C.20)

C.4 Eigenstates of total angular momentum

In order to project onto eigenstates of the total angular momentum operator, we couple
the intrinsic dimer spin with the orbital angular momentum of the dimer-particle system
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according to eq. (C.4). That way, eq. (C.20) transforms to:

R[J1M1;1;ℓ1|J2M2;1;ℓ2](E, p, k)

=
∑

s1,s2

∑

m1,m2

CJ1M1
1s1;ℓ1m1

R[1s1;ℓ1;m1|1s2;ℓ2;m2](E, p, k)CJ2M2
1s2;ℓ2m2

= −
[
νκij (gigj)

√
µiµj (−1)

∑

ℓ3

(−1)ℓ3Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

×
([ 1

ωij
Qℓ3 −

√
µi
µj

p

k
Qℓ2 −

√
µj
µi

k

p
Qℓ1

]

×
=: C(a)

︷ ︸︸ ︷∑

s1,s2

∑

m1,m2,m3

CJ1M1
1s1;ℓ1m1

Cℓ3m3
1s1;ℓ1m1

Cℓ3m3
1s2;ℓ2m2

CJ2M2
1s2;ℓ2m2

+ ωijQℓ3

=: C(b)

︷ ︸︸ ︷∑

s1,s2

∑

m1,m2,m3

CJ1M1
1s1;ℓ1m1

Cℓ3,−m3

1s2;ℓ1,−m1
Cℓ3,−m3

1s1;ℓ2,−m2
CJ2M2

1s2;ℓ2m2
(−1)m1+m2

)

+ δ1iδ1j H

=: C(c)

︷ ︸︸ ︷
δ0ℓ1δ0ℓ2

∑

s1,s2

∑

m1,m2

CJ1M1

1s1;ℓ1m1
δs1s2 δ0m1δ0m2CJ2M2

1s2;ℓ2m2

]
.

(C.21)

The three appearing sums over magnetic quantum numbers C(a), C(b) and C(c) can be sim-
plified to a great extend. Using the orthogonality relation (C.2) and the symmetries (C.3),
we separate the sums according to:

C(a) =
∑

m3

(∑

s1

∑

m1

CJ1M1
1s1;ℓ1m1

Cℓ3m3
1s1;ℓ1m1

)(∑

s2

∑

m2

CJ2M2
1s2;ℓ2m2

Cℓ3m3
1s2;ℓ2m2

)

=
∑

m3

δJ1ℓ3 δM1m3 δJ2ℓ3 δM2m3 = δJ1ℓ3 δJ1J2 δM1M2 .
(C.22)

The term C(b) is a little bit more involved to compute, since, in contrast to the prior cases,
summations over magnet quantum numbers are now entangled and can not be separated
into two parts. In order to simplify the expressions treatment, we use Wigner-6j-symbols
(W6J) (see again [75] for further details). They obey the identity:

5∑

n=1

∑

mn

Cj6m6

j1m1;j3m3
Cj1m1

j4m4;j5m5
Cj2m2

j5m5;j3m3
Cj7m7

j4m4;j2m2

= δj6j7δm6m7
√
(2j1 + 1)(2j2 + 1)

{
j1 j6 j3
j2 j5 j4

}
.

(C.23)
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Using the CGC-symmetries (C.3), we conclude:

C(b) =
∑

s1,s2

∑

m1,m2,m3

(−1)m1+m2CJ1M1
1s1;ℓ1m1

Cℓ3,−m3

1s1;ℓ2,−m2
Cℓ3,−m3

1s2;ℓ1,−m1
CJ2M2

1s2;ℓ2m2

=
∑

s1,s2

∑

m1,m2,m3

(−1)m1+m2CJ1M1
1s1;ℓ1m1

(−1)ℓ2+(−m2)

√
2ℓ3 + 1

3
C1s1
ℓ2m2;ℓ3,−m3

× (−1)ℓ1−(−m1)

√
2ℓ3 + 1

3
C1,−s2
ℓ3m3;ℓ1,−m1

(−1)1+ℓ2−J2CJ2M2

ℓ2m2;1s2

= (−1)1+ℓ1−J2
2ℓ3 + 1

3

∑

s1,s2

∑

m1,m2,m3

CJ1M1
1s1;ℓ1m1

C1s1
ℓ2m2;ℓ3,−m3

C1,−s2
ℓ3m3;ℓ1,−m1

CJ2M2
ℓ2m2;1s2

= (−1)ℓ3−J2
2ℓ3 + 1

3

∑

s1,s2

∑

m1,m2,m3

CJ1M1

1s1;ℓ1m1
C1s1
ℓ2m2;ℓ3m3

C1s2
ℓ3m3;ℓ1m1

CJ2M2

ℓ2m2;1s2

= δJ1J2 δM1M2 (−1)ℓ3−J2(2ℓ3 + 1)

{
1 J1 ℓ1
1 ℓ3 ℓ2

}
.

(C.24)

The remaining contribution is trivial:

C(c) = δ0ℓ1δ0ℓ2
∑

s1

CJ1M1
1s1;00C

J2M2
1s1;00 = δ0ℓ1δ0ℓ2

∑

s1

δ1J1δM1s1 δ1J2δM2s1

= δ0ℓ1δ0ℓ2 δ1J1δJ1J2 δM1M2 .

(C.25)

Inserting eqs. (C.23)-(C.25) into eq. (C.21), the term δJ1J2δM1M2 factors out, yielding:

R[J1M1;1;ℓ1|J2M2;1;ℓ2](E, p, k) =
∑

s1,s2

∑

m1,m2

CJ1M1

1s1;ℓ1m1
R[1s1;ℓ1m1|1s2;ℓ2m2](E, p, k)CJ2M2

1s2;ℓ2m2

= −δJ1J2δM1M2

[
νκij (gigj)

√
µiµj (−1)

∑

ℓ3

(−1)ℓ3Cℓ10
ℓ30;10

Cℓ20
ℓ30;10

×
{[ 1

ωij
Qℓ3 −

√
µi
µj

p

k
Qℓ2 −

√
µj
µi

k

p
Qℓ1

]
δJ1ℓ3

+ ωijQℓ3(−1)ℓ3−J1(2ℓ3 + 1)

{
1 J1 ℓ1
1 ℓ3 ℓ2

}}
+ δ1iδ1j δ

0ℓ1δ0ℓ2δ1J1 H

]

=: δJ1J2δM1M2 R[J1][ℓ1|ℓ2](E, p, k) .

(C.26)

Hence, channels with different total angular momenta are decoupled and the structure of
the interaction kernel reads R[J1M1;1;ℓ1|J2M2;1;ℓ2] = δJ1J2δM1M2R[J1][ℓ1|ℓ2]. This behavior is a
consequence of the Wigner–Eckhardt theorem. However, channels with different orbital
angular momenta in the dimer-particle system are still coupled.
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C.5 Parity decoupling

Considering eq. (C.26), the remaining part of the interaction kernel

R[J ][ℓ1|ℓ2](E, p, k) = −
[
νκij (gigj)

√
µiµj (−1)J+1

×
(
Cℓ10
J0;10C

ℓ20
J0;10

[ 1

ωij
QJ −

√
µi
µj

p

k
Qℓ2 −

√
µj
µi

k

p
Qℓ1

]

+ ωij
∑

ℓ

Cℓ10
ℓ0;10C

ℓ20
ℓ0;10(2ℓ+ 1)

{
1 J ℓ1
1 ℓ ℓ2

}
Qℓ

)
+ δ1iδ1j δ

1J δ0ℓ1δ0ℓ2 H
]

(C.27)

still looks relatively difficult to handle. However, using features of special CGCs and W6Js,
it can be simplified to a great extend. With respect to the remaining CGCs in eq. (C.26),
we first note that they have the form:

Cℓ10
ℓ0;10 = − Θℓ−1

2ℓ(2ℓ+ 1)

[
ℓ2(ℓ− ℓ1)(ℓ− ℓ1 + 1)(ℓ+ ℓ1 + 1)(ℓ+ ℓ1 + 2)

] 1
2 Cℓ10

ℓ−1,0;00

+
1

2(ℓ+ 1)(2ℓ+ 1)

[
(ℓ+ 1)2(−ℓ+ ℓ1)(−ℓ+ ℓ1 + 1)(ℓ+ ℓ1)(ℓ+ ℓ1 + 1)

] 1
2 Cℓ10

ℓ+1,0;00

= −
√

ℓ

2ℓ+ 1
Θℓ−1 δ

ℓ1ℓ−1 +

√
ℓ+ 1

2ℓ+ 1
δℓ1ℓ+1 .

(C.28)

Thereby, we used a formula for specific CGCs (see [75] p.256 eq.(26) for more details) and
the relation Cj10

j20;00
= Θj2δ

j1j2 . The discrete Heaviside function Θ : Z → {0, 1} vanishes
for negative integers and otherwise is unity. Hence, the product of two such CGCs can be
written as the matrix element:

Cℓ10
ℓ0;10C

ℓ20
ℓ0;10 =

1

2ℓ+ 1

[
Θℓ−1 ℓ δ

ℓ1ℓ−1 δℓ2ℓ−1 − Θℓ−1
√
ℓ(ℓ+ 1) δℓ1ℓ−1 δℓ2ℓ+1

− Θℓ−1
√
ℓ(ℓ+ 1) δℓ1ℓ+1 δℓ2ℓ−1 + (ℓ+ 1) δℓ1ℓ+1 δℓ2ℓ+1

]

=
1

2ℓ+ 1

(
Θℓ−1 ℓ 0 −Θℓ−1

√
ℓ(ℓ+1)

0 0 0

−Θℓ−1

√
ℓ(ℓ+1) 0 ℓ+1

)ℓ1ℓ2

.

(C.29)

For ℓ = 0, only the component ℓ1 = ℓ2 = ℓ + 1 = 1 is non-vanishing such that the
general 3 × 3-matrix effectively reduces to its lower right component. With the help of
relation (C.29), we rearrange the sum over W6Js in eq. (C.27) according to:

∑

ℓ

Cℓ10
10;ℓ0C

ℓ20
10;ℓ0(2ℓ+ 1)

{
1 J ℓ1
1 ℓ ℓ2

}
Qℓ =

∑

ℓ

[
ℓ

{
1 J ℓ− 1
1 ℓ ℓ− 1

}
δℓ1ℓ−1 δℓ2ℓ−1

−
√
ℓ(ℓ+ 1)

{
1 J ℓ− 1
1 ℓ ℓ+ 1

}
δℓ1ℓ−1δℓ2ℓ+1 −

√
ℓ(ℓ+ 1)

{
1 J ℓ+ 1
1 ℓ ℓ− 1

}
δℓ1ℓ+1δℓ2ℓ−1

+ (ℓ+ 1)

{
1 J ℓ+ 1
1 ℓ ℓ+ 1

}
δℓ1ℓ+1 δℓ2ℓ+1

]
Qℓ .

(C.30)
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Thereby, the Θ-functions were dropped, since, de facto, they are already included in the
corresponding W6Js due to the following properties: W6Js are invariant under permu-
tations of columns and under interchanges of upper and lower components in any two
columns. Furthermore, the upper row of a non-vanishing W6J fulfills the triangle condi-
tion. Combining both arguments leads to:

{
a b c
d e f

}
= ∆(a, b, c)∆(d, e, c)∆(d, b, f)∆(a, e, f)

{
a b c
d e f

}
,

∆ : Z3 −→ {0, 1} , ∆(a, b, c) :=

{
1 : |a− c| ≤ b ≤ a+ c

0 : otherwise .

(C.31)

Using these symmetry arguments, all W6Js in eq. (C.30) can be reordered according to:

{
1 a 1 + a
1 b c

}
= ∆(1, b, 1 + a)∆(1, a, c)∆(1, b, c) · (−1)a+b

[
2(2a)!(a+ b+ 3)!

(2a+ 3)!(b− a)!

× (a + b)!(a− b+ 2)!(b+ c− 1)!(c− a + 1)!

(b− c+ 1)!(c− b+ 1)!(b+ c+ 2)!(a− c+ 1)!(a+ c− 1)!(a+ c+ 2)!

] 1
2

,

(C.32)

where we made use of a special formula (see [75] p.300 eq.(3)). Applying (C.32), the first
W6J in eq. (C.30) reads:

{
1 J ℓ− 1
1 ℓ ℓ− 1

}
=

{
1 ℓ− 1 ℓ
1 ℓ− 1 J

}
= ∆(1, ℓ− 1, J) (−1)ℓ−1+ℓ−1

×
[

2(2ℓ− 2)!(2ℓ+ 1)!(2ℓ− 2)!2(ℓ+ J − 2)!(J − ℓ+ 2)!

(2ℓ+ 1)!(ℓ− J)!(J − ℓ+ 2)!(ℓ+ J + 1)!(ℓ− J)!(ℓ+ J − 2)!(ℓ+ J + 1)!

] 1
2

= ∆(1, ℓ− 1, J)
2(2ℓ− 2)!

(ℓ− J)!(ℓ+ J + 1)!

=
ΘJ−1 δ

ℓJ

(2J + 1)J(2J − 1)
+

ΘJ−1 δ
ℓ,J+1

(J + 1)(2J + 1)
+

δℓ,J+2

2J + 3
.

(C.33)

Similarly, we treat the second and third W6J

{
1 J ℓ− 1
1 ℓ ℓ+ 1

}
=

{
1 J ℓ+ 1
1 ℓ ℓ− 1

}
=

{
1 ℓ ℓ+ 1
1 J ℓ− 1

}

= ∆(1, J, 1 + ℓ)∆(1, J, ℓ− 1) (−1)ℓ+J

×
[

2(2ℓ)!(ℓ+ J + 3)!(ℓ+ J)!(ℓ− J + 2)!(J + ℓ− 2)!

(2ℓ+ 3)!(J − ℓ)!(J − ℓ+ 2)!(ℓ− J)!(J + ℓ+ 1)!2(2ℓ− 2)!(2ℓ+ 1)!

] 1
2

=
ΘJ−1 δ

ℓJ

2J + 1

(C.34)
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and the forth by writing:
{
1 J ℓ+ 1
1 ℓ ℓ+ 1

}
=

{
1 ℓ ℓ+ 1
1 J ℓ+ 1

}
= ∆(1, J, 1 + ℓ) (−1)ℓ+J

×
[

2(2ℓ)!(ℓ+ J + 3)!(ℓ+ J)!(ℓ− J + 2)!(J + ℓ)!2

(2ℓ+ 3)!(J − ℓ)!(J − ℓ)!(ℓ− J + 2)!(J + ℓ+ 3)!(2ℓ)!(2ℓ+ 3)!

] 1
2

= ∆(1, J, 1 + ℓ) (−1)ℓ+J
2(ℓ+ J)!

(2ℓ+ 3)!(J − ℓ)!

=
ΘJ−2 δ

ℓ,J−2

2J − 1
− ΘJ−1 δ

ℓ,J−1

(2J + 1)J
+

δℓJ

(2J + 3)(J + 1)(2J + 1)
.

(C.35)

Inserting the relations (C.33)-(C.35) into eq. (C.30), we end up with:

∑

ℓ

(2ℓ+ 1)Cℓ10
10;ℓ0C

ℓ20
10;ℓ0

{
1 J ℓ1
1 ℓ ℓ2

}
Qℓ

=
ΘJ−1J

(2J + 1)J(2J − 1)
δℓ1J−1δℓ2J−1QJ +

ΘJ−1(J + 1)

(J + 1)(2J + 1)
δℓ1Jδℓ2J QJ+1

+
(J + 2)

2J + 3
δℓ1J+1δℓ2J+1QJ+2 −

ΘJ−1
√
J(J + 1)

2J + 1
δℓ1J−1δℓ2J+1QJ

− ΘJ−1
√
J(J + 1)

2J + 1
δℓ1J+1δℓ2J−1QJ +

ΘJ−2(J − 1)

2J − 1
δℓ1J−1δℓ2J−1QJ−2

− ΘJ−1J

(2J + 1)J
δℓ1Jδℓ2J QJ−1 +

(J + 1)

(2J + 3)(J + 1)(2J + 1)
δℓ1J+1δℓ2J+1QJ

=
1

2J + 1

( ΘJ−2(J−1)(2J+1)QJ−2
2J−1

+
ΘJ−1QJ

2J−1
0 −ΘJ−1

√
J(J+1)QJ

0 ΘJ−1(QJ+1−QJ−1) 0

−ΘJ−1

√
J(J+1)QJ 0

QJ
2J+3

+
(J+2)(2J+1)QJ+2

2J+3

)ℓ1ℓ2

.

(C.36)

Inserting both analytic expressions (C.29) and (C.36) into eq. (C.27), we see that the
(3 × 3)-matrix R[J ] decomposes into two blocks R[J ] = R[J+] ⊕ R[J−]: The four corners of
R[J ] have positive parity and are the components of the (2× 2)-matrix:

R
[J+]
ij = νκij (gigj)

√
µiµj

(−1)J

2J + 1

(
ΘJ−1 0

0 1

)

×
(

ωij
(J−1)(2J+1)

2J−1
QJ−2− J(

√

µi
µj

p
k
+
√

µj
µi

k
p
)QJ−1 +(

ωij
2J−1

+ J
ωij

)QJ√
J(J+1)[

√

µi
µj

p
k
QJ−1− (ωij+

1
ωij

)QJ +
√

µj
µi

k
p
QJ+1]

√
J(J+1)[

√

µj
µi

k
p
QJ−1− (ωij+

1
ωij

)QJ +
√

µi
µj

p
k
QJ+1]

(
ωij

2J+3
+J+1

ωij
)QJ − (J+1)(

√

µi
µj

p
k
+
√

µj
µi

k
p
)QJ+1 +ωij

(J+2)(2J+1)
2J+3

QJ+2

)
(
ΘJ−1 0

0 1

)

− δ1iδ1j δ
1J (H 0

0 0 ) .

(C.37)

The center of R[J ] has negative parity and is a scalar in terms of angular momenta:

R
[J−]
ij = νκij (gigj)

√
µiµj

(−1)J

2J + 1
ΘJ−1 (QJ+1 −QJ−1) . (C.38)
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Appendix D

Feynman diagrams

D.1 Feynman rules

In this chapter, we calculate amplitudes of Feynman diagrams based on the Lagrangians
(2.18), (3.1) and (3.62). Thereby, in our field theoretical approach, each diagram corre-
sponds to an expression of the form con 〈. . . 〉, which symbolizes that we implicitly sum
over all contractions of field operators that appear within the angle brackets. Using Feyn-
man rules in momentum space, every appearing loop with four-momentum q̄ leads to an
additional integration over

∫
d4q/(2π)4.

D.2 P-wave interactions

In this section, we calculate amplitudes of Feynman diagrams that based on the Lagrangian
(2.18), which describes a three-body system with two-particle P-wave interactions.

D.2.1 Dimer self-energy

Figure D.1: Dimer self-energy term −iΣabij , con-
tributing to the full P-wave dimer propagator.

a
i , p̄

b
j , p̄

i1, q̄

i2, p̄− q̄

First, we calculate the self-energy−iΣabij . The corresponding bubble-diagram is depicted

129
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in fig. D.1. The matrix element reads:

− iΣabij (p̄) =
1

2!
con
〈
dbj

∣∣∣ (iL(2))2
∣∣∣ dai

〉

=
1

2!
con
〈
dbj

∣∣∣
[
i
∑

k∈I2

3∑

c=1

(
−gkµk dck†

(
ψk1

(←→i∇
m̂

)
ψk2
)c

+ h. c.
)]2 ∣∣∣ dai

〉

= (−iµjgj)(−iµigi) con
〈
0
∣∣∣
(
ψj1

(←→i∇
m̂

)
ψj2
)b (

ψi1

(←→i∇
m̂

)
ψi2
)†a ∣∣∣ 0

〉

= δij(−g2i )
∫

d4q̄

(2π)4

i
(
q− mi1

Mi
p
)b

q0 − q2

2mi1
+ iε

i
(
q− mi1

Mi
p
)a

p0 − q0 − (p−q)2
2mi2

+ iε
.

(D.1)

Introducing a three-momentum cut-off Λi in the i-channel, we split up the integral ac-
cording to

∫
d4q̄ =

∫
|q|<Λi

d3q
∫∞
−∞ dq0. The q0 contour integration on the real axis can

be closed by a lower arc. Since the only pole in the lower complex q0-plane is located at
q2/(2mi1)− iε, the residue theorem yields:

− Σabij (p̄) = (−i) δij (−µ2
i g

2
i ) i

2 (−2πi)

∫

|q|<Λi

d3q

(2π)4

(
q− mi1

Mi
p
)b (

q− mi1

Mi
p
)a

p0 − q2

mi1
− (p−q)2

2mi2
+ i2ε

= −δij g2i
∫

|q|<Λi

d3q

(2π)3
(q)b(q)a

p0 − q2

2µi
− p2

2Mi
+ 2iε

= δijδ
ab g2i
(2π)3

∫ Λi

0

dq q2
∫ 2π

0

dφ

∫ 1

−1
d cos θ

(q cos θ)2

q2

2µi
− p0 + p2

2Mi
− 2iε

= δijδ
ab g

2
i µi
3π2

∫ Λi

0

dq
q4

q2 − y2i
with yi(p̄) :=

√
2µi

(
p0 − p2

2Mi
+ iε

)

= δijδ
ab g

2
i µi
3π2

∫ Λi

0

dq

[
q2 + y2i −

y3i
2

(
1

q + yi
− 1

q − yi

)]

= δijδ
ab g

2
i µi
3π2

[
q3

3
+ y2i q −

y3i
2
(ln(q + yi)− ln(q − yi))

]Λi

0

= δijδ
ab g

2
i µi
3π2

[
Λ3
i

3
+ y2iΛi +

y3i
2
(iπ)

]
= δijδ

ab g
2
i µi
3π2

[
Λ3
i

3
+ Λiy

2
i (p̄) +

π

2
iy3i (p̄)

]
.

(D.2)

Thereby, we shifted the loop momentum q 7→ q+
mi1

Mi
p, chose spherical coordinates for the

d3q integration with the z-axis in the a-direction and assumed that the three-momentum
cut-off Λi is much bigger than all other energy scales. Furthermore, we used the standard
definition for the root of a complex number z with

√
z
2
= z and arg(

√
z) ∈ (−π/2, π/2].

Thus, the real part of the square root is always non-negative. In addition, we took the
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principal branch of the complex logarithm. We note that the self-energy Σabij is diagonal
and constant in the spatial indices a and b.

D.2.2 Dimer-particle interaction

i 6= j i = j

a
i , p̄1

a
i , p̄1

i, p̄2 i, p̄2
b
j , k̄1

b
j , k̄1j, k̄2

j, k̄2

k, p̄1 − k̄2 = k1 − p̄2

Figure D.2: Dimer particle interaction diagrams. iRab
ij, 6= is constructed out of two two-

particle P-wave couplings. iRab
ij,= is the three-particle interaction.

Using center-of-mass kinematics according to eqs. (2.29) and (2.30), we now calculate
the amplitude iRab

ij = iRab
ij, 6= + iRab

ij,= of the dimer-particle interaction graph depicted in

fig. D.2. Since P = 0 holds, for the first diagram iRab
ij, 6=, which is composed of two two-

particle couplings and a single-particle propagator, we get:

iRab
ij, 6=(P̄ , p̄, k̄) =

1

2!
con
〈
dbj ψj

∣∣∣ (iL(2))2
∣∣∣ dai ψi

〉

=
1

2!
con
〈
dbj

∣∣∣
[
i
∑

k∈I2

3∑

c=1

(
−gkµk d†kc

(
ψk1

(←→i∇
m̂

)
ψk2
)c

+ h. c.
)]2 ∣∣∣ dai

〉

= (−iµjgj)(−iµigi) con
〈
ψj

∣∣∣
(
ψj1

(←→i∇
m̂

)
ψj2
)b (

ψi1

(←→i∇
m̂

)
ψi2
)†a ∣∣∣ψi

〉

= (−i) ν κij (gigj)
(
k− mj

Mi
(P− p)

)a(
p− mi

Mj
(P− k)

)b

((E − p0)− k0)− ((P−p)−k)2
2mij

+ iε

= (−i) ν κij (gigj)
(
k +

mj

Mi
p
)a(

p+ mi

Mj
k
)b

E − p0 + p2

2mi
− k0 + k2

2mj
− p2

2µj
− k2

2µi
− p·k

mij
+ iε

.

(D.3)

The obtained prefactors are defined as

ν :=

{
+1 : #fermions ≤ 1

−1 : #fermions > 1
, κij :=

{
1 : 2 types

(1− δij) : 3 types
, (D.4)

where ν accounts for possible anticommutations of the fields if at least two of them are
fermions. κ distinguishes between the cases of two and three different particle types.
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Combining this result with the trivial momentum-independent three-particle-interaction
part

iRab
ij,=(P̄ , p̄, k̄) = (−i) δ1iδ1jδabH , (D.5)

we end up with the full P-wave interaction kernel:

Rab
ij (P̄ , p̄, k̄) = −

[
ν κij (gigj)

(
k+

mj

Mi
p
)a(

p+ mi

Mj
k
)b

E − p0 + p2

2mi
− k0 + k2

2mj
− p2

2µj
− k2

2µi
− p·k

mij
+ iε

+ δ1iδ1jδ
abH

]
.

(D.6)

This result also holds for off-shell center-of-mass kinematics. If the incoming and outgoing
single-particle four-momenta are on-shell, the term −p0+ p2

2mi
−k0+ k2

2mj
in the denominator

vanishes.

D.3 Two-neutron halo EFT with external currents

In this section, we calculate amplitudes of Feynman diagrams based on the Lagrangians
(3.1) and (3.62) for a two-neutron halo system with external currents and two-particle
S-wave interactions.

D.3.1 Dimer self-energy

Figure D.3: Dimer self-energy term −iΣ[S1s1|S2s2]
ij ,

contributing to the full dimer propagator.
[S1s1]
i , p̄

[S2s2]
j , p̄

i1, q̄

i2, p̄− q̄

We calculate the self-energy −iΣij corresponding to the bubble-diagram in fig. D.3.

First, we denote that Σ
[Sis1|Sjs2]
ij = δijδ

SiSjδs1s2Σi is diagonal, where the reduced matrix
elements read:
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• Σ0:

− iΣ0(p̄) =
1

2!
con
〈
d0

∣∣∣ (iL(2))2
∣∣∣ d0
〉

=
1

2!
con
〈
d0

∣∣∣
(
i
g0
2

)2 [
d†0 (

~ψT
1 P

~ψ1) + (~ψT
1 P

~ψ1)
† d0

]2 ∣∣∣ d0
〉

= −g
2
0

4

2

2!

∑

s1,s2,s3,s4

P s1s2(P †)s3s4 [δs2s3δs1s4 − δs1s3δs2s4] iΣ◦0(p̄)

= −g
2
0

4
2Tr[PP †] iΣ◦0(p̄) = −g

2
0

2
iΣ◦0(p̄) ,

(D.7)

• Σ1:

− iΣ1(p̄) =
1

2!
con
〈
ds1

∣∣∣ (iL(2))2
∣∣∣ ds1
〉

=
1

2!
con
〈
ds1

∣∣∣ (ig1)2
[
~d†1
~ψ1 ψ0 + ψ†0

~ψ†1
~d1

]2 ∣∣∣ ds1
〉

= −g21
2

2!
iΣ◦1(p̄) = −g21 iΣ◦1(p̄) .

(D.8)

The remaining integral iΣ◦i (p̄) can be evaluated by introducing a three-momentum cut-off
Λi and applying the residue theorem analogous to eq. (D.2):

iΣ◦i (p̄) =

∫
d4q̄

(2π)3

∫ ∞

−∞

dq0

2π

i

q0 − q2

2mi1
+ iε

i

p0 − q0 − (p−q)2
2mi2

+ iε

= i

∫

q<Λi

d3q

(2π)3
1

p0 − q2

mi1
− (p−q)2

2mi2
+ i2ε

= i

∫

q<Λi

d3q

(2π)3
1

p0 − q2

2µi
− p2

2Mi
+ 2iε

= −i 4π

(2π)3
(2µi)

∫ Λi

0

dq
q2

q2 − y2i
with yi(p̄) =

√
2µi

(
p0 − p2

2Mi
+ iε

)

= −i µi
π2

∫ Λi

0

dq

[
1− yi

2

(
1

q + yi
− 1

q − yi

)]

= −i µi
π2

[
q − yi

2
(ln(q + yi)− ln(q − yi))

]Λi

0
= −i µi

π2

[
Λi +

yi(p̄)

2
(iπ)

]
.

(D.9)

Note that the loop momentum was shifted according to q 7→ q +
mi1

Mi
p, eliminating the

angle ep · eq.

D.3.2 Two particle scattering

We now calculate the full two-particle scattering amplitude itij that is depicted in fig. D.4.
The incoming (outgoing) particles of type i1 and i2 (j1 and j2) have four-momenta p̄1 and
p̄2 (k̄1 and k̄2). Denoting its total four-momentum by P̄ = p̄1 + p̄2 = k̄1 + k̄2, the only
non-vanishing matrix elements are the diagonal ones:
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Figure D.4: Feynman graph for the two-particle
scattering matrix element itij(p̄1, p̄2, k̄1, k̄2).

i1, p̄1

i2, p̄2

j1, k̄1

j2, k̄2

i, P̄ j, P̄

• t00:

it
[00|00]
00 (p̄1, p̄2, k̄1, k̄2) =

1

2!
con

〈
(~ψT

1 P
~ψ1)
∣∣∣(iL(2))2

∣∣∣(~ψT
1 P

~ψ1)
〉

=
(
−ig0

2

)2 2

2!
con

〈
(~ψT

1 P
~ψ1)
∣∣∣
(
(~ψT

1 P
~ψ1)
†d0
) (
d†0(

~ψT
1 P

~ψ1)
)∣∣∣(~ψT

1 P
~ψ1)
〉

= −g
2
0

4

∑

s1,s2,s3,s4

P s1s2(P †)s3s4 [δs2s3δs1s4 − δs1s3δs2s4]

× P s5s6(P †)s7s8 [δs6s7δs5s8 − δs5s7δs6s8] D0(P̄ )

= −g
2
0

4
(2Tr

[
PP †

]
)2 iD0(P̄ ) = −g20 iD0(P̄ ) ,

(D.10)

• t11:

it
[ 1
2
s1| 12s2]

11 (p̄1, p̄2, k̄1, k̄2) =
1

2!
con

〈
(ψs21 ψ0)

∣∣∣ (iL(2))2
∣∣∣ (ψs11 ψ0)

〉

= −g21
2

2!
con

〈
(ψs21 ψ0)

∣∣∣
(
ψ†0

~ψ†1
~d1
) (

~d†1
~ψ1 ψ0

) ∣∣∣ (ψs11 ψ0)
〉

= −g21 δs1s2 iD1(P̄ ) .

(D.11)

D.3.3 Dimer-particle interaction

Using general kinematics (3.16)-(3.17), we now calculate the amplitude iRij of the dimer-
particle interaction graph depicted in fig. D.5. The expressions for the four possible cases
read:

• R00:

iR
[00;00|00;00]
00 (P̄ , p̄, k̄) =

1

2!
con

〈
ψ0 d0|(iL(3))2|ψ0 d0

〉

= (−ih)2 2
2!

con
〈
ψ0 d0

∣∣ ((ψ0 d0)
†t
) (
t†(ψ0 d0)

) ∣∣ψ0 d0
〉

= −ih
2

Ξ
=: −iH

(D.12)



D.3. TWO-NEUTRON HALO EFT WITH EXTERNAL CURRENTS 135

i, p̄1 = Mi

MΣ

P̄ + p̄ i, p̄1 = Mi

MΣ

P̄ + p̄

i, p̄2 = mi

MΣ

P̄ − p̄ i, p̄2 = mi

MΣ

P̄ − p̄

j, k̄1 =
Mj

MΣ

P̄ + k̄

j, k̄1 =
Mj

MΣ

P̄ + k̄j, k̄2 =
mj

MΣ

P̄ − k̄

j, k̄2 =
mj

MΣ

P̄ − k̄

k, p̄1 − k̄2 =
mij

MΣ

P̄ + k̄ + p̄

P̄

(i, j) 6= (0, 0) (i, j) = (0, 0)

Figure D.5: Dimer particle interaction diagrams iRij . The part with (i, j) 6= (0, 0) is
constructed out of two two-particle S-wave couplings. The channel (i, j) = (0, 0) includes
the three-particle interaction.

• R01:

iR
[00;00| 1

2
s3;

1
2
s4]

01 (P̄ , p̄, k̄) =
1

2!
con

〈
ψs41 d

s3
1 |(iL(2))2|ψ0d0

〉

=
(
−g0g1

2

) 2

2!
con

〈
ψs41 d

s3
1

∣∣∣
(
(~ψT

1 P
~ψ1)
†d0

) (
(~d†1

~ψ1)ψ0

) ∣∣∣ψ0d0

〉

=
(
−g0g1

2

) ∑

s5,s6,s7

δs4s7(P †)s5s6 [δs3s5(−δs6s7)− δs3s6(−δs5s7)]

× i

m01

MΣ
P 0 + p0 + k0 −

(

m01
MΣ

P+p+k
)2

2m01
+ iε

=
−i(g0g1)C00

1
2
s3;

1
2
s4

m01

MΣ
P 0 + p0 + k0 −

(

m01
MΣ

P+p+k
)2

2m01
+ iε

,

(D.13)

where we used

1

2

∑

s5,s6,s7

δs4s7(P †)s5s6 [δs3s5(−δs6s7)− δs3s6(−δs5s7)]

=
1

2

[
(P †)s4s3 − (P †)s3s4

]
= P s3s4 = C00

1
2
s3;

1
2
s4

.

(D.14)

• R10: Due to symmetry, we know that the following identity holds:

iR
[ 1
2
s1;

1
2
s2|00;00]

10 (P̄ , p̄, k̄) = iR
[00;00| 1

2
s1;

1
2
s1]

01 (P̄ , k̄, p̄)

=
−i(g1g0) C00

1
2
s1;

1
2
s2

m10

MΣ
P 0 + p0 + k0 −

(

m10
MΣ

P+p+k
)2

2m10
+ iε

.
(D.15)
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• R11:

i R
[ 1
2
s1;

1
2
s2| 12 s3;

1
2
s4]

11 (P̄ , p̄, k̄) =
1

2!
con

〈
ψs41 d

s3
1 |(iL(2))2|ψs21 ds11

〉

= (−g21)
2

2!
con

〈
ψs41 d

s3
1

∣∣∣
(
(~d†1

~ψ1)ψ0

) (
ψ†0(

~ψ†1
~d1)
) ∣∣∣ψs21 ds11

〉

= (−g21)
∑

s5,s6

δs3s5δs6s1 (−δs4s6)δs5s2

× i

m11

MΣ
P 0 + p0 + k0 −

(

m11
MΣ

P+p+k
)2

2m11
+ iε

=
−i(g21) (−δs2s3δs4s1)

m11

MΣ
P 0 + p0 + k0 −

(

m11
MΣ

P+p+k
)2

2m11
+ iε

.

(D.16)

• Rij : Using the relation for the real part of the denominator

mij

MΣ
P 0 + ǫi,p + ǫj,k −

(
mij

MΣ
P+ p+ k

)2

2mij
= E − p2

2µj
− k2

2µi
− p · k

mij

(D.17)

and defining out the spin factors

(
σ
[00;00|00;00]
00 σ

[00;00| 12 s3;
1
2 s4]

01

σ
[ 12 s1;

1
2 s2|00;00]

10 σ
[ 12 s1;

1
2 s2| 12 s3;

1
2 s4]

11

)
:=

(
0 C00

1
2 s3;

1
2 s4

C00
1
2 s1;

1
2 s2
−δs2s3δs4s1

)
, (D.18)

we summarize the results (D.12)-(D.16) through the compact formula:

R
[Sis1;Sis2|Sjs3;Sjs4]
ij (P̄ , p̄, k̄)

= −
[

σ
[Sis1;Sis2|Sjs3;Sjs4]
ij gigj

E + p0 − ǫi,p + k0 − ǫj,k − p2

2µj
− k2

2µi
− p·k

mij
+ iε

+ δi0 δj0H

]
.
(D.19)

D.3.4 Form factor contributions

We now calculate all three parts FE,0, FE,1 and FE,2, which contribute to the electric
form factor FE =

∑2
i=0FE,i, individually. In fig. 3.9, the corresponding equation (3.64)

is represented in terms of Feynman graphs. The total four-momenta of the incoming and
outgoing trimer bound states are P̄ and K̄, respectively. The four-momentum transfer
then reads Q̄ = K̄ − P̄ . Energy conservation implies:

E(K̄) +
K2

2MΣ
= K0 = P 0 +Q0 = E(P̄ ) +

P2

2MΣ
+Q0 . (D.20)
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For intermediate dimer-particle states that occur in Feynman diagrams, we always use the
shifted kinematics (3.17) in order to incorporate the matrix elements derived in sec. 3.1.4.
Furthermore, throughout the form factor calculations, we will use the linear combinations

J̄± :=
K̄ ± P̄

2
. (D.21)

The four-momentum transfer then reads Q̄ = 2J̄−.

D.3.4.1 Breit frame

We perform our calculations in the Breit frame where no energy is transferred, i.e. Q0 = 0.
Since the process is assumed to be elastic, the binding energies are equal E(P̄ ) = E(K̄) =
E = E(3) < 0. In combination with eqs. (D.20) and (D.21), this implies the conditions:

J0
− = 0 , P2 = K2 ⇒ J+ · J− = 0 . (D.22)

Thus, only the orientation of the trimer three-momentum can change. Using the rela-
tion (D.22) will significantly simplify many expressions in the below calculations.

D.3.4.2 Parallel term

Figure D.6: The iΓ0 contribution to
the form factor matrix element. The
photon couples to a core field prop-
agating parallel to the nn-dimer. It
corresponds to the first term in the
sum on the right-hand side of the lower
equation in fig. 3.9.

(0)

We begin with the calculation of FE,0, represented in fig. D.6. The charged core prop-
agates parallel to the nn-dimer. The corresponding reduced matrix element iΓred

0 is the
first summand on the right-hand side of the lower equation in fig. 3.9. Using eq. (3.65), its
renormalized version reads:

iΓ̄red
0 (P̄ , K̄, p̄, k̄) = (Ze)−1 |Z0|−

1
2

i

ǫ0(P̄ ,p)− p0 + iε
(−iZe) i

ǫ0(K̄,k)− k0 + iε

× iD0(P̄ , p̄) (2π)
4δ(4)

((M0

MΣ

P̄ + p̄
)
−
(M0

MΣ

K̄ + k̄
))

|Z0|−
1
2

= i
iD̄0(P̄ , p̄)

(ǫ0(P̄ ,p)− p0 + iε)(ǫ0(K̄,k)− k0 + iε)
(2π)4δ(4)

(
k̄ −

(
p̄− M0

MΣ
Q̄
))

.

(D.23)
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Inserting eq. (D.23) into eq. (3.9), the δ(4)-function eliminates the d4k̄ intergral:

FE,0(P̄ , K̄) =

∫

p<Λ

d4p̄

(2π)4
i Ḡ0(P̄ , p̄) D̄0(P̄ , p̄) Ḡ0(K̄, p̄− M0

MΣ
Q̄)

(ǫ0(P̄ ,p)− p0 + iε)(ǫ0(K̄,p− M0

MΣ
Q)− p0 + iε)

=

∫

q<Λ

d4q̄

(2π)4
i Ḡ0(P̄ , q̄ + r̄) D̄0(J̄−, q̄) Ḡ0(K̄, q̄ − r̄)

(ǫ0(P̄ ,q+ r)− q0 + iε)(ǫ0(K̄,q− r)− q0 + iε)
.

(D.24)

In the last step we shifted the loop integration via the substitution q̄ := p̄− r̄ with

r̄ :=
M0

MΣ
J̄− =

M0

MΣ

Q̄

2
=

m1

MΣ
Q̄ ⇒ r0 = 0 , r ≪ Λ . (D.25)

In addition, we used the identity

M0

MΣ
P̄ + p̄ =

M0

MΣ
J̄+ + q̄ ⇒ D̄0(P̄ , p̄) = D̄0(J̄+, q̄) (D.26)

in order to rewrite the full dimer propagator. Inserting eq. (3.22) and the integral equa-
tion (3.54) for the irreducible trimer-dimer-particle coupling, the interim result (D.24)
assumes the form:

FE,0(P̄ , K̄) =

∫

q<Λ

d3q

(2π)3

∫ ∞

−∞

dq0

2π

×
( 1∑

i=0

∫ Λ

0

dp Ḡi(p) D̄
[0]
i (p) •R̄

[0]
i0 (E

(3) + q0 − ǫ0(P̄ ,q+ r), p, |q+ r|) − |βH̄|
)

× i D̄0(E
(3) + q0 − ǫ0(J̄+,q), q)

(ǫ0(P̄ ,q+ r)− q0 + iε)(ǫ0(K̄,q− r)− q0 + iε)

×
( 1∑

j=0

∫ Λ

0

dk •R̄
[0]
0j (E

(3) + q0 − ǫ0(K̄,q− r), |q− r|, k) D̄[0]
j (k) Ḡj(k) − |βH̄|

)
.

(D.27)

Note that we used the convention (1.21).

Symmetrization: In order to symmetrize and evaluate the integral (D.27), we define lin-
ear combinations of the appearing off-shell energies via: ǫ± := 1

2
[ǫ0(K̄,q− r)±ǫ0(P̄ ,q+ r)].

Using the identity

1

2

{
(a− q)2 ± (b− q)2

}
=

{(
a+b
2

− q
)2

+
(
a−b
2

)2
(
a+b
2

− q
)
(a− b)

(D.28)
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for arbitrary vector a,b,q ∈ R3, we can express ǫ± through:

ǫ+ =
1

2

[
m0

MΣ

K0 −
(
m0

MΣ
K− (q− r)

)2

2m0

+
m0

MΣ

P 0 −
(
m0

MΣ
P− (q+ r)

)2

2m0

]

=
m0

MΣ

J0
+ − 1

2m0

1

2

[((m0

MΣ

K+ r
)
− q

)2
+
((m0

MΣ

P− r
)
−q
)2
]

=
m0

MΣ
J0
+ − 1

2m0

[(
( m0

MΣ
K+ r) + ( m0

MΣ
P− r)

2
− q

)2

+

(
( m0

MΣ
K+ r)− ( m0

MΣ
P− r)

2

)2]

=
m0

MΣ
J0
+ −

(
m0

MΣ
J+ − q

)2

2m0
− J2

−
2m0

= ǫ0(J̄+,q)−
m0 r

2

2µ̄2
0

,

(D.29)

ǫ− =
1

2

[
m0

MΣ

K0 −
(
m0

MΣ
K− (q− r)

)2

2m0

− m0

MΣ

P 0 +

(
m0

MΣ
P− (q+ r)

)2

2m0

]

=
m0

MΣ

J0
− − 1

2m0

1

2

[((m0

MΣ

K+ r
)
− q

)2
−
((m0

MΣ

P− r
)
− q

)2
]

=
m0

MΣ
J0
− − 1

2m0

((
m0

MΣ
P− r

)
+
(
m0

MΣ
K+ r

)

2
− q

)

×
((m0

MΣ
K+ r

)
−
(m0

MΣ
P− r

))

=
m0

MΣ

J0
− −

(
m0

MΣ
J+ − q

)
· 2J−

2m0

=
q · r
µ̄0

.

(D.30)

For the last equation, the Breit frame conditions (D.22) were crucial. From eqs. (D.29)
and (D.30) one can directly deduce:

ǫ+ − ǫ0(J̄+,q) = −m0 r
2

2µ̄2
0

,

ǫ+ ± ǫ− =

{
ǫ0(K̄,q− r)

ǫ0(P̄ ,q+ r)
⇒ ± q · r

µ̄0
=

{
ǫ0(K̄,q− r)− ǫ+

ǫ0(P̄ ,q+ r)− ǫ+ .

(D.31)
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Using these relations, we can shift the energy integration over q0 in eq. (D.27) according
to q0 7→ q0 + ǫ+, yielding:

FE,0(P̄ , K̄) =

∫

q<Λ

d3q

(2π)3

∫ ∞

−∞

dq0

2π

×
(∫ Λ

0

dp Ḡ(p)T D̄[0](p) •R̄[0](E(3) + q0 +
q · r
µ̄0

, p, |q+ r|) − |βH̄| eT
0

)

× (e0 · eT
0 )

i D̄(E(3) + q0 − m0 r
2

2µ̄20
, q)

(−q·r
µ̄0

− q0 + iε)(q·r
µ̄0

− q0 + iε)
(e0 · eT

0 )

×
(∫ Λ

0

dk •R̄[0](E(3) + q0 − q · r
µ̄0

, |q− r|, k) D̄[0](k) Ḡ(k) − |βH̄| e0
)

.

(D.32)

Note that we wrote the equation in its (2 × 2)-matrix form. The appearing projection
matrix (e0 · eT

0 ) has components (e0 · eT
0 )ij = δi0δj0. Consequently, (e0 · eT

0 )
2 = (e0 · eT

0 )
holds. Combining this with the fact that (e0 ·eT

0 ) commutes with the diagonal dimer matrix
D̄, one of the two projectors in eq. (D.32) is redundant can can be dropped. We now apply
the residue theorem in order to eliminate the energy integral in eq. (D.32). The integrand,
as a function of complex q0, has a root cut in the lower half plane and is analytic in the
upper plane except for the two poles q0 = ±q · r/0 + iε We therefore apply the following
formula for c ∈ R:

lim
ε→0+

∫ ∞

−∞

dq0

2π

f(q0)

(c+ iε − q0)(−c + iε− q0)

= lim
ε→0+

2πi

2π

[
f(c+ iε)

(−1)(−c + iε− (c+ iε))
+

f(−c+ iε)

(c+ iε− (−c + iε))(−1)

]

= lim
ε→0+

i
f(c+ iε)− f(−c+ iε)

(c+ iε)− (−c+ iε)
=

{
i f(c)−f(−c)

(c)−(−c) = i
2c
{f(c)− f(−c)} : c 6= 0

i (∂f)(0) : c = 0 .

(D.33)

This expression is continuous in c, whereas its contributions if(c)/(2c) and −if(−c)/(2c)
are singular at c → 0. Applying eq. (D.33) with c = −q · r/0 to the form factor inte-
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gral (D.32), yields:

FE,0(P̄ , K̄) =

∫

q<Λ

d3q

(2π)3
i2

2
(
−q·r

µ̄0

)
(
−(2π)3

4π

1

q2

)

×
{(∫ Λ

0

dp Ḡ(p)T D̄[0](p) •R̄[0](p, |q+ r|) − |βH̄| eT
0

)

× (e0 · eT
0 ) D̄

[0](E(3) − q · r
µ̄0

− m0 r
2

2µ̄2
0

, q)

×
(∫ Λ

0

dk •R̄[0](E(3) − 2
q · r
µ̄0

, |q− r|, k) D̄[0](k) Ḡ(k) − |βH̄| e0
)

−
(∫ Λ

0

dp Ḡ(p)T D̄[0](p) •R̄[0](E(3) + 2
q · r
µ̄0

, p, |q+ r|) − |βH̄| eT
0

)

× D̄[0](E(3) +
q · r
µ̄0

− m0 r
2

2µ̄2
0

, q) (e0 · eT
0 )

×
(∫ Λ

0

dk •R̄[0](|q− r|, k) D̄[0](k) Ḡ(k) − |βH̄| e0
)}

.

(D.34)

Thereby, the use of the redefined dimer function (2.43) led to an additional prefactor of
−(2π)3/(4π q2).

Angular integration: Considering the remaining integral over q in eq. (D.34), without
loss of generality, we assume that Q and consequently also r points in 3-direction. Thus,
r = r · er with er = e3 holds. Choosing spherical coordinates

q = q · eq , eq =
(

sin θ cosφ
sin θ sinφ

cos θ

)
, (D.35)

we see that the integrand in eq. (D.32), in terms of the three-momenta q and r, only
depends on the lengths q, r and the angle x := eq · er = cos θ. The appearing scalar

products simply read q · r = qrx, leading to |q± r| =
√
q2 ± 2q · r+ r2 = d(q, r,±x) with

∀ a, b ∈ [0,∞) , x ∈ (−1, 1) : d(a, b, x) :=
√
a2 + 2abx+ b2 . (D.36)

The integration over φ is trivial, and results in an additional factor of 2π such that the
integral can be simplified according to:

∫

q<Λ

d3q

(2π)3
i2

2
(
−q·r

µ̄0

)
(
−(2π)3

4π

1

q2

)
(. . . ) =

µ̄0

4

∫ Λ

0

dq

q

∫ 1

−1

dx

x
(−1) (. . . ) . (D.37)

In addition, multiplying out the brackets in eq. (D.34), we can interpret the resulting inte-
grands as matrix-, vector- and scalar-valued functions Y M

0 (Q, p, k), Y V
0 (Q, p) and Y S

0 (Q),
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resulting in:

FE,0(Q) =

∫ Λ

0

dp

∫ Λ

0

dk Ḡ(p)T D̄[0](p) Y M
0 (Q, p, k) D̄[0](k) Ḡ(k)T

− 2|β H̄|
∫ Λ

0

dp Ḡ(p)T D̄[0](p) Y V
0 (Q, p) + |β H̄|2 Y S

0 (Q) ,

Y X
0 (Q . . . ) =

µ̄0

4

∫ Λ

0

dq

q

∫ 1

−1

dx

x
ΥX

0

(M0

MΣ

Q

2
, q, x . . .

)
, X ∈ {M,V, S} ,

ΥM
0 (r, q, x, p, k)

=
1

r

{
•R̄[0]

(
E(3) + 2

qrx

µ̄0
, p, d(r, q, x)

)
D̄[0]

(
E(3) +

qrx

µ̄0
− m0 r

2

2µ̄2
0

, q
)

× (e0 · eT
0 )
•R̄[0](d(r, q,−x), k) − •R̄[0](p, d(r, q, x)) (e0 · eT

0 )

× D̄[0]
(
E(3) − qrx

µ̄0
− m0 r

2

2µ̄2
0

, q
)
•R̄[0]

(
E(3) − 2

qrx

µ̄0
, d(r, q,−x), k

)}
,

ΥV
0 (r, q, x, p)

=
1

r

{
•R̄[0]

(
E(3) + 2

qrx

µ̄0
, p, d(r, q, x)

)
D̄[0]

(
E(3) +

qrx

µ̄0
− m0 r

2

2µ̄2
0

, q
)

− •R̄[0](p, d(r, q, x)) D̄[0]
(
E(3) − qrx

µ̄0
− m0 r

2

2µ̄2
0

, q
)}

e0 ,

ΥS
0(r, q, x)

=
1

r
eT
0

{
D̄[0]

(
E(3) +

qrx

µ̄0

− m0 r
2

2µ̄2
0

, q
)
− D̄[0]

(
E(3) − qrx

µ̄0

− m0 r
2

2µ̄2
0

, q
)}

e0 .

(D.38)

Properties: In order to determine FE,0(Q), we have to evaluate 4 integrals, namely those
over the 3 momenta p, k, q ∈ [0,Λ] and 1 over the angle x ∈ [−1, 1]. One can easily check
that ΥM

0 (r, q, x, p, k)/x = ΥM
0 (r, q,−x, k, p)T/(−x), after substituting x 7→ −x, yields the

symmetry Y M
0 (Q, p, k) = Y M

0 (Q, k, p)T, as required. Furthermore, the inequality

(
E(3) − m0 r

2

2µ̄2
0

± qrx

µ̄0

)
− q2

2µ̄0
= E(3) −

q2 ∓ 2qrx+ MΣ

M0
r2

2µ̄0
< −(q − r)2

2µ̄0
≤ 0 (D.39)

implies that all appearing dimer propagators D̄
[0]
0 are uncritical. Since the nn scattering

length a0 < 0 is negative, furthermore, they are also real in the limit ε → 0+. Moreover,
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the identity:

lim
ε→0+

(−i)y0
(
E(3) − m0 r

2

2µ̄2
0

± qrx

µ̄0
, q
)

=

√
2µ0

∣∣∣
(
E(3) − m0 r2

2µ̄2
0

± qrx

µ̄0

)
− q2

2µ̄0

∣∣∣ . (D.40)

holds. Similar considerations hold for the trimer-irreducible dimer-particle interaction func-
tions •R̄

[0]
i0 such that the terms Y X

0 (Q . . . ) are all real. Thus, FE,0(Q) is real, as it should.
The additional symmetry ΥX

0 (−r, q, x . . . )/x = ΥX
0 (r, q,−x . . . )/(−x), after substituting

x 7→ −x, leads to Y X
0 (−Q . . . ) = Y X

0 (Q . . . ). Consequently, also the form factor contri-
bution FE,0(Q) is an even function in Q and be written in the usual way FE,0(Q

2). Note
that due to eq. (D.33), the limit Q → 0 in eq. (D.38) exists, but prefactors ∝ 1/Q cause
numerical instabilities for very small momentum transfer. A discussion of the numerical
implementation is given in sec. B.

D.3.4.3 Exchange term

Figure D.7: The iΓ1 contribution to
the form factor matrix element. The
photon couples to a core field that is
exchanged between cn-dimers. It cor-
responds to the second term in the
sum on the right-hand side of the lower
equation in fig. 3.9.

(1)

We proceed with the calculation of FE,1, represented in fig. D.7. The charged core
is exchanged between cn-dimers. The corresponding reduced matrix element iΓred

1 is the
second summand on the right-hand side of the lower equation in fig. 3.9. Its spin structure is
completely analogous to the corresponding dimer-particle interaction in fig. D.5. Projecting
onto the spin-singlet state and using eq. (3.65), its renormalized version reads:

iΓ̄red
1 (P̄ , K̄, p̄, k̄) = (Ze)−1|Z1|−

1
2 iD1(P̄ , p̄) (−ig1)

i

ǫ1(P̄ ,p)− p0 + iε

× i

(
M1

MΣ
P 0 + p0

)
−
(
m1

MΣ
K0 − k0

)
−
(
(
M1
MΣ

P+p)−( m1
MΣ

K−k)
)2

2m0
+ iε

× (−iZe)

× i

(
M1

MΣ
K0 + k0

)
−
(
m1

MΣ
P 0 − p0

)
−
(
(
M1
MΣ

K+k)−( m1
MΣ

P−p)
)2

2m0
+ iε

× i

ǫ1(K̄,k) + iε− k0
(−ig1) iD1(P̄ , p̄) |Z1|−

1
2 .

(D.41)
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Again, we use the rescaled four-momentum r̄ = m1/MΣQ̄ from (D.25) in order to rewrite
the two factor appearing denominators. The first one reads:

(M1

MΣ

P 0 + p0
)
−
(m1

MΣ

K0 − k0
)
−
(
(M1

MΣ
P+ p)− ( m1

MΣ
K− k)

)2

2m0

= P 0 +
[
p0 − ǫ1(P̄ ,p) + k0 − ǫ1(K̄,k)

]

−
(
m1

MΣ
P− p

)2

2m1

−
(
m1

MΣ
K− k

)2

2m1

−
(
M1

MΣ
P− m1

MΣ
K+ p+ k

)2

2m0

= E(P̄ ) +
P2

2MΣ

+
[
p0 − ǫ1(P̄ ,p) + k0 − ǫ1(K̄,k)

]

−
(
m1

MΣ
P− p

)2

2m1

−
(
m1

MΣ
P+ (r− k)

)2

2m1

−
(
m0

MΣ
P− (r− k) + p

)2

2m0

= E(P̄ ) +
[
p0 − ǫ1(P̄ ,p) + k0 − ǫ1(K̄,k)

]

+
P2

2MΣ

− m1P
2

2M2
Σ

+
Pp

MΣ

− p2

2m1

− m1P
2

2M2
Σ

− P (r− k)

MΣ

− (r− k)2

2m1

− m0P
2

2M2
Σ

− (r− k)2

2m0
− p2

2m0
+

P (r− k)

MΣ
− Pp

MΣ
+

(r− k)p

m0

= E(3) +
[
p0 − ǫ1(P̄ ,p) + k0 − ǫ1(K̄,k)

]
− p2

2µ1
− (k− r)2

2µ1
− (k− r)p

m0
.

(D.42)

From that, the second one can be determined via the transformation rules p̄ ↔ k̄ and
P̄ ↔ K̄ ⇒ r̄ 7→ −r̄, leading to:

(M1

MΣ
K0 + k0

)
−
(m1

MΣ
P 0 − p0

)
−
(
(M1

MΣ
K+ k)− ( m1

MΣ
P− p)

)2

2m0

= E(3) +
[
k0 − ǫ1(K̄,k) + p0 − ǫ1(P̄ ,p)

]
− k2

2µ1
− (p+ r)2

2µ1
− (p+ r)k

m0
.

(D.43)

Inserting eqs. (D.42) and (D.43) into eq. (D.41) and collecting all the factors, the form
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factor contribution FE,1 from eq. (3.64) assumes the form:

FE,1(P̄ , K̄) = |Z1| g21
∫

p<Λ

d3p

(2π)3

∫

k<Λ

d3k

(2π)3

∫ ∞

−∞

dp0

(2π)

∫ ∞

−∞

dk0

(2π)

× i Ḡ1(P̄ , p̄) D̄1(P̄ , p̄)

ǫ1(P̄ ,p)− p0 + iε

× 1

E(3) +
[
p0 − ǫ1(P̄ ,p) + k0 − ǫ1(K̄,k)

]
− p2

2µ1
− (k−r)2

2µ1
− (k−r)p

m0
+ iε

× 1

E(3) +
[
k0 − ǫ1(K̄,k) + p0 − ǫ1(P̄ ,p)

]
− k2

2µ1
− (p+r)2

2µ1
− (p+r)k

m0
+ iε

× i D̄1(K̄, k̄) Ḡ1(K̄, k̄)

ǫ1(K̄,k) + iε− k0
.

(D.44)

The p0- and k0-integral contours can be closed by an upper arc with infinite radius, since
the two core propagators connected to the photon coupling have no additional poles in the
upper complex half plane. Applying the residue theorem eq. (3.26), leads to:

FE,1(P̄ , K̄) = (2µ1)
2 z1

∫

p<Λ

d3p

(2π)3

∫

k<Λ

d3k

(2π)3

(
−(2π)3

4π

1

p2

)(
−(2π)3

4π

1

k2

)

× Ḡ1(p) D̄
[0]
1 (p)

p2 + (k− r)2 + 2m1

M1
(k− r)p− 2µ1E(3) − iε

× D̄
[0]
1 (k) Ḡ1(k)

k2 + (p+ r)2 + 2m1

M1
(p+ r)k− 2µ1E(3) − iε

.

(D.45)

Note that we used redefined dimer functions (2.43) leading to the additional prefactors
−(2π)3/(4π p2) and −(2π)3/(4π k2). The two sums in the denominator can be written as
quadratic forms:

x2 + y2 + 2
m1

M1

xTy− 2µ1E
(3) − iε = (xT,yT)

(
1

m1
M1

m1
M1

1

)(
x

y

)
− 2µ1E

(3) − iε (D.46)

with some vectors x,y ∈ R3. The appearing matrix is positive definite, since 1 > 0 and

det

(
1

m1
M1

m1
M1

1

)
= 1−

( m1

m0 +m1

)2
> 0 (D.47)

holds. In addition, the three-body binding energy E(3) is negative. Consequently, the real
part in eq. (D.46) is always positive and does not vanish. Therefore, the limit ε→ 0+, for
the two denominators in eq. (D.45), is uncritical such that we can set ε = 0 in those terms.
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Angular integration: Considering the remaining integrals over p and k in eq. (D.45),
without loss of generality, we can assume that Q and consequently also r points in 3-
direction. Thus, again r = r · er with er = e3 holds. Choosing spherical coordinates

p = p · ep , ep =

(
sin θp cosφp
sin θp sinφp

cos θp

)
, k = k · ek , ek =

(
sin θk cos φk
sin θk sinφk

cos θk

)
, (D.48)

we see that the integrand in eq. (D.45), in terms of the three-momenta p, k and r, only
depends on their lengths p, k and r and their relative angles

x := ep · er = cos θp , y := ek · er = cos θk ,

ep · ek = sin θp cosφp sin θk cosφk + sin θp sin φp sin θk sinφk + cos θp cos θk

= sin θp sin θk cos(φp − φk) + cos θp cos θk

=
√
1− x2

√
1− y2 cos(φp − φk) + xy .

(D.49)

Compared to the determination of FE,0 in sec. D.3.4.2, the angular integration, this time,
is more involved. However, we note that the integrand, in terms of φp and φk, effectively
only depends on cos(φp − φk). For an integrable function f : R → C, such a dependency
implies:

∫ 2π

0

dφp

∫ 2π

0

dφk f(cos(φp−φk)) = 2π

∫ 2π

0

dφk f(cosφk) = 4π

∫ π

0

dφf(cosφ) , (D.50)

where we substituted φk 7→ φk + φp and used cos(φ) = cos(−φ) = cos(2π − φ). Therefore,
the integrals in eq. (D.45) can be simplified according to:

(2µ1)
2 z1

∫

p<Λ

d3p

(2π)3

∫

k<Λ

d3k

(2π)3

(
−(2π)3

4π

1

p2

)(
−(2π)3

4π

1

k2

)
(. . . )

=
2

|a1|

∫ Λ

0

dp

∫ Λ

0

dk

∫ 1

−1
dx

∫ 1

−1
dy

∫ π

0

dφ (. . . ) .

(D.51)

Applying these relations, the remaining integrand in eq. (D.45) can be interpreted as a
matrix-valued function Y M

1 (Q, p, k) yielding:
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FE,1(Q) =

∫ Λ

0

dp

∫ Λ

0

dk Ḡ(p)T D̄[0](p) Y M
1 (Q, p, k) D̄[0](k) Ḡ(k) ,

Y M
1 (Q, p, k) =

2

|a1|

∫ 1

−1
dx

∫ 1

−1
dy

∫ π

0

dφ Y M
1

(m1

MΣ

Q, x, y, φ, p, k
)

ΥM
1 (r, x, y, φ, p, k) = ΥS

1(r, x, y, φ, p, k) (e1 · eT
1 )

ΥS
1(r, x, y, φ, p, k) =

[
p2 + k2 + r2 − 2

(
ky +

m1

M1

px
)
r

+
m1

M1

2pk
[√

1− x2
√

1− y2 cosφ+ xy
]
− 2µ1E

(3)
]−1

×
[
p2 + k2 + r2 + 2

(
px+

m1

M1
ky
)
r

+
m1

M1
2pk
[√

1− x2
√

1− y2 cosφ+ xy
]
− 2µ1E

(3)
]−1

(D.52)

Properties: In order to determine FE,1(Q), we have to evaluate 5 integrals, namely
those over the 2 momenta p, k ∈ [0,Λ] and 3 over the angles x, y ∈ [−1, 1], φ ∈ [0, π]. The
matrix structure of Y M

1 (Q, p, k) completely originates from the projector (e1 · eT
1 ). The

scalar function ΥS
1 fulfills ΥS

1(r, x, y, φ, p, k) = ΥS
1(r,−y,−x, φ, k, p) such that substituting

(x, y) 7→ (−y,−x) yields the symmetry Y M
1 (Q, p, k) = Y M

1 (Q, k, p)T, as required. All ap-
pearing functions are real. Consequently, FE,1(Q) is real, as it should. The additional sym-
metry ΥS

1(−r, x, y, φ, p, k) = ΥS
1(r,−x,−y, φ, p, k), after substituting (x, y) 7→ (−x,−y),

leads to Y M
1 (−Q, p, k) = Y M

1 (Q, p, k). Consequently also the contribution to the form fac-
tor FE,1(Q) is an even function in Q and can effectively only depend on Q2. The limit
Q→ 0 is uncritical for FE,1(Q

2). A discussion of the numerical implementation is given in
sec. B.

D.3.4.4 Loop term

Figure D.8: The iΓ2 contribution to
the form factor matrix element. The
photon couples to a core field inside a
cn-bubble. It corresponds to the third
term in the sum on the right-hand side
of the lower equation in fig. 3.9.

(2)

We complete our form factor derivation by calculating FE,2, which is represented in
fig. D.8. The charged core couples to the photon inside a cn-bubble. The corresponding
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reduced matrix element iΓred
2 is the third summand on the right-hand side of the lower

equation in fig. 3.9. Using the definition (3.65), its renormalized version reads:

iΓ̄red
2 (P̄ , K̄, p̄, k̄) = (Ze)−1 |Z1|−

1
2 iD1(P̄ , p̄)

i

ǫ1(P̄ ,p) + iε− p0

× (−i)Σγ
(M1

MΣ
P̄ + p̄,

M1

MΣ
K̄ + k̄

)

× (2π)4δ(4)
((m1

MΣ
P̄ − p̄

)
−
(m1

MΣ
K̄ − k̄

))
iD1(K̄, k̄) |Z1|−

1
2 .

(D.53)

The matrix element (−iΣγ) represents the bubble diagram depicted in fig. D.9, which we
will calculate separately. Analogue to eq. (3.65) we define

Σ̄γ := (Ze)−1 |Z1|
1
2 Σγ |Z1|

1
2 . (D.54)

Symmetrization: Using again the rescaled four-momentum r̄ = m1/MΣQ̄ from (D.25),
we insert eq. (D.53) into eq. (3.64) for FE,2. The δ

(4)-function imposes k̄ = p̄+ r̄. Collecting
all factors, yields:

FE,2(P̄ , K̄) =

∫

p<Λ

d4p̄

(2π)4
Ḡ1(P̄ , p̄) D̄1(P̄ , p̄)

×
i Σ̄γ

(
M1

MΣ
P̄ + p̄, M1

MΣ
K̄ + p̄+ r̄

)

ǫ1(P̄ ,p)− p0 + iε
D̄1(K̄, p̄+ r̄) Ḡ1(K̄, p̄+ r̄)

=

∫

q<Λ

d3q

(2π)3

∫ ∞

−∞

dq0

(2π)
Ḡ1(P̄ , q̄ − s̄) D̄1(P̄ , q̄ − s̄)

×
i Σ̄γ

(
M1

MΣ
P̄ + q̄ − s̄, M1

MΣ
K̄ + q̄ + s̄

)

ǫ1(P̄ ,q− s)− p0 + iε
D̄1(K̄, q̄ + s̄) Ḡ1(K̄, q̄ + s̄) .

(D.55)

In the last step we shifted the loop momentum according to q̄ 7→ p̄ + s̄ with s̄ := r̄/2 ⇒
s0 = 0. For the shifted momenta, the relation

ǫ1(P̄ ,q− s) =
m1

MΣ
P 0 −

(
m1

MΣ
P− (q− s)

)2

2m1
=

m1

MΣ
K0 −

(
m1

MΣ
K− (q+ s)

)2

2m1

= ǫ1(K̄,q+ s)

(D.56)

implies that closing the q0-integration with an upper arc, imposes on-shell conditions for
both four momenta q̄ − s̄ and q̄ + s̄. This is also what we would have expected, since
in the Feynman diagram in fig. D.8 there is only one single-particle propagator, whom
we artificially assigned two equal four-momenta in order to enable the inclusion of both
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Ḡ1-functions. The equation then reads:

FE,2(P̄ , K̄) =

∫

q<Λ

d3q

(2π)3
Ḡ1(|q− s|) D̄1(|q− s|)

× Σ̄γ
(M1

MΣ
P̄ + q̄ − s̄,

M1

MΣ
K̄ + q̄ + s̄

)∣∣
q0=ǫ1(P̄ ,q−s)+iε

× D̄1(|q+ s|) Ḡ1(|q+ s|)

=

∫

q<Λ

d3q

(2π)3

( 1∑

i=0

∫ Λ

0

dp Ḡi(p) D̄
[0]
i (p) •R̄

[0]
i1 (p, |q− s|)

)

× D̄1(|q− s|) Σ̄γ
(M1

MΣ
P̄ + q̄ − s̄,

M1

MΣ
K̄ + q̄ + s̄

)∣∣
q0=ǫ1(P̄ ,q−s)+iε

× D̄1(|q+ s|)
( 1∑

j=0

∫ Λ

0

dk •R̄
[0]
1j (|q+ s|, k) D̄[0]

j (k) Ḡj(k)
)

.

(D.57)

The last line follows from the integral equation (3.54) for the irreducible trimer-dimer-
particle coupling.

Figure D.9: Diagram for the matrix element −iΣγ .
The photon couples to a core field inside a cn-bubble.
It is contained in the iΓ2 contribution to the form
factor matrix element as it is depicted in fig. D.8.

p̄ k̄

Q̄ := k̄ − p̄

q̄

p̄− q̄ k̄ − q̄

Bubble graph: We now analytically calculate the matrix element −iΣγ(p̄, k̄) for the
bubble diagram, depicted in fig. D.9. Its spin-structure is identical with the one from the
self-energy graph in fig. D.3 that was calculated in sec. D.3.1. For general incoming and
outgoing four-momenta p̄ and k̄, its redefined matrix element −iΣ̄γ from eq. (D.54) is given
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through:

− iΣ̄γ(p̄, k̄) = (Ze)−1 |Z1|
1
2 (−ig1)

∫

q<Λ

d3q

(2π)3

∫ ∞

−∞

dq0

2π

i

q0 − q2

2m1
+ iε

× i

p0 − q0 − (p−q)2
2m0

+ iε
(−iZe) i

k0 − q0 − (k−q)2
2m0

+ iε
(−ig1) |Z1|

1
2

= −iz1
∫

d3q

(2π)3
1

q2

2m1
+ (q−p)2

2m0
− p0 − iε

1
q2

2m1
+ (q−k)2

2m0
− k0 − iε

= −iz1 (2µ1)
2

∫
d3q

(2π)3

∫ 1

0

dx
1

[
x a(p̄,q) + (1− x) a(k̄,q)

]2 .

(D.58)

Thereby, in the last step we used the identity

q2

2m1
+

(q− p)2

2m0
− p0 − iε =

(
q− µ1

m0
p
)2 − y21(p̄)

2µ1
=:

a(p̄,q)

2µ1
, (D.59)

where the function y1 is given in eq. (3.7). Furthermore, the Feynman integral trick

1/(a1a2) =
∫ 1

0
dx/[xa1 + (1 − x)a2]

2. was applied. We now assume that Q 6= 0. The
case of vanishing three-momentum transfer, can be approximated with arbitrary small Q.
Defining the translated and rescaled loop momentum b := (q− µ1

m0
[ xp+ (1−x)k ])/( µ1

m0
Q),

we collect those contributions in the denominator in eq. (D.58) that depend on q according
to:

x
(
q− µ1

m0

p
)2

+ (1− x)
(
q− µ1

m0

k
)2

= x
( µ1

m0
Qb+

µ1

m0

(
(x− 1)p + (1− x)k

))2

+ (1− x)
( µ1

m0

Qb+
µ1

m0

(
xp + (−x)k

))2

= x
( µ1

m0
Qb+ (1− x)

µ1

m0
Q
)2

+ (1− x)
( µ1

m0
Qb− x

µ1

m0
Q
)2

= [x+ (1− x)]
( µ1

m0
Qb
)2

+ 0 + [x(1− x)2 + (1− x)x2]
( µ1

m0
Q
)2

=
( µ1

m0
Q
)2 (

b2 − [ x2 − x ]
)

.

(D.60)

Defining Cp̄ := −y21(p̄)/( µ1m0
Q)2, this leads to:

x a(p̄,q) + (1− x) a(k̄,q)

=
( µ1

m0

Q
)2 (

b2 − [ x2 − x ]
)

− x y21(p̄)− (1− x) y21(k̄)

=
( µ1

m0
Q
)2(

b2 − Ap̄,k̄(x)
)

, Ap̄,k̄(x) := x2 − (1 + Cp̄ − Ck̄) x − Ck̄ .

(D.61)
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Thus, we choose spherical coordinates for b, and the integral (D.58) assumes the form:

Σ̄γ(p̄, k̄) = z1 4µ
2
1

∫
d3b

(2π)3

∣∣∣ µ1

m0

Q
∣∣∣
3
∫ 1

0

dx
1

[(
µ1
m0
Q
)2(

b2 − Ap̄,k̄(x)
)]2

=
4π

(2π)3
2π

µ2
1

1

|a1|
µ2
1

| µ1
m0
Q|

∫ 1

0

dx
(∫ ∞

0

db
4r2

[
b2 − Ap̄,k̄(x)

]2
)

=
i

|a1| | µ1m0
Q|

∫ 1

0

dx
1√

Ap̄,k̄(x)

=
1

|a1| | µ1m0
Q|

[
arctan

(
1 + (Ck̄ − Cp̄)

2
√
Cp̄

)
+ arctan

(
1− (Ck̄ − Cp̄)

2
√
Ck̄

)]
.

(D.62)

Thereby, Im(−Cp̄) = ε > 0 implies Im(
√
Ap̄,k̄(x)) > 0 such that the integral formula

∫ ∞

0

dr
4r2

(r2 − A)2

=

∫ ∞

0

dr

[
1√
A

(
1

r −
√
A

− 1

r +
√
A

)
+

1

(r +
√
A)2

+
1

(r −
√
A)2

]

=

[
1√
A

(
ln(r −

√
A)− ln(r +

√
A)
)
− 1

r +
√
A

− 1

r −
√
A

]∞

0

= 0−
[

1√
A

(
ln(−

√
A)− ln(

√
A)
)
− 1√

A
− 1

−
√
A

]

=
1√
A

(
ln |

√
A|+ i arg(

√
A)− ln | −

√
A| − i arg(−

√
A)
)

=
i√
A

(
arg(

√
A)− arg(−

√
A)
)

=
i√
A
sgn(arg(

√
A))π =

iπ√
A

(D.63)
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that was used in eq. (D.62), is applicable. In addition, we assumed that Re(Cp̄) and Re(Ck̄)
are positive, implying:

∫ 1

0

dx
1√
Ap̄,k̄

=

∫ 1

0

dx
1√

x2 − (1 + Cp̄ − Ck̄)x− Ck̄

=

[
ln

(
2
√
x2 − (1 + Cp̄ − Ck̄)x− Ck̄ + 2x− (1 + Cp̄ − Ck̄)

)]1

0

= ln
(
(Ck̄ − Cp̄) + 1 + i2

√
Cp̄

)
− ln

(
(Ck̄ − Cp̄)− 1 + i2

√
Ck̄

)

= ln
∣∣∣(Ck̄ − Cp̄) + 1 + i2

√
Cp̄

∣∣∣ − ln
∣∣∣(Ck̄ − Cp̄)− 1 + i2

√
Ck̄

∣∣∣

+ i
{
arg
(
(Ck̄ − Cp̄) + 1 + i2

√
Cp̄

)
− arg

(
(Ck̄ − Cp̄)− 1 + i2

√
Ck̄

)}

use: ∀ x ∈ R, y > 0 : arg(x+ iy) =
π

2
− arctan

(
x

y

)

= ln
(√

C2
k̄
+ C2

p̄ + 1− 2Ck̄Cp̄ + 2Ck̄ − 2Cp̄ + 4Cp̄

)

− ln
(√

C2
k̄
+ C2

p̄ + 1− 2Ck̄Cp̄ − 2Ck̄ + 2Cp̄ + 4Ck̄

)

+ i

[
π

2
− arctan

(
(Ck̄ − Cp̄) + 1

2
√
Cp̄

)
− π

2
+ arctan

(
(Ck̄ − Cp̄)− 1

2
√
Ck̄

)]

= −i
[
arctan

(
1 + (Ck̄ − Cp̄)

2
√
Cp̄

)
+ arctan

(
1− (Ck̄ − Cp̄)

2
√
Ck̄

)]
.

(D.64)

Eq. (D.64) proves the last line in eq. (D.62). This result for the matrix element Σ̄γ(p̄, k̄)
of the bubble diagram is also consistent with the formula given in ref. [84] for the charge
form factor of the one-neutron halo state 11Be. In our kinematics, we have to replace
p̄ 7→ M1

MΣ
P̄ + (q̄ − s̄) and k̄ 7→ M1

MΣ
K̄ + (q̄ + s̄), leading to:

Cp̄ = −y
2
1(P̄ , q̄ − s̄)

( µ1
m0
Q)2

∣∣∣
q0=ǫ1(P̄ ,q−s)+iε

= −y
2
1(|q− s|)
(2MΣ

M1
s)2

,

Ck̄ = −y
2
1(K̄, q̄ + s̄)

( µ1
m0
Q)2

∣∣∣
q0=ǫ1(K̄,q+s)+iε

= −y
2
1(|q+ s|)
(2MΣ

M1
s)2

⇒ 1± (Ck̄ − Cp̄)

2
=

1

2

[
1±

µ1
µ̄1

[
(q+ s)2 − (q− s)2

]
(
2MΣ

M1
|s|
)2

]
=

1

2

[
1± m0

MΣ

q · s
s2

]
.

(D.65)
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Inserting eq. (D.65) into eq. (D.62) and using the anti-symmetry arctan(−x) = − arctan(c)
we end up with:

Σ̄γ
(
M1

MΣ
P̄ + q̄ − s̄,

M1

MΣ
K̄ + q̄ + s̄

) ∣∣∣∣∣
q0=ǫ1(P̄ ,q−s)+iε

=
1

|a1|
m0m1

2µ1MΣ

1

s

[
arctan

(
m0

M1

q·s
s
+ MΣ

M1
s

√
−y21(|q− s|)

)
− arctan

(
m0

M1

q·s
s
− MΣ

M1
s

√
−y21(|q+ s|)

)]
.

(D.66)

Angular integration: Considering the remaining integral over q in eq. (D.57) with
the bubble contribution (D.66), without loss of generality, we can assume that Q and
consequently also s points in 3-direction. Thus, again s = s · es with es = e3 holds.
Choosing spherical coordinates

q = q · eq , eq =
(

sin θ cosφ
sin θ sinφ

cos θ

)
, (D.67)

we see that the integrand in eq. (D.57), in terms of the three-momenta q and s, only depends
on the lengths q, s and the angle x := eq ·es = cos θ. The appearing scalar products simply
read q · s = qsx, leading to |q± r| = d(q, r,±x), where the definition (D.36) is used. The
integration over φ is trivial. It results in an additional factor of 2π such that the integral
can be simplified according to:

∫

q<Λ

d3q

(2π)3
1

|a1|
m0m1

2µ1MΣ
(. . . ) =

1

(2π)2
M1

MΣ

1

2|a1|

∫ Λ

0

dq q2
∫ 1

−1
dx (. . . ) . (D.68)

In addition, we can interpret the resulting integrand in eq. (D.57) as a matrix-valued func-
tion Y M

2 (Q, p, k), yielding:

FE,2(Q) =

∫ Λ

0

dp

∫ Λ

0

dk Ḡ(p)T D̄[0](p) Y M
2 (Q, p, k) D̄[0](k) Ḡ(k)

Y M
2 (Q, p, k) =

1

(2π)2
M1

MΣ

1

2|a1|

∫ Λ

0

dq q2
∫ 1

−1
dx ΥM

2

(m1

MΣ

Q

2
, q, x, p, k

)

ΥM
2 (s, q, x, p, k) = ΥS

2(s, q, x)
•R̄[0](p, d(s, q,−x)) D̄(d(s, q,−x))

× (e1 · eT
1 ) D̄(d(s, q, x)) •R̄[0](d(s, q, x), k)

ΥS
2(s, q, x)

=
1

s

[
arctan

(
m0

M1
qx+ MΣ

M1
s

√
−y21(d(s, q,−x))

)
− arctan

(
m0

M1
qx− MΣ

M1
s

√
−y21(d(s, q, x))

)]

(D.69)
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Properties: In order to determine FE,2(Q), we have to evaluate 4 integrals, namely
those over the 3 momenta p, k, q ∈ [0,Λ] and 1 over the angle x ∈ [−1, 1]. One can easily
check that ΥS

2(s, q,−x) = ΥM
0 (s, q, x) and ΥM

2 (s, q, x, p, k) = ΥM
0 (s, q,−x, k, p)T hold such

that, after substituting x 7→ −x, the symmetry Y M
2 (Q, p, k) = Y M

2 (Q, k, p)T follows, as
required. Since E(3) < 0 holds, all appearing functions are uncritical and real in the limit
ε → 0+. Thus, FE,2(Q) is real, as it should. The additional symmetries ΥS

2(−s, q, x) =
ΥM

2 (s, q, x) and ΥM
2 (−s, q, x, p, k) = ΥM

2 (s, q,−x, p, k), after substituting x 7→ −x, lead to
Y M
2 (−Q) = Y M

2 (Q). Consequently, also the contribution FE,2(Q) to the form factor is an
even function in Q and can be written in the usual way FE,0(Q

2). Note that the limit
Q → 0 in eq. (D.69) exists, but prefactors ∝ 1/Q cause numerical instabilities for very
small momentum transfer. A discussion of the numerical implementation is given in sec. B.

D.3.5 Photodisintegration

Figure D.10: Feynman diagram for the matrix el-
ement iM̄ (a) of the photodisintegration of a cnn-
trimer. All c-n FSI are neglected. A diagrammatic
equation for the appearing irreducible trimer-three-
particle coupling is given fig. 3.6

P̄

Q̄

k̄0

k̄1

k̄2

k̄0 − Q̄

For a two-neutron halo system, we now calculate the matrix element iM̄ (a) for the
photodisintegration without c-n FSI. Its Feynman diagram is depicted in fig. D.10 and
appears as the first contribution in fig. 3.16. Using the center-of-mass kinematics (3.70)-
(3.73), the appearing intermediate core propagator has four-momentum k̄0 − Q̄. Its offset
from the on-shell condition reads:

k00 −Q0 − (k0 −Q)2

2m0
=

k2
0

2m0
−
(
EΣ −E(3) − Q2

2MΣ

)
− (k0 −Q)2

2m0

= E(3) −
[
EΣ − Q2

2MΣ
+
Q(Q− 2e3 · k0)

2m0

]
=: E(3) − Ē(EΣ, Q,k0) .

(D.70)

Using the irreducible trimer-three-particle coupling from eqs. (3.58)-(3.60) and fig. 3.6, we
replace the kinematic variables

E +
p2
i

2mi
− p0i 7→ δi0

[
E(3) − (E(3) − Ē(EΣ, Q,k0))

]
+ (1− δi0)

[
E(3) − 0

]

= δi0 Ē(EΣ, Q,k0) + (1− δi0)E
(3) =: Ēi(EΣ, Q,k0) ,

∣∣ mi

MΣ

P− pi
∣∣ 7→





∣∣− m0

MΣ
Q− (k0 −Q)

∣∣ =
∣∣M0

MΣ
Qe3 − k0

∣∣ : i = 0∣∣− m1

MΣ
Q− k1

∣∣ =
∣∣ m1

MΣ
Qe3 + k1

∣∣ : i = 1∣∣− m1

MΣ
Q+ (k0 + k1)

∣∣ =
∣∣ m1

MΣ
Qe3 − (k0 + k1)

∣∣ : i = 2

=: d̄i(Q,k0,k1) ,

(D.71)
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yielding the result:

M̄ (a)(EΣ, Q,k0,k1) = (Ze)
2∑

i=0

[ 1∑

j=0

∫ Λ

0

dq Ḡj(q) D̄
[0]
j (q)

× •R̄
[0]
ji

(
Ēi(EΣ, Q,k0), q, d̄i(Q,k0,k1)

)
− |βH̄| δ0i

]

×
√
zi
τi

D̄i

(
Ēi(EΣ, Q,k0), d̄i(Q,k0,k1)

)

E(3) − Ē0(EΣ, Q,k0) + iε
.

(D.72)

D.3.5.1 Dipole matrix element

In order to extract the dipole matrix element M̄
(a)
E1 (EΣ,k0,k1), we apply eq. (3.74) to

our result (D.72). The differentiation with respect to Q is rather elaborate but can be
performed straightforwardly by applying standard rules of derivation. Using the formu-
las (3.41), the result can be summarized as:
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M̄
(a)
E1 (EΣ,k0,k1) = (Ze)

√
3

4π

[ ∫ Λ

0

dq ḠT(q) D̄[0](q) Y V
E1(EΣ, q,k0,k1)

− |βH̄| Y S
E1(EΣ,k0,k1)

]
,

Y S
E1 = χ̄0 , (Y V

E1)i =
2∑

j=0

[
•R̄

[0]
ij (Ej, q, dj)

(
χ̄j −

λj
d2j
χj

)

− (∂E
•R̄

[0]
ij )(Ej , q, dj)

(
c̄ij(Ej, q, dj)− δj0

d20
µ̄0

) λj
d2j
χj

]
,

(∂E
•R̄

[0]
ij )(E, p, k) = (1− δi0δj0)

√
zizj
τiτj

(−1)
(mij

pk

)2
(∂Q0)(cij(E, p, k))

(∂Q0)(c) = (1− c2)−1 , c̄ij(E, p, k) = −
( p2
2µj

− k2

2µi
−E − iε

)
,

χi =

√
zi
τi

D̄i(Ei, di)

E(3) − EΣ + iε
,

χ̄i = −
√
zi
τi

[
λ0
µ̄0

D̄i(Ei, di)

(E(3) −EΣ + iε)2
+ (1− δi0)

λi
µ̄i

(∂ED̄i)(Ei, di)

E(3) −EΣ + iε

]
,

D̄i(E, q) = − 2π

ziµi

1

− 1
ai
− iyi(E, q)

,

(∂ED̄i)(E, q) =
2π

zi

1

iyi(E, q)(− 1
ai
− iyi(E, q))2

,

di := d̄i(0,k0,k1) =





|k0| : i = 0

|k1| : i = 1

|k0 + k1| : i = 2 ,

λi := d̄i(0,k0,k1) (∂Qd̄i)(0,k0,k1) =





−M0

MΣ
(k0)3 : i = 0

m1

MΣ
(k1)3 : i = 1

− m1

MΣ
(k0 + k1)3 : i = 2 ,

Ei := Ēi(EΣ, 0,k0) = δi0EΣ − (1− δi0)E
(3) .

(D.73)

For reasons of readability, at some points, we dropped the arguments of di, λi, Ei, χi
and χ̄i.
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D.3.5.2 Dipole strength distribution

In order to calculate the dipole strength distribution, we now perform the remaining mo-
mentum integrations in eq. (3.75). Analogous to eqs. (D.48) and (D.49), we first choose
spherical coordinates for k0 and k1 according to:

ki = ki · eki
, eki

=

(
sin θi cosφi
sin θi sinφi

cos θi

)
. (D.74)

We see that M̄
(a)
E1 in eq. (D.73), in terms of the three-momenta k0 and k1, effectively only

depends on their lengths k0 and k1 and polar angles

xi := eQ · eki
= cos θi = (eki

)3 . (D.75)

In addition, the δ-function in eq. (3.75) depends on the relative angle

ek0 · ek1 =
√
1− x20

√
1− x21 cos(φ0 − φ1) + x0x1 =: x01(x0, x1, cos(φ0 − φ1)) (D.76)

and can only contribute if the total energy is positive. Applying formula (D.50), we get:

dB(E1)

dEΣ
=

4π

(2π)6
Θ(EΣ)

∫ 1

−1
dx0

∫ 1

−1
dx1

∫ π

0

dφ

∫ ∞

0

dk0

∫ ∞

0

dk1

× k20 k
2
1 |M̄ (a)

E1 (EΣ, k0, k1, x0, x1)|2

× δ
( k20
2µ1

+
k21
2µ0

+
k0k1x01(x0, x1, cosφ)

m1

− EΣ

)
.

(D.77)

The δ-function only allows for specific momentum configurations in the k0-k1-plane. The
allowed values form a centered and rotated ellipse. The two semi-axes of this ellipse depend
on the masses, the total energy EΣ and the angle x01, which itself is a function of x0, x1
and φ. We proceed stepwise in order to transform the ellipse into its circular form, in
which the momentum-integration is trivial. Therefore, we first define ~k := (k0, k1) and

F (~k) := k20 k
2
1 |M̄ (a)

E1 (EΣ, k0, k1, x0, x1)|2 such that the integral assumes the form:

I :=

∫

[0,∞)2
d2~k F (~k) δ

( k20
2µ1

+
k21
2µ0

+
k0k1x01
m1

−EΣ

)
. (D.78)

Substituting ~k =: M~l with M := diag(
√
EΣ/µ0,

√
EΣ/µ1) and defining the quantity

κ :=
√
µ0µ1
m1

x01 = sin(φ01) x01, the argument of the δ-delta function becomes a symmetric
quadratic form:

I =

∫

M−1[0,∞)2
d2~l
∣∣∣ EΣ√
µ0µ1

∣∣∣F (M~l ) δ
( EΣ

2µ0µ1

(l20 + l21 + 2κ l0l1 − 2µ0µ1)
)

=

∫

[0,∞)2
d2~l (2

√
µ0µ1)F (M~l ) δ

(
~lT ( 1 κ

κ 1 )
~l − 2µ0µ1

)
.

(D.79)
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Since |κ| < 1 holds, we transform the ellipse into its circular form using ~l =: SN~y with
N = diag(

√
2µ0µ1/(1 + κ),

√
2µ0µ1/(1− κ)) ∈ R2×2 and S := 1√

2
( 1 −1
1 1 ) ∈ SO(2). This

yields:

I =

∫

N−1S−1[0,∞)2
d2~y

∣∣∣∣∣

√
2µ0µ1

1 + κ

√
2µ0µ1

1− κ

∣∣∣∣∣ · |1|

× (2
√
µ0µ1)F (MSN~y ) δ

(
2µ0µ1(~y

2 − 1)
)

=

∫

N−1S T[0,∞)2
d2~y 2

√
µ0µ1

1− κ2
F (MSN~y) δ

(
~y2 − 1

)
.

(D.80)

We now use spherical coordinates ~y = r(cosα, sinα)T. Since S T is a rotation of −π/4 and
N−1 simply stretches the y0,1 axis by a factors of

√
(1± κ)/(2µ0µ1), the area of integration

is given through (r, α) ∈ [0,∞)× [−ᾱ, ᾱ] with:

ᾱ = arctan

(√
1− κ

2µ0µ1

/√
1 + κ

2µ0µ1

)
= arctan

√
1− κ

1 + κ
=

arccosκ

2
∈
[π
8
,
3π

8

]

⇒ κ = cos(2ᾱ) , 1± κ = 2

{
cos2 ᾱ

sin2 ᾱ .

(D.81)

Consequently, we get:

I =

∫ ∞

0

dr

∫ ᾱ

−ᾱ
dα

√
µ0µ1

1− κ2
F (MQNr ( cosα

sinα )) (2r)δ
(
r2 − 1

)

=

√
µ0µ1

1− κ2

∫ ᾱ

−ᾱ
dα

× F
(√

µ1EΣ

[ cosα√
1 + κ

− sinα√
1− κ

]
,
√
µ0EΣ

[ cosα√
1 + κ

+
sinα√
1− κ

])

=
√
µ0µ1

ᾱ

sin(2ᾱ)

∫ 1

−1
dy

× F
(√µ1EΣ

2

[cos(ᾱy)
cos ᾱ

− sin(ᾱy)

sin ᾱ

]
,

√
µ0EΣ

2

[cos(ᾱy)
cos ᾱ

+
sin(ᾱy)

sin ᾱ

])

=

√
µ0µ1

2

β

sin β

∫ 1

−1
dy F

(√
2µ1EΣ

sin(1−y
2
β)

sin β
,
√
2µ0EΣ

sin(1+y
2
β)

sin β

)
,
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where in the last line we used:

cos(ᾱy)

cos ᾱ
± sin(ᾱy)

sin ᾱ
=

sin ᾱ cos(ᾱy)± sin(ᾱy) cos ᾱ

sin ᾱ cos ᾱ
= 2

sin((1± y)ᾱ)

sin(2ᾱ)

= 2
sin(1±y

2
βα)

sin(β)
, β := 2ᾱ = arccosκ .

(D.83)
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Inserting this expression and using the formulas from eq. (3.41), leads to the final result:

dB(E1)

dEΣ
=

4π

(2π)6
2(µ0µ1)

3
2 Θ(EΣ)E

2
Σ

∫ 1

−1
dx0

∫ 1

−1
dx1

∫ π

0
dφ

β

sin5 β

×
∫ 1

−1
dy sin2

(1− y

2
β
)
sin2

(1 + y

2
β
)

×
∣∣∣M̄ (a)

E1 (EΣ,
√

2µ1EΣ
sin(1−y2 β)

sin β
,
√

2µ0EΣ
sin(1+y2 β)

sin β
, x0, x1)

∣∣∣
2

β(x0, x1, cosφ) = arccos
(√µ0µ1

m1

[√
1− x20

√
1− x21 cosφ+ x0x1

])

M̄
(a)
E1 (EΣ, k0, k1, x0, x1) = (Ze)

√
3

4π

[ ∫ Λ

0
dq ḠT(q) D̄[0](q)

× Y V
E1(EΣ, q, k0, k1, x0, x1) − |βH̄ |Y S

E1(EΣ, k0, k1, x0, x1)
]

,

Y S
E1 = χ̄0 , (Y V

E1)i =
2∑

j=0

[
•R̄[0]

ij (Ej , q, dj)
(
χ̄j −

λj
d2j
χj

)

− (∂E
•R̄[0]

ij )(Ej , q, dj)
(
c̄ij(Ej , q, dj)− δj0

d20
µ̄0

) λj
d2j
χj

]
,

(∂E
•R̄[0]

ij )(E, p, k) = (1− δi0δj0)

√
zizj
τiτj

(−1)
(mij

pk

)2
(∂Q0)(cij(E, p, k))

(∂Q0)(c) = (1− c2)−1 , c̄ij(E, p, k) = −
( p2
2µj

− k2

2µi
− E − iε

)
,

χi =

√
zi
τi

D̄i(Ei, di)

E(3) − EΣ + iε
,

χ̄i = −
√
zi
τi

[
λ0
µ̄0

D̄i(Ei, di)

(E(3) −EΣ + iε)2
+ (1− δi0)

λi
µ̄i

(∂ED̄i)(Ei, di)

E(3) − EΣ + iε

]
,

D̄i(E, q) = − 2π

ziµi

1

− 1
ai

− iyi(E, q)
,

(∂ED̄i)(E, q) =
2π

zi

1

iyi(E, q)(− 1
ai

− iyi(E, q))2
,

di =





k0

k1[
2m1

(
EΣ − k20

2m0
− k21

2m1

)] 1
2

, λi =





−M0
MΣ

k0x0 : i = 0
m1
MΣ

k1x1 : i = 1

− m1
MΣ

(k0x0 + k1x1) : i = 2 ,

Ei = δi0EΣ − (1− δi0)E
(3) .

(D.84)



160 APPENDIX D. FEYNMAN DIAGRAMS

Thereby, Y V
E1(EΣ, q, k0, k1, x0, x1) ∈ C2 and Y S

E1(EΣ, k0, k1, x0, x1) ∈ C hold. Hence, we
end up with 1 momentum integral q ∈ [0,Λ] and 4 angular integrals x0, x1, y ∈ [−1, 1],
φ ∈ [0, π]. There seems to be no reasonable chance to perform the limit ε → 0+ in
eq. (D.84) analytically. A discussion of the numerical implementation is given in sec. B.
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