Matching the heterotic string on orbifolds and their resolutions

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Nana Geraldine Cabo Bizet
aus
Moskau, Russland

Bonn
November, 2012

Angefertig mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter:

Prof. Dr. Hans Peter Nilles
2. Gutachter: Priv. Doz. Dr. Stefan Förste

Tag der Promotion:
16 Januar 2013
Erscheinungsjahr: 2013

A l'alta fantasia qui mancò possa; ma già volgeva il mio disio e 'l velle, sì come rota ch'igualmente è mossa, l'amor che move il sole e l'altre stelle.

Comedia di Dante.

Acknowledgments

I thank Professor Dr. Hans Peter Nilles for giving me the opportunity to do research in this interesting field. I deeply thank for his ideas, his visions and his teachings on theoretical physics from which I had the opportunity to learn.
I thank Priv. Doz. Dr. Stefan Förste for being my second referee and for all his teachings and the shared discussions. I would also like to thank Prof.Dr.Werner Ballmann and Prof.Dr.Klaus Desch for being referees of this thesis. I thank Prof.Dr.Martin Zirnbauer my BCGS mentor for discussions and advice. I thank Prof.Dr.Albrecht Klemm for helpful discussions and teachings on string theory.
I thank Dr.Michael Blaszczyk and Fabian Ruehle for collaboration in part of this work, for useful discussions and interesting talks. I would also like to thank Dr.Michele Trapletti for encouragement at the beginning of this project, useful discussions, teachings and collaboration.

I thank Damián Mayorga, Dr.Susha Parmeswaran, Matthias Schmitz and Dr.Ivonne Zavala for their dear friendship, useful discussions as well as for collaborative work. I would also like to thank Prof.Dr.T.Kobayashi for collaboration. I thank Dr.Encieh Erfani for the careful proofreading and corrections to this thesis, but more important for being one of my dearest friends and a companion supporting me during this long and winding road. I thank Daniel Vieira for the useful corrections he did to this thesis and for his warm friendship, and for the discussions and collaboration.

I want to thank: Dr. Athanasios Chatzistavrakidis, Dr. Christoph Lüdeling, Paul Oehlman, Guhan Sukumaran, Marc Schiereck and Dr. Gianmassimo Tasinato for discussions and conversations. I would also like to thank Dagmar Fassbender, Patricia Zündorf, Petra Weiss and Andreas Wisskirchen for all their continuous help.

I want to thank the help of my cuban institution CEADEN and specially the support of: Telma Casagrán, Carlos Cruz, Juan Darias, Alain Delgado, Frías, Rolando Guibert, Martel, Guido Martín, Ibrahin Piñera, Mayra Tirado, Dania Nápoles, Yanet Broco, Iván Padrón, Grisel Pérez and Maridelín Ramos.

I want to thank my friends in Cuba and Germany for rising my mood when I needed it. Thanks to: Anita, Chinito, Cordero, Danny, Family Mikulits, Jürgen, Lili, Luis, Lukas, Mirela, Oscar, Yeneit and Yeyo for their love.

I would like to thank to some unforgettable professors I had all these years of physics studies: Héctor Borroto, Randjbar Daemi, Melquiades de Dios, Eddy Jiménez, José Marín Antuña, Kumar Narain, Miguel Ramos, Carlos Rodríguez and Goran Senjanovic.

I want to thank my father Alejandro Cabo for proofreading this thesis and mainly for being a source of inspiration. And finally I want to thank my family: my parents, my grandmother and my brother, for their love which makes them trust me, even when success appears to be difficult, giving me the courage required to continue.

Contents

1 Introduction: Why strings and compactifications? 1
1.1 Unification of all forces 1
1.2 The Standard Model and beyond 2
1.3 Smearing out point like interactions in gravity 5
1.4 Heterotic string orbifolds and resolutions 8
2 Heterotic String Theory 15
2.1 Heterotic String Theory 15
2.2 Superstring vacuum 17
2.3 GSO projection 18
2.4 Bosonic construction 20
2.5 Toroidal compactification 22
$2.6 \mathcal{N}=1$ Supergravity in $D=10$ 23
3 Compactification 25
3.1 Orbifolds 25
3.2 Mode expansions and consistency conditions 28
$3.3 \mathbb{Z}_{3}$ in standard embedding 33
3.3.1 Blow-up modes 36
3.4 A look into selection rules 38
3.5 Calabi-Yau compactification 41
3.6 Toric resolution of orbifolds 48
3.7 Anomalies and Green-Schwarz mechanism 59
3.7.1 Dimensional reduction of the anomaly polynomial 62
4 The \mathbb{Z}_{7} orbifold and its resolution 65
4.1 Orbifold theory 65
4.2 \quad Resolution of T^{6} / \mathbb{Z}_{7} 67
4.3 Spectrum comparison 70
4.3.1 Field redefinitions 71
4.3.2 Local massless spectrum 72
4.3.3 Spectrum comparison 73
4.4 Anomalies study 77
4.4.1 Anomalies in the resolved space 77
4.4.2 Relating the anomalies on the orbifold and in blow-up 80
4.4.3 Relation among the axions 86
5 The $\mathbb{Z}_{6 I I}$ orbifold and its resolution 89
5.1 The $T^{6} / \mathbb{Z}_{6 I I}$ orbifold 90
5.2 Exploring the resolutions of $T^{6} / \mathbb{Z}_{6 I I}$ 91
5.3 Blow-up modes for a resolution topology. 95
5.3.1 Abelian vector bundles for triangulation A 97
5.3.2 Abelian vector bundles for triangulation B 99
5.4 A blow-up for a given vev configuration 100
5.5 Field redefinitions 100
5.6 First orbifold-resolution spectrum match 104
5.7 Second spectrum match: Agreement with superpotential masses 109
5.8 Anomalies in the orbifold and its resolution 112
6 Conclusions 117
A Orbifold and blow-up spectrum 121
B $\boldsymbol{U}(1)$ basis for T^{6} / \mathbb{Z}_{7} and its resolution 127
C Anomaly polynomials in 4d 129
D Brother models of a $T^{6} / \mathbb{Z}_{6 I I}$ heterotic orbifold? 131
E $T^{6} / \mathbb{Z}_{6 I I}$ divisors intersections 135
F Orbifold tables 139
G $U(1)$ base for $T^{6} / \mathbb{Z}_{6 I I}$ blow-up 153
H Axions in blow-up versus orbifold axions 155
I Automorphisms for \mathbb{Z}_{N} orbifolds 159
I.0.1 Factorizable Lattices 160
I.0.2 Non Factorizable Lattices 162
J Blow-up spectrum 171
K Field redefinitions for $T^{6} / \mathbb{Z}_{6 I I}$ 173

Chapter 1

Introduction: Why strings and compactifications?

1.1 Unification of all forces

Unification of fundamental forces is a long pursued goal in the history of physics. More than an aesthetical aspiration it lies in the core of a better understanding of the studied phenomena. One classical example of it are the Maxwell equations for Electromagnetism, in which electric and magnetic fields are understood as a single gauge interaction. At the beginning of the 20th century many experimental and theoretical developments came into play. On one hand special relativity, based on the fact that nothing can travel faster than light, describes new transformations of 4 d spacetime between different observers. Later, general relativity based on the equivalence principle of inertial and gravitational mass, led to a revolutionary way to understand the gravitational interaction in terms of spacetime curvature. In those days, Quantum Mechanics explained new observations at the atomic scale. But its application to the relativistic theory of electromagnetism had the problem of divergencies. These problems were solved when the perturbation theory was complemented by a renormalization scheme, yielding quantum electrodynamics as the first consistent quantum field gauge theory. Dating back to the 1960s electromagnetic and weak interactions were unified in a single gauge theory. It was shown that a Higgs mechanism could break the electroweak symmetry spontaneously, give mass to the chiral fermions and yet ensure renormalizability. At the beginning of the 1970s the strong interaction was also understood in the frame of a gauge theory, called Quantum Chromodynamics (QCD). All these three interactions: electromagnetism, weak and strong are jointly described in the Standard Model (SM) of particle physics, which constitutes a successful description of all fundamental interactions at the quantum level, with the exception of gravity. The model has great experimental success. This summer, indications of the existence of its last missing block, the Higgs field, were found at the Large Hadron Collider in CERN [1.

1.2 The Standard Model and beyond

Particle content The Standard Model is a gauge theory with gauge group $G_{S M}=$ $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$, describing strong and electroweak interactions. The matter content is given by three generations of the following repeating structure: a left handed quark $S U(2)_{L}$ doublet transforming in the fundamental representation of $S U(3)_{c}\left(Q_{L}=\left(u_{L}, d_{L}\right)\right)$, two right handed quarks $S U(2)_{L}$ singlets transforming in the fundamental representation of $S U(3)_{c}\left(u_{R}, d_{R}\right) \|^{1}$ a left handed lepton doublet whose components are the electrically charged leptons $\left(l_{L}\right)$ and uncharged leptons $\left(\nu_{L}\right)$ and an electrically charged right handed lepton $\left(l_{R}\right)$. The quarks are denoted up (u) and down (d) according to their electric charge $2 / 3$ and $-1 / 3$ respectively. The spectrum is chiral because left and right handed chiral fields have different quantum numbers. This chiral asymmetry is a restrictive feature when deriving the standard model from string theory, and we will see it in detail in the study of this thesis (Chapter 4 and 5). A non-chiral spectrum would allow mass terms for all the fermions, which are generically of the order of the string scale. So those particles would not be detectable. With the described particle spectrum and the hypercharge assignment SM is an anomaly free theory. The bosons of the SM are the Higgs scalar, the strong interaction gauge bosons (gluons) and the electroweak gauge bosons ($W^{ \pm}, Z$ and the photon).

The patterns in the SM Despite its amazing success there are open questions that arise in the SM. First, gravitational interactions are not included. In present high energy experiments this is irrelevant, but there are physical phenomena as black holes or the early universe evolution, in which quantum mechanics and general relativity are both required. There is also the issue of the many parameters which are not fixed in the theory: those are the three gauge coupling constants $\alpha_{3}, \alpha_{2}, \alpha_{1}$ of the gauge factors $G_{S M}$; the QCD θ parameter; the 9 masses of quarks, leptons and neutrinos; the CP violation phase and the parameters in the Higgs potential determining the electroweak scale $M_{\mathrm{EW}} \sim 100 \mathrm{GeV}$. In addition, some of these parameters have a quite interesting structure. The quarks and lepton masses possess what is called a hierarchy. Namely the fact that the mass of the first generation differs from the mass of the second the same order of magnitude than the second differs from the third. As the fermions of those three generations are not mass eigenstates, the mass matrix can be diagonalized leading to the Cabibbo-Kobayashi-Maskawa matrix, which describes the coupling to the electroweak bosons $W^{ \pm}$. This matrix possesses an intriguing structure in which the diagonal elements are of order one and all the other elements are smaller. Also the measurements of neutrino masses show an hierarchical structure 2 Another curious fact is that all the gauge couplings approximately unify at $10^{16} \mathrm{GeV}$, when one evolves them with the renormalization group equations from the measured low energy values to a higher scale $[2$. This assumes that no new physics appears between the electroweak scale M_{EW} and the unification scale. ${ }^{3}$ This unification is natural if one assumes

[^0]that the SM is embedded in a Grand Unification Theory (GUT).

Grand Unification The GUT hypothesis says that at high energies the physics is described by a gauge theory with a bigger group (often simple) and multiplets accommodating the SM fields $[3,4]$. The SM is then obtained at lower energies through spontaneous symmetry breaking. The considered group should have at least rank four, and needs to have complex representations in order to ensure chirality. Then at the GUT scale $M_{G U T}$ the interactions will be determined by a single coupling strength. There are many studied cases, the simplest of them is $S U(5)$ in which the matter content of one generation fits into the $\overline{\mathbf{5}}+\mathbf{1 0}$ representations. The gauge bosons are in the $S U(5)$ adjoint representation i.e. the $\mathbf{2 4}$ and the symmetry breaking is performed through a Higgs also in the adjoint, which gives masses to the extra gauge bosons. Evolving the Weinberg angle $\left(\theta_{W}\right)$ with $\sin ^{2} \theta_{W}=\alpha_{1} / \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}$ from its value at $M_{G U T}$ to M_{EW} with the renormalization group, does not fits perfectly with the experimental results. In addition, this model predicts a proton decay which is faster than the experimental observation. Also the unification of quark and lepton Yukawa's at $M_{G U T}$ can not explain its difference at M_{EW}. There are further popular GUT groups such as $S O(10), S U(6), S U(7), E_{6}$ and $S U(5) \times U(1)_{X}$, with different advantages and disadvantages. Different ways of breaking (different fields attaining vevs) and intermediate breaking steps can lead to different physics. E_{6} is commonly obtained in four dimensional string theory, but also $S U(5) \times U(1)_{X}$ is an appealing option for string model building, because the breaking down to the SM does not require big representations. The failing of exact coupling unifications gives us a motivation for considering $\mathcal{N}=1$ Supersymmetry $5-10]$. This symmetry predicts to known bosons a fermionic partner and viceversa. In supersymmetric unification the three couplings meet much better and at a higher scale easing the problem of proton decay. There can be more than one supersymmetry, we will use the letter \mathcal{N} to refer to the number of supersymmetries of a theory.

Naturalness There are further open questions, and they are related to the principle of naturalness [11. This principle states that small parameters in a physical theory measure the deviation from a symmetry. One of this parameters is the cosmological constant which enters Einstein equations. Cosmological observations [12] suggest that the energy density of the gravitational vacuum is given by $\Lambda \sim\left(10^{-3} \mathrm{eV}\right)^{4}{ }^{4}$. In the SM there are potential sources of the vacuum energy as the minimum of the Higgs potential, and the one loop corrections that will give a contribution of the order of $\left(M_{\text {cutoff }}\right)^{4}$, where $M_{\text {cutoff }}$ is the upper energy scale of the theory. It could be the electroweak or the Planck scale. But any of them is many orders of magnitude bigger than the measured value. Canceling very large contributions to obtain a very small experimental value is known as fine tuning. 5

[^1]Another problem of this sort is the strong CP problem in which the CP violating term in the Lagrangian with parameter θ occurs. This parameter is expected to be of order one, but the CP-violation measurements indicate that it should be $\left.<10^{-10} 14\right]$. This can be explained with the introduction of axions with respect to an additional $U(1)$ PecceiQuinn global symmetry. The axions get a non-perturbative QCD correction to its potential which determines its mass in terms of the decay constant. The latter have been bounded experimentally to lie in the axion window $[15]$. String theory can provide axions that lie on that window.

Finally, there is the electroweak hierarchy problem. This is the problem of how the mass of the Higgs field can be of the order of $M_{\text {EW }}$ if the corrections to its bare value coming from one-loop diagrams are of the order of the cutoff scale. There are many proposals to solve this problem, a really successful one is $\mathcal{N}=1$ low energy supersymmetry. It gives additional diagrams with the supersymmetric partners in the loop, such that the total contribution to the bare mass of the Higgs cancels. Other approaches consider the mass generated dynamically by some gauge sectors of the theory, with "quarks" condensates which play the role of the Higgs. Among them the first and most famous proposals is technicolor 16,17 but there are other approaches. In particular, the author contributed to the study of a modified version of QCD which addresses this problem [18]. ${ }^{6}$

Extra dimensions We have mentioned till now ideas on unification of the fundamental gauge interactions, and the problem of unification of gravity with quantum mechanics. But there is also the possibility of unifying gauge interactions with gravity at the classical level. This is achieved in a beautiful way by considering extra dimensions. This idea arose in the 1920s with the aim of unifying electromagnetism with general relativity. Kaluza and Klein proposed a 5 d theory in which the additional spatial direction was compactified on a circle of radius $R[19,20$. Considering as the starting point a five dimensional action with a kinetic term for scalars, and integrating out the 5th coordinate one obtains a zero mode and an infinite tower of massive states whose masses are quantized by $1 / R$. The dimensional reduction of the 5 d Ricci scalar gives in 4d the Ricci scalar term plus a scalar field without potential, called modulus, and a kinetic action for a $U(1)$ gauge field. This gauge field is the electromagnetic field. Despite this result, the theory is not viable because is not possible to incorporate chiral fermions. In addition, the scales for the masses is to low, so the tower of particles should have been observed. This process of integrating the extra dimensions to obtain a lower dimensional theory is called compactification or dimensional reduction. Despite its non immediate success this idea had further applications. In particular the idea that the dimensional reduction will give an effective gravity scale $M_{\mathrm{P}} \sim M_{5}^{3} R$ which depends on the initial scale M_{5} and the compactification radius R. With the use of this mechanism it was proposed more recently to consider that the extra dimensions could render a scale for gravity which is almost of the order of M_{EW}. This example shows that the
different universes.
${ }^{6}$ This is done by large extra dimensions or by strongly warped ones. Finally there is also an anthropic proposal to explain why the electroweak scale has its value, basically stating that M_{EW} is required by electroweak symmetry breaking, which gives the needed interactions to create living systems.
particle content in 4 d depends on the shape and size of the compact manifold. It has many valuable applications, among them is supergravity, a theory with local supersymmetry, which has been studied in various dimensions [21,22. It was shown that is not possible to obtain a chiral theory for fermions after compactification on a smooth space, if the original theory does not possess chirality. This difficulty can be overcome in the frame of string theory, either by starting with a chiral theory, or by obtaining the chiral fermions in special submanifolds of the compactification space. Our case of study will be the first one.

1.3 Smearing out point like interactions in gravity

Investigations of a quantum field theory of gravity show that the theory has unrenormalizable divergencies. There is a simple way to see that the problem is related to the dimensionful coupling constant $\left[G_{\mathrm{N}}\right] \sim 1 / M^{2}[23]$. If we consider the process of two freely propagating particles, a tree level correction to it in a quantum gravity theory will be given by the diagram in which a graviton is exchanged. This amplitude is proportional to the Newton gravitational constant $\sim G_{\mathrm{N}}$. The ratio between the original amplitude with characteristic energy E and the one-graviton corrected one will be given by the dimensionless combination $G_{\mathrm{N}} E^{2} \hbar^{-1} c^{-5}$. This combination also fixes the Planck scale to be the energy at which the one-graviton correction becomes relevant i.e. $G_{\mathrm{N}} M_{\mathrm{P}}^{2} \hbar^{-1} c^{-5}=1$ such that 7

$$
\begin{equation*}
M_{\mathrm{P}}=1.22 \times 10^{19} \mathrm{GeV} \tag{1.1}
\end{equation*}
$$

So the ratio of one graviton exchange- to the zero graviton exchange-amplitude is $\left(E / M_{\mathrm{P}}\right)^{2}$. This quantity becomes weaker at low energies as M_{EW}, but for $E \gg M_{\mathrm{P}}$ the perturbative approach breaks down. On dimensional grounds, the correction order by two gravitons exchange would be $\sim G_{N}^{2}=1 / M_{\mathrm{P}}^{4}$ giving $\int d E_{1} E_{1}^{3} / M_{\mathrm{P}}^{4}$, while the correction by three gravitons should be of the order $\int d E_{1} E_{1}^{2} \int d E_{2} E_{2}^{2} / M_{\mathrm{P}}^{6}$, and so on. At arbitrary high energies $E \gg M_{\mathrm{P}}$ all of this contributions diverge, and the divergencies get stronger at subsequent orders in perturbation theory. One can ask whether those divergencies are merely a result of treating the theory perturbatively and not exactly. This is an open question related to the existence of a non trivial ultraviolet fixed point for gravity. Transforming the amplitudes to position space, arbitrary large intermediate energy corresponds to the limit in which the graviton vertices come arbitrarily close to each other. Therefore a possibility to solve this problem is to consider that beyond some energy the theory is modified such that the interaction is spread in space reducing the divergency. The only known way to spread the gravitational interaction in space while keeping the theory consistent is string theory. The scale of the spreading is the string length l_{s}, which is related to the string scale M_{s} by $M_{s} \sim 1 / l_{s}$. In fact, in quantum field theory it is hard to spread the interactions in space, preserving Lorentz invariance, causality and unitarity.

[^2]Strings String theory combines the ideas of supersymmetry, grand unification and extra dimensions and simultaneously gives a solution to the problem of quantum gravity divergencies. String theory is built from one-dimensional objects called strings [24 27]. Their spacetime trajectory describes a world-sheet parametrized by the proper time τ and the coordinate σ of the string. The world sheet can be open or closed, oriented or unoriented.

String theory was suggested in the 1960s as a model for strong interactions. Later QCD was established as the theory of strong interactions, but string theory, which has in its massless spectrum a spin 2 particle (identified with the graviton) was revived as a good candidate for a quantum theory of gravity. The effective theory for the gravitational sector gives general relativity equations corrected by effects of the order of $1 / M_{s}$. In order to eliminate tachyons and to obtain spacetime fermions it is necessary to include world-sheet supersymmetry, yielding a superstring theory. Superstring theories have also space-time supersymmetry. In superstring theory consistency dictates a spacetime critical dimension of 10 . This problem is solved by dimensional reduction.

Supergravities and Compactifications Effective descriptions of the strings, in which the M_{s}-scale massive fields are integrated out, and an action with the massless spectrum is obtained, are supergravity theories in 10d. In the 1980s it was shown that an anomaly of gauge symmetries in the $10 \mathrm{~d} \mathcal{N}=1$ supergravity can be canceled by the Green-Schwarz mechanism [28]. It restricts the allowed gauge group to $S O(32)$ or $E_{8} \times E_{8}$. A string theory in which the $S O(32)$ gauge group is realized was already known. It is called type I string theory. This fact was an indication of the potential predictive power of the strings. It triggered the first superstring revolution on the 1980s, in which also the heterotic string was discovered. The heterotic string will be described in Chapter 2. It leads to a 10 d $\mathcal{N}=1$ supergravity which can have gauge group $S O(32)$ or $E_{8} \times E_{8}$, exactly the two gauge groups that were proven by Green and Schwarz to give anomaly free supergravity! Also the chiral type IIB and the non chiral type IIA supergravities arise from string theory. At the perturbative level the later theories have only abelian gauge groups. At the time of these discoveries it was realized that the extra dimensions can be compactified, keeping only $\mathcal{N}=1(\mathcal{N}=2)$ supersymmetry in 4 d for type I and heterotic string (type IIA and type IIB). Smooth complex Kähler manifold spaces, with $S U(3)$ - holonomy achieving this goal are the so called Calabi-Yau (CY) manifolds [29]. It was then found that string theory was able to describe the known elementary particles and the fundamental gauge interactions in 4 d . A compactification of the heterotic string on a 6 d torus will leave $\mathcal{N}=4 \mathrm{in} 4 \mathrm{~d}$ But a natural modification of the torus is a space constructed by modding out a symmetry from the lattice. The resulting variety is called an orbifold. It can be denoted as $T^{6} / G_{o r b}$, where $G_{\text {orb }}$ denotes the modded out symmetry. Conditions on $G_{\text {orb }}$ can also be imposed to achieve $\mathcal{N}=1$ supersymmetry in 4 d . This 6 d quotient space is generically flat, but possesses subsets of higher codimension that are invariant under $G_{\text {orb }}$ which constitute

[^3]curvature singularities. It was proven that in this backgrounds the world-sheet theory is well defined, and is possible to solve the string equations of motion and to obtain the string spectrum 32,33 . It is precisely in the orbifold and Calabi-Yau compactifications of the heterotic string that our work will focus.

A unique theory of strings At this point there have already been found five superstring theories type IIA, type IIB, heterotic $S O(32)$, heterotic $E_{8} \times E_{8}$ and type I. The type II and heterotic theories are closed oriented string theories and the type I is closed plus open unoriented string theory. As we are interested in a unified theory which reduction to low energies gives the known physics, it is required to understand why there are five theories. But then, non-perturbative dualities bringing together the five superstring theories were discovered. At the end of the 1980s T-Duality was discovered 3436 , it relates theories in different compactification geometries. For example it always includes a subgroup in which a theory at the compactification radius R is identified with another theory at the compactification radius α^{\prime} / R. Under T-Duality transformations both type II theories as well as both heterotic theories are seen as different geometrical limits of the same theory. In the 1990s another duality called S-Duality was discovered $37-39$, this was the beginning of the second superstring revolution. It relates a theory at string coupling g_{s} with a theory at coupling $1 / g_{s}$. The duality implies that perturbation theory $g_{s} \ll 1$ gives information about the strong coupling behavior $g_{s} \gg 1$. Under this transformation type I goes to heterotic $S O(32)$ and type IIB is mapped to itself. Note that S-Duality is non-perturbative in g_{s} and T-Duality is non-perturbative in α^{\prime} / R. Those coupling constants are dynamical quantities in string theory and they are given by the vevs of the dilaton or the moduli fields. S and T dualities pointed to the existence of a unique theory, called M-Theory, whose weak coupling limit is 11 d supergravity 40 . This was found when exploring the strong coupling limit of type IIA and heterotic $E_{8} \times E_{8}$ theories. Those theories grow an eleven dimension of size $g_{s} \alpha^{1 / 2}$ in the strong coupling limit giving rise to a strongly coupled 11d theory. This last ingredient showed that all the five string theories can be seen as different limits of a unique M-Theory. M-Theory is expected to be the definitive theory of strings, but a microscopic description of it is not known, so much remains to be done on that path.

Branes, gauge/gravity and \mathbf{F}-Theory On the course of the second revolution it was realized that the theory requires the inclusion of higher dimension objects D-Branes 41, whose existence opened the way to a whole new branch of studies with many applications for particle physics and cosmology. Microscopically D-branes are objects on which open strings can end. On the other hand they appear as solitonic (BPS) solutions in type I and II supergravities. The Yang Mills theory will arise in the world volume of these objects, and therefore this is were the SM can be encountered. There have been intensive studies on those models, in which configurations of branes are arranged to obtain the known particle physics $\sqrt[42]{ }$. The branes were also an ingredient of other discoveries at the end of the decade. Their existence permitted the construction of black p-branes which are generalizations of black holes, in the frame of string theory. They account for the microscopic entropy leading to a better understanding of black holes thermodynamics within string
theory. The counting of the microstates and the computation of the entropy have been performed in many cases; obtaining corrections to the Bekenstein-Hawking formula. Another development related to D-branes ${ }^{9}$ is the correspondence between type IIB strings on $A d S_{5} \times S^{5}$ background and $\mathcal{N}=4, S U(N)$ Super Yang Mills conformal field theory (CFT) on the boundary of $A d S_{5}$ for large N 43, 44 This $A d S / C F T$ correspondence has developed strongly in the last years giving rise to a more general holographic principle, studied in many different contexts and known as gravity/gauge theory duality. Finally we want to mention another theory that was discovered in the 1990s, this is F-Theory and it arose in the process of trying to connect type IIB theory with M-Theory (as it was done with type IIA and Heterotic $E_{8} \times E_{8}$). This is based in an $S L(2, \mathbb{Z})$ symmetry of type IIB, which acts on the axion-dilaton τ. This leads to the interpretation of τ as the complex structure of an auxiliary two dimensional torus T^{2} arriving at F -Theory as a 12 d theory [45. Many compactification models have been constructed for F-Theory on a 4 -fold $\mathrm{CY}{ }^{11}$ to obtain 4 d physics $\sqrt{46}$. In particular there have been much work on the subject of F-Theory GUTs in which the local information on the compactification space is all what is needed. There exist also an F-Theory/Heterotic duality which we would like to explore in the future, maybe in the context of the present constructions. One of the reasons for it is the moduli space problem.

Moduli space The moduli space is parametrized by vevs of scalar fields moduli that typically regulate the geometry of the compactification space and affect the low energy physics, but are not fixed. The fact that these scalar fields appear in the massless spectrum of the strings and are not restricted by a potential is known as moduli problem. However by string flux compactifications one can create a natural potential for the moduli. Although MTheory is unique, it admits a large number of solutions giving four macroscopic dimensions. Many of these vacua give good 4d physics, but is still an open problem the determination of the preferable one among all of them.

There are for sure important developments that we have skipped. But we hope that the general picture presented serves to understand the frame and scope of our work, on which we focus in the following.

1.4 Heterotic string orbifolds and resolutions

Heterotic orbifolds studies started after the first superstring revolution, and since then many promising models of the four dimensional world have been proposed. They constitute a fertile region of the landscape 47 in which the MSSM and GUT theories are

[^4]widely encountered. They have also additional appealing features. In particular due to the presence of fixed sets, fixed points and fixed tori, there are twisted states which are located at the fixed sets which are the singularities of the quotient space. Their properties depend on the subgroup of $G_{\text {orb }}$ which leaves the set fixed. They can cause interesting local physics [48-51]. This fact has lead recently to the concept of local grand unification [52 54] that serves to explore many promising models. Heterotic orbifolds provide discrete symmetries [55], which serve to understand the hierarchy between $M_{\text {EW }}$ and $M_{G U T}$ [56], avoid proton decay [57,58], obtain flavor symmetries [59] and suppress the μ term [60 62].

The moduli space of the metric in CY manifolds consists of the complex structure moduli and the complexified Kähler structure moduli. There are well studied examples in which twisted states of orbifold models, which acquire vevs, smooth the singularities and can be identified with the moduli of the CY manifold [63]. This is expected because both CY and orbifolds preserve $\mathcal{N}=1$ supersymmetry. In fact, all T^{6} / \mathbb{Z}_{n} orbifolds are known to be singular limits of a smooth CY manifolds [63 70]. In the last years there has been an intense work in the problem of understanding the transition between those two geometries. When studying the string on orbifolds the conformal field theory is free, the equations of motion are solvable and the interactions are computable. On the contrary, when working on smooth CY, the metric is not known but only the topological information of the manifold. Therefore one can not solve the conformal field theory ${ }^{12}$. The way to go is to compactify on the CY the effective heterotic $10 \mathrm{~d} \mathcal{N}=1$ theory, which consists of super Yang Mills coupled to supergravity. In this context it is possible to employ index theorems [71, 72] to determine the massless fermionic modes in 4 d .

The orbifold point in moduli space is very special. One encounters on it many exotics states, additional $U(1)$ symmetries and enhanced discrete symmetries. This abundance differs from what is found in the 4 d world, nevertheless this can be fixed. Spontaneous symmetry breaking, giving vevs to twisted fields, can be used to decouple exotics from the spectrum. This would automatically reduce the abelian gauge sector and break partially global discrete symmetries ${ }^{13}$. In addition there exists generically an anomalous $U(1)_{A}$ symmetry which will generate a Fayet-Iliopoulos D-term (FI), which breaks supersymmetry by making the vacuum scalar potential non-zero [74]. Fortunately, the same mechanism which serves to decouple exotics and partially break symmetries can be used to cancel the FI term $[75-77]$. These twisted fields which attain vevs could correspond to moduli of the CY geometry, which vanish at the orbifold point. The previous arguments show that the transition (in the moduli space of CY manifolds) from an orbifold point to an smooth point, is well physically motivated. As at the orbifold point, the full spectrum, the interactions and the discrete symmetries can be easier determined, this can be used to extract information not known in the CY 78 .

The techniques of algebraic geometry in toric varieties [79 81] have been applied to make the orbifold singularities smooth [65, 66, 68 70]. This process of removing the singularity

[^5]and adding exceptional divisors of finite size $\rho \neq 0$ is called blow-up or resolution, the inverse process of making $\rho \rightarrow 0$ is called blow-down. In the work by Groot-Nibbelink, Trapletti and Walter 69 non-compact orbifolds of the heterotic superstring $\mathbb{C}^{3} / \mathbb{Z}_{n}$ were resolved. In the blow down limit of these CY compactifications, in which an abelian gauge flux in 6 d (vector bundle) is turned on, the vectors determining the vector bundle (over the $E_{8} \times E_{8}$ Cartan subalgebra) correspond to shifts on the gauge degrees of freedom (d.o.f.) of the local orbifold action. In other words, if we want to identify the heterotic orbifold as the singular limit of the CY, it is necessary to construct the vector bundle in a way that orbifold rotation on the gauge d.o.f (shifts) are reproduced in the limit $\rho \rightarrow 0$. For the compact cases in which there are many local $\mathbb{C}^{3} / \mathbb{Z}_{n}$ singularities, the blow-down of the local resolutions fixes the vector bundle to reproduce the local shifts ${ }^{14} 82,83$. The described geometric blow-up can be identified with the process of giving vevs to twisted fields. Those twisted fields were interpreted as the CY Kähler moduli, by making an exponential field redefinition. This is supported by the fact that the gauge transformation of twisted fields coincides with the gauge transformation of the exponential of the Kähler moduli [83]. And also by the fact these Kähler moduli are local, because they appear on the cycles introduced in the resolutions. Furthermore, a way of identifying those blow-up modes on the orbifold with the components of the vector bundle was proposed. This was based on the fact that the Bianchi Identities (BI) giving a consistent gauge flux, possess strong similarities with the orbifold states mass equations. Those results, opened a way to study the transition in a more precise manner. If both the string theory on the blow-up geometry and the orbifold with vevs are coincident, then the massless spectrum should be completely identified.

In the attempts to describe the departure from the orbifold point within realistic compact orbifolds [83, 84] some difficulties were encountered. The models were the $\mathbb{Z}_{6-I I}$ MiniLandscape $[47,62,85]^{15}$ and the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ Blaszczyk model of 87 . The problems have two sources. One is the absence of a unique way to perform the toric resolution. In fact, there are many different resolutions connected by flop transitions [84]. The second issue is the existence of discrete torsion [88, 89, which allows for brother models. For the particular case of $\mathbb{Z}_{6 I I}$, the brother models are disregarded once one considers only orbifold models whose physical states have consistent orbifold transformations [89, 90]. Thus the ambiguity in the identification of the blow-up geometry and the corresponding orbifold deformation, arising because the identification of the vector bundle with the local orbifold shift is only up to lattice vectors is not present.

There is a complementary approach to explore the transition which was proposed in [91]. This method makes use of the fact that on the orbifold, localized anomalies 92 are understood in terms of chiral states at the fixed sets. On the blow-up, one can also talk about certain localization, on the cycles appearing in the resolution. Using the Green-Schwarz anomaly polynomial 28,93 one can study the transition by comparing the anomaly in the blow-up and the anomaly on the orbifold deformed by vevs. At the first sight the

[^6]anomaly cancellation mechanism is very different. On the orbifold there is only one axion needed to cancel an universal anomaly. Whereas in the blow-up there are many anomalous $U(1)$ and many axions which cancel them. It is important to mention that here we depart from immediate phenomenological applications, because in all the toric blow-ups known presently from standard T^{6} / \mathbb{Z}_{n} all the gauge $U(1) s$ including the hypercharge turn out to be anomalous ${ }^{166}$. Nevertheless we can apply in the future the results of this investigation to phenomenologically more interesting schemes. The localization of the anomalies on the orbifold can be seen from the localized (twisted) chiral spectrum, whereas in the blow-up there are local axions, which descend from orbifold twisted fields attaining vevs (blow-up mode). Therefore, if the orbifold constitutes the blow-down limit of the toric blow-up, the anomaly polynomial encodes the complete information of the transition. This is directly related to the massless chiral spectrum, which has to be matched with the use of field redefinitions. ${ }^{17}$ In our work, we will study two cases of toric resolutions of orbifolds. We will look at the transition from the two sides. First we will focus on achieving a match of the chiral massless spectrum in orbifold and in the blow-up. With that information at hand, we will study the transition through the match of the anomaly cancellation mechanism in both moduli regions.

Outline We proceed now to the outline of the subjects presented in the thesis. The Chapter 2 is devoted to review the heterotic $E_{8} \times E_{8}$ string theory. We start with the action in the fermionic formulation, to show how the string vacuum is constructed. We explain the GSO projection which is necessary to project out the tachyon and get a consistent theory. Then, there is a section devoted to the bosonic formulation and its toroidal compactification. This has been proven to be quite useful in model building. Toroidal compactification already involves a twist of the theory by non-trivial boundary conditions which is generalized to the orbifold twist, as explained in Chapter 3. We end this Chapter 2 by writing the bosonic terms of the $10 \mathrm{~d} \mathcal{N}=1$ supergravity, which illustrate how the different fields transform under the $E_{8} \times E_{8}$ gauge symmetry.

In Chapter 3 we describe various aspects of 6 d compactifications preserving $\mathcal{N}=1 \mathrm{in}$ 4 d. We start with 6 d orbifolds of the heterotic $E_{8} \times E_{8}$ theory, describing the orbifold group by its geometrical action and its embedding in the gauge degrees of freedom. We explain then the conditions on the orbifold twist to ensure $\mathcal{N}=1$ supersymmetry in 4d. We write the modes expansions of the world-sheet fields, using the formula for the zero-point energy of bosonic or fermionic oscillators with twisted boundary conditions, to arrive at the level matching condition. We also give the consistency conditions that the twist and the Wilson lines have to fulfill. Then the \mathbb{Z}_{3} orbifold is reviewed in some detail, because it is the first known example in which twisted moduli were identified with blow-up modes. Next, in section 3.4 is devoted to orbifold selection rules for the couplings. Some critical discussion of these rules based on an ongoing collaboration 94 are summarized. We report on an exploration of the orbifold automorphism group, focusing on subgroups

[^7]which could lead to discrete R-symmetries or flavor symmetries in 4d. We come then to smooth compactifications describing Calabi-Yau manifolds. Poincaré duality, vector bundles, manifolds with $S U(3)$ structure and toric resolutions of non-compact and compact orbifold singularities are described. Section 3.7 is devoted to the implementation of the Green-Schwarz anomaly mechanism in the compactification of a generic CY with internal abelian gauge fluxes.

Chapter 4 is based on the collaboration 95 . In this work we analyze the orbifold T^{6} / \mathbb{Z}_{7} and its resolution. In this case there are no ambiguities arising from flop transitions. We start by describing the geometry of the T^{6} / \mathbb{Z}_{7} orbifold and its resolution. The relevant topological information on the toric CY is given, the supergravity on the resolution is reviewed, and it is explained how the CY Kähler moduli arise on the new cycles. Then, we analyze the spectrum of the supergravity on the CY and the heterotic string on the deformed orbifold. A perfect agreement is obtained. This study is done with the help of a local index theorem, which can be applied in this context because the BI are satisfied locally. The last section is devoted to the analysis of the anomaly. Here, we obtain the polynomial on the resolved space by dimensional reduction, and on the orbifold based on the non-chiral spectrum. To study the transition we have to apply field redefinitions and make a detailed analylisis of the massless spectrum. Finally, we check that the 4 d anomalies are canceled on the resolved space. The non-universal blow-up axions are identified with the orbifold blow-up modes. The detailed identification of the states and the explicit anomaly formulas are given in the appendices.

The last chapter describes the study of a $T^{6} / \mathbb{Z}_{6 I I}$ orbifold and its resolution. We start again with the orbifold geometry, and then we describe the resolution. The present orbifold can have multiple local resolutions connected by flop transitions. We make a choice by selecting the same resolution at all local singularities. It turns out that two of the five possible resolutions are simpler and we focus on those, which we call A and B. We give the BI for these two cases, and explain how the search for solutions is performed. We consider a big sample of orbifold models. Those are the Mini-landscape models [47,62, 85]. Selecting one of those orbifold models we search for candidate blow-up modes among the orbifold twisted singlets. For triangulation A the encountered solutions to the BI fail to match exactly the considered orbifold model. In triangulation B we find many solutions in which blow-up modes can be identified on the orbifold. We discuss also an exploration carried out over all different triangulations. Then for one set of blow-up modes, we study the matching between the deformed orbifold spectrum and the one in the resolution. First we find that is possible to make redefinitions in which a local index theorem is manifest. Imposing an agreement with orbifold mass terms, the allowed redefinitions are more restrictive, but we find at least one example in which the match works perfectly. Then, we study the anomaly cancelation mechanism in four dimensions. We compute the anomaly in the deformed orbifold by vevs and compare it with the dimensional reduction on the resolution of the 10d anomaly. We find a perfect agreement, and we are able to identify local blow-up modes as non-universal axions on the resolution. On the other hand the resolution universal axion turns to be a mixture of the single orbifold axion and the blow-up modes. This check helps to establish the vacuum away from the orbifold via twisted fields vevs as the CY manifold
obtained by resolving the orbifold.

14 CHAPTER 1. INTRODUCTION: WHY STRINGS AND COMPACTIFICATIONS?

Chapter 2

Heterotic String Theory

In this chapter we review the heterotic string theory and its massless spectrum in 10d . We start with the fermionic construction of the theory, describing the spectrum. Then, we explain the concept of GSO projection, which leads to a consistent superstring theory. We discuss then the bosonic formulation of the theory and its compactification on toroidal spaces. We conclude with the bosonic action of the $10 \mathrm{~d} \mathcal{N}=1$ supergravity theory, which constitutes an effective description of the heterotic string. This review is based on $96-101$ and we use the notation of [96].

2.1 Heterotic String Theory

String theory at the classical level studies the propagation of one-dimensional objects. This is described by a map X from the world-sheet Σ into the space-time \mathcal{M}

$$
\begin{equation*}
X: \Sigma \rightarrow \mathcal{M} . \tag{2.1}
\end{equation*}
$$

These configurations are weighted by an action whose bosonic part is essentially the area of the world-sheet. The world-sheet coordinates are given by σ and τ parametrizing worldsheet space and time. Left and right moving modes depend on the holomorphic coordinate $z=\sigma-\tau$ and the anti-holomorphic coordinate $\bar{z}=\sigma+\tau$ respectively. Here we use euclidean signature with τ purely imaginary. Closed string theories have independent leftand right-moving sectors, in which the fields depend only on z or \bar{z}.

The bosonic string considers only the modes X^{μ} of the map X. The spectrum of this theory contains only space-time bosons, including a tachyon. Therefore, to obtain a consistent theory with space-time fermions superconformal extensions of the action are needed. Fermions can have two different boundary conditions. That gives the vacuum a more complicated structure. Furthermore, there is only a finite number of superconformal theories, that can be used in string theory.

The heterotic string is a closed string theory whose world-sheet has a $(0,2)$ superconformal symmetry. The action is invariant under the conformal group and global world-sheet supersymmetry. Only an $\mathcal{N}=1$ world-sheet supersymmetry is local on the right hand side. In the fermionic formulation one has 10 left-moving bosons, 32 left-moving fermions, 10 right-moving bosons and 10 right-moving fermions [23]:

$$
\begin{equation*}
X^{\mu}(z, \bar{z}), \lambda^{A}(z), \tilde{\psi}^{\mu}(\bar{z}), \quad \mu=0, \ldots, 9, A=1, \ldots, 32 \tag{2.2}
\end{equation*}
$$

The gauge fixed action is given by

$$
\begin{equation*}
S=\frac{1}{4 \pi^{2}} \int d^{2} z\left(\frac{2}{\alpha^{\prime}} \partial X^{\mu} \bar{\partial} X_{\mu}+\lambda^{A} \bar{\partial} \lambda^{A}+\tilde{\psi}^{\mu} \partial \tilde{\psi}_{\mu}\right) \tag{2.3}
\end{equation*}
$$

The central charge of a conformal theory measures an anomalous violation of the Weyl invariance by quantum effects. This reflects itself in the deviation of the transformation law of the energy-momentum-tensor from the tensor transformation law, under the conformal symmetry. A critical theory is Weyl invariant at the quantum level. This is achieved by canceling the total central charge. The gauge fixing requires a ghost system. On the left-moving side one has the b, c ghosts of the bosonic string. On the right-moving side we have in addition the β, γ ghosts coming from the right moving side of the type II string theory. These ghost systems contributes $\left(c^{g}, \tilde{c}^{g}\right)=(-26,-15)$ to the left- and right- central charges. As bosons contribute +1 to the central charge and fermions $+\frac{1}{2}$ one needs: 10 left-bosons $X^{\mu}(z)$, 32 left-fermions $\lambda^{A}(z), 10$ right- bosons $X^{\mu}(\bar{z})$ and 10 right-fermions $\tilde{\psi}^{\mu}(\bar{z})$ in order to cancel the central charge. Therefore the critical dimension of the theory is 10 . The world-sheet theory has symmetry $S O(9,1) \times S O(32)$. In addition, the constraints on physical states for the right-moving modes are the ones of the type II theory and the constraints on the left-moving modes are the ones of the bosonic string. This implies that the λ^{A} can not have a time-like signature, because negative-norm states can not be removed due to the absence of fermionic constraints.
We use world-sheet coordinates $z=e^{-i w}$ where $w=\sigma^{1}+i \sigma^{2}$ and $\sigma^{1}, \sigma^{0}=-i \sigma^{2}$ are the space- and time-like coordinates. The theory contents only closed strings, so is possible to consider different boundary conditions for left and right movers

$$
\begin{align*}
X^{\mu}(w+2 \pi) & =X^{\mu}(w) \tag{2.4}\\
\tilde{\psi}^{\mu}(\bar{w}+2 \pi) & = \pm \tilde{\psi}^{\mu}(\bar{w}) \tag{2.5}\\
\lambda^{A}(w+2 \pi) & =\left(\begin{array}{cc}
\eta \lambda^{A}(w), & A=1 \ldots 16, \quad \eta= \pm 1 \\
\eta^{\prime} \lambda^{A}(w), & A=17 \ldots . .32, \quad \eta^{\prime}= \pm 1
\end{array}\right) \tag{2.6}
\end{align*}
$$

The plus and minus sign for the fermions denote Ramond (R) and Neveu-Schwarz (NS) boundary conditions. The periodicity of the λ^{A} fermions is only required up to a rotation in $S O(32)$. There are only two choices of boundary conditions which give space-time supersymmetry. The one given here yields the heterotic $E_{8} \times E_{8}$ theory. The other is the heterotic $S O(32)$ theory. These two choices are the only ones which lead to a modular invariant partition function for the 10 d heterotic string as we will see. These choices are precisely the ones which make the 10d theory anomaly free. Later we will allow different
periodicity conditions also for bosons, in the definition of a twisted orbifold theory. One can compute the zero point energies using the fact that periodic bosons contribute to it $-\frac{1}{24}$, while periodic and anti-periodic fermion will do it in $\frac{1}{24}$ and $-\frac{1}{48}$. The zero point energy is present in the equation for the mass levels of the string.

Let us consider the gauge-fixed form of the theory in old covariant quantization. After imposing the light cone-gauge, one can remove the negative-norm states, and there will be only 8 transverse bosons in the left and the right, and 8 transverse fermions $\tilde{\psi}$ on the right. The 32 fermions λ^{A} are still all present. The normal ordering constants for the sectors with different boundary conditions for the fermions are given by

$$
\begin{align*}
\widetilde{N S} & :-\frac{8}{48}-\frac{8}{24}=-\frac{1}{2} \widetilde{R}: \frac{8}{24}-\frac{8}{24}=0, \tag{2.7}\\
N S-N S^{\prime} & :-\frac{8}{24}-\frac{32}{48}=-1, \quad R-N S^{\prime}:-\frac{8}{24}+\frac{16}{24}-\frac{16}{48}=0, \\
R-R^{\prime} & :-\frac{8}{24}+\frac{32}{24}=1 .
\end{align*}
$$

Here we have used \sim to denote the right-hand side sector. The two letters in the lefthand side denote the boundary conditions for $1 \leq A \leq 16$ and $17 \leq A \leq 32$ respectively. The last line in equations (2.7) corresponds to a sector that will not give rise to massless states.

2.2 Superstring vacuum

Let us briefly describe the $R-N S$ vacuum for the fermionic levels of the string. We use the notation of the right moving modes, but the formalism also applies to the boundary conditions of the λ^{A}. Writing the boundary conditions as $\tilde{\psi}(\bar{w}+2 \pi)=e^{-2 \pi \tilde{\nu}} \tilde{\psi}^{\mu}(\bar{w})$ where $\tilde{\nu}=0, \frac{1}{2}$ represent R and NS boundary conditions respectively. After a transformation to the variable z the mode expansion for the fermions will be

$$
\begin{equation*}
\tilde{\psi}(\bar{z})=\sum_{r \in \mathbb{Z}+\tilde{\nu}} \frac{\tilde{\psi}_{r}^{\mu}}{\bar{z}_{r}^{r+1 / 2}},\left\{\tilde{\psi}_{r}^{\mu}, \tilde{\psi}_{s}^{\nu}\right\}=\eta^{\mu \nu} \delta_{r,-s} . \tag{2.8}
\end{equation*}
$$

The NS sector has no zero mode, so the ground state is by definition annihilated by all the $r>0$ modes

$$
\begin{equation*}
\tilde{\psi}_{r}^{\mu}|0\rangle_{\mathrm{NS}}=0, \quad r>0, \tag{2.9}
\end{equation*}
$$

and it has no further structure. Instead the R ground state is by definition annihilated by all $r>0$ modes

$$
\begin{equation*}
\left.\tilde{\psi}_{r}^{\mu} \mid \text { vac }\right\rangle_{R}=0, \quad r>0 \tag{2.10}
\end{equation*}
$$

The Ramond vacuum is therefore degenerated due to the relation $\left\{\tilde{\psi}_{0}^{\mu}, \tilde{\psi}_{r}^{\mu}\right\}=0$. So that the action of the zero modes $\tilde{\psi}_{0}^{\mu}$ on the ground state give another ground state. The modes $\Gamma^{\mu}=2^{1 / 2} \bar{\psi}^{\mu}$ can be represented by the gamma matrices. Such that the ground state forms
a representation of the Clifford algebra. This representation is 32 dimensional in 10d . A convenient basis for the gamma matrices is given by

$$
\begin{equation*}
\Gamma^{0 \pm}=\frac{1}{2}\left(\pm \Gamma^{0}+\Gamma^{1}\right), \quad \Gamma^{a \pm}=\frac{1}{2}\left(\Gamma^{2 a} \pm i \Gamma^{2 a+1}\right) . \tag{2.11}
\end{equation*}
$$

The algebra in this basis reads

$$
\begin{equation*}
\left\{\Gamma^{a+}, \Gamma^{b-}\right\}=\delta^{a b}, \quad\left\{\Gamma^{a+}, \Gamma^{b+}\right\}=\left\{\Gamma^{a-}, \Gamma^{b-}\right\}=0, a=1, \ldots, 4 . \tag{2.12}
\end{equation*}
$$

Acting repeatedly with Γ^{a-} is possible to reach the state given as $\forall_{a} \Gamma^{a-} \zeta=0$. Then by acting on such a state with Γ^{a+} in all the possible ways we get

$$
\begin{equation*}
|\mathbf{s}\rangle_{\mathrm{R}}=\left(\Gamma^{4+}\right)^{s_{4}+1 / 2}\left(\Gamma^{3+}\right)^{s_{3}+1 / 2}\left(\Gamma^{2+}\right)^{s_{2}+1 / 2}\left(\Gamma^{1+}\right)^{s_{1}+1 / 2}\left(\Gamma^{0+}\right)^{s_{0}+1 / 2} \zeta \tag{2.13}
\end{equation*}
$$

where $s_{a}= \pm \frac{1}{2}$. These states are the Ramond ground states $|\mathbf{s}\rangle_{\mathrm{R}}=\left|s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\rangle_{\mathrm{R}}$. They are eigenvectors of the spin operator $S_{a}=\Gamma^{a+} \Gamma^{a-}-\frac{1}{2}$ with eigenvalues

$$
\begin{equation*}
S_{a}|\mathbf{s}\rangle_{\mathrm{R}}=s_{a}|\mathbf{s}\rangle_{\mathrm{R}} \tag{2.14}
\end{equation*}
$$

This 32 dimensional representation (2.13) decomposes as $\mathbf{3 2}=\mathbf{1 6}+\mathbf{1 6}^{\prime}$. The irreducible parts have eigenvalues 1 or -1 under $\Gamma=\prod_{\mu=0}^{9} \Gamma^{\mu}$. Note that $\left\{\Gamma, \tilde{\psi}_{0}^{\mu}\right\}=0$. The space-time Lorentz generators which define the spin $S_{a}=i^{\delta_{a, 0}} \Sigma^{2 a, 2 a+1}$ are given by

$$
\begin{equation*}
\Sigma^{\mu \tau}=-\frac{i}{2} \sum_{r \in \mathbb{Z}+\nu}\left[\tilde{\psi}_{r}^{\mu}, \tilde{\psi}_{-r}^{\tau}\right] . \tag{2.15}
\end{equation*}
$$

We can also define the world-sheet fermion number as

$$
\begin{equation*}
F=\sum_{a=0}^{4} S_{a} \tag{2.16}
\end{equation*}
$$

which obeys $\left\{e^{\pi i F}, \tilde{\psi}^{\mu}\right\}=0$. So that $\tilde{\psi}^{\mu}$ changes the world-sheet fermion number by 1 . The ghosts also contributes to the world-sheet fermion number: By -1 in the NS right sector and by i in the R right sector. There are no ghosts for the left-handed fermions.

From the above discussion we see that the states on the R sector will always have halfinteger spin, because the vacuum has half-integer spin and the oscillators change the spin by one. The simplest vacuum is the NS one, there the ground state is annihilated by the $\Sigma^{\mu \lambda}$. This implies that it is a Lorentz singlet, so all other states have integer spin.

2.3 GSO projection

For the fermionic sectors of the superstring consistency requires, that there is only a subset of states in the theory. More precisely, this consistency ensures that the operator product
expansions (OPE) of vertex operators are single valued. The subset is selected by a projection involving the fermion number operator as well as by specifying the R or NS boundary conditions. In the $E_{8} \times E_{8}$ heterotic theory these boundary conditions were specified by (2.6) and one considers the projection

$$
\begin{equation*}
e^{\pi i F_{1}}=e^{\pi i F_{1}^{\prime}}=e^{\pi i \tilde{F}}=1 \tag{2.17}
\end{equation*}
$$

where the first two operators anticommute with λ^{A} for $A=1, \ldots, 16$ and $A=17, \ldots, 32$, and the last operator anticommutes with $\tilde{\psi^{\prime}}$,

On the right-hand side the projection gives at the massless level a spinor 8 and a vector $\mathbf{8}_{v}$ of $S O(8)$. This group acts on the transversal degrees of freedom and is the Little group of the 10d Lorentz group for massless states. One obtains the above mentioned spinor and vector by applying the physical state condition on the massless states, see 96

$$
\begin{equation*}
e_{\mu} \tilde{\psi}_{-1 / 2}^{\mu}|0 ; k\rangle_{\mathrm{NS}}, \quad|\mathbf{s} ; k\rangle_{R} u_{\mathbf{s}} \tag{2.18}
\end{equation*}
$$

Where e_{μ} and $u_{\mathbf{s}}$ specify the polarization of the states and k is the ground state momentum. The first of those states is massless $\boldsymbol{8}_{v}$ vector boson. This states survives the GSO projection, while the NS tachyon $|0 ; k\rangle_{\mathrm{NS}}$ is projected out. The second state has to be decomposed and the component which survives the GSO projection $e^{\pi i \tilde{F}}=1$ has to be selected. The physical state condition gives the massless Dirac equation

$$
\begin{equation*}
k \cdot \Gamma_{s s^{\prime}} u_{s} \rightarrow\left(S_{0}-\frac{1}{2}\right)|\mathbf{s} ; k\rangle_{\mathrm{NS}}=0 \tag{2.19}
\end{equation*}
$$

such that only states with $s_{0}=\frac{1}{2}$ survives. Using the decomposition of the Ramond ground state $\mathbf{3 2}=\mathbf{1 6}+\mathbf{1 6}^{\prime}$ under $S O(9,1) \rightarrow S O(1,1) \times S O(8)$ one sees that only the state $\mathbf{8}$ with positive spin survives i.e.

$$
\begin{equation*}
16 \rightarrow 8_{\frac{1}{2}}+8_{-\frac{1}{2}}^{\prime} . \tag{2.20}
\end{equation*}
$$

So the right hand side of the heterotic $E_{8} \times E_{8}$ string has the vector $\mathbf{8}_{v}$ and the spinor 8 which will lead to the correct massless supersymmetric spectrum.

Now let us describe the left-moving massless states. On the NS-NS' sector the first excited states with $m=0$ are

$$
\begin{equation*}
\alpha_{-1}^{i}|0\rangle_{N S, N S^{\prime}}, \quad \lambda_{-\frac{1}{2}}^{A} \lambda_{-\frac{1}{2}}^{B}|0\rangle_{N S, N S^{\prime}}, \tag{2.21}
\end{equation*}
$$

where $1 \leq A, B \leq 16$ or $17 \leq A, B \leq 32$. This happens because of the GSO projections (2.17) separate the fields λ^{A} in two subsets. The boundary conditions 2.6) break the initial $S O(32) \rightarrow S O(16) \times S O(16)$. From the second states in 2.21) one gets an antisymmetric tensor 120.

The R-NS' sector has a massless ground state. In the R sector the zero modes of λ^{A} acting on a ground state will preserve the zero mass condition, so it is possible to construct rising

[^8]and lowering operators in analogy to 2.11. Then, one obtains a $2^{8}=256=128+128^{\prime}$ spinor representation. The 256 is divided in two copies, according to the eigenvalues of $e^{\pi i F}$. So after the projection only the $\mathbf{1 2 8}$ remains. The massless states for the left-movers are given by
\[

$$
\begin{equation*}
\left(\mathbf{8}_{v}, \mathbf{1}, \mathbf{1}\right)+(\mathbf{1}, \mathbf{1 2 0}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{1 2 0})+(\mathbf{1}, \mathbf{1 2 8}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{1 2 8}) . \tag{2.22}
\end{equation*}
$$

\]

Now one has to tensor this massless left moving states with the massless right moving states $\left(\mathbf{8}_{v}+\mathbf{8}\right)$. Taking the 1 st and the 3 th term or the 2 nd and the 4 th term from (2.22) one sees that the product includes for every $S O(16)$ factor a vector bosons $\left(\mathbf{8}_{v}\right)_{r}(\mathbf{1 2 0}+\mathbf{1 2 8})_{l}$. One can easily see that this fits in the adjoint representation of E_{8}, which is the actual gauge group. Firstly the $\mathbf{2 4 8}$ adjoint representation of E_{8} decomposes as $\mathbf{1 2 0}+\mathbf{1 2 8}$ under $S O(16) \subset E_{8}$. Secondly we only saw the symmetry $S O(8) \times S O(16) \times S O(16)$, one can construct additional currents which complete the world-sheet symmetry to $S O(8) \times E_{8} \times E_{8}$. Those are obtained via bosonization of the fields λ^{A} as will be discussed in the next section. 2

The massless spectrum of the heterotic string theory in the critical dimension is given by a 10d supergravity multiplet plus a gauge multiplet. One can now write the states (2.22) in terms of representations of $S O(8) \times E_{8} \times E_{8}$. Performing the tensor product between the left and the right movers one gets the massless spectrum

$$
\begin{align*}
\left(\mathbf{8}_{v}+\mathbf{8}\right)_{r} \times & \left(\left(\mathbf{8}_{v}, \mathbf{1}, \mathbf{1}\right)+(\mathbf{1}, \mathbf{2 4 8}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{2 4 8})\right)_{l} \tag{2.23}\\
= & (\mathbf{1}, \mathbf{1}, \mathbf{1})+(\mathbf{2 8}, \mathbf{1}, \mathbf{1})+(\mathbf{3 5}, \mathbf{1}, \mathbf{1})+(56, \mathbf{1}, \mathbf{1})+\left(\mathbf{8}^{\prime}, \mathbf{1}, \mathbf{1}\right) \\
& +\left(\mathbf{8}_{v}, \mathbf{2 4 8}, 1\right)+(\mathbf{8}, \mathbf{2 4 8}, \mathbf{1})+\left(\mathbf{8}_{v}, \mathbf{1}, \mathbf{2 4 8}\right)+(\mathbf{8}, \mathbf{1}, \mathbf{2 4 8})
\end{align*}
$$

In the first line of the expanded formula we can see the $\mathcal{N}=1$ supergravity multiplet. The second line collects the $\mathcal{N}=1$ gauge multiplet. The fields are the dilaton $(\mathbf{1}, \mathbf{1}, \mathbf{1})$, the antisymmetric tensor $(\mathbf{2 8}, \mathbf{1}, \mathbf{1})$, the metric $(\mathbf{3 5}, \mathbf{1}, \mathbf{1})$, the gravitino $(\mathbf{5 6}, \mathbf{1}, \mathbf{1})$, the neutral fermion $\left(\mathbf{8}^{\prime}, \mathbf{1}, \mathbf{1}\right)$, the gauge boson $\left(\mathbf{8}_{v}, \mathbf{2 4 8}, 1\right)$ and the gaugino $(\mathbf{8}, \mathbf{2 4 8}, \mathbf{1})$. There are two other gauge bosons and gauginos belonging to the second E_{8} group.

2.4 Bosonic construction

Another description of the heterotic theories can be performed by considering a CFT with 26 bosonic left movers $X^{\mu}(z), X^{I}(z), \mu=0, \ldots, 9, I=1, \ldots, 16$, and 10 right-moving scalars and fermions $X^{\mu}(\bar{z}), \tilde{\psi}^{\mu}(\bar{z}), \mu=0, \ldots, 9$. This theory has also central charge zero. If there are only $d<D$ non-compact dimensions, then the continuous momenta are denoted by k^{μ}. The compact momenta are denoted by $\left(k_{L}^{m}, k_{R}^{n}\right)$ with $d \leq m \leq 25, d \leq n \leq 9$. The compact dimensionless momenta take values in a lattice $\Gamma_{m, n}$, they are related to the ordinary momenta k by $l=k\left(\alpha^{\prime} / 2\right)^{1 / 2}$.

[^9]The lattice should fulfill some conditions to have a consistent conformal theory, which is local and modular invariant. Here we explain how this occurs in the case of the bosonic theory. Locality means that the OPE of vertex operators is single valued. Writing the vertex operators for the winding states with momentum as : $e^{i k_{L} \cdot X_{L}(z)+i k_{R} \cdot X_{R}(\bar{z})}$: the condition of a single valued OPE of two vertex operators requires

$$
\begin{equation*}
l_{L} \cdot l_{L}^{\prime}-l_{R} \cdot l_{R}^{\prime} \equiv l \circ l^{\prime} \in \mathbb{Z} \tag{2.24}
\end{equation*}
$$

This condition implies the lattice is included in the dual lattice $\Gamma \subset \Gamma^{*}$, because the dual lattice is defined as all set of points which have integer product with the lattice elements. The modular invariance condition can be seen by writing the one-loop partition function on the torus, with τ the complex structure modulus of the torus

$$
\begin{equation*}
Z_{\Gamma} \sim \sum_{l \in \Gamma} e^{\pi i \tau l_{L}^{2}-\pi i \bar{\tau} l_{R}^{2}} \tag{2.25}
\end{equation*}
$$

Under the T-transformation $\tau \rightarrow \tau+1$ we obtain

$$
\begin{equation*}
l \circ l \in 2 \mathbb{Z} \tag{2.26}
\end{equation*}
$$

This last condition implies (2.24). While the S-transformation $\tau \rightarrow-1 / \tau$ applied on 2.25) can be worked out with the Poisson resummation formula and gives

$$
\begin{equation*}
Z_{\Gamma}(\tau)=V_{\Gamma^{*}}^{-1} Z_{\Gamma^{*}}(-1 / \tau), \tag{2.27}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\Gamma=\Gamma^{*} . \tag{2.28}
\end{equation*}
$$

So, the consistency of the theory requires the lattice to be even (2.26) and self-dual (2.28). The signature for this even and self-dual lattice is $(26-d, 10-d)$.

The case of $d=10$ non-compact dimensions is interesting. One has only the left part in $\left(l_{L}, l_{R}\right)$ i.e. a lattice of dimension 16. There are only two of those even and self-dual lattices in dimension 16. Namely Γ_{16}, giving the heterotic $S O(32)$ theory and $\Gamma_{8} \times \Gamma_{8}$ giving the heterotic $E_{8} \times E_{8}$. With the choice in 2.6 we get only the latter, which is given by

$$
\Gamma_{8}=\left\{\begin{array}{c}
\left(n_{1}, \ldots, n_{8}\right) \tag{2.29}\\
\left(n_{1}+\frac{1}{2}, \ldots, n_{8}+\frac{1}{2}\right)
\end{array} \text { with } n_{i} \in \mathbb{Z}, \sum_{i} n_{i} \in 2 \mathbb{Z}\right.
$$

At the massless level the vertex operators of the left-hand side contain the following currents

$$
\begin{equation*}
\partial X^{m}, \quad m=1, \ldots, 16, \quad \partial X^{\mu}, \quad V_{0}(k) \sim: e^{\pi i k_{L} \cdot X(z)}: \tag{2.30}
\end{equation*}
$$

To have a massless vector boson the discrete momenta should satisfy $l_{L}^{2}=2$, and recall that $k_{L}=\left(2 / \alpha^{\prime}\right)^{1 / 2} l_{L}$. The momenta p_{L}^{m} in the compact dimension are associated to
the commuting currents $\partial X^{m}(z)$. The operators $V_{0}(k)$ have commutation relations with them

$$
\begin{equation*}
\left[p_{L}^{m}, V_{0}(k)\right]=l_{L}^{m} V_{0}(k) . \tag{2.31}
\end{equation*}
$$

The operators p_{L}^{m} and $V_{0}(k)$ generate a gauge group determined by the lattice Γ. This can be seen from the massless condition for the gauge bosons $l_{L}^{2}=2$ and the commutator (2.31), which imply that l_{L} are the roots of the gauge group. This associates p_{L}^{m} to the sixteen Cartan elements H^{I} and $V_{0}(k)$ to the generators E^{α} in the Cartan-Weyl basis of the Lie algebr ${ }^{3}{ }^{3}$.
The elements $l_{L} \in \Gamma_{8}$ in 2.29 with square $l_{L}^{2}=2$ are the roots of E_{8}. The same is true for the lattice Γ_{16} which will give the roots of $S O(32)$. So in this bosonic description with heterotic dimensions we have a gauge theory with gauge group $E_{8} \times E_{8}$ or $S O(32)$.

2.5 Toroidal compactification

A toroidal compactification to d dimensions will give a lattice Γ with signature ($26-d, 10-$ $d)$. The conditions (2.26) and (2.28) are invariant if the momenta product \circ is preserved. The most general transformation which preserves this product is the boost $O(26-d, 10-$ d, \mathbb{R}), but this is not a symmetry of the theory. This due to the fact that the mass-shell condition and the OPE depend on the separate products of the left and right parts of the momenta. Therefore only the $O(26-d, \mathbb{R})$ and $O(10-d, \mathbb{R})$ rotations will preserve l_{L}^{2} and l_{R}^{2} respectively, and be a symmetry of the theory. Denoting $O(26-d, 10-d, \mathbb{Z})$ the discrete subgroup of $O(26-d, 10-d, \mathbb{R})$ which takes a lattice Γ into itself, then the space of inequivalent compactifications or moduli space is

$$
\begin{equation*}
\frac{O(26-d, 10-d, \mathbb{R})}{O(26-d, \mathbb{R}) \times O(10-d, \mathbb{R}) \times O(26-d, 10-d, \mathbb{Z})} \tag{2.32}
\end{equation*}
$$

This space is $(26-\mathrm{d})(10-\mathrm{d})$ dimensional and the corresponding moduli can be interpreted in terms of background fields, namely the metric, the antisymmetric tensor and the Wilson lines. The T-Duality group (2.32) includes the transformations

$$
\begin{align*}
& R \rightarrow \alpha^{\prime} / R, \text { on the radius of the different directions, } \tag{2.33}\\
& X^{\prime m} \rightarrow L_{n}^{m} X^{n}, L_{n}^{m} \in \mathbb{Z}, \operatorname{det} L=1 \text {, which preserve the lattice, } \\
& B_{m n} \rightarrow B_{m n}+N_{m n}, N_{m n} \in \mathbb{Z} \text {. }
\end{align*}
$$

The unbroken gauge symmetry is given by the massless gauge bosons present in the spectrum. The vertex operators are given by

$$
\begin{equation*}
V_{1}=\partial X^{m} \tilde{\psi}^{\mu}, \quad V_{2}=\partial X^{\mu} \tilde{\psi}^{m}, \quad V_{3}=e^{i k_{L} \cdot X_{L}} \tilde{\psi}^{\mu}, l_{L}^{2}=2, l_{R}=0 \tag{2.34}
\end{equation*}
$$

[^10]The first two are $26-d$ and $10-d$ gauge bosons, from them 16 are the original gauge bosons of the Cartan group in ten dimensions (2.30), and 2(10-d) are Kaluza-Klein modes coming half of them from the metric and the antisymmetric tensor dimensional reduction. For a generic transformation $O(26-d, 10-d, \mathbb{R})$ there is a point in moduli space without $l_{R}=0$, so there will be no bosons V_{3} and the symmetry will be $U(1)^{36-2 d}$. There are also points of enhanced gauge symmetries at specific points on the moduli space 2.32)

The supersymmetry preserved in a compactification to $d=4$ dimensions can be understood by looking at the decomposition of the massless states in terms of the helicity $U(1)$, such that $U(1) \times S O(6) \subset S O(8)$. In performing the product $(8)_{r} \times\left(8_{v}, 1,1\right)_{l}$, taken from the massless spectrum (2.23) one obtains four gravitinos with helicity $\frac{3}{2}$, which tells that there are $\mathcal{N}=4$ supersymmetry in $d=4$. This decomposition can be made more explicitly as

$$
\begin{align*}
& \mathbf{8}_{v} \rightarrow \mathbf{6}_{0}+\mathbf{1}_{1}+\mathbf{1}_{-1}, \tag{2.35}\\
& \mathbf{8}_{s} \rightarrow \mathbf{4}_{1 / 2}+\overline{\mathbf{4}}_{-1 / 2}, \\
& \mathbf{8} \times \mathbf{8}_{v} \supset(\mathbf{5 6}, 1,1) \rightarrow \mathbf{4}_{3 / 2}+\overline{\mathbf{4}}_{1 / 2}+\mathbf{4}_{-1 / 2}+\overline{\mathbf{4}}_{-3 / 2}+\mathbf{2 0}_{1 / 2}+\overline{\mathbf{2 0}}_{-1 / 2} .
\end{align*}
$$

This vacuum is not phenomenological appealing. In next chapter we will see two ways in which the supersymmetry in 4 d can be reduced. One way is to take as starting point the torus, then the compactification space is constructed by modding out from the torus lattice one of its symmetries. This process defines a variety with curvature singularities which leads to $\mathcal{N}=1$ in 4 d .

$2.6 \mathcal{N}=1$ Supergravity in $D=10$

On our work there will be two approaches, one of them will be to study a compactification on a manifold from which we know the topological information but not the metric. For that purpose, we will study the dimensional reduction of the 10d effective heterotic theory to 4 d. Thus, we need to describe the effective supergravity coupled to super Yang-Mills action, the one loop effect given by anomaly cancellation and the index theorem which serves to compute states multiplicities in 4d. Here we focus on the bosonic part of the 10d $\mathcal{N}=1$ effective theory.

The bosonic part of the supergravity action for the heterotic string in 10d is given by

$$
\begin{equation*}
S_{\text {het }}=\frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[\mathfrak{\Re}+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} \frac{1}{30} \operatorname{Tr}_{a}\left(|\mathfrak{F}|^{2}\right)\right] . \tag{2.36}
\end{equation*}
$$

This action is composed by the bosonic fields of the theory. In the equation the trace runs over the adjoint of $E_{8} \times E_{8}$, and the factor $\frac{1}{30}$ in the normalization is set in order to agree with the notation for the $S O(32)$ theory. The fields are the dilaton Φ, the antisymmetric tensor B_{2} and the gauge potential \mathfrak{A}. We denote the 10 d curvature and gauge field strengths with \mathfrak{R} and \mathfrak{F} respectively. The 3 -form \widetilde{H}_{3} is defined as

$$
\begin{equation*}
\widetilde{H}_{3}=d B_{2}-c \omega_{3 Y}-c^{\prime} \omega_{3 L} \tag{2.37}
\end{equation*}
$$

The gauge and Lorentz Chern-Simons 3-forms are

$$
\begin{align*}
\omega_{3 Y} & =\frac{1}{30} \operatorname{Tr}_{a}\left(\mathfrak{A}_{1} \mathfrak{A}_{1}-\frac{2 i}{3} \mathfrak{A}_{1}^{3}\right), \tag{2.38}\\
\omega_{3 L} & =\operatorname{tr}\left(\mathfrak{W}_{1} \mathfrak{W}_{1}+\frac{2}{3} \mathfrak{W}_{1}^{3}\right) . \tag{2.39}
\end{align*}
$$

The Lorentz-Chern Simons term includes the spin connection $\mathfrak{W}_{1}=\mathfrak{W}_{\mu_{q}}^{p} d x^{\mu}$. The trace tr appearing in the expression for $\omega_{3 L}$ is in the fundamental of $S O(10)$. In the viel-bein formalism the curvature tensor is expressed in terms of the spin connection as

$$
\begin{equation*}
\mathfrak{R}_{\mu \nu}=\partial_{[\mu} \mathfrak{W}_{\nu]}+\mathfrak{W}_{[\mu} \cdot \mathfrak{W}_{\nu]}, \tag{2.40}
\end{equation*}
$$

where the energy momentum tensor $\mathfrak{R}_{\mu \nu}^{p}$ is a 2 -form with respect to space-time index μ, ν and a $d \times d$ matrix on the fundamental representation of $S O(d-1,1)$ with indices p and q. This description involves two local symmetries, coordinate invariance and local Lorentz transformations. The gauge transformations χ and local Lorentz transformations Θ that leave invariant the action (2.36) are given by

$$
\begin{align*}
\delta \mathfrak{A}_{1} & =d \chi-i\left[\mathfrak{A}_{1}, \chi\right] \tag{2.41}\\
\delta \mathfrak{W}_{1} & =d \Theta+\left[\mathfrak{W}_{1}, \Theta\right] \\
\delta \omega_{3 Y} & =\frac{1}{30} d \operatorname{Tr}_{a}\left(\chi d \mathfrak{A}_{1}\right), \\
\delta \omega_{3 L} & =d \operatorname{tr}\left(\Theta d \mathfrak{W}_{1}\right), \\
\delta B_{2} & =\frac{1}{30} c \operatorname{Tr}_{a}\left(\chi d \mathfrak{A}_{1}\right)+c^{\prime} \operatorname{tr}_{a}\left(\Theta d \mathfrak{W}_{1}\right) .
\end{align*}
$$

The Lorentz term in \hat{H}_{3} is not a leading contribution at low energies. The minimal supergravity action is obtained by setting $c^{\prime} \rightarrow 0$. Nevertheless for the consistency of the ten dimensional theory this Lorentz term is required.

Chapter 3

Compactification

In this chapter we describe the essential features of $\mathcal{N}=16 \mathrm{~d}$ compactifications of the heterotic string. Most of the chapter is a review, but we will also present some of our results. We start describing the general features of orbifolds and give the example of \mathbb{Z}_{3} in the standard embedding [32, 33, 96, 103]. We continue with an exploration of orbifold discrete symmetries, performed in a joint work [94]. Then, we describe Calabi-Yau compactifications 96,104 . To provide the connection between orbifolds and CY compactifications, we present the toric geometric techniques applied to resolve non-compact and compact orbifolds [68, 79, 81, 83]. We conclude the chapter with the implementation of the 4 d anomaly cancellation as descending from the 10d Green-Schwarz mechanism 95.

3.1 Orbifolds

As we discussed the toroidal compactification of the heterotic string leads to a four dimensional theory with $\mathcal{N}=4$ supersymmetry. It is possible to define a theory in which a symmetry of the toroidal lattice is modded out. This will be an orbifold compactification. Toroidal and orbifold compactifications are twisted theories. To obtain such a theory one starts with a CFT having a symmetry group H. One can construct then a new theory in the following way: First one adds twisted sectors, in which the fields are periodic up to some $h \in H$ i.e. $\phi\left(\sigma^{1}+2 \pi\right)=h \cdot \phi\left(\sigma^{1}\right)$. Then one restricts the spectrum to invariant states under H. This ensures modular invariance. The conformal world-sheet theory of the heterotic string is consistent in orbifolds $32,63,105$. This theory at the perturbative level, leads to physics in which the Standard Model of particles can be obtained.

One starts with the heterotic $E_{8} \times E_{8}$ theory in ten dimensions and takes H to be a discrete subgroup of the Poincaré \times gauge group

$$
\begin{equation*}
H \subset(\mathbb{R}(9,1) \rtimes S O(9,1)) \times\left(E_{8} \times E_{8}\right) . \tag{3.1}
\end{equation*}
$$

The group H has two components. Let us start with the six dimensional internal space and
perform the toroidal compactification by identifying points under the translations Γ_{6}. This $\Gamma_{6} \subset \mathbb{R}(9,1)$ is a subset of the Γ with dimensions $(6,22)$ which was described in section 2.5. In this way we obtain $T^{6}=\mathbb{R}^{6} / \Gamma_{6}$. Now we take an isometry group P of Γ_{6}, and perform a modding of this symmetry to get $T^{6} / P . P$ is called the point group ${ }^{1}$ The transformation $P \times \Gamma_{6}$ possesses also an embedding in the gauge group which we call G. The orbifold is defined by 106

$$
\begin{equation*}
\Omega=\mathbb{R}^{6} /\left(\Gamma_{6} \rtimes P\right) \times \Lambda / G . \tag{3.2}
\end{equation*}
$$

In the bosonic representation for the gauge sector of the heterotic theory, $\Lambda=\Gamma_{8} \times \Gamma_{8}$ represents the internal 16d torus. On the other hand, in the fermionic description, Λ represents the set of gauge rotations in the manifest $S O(16) \times S O(16)$ subgroup of $E_{8} \times$ E_{8}.
The world-sheet fields transform under H as

$$
\begin{align*}
X^{k} & \rightarrow \theta^{k n} X^{n}+l^{k}, k=5, \ldots, 10 \tag{3.3}\\
\tilde{\psi}^{k} & \rightarrow \theta^{k n} \tilde{\psi}^{n}, \tag{3.4}\\
\lambda^{A} & \rightarrow \gamma^{A B} \gamma^{\prime B C} \lambda^{C} \tag{3.5}\\
X^{I} & \rightarrow X^{I}+V^{I}+A^{I}, I=1, \ldots, 16 . \tag{3.6}
\end{align*}
$$

Here $\theta \in P, \quad l \in \Gamma_{6}$ and $\gamma, \gamma^{\prime} \in G, V, A \in G$ in the fermionic and in the bosonic representation respectively.

Let us look at the gauge embedding of the orbifold action. In the fermionic description for the gauge d.o.f. γ corresponds to the spatial orbifold twist θ, while γ^{\prime} represents the embedding of the lattice translations l. In the bosonic description, V and A represent the gauge embedding of the spatial rotations θ and lattice displacements l, respectively. The quantities V, γ and γ^{\prime}, A are denoted shifts and Wilson lines respectively. The simplest models, as the one we present as an example in this chapter, do not posses Wilson lines. However, Wilson lines turn out to be essential in order to break the gauge symmetry down to the Standard Model.
As there are six internal dimensions, vectors in the toroidal lattice Γ can be expressed in terms of a basis $e_{\alpha}, \alpha=1, \ldots, 6$. Such that

$$
\begin{equation*}
\forall l \in \Gamma, l=n_{\alpha} e_{\alpha}, \quad A^{I}=n_{\alpha} A_{\alpha}^{I}, \quad \gamma^{\prime}=\prod_{\alpha}\left(\gamma_{\alpha}\right)^{n_{\alpha}} \tag{3.7}
\end{equation*}
$$

where A_{α} or γ_{α}^{\prime} is the Wilson line corresponding to the lattice translation e_{α}.
The space group $S=(\theta, l)$ is defined as the subset of the orbifold (3.2) acting on the spacial internal dimensions X^{k}. Strings will propagate in the internal space given as \mathbb{R}^{6} / S. The space group multiplication law is given by

$$
\begin{equation*}
\left(\theta_{1}, l_{1}\right)\left(\theta_{2}, l_{2}\right) X=\left(\theta_{1} \theta_{2}, l_{1}+\theta_{1} l_{2}\right) X \tag{3.8}
\end{equation*}
$$

[^11]Every gauge embedding will correspond to a unique space group element $\gamma(\theta, l), \gamma^{\prime}(\theta, l)$ or $V(\theta, l), A(\theta, l)$ such that

$$
\begin{equation*}
\gamma\left(\theta_{1}, l_{1}\right) \cdot \gamma\left(\theta_{1}, l_{1}\right)=\gamma\left(\left(\theta_{1}, l_{1}\right) \cdot\left(\theta_{2}, l_{2}\right)\right) \tag{3.9}
\end{equation*}
$$

Analogous relations hold for γ^{\prime}, V and A. Note that the fermionic right modes $\tilde{\psi}^{k}$ share the orbifold rotation (3.4). Therefore world-sheet supersymmetry is preserved, because the twist commutes with supersymmetry generator. Furthermore, important objects are the fixed sets (fixed points and fixed tori) under the orbifold action. Those are defined by

$$
\begin{equation*}
X_{\mathbf{f}}=\theta X_{\mathbf{f}}+l \tag{3.10}
\end{equation*}
$$

where $X_{\mathbf{f}}$ are the 6 d coordinates of the internal space. Fixed points correspond to the case in which $\operatorname{det}(1-\theta) \neq 0$. When the determinant vanishes we encounter fixed tori.
$\mathcal{N}=1$ susy, $\mathcal{N}=2$ sectors. We considered orbifolds generated by \mathbb{Z}_{N} rotations that preserve the lattice Γ. Let us choose the orbifold action to be of the form

$$
\begin{equation*}
\theta=\exp \left(2 \pi i\left(v_{1} J_{45}+v_{2} J_{67}+v_{3} J_{89}\right)\right), \quad \theta \in \mathbb{Z}_{N} \tag{3.11}
\end{equation*}
$$

i.e. the transformation is block-diagonal in the internal Lorentz group $S O(6)$. The quantities J_{45}, J_{67}, J_{89} are the generators of rotations in three distinct planes. Let us impose that there is $\mathcal{N}=1$ supersymmetry surviving. This can be done by looking at the transformation of the supersymmetry algebra generators:

$$
\begin{align*}
Q_{\alpha} & \rightarrow D(\theta)_{\alpha \beta} Q_{\beta} \tag{3.12}\\
Q_{\mathbf{s}} & \rightarrow \exp (2 \pi i s \cdot v) Q_{\mathbf{s}}
\end{align*}
$$

The index \mathbf{s} denotes the spinor representation of $S O(6)$, and is given by $\left(s_{1}, s_{2}, s_{3}\right)=$ $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)$. If the condition

$$
\begin{equation*}
\sum_{i} v_{i}=0 \tag{3.13}
\end{equation*}
$$

is fulfilled, the surviving generators are the ones with $s_{1}=s_{2}=s_{3}$. This condition implies that θ lies in an $S U(3)$ subgroup of $S O(6)$. This $S U(3)$ is embedded in the 10 d Lorentz group as

$$
\begin{equation*}
S O(9,1) \rightarrow S O(3,1) \times S O(6) \rightarrow S O(3,1) \times S U(3) \tag{3.14}
\end{equation*}
$$

The $\mathbf{1 6}$ spinor representation of $S O(9,1)$ decomposes into $\rightarrow(\mathbf{2}, \mathbf{3})+(\overline{\mathbf{2}}, \overline{\mathbf{3}})+(\overline{\mathbf{2}}, \mathbf{1})+$ $(\mathbf{2}, \mathbf{1})$. Note that the susy generators must be $S U(3)$ singlets, so only the supersymmetry generators $(\overline{\mathbf{2}}, \mathbf{1})$ and $(\mathbf{2}, \mathbf{1})$ survive the orbifold projection. This gives $\mathcal{N}=1$ in 4 d .

If for some element of the point group θ one of the v_{i} is zero, then there are fixed tori. Look for example at the case $v_{3}=0$, this implies $v_{1}+v_{2}=0$ such that θ satisfies

$$
\begin{equation*}
\theta \in S U(2) \subset S U(3) \subset S U(6) \tag{3.15}
\end{equation*}
$$

what will give $\mathcal{N}=2$ susy.
Another way of looking at the $\mathcal{N}=1$ susy condition is to analyze the massless spectrum (2.35), and check how many gravitini survive the projection. Under the group decomposition $S O(6) \times U(1) \rightarrow S U(3) \times U(1)$, the gravitino $4_{3 / 2}$ decomposes as

$$
\begin{equation*}
\mathbf{4}_{3 / 2} \rightarrow \mathbf{3}_{3 / 2}+\mathbf{1}_{3 / 2} \tag{3.16}
\end{equation*}
$$

and similarly for $\overline{\mathbf{4}}_{-3 / 2}$. Then the gravitino $\mathbf{1}_{\frac{3}{2}}$ survives the projection, giving $\mathcal{N}=1$ susy in 4 d . These states will appear in the untwisted sector of the string. It has been shown that $\mathcal{N}=1$ condition and a crystallographic action in the lattice Γ, implies to have a \mathbb{Z}_{N} point group.

3.2 Mode expansions and consistency conditions

Now we write the solutions to the string equations of motion for the world-sheet fields of the 6 d space. The bosonic spatial coordinates $X^{k}, k=1, \ldots, 6$, can be arranged to define a complex \mathbb{C}^{3} basis

$$
\begin{equation*}
Z^{i}=\frac{1}{\sqrt{2}}\left(X^{2 i+2}+i X^{2 i+3}\right), \quad i=1,2,3 . \tag{3.17}
\end{equation*}
$$

The same basis can be defined for the right moving fermionic coordinates

$$
\begin{equation*}
\tilde{\psi}^{\prime i}=\frac{1}{\sqrt{2}}\left(\tilde{\psi}^{2 i+2}+i \tilde{\psi}^{2 i+3}\right), i=1,2,3 . \tag{3.18}
\end{equation*}
$$

In the orbifold, closed strings allow more general boundary conditions that they do in the 10 d space or in the toroidal compactification of the theory. These boundary conditions are given by

$$
\begin{align*}
Z^{i}(\sigma+2 \pi) & =e^{2 \pi i \phi_{i}} Z^{i}(\sigma)+l^{i}, \tag{3.19}\\
\tilde{\psi}^{i}(\sigma+2 \pi) & =e^{2 \pi i\left(\phi_{i}+\nu\right)} \tilde{\psi}^{i}(\sigma),
\end{align*}
$$

where $\nu=0, \frac{1}{2}$ denotes the R or NS sector respectively. The quantities ϕ_{i} are multiples of the orbifold twist v_{i} as $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=n\left(v_{1}, v_{2}, v_{3}\right)$. The integer n denotes the twist of the different sectors. There are untwisted sectors with $n=0$, in which the mode expansions correspond to the ones of the toroidal compactification. For generic twisted sectors the oscillator expansion for the internal bosonic coordinates is given by 106

$$
\begin{equation*}
Z^{i}=z_{\mathbf{f}}^{i}+\frac{i}{2} \sum_{n \neq 0}\left[\frac{1}{n+\phi_{i}} \alpha_{n+\phi_{i}}^{i} e^{i\left(n+\phi_{i}\right) \omega}+\frac{1}{n-\phi_{i}} \tilde{\alpha}_{n-\phi_{i}}^{i} e^{-i\left(n-\phi_{i}\right) \bar{\omega}}\right] \tag{3.20}
\end{equation*}
$$

The quantity $z_{\mathbf{f}}$ denotes the coordinates of a fixed set with respect to the orbifold action. The complex conjugate mode expansion can be computed directly from last equation to
give

$$
\begin{equation*}
\bar{Z}^{\bar{i}}=\bar{z}_{\mathbf{f}}^{i}+\frac{i}{2} \sum_{n \neq 0}\left[\frac{1}{n-\phi_{i}} \alpha^{\bar{i}}{ }_{n-\phi_{i}} e^{i\left(n-\phi_{i}\right) \omega}+\frac{1}{n+\phi_{i}} \tilde{\alpha}_{n+\phi_{i}}^{\bar{i}} e^{-i\left(n+\phi_{i}\right) \bar{\omega}}\right] . \tag{3.21}
\end{equation*}
$$

In the left-handed sector the creation operators will be $\alpha_{-n+\phi_{i}}^{i}$ with $-n+\phi_{i}<0$ or $\alpha^{\bar{i}}{ }_{-n-\phi_{i}}$ with $-n-\phi_{i}<0$. The opposite sign of the indices defines annihilation operators. A similar result holds for the right part of the algebra. Computing the Poisson brackets and replacing them by Dirac brackets upon quantization, the modes algebra is obtained. The fermionic right-movers have the expansion

$$
\begin{equation*}
\widetilde{\psi}^{i}=\sum_{n \in \mathbb{Z}+\nu}\left[\tilde{\psi}_{n-\phi_{i}}^{i} e^{-i\left(n-\phi_{i}\right) \bar{\omega}}\right], \tag{3.22}
\end{equation*}
$$

where as before, ν denotes the R or NS sectors. Creation operators will be $\psi_{-n-\phi_{i}}$ with $-n-\phi_{i} \leq 0$. The conjugate modes are

$$
\begin{equation*}
\widetilde{\psi^{i}}=\sum_{n \in \mathbb{Z}+\nu}\left[\tilde{\psi}_{n+\phi_{i}}^{\bar{i}} e^{-i\left(n+\phi_{i}\right) \bar{\omega}}\right] . \tag{3.23}
\end{equation*}
$$

We write the left-handed fermions in a basis defined as

$$
\begin{equation*}
\lambda^{K \pm}=\frac{1}{\sqrt{2}}\left(\lambda^{2 K-1} \pm i \lambda^{2 K}\right) \tag{3.24}
\end{equation*}
$$

They transform under the gauge orbifold with the twist

$$
\begin{equation*}
\gamma=\operatorname{diag}\left(e^{2 \pi i \beta_{1}}, e^{2 \pi i \beta_{2}} \ldots e^{2 \pi i \beta_{16}}\right) \tag{3.25}
\end{equation*}
$$

This gives the boundary conditions

$$
\begin{equation*}
\lambda^{K \pm}(\sigma+2 \pi)=e^{ \pm 2 \pi i \beta_{K}} \lambda^{K \pm}(\sigma) \tag{3.26}
\end{equation*}
$$

Those boundary conditions lead to the mode expansion

$$
\begin{equation*}
\lambda^{K \pm}=\sum_{n \in \mathbb{Z}+\nu} \lambda_{n \mp \beta_{K}}^{K \pm} e^{-i \omega\left(n \mp \beta_{K}\right)} . \tag{3.27}
\end{equation*}
$$

The transformation (3.25) can be set to be in the standard embedding, which means that it acts only on the 3 fermionic left movers $\lambda^{K+}, K=1,2,3$, in the same way as on the fermionic right-movers $\tilde{\psi}^{i}$.
To have a \mathbb{Z}_{N} orbifold implies that ϕ_{i} and β_{K} are multiples of $1 / N$. We obtained in (2.13) that the vacua of the Ramond sector form spinor representations of the symmetry groun ${ }^{2}$ Therefore, they will transform under the orbifold action. Because the orbifold order is

[^12]N, acting N times on the R vacuum, it has to come back to itself. This imposes the conditions
\[

$$
\begin{equation*}
N \sum_{i=1}^{3} \phi_{i}=N \sum_{K=1}^{8} \beta_{K}=N \sum_{K=9}^{16} \beta_{K}=0 \quad \bmod 2 \tag{3.28}
\end{equation*}
$$

\]

Let us see which is the level mismatch for the string with the given boundary conditions. Modular invariance requires the level matching of the string levels. This restricts the difference between the zero modes of the energy momentum tensor to be an integer, i.e. $L_{0}-\tilde{L}_{0} \in \mathbb{Z}$. First, let us use the result for the zero point energy of a complex boson with mode expansion $n+\theta$, which is given by 23]

$$
\begin{equation*}
f(\theta)=\frac{1}{24}-\frac{1}{8}(2 \theta-1)^{2} . \tag{3.29}
\end{equation*}
$$

A complex fermion will contribute $-f(\theta)$ to the zero point energy, while a real boson will contribute $f(\theta) / 2$. With this information in hand, we can consider the sector ($\mathrm{R}, \mathrm{R}, \mathrm{R}$). Which is the sector having R b.c. for the right modes and (R, R) b.c. for the left modes. This sector has zero point energies

$$
\begin{align*}
\delta_{r} & =2 \frac{f(0)}{2}-2 \frac{f(0)}{2}+\sum_{i} f\left(-\phi_{i}\right)-\sum_{i} f\left(-\phi_{i}\right)=0, \tag{3.30}\\
\delta_{l} & =2 \frac{f(0)}{2}+\sum_{i} f\left(\phi_{i}\right)-\sum_{K=1}^{16} f\left(\beta_{K}\right), \\
& =1+\frac{1}{2} \sum_{i=1}^{3} \phi_{i}\left(1-\phi_{i}\right)-\frac{1}{2} \sum_{K=1}^{16} \beta_{K}\left(1-\beta_{K}\right) .
\end{align*}
$$

This gives a level mismatch of

$$
\begin{align*}
L_{0}-\tilde{L}_{0} & =-\frac{1}{2} \sum_{i=1}^{3} \phi_{i}\left(1-\phi_{i}\right)+\frac{1}{2} \sum_{K=1}^{16} \beta_{K}\left(1-\beta_{K}\right) \tag{3.31}\\
& -\sum_{i=1}^{3}\left(N^{i}+\tilde{N}^{i}+\tilde{N}_{\psi}^{i}\right)-\sum_{K=1}^{16} N^{K} \beta_{K}=0 \bmod 1
\end{align*}
$$

The oscillators numbers $N^{i}, \tilde{N}^{i}, \tilde{N}_{\psi}^{i}$ and N^{K} are defined as the difference between the number of a given excitation and its conjugate. For example: \tilde{N}^{i} counts the number of $\tilde{\alpha}^{i}$ excitations minus the number of $\tilde{\alpha}^{\bar{i}}$ excitations and similarly for the other modes. Looking at the first line in (3.31), we see that zero point energy contribution has to be a multiple of $1 / N$, to give an integer sum when adding the oscillator numbers, which are also multiples of $1 / N$. Te equation (3.31) can be written as

$$
\begin{equation*}
\sum_{i=1}^{3} \phi_{i}^{2}-\sum_{K=1}^{16} \beta_{K}^{2}=0 \bmod \frac{2}{N} . \tag{3.32}
\end{equation*}
$$

This last condition shows that the orbifold group can not be the point group alone, because the orbifold embedding in the gauge degrees of freedom is required to ensure modular invariance.

The level matching in all other sectors can be deduced from the invariance of the R vacuum expressed through the identity (3.28) and the condition (3.32). When one considers the embedding of the lattice displacements in the gauge d.o.f, i.e. when Wilson lines are present, the last results are generalized. Using bosonization to go to the bosonic formulation for the gauge degrees of freedom, the transformation relating λ^{I+} and X^{I} shows how boundary conditions are related in both cases. The correspondence reads

$$
\begin{equation*}
\lambda^{I+}=: \exp \left(i X^{I}\right): . \tag{3.33}
\end{equation*}
$$

This identification combined with (3.26) implies the boundary conditions for the bosonic coordinates :

$$
\begin{equation*}
X^{I}(\sigma+2 \pi)=X^{I}+2 \pi V^{I}, \quad V^{I}=\beta_{I} \tag{3.34}
\end{equation*}
$$

The shift β^{I} is called usually V^{I}, and the mode expansion for the left moving toridal coordinates is

$$
\begin{equation*}
X_{L}^{I}=x_{L}^{I}+\left(p_{L}^{I}+V^{I}\right)(\tau+\sigma)+\frac{i}{2} \sum_{n} \frac{1}{n} \alpha_{n}^{I} e^{i n \omega} . \tag{3.35}
\end{equation*}
$$

Acting with the orbifold N times we should recover the same expansion, so

$$
\begin{equation*}
N V^{I} \in T_{E_{8} \times E_{8}} . \tag{3.36}
\end{equation*}
$$

Working out the level matching condition for the theory in terms of X^{I} instead of λ^{I+}, equation 3.32 is also encountered but with the replacement $\beta_{I} \rightarrow V^{I}$.

Orbifold spectrum Let us resume the results needed to determine the orbifold massless spectrum starting with the bosonic formulation of heterotic strings. Consider the states with boundary conditions given by the constructing element $g=\left(\theta^{k}, m_{a} e_{a}\right)$. The untwisted and twisted mass modes correspond to solutions with $k=0$ and $k \neq 0$ respectively.

The untwisted string states with constructing element $g=(1,0)$ can be described by $|q\rangle_{R} \otimes \tilde{\alpha}|p\rangle_{L}$. In the formula $q=\left(q^{0}, q^{1}, q^{2}, q^{3}\right)$ represents the momentum of the bosonized right-moving fermion. This is a weight of the $S O(8)$ Lorentz symmetry manifest in the light cone gauge. The quantity p denotes the left moving momentum of the 16 gauge d.o.f. and takes values in the $\Gamma_{8} \times \Gamma_{8}$ lattice. Whereas $\tilde{\alpha}$ denotes schematically the set of left moving oscillators.

For both twisted and untwisted states the mass shell conditions are given by

$$
\begin{align*}
\frac{M_{L}^{2}}{8} & =\frac{\left(p+V_{g}\right)^{2}}{2}+N-1+\delta c, \tag{3.37}\\
\frac{M_{R}^{2}}{8} & =\frac{\left(q+\phi_{g}\right)^{2}}{2}-\frac{1}{2}+\delta c
\end{align*}
$$

where M_{R} and M_{L} are the masses of left and right movers. We have set the right oscillator numbers and the right-moving momentum to zero, to allow for massless right-movers. The level-matching requires that $M_{L}^{2}=M_{R}^{2}$. The quantity $\phi_{g}=k \phi$ appearing in (3.37) is called the local twist.
V_{g} represents the embedding on the gauge d.o.f of the local constructing element g. The zero point energy in this scheme is given by $\delta c=\frac{1}{2} \sum_{i=1}^{3} \omega_{i}\left(1-\omega_{i}\right)$, with $\omega_{i}=\left(\phi_{g}\right)_{i} \bmod 1$ such that $0 \leq \omega_{i}<1$.

The $S O(8)$ transforming massless states $\mathbf{8}_{v}$ and $\mathbf{8}$ previously described, are identified here with the massless solutions $q=\underline{(0,0,0, \pm 1)}$ and $q=\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.
For twisted strings is convenient to define the shifted left-momentum of the state as $P_{s h}=$ $p+V_{g}$. The weight $P_{s h}$ gives the twisted string gauge transformations. An analogous definition is the shifted left-moving momentum $q_{s h}=q+v_{g}$. Then, twisted states with boundary conditions g can be written as $\left|q_{s h}\right\rangle_{R} \otimes \tilde{\alpha}\left|P_{s h}\right\rangle_{L}$. They will transform under another orbifold constructing element h as

$$
\begin{equation*}
\left|q_{s h}\right\rangle_{R} \otimes \tilde{\alpha}\left|P_{s h}\right\rangle_{L} \stackrel{h}{\mapsto} \Delta\left|q_{s h}\right\rangle_{R} \otimes \tilde{\alpha}\left|P_{s h}\right\rangle_{L} \tag{3.38}
\end{equation*}
$$

The transformation phase Δ reads

$$
\begin{equation*}
\Delta=e^{2 \pi i\left[P_{s h} \cdot V_{h}-q_{s h} \cdot \phi_{h}-\frac{1}{2}\left(V_{g} \cdot V_{h}-\phi_{g} \cdot \phi_{h}\right)\right]} \tag{3.39}
\end{equation*}
$$

If the local twist is different from zero in every plane and q solves (3.37), then $q^{0}= \pm \frac{1}{2}, 0$ defines the 4 d chirality. This corresponds to a chiral multiplet of $\mathcal{N}=1$ supersymmetry and its CPT conjugate. If the twist action in one complex plane is trivial, i.e. $\phi_{g}^{i}=0$ the orbifold is only four dimensional. The massless states are then hyper-multiplets of $\mathcal{N}=1$ supersymmetry in 6d. However, those multiplets are decomposed into chiral multiplets of $4 \mathrm{~d} \mathcal{N}=1$ susy when forming orbifold invariant states.

The set of all massless untwisted modes are [103]: the graviton $g_{\mu \nu}$, the antisymmetric tensor $B_{\mu \nu}$, the dilaton, the internal metric $g_{m n}$, the internal antisymmetric tensor $B_{m n}$, the gauge bosons and the fermionic partners of every of them. In addition there are chiral multiplets. All of the described states fill multiplets of $4 \mathrm{~d} \mathcal{N}=1$ supersymmetry.

The $4 \mathrm{~d} \mathcal{N}=1$ vector multiplet, composed by the gauge bosons and gauginos, is given by 103

$$
\begin{array}{lcl}
| \pm 1,0,0,0\rangle_{R} & \times \alpha_{-1}^{I}|0\rangle_{L}, & | \pm(-1 / 2,1 / 2,1 / 2,1 / 2)\rangle_{R} \times \alpha_{-1}^{I}|0\rangle_{L} \\
| \pm 1,0,0,0\rangle_{R} & \times \alpha_{-1}^{I}\left|P^{I}\right\rangle_{P^{2}=2}, & | \pm(-1 / 2,1 / 2,1 / 2,1 / 2)\rangle_{R} \times \alpha_{-1}^{I}|P\rangle_{P^{2}=2} \tag{3.41}
\end{array}
$$

All the Cartan generators (3.40) survive the orbifold projection. But the charged generators (3.41) in 4 d are only the ones which fulfill the orbifold projection $P \cdot V=0$. This last condition determines the gauge group in 4 d .

$3.3 \mathbb{Z}_{3}$ in standard embedding

Let us present next the first model considered in the literature of orbifolds. This is the \mathbb{Z}_{3} orbifold in the standard embedding of the gauge connection into the space group 32]. For an orbifold with space twist v_{i} this embedding is defined by considering a twist

$$
\begin{equation*}
V^{I}=\beta_{I}=\left(v_{1}, v_{2}, v_{3}, 0^{5}, 0^{8}\right) \tag{3.42}
\end{equation*}
$$

As previously mentioned, this implies that the orbifold acts in the same way on the left moving fermions $\lambda^{1+}, \lambda^{2+}$ and λ^{3+} as on the right moving fermions $\tilde{\psi}^{1}, \tilde{\psi}^{2}$ and $\tilde{\psi}^{3}$.

In the case of \mathbb{Z}_{3} these twists are

$$
\begin{align*}
v_{i} & =\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right) \tag{3.43}\\
V^{I} & =\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}, 0^{5}, 0^{8}\right)
\end{align*}
$$

The standard embedding will break the $E_{8} \times E_{8}$ symmetry down to a product $G^{\prime} \times E_{6} \times E_{8}$. This happens because the shift V^{I} lies in the $S U(3)$ which is embedded in E_{8} as

$$
\begin{equation*}
E_{8} \supset S U(3) \times E_{6} \tag{3.44}
\end{equation*}
$$

One has then to check which gauge bosons survive the orbifold to determine which will be the factor G^{\prime}. It turns out that for \mathbb{Z}_{3} this factor is exactly $S U(3)$. Recalling that the Little group is broken by the space group action as in 3.14 , on this model the breaking is given by

$$
\begin{align*}
S O(8) & \rightarrow S O(2) \times S U(3) \tag{3.45}\\
E_{8} \times E_{8} & \rightarrow S U(3) \times E_{6} \times E_{8} \tag{3.46}
\end{align*}
$$

The T^{6} lattice is (up to scalings) the root lattice of $S U(3) \times S U(3) \times S U(3)$. The point group is generated by $1, \theta$ and θ^{2} transformations on Z^{i}. The action of θ is

$$
\begin{equation*}
\theta: \quad\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(e^{\frac{2 \pi i}{3}} Z^{1}, e^{\frac{2 \pi i}{3}} Z^{2}, e^{\frac{-4 \pi i}{3}} Z^{3}\right) \tag{3.47}
\end{equation*}
$$

The orbifold T^{6} / \mathbb{Z}_{3} is represented in Figure 3.1. There are thee fixed points in every plane, giving a total of 27 fixed points. Those fixed points will content 27 identical copies of the twisted spectrum. We have selected a basis such that in every complex plane the vectors are $e_{2 k-1}=(1,0)$ and $e_{2 k}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ with $k=1,2,3$.

Untwisted sector The untwisted sector contains the states of the toroidal compactification which survive the orbifold projection. States are composed in left and right parts. So, one needs to make combinations with eigenvalue 1 under θ. Therefore it is useful to

Figure 3.1: Orbifold T^{6} / \mathbb{Z}_{3} on the torus lattice $S U(3) \times S U(3) \times S U(3)$. There is a total of 27 fixed points.
describe the left and right massless states with their different point group eigenvalues, and to combine them into invariant combinations [32]. Let us start with the right movers

$$
\begin{align*}
\theta^{0} & : \tilde{\psi}_{-1 / 2}^{\mu}|0\rangle_{\mathrm{NS}}, \tag{3.48}\\
\theta^{1} & : \tilde{\mathbf{\psi}}_{-1 / 2}^{i}|0\rangle_{\mathrm{NS}}, \\
\theta^{2} & : \tilde{\psi}_{-1 / 2}^{i}|0\rangle_{\mathrm{R}}, \quad|/ 2\rangle_{\mathrm{R}}, \\
\mathrm{I}_{\mathrm{R}}, & |\overline{\mathbf{3}},-1 / 2\rangle_{\mathrm{R}}
\end{align*}
$$

The left R ground states are denoted by its representation under the surviving $S U(3) \times U(1)$ subgroup of $S O(8)$. This is the decomposition of the $\mathbf{8}_{s}$ massless state of the toroidal compactification as

$$
\begin{equation*}
\mathbf{8}_{s} \rightarrow \mathbf{3}_{1 / 2}+\overline{\mathbf{3}}_{-1 / 2}+\mathbf{1}_{1 / 2}+\overline{\mathbf{1}}_{-1 / 2} . \tag{3.49}
\end{equation*}
$$

The rest of the states constructed with right-fermionic oscillators are part of the $\boldsymbol{8}_{v}$. The index $\mu=2,3$ runs over the non-compact transverse directions after the gauge fixing of the world-sheet action. The left-moving massless modes have representations under the surviving gauge group (3.46). Those states are inherited from the 10d left-massless spectrum (2.23) i.e. the state $(\mathbf{1}, \mathbf{2 4 8}, \mathbf{1})$ is decomposed as

$$
\begin{equation*}
(\mathbf{2 4 8}, \mathbf{1}) \rightarrow(\mathbf{8}, \mathbf{1}, \mathbf{1})+(\mathbf{1}, \mathbf{7 8}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{2 4 8})+(\mathbf{3}, \mathbf{2 7}, \mathbf{1})+(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}, \mathbf{1}) . \tag{3.50}
\end{equation*}
$$

In the right hand side of the arrow the first, second and third entries are the quantum numbers under the gauge factors $S U(3), E_{6}$ and E_{8} respectively. We omitted the first entry of $(\mathbf{1}, \mathbf{2 4 8}, \mathbf{1})$ because these states are singlets of the Lorentz group. The first three states of the decomposition have eigenvalue θ^{0} under the orbifold. The last two have eigenvalues θ and $\theta^{-1}=\theta^{2}$ respectively. This is because we are in the standard embedding. Therefore, the massless left movers orbifold eigenstates are

$$
\begin{align*}
& \theta^{0}: \tag{3.51}\\
& \theta_{-1}^{\mu}\left|a_{0}\right\rangle,\left|a_{0}\right\rangle \in(\mathbf{8}, \mathbf{1}, \mathbf{1})+(\mathbf{1}, \mathbf{7 8}, \mathbf{1})+(\mathbf{1}, \mathbf{1}, \mathbf{2 4 8}), \\
& \theta^{1}: \\
& \alpha_{-1}^{i}\left|a_{1}\right\rangle,\left|a_{1}\right\rangle \in(\mathbf{3}, \mathbf{2 7}, \mathbf{1}), \\
&{ }_{-1}\left|a_{2}\right\rangle,\left|a_{2}\right\rangle \in(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}, \mathbf{1}) .
\end{align*}
$$

Those states are constructed by acting with bosonic oscillators on the $N S-N S^{\prime}$ left vacuum. Now, the untwisted matter can be summarized in Table (3.1). We have put together right and left eigenvectors of the orbifold twist, and we have indicated the physical nature of the 4d states.

Table 3.1: Untwisted massless states of \mathbb{Z}_{3} in the gauge standard embedding.

Particle	State	Product
4d Gauge bosons	$\tilde{\psi}_{-1 / 2}^{\mu}\left\|a_{0}\right\rangle_{\mathrm{NS}}$	$\theta^{0} \cdot \theta^{0}$
4d graviton, dilaton and axion	$\alpha_{-1}^{\mu} \tilde{\psi}_{-1 / 2}^{\nu}\|0\rangle_{\mathrm{NS}}$	$\theta^{0} \cdot \theta^{0}$
4d gravitino, dilatino and axino	$\alpha_{-1}^{\mu}\|\mathbf{1}, s\rangle_{\mathrm{R}}$	$\theta^{0} \cdot \theta^{0}$
Neutral scalars, 6D Moduli	$\alpha_{-1}^{i} \tilde{\psi}_{-1 / 2}^{\tilde{j}}\|0,0\rangle_{\mathrm{NS}}$	$\theta^{1} \cdot \theta^{2}$
Scalars	$\tilde{\psi}_{-1 / 2}^{\bar{j}}\left\|a_{1}\right\rangle$	$\theta^{1} \cdot \theta^{2}$
Spinors	$\left\|a_{2}, \mathbf{3}, 1 / 2\right\rangle_{\mathrm{R}}$	$\theta^{2} \cdot \theta$
Spinors	$\alpha_{-1}^{i}\|\mathbf{3}, 1 / 2\rangle_{\mathrm{R}}$	$\theta^{2} \cdot \theta$

Twisted sector To complete the orbifold description we should obtain the twisted sector states. There are 27 equivalence classes of fixed points, which are constructed by the products of two dimensional sets as

$$
\begin{equation*}
g=\left(\theta, n_{\alpha} e_{\alpha}\right), \text { with }\left(n_{2 i-1}, n_{2 i}\right)=\{(0,0),(1,2),(2,1)\}, i=1,2,3 \tag{3.52}
\end{equation*}
$$

They give the following boundary conditions for bosonic coordinates

$$
\begin{equation*}
Z^{i}(\sigma+2 \pi)=\theta_{j}^{i} Z^{j}(\sigma)+n_{\alpha} e_{\alpha}^{i} \tag{3.53}
\end{equation*}
$$

As Wilson lines are absent, there will be $3^{3}=27$ copies of the spectrum, one at every fixed point. The CPT conjugated states are given by other 27 classes with θ^{2} twist. We construct now the sectors for the right movers and left movers. In the right moving R sector the zero point energy is

$$
\begin{equation*}
2 f(0) / 2-2 f(0) / 2+3 f(-1 / 3)-3 f(-1 / 3)=0 \tag{3.54}
\end{equation*}
$$

The first two terms come from the 4 d real bosons and fermions $X^{\mu}(\bar{\omega})$ and $\widetilde{\psi}^{\mu}(\bar{\omega})$ which after gauge fixing are two real ones each. The last two come from the complex boson and fermions $Z^{i}(\bar{\omega})$ and $\widetilde{\psi}^{i}(\bar{\omega})$ with oscillators indices $\underset{\sim}{n}-1 / 3$ as seen in 3.20 and 3.22). The fermionic zero modes are the oscillators with $\widetilde{\psi}_{0}^{\mu}, \mu=2,3$ that can be redefined to $\widetilde{\psi}_{0}^{2 \pm i 3}=\left(\widetilde{\psi}_{0}^{2} \pm i \widetilde{\psi}_{0}^{3}\right) / \sqrt{2}$. Therefore, the possible R ground states in the fixed point g are denoted as

$$
\begin{equation*}
| \pm 1 / 2\rangle_{g, \mathrm{R}} \tag{3.55}
\end{equation*}
$$

They fulfill the conditions

$$
\begin{equation*}
\widetilde{\psi}_{0}^{2 \pm i 3}| \pm 1 / 2\rangle_{g, \mathrm{R}}=0, \quad \widetilde{\psi}_{n+2 / 3}^{i}| \pm 1 / 2\rangle_{g, \mathrm{R}}=0, n+2 / 3>0 \tag{3.56}
\end{equation*}
$$

To implement the GSO projection, the vertex operator of the R-sector g-twisted ground states are determined via bosonization of the fermions $\widetilde{\psi}^{i}, \widetilde{\psi}^{2 \pm i 3}$, whose modes annihilate the vacuum $| \pm 1 / 2\rangle_{g, R}$. The bosonization is given by $\left.\right|^{3}$

$$
\begin{equation*}
\widetilde{\psi}^{i} \simeq e^{i \tilde{s}_{i} \widetilde{H}_{i}}, \quad \tilde{s}_{i}=-\frac{1}{6}, \quad \widetilde{\psi}^{2 \pm i 3} \simeq e^{i \tilde{s}_{0} \widetilde{H}_{0}}, \tilde{s}_{0}= \pm \frac{1}{2} \tag{3.57}
\end{equation*}
$$

[^13]The bosonization of fermions in equation (3.57) reproduces the result that a right-fermion with boundary condition phase ζ has a bosonization $e^{i(-1 / 2+\zeta) \widetilde{H}}$. The spin field or vertex operator of the R ground state is then

$$
\begin{equation*}
\Theta_{R}=\exp i \sum_{a} \tilde{s}_{a} \tilde{H}_{a}, \quad \tilde{s}=\left(\pm \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right) \tag{3.58}
\end{equation*}
$$

This determines $|+1 / 2\rangle_{\mathrm{R}}$ as the state surviving the GSO projection $\sum \tilde{s}_{a} \in 2 \mathbb{Z}$.
The right $N S$ sector will have zero point energy given by

$$
\begin{equation*}
2 f(0) / 2-2 f(1 / 2) / 2+3 f(2 / 3)-3 f(1 / 6)=0 . \tag{3.59}
\end{equation*}
$$

The first two terms come from two space-time real periodic bosons and two space-time real anti-periodic fermions. The last two terms come from the three internal coordinates complex bosons with modes $n+2 / 3$, and three internal complex fermions with modes $n+1 / 2-1 / 3$ as seen in 3.22 . Then, the only massless state in this sector is $|0\rangle_{\mathrm{NS}}$.
In the left-moving side the sectors $\mathrm{R}-\mathrm{NS}$ and NS-NS will give massless states, with zero point energies

$$
\begin{align*}
\text { R-NS } & : 2 \frac{f(0)}{2}+3 f(1 / 3)-3 f(-1 / 3)-10 f(0) / 2-16 \frac{f(1 / 2)}{2}=0, \tag{3.60}\\
\text { NS-NS } & : 2 \frac{f(0)}{2}+3 f(1 / 3)-3 f(1 / 6)-10 f(1 / 2) / 2-16 \frac{f(1 / 2)}{2}=-1 / 2
\end{align*}
$$

The sector $\mathrm{R}-\mathrm{R}$ has not massless states. In the $\mathrm{R}-\mathrm{NS}$ sector there are fermionic zero modes $\lambda_{0}^{I}, I=7, \ldots, 16$. Thus, as before, one can construct rising and lowering operators $\lambda_{0}^{K \pm}$ to get ground states which form $S O(10)$ representations. The lowest state is denoted by $\left|-1 / 2^{5}\right\rangle_{R}$. The vertex operator of all the ground states will be

$$
\begin{equation*}
\Theta_{L}=\exp i q_{K} H_{K}, \quad \mathbf{q}=\left(1 / 6,1 / 6,1 / 6, \pm 1 / 2^{5}\right) \tag{3.61}
\end{equation*}
$$

This implies that the $\overline{\mathbf{1 6}}$ representation with odd number of $-1 / 2$ survives the GSO projection $\sum_{K} q_{k} \in 2 \mathbb{Z}$. To write (3.61) we use the result that a left twisted vacuum annihilated by modes of a spinor with phase ζ, has an associated vertex operator component $e^{i(1 / 2-\zeta) H}$. The spinors $\lambda^{I}, I=1,2,3$, have phase $\zeta=1 / 3$, so each of them will give the vertex operator component $e^{i H_{I} / 6}$. Also the states $|\ldots \pm 1 / 2 \ldots\rangle_{\mathrm{R}}$ annihilated by $\lambda_{0}^{K \pm}$ will have an associated vertex operator component $e^{ \pm i H_{K} / 2}$. The NS-NS sector has zero point energy $-1 / 2$, therefore this fixes three kind of massless sates. We can see the full twisted spectrum in Table 3.2.

3.3.1 Blow-up modes

The presented example serves also to describe an important concept in our work. It was precisely in the \mathbb{Z}_{3} orbifold in which by the first time was discovered the presence of twisted

Table 3.2: Twisted $m=0$ spectrum of \mathbb{Z}_{3} in standard embedding.

irrep.	State
$(1, \overline{\mathbf{2 7}}, 1)$	$\left(\|\overline{\mathbf{1 6}}\rangle_{R, N S}+\lambda_{-1 / 6}^{1+} \lambda_{-1 / 6}^{2+} \lambda_{-1 / 6}^{3+}\|0\rangle_{\mathrm{NS}, \mathrm{NS}}+\lambda_{-1 / 2}^{I}\|0\rangle_{\mathrm{NS}, \mathrm{NS}}\right)\|1 / 2\rangle_{R}, 7 \leq I \leq 16$
$(1, \overline{\mathbf{2 7}}, 1)$	$\left(\|\overline{\mathbf{1 6}}\rangle_{R, N S}+\lambda_{-1 / 6}^{1+} \lambda_{-1 / 6}^{2+} \lambda_{-1 / 6}^{3+}\|0\rangle_{\mathrm{NS}, \mathrm{NS}} \quad+\lambda_{-1 / 2}^{I}\|0\rangle_{\mathrm{NS}, \mathrm{NS}}\right)\|0\rangle_{\mathrm{NS}}, 7 \leq I \leq 16$
$(\mathbf{3}, 1,1)^{3}$	$\left(\lambda_{-1 / 6}^{K+} \alpha_{-1 / 3}^{\bar{j}}\|0\rangle_{\mathrm{NS}, \mathrm{NS}}\right)\|1 / 2\rangle_{R}, \quad K=1,2,3$.
$(\mathbf{3}, 1,1)^{3}$	$\left(\lambda_{-1 / 6}^{K+} \alpha_{-1 / 3}^{\bar{j}}\|0\rangle_{\mathrm{NS}, \mathrm{NS}}\right)\|0\rangle_{\mathrm{NS}}, \quad K=1,2,3$.

fields which vevs can be varied freely ensuring a vanishing D-term [63]. This means that a flat direction exists. In this case those twisted fields do not appear in the super-potential. The fields parametrizing the flat direction are the E_{6} singlets $(\mathbf{3}, \mathbf{1}, \mathbf{1})$ presented in Table (3.2)

$$
\begin{equation*}
M_{K \bar{j}}=\lambda_{-1 / 6}^{K+} \alpha_{-1 / 3}^{\bar{j}}|0\rangle_{\mathrm{NS}, \mathrm{NS}} . \tag{3.62}
\end{equation*}
$$

The scalar potential for these modes will come from their D-term, which is in general given by

$$
\begin{equation*}
D^{a}\left(\phi, \phi^{*}\right)=-\frac{g_{a}^{2}}{2}\left(2 \xi_{a}+\phi^{i *} t_{i j}^{a} \phi^{j}\right), \tag{3.63}
\end{equation*}
$$

where ϕ^{i} are the scalar fields, g_{a} is the gauge coupling constant, ξ_{a} is the contribution of an $U(1)$ gauge symmetry called Fayet-Iliopoulos term (FI) and $t_{i j}^{a}$ are the generators of the gauge group representation carried by the fields ϕ^{i}. In the present example there are no $U(1)$ symmetries, so the potential will be

$$
\begin{equation*}
D^{a} \propto M_{K \bar{j}}^{*} t_{K L}^{a} M_{L \bar{j}}=\operatorname{Tr}\left(M^{\dagger} t^{a} M\right), \quad t^{a} \in S U(3) . \tag{3.64}
\end{equation*}
$$

The condition for D^{a} to vanish for all a is that the matrices are unitary and satisfy

$$
\begin{equation*}
M M^{\dagger}=\rho^{2} \mathbf{1} \rightarrow \forall_{a} D^{a} \propto \operatorname{Tr}\left(t^{a} M M^{\dagger}\right) \propto \operatorname{Tr}\left(t^{a}\right)=0 \tag{3.65}
\end{equation*}
$$

The fields M can be taken to be proportional to the identity with a gauge rotation. This means that there is a one parameter family vacua in which $S U(3)$ is broken. They arise when the twisted fields take vacuum expectation values, such that those vacua can be understood as smooth Calabi-Yau (CY) manifolds with a curvature radius related to ρ (63]. The fields M are moduli of the CY, which turned off lead to the orbifold singularity. They are named as blow-up modes.

In the standard embedding the world-sheet theory possess $(2,2)$ supersymmetry, because the gauge twist is equal to the space twist and this gives additional conserved left-currents. In our work we treat compactifications with $(0,2)$ supersymmetry, coming from orbifolds which are not in the standard embedding. But on those models, similar effects have been studied [69]. Our aim is to identify the blow-up modes, and understand the massless states of the new vacuum. We will do this in terms of the original orbifold spectrum deformed
by vevs, and in terms of the compactification of supergravity in the resolved orbifold. Differently to the situation encountered in \mathbb{Z}_{3}, the blow-up modes here will couple to other fields in the orbifold. They do appear in the super-potential. So, they will put at work a Higgs mechanism under which some orbifold chiral fermions get masses. Then, one needs to look also at the F-Flatness condition, and ensure that the family of vevs configuration satisfies it too.

This connection between orbifolds and smooth CY contributes to identify compactifications which belong to the same moduli space. In general, the CFTs obtained with generic backgrounds of twisted fields are not free, and therefore more difficult to treat. Due to that, the heterotic supergravity description coupled to super Yang-MIlls is employed to study the compactification on the smooth manifold. In our examples, there will be generically an anomalous $U(1)$ gauge symmetry such that a FI term ξ_{a} is generated at one-loop. Therefore, if we want to ensure a supersymmetric vacuum this term has to be canceled by vevs of twisted scalars. Consider the scalar components of the twisted chiral superfields ϕ_{i} attaining vevs $\left\langle\phi_{i}\right\rangle$ and only charged under the abelian gauge symmetries. Then, the total D-term can be written as 74

$$
\begin{equation*}
D=\sum_{i, a} Q_{a}^{i}\left\langle\phi_{i}\right\rangle^{2}+\xi, \quad \xi=\frac{M_{s}^{2}}{192 \pi^{2}} \operatorname{Tr} Q_{\mathrm{anom}} . \tag{3.66}
\end{equation*}
$$

The index a runs over all the $U(1)_{a}$ symmetries, among them the anomalous one. $\operatorname{Tr} Q_{\text {anom }}$ denotes the trace of the charges under the anomalous symmetry. This FI term ξ has only one loop contributions, the higher loops contributions vanish [74]. A flat direction occurs, when the assigned vevs cancel this term, giving $D=0$ and keeping also the F-term vanishing.

3.4 A look into selection rules

In order to determine the effective field theory arising from the orbifold compactification, we need to know which couplings are allowed in the theory. This can be determined by looking at the correlation function between vertex operators. The basic string selection rules as space group, gauge invariance and H-momentum conservation, are well known and well reviewed in many sources 107 110, so we will not treat them here.

Recently, the study of orbifold selection rules arising from instanton contributions to the world-sheet have been revisited. This lead to a reconsideration of the so called Rule 4 and the proposal of a new rule, Rule 5 [109, which have been recently debated. These developments motivated us 94 to study potential R-symmetries, which could arise from the instanton solutions. R -symmetries are expected to arise in the 4 d theory as remnants from 6d Lorentz group $S O(6)$, which are also symmetries of the orbifolds.

Thus, we performed an investigation over the automorphism group of the toroidal lattice $\operatorname{Aut}(\Gamma)$. Among the found generators we present in this section here the subgroup that
leaves the conjugacy classes invariant. The most considered example of this subgroup, is the orbifold twist on a single plan\& ${ }^{4}$. The conjugacy classes for a fixed set characterized by boundary conditions $X^{\mathbf{f}}\left(e^{2 \pi i} z\right)=\theta^{k} X^{\mathbf{f}}(z)+\lambda$ is given by

$$
\begin{equation*}
\bigcup_{r=0}^{l-1}\left\{\left(\theta^{k}, \theta^{r} \lambda+\left(1-\theta^{k}\right) \Lambda\right)\right\} \tag{3.67}
\end{equation*}
$$

where equivalent fixed sets under the orbifold action have been identified under an element $\left(\theta^{r}, \Lambda\right)$. Another motivation for this study, was the blow-up of the \mathbb{Z}_{7} orbifold, which will be discussed in chapter 4 . In that project, initially we failed to match the spectrum on the deformed orbifold by vevs and in the resolved space. This happened because there were some Yukawa couplings to blow-up modes giving mass to apparently massless fields in blow-up. Unfortunately, the automorphism exploration doesn't give, any new result for the T^{6} / \mathbb{Z}_{7} orbifold. Nevertheless, there could be some restrictions arising from the instanton selection rules, but this is still under study.

Let us describe the automorphisms that leave conjugacy classes invariants. For the factorizable case there is a nice way of identify them. Consider a fixed point of the sector θ^{k} given by the direct product of the coordinates in the three planes $f^{(k)}=g_{1} \otimes g_{2} \otimes g_{3}$. Every projection on a plane from the fixed point fulfills $\left(\theta_{i}\right)^{k} g_{i}=g_{i}+\lambda_{i}, \lambda_{i} \in \Gamma$. If the plane i has prime twist, then g_{i} also satisfies $\theta_{i} g_{i}=g_{i}+\lambda_{i}^{\prime}, \lambda_{i}^{\prime} \in \Gamma$. Dividing in the following itemized cases it is possible to identify which rotational symmetries leave the fixed points invariant.
(i) All planes have prime order twists. In this case, all the fixed points are fixed under the orbifold twist plane by plane:

$$
\begin{equation*}
\theta_{i} f^{(k)}=f^{(k)}+\lambda_{i}^{\prime}, \quad i=1,2,3, \quad \bar{\psi}_{\text {orall }} f^{(k)} \tag{3.68}
\end{equation*}
$$

So we have the discrete symmetries generated by θ_{1}, θ_{2} and θ_{3}.
(ii) Only one plane is non-prime. Here, all fixed points are fixed under the prime plane rotations, say θ_{2} and θ_{3}. Moreover, considering the non-prime rotation, say θ_{1}, we have:

$$
\begin{align*}
\theta_{1} f^{(k)} & =\theta_{1} g_{1} \otimes g_{2} \otimes g_{3} \\
& =\theta_{1} g_{1} \otimes \theta_{2} g_{2} \otimes \theta_{3} g_{3}-\lambda_{2}^{\prime}-\lambda_{3}^{\prime} \\
& =\theta f^{(k)}-\lambda_{2}^{\prime}-\lambda_{3}^{\prime} \\
& \simeq f^{(k)} \tag{3.69}
\end{align*}
$$

where the last \simeq indicates equivalence of the fixed points up to the conjugacy class. So we have again the symmetries, θ_{1}, θ_{2} and θ_{3}.
(iii) Two planes are non-prime. Again, all the fixed points are fixed under the prime plane rotation, say θ_{3}. Moreover, they are invariant under the combined action of the

[^14]Table 3.3: Orbifold automorphisms for some non-factorizable or partially factorizable orbifolds, counting independent discrete rotational symmetries that preserve the conjugacy classes, and labeling them with their generators. We refer to 111 for details of the torus lattice, orbifold twist and fixed points.

	Lattice	Twist	Orbifold Automorphisms
\mathbb{Z}_{4}	$\mathrm{SU}(4) \otimes \mathrm{SU}(4)$	$\frac{1}{4}(1,1,-2)$	$\theta,\left(\theta_{1}\right)^{2}$
$\mathbb{Z}_{6-\mathrm{II}}$	$\mathrm{SU}(6) \otimes \mathrm{SU}(2)$	$\frac{1}{6}(1,2,-3)$	θ
\mathbb{Z}_{7}	$\mathrm{SU}(7)$	$\frac{1}{7}(1,2,-3)$	θ
$\mathbb{Z}_{8-\mathrm{I}}$	$\mathrm{SO}(5) \otimes \mathrm{SO}(9)$	$\frac{1}{8}(2,1,-3)$	$\theta,\left(\theta_{1}\right)^{2}$
$\mathbb{Z}_{8-\mathrm{II}}$	$\mathrm{SO}(8) \otimes \mathrm{SO}(4)$	$\frac{1}{8}(1,3,-4)$	θ, θ_{3}
$\mathbb{Z}_{12-\mathrm{I}}$	$\mathrm{SU}(3) \otimes F_{4}$	$\frac{1}{12}(4,1,-5)$	θ, θ_{1}
$\mathbb{Z}_{12-\mathrm{II}}$	$F_{4} \otimes \mathrm{SO}(4)$	$\frac{1}{12}(1,5,-6)$	θ, θ_{3}

non-prime rotations, say $\theta_{1} \theta_{2}$ since:

$$
\begin{align*}
\theta_{1} \theta_{2} f^{(k)} & =\theta_{1} g_{1} \otimes \theta_{2} g_{2} \otimes g_{3} \\
& =\theta_{1} g_{1} \otimes \theta_{2} g_{2} \otimes \theta_{3} g_{3}-\lambda_{3}^{\prime} \\
& =\theta f^{(k)}-\lambda_{3}^{\prime} \\
& \simeq f^{(k)} . \tag{3.70}
\end{align*}
$$

In this case, the symmetries are generated by $\left(\theta_{1} \theta_{2}\right)$ and θ_{3}.
A case not considered in what we described is the \mathbb{Z}_{4} orbifold. This orbifold has twist $v=\frac{1}{4}(1,1,-2)$ has two independent twisted sectors θ^{2} and θ^{4}. Here all the fixed points are fixed under θ_{i}^{2} (the twist squared in every plane), and as a consequence under $(\theta)^{2}$. Then, it is clear that $\left(\theta_{1}\right)^{2}$ and $\left(\theta_{2}\right)^{2}$ are the two independent symmetries from the group $\left(\theta_{i}\right)^{2}$.

The computer scan performed for all factorizable orbifolds reveals, that the cases explained are all the possible ones.

For orbifolds whose underlying torus lattice and orbifold action have a factor in one plane only, we can perform a similar analysis. For non-factorizable orbifolds for which it is not possible to decompose the twist in the product of the three planes twists, we can still search for rotational discrete symmetries that preserve the orbifold and leave the conjugacy classes invariant. We have performed this exploration, and the main results of it can be seen in Table 3.3. In most of the situations the symmetry is the point group itself, but for \mathbb{Z}_{4} and $\mathbb{Z}_{8 I}$ there is a \mathbb{Z}_{2} symmetry surviving and generated by θ_{1}^{2}.

In appendix \mathbb{f} further details are given. There we present the study of two subgroups of the automorphism group. One is the group D and the other the group F. They are defined
as

$$
\begin{align*}
F= & \{\rho \in \operatorname{Aut}(\Gamma),[\rho, \theta]=0, \theta \in P, \tag{3.71}\\
& \left.\forall z_{f} \text { F.P. of } S \nexists h \in S \text { s.t. } \rho z_{\rho}=h z_{f}\right\}, \\
D= & \{\rho \in \operatorname{Aut}(\Gamma),[\rho, \theta]=0, \theta \in P, \tag{3.72}\\
& \left.\forall z_{f} \text { F.P. of } S \exists h \in S \text { s.t. } \rho z_{\rho}=h z_{f}, \operatorname{det}(\rho)=1 .\right\}
\end{align*}
$$

Those are the most promising automorphism subgroups that could lead to 4 d discrete symmetries. Group E is the one which was described in this section. But note that group F doesn't not preserve the conjugacy classes. However, our aim is to determine in which orbifolds this group maps among each other conjugacy classes with the same spectrum, which we call degenerated conjugacy classes. This group could lead to flavor 4d symmetries as described in 55, 59.

Currently, using the encountered symmetries of group D we perform an study of the CFT correlators, for non-prime orbifolds with the presence of gamma phases. We expect to present the results of this section together with the mentioned exploration elsewhere 94 .

3.5 Calabi-Yau compactification

We compactify the extra six dimensions with the aim of preserve $\mathcal{N}=1$ supersymmetry in 4d. A supersymmetric background is ensured if the supersymmetry generators annihilate the vacuum. At the classical level, this implies that the variation of the Fermi fields has to be zero. In the 10d theory the Fermi fields are the gravitino, the dilatino the gaugino and the fermionic component of chiral superfields. The supersymmety transformation in the 10 d supergravity depends on a Majorana-Weyl parameter ξ, which transforms in the 16 spinor representation of $S O(9,1)$. This parameter appears in the variation of the six dimensional gravitino

$$
\begin{equation*}
\delta \psi=\left(\partial_{m}+\frac{1}{4}\left(\omega_{m n p}-\frac{1}{2} H_{m n p}\right) \Gamma^{n p}\right) \xi=\nabla_{m} \xi \tag{3.73}
\end{equation*}
$$

Here ∇_{m} is the internal covariant derivative ∇_{m} and $\omega_{m n p}$ and $H_{m n p}$ represent the spin connection and the 3 -form field strength. Thus a supersymmetric vacuum implies that there should exist a covariantly constant spinor. Under the decomposition $S O(9,1) \rightarrow$ $S O(3,1) \times S O(6)$, one has $\mathbf{1 6} \rightarrow(\mathbf{2}, \mathbf{4})+(\overline{\mathbf{2}}, \overline{\mathbf{4}})$. The spinor ξ in the $\mathbf{1 6}$, decomposes as $\xi=\xi_{\alpha \beta}+\xi_{\alpha \beta}^{*}$, with indices α and β running over the $\mathbf{2}$ and the $\mathbf{4}$ representations respectively. Assuming there exists some unbroken supersymmetry, then the spinor ξ can be rotated in $S O(3,1)$ to achieve an structure $\xi_{\alpha \beta}=u_{\alpha} \zeta_{\beta}\left(x^{m}\right)$, with u_{α} constant, and ζ in the $\mathbf{4}$ of $S O(6)$. Then

$$
\begin{equation*}
\nabla_{m} \xi=0 \rightarrow \nabla_{m} \zeta=0 . \tag{3.74}
\end{equation*}
$$

The latter is the parallel transport equation on the manifold. The question to ask, is which condition the manifold should satisfy in order to leave one component of the spinor
invariant when performing parallel transport. This can be made explicit by looking at the deviation of the spinor from itself, after performing parallel transport in a closed loop

$$
\begin{equation*}
\left[\nabla_{m}, \nabla_{n}\right] \zeta=\frac{1}{4} R_{m n p q} \Gamma^{p q} \zeta=0 \tag{3.75}
\end{equation*}
$$

To achieve $\mathcal{N}=1$ supersymmetry the rotations performed should leave one component of the spinor invariant. If the rotation $R_{m n p q} \Gamma^{p q}$ lies on $S U(3)$ this can be achieved, because in this case the spinor $\xi_{\alpha \beta}=u_{\alpha} \zeta_{\beta}$ decomposes as

$$
\begin{equation*}
(2,4) \rightarrow(2,1)+(2,3), \tag{3.76}
\end{equation*}
$$

where the entries on the r.h.s are the representations under $S O(3,1) \times S U(3)$. The existence of a covariantly constant spinor can be formulated using the concept of the holonomy group, which is the group of rotations that a spinor or a vector experiences when it is parallel transported around a closed loop. The searched manifold has therefore $S U(3)$ holonomy. Recall that the $\mathcal{N}=1$ supersymmetry constraint for orbifolds, imposed the orbifold rotation to lie in $S U(3)$, in this case the holonomy group coincides with the point group. The ten dimensional supercharges will give rise to four surviving supercharges in four dimensions

$$
\begin{equation*}
Q_{\alpha} \equiv(\mathbf{2}, \mathbf{1}), \quad \bar{Q}_{\alpha} \equiv(\overline{\mathbf{2}}, \mathbf{1}) \tag{3.77}
\end{equation*}
$$

Applying that same line of reasoning it is possible to see that the compactification on a T^{6} which has trivial holonomy group will preserve all the supersymmetries. In the $10 \mathrm{~d} \mathcal{N}=1$ theory there are 16 supercharges, compactification on a torus will therefore give $\mathcal{N}=4$ sypersymmetry in 4 d . Recall that on the $\mathcal{N}=2$ sectors of the orbifold, the rotation lays on $S U(2)$. These orbifold sectors will preserve the same amount of supersymmetry that a manifold with $S U(2)$ holonomy, which has 8 surviving supercharges in 4 d .
For more explicit formulas one can check the review in [96], but we want to mention that the zero variation of the 4 d gravitino gives a 4 d flat metric and the zero variation of the dilatino restricts the dilaton and the 3 -form field to give torsion free compactifications i.e. $H_{3}=0$ a constant dilaton.
The variation of the gaugino gives a similar condition for the background flux in the internal dimensions, as the one obtained in the discussion of parallel transport. In particular requiring the vanishing of the gaugino variation $\delta \lambda=F_{m n} \Gamma^{m n} \xi$, restricts $F_{m n} \Gamma^{m n}$ to $S U(3)$ rotations. This restriction implies that

$$
\begin{equation*}
F_{i j}=F_{\bar{i} \bar{j}}=G^{i \bar{j}} F_{i \bar{j}}=0 \tag{3.78}
\end{equation*}
$$

where the indices i and \bar{i} transform under $S U(3)$. Another requirement is the Bianchi identity (BI) for the 3 -form field strength, which is given by

$$
\begin{equation*}
d \widetilde{H}_{3}=\frac{\alpha^{\prime}}{4}\left(\operatorname{tr} \mathcal{R}^{2}-\operatorname{Tr} \mathcal{F}^{2}\right) \tag{3.79}
\end{equation*}
$$

For vanishing torsion both terms on the r.h.s of the equation should coincide. This is achieved embedding the spin connection into the gauge connection: the gauge connection
is set equal to the spin connection of the internal manifold. This we have seen in section 3.46 in which the \mathbb{Z}_{3} orbifold in the standard embedding was discussed. In fact a blowup of this model gives a CY manifold which possesses vanishing torsion and gauge group $E_{6} \times E_{8}$. But in the models we are interested in, which are obtained from toric resolutions of orbifolds with $(0,2)$-world--sheet supersymmetry, the backgrounds have a gauge connection embedded in the $E_{8} \times E_{8}$ Cartan subalgebra; so we have a non standard embedding. In this case for every \widetilde{H} the equation 3.79 should be supplemented with the BI which are the equations obtained from integrating $d H$ in a set of compact submanifolds of X.

Let us come now to the definition of Calabi-Yau manifold. To achieve a compactification manifold with the described properties, one starts with a complex manifold of complex dimension n. This is a $2 n$ dimensional real manifold which allows for complex coordinates with holomorphic transition functions $\tilde{z}_{i}\left(z_{k}\right)$. One can also start with the existence of a complex structure, which is a globally defined tensor τ_{n}^{m} satisfying $\tau_{n}^{m} \tau_{k}^{n}=-\delta_{k}^{m}$, and can be used to define local coordinates s.t. $d z^{i}=d x^{i}+i \tau_{k}^{i} d y^{k}$. The holomorphic transition functions impose certain constraints in τ_{k}^{i}.

Now let us impose another constraint on the complex manifold. Define an Hermitian metric whose only non-zero components have mixed holomorphic and anti-holomorphic indices i.e. $G_{i \bar{j}} \neq 0, G_{i j}=G_{\overline{i j}}=0$. Then, the non-vanishing metric components can be casted in the 2 -form

$$
\begin{equation*}
J=G_{i \bar{j}} d z^{i} d \bar{z}^{\bar{j}} \tag{3.80}
\end{equation*}
$$

which is called the Kähler form when is closed $d J=0$. A manifold with a Kähler form is called is Kähler. In a notation that a (p, q) form is a form with p holomorphic and q anti-holomorphic indices, J is of type $(1,1)$. The external derivative d is given by $d=$ $\partial+\bar{\partial}$.

Another equivalent definition of a Kähler manifold is that parallel transport preserves holomorphic and anti-holomorphic indices giving an $U(n)$ holonomy..5 This is because the condition $d J=0$ represents the parallel transport equation for the metric. From here we see that to arrive to our desired $S U(3)$ holonomy we need to impose a further constraint in the 3 -fold, this is the Calabi-Yau condition which will be soon discussed.
(Co)Homology and Poincaré duality Let us recall some geometrical definitions which are useful in the frame of our work 112 . A p-form is closed when its exterior derivative is zero $d \omega=0$, and it is exact when can be written as the exterior derivative of a $p-1$-form $\omega=d \tau$. This allows to define the Rham cohomology of a manifold X as

$$
\begin{equation*}
H_{d}^{p}(X)=\frac{\text { set of } d \text {-closed p-forms }}{\text { set of } d \text {-exact p-forms }} \tag{3.81}
\end{equation*}
$$

where $H_{d}^{p}(X)$ is the set of all closed forms modulo the equivalence relation $\omega_{p} \equiv \omega_{p}+$ $d \tau_{p-1}$. This defines equivalence classes of p-forms which differ only by an exact form. The

[^15]dimension of $H_{d}^{p}(X)$ is the Betti number b_{p}, and the Euler number of the manifold is given by $\chi(X)=\sum_{p=0}^{d}(-1)^{p} b_{p}$. An harmonic form is a form satisfying $\Delta_{d} \omega=(d+* d *)^{2} \omega=0$, where the symbol $*$ is the Hodge dual. Each of the equivalence classes of $H_{d}^{p}(X)$ contains one harmonic form. It is an important theorem that on a Kähler manifold, the cohomologies with respect to the derivatives $\partial, \bar{\partial}$ and d coincide ${ }^{6}$
\[

$$
\begin{equation*}
H_{d}^{p, q}(X)=H_{\partial}^{p, q}(X)=H_{\bar{\partial}}^{p, q}(X) \tag{3.82}
\end{equation*}
$$

\]

The cohomologies with respect to ∂ and $\bar{\partial}$ are Dolbeaut cohomologies. The Hodge numbers are defined as $h^{p, q}=\operatorname{dim} H_{\partial}^{p, q}(X)$. The cohomology class of the forms of total dimension $k=p+q$ decomposes as

$$
\begin{equation*}
H^{k}(X)=\sum_{i=0}^{k} H^{i-k, k}(X) \tag{3.83}
\end{equation*}
$$

Therefore the Betti numbers are given by $b_{k}=\sum_{p=0}^{k} h^{p, k-p}$. Note that $\wedge^{n} J$ is proportional to the volume form. From this fact and the definitions above, it is clear that the Kähler form J belongs to the class $H^{1,1}$.

A similar classification can be done for the submanifolds of X. Let us consider a set of p-dimensional submanifolds of X denoted by N_{i}. Arbitrary linear combinations of N_{i} as $c_{i} N_{i}$ define a p-chain which has a direct meaning in terms of integration : $\sum_{i} c_{i} \int_{N_{i}}$. The boundary operator δ associates to a p-chain its ($p-1$)-dimensional boundary. The operator δ is also nilpotent, because the boundary of a submanifold has no boundary. A chain c_{p} is closed if it has no boundary i.e. $\delta c_{p}=0$ and it is exact (trivial) if it can be written in terms of the boundary of a $p+1$-dimensional chain $c_{p}=\delta c_{p+1}$. A $p-$ cycle is a closed p-chain. Non trivial (non exact) cycles can be casted in the concept of Homology. The p-homology group of X is defined as

$$
\begin{equation*}
H_{p}(X)=\frac{\text { set of } \delta \text {-closed } \mathrm{p} \text {-chains }}{\text { set of } \delta \text {-exact } \mathrm{p} \text {-chains }} \tag{3.84}
\end{equation*}
$$

So two cycles belong to the same equivalence class if they differ by a boundary i.e. $c_{p} \simeq$ $c_{p}+\delta b_{p+1}$. Therefore, the operator δ plays a similar role for the homology theory as the exterior operator for cohomology. A central result which we will use through our studies is the one to one correspondence between $H^{p}(X)$ and $H_{d-p}(X)$ [113]. This is a consequence of Stokes theorem

$$
\begin{equation*}
\int_{\delta c_{p}} \alpha_{p-1}=\int_{c_{p}} d \alpha_{p-1} \tag{3.85}
\end{equation*}
$$

and Poincaré duality. Poincaré duality states that for every ω_{p} in $H^{p}(X)$ there is a $(d-p)$ form α_{d-p} in $H^{d-p}(X)$ which has compact support on a $(d-p)$ cycle c_{d-p}. This gives rise to the formula

$$
\begin{equation*}
\int_{X} \omega_{p} \wedge \alpha_{d-p}=\int_{c_{d-p}} \alpha_{d-p} \tag{3.86}
\end{equation*}
$$

[^16]Calabi-Yau theorem When the manifold is Kähler the Ricci tensor is $(1,1)$ with only $\mathcal{R}_{i \bar{j}}$ as non-zero component and is closed i.e. $d \mathcal{R}_{1,1}=0$. Because $\mathcal{R}_{1,1}$ is closed it gives an equivalence class of $H^{1,1}(X)$ and this class is the first Chern-class

$$
\begin{equation*}
c_{1}(X)=\frac{1}{2 \pi} \mathcal{R}_{1,1} \tag{3.87}
\end{equation*}
$$

If the first Chern class vanishes the manifold is Calabi-Yau. A fact conjectured by Calabi and proved by Yau states that for any Kähler manifold with $c_{1}=0$ and a given complex and Kähler structure there exists a unique metric which is Ricci-flat. The converse is trivial. A Kähler manifold admits a Ricci-flat metric iff it has $S U(3)$-holonomy. Another useful theorem states that a Kähler manifold has $c_{1}=0$ iff it possesses a nowhere vanishing holomorphic $(3,0)$ form.
There are nice relations for the Hodge numbers of such manifolds, those are $h^{p, 0}=h^{3-p, 0}$ and $h^{1,0}=h^{0,1}$. This information is encoded in the Hodge diamond

$$
h^{3,0} \begin{array}{cccccccccccccc}
 \tag{3.88}\\
h^{3,1} & h^{3,2} & h^{3,3} & h^{2,3} & & & & & & 0 & 1 & & 0 & 0 \\
h^{2,2} & h^{1,3} & h^{1,3} & h^{0,3} & 0 & & \\
& h^{2,0} & h^{2,1} & h^{1,1} & h^{1,2} & h^{0,2} & h^{0,3} & h^{2,1} & & h^{2,1} & 0 & 1 \\
& h^{1,0} & h^{0,0} & h^{0,1} & & & & & h^{1,1} & & 0 & \\
& & h^{0,1} & & 0 & & 0 & &
\end{array}
$$

$S U(3)$ structure The previous content of the section on manifolds with $S U(3)$ holonomy with respect to the Levi-Civita connection, giving rise to $\mathcal{N}=1$ in 4 d , it is valid for vanishing 3 -form field strength $H_{3}=0$. When the background has torsion in the work by Strominger [114 similar conditions to ensure a 4 d supersymmetric vacuum are obtained. Using the fact that a supersymmetric variation annihilates the fermi fields, it is proven that a nowhere vanishing holomorphic $(3,0)$ form ω exists and the requirements for 4 d supersymmetry read:

- The internal manifold is complex.
- The form $J=G_{i \bar{j}} d z^{i} d \bar{z}^{\bar{j}}$ obeys

$$
\begin{aligned}
\partial \bar{\partial} J & =i d H \\
d^{\dagger} J & =i(\partial-\bar{\partial}) \ln \|\omega\|
\end{aligned}
$$

- The gauge field strength fullfils

$$
\begin{gathered}
J^{a \bar{b}} F_{a \bar{b}}=0 \\
F_{a b}=F_{\bar{a} \bar{b}}=0
\end{gathered}
$$

The factor $\|\omega\|$ denotes the norm of the $(3,0)$ form ω. The fundamental form $(1,1)$ is $J_{m n}=J_{m}^{p} G_{p n}$, constructed from the complex structure J_{m}^{p} and the metric, for a Kähler manifold it is reduced to the Kähler form. As before, the $S U(3)$ holonomy condition (with the H -connection) comes from imposing the gravitino variation to zero. Also this compactification has vanishing first Chern-class $c_{1}=0$ and $h^{3,0}=1$.

There is still a wider class of manifolds preserving $\mathcal{N}=1$ supersymmetry in four dimensions, and those are manifolds with $S U(3)$ structure. In addition to the non-vanishing H_{3} they are constructed with a generic torsion one-form. There are different torsion classes defined by the set of forms $\mathcal{W}_{i}, i=1, \ldots, 5$ which serve to classify them. Those forms parametrize the external derivative of J and the holomorphic nowhere vanishing 3 -form ω as 115121

$$
\begin{align*}
d J & =-\frac{3}{2} \operatorname{Im}\left(\mathcal{W}_{1} \omega\right)+\mathcal{W}_{4} J+\mathcal{W}_{3} \tag{3.89}\\
d \omega & =\mathcal{W}_{1} J J+\mathcal{W}_{2} J+\overline{\mathcal{W}}_{5} \omega
\end{align*}
$$

Strominger class posses $\mathcal{W}_{1}=\mathcal{W}_{2}=0$. While the effective action for the cases $\mathcal{W}_{4}=\mathcal{W}_{5}=$ 0 was computed in [120]. The compactifications we consider in which abelian fluxes are turned on is not in the standard embedding and therefore it has non-vanishing H_{3}.

Which of the five mentioned classes this compactifications belong to is an interesting problem that can be studied. As H is non vanishing the Bianchi identities (BI) ensure that $d H$ is trivial in cohomology

$$
\begin{equation*}
\int_{S} d H=\int_{S}\left(\operatorname{tr} \mathcal{F}^{2}-\operatorname{tr} \mathcal{R}^{2}\right)=0 \tag{3.90}
\end{equation*}
$$

In the previous equation an integration is performed for all S, being S the elements of a basis for the cycles of the manifold X.

Donaldson-Uhlenbeck-Yau theorem If we want to preserve supersymmetry the supersymmetric variation of the gaugino, has to vanish. As it was mentioned this gives rise to the Hermitian Yang-Mills equations. Let us write them together once more 104

$$
\begin{array}{r}
F_{\bar{a} \bar{b}}=F_{a b}=0 \\
J^{a \bar{b}} F_{a \bar{b}}=0 . \tag{3.92}
\end{array}
$$

They are valid both for the case of vanishing and non-vanishing torsion, in which J is the Kähler or the fundamental form of the manifold. Because the gauge fields is real A_{a} and $A_{\bar{a}}$ are hermitian conjugated to each other. Then, the equation (3.91) can be reduced to $F_{\bar{a} \bar{b}}=0$. This last equation implies

$$
\begin{equation*}
A_{\bar{b}}=i \partial_{\bar{b}} V \cdot V^{-1} \tag{3.93}
\end{equation*}
$$

being V a function of the coordinates $z_{a}, z_{\bar{b}}$. The $(1,0)$ form can be obtained by conjugation. An holomorphic function with respect to the covariant derivative fulfills $D_{\bar{a}} f=0$, which
is a generalization of the concept of holomorphic function in complex analysis. Another important definition is the one of holomorphic vector bundle, which is a gauge bundle in which the transition functions can be chosen to be holomorphic. Let us explain the definition. In the more general case the manifold X is covered by open sets O_{α} with gauge field $A_{(\alpha)}$, this cover defines a vector bundle. In the overlap of two regions O_{α} and O_{β} the gauge fields are related by a gauge transformation $\left.U_{\alpha \beta} \cdot 7\right]$ Here in each patch $A_{(\alpha)}$ can be written as in (3.93) with a particular V_{α}. Using this expression for A, the transition equation and the quantity $U_{\alpha \beta}^{\prime}=V_{\alpha}^{-1} U_{\alpha \beta} V_{\beta}$ one finds that

$$
\begin{equation*}
\partial_{\bar{a}} U_{\alpha \beta}^{\prime} \cdot U_{\alpha \beta}^{\prime-1}=0 . \tag{3.94}
\end{equation*}
$$

The $U_{\alpha \beta}^{\prime}$ form a new set of transition functions on the bundle after the application of a gauge transformation V_{α} to O_{α} with initial transition functions $U_{\alpha \beta}$. Thus, equation (3.94) says that if $F_{\bar{a} \bar{b}}=0$ the transition functions can be chosen to be holomorphic, yielding an holomorphic vector bundle.
To keep the definition of holomorphic function in two vector bundles Y and Y^{\prime} which transition functions are $U_{\alpha \beta}$ and $U_{\alpha \beta}^{\prime}$ respectively, it should be possible to choose the function V_{α} to be holomorphic. A gauge field that also obeys (3.91) can be obtained using and hermitian matrix G^{8}

$$
\begin{equation*}
A_{\bar{a}}^{\prime}=G A_{\bar{a}} G^{-1}+i \partial_{\bar{a}} G \cdot G^{-1} . \tag{3.95}
\end{equation*}
$$

If we want a solution of the system of Hermitian Yang Mills equations we need to determine if a connection can be chosen globally \int^{9} such that in addition to $F_{\bar{a} \bar{b}}=0$, also $J^{a \bar{b}} F_{a \bar{b}}=0$ is fulfilled. We will consider a compactification with abelian gauge fluxes \mathcal{F} in which these conditions have to be satisfied. For a Kähler manifold one can write

$$
\begin{equation*}
J^{a \bar{b}} F_{a \bar{b}}=\epsilon^{a_{1} \ldots a_{N}} \epsilon^{\bar{b}_{1} \ldots \bar{b}_{N}} F_{a_{1} \bar{b}_{1}} J_{a_{2} \bar{b}_{2}} \ldots . J_{a_{N} \bar{b}_{N}} /(N-1)!^{2} \tag{3.96}
\end{equation*}
$$

A necessary and sufficient condition for the previous equation to vanish is that $F \wedge J \ldots \wedge J$ also vanishes. The gauge $(1,1)$ field strength represents the first Chern class of the line bundle Y

$$
\begin{equation*}
c_{1}(Y)=\mathcal{F} \tag{3.97}
\end{equation*}
$$

Because the $(1,1)$ cohomology class depends only of the topology of Y, is necessary and sufficient 104 that the invariant

$$
\begin{equation*}
\int_{X} \operatorname{tr} \mathcal{F} \wedge J \wedge J \ldots \wedge J=\int_{X}(N-1)!^{2} J^{a \bar{b}} \mathcal{F}_{a \bar{b}}, \tag{3.98}
\end{equation*}
$$

vanishes. This invariant for a fixed bundle and fixed J class is independent of the choice of A. Therefore one needs to check that the abelian background in $6 \mathrm{~d} \mathcal{F}$ satisfies

$$
\begin{equation*}
\int_{X} \operatorname{tr} \mathcal{F} \wedge J \wedge J=0 \tag{3.99}
\end{equation*}
$$

[^17]In the non-abelian case, the abelian subgroup has to satisfy the resumed constraints, plus the requirement is that the bundle Y is stable. The BI together with the supersymmetric vacuum condition give rise to solutions that satisfy the equations of motion.

3.6 Toric resolution of orbifolds

The resolution of orbifold singularities have been studied in algebraic geometry. The subject of toric geometry [80] allows to describe the resolution of a local singularity in terms of combinatorial data. That knowledge has been applied to the singularities appearing in string theory in the works $[67,68]$. In this section we present a short review of the application of toric geometry to the resolutions of orbifold singularities based on 67, 79, 81, 82 . This section is not aimed to be a comprehensive review of the subject, but a resume of the important mathematical results needed to resolve orbifolds.

A toric variety X of complex dimension r contains an algebraic torus $T=\left(\mathbb{C}^{*}\right)^{r}$ whose action on X is given by a multiplication law. As an example with $r=2$ we can look at $\mathbb{C P}^{2}$ with homogeneous coordinates z_{1}, z_{2}, z_{3} and the torus

$$
\begin{equation*}
T=\left\{\mu: \mu_{i} \neq 0, i=1,2,3\right\} \subset \mathbb{C P}^{2} . \tag{3.100}
\end{equation*}
$$

The torus action on X is given by

$$
\begin{equation*}
T\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\mu_{1} z_{1}, \mu_{2} z_{2}, \mu_{3} z_{3}\right) \tag{3.101}
\end{equation*}
$$

and one can see that under the torus action $\mathbb{C P}^{2}$ goes to $\mathbb{C P}^{2}$, so $\mathbb{C P}^{2}$ is a T-invariant variety.

Consider a lattice N of rank r, and the vector space $N_{\mathbb{R}}=N \otimes \mathbb{R}$. In some cases it is convenient to set an isomorphism $N \simeq \mathbb{Z}^{r}$ which implies an isomorphism $N_{\mathbb{R}} \simeq \mathbb{R}^{r}$. A con ${ }^{10} \sigma \subset N_{\mathbb{R}}$ is a set

$$
\begin{equation*}
\sigma=\left\{a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k} \mid a_{i} \geq 0\right\} \tag{3.102}
\end{equation*}
$$

generated by a finite set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ in N such that $\sigma \cap(-\sigma)=\{0\}$.
A collection Σ of cones in $N_{\mathbb{R}}$ is called a fan if each face of a cone in Σ is also a cone in Σ and the intersection of two cones in Σ is a face of each. Starting from a given fan Σ one can construct the toric variety X_{Σ}. Denoting the set of one dimensional cones (edges) by $\Sigma(1)$. To each $\rho \in \Sigma(1)$ associate v_{ρ} been the unique generator of $\rho \cap N$.

The variety is constructed as a quotient of an open subset in \mathbb{C}^{n} under a group G. This is done by associating to each edge ρ a coordinate x_{ρ}. For the set of edges $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the corresponding coordinates will be $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. There will be a set $\mathcal{S} \subset \Sigma(1)$ that does not span a cone in Σ. Let $V(\mathcal{S}) \subset \mathbb{C}^{n}$ be the linear subspace defined by setting

[^18]$\left\{\forall_{\rho \in S} x_{\rho}=0\right\}$, and $Z(\sigma)$ be the union of all the $V(\mathcal{S})$. The toric variety is defined to be
\[

$$
\begin{equation*}
X_{\Sigma}=\left(\mathbb{C}^{n}-Z(\Sigma)\right) / G \tag{3.103}
\end{equation*}
$$

\]

Now let us look at the group G which is defined to be the kernel of a map ϕ given by

$$
\begin{equation*}
\phi:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{r}, \quad\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(\prod_{j=1}^{n} t_{j}^{v_{j 1}}, \ldots, \prod_{j=1}^{n} t_{j}^{v_{j r}}\right) \tag{3.104}
\end{equation*}
$$

This definition for G preserves $\left(\mathbb{C}^{n}-Z(\Sigma)\right)$, and then the quotient (3.103) is well defined. The torus is given by $T=\left(\mathbb{C}^{*}\right)^{n} / G$ and acts on X_{Σ} multiplication-wise. Then all Tinvariant subvarieties can be classified in an easy way. This is done by associating to a cone σ generated by the edges $\rho_{1}, \ldots, \rho_{k}$ the co-dimension k subvariety

$$
\begin{equation*}
Z_{\sigma}=\left\{x \in X_{\Sigma} \mid x_{\rho_{1}}=\ldots=x_{\rho_{k}}=0\right\} . \tag{3.105}
\end{equation*}
$$

The correspondence between a k-dimensional cone σ and the $r-k$-dimensional subvariety Z_{σ} reverses the inclusion order ${ }^{11}$ It is important to point out that a natural set of coordinates in Z_{σ} is given by the G-invariant variables

$$
\begin{equation*}
U^{i}=\prod_{j=1}^{n}\left(z^{j}\right)^{\left(v_{j}\right)_{i}} \tag{3.106}
\end{equation*}
$$

Example: Again $\mathbb{C P}^{2}$ is the simplest example. One has a fan Σ spanned by the edges generators $v_{1}=(-1,-1), v_{2}=(1,0)$ and $v_{3}=(0,1)$. In Figure 3.4 the toric diagram of $\mathbb{C P}^{2}$ is represented. To make manifest the correspondence of the ordinary divisors $D_{i}=\left\{z_{i}=0\right\}$ with the edges generator v_{i}, we have written D_{i} at the end of the vector v_{i}.

The fan spanned by such generators has seven cones spanned by: $\{0\},\{(-1,-1)\},\{(1,0)\}$, $\{(0,1)\},\{(1,0),(0,1)\},\{(-1,-1),(0,1)\}$ and $\{(-1,-1),(1,0)\}$. The first is the trivial cone, the next three are the one-dimensional cones and the last three are the two dimensional cones. The set of edges that do not span a cone is $\mathcal{S}=\{(1,0),(0,1),(-1,-1)\}$, so $Z(\Sigma)=\{(0,0,0)\}$ and the group G is the kernel of the map

$$
\begin{equation*}
\phi:\left(\mathbb{C}^{*}\right)^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{2}, \quad\left(t_{1}, t_{2}, t_{3}\right) \rightarrow\left(t_{1}^{-1} t_{2}, t_{1}^{-1} t_{3}\right) . \tag{3.107}
\end{equation*}
$$

The kernel is given by $\left(t_{1}^{-1} t_{2}, t_{1}^{-1} t_{3}\right)=(1,1)$ such that $t_{1}=t_{2}=t_{3}=t$ and

$$
\begin{equation*}
G=\left\{(t, t, t) \mid t \in \mathbb{C}^{*}\right\} \tag{3.108}
\end{equation*}
$$

with only the free parameter t such that $G \simeq \mathbb{C}^{*}$. So the standard definition of $\mathbb{C P}^{2}$ is obtained. The $\mathbb{C P}^{2}$ variety definition and the algebraic torus T are given by

$$
\begin{equation*}
\mathbb{C P}^{2}=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) / \mathbb{C}^{*}, \quad T=\left(\mathbb{C}^{*}\right)^{3} / \mathbb{C}^{*} \tag{3.109}
\end{equation*}
$$

Figure 3.2: Toric diagram of $\mathbb{C P}^{2}$.

Table 3.4: Association between cones and T-invariant subvarieties of $\mathbb{C P}^{2}$.

$\left(\operatorname{dim} \sigma, \operatorname{dim} Z_{\sigma}\right)$	σ	Z_{σ}
$(0,2)$	$\{0\}$	$\mathbb{C P}^{2}$
$(1,1)$	$\{(-1,-1)\}$	$x_{1}=0$
$(1,1)$	$\{(1,0)\}$	$x_{2}=0$
$(1,1)$	$\{(0,1)\}$	$x_{3}=0$
$(2,0)$	$\{(1,0),(0,1)\}$	$\{(1,0,0)\}$
$(2,0)$	$\{(-1,-1),(0,1)\}$	$\{(0,1,0)\}$
$(2,0)$	$\{(-1,-1),(1,0)\}$	$\{(0,0,1)\}$

The association between cones and T -invariant subvarieties can be seen in Table 3.4 81

There are two important concepts that we need to apply, and those are compactness and smoothness. A toric variety is compact if the union of the cones $\sigma \in \Sigma$ is equal to all of $N_{\mathbb{R}}$, and a toric variety is smooth if and only if each $\sigma \in \Sigma$ is smooth. Further, σ is smooth if $\exists \mathbb{Z}$-basis $\left(n_{1}, n_{2}, \ldots n_{r}\right)$ of $N{ }^{12}$ such that $\sigma=\mathbb{R}_{\geq 0} n_{1}+\ldots \mathbb{R}_{\geq 0} n_{s}$, with $s \leq r 79$. This criteria can be reformulated in a more useful way i.e. the cone σ is smooth if every point in the sublattice $\sigma \cap N$ can be written as linear combination of the generators of the cone v_{1}, \ldots, v_{s} with integer coefficients. From the given definitions it is clear that $\mathbb{C P}^{2}$ is smooth and compact.

It is also possible to go the other way around and construct a fan starting with the toric variety, and knowing the action of the torus T. T-invariant subvarieties are constructed as closure of T-orbits ${ }^{13}$

Let us define an orbifold in the language of toric varieties. A toric variety is an orbifold if and only if its fan Σ is simplicial. A cone is simplicial if it can be generated by a set of vectors v_{1}, \ldots, v_{k} which constitute a basis for the vector space spanned by them, and a fan is simplicial if each cone on it is simplicial.
Let us look at the orbifold $\mathbb{C}^{3} / \mathbb{Z}_{7}$, which is one of the local singularities that we will later encounter. One can see that the set of vectors

$$
\begin{equation*}
v_{1}=(2,0,1), \quad v_{2}=(-1,2,1), \quad v_{3}=(0,-1,1), \tag{3.110}
\end{equation*}
$$

constitute a fan for it by computing the group G. Recall that G is the kernel of the map ϕ which is here

$$
\begin{equation*}
\phi:\left(\mathbb{C}^{*}\right)^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}, \quad\left(t_{1}, t_{2}, t_{3}\right) \rightarrow\left(t_{1}^{2} t_{2}^{-1}, t_{2}^{2} t_{3}^{-1}, t_{1} t_{2} t_{3}\right) . \tag{3.111}
\end{equation*}
$$

This is the equation $\left(t_{1}^{2} t_{2}^{-1}, t_{2}^{2} t_{3}^{-1}, t_{1} t_{2} t_{3}\right)=(1,1,1)$ from which we obtain

$$
\begin{equation*}
G=\mathbb{Z}_{7}=\left\{\left(t, t^{2}, t^{4}\right), \quad t=e^{2 \pi i / 7}\right\} . \tag{3.112}
\end{equation*}
$$

The toric variety and the algebraic torus are given by

$$
\begin{equation*}
X=\left(\mathbb{C}^{3}\right) / \mathbb{Z}_{7}, \quad T=\left(\mathbb{C}^{*}\right)^{3} / \mathbb{Z}_{7} \tag{3.113}
\end{equation*}
$$

The set $Z(\Sigma)=\{ \}$ because there is no subset of vectors from v_{1}, v_{2}, v_{3} not generating a cone.

One can see that the orbifold is non-compact, because the union of all cones, do not generate the full $N_{\mathbb{R}}=\mathbb{Z}^{3} \otimes \mathbb{R}$. In addition it is also singular, for example: in the cone

[^19]

Figure 3.3: Resolution toric diagrams of $\mathbb{C}^{2} / \mathbb{Z}_{2}$ and $\mathbb{C}^{2} / \mathbb{Z}_{3}$.
generated by $\left\{v_{1}, v_{2}\right\}$ it is not possible to reach the point $(1,1,1) \in \sigma \cap N$ by performing a linear combination with integer coefficients $a_{1} v_{1}+a_{2} v_{2}, \quad a_{1}, a_{2} \in \mathbb{Z}$. Furthermore it is possible to write for the orbifold a set of G (θ in the notation of section 3.1) invariant local coordinates as

$$
\begin{equation*}
U^{i}=\left(z^{1}\right)^{\left(v_{1}\right)_{i}}\left(z^{2}\right)^{\left(v_{2}\right)_{i}}\left(z^{3}\right)^{\left(v_{3}\right)_{i}} . \tag{3.114}
\end{equation*}
$$

A blow-up of the toric variety can be obtained by subdividing the fan. A fan Σ^{\prime} subdivides Σ if $\Sigma(1) \subset \Sigma^{\prime}(1)$ and each cone of Σ^{\prime} is contained in some cone of Σ. Let us denote the initial and the final fan of the one-dimensional cones as: $\Sigma(1)=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ and $\Sigma^{\prime}(1)=\left\{\rho_{1}, \ldots, \rho_{m}\right\}$ respectively. Here we consider that the ρ_{i} have the same order till the n position and that $m \geq n$. Then there is a (blown-down) map between the final and the initial variety $X_{\Sigma^{\prime}} \rightarrow X_{\Sigma}$ which is performed by taking from the ($x_{1}, \ldots ., x_{m}$) homogeneous coordinates of $X_{\Sigma^{\prime}}$ the first n coordinates $\left(x_{1}, \ldots, x_{n}\right)$.

The blow-up of a point corresponding to the cone σ with generators $v_{1}, \ldots v_{r}$ is performed by adding the edge $v_{r+1}=v_{1}+\ldots+v_{r}$ and subdividing σ. The new fan Σ^{\prime} is obtained combining the new cones with the cones in Σ.

The orbifold $\mathbb{C}^{2} / \mathbb{Z}_{n}$ has fan spanned by $v_{1}=(1,0)$ and $v_{2}=(1, n)$, and the group $G=$ $\left\{\left(t, t^{n-1}\right), t^{n}=1\right\}$. It can be blown-up by adding the vectors $(1, r), r=1, . ., n-1$, which correspond to $n-1$ exceptional divisors E_{r}. We can see that it is smooth because with the new added vectors every point in $\sigma \cap N$ can be spanned by integer coefficients in terms of the one-dimensional cones. This can be seen in Figure 3.3, where we show the toric diagrams for the resolved $\mathbb{C}^{2} / \mathbb{Z}_{2}$ and $\mathbb{C}^{2} / \mathbb{Z}_{3}$. We will encounter those local resolutions in the orbifold $T^{6} / \mathbb{Z}_{6 I I}$ which will be the subject of Chapter 5 .

Let us talk a bit about the Calabi-Yau condition. We are interested in three complex dimensions orbifolds and resolutions which preserve $\mathcal{N}=1$. Consider an orbifold action given by $G=\left(e^{2 \pi i n_{1} / N}, e^{2 \pi i n_{2} / N}, e^{2 \pi i n_{3} / N}\right)$. An easy way to ensure the Calabi-Yau condition is looking at the (3,0) holomorphic form $\Omega=d z_{1} \wedge d z_{2} \wedge d z_{3}$ which must be invariant under the orbifold action, i.e. $n_{1}+n_{2}+n_{3}=0 \bmod N$. Now, from the invariance of (3.114) we obtain

$$
\begin{equation*}
n_{1}\left(v_{1}\right)_{i}+n_{2}\left(v_{2}\right)_{i}+n_{3}\left(v_{3}\right)_{i}=0 \quad \bmod N \tag{3.115}
\end{equation*}
$$

We have three equations which allow to fix a basis in which all of the vectors have one of the coordinates set to one, because the equation $n_{1}+n_{2}+n_{3}=0 \bmod N$ has to be fulfilled. This condition is the same as $t_{1} t_{2} t_{3}=1$ and this is obtained from the kernel of G by setting one (lets say the third) of the components of every vector equal to 1 . A $G L(3)$ linear transformation of that solution is also possible; for example in \mathbb{Z}_{7} case the set $v_{1}=(2,0,1), v_{2}=(-1,2,3), v_{3}=(0,-1,0)$ also gives $G=\left\{\left(t_{1}^{2} t_{2}^{-1}, t_{2}^{2} t_{3}^{-1}, t_{1} t_{2}^{3}\right\}\right.$ which is $t_{1}=t, t_{2}=t^{2}, t_{3}=t^{4}$ and $t^{7}=1$.

After resolving the orbifold, the CY condition can be simply seen from evaluating Ω in every patch and checking that is no-where vanishing. This is ensured by adding the additional vector in the same hyperplane that the initial three vectors were lying ${ }^{144}$. Three dimensional \mathbb{Z}_{n} orbifolds can be resolved by adding new generators 65-67]. Starting with the orbifold action

$$
\begin{equation*}
\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(e^{2 \pi i g_{1}} z_{1}, e^{2 \pi i g_{2}} z_{2}, e^{2 \pi i g_{3}} z_{3}\right), \quad i=1, \ldots, n-1 \tag{3.116}
\end{equation*}
$$

New vectors are added as

$$
\begin{equation*}
\omega_{i}=g_{1}^{(i)} v_{1}+g_{2}^{(i)} v_{2}+g_{3}^{(i)} v_{3}, \tag{3.117}
\end{equation*}
$$

with $g^{(i)}=\left(g_{1}^{(i)}, g_{2}^{(i)}, g_{3}^{(i)}\right)$ and $\operatorname{diag}\left(e^{2 \pi i g_{1}^{(i)}}, e^{2 \pi i g_{2}^{(i)}}, e^{2 \pi i g_{3}^{(i)}}\right)=\left\{1, \theta, \ldots, \theta^{n-1}\right\}$. Then the group G is determined to be the kernel of ϕ

$$
\begin{equation*}
\phi:\left(t_{1}, t_{2}, t_{3}, t_{4}, \ldots ., t_{3+d}\right) \rightarrow\left(\prod\left(t_{j}\right)^{\left(v_{j}\right)_{1}}, \ldots ., \prod\left(t_{j}\right)^{\left.\left(v_{j}\right)_{3+d}\right)}\right. \tag{3.118}
\end{equation*}
$$

with $v_{3+i}=\omega_{i}$ and the new toric variety will be given by

$$
\begin{equation*}
\tilde{X}=\left(\mathbb{C}^{3+d}-\tilde{Z}(\Sigma)\right) / G, \tag{3.119}
\end{equation*}
$$

where, as explained, $\tilde{Z}(\Sigma)$ is the union of all sets of generators not spanning a cone. When there are many possible triangulations the excluded set is what determines the different geometries. We can work out the \mathbb{Z}_{7} example, for which there is only one triangulation. The added generators are determined from (3.117) to be

$$
\begin{aligned}
& v_{4}=\omega_{1}=(0,0,1), \\
& v_{5}=\omega_{2}=(0,1,1), \\
& v_{6}=\omega_{4}=(1,0,1) .
\end{aligned}
$$

All of this information is contained in the toric diagram of Figure 3.4. The ordinary divisor $D_{i}=\left\{z_{i}=0\right\}$ is associated to the vector v_{i}, with $i=1,2,3$. The exceptional

[^20]

Figure 3.4: Resolution of the $\mathbb{C}^{3} / \mathbb{Z}_{7}$ orbifold.
divisor $E_{r}=\left\{y_{r}=0\right\}$ is associated to the vector ω_{r}, with $r=1,2,4$. The ordinary divisors are the subvarieties where one of the initial coordinates vanishes, whereas the exceptional divisors are the subvarieties where one of the new introduced coordinates vanishes.

Here the group G is generated by the kernel of

$$
\begin{equation*}
\phi:\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right) \rightarrow\left(t_{1}^{2} t_{2}^{-1} t_{6}, t_{2}^{2} t_{3}^{-1} t_{5}, t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}\right) . \tag{3.120}
\end{equation*}
$$

This is

$$
\begin{equation*}
G=\left\{\left(t_{4}^{-1 / 7} t_{5}^{-2 / 7} t_{6}^{-4 / 7}, t_{4}^{-2 / 7} t_{5}^{-4 / 7} t_{6}^{-1 / 7}, t_{4}^{-4 / 7} t_{5}^{-1 / 7} t_{6}^{-2 / 7}, t_{4}, t_{5}, t_{6}\right), t_{4}, t_{5}, t_{6} \in \mathbb{C}^{*}\right\} . \tag{3.121}
\end{equation*}
$$

The group G is isomorphic to $\left(\mathbb{C}^{*}\right)^{3}$ and its invariant coordinates are given by

$$
\begin{equation*}
\tilde{U}^{1}=z_{1}^{2} z_{2}^{-1} y_{3}, \quad \tilde{U}^{2}=z_{2}^{2} z_{3}^{-1} y_{2}, \quad \tilde{U}^{3}=z_{1} z_{2} z_{3} y_{1} y_{2} y_{3} . \tag{3.122}
\end{equation*}
$$

The union of the sets of elements not generating a cone determines the excluded set

$$
\begin{equation*}
Z(\Sigma)=\left\{\left(z_{3}, y_{2}\right)=(0,0),\left(z_{2}, y_{3}\right)=(0,0),\left(z_{1}, y_{1}\right)=(0,0),\left(z_{1}, z_{2}, z_{3}\right)=(0,0,0)\right\} . \tag{3.123}
\end{equation*}
$$

In 67 the detailed procedure to determine the exceptional divisor topologies employing the Mori cone is explained. One of the results is that divisors inside the toric diagram are compact and those ones on the edges are non-compact.

For our later study this is all the geometrical information that we need of the resolution of \mathbb{Z}_{7}. The prime orbifolds \mathbb{Z}_{3} and \mathbb{Z}_{7} have only one triangulation i.e. one possible way of choosing the set of cones in the fan Σ, this will give a unique exclusion set $Z(\Sigma)$. All the exceptional divisors of local resolutions are compact. Therefore, is enough to resolve all of the singularities locally and then the compact space T^{6} / \mathbb{Z}_{7} is resolved. For the other
case we are interested in the context of this thesis, which is the global resolution of the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold, the situation is more complicated. For non-prime orbifolds where apart from fixed points there can be fixed lines, it happens often that fixed points are sited on the top of fixed lines. This situation requires a more careful analysis when determining the set of exceptional divisors.

In the local orbifold resolutions there are homological relations between the cycles that are obtained to b ${ }^{15}$

$$
\begin{equation*}
\sum_{i}\left(v_{i}\right)_{j} D_{i}+\sum_{r}\left(\omega_{r}\right)_{j} E_{r} \sim 0 . \tag{3.124}
\end{equation*}
$$

Another important topological information are intersection numbers between divisors. The intersection numbers of two different divisors is one if they belong to the same cone, and zero otherwise. For the \mathbb{Z}_{7} orbifold we have the following equivalence relations

$$
\begin{array}{r}
7 D_{1} \sim-E_{1}-2 E_{2}-4 E_{4}, \tag{3.125}\\
7 D_{2} \sim-2 E_{1}-4 E_{2}-4 E_{4}, \\
7 D_{3} \sim-4 E_{1}-E_{2}-2 E_{4} .
\end{array}
$$

These relations together with the non-vanishing intersections of three distinct divisors

$$
\begin{equation*}
E_{1} E_{2} E_{4}=D_{1} D_{3} E_{4}=D_{1} E_{2} E_{4}=D_{1} D_{2} E_{2}=D_{3} E_{1} E_{4}=D_{2} D_{3} E_{1}=D_{2} E_{1} E_{2}=1 \tag{3.126}
\end{equation*}
$$

will give the set of triple intersections numbers

$$
\begin{array}{crr}
E_{1}^{3}=E_{2}^{3}=E_{4}^{3}=8, & E_{1} E_{2}^{2}=E_{2} E_{4}^{2}=E_{4} E_{1}^{2}=0, \\
E_{1}^{2} E_{2}=E_{2}^{2} E_{4}=E_{4}^{2} E_{1}=-2, & E_{1} E_{2} E_{4}=1 . \tag{3.127}
\end{array}
$$

To study the compact T^{6} / \mathbb{Z}_{7} orbifold is enough to take into account the local information. The only specification to make in general is that in the compact variety a new set of divisors defined in the following will also appear.

Compact resolutions of the $T^{6} / \mathbb{Z}_{6 I I}$ We present now the resolution for the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold. This orbifold has fixed points and fixed lines, and to perform a local resolution is necessary to add non-compact exceptional divisors. Here we make a resume of the procedure from $[68]$ as presented in $\left[83\right.$. First we should say that as $\mathbb{Z}_{6 I I}$ is non-prime there will be local singularities of the kind $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}, \mathbb{C}^{2} / \mathbb{Z}_{3}$, and $\mathbb{C}^{2} / \mathbb{Z}_{2}$. We already explained how the resolution of the $\mathbb{C}^{2} / \mathbb{Z}_{n}$ singularities is performed, so we describe now the local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$.

The one-dimensional cones of the toric diagram are generated by

$$
\begin{equation*}
v_{1}=(-2,0,1), \quad v_{2}=(1,0,1), \quad v_{3}=(0,2,1) . \tag{3.128}
\end{equation*}
$$

[^21]

Figure 3.5: Local resolutions of the $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ orbifold. There are five different ways of defining the fan Σ, what is represented in the five possible triangulations.

This gives a map from $\left(\mathbb{C}^{*}\right)^{3}$ to $\left(\mathbb{C}^{*}\right)^{3}$ as

$$
\begin{equation*}
\phi:\left(t_{1}, t_{2}, t_{3}\right) \rightarrow\left(t_{1}^{-2} t_{2}, t_{3}^{2}, t_{1}, t_{2} t_{3}\right) . \tag{3.129}
\end{equation*}
$$

The kernel of the map will generate the group G

$$
\begin{equation*}
G=\left\{\left(t, t^{2}, t^{-3}\right), \quad t=e^{2 \pi i / 6}\right\} . \tag{3.130}
\end{equation*}
$$

The action of the torus can be casted as $T=\left(\mathbb{C}^{*}\right)^{3} / G$. It is easy to see that not all points in the lattice $\sigma \cap N$ can be reached with the cone generators, then one needs to resolve by subdividing the cone (adding new generators) what gives rise to the exceptional divisors E_{1}, E_{2}, E_{3} and E_{4}. This is done following equation (3.117) to obtain

$$
\begin{align*}
& v_{4}=\omega_{1}=(0,1,1), \tag{3.131}\\
& v_{5}=\omega_{2}=(0,0,1) \\
& v_{6}=\omega_{3}=(-1,0,1) \\
& v_{7}=\omega_{4}=(-1,1,1)
\end{align*}
$$

This information is collected in the toric diagram of Figure 3.5. As before, ordinary divisors D_{i} are placed at the positions of vectors v_{i}, with $i=1,2,3$; and exceptional divisors E_{r} are placed at the positions of ω_{r} with $r=1,2,3,4$. The set of Σ generators gives the map

$$
\begin{equation*}
\phi:\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}\right) \rightarrow\left(t_{1}^{-2} t_{2} t_{6}^{-1} t_{7}^{-1}, t_{3}^{2} t_{4} t_{7}, t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}\right) \tag{3.132}
\end{equation*}
$$

whose kernel is the group

$$
\begin{equation*}
G=\left\{\left(t_{4}^{-1 / 6} t_{5}^{1 / 3} t_{6}^{-2 / 3} t_{7}^{-1 / 2}, t_{4}^{-1 / 3} t_{5}^{-2 / 3} t_{6}^{-1 / 3}, t_{4}^{-1 / 2} t_{7}^{-1 / 2}, t_{4}, t_{5}, t_{6}, t_{7}\right), \quad t_{4}, t_{5}, t_{6}, t_{7} \in \mathbb{C}^{*}\right\}, \tag{3.133}
\end{equation*}
$$

being isomorphic to $\left(\mathbb{C}^{*}\right)^{4}$. This gives as local G invariant coordinates

$$
\begin{equation*}
\tilde{U}_{1}=\frac{z_{2}}{z_{1}^{2} y_{3} y_{4}}, \quad \tilde{U}_{2}=z_{3}^{2} y_{1} y_{3}, \quad \tilde{U}_{3}=z_{1} z_{2} z_{3} y_{1} y_{2} y_{3} y_{4} \tag{3.134}
\end{equation*}
$$

where the new divisors are given by $E_{i}=\left\{y_{i}=0\right\}$ and in the diagram they correspond to the one-dimensional cones ω_{i}. Now, with the exceptional divisors introduced we have to define the fan Σ, this amounts to fix one triangulation for the diagram. This information will be implicit in the exclusion set of the variety $Z(\Sigma){ }^{16}$.
Let us focus now on the topological information that can be read from the diagram 3.5. A triple intersection of divisors is one if the corresponding generators form a cone of the fan Σ i.e. they are placed at the corners of a primitive triangle (that can not be subdivided). They are zero otherwise. For the triangulation A the set of not vanishing triple intersections with distinct divisors is given by

$$
\begin{equation*}
D_{1} E_{3} E_{4}=D_{3} E_{3} E_{4}=D_{3} E_{1} E_{4}=E_{1} E_{2} E_{4}=E_{1} E_{2} D_{2}=D_{3} D_{2} E_{1}=1 \tag{3.135}
\end{equation*}
$$

For the triangulation we B the intersection numbers are given by

$$
\begin{equation*}
D_{1} E_{1} E_{4}=E_{1} E_{2} E_{4}=D_{2} E_{1} E_{2}=D_{2} D_{3} E_{1}=D_{3} E_{1} E_{3}=D_{1} E_{1} E_{3}=1 \tag{3.136}
\end{equation*}
$$

We emphasize those because they are the ones relevant for our study. The rest of the triangulations can be found in Figure 3.5. From those intersections and the equivalence relations (3.124) it is possible to determine any triple intersection for the local resolutions.

However we are interested in resolving the global space $T^{6} / \mathbb{Z}_{6 I I}$. Let us address this problem now. In the thesis work [67] the procedure to determine the set of divisors on the global resolution is described in detail. For our case of interest this prescription is presented in 83]. We do not aim here to expose this method in all detail, rather we review it shortly.
First we have to consider the local resolutions of $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}, \mathbb{C}^{2} / \mathbb{Z}_{3}$, and $\mathbb{C}^{2} / \mathbb{Z}_{2}$. Let us first comment on the ordinary divisors. An important fact is that fixed points which share one coordinate will have the same ordinary divisor in that coordinate. Furthermore, some divisors corresponding to fixed tori mapped into each other on the orbifold, will be united to form orbifold invariant combinations. Looking at the Figures 5.155.3 one can see that there are 12 fixed points of θ with indices $\alpha=1, \beta=1,2,3$ and $\gamma=1,2,3,4 ; 6$ fixed tori of θ^{2} and θ^{4} with indices $\alpha=1,3$ and $\beta=1,2,3$; and 8 fixed tori of θ^{3} with indices $\alpha=1,2$ and $\gamma=1,2,3,4$.
We will use $\widetilde{D}_{i, \rho}$ to denote the ordinary divisor of the local singularity ρ at the complex plane i. Thus, the ordinary divisors of the local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ singularity $(1, \beta, \gamma)$ are $\widetilde{D}_{1,1}, \widetilde{D}_{2, \beta}$ and $\widetilde{D}_{3, \gamma}$; the ordinary divisors from the local $\mathbb{C}^{2} / \mathbb{Z}_{3}$ singularity (α, β) are $\widetilde{D}_{1, \alpha}$, and $\widetilde{D}_{2, \beta}$; and the ordinary divisors of the local $\mathbb{C}^{2} / \mathbb{Z}_{2}$ singularity (α, γ) are $\widetilde{D}_{1, \alpha}$ and $D_{3, \gamma}$. We use tildes to denote that those divisors are on the orbifold cover. However we will form the

[^22]ordinary divisors on the orbifold as invariant combinations of the divisors on the cover. This gives the following set of ordinary divisors for $T^{6} / \mathbb{Z}_{6 I I}$:
\[

$$
\begin{align*}
D_{1,1} & =\widetilde{D}_{1,1} \tag{3.137}\\
D_{1,2} & =\widetilde{D}_{1,2}+\widetilde{D}_{1,4}+\widetilde{D}_{1,6} \\
D_{1,3} & =\widetilde{D}_{1,3}+\widetilde{D}_{1,5} \\
D_{2, \beta} & =\widetilde{D}_{2, \beta}, \beta=1,2,3 \\
D_{3, \gamma} & =\widetilde{D}_{3, \gamma}, \gamma=1,2,3,4
\end{align*}
$$
\]

The divisor $D_{1,2}$ is constructed as a linear combination of divisors for fixed points with $\alpha=2,4,6$. Also the divisor $D_{1,3}$ is constructed as a linear combination of the divisors for the fixed points with $\alpha=3,5$.

To determine the total number of exceptional divisors we need to consider by separate the different kinds of local singularities. We denote the exceptional divisor by $\widetilde{E}_{k, \bar{\psi}_{i x e d s e t}}$, where k represents the sector and fixed set stands for the localization. For the local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ singularity at $(1, \beta, \gamma)$, the divisors are $\widetilde{E}_{1, \beta \gamma}, \widetilde{E}_{2,1 \beta}, \widetilde{E}_{4,1 \beta}$ and $\widetilde{E}_{3,1 \gamma}$. Looking at the singularities $\mathbb{C}^{2} / \mathbb{Z}_{3}$, they appear from the action of \mathbb{Z}_{3} which is performed by θ^{2} and θ^{4}. The fixed lines with $\alpha=1$ were already considered, so the extra exceptional divisors are $\widetilde{E}_{2, \alpha \beta}$ and $\widetilde{E}_{4, \alpha \beta}$ with $\alpha=3,5$. The singularities $\mathbb{C}^{2} / \mathbb{Z}_{2}$ give the exceptional divisors $\widetilde{E}_{3, \alpha \gamma}$ with $\alpha=2,4,6$, also because already the divisors with $\alpha=1$ were counted. The tildes notation implies that the listed divisors are on the cover. Orbifold invariant combinations of exceptional divisors will give

$$
\begin{align*}
& E_{1, \beta \gamma}=\widetilde{E}_{1, \beta \gamma}, \tag{3.138}\\
& E_{2,1 \beta}=\widetilde{E}_{2,1 \beta} \\
& E_{3,1 \gamma}=\widetilde{E}_{3,1 \gamma} \\
& E_{4,1 \beta}=\widetilde{E}_{4,1 \beta}, \\
& E_{2,3 \beta}=\widetilde{E}_{2,3 \beta}+\widetilde{E}_{2,5 \beta}, \quad \beta=1,2,3 \\
& E_{4,3 \beta}=\widetilde{E}_{4,3 \beta}+\widetilde{E}_{4,5 \beta}, \quad \beta=1,2,3 \\
& E_{3,2 \gamma}=\widetilde{E}_{3,2 \gamma}+\widetilde{E}_{3,4 \gamma}+\widetilde{E}_{3,6 \gamma} \quad \gamma=1,2,3,4 .
\end{align*}
$$

The fixed lines w.r.t θ^{2} and θ^{4} in $\alpha=3,5$ are identified on the orbifold, and as well, the ones w.r.t θ^{3} with $\alpha=2,4,6$. In total there are 32 exceptional divisors on the compact blow-up.

The next ingredient to include are the inherited divisors. On the compact space the $(1,1)$ forms $d z^{i} \wedge d \bar{z}^{\bar{i}}$ are invariant under the orbifold action, and therefore exist on the orbifold. With the use of Poincaré duality we can associate a dual divisor R_{i} to each of them. In 68 it has been obtained in the orbifold the result $R_{i} \sim n_{i} D_{i}$ where n_{i} is the order of the orbifold action on the i torus. The recipe to obtain the global equivalence on the resolve space is substitute $n_{i} D_{i}$ by the summed local equivalence relations ${ }^{17}$. This leads to the complete

[^23]set of equivalences
\[

$$
\begin{aligned}
& R_{1} \sim 6 D_{1,1}+\sum_{\beta=1}^{3} \sum_{\gamma=1}^{4} E_{1, \beta \gamma}+\sum_{\beta=1}^{3}\left(2 E_{2,1 \beta}+4 E_{4,1 \beta}\right)+3 \sum_{\gamma=1}^{4} E_{3,1 \gamma}, \\
& R_{1} \sim 2 D_{1,2}+\sum_{\gamma=1}^{4} E_{3,2 \gamma}, \\
& R_{1} \sim 3 D_{1,3}+\sum_{\beta=1}^{3}\left(E_{2,3 \beta}+2 E_{4,3 \beta}\right) \\
& R_{2} \sim 3 D_{2, \beta}+\sum_{\gamma=1}^{4} E_{1, \beta \gamma}+\sum_{\alpha=1,3}\left(2 E_{2, \alpha \beta}+E_{4, \alpha \beta}\right), \beta=1,2,3, \\
& R_{3} \sim 2 D_{3, \gamma}+\sum_{\beta=1}^{3} E_{1, \beta \gamma}+\sum_{\alpha=1,2} E_{3, \alpha \gamma}, \gamma=1,2,3,4 .
\end{aligned}
$$
\]

Then, to obtain the intersection ring of all divisors there exists the method of constructing and auxiliary polyhedra [68]. We recall the method as presented in [83]. For the orbifold group G, select the lattice $N \simeq \mathbb{Z}^{3}$ such that $N=\left\{f_{i}=m_{i} e_{i}, m_{i}>0, \quad m_{1} m_{2} m_{3}=\right.$ $\left.n_{1} n_{2} n_{3} /|G|\right\}$. Rotate the full diagram \mathbb{C}^{3} / G to a coordinate system in which the ordinary divisors D_{i} are placed at $v_{i+3}=n_{i} f_{i}$. The inherited divisors are placed on $v_{i}=-f_{i}$. Suppose that there are subgroups H that give not fixed points but higher dimensional singularities. Consider a subgroup H, to describe the singularities of the kind \mathbb{C}^{2} / H one has to take an identical polyhedra to the previous one, just that the divisors absent in \mathbb{C}^{2} / H are removed. For each local resolution a polyhedra has to be considered. If ordinary divisors are linear combinations of q divisors, the vector v_{k} should be divided by q. The triangulation of the polyhedra is performed in order to preserve the triangulation of the original toric diagram. Only divisors spanning a simplex on the same polyhedra will have non-zero intersection numbers given by

$$
\begin{equation*}
A B C=\mathrm{const} /\left|\operatorname{det}\left(v_{A} v_{B} v_{C}\right)\right| \tag{3.139}
\end{equation*}
$$

where the constant is fixed by the requirement that intersection numbers without inherited divisors coincide with the ones of the local resolution.

3.7 Anomalies and Green-Schwarz mechanism

Classical symmetries may be broken upon quantization giving rise to anomalies. Anomalies of local symmetries give an inconsistency, because they cause that the unphysical degrees of freedom are not decoupled from the theory. In string theory all the local anomalies are cancelled. Anomalies constitute short distances effects because they arise from the impossibility of regulating the theory in a form which is consistent with the symmetry. But also they are long distance effects, because this difficulty depends on the massless
spectrum. Addition of massive degrees of freedom will not change the anomalies, because its contribution to the path integral is local at long distances and can be cancelled by a counterterm.

Heterotic string theory is not parity symmetric so may have potential anomalies. This is also the case for the remaining string theories with the exception of type IIA which is non-chiral. We will describe the anomaly from the low energy point of view, i.e. the 10d $\mathcal{N}=1$ supergravity theory. From this point of view its cancellation will include several apparent coincidences, that are really a consequence of defining a consistent string theory. The un-physical gauge and gravitational polarizations are decoupled by a cancellation with a counterterm. For the heterotic theory the diagrams are calculated on a torus world-sheet, the first one in the limit of $\tau_{2} \rightarrow \infty$ and the second one in the limit of two vertex operators approaching.

Consider the anomalous variation of the path integral in the supergravity to be

$$
\begin{equation*}
\delta \ln Z=\frac{-i}{(2 \pi)^{5}} \int I_{d}(\mathfrak{F}, \mathfrak{R}), \tag{3.140}
\end{equation*}
$$

and the anomaly polynomial is defined to be a $d+2$ - form in a formal sense such that 28]

$$
\begin{equation*}
I_{d+2}=d I_{d+1}, \quad \delta I_{d+1}=d I_{d} \tag{3.141}
\end{equation*}
$$

These are called descend equations. The polynomial I_{d+2} has the advantage that is written in terms of gauge invariant, closed and locally exact forms $\operatorname{tr} \mathfrak{F}^{m}, \operatorname{tr} \Re^{n}$. Then, the anomaly can be expressed as

$$
\begin{align*}
I_{d+2} & =\left(c \operatorname{Tr}(\mathfrak{F})^{2}+c^{\prime} \operatorname{Tr}(\mathfrak{R})^{2}\right) X_{8}, \tag{3.142}\\
I_{d} & =\left(c \operatorname{Tr}(\chi \mathfrak{A})+c^{\prime} \operatorname{Tr}(\Theta d \mathfrak{W})\right) X_{8},
\end{align*}
$$

this anomalous variation $\delta \ln Z \sim \int I_{d}$ can be canceled by adding an interaction term of B with gluons and gravitons

$$
\begin{equation*}
S_{B}=\int B_{2} X_{8}(\mathfrak{F}, \mathfrak{R}) \tag{3.143}
\end{equation*}
$$

This can be checked directly from the local Lorentz and gauge transformations 2.41. This new term is an addition to the supergravity action (2.36).

The anomalous diagram and its counterterm in 10d are represented in Figure 3.6. The chiral fields of $\mathcal{N}=1$ supergravity are the gravitino 56 , the neutral fermion 8^{\prime} and the gaugino 8. In the heterotic theory (2.23) those are the fields

$$
\begin{equation*}
(56,1,1)+\left(8^{\prime}, 1,1\right)+(8,248,1)+(8,1,248) . \tag{3.144}
\end{equation*}
$$

Figure 3.6: Hexagon diagram giving anomalies in 10d plus the counterterm canceling the anomaly. The external legs of the first diagram can be all gauge bosons, or all gravitons or 2 (4) gauge bosons and 4 (2) gravitons. In the second diagram the external legs of the left can be 2 gauge bosons (or 2 gravitons) and the ones from the right can be 4 gauge bosons (or 2 gauge bosons and 2 gravitons, or 4 gravitons).

The total anomaly polynomial for the $\mathcal{N}=1$ supergravity coupled to super Yang-Mills with a gauge group of rank n is given by

$$
\begin{align*}
I_{12} & =I_{\mathbf{5 6}}(\mathfrak{R})-I_{\mathbf{8}^{\prime}}(\mathfrak{\Re})+I_{\mathbf{8}}(\mathfrak{F}, \mathfrak{R}), \tag{3.145}\\
& =-\frac{1}{720} \operatorname{Tr} \mathfrak{F}^{6}+\frac{1}{24 \cdot 48} \operatorname{Tr} \mathfrak{F}^{4} \operatorname{tr} \mathfrak{R}^{2}-\frac{1}{256} \operatorname{Tr} \mathfrak{F}^{2}\left[\frac{1}{45} \operatorname{tr} \mathfrak{R}^{4}+\frac{1}{36}\left(\operatorname{tr} \mathfrak{R}^{2}\right)^{2}\right] \\
& +\frac{n-496}{64}\left[\frac{1}{2 \times 2835} \operatorname{tr} \mathfrak{R}^{6}+\frac{1}{4 \times 1080} \operatorname{tr} \mathfrak{R}^{2} \operatorname{tr} \mathfrak{R}^{4}+\frac{1}{8 \times 1296}\left(\operatorname{tr} \mathfrak{R}^{2}\right)^{3}\right] \\
& +\frac{1}{384} \operatorname{tr} \mathfrak{R}^{2} \operatorname{tr} \mathfrak{R}^{4}+\frac{1}{1536}\left(\operatorname{tr} \mathfrak{R}^{2}\right)^{3} .
\end{align*}
$$

As we can see for the case $n=496$ the anomaly gets reduced, this signals to choose groups with rank 496. Furthermore, the selection $S O(32)$ or $E_{8} \times E_{8}$ implies identities of the traces $\operatorname{Tr} F^{6}$ such that the polynomial can be factorized like in (3.142] [28]. The trace Tr is given in the adjoint representation, and we define for $E_{8} \times E_{8}$ the symbol $\operatorname{tr}=\frac{1}{30} \operatorname{Tr}$ which is an identity for $S O(32)$ relating the trace in the adjoint with the trace in the fundamental.

From the low energy description presented here, and used commonly, the anomaly cancelation involves the coincidences of: number of generators of the gauge group, identity of the traces and factorization of the polynomial. This apparent coincidences are explained due to the requirement of a consistent string theory. They are obtained as a consequence of the cancellation occurring between the anomalous world-sheet amplitudes and its counterterms.

In a given compactification, to understand the four dimensional anomaly cancelation we can make a dimensional reduction of I_{12} and S_{B}, obtaining the anomaly cancellation in
terms of the various axions 91 descending from the B_{2} expansion 4.23). The factorization of the polynomial I_{12} for the heterotic $E_{8} \times E_{8}$ theory is given in terms of the forms X_{4} and X_{8} as

$$
\begin{align*}
I_{12} & =X_{4} X_{8}, \tag{3.146}\\
X_{8} & =\frac{1}{4}\left(\left(\operatorname{tr} \mathfrak{F}^{\prime 2}\right)^{2}+\left(\operatorname{tr} \mathfrak{F}^{\prime \prime 2}\right)^{2}\right)-\frac{1}{4} \operatorname{tr} \mathfrak{F}^{\prime 2} \operatorname{tr} \mathfrak{F}^{\prime \prime 2}-\frac{1}{8}\left(\operatorname{tr} \mathfrak{F}^{\prime 2}+\operatorname{tr} \mathfrak{F}^{\prime \prime 2}\right) \operatorname{tr} \mathfrak{R}^{2} \tag{3.147}\\
& +\frac{1}{8} \operatorname{tr} \mathfrak{R}^{4}+\frac{1}{32}\left(\operatorname{tr} \mathfrak{R}^{2}\right)^{2}, \tag{3.148}\\
X_{4} & =\operatorname{tr} \mathfrak{R}^{2}-\operatorname{tr} \mathfrak{F}^{\prime 2}-\operatorname{tr} \mathfrak{F}^{\prime \prime 2} .
\end{align*}
$$

The 10 d quantities are decomposed in terms of 6 d internal and 4 d components as $\mathfrak{W}=$ $\mathcal{W}+\omega, \mathfrak{R}=\mathcal{R}+R, \mathfrak{A}=\mathcal{A}+A$ and $\mathfrak{F}=\mathcal{F}+F$, where the first term and the second term in the sums are the 6 d and 4 d components, respectively. When it is necessary to distinguish between the two $E_{8} \mathrm{~s}$, we mark the gauge fields and the field strengths in the first and second E_{8} with ' and ${ }^{\prime \prime}$, respectively. Starting from the anomaly (3.146) in ten dimensions, we will describe in the next section how the cancellation mechanism occurs in a smooth compactification.

3.7.1 Dimensional reduction of the anomaly polynomial

In this section we consider the anomaly cancellation mechanism of the four dimensional effective theory. This mechanism is understood in terms of the universal and the nonuniversal (localized) axions. In order to analyze anomalies in the 4d effective field theory we study the 4 d anomaly polynomial I_{6} and the 4 d Green-Schwarz mechanism [28] derived from the one of ten dimensional supergravity.
We will show how the cancellation is implemented in a smooth Calabi-Yau in the presence of abelian gauge fluxes in the internal dimensions. We describe the way in which axions arise. This has been studied in [91] for a non-compact resolution with a single non-universal axion and in 122 for a more generic compactification. Our analysis applies these results to a case where multiple non-universal axions appear. We will be interested in a blow-up of an orbifold compactification, which is an example of it.
The change of the effective action due to gauge transformations (parameterized by χ) and Lorentz transformations (parameterized by Θ) is given by 104

$$
\begin{equation*}
G(\chi, \Theta)=\int_{\mathcal{M} \times M^{4}} I_{10}=\int_{\mathcal{M} \times M^{4}}(\operatorname{tr}(\Theta d \mathfrak{W})-\operatorname{tr}(\chi d \mathfrak{A})) X_{8}, \tag{3.149}
\end{equation*}
$$

where we split up the 10 d space into the 6 d internal manifold \mathcal{M} and 4 d Minkowski space M^{4}, and omit a numerical factor arising in the dimensional reduction. The variation of the axion field $\delta_{\chi, \Theta} B_{2}=-\operatorname{tr}(\Theta d \mathfrak{W})+\operatorname{tr}(\chi d \mathfrak{A})$ induces a variation δS_{B} which exactly cancels $G(\chi, \Theta)$ (here we have set $c=1, c^{\prime}=-1$ in (2.41). In the compactification to 4 d , the anomaly cancellation arises from the variations of the B_{2} components inherited
from 10d variations, and from imposing the condition $\delta_{\chi_{0}} d B_{2}=0$, where χ_{0} are gauge transformations on the gauge bundle $\mathcal{A} \rightarrow \mathcal{A}+\delta_{\chi_{0}} \mathcal{A},\left[\mathcal{A}, \chi_{0}\right]=0$. The B_{2} field is expanded as

$$
\begin{equation*}
B_{2}=b_{2}+\alpha_{i} R_{i}-\beta_{r} E_{r}, \tag{3.150}
\end{equation*}
$$

where R_{i} and E_{r} are exceptional divisors of the compact space, and the flux will be supported in the set E_{r}. The 4d universal axion $a^{\text {uni }}$ and the non-universal axions β_{r} cancel the 4 d anomaly. This can be seen from the reduction of G and S_{B} and by performing a field redefinition necessary to ensure $\delta_{\chi_{0}} d B_{2}=0$. The dimensional reduction of the variation of the effective action (3.149) reads

$$
\begin{align*}
& I_{4}=\int_{\mathcal{M}} \operatorname{tr}(\Theta d \mathfrak{W}) X_{8}-\operatorname{tr}(\chi d A) \int_{\mathcal{M}} X_{6,2}-\int_{\mathcal{M}} \operatorname{tr}(\chi \mathcal{F}) X_{4,4}, \tag{3.151}\\
& G=\int_{M^{4}} I_{4}=\int_{M^{4}}\left[\operatorname{tr}(\Theta d \omega) X_{2}^{\mathrm{uni}}+\Theta_{a}\left(\mathcal{W}_{a}^{r} X_{4}^{r}+\mathcal{W}_{a}^{i} X_{4}^{i}\right)\right]-\int_{M^{4}}\left[\operatorname{tr}(\chi d A) X_{2}^{\mathrm{uni}}+V_{r}^{I} \chi_{I} X_{4}^{r}\right] . \tag{3.152}
\end{align*}
$$

The forms $X_{2 k, 2 l}$ with $2(k+l)=8$ are the sum of all the terms in X_{8} having $2 k$ indices in the internal space, and $2 l$ indices in the external 4 d space, and $X_{4}^{r}=\int_{\mathcal{M}} E_{r} X_{4,4}$. Furthermore, $\Theta=\Theta_{a} T^{a}$ is the expansion of the Lorentz transformation in terms of $S O(9,1)$ generators T^{a} and $d \mathcal{W}=\left(\mathcal{W}_{a}^{r} E_{r}+\mathcal{W}_{a}^{i} R_{i}\right) T^{a}$ is the expansion of the derivative of the spin connection in T^{a} and in $(1,1)$ forms on the internal manifold.
The whole anomaly variation of the action can be divided into a universal and a nonuniversal part given by

$$
\begin{align*}
& G_{\mathrm{uni}}=\int_{M^{4}}(\operatorname{tr}(\Theta d \omega)-\operatorname{tr}(\chi d A)) X_{2}^{\mathrm{uni}} \tag{3.153}\\
& G_{\mathrm{non}}=\int_{M^{4}} \Theta_{a}\left(\mathcal{W}_{a}^{r} X_{4}^{r}+\mathcal{W}_{a}^{i} X_{4}^{i}\right)-V_{r}^{I} \int_{M^{4}} \chi_{I} X_{4}^{r} \tag{3.154}
\end{align*}
$$

where $X_{4}^{i}=\int_{\mathcal{M}} R_{i} X_{4,4}$. Along the same lines one can write the dimensional reduction of S_{B} as

$$
\begin{equation*}
S_{B}=\int_{M^{4} \times \mathcal{M}} B_{2} X_{8}=\int_{M^{4} \times \mathcal{M}} b_{2} X_{6,2}+\int_{M^{4} \times \mathcal{M}}\left(\alpha_{i} R_{i}+\beta_{r} E_{r}\right) X_{4,4}=\int_{M^{4}} b_{2} X_{2}^{\mathrm{uni}}+\int_{M^{4}}\left(\beta_{r} X_{4}^{r}+\alpha_{i} X_{4}^{i}\right) \tag{3.155}
\end{equation*}
$$

Now we can understand how the 4 d transformations of $a^{\text {uni }}, \beta_{r}$, and α_{i} inherit the 10 d anomalous variations of the B_{2} field. Considering the 4 d variations of the axions to be exactly the same as those of B_{2}, and without taking into account mixed index variations (which is equivalent to a redefinition of B_{2} in order to achieve $\delta_{\chi_{0}} B_{2}=0$), anomaly
cancellation in 4 d is implemented by

$$
\begin{align*}
\delta b_{2} & =\operatorname{tr}(\chi d A)-\operatorname{tr}(\Theta d \omega) \tag{3.156}\\
\delta B_{1,1} & =\operatorname{tr}(\chi \mathcal{F})-\operatorname{tr}(\Theta d \mathcal{W})=\chi^{I} V_{r}^{I} E_{r}-\Theta_{a}\left(\mathcal{W}_{a}^{r} E_{r}-\mathcal{W}_{a}^{i} R_{i}\right) \tag{3.157}
\end{align*}
$$

where $B_{1,1}=\alpha_{i} R_{i}+\beta_{r} E_{r}$. The α_{i} and β_{r} satisfy

$$
\begin{equation*}
\delta \alpha_{i}=-\Theta_{a} \mathcal{W}_{a}^{i}, \quad \delta \beta_{r}=\chi^{I} V_{r}^{I}+\Theta_{a} \mathcal{W}_{a}^{r} \tag{3.158}
\end{equation*}
$$

which ensures

$$
\begin{equation*}
G_{\mathrm{non}}+G_{\mathrm{uni}}+\delta_{\chi} \int_{M^{4} \times \mathcal{M}} B_{2} X_{8}=0 \tag{3.159}
\end{equation*}
$$

Let us now take a complementary approach, which proceeds via studying the reduction of H_{3} and checking how δH_{3} is canceled by the variation of the 4 d axions. Let us consider gauge variations only. This will clarify why it is allowed to restrict the variation of B_{2} to the 4 d axions β_{r} or $a^{\text {uni }}$.
The three-form $\Omega_{3}^{\mathrm{YM}}=\operatorname{tr}\left(\mathfrak{A F}-\mathfrak{A}^{3} / 3\right)$ can be expanded in terms of 4 d and 6 d parts as

$$
\begin{equation*}
\Omega_{3}^{\mathrm{YM}}=\Omega_{3}^{\mathrm{YM}, 4 \mathrm{~d}}+\operatorname{tr}(\mathcal{A} d \mathfrak{A})+\operatorname{tr}(A \mathcal{F}) \tag{3.160}
\end{equation*}
$$

The term $\operatorname{tr}(\mathcal{A} d \mathfrak{A})$ is used in the redefinition of $d B_{2}$. This procedure serves two purposes: it ensures $\delta_{\chi_{0}} d B_{2}=0$ and it fits with the dimensional reduction of B_{2} which otherwise, due to the absence of mixed indices (between internal and 4 d coordinates), does not cancel the $\operatorname{tr}(\mathcal{A} d \mathfrak{A})$ variation of H_{3}. The gauge anomalous variations of the universal axion $a^{\text {uni }}$ cancels the one of $\Omega_{3}^{\mathrm{YM}, 4 \mathrm{~d}}$ and the gauge anomalous variations of the β_{r} cancels the one of $\operatorname{tr}(A \mathcal{F})$. A similar analysis can be done for the Lorentz part, but as we consider a space with vanishing Ricci-tensor in the internal dimensions, those variations are not present.
Finally, the field redefinition which ensures $d B_{2}$ invariance under bundle gauge transformation χ_{0}, is equivalent to the analysis where the decomposition of the 10 d field B_{2} in terms of b_{2} and $B_{1,1}$ cancels the anomaly in 4 d with a variation inherited from $\delta_{\chi} B_{2}$. This can be seen by noting that anomalous variations of the 4 d axions which cancel the 4 d anomaly make $\delta H_{3}=0$ only if the form $\operatorname{tr}(\mathcal{A} d \mathfrak{A})$ as well as the analog Lorentz form are absorbed in $d B_{2}$. By decomposing the 10 d exterior derivative d as $d=d_{4}+d_{6}$, the three-form field strength variation can be written as

$$
\begin{align*}
\delta H_{3}= & \delta d_{4} b_{2}+\left[d_{4}(\operatorname{tr} \Theta d \omega)-d_{4} \operatorname{tr}(\chi d A)\right]+\left[d_{4} \delta \alpha_{i} R_{i}+d_{4} \delta \beta_{r} E_{r}\right]+\left[d_{4}(\operatorname{tr} \Theta d \mathcal{W})-d_{4} \operatorname{tr}(\chi d \mathcal{A})\right] \\
& +d_{6}\left[\operatorname{tr}\left(\Theta d_{4} \omega\right)-\operatorname{tr}\left(\chi d_{4} A\right)\right]+d_{6}\left[\operatorname{tr}\left(\Theta d_{6} \mathcal{W}\right)-\operatorname{tr}\left(\chi d_{6} \mathcal{A}\right)\right] \tag{3.161}
\end{align*}
$$

It is apparent that the second row, which can be written as $\delta \operatorname{tr} \mathcal{R} d \mathfrak{R}-\delta \operatorname{tr} \mathcal{A} d \mathfrak{A}$ has to be absorbed in the whole $d B_{2}$ because the index structure of its decomposition cannot cancel this variation. This is how we implement the Green-Schwarz mechanism in blow-up.

Chapter 4

The \mathbb{Z}_{7} orbifold and its resolution

In this section we describe the study of a vacuum obtained from the heterotic theory on a T^{6} / \mathbb{Z}_{7} orbifold via assigning vevs to singlets. Our aim is to interpret those singlets as blow-up modes which are moduli of the supergravity approximation compactified in the resolved orbifold. Because the string effects are suppressed in terms α^{\prime} / R^{2} powers, where R stands for the compactification scale, the approximation tends to be exact in the large volume limit. To resolve the orbifold the tools of toric geometry presented in section 3.6 are employed. First we will describe the resolution process in this particular model, then we will present the equivalence of the massless spectrum in both approaches. Finally we will show the connection between the anomaly cancellation mechanism in both descriptions.

4.1 Orbifold theory

The requirement to have a \mathbb{Z}_{7} symmetry constraints strongly the lattice. It has to be the $S U(7)$ root lattice, in which two independent deformations are allowed. The \mathbb{Z}_{7} action on the lattice vectors is given by

$$
\begin{equation*}
e_{a} \rightarrow e_{a+1} \forall a=1, \ldots, 5, \quad e_{6} \rightarrow-\sum_{i=1}^{6} e_{i}, \tag{4.1}
\end{equation*}
$$

where the e_{a} are the group simple roots. One can then combine the orbifold group with the lattice shifts to obtain the space-group as $S=\mathbb{Z}_{7} \rtimes \Lambda_{6}$ to define the orbifold as

$$
\begin{equation*}
\mathcal{O}=T^{6} / \mathbb{Z}_{7}=\mathbb{C}^{3} / S \tag{4.2}
\end{equation*}
$$

The \mathbb{Z}_{7} orbifold action is given by

$$
\begin{equation*}
\theta:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\xi z_{1}, \xi^{2} z_{2}, \xi^{4} z_{3}\right) \quad \text { with } \xi=e^{2 \pi i / 7} \tag{4.3}
\end{equation*}
$$

The shift satisfies the condition (3.13), lying on $S U(3) \subset S O(9,1)$, preserving one supersymmetry in four dimensions. This is equivalent to say that the holomorphic three-form $\Omega=d z_{1} \wedge d z_{2} \wedge d z_{3}$ is preserved. The fixed points are seven and constitute the weights of the anti-symmetric fundamental representations. In terms of the lattice vectors they are given by

$$
\begin{align*}
& f_{1}=0 \tag{4.4}\\
& f_{2}=\frac{e_{1}}{7}+\frac{2 e_{2}}{7}+\frac{3 e_{3}}{7}+\frac{4 e_{4}}{7}+\frac{5 e_{5}}{7}+\frac{6 e_{6}}{7} \\
& f_{3}=\frac{2 e_{1}}{7}+\frac{4 e_{2}}{7}+\frac{6 e_{3}}{7}+\frac{e_{4}}{7}+\frac{3 e_{5}}{7}+\frac{5 e_{6}}{7} \\
& f_{4}=\frac{3 e_{1}}{7}+\frac{6 e_{2}}{7}+\frac{2 e_{3}}{7}+\frac{5 e_{4}}{7}+\frac{e_{5}}{7}+\frac{4 e_{6}}{7} \\
& f_{5}=\frac{4 e_{1}}{7}+\frac{e_{2}}{7}+\frac{5 e_{3}}{7}+\frac{2 e_{4}}{7}+\frac{6 e_{5}}{7}+\frac{3 e_{6}}{7} \\
& f_{6}=\frac{5}{7}+\frac{3 e_{2}}{7}+\frac{e_{3}}{7}+\frac{6 e_{4}}{7}+\frac{4 e_{5}}{7}+\frac{2 e_{6}}{7} \\
& f_{7}=\frac{6 e_{1}}{7}+\frac{5 e_{2}}{7}+\frac{4 e_{3}}{7}+\frac{3 e_{4}}{7}+\frac{2 e_{5}}{7}+\frac{e_{6}}{7}
\end{align*}
$$

Locally each of these singularities looks like $\mathbb{C}^{3} / \mathbb{Z}_{7}$.
As in the present orbifold all the six lattice vectors generating T^{6} are equivalent, this causes that the embedding on the gauge d.o.f of the translations possesses only one independent Wilson line. The embeddings on the gauge degrees of freedom for the shift V and the Wilson line W should satisfy

$$
\begin{equation*}
7 V, 7 W \in \Lambda_{E_{8} \times E_{8}} \tag{4.5}
\end{equation*}
$$

Recall that this happens because the orbifold order is 7 and thus acting seven times on the R -vacua the identity action should be obtained.
The untwisted strings are obtained from boundary conditions with the identity element. After projection, the four dimensional $\mathcal{N}=1$ massless spectrum contains a SUGRA sector, a super Yang-Mills sector, and chiral superfields (untwisted moduli), charged fields and the axion-dilaton $a^{\text {orb }}-i \phi$. The gauge algebra is formed by the Cartan of $E_{8} \times E_{8}$ together with the roots P satisfying

$$
\begin{equation*}
P \cdot V=P \cdot W=0 \bmod 7 . \tag{4.6}
\end{equation*}
$$

The charges of the chiral fields are given by the winding numbers around T^{16}.
The strings localized at the fixed points are characterized by the conjugacy classes given in Table 4.1, which can be written as

$$
\begin{equation*}
g=\left(\theta^{k},(\sigma-1) e_{1}\right) \tag{4.7}
\end{equation*}
$$

We employ only the sectors θ, θ^{2} and θ^{4} because the sectors θ^{6}, θ^{5} and θ^{3} will contain the CPT partners. The left moving momentum of those twisted states is given by

$$
\begin{equation*}
V_{g}=k V+(\sigma-1) W \tag{4.8}
\end{equation*}
$$

Table 4.1: Conjugacy classes for the T^{6} / \mathbb{Z}_{7} orbifold vs. sectors.

F.P.	class θ	class θ^{2}	class θ^{4}
f_{1}	0	0	0
f_{2}	$e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}$	$e_{2}+e_{3}+e_{4}+e_{5}+e_{6}$	$e_{4}+e_{5}+e_{6}$
f_{3}	$e_{1}+e_{2}+e_{3}+e_{5}+e_{6}$	$e_{2}+e_{3}+e_{6}$	$e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}$
f_{4}	$e_{1}+e_{2}+e_{4}+e_{6}$	e_{2}	$e_{2}+e_{4}$
f_{5}	$e_{1}+e_{3}+e_{5}$	$e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}$	$e_{1}+e_{3}+e_{4}+e_{5}+e_{6}$
f_{6}	$e_{1}+e_{4}$	$e_{1}+e_{2}+e_{4}+e_{5}$	e_{4}
f_{7}	e_{1}	$e_{1}+e_{2}$	$e_{1}+e_{2}+e_{3}+e_{4}$

The orbifold model employed for our study has in the visible sector the SM gauge group, and three chiral families [123]. The orbifold twist and Wilson line are:

$$
\begin{align*}
V & =\frac{1}{7}(0,0,-1,-1,-1,5,-2,6)(-1,-1,0,0,0,0,0,0) \\
W & =\frac{1}{7}(-1,-1,-1,-1,-1,-10,2,-9)(4,3,-3,0,0,0,0,0) \tag{4.9}
\end{align*}
$$

The full gauge group is given by

$$
\begin{equation*}
S U(3) \times S U(2) \times U(1)^{5} \times\left[S O(10) \times U(1)^{3}\right] . \tag{4.10}
\end{equation*}
$$

Next we give a summary of the massless charged states in terms of the non-abelian irreducible representations (irreps):

irrep	$(\mathbf{3}, \mathbf{2}, \mathbf{1})$	$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1 0})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
multiplicity	3	12	18	21	1	133

4.2 Resolution of T^{6} / \mathbb{Z}_{7}

In this section we recall schematically how the singularities are resolved, for more details we refer to section 3.6. In order to resolve the singularities one has to add coordinates x_{r} together with appropriate \mathbb{C}^{*} scalings λ_{s}, such that the dimensionality of the space is preserved. In this case the original z_{i} and additional coordinates x_{r} fulfill

$$
\begin{equation*}
\left(z_{i}, x_{r}\right) \sim\left(\lambda^{q_{i}} z_{i}, \lambda^{q_{r}} x_{r}\right), \quad \lambda^{q_{i}}=\prod_{s} \lambda_{s}^{q_{i}^{s}} \tag{4.11}
\end{equation*}
$$

such that the discrete orbifold action (4.3) is induced where $x_{r} \neq 0$. The charge assignment under the rotations is given by

	z_{1}	z_{2}	z_{3}	x_{1}	x_{2}	x_{4}
q^{1}	1	2	4	-7	0	0
q^{2}	2	4	1	0	-7	0
q^{3}	4	1	2	0	0	-7

The ordinary divisors are the hypersurfaces $D_{i}=\left\{z_{i}=0\right\}$. The singular locus

$$
\begin{equation*}
D_{1} \cap D_{2} \cap D_{3}=\left\{z_{1}=z_{2}=z_{3}=0\right\} \tag{4.12}
\end{equation*}
$$

is replaced by the exceptional divisors $E_{r}=\left\{x_{r}=0\right\}$, making the space smooth. The geometrical orbifold is restored in the moduli space region when $\operatorname{Vol}\left(E_{r}\right)=0$. As the \mathbb{Z}_{7} is prime, after the resolution there is a unique topology, which is observed in the toric diagram as a unique triangulation. Thus, there will be no flop transitions. Using result derived from Poincaré duality (3.86) there is a correspondence between a (1,1)-form and every divisor E_{r}.
All the intersection numbers can be computed in terms of the following ones

$$
\begin{array}{rlr}
E_{1}^{3}=E_{2}^{3}=E_{4}^{3}=8, & E_{1} E_{2}^{2}=E_{2} E_{4}^{2}=E_{4} E_{1}^{2}=0, \tag{4.13}\\
E_{1}^{2} E_{2}=E_{2}^{2} E_{4}=E_{4}^{2} E_{1}=-2, & E_{1} E_{2} E_{4}=1 .
\end{array}
$$

That set of intersection numbers allows us to compute integrals of wedge products of forms in the resolved space. We are interested in a global resolution of $T^{6} / \mathbb{Z}_{7}[68$. The global description of the resolution is complicated, but as the resolution of singularities happens locally, we can figure out the topological properties by hand. Starting with the orbifold and cutting out small open sets around the seven fixed points then we replace them by the resolved local singularities. This gives rise to a set of exceptional divisors, $E_{k, \sigma}$, $\sigma=1, \ldots, 7$ which do not intersect when they are located at different fixed points

$$
\begin{equation*}
E_{k, \sigma} E_{l, \rho}=0 \text { if } \sigma \neq \rho . \tag{4.14}
\end{equation*}
$$

There are in addition three inherited divisors R_{i} which are the duals of the orbifold invariant forms $d z_{i} \wedge d \bar{z}_{i}$ surviving the orbifold projections. The characteristic classes of the resolution and the gauge flux in the internal dimensions will be independent of the R_{i}. But a base for the $(1,1)$ forms in the compact space will be given by E_{r} and R_{i}, so those last ones will appear in the dimensional reduction of the antisymmetric field $B_{\mu \nu}$, and in the cancellation described in (3.7). There are equivalence relations, which will allow to express the local ordinary divisors $D_{k, \sigma}$ in terms of exceptional and inherited ones

$$
\begin{align*}
& D_{1, \sigma} \sim 1 / 7\left(R_{1}-E_{1, \sigma}-2 E_{2, \sigma}-4 E_{4, \sigma}\right) \tag{4.15}\\
& D_{2, \sigma} \sim 1 / 7\left(R_{2}-4 E_{1, \sigma}-2 E_{3, \sigma}\right) \\
& D_{3, \sigma} \sim 1 / 7\left(R_{3}-2 E_{1, \sigma}-4 E_{2, \sigma}-E_{4, \sigma}\right) .
\end{align*}
$$

The n-Chern class is obtained by taking the order of λ^{n} in the following expansion 83

$$
\begin{equation*}
\operatorname{ch}(X)=\prod_{k, \sigma}\left(1+\lambda E_{k, \sigma}\right) \prod\left(1+\lambda D_{i, \sigma}\right) \prod_{i}\left(1-\lambda R_{i}\right) . \tag{4.16}
\end{equation*}
$$

This gives

$$
\begin{equation*}
c_{1}(X)=0, \quad c_{2}(X)=-4, \quad c_{3}(X)=48 \tag{4.17}
\end{equation*}
$$

The $c_{3}(X)$ expression is clearly obtained from the fact that $R_{1} R_{2} R_{3}=49$ and the intersection for three different exceptional divisors 4.13).

Supergravity on the resolution The topological information that we have allows to perform the dimensional reduction of the ten dimensional heterotic supergravity coupled to super Yang-Mills. Because we don't have information about the metric, is not possible to write the world-sheet CFT so solve the string equations of motion in this background. In order to satisfy the Bianchi identities $\int_{S} d H_{3}=0$, where S denotes a compact divisor, is necessary to impose a flux on the internal space. This flux also reduces the gauge symmetry and leads to the appearance of chiral matter. We consider abelian fluxes supported in the exceptional divisors as

$$
\begin{equation*}
\mathcal{F}=H_{I} V_{r}^{I} E_{r}, \quad r=(k, \sigma), \quad k=1,2,4, \quad \sigma=1, \ldots, 7 . \tag{4.18}
\end{equation*}
$$

The H_{I} are the Cartan generators of $E_{8} \times E_{8}$. The bundle vectors V_{r}^{I} posses certain constraints. They should satisfy the flux quantization conditions such that

$$
\begin{equation*}
7 V_{r} \equiv 0, \quad V_{2 k, \sigma} \equiv 2 V_{k, \sigma}, \tag{4.19}
\end{equation*}
$$

where the equivalence is up to lattice vectors. They also have to satisfy the BI, which constraint their length and scalar products

$$
\begin{equation*}
0=\int_{S}\left(\operatorname{tr} \mathcal{R}^{2}-\operatorname{tr} \mathcal{F}^{2}\right), \quad S \in\left\{E_{r}, R_{i}\right\} \tag{4.20}
\end{equation*}
$$

With that information in hand we can compute the massless four dimensional spectrum. The gauge group will be spanned by the roots which are orthogonal to the flux, i.e. to the bundle vectors $\alpha_{i} \cdot V_{r}=0$. The chiral field content can be obtained using the index theorem 69],

$$
\begin{equation*}
\hat{N}=\frac{1}{6} \int_{X}\left(\mathcal{F}^{3}-\frac{1}{4} \operatorname{tr} \mathcal{R}^{2} \mathcal{F}\right) \tag{4.21}
\end{equation*}
$$

The $E_{8} \times E_{8}$ root lattice characterize the ten-dimensional states

$$
\begin{equation*}
\left(\mathbf{8}_{v}, \mathbf{2 4 8}, \mathbf{1}\right)+(\mathbf{8}, \mathbf{2 4 8}, \mathbf{1}) \tag{4.22}
\end{equation*}
$$

and the analogous ones charged under the second E_{8}. Upon dimensional reduction the index theorem (4.21) says with which multiplicity the states (4.22) appear in the spectrum, and they will be forming representations of the 4 d gauge group. The representation of a given state can be computed doing the product $\alpha_{i} \cdot P$ to obtain its Dynkin labels.

Massless states are also found from the reduction of the ten-dimensional states (35, 1, 1) and $(\mathbf{2 8}, \mathbf{1}, \mathbf{1})$ which are the metric and the antisymmetric tensor respectively. The metric is given in terms of the Kähler form J, and the antisymmetric tensor is the Kalb-Ramond field B_{2}. Their expansions in the base for the internal $(1,1)$ forms is

$$
\begin{equation*}
J=a_{i} R_{i}-b_{r} E_{r}, \quad B_{2}=b_{2}+\alpha_{i} R_{i}-\beta_{r} E_{r} \tag{4.23}
\end{equation*}
$$

In four dimensions J and B join to form the complex scalar components of the chiral multiplet

$$
\begin{equation*}
\left.T_{i}\right|_{\theta=0}=a_{i}+i \alpha_{i},\left.\quad T_{r}\right|_{\theta=0}=b_{r}+i \beta_{r} \tag{4.24}
\end{equation*}
$$

The real components a_{i}, b_{r} govern the size of the R_{i} and E_{r} cycles, respectively.
The four dimensional field b_{2} is the dual of the blow-up universal axion $a^{\text {uni }}$. Let us recall the field strength H_{3} in (2.37) with $c=c^{\prime}=1$

$$
\begin{equation*}
H_{3}=d B_{2}-\Omega_{3}^{\mathrm{YM}}+\Omega_{3}^{\mathrm{L}} \tag{4.25}
\end{equation*}
$$

The gauge invariance of H_{3} under abelian gauge transformations implies equation (3.157), which restricted to gauge transformations reads

$$
\begin{equation*}
\delta \beta_{r}=V_{r}^{I} \chi^{I}, \quad \delta \alpha_{i}=0 \tag{4.26}
\end{equation*}
$$

This is a particular case of the Lorentz and gauge transformations written in (2.41).
On the orbifold there are seven preserved $U(1)$ s and one anomalous one. When performing the blow-up by giving vevs to twisted fields charged under the gauge symmetry, by the effect of the Higgs mechanism those gauge symmetries will be broken. In particular the abelian symmetries can be broken like that. When compactifying the supergravity plus SYM on the blow-up the non-abelian symmetries non-orthogonal to the flux gain masses at the classical level. However the abelian gauge symmetries non-orthogonal to the flux, will be broken only at the one-loop level due to the appearance of anomalies. There will be then many model dependent axions β_{r} which cancel the anomaly as described in 3.7, and this mechanism will create Stückelberg-like mass term for the $U(1)$ gauge bosons.

The bundle vectors which specify our resolution model are given as blow-up mode charges at the end of appendix A. The non-abelian gauge algebra is $S U(3) \times S U(2) \times S O(10)$, and a short summary of the charged spectrum is

irrep	$(\mathbf{3}, \mathbf{2}, \mathbf{1})$	$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1 0})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
multiplicity	3	10	16	17	1	86

4.3 Spectrum comparison

We describe in this section the match between the massless spectrum in the resolved space, and in the deformed orbifold. We perform field redefinitions in the orbifold twisted fields, employing local blow-up modes. The resulting spectrum reproduces the chiral asymmetry of the supergravity on the resolution. It is possible to evaluate the index theorem locally, at each compact divisor. This makes easier to uncover vector-like pairs which are located at different fixed points.

4.3.1 Field redefinitions

In the comparison of the massless spectrum in blow-up with the one at the deformed orbifold, the first observation is that the orbifold and blow-up states transform under the gauge d.o.f with different charges. Orbifold states $\Phi_{\gamma}^{\mathrm{Orb}}$ transform with the twisted momenta, while blow-up states $\Phi_{\gamma}^{\mathrm{BU}}$ transform with momenta in the $E_{8} \times E_{8}$ lattice. The index $\gamma=(k, \sigma, i)$ labels the state i localized at the orbifold fixed point (k, σ). Orbifold twisted fields which attain vevs we name as blow-up modes. The present study, aims to corroborate this interpretation. The axions localized in the exceptional divisors E_{r}, can be identified with complexified Kähler moduli as

$$
\begin{equation*}
\Phi_{r}^{\text {BU-Mode }}=e^{b_{r}+i \beta_{r}}, \tag{4.27}
\end{equation*}
$$

where b_{r} are the Kähler moduli parameterizing the size of the blown-up cycle and β_{r} are the model dependent axions in (4.23). We perform field redefinitions, including integer powers of the blow-up modes as

$$
\begin{align*}
\Phi_{\gamma}^{\mathrm{BU}} & =\prod_{k}\left(\Phi_{k, \sigma}^{\mathrm{BU}-\mathrm{Mode}}\right)^{-r_{k, \sigma}^{\gamma}} \Phi_{\gamma}^{\mathrm{Orb}} \tag{4.28}\\
& =e^{-\sum_{k} r_{k, \sigma}^{\gamma}\left(b_{k, \sigma}+i \beta_{k, \sigma}\right)} \Phi_{\gamma}^{\mathrm{Orb}} . \tag{4.29}
\end{align*}
$$

The coefficients $r_{k, \sigma}^{\gamma}$ will be specified below in 4.32). The considered redefinitions allow blow-up modes from all sectors $k=1,2,4$, but localized at the same fixed point σ as $\Phi_{\gamma}^{\text {Orb }}$. We denote the twisted momenta (charges) of the blow-up modes by $q_{I}^{k, \sigma}, I=1, \ldots, 16$. Those coincide with the components of the abelian vector bundle $V_{k, \sigma}^{I}$. The charges of the other orbifold fields are denoted by Q_{I}^{γ} and the redefined charges in blow-up by Q_{I}^{γ}. We define Δ_{I}^{γ} as

$$
\begin{equation*}
\Delta_{I}^{\gamma}=Q_{I}^{\gamma}-Q_{I}^{\prime \gamma}, \quad \Delta_{I}^{\gamma}=\sum_{k=1,2,4} r_{k, \sigma}^{\gamma} q_{I}^{k, \sigma} \tag{4.30}
\end{equation*}
$$

The redefinition (4.29) gives the correct gauge transformation for the blow-up states

$$
\begin{equation*}
\beta_{k, \sigma} \rightarrow \beta_{k, \sigma}+V_{k, \sigma}^{I} \chi_{I} \quad \Rightarrow \quad \Phi_{\gamma}^{\mathrm{BU}} \rightarrow e^{i \chi_{I}\left(Q_{I}^{\gamma}-\Delta_{I}^{\gamma}\right)} \Phi_{\gamma}^{\mathrm{BU}} \tag{4.31}
\end{equation*}
$$

where χ_{I} is the gauge parameter. In addition, due to the exponential map the blow-down limit is recovered when the sizes of the exceptional cycles $b_{k, \sigma}$ go to $-\infty$ rather than to 0 . The more intuitive behavior of $b_{k, \sigma} \rightarrow 0$ in blow-down, can be obtained using a different measure for the volume of curves 124 .

All the redefinitions Δ_{I}^{γ} giving a blow-up state, should be such that the charge $Q_{I}^{\prime \gamma}$ is a
root vector of $E_{8} \times E_{8}$ lattice. Thus, we explored the following redefinitions

$$
\begin{align*}
& Q_{k, \sigma}^{\mathrm{Orb}} \mapsto Q_{k, \sigma}^{\mathrm{BU}}=Q_{k, \sigma}^{\mathrm{Orb}}-V_{k, \sigma}, \tag{4.32a}\\
& Q_{k, \sigma}^{\mathrm{Orb}} \mapsto Q_{k, \sigma}^{\mathrm{BU}}=Q_{k, \sigma}^{\mathrm{Orb}}+V_{l, \sigma}+V_{m, \sigma}, \quad k \neq l \neq m \neq k, \tag{4.32b}\\
& Q_{1, \sigma}^{\mathrm{Orb}} \mapsto Q_{1, \sigma}^{\mathrm{BU}}=Q_{1, \sigma}^{\mathrm{Orb}}+V_{1, \sigma}-V_{2, \sigma}, \\
& Q_{2, \sigma}^{\mathrm{Orb}} \mapsto Q_{2, \sigma}^{\mathrm{BU}}=Q_{2, \sigma}^{\mathrm{Orb}}+V_{2, \sigma}-V_{4, \sigma}, \tag{4.32c}\\
& Q_{4, \sigma}^{\mathrm{Orb}} \mapsto Q_{4, \sigma}^{\mathrm{BU}}=Q_{4, \sigma}^{\mathrm{Orb}}-V_{1, \sigma}+V_{4, \sigma}, \\
& Q_{1, \sigma}^{\mathrm{Orb}} \mapsto Q_{1, \sigma}^{\mathrm{BU}}=Q_{1, \sigma}^{\mathrm{Orb}}+V_{1, \sigma}+V_{2, \sigma}-V_{4, \sigma}, \\
& Q_{2, \sigma}^{\mathrm{Orb}} \mapsto Q_{2, \sigma}^{\mathrm{BU}}=Q_{2, \sigma}^{\mathrm{Orb}}-V_{1, \sigma}+V_{2, \sigma}+V_{4, \sigma}, \tag{4.32d}\\
& Q_{4, \sigma}^{\mathrm{Orb}} \mapsto Q_{4, \sigma}^{\mathrm{BU}}=Q_{4, \sigma}^{\mathrm{Orb}}+V_{1, \sigma}-V_{2, \sigma}+V_{4, \sigma} .
\end{align*}
$$

The previous set allowed us to match the massless spectrum.

4.3.2 Local massless spectrum

Let us come now to the massless spectrum. On the orbifold we can compute it by determining the shifted momenta which satisfy the zero mass equation, the level matching and the projection conditions. Whereas in blow-up we make use of an index theorem (4.21).

On T^{6} / \mathbb{Z}_{7} resolution the exceptional divisors supporting the gauge flux \mathcal{F} are compact. This implies that the multiplicity \hat{N} in (4.21) can be written as a sum of local multiplicities $\hat{N}(\sigma)$ at the seven fixed points as

$$
\begin{equation*}
\hat{N}(\sigma)=\frac{1}{3} \sum_{k=1,2,4}\left[4 H_{k, \sigma}^{3}-H_{k, \sigma}\right]-H_{1, \sigma} H_{2, \sigma}^{2}-H_{1, \sigma}^{2} H_{4, \sigma}-H_{2, \sigma} H_{4, \sigma}^{2}+H_{1, \alpha} H_{2, \sigma} H_{4, \sigma}, \tag{4.33}
\end{equation*}
$$

where we used the notation $H_{k, \sigma}=V_{k, \sigma}^{I} H_{I}$ with bundle vectors $V_{k, \sigma}^{I}$ and Cartan generators H_{I}. The total multiplicity is obtained as $\hat{N}=\sum_{\sigma} \hat{N}(\sigma)$. The expression 4.33) contains a sum over the twisted sectors k. Thus, this local index doesn't give information about the twisted sector of the orbifold pair corresponding to the blow-up state.

The particle spectrum is calculated by decomposing the $480 E_{8} \times E_{8}$ roots in irrep. of the unbroken gauge group. This means to determine how the 10 d states $\left(\boldsymbol{8}_{v}, \mathbf{2 4 8}, 1\right)$ and $(\mathbf{8}, \mathbf{2 4 8}, 1)$ charged under the first E_{8} (and also the ones charged under second E_{8}) decompose in 4 d . To determine the global or local multiplicity of a state in blow-up one acts with N or $N(\sigma)$, respectively, on the corresponding $E_{8} \times E_{8}$ root. This gives the multiplicity of each massless SUSY matter multiplet in blow-up. As 4.33) is an odd polynomial in H_{I}, \hat{N} and $\hat{N}(\sigma)$ change sign for CPT conjugate states. In this section we evaluate the multiplicities by acting on the highest weight of the fundamental representations and on the
lowest weight of the CPT conjugate of the anti-fundamental representations. Hence, states transforming in fundamental representations are assigned positive multiplicity and states transforming in anti-fundamental representations are assigned negative multiplicity.

4.3.3 Spectrum comparison

We perform redefinitions of the type 4.32 and compare the resulting spectrum. The details of the matching procedure are worked out in this subsection. A table of all $E_{8} \times E_{8}$ root vectors, their redefinition, and the corresponding orbifold states is given in appendix A.

There are some facts that one should consider. First, the spectrum in blow-up is only known through its chiral asymmetry. The multiplicities only give the difference between the number of left-chiral states with certain charge, and the number of right-chiral states with the opposite charge. In contrast, for the orbifold we have access to the full spectrum, knowing all the left- and right- chiral states. Second, the vevs assignation that generates the blow-up also produces a Higgs mechanism. The gauge groups under which the blowup modes are charged get broken, and fields which posses Yukawa couplings with blow-up modes get massive.

By choosing only non-abelian gauge singlets as blow-up modes we can preserve the rank of the gauge group on the orbifold variety. The constraints are the BI and the existence of non-abelian singlets in every fixed point. If one is forced to select blow-up modes which are charged under the non-abelian gauge sector then it would be necessary to reconstruct the breaking of the non-abelian gauge groups. In this case is also possible to study the matching, but the exposition is simpler with the use of singlets.

Vector-like states on the deformed orbifold are not captured by the index theorem 4.21). It occurs often that several different orbifold states are redefined via 4.32) to the same root vector. Also other roots have net multiplicity zero and don't appear in the redefinition process. If there are states which are redefined to the same root, while others are redefined to the negative root (i.e. the charge conjugate one), the multiplicity operator will only see the number of the first states minus the number of the second states. So we do not see vector-like pairs. This leads to the effect that there are apparently less states in blow-up than in the orbifold.

The advantage of the local multiplicity, is that even these vector-like pairs can be identified as long as they do not live at the same fixed point. Additionally, by checking the dependence of a vector-like pair on the Kähler parameters b_{r}, it can be seen which states are expected to get a mass in blow-up. We study also the Yukawa couplings on the orbifold, verifying that all involved states couple to one or more blow-up modes. The orbifold masses from Yukawa couplings to blow-up modes agree with the massless blow-up spectrum. The anomaly computation on both sides of the theory provides a very strong cross-check that the identified mass terms are correct.

Matching of massless states As an illustration of the matching method let us look at examples from the table of appendix A. Lets start with the 3 quark doublets (3,2,1). The first field Q_{1} lives in the untwisted sector. Hence it does not need to be redefined. The local multiplicity operator is $1 / 7$ at each of the fixed points, i.e. the field is smeared out over all fixed points, as expected for an untwisted field. The fields Q_{2} and Q_{3} both live at the first fixed point. They are redefined to two root vectors via 4.32a at the first fixed point (and at $k=2$ and $k=1$ respectively). The local multiplicity operator for those root vectors is one at the first fixed point. Hence the local multiplicity exactly sees the orbifold state. At the other fixed points, we see fractional multiplicities of $\pm 1 / 7$, which sum to zero giving one as net multiplicity. These non-existing states can be interpreted as untwisted states projected out on the orbifold. As long as they sum to zero, we ignore them in the following. If they do not sum to zero but to one, they indicate an untwisted field, as seen for Q_{1}.

There are $S U(3)$ charged states transforming in the fundamental $\mathbf{3}$ as well as in the antifundamental $\overline{\mathbf{3}}$. Our convention is only to look at the triplet weights since the anti-triplets weights correspond to their negatives ${ }^{1}$. Thus, a positive multiplicity indicates a triplet state whereas a negative multiplicity stands for the presence of an anti-triplet state. An example for this are the states \bar{t}_{7} and t_{6} which transform in the $(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$ and in the $(\mathbf{3}, \mathbf{1}, \mathbf{1})$. Their overall multiplicity is -1 and 1 , and the local multiplicity operator reveals that these states live at fixed points 7 and 6 , respectively. Something conceptually new happens for the orbifold states $t_{5}, t_{12}, \bar{t}_{11}$, and \bar{t}_{18}. Although those states are redefined to the same root the total multiplicity is zero. This happens because the multiplicity operator can only count the net number of states which is $2-2=0$. However, the local multiplicity operator gives some insight here. The three states $t_{5}, t_{12}, \bar{t}_{11}$ all live at fixed point 5 on the orbifold. As there are two left-chiral and one right-chiral state the local multiplicity is 1 . For the one right-chiral state \bar{t}_{18}, there is a local multiplicity of -1 at fixed point 6 . Hence the overall multiplicity is zero. The multiplicities of the other states can be worked out in a similar manner.

Matching of massive states Vector-like states can acquire a mass in the blow-up procedure from trilinear Yukawa couplings. The selection rules for allowed Yukawa couplings on the orbifold arise from requiring gauge invariance, compatibility with the space-group, and conservation of H -momentum. Conservation of R-charge will be discussed below. Gauge invariance amounts to the requirement that the sum of the left-moving shifted momenta of the strings involved in the coupling is zero.

The space-group selection rule implies that the product of the constructing space-group elements of the states involved in the coupling must be the identity ($\mathbb{1}, 0)$. Non-zero

[^24]trilinear couplings should satisfy 125
\[

$$
\begin{equation*}
\left(k=1, \sigma_{1}\right) \circ\left(k=2, \sigma_{2}\right) \circ\left(k=4, \sigma_{4}\right), \quad \text { with } \sigma_{1}+2 \sigma_{2}+4 \sigma_{4}=0 \bmod 7 \tag{4.34}
\end{equation*}
$$

\]

This can be checked by using the conjugacy classes in Table 4.1). For example in the case $\sigma_{1}=\sigma_{2}=\sigma_{4}=1$ one obtains

$$
\left(\theta, e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}\right) \cdot\left(\theta^{2}, e_{2}+e_{3}+e_{4}+e_{5}+e_{6}\right)\left(\theta^{4}, e_{4}+e_{5}+e_{6}\right)=(\mathbb{1}, 0)
$$

If the coupling involves states which are all located at the same fixed point $\left(\sigma_{1}=\sigma_{2}=\sigma_{4}\right)$, the space-group selection rule is trivially fulfilled. However, there are also solutions to (4.34) for states coming from three different fixed points. Since these couplings arise from world-sheet instantons [63, 105], they are suppressed by a factor of the form $e^{-a_{i}}$ where a_{i} are the moduli which govern the sizes of the orbifold or Calabi-Yau (cf. (4.23)). Here, if the space-group selection rule is fulfilled for trilinear couplings then H -momentum is automatically conserved. As discussed in section 3.4 there can be other selection rules coming from the internal part of the Lorentz group. For a local orbifold $\mathbb{C}^{3} / \mathbb{Z}_{N}$ the rotation of the three individual complex planes is a continuous symmetry. Since the invariant spinor is charged under it, it will be an R-symmetry. The charges are given by

$$
\begin{equation*}
R_{\gamma}^{i}=q_{\mathrm{sh}, \gamma}^{i}+N_{\gamma}^{i}-\bar{N}_{\gamma}^{i} \tag{4.35}
\end{equation*}
$$

where $q_{\text {sh }}$ are the shifted right-moving internal momenta of the orbifold state $\Phi_{\gamma}^{\mathrm{Orb}}$ and N (\bar{N}) are the (anti-) holomorphic oscillator numbers. The conservation rule reads

$$
\begin{equation*}
\sum_{\zeta} R_{\zeta}^{i}=1 \tag{4.36}
\end{equation*}
$$

where ζ runs over the three states involved in the Yukawa coupling. Equation 4.36 is trivially fulfilled for states without oscillators if the space-group rules are. However, in a compact orbifold this symmetry will be broken down to a subgroup by the torus lattice. Therefore the formerly forbidden couplings are expected to be supressed by the size of the lattice. If the lattice is factorizable, the remaining symmetry is the discrete rotation of the three two-tori. In this case the selection rule needs only to be satisfied up to multiples of the order of the orbifold group. For the non-factorizable $S U(7)$ lattice of the \mathbb{Z}_{7} orbifold, we checked that the symmetry is broken completely except for the \mathbb{Z}_{7} itself, so 4.36 should not be imposed on the compact orbifold.

The supergravity theory on the blow-up side is, however, only valid in the compactification space large volume limit, such that Kaluza-Klein excitations are absent in the spectrum. In particular, we expect that the R-charge selection rule 4.36 , which is broken by the orbifold lattice, is still a valid symmetry in the large volume limit. Therefore we expect the states, which are supposed to get a mass via such suppressed couplings on the orbifold, to appear as massless states in the multiplicity operator in blow-up. By comparing the spectra we indeed find that the index theorem sees massless states for which the orbifold theory
predicts non-local mass terms, or mass terms which do not satisfy 4.36). To illustrate the absence of both types of mass terms in blow-up we look at suitable examples.
As an example for mass terms not satisfying (4.36) consider the singlet states s_{25}, s_{26}, s_{70}, s_{111}, s_{112} and s_{113}, see appendix A. These states are all oscillator states, what explains their degeneracy and makes them sensible to a possible R-symmetry. Together with the blow-up modes s_{68} and s_{27}, there are the following orbifold trilinear superpotential couplings when imposing only gauge- and space-group invariance and the $\mathrm{H}-$ momentum rule:

$$
\left(\begin{array}{lll}
s_{111} & s_{112} & s_{113}
\end{array}\right)\left(\begin{array}{lll}
a_{11} s_{68} & a_{12} s_{68} & a_{13} s_{27} \tag{4.37}\\
a_{21} s_{68} & a_{22} s_{68} & a_{23} s_{27} \\
a_{31} s_{68} & a_{32} s_{68} & a_{33} s_{27}
\end{array}\right)\left(\begin{array}{l}
s_{25} \\
s_{26} \\
s_{70}
\end{array}\right)
$$

where the $a_{i j}$ are coefficients of order one. Now when one gives a vev to the blow-up modes s_{68} and s_{27}, these couplings become a rank three mass matrix and thus one would expect all 6 singlets to become massive and disappear from the chiral spectrum in blowup. However, when we look at the roots to which these singlets can be redefined, the local multiplicity operator reveals that there are four states at the resolved fixed point where the singlets in question were localized. Therefore four of these singlets must stay massless during blow-up. This means that the above mass matrix must only have rank one, such that just one pair of singlets is decoupled. One could explain this by assuming that all coefficients $a_{i j}$ are equal, but this assumption is a priori not justified and would lead to mixing of the fields during redefinition. Our interpretation is that the local multiplicity operator sees states only in the large volume limit where the R-symmetry (4.36) is exact. Imposing R-symmetry here would set all coefficients to zero except for a_{21} and a_{23} and therefore naturally explain the rank one mass matrix.
To illustrate the non-local mass terms, we investigate the triplet states $t_{5}, t_{12}, \bar{t}_{11}$, and \bar{t}_{18} encountered above. From the employed redefinitions we find

$$
\begin{align*}
& t_{5}^{\mathrm{BU}} \bar{t}_{11}^{\mathrm{BU}}=t_{5}^{\mathrm{Orb}} \bar{t}_{11}^{\mathrm{Orb}} e^{-b_{4,5}+b_{1,5}+b_{4,5}}=t_{5}^{\mathrm{Orb}} \bar{t}_{11}^{\mathrm{Orb}} e^{b_{1,5}}, \tag{4.38a}\\
& t_{12}^{\mathrm{BU}} \bar{t}_{11}^{\mathrm{BU}}=t_{12}^{\mathrm{Orb}} \bar{t}_{11}^{\mathrm{Orb}} e^{-b_{1,5}+b_{1,5}+b_{4,5}}=t_{12}^{\mathrm{Orb}} \bar{t}_{11}^{\mathrm{Orb}} e^{b_{4,5}} . \tag{4.38b}
\end{align*}
$$

The coupling of t_{5} and t_{12} with \bar{t}_{18} is non-local as the states reside at different fixed points. Hence this coupling is not captured by the multiplicity operator. The redefinitions show that in blow-up where $b_{k, \sigma} \rightarrow \infty$, the couplings 4.38) provide a mass term which vanishes in the blow-down limit $b_{k, \sigma} \rightarrow-\infty$. This means that from the blow-up perspective a linear combination of t_{5} and t_{12} pairs up with \bar{t}_{11} and lifts the exotic state from the massless particle spectrum in blow-up. This behavior is also confirmed from the orbifold perspective. The appearance of $b_{1,5}$ 4.38a) shows that t_{5} from the θ^{4} sector and \bar{t}_{11} from the θ^{2} sector couple to the blow-up mode from the θ sector as dictated by the space-group selection rule. Likewise, for the second mass term (4.38b) we find a coupling between t_{12} from the θ sector, \bar{t}_{11} from the θ^{2} sector, and the blow-up mode from the θ^{4} sector as indicated by $b_{4,5}$.
The local R-charge selection rule (4.36) is only relevant for oscillator states, as states satisfying the space-group selection rule have $\sum_{\zeta} q_{\mathrm{sh}, \zeta}^{i}=1$ and hence 4.36) is fulfilled for states without oscillators. Interestingly, the states which have oscillators often allow for
more than one possible redefinition 4.32 . Imposing 4.36 in conjunction with consistency of the local blow-up spectra singles out a unique field redefinition. Using these redefinitions, we were able to establish a perfect match between the anomalies on the orbifold and in blow-up, which we take as a strong cross-check that the above discussion is valid. This will be explained in the next section.
The above analysis has been carried out in a similar fashion for all other $\mathcal{O}(200)$ states. Each time we find mass terms of the form 4.38 from the redefinitions on the blow-up side, they also constitute allowed couplings on the orbifold side and lead in the end to a perfect match of the anomaly computation. We expect also that there exists an orbifold mechanism explaining why a local R-charge can be applied in this case. This was a motivation for the study of orbifold selection rules presented in section 3.4 , however this is still work in progress which we plan to address elsewhere.

4.4 Anomalies study

In this section we perform the study of the anomaly cancellation mechanism in the orbifold and in the resolution. We start with the dimensional reduction of the 10 d anomaly polynomial using the technique presented in section 3.7. We then describe how to compute the anomaly in the orbifold deformed by vevs, which matches the dimensional reduced polynomial on the blow-up. To conclude, we obtain the relations between universal and non-universal axions in blow-up, with the universal orbifold axion, and the local axions which are identified with blow-up modes.

4.4.1 Anomalies in the resolved space

Now let us proceed to the calculation of the dimensional reduction of the 10 d anomaly for our explicit blow-up model. First we give a general description of every term in the 4 d anomaly polynomial. Then we investigate the pure $U(1), U(1) \times \operatorname{grav}^{2}$ and $U(1) \times G^{2}$ polynomials. As the pure gravitational anomalies are canceled by the presence of 496 gauginos in ten dimensions we do not include them in further discussions. After this we calculate the anomalies in blow-up in two different ways: from the coefficients appearing in the anomaly polynomial 4.39 and field-theoretically from the triangle anomaly graph given in figure 4.1. The fact that both results coincide provides a non-trivial cross-check for the spectrum computation and the field redefinitions explained in section 4.3 . Expanding (3.148) in 6 d and 4 d fields, one obtains 83,122

$$
\begin{equation*}
I_{6}=\int_{\mathcal{M}}\left\{\frac{1}{6}\left(\operatorname{tr}\left[\mathcal{F}^{\prime} F^{\prime}\right]\right)^{2}+\frac{1}{4}\left(\operatorname{tr} \mathcal{F}^{\prime 2}-\frac{1}{2} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} F^{\prime 2}-\frac{1}{8}\left(\operatorname{tr} \mathcal{F}^{\prime 2}-\frac{5}{12} \operatorname{tr} \mathcal{R}^{2}\right) \operatorname{tr} R^{2}\right\} \operatorname{tr}\left[\mathcal{F}^{\prime} F^{\prime}\right]+\left({ }^{\prime} \rightarrow{ }^{\prime \prime}\right) \tag{4.39}
\end{equation*}
$$

In both $E_{8} \mathrm{~s}$, the whole anomaly is multiplied by a factor $\operatorname{tr}(\mathcal{F} F)$. This factor projects onto the $U(1)$ part of F, as our gauge background is by construction abelian. In addition, it is

Figure 4.1: Triangle graph inducing the gauge 4 d anomalies and the axionic Green-Schwarz counterterm.
generically only different from zero for anomalous $U(1) \mathrm{s}$, as $T_{U(1)} \perp V_{r}$ for non-anomalous $U(1)$ s. This means, that unless a miraculous cancellation occurs, the number of anomalous $U(1)$ is given by the rank of the 16×21 matrix V_{r}^{I}. In our example all $U(1) \mathrm{s}$ are anomalous in blow-up, so we get contributions for all abelian gauge group factors.

So let us discuss how the different $U(1)$ anomalies are encoded in 4.39) in detail:

- Term 1: As $\operatorname{tr}(\mathcal{F} F)$ projects onto the $U(1)$-part, only pure $U(1)$ anomalies can arise from this term. The whole term contains $[\operatorname{tr}(\mathcal{F} F)]^{3}=E_{r} E_{r^{\prime}} E_{r^{\prime \prime}} V_{r}^{I} V_{r^{\prime}}^{J} V_{r^{\prime \prime}}^{K} F_{I} F_{J} F_{K}$. Depending on the values of I, J, and K, we get $U(1)^{3}$ anomalies if $I=J=K$, $U(1)^{2} U(1)^{\prime}$ anomalies if $I=J \neq K$, or $U(1) U(1)^{\prime} U(1)^{\prime \prime}$ anomalies if $I \neq J \neq K \neq I$.
- Term 2: Here, we have a term $\operatorname{tr}(F)^{2} \operatorname{tr}(\mathcal{F} F)$. The term $\operatorname{tr}(F)^{2}$ contains an inner product of the 4 d field strength with itself, so from here we can get both abelian and non-abelian factors depending on the choice of the group element.
- Term 3: This term couples the 4 d field strength to the 4 d curvature. Hence, this term gives rise to the $U(1) \times \operatorname{grav}^{2}$ anomalies.

As mentioned above, the anomalies can also be evaluated in the 4 d effective field-theory through the triangle Feynman graphs and counterterms arising from couplings between axions and fermions (cf. figure 4.1). The different anomalous contribution are given schematically by

$$
\begin{array}{ll}
U(1) \times U(1)^{\prime} \times U(1)^{\prime \prime}: & \operatorname{sym} \sum_{\lambda} N(\lambda)\left(T_{U(1)} \cdot \lambda\right)\left(T_{U(1)^{\prime}} \cdot \lambda\right)\left(T_{U(1)^{\prime \prime}} \cdot \lambda\right), \\
U(1) \times G^{2} & : \tag{4.40}\\
U(1) \times \operatorname{grav}^{2} \quad: & \left.\sum_{\lambda} N(G)\right) \sum N(\mathbf{r}(G))\left(T_{U(1)} \cdot(\mathbf{r}(G))\right), \\
U(1) \cdot \lambda) .
\end{array}
$$

Here $N(\cdot)$ denotes the multiplicity of the state in brackets and negative values indicate the conjugate representation as given by (4.21). $T_{U(1)} \cdot \lambda$ represents the charge of a given $E_{8} \times E_{8}$ lattice vector $\lambda, k(\mathbf{r})$ is the Dynkin index of the irrep and sym accounts for the symmetry factor corresponding to the various $U(1)$ anomalies. For the first and last terms, the sum runs over all roots, whereas for the mixed $U(1) \times G^{2}$ anomalies, the sum runs over the roots transforming in the respective representation only. Taking into account the numerical
factors, the values of these quantities should match the coefficients of the corresponding term in the anomaly polynomial. As will be discussed below, we have computed both the dimensional reduction of the anomaly (3.148) and the triangle anomalous graphs in the effective field theory, finding that the coefficients in 4.39) coincide with the result of 4.40 . This agreement provides an important cross-check.

In order to obtain the three different kinds of anomalies explicitly, we choose an $E_{8} \times E_{8}$ Cartan basis given in (B.1) in appendix B in which the eight elements $T_{j}, j=1, \ldots, 8$ are the $U(1)^{8}$ generators and the rest spans the Cartan subalgebra of the non-abelian part of the gauge group. The $U(1)$ generators have components in both E_{8} 's.
$\boldsymbol{U}(1) \times \boldsymbol{G}^{\mathbf{2}}$ anomalies Let us start the calculation of the anomalies with the explicit calculation of the $U(1) \times G^{2}$ contribution of 4.39 in the above basis. They are given by

$$
\begin{equation*}
I_{G}=\left(25 F_{1}-20 F_{2}-25 F_{3}-4 F_{4}-66 F_{5}+18 F_{6}+25 F_{7}\right) \operatorname{tr} F^{\prime 2}-F_{8} \operatorname{tr} F^{\prime \prime 2} \tag{4.41}
\end{equation*}
$$

This is now compared with the anomalies $U(1) \times S U(2)^{2}, U(1) \times S U(3)^{2}$ and $U(1) \times S O(10)^{2}$ calculated from the triangle graph using the spectrum given in appendix A. The field strengths for $S U(2)$ and $S U(3)$ in the visible sector are in $\operatorname{tr} F^{\prime 2}$ and the field strength of the hidden sector $S O(10)$ is in $\operatorname{tr} F^{\prime 2}$. The dimensional reduced anomaly polynomial coefficients and the ones computed via the traces from the anomalous triangle diagram match exactly.
$\boldsymbol{U}(1) \times \operatorname{grav}^{2}$ anomalies When comparing the coefficients in $I_{\text {grav }}$ and the values of $\operatorname{tr} Q_{i}$ from the 4 d effective spectrum for the $U(1) \times \operatorname{grav}^{2}$ anomalies, we obtain again exact agreement, after the normalization factor of $-1 / 24$ has been taken into account in the effective field theory computation. The polynomial reads

$$
\begin{equation*}
I_{\text {grav }}=\frac{1}{12}\left(-166 F_{1}-136 F_{2}+292 F_{3}+40 F_{4}+464 F_{5}-152 F_{6}-187 F_{7}+8 F_{8}\right) \operatorname{tr} R^{2} \tag{4.42}
\end{equation*}
$$

Pure $\boldsymbol{U}(1)$ anomalies Comparing the coefficients in $I_{\text {pure }}$ with the values obtained from the 4 d effective spectrum we find again a perfect agreement. Note that the symmetry factors sym of $1 / 1$! for $\operatorname{tr} Q_{I} Q_{J} Q_{K}$ with $I \neq J \neq K \neq I, 1 / 2$! for $\operatorname{tr} Q_{I}^{2} Q_{J}$ with $I \neq J$, and $1 / 3$! for $\operatorname{tr} Q_{I}^{3}$ have to be used in the 4 d anomaly graph computation. The expression for the polynomial is more involved than the one of $U(1) \times G^{2}$ and $U(1) \times \mathrm{grav}^{2}$. It is of the schematic form

$$
\begin{equation*}
I_{\text {pure }}=\sum a_{I} F_{I}^{3}+k_{I J} F_{I}^{2} F_{J}+c_{I J K} F_{I} F_{J} F_{K} \tag{4.43}
\end{equation*}
$$

Anomaly universality in blow-up As explained above, on the orbifold we have only one axion to cancel the anomalies. Anomaly freedom then requires in particular that all three kinds of anomalies are proportional such that they can all be canceled with the same axion. In blow-up, this is generically not true. However, from (4.39) and the discussion thereafter, it is apparent that there are still partial anomaly universalities: one can find a $U(1)$ basis where one $U(1)$ captures all gravitational anomalies, and two further $U(1)$ s capture all non-abelian anomalies of the visible and hidden sector, respectively. The rest of the $N-3 U(1)$ s have only pure $U(1)$ anomalies.
In order to construct such a basis, the original basis is changed to $\left\{\bar{F}_{J}\right\}$ as given in (B.2) in appendix B. After performing the base change $F_{I}=K_{I}^{J} \bar{F}_{J}$, the relevant polynomials are given by

$$
\begin{align*}
I_{G} & =\bar{F}_{1}\left(\operatorname{tr} F_{S U(2)}^{2}+\operatorname{tr} F_{S U(3)}^{2}\right)+\bar{F}_{2} \operatorname{tr} F_{S O(10)}^{2}, \tag{4.44}\\
I_{\text {grav }} & =\bar{F}_{3} \operatorname{tr} R^{2} . \tag{4.45}
\end{align*}
$$

The expression for $I_{\text {pure }}$ in terms of the new eight $U(1)$ directions is rather involved so we refrain from giving it explicitly here. While the non-abelian $U(1) \times S U(N)^{2}, N=2,3$ and $U(1) \times S O(10)^{2}$ directions are orthogonal, the $U(1) \times \operatorname{grav}^{2}$ is not orthogonal to any of them.

4.4.2 Relating the anomalies on the orbifold and in blow-up

On the orbifold there is a single anomalous abelian gauge symmetry $U(1)_{A}$. This anomalous $U(1)_{A}$ induces an FI term which has to be canceled in a supersymmetric vacuum solution. This is done by assigning vevs to certain charged fields which in general are also charged under other $U(1) \mathrm{s}$. Thus, once the vevs are given, we expect the breakdown of further $U(1) \mathrm{s}$. This breakdown manifests itself from the blow-up perspective in $U(1) \mathrm{s}$ which become anomalous. The anomaly is canceled with the Green-Schwarz mechanism, which also gives a mass to the $U(1)$ s. Thus we aim at investigating the 4 d anomaly from the point of view of the orbifold and the blow-up. Via the descent equations, we get relations between the universal axion on the orbifold canceling the unique $U(1)_{A}$ anomaly and the axions in blow-up (universal and non-universal) canceling the multiple $U(1)$ anomalies.

4d anomaly from the orbifold point of view On the orbifold, our starting point is the anomaly polynomial $I^{\text {orb }}$ which describes the single unique anomalous $U(1)$ on the orbifold. To this anomaly, we add the anomaly change which is due to the departure from the orbifold point when blowing up. These changes are induced by blow-up modes that acquire vevs and thus provide mass terms via Yukawa couplings, and by the field redefinitions. We call this contribution $I^{\text {red }}$. Thus, from the orbifold perspective, the 4 d anomaly polynomial I_{6}, after assigning vevs to twisted fields, decomposes as

$$
\begin{equation*}
I_{6}=I^{\mathrm{orb}}+I^{\mathrm{red}} \tag{4.46}
\end{equation*}
$$

4d anomaly from the blow-up point of view In blow-up, we start from the factorized anomaly polynomial in 10 dimensions (3.148), integrate out the internal space \mathcal{M}, and decompose the polynomial into a universal term $I^{\text {uni }}$ plus a non-universal term $I^{\text {non }}$:

$$
\begin{equation*}
I_{6}=I^{\mathrm{uni}}+I^{\mathrm{non}}=\int_{\mathcal{M}} X_{6,2} X_{0,4}+\int_{\mathcal{M}} X_{2,2} X_{4,4} \tag{4.47}
\end{equation*}
$$

The forms $X_{2 k, 2 l}$ were defined in section 3.7.1. The explicit decomposition of X_{4} and X_{8} in terms of internal and four dimensional indices is given in appendix C. Note that the term $\int X_{2,6} X_{4,0}$ vanishes due to the Bianchi identities, and is thus not present. For later convenience, we introduce the short-hand expressions

$$
\begin{equation*}
X_{2}^{\mathrm{uni}}:=\int_{\mathcal{M}} X_{6,2}, \quad X_{4}^{\mathrm{uni}}:=X_{0,4}, \quad E_{r} X_{2}^{r}:=\frac{1}{12} \cdot 2 \operatorname{tr}(\mathcal{F} F), \quad X_{4}^{r}:=\int_{\mathcal{M}} X_{4,4} E_{r} \tag{4.48}
\end{equation*}
$$

A factor $-1 / 12$ coming from the dimensional reduction is absorbed in the forms $X_{2}^{\text {uni }}$ and X_{2}^{r}. This factor also rescales $a^{\text {uni }}$ and β_{r}, and we use the same symbol to denote its new values. The expression $\int X_{6,2} X_{0,4}$ has terms mixing both $E_{8} \mathrm{~S}$ (${ }^{\prime}$ and ${ }^{\prime \prime}$). This could also happen in $\int X_{4,4} X_{2,2}$. However, it turns out that these mixed terms are absent in the whole I_{6} in 4.39), which has the first and the second E_{8} anomalies fully separated 122 .

Descent equations Putting together the pieces described above, we obtain a relation between the anomaly polynomials on the orbifold and in blow-up:

$$
\begin{align*}
I^{\mathrm{orb}}+I^{\mathrm{red}} & =I^{\mathrm{uni}}+I^{\mathrm{non}} \\
F^{\mathrm{orb}} X_{4}^{\mathrm{orb}}+\sum_{a} q_{I}^{a} F^{I} X_{4, a}^{\mathrm{red}} & =X_{2}^{\mathrm{uni}} X_{4}^{\mathrm{uni}}+\sum_{r} X_{2}^{r} X_{4}^{r} \tag{4.49}
\end{align*}
$$

All the different factors in the polynomials $X_{2}^{r}, X_{4}^{r}, X_{2}^{\text {uni }}, X_{4}^{\text {uni }}$ are given in appendix C. The counterterms of the axions involved in the cancellation of the anomalies described above are related via the descent equation as

$$
\begin{equation*}
a^{\mathrm{orb}} X_{4}^{\mathrm{orb}}+\sum_{a} \tau_{a} X_{4, a}^{\mathrm{red}}=a^{\mathrm{uni}} X_{4}^{\mathrm{uni}}+\sum_{r} \beta_{r} X_{4}^{r} \tag{4.50}
\end{equation*}
$$

The left hand side contains the unique orbifold axion $a^{\text {orb }}$ together with the blow-up modes τ_{a}, and the right hand side contains the universal axion $a^{\text {uni }}$ in blow-up as well as the non-universal axions β_{r}. This last equation helps us to express the axions in terms of the blow-up modes. In 4.50 we have added a counterterm $\sum_{a} \tau_{a} X_{4, a}^{\text {red }}$ of blow-up modes whose variation accounts for the change of the orbifold anomaly. Our aim is to express β_{r} and $a^{\text {uni }}$ in terms of $a^{\text {orb }}$ and τ_{a}, in order to confirm the interpretation of the non-universal axions as phases of the blow-up modes 91 . We do so by calculating the four different anomalies $I^{\text {orb }}, I^{\text {red }}, I^{\text {uni }}$, and $I^{\text {non }}$ of 4.49 separately. Then, we infer the relationship among the axions via the descent equations 4.50.

Universal orbifold anomaly $I^{\text {orb }}$

On the orbifold, we can choose a basis of $U(1)$ charges such that the single anomalous $U(1)_{A}$ is generated by

$$
\begin{equation*}
T_{\mathrm{A}}=(3,3,1,1,1,5,-3,-3,0,-4,2,0,0,0,0,0) \tag{4.51}
\end{equation*}
$$

in terms of an orthogonal standard base for the Cartan elements of $E_{8} \times E_{8}$. With this anomalous $U(1)$ generator, the anomaly polynomial on the orbifold is

$$
\begin{equation*}
I^{\mathrm{orb}}=6 F_{1}\left(\operatorname{tr} F_{S U(2)}^{2}+\operatorname{tr} F_{S U(3)}^{2}+\operatorname{tr} F_{S O(10)}^{2}-\operatorname{tr} R^{2}+\kappa^{I J} \sum_{I, J} F_{I} F_{J}\right) \tag{4.52}
\end{equation*}
$$

The numerical factors $\kappa^{I J}$ are not given explicitly because they are not relevant in further discussions. The factor of 6 could be absorbed by changing the normalization of T_{A}. However, we prefer not to do so, as otherwise we find this factor of 6 in all field redefinitions in the next section.

Anomaly from field redefinition $I^{\text {red }}$

As explained in section 4.3, there is a field redefinition between the states on the orbifold and in blow-up. This field redefinition also induces a change of the anomaly polynomial described by $I^{\text {red }}$. We calculate this change by splitting up $I^{\text {red }}$ into contributions from the three types of anomalies, $I^{\mathrm{red}}=I_{\mathrm{G}}^{\mathrm{red}}+I_{\mathrm{grav}}^{\mathrm{red}}+I_{\mathrm{p} u r e}^{\mathrm{red}}$, which we will now compute.
$\boldsymbol{U}(1) \times G^{2}$ anomaly redefinition In order to compute the redefinition of the $U(1) \times G^{2}$ anomaly polynomial we need to consider the change of $\operatorname{tr} Q_{I}$ when going from the orbifold to blow-up, where the trace is taken over the fields charged under the non-abelian group. The change is due to the field redefinitions and to the fact that some fields become massive in blow-up and hence are not present in the massless spectrum anymore. Recall that $Q_{I}^{\gamma}, Q_{I}^{\gamma}, \Delta_{I}^{\gamma}$ denote the charges of a state γ on the orbifold, the charges in blow-up, and the shift in the charge caused by field redefinitions, see 4.30).

The sum of the charges in blow-up $\operatorname{tr}\left(Q_{I}\right)_{\mathrm{BU}}=\sum_{\alpha} Q_{I}^{\alpha}{ }^{\alpha}$ runs over the states α that remain massless after giving vevs to the blow-up modes. Hence, in order to recover the trace on the orbifold prior to having assigned vevs, we also have to include a sum over the states that gain a mass in blow-up, which we label by β. We thus obtain

$$
\begin{align*}
\operatorname{tr}\left(Q_{I}\right)_{\mathrm{BU}} & =\sum_{\alpha} Q_{I}^{\alpha}-\sum_{\alpha} \Delta_{I}^{\alpha}=\sum_{\alpha} Q_{I}^{\alpha}-\sum_{\alpha} \Delta_{I}^{\alpha}+\sum_{\beta} Q_{I}^{\beta}-\sum_{\beta} \Delta_{I}^{\beta}-\sum_{\beta} Q_{I}^{\prime \beta} \\
& =\operatorname{tr}\left(Q_{I}\right)_{\mathrm{orb}}-\sum_{\gamma=\alpha, \beta} \Delta_{I}^{\gamma}-\sum_{\beta} Q_{I}^{\prime \beta} \tag{4.53}
\end{align*}
$$

where we added a 0 in the first step and rearranged the terms in the second step. Note that the last sum $\sum_{\beta} Q_{I}^{\prime \beta}$ which sums over all fields that became massive in blow-up, vanishes identically: all massive states are vector-like with respect to their charges, so the sum always contains pairs of opposite charges. Leaving out this last term, the contribution to the 4 d anomaly polynomial and the redefinition part reads

$$
\begin{align*}
I_{G} & =F^{I} \operatorname{tr} F_{G}^{2} \sum_{\alpha} Q_{I}^{\prime \alpha} \\
I_{G}^{\mathrm{red}} & \sim \sum_{G, I}\left(-\sum_{\gamma} \Delta_{I}^{\gamma}\right) F^{I} \operatorname{tr} F_{G}^{2} \sim \sum_{G, I} c_{I}^{G} F^{I} \operatorname{tr} F_{G}^{2} \tag{4.54}
\end{align*}
$$

In the sums G runs over $S U(2), S U(3)$ and $S O(10)$. When evaluating the sum and comparing with the orbifold result, we obtain a perfect match of all $U(1) \times G^{2}$ anomalies of both theories. The anomaly coefficients c_{I}^{G} of 4.54 are given by

$$
\begin{align*}
c_{I}^{S U(2), S U(3)} & =(19,-20,-25,-4,-66,18,25,0) \\
c_{I}^{S O(10)} & =(-6,0,0,0,0,0,0,-1) \tag{4.55}
\end{align*}
$$

$\boldsymbol{U}(1) \times \operatorname{grav}^{2}$ anomaly redefinition For the $U(1) \times \operatorname{grav}^{2}$ anomaly one has to include all the massless fields in the trace. This means that, in contrast to the $U(1) \times G^{2}$ anomalies, one also has to add the contribution coming from the abelian blow-up mode charges q_{I}^{a}. The contribution to the 4 d anomaly polynomial and the redefinition part is then given by

$$
\begin{align*}
I_{\mathrm{grav}} & \sim F^{I} \operatorname{tr} R^{2} \operatorname{tr}\left(Q_{I}^{\prime}\right)_{\mathrm{BU}}=F^{I} \operatorname{tr} R^{2} \sum_{\alpha} Q_{I}^{\alpha} \\
& =F^{I} \operatorname{tr} R^{2}\left(\sum_{\alpha} Q_{I}^{\alpha}-\sum_{\alpha} \Delta_{I}^{\alpha}+\sum_{\beta} Q_{I}^{\beta}-\sum_{\beta} \Delta_{I}^{\beta}-\sum_{\beta} Q_{I}^{\prime \beta}+\sum_{a} q_{I}^{a}-\sum_{a} q_{I}^{a}\right) \\
I_{\text {grav }}^{\mathrm{red}} & \sim\left(-\sum_{\gamma=\alpha, \beta} \Delta_{I}^{\gamma}-\sum_{a} q_{I}^{a}\right) F^{I} \operatorname{tr} R^{2}=c_{I}^{\mathrm{grav}} F^{I} \operatorname{tr} R^{2} \tag{4.56}
\end{align*}
$$

where we again added the contributions from the massive fields and used that $\sum_{\beta} Q_{I}^{\prime \beta}=0$. The index γ contains both α for massless and β for massive fields. The anomaly coefficients in 4.56) are

$$
\begin{equation*}
c_{I}^{\text {grav }}=\left(-\frac{47}{6},-\frac{34}{3}, \frac{73}{3}, \frac{10}{3}, \frac{116}{3},-\frac{38}{3},-\frac{187}{12}, \frac{2}{3}\right) . \tag{4.57}
\end{equation*}
$$

We find again a perfect match between the blow-up polynomial and the redefined one, supporting the obtained field redefinitions 4.29 .

Pure $\boldsymbol{U}(\mathbf{1})$ anomaly redefinition A similar procedure can be applied to the pure $U(1)$ anomalies and in this case the field redefinitions change the polynomial via

$$
\begin{align*}
I_{\text {pure }} \sim & \frac{1}{3!} \sum_{I, J, K} F^{I} F^{J} F^{K} \sum_{\alpha} Q_{I}^{\alpha \alpha} Q_{J}^{\alpha \alpha} Q_{K}^{\alpha \alpha} \\
= & \frac{1}{3!} \sum_{I, J, K} F^{I} F^{J} F^{K}\left(\sum_{\alpha} Q_{I}^{\alpha} Q_{J}^{\alpha} Q_{K}^{\alpha}+\sum_{a} q_{I}^{a} q_{J}^{a} q_{K}^{a}+\sum_{\beta} Q_{I}^{\beta} Q_{J}^{\beta} Q_{K}^{\beta}\right)+I_{\text {pure }}^{\mathrm{red}} \\
= & \frac{1}{3!} \sum_{I, J, K} F^{I} F^{J} F^{K} \operatorname{tr}\left(Q_{I} Q_{J} Q_{K}\right)_{\text {orb }}+I_{\text {pure }}^{\mathrm{red}}, \\
I_{\text {pure }}^{\mathrm{red}} \sim & \frac{1}{3!} \sum_{I, J, K} F^{I} F^{J} F^{K}\left(\sum _ { \gamma = \alpha , \beta } \left(-3 \Delta_{I}^{\gamma} Q_{J}^{\gamma} Q_{K}^{\gamma}+3 \Delta_{I}^{\gamma} \Delta_{J}^{\gamma} Q_{K}^{\gamma}-\sum_{\gamma=\alpha, \beta} \Delta_{I}^{\gamma} \Delta_{J}^{\gamma} \Delta_{K}^{\gamma}\right.\right. \\
& \left.\quad-\sum_{a} q_{I}^{a} q_{J}^{a} q_{K}^{a}-\sum_{\beta} Q_{I}^{\prime \beta} Q_{J}^{\beta \beta} Q_{K}^{\beta \beta}\right) \tag{4.58}
\end{align*}
$$

We have made explicit a factor of $1 / 3$! coming from the symmetry factor sym and from permutation symmetries of the sum. The anomalies match perfectly when assuming the mass terms to have the structure explained in section 4.3. The coefficients of the anomaly terms turn out to be rather big. For example, the coefficients of the cubic anomaly term $\sum_{I} c_{I}^{\text {pure }} F_{I}^{3}$ are given by

$$
\begin{equation*}
c_{I}^{\text {pure }}=\frac{1}{3!}(14576,91184,-436928,-202064,-384592,270832,24026,-16) . \tag{4.59}
\end{equation*}
$$

The expression for I^{red} simplifies due to the fact that $\sum_{\beta} Q_{I}^{\prime \beta} Q_{J}^{\prime \beta} Q_{K}^{\prime \beta}=0$ and $\sum_{\beta} Q_{I}^{\prime \beta}=0$, thus we obtain

$$
\begin{align*}
I^{\mathrm{red}}= & -\sum_{a} q_{I}^{a} F^{I}\left(\sum_{\gamma=\alpha, \beta} r_{a}^{\gamma} \operatorname{tr} F_{\mathrm{G}}^{2}+\left(1+\sum_{\gamma=\alpha, \beta} r_{a}^{\gamma}\right) \operatorname{tr} R^{2}\right. \\
& \left.+\frac{1}{3!} F^{J} F^{K}\left[3 \sum_{\gamma} r_{a}^{\gamma} Q_{J}^{\gamma} Q_{K}^{\gamma}-3 \sum_{\gamma} r_{a}^{\gamma} \Delta_{J}^{\gamma} Q_{K}^{\gamma}+\sum_{\gamma} r_{a}^{\gamma} \Delta_{J}^{\gamma} \Delta_{K}^{\gamma}+q_{J}^{a} q_{K}^{a}\right]\right) . \tag{4.60}
\end{align*}
$$

In the sum running over $a=(k, \sigma)$, the factors r_{a}^{γ} not appearing in 4.30) are zero.

Universal blow-up anomaly $I^{\text {uni }}$

The universal anomaly in blow-up is given by

$$
\begin{align*}
I^{\mathrm{uni}} & =\int_{\mathcal{M}} X_{2}^{\mathrm{uni}} X_{4}^{\mathrm{uni}} \\
& =-\frac{1}{12} \int_{\mathcal{M}}\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right)\left(\operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right) \operatorname{tr} \mathcal{F}^{\prime 2}-\frac{1}{2} \operatorname{tr} \mathcal{F}^{\prime 2} \operatorname{tr}\left(\mathcal{F}^{\prime \prime} F^{\prime \prime}\right)-\frac{1}{4} \operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right) \operatorname{tr} \mathcal{R}^{2}+^{\prime} \leftrightarrow^{\prime \prime}\right) \tag{4.61}
\end{align*}
$$

Using the intersection numbers and the expansion of the internal flux \mathcal{F}, we obtain for the universal anomaly in blow-up

$$
\begin{equation*}
\left.I^{\mathrm{uni}}=\frac{1}{2}\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right) \cdot\left(-25 F_{1}+20 F_{2}+25 F_{3}+4 F_{4}+66 F_{5}-18 F_{6}-25 F_{7}-F_{8}\right)\right) \tag{4.62}
\end{equation*}
$$

Non-universal local anomalies $I^{\text {non }}$

Lastly, we have the non-universal axions β_{r} to cancel the other $U(1)$ anomalies. Their contributions are given by

$$
\begin{equation*}
I^{\mathrm{non}}=\int_{\mathcal{M}} X_{2}^{r} X_{4}^{r} \tag{4.63}
\end{equation*}
$$

This expression is evaluated by using the Bianchi identities to express $\operatorname{tr} \mathcal{R}^{2}$ in terms of $\operatorname{tr} \mathcal{F}^{2}$ as

$$
\begin{equation*}
\int_{E_{r}} \operatorname{tr} \mathcal{R}^{2}=\int_{E_{r}} \operatorname{tr} \mathcal{F}^{2}=V_{r_{1}}^{I} V_{r_{2}}^{I} E_{r_{1}} E_{r_{2}} E_{r} \tag{4.64}
\end{equation*}
$$

In appendix C the expressions for X_{4}^{r} and X_{2}^{r} are given. The integration in 4.63 is performed by using the intersection numbers. We obtain

$$
\begin{align*}
I^{\mathrm{non}}= & \frac{1}{2}\left(-25 F_{1}+20 F_{2}+25 F_{3}-4 F_{4}-66 F_{5}+18 F_{6}+25 F_{7}+F_{8}\right) \\
& \cdot\left(\operatorname{tr} F_{S O(10)}^{2}-\operatorname{tr} F_{S U(2)}^{2}-\operatorname{tr} F_{S U(3)}^{2}\right)+\sum_{I J K} h^{I J K} F_{I} F_{J} F_{K} \\
& +\frac{1}{12}\left(-16 F_{1}-256 F_{2}+142 F_{3}+16 F_{4}+68 F_{5}-44 F_{6}-37 F_{7}+2 F_{8}\right) \operatorname{tr} R^{2}, \tag{4.65}
\end{align*}
$$

where we have expressed the coefficients corresponding to pure $U(1)$ anomalies schematically as $h^{I J K}$. Now we have computed all 4 contributions to the anomalies in 4.49 .

4.4.3 Relation among the axions

From the above results for $I^{\text {orb }}, I^{\text {red }}, I^{\text {uni }}$, and $I^{\text {non }}$, we can now establish the relation between the single orbifold axion, the axions in blow-up, and the blow-up modes using the descent equations (4.50). We need to make an ansatz to factorize $I^{\text {red }}$ which is compatible with this interpretation. A given factorization $I^{\mathrm{red}}=\sum_{a} q_{I}^{a} F_{I} X_{4, a}^{\mathrm{red}}$ is canceled via the counterterm $\sum_{a} \tau_{a} X_{4, a}^{\mathrm{red}}$. The indices a and r run over the same set, so we use only r. Considering $X_{4}^{\text {orb }}=-6 X_{4}^{\text {uni }}$ we make the following ansatz for relating the various axions

$$
\begin{equation*}
\beta_{r}=d_{r} \tau_{r}, \quad a^{\mathrm{uni}}=-6 a^{\mathrm{orb}}+\sum_{r} c_{r} \tau_{r} \tag{4.66}
\end{equation*}
$$

Here, the c_{r} and d_{r} are coefficients in the linear combinations and the factor of -6 arises due to the normalization choice in (4.51). Substituting this ansatz into (4.50), the 4 -form involved in the factorization is expressed as

$$
\begin{equation*}
X_{4}^{\mathrm{red}, r}=c_{r} X_{4}^{\mathrm{uni}}+d_{r} X_{4}^{r} . \tag{4.67}
\end{equation*}
$$

Substituting this last expression into I^{red} in 4.49) yields

$$
\begin{equation*}
I^{\mathrm{red}}=\sum_{r} q_{I}^{r} F_{I}\left(c_{r} X_{4}^{\mathrm{uni}}+d_{r} X_{4}^{r}\right) \tag{4.68}
\end{equation*}
$$

Looking at the whole anomaly polynomial (4.49), we impose equality of each factor on the left hand side and on the right hand side. As there are 8 anomalous $U(1)$ s, we obtain 152 equations in total, where 8 equations arise from the $8 U(1) \times \operatorname{grav}^{2}$ anomalies, $8 \cdot 3=24$ equations arise from the mixed $U(1) \times G^{2}$ anomalies, and $8+8 \cdot 7+8 \cdot 7 \cdot 6 / 3!=120$ equations arise from the pure $U(1)$ anomalies. At first sight, this system is highly overconstrained, as we only have $2 \cdot 21=42$ coefficients c_{r}, d_{r}. However, as it turns out, only 29 out of the 152 equations are independent. In particular, we find that part of the solution is $d_{r}=-1 / 6$ for all r. The factor of 6 arises again due to our normalization convention. From (4.66) we thus see that axions τ_{r} coming from field redefinitions are indeed the same as the non-universal axions β_{r}, which are responsible for canceling the non-universal anomalies in blow-up. This result allows us to interpret the blow-up modes as non-universal axions in a compact resolution of the \mathbb{Z}_{7} orbifold.

However, choosing a common value for all c_{r} or grouping them by fixed points or by sectors turns out to be impossible. This implies that the universal axion in blow-up is a mixture of the unique orbifold axion and the blow-up modes.
The analysis of the chapter shows that a careful inspection of the blow-up mechanism reveals detailed information about the models away from the orbifold point. With the concept of local multiplicity operators the knowledge about orbifold properties can be carried over to the blow-up model. Within the framework of our \mathbb{Z}_{7} example we can study the match of the spectrum in detail. All relevant states can be identified on both sides.

Masses can be compared and some subtleties (concerning masses in the large volume limit) can be clarified.

We have emphasized that the study of the Green-Schwarz anomaly polynomial is a key tool to understand the resolution of the orbifold point. In contrast to the single $U(1)_{A}$ of the orbifold model we find many anomalous $U(1) \mathrm{s}$ in blow-up and we identify the corresponding localized axions. Mixing of the axion in the anomaly polynomial is relevant for the interactions in the blow-up model. The match with the anomalies supports the reliability of the field theoretical methods used in the resolution procedure.

Our analysis shows that it pays off to study the blow-up mechanism in detail. It allows us to carry over the powerful computational techniques of orbifold compactification to smooth compactifications (where otherwise only effective field theory methods in the large volume limit are available). Here we have employed an example based on the \mathbb{Z}_{7} orbifold which shares the complexity of realistic models but avoids some of the subtleties found e.g. in the models of the Mini-Landscape. These subtleties are not yet completely understood, but they seem to be no obstructions in principle. We hope that with the methods developed here these problems can be overcome.

Chapter 5

The $\mathbb{Z}_{6 I I}$ orbifold and its resolution

Confianza en el anteojo, nó en el ojo; en la escalera, nunca en el peldaño; en el ala, nó en el ave y en ti sólo (...)

César Vallejo.

In this chapter we explore if a $T^{6} / \mathbb{Z}_{6 I I}$ orbifold deformed by vevs corresponds to a $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$ CY compactification with $U(1)$ fluxes. We search for a $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$, in which the blow-up modes (determining the $U(1)$ flux) can be identified with the twisted fields of the orbifold. First we present the orbifold geometry, and then we do a survey of the blow-up geometries, with the techniques introduced in section 3.6. We study in detail two topologies of the local resolution of $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$, corresponding to the triangulations A and B. For the first, we find a set of blow-up modes from which two modes can not be identified with orbifold twisted fields. After performing an exploration over possible topologies, from which we give in the appendix a generic one, we are lead to the case where the topologies of all $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ resolutions is the one described by triangulation B. In that case, we find many solutions to the Bianchi identities, which can be used to identify orbifold twisted states with the blow-up modes. We select one identification and take the correspondence till its final consequences. In particular we perform field redefinitions which allow us to obtain the chiral asymmetry of the supergravity compactified on the smooth manifold. We analyze the superpotential at the orbifold point and find that is possible to select redefinitions which identify the massive orbifolds fields with non-chiral fields on the smooth CY. Finally we study the anomaly cancellation mechanism in 4 d . A perfect agreement is found between the orbifold deformed by vevs and the $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$ CY with abelian flux. Furthermore we identify blow-up modes with the non-universal axions on the resolution.

5.1 The $T^{6} / \mathbb{Z}_{6 I I}$ orbifold

In the work 47 many models of heterotic string compactified on $T^{6} / \mathbb{Z}_{6 I I}$ were studied. From 3×10^{4} orbifolds they found of the order of 100 with the spectrum of the MSSM. This mini-landscape constitutes a fertile region of the $\mathcal{N}=1$ heterotic compactifications landscape. The method employed consists in creating models with local GUT at the fixed sets. The corresponding local GUTs have gauge groups E_{6} and $S O(10)$. The models we use are the ones with $S O(10)$ local GUT. In this case the orbifold shift is chosen to break $E_{8} \times E_{8}$ down to $S O(10)$. Further breaking is performed by turning on the Wilson lines $A_{3} \equiv A_{4}$ and A_{5}. Recall that with A_{a} we denote the Wilson line associated to a torus translation e_{a}.
A basis for the T^{6} torus lattice is given by

$$
\begin{align*}
& e_{1}=((-3+\sqrt{3}) / 2,(3+\sqrt{3}) / 2,0,0,0,0), \tag{5.1}\\
& e_{2}=(1,-1,0,0,0,0), \\
& e_{3}=(0,0,(-1+\sqrt{3}) / 2,(1+\sqrt{3}) / 2,0,0), \\
& e_{4}=(0,0,1,-1,0,0), \\
& e_{5}=(0,0,0,0,1,-1), \\
& e_{6}=(0,0,0,0,1,1) .
\end{align*}
$$

In the figures $5.1,5.2$ and 5.3 we depict the geometry of the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold. The T^{6} lattice is the root lattice of $G_{2} \times S U(3) \times S U(2)^{2}$. The geometrical twist in the basis used for the torus vectors is given by $v=(1 / 6,1 / 3,-1 / 2)$. Let us denote the three complex coordinates by z_{i} with $i=1,2,3$. The twists acts on them as $\theta: z_{i} \rightarrow e^{2 \pi i v_{i}} z_{i}$. The shift on the gauge d.o.f. is given by $V_{S O(10), 1}$ and the Wilson lines of a subset from these models can both be read in Tables F.10F.11 and F.12, from appendix F.
The figure 5.1 corresponds to the first twisted sector θ, which has 12 fixed points. The fixed points in the complex planes $i=1,2,3$ are denoted by α, β and γ respectively. The figure 5.2 corresponds to the fixed sets in the θ^{2} and θ^{4} sectors. In these sectors the coordinate z_{3} is fixed under the orbifold action, so the twisted states are localized in points in the first two planes and in a torus in the third. Fixed tori with $\alpha=3,5$ are identified in the orbifold, so we have in total 6 fixed tori. The θ^{3} sector is represented in figure 5.3, in this case the coordinate z_{2} is fixed under orbifold rotations. Thus the twisted states are localized in points in the planes $i=1,3$ and in a torus in the plane $i=2$. On the first plane the fixed tori with $\alpha=2,4,6$ are identified in the orbifold. That gives us a total of 8 fixed tori. In Table F. 13 of appendix F we give all the conjugacy classes with the corresponding fixed sets, together with the labels α, β and γ denoting their locus in the three complex planes.

The fixed points of θ are local singularities of the kind $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$. Whereas the fixed tori of the θ^{2} and θ^{4} sectors are singularities of the kind $\mathbb{C}^{2} / \mathbb{Z}_{3}$, and the θ^{3} fixed tori are singularities of the kind $\mathbb{C}^{2} / \mathbb{Z}_{2}$. In section 3.6 we reviewed how toric geometry is used to resolve local singularities and a gluing procedure is performed to give a global smooth CY.

Figure 5.1: 12 fixed points of the θ sector from $T^{6} / \mathbb{Z}_{6 I I}$ orbifold. The labels of the fixed points in the planes 1,2 and 3 denote α, β and γ, respectively.

Figure 5.2: 6 fixed tori of the θ^{2} and θ^{4} sectors from $T^{6} / \mathbb{Z}_{6 I I}$ orbifold. The labels of the fixed points in the planes 1 and 2 denote α and β respectively. Points $\alpha=3$ and $\alpha=5$ joined by a line are identified under a θ^{3} twist.

That procedure is used in next section in order to construct a smooth CY from the singular orbifold.

5.2 Exploring the resolutions of $T^{6} / \mathbb{Z}_{6 I I}$

The singularities are resolved first locally and then the local patches are glued to obtain the global resolution [68]. Let us first review the resolution of the local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ singularity. Two of the five possible resolution topologies are given in the toric diagrams of figures 5.4 and 5.5. In addition to the complex coordinates of the 6 d internal space $z_{i}, i=1, \ldots, 3$, as explained in section 3.6, new coordinates y_{r} and new scalings are introduced. Such that

$$
\begin{equation*}
U_{j}=\prod_{i, r} z_{i}^{\left(v_{i}\right)_{j}} y_{r}^{\left(\omega_{r}\right)_{j}} \tag{5.2}
\end{equation*}
$$

are local coordinates and invariant monomials under the new $\left(\mathbb{C}^{*}\right)^{4}$ action (3.133). Here $\omega_{k}=g_{i} v_{i}$, where z_{i} goes to $e^{2 \pi g_{i}} z_{i}$ under θ^{k}. The dimension of the variety and the CalabiYau condition are preserved Every vector v_{i} and ω_{r} in the figure 5.5, is associated with a

[^25]

Figure 5.3: 8 fixed tori of the θ^{3} sector from $T^{6} / \mathbb{Z}_{6 I I}$ orbifold. The labels of the fixed points in the planes 1 and 3 denote α and γ respectively. Points $\alpha=2,4,6$ joined by a line are identified under a θ^{2} twist.

Figure 5.4: Local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ diagram for triangulation A .
codimension 1 hyper-surface i.e. divisor. We denote the divisors associated to the vectors v_{i} and ω_{r} by

$$
\begin{equation*}
D_{i}=\left\{z_{i}=0\right\}, \quad E_{r}=\left\{y_{r}=0\right\}, \tag{5.3}
\end{equation*}
$$

respectively.
Three divisors that correspond to the corners of a basic triangle have intersection 1. Triplets of divisors that do not have this property have intersection 0 . Equivalence relations between the divisors are given by

$$
\begin{equation*}
\sum\left(v_{i}\right)_{j} D_{i}+\sum_{k}\left(\omega_{k}\right)_{j} E_{k} \sim 0 . \tag{5.4}
\end{equation*}
$$

Using Poincaré duality (3.86) and Stokes theorem (3.85) we relate cycles with closedforms. Homology relations between the cycles translate into cohomology relations between the forms i.e. equivalences up to exact cycles translates into equivalences up to exact forms. The global information is obtained by taking into account all local resolutions. In addition, the divisors R_{i} which are the Poincaré duals of the $(1,1)$ invariant orbifold forms $d z_{i} \wedge d \bar{z}_{\bar{i}}$ have to be included. An auxiliary polyhedron described in section 3.6 encodes all the triple intersections (3.139). In that way, new cohomology classes arise in the blow-up and we determine topological information from them. Taking the volume of the resolution

Figure 5.5: Local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ diagram for triangulation B.
cycles to zero the geometrical orbifold is recovered. There are different ways of resolving the orbifold encoded by the different triangulations of the toric diagram.

Information on the compact blow-ups of θ singularities for triangulation A and B can be read in the figures 5.6 and 5.7. The basic intersection numbers are given in section 3.6 and a detailed list for triangulation B can be found in appendix E. We explored mostly solutions in which all local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ fixed points have the same resolution. We searched for blow-up modes of the resolution for all the orbifold twisted states of a mini-landscape MSSM model. For that, we start with an orbifold model with non empty fixed-sets. We called a fixed set empty or non empty depending on whether it supports twisted matter or not. Then, we explore solutions of the Bianchi identities, which correspond to massless blow-up modes with no oscillators. Using triangulation A we found solutions with up to two modes projected out on the orbifold. ${ }^{2}$ In triangulation B we found multiple sets of modes which fulfill the BI. By adjusting them is possible to break the $S U(6)$ hidden group gauge factor or to preserve it.

All of the encountered vacua possess moduli with different chirality on the orbifold theory. Also the modes in sectors θ^{2} and θ^{4} (these sectors contain the CPT conjugated states of the other) can not be conjugated to each other (have opposite vector V_{r}). Our exploration shows, that for the studied orbifold, the order of solutions with mass $m=0$, and no oscillators $N=0$, preserving the hidden group, is greater than $10^{7} .3_{3}^{3}$

In the following we explain how the exploration is carried out. Then we focus on the triangulation B, and in one particular set of blow-up modes. For this case we match the chiral asymmetry of the $10 \mathrm{~d} \mathcal{N}=1$ supergravity compactified in $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$, by redefining the fields. We then study the mass terms generated from Yukawa couplings in the orbifold

[^26]

Figure 5.6: Global $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ diagram for triangulation A.

Figure 5.7: Global $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ diagram for triangulation B.
superpotential, to determine which fields acquire mass. Finally, we describe the anomaly cancellation mechanism interpolation between the orbifold and the CY.

5.3 Blow-up modes for a resolution topology

One way to search candidates for blow-up modes is to fix the topology of the resolved manifold, by specifying the triangulation and then search for consistent assignations of vevs to the twisted fields. This is the exploration described in this section. We focus on the triangulations A and B presented in previous section. Those are the ones with more vanishing self-intersections, and lead to less restrictive equations for the vectors V_{r}, appearing in the abelian flux $\mathcal{F}=E_{r} V_{r}^{I} H_{I}$. More specifically the filed strength of the abelian vector bundle in 6 d is given by

$$
\begin{equation*}
\mathcal{F}=H_{I}\left(\sum_{\beta=1}^{3} \sum_{\gamma=1}^{4} V_{1, \beta \gamma}^{I} E_{1 \beta \gamma}+\sum_{k=2,4} \sum_{\alpha=1,3} \sum_{\beta=1}^{3} V_{k, \alpha \beta}^{I} E_{k \alpha \beta}+\sum_{\alpha=1}^{2} \sum_{\gamma=1}^{4} V_{3, \alpha \gamma}^{I} E_{3 \alpha \gamma}\right) \tag{5.5}
\end{equation*}
$$

To obtain the Bianchi identities and the multiplicity of the blow-up states we need all the intersections of exceptional divisors given in appendix E. Using (3.86) the intersection numbers of exceptional divisors are equivalent to the integrals on the manifold of the dual forms wedge products. Evaluating the Bianchi identities 4.20) gives the formulas

$$
\begin{align*}
& 24-\sum_{\gamma} V_{3,1 \gamma}^{2}-3 \sum_{\gamma} V_{3,2 \gamma}^{2}=0 \tag{5.6}\\
& -2+2 V_{3,1 \gamma}^{2}-\sum_{\beta} V_{3,1 \gamma} \cdot V_{4,1 \beta}=0 \tag{5.7}\\
& 12-\sum_{\gamma} V_{1, \beta \gamma}^{2}+\sum_{\gamma} V_{1, \beta \gamma} \cdot V_{2,1 \beta}-V_{2,1 \beta}^{2}-\sum_{\gamma} V_{3,1 \gamma}^{2}=0 \tag{5.8}\\
& 4 V_{1, \beta \gamma}^{2}-2 V_{1, \beta \gamma} \cdot V_{4,1 \beta}+V_{4,1 \beta}^{2}-\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)=4, \tag{5.9}\\
- & 2 \sum_{\gamma}^{2} V_{1, \beta \gamma} \cdot V_{2,1 \beta}+\sum_{\gamma} V_{1, \beta \gamma} \cdot V_{4,1 \beta}+2 V_{2,1 \beta}^{2}-2 V_{4,1 \beta}^{2}+2\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)=4,(\tag{5.10}\\
- & \sum_{\beta}\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)-2 \sum_{\beta}\left(V_{2,3 \beta} ; V_{4,3 \beta}\right)=-24, \tag{5.11}
\end{align*}
$$

for triangulation A in figure 5.7 and

$$
\begin{align*}
& 24-\sum_{\gamma} V_{3,1 \gamma}^{2}-3 \sum_{\gamma} V_{3,2 \gamma}^{2}=0, \tag{5.12}\\
& 3 V_{1, \beta \gamma}^{2}-\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)-V_{3,1 \gamma}^{2}=0, \tag{5.13}\\
& -2-V_{3,1 \gamma} \cdot \sum_{\beta} V_{1, \beta \gamma}+2 V_{3,1 \gamma}^{2}=0, \tag{5.14}\\
& 24-\sum_{\beta}\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)-2 \sum_{\beta}\left(V_{2,3 \beta} ; V_{4,3 \beta}\right)=0, \tag{5.15}\\
& -12-3 V_{4,1 \beta} \cdot \sum_{\gamma} V_{1, \beta \gamma}+6 V_{4,1 \beta}^{2}+2\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)=0, \tag{5.16}\\
& -12-3 V_{2,1 \beta} \cdot \sum_{\gamma} V_{1, \beta \gamma}+3 V_{4,1 \beta}^{2}+4\left(V_{2,1 \beta} ; V_{4,1 \beta}\right)=0, \tag{5.17}
\end{align*}
$$

for triangulation B. These set of equations allow for an exploration of a given orbifold model, over a wide range of twisted singlets in a reasonable computing time. The equations (5.12) and (5.6) are automatically satisfied for all the states in the studied model. This is the Model 28 with shift $V_{S O(10)}$ of the mini-landscape. The shift and Wilson lines of the Model 28 are

$$
\begin{align*}
V & =\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0^{5}, \frac{1}{2},-\frac{1}{6},-\frac{1}{2}, \frac{1}{2}\right) \tag{5.18}\\
A_{5} & =\left(-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{15}{4},-\frac{19}{4},-\frac{15}{4},-\frac{15}{4},-\frac{15}{4},-\frac{15}{4},-\frac{11}{4}, \frac{19}{4}\right), \\
A_{3} & =A_{4}=\left(\frac{1}{6}, \frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{3},-\frac{2}{3},-\frac{5}{3},-\frac{5}{3},-\frac{5}{3},-\frac{5}{3},-\frac{1}{3}, \frac{8}{3}\right) .
\end{align*}
$$

The shift breaks $E_{8} \times E_{8}$ down to $S O(10)$. Adding the Wilson lines the gauge group is broken further down to $S U(3) \times S U(2) \times S U(6) \times U(1)^{8}$. The fact that the equations involving $V_{3, \alpha \gamma}$ are automatically satisfied occurs because in all the fixed tori $(3, \alpha, \gamma)$ the singlets surviving the orbifold projection fulfill $P_{s h}^{2}=V_{3, \alpha \gamma}^{2}=\frac{3}{2}$, i.e. have oscillator number $N=0$. For triangulation A we fixed $V_{3, \alpha \gamma}$ and then search for all the possible sets which satisfy (5.11) and restricted further to the $V_{4,1 \beta}$ obeying (5.7). This gives 15120 ways of solving the system of equations (5.6) (5.7) (5.11). As there are no restrictions for $V_{1, \beta \gamma}$ there are 2×10^{11} further possibilities to check, that obey equations 5.85 .10 . The described exploration was carried only for one fixed value of $V_{3, \alpha \gamma}$. The performed exploration shows that is not possible to select the blow-up modes from twisted states of Model 28.

Triangulation B is more promising. Here we use the same approach explained previously. First, for given values of $V_{3, \alpha \gamma}$ (recall that all the singlets fulfill (5.12)) we select first all the $V_{1, \beta \gamma}$ which obey (5.14). For a sample $V_{3, \alpha \gamma}$ there are $2401 V_{1, \beta \gamma}$. There are $50400 V_{2, \alpha \beta}$ and $V_{4, \alpha \beta}$ that satisfy (5.15). From this surviving set we explore which $V_{1, \beta \gamma}, V_{2, \alpha \beta}, V_{4, \alpha \beta}$ satisfy the equations (5.13) (5.16) and (5.17), which turn to be the more hardest to obey. An exploration for a fixed $V_{3, \alpha \gamma}$ requires 1.2×10^{8} iterations, while a full exploration will
require of the order of 3×10^{10} iterations. In the performed exploration we found multiple sets of blow-up modes which can be identified with twisted states of Model 28.

The twisted fields acquiring vevs have to ensure a D - and F-flat superpotential. To resume: It is possible for a smooth CY $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$ compactification with abelian flux \mathcal{F} and an orbifold $T^{6} / \mathbb{Z}_{6 I I}$ with certain gauge embedding to explore over the possible sets of twisted singlets acquiring vevs, such that they are identified as the blow-up modes. Triangulation B is very suitable for this search.

5.3.1 Abelian vector bundles for triangulation A

We want to explore if for the triangulation A there can be solutions of the BI with nonoscillatory massless modes i.e. $N=m=0$. For Model 28 we found that is not possible to find a set of blow-up modes that will lead to a toric resolution with triangulation A. Nevertheless, we obtained a solution of the BI in which only two blow-up modes from the θ^{3} sector are absent. This solution has length square of the vectors given by $V_{1, \beta \gamma}^{2}=\frac{25}{18}, V_{3, \alpha \gamma}^{2}=\frac{3}{2}$ and $V_{4, \alpha \beta}^{2}=V_{2, \alpha \beta}^{2}=\frac{14}{9}$. Imposing those length square values makes the BI easier to solve, by adding to an Ansatz V_{r} a $\lambda \in \Lambda_{E_{8} \times E_{8}}$ and solving the linear equations for this λ [83]. The set of identities obtained is given by

$$
\begin{array}{r}
V_{3,1 \gamma} \cdot \sum_{\beta} V_{4,1 \beta}=1, \\
V_{2,1 \beta} \cdot \sum_{\gamma} V_{1, \beta \gamma}=\frac{10}{9}, \\
V_{4,1 \beta} \cdot V_{1, \beta \gamma}-2 V_{2,1 \beta} \cdot V_{4,1 \beta}=0, \\
4+\sum_{\beta} V_{2,1 \beta} \cdot V_{4,1 \beta}+2 \sum_{\beta} V_{2,3 \beta} \cdot V_{4,3 \beta}=0 . \tag{5.22}
\end{array}
$$

We explored if a brother model to Model 28 can be found such that it has all the modes that we found in the BI solution. This question is addressed in appendix D. We show that there are not brother models for $\mathbb{Z}_{6 I I}$ with consistent physical state transformations 90 . In the following we focus in checking if Model 28 can provide a set of blow-up modes for a different triangulation.

The hardest restriction to satisfy is equation (5.7) or after fixing the squares the equation (5.19). No set of orbifold states satisfies it. That's why the modes corresponding to $V_{3,12}, V_{3,14}$ are projected out, because we had to modify them to fulfill (5.19). In Table 5.1 one can read off the solution for the BI found in triangulation A. We used the recently released Orbifolder program 127 to compute the spectrum, and to simplify comparison we use the default numbering for the states used by that program. The right-(left-) chiral state is denoted in the Orbifolder output by $b F_{i}\left(F_{j}\right)$ and we denote it by $\psi_{i}\left(\bar{\psi}_{j}\right)$. The BI solution found doesn't have all its vectors identified with local shifts $P_{s h}$ of orbifold twisted states (3.38).

Table 5.1: Blow-up modes for triangulation A.

Bundle vector V_{r}	Numerical expression for V_{r}	Model 28
$V_{1,11}$	$\left(-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right)$,	ok
$V_{1,12}$	$\left(-\frac{1}{6}, 0, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	ok
$V_{1,13}$	$\left(-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right)$	ok
$V_{1,14}$	$\left(-\frac{1}{6}, 0, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	ok
$V_{1,21}$	$\left(-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	ok
$V_{1,22}$	($\left.0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right)$	ok
$V_{1,23}$	$\left(-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	ok
$V_{1,24}$	($\left.0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right)$	ok
$V_{1,31}$	$\left(-\frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right)$	ok
$V_{1,32}$	$\left(-\frac{1}{3}, \frac{5}{6}, 0, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right)$	ok
$V_{1,33}$	$\left(-\frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right)$	ok
$V_{1,34}$	$\left(-\frac{1}{3}, \frac{5}{6}, 0, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right)$	ok
$V_{2,11}$	$\left(-\frac{1}{3}, 0,1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right)$	ok
$V_{2,12}$	$\left(\frac{1}{2},-\frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	ok
$V_{2,13}$	$\left(-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{5}{6}, \frac{1}{6}\right)$	ok
$V_{2,31}$	$\left(-\frac{1}{3}, 0,-1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right)$	ok
$V_{2,32}$	- $\left.\frac{1}{2}, \frac{5}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right)$	ok
$V_{2,33}$	$\left(-\frac{2}{3},-\frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	ok
$V_{4,11}$	$\left.-\frac{2}{3}, 0,0,0,0,0,0,0,-1, \frac{1}{3}, 0,0,0,0,0,0\right)$	ok
$V_{4,12}$	$\left(\frac{1}{2},-\frac{5}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	ok
$V_{4,13}$	$\left(\frac{2}{3}, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right)$	ok
$V_{4,31}$	$\left(-\frac{2}{3}, 0,0,0,0,0,0,0,-1, \frac{1}{3}, 0,0,0,0,0,0\right)$	ok
$V_{4,32}$	($\left.-\frac{1}{2}, \frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right)$	ok
$V_{4,33}$	$\left(\frac{1}{6},-\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	ok
$V_{3,11}$	($\left.0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right)$	ok
$V_{3,12}$	$\left(-\frac{1}{2}, 0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	projected out
$V_{3,13}$	($\left.0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right)$	ok
$V_{3,14}$	$\left(-\frac{1}{2}, 0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	projected out
$V_{3,21}$	($\left.0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0,0,0,0,-1,0\right)$	ok
$V_{3,22}$	$\left(-\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	ok
$V_{3,23}$	($\left.0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0,0,0,0,-1,0\right)$	ok
$V_{3,24}$	$\left(-\frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	ok

5.3.2 Abelian vector bundles for triangulation B

Let us search for solutions of the Bianchi identities for triangulation B. Considering massless and non-oscillatory modes, the analogs of equations (5.12)-(5.17) are given by

$$
\begin{gather*}
\left(V_{2,1 \beta} ; V_{4 ; 1 \beta}\right)=\frac{8}{3}, \tag{5.23}\\
\sum_{\beta}\left(V_{2,3 \beta} ; V_{4,3 \beta}\right)=8, \tag{5.24}\\
V_{3,1 \gamma} \cdot \sum_{\beta} V_{1, \beta \gamma}=1, \tag{5.25}\\
V_{4,1 \beta} \cdot \sum_{\gamma} V_{1, \beta \gamma}=\frac{8}{9}, \tag{5.26}\\
V_{2,1 \beta} \cdot \sum_{\gamma} V_{1, \beta \gamma}=\frac{10}{9} . \tag{5.27}
\end{gather*}
$$

Using this set of equations we searched for solutions in Model 28. We list as possible blow-up modes the states in the Table (F.1) of appendix F. This set of blow-up modes breaks the $S U(6)$ hidden group. The set of blow-up modes in the Table (F.2) of appendix F preserves the hidden group.
We explored for certain chirality assignations for a set of blow-up modes. For example: the modes in sector θ^{2} and θ^{4} can not be conjugate if modes in θ and θ^{3} are massless and non-oscillatory. A possibility is that for the θ^{2} all the modes are left handed and for the θ^{4} all are right handed, but this can also not be achieved. For example in the case of $V_{2,11}$ and $V_{4,11}$ the only opposite chirality modes are $V_{2,11}=-V_{4,11}$ and this implies $\left(V_{2,11} ; V_{2,11}\right)=\frac{14}{3}$ which violates the Bianchi Identities. As $(2,1,1)$ is the conjugated class of $(4,1,1)$, this means that is not possible to take a set of blow-up modes in which every component of a CPT pair is identified with one blow-up mode, which is a reasonable result.

Having a solution in which all the blow-up modes are right or left handed is also not possible here. This restriction is already explained by the fact that the fixed tori $(2,1,2)$ and $(4,1,2)$ don't possess right handed and left handed singlets respectively.
The modes $V_{2,3 \beta}$ and $V_{4,3 \beta}$ are easily adjusted, and one finds many different solutions. There are 107520 solutions of equation (5.24). If one requires that all the modes are left or right handed, there are 48 solutions. If instead one imposes that all the modes at same fixed tori from θ^{2} and θ^{4} have opposite chirality one obtains also 48 solutions. Later we will focus in a set of blow-up modes with some prescribed chirality properties, this is the set of Table 5.2. The spectrum of the CY compactification with abelian flux determined by the mentioned set of blow-up modes is given in appendix J.

If one considers the blow-up given in [83], the situation that not all the modes have the same chirality also arises. This can be examined in the Table (F.5) from the appendix F, in which we have recall the results of that paper explicitly, indicating also the chirality of the orbifold twisted states.

Another feature that appears in our solutions is that the blow-up modes can have states of coincident or opposite charges in the spectrum. This feature is also present in the solution of [83]. For Model 28 the following pairs have opposite charges

$$
\begin{equation*}
\left(\psi_{97}, \psi_{168}\right),\left(\psi_{98}, \psi_{167}\right),\left(\psi_{101}, \psi_{165}\right) \tag{5.28}
\end{equation*}
$$

These states with the same and opposite charges are displayed in the Tables $(\overline{\mathrm{F} .3})$ and (F.4) in Appendix F respectively. Among the conjugated states, also the CPT pairs are shown, but they can be distinguished for having the opposite chirality.

Through this chapter we use the $\bar{\psi}$ and ψ to denote left and right orbifold chiral superfields respectively. We use the same notation to denote the fermionic components of the chiral super-field, whereas to denote the vev of the scalar component we will use $\langle\bar{\psi}\rangle$ or $\langle\psi\rangle$.

5.4 A blow-up for a given vev configuration

Another way to establish the orbifold-smooth CY transition is to start with a given orbifold vevs configuration, with zero D-term, and search for a resolution which allows to interpret the fields taking vevs as blow-up modes. To follow this strategy we computed with a program the self-intersections for all triangulations ${ }^{4} \sim 5^{12}$. Then, for a given set of vevs for the twisted orbifold states, we can explore if their weights $P_{s h}$ can be solution of the BI in a given triangulation. This implies that the vacuum configuration, can be interpreted as the heterotic theory compactified on the smooth CY with abelian vector bundle, determined by the twisted fields. A sample of the BI from our computer exploration can be seen in Table E. 6 of the appendix F. This exploration was not completed due to computing time. It turned out to be more efficient to concentrate in the triangulations A and B, which are the ones giving the less restrictive set of equations.

Another question is when the orbifold models can be blown-up at all. The first requirement is that they have twisted matter in every fixed point or fixed tori. We checked the Minilandscape models with $S O(10)$ shift and two Wilson lines. From 80 of them this criteria was only fulfilled by 2 . Most of those models have empty fixed sets. We observed that the fixed tori $(0,0,-, 0,0),(0,0,-, 0,1)$ on the θ^{3} sector are usually empty. The fixed tori share projection conditions with $V_{h}=A_{3}\left(m_{3}+m_{4}\right)+k V, k=0, \ldots, 5$. Those conditions are more restrictive than the ones of other fixed tori. For example the θ^{3} fixed tori $(1,0,0,0,1,0)$, $(1,0,0,0,1,1)$ involve projections under $V_{h}=A_{3}\left(m_{3}+m_{4}\right), 3 V+A_{3}\left(m_{3}+m_{4}\right)-A_{5}$. This circumstance makes hard not to project out all the states in the mentioned fixed tori.

5.5 Field redefinitions

Our aim is to interpret the deviation from the orbifold vacuum as a compactification in a smooth CY manifold. Then, after identifying the blow-up modes we need to compare the

[^27]Table 5.2: Set of blow-up modes in triangulation B with almost all right-handed modes.

V_{r}^{2}	F.P.	Numerical value V_{r}	irrep.	$\Phi^{\text {orb }}$
$\frac{25}{18}$	$\{1,1,1\}$	$\left.0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{57}
$\frac{25}{18}$	$\{1,1,2\}$, $\left.\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right\}$	$\{1, r\}$	ψ_{44}
$\frac{25}{18}$	$\{1,1,3\}$, $\left.0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{45}
$\frac{25}{18}$	$\{1,1,4\}$, $\left.\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right\}$	$\{1, r\}$	ψ_{41}
$\frac{25}{18}$	$\{1,2,1\}$	\{ $\left.-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{5}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{88}
$\frac{25}{18}$	$\{1,2,2\}$	$\left\{0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right\}$	$\{1, r\}$	ψ_{77}
$\frac{25}{18}$	$\{1,2,3\}$, $\left.0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{5}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{85}
$\frac{25}{18}$	$\{1,2,4\}$	$\left\{0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right\}$	$\{1, r\}$	ψ_{70}
$\frac{25}{18}$	$\{1,3,1\}$	$\left\{\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$	$\{1, r\}$	ψ_{34}
$\frac{25}{18}$	$\{1,3,2\}$	$\left\{\frac{1}{6},-\frac{2}{3}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right\}$	$\{1, r\}$	ψ_{22}
$\frac{25}{18}$	$\{1,3,3\}$	$\left\{\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$	$\{1, r\}$	ψ_{28}
$\frac{25}{18}$	$\{1,3,4\}$	$\left\{\frac{1}{6},-\frac{2}{3}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right\}$	$\{1, r\}$	ψ_{15}
$\frac{14}{9}$	$\{2,1,1\}$	$\left\{-\frac{1}{3}, 0,1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{115}
$\frac{14}{9}$	$\{2,1,2\}$	$\left\{\frac{1}{2},-\frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$	$\{1, l\}$	$\bar{\psi}_{36}$
$\frac{14}{9}$	$\{2,1,3\}$	$\left.-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{5}{6}, \frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{45}$
$\frac{14}{9}$	$\{4,1,1\}$	$\left.-\frac{2}{3}, 0,0,0,0,0,0,0,0, \frac{1}{3}, 0,0,0,0,1,0\right\}$	$\{1, r\}$	ψ_{183}
$\frac{14}{9}$	$\{4,1,2\}$	$\left.-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{187}
$\frac{14}{9}$	$\{4,1,3\}$	$\left.-\frac{2}{3}, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{1, l\}$	ψ_{106}
$\frac{14}{9}$	$\{2,3,1\}$	$\left.-\frac{1}{3}, 0,-1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{97}
$\frac{14}{9}$	$\{2,3,2\}$	$\left.\frac{1}{2}, \frac{5}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{1, r\}$	ψ_{90}
$\frac{14}{9}$	$\{2,3,3\}$	$\left\{-\frac{2}{3},-\frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{103}
$\frac{14}{9}$	$\{4,3,1\}$	\{ $\left\{-\frac{2}{3}, 0,0,0,0,0,0,0,0, \frac{1}{3}, 0,0,0,0,1,0\right\}$	$\{1, r\}$	ψ_{165}
$\frac{14}{9}$	$\{4,3,2\}$	- $\left.\frac{1}{2}, \frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right\}$	$\{1, r\}$	ψ_{170}
$\frac{14}{9}$	$\{4,3,3\}$	$\left\{\frac{1}{6},-\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{6},-\frac{1}{6}\right\}$	$\{1, r\}$	ψ_{159}
$\frac{3}{2}$	$\{3,1,1\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{155}
$\frac{3}{2}$	$\{3,1,2\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{153}
$\frac{3}{2}$	$\{3,1,3\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{154}
$\frac{3}{2}$	$\{3,1,4\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{150}
$\frac{3}{2}$	$\{3,2,1\}$	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{147}
$\frac{3}{2}$	$\{3,2,2\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{134}
$\frac{3}{2}$	$\{3,2,3\}$	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{141}
$\frac{3}{2}$	$\{3,2,4\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{126}

massless spectrum. The massless chiral spectrum remaining after assigning vevs to some twisted fields should coincide with the massless spectrum encountered in the heterotic supergravity and super Yang-Mills on the resolution. However, states on the orbifold $\Phi_{\gamma}^{\text {orb }}$ have weights $P_{s h}$ which are not roots of $E_{8} \times E_{8}$ lattice, and is natural to conjecture that field redefinitions should be performed. As in the \mathbb{Z}_{7} case, we perform redefinitions in order to reproduce the chiral asymmetry of the supergravity on the blow-up, employing the blow-up modes $\Phi_{i}^{\mathrm{BU} \text {-mode } \text {. The main requirement is that the sum of the left moving }}$ momenta of the states add up to a vector in the lattice. We consider redefinitions of the kind

$$
\begin{equation*}
\Phi_{\gamma}^{\mathrm{BU}}=\Phi_{\gamma}^{\mathrm{orb}} \prod_{i}\left(\Phi_{i}^{\mathrm{BU}-\mathrm{mode}}\right)^{c_{i}^{\gamma}}, c_{i}^{\gamma} \in \mathbb{Z}, \tag{5.29}
\end{equation*}
$$

with integer coefficients c_{i}^{γ} such that they are single valued, and $\Phi_{\gamma}^{\mathrm{BU}}$ is a chiral state on the blow-up. We denote the conjugacy classes of $\Phi_{\gamma}^{\text {orb }}$ and $\Phi_{i}^{\mathrm{BU}-\text { mode }}$ by $\left(\theta^{k}, n_{\alpha} e_{\alpha}\right)$ and ($\theta^{k_{i}}, m_{\alpha}^{i} e_{\alpha}$) respectively. We can consider different number of blow-up modes in one redefinition. We studied the cases involving 1,2 , or 3 blow-up modes.

Single field redefinitions Let us denote by λ the root system of $E_{8} \times E_{8}$ and by Λ the corresponding root lattice. Then the left moving momentum of the blow-up state is $P_{B U} \in \lambda$. We denote as $P_{s h}$ and $P_{s h}^{1}$ the left moving momentum of the twisted state and the blow-up mode respectively. They are given by

$$
\begin{align*}
P_{s h} & =p+k V+n_{\alpha} A_{\alpha} \tag{5.30}\\
P_{s h}^{1} & =p_{1}+k_{1} V+m_{\alpha} A_{\alpha}
\end{align*}
$$

with $p, p_{1} \in \Lambda$. Also the shift and Wilson lines have to satisfy $\left(6 V, 3 A_{3}, 3 A_{4}, 2 A_{5}, 2 A_{6}\right) \subset \Lambda$. The momentum of a redefined state $\Phi_{\gamma}^{\mathrm{BU}}=\Phi_{\gamma}^{\text {orb }} \Phi_{1}^{c}$ will be

$$
\begin{equation*}
P_{B U}=P_{s h}+c P_{s h}^{1}=p+c p_{1}+\left(k+c k_{1}\right) V+\left(n_{\alpha}+c m_{\alpha}\right) A_{\alpha} . \tag{5.31}
\end{equation*}
$$

Thus, a necessary condition is 5

$$
\begin{equation*}
\delta=\left(k+c k_{1}\right) V+\left(n_{\alpha}+c m_{\alpha}\right) A_{\alpha} \in \Lambda . \tag{5.32}
\end{equation*}
$$

Then, the conjugacy class elements and the parameter c should satisfy

$$
\begin{align*}
k+c k_{1} & =0 \bmod 6, \tag{5.33}\\
n_{3}+c m_{3}+n_{4}+c m_{4} & =0 \bmod 3 \\
n_{5}+c m_{5} & =0 \bmod 2 .
\end{align*}
$$

where the condition for n_{1}, n_{2}, n_{6} and m_{1}, m_{2}, m_{6} are not present in the studied model in which the Wilson lines A_{1}, A_{2} and A_{6} vanish.

[^28]Multiple fields redefinitions When more than one blow-up mode is employed in the redefinition, the procedure to follow is the same. We need to add a momentum that gives in total a vector of λ. Given the redefinition (5.29) we obtain for the blow-up state the momentum

$$
\begin{align*}
P_{B U} & =P_{s h}+\sum_{i} c_{i} P_{s h}^{i} \tag{5.34}\\
& =p+\sum_{i} c_{i} p_{i}+\left(k+\sum_{i} c_{i} k_{i}\right) V+\left(n_{\alpha}+\sum_{i} c_{i} m_{\alpha}^{i}\right) A_{\alpha}
\end{align*}
$$

The sum (5.34) has to be in the lattice of $E_{8} \times E_{8}$, which implies

$$
\begin{equation*}
\delta=\left(k+\sum_{i} c_{i} k_{i}\right) V+\left(n_{\alpha}+\sum_{i} c_{i} m_{\alpha}^{i}\right) A_{\alpha} \in \Lambda \tag{5.35}
\end{equation*}
$$

Then, redefinitions are restricted to have

$$
\begin{align*}
\left(k+\sum_{i} c_{i} k_{i}\right) & =0 \bmod 6 \tag{5.36}\\
\left(n_{3}+\sum_{i} c_{i} m_{3}^{i}+n_{4}+\sum_{i} c_{i} m_{4}^{i}\right) & =0 \bmod 3 \\
n_{5,6}+c m_{5,6} & =0 \bmod 2
\end{align*}
$$

In the T^{6} / \mathbb{Z}_{7} case we allowed only for redefinitions of fields on the same fixed points. Here the situation is more complicated, because there are not only fixed points, but there are also fixed tori. In the resolved manifold occurs that exceptional divisors where blow-modes are localized have a compact intersection with other divisors in the manifold, such that every pair of exceptional divisors is connected. This fact motivates us to relax the redefinition conditions. Two examples of allowed redefinitions with 3 blow-up modes $\Phi_{\left(\theta^{k}, \alpha \beta \gamma\right)}$ are given by

$$
\begin{align*}
\Phi_{\gamma}^{\mathrm{BU}} & =\Phi_{\gamma, 111}^{\mathrm{orb}} \Phi_{(\theta, 113)}^{-1} \Phi_{\left(\theta^{5}, 114\right)} \Phi_{\left(\theta^{5}, 112\right)}^{-1} \tag{5.37}\\
\Phi_{\gamma}^{\mathrm{BU}} & =\Phi_{\gamma, 111}^{\mathrm{orb}} \Phi_{\left(\theta^{2}, 121\right)}^{-1} \Phi_{\left(\theta^{3}, 111\right)}^{-1} \Phi_{\left(\theta^{4}, 131\right)}^{-1}
\end{align*}
$$

The subindices on the blow-up modes denote the values of α, β and γ. That the redefinitions give a vector of Λ can be seen by checking the conjugacy classes in Table (F.13) of appendix F .

We choose to parametrize the redefinitions using the vector $\left(k_{3}, 3 k_{4}-k_{3}, 2 k_{5}, 6 m\right.$) which implies that a valid redefinition (5.35) is given by $\delta=\left(3 k_{4} A_{3,4}+2 k_{5} A_{5}+6 m V\right) \in \Lambda$, and this ensures that $P_{B U} \in \Lambda$.

For one and two blow-up modes we explore possible redefinitions with

$$
\begin{equation*}
-3 \leq k_{6} \leq 3, \quad-3 \leq k_{4} \leq 3, \quad-2 \leq k_{5} \leq 2, \quad-1 \leq m \leq 1 \tag{5.38}
\end{equation*}
$$

For three blow-up modes we explore possible redefinitions with

$$
\begin{equation*}
-6 \leq k_{3} \leq 6, \quad-1 \leq k_{4} \leq 1, \quad-2 \leq k_{5} \leq 2, \quad-1 \leq m \leq 1 \tag{5.39}
\end{equation*}
$$

Local multiplicities The multiplicity operator \hat{N} 4.21 can be decomposed in a sum of terms $\hat{N}=\sum_{r} \hat{N}_{r}$, where \hat{N}_{r} carries the index r from the exceptional divisor E_{r}. We explore here the ansatz of local multiplicity, to reduce ambiguity in the redefinition process. In the \mathbb{Z}_{7} study, it turned out to be a powerful tool. Here things are different, because the θ^{2}, θ^{4} and θ^{3} twisted sectors, possess indices for its fixed tori, that do not appear in the sum at all. So, we don't impose a perfect agreement with local multiplicities. Rather in the search of a match, we test the interpretation that the \hat{N}_{r} are contributions to \hat{N} from orbifold twisted states localized around fixed sets.

The multiplicity of a given weight of $E_{8} \times E_{8}$ denoted as w can be decomposed as

$$
\begin{align*}
\hat{N}_{t o t} & =\sum_{\beta \gamma} \hat{N}_{1, \beta \gamma}(\omega)+\sum_{\beta} \hat{N}_{2, \beta}(w)+\sum_{\gamma} \hat{N}_{3, \gamma}(\omega), \tag{5.40}\\
\hat{N}_{1, \beta \gamma}(\omega) & =-V_{1 \beta \gamma} \cdot \omega\left(\left(V_{21 \beta} \cdot w\right)^{2}+\left(V_{41 \beta} \cdot \omega\right)^{2}-\left(V_{21 \beta} \cdot w\right)\left(V_{41 \beta} \cdot \omega\right)-\left(V_{1 \beta \gamma} \cdot \omega\right)^{2}+\left(V_{31 \gamma} \cdot \omega\right)^{2}\right), \\
\hat{N}_{2, \beta}(w) & =\frac{1}{3}\left(4\left(V_{2,1, \beta} \cdot \omega\right)^{3}+4\left(V_{4,1, \beta} \cdot \omega\right)^{3}-V_{2,1, \beta} \cdot \omega-V_{4,1, \beta} \cdot \omega-3\left(V_{2,1, \beta} \cdot \omega\right)^{2}\left(V_{4,1 \beta} \cdot \omega\right)\right), \\
\hat{N}_{3, \gamma}(\omega) & =\frac{1}{3}\left(4\left(V_{31 \gamma} \cdot \omega\right)^{3}-V_{31 \gamma} \cdot \omega\right) .
\end{align*}
$$

The multiplicity can also be written in terms of the multiplicities of the local $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ resolutions as

$$
\begin{equation*}
\hat{N}_{t o t}=\left.\sum_{\beta \gamma} N_{4 d}\left(\widehat{\mathbb{C}^{3} / \mathbb{Z}_{6 I I}}\right)\right|_{1 \beta \gamma}, \tag{5.41}
\end{equation*}
$$

with

$$
\left.N_{4 d}\left(\widehat{\mathbb{C}^{3} / \mathbb{Z}_{6} I I}\right)\right|_{1 \beta \gamma}=\hat{N}_{1, \beta \gamma}(w)+\frac{1}{4} \hat{N}_{2, \beta}(w)+\frac{1}{3} \hat{N}_{3, \gamma}(w) .
$$

This local multiplicity is the index of the Dirac operator in a compactification on a noncompact CY 3-fold $\sqrt[\mathbb{C}^{3} / \mathbb{Z}_{6 I I}]{ }$. Thus the decomposition of $\hat{N}_{t o t}$ may give an indication of the identification of blow-up states with orbifold twisted states from the θ sector. However for fixed tori of $\theta^{2}, \theta^{3}, \theta^{4}$ there is no explicit dependence in $\hat{N}_{\text {tot }}$. In addition it is possible also to decompose $\hat{N}_{\text {tot }}$ in a sum of multiplicities for the different divisors, so that one can read from it extra information 128 . In the following we present a set of redefinitions obtained using 1,2 and 3 blow-up modes. We are able to reproduce the chiral asymmetry of the blow-up theory.

5.6 First orbifold-resolution spectrum match

In this section we describe an identification of the massless spectrum of the deformed orbifold by a vev configuration and the supergravity on the resolution. We search for field redefinitions that reproduce the chiral asymmetry of blow-up fermions. We explore for redefinitions using as a guideline the local multiplicities and we don't search for agreement with the orbifold superpotential mass terms. This last requirement will be explored in the next section.

Let us start with the field redefinitions for non-abelian charged fields. The charged matter under $S U(6)_{\text {hidden }}$ has representations $(\mathbf{1}, \mathbf{1}, \mathbf{6})$ and $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{6}})$. The map can be seen in Table 5.3. We denote the blow-up states with charges in the first E_{8} as I, in the second E_{8} by $I I$, and when they have zero multiplicity as $I I l^{6}$. After obtaining the field redefinition we can check if it uses blow-up modes from the same fixed points.

Table 5.3: Orbifold-resolution identification for the $\mathbf{6}$ and $\overline{\mathbf{6}}$ representations of $S U(6)$.

Mult.	State blow-up	redef.	irrep.	irrep. blow-up
$(-1,1)$	$\left(\Phi_{4}^{I I}, \Phi_{1}^{I I}\right)$	$\psi_{182} \rightarrow \Phi_{4}^{I I}$	$\mathbf{6}_{r}$	$(\mathbf{6}, \overline{\mathbf{6}})$
$(-1,1)$	$\left(\Phi_{2}^{I I}, \Phi_{6}^{I I}\right)$	$\psi_{2} \equiv \Phi_{2}^{I I}$	$\overline{\overline{\mathbf{6}}}_{r}$	$(\overline{\mathbf{6}}, \mathbf{6})$
$(-1,1)$	$\left(\Phi_{9}^{I I}, \Phi_{17}^{I I}\right)$	$\psi_{9} \equiv \Phi_{9}^{I I}, \psi_{136}, \psi_{142} \rightarrow \Phi_{17}^{I I}$,	$\overline{\mathbf{6}}_{r}$	$(\overline{\mathbf{6}}, \mathbf{6})$
$(-1,1)$	$\left(\Phi_{19}^{I I}, \Phi_{10}^{I I}\right)$	$\psi_{164} \rightarrow \psi_{143} \rightarrow \Phi_{9}^{I I}$		
$(-2,2)$	$\left(\Phi_{14}^{I I}, \psi_{157}^{I I} \rightarrow \Phi_{19}^{I I}\right.$,	$\mathbf{6}_{r}, \mathbf{6}_{r}, \overline{\mathbf{6}}_{r}$	$(\mathbf{6}, \overline{\mathbf{6}})$	
$(-2,2)$	$\left(\Phi_{13}^{I I}, \Phi_{15}^{I I}\right)$	$\left.\left(\psi_{106}\right) \Phi_{117}\right) \rightarrow \Phi_{14}^{I I}$	$\overline{\mathbf{6}}_{r}$	$(\overline{\mathbf{6}}, \mathbf{6})$

We have also explored at the mass terms coming from Yukawa couplings with blow-up modes. We don't consider higher order terms in the super-potential, because they are suppressed by M_{s} in comparison to the ones of order three, in addition we do not have access to those interactions in the smooth CY. The mass terms for right movers ψ_{i} and CPT conjugates $\bar{\psi}_{j}$ are

$$
\begin{equation*}
\psi_{9} \psi_{136}\left\langle\psi_{141}\right\rangle+\psi_{9} \psi_{142}\left\langle\psi_{147}\right\rangle \equiv \bar{\psi}_{2} \bar{\psi}_{65}\left\langle\bar{\psi}_{68}\right\rangle+\bar{\psi}_{2} \bar{\psi}_{71}\left\langle\bar{\psi}_{74}\right\rangle . \tag{5.42}
\end{equation*}
$$

These superpotential terms are computed with the Orbifolder program (127) using the classical orbifold selection rules. The result (5.42) agrees with the fact that from the fields ψ_{9}, ψ_{136} and ψ_{142} there should be a massive pair. Furthermore away from the orbifold point another two pairs form to give a net field $\Phi_{9}^{I I}$.

Let us describe next the doublets redefinitions. In Table (5.4) we can read the blow-up state, its multiplicities and the redefinition to an orbifold field. This set of redefinitions matches the chiral asymmetry, but agreement of the masses requires to modify it.

The mass terms arising at tree level are given by

$$
\begin{align*}
& \psi_{11} \psi_{178}\left\langle\psi_{118}\right\rangle+\psi_{158} \psi_{31}\left\langle\psi_{28}\right\rangle+\psi_{178} \psi_{31}\left\langle\psi_{28}\right\rangle+ \tag{5.43}\\
+ & \psi_{158} \psi_{37}\left\langle\psi_{34}\right\rangle+\psi_{178} \psi_{37}\left\langle\psi_{34}\right\rangle+\psi_{11} \psi_{175}\left\langle\psi_{90}\right\rangle .
\end{align*}
$$

These are the trilinear couplings agreeing with orbifold selection rules.
A set of redefinitions consistent with the previous mass terms is given in Table 5.12, in order to obtain it we have to relax the guideline of the local multiplicity.

[^29]Table 5.4: Orbifold-resolution map for doublets obtained using as guide local multiplicities.

Mult.	State blow-up	redef.	irrep.
$(-2,2)$	$\left(\Phi_{10}^{I}, \Phi_{33}^{I}\right)$	$\left(\psi_{158}, \psi_{178}\right) \rightarrow \Phi_{10}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-2,2)$	$\left(\Phi_{16}^{I}, \Phi_{40}^{I}\right)$	$\left(\psi_{89}, \psi_{111}\right) \rightarrow \Phi_{40}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-2,2)$	$\left(\Phi_{17}^{I}, \Phi_{41}^{I}\right)$	$\left(\psi_{42}, \psi_{39}\right) \rightarrow \Phi_{41}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-1,1)$	$\left(\Phi_{19}^{I}, \Phi_{29}^{I}\right)$	$\psi_{8} \equiv \Phi_{19}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-1,1)$	$\left(\Phi_{21}^{I}, \Phi_{26}^{I}\right)$	$\psi_{4} \equiv \Phi_{26}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-1,1)$	$\left(\Phi_{23}^{I}, \Phi_{32}^{I}\right)$	$\psi_{10} \equiv \Phi_{23}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(0,0)$	$\left(\Phi_{4}^{I I}, \Phi_{2 I}^{I I}\right)$	$\left(\psi_{61}, \psi_{49}\right) \rightarrow \Phi_{4}^{I I},\left(\psi_{37}, \psi_{31}\right) \rightarrow \Phi_{20}^{I I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(0,0)$	$\left(\Phi_{29}^{I I}, \Phi_{31}^{I I}\right)$	$\psi_{11} \equiv \Phi_{31}^{I I}, \psi_{12} \equiv \Phi_{29}^{I I}, \psi_{108} \rightarrow \Phi_{31}^{I I}, \psi_{175} \rightarrow \Phi_{29}^{I I}$,	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
		$\psi_{24} \rightarrow \Phi_{31}^{I I}, \psi_{17} \rightarrow \Phi_{29}^{I I}$	

Table 5.5: Doublets redefinition with correct orbifold mass terms.

Mult.	State blow-up	redef.	irrep.
$(-2,2)$	$\left(\Phi_{10}^{I}, \Phi_{33}^{I}\right)$	$\left(\psi_{61}, \psi_{49}\right) \rightarrow \Phi_{10}^{I}$	$(\mathbf{1 , 2 , 1})_{r}$
$(-2,2)$	$\left(\Phi_{16}^{I},,_{40}^{I}\right)$	$\left(\psi_{89}, \psi_{111}\right) \rightarrow \Phi_{40}^{I}$	$(\mathbf{1 , 2 , 1})_{r}$
$(-2,2)$	$\left(\Phi_{17}^{I}, \Phi_{41}^{I}\right)$	$\left(\psi_{42}, \psi_{39}\right) \rightarrow \Phi_{41}^{I}$	$\left(\psi_{8} \equiv \Phi_{19}^{I}\right.$
$(-1,1)$	$\left(\Phi_{19}^{I}, \Phi_{29}^{I}\right)$	$\psi_{4} \equiv \Phi_{26}^{I}$	$\left.(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}\right)_{r}$
$(-1,1)$	$\left(\Phi_{21}^{I}, \Phi_{26}^{I}\right)$	$\psi_{10} \equiv \Phi_{23}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})_{r}$
$(-1,1)$	$\left(\Phi_{23}^{I}, \Phi_{32}^{I}\right)$	$(\mathbf{1 , 2 , 1})_{r}$	
$(0,0)$	$\left(\Phi_{29}^{I I}, \Phi_{31}^{I I}\right)$	$\psi_{11} \equiv \Phi_{31}^{I I}, \psi_{12} \equiv \Phi_{29}^{I I}, \psi_{108} \rightarrow \Phi_{31}^{I I}, \psi_{175} \rightarrow \Phi_{29}^{I I}$ $\psi_{24},\left(\psi_{31}, \psi_{37}\right) \rightarrow \Phi_{31}^{I I}, \psi_{17},\left(\psi_{158}, \psi_{178}\right) \rightarrow \Phi_{29}^{I I}$	$(\mathbf{1 , 2 , 1})_{r}$

The redefinitions for triplets and anti-triplets are given in Table 5.11. For the states represented here, there is a perfect agreement with the intuition of the local multiplicity. However, the difference between the states mapped to Φ_{x} and Φ_{x} determines the number of chiral states in blow-up. But we write in the first table the representatives with correct local multiplicities. The set in Table 5.7 will give a full rank mass matrix because conjugate

Table 5.6: Orbifold-resolution map for triplets.

Mult.	State blow-up	irrep.BU	redef.	irrep.
$(-3,3)$	$\left(\Phi_{4}^{I}, \Phi_{47}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{121}, \psi_{129}\right) \rightarrow \Phi_{4}^{I},\left(\psi_{6}\right)_{r} \equiv \Phi_{4}^{I}$	$\mathbf{3}_{r}$
$(-2,2)$	$\left(\Phi_{7}^{I}, \Phi_{36}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{135}, \psi_{127}\right) \rightarrow \Phi_{36}^{I}$	$\overline{\mathbf{3}}_{r}$
$(-2,2)$	$\left(\Phi_{8}^{I}, \Phi_{35}^{I}\right)$	$(\overline{\mathbf{3}}, \mathbf{3})$	$\left(\psi_{23}, \psi_{16}\right) \rightarrow \Phi_{35}^{I}$	$\mathbf{3}_{r}$
$(-1,1)$	$\left(\Phi_{12}^{I}, \Phi_{46}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{58}, \psi_{46}\right) \rightarrow \Phi_{12}^{I}$	$\mathbf{3}_{r}$
$(-1,1)$	$\left(\Phi_{25}^{I}, \Phi_{31}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\psi_{99} \rightarrow \Phi_{25}^{I}$	$\mathbf{3}_{r}$

states are paired up. We postpone a detailed analysis of the orbifold superpotential mass terms for triplets to next section. To find an agreement with those terms leads to a different set of redefinitions.

Table 5.7: Orbifold-resolution map for triplets. States with total multiplicty zero.

Mult.	States blow-up	irrep.BU	redef.	irrep.
0	$\left(\Phi_{5}^{I I}, \Phi_{21}^{I I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{62}, \psi_{50}\right) \rightarrow \Phi_{5}^{I I},\left(\psi_{152}, \psi_{149}\right) \rightarrow \Phi_{21}^{I I}$	$\mathbf{3}_{r}, \overline{\mathbf{3}}_{r}$
0	$\left(\Phi_{30}^{I I}, \Phi_{32}^{I I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left.\left(\psi_{116}, \psi_{105}\right) \rightarrow \Phi_{30}^{I I}, \psi_{36}, \psi_{39}\right) \rightarrow \Phi_{32}^{I I}$	$\mathbf{3}_{r} \overline{\mathbf{3}}_{r}$
0	$\left(\Phi_{34}^{I I} \Phi_{36}^{I I}\right)$	$(\mathbf{3} \overline{\mathbf{3}})$	$\left(\psi_{112}, \psi_{92}\right) \rightarrow \Phi_{34}^{I I}, \psi_{100} \rightarrow \Phi_{36}^{I I}, \psi_{94} \rightarrow \Phi_{36}^{I I}$	$\mathbf{3}_{r}, \overline{\mathbf{3}}_{r}, \overline{\mathbf{3}}_{r}$
$(-2,2)$	$\left(\Phi_{8}^{I}, \Phi_{35}^{I}\right)$	$(\overline{\mathbf{3}}, \mathbf{3})$	$\left(\psi_{20}, \psi_{13}\right) \rightarrow \Phi_{8}^{I},\left(\psi_{185}, \psi_{169}\right) \rightarrow \Phi_{8}^{I}$,	$\overline{\mathbf{3}}_{r}, \overline{\mathbf{3}}_{r}, \mathbf{3}_{r}$
			$\left(\psi_{151}, \psi_{132}, \psi_{148}, \psi_{124}\right) \rightarrow \Phi_{35}^{I}$	
$(-3,3)$	$\left(\Phi_{4}^{I}, \Phi_{47}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{188}, \psi_{172}\right) \rightarrow \Phi_{4}^{I}, \psi_{174} \rightarrow \Phi_{47}^{I}, \psi_{161} \rightarrow \Phi_{47}^{I}$	$\mathbf{3}^{\prime}, \overline{\mathbf{3}}_{r}, \overline{\mathbf{3}}_{r}$
$(-1,1)$	$\left(\Phi_{25}^{I}, \Phi_{31}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{184}, \psi_{166}\right) \rightarrow \Phi_{25}^{I},\left(\psi_{125}, \psi_{133}\right) \rightarrow \Phi_{31}^{I}$	$\mathbf{3}_{r}, \overline{\mathbf{3}}_{r}$

Table 5.8: Triplets identification.

Mult.	Blow-up state	irrep.BU	redef.	irrep.
$(-3,3)$	$\left(\Phi_{4}^{I}, \Phi_{47}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{121}, \psi_{129}\right) \rightarrow \Phi_{4}^{I},\left(\psi_{6}\right)_{r} \equiv \Phi_{4}^{I}$	$\mathbf{3}_{r}$
$(-2,2)$	$\left(\Phi_{7}^{I}, \Phi_{36}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{135}, \psi_{127}\right) \rightarrow \Phi_{36}^{I}$	$\overline{\mathbf{3}}_{r}$
$(-2,2)$	$\left(\Phi_{8}^{I}, \Phi_{33}^{I}\right)$	$(\overline{\mathbf{3}}, \mathbf{3})$	$\left(\psi_{23}, \psi_{16}\right) \rightarrow \Phi_{35}^{I}$	$\mathbf{3}_{r}$
$(-1,1)$	$\left(\Phi_{12}^{I}, \Phi_{46}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\left(\psi_{58}, \psi_{46}\right) \rightarrow \Phi_{12}^{I}$	$\mathbf{3}_{r}$
$(-1,1)$	$\left(\Phi_{25}^{I}, \Phi_{31}^{I}\right)$	$(\mathbf{3}, \overline{\mathbf{3}})$	$\psi_{99} \rightarrow \Phi_{25}^{I}$	$\mathbf{3}_{r}$

Now lets describe the match of the $(\mathbf{3}, \mathbf{2}, \mathbf{1})$ and $(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{1})$ states in Table 5.9. The states with multiplicities different from zero also have local multiplicities compatible with the localization of the identified orbifold states. For example, the states $\left(\psi_{48}, \psi_{60}\right)$ are located in the θ sector fixed points $(\beta, \gamma)=(1,1),(1,3)$ respectively. This agrees with the local multiplicities of Φ_{11}^{I} which are $N\left(\Phi_{11}^{I}\right)_{1,1,1}=N\left(\Phi_{11}^{I}\right)_{1,1,3}=-1$, and all the others are ~ 0. The same happens for the state ψ_{189} of θ^{4} and fixed torus $(\alpha, \beta)=(1,2)$. This state is mapped finally to Φ_{20}^{I} with local multiplicity $N\left(\Phi_{20}^{I}\right)_{\beta=2}=-1$ and otherwise ~ 0. Let us mention that according to the orbifold selection rules, up to 5 -point couplings there are no other mass terms appearing.

Table 5.9: Orbifold-resolution map for the $(\mathbf{3}, \mathbf{2}, \mathbf{1})$ representation.

Multip.	Blow-up state	Redefinition	irrep.
-2	$\left(\Phi_{11}^{I}, \Phi_{45}^{I}\right)$	$\left(\psi_{48}, \psi_{60}\right) \rightarrow \Phi_{11}^{I}$	$(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{1})$
-1	$\left(\Phi_{20}^{I}, \Phi_{28}^{I}\right)$	$\psi_{189} \rightarrow \Phi_{20}^{I}$	$(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{1})$
0	$\left(\Phi_{13}^{I I}, \Phi_{10}^{I I}\right)$	$\psi_{93} \rightarrow \Phi_{13}^{I I}, \psi_{173} \rightarrow \Phi_{10}^{I I}$	$(\mathbf{3 , 2}, \mathbf{1}),(\overline{\mathbf{3}}, \mathbf{2}, \mathbf{1})$

A map matching the singlets is given in Table 5.10. Here the interpretation in terms of the local multiplicity has more failures. This can be checked by using the redefinitions in appendix K and computing the local multiplicities from (5.40).

The results of this section show that is possible to implement field redefinitions such that the resulting spectrum in the orbifold deformed by vevs matches the chiral asymmetry of the supergravity on the resolution. As was done for the six, the doublets and the (3, 2, 1), we need to identify which are the triplets and singlets fields which get masses from Yukawa

Table 5.10: Singlets identification.

Mult.	States blow-up	redef.
E_{8}^{1} spectrum I		
$(-4,4)$	$\left(\Phi_{1}^{I}, \Phi_{48}^{I}\right)$	$\begin{aligned} \left(\psi_{63}, \psi_{66}\right) & \rightarrow \Phi_{1}^{I},\left(\psi_{51}, \psi_{54}\right) \rightarrow \Phi_{1}^{I}, \\ \psi_{163} & \rightarrow \Phi_{48}^{I}, \psi_{160} \rightarrow \Phi_{1}^{I} \end{aligned}$
$(-4,4)$	$\left(\Phi_{2}^{I}, \Phi_{49}^{I}\right)$	$\left(\psi_{64}, \psi_{52}\right) \rightarrow \Phi_{2}^{I},\left(\psi_{81}, \psi_{75}\right) \rightarrow \Phi_{2}^{I}$
$(-2,2)$	$\left(\Phi_{5}^{1}, \Phi_{38}^{1}\right)$	$\psi_{65} \rightarrow \Phi_{5}^{I}, \psi_{55} \rightarrow \Phi_{5}^{I}$
$(-2,2)$	$\left(\Phi_{6}^{I}, \Phi_{37}^{I}\right)$	$\left(\psi_{121}, \psi_{14}\right) \rightarrow \Phi_{6}^{I}$
$(-2,2)$	$\left(\Phi_{9}^{I}, \Phi_{34}^{1}\right)$	$\left(\psi_{82}, \psi_{74}\right) \rightarrow \Phi_{9}^{I}$
$(-2,2)$	$\left(\Phi_{13}^{1}, \Phi_{43}^{1}\right)$	$\left(\psi_{87}, \psi_{84}\right) \rightarrow \Phi_{13}^{I}$
$(-2,2)$	$\left(\Phi_{14}^{1}, \Phi_{44}^{1}\right)$	$\left(\psi_{25}, \psi_{18}\right) \rightarrow \Phi_{14}^{I}$
$(-2,2)$	$\left(\Phi_{15}^{1}, \Phi_{39}^{I}\right)$	$\left(\psi_{130}, \psi_{122}\right), \psi_{71} \rightarrow \Phi_{15}^{I}, \psi_{73} \rightarrow \Phi_{39}^{I}$
$(-4,4)$	$\left(\Phi_{3}^{I}, \Phi_{50}^{I}\right)$	$\psi_{1} \equiv \Phi_{3}^{I}, \psi_{177} \rightarrow \Phi_{3}^{I}, \psi_{190} \rightarrow \Phi_{3}^{I}, \psi_{80} \rightarrow \Phi_{3}^{I}$
$(-2,2)$	$\left(\Phi_{18}^{1}, \Phi_{42}^{1}\right)$	$\left(\psi_{79}, \psi_{74}\right) \rightarrow \Phi_{42}^{I}$
$(-1,1)$	$\left(\Phi_{24}^{I}, \Phi_{30}^{I}\right)$	$\begin{gathered} \psi_{171} \rightarrow \Phi_{24}^{I},\left(\psi_{33}, \psi_{27}\right) \rightarrow \Phi_{24}^{I} \\ \left(\psi_{26}, \psi_{19}\right) \rightarrow \Phi_{30}^{I} \\ \psi_{95}, \psi_{96}, \psi_{128}, \psi_{167} \rightarrow \Phi_{24}^{I} \\ \psi_{91}, \psi_{104}, \psi_{120}, \psi_{180} \rightarrow \Phi_{30}^{I} \end{gathered}$
$(-1,1)$	$\left(\Phi_{22}^{I}, \Phi_{27}^{I}\right)$	$\psi_{7} \equiv \Phi_{22}^{I}$
E_{8}^{2} spectrum II		
$(2,-2)$	$\left(\Phi_{5}^{I I}, \Phi_{7}^{I I}\right)$	$\psi_{3} \equiv \Phi_{5}^{I I},\left(\psi_{38}, \psi_{32}\right) \rightarrow \Phi_{7}^{I I}, \psi_{113} \rightarrow \Phi_{7}^{I I}$
$(-2,2)$	$\left(\Phi_{3}^{I I}, \Phi_{8}^{I I}\right)$	$\left(\psi_{76}, \psi_{69}\right) \rightarrow \Phi_{3}^{I I}$
$(4,-4)$	$\left(\Phi_{12}^{I I}, \Phi_{20}^{I I}\right)$	$\left(\psi_{53}, \psi_{67}\right) \rightarrow \Phi_{12}^{I I},\left(\psi_{145}, \psi_{139}\right) \rightarrow \Phi_{12}^{I I}$
$(4,-4)$	$\left(\Phi_{16}^{I I}, \Phi_{18}^{I I}\right)$	$\begin{gathered} \left(\psi_{43}, \psi_{40}\right) \equiv \Phi_{18}^{I I}, \psi_{119} \rightarrow \Phi_{18}^{I I}, \psi_{181} \rightarrow \Phi_{18}^{I I}, \\ \left(\psi_{47}, \psi_{59}\right) \rightarrow \Phi_{16}^{I I},\left(\psi_{109}, \psi_{110}\right) \rightarrow \Phi_{18}^{I I} \\ \hline \end{gathered}$
Non-chiral spectrum III		
$(0,0)$	$\left(\Phi_{1}^{I I I}, \Phi_{17}^{I}\right)$	$\begin{gathered} \psi_{5} \equiv \Phi_{17}^{I I I},\left(\psi_{56}, \psi_{68}\right) \rightarrow \Phi_{1}^{I I I}, \\ \psi_{114} \rightarrow \Phi_{17}^{I I I}, \psi_{156} \rightarrow \Phi_{1}^{I I I}, \psi_{162} \rightarrow \Phi_{17}^{I I I}, \\ \psi_{168}, \psi_{176}, \psi_{107} \rightarrow \Phi_{1}^{I I I}, \\ \psi_{144}, \psi_{138}, \psi_{101} \rightarrow \Phi_{17}^{I I I} \end{gathered}$
$(0,0)$	$\left(\Phi_{24}^{I}, \Phi_{40}^{I}\right)$	$\begin{aligned} \psi_{78}, \psi_{98}, \psi_{131}, \psi_{146} & \rightarrow \Phi_{24}^{I} \\ \psi_{35}, \psi_{29}, \psi_{123}, \psi_{140} & \rightarrow \Phi_{40}^{I} \end{aligned}$

couplings with blow-up modes. Then we will explore which redefinition makes them nonchiral on the blow-up. Unfortunately the first set of redefinitions that we found can not accommodate those mass terms.

The fields redefinitions usually involve blow-up modes from different fixed sets as the orbifold field. It also occurs that only the local blow-up modes take part, but those are few cases. Nevertheless due to the complicated topology of the $\mathbb{Z}_{6 I I}$ orbifold and its resolution, this was expectable. In particular, as already mentioned in the resolved manifold occurs that exceptional divisors where blow-modes are localized have a compact intersection with other divisors in the manifold, such that every pair of exceptional divisors is connected ${ }^{7}$ It is an interesting question that we have not answered yet, if a suitable local multiplicity operator (for example in terms of 6 d index theorems obtained integrating on the divisors) can see the blow-up modes employed in the redefinition.

5.7 Second spectrum match: Agreement with superpotential masses

In this section we analyze the mass terms for triplets and singlets generated by Yukawa couplings to blow-up modes, present in the orbifold superpotential W. We have to choose a different map to the one given in the previous section, if we want to match the spectrum. To accomplishing that, we give up on the interpretation of local multiplicities.

The triplets The orbifold-resolution map is summarized in Table 5.11. This map is compatible with the orbifold superpotential mass terms. In the Appendix K we explicitly give a set of redefinitions which realize it. We start by listing the mass terms in which triplets and blow-up modes are involved. The Yukawa couplings coefficients will be denoted by $a_{i}, b_{i}, e_{i}, f_{i}$ and g_{i}, they have the same letter and index if they are equal. 8 A set of mass terms is given by

$$
\left(\begin{array}{c}
\psi_{6} \tag{5.44}\\
\psi_{112} \\
\psi_{92} \\
\psi_{116} \\
\psi_{105}
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{ccccc}
0 & 0 & a_{1}\left\langle\psi_{126}\right\rangle & a_{2}\left\langle\psi_{134}\right\rangle & a_{3}\left\langle\psi_{150}\right\rangle \\
a_{4}\left\langle\psi_{153}\right\rangle \\
0 & 0 & a_{5}\left\langle\psi_{70}\right\rangle & a_{5}\left\langle\psi_{77}\right\rangle & a_{6}\left\langle\psi_{70}\right\rangle \\
a_{6}\left\langle\psi_{77}\right\rangle \\
0 & 0 & a_{7}\left\langle\psi_{70}\right\rangle & a_{7}\left\langle\psi_{77}\right\rangle & a_{8}\left\langle\psi_{70}\right\rangle \\
a_{8}\left\langle\psi_{77}\right\rangle \\
e_{1}\left\langle\psi_{154}\right\rangle & e_{1}\left\langle\psi_{155\rangle}\right. & e_{2}\left\langle\psi_{15}\right\rangle & e_{2}\left\langle\psi_{22}\right\rangle & e_{1}\left\langle\psi_{15}\right\rangle \\
e_{3}\left\langle\psi_{154}\right\rangle & e_{3}\left\langle\psi_{155}\right\rangle & e_{4}\left\langle\psi_{22}\right\rangle \\
15\rangle & e_{4}\left\langle\psi_{22}\right\rangle & e_{3}\left\langle\psi_{15}\right\rangle & e_{3}\left\langle\psi_{22}\right\rangle
\end{array}\right)\left(\begin{array}{c}
\psi_{30} \\
\psi_{36} \\
\psi_{125} \\
\psi_{133} \\
\psi_{149} \\
\psi_{152}
\end{array}\right)
$$

[^30]The fields in the vector to the left are triplets and the ones in the vector to the right are the anti-triplets. This mass matrix has generically rank 5 . The field ψ_{6} is untwisted and its charges are exactly identified with Φ_{4}^{I}. We also redefine to Φ_{4}^{I} the remaning triplets $\psi_{112}, \psi_{92}, \psi_{105}$ and ψ_{116}. If we want that the map transforms orbifold mass terms into blow-up mass terms we need to redefine conjugated pairs in (5.44) into conjugated pairs in blow-up. It is possible to perform a unitary transformation on the anti-triplets eliminating the last column obtaining one massless eigenstate. We can adjust the redefinitions to have all the triplets and anti-triplets in a given mass term redefined to conjugate pairs on the blow-up side. So we take $\psi_{30}, \psi_{36}, \psi_{125}, \psi_{133}, \psi_{149}$ and ψ_{152} to $\bar{\Phi}_{4}^{I}$. Finally mapping ψ_{121}, ψ_{129}, ψ_{188} and ψ_{172} also to Φ_{4}^{I} a total of 3 massless states Φ_{4}^{I} is obtained in the CY.

Let us analyze now another set of states. The following masses agree easily with redefinitions

$$
\left(\psi_{62} \psi_{50}\right)\left(\begin{array}{cc}
b_{1}\left\langle\psi_{157}\right\rangle & b_{2}\left\langle\psi_{157}\right\rangle \tag{5.45}\\
b_{1}\left\langle\psi_{45}\right\rangle & b_{2}\left\langle\psi_{45}\right\rangle
\end{array}\right)\binom{\psi_{169}}{\psi_{185}}
$$

The mass matrix has rank 1. Due to that there are two massless eigenstates in the orbifold formed with ψ_{62}, ψ_{50} and ψ_{169}, ψ_{185}. With the identifications $\left(\psi_{62}, \psi_{50}\right) \rightarrow \Phi_{16}^{I I I}$ and $\left(\psi_{169}, \psi_{185}\right) \rightarrow \bar{\Phi}_{16}^{I I I}$ we get a net zero number of blow-up states $\Phi_{16}^{I I I}$. There are two orbifold massive linear combinations appearing in 5.45 that are conjugated pairs $\Phi_{16}^{I I I} \bar{\Phi}_{16}^{I I I}$. But also the two massless eigenstates from the orbifold perspective constitute a pair $\Phi_{16}^{I I I} \bar{\Phi}_{16}^{I I I}$ in blow-up.

The remaining mass terms are

$$
\begin{align*}
& \psi_{20}\left(\psi_{151}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{132}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{23}\left(\left\langle\bar{\psi}_{45}\right\rangle+\left\langle\psi_{159}\right\rangle\right)\right) \tag{5.46}\\
& \psi_{13}\left(\psi_{148}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{124}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{16}\left(\left\langle\bar{\psi}_{45}\right\rangle+\left\langle\psi_{159}\right\rangle\right)\right) \tag{5.47}
\end{align*}
$$

The fields on them are redefined as shown in Table 5.11. In (5.46) and (5.47) we have omitted the Yukawa coefficients because the rank of both 1×3 mass matrices is clearly 1.

The exploration criterium was to search for a map that matches the spectrum. We give the redefinitions in Appendix K. The map transforms massive conjugated pairs to conjugated blow-up pairs. The redefined massive modes give a zero chiral asymmetry for a given blowup state. In addition there are massless states from the orbifold superpotential perspective that are redefined to conjugated pairs in blow-up.

Let us conclude with the overall picture. In the orbifold there are $16(\mathbf{3}, \mathbf{1}, \mathbf{1})$ and $22(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, whereas in blow-up there are 2 triplets and 8 anti-triplets. The redefinitions performed give a map in which 14 massive vector pairs are created and the chiral asymmetry of the Calabi-Yau compactification is reproduced.

The doublets Some of the mass terms arising from Yukawa couplings are

$$
\left(\psi_{11} \psi_{31} \psi_{37}\right)\left(\begin{array}{ccc}
f_{1}\left\langle\psi_{118}\right\rangle & f_{2}\left\langle\psi_{90}\right\rangle & 0 \tag{5.48}\\
f_{3}\left\langle\psi_{28}\right\rangle & 0 & f_{4}\left\langle\psi_{28}\right\rangle \\
f_{3}\left\langle\psi_{34}\right\rangle & 0 & f_{4}\left\langle\psi_{34}\right\rangle
\end{array}\right)\left(\begin{array}{c}
\psi_{178} \\
\psi_{175} \\
\psi_{158}
\end{array}\right)
$$

Mult.	State blow-up	irrep.	redef.
-3	Φ_{4}^{I}	$\mathbf{3}$	$\psi_{6} \equiv \Phi_{4}^{I} \psi_{116}, \psi_{105}, \psi_{112}, \psi_{92} \rightarrow \Phi_{4}^{I}$ $\psi_{30}, \psi_{36}, \psi_{125}, \psi_{133}, \psi_{149}, \psi_{152} \rightarrow \bar{\Phi}_{4}^{I}$ $\left(\psi_{121}, \psi_{129}\right),\left(\psi_{188}, \psi_{172}\right) \rightarrow \Phi_{4}^{I}$,
-2	Φ_{7}^{I}	$\mathbf{3}$	$\left(\psi_{135}, \psi_{127}\right) \rightarrow \Phi_{7}^{I}$
-2	Φ_{8}^{I}	$\overline{\mathbf{3}}$	$\psi_{20} \rightarrow \Phi_{8}^{I}, \psi_{151}, \psi_{132}, \psi_{23} \rightarrow \bar{\Phi}_{8}^{I}$
-2	Φ_{12}^{I}	$\mathbf{3}$	$\left(\psi_{58}, \psi_{46}\right) \rightarrow \Phi_{12}^{I}$
-1	Φ_{25}^{I}	$\mathbf{3}$	$\psi_{184}, \psi_{166}, \psi_{99} \rightarrow \Phi_{25}^{I}$
		$\psi_{100}, \psi_{174} \rightarrow \bar{\Phi}_{25}^{I}$	
0	$\Phi_{16}^{I I I}$	$\mathbf{3}$	$\left(\psi_{62}, \psi_{50}\right) \rightarrow \Phi_{16}^{I I I},\left(\psi_{169}, \psi_{185}\right) \rightarrow \bar{\Phi}_{16}^{I I I}$
0	$\Phi_{32}^{I I I}$	$\overline{\mathbf{3}}$	$\psi_{148}, \psi_{124}, \psi_{16} \rightarrow \Phi_{32}^{I I I}$
$\psi_{13}, \psi_{94}, \psi_{161} \rightarrow \Phi_{32}^{I I I}$			

Table 5.11: Triplets identification in agreement with superpotential mass terms.

Mult.	State blow-up	redef.	irrep.
-2	Φ_{10}^{I}	$\left(\psi_{61}, \psi_{49}\right) \rightarrow \Phi_{10}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$
-2	Φ_{16}^{I}	$\psi_{24}, \psi_{108} \rightarrow \bar{\Phi}_{16}^{I}$	$(\mathbf{1 , 2 , 1})$
-2	Φ_{17}^{I}	$\left(\psi_{42}, \psi_{39}\right) \rightarrow \Phi_{17}^{I}$	$(\mathbf{1 , 2 , 1})$
-1	Φ_{19}^{I}	$\psi_{8} \equiv \Phi_{19}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$
-1	Φ_{21}^{I}	$\psi_{4} \equiv \bar{\Phi}_{21}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$
-1	Φ_{23}^{I}	$\psi_{10} \equiv \Phi_{23}^{I}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$
0	$\Phi_{29}^{I I I}$	$\psi_{11} \equiv \bar{\Phi}_{29}^{I I I}, \psi_{89}, \psi_{111},\left(\psi_{31}, \psi_{37}\right) \rightarrow \bar{\Phi}_{29}^{I I I}$ $\psi_{12} \equiv \Phi_{29}^{I I I}, \psi_{175}, \psi_{17},\left(\psi_{158}, \psi_{178}\right) \rightarrow \Phi_{29}^{I I I}$	$(\mathbf{1 , 2 , 1})$

Table 5.12: Doublets redefinition with correct orbifold mass terms.

The rank of the mass matrix (5.48) is 2 . The remaining mass terms involving doublets are given by

$$
\begin{equation*}
\psi_{12}\left(\psi_{89}\left\langle\psi_{171}\right\rangle+\psi_{111}\left\langle\psi_{187}\right\rangle\right) . \tag{5.49}
\end{equation*}
$$

We omitted the Yukawa coupling coefficients because the rank of the 1×2 mass matrix is clearly 1. A set of redefinitions consistent with all given mass terms is given in Table 5.12. The untwisted field ψ_{12} is identified with $\Phi_{29}^{I I I}$. The fields ψ_{89} and ψ_{111} are mapped to $\Phi_{29}^{I I I}$. They form a massive linear combination and a massless one. In the orbifold there are 19 doublets and 10 of them form conjugated pairs in blow-up giving a total of 9 massless chiral fields.

The singlets At the orbifold all the untwisted singlets are massless and they only take part in Yukawa couplings with doublets. The twisted singlets instead have various mass
terms coming from Yukawa couplings to blow-up modes. Those are

$$
\begin{align*}
& \psi_{160}\left(\psi_{84}\left\langle\psi_{45}\right\rangle g_{1}+\psi_{87}\left\langle\psi_{57}\right\rangle g_{1}+\psi_{27}\left\langle\psi_{28}\right\rangle g_{2}+\psi_{33}\left\langle\psi_{34}\right\rangle g_{2}\right), \tag{5.50}\\
& \psi_{180}\left(\psi_{84}\left\langle\psi_{45}\right\rangle g_{3}+\psi_{87}\left\langle\psi_{57}\right\rangle g_{3}+\psi_{27}\left\langle\psi_{28}\right\rangle g_{4}+\psi_{33}\left\langle\psi_{34}\right\rangle g_{4}\right), \tag{5.51}\\
& \psi_{40}\left(\psi_{114}\left(\left\langle\psi_{134}\right\rangle+\left\langle\psi_{1533}\right\rangle\right)+\psi_{14}\left\langle\psi_{187}\right\rangle\right), \tag{5.52}\\
& \psi_{43}\left(\psi_{114}\left(\left\langle\psi_{126}\right\rangle+\left\langle\psi_{150}\right\rangle\right)+\psi_{21}\left\langle\psi_{187}\right\rangle\right), \tag{5.53}\\
& \psi_{35}\left(\psi_{146}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{107}\left\langle\psi_{155}\right)\right\rangle, \tag{5.54}\\
& \psi_{29}\left(\psi_{140}\left\langle\bar{\psi}_{106}\right\rangle+\psi_{107}\left\langle\psi_{154}\right\rangle\right) . \tag{5.55}
\end{align*}
$$

We only wrote explicitly the Yukawa coupling coefficients in 5.50 and 5.51) as g_{i} to illustrate that the mass matrix formed with those equations has rank 2 . It is easy to check by looking at Table 5.13 that the identifications agree with the mass terms of the orbifold superpotential.

There is an ingredient not shown in the map presented so far. In the superpotential there are Yukawa couplings in which two blow-up modes are involved. We have checked up to trilinear order that the vevs can be assigned while ensuring F-flat vacua. In addition, only a pair of twisted singlets written as massless in the map of the Table 5.13 becomes massive due to those trilinear couplings. The map given above can be slightly modified to also reproduce the CY chiral asymmetry 9 The number of singlets in the orbifold is 114 out of which 74 are redefined to conjugated states forming blow-up massive pairs, to give 40 massless states in blow-up.

This completes the matching of the heterotic string massless spectrum in the deformed orbifold and in the CY. At the level of the massless spectrum, the geometric resolution with abelian vector bundle constitutes a blow-up of the MSSM Mini-landscape Model 28, in which the twisted singlets in Table 5.2 are identified as the blow-up modes.

The field redefinitions in Appendix K usually involve blow-up modes from different fixed sets than those of the orbifold twisted fields. Although it also occurs that only the local blow-up modes take part in the redefinition. Due to the topology of the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold and its resolution this was expectable.

5.8 Anomalies in the orbifold and its resolution

Choosing a basis in which the abelian factor $U(1)^{8}$ is explicit, we can express the anomaly polynomials in terms of it. In the blow-up model the $U(1) \times S U(6)^{2}$ anomalies cancel. We checked that the dimensionally reduced polynomial coincides with the one computed from the supergravity 4 d spectrum. Details of the anomaly polynomials are given in this section. We write explicitily the anomaly polynomials of the orbifold (orb), blow-up (bu) and the polynomial variation due to field redefinitions (red). We use the symbols

[^31]| Mult. | States blow-up | redef. |
| :---: | :---: | :---: |
| E_{8}^{1} spectrum I | | |
| -4 | Φ_{1}^{1} | $\left(\psi_{63}, \psi_{66}\right) \rightarrow \Phi_{1}^{I},\left(\psi_{51}, \psi_{54}\right) \rightarrow \Phi_{1}^{I}$ |
| -4 | Φ_{2}^{I} | $\left(\psi_{64}, \psi_{52}\right) \rightarrow \Phi_{2}^{I},\left(\psi_{81}, \psi_{75}\right) \rightarrow \Phi_{2}^{I}$ |
| -2 | Φ_{5}^{I} | $\begin{gathered} \psi_{123}, \psi_{35}, \psi_{29}, \psi_{65}, \psi_{55} \rightarrow \Phi_{5}^{I} \\ \psi_{140}, \psi_{146}, \psi_{107} \rightarrow \bar{\Phi}_{5}^{I} \end{gathered}$ |
| -2 | Φ_{6}^{I} | $\psi_{98}, \psi_{114},\left(\psi_{21}, \psi_{14}\right) \rightarrow \Phi_{6}^{I}, \psi_{40}, \psi_{43} \rightarrow \bar{\Phi}_{6}^{I}$ |
| -2 | Φ_{9}^{I} | $\left(\psi_{82}, \psi_{74}\right) \rightarrow \Phi_{9}^{I}$ |
| -2 | Φ_{13}^{I} | $\psi_{78}, \psi_{163} \rightarrow \bar{\Phi}_{13}^{I}$ |
| -2 | Φ_{14}^{I} | $\left(\psi_{25}, \psi_{18}\right) \rightarrow \Phi_{14}^{I}$ |
| -2 | Φ_{15}^{I} | $\left(\psi_{130}, \psi_{122}\right), \psi_{71} \rightarrow \Phi_{15}^{I}, \psi_{73} \rightarrow \bar{\Phi}_{15}^{I}$ |
| -4 | Φ_{3}^{1} | $\psi_{1} \equiv \Phi_{3}^{I}, \psi_{177}, \psi_{190}, \psi_{80} \rightarrow \Phi_{3}^{I}$ |
| -2 | Φ_{18}^{1} | $\left(\psi_{79}, \psi_{72}\right) \rightarrow \bar{\Phi}_{18}^{1}$ |
| -1 | Φ_{24}^{I} | $\begin{gathered} \psi_{87}, \psi_{84}, \psi_{171},\left(\psi_{33}, \psi_{27}\right) \rightarrow \Phi_{24}^{I} \\ \left(\psi_{26}, \psi_{19}\right) \rightarrow \bar{\Phi}_{24}^{I}, \psi_{95}, \psi_{96}, \psi_{128} \rightarrow \Phi_{24}^{I} \\ \psi_{91}, \psi_{104}, \psi_{120}, \psi_{180}, \psi_{160} \rightarrow \bar{\Phi}_{24}^{I} \end{gathered}$ |
| -1 | Φ_{22}^{1} | $\psi_{7} \equiv \Phi_{22}^{1}$ |
| E_{8}^{2} spectrum II | | |
| -2 | $\Phi_{7}^{I I}$ | $\begin{gathered} \left(\psi_{47}, \psi_{59}\right) \rightarrow \bar{\Phi}_{7}^{I I}, \psi_{3} \equiv \bar{\Phi}_{7}^{I I} \\ \left(\psi_{38}, \psi_{32}\right), \psi_{113}, \psi_{168}, \psi_{144} \rightarrow \Phi_{7}^{I I} \end{gathered}$ |
| -2 | $\Phi_{3}^{I I}$ | $\left(\psi_{76}, \psi_{69}\right) \rightarrow \Phi_{3}^{I I}$ |
| -4 | $\Phi_{20}^{I I}$ | $\left(\psi_{53}, \psi_{67}\right) \rightarrow \bar{\Phi}_{20}^{I I}, \quad\left(\psi_{145}, \psi_{139}\right) \rightarrow \bar{\Phi}_{20}^{I I}$ |
| -4 | Φ_{18}^{11} | $\psi_{119}, \psi_{181},\left(\psi_{109}, \psi_{110}\right) \rightarrow \Phi_{18}^{I I}$ |
| Non-chiral III | | |
| 0 | $\Phi_{1}^{I I I}$ | $\begin{gathered} \psi_{5} \equiv \bar{\Phi}_{1}^{I I I}, \psi_{162}, \psi_{138}, \psi_{101} \rightarrow \bar{\Phi}_{1}^{I I I} \\ \left(\psi_{56}, \psi_{68}\right), \psi_{176}, \psi_{156} \rightarrow \Phi_{1}^{I I I} \end{gathered}$ |
| 0 | $\Phi_{24}^{I I I}$ | $\psi_{131} \rightarrow \Phi_{24}^{I I I}, \psi_{167} \rightarrow \bar{\Phi}_{24}^{I I I}$ |

Table 5.13: Singlets identification in agreement with superpotential mass terms.
$I_{G}^{\mathrm{orb}}, I_{G}^{\mathrm{red}}$ and I_{G}^{bu} to denote the anomaly polynomial for the gauge factors $U(1)-G^{2}$ with $G=S U(2), S U(3), S U(6)$. The other symbols are $I_{\text {grav }}^{\text {orb,bu,red }}$ to denote the $U(1)$-grav ${ }^{2}$ anomalies, and $I_{\text {pure }}^{\text {orb,bu,red }}$ to denote the pure $U(1)$ anomalies.
The $U(1)-S U(3)^{2}$ anomalies are given by

$$
\begin{align*}
& I_{\mathrm{su}(3)}^{\mathrm{orb}}=-\frac{52}{9} F_{1} \operatorname{tr} F_{3}^{2}, \tag{5.56}\\
& I_{\mathrm{su}(3)}^{\mathrm{bu}}=\frac{1}{2}\left(11 F_{1}+2 F_{2}-30 F_{3}+330 F_{4}+1053 F_{5}-243 F_{6}-2087 F_{7}-594 F_{8}\right) \operatorname{tr} F_{3}^{2}, \\
& I_{\mathrm{su}(3)}^{\mathrm{red}}=\frac{1}{6}\left(\frac{203}{3} F_{1}+6 F_{2}-90 F_{3}+990 F_{4}+3159 F_{5}-729 F_{6}-6261 F_{7}-1782 F_{8}\right) \operatorname{tr} F_{3}^{2} .
\end{align*}
$$

It is clear from (5.56) that in the orbifold they are universal, with the unique axion canceling F_{1}, whereas in the blow-up all the $U(1)$ become anomalous. The $U(1)-S U(2)^{2}$ anomalies have an identical structure:

$$
\begin{align*}
& I_{\mathrm{su}(2)}^{\mathrm{orb}}=-\frac{52}{9} F_{1} \operatorname{tr} F_{2}^{2}, \tag{5.57}\\
& I_{\mathrm{su}(2)}^{\mathrm{bu}}=\frac{1}{2}\left(11 F_{1}+2 F_{2}-30 F_{3}+330 F_{4}+1053 F_{5}-243 F_{6}-2087 F_{7}-594 F_{8}\right) \operatorname{tr} F_{2}^{2}, \\
& I_{\mathrm{su}(2)}^{\mathrm{red}}=\frac{1}{6}\left(\frac{203}{3} F_{1}+6 F_{2}-90 F_{3}+990 F_{4}+3159 F_{5}-729 F_{6}-6261 F_{7}-1782 F_{8}\right) \operatorname{tr} F_{2}^{2} .
\end{align*}
$$

On the other hand the $U(1)-S U(6)^{2}$ anomaly has a very particular structure:

$$
\begin{align*}
I_{\mathrm{su}(6)}^{\mathrm{orb}} & =-\frac{52}{9} F_{1} \operatorname{tr} F_{6}^{2} \tag{5.58}\\
I_{\mathrm{su}(6)}^{\mathrm{red}} & =\frac{52}{9} F_{1} \operatorname{tr} F_{6}^{2} \tag{5.59}\\
I_{\mathrm{su}(6)}^{\mathrm{bu}} & =0 \tag{5.60}
\end{align*}
$$

As expected, in the orbifold it is universal, and in blow-up they turn out to be zero. The gravitational anomalies are given by

$$
\begin{align*}
& I_{\text {grav }}^{\text {orb }}=\frac{52}{9} F_{1} \operatorname{tr} R^{2}, \tag{5.61}\\
& I_{\text {grav }}^{\text {bu }}=-\frac{1}{12}\left(23 F_{1}+7 F_{2}-119 F_{3}+1439 F_{4}+3946 F_{5}+6\left(-57 F_{6}-967 F_{7}+F_{8}\right)\right) \operatorname{tr} R^{2}, \\
& I_{\text {grav }}^{\mathrm{red}}=-\frac{1}{36}\left(277 F_{1}+3\left(7 F_{2}-119 F_{3}+1439 F_{4}+3946 F_{5}+6\left(-57 F_{6}-967 F_{7}+F_{8}\right)\right)\right) \operatorname{tr} R^{2} .
\end{align*}
$$

The pure $U(1)$ anomalies have also a universal character in the blow-up:

$$
\begin{align*}
I_{\text {pure }}^{\mathrm{orb}} & =\frac{1}{6}\left(-\frac{10816}{27} F_{1}^{3}-\frac{260}{9} F_{1} F_{2}^{2}-\frac{13520}{3} F_{1} F_{2}^{2}-\frac{1879280}{3} F_{1} F_{4}^{2}-\frac{17809792}{3} F_{1} F_{5}^{2}\right) \\
& -\frac{1}{6}\left(\frac{40616576}{3} F_{1} F_{6}^{2}-\frac{59672080}{3} F_{1} F_{7}^{2}-7830784 F_{1} F_{8}^{2}\right) . \tag{5.62}
\end{align*}
$$

On the blow-up the expression is much longer, so we refrain from giving it explicitly. It is important to mention the fact that all the $U(1) \mathrm{s}$ become anomalous.
We don't need the explicit field redefinitions obtained in order to match the anomalies in the supergravity and in the orbifold deformed by vevs. Any map that identifies the orbifold and blow-up massless spectrum gives the same $I^{\text {red }}$. Nevertheless, we give in the appendix K a list of the redefined orbifold fields and one of the many possible redefinitions that can be used to realized the considered map.

Blow-up modes and non-universal axions Let us explore how the orbifold axion and the blow-up modes are related to the blow-up universal- and non-universal axions. As in the T^{6} / \mathbb{Z}_{7} study we want to determine if the local blow-up modes can be interpreted as the non-universal axions. For that purpose we write the anomaly change due to redefinitions as $I^{\mathrm{red}}=\sum_{r} q_{I}^{r} F^{I} X_{4, r}^{r e d}$ i.e. as a factorization that can be canceled by a counterterm of blow-up modes. Then, the anomaly polynomial in the resolved space can be written as

$$
\begin{equation*}
I_{6}=F_{1} X_{4}^{\text {orb }}+\sum_{r} q_{I}^{r} F^{I} X_{4, r}^{r e d}=X_{2}^{u n i} X_{4}^{u n i}+\sum X_{2}^{r} X_{4}^{r} . \tag{5.63}
\end{equation*}
$$

To describe the factorization use the formulas in appendix C.
We employ the ansatz

$$
\begin{equation*}
X_{4, r}^{r e d}=-\frac{1}{12}\left(c_{r} X_{4, r}^{\mathrm{uni}}+d_{r} X_{4}^{r}\right) . \tag{5.64}
\end{equation*}
$$

In which the $-1 / 12$ is introduced in order to simplify the normalization. In the appendix H we give the solutions for c_{r} and d_{r}. The results identify the blow-up modes τ_{r} as the nonuniversal axions β_{r}. The blow-up universal axion $a^{\text {uni }}$ is given as a mixture of the blow-up modes and the orbifold axion $a^{\text {orb }}$. This can be seen in the following relations

$$
\begin{align*}
a^{\text {uni }} & =-\frac{1}{12}\left(a^{\text {orb }}+\sum_{r} c_{r} \tau_{r}\right) \tag{5.65}\\
\beta_{r} & =-\frac{1}{12} d_{r} \tau_{r} . \tag{5.66}
\end{align*}
$$

The proportionality factor $-1 / 12 d_{r}$ can be chosen to be universal. It is $1 / 6$ for all the blow-up modes which are right-handed and $-1 / 6$ for the three blow-up modes which are left-handed. This results agrees exactly with the one encountered ins section 4.4 for the T^{6} / \mathbb{Z}_{7} orbifold. In the appendix can also be seen that universal blow-up axion receives contributions from the unique orbifold axion $a^{\text {orb }}$ and the blow-up modes. This one-loop computation establishes a perfect identification between the orbifold resolution and the deformed orbifold with vevs of twisted fields.

Chapter 6

Conclusions

> En el momento en que el tenista lanza magistralmente su bala, le posee una inocencia totalmente animal; en el momento en que el filósofo sorprende una nueva verdad es una bestia completa. (....)Oh alma! Oh pensamiento! Oh Marx! Oh Feuerbach!

César Vallejo
Our work explains the transition, in the 6d Calabi-Yau moduli space, between a region of smooth geometry and a region with orbifold singularities. We understand the heterotic string theory on the deformed orbifold, by vevs of twisted fields, as the theory compactified on the orbifold resolution. For the cases T^{6} / \mathbb{Z}_{7} and $T^{6} / \mathbb{Z}_{6 I I}$ the analysis has been carried out in detail. Our results show, that the mechanism which ensures $4 \mathrm{~d} \mathcal{N}=1$ supersymmetry and breaks the $U(1)$ gauge symmetries, also smooths the singularities and drives the space into a region of smooth Calabi-Yau. As a complementary project, we have studied automorphisms of all the T^{6} / \mathbb{Z}_{N} orbifold varieties. The results found, can be applied to the study of 4 d discrete symmetries in the future.

We initially selected the T^{6} / \mathbb{Z}_{7} case because of the existence of a unique resolution and the absence of brother orbifolds simplifies the analysis. This model possesses the features of other realistic constructions, but on the orbifold it has extra exotics and it fails to give hypercharge with the normalization of $S U(5)$ GUT. However, it was a good starting point to perform a detailed analysis in a compact realistic model. In this collaboration, it was obtained a solution of the Bianchi Identities in which all the blow-up modes were identified with twisted states. A novel development was the use of a local index theorem, associated to a local multiplicity operator. This local multiplicity allows to identify the blow-up massless spectrum with the deformed orbifold massless spectrum. We also included in the analysis the masses coming from Yukawa couplings of orbifold states with blow-up modes. We found that the field redefinitions involve only blow-up modes localized in the same fixed set as the redefined twisted field. Then, we studied the 4d Green-Schwarz anomaly cancellation mechanism. This was done from two sides. First, we performed the dimen-
sional reduction of the 10 d anomaly in the Calabi-Yau, where the 4 d anomaly cancellation follows automatically from the 10d cancellation. Then, starting from the orbifold universal anomaly, we considered how it changes due to field redefinitions and fields turning massive on the deformed orbifold. The factorization of the anomaly polynomial associated with redefinitions allowed to interpret blow-up modes as the non-universal axions in blow-up. Correspondingly, the unique orbifold axion was identified as a mixture of the blow-up universal and non-universal axions. We achieved a perfect anomaly match, which constitutes a one-loop effect, supporting the field theory approach to describe the physics on the resolved space.

As a following project we chose an orbifold model with more realistic features and more complexity. This is the orbifold $T^{6} / \mathbb{Z}_{6 I I}$ with gauge group $S U(3) \times S U(2) \times S U(6) \times U(1)^{8}$. It belongs to the MSSM Mini-landscape study and is phenomenologically appealing. This orbifold has the greatest complexity encountered in 6d heterotic orbifold constructions. There are fixed points and fixed tori, that gives local singularities: $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}, \mathbb{C}^{2} / \mathbb{Z}_{3}$ and $\mathbb{C}^{2} / \mathbb{Z}_{2}$. The singularity $\mathbb{C}^{3} / \mathbb{Z}_{6 I I}$ brings with it part of the complexity of the model. A resolution of it can be performed in five different ways, giving many possibilities to resolve the compact variety. A further complexity would be the existence of brother models to the orbifold. However those models have no brothers in which the physical states transform in a consistent way under the orbifold. We scanned over the Mini-landscape, restricting the search to those models in which all fixed sets support chiral matter multiplets. Then, for a given orbifold model, we explored multiple resolutions. We observed, that the Bianchi identities were easier to fulfill by fixing the triangulation of all the local resolutions to be the same. We obtained Bianchi identities solutions for triangulation A in all local resolutions, in which we failed to identify two blow-up modes in the studied orbifold. However, for resolution B in all the fixed points, we identified many sets of twisted fields which can play the role of blow-up modes. Taking one of those resolutions we succeed to perform fields redefinitions that reproduce the chiral asymmetry of the supergravity on the toric Calabi-Yau. We considered masses generated by Yukawa couplings to blow-up modes and obtained that this restricts strongly the possible redefinitions. We found many equivalent redefinitions, which identify the orbifold spectrum with the blow-up spectrum with the same map. Another finding was that here the local index theorem does not seem to apply. That is expectable due to the presence of fixed sets, and the absence of some exceptional divisors on the triple intersections. Next, we obtained a match between the supergravity on the blow-up $m=0$ spectrum and the orbifold $m=0$ spectrum. A new observation in this study is that field redefinitions involve also non local blow-up modes. Intuitively this can be understood from the fact that in $\widehat{T^{6} / \mathbb{Z}_{6 I I}}$ every exceptional divisor has a compact intersection with other divisors on the manifold, such that every pair of exceptional divisors is connected. With this information in hand we carried a detailed analysis of the anomaly cancelation mechanism. On one side we computed the dimensional reduced anomaly polynomial in blow-up. We also obtained the orbifold anomaly polynomial and its variation due to field redefinitions and fields going massive in blow-up. The anomaly cancellation in 4 d is inherited from the 10 d cancellation, this is checked by obtaining the factorization of the 4 d polynomial in blow-up. We were able to factorize the change of
the orbifold anomaly polynomial, to obtain that the blow-up modes correspond to nonuniversal axions of the resolution. This study completes the identification of the smooth geometry with the deformed orbifold at the quantum level.

For the T^{6} / \mathbb{Z}_{7} orbifold the automorphisms exploration doesn't give any new insight. So we don't expect modifications to its selection rules coming from rotations in any of the planes. However, for the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold the inclusion of gamma phases can modify the discrete R-charge conservation, obtained by the rotations in the three planes. This fact is still under investigation. In addition, for some Wilson lines combination, there is an automorphism that maps fixed sets with the same spectrum among each other. This transformation could generate a flavor symmetry in 4 d . We would like to study in a future work how those new developments on orbifold discrete symmetries affect the orbifold-toric CY transition 94.

Our results show the viability of using orbifold compactifications to obtain information about a smooth region of the Calabi-Yau moduli space. We have shown that the absence of a unique toric resolution is a problem that can be overcome by a careful analysis. We connected two regions of the moduli space from heterotic 3-fold Calabi-Yau at the level of the massless spectrum, and at the quantum level, by understanding the changes in the anomaly cancellation mechanism.

There are still open questions along this path. One of the questions which we would like treat in a future work, is how the Bianchi identities translate into the level-matching condition for blow-up modes. This has been studied in the Gauge Linear Sigma Models scheme. Another interesting check, would be to look at the partition function of the effective 10d orbifold and resolution theories, to explicitly check that the field redefinitions will give rise to a counterterm canceling the anomaly modification. Although during the realized exploration sometimes one has the impression of searching a needle in haystack, our results in the two worked examples, imply that there is something deeper than just coincidence. The case of the $T^{6} / \mathbb{Z}_{6 I I}$ orbifold is interesting. As mentioned, we found that there are degenerated redefinitions i.e. different redefinitions parametrize the same orbifold-resolution map. It seems also that various maps are possible, but we focused in finding one of them. Because of the mentioned properties, this orbifold offers a new insight: to understand the anomaly cancellation mechanism doesn't legitimize a particular set of field redefinitions. Of course the matching of the massless spectrum via field redefinitions is a check at the classical level, which is connected to the anomaly. But there are multiple ways to perform that match. The contribution that anomaly matching brings, is the observation that blow-up modes mutate into non-universal blow-up axions and the single orbifold axion depends on both universal and non-universal axions in blow-up. Then, our anomaly study constitutes a one-loop check that both theories can be identified.

Anomaly cancellation of the 10 d heterotic string theory and of the $10 \mathrm{~d} \mathcal{N}=1$ supergravity is ensured by the fact that the gauge group is $E_{8} \times E_{8}$ or $S O(32)$. This selection of the gauge group is also required by world-sheet consistency, via locality and modular invariance. So the consistency of the superconformal $(0,2)$ world-sheet theory expresses itself in the target space through the 4 d anomaly cancellation. It is precisely this cancellation, that allowed
us to give a quantum argument to identify the deformed orbifold and the toric Calabi-Yau manifold.

Appendix A

Orbifold and blow-up spectrum

This appendix contains a detailed list of all orbifold and blow-up states. For each state the local and global multiplicity is given, as well as the characteristic data (i.e. the $E_{8} \times E_{8}$ roots for the blow-up states and the shifted momenta for the orbifold states) together with the field redefinition between these states. The organization of the table is as follows: it is divided into blocks where each block corresponds to an $E_{8} \times E_{8}$ roots in blow-up. Below this root, we list all orbifold states which are redefined to this root, where the redefinition used is indicated in the last column.
We give the representation (of the blow-up root) or an auxiliary name (for the orbifold states) in the first column. The second column contains the twisted sector where the orbifold state lives (for the blow-up states this information is not defined anymore). The entry 1-7 indicates an untwisted state. The third column gives the local multiplicity, i.e. the multiplicity of each state at each fixed point. The "tot" column contains the total multiplicity, i.e. the sum of the local multiplicities over all fixed points. In our convention, we list only the highest states of non-abelian irreps, where a negative multiplicity indicates that the state belongs to the complex conjugate representation. The last block of the table contain the 21 orbifold states which were chosen as blow-up modes, they are denoted by BM.

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root $/ P_{s h}$	Redef
		1	2	3	4	5	6	7			
(3,2,1)	-	$\frac{1}{7}$	1	(1,0,0,0,-1,0,0,0) (0,0,0,0,0,0,0,0)	-						
Q_{1}	1-7	$\frac{1}{7}$	1	($1,0,0,0,-1,0,0,0)(0,0,0,0,0,0,0,0)$	none						
(3,2,1)	-	1	$-\frac{1}{7}$	- 1	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
Q_{2}	2	1	0	0	0	0	0	0	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{3}{14}, \frac{3}{14},-\frac{11}{14},-\frac{1}{14},-\frac{1}{14}, \frac{3}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32a
(3,2,1)	-	1	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
Q_{3}	1	1	0	0	0	0	0	0	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{5}{14}, \frac{5}{14},-\frac{9}{14}, \frac{3}{14}, \frac{3}{14}, \frac{5}{14}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
($\overline{3}, 1,1)$	-	$\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	-1	-1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{7}	4	0	0	0	0	0	0	-1	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{14}, \frac{3}{14}, \frac{1}{14}\right)\left(\frac{1}{7}, \frac{5}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a)
(3,1,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{1}{7}$	1	($0,0,0,0,-1,0,1,0)(0,0,0,0,0,0,0,0)$	-
t_{6}	4	0	0	0	0	0	1	0	1	$\left(-\frac{5}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14},-\frac{13}{14},-\frac{3}{14}, \frac{1}{14}, \frac{3}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a)
(3,1,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{1}{7}$	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root / $P_{s h}$	Redef
		1	2	3	4	5	6	7			
t_{7}	4	0	0	0	0	0	1	0	1	$\left(\frac{1}{7}, \frac{1}{7}, \frac{4}{7}, \frac{4}{7},-\frac{3}{7}, \frac{2}{7},-\frac{3}{7},-\frac{2}{7}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a)
$(\overline{3}, 1,1)$	-	- $\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{8}{7}$	$-\frac{8}{7}$	-3	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{1}	1-7	$-\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	-1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	none
\bar{t}_{5}	4	0	0	0	0	0	-1	0	-1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{3}{7},-\frac{3}{7}, \frac{4}{7}, \frac{2}{7}, \frac{4}{7},-\frac{2}{7}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32 c
\bar{t}_{6}	4	0	0	0	0	0	0	-1	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{14}, \frac{3}{14}, \frac{1}{14}\right)\left(\frac{1}{7},-\frac{2}{7}, \frac{5}{7}, 0,0,0,0,0\right)$	4.32 c
$(\overline{3}, 1,1)$	-	- $\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	-1	$\frac{1}{7}$	$\frac{1}{7}$	-1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{4}	4	0	0	0	0	-1	0	0	-1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{5}{14},-\frac{5}{14}, \frac{9}{14}, \frac{1}{2},-\frac{1}{14}, \frac{5}{14}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
$(\overline{3}, 1,1)$	-	- $\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	-1	$\frac{1}{7}$	$\frac{1}{7}$	-1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{17}	1	0	0	0	0	-1	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14}, \frac{11}{14},-\frac{1}{2}, \frac{5}{14}, \frac{3}{14}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a)
(3,1,1)	-	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{8}{7}$	$-\frac{1}{7}$	0	(0,0,0,0,-1,0,0,-1) (0,0,0,0,0,0,0,0)	-
t_{5}	4	0	0	0	0	1	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7},-\frac{6}{7}, 0, \frac{3}{7},-\frac{1}{7}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
t_{12}	1	0	0	0	0	1	0	0	1	$\left(\frac{3}{7}, \frac{3}{7}, \frac{2}{7}, \frac{2}{7},-\frac{5}{7}, 0,-\frac{1}{7},-\frac{2}{7}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
\bar{t}_{11}	2	0	0	0	0	-1	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{4}{7},-\frac{3}{7},-\frac{3}{7}, 0,-\frac{2}{7},-\frac{4}{7}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 b
\bar{t}_{18}	1	0	0	0	0	0	-1	0	-1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{9}{14},-\frac{5}{14},-\frac{5}{14}, \frac{1}{14},-\frac{5}{14},-\frac{1}{14}\right)\left(\frac{5}{7}, 0,-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 c
$(\overline{3}, 1,1)$	-	- $\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	-1	- $\frac{1}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	-1	($0,0,0,0,1,0,1,0)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{16}	1	0	0	0	-1	0	0	0	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{13}{14},-\frac{1}{14}, \frac{1}{14}, \frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a
$(\overline{3}, 1,1)$	-	- $\frac{1}{7}$	- $\frac{1}{7}$	-1	$\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	-1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
\bar{t}_{3}	4	0	0	-1	0	0	0	0	-1	$\left(\frac{5}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}, \frac{11}{14},-\frac{1}{14},-\frac{5}{14},-\frac{5}{14}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a)
$(3,1,1)$	-	- $\frac{1}{7}$	- $\frac{1}{7}$	1	$\frac{1}{7}$	$\frac{1}{7}$	$-\frac{8}{7}$	$\frac{1}{7}$	0	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
t_{9}	2	0	0	1	0	0	0	0	1	$\left(-\frac{1}{14},-\frac{1}{14}, \frac{9}{14}, \frac{9}{14},-\frac{5}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 a
\bar{t}_{12}	2	0	0	0	0	0	-1	0	-1	$\left(\frac{1}{14}, \frac{1}{14}, \frac{11}{14},-\frac{3}{14},-\frac{3}{14},-\frac{5}{14},-\frac{3}{14}, \frac{5}{14}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32c
$(3,1,1)$	-	$\frac{1}{7}$	$\frac{8}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{8}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	3	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
t_{1}	1-7	$\frac{1}{7}$	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	none						
t_{8}	2	0	1	0	0	0	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{3}{7}, \frac{3}{7},-\frac{4}{7},-\frac{3}{7}, 0, \frac{1}{7}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 c
t_{10}	2	0	0	0	0	1	0	0	1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{4}{7}, \frac{4}{7},-\frac{3}{7}, 0,-\frac{2}{7}, \frac{3}{7}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 c
(3,1,1)	-	-1	- $\frac{1}{7}$	$\frac{6}{7}$	$-\frac{6}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	-1	(0,0,0,0,-1,0,0,1) (0,0,0,0,0,0,0,0)	-
t_{2}	4	-1	0	0	0	0	0	0	-1	$\left(0,0, \frac{3}{7}, \frac{3}{7},-\frac{4}{7},-\frac{1}{7},-\frac{1}{7},-\frac{4}{7}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32 b
t_{3}	4	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7},-\frac{5}{7}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
\bar{t}_{8}	2	1	0	0	0	0	0	0	1	$\left(0,0, \frac{5}{7},-\frac{2}{7},-\frac{2}{7},-\frac{4}{7}, \frac{3}{7},-\frac{2}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 a
\bar{t}_{10}	2	0	0	0	1	0	0	0	1	$\left(\frac{1}{7}, \frac{1}{7}, \frac{6}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
\bar{t}_{14}	1	1	0	0	0	0	0	0	1	$\left(0,0, \frac{6}{7},-\frac{1}{7},-\frac{1}{7}, \frac{5}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
(3,1,1)	-	- 8	- $\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	0	(0,0,1,1,0,0,0,0) (0,0,0,0,0,0,0,0)	-
t_{11}	2	0	0	0	0	0	0	1	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{14}, \frac{5}{14},-\frac{3}{14}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
\bar{t}_{9}	2	1	0	0	0	0	0	0	-1	$\left(0,0, \frac{5}{7},-\frac{2}{7},-\frac{2}{7}, \frac{3}{7},-\frac{4}{7},-\frac{2}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 c
$(3,1,1)$	-	- $\frac{8}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	0	(0,0,0,0,-1,1,0,0) (0,0,0,0,0,0,0,0)	-
t_{4}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{11}{14}, \frac{3}{14},-\frac{3}{14}, \frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
\bar{t}_{2}	4	1	0	0	0	0	0	0	-1	$\left(0,0, \frac{3}{7},-\frac{4}{7},-\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, \frac{3}{7}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32c
$(\overline{3}, 1,1)$	-	- 8	-1	$\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	-2	(0,0,0,0,1,1,0,0) (0,0,0,0,0,0,0,0)	-
\bar{t}_{13}	1	-1	0	0	0	0	0	0	-1	$\left(0,0,-\frac{1}{7},-\frac{1}{7}, \frac{6}{7},-\frac{2}{7}, \frac{5}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32 c
\bar{t}_{15}	1	0	-1	0	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7}, \frac{5}{7}, \frac{2}{7}, 0,-\frac{3}{7}\right)\left(\frac{3}{7}, \frac{2}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-						
h_{2}	1-7	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	none						
$(1,2,1)$	-	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-						
h_{1}	1-7	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	none						
h_{4}	4	1	0	0	0	0	0	0	1	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{5}{14},-\frac{9}{14},-\frac{1}{14}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32c
h_{17}	1	-1	0	0	0	0	0	0	-1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{3}{14}, \frac{3}{14},-\frac{9}{14}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32 d

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root $/ P_{s h}$	Redef
		1	2	3	4	5	6	7			
(1,2,1)	-	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	1	(0,-1, $0,0,0,1,0,0)(0,0,0,0,0,0,0,0)$	-
h_{21}	1	0	0	0	0	0	0	1	1	$\left(\frac{1}{7},-\frac{6}{7}, 0,0,0, \frac{1}{7}, \frac{3}{7}, \frac{1}{7}\right)\left(\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	- $-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	1	($1,0,0,0,0,1,0,0)(0,0,0,0,0,0,0,0)$	-
h_{7}	4	0	0	0	1	0	0	0	1	$\left(\frac{11}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14}, \frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	- $\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	1	($0,-1,0,0,0,0,1,0)(0,0,0,0,0,0,0,0)$	-
h_{19}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14},-\frac{13}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14}, \frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{6}{7}$	$-\frac{1}{7}$	0	$\frac{1}{7}$	$\frac{1}{7}$	1	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
h_{5}	4	0	0	1	0	0	0	0	1	$\left(\frac{5}{14},-\frac{9}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{1}{14},-\frac{5}{14},-\frac{5}{14}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$-\frac{1}{7}$	$-\frac{1}{7}$	-1	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	1	($1,0,0,0,0,0,1,0)(0,0,0,0,0,0,0,0)$	-
h_{9}	4	0	0	0	0	0	1	0	1	$\left(\frac{9}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{3}{14}, \frac{1}{14}, \frac{3}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
h_{10}	4	0	0	0	0	0	1	0	1	$\left(\frac{9}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{3}{14}, \frac{1}{14}, \frac{3}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
h_{13}	2	0	0	-1	0	0	0	0	-1	$\left(\frac{3}{7},-\frac{4}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7},-\frac{2}{7},-\frac{3}{7},-\frac{3}{7}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$\frac{1}{7}$	$\frac{1}{7}$	-1	$\frac{6}{7}$	$\frac{6}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	1	($0,-1,0,0,0,0,0,-1$) ($0,0,0,0,0,0,0,0$)	-
h_{6}	4	0	0	-1	0	0	0	0	-1	$\left(\frac{6}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
h_{14}	2	0	0	0	1	0	0	0	1	$\left(\frac{1}{7},-\frac{6}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
h_{20}	1	0	0	0	0	1	0	0	1	$\left(\frac{3}{7},-\frac{4}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, 0,-\frac{1}{7},-\frac{2}{7}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$-\frac{1}{7}$	1	$\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{6}{7}$	2	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
h_{3}	4	1	0	0	0	0	0	0	1	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{9}{14}, \frac{5}{14},-\frac{1}{14}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32d
h_{11}	2	-1	0	0	0	0	0	0	-1	$\left(\frac{1}{2},-\frac{1}{2}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{11}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32c)
h_{16}	2	0	0	0	0	0	0	1	1	$\left(\frac{2}{7},-\frac{5}{7}, 0,0,0, \frac{2}{7},-\frac{1}{7}, \frac{2}{7}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
h_{18}	1	0	1	0	0	0	0	0	1	$\left(\frac{5}{14},-\frac{9}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14},-\frac{1}{2}, \frac{1}{14}\right)\left(\frac{3}{7}, \frac{2}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
(1,2,1)	-	$\frac{1}{7}$	$\frac{8}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	$-\frac{1}{7}$	0	3	($1,0,0,0,0,0,0,-1$) ($0,0,0,0,0,0,0,0)$	-
h_{8}	4	0	0	0	0	1	0	0	1	$\left(\frac{5}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0, \frac{3}{7},-\frac{1}{7}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
h_{12}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14},-\frac{11}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14}, \frac{1}{2},-\frac{5}{14}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 C
h_{15}	2	0	0	0	0	1	0	0	1	$\left(\frac{5}{14},-\frac{9}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{2}, \frac{3}{14},-\frac{1}{14}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32c)
(1,1,10)	-	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{1}{7}$	- 1	$\frac{1}{7}$	$-\frac{1}{7}$	1	($0,0,0,0,0,0,0,0$)(-1,0,0,-1, $0,0,0,0)$	-
X_{1}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(0,-\frac{2}{7}, \frac{1}{7}, 1,0,0,0,0\right)$	4.32a)
(1,1,1)	-	0	$\frac{13}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	- $-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	2	($1,1,0,0,0,0,0,0)(0,0,0,0,0,0,0,0)$	-
s_{17}	4	0	1	0	0	0	0	0	1	$\left(\frac{3}{7}, \frac{3}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0, \frac{2}{7}\right)\left(\frac{5}{7}, \frac{1}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
s_{34}	4	0	0	0	0	-1	0	0	-1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0,-\frac{4}{7},-\frac{1}{7}\right)\left(\frac{4}{7},-\frac{5}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32c)
s_{56}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14}, \frac{1}{2}, \frac{9}{14}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 C
s_{120}	1	0	0	0	0	1	0	0	1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{5}{14}, \frac{3}{14}\right)\left(\frac{1}{7}, \frac{4}{7},-\frac{5}{7}, 0,0,0,0,0\right)$	4.32 d
(1,1,1)	-	0	$\frac{13}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	- $-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	4	($0,0,0,0,0,0,0,0$) (-1, $1,0,0,0,0,0,0)$	-
s_{55}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{5}{14}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{57}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{5}{14}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
s_{72}	2	0	0	0	0	1	0	0	1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{2},-\frac{11}{14},-\frac{1}{14}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 d
s_{106}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(0, \frac{5}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{107}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(0, \frac{5}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a)
s_{117}	1	0	0	0	0	-1	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{1}{2}, \frac{5}{14},-\frac{11}{14}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 c
(1,1,1)	-	$\frac{1}{7}$	1	$(0,0,0,0,0,0,0,0)(0,-1,-1,0,0,0,0,0)$	-						
s_{2}	1-7	$\frac{1}{7}$	1	$(0,0,0,0,0,0,0,0)(0,-1,-1,0,0,0,0,0)$	none						
(1,1,1)	-	$\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	1	1	(0,0,0,0,0,0,0,0) (0,-1,1,0,0,0,0,0)	-
s_{42}	4	0	0	0	0	0	0	1	1	$\left(-\frac{3}{7},-\frac{3}{7}, 0,0,0,-\frac{3}{7},-\frac{2}{7},-\frac{3}{7}\right)\left(\frac{1}{7},-\frac{2}{7}, \frac{5}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$-\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{13}{7}$	$\frac{6}{7}$	- $\frac{1}{7}$	2	(0,0,0,0,0,0,0,0) (1,0,-1,0,0,0,0,0)	-
s_{1}	1-7	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	- 1	$-\frac{1}{7}$	$-\frac{1}{7}$	-1	($0,0,0,0,0,0,0,0$) ($-1,0,1,0,0,0,0,0$)	none
s_{73}	2	0	0	0	0	1	0	0	1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{1}{2}, \frac{3}{14},-\frac{1}{14}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root / $P_{s h}$	Redef
		1	2	3	4	5	6	7			
$\begin{gathered} s_{74} \\ s_{124} \end{gathered}$	2 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	0 0	0 0	1 0	0 1	0 0	1 1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{1}{2}, \frac{3}{14},-\frac{1}{14}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$ $\left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7},-\frac{3}{7}, \frac{1}{7}, \frac{3}{7}\right)\left(\frac{5}{7}, 0,-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{13}{7}$	-1	$\frac{1}{7}$	1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{14}	4	0	-1	0	0	0	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14},-\frac{5}{14}, \frac{1}{2},-\frac{3}{14}\right)\left(-\frac{2}{7}, \frac{1}{7},-\frac{5}{7}, 0,0,0,0,0\right)$	4.32 c
s_{37}	4	0	0	0	0	1	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14},-\frac{1}{2},-\frac{1}{14}, \frac{5}{14}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{76}	2	0	0	0	0	1	0	0	1	$\left(-\frac{1}{7},-\frac{1}{7},-\frac{3}{7},-\frac{3}{7},-\frac{3}{7}, 0,-\frac{2}{7}, \frac{3}{7}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 c
s_{77}	2	0	0	0	0	0	-1	0	-1	$\left(-\frac{3}{7},-\frac{3}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7},-\frac{1}{7}\right)\left(\frac{3}{7}, 0, \frac{5}{7}, 0,0,0,0,0\right)$	4.32a
S99	1	0	1	0	0	0	0	0	1	$\left(-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{2}{7}, 0, \frac{4}{7}\right)\left(-\frac{4}{7}, \frac{2}{7}, \frac{4}{7}, 0,0,0,0,0\right)$	4.32 d
(1,1,1)	-	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	$-\frac{1}{7}$	$\frac{6}{7}$	$\frac{1}{7}$	2	(0,0,0,0,0,1,1,0) (0,0,0,0,0,0,0,0)	-
s_{29}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{11}{14}, \frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{40}	4	0	0	0	0	0	1	0	1	$\left(-\frac{5}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{11}{14}, \frac{1}{14}, \frac{3}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{67}	2	0	0	0	-1	0	0	0	-1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7},-1\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32b
s_{116}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{13}{14}, \frac{1}{14}, \frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a
$(1,1,1)$	-	$-\frac{1}{7}$	$\frac{6}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{6}{7}$	$\frac{1}{7}$	1	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{45}	4	0	0	0	0	0	0	1	1	$\left(\frac{1}{14}, \frac{1}{14}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{14}, \frac{3}{14}, \frac{1}{14}\right)\left(\frac{1}{7}, \frac{5}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a
s_{80}	2	0	0	0	0	0	-1	0	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{5}{14}, \frac{11}{14}, \frac{5}{14}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 d
s_{86}	2	0	0	0	0	0	0	1	1	$\left(\frac{2}{7}, \frac{2}{7}, 0,0,0, \frac{2}{7}, \frac{6}{7}, \frac{2}{7}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{103}	1	0	1	0	0	0	0	0	1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{1}{14}\right)\left(\frac{3}{7}, \frac{2}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{122}	1	0	0	0	0	-1	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{1}{2},-\frac{9}{14}, \frac{3}{14}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 a
s_{126}	1	0	0	0	0	0	1	0	1	$\left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{4}{7}, \frac{1}{7},-\frac{4}{7}\right)\left(\frac{5}{7}, 0,-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 c
s_{131}	1	0	0	0	0	0	0	-1	-1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7},-\frac{4}{7}, \frac{1}{7}\right)\left(-\frac{5}{7},-\frac{4}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32 b
(1,1,1)	-	$\frac{1}{7}$	1	$\frac{13}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	$\frac{6}{7}$	$\frac{1}{7}$	4	$(0,0,0,0,0,0,0,0)(-1,0,-1,0,0,0,0,0)$	-
s_{11}	4	0	1	0	0	0	0	0	1	$\left(-\frac{4}{7},-\frac{4}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0, \frac{2}{7}\right)\left(-\frac{2}{7}, \frac{1}{7},-\frac{5}{7}, 0,0,0,0,0\right)$	4.32a
s_{22}	4	0	0	1	0	0	0	0	1	$\left(\frac{5}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{1}{14},-\frac{5}{14}, \frac{9}{14}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 c
s_{59}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{5}{14}\right)\left(-\frac{1}{7},-\frac{3}{7},-\frac{6}{7}, 0,0,0,0,0\right)$	4.32a
s_{83}	2	0	0	0	0	0	1	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{5}{14},-\frac{3}{14},-\frac{9}{14}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 a
s_{102}	1	0	-1	0	0	0	0	0	-1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{1}{14}\right)\left(-\frac{4}{7}, \frac{2}{7}, \frac{4}{7}, 0,0,0,0,0\right)$	4.32b
s_{105}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(0,-\frac{2}{7},-\frac{6}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$\frac{6}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	0	(0,0,0,0,0,0,0,0) (1,1,0,0,0,0,0,0)	-
s_{3}	1-7	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	-1	(0,0,0,0,0,0,0,0) (-1,-1,0,0,0,0,0,0)	none
s_{9}	4	1	0	0	0	0	0	0	1	$\left(0,0, \frac{3}{7}, \frac{3}{7}, \frac{3}{7},-\frac{1}{7},-\frac{1}{7}, \frac{3}{7}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32a)
(1,1,1)	-	$\frac{6}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{13}{7}$	$\frac{13}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	4	$(0,0,0,0,0,0,-1,-1)(0,0,0,0,0,0,0,0)$	-
s_{4}	1-7	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	$-\frac{1}{7}$	- $\frac{1}{7}$	- $\frac{1}{7}$	$-\frac{1}{7}$	-1	(0,0,0,0,0,0,1,1) (0,0,0,0,0,0,0,0)	none
s_{32}	4	0	0	0	0	1	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0,-\frac{4}{7},-\frac{1}{7}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{33}	4	0	0	0	0	1	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0,-\frac{4}{7},-\frac{1}{7}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{47}	2	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{4}{7},-\frac{4}{7},-\frac{2}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{69}	2	0	0	0	1	0	0	0	1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{6}{7}, 0\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
S82	2	0	0	0	0	0	1	0	1	$\left(\frac{4}{7}, \frac{4}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7},-\frac{1}{7}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 d
s_{110}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2}\right)\left(\frac{4}{7}, \frac{1}{7}, \frac{5}{7}, 0,0,0,0,0\right)$	4.32 c
s_{123}	1	0	0	0	0	0	-1	0	-1	$\left(-\frac{3}{14},-\frac{3}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14}, \frac{1}{14}, \frac{9}{14},-\frac{1}{14}\right)\left(\frac{5}{7}, 0,-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 c
(1,1,1)	-	$\frac{6}{7}$	$-\frac{1}{7}$	-1	$\frac{15}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	4	$(0,0,0,0,0,0,1,-1)(0,0,0,0,0,0,0,0)$	-
s_{18}	4	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{3}{7},-\frac{6}{7}, \frac{1}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{38}	4	0	0	0	0	0	1	0	1	$\left(-\frac{5}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{3}{14}, \frac{1}{14},-\frac{11}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{64}	2	0	0	-1	0	0	0	0	-1	$\left(\frac{3}{7}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7},-\frac{2}{7},-\frac{3}{7}, \frac{4}{7}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 a
s_{78}	2	0	0	0	0	0	1	0	1	$\left(-\frac{3}{7},-\frac{3}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7},-\frac{1}{7}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 c
S_{97}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{5}{7}, \frac{5}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32 a
s_{104}	1	0	0	1	0	0	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7},-\frac{3}{7},-\frac{3}{7},-\frac{3}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}\right)\left(0, \frac{5}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32b
s_{111}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root / $P_{s h}$	Redef
		1	2	3	4	5	6	7			
s_{113}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	1	- $\frac{1}{7}$	- $\frac{1}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	$-\frac{13}{7}$	1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{5}	4	1	0	0	0	0	0	0	1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14},-\frac{1}{14}\right)\left(-\frac{4}{7},-\frac{4}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{87}	2	0	0	0	0	0	0	-1	-1	$\left(\frac{2}{7}, \frac{2}{7}, 0,0,0,-\frac{5}{7},-\frac{1}{7}, \frac{2}{7}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{118}	1	0	0	0	0	1	0	0	1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{5}{14}, \frac{3}{14}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 a
s_{119}	1	0	0	0	0	1	0	0	1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14}, \frac{1}{2}, \frac{5}{14}, \frac{3}{14}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
s_{127}	1	0	0	0	0	0	0	-1	-1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7},-\frac{4}{7}, \frac{1}{7}\right)\left(\frac{2}{7},-\frac{4}{7},-\frac{4}{7}, 0,0,0,0,0\right)$	4.32c
(1,1,1)	-	1	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	$\frac{13}{7}$	- $\frac{1}{7}$	5	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{8}	4	1	0	0	0	0	0	0	1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14},-\frac{1}{14}\right)\left(-\frac{4}{7},-\frac{4}{7}, 0,0,0,0,0,0\right)$	4.32 a
s_{30}	4	0	0	0	1	0	0	0	1	$\left(\frac{2}{7}, \frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{2}{7}, 0\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{31}	4	0	0	0	1	0	0	0	1	$\left(\frac{2}{7}, \frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{2}{7}, 0\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
s_{41}	4	0	0	0	0	0	1	0	1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{3}{7},-\frac{3}{7},-\frac{3}{7}, \frac{2}{7},-\frac{3}{7},-\frac{2}{7}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{84}	2	0	0	0	0	0	1	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14}, \frac{9}{14},-\frac{3}{14}, \frac{5}{14}\right)\left(-\frac{4}{7}, 0,-\frac{2}{7}, 0,0,0,0,0\right)$	4.32c
(1,1,1)	-	1	$\frac{1}{7}$	$\frac{8}{7}$	$-\frac{8}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	$\frac{13}{7}$	3	(0,0,0,0,0,1,-1,0) (0,0,0,0,0,0,0,0)	-
s_{28}	4	0	0	0	-1	0	0	0	-1	$\left(\frac{2}{7}, \frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{2}{7}, 0\right)\left(-\frac{5}{7}, \frac{4}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32c
s_{50}	2	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{3}{7},-\frac{4}{7}, \frac{5}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 a
s_{108}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(-1,-\frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 c
s_{128}	1	0	0	0	0	0	0	1	1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7},-\frac{4}{7}, \frac{1}{7}\right)\left(\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{129}	1	0	0	0	0	0	0	1	1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7},-\frac{4}{7}, \frac{1}{7}\right)\left(\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$\frac{13}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	0	$-\frac{1}{7}$	2	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{6}	4	1	0	0	0	0	0	0	1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14},-\frac{1}{14}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32 c
s_{24}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14},-\frac{1}{2}\right)\left(-\frac{5}{7}, \frac{4}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32c
s_{89}	1	1	0	0	0	0	0	0	1	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{3}{14}, \frac{3}{14}, \frac{5}{14}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32 a
s_{115}	1	0	0	0	-1	0	0	0	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2}\right)\left(\frac{4}{7},-\frac{6}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 d
(1,1,1)	-	$\frac{13}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	0	$\frac{6}{7}$	3	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	${ }^{-}$
s_{16}	4	0	-1	0	0	0	0	0	-1	$\left(\frac{3}{7}, \frac{3}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0, \frac{2}{7}\right)\left(-\frac{2}{7},-\frac{6}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32 d
s_{52}	2	1	0	0	0	0	0	0	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14}, \frac{3}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 a
S_{54}	2	1	0	0	0	0	0	0	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14}, \frac{3}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{58}	2	0	1	0	0	0	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, \frac{3}{7}, \frac{4}{7}, 0, \frac{1}{7}\right)\left(-\frac{1}{7}, \frac{4}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32c
s_{88}	2	0	0	0	0	0	0	1	1	$\left(\frac{2}{7}, \frac{2}{7}, 0,0,0, \frac{2}{7},-\frac{1}{7},-\frac{5}{7}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$\frac{13}{7}$	$\frac{1}{7}$	$-\frac{13}{7}$	1	$-\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	1	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	${ }^{-}$
s_{23}	4	0	0	-1	0	0	0	0	-1	$\left(\frac{5}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{1}{14}, \frac{9}{14},-\frac{5}{14}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{44}	4	0	0	0	0	0	0	1	1	$\left(\frac{1}{14}, \frac{1}{14}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{14}, \frac{3}{14}, \frac{1}{14}\right)\left(\frac{1}{7},-\frac{2}{7}, \frac{5}{7}, 0,0,0,0,0\right)$	4.32c
s_{46}	2	1	0	0	0	0	0	0	1	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14}, \frac{3}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 a
S48	2	1	0	0	0	0	0	0	1	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14}, \frac{3}{14}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{62}	2	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}\right)\left(0, \frac{3}{7},-\frac{5}{7}, 0,0,0,0,0\right)$	4.32 c
S66	2	0	0	0	1	0	0	0	1	$\left(-\frac{5}{14},-\frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14},-\frac{5}{14}, \frac{1}{2}\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{132}	1	0	0	0	0	0	0	-1	-1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7},-\frac{4}{7}, \frac{1}{7}\right)\left(-\frac{5}{7}, \frac{3}{7},-\frac{4}{7}, 0,0,0,0,0\right)$	4.32 d
(1,1,1)	-	$\frac{13}{7}$	- $\frac{1}{7}$	$-\frac{13}{7}$	$\frac{13}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	1	3	(0,0,0,0,0,1,0,-1) (0,0,0,0,0,0,0,0)	-
s_{19}	4	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7},-\frac{4}{7}, \frac{1}{7}, \frac{1}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{20}	4	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7},-\frac{4}{7}, \frac{1}{7}, \frac{1}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 a
s_{25}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14},-\frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
s_{26}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{3}{14},-\frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	4.32 a
s_{51}	2	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{3}{7}, \frac{3}{7},-\frac{2}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{53}	2	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{3}{7}, \frac{3}{7},-\frac{2}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	4.32 a
s_{70}	2	0	0	0	1	0	0	0	1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{6}{7}, \frac{1}{7}, 0\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{112}	1	0	0	0	-1	0	0	0	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	4.32 b
s_{133}	1	0	0	0	0	0	0	1	1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0, \frac{1}{7}, \frac{3}{7},-\frac{6}{7}\right)\left(\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	4.32a

State	Sector	Local multiplicity							tot	$E_{8} \times E_{8}$ root / $P_{s h}$	Redef
		1	2	3	4	5	6	7			
$(1,1,1)$	-	$\frac{13}{7}$	1	$-\frac{13}{7}$	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	- $\frac{1}{7}$	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)(0,0,0,0,0,0,0,0)$	-
s_{10}	4	1	0	0	0	0	0	0	1	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14},-\frac{1}{14}\right)\left(\frac{3}{7}, \frac{3}{7}, 0,0,0,0,0,0\right)$	4.32c
s_{15}	4	0	1	0	0	0	0	0	1	$\left(-\frac{1}{14},-\frac{1}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14},-\frac{5}{14}, \frac{1}{2},-\frac{3}{14}\right)\left(\frac{5}{7}, \frac{1}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
s_{61}	2	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
s_{63}	2	0	0	-1	0	0	0	0	-1	$\left(-\frac{1}{14},-\frac{1}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	4.32a
S98	1	1	0	0	0	0	0	0	1	$\left(\frac{1}{2}, \frac{1}{2}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{3}{14}, \frac{3}{14}, \frac{5}{14}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
(1,1,1)	-	$\frac{27}{7}$	- $\frac{13}{7}$	$-\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	-1	- $\frac{1}{7}$	1	$(0,0,0,0,0,-1,0,-1)(0,0,0,0,0,0,0,0)$	-
s_{12}	4	0	-1	0	0	0	0	0	-1	$\left(\frac{3}{7}, \frac{3}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0, \frac{2}{7}\right)\left(-\frac{2}{7}, \frac{1}{7},-\frac{5}{7}, 0,0,0,0,0\right)$	4.32c
s_{35}	4	0	0	0	0	-1	0	0	-1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{5}{14},-\frac{5}{14},-\frac{5}{14}, \frac{1}{2},-\frac{1}{14},-\frac{9}{14}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	4.32 d
s_{71}	2	0	0	0	0	1	0	0	1	$\left(-\frac{9}{14},-\frac{9}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{1}{2}, \frac{3}{14},-\frac{1}{14}\right)\left(\frac{2}{7}, \frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32 c
s_{81}	2	0	0	0	0	0	-1	0	-1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14}, \frac{9}{14},-\frac{3}{14}, \frac{5}{14}\right)\left(\frac{3}{7}, 0, \frac{5}{7}, 0,0,0,0,0\right)$	4.32a
S90	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a)
s_{91}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{92}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{93}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{94}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{1}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32a
s_{95}	1	-1	0	0	0	0	0	0	-1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{2}{7}, \frac{5}{7}, \frac{6}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	4.32c
s_{100}	1	0	-1	0	0	0	0	0	-1	$\left(-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7}, \frac{2}{7}, 0, \frac{4}{7}\right)\left(\frac{3}{7}, \frac{2}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	4.32a
s_{96}	1	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{5}{7},-\frac{2}{7}, \frac{6}{7}\right)\left(-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0,0\right)$	BM
s_{101}	1	0	1	0	0	0	0	0	1	$\left(-\frac{1}{7},-\frac{1}{7},-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{5}{7}, 0,-\frac{3}{7}\right)\left(\frac{3}{7}, \frac{2}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	BM
s_{109}	1	0	0	1	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14}, \frac{5}{14},-\frac{3}{14},-\frac{3}{14}\right)\left(1,-\frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	BM
s_{114}	1	0	0	0	1	0	0	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14},-\frac{13}{14}, \frac{1}{2}\right)\left(-\frac{3}{7}, \frac{1}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	BM
s_{121}	1	0	0	0	0	1	0	0	1	$\left(\frac{3}{7}, \frac{3}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, 0,-\frac{1}{7}, \frac{5}{7}\right)\left(\frac{1}{7},-\frac{3}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	BM
s_{125}	1	0	0	0	0	0	1	0	1	$\left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7},-\frac{3}{7}, \frac{1}{7}, \frac{3}{7}\right)\left(-\frac{2}{7}, 0, \frac{6}{7}, 0,0,0,0,0\right)$	BM
s_{130}	1	0	0	0	0	0	0	1	1	$\left(\frac{1}{7}, \frac{1}{7}, 0,0,0,-\frac{6}{7}, \frac{3}{7}, \frac{1}{7}\right)\left(\frac{2}{7}, \frac{3}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	BM
s_{49}	2	1	0	0	0	0	0	0	1	$\left(0,0,-\frac{2}{7},-\frac{2}{7},-\frac{2}{7},-\frac{4}{7}, \frac{3}{7}, \frac{5}{7}\right)\left(-\frac{2}{7},-\frac{2}{7}, 0,0,0,0,0,0\right)$	BM
s_{60}	2	0	1	0	0	0	0	0	1	$\left(\frac{3}{14}, \frac{3}{14},-\frac{1}{14},-\frac{1}{14},-\frac{1}{14}, \frac{1}{14},-\frac{1}{2},-\frac{5}{14}\right)\left(\frac{6}{7},-\frac{3}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	BM
S65	2	0	0	1	0	0	0	0	1	$\left(\frac{3}{7}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7},-\frac{2}{7}, \frac{4}{7},-\frac{3}{7}\right)\left(0,-\frac{4}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	BM
s_{68}	2	0	0	0	1	0	0	0	1	$\left(\frac{1}{7}, \frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 1\right)\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, 0,0,0,0,0\right)$	BM
s_{75}	2	0	0	0	0	1	0	0	1	$\left(\frac{5}{14}, \frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{1}{2}, \frac{3}{14},-\frac{1}{14}\right)\left(-\frac{5}{7}, \frac{1}{7}, \frac{4}{7}, 0,0,0,0,0\right)$	BM
s_{79}	2	0	0	0	0	0	1	0	1	$\left(\frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{3}{14},-\frac{3}{14},-\frac{5}{14},-\frac{3}{14},-\frac{9}{14}\right)\left(\frac{3}{7}, 0, \frac{5}{7}, 0,0,0,0,0\right)$	BM
s_{85}	2	0	0	0	0	0	0	1	1	$\left(-\frac{3}{14},-\frac{3}{14},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{3}{14}, \frac{5}{14},-\frac{3}{14}\right)\left(\frac{4}{7},-\frac{1}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	BM
s_{7}	4	1	0	0	0	0	0	0	1	$\left(0,0, \frac{3}{7}, \frac{3}{7}, \frac{3}{7},-\frac{1}{7},-\frac{1}{7}, \frac{3}{7}\right)\left(-\frac{4}{7},-\frac{4}{7}, 0,0,0,0,0,0\right)$	BM
s_{13}	4	0	1	0	0	0	0	0	1	$\left(-\frac{4}{7},-\frac{4}{7},-\frac{1}{7},-\frac{1}{7},-\frac{1}{7}, \frac{1}{7}, 0, \frac{2}{7}\right)\left(\frac{5}{7}, \frac{1}{7}, \frac{2}{7}, 0,0,0,0,0\right)$	BM
s_{21}	4	0	0	1	0	0	0	0	1	$\left(-\frac{1}{7},-\frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{2}{7}, \frac{3}{7}, \frac{1}{7},-\frac{6}{7}\right)\left(0,-\frac{1}{7},-\frac{3}{7}, 0,0,0,0,0\right)$	BM
s_{27}	4	0	0	0	1	0	0	0	1	$\left(-\frac{3}{14},-\frac{3}{14}, \frac{3}{14}, \frac{3}{14}, \frac{3}{14},-\frac{11}{14},-\frac{3}{14}, \frac{1}{2}\right)\left(\frac{2}{7},-\frac{3}{7},-\frac{1}{7}, 0,0,0,0,0\right)$	BM
S36	4	0	0	0	0	1	0	0	1	$\left(-\frac{2}{7},-\frac{2}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0, \frac{3}{7}, \frac{6}{7}\right)\left(-\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, 0,0,0,0,0\right)$	BM
s_{39}	4	0	0	0	0	0	1	0	1	$\left(-\frac{5}{14},-\frac{5}{14}, \frac{1}{14}, \frac{1}{14}, \frac{1}{14},-\frac{3}{14},-\frac{13}{14}, \frac{3}{14}\right)\left(-\frac{1}{7}, 0, \frac{3}{7}, 0,0,0,0,0\right)$	BM
s_{43}	4	0	0	0	0	0	0	1	1	$\left(-\frac{3}{7},-\frac{3}{7}, 0,0,0,-\frac{3}{7},-\frac{2}{7},-\frac{3}{7}\right)\left(\frac{1}{7}, \frac{5}{7},-\frac{2}{7}, 0,0,0,0,0\right)$	BM

Appendix B

$\boldsymbol{U}(1)$ basis for T^{6} / \mathbb{Z}_{7} and its resolution

We use two different Cartan bases in the chapter. In the first basis, the anomalous direction on the orbifold is singled out. In the second basis, the gravity and non-abelian anomalies in blow-up are singled out. In the first basis:

$$
Q_{K}^{I}=\left(\begin{array}{cccccccccccccccc}
3 & 3 & 1 & 1 & 1 & 5 & -3 & -3 & 0 & -4 & 2 & 0 & 0 & 0 & 0 & 0 \tag{B.1}\\
-15 & -15 & -5 & -5 & -5 & 59 & 15 & 15 & 0 & 20 & -10 & 0 & 0 & 0 & 0 & 0 \\
-3 & -3 & -1 & -1 & -1 & -5 & 3 & 3 & 0 & 4 & 40 & 0 & 0 & 0 & 0 & 0 \\
-3 & -3 & 27 & 27 & 27 & -5 & 3 & 3 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 1 & 1 & 1 & 5 & -3 & 25 & 0 & -4 & 2 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 1 & 1 & 1 & 5 & 25 & -3 & 0 & -4 & 2 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 1 & 1 & 1 & 5 & -3 & -3 & 0 & 17 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right),
$$

the components of the Cartan subalgebra are chosen such that the first row corresponds to the anomalous $U(1)$ generator (4.51). The next 7 rows correspond to other $U(1)$ generators perpendicular to $U(1)_{A}$. The last 8 rows are the Cartan basis of the non-abelian group
factors $S U(3) \times S U(2) \times S O(10)$. The basis is given as $T_{K}=Q_{K}^{I} H_{I}$, where the H_{I} form an orthogonal basis for $E_{8} \times E_{8}$ fulfilling $\operatorname{tr}\left(H_{I} H_{J}\right)=\delta_{I J}$.

The second basis for the eight $U(1)$ s in Section 3.7 is given by generators $T_{I}\left(K^{-1}\right)_{J}^{I}$. The field strengths are related via $\bar{F}_{I}=K_{I}^{J} F_{J}$. The matrix K is given by

$$
K_{I}^{J}=\left(\begin{array}{cccccccccccccccc}
25 & -20 & -25 & -4 & -66 & 18 & 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{B.2}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{83}{6} & -\frac{34}{3} & \frac{73}{3} & \frac{10}{3} & \frac{116}{3} & -\frac{38}{3} & -\frac{187}{12} & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & \frac{75}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 8 & -55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{14}{3} & -\frac{137}{3} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{2}{3} & \frac{26}{3} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{3}{2} & \frac{125}{8} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Appendix C

Anomaly polynomials in 4d

To obtain the factorization of the polynomial, one has to start with the expressions

$$
\begin{align*}
X_{6,2}= & -\frac{1}{12}\left[\frac{3}{2} \operatorname{tr}\left(F^{\prime} \mathcal{F}^{\prime}\right) \operatorname{tr} \mathcal{F}^{\prime 2}-\frac{3}{4} \operatorname{tr}\left(F^{\prime} \mathcal{F}^{\prime}\right) \operatorname{tr} \mathcal{R}^{2}+^{\prime} \leftrightarrow^{\prime \prime}\right], \tag{C.1}\\
X_{4,4}= & \operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right)^{2}+\frac{3}{4} \operatorname{tr} F^{\prime 2} \operatorname{tr} \mathcal{F}^{\prime 2}-\frac{3}{8} \operatorname{tr} F^{\prime 2} \operatorname{tr} \mathcal{R}^{2}-\frac{1}{8} \operatorname{tr} \mathcal{F}^{\prime 2} \operatorname{tr} R^{2}+^{\prime} \leftrightarrow^{\prime \prime} \\
& +\frac{1}{16} \operatorname{tr} R^{2} \operatorname{tr} \mathcal{R}^{2}-\operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right) \operatorname{tr}\left(\mathcal{F}^{\prime \prime} F^{\prime \prime}\right) . \tag{C.2}
\end{align*}
$$

The anomaly polynomial factorization is given in terms of the following 2 - and 4 -forms

$$
\begin{align*}
X_{4}^{\mathrm{uni}}= & X_{0,4}=\left(\operatorname{tr} R^{2}-\operatorname{tr} F^{2}\right), \tag{C.3}\\
X_{4}^{r}= & \int_{\mathcal{M}} E_{r_{1}} E_{r_{2}} E_{r}\left(V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{J^{\prime}} F_{I^{\prime}}^{\prime} F_{J^{\prime}}^{\prime}+V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{I^{\prime}}\left(\frac{3}{4} \operatorname{tr} F^{2}-\frac{1}{8} \operatorname{tr} R^{2}\right)+^{\prime} \leftrightarrow^{\prime \prime}-V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{I^{\prime \prime}} F_{I^{\prime}} F_{I^{\prime \prime}}\right) \\
& +\int_{\mathcal{M}} \operatorname{tr} \mathcal{R}^{2} E_{r}\left(\frac{1}{16} \operatorname{tr} R^{2}-\frac{3}{8} \operatorname{tr} F^{\prime 2}-\frac{3}{8} \operatorname{tr} F^{\prime \prime 2}\right) . \tag{C.4}
\end{align*}
$$

Using the Bianchi identities (4.64) we obtain

$$
\begin{align*}
X_{4}^{r}= & \int_{\mathcal{M}} E_{r_{1}} E_{r_{2}} E_{r}\left(V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{J^{\prime}} F_{I^{\prime}}^{\prime} F_{J^{\prime}}^{\prime}+V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{I^{\prime}}\left(\frac{3}{4} \operatorname{tr} F^{\prime 2}-\frac{1}{8} \operatorname{tr} R^{2}\right)+^{\prime} \leftrightarrow \leftrightarrow^{\prime \prime}-V_{r_{1}}^{I^{\prime}} V_{r_{2}}^{I^{\prime \prime}} F_{I^{\prime}} F_{I^{\prime \prime}}\right) \\
& +\int_{\mathcal{M}} E_{r_{1}} E_{r_{2}} E_{r} V_{r_{1}}^{I} V_{r_{2}}^{I}\left(\frac{1}{16} \operatorname{tr} R^{2}-\frac{3}{8} \operatorname{tr} F^{\prime 2}-\frac{3}{8} \operatorname{tr} F^{\prime \prime 2}\right) . \tag{C.5}
\end{align*}
$$

The 2-forms are given by

$$
\begin{align*}
X_{2}^{\mathrm{uni}} & =\int_{\mathcal{M}} X_{6,2}=-\frac{1}{12} \int_{\mathcal{M}}\left(\operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right) \operatorname{tr} \mathcal{F}^{\prime 2}-\frac{1}{2} \operatorname{tr} \mathcal{F}^{\prime 2} \operatorname{tr}\left(\mathcal{F}^{\prime \prime} F^{\prime \prime}\right)-\frac{1}{4} \operatorname{tr}\left(\mathcal{F}^{\prime} F^{\prime}\right) \operatorname{tr} \mathcal{R}^{2}+^{\prime} \leftrightarrow \leftrightarrow^{\prime \prime}\right), \tag{C.6}\\
X_{2}^{r} & =\frac{1}{12} V_{r}^{I} F_{I} . \tag{C.7}
\end{align*}
$$

Appendix D

Brother models of a $T^{6} / \mathbb{Z}_{6 I I}$ heterotic orbifold?

Here we put together all the equations blow-up modes need to satisfy to be such, both from the orbifold and from the supergravity picture with abelian fluxes. The aim is to explore brother models of a given $\mathbb{Z}_{6 I I}$ model. We see that the physical states transformation consistency rules out the brothers for $\mathbb{Z}_{6 I I}$ [90].

First, there are the orbifold projection conditions. Looking at Tables F. 8 and F.9, one can read for every V_{r} (i.e. its conjugacy class) which projection conditions need to be satisfied. The projection conditions for commuting elements read

$$
\begin{align*}
& V_{r} \cdot V_{h}-\left(q_{s h}+N^{i}-N^{* i}\right) v_{h}^{i}-\frac{1}{2}\left(V_{g} \cdot V_{h}-v_{g} \cdot v_{h}\right)=0 \bmod 1, \tag{D.1}\\
& N=\omega_{i} N^{i}+\overline{\omega_{i}} N^{* i} . \tag{D.2}
\end{align*}
$$

Second the mass equations for $M_{L}=0$ left modes gives

$$
\begin{array}{r}
V_{1, \beta \gamma}^{2}=\frac{25}{18}-2 N, \\
V_{3, \alpha \gamma}^{2}=\frac{3}{2}-2 N, \\
V_{2, \alpha \beta}^{2}=V_{4, \alpha \beta}^{2}=\frac{14}{9}-2 N . \tag{D.5}
\end{array}
$$

And third, the mass equation for right-moving mode $q_{s h}$ with $M_{R}=0$ is

$$
\begin{equation*}
\frac{q_{s h}^{2}}{2}-\frac{1}{2}+\delta c_{r}=0 . \tag{D.6}
\end{equation*}
$$

These relations together with the Bianchi identities (5.12)-(5.17) should be satisfied, if we fix the triangulation. Lets explore how to interpret a solution of Bianchi identities as a
blow-up of a brother orbifold model to one of the $V_{s o 10}$ Mini-landscape. Let us suppose we have a solution for equations (5.12)-5.17), then knowing that we want the vectors $V_{r}=V_{3,11}, V_{3,13}$ to be present in the massless spectrum, they should obey the orbifold projection

$$
\begin{equation*}
V_{r} \cdot V_{h}-\left(0, \frac{1}{2}, 0, \frac{1}{2}\right) \cdot v_{h}=0 \bmod 1 \tag{D.7}
\end{equation*}
$$

The vacuum phase $-\frac{1}{2}\left(V_{g} \cdot V_{h}-v_{g} \cdot v_{h}\right)$ is trivial here. We have made explicit the $q_{s h}$ for θ^{3} with the quantities $q=(0,0,0,1)$ and $3 v=\left(0, \frac{1}{2}, 0,-\frac{1}{2}\right)$. We assume that the left-moving oscillator number of these modes is $N=0$. This is reasonable to guess since $V_{3, \alpha \gamma}^{2}=\frac{3}{2}$ (equation for massless modes with no oscillators) solves the Bianchi identities and in the studied model the surviving states have this $P_{s h}^{2}$. Further we know from Tables F. 8 and F. 9 that the commuting elements for both fixed tori are $V_{h}=A_{3}\left(m_{3}+m_{4}\right)+k V$ with $k=0, \ldots, 5$ and that $v_{h}=k\left(0, \frac{1}{6}, \frac{1}{3},-\frac{1}{2}\right)$. So we have

$$
\begin{align*}
& V_{r} \cdot A_{3}\left(m_{3}+m_{4}\right)+\left(V_{r} \cdot V_{s o 10}\right)+1 / 6=0 \bmod 1 \tag{D.8}\\
& V_{r} \cdot A_{3}\left(m_{3}+m_{4}\right)+2\left(V_{r} \cdot V_{s o 10}\right)+1 / 3=0 \bmod 1 \\
& V_{r} \cdot A_{3}\left(m_{3}+m_{4}\right)+3\left(V_{r} \cdot V_{s o 10}\right)+1 / 2=0 \bmod 1
\end{align*}
$$

Unfortunately for most of the Mini-landscape models the Bianchi identities solution in 83 has $V_{3,11}$ and $V_{3,13}$ projected out. So if that solution can be interpreted as an orbifold blowup we should go to brothers or to a different set of orbifold models. For a brother model defined by

$$
\begin{equation*}
A_{3}^{\prime}=A_{3}+\Delta A_{3}, \quad V^{\prime}=V_{s o 10}+\Delta V, \quad \Delta V \in \Lambda, \quad \Delta A_{3} \in \Lambda \tag{D.9}
\end{equation*}
$$

the ΔA_{3} and ΔV can be plugged in (D.8) and the set of linear equations solved. From these simple considerations we see that is feasible an exploration to obtain a solution of the Bianchi identities which has only massless modes, and search for a brother model to ones of the Mini-landscape, in which the blow-up modes are not projected out. However those brother models will be "bad" ones. In the following we will explain in which sense. This is directly related with the fact that the construction of physical states imposes a restriction on shifts and Wilson lines if consistent transformation under orbifold elements are required. This can be rephrased in imposing that the partition function [126] is singled valued.

Let us consider a twisted state $|\mathrm{phys}\rangle_{g}$ with left-moving momentum $p_{s h}=p+V_{g}$ located at $g=\left(\theta^{m}, m_{\alpha} e_{\alpha}\right)$ with commuting elements denoted by $h=\left(\theta^{k}, n_{\alpha} e_{\alpha}\right)$. If the state is kept or projected in a model with shift $V+\Delta V$ is determined by the equation

$$
\begin{equation*}
k p \cdot \Delta V-\frac{m k}{2} \Delta V^{2}+\frac{k m_{3}-m n_{3}}{3 \times 2}\left(3 A_{3} \cdot \Delta V\right)+\frac{k m_{5}-m n_{5}}{2 \times 2}\left(2 A_{5} \cdot \Delta V\right) \tag{D.10}
\end{equation*}
$$

The requirement that physical states have a proper transformation 89 imposes

$$
\begin{equation*}
\left(3 A_{3} \cdot \Delta V\right)=\left(2 A_{5} \cdot \Delta V\right)=0 \quad \bmod 2 \tag{D.11}
\end{equation*}
$$

Taking into account that ΔV^{2} is even $\left(\Gamma_{8} \times \Gamma_{8}\right.$ is an even lattice) and checking over all of the fixed points of $\mathbb{Z}_{6 I I}$ with its respective projection conditions (determined by the commuting elements) is not possible that an state existing in model with shift V is projected out in the "brother model" with shift $V+\Delta V$. So, there are no brother models of $Z_{6 I I}$ differing in a lattice vector of the shift. In the same way we have checked that is also not possible to construct different models by changing the Wilson lines to be $A_{3}+\Delta A_{3}$ or $A_{5}+\Delta A_{5}$.

The restriction for the transformation phase of a physical state $|\mathrm{phys}\rangle_{g}$ at fixed point g under h to be consistent i.e. $\Phi(g, h)=\Phi\left(g^{n+1}, h\right)$ [89] eliminates the possibility of brother models in $\mathbb{Z}_{6 I I}$. However with the traditional restrictions for shifts and Wilson lines coming from modular invariance conditions $\left(6 A_{3} \cdot \Delta V\right)=\left(6 A_{5} \cdot \Delta V\right)=0 \bmod 1$ brother models are allowed. An example is a model generated with ΔV given by

$$
\begin{equation*}
\Delta V=(-4,-1,2,-1,-1,-1,0,0,-7,2,5,5,4,4,1,-18) . \tag{D.12}
\end{equation*}
$$

Which satisfies $3 A_{3} \cdot \Delta \in 2 \mathbb{Z}+1$ which circumvents the prohibition imposed by D.11, projecting out various states.

134 APPENDIX D. BROTHER MODELS OF A $T^{6} / \mathbb{Z}_{6 I I}$ HETEROTIC ORBIFOLD?

Appendix E

$T^{6} / \mathbb{Z}_{6 I I}$ divisors intersections

The set of the intersection numbers coming from the $\mathbb{C}^{3} / \mathbb{Z}_{6-I I}$ singularity, can be divided in the ones independent from the triangulation and the ones dependent. Here the triangulation independent intersections are

$$
\begin{gather*}
R_{1} R_{2} R_{3}=6, R_{1} R_{2} D_{3, \gamma}=3, R_{1} R_{3} D_{2, \beta}=2, R_{1} D_{2, \beta} D_{3, \gamma}=1 \tag{E.1}\\
R_{1} D_{2, \beta} D_{3, \gamma}=R_{3} D_{2, \beta} E_{2,1 \beta}=R_{3} E_{2,1 \beta} E_{4,1 \beta}=R_{3} E_{4,1 \beta} D_{1,1}=1 \\
R_{3} E_{4,1 \beta} D_{1,1}=R_{3} R_{2} D_{1,1}=R_{2} D_{1,1} E_{3, \gamma}=R_{2}=E_{3,1 \gamma} D_{3, \gamma}=1
\end{gather*}
$$

The triangulation dependent ones for this local singularity can be read in Table E.1.
Table E.1: Triangulation dependent intersections of distinct divisors.

Triangulation	Intersections
1	$D_{2, \beta} E_{2,1 \beta} E_{1, \beta \gamma}=D_{2, \beta} E_{1, \beta \gamma} D_{3, \gamma}=E_{2,1 \beta} E_{4,1 \beta} E_{1, \beta \gamma}=1$,
	$E_{4,1 \beta} E_{3,1 \gamma} D_{1,1}=D_{3, \gamma} E_{1, \beta \gamma}=E_{4,1 \beta}=E_{3,1 \gamma} E_{4,1 \beta} D_{3, \gamma}=1$.

The intersections for the local singularity $\mathbb{C}^{2} / \mathbb{Z}_{2}$ are given by

$$
\begin{array}{r}
R_{2} R_{3} D_{1,2}=3, D_{3, \gamma} R_{2} E_{3,2 \gamma}=3, E_{3,2 \gamma} D_{1,2} R_{2}=3 \tag{E.2}\\
D_{1,2} D_{2, \beta} R_{3}=1, E_{3,2 \gamma} D_{2, \beta} D_{1,2}=1, D_{3, \gamma} D_{2, \beta} E_{3,2 \gamma}=1
\end{array}
$$

while the intersection for the local $\mathbb{C}^{2} / \mathbb{Z}_{3}$ singularity are

$$
\begin{align*}
D_{3, \gamma} D_{1,3} E_{4,3 \beta} & =1, D_{3, \gamma} E_{4,3 \beta} E_{2,3 \beta}=1, D_{3, \gamma} E_{2,3 \beta} D_{2, \beta}=1 \tag{E.3}\\
D_{1,3} E_{4,3 \beta} R_{3} & =2, E_{4,3 \beta} E_{2,3 \beta} R_{3}=2, E_{2,3 \beta} D_{2, \beta} R_{3}=2 \\
D_{1,3} R_{2} R_{3} & =1, D_{1,3} R_{2} D_{3, \gamma}=1
\end{align*}
$$

Starting with the intersection numbers of distinct divisors, and computing from them all self intersections 83 for triangulation B one obtains

$$
\begin{align*}
E_{1, \beta \gamma}^{3} & =6, E_{2,1 \beta}^{3}=8, E_{3,1 \gamma}^{3}=8, E_{4,1 \beta}^{3}=8, E_{1, \beta \gamma} E_{2,1 \beta}^{2}=-2 \tag{E.4}\\
E_{1, \beta \gamma} E_{3,1 \gamma}^{2} & =-2, E_{1, \beta \gamma} E_{4,1 \beta}^{2}=-2, E_{1, \beta \gamma} E_{2,1 \beta} E_{4,1 \beta}=1, E_{2,1 \beta}^{2} E_{4,1 \beta}=-2 \\
c_{2}(\mathcal{M}) E_{2,1 \beta} & =c_{2}(\mathcal{M}) E_{4,1 \beta}=c_{2}(\mathcal{M}) E_{3,1 \gamma}=-4, c_{2}(\mathcal{M}) R_{2}=c_{2}(\mathcal{M}) R_{3}=24 .
\end{align*}
$$

The second Chern-class of the manifold $c_{2}(\mathcal{M})$ is the piece of degree two in the formal variables D_{J}, E_{r} and R_{i} in the total Chern-class [83] according to

$$
\begin{equation*}
c(\mathcal{M})=\prod_{J, r}\left(1+D_{J}\right)\left(1+E_{r}\right)\left(1-R_{1}\right)\left(1-R_{2}\right)\left(1-R_{3}\right)^{2} . \tag{E.5}
\end{equation*}
$$

The Bianchi identities selecting a different triangulation in all local resolutions are more difficult to fulfill. Here, one can see a sample of this computation as obtained by our computer scan:

```
0=-8+8\mp@subsup{V}{1,1,1}{}\cdot\mp@subsup{V}{1,1,1}{}-4\mp@subsup{V}{1,1,1}{}\cdot\mp@subsup{V}{4,1,1}{}-2\mp@subsup{V}{2,1,1}{}\cdot\mp@subsup{V}{2,1,1}{}+2\mp@subsup{V}{2,1,1}{}.\mp@subsup{V}{4,1,1}{},
0=-8+8V
```



```
0}=-4+7\mp@subsup{V}{1,1,4}{}.\mp@subsup{V}{1,1,4}{}-2\mp@subsup{V}{1,1,4}{}.\mp@subsup{V}{3,1,4}{}-2\mp@subsup{V}{1,1,4}{}\cdot\mp@subsup{V}{4,1,1}{}
```



```
0 = - 8 + 8V V,2,1.
0= 6 V l,2,2.
0=-8+8\mp@subsup{V}{1,2,3}{}.\mp@subsup{V}{1,2,3}{}-4\mp@subsup{V}{1,2,3}{}.\mp@subsup{V}{4,1,2}{2}-2\mp@subsup{V}{2,1,2}{2}\cdot\mp@subsup{V}{2,1,2}{}+2\mp@subsup{V}{2,1,2}{}.\mp@subsup{V}{4,1,2}{2}
0=6 = V l,2,4.
0=-4+7\mp@subsup{V}{1,3,1}{}\cdot\mp@subsup{V}{1,3,1}{}-2\mp@subsup{V}{1,3,1}{}\cdot\mp@subsup{V}{3,1,1}{}-2\mp@subsup{V}{1,3,1}{}\cdot\mp@subsup{V}{4,1,3}{}
```



```
    -2V泷,3.3
0}=-12+9\mp@subsup{V}{1,3,3}{}\cdot\mp@subsup{V}{1,3,3}{}-6\mp@subsup{V}{1,3,3}{}\cdot\mp@subsup{V}{3,1,3}{}+\mp@subsup{V}{3,1,3}{2}\cdot\mp@subsup{V}{3,1,3}{}
```

$0=-8+8 V_{1,3,4} \cdot V_{1,3,4}-2 V_{1,3,4} \cdot V_{2,1,3}-4 V_{1,3,4} \cdot V_{3,1,4}-V_{2,1,3} \cdot V_{2,1,3}+2 V_{2,1,3} \cdot V_{3,1,4}$,
$0=-4-4 V_{1,1,1} \cdot V_{2,1,1}+2 V_{1,1,1} \cdot V_{4,1,1}-V_{1,1,2} \cdot V_{1,1,2}-2 V_{1,1,2} \cdot V_{2,1,1}+2 V_{1,1,2} \cdot V_{3,1,2}-4 V_{1,1,3} \cdot V_{2,1,1}+2 V_{1,1,3} \cdot V_{4,1,1}$
$-4 V_{1,1,4} \cdot V_{2,1,1}+2 V_{1,1,4} \cdot V_{4,1,1}+7 V_{2,1,1} \cdot V_{2,1,1}-2 V_{2,1,1} \cdot V_{3,1,2}$
$-2 V_{2,1,1} \cdot V_{4,1,1}-V_{3,1,2} \cdot V_{3,1,2}+2 V_{3,1,2} \cdot V_{4,1,1}-V_{4,1,1} \cdot V_{4,1,1}$,
$0=-4-V_{1,2,1} \cdot V_{1,2,1}-2 V_{1,2,1} \cdot V_{2,1,2}+2 V_{1,2,1} \cdot V_{3,1,1}-4 V_{1,2,2} \cdot V_{2,1,2}+2 V_{1,2,2} \cdot V_{4,1,2}-4 V_{1,2,3} \cdot V_{2,1,2}+$ $2 V_{1,2,3} \cdot V_{4,1,2}-4 V_{1,2,4} \cdot V_{2,1,2}+2 V_{1,2,4} \cdot V_{4,1,2}+7 V_{2,1,2} \cdot V_{2,1,2}-2 V_{2,1,2} \cdot V_{3,1,1}-2 V_{2,1,2} \cdot V_{4,1,2}-$
$V_{3,1,1} \cdot V_{3,1,1}+2 V_{3,1,1} \cdot V_{4,1,2}-V_{4,1,2} \cdot V_{4,1,2}$,
$0=-4-4 V_{1,3,1} \cdot V_{2,1,3}+2 V_{1,3,1} \cdot V_{4,1,3}-4 V_{1,3,2} \cdot V_{2,1,3}+2 V_{1,3,2} \cdot V_{4,1,3}-V_{1,3,4} \cdot V_{1,3,4}-2 V_{1,3,4} \cdot V_{2,1,3}+2 V_{1,3,4} \cdot V_{3,1,4}+$ $7 V_{2,1,3} \cdot V_{2,1,3}-4 V_{2,1,3} \cdot V_{3,1,3}-2 V_{2,1,3} \cdot V_{3,1,4}+2 V_{3,1,3} \cdot V_{4,1,3}-$
$V_{3,1,4} \cdot V_{3,1,4}+2 V_{3,1,4} \cdot V_{4,1,3}-2 V_{4,1,3} \cdot V_{4,1,3}$,
$0=8-2 V_{1,1,1} \cdot V_{1,1,1}+2 V_{1,1,1} \cdot V_{2,1,1}-V_{1,1,3} \cdot V_{1,1,3}+2 V_{1,1,3} \cdot V_{2,1,1}+2 V_{1,1,3} \cdot V_{3,1,3}-2 V_{1,1,3} \cdot V_{4,1,1}-$
$V_{1,1,4} \cdot V_{1,1,4}+2 V_{1,1,4} \cdot V_{2,1,1}+2 V_{1,1,4} \cdot V_{3,1,4}-2 V_{1,1,4} \cdot V_{4,1,1}-V_{2,1,1} \cdot V_{2,1,1}+2 V_{2,1,1} \cdot V_{3,1,2}-$
$2 V_{2,1,1} \cdot V_{4,1,1}-2 V_{3,1,1} \cdot V_{3,1,1}-4 V_{3,1,2} \cdot V_{4,1,1}-V_{3,1,3} \cdot V_{3,1,3}-2 V_{3,1,3} \cdot V_{4,1,1}-V_{3,1,4} \cdot V_{3,1,4}$
$-2 V_{3,1,4} \cdot V_{4,1,1}+4 V_{4,1,1} \cdot V_{4,1,1}$,
$0=2 V_{1,2,2} \cdot V_{2,1,2}-4 V_{1,2,2} \cdot V_{4,1,2}-2 V_{1,2,3} \cdot V_{1,2,3}+2 V_{1,2,3} \cdot V_{2,1,2}+2 V_{1,2,4} \cdot V_{2,1,2}-4 V_{1,2,4} \cdot V_{4,1,2}-$
$V_{2,1,2} \cdot V_{2,1,2}+2 V_{2,1,2} \cdot V_{3,1,1}-2 V_{2,1,2} \cdot V_{4,1,2}-4 V_{3,1,1} \cdot V_{4,1,2}-2 V_{3,1,3} \cdot V_{3,1,3}+6 V_{4,1,2} \cdot V_{4,1,2}$,
$0=-V_{1,3,1} \cdot V_{1,3,1}+2 V_{1,3,1} \cdot V_{2,1,3}+2 V_{1,3,1} \cdot V_{3,1,1}-2 V_{1,3,1} \cdot V_{4,1,3}-V_{1,3,2} \cdot V_{1,3,2}+$
$2 V_{1,3,2} \cdot V_{2,1,3}+2 V_{1,3,2} \cdot V_{3,1,2}-2 V_{1,3,2} \cdot V_{4,1,3}+2 V_{2,1,3} \cdot V_{3,1,3}+2 V_{2,1,3} \cdot V_{3,1,4}-4 V_{2,1,3} \cdot V_{4,1,3}-$
$V_{3,1,1} \cdot V_{3,1,1}-2 V_{3,1,1} \cdot V_{4,1,3}-V_{3,1,2} \cdot V_{3,1,2}-2 V_{3,1,2} \cdot V_{4,1,3}-4 V_{3,1,3} \cdot V_{4,1,3}-4 V_{3,1,4} \cdot V_{4,1,3}+6 V_{4,1,3} \cdot V_{4,1,3}$,
$0=4-2 V_{1,2,1} \cdot V_{1,2,1}+2 V_{1,2,1} \cdot V_{2,1,2}-V_{1,3,1} \cdot V_{1,3,1}-2 V_{1,3,1} \cdot V_{3,1,1}+2 V_{1,3,1} \cdot V_{4,1,3}-V_{2,1,2} \cdot V_{2,1,2}-$ $2 V_{2,1,2} \cdot V_{3,1,1}+2 V_{2,1,2} \cdot V_{4,1,2}+5 V_{3,1,1} \cdot V_{3,1,1}-4 V_{3,1,1} \cdot V_{4,1,1}-2 V_{3,1,1} \cdot V_{4,1,3}-2 V_{4,1,2} \cdot V_{4,1,2}-V_{4,1,3} \cdot V_{4,1,3}$,
$0=4-2 V_{1,1,2} \cdot V_{1,1,2}+2 V_{1,1,2} \cdot V_{2,1,1}-4 V_{1,2,2} \cdot V_{3,1,2}-V_{1,3,2} \cdot V_{1,3,2}-2 V_{1,3,2} \cdot V_{3,1,2}+2 V_{1,3,2} \cdot V_{4,1,3}-$
$V_{2,1,1} \cdot V_{2,1,1}-2 V_{2,1,1} \cdot V_{3,1,2}+2 V_{2,1,1} \cdot V_{4,1,1}+5 V_{3,1,2} \cdot V_{3,1,2}-2 V_{3,1,2} \cdot V_{4,1,3}-2 V_{4,1,1} \cdot V_{4,1,1}-V_{4,1,3} \cdot V_{4,1,3}$,
$0=8-V_{1,1,3} \cdot V_{1,1,3}-2 V_{1,1,3} \cdot V_{3,1,3}+2 V_{1,1,3} \cdot V_{4,1,1}-3 V_{1,3,3} \cdot V_{1,3,3}+2 V_{1,3,3} \cdot V_{3,1,3}-2 V_{2,1,3} \cdot V_{2,1,3}+$ $2 V_{2,1,3} \cdot V_{4,1,3}+4 V_{3,1,3} \cdot V_{3,1,3}-2 V_{3,1,3} \cdot V_{4,1,1}-4 V_{3,1,3} \cdot V_{4,1,2}-V_{4,1,1} \cdot V_{4,1,1}-2 V_{4,1,3} \cdot V_{4,1,3}$,
$0=48-2 V_{3,1,1} \cdot V_{3,1,1}-2 V_{3,1,2} \cdot V_{3,1,2}-2 V_{3,1,3} \cdot V_{3,1,3}-2 V_{3,1,4} \cdot V_{3,1,4}-$
$6 V_{3,2,1} \cdot V_{3,2,1}-6 V_{3,2,2} \cdot V_{3,2,2}-6 V_{3,2,3} \cdot V_{3,2,3}-6 V_{3,2,4} \cdot V_{3,2,4}$,
$0=48-2 V_{2,1,1} \cdot V_{2,1,1}+2 V_{2,1,1} \cdot V_{4,1,1}-2 V_{2,1,2} \cdot V_{2,1,2}+2 V_{2,1,2} \cdot V_{4,1,2}-2 V_{2,1,3} \cdot V_{2,1,3}+2 V_{2,1,3} \cdot V_{4,1,3}-$
$4 V_{2,3,1} \cdot V_{2,3,1}+4 V_{2,3,1} \cdot V_{4,3,1}-4 V_{2,3,2} \cdot V_{2,3,2}+4 V_{2,3,2} \cdot V_{4,3,2}-4 V_{2,3,3} \cdot V_{2,3,3}+4 V_{2,3,3} \cdot V_{4,3,3}-$
$2 V_{4,1,1} \cdot V_{4,1,1}-2 V_{4,1,2} \cdot V_{4,1,2}-2 V_{4,1,3} \cdot V_{4,1,3}-4 V_{4,3,1} \cdot V_{4,3,1}-4 V_{4,3,2} \cdot V_{4,3,2}-4 V_{4,3,3} \cdot V_{4,3,3}$,

Appendix F

Orbifold tables

Table F.1: Set of blow-up modes for Model 28 in triangulation B.

V_{r}	Numerical value for V_{r}	irrep.	Orbifold state
$V_{3,11}$	$\left(0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{155}
$V_{3,12}$	$\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right)$	$\{\mathbf{1}, r\}$	ψ_{153}
$V_{3,13}$	$\left(0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,1,0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{154}
$V_{3,14}$	$\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right)$	$\{\mathbf{1}, r\}$	ψ_{150}
$V_{1,11}$	$\left(-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{57}
$V_{1,21}$	$\left(-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	$\{\{1,1,6\}, r\}$	ψ_{86}
$V_{1,31}$	$\left(\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\{\mathbf{1}, r\}$	ψ_{34}
$V_{1,12}$	$\left(-\frac{1}{6}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	$\{1, r\}$	ψ_{44}
$V_{1,22}$	($\left.0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right)$	$\{\mathbf{1}, r\}$	ψ_{77}
$V_{1,32}$	$\left(-\frac{1}{3}, \frac{5}{6}, 0, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right)$	$\{\mathbf{1}, r\}$	ψ_{21}
$V_{1,13}$	$\left(-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{45}
$V_{1,23}$	$\left(-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	$\{\{1,1,6\}, r\}$	ψ_{83}
$V_{1,33}$	$\left(\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\{\mathbf{1}, r\}$	ψ_{28}
$V_{1,14}$	$\left(-\frac{1}{6}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)$	$\{\mathbf{1}, r\}$	ψ_{41}
$V_{1,24}$	$\left(0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right)$	$\{\mathbf{1}, r\}$	ψ_{70}
$V_{1,34}$	$\left(-\frac{1}{3}, \frac{5}{6}, 0, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right)$	$\{\mathbf{1}, r\}$	ψ_{14}
$V_{2,11}$	$\left(-\frac{1}{3}, 0,1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{115}
$V_{4,11}$	$\left(-\frac{2}{3}, 0,0,0,0,0,0,0,-1, \frac{1}{3}, 0,0,0,0,0,0\right)$	$\{\{1,1,6\}, r\}$	ψ_{182}
$V_{2,12}$	$\left(\frac{1}{2},-\frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\{\mathbf{1}, l\}$	$\bar{\psi}_{36}$
$V_{4,12}$	$\left(\frac{1}{2},-\frac{5}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	$\{\mathbf{1}, r\}$	ψ_{187}
$V_{2,13}$	$\left(-\frac{2}{3},-\frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	$\{\mathbf{1}, l\}$	$\bar{\psi}_{44}$
$V_{4,13}$	$\left(\frac{1}{6},-\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\{\{1,1,6\}, l\}$	$\bar{\psi}_{107}$
$V_{2,31}$	$\left(-\frac{1}{3}, 0,-1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right)$	$\{1, l\}$	$\bar{\psi}_{21}$
$V_{2,32}$	$\left(-\frac{1}{2}, \frac{5}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right)$	$\{1, l\}$	$\bar{\psi}_{14}$
$V_{2,33}$	$\left(-\frac{2}{3},-\frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$	$\{\mathbf{1}, l\}$	$\bar{\psi}_{27}$
$V_{4,31}$	$\left(-\frac{2}{3}, 0,0,0,0,0,0,0,-1, \frac{1}{3}, 0,0,0,0,0,0\right)$	$\{\{1,1,6\}, l\}$	$\bar{\psi}_{92}$
$V_{4,32}$	$\left(-\frac{1}{2}, \frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right)$	$\{1, l\}$	$\bar{\psi}_{98}$
$V_{4,33}$	$\left(\frac{1}{6},-\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{2}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$\{\{1,1,6\}, l\}$	$\bar{\psi}_{85}$
$V_{3,21}$	$\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right)$	$\{1, r\}$	ψ_{147}
$V_{3,22}$	$\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right)$	$\{\mathbf{1}, r\}$	ψ_{134}
$V_{3,23}$	$\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right)$	$\{\mathbf{1}, r\}$	ψ_{141}
$V_{3,24}$	$\left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right)$	$\{1, r\}$	ψ_{126}

Table F.2: Set of blow-up modes for Model 28 in triangulation B.

V_{r}^{2}	Fixed set	Numerical value for V_{r}	irrep.	$\Phi^{\text {orb }}$
$\frac{25}{18}$	\{1, 1, 1\}	$\left\{-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{57}
$\frac{25}{18}$	\{1, 1, 2\}	$\left\{-\frac{1}{6}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right\}$	$\{1, r\}$	ψ_{44}
$\frac{25}{18}$	\{1, 1, 3\}	$\left\{-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{45}
$\frac{25}{18}$	\{1, 1, 4\}	$\left\{-\frac{1}{6}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,-\frac{1}{4},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right\}$	$\{1, r\}$	ψ_{41}
$\frac{25}{18}$	$\{1,2,1\}$	- $\left.\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{87}
$\frac{25}{18}$	\{1, 2, 2\}	$\left\{0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right\}$	$\{1, r\}$	ψ_{77}
$\frac{25}{18}$	$\{1,2,3\}$	$\left\{-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{5}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{84}
$\frac{25}{18}$	$\{1,2,4\}$	$\left\{0, \frac{1}{6}, 0,-\frac{1}{3},-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{12},-\frac{1}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{5}{12},-\frac{1}{12}, \frac{5}{12}\right\}$	$\{1, r\}$	ψ_{70}
$\frac{25}{18}$	\{1, 3, 1\}	$\left\{-\frac{5}{6}, \frac{1}{3}, 0,-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{1, r\}$	ψ_{33}
$\frac{25}{18}$	\{1,3,2\}	$\left\{-\frac{1}{3}, \frac{5}{6}, 0, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right\}$	$\{\mathbf{1}, r\}$	ψ_{21}
$\frac{25}{18}$	\{1,3,3\}	$\left\{-\frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{\mathbf{1}, r\}$	ψ_{29}
$\frac{25}{18}$	\{1,3,4\}	$\left\{\frac{1}{6},-\frac{2}{3}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{4},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{5}{12}, \frac{1}{12}\right\}$	$\{1, r\}$	ψ_{15}
$\frac{14}{9}$	\{2, 1, 1\}	$\left\{-\frac{1}{3}, 0,1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{115}
$\frac{14}{9}$	\{2, 1, 2\}	$\left\{\frac{1}{2},-\frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$	$\{1, l\}$	$\bar{\psi}_{36}$
$\frac{14}{9}$	\{2, 1, 3\}	$\left\{-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{5}{6}, \frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{45}$
$\frac{14}{9}$	\{4, 1, 1\}	$\left\{-\frac{2}{3}, 0,0,0,0,0,0,0,0, \frac{1}{3}, 0,0,0,0,1,0\right\}$	$\{1, r\}$	ψ_{183}
$\frac{14}{9}$	\{4, 1, 2\}	$\left\{\frac{1}{2},-\frac{5}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, r\}$	ψ_{187}
$\frac{14}{9}$	\{4, 1, 3\}	$\left\{-\frac{1}{3},-\frac{2}{3}, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{106}$
$\frac{14}{9}$	\{2, 3, 1\}	$\left\{-\frac{1}{3}, 0,-1,0,0,0,0,0,0, \frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{1, l\}$	$\bar{\psi}_{21}$
$\frac{14}{9}$	\{2, 3, 2\}	$\left\{-\frac{1}{2}, \frac{5}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{14}$
$\frac{14}{9}$	\{2, 3, 3\}	$\left\{-\frac{2}{3},-\frac{1}{3}, 0,-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{27}$
$\frac{14}{9}$	$\{4,3,1\}$	$\left\{-\frac{2}{3}, 0,0,0,0,0,0,0,0, \frac{1}{3}, 0,0,0,0,1,0\right\}$	$\{1, l\}$	$\bar{\psi}_{93}$
$\frac{14}{9}$	\{4, 3, 2\}	$\left\{-\frac{1}{2}, \frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{3},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right\}$	$\{1, l\}$	$\bar{\psi}_{98}$
$\frac{14}{9}$	\{4, 3, 3\}	$\left\{\frac{1}{6},-\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{5}{6},-\frac{1}{6}\right\}$	$\{1, l\}$	$\bar{\psi}_{87}$
$\frac{3}{2}$	\{3, 1, 1\}	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{\mathbf{1}, l\}$	$\bar{\psi}_{83}$
$\frac{3}{2}$	\{3, 1, 2\}	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{153}
$\frac{3}{2}$	$\{3,1,3\}$	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{\mathbf{1}, l\}$	$\bar{\psi}_{82}$
$\frac{3}{2}$	$\{3,1,4\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{150}
$\frac{3}{2}$	$\{3,2,1\}$	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{147}
$\frac{3}{2}$	\{3, 2, 2\}	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{134}
$\frac{3}{2}$	$\{3,2,3\}$	$\left\{0, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	$\{1, r\}$	ψ_{141}
$\frac{3}{2}$	$\{3,2,4\}$	$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right\}$	$\{1, r\}$	ψ_{126}

Table F.3: Blow-up modes of table F.1 and states with same charges.

Fixed sets	States
$(1,1,1)$	$\left(\left((1,1,1), \psi_{57}\right),\left((1,1,3), \psi_{45}\right)\right)$
$(1,1,2)$	$\left(\left((1,1,2), \psi_{44}\right),\left((1,1,4), \psi_{41}\right)\right)$
$(1,1,3)$	$\left(\left((1,1,1), \psi_{57}\right),\left((1,1,3), \psi_{45}\right)\right)$
$(1,1,4)$	$\left(\left((1,1,2), \psi_{44}\right),\left((1,1,4), \psi_{41}\right)\right)$
$(1,2,1)$	$\left(\left((1,2,1), \psi_{88}\right),\left((1,2,3), \psi_{85}\right)\right)$
$(1,2,2)$	$\left(\left((1,2,2), \psi_{77}\right),\left((1,2,4), \psi_{70}\right)\right)$
$(1,2,3)$	$\left(\left((1,2,1), \psi_{88}\right),\left((1,2,3), \psi_{85}\right)\right)$
$(1,2,4)$	$\left(\left((1,2,2), \psi_{77}\right),\left((1,2,4), \psi_{70}\right)\right)$
$(1,3,1)$	$\left(\left((1,3,1), \psi_{34}\right),\left((1,3,3), \psi_{28}\right)\right)$
$(1,3,2)$	$\left(\left((1,3,2), \psi_{22}\right),\left((1,3,4), \psi_{15}\right)\right)$
$(1,3,3)$	$\left(\left((1,3,1), \psi_{34}\right),\left((1,3,3), \psi_{28}\right)\right)$
$(1,3,4)$	(($\left.\left.(1,3,2), \psi_{22}\right),\left((1,3,4), \psi_{15}\right)\right)$
$(2,1,1)$	$\left(\left((2,1,1), \psi_{115}\right),\left((2,3,1), \bar{\psi}_{22}\right),\left((2,3,1), \psi_{98}\right)\right)$
$(2,1,2)$	$\left(\left((2,1,2), \bar{\psi}_{36}\right),\left((2,3,2), \bar{\psi}_{15}\right),\left((2,3,2), \psi_{91}\right)\right)$
$(2,1,3)$	$\left(\left((2,1,3), \bar{\psi}_{45}\right),\left((2,3,3), \bar{\psi}_{28}\right),\left((2,3,3), \psi_{104}\right)\right)$
$(2,3,1)$	$\left(\left((2,1,1), \psi_{114}\right),\left((2,3,1), \bar{\psi}_{21}\right),\left((2,3,1), \psi_{97}\right)\right)$
$(2,3,2)$	$\left(\left((2,1,2), \bar{\psi}_{35}\right),\left((2,3,2), \bar{\psi}_{14}\right),\left((2,3,2), \psi_{90}\right)\right)$
$(2,3,3)$	$\left(\left((2,1,3), \bar{\psi}_{44}\right),\left((2,3,3), \bar{\psi}_{27}\right),\left((2,3,3), \psi_{103}\right)\right)$
$(4,1,1)$	$\left(\left((4,1,1), \psi_{183}\right),\left((4,3,1), \bar{\psi}_{93}\right),\left((4,3,1), \psi_{165}\right)\right)$
$(4,1,2)$	$\left(\left((4,1,2), \psi_{187}\right),\left((4,3,2), \bar{\psi}_{99}\right),\left((4,3,2), \psi_{171}\right)\right)$
$(4,1,3)$	$\left(\left((4,1,3), \bar{\psi}_{106}\right),\left((4,3,3), \bar{\psi}_{84}\right),\left((4,3,3), \psi_{156}\right)\right)$
$(4,3,1)$	$\left(\left((4,1,1), \psi_{183}\right),\left((4,3,1), \bar{\psi}_{93}\right),\left((4,3,1), \psi_{165}\right)\right)$
$(4,3,2)$	$\left(\left((4,1,2), \psi_{186}\right),\left((4,3,2), \bar{\psi}_{98}\right),\left((4,3,2), \psi_{170}\right)\right)$
$(4,3,3)$	$\left(\left((4,1,3), \psi_{179}\right),\left((4,3,3), \bar{\psi}_{87}\right),\left((4,3,3), \psi_{159}\right)\right)$
$(3,1,1)$	$\begin{aligned} & \left(\left((3,1,1), \psi_{155}\right),\left((3,1,3), \psi_{154}\right),\left((3,2,1), \bar{\psi}_{74}\right)\right. \\ & \left.\left((3,2,1), \psi_{146}\right),\left((3,2,3), \bar{\psi}_{68}\right),\left((3,2,3), \psi_{140}\right)\right) \end{aligned}$
$(3,1,2)$	$\begin{aligned} & \left(\left((3,1,2), \psi_{153}\right),\left((3,1,4), \psi_{150}\right),\left((3,2,2), \bar{\psi}_{62}\right)\right. \\ & \left.\left((3,2,2), \psi_{134}\right),\left((3,2,4), \bar{\psi}_{54}\right),\left((3,2,4), \psi_{126}\right)\right) \end{aligned}$
$(3,1,3)$	$\begin{aligned} & \left(\left((3,1,1), \psi_{155}\right),\left((3,1,3), \psi_{154}\right),\left((3,2,1), \bar{\psi}_{74}\right)\right. \\ & \left.\left((3,2,1), \psi_{146}\right),\left((3,2,3), \bar{\psi}_{68}\right),\left((3,2,3), \psi_{140}\right)\right) \end{aligned}$
$(3,2,1)$	$\begin{gathered} \left(\left((3,1,1), \bar{\psi}_{83}\right),\left((3,1,3), \bar{\psi}_{82}\right),\left((3,2,1), \bar{\psi}_{75}\right)\right. \\ \left.\left((3,2,1), \psi_{147}\right),\left((3,2,3), \bar{\psi}_{69}\right),\left((3,2,3), \psi_{141}\right)\right) \end{gathered}$
$(3,2,2)$	$\begin{aligned} & \left(\left((3,1,2), \psi_{153}\right),\left((3,1,4), \psi_{150}\right),\left((3,2,2), \bar{\psi}_{62}\right)\right. \\ & \left.\left((3,2,2), \psi_{134}\right),\left((3,2,4), \bar{\psi}_{54}\right),\left((3,2,4), \psi_{126}\right)\right) \end{aligned}$
$(3,2,3)$	$\begin{gathered} \left(\left((3,1,1), \bar{\psi}_{83}\right),\left((3,1,3), \bar{\psi}_{82}\right),\left((3,2,1), \bar{\psi}_{75}\right)\right. \\ \left.\left((3,2,1), \psi_{147}\right),\left((3,2,3), \bar{\psi}_{69}\right),\left((3,2,3), \psi_{141}\right)\right) \end{gathered}$

Table F.4: Conjugated states of table F.1 modes. The conjugated fields to the ones in the θ sector, all in θ^{5} are not given.

Fixed sets	States
$(2,1,1)$	$\left(\left((4,1,1), \bar{\psi}_{110}\right),\left((4,3,1), \bar{\psi}_{95}\right),\left((4,3,1), \psi_{167}\right)\right)$
$(2,1,2)$	$\left(\left((4,1,2), \psi_{186}\right),\left((4,3,2), \bar{\psi}_{98}\right),\left((4,3,2), \psi_{170}\right)\right)$
$(2,1,3)$	$\left(\left((4,1,3), \psi_{179}\right),\left((4,3,3), \bar{\psi}_{87}\right),\left((4,3,3), \psi_{159}\right)\right)$
$(2,3,1)$	$\left(\left((4,1,1), \bar{\psi}_{111}\right),\left((4,3,1), \bar{\psi}_{96}\right),\left((4,3,1), \psi_{168}\right)\right)$
$(2,3,2)$	$\left(\left((4,1,2), \psi_{187}\right),\left((4,3,2), \bar{\psi}_{99}\right),\left((4,3,2), \psi_{171}\right)\right)$
$(2,3,3)$	$\left(\left((4,1,3), \psi_{180}\right),\left((4,3,3), \bar{\psi}_{88}\right),\left((4,3,3), \psi_{160}\right)\right)$
$(4,1,1)$	$\left(\left((2,1,1), \bar{\psi}_{42}\right),\left((2,3,1), \bar{\psi}_{25}\right),\left((2,3,1), \psi_{101}\right)\right)$
$(4,1,2)$	$\left(\left((2,1,2), \bar{\psi}_{35}\right),\left((2,3,2), \bar{\psi}_{14}\right),\left((2,3,2), \psi_{90}\right)\right)$
$(4,1,3)$	$\left(\left((2,1,3), \psi_{118}\right),\left((2,3,3), \bar{\psi}_{31}\right),\left((2,3,3), \psi_{107}\right)\right)$
$(4,3,1)$	$\left(\left((2,1,1), \bar{\psi}_{42}\right),\left((2,3,1), \bar{\psi}_{25}\right),\left((2,3,1), \psi_{101}\right)\right)$
$(4,3,2)$	$\left(\left((2,1,2), \bar{\psi}_{36}\right),\left((2,3,2), \bar{\psi}_{15}\right),\left((2,3,2), \psi_{91}\right)\right)$
$(4,3,3)$	$\left(\left((2,1,3), \bar{\psi}_{45}\right),\left((2,3,3), \bar{\psi}_{28}\right),\left((2,3,3), \psi_{104}\right)\right)$
$(3,1,1)$	$\left(\left((3,1,1), \bar{\psi}_{83}\right),\left((3,1,3), \bar{\psi}_{82}\right),\left((3,2,1), \bar{\psi}_{75}\right)\right.$,
	$\left.\left((3,2,1), \psi_{147}\right),\left((3,2,3), \bar{\psi}_{69}\right),\left((3,2,3), \psi_{141)}\right)\right)$
$(3,1,2)$	$\left(\left((3,1,2), \bar{\psi}_{79}\right),\left((3,1,4), \bar{\psi}_{76}\right),\left((3,2,2), \bar{\psi}_{56}\right)\right.$,
	$\left.\left((3,2,2), \psi_{128}\right),\left((3,2,4), \bar{\psi}_{48}\right),\left((3,2,4), \psi_{120}\right)\right)$
$(3,1,3)$	$\left(\left((3,1,1), \bar{\psi}_{83}\right),\left((3,1,3), \bar{\psi}_{82}\right),\left((3,2,1), \bar{\psi}_{75}\right)\right.$,
	$\left.\left((3,2,1), \psi_{147}\right),\left((3,2,3), \bar{\psi}_{69}\right),\left((3,2,3), \psi_{141}\right)\right)$
$(3,2,1)$	$\left(\left((3,1,1), \psi_{155}\right),\left((3,1,3), \psi_{154}\right),\left((3,2,1), \bar{\psi}_{74}\right)\right.$,
	$\left.\left((3,2,1), \psi_{146}\right),\left((3,2,3), \bar{\psi}_{68}\right),\left((3,2,3), \psi_{140}\right)\right)$
$(3,2,2)$	$\left(\left((3,1,2), \bar{\psi}_{79}\right),\left((3,1,4), \bar{\psi}_{76}\right),\left((3,2,2), \bar{\psi}_{56}\right)\right.$,
	$\left.\left((3,2,2), \psi_{128}\right),\left((3,2,4), \bar{\psi}_{48}\right),\left((3,2,4), \psi_{120}\right)\right)$
$(3,2,3)$	$\left(\left((3,1,1), \psi_{155}\right),\left((3,1,3), \psi_{154}\right),\left((3,2,1), \bar{\psi}_{74}\right)\right.$,
	$\left((3,2,1), \psi_{146}\right),\left((3,2,3), \bar{\psi}_{68}\right),\left((3,2,3), \psi_{140)))}\right.$

Table F.5: Blow-up modes from [83] for Benchmark Model 2.

F.P.	Numerical value for V_{r}	irrep.	$\Phi^{\text {orb }}$
\{1, 1, 1\}	$\left\{-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{62}
$\{1,1,2\}$	$\left\{-\frac{5}{12}, \frac{1}{4},-\frac{3}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{2},-\frac{1}{6}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{43}
\{1, 1, 3\}	$\left\{-\frac{1}{6}, 0,0,-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{3}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{50}
\{1, 1, 4\}	$\left\{-\frac{5}{12}, \frac{1}{4},-\frac{3}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{2},-\frac{1}{6}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{35}
$\{1,2,1\}$	$\left\{-\frac{1}{6}, 0, \frac{2}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{2}{3},-\frac{1}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{84}
$\{1,2,2\}$	$\left\{\frac{1}{12},-\frac{1}{4}, \frac{5}{12},-\frac{1}{12},-\frac{1}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12},-\frac{1}{6},-\frac{1}{6},-\frac{1}{3}, \frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{78}
$\{1,2,3\}$	$\left\{-\frac{1}{6}, 0, \frac{2}{3}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{2}{3},-\frac{1}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{81}
$\{1,2,4\}$	$\left\{\frac{1}{12},-\frac{1}{4}, \frac{5}{12},-\frac{1}{12},-\frac{1}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12},-\frac{1}{6},-\frac{1}{6},-\frac{1}{3}, \frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{75}
$\{1,3,1\}$	$\left\{-\frac{1}{6}, 0, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,1,8 s, 1\}, r\}$	ψ_{30}
\{1,3,2\}	$\left\{\frac{1}{12},-\frac{1}{4}, \frac{1}{12},-\frac{5}{12},-\frac{5}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{6},-\frac{1}{6},-\frac{2}{3},-\frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{20}
$\{1,3,3\}$	$\left\{-\frac{1}{6}, 0, \frac{1}{3},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,1,8 s, 1\}, r\}$	ψ_{26}
$\{1,3,4\}$	$\left\{\frac{1}{12},-\frac{1}{4}, \frac{1}{12},-\frac{5}{12},-\frac{5}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{6},-\frac{1}{6},-\frac{2}{3},-\frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{12}
$\{2,1,3\}$	$\left\{-\frac{5}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{112}
$\{2,3,1\}$	$\left\{\frac{2}{3}, 0,0,0,0,0,0,0,0,-\frac{1}{3}, 0,-1,0,0,0,0\right\}$	$\{\{1,1,1,2\}, l\}$	$\bar{\psi}_{18}$
$\{2,3,1\}$	$\left\{\frac{2}{3}, 0,0,0,0,0,0,0,0,-\frac{1}{3}, 0,-1,0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{94}
$\{2,3,2\}$	$\left\{\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{2}{3},-\frac{1}{3}, \frac{1}{3},-\frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, l\}$	$\bar{\psi}_{14}$
$\{2,3,2\}$	$\left\{\frac{1}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6}, \frac{2}{3},-\frac{1}{3}, \frac{1}{3},-\frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{90}
\{2, 3, 3\}	$\left\{\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, l\}$	$\bar{\psi}_{27}$
$\{2,3,3\}$	$\left\{\frac{1}{6},-\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{103}
$\{4,1,1\}$	$\left\{\frac{1}{3}, 0,-1,0,0,0,0,0,0,-\frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{93}$
\{4, 1, 2\}	$\left\{-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, l\}$	$\bar{\psi}_{96}$
\{4, 1, 3\}	$\left\{-\frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{3},-\frac{2}{3}, \frac{1}{3},-\frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{163}
\{4, 3, 1\}	$\left\{\frac{1}{3}, 0,-1,0,0,0,0,0,0,-\frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{81}$
\{4, 3, 1\}	$\left\{\frac{1}{3}, 0,-1,0,0,0,0,0,0,-\frac{2}{3}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{155}
\{4, 3, 2\}	$\left\{-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, l\}$	$\bar{\psi}_{87}$
\{4, 3, 2\}	$\left\{-\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3},-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,2\}, r\}$	ψ_{161}
\{4, 3, 3\}	$\left\{\frac{5}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{74}$
\{4, 3, 3\}	$\left\{\frac{5}{6},-\frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{148}
$\{3,1,2\}$	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{67}$
$\{3,1,4\}$	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{65}$
$\{3,2,2\}$	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{55}$
\{3, 2, 2\}	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{129}
$\{3,2,4\}$	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, l\}$	$\bar{\psi}_{47}$
$\{3,2,4\}$	$\left\{\frac{1}{4},-\frac{3}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0\right\}$	$\{\{1,1,1,1\}, r\}$	ψ_{121}
$\{2,1,1\}$	$\left\{-\frac{1}{3}, 0,-1,0,0,0,0,0,0,-\frac{1}{3}, 0,-1,0,0,0,0\right\}$	Massive	-
\{2, 1, 2\}	$\left\{-\frac{1}{3}, 0,-1,0,0,0,0,0,0,-\frac{1}{3}, 0,-1,0,0,0,0\right\}$	Massive	-
$\{3,1,1\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	projected out	-
$\{3,1,3\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	projected out	-
$\{3,2,1\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	projected out	-
$\{3,2,3\}$	$\left\{0,-\frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,-1,0,0,0,0,0,0\right\}$	projected out	-

Table F.6: Blow-up modes and same charged fields from Bianchi identities solution in 83 .

Fixed sets	States
$(1,1,1)$	$\left(\left((1,1,3), \psi_{50}\right),\left((1,1,1), \psi_{62}\right)\right)$
$(1,1,2)$	$\left(\left((1,1,4), \psi_{35}\right),\left((1,1,2), \psi_{43}\right)\right)$
$(1,1,3)$	$\left(\left((1,1,3), \psi_{50}\right),\left((1,1,1), \psi_{62}\right)\right)$
$(1,1,4)$	$\left(\left((1,1,4), \psi_{35}\right),\left((1,1,2), \psi_{43}\right)\right)$
$(1,2,1)$	$\left(\left((1,2,3), \psi_{81}\right),\left((1,2,1), \psi_{84}\right)\right)$
$(1,2,2)$	$\left(\left((1,2,4), \psi_{75}\right),\left((1,2,2), \psi_{78}\right)\right)$
$(1,2,3)$	$\left(\left((1,2,3), \psi_{81}\right),\left((1,2,1), \psi_{84}\right)\right)$
$(1,2,4)$	$\left(\left((1,2,4), \psi_{75}\right),\left((1,2,2), \psi_{78}\right)\right)$
$(1,3,1)$	$\left(\left((1,3,3), \psi_{26}\right),\left((1,3,1), \psi_{30}\right)\right)$
$(1,3,2)$	$\left(\left((1,3,4), \psi_{12}\right),\left((1,3,2), \psi_{20}\right)\right)$
$(1,3,3)$	$\left(\left((1,3,3), \psi_{26}\right),\left((1,3,1), \psi_{30}\right)\right)$
$(1,3,4)$	$\left(\left((1,3,4), \psi_{12}\right),\left((1,3,2), \psi_{20}\right)\right)$
$(2,1,1)$	()
(2,1,2)	()
(2, 1, 3)	$\left(\left((2,3,3), \bar{\psi}_{24}\right),\left((2,3,3), \psi_{100}\right),\left((2,1,3), \psi_{112}\right)\right)$
(2, 3, 1)	(($\left.\left.(2,3,1), \bar{\psi}_{18}\right),\left((2,3,1), \psi_{94}\right),\left((2,1,1), \bar{\psi}_{34}\right)\right)$
(2, 3, 2)	$\left(\left((2,3,2), \bar{\psi}_{14}\right),\left((2,3,2), \psi_{90}\right),\left((2,1,2), \psi_{108}\right)\right)$
(2, 3, 3)	$\left(\left((2,3,3), \bar{\psi}_{27}\right),\left((2,3,3), \psi_{103}\right),\left((2,1,3), \bar{\psi}_{39}\right)\right)$
$(4,1,1)$	$\left(\left((4,3,1), \bar{\psi}_{81}\right),\left((4,3,1), \psi_{155}\right),\left((4,1,1), \bar{\psi}_{93}\right)\right)$
$(4,1,2)$	$\left(\left((4,3,2), \bar{\psi}_{87}\right),\left((4,3,2), \psi_{161}\right),\left((4,1,2), \bar{\psi}_{96}\right)\right)$
$(4,1,3)$	$\left(\left((4,3,3), \bar{\psi}_{70}\right),\left((4,3,3), \psi_{144}\right),\left((4,1,3), \psi_{163}\right)\right)$
$(4,3,1)$	$\left(\left((4,3,1), \bar{\psi}_{81}\right),\left((4,3,1), \psi_{155}\right),\left((4,1,1), \bar{\psi}_{93}\right)\right)$
$(4,3,2)$	$\left(\left((4,3,2), \bar{\psi}_{87}\right),\left((4,3,2), \psi_{161}\right),\left((4,1,2), \bar{\psi}_{96}\right)\right)$
$(4,3,3)$	$\left(\left((4,3,3), \bar{\psi}_{74}\right),\left((4,3,3), \psi_{148}\right),\left((4,1,3), \bar{\psi}_{91}\right)\right)$
$(3,1,1)$	()
$(3,1,2)$	$\begin{aligned} & \left(\left((3,2,4), \bar{\psi}_{47}\right),\left((3,2,4), \psi_{121}\right),\left((3,2,2), \bar{\psi}_{55}\right),\right. \\ & \left.\left((3,2,2), \psi_{129}\right),\left((3,1,4), \bar{\psi}_{65}\right),\left((3,1,2), \bar{\psi}_{67}\right)\right) \end{aligned}$
$(3,1,3)$	()
$(3,2,1)$	()
$(3,2,2)$	$\begin{aligned} & \left(\left((3,2,4), \bar{\psi}_{47}\right),\left((3,2,4), \psi_{121}\right),\left((3,2,2), \bar{\psi}_{55}\right),\right. \\ & \left.\left((3,2,2), \psi_{129}\right),\left((3,1,4), \bar{\psi}_{65}\right),\left((3,1,2), \bar{\psi}_{67}\right)\right) \end{aligned}$
$(3,2,3)$	()

Table F.7: Conjugated states of blow-up modes from Bianchi identities solution in 83.

Fixed sets	States
(1, 1, 1)	(($\left.\left.(1,1,3), \bar{\psi}_{131}\right),\left((1,1,1), \bar{\psi}_{143}\right)\right)$
$(1,1,2)$	$\left(\left((1,1,4), \bar{\psi}_{113}\right),\left((1,1,2), \bar{\psi}_{121}\right)\right)$
$(1,1,3)$	(($\left.\left.(1,1,3), \bar{\psi}_{131}\right),\left((1,1,1), \bar{\psi}_{143}\right)\right)$
$(1,1,4)$	$\left(\left((1,1,4), \bar{\psi}_{113}\right),\left((1,1,2), \bar{\psi}_{121}\right)\right)$
$(1,2,1)$	$\left(\left((1,2,3), \bar{\psi}_{105}\right),\left((1,2,1), \bar{\psi}_{108}\right)\right)$
$(1,2,2)$	(($\left.\left.(1,2,4), \bar{\psi}_{99}\right),\left((1,2,2), \bar{\psi}_{102}\right)\right)$
$(1,2,3)$	(($\left.\left.(1,2,3), \bar{\psi}_{105}\right),\left((1,2,1), \bar{\psi}_{108}\right)\right)$
$(1,2,4)$	(($\left.\left.(1,2,4), \bar{\psi}_{99}\right),\left((1,2,2), \bar{\psi}_{102}\right)\right)$
$(1,3,1)$	$\left(\left((1,3,3), \bar{\psi}_{166}\right),\left((1,3,1), \bar{\psi}_{170}\right)\right)$
$(1,3,2)$	$\left(\left((1,3,4), \bar{\psi}_{152}\right),\left((1,3,2), \bar{\psi}_{160}\right)\right)$
$(1,3,3)$	(($\left.\left.(1,3,3), \bar{\psi}_{166}\right),\left((1,3,1), \bar{\psi}_{170}\right)\right)$
$(1,3,4)$	(($\left.\left.(1,3,4), \bar{\psi}_{152}\right),\left((1,3,2), \bar{\psi}_{160}\right)\right)$
$(2,1,1)$	()
(2, 1, 2)	()
(2, 1, 3)	$\left(\left((4,3,3), \bar{\psi}_{74}\right),\left((4,3,3), \psi_{148}\right),\left((4,1,3), \bar{\psi}_{91}\right)\right)$
$(2,3,1)$	$\left(\left((4,3,1), \bar{\psi}_{78}\right),\left((4,3,1), \psi_{152}\right),\left((4,1,1), \psi_{169}\right)\right)$
(2,3, 2)	$\left(\left((4,3,2), \bar{\psi}_{83}\right),\left((4,3,2), \psi_{157}\right),\left((4,1,2), \bar{\psi}_{95}\right)\right)$
(2,3,3)	$\left(\left((4,3,3), \bar{\psi}_{70}\right),\left((4,3,3), \psi_{144}\right),\left((4,1,3), \psi_{163}\right)\right)$
$(4,1,1)$	$\left(\left((2,3,1), \bar{\psi}_{21}\right),\left((2,3,1), \psi_{97}\right),\left((2,1,1), \psi_{110}\right)\right)$
$(4,1,2)$	$\left(\left((2,3,2), \bar{\psi}_{13}\right),\left((2,3,2), \psi_{89}\right),\left((2,1,2), \psi_{107}\right)\right)$
$(4,1,3)$	$\left(\left((2,3,3), \bar{\psi}_{27}\right),\left((2,3,3), \psi_{103}\right),\left((2,1,3), \bar{\psi}_{39}\right)\right)$
$(4,3,1)$	$\left(\left((2,3,1), \bar{\psi}_{21}\right),\left((2,3,1), \psi_{97}\right),\left((2,1,1), \psi_{110}\right)\right)$
$(4,3,2)$	$\left(\left((2,3,2), \bar{\psi}_{13}\right),\left((2,3,2), \psi_{89}\right),\left((2,1,2), \psi_{107}\right)\right)$
$(4,3,3)$	$\left(\left((2,3,3), \bar{\psi}_{24}\right),\left((2,3,3), \psi_{100}\right),\left((2,1,3), \psi_{112}\right)\right)$
$(3,1,1)$	()
$(3,1,2)$	$\begin{aligned} & \left(\left((3,2,4), \bar{\psi}_{46}\right),\left((3,2,4), \psi_{120}\right),\left((3,2,2), \bar{\psi}_{54}\right)\right. \\ & \left.\left((3,2,2), \psi_{128}\right),\left((3,1,4), \psi_{140}\right),\left((3,1,2), \psi_{142}\right)\right) \end{aligned}$
(3, 1, 3)	()
$(3,2,1)$	()
$(3,2,2)$	$\begin{aligned} & \left(\left((3,2,4), \bar{\psi}_{46}\right),\left((3,2,4), \psi_{120}\right),\left((3,2,2), \bar{\psi}_{54}\right)\right. \\ & \left.\left((3,2,2), \psi_{128}\right),\left((3,1,4), \psi_{140}\right),\left((3,1,2), \psi_{142}\right)\right) \end{aligned}$
$(3,2,3)$	()

Table F.8: Projection conditions: Commuting elements to every conjugacy class with Wilson line A_{3} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 1\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{0,0,0,0, \frac{1}{2}, 0\right\}$	$\{\{0,0,0,0,1,0\}, 1\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 1\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,0,1,1\}, 1\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,0,1,0,0,0\}, 1\}$	$3 V, A+V, 2 A+2 V, A+4 V, 2 A+5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,0,1,0\}, 1\}$	$3 V, A+V, 2 A+2 V, A+4 V, 2 A+5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0, \frac{1}{2}\right\}$	$\{\{0,0,1,0,0,1\}, 1\}$	$3 V, A+V, 2 A+2 V, A+4 V, 2 A+5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,0,1,1\}, 1\}$	$3 V, A+V, 2 A+2 V, A+4 V, 2 A+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 1\}$	$3 V, 2 A+V, A+2 V, 2 A+4 V, A+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,1,1,0\}, 1\}$	$3 V, 2 A+V, A+2 V, 2 A+4 V, A+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right\}$	$\{\{0,0,1,1,0,1\}, 1\}$	$3 V, 2 A+V, A+2 V, 2 A+4 V, A+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,1,1,1\}, 1\}$	$3 V, 2 A+V, A+2 V, 2 A+4 V, A+5 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 2\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{\frac{1}{3}, 0,0,0,0,0\right\}$	$\{\{0,-1,0,0,0,0\}, 2\}$	$2 V, 4 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 2\}$	$3 V, A+V, 2 A+2 V, A+4 V, 2 A+5 V$
$\left\{\frac{1}{3}, 0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,-1,1,1,0,0\}, 2\}$	$2 A+2 V, A+4 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,0,0,1,0,0\}, 2\}$	$3 V, 2 A+V, A+2 V, 2 A+4 V, A+5 V$
$\left\{\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,-1,0,1,0,0\}, 2\}$	$A+2 V, 2 A+4 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 3\}$	$A\left(m_{3}+m_{4}\right)+k V, k=0, \ldots, 5$
$\left\{\frac{1}{2}, 0,0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 3\}$	$A\left(m_{3}+m_{4}\right), A\left(m_{3}+m_{4}\right)+3 V$
$\left\{0,0,0,0, \frac{1}{2}, 0\right\}$	$\{\{0,0,0,0,1,0\}, 3\}$	$A\left(m_{3}+m_{4}\right)+k V, k=0, \ldots, 5$
$\left\{\frac{1}{2}, 0,0,0, \frac{1}{2}, 0\right\}$	$\{\{1,0,0,0,1,0\}, 3\}$	$A\left(m_{3}+m_{4}\right), A\left(m_{3}+m_{4}\right)+3 V$
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 3\}$	$A\left(m_{3}+m_{4}\right)+k V, k=0, \ldots, 5$
$\left\{\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right\}$	$\{\{1,0,0,0,0,1\}, 3\}$	$A\left(m_{3}+m_{4}\right), A\left(m_{3}+m_{4}\right)+3 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,0,1,1\}, 3\}$	$A\left(m_{3}+m_{4}\right)+k V, k=0, \ldots, 5$
$\left\{\frac{1}{2}, 0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,0,0,0,1,1\}, 3\}$	$A\left(m_{3}+m_{4}\right), A\left(m_{3}+m_{4}\right)+3 V$

Table F.9: Projection conditions: Commuting elements to every conjugacy class with Wilson line A_{5} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 1\}$	$V, 2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,0,1,0,0,0\}, 1\}$	$V, 2 V, 3 V, 5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 1\}$	$V, 2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 1\}$	$V, 2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0, \frac{1}{2}\right\}$	$\{\{0,0,1,0,0,1\}, 1\}$	$V, 2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right\}$	$\{\{0,0,1,1,0,1\}, 1\}$	$V, 2 V, 3 V, 5 \mathrm{~V}$
$\left\{0,0,0,0, \frac{1}{2}, 0\right\}$	$\{\{0,0,0,0,1,0\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,0,1,0\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,1,1,0\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,0,1,1\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,0,1,1\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,1,1,1\}, 1\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 2\}$	$m_{5} A_{5}+k v, 0 \leq k \leq 5$,
$\left\{\frac{1}{3}, 0,0,0,0,0\right\}$	$\{\{0,-1,0,0,0,0\}, 2\}$	$m_{5} A_{5}+k v, k=0,2,4$,
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 2\}$	$m_{5} A_{5}+k v, 0 \leq k \leq 5$,
$\left\{\frac{1}{3}, 0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,-1,1,1,0,0\}, 2\}$	$m_{5} A_{5}+k v, k=0,2,4,$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,0,0,1,0,0\}, 2\}$	$m_{5} A_{5}+k v, 0 \leq k \leq 5$,
$\left\{\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,-1,0,1,0,0\}, 2\}$	$m_{5} A_{5}+k v, k=0,2,4$,
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 3\}$	$V, 2 \mathrm{~V}, 3 \mathrm{~V}, 4 \mathrm{~V}, 5 \mathrm{~V}$
$\left\{\frac{1}{2}, 0,0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 3\}$	3 V
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 3\}$	$V, 2 V, 3 V, 4 V, 5 V$
$\left\{\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right\}$	$\{\{1,0,0,0,0,1\}, 3\}$	3 V
$\left\{0,0,0,0, \frac{1}{2}, 0\right\}$	$\{\{0,0,0,0,1,0\}, 3\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{\frac{1}{2}, 0,0,0, \frac{1}{2}, 0\right\}$	$\{\{1,0,0,0,1,0\}, 3\}$	$A_{5}+3 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,0,1,1\}, 3\}$	$2 V, 4 V, A_{5}+V, A_{5}+3 V, A_{5}+5 V$
$\left\{\frac{1}{2}, 0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,0,0,0,1,1\}, 3\}$	$A_{5}+3 V$

Table F.10: Empty fixed sets of the Mini-landscape models with $V_{S O(10), 1}$

Shift
$V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0^{5}, \frac{1}{2},-\frac{1}{6},-\frac{1}{2}^{5}, \frac{1}{2}\right)$
Model 1
$\begin{gathered} W L 1=\left(-\frac{1}{4}, \frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}, \frac{3}{2},-\frac{1}{2},-1, \frac{1}{2},-\frac{7}{2},-1,-1,1\right) \\ W L 2=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{2},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{1}{6},-\frac{3}{2}, \frac{1}{6}, \frac{3}{2}, \frac{23}{6}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2},-\frac{3}{2}\right) \end{gathered}$
$\begin{gathered} S U(3) \times S U(2) \times U(1)^{5} \text { and } S O(8) \times S U(2) \times S U(2) \times U(1)^{2} \\ \text { No singlets in } \theta^{5}(0,0,0,1,1,0),(0,0,0,1,1,1) \end{gathered}$
Model 2
$\begin{aligned} \text { WL1 } & =(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2 / 1,-2 / 1,2 / 1) \\ \text { WL2 } & =(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 1,0 / 1,-1 / 3,-2 / 3,2 / 3,-5 / 3,-2 / 3,1 / 3) \end{aligned}$
SU3 x SU2 x U15 AND SU4 x SU2 x U14 No singlets in $\theta^{5}(0,0,0,1,1,0)(0,0,0,1,1,1)$. Empty $\theta^{3}\left(0^{6}\right),\left(0^{5} 1\right)$
Model 3
$\begin{aligned} \text { WL1 } & =(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2,-2,2) \\ \text { WL2 } & =(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 3,0 / 1,0 / 1,2 / 3,32 / 3,-11,0,0) \end{aligned}$
SU3 x SU2 x U15 AND SO8 x SU3 x U12 Empty fixed branes $\theta^{3}\left(0^{6}\right),\left(0^{5} 1\right),\left(0^{4} 10\right),\left(0^{4} 11\right)$
Model 4
$\begin{gathered} \text { WL1 }=(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2 / 1,0 / 1,4 / 1) \\ \text { WL2 } \end{gathered}=(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 3,0 / 1,0 / 1,0 / 1,2 / 1,-4 / 3,2 / 3,1 / 1) .$
SU3 x SU2 x U15 AND SU2 x SU2 x SU2 x SU2 x SU2 x U13 No singlets in $\theta^{5},(0,0,0,1,1,0),(0,0,0,1,1,1)$. Empty branes $\theta^{3}\left(0^{6}\right),\left(0^{5} 1\right)$
Model 5
$\begin{gathered} \text { SU3 } \times \text { SU } 2 \times \text { U15 AND SU3 x SU3 } \times \text { U14 } \\ \text { Empty branes } \theta^{3}\left(0^{6}\right),\left(0^{5} 1\right) \end{gathered}$
Model 6
$\begin{aligned} \text { WL1 } & =(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2 / 1,-2 / 1,2 / 1) \\ \text { WL2 } & =(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,13 / 6,13 / 6,0 / 1,0 / 1,0 / 1,0 / 1,1 / 1,-1 / 1,0 / 1,0 / 1) \end{aligned}$
SU3 x SU2 x U15 AND SO8 x SU4 x U1 Empty θ^{3}. No singlets in $\theta^{5}(0,0,0,1,1,0),(0,0,0,1,1,1)$.
Model 7
$\begin{aligned} & \text { WL1 }=(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4)(5 / 2,-3 / 2,-2 / 1,-5 / 2,3 / 2,-6 / 1,-2 / 1,2 / 1) \\ & \text { WL2 }=(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)(-5 / 3,1 / 1,1 / 1,4 / 3,23 / 3,-6 / 1,1 / 1,-1 / 1) \end{aligned}$
SU3 x SU2 x U15 AND SO8 x SU3 x U12 No singlets in $\theta^{5},(0,0,0,1,1,0),(0,0,0,1,1,1)$. Empty branes $\theta^{3}\left(0^{6}\right),\left(0^{5} 1\right)$

Table F.11: Empty fixed sets of the Mini-landscape models with $V_{S O(10), 1}$.

$V=\left(\frac{1}{3},-\frac{1}{2},-\frac{1}{2}, 0^{5}, \frac{1}{2}\right.$,
$\begin{aligned} \text { WL1 } & =(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2 / 1,-2 / 1,2 / 1) \\ \text { WL2 } & =(-1 / 6,-1 / 2,1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,7 / 6,-5 / 6,-3 / 2,-5 / 6,-1 / 2,-11 / 6,1 / 6,13 / 6) \end{aligned}$
$\begin{aligned} & \text { SU3 x SU } 2 \times \text { SU } 2 \times \mathrm{U} 14 \text { AND SU3 } \times \text { SU } 2 \times \mathrm{U} 15 \\ & \text { Empty branes } \theta^{3}\left(0^{6}\right),\left(0^{5} 1\right) \end{aligned}$
Model 9
$\begin{gathered} \text { WL1 }=(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-1 / 1,-3 / 1,2 / 1) \\ \mathrm{WL} 2=(-1 / 6,-1 / 2,1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,-11 / 6,13 / 6,13 / 6,13 / 6,23 / 6,13 / 6,1 / 2,-5 / 2) \end{gathered}$
$\begin{gathered} \text { SU } 3 \times \text { SU } 2 \times \mathrm{SU} 2 \times \mathrm{U} 14 \text { AND SU } 2 \times \mathrm{SU} 2 \times \mathrm{SU} 3 \times \mathrm{SU} 2 \times \mathrm{U} 13 \\ \text { Empty branes } \theta^{3}\left(0^{6}\right),\left(0^{5} 1\right) \\ \hline \end{gathered}$
Model 10
$\begin{gathered} \text { WL1 }=(3 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,5 / 2,-3 / 2,-2 / 1,-5 / 2,-5 / 2,-2 / 1,0 / 1,4 / 1) \\ \text { WL2 }=(-1 / 6,-1 / 2,1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,5 / 2,-11 / 6,-13 / 6,-13 / 6,-3 / 2,-19 / 6,-13 / 6,11 / 6) \end{gathered}$
$\begin{gathered} \text { SU3 x SU2 x SU2 } 2 \text { U14 AND SU4 x SU2 } \times \text { SU } 2 \times \mathrm{U} 13 \\ \text { Empty branes } \theta^{3}\left(0^{6}\right),\left(0^{5} 1\right) \end{gathered}$
Model 11
$\begin{gathered} \text { WL1 }=(-1 / 4,3 / 4,-1 / 4,1 / 4,1 / 4,-1 / 4,-1 / 4,-1 / 4,3 / 2,-1 / 2,0 / 1,-5 / 2,-1 / 2,-2 / 1,-1 / 1,1 / 1) \\ \text { WL2 }=(-1 / 6,1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,-1 / 2,1 / 6,1 / 6,1 / 2,1 / 2,1 / 2,1 / 2,-1 / 2) \end{gathered}$
SU3 x SU2 x U15 AND SU4 x SU4 x U12 Empty fixed points $\theta^{5}\left(0^{3}, 1,1,0\right),\left(0^{3} 1,1,1\right)$
Model 12
$\begin{aligned} \text { WL1 } & =(1 / 4,-3 / 4,1 / 4,-1 / 4,-1 / 4,1 / 4,5 / 4,5 / 4,7 / 2,-5 / 2,-5 / 2,-5 / 2,-5 / 2,-5 / 2,-5 / 2,5 / 2) \\ \text { WL2 } & =(1 / 6,1 / 6,1 / 2,-1 / 6,-1 / 6,-1 / 6,5 / 6,5 / 6,-1 / 2,11 / 6,-1 / 2,11 / 6,-1 / 2,1 / 2,1 / 2,-1 / 2) \end{aligned}$
SU3 x SU2 x U15 AND SO12 x U12 No singlets in $\theta,\left(0^{6}\right)$
Model 13
$\begin{gathered} \text { WL1 }=(-3 / 4,-1 / 4,-1 / 4,-1 / 4,-1 / 4,1 / 4,5 / 4,5 / 4,5 / 2,-3 / 2,-3 / 2,-3 / 2,-3 / 2,-3 / 2,-1 / 2,5 / 2) \\ \text { WL2 } \end{gathered}=(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,7 / 6,7 / 6,2 / 1,-1 / 1,-5 / 3,-5 / 3,-5 / 3,-5 / 3,-5 / 3,4 / 3)$
SU3 x SU2 x U15 AND SU6 x U13 Empty fixed branes $\theta^{3},\left(0^{6}\right)\left(0^{5}, 1\right)$ and $\theta^{4}(001100)$. No singlets in $\theta^{2},\left(0^{6}\right)$ and $\theta^{3},\left(0^{4}, 1,0\right)\left(0^{4}, 1,1\right)(010010)(010011)$.

Model 14

WL1 $=(-3 / 4,-1 / 4,-1 / 4,-1 / 4,-1 / 4,1 / 4,5 / 4,5 / 4,5 / 2,-3 / 2,-3 / 2,-3 / 2,1 / 2,-7 / 2,-3 / 2,3 / 2)$
WL2 $=(-1 / 2,-1 / 2,1 / 6,1 / 6,1 / 6,1 / 6,7 / 6,7 / 6,4 / 3,0 / 1,-2 / 1,-1 / 3,-4 / 3,-1 / 1,-1 / 1,1 / 1)$
SU3 x SU2 x U15 AND SO8 x SU3 x U12
Empty fixed branes $\theta^{3},\left(0^{6}\right)\left(0^{5}, 1\right)$. No singlets in $\theta^{2},\left(0^{6}\right)$ and $\theta^{3},\left(0^{4}, 1,0\right)\left(0^{4}, 1,1\right)(010010)(010011)$.

Table F.12: Empty fixed sets of the Mini-landscape models with $V_{S O(10), 1}$.

Table F.13: Conjugacy classes of the $\mathbb{Z}_{6 I I}$ orbifold.

$n_{\alpha} e_{\alpha}$	$\left\{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right\}$	k	$\{\alpha, \beta, \gamma\}$	F.P. coordinates
0	$\{0,0,0,0,0,0\}$	1	$\{1,1,1\}$	$\{0,0,0,0,0,0\}$
e 6	$\{0,0,0,0,0,1\}$	1	$\{1,1,3\}$	$\{0,0,0,0,0,1 / 2\}$
e 5	$\{0,0,0,0,1,0\}$	1	$\{1,1,2\}$	$\{0,0,0,0,1 / 2,0\}$
$\mathrm{e} 5+\mathrm{e} 6$	$\{0,0,0,0,1,1\}$	1	$\{1,1,4\}$	$\{0,0,0,0,1 / 2,1 / 2\}$
e 3	$\{0,0,1,0,0,0\}$	1	$\{1,2,1\}$	$\{0,0,2 / 3,1 / 3,0,0\}$
$\mathrm{e} 3+\mathrm{e} 6$	$\{0,0,1,0,0,1\}$	1	$\{1,2,3\}$	$\{0,0,2 / 3,1 / 3,0,1 / 2\}$
$\mathrm{e} 3+\mathrm{e} 5$	$\{0,0,1,0,1,0\}$	1	$\{1,2,2\}$	$\{0,0,2 / 3,1 / 3,1 / 2,0\}$
$\mathrm{e} 3+\mathrm{e} 5+\mathrm{e} 6$	$\{0,0,1,0,1,1\}$	1	$\{1,2,4\}$	$\{0,0,2 / 3,1 / 3,1 / 2,1 / 2\}$
$\mathrm{e} 3+\mathrm{e} 4$	$\{0,0,1,1,0,0\}$	1	$\{1,3,1\}$	$\{0,0,1 / 3,2 / 3,0,0\}$
$\mathrm{e} 3+\mathrm{e} 4+\mathrm{e} 6$	$\{0,0,1,1,0,1\}$	1	$\{1,3,3\}$	$\{0,0,1 / 3,2 / 3,0,1 / 2\}$
$\mathrm{e} 3+\mathrm{e} 4+\mathrm{e} 5$	$\{0,0,1,1,1,0\}$	1	$\{1,3,2\}$	$\{0,0,1 / 3,2 / 3,1 / 2,0\}$
$\mathrm{e} 3+\mathrm{e} 4+\mathrm{e} 5+\mathrm{e} 6$	$\{0,0,1,1,1,1\}$	1	$\{1,3,4\}$	$\{0,0,1 / 3,2 / 3,1 / 2,1 / 2\}$
-2 e 2	$\{0,-2,0,0,0,0\}$	2	$\{5,1,1\}$	$\{2 / 3,0,0,0,0,0\}$
$-2 \mathrm{e} 2+\mathrm{e} 4$	$\{0,-2,0,1,0,0\}$	2	$\{5,3,1\}$	$\{2 / 3,0,1 / 3,2 / 3,0,0\}$
$-2 \mathrm{e} 2+\mathrm{e} 3+\mathrm{e} 4$	$\{0,-2,1,1,0,0\}$	2	$\{5,2,1\}$	$\{2 / 3,0,2 / 3,1 / 3,0,0\}$
0	$\{0,0,0,0,0,0\}$	2	$\{1,1,1\}$	$\{0,0,0,0,0,0\}$
e 4	$\{0,0,0,1,0,0\}$	2	$\{1,3,1\}$	$\{0,0,1 / 3,2 / 3,0,0\}$
$\mathrm{e} 3+\mathrm{e} 4$	$\{0,0,1,1,0,0\}$	2	$\{1,2,1\}$	$\{0,0,2 / 3,1 / 3,0,0\}$
0	$\{0,0,0,0,0,0\}$	3	$\{1,1,1\}$	$\{0,0,0,0,0,0\}$
e 6	$\{0,0,0,0,0,1\}$	3	$\{1,1,3\}$	$\{0,0,0,0,0,1 / 2\}$
e 5	$\{0,0,0,0,1,0\}$	3	$\{1,1,2\}$	$\{0,0,0,0,1 / 2,0\}$
$\mathrm{e} 5+\mathrm{e} 6$	$\{0,0,0,0,1,1\}$	3	$\{1,1,4\}$	$\{0,0,0,0,1 / 2,1 / 2\}$
e 2	$\{0,1,0,0,0,0\}$	3	$\{4,1,1\}$	$\{0,1 / 2,0,0,0,0\}$
$\mathrm{e} 2+\mathrm{e} 6$	$\{0,1,0,0,0,1\}$	3	$\{4,1,3\}$	$\{0,1 / 2,0,0,0,1 / 2\}$
$\mathrm{e} 2+\mathrm{e} 5$	$\{0,1,0,0,1,0\}$	3	$\{4,1,2\}$	$\{0,1 / 2,0,0,1 / 2,0\}$
$\mathrm{e} 2+\mathrm{e} 5+\mathrm{e} 6$	$\{0,1,0,0,1,1\}$	3	$\{4,1,4\}$	$\{0,1 / 2,0,0,1 / 2,1 / 2\}$
0	$\{0,0,0,0,0,0\}$	4	$\{1,1,1\}$	$\{0,0,0,0,0,0\}$
e 3	$\{0,0,1,0,0,0\}$	4	$\{1,2,1\}$	$\{0,0,2 / 3,1 / 3,0,0\}$
$\mathrm{e} 3+\mathrm{e} 4$	$\{0,0,1,1,0,0\}$	4	$\{1,3,1\}$	$\{0,0,1 / 3,2 / 3,0,0\}$
$\mathrm{e} 1+\mathrm{e} 2$	$\{1,1,0,0,0,0\}$	4	$\{3,1,1\}$	$\{1 / 3,0,0,0,0,0\}$
$\mathrm{e} 1+\mathrm{e} 2+\mathrm{e} 3$	$\{1,1,1,0,0,0\}$	4	$\{3,2,1\}$	$\{1 / 3,0,2 / 3,1 / 3,0,0\}$
$\mathrm{e}+\mathrm{e} 2+\mathrm{e} 3+\mathrm{e} 4$	$\{1,1,1,1,0,0\}$	4	$\{3,3,1\}$	$\{1 / 3,0,1 / 3,2 / 3,0,0\}$

Appendix G

$U(1)$ base for $T^{6} / \mathbb{Z}_{6 I I}$ blow-up

We start with a basis for a set of Cartan generators H_{I} such that $\operatorname{tr} H_{I} H_{J}=\delta_{I J}$. There are $8 U(1)$ symmetries, and we write the generator of each of them as $U(1)_{a}=\sum_{I} c_{a}^{I} H_{I}$ what is summarized in the following

$$
\begin{aligned}
U(1)_{1} & =\left\{\frac{11}{6}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{13}{6},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} \\
U(1)_{2} & =\left\{0,0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, 0,0,0,0,0,0,0,0\right\} \\
U(1)_{3} & =\{-3,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0\} \\
U(1)_{4} & =\{33,9,130,0,0,0,0,0,0,0,0,0,0,0,0,0\} \\
U(1)_{5} & =\{286,78,-78,0,0,0,0,0,0,278,0,0,0,0,0,0\} \\
U(1)_{6} & =\{-66,-18,18,0,0,0,0,0,0,78,0,0,0,0,616,0\} \\
U(1)_{7} & =\{165,45,-45,317,317,317,317,317,0,-195,0,0,0,0,45,0\} \\
U(1)_{8} & =\{-99,-27,27,27,27,27,27,27,181,117,-181,-181,-181,-181,-27,181\} .
\end{aligned}
$$

Every entrance I in the vector $U(1)_{a}$ represents the coefficient c_{a}^{I}. The generator $U(1)_{a}$ is the generator of the anomalous $U(1)$.

Appendix H

Axions in blow-up versus orbifold axions

Here we give the solutions for the coefficients c_{r} and d_{r} relating the orbifold axion $a^{\text {orb }}$ and the blow-up modes τ_{r} with the universal $a^{\text {uni }}$ and non-universal axions β_{r} in the resolution. The relations are

$$
\begin{align*}
a^{\text {uni }} & =-\frac{1}{12}\left(a^{\text {orb }}+\sum_{r} c_{r} \tau_{r}\right) \tag{H.1}\\
\beta_{r} & =-\frac{1}{12} d_{r} \tau_{r} . \tag{H.2}
\end{align*}
$$

The following set correspond to solutions such that $I^{\text {red }}$ is factorizable and therefore can be canceled by a counterterm:

$$
\begin{align*}
c_{1} & =d_{19}+\frac{45}{4}\left(-4-d_{28}\right)+\frac{1}{4}\left(4-4 c_{3}+16 c_{17}+16 c_{19}-8 c_{20}-20 c_{21}+10 c_{25}\right. \tag{H.3}\\
& +12 c_{26}+10 c_{27}+12 c_{28}-2 c_{29}+12 c_{30}-2 c_{31}+12 c_{32}+4 d_{20}+4 d_{21}+4 d_{22} \\
& +4 d_{23}+4 d_{24}+45 d_{28}+4 d_{29}+4 d_{30}+4 d_{31}+4 d_{32}, \\
c_{2} & =1-c_{4}+4 c_{17}+5 c_{19}-2 c_{20}-5 c_{21}+3 c_{25}+2 c_{26}+3 c_{27}+2 c_{28}-c_{29} \tag{H.4}\\
& +2 c_{30}-c_{31}+2 c_{32}+d_{19}+d_{20}+d_{21}+d_{22}+d_{23}+d_{24}+\frac{21}{2}\left(-4-d_{28}\right) \\
& +\frac{21 d_{28}}{2}+d_{29}+d_{30}+d_{31}+d_{32},
\end{align*}
$$

$$
\begin{align*}
& c_{9}=-1-c_{5}-c_{7}-c_{11}-4 c_{17}-4 c_{19}+2 c_{20}+3 c_{21}-\frac{5 c_{25}}{2}-3 c_{26}-\frac{5 c_{27}}{2} \tag{H.5}\\
& -3 c_{28}+\frac{c_{29}}{2}-3 c_{30}+\frac{c_{31}}{2}-3 c_{32}-d_{19}-d_{20}-d_{21}-d_{22}-d_{23}-d_{24}-\frac{51}{4}\left(-4-d_{28}\right) \\
& -\frac{51 d_{28}}{4}-d_{29}-d_{30}-d_{31}-d_{32} \\
& c_{10}=1-c_{6}-c_{8}-c_{12}+4 c_{17}+5 c_{19}-2 c_{20}-5 c_{21}+3 c_{25}+3 c_{26}+3 c_{27}+3 c_{28} \tag{H.6}\\
& -c_{29}+3 c_{30}-c_{31}+3 c_{32}+d_{19}+d_{20}+d_{21}+d_{22}+d_{23}+d_{24}+\frac{27}{2}\left(-4-d_{28}\right) \\
& +\frac{27 d_{28}}{2}+d_{29}+d_{30}+d_{31}+d_{32} \\
& c_{13}=-2+c_{6}+c_{8}-7 c_{17}-8 c_{19}+3 c_{20}+9 c_{21}-6 c_{25}-5 c_{26}-6 c_{27}-5 c_{28} \tag{H.7}\\
& +2 c_{29}-5 c_{30}+2 c_{31}-5 c_{32}-2 d_{19}-2 d_{20}-2 d_{21}-2 d_{22}-2 d_{23}-2 d_{24} \\
& -24\left(-4-d_{28}\right)-24 d_{28}-2 d_{29}-2 d_{30}-2 d_{31}-2 d_{32} \text {, } \\
& c_{14}=-1-c_{5}-c_{7}-3 c_{17}-4 c_{19}+c_{20}+3 c_{21}-c_{23}-2 c_{25}-2 c_{26}-2 c_{27}-2 c_{28} \tag{H.8}\\
& -2 c_{30}-2 c_{32}-d_{19}-d_{20}-d_{21}-d_{22}-d_{23}-d_{24}-\frac{15}{2}\left(-4-d_{28}\right) \\
& -\frac{15 d_{28}}{2}-d_{29}-d_{30}-d_{31}-d_{32}, \\
& c_{15}=-1+c_{5}+c_{6}+c_{7}+c_{8}-4 c_{17}-4 c_{19}+2 c_{20}+5 c_{21}-c_{24}-3 c_{25}-2 c_{26} \tag{H.9}\\
& -3 c_{27}-2 c_{28}+c_{29}-2 c_{30}+c_{31}-2 c_{32}-d_{19}-d_{20}-d_{21}-d_{22}-d_{23}-d_{24} \\
& -\frac{63}{4}\left(-4-d_{28}\right)-\frac{63 d_{28}}{4}-d_{29}-d_{30}-d_{31}-d_{32} \\
& c_{16}=1-c_{6}-c_{8}+4 c_{17}+4 c_{19}-2 c_{20}-5 c_{21}-c_{22}+3 c_{25}+3 c_{26}+3 c_{27}+3 c_{28} \tag{H.10}\\
& -c_{29}+3 c_{30}-c_{31}+3 c_{32}+d_{19}+d_{20}+d_{21}+d_{22}+d_{23}+d_{24} \\
& +\frac{69}{4}\left(-4-d_{28}\right)+\frac{69 d_{28}}{4}+d_{29}+d_{30}+d_{31}+d_{32} \\
& c_{18}=-c_{6}-c_{8}+c_{17}+c_{19}-c_{20}-c_{21}+c_{25}+c_{27}-c_{29}-c_{31} \tag{H.11}\\
& -\frac{3}{4}\left(-4-d_{28}\right)-\frac{3 d_{28}}{4} \text {. } \\
& d_{1}=-4-d_{3} \text {, } \tag{H.12}\\
& d_{2}=-4-d_{4} \text {, } \tag{H.13}\\
& d_{5}=-4-d_{7} \text {, } \tag{H.14}\\
& d_{6}=-4-d_{8}, \tag{H.15}
\end{align*}
$$

$$
\begin{align*}
d_{9} & =-4-d_{11}, \tag{H.17}\\
d_{10} & =-4-d_{12}, \tag{H.18}\\
d_{13} & =-2, \tag{H.19}\\
d_{14} & =2, \tag{H.20}\\
d_{15} & =2, \tag{H.21}\\
d_{16} & =-2, \tag{H.22}\\
d_{17} & =-2, \tag{H.23}\\
d_{18} & =2, \tag{H.24}\\
d_{25} & =-4-d_{27}, \tag{H.25}\\
d_{26} & =-4-d_{28} . \tag{H.26}
\end{align*}
$$

Appendix I

Automorphisms for \mathbb{Z}_{N} orbifolds

In order to investigate the possible discrete symmetries present in a model and their effects, we have constructed the automorphism groups for the lattices listed in Tables I.1 and I. 2 [94]. We present here the symmetries involving the subgroups D and F, defined in section 3.4 .

First we give our findings for the torus lattices which factorize along the complex coordinates and are the most broadly studied in the literature. Then we proceed to the non-factorizable ones. For each case the R-symmetries resulting from the generators on D are presented, and the generators in F are listed, analyzing when they survive in 4 d .

Working with the group F we study the symmetries of the 4 d theory coming from transformations which map conjugacy classes with the same spectrum among each other. This subgroup of the Lorentz group in 10d is maximal when no Wilson are on, because in this case all the fixed points of the same sector are degenerated. A degeneration class \mathcal{C} is composed by a subset of all the conjugacy classes in which every two elements

$$
\begin{equation*}
g_{1}=\left(\theta^{k_{1}},\left(n_{1}\right)_{\alpha} e_{\alpha}\right), g_{2}=\left(\theta^{k_{2}},\left(n_{2}\right)_{\alpha} e_{\alpha}\right), g_{1}, g_{2} \in \mathcal{C} . \tag{I.1}
\end{equation*}
$$

Those are representatives from the conjugacy classes $\left[g_{1}\right]$ and $\left[g_{2}\right]$, satisfy $V_{g_{1}}=V_{g_{2}}$ and have the same orbifold projection conditions. The first requirement reads $k_{1}=k_{2}$ and $\left(n_{1}\right)_{\alpha} A_{\alpha}=\left(n_{2}\right)_{\alpha} A_{\alpha}$. To fulfill the second requirement, we checked if the set of all commuting elements $\left\{h_{1}\right\}$ and $\left\{h_{2}\right\}$ s.t. $\left[g_{1}, h_{1}\right]=0$ and $\left[g_{2}, h_{2}\right]=0$ give the same set of projection conditions.

The orbifold \mathbb{Z}_{7} with Wilson line on has no degenerated conjugacy classes, while the orbifold $\mathbb{Z}_{8 I I}$ posses no element in the group F, due to that we don't list them. The elements of the group F giving 4 d symmetries map conjugacy classes belonging to the same set \mathcal{C}. We analyze every case, specifying which generators survive each Wilson line configuration. For that we use a set of generators $\left\{G_{i}\right\}$ of F s.t. every element $\rho \in F$ can be written as $\rho=\prod_{i} G_{i}^{n_{i}} \mathbb{1}$ where $\mathbb{1}$ denotes the unity, an element of the subgroup D. This selection of generators is not unique, thus we give some representatives. As the tables describing the
fixed sets degeneracies will give a too big extension to the appendices, we just give them for few of the presented examples.

I.0. 1 Factorizable Lattices

Table I.1: Factorizable \mathbb{Z}_{N} orbifolds under our consideration, the lattice, the shift and the number of inequivalent fixed points for each twisted sector are given.

	Lattice	Shift	\# of F.P.		
\mathbb{Z}_{3}	$\mathrm{SU}(3) \otimes \mathrm{SU}(3) \otimes \mathrm{SU}(3)$	$\frac{1}{3}(1,1,-2)$	27	27	
\mathbb{Z}_{4}	$\mathrm{SO}(4) \otimes \mathrm{SO}(4) \otimes \mathrm{SU}(2)^{2}$	$\frac{1}{4}(1,1,-2)$	16	10	
$\mathbb{Z}_{6-\mathrm{I}}$	$G_{2} \otimes G_{2} \otimes \mathrm{SU}(3)$	$\frac{1}{6}(1,1,-2)$	3	15	6
$\mathbb{Z}_{6-\text { II }}$	$G_{2} \otimes \mathrm{SU}(3) \otimes \mathrm{SO}(4)$	$\frac{1}{6}(1,2,-3)$	12	6	8

\mathbb{Z}_{3} on $S U(3) \times S U(3) \times S U(3)$
Group $\mathbf{D} \quad \mathbb{Z}_{3}$ has three prime twists composing the orbifold action. The constraints they impose on the L point couplings are of the form:

$$
\sum_{\alpha=1}^{L} R_{\theta_{i}}^{\alpha}=1 \bmod 3, \quad i=1,2,3
$$

these twists are enough to generate the subgroup D.

Group F The Coxeter element of $S U(3) \times S U(3) \times S U(3)$ gives the identifications $A_{1} \equiv$ $A_{2}, A_{3} \equiv A_{4}, A_{5} \equiv A_{6}$. The order 3 for all the independent Wilson lines is $3 A_{1,3,5} \in \Lambda$. Two constructing elements g_{1}, g_{2} that posses equal V_{g} should satisfy conditions

$$
\begin{align*}
\left(n_{1}+n_{2}\right) & =\left(m_{1}+m_{2}\right) \\
\left(n_{3}+n_{4}\right) & =\left(m_{3}+m_{4}\right) \\
\left(n_{5}+n_{6}\right) & =\left(m_{5}+m_{6}\right) \tag{I.2}
\end{align*}
$$

Then we compute all the projection conditions with elements $[g, h] \neq 0$ to construct the degeneracy classes. Then we check which generators preserve them for every Wilson line configuration.

In terms of the three complex coordinates basis, the three generators of F are given by

$$
G_{1}=\operatorname{diag}(-1,1,1), \quad G_{2}=\operatorname{diag}(1,-1,1), \quad G_{3}=\operatorname{diag}(1,1,-1)
$$

When only the Wilson line A_{5} is turned on, the rotations $\rho=G_{1}^{a_{1}} G_{2}^{a_{2}}$, map inside the fixed point degeneracies, this can be checked in Table I.3. Similarly for the Wilson line A_{1} $\left(A_{3}\right)$ the rotations that map inside the degeneracies are $\rho=G_{2}^{a_{2}} G_{3}^{a_{3}}\left(\rho=G_{1}^{a_{1}} G_{3}^{a_{3}}\right)$. When
the set of turned Wilson lines are the pairs $A_{1} A_{5}, A_{1} A_{3}$ and $A_{3} A_{5}$ the rotations which map conjugacy classes inside the same degeneracy are $G_{2}^{a_{2}}, G_{3}^{a_{3}}$ and $G_{1}^{a_{1}}$ respectively. The powers of the generators are given by $a_{i}=1,2$. The multiplication by an element of D which is $\mathbb{1}$ in F is implicit.
\mathbb{Z}_{4} on $S O(4) \times S O(4) \times S O(4)$
Group $\mathbf{D} \mathbb{Z}_{4}$ contains only one prime twist so that only $\theta_{1} \theta_{2}$ and θ_{3} leave the fixed points invariant. From the side of the automorphism group one can find that the symmetry $\left(\theta_{2}\right)^{2}$ also fulfills this property, such that one has the following selection rules

$$
\begin{equation*}
\sum_{\alpha=1}^{L} R_{\theta_{1} \theta_{2}}^{\alpha}=1 \bmod 2, \quad \sum_{\alpha=1}^{L} R_{\theta_{1}^{2}}^{\alpha}=1 \bmod 2, \quad \sum_{\alpha=1}^{L} R_{\theta_{3}}^{\alpha}=-1 \bmod 2 \tag{I.3}
\end{equation*}
$$

Group F From the Coxeter elements, the conditions for the Wilson lines are

$$
\begin{equation*}
A_{1} \equiv A_{2}, A_{3} \equiv A_{4}, 2 A_{1}, 2 A_{3}, 2 A_{5}, 2 A_{6} \in \Lambda \tag{I.4}
\end{equation*}
$$

Thus, two constructing elements are identified if

$$
\begin{align*}
n_{1}+n_{2} & =m_{1}+m_{2}, \\
n_{3}+n_{4} & =m_{3}+m_{4}, \\
n_{5} & =m_{5}, \\
n_{6} & =m_{6}, \tag{I.5}
\end{align*}
$$

and possess equal projection conditions. The generator of F is $G_{1}=\theta_{1}$. It maps elements of a degeneration to others in the same degeneration in the sector θ^{2}. When only one Wilson line from A_{1}, A_{5}, A_{3} and A_{6} is on, the action of G_{1} preserves the degeneration class. As a sample we give the Table I. 4 for degeneracy classes of A_{1}. The mapped conjugacy classes are degenerated with every Wilson line, so with any combination of Wilson lines the powers of the generator G_{1} multiplying an element of D i.e. $G_{1}^{n_{1}} \mathbb{1}$ will give a symmetry in 4 d .
G_{1} which corresponds to the orbifold twist in the first plane, doesn't leaves the fixed points invariant, and should give rise to the standard R_{1}-charge. In the second plane also $\theta_{2}=\left(1, e^{2 \pi i v_{2}}, 1\right)$ will change conjugacy classes but respecting the degeneration, there the element θ_{2} can be written as $\theta_{2}=G_{1}^{3} \theta_{3} \theta$. Where $\mathbb{1} \sim \theta_{3} \theta$ belonging to D identifies G_{1} with θ_{2}.
$\mathbb{Z}_{6 I}$ on $G_{2} \times G_{2} \times S U(3)$
Group $\mathbf{D} \quad \mathbb{Z}_{6-\mathrm{I}}$ also contains only one twist which is prime, so that only the symmetries described in section 3.4 for this case are present. They will give the $4 \mathrm{~d} R$-symmetries:

$$
\begin{equation*}
\sum_{\alpha=1}^{L} R_{\theta_{1} \theta_{2}}^{\alpha}=1 \bmod 3, \quad \sum_{\alpha=1}^{L} R_{\theta_{3}}^{\alpha}=-1 \bmod 3 \tag{I.6}
\end{equation*}
$$

Group F The conditions for the Wilson lines are

$$
\begin{equation*}
A_{5} \equiv A_{6}, 3 A_{5} \in \Lambda, A_{1}, A_{2}, A_{3}, A_{4} \in \Lambda \tag{I.7}
\end{equation*}
$$

which tells us that two elements with the same V_{g} follow the identification

$$
\begin{equation*}
n_{5}+n_{6}=m_{5}+m_{6} \tag{I.8}
\end{equation*}
$$

The generator $G_{1}=\theta_{1}^{5}$ maps conjugacy classes to other in the same degeneration. There are two other generators in F that only give a 4 d symmetry when non Wilson lines are on, those are $G_{2}=\operatorname{diag}(1,1,-1) \theta_{3}^{2}$ and $G_{3}=\theta_{2} G_{2}$.
$\mathbb{Z}_{6 I I}$ in $G_{2} \times S U(3) \times S O(4)$
Group \mathbf{D} For the $\mathbb{Z}_{6-\text { II }}$ orbifold the presence of two prime twists permits to recover the independent action of all the three twists leading to the symmetries found in 49

$$
\begin{equation*}
\sum_{\alpha=1}^{L}\left(R_{\theta_{1}}^{\alpha}\right)=1 \bmod 6, \quad \sum_{\alpha=1}^{L} R_{\theta_{2}}^{\alpha}=1 \bmod 3, \quad \sum_{\alpha=1}^{L} R_{\theta_{3}}^{\alpha}=1 \bmod 2 \tag{I.9}
\end{equation*}
$$

This corresponds to the only set of independent constraints one can impose from the automorphism group of $G_{2} \otimes S U(3) \otimes S O(4)$.

Group F The independent Wilson lines are $A=A_{3}=A_{4}$ and A_{5}, A_{6}. They fulfill $2 A_{5}, 2 A_{6}, 3 A \in \Lambda$. Then two conjugacy classes will give same spectrum if they have same projection conditions and equal shift, we require

$$
\begin{equation*}
n_{3}+n_{4}=m_{3}+m_{4}, n_{5}=m_{5}, n_{6}=m_{6} \tag{I.10}
\end{equation*}
$$

The generator of F is $G_{1}=\operatorname{diag}(1,-1,1) \theta_{2}^{2}$. When the Wilson line A is on, G_{1} breaks the degeneration. With Wilson lines A_{5} or A_{6} turned on alone, G_{1} maps conjugacy classes in the same degeneration. As example we give the degeneration classes when A_{3}, A_{5} Wilson lines are on in Tables F.8, F.9. Also with the pair $A_{5} A_{6}$ on, G_{1} preserves the degeneracies. When all Wilson lines are on, or the pairs A_{3}, A_{5} or A_{3}, A_{6} then G_{1} breaks the degeneracy.

I.0.2 Non Factorizable Lattices

Contrary to the approach we followed in section I.0.1, we will study some non-factorizable orbifolds (see Table I.2) in a more model dependent fashion ${ }^{11}$ by studying the automorphism group of the given lattice. For not factorizable torus lattices we can still not draw conclusions of the specific 4 d constraints for couplings, nevertheless we present a complete study of the symmetries in the groups D and F.

[^32]Table I.2: Some basic information concerning the non-factorizable \mathbb{Z}_{N} orbifolds we investigated 111.

	Lattice	Shift	\# of F.P.				
\mathbb{Z}_{4}	$\mathrm{SU}(4) \otimes \mathrm{SU}(4)$	$\frac{1}{4}(1,1,-2)$	16	4			
$\mathbb{Z}_{6-\text { II }}$	$\mathrm{SU}(6) \otimes \mathrm{SU}(2)$	$\frac{1}{6}(1,2,-3)$	12	3	4		
\mathbb{Z}_{7}	$\mathrm{SU}(7)$	$\frac{1}{7}(1,2,-3)$	7	7	7	7	
$\mathbb{Z}_{8-\mathrm{I}}$	$\mathrm{SO}(5) \otimes \mathrm{SO}(9)$	$\frac{1}{8}(2,1,-3)$	4	10	4	6	
$\mathbb{Z}_{8-\text { II }}$	$\mathrm{SO}(8) \otimes \mathrm{SO}(4)$	$\frac{1}{8}(1,3,-4)$	8	3	8	6	
$\mathbb{Z}_{12-\mathrm{I}}$	$\mathrm{SU}(3) \otimes F_{4}$	$\frac{1}{12}(4,1,-5)$	3	3	2	9	3
$\mathbb{Z}_{12-\text { II }}$	$F_{4} \otimes \mathrm{SO}(4)$	$\frac{1}{12}(1,5,-6)$	4	1	8	3	4

\mathbb{Z}_{4} on $S U(4) \times S U(4)$
Group D In the case of \mathbb{Z}_{4}, the automorphism group for the lattice of $\operatorname{SU}(4) \otimes \operatorname{SU}(4)$ is generated by considering all inequivalent products of automorphisms each factor with the operator which exchanges them. From this group only 128 elements commute with the orbifold action and only 16 preserve the structure of the conjugacy classes. Any element of the former group can be written as a product of the point group elements with powers of $\left(\theta_{1}\right)^{2}$.

Group F The relation between Wilson lines is

$$
\begin{align*}
& A_{3} \equiv-A_{2}, A_{1} \equiv-2 A_{2}, 2 A_{1}, 4 A_{2}, 4 A_{3} \in \Lambda \\
& A_{6} \equiv-A_{5}, A_{4} \equiv-2 A_{5}, 2 A_{4}, 4 A_{4}, 4 A_{5} \in \Lambda \tag{I.11}
\end{align*}
$$

which fixing the equivalences without lattice vectors differences translates into

$$
\begin{align*}
-2 n_{1}+n_{2}-n_{3} & =-2 m_{1}+m_{2}-m_{3} \\
-2 n_{4}+n_{5}-n_{6} & =-2 m_{4}+m_{5}-m_{6} . \tag{I.12}
\end{align*}
$$

Lets decompose the action of θ by $\theta=\theta_{I} \theta_{I I}$ where the two factors represent the rotations on the first three coordinates and in the last three. Lets denote a diagonal matrix in two blocks of 3×3 by diag (a, b). Then, the generators of the group F can be written as

$$
G_{1}=\operatorname{diag}(-1,1) \theta_{I}^{2}, \quad G_{2}=\operatorname{diag}(1,-1) \theta_{I I}^{2}
$$

When Wilson line A_{5} is on, G_{1} preserves the fixed point degeneracies. When only Wilson line A_{2} is on, G_{2} preserves the fixed points degeneracies. We give here as example of the A_{5} degeneracies the Table I.6. When both independent Wilson lines are on here are not degenerated classes. As before we can construct symmetries with powers of the generators multiplied by $\mathbb{1}$.
$\mathbb{Z}_{6 I I}$ in $S U(6) \times S U(2)$
Group D As found in 107 the automorphism group of $S U(6) \otimes S U(2)$ does not give rise to any R-symmetry for the non-factorizable $\mathbb{Z}_{6 \text {-II }}$. This is also the case of \mathbb{Z}_{7} where only 14 elements were found to commute with the point group, among those, the only transformations leaving the fixed points untouched were found to belong to the point group.

Group \mathbf{F} There are two independent Wilson lines $A=A_{1} \equiv A_{2} \equiv A_{3} \equiv A_{4} \equiv A_{5}$ and A_{6}, of order 6 and 2 respectively. Then two conjugacy classes will have equal shift V_{g} if they fulfill

$$
\begin{equation*}
\sum_{i=1}^{5} n_{i}=\sum_{i=1}^{5} m_{i}, n_{6}=m_{6} \tag{I.13}
\end{equation*}
$$

The generators are $G_{1}=\operatorname{diag}(-1,1) \theta$, where $\operatorname{diag}(-1,1)$ represents a π rotation in all the first five planes. When both Wilson lines are on there is no degeneracy. When only the Wilson line A is on, G_{1} breaks the degeneracy. When Wilson line A_{6} is on, G_{1} maps conjugacy classes inside the same degeneracy.
$\mathbb{Z}_{8 I}$ in $S O(5) \times S O(9)$.
Group \mathbf{D} For the $\mathbb{Z}_{8-\mathrm{I}}$ orbifold one finds that there is only one generator θ_{1}^{2}.

Group F The relations between Wilson lines are

$$
A_{1}, 2 A_{2}, 2 A_{6} \in \Lambda, A_{3} \equiv A_{4} \equiv A_{5} \in \Lambda
$$

Two conjugacy class elements are identified if $n_{2}=m_{2}, n_{6}=m_{6}$ and have same projection conditions. The orbifold action can be written in terms of the action in the two factorizable pieces $I S O(5)$ and $I I S O(9)$ as $\theta=\theta_{I} \theta_{I I}$, then the generator of the group F is $G_{1}=\theta_{I}$. With only one Wilson line A_{2} or A_{6} is on, G_{1} maps two conjugacy classes in the same degeneracy. With both A_{2} and $A_{6} G_{1}$ still maps between conjugacy classes in the same degeneration I.7.
$\mathbb{Z}_{8 I I}$ in $S O(4) \times S O(8)$.

In this case the twist θ_{3} leaves the fixed points invariant, but the group F is empty.
\mathbb{Z}_{7} in $S U(7)$.
The group D is empty, and in the group F we find as generator $G_{1}=-\theta^{2}$. Which is $-\theta^{2}$, equivalent to the minus the identity matrix. However, when the single independent Wilson line is on there are no degeneracy classes, so no surviving 4d symmetry.
$\mathbb{Z}_{12 I}$ in $S U(3) \times F_{4}$
Group D The only symmetry in this group is given by θ_{1}.

Group F The relations between Wilson lines are

$$
A_{1} \equiv A_{2}, 3 A_{1} \in \Lambda, A_{3} \equiv A_{4} \in \Lambda, A_{5} \equiv A_{6} \in \Lambda
$$

Then two conjugacy class elements are identified if $\left(n_{1}+n_{2}\right)=\left(m_{1}+m_{2}\right)$. The generator is $G_{1}=\operatorname{diag}(-1,1) \theta_{I}^{2}$. When the Wilson line A_{1} is on G_{1} transformation breaks the degeneration. For example: it maps the fixed point of $\theta^{4}\left\{\frac{1}{3}, \frac{2}{3}, 0,0,0,0\right\}$ to $\left\{\frac{2}{3}, \frac{1}{3}, 0,0,0,0\right\}$ which conjugacy classes have $\left(n_{1}+n_{2}\right)=2$ and $\left(n_{1}+n_{2}\right)=1$ respectively. So there is no 4 d symmetry surviving when the Wilson line is on.
$\mathbb{Z}_{12 I I}$ in $F_{4} \times S O(4)$
Group \mathbf{D} In $\mathbb{Z}_{12 \text {-II }}$ the only symmetry belonging to D is given by θ_{3}. This is due to the \mathbb{Z}_{2} symmetry of the sublattice in the third complex plane.

Group F The Wilson lines are related by

$$
A_{1} \equiv A_{2} \in \Lambda, A_{3} \equiv A_{4} \in \Lambda, 2 A_{5} \in \Lambda, 2 A_{6} \in \Lambda
$$

Two conjugacy classes are degenerated if

$$
\begin{gathered}
n_{5}=m_{5}, n_{6}=m_{6} . \\
G_{1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

When only A_{5} or A_{6} is on, G_{1} doesn't respects the degeneration of the conjugacy classes. For example: it maps the fixed point in the θ^{3} sector $\left\{0,0,0,0, \frac{1}{2}, 0\right\}$ to $\left\{0,0,0,0,0, \frac{1}{2}\right\}$ which have $n_{5}=1, n_{6}=0$ and $n_{5}=0, n_{6}=1$ respectively.

Table I.3: Z_{3} on $S U(3) \times S U(3) \times S U(3)$ with Wilson line A_{5} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 1\}$	V
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 1\}$	V
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{0,0,1,0,0,0\}, 1\}$	V
$\left\{\frac{1}{3}, \frac{2}{3}, 0,0,0,0\right\}$	$\{\{1,1,0,0,0,0\}, 1\}$	V
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{1,1,1,1,0,0\}, 1\}$	V
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{1,1,1,0,0,0\}, 1\}$	V
$\left\{\frac{2}{3}, \frac{1}{3}, 0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 1\}$	V
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0,0\right\}$	$\{\{1,0,1,1,0,0\}, 1\}$	V
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, 0,0\right\}$	$\{\{1,0,1,0,0,0\}, 1\}$	V
$\left\{0,0,0,0, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{0,0,0,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{0,0,1,1,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{0,0,1,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, 0,0, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,1,0,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,1,1,1,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,1,1,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, 0,0, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,0,0,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,0,1,1,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\{1,0,1,0,1,1\}, 1\}$	$2 A_{5}+V$
$\left\{0,0,0,0, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{0,0,0,0,1,0\}, 1\}$	$A_{5}+V$
$\left\{0,0, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{0,0,1,1,1,0\}, 1\}$	$A_{5}+V$
$\left\{0,0, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{0,0,1,0,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, 0,0, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,1,0,0,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,1,1,1,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,1,1,0,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, 0,0, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,0,0,0,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,0,1,1,1,0\}, 1\}$	$A_{5}+V$
$\left\{\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right\}$	$\{\{1,0,1,0,1,0\}, 1\}$	$A_{5}+V$

Table I.4: Z_{4} on $S O(4) \times S O(4) \times S O(4)$ with Wilson line A_{1} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 1\}$	$V, 2 V$
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 1\}$	$V, 2 V$
$\left\{0,0,0,0, \frac{1}{2}, 0\right\}$	$\{\{0,0,0,0,1,0\}, 1\}$	$V, 2 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,0,1,1\}, 1\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{0,0,1,0,0,0\}, 1\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}\right\}$	$\{\{0,0,1,0,0,1\}, 1\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,0,1,0\}, 1\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,0,1,1\}, 1\}$	$V, 2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, 0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, 0,0,0, \frac{1}{2}\right\}$	$\{\{1,0,0,0,0,1\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, 0,0, \frac{1}{2}, 0\right\}$	$\{\{1,0,0,0,1,0\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,0,0,0,1,1\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{1,0,1,0,0,0\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}\right\}$	$\{\{1,0,1,0,0,1\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right\}$	$\{\{1,0,1,0,1,0\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{1,0,1,0,1,1\}, 1\}$	$A_{1}+V, 2 A_{1}+2 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 2\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2}, 0,0,0\right\}$	$\{\{0,0,1,0,0,0\}, 2\}$	$V, 2 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 2\}$	$V, 2 V$
$\left\{\frac{1}{2}, 0,0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 2\}$	$A_{1}+2 V$
$\left\{\frac{1}{2}, 0, \frac{1}{2}, 0,0,0\right\}$	$\{\{1,0,1,0,0,0\}, 2\}$	$A_{1}+2 V$
$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{1,0,1,1,0,0\}, 2\}$	$A_{1}+2 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right\}$	$\{\{0,1,1,0,0,0\}, 2\}$	$A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, 0,0,0,0\right\}$	$\{\{1,1,0,0,0,0\}, 2\}$	$A_{1}+V, 2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0\right\}$	$\{\{1,1,1,0,0,0\}, 2\}$	$2 A_{1}+2 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{1,1,1,1,0,0\}, 2\}$	$A_{1}+V, 2 A_{1}+2 V$

Table I.5: Z_{4} on $S O(4) \times S O(4) \times S O(4)$ with all Wilson lines $A_{1}, A_{3}, A_{5}, A_{6}$ on.

fixed point	conjugacy class	projector V_{h}
$\left\{\frac{1}{2}, 0, \frac{1}{2}, 0,0,0\right\}$	$\{\{1,0,1,0,0,0\}, 2\}$	$A_{5} m_{5}+A_{6} m_{6}, A_{1}+A_{3}+A_{5} m_{5}+A_{6} m_{6}+2 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right\}$	$\{\{0,1,1,0,0,0\}, 2\}$	$A_{5} m_{5}+A_{6} m_{6}, A_{1}+A_{3}+A_{5} m_{5}+A_{6} m_{6}+2 V$

Table I.6: Z_{4} on $S U(4) \times S U(4)$ with Wilson line A_{5} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 1\}$	$V, 2 V$
$\left\{\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, 0,0,0\right\}$	$\{\{0,1,0,0,0,0\}, 1\}$	$V, 2 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, 0,0,0\right\}$	$\{\{-1,0,0,0,0,0\}, 1\}$	$V, 2 V$
$\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, 0,0,0\right\}$	$\{\{0,0,1,0,0,0\}, 1\}$	$V, 2 V$
$\left\{0,0,0, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}\right\}$	$\{\{0,0,0,0,1,0\}, 1\}$	$A_{5}+V, 2 A_{5}+2 V$
$\left\{\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}\right\}$	$\{\{0,1,0,0,1,0\}, 1\}$	$A_{5}+V, 2 A_{5}+2 V$
$\left\{0, \frac{1}{2} \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}\right\}$	$\{\{-1,0,0,0,1,0\}, 1\}$	$A_{5}+V, 2 A_{5}+2 V$
$\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}$	$\{\{0,0,1,0,1,0\}, 1\}$	$A_{5}+V, 2 A_{5}+2 V$
$\left\{0,0,0,0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,0,-1,0,0\}, 1\}$	$2 V,-2 A_{5}+V$
$\left\{\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, 0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,1,0,-1,0,0\}, 1\}$	$2 V,-2 A_{5}+V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{-1,0,0,-1,0,0\}, 1\}$	$2 V,-2 A_{5}+V$
$\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, 0, \frac{1}{2}, \frac{1}{2}\right\}$	$\{\{0,0,1,-1,0,0\}, 1\}$	$2 V,-2 A_{5}+V$
$\left\{0,0,0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$	$\{\{0,0,0,0,0,1\}, 1\}$	$-A_{5}+V, 2 A_{5}+2 V$
$\left\{\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$	$\{\{0,1,0,0,0,1\}, 1\}$	$-A_{5}+V, 2 A_{5}+2 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$	$\{\{-1,0,0,0,0,1\}, 1\}$	$-A_{5}+V, 2 A_{5}+2 V$
$\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$	$\{\{0,0,1,0,0,1\}, 1\}$	$-A_{5}+V, 2 A_{5}+2 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 2\}$	$2 A_{5} m_{5}, 2 A_{5} m_{5}+V, 2 A_{5} m_{5}+2 V$
$\left\{\frac{1}{2}, 0,0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 2\}$	$2 A_{5} m_{5}, 2 A_{5} m_{5}+V, 2 A_{5} m_{5}+2 V$
$\left\{0,0,0, \frac{1}{2}, 0,0\right\}$	$\{\{0,0,0,1,0,0\}, 2\}$	$2 A_{5} m_{5}, A_{5}\left(1+2 m_{5}\right)+V, A_{5}\left(2+2 m_{5}\right)+2 V$
$\left\{\frac{1}{2}, 0,0, \frac{1}{2}, 0,0\right\}$	$\{\{1,0,0,1,0,0\}, 2\}$	$2 A_{5} m_{5}, A_{5}\left(1+2 m_{5}\right)+V, A_{5}\left(2+2 m_{5}\right)+2 V$

Table I.7: $Z_{8 I}$ on $S O(5) \times S O(9)$ with Wilson lines A_{2} and A_{6} on.

fixed point	conjugacy class	projector V_{h}
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 2\}$	$V, 2 V, 3 V, 4 V, 5 V, 6 V, 7 V$
$\left\{\frac{1}{2}, 0,0,0,0,0\right\}$	$\{\{1,0,0,0,0,0\}, 2\}$	$2 V, 4 V, 6 V,-A_{2}+V, A_{2}+3 V,-A_{2}+5 V, A_{2}+7 V$
$\left\{0,0, \frac{1}{2}, 0, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,0,0,0\}, 2\}$	$2 V, 4 V, 6 V,-A_{6}+V,-A_{6}+3 V, A_{6}+5 V, A_{6}+7 V$
$\left\{\frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0\right\}$	$\{\{1,0,1,0,0,0\}, 2\}$	$2 k V, k=1, \ldots, 3,-A_{2}-A_{6}+V, A_{2}-A_{6}+3 V$,
		$-A_{2}+A_{6}+5 V, A_{2}+A_{6}+7 V$
$\left\{0, \frac{1}{2}, 0,0,0,0\right\}$	$\{\{0,1,0,0,0,0\}, 2\}$	$4 V, A_{2}+2 V, A_{2}+6 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, 0\right\}$	$\{\{0,1,1,0,0,0\}, 2\}$	$4 V, A_{2}+2 V, A_{2}+6 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{0,0,0,0,-1,-1\}, 2\}$	$4 V,-A_{6}+2 V, A_{6}+6 V$
$\left\{\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{1,0,0,0,-1,-1\}, 2\}$	$4 V,-A_{6}+2 V, A_{6}+6 V$
$\left\{0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{0,1,0,0,-1,-1\}, 2\}$	$4 V, A_{2}-A_{6}+2 V, A_{2}+A_{6}+6 V$
$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{1,1,0,0,-1,-1\}, 2\}$	$4 V, A_{2}-A_{6}+2 V, A_{2}+A_{6}+6 V$
$\{0,0,0,0,0,0\}$	$\{\{0,0,0,0,0,0\}, 4\}$	$A_{2} m_{2}+k V, k=0, \ldots, 7$
$\left\{0,0, \frac{1}{2}, 0,0,0\right\}$	$\{\{0,0,1,0,0,0\}, 4\}$	$A_{2} m_{2}, A_{2} m_{2}+4 V$
$\left\{0,0, \frac{1}{2}, \frac{1}{2}, 0,0\right\}$	$\{\{0,0,1,1,0,0\}, 4\}$	$A_{2} m_{2},-A_{6}+A_{2} m_{2}+2 V, A_{2} m_{2}+4 V, A_{6}+A_{2} m_{2}+6 V$
$\left\{0,0, \frac{1}{2}, 0, \frac{1}{2}, 0\right\}$	$\{\{0,0,1,0,1,0\}, 4\}$	$A_{2} m_{2},-A_{6}+A_{2} m_{2}+V, A_{2} m_{2}+2 V,-A_{6}+A_{2} m_{2}+3 V$,
		$A_{2} m_{2}+4 V, A_{6}+A_{2} m_{2}+5 V, A_{2} m_{2}+6 V, A_{6}+A_{2} m_{2}+7 V$
$\left\{0,0,0,0,0, \frac{1}{2}\right\}$	$\{\{0,0,0,0,0,1\}, 4\}$	$A_{2} m_{2}, A_{6}+A_{2} m_{2}+4 V$
$\left\{0,0, \frac{1}{2}, 0,0, \frac{1}{2}\right\}$	$\{\{0,0,1,0,0,1\}, 4\}$	$A_{2} m_{2}, A_{6}+A_{2} m_{2}+4 V$

Appendix J

Blow-up spectrum

Table J.1: Here we give all the blow-up states representations, together with one of its roots.

Φ^{I}			
1	$(1,1)$	-4	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
2	$(1,1)$	-4	$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
3	$(1,1)$	-4	$(-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
4	$(3,1)$	-3	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
5	$(1,1)$	-2	$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
6	$(1,1)$	-2	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
7	$(3,1)$	-2	$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
8	$(\overline{3}, 1)$	-2	$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
9	$(1,1)$	-2	$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
10	$(1,2)$	-2	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},, 0,0,0,0,0,0,0,0\right)$
11	$(\overline{3}, 2)$	-2	$(0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)$
12	$(3,1)$	-2	$(0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0)$
13	$(1,1)$	-2	$(-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)$
14	$(1,1)$	-2	$(0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0)$
15	$(1,1)$	-2	$(-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0)$
16	$(1,2)$	-2	$(-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)$
17	$(1,2)$	-2	$(0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0)$
18	$(1,1)$	-2	$(0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0)$
19	$(1,2)$	-1	$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
20	$(\overline{3}, 2)$	-1	$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
21	$(1,2)$	-1	$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$

22	$(1,1)$	-1	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
23	$(1,2)$	-1	$(1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)$
24	$(1,1)$	-1	$(-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
25	$(3,1)$	-1	$(0,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0)$
$\Phi^{I I}$			
2	$\overline{6}$	-1	$\left(0,0,0,0,0,0,0,0,-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$
3	1	-2	$\left(0,0,0,0,0,0,0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$
4	6	-1	$\left(0,0,0,0,0,0,0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$
7	1	-2	$\left(0,0,0,0,0,0,0,0,-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$
9	$\overline{6}$	-1	$(0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0)$
13	6	-2	$(0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0)$
14	$\overline{6}$	-2	$(0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0)$
18	1	-4	$(0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0)$
19	6	-1	$(0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0)$
20	1	-4	$(0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0)$
$\Phi^{I I I}$			
1	$(1,1)$	0	$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
13	$(3,2)$	0	$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
16	$(3,1)$	0	$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, 0,0,0,0,0,0,0,0\right)$
24	$(1,1)$	0	$(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)$
29	$(1,2)$	0	$(0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)$
32	$(\overline{3}, 1)$	0	$(0,-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0)$

Appendix K

Field redefinitions for $T^{6} / \mathbb{Z}_{6 I I}$

Here we present a sample of the field redefinitions found which perform the presented map from orbifold to blow-up states. The first column of the table denotes the orbifold field to be redefined ψ_{γ}, the second column represents its fixed point and in the third column one can read off the redefinition.

Field	fixed point	redefinition
ψ_{61}	$(1,1,1)$	$V_{1,3,1}-V_{2,1,2}$
ψ_{60}	$(1,1,1)$	$-V_{1,1,1}$
ψ_{62}	$(1,1,1)$	$V_{1,3,1}-V_{2,1,2}$
ψ_{58}	$(1,1,1)$	$-V_{1,1,1}$
ψ_{68}	$(1,1,1)$	$-V_{1,1,1}+V_{2,3,3}+V_{4,1,3}$
ψ_{67}	$(1,1,1)$	$-V_{1,2,1}+V_{4,1,1}-V_{4,3,3}$
ψ_{59}	$(1,1,1)$	$2 V_{1,2,2}-V_{1,2,3}+V_{4,1,3}$
ψ_{65}	$(1,1,1)$	$-V_{1,1,1}$
ψ_{64}	$(1,1,1)$	$-V_{1,1,1}$
ψ_{66}	$(1,1,1)$	$-V_{1,1,1}$
ψ_{63}	$(1,1,1)$	$-V_{1,1,1}-V_{2,3,3}-V_{4,1,3}$
ψ_{42}	$(1,1,2)$	$V_{1,1,2}+V_{2,1,3}-V_{4,3,2}$
ψ_{43}	$(1,1,2)$	$V_{1,2,2}+V_{4,1,3}$
ψ_{49}	$(1,1,3)$	$V_{1,3,3}-V_{2,1,2}$
ψ_{48}	$(1,1,3)$	$-V_{1,1,3}$
ψ_{50}	$(1,1,3)$	$V_{1,3,3}-V_{2,1,2}$
ψ_{46}	$(1,1,3)$	$-V_{1,1,3}$
ψ_{56}	$(1,1,3)$	$-V_{1,1,3}+V_{2,3,3}+V_{4,1,3}$
ψ_{53}	$(1,1,3)$	$-V_{1,2,3}+V_{4,1,1}-V_{4,3,3}$
ψ_{47}	$(1,1,3)$	$2 V_{1,2,2}-V_{1,2,3}+V_{4,1,3}$
ψ_{55}	$(1,1,3)$	$-V_{1,1,3}$
ψ_{52}	$(1,1,3)$	$-V_{1,1,3}$
ψ_{54}	$(1,1,3)$	$-V_{1,1,3}$
ψ_{51}	$(1,1,3)$	$-V_{1,1,3-V_{2,3,3}-V_{4,1,3}}^{\psi_{39}}$
ψ_{40}	$(1,1,4)$	$V_{1,1,4}+V_{2,1,3}-V_{4,3,2}$
ψ_{86}	$(1,1,4)$	$V_{1,2,4+V_{4,1,3}}$
ψ_{87}	$(1,2,1)$	$-V_{1,2,1}$
	$V_{1,1,1+V_{4,1,3}}$	

ψ_{76}	$(1,2,2)$	$-V_{1,2,1}-V_{1,3,1}+V_{1,3,2}$
ψ_{79}	$(1,2,2)$	$-V_{1,1,1}+V_{1,2,1}-V_{1,3,2}$
ψ_{80}	$(1,2,2)$	$-V_{1,3,2}+V_{2,1,3}+V_{4,1,1}$
ψ_{78}	$(1,2,2)$	$-V_{1,1,2}-V_{2,1,3}-V_{4,1,1}$
ψ_{82}	$(1,2,2)$	$V_{1,2,2}+V_{4,3,2}$
ψ_{81}	$(1,2,2)$	$-V_{1,1,1}+V_{1,2,1}-V_{1,3,2}$
ψ_{83}	$(1,2,3)$	$-V_{1,2,3}$
ψ_{84}	$(1,2,3)$	$V_{1,1,3}+V_{4,1,3}$
ψ_{69}	$(1,2,4)$	$-V_{1,2,1}-V_{1,3,1}+V_{1,3,4}$
ψ_{72}	$(1,2,4)$	$-V_{1,1,1}+V_{1,2,1}-V_{1,3,4}$
ψ_{73}	$(1,2,4)$	$-V_{1,2,1}+V_{3,1,4}-V_{3,2,1}$
ψ_{71}	$(1,2,4)$	$-V_{1,1,4}-V_{2,1,2}+V_{2,3,3}$
ψ_{74}	$(1,2,4)$	$V_{1,2,4}-V_{2,1,2}$
ψ_{75}	$(1,2,4)$	$-V_{1,1,1}+V_{1,2,1}-V_{1,3,4}$
ψ_{36}	$(1,3,1)$	$-V_{1,3,2}+V_{3,1,2}-V_{3,2,1}$
ψ_{37}	$(1,3,1)$	$V_{1,3,1}+V_{4,1,3}$
ψ_{38}	$(1,3,1)$	$-V_{1,3,1}$
ψ_{33}	$(1,3,1)$	$V_{1,3,1}+V_{4,1,3}$
ψ_{35}	$(1,3,1)$	$V_{1,3,1}-V_{2,3,3}$
ψ_{24}	$(1,3,2)$	$V_{3,1,2}-V_{2,3,3}+V_{4,3,3}$
ψ_{23}	$(1,3,2)$	$V_{1,3,2}-V_{2,1,3}$
ψ_{20}	$(1,3,2)$	$-V_{1,3,2}$
ψ_{26}	$(1,3,2)$	$V_{1,2,2}-V_{1,2,3}-V_{1,3,3}$
ψ_{25}	$(1,3,2)$	- $V_{1,3,2}$
ψ_{21}	$(1,3,2)$	$-V_{1,2,2}-V_{2,3,2}-V_{4,1,3}$
ψ_{31}	$(1,3,3)$	$V_{1,3,3}+V_{4,1,3}$
ψ_{32}	$(1,3,3)$	$-V_{1,3,3}$
ψ_{27}	$(1,3,3)$	$V_{1,3,3}+V_{4,1,3}$
ψ_{29}	$(1,3,3)$	$V_{1,3,3}-V_{2,3,3}$
ψ_{30}	$(1,3,3)$	$-V_{1,3,4}+V_{3,1,3}+V_{3,1,4}$
ψ_{17}	$(1,3,4)$	$-V_{1,2,1}+V_{1,2,4}-V_{1,3,1}$
ψ_{16}	$(1,3,4)$	$-V_{1,3,4}$
ψ_{13}	$(1,3,4)$	$V_{1,3,4}-V_{2,1,3}$
ψ_{19}	$(1,3,4)$	$-V_{1,2,1}+V_{1,2,4}-V_{1,3,1}$
ψ_{18}	$(1,3,4)$	$-V_{1,3,4}$
ψ_{14}	$(1,3,4)$	$-V_{1,2,4}-V_{2,3,2}-V_{4,1,3}$
ψ_{114}	$(2,1,1)$	$-V_{1,2,2}+V_{3,1,2}-V_{4,1,3}$
ψ_{111}	$(2,1,2)$	$-V_{2,3,2}$
ψ_{112}	$(2,1,2)$	$V_{1,2,2}-V_{3,1,2}$
ψ_{113}	$(2,1,2)$	$-V_{2,1,2}$
ψ_{117}	$(2,1,3)$	$V_{1,3,3}-V_{3,1,3}$
ψ_{116}	$(2,1,3)$	$V_{1,3,2}-V_{3,1,2}$
ψ_{119}	$(2,1,3)$	$-V_{2,1,3}$
ψ_{102}	$(2,3,1)$	$V_{4,3,1}$
ψ_{100}	$(2,3,1)$	$-V_{2,3,1}$
ψ_{99}	$(2,3,1)$	$-V_{2,1,1}$
ψ_{101}	$(2,3,1)$	$-V_{1,3,2}-V_{3,1,2}-V_{4,3,2}$
ψ_{98}	$(2,3,1)$	$-2 V_{1,3,4}-V_{2,3,2}-V_{4,3,1}$
ψ_{89}	$(2,3,2)$	$-V_{2,3,2}$
ψ_{93}	$(2,3,2)$	$V_{1,1,2}+V_{1,2,2}+V_{2,3,1}$
ψ_{94}	$(2,3,2)$	$-V_{1,1,1}+V_{2,3,3}+V_{3,1,1}$
ψ_{92}	$(2,3,2)$	$V_{1,2,2}-V_{3,1,2}$

ψ_{91}	$(2,3,2)$	$-2 V_{1,3,1}-V_{2,3,2}-V_{4,1,3}$
ψ_{96}	$(2,3,2)$	$2 V_{1,2,1}-V_{2,1,3}+V_{4,3,1}$
ψ_{95}	$(2,3,2)$	$2 V_{1,2,1}-V_{2,1,3}+V_{4,3,1}$
ψ_{106}	$(2,3,3)$	$V_{1,3,1}+V_{3,2,1}$
ψ_{108}	$(2,3,3)$	$-V_{2,3,3}$
ψ_{105}	$(2,3,3)$	$V_{1,3,2}-V_{3,1,2}$
ψ_{110}	$(2,3,3)$	$V_{4,3,3}$
ψ_{109}	$(2,3,3)$	$V_{4,3,3}$
ψ_{104}	$(2,3,3)$	$-2 V_{1,2,1}-V_{2,1,1}-V_{4,3,3}$
ψ_{107}	$(2,3,3)$	$-V_{1,3,1}+V_{2,3,3}-V_{3,2,1}$
ψ_{182}	$(4,1,1)$	$-V_{2,1,1}+V_{2,1,2}+V_{2,1,3}$
ψ_{185}	$(4,1,1)$	$V_{1,1,1}-V_{1,2,1}+V_{2,1,3}$
ψ_{184}	$(4,1,1)$	$-V_{1,1,2}-V_{1,3,2}+V_{4,1,3}$
ψ_{189}	$(4,1,2)$	$-V_{4,1,2}$
ψ_{188}	$(4,1,2)$	$V_{1,3,2}-V_{2,1,1}-V_{3,1,2}$
ψ_{190}	$(4,1,2)$	$-V_{4,1,2}$
ψ_{178}	$(4,1,3)$	$-V_{4,1,3}$
ψ_{181}	$(4,1,3)$	$2 V_{1,1,2}+2 V_{1,2,2}-V_{2,1,3}$
ψ_{180}	$(4,1,3)$	$-V_{4,1,3}$
ψ_{164}	$(4,3,1)$	$-V_{4,3,1}$
ψ_{169}	$(4,3,1)$	$V_{1,1,1}-V_{1,3,3}-V_{4,3,2}$
ψ_{166}	$(4,3,1)$	$V_{2,3,1}$
ψ_{167}	$(4,3,1)$	$V_{1,3,1}-V_{3,2,3}+V_{4,3,2}$
ψ_{168}	$(4,3,1)$	$-V_{1,1,4}-V_{1,2,2}+V_{4,3,2}$
ψ_{175}	$(4,3,2)$	$V_{2,3,2}$
ψ_{173}	$(4,3,2)$	$-V_{1,1,2}-V_{1,2,4}-V_{2,3,1}$
ψ_{174}	$(4,3,2)$	$V_{1,1,2}+V_{1,3,2}$
ψ_{172}	$(4,3,2)$	$V_{1,3,2}-V_{2,1,1}-V_{3,1,2}$
ψ_{176}	$(4,3,2)$	$-V_{2,3,1}+V_{4,1,3}$
ψ_{171}	$(4,3,2)$	$V_{2,3,3}-V_{4,1,2}+V_{4,1,3}$
ψ_{177}	$(4,3,2)$	$V_{2,3,2}$
ψ_{157}	$(4,3,3)$	$-V_{4,1,2}+V_{4,1,3}-V_{4,3,1}$
ψ_{158}	$(4,3,3)$	$-V_{4,1,3}$
ψ_{161}	$(4,3,3)$	$V_{1,3,1}-V_{3,1,1}+V_{4,1,3}$
ψ_{162}	$(4,3,3)$	$-V_{4,1,3}$
ψ_{156}	$(4,3,3)$	$-V_{1,1,1}+V_{1,3,1}+V_{2,3,2}$
ψ_{160}	$(4,3,3)$	$-V_{4,1,3}$
ψ_{163}	$(4,3,3)$	$V_{1,3,1}-V_{2,3,3}-V_{3,1,1}$
ψ_{151}	$(3,1,2)$	$V_{1,3,2}-V_{4,1,3}$
ψ_{152}	$(3,1,2)$	$V_{3,1,2}$
ψ_{148}	$(3,1,4)$	$-V_{1,3,4}+V_{2,1,3}-V_{4,1,3}$
ψ_{149}	$(3,1,4)$	$V_{3,1,4}$
ψ_{143}	$(3,2,1)$	$-V_{3,2,1}$
ψ_{142}	$(3,2,1)$	$V_{3,2,1}$
ψ_{145}	$(3,2,1)$	$-V_{3,2,1}$
ψ_{144}	$(3,2,1)$	$-V_{1,3,1}-V_{2,1,3}$
ψ_{146}	$(3,2,1)$	$-V_{1,3,1}+V_{2,3,3}-V_{4,1,3}$
ψ_{132}	$(3,2,2)$	$-V_{1,1,2}-V_{2,3,1}$
ψ_{133}	$(3,2,2)$	$V_{3,2,2}$
ψ_{135}	$(3,2,2)$	$-V_{1,2,2}-V_{2,3,2}$
ψ_{133}	$(3,2,2)$	$V_{3,2,2}$
ψ_{129}	$(3,2,2)$	$-V_{3,2,2}$

ψ_{131}	$(3,2,2)$	$V_{1,2,2}+V_{2,3,2}$
ψ_{128}	$(3,2,2)$	$V_{1,1,2}+V_{1,2,1}+V_{1,3,1}$
ψ_{130}	$(3,2,2)$	$V_{1,1,2}+V_{2,3,1}$
ψ_{137}	$(3,2,3)$	$-V_{3,2,3}$
ψ_{136}	$(3,2,3)$	$V_{3,2,3}$
ψ_{138}	$(3,2,3)$	$-V_{1,1,2}-V_{1,2,3}-V_{1,3,2}$
ψ_{139}	$(3,2,3)$	$-V_{3,2,3}$
ψ_{140}	$(3,2,3)$	$-V_{1,3,3}+V_{2,3,3}-V_{4,1,3}$
ψ_{124}	$(3,2,4)$	$-V_{1,3,4}+V_{2,1,3}-V_{4,1,3}$
ψ_{127}	$(3,2,4)$	$-V_{1,2,4}-V_{2,3,2}$
ψ_{121}	$(3,2,4)$	$-V_{3,2,4}$
ψ_{120}	$(3,2,4)$	$-V_{2,3,3}+V_{3,2,4}-V_{4,1,3}$
ψ_{122}	$(3,2,4)$	$V_{1,1,4}+V_{2,3,1}$
ψ_{123}	$(3,2,4)$	$V_{1,2,4}-V_{2,1,2}+V_{4,1,2}$
ψ_{125}	$(3,2,4)$	$V_{3,2,4}$

Bibliography

[1] ATLAS Collaboration Collaboration, G. Aad et al., "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," Phys.Lett. B716 (2012) 1-29, arXiv:1207.7214 [hep-ex].
[2] H. Georgi, H. R. Quinn, and S. Weinberg, "Hierarchy of Interactions in Unified Gauge Theories," Phys.Rev.Lett. 33 (1974) 451-454.
[3] J. C. Pati and A. Salam, "Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions," Phys.Rev. D8 (1973) 1240-1251.
[4] H. Georgi and S. L. Glashow, "Unity of All Elementary Particle Forces," Phys. Rev. Lett. 32 (1974) 438-441.
[5] P. Ramond, "Dual Theory for Free Fermions," Phys.Rev. D3 (1971) 2415-2418.
[6] Y. Golfand and E. Likhtman, "Extension of the Algebra of Poincare Group Generators and Violation of p Invariance," JETP Lett. 13 (1971) 323-326.
[7] D. Volkov and V. Akulov, "Is the Neutrino a Goldstone Particle?," Phys.Lett. B46 (1973) 109-110.
[8] J. Wess and B. Zumino, "Supergauge Transformations in Four-Dimensions," Nucl.Phys. B70 (1974) 39-50.
[9] H. P. Nilles, "Supersymmetry, Supergravity and Particle Physics," Phys. Rept. 110 (1984) 1-162.
[10] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press, 1992.
[11] N. Seiberg, "Naturalness versus supersymmetric nonrenormalization theorems," Phys.Lett. B318 (1993) 469-475, arXiv:hep-ph/9309335 [hep-ph].
[12] Supernova Search Team Collaboration, A. G. Riess et al., "Observational evidence from supernovae for an accelerating universe and a cosmological constant," Astron.J. 116 (1998) 1009-1038, arXiv:9805201 [astro-ph].
[13] S. Weinberg, "Anthropic Bound on the Cosmological Constant," Phys.Rev.Lett. 59 (1987) 2607.
[14] C. Baker, D. Doyle, P. Geltenbort, K. Green, M. van der Grinten, et al., "An Improved experimental limit on the electric dipole moment of the neutron," Phys.Rev.Lett. 97 (2006) 131801, arXiv:hep-ex/0602020 [hep-ex].
[15] G. Raffelt and L.J.Rosenberg, "Axions and other similar particles," tech. rep., Particle Data Group, 2012.
[16] S. Weinberg, "Implications of Dynamical Symmetry Breaking," Phys.Rev. D13 (1976) 974-996.
[17] L. Susskind, "Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory," Phys.Rev. D20 (1979) 2619-2625.
[18] A. Cabo Montes de Oca, N. Cabo-Bizet, and A. Cabo-Bizet, "A path integral formula for quark condensate states in a modified PQCD," Eur. Phys. J. C64 (2009) 133-145
[19] T. Kaluza, "Zum Unitätsproblem in der Physik.," Sitzungsber. Preuss. Akad. Wiss. Berlin. 96 (1921) 69-72.
[20] O. Klein, "Quantentheorie und fünfdimensionale Relativitätstheorie," Zeitschrift für Physik A 37(12) (1926) 895-906.
[21] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, "Progress Toward a Theory of Supergravity," Phys.Rev. D13 (1976) 3214-3218.
[22] D. Z. Freedman and A. Van Proeyen, Supergravity. Cambridge University Press, 2012.
[23] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge University Press, 1998.
[24] G. Veneziano, "Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories," Nuovo Cim. A57 (1968) 190-197.
[25] Y. Nambu, "Quark model and the factorization of the Veneziano amplitude,".
[26] H. Nielsen, "An almost physical interpretation of the integrand of the n-point Veneziano amplitude,". 15th conference on High Energy Physics, Kiev (1870).
[27] L. Susskind, "Dual-symmetric theory of hadrons. 1.," Nuovo Cim. A69S10 (1970) 457-496.
[28] M. B. Green and J. H. Schwarz, "Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory," Phys. Lett. B149 (1984) 117-122.
[29] S.-T. Yau, "Calabi's Conjecture and some new results in algebraic geometry," Proc.Nat.Acad.Sci. 74 (1977) 1798-1799.
[30] G. Bhattacharyya and T. S. Ray, "Pushing the SUSY Higgs mass towards 125 GeV with a color adjoint," arXiv:1210.0594 [hep-ph].
[31] L. Motl, "SUSY with a colored adjoint chiral multiplet," Blog: The Reference Frame (2012) .
[32] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, "Strings on Orbifolds," Nucl. Phys. B261 (1985) 678-686.
[33] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, "Strings on Orbifolds. 2," Nucl. Phys. B274 (1986) 285-314.
[34] M. B. Green, J. H. Schwarz, and L. Brink, "N=4 Yang-Mills and N=8 Supergravity as Limits of String Theories," Nucl.Phys. B198 (1982) 474-492.
[35] K. Kikkawa and M. Yamasaki, "Casimir Effects in Superstring Theories," Phys.Lett. B149 (1984) 357
[36] T. Buscher, "A Symmetry of the String Background Field Equations," Phys.Lett. B194 (1987) 59
[37] A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, "Strong - weak coupling duality and nonperturbative effects in string theory," Phys.Lett. B249 (1990) 35-43.
[38] J. H. Schwarz, "Does string theory have a duality symmetry relating weak and strong coupling?," arXiv:9307121 [hep-th].
[39] A. Sen, "Strong - weak coupling duality in four-dimensional string theory," Int.J.Mod.Phys. A9 (1994) 3707-3750, arXiv: 9402002 [hep-th].
[40] E. Witten, "String theory dynamics in various dimensions," Nucl.Phys. B443 (1995) 85-126, arXiv:9503124 [hep-th].
[41] J. Polchinski, "Dirichlet Branes and Ramond-Ramond charges," Phys.Rev.Lett. 75 (1995) 4724-4727, arXiv:9510017 [hep-th].
[42] G. Aldazabal, L. E. Ibanez, F. Quevedo, and A. Uranga, "D-branes at singularities: A Bottom up approach to the string embedding of the standard model," JHEP 0008 (2000) 002, arXiv:0005067 [hep-th].
[43] J. M. Maldacena, "The Large N limit of superconformal field theories and supergravity," Adv.Theor.Math.Phys. 2 (1998) 231-252, arXiv: 9711200 [hep-th].
[44] E. Witten, "Anti-de Sitter space and holography," Adv.Theor.Math.Phys. 2 (1998) 253-291, arXiv:9802150 [hep-th].
[45] C. Vafa, "Evidence for F theory," Nucl.Phys. B469 (1996) 403-418, arXiv:9602022 [hep-th].
[46] F. Denef, "Les Houches Lectures on Constructing String Vacua," arXiv:0803.1194 [hep-th].
[47] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, et al., "A Mini-landscape of exact MSSM spectra in heterotic orbifolds," Phys.Lett. B645 (2007) 88-94, arXiv:0611095 [hep-th]
[48] S. Forste, H. P. Nilles, P. K. S. Vaudrevange, and A. Wingerter, "Heterotic brane world," Phys. Rev. D70 (2004) 106008, arXiv: 0406208.
[49] T. Kobayashi, S. Raby, and R.-J. Zhang, "Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold," Nucl. Phys. B704 (2005) 3-55, arXiv:hep-ph/0409098.
[50] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz, "Dual models of gauge unification in various dimensions," Nucl. Phys. B712 (2005) 139-156 arXiv:hep-ph/0412318.
[51] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz, "Supersymmetric standard model from the heterotic string," Phys. Rev. Lett. 96 (2006) 121602, arXiv:hep-ph/0511035
[52] H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, "Local Grand Unification and String Theory," AIP Conf. Proc. 1200 (2010) 226-234, arXiv:0909.3948 [hep-th].
[53] H. P. Nilles, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vaudrevange, "From strings to the MSSM," Eur. Phys. J. C59 (2009) 249-267, arXiv:0806.3905 [hep-th].
[54] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz, "Local grand unification," arXiv:hep-ph/0512326.
[55] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby, and M. Ratz, "Stringy origin of non-Abelian discrete flavor symmetries," Nucl. Phys. B768 (2007) 135-156, arXiv:hep-ph/0611020.
[56] R. Kappl et al., "Large hierarchies from approximate R symmetries," Phys. Rev. Lett. 102 (2009) 121602, arXiv:0812.2120 [hep-th].
[57] S. Forste, H. P. Nilles, S. Ramos-Sanchez, and P. K. S. Vaudrevange, "Proton Hexality in Local Grand Unification," Phys. Lett. B693 (2010) 386-392, arXiv:1007.3915 [hep-ph].
[58] H. M. Lee et al., "A unique Z_{4}^{R} symmetry for the MSSM," Phys. Lett. B694 (2011) 491-495, arXiv:1009.0905 [hep-ph].
[59] P. Ko, T. Kobayashi, J.-h. Park, and S. Raby, "String-derived D4 flavor symmetry and phenomenological implications," Phys. Rev. D76 (2007) 035005, arXiv:0704.2807 [hep-ph].
[60] J. A. Casas and C. Munoz, "A Natural Solution to the MU Problem," Phys. Lett. B306 (1993) 288-294, arXiv:hep-ph/9302227.
[61] I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, "Effective mu term in superstring theory," Nucl. Phys. B432 (1994) 187-204, arXiv:9405024.
[62] O. Lebedev et al., "The Heterotic Road to the MSSM with R parity," Phys. Rev. D77 (2008) 046013, arXiv:0708.2691 [hep-th].
[63] S. Hamidi and C. Vafa, "Interactions on Orbifolds," Nucl. Phys. B279 (1987) 465.
[64] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, "Vacuum Configurations for Superstrings," Nucl. Phys. B258 (1985) 46-74.
[65] J. Erler and A. Klemm, "Comment on the generation number in orbifold compactifications," Commun. Math. Phys. 153 (1993) 579-604, arXiv:9207111 [hep-th]
[66] P. S. Aspinwall, "Resolution of orbifold singularities in string theory," arXiv:9403123 [hep-th]. To appear in 'Essays on Mirror Manifolds 2'.
[67] S. Reffert, "Toroidal Orbifolds: Resolutions, Orientifolds and Applications in String Phenomenology," arXiv:0609040 [hep-th]
[68] D. Lust, S. Reffert, E. Scheidegger, and S. Stieberger, "Resolved toroidal orbifolds and their orientifolds," Adv. Theor. Math. Phys. 12 (2008) 67-183, arXiv:0609014.
[69] S. G. Nibbelink, M. Trapletti, and M. Walter, "Resolutions of Cn/Zn Orbifolds, their U(1) Bundles, and Applications to String Model Building," JHEP 03 (2007) 035, arXiv:0701227.
[70] S. G. Nibbelink, T.-W. Ha, and M. Trapletti, "Toric Resolutions of Heterotic Orbifolds," Phys. Rev. D77 (2008) 026002, arXiv:0707. 1597 [hep-th].
[71] E. Witten, "Search for a Realistic Kaluza-Klein Theory," Nucl.Phys. B186 (1981) 412.
[72] E. Witten, "Some Properties of O(32) Superstrings," Phys. Lett. B149 (1984) 351-356.
[73] C. D. Froggatt and H. B. Nielsen, "Hierarchy of Quark Masses, Cabibbo Angles and CP Violation," Nucl. Phys. B147 (1979) 277.
[74] W. Fischler, H. P. Nilles, J. Polchinski, S. Raby, and L. Susskind, "Vanishing Renormalization of the D Term in Supersymmetric U(1) Theories," Phys.Rev.Lett. 47 (1981) 757 .
[75] J. J. Atick, L. J. Dixon, and A. Sen, "String Calculation of Fayet-Iliopoulos d Terms in Arbitrary Supersymmetric Compactifications," Nucl. Phys. B292 (1987) 109-149.
[76] M. Dine, N. Seiberg, and E. Witten, "Fayet-Iliopoulos Terms in String Theory," Nucl. Phys. B289 (1987) 589.
[77] A. Font, L. E. Ibanez, H. P. Nilles, and F. Quevedo, "Yukawa Couplings in Degenerate Orbifolds: Towards a Realistic $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ Superstring," Phys. Lett. 210B (1988) 101.
[78] C. Ludeling, F. Ruehle, and C. Wieck, "Non-Universal Anomalies in Heterotic String Constructions," Phys. Rev. D85 (2012) 106010, arXiv:1203.5789 [hep-th].
[79] T. Oda, Convex Bodies and Algebraic Geometry. Springer-Verlag, 1988.
[80] W. Fulton, Introduction to toric varieties. Annals of mathematics studies ; 131 The William H. Roever lectures in geometry. Princeton University Press, 1997.
[81] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, et al., "Mirror symmetry,".
[82] S. G. Nibbelink, D. Klevers, F. Ploger, M. Trapletti, and P. K. S. Vaudrevange, "Compact heterotic orbifolds in blow-up," JHEP 04 (2008) 060, arXiv:0802. 2809 [hep-th].
[83] S. G. Nibbelink, J. Held, F. Ruehle, M. Trapletti, and P. K. S. Vaudrevange, "Heterotic Z6-II MSSM Orbifolds in Blowup," JHEP 03 (2009) 005, arXiv:0901. 3059 [hep-th].
[84] M. Blaszczyk, S. Nibbelink Groot, F. Ruehle, M. Trapletti, and P. K. Vaudrevange, "Heterotic MSSM on a Resolved Orbifold," JHEP 1009 (2010) 065, arXiv:1007.0203 [hep-th].
[85] O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vaudrevange, "Heterotic mini-landscape (II): completing the search for MSSM vacua in a Z_{6} orbifold," Phys. Lett. B668 (2008) 331-335, arXiv:0807. 4384 [hep-th].
[86] J. E. Kim, J.-H. Kim, and B. Kyae, "Superstring standard model from Z(12-I) orbifold compactification with and without exotics, and effective R- parity," JHEP 06 (2007) 034 arXiv:hep-ph/0702278.
[87] M. Blaszczyk et al., "A Z2xZ2 standard model," Phys. Lett. B683 (2010) 340-348, arXiv:0911. 4905 [hep-th].
[88] C. Vafa and E. Witten, "On orbifolds with discrete torsion," J. Geom. Phys. 15 (1995) 189-214, arXiv:9409188
[89] F. Ploger, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vaudrevange, "Mirage Torsion," JHEP 04 (2007) 063, arXiv:0702176.
[90] S. Ramos Sánchez Private communication, 2013.
[91] S. Groot Nibbelink, H. P. Nilles, and M. Trapletti, "Multiple anomalous U(1)s in heterotic blow-ups," Phys. Lett. B652 (2007) 124-127, arXiv:0703211.
[92] F. Gmeiner, S. Groot Nibbelink, H. P. Nilles, M. Olechowski, and M. G. A. Walter, "Localized anomalies in heterotic orbifolds," Nucl. Phys. B648 (2003) 35-68, arXiv:0208146.
[93] A. N. Schellekens and N. P. Warner, "Anomalies, Characters and Strings," Nucl. Phys. B287 (1987) 317.
[94] N. G. Cabo Bizet, T. Kobayashi, D. K. Mayorga Peña, S. L. Parameswaran, M. Schmitz, et al., "R-charge Conservation and More in Factorizable and Non-Factorizable Orbifolds," arXiv:1301.2322 [hep-th]
[95] M. Blaszczyk, N. G. Cabo Bizet, H. P. Nilles, and F. Ruhle, "A perfect match of MSSM-like orbifold and resolution models via anomalies," JHEP 1110 (2011) 117, arXiv:1108.0667 [hep-th].
[96] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge University Press, 1998.
[97] F. Gliozzi, J. Scherk, and D. I. Olive, "Supersymmetry, Supergravity Theories and the Dual Spinor Model," Nucl. Phys. B122 (1977) 253-290.
[98] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, "The Heterotic String," Phys. Rev. Lett. 54 (1985) 502-505.
[99] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, "Heterotic String Theory. 1. The Free Heterotic String," Nucl. Phys. B256 (1985) 253.
[100] K. Narain, "TOROIDAL COMPACTIFICATION OF HETEROTIC STRING. (ABSTRACT ONLY),".
[101] K. Narain, M. Sarmadi, and E. Witten, "A Note on Toroidal Compactification of Heterotic String Theory," Nucl. Phys. B279 (1987) 369.
[102] M. B. Green, J. Schwarz, and E. Witten, SUPERSTRING THEORY. VOL. 1: INTRODUCTION. Cambridge University Press, 1987.
[103] L. Ibañez and A. Uranga, String theory and particle physics. Cambridge University Press, 2012.
[104] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, vol. 2. Cambridge University Press, 1999.
[105] L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, "The Conformal Field Theory of Orbifolds," Nucl. Phys. B282 (1987) 13-73.
[106] D. Bailin and A. Love, "Orbifold compactifications of string theory," Phys.Rept. 315 (1999) 285-408.
[107] S. Ramos-Sanchez, "Towards Low Energy Physics from the Heterotic String," Fortsch.Phys. 10 (2009) 907-1036, arXiv:0812.3560 [hep-th].
[108] P. K. Vaudrevange, "Grand Unification in the Heterotic Brane World," arXiv:0812.3503 [hep-th].
[109] T. Kobayashi, S. L. Parameswaran, S. Ramos-Sanchez, and I. Zavala, "Revisiting Coupling Selection Rules in Heterotic Orbifold Models," JHEP 1205 (2012) 008, arXiv:1107. 2137 [hep-th].
[110] D. Mayorga Peña, "Towards Realistic Spectra from the $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ Orbifold Model," 2011.
[111] J. Casas, F. Gomez, and C. Munoz, "Complete structure of Z(n) Yukawa couplings," Int.J.Mod.Phys. A8 (1993) 455-506, arXiv:9110060 [hep-th].
[112] K. Becker, M. Becker, and J. Schwarz, String theory and M-theory: A modern introduction. Cambridge University Press, 2007.
[113] P. Griffiths and J. Harris, Principles of Algebraic Geometry, vol. 52 of Wiley Classics Library. Whiley, 1999.
[114] A. Strominger, "Superstrings with Torsion," Nucl.Phys. B274 (1986) 253 .
[115] C. Hull, "Superstring compactifications with torsion and spacetime supersymmetry," Tech. Rep. Print-86-0251, Cambridge University, 1986.
[116] C. Hull, "Compactifications of the heterotic superstring," Phys. Lett. B178 (1986) 357.
[117] J. Gates, S.J., C. Hull, and M. Rocek, "Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models," Nucl.Phys. B248 (1984) 157.
[118] M. Rocek, "Modified Calabi-Yau manifolds with torsion,".
[119] P. Koerber, "Lectures on Generalized Complex Geometry for Physicists," Fortsch.Phys. 59 (2011) 169-242, arXiv:1006.1536 [hep-th]
[120] I. Benmachiche, J. Louis, and D. Martinez-Pedrera, "The Effective action of the heterotic string compactified on manifolds with SU(3) structure," Class.Quant.Grav. 25 (2008) 135006, arXiv:0802.0410 [hep-th].
[121] A. Lukas and C. Matti, "G-structures and Domain Walls in Heterotic Theories," JHEP 1101 (2011) 151, arXiv: 1005.5302 [hep-th]
[122] R. Blumenhagen, G. Honecker, and T. Weigand, "Loop-corrected compactifications of the heterotic string with line bundles," JHEP 0506 (2005) 020, arXiv:0504232 [hep-th].
[123] J. A. Casas, A. de la Macorra, M. Mondragon, and C. Munoz, "Z(7) phenomenology," Phys. Lett. B247 (1990) 50-56.
[124] P. S. Aspinwall, B. R. Greene, and D. R. Morrison, "Measuring small distances in N=2 sigma models," Nucl. Phys. B420 (1994) 184-242, arXiv:9311042.
[125] Y. Katsuki, Y. Kawamura, T. Kobayashi, and N. Ohtsubo, "Z(7) ORBIFOLD MODELS," Phys.Lett. B212 (1988) 339 .
[126] T. Kobayashi and N. Ohtsubo, "Analysis on the Wilson lines of $\mathrm{Z}(\mathrm{N})$ orbifold models," Phys.Lett. B257 (1991) 56-62
[127] H. P. Nilles, S. Ramos-Sanchez, P. K. Vaudrevange, and A. Wingerter, "The Orbifolder: A Tool to study the Low Energy Effective Theory of Heterotic Orbifolds," Comput.Phys.Commun. 183 (2012) 1363-1380, arXiv:1110.5229 [hep-th]
[128] S. Groot Nibbelink and P. K. Vaudrevange, "Schoen manifold with line bundles as resolved magnetized orbifolds," JHEP 1303 (2013) 142, arXiv:1212.4033 [hep-th].
[129] K.-S. Choi and J. E. Kim, "Quarks and leptons from orbifolded superstring," Lect.Notes Phys. 696 (2006) 1-406.
[130] S. L. Parameswaran, S. Ramos-Sanchez, and I. Zavala, "On Moduli Stabilisation and de Sitter Vacua in MSSM Heterotic Orbifolds," JHEP 1101 (2011) 071, arXiv:1009.3931 [hep-th].

[^0]: ${ }^{1}$ In this explanation we consider that the fields are Dirac fermions.
 ${ }^{2}$ The Pontecorvo-Maki-Nakagawa-Sakata matrix for neutrino states mixing has big angles with the same order of magnitude in all its entries.
 ${ }^{3}$ This is called the desert hypothesis.

[^1]: ${ }^{4}$ This is what is called a De Sitter vacua with $\Lambda>0$.
 ${ }^{5}$ One possible explanation is the anthropic principle 13, this states that in order to allow galaxy formation and the existence of observers the value of Λ has to be closed to the experimental one. This approach encounters an interpretation in the frame of string theory in which quantum fluctuations produced during inflation could create regions with different local vacuum energy, which due to expansion will evolve in

[^2]: ${ }^{7} M_{\mathrm{P}}$ is given in natural units where $c=\hbar=1$. The Planck time $t_{\mathrm{P}}=\sqrt{\frac{\hbar G}{c^{5}}}=5.39106(32) \times 10^{-44} \mathrm{~s}$ and the Planck length $l_{\mathrm{P}}=\sqrt{\frac{\hbar G}{c^{3}}}=1.616199(97) \times 10^{-35} \mathrm{~m}$ are both given by $1 / M_{\mathrm{P}}$ in natural units.

[^3]: ${ }^{8}$ It is natural to explore for $\mathcal{N}=1$ supersymmetry in 4 d , because this amount of SUSY offers a solution to the hierarchy problem and to the gauge coupling unification. Nevertheless, recently it was considered an example in which an $\mathcal{N}=2$ gauge sector seems to agree with the measured Higgs mass 30. 31 .

[^4]: ${ }^{9}$ The $A d S_{5} \times S^{5}$ geometry is the near horizon limit of N coincident black $D 3$-branes in type IIB theory with N units of F_{5} flux on S^{5}.
 ${ }^{10}$ In this limit the planar diagrams of SYM are dominant. The propagators on those diagrams depending on the adjoint gauge field, possess two indices which give diagrams which in general can not be drawn on a plane.
 ${ }^{11}$ Constructed as a fibration of a 3 -fold with T^{2}.

[^5]: ${ }^{12}$ With the exception of the Gepner point where also a CFT description is available.
 ${ }^{13}$ This partial breaking of discrete symmetries can be useful to create scales hierarchy, as for example in obtaining the pattern for quarks and lepton masses trough a Froggatt-Nielsen mechanism 73

[^6]: ${ }^{14}$ Which will be the sum of the rotation shift V and local Wilson lines (embedding of lattice translations on gauge d.o.f.).
 ${ }^{15}$ There are other realistic orbifold construction as the one presented in 86.

[^7]: ${ }^{16}$ A possible way out is to consider freely acting Wilson lines as in 87 .
 ${ }^{17}$ This has to be done because on the orbifold the chiral states posses left moving momenta given in a distinct base as the momenta of massless chiral states of the supergravity.

[^8]: ${ }^{1}$ The fermion number in the NS sector is given by $F=\sum_{r} \tilde{\psi}_{-r} \cdot \tilde{\psi}_{r}$.

[^9]: ${ }^{2}$ Bosonization is a way of describing the conformal field theory with certain fermions in terms of an identification with bosonic degrees of freedom, such that all the OPE of the original theory are reproduced, and both theories are equivalent.

[^10]: ${ }^{3}$ As it can be seen in 102 , one needs to use an integral form of $V_{0}(k)$ that commute with the L_{n} and this will guaranty to have the Lie algebra commutation relations.

[^11]: ${ }^{1}$ When this group is (non-)abelian the orbifold is called (non-)abelian.

[^12]: ${ }^{2}$ The Lorentz group for $\psi^{i, \bar{i}}$ and the manifest $S O(16) \times S O(16)$ for $\lambda^{K \pm}$.

[^13]: ${ }^{3}$ The twisted ground states of a spinor with periodicity $\widetilde{\psi}^{i}(\sigma+2 \pi)=e^{2 \pi i \zeta} \widetilde{\psi}^{i}(\sigma)$ fulfill $\widetilde{\psi}_{n+\zeta}|0\rangle_{\zeta}=$ $\widetilde{\widetilde{\psi}}_{n+1-\zeta}|0\rangle_{\zeta}=0$. They have vertex operators given by $|0\rangle_{\zeta} \cong \mathcal{A}_{\zeta}=\exp (i(-1 / 2+\zeta) \tilde{H})$.

[^14]: ${ }^{4}$ This is motivated because invariance under twists in one plane leads to the standard orbifold R -charge.

[^15]: ${ }^{5}$ Also other equivalent condition is that the metric can be expressed in terms of Kähler potential as $G_{i \bar{j}}=\partial_{i} \partial_{\bar{j}} K(z, \bar{z})$.

[^16]: ${ }^{6}$ This is connected to the fact that there is a unique Laplacian $\Delta_{d}=2 \Delta_{\bar{\partial}}=2 \Delta_{\partial}$.

[^17]: ${ }^{7} A_{i(\alpha)}=U_{\alpha \beta} A_{i(\beta)} U_{\alpha \beta}^{-1}+i \partial_{i} U_{\alpha \beta} \cdot U_{\alpha \beta}^{-1}$, with $U_{\alpha \beta} U_{\beta \gamma} U_{\gamma \alpha}=1$ and $U_{\alpha \beta}=U_{\beta \alpha}^{-1}$.
 ${ }^{8}$ This is not a gauge transformation, to be one G should be unitary.
 ${ }^{9}$ Locally there is enough freedom to select the hermitian G in order that the hermitian $J^{a \bar{b}} F_{a \bar{b}}$ vanishes.

[^18]: ${ }^{10}$ More exactly: a strongly convex rational polyhedral cone.

[^19]: ${ }^{11}$ If $\sigma_{1} \subset \sigma_{2}$ then $Z_{\sigma_{2}} \subset Z_{\sigma_{1}}$.
 ${ }^{12} \mathrm{~A} \mathbb{Z}$-basis of the lattice N is a basis s.t. every vector of N can be expressed with integer coefficients in terms of the basis vectors.
 ${ }^{13}$ The closure of a set Y is the smallest subset closed under T that contains Y. A nice an simple example for $\mathbb{C P}^{2}$ can be read in page 110 from 81 .

[^20]: ${ }^{14}$ In our basis this is implemented by setting the third component of every vector to one.

[^21]: ${ }^{15}$ In the works 6768 the Mori cone is employed to determine the equivalence relations. This construction serves as well to study the topology of the divisors in detail.

[^22]: ${ }^{16}$ With what has been here explained $Z(\Sigma)$ can be obtained easily.

[^23]: ${ }^{17}$ The local equivalences can be obtained by the given formula.

[^24]: ${ }^{1}$ In the next chapter we take a different convention.

[^25]: ${ }^{1}$ That the CY condition is preserved can be seen by checking explicitly that in the different patches a non-where vanishing $(3,0)$ form is defined.

[^26]: ${ }^{2}$ This blow-up could be connected to an orbifold brother-model with shift and Wilson lines fulfilling modular invariance constraints. However this model would have an inconsistent transformation for the physical states 89 . This inconsistency would also appear in the partition function 126 which would not be single valued.
 ${ }^{3}$ Many of them are non-distinct because the blow-up modes of the $\mathcal{N}=2$ orbifold sectors have always a pair.

[^27]: ${ }^{4}$ The exact number of inequivalent triangulations is explained in 83 .

[^28]: ${ }^{5}$ This is not sufficient because the total $P_{B U}$ should be in λ, thus summing $p+c p_{1}$ this condition may be satisfied.

[^29]: ${ }^{6}$ Only the states charged under the surviving gauge symmetries in the first E_{8} can have zero multiplicity.

[^30]: ${ }^{7}$ For example it is possible to go from the divisor $E_{1,34}$ to $E_{2,31}$ by first going to the compact curve $E_{1,34} D_{3,4}$ and then from $D_{3,4}$ to the compact curve $E_{2,31} D_{3,4}$.
 ${ }^{8}$ The Yukawa couplings 129130 depend on the fixed points, the sectors and the fixed point degeneracy, so it is possible without calculating them to establish when they must be equal. However it could be that there are more equal coefficients than expected. This could happen for particular values of the orbifold moduli. So the rank of the mass matrices we give is a maximal bound.

[^31]: ${ }^{9}$ The fields ψ_{72}, ψ_{79} are the ones becoming massive due to the trilinear couplings with blow-up modes. The change in the map is to make $\psi_{95}, \psi_{96} \rightarrow \Phi_{18}^{I}$ via the redefinition $V_{122}-V_{312}$.

[^32]: ${ }^{1}$ Given that in such cases the set of fixed points do not factorize along the complex planes, it is hard to tell wether or not the twists of the orbifold can be incorporated as global R-symmetries.

