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1. Introduction 

Space programs are now shifting towards long-term exploration missions, particularly to 

the Moon and Mars. However, space exploration is an adventure for humankind 

because of the extreme environment including microgravity and ionizing radiation. This 

environment causes a number of health problems. For example, the immune system 

response is weakened (Sonnenfeld, 2005), the muscular system experiences atrophy 

(Ruegg et al., 2003), bone loss can be recognized during and after space travel 

(Nagaraja and Risin, 2013), and there is a substantial increase in the risk of 

carcinogenesis and of the development of degenerative diseases (Durante and 

Cucinotta, 2008). In space, heavy ions as a component of space radiation present 

substantial but poorly understood risks during and after space missions. Extended 

exposure to microgravity results in significant bone loss; coupled with space radiation 

exposure, this phenomenon may place astronauts at a greater risk for fracture due to a 

critical decrease in bone mineral density. 

Until now, the biological effects of space relevant radiation on bone cells especially the 

bone forming osteoblasts are poorly understood. Therefore, it is crucial to understand 

the effects of ionizing radiation on osteoblasts and to develop effective 

countermeasures to reduce the bone fracture risk and to ensure the safety of space 

travelers during the mission and after return to Earth. 

1.1 Space radiation 

The radiation field in space is very complex and has a different quantity and quality 

compared to the conditions on Earth. The interplanetary radiation field contains primary 

galactic cosmic rays (GCR) and solar energetic particles (SEP). Charged particles 

traveling through materials such as shielding, spacecraft walls, space suits and human 

tissue produce secondary radiation via nuclear reactions (Figure 1-1).  
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Figure 1-1 Space radiation environment in our solar system 
Space radiation consists of galactic cosmic rays originating outside of our solar system 
(containing heavy charged particles), and solar energetic particles originating from solar flares or 
coronal mass ejections (mainly protons, electrons, ions, X-rays) (Figure from Hellweg and 
Baumstark-Khan 2007). 
 

Solar particle events (SPEs) consist primarily of protons and helium ions and occur 

sporadically, depending on the solar activity which follows an 11-year cycle. During the 

solar minimum phase, few events occur, whereas during each solar maximum phase, 

large events may occur even several times and they may last for several days to weeks, 

with temporary increases of the radiation dose. 

GCR originates from outside the solar system and consists mainly of charged particles 

(98% baryons and 2% electrons). These charged particles include about 1% heavy ions 

(HZE particles) which have high charge (Z) and energy (E) (Bucker and Facius, 1986; 
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Hellweg and Baumstark-Khan, 2007). The energy spectrum of GCR peaks near 1000 

MeV per nucleon (MeV/n) (Wilson et al., 1995). Recent measurements with the 

Radiation Assessment Detector on the Mars Science Laboratory (MSL) showed that, 

with current propulsion systems during the shortest exploratory round trip to Mars of 253 

days, the accumulated equivalent dose 1 was found to be 0.66 ± 0.12 Sievert (Sv) inside 

MSL spacecraft (Zeitlin et al., 2013).  

During a trip to Mars, there is a good chance for at least one solar flare to occur which 

could drastically increase astronauts’ exposure to 5 Sv if it happened in a phase of 

insufficient shielding such as an extravehicular activity (Thirsk et al., 2009). Early 

warning systems for SPEs are necessary to prevent such exposures. 

In low Earth orbit at an altitude of 350 - 420 km, the International Space Station (ISS) is 

still partly protected by the Earth’s magnetosphere. The Van Allen radiation belts 

surround the Earth as tori with the thickest region at the equator plane. In these belts, 

particles from GCR and SPEs are trapped by the Earth’s magnetic field. In the inner 

radiation belt at an altitude 2,000 - 10,000 km from Earth’s surface, protons and 

electrons predominate which are formed by ionization of air components by cosmic 

radiation. In the outer radiation belt, 14,000 - 46,000 km from Earth’s surface, ionized 

particles from the Earth’s atmosphere and the solar wind are trapped. 

On the ISS, an astronaut will receive a dose equivalent of about 0.3 Sv per year, 

compared to a person on Earth receiving an average dose of less than 0.005 Sv per 

year (Townsend and Fry, 2002).  

Energy deposition is a measure for the qualitative differences of space radiation 

components. Energy deposition in matter by ionizing radiation2 of different qualities is 

                                            
1 The equivalent dose is defined as the product of absorbed dose and the radiation quality factor 
Q. The biological effects of ionizing radiation are influenced amongst others by the absorbed 
dose, the dose rate and the quality of the radiation. For radiological protection purposes, the 
organ or tissue weighting factors are also taken into consideration.  

2 Ionizing radiation is defined as when the particles (including charged electrons or protons and 
uncharged photons or neutrons) can produce ionization in a medium or can initiate nuclear or 
elementary-particle transformations that then result in ionization or the production of radiation 
excitation.  
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described by the linear energy transfer (LET). The LET is the linear density of energy 

loss by transfer from the ionizing particles to the irradiated matter and can be described 

as energy loss per unit distance, dE/dx (keV/µm). LET depends on the nature of the 

radiation as well as on the material traversed. Charged particles lose energy as they 

traverse matter, and as they approach the end of their range, there is an enhanced 

energy loss rate called Bragg peak, where the maximum LET occurs. For many 

biological endpoints, the relative biological effectiveness (RBE) 3 peaks at an LET of 

about 100 - 200 keV/µm and decreases sharply at very high LET (Cucinotta and 

Durante, 2006).  

Shielding is necessary to protect humans on space explorations. Thick shielding is 

effective in absorbing protons of SPEs and can reduce the dose the astronauts are 

exposed to. It is much more difficult to shield GCR because of its high energy, strong 

penetrating ability and probability in inducing secondary radiation and increasing the 

absorbed dose. The absorbed dose or cancer induction rates resulting from annual 

GCR exposure is higher behind up to of 30 g/cm2 of aluminum shielding (Wilson et al., 

1995) or 5 g/cm2 of polyethylene compared to unshielded conditions (Wilson et al., 

1999). Present shielding approaches cannot sufficiently reduce the detrimental 

exposure to space radiation firstly because of high launch costs for thick shielding, and 

secondly because of the production of even more harmful secondary radiation during 

traversal of the shielding.  

Furthermore, large uncertainties exist in the projection of health risks of space radiation, 

especially for energetic heavy ions with very high biological effectiveness (George et al., 

2003; Hall et al., 2006). In recent years, worldwide efforts are focusing on 

understanding of the detrimental effects of space relevant radiation on cellular, tissue 

and whole body level. 

                                            
3 The RBE is defined as the ratio of the doses required by two different radiation qualities to 
cause the same level of effect and depends on dose, dose rate, fractionation, radiation quality, 
the irradiated tissue and the biological endpoint under consideration. The degree of biological 
effectiveness of different radiation types is mainly influenced by the way of energy transfer to 
the tissue (different LETs) (Barendsen 1994; Nikjoo et al. 1999). 



Introduction 

5 
 

1.2 Effects of ionizing radiation on humans 

Depending on dose and dose rate, the whole body radiation exposure during space 

missions can result in acute, chronic or late effects. 

High radiation doses and dose rates might be reached during SPE. The acute exposure 

to high doses can induce early health effects such as nausea, vomiting, coma or may 

be lethal depending on the dose, which will degrade crew survival and performance and 

thus can severely interfere with mission success.  

Low dose rate but long-term radiation exposure to total radiation doses of 2-4 Sv/year 

which exceeds the permissible occupational dose would result in the chronic radiation 

syndrome (Reeves and Ainsworth, 1995). This syndrome may include sleep and/or 

appetite disturbances, generalized weakness and easy fatigability, headaches, bone 

pain and hot flashes, which is not negligible for human health and successful missions 

(Hellweg and Baumstark-Khan, 2007). 

After astronauts return to Earth, an increased lifetime risk for late effects such as 

cataracts and cancer persists from exposure to GCR and SPE. Quantitative estimates 

of cancer risk from exposure to ionizing radiation are available from the studies of 

cancer incidence in the atomic bomb survivors from Nagasaki and Hiroshima in Japan. 

Within these studies, an increase in the risks of breast cancer in women, and of 

leukemia, non-melanoma skin cancer, and lung cancer in both genders was found 

(Land et al., 1994; Little, 2009; Little and Charles, 1997; Schneider and Walsh, 2008). 

Some epidemiological studies with atomic bomb survivors also have shown that 

exposure to moderate to high doses of ionizing radiation increases the risk of cancer in 

most organs: breast, thyroid, esophagus, colon, bladder, ovary and lung (Bogart et al., 

2005; Laird, 1987; Preston et al., 2012; Shay et al., 2011).  

Cancer radiotherapy relies on killing cancer cells by the physical energy transfer of 

ionizing radiation. When given at high doses, it can slow or stop tumor growth. Because 

of their exceptional properties, exhibiting a strong increase in dose at the end of the 

particle range called Bragg peak (Figure 1-2) when travelling through matter, charged 

particles are applied as therapeutic agents against cancer. Due to the larger mass 
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comparing to protons or even helium ions, heavy ions offer an improved dose 

conformation with better sparing of normal tissue structures close to the target. This 

advantage is lost for very heavy ions (above oxygen) because the RBE is already very 

high in the entrance region and does not increase much in the Bragg peak. Accelerated 

particles applied for cancer therapy such as protons and carbon ions can concentrate 

the effect of radiation on the tumor being treated, while at the same time the effect on 

the surrounding healthy tissue is minimized (Trikalinos et al., 2009). 

As for radiotherapy with photons, a risk for secondary cancer exists also after proton 

and carbon ion therapy. A final assessment of this risk is not yet possible (Shioyama et 

al., 2003).  

 

 

Figure 1-2 Depth distribution of radiation dose in water 
Depth dose distribution with Bragg peak for carbon ions (270 MeV/n) and protons (148 MeV/n) in 
comparison to photons (Fokas et al., 2009). 
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The risk for space radiation induced tumorigenesis is believed to be very high because 

of the high biological effectiveness of HZE particles. For both astronauts traveling in 

space and radiotherapy patients, understanding of the tissue reactions and cellular 

stress responses to heavy ion exposure will be necessary for an accurate assessment 

of cancer risk and may provide targets for prevention. 

1.3 Effects of ionizing radiation on cells 

The biological effects of ionizing radiation on human beings are a consequence of 

physical and chemical reactions initiated by energy deposition in cells and tissues. DNA 

is a critical cellular target of ionizing radiation. The immediate response to DNA 

damages induced by ionizing radiation is the stimulation of the repair machinery and 

activation of cell cycle4 checkpoints, followed by down-stream cellular responses such 

as apoptosis and other forms of cell death, differentiation or senescence. 

Agents designed to protect irradiated cells from dysfunction of cellular differentiation 

and cell-cell communication, or those that can reverse the irradiated phenotype could 

provide a mean of impeding its downstream carcinogenic potential (Park et al., 2003). 

More basic studies on tissue, cellular and molecular level using ground based facilities 

are necessary to identify targets for such agents. 

1.3.1 Radiation induces DNA damage 

Charged particles, γ- and X-rays penetrating tissue or cells initiate ionization of water 

and biomolecules along the movement track and induce DNA damage (Figure 1-3). 

These damages include a variety of structural lesions in DNA: oxidative base damage, 

single-strand breaks (SSB) and double-strand breaks (DSB) (Lau, 2005) as well as local 

multiple damages sites through direct and indirect interactions (Eccles et al., 2010; 

Hada and Georgakilas, 2008). The complexity of radiation induced DNA damages 

depends on the radiation quality described by the LET. Substantial evidence indicates 

                                            
4 The cell cycle also called cell-division cycle is a series events taking place in a cell leading to 
its division and duplication. It consists of distinct phases, interphase and mitosis. The interphase 
is composed of G1 (cells are active and growing), S (cells are actively replicating DNA) and G2 
phase (during this phase, cells are actively preparing for mitosis). 
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that high LET radiation induces a greater number of DNA damages and more complex 

clustered DNA lesions than low LET photons (Figure 1-4) (Bishay et al., 2001; Fournier 

et al., 2012; Gaziev, 1999). Those high-LET induced damages are thought to be much 

more difficult for cells to repair accurately (Fakir et al., 2006; Kozubek and Krasavin, 

1984). 

 

 
 

Figure 1-3 Comparison of particle tracks in human cells and nuclear emulsions 
Immunostaining of γ-H2AX in human fibroblasts visualizing the cellular response to DNA double 
strand breaks after cells were exposed to sparsely ionizing radiation (γ-rays) (A) or to heavy 
charged particles such as silicon (B) and iron (C) ions. Tracks of different ions in nuclear 
emulsions show increasing ionization density as the ion’s charge, Z, increases (D). Figures from: 
(Cucinotta and Durante, 2006) 
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Figure 1-4 Radiation tracks produced by an X-ray photon and by a heavy 
charged particle in the DNA double helix 
In this example, the heavy charged particle produces a highly complex DNA strand break, while 
the photon induces base damage. (Image credit by National Aeronautics and Space 
Administration (NASA)) 
 

Differences in damage-response pathways induced by low and high-LET radiation result 

in distinct gene expression and mutation profiles (Liu et al., 2013). They might be 

associated with cancer initiation or progression including genomic instability 

(Baverstock, 2000; Eidemuller et al., 2011; Eidemuller et al., 2012), extra-cellular matrix 

remodeling, persistent inflammation (Multhoff and Radons, 2012), or with cataract 

formation (Muranov et al., 2010), and damages to the central nervous system (Coderre 

et al., 2006) and oxidative damage (Kvam and Tyrrell, 1997; Mishra, 2004). 

1.3.2 Repair of DNA damage 

Genotoxic stresses result in activation of a complex network of DNA damage 

checkpoints and repair pathways. To maintain integrity of DNA molecule after ionizing 

radiation induced DNA damage, three enzymes from the phosphatidylinositol-3-kinase-

related (PIKK) family are activated by phosphorylation: ATM (ataxia telangiectasia 
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mutant), ATR (ataxia telangiectasia and Rad3-related protein) and DNA-PK (DNA-

dependent protein kinase) (Cimprich and Cortez, 2008; Lovejoy and Cortez, 2009; 

Shrivastav et al., 2008; Tichy et al., 2010). 

ATM is a serine/threonine protein kinase recruited and activated by DNA DSB. After its 

activation, it phosphorylates several key proteins including p53 and Chk2 which will 

initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA 

repair or apoptosis (Warmerdam and Kanaar, 2010). ATM is involved in the non-

homologous end joining (NHEJ) repair pathway and is also crucial for homologous 

recombination (HR). 

NHEJ is the only DSB repair process in mammalian cells in G1- and early S-phase. 

DSB repair in late S- to G2-phase can be performed by HR. HR uses the homologue 

DNA sequence of the sister chromatid as an undamaged matrix and enables correct 

repair of DNA DSBs. In comparison to HR, NHEJ process is more error-prone but a fast 

and easy way to seal a two-ended break arising from the damages after treatment with 

ionizing radiation. 

ATR, also known as FRAP-related protein 1 (FRP1), is a serine/threonine-specific 

protein kinase and is involved in sensing DNA damage (single-stranded DNA and 

stalled replication forks) and activating the DNA damage checkpoint, whereas ATM 

responds mainly to DNA double strand breaks. ATR and ATM respond to distinct stimuli 

and therefore have non-redundant functions. Thus, combined and complementary 

actions of ATM and ATR ensure the sensing of DNA damage and cell cycle checkpoint 

activation in response to damaging agents or stimuli. 

DNA-PK is another protein kinase that is specifically required for NHEJ. During NHEJ, 

DNA-PK initially recognizes and binds to the damaged DNA and then targets the other 

repair activities to the site of DNA damage. 

1.3.3 Radiation induces cell cycle arrest 

After the initial sensing of DNA damage, the subsequent transmission is through 

ATM/ATR associated with activation of p53-dependent and -independent pathways to 

the cell-cycle machinery check-points. 

http://en.wikipedia.org/wiki/Cell_cycle_checkpoint
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Cyclin-dependent kinases (CDKs) are a family of protein kinases known as key 

regulators of cell cycle progression. Binding of cyclins to CDKs is required for cell cycle 

transition, and repression of the cyclin gene also contributes to blocking the entry into 

the next cycle phase (Wilson, 2004). 

The activation of cell cycle checkpoints provides for cells a controlled temporary arrest 

in G1, S or G2/M phase (Figure 1-5). This allows cells to repair the ionizing radiation 

induced DNA damage resulting from e.g. radiotherapy or space flight and mediate cell 

fate, in order to survive and maintain the genomic integrity and stability. After radiation 

exposure, cells transiently accumulate in G1, S or G2 in dose- and radiation quality-

dependent manner (Fernet et al., 2010). Since many tumor cells are deficient in the 

G1/S checkpoint due to a non-functional p53 pathway, they lack effective G1 or S phase 

arrest induction. When cells are exposed to ionizing radiation in G2/M phase, two 

distinct checkpoints are activated: the early G2 checkpoint and the G2/M accumulation 

(Cucinotta et al., 2001; Gogineni et al., 2011; Metting and Little, 1995; Xu and Kastan, 

2004; Xu et al., 2002). 

 

 

Figure 1-5 Molecular organization of cell cycle checkpoints that might result in 
cell cycle arrest in response to DNA DSBs 
Multiple pathways lead to G1, S, G2/M arrest through p53/p21 dependent or independent pathways 
(Iliakis et al., 2003; Pawlik and Keyomarsi, 2004). 



Introduction 

12 
 

1.3.4 p21 in cell cycle regulation 

The tumor suppressor p53 is capable to induce cell cycle arrest and cell death in 

response to stress (Vousden, 2000). Many of its target genes, Cyclin-dependent kinase 

inhibitor 1 (CDKN1A) for example, are modulated to control the biological outcomes: cell 

cycle arrest, DNA repair, and reorganization of actin cytoskeleton and cell death (Avkin 

et al., 2006; Li et al., 1994; Quaas et al., 2012; Suzuki et al., 2012; Wani et al., 2002; 

Yadav et al., 2012; Yi et al., 2012). The protein product of CDKN1A, p21, was originally 

identified as an inhibitor of CDKs. p21CDKN1A is also considered as a positive regulator of 

the cell cycle. A certain level of p21 expression is required for normal cell cycle 

progression, as p21 stabilizes and promotes active cyclin-CDKs complex formation 

(Pan et al., 2002). Under non-stressed conditions, p21 is expressed at low levels and 

promotes cell cycle progression; when cells are under various outer or/and inner 

stresses, p21CDKN1A expression is increased through p53-dependent and independent 

pathways. p21CDKN1A implicates in cell cycle checkpoints in G1 and S phases by 

inhibiting activities of cyclin E-CDK2 complex (Harper et al., 1993) and in the G2 and M 

phases by inhibiting cyclin B/A-CDK1 or CDK2 activities (Bates et al., 1998; Niculescu, 

III et al., 1998) (Figure 1-6). 

Studies show that depletion of p21 expression by anti-sense RNA promotes cell cycle 

re-entry and DNA synthesis. The phosphorylation of retinoblastoma protein (pRb) is 

found to be essential for G1/S transition, and at the same time, p21 can inhibit pRb 

phosphorylation and induce cell cycle arrest in G1, or inactivate E2F1 which leads to 

cell cycle arrest and cellular senescence. Furthermore, p21 induced G2 arrest appears 

to be more prominent in pRb-null cells (Niculescu, III et al. 1998). 

  



Introduction 

13 
 

 

Figure 1-6 Negative regulation of G1, S and G2 transition by p21 
Black squares indicate phosphorylation sites on tyrosine (Tyr) or threonine (Thr) residues of 
cyclin-dependent kinase 2 (CDK2). Graph created by (Romanov et al., 2012) 

 

1.3.5 p53 and Mdm2 regulation 

Tumor suppressor proteins like p53 are present at a low concentration in normal cells. 

Mdm2 (Mouse double minute 2 homolog) is one of the p53 target genes and encodes 

an E3 ubiquitin ligase which negatively controls p53 and its downstream signaling 

pathways (Fry et al., 2005; Fu et al., 2009; Itahana et al., 2007). Both p53 and Mdm2 

have a short half-life and their nuclear concentrations are kept at very low levels as a 

result of proper functioning of the regulatory circuit described below (Deb, 2002; 

Freedman and Levine, 1999; Freedman et al., 1999). 

Under stress conditions such as hypoxia or DNA damage, p53 accumulates in the 

nucleus where it is activated and causes cell cycle arrest or apoptosis. Once the nuclear 

p53 levels increase, the transcription of the Mdm2 gene is activated, raising the level of 
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Mdm2 protein. In turn, Mdm2 binds to p53, which blocks its N-terminal transactivation 

domain and targets p53 for degradation via the ubiquitin-proteasome system following 

ubiquitinylation through its E3 ligase activity. Thereafter, the ability of Mdm2 to bind to 

p53 is blocked or altered in a fashion that prevents Mdm2-mediated degradation 

because of overexpression of Mdm2. Then p53 levels can rise again and increase 

Mdm2 protein expression. Oscillatory dynamics of p53 levels in the cell nucleus with 

one or more p53 peaks result from the p53-Mdm2 negative feedback loop (Manfredi, 

2010; Marine and Lozano, 2010; Yu et al., 2000).  

1.3.6 Radiation induces cellular senescence 

Senescence is a permanent cell cycle arrest controlled by two major pathways, the p16-

pRb pathway and p53-p21 pathway. Cellular senescence can be induced by telomere 

dysfunction, DNA damage, and chromatin instability and oncogene activation. The 

stress induced proliferation suppression is tightly associated with cell cycle arrest. 

The cell cycle arrest in G1 phase is commonly following ATM and p53 dependent 

temporary transcriptional activation of the CDKN1A gene encoding p21. Additionally, in 

a p53 independent manner, p21 has been recognized as an over-expressed marker in 

senescent cells and later found to be capable of inducing premature senescence in both 

normal and tumor cells (Noda et al., 1994).  

The other signaling pathway through the tumor suppressor protein p16 could also be 

activated through the p38 mitogen-activated protein kinase (MAPK) mediated p16 

expression when p53 is inactivated. It maintains cells in senescent state due to radiation 

induced DNA damage. 
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1.4 Radiation effects on osteoblast differentiation 

Bone loss is one of the serious obstacles for long-term manned space missions. 

Previous studies have demonstrated that astronauts on 4-6 months missions aboard the 

ISS experience femoral and vertebral bone loss of about 0.9-1.6% per month (Lang et 

al., 2004). Bone loss and the corresponding loss of strength could increase the risk of 

fractures and pose a risk to mission safety. Exposure to GCR and solar particles 

presents a significant but poorly understood risk for carcinogenesis and degenerative 

diseases (Durante and Cucinotta, 2008). Together with microgravity, radiation might 

have a synergistic effect on bone cells resulting in dysfunction. 

1.4.1 Bone remodeling 

Bone is a dynamic tissue that constantly undergoes modeling and remodeling 

throughout lifespan. These modeling and remodeling processes are mainly executed by 

osteoclastic bone resorption followed by osteoblastic bone formation to maintain and 

renew its mineralized matrix (Figure 1-7). 

 

 

Figure 1-7 Bone remodeling cycle 
Downloaded from http://www.ns.umich.edu/Releases/2005/Feb05/img/bone.jpg, 2010. 

http://www.ns.umich.edu/Releases/2005/Feb05/img/bone.jpg
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The remodeling process is regulated by systemic hormones including parathyroid 

hormone, calcitriol, growth hormone and some other hormones and factors; and by local 

factors such as growth factors, cytokines, and prostaglandins, which have been 

identified and are synthesized by osteoblasts (Hadjidakis and Androulakis, 2006). 

These hormones and factors affect both osteoblasts and osteoclasts in their replication, 

differentiation and activity. 

Osteoblasts produce TGF-β (transforming growth factor beta) and deposit a latent form 

of TGF-β in bone tissue. The TGF-β superfamily comprises over forty members, such 

as TGF-βs, Nodal, Activin, and bone morphogenetic proteins (BMPs) (Guo and Wang, 

2009). TGF-βs and BMPs have widely recognized roles in bone formation during 

mammalian development (Katagiri and Takahashi, 2002). Disruptions of TGF-β/BMP 

signaling implicate bone diseases including tumor metastasis and osteoarthritis (Siegel 

and Massague, 2003). TGF-β signaling promotes osteoprogenitor proliferation, 

commitment to the osteoblastic lineage and early differentiation (Chen et al., 2012a). It 

has been recognized that TGF-β is involved in the pathogenesis of late radiation 

damage in the non-tumor bearing tissues of previously irradiated patients and thus its 

activity may modulate late post-radiation changes (Canney and Dean, 1990).  

TGF-β1 is one of the isoforms of the TGF-β superfamily. It plays an important role in 

endochondral and intramembranous ossification. TGF-β1 deficient mice display reduced 

bone growth and mineralization (Janssens et al., 2005). Ionizing radiation specifically 

induces the expression of TGF-β1, which is required for DNA repair, progression 

through cell cycle (Figure 1-6) (Mukherjee et al., 2010), inflammation in early stage, and 

later development of radiation damage such as fibrosis (Martin et al. 1997; O'Malley et 

al. 1999). 

BMPs are multifunctional growth factors and play an important role in bone formation 

(Wan and Cao, 2005; Weston et al., 2000). BMPs activate Smad proteins and those 

Smads are phosphorylated and translocate into the nucleus where they regulate their 

target genes such as Runx2 (Runt-related transcription factor 2) to control 

mesenchymal precursor cell differentiation. 
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Runx2 is an important transcription factor that regulates osteoblast and chondrocyte 

differentiation and can be viewed as a marker gene for the BMP signaling pathway. 

Differentiation along the osteoblast lineage has been shown to depend on Runx2 and 

Osterix (Osx) regulation (Figure 1-8) (Nakashima et al., 2002). Runx2 or Osx knockout 

mice show no bone formation (Nakashima et al., 2002; Tsuji et al., 2004), while Runx2 

is a master regulator that acts upstream of Osterix (Nakashima et al. 2002). Osterix is 

expressed as early as mesenchymal cells are committed to enter the osteoblast 

lineage, and expression of Osterix becomes stronger as osteoblast differentiation 

occurs. 

1.4.2 Radiation induces bone loss 

In in vivo studies with a mouse model, prolonged and profound loss of trabecular or/and 

cortical bone has been found after acute radiation exposure to a dose of 2 Gy, which 

represents both a typical dose fraction in cancer radiotherapy and the cumulated space 

radiation exposure for an exploratory mission (Hamilton et al., 2006; Lloyd et al., 2008). 

Studies also show that significant differences in the induction of bone loss in an animal 

model were observed between radiation qualities of therapeutic and space-relevant 

sources (Hamilton et al. 2006). There is evidence showing that therapeutic irradiation 

can cause bone damage in cancer patients, which results in increased bone resorption 

and decreased bone mineral density, and this damage has a good chance in increasing 

the risk of bone fracture (Edwards et al., 2011; Guise, 2006). 

1.4.3 Osteoblasts and bone formation 

Osteoblasts are specialized cells of mesenchymal origin, responsible for bone formation 

and support of osteoclast differentiation. Bone formation includes a complex process 

that contains the proliferation of primitive mesenchymal cells, differentiation into 

osteoblast precursor cells, maturation of osteoblasts, formation and mineralization of 

extracellular matrix, and finally some cells gradually flatten and become quiescent lining 

cells (Figure 1-8). 
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Figure 1-8 Genes involved in osteoblast differentiation 
Runx2 directs pluripotent mesenchymal cells to the osteoblast lineage but inhibits osteoblast 
maturation. Osx also takes charge of osteoblast differentiation, and different proteins are 
produced at the consecutive stages of this process. Graph is modified from (Komori, 2010). 

 

The differentiation of osteoblasts into mature bone cells is regulated by several bone 

derived growth factors such as TGF-β1, and by the transcription factors Osx and Runx2. 

Those factors cause the appearance of markers of differentiated osteoblasts, including 

expression of alkaline phosphatase (ALP) and Type I collagen (the major organic 

component of mineralized bone matrix) (Figure 1-9). 

In addition, increased expression of bone matrix components such as osteopontin is an 

early marker of osteoblast differentiation. The main characteristic of functional, mature 

osteoblasts is their ability to deposit extracellular matrix that mineralizes (Aubin, 1998b). 

The mineralized nodules are composed of inorganic hydroxyapatite (Ca10(PO4)6(OH)2) 

and organic components including type I collagen. These nodules can be visualized by 

using staining methods such as Alizarin red S staining.  
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Figure 1-9 The relationship between osteoblast proliferation and differentiation 
during their development 
During osteoblast differentiation, a series of genes like Runx2, Osx and the cytokine TGF-β1 are 
expressed. Runx2 and Osterix (Osx) are transcription factors. Collagen I, ALP, Osteopontin and 
Osteocalcin are secreted and they encode parts of the extracellular matrix (ECM) or enzymes that 
are important for production of ECM. Graph is modified from (Owen et al., 1990). 

 

During osteoblast mineralization, osteocalcin appears as a later marker. Some of them 

become embedded in the matrix and differentiate into osteocytes. This is likely been 

mediated by local factors produced during the resorption process performed by 

osteoclasts. 

1.4.4 Effect of radiation exposure on osteoblastic differentiation and 
mineralization 

Osteoblasts respond to local and systemic stimuli and multiple stresses like exposure to 

ionizing radiation (Dare et al., 1997; Sakurai et al., 2007). Ionizing radiation induces 

DNA damages which result in detrimental effects on cells. There is a great controversy 

on the effects of radiation on osteoblast differentiation, whether it is inhibited, reduced, 

delayed or stimulated. 
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An inhibition of differentiation of osteoblasts and osteoblast progenitors after radiation 

exposure has been described both in vitro (Szymczyk et al., 2004) and in vivo (Sawajiri 

et al., 2003). There is evidence that radiation at doses of 2 and 4 Gy reduces ALP and 

collagen type I along the osteoblasts’ differentiation (Sakurai et al., 2007). At dose of 4 

Gy, exposure of mouse calvarial osteoblasts to X-rays delayed the mineralization of 

bone matrix in vitro (Park et al., 2012). X-ray exposure at 1 or 2 Gy stimulated 

differentiation mouse calvarial osteoblasts, resulting in enhanced production of 

mineralized extracellular matrix (Park et al., 2012). This stimulation was associated with 

increasing the levels of bone specific markers such as ALP, TGF-β1 and Runx2.  

The influence of dose and radiation quality on the extent of ionization effects in 

osteoblasts have to be clarified and determined. Furthermore, the cellular mechanism 

behind the effects of ionizing radiation on osteoblast differentiation and mineralization 

needs to be further addressed. 

1.4.5 p53 and osteoblast differentiation 

p53 is mainly considered as a negative regulator of osteoblastogenesis by negatively 

regulating bone development and growth; and it suppresses the development of bone 

neoplasia (Chen et al., 2012b; Liu and Li, 2010; Schwartz et al., 1999). P53 negatively 

regulates osteoblast differentiation and function by repressing the expression of Osterix 

via BMP-Smad, BMP-p38 MAPK, or IGF (insulin-like growth factor)-MAPK pathway. 

Some studies show that p53 null mice have a high bone mass phenotype, and 

osteoblasts depleted of p53 have accelerated differentiation and favor osteoclast 

differentiation under the control of Osterix (Liu and Li, 2010). Mdm2 mediates inhibition 

of p53 function which is prerequisite for Runx2 activation, osteoblast differentiation and 

proper skeletal formation (Lengner et al., 2006; Yang et al., 2005); and cells depleted of 

Mdm2 have elevated p53 activity and a reduced level of Runx2 expression. 

Furthermore, p53 also negatively regulates osteoblast-dependent osteoclastogenesis. 

There is evidence showing that p53(-/-) osteoblasts have an enhanced ability to favor 

osteoclast differentiation, in association with an increase in expression of macrophage-

colony stimulating factor, which is under the control of Osterix (Wang et al., 2006a).  
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1.5 Aim of the thesis 

In space, astronauts lose bone mass. A decreased bone density can also be observed 

in patients after radiotherapeutic treatment. However, little is known about osteoblast 

differentiation after exposure to space-relevant radiation. In order to increase the 

knowledge of the effects of space-relevant radiation on osteoblasts, this study was 

aimed at analyzing the cellular effects of irradiation with different qualities in the pre-

osteoblast cell line OCT-1.  

Hence first, the cell killing ability of OCT-1 cells by different radiation qualities was 

assessed by the colony forming ability test. To compare the killing effect of different 

radiation types, the RBE for OCT-1 cell killing by space relevant ionizing radiation was 

determined. For comparison of the radiation sensitivity of pre-osteoblasts with an earlier 

development stage, the RBE values for mesenchymal stem cells C3H10T1/2 were 

analyzed. 

After the initial sensing of DNA damage, cell cycle checkpoint activation allows cells to 

repair the ionizing radiation induced DNA damage. Therefore, OCT-1 cell cycle 

regulation was analyzed after exposure with different radiation qualities. In order to 

address the role of p53 in ionizing radiation induced cell cycle blocks, cyclic pifithrin-α 

was applied. 

In order to study the effects of radiation exposure during the osteoblast differentiation 

and function, OCT-1 cells were cultured in both standard medium and osteogenic 

induction medium. Firstly, cellular effects including cellular senescence, survival, repair 

kinetics and proliferation were compared after irradiation for cells cultured in presence 

or absence of osteogenic induction supplement. Secondly, the extracellular matrix 

produced by osteoblasts was analyzed after ionizing radiation exposure. As p53 can 

influence bone remodeling and is usually activated in response to ionizing radiation 

exposure, its role in the modulation of OCT-1 cell differentiation after exposure to X-rays 

was analyzed by means of the reversible chemical inhibition of p53 with cyclic pifithrin-

α. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Laboratory equipments  

The equipment used for this study is listed in Table 2-1.  

Table 2-1 Laboratory equipments 
Instrument Designation Supplier 

Centrifuge Multifuge 3 S-R Thermo Scientific, Schwerte, 
Germany 

Real-time Thermocycler DNA Engine Opticon2 
System 

BioRad Ltd., Munich, 
Germany 

Dosimeter UNIDOSwebline PTW, Freiburg, Germany 
Fluorescence microscope Axiovision 135 Carl Zeiss AG, Oberkochen, 

Germany 
Flow cytometer FACScan Becton Dickinson, 

Heidelberg, Germany 
Fluorescence microplate 
reader 

Lambda fluoro 320  MWG Biotech, Ebersberg, 
Germany 

Fluorescence microscope Zeiss Axio Imager M2 Göttingen, Germany 
Imager ImageQuant LAS 4010 

version 1.2 
GE Healthcare, München, 
Germany 

Incubator Heraeus Jubilee Edition Heraeus Instruments, Hanau, 
Germany 

Laminar flow hood Herasafe Thermo Scientific, Schwerte, 
Germany 

Light microscope Axiovision 35 Carl Zeiss AG, Oberkochen, 
Germany 

Microelectrophoresis Bioanalyzer 2100 Agilent Technologies, Santa 
Clara CA, USA 

MiniCycler Biozym Diagnostik Biozym, Oldendorf, Germany 
pH-meter Sartorius Sartorius, Göttingen, 

Germany 
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Table 2-1 Laboratory equipments (Continued) 
Instrument Designation Supplier 

PhosphorImager Storm 860 Molecular 
Imager 

GMI Inc., Minnesota, USA 

Water Bath Aqualine AL 12 Lauda, Königshofen, 
Germany 

X-ray generator Gulmay RS225 X-strahl, Surrey, United 
Kingdom 

2.1.2 Consumable materials, reagents and kits 

Consumable materials are shown in Table 2-2. Table 2-3 displays the used reagents 

and kits. 

Table 2-2 Consumables 
Item Supplier 

Chamber slide™ 16 well Nunc, Wiesbaden, Germany 
Cryo Tube™ Vials 1.8 ml Eppendorf Ltd., Hamburg, Germany 
Falcon tubes 15 ml Nunc, Wiesbaden, Germany 
Falcon tubes 50 ml Nunc, Wiesbaden, Germany 
Pasteur pipettes Brand, Wertheim, Germany 

Petri dishes ∅ 3 cm and 6 cm Nunc, Wiesbaden, Germany 

Pipet tips (10, 100, 1000 µl) Eppendorf Ltd., Hamburg, Germany 

Powder-free Latex Exam Gloves Kimberly Clark, Neenah, WI, USA 
Safe-Lock tubes 0.5 ml; 1.5 ml; 2.0 ml Eppendorf Ltd., Hamburg, Germany 
Sterile filter 0.22 μm Millipore Corp., Bedford, USA 
Strip well plate 12 × 8 well Corning Costar, New York, USA 
Tissue Culture flask 25 cm2 and 80 cm2 Nunc, Wiesbaden, Germany 
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Table 2-3 Reagents and kits 
Item Supplier 
Alizarin red S  Sigma Aldrich, Steinheim, Germany 
Amphotericin B (250 µg/ml) PAN Biotech, Aidenbach, Germany 
Ascorbic Acid Merck, Darmstadt, Germany 
Bisbenzimide (C27H28N6O •3HCl •3H2O) Sigma Aldrich, Steinheim, Germany 
Bovine Serum Albumin (BSA) Sigma Aldrich, Steinheim, Germany 
ß-Glycerolphosphate Merck, Darmstadt, Germany 
ß-Mercaptoethanol Sigma Aldrich, Steinheim, Germany 
Cellular Senescence Assay Millipore, Germany 
Crystal violet Merck, Darmstadt, Germany 
Dexamethasone Sigma Aldrich, Steinheim, Germany 
4‘,6-Diamidino-2-phenylindole Sigma Aldrich, Steinheim, Germany 
Ethanol Merck, Darmstadt, Germany 
Fetal Bovine Serum (FBS) Biochrom AG, Berlin, Germany 
Formaldehyde 37% Merck, Darmstadt, Germany 
iScriptTM cDNA synthesis kit Bio-Rad, Munich, Germany 
L-Glutamine (200 mM) PAN Biotech, Aidenbach, Germany 
Mounting medium Invitrogen, California, USA 
Neomycin/Bacitracin Biochrom AG, Berlin, Germany 
One-Step RT-PCR Kit Invitrogen, Carlsbad, USA 
OsteoImage™ mineralization assay Lonza, Walkersville, USA 
Penicillin/ Streptomycin PAN Biotech, Aidenbach, Germany 
Pifithrin-α, Cyclic Sigma Aldrich, Steinheim, Germany 
Platinum SYBR Green qPCR Supermix Invitrogen, California, USA 
Prolong gold antifade reagent Thermo Scientific, Langenselbold, Germany 
Propidium iodide Invitrogen, Carlsbad, USA 
RNA 6000 Nano Assay Thermo scientific, Langenselbold, Germany 
Ribonuclease (RNAse) Calbiochem, La Jolla, USA 
RNAse-Free Dnase Set QIAGEN, Hilden, Germany 
Rneasy Plus Mini Kit QIAGEN, Hilden, Germany 
Triton X-100 Sigma Aldrich, Steinheim, Germany 
Trypsin/EDTA (0.025% trypsin, 0.01% 
EDTA) 

PAN Biotech, Aidenbach, Germany 
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2.1.3 Buffers, solutions and culture medium 

Buffers and solutions were prepared according to Table 2-4. Cell culture medium, which 

is shown in Table 2-5, was completed by adding FBS (fetal bovine serum) and glucose 

in order to provide growth factors and antibiotics to reduce the risk of contamination with 

bacteria and fungi. 

Table 2-4 Buffers and solutions  

Item Reagent Storage 

Alizarin red S 
Solution 

2 g Alizarin red S in aqua dest. 
pH 4.1 – 4.3, adjusted by 1 mol/l HCl 

Room 
temperature 

Bisbenzimide 10 µmol/l bisbenzimide in PBS (Phosphate 
buffered saline) 

-20 °C, protected 
from light 

Blocking buffer 0.5 g BSA  
50 ml PBS  

4 °C 

Crystal Violet 
staining solution 

0.5 g Crystal Violet 
50 ml 37% formaldehyde (FA) stock solution  
500 ml tap water 

Room 
temperature 

DAPI staining 
solution 

0.1 μg/ml DAPI in PBS -20 °C 

Freezing medium 70% Culture medium 
20% (v/v) FBS 
10% (v/v) DMSO 

4 °C 

FA fixation solution 10 ml 37% FA stock solution  
in 90 ml PBS 

4 °C 

Lysis buffer 10 mmol Tris (pH 8.0) 
50 mmol NaCl 
0.5 mol EDTA 
2% N-lauryl sarcosyl 
0.1 mg/ml proteinase E and O 

4 °C 

PBS 5× 80 g NaCl 
2 g KCl 
14.4 g Na2HPO4 
2 g KH2PO4 
2 L aqua dest. 
pH 7.2 

-20 °C 
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Table 2-4 Buffers and solutions (Continued)  

Item Reagent Storage 

PBS 1× 100 ml PBS 5× 
400 ml autoclaved aqua dest. 

4 °C 

Propidium iodide (PI)  
staining solution 

50 µg/ml RNAse A 
0.1% (v/v) Triton X-100  
20 µg/ml PI 
in PBS 

4 °C 

Tris/Borate/EDTA 
(TBE) 

45 mmol/l Tris (pH 8.2) 
45 mmol/l boric acid 
1 mmol/l EDTA 

Room 
temperature 

 
 
Table 2-5 Culture medium  

Item Reagent Storage 

Basal Medium Eagle 
Medium (BME) 

500 ml BME 
50 ml FBS 
5 ml Penicillin / Streptomycin 
5 ml L-Glutamine 
3.5 ml 17% Glucose 
5 ml Amphotericin 

4 °C 

α-minimum essential 
medium (α-MEM) 

500 ml α-MEM 
50 ml FBS 
5 ml Penicillin / Streptomycin 
5 ml L-Glutamine 
5 ml Amphotericin 
10 ml 17% Glucose 

4 °C 

Osteogenic induction 
(OI) medium 

Culture medium BME 
50 μmol/l L-Ascorbic acid 
10 mmol/l β-Glycerophosphate 
100 nmol/l Dexamethasone 

4 °C 
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2.1.4 Softwares 

The computer programs used to edit and evaluate data are shown in Table 2-6.  

Table 2-6 Software 
Item Purpose / use  Supplier 

2100 Expert Software for 
Bioanalyzer 

Assessment of integrity of 
RNA 

Agilent Technologies, 
Karlsbrunn, Germany 

Flowing Software version 
2.5.0 

Cellular DNA content 
calculation in different cell 
cycle phases 

Free online software, 
http://www.flowingsoftware.com 

Image Pocessing and 
Analysis in Java (ImageJ) 

Image analysis Free online software, 
http://rsbweb.nih.gov/ij/ 
download.html 

Opticon 2 For real-time PCR 
detection 

Bio-Rad, Munich, Germany 

Relative Expression 
Software Tool – Multiple 
Condition Solver (REST-
MCS©)  - version 1 

Determination of relative 
expression levels of 
investigated genes  

W. Pfaffl & G.P. Horgan, 
Technical University (TU) 
Munich, Germany 

Sigma Plot 12.0 Data analysis and 
graphing software  

SPSS, Munich, Germany 

2.1.5 Cell lines 

OCT-1 cells were originally isolated from the calvaria of transgenic CB6F1 (C57BL/6 × 

BALB/c) mice carrying the SV40 large T antigen under the control of the bone-specific 

osteocalcin promoter (Chen et al., 1995). They have the ability to form mineralized bone 

nodules after osteogenic induction. OCT-1 cells were used to study the differentiation 

process of osteoblast-like cells after exposure to ionizing radiation. 

C3H10T1/2 cells were established in 1973 from 14- to 17-day-old C3H mouse embryos 

(Reznikoff et al., 1973). These cells can undergo multiple differentiation pathways: 

chondrogenesis, osteogenesis, myogenesis and adipogenesis (Denker et al., 1999; 

Shea et al., 2003). 

http://www/
http://rsbweb/
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2.1.6 Cell culture 

The murine calvaria-derived pre-osteoblast cell line OCT-1 at a low passage number 

(below 20) was maintained in α-MEM medium supplemented with 10% FBS at 37 °C in 

a humidified atmosphere containing 5% CO2. Cells were passaged every week and 

seeded at a density of 3 × 103 cells/cm2 in 80 cm2 cell culture flasks. 

For cell freezing, 1 × 106 cells in freezing medium were pipetted in cryotubes and frozen 

at -80 °C in a box containing 100 % isopropanol, assuring a decrease in temperature of 

1 °C per minute (min). After 24 h, the cryotubes were transferred into the liquid nitrogen 

container for long term storage. 

C3H10T1/2 cells were seeded at a density of 5 × 103 cells/cm2 in 80 cm2 cell culture 

flasks and maintained in BME culture medium supplemented with 10% FBS in a 

humidified atmosphere at 37 °C. 

2.1.7 Inhibitor experiments 

In order to study Mdm2, interactions of p53 and Mdm2 or p53-Mdm2 pathway, there are 

some chemicals are applied currently, for example Nutlin-3 (Mdm2 antagonist; inhibits 

Mdm2-p53 interaction) (Vassilev et al., 2004), cyclic pifithrin-α (reversible inhibitor of 

p53-mediated apoptosis and p53-dependent gene transcription) (Sohn et al., 2009), and 

cyclic pifithrin-α (cyclized form of cyclic pifithrin-α) which is more stable than cyclic 

pifithrin-α (Meschini et al., 2010). Cyclic pifithrin-α was applied in this study by adding 

into the culture medium at a concentration of 30 nmol/l 2 h before radiation exposure. 

2.1.8 Osteogenic induction 

To induce osteoblast differentiation, cells were seeded at a density of 5 × 103 cells/cm2 

and cultured for 3 days. The medium was then changed to osteogenic induction (OI) 

medium according to Table 2-5. OI medium was changed every 3 or 4 days. 

2.1.9 Radiation exposure 

In this work, murine cells were exposed to different radiation qualities. X-rays were used 

as sparsely ionizing reference radiation for comparison with heavy charged particles. 
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2.1.9.1 X-irradiation 

X-ray exposure was performed at German Aerospace Center (DLR) in Cologne, 

Germany. OCT-1 cells in the early exponential growth phase were placed on a 

horizontal plate in the X-ray generator RS225 and exposed to X-rays (200 kV, 15 mA) at 

the focus-object distance of 455 mm and with the copper filter (0.5 mm), yielding a dose 

rate of 1 Gy/min, determined by using the dosimeter UNIDOS webline. The irradiation 

chamber was preheated to 37 °C and kept at this temperature during irradiation. Control 

cells were treated similarly but without X-irradiation (mock irradiation). 

2.1.9.2 Heavy ion irradiation 

High-LET heavy ion irradiation was performed at the GSI Helmholtzzentrum für 

Schwerionenforschung GmbH located in Darmstadt, Germany or at the “Grand 

Accélérateur National d’Ions Lourds” (GANIL) in Caen, France (Figure 2-1). Cells were 

seeded at an initial density of 5 × 103 cells/cm2 in 25 cm2 cell culture flasks 2 days prior 

to exposure to heavy ions. For lead ion exposure, lumox™ dishes with a 50 µm 

polytetraethylene foil as growth surface were applied. Characteristics of the applied 

beams are shown in Table 2-7. Dosimetry was performed by the staff at the accelerator 

facilities (Hellweg et al., 2011). Dose rates were adjusted to ~1 Gy/min. To convert 

fluence (F) to the absorbed dose (Gy), the following Equation 2-1 was applied. 

]F[P/cm]eV/µmLET[k101.6Dose[Gy] 29 ×××=    Equation 2-1 
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Figure 2-1 Experiment setup for heavy ion irradiation at GSI in Darmstadt (A) and 
GANIL in Caen, France (B) 
 

Table 2-7 Characteristics of heavy ion irradiation 
Ion Location Energy 

(MeV/n) 
Energy on 
targeta 
(MeV/n) 

LET 
(keV/µm) 

Average hits 
per cell nucleus 

Dose 
range 
(Gy) 

X-rays DLR 0.2 0.2 0.5 – 3  0.5 – 12.0 
13C GANIL 75 71 34 3.6 – 56.8 1.4 – 21.8 
16O GANIL 95 91 51 0.9 – 21.3 0.5 – 12.1 
13C GANIL 35 28 75 0.3 – 7.1 0.2 –   6.3 
22Ne GANIL 80 75 92 0.2 – 5.4 0.2 –   5.7 
48Ti GSI 1000 996 108 0.2 – 12.6 0.3 – 15.4 
56Fe GSI 1000 997 150 0.3 – 2.3 0.5 –   3.9 
58Ni GSI 1000 985 175 0.2 – 2.4 0.5 –   4.8 
64Ni GSI 1000 985 175 0.5 – 4.0 0.9 –   7.7 
36Ar GANIL 95 85 272 0.07 – 1.4 0.2 –   3.7 
58Ni GANIL 75 56 905 0.2 – 2.1 2.0 – 23.6 
209Pb GANIL 29 20 9674 0.009 – 0.6 1.0 – 62.0 
a Effective irradiation energy at the cell monolayer after the energy losses in two detectors, the exit 
window, air (GANIL: 1 cm, GSI: 100 cm) and the bottom of the culture vessel (1200 mm polystyrene).  
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Immediately prior to irradiation, flasks were completely filled with serum free α-MEM or 

BME. Flasks were irradiated in an upright position at room temperature. Control 

samples were sham-irradiated by subjecting them to the same conditions, but without 

being irradiated. 

2.1.9.3 Cell survival determination 

Cellular survival was determined by the colony forming assay as established by Puck 

and Markus (Puck et al., 1956). Cells were seeded and irradiated in 25 cm2 flasks. The 

cell number to be seeded was determined according to the plating efficiency (PE) and 

the expected survival in order to obtain ~50 colonies per Petri dish. Immediately after 

radiation exposure, cells were trypsinized and plated in six Petri dishes (∅ 6 cm) per 

dose. Mock-irradiated cells were used as a control. After 10-12 days incubation time, 

culture medium was removed and they were gently washed with 1× PBS. The resulting 

colonies were fixed and stained with crystal violet solution. Next, dishes were washed 

with tap water and air dried overnight. Resulting colonies with more than 50 daughter 

cells were considered as survivors. 

The survival fractions (S) were calculated by dividing the PE of irradiated cells (PEirr) by 

the PE of mock-irradiated cells (PEcontrol) according to the Equations 2-2 and 2-3. 

seeded Cells
counted ColoniesPE =       Equation 2-2 

control

irr

PE
PE

S =         Equation 2-3 

The resulting dose-effect curves are described by the following Equation 2-4 and are 

characterized by the parameters D0 and n (single hit multi target model) (Figure 2-2).  

nD/D )e(11S 0−−=        Equation 2-4 

(D: dose; D0: reciprocal value of the slope within the linear part of the curve;  

n: extrapolation number, obtained by extrapolating the exponential section of the curve 

to the abscissa.) 
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All data were compared by means of the t-test and fitted using a least squares linear 

regression analysis of ln SD/SD=0 versus dose. SD and SD=0 represent the surviving 

fractions of the irradiated and non-irradiated cells, respectively. 

The RBE of different radiation qualities is described by the Equation 2-5. The absorbed 

dose (D) of a test radiation (DTest) is compared to a reference radiation dose (DRef) that 

is assumed to cause the same biological effect. In order to determine the RBE for cell 

killing by heavy ions, X-rays (200 kV) were used as the reference radiation. The D0 of 

the survival curves was used as measure of the cell killing effect.  

Test

Ref

D
DRBE =        

 
Equation 2-5 

(Dref is the D0 value of the X-ray survival curve; Dtest is the D0 of the tested radiation) 
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Figure 2-2 Single hit multi target model of a survival curve for mammalian cells 
exposed to ionizing radiation 
The survival fraction is plotted on a logarithmic scale against dose on a linear scale. D0 is the 
reciprocal of the curve slope (k) in the exponential part of the curve (D0 = 1/k). The extrapolation 
number n results from extrapolation of the exponential part of the curve to the y-axis. The 
intersection of this extrapolated curve with the 100% survival line is the quasi-threshold dose Dq. 
This dose is required to inactivate all but the last target and can be defined by: - ln(n) = Dq/D0. 

2.1.9.4 DNA repair kinetics 

Cells were seeded at a density of 5 × 103 cells/cm2 in 25 cm2 flasks and cultured for 3 

days allowing about 80% confluence, and medium was changed with standard culture 

(SC) or OI medium. Cells were then incubated for 1, 2 or 3 weeks. SC or OI medium 

was refreshed twice a week. After the indicated time points, all flasks cells with freshly 

changed SC medium were irradiated and incubated for repair at 37 °C. After certain 
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incubation time periods, they were washed with cold PBS, kept on ice for 4 h, 

trypsinized and re-suspended in serum free medium at a concentration of 1 × 106 

cells/ml. Then the cell suspension was mixed with an equal volume of 1% agarose; 

pipetted into 3-mm diameter glass tubes, and placed on ice to allow for solidification. 

The solidified cell-agarose suspension was extruded from the glass tubes and cut into 

10 cylindrical blocks containing about 1 × 105 cells/block. The blocks were then placed 

in lysis buffer and incubated first at 4 °C for 45 min and then at 50 °C for 16-18 h. After 

agarose block washing for 1 h at 37 °C in a buffer containing 10 mmol/l Tris (pH 8.0) 

and 0.1 mol/l EDTA, treatment for 1 h at 37 °C in the same buffer, at pH 7.5, with 0.1 

mg/ml Rnase A, followed. The asymmetric field inversion gel electrophoresis (AFIGE) 

was applied (DiBiase et al., 2000). This method is a modification of field inversion gel 

electrophoresis which uses periodically reversal of electric field directions (180 degree 

change). AFIGE was carried out in 0.5% agarose in the presence of 0.5 mg/ml ethidium 

bromide, in 0.53 × TBE at 10 °C for 40 h. During this time, cycles of 1.25 V/cm for 900 s 

in the direction of DNA migration alternated with cycles of 5.0 V/cm for 75 s in the 

reverse direction. AFIGE gels stained with ethidium bromide were imaged using a 

PhosphorImager (Molecular Dynamics). 

To determine DNA damage, the fraction of activity released (FAR) was calculated. To 

estimate an equivalent dose (Deq) for each FAR value, dose response curves were 

generated and utilized (Windhofer et al., 2007; Wu et al., 2008). 

The FAR as a measure of DNA DSBs in irradiated and non-irradiated samples were 

plotted (Figure 2-3) against the dose. From this graph, the equivalent doses (Deq) were 

derived. Repair kinetics were plotted as Deq versus time. 
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Figure 2-3 Example of a dose effect curve for DNA DSB induction determined 
by AFIGE 
The fraction of activity released (FAR) as a measure of DNA DSBs in X-irradiated exponentially 
growing wild-type DT40 cells was determined immediately after irradiation. A dose of 60 Gy 
results in a FAR of 50 % (Wang et al., 2001). 

2.1.10 Senescence-associated β-galactosidase assay 

The expression of senescence-associated β-galactosidase (SA-β-gal) was determined 

by cytochemical staining. OCT-1 cells were seeded at a density of 3 × 103 cells/cm2 in 

Petri dishes (∅ 3 cm) and cultured for up to 6 days in SC and OI medium. After an 

incubation time of 6 days, cells were washed once with cold PBS and fixed in 70% 

ethanol for 15 min at room temperature (pH 6.0). After fixation, the cells were stained 

with freshly prepared 2 ml 1 × SA-β-gal detection solution (X-gal solution, staining 

solution A (contains potassium ferrocyanide, potassium ferricyanide) and staining 

solution B (contains sodium phosphate dibasic, citric acid monohydrate)) over night at 

37 °C. For long-term storage of the stained samples at 4 °C, the complete staining 

solution was removed and the cells were overlaid with 70% glycerol in PBS. The stained 

cell monolayer was visualized under the light microscope Axiovision 135 and pictures 

were taken with the camera MRc5. 

2.1.11 Proliferation analysis 

OCT-1 cells were plated at a density of 3 × 103 cells/cm2 (n= 8/ treatment group) in strip 

well plates and irradiated after 24 h. After the serial incubation time points, cells were 

fixed with 0.1 ml 3.5% FA in PBS per well at 4 °C for 30 min and stained with 0.1 ml 
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bisbenzimide Hoechst 33342 per well (10 µmol/l) for 15 min, protected from light. 

Cellular DNA content was then measured with the Lambda plate reader by reading the 

bisbenzimide fluorescence using the excitation/emission filter combination 360/40 + 

460/40 nm with the optics in bottom position. 

2.1.12 Cell cycle analysis 

2.1.12.1 Sample preparation 

To analyze cell cycle regulation, cells were seeded at a density of 5 × 103 cells/cm2 two 

days ahead in order to obtain exponentially growing cells at the time of radiation 

exposure. After irradiation, cells were incubated for up to 96 h. Then cells were 

harvested by gentle trypsinization followed by immediate mixing with ice-cold 100% 

ethanol (with a final ethanol concentration of 75%) and fixation over night at -20 °C. 

Propidium iodide (PI) was used for DNA content/cell cycle analysis. PI passes through a 

permeabilized cell membrane and intercalates into the major groove of double-stranded 

DNA and produces a highly fluorescent adduct with a broad excitation peak at 538 nm 

and fluorescence emission centered around 619 nm. It can be excited by the 488 nm 

argon laser of the flow cytometer. RNAse is used for optimal DNA resolution since PI 

can also bind to double-stranded RNA. 

After fixation, ethanol was diluted with 8 ml PBS and the cells were centrifuged at 500 × 

g for 5 min. The supernatant was removed, and the cell pellets were gently mixed in the 

PI staining solution and incubated at 37 °C for 30 min. 

2.1.12.2 Flow cytometric analysis 

Measurement of cellular DNA content and the analysis of the cell cycle were performed 

by flow cytometry. A flow cytometer enables the fast and differentiated analysis of a 

heterogeneous cell population with respect to fluorescence intensity, cell size, shape 

and internal complexity. The principle of the cell cycle analysis by PI staining is that the 

stained material has incorporated an amount of dye proportional to the content of DNA. 

Initially, a fluorescent dye that binds the DNA is added to a suspension of permeabilized 

single cells or cell nuclei. The stained material is then measured in the flow cytometer 

and the emitted fluorescence signal yields an electronic pulse with a height proportional 
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to the total fluorescence emission from the cell. Thereafter, these fluorescence 

intensities are considered to be a measure of the cellular DNA content. The distribution 

of cells in the various cell cycle phases was identified by this determination of the 

relative cellular DNA content. 

The distinct phases of cellular division in a proliferating cell population are: the G1 (cells 

are active, growing and receptive to signals to begin DNA synthesis), S (DNA synthesis 

phase), G2 (cells are actively preparing for mitosis and contain twice the amount of 

DNA) and M phase (Mitosis occurs in the M phase which results in cell division and 

normal DNA content). G2 and M phases could not be discriminated based on both of 

them having the identical amount of DNA. 

The thoroughly suspended cells are directed through a very thin capillary to separately 

pass a laser beam. In direction of the beam, a photodiode converts forward scattered 

light into electrical impulses (called FSC, forward scatter). At right angle to the laser 

beam, four sensors behind optical filters detect the sideward scattered light (called SSC, 

side scatter) and fluorescence signals (FL-1 to FL-3). The PI stained events were 

detected in the FL2-H channel. The results were displayed as histogram (one-

parameter-dependency) and topographically as a dot plot (two-parameter-dependency). 

Flow cytometric analysis with 10,000 events counting was performed. 

2.1.12.3 Cell cycle data evaluation 

The results were analyzed with Flowing Software 2.5.0 for flow cytometry data analysis. 

A dot plot of FSC and SSC from the raw data was created, and the region of intact cells 

was inserted (Figure 2-4 A). The SSC-PI plot was created for the SSC on the y-axis 

versus the fluorescence signal PI on the x-axis and linked to the FSC-SSC plots (Figure 
2-4 B). A histogram was created and linked to the SSC-PI plots (Figure 2-4 C). Only 

cells gated in Figure 2-4 B were displayed in a histogram of the fluorescence signal in 

FL-2 (FL2-H). G1, S and G2/M phases were defined by markers in this histogram. The 

percentage of cells in G1, S and G2/M phases was calculated from the number of 

events within the three histogram markers defined by the fluorescence signal. 
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Figure 2-4 Cell cycle flow cytometry data analysis 
The region of living and single cells was set manually in the FSC-H/SSC-H dot plot (A) and the PI-
SSC dot plot (B). Markers for the cell cycle phase were defined in the propidium iodide 
fluorescence histogram showing the gated cells (C). Markers and regions were set by means of 
untreated control samples. 

 

2.1.13 Gene expression analysis 

Reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) was 

applied for the gene expression analysis. The basic goal of qPCR is to precisely 

measure specific nucleic acid sequences even in a very small quantity. If no reagents 

are limiting, 2n copies of the target DNA fragment can be obtained after n PCR cycles. 

In addition, real-time PCR can read the fluorescence signal during this amplification. 
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Because DNA polymerase cannot utilize RNA as a template, the conversion of mRNA 

to DNA is needed before and can be achieved using the enzyme reverse transcriptase. 

Changes in mRNA expression after exposure to ionizing radiation were analyzed. 

The examination of gene expression profiles was performed using a two-step real-time 

RT-qPCR method after RNA isolation and quality control. 

2.1.13.1 RNA Isolation  

Cells were seeded in 25 cm2 flasks or in Petri dishes (∅ 6 cm) for culturing up to 21 

days under standard or osteogenic conditions. Culture medium was refreshed every 3-4 

days. 

Total cellular RNA was collected by using the RLT buffer of the Rneasy Plus Mini Kit. 

Syringes, needles and 1.5 ml Eppendorf tubes were pre-cooled at -20 °C. Medium was 

removed from the culture vessels completely before adding 600 µl RLT buffer 

(containing 10 µl/ml β-mercapto-ethanol). Lysed cells were then collected by using a 

cell scraper. To homogenize, the cell lysate was passed 5 times through a 20-gauge 

needle (0.9 mm diameter). Samples were immediately frozen at -80 °C. 

Total cellular RNA was isolated using an Rneasy Plus Mini kit according to the 

manufacturer’s specifications (QIAGEN, Hilden, Germany). The isolated RNA was 

eluted with 30 µl RNAse free water. The integrity of RNA was then assessed by using 

the lab-on-chip Bioanalyzer 2100. Only samples with RNA integrity numbers (RIN) 

higher than eight were used for downstream applications (Figure 2-5). 

2.1.13.2 Reverse transcription 

The reverse transcription (RT) was performed in a final volume of 20 µl containing 500 

ng RNA, using the iScriptTM cDNA Synthesis Kit. A mock reverse transcription control 

(RT-) was produced with RNA without reverse transcriptase. The RT was run in the 

MiniCyclerTM with the following program: 25 °C for 5 min, followed by synthesis at 42 °C 

for 30 min, denaturation at 85 °C for 5 min and 4 °C for 5 min. After the RT program was 

finished, samples were kept in -20 °C. 
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Figure 2-5 Electropherogram analysis 
The electropherograms result from micro-electrophoresis of a RNA ladder (a) and an intact RNA 
sample (b) using the Bioanalyzer. FU, fluorescence units, s, seconds. The seven characteristic 
regions of the ladder and 3 regions in the sample are marked (Schroeder et al., 2006). 
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2.1.13.3 Realtime qPCR 

qPCR was performed by using a SYBR Green based detection system. Fluorescence of 

SYBR Green-DNA complexes was measured by the DNA Engine Opticon2 System 

during cycling.  

The reaction mix had a total volume of 25 µl and contained ready to use cocktail 1 × 

reaction mix (Platinum® SYBR® Green qPCR SuperMix-UDG), 0.2 μmol/l specific 

forward and reverse primer, 20 ng cDNA, and RNAse free water to fill up to the final 

volume of 25 µl. 

The PCR conditions were optimized for the specific primers. The primer sequences are 

given in Table 2-8. 

The amplification was performed under following conditions: a single step of pre-

denaturation at 50 °C for 30 min; initial denaturation at 94 °C for 2 min; 44 cycles of 94 

°C for 15 s, specific primer annealing temperature (TA) for 30 s, 72 °C for 30 s, plate 

reading, 78 °C for 20 s and then plate reading was performed; afterwards melting 

temperature was measured by reading every 0.2 °C for 3 sec from 95 °C to 60 °C. 

 

Table 2-8 Primer sequences for PCR of cell cycle regulating genes and 
reference genes 

Gene  Sequence 
Annealing 
temperature 
(TA) (°C) 

Gene bank 
accession 

B2M 
 

Forward 
Reverse 

CCG TCT ACT GGG ATC GAG AC 
GCT ATT TCT TTC TGC GTG CAT 59.1 NM_009735 

CDKN1A 
 

Forward 
Reverse 

TTG CAC TCT GGT GTC TGA GC 
TCT GCG CTT GGA GTG ATA GA 59.1 NM_007669 

GAPDH 
 

Forward 
Reverse 

GTG GAC CTC ATG GCC TAC AT 
TGT GAG GGA GAT GCT CAG TG 59.2 NM_008084 

Mdm2 
 

Forward 
Reverse 

CGG CCT AAA AAT GGT TGC AT 
TTT GCA CAC GTG AAA CAT GAC A 57.4 NM_010786 

TP53 
 

Forward 
Reverse 

TGA AAC GCC GAC CTA TCC TTA 
GGC ACA AAC ACG AAC CTC AAA 56.0 NT_096135 
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Threshold cycle (Ct) values were calculated using the Opticon2 software (Figure 2-6). 

For each primer set, the standards (by a series of cDNA dilutions), a no template control 

(NTC), and the mock reverse transcription control RT- were included.  

Beta-2-microglobulin (B2M) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

were chosen as reference genes for contrasting function and abundance in various 

tissues and cells with significant differences in gene expression levels.  

The authenticity of the PCR products was verified using melting curve analysis (Figure 
2-7). 

 

 

Figure 2-6 Real time qPCR amplification plots 
Real time qPCR amplification plots of B2M (samples of 56Fe experiment, LET 150 keV/µm). The 
fluorescence is increasing with the PCR cycle. The number of the cycle during which the 
threshold was crossed is the Ct value. The threshold was set manually in the early exponential 
phase of the DNA amplification plots, above the background fluorescence of the first 10-15 PCR 
cycles (dotted line). 
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Figure 2-7 Melting curves of real time PCR 
Melting curves of real time PCR products of B2M (samples of 56Fe experiment, LET 150 keV/µm). 
The fluorescence is decreasing during heating and dissociation of the DNA. The first derivative 
curves of fluorescence show a single, sharp peak, suggesting that only one specific PCR product 
was generated. 

 

2.1.13.4 Relative quantification of gene expression levels 

Relative quantification of gene expression was based on calculation of the efficiency-

corrected ∆Ct for the gene of interest in relation to references genes. The Ct values were 

corrected for the efficiency of the qPCR reaction (EFF). The qPCR efficiency was 

determined using a dilution series of a pool of cDNA from all samples (2-3 µl per sample) of 

the experiment. The slope of the resulting standard curve (Figure 2-8) was used to 

calculate qPCR efficiency according to Equation 2-6 (Rasmussen, 2001). 

-1/slope10EFF =        Equation 2-6 
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Figure 2-8 Real time PCR standard curve 
Real time PCR standard curve of B2M (samples of 56Fe experiment, LET 150 keV/µm). The slope of 
the standard curve is -2.81, and the regression coefficient r2 is 0.968. 

 

The mean Ct values were calculated from triplicate measurements. Relative quantification 

was performed by measuring the difference in copy numbers between two samples that had 

been normalized to an endogenous reference gene (housekeeping gene). Changes in gene 

expression levels of specified transcripts are measured and described in arbitrary units 

relative to the level of reference transcripts within the same sample. 

Relative expression levels of all investigated genes were determined using the REST-

MCS© software (Pfaffl et al., 2002). This software normalizes target gene expression 

against the expression of the reference genes B2M and GAPDH according to Equation 2-7 
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and performs a pair wise fixed reallocation randomization test as significance test. 

Reference genes were selected by using BestKeeper software (Pfaffl et al., 2004). 

)Mean(MeanΔCt
Reference

)Mean(MeanΔCt
Target

samplecontrolReference

samplecontroltarget

)(E
)(E

Regulation −

−

=   Equation 2-7 

2.1.14 Assessment of extracellular matrix mineralization 

2.1.14.1 Alizarin red S staining 

OCT-1 cells were seeded at a density of 3 × 103 cells/cm2 into Petri dishes (∅ 6 cm2) 3 

days before irradiation. The cells were irradiated as described in 2.1.9 and a medium 

change (SC/OI medium) was performed afterwards. The cells were then cultured for up 

to 21 days. Since the calcium usually co-precipitates with the phosphate ion also under 

in vitro culture conditions, mineralized matrix can be visualized histochemically via 

Alizarin red S staining reaction with the calcium portion to form a chelate (Wang et al., 

2006b). To estimate the amount of mineralized tissue formed in each culture, fixed 

cultures were stained with Alizarin red S solution. After the incubation time, cells were 

washed once with PBS and fixed in 70% ethanol for 20 min at room temperature. The 

cells were rinsed in aqua bidest., then stained with 2% Alizarin red S (pH 4.2) for 20 

min, and followed by rinsing twice with aqua bidest., extensively washed with ethanol to 

mitigate the non-specific staining, and then immediately scanned with the 

ImageQuantTM LAS 4010 (trans-illumination, 1 s exposure time). 

2.1.14.2 Quantification of mineralized extracellular matrix 

In order to quantify the mineralized extracellular matrix stained with Alizarin red S, 

Image J was used. The mineralized material was measured by analyzing the red 

saturation of the surface area. In each image, five measurements were taken in different 

areas within the image. The same area size and position were applied for each image. 

The arithmetic means of five measurements were calculated and plotted by using 

Sigma Plot 12.0. 
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2.1.15 Immunofluorescence staining 

In order to visualize TGF-β1, Runx2, p53 and Mdm2 protein expression, 

immunofluorescence staining of irradiated cells was performed. 

Cells were seeded in chamber slides (16 wells) at a density of 5 × 103 cells/cm2. Then 

cells were incubated at 37 °C for 48 h under standard cell culture conditions. After 

treatment with ionizing radiation and/or with the p53 inhibitor cyclic pifithrin-α, the cells 

were fixed for immunofluorescence analysis. For multiple time-points, observed 

samples were fixed and stored at 4 °C until all samples were ready. 

For staining, chamber slides were first washed 3 times with 0.2 ml 1 × PBS per well. In 

the following, cells were permeated for 10-15 min on ice with 0.1 ml of 0.5% Triton X-

100 with 1% BSA in PBS. Then cells were blocked with 0.2 ml 50% FBS in PBS for 1 h 

at room temperature (alternative: overnight at 4 °C) and followed by incubation with the 

primary antibody (Table 2-9) for 1 h at room temperature (alternative: overnight at 4 °C), 

preventing drying out by sealing the chamber slides with parafilm.  

 

Table 2-9 Primary antibodies 
Antigen Product 

code 
Species Supplier Working 

dilution 
Cross reactivity 

TGF-β1 sc-146 Rabbit Santa Cruz 
Biotechnology 1:200 

Mouse, rat, 
human, Xenopus 
laevis 

RUNX2 sc-10758 Rabbit Santa Cruz 
Biotechnology 1:200 Mouse, rat, 

human 

p53 PAB421 Mouse Millipore 1:500 Human, monkey, 
mouse, rabbit, rat 

Mdm2 MAB3776 Mouse Millipore 1:500 Human, mouse, 
rat 
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After 3 times washing with 0.2 ml PBS with 1% BSA, the secondary antibody (Table 2-
10) was diluted and incubated on a shaker (30 RPM (Revolutions per minute)) for 1 h in 

the dark. After 3 times washing with 1% BSA PBS solution, DAPI-solution was added 

and the slides were incubated at 37 °C for 15 min. The chamber wall was removed from 

the slide. A cover glass was then fixed with mounting medium on the slide. 

The samples were investigated under a fluorescence-microscope (Zeiss Axio Imager 

M2) (Excitation/Emission: Cy5, 646 nm/664 nm; FITC, 495 nm/517 nm; DAPI, 360 

nm/460 nm). 

 
Table 2-10 Secondary antibodies 
Antibody conjugate Product code Species Supplier Working dilution 

Cy5 anti-mouse IgG PA45010 Goat GE Healthcare 1:250 

FITC anti-rabbit IgG SC-2090 Donkey 
Santa Cruz 
Biotechnology 

1:250 

FITC anti-mouse IgG 821 462 Sheep Boehringer 1:250 

 

2.1.16 Statistical analyses 

X-irradiation experiments were performed ≥3 times. Heavy ion experiments were 

performed according to beam time availability. Standard errors were calculated to 

account for differences in the number of replicates and the repetition of experiments. 

Means, standard errors, and significance levels (t-tests) were calculated with Microsoft 

Office Excel 2010. Results are presented as mean ± standard error (SE). Statistical 

significance between different samples was determined with two-tailed Student’s t-tests. 

In the result section, significant differences between two treatments are represented by 

the probability (p) of the assumption that the null hypothesis is true (*, p < 0.05; **, p < 

0.01; ***, p < 0.001). 
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3. Results 

This study was aimed at determining the effects of ionizing radiation on bone forming 

osteoblast cells.  

Firstly, the effects of different qualities of ionizing radiation on pre-osteoblasts were 

determined. Cell killing by different ionizing radiation qualities was assessed indirectly 

by determining the cellular survival after irradiation. To compare the cell killing effect of 

exposure to energetic heavy ions to that of the reference radiation, low-LET X-rays, the 

relative biological effectiveness (RBE) for reducing the reproductive survival fraction to 

37% was calculated. 

After ionizing radiation exposure, in order to survive and maintain the genomic stability, 

cell cycle checkpoints can be activated and will allow cells to repair the ionizing 

radiation induced DNA damage, mediate cell fate including differentiation. Therefore, in 

this study, cell cycle regulation was analyzed. The influence of different radiation 

qualities was compared on equal survival level for cell cycle arrest and mRNA 

expression of the cell cycle regulator CDKN1A. The encoded protein p21 is one of the 

transcriptional targets of p53 which can respond to radiation induced DNA damage. In 

the following, the role of p53 in cell cycle regulation after irradiation was also studied by 

applying cyclic pifithrin-α. 

The influence of ionizing radiation on OCT-1 osteogenic differentiation was analyzed by 

determining the calcium deposition of cells cultured in OI medium up to 21 d after 

radiation exposure. In order to study the impact of the OI medium on the radiation 

response of osteoblasts, cellular survival, repair kinetics and proliferation were 

addressed. Furthermore, early differentiation was investigated by visualizing the 

markers TGF-β1 and Runx2 shortly after irradiation; the role of p53 in radiation-induced 

bone cell differentiation was also examined by applying its reversible inhibitor cyclic 

pifithrin-α. 
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3.1 Effects of ionizing radiation on the cellular survival of pre-osteoblasts 

In order to identify the survival ability of pre-osteoblasts after exposure to ionizing 

radiation, the colony forming ability of OCT-1 cells was determined. The survival level 

after exposure to space relevant radiation with a large range of linear energy transfer 

(LET) was compared to that after exposure to X-rays. 

For comparison of the radiosensitivity of pre-osteoblasts and mesenchymal stem cells, 

the survival ability of C3H10T1/2 cells after exposure to selected radiation qualities was 

determined. These cells can also differentiate into osteoblasts, but are not yet 

committed to the osteoblast lineage. 

3.1.1 Cellular survival of OCT-1 cells after exposure to different radiation 
qualities 

After exposure to ionizing radiation, clonogenic survival of OCT-1 cells was determined 

using the colony forming ability assay as established by Puck and Marcus (1956).  

The results show that radiation with different LET reduces the cellular survival fraction in 

a dose-dependent manner (Figure 3-1). 

After X-ray exposure, the survival curve shows an initial shoulder region. In this dose 

range, DNA repair can eliminate potentially lethal damage. The shoulder is followed by 

an exponential decrease.  

The survival curves after exposure to densely ionizing heavy ions show no or only a 

very slight shoulder prior to the exponential decrease of survival with radiation dose. 

The slope of the curves depends on the radiation quality (LET) (Figure 3-1). Up to an 

energy loss of 150 keV/µm, the slope decreases with LET (Figure 3-1 A); at higher 

LETs, the slope increases sharply (Figure 3-1 B). 
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Figure 3-1 Survival curves of OCT-1 cells exposed to low-LET X-rays or high-
LET accelerated charged particles 
Survival curves of OCT-1 cells exposed to low-LET X-rays (5 independent experiments with each 6 
replicates) or high-LET accelerated charged particles (1 independent experiment with each 6 
replicates). Survival curves were fitted according to the equation nD/D )e(11S 0−−= . D, dose; D0, 
reciprocal value of the slope within the linear part of the curve; n, number of targets. Curve slopes 
increase up to LET values of approximately 150 keV/µm (A) and then decrease (B). 



Results 

51 
 

3.1.2 Relative efficiency of OCT-1 cell killing by different radiation qualities 

In order to compare the survival curves resulting from exposure of OCT-1 cells to 

different radiation qualities, three parameters of the dose-effect curves were calculated. 

In this context, the extrapolation number n was obtained by extrapolating the 

exponential portion of the curve to the y-axis. X-rays display a higher n value with 6.37, 

compared to all other tested radiation qualities (0.63-1.31). 

Dq is the quasi-threshold dose required to inactivate all but the last targets (Hall 2000). 

For X-rays and 58Ni ions (LET 905 keV/µm), the Dq values are 2.66 Gy and 0.63 Gy, 

respectively. The Dq values of other radiation qualities are mostly around 0 Gy (Table 3-
1). 

D0 is defined as 37% survival dose in the linear section of the survival curve. The D0 for 

OCT-1 cells after X-ray exposure was 1.44 Gy. When LET values increased up to 150 

keV/µm, D0 values decreased down to a value of 0.48 Gy. The D0 increased for heavy 

ions with an LET above 150 keV/µm, reaching a value of 11.44 Gy for lead ions with an 

LET of 9674 keV/µm (Table 3-1). 

The RBE for killing of OCT-1 pre-osteoblasts by the investigated radiation qualities was 

calculated using the D0 of the survival curves. X-rays were used as reference radiation.  

The RBE increases from 1.00 for X-rays to 3.03 for 56Fe ions with augmenting LET up to 

150 keV/µm, and then decreases to 0.13 for 208Pb ions with an LET of 9674 keV/µm 

(Table 3-1). This reflects that radiation qualities with an LET of about 150 keV/µm are 

most effective in killing pre-osteoblast cells. The RBE values plotted on a linear scale 

against LET on a logarithmic scale reveal a distinct peak of around 3.0 at an LET of 

about 150 keV/µm (Figure 3-2). 
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Table 3-1 Parameters of the survival curves (n, Dq, D0, D1%) and RBE of different ion species in OCT-1 cells 
(sorted from smallest to largest LET) 

Ion 
species 

Energy 
(MeV/n) 

LET in H2O 
(keV/µm) 

n Dq (Gy) D0 (Gy) D1% (Gy) RBE (D0) 

X-rays 0.2 0.3-3 6.37 ± 2.61 2.66 ± 0.69 1.44 ± 0.09 6.62 1.00 

13C 75 35 1.12 ± 0.67 0.15 ± 0.70 1.30 ± 0.15 6.00 1.10 

16O 95 51 1.11 ± 0.28 0.13 ± 0.31 1.30 ± 0.06 5.98 1.11 

13C 35 75 1.19 ± 0.19 0.14 ± 0.13 0.79 ± 0.04 3.62 1.83 

22Ne 80 92 1.08 ± 0.23 0.05 ± 0.14 0.64 ± 0.05 2.94 2.26 

56Fe 1000 150 0.63 ± 0.35 -0.22 ± 0.21 0.48 ± 0.05 2.19 3.03 

58Ni 1000 175 0.68 ± 0.28 -0.20 ± 0.17 0.52 ± 0.04 2.39 2.77 

64Ni 1000 175 1.31 ± 0.34 0.15 ± 0.13 0.54 ± 0.02 2.47 2.68 

36Ar 95 272 1.03 ± 0.18 0.02 ± 0.14 0.81 ± 0.05 3.73 1.78 

58Ni 75 905 1.29 ± 0.32 0.63 ± 0.60 2.48 ± 0.12 11.42 0.58 

208Pb 29 9674 1.00 ± 0.04 0.05 ± 0.49 11.44 ± 0.41 52.68 0.13 

Note. D0 values were calculated according to the equation nD/D )e(11S 0−−= , where D is the dose; Dq, the quasi-threshold dose for a given cell 

population and radiation quality that indicates the width of the shoulder of the survival curve; D0, the reciprocal value of the slope within the linear 

part of the curve; D0, the 37% cellular survival dose within the linear part of the curve; D1%, the 1% cellular survival dose within the linear part of 

the curve and n, the number of targets. RBE was calculated from D0 by applying the equation RBE = D0 reference / D0 test. X-rays were used as 

reference radiation. RBE (D1%) is equal to RBE (D0). 
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Figure 3-2 Relative efficiency of OCT-1 cell killing by different radiation qualities 
The RBE values were calculated from D0 of the survival curves resulting from colony forming 
ability tests after exposure of OCT-1 cells to accelerated HZE particles. 200 kV X-rays were used 
as reference radiation for RBE calculation. 

3.1.3 Cellular survival of C3H10T1/2 cells after exposure to different radiation 
qualities 

As for OCT-1 cells, the survival of C3H10T1/2 cells after exposure to different ionizing 

radiation qualities was determined by means of the colony forming ability test. Also in 

C3H10T1/2 cells, the LET of the heavy ion beam influences the course of the survival 

curves. 

After X-ray exposure, the survival curve shows a similar initial shoulder region as for 

OCT-1 cells, which is followed by an exponential decrease of the survival fraction.  

After irradiation with 13C (LET 35 keV/µm), 16O (51 keV/µm) and 13C ions (75 keV/µm), 

the survival curves are decreasing exponentially with almost no shoulder. The slope of 

the curves augments when LET increases (Figure 3-3). 
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Figure 3-3 Survival curves of C3H10T1/2 cells 
Survival curves of C3H10T1/2 cells exposed to low-LET X-rays (3 independent experiments with 
each 6 replicates) or high-LET accelerated charged particles (1 independent experiment with 6 
replicates each). 

3.1.4 Relative efficiency of C3H10T1/2 cell killing by different radiation qualities 

In order to compare the survival curves for different radiation qualities and to determine 

the RBE for C3H10T1/2 cell killing, the parameters n, Dq and D0 were calculated (Table 
3-2). 

Table 3-2 Parameters of the survival curves (n, Dq, D0, D1%) resulting from 
exposure of C3H10T1/2 cells to different radiation qualities and RBE 

Ion 
species 

Energy 
(MeV/n) 

LET in 
H2O 

(keV/µm) 
n Dq (Gy) D0 (Gy) D1% RBE 

(D0) 

X-rays 0.2 0.3 – 3 1.88 ± 0.39 1.05 ± 0.39 1.66 ± 0.10 7.66 1.00 

13C 75 35 1.01 ± 0.08 0.01 ± 0.13 1.64 ± 0.03 7.55 1.01 

16O 95 51 1.04 ± 0.14 0.07 ± 0.20 1.50 ± 0.08 6.93 1.11 

13C 35 75 0.93 ± 0.08 -0.05 ± 0.06 0.67 ± 0.02 3.09 2.48 
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The survival curve after X-ray exposure has a relatively high n value of 1.88, whereas 

the heavy ion survival curves have the n values of ~ 1. The Dq values of X-ray and 13C 

(35 keV/µm), 16O and 13C (75 keV/µm) ion survival curves, are 1.05, 0.01, 0.07 and -

0.05 Gy, respectively. The D0 for X-rays is 1.66 Gy; and for heavy ions, the D0 value 

decreases when LET increases. 

The RBE values, which were calculated as described before, increase from 1.00 to 2.48 

as the LET increases from 3 to 75 keV/µm (Table 3-2).  

3.1.5 Comparison of relative killing efficiency in C3H10T1/2 and OCT-1 cells 

To compare the RBE for killing of C3H10T1/2 and OCT-1 cells by different radiation 

qualities, the LET-RBE curves were plotted together. The result revealed that for both 

cell lines, an LET dependence of cell survival ability exists, and both cell lines show a 

comparable extent of relative cell killing effectiveness for the tested radiation qualities 

(Figure 3-4). 

 
Figure 3-4 Comparison of the LET dependence of the RBE for reduction in 
colony forming ability calculated from D0, for OCT-1 and C3H10T1/2 cells 
200 kV X-rays were used as reference radiation for RBE calculation. For OCT-1 cell exposures, the 
heavy ions are designated in Figure 3-2. The heavy ions C3H10T1/2 cells were exposed to are 
indicated in the graph. 
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3.2 Cell cycle progression after irradiation with X-rays and heavy ions 

In the previous subchapter, survival as a late endpoint of the cellular radiation response 

was analyzed, showing its dose and radiation quality dependence in OCT-1 cells. 

Earlier steps after radiation exposure include the activation of cell cycle check-points in 

response to DNA damage. Only after successful repair during such a cell cycle arrest, 

survival with reproductice integrity can be achieved. Therefore, the cell cycle 

progression after exposure to different radiation qualities was assessd. 

OCT-1 cells were exposed to X-rays and different heavy charged particles: 13C-ions (35 

keV/µm), 13C-ions (75 keV/µm), 22Ne-ions (92 keV/µm), 48Ti-ions (115 keV/µm), and 
64Ni-ions (175 keV/µm). A summary of all applied radiation qualities is shown in Table 
2-7. After irradiation, the cells were harvested as described before and stained with 

propidium iodide before they were subjected to flow cytometry to analyze the cell cycle 

progression. 

3.2.1 Cell cycle progression after X-ray and heavy charged particle exposure 

After radiation exposure, the fraction of OCT-1 cells in G2/M phase was significantly 

higher than non-irradiated control, reflecting the radiation dose of X-rays and heavy ions 

(Figure 3-5 A-F). For X-ray and heavy ion irradiation, the maximal cell cycle 

perturbation is observed at around 8-12 h after exposure. The G2/M percentage of 

OCT-1 cells exhibits a clearly higher peak after exposure to 22Ne-ions and 64Ni-ions 

compared to X-irradiation (Figure 3-5 D F). The block persists longer and is higher after 
64Ni-ion exposure with doses of 2, 4 and 8 Gy, resulting in 32.9%, 47.4% and 65.2% of 

the cell population accumulating in the G2/M phase after 72 h (Figure 3-5 F). 
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Figure 3-5 Accumulation of OCT-1 cells in the G2/M phase after irradiation 
Comparison of the accumulation of cells in the G2/M phase of the cell cycle after exposure of 
OCT-1 cells to high- or low LET radiation. Cells were fixed and analyzed up to 72 h after exposure 
to X-rays (A), 13C-ions (LET 35 keV/μm) (B), 13C-ions (LET 75 keV/μm) (C), 22Ne-ions (D), 48Ti-ions €, 
and 64Ni-ions (F). 
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3.2.2 Comparison of cell cycle progression at 1% cellular survival level 

In order to compare the influence of different radiation qualities on cell cycle regulation, 

RBE values for cell killing were classified in four categories:  

I, 0 < RBE ≤1;  

II, 1 < RBE ≤ 2;  

III, 2 < RBE ≤ 3; and  

IV, RBE >3.  

Within each category, one representative radiation quality was selected as follows: a, X-

rays with an LET of 0.5-3 keV/µm; b, 13C-ions, 75 MeV/n; c, 22Ne-ions, 80 MeV/n; d, 
56Fe-ions or 64Ni-ions, 1000 MeV/n (Figure 3-6). Doses resulting in 1% survival levels 

were: 10, 5.5, 3.8, and 1.9 Gy, respectively (Figure 3-7 A B).  

 
Figure 3-6 RBE categories for cell cycle analysis 
RBE values were classified in four categories: I, 0 < RBE ≤1; II, 1 < RBE ≤ 2; III, 2 < RBE ≤ 3; and IV, 
RBE > 3. Four radiation qualities with an LET of 0.5-3 keV/µm; 35 keV/µm; 92 keV/µm and 150 -175 
keV/µm were selected from those four categories. 
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Figure 3-7 Calculated 1% cellular survival dose 
The dose resulting in 1% cellular survival was calculated from the survival curves of the selected 
radiation qualities (A), and plotted in bar chat (B). 
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Cell cycle progression of exponentially growing OCT-1 cells was analyzed by flow 

cytometry up to 48 h after radiation exposure for the doses leading to 1% cellular 

survival. 

An increase in the G2/M peak was observed as early as 4 h after radiation exposure for 

all investigated doses. Changes were even more pronounced 8 h after radiation 

exposure. 8 h after X-ray exposure, 62% of the cells were captured in G2/M phase. The 

percentages of cells triggered to arrest in G2/M phase after irradiation with carbon, neon 

and nickel ions were 47%, 81% and 78%, respectively (Figure 3-8 B). The amount of 

cells in the G2/M phase decreased 24 h after exposure and a certain amount of cells 

became polyploidy. 48 h after irradiation, even more polyploidy cells appeared (Figure 
3-8 A). 

The G2/M arrest was more pronounced after exposure to heavy ions with an LET of 

150-175 keV/µm, compared to X-ray exposure. After carbon ion exposure, the cell 

accumulation in the G2/M phase was less distinct than after X-irradiation.  

A comparison based on the same absorbed dose (4 Gy) reveals similar kinetics for 

high-LET neon and nickel ions, except for a slower decrease in G2/M arrested cells 

after 24 h compared to the 1 % survival dose. 

For low-LET radiation, exposure to the same absorbed dose results in a stronger G2/M 

arrest after carbon ion exposure compared to X-irradiation. 48 h after X-irradiation, the 

percentage of cells in G2/M reaches normal values, while it is still slightly elevated after 

carbon and neon ion exposure, and clearly increased after nickel ion irradiation. 
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Figure 3-8 Cell cycle progression in OCT-1 cells after exposure to radiation 
doses resulting in 1% cellular survival and to 4 Gy 
Cells were exposed to four different qualities radiation including X-rays, 13C-, 22Ne- and 64Ni –ions 
at doses of 10, 5.5, 3.8 and 1.9 Gy and analyzed 4, 8, 24 and 48 h after irradiation. Histograms of 
propidium iodide fluorescence (A). The percentage of cells in G2/M phase was derived from the 
histograms (B). For comparison, the percentage of cells in G2/M phase after exposure to 4 Gy of 
the different radiation qualities is shown (C). 
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3.2.3 CDKN1A expression at mRNA level 

To determine the possible mechanisms underlying the effects of ionizing radiation on 

cell cycle progression, the expression of a gene related to cell cycle regulation was 

evaluated: the mRNA levels of CDK inhibitor CDKN1A which encodes p21 were 

determined. P21CDKN1A is a mediator of p53-induced growth arrest which directly 

regulates CDK activity, and is expressed concomitantly with cellular senescence (Noda 

et al., 1994). 

CDKN1A expression of OCT-1 cells was investigated with real-time RT-qPCR after 

exposure to low- and high-LET radiation at doses of 10, 5.5, 3.8, and 1.9 Gy. 

Expression analyses of CDKN1A mRNA revealed a significant time-dependent up-

regulation compared to non-irradiated mock samples; and the up-regulation was much 

more evident after X-irradiation than after heavy ion exposure. The result show that by 

exposure to 10 Gy X-rays, CDKN1A was up-regulated 9.9-fold relative to the 

unirradiated control at the time-point 8 h; and up-regulated 4.1-fold at time 24 h. 13C-, 
22Ne- and 64Ni-ions exposure resulted in a 5.6-, 3.9-, 1.9-fold up-regulation 8 h post 

irradiation and 3.0-, 2.3-, 1.7-fold 24 h after irradiation (Figure 3-9). 

At the same absorbed dose of 4 Gy, exposure to X-rays and carbon ions elicits 

comparable CDKN1A expression after 8 h. The expression level is lower after irradiation 

with 4 Gy high-LET neon and iron ions. The largest decrease in CDKN1A up-regulation 

24 h after irradiation is observed after X-ray exposure. This decrease is less 

pronounced after heavy ion exposure, and the relative expression is still > 2 times 

higher compared to the unirradiated controls. 
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Figure 3-9 Effects of radiation exposure on CDKN1A mRNA levels 
Cells were harvested 8 or 24 h after X-ray or accelerated charged particle (13C, 22Ne, 56Fe) 
irradiation. CDKN1A mRNA levels were determined after exposure to the 1% survival doses (A) 
and for comparison, to the same absorbed dose of 4 Gy (B). Values represent normalized means 
of the replicates (n = 3) and are expressed relative to non-irradiated controls. CDKN1A gene 
expression was normalized against the expression of the reference genes B2M and GAPDH. *p < 
0.05 using a log-transformed, one-sample t-test (n = 3) for comparison between irradiated samples 
and the 0 Gy control. 
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3.2.4 Role of p53 in X-ray-induced cell cycle arrest 

As the expression of the p53 target gene CDKN1A was elevated after exposure to 

ionizing radiation and radiation exposure induced a G2/M arrest, the role of p53 in X-

ray-induced cell cycle arrest in pre-osteoblasts was studied. 

Therefore, the p53 inhibitor cyclic pifithrin-α (30 µM) was added to the culture medium 2 

h before radiation exposure. OCT-1 cells were harvested at indicated time points after 

irradiation with X-rays at doses up to 10 Gy for cell cycle and gene expression analysis 

of TP53 and its target genes Mdm2 and CDKN1A. 

3.2.4.1 Cell cycle progression 

An accumulation of cells in G2/M phase appears as early as 4 h after X-ray exposure. 

For all investigated doses, the change was more pronounced around 8-16 h after 

radiation exposure. When radiation dose increases, the G2/M peak also increases. After 

16-24 h, the G2/M blockage decreases. Cells 16 h after irradiation with 2 Gy seem to 

have started cycling again. For cells irradiated with 6 Gy, 48 h were of recovery time 

where necessary. After treatment with 10 Gy, even after 72 h a large part of the 

population was still in G2/M phase and a large amount of events displayed a higher 

than 2n DNA content, indicating polyploidy (Figure 3-10 A). These results demonstrate 

that X-rays induce a time- and dose- dependent cell cycle arrest of OCT-1 cells in G2/M 

phase. 

When cells were treated with cyclic pifithrin-α (without X-irradiation), there was a slight 

but not significant difference in cell cycle phase distribution up to an incubation time of 

72 h. When irradiated with 2, 6 and 10 Gy X-rays after the cyclic pifithrin-α treatment (2 

h pre-incubation), there is a more pronounced induction of G2/M blockage compare to 

treated with X-rays alone (Figure 3-10 B).  
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Figure 3-10 The effects of X-rays and/or cyclic pifithrin-α on cell cycle 
progression 
Cells were harvested at various time points to determine the distribution of cells within the cell 
cycle phases by measuring the DNA content in propidium iodide stained permeabilized cells. 
Histograms of propidium iodide fluorescence intensity are shown for OCT-1 cells treated with 0, 2, 
6, and 10 Gy X-rays only (A) and in the presence of cyclic pifithrin-α (2 h pre-incubation) (B) at the 
indicated time points. 
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As a measure of cell cycle delay, the fractions of cells captured in G2/M phase of the 

cell cycle were calculated as percentage of the population of intact single cells after 

exposure to different radiation doses (Figure 3-11). After X-irradiation with 2, 6 and 10 

Gy, the percentage of cells in G2/M phase increases after an incubation time of 4 h 

(41.8%, 40.2% and 36.2%) and peaks after about 8 h (43.2%, 63.8% and 65.2%). 16 h 

after irradiation with 2 Gy X-rays, the percentage of cells in G2/M phase is comparable 

to the unirradiated controls. After exposure to 6 and 10 Gy X-rays, the cells stayed in 

G2/M cell cycle phase for a prolonged period compared to cells after lower doses (2 Gy) 

and remained there up to 48 h (6 Gy) and even longer than 72 h (10 Gy) (Figure 3-11 
A). 

In the presence of cyclic pifithrin-α, cells after X-irradiation exposure to 0, 2, 6 and 10 

Gy, the percentage of cells in G2/M phase are 37.4%, 39.8%, 48.0% and 47.2%, and 

peaks after about 12 h (42.6%, 56.4%, 84.4% and 92.5%) (Figure 3-11 B).  
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Figure 3-11 OCT-1 cells accumulated in G2/M phase 
OCT-1 cells accumulated in G2/M phase after X-irradiation (A) and after X-irradiation in presence 
of cyclic pifithrin-α (B). Mean and SE of three independent experiments are shown. The 
percentage of cells in G2/M phase was determined by flow cytometric analysis of propidium 
iodide stained cells at various time points after irradiation. 



Results 

67 

 

3.2.4.2 CDKN1A, TP53 and Mdm2 mRNA level after X-ray exposure with and 
without p53 inhibition 

In order to study the role of the p53 in the regulation of p21 and Mdm2 in response to 

exposure of OCT-1 cells to X-rays, p53 was suppressed by cyclic pifithrin-α and the 

mRNA level of TP53, CDKN1A and Mdm2 was determined by realtime RT-qPCR. TP53 

encodes the tumor suppressor protein p53, CDKN1A the cell cycle regulating protein 

p21. Mdm2 is a negative feedback regulator of p53.  

Cells were exposed to X-rays in absence or presence of cyclic pifithrin-α. 

Treatment with cyclic pifithrin-α alone without irradiation resulted in an early up-

regulation of CDKN1A and an early down-regulation of TP53 4 h after mock-irradiation 

(6 h after addition of pfithrin). The expression reaches normal levels 8 h after mock-

irradiation. Mdm2 expression is not significantly altered in presence of cyclic pifithrin-α. 
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Figure 3-12 Gene expression kinetics of CDKN1A, TP53, and Mdm2 
OCT-1 cells were pre-incubated with cyclic pifithrin-α 2 h and harvested at the indicated time 
points. Target gene expressions were normalized against the expression of the optimal 
combination of the housekeeping genes B2M and GAPDH. The solid line is the control without 
cyclic pifithrin-α and the dashed lines are the standard deviations of the samples in absence of 
cyclic pifithrin-α. 
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Exposure to 6 and 10 Gy X-rays increased the expression of CDKN1A as early as 4 h 

after irradiation. This enhancement increases until 8 h after irradiation. After 16-24 h, at 

the dose of 2 Gy, the not-significant transient CDKN1A upregulation decreased to the 

control level; for higher doses (6 and 10 Gy), the up-regulation decreased transiently 

then a second peak appeared after 48 hours (Figure 3-13 A). 

No significant difference in TP53 mRNA expression was observed in the early time (up 

to 24 h) after irradiation. 48 h after exposure to X-rays at dose of 6 and 10 Gy in the 

presence of cyclic pifithrin-α a slight down-regulation was detected (Figure 3-13 C D). 

The gene expression kinetics of Mdm2 after X-ray exposure was similar compared to 

CDKN1A, with an elevated expression at 8 h after irradiation, a decrease of this 

enhancement 16-24 h post exposure and a second increase with a smaller peak at 48 h 

(Figure 3-13 E).  

The gene expression of CDKN1A, TP53 and Mdm2 of OCT-1 cells which were treated 

with cyclic pifithrin-α for 2 h before X-irradiation was also analyzed. For CDKN1A, 4 and 

8 h after X-irradiation, the mRNA expression was up-regulated for all the doses 

compared to the unirradiated control. This elevated expression is more pronounced 

after 2 Gy irradiation in presence of cyclic pifithrin-α compared to the samples treated 

with radiation only (Figure 3-13 B). 

TP53 mRNA expression was relatively consistent up to 24 h after irradiation, but TP53 

mRNA was down regulated 48 h after exposure to X-rays in presence of cyclic pifithrin-α 

(Figure 3-13 D). 

Mdm2 was also partially differentially regulated after irradiation in presence of cyclic 

pifithrin-α compared to after irradiation alone. 4 h after irradiation with dose of 10 Gy, 

the mRNA expression was up-regulated. After 8 h, this up-regulation peaked. This was 

also the case for the doses 2 and 6 Gy (Figure 3-13 F). The second peak after 48 h is 

missing in presence of cyclic pifithrin-α. 
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Figure 3-13 Gene expression kinetics of CDKN1A, TP53, and Mdm2 
OCT-1 cells were exposed to X-rays (A, C, E) or treated with cyclic pifithrin-α 2 h before, during 
and after X-irradiation (B, D, F) and harvested at the indicated time points. Target gene 
expressions were normalized against the expression of the optimal combination of the 
housekeeping genes B2M and GAPDH. The solid line is the unirradiated control without (A, C, E) 
or with cyclic pifithrin-α (B, D, F) and the dashed lines are the standard deviations of the 
unirradiated samples. 
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3.2.5 Effects of radiation on p53 and Mdm2 expression 

In order to visualize p53 (Figure 3-14, 3-15) and Mdm2 (Figure 3-16, 3-17) content and 

intracellular localization after X-irradiation, immunofluorescence staining was performed. 

The immunofluorescence staining of p53 and Mdm2 in OCT-1 cells after X-ray exposure 

shows that a 2 h pretreatment with cyclic pifithrin-α resulted in only a very slight 

decrease in Mdm2 expression (Figure 3-17 A) but not p53 expression (Figure 3-15 A). 

After irradiation combined with cyclic pifithrin-α pre-incubation, the expression of p53 

was almost vanished (Figure 3-15 B) and the same effect on Mdm2 was found (Figure 
3-17 B). 
 

  

Figure 3-14 Immunostaining of p53 in OCT-1 cells after X-irradiation  
The staining was performed with fixed cells using polyclonal rabbit anti-p53 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays (B). The unirradiated samples are shown as controls (A). p53 
was visualized by Cy5 by fluorescence microscopy. On the right side of the figures, the DAPI 
stained cell nuclei are shown. (object lens magnification: 63 ×) 



Results 

71 

 

   

Figure 3-15 Immunostaining of p53 in OCT-1 cells after X-irradiation in presence 
of cyclic pifithrin-α 
The staining was performed with fixed cells using polyclonal rabbit anti-p53 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays with 2 h cyclic pifithrin-α pretreatment (B). The unirradiated 
samples are shown as controls (A). p53 was visualized by Cy5 by fluorescence microscopy. On 
the right side of the figures, the DAPI stained cell nuclei are shown. (object lens magnification: 63 
×) 
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Figure 3-16 Immunostaining of Mdm2 in OCT-1 cells after X-irradiation 
The staining was performed with fixed cells using polyclonal rabbit anti-Mdm2 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays (B). The unirradiated samples are shown as controls (A). 
Mdm2 was visualized by Cy5 by fluorescence microscopy. On the right side of the figures, the 
DAPI stained cell nuclei are shown. (object lens magnification: 63 ×). 
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Figure 3-17 Immunostaining of Mdm2 in OCT-1 cells after X-irradiation in 
presence of cyclic pifithrin-α 
The staining was performed with fixed cells using polyclonal rabbit anti-Mdm2 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays with 2 h cyclic pifithrin-α pretreatment (B). The unirradiated 
samples are shown as controls (A). Mdm2 was visualized by Cy5 by fluorescence microscopy. On 
the right side of the figures, the DAPI stained cell nuclei are shown. (object lens magnification: 63 
×). 

 

3.3 Effects of ionizing radiation on cellular differentiation of pre-osteoblasts 

As shown in the two previous subchapters, the hallmarks of the general cellular 

radiation response, cell death and cell cycle arrest, are present in pre-osteoblasts. In 

order to discover whether bone cell specific radiation responses exist, the effects of 

radiation exposure on osteogenic differentiation were analyzed. 
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OCT-1 cells can differentiate in vitro to bone-matrix producing, mature osteoblasts in 

presence of OI medium containing β-glycerophosphate, ascorbic acid, and 

dexamethasone. The influence of exposure to ionizing radiation on this differentiation 

process was analyzed by several approaches. After X-irradiation, OCT-1 cells were 

directed to mature osteoblasts by adding OI medium. For comparison, OCT-1 cells were 

also cultured under SC medium after irradiation. 

Firstly, cell morphology, proliferation, senescence, extracellular matrix production, 

survival and repair ability were compared for cells that were cultivated in presence or 

absence of osteogenic induction supplements after radiation exposure. 

Cell morphology and cellular senescence were analyzed 6 days after X-irradiation. After 

being cultured in OI medium for up to 21 days after X-irradiation, the production of 

mineralized extracellular matrix by OCT-1 cells was analyzed by using Alizarin red S 

staining and further quantified with ImageJ software. 

Furthermore, the influence of osteogenic induction by incubation in OI medium on 

cellular survival, repair kinetics and proliferation of OCT-1 cells after X-irradiation was 

examined.  

Finally, in order to identify possible contributors in the X-irradiation-modulated 

osteogenic differentiation process, the protein expression of TGF-β1 and Runx2 was 

analyzed by means of immunofluorescence staining. 

3.3.1 Cell morphology after radiation exposure 

The effects of ionizing radiation on cellular proliferation and morphology were assessed 

after exposure of OCT-1 cells to various X-ray doses (2, 4 and 8 Gy). After irradiation, 

cells were incubated for 6 d in SC or OI medium (Figure 3-18). Microscopic 

observations reveal some large and flat cells with the characteristic appearance of 

senescent cells 6 d after exposure to 8 Gy and cultivation in SC medium. This 

morphology is already observed after exposure to 4 Gy, if the cells were cultured in OI-

medium. 
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Figure 3-18 Morphology of OCT-1 cells after X-ray exposure 
After cell seeding, cells were cultured for 1 d and exposed to 2, 4 and 8 Gy X-rays. After radiation 
exposure, the cells were incubated for up to 6 d under SC or OI medium. Photographs were taken 
1 d and 6 d after X-ray exposure at the same magnification (object lens magnification: 20 ×). 
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3.3.2 Senescence of OCT-1 cells after X-ray exposure 

As OCT-1 cells showed senescent morphology after X-irradiation (4-8 Gy in Figure 3-

17), an established senescence marker was analyzed. Several markers can identify 

senescent cells in culture and in vivo. In this experiment, senescent cells were identified 

by detecting the activity of senescence-associated β-galactosidase (SA-β-gal). SA-β-gal 

catalyzes the hydrolysis of X-gal, which results in the accumulation of distinct blue-

green colored substrate in senescent cells. 

OCT-1 cells were cultured for 6 d under standard or osteogenic conditions. The level of 

X-gal increased after exposure to 8 Gy in both SC and OI medium (Figure 3-19). 

However, SA-β-gal was slightly higher in irradiated cells under osteogenic conditions. 

Under these conditions some OCT-1 cells show an increased cell size and a distinctive 

flat morphology. Interestingly, a diffuse low level X-gal staining was also present in cells 

cultured under both standard and osteogenic conditions without irradiation. 

 

Figure 3-19 Senescence staining of OCT-1 cells after X-ray exposure 
OCT-1 cells were cultured for 6 d under standard and osteogenic conditions after X-irradiation. 
After fixation, X-gal staining was performed. OCT-1 cells converted this substrate of senescence-
associated β-galactosidase (SA-β-gal). Senescent cells were detected after exposure to 8 Gy 
regardless of cultivation in SC or OI medium. 
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3.3.3 Effects of irradiation on production of mineralized matrix by OCT-1 cells 

3.3.3.1 Effects of X-irradiation on calcium deposition 

The effects of radiation exposure on differentiation of bone cells were investigated by 

determining their ability to deposit mineralized extracellular matrix under in vitro culture 

conditions using the Alizarin red S staining. After X-irradiation, cells were cultured in OI 

medium for 7, 10, 14 and 21 d (Figure 3-20). After Alizarin red S staining, the deposited 

calcium, which co-precipitates with phosphate to form bone nodules, appears as 

accumulation of red material in the petri dishes. Calcium precipitation was observed in 

brightly red color already 10 d after exposure to X-rays for doses above 4 Gy. At 10 Gy, 

the increase in agglomerated extracellular matrix was higher than at lower doses. With 

increasing incubation time, the calcium precipitation augmented dose-dependently. 

 

 

Figure 3-20 Deposition of mineralized extracellular matrix by OCT-1 cells after X-
irradiation 
After X-ray exposure with different doses (0, 2, 4, 6, 8 and 10 Gy) and incubation in OI medium for 
7, 10, 14 and 21 d, the cells were fixed after the incubation time and stained with Alizarin red S. 
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3.3.3.2 Quantification of calcium deposition 

OCT-1 cells were exposed to X-rays irradiation with doses of 2, 4, 6, 8 and 10 Gy and 

the deposited calcium was visualized by Alizarin red S staining. To quantify the calcium 

deposition of OCT-1 cells, images of the cell layer were taken and analyzed using 

ImageJ software. The resulting red color saturation were plotted (Figure 3-21). With 

increasing incubation time, calcium deposition increased after exposure to all tested 

doses and also after mock-irradiation (Figure 3-21 A). On day 7, there was no 

difference for the tested doses. After irradiation, deposition of mineralized extracellular 

matrix started already at day 10 and further increased dose-dependently at day 14. 

Without X-ray exposure, there is no increase until after day 14. 

21 d after X-irradiation, the staining reveals that an almost equal amount of calcium was 

deposited in all samples (Figure 3-21 B). 

 

  

Figure 3-21 Calcium deposition by OCT-1 cells after X-ray exposure 
For the dose-dependence of calcium deposition, significant differences of the mineralization of 10, 
14, 21 d to 7 d post-irradiation incubation were addressed (A). For the kinetics of calcium 
deposition after X-ray exposure, the significance of differences of the mineralization after 
exposure to 2, 4, 6, 8, 10 Gy in comparison 0 Gy was calculated (B). Data represent mean ± SE 
from 3 independent experiments with 5 measurements each. Statistical significance was 
determined with two-tailed Student’s t-tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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3.3.4 Effects of osteogenic differentiation medium on radiation effects in OCT-1 
cells 

To understand the influence of osteogenic induction by incubation in OI medium on 

survival, repair, and proliferation ability of OCT-1 cells after exposure to X-rays, colony 

forming ability, DNA DSB repair and growth were measured in cells that were seeded 

and cultured in OI and SC medium. 

3.3.4.1 Survival after X-ray exposure 

The survival curves after X-irradiation show a shoulder in the lower dose range for both 

conditions, OI and SC medium (Figure 3-22). Exposure to higher doses resulted in an 

exponential course of the survival curves. No significant differences could be detected 

for cellular survival under osteogenic culture conditions compared to standard 

conditions. 
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Figure 3-22 Survival after X-irradiation without or with osteogenic induction 
After irradiation, OCT-1 cells were seeded and cultured in SC or in OI medium. Their survival 
curves were fitted with the equation nD/D )e(11S 0−−=  with D, dose; D0, reciprocal value of the 
slope within the linear part of the curve; n, number of targets. Data represent mean ± SE of three 
independent experiments with 6 replicates for each sample. Statistical significance was 
determined with the two-tailed Student’s t-tests. No significant difference for incubation in SC or 
OI medium was found. 
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3.3.4.2 DNA repair kinetics 

After cultivation of cells in SC/OI medium for up to 3 weeks, OCT-1 cells were exposed 

to X-rays. Directly afterwards, the DNA DSBs were analyzed using AFIGE. The fraction 

of activity released (FAR) is a measure of DNA DSBs. The equivalent dose (Deq) was 

estimated for each FAR value and dose response curves were generated. The repair 

kinetics after exposure to X-rays at single dose of 20 Gy were measured and plotted as 

Deq against time (Figure 3-23 A B). 

The cells cultured in the SC medium for up to 3 weeks show similar repair kinetics for all 

pre-irradiation incubation periods. The DSBs decreased to a nearly basal level within 2 

to 4 h (Figure 3-23 A). There is a similar effect in the cells cultured in OI medium 

(Figure 3-23 B). These results show that OI medium does not disturb the repair 

capacity. 

 

  

Figure 3-23 DNA double strand break (DSB) repair kinetics of OCT-1 cells after X-
irradiation 
Cells were cultured in SC (A) and OI (B) medium for up to 3 weeks and then exposed to X-rays. 
DSB were measured by AFIGE and the equivalent dose (Deq) was calculated. Data represent mean 
± SE of 3 independent experiments with each 10 replicates. Statistical significance was 
determined with two-tailed Student’s t-tests. No significant difference for incubation in SC or OI 
medium was found. 
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3.3.4.3 Cellular proliferation after radiation exposure 

The effects of different radiation qualities on cell proliferation in absence or presence of 

OI medium were investigated by establishing growth curves based on DNA content of 

the cell layers. Cells were stained with bisbenzimide and resulting blue fluorescence of 

bisbenzimide-DNA complexes was measured. 

X-irradiation caused a significant decrease in cell numbers under standard and 

osteogenic differentiation culture conditions (Figure 3-24 A B). Maximal DNA content of 

the cell layer was observed on day 5-6 after exposure to 1 and 2 Gy or after mock-

irradiation. At this time, cells demonstrated a polygonal morphology (Figure 3-18). 

Exposure to 8 Gy resulted in a significantly lower increase of DNA content of the cell 

layer. 

These results indicate that X-irradiation significantly slows down the proliferation of pre-

osteoblast cells in a dose-dependent manner (at doses of 4 and 8 Gy). Compared to X-

rays, cellular proliferation was significantly reduced after exposure to 4 Gy of titanium 

ions (LET 108 keV/µm) (Figure 3-24 C D). The presence of OI medium had no 

significant impact on cellular proliferation in comparison to growth in SC medium. 
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Figure 3-24 Proliferation of OCT-1 in absence or presence of OI medium after 
exposure to different radiation qualities 
OCT-1 cells were exposed to 1, 2, 4 and 8 Gy X-rays (A, B) or 1, 2 and 4 Gy Ti ions (LET 108 
keV/µm) (C, D). After radiation exposure, cells were subsequently cultured for up to 6 d or 8 d in 
SC and OI medium. The relative cell number was evaluated by measuring the fluorescence of the 
DNA intercalating dye bisbenzimide at excitation/emission wavelengths of 360 nm / 460 nm, 
respectively. Data represent mean ± SE of one (Ti) or 3 independent experiments (X-rays) with 8 
replicates each. Statistical significance between irradiated and unirradiated samples was 
determined with two-tailed Student’s t-tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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3.3.5 Effects of radiation on pre-osteoblast differentiation 

TGF-β1 and Runx2 play an important role in controlling osteoblasts’ growth, early 

differentiation and also later mineralization of secreted extracellular matrix.  

P53 takes part in the DNA damage response and repair, and also in the differentiation 

of bone cells. In order determine whether p53 plays a role in the effect of radiation of on 

OCT-1 cell differentiation, cells were treated with p53 inhibitor cyclic pifithrin-α (30 µM) 2 

h before radiation.  

To address the question whether radiation can influence the initiation of OCT-1 cell 

differentiation via p53 activation, TGF-β1 (Figure 3-25, 3-26) and Runx2 (Figure 3-27, 
3-28) expression of OCT-1 cells after exposure to X-rays at a dose of 8 Gy was 

visualized by immunofluorescence staining in the presence or absence of cyclic pifithrin-

α.  

3.3.5.1 Effects of radiation on TGF-β1 expression 

Figure 3-25 illustrates the immunofluorescence staining of TGF-β1 in OCT-1 cells. After 

exposure to 8 Gy X-rays, TGF-β1 expression increases after 15 min until 6 h (A, B). 

There are no obvious changes after treatment with cyclic pifithrin-α alone (Figure 3-26 
A). Cells treated with cyclic pifithrin-α before X-irradiation show a decrease in TGF-β1 

expression 2 h after irradiation which recovers only marginally at 4 and 6 h after 

exposure (Figure 3-26 B). 
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Figure 3-25 TGF-β1 expression in OCT-1 cells after X-ray exposure 
The staining was performed with fixed cells using polyclonal rabbit anti-TGF-β1 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays (B). The unirradiated samples are shown as controls (A). 
TGF-β1 was visualized by FITC in the fluorescence microscope. On the right side of the figures 
show the DAPI stained cell nuclei (object lens magnification: 63 ×). 
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Figure 3-26 TGF-β1 expression in OCT-1 cells after X-ray exposure in presence 
of cyclic pifithrin-α 
The staining was performed with fixed cells using polyclonal rabbit anti-TGF-β1 antibody 0.25, 2, 4 
and 6 h after exposure to 8 Gy X-rays with 2 h cyclic pifithrin-α pre-incubation (B). The 
unirradiated samples with 2 h cyclic pifithrin-α pre-incubation are shown as controls (A). TGF-β1 
was visualized by FITC in the fluorescence microscope. On the right side of the figures show the 
DAPI stained cell nuclei (object lens magnification: 63 ×). 

 

3.3.5.2 Effects of radiation exposure on Runx2 

OCT-1 cells were fixed and stained for Runx2 expression. The result shows that 8 Gy 

X-rays and cyclic pifithrin-α can alone or together suppress Runx2 expression early 

after treatment (Figure 3-27, 3-28). The expression does not recover within 6 h. 
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Figure 3-27 Runx2 expression in OCT-1 cells after X-irradiation 
The staining was performed with fixed cells using polyclonal rabbit anti-Runx2 antibody 0.25, 2, 4 
and 6 h after irradiation with 8 Gy X-rays (B). The unirradiated samples are shown as controls (A). 
Runx2 was visualized by FITC in the fluorescence microscope. On the right side of the figures the 
DAPI stained cell nuclei are shown (object lens magnification: 63 ×). 
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Figure 3-28 Runx2 expression in OCT-1 cells after X-ray exposure in presence of 
cyclic pifithrin-α 
The staining was performed with fixed cells using polyclonal rabbit anti-Runx2 antibody 0.25, 2, 4 
and 6 h after irradiation with 8 Gy X-rays in presence of cyclic pifithrin-α (pretreatment 2 h before 
radiation exposure) (B). The unirradiated samples are shown as controls (A). Runx2 was 
visualized by FITC in the fluorescence microscope. On the right side of the figures the DAPI 
stained cell nuclei are shown (object lens magnification: 63 ×). 
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4. Discussion 

The aim of this study was to analyse how pre-osteoblasts respond to space relevant 

radiation. Depending on dose, dose rate, radiation quality, cell type and other factors, 

different outcomes can predominate (Figure 4-1). As pre-osteoblasts have the 

capability to differentiate to bone matrix secreting osteoblasts, this osteogenic 

differentiation process might be accelerated, induced, decelerated or stopped after 

radiation exposure. Therefore, besides the “classical” outcomes cell cycle arrest (Figure 
4-1 B) and cell death (Figure 4-1 A), differentiation and senescence (Figure 4-1 C) 

were highlighted as potential endpoint of the cellular radiation response. 

 

 

Figure 4-1 Cellular radiation effects in pre-osteoblasts 
Deposited energy induces DNA damages in the cell nuclei. The immediate response to DNA 
damages is the activation of cell cycle checkpoints (B) and stimulation of the repair machinery in 
order to survive (A) and maintain the genomic integrity and stability. Misrepaired or not repaired 
DNA damage results in cellular responses such as cell death (e.g. apoptosis), mutation generation, 
altered differentiation or senescence induction (C). 
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The findings of this study indicate that radiation with a linear energy transfer (LET) of 

150 keV/µm was most effective in inducing reproductive cell killing (Figure 4-1 A).  

High LET radiation causes more pronounced cell cycle arrest (Figure 4-1 B). Cell cycle 

delay is more pronounced after exposure to high-LET compared to low-LET radiation. 

Expression analyses indicated that cells exposed to ionizing radiation exhibited 

significantly up-regulated CDKN1A gene expression (Figure 4-1 B). 

Further study on cellular differentiation revealed its dose-dependent elevation after X-

irradiation (Figure 4-1 C). p53 is mainly considered as a tumor suppressor for its ability 

to induce apoptosis and suppress proliferation after exposure to cell stress, including 

ionizing radiation exposure. Apart from that, some recent studies present evidence that 

p53 also affects bone cell differentiation (Liu and Li, 2010; Wang et al., 2006a). 

Reversible inhibition of p53 by cyclic pifithrin-ɑ enhanced radiation-induced cell cycle 

arrest (Figure 4-1 B) and inhibited X-ray-induced TGF-β1 expression taking charge in 

differentiation (Figure 4-1 C). 

4.1 Cellular survival after exposure to ionizing radiation 

In order to investigate the killing effect of exposure to different radiation qualities (LET 

0.5 – 9674 keV/µm), clonogenic survival of the pre-osteoblast cell line OCT-1 and the 

mesenchymal stem cell line C3H10T1/2 was determined by applying the colony forming 

assay. Both cell lines possess the ability to be induced to differentiate to mature 

osteoblasts. 

Up to now, series of studies have been carried out to determine cellular survival after X-

ray exposure (D0: dose reducing the survival to 37% of the original value) (Table 4-1). 

Survival of rat thyroid cells showed that the D0 had a value of 1.90 Gy (irradiated in vitro 

and assayed in vivo) (DeMott et al., 1979) and of 1.95 Gy (irradiated in vivo and 

removed immediately for assay) (Mulcahy et al., 1980). Other in vitro studies on V79, 

human salivary gland tumor and T1 cells showed D0 values of 1.85, 0.81 and 1.04 Gy 

(Furusawa et al., 2000). An investigation of human diploid fibroblasts indicated D0 

values of 1.28 – 1.64 Gy (Weichselbaum et al., 1980). In vitro studies with the murine 

osteocyte like cell line MLO-Y4 and two subclones of MC3T3-E1 cells, MC3T3-E1-S4 
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and MC3T3-E1-S24, which were isolated from the calvaria of a C57BL/6 mouse 

indicated D0 values of 2.16, 1.50 and 1.94 Gy, respectively (Lau et al. 2005). In this 

study, the analysis on OCT-1 and C3H10T1/2 cells revealed that D0 values of 1.44 Gy 

and 1.66 Gy (Table 3-1, Table 3-2). The D0 of OCT-1 and MC3T3-E1-S4 are 

comparable. Both cell lines are capable to differentiate to mature mature osteoblasts. 

The less radiosensitive MC3T3-E1-S24 cell line produces only very few mineralized 

extracellular matrix (Wang et al., 1999). The also less radiosensitive osteocyte like cell 

line MLO-Y4 does not produce mineralized extracellular matrix at all (Bonewald, 1999; 

Kato et al., 1997). 

These results indicate a clear difference of radiation sensitivity between different cell 

types. The main cause for the different radiosensitivity of diverse cell lines is regarded 

to be the DNA repair ability, including the efficiency to recognize DNA damage and to 

activate repair (Chavaudra et al., 2004; Szumiel, 1998). Specifically for tumor cells, 

increased radiation sensitivity is due to deficiencies in specific kinases needed for repair 

activation and checkpoint control (Szumiel, 2005; Szumiel, 2008). Another important 

influencing factor is the cell division activity. Cells are most radiosensitive in the mitotic 

and the G2 phase of the cell cycle (Pawlik and Keyomarsi, 2004; Sinclair and Morton, 

1966). Therefore, a high mitotic activity correlates with a higher percentage of cells in 

the radiosensitive phases of the cell cycle. 

 



Discussion 

91 

 

Table 4-1 Cell survival parameters after X-ray exposure (single fraction survival curve) 
Cell line Cell type Origin  Voltage 

(kV) 
D0 n Dq Reference 

Primary cells Thyroid cellsa Rat  250 1.90 4 2.63 DeMott et al., 1979 

Primary cells Thyroid cellsb Rat 250 1.95 - - Mulcahy et al., 1980 

Diploid cell 
strains from 
patients 

Diploid fibroblasts Human 220 1.28 – 1.64 - - Weichselbaum et al., 
1980 

V79 Fibroblasts Chinese 
hamster 

200 1.85 4.4 2.74 Furusawa et al., 
2000 

HSG Submandibular 
salivary gland cell 
line 

Human  200 0.81 27 2.65 Furusawa et al., 
2000 

T1 Cholangiocellular 
carcinoma cell line 

Human 200 1.04 35 3.70 Furusawa et al., 
2000 

S24 Pre-osteoblasts Mouse  200 1.94 2.00 2.63 Lau et al., 2005 

S4 Pre-osteoblasts Mouse  200 1.50 2.23 2.30 Lau et al., 2005 

MLO-Y4 Osteocyte  Mouse  200 2.16 4.94 4.94 Lau et al., 2005 

OCT-1 Pre-osteoblasts Mouse  200 1.44 ± 0.09 6.37 ± 2.61 2.66 ± 0.69 This study 

C3H10T1/2 Pluripotent stem 
cells 

Mouse  200 1.66 ± 0.10 1.88 ± 0.39 1.05 ± 0.39 This study 

Note. D0, reciprocal value of the slope of the regression curves calculated within their exponential part; n, extrapolation number, obtained by 
extrapolating the exponential section of the curve to the abscissa; Dq, the quasi-threshold dose for a given population that measures the width of 
the shoulder. 
a Irradiated in vitro and assayed in vivo 
b Irradiated in vivo and removed immediately for assay 
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The survival curves show that the degree of killing depends on radiation dose and 

radiation quality. The slope of survival curves increases with augmenting LET up to ca. 

150 keV/μm (Fe ions). For radiation qualities with an LET > 150 keV/µm, the slope 

decreases with increasing LET (Figure 3-1). These results clearly reflect that radiation 

qualities with an LET of ~150 keV/µm are most effective in killing murine pre-

osteoblastic cells. 

The relative biological effectiveness (RBE) of different radiation qualities is determined 

by comparing the doses of a test radiation and a reference radiation required to induce 

a defined biological endpoint. In this study, the RBE values for induction of reproductive 

cell death of OCT-1 cells were determined from the colony forming ability tests. X-rays 

were used as reference radiation. In the LET-RBE curve, RBE values, determined for 

cellular survival of pre-osteoblastic cells present a very distinct peak of 3.0 at an LET of 

~150 keV/µm (Figure 3-2). Notably, for the tested radiation qualities, the two cell lines 

OCT-1 and C3H10T1/2 have comparable RBE values regarding the end point 

reproductive cell survival (Figure 3-4). 

Previous studies on human lens epithelial cells (Chang et al., 2005) or human skin 

fibroblasts (Tsuruoka et al., 2008; Tsuruoka et al., 2005) showed that high-LET radiation 

has a more pronounced effect on the survival ability than low-LET radiation. Some other 

studies on LET dependent mutagenic effects or tumor induction potential showed that 

high LET charged particles have stronger effects and indicate an LET-RBE dependency 

with a peak at an LET of 100-200 keV/µm (Alpen et al., 1993; Chen et al., 1994; 

Sorensen et al., 2011; Tsuboi et al., 1992). 

When the LET values increase, the radiation energy deposition during its transversal 

through matter increases as well. The deposited energy can ionize water and 

biomolecules in the cell, resulting in damage. The more energy is deposited in the 

radiation track, the more DNA damage will be triggered and the more complex will it be. 

High LET radiation was shown to induce a greater number of DNA damages and more 

complex clustered DNA lesions than low LET radiation (Asaithamby et al., 2008; Hada 

and Georgakilas, 2008). In addition, high-LET HZE particles induce more frequently 
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mis-rejoined and unrejoined DSBs in comparison to breaks induced by low-LET 

radiation (Rydberg et al., 2005; Tsuruoka et al., 2008). Thus, the time needed for repair 

of those high-LET radiation induced DSBs is longer compared to low-LET radiation 

induced DSBs (Anderson et al., 2010; Autsavapromporn et al., 2013; Ugenskiene et al., 

2009). The choice of DNA DSB repair pathway (NHEJ or HR) after exposure to high-

LET and low-LET radiation might be influenced by the complexity of damage and in the 

following by the extent of DNA end resection (Yajima, 2013). 

RBE values decrease when LET increases above 150 keV/μm, showing that radiation 

with an LET higher than 150 keV/μm is not as effective in cell killing, the so-called 

overkill effect. According to Equation 2-1, it can be expected that for the same 

absorbed dose, higher LET values lead to lower particle fluence. According to that 

assumption, high LET particle exposure results in increased energy deposition in more 

confined regions. When particles have a higher LET, the biological materials receiving 

the same absorbed dose receive fewer particles per area. An absorbed dose of 1 Gy is 

reached by irradiation with 4.0 ×106 P/cm2 56Fe ions (LET 150 keV/µm) or with 6.4 ×105 

P/cm2 58Ni ions (LET 905 keV/µm), showing that 6.3 times more iron ions are required to 

reach the same dose compared to nickel ions. The energy deposition is locally 

extremely high for high-LET energetic particles, resulting in deadly DNA damage, but 

surrounding cells will not be hit and not damaged (in this example, 60 % of the cells are 

hit by at least one nickel ion, and 100 % by at least one iron ion). In the case of nickel 

ions, much of the deposited radiation energy is “wasted” and does not result in 

additional relevant biological damage. Therefore, the RBE decreases below 1 for heavy 

ions with very high LET values. 

Energetic particles with an LET between 50 and 300 keV/µm have high RBE values. 

The maximal energy deposition occurs in the Bragg peak when traveling through matter. 

The depth at which the Bragg peak is achieved depends on energy and charge of the 

particle and on the material that is traversed. Heavy charged particle radiotherapy like 

carbon ion radiotherapy is one famous example in which these two principles (RBE, 

Bragg peak) are applied. Only those ions with small Z can be used for therapeutic 

purposes, because when the Z increases, the LET of the heavy charged particle will 
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also increase. The energy loss is very high when it reaches the surface of the tissue. 

This will increase normal tissue damage, radiation burning of the skin for example. 

Another problem with the particles heavier than carbon is that they produce a lot of 

secondary particles and therefore, their Bragg curves are not very “clean”. 

To summarize this chapter, the LET dependency of cell killing that was previously 

described e.g. for fibroblasts and epithelial cells also applies for pre-osteoblasts. The 

high killing efficiency in the LET range of 50-300 keV/µm can lead to stronger 

deleterious effects on bone than low-LET radiation. This has to be considered in carbon 

ion radiotherapy if bone is in the radiation field and also for human spaceflight. 

4.2 Radiation and p53 in cell cycle progression of OCT-1 cells 

Ionizing radiation causes a variety of DNA damages including DSBs which pose great 

threat to cell survival. Cell cycle delays represent an active mechanism that responds to 

DNA damage (Budworth et al., 2012; Wilson, 2004). Cell cycle checkpoints can function 

to halt cells temporarily or permanently and provide time for repair of damaged DNA 

before further cell cycle progression. The G2/M cell cycle checkpoint represents the last 

possibility to block the entry of cells with damaged DNA into mitosis to ensure that 

lesions are repaired and that each daughter cell receives an intact copy of the genome. 

In this study, cell cycle analysis indicates that both, the extent and the length of G2/M 

delay are correlated to radiation dose and LET value (Figure 3-5). After X-irradiation, 

cell cycle arrest in G2/M (Figure 3-8 A, Figure 3-10) can be one of the reasons for the 

finding that the cell growth of irradiated cells is suppressed (Figure 3-24 A B). After 

exposure to high-LET 48Ti-ions, cellular proliferation was diminished at higher doses 

(Figure 3-24 C and D). 

In this study, cellular survival data indicate that ionizing radiation is most effective in 

killing pre-osteoblast cells around an LET of 150 keV/µm. In order to compare the 

effectiveness of different radiation qualities in inducing cell death and cell cycle arrest, 

cell cycle progression was determined after exposure of OCT-1 cells with X-rays, 13C-

ions, 22Ne-ions and 64Ni-ions (Figure 3-8) with RBEcell killing values of 1.0, 1.1, 2.3 and 

2.7, respectively (Table 3-1). The effects of equitoxic doses on cell cycle were 
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compared, based on the 1% cellular survival level: 10, 5.6, 3.8 and 1.9 Gy (Figure 3-6, 
3-7 A, B, 3-8 B). For comparison, cell cycle progression was studied after exposure to 

the same absorbed dose of 4 Gy (Figure 3-8 C). 

Results from this work showed that, after irradiation with different qualities leading to 1% 

cellular survival, the cell cycle arrest is more pronounced after 1.9 Gy 64Ni ion and 3.8 

Gy 22Ne ion exposure compared to 5.5 Gy 13C ion and 10 Gy X-ray exposure. It is 

therefore suggested that radiation with a higher LET (above 90 keV/µm) possesses 

higher effects on cell cycle progression compared to low LET irradiation at the same 

survival dose. Therefore, it is concluded that compared to cellular survival ability, cell 

cycle progression delay is more sensitive after high-LET radiation exposure. 

At the same absorbed dose of 4 Gy, 22Ne and 64Ni ions are much more efficient in 

inducing G2/M arrest than 13C ions (LET 35 keV/µm) and X-rays. After exposure to the 

same absorbed dose, the G2/M arrest is LET dependent up to 90 keV/µm. This effect of 

LET on cell cycle arrest was shown also in normal human fibroblasts (with a delay in G1 

phase) (Fournier and Taucher-Scholz, 2004; Tenhumberg et al., 2007) and in Chinese 

hamster ovary cells (Nasonova et al., 1998). In human mesenchymal stem cells, a 

stronger G2/M arrest was observed after exposure to 56Fe ions than to X-rays (Kurpinski, 

2009). In this work, the percentage of cells in G2/M reached saturation at around 80% 

after 64Ni ion and 22Ne ion exposure for both dose comparisons, based on 1% survival 

dose or on the same absorbed dose. 

The increase of p21 after DNA damage induction was linked to the initiation of G2 arrest 

(Ando et al. 2001). In this context, p21 might act directly on CDK1 (Schneider et al. 

1998). CDK1 associates with cyclin B at the G2/M transition and p21 plays a regulatory 

role in the maintenance of cell cycle arrest at G2 by blocking the interaction of Cdc25C 

with proliferating cell nuclear antigen (PCNA) which interacts with various CDK-cyclin 

complexes (Ando et al. 2001). 

Therefore, CDKN1A gene expression was studied after exposure to the indicated 

radiation qualities with the 1% cellular survival dose (Figure 3-9 A), as well as 4 Gy 

absorbed dose (Figure 3-9 B). The result clearly indicates that the upregulation of 
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CDKN1A expression increases with the physical dose, independent from radiation 

quality (Figure 3-9 A). This upregulation of CDKN1A expression decreased with LET 

when cells were exposed to heavy ions at the same absorbed dose (4 Gy) (Figure 3-9 
B), while increased dose dependently after X-irradiation (Figure 3-13 A). The 

observation that CDKN1A expression is dose dependently elevated cannot explain why 

cell cycle progression is more sensitive to high-LET radiation at an equal cellular 

survival level. One hypothesis to explain this observation might be that the cell cycle 

G2/M arrest is not merely mediated through an elevated CDKN1A expression but 

possibly also by ATR/Chk1 checkpoint activation (Liu et al., 2000; Lobrich and Jeggo, 

2007; Lossaint et al., 2011). Another possibility is that it is sufficient if a certain threshold 

of CDKN1A expression is reached to induce G2/M arrest and that a further increase 

does not enhance the arrest. 

It has been reported that over-expression of CDKN1A is capable of inducing both G1 

and G2/M arrest, and CDKN1A induced G2/M arrest appears to be more prominent in 

retinoblastoma (pRb)-null cells (Roninson, 2002). There are no reports that pRb is not 

intact in OCT-1 cells. 

The tumor suppressor protein p53 is known as upstream regulator of CDKN1A (Figure 
1-5). P53 is involved in cell cycle regulation following exposure to DNA damaging 

agents like ionizing radiation in several cell lines including human osteosarcoma cells 

(U2OS), and human fibrosarcoma cell lines (Pellegata et al., 1996; Petersen et al., 

2010; Stavridi et al., 2001). The question was whether radiation-induced cell cycle 

arrest is under the regulation of p53. 

In order to study the mechanism of the interplay between p53-p21 in ionizing radiation 

induced cell cycle arrest in the G2/M phase, cyclic pifithrin-α was used to temporarily 

inhibit p53 activity. The results show that G2/M blockage of the cell cycle is more 

pronounced after radiation exposure in combination with cyclic pifithrin-α treatment 

when compared to samples that were only irradiated (Figure 3-10, Figure 3-11). This 

indicates that functional p53 is not required for induction of cell cycle arrest after X-

irradiation, and that this arrest is even enhanced. A slightly enhanced G2 arrest after 
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treatment with cyclic pifithrin-α was also observed in the human ovarian cancer cell line 

A2780 (Walton et al., 2005). Cyclic pifithrin-α induced cell cycle arrest in G1 phase has 

been reported for murine embryonic stem cells and was related to decreased cyclin D1 

expression (Abdelalim and Tooyama, 2012). Incubation of OCT-1 cells with cyclic 

pifithrin-α without irradiation slightly increased the percentage of cells in G2/M phase 

(Figure 3-11) and resulted in a transient increase of CDKN1A expression (Figure 3-12). 

This accumulation in G2/M phase already before radiation exposure might sensitize the 

cells for a stronger G2/M arrest by irradiation. 

Gene expression analysis of the transcriptional level of TP53 revealed no significant 

difference early (up to 24 h) after irradiation. However, there is a slight down-regulation 

48 h after exposure to 6 and 10 Gy in the presence of cyclic pifithrin-α (Figure 3-12 C 
D). Mdm2, the well-known negative feedback regulator of p53, was analyzed. Here, an 

up-regulation of Mdm2 4 h after exposure was observed, which peaked at 8 h after 6 

and 10 Gy exposure both in presence or absence of cyclic pifithrin-α (Figure 3-12 E F). 

The rise and fall of CDKN1A levels (Figure 3-12 A B) was similar to the Mdm2 

expression kinetics which can be explained by the fact that both Mdm2 and CDKN1A 

genes are strongly regulated by p53 at the transcriptional level. An increase of radiation-

induced Mdm2 expression even in presence of cyclic pifithrin was also observed in 

human colon adenocarcinoma cells HCT116 and in A2780 cells (both wild-type p53 

expressing cell lines) (Walton et al., 2005). 

Notably, 6 h after X-irradiation, p53 expression at protein level was slightly reduced and 

it totally vanished after supplementation with cyclic pifithrin-α (Figure 3-14, 3-15). The 

immunofluorescence staining of Mdm2 shows reduced expression both after X-ray 

exposure and cyclic pifithrin-α supplementation (Figure 3-16, 3-17), which is not 

consistent with the mRNA expression studies showing up-regulation 4 h after 10 Gy 

irradiation and 8 h after 6 or 10 Gy irradiation in the presence or absence of cyclic 

pifithrin-α. This discrepancy between mRNA and protein expression of Mdm2 was also 

found in non-small lung cancer specimens from patients (Ko et al., 2000) and in 

clinicopathological studies in normal and tumorigenic breast epithelial cells (Gudas et al., 
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1995). Further studies are needed to quantify Mdm2 protein levels in irradiated OCT-1 

cells. 

Cyclic pifithrin-α was found in the 1990’s and is a small molecule isolated for its ability to 

reversibly block p53-dependent transcriptional activation and apoptosis (Pietrancosta et 

al., 2005; Proietti De et al., 2003). The cyclic pifithrin-α concentration which was used in 

this study (30 µM) was optimized and shown to be sufficient by several studies 

(Pietrancosta et al. 2005; Proietti De et al. 2003). 

Inhibition of p53 activity by cyclic pifithrin-α has been reported to suppress cell 

proliferation by down regulating cyclin D1 and thus blocking cell cycle progression in G1 

phase of the cell cycle (Abdelalim and Tooyama, 2012) and affecting the repair kinetics 

of X-ray induced DNA lesions leading to mis-repair events (Meschini et al., 2010). 

The findings on cell cycle progression after irradiation suggest that cell cycle regulation 

of pre-osteoblasts is much more sensitive to high-LET radiation than to low LET 

radiation. Up-regulation of p21 is influenced by radiation quality. The CDKN1A 

upregulation seems to be at least partly independent of p53 at the tested radiation 

doses and qualities. 

The G2/M cell cycle regulation is complex and involves multiple molecular processes 

under different conditions. Overlapping p53-dependent and p53-independent pathways 

regulate the G2/M transition in response to genotoxic stress. Induction of p21 is 

implicated in a G2/M arrest in both p53-proficient (Chan et al., 2000) and p53-deficient 

cancer cells (Ando et al., 2001; De et al., 2004). Since DNA damage and inhibition of 

replication also trigger p53-independent pathways, up-regulation of p21 expression 

independent of p53 might have caused G2/M cell cycle block (Eccles et al., 2010; 

Taylor and Stark, 2001). Chk1 and Chk2 phosphorylation, independent of p53-p21, and 

subsequent phosphorylation of Cdc25C on serine 216 inhibits the cyclin B-CDK1 

complex in order to block damaged cells in G2/M.  

Further studies should be carried out concerning the role of p53-p21 pathway signaling, 

Chk1, Chk2 activation in cell cycle G2/M arrest and osteogenic differentiation in pre-

osteoblasts after ionizing radiation exposure. 
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4.3 Radiation and p53 in the osteoblast differentiation and mineralization 

One of the main engines that drives cellular senescence, differentiation or cellular 

transformation, is the loss of proper control of the cell cycle. Concerning radiation 

effects on OCT-1 cells, it was found that radiation can dose and LET dependently kill 

OCT-1 cells; and dose and LET dependently trigger G2/M cell cycle arrest with a 

concurrent elevation in CDKN1A expression. 

To further address radiation effects, OCT-1 osteoblastic differentiation including the 

production of mineralized matrix was analyzed. 

The OCT-1 cells have been reported to possess the capability of differentiating along 

the osteoblastic lineage (Chen et al., 1995; Lau et al., 2010). Mature functional 

osteoblasts are capable of depositing extracellular matrix that mineralizes (Aubin, 

1998a). ARS staining was used to verify the calcium incorporation in extracellular matrix 

deposited by differentiated cells. ARS staining is one of the commonly used techniques 

for the detection of calcium deposition in bone nodules. Under standard culture 

conditions and incubation for up to 21 days, no positive red staining could be visualized 

(data not shown). Apparently, OCT-1 cells were not able to start the osteoblastic 

differentiation process solely after radiation exposure and without osteogenic induction. 

Therefore, osteogenic supplementation was used to induce of OCT-1 cells to 

differentiate into bone-matrix secreting mature osteoblasts. Since it was established 

(Bellows et al., 1986), this method has been widely applied for osteogenic differentiation 

(Jaiswal et al., 1997; Jeon et al., 2013; Yokota et al., 2013). Studies on differentiation 

induced by adding osteogenic supplements (50 µg/ml ascorbic acid and 10 mmol/l β-

glycerophosphate) showed accelerated transcriptional expression in Runx2 (Wang et al., 

2013) and increased expression of osteogenic marker genes including ALP, osteocalcin 

and osteopontin, and stimulated ALP activity in MC3T3-E1 cells (Suh et al., 2008). 

Other studies showed accelerated differentiation of primary human osteoblasts through 

enhanced Runx2 expression after osteogenic induction (Perinpanayagam et al., 2006). 

This was found also in C3H10T1/2 and mouse pluripotent mesenchymal precursor cells 

C2C12 (Pregizer et al., 2007). 
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Up to now, the effect of osteogenic supplementation on DNA repair after radiation 

exposure has not yet been analyzed. In this study, cells cultured in both media showed 

the same pattern in senescence formation (Figure 3-18, 3-19), surviving ability (Figure 
3-22), repair ability (Figure 3-23), and cellular proliferation (Figure 3-24) in a dose and 

LET dependent manner. This indicates that culturing in OI medium did not change the 

radiation response of OCT-1 cells compared to growth in SC medium. Therefore, the 

osteogenic differentiation pathway seems not to be connected with DNA repair 

pathways and survival pathways. 

Surprisingly, the results on osteogenic induction after exposure to higher radiation 

doses suggest that X-iradiation accelerates the mineralization process. Thus, calcium 

phosphate deposition could be detected 10 d after exposure to 6, 8 and 10 Gy X-rays, 

but not after 0, 2 and 4 Gy (Figure 3-20; Figure 4-2). Quantification of the 

hydroxyapatite content of the extracellular matrix secreted by mature osteoblasts 

revealed a significant, dose-dependent elevation of mineralized material (Figure 3-21). 

Other studies of the effects of ionizing radiation on osteoblast differentiation revealed a 

reduced ALP activity and decreased expression of mRNA encoding ALP and collagen 

type I. These studies were performed with C2C12 cells originating from myoblasts 

which have multipotentiality to differentiate into osteoblasts. The cells were 

supplementated with BMP-2 after X-irradiation at doses of 2 and 4 Gy (Sakurai et al. 

2007). The mechanism for the radiation induced down-regulation of differentiation 

seems to be down-regulation of the BMP-2/receptor complex and blockage of cellular 

responsiveness to BMP-2-induced osteoblastic differentiation (Pohl et al., 2003). In the 

mesenchymal stem cell line C3H10T1/2 derived from a mouse embryo it was shown 

that ionizing radiation inhibited the growth and decreased ALP activity which indicated 

decreased differentiation (Sakurai et al., 2011). Other studies on MC3T3-E1 cells 

indicated that ionizing radiation caused dose-dependent decreases in cellular 

proliferation and promoted differentiation (increased ALP production) (Dudziak et al., 

2000). This radiation-induced (4 Gy) promotion of osteoblastic differentiation in MC3T3-

E1 cells determined by measurement of ALP activity was confirmed by other studies 

(Dare et al., 1997; DeMott et al., 1979; Sakurai et al., 2007). 
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The results on TGF-β1 expression showed enhanced expression after 8 Gy X-ray 

exposure (Figure 3-25); while decreased expression was found in samples 

supplemented with cyclic pifithrin-α 2 h before radiation exposure (Figure 3-26; Figure 
4-2). The Runx2 expression results presented evidence that both radiation exposure 

and cyclic pifithrin-α can suppress Runx2 expression (Figure 3-27, 3-28; Figure 4-2). 

TGF-β1 signaling interferes with the stress response through coordinated transcriptional 

and translational repression of p53 levels, which reduces p53-activated transcription, 

and apoptosis in precancerous cells (Lopez-Diaz et al., 2013). P53 was also found to 

negatively regulate osteoblast differentiation and bone development and to reduce the 

level of Runx2 (Lengner et al., 2006; Zambetti et al., 2006). 

It has been reported that TGF-β1 regulates a broad range of biological processes, 

including decreases in ALP activity, suppression of BMP mediated Smads signaling in 

osteoblasts (Liu et al., 2013), and increased bone formation in vitro mainly by recruiting 

osteoblast progenitors, stimulating their proliferation and promoting the early stages of 

differentiation (Zhao et al., 2010). TGF-β1 blocks late stages of osteoblast differentiation 

(Alliston et al., 2001; Maeda et al., 2004). 

This enhanced expression of TGF-β1 after radiation exposure is controversial to the 

findings of radiation-reduced cellular proliferation (Figure 3-24) and induced cell cycle 

arrest (Figure 3-5) but coincides with the enhanced mineralization observed 10 days 

after exposure to high radiation doses (6, 8, 10 Gy) (Figure 3-20). The mechanism 

behind decreased expression of TGF-β1 when p53 was suppressed and the role of 

TGF-β1 during late osteoblastic differentiation should be further addressed. 

Runx2 is a common target of TGF-β1. It has been reported that TGF-β1 stimulated 

osteoblast differentiation and the synthesis of matrix proteins and their receptors (for 

example, fibronectin, fibronectin receptor, collagen, osteonectin, osteopontin, and 

integrins) (Kasagi and Chen, 2013; Lee et al., 2000). TGF-β1 can be induced by the 

course of osteogenic supplementation during MC3T3-E1 cell differentiation (Seth et al., 

2000).  
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Radiation induced suppression of Runx2 expression is coincident with radiation induced 

cell cycle progression arrest (Figure 3-5) and reduced cellular proliferation (Figure 3-
24). It has also been reported earlier that Runx2 promotes osteoblast cell growth 

(Pratap et al., 2003). Therefore, the early Runx2 downregulation after irradiation might 

be involved in cell growth reduction.  

Some studies present evidence that p53 has an anti-differentiation function through a 

reduced level of the bone specific master transcription factor Runx2 (Franceschi and 

Xiao, 2003; Lengner et al., 2006). This might indicate that p53-Runx2 plays an inhibitory 

role in the early stage of osteoblast differentiation after radiation exposure in order to 

ensure genome maintenance. 

Accelerated differentiation was found not until 10 days after X-ray exposure. Further 

experiments are needed to explore the role of Runx2 in the late accelerated and 

enhanced osteoblast differentiation after radiation exposure. 

Several studies showing that, depending on the specific cell type and the specific 

differentiation program, p53 may have a positive or a negative effect on cell 

differentiation, and thus can be referred as a “guardian of the genome” at large (Lane, 

1992; Molchadsky et al., 2008). The exact regulation of p53, Runx2 and TGF-β1 in 

osteoblast differentiation has not yet been fully elucidated. Further studies should be 

carried out to define p53-Runx2 and p53-TGF-β1 regulation during late differentiation 

after ionizing radiation exposure (Figure 4-2). 
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Figure 4-2 The effect of radiation and cyclic pifithrin-α on Runx2 and TGF-β1 
during OCT-1 osteogenic differentiation 
Radiation and cyclic pifithrin-α can modulate early expression of Runx2 and TGF-β1. Further 
experiments are needed to address the regulation of p53-Runx2 and p53-TGF-β1 in accelerated 
osteogenic differentiation. 

 

4.4 Outlook 

Radiation dose- and LET-dependently kills pre-osteoblasts and delays cell cycle 

progression. The cell cycle regulation is more sensitive to high-LET radiation than cell 

survival. Radiation-induced cell cycle arrest is not solely regulated through elevated 

CDKN1A expression. The cellular differentiation study revealed dose-dependent 

acceleration after X-irradiation. X-ray exposure and/or p53 can modulate Runx2 and 

TGF-β1 expression during osteoblast differentiation. 

To better understand the mechanism behind accelerated osteoblast differentiation after 

X-irradiation, further experiments should be designed to analyze p53-Runx2, p53-TGF-

β1 regulation during the early and late differentiation after radiation exposure. 

Osteoblasts regulate osteoclast differentiation and resorption activity by the secretion of 

cytokines or by direct cell contact. Skeletal development and its maintenance in post-

natal life in response to local and systemic stimuli are constantly remodeled by 

coordinated activity among osteoblasts, osteocytes and osteoclasts. Thus, studies of 

the ability of osteoblastic, osteoclastic and osteocytic cells to communicate in a co-

culture system or in vivo investigations after radiation exposure are necessary.  
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Humans travelling in space are exposed to both microgravity (µ×g) and radiation and 

studies already confirmed that unloading leads to bone loss. There is a good chance 

that radiation might have the synergistic effects on the µ×g induced bone loss. This 

needs to be further addressed either by combined radiation and simulated µ×g 

exposure or by the space flight experiments. 
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5. Summary 

Until now limited research has been conducted to address the mechanisms leading 

ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy 

and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in 

patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to 

space radiation which is a very complex mixture consisting primarily of high-energy 

charged particles. 

Osteoblasts are of mesenchymal origin and responsible for creating and maintaining 

skeletal architecture; these cells produce extracellular matrix proteins and regulators of 

matrix mineralization during initial bone formation and later bone remodeling.  

The aim of this work was to investigate the effects of ionizing radiation on pre-

osteoblasts including cellular survival, cell cycle regulation and differentiation 

modification. 

Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line 

C3H10T1/2 showed that radiation cell killing depends on dose and linear energy 

transfer (LET)  and is most effective at an LET of ~150 keV/µm.  

High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the 

G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle 

regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The 

findings suggest that cell cycle regulation is more sensitive to high-LET radiation than 

cell survival, which is not solely regulated through elevated CDKN1A expression. 

Radiation exposure enhances osteoblastic differentiation and maturation, and mediates 

Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. 

Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-

induced damages and the effects of radiation on proliferation. 

Further experiments are needed to elucidate possible synergistic effects of microgravity 

and radiation on osteoblast differentiation. This may provide the necessary foundation 

for the development for space travel countermeasures.  
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7. Abbreviations 

# Number 

°C Degree centigrade 

λ Wavelength 

1 × g Earth gravity 

γ-H2AX Phosphorylated histone variant H2AX 

α-MEM α-minimum essential medium 

µg Microgram (1×10-6 g) 

µl Microliter (1×10-6 L) 

µm Micrometer (1×10-6 m) 

µmol/l Micromole per liter 

ALP Alkaline phosphatase 

Aqua dest. Aqua destillatum 

Ar Argon 

ATM Ataxia telangiectasia mutated protein 

B2M β2 microglobulin 

BME Basal Medium Eagle 

bp Base pairs 

BSA Bovine Serum Albumin 

C Carbon 

CAK Cyclin dependent activating kinase 

CDK Cyclin-dependent kinase 

CDKN1A Cyclin-dependent kinase inhibitor 1 

cDNA Complementary DNA 

CFA Colony forming ability 

cm Centimeter 

Col-Type I Type I collagen 

CT Threshold cycle 
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d Day (s) 

D Dose 

DAPI 4’,6-diamidino-2-phenylindole 

Deq Equivalent dose 

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace 

Center) 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNA-PK DNA protein kinase 

DSB Double strand break 

Eff Efficiency 

EDTA Ethylene diamine tetraacetic acid 

ESA European Space Agency 

eV Electron volt 

FA Formaldehyde 

FAR Fraction of activity released 

FACS Fluorescence-activated cell sorting 

FBS Fetal Bovine Serum 

Fe Iron 

FSC Forward scatter 

g Gram 

GANIL Grand Accélérateur National d’Ions lourds 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GCR Galactic cosmic rays 

GSI Helmholtzzentrum für Schwerionenforschung, Helmholtz Center for 

Heavy Ion Research, Darmstadt, Germany 

Gy Gray (J kg-1), unit of irradiation dose 

h Hour (s) 

HR Homologous recombination 

HZE Energetic heavy nuclei with high atomic number (Z) and energy € 
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IL Interleukin 

ISS International Space Station 

keV Kilo electron volt 

kg Kilogram 

kV Kilovolt 

LEO Low Earth orbit 

LET Linear energy transfer 

mA Milli ampere 

Mdm2 Mouse double minute 2 homolog 

MeV Mega electron volt 

MeV/n Mega electron volt per nucleon 

min Minute (s) 

ml Milliliter (1×10-3 l) 

mm Millimeter (1×10-3 m) 

mmol/l Millimole per liter 

ms Millisecond (s) 

mSv Milli sievert 

NASA National Aeronautics and Space Administration 

Ne Neon 

ng Nanogram (1×10-9 g) 

NHEJ Non-homologous end joining 

Ni Nickel 

nmol/l Nanomole per liter 

nm Nanometer (1×10-9 m) 

O Oxygen 

OI Osteogenic induction 

Osx Osterix 

Pb Lead 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 
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PE Plating efficiency 

pH Pondus Hydrogenii (-log [H+]) 

PI Propidium iodide (C27H34I2N4) 

pRb Phosphorylated retinoblastoma protein 

RT-qPCR Reverse Transcriptase quantitative real time polymerase chain 

reaction 

RBE Relative biological effectiveness 

REST Relative Expression Software Tool 

RNA Ribonucleic acid 

Runx2 Runt-related transcription factor 2 

s Second (s) 

S Relative survival 

SC Standard culture medium 

SPEs Solar particle events 

SSB Single-strand break 

SSC Side scatter 

Sv Sievert 

TA Annealing temperature 

TBE Tris/Borate/EDTA 

Thr Threonine 

TGF-β1 Transforming growth factor beta 1 

Ti Titanium ion 

Tyr Tyrosine 

V Volt 
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