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Chapter 1

Introduction

1.1 The Mysteries of Dimension Four

Dimension four is different. It marks the border between low dimensional and high
dimensional topology and, while its two sides are well explored, the border itself is
still largely uncharted territory. Since this thesis is ultimately concerned with the
topology of smooth 4—manifolds, we begin with a brief review of the state of affairs.
In this discussion, all manifolds are assumed to be closed, connected and oriented,
and all homeomorphisms preserve orientations.

For a modern topologist there are two main flavors of manifolds: topological and
smooth. It is also common to speak of the smooth and topological categories in this
context. In all dimensions but four, both categories can be studied by the similar or
even the same means. In dimensions up to three, there is no difference between the
smooth and the topological categories and manifolds can be effectively studied by a
mixture of hands-on techniques such as handlebody theory and more sophisticated
geometric methods. In dimensions five and higher, essentially everything is governed
by the powerful machinery of surgery theory and the s—cobordism theorem which
allow to translate classification problems into homotopy theory and algebra. This
includes the difference between the smooth and the topological category which turns
out to be finite (in the sense that a topological manifold admits at most finitely many
non-diffeomorphic smooth structures).

In contrast, in dimension four, topological and smooth manifolds are studied by
drastically different means. By the groundbreaking work of Freedman [25], topolog-
ical 4—manifolds are to some extent accessible to the high dimensional techniques.
The key to these methods is the so called Whitney trick which is the main tool to
match geometry and algebra. This turns out to be possible if one restricts ones
attention to so called “good” fundamental groups, and the main open problem is
the question whether all groups are good. For smooth 4-manifolds, the situation is
much worse. On the one hand, the methods to show that two smooth 4-manifolds
are diffeomorphic are very limited. Either one is lucky enough to be able to write
down a concrete diffeomorphism, or one has to resort to handlebody theory in the
guise of Kirby calculus. Although far from useless, both methods are rather primi-
tive and usually not very effective. On the other hand, in order to tell two smooth
4-manifolds apart, a set of intricate invariants have been devised using ideas from
gauge theory and Floer homology. Using these invariants and many ingenious con-
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structions, it has been shown that — unlike in all other dimensions — topological
4-manifolds that admit one smooth structure tend to have infinitely many dif-
ferent ones. In other words, smooth 4-manifolds can have infinitely many ezotic
copies, that is, smooth 4—manifolds which are homeomorphic but not diffeomorphic
to the given model. However, as powerful as these invariants are, they cannot dis-
tinguish all 4-manifolds. In fact, for technical reasons, they are only defined for
4-manifolds which contain a surface with positive self-intersection (this condition is
usually phrased as b; > 1). In particular, they cannot be used directly to tackle the
smooth 4-dimensional Poincaré conjecture, which states that any smooth 4-manifold
which is homotopy equivalent to S* should be diffeomorphic to S%. Furthermore,
all these invariants are conjectured to contain the same information and there are
ongoing programs to establish relations between them. The bottom line is, although
the past 30 years have brought many insights, the topology of smooth 4-manifolds is
still full of mysteries: it is not known whether all smooth 4—manifolds have infinitely
many exotic copies, there is not a single (smoothable) topological 4-manifold whose
smooth structures have been classified, and there is no structure theory in sight.

This thesis will not change the situation dramatically. However, one thing to
take away from the above discussion is that the theory of smooth 4-manifolds has
been stagnant and new idea should be pursued. And this is what we will do. Loosely
speaking, we will cut 4 into 2 + 2 by looking at certain maps from 4-manifolds to
surfaces which fail to be fiber bundles in a controlled way. Such a map exhibits
a 4—manifold as a singular family of surfaces parametrized by the target surface,
providing a link from smooth 4-manifolds to surface topology. This idea has been
around for a long time but has spiked in popularity in the recent years. We will give
a short review in the next section and start a thorough discussion in

But before, we would like to mention some positive results about 4—manifolds.
First and foremost, there is Freedman’s celebrated classification of simply connected
topological 4—manifolds.

Theorem (Freedman [25]). Let X be a simply connected topological 4—manifold.
Then X is determined up to homeomorphism by its intersection form Qx and Kirby—
Siebenmann invariant ks(X) € Zs.

Recall that Qx is the unimodular, symmetric bilinear form defined on Ha(X)
as the Poincaré dual to the cup product form on H?(X), and ks(X) is zero if and
only if X x R is smoothable. These two invariants are not completely independent.
In fact, if Qx is even, then ks(X) = o(X)/8 mod 2. Here, Qx is called even
if all “squares” Qx(z,x) are even numbers (and odd otherwise), and o(X) is the
signature of X defined as the difference of the numbers of positive and negative
eigenvalues of Q) x ® Q. Moreover, a complimentary theorem of Freedman states that
any possible pair of a unimodular symmetric bilinear form @ (over Z) and k € Zy
can be realized by a simply connected topological 4-manifold. From an algebraic
perspective, unimodular symmetric bilinear forms over Z fall into two categories:
definite and indefinite. The definite ones are the great unknown, while the definite
ones are easily classified.

Theorem (Serre [59]). Let Q: V xV — Z be a symmetric bilinear form defined on
a free Abelian group V. Then Q is determined up to isometry by its rank, signature
and type (even or odd).
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In this light, the following theorem of Donaldson is all the more miraculous.

Theorem (Donaldson [15]). Let X be a smooth 4—manifold. If Qx is definite, then
it is diagonalizable over Z.

Not only does this theorem exclude many topological 4-manifolds from being
smoothable, it also shows that no complicated definite intersection forms appear
for smooth 4-manifolds! So there is some way in which smooth 4-manifolds are
well-behaved, after all. One can even write down a complete list of possible inter-
section forms of smooth 4-manifolds, these are k(1) ®I(—1) and mEs®n(9}),
where k,l,m,n € Z, k,l,n > 0, and Eg is the unique even, definite form of rank 8.
The only remaining question here is which combinations of m and n can be re-
alized and the famous X —conjecture states that n > 6|m/| (which is equivalent to
ba(X) > 4o (X)[). The upshot of this discussion is the following beautiful “cross-

category” result which follows from the three mentioned theorems.

Corollary (Freedman, Donaldson, Serre). Smooth, simply connected 4—manifolds
are classified up to homeomorphism by their Fuler characteristic, signature and type.

1.2 Singular Fibrations on 4-Manifolds

At this point we have said everything we had to say about topological 4-manifolds
and we add the property “smooth” to our list of standing assumptions on mani-
folds. As mentioned above, we will later consider 4—manifolds as singular families
of surfaces parametrized by another surface. What follows is a brief overview of the
history of this philosophy.

Lefschetz fibrations and symplectic 4—-manifolds. The idea of sweeping out
a geometric object by smaller sub-objects is quite common in algebraic geometry.
It was used extensively by Lefschetz in his study of complex projective varieties
(see Lamotke’s beautiful survey [42]). Since we are interested in 4-manifolds, we
will focus on projective surfaces and follow [32) Chapter 8.1]. Given such a sur-
face V. C CPY, we choose a generic linear subspace A C CPY that is transverse
to V and has complementary (complex) dimension N — 2. If we write A as the com-
mon zero locus of two linear homogeneous polynomials py and pi, then we obtain a
family of hyperplanes H; ¢ CP" containing A parametrized by t = [t( : t;] € CP!
where H; is the zero locus of topg + t1p1. The intersection P = ANV C V is
a finite number of points and each ¥; = H; NV is a (possibly singular) complex
curve containing P. Moreover, for each z € V \ P there is a unique ¢t € CP! such
that x € ¥;. This observation gives rise to a holomorphic map p: X \ P — CP!
which is known as a Lefschetz pencil with axis A and base locus P. It turns out
that p has only finitely many critical points which locally look like the quadratic
polynomial 22 +w? defined on C? — so called Lefschetz singularities — and around its
base points p looks like the projection C?\ {0} — CP! which is easily seen from the
construction. In particular, after blowing up the base points one obtains a Lefschetz
fibration p: V#|P|CP2 — CP*.
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The notion of Lefschetz pencils and fibrations is easily generalized to arbi-
trary smooth 4fmanifolds[| A Lefschetz fibration is simply a surjective smooth
map X — B onto a (real) surface B — the so called base surface — with only finitely
many critical points which are all of Lefschetz type. A Lefschetz pencil is a Lefschetz
fibration on X \ P over S? = CP! where the base locus P C X is a (non-empty)
finite set where the map is modeled on the projection C2\ {0} — CP!. The repeated
use of the word “base” is a little unfortunate, but it does not lead to any confusion
because, by definition, Lefschetz fibrations have empty base loci and the base surface
of Lefschetz pencils is always CP'.

As opposed to the case of projective surfaces, Lefschetz pencils and fibrations
are significantly harder to construct on more general 4—manifolds. First of all, it
is not always possible. According to a theorem of Gompf, total spaces of Lefschetz
pencils admit symplectic structures and the same holds for Lefschetz fibrations with
only few exceptions, see [32, p.401ff.]. In particular, Lefschetz pencils can only
exist on symplectic 4-manifolds and it is a deep results due to Donaldson [16] that
this is always the case. Both results combined can be considered as a topological
characterization of symplectic 4—manifolds.

Theorem (Donaldson [16], Gompf [32]). A 4—manifold is symplectic if and only if
it admits a Lefschetz pencil.

In particular, topological properties of symplectic 4-manifolds should also be
visible through the eyes of Lefschetz pencils and fibrations. One of the most impor-
tant features of symplectic 4—manifolds is that they have non-trivial Seiberg—Witten
invariants and generally interact very well with Seiberg—Witten theory. Among
other things, Taubes [61] had shown that the Seiberg—Witten invariants of symplec-
tic 4-manifolds can be expressed as a certain count of pseudoholomorphic curves
which he called the Gromov invariant, thus providing a geometric interpretation.
In search for a counterpart on the Lefschetz side, Donaldson and Smith introduced
their standard surface count |17] which, roughly, counts certain pseudoholomorphic
multisections of a Lefschetz pencil or fibration. It was later shown by Usher [66]
that the standard surface count agrees with the Gromov invariant.

Near-symplectic 4-manifolds and broken Lefschetz fibrations. Obviously,
not all 4-manifolds are symplectic. But from the point of view of Seiberg—Witten
theory, the relevant one come quite close. We already mentioned that the Seiberg—
Witten invariants are only defined for 4-manifolds with 172+ > 1. It turns out that the
latter condition implies the existence of a closed 2—form which is non-degenerate out-
side of a closed 1-dimensional submanifold, that is, a disjoint union of finitely many
embedded circles. Such a 2—form is called a near-symplectic structure. In search for
a general geometric interpretation of the Seiberg—Witten invariants, Taubes set out
a program to extend his methods to the near-symplectic setting [62,63]. This turned
out to be a challenging task and, as far as the author knows, Taubes’s program is still
ongoing. But the interest in near-symplectic structures raised the question for an
analogue of the Donaldson—Gompf correspondence, which was eventually discovered
by Auroux, Donaldson and Katzarkov [3].

!According to Matsumoto [48], non-holomorphic Lefschetz fibrations were first studied by
Moishezon [51] p.162].
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Theorem (Auroux—Donaldson—Katzarkov [3]). A J-manifold is near-symplectic if
and only if it admits a broken Lefschetz pencil.

The trade-off for the degeneracy of the 2—form is the appearance of an additional
type of singularities in broken Lefschetz pencils, so called indefinite folds which we
will discuss in great detail later. Just as the degeneracy loci of near-symplectic
forms, indefinite folds appear in 1-dimensional families. In fact, the fold locus is
the direct counterpart of the degeneracy locus in the above correspondence; circles
of indefinite folds have also become known as round singularities in this context.
So instead of working with near-symplectic forms, one can also work with broken
Lefschetz pencils and fibrations. In particular, instead of trying to generalize the
Gromov invariant to the near-symplectic setting, one can also attempt to extend the
standard surface count to the broken setting. Such an effort was made by Perutz who
introduced his Lagrangian matching invariants [57,58]. However, this approach also
presents severe technical difficulties and it is still neither known if these invariants
agree with the Seiberg—Witten invariants, nor if they actually are invariants.

The passage to all 4—manifolds. Although Auroux, Donaldson and Katzarkov
had mainly focused on near-symplectic 4-manifolds, they exhibited a broken Lef-
schetz fibration on S% over S? (see Example 1 in [3, Section 8.2]). This simple
example turned out to be surprisingly influential. Since S* is not near-symplectic, it
led to the question whether all 4-manifolds admit broken Lefschetz fibrations. The
first advance in this direction was made by Gay and Kirby [27] who used handle-
body techniques to prove the existence of so called achiral broken Lefschetz fibra-
tions. Since Gay and Kirby could not avoid achiral Lefschetz singularities (which
are modeled on z? + w?) using their methods, they speculated that this might in-
deed be impossible. But shortly after, Lekili and Baykur [45] gave arguments to
remove achiral singularities, thus proving the general existence of broken Lefschetz
fibrations. Two further, independent existence proofs were given by Baykur [4] and
Akbulut-Karakurt [1] almost at the same time. In fact, the statement is stronger.

Theorem (Gay—Kirby, Lekili, Baykur, Akbulut-Karakurt). Let X be a 4—manifold.
Then any map X — S? is homotopic to a broken Lefschetz fibration.

Lekili [45] and Baykur [4] both used methods from the singularity theory of
smooth maps in their proofs. Lekili realized that it was possible to trade (regular
and achiral) Lefschetz singularities for so called indefinite cusp singularities and vice
versa. Maps with only folds and cusps have a long history in singularity theory and
Lekili’s observation opened the door to study broken Lefschetz fibrations as well as
families thereof in this context. This led to a change of focus away from Lefschetz
singularities to maps with folds and cusps. In particular, Williams [67] introduced
a class of maps called simple wrinkled ﬁbmtion which have a particularly simple
critical point structure: the critical locus is a single circle consisting of indefinite
folds and finitely many cusps, which is mapped injectively into S2. Simple wrinkled
fibrations are closely related to broken Lefschetz fibrations. In fact, Lekili’s per-
turbations can be used to turn a simple wrinkled fibration into a broken Lefschetz
fibration with a single circle of folds (as studied by Baykur in [5]). Williams also
proved the existence of these maps.

2Williams uses the term “simplified purely wrinkled fibrations”.
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C4

Figure 1: A surface diagram of S! x S3#S! x S3 due to Hayano [35].

Theorem (Williams [67]). Any map from a 4-manifold to S* is homotopic to a
simple wrinkled fibration.

Meanwhile, Gay and Kirby initiated an in-depth study of maps from 4-manifolds
to surfaces [28-30] which have only fold and cusp singularities. This ends our his-
torical outline as far as the various singular fibration structures are concerned. In
our presentation we will essentially reverse the historical order. In we
give a brief review of maps from 4-manifolds to surfaces from the perspective of sin-
gularity theory and from onward we will mainly be interested in what we
call wrinkled fibrations (these are maps which only have indefinite folds and cusps).
Broken Lefschetz fibrations and Lefschetz fibrations will merely be used occasionally
for motivational purposes or as convenient tools.

Since their inception, broken Lefschetz fibrations and related structures have
received considerable attention in the research literature (see [5-8}|33-35,/40,69],
for example). We will point out several other developments throughout the text.
Although the original motivation from Seiberg—Witten theory seems to have been
lost somewhere along the way, it has only been put aside in order to obtain a
better understanding of the newly discovered structures. As this understanding is
improving, so are the chances of finding a connection.

Surface diagrams. Williams’s existence theorem for simple wrinkled fibrations
together with another observation of Williams is the starting point of our work. An
important feature of Lefschetz fibrations over S? is the classical observation that
they are accessible via handlebody theory and can be described more or less com-
binatorially in terms of configurations of simple closed curves on surfaces [32,39].
Given a Lefschetz fibration, one can associate to each critical point a Lefschetz van-
ishing cycle which is a simple closed curve in a fixed regular fiber. Moreover, from
the vanishing cycles one can recover the fibration up to a suitable notion of equiva-
lence using a handlebody construction (see for more details). This was
extended to the broken setting by Baykur [5]. The fold singularities contribute addi-
tional fold vanishing cycles which behave slightly differently than Lefschetz vanishing
cycles. In the setting of simple wrinkled fibrations there are only fold singularities
and Williams suggested recording the fold vanishing cycles in a regular fiber. Ab-
stractly, this leads to a closed, oriented surface ¥ decorated with a cyclically indexed
set of simple closed curves ci,...,¢; C X, such that ¢; and ¢;41 (where [ +1 = 1)
have geometric intersection number one. Williams called this structure a surface
diagram [68|, an example is shown in He also noticed that the surface
diagram of a simple wrinkled fibration contains enough information to reconstruct
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the total space [67, Corollary 2] which easily follows from results of Lekili [45] and
Baykur [5] via a detour over broken Lefschetz ﬁbrationsﬂ Combined with the ex-
istence theorem for simple wrinkled fibration over S? this leads to the following
intriguing consequence.

Corollary (Williams [67]). All 4—manifolds can be described by surface diagrams.

However, there is a caveat with this simple statement. Remember that we re-
stricted our attention to closed 4-manifolds in the present discussion. Unfortunately,
it turns out that an arbitrary surface diagram as described above does not describe
a closed 4-manifold unless a certain trivial monodromy condition is satisfied. This
adds a lot of subtlety to the theory and we refer to for further details.
The study of simple wrinkled fibrations, surface diagrams, and how they relate to
the topology of 4-manifolds is the central focus of our work.

1.3 Summary of Results

We now describe the contents of this thesis and state our main results. The main
body of the text is divided into three parts which each have a slightly different focus.

is mostly of preliminary nature. After reviewing some background ma-
terial in we turn to wrinkled fibrations and broken Lefschetz fibrations
in We collect the central definitions and summarize important results
surrounding these classes of maps. In addition, in we develop a theory
of parallel transport in the context of wrinkled fibrations which provides a solid
framework for the discussion of vanishing cycles.

In we develop a self-contained theory of simple wrinkled fibrations and
surface diagrams. In the process we extend and clarify various aspects of the work
of Williams. Recall that Williams showed how to extract surface diagrams from
simple wrinkled fibrations over S? and how their total spaces can be recovered from
surface diagrams assuming that the genus is at least three. We go further and show
that the map itself can be recovered as well. Unfortunately, the statement is a little
convoluted since we include the low genus cases.

Theorem 1.1 (Correspondence over the sphere). Let SWF,(S?) and SD(Q] be the
sets of equivalence classes of genus g simple wrinkled fibrations over S% and surface
diagrams with trivial monodromy, respectively. There is a surjective map

SWF,(S%) — 8D,

whose point preimages have a transitive action of the group Wl(Diff(Eg,l),id). In
particular, the map is bijective for g > 3.

We refer to for the relevant definitions. In particular, we would like to
highlight the trivial monodromy condition which is hidden in Williams’s approach.
Without this condition we obtain a different correspondence result for certain simple
wrinkled fibrations over the disk which is much cleaner.

3See the discussion following |Corollary 4.19| on |page 52I
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Theorem 1.2 (Correspondence over the disk). Fquivalence classes of surface di-
agrams correspond bijectively to equivalence classes of descending simple wrinkled
fibrations over the disk.

The main ideas used to prove [Theorems 1.1 and are outlined in |Section 4.4

Our discussion closely parallels the relation of Lefschetz fibrations and their vanish-
ing cycles which is reviewed in However, the actual proofs are carried
out in a more general setting. In fact, we define simple wrinkled fibrations over ar-
bitrary base surfaces and explain how their study reduces to that of certain simple
wrinkled fibrations over the annulus which we call annular. We then give a purely
combinatorial definition of surface diagrams, whereas Williams always discusses sur-
face diagrams in relation to simple wrinkled fibrations. We also introduce generalized
surface diagrams as a combinatorial counterpart for annular simple wrinkled fibra-
tions as well as a natural notion of equivalence of (generalized) surface diagrams.

The following is the central result of

Theorem 1.3 (Annular correspondence). There is a bijective correspondence be-
tween annular simple wrinkled fibrations and generalized surface diagrams, both con-
sitdered up to equivalence.

The proof is rather lengthy and occupies most of We finally deduce
and [1.2]in[Section 5.3| In the course of the proof we will obtain a good
understanding how (generalized) surface diagrams encode the topology of the total
spaces of the corresponding simple wrinkled fibrations. In particular, we will see
that simple wrinkled fibrations are directly accessible to handlebody theory without
the previously customary detour over broken Lefschetz fibrations. This aspect is
revisited and further elucidated in in the context of simple wrinkled
fibrations over the disk and the sphere. We described the structure of the handle
decompositions induced by these maps, explain how to draw Kirby diagrams, and
discuss some examples.

In we leave simple wrinkled fibrations aside and focus on the interplay
between the combinatorics of surface diagrams and the topology of the 4—manifolds
they describe. In we show how certain cut-and-paste operations on
4—manifolds can be realized in terms of surface diagrams, including connected sums
with S% x S§? and CP? with either orientation. These techniques turn out to be
a key ingredient in the proof of our next main result, namely the classification of
closed 4—manifolds that can be described by surface diagrams of the lowest genus,
which is the subject of Our result should be compared to the attempts of
Hayano [33] and Baykur-Kamada [6] to classify 4-manifolds with genus one broken
Lefschetz fibrations.

Theorem 1.4. A closed 4—manifold admits a surface diagram of genus one if and
only if it is diffeomorphic to kS? x 8? or mCP2#nCP2 where k,m,n > 1.

In we take on the task of understanding how surface diagrams en-
code basic homotopy information of 4-manifolds and give some applications. We
first discuss the fundamental and homology groups as well as intersection forms in
for which we obtain descriptions in terms of surface diagrams. Using
these we derive an easily verifiable obstruction for surface diagrams to have trivial
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monodromy, see We also discuss spin and spin€ structures in
As a final application, we elaborate on the following theorem in [Section 9.4

Theorem 1.5. Let w: X — S? be a simple wrinkled fibration with surface dia-
gram & = (X;c1,...,¢). If X is simply connected and [E] = 0 € Ho(X), then the
homeomorphism type of X is determined by the homology classes [¢;] € Hy(X).

An interesting observation is that the diffeomorphism type of X a priori depends
on the isotopy classes of the curves ¢; C X. Furthermore, the difference between
isotopy and homology for curves on a surface is measured in terms of the Torelli
group of the surface, which is the non-linear and mysterious part of the mapping class
group. This suggests the possibility of a relation between exotic smooth structures
on 4—manifolds and Torelli groups.

Finally, we include three appendices which provide detailed proofs of some results
that qualify as “mathematical folklore” which are used in the main body of the
text. In we show how the intersection form of a closed 4-manifold can
be computed from a Kirby diagram. This is common knowledge in case that the
underlying handle decomposition is free of 1- and 3-handles but we are not aware of
a treatment of the general situation in the literature. The purpose of is
to explain how the presence of a singular fibration leads to a geometric interpretation
of the set of spin® structures of a given 4-manifold. This is mainly an elaboration
on ideas of Taubes [64] and Perutz [58]. deals with a problem in
3-dimensional Morse theory which is relevant for the proof of Using
methods of Cerf [13] and basic mapping class group theory we show that a canceling
pair of critical points of a Morse function defined on an orientable 3—manifold can
be canceled in an essentially unique way.

Several results in this thesis, including [Theorems 1.1] to have already ap-

peared in the author’s article [7]. However, our exposition here is much more detailed
and several proofs have been completely rewritten in order to improve clarity. In
particular, we make consistent use of the theory of parallel transports which allows
to make many arguments more precise.
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Chapter 2

Background Material

The main theme of our work is to study smooth 4—manifolds in terms of curve
configurations in surfaces which are derived from certain maps to the 2—sphere. In
doing so, we will primarily rely on notions and methods from such varied fields as

e singularity theory of smooth maps,
e mapping class groups of surfaces, and

e handlebody theory.

As a service to the reader, as well as to set up some terminology, we include short
reviews of the necessary background from each of these three subjects. We deliber-
ately risk being overly detailed and suggest that the reader only skim this chapter
in order to become acquainted with our notation and terminology, and come back
to it when he or she feels that more information is needed.

General assumptions. We will work exclusively in the smooth category, mean-
ing that all manifolds and maps that appear are assumed to be smooth. In addition,
we make the standing assumptions that all manifolds are compact, connected, and
oriented. Deviations will be explicitly indicated. Occasionally, we will also restate
some of these assumptions for emphasis. We will freely use basic results from dif-
ferential topology such as the tubular neighborhood theorem, the isotopy extension
theorem, and transversality theory as covered in [11], for example. We often use no-
tation such as v A to indicate an open neighborhood of a subset A of some manifold.
If A is a submanifold, then we implicitly assume that v A is a tubular neighborhood.

Orientation conventions. Since we are working with oriented manifolds, we have
to settle on some conventions for induced orientations. If M is a manifold with
boundary, then we orient M by the outward normal first convention. This is the
convention that gives the unit circle S' C R? the counterclockwise orientation when
thought of as the boundary of the unit disk D?. Furthermore, if p: E — B is an
oriented fiber bundle with fiber F, then we require that the orientations on F, B,
and the fibers E, = p~!(b) are related by the fiber first convention. In the case
of the trivial bundle F = F' x B this means that we consider the fiber as the first
factor and require that the product orientation of the right hand side agrees with
the orientation on E. This generalizes to arbitrary bundles by the choice of a bundle
atlas with fiber wise orientation preserving transition maps.
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2.1. 4-Manifolds and Kirby Calculus

Framings. Let M be an n—dimensional manifold and let K C M be a submanifold
of codimension k. Recall that a normal framing or simply a framing for K is a
trivialization of its normal bundle. Equivalently, a framing consists of k& point wise
linearly independent normal vector fields along K (that is, sections of TM |k that
are nowhere tangent to K). We use the latter interpretation and the obvious notion
for homotopies of framings. We will allow ourselves the common inaccuracy to blur
the distinction between framings and their homotopy classes. This is justified by the
tubular neighborhood theorem, which establishes a bijection between framings up
to homotopy and extensions of the inclusion K € M to embeddings K x DF < M
up to ambient isotopy, and the latter structures are what one is actually interested
in most of the time. If both M and K are oriented, then a framing is already
determined up to homotopy by the choice of (k — 1) normal vector fields, since the
orientations specify the last vector field up to homotopy. In particular, for £ = 1
the orientations determine a canonical homotopy class of framings and for k = 2 it
is enough to specify a single normal vector field up to homotopy. We will sometimes
be sloppy and use this method even when K is only orientable but not oriented. In
those situations it is to be implicitly understood that the framing is only determined
after choosing an orientation. Usually this issue will arise in constructions which
require the choice of an orientation but whose result turns out to be independent of
this choice.

(Co-)Homology. Be default, (co-)homology groups are taken with integer coef-
ficients, that is, Hy(X) always means Hy(X;Z) and other coefficient groups will
be indicated explicitly. We will freely appeal to various forms of Poincaré dual-
ity (as found in Bredon’s book [10, p.348ff.], for example) and denote the corre-
sponding isomorphisms by PD. Finally, as customary in low dimensional topol-
ogy, we usually think of homology classes as represented by submanifolds. For
an oriented submanifold S C M we denote its homology class by [S] € Hp(M)
where k = dim S. Furthermore, we equip the homology groups with the intersection
product Hp(M) x H(M) — Hyyj—n(M) defined as [S] - [T] = [S h T] where the
symbol M indicates a transverse intersection (possibly after an implicit perturbation
of either S or T').

2.1 4—Manifolds and Kirby Calculus

We begin by reviewing some basic facts about 4-manifolds and their handle de-
compositions. The latter will be our main tool for relating properties of maps onto
surfaces as well as combinatorial structures in their fibers to the topology of the
source manifold.

Handle decompositions. Roughly speaking, handle decompositions are a mani-
fold version of cell decompositions and they are a central tool in manifold topol-
ogy. We briefly recall the 4-dimensional situation. For a detailed account we
refer to Gompf and Stipsicz [32, Ch. 4]. A (4-dimensional) k-handle is a copy
of h¥ = D* x D*7* and can be thought of as a thickened k-cell. A k-handle is
attached to a 4-manifold X via an embedding ¢: S x D? < 0X resulting in a new
4-manifold X U, hE. The subset S* x D*F of Oh* is called the attaching region
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2.1. 4-Manifolds and Kirby Calculus

and S* x {0} is the attaching sphere; both are usually implicitly identified with
their images in 0X. Similarly, D¥ x S37% and {0} x S37F are called the belt region
and belt sphere and so are their counterparts in 9(X U, h*). There are two further
important subsets of h*, namely the core D¥ x {0} and the cocore {0} x D*~* which
are bounded by the attaching sphere and belt sphere, respectively.

A manifold that is obtained from the empty set by a sequence of handle at-
tachments is called a handlebody. Since only 0O-handles can be attached to the
empty set, every handlebody must have a zero handle. A handle decomposition of
a 4-manifold X is a diffeomorphism from X to a handlebody. It is well known that
every 4—manifold admits a handle decomposition. Moreover, one can always arrange
the following extra properties (see [32, Ch. 4.2]) which we shall henceforth assume:

e the handles are attached in order of increasing index,
e there is a unique O-handle, and

e there is at most one 4-handle which is needed if and only if X is closed.

Given such a handle decomposition of X we denote by X <F the union of all handles of
index at most k and call this the k—skeleton of X. An important observation is that
for closed X, equipped with a handle decomposition as above, the 2-skeleton X =2 al-
ready determines X up to diffeomorphism. This follows from results of Laudenbach
and Poénaru [43], who implicitly show that any orientation preserving diffeomor-
phism of #%(S! x S?) extends across §¥(S' x D3), and the observation that the
union of the 3— and 4-handles of X are diffeomorphic to (S x D3) with k the
number of ?rhandlesﬂ In other words, if the boundary of a 2-handlebody diffeo-
morphic to #¥(S! x $2), then up to diffeomorphism there is a unique way to attach
3— and 4-handles to obtain a closed 4-manifold. This is very convenient, since
4-dimensional 2-handlebodies can actually be visualized by 3—dimensional pictures,
as discussed below.

The last general fact about handle decompositions we will need is that they
can be used to compute homology groups in very much the same spirit as cell
decompositions. To a handle decomposition of a 4-manifold X one can associate
the handle complex

C1(X) 25 C3(X) 2 Cu(X) 2 Cr(X) 25 Co(X)

where Cj(X) is the free Abelian group generated by the k—handles and the differ-
ential 0 counts the intersections between the attaching spheres of the k—handles
with the belt spheres of the (k — 1)-handles in X <F. As shown in [32, p.111], this
is a chain complex which computes the homology of X. Note that the assumption
about 0— and 4-handles force J4 and 0y to vanish, so that all interesting information
is concentrated in do and 03. Moreover, for closed X the fact that X is determined

by X=2 shows that the whole homological information about X is encoded only in
the map dy: Cao(X) — C1(X).

Kirby diagrams. As mentioned before, the structure of a 2-handlebody can be
described by a 3—-dimensional picture known as a Kirby diagram. There are two

! A more explicit account can be found in an article of Montesinos [52, Theorems 1&2].
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2.1. 4-Manifolds and Kirby Calculus

different ways to deal with 1-handles and we will employ the “dotted circle notation”
so that a Kirby diagram consists of the following data:

e An unlink % = Uy U--- UUy, in S where each component is decorated with
a dot — these are the “dotted circles”.

e A framed link £ = Ly U---U Ly, in the complement S* \ U/ where the framing
of L; is specified by its framing coefficient f; € Z which measures the difference
to the framing induced from a Seifert surface for L; in S, also known as the
O—framing.

A Kirby diagram (U, L) encodes the 2-handlebody part of a 4-manifold X as follows.
The ambient S? is thought of as the boundary of the unique 0-handle of X, which
is implicitly identified with D*. Each dotted circle represents a 1-handle, albeit in
a slightly subtle way: we choose pairwise disjoint spanning disks for all components
of U, push their interiors into the interior of D*, and carve out open tubular neigh-
borhoods of these disks from D*. Up to diffeomorphism, this process turns out to
have the same effect as attaching 1-handles to D* (see [32, Ch. 5.4]) so that the un-
link U represents X =!. Note that this description of X <! naturally identifies 0.X <!
with the O-surgery on U so that the complement of a neighborhood v/ C S? can
be considered as part of 9X=!. With this understood, the framed components of £
simply specify the attaching regions of the 2-handles so that the description of X =2
is complete. As a side note, there does not seem to be a convenient way to include
information about 3-handles in a Kirby diagram so that an arbitrary 4-manifold
with boundary cannot be described. However, for studying closed 4-manifolds (up
to diffeomorphism) this is irrelevant by the mentioned results of Laudenbach and
Poénaru [43]. This makes Kirby diagrams a powerful tool in the context of closed
4—manifolds.

Handle moves and Kirby calculus. Of course, handle decompositions and thus
Kirby diagrams of 4-manifolds are not unique. However, it is known that any two
handle decompositions of a given 4—manifold are related by isotopies of the attaching
maps, including the so called handle slides, and the creation/cancellation of pairs of
handles of adjacent index (see [32, Theorem 4.2.12]). Translated into the language
of Kirby diagrams, these handle moves are commonly known as Kirby calculus and
provide a visually accessible method for proving that two 4-manifolds are diffeomor-
phic. Very roughly, given a Kirby diagram (U, L) the isotopies for the 1-handles
appear as isotopies and band sums among the components of U/ (dragging £ along),
while the 2-handle isotopies affect £ by isotopies and band sums with components
of both £ and U. The creation/cancellation of handle pairs takes the form of inser-
tion/deletion of an isolated Hopf link with one dotted and one O—framed component
(for pairs of index 1 and 2) or an isolated O—framed unknot (for index 2 and 3).
For more detailed descriptions we refer to [32, Chs. 5.1&5.4]. In some arguments in
|Section 6.3 and |Chapter 7/ we will use Kirby calculus so that some familiarity with
the subject is useful, although not strictly necessary because the manipulations are
rather simple.
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2.2. Singularities of Smooth Maps

Intersection forms. For a 4-manifold X the intersection product and the canon-
ical isomorphism Hy(X) = Z give rise to a symmetric bilinear map

HQ(X) X HQ(X) — 7

called the intersection pairing and denoted by a-b. The intersection pairing vanishes
on torsion classes and thus descends to a symmetric bilinear form Q) x on the free
Abelian group Hs(X)/torsion, the so called intersection form of X. After passing
to rational coefficients, Qx can be diagonalized and the numbers of positive and
negative eigenvalues are homotopy invariants of X denoted by b3 (X) and b, (X),
respectively. The difference o(X) = b3 (X) — by (X) is called the signature of X.

2.2 Singularities of Smooth Maps

Starting with we will study certain maps from 4-manifolds to surfaces
which are characterized by their critical point structure. In order to put the central
definitions into a proper context, it is useful to know some general facts about
smooth maps and their singularities. However, we want to emphasize that the main
purpose of this section is simply to convince the reader that if one studies maps
from 4-—manifolds to surfaces, then it is natural to consider maps with only folds
and cusps. Of course, we will also explain what folds and cusps are. The more
delicate parts of the discussion will actually not be used later on. General references
for the singularity theory of smooth maps are the textbooks of Golubitsky and
Guillemin [31] and Arnol’d et al. [2]. We will mostly follow [31].

For the moment, we consider two smooth manifolds M and N of arbitrary di-
mensions m and n, respectively. For simplicity we assume that M is closed and
that N has empty boundary. However, both may be non-orientable and/or have
several components. Given a smooth map f: M — N we denote its differential
by df: TM — TN. Recall that p € M is called a critical point of f (or a singular-
ity) if the rank of df, is not maximal, and the that image of a critical point is called
a critical value. We refer to the sets Cy of critical points and f(Cy) of critical values
as the critical locus and the critical image of f. Sometimes we will also denote the
critical locus by C(f) for aesthetic reasons.

Since arbitrary smooth maps can be very complicated, one of the goals of sin-
gularity theory is to find reasonably large sets of maps with nice properties that
rule out as much pathological behavior as possible. In order fill the word large with
meaning, it is necessary to equip C*°(M, N) with a topology. For compact M there
is a natural choice, namely the C* topology of uniform convergence of all partial
derivatives An obvious interpretation of large subsets of C*°(M, N) is to require
that they are open and dense. While this interpretation is not perfect, it serves for
our purposes and we will stick with it.

As a warm up, let us take a look at the situation of real valued functions. Recall
that for f € C*°(M,R) and a critical point p € Cy there is a well defined notion of

20f course, in order to define this topology one has to make some choices, such as Riemannian
metrics or atlases, but for compact M all choices give rise to the same topology. In the non-compact
case one has to resort to a finer topology with better properties known as the Whitney topology or
strong C™ topology (see |31, p.42ff.]). But these delicacies shall not concern us.
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2.2. Singularities of Smooth Maps

second derivative at p. This takes the form of a symmetric bilinear form on 7),,M
and is called the Hessian of f at p. Then p is called non-degenerate if its Hessian is
non-degenerate and the index of p is defined as the number of negative eigenvalues
of the Hessian. Functions with only non-degenerate critical points are known as
Morse functions. Following Cerf [13] we call a Morse function that is injective on
its critical points excellent. The following is well known.

Theorem 2.1. (Excellent Morse functions) Let M be a smooth n—manifold. The
set of all smooth functions f: M — R such that

(a) f is a Morse function, that is, all its critical points are non-degenerate, and

(b) f is injective on its critical points

is open and dense in C°(X,R). Moreover, near each non-degenerate critical point
f has a local model of the form

(T ) > =25 — o —Tp A+ Ty T (2.1)

for some k € {1,...,n}.

Since we will frequently work with local models for smooth maps, we want to
make absolutely clear what we mean by this.

Definition 2.2. Let f: M — N be a smooth map. We say that f has a local
model F: R™ — R™ at p € M if there are local coordinates centered at p € M
and f(p) € N such that the coordinate representation of f agrees with F. If either M
or N are oriented the coordinates are required to respect orientations.

Many different proofs for are available in the literature. One that
is very conceptual and anticipates a generalization to maps between arbitrary man-
ifolds can be found in 31, Ch. II.G]EI The key ideas are the notion of transversality
and the language of jet spaces, culminating in the so called Multijet Transversality
Theorem [31, Theorem I1.4.13]. The latter is an extremely powerful tool whose im-
portance in differential topology can hardly be overstated. Unfortunately, we can
neither formulate nor explain this result without going too far astray. But just
to give a rough sketch of the proof of the openness and denseness
of conditions (a) and (b) follows from two applications of the transversality theo-
rem, and the construction of the local models is the content of the classical Morse
Lemma [31, Theorem 11.6.9].

Remark 2.3. The whole discussion above, including 'Theorem 2.1| extends verbatim
to the case when the target R is replaced by an oriented, 1-dimensional manifold.
It is convenient to speak of (excellent) Morse functions in this context as well.

As indicated, [Theorem 2.1 admits a generalization to maps between arbitrary
manifolds and we will state the version for maps from 4-manifolds to surfaces in
Theorem 2.9| below. However, to give the proper context we embark on a small

digression about the general situation. Note that condition (a) in [Theorem 2.1
is concerned with the nature of critical points in the source, while condition (b)

3 As stated, Theorem 2.1|follows from Theorem II.6.2, Propositions I1.6.6 and I1.6.13, and The-
orem I1.6.9 in [31].
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2.2. Singularities of Smooth Maps

addresses how critical points are mapped into the target. Both conditions have
natural generalizations to arbitrary dimension.

The basic idea for finding an analogue of condition (a) is to partition the critical
points of a smooth map f: M™ — N™ according to their level of degeneracy. More
precisely, for a non-negative integer r € Z>o we consider the sets

S, (f) ={p € M |rk(dfp) = min{m,n} —r} C M

of points where f drops rank by r. Note that Sp(f) consists of the regular points
while each critical point lies in exactly one S,(f) with » > 0. Of course, S,(f) is
empty if 7 exceeds the dimension of either M or N. As explained in 31, p.143], for
sufficiently nice f the sets S,(f) are submanifolds of M of codimensions

codim S, (f) = r? + rjm — n|. (2.2)

This observation suggests the following inductive scheme which is attributed to
Thom [65]. Given a sequence of integers 71,...,7t+1 € Z>o and assuming that
Sr1....r (f) is a submanifold of M (and also of S, . ,(f) if £ > 1) we define

ST1,...,7’}€+1(f) = ST]CJFI (f|3r1 L (f))

AAAAA

Note that if Sy, . ., (f) again turns out to be a submanifold of S,, . (f), then
according to it has positive codimension there unless ry4y; = 0. In
particular, the above process becomes stagnant after finitely many steps, in the sense
that f has no critical points when restricted to Sy, . (f) so that S, ... (f) is
empty for rp+1 > 0. So eventually, if f is nice enough for everything to work out,
the source M is partitioned into submanifolds of the form S,, _ ,, o(f). The general
analogue of condition (a) in is that the above process can be carried
out. The fact that this is possible for a dense set of maps in C*°(M, N) was proved
by Boardman [9]; we follow [31, p.157] and call such maps Boardman maps.

The partition of M is commonly known as the Thom-Boardman stratification (or
TB stratification, for short). We will usually ignore the top stratum Sy(f) of regular
points and only focus on the stratification of the critical locus. Again, a proper
exposition of the Thom-Boardman stratification requires the notion of jet spaces
and our discussion should be taken with a grain of salt. The interested reader is
referred to [31, Ch. VL5] and [9] for more details.

Remark 2.4. Surprisingly, the set of Boardman maps fails to be open in general.
According to Wilson [70], its openness depends on the dimensions of M and N.
More precisely, the Boardman maps form an open set if and only if either n < 4
or 2n > 3m — 4.

We now shift our attention to maps f: X — B from a closed 4-manifold X to a

surface B. Before stating the analogue of condition (b) in |Theorem 2.1| we want to
discuss two important examples of Boardman maps.

Example 2.5 (Fold models). Consider the maps F4 : R* — R? given by

Fi(t,z,y,2) = (t, 2?4+ £ 22). (2.3)
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2.2. Singularities of Smooth Maps

Figure 2: The critical images of the fold (left) and cusp models (right). In both
pictures the t-parameter increases from left to right and the origin of R? is at
the center.

We will refer to these maps as the fold models, which come in two flavors called
definite (F4) and indefinite (F_). A direct calculation shows that

1 0 0 0

from which we immediately see that C(F4) = {(7,0,0,0) | 7 € R} is a 1-dimensional
submanifold of R and that F4 drops rank by 1 at each critical point. In particular,
we find C(F1) = S1(F+). Moreover, the restriction of F1 to its critical locus obvi-
ously has full rank so that Fy is a Boardman map and its TB stratification has only
one non-empty singular stratum, namely C(F1) = S1 0(F4).

Example 2.6 (Cusp models). Next we take a look at the (indefinite and definite)
cusp models Cx: R* — R? given by

Cu(t,z,y,2) = (t,2° + 3te + y* £ 2°). (2.4)

Again, we compute the differential and obtain

1 0 0 0
dC:l:(t;$7y, Z) - (St 3((E2 + t) 2y :|:2Z) '

The critical locus is a parabola cut out by the equations 22 +t =y = z = 0. In
particular, it is again a 1-dimensional submanifold. Also, just as for the fold models,
the rank drops by 1 at all critical points, so that C(C1) = §1(Cy). If we parametrize
the critical locus by the curve (—72,7,0,0), then the restriction of C4 corresponds
to the map

T Ci(—TQ,T,O,O) = (—7'2, —7'3)

whose differential is non-zero for 7 # 0 but vanishes for 7 = 0. It follows that
the origin of R* is contained in S;10. So Cx is also a Boardman map and its TB
stratification takes the more complicated form

C(Cy) = S10(Cx) o S1,10(Cy)
= {(-7%7,0,0)|7#0} II {(0,0,0,0)}.

The critical images of the fold and cusp models are shown in [Figure 2} the
cuspidal shape is the reason for the name cusp.

It turns out that in some sense these examples capture the full local complexity
of singularities of maps from 4—manifolds to surfaces. Indeed, if f: X — B is
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2.2. Singularities of Smooth Maps

a Boardman map, then the only candidates for non-empty TB strata are Sj o(f)
and S1.1,0(f). According to the codimension of S,(f) is 72+ 2r which
exceeds the dimension of X as soon as r > 2. So Cy = S;(f) has codimension 3 and
is thus a 1-dimensional submanifold of X. Similarly, one argues that &1 s has to be
empty for s > 2 while 81 1(f) has codimension 1 in &;(f), making it a finite set of
points. These two types of critical points have special names.

Definition 2.7 (Folds and cusps). Let f: X — B be a smooth map from a 4-mani-
fold to a surface. A critical point p € Cy is called a fold point if f drops rank by 1
at p, Cy is a 1-dimensional submanifold near p, and flc ; has non-zero derivative
at p. Similarly, p € C; is called a cusp point if f drops rank by 1 at p, Cy is a
1-dimensional submanifold near p, and the derivative of f|¢ ; vanishes at p. We
denote the sets of fold and cusp points of f by C]fco and C$", respectively.

The following is clear from the definitions.

Lemma 2.8. A map f: X — B from a j—manifold to a surface is a Boardman
map if and only if all its critical points are folds and cusps. In that case we

have Sl’o(f) = CchO and 51,170(,]0) = C;‘u

Now, remember that we are still looking for an analogue of condition (b) in
which should be a condition on how Cy is mapped into B. Loosely
speaking, the restriction of f to Cy and all its TB strata should be as regular as
possible. More precisely, since the cusp stratum Sy 1,0(f) is a finite set of points, it
is natural to require that it is mapped injectively into B. Similarly, in the light of the
Whitney’s immersion theorem [31, Thm. I1.5.7], f should restrict to an immersion
with normal crossings on the 1-dimensional fold stratum Sy o(f). Lastly, the images
of S10(f) and Si1.1,0(f) should be disjoint, because a point and a line in the plane
are generically disjoint. We can now state the analogue of for maps
from 4-manifolds to surfaces.

Theorem 2.9 (Maps from 4-manifolds to surfaces). Let X be a closed 4—manifold
and B a surface. The set of smooth maps f: X — B such that

(a) f is a Boardman map, that is, all its critical points are folds or cusps, and

(b) f]c?, is an immersion with normal crossings and f is injective on ffl(f(CjSu))

is open and dense in C*°(X, B). Moreover, each fold or cusp point is locally modeled

on the fold or cusp models F+ and CL from and 2.6

Proof. The denseness of the conditions (a) and (b) is a special case of [31, Theo-
rem VI.5.2, p.157]. (Note that condition (b) is equivalent to “Condition NC” stated

on p.157 of [31].) Moreover, condition (a) is open by [Remark 2.4 (since dim B < 4),
and the openness of condition (b) follows from the multijet transversality theorem

as in the proof of [31, Proposition VI.5.6, p.158] with the additional input that M is
compact. Finally, the construction of local models for folds and cusps is due to
Morin [53] and Levine [46, p.154f.]. O

Remark 2.10 (Definite or indefinite?). Given a map f: X — B with a fold or cusp
point p € Cy, there are two candidates for a local model, the definite or the indefinite
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2.3. Surfaces and Their Mapping Class Groups

one. As in the case of Morse functions, one can decide which one fits by studying
a notion of second derivative. As explained in [31, p. 152] there is a well defined
symmetric bilinear map

52 [+ kerdfy, x kerdf, — coker df, = Ty, B/imdf,

which naturally generalizes the Hessian (see also [2, p.60ff.]). If p is a fold or cusp
point, then coker df,, is 1-dimensional and the choice of a non-zero vector provides
an identification with the real line. Using such an identification, 52 f becomes a
symmetric bilinear form on kerdf,. (For example, in the fold and cusp models,
512,f can be identified with the Hessian of either 22 + y? — 22 or 23 + y? — 22.) If all
non-zero eigenvalues of 512, f have the same sign, then the singularity is definite. If
there are eigenvalues of both sign, then we have an indefinite singularity. Note that
these conditions are independent of the choice of identification coker df, = R.

To summarize, for a map f: X — B from a 4-manifold to a surface that satisfies
the conditions in the critical locus Cy C X is a 1-dimensional subman-
ifold which decomposes into finitely many open arcs, the connected components of
the fold locus Cf° = S; o(f), whose ends limit to the cusp locus C$* = Sy 1,0(f) which
is a finite set. The critical points are locally mapped into B according to the models
discussed in and (see also and the only multiple points
that occur in the critical image are transverse intersections between the images of
arcs of folds. For brevity we will sometimes refer to both, the arcs of folds in X and
their images in B, as fold arcs. This should not cause any confusion since it will
usually be clear from the context where the arcs in question live.

Remark 2.11 (Stability). Another important concept in singularity theory that we
have not discussed so far is the notion of stability. A smooth map f: M — N is
called stable if every g € C*°(M, N) sufficiently close to f is equivalent to f, that
is, there are diffeomorphisms ¢ of M and ¢ of N such that g = ¥ o f o ¢~ . For
1-dimensional N it is a classical fact that f is stable if and only if it is an excellent
Morse function (see [31, Ch. I1.6]). Moreover, it turns out that the conditions stated
in characterize the stable maps from 4-manifolds to surfaces. This is
well known folklore in singularity theory and can be proved along the lines of |31}
IV.6.3, Theorem 6.3] where the details are worked out for the more complicated case
of maps between 4-manifolds. Curiously enough, while Boardman maps fail to be
open in certain dimensions, stable maps are not always dense (see [31, p.160ff.]).
However, in the context that is most relevant to us the two notions agree and we
can enjoy the best of both worlds.

2.3 Surfaces and Their Mapping Class Groups

The regular fibers of a smooth map f: X — B, with both X and B oriented, are
compact, oriented surfaces and these fibers will play an important role later on, and
we are naturally led into the theory of surfaces and their mapping class groups. This
itself is a vast subject and, in the author’s experience, many different conventions
are in use, sometimes making it difficult to decide whether a statement in some
reference actually applies to a situation at hand. For this reason we will give very
precise definitions. As a general reference we use the book of Farb and Margalit [24].
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Surfaces and Simple Closed Curves. By a surface we mean a compact, ori-
entable, 2—dimensional manifold ¥, possibly with non-empty boundary, and possibly
equipped with a finite set of marked points P C ¥\ 0¥ which is usually not men-
tioned explicitly. A simple closed curve in ¥ is a closed, connected, 1-dimensional
submanifold ¢ C ¥ which neither meets the boundary nor the marked points. In
other words, it is the image of an embedding S' < ¥\ (X U P). Similarly, a simple
arc r C ¥ is the image of a proper embedding ([0,1],{0,1}) — (£,0X U P). Note
however, that the embedding is not part of the data. Also, simple closed curves
and simple arcs are unoriented objects according to our definition, but at times it
will be convenient to choose orientations in order to speak of (integral) homology
classes or fundamental group elements. In those situations we will sometimes use
the notation @ for an oriented simple closed curve a C Y. Simple closed curves and
other objects related to ¥ are usually considered up to ambient isotopy in ¥ via
isotopies which leave the boundary as well as the marked points fixed. We use the
notation a ~ b to indicate that two given objects are isotopic.

Intersection numbers. Let a,b C X be a pair of simple closed curves. There are
several ways to count intersections between a and b. The crudest way is to simply
count the number of points in a Nb (sometimes called the numerical intersection
number). But this count might not be finite and it is certainly not invariant under
isotopies. With respect to these properties, a better approach is the geometric
intersection number

i(a,b) =min{#(anNp)|la~a, B ~b, ahf}eN (2.5)

where the symbol h indicates a transverse intersection. Obviously, i(a, b) is finite,
isotopy invariant, and also symmetric in @ and b. A third way of counting requires
that a, b, and X are oriented. In this situation the algebraic intersection number is
defined as

(a,b) = (a,b)s = ([a], [B)) () € Z

where bracket on the right hand side denotes the intersection form on H;(X). In
contrast to the geometric intersection number, (a,b) is skew symmetric and only
depends on the homology classes of a and b. However, both i(a,b) and (a, b) always
have the same parity (even or odd) and satisfy the inequality

|{a,b)| <i(a,b). (2.6)

Note that the left hand side is actually independent of the chosen orientations.

As far as computability is concerned, assuming that a and b intersect transversely,
it is obviously easiest to determine #(a N b) by simply counting points, followed
by (a,b) where one has to count with signs, and then there is i(a, b) which is harder
to come by. In order to compute i(a, b) one has to bring a and b in minimal position,
that is, one has to find isotopic curves that are transverse and minimize the number
of intersections. This seems difficult from the outset but it can be done in finitely
many steps due to the so called bigon criterion. Following [24, Section 1.2.4] we say
that @ and b form a bigon, if there is an embedded disk A C ¥ whose interior is
disjoint from a and b, and whose boundary is a union of an arc of a and an arc of b
intersecting in exactly two points (see . Given such a bigon, one can push b
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b -y

Figure 3: Two curves a,b C ¥ forming a bigon A, and a curve b’ obtained
from b by a Whitney move across A.

across A by a 2-dimensional Whitney move resulting in a curve b’ with two fewer
intersections with a. An immediate consequence of the following result is that one
can bring a and b in minimal position by finitely many Whitney moves.

Proposition 2.12 (Bigon criterion). Let a,b C ¥ be simple closed curves intersect-
ing transversely. If a and b are not in minimal position, then they form a bigon.

Proof. See (24} Proposition 1.7]. O

Later on we will frequently encounter pairs of simple closed curves with geometric
or algebraic intersection number one and we find it convenient to introduce the
following terminology.

Definition 2.13 (Duality for curves). Two simple closed curves a,b C ¥ are called

(a) algebraically dual if (a,b) = 1 (for some choice of orientations),
(b) weakly dual if i(a,b) = 1, and

(c) strongly dual if a and b intersect transversely in a single point.

Remark 2.14. In [7] we used the term “geometrically dual” instead of “weakly dual”.
However, it has been brought to our attention that this was misleading since “ge-
ometrically dual” is commonly used in the sense of “strongly dual”’, especially in
higher dimensional contexts. In order to prevent this potential confusion, we de-
cided to change our terminology.

Diffeomorphisms and Mapping Class Groups of Surfaces. We turn to dif-
feomorphisms of surfaces. Let Diﬁ’g(E,P) be the group of orientation preserving
diffeomorphisms that restrict to the identity on 9% and preserve the set P of marked
points (possibly permuting the points). The mapping class group of ¥ is defined as

Mod(X) = mo ( Diff} (X, P))).

Simple closed curves play an important role in the theory of mapping class groups.
On the one hand, a simple closed curve a C 3 gives rise to an element 7, € Mod(X)
called the (right-handed) Dehn twist about a, which depends only on the isotopy
class of a. A diffeomorphism representing 7, is obtained by taking out an annulus
neighborhood of a, applying a full right-handed twist to it, and gluing it back in.
Similarly, a simple arc » C 3 connecting two distinct marked points gives rise to
a half-twist 7, € Mod(X), represented by a diffeomorphism supported in a disk
neighborhood D of r, ambiently isotoping r onto itself by a clockwise 180 degree
rotation, thus permuting the two marked points, while keeping 0D fixed. (Note
that 7, is a square root of 79p in Mod(X).) We will frequently use the following
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elementary facts about Dehn twists. First of all, if a C ¥ is a simple closed curve
and f € Diff(¥), then the Dehn twist about f(a) is given by

Ti(a) = fraf ™' € Mod(2) (2.7)

where the right hand side is to be understood as the isotopy class of f7,f~!
where T, € Diff} () is some representative of 7, (see |24, p.73f.]). Furthermore, if
a,b C 3 is a pair of weakly dual curves (that is, i(a,b) = 1), then we have

TaTp(a@) ~ b (2.8)
and the so called braid relation
TaTbTa = TpTaTp € Mod(X) (2.9)

holds (see [24, p.78f.]).

It is well known that Mod(X) is generated by Dehn twists and half-twists (see |24,
Chapter 4], for example). On the other hand, mapping classes can be effectively
studied by their action on (isotopy classes of) simple closed curves and simple arcs.
In particular, it is desirable to understand the effect of Dehn twists on simple closed
curves. While this can be quite complicated for high geometric intersection numbers,
the situation becomes accessible on the level of homology.

Proposition 2.15 (Picard—Lefschetz formula). Let ¥ be a surface, a C ¥ a simple
closed curve and let x € Hi(X). Then for any orientation on a we have

(82 = x + k([a], z)[a). (2.10)
In particular, if b is an oriented simple closed curve, then

[ra (b)] = [8] + K<([a], [B])[a]. (2.11)
Proof. See |24, Proposition 6.3]. O

Remark 2.16. The Picard-Lefschetz formula is particularly useful when ¥ = 72, In
that case, mapping classes are completely determined by their action on homology
(see |24, Theorem 2.5], for example).

Another useful tool is the so called change of coordinates principle which roughly
states that any two configurations of simple closed curves on a surface with the same
intersection pattern can be mapped onto each other by a diffeomorphism. We will
only use the following special cases. For details we refer to |24, Chapter 1.3].

Proposition 2.17 (Change of coordinates principle). If a,b C ¥ is a pair of non-
separating simple closed curves, then there exists some ¢ € Diffg(E,P) such that
¢(a) = b. Furthermore, if a,b and ',V are two pairs of strongly dual curves, then
there is some ¢ € Diff } (3, P) such that ¢(a) = a’ and ¢(b) =b'.

It is worthwhile mentioning that the higher homotopy groups of the diffeomor-
phism groups of compact surfaces are well understood. In fact, the homotopy type
of the identity components (and thus of all components) was determined by Earle,
Eells, and Schatz.
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Theorem 2.18 (Earle-Eells, Earle-Schatz [19,20]). Let ¥ be a compact, connected,
orientable surface and let Diff3(X) be the identity component of Diff5(X).

(i) If ¥ is closed of genus g > 2, then Diffy(X) = Diff%(X) is contractible. Fur-
thermore, the canonical inclusions SO(3) — Diff’(S?) and T? — Diff®(T?)
are homotopy equivalences.

(ii) If 0% # 0, then Diff%(X) is contractible.
Proof. See |19} p.21, Corollary] for (i) and [20, p.170, 2nd Theorem] for (ii). O

This has many important consequences. We would like to point out three
of them. The first concerns spaces of simple closed curves. We refer to [37,
Chs. 2.6&2.7] for a general discussion of spaces of embeddings and submanifolds
as well as a proof of the following result.

Corollary 2.19. Let ¥ be a closed, orientable surface of genus at least two. Then
the space of non-separating simple closed curves has weakly contractible components
(that is, all homotopy groups of each component are trivial).

Proof. See [37, Theorem 2.7.H]. O

Another consequence concerns what we call the automorphisms of ¥ x 81, that is,
the orientation and fiber preserving diffeomorphism of ¥ x S! considered as the trivial
Y-bundle over S'. (More generally, we refer to orientation and fiber preserving
diffeomorphisms of total spaces of oriented fiber bundles as automorphisms.) These
form a group, denoted by Aut(X x S'), whose elements can be identified with maps
from S! into Diff *(X), or in other words, loops in Diff t(X). By fixing a fiber and
identifying it with 3, we obtain a short exact sequence of groups

1 — m (Diff(£),id ) — mo(Aut(Z x 1)) — Mod(X) — 1 (2.12)

where the map mo( Aut(XxS')) — Mod(X) induced by restricting an automorphism
to a fixed fiber which is canonically identified with . Note that this sequence is
split by sending ¢ € Diff (2) to the constant automorphism ¢ x idg:. Combining
the exact sequence above with we immediately see that if the genus
of ¥ is at least two, then every automorphism of ¥ x S is isotopic to a constant
one. The following easy consequence will be important for our purposes.

Corollary 2.20. Let X be a closed, oriented surface. Then ¢ € Aut(X x S1) extends
to an automorphism of ¥ x S' if and only if it is isotopic to a constant one. In
particular, if 3 has genus at least two, then all automorphism extend.

Finally, we would like to mention the classification of surface bundles over the
2—-sphere.

Corollary 2.21. Let X — S? be a surface bundle with closed fibers of genus g.

(i) If g =0, then X is diffeomorphic to S? x S? or CP2#CP2.
(ii) If g =1, then X is diffeomorphic to T? x S%, S' x 83 or S* x L(n,1).
(iii) If g > 2, then X is diffeomorphic to ¥, x S%.
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Proof. Let 3, be a closed surface of genus g. It follows from that
¥,~bundles over S? are classified by elements of 7T1(Diff (X4);id). For g # 1 the
above classification is then easily deduced from The genus one case
is slightly more complicated and is covered in [6, Lemma 10]. O
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Chapter 3

Wrinkled Fibrations and
Related Structures

3.1 Wrinkled Fibrations and Broken Lefschetz Fibra-
tions

After all these preliminaries we narrow in closer toward the core of our work. We
start with one of the central definitions. Let M be a 4-manifold and B a surface,
both satisfying our standing assumptionsﬂ

Definition 3.1 (Wrinkled fibrations). A wrinkled fibration is a map f: M — B
satisfying OM = f~1(0B) and the following conditions:

(a) All critical points of f are indefinite folds and cusps.
(b1) The cusp locus C$" does not meet OM and f is injective on 1 (f(C}“)).

(b2) The fold locus C]fco is transverse to OM and f restricts to an immersion with

normal crossings on ijco.

Two wrinkled fibrations f: M — B and f': M’ — B’ are called equivalent if
there are orientation preserving diffeomorphisms ¢: M — M’ and ¢: B — B’ such

that f' = ¢ f L.

Our general philosophy is to consider wrinkled fibrations as generalized fiber
bundles and we will borrow some terminology from this context. We will usually
refer to the source and target as total space and base, respectively, and we call the
preimages of points fibers.

A closely related class of maps are the so called broken Lefschetz fibrations.
Their definition is almost the same as except that cusps are replaced
by Lefschetz singularities. The latter are defined in terms of the local model

L:C* = C, (zw)22+w?

using complex local coordinates. More precisely, broken Lefschetz fibrations have
only indefinite folds and Lefschetz singularities and satisfy the obvious analogues

! As a reminder, these are smooth, compact, connected and oriented.
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of conditions (bl) and (b2) in Definition 3.1l Broken Lefschetz fibrations without

indefinite folds are simply called Lefschetz fibrations. In fact, we have introduced
the maps in reverse chronological order. As described in the correct
order is: first Lefschetz, then broken Lefschetz, and finally wrinkled fibrations.

Remark 3.2. Tt is important that Lefschetz singularities are modeled using orien-
tation preserving charts. The use of orientation reversing charts for the Lefschetz
model leads to so called achiral Lefschetz singularities. These can also be modeled
in orientation preserving charts by (z,w) > 22+w?2. The point is that in orientation
preserving complex charts Lefschetz fibrations are locally holomorphic while achiral
singularities disrupt this property. For folds and cusps this does not really matter
because both models have an orientation reversing symmetry.

Remark 3.3. Before moving on we would like to point out the unfortunate diversity
of terminology used in the field. The term “wrinkled fibration” was originally in-
troduced by Lekili [45] as a mixture of broken Lefschetz fibrations and the “wrinkled
maps” studied by Eliashberg and Mishachev [21] (these are certain maps with only
folds and cusps). However, Lekili allowed his “wrinkled fibrations” to have Lefschetz
singularities and used “purely wrinkled fibration” for maps with only indefinite folds
and cusps; he also did not require (b1l) or (b2). Williams [67] adopted Lekili’s ter-
minology of “purely wrinkled fibrations” but implicitly added the conditions (b1)
and (b2). Meanwhile, what we call wrinkled fibrations is called “indefinite generic
map” by Baykur [4] whereas Gay and Kirby [28] use the name “indefinite Morse
2—function”. Unfortunately, it is not foreseeable which terminology will eventually
catch on.

In order to make the connection with we note that if M is closed,
then a wrinkled fibration f: M — B is just a map as in |Theorem 2.9 with the addi-
tional assumption that all critical points are indefinite. So in some sense, wrinkled
fibrations can be considered as analogues of Morse functions without local extrema.
In the case of non-empty boundary the conditions (b1) and (b2)E|imply that wrinkled
fibrations restrict to excellent Morse function over their boundary components. As
explained in the questions of existence and uniqueness of wrinkled fi-
brations have a convoluted history that is largely intertwined with the analogous
questions for broken Lefschetz fibrations. Since all the due credits were already
given in we limit ourselves to stating the most general existence result
due to Gay and Kirby [28]. The uniqueness will be discussed in

Theorem 3.4 (|28, Theorem 1.1]). Let f: M — B be a map from a 4—manifold to a
surface such that OM = f~Y(OB) and f: OM — OB is an excellent Morse function.
Then f is homotopic relative to OM to a wrinkled fibration if and only if fim (M)
has finite indez in m (B).

In particular, for B = S? the finite index condition is always satisfied so that
all maps M — S? are homotopic to wrinkled fibrations. In this case one can even
do better and obtain simple wrinkled fibrations as observed by Williams [67], see

Definition 4.1/ and [Theorem 4.2/ below.

2The conditions (bl) and (b2) are most likely open and dense for maps f: M — B with
OM = f~'(8B) but we are not aware of any reference. However, we will actually not need this.
3See |Remark 2.3| on |page 17| for the definition.
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Let us discuss some immediate consequences of the definition of wrinkled fi-
brations. It follows from the discussion in that C; C M is a properly
embedded, 1-dimensional submanifold — in other words, Cy is the disjoint union of a
finite number of embedded circles in the interior and properly embedded arcs. More-
over, the critical image f(Cy) C B is immersed except for the finitely many cusps,
and its complement B\ f(Cy) has finitely many connected components to which we
refer as regions. The condition that OM = f~'(0B) implies that all regular fibers
are closed, orientable surfaces, which are oriented by the fiber first convention and
the orientations of M and B. As mentioned before, we will usually think of wrinkled
fibrations as singular families of surfaces parametrized by the base. Since f restricts
to a proper submersion over each region, such a restriction is a fiber bundle. In
particular, if two fibers are mapped to the same region, then they must be diffeo-
morphic. In we will study how the topology of the fibers changes near
indefinite folds and cusps. In particular, we will see that wrinkled fibrations are

automatically surjective (see the discussion after Definition 3.12)). But first we have

to introduce some tools to relate different fibers in a wrinkled fibration.

3.2 Parallel Transport in Wrinkled Fibrations

As mentioned above, we not only want to understand the fibers of a wrinkled fi-
bration individually, but also how they fit together. For that purpose we will gen-
eralize the concept of parallel transport in fiber bundles along arcs in the base
(see [18] p.225f.], for example). The main technical tool is a consistent choice of
complements for the tangent spaces of the fibers.

Definition 3.5. Let f: M — B be a wrinkled fibration. The wvertical distribution
of f is the kernel of its differential V/ = ker(df) C TM. A horizontal distribution
for f, denoted by H C TM, is the orthogonal complement of V/ with respect to
some Riemannian metric on M.

Note that f restricts to a submersion outside of Cy so that the vertical distribu-
tion Y/ has constant rank 2 on M\C + and consists of the tangent spaces to the fibers.
However, at critical points the rank of Y/ jumps up to 3 so that neither V/ nor any
horizontal distribution H are vector bundles unless f is a submersion. Nevertheless,
it is possible to speak of vector fields on M with values in V/ or H.

Remark 3.6. The set of all horizontal distributions for a given wrinkled fibration
is by definition a quotient of the space of Riemannian metricsﬁ and we give it the
quotient topology. Since the space of metrics is connected, it follows that the space
of horizontal distributions for a given wrinkled fibration is connected as well.

Now let us fix a wrinkled fibration f: M — B and a horizontal distribution H
for f. A smooth curve 7: [0,1] — M is called H—horizontal if its velocity vectors,
denoted by 7(7), are contained in H. The main idea for the definition of parallel
transport is to find H—horizontal lifts for curves in the base.

4The space of metrics is topologized as a subspace of the sections of the second symmetric power
of the cotangent bundle with its standard topology.
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Proposition 3.7. Let f: M — B be a wrinkled fibration, H a horizontal distribution
for f, and r: [0,1] — B an embedded arc such that r(0) and r(1) are reqular values.
For convenience we write $y = f~1(r(t)).

(i) For anyt € [0,1] and any regular point p € ¥, there is a unique H-horizontal
lift 7rp: Ity — M of v, defined on a mazimal open interval Iy, C [0,1] con-
taining t, such that 7 ,(t) = p. Furthermore, the curves 7, have left and right
limits in either ¥, X1 or Cy.

(i1) If H depends smoothly on some auziliary parameters, then so do lifts 7 p.

Proof. Let R be the image of r and let Y = f~'(R)\Cy. Since f restricted to M \Cy
is a submersion, Y is a non-compact smooth 3—manifold with boundary Ef I xE,
Let I'g be the unique H-horizontal lift of the velocity vector field 7. Then I’y is
necessarily tangent to Y, thus providing a vector field on Y whose flow generates
the desired H-horizontal lifts 7;,. Moreover, if H depends smoothly on some pa-
rameters, then so do I'y and its integral curves.

It remains to study the limiting behavior of these lifts. For that purpose we let 7
be some lift of r defined over an open interval (a,b) C [0, 1]. We will show that 7 can
be extended to the closed interval [a,b]. Since the situation is symmetric, we only
give the arguments for b. For convenience, we choose a Riemannian metric on M
which induces H and a metric on B such that

ITolar = |df (To)|B = |7|B- (3.1)

Let (t,) be a sequence in (a,b) converging to b. By the compactness of M the
sequence T(t,) must have an accumulation point b € M and the continuity of r
implies that f (l;) = r(b). We have to distinguish two cases: either b is regular point
of f or it is a critical point. If b is a regular point, then (a,b) must intersect the
interval Ib,E so that 7 is just the restriction of the maximal lift fb,ir In particular,

r(t) converges to b as t approaches b. On the other hand, if b is a critical point,
then a priori the sequence 7(t,) could have several accumulation points, or there
could be another sequence with a different accumulation point. In any case, it is
enough to treat the situation that t¢,, has two different accumulation points. By the
above arguments, these have to be critical points in the fiber f~1(b). But each fiber
contains at most finitely many critical points so that the curve 7(¢) must oscillate
rapidly near b. In particular, the absolute value of 7 = Iy cannot be bounded near b.
But this is impossible since 7 is bounded by compactness and we have |I'o|yr = |7|B

by lequation (3.1) O

Using |[Proposition 3.7| we can make the following definition which is similar to
the notions of ascending and descending manifolds in Morse theory. We use the
same notation as in [Proposition 3.7|

Definition 3.8. Given a pair (¢, p) with p € ¥; a regular point, we say that 7, runs
into Cy (resp. emerges from Cy) if its left (resp. right) limit lies in Cy. We define the
vanishing sets of r as follows:

Vit(r) = {pe 20’ Fo,p Tuns into Cy}
Vit(r) = {q € 21| 71,4 emerges from Cy}
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Moreover, we define the parallel transport along r with respect to H
PTH: ¥\ VJ(r) — 21\ VI(r)
by sending = € ¥ to 7y (1) € ¥;.

Standard results on the smooth dependence of solutions of ordinary differential
equations on their initial conditions imply that PTZ{ is a diffeomorphism. Note that
if r is an arc of regular values, then its vanishing sets are empty and we recover the
notion of parallel transport in bundles. We will discuss more interesting situations in
below. Next we want to investigate how the vanishing sets and parallel
transport depend on H.

Corollary 3.9. Let f and r be as in |Proposition 3.7 and let H and H' be two
horizontal distributions for f. Then the vanishing sets of v with respect to H and H'
are ambiently isotopic in the reference fibers.

Proof. This follows from part (ii) of [Proposition 3.7| and the fact that the space of
horizontal distributions for f is connected (see Remark 3.6]). O

Conversely, we now show that all ambient isotopies of the vanishing sets can be
realized by changing the horizontal distribution. Recall that Diff’(2) is our notation
for the identity component of Diff(X).

Lemma 3.10. Let f: M — B be wrinkled fibration, and r: [0,1] — B an embedded
arc of regular values. As before, we let ¥y = f~1(r(t)).

(i) If H and H' are horizontal distributions for f, the PTH and PTH are isotopic.
(ii) Conversely, if H is a horizontal distribution, then for any ¢ € Diff%(Z)
and 1y € Diff%(21) there exists a horizontal distribution H' which agrees with H

outside of an arbitrarily small neighborhood of R = r([0,1]) and satisfies
PT? = ¢ o PT? 0 1.

Proof. The first claim again follows from part (ii) of [Proposition 3.7 and the con-
nectivity of the space of horizontal distributions. To prove the second claim, we
can assume that B = R?, equipped with coordinates (7, ), and that r(7) = (,0)
by restricting to a neighborhood of R = r([0,1]). Let H; and H, be the unique
H-horizontal lifts of the coordinate vector fields 9, and 9,. Then H is spanned
by H, and H,. Next observe that f _1(R) is a 3—dimensional cobordism from X,
to X1 and that

r~tof: fTHR) — [0,1]

is a Morse function without critical points. Moreover, H restricts to a gradient-like
vector field for r—! o f whose flow induces to the parallel transport PTZ'[. According
to |54, Lemma 2.28], we can find another gradient-like vector field H' on f~!(R)
whose flow induces v o PTz" o ¢~ 1. Using standard arguments we can extend H’ to
a vector field on M with the following properties:

e H’ agrees with H, outside of f~!(U) where U C B is a small open neighbor-
hood of R.

e df(H') = pd; for some positive function p € C°(M).
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Then H' and H, span a new horizontal distribution #’ which and PTZ{/ agrees with
the gradient flow of H’ by construction. O

Corollary 3.11. Consider f, H and r as in|Proposition 5.7 and let H and H' be
two horizontal distributions for f. For all ¢ € Diff®(Xg) and o € Diff’(2y) there
exists a horizontal distribution H' such that

Vot (r) = o(Vit(r)), W (r)=v(V(r)), and PTH =4 oPTHog .

Proof. Apply [Lemma 3.10| near the endpoints of r. O

It turns out that the vanishing sets as well as the parallel transport diffeomor-
phism of an embedded arc r: [0,1] — B depend only on the oriented image of r,
which we denote by R = r([0, 1]). Indeed, any orientation preserving reparametriza-
tion of r only changes the flow used to define the lifts in the proof of [Proposition 3.7|
by rescaling with a bounded function, which only affects the speed of the integral
curves but not the flow lines. So we will only use R from now on unless we specifically
need a parametrization.

Lastly, although we have only discussed parallel transport and vanishing sets
for embedded arcs, there are obvious generalization to more general setting such
as immersed arcs, piecewise smooth arcs, and closed curves. Moreover, we will
usually refer to the parallel transport along a closed curve of regular values as the
monodromy along the curve.

3.3 Folds, Cusps, and Vanishing Cycles

We now try to compare the fibers over the different regions of a wrinkled fibra-
tion f: M — B. For that purpose, we focus on two neighboring regions in B\ f(Cy),
that is, two regions which are separated by a fold arc. We consider an embedded
arc R C B with regular endpoints that intersects the critical image of f trans-
versely in one fold point, say R m f(Cf) = {f(p)}. Then the fold model implies
that flp-1p): f7'(R) — R is a Morse function with a single critical point at p
which has index 1 or 2, depending on the choice of an orientation of RE| The
following definition is central to all subsequent developments.

Definition 3.12 (Reference arcs). Let f: M — B be a wrinkled fibration. A
reference arc for f is an embedded arc R C B with the following properties:

(a) the endpoints of R are regular values,

(b) R intersects the critical image f(Cs) transversely in one fold point, and

(c) R is oriented such that f[;1(pg): f~Y(R) — R has an index 2 critical point.
The endpoints of R are also called reference points. The fibers over the initial and

final reference point are denoted by Y i and ¥, respectively, and are called the
reference fibers of R.

5Indeed, we can choose coordinates around p and f(p) such that f appears as the fold
model (t,z,y,2) — (t,2°> + y* — 2%) and R corresponds to {0} x R in the target of the model.
Then f|;-1(g) is locally given by +(z? + 9y — 27).
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3.3. Folds, Cusps, and Vanishing Cycles

Figure 4: The fibers and vanishing sets in the models for indefinite folds and
cusps

Given a reference arc R for f, basic Morse theory already gives qualitative in-
formation about the relation of the reference fibers X and Y. Indeed, since
fl s-1(r) has a single index 2 critical point, Y, is related to X by a surgery on
a simple closed curve. It follows that the Euler characteristic of the fibers increases
by 2 along R, that is, x(¥%) = x(Xg) + 2. If both reference fibers happen to be
connected, then this is equivalent to saying that the genus decreases by one along R.
In this case we will usually call ¥ and X', the higher and lower genus fiber of R,
respectively. Note in particular that this discussion also shows that wrinkled fibra-
tion cannot have empty fibers. In other words, they are automatically surjective.
Using the machinery of parallel transport developed in the previous section we can
also quantify the relation between the fibers over neighboring regions.

Lemma 3.13. Let f: M — B be a wrinkled fibration equipped with a horizontal
distribution H. If R C B is a reference arc, then the vanishing sets of R consist of
a simple closed curve (that is, an embedded S*)

cr =Vi'(R) C g
and two distinct points (that is, an embedded S°)
{wr, zr} = V/'(R) C T

Furthermore, the parallel transport PT%: Yr\ cr = X% \ {wr, zr} provides an
identification of X'y with the surgery on cr C Xg.

Definition 3.14 (Vanishing cycles). The simple closed curve cg C X appearing

in |Lemma 3.13|is called the (fold) vanishing cycle of R.

The situation is illustrated on the left side of (which is in fact an accurate
reflection of the fibers in the indefinite fold model).

Remark 3.15. Recall that the surgery on cgp C X g is usually defined by removing
a tubular neighborhood of ¥ and filling in the resulting boundary components with
disks. However, there is a different interpretation of this process which is more
convenient for our purposes. We simply consider the complement Xy \ cg and take
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3.3. Folds, Cusps, and Vanishing Cycles

its endpoint compactiﬁcatiorﬁ One can show that the smooth structure on Xp \ cgr
can be extended across the endpoints and the resulting manifold diffeomorphic to
the usual interpretation of surgery. In fact, this amounts to the same arguments
that show that the usual surgery results in a well-defined smooth manifold.

Proof of[Lemma 3.15. We fix a parametrization r: [0,1] — R C B and consider

the Morse function

fr=r""o flgymy: fTH(R) = [0,1]

with its unique critical point p € f~'(R). Let g be a Riemannian metric on M that
induces the horizontal distribution H, and let I" be the gradient of fr with respect
to gls-1(r). Then by definition I' takes values in H and we can assume that the
unit length vector field I'o = I'/|T"| is the horizontal lift of 7 (possibly after rescaling
the metric). But this means that, up to reparametrization, the H—horizontal lifts
of r constructed in [Proposition 3.7| are exactly the non-constant gradient flow lines
of fr. In particular, the vanishing sets of R agree with the descending and ascending
spheres of p (considered as a critical point of fr) in ¥z and ¥,. Since p has index 2,
the descending sphere has dimension 1 while the ascending sphere has dimension 0.
In other words, the vanishing sets are a simple closed curve cg C ¥ and two distinct
points {w,, 2.} € ¥/, as claimed.

Finally, it is clear that the parallel transport along R identifies the endpoint
compactifications of ¥ \ cg and X', \ {w,, 2, }. The latter is canonically identified
with 3, while the former can be considered as the surgery on cg C X as explained

in [Remark 3.15 O

Remark 3.16. One can think of wrinkled fibrations as “surface valued Morse func-
tions”. In this analogy, horizontal distributions correspond to gradient-like vector
fields and the vanishing cycles can be considered as analogues of the descending
spheres of critical points. Recall that an excellent Morse function can be recov-
ered up to equivalencﬂ from its set of critical values, the topology of intermediate
regular level sets, and the descending spheres of the critical points above the level
sets (see [b0], for example). Put slightly differently, an excellent Morse function
decomposes into (necessarily trivial) fiber bundles over the intervals of regular val-
ues, and the descending spheres control how these are glued together. Similarly, a
wrinkled fibration f: M — B decomposes into a disjoint union of surface bundles
over B\ f(C¢) and the vanishing cycles contain information how these are glued
together. However, the situation is slightly more complicated for the following rea-
sons. First of all, there can be non-simply connected regions over which f is a
non-trivial bundle. So the knowledge of the topology of the fibers alone is not suf-
ficient. Second, two regions can meet along several different fold arcs. In this case
the corresponding vanishing cycles can be different, but they must be compatible in
some sense and the compatibility conditions are not always obvious. Third, there

SRecall that there is an abstract notion of ends of a topological space. The endpoint compacti-
fication is obtained by adding one point for each end and declaring a neighborhood basis for each
endpoint. We will only consider endpoint compactifications of complements of curves or finite sets
in surfaces. In these cases it is intuitively clear what the ends and their neighborhoods are and we
will not discuss the details. For a formal definition see |26} p.60], for example.

“that is, up to composition with diffeomorphisms of source and target
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are additional gluing ambiguities cause by fibers whose diffeomorphism groups fail
to be simply connected. However, if all regions are simply connected and all fibers
are connected of genus at least two, then the knowledge of the fibers and vanishing
cycles is enough to recover f. We will discuss this phenomenon extensively in the
case of simple wrinkled fibrations (see Definition 4.1)) in [Part II. More general cases
have been studied by Gay and Kirby [30].

Of course, the vanishing cycle cr associated to a reference arc R depends on the
choice of a horizontal distribution, but according to [Corollary 3.9|its isotopy class
does not. Next we want to understand the dependence of cg on R.

Definition 3.17. Two reference arcs Ri, Ro C B are called isotopic if there is an
ambient isotopy that moves R into R’ through reference arcs. Furthermore, they
are called strictly isotopic if they have the same reference points and are isotopic
relative to the reference points.

Lemma 3.18. Let f: M — B be a wrinkled fibration and let H be a horizontal
distribution for f. If R, Ro C B are strictly isotopic reference arcs, then their
vanishing sets are isotopic.

Proof. Let Ry, t € [1,2], be a 1-parameter family of reference arcs obtained from a
strict isotopy from R; to Ro. We first assume that all R; agree in a neighborhood of
the critical image. In this situation the claim follows from the fact that the parallel
transport in fiber bundles has the property that two homotopic paths (relative to
their endpoints) induce isotopic parallel transport diffeomorphisms (see |18} p.226ff.],
for example). If R, is also allowed to move near the critical image, then the situation
can be reduced to the fold model as follows. Assume that Ry meets the critical
image in f(p). We choose model coordinates for f around p and let U C B be the
support of the coordinates around f(p). For small ¢ the intersection point of Ry
with f(Cy) is contained in U and we can assume that the image of R, in R? contains
the arc {p(t)} x [—1,1]. Now the fold model provides canonical identifications of
the vanishing sets of {p(t)} x [—1,1] and, combined with the property of parallel
transport in bundles, this argument shows that the vanishing sets of R; depend
smoothly on t. O

The above result is closely related to the fact that for a 1-parameter family of
Morse functions f;: Y — [0, 1] on a fixed 3—manifold Y the ascending and descending
spheres move by isotopies. In fact, the fold model can be considered as a model
for a 1-parameter family of 3—-dimensional Morse functions near a critical point.
Similarly, the cusp model is related to 3—dimensional Morse theory in that it models
the cancellation of a pair of critical points of index 1 and 2. This observation
will allow us to understand the vanishing cycles of the two fold arcs near a cusp.
Recall that it is necessary and sufficient for a pair of critical points of a Morse
function to cancel each other that the index 1 ascending sphere and the index 2
descending sphere (with respect to some metric) intersect transversely in one point
in an intermediate level.

Definition 3.19. Let f: M — B be a wrinkled fibration. Two reference arcs Ry
and Ry for f with common reference points are called adjacent if their union R; U Rs
bounds a disk in B that contains exactly one cusp.
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A visual account of this definition and the following lemma can be found in the

right side of

Lemma 3.20. Let f: M — B be a wrinkled fibration and let H be a horizontal
distribution for f. If R1 and Ry are adjacent reference arcs with initial reference
fiber 3, then the corresponding vanishing cycles c1,co C % are weakly dual, that is,
they have geometric intersection number oncﬁ.

Proof. For convenience, we assume that the union R1UR» is smooth. This can always
be achieved by a perturbation near the common reference points and, according
to such a perturbation preserves the isotopy class of the vanishing
cycles. We orient the circle Ry U Ry be taking the reverse orientation on R; and
observe that f restricts to a circle valued Morse function over Ry U Ry. By removing
a neighborhood of the lower genus reference point from R; U Ro, we obtain an
honest Morse function with a pair critical points of index 1 and 2. The important
observation is that co appears as the descending sphere of the index 2 point, while
1 is the ascending sphere of the index 1 point (since we reversed the orientation
of R1). Now we can use a similar localization idea as in the proof of
We choose model coordinates around the cusps and isotope the union R; U Ry into
the support of the model coordinates in such a way that R; and Ry stay reference
arcs throughout the isotopy. This reduces the problem to a study of the cusp model,
since the vanishing cycles ¢; and co can be recovered up to isotopy from those of
the isotoped reference arcs (by parallel transport along the path traces out be the
reference points and using . But in the cusp model the critical points
of the Morse function cancel, meaning that the vanishing cycles corresponding to ¢q
and co intersect transversely in one point. O

Remark 3.21. Another interesting case is to consider parallel transport along the
intermediate arc Rj/o shown in which passes directly through a cusp. It
can be shown that vanishing set in the higher genus fiber is an embedded figure
eight which appears as the union ¢; U ca of two simple closed curves intersecting
transversely in one point, while in the lower genus fiber the vanishing set is a single
point x. Moreover, these vanishing sets can be related to the vanishing sets of the
reference arcs R and Ry by considering families of reference arcs starting with R;
and converging to I35 What happens is that the vanishing sets of R; will converge
to x on the lower genus side and to the simple closed curve ¢; on the higher genus end.
However, the proofs of these claims require lengthy and rather painful computations
in the cusp model. Since we will not use these results, we will not prove them here.

Remark 3.22 (Lefschetz vanishing cycles). The theory of parallel transport and van-
ishing sets immediately generalizes to include Lefschetz singularities and thus can
be applied to (broken) Lefschetz fibrations. In that setting one usually considers
arcs running into Lefschetz points, originating from a regular value. For such an
arc R it is classically known that one also obtains a simple closed curve cg in the
initial regular fiber 3. These curves are the famous Lefschetz vanishing cycles (see
[32, Ch. 8.2], for example). As seen in the local picture is similar to the
case of a fold arc, which explains the name fold vanishing cycles.

8See [page 22| for the definitions.
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Figure 5: The vanishing cycle of a Lefschetz singularity
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Figure 6: Elementary homotopies of wrinkled fibrations as seen in the base:
(a) birth/death, (b) merge, (c) flip, (d) Rz, (e) Rs and (f) fold-cusp crossing.

3.4 Moves for Wrinkled Fibrations

We briefly summarize what is known about the uniqueness of wrinkled fibrations up
to homotopy. In [45] Lekili gave a list of local modifications for wrinkled fibrations
which take the form of homotopies supported in balls in the total space; we will refer
to these as elementary deformations. Lekili also used the term moves because he
used them to manipulate critical images much like link diagrams are manipulated
by the Reidemeister moves (see . The elementary deformations can be
subdivided into two families. The members of the first family change the structure
of the critical locus, while the members of the category only affect the way the critical
locus is mapped into the base. Since we will not make essential use of these moves
we will only describe them briefly and refer to [45] for more details (see also [28,67]).
We begin by describing the first family.

Birth. The birth deformation is described by the local model
B (t, z,, z) = (t, 23— 3(s—tHz +9° — z2).

For s < 0 there are no critical points and for s > 0 the critical locus is an indefinite
circle with two cusps. In the latter case, the critical image appears eye shaped as
in [Figure 6(a). One can show that the fibers outside and inside the eye are open
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disks and once punctured tori, respectively. The reverse deformation of a birth is
naturally called a death.

Merge. Another model which is looks quite similar to that of the birth defor-
mation describes the merge deformation

M (t,z,y,2) = (t,x3 +3(s — t?)z + 9% — 22).

Its effect on the critical image is shown in[Figure 6(b). Throughout the deformation
two cusps approach each other and eventually merge, while in the reverse deforma-
tion two fold points approach each other. It is thus intuitive to speak of cusp merge
and fold merge instead of merge and inverse merge. The fibers for s < 0 are again
disks outside the cusps and once punctured tori inside. For s > 0 the two outer
regions have open disks as fiber while the middle strip has once punctured tori.

Flip. The first family is completed by the flip deformations modeled on
FLS(t,:L',y,z) = (t,:n4 — sz’ +tx + y2 - zQ).

As shown in [Figure 6(c) it begins with a single fold arc for s < 0 and introduces two
cusps and a double point when passing to s > 0. Considered as a map R> — R? the
flip deformation is known as swallowtail or dovetail singularity. The fibers for s < 0
are exactly as in the fold model and once can show that inside the swallowtail shaped
region the fibers are twice punctured tori.

The elements of the second family all have a local model of the form
Py(t,z,y,2) = (t,x2 +2 -2+ sp(t)), s€0,1]

where p: R — [0, 1] is a smooth function satisfying p(0) = 1 and p(t) = 0 for |t| > 0.
Note that the initial map Fp is just the standard indefinite fold model and the
deformation leaves the critical locus unchanged while pushing the critical image from
the straight line R x {0} to the graph of p. Such a deformation is not interesting
by itself, but only in relation to other singularities present in a wrinkled fibration.

Again, there are three basic cases shown in [Figure 6(d), (e), and (f).

Ry moves. As shown in|Figure 6(d) an Ry move starts with two parallel fold arcs
in the base and pushes one across the other, resemblant of the type two Reidemeister
move for link diagrams.

R3 moves. Similarly, an R3 move shown in e) mimics a Reidemeister

move of type three where one arc is pushed across a crossing of two other arcs.

Fold-cusp crossings. The final deformation is very similar to an Rs move in
that a fold arc moves across an arc of critical values that stays stationary, only this
time the st