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Mapping of quantitative trait loci for immune response traits and expression 

patterns of Toll-like receptors in lymphoid tissues in pigs 

 

The aim of this research was to identify the quantitative trait loci (QTL) affecting 

antibody and innate immune response traits. For this purpose, Duroc-Pietrain (DUPI) 

pigs (n = 319) were genotyped with 122 genetic markers and phenotypes of serum 

antibodies for Mycoplasma hyopneumoniae (Mh) and tetanus toxoid (TT), and 

interferon-gamma (IFNg) levels were measured following vaccinations (Mh, TT, 

Porcine Reproductive and Respiratory Syndrome Virus [PRRSV]). Line-cross and 

imprinting QTL analysis were performed using QTL Express. A total of 30 QTL (12, 6, 

and 12 QTL for Mh, TT antibody, and IFNg, respectively) were identified, of which 28 

QTL were detected by line-cross and 2 QTL by imprinting model. The serum 

concentration of interleukin 2 (IL2), IL10, IFNg, Toll-like receptor (TLR2) and TLR9 

were measured in another group of DUPI population (n = 334) following vaccinations 

that were genotyped with 82 genetic markers. A total of 33 single QTL were detected, 

of which eight, twelve and thirteen QTL were identified for immune traits in response to 

Mh, TT and PRRSV vaccine, respectively. All immune traits are influenced by multiple 

chromosomal regions implying multiple gene action. Furthermore, expression stability 

of nine commonly used housekeeping genes (HKG) was studied using qRT-PCR in 

most lymphoid tissues at different ages (newborn, young and adult) of pigs. This study 

found that HKG becomes heterogeneous with age and the geometric mean of the RPL4, 

PPIA and YWHAZ seem to be the most appropriate combination of HKG for accurate 

normalization of gene expression data in pigs. Moreover, the expression patterns of ten 

TLRs (1-10) were studied in the same tissues used for HKG study. This study revealed 

that TLRs mRNA expressions were affected by age and organs. Most of the TLRs 

expression was higher at young pigs compared to adult and newborn pigs. TLR3 gene 

was the highest abundant among all TLRs in most tissues. The western blot results of 

TLR2, 3 and 9 in selected tissues appeared to be consistent with the mRNA expression. 

The protein localization showed that TLRs expressing cells were abundant in lamina 

propria, Peyer’s patches in intestine, around and within the lymphoid follicles in the 

mesenteric and cervical lymph node, within the white pulp in spleen and on the lining 

cells in bronchioles in lungs. This expressions study first shed light on the expression 

patterns of all TLR genes in important lymphoid tissues including gut-associated 

lymphoid tissues in different ages of pigs. 



  

QTL-Kartierung von Immunreaktionsmerkmalen und Expressionsmuster des 

Toll-like Rezeptors in lymphatischen Gewebe beim Schwein 

 

Das Ziel dieser Studie war Quantitative Trait Loci (QTL), die Einfluss auf Antikörper 

und Merkmale der angeborenen Immunreaktion haben, zu identifizieren. Zu diesem 

Zweck wurden Duroc×Pietrain Schweine (DUPI) (n = 319) mittels 122 genetischen 

Markern genotypisiert. Die Phänotypen der Antikörperspiegel von Mycoplasma 

hyopneumoniae (Mh), Tetanus Toxoid (TT) sowie von Interferon-gamma (IFNg) 

wurden nach der Impfung (Mh, TT, Porcine Reproductive and Respiratory Syndrome 

Virus [PRRSV]) im Serum gemessen. Die QTL-Analysen wurden mit Hilfe der 

Software QTL-Express ausgeführt. Insgesamt wurden 30 QTL (jeweils 12, 6 und 12 

QTL für Mh, TT-Antikörper und IFNg) identifiziert, wobei bei 2 QTL der Einfluss von 

Imprintingeffekten nachgewiesen wurde. In einer weiteren Gruppe der DUPI-

Population (n = 334), welche mittels 82 Markern genetisch erfasst wurden, wurden die 

Serumkonzentrationen des Interleukins 2 (IL2), IL10, IFNg, Toll-like Rezeptor 2 

(TLR2) und TLR9 nach der Impfung gemessen. Dabei wurden insgesamt 33 QTL 

detektiert, von denen jeweils 8, 12 und 13 QTL mit der Immunreaktion auf Mh, TT und 

PRRSV Impfungen assoziierten. Alle Immunmerkmale wurden durch mehrere 

chromosomale Regionen beeinflusst, was multiple Genaktionen impliziert. Darüber 

hinaus wurde die Expressionsstabilität von 9 häufig verwendeten ‚house keeping’ 

Genes (HKG) mit Hilfe der qRT-PCR inngerhalb von lymphatischen Geweben von 

Tieren unterschiedlichen Alters (Neugeborene, Jungtiere, Adulte) untersucht. Die 

Ergebnisse dieser Studie zeigten, dass die Expression der HKG mit dem Alter heterogen 

werden. Somit scheint das geometrische Mittel von RPL4, PPIA und YWHAZ am 

geeignetsten für die Normalisierung von Genexpressionsdaten beim Schwein zu sein. 

Dasselbe Gewebe der Referenzgenanalyse wurde für die Expressionsanalyse von zehn 

TLRs (1-10) verwendet. Diese Analyse zeigte, dass die TLRs mRNA-Expression vom 

Alter und Organen abhängig war. Dabei konnte eine höhere TLRs Expression bei 

Jungtieren und eine geringere bei Adulten und Neugeborenen detektiert werden. Das 

Gen TLR3 hatte das höchste Expressionsniveau in der Mehrzahl an Geweben von allen 

TRL Genen. Die Ergebnisse des Western Blot von TLR2, 3 und 9 in ausgewählten 

Geweben stimmten mit den Genexpressions-Analysen überein. Die Protein-

Lokalisierung zeigte, dass TLRs in Zellen von lamina propria, Peyer’s Drüsen im 

Darm, in und um die lymphoiden Folikel des mesenterial und zervikalen 

Lymphknotens, im weißen Zellengwebe der Milz und in den Bronchialepithelien der 

Lunge exprimiert werden. Diese Expressionsstudie lieferte die ersten Erkenntnisse über 

die Expressionsmuster aller TLR in Lymphgeweben einschließlich der Lymphgewebe 

des Darms bei verschiedenen Alterstufen beim Schwein.  
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Introduction 1 

1.1 Introduction 

 

Quantitative trait loci mapping method is a statistical method for identifying loci 

associated with a quantitative phenotype. The current release of the Pig Quantitative 

Trait Locus (QTL) database (Pig QTLdb) (July 8, 2011) contains 6,344 QTLs 

representing 593 different traits from 281 publications 

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). These QTL are mostly for 

economically important traits like growth, carcass and meat quality, and reproduction 

(Hu et al. 2010). The goal of QTL mapping is to determine the loci that are responsible 

for variation in complex, quantitative traits. The immune competence is a quantitative 

trait and the antibody response was one of the first immune competence traits to be 

examined by QTL analysis (Cho et al. 2011, Edfors-Lilja et al. 2000, Edfors-Lilja et al. 

1998, Lu et al. 2010b, Reiner et al. 2002, Wattrang et al. 2005, Wimmers et al. 2008). 

Immune competence comprises the ability of an individual to protect itself against any 

pathogen by using innate and humoral immunity. It also means the immune 

responsiveness of an animal in response to vaccines or antigens or pathogens. QTL 

underlying immune response variations have been detected in mouse, chicken, and 

humans (Almasy and Blangero 2009, Biscarini et al. 2010, Hall et al. 2002, Siwek et al. 

2003). Only few studies were devoted to detect the QTL regions for immune response 

traits in pigs. The QTL detection is performed in underlying experimental crosses 

between lines that differ in their innate and specific immune responses. Duroc and 

Pietrain are reported to be divergent regarding bacterial disease resistance trait such as 

postweaning diarrhea due to E. coli F18 infections (FUT1 gene responsible for the 

resistance to  postweaning diarrhea is differentially expressed in Duroc and Pietrain 

intestine) (Vrtková et al. 2007). With regards to general immune responses, Duroc and 

Pietrain are differentially responding to sheep erythrocytes (Buschmann et al. 1974). 

Differences between Duroc and Pietrain in response to stress are also reported 

previously by Rosochacki et al. (2000) and stress is an important predisposing factor for 

animal to increase susceptibility to different infectious diseases (Hicks et al. 1998, 

Morrow-Tesch et al. 1994, Rosochacki et al. 2000). Moreover, immunological traits are 

reported to have the potential to improve selection of pigs for resistance to clinical and 

subclinical disease (Henryon et al. 2006). Therefore, QTL for immune response traits 

were detected in two different group of Duroc-Pietrain (DUPI) population. A DUPI 
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population was genotyped with 122 genetic markers and the serum titer of antibody 

response to Mycoplasma hyopneumoniae (Mh) and tetanus toxoid (TT), and interferon 

gamma (IFNg) in response to Mh, TT and porcine reproductive and respiratory 

syndrome virus (PRRSV) vaccine were measured as phenotypes (Chapter 1). The other 

DUPI population was genotyped with 82 genetic markers and the innate immune traits 

i.e. the serum titer of interleukin 2 (IL2), IL4, IL10, IFNg, toll-like receptor 2 (TLR2) 

and TLR9 in response to Mh, TT and PRRSV vaccines were measured as phenotypes 

(Chapter 2).  

The immune system is highly organized and is a very complex system working 

synergistically to protect the host from any infections or insults and to maintain 

homeostasis (Cooper and Herrin, 2010 ). It comprises two functional types of responses, 

innate or cellular or non-specific and adaptive or humoral or acquired responses. The 

innate immune system comprises the cells and mechanisms that protect the host from 

any pathogenic infectious agents in a non-specific manner. Its does not confirm long-

lasting or life-long protection to the host. This non-specific immune system provides 

immediate defense against infection, and can be found in all classes of plant, living 

organisms, animals and humans (Beutler 2004). The cells of the immune system utilize 

germ-line encoded receptors termed as pattern recognition receptors (PRRs) to 

recognize pathogen specific patterns termed as pathogen associated molecular patterns 

(PAMPs) (Medzhitov and Janeway 1997). After recognizing the PAMPs by PRRs, there 

is induction of opsonization, activation of complement and coagulation cascades, 

phagocytosis, activation of proinflammatory signaling pathways and cytokines 

production and induction of apoptosis (Akira and Takeda 2004, Medzhitov and Janeway 

1997). The innate immune system is highly developed in its ability to discriminate 

between self and foreign pathogens. This discrimination relies, to a great extent, on a 

family of evolutionarily conserved receptors, known as the Toll-like receptors (TLRs), 

which have crucial roles in early host defense against invading pathogens (Akira and 

Takeda, 2004). Toll-like receptors recognize conserved molecular patterns (PAMPs), 

which are shared by large groups of microorganisms (Akira and Takeda 2004). 11 TLRs 

have been identified in humans and 13 in mice, whereas in other mammals including 

pigs, there are 10 members of TLRs are recognized. TLR1, 2, 4, 5, 6 and 10 are 

expressed on the cell surface, while TLR3, 7-9 are located in the endosomes/lysosome 

(Akira and Takeda, 2004). Notably, soluble forms of TLRs are reported to present in 
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human plasma, breast milk and saliva (Buduneli et al. 2011, LeBouder et al. 2003). 

Activation of the TLR leads not only to the induction of inflammatory responses but 

also to the development of antigen-specific adaptive immunity (Akira and Takeda 

2004). So TLRs are considered as critical proteins linking innate and adaptive 

immunity. It is important to note that each TLR has its specific ligands. TLR2 is 

essential for the recognition of microbial lipopeptides; TLR4 recognizes 

lipopolysaccharide (LPS) of gram negative bacteria. TLR9 is the CpG DNA receptor, 

whereas TLR3 is implicated in the recognition of viral dsRNA. TLR5 is a receptor for 

flagellin, the main protein of flagellar bacteria. Thus, the TLR family discriminates 

between specific patterns of microbial components (Takeda and Akira 2004). The TLRs 

play important roles in B-cell activation and antibody production in vivo and generation 

of T-dependent antigen-specific antibody responses requires activation of TLRs in B 

cells (Pasare and Medzhitov 2005). Expression of TLRs in response to Mycoplasma 

hyopneumoniae vaccine (Muneta et al. 2003, Regia-Silva et al. 2011) and porcine 

reproductive and respiratory syndrome virus (PRRSV) (Liu et al. 2009, Miller et al. 

2009) are reported in pigs. TLR ligands depended adjuvants in vaccines against some 

infectious diseases are proven (such as in BCG [Bacillus Calmette-Guérin]) and are 

reported to be possible in case of several diseases (such as in DTP [diphtheria toxoid, 

tetanus toxoid, pertussis], rabies etc) (van Duin et al. 2006). Therefore, this study was 

devoted to identify the chromosomal regions influencing the TLRs in response to Mh, 

TT and PRRSV vaccine (Chapter 2). 

Cytokines are the cell-signaling protein molecules secreted by the cells of the immune 

system for intercellular communications in response to any pathogens or inflammations. 

Cytokines as intercellular signaling molecules form complex networks to orchestrate 

and coordinate immune responses. Cytokines include interleukins (IL), chemokines, 

interferons (IFN), colony stimulating factors, tumor necrosis factors (TNF), and other 

proteins (Scheerlinck and Yen 2005). Now over 100 cytokines have been identified in 

mammals, including 49 interleukins and 50 cytokines are reviewed by Scheerlinck and 

Yen (2005). The Th1 cell secretes mainly IL2 and interferon gamma (INFg) and the 

Th2 cell secretes mainly IL4, IL10, and IL13. It is important to keep balance between 

Th1 (pro-inflammatory) cytokines (such as IFNg) and Th2 (anti-inflammatory) 

cytokines (such as IL4 and IL10). Each cytokine has its specific function as well as they 

work synergistically to perform a particular task. Cytokines work through complex 
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networks because all cytokines, to a greater or lesser extent, exhibit pleiotropy (multiple 

biological actions) and redundancy (shared biological actions) (Nicola 1994). As a part 

of the innate immune system, cytokines are produced by lymphocytes in response to 

antigens including vaccine antigens immediately after recognizing by the TLRs. The 

cytokines then lead to the inflammatory response and subsequently B cell activation and 

antibody production. Finally, B cells are divided and form memory cells that can 

recognize the antigen or vaccine antigen in later invasion and produce antibodies. 

Interferon gamma (IFNg) produced from Th1 cells and NK cells, is responsible for the 

activation of macrophages and NK cells, induction of MHC-I & -II expression, and 

inhibits Th2 activity. IFNg has immunomodulatory functions, possesses antiviral 

activity and protects swine from diseases (Danilowicz et al. 2008, Scheerlinck and Yen 

2005, Yao et al. 2008). Interleukins are mainly produced by leukocytes and are involved 

in mounting the immune response. IL1 and IL2 are responsible for the activation of T 

and B lymphocytes by stimulating their growth and maturation. IL4 plays a role in 

increasing antibody secretion by B lymphocytes. IL12 is responsible to increase the 

number of cytotoxic T cells and natural killer cells to kill the invading pathogens. 

Importantly, IL10 is an important anti-inflammatory cytokine that not only suppresses 

inflammation but also modulates the survival time of infected animals (Scheerlinck and 

Yen 2005). The use of recombinant cytokines as adjuvants in vaccines is attracting 

considerable attention (Asif et al. 2004) and pig IL2 is reported to enhance immunity 

when used as vaccine adjuvant in mice (Xie et al. 2007). IL2, IL12, IL4, IL6, IL8 and 

IL10 as inflammatory cytokines play important roles in porcine enzootic pneumonia 

caused by M. hyopneumoniae in pigs (Lorenzo et al. 2006, Rodriguez et al. 2007, 

Rodriguez et al. 2004). Tetanus toxin (TT) selectively inhibited IFNg production (Blasi 

et al. 1990) and the IFNg level is considered as the indicator for immune responsiveness 

of cells in response to TT (Tassignon et al. 2005). It has been reported that recombinant 

IL2 treatment is able to potentiate the antibody response to tetanus toxoid in humans 

(Fagiolo et al. 1997). Recently, it has been documented that the protection by PRRS 

vaccines depends on the ability of the vaccine to induce an IFNg response (LeRoith et 

al. 2011).  Interleukins including IFNg are reported to be linked to PRRS virus clearance 

in pigs (Lunney et al. 2010). Due to the important roles of cytokines, one of the aim of 

this study was to indentify the chromosomal regions affecting cytpokines (IL2, IL10 

and IFNg) in pigs.  
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The acquired immune response is a specific immune response against a particular 

pathogen or antigen. Lymphocytes are the primary effector cells, a memory response is 

generated and increases with each exposure to the antigen. The adaptive immune 

response is distinguished from innate immune mechanisms by a higher degree of 

specific reactivity to the agent and for the recall memory (Bishop et al. 2010). One of 

the acquired immune system enhancements is also represented by successful 

vaccination against an infectious disease. Vaccines against bacterial and viral infections 

have employed attenuated live or inactivated or killed whole organisms (Bahr 2001). 

Additionally, the modern vaccine technology is very close to develop vaccines using 

TLR ligands as vaccine adjuvant which will lead to produce more safe and effective 

vaccine (Duthie et al. 2011, van Duin et al. 2006). Antibodies are produced by B cells in 

response to antigens such as bacteria, viruses and protozoa. The development of the 

antibody response is dependent on the type of antigen and whether the immune system 

has previously encountered the antigen (Wingren 2007). Mycoplasma hyopneumoniae 

(Mh) is the principal aetiological agent of enzootic pneumonia (EP), a chronic 

respiratory disease that affects pigs (Sibila et al. 2009). It is an important bacterial 

disease in pig industry because of its high prevalence of up to 80 % in pigs worldwide. 

It is characterized as a chronic disease with high morbidity and low mortality rates 

(Fano et al. 2005). This disease causes high economic loss due the retardation of growth 

and production loss (DeBey et al. 1992, Thacker et al. 1999). Active immunization 

using inactivated M. hyopneumoniae bacteria, has been recommended as vaccine to 

protect animals from mycoplasmal pneumonia (Okada et al. 1999). The presence of 

infection as well as the antibody titer of M. hyopneumoniae could be monitored using 

specific ELISA (Sibila et al. 2009). The ELISA tests have a higher sensitivity at the 

individual level compared to other methods (e.g. indirect hemagglutination) (Armstrong 

et al. 1983, Sheldrake et al. 1990, Sorensen et al. 1992). Tetanus is caused by the 

bacterium Clostridium tetani. It produces toxins (tetanospasmin, a neurotoxin) that 

affect the central nervous system. In the suckling pig, the most common route of 

infection is the wound in case of unhygienic castration. In the favourable condition, 

these bacteria appear in vegetative form and produce tetanospasmin. The common 

clinical symptoms are hypersensitivity, pig shows stiffness of legs and muscles, an 

erected tail, muscular spasms of the ears and face and coincide with high mortality. The 

ELISA test is commonly used to determine TT antibody titers (Aybay et al. 2003, Gupta 
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and Siber 1994). One of the aims of this research was to detect the chromosomal 

regions influencing the antibody production for Mh and TT in response to their vaccine. 

Although the PRRSV specific antibody induced by PRRSV vaccine was not measured 

in this study, the PRRSV vaccine induced innate immune responses traits (production of 

IFNg, IL2, TLR2 and TLR9) were considered for quantitative trait loci (QTL) analyses. 

PRRS is one of the most important and prevalent viral diseases in pig industry (Dee et 

al. 1997). It is distributed world wide and has a high economic impact. Importantly, 

PRRSV can persist in the host’s body for long time and continues to shed virus (Wills et 

al. 1997). It has been reported that PRRSV persist in the host by suppressing TLR3 

(Sang et al. 2008). 

Beside the QTL study for immune response traits, the organs related to immune 

functions were considered for gene expression study. The expression of commonly used 

housekeeping genes (HKGs) (Chapter 3) and TLR family genes (TLR1-10) (Chapter 4 

and 5) were investigated in different immune organs of pigs. The mammals’ body 

possesses highly developed and sophisticated immune organs that protect the organism 

from any infectious pathogens and that maintain homeostasis. Gut-associated lymphoid 

tissues (GALT) are highly organized immune compartments, are intimately associated 

with the gut epithelium, lymphoid cells in lamina propria, Peyer’s patches and 

mesenteric lymph node (MLN). GALT constitute the largest mass of immune cells in 

the body. The gut immune system protects swine against infectious and non-infectious 

environmental insults and discriminates ingested nutrients, food, and commensal 

microflora from pathogenic agents (reviewed by Artis 2008, Burkey et al. 2009, Dvorak 

et al. 2006, Neutra et al. 2001). The gut epithelium provides the physical barrier as well 

as the mucosal immune system protects the organism and mediates subsequent innate 

and adaptive immune responses. Mesenteric lymph nodes (MLN) synergistically with 

GALT fight against the pathogens entering through the oral route (Burkey et al. 2009). 

The GALT are armed with TLRs and are reported to recognize the pathogens as well as 

to discriminate between pathogens and probiotics or beneficial microflora via a cross 

talk through TLRs (Kitazawa et al. 2006, Tohno et al. 2006, Uenishi and Shinkai 2009). 

Cervical lymph nodes (CLN), thymus, liver, spleen, lung, heart, skin and peripheral 

blood mononuclear cells (PBMC) are vital lymphoid organs in animals and humans that 

protect the host from pathogens. CLN play vital roles in defence against respiratory 

virus in pigs (Bailey et al. 2000). Thymus is an important immune organ where T-
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lymphocytes development occurs and thymic B cells produce immunoglobulin 

(Cukrowska et al. 1996). Spleen is the largest secondary immune organ in the body and 

is responsible for initiating immune reactions to blood-borne antigens. The unique 

function of spleen is filtering the blood for foreign material and removing old or 

damaged red blood cells. It aids in the development of white blood cells are reviewed 

by Cesta (2006). Although the liver is mainly focused on detoxification, it has also 

important immune functions. Liver is the resident for macrophages (Kupffer cells), 

dendritic cells, liver natural killer (NK) cells and responses to different pathogens in 

pigs (Skovgaard et al. 2009). Liver produces acute phage proteins (haptoglobin, serum 

amyloids) as part of innate immune response. Alveolar epithelial cells in lung provide a 

barrier between circulation and external air. Lung is an important immune organ 

harbouring huge numbers of lymphocytes, macrophages (alveolar macrophages) 

fighting against most respiratory pathogens in pigs (reviewed by Pabst and Binns 1994). 

The surfactant protein also functions in pulmonary host defense (Crouch et al. 2000, 

Wright et al. 2001). Skin is the largest organ of the body and is exposed to the highest 

number of pathogens, allergens, mechanical and physical insults and it is involved in the 

regulation of body temperature. Skin is the interface between the internal milieu and the 

external environment and acts as a mechanical, physical and biological protective organ 

are reviewed by Schmitt (1995). Pig’s skin is exposed to numerous bacteria, virus and 

fungus. Peripheral blood mononuclear cells (PBMC) include different cells (such as 

lymphocytes, monocytes and macrophages) playing important immune functions in 

mammals. PBMC are essential for subsequent analyses in immune monitoring and are 

used as a cell line to study the effect of different antigens, mutagens or vaccines 

(Hornung et al. 2002, Siednienko and Miggin 2009, Yancy et al. 2001). Therefore, all 

these organs were considered for the gene expression studies (Chapter 4 and 5).  

Today’s, quantitative real-time PCR (qRT-PCR) is the most frequently used method for 

gene quantification. qRT-PCR is an efficient method for quantification of mRNA 

transcript expressions due to its high sensitivity, reproducibility and large dynamic 

range. It is fast, easy to use and provides simultaneous measurement of gene expression 

in many different samples for a limited number of genes (Arya et al. 2005, Nolan et al. 

2006, Nygard et al. 2007). When analyzing data for relative quantification in qRT-PCR, 

results are normalized to a reference. The most accepted approach to quantification is 

normalisation of the expression level of a gene of interest (target gene) to the expression 
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level of an internal stably expressed gene (control or reference gene) (Huggett et al. 

2005, Radonic et al. 2004, Vandesompele et al. 2002). The reference gene is a stably 

expressed gene that is experimentally verified in given species and tissues under given 

experimental conditions (Erkens et al. 2006, Lovdal and Lillo 2009, Maroufi et al. 2010, 

Nygard et al. 2007). Since the reference gene is exposed to the same preparation steps 

as the gene of interest, the normalisation adjusts for differences in the quality or 

quantity of template RNA or starting material and differences in RNA preparation and 

cDNA synthesis. A variability or alteration in the chosen reference gene by the 

experiment, however, may change the obtained results entirely and could be incorrect. It 

is therefore necessary to validate the expression stability of reference genes prior to 

their use in an experimental protocol. An ideal reference gene should be stably 

expressed and unaffected by experimental protocol or status (Schmittgen and Zakrajsek 

2000). However, recent studies showed that the expression of housekeeping genes 

(HKGs) differs between tissues (Maroufi et al. 2010, Nygard et al. 2007, Pierzchala et 

al. 2011), breeds (Pierzchala et al. 2011), experimental condition (such as treatment or 

disease) (Beekman et al. 2011, De Boever et al. 2008, Maccoux et al. 2007, Penning et 

al. 2007) and age (Al-Bader and Al-Sarraf 2005, Pierzchala Mariusz et al. 2011, 

Touchberry et al. 2006). Set of reference genes are suggested on the basis of their 

stability over tissues in pigs (Erkens et al. 2006, Nygard et al. 2007, Pierzchala et al. 

2011, Piorkowska et al. 2010), but studies with regards to the expression stability of 

commonly used house keeping in different porcine tissues collected from different ages 

of pigs are scare. Therefore, the expression stability of the HKGs was investigated in 

different organs of pigs with different ages (Chapter 3).  

It is necessary to know which TLRs are expressed in tissues and by specific cell types in 

order to understand the TLRs functions. The immune responsiveness of individuals is 

reported to depend on the variation of TLR expression (Jaekal et al. 2007). The tissue, 

cellular, and sub cellular localization and distribution of TLRs influence the type of 

immune response elicited. Thus, the first step in understanding the role of TLRs is to 

determine which TLRs are expressed by specific tissues, organs and cells of interest. 

The immune responsiveness of different lymphoid organs is not the same. An organ 

could be more responsive to a pathogen while an other organ could be immunologically 

more reactive to another pathogen. In order to gain an understanding of how responsive 

tissues and cells are likely to be involved at detecting pathogens, TLR mRNA 
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expression patterns have been determined in different species. Expression studies of the 

complete TLR family (1-10) have been reported in humans (Garrafa et al. 2010, 

Hornung et al. 2002, Siednienko and Miggin 2009), cattle (Menzies and Ingham 2006), 

sheep (Chang et al. 2009, Nalubamba et al. 2007, Taylor et al. 2008) and chicken (Iqbal 

et al. 2005). For pigs, there is no such complete study of TLRs1-10 expression reported. 

Notably, the immune responsiveness to antigens or vaccine varies according to the age 

of the individuals (Panda et al. 2010, van Duin and Shaw 2007) and is assumingly 

associated with TLRs expression (Dunston and Griffiths 2010, Renshaw et al. 2002, van 

Duin and Shaw 2007). Furthermore, the expression and function of TLRs are reported 

to vary with age (Renshaw et al. 2002, Tohno et al. 2006, van Duin and Shaw 2007). 

Age-associated changes of the adaptive immune system are documented in pigs (Dickie 

et al. 2009, Hoskinson et al. 1990); however, data on the impact of aging on the innate 

immune system especially on the TLR expression pattern is rare in pigs. Since TLRs are 

vital immune components, it is important to study their expression pattern in tissues or 

organs related to immune functions. Therefore, the aim of this research was to study the 

expression patterns of all porcine TLR (1-10) genes in selected immunologically 

important lymphoid organs or tissues collected from pigs of three different ages 

(Chapter 4 and 5).  

With this background, several experiments were conducted in this thesis to achieve the 

following aims: 

1. Evaluation of the porcine immune competence on the basis of antibody production, 

cytokines and Toll-like receptors expressions in response to vaccine antigens and 

identification of the quantitative trait loci affecting these immune response traits. 

2. Identification of the expression stability of nine commonly used housekeeping 

genes in porcine organs to assemble an appropriate set of housekeeping genes for 

the normalization of gene expression in pigs. 

3. Investigation of the expression patterns of all Toll-like receptors in lymphoid 

organs of pigs at different ages.  
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1.2 Materials and methods 

 

To achieve the objectives of this research several materials and methods were used. The 

details materials and methods are described in details in the different chapters in this 

thesis. The importance of some methods and their descriptions are briefly summarized 

here.  

 

1.2.1 Enzyme-linked immunosorbent assay (ELISA) 

Immune competence of pigs can be monitored by measuring the immune response 

induced by infection or vaccine antigens. The most common diagnostic assays are based 

on detecting antibodies specific to the pathogen. Blood serum was used as a sample for 

ELISA. ELISA was used to quantify the antibody concentration of Mh and TT (Chapter 

1) as well as to measure the cytokines and TLR proteins (Chapter 2) in response to 

vaccine antigens. ELISA is found to be potentially a very attractive and practical 

serodiagnostic test for mycoplasmal pneumonia in pigs. A study conducted by 

Armstrong et al. (1983) indicated an extremely high sensitivity of ELISA for detecting 

porcine antibodies to M. hyopneumoniae. In addition, the ELISA can be performed 

automatically and would thus be economical for testing when compared to indirect 

hemagglutination (IHA) and complement fixation (CF) methods. ELISA is reported to 

be an effective and sensitive method to detect the TT antibody when compared to 

ELISPOT, flow cytometry and real-time PCR (Tassignon et al. 2005). Besides 

measuring the antigen specific antibody, the immune responsiveness of animals can also 

be detected by measuring the serum concentration of immune response components like 

cytokines and TLRs (Edfors-Lilja et al. 1998, Lu et al. 2010b, Buduneli et al. 2011). For 

measuring the serum cytokines ELISA is the mostly practiced, easy and cost effective 

immunological assay for a large number of animals (Andreotti et al. 2003). The 

concentration of TLRs in body fluids is also possible to measure by ELISA (Buduneli et 

al. 2011). The uses of ELISA has increased dramatically in the immunological as well 

as in diagnostic research (reviewed by Lequin 2005).  
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1.2.2 QTL analysis 

Quantitative trait locus (QTL) analysis is a statistical method that links two types of 

information-phenotypic data (trait measurements) and genotypic data (usually 

molecular markers)-in an attempt to explain the genetic basis of variation in complex 

traits (Kearsey, 1998). QTL analysis allows researchers in fields as diverse as 

agriculture, evolution, and medicine to link certain complex phenotypes to specific 

regions of chromosomes (reviewed by Miles and Wayne, 2008). QTL analysis is an 

important method applied to the genetic dissection of immune responses of population 

(de Koning et al. 2005). For this method, the experimental populations have to be 

custom bred and challenged to study genetic differences in immune response and map 

genetic loci underlying these differences in most infectious disease studies (de Koning 

et al. 2005). For QTL analysis, the animals were genotyped with genetic markers as 

described earlier (Grosse-Brinkhaus et al. 2009, Liu 2005, Liu et al. 2007, Phatsara 

2007, Wimmers et al. 2008). Allele and inheritance genotyping errors were checked 

using Pedcheck software (version 1.1) (O'Connell and Weeks 1998). The relative 

positions of the markers were assigned using the build, twopoint and fixed options of 

CRIMAP software (version 2.4) (Green et al., 1990). Recombination units were 

converted to map distances using the Kosambi mapping function (Kosambi 1944). 

Marker information content and segregation distortion were tested by following Knott et 

al. (1998). Using a regression approach, the QTL were calculated for immune traits. A 

QTL interval mapping analysis was performed using the web-based program QTL 

express available at http://qtl.cap.ed.ac.uk/ (Seaton et al. 2002). The QTL-express 

program including F2 dataset was used following an additive and dominant model with 

permutated chromosome-wide permutations at a total of 10,000 iterations. The 

chromosome-wide 1% and 5% significance thresholds were calculated by QTL express. 

The 1% and 5% experiment-wide significant threshold were calculated by 

transformation with Bonferroni correction for 18 autosomes of the haploid porcine 

genome. As there were no markers genotyped on the X-chromosome, transformation 

was done only for an experiment-wide, not for a genome-wide significant threshold 

level. The significant thresholds at the 5 and 1% level were determined empirically by 

permutation test for individual chromosomes (Churchill and Doerge 1994). 
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1.2.3 Quantitative real-time polymerase chain reaction 

In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and 

widely used methodology for biological investigation because it can detect and quantify 

very small amounts of specific nucleic acid sequences. As a research tool, a major 

application of this technology is the rapid and accurate assessment of gene expression as 

a result of physiology, pathophysiology, or development (Valasek and Repa 2005). In 

this research the commonly used housekeeping genes were quantified in different 

porcine tissues using quantitative real-time polymerase chain reaction (qRT-PCR) 

(Chapter 3) following standard procedures. For this purpose, RNA was isolated from 

tissues using the phenol-chloroform method and was purified (Chapter 3). The RNA 

quality and quantity was measured using agarose electrophoresis and Nanodrop, 

respectively. cDNA was synthesized and purified (Chapter 3) for quantification in qRT-

PCR. Nine-fold serial dilutions of plasmid DNA were prepared and used as template for 

the generation of the standard curve. In each run, beside each cDNA sample, plasmid 

standards for the standard curves and no-template control were used. A no-template 

control (NTC) was included in each run for each gene to check for contamination. For 

qRT-PCR, 1× Power SYBR Green I master mix with ROX as reference dye (Bio-Rad) 

was used in the StepOnePlus™ Real-Time PCR System (Applied Biosystems). Melting 

curve analysis was constructed to verify the presence of gene-specific peak and the 

absence of primer dimer. Agarose gel electrophoresis was performed to test for the 

specificity of the amplicons. To ensure repeatability of the experiments, all reactions 

were executed in triplicate and the mean was used for further analysis (Chapter 3).  

 

1.2.4 GenomeLab expression analysis  

Although qRT-PCR is the most commonly practiced methods for gene quantification, it 

is not cost-effective for the quantification of a set of genes in a large numbers of tissues 

when compared to the GenomeLab Genetic Analysis System (GeXP). The qRT-PCR 

results are reported to vary according to the system (Lu et al. 2010a). The Beckman 

Coulter GeXP genetic analysis system allows for multiplexed detection and quantitation 

of up to 35 genes in 192 samples in a single analysis (Rai et al. 2009). The results of 

GeXP is comparable to quantitative real-time PCR (Raghunathan et al. 2009). 

Therefore, GeXP is a faster and cheaper method in this regard (Rai et al. 2009). The 

analytical procedure includes modified reverse transcription and PCR amplification, 
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followed by capillary electrophoretic separation (Rai et al. 2009). All the forward 

primers are mixed together (forward-plex) while ‘reverse-plex’ is prepared by mixing 

all the reverse primers (Chapter 4 and 5). Each of these primers is chimeric, having a 3′ 

gene-specific end and a 5′ end containing a quasi-T7 universal sequence, which serves 

as a template in subsequent amplification steps (Rai et al. 2009). The GeXP software 

matches each fragment peak with the appropriate gene, and reports peak height and 

area-under-the-curve (AUC) for all peaks in the electropherogram. Electrophoretic 

separation is needed to be done by GenomeLab™ GeXP Genetic Analysis System 

(Beckman Coulter, Fullerton, CA, USA). Kanamycin RNA internal positive control is 

to be included and produces a peak at 326 bp when samples are separated via 

electrophoresis. All experiments usually included “no template” (i.e. without RNA) and 

“no enzyme” (i.e. no reverse transcriptase) as negative controls to confirm the absence 

of peaks at the expected target sizes. The “no template” sample produces a single peak 

at 326 bp, corresponding to the externally spiked-in kanamycin RNA. The data set is 

exported from the GeXP software after normalization to kanamycin, with area-under-

the-curve (AUC) set to 1 which minimizes inter-capillary variation (Rai et al., 2009). 

This data were used for subsequent analyses after normalization against reference genes 

(Chapter 4 and 5).  

 

1.2.5 Western blot 

Western blotting (WB) is a powerful and important procedure for the immunodetection 

of proteins post-electrophoresis, particularly proteins that are of low abundance 

(reviewed by Kurien and Scofield 2006). WB allows the transfer of proteins from a 

sodium dodecyl sulfate (SDS) polyacrylamide gel to an adsorbent membrane. The 

blotted proteins form an exact replica of the gel and have proved to be the starting step 

for a variety of experiments. The subsequent employment of antibody probes directed 

against the nitrocellulose bound proteins has revolutionized the field of immunology. 

Transfer of proteins separated by SDS–polyacrylamide gel electrophoresis (PAGE) 

(Laemmli 1970) to an adsorbent membrane, is a powerful tool to detect and characterize 

a multitude of proteins, especially those proteins that are of low abundance. WB offers 

the following specific advantages: wet membranes are pliable and easy to handle, the 

proteins immobilized on the membrane are readily and equally accessible to different 

ligands, only a small amount of reagents is required for transfer analysis and multiple 
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replicas of a gel are possible. Prolonged storage of transferred patterns, prior to use, 

becomes possible and the same protein transfer can be used for multiple successive 

analyses (Kost et al. 1994, Kurien and Scofield 2006). In this thesis, the TLR2, TLR3 

and TLR9 proteins were detected from several tissues (Chapter 4 and 5). The detailed 

procedure and specific chemicals and antibodies can be found in the respective chapters 

(Chapter 4 and 5).  

 

1.2.6 Immunohistochemistry 

Immunohistochemistry (IHC) technique is the visualization of a tissue or cellular 

component in situ by detecting specific antigens using antibody-antigen interactions 

where the antibody is tagged with a visible marker. The marker may be a fluorescent 

dye, colloidal metal, hapten, radioactive marker or an enzyme that digest a substrate to 

reveal the substrate color. Cells normally express specific proteins that can be detected 

by IHC. Immunohistochemistry involves a series of uniform steps, typically beginning 

with antigen retrieval. The art of IHC requires specialized procedures for the detection 

of protein. Fixation, tissue processing, immunoreactions and antigen retrieval methods 

are important elements of IHC. Methods of antigen retrieval vary in terms of reagents 

and methods (reviewed by Cregger et al. 2006). The first definitive step of IHC 

following antigen retrieval is the application of a specific primary antibody (typically 

produced by immunizing mice or rabbits with a peptide/antigen of interest), followed by 

extensive washing to remove excess amounts of the primary antibody. A species-

specific secondary antibody is then applied, which binds to the primary antibody. The 

secondary antibody is typically conjugated to biotin, horseradish peroxidase, or some 

other tag. Finally, a detection reagent is applied that includes a chromagen substrate or a 

fluorescently tagged molecule to visualize the localization of the primary antibody 

(reviewed by Cregger et al. 2006). Several conditions and technical aspects are involved 

in the successful IHC (reviewed by Ramos-Vara 2005). The distribution of 

immunoreactive TLR2, TLR3 and TLR9 proteins in different tissues was characterized 

in this study (Chapter 4 and 5).   
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1.2.7 Data analysis 

In this thesis different statistical methods are involved that are described in more detail 

in the respective chapters. The data were analyzed using the software package SAS 

(version 9.2). Generalized linear models (PROC GLM) were used to identify any 

possible effect of sire, dam, sex, birth weight, average daily weight gain, litter size, 

parity and month of birth on the blood concentration of immune components (Chapter 1 

and 2) or on the gene expressions (Chapter 3, 4 and 5). For the expression stability 

analysis of HKGs, different publicly available web-based software package (such as 

geNorm, NormFInder and BestKeeper) were used (Chapter 3). Details of the logarithm 

used by geNorm (Vandesompele et al. 2002), NormFinder (Andersen et al. 2004) and 

BestKeeper (Pfaffl et al. 2004) are described in Chapter 3.   
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1.3 Results 

 

To fulfill the objectives of this study, different work packages were carried out. The 

detailed results can be found in the respective chapters in this thesis. Some of the 

important results are very briefly described here. For better description with regards to 

the aims of this research and the chapters, the results are divided into several parts. 

First, to detect the QTL for mycoplasma and tetanus (TT) antibody, and for interferon 

gamma (IFNg), a Duroc × Pietrain F2 resource population (n = 319) was vaccinated 

with Mycoplasma hyopneumoniae (Mh), Tetanus toxoid (TT) and Porcine Reproductive 

and Respiratory Syndrome Virus (PRRSV) at 6, 9 and 15 weeks of age, respectively 

(Chapter 1). Blood samples were collected at 6 different time points for the evaluation 

of phenotypes. The immune competence traits measured in this study comprise of the 

serum titer of Mh and TT antibodies and the concentration of IFNg. Antibody titers of 

Mh and TT were measured in blood samples collected just before vaccinations and two 

times after the vaccinations (10 and 20 days after Mh vaccination, and 20 and 40 days 

after TT vaccination). The IFNg blood concentration was measured from samples 

collected after the Mh, TT and PRRSV vaccinations (10 days after Mh and PRRSV, and 

20 days after TT vaccination). The phenotypes of immune response traits were 

characterized using enzyme-linked immunosorbent assays (ELISA) from both 

commercial and in house developed assays. The information obtained from phenotypic 

evaluation was further utilized in the quantitative trait loci (QTL) linkage mapping 

using QTL Express. This population was genotyped with 122 genetic markers. The 

titers of Mh and TT antibodies were increased with age. The IFNg production was 

highest after Mh vaccination, was lowest after TT vaccination and was moderate after 

PRRSV vaccination. However this difference of IFNg was not significant. Antibodies 

and IFNg were found to be significantly affected by sex, litter size, parity, and month of 

birth in this study. A total of 18 QTL were identified for antibodies on nine 

chromosomes, of which 12 were for Mh antibody and six were for TT antibody 

(Chapter 1). Among these QTL, 12 were suggestive (P < 0.05, at chromosome-wide 

level), five were significant (P < 0.01, at chromosome-wide level) and a QTL for TT 

was highly significant (P < 0.05, at experiment-wide level). This highly significant QTL 

for TT antibody is very close to the location of TLR6 on SSC8. Two QTL for Mh 

antibody were detected within a close region on SSC15 and on SSC18 which might be 

the QTL with pleotropic effect. 12 chromosomal regions were found to affect IFNg 

production. Two QTL were identified within close regions on SSC5 and SSC11, which 
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might be pleotropic QTL. Importantly, the confidence interval of the two QTL detected 

on SSC5 did incorporate the location of the IFNg gene. Additionally, this study 

identified two QTL on SSC5 using the two-QTL for IFNg approach, and a QTL for TT 

and IFNg with imprinting effect on SSC2 (Chapter 1).  

Second, with the aim to detect the QTL affecting innate immune response traits, another 

Duroc × Pietrain F2 resource population (n = 332) was vaccinated with the same 

vaccines (Mh, TT and PRRSV) at the same ages (6, 9 and 15 week of age, respectively). 

Serum concentrations of IFNg, IL2, IL10, TLR2 and TLR9 were measured in blood 

samples collected after each vaccination (Chapter 2). For the measurement of these 

innate immune response components, commercial ELISA kits were used. This 

population was genotyped with 82 genetic markers. The serum concentrations of IFNg 

and IL10 were highest in response to PRRSV and were lowest after Mh vaccination. 

Serum concentrations of IL2, TLR2 and TLR9 were found to be lower in response to 

TT vaccination. Moreover, age, gender, litter size and parity were found to have an 

effect on these innate immune components. A total of 33 QTL were detected on almost 

all autosomes, of which four QTL were for each of IL2, IFNg and TLR2; eight and 13 

for IL10 and TLR9, respectively. Additionally, six QTL were identified by the two-

QTL approach (Chapter 2). The flanking region of some QTL did incorporate the 

chromosomal location of some genes with important immune function which are 

postulated to be important candidates for porcine immune responses. 

Third, it is important to know the expression stability of commonly used housekeeping 

genes across tissues of pigs at different ages. Due to the normalization, in case of the 

gene expression study, the expression of target gene is greatly affected by the 

expression stability of the housekeeping genes. For this purpose, nine commonly used 

housekeeping genes were selected, cloned and expression study was performed using 

qRT-PCR. The expression of these nine housekeeping genes (B2M, BLM, GAPDH, 

HPRT1, PPIA, RPL4, SDHA, TBP and YWHAZ) were performed in 13 different 

lymphoid tissues (cervical lymph node, duodenum, heart, ileum, jejunum, kidney, liver, 

lung, mesenteric lymph node, skin, spleen, stomach and thymus) including peripheral 

blood mononuclear cells (PBMC) collected from newborn (one day old), young (2 

months old) and adult (5 months old) pigs (Chapter 3). In order to determine the 

expression stability and to select the most stable housekeeping gene, these expression 

data were analysed using geNorm, NormFinder and BestKeeper analysis programs. 

geNorm found that RPL4, PPIA and YWHAZ were the most stable housekeeping genes 

in newborn and adult, whereas B2M, YWHAZ and SDHA were the most stable in young 
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pigs. According to the NormFinder, TBP is the most stably expressed housekeeping 

gene in newborn and young pigs, whereas PPIA is the most stable in adult pigs. 

Moreover, geNorm suggested that the geometric mean of the three most stable genes 

should be used for the appropriate normalization. In all cases, GAPDH was detected as 

the least stable housekeeping gene by geNorm (Chapter 3). The housekeeping genes 

were affected by age and organs. However, the first three most stable reference genes in 

most cases were consistently the same when using geNorm and NormFinder, even if 

they were not in the exact same ranking order. 

Fourth, the study aimed to reveal the expression patterns of all TLRs (TLR1-10) in gut-

associated lymphoid tissues (GALT) (stomach, duodenum, jejunum and ileum) 

including mesenteric lymph node (MLN) (Chapter 4). TLRs mRNA analysis was 

preformed in these tissues collected form newborn ( one day old), young (2 months old) 

and adult (5 months old) pigs. For this purpose, GenomeLab Expression Analysis 

(GeXP) was used. Moreover, the expression patterns of TLR2, TLR3 and TLR9 

proteins were detected using Western blot and the immunoactive distribution of these 

three TLRs was characterized using immunohistochemistry. In most tissues, TLRs 

mRNA abundances were higher in young (2 months old) and adult (5 months old) pigs 

than in newborn (one day old) piglets. Among all the TLRs, TLR3 mRNA was found to 

be higher expressed across tissues. However, all the TLRs did not exhibit the same 

patterns of expression: in most of the cases TLRs increased with age. mRNA abundance 

of all TLRs was affected by age and organs. The protein expression patterns of TLR2, 

TLR3 and TLR9 seemed to be consistent with the mRNA expressions. Immunoreactive 

proteins of TLR2, TLR3 and TLR9 were detected in intestinal epithelial cells, in the 

lymphoid cells in lamina propria and in the lining cells of villi. Higher signals were 

detected in the Peyer’s patches in intestine (Chapter 4). These proteins were also 

remarkably higher expressed in the lymphoid follicles, sinus and trabeculae compared 

to the red pulp in the MLN.  

Lastly, the expression patterns of TLRs (TLR1-10) were characterized in lymphoid 

tissues other than GALT (cervical lymph node, heart, kidney, liver, lung, skin, spleen, 

thymus and PBMC) collected form newborn (one day old), young (2 months old) and 

adult (5 months old) pigs (Chapter 5). For the mRNA expression study, the GeXP was 

used. Additionally, TLR2, TLR3 and TLR9 protein expression and distribution were 

characterized in selected tissues (lung, spleen and cervical lymph node) using Western 

blot and immunohistochemistry, respectively. In most tissues, TLRs mRNA abundance 

was higher in young animals compared to adult and newborn animals. In all tissues, 
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TLR3 mRNA expression was higher than other TLRs. These expression differences may 

indicate the immune responsiveness of these organs with regards to the age of the 

animals. The mRNA abundance of all TLRs was affected by age and organs. The 

protein expression of TLR2, TLR3 and TLR9 was detectable in all tissues. TLR2, TLR3 

and TLR9 immunoreactive proteins were stained in the alveolus and lining cells of 

bronchioles in lungs, in the lymphoid cells in white pulp in spleen, and in the lymphoid 

cells in the cervical lymph node especially in the lymphoid follicle in the cortex 

(Chapter 5).  
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1.4 Conclusions 

  

Herein, we identified the chromosomal region associated with immune response traits in 

pigs in response to vaccine antigens. To obtain the results, a Duroc x Pietrain resource 

population was genotyped using genetic markers and as phenotypes vaccine antigen 

induced immune response components were measured for quantitative trait loci 

analysis. Several QTL were recorded on all autosomes that were affecting both adaptive 

and innate immune responses traits. With regards to number and magnitude of their 

impact, QTL for immune response traits behave like those for other quantitative traits 

such as for meat quality and carcass traits, production and reproduction traits. Some of 

the identified QTL coincided with previously reported QTL for immune response and 

disease resistance traits (Edfors-Lilja et al. 1998, Reiner et al. 2008, Reiner et al. 2007, 

Wimmers et al. 2008), and the newly identified QTL are potentially involved in immune 

functions. This study focused on some putative candidate genes (such as TNFa [tumor 

necrosis factor alpha], TLR6, MPO [myeloperoxidase], MBL2 [mannose-binding lectin 

2], NRAMP1 [natural-resistance-associated macrophage protein 1], LBP 

[lipopolysaccharide binding protein], BPI [bactericidal/permeability-increasing 

protein]) for immune traits located on the peak of the QTL regions which could be 

interesting candidates for further study through association analysis (Zhou et al. 2001, 

Zhou and Lamont 2003). Polymorphisms in TNFa (Mellick 2007), TLRs (Uenishi et al. 

2011a, 2011b), MPO (He et al. 2009), NRAMP1 (Wu et al. 2008), LBP (Liu et al. 2008) 

and BPI (Shi et al. 2003) are reported to be associated with diseases. Since the 

confidence interval was higher due to the limited number of markers, fine mapping 

using SNP chips could be beneficial to detect particular candidate genes (de Koning et 

al. 2005). Importantly, cytokines and TLRs orchestrated through a very complex 

network and production of antibody are mediated by a complex and sophisticated 

process which may explain a couple of pleotropic QTL identified in this study. By QTL 

detection, the linkage between loci is calculated to localize the chromosomal region 

including the candidate genes. However, it is necessary to analyze the association of 

these candidate genes with the traits. Polymorphisms of IFNg located on the QTL 

region affecting immune response are reported to be associated with primary and 

secondary antibody response to different antigens in chicken (Zhou et al. 2001). A 

similar finding was reported for transforming growth factor beta 2 (TGFB2) gene in 
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chicken and TGFB2 is suggested as a candidate gene to be applied in marker-assisted 

selection to improve antibody production (Zhou and Lamont 2003). Similarly in pigs, 

several QTL for immune traits were identified close to the mast/stem cell growth factor 

receptor (KIT) gene and candidate gene analysis showed significant effects of this gene 

on the immune response traits (Wattrang et al. 2005). In this study, the QTL analysis 

was used to detect the chromosomal regions influencing immune traits and scanning of 

putative candidate genes regarding the innate and adaptive immune response traits in 

pig. Furthermore, follow-up research is needed to further characterize these QTL in 

animal populations challenged with infection and in other crosses. However, this 

discovery of the QTL regions will facilitate to understand the genetic basis underlying 

immune traits and to identify the candidate genes for immune competence. 

The expression stability of nine commonly used HKGs was analysed using different 

normalization programs in order to detect a stable set of HKGs across lymphoid organs 

at different ages of pigs. It could be seen that the HKGs are affected by both the organs 

and age of individuals suggesting that source of samples and age of population should 

be taken into account for selecting appropriate HKGs. The mostly used popular HKG 

GAPDH is found to be the least stable which is reported previously by several 

researchers in pigs (Barber et al. 2005, Jung et al. 2007, Oczkowicz et al. 2010, 

Piorkowska et al. 2010, Svobodova et al. 2008). This study suggested a set of HKGs 

which could be beneficial for the research community to select appropriate HKGs for 

expression studies in pigs. Although tissues were not the same, our result is in 

agreement (Oczkowicz et al. 2010, Piorkowska et al. 2010, Svobodova et al. 2008) 

while is in contradictory (Erkens et al. 2006, Kuijk et al. 2007) with some previous 

reports in pigs. This study suggested that the combination of the three most stable 

HKGs should be used for gene normalization (Chapter 3). Instead of discrepancies in 

the ranking order of reference genes obtained by different analysing software methods, 

the geometric mean of the RPL4, PPIA and YWHAZ was identified to be the most 

appropriate combination of HKGs for accurate normalization of gene expression data in 

different porcine tissues at different ages (Chapter 3).      

The expression patterns of TLRs were determined in different lymphoid organs 

collected from newborn, young and adult pigs. The lymphoid organs including gut-

associated lymphoid tissues (GALT) expressed all TLRs mRNA indicating that these 

organs are armed with all TLRs in order to fight against varieties of pathogens. All ten 
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porcine TLRs were influenced by age and organs which as reported previously in 

humans and mice (Renshaw et al. 2002, Tohno et al. 2006, van Duin and Shaw 2007). 

Among the TLRs (TLR1-10), TLR3 was found to be the most abundant in lymphoid 

tissues indicating that the pigs used in this study might have received antibodies 

passively through colostrum or might have antibodies against PRRSV due to previous 

low grade exposure to PRRSV (Sang et al. 2008). Selected TLRs proteins (TLR2, TLR3 

and TLR9) were detected using Western blot and their distribution was investigated in 

selected tissues (stomach, duodenum, jejunum, ileum, mesenteric lymph node, lung, 

spleen and cervical lymph node) using immunohistochemistry (Chapter 4 and 5). This 

study is the first detecting all TLRs mRNA in porcine lymphoid tissues and revealed the 

expression patterns of TLRs in pigs with different ages thus helping to understand the 

immune responsiveness of these organs. 
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Summary 

The aim of the present study was to detect quantitative trait loci (QTL) for innate and 

adaptive immunity in pigs. For this purpose, a Duroc x Pietrain F2 resource population 

(DUPI) with 319 offspring was used to map QTL for immune traits blood antibodies 

and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies 

response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-

gamma (IFNg) serum concentration were measured at three different time points and 

were used as phenotypes. The differences of antibodies and interferon concentration 

between different time points were also used for the linkage mapping. Line-cross and 

imprinting QTL analysis including two-QTL were performed using QTL Express. A 

total of 30 QTL (12, 6 and 12 for mycoplasma, tetanus antibody and IFNg, respectively) 

were identified at the 5% chromosome wide level significant of which 28 were detected 

by line-cross and 2 by imprinting model. Additionally, two QTL were identified on 

chromosome 5 using the two-QTL approach where both loci were in repulsion phase. 

Most QTL were detected on pig chromosomes 2, 5, 11 and 18. Antibodies were 

increased over time and immune traits were found to be affected by sex, litter size, 

parity and month of birth. The results demonstrated that antibody and IFNg 

concentration are influenced by multiple chromosomal areas. The flanking markers of 

the QTL identified for IFNg on SSC5 did incorporate the position of the porcine IFNg 

gene. The detected QTL will allow further research in these QTL regions for candidate 

genes and their utilization in selection to improve the immune response and disease 

resistance in pig.  

 

Introduction 

The current release of the Pig QTLdb (May 05, 2010) contains 5732 QTL representing 

558 different traits (http://www.animalgenome.org/QTLdb/pig.html) mostly for 

economically important traits like growth, carcass and meat quality, and reproduction. 

Differences in immune status and variation in immune response depending on the 

genetic background have been reported (Edfors-Lilja et al. 1994, 1998) and medium 

high to high heritabilities (h
2
 = 0.3 - 0.8) have been estimated for several of the immune 

traits in pigs (Edfors-Lilja et al. 1998). However, little is known about the genetics 

underlying these traits especially in swine. Antibody response is one of the first immune 

competence traits to be examined by QTL analysis (Edfors-Lilja et al. 1998) but a very 
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limited number of QTL analyses have been devoted to health, disease resistance, 

immune capacity and immune response traits (Edfors-Lilja et al. 1998, Reiner et al. 

2007, Wimmers et al. 2008, Wimmers et al. 2009). QTL underlying the immune 

response variations have been detected in mouse, chicken and human (Almasy and 

Blangero 2009, Biscarini et al. 2010, Hall et al. 2002). Therefore the aim of the present 

study was to detect immune specific QTL for innate (interferon-gamma) and adaptive 

(tetanus and mycoplasma antibodies) immunity in pig. 

Measurements of antibodies are of immense importance for the evaluation of health 

status of animals and herds, especially for the evaluation of vaccination efficiency and 

herd health programs (Regula et al. 2003). Interferon-gamma (IFNg) is one of the key 

molecules in the immune system and provides the first line defence against pathogens. 

It has immunomodulatory function, possesses antiviral activity and protects swine from 

diseases (Scheerlinck and Yen 2005, Yao et al. 2008). While IFNg is a component of 

the innate immune system, the antibodies belong to the adaptive / humoral immunity. 

Values of these immune parameters vary according to the individual’s immune status 

which can be triggered by vaccine antigens. Therefore the antibody levels were 

measured before and after immunological stimulation by vaccines. IFNg was measured 

at three time points after each vaccination as an innate immune trait, which might not 

reflect vaccine effect but it is an important immune parameter and can be considered as 

an indicator of disease resistance (Scheerlinck and Yen 2005, Yao et al. 2008). With 

regard to number and magnitude of their impact, QTL for immune traits behave like 

those for other quantitative traits. Discovery of the chromosomal regions influencing 

these important immune traits including their production variations will facilitate the 

identification of candidate genes for antibodies and interferon production, disease 

resistance and immune competence in pigs.   

 

Materials and methods 

 

Experimental population and blood sampling 

The animal population used for the evaluation of immune traits and the genome scan 

was based on a Duroc x Pietrain cross. A detailed description of the population structure 

has been reported earlier (Liu et al. 2007, 2008). In our study, genetic information of 

three generations  P, F1 and F2 and phenotypes from 319 F2 pigs were used. All pigs 
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were kept at the Frankenforst experimental research farm at the University of Bonn 

(Germany). The animals were fed an ad libitum diet during the whole test period and 

were slaughtered at approximately 105 kg live weight. Pigs were vaccinated with 

Mycoplasma hyopneumoniae (Mh), tetanus toxoid (Tet) and porcine reproductive and 

respiratory syndrome virus (PRRSV) vaccines at 6, 9 and 15 weeks of age, respectively. 

Blood samples were taken at six different time points (supplementary file 1). Antibody 

titres of Mh were measured in blood samples collected just before vaccination (6 weeks) 

and 10 and 20 days afterwards. The sample for tetanus antibody measurement was 

collected just before vaccination (9 weeks) and 20 and 40 days after vaccination. The 

IFNg blood levels were measured from samples collected at 10 days after Mh and 

PRRSV, and 20 days after tetanus vaccination.   

 

Measurement of antibodies and interferon-gamma 

Antibody response to Mh vaccination was determined by monoclonal blocking ELISA 

using the HerdChek M. hyo. antibody ELISA kit (IDEXX GmBH, Germany) following 

the manufacture’s protocol. Tet antibody was determined by in-house developed 

indirect ELISA (Wimmers et al. 2008). The optical density (OD) was read at 650 nm 

and 490 nm for Mh and Tet, respectively by using a microplate reader (ThermoMax, 

Molecular Devices) and the result of antibodies were determined as S/P ratio. Serum 

IFNg was measured by sandwich ELISA using Swine INFγ CytoSet and CytoSet Buffer 

Set (Invitrogen). Absorbance was measured at 450 nm within 30 minutes after adding 

stop solution and results were calculated as pg/ml using a 4-parameter curve fitted in 

SoftMaxPro software (Molecular Devices). In all cases two replications of each sample 

were used for ELISA and the mean value was considered as the serum concentration of 

respective traits. 

 

Statistical analysis   

Single measurement of the antibodies and interferon at different time points as well as 

changes in titre between time points were considered as single trait and analysed in this 

study. The differences of titre between two time points describe the kinetics of these 

immune traits in response to vaccine antigen (Edfors-Lilja et al. 1998). The data were 

analysed using the SAS software package (version 9.2) for a detailed description of the 

data structure. Generalized linear models (PROC GLM) were used to identify any 



Chapter 1 

 

 

40 

possible obvious effect of sire, dam, sex, birth weight, average daily weight gain, litter 

size, parity and month of birth on the blood level of antibodies and interferon. The 

phenotypic data followed approximately a normal distribution and were used for linkage 

analysis.  

 

Marker analysis 

A linkage map with the total length of 2159.3 cM and an average marker interval of 

17.7 cM was constructed. P, F1 and F2 animals of the DUPI population were genotyped 

at 122 markers loci covering all porcine autosomes. Marker positions and details of 

genotyping procedures were given in Liu et al. (2007) and for SSC1 in Grosse-

Brinkhaus et al. (2009). Most of the markers were selected from the USDA/MARC map 

(http://www.marc.usda.gov). They are also available in Sscrofa5 (NCBI) and Sscrofa9 

(Ensembl). Genotyping, electrophoresis, and allele determination were done using a LI-

COR 4200 Automated Sequencer including the software OneDScan (Scanalytics). The 

CE8000 sequencer (BeckmanCoulter) was used for genotyping of SSC1 and SSC18. 

Allele and inheritance genotyping errors were checked using Pedcheck software 

(version 1.1) (O'Connell and Weeks 1998). The relative positions of the markers were 

assigned using the build, twopoint and fixed options of CRIMAP software (version 2.4) 

(Green et al. 1990). Recombination units were converted to map distances using the 

Kosambi mapping function. Marker information content and segregation distortion were 

tested by following Knott et al. (1998).  

 

QTL analysis 

QTL interval mapping was performed using the web-based program QTL Express 

(Seaton et al. 2002) based on a least square method. Single and two-QTL analyses were 

carried out and imprinting (ADI) models were applied. The basic QTL regression model 

used in the present study was: 

yi = µ + Fi + β covi + caia + cdid + εi 

where:  

yi = phenotype of the i
th

 offspring;  

µ = overall mean;  

Fi = Fixed effect (parity2…..10, month of birth1…..12); 

β = regression coefficient on the covariate;  
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covi = covariate (litter size, age at blood sampling in days);  

cai = additive coefficient of the i
th

 individual at a putative QTL in the genome;  

cdi = dominant coefficient of the i
th

 individual at a putative QTL in the genome;  

a = additive effects of a putative QTL;  

d = dominant effects of a putative QTL; and 

εi = residual error 

 

The presence of imprinting effects was tested by adding a third effect (i) into the model 

(Knott et al. 1998) using QTL Express (Seaton et al. 2002). Chromosome- (CW)  and 

experiment-wide (GW) significance thresholds were determined using 1000 

permutations (Churchill and Doerge 1994). Chromosome-wide 1% and 5% significance 

thresholds became genome-wide significance thresholds after Bonferroni correction for 

18 autosomes of the haploid porcine genome (de Koning et al. 2001). Methods for 

mapping a single QTL can be biased by the presence of other QTL (Meuwissen and 

Goddard 2004, Raadsma et al. 2009). To address this situation, two-QTL models were 

also fitted for all traits using QTL Express (Seaton et al. 2002). To control for false-

positive QTL due to multiple testing, the permutation thresholds obtained in the single-

QTL analyses were used to test for the significance of the two-versus one-QTL  and 

two-versus no-QTL. Multiple QTL were declared on a chromosome if they were 

separated by at least 30 cM and exceeded 5% CW/GW level significance (Kim et al. 

2005, Liu et al. 2008). The phenotype variation that was explained by a QTL was 

calculated by the following equation. 

%Var = 
R

FR

MS

MSMS −
x 100 

Where, MSR was the mean of square of the reduced model; MSF was the mean of square 

of the full model. 

 

Results  

 

Phenotypes distribution 

It was found that antibodies for tetanus and mycoplasma were increased over time after 

vaccinations for most animals, but IFNg levels did behave differently (Fig. 1). Overall 

Mh antibody concentrations were increased significantly at 10 and 20 days after 
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vaccination in comparison with the concentration prior vaccination (Fig. 1.A). Tetanus 

antibody was significantly higher at 15 weeks of age in comparison to 9 weeks of age 

(Fig. 1.B). When different IFNg concentrations were compared, the concentration was 

higher at 7 weeks and lower at 12 weeks of age but no significant difference could be 

verified (Fig. 1.C). Antibodies and interferon were found to be significantly affected by 

sex, litter size, parity and month of birth (Supplementary file 2).  

 

QTL for mycoplasma and tetanus antibodies  

A total of 18 QTL were identified for antibodies, of which one was highly significant 

(experiment-wide, P < 0.05), five were significant (chromosome-wide, P < 0.01) and 12 

were suggestive (chromosome-wide, P < 0.05) (Table 1). Two QTL for Mh3 and Mh2-1 

respectively were identified on SSC2. A QTL for Tet3 was detected at 115 cM on SSC4 

(CW, P < 0.01) on the marker S0097. Chromosomal regions on SSC7 influencing Mh1 

and Mh2 were mapped at 19 cM and 33 cM, respectively. The QTL for Mh2 (CW, P < 

0.01) at 33 cM was located on the marker S0064 (Fig. 2.A). QTL for Tet3 (GW, P < 

0.05) was identified at 0 cM on SSC8 very close to the marker SW241 which explained 

37.50% of the phenotypic variation. QTL (CW, P < 0.05) for Mh1 at 85 cM and for 

Mh2 at 101 cM were identified in this study close to the marker SW398 on SSC13. 

Additionally, two chromosomal regions (CW, P < 0.05) at 59 cM and 53 cM on SSC15 

were associated with Mh3 and Mh2-1. The QTL for Mh3 (CW, P < 0.05) was very 

close to the marker SW936. On the SSC16 a QTL (CW, P < 0.01) was found at 6 cM 

influencing Mh3-2, which explained 27 % of the phenotypic variation (Fig. 2.C). Five 

QTL regions were identified on SSC18 (Fig. 2.D). Among them, QTL (CW, P < 0.05)  

for Mh3 and Mh3-1 were located at the same position very close to the marker SY4 and 

QTL (CW, P < 0.05)  for Tet4 and Tet5-4 were located within 8 cM region around the 

marker S0062. Moreover, a paternally imprinted QTL was identified for Tet3 (CW, P < 

0.05) on SSC2.  

 

QTL for interferon-gamma 

Interferon-gamma was found to be related to 12 chromosomal regions on 8 different 

porcine autosomes in this study (Table 2). A chromosomal region was identified for 

IFN4-2 at 68 cM on SSC4. Three QTL regions were detected on SSC5 influencing 

IFNg. Among them, chromosomal regions at 51 cM (CW, P < 0.05) and 54 cM (CW, P 
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< 0.01), very close to the marker SW2425 were found to influence IFN4 and IFN4-2, 

respectively. Three suggestive QTL (CW, P < 0.05) were detected for interferon-

gamma on SSC11. Among them, QTL for IFN2 and IFN4-2 was mapped at 29 cM and 

23 cM, respectively close to the marker S0071. The remaining QTL (CW, P > 0.05) 

affecting IFN6-4 was identified at 7 cM on SSC11 (Fig. 2.B). Additionally, a QTL was 

identified on SSC16 exceeding the 1% CW significance threshold which explained 

27.80% of the phenotypic variation (Fig. 2.C). Moreover, a paternally imprinted QTL 

(CW, P < 0.05) affecting IFN2 was identified at 16 cM on SSC2. 

 

Two-QTL analyses for different traits 

The two-QTL model was used to identify the presence of possible two QTL regions on 

the same chromosome. Results for the two-QTL model conducted with QTL Express 

are presented in Table 3. Significant evidence for an additional QTL under a two-QTL 

model was found in a case on SSC5 for IFN4-2, with a difference of 66 cM between 

two the loci. SSC5 was genotyped with 14 microsattelite markers and the average 

marker distance was 10.78 cM.  In this case, several markers (such as S0092, SW0005 

and SW1987) were located in between the two QTL regions and one of the two 

chromosomal regions was identified in the single QTL approach (QTL A). The two loci 

on SSC5 for IFN4-2 in this study were in repulsion phase. The QTL affecting IFN4-2 at 

51 cM and 117 cM jointly explained 39.63% of the phenotypic variation.  

 

Discussion 

 

Phenotype distribution 

A rise in antibodies concentration in response to Mh and Tet vaccine antigen is found 

over the time points but it did not increase in all animals, which might be due to 

individual variation. Animals, specially having higher Mh antibody at 6 weeks of age 

(T1; before vaccination) are reduced values at T2 (10 days after vaccination) and again 

increased at T3 (20 days after vaccination). Hodgins et al. (2004) reported that 

maternally derived antibodies play a major negative role in response to Mh vaccines, by 

neutralizing vaccine antigen. Mh antibody concentration at T1 is found to be affected by 

sex but Moreau et al. (2004) did not find interaction between the effect of vaccine and 

sex in pigs. In this study, Mh antibody is significantly influenced by the effects of sire 
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and dam. Differences in patterns of colonization of M. hyopneumoniae between pigs 

sired by different boars was reported by Ruiz et al. (2002). Passive transmission of Mh 

antibody from dam to piglets through colostrum might be the evidence for dam 

influence. The Mh antibody concentration was significantly influenced by parity in this 

study, which is supported by the study of Calsamiglia and Pijoan (2000). 

Age is found to have effect on Tet antibody in this study and Cook et al. (2001) reported 

that the tetanus antibody concentration decreased significantly with age. Antibody 

reached to the higher concentration after 6 week of vaccination (T5) in this study, but 

no such report is found in pigs. However, human peripheral blood mononuclear cells 

(PBMC) are reported to produce highest concentration of anti-tetanus antibody at 3 

weeks after exposure to tetanus toxoid (Virella and Hyman 1991). IFNg concentration 

showed a trend to be reduced with age in this study, and the IFNg concentration was 

higher in younger (7 week of age) compared to older animals (12 and 16 weeks). Davis 

et al. (2006) reported that PBMCs collected from young pigs produced higher IFNg 

than the PBMCs collected from older pigs. Sire, litter and sex have effects on IFNg 

production which is supported by a previous report in pigs (Mallard et al. 1989). 

Outteridge (1993) stated that in addition to genetic causes, there are many causes for 

individual variation and immune responsiveness such as nutritional status, 

immunological maturation, antigenic competition and immunological priming.  

 

QTL for mycoplasma and tetanus antibody traits  

In the pig, genome-wide significant QTL for cellular and humoral immune traits are 

shown to segregate on chromosomes 1, 4, 5 and 6 in an experimental cross of wild boar 

and Yorkshire (Edfors-Lilja et al. 1998, 2000). QTL for the pseudorabies virus 

resistance/susceptibility are mapped to chromosomes 9, 5 and 6 (Reiner et al. 2002) and 

for the Sarcocystis miescheriana are detected on SSC7, 16, and 2 (Reiner et al. 2007) in 

pigs. QTL on SSC1, 2 and 6 were mapped for antibodies of PRRS and Aujeszky’s 

disease virus (Wimmers et al. 2009); and on SSC3, 6, 16 and 17 for mycoplasma, 

tetanus, and PRRS antibodies (Wimmers et al. 2008) in pigs. At the recent past the 

NCBI released the draft assembly of the porcine genome Sscrofa5 (NCBI) include 

assemblies for chromosomes 1, 4, 5, 7, 11, 13, 14, 15, 17 and X, and the ENSEMBL 

released Sscrofa9 (Ensembl). These databases help to search for the immunologically 

important genes located on the identified QTL regions.  
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Two QTL with additive and dominant effects were detected on SSC2 to influence Mh 

antibody production. Very close to this regions, a QTL for leukocyte number is reported 

previously (Edfors-Lilja et al. 2000). In response to M. hyopneumoniae macrophage 

(leukocyte) activation and proliferation is reported in pig (Rodriguez et al. 2007) which 

is an evidence for possible QTL affecting Mh antibody. Moreover, leukocytes and 

monocytes are reported to phagocyte the mycoplasma pathogen (Marshall et al. 1995). 

A QTL for Tet antibody was mapped on SSC4 close to the marker S0097 where Edfors-

Lilja et al. (2000) reported a QTL affecting eosinophil numbers. The QTL on SSC7 for 

Mh antibody were in a similar region where a QTL for platelets number is detected 

earlier (Reiner et al. 2007). Choi et al. (2006) reported that M. hyopneumoniae causes 

thrombocytopenia by destroying platelets in pig. Moreover, the immunological 

important tumor necrosis factor (TNF-α and β), MHC (I and II), C2 and C4 genes are 

mapped on the same region (Ensembl; NCBI) on SSC7. TNF-α is reported to be highly 

expressed and responsible for cachexia in pigs experimentally infected with M. 

hyopneumoniae (Choi et al. 2006). The very important innate immune gene TLR6 (Toll-

like receptor 6) is located at the region on SSC8 affecting tetanus antibody production. 

Toll-like receptors (TLRs) play an essential role in the recognition of microbial 

components and are reported as critical proteins linking innate and humoral immunity 

(Takeda and Akira 2004). TLRs are speculated to be used in vaccines design including 

tetanus toxoid (van Duin et al. 2006). The natural resistance-associated macrophage 

protein 1 (NRAMP1) is mapped on SSC15q23-26 where two QTL regions (close to 

SW936 marker) are detected for Mh antibody in this study. NRAMP1 is a potential 

candidate gene in controlling pigs resistance to salmonella infection (Sun et al. 1998). 

Recent studies using knockout mice indicate that the NRAMP1 gene, expressed in 

macrophages is capable to control resistance and susceptibility to Mycobacterium bovis 

(BCG), Leishmania donovani and Salmonella typhimurium (Stecher et al. 2006). 

NRAMP1 might be suggested as a good candidate gene for Mh antibody production.  

A QTL affecting Mh antibody was found on SSC16 close to the marker S0111 where a 

QTL for C3 was reported earlier (Wimmers et al. 2008). Wimmers et al. (2003) stated 

that C3 is associated with Mh antibody concentration in pigs. Furthermore, two linkage 

regions were identified related to Mh antibody production close to the marker SY4 on 

SSC18. Very close to this region T cell receptor beta variable 19 (TRBV19) is located 

(Ensembl). The T-cell receptors (TCRs) are a complex of integral membrane proteins 
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that participates in the activation of T-cells in response to the presentation of antigen 

and TRB is reported to be expressed by T-cell in response to the Mycoplasma sp. 

stimulation (Friedman et al. 1991). Additionally, two QTL were found to affect Tet 

antibody close the marker S0062 where growth hormone-releasing hormone receptor 

(GHRHR) and acyloxyacyl hydroxylase (AOAH) are located (Ensembl). Growth 

hormone can acts as a cytokine which can influence lymphocyte
 
proliferation and its 

receptors are located on lymphocytes and macrophages (Postel-Vinay et al. 1997). 

LeRoith et al. (1996) reported that GH administration elicited a marked activation
 
of the 

immune system in response to
 
tetanus toxoid. AOAH is reported to modulate host 

inflammatory responses in Gram-negative bacterial invasion (Feulner et al. 2004).  

 

QTL for interferon-gamma trait 

The cytokine network is complex and demonstrates redundancy and pleiotropism. IFNg 

is an important cytokine for inducing the macrophage killing activation and has been 

evaluated as marker for acute bacterial infection in swine (Yao et al. 2008). The 

significant QTL for IFNg on SSC4 was assigned close to the position of CD1 and CRP 

(C-reactive protein). CRP plays an important role via monocytes to upregulate 

proinflammatory cytokines. One of the most interesting finding for the interferon QTL 

was the identification of two linkage regions influencing IFNg on SSC5 close to 

SSC5p11-12 where the IFNg gene is located. It implies that IFNg is influenced by 

region of its own location. However, more regions of other chromosomes are also 

affecting IFNg production, evidence of multiple gene effect. Previously reported QTL 

affecting neutrophil proliferation (Reiner et al. 2002) and IgG production (Edfors-Lilja 

et al. 1998) are also close to our identified QTL for IFNg on SSC5. Unique receptors to 

IFNg are located on the surface of the T- and B-lymphocytes, NK-cells, and 

neutrophils. Transforming growth factor β2 (TGFB2) is a potent anti-inflammatory 

cytokine located on SSC10 close to the marker SW830 (Ensembl) has an antagonistic 

effect on IFNg (Ulloa et al. 1999). Kruppel-like factor 5 (KLF5) is mapped close to the 

marker S0071 (Ensembl; NCBI) on SSC11. Chen et al. (2000) reported that KLF5 is an 

immediate-early IFNg responsive gene and IFNg induces KLF5 expression. C9 gene 

(complement component 9) is an important component of the complement system and 

plays an important role in innate immune response. This gene is located within the 

flanking markers of the QTL identified for IFNg (CW, P < 0.01) on SSC16 (Ensembl).  
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Imprinted QTL 

Most imprinted genes are identified in humans and mice (http://igc.otago.ac.nz/). 

Imprinted genes are considered as one culprit of phenotypic variation in pig (Bischoff et 

al. 2009) but only a small number of imprinted genes are identified in pigs (Zhang et al. 

2007). A number of imprinting QTL are reported in pigs (de Koning et al. 2000, Holl et 

al. 2004, Nezer et al. 1999, Thomsen et al. 2004) but no imprinting QTL for immune 

traits is reported yet. Recently, imprinting QTL for immune response is reported in 

chicken (Pinard-van der Laan et al. 2009). The paternally imprinted QTL found in our 

study have its best position at 16 cM for IFNg and 0 cM for Tet antibody on SSC2. 

Imprinting QTL on SSC2 are reported to influence lean growth (Nezer et al. 1999), 

skeletal and cardiac muscle mass (Jeon et al. 1999), backfat (de Koning et al. 2000), teat 

number and coat colour (Hirooka et al. 2002), and reproduction (Holl et al. 2004). 

Notable imprinted genes in this region include IGF2 (insulin-like growth factor 2), H19 

and Wilms tumor. QTL with imprinting effects are reported to be more appropriate for 

analyzing F2 data than only single line-cross model (Holl et al. 2004). However, for 

most of the QTL showing imprinting effects, biological reasons for the inherited mode 

are difficult to derive. Evolutionary reasons behind the presence of parent-of-origin 

effects are also unclear, although several theories exist (Thomsen et al. 2004, Tycko and 

Morison 2002). 

 

Conclusions  

The results of this work shed new light on the genetic background of both innate and 

adaptive immune response in pigs. Mycoplasma and tetanus antibodies and interferon-

gamma production are influenced by both environmental and genetic factors. This study 

has identified several new quantitative trait loci for immune traits on most autosomes. 

TNFα, NRAMP1 and TCRs might be of good candidate genes for mycoplasma and 

TLR6 for tetanus antibody production. Our results showed that IFNg is influenced by 

the chromosomal region to which it is mapped, and there might be more regulative 

genes along with multiple chromosomal regions. This study enforces that genomic 

imprinting might be important in livestock species. Despite the fact that candidate genes 

were identified, it must be considered before an interpretation of QTL results, that 

confidence regions of the QTL are large and can contain many of potential candidate 

genes for the QTL (de Koning et al. 2005). However, this discovery of the QTL regions 



Chapter 1 

 

 

48 

will facilitate identifying candidate genes for immune competence and disease 

resistance, which is the first step for marker assisted breeding efforts. Further, follow-up 

research is needed to further characterize these quantitative trait loci in other crosses 

and identify candidate genes by fine mapping using denser marker sets like large scale 

SNP assays.  
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Table 1: Evidence of QTL for mycoplasma and tetanus antibody levels. 

SSC
a
 Trait

b
 Pos

c
 F-value

d
 V(%)

e
 a ± SE

f
 d ± SE

g
 Closest Markers

h
 

2 Mh2-1 168 6.05* 20.14 -0.26 ±0.08 -0.17 ±0.14 SWR2157 (168.7)  

2 Mh3 129 6.31* 20.99 -2.99 ±0.93 3.08 ±1.06 SW1564(127.1) 

2 Tet3
#
 0 16.38** 50.00 -0.02 ±0.01 0.07 ±0.02 SW2443(0.0) 

4 Tet3 115 9.59** 25.00 -0.01 ±0.01 -0.07 ±0.02 S0097(115.6) 

7 Mh1 19 5.65* 18.18 0.07 ±0.02 -0.02 ±0.04 S0025(0.0)-S0064(33.0) 

7 Mh2 33 8.39** 26.97 0.05 ±0.09 -0.56 ±0.14 S0064(33.0) 

8 Tet3 0 11.98*** 37.50 0.02 ±0.01 -0.08 ±0.02 SW2410(0.0)-SW2611(0.1) 

11 Tet4 6 7.73** 28.57 -0.05 ±0.01 -0.06 ±0.02 SW2008(0.0) 

13 Mh1 85 7.15* 23.38 0.09 ±0.03 -0.1 ±0.05 TNNC(69.6)-SW398(100.9) 

13 Mh2 101 6.81* 22.51 0.27 ±0.11 -0.4 ±0.15 SW398(100.9) 

15 Mh2-1 53 5.63* 16.75 0.34 ±0.11 0.01 ±0.19 SW936(60.6) 

15 Mh3 59 5.67* 17.26 0.35 ±0.11 0.11 ±0.18 SW936(60.6) 

16 Mh3-2 6 8.46** 27.17 -0.35 ±0.09 -0.34 ±0.14 S0111(0.0) 

18 Mh1 74 6.88* 22.08 0.03 ±0.02 0.1 ±0.03 SJ061(64.1)-SWR414(81.2) 

18 Mh3 1 6.83* 22.60 0.22 ±0.09 -0.4 ±0.15 SY4(0.0)-SW1808(8.5) 

18 Mh3-1 1 7.77* 25.29 0.2 ±0.09 -0.44 ±0.15 SY4(0.0)-SW1808(8.5) 

18 Tet4 57 5.98* 21.43 0.01 ±0.01 -0.04 ±0.01 S0062(56.9)-SW1682(58.4) 

18 Tet5-4 49 5.69* 19.35 -0.02 ±0.01 0.06 ±0.02 S787(43.2)-S0062(56.9) 

 

a
 Sus scrofa chromosome. 

b
 Trait abbreviations: Mh1: Mh antibody level at time point 1; Mh2: Mh antibody level 

at time point  2; Mh3: Mh antibody level at time point 3; Mh3-1: antibody difference 

between time point 3 and 1; Mh3-2: Mh antibody difference between time point 3 and 

2; Mh2-1: Mh antibody difference between time point 2 and 1; Tet3: Tetanus antibody 

level at time point 3; Tet4: Tetanus antibody level at time point 4; Tet5-4: Tetanus 

antibody difference between time point 5 and 4. 

c
 Chromosomal position in Kosambi cM. 

d
 Significance of the QTL: *, significant on a chromosome-wide level with P ≤ 0.05; **, 

significant on a chromosome-wide level with P  ≤  0.01; ***, significant on a genome-

wide level with P  ≤  0.05. 

e
 The percentage of phenotypic variance explained by the QTL 

 
f 
Additive effect and standard error. Positive values indicate the Duroc alleles result in 



Chapter 1 

 

 

55 

higher values than Pietrain alleles; negative values indicate that Duroc alleles result in 

lower values than Pietrain alleles.    

g 
Dominance effect and standard error. 

h 
The closest markers were those markers around the peak, as near as possible (position 

of markers in cM) 

# The imprinting effect and standard error was detected for T3 (-0.07±0.01) on SSC2. 

When both the additive and the imprinting effects are positive or negative, the paternal 

allele expresses (maternal imprinting); otherwise the maternal allele expresses (paternal 

imprinting). 

 

Table 2: Evidence of QTL for interferon-gamma levels. 

SSCa Traitb Posc F-valued V(%)e a ± SEf d ± SEg Closest Markersh 

2 IFN2
#
 16 5.93* 26.99 429.06±176.32 -4314.5±1332.7 SW2623(12.9)-S0141(32.6) 

4 IFN4-2 68 6.77* 22.39 166.17±67.1 300.08±112.21 S0214(66.3) 

5 IFN2 2 5.87* 19.58 95.09±31.3 68.11±49.62 ACR(0.0)-SW413(2.6) 

5 IFN4 51 6.59* 21.86 -126.57±45.01 139.17±65.96 SWR453(46.7)-SW2425(58.2) 

5 IFN4-2 54 8.29** 26.71 -124.98±52.43 229.99±76.8 SWR453(46.7)-SW2425(58.2) 

10 IFN6-4 21 6.25* 20.79 317.12±101.56 -375.88±330.1 SW830(0.0)-S0070(83.7) 

11 IFN2 29 6.13* 20.41 -115.43±34.32 -94.55±44.44 S0071(28.8) 

11 IFN4-2 23 6.7* 22.18 255.9±69.93 164.05±99.64 S0071(28.8) 

11 IFN6-4 7 5.71* 19.08 -330.61±98.74 -240.03±137.5 SW2008(0.0) 

16 IFN6 91 8.7** 27.80 43.63±39.17 335.75±80.6 S0026(70.7)-S0061(108.0) 

17 IFN2 0 6.12* 20.37 24.98±49.00 348.14±114.5 SW335(0.0) 

18 IFN6 48 5.6* 18.63 17.26±27.26 -137.01±41.3 SW787(43.2)-S0062(56.9) 

 

a, c, d, e f, g, h,   
 See footnotes for Table 1 

b 
Trait abbreviations: IFN2: IFNg level at time point 2; IFN4: IFNg level at time point 4; 

IFN6: IFNg level at time point 6; IFN6-2: IFNg difference between time point 6 and 2; 

IFN6-4: IFNg difference between time point 6 and 4; IFN4-2: IFNg difference between 

time point 4 and 2. 

# The imprinting effect and standard error was detected for IFN2 (3311.43±1081.97) on 

SSC2. When both the additive and the imprinting effects are positive or negative, the 

paternal allele expresses (maternal imprinting); otherwise the maternal allele expresses 

(paternal imprinting). 
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Table 3: Summary of significant QTL under a two-QTL model on SSC5 using 

QTL Express.  

Position 

cM
c
 

F –value
d
 Effect A

g
 Effect B

g
 Sig

h
 SSC

a
 Trait

b
 

QTL 

A 

QTL 

B 

2vs0 2vs1 

V
e
(%) 

A±SE D±SE A±SE D±SE 2vs0 2vs1 

5 IFN4-

2 

51 117 7.56 5.66 39.63 -129.11 

±50.60 

206.00 

±70.40 

113.55 

±63.02 

-207.7 

±100.89 

** * 

 

a, c, d, e, 
See footnotes for Table 1; 

b
 See footnotes for Table 2; 

g
the QTL effect and the 

standard error (SE) of both QTL positions QTL A and QTL B; 
h
significant threshold of 

the F-value (sign threshold) determines if the QTL reached the significance level under 

2 vs 0 QTL (2 degrees of freedom), or 2 vs 1 QTL (1 degree of freedom); with 

*chromosome-wide P < 0.05; **chromosome-wide P < 0.01 

 

Table 4: (Supplementary file 2) Analysis of variance of antibodies and IFNg 

response to vaccination at different time points (Proc GLM). 

 

Traits Time 

point 

Mean±SE Number Mini- 

mum 

Maxi- 

mum 

R
2
 Dam Sire Dam* 

Sire 

Gender Litter 

size 

Parity Birth 

month 

T1 0.2±0.02 142 0.01 1.93 0.19 * *** ns * *** *** *** 

T2 1.08±0.05 185 0.01 3.04 0.40 *** *** *** ns *** * ** 

Mh 

antibody 

T3 1.5±0.07 113 0.01 3.25 0.41 *** *** ** ns *** ns ns 

T3 0.09±0.003 226 0.01 0.24 0.32 *** *** *** ns *** *** *** 

T4 0.10±0.002 249 0.01 0.22 0.19 *** *** ns ** *** * ns 

Tet 

antibody 

T5 0.11± 0.002 267 0.01 0.29 0.62 *** *** *** *** *** *** *** 

T2 162.9±10.27 271 1.34 491.1 0.20 *** * ns ns ** * *** 

T4 115.5±8.4 266 1.5 452 0.24 *** ns ** ns ** * ns 

IFNg 

T6 148.7±7.6 243 1.7 467.3 0.32 *** *** *** * ** * ns 

 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ns = not significant  
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Figure 1:  The concentration of antibodies and interferon-gamma at different ages. 

Mh1, Mh2 and Mh3 indicate mycoplasma antibody level at prior vaccination (at 6 

weeks of age), 10 and 20 days afterwards, respectively; Tet3, Tet4 and Tet5 indicate 

tetanus antibody level at prior vaccination (at 9 weeks of age), 20 and 40 days 

afterwards, respectively; IFN2, IFN4 and IFN6 indicate interferon-gamma level at 52, 

83 and 115 days of age, respectively. * P < 0.05; ** P < 0.01.  
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Figure 2: QTL results for immune traits on SSC7 (A), SSC11 (B), SSC16 (C) and SSC18 (D). Two threshold levels are shown: the dashed line is the 

suggestive (CW, 5%) and thick solid line is the chromosome-wide significance (CW, 1%). Genetic distances in Kosambi cM are given on the X-axis along 

with markers and their positions respectively, and F-values are at the Y-axis. 
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Figure 3: (Supplementary file 1) Schematic display of vaccination program and 

time point of blood sampling from F2 DUPI population. 
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Summary  

The aim of the present study was to detect quantitative trait loci (QTL) for the serum 

levels of cytokines and Toll-like receptors as traits related to innate immunity in pig. 

For this purpose, serum concentration of interleukin 2 (IL2), interleukin 10 (IL10), 

interferon-gamma (IFNg), Toll-like receptor 2 (TLR2) and Toll-like receptor 9 (TLR9) 

were measured in blood samples obtained from F2 piglets (n = 334) of a Duroc x 

Piétrain resource population (DUPI) after Mycoplasma hyopneumoniae (Mh), tetanus 

toxoid (TT) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) 

vaccination at 6, 9 and 15 weeks of age. Animals were genotyped at 82 genetic markers 

covering all autosomes. QTL analysis was performed under the line cross F2 model 

using QTL Express and 33 single QTL were detected on almost all porcine autosomes. 

Among the single QTL, eight, twelve and thirteen QTL were identified for innate 

immune traits in response to Mh, TT and PRRSV vaccine, respectively. Besides single 

QTL, six QTL were identified by a two-QTL model, of which two for TLR9_TT were 

in coupling phase and one for IL10_PRRSV was in repulsion phase. All QTL were 

significant at 5% chromosome-wide level including one and seven at 5% genome- and 

1% chromosome-wide level significance. All innate immune traits are influenced by 

multiple chromosomal regions implying multiple gene action. Some of the identified 

QTL coincided with previously reported QTL for immune response and disease 

resistance, and the newly identified QTL are potentially involved in the immune 

function. The immune traits were also influenced by environmental factors like year of 

birth, age, parity and litter size. The results of this work shed new light on the genetic 

background of innate immune response and these findings will be helpful to identify 

candidate genes in these QTL regions related to immune competence and disease 

resistance in pigs.  

Introduction 

The current release of the Pig QTLdb (May 12, 2010) contains 5732 QTL representing 

558 different traits (www.animalgenome.org/QTLdb/pig.html) mostly for economically 

important traits like growth, carcass and meat quality, and reproduction. Evidence of 

genetic variation in immune response has been found in livestock (Edfors-Lilja et al. 

1994). Medium high (h
2
 = 0.3 - 0.8) (Edfors-Lilja et al. 1998) to low (h

2
 = 0.14 – 0.16) 

(Henryon et al. 2006) heritabilities have been estimated for several of the immune traits 
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in pig. A few reports are found regarding variation of humoral immune response 

(Edfors-Lilja et al. 1998, Wimmers et al. 2008, 2009, Uddin et al. 2010) but little is 

known about the genetics underlying innate immunity in pig. Innate immunity has 

considerable specificity and is capable of discriminating between pathogens and self 

(Takeda and Akira 2004). Activation of the innate immune response is the prerequisite 

for the triggering of humoral immunity. Pattern recognition receptors (PRRs) and 

cytokines are important components of the immune system; however, more than 26 

serum proteins are described in pig (Miller et al. 2009) playing important roles in 

immune system. Cytokines as intercellular signalling molecules form complex networks 

to orchestrate and coordinate immune responses. IFNg and IL10 have 

immunomodulatory functions, possess antiviral activity, protect swine from diseases 

and modulate the survival time of infected animals (Danilowicz et al. 2008, Scheerlinck 

and Yen 2005, Yao et al. 2008). Pig IL2 is reported to enhance immunity when used as 

vaccine adjuvant in mice (Xie et al. 2007). PRRs ‘sense’ conserved molecular patterns 

PAMPs (pathogen-associated molecular patterns), which are shared by large groups of 

microorganisms and lead to the immune response. Toll-like receptors (TLRs) function 

as PRRs for the recognition of microbial components and are considered as critical 

proteins linking innate and adaptive immunity (Takeda and Akira 2004). TLRs 

polymorphisms are reported to be associated with susceptibility to infectious diseases in 

man and pig (Shinkai et al. 2006). Both TLR2 and TLR9 are reported to contribute in 

porcine gut immunity (Uenishi and Shinkai 2009), to be involved in bacterial infections 

(Muneta et al. 2003) and are suggested to be used in vaccine design and disease-

resistance breeding (Uenishi and Shinkai 2009). Moreover, levels of these immune 

parameters vary according to the individual’s immune status which can be triggered by 

vaccine antigens. Therefore, determining the genetic basis of these immune parameters 

is of considerable interest, as this information could be used to select for animals with 

superior immune response. 

A good understanding of the immune response is required to improve the health of pigs, 

which is an important issue in pig breeding. The identification of QTL for disease 

resistance in livestock is reported to be the next big frontier for the contribution of 

domestic animal genomics to the understanding of host-pathogen interaction and the 

subsequent improvement of both animal and human health (Womack 2005). Moreover, 

immune traits are suggested to be potentially useful as criteria to improve selection of 



Chapter 2 63 

pigs for resistance to clinical and subclinical disease (Henryon et al. 2006). Therefore 

the aim of this study was to identify chromosomal regions associated with the 

variability of innate immune responses in response to vaccine antigens by QTL analyses 

as well as to detect the environmental and genetic factors affecting these immune traits. 

Three important vaccines (Mh, TT and PRRSV) were used to verify the innate immune 

responses. The immune traits were the serum levels of cytokines (IFNg, IL2 and IL10) 

and TLRs (TLR2 and TLR9) which are important innate immune proteins considered as 

the indicators of disease resistance (Danilowicz et al. 2008, Muneta et al. 2003, 

Scheerlinck and Yen 2005, Shinkai et al. 2006, Uenishi and Shinkai 2009, Xie et al. 

2007, Yao et al. 2008). Cytokines and TLRs are found to influence each other and there 

are some QTL with pleiotropic effects detected since cytokines and TLRs interact in 

complex networks. Discovery of such QTL will contribute to the understanding of 

mechanisms influencing immune response, disease resistance and immune competence, 

which is the first step for marker assisted breeding efforts.  

Methods 

Animals 

QTL analysis was performed using a resource population of Duroc / Piétrain cross 

described earlier (Liu et al., 2007, 2008) comprising three generations P, F1 and F2. A 

total of 334 F2 pigs were used for phenotyping of immune traits. All pigs were kept at 

the Frankenforst experimental research farm at the University of Bonn (Germany). The 

F2 pigs were given an ad libitum diet during the whole test period and were slaughtered 

at approximately 105 kg. The vaccination and sampling procedures were explained in 

details by Uddin et al. (2010). In brief, pigs were vaccinated with Mycoplasma 

hyopneumoniae (Mh), tetanus toxoid (TT) and porcine reproductive and respiratory 

syndrome virus (PRRSV) vaccines at 6, 9 and 15 weeks of age, respectively. Blood 

samples were collected at three different time points after each vaccination at 52 days, 

83 days and 115 days of age with a period of 30 days interval. Serum was separated and 

kept in -80 
o
C until used.   

Phenotypes 

Serum IL2, IL10 and IFNg were measured by sandwich ELISA using swine IL2 

CytoSet, IL10 CytoSet and INFγ CytoSet, (Invitrogen Corporation, CA, USA), 
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respectively, following manufacturer’s protocol. In all cases, CytoSet Buffer Set was 

used as recommended. Absorbance was measured at 450 nm using a microplate reader 

(ThermoMax, Molecular Devices) within 30 minutes after adding stop solution and 

results were calculated as pg/ml using a 4-parameter curve fitted by the software 

SoftMaxPro (Molecular Device). TLR2 and TLR9 were determined by in-house 

developed indirect ELISA. Rabbit anti-porcine TLR2 and TLR9 antibodies (Cosmo Bio 

Co., Ltd., Japan) were used. In brief, anti-porcine TLR antibody was coated in high 

binding capacity 96-well microplate (Costar Corning) over night at 4
o
C. Then, the 

antibody was washed with PBS containing 0.05% Tween 20 and incubated with 

blocking buffer for 2 h at 37
o
C. After washing, serum was incubated for 1 h at 37

o
C. 

Again after washing, the plates were incubated at the same temperature with rabbit anti-

pig IgG conjugated with HRP (Sigma) for 30 minutes. Finally, chromagen (o-

Phenylenediamine dihydrochloride) (SigmaFast® OPD tablet) was added and incubated 

for 30 minutes at room temperature before adding stop solution. The optical density 

(OD) was read at 490 nm and the result of TLRs were determined as S/P ratio 

(Wimmers et al. 2008). In all cases, two replications of each sample were used and the 

average value was considered as serum level of respective traits. 

Statistical analysis 

After each vaccination of the Mh, TT and PRRSV, all the five traits (IL2, IL10, IFNg, 

TLR2 and TLR9) were measured. Measurement of the each trait after each vaccination 

was considered as a trait. The data were analysed using the software package SAS 

(version 9.2) for a detailed description of the data structure. Generalized linear models 

(PROC GLM) were used to identify any possible effect of sire, dam, sex, birth weight, 

average daily weight gain, litter size, parity and month of birth on the blood level of 

immune traits. The phenotypic data followed approximately a normal distribution and 

were used for linkage analysis 

Markers analysis 

A linkage map with the total length of 2588.7 cM and an average marker interval of 

31.57 cM was constructed. P, F1 and F2 animals of the DUPI population were genotyped 

with 82 genetic markers to cover all porcine autosomes for this study. The set of 

markers included 79 microsatellites and 3 biallelic markers. SNP tested include the 

COL10A1 and MMP3 (the sequences were obtained from GenBank accession no 
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AF222861 and FJ788664, respectively) and assays were designed to permit genotyping 

using a multiplex SNP genotyping platform (Beckman coulter). 

The order of markers and the genetic distances between them are given in table 3. Most 

of the markers were selected from the USDA/MARC map (http://www.marc.usda.gov) 

and were available in the porcine genome build Sscrofa9 (Ensembl). Genotyping, 

electrophoresis, and allele determination were done using a LI-COR 4200 Automated 

Sequencer including the software OneDscan (Scanalytics). Allele and genotyping errors 

were checked using Pedcheck software (version 1.1) (O'Connell and Weeks 1998). The 

relative positions of the markers were assigned using the build, twopoint and fixed 

options of CRIMAP software (version 2.4) (Green et al. 1990). Recombination units 

were converted to map distances using the Kosambi mapping function. Marker 

information content and segregation distortion were tested following Knott et al. (1998).  

QTL analysis using QTL Express 

F2 QTL interval mapping was performed using the web-based program QTL Express 

(Seaton et al. 2002) based on a least square method. The analysis was carried out at 

chromosome- and genome-wide level with a single and two-QTL model. The basic 

QTL regression model used in the present study was: 

yi = µ + Fi + β covi + caia + cdid + εi 

where: yi = phenotype of the i
th

 offspring; µ = overall mean; Fi = fixed effect (parity, 

year of birth); β = regression coefficient on the covariate; covi = covariate (age at blood 

collection and litter size for IL2 and TLRs;  age at blood collection for IL10 and IFNg); 

cai = additive coefficient of the i
th

 individual at a putative QTL in the genome; cdi = 

dominant coefficient of the i
th

 individual at a putative QTL in the genome; a = additive 

effects of a putative QTL; d = dominant effects of a putative QTL; and εi = residual 

error. 

The regression model was fitted at 1-cM interval along each chromosome and the F-

value for the QTL effect was calculated at each point. Chromosome- (CW)  and 

genome-wide (GW) significance levels were determined by permutation tests (Churchill 

and Doerge 1994). Chromosome-wide 1% and 5% significance thresholds became 

genome-wide significance thresholds after Bonferroni correction for 18 autosomes of 

the haploid porcine genome (de Koning et al. 2001). Methods for mapping a single QTL 

can be biased by the presence of other QTL (Meuwissen and Goddard 2004; Raadsma 
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et al. 2009). To address this situation, two-QTL models were also fitted for all traits 

using QTL Express (Seaton et al. 2002). Multiple QTL were declared on a chromosome 

if they were separated by at least 30 cM and exceeded 5% CW level significance (Kim 

et al. 2005, Liu et al. 2008).  The empirical 95% confidence intervals and flanking 

markers for the QTL positions were obtained by applying the bootstrapping approach 

with 1000 re-sampling steps (Visscher et al. 1996).  The phenotype variation that was 

explained by a QTL was calculated by the following equation. 

%Var = 
R

FR

MS

MSMS −
x 100 

Where, MSR was the mean of square of the reduced model; MSF was the mean of square 

of the full model. 

Results  

Phenotypes distribution  

The level of IFNg and IL10 increased over the time from 52 to 115 days of age (Fig. 1). 

The IL2 was reduced at 83 days of age after vaccination with TT. Both TLR2 and TLR9 

exhibited the same pattern of serum level in response to different vaccines. Lowest 

values of TLRs were found at 83 days of age (Fig. 1) in response to TT vaccine. The 

variations for IL2 titres were found to be significant (P < 0.001) between Mh and TT 

vaccination. In case of IFNg titre, the differences between TT and PRRSV, and between 

Mh and PRRSV vaccination were significant (P < 0.001). At all time points, TLR9 

responses were higher than that of TLR2. TLRs levels between Mh and TT, and 

between TT and PRRSV vaccination were significant (P < 0.001). Th1 type cytokines 

(IL2 and IFNg) were 5 - 6 times lower than that of Th2 type cytokine (IL10) in response 

to vaccines. Moreover, in response to Mh vaccine IFNg titre was15 times lower than 

that of IL10. Immune traits were found to be affected by parity, litter size, age and sex 

after different vaccinations (supplementary file 1).  

QTL for cytokines and Toll-like receptors in response to vaccines 

Under the line-cross model a total of 33 single QTL were detected, of which four QTL 

were for each of IL2, IFNg and TLR2; eight and 13 for IL10 and TLR9, respectively 

(Table 1). With regards to the immune triggering vaccine antigens, eight, 12 and 13 
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QTL were identified for the innate immune traits when vaccinated with the Mh, TT and 

PRRSV vaccine, respectively.     

A total of 16 single QTL were detected for different cytokines in response to different 

vaccines, of which four QTL were identified for each of IFNg and IL2, and eight for 

IL10 (Table 1). Among the detected QTL for cytokines, two QTL for IL10 reached to 

the 1% chromosome-wide (CW) level significance and all remaining QTL were 

suggestive. Among the QTL identified for IL2, three suggestive (P < 0.05, CW) QTL 

were detected in response to the TT vaccine at 136 cM, 141 cM and 88 cM on SSC5, 6, 

and 7, respectively. A chromosomal region influencing IL2 following Mh vaccination 

was mapped at 14 cM on SSC11 (Fig. 2). These QTL explained between 2.7 % to 3.8 % 

of the phenotypic variation. Among the ten single QTL identified for IL10, five 

suggestive (P < 0.05, CW) QTL were detected in response to PRRSV vaccine on SSC2, 

3, 6, 12, and 18. Two suggestive chromosomal regions influencing Mh vaccine induced 

IL10 were mapped on SSC10 and SSC12 (Fig. 2), whereas a significant (P < 0.01, CW) 

QTL was found on SSC11 at 25 cM affecting IL10 after TT vaccination. The 

phenotypic variation explained by the QTL identified for IL10 were between 2.3 % to 

3.5 %. Four suggestive chromosomal regions were identified for IFNg, of which two 

QTL regions were affecting IFNg in response to TT vaccine at 81 cM and 35 cM on 

SSC2 and SSC11 (Fig. 2), respectively. The remaining two QTL for PRRSV vaccine 

induced IFNg was identified at 53 cM and 50 cM on SSC3 (Fig. 2) and SSC11, 

respectively. The positive additive genetic effects of the QTL for IFNg indicated the 

allele forcing higher traits values coming from the Duroc breed.               

In this study, 17 line-cross single QTL were identified for TLRs (Table 1), of which 

four and 13 QTL were affecting TLR2 and TLR9, respectively. The four suggestive (P 

< 0.05, CW) QTL for TLR2 were identified on SSC3, 11, 12 and 15. Among these 

QTL, three QTL regions were affecting TLR2 induced by Mh vaccine and the 

remaining QTL was found to influence TT vaccine induced TLR2. Among the 13 single 

QTL influencing TLR9, a QTL affecting TT vaccine induced TLR9 reached to the 5% 

genome-wide (GW) level significance mapped at 34 cM on SSC2 (Fig. 2). Two 

significant QTL (P < 0.01, CW) were detected at 8 cM and 31 cM on SSC11 and 

SSC16, respectively affecting TLR9 induced by PRRSV vaccine. Moreover, three 

significant QTL (P < 0.01, CW) were detected for TLR9 following TT vaccine at 117 

cM, 142 cM and 100 cM on SSC11, 14 and 18, respectively. The phenotypic variation 
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explained by the QTL for TLRs were between 2.2 % to 5.4 % in this study. Negative 

additive genetic effects indicated that the QTL alleles originated from Piétrain pig 

associated with higher TLR9 titres in response to different vaccines.   

Two-QTL for innate immune response 

Significant results for the two-QTL model are presented in Table 2.  Evidence for an 

additional QTL under a two-QTL model was found in three cases, on SSC14 for 

TLR9_TT, and on SSC18 for TLR9_TT and IL10_PRRSV with a difference of 109 cM, 

91 cM, and 94 cM between two loci, respectively. In all cases, a marker (S0007 on 

SSC14 and SW787 on SSC18) was located in between the two QTL regions and one of 

the two chromosomal regions (QTL B in all cases) was identified in the single QTL 

approach. Two loci on SSC18 (IL10_PRRSV) were in repulsion phase, whereas the 

two-QTL on SSC14 (TLR9_TT) and SSC18 (TLR9_TT) were in coupling phase. Two 

QTL affecting TLR9_TT at 9 cM and 100 cM on SSC18 jointly explained 6.7% of the 

phenotypic variation.  

Discussion  

Phenotype distribution 

Age, gender and litter-related variation of cytokines (IL2, IFNg, IL4 and IL10) 

production are reported in pigs (de Groot et al. 2005). Henryon et al., (2006) described 

the effect of litter as the most important environmental source of variation affecting 

immunological traits in pigs. (O'Neill et al. 2006) stated that age, year of birth, sex and 

pre-existing antibodies are significant sources of variation for IgG responses. Both 

cytokines and TLRs production defects are reported in older human and mice in 

comparison to young human and mice (van Duin et al. 2007). IFNg concentration is 

reported to be affected by litter, parity, sex and age of pig (Uddin et al., 2010) which is 

in good agreement to our results. A recent study by (Fievet et al. 2009) demonstrated 

that age, but not parity, influences cytokines and TLRs production in human. There is 

no such report available in pig regarding TLRs. Since innate immune response is quick, 

it would be better to collect samples for the innate immune traits measurement within 

few hours or days after vaccination or immune stimulation. On the other hand, sampling 

immediately or shortly after vaccination could be an additional stress that can influence 

the innate immune responses. Moreover, several times samplings in a large population 
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shortly after vaccination are difficult and concern to animal welfare. However, most of 

the cytokines are pleiotropic and redundant in nature. The functions of individual 

cytokines may be additive, synergistic or antagonistic, synthesis or release of one 

cytokine may be controlled by others and cytokines may share receptors or parts of 

receptors. IL10 level was higher than that of IL2 and IFNg. Because, the production of 

Th1 type and Th2 type cytokines are inhibited by each other. IFNg secreted by Th1 

cells, can inhibit the proliferation of Th2 cells. On the contrary, IL10 secreted from Th2 

cells, can suppress Th1 functions by inhibiting cytokine production (Scheerlinck and 

Yen 2005).  

QTL for cytokines and Toll-like receptors 

Antibody response and interleukin production are one of the first immune competence 

traits to be examined by QTL analysis (Edfors-Lilja et al. 1998), but a very limited 

number of QTL analyses have been devoted to health, disease resistance and immune 

response traits (Edfors-Lilja et al. 1998, Reiner et al. 2007, Wimmers et al. 2008, 

Wimmers et al. 2009). The causes for low number of QTL studies for immune related 

traits are pointed out by  (Rothschild et al. 2007) that experiments for traits like disease 

resistance/susceptibility have limitations such as sample sizes, animal welfare and high 

expenses. However, breeds are reported to affect the baseline immune response and 

performance traits (Sutherland et al. 2005). Duroc and Piétrain are reported to be 

different regarding systemic disease resistance trait such as postweaning diarrhea 

(Vrtkova et al. 2007) as well as in regards to general immune responses like in response 

to sheep erythrocytes (Buschmann et al. 1974). In this study, equal number of additive 

and dominance QTL were identified which might be due to the separate loci too closely 

linked to be detected separately, one locus affecting male traits and the other affecting 

female traits (Rowe et al. 2008). Identification of QTL on the most chromosomes 

indicate that different chromosomal regions are influencing cytokines and TLRs 

reactions in response to diverge antigens. 

Moreover, dominance effects are reported to be important source of variation for 

complex traits in commercial pigs (Rowe et al. 2008). At the recent past the NCBI 

released the draft assembly of the porcine genome Sscrofa5 (NCBI) and the ENSEMBL 

released Sscrofa9 (Ensembl). These databases help to search the immunologically 

important genes located in peck position of the identified QTL regions.  
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The CD14 gene located on SSC2 close to the marker SW834 (Ensembl), is involved in 

monocyte activation. A QTL for TT induced IFNg was identified in this study close to 

the marker SW834 on SSC2. A QTL for IL10_PRRSV and a highly significant QTL (P 

< 0.05, GW) for TLR9_TT was identified at the proximal region on SSC2. Since 

cytokines and TLRs work together through complex networks (Takeda and Akira 

2004), these QTL indicate pleiotropic effects. Importantly, flanking markers of these 

QTL incorporated the location of C3 gene (Complement 3) on SSC2. Complement is an 

important part of innate immune system and is reported to be associated with TT and 

PRRSV antibodies in pig (Wimmers et al., 2009). Moreover, these QTL for TT and 

PRRSV induced immune traits are supported by previously detected line-cross QTL for 

PRRSV induced C3c in pig (Wimmers et al., 2009). Therefore it could be hypothesized 

that CD14 and C3 genes might play very important roles to stimulate the innate immune 

response of pig when challenged with vaccine antigens. Moreover, QTL for neutrophil 

and monocytes number are reported at 11 cM and 64 cM on SSC2 (Reiner et al. 2008). 

IL10 is important for disease resistance in livestock secreted from lymphocytes and 

monocytes (Scheerlinck and Yen 2005). A QTL for IgG titre at 40 cM is also reported 

on SSC2 (Edfors-Lilja et al. 1998).  

We identified QTL for PRRSV induced IL10 and IFNg closely linked on SSC3. This is 

a novel QTL and does not overlap with QTL reported previously. IL10 has anti-

inflammatory effects and down-regulates the expression of Th1 cytokines such as IFNg 

(Danilowicz et al. 2008). IL1α and IL1β are mapped on SSC3q11-14 which is within the 

flanking region of our QTL of interest. IFNg enhances IL1 secretion by priming 

monocytes to be more
 
sensitive to an IL1-inducing stimulus (Kruse et al. 2008). On the 

other hand, IL10 reduces the production of IL1α and IL1β. IFNg and IL2 are Th1 type 

cytokines, act synergistically and contribute to immune response. QTL for lymphocyte, 

platelet number, C3c (complement C) and Hp (haptoglobin) are mapped earlier on 

chromosome 3 in the region of our interest (Reiner et al. 2008, Reiner et al. 2007, 

Wimmers et al. 2008).  

STAT2 is located on SSC5p11-15 (Ensembl), where we identified a QTL for 

TLR9_PRRSV close to the marker S0092 (SSC5p11-12). This is a newly identified 

QTL for immune related traits. Recently it has been reported that STAT2 is one of those 

genes whose expression is regulated by TLR9 (Klaschik et al. 2009) indicates that 

STAT2 might be a gene of interest for PRRSV induced innate immune response in pigs. 
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Moreover, the flanking marker of the identified QTL for IL2_TT on SSC5 did 

incorporate the position of the porcine IFNg gene, which is an important cytokine 

responsible for disease resistance in pigs (Scheerlinck and Yen 2005, Yao et al. 2008). 

TGFβ1 (transforming growth factor beta 1) and IRF3 (interferon regulatory factor 3) are 

mapped on SSC6q12-21 (Ensembl) and this region is found to influence IL10 when 

vaccinated with PRRSV. IL10 and TGFβ are immunomodulatory cytokines (Sipos et al. 

2010) that are constitutively
 
expressed. Knockdown of IRF3 by siRNA resulted in 

downregulation of IL10 (Samanta et al. 2008). Moreover, QTL for leukocyte 

proliferation at 78 cM and  for IL2 activity at 133 cM and 127 cM on SSC6 are reported 

(Edfors-Lilja et al. 2000) in pig which is in good agreement with our result since we 

detected QTL for TT stimulated IL2 in this region. IL2 activates eosinophil and QTL for 

eosinophil number is also reported earlier at 147 cM on SSC6 (Edfors-Lilja et al. 1998).  

Cytokines and TLRs mapped on SSC8 are IL21, IL8, IL2, TLR1, TLR2, TLR6 (Muneta 

et al. 2003) and TLR10 (Ensembl). The QTL region for TLR9_TT between marker 

S0086 and S0144 incorporated the location of TLR2 and IL2. TLR9 and TLR2 signaling 

together account for MyD88-dependent control of parasitemia (Bafica et al. 2006). QTL 

for basophil, monocytes, leukocyte numbers (Reiner et al. 2008), polymorphonuclear 

leukocytes (PMNL) and segmented neutrophil numbers (Edfors-Lilja et al. 1998) are 

reported previously on SSC8 close to our detected QTL region.  

The pleiotropic QTL mapped within 25 cM to 50 cM on SSC11 for IFNg_TT, 

IFNg_PRRSV, IL10_TT, TLR2_Mh, TLR9_TT are supported by the previously 

reported QTL for IFNg at 7 cM, 23 cM and 23 cM on SSC11 in response to different 

vaccines in pig (Uddin et al. 2010). QTL for immunologically important blood cells 

such as for lymphocyte, monocytes, neutrophil and eosinophil numbers are also 

reported at 19 cM, 11 cM, 23 cM and 69 cM, respectively on SSC11 (Reiner et al. 2008, 

Reiner et al. 2007). QTL for monocyte number is reported at the region on SSC12 

(Reiner et al. 2008) where QTL for Mh induced TLR9 is identified in this study. Novel 

QTL for IL10_Mh, TLR2_Mh and TLR9_PRRSV are identified within region very 

close to the marker SW605 on SSC12q11-15 where the MPO (myeloperoxidase) gene is 

located. MPO is reported to be important for host defense and plays a role in the 

activation of neutrophils during extravasation (Haegens et al. 2009). MPO knockout 

mice are reported to be unresponsive to CpG DNA stimulation ligand for TLR9 and 

MPO activity is diminished in cells from TLR2
−/−

 mice (Tessarolli et al. 2009). 
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Therefore, it could be hypothesized that MPO might be an important candidate gene for 

the innate immune response when triggered with Mh and PRRSV vaccine. However, 

large confidence regions in this experiment is a common problem in QTL study, which 

hampered interpretation of QTL results since this region could contain many of 

potential candidate genes (de Koning et al. 2005). 

TLR9 following stimulation with TT vaccine is found to be affected by a chromosomal 

region very close to the marker SWC27 on SSC14 where MBL2 (Mannose binding 

lectin 2; also called Mannan-binding lectin) is located . MBL2 is a PRR, cooperates with 

TLRs within the phagosome to facilate the engulfment of bacteria and amplifies the host 

response (Ip et al. 2008). Interestingly, MBL deficient children are reported to have a 

lower development of tetanus antibodies (Cedzynski et al. 2004) indicating that MBL 

could be a gene of interest for innate immune response after vaccination with TT 

antigen. NRAMP1 (Natural resistance associated macrophage protein 1) is a potential 

candidate gene in controlling pig’s resistance to salmonella infection (Sun et al. 1998). 

NRAMP1 is mapped on SSC15q close to the marker SW1119 (Ensembl) and the 

location of this gene is incorporated within the flanking markers of the QTL detected 

for TLR2_TT indicated that NRAMP1 might be an important candidate gene for TT 

vaccine induced immune response in pig.  

The C9 (Complement 9) gene is the central component of the complement system 

located on SSC16 (Ensembl) and a chromosomal region affecting TLR9_PRRSV is 

detected close to the location of this gene. Many TLR ligands such as LPS, zymosan are 

also reported to be the activators of complement (Takeda and Akira 2004) and 

complements are found to regulate TLRs signalling specially in TLR4 and TLR9 (Zhang 

et al. 2007). Immunologically important QTL such as QTL for sarcocystis bradizoit at 

15 cM (Reiner et al. 2007) and tetanus antibody at 30 cM (Wimmers et al. 2008) are 

reported on SSC16. Moreover, complement is an important part of innate immune 

system and the role of TLR9 in protozoan infections are reviewed in detail (Gazzinelli 

and Denkers 2006).  

The proximal region of SSC17 was found to affect TLR9_PRRSV, close to the reported 

QTL for C3c, Hp and TT antibody in pig (Wimmers et al. 2008). The flanking marker 

of this QTL did incorporate the position of LBP (lipopolysaccharide-binding protein), 

BPI (bactericidal/permeability-increasing protein) and PTLP (phospholipid transfer 

protein) genes. These genes are reported to have antimicrobial and bactericidal effects 
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especially on Gram- bacteria (Shi and Tuggle 2001a, Shi and Tuggle 2001b). Likewise, 

a chromosomal region for TLR9_TT and IL10_PRRSV is mapped at a region on 

SSC18, close to the QTL reported earlier for C3c and Hp (Wimmers et al. 2008) in pigs. 

Importantly, Wimmers et al. (2009) found the close relation of C3c and Hp with TT and 

PRRSV antibodies.  

In conclusion, it could be found that with regard to number and magnitude of their 

impact, QTL for innate immune traits behave like those for other quantitative traits. 

Both genetic and environmental factors contributed to the innate immune response. 

MPO, MBL2 and NRAMP1, C3c, C9, LBP, PLTP and BPI might be interesting 

candidate genes contributing to immune function. Anyhow, it is still a major task to 

identify causative genes and polymorphism. Moreover, in the complex network of 

cytokines and TLRs it is difficult to unambiguously assign one or more biological role 

and response of each immune trait. Furthermore, follow-up research is needed to further 

characterize these quantitative trait loci in animal population challenged with infection 

and in other crosses. To identify candidate gene by fine mapping using denser marker 

sets like large scale SNPs and association of genes and causal mutations could be the 

further steps to define the genetic basis of immune function. However, this discovery of 

the QTL regions will facilitate to understand the genetic basis underlying innate 

immune traits and to identify the candidate genes for immune competence and disease 

resistance.  
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Table 1: Summary of QTL for the innate immune traits using QTL Express. 

 

 Trait
a
 SSC

b
 POS

c
 

(cM) 

F-value
d
 Var

e
 

(%) 

A
f
±SE D

g
±SE Marker interval 

IL2 IL2_TT 5 136 7.1* 3.8 -19.74±5.27 -6.18±8.88 SW1987-IGF1 

 IL2_TT 6 141 5.3* 2.7 -11.70±4.65 -16.61±8.09 S0059 -S0003 

 IL2_TT 7 88 5.2* 2.7 -11.75±5.19 -22.08±8.18 SW175-S0115 

 IL2_Mh 11 14 6.6* 3.5 -28.10±13.82 -100.19±32.28 SW2008-S0071 

         

IL10 IL10_PRRSV 2 22 4.7* 2.3 112.11±37.95 100.34±129.43 SW2443-SW240 

 IL10_PRRSV 3 45 5.2* 2.6 42.92±28.92 155.15±49.99 S0164 -SW2570 

 IL10_PRRSV 6 78 5.1* 2.5 -67.67±21.16 -15.77±36.98 SW1067-SW193 

 IL10_Mh 10 58 4.8* 2.3 -75.50±32.81 116.21±55.55 S0070-S0070 

 IL10_TT 11 25 6.5** 3.5 56.24±28.30 181.72±59.92 SW2008 -S0071 

 IL10_PRRSV 12 13 5.5* 2.8 -29.08±29.33 -196.69±61.51 SW2490-SW874 

 IL10_Mh 12 162 6.5** 3.4 -63.66±48.87 -537.16±158.1 SW605-SW605  

 IL10_PRRSV 18 120 5.7* 2.9 31.20±22.17 105.51±32.50 SW787-SWR414 

         

IFNg IFNg_TT 2 81 5.0* 2.6 -27.06±9.80 20.47±15.94 SW240-SW834  

 IFNg_PRRSV 3 53 5.9* 3.0 6.16±12.94 74.58±21.80 S0164-SW2570 

 IFNg_TT 11 35 5.7* 3.0 25.44±8.93 28.43±15.80 SW2008-S0071 

 IFNg_PRRSV 11 50 5.8* 2.9 23.32±11.05 46.99±18.27 S0071 -S0009 

         

TLR2 TLR2_Mh 3 92 5.8* 3.0 -0.08±0.04 -0.25±0.08 SW2570-S0002 

 TLR2_Mh 11 38 6.2* 3.2 0.02±0.03 0.20±0.06 SW2008-S0071 

 TLR2_Mh 12 150 5.9* 3.1 -0.14±0.08 0.94±0.32 SW874-SW605 

 TLR2_TT 15 126 5.9* 3.1 -0.07±0.04 -0.16±0.06 SW936-SW1119 

         

TLR9 TLR9_TT 2 34 9.6*** 5.4 -0.13±0.08 -1.04±0.25 SW2443-SW240 

 TLR9_PRRSV 5 76 6.3* 3.1 -0.10±0.07 -0.36±0.11 SWR453-S0092 

 TLR9_TT 8 117 5.5* 2.9 0.01±0.06 0.38±0.11 S0086-S0144 

 TLR9_PRRSV 11 8 7.3** 3.7 -0.25±0.08 -0.40±0.18 SW2008-S0071  

 TLR9_TT 11 28 6.4** 3.5 0.09±0.06 0.43±0.13 SW2008 -S0071 

 TLR9_Mh 11 95 5.5* 2.8 -0.39±0.12 0.17±0.18 S0009-SW703 

 TLR9_Mh 12 43 5.4* 2.7 -0.53±0.20 -1.17±0.55 SW2490 -SW874 

 TLR9_PRRSV 12 175 7.2* 3.7 -0.09±0.10 -0.90±0.25 SW874-SW605  

 TLR9_TT 14 142 7.0** 3.8 0.33±0.14 5.14±1.48 S0007-SWC27 

 TLR9_PRRSV 16 31 6.9** 3.5 -0.11±0.10 -1.06±0.30 S0111-S0026 

 TLR9_PRRSV 17 0 4.8* 2.2 -0.08±0.05 0.22±0.08 SW335-SW840 

 TLR9_PRRSV 18 0 5.0* 2.4 0.24±0.08 -0.14±0.15 SW1808-SW1023 

 TLR9_TT 18 100 7.9** 4.4 -0.08±0.07 -0.50±0.13 SW787 -SWR414 

 
a
 Trait abbreviations: IFNg_Mh, IFNg_TT and IFNg_PRRSV= IFNg level after 

vaccination with Mh, TT and PRRSV, respectively; IL2_Mh, IL2_TT and 

IL2_PRRSV= IL2 level after vaccination with Mh, TT and PRRSV, respectively; 

IL10_Mh, IL10_TT and IL10_PRRSV= IL10 level after vaccination with Mh, TT and 

PRRSV, respectively; TLR2_Mh, TLR2_TT and TLR2_PRRSV= TLR2 level after 

vaccination with Mh, TT and PRRSV, respectively; TLR9_Mh, TLR9_TT and 

TLR9_PRRSV= TLR9 level after vaccination with Mh, TT and PRRSV, respectively; 
b
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Sus scrofa chromosome; 
c
 Chromosomal position in Kosambi; 

d
 Significance of the 

QTL: *, significant on a chromosome-wide level with P ≤ 0.05; **, significant on a 

chromosome-wide level with P  ≤  0.01; ***, significant on a genome-wide level with P  

≤  0.05; 
e
 The percentage of phenotypic variance explained by the QTL; 

f
Additive effect 

and standard error. Positive values indicate the Duroc alleles result in higher values than 

Pietrain alleles; negative values indicate that Duroc alleles result in lower values than 

Pietrain alleles; 
g 

Dominance effect and standard error. 
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Table 2: Summary of significant QTL for innate immune traits using QTL Express 

under two-QTL model.  

 
Pos  cM

c
 F

d
 Effect A

f
 Effect B

f
 Sig

g
 SSC

a
 Trait

b
 

QTL A QTL 

B 2vs1 2vs0 

Var%
e
 

a+se d+se a+se d+se A B 

14 TLR9_TT 35 142 5.9 4.6 6.1 0.1± 

0.1 

-0.3± 

0.1 

0.3± 

0.1 

5.5± 

1.5 

* * 

18 TLR9_TT 9 100 6.4 4.7 6.7 -0.1± 

0.1 

-0.4± 

0.2 

-0.1± 

0.1 

-0.6± 

0.1 

* * 

18 IL10_PRRSV 20 114 5.2 4.6 5.1 -90.1± 

39.1 

304.1± 

108.9 

42.8± 

24.8 

134.9± 

41.7 

* * 

 

a, b, c, d, e
 See footnotes for Table 1; 

f 
the QTL effect and the standard error (SE) of both 

QTL positions QTL A and QTL B; 
g 

significant threshold of the F-value (significant 

threshold) determines if the QTL reached the significance level under 2 vs 0 QTL (2 

degrees of freedom), or 2 vs 1 QTL (1 degree of freedom); with *chromosome-wide P ≤ 

0.05. 
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Table 3: Markers used in the QTL analysis and genetic map as established from 

the DUPI resource (sex average, Kosambi). 

 
Chrom. Markers and genetic distances

a
 (cM) 

SSC1 SW1515 (16.4) 34.8 SW1581 71.7 COL10A1 59.9 S0155 55.4 SW1301 (140.5) 

SSC2 SW2443 (0) 58.2 SW240 28.9 SW834 8.3 SW1517 8.3 S0226 (74.8)
b
 

SSC3 SW72 (17.8) 33.5 S0164 26 SW2570 36.6 S0002(102.2)   

SSC4 S0227 (4.1) 50 S0001 31 S0214 49.3 S0097(120.0)   

SSC5 ACR (0) 10.9 SW413 31.9 SW1482 20.7 SWR453 14.2  

 S0092  16.9 S0005 41.5 SW1987 24.4 IGF1 48.7 SW967 (145.9) 

SSC6 S0035 (7.3)
c
 61.2 S0087 13 SW1067 12.7 SW193 12.5  

 S0300 14.5 S0220 19.4 S0059 16.9 S0003 (102)
c
   

SSC7 S0025 (3.7) 33 S0064  36.6 S0102 16.9 SW175 31.5  

 S0115 38.9 S0101(134.9)       

SSC8 SW2611(2.5) 89.6 S0086 27.6 S0144 12.8 SW61 (112.3)   

SSC9 SW21 (11.1) 52.9 MMP3  50 SW911 23.4 SW54 15.1  

 S0109 25.6 S0295(96.5)       

SSC10 SW830 (0) 70.5 S0070 28.1 SWR67(122)     

SSC11 SW2008 (14.1) 43.3 S0071 24.6 S0009 27.2 SW703 (76.2)   

SSC12 SW2490 (0) 75.5 SW874 100 SW605(108.3)     

SSC13 S0219 (1.6) 44 SW344 37.4 SW398 87 S0289 (112.1)   

SSC14 SW857 (7.4) 42.5 S0007 100 SWC27(111.5)     

SSC15 S0355 (1.3) 37.8 SW1111 47.8 SW936 40.8 SW1119 (107.4)   

SSC16 S0111 (0) 67.2 S0026 89.1 S0061(92.6)     

SSC17 SW335 (0) 40.4 SW840 99.6 SW2431 (94.0)     

SSC18 SW1808(0) 9.5 SW1023 70.9 SW787 40.3 SWR414 (57.6)   

a
 Numbers in the parentheses at the first and last marker are relative positions of those in 

the USDA-MARC v2 linkage map; 
b
 S0226 not covered by USDA-MARC v2, but 

SW14, which is closely linked to S0226 (PigMap v1.5); 
c
 S0035 at 0 and S0003 at 144.5 

in the International Workshop 1 SSC6 integrated map with a total length of 166.0 

(Wimmers et al. 2009).  
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Table 4: (Additional file 1) Phenotypic innate immune traits and effect of different 

environmental and genetic factors on these traits.  Summary of the phenotypic innate 

immune traits measured after different vaccinations and effect of different 

environmental and genetic factors on these innate immune traits (proc means, proc 

univariate and proc glm) by SAS (v9.2).   

Traits Mean±SE N Sex Age 

at sa- 

mpling 

Date 

of 

birth 

Year 

of  

birth 

Parity Litter 

size 

R
2
 Model 

IL2_Mh 60.53±4.86 313 ns ns ns *** ** ns 0.11 *** 

IL2_TT 41.56±2.16 312 ns *** *** ns ns *** 0.19 *** 

IL2_PRRSV 59.94±3.55 328 * ** ns ns ns *** 0.10 *** 

IL10_Mh 218.03±11.45 322 ns ns ns *** *** ns 0.13 *** 

IL10_TT 258.19±10.93 312 ** ** ns ns ns ns 0.10 *** 

IL10_PRRSV 295.99±11.75 328 ns ns *** *** *** ns 0.37 *** 

IFNg_Mh 14.35±1.92 321 ns ns ns *** ns ns 0.14 *** 

IFNg_TT 40.15±4.09 308 *** ns ns *** ns ns 0.22 *** 

IFNg_PRRSV 74.82±5.5 329 ns ns ns *** ** ns 0.13 *** 

TLR2_Mh 1.04±0.02 323 ns ns *** *** ** ns 0.39 *** 

TLR2_TT 0.95±0.02 312 * * ** *** ** ns 0.31 *** 

TLR2_PRRSV 1.02±0.03 334 * ns *** *** * ns 0.33 *** 

TLR9_Mh 1.25±0.06 319 ns ns * *** * ns 0.28 *** 

TLR9_TT 1.06±0.03 308 ns ns ** *** *** ns 0.33 *** 

TLR9_PRRSV 1.19±0.03 334 ns * *** *** *** ns 0.48 *** 

 

N = number of animals; ns = not significant; * P < 0.05; ** P < 0.01; *** P < 0.001 
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Figure 1. The concentration of cytokines and Toll-like receptors after vaccination with 

Mh, TT and PRRSV.  

* P ≤ 0.05; *** P ≤ 0.001   
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Figure 2: F-ratio test statistics for innate immune traits on SSC2, SSC11 and SSC12. The 

quantitative trait loci for traits related to innate immune response with chromosome-wide 

significance at P < 0.05 (curve in dotted; suggestive) and P < 0.01 (curve in solid; significant); 

genome-wide level significance at P < 0.05 (curve in solid bold; highly significant) on SSC2, 

SSC11 and SSC12 estimated from data of the DUPI F2 resource population. Positions of the 

markers are indicated at the x-axis, F-values are at the y-axis.  
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Abstract 

Background: Gene expression analysis using real-time RT-PCR (qRT-PCR) is 

increasingly important in biological research due the high-throughput and accuracy of 

qRT-PCR. For accurate and reliable gene expression analysis, normalization of gene 

expression data against housekeeping genes or internal control genes is required. The 

stability of reference genes has a tremendous effect on the results of relative 

quantification of gene expression by qRT-PCR. The expression stability of reference 

genes could vary according to tissues, age of individuals and experimental conditions. 

In the pig however, very little information is available on the expression stability of 

reference genes. The aim of this research was therefore to develop a new set of 

reference genes which can be used for normalization of mRNA expression data of genes 

expressed in varieties of porcine tissues at different ages.  

Results: The mRNA expression stability of nine commonly used reference genes (B2M, 

BLM, GAPDH, HPRT1, PPIA, RPL4, SDHA, TBP and YWHAZ) was determined in 

varieties of tissues collected from newborn, young and adult pigs. geNorm, NormFinder 

and BestKeeper software were used to rank the genes according to their stability. 

geNorm software revealed that RPL4, PPIA and YWHAZ showed high stability in 

newborn and adult pigs, while B2M, YWHAZ and SDHA showed high stability in young 

pigs. In all cases, GAPDH showed the least stability in geNorm. NormFinder revealed 

that TBP was the most stable gene in newborn and young pigs, while PPIA was most 

stable in adult pigs. Moreover, geNorm software suggested that the geometric mean of 

three most stable genes would be the suitable combination for accurate normalization of 

gene expression study.    

Conclusions: Although, there was discrepancy in the ranking order of reference genes 

obtained by different analysing software methods, the geometric mean of the RPL4, 

PPIA and YWHAZ seem to be the most appropriate combination of housekeeping genes 

for accurate normalization of gene expression data in different porcine tissues at 

different ages.      

 

Background 

The pig is one of the most studied organism in research community as a food as well as 

a model animal, and many projects in pigs require the quantification of the genes for 

many purposes. Real-time quantitative PCR (qRT-PCR) is the most frequently used 

methods for gene quantification nowadays. qRT-PCR is an efficient method for 
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quantification of mRNA transcript levels due to its high sensitivity, reproducibility and 

large dynamic range. Furthermore, it is fast, easy to use and provides simultaneous 

measurement of gene expression in many different samples for a limited number of 

genes (Arya et al. 2005, Nolan et al. 2006, Nygard et al. 2007). In case of qRT-PCR, 

when analyzing data for relative quantification, results are normalized to a reference. 

The most accepted approach to mRNA quantification is normalization of the expression 

level of a gene of interest (target gene) to the expression level of an internal stably 

expressed gene (control gene) (Huggett et al. 2005, Radonic et al. 2004, Vandesompele 

et al. 2002). The control gene, often termed reference gene, is a stably expressed gene 

that is experimentally verified in given species and tissues under given experimental 

conditions (Erkens et al. 2006, Lovdal and Lillo 2009, Maroufi et al. 2010, Nygard et al. 

2007). Normalizing to a reference gene is a widely used method because it is simple in 

theory. The normalization adjusts for differences in the quality or quantity of template 

RNA or starting material and differences in RNA preparation and cDNA synthesis, 

since the reference gene is exposed to the same preparation steps as the gene of interest. 

This allows the direct comparison of normalized transcript expression levels between 

samples. However, this approach requires the selection of at least one reference gene for 

validation of a corresponding qRT-PCR method. Normalization is extremely important 

to allow accurate comparison of the results between different samples and conditions in 

gene expression studies (Huggett et al. 2005). For instance, the commonly used 

reference genes such as GAPDH and β-actin are unfortunately often used without prior 

validation of their expression stability under the specific study conditions, but a number 

of studies have shown that the expression of those genes is significantly altered in some 

experimental conditions (Barber et al. 2005; Jung et al. 2007; Selvey et al. 2001). It is 

therefore necessary to validate the expression stability of reference genes prior to their 

use in an experimental protocol. Recently it has been recommended that a combination 

of reference genes should be used to obtain a more stable reference (Vandesompele et 

al. 2002) and the use of a single reference gene is nowadays discouraged by more and 

more authors (Huggett et al. 2005, Tricarico et al. 2002, Vandesompele et al. 2002). 

Because, a variability or alteration in the chosen reference gene by the experiment, 

however, may change the obtained results entirely and could be incorrect. Therefore, the 

validation of potential reference genes is essential. 

An ideal reference gene should be stably expressed and unaffected by experimental 

protocol or status (Schmittgen and Zakrajsek 2000). But, the recent studies showed that 
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the housekeeping gene expressions could be changed according to the type of tissues 

(Maroufi et al. 2010, Nygard et al. 2007, Pierzchala et al. 2011) breeds (Pierzchala et al. 

2011), experimental condition (such as treatment or disease) (Beekman et al. 2011, De 

Boever et al. 2008, Maccoux et al. 2007, Penning et al. 2007) and age (Al-Bader and 

Al-Sarraf 2005, Pierzchala et al. 2011, Touchberry et al. 2006). A set of reference genes 

are suggested on the basis of their stability over tissues in pigs (Erkens et al. 2006, Gu et 

al. 2011, Nygard et al. 2007, Pierzchala et al. 2011, Piorkowska et al. 2010) but studies 

for expression stability of commonly used housekeeping in varieties  of porcine tissue 

collected from different age of pigs are scare. Therefore, this study was aimed to 

explore the expressions of nine mostly used house keeping genes in 14 different tissues 

collected from three different ages of pigs (1 day old piglet, 2 months old young and 5 

moths old adult pigs) and to select the suitable set of house keeping genes that could be 

used as an internal control to normalize gene expression in pigs.  

 

Materials and Methods 

 

Tissues collection 

A total of nine clinically healthy pigs of three age group were selected: neonatal (one 

day old), young (2 months old) and adult (5 months old) for this experiment. Each age 

group was consisted of three animals of Pietrain, and all the animals were male and 

from the same batch. All pigs were kept at the Frankenforst experimental research farm 

at the University of Bonn (Germany). The animals were reared and slaughtered 

according to the rules of German performance stations (ZDS 2003). The animals were 

fed same diet ad libitum during the whole experimental period. Blood was collected for 

peripheral blood mononuclear cells (PBMC) isolation. Lymph nodes (cervical and 

mesenteric), intestinal mucosa from duodenum, jejunum and ileum, tissues from 

stomach, liver, spleen, thymus, lung, kidney, heart and skin from ear were collected for 

mRNA isolation after slaughter. For mRNA isolation from tissues, samples were 

directly put into liquid nitrogen after washing in PBS. PBMC was isolated from whole 

blood using Ficoll-Histopaque (Sigma) following manufacturer’s protocol. All samples 

were kept in -80
o
C till used. 
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RNA isolation and cDNA synthesis  

Total RNA was isolated from individual sample by using Tri-Reagent (Sigma-Aldrich, 

Munich, Germany) according to the standard protocol. In brief, sample was first grinded 

in a mortar, then mixed and homogenized with 1 ml Tri-Reagent using electric 

homogenizer. To ensure complete dissociation of nucleoprotein complexes, the sample 

was allowed to stand for 5 min before adding 0.2 ml of chloroform. The mixture was 

shaken and left at room temperature for 10 min and centrifuged at 12,000 x g for 15 min 

at 4
o
C. The upper aqueous phase was transferred to another fresh centrifuge tube and 

RNA was precipitated with 0.5 ml of isopropanol. After being incubated at room 

temperature for 10 min, the sample was centrifuged at 12,000 x g for 10 min at 4
o
C to 

get the RNA pellet, which was subsequently washed by 75% (v/v) ethanol. 

Centrifugation was then performed and the RNA pellet was air-dried and resuspended 

in 25 µl of DEPC treated water. RNA was isolated from PBMC using Picopure RNA 

isolation kit (Cat.# KIT0202; Arcturus). All samples were kept at -80
o
C until cleanup.   

In order to remove possible contaminating genomic DNA, the extracted RNA was 

treated with 5 µl RQ1 DNase buffer, 5 units DNase and 40 units of RNase inhibitor in a 

40 µl reaction volume. The mixture was incubated at 37
o
C for 1h followed by 

purification with the RNeasy Mini Kit (Qiagen, Hilden, Germany). Concentration of 

clean-up RNA was determined spectrophotometrically by using the NanoDrop (ND-

8000) instrument; the purity of RNA was estimated by the ratio A260/A280 with 

respect to contaminants that absorb in the UV. Additional examination of integrity was 

done by denaturing agarose gel electrophoresis and ethidium bromide staining. Finally, 

the purified RNA was stored at -80
o
C for further analysis. 

Approximately 1.5 µg of total RNA for each sample was transcribed into cDNA. cDNA 

was synthesised using GoScript (Cat.#A5000) reverse Transcription System (Promega, 

Germany) combined with OligoDT15 Primers, Recombinant RNasin® Ribonuclease 

Inhibitor and GoScript™ Reverse Transcriptase according to the manufacturer’s 

specification and protocol. cDNA was stored at -80
o
C until further use. 
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Selection of reference genes and primer design 

There are few previous studies validated selected reference genes across selected tissues 

in pigs (Erkens et al. 2006, Gu et al. 2011, Nygard et al. 2007, Pierzchala et al. 2011, 

Piorkowska et al. 2010) with specific purpose but no study was devoted to validate 

reference genes in the different tissues collected from different ages of pigs. However, 

‘traditional’ reference genes like GAPDH and TBP have been most often used in pigs 

(Gu et al. 2011, Kaewmala et al. 2011, Kayan et al. 2011a, Kayan et al. 2011b, Laenoi 

et al. 2010, Nygard et al. 2007, Oczkowicz et al. 2010, Piorkowska et al. 2010). 

Regarding porcine organs, ACTB, B2M, GAPDH, HMBS, HPRT1, RPL4, SDHA, TBP 

and YWHAZ  have been previously compared (Nygard et al. 2007). More specifically in 

recent days, GAPDH, ACTB, RPL27, RPS29, RPS13 are compared in porcine stomach 

(Oczkowicz et al. 2010); GAPDH, TBP, HPRT, RPS29, ACTB and RPL27 are validated 

in porcine adipose tissues in different breeds of pigs (Piorkowska et al. 2010) and B2M, 

SDHA, ACTB, GAPDH, HPRT1 and TBP expression stability are compared in porcine 

muscle and liver tissues in pigs (Pierzchala et al. 2011). The genes used in our study 

were selected based on these previous studies. Information about the nine candidate 

reference genes used in the present study is shown in Table 1. The following nine 

commonly used reference genes were selected: ACTB, GAPDH, HPRT1, B2M, SDHA, 

RPL4, YWHAZ, TBP and PPIA. Primers were designed using the publicly available 

web-based Primer3 program (Rozen and Skaletsky 2000) and are listed in Table 1. They 

were tested using a BLAST analysis against the NCBI database 

(www.ncbi.nlm.nih.gov/tools/primer-blast).  

 

qReal-Time PCR 

Nine-fold serial dilution of plasmids DNA were prepared and used as template for the 

generation of the standard curve. In each run, the 96-well microtiter plate contained 

each cDNA sample, plasmid standards for the standard curves and no-template control. 

A no-template control (NTC) was included in each run for each gene to check for 

contamination. Quantitative real-time RT-PCR (qRT-PCR) was set up using 2 µl first-

strand cDNA template, 7.4 µl deionized H2O, 0.3 µM of upstream and downstream 

primers and 10 µl 1× Power SYBR Green I master mix with ROX as reference dye 

(Bio-Rad). The thermal cycling conditions were 3 min at 95 °C followed by 15 s at 

95 °C (40 cycles) and 1 min at 60 °C. Experiments were performed using the 

StepOnePlus™ Real-Time PCR System (Applied Biosystems). Based on the Ct values 
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for all dilution points in a series, a standard curve was generated using linear regression 

and the slope and the PCR amplification efficiency of each primer pair is calculated 

from the slope of a standard curve (Maroufi et al. 2010). Melting curve analysis were 

constructed to verify the presence of gene-specific peak and the absence of primer 

dimer. Agarose gel electrophoresis was performed to test for the specificity of the 

amplicons. To ensure repeatability of the experiments, all the reactions were executed in 

triplicate and the mean was used for further analysis.  

 

Determination of reference gene expression stability  

The raw qRT-PCR amplification data was exported from the StepOne® software 

(Applied Biosystem) to Microsoft® Excel. The averages of the Ct-values for each 

triplicate were used for stability comparison of candidate reference genes in the 

NormFinder, GeNorm and BestKeeper. 

Ct values of all samples were exported to Excel, ordered for use in geNormPlus 

software (15 days free trial version qBasePlus; www.biogazelle.com) and transformed 

to relative quantities using the gene-specific PCR amplification efficiency (Hellemans 

et al. 2007). These relative quantities were then exported to geNormPlus to analyze 

gene expression stability (Vandesompele et al. 2002). The approach of reference gene 

selection implemented in geNorm relies on the principle that the expression ratio of two 

ideal reference genes should be identical in all samples, independent of the treatment, 

condition, or tissue type. Increasing variations in the expression ratio between two 

genes correspond to lower expression stability across samples. GeNorm calculates the 

stability using a pairwise comparison model (Vandesompele et al. 2002). geNorm 

determines the level of pairwise variation for each reference gene with all other 

reference genes as the standard deviation of the logarithmically transformed expression 

ratios. In this way, the reference gene expression stability measure (M value) was 

calculated as the average pairwise variation of a particular gene with all other control 

genes included in the analysis (Maroufi et al. 2010, Vandesompele et al. 2002). Lower 

M values represent higher expression stabilities. Sequential elimination of the least 

stable gene (highest M value) generates a ranking of genes according to their M values 

and results in the identification of the genes with the most stable expression in the 

samples under analysis. geNorm was also used to estimate the normalization factor 

(NFn) using n multiple reference genes, by calculating the geometric mean of the 

expression levels of the n best reference genes (Vandesompele et al. 2002). The 
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optimisation of the number of reference genes starts with the inclusion of the two genes 

with the lowest M value, and continues by sequentially adding genes with increasing 

values of M. Thus, geNorm calculates the pairwise variation Vn/Vn+1 between two 

sequential normalization factors NFn and NFn+1 containing an increasing number of 

reference genes (Vandesompele et al. 2002). A large variation means that the added 

gene has a significant effect on the normalization and should preferably be included for 

calculation of a reliable normalization factor. Ideally, extra reference genes are included 

until the variation Vn/Vn+1 drops below a given threshold. If Vn/n+1 < 0.15 the inclusion 

of an additional reference gene is not required and the recommended number of 

reference genes is given by n (Vandesompele et al. 2002). Although, the recommended 

threshold of 0.15 should not be taken as too strict of a cut-off (Vandesompele et al. 

2002).  

NormFinder uses an ANOVA-based model (Andersen et al. 2004). The software 

calculates a stability value for all candidate reference genes tested. The stability value is 

based on the combined estimate of intra- and inter-group expression variations of the 

genes studied (Andersen et al. 2004). For each gene, the average Ct value of each 

triplicate reaction was converted to relative quantity data as described for geNorm, to 

calculate the stability value with NormFinder program (Andersen et al. 2004). The 

NormFinder reference tool was applied to rank the candidate reference gene expression 

stability for all samples with no subgroup determination as well as with age as 

subgroup. A low stability value, indicating a low combined intra- and inter-group 

variation, indicates high expression stability (Andersen et al. 2004). 

The average Ct value of each triplicate reaction was used (without conversion to relative 

quantity) to analyze the stability value of studied genes (Pfaffl et al. 2004). BestKeeper 

creates a pairwise correlation coefficient between each gene and the BestKeeper index 

(BI). This index is the geometric mean of the Ct values of all candidate reference genes 

grouped together. BestKeeper also calculates standard deviation (S.D) of the Ct values 

between the whole data set. The gene with the highest coefficient of correlation with the 

BI indicates the highest stability (Pfaffl et al. 2004). 
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Results 

 

Purity, quantity of extracted RNA and verification of amplicons 

The optical density (OD) ratio A260/A280 nm measured with a Nanodrop 

spectrophotometer was 1.95 ± 0.16 (OD A260/A280 ratio ± SD). The average RNA 

concentration after extraction using the Tri-reagent (for tissues) and PicoPure (for 

PBMC) was 1.65 µg/µl ± 1.03 (µg/µl ± SD). The results of the averaged amplification 

efficiencies are shown in table 1. The amplification efficiencies for the nine candidate 

reference genes ranged between 81.88% and 99.59%. The agarose gel electrophoresis 

(figure 1a) and melting curve analysis (figure 1b and Table 1) revealed that all primer 

pairs amplified a single PCR product with expected size. Furthermore, sequence 

analysis of cloned amplicons revealed that all sequenced amplified fragments were 

identical to sequences used for primer design from GenBank.  

 

Expression levels of candidate reference genes 

The cycle threshold (Ct) values obtained throughout the study were low enough to 

pursue the analysis reliably: Overall (by combining Ct values of all ages for each gene), 

out of the nine genes studied, PPIA (mean Ct 16.91) and RPL4 (mean Ct 16.92) were 

expressed at the highest levels, followed by YWHAZ (mean Ct 19.97), B2M (mean Ct 

20.03), SDHA (mean Ct 21.17) and HPRT1 (mean Ct 22.05). GAPDH (mean Ct 26.44) 

was expressed at the lowest level in the porcine tissues used in this study (Additional 

file S1). Prior to any referencing, when expression values were compared between ages 

in a tissue, the average Ct values for B2M, SDHA was stable in 12 tissues and BLM was 

stable in 11 tissues, whereas GAPDH, PPIA, TBP and YWHAZ were stable in seven of 

the tissues out of 14 tissues (figure 2). In case of PBMC and skin, all the candidate 

reference genes were expressed differentially between ages (figure 2x and 2xi). 

According to the Ct values for candidate genes, less expression variability could be seen 

in duodenum followed by kidney, spleen and heart (figure 2). Moreover, the expression 

of reference genes were found to be influenced by organ, age and age-organ interaction 

(Additional file S2). 
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Identification of optimal reference genes 

Figure 3a and 3e shows the ranking of the nine candidate reference genes across the 

tissues without considering ages of individuals based on their stability values calculated 

using geNorm and NormFinder, respectively. Both softwares showed that RPL4, PPIA 

and YWHAZ are the most stable genes. Similar stability for candidate genes could also 

be found in tissues collected from 5 months adult pigs (figure 3d and 3h). However, the 

expression stability was always not consistent between the used softwares. geNorm 

showed that RPL4 was the most stable candidate reference gene followed by PPIA and 

YWHAZ in tissues collected from 1 day old piglets (figure 3b), whereas B2M was the 

most stable reference gene followed by YWHAZ and SDHA in case of 2 months old 

young pigs (figure 3c). GAPDH has the highest stability value in all ages group when 

expression stability were analyzed using geNorm (figure 3a-d). On the other hand, 

NormFinder showed that PPIA is the most stable gene when all tissues were considered 

together and in tissues collected from 5 months old adult pigs (figure 3e, h), whereas 

TBP showed highest stability in tissues collected from 1 day old piglet and in 2 months 

old young pigs (figure 3f, g). Additionally, BLM and RPL4 were recommended as the 

best combination of two genes with the stability value 0.083, while PPIA was 

recommended as the best gene with stability value 0.091 by NormFinder. Figure 3a-d 

shows the ranking of the nine candidate reference genes based on their M value 

calculated using GeNorm. In all age groups, the most stable three candidate reference 

genes started with an M value below or equal to 1.5, which is the default limit below 

which candidate reference genes can be classified as stably expressed. 

The results of reference gene evaluation by the BestKeeper tool are shown in Table 2. 

According to the variability observed, candidate reference genes can be identified as the 

most stable genes, as they exhibited the lowest coefficient of variance (CV ± SD). In 

this context, we found that YWHAZ is the most stable reference genes in tissues 

collected from 2 months old young pig (table 2). It is important to note that, genes that 

show a SD higher than 1 should be considered unacceptable (Pfaffl et al. 2004, Stern-

Straeter et al. 2009). A low SD of the cycle threshold (Ct) values should be expected for 

a useful reference gene. In this study, the estimation of the SD (± Ct) of the CV [%Ct] 

values for all the genes except YWHAZ at 2 months (bold italic letters; Table 3), was 

higher. This constitutes a reason to exclude these genes from the BestKeeper index 

calculation, as they are not reliable reference candidate gene in this setting (Pfaffl et al. 

2004).  



Chapter 3 96 

 

Determination of the optimal number of reference genes for normalization 

In addition to the stability results, the GeNorm software can determine the optimal 

number of reference genes necessary to calculate a normalization factor (NF). The 

results are shown in figure 4. As shown in figure 4a to 4d, 6 endogenous control genes 

are necessary to obtain the lowest changing V values in all analyzed samples. However, 

it is impractical to use excessive numbers of endogenous control genes for 

normalization, particularly when only a small number of target genes need to be studied 

or for rare samples that are very difficult to acquire (Gu et al. 2011, Vandesompele et al. 

2002). Therefore, the use of the three most stable housekeeping genes for the 

calculation of the NF was considered acceptable for the majority of experiments (Gu et 

al. 2011, Vandesompele et al. 2002). To verify that the use of three housekeeping genes 

simultaneously is adequate for normalization of qRT-PCR, the correlation of NF values 

between the geometric means of the three most stable genes and the optimal number of 

genes was calculated for all sample groups. As shown in figure 5, there is a very good 

correlation between the two NF measures (i.e., the theoretical optimal number and 

proposed number, three) for all 14 samples in all ages including overall tissues 

irrespective of age (r = 0.99 to 0.98, Pearson) (Figure 5a to 5d). This result 

demonstrates that the three most stable housekeeping genes are sufficient for an 

accurate normalization of our qRT-PCR data (Gu et al. 2011, Vandesompele et al. 

2002). In addition, there is a very good agreement between geNorm and NormFinder 

softwares identifying three out of six most stable genes, namely RPL4, PPIA and 

YWHAZ. We therefore in general postulate that the combination of RPL4, PPIA and 

YWHAZ is the most appropriate normalization approach for gene expression studies in 

different tissues from pigs at different ages.  

 

Discussion 

For an exact comparison of mRNA transcription in different samples or tissues it is 

crucial to choose the appropriate reference gene. The optimal reference gene should be 

constantly transcribed in all types of cells at any time in cell cycle and differentiation. 

Moreover the transcription of such a gene should not be regulated by internal or 

external influences, at least not more than the general variation in RNA synthesis 

(Nygard et al. 2007). The reference gene used for normalization of gene expression in 

qRT-PCR studies should also pass through the same steps of analysis as the gene to be 
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quantified. However, such a perfect reference gene does probably not exist. Recent 

research has demonstrated that the expression of housekeeping genes may be altered 

due to differences in tissue types (Gu et al. 2011, Nygard et al. 2007, Pierzchala et al. 

2011), breeds (Piorkowska et al. 2010), ages (Piorkowska et al. 2010, Touchberry et al. 

2006) and  experimental condition or treatment (Beekman et al. 2011, De Boever et al. 

2008, Maccoux et al. 2007, Penning et al. 2007, Vandesompele et al. 2002). Such data 

indicate some housekeeping genes may better serve as a control when making 

comparisons to other genes of interest. Therefore, it is critical to elucidate the changes, 

if any, that may exist in housekeeping genes between younger and older adults. As an 

increasing volume of data continues to be published exploring mRNA expression in 

cases of age-depended disease, there has been a greater interest in evaluating the 

commonly used, widely expressed housekeeping genes for comparisons between ages. 

Without this information, age-dependent comparisons are very difficult to make. 

Therefore, it is necessary to investigate the validity and reliability of measuring the 

expression of various housekeeping genes in porcine tissues at different ages using 

qRT-PCR. To the author’s knowledge, this study is the first to report that aging can 

influence the expression of certain housekeeping genes in pigs.  

Numerous studies have been carried out in order to evaluate reference genes in specific 

tissues in several species. The majority of these studies are directed towards specific 

tissues in pigs (Erkens et al. 2006, Kuijk et al. 2007, Nygard et al. 2007, Oczkowicz et 

al. 2010, Svobodova et al. 2008). Taken together, it is very difficult to find a 'universal' 

reference gene having stable expression in all cell types and tissues, and in particular to 

find reference genes that remain stable between samples taken at different ages under 

different experimental conditions. According to the NCBI-PubMed statistics (Gu et al. 

2011), GAPDH and ACTB are the two mostly used porcine housekeeping genes. But 

they have been shown to vary considerably and are consequently unsuitable as reference 

genes for normalization of gene expression analysis in some cases (Barber et al. 2005, 

Jung et al. 2007, Selvey et al. 2001). Also the low expressed reference gene TBP is 

highly regulated in pigs (Kuijk et al. 2007). The first priority, however, is to identify 

genes with stable expression preferably across cell types since many qRT-PCR studies 

are performed on cDNA isolated from tissues with a mixed cell population. Presently, 

only few major publications describe the stability of housekeeping genes in pig and are 

based on limited samples of specific categories (Erkens et al. 2006, Kuijk et al. 2007, 

Nygard et al. 2007, Oczkowicz et al. 2010, Svobodova et al. 2008). Our comprehensive 
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set of representative tissue samples and selected housekeeping genes provide valuable 

recommendations for the choice of endogenous control genes for the study of gene 

expression patterns in normal tissues. Notably, our results coincided with the finding of 

Gu et al. (2011) reported that YWHAZ is one of the most stably expressed reference 

genes across tissues in healthy pigs. Nygard et al. (2007) reported that RPL4, TBP and 

YWHAZ have the highest stability across tissues collected from healthy pigs which are 

in good agreement with our findings. In this study, geNorm showed that PPIA, YWHAZ 

and RPL4 are the most stable housekeeping genes across tissues in case of newborn 

piglets, adults and in irrespective of ages. Additionally, TBP, PPIA, RPL4 and YWHAZ 

are detected to be the most stably expressed gene across the tissues by NormFinder.  

geNorm finding is contradictory to the findings of  Erkens et al. (2006) who reported 

that TBP is one of the most stable housekeeping gene in porcine backfat and muscle 

(longissimus dorsi) while SDHA is reported as an unstable gene. Similar findings are 

reported by Kuijk et al. (2007) that GAPDH and B2M are the most and least stably 

gene, respectively in  porcine oocytes and perimplantation embryo. On the other hand, 

our findings are in good agreement with Piorkowska et al. (2010) who recently reported 

that RPL27 and ACTB are the most stable genes, and GAPDH and TBP are the least 

stable reference candidate genes in porcine adipose tissues collected from different pig 

breeds. The findings of this study that commonly used housekeeping genes studied are 

expressed differentially across porcine tissues is supported by Svobodova et al (2008) in 

pigs. Moreover, Svobodova et al (2008) found that HPRT1 has the highest stability 

while GAPDH was the unstable across porcine tissues. Pierzchala et al. (2011) recently 

reported that TOP2B, HPRT1 and TBP are the most stable housekeeping genes in 

porcine liver and in three different muscle tissues which is partially supporting as well 

as conflicting to our result. Because we found that HPRT1 is one of the most stable 

genes, whereas TBP is one of the unstable genes in geNorm analysis, but in good 

agreement with NormFinder results. RPL4, HPRT1 and B2M are reported as stably 

expressed and suitable candidate genes in intestinal tissues collected  from healthy pig 

and from pigs with enteritis (Schroyen et al. 2008). Reportedly, GAPDH is the least 

stable gene while RPL27 is most stable housekeeping gene in porcine stomach tissue 

(Oczkowicz et al. 2010). However, different housekeeping genes are identified between 

the previous studies and our study, as the samples varied in their cell, tissue, sex and 

developmental stage specificities, and different catalogues of selected housekeeping 

genes are chosen. 
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According to the BestKeeper analysis software, all the studied reference candidate 

genes, except YWHAZ at 2 months old young pigs tissues, are less suitable. Several 

studies previously reported similar findings for BestKeeper (Maroufi et al. 2010, 

Oczkowicz et al. 2010, Stern-Straeter et al. 2009) and few studies followed the 

BestKeeper analysis method compared to geNorm and NormFinder. It is important to 

note that very similar discrepancies between the different algorithms have been 

observed in previous studies comparing statistical analysis methods (Beekman et al. 

2011, Cappelli et al. 2008, Hosseini et al. 2010, Maroufi et al. 2010, Oczkowicz et al. 

2010, Stern-Straeter et al. 2009). However, we found that the first three most stable 

reference genes in most cases were consistently the same when using GeNorm and 

NormFinder, even if they were not in the exact same ranking order. Similar findings are 

reported by previous studies in horse, human and plants (Beekman et al. 2011, Cappelli 

et al. 2008, Kriegova et al. 2008, Maroufi et al. 2010). Such discrepancy could be 

explained by genes’ co-regulation. Indeed, co-regulated genes may become highly 

ranked independently of their expression stabilities with GeNorm software (Andersen et 

al. 2004). Moreover, NormFinder takes into account variation across subgroups, thus 

avoiding artificial selection of coregulated genes by analyzing the expression stability of 

candidate genes independently from each other (Vandesompele et al. 2002). However, 

no studies dealing with porcine reference genes stability used different analysis methods 

except geNorm (Erkens et al. 2006, Gu et al. 2011, Nygard et al. 2007, Oczkowicz et al. 

2010, Piorkowska et al. 2010). 

As described above, GeNorm also provides a measure for the best number of reference 

genes that should be used for optimal normalization. In agreement with several previous 

studies, we postulate that the use of more than one reference gene allows for a more 

accurate normalization than the use of only one reference gene (Andersen et al. 2004, 

Beekman et al. 2011, Gu et al. 2011, Huggett et al. 2005, Vandesompele et al. 2002). 

Based on a cut-off point for the V value, as described by Vandesompele et al. (2002), a 

combination of the six most stable reference genes was calculated as being optimal for 

gene expression studies in different porcine  tissues over ages (figure 4). However, as 

we described above and other studies (Gu et al. 2011, Vandesompele et al. 2002) 

recommended that the combination of the most three stable genes are appropriate for 

accurate normalization.  
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Conclusion 

This investigation found evidence that there can be variation in the expression of 

commonly used housekeeping genes with populations of different ages. Due to the new 

influx of data suggesting alterations in mRNA expression according to ages, we feel 

that beside therapy uses or experimental condition, there needs to be special 

consideration given to the selection of housekeeping genes based upon the age of 

populations used. This shows again that the choice of reference genes cannot be 

transposed from on study to the other without validation for the specifics of each 

experimental protocol. In general, we recommend using the geometric mean of RPL4, 

PPIA and YWHAZ to guarantee suitable normalization in across the porcine tissues 

obtained from pigs of different ages.  
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Table 1:  Selected candidate reference genes, primers, and PCR reactions 

efficiencies. 

Average Ct of 

cDNA 

Gene  

name 

GeneBank  

accession 

number 

Primer sequence  

(forward/reverse) 

Ampl-

icon 

length 

(bp) 

Amplifi- 

cation 

effici- 

ency (%) 

R
2
 

1 Day 2  

months 

5  

months 

B2M NM_213978.1 ACTTTTCACACCGCTCCAGT 

CGGATGGAACCCAGATACAT 

180 86.83 0.999 20.23 19.24 20.63 

BLM NM_001123084.1 TCCTCACCTTCTGCATTTCC 

GTGGTGGCTGAGAATCCTGT 

 

152 95.94 0.995 25.29 24.12 24.89 

GAPDH AF017079.1 ACCCAGAAGACTGTGGATGG 

ACGCCTGCTTCACCACCTTC 

 

247 95.95 0.991 26.82 26.22 26.29 

HPRT1 NM_001032376.2 AACCTTGCTTTCCTTGGTCA 

TCAAGGGCATAGCCTACCAC 

 

150 81.88 0.997 22.27 21.28 22.29 

PPIA NM_214353.1 CACAAACGGTTCCCAGTTTT 

TGTCCACAGTCAGCAATGGT 

 

171 82.96 0.995 16.82 16.31 17.61 

RPL4 DQ845176.1 AGGAGGCTGTTCTGCTTCTG 

TCCAGGGATGTTTCTGAAGG 

 

185 91.07 0.995 16.65 16.80 17.32 

SDHA DQ178128.1 AGAGCCTCAAGTTCGGGAAG 

CAGGAGATCCAAGGCAAAAT 

 

149 86.41 0.989 20.55 20.64 22.34 

TBP DQ178129.1 ACGTTCGGTTTAGGTTGCAG 

GCAGCACAGTACGAGCAACT 

 

118 99.59 0.995 24.44 23.92 24.31 

YWHAZ DQ178130.1 ATTGGGTCTGGCCCTTAACT 

GCGTGCTGTCTTTGTATGACTC 

146 93.83 0.997 20.35 19.64 19.92 

 

*R
2
, correlation coefficient of the slope of the standard curve. 
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Table 2: Expression stability of nine candidate reference gens evaluated by 

BestKeeper software. 

  B2M BLM GAPDH HPRT1 PPIA RPL4 SDHA TBP YWHAZ BK 

Irrespective of age           

n* 42 42 42 42 42 42 42 42 42 42 

SD [± Ct] 1.91 1.36 1.56 2.12 1.69 1.55 1.90 1.19 1.56 1.49 

CV [% Ct] 9.54 5.50 5.90 9.67 9.99 9.16 8.95 4.92 7.81 7.07 

1day            

n**  42 42 42 42 42 42 42 42 42 42 

SD [± Ct] 1.86 1.70 1.42 2.11 1.70 1.69 1.61 1.30 1.99 1.47 

CV [% Ct] 9.17 6.70 5.28 9.45 10.11 10.17 7.82 5.30 9.76 6.95 

2momths           

n**  42 42 42 42 42 42 42 42 42 42 

SD [± Ct] 1.37 1.10 1.19 1.73 1.35 1.05 1.49 1.04 0.96 1.11 

CV [% Ct] 7.13 4.55 4.54 8.02 8.30 6.24 7.23 4.36 4.89 5.38 

 5 months           

n**  42 42 42 42 42 42 42 42 42 42 

SD [± Ct] 2.49 1.47 2.01 2.86 2.04 2.00 2.21 1.31 1.92 1.92 

CV [% Ct] 12.07 5.92 7.65 13.12 11.56 11.57 9.89 5.39 9.64 8.97 

 

Descriptive statistics of nine candidate reference genes based on their cycle threshold 

(Ct) values. In the last column the BestKeeper (BK) index is computed together with the 

same descriptive parameters for nine genes. Abbreviations: CV [%Ct]: the coefficient of 

variance expressed as a percentage on the Ct level; SD [± Ct]: the standard deviation of 

the Ct; Results from overall tissues irrespective of age and  in different ages (1 day, 2 

months and 5 months) are shown. * indicated the number of samples (since BestKeeper 

tool has limitation for 100 samples, the average Ct for three individuals was used for 

analysis); ** indicated the average for triplicate run was used for analysis.    
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Figure 1: Confirmation of amplicon size and primer specificity of studied genes. (b) 

Agarose gel electrophoresis showing specific reverse transcription PCR products of the 

expected size for each gene, M represents DNA size marker. (a) Melting curves 

generated for all genes.  
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Figure 2: Average cycle threshold (Ct) values of candidate reference genes tested 

in porcine tissues at different ages. (Continue) 
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Figure 2: Average cycle threshold (Ct) values of candidate reference genes tested 

in porcine tissues at different ages. The values are the average qRT-PCR cycle 

threshold numbers (Ct values). The bars indicate standard deviation.  
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Figure 3: Ranking of nine candidate reference genes using GeNorm and 

NormFinder softwares. (a-d) GeNorm ranks the candidate reference genes based on 

their stability parameter M. The lower the M value, the higher the expression stability. 

(e-h) NormFinder ranks the genes based on a calculated stability value. The lower the 

stability value, the higher the expression stability. 
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Figure 4: Determination of the optimal number of reference genes for normalization. The GeNorm software calculates the normalization 

factor from an increasing number of genes (starting with at least two) for which the variable V defines the pairwise variation between two 

sequential normalization factors. The lower the pairwise variation, the better is the combination of genes for reference. V5/6 for example, shows 

the variation between the normalization factors of five genes in relation to six genes and shows that six genes is the combination providing the 

lowest pairwise variation. 
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Figure 5: Correlation between the NF of most three stable and optimal number  endogenous control. Pearson’s correlations between the 

NFs of three endogenous control genes (NF3) and optimal number (six) of endogenous control genes  (NFopt) for (a) all samples irrespective of 

age, (b) all tissues collected from 1 day old piglets, (c) all tissues collected from 2 months old young pigs, and (d) all tissues collected from 5 

months old adult pigs. 
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Table 3: (Table S1) Relative expression levels (average ± S. D. of Ct) of candidate genes at different tissues according to age. The average 

and S.D. of the Ct values for different candidate reference genes studied in different tissues collected from 1 day old piglets, 2 months old young 

and 5 months old adult pigs.   
Age HKG CLN (SD)  Duodenum 

(SD) 
Heart  (SD) 
 

Ileum (SD) Jejunum  
(SD) 

Kidney (SD) Liver (SD) Lung (SD) MLN  (SD) PBMC (SD) Skin  (SD) Spleen (SD) Stomach 
(SD) 

Thymus  
(SD) 

B2M 18.91(0.08) 17.96(0.04) 20.75(0.08) 18.42(0.11) 18.85(0.05) 19.48(0.15) 20.92(0.25) 21.01(0.80) 19.05(0.06) 18.62(0.32) 30.92(0.34) 18.61(0.09) 20.54(0.03) 19.18(0.09) 

BLM 23.48(0.06) 24.18(0.09) 24.81(0.10) 24.46(0.06) 24.94(0.07) 23.96(0.02) 26.99(0.07) 24.80(0.02) 24.24(0.07) 35.46(0.96) 24.92(0.07) 23.93(0.04) 24.18(0.03) 23.75(0.07) 

GAPDH 25.74(0.24) 26.16(0.03) 22.99(0.25) 26.74(0.12) 26.90(0.06) 25.85(0.17) 26.68(0.17) 25.99(0.17) 27.13(0.50) 36.09(1.50) 26.77(0.24) 25.67(0.14) 26.86(0.06) 25.89(0.06) 

HPRT1 20.91(0.08) 20.56(0.08) 22.00(0.30) 21.68(0.01) 21.44(0.14) 20.58(0.43) 19.37(0.22) 21.70(0.05) 20.62(0.27) 36.46(0.00) 22.81(0.13) 20.24(0.08) 21.66(0.29) 21.75(0.08) 

PPIA 15.40(0.62) 15.65(0.51) 16.26(0.02) 16.18(0.49) 16.80(0.12) 15.24(0.63) 16.77(0.02) 15.77(0.62) 15.93(0.03) 28.69(0.36) 16.35(0.09) 15.08(0.32) 15.94(0.42) 15.40(0.23) 

RPL4 15.87(0.45) 14.80(0.53) 15.86(0.55) 15.86(0.46) 16.16(0.10) 15.44(0.86) 16.59(0.15) 16.06(0.29) 15.97(0.17) 28.47(0.21) 15.73(0.18) 16.01(0.07) 15.28(0.13) 14.97(1.02) 

SDHA 20.39(0.12) 19.15(0.16) 17.19(0.52) 19.82(0.41) 19.82(0.33) 18.51(0.26) 19.68(0.02) 19.29(0.10) 21.43(0.24) 29.39(0.13) 21.93(0.31) 20.49(0.08) 19.90(0.27) 20.68(0.08) 

TBP 23.43(0.13) 23.27(0.06) 24.13(0.04) 23.85(0.05) 24.13(0.01) 22.96(0.05) 24.63(0.12) 23.96(0.02) 23.60(0.05) 33.32(1.04) 23.95(0.04) 23.61(0.07) 23.59(0.04) 23.75(0.03) 

1 day 

YWHAZ 
 

18.82(0.08) 18.88(0.04) 19.93(0.21) 19.09(0.10) 19.36(0.05) 18.85(0.07) 21.87(0.13) 18.97(0.01) 19.36(0.09) 32.74(0.69) 19.87(0.19) 19.25(0.06) 18.84(0.09) 19.12(0.17) 

B2M 18.44(0.08) 18.38(0.05) 19.85(0.06) 17.70(0.10) 17.88(0.33) 19.20(0.04) 18.71(0.04) 17.92(0.10) 18.36(0.13) 23.80(0.14) 23.19(0.02) 17.17(0.03) 19.70(0.05) 19.00(0.12) 

BLM 22.65(0.03) 23.89(0.08) 24.64(0.27) 22.30(0.07) 23.67(0.08) 24.50(0.09) 23.67(0.05) 24.58(0.06) 22.57(0.03) 27.05(0.08) 26.78(0.06) 22.94(0.02) 24.86(0.03) 23.60(0.07) 

GAPDH 25.75(0.11) 26.03(0.16) 23.37(0.05) 25.50(0.09) 25.79(0.15) 25.31(0.20) 26.47(0.22) 27.42(0.45) 26.08(0.22) 29.05(0.38) 30.02(0.23) 24.24(0.05) 26.44(0.16) 25.57(0.08) 

HPRT1 19.19(0.34) 21.37(0.05) 21.91(0.52) 20.66(0.21) 21.61(0.06) 21.07(0.17) 19.09(0.50) 20.65(1.45) 20.13(0.02) 28.10(0.37) 25.31(0.08) 19.23(0.30) 22.77(0.12) 21.04(0.09) 

PPIA 14.72(0.25) 15.52(0.17) 17.18(0.04) 15.03(0.12) 15.25(0.56) 15.21(0.11) 16.01(0.21) 15.58(0.58) 14.82(0.24) 21.77(0.06) 19.04(0.11) 15.65(0.01) 16.70(0.18) 15.78(0.13) 

RPL4 15.77(0.13) 15.69(0.09) 17.14(0.06) 15.69(0.15) 15.89(0.33) 16.50(0.49) 16.43(0.14) 17.27(0.46) 16.45(0.61) 21.09(0.06) 18.70(0.22) 15.48(0.14) 17.00(0.15) 16.05(0.09) 

SDHA 19.97(0.33) 19.92(0.23) 18.95(0.13) 19.56(0.39) 18.93(0.52) 18.25(0.03) 20.11(0.31) 21.78(0.09) 20.84(0.42) 25.85(0.08) 23.81(0.17) 21.13(0.14) 20.47(0.56) 19.35(0.13) 

TBP 22.87(0.06) 23.36(0.22) 24.39(0.23) 22.36(0.20) 23.41(0.09) 22.98(0.05) 23.89(0.05) 23.58(0.13) 23.07(0.07) 28.45(0.18) 25.95(0.00) 22.96(0.08) 24.16(0.09) 23.37(0.17) 

2 
months 

YWHAZ 
 

18.89(0.12) 18.71(0.06) 20.69(0.03) 18.78(0.17) 18.75(0.02) 19.30(0.10) 20.23(0.21) 19.64(0.19) 19.50(1.15) 22.66(0.04) 21.15(0.13) 17.93(0.12) 19.71(0.15) 19.00(0.04) 

B2M 19.78(0.01) 19.39(0.06) 20.02(0.04) 19.59(0.12) 18.86(0.03) 19.67(0.03) 19.61(0.23) 17.89(0.05) 18.56(0.03) 35.47(0.60) 22.35(0.24) 17.83(0.13) 21.49(0.15) 18.27(1.13) 

BLM 23.90(0.09) 23.62(0.05) 24.59(0.04) 24.31(0.10) 23.25(0.07) 25.00(0.08) 25.85(0.11) 24.33(0.09) 23.58(0.29) 33.48(0.76) 25.55(0.11) 23.90(0.02) 24.90(0.07) 22.28(0.17) 

GAPDH 26.50(0.12) 26.16(0.04) 21.67(0.05) 25.49(0.04) 25.51(0.05) 23.86(0.15) 25.59(0.15) 26.08(0.09) 24.97(0.23) 37.23(2.62) 27.04(0.29) 25.10(0.26) 28.45(0.09) 24.36(0.07) 

HPRT1 21.50(0.30) 21.73(0.29) 22.31(0.44) 17.70(1.66) 22.05(0.10) 20.78(0.24) 13.62(3.06) 20.67(0.45) 21.62(0.06) 37.05(0.01) 23.48(0.60) 18.57(0.30) 22.78(0.16) 21.24(0.24) 

PPIA 16.15(0.68) 16.66(0.13) 18.14(0.18) 17.37(0.17) 16.73(0.28) 16.08(0.44) 16.38(0.17) 15.95(0.42) 16.26(0.07) 31.33(0.34) 17.22(0.13) 15.50(0.25) 16.93(0.57) 15.84(0.99) 

RPL4 16.11(0.23) 16.11(0.33) 16.80(0.14) 16.83(0.14) 16.36(0.26) 16.94(0.76) 16.91(0.44) 15.85(0.12) 15.98(0.14) 31.25(0.68) 16.97(0.12) 15.37(0.70) 16.29(0.64) 14.64(0.08) 

SDHA 21.85(0.32) 21.28(0.09) 18.56(0.56) 21.39(0.52) 21.21(0.34) 18.48(0.04) 20.09(0.14) 22.37(0.25) 22.28(0.13) 35.18(0.62) 24.72(0.28) 21.62(0.55) 22.16(0.46) 21.52(0.17) 

TBP 23.44(0.09) 23.61(0.14) 24.14(0.06) 24.19(0.11) 23.66(0.16) 22.90(0.06) 24.28(0.05) 22.94(0.04) 23.48(0.08) 33.13(0.54) 24.67(0.09) 23.34(0.10) 23.99(0.06) 22.63(0.12) 

5 
months 

YWHAZ 18.51(0.11) 18.65(0.16) 19.97(0.20) 19.00(0.12) 18.58(0.28) 19.05(0.46) 21.21(0.08) 18.24(0.45) 18.59(0.21) 31.97(0.28) 19.80(0.10) 18.58(0.14) 19.32(0.29) 17.40(0.16) 
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Table 4: (Table S2) Relative expression of candidate genes and effect of age and organ 

on expression level (calculated by PROC GLM). Description of dataset: Overall 

expression data of reference candidate genes. Summary of the Proc GLM (ver.9.2; SAS, 

SAS Institute Inc., Cary, NC, USA) analysis detecting effect of age, organs and age-organ 

interaction on the expression of reference candidate genes.   

 

 
Gene Mean±SD Tissue Age Tissue*Age R

2
 Model 

B2M 20.03±3.32 <0.001 <0.001 <0.001 0.996 <0.001 

BLM 24.77±2.44 <0.001 <0.001 <0.001 0.995 <0.001 

GAPDH 26.44±2.75 <0.001 <0.001 <0.001 0.977 <0.001 

HPRT1 22.05±3.82 <0.001 <0.001 <0.001 0.981 <0.001 

PPIA 16.91±3.21 <0.001 <0.001 <0.001 0.991 <0.001 

RPL4 16.92±3.12 <0.001 <0.001 <0.001 0.989 <0.001 

SDHA 21.17±3.1 <0.001 <0.001 <0.001 0.993 <0.001 

TBP 24.22±2.25 <0.001 <0.001 <0.001 0.994 <0.001 

YWHAZ 19.97±2.96 <0.001 <0.001 <0.001 0.995 <0.001 
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Abstract 

Toll-like receptors (TLRs) function as the pathogen recognition receptors in mammals 

and play essential roles in the recognition of microbial components. In addition to the 

intestinal epithelium, the mechanical and chemical barrier, gut-associated lymphoid 

tissues (GALT) include lymphoid cells in lamina propria, Peyer’s patches in intestinal 

mucosa and mesenteric lymph node which are important to defend the host from 

commensal pathogens. TLR expressions may alter with age and may not be restricted to 

cell types. Only individual expression studies of some TLRs have been performed 

especially in GALT in pigs. Therefore, the aim of this research was to study the 

expression pattern of the TLR family (TLR1-10) genes in GALT in pigs of varying 

ages. A total of nine clinically healthy pigs of three age group were selected (1 day, 2 

months and 5 months old) for this experiment. Each age group consisted of three 

animals. Tissues from intestinal mucosa in stomach, duodenum, jejunum and ileum and 

mesenteric lymph node (MLN) were collected for both total RNA and protein isolation 

and for protein localization. GenomeLab Genetic Analysis System (GeXP) was used for 

multiplex mRNA expression measurement of TLRs (1-10), and western blot and 

immunofluorescence was performed for protein expression and localization of selected 

TLRs (TLR2, 3 and 9). mRNA expression showed that TLR1 and TLR2 were highly 

expressed in MLN. TLR3 showed the highest mRNA abundance among all TLRs in this 

study, it was expressed especially highly in the intestine. In the case of MLN, TLR1 and 

TLR6 mRNA expressions were higher (P < 0.05) in 5 months old pigs than that of 1 day 

old pigs. The western blot results of TLR2, 3 and 9 appeared to be consistent with the 

mRNA expression results. The protein localization of TLR2, 3 and 9 showed that TLR 

expressing cells were abundant in the lamina propria, Peyer’s patches in intestine and 

around and within the lymphoid follicles in the MLN. Variance analysis showed that 

both age and organs have an effect on all TLRs expressions (P < 0.001). This 

expressions study sheds the first light on the expression patterns of all TLR genes in 

GALT at different ages of pigs.  

 

Introduction 

The induction of the immunological defense system begins with the recognition of 

pathogens and is mediated by a set of germline-encoded receptors that are referred to as 

pattern-recognition receptors (PRRs). These receptors recognize conserved molecular 
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patterns (pathogen-associated molecular patterns; PAMPs), which are shared by a large 

group of microorganisms (Akira and Takeda 2004). PRRs are described as the key 

molecules to unlock the door to animal diseases (Werling and Coffey 2007). Toll-like 

receptors (TLRs) function as the PRRs in mammals and play an essential role in the 

recognition of PAMPs (Akira and Takeda 2004). TLRs are considered as critical 

proteins linking innate and acquired immunity (Werling and Coffey 2007). Eleven 

TLRs have been identified in humans and 13 in mice, whereas 10 members have been 

identified in other mammals. Studies in mice and humans show that most tissues and 

cells express at least a subset of TLRs (Applequist et al. 2002, Hornung et al. 2002, 

Ignacio et al. 2005). Porcine TLRs are considered as the front line of pathogen 

monitoring and their PAMPs are used as vaccine adjuvants (Uenishi and Shinkai 2009). 

The tissue, cellular and subcellular localization and distribution of TLRs influence the 

type of immune response elicited. Since porcine intestinal tissues are heavily populated 

with dendritic cells and T cells, for the development of mucosal vaccines pigs are 

considered as appropriate model (Stokes and Bailey 2000). Thus, the first step in 

understanding the role of TLRs in health and disease is to determine which TLRs are 

expressed in tissues and by specific cell types. However, altered immune responsiveness 

is reported to depend on the variation of TLRs expression level (Jaekal et al. 2007). In 

order to gain an understanding of how responsive tissues and cells are likely to be at 

detecting pathogens, TLR mRNA expression patterns have been determined in different 

species. Such expression studies of the complete TLR family (TLR1-10) genes have 

been done in human (Hornung et al. 2002), bovine (Menzies and Ingham 2006), ovine 

(Chang et al. 2009; Menzies and Ingham 2006, Nalubamba et al. 2007, Taylor et al. 

2008), chicken (Iqbal et al. 2005) and fish (Meijer et al. 2004). Individual expression 

studies of some TLRs have been performed in pig such as TLR1, TLR6, and TLR10 

(Shinkai et al. 2006); TLR2 (Alvarez et al. 2008, Tohno et al. 2005) ; TLR3 and TLR7 

(Sang et al. 2008); TLR9  (Shimosato et al. 2005) and TLR4 (Thomas et al. 2006). A 

complete study, considering all members of the Toll-like receptor family (TLR1-10), 

has not yet been done in the porcine gut-associated lymphoid tissues (GALT). GALT 

consists of scattered effector lymphocytes in the lamina propria of the gastrointestinal 

tract (GIT) and organized inductive sites, namely the Peyer patches (Tyrer et al. 2006) 

and mesenteric lymph nodes (MLN).  
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GALT provides specific host defense and encompasses the largest collection of immune 

cells in the body (Mowat 2003). GALT protects hosts from various commensal and 

pathogenic microorganisms entering through the oral route and may be equally 

important to achieve a homeostatic balance between immune tolerance and immune 

responsiveness (Artis 2008). Therefore, the GALT, especially the mucosal immunity of 

the gastrointestinal tract, has been the subject of great interest for the past several years 

in humans and mice (Brandtzaeg and Pabst 2004, Par 2000) as well as in pigs (Burkey 

et al. 2009b, Stokes 2001, Stokes et al. 1994). 

The epithelium of the gut recognizes the immunobiotic foods and / or pathogenic 

organism through a crosstalk via TLRs (Kitazawa et al. 2008, Tohno et al. 2006, 

Uenishi and Shinkai 2009). The GALT including intestinal epithelia (IEC), Peyer’s 

patches (Tyrer et al. 2006) and mesenteric lymph nodes (MLN) works together 

synergistically to fight against pathogens that shapes the intestinal ecosystem (Burkey et 

al. 2009b). Central to the protective nature of the intestinal barrier is its need to sense 

and respond to proinflammatory bacterial and viral products and to recognize them. 

Although TLRs are thought to have predominantly beneficial effects in pathogen 

recognition and bacterial clearance by leukocytes, emerging evidences suggest that the 

innate immune system, comprised of Toll-like receptors and their associated molecules, 

play pivotal roles in the regulation of intestinal inflammation in response to invading 

pathogens (Burkey et al. 2009a, Burkey et al. 2009b, Gribar et al. 2008, Tohno et al. 

2006, Uenishi and Shinkai 2009). Importantly, the immune responsiveness of GALT 

varies depending on the development and maturation of gut with age (Barman et al. 

1997, Blecha 2001, Tohno et al. 2006). Notably, the immune responsiveness to antigens 

or  vaccine varies according to the age of the individuals (Panda et al. 2010, van Duin 

and Shaw 2007) which are thought to be associated with TLRs expression (Dunston and 

Griffiths 2010, Renshaw et al. 2002, van Duin and Shaw 2007). Therefore, the aim of 

this research was to study the expression pattern of TLR family genes in GALT in 

newborn, young and adult pigs. 
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Materials and methods 

 

Animals and tissue collection  

A total of nine clinically healthy male pigs of three age groups (newborn: one day old, 

young: 2 months old and adult: 5 months old) were selected for this experiment. Each 

age group consisted of three animals of the Pietrain breed. All pigs were kept at the 

Frankenforst experimental research farm at the University of Bonn (Germany) 

according to the rules of German performance stations (Zentralverband der Deutschen 

Schweineproduktion (ZDS): Richtlinie für die Stationsprüfung auf Mastleistung, 

Schlachtkörperwert und Fleischbeschaffenheit beim Schwein, 10.12.2003). The animals 

were fed the same diet ad libitum during the whole experimental period. After slaughter, 

intestinal mucosa from the duodenum, jejunum and ileum, stomach and tissues from 

mesenteric lymph node (MLN) were collected for both mRNA and protein isolation and 

protein localization. For mRNA and protein isolation, samples were directly put into 

liquid nitrogen after washing in PBS. For immunofluorescence studies, samples were 

collected in RNAlater (Invitrogen) for transportation to the laboratory and were put into 

Tissue-Tek O.C.T. using cryomold (Sakura). All samples were kept at -80 
o
C until 

required. 

 

RNA isolation 

Total RNA was isolated from individual samples by using Tri-Reagent (Sigma-Aldrich) 

according to the standard protocol. All samples were kept at -80 
o
C until cleanup. In 

order to remove possible contamination of genomic DNA, the extracted RNA was 

treated with 5 µl RQ1 DNase buffer, 5 units DNase and 40 units of RNase inhibitor in a 

40 µl reaction volume. The mixture was incubated at 37 
o
C for 1h followed by 

purification with the RNeasy Mini Kit (Qiagen). Concentration of clean-up RNA was 

determined spectrophotometrically by using the NanoDrop (ND-8000) instrument and 

the purity of RNA was estimated by the ratio A260/A280 with respect to contaminants 

that absorb in the UV. Additional examination of integrity was done by denaturing 

agarose gel electrophoresis and ethidium bromide staining. Finally, the purified RNA 

was stored at -80 
o
C for further analysis. 
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TLRs mRNA expression analysis  

Total RNA, measured by using the NanoDrop ND-8000 spectrophotometer (Thermo 

Scientific) was diluted to 50 ng/µl. In this study, the GeXP expression profiling method 

was used, as explained in Rai et al. (2009). The mRNA expression of ten TLRs and 

three housekeeping genes (ACTB, GAPDH and TBP) were detected in a GeXP 

(GenomeLab Expression Analysis) multiplex system described earlier by our research 

group (Gandolfi et al. 2011). Briefly, an amount of 250 ng RNA was used as a template 

for reverse transcriptase (RT) reaction, performed using GenomeLab GeXP Start Kit 

(Beckman Coulter, Fullerton, CA, USA), in a total volume of 20 µl. In the RT reaction, 

a pool of all reverse primers (Table 1) at a final concentration of 50 nM was used. 

Primers were designed using proprietary software provided by Beckman-Coulter. Each 

of these primers is chimeric, having a 3′ gene-specific end and a 5′ end containing a 

quasi-T7 universal sequence, which serves as a template in subsequent amplification 

steps. The RT reaction was performed under the following conditions: 1 min at 48 °C, 

60 min at 42 °C, 5 min at 95 °C, hold at 4 °C, in a thermal cycler (Bio-Rad). After RT 

reaction, 9.3 µl of the products were used as template for a PCR with 20 nM of each 

forward primer and 1 U Beckman Coulter Thermo-StartR DNA Polymerase (Beckman 

Coulter). Each of the forward primers contains an SP6 universal sequence at the 5′ end 

and a gene-specific sequence at the 3′ end (Table 1). The PCR reaction was performed 

in a thermal cycler under the conditions: 10 min at 95 °C, followed by 35 cycles of 30 s 

at 94 °C, 30 s at 55 °C and 1 min at 70 °C; with a hold at 4 °C. PCR products were 

electrophoretically separated by the fragment analysis method (Frag-3) on the 

GenomeLab GeXP (Beckman Coulter), by diluting 1 µl PCR reaction with 28.5 µl SLS 

buffer and 0.50 µl size standard-400. Kanamycin RNA internal positive control was 

included and produced a peak at 326 bp when samples were separated via 

electrophoresis. All experiments include “no template” (i.e. without RNA) and “no 

enzyme” (i.e. no reverse transcriptase) negative controls to confirm the absence of 

peaks at the expected target sizes. The “no template” sample produces a single peak at 

326 bp, corresponding to the externally spiked-in kanamycin RNA. Electrophoretic 

separation was done by the GenomeLab™ GeXP Genetic Analysis System (Beckman 

Coulter, Fullerton, USA). The GenomeLab GeXP software matches each fragment peak 

with the appropriate gene, and reports peak height and area under curve (AUC) for all 

peaks in the electropherogram. The data were exported from the expression analysis 
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module of the GenomeLab GeXP software as expression data for subsequent analyses. 

The expression of TLR1-10 genes was normalized by dividing for the geometric mean 

of the expression of three house keeping genes (ACTB, GAPDH and TBP). These 

normalized expression values were used for further statistical analysis using SAS ver9.2 

(SAS Institute Inc., Cary, NC, USA). The average expression value of TLR1-10 genes 

in three animals in each group was considered for expression study.  

 

Western blot analysis of TLR2, TLR3 and TLR9 

Whole cell protein was extracted from tissues following standard protocol using 

Nonidet-P40 buffer along with protease inhibitor 1 mM (final concentration) PMSF 

(phenylmethylsulfonyl fluride). The protein from each sample of three animals in each 

age group was pooled together for western blot. The protein was separated by 4-18% 

gradient SDS-PAGE. Subsequently the proteins were transferred onto a nitrocellulose 

membrane (Amersham Biosciences). After blocking in blocking buffer (20 mM Tris pH 

7.5, 150 mM NaCl, 0.05% Tween-20 and 1% Polyvinylpyrolidone) at room temperature 

for 1 h, the membrane was incubated with the primary antibody anti-TLR2 and anti-

TLR9 antibody purified from rabbit polyclonal antibody (THU-A-TLR2 and THU-A-

TLR9, CosmoBio Co Ltd.) in the blocking medium (diluted 1:700) at 4 
o
C overnight. 

Anti-TLR3 antibody (SC-8691; Santa Cruz) purified from goat (diluted 1:500) was used 

as primary antibody for TLR3.  Non-specific binding of antibody was washed off with 

six changes of 0.1% PBST (10 min per time). The membrane was incubated for 1 h at 

room temperature with the secondary antibody, followed by washing with six changes 

of 0.1% PBST (10 min per time). As a secondary antibody, the horseradish peroxidase 

conjugated donkey anti-goat IgG antibody (SC2020; Santa Cruz) was used (diluted 

1:50000) for TLR3 and the horseradish peroxidase conjugated goat anti-rabbit IgG 

antibody (SC2004; Santa Cruz) was used (diluted 1:50000) for TLR2 and TLR9. The 

chemiluminesce was detected by using the SuperSignal
®

 West Pico chemiluminescent 

substrate (Thermo Scientific) and was visualized by using Kodak BioMax XAR film 

(Kodak). GAPDH (SC20357; Santa Cruz) was used as a loading control and for 

normalization. The membrane was stripped by washing 3 times (5 min per time) in 20 

ml of glycin (0.1 mol/L; pH 2.5) and then washed with 20 ml (1x) PBS, 3 times (5 min 

per time) and re-probed. 
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Immunoflurescence localization of TLR2, TLR3 and TLR9 

Tissues were selected for the localization of TLR2, 3 and 9 protein on the basis of the 

mRNA expression of respective TLRs. The tissues having mRNA expression value 

close to the mean value for corresponding TLR mRNA among all nine individuals was 

selected for protein localization. For each of the TLR2, 3 and 9, immunofluorescence 

staining was performed on 8 µm cryostat sections of tissues. All sections were kept in -

80 ºC for further analysis. To block unspecific staining, sections were incubated for 60 

min at room temperature with 3% bovine serum albumin in PBS (50 nM sodium 

phosphate, pH 7.4; 0.9% NaCl). Sections were incubated overnight at 4 ºC with the 

same primary antibodies used in western blot (section 3.4) diluted at 1:50 in blocking 

solution followed by six (10 min per time) washings with PBS. Sections for TLR3 were 

incubated with the TLR3 goat polyclonal primary antibody (SC8691; Santa Cruz) 

(dilution 1:50 in blocking solution), whereas the sections for TLR2 and TLR9 were 

incubated with the rabbit anti-porcine TLR2 and TLR9 polyclonal primary antibody 

(THU-A-TLR2 and THU-A-TLR9, CosmoBio Co Ltd.) (dilution 1:50 in blocking 

solution), overnight at 4 ºC and subsequently the sections were washed six times (10 

min per time) with PBS. The donkey anti-goat IgG-B conjugated with rhodamine 

(TRITC) reactive water-soluble fluorescent dye (SC2094; Santa Cruz) (dilution 1:200) 

was used for TLR3 and the biotinylated donkey anti-rabbit IgG-B conjugated with 

fluorescein isothiocyanate (FITC) reactive water-soluble fluorescent dye (SC2090; 

Santa Cruz) (dilution 1:200) was used for TLR2 and TLR9 as a secondary antibody, 

respectively. Finally, the samples were counterstained with vectashield mounting 

medium (Vector Laboratories) containing 40,6-diamidino-2-phenyl indole (DAPI) and 

covered with a cover glass slip. The staining was observed by confocal laser scanning 

microscope (Carl Zeiss). In the case of negative controls, PBS was used instead of the 

primary antibody.  

 

Statistical analysis 

The PROC GLM (ver.9.2; SAS, SAS Institute Inc., Cary, NC, USA) analysis was 

performed to detect the effect of age and organs on the expression of TLRs genes. 

Differences in gene expression levels between groups were determined using t-test in 

SAS. p<0.05 was considered statistically significant.  
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Results 

 

Expression patterns of TLRs mRNA  

All TLRs did not show the same pattern of expressions in gut associated lymphoid 

tissues (GALT) and mesenteric lymph node (MLN) tissues in this study (Fig. 1). Most 

of the TLRs increased with age most tissues, except TLR5, which showed highest 

expression at young ages (2 months) in all tissues (Fig. 2). All TLRs except TLR5 

expression increased with age in stomach tissue (Fig. 2a). TLR expressions were lowest 

in one day old piglets, except TLR2 in ileum tissue. In the case of the ileum, TLR2 

expression was found to be reduced when age increased (Fig. 2d). In the case of the 

duodenum, TLR2, 3, 4, 5 and 9 were found to be expressed highest at young ages (2 

months), whereas all other TLRs were expressed highest in adult pigs (5 months) (Fig. 

2b). In the case of the jejunum, all TLRs were highest in abundance in adult pigs and 

were lowest in abundance in newborn piglets, except TLR3 and TLR5. TLR3 was found 

to be expressed higher in newborn piglets than that of adult pigs in jejunum (Fig. 2c). 

The ileum of the adult pigs showed highest expression of TLR3, 4, 6 and 8, whereas 

TLR1, 5, 7, 9 and 10 were expressed highest in young animals (Fig. 2d). In the case of 

the mesenteric lymph node (MLN), all TLRs were expressed highest in adult pigs, 

except TLR5 and TLR10, which were expressed higher in young pigs (Fig. 2e). 

Importantly, the TLR1 and TLR6 showed higher expression (P < 0.05) in adult pigs than 

in newborn piglets.    

 

Expression patterns of TLR2, TLR3 and TLR9 proteins  

TLR2 protein expression was most remarkable in the tissues collected from adult pigs 

(Fig 3a). However, the TLR2 protein was also detected in different tissues in newborn 

and young pigs (Fig. 3a), especially in the stomach and ileum in newborn and in all 

GALT in young pigs (Fig. 3a). TLR3 protein expression was detectable in newborns, 

particularly in the stomach, jejunum and ileum (Fig. 3b). Higher expression of TLR3 

protein was found in most tissues collected from young and adult pigs (Fig 3b). TLR9 

protein was expressed in the stomach collected from all ages of pigs, whereas in case of 

duodenal tissue, the protein expression was higher in newborn compared to adult pigs 

(Fig 2c). On the other hand, the TLR9 protein expression was higher in the jejunum and 

ileum tissue collected from young and adult pigs compared to newborn piglets (Fig.3c). 
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Notably, GAPDH protein was not expressed similarly in all tissues at different ages 

(Fig. 3). 

 

Localization of TLR2, TLR3 and TLR9 proteins  

In case the of stomach tissue, TLR2, 3 and 9 were localized in the lining cells of the 

gastric glands and glandular mucosa (Fig 4, 5 and 6). These proteins were expressed in 

the epithelium in the stomach (Fig. 4b, 5b and 6b). With duodenal tissue, all three 

proteins were expressed in intestinal epithelium cells (IEC) as well as in the lymphoid 

cells in lamina propria, in the lining of villi, ducts and crypts (Fig. 4f, 5f and 6f). 

Besides mucosa, TLR2 and TLR3 were found to be expressed in the submucosal 

regions in the duodenum. In the case of the jejunum and ileum, TLR2, 3 and 9 proteins 

were localized in the epithelial lining of crypts and villi and lymphoid cells in the 

lamina propria (Fig. 4j, 5j, 6j, 4n, 5n and 6n). All the proteins were expressed highly in 

the lymphoid accumulations (Peyer’s patches) in mucosa (Fig. 4j, 5j, 6j, 4n, 5n and 6n). 

TLR2 and 9 strongly localized in the tissues and cells surrounding the Peyer’s patches, 

whereas TLR3 expressed in the lymphoid cells within the Payer’s patches as well as 

tissues and cells surrounding the Peyer’s patches (Fig. 4j, 5j, 6j, 4n, 5n and 6n). 

Additionally, TLR3 and TLR9 proteins were localized in the lining cells of duodenal 

glands in mucosal regions (Fig. 5f and 6f). All TLRs localized in this study were 

expressed in the lymphoid cells throughout the section of the mesenteric lymph node 

(MLN) (Fig. 4r, 5r, 6r). Importantly, TLR3 was localized surrounding the lymph follicle 

(Fig. 5r). TLR3 and TLR9 proteins were highly localized in the lymphoid cells 

surrounding the sinuses in the lymph node (Fig. 5r, 6r), whereas TLR2 was localized in 

the trabeculae of the lymph node (Fig. 4r).     

 

Discussion  

 

Expression patterns of TLRs  

TLRs are of great interest to the research community due to their ability to recognize 

pathogens and initiate development of an immune response. But a complete TLR family 

gene expression study in porcine gut-associated lymphoid tissues (GALT) has not yet 

been reported. GALT is a highly organized immune compartment, is intimately 

associated with the gut epithelium and constitutes the largest mass of immune cells in 
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the body. The gut immune system protects swine against infectious and non-infectious 

environmental insults and discriminates ingested nutrients, food, and commensal 

microflora from pathogenic agents (reviewed by Artis 2008, Burkey et al. 2009b, 

Dvorak et al. 2006, Neutra et al. 2001). In addition to the physical barrier that the 

epithelia provide, the mucosal immune system also uses other gut-associated lymphoid 

tissues (GALT) to protect the organism and to mediate subsequent innate and adaptive 

immune responses. Transcript expression of each of the 10 TLRs was confirmed in the 

stomach and in all parts of small intestine including mesenteric lymph node (MLN) 

(Fig. 1 and 2). Beside the expression study, TLR2, 3 and 9 protein was detected in the 

GALT as well as in MLN. In general, all TLRs were more abundant in the small 

intestine and MLN followed by the stomach. It is interesting that TLR3 and TLR6 are 

relatively more abundant in the GALT suggesting gut epithelial cells and lymphoid cells 

in lamina propria, Peyer’s patches and MLN possibly express these molecules. 

However, the expression of TLRs relative to three house keeping genes (GAPDH, 

ACTB and TBP) is low, suggesting only a small subset of cells express the TLRs. 

Similar expression patterns of TLR3 have been previously shown in sheep (Menzies and 

Ingham 2006) and in human small intestine (Zarember and Godowski 2002) and 

intestinal epithelial cells (Cario and Podolsky 2000). If the abundance of these TLRs is 

indicative of an increased ability to respond to the appropriate PAMP, it seems likely 

that the GALT or gut epithelium is very sensitive to potential viral and gram-positive 

bacterial and fungal infections, through the ability of TLR3 to recognize dsRNA and 

TLR6 to recognize lipoteichoic acid and zymonsan (Akira and Takeda 2004). Higher 

expression of TLR3 has been reported in porcine small intestines especially in the 

duodenum, whereas TLR7 is moderately expressed in GALT in pigs (Sang et al. 2008). 

TLR4 is reported to be detectable in the stomach of pigs (Thomas et al. 2006). TLR4 

recognizes the lipopolyscharides of gram-negative bacteria (Akira and Takeda 2004) 

and TLR4 is reported to be activated in case of intestinal injury (Gribar et al. 2008). 

These findings may explain our result of lower TLR4 expression since the animals used 

in this study were clinically healthy.  

TLR2 and TLR9 mRNA are reported to be expressed in duodenum, jejunum, ileum, ileal 

Peyer’s patches (Tyrer et al. 2006) and MLN in healthy newborn piglets (Tohno et al. 

2006) and in ileal Pps, MLN and GALT of adult pigs (Shimosato et al. 2005, Tohno et 

al. 2005). Additionally, it is reported that the mRNA expression levels of both TLR2 and 
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TLR9 are higher in adult pigs than in newborn piglets (Shimosato et al. 2005, Tohno et 

al. 2005), which is in good agreement with our findings. TLR9 was expressed 

intermediately in all tissues and increased with age, except in ileal tissue, in this study 

(Fig. 2d). The different expression levels of TLRs in newborn and adult swine GALT 

provide support for the idea that the intestinal microflora may promote the expression of 

TLR2 and TLR9 in the ileal Pps and MLN during postnatal development of the GALT, 

resulting in the high expression of TLR2 and TLR9 in adult GALT. Kitazawa et al. 

(2006) suggested that stimulation with intestinal microbes is critical for regulating the 

expression of TLR2 and TLR9 after birth and, thus, the development of a system for 

recognizing intestinal microorganisms. Immunoregulatory effects of probiotics or 

functional foods are exerted via TLR in swine (Kitazawa et al. 2008). However, since 

Tohno et al. (2006)did not include other TLRs, it is difficult to compare all TLRs except 

TLR2 and TLR9.  

Expression of TLR1 and TLR6 was higher (P < 0.05) in adult pigs compared to newborn 

piglets in mesenteric lymph node (MLN) (Fig. 2e). TLR1 recognizes the triacyl 

lipopeptides of bacteria and mycobacteria whereas TLR6 recognizes diacyllipopeptides 

of mycoplasma, the lipoteichoic acid of gram-positive bacteria and zymonsan of fungi 

(Akira and Takeda 2004).  Expressions of all TLRs (TLR1-10) are reported in the feline 

in which TLR5 and TLR9 are abundant in small intestinal epithelial cells and TLR2, 4, 5 

and 7 are abundant in intraepithelial lymphocytes, lamina propria lymphocytes and 

Peyer’s patches in mucosa (Ignacio et al. 2005). The highest level of TLR2, 4, 5, 7, 8 

and 9 expressions are reported in the feline MLN (Ignacio et al. 2005). Expression of 

TLR2, 3, 8, 9 and 10 was most remarkable in the mesenteric lymph node in this study 

(Fig. 2e). The mesenteric lymph node is the draining node of the intestinal tract and the 

inductive site from the gastrointestinal tract. It is unique in the variety of microbial 

antigens to which it is exposed and as such, is also uniquely armed with TLRs to 

recognize microbial structural patterns and initiate an immune response (Ignacio et al. 

2005). Menzies and Ingham (2006) reported that TLR6, TLR7 and TLR9 mRNA were 

highly expressed in the ovine MLN, whereas Chang et al. (2009) found that TLR2, 

TLR7 and TLR10 were highly expressed in the ovine MLN. Notably, Chang et al. 

(2009) reported higher expression of all TLRs in the MLN when compared to the 

oviduct, prefemoral and prescapular lymph nodes. Thus, it is likely that the lymphoid 
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cells in the MLN in adult pigs have been exposed to a wide variety of pathogens as 

compared to newborns. 

TLR6, TLR7 and TLR9 are reportedly abundant in ovine Peyer’s patches (Menzies and 

Ingham 2006). TLR5 recognizes the flagellin of motile bacteria, whereas TLR7 and 

TLR8 recognize single-stranded viral RNA (Akira and Takeda 2004). The mRNA of 

TLR4, 5, 7 and 8 expression was lower in all tissues compared to other TLRs in this 

study, suggesting a limitation of porcine GALT in response to lipopolysaccharides of 

gram-negative bacteria (recognized by TLR4), flagellin of bacteria (recognized by 

TLR5) and single-stranded RNA of viruses (ligand of TLR7) (Akira and Takeda 2004). 

This may underlie the homeostatic pathogen recognition system that biases against 

reactivity to gram-positive commensal bacteria, fungus and dsRNA virus within the 

gastrointestinal tract. Overall, our results determined in the gut tissues are in agreement 

with those determined elsewhere and reflect the relative abundance of TLRs determined 

in human intestinal tissue (Zarember and Godowski 2002) and chicken jejunum (Iqbal 

et al. 2005). More specifically the low relative abundance of TLR1, 4, 5, 7 and 8 

determined in the small intestine matches previous reports that TLR2 and TLR4 are 

barely detectable in the human gut (Cario and Podolsky 2000) and TLR1 is in low 

abundance in porcine intestinal tissue (Zarember and Godowski 2002). All tissues used 

in this study demonstrated expression of TLR10 which has been previously detected in 

porcine stomach, small intestines and MLN (Shinkai et al. 2006), in ovine GALT 

(Chang et al. 2009, Menzies and Ingham 2006) and in bovine lymph nodes (Opsal et al. 

2006).  

TLR1, TLR6 and TLR10 mRNA abundance was reported in the small intestine and 

stomach in 1 month old pig by Shinkai et al. (2006) who found that TLR1 and TLR6 

expressions were higher than that of TLR10. TLR6 was expressed higher in all most all 

tissues compared to TLR1 and TLR2 in this study (Fig. 2). It is interesting that the 

expression pattern of TLR1 and TLR6 was similar among different ages in all tissues 

analyzed in this study (Fig. 2). It has been reported that in an evolutionary perspective 

TLR1, TLR6 and TLR10 split from the same precursor (Opsal et al. 2006). TLR5 and 

TLR8 mRNA has been detected in ovine (Chang et al. 2009, Menzies and Ingham 2006) 

and feline (Ignacio et al. 2005) lymphoid tissues and in dendritic cells in human 

(Hornung et al. 2002). Our study confirmed for the first time TLR5 and TLR8 mRNA 

expressions in all porcine gut-associated tissues.  
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The transcript abundance was influenced by age and organs in this study (Fig. 2 and 

Table 2). In our previous study we have found that in response to antigens, there are 

age-dependent variations in the serum level of TLR2 and TLR9 proteins in pigs (Uddin 

et al. 2011). In general, most of the TLRs were expressed higher in GALT of adults (5 

months old) than that of newborns (1 day old) in this study. To study TLR expression 

over different time points is important because development of the mucosal immunity 

varies with age of pigs. The neonatal pig is immunologically incompetent until about 4 

week of age (Blecha 2001). Thus, the period from birth through weaning represents a 

critical time for pigs. A positive correlation between age and heterogeneity of gene 

expression is reported in humans (Somel et al. 2006). Moreover, TLRs transcript 

abundance variation among organs is supported by most reviews since the organs 

structure and function is not similar in pigs and even varies with ages (Barman et al. 

1997, Burkey et al. 2009b, Stokes and Bailey 2000, Stokes et al. 1994, Tohno et al. 

2006). In pigs, the Peyer’s patches distribution, number and size vary with age at 

different intestinal segments such as in jejunum and ileum. For example, the follicles of 

the jejunal Pps grow with age but in case of ileal Pps, these follicles are comparable in 

size at different time points in pigs (Barman et al. 1997). Differential transcripts 

profiling have been reported in jejunal Pps collected from juvenile and adult pigs 

(Machado et al. 2005). Therefore, the developmental and morphological differences 

may influence the function and transcript abundance of TLRs in GALT in pigs. 

This study also found that there was a variation in the expression of some TLR genes in 

samples from different animals (Fig. 2). These individual differences in TLR expression 

may reflect differences in the recent nosocomial environmental pathogen experienced 

by different animals or differences in the composition of the tissue samples obtained 

(adult pig lymph nodes are much larger than those of newborn piglets and the use of 

dissected samples rather than the entire lymph node might contribute to sample-specific 

variation). The variation of mRNA expression in tissues among animals observed in this 

study may also reflect changes in TLRs gene regulation occurring in lymphoid organs. 

This may also explain the inconsistent results reported by different research groups in 

pigs (Shimosato et al. 2005, Shinkai et al. 2006, Tohno et al. 2005, Tohno et al. 2006) 

or in sheep (Chang et al. 2009, Menzies and Ingham 2006, Nalubamba et al. 2007). 

Differences in relative abundance may also correlate to the sensitivity with which each 

TLR recognizes its target PAMP. Moreover, the differences in results from different 
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research groups might be influenced by the used methods. Recently it has been reported 

that different quantitative real-time PCR systems may yield different gene expression 

values (Lu et al. 2010). The analytical specificity for mRNA analysis is reported to be 

better using the GeXP because the combination of oligonucleotide primer-based PCR 

amplification and capillary electrophoretic separation minimizes false-positive reactions 

by adding two layers of specificity i.e. each of the intended targets is interrogated at 

both the hybridization and electrophoretic separation steps to confirm their identity (Rai 

et al. 2009). 

 

Immunostaining distribution of TLR2, TLR3 and TLR9 proteins  

Visualization of the immunohistochemical staining by confocal microscopy (Fig. 4, 5 

and 6) revealed that TLR2, TLR3 and TLR9 were localized in the Peyers patches, 

lymphoid follicles and around the lymphoid follicles within the lamina propria (Fig. 4, 5 

and 6). Similar findings are reported by Tohno et al. (2006) that TLR2 and TLR9 

positive cells are distributed in the lymphoid follicles and around the lymphoid follicles 

in ileal Pps of presuckling pigs. TLR2 is reported to localize in the enterocytes in 

jejunum in pigs (Alvarez et al. 2008). The gut associated lymphoid tissue is comprised 

of cells organised within the lymphoid follicles of the Peyer’s patches as well as those 

distributed throughout the lamina propria and intestinal epithelium. The gastrointestinal 

lamina propria contains macrophages, dendritic cells, neutrophils, mast cells and 

lymphocytes that participate in lamina propria effector functions (Hunyady et al. 2000, 

Stokes and Bailey 2000). The intestinal lamina propria of pigs is heavily populated with 

plasma cells and B cells predominate around the crypts and T cells in the villi (Stokes 

and Bailey 2000) which may show signals for TLRs.  

TLR2, 3 and 9 were localized in epithelial tissues (Fig. 4, 5 and 6) that form the 

interface between host and pathogen for numerous pathogens. The mucosal immunity is 

shouldered by intestinal epithelial cells (IEC). The IEC monolayer provides anatomical 

and physiological barriers designed to maintain homeostasis within the GIT. IEC 

recognizes and differentiates between commensals and pathogens via the Toll-like 

receptor family (Burkey et al. 2009b, Uenishi and Shinkai 2009). With respect to 

immunosurveillance, the synthesis and secretion of cytokines, chemokines and 

antimicrobial peptides by IEC is largely accomplished via Toll-like receptors (Akira and 

Takeda 2004).  
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TLR2, 3 and 9 proteins were highly localized in the follicular cells and in the M-cells in 

lymphoid follicles in Peyer’s patches in the small intestine (Fig. 4j, 5j, 6j, 4n, 5n, and 

6n). Similar results for TLR2 and TLR9 localization are reported in pigs (Shimosato et 

al. 2005, Tohno et al. 2005, Tohno et al. 2006). Pps are the islands of discrete, 

organized lymphoid tissue with areas populated by B and T lymphocytes located in the 

small intestine (Makala et al. 2001). Peyer’s patches are sites of antigen sampling and 

have a role in the induction of mucosal immune responses. After induction in the Pps, 

mature T and B cells travel to the mesenteric lymph nodes via the lymphatic circulation 

before homing to the lamina propria, where T cells can directly eliminate pathogens and 

T and B cells can participate in the production of cytokines and immunoglobulins (e.g., 

IgA) (Butler et al. 2006). Tyrer et al. (2006) has provided evidence that TLRs are 

important for M-cell recognition of gram-negative bacteria and to induce an appropriate 

mucosal immune response. Shimosato et al. (2005) and Tohno et al. (2005) showed that 

TLRs are localized on porcine M-cells and contribute to ligand-specific transcytosis and 

thereby induce the immune responses. Since TLRs are highly distributed in the 

intestinal mucosa, this postulates that porcine intestinal mucosa is highly armed with 

TLRs for its immune responsiveness. 

TLR2, 3 and 9 proteins were localized in the lymphoid cells in the lymphoid follicle and 

interfolicular cells in mesenteric lymph node (MLN) (Fig. 4r, 5r and 6r). TLR2 and 

TLR9 positive cells are reported to exist in and between the lymphoid follicles in MLN 

in pigs (Shimosato et al. 2005, Tohno et al. 2005, Tohno et al. 2006). TLR2 was 

previously localized in cells in the germinal centre, lymphoid follicles and medullary 

cord in MLNs in pigs (Tohno et al. 2005). On the other hand, this is the first study to 

localize TLR3 in GALT in pigs. It has been reported that TLR2, TLR3 and TLR9 and 

innate cytokines are induced in response to the lactobacilli and human rotavirus in 

gnobiotic pigs (Wen et al. 2009). Therefore, it might be postulated that lymphoid cells 

in lamina propria respond to the pathogens via TLRs.  

In conclusion, we have confirmed the presence of TLR (1-10) mRNA as well as 

detected and localized TLR2, 3 and 9 proteins in GALT including mesenteric lymph 

node collected from pigs with different ages. This study revealed that TLR expression is 

tissue and age dependent. Higher expression of TLRs with age may indicate that gut-

associated lymphoid tissues are continuously exposed to both potential pathogens and 

beneficial commensal microorganism and this creates a requirement for a homeostatic 
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balance between tolerance and immunity. This expression-based approach will be 

helpful to improving our knowledge of immunity in the porcine gut. However, the 

functional importance of TLR expression must also be put into context by determining 

the TLR expression profile of different cell types in response to TLR ligands or specific 

antigens. 
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Table 1: Multiplex primer sequences and descriptive information regarding 

porcine TLR1-10 genes. 

Gene GenBank Accession 

Number 

a
Length (bp) 

b
Primer sequence 5'→3' 

TLR1  

 

NM_001031775 277 F: AGATTTCGTGCCACCCTATG 

R: CCTGGGGGATAAACAATGTG 

TLR2 NM_213761 163 F: TGCTATGACGCTTTCGTGTC 

R: CGATGGAGTCGATGATGTTG 

TLR3 NM_001097444 149 F: GAGCAGGAGTTTGCCTTGTC 

R: GGAGGTCATCGGGTATTTGA 

TLR4  NM_001113039 234 F: TCATCCAGGAAGGTTTCCAC 

R: TGTCCTCCCACTCCAGGTAG 

TLR5 NM_001123202 114 F: GGTCCCTGCCTCAGTATCAA 

R: TGTTGAGAAACCAGCTGACG 

TLR6 NM_213760.1 170 F: TCAAGCATTTGGACCTCTCA 

R: TTCCAAATCCAGAAGGATGC 

TLR7 

 

NM_001097434 317 F: TCTGCCCTGTGATGTCAGTC 

R: GCTGGTTTCCATCCAGGTAA 

TLR8 NM_214187 241 F: CTGGGATGCTTGGTTCATCT 

R: CATGAGGTTGTCGATGATGG 

TLR9 NM_213958 205 F: AGGGAGACCTCTATCTCCGC 

R: AAGTCCAGGGTTTCCAGCTT 

TLR10 NM_001030534 128 F: GCCCAAGGATAGGCGTAAAT 

R: CTCGAGACCCTTCATTCAGC 

ACTB DQ178122 107 F: CTGGCACCACACCTTCTACA 

R: GGGTCATCTTCTCACGGTTG 

GADH DQ178124 100 F: ACTCACTCTTCTACCTTTGATGCTG 

R: TGTTGCTGTAGCCAAATTCA 

TBP  DQ178129 121 F: TGGACGTTCGGTTTAGGTTG 

R: GCAGCACAGTACGAGCAACT 

 

a
Length of the expected amplicons 
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b
The primers used for expression analysis in GeXP were chimeric, with the following 

universal sequence at the 5': Forward primers: AGGTGACACTATAGAATA; Reverse 

primers: GTACGACTCACTATAGGGA . 

 

Table 2: Effect of age and organ on the relative expression of porcine TLR1-10 

genes analysed by Proc GLM (SAS). Summary of the Proc GLM (v.9.2; SAS, SAS 

Institute Inc., Cary, NC, USA) analysis detecting effect of age, organs and age-organ 

interaction on the expression of reference candidate genes.   

 

Gene Mean±S.D. Organ Age R
2
 Model 

TLR1 0.105±0.08 NS *** 0.45 *** 

TLR2 0.181±0.12 NS * 0.35 * 

TLR3 0.743±0.26 *** *** 0.58 ** 

TLR4 0.101±0.06 NS *** 0.32 * 

TLR5 0.128±0.07 * *** 0.56 *** 

TLR6 0.294±0.15 NS *** 0.48 ** 

TLR7 0.057±0.05 ** *** 0.51 *** 

TLR8 0.099±0.08 ** *** 0.62 *** 

TLR9 0.117±0.09 NS *** 0.39 ** 

TLR10 0.122±0.09 NS *** 0.42 ** 

 

p< 0.05; ** p< 0.01; *** p< 0.001; NS non-significant 
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Figure 1: mRNA expression patterns of TLRs in porcine gut-associated lymphoid tissues 

and mesenteric lymph node. The average expression of Toll-like receptors mRNA in stomach, 

duodenum, jejunum, ileum and mesenteric lymph node tissues collected from (a) newborn (1 

day old) piglets, (b) young (2 month old) pigs and (c) adult (5 month old) pigs.   
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Figure 2: Relative mRNA abundance of TLRs in porcine gut-associated lymphoid tissues 

and lymph node at different ages. The average expression of TLRs (1-10) mRNA (the bar 

indicate standard deviation) at 1 day old newborn piglets, 2 month old young pigs and 5 month 

old adult pigs in a) stomach b) duodenum c) jejunum d) ileum e) mesenteric lymph node 

(MLN). a,b P< 0.05. 
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Figure 3: Expression of TLR2, TLR3 and TLR9 protein in gut-associated 

lymphoid tissues and lymph node. The expression of a) TLR2 b) TLR3 and c) TLR9 

protein in mesenteric lymph node (MLN), stomach, duodenum, jejunum and ileum 

tissues collected from 1 day old newborn piglets, 2 month old young pigs and 5 month 

old adult pigs.   
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Figure 4: Localization of TLR2 protein in porcine gut-associated lymphoid tissues 

and lymph node. (4b) Immunofluorescence detection of TLR2 in epithelium cells and 

gastric gland in the stomach. (4f) TLR2 protein localization in intestinal epithelium 
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cells, in lymphoid cells in lamina propria, cells in villi and crypts in the duodenum. (4j) 

TLR2 protein localization in intestinal epithelium cells, in lymphoid cells in lamina 

propria, cells in villi and crypts in jejunum and around the jejunal Peyer’s patches 

(shown in rectangle). (4n) TLR2 protein localization in the lymphoid cells in lamina 

propria in ileum and lymphoid cells within and around the ileal Peyer’s patches.  (4r)  

TLR2 protein localization in the lymphoid cells in white pulp, trabeculae and in the 

lymphoid cells in germinal centre in mesenteric lymph node. (4a, e, i, m and q) The cell 

nuclei were counterstained with DAPI. (4c, g, k, o and s) Merged images. (4d, h, l, p 

and t) Negative control. Magnification 10X (S: Stomach, D: Duodenum, J: Jejunum, I: 

Ileum, MLN: Mesenteric lymph node). 
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Figure 5: Localization of TLR3 protein in porcine gut-associated lymphoid tissues 

and lymph node. (5b) Immunofluorescence detection of TLR3 in epithelium cells and 

gastric gland in the stomach. (5f) TLR3 protein localization in the lymphoid cells in 
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lamina propria, cells in villi and crypts in the duodenum. (5j) TLR3 protein localization 

in the lymphoid cells in lamina propria, within and around the jejunal Peyer’s patches. 

(5n) TLR3 protein localization in the lymphoid cells in lamina propria in ileum and 

lymphoid cells within and around the ileal Peyer’s patches.  (5r)  TLR3 protein 

localization in the lymphoid cells in white pulp, around the sinus, and in the lymphoid 

cells in germinal centre in mesenteric lymph node. (5a, e, i, m and q) The cell nuclei 

were counterstained with DAPI. (5c, g, k, o and s) Merged images. (5d, h, l, p and t) 

Negative control. Magnification 10X (S: Stomach, D: Duodenum, J: Jejunum, I: Ileum, 

MLN: Mesenteric lymph node). 
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Figure 6: Localization of TLR9 protein in porcine gut-associated lymphoid tissues 

and lymph node. (6b) Immunofluorescence detection of TLR9 in epithelium cells and 

gastric gland in the stomach. (6f) TLR9 protein localization in intestinal epithelium 
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cells, in lymphoid cells in lamina propria and lining cells of duodenal glands. (6j) TLR9 

protein localization in lymphoid cells in lamina propria, cells in villi and crypts in 

jejunum, lymphoid cells within and around the jejunal Peyer’s patches. (6n) TLR9 

protein localization in epithelial cells in villi and crypts, in the lymphoid cells in lamina 

propria in ileum and lymphoid cells within and around the ileal Peyer’s patches.  (6r) 

TLR9 protein localization in the lymphoid cells in white pulp, around the sinus, and in 

the germinal centre in mesenteric lymph node. (6a, e, i, m and q) The cell nuclei were 

counterstained with DAPI. (6c, g, k, o and s) Merged images. (6d, h, l, p and t) Negative 

control. Magnification 10X (S: Stomach, D: Duodenum, J: Jejunum, I: Ileum, MLN: 

Mesenteric lymph node). 
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Abstract 

Toll-like receptors (TLRs) function as the pathogen recognition receptors in vertebrate 

for recognition of microbial components. But the expression patterns of all TLRs have 

not yet been studied in pigs. Therefore, the aim of this research was to study the 

expression pattern of the TLR family (TLR1-10) in different lymphoid tissues collected 

from pigs of different ages. A total of nine clinically healthy pigs of three age groups (1 

day, 2 months and 5 months) were selected for this experiment. Each age group 

consisted of three animals. Cervical lymph node (CLN), thymus, liver, spleen, lung, 

heart, skin tissue and peripheral blood mononuclear cells (PBMC) were collected for 

both mRNA and protein isolation. The GenomeLab Genetic Analysis System (GeXP) 

was used for quantification of mRNA expression of TLRs (1-10) in all tissues, and 

western blot and immunofluorescence was performed for protein expression and 

localization of selected TLRs (TLR2, 3 and 9) in selected tissues (CLN, spleen and 

lungs). mRNA expression showed that TLR1 was highly expressed in the CLN and 

spleen and moderately in the liver and lungs, whereas TLR2 expression was higher in 

the liver, lung and spleen. In this study, TLR3 mRNA was the most abundant in all 

tissues. It was expressed highly in thymus, kidney, lungs and liver. In the case of the 

spleen, all TLRs (except TLR5) expressions were higher (p < 0.01) in 2 month old pigs 

compared to one day old pigs. In the thymus, TLR3 expression was significantly higher 

in 2 month old pigs than that of one day and 5 month old pigs. The western blot results 

of TLR2, 3 and 9 in selected tissues appeared to be consistent with the mRNA 

expression results. Cells in lungs, spleen and CLN were positively immunostained for 

TLR2, 3 and 9. Variance analysis showed that both age and organs have an effect on all 

TLRs expressions (p < 0.001). This study sheds light on the expression patterns of TLR 

(1-10) genes in important lymphoid tissues in pigs of different ages.  

 

Introduction 

Toll-like receptors (TLRs) function as pathogen recognition receptors (PRRs) to 

recognize conserved molecular patterns (pathogen-associated molecular patterns; 

PAMPs), which are shared by large groups of microorganisms (Akira and Takeda 

2004). At least 11 TLRs have been identified in humans and 13 in mice. In other 

mammals there are at least 10 members of the Toll-like receptor family that recognize 

specific components conserved among microorganisms. Activation of the TLR leads not 
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only to the induction of inflammatory responses but also to the development of antigen-

specific adaptive immunity (Akira and Takeda 2004). So TLRs are considered as 

critical proteins linking innate and adaptive immunity. Porcine TLRs are considered as 

the front line of pathogen monitoring and their PAMPs are used as vaccine adjuvants 

(Uenishi and Shinkai 2009). Polymorphisms of TLRs are reported to be associated with 

diseases in pigs (Keirstead et al. 2011, Shinkai et al. 2006b). The immune 

responsiveness of individuals is reported to depend on the variation of TLR expression 

level (Jaekal et al. 2007). The tissue, cellular, and sub cellular localization and 

distribution of TLRs influence the type of immune response elicited. Thus, the first step 

in understanding the role of TLRs is to determine which TLRs are expressed by specific 

tissues, organs and cells of interest. In order to gain an understanding of how responsive 

tissues and cells are likely to be involved at detecting pathogens, TLR mRNA 

expression patterns have been determined in different species. Expression studies of the 

complete TLR family (1-10) have been reported in human (Garrafa et al. 2010, Hornung 

et al. 2002, Siednienko and Miggin 2009), bovine (Menzies and Ingham 2006), ovine 

(Chang et al. 2009, Nalubamba et al. 2007, Taylor et al. 2008) and chicken (Iqbal et al. 

2005). But there is no such complete study of TLRs1-10 expression reported in pigs. 

Individual expression studies of some TLRs have been performed in pigs such as TLR1, 

TLR6, and TLR10 (Shinkai et al. 2006a), TLR2 (Alvarez et al. 2008, Tohno et al. 

2005), TLR3 and TLR7 (Sang et al. 2008b), TLR4 (Thomas et al. 2006) and TLR9 

(Shimosato et al. 2005). Most of these studies have been performed in intestinal tissues 

especially in gut-associated lymphoid tissue (GALT). TLRs are expressed 

predominantly in antigen processing and presentation cells such as macrophages, 

neutrophils, and dendritic cells but TLRs expression is not restricted to these cell types. 

Since TLRs are vital immune components, it is important to study their expression 

pattern in tissues or organs related to immune functions. Cervical lymph node (CLN), 

thymus, liver, spleen, lung, heart, skin tissues and peripheral blood mononuclear cells 

(PBMC) are vital lymphoid organs or tissues in pigs, protecting the host from 

pathogens. 

The importance of the cervical lymph node in defence against respiratory virus in pigs 

is reported (Bailey et al. 2000). T-lymphocytes developing within the thymus and 

thymic B cells produce immunoglobulin (Cukrowska et al. 1996). The spleen is the 

largest secondary immune organ in the body and is responsible for initiating immune 
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reactions to blood-borne antigens and for filtering the blood of foreign material and old 

or damaged red blood cells and aids in the development of white blood cells (reviewed 

by (Cesta 2006). Liver is the residence for macrophages (Kupffer cells), dendritic cells 

and liver natural killer (NK) cells that respond to different pathogens in pigs (Skovgaard 

et al. 2009). The lung is an important immune organ consisting of numerous 

lymphocytes and macrophages (alveolar macrophages) and fights against most 

respiratory pathogens in pigs (reviewed by Pabst and Binns 1994). The skin is the 

interface between the internal milieu and the external environment and acts as a 

mechanical, physical and biological protective organ (reviewed by Schmitt 1995). 

Recent studies suggest that the heart possesses an innate immune system that is intended 

to delimit tissue injury, involved in the pathogenesis of atherosclerosis, acute coronary 

syndromes, stroke, viral myocarditis, sepsis, ischemia/reperfusion injury, and heart 

failure as well as orchestrate homoeostatic responses, within the heart. This intrinsic 

stress response system of heart is mediated by TLRs (reviewed by Mann 2011). 

Peripheral blood mononuclear cells (PBMC) include different cells (such as 

lymphocytes, monocytes and macrophages) playing important immune functions in 

mammals, essential for subsequent sensing in immune monitoring. They are also used 

as cell lines to study the effect of different antigens, mutagens or vaccines (Hornung et 

al. 2002, Siednienko and Miggin 2009, Yancy et al. 2001). Notably, the immune 

responsiveness to antigens or  vaccine varies according to the age of the individuals 

(Panda et al. 2010, van Duin and Shaw 2007) which are thought to be associated with 

TLRs expression (Dunston and Griffiths 2010, Renshaw et al. 2002, van Duin and Shaw 

2007). Age-associated changes of the adaptive immune system are documented in pigs 

(Dickie et al. 2009, Hoskinson et al. 1990, Uddin et al. 2010); however, studies on the 

effect of age on innate immune system especially on the TLR expression pattern in pigs 

are rare. Therefore, the aim of this research was to study the expression patterns of all 

porcine TLR (1-10) genes in selected immunologically important lymphoid organs or 

tissues collected from pigs of three different ages.  
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Materials and methods 

 

Animal and tissue collection 

A total of nine clinically healthy male Pietrain pigs of three age groups (neonatal: one 

day old, young: 2 months old and adult: 5 months old) were selected for this 

experiment. Each age group consisted of three animals. All pigs were kept at the 

Frankenforst experimental research farm at the University of Bonn (Germany), 

according to the rules of German performance stations (Zentralverband der Deutschen 

Schweineproduktion (ZDS): Richtlinie für die Stationsprüfung auf Mastleistung, 

Schlachtkörperwert und Fleischbeschaffenheit beim Schwein, 10.12.2003). The animals 

were fed the same diet ad libitum during the whole experimental period. After slaughter, 

the blood was collected in a heparinized tube and tissues from the cervical lymph nodes 

(CLN), liver, spleen, thymus, lung, heart and skin from the ear were collected for both 

mRNA and protein isolation, and for immunohistochemistry. For mRNA and protein 

isolation, samples were directly put into liquid nitrogen after washing in PBS. For 

immunofluorescence studies, samples were collected in RNAlater (Invitrogen) for 

transportation to the laboratory and were put into Tissue-Tek O.C.T. using cryomold 

(Sakura). PBMC was isolated from whole blood using Ficoll-Histopaque (Sigma) 

following the manufacturer’s protocol. All samples were kept at -80 
o
C until required. 

 

RNA isolation 

Total RNA was isolated from individual samples by using Tri-Reagent (Sigma-Aldrich) 

according to the standard protocol. All samples were kept at -80 
o
C until cleanup. In 

order to remove possible contamination of genomic DNA, the extracted RNA was 

treated with 5 µl RQ1 DNase buffer, 5 units DNase and 40 units of RNase inhibitor in a 

40 µl reaction volume. The mixture was incubated at 37 
o
C for 1h followed by 

purification with the RNeasy Mini Kit (Qiagen). RNA was isolated from PBMC using 

Picopure RNA isolation kit (cat. KIT0202, Arcturus). Concentration of clean-up RNA 

was determined spectrophotometrically by using the NanoDrop (ND-8000) instrument 

and the purity of RNA was estimated by the ratio A260/A280 with respect to 

contaminants that absorb in the UV. Additional examination of integrity was done by 

denaturing agarose gel electrophoresis and ethidium bromide staining. Finally, the 

purified RNA was stored at -80 
o
C for further analysis. 
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TLR mRNA expression analysis  

Total RNA, measured by using the NanoDrop ND-8000 spectrophotometer (Thermo 

Scientific) was diluted to 50 ng/µl. In this study, the GeXP expression profiling method 

was used, as explained in Rai et al. (2009). mRNA expression of TLR1-10 and three 

housekeeping genes (ACTB, GAPDH and TBP) were detected in this multiplex system 

as described earlier (Gandolfi et al. 2011). Briefly, an amount of 250 ng RNA was used 

as template for reverse transcriptase (RT) reaction using the GenomeLab GeXP Start 

Kit (Beckman Coulter), in a total volume of 20 µl. In the RT reaction, a pool of all 

reverse primers (Table 1) at a final concentration of 50 nM was used. Primers were 

designed using proprietary software provided by Beckman-Coulter. Each of these 

primers is chimeric, having a 3′ gene-specific end and a 5′ end containing a quasi-T7 

universal sequence, which serves as a template in subsequent amplification steps. The 

RT reaction was performed under the following conditions: 1 min at 48 °C, 60 min at 42 

°C, 5 min at 95 °C, hold at 4 °C, in a thermal cycler (Bio-Rad). After RT reaction, 9.3 µl 

of the products were used as template for a PCR with 20 nM of each forward primer and 

1 U Beckman Coulter Thermo-StartR DNA Polymerase (Beckman Coulter). Each of the 

forward primers contains an SP6 universal sequence at the 5′ end and a gene-specific 

sequence at the 3′ end (Table 1). The PCR reaction was performed in a thermal cycler 

under the conditions: 10 min at 95 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 55 

°C, and 1 min at 70 °C; hold at 4 °C. PCR products were electrophoretically separated 

by the fragment analysis method (Frag-3) on the GenomeLab GeXP (Beckman 

Coulter), by diluting 1 µl PCR reaction with 28.5 µl SLS buffer and 0.50 µl size 

standard-400 (Beckman Coulter). Kanamycin RNA internal positive control was 

included and produced a peak at 326 bp when samples were separated via 

electrophoresis. All experiments include “no template” (i.e. without RNA) and “no 

enzyme” (i.e. no reverse transcriptase) negative controls to confirm the absence of 

peaks at the expected target sizes. The “no template” sample produces a single peak at 

326 bp, corresponding to the externally spiked-in kanamycin RNA. Electrophoretic 

separation was done by GenomeLab™ GeXP Genetic Analysis System (Beckman 

Coulter, Fullerton, USA). The GenomeLab GeXP software matches each fragment peak 

with the appropriate gene, and reports peak height and area under curve (AUC) for all 

peaks in the electropherogram. These data were exported from the expression analysis 

module of the GenomeLab GeXP software as expression data for subsequent analyses. 
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The expression of TLR1-10 genes was normalized by dividing for the geometric mean 

of the expression of three house keeping genes (ACTB, GAPDH and TBP). These 

normalized expression values were used for further statistical analysis using SAS ver9.2 

(SAS Institute Inc., Cary, NC, USA). The average of the TLR expression value of three 

animals was considered for further analysis.  

 

Western blot analysis of TLR2, TLR3 and TLR9 proteins 

Three tissues (spleen, lung and cervical lymph node) were selected in each age group 

for the western blot study. Whole cell protein was extracted from tissues following 

standard protocol using Nonidet-P40 buffer along with protease inhibitor 1 mM (final 

concentration) PMSF (phenylmethylsulfonyl fluride). The protein from each sample of 

three animals in each age group was pooled together according to tissue for western 

blot. The protein was separated by 4-18% gradient SDS-PAGE. Subsequently the 

proteins were transferred onto a nitrocellulose membrane (Amersham Biosciences). 

After blocking in blocking buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween-20 

and 1% Polyvinylpyrolidone) at room temperature for 1 h, the membrane was incubated 

with the primary antibody anti-TLR2 and anti-TLR9 purified from rabbit polyclonal 

antibody (THU-A-TLR2 and THU-A-TLR9, CosmoBio Co Ltd.) in the blocking 

medium (diluted 1:700) at 4 
o
C overnight. Anti-TLR3 antibody (SC-8691; Santa Cruz) 

purified from goat (diluted 1:500) was used as primary antibody for TLR3. Non-specific 

binding of antibody was washed off with six changes of 0.1% PBST (10 min per time). 

As a secondary antibody, the horseradish peroxidase conjugated donkey anti-goat IgG 

antibody (SC2020; Santa Cruz) was used (diluted 1:50000) for TLR3 and the 

horseradish peroxidase conjugated goat anti-rabbit IgG antibody (SC2004; Santa Cruz) 

was used (diluted 1:50000) for TLR2 and TLR9. The membrane was incubated for 1 h 

at room temperature with the secondary antibody, followed by washing with six 

changes of 0.1 % PBST (10 min per time). The chemiluminesce was detected by using 

the SuperSignal
®

 West Pico chemiluminescent substrate (Thermo Scientific) and was 

visualized by using Kodak BioMax XAR film (Kodak). GAPDH (SC20357; Santa 

Cruz) was used as a loading control and for normalization. The membrane was stripped 

by washing 3 times (5 min per time) in 20 ml of glycin (0.1 mol/L; pH 2.5) and then 

washed with 20 ml (1x) PBS, 3 times (5 min per time) and re-probed. 
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Immunofluorescence localization of TLR2, TLR3 and TLR9 proteins 

Three tissues (spleen, lung and cervical lymph node) were selected for the localization 

of TLR2, TLR3 and TLR9 proteins. For each of the TLR2, 3 and 9, 

immunofluorescence staining was performed on 8 µm cryostat sections. All sections 

were kept at -80 ºC for further analysis. To block unspecific staining, sections were 

incubated for 60 min at room temperature with 3 % bovine serum albumin in PBS (50 

nM sodium phosphate, pH 7.4; 0.9 % NaCl). Sections were incubated overnight at 4 ºC 

with the same primary antibodies as used in western blot diluted at 1:50 in blocking 

solution followed by six (10 min per time) washing with PBS. Sections for TLR3 were 

incubated with the TLR3 goat polyclonal primary antibody (SC8691; Santa Cruz) 

(dilution 1:50 in blocking solution), whereas the sections for TLR2 and TLR9 were 

incubated with the rabbit anti-porcine TLR2 and TLR9 polyclonal primary antibody 

(THU-A-TLR2 and THU-A-TLR9, CosmoBio Co Ltd.) (dilution 1:50 in blocking 

solution), overnight at 4 ºC and subsequently the sections were washed six times (10 

min per time) with PBS. The donkey anti-goat IgG-B conjugated with rhodamine 

(TRITC) reactive water-soluble fluorescent dye (SC2094; Santa Cruz) (dilution 1:200) 

was used for TLR3 and the biotinylated donkey anti-rabbit IgG-B conjugated with 

fluorescein isothiocyanate (FITC) reactive water-soluble fluorescent dye (SC2090; 

Santa Cruz) (dilution 1:200) was used for TLR2 and TLR9 as a secondary antibody, 

respectively. Finally, the samples were counterstained with vectashield mounting 

medium (Vector Laboratories) containing 40,6-diamidino-2-phenyl indole (DAPI) and 

covered with a cover glass slip. The staining was observed by confocal laser scanning 

microscope (Carl Zeiss). In the case of negative controls, PBS was used instead of the 

primary antibody.  

 

Statistical analysis 

The Proc GLM (ver9.2; SAS, SAS Institute Inc., Cary, NC, USA) analysis was 

performed to detect the effect of age and organs on the expression of TLR genes. 

Differences in gene expression levels between groups were determined using t-test in 

SAS. p<0.05 was considered statistically significant.  
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Results 

 

TLRs mRNA expressions  

The mRNA expression study showed that the TLR expressions were higher in young 

and adult pigs than the newborn piglets. In this study, TLR3 showed comparatively 

higher expression than the other TLRs in the different tissues (Fig. 1). In the case of the 

cervical lymph node (CLN), the highest expression of TLRs was detected in young pigs, 

moderate expression was detected in adult pigs and comparatively lower expression was 

detected in newborn piglets (Fig. 2a). Moreover, the TLR6 expression was higher (p < 

0.05) in CLN in young pigs compared to newborn piglets. TLRs expression pattern in 

the lungs showed that mRNA increased with age (Fig. 2b). TLR4 was expressed higher 

(p < 0.001) in the lungs in adult pigs than that in newborn piglets (Fig. 2b). The TLRs 

expression pattern in the spleen showed that the highest expression was in young pigs 

(Fig. 2c), followed by adult and newborn pigs (Fig. 2c). All TLR expression, except 

TLR6, was significantly higher in young pigs than in the newborn piglets in the spleenic 

tissue (Fig. 2c). In the case of the thymus, it could be shown that TLR expression was 

higher in young than adult pigs and newborn piglets (Fig. 2d). TLR3 expression was 

higher (p < 0.01) in the thymus in young pigs than in the adult and newborn animals 

(Fig. 2d). Except TLR1, TLR5 and TLR10, all TLRs were expressed higher in young 

animals in the liver (Fig. 2e). TLR1 and TLR5 expressions increased with age in liver 

tissue, especially TLR5 which was expressed significantly (p < 0.001) higher in adult 

pigs compared to newborn piglets (Fig. 2e). In the case of the kidney, except TLR3 and 

TLR10, TLRs showed common pattern of expression which implied that the highest 

expression was detected in young pigs and lowest expression was found in newborn 

piglets (Fig. 2f). In skin tissue, TLR5 expression was higher (p < 0.05) in young pigs 

compared to the newborn piglets (Fig. 2g). TLR expression in the heart showed that 

TLR mRNA expression was higher in young than the adult pigs and newborn piglets 

(Fig. 2h). The TLR expression was more heterogeneous in PBMC than in other 

lymphoid tissues (Fig. 2i). TLR3, 4, 5, 7 and 8 expressions were higher in newborn, 

whereas TLR1, 2, 6, 9 and 10 expressions were higher in young pigs (Fig. 2i). 
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Expression of TLR2, TLR3 and TLR9 proteins in selected tissues 

TLR2 protein was expressed in the lungs, spleen and cervical lymph node (CLN) 

collected from pigs of different ages (Fig. 3a). TLR2 protein was scarcely detectable in 

lung tissue collected from newborn piglets. Higher expression of TLR2 protein was 

detected in tissues collected from young animals (Fig. 3a). TLR3 protein expression 

was higher in the lungs, spleen and CLN collected from young pigs followed by adult 

pigs (Fig. 3b). TLR3 protein was also detectable in selected tissues collected from 

newborn piglets, but the expression was low compared to the young pigs (Fig. 3b). 

TLR9 protein was detected in lungs, spleen and CLN tissues collected from all age 

groups in this study (Fig. 3c). TLR9 protein expression was in lungs and spleen tissues 

collected from all pigs, but in the case of the CLN, TLR9 expression was higher in 

young compared to adult pigs and newborn piglets (Fig. 3c).  

 

Localization of TLR2, TLR3 and TLR9 proteins in selected tissues 

TLR2 and TLR9 proteins were localized in the alveolus, lining cells of bronchioles and 

in the smooth muscle layer surrounding the bronchioles (Fig. 4a, 6a). TRL3 was 

localized in the squamous cells of the alveolus (Fig. 5a). TLR2, TLR3 and TLR9 

proteins were found to be expressed in the spleen (Fig. 4b, 5b and 6b). TLR2 protein 

was highly localized in the lymphoid cells in the white pulp and in the cells within the 

follicles in the spleen (Fig. 4b). TLR3 protein was stained homogenously in the cells in 

red pulp and white pulp in spleen tissue (Fig. 5b). Though TLR9 protein was localized 

in cells across the spleen, higher staining could be found around the artery and in the 

trabecules in the spleen (Fig. 6b). TLR2, TLR3 and TLR9 proteins were stained in the 

lymphocytes and macrophages in the lymph node, especially in the lymphoid follicle in 

the cortex (Fig. 4c, 5c and 6c). TLR3 protein was expressed in the germinal centre as 

well as in the lymphoid follicle in the lymph node (Fig, 4c).     

  

Discussion 

Toll-like receptors (TLRs) are of great interest to the research community due to their 

ability to recognize pathogens and initiate development of an immune response. TLR 

expression is not restricted to cell types or organs but only few studies were devoted to 

investigate the expression patterns of selected TLRs in pigs (Dvorak et al. 2006, 

Shimosato et al. 2005, Tohno et al. 2005, Tohno et al. 2006). In the present study, we 
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investigated the expression patterns of TLRs (1-10) in various porcine lymphoid tissues 

related to immune functions in order to understand how distinct immune system 

receptors may vary at different ages. This work has confirmed that each of the 10 TLR 

genes were expressed in an age-dependant manner (Fig. 1). Heterogeneous expression 

of genes according to age have been described in humans (Somel et al. 2006). TLR1-10 

were expressed heterogeneously across the selected tissues (Fig. 1 and Fig. 2) which 

coincided with the study of (Garrafa et al. 2010) who reported that TLR1-10 

expressions were heterogeneous in lymphatic endothelial cells derived from different 

tissues in humans. It is important to note that genetic, environmental, demographic and 

technical factors are reported to have substantial effects on gene expression levels (Leek 

and Storey 2007). In our previous study we have found that in response to antigens, 

there are age-dependent variations in the serum level of TLR2 and TLR9 proteins in 

pigs (Uddin et al. 2011). TLR expression profiles are suggestive of an individual’s 

ability to respond to challenge (Menzies and Ingham 2006) and species-specific 

differences in recognition of TLR ligands have been observed between man and mouse 

(Roberts et al. 2005). These differences presumably reflect the distinct selective 

pressure on each host to adapt to new environments and pathogens (Chang et al. 2009). 

However, the first step in understanding the role of TLRs is to determine which TLRs 

are expressed by tissues and cells of interest.   

In this study, at least the mRNA of all 10 porcine TLRs were detectable in all lymphoid 

tissues collected from pigs of different ages. As a lymphoid organ, the lymph node 

plays crucial immune functions but TLR expression studies rarely included this tissue. 

Most of the studies analyzing TLR expression in pigs included the mesenteric lymph 

node (MLN) (Sang et al. 2008b, Shimosato et al. 2005, Tohno et al. 2005, Tohno et al. 

2006). Such as TLR2 (Tohno et al. 2005, Tohno et al. 2006), TLR3 and TLR7 (Sang et 

al. 2008b), and TLR9 (Shimosato et al. 2005) are reported to be expressed in porcine 

MLN. Thomas et al. (2006) detected TLR4 mRNA expression in the lymph node, which 

was lower than that found in the spleen of the pigs. Heterogeneous TLR1-10 expression 

is reported in the prefemoral lymph node in sheep (Chang et al. 2009) and in the 

lymphocytes isolated from the lymph node in cats (Ignacio et al. 2005). In this study, 

TLR6 expression was significantly higher in young pigs compared to newborn piglets 

(Fig. 2a). TLR6 is important in the recognition of Mycoplasma hypopneumoniae in pigs 

(Muneta et al. 2003). The importance of cervical lymph node (CLN) to protect 
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respiratory infections has been reported in pigs (Bailey et al. 2000) indicating that CLN 

might play an important role in the recognition of respiratory pathogens. This study 

identified the distribution of TLR2, 3 and 9 proteins in the lymphoid cells within the 

lymph node for the first time in pigs. The lymph node contains numerous T and B 

lymphocytes which are the important components of the immune system. Lymphocytes 

play an important and integral role in the body's defenses while offering protection 

against varieties of pathogens including bacteria and viruses. Bacterial lipoprotein, 

dsRNA and unmethylated CpG DNA of virus are the ligands for TLR2, 3 and 9, 

respectively (Akira and Takeda 2004) suggesting that CLN might have roles in 

recognizing of pathogenic bacteria and viruses. The lungs are armed with specialized 

cells known as alveolar macrophages and fight against most pathogens invading though 

the respiratory route. We found heterogeneous expression of TLRs in porcine lungs 

where all TLR expression increased with age (Fig. 2b). Recently, similar findings were 

reported that during postnatal life the porcine alveolar macrophage function changes in 

an age-dependent manner (Dickie et al. 2009). TLR1, TLR6 and TLR10 (Shinkai et al. 

2006a), TLR2 (Alvarez et al. 2008, Tohno et al. 2005), TLR3 and TLR7 (Sang et al. 

2008b), TLR4 (Thomas et al. 2006, Wassef et al. 2004) and TLR9 (Schneberger et al. 

2010, Shimosato et al. 2005) mRNA were previously detected in porcine lungs. 

Shimosato et al. (2005) reported that TLR9 mRNA expression was higher in lung tissues 

collected from one year old adult pigs compared to neonatal pigs. TLR3 was expressed 

higher than other TLRs in lung tissue indicating that it may have a role in the lungs. 

Recently, Sacco et al. (2011) reported that TLR3 plays a key role in porcine lungs to 

recognize influenza virus infection. It has been reported that PRRSV (porcine 

reproductive and respiratory syndrome virus) persists in the host’s body by suppressing 

TLR3 (Sang et al. 2008a). TLR2 and TLR6 are reported to be involved in the 

recognition of M. hypopneumoniae by the porcine alveolar macrophages (Muneta et al. 

2003). TLR2 is reported to cooperate with TLR6 in response to mycoplasma lipopeptide 

in mice (Takeda et al. 2002). In this study the expression of TLR2 and TLR6 showed a 

trend to increase with age. Dickie et al. (2009) reported that functional maturation of 

alveolar macrophage occurs mainly during the first week of postnatal life in pigs. 

Shinkai et al. (2006a) reported that TLR10 mRNA expression was higher in porcine 

lungs than the TLR1 and TLR6 but we found similar pattern of expression for TLR1, 

TLR6 and TLR10. Transcripts of all TLRs, except TLR7, were detected in ovine alveolar 
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macrophage (Chang et al. 2009) using qRT-PCR. TLR2, 3 and 9 proteins were localized 

in the lungs in this study. TLR9 protein was previously localized in porcine lungs 

especially in the alveolar endothelium and alveolar macrophages by Schneberger et al. 

(2010) which is in agreement to our results (Fig. 6a).  

All porcine TLRs were expressed most remarkably in the spleen. Importantly, this study 

first detected the TLR5 and TLR8 mRNA expressions in porcine spleen. The spleen is 

the largest secondary lymphoid organ containing about one-fourth of the body’s 

lymphocytes and initiates immune responses to varieties of blood-borne antigens 

(reviewed by Cesta 2006). The spleen expressed all TLRs which indicate that it may 

need to recognize varieties of blood-born pathogens. All TLRs except TLR5 expression 

were significantly higher in young pigs compared to newborn piglets. Age-related 

changes in spleenic functions and cellular contents are reviewed by Cesta (2006). It has 

been reviewed that by 2 days of age first T-cells appear, by day 5 dendritic precursors 

appear, after which B-cell follicles begin to develop, and immunologic function begins 

at 14 days of age in rats (Cesta 2006). The spleen reaches peak development at puberty 

in rats, followed by involution; whereas lymphocyte numbers decrease with age in dog 

and rodents (reviewed by Cesta 2006). However, such type of data is not available in 

pigs. In comparison, TLR5 mRNA expression was low in the spleen suggesting a 

limitation of the spleen to respond to flagella-associated pathogenic bacteria 

(recognized by TLR5). TLR2, 3 and 9 immunostaining was detected in spleenic cells, 

especially TLR2 and TLR9 which were expressed strongly in the white pulp and around 

the arteriole, respectively, in this study. It is important to note that, the immune 

functions of the spleen is charged to the white pulp which surrounds the central 

arterioles and the white pulp is composed of lymphocytes, macrophages, dendritic cells 

and plasma cells (Cesta 2006).  

Heterogeneous expression of TLRs were detected in the thymus where TLR3 increased 

significantly in 2 month old young pigs compared to 1 day old piglets or 5 month old 

adult pigs. Age-related changes in the cellular composition of thymus in 8 day to 8 year 

old children are reported (Weerkamp et al. 2005) where thymi of children 3 to 6 month 

old appeared to be the most active. Shimosato et al. (2005) compared TLR9 mRNA 

expression between two age groups of pigs, where TLR9 expression was higher in the 

thymus from one year old adult compared to neonatal piglets. Zhang et al. (2008) 

detected TLR7 mRNA in different lymphoid tissues like spleen, lymph node, tonsils and 
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lungs in pigs but could not detect any in the thymus, heart, liver, kidney or skin. 

Reportedly, expression of TLR7 and TLR9 has been detected in feline thymus (Ignacio 

et al. 2005).  

Heterogeneous TLR expression was detected in porcine liver in this study. Since TLRs 

first recognize the pathogens and initiate the inflammatory response (Akira and Takeda 

2004), this data is in agreement with the recent study reported that ageing modulates 

liver immune responses to infection in mice (Speziali et al. 2010) where T cells, B cells 

and NK cells of young mice are more immune reactive to infection than that of older 

mice. Moreover, age-dependent changes in acute phase proteins (APPs) levels are 

reported in calves (Orro et al. 2008) in which APPs are decreased in 2 month old calves 

compared to 3 week old calves. In comparison, TLR5 expression was abundant in the 

liver, suggesting a predisposition for the recognition of flagella associated pathogenic 

bacteria by the liver. Motile microorganisms cause liver sepsis and flagellin is the main 

flagellar protein and is the ligand of TLR5 (Akira and Takeda 2004). It is interesting to 

note that in all tissues, expression patterns of TLR1 and TLR6 were the same which 

coincides with previous findings in bovine tissues (Opsal et al. 2006). TLR1 and TLR6 

are closely clustered genes, co-regulated and they are ubiquitously expressed (Opsal et 

al. 2006). The kidney is a tertiary immune organ. Intrarenal B cells enhance the 

immunological response by functioning as antigen presenting cells, and act as a source 

for cytokines promoting T cell proliferation and lymphatic neoangiogenesis (reviewed 

by (Segerer and Schlondorff 2008). This study detected mRNA expression of all ten 

porcine TLRs in the kidney. In normal skin, the keratinocytes constitutively expressed 

TLR1, TLR2 and TLR5, but barely expressed TLR3 and TLR4 in human skin tissue 

(Baker et al. 2003). But Chang et al. (2009) and Fitzner et al. (2008) detected all ten 

TLRs in sheep and human skin, respectively. TLR4 protein was previously localized 

(Wassef et al. 2004) and  TLR3 and TLR7 mRNA were detected (Sang et al. 2008b) in 

normal porcine skin. This study detected the mRNA of all TLRs in pig skin. This might 

explain the wide ranges of defense mechanism of skin that fight against a variety of 

pathogens including bacteria, viruses, fungus, parasites, allergens and environmental 

antigens.   

The mRNA of TLR2 (Tohno et al. 2005) and TLR9 (Shimosato et al. 2005, Tohno et al. 

2006) were previously detected in porcine cardiac tissues. Shimosato et al. (2005) 

reported that the TLR9 gene was expressed higher in heart tissue collected from adult 
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compared to neonatal pigs. Although cardiac TLR expression has been reported in other 

species, this study is the first to present evidence that all these ten innate immune 

receptors are expressed in the porcine heart. Knowledge of the expression pattern of 

these receptors in the normal porcine heart is, however, of immediate importance for 

further mechanistic studies pertaining to innate immunity and the heart. TLR2 and TLR4 

gene expression are detected in healthy canine heart tissue (Linde et al. 2007), whereas 

mRNA expression of ten TLRs were identified in the heart in human (Nishimura and 

Naito 2005). It is important to note that the heart is the first location reached by blood 

from the systemic circulation. This may explain the heterogeneous expression of TLRs 

in this organ to allow early detection of noxae especially the blood borne pathogens. 

Since TLRs are essential signaling molecules governing an innate immune response, 

and because mediators of inflammation and innate immunity with increasing certainty 

are proven to play key roles in different types of cardiovascular diseases, it could be 

suggested that the normal porcine heart expresses TLRs as a natural part of its intrinsic 

defense system (Linde et al. 2007). Alterations in the TLR expression levels in 

peripheral blood mononuclear cells (PBMCs) have been reported in various infections 

and have been directly correlated with plasma viral load or associated with the severity 

of disease outcomes (de Kruif et al. 2008, Lester et al. 2008). PBMCs are 

immunocompetent cells and the mRNA expression of all members of TLR family 

(TLR1-10) have been detected in PBMCs (Hornung et al. 2002, Siednienko and Miggin 

2009) as well as in all subsets of PBMCs such as in monocytes and dendritic cells in 

humans (Kokkinopoulos et al. 2005). Zhang et al. (2008) detected the TLR7 mRNA 

expression in porcine PBMCs as well as in macrophages, B- and T-cells. Alvarez et al. 

(2008) identified porcine TLR2 protein expression on monocytes and macrophages but 

could not detect it in peripheral blood lymphocytes by flow cytometry. All TLR 

transcripts are detected in RNA from ovine PBMCs (Chang et al. 2009) and in feline T 

cells (Ignacio et al. 2005). However, this is the first study detecting all porcine TLR 

transcripts in PBMCs which suggest that PBMCs may represent a useful TLR-

responsive model cell line for examining TLR1-10 signaling events. 

In summary, we have confirmed or established the presence of TLR1–10 in various 

porcine lymphoid tissues. TLRs exhibit marked differential tissue activity and their 

levels within a discrete cell type can be highly dynamic. TLR expression is extremely 

variable among individuals. This quantitative assessment of TLR expression in 
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immunocompetent tissues or cells in pigs of different ages will open new avenues in the 

field of porcine TLR research. Assays such as these will help to improve our 

understanding of the early events controlling immunological development in livestock.  
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Table 1: Multi-plex primer sequences and descriptive information regarding genes 

used for the experiment 

 

Gene GenBank Accession 

Number 

a
Length (bp) 

b
Primer sequence (5'→3') 

ACTB DQ178122 107 F: CTGGCACCACACCTTCTACA 

R: GGGTCATCTTCTCACGGTTG 

GADH DQ178124 100 F: ACTCACTCTTCTACCTTTGATGCTG 

R: TGTTGCTGTAGCCAAATTCA 

TBP  DQ178129 121 F: TGGACGTTCGGTTTAGGTTG 

R: GCAGCACAGTACGAGCAACT 

TLR1  

 

NM_001031775 277 F: AGATTTCGTGCCACCCTATG 

R: CCTGGGGGATAAACAATGTG 

TLR2 NM_213761 163 F: TGCTATGACGCTTTCGTGTC 

R: CGATGGAGTCGATGATGTTG 

TLR3 NM_001097444 149 F: GAGCAGGAGTTTGCCTTGTC 

R: GGAGGTCATCGGGTATTTGA 

TLR4  NM_001113039 234 F: TCATCCAGGAAGGTTTCCAC 

R: TGTCCTCCCACTCCAGGTAG 

TLR5 NM_001123202 114 F: GGTCCCTGCCTCAGTATCAA 

R: TGTTGAGAAACCAGCTGACG 

TLR6 NM_213760.1 170 F: TCAAGCATTTGGACCTCTCA 

R: TTCCAAATCCAGAAGGATGC 

TLR7 

 

NM_001097434 317 F: TCTGCCCTGTGATGTCAGTC 

R: GCTGGTTTCCATCCAGGTAA 

TLR8 NM_214187 241 F: CTGGGATGCTTGGTTCATCT 

R: CATGAGGTTGTCGATGATGG 

TLR9  

 

NM_213958 205 F: AGGGAGACCTCTATCTCCGC 

R: AAGTCCAGGGTTTCCAGCTT 

TLR10 NM_001030534 128 F: GCCCAAGGATAGGCGTAAAT 

R: CTCGAGACCCTTCATTCAGC 

 

a
Length of the expected amplicons 

b
The primers used for expression analysis in GeXP were chimeric, with the following 

universal sequence at the 5': Forward primers: AGGTGACACTATAGAATA; Reverse 

primers: GTACGACTCACTATAGGGA . 
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Table 2: Effect of age and organ on the relative expression of porcine TLR1-10 

genes analyzed by Proc GLM (SAS). Summary of the Proc GLM (ver.9.2; 

SAS, SAS Institute Inc., Cary, NC, USA) analysis detecting effect of age, 

organs and age-organ interaction on the expression of reference candidate 

genes.   

Gene mean±SD Organ Age Organ*Age Model R
2
 

TLR1 0.081±0.08 *** *** * *** 0.713 

TLR2 0.201±0.14 *** *** ** *** 0.782 

TLR3 0.570±0.35 *** *** ** *** 0.856 

TLR4 0.127±0.11 *** *** *** *** 0.805 

TLR5 0.109±0.12 *** *** ** *** 0.737 

TLR6 0.182±0.13 *** *** ** *** 0.801 

TLR7 0.045±0.53 *** *** ***  *** 0.789 

TLR8 0.114±0.14 *** *** ***  *** 0.837 

TLR9 0.106±0.11 *** *** ** *** 0.745 

TLR10 0.091±0.09 *** *** *** *** 0.771 

 

* p< 0.05; ** p< 0.01; *** p< 0.001 
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Figure 1: mRNA expression patterns of TLRs in porcine lymphoid tissues. The average 

expression of Toll-like receptors mRNA in CLN (cervical lymph node), lung, spleen, thymus, 

liver, kidney, skin, heart and PBMC (peripheral blood mononuclear cells) collected from (a) 

newborn (1 day old) piglets, (b) young (2 month old) pigs and (c) adult (5 month old) pigs.   
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Figure 2: Relative mRNA abundance of TLRs in porcine lymphoid tissues in 

different ages. The average expression of TLRs (1-10) mRNA (the bar indicate 

standard deviation) in 1 day old newborn piglets, 2 month old young pigs and 5 month 

old adult pigs in (a) CLN (b) lung (c) spleen (d) thymus (e) liver (f) kidney (g) skin (h) 

heart and (i) PBMC 
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Figure 3: Expression of TLR2, TLR3 and TLR9 protein in gut-associated 

lymphoid tissues and lymph node. The expression of (a) TLR2 (b) TLR3 and (c) 

TLR9 protein in lungs, spleen and cervical lymph node tissues collected from 1 day old 

newborn piglets, 2 month old young pigs and 5 month old adult pigs.   
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Figure 4: Localization of TLR2 protein in porcine lymphoid tissues. (4b) 

Immunofluorescence detection of TLR2 proteins in the alveolus, lining cells of 

bronchioles and in the smooth muscle layer surrounding the bronchioles. (4f) TLR2 

protein localized in the lymphoid cells in the white pulp and in the cells within the 

follicles in spleen. (4j) TLR2 proteins were stained in the lymphocytes and 

macrophages in the lymph node especially in the lymphoid follicle in the cortex in 

spleen. (4a, e, and i) The cell nuclei were counterstained with DAPI. (4c, g and k) 

Merged images. (4d, h, and l) Negative control. Magnification 10X (L: Lung, S: Spleen, 

CLN: Cervical lymph node). 
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Figure 5: Localization of TLR3 protein in porcine lymphoid tissues.  (5b) 

Immunofluorescence detection of TLR3 in the squamous cells of alveolus in lungs. (5f) 

TLR3 proteins were  localized homogeneously in the lymphoid cells within both the red 

pulp and white pulp in spleen. (5j) TLR3 proteins were stained in the lymphocytes and 

macrophages in the lymph node especially in the lymphoid follicle in the cortex, and 

remarkably localized in the germinal centre as well as in the lymphoid follicle in the 

lymph node. (5a, e, and i) The cell nuclei were counterstained with DAPI. (4c, g and k) 

Merged images. (5d, h, and l) Negative control. Magnification 10X (L: Lung, S: Spleen, 

CLN: Cervical lymph node). 
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Figure 6: Localization of TLR9 protein in porcine lymphoid tissues.  (6b) 

Immunofluorescence detection of TLR9 in the alveolus, lining cells of bronchioles and 

in the smooth muscle layer surrounding the bronchioles. (6f) TLR9 protein localization 

in cells across the spleen and remarkable staining was detected around the artery and in 

the trabecules of the spleen. (6j) TLR9 proteins were stained in the lymphocytes and 

macrophages in the lymph node especially in the lymphoid follicle in the cortex. (6a, e, 

and i) The cell nuclei were counterstained with DAPI. (4c, g and k) Merged images. 

(6d, h, and l) Negative control. Magnification 10X (L: Lung, S: Spleen, CLN: Cervical 

lymph node). 


