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Introduction

This thesis considers the problem of selling one or several units of a good in a

dynamic environment. The environment is dynamic because the pool of potential

buyers changes over time. It can grow if new buyers arrive, and it can shrink if

buyers leave. More generally, in Chapter 3, the willingness to pay of every buyer

in the pool may change over time. The allocation problem is dynamic, because the

point in time when a unit is sold is not exogenously given and may depend on the

available buyers and their characteristics.

Dynamic allocation problems are the rule rather than the exception. Dynamic

decisions have to be made, even in situations where a static selling mechanism, like

an auction with a reserve price, is used at a fixed date. The date at which the

auction takes place and the time at which it is announced determines the pool of

potential buyers. The reserve price, together with the valuations of the buyers,

determines whether the object is sold in the auction, or later in some subsequent

selling mechanism.

In dynamic allocation problems, it is crucial for the seller to know how the pool

of potential buyers evolves over time. There may be many constraints that withhold

some or all of this information from the seller. In Chapter 1, we will focus on two

particular constraints: First, information realizes over time. There is a fundamental

informational constraint that prevents the seller or any other person from looking

into the future. Second, there may be asymmetric information about the departure

of potential buyers.1

Without the first aspect, the problem would be essentially static. If agents could

look into the future, the same information would be available at all times. Decisions

today would not have to be based on expectations about the state of the world

tomorrow, because the actual state is already known today.

If we consider the allocation of a single object, the fundamental difference be-

tween the static and the dynamic model becomes apparent. In a static world, i.e. a

world with perfect foresight, the ex-post efficient allocation is trivially feasible. Al-

ready in the first period it is known at which point in the future the buyer with the

highest valuation will arrive. In a dynamic world, on the other hand, the decision

whether the object should be sold today or tomorrow, can at best be based on expec-

tations about the arrival of future buyers. This necessarily leads to inefficiencies. If

1Another interesting constraint is asymmetric information about the arrival of new buyers. The
analysis of this problem shares some similarities with the case of asymmetric information with
respect to departure times. The conclusion of Chapter 1 will briefly comment on this.

1



2 INTRODUCTION

the expected value of postponing the allocation is higher than the highest valuation

of the buyers that are available today, it may still be possible that tomorrow, the

state of the world turns out to be worse than expected, and the valuations of all new

buyers are lower than the valuations of the buyers that were available today. With

hindsight, it would have been more efficient in this case, to sell the object already

today. Without perfect foresight, however, inefficiencies of this kind are unavoid-

able. Evidently, this fundamental informational constraint applies to a seller who

maximizes revenue as well as to a seller who is interested in efficiency.

The second constraint—private information—turns out to be more stringent for

revenue maximization than for efficiency. Consider a simple example of two buyers

in an independent private values setting who arrive in two different time periods.

The seller has a single indivisible object that he can sell either in period one or

period two. If it is sold in the first period, it cannot be reallocated in the second

period (think of a consumption good). Buyer one arrives in the first period. He has

a privately known valuation for the object, and a deadline. The deadline determines

his willingness to wait. If the deadline is period one, then he will not be interested

in the object if it is offered to him in the second period. With deadline two, he is

indifferent about the time of the allocation. Buyer two arrives in the second period.

He has a privately known valuation which, by the lack of foresight, is not known to

anybody in the first period.

Regardless of whether the seller wants to maximize revenue or efficiency, if he

knew that the deadline were two, he would always postpone the allocation until

period two. Waiting creates an efficiency gain because both buyers are available in

the second period and the ex-post efficient allocation can be chosen. In the case of

revenue maximization, the seller can extract enough of the efficiency gain from the

buyers to make waiting worthwhile.

A difference between efficiency and revenue maximization arises, if we compare

the incentives for buyer one to reveal his deadline truthfully. It is well known

that the efficient allocation rule is implementable in quite general settings.2 In

particular, asymmetric information about the deadline does not pose a problem for

the implementability of the efficient allocation rule. The picture is different in the

case of revenue maximization. With asymmetric information about the valuation

and symmetric information about the deadline, we show that there is a class of

distributions for buyer one’s valuation and deadline, for which the seller demands

on average higher prices if the deadline is two. This destroys incentives to reveal

the deadline truthfully. As a consequence, the revenue-maximizing mechanism does

not fully separate buyers with different deadlines as is the case for the efficient

2In light of the informational constraint, the efficient allocation rule refers to the allocation rule
that maximizes the expected surplus under symmetric information, subject to the informational
constraint.
Parkes and Singh (2003) seem to be the first authors that have shown the implementability of the
efficient allocation rule. See also Athey and Segal (2007) and Bergemann and Välimäki (2010).
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allocation. In the example, the revenue-maximizing mechanism involves bunching

at the top of the type space. The mechanism separates different deadlines if the

valuation is sufficiently low, but for high valuations, buyer one receives the same

allocation and the makes the same expected payment regardless of his deadline.

The fundamental reason for the difference between revenue-maximization and

efficiency is that the deadline introduces multi-dimensional private information. In-

deed the analysis of the optimal mechanism, in the case where the incentive com-

patibility constraint for the deadline is binding, is formally equivalent to a static

mechanism design problem with multi-dimensional private information. Therefore,

the methods used in Chapter 1 will also be useful in static auction problems with

two dimensional private information (e.g. with buyers have privately known capacity

requirements or budget constraints).

The dynamic nature of the problem, however, is reflected in the conditions under

which the incentive constraint for the deadline is binding or slack. We analyze the

revenue maximizing mechanism for the case of symmetric information about the

deadline and show that there are two distinct effects that determine whether the

incentive constraint for the deadline is fulfilled even though it was not explicitly

imposed. The first effect which we call the static pricing effect can also be found in

static models with two-dimensional private information.3 The second effect, called

the dynamic pricing effect, is genuinely dynamic and has not been documented in

the literature so far. We will show that while different deadlines affect the nature

of competition with competing buyers, expected competition that buyer one faces is

independent of his deadline. If the deadline is two, buyer two has already arrived

when the deadline is reached. The seller can therefore use the realized valuation

of buyer two to decide whether buyer one gets the object and how much he has to

pay, rather than forming an expectation about buyer two’s valuation. Therefore,

competition is more dispersed for a later deadline. We show that non-linearities

in the hazard rate of the distribution of buyer one’s valuation, together with the

increased dispersion of competition, may lead to higher or lower payoffs for deadline

two. If the payoff increases in the deadline, buyer one has an incentive to reveal his

deadline truthfully. Conversely, if it decreases in the deadline, incentive compatibil-

ity is violated. In a static model, the second dimension of private information does

not determine the amount of information that the mechanism uses to determine the

allocation and payment. Therefore, different types do not lead to differences in the

dispersion of competition and the dynamic pricing effect does not occur.

Chapter 1 generalizes these observations and makes them precise. For reasons

of tractability, the analysis of the revenue-maximizing mechanism in the case of a

binding incentive constraint for the deadline is confined to the example introduced

above.

Chapter 2 contains a characterization of feasibility of asymmetric reduced form

auctions. This is a technical result that is needed to formulate revenue-maximization

3See Chapter 1 for references to this literature.
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problems in an auction context in terms of interim winning probabilities. The result

is applied in Chapter 1 to solve the two-dimensional mechanism design problem that

arises when the incentive constraint for the deadline is binding.

In Chapter 3, dynamic mechanism design is approached from a different angle,

which is new to the literature. We will consider the efficient allocation rule, which

is known to be implementable in quite general environments. We ask the question

whether in a private values setting, dynamic incentive provision conflicts with the

use of a simple payment rule. Inspired by standard static auctions, we require a

simple payment rule to fulfill the following properties:

(A) Only the winner of an object should have to make a payment.

(B) The payment of the winner should not exceed his valuation.

(C) The mechanism should never transfer money to any buyer.

Moreover, motivated by the dynamic model, we require that

(D) payments can be made online, i.e. all information that is needed to determine

the payment must be available at the time of allocation.

We argue in Chapter 3, that in a private values model, these properties are very

convenient for the practical implementation of a mechanism.

The question whether properties (A)–(D) can be fulfilled without violating in-

centives is not trivial in a dynamic model. So far, none of the mechanism proposed

to implement the efficient allocation rule satisfies all properties. In Chapter 3, a

partial answer is given. For the allocation of a single object in a quite general

dynamic model with independent private values, we demonstrate that the static

Vickrey auction, when generalized to implement the dynamically efficient allocation

rule, satisfies all properties (A)–(D).

In the standard static independent private values model, the payment rule of

the Vickrey auction can be interpreted in different ways. On the one hand, it a

Vickrey-Clarke-Groves mechanism. Therefore, the payment of a buyer corresponds

to the externality that he imposes on the other buyers. On the other hand, it is a

second-price auction. The payment of the winning bidder corresponds to his critical

type, i.e. the lowest bid with which he could have won for a given profile of bids of

the other buyers.

If we apply the first principle to the dynamic framework we obtain the mecha-

nisms found in the existing literature. All of these violate at least one of the prop-

erties (A)–(C). If we apply the second principle, we get a mechanism (at least in

the case of one object), that is incentive compatible and satisfies all properties (A)–

(D). In contrast to the static model, however, the payments in the dynamic Vickrey

auction do not always correspond to the externality imposed on other buyers.

The definition of Vickrey-payments according to the second principle is not trivial

because the model has a multi-dimensional type-space. The critical type is not just

the lowest valuation that suffices to win as in the static case. In Chapter 3, we

show that for the efficient allocation of one object, there exists an order on the type

space that allows to define critical types. We argue that the same construction is
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also possible for quasi-efficient allocations rules. Therefore, the existence of simple

payment rules is not limited to the efficient allocation rule. If future research shows

that the revenue maximizing allocation rules is quasi-efficient, then it will also be

implementable by a simple payment rule. Whether a similar construction is possible

for the case of more than one object remains an open question.





CHAPTER 1

Optimal Dynamic Mechanism Design with Deadlines

Summary. A dynamic mechanism design problem with multi-dimensional private
information is studied. One or several identical objects are sold to buyers who arrive
over a finite number of periods. In addition to his privately known valuation, each
buyer also has a privately known deadline for purchasing the object. The seller
wants to maximize revenue.
Depending on the type distribution, the incentive compatibility constraint for the
deadline may or may not be binding in the optimal mechanism. We identify a
static and a dynamic pricing effect that drive incentive compatibility and violations
thereof. Both effects are related to distinct properties of the type distribution and
sufficient conditions are given under which each effect leads to a binding or slack
incentive constraint for the deadline.
An optimal mechanism for the binding case is derived for the special case of one
object, two periods and two buyers. It can be implemented by a fixed price in
period one and an asymmetric auction in period two. The asymmetry prevails even
if the valuations of both buyers are identically distributed. In order to prevent buyer
one from buying in the first period when his deadline is two, the seller sets a reserve
price that is lower than in the classic (Myerson, 1981) optimal auction and gives
him a (non-linear) bonus. The bonus leads to robust bunching at the top of the
type-space. The optimal mechanism can be characterized in terms of generalized
virtual valuations which depend endogenously on the allocation rule.

1.1. Introduction

This chapter analyzes the problem of a seller, who wants to maximize revenue

in a dynamic environment. The seller has a finite number of identical units of a

good. Buyers have private values and unit demand, and arrive over a finite number

of periods. They are privately informed about their valuations, and each buyer has

a privately known deadline which determines the latest point in time at which he

still values buying a unit. To focus on the role of deadlines, we assume that the

seller observes new arrivals.

In many cases, buyers have deadlines that are imposed by third parties. Consider

for example a company that needs to buy a good from a seller in order to enter a

contractual relationship with a third party. The good could be a physical object, an

option contract, a license, a patent, etc. It is conceivable that the third party sets a

deadline after which the contractual relationship is no longer available. Therefore,

the object becomes worthless for the company if it is purchased after the deadline.

Other examples of dynamic allocation problems in which buyers can have deadlines

7



8 1. OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES

are online auctions (think for example of buying a birthday present at eBay), the

sale of airline tickets, hotel reservations or the sale of houses and real estate.

So far, most of the literature on dynamic mechanism design has abstracted from

private information about deadlines, or more generally, from private information

about time preferences (see Section 1.1.3). This abstraction typically leads to mech-

anism design problems with one-dimensional private information which are tractable

under quite general assumptions about the dynamic arrival of new bidders and new

objects. In this chapter, we take a different direction and allow for private informa-

tion about the deadline.

We derive conditions under which, in the optimal mechanism, the incentive con-

straint for the deadline is slack or binding, respectively. In the case of a slack

incentive constraint, the seller’s problem can be solved by standard techniques. For

a special case that ensures tractability, we can solve the two-dimensional adverse se-

lection problem that arises in the binding case. In contrast to the slack case, buyers

with different types are not fully separated. We find robust bunching at the top of

the type-space.

1.1.1. Summary of Results. As a benchmark, consider the relaxed problem of

maximizing the seller’s revenue when deadlines are commonly known. With com-

monly known deadlines, the seller can fully separate buyers with different deadlines

at no cost. If valuations are not discounted, it is optimal to sell to a buyer only if

his deadline is reached. Classic mechanism design theory can be used to deal with

asymmetric information about valuations. Following Myerson (1981), buyers are

compared in terms of their virtual valuations.1 A buyer is awarded a unit if and

only if his virtual valuation is higher than the opportunity cost of the seller, i.e. the

highest virtual valuation among the other buyers or the option value of postponing

the allocation of the unit to future periods. This allocation rule defines a critical

virtual valuation which a buyer must overbid in order to get a unit of the good.

The critical virtual valuation can also be used to determine the payment of a

winning bidder. Since the virtual valuation is a function of the true valuation, we can

define the payment as the lowest valuation that suffices to overbid the critical virtual

valuation. The seller uses the inverse of the virtual valuation as a pricing rule that

maps critical virtual valuations to payments of the winning bidders. Together with

the optimal allocation rule, this payment rule defines a revenue-maximizing mecha-

nism that is incentive compatible in dominant strategies if deadlines are commonly

known.2

With privately known deadlines, the seller can try to implement the relaxed

solution by asking the buyers to report their deadlines. Buyers can therefore choose

1The virtual valuation of a buyer equals his true valuation, i.e. the price that the seller could charge
from the buyer in the absence of asymmetric information, minus the expected incentive costs of
selling to buyers with this valuation.
2We only require Bayes-Nash incentive compatibility in the seller’s maximization problem but
implementability in dominant strategies is automatically fulfilled for the relaxed solution.
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in which period they buy. The relaxed solution is incentive compatible if no buyer

has an incentive to buy earlier by misreporting his deadline. In principle, there could

be three reasons why a buyer might want to buy earlier.

First, he might expect the critical virtual valuation to be lower in earlier peri-

ods. We call this effect the competition effect because the critical virtual valuation

represents competition by other buyers. We show, however, that there is no com-

petition effect in this model. The expected value of the critical virtual valuation is

independent of the deadline.3

Second, the mapping between virtual valuations and true valuations could change

with the reported deadline so that the seller uses a different pricing rule for different

deadlines. This is called the static pricing effect.4 The effect depends on stochastic

dependencies between the deadline and the valuation of a buyer. For example, if

valuations tend to be higher for earlier deadlines, than pricing will be more aggressive

for earlier deadlines. This ensures incentive compatibility of the relaxed solution.

Finally, while expected competition is independent of the deadline, the distribu-

tion of the critical virtual valuation is less dispersed for earlier deadlines. Extending

our result of equal expectations, we show that the critical virtual valuation for a later

deadline is a mean preserving spread of the critical virtual valuation for an earlier

deadline.5 This can lead to different expected prices if the virtual valuation, and

therefore the pricing rule used by the seller, is non-linear. This is called the dynamic

pricing effect because the stochastic dominance results from the dynamic nature of

the model. For example, if virtual valuations are convex, then the pricing rule is

concave and more dispersed critical virtual valuations lead to lower expected prices.

Since the dispersion increases in the deadline, this ensures incentive compatibility

of the relaxed solution.

The static as well as the dynamic pricing effect can also work in the opposite

direction. If valuations tend to be lower for earlier deadlines and if the virtual

valuation is a concave function, then prices tend to be lower for earlier deadlines.

This induces misreports of the deadline and the relaxed solution is not incentive

compatible.

If the incentive constraint for the deadline is binding, the analysis of the optimal

mechanism has to be restricted to get a tractable model. We consider the case of

3In models of dynamic learning informational externalities can lead to a competition effect because
the report of a buyer conveys information about future buyers’ type distributions and arrival time
distributions. Therefore, competition is not independent of a buyer’s private information (Gershkov
and Moldovanu, 2009a,b).
4This effect can also arise in static models with a second dimension of private information such as
a capacity requirement or a budget constraint.
5This result is shown for the case of one object and many time periods, and for the case of many
objects and two time periods. I conjecture that the result extends to the case of many objects and
many time periods. If this true, all results about the incentive compatibility of the relaxed solution
carry over to the general case.
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two buyers who arrive in two different time periods and assume that the seller has

a single indivisible object.

In this case, the relaxed solution as well as the optimal mechanism have the

following common structure: If buyer one reports that his deadline is one, the object

is offered to him in the first period for a fixed price. If he declines the offer, the object

is offered to the second buyer in the second period for a fixed price. If buyer one

reports deadline two, then the seller conducts an auction that gathers both buyers

in the second period.

With private information about the deadline, buyer two has the outside option

of buying in the first period instead of participating in the auction, if his deadline is

two. The seller has two instruments to make this outside option unprofitable. First,

he can increase the price offered if buyer one reports deadline one. Second, he can

distort the auction format in the second period in favor of buyer one, so that his

expected payoff from the auction rises compared to the relaxed solution. We derive

the optimal mechanism and show that the seller always uses both instruments.

The distortion of the auction format leads to an asymmetric auction that favors

buyer one, even if both buyers have identically distributed valuations. More pre-

cisely, the optimal reserve price for buyer one is lower than in the relaxed solution,

winning probabilities are higher for all valuations above the reserve price, and there

is a non-trivial interval of valuations at the top of the type-space that win the auc-

tion with probability one. The expected price paid by buyers with these valuations

equals the fixed price offered in the first period. Therefore, there is bunching in the

valuation dimension as well as the deadline dimension. This is in contrast to the

relaxed solution which fully separates buyers with different types for a large class

of type distributions. We provide several examples of distributions for which the

relaxed solution is not incentive compatible.

Finally, we propose a generalized virtual valuation for buyer one that allows

to describe the optimal auction in the same way as the classic optimal auction

(Myerson, 1981). A buyer wins if and only if his (generalized) virtual valuation is

non-negative and higher than that of his opponent. In contrast to the classic model,

the generalized virtual valuation has a parameter that depends endogenously on the

allocation rule. This parameter determines the magnitude of the distortion compared

to the relaxed solution (where the parameter vanishes). A simple procedure to

compute the optimal distortion is provided. Using the generalized virtual valuation

function, it is straight forward to define an ascending clock auction that implements

the optimal mechanism in the second period.

1.1.2. Methods. In the auction problem, we have to deal with a type-dependent

participation constraint for buyer one because he can choose to buy in the first pe-

riod. The participation constraint is defined in terms of the interim expected utility.

Therefore, Myerson’s (1981) classic approach to solve the optimal auction problem

by point-wise maximization is not applicable. Instead, the feasibility constraint,
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i.e. the condition that the object be allocated only once, is formulated in terms of

interim winning probabilities. We use the characterization of feasibility of asym-

metric reduced form allocation rules from Chapter 2 to solve the resulting control

problem.6

If the interim winning probability of buyer one is absolutely continuous, the fea-

sibility constraint can be substituted into the objective function. We get a standard

control problem in which the winning probability is a state variable and its deriva-

tive is the control. (See Guesnerie and Laffont (1984) for an early application of this

method). To allow for jumps in the winning probability, the control problem is first

solved under the assumption that the winning probability is Lipschitz continuous

(and hence absolutely continuous). The Lipschitz solutions converge to an optimal

solution of the general problem if the Lipschitz constant approaches infinity. This

method was pioneered by Reid (1968) and seems to be new to the mechanism design

literature. It may be useful in other auction models where continuity of the winning

probability is not guaranteed.7

Reid also provides a method to show that Myerson’s ironing procedure can be

applied to ensure monotonicity of the winning probability. This is important in the

present context because the usual hazard rate assumption on the type distribution,

which ensures a non-decreasing virtual valuation, does not guarantee monotonicity

of the generalized virtual valuation.8

1.1.3. Related Literature. The literature on dynamic revenue maximization

emerged from the literature on dynamic pricing and revenue management. For

a survey, see for example Elmaghraby and Keskinocak (2003). McAfee and te Velde

(2007) survey airline pricing. This literature typically assumes stochastic demand

and abstracts from strategic buyers. If buyers are short-lived and only one buyer is

present at the same time, this is a reasonable assumption and the optimal mecha-

nism is a sequence of posted prices (Das Varma and Vettas, 2001). Gallien (2006)

shows that a sequence of posted prices is the optimal strategy-proof mechanism for

the sale of an inventory of identical objects to long-lived buyers with a commonly

known discount factor. He gives conditions on the arrival time distribution that

ensure that buyers are served only upon arrival, providing some justification for

this assumption in the revenue management literature. More recently, Gershkov

6The characterization is a generalization of Border (1991) who studies symmetric allocation rules.
Matthews (1984) conjectured the result proven by Border (see also Chen, 1986). For an early
application of a special case of the result see Maskin and Riley (1984).
7Recently, Hellwig (2008) has derived a version of Pontriyagin’s maximum principle that allows
for a monotonicity constraint on the control variable without requiring absolute continuity. This
is not applicable here, however, as we have to deal with the non-standard feasibility constraint.
8Except for Myerson’s (1981) paper, which does not use control theory, there does not seem to be a
full-fledged solution technique for the (valuation-)bunching case. Guesnerie and Laffont (1984) and
earlier Mussa and Rosen (1978) derive necessary conditions for bunches, but do not give precise
conditions on the location of bunches.
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and Moldovanu (2008) derived the revenue maximizing policy for an inventory of

heterogeneous but commonly ranked objects.

Another strand of literature considers discrete time models in which several buy-

ers can arrive simultaneously. Vulcano, van Ryzin, and Maglaras (2002) show that

a sequence of auctions with appropriately chosen reserve prices maximizes revenue

if bidders are short-lived. Said (2008) considers a model with stochastic arrival and

exit of bidders that have unit demand and a commonly known discount factor. A

random number of perishable objects is available in each period. The optimal allo-

cation rule awards the objects to the bidders with the highest virtual valuations. It

can be implemented by a sequence of open auctions with suitable reserve prices.

Several papers have shown the implementability of the efficient allocation rule

in dynamic settings (Parkes and Singh (2003), Bergemann and Välimäki (2010),

Athey and Segal (2007)). Said (2008) also considers the efficient allocation rule for

the model described above and shows that the mechanism derived in Bergemann

and Välimäki (2010) can be implemented by a sequence of open auctions. Chapter

3 of this thesis shows that the efficient allocation of a single object with stochasti-

cally arriving long-lived bidders with privately known time preferences only requires

transfers between the seller and the winning bidder.

Pavan, Segal, and Toikka (2008) consider a very general dynamic mechanism

design model with a fixed set of agents who receive one-dimensional private infor-

mation in every period. For a special case, the revenue-maximizing allocation rule

can be described in terms of virtual surplus in this model.

While general multi-dimensional mechanism design models are very complex to

analyze (see e.g. Armstrong (1996), Rochet and Choné (1998) and Jehiel, Moldovanu,

and Stacchetti (1999)), several authors have analyzed two-dimensional models with

additional structure on the second dimension of private information (the deadline

in the present case). Firstly, in these models, agents only have feasible deviations

in one direction of the second dimension (i.e. report earlier deadlines but not later

deadlines). Secondly, the second parameter does not enter directly in the expected

utility of an agent (i.e. the true deadline is immaterial as long as the agent receives

the object before the deadline.) See Beaudry, Blackorby, and Szalay (2009) for an

analysis of optimal taxation; Blackorby and Szalay (2008) and Szalay (2009) for

regulation; Iyengar and Kumar (2008) for a static auction model with capacitated

bidders; Dizdar, Gershkov, and Moldovanu (2009) for a dynamic model with capac-

itated bidders; and Che and Gale (2000) and Malakhov and Vohra (2005) for static

models with budget constrained buyers.

Closest to this chapter is Pai and Vohra (2008b), who consider a slightly more

general dynamic allocation problem with buyers who have privately known deadlines.

They show that the relaxed solution is incentive compatible if the virtual valuation

is “sufficiently monotone” in the deadline. This roughly corresponds to the static

pricing effect we find in this chapter. Their condition, however, cannot be applied

directly to the primitives of the model (i.e. the type distribution).
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Szalay (2009) is the only other paper that derives the optimal mechanism for the

binding case. All other papers make assumptions that guarantee that the relaxed so-

lution is incentive compatible. Jullien (2000) studies a principal-agent problem with

type dependent participation constraints. The analysis of the auction model in the

present chapter, however, requires different solution techniques than the models of

Szalay (2009) and Jullien (2000) because of the (non-standard) feasibility constraint

and the possibility of discontinuities in the optimal solution.

Organization of the Chapter. Section 1.2 describes the model. Section 1.3

presents a characterization of incentive compatibility. Section 1.4 states the sellers

problem. Section 1.5 presents the relaxed solution, conditions for incentive com-

patibility and for violations thereof. Section 1.6 informally presents the general

solution for the specialized model described above. Section 1.7 concludes and dis-

cusses limitations of the model and possible generalizations. The formal derivation

of the results from Section 1.6 is developed in Appendix 1.A. Some other proofs are

relegated to Appendix 1.B.

1.2. The Model

A seller wants to maximize the revenue from selling K ∈ N identical units of a

good within T ∈ N time periods. The seller’s valuation is normalized to zero. In

each period, a random number of buyers Nt ∈ N0 arrives. To avoid measurability

problems, we assume that there exists a finite upper bound N̄ ∈ N such that Nt < N̄

for all t. The set of buyers who arrive in period t is denoted It and we write

I≤t =
⋃t

τ=1 Iτ and N≤t = |I≤t|.

Each buyer is interested in buying at most one unit. A buyer i ∈ It is character-

ized by his arrival time ai = t, his valuation vi ∈ [0, v], where v > 0, and his deadline

di ∈ {t, . . . , T}. The object cannot be sold to a buyer before his arrival time.

Utility is quasi-linear. If buyer i has to make a total payment of yi and gets

(at least) one object in periods ai, . . . , di, then his payoff is vi − yi. If he only gets

units in periods di + 1, . . . , T , or if he does not get any unit, then his payoff is −yi.

Buyers are risk-neutral and maximize expected payoff. Neither the buyers nor the

seller discount future payoffs.9

The number of arrivals in different periods are independently distributed. νt,n

denotes the probability that n buyers arrive in period t. Deadline and valuation

are jointly distributed for each buyer but independent for different buyers. Buyers

with the same arrival period are ex-ante identical. For given arrival time a, the

probability that the deadline of a buyer equals d is denoted ρa,d. Conditional on the

deadline, the valuation has distribution function Fa(v|d) and density fa(v|d).

9If only payments are discounted and all agents have a common discount factor, the results do not
change. See also Section 1.7 for a discussion of discounting.
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Information realizes over time. In period t, the numbers of future buyers Nt+1,

. . . , NT , and the types of buyers with ai > t, are not known to anybody. In par-

ticular, the decision to sell a unit in period t cannot be based on this information.

Upon arrival, each buyer privately observes his own valuation and his own deadline.

In order to focus on the incentive issues of private information about deadlines, we

assume that the seller observes the arrivals of all buyers.10 The distributions νt,n,

ρa,d and Fa(.|d) are commonly known from the first period on.

We assume that for all a and all d ≥ a, fa(v|d) is continuous in v and strictly

positive for all v ∈ [0, v], continuously differentiable in v for v ∈ (0, v), and that

f ′
1(.|d) can be extended continuously to [0, v].

Assumption 1.2.1. For all a ∈ {1, . . . T} and all d ∈ {a, . . . T}, the virtual valua-

tion Ja(v|d) := v − 1−Fa(v|d)
fa(v|d)

is strictly increasing in v.

To avoid additional technicalities, Assumption 1.2.1 is maintained throughout

the chapter. The zero of Ja(.|d) is denoted v0
a|d and v0

T if a = d = T .

1.2.1. Allocation Rule. In the most general formulation, a state st = (Ht, ξ<t)

consist of the history of buyers’ types Ht = ((ai, vi, di))i∈I≤t
, and the past allocation

decisions ξ<t = (ξ1, . . . , ξt−1), where ξτ ∈ {0, 1}N≤τ . ξτ,i = 1 means that buyer i gets

a unit in period τ . For a given history, the number of available units is denoted

kt = K −
∑t−1

τ=1

∑

i∈I≤τ
ξτ,i.

Definition 1.2.2. (i) The set of feasible allocations in state st = (Ht, ξ<t) is

defined as

Φt(st) =






ξt ∈ {0, 1}N≤t

∣
∣
∣
∣
∣
∣

∑

i∈I≤t

ξt,i ≤ kt






, (F)

and the set of allocations at the deadline in state st is defined as

Φ̃t(st) = {ξt ∈ Φt(st)|∀i ∈ I≤t : ξt,i = 0 if di 6= t} .

(ii) Let xt(ξt|st) denote the probability that allocation ξt is chosen in state st. An

allocation rule x = (x1, . . . , xT ) assigns a probability distribution over {0, 1}N≤t

to each state st = (Ht, ξ<t), such that xt(ξt|st) = 0 if ξt /∈ Φt(st).

(iii) An allocation rule x allocates only at the deadline if xt(ξt|st) = 0 for ξt /∈ Φ̃t(st).

(iv) An allocation rule is symmetric if for all t, all states st, all ξt ∈ Φ(st), and all

i, j ∈ I≤t, such that ai = aj , xt(ξt|st) = xt(σi,j(ξt)|σ̃i,j(st)).
11

(v) A payment rule y = (y1, . . . , yT ) assigns to each state st = (Ht, ξ<t) and each

ξt ∈ {0, 1}N≤t, a payment yt,i(st, ξt) ∈ R for each i ∈ I≤t. A payment rule

is symmetric if for all t, all st, all ξt and all i, j ∈ I≤t, such that ai = aj ,

yt(st,ξt) = σi,j(yt(σ̃i,j(st), σi,j(ξt)))

10See section 1.7 for a discussion of private information about arrival times.
11σi,j is the permutation that interchanges the ith and the jth element of its argument and σ̃i,j(st) =
(σi,j(Ht), (σi,j(ξ1), . . . , σi,j(ξt−1))).
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1.2.2. Mechanisms. The seller’s goal is to design a mechanism that has a Bayes-

Nash-Equilibrium which maximizes his expected revenue. We assume that the seller

can commit ex-ante to a mechanism. In general, a mechanism can be any game

form with T stages, such that only buyers from I≤t are active in stage t. We assume

that the mechanism designer can choose to conceal any information about the first

t stages from the buyers that arrive in stages t + 1, . . . , T .12

By the revelation principle, the seller can restrict attention to incentive compati-

ble and individually rational direct mechanisms in which no information is revealed.

Furthermore, since buyers who arrive in the same period are ex-ante identical, we

can restrict attention to symmetric allocation and payment rules. In the following,

we will dispense with the “symmetric” qualifier.

Definition 1.2.3. A direct mechanism consists of message spaces S1 = [0, v] ×

{1, . . . , T}, . . . , ST = [0, v] × {T}, a symmetric allocation rule x, and a symmetric

payment rule y.

The (reported) state in period t can be constructed from the reports until period

t, which yield Ht, and the past allocations ξ<t.

The interim winning probability for period t of a buyer i ∈ Ia who reports (v′, d′),

if all other buyers (past, current and future) report their types truthfully, is given

by

qt
a(v

′, d′) = Prob{ξt,i = 1|(ai, vi, di) = (a, v′, d′)}.

The interim expected payment is given by

pa(v
′, d′) = E

[
T∑

τ=a

yτ,i(sτ , ξτ)

∣
∣
∣
∣
∣
(ai, vi, di) = (a, v′, d′)

]

,

where we aggregate payments from different periods. (q, p) is called the reduced form

of (x, y). Explicit expressions can be found in Appendix 1.C. The interim expected

utility from participating in a mechanism (x, y), with true type (v, d) and report

(v′, d′) is given by

Ua(v, d, v′, d′) =

[
d∑

τ=a

qτ
a(v′, d′)

]

v − pa(v
′, d′). (1.2.1)

The expected utility from truth-telling is abbreviated Ua(v, d) := Ua(v, d, v, d).

Definition 1.2.4. (i) A direct mechanism (x, y) is (Bayesian) incentive compat-

ible if for all a ∈ {1, . . . , T}, all v, v′ ∈ [0, v], and all d, d′ ∈ {a, . . . , T},

Ua(v, d) ≥ Ua(v, d, v′, d′). (IC)

12This assumption yields an upper bound on the revenue that can be achieved. We will see that
this bound can also be achieved if buyers observe all information from past and current stages.
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(ii) A direct mechanism (x, y) is individually rational if for all a ∈ {1, . . . , T}, all

v, v′ ∈ [0, v], and all d ∈ {a, . . . , T},

Ua(v, d) ≥ 0. (IR)

1.3. Characterization of Incentive Compatibility

Since valuations are not discounted, the seller can restrict attention to direct

mechanisms that allocate only at the deadline.

Lemma 1.3.1. Let (x, y) be a direct mechanism that satisfies (IC) and (IR). Then,

there exists an allocation rule x̂ that allocates only at the deadline, such that the

direct mechanism (x̂, y) also satisfies (IC) and (IR). (x, y) and (x̂, y) yield the same

expected revenue.

Proof. See Appendix 1.B. �

In the rest of the chapter, only mechanisms that allocate only at the deadline are

considered and we write qa(v, d) instead of qd
a(v, d). Furthermore, with an allocation

rule that allocates only at the deadline, the buyers who were assigned units in the

past have deadlines di < t. Therefore, their identities are not relevant for current

and future allocation decisions and we sometimes replace ξ<t by kt in the state to

simplify notation.

For the class of mechanisms that allocate only at the deadline, the two-dimensio-

nal incentive compatibility constraint (IC) is equivalent to two one-dimensional con-

straints.

Theorem 1.3.2. Let (x, y) be a direct mechanism with reduced form (q, p), that

allocates only at the deadline.

(i) (x, y) is incentive compatible if and only if for all a ∈ {1, . . . , T}, all d ∈

{a, . . . , T}, and all v, v′ ∈ [0, v] :

v > v′ ⇒ qa(v, d) ≥ qa(v
′, d), (M)

Ua(v, d) = Ua(0, d) +

ˆ v

0

qa(s, d)ds, (PE)

Ua(v, d) ≤ Ua(v, d + 1), if d < T, (ICDd)

and Ua(0, d) = Ua(0, d + 1), if d < T. (ICDu)

(ii) Suppose K = 1, T = 2 and ν1,1 = 1. If for all v1 ∈ [0, v]:

x1 ( 1 | (H1 = (1, v1, 1), k1 = 1) ) ∈ {0, 1},

then (ICDd) holds for any v, if it is fulfilled for v = 0 and v = v.

Part (i) is the characterization of incentive compatibility for the general model.

The condition that qa(v, d) be non-decreasing, together with the payoff equivalence

formula (PE), is the standard characterization of one-dimensional incentive compat-

ibility for the valuation (Myerson, 1981).
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(ICDd) rules out that underreporting the deadline is profitable. Together with

(M) and (PE), this also rules out simultaneous misreports of an earlier deadline

d′ < d and a valuation v′ 6= v. For mechanisms that allocate only at the deadline,

the constraint takes this simple form because the utility of a buyer who under-reports

his deadline is independent of his true deadline (cf. (1.2.1)):

d′ ≤ d ⇒ Ua(v, d, v′, d′) = Ua(v, d′, v′, d′).

Incentive compatibility for the valuation implies that Ua(v, d′, v′, d′), and therefore

also Ua(v, d, v′, d′), is maximized by v′ = v. For v′ = v, (ICDd) rules out a downward

deviation in the deadline. Therefore, simultaneous deviations in the deadline and

the valuation are also ruled out. Necessity of (ICDd) is obvious.

The downward incentive compatibility constraint for the deadline is similar to a

type dependent participation constraint. A buyer with arrival time a and deadline

d has the “outside option” to report d′ ∈ {a, . . . , d − 1}. He only “participates”

voluntarily with d′ = d if his payoff with d′ = d exceeds the payoff of his best

outside option.

Finally, (ICDu) rules out upward deviations in the deadline. A deviation to the

outside option of reporting d′ > d can only be profitable if the mechanism pays a

subsidy for a report d′, i.e. if pa(v, d′) < 0. (PE) implies that subsidies are non-

increasing in the valuation. Therefore, the highest subsidy (if any) is paid for (0, d′).

By (PE), v = 0 is also the valuation for which over-reporting the deadline is most

tempting. Hence, to rule out upward deviations in the deadline, it suffices that

Ua(0, d) = −pa(0, d) ≥ −pa(0, d
′) = Ua(0, d

′). Together with (ICDd) for v = 0, this

is equivalent to (ICDu).13 Again, necessity is obvious.

Part (ii) of the theorem concerns the case of one unit and two periods. Further-

more, it is assumed that in period one, exactly one buyer arrives with probability

one. The theorem states that the downward constraint for the deadline has to be

checked only for the highest type if the allocation rule does not use lotteries in the

first period. This result is very useful. It implies that the point where the constraint

is binding is independent of the solution. The result is true because q1(v, 1) jumps

from zero to one at v = v − U1(v, 1) if the allocation is deterministic and N1 = 1.

Therefore, the utility schedule for d = 1 is the lowest schedule that is consistent

with U1(0, 1), U1(v, 1) and (PE). If U1(0, 1) = U1(0, 2) and U1(v, 1) ≤ U1(v, 2), then

U1(v, 2) must necessarily be greater than U1(v, 2) for all v ∈ [0, v].

13Here, we use that the lower bound of the support of fa is zero. If fa has support [v, v] with v > 0,
then the upward incentive compatibility constraint for the deadline would be qa(v, d)v−pa(v, d) ≥
−pa(v, d + 1). In this case, a subsidy could be used to separate buyers with different deadlines.
One can show, however, that this instrument would not be used in the optimal mechanism unless
the allocation rule is sufficiently distorted. The reason is that the cost of a subsidy is of first order
whereas the cost of distorting the allocation rule is of second order.
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1.4. The Seller’s Problem

By the revelation principle and Lemma 1.3.1, the seller’s problem is to choose

an incentive compatible and individually rational direct mechanism that allocates

only at the deadline, to maximize

T∑

a=1

E[Na]E[pa(v, d)] =

T∑

a=1

[(
N̄∑

Na=1

Na νa,Na

)
T∑

d=a

ρa,d

ˆ v

0

pa(v, d)fa(v|d)dv

]

.

Using (PE) to substitute the payment rule, integrating by parts and setting

Ua(0, d) = 0 for all a ∈ {0, . . . , T} and all d ∈ {a, . . . , T}, the objective of the seller

becomes
T∑

a=1

[(
N̄∑

Na=1

Na νa,Na

)
T∑

d=a

ρa,d

ˆ v

0

qa(v, d)Ja(v|d)fa(v|d)dv

]

.

If we substitute q1(v, d), this can be rearranged to14

Es1




∑

ξ1∈Φ̃1(s1)

x1(ξ1|s1)




∑

i∈I1

ξ1,iJai
(vi|1) + Es2




∑

ξ2∈Φ̃2(s2)

x2(ξ2|s2)




∑

i∈I≤2

ξ2,iJai
(vi|2)+

. . . EsT




∑

ξT ∈Φ̃T (sT )

xT (ξT |sT )
∑

i∈I≤T

ξT,iJai
(vi|T )

∣
∣
∣
∣
∣
∣

sT−1, ξT−1



 . . .





∣
∣
∣
∣
∣
∣

s1, ξ1











 ,

where Est
denotes the expectation with respect to st. It is more convenient to

formulate the seller’s problem as a recursive dynamic program R:

VT (sT ) := max
xT

∑

ξT ∈Φ̃T (sT )

xT (ξT |sT )




∑

i∈I≤T

ξT,iJai
(vi|T )



 , (R)

∀t < T : Vt(st) := max
xt

∑

ξt∈Φ̃t(st)

xt(ξt|st)




∑

i∈I≤t

ξt,iJai
(vi|t) + Est+1 [Vt+1(st+1)|st, ξt]



 ,

where the reduced form of the optimal policy must satisfy (M) and (ICDd) with

Ua(v, d) given by (PE) and Ua(0, d) ≡ 0.

1.5. The Relaxed Solution

In order to derive conditions under which the constraint (ICDd) is binding, we

first solve R subject to (M) only. This is the relaxed problem and corresponds to

the case where deadlines are observed by the seller.

As in the classic optimal auction problem, Assumption 1.2.1 guarantees that at

the optimal policy for the relaxed problem, (M) is slack (Myerson, 1981). Therefore,

we can ignore (M) in the derivation of the relaxed solution.

14Here, we use the assumption that Nt ≤ N̄ for all t. See McAfee and McMillan (1987) for a
similar derivation with a stochastic number of bidders in a static model.
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For a given state st, define ct
(1) ≥ . . . ≥ ct

(K) as the K highest virtual valuations

among the buyers i ∈ I≤t with deadlines di = t. Let it(1), . . . , i
t
(K) denote the identities

of buyers with these virtual valuations, i.e. for all k = 1, . . . , K: dit
(k)

= t and

Ja
it
(k)

(vit
(k)
|t) = ct

(k).
15 Furthermore, define ∆t+1(st, k) = Est+1[Vt+1(st+1)|st, kt+1 =

k] − Est+1[Vt+1(st+1)|st, kt+1 = k − 1]. ∆t+1(st, k) is the marginal option value of

retaining the kth unit in period t. Note that the marginal option values are non-

increasing in k. k∗
t+1, the optimal number of units that are retained for period t+1,

is determined by the following conditions:16

ct
(kt−k∗

t+1)
> ∆t+1(st, k

∗
t+1 + 1) if k∗

t+1 < kt,

and ct
(kt−k∗

t+1+1) ≤ ∆t+1(st, k
∗
t+1) if k∗

t+1 > 0.

The set of winning buyers is given by

W ∗
t (st) :=

{

it(1), . . . , i
t
(kt−k∗

t+1)

}

.

The optimal policy for the relaxed problem is deterministic and given by

xrlx
t (ξt|st) =

{

1 if ξt,i = 1 ⇔ i ∈ W ∗
t (st),

0 otherwise.

A buyer’s type determines whether the buyer is in the set of winning bidders at

his deadline, but it can also influence the number of units that are available at the

deadline. Let k∗
a,d(Hd,−i, (a, v, d), ka) be the number of units that are available in pe-

riod d if buyer i arrives in period a with type (a, v, d) and ka units are available in the

arrival period. Buyer i gets a unit if i ∈ W ∗
d ((Hd,−i, (a, v, d)), k∗

a,d(Hd,−i, (a, v, d), ka)).

Therefore, we define the critical virtual valuation of buyer i in state sd for given ka

as

ζ i
a,d(Hd, ka) := inf

{
ζ
∣
∣i ∈ W ∗

d ((Hd,−i, (a, J−1
a (ζ |d), d)), k∗

a,d(Hd,−i, (a, J−1
a (ζ |d), d), ka))

}
.

With this definition, i gets a unit only if Jai
(vi|di) ≥ ζ i

a,d(Hd, ka).
17

The relaxed solution can be implemented by the following payment rule:

yrlx
i (st, ξt) =

{

0, if ξt,i = 0,

J−1
ai

(ζ i
ai,di

(Hdi
, ka)|t), if ξt,i = 1.

With this payment rule, the payment of a losing buyer is zero and each winner pays

the lowest valuation with which he could have obtained a unit for given ka and a

given history of buyer arrivals in until period d. Thus, truth-telling is a weakly

15We assume that ties are broken in favor of buyers who arrive earlier, and randomly if there is a tie
between two buyers with the same arrival time. Other tie-breaking rules yield the same expected
revenue.
16Here we assume that ties are broken in favor of a later allocation. Again, other tie-breaking rules
yield the same expected revenue.
17The converse is not necessarily true. If Jai

(vi|di) = ζi
a,d(Hd, ka), the tie-breaking rule determines

whether i ∈ W ∗

d ((Hd,−i, (a, v, d)), k∗

a,d(Hd,−i, (a, v, d), ka)).
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dominant strategy if the deadline is known to the sellers, and buyers only report

their valuations.

Now we turn to the question whether the relaxed solution is incentive compatible

if the deadline is privately known. By (PE), expected payoffs are determined by the

allocation rule except for the constant Ua(0, d). (ICDu) implies that Ua(0, d) =

Ua(0, d
′) for all a ≤ d′ ≤ d. Therefore, the constants Ua(0, d) cannot be used to

separate buyers with different deadlines. It suffices to check whether the expected

payoffs for the payment rule yrlx defined above satisfy (ICDd).

In order to compare expected payoffs for different deadlines, we make the follow-

ing crucial observation:

Lemma 1.5.1. Suppose that K = 1 or T ≤ 2. Let a < T . For all states sa, all i ∈ Ia

with deadline d > a, and for all d′ ∈ {a, . . . , d − 1},

EHd′

[
ζ i
a,d′(Hd′, ka)

∣
∣sa

]
= EHd

[
ζ i
a,d(Hd, ka)

∣
∣sa

]

and
[
ζ i
a,d′(Hd′, ka)

∣
∣sa

]
≻SSD

[
ζ i
a,d(Hd, ka)

∣
∣sa

]
,

where ≻SSD denotes second-order stochastic dominance.

Proof. See Appendix 1.B. �

The following example illustrates the lemma. Suppose that T = 2, K = 1,

ν1,2 = 1 and ν2,1 = 1. Let the sets of new buyers in period one and two be I1 = {1, 2}

and I2 = {3}, respectively. In this case, the critical virtual valuations of buyer one

for d1 = 1 and d1 = 2 are given by

ζ1
1,1(H1, 1) =

{

max {J1(v2|1), Ev3 [max {0, J2(v3|2)}]} , if d2 = 1,

Ev3 [max {0, J1(v2|2), J2(v3|2)}] , if d2 = 2,

ζ1
1,2(H2, 1) =

{

max {z(J1(v2|1)), J2(v3|2)} , if d2 = 1,

max {0, J1(v2|2), J2(v3|2)} , if d2 = 2,

where z(J1(v2|1)) = min {z ≥ 0 |Ev3 [max {z, J2(v3|2)}] ≥ J1(v2|1)} .

If d1 = 2 and d2 = 1, then the object is retained in period one if and only if buyer

1’s virtual valuation is greater or equal than z(J1(v2|1)). In other words, buyer one

must have a virtual valuation J1(v1|2) ≥ z(J1(v2|1)) to overbid buyer two in the first

period. Since max {J1(v2|1), E [max {0, J2(v3|2)}]} = E [max {z(J1(v2|1)), J2(v3|2)}],

we have that ζ1
1,1(H1, k1) = Ev3 [ζ

1
1,2(H2, k1)|s1] as stated in the lemma.

Buyer one faces competition by both buyers, no matter whether his deadline is

d1 = 1 or d1 = 2. In both cases, he competes directly with buyer two. Competition

with buyer 3 is direct if d1 = 2 and indirect, through the option value of retaining

the object, if d1 = 1. A later deadline has two effects, first it lowers the virtual

valuation needed to overbid buyer two, because z(J1(v2|1)) < J1(v2|1) if v2 < v

and J1(v2|2) < Ev3 [max {J1(v2|2), J2(v3|2)}]. Second, a higher virtual valuation

is needed to overbid buyer three whenever J2(v3|2) > Ev3 [max {0, J2(v3|2)}]. The

lemma shows that the two effects cancel in expectation. If we interpret the critical
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virtual valuation as a measure of competition by other buyers, this shows that

expected competition is independent of the reported deadline. Hence, differences in

expected payoffs for different deadlines are not caused by a competition effect.

In this example, second order stochastic dominance is obvious because condi-

tional on s1, ζ1
1 (s1) is constant and therefore dominates ζ1

2 (s2) which has the same

expectation.

The following theorem gives sufficient conditions under which the static and the

dynamic pricing effects lead to incentive compatibility of the relaxed solution and

violations of incentive compatibility, respectively.

Theorem 1.5.2. Suppose that K = 1 or that T ≤ 2. Then, in the relaxed solution,

(i) (ICDd) is violated for type (a, v, d) if there exits d′ ∈ {a, . . . , d − 1}, such that

(a) Ja(v|d
′) ≥ Ja(v|d) for all v ∈ [v0

a|d
′, v], and

(b) Ja(v|d) or Ja(v|d
′) is strictly concave as a function of v.

If Ja(v|d
′) > Ja(v|d) for all v ∈ [v0

a|d, v), strict concavity can be replaced by

weak concavity.

(ii) (ICDd) is satisfied for type (a, v, d) if for all d′ ∈ {a, . . . , d − 1},

(a) Ja(v|d
′) ≤ Ja(v|d) for all v ∈ [v0

a|d, v], and

(b) Ja(v|d) or Ja(v|d
′) is weakly convex as a function of v.

Proof. See Appendix 1.B. �

Conditions (a) in both parts of the theorem correspond to the static pricing effect.

By the definition of the virtual valuation, these conditions can also be formulated

as monotonicity conditions on the conditional hazard rate of the type distribution.

Conditions (b) correspond to the dynamic pricing effect.

Let us consider a buyer with the highest possible valuation v = v. Such a buyer

wins with probability one, regardless of his deadline. Therefore, his expected payoff

only depends on the expected price he has to pay. The static pricing effect is caused

by dependencies between deadlines and valuations. If Ja(v|d) ≤ Ja(v|d
′) for d > d′,

then v tends to be higher for the later deadline. This leads to more aggressive

pricing for the later deadline (J−1
a (v|d) > J−1

a (v|d)). Therefore, the buyer would

like to pretend to have the earlier deadline in order to avoid higher prices—incentive

compatibility is violated.

Note that this effect does not depend on the stochastic dominance result in

Lemma 1.5.1. Indeed, it can also be found in static models where the second di-

mension of private information (e.g. a capacity requirement) is correlated with the

valuation.

The dynamic pricing effect is caused by stochastic dominance of the critical vir-

tual valuations, which arises because later allocation decisions are based on more

information than earlier decisions. Therefore, the effect is genuinely dynamic. More-

over, it does not depend on correlations and also occurs if the deadline and the

valuation are independently distributed. Suppose that the virtual valuation is con-

cave. Then the pricing rule J−1
a (ζ |d) used by the seller is convex and expected prices
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density (support: [0, 1]) J(v) J ′′(v)

2v 1
2

3v2−1
v

− 1
v3 < 0

1 − k + 2kv (k ∈ (0, 1]) 2v−2kv+3kv2−1
1−k+2kv

− 2k(1+k)2

(1−k+2kv)3
< 0

(k + 1)vk (k > 0) vk+2v−v−k

k+1
−v−2−kk < 0

12(v − 1
2
)2 2

3
v2(4v−3)
(2v−1)2

− 4
(2v−1)4

< 0
3
2
− 6(v − 1

2
)2 8v2−v−1

6v
− 1

3v3 < 0

2 − 2v 3v
2
− 1

2
0

1 (uniform) 2v − 1 0

(1 + k)(1 − v)k (k+2)v−1
k+1

0

1 − k + 2kv (k ∈ [−1, 0)) 2v−2kv+3kv−1
1−k+2kv

− 2k(1+k)2

(1−k+2kv)3
> 0

Table 1. Distributions with strictly concave, linear,
and strictly convex virtual valuations.

are higher if the distribution of the critical virtual valuation is more dispersed. By

Lemma 1.5.1 this is the case for higher deadlines. Therefore, the buyer prefers to

report the lower deadline to avoid higher prices. Again, incentive compatibility is

violated.

Both effects work in the opposite direction if the virtual valuation is increasing

in the deadline, and convex in the valuation, respectively. To show incentive com-

patibility of the relaxed solution, however, (ICDd) also has to be checked for v < v.

Details are given in the proof.

Table 1 shows densities and virtual valuations for several distributions. For the

first group, the virtual valuation is strictly concave wherever it is non-negative. For

the second group, it is linear and for the third group it is convex. If valuation and

deadline of a buyer are independently distributed, the relaxed solution violates in-

centive compatibility for all distributions in the first group and satisfies incentive

compatibility for all other examples. An example for a violation of incentive com-

patibility for the dependent case is f1(v|1) = 2 − 2v and f1(v|2) = 1. In this case,

the virtual valuation is linear for both distributions but strictly decreasing in the

deadline. If we exchange f1(v|1) and f1(v|2), incentive compatibility is satisfied for

buyers with types (1, v, 2). Other examples are easily constructed.

Remark: Lemma 1.5.1 conditions on the state in the arrival period. Therefore, the

incentive compatibility result of Theorem 1.5.2 also holds if buyers can condition

their reports on the state at their arrival time. In other words, under the conditions of

part (ii) of the theorem, the relaxed solution is periodic ex-post incentive compatible.

This shows that the optimal solution does not rely on the seller’s ability to conceal

information from earlier periods.
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1.6. The General Solution

In cases where the relaxed solution is not incentive compatible, the analysis is

significantly more complex. For tractability, we solve the general problem for the

case of two periods (T = 2), one object (K = 1) and assume deterministic arrival of

one buyer in each period (ν1,1 = ν2,1 = 1). Furthermore, we will make an assumption

that ensures that the optimal mechanism does not use lotteries in the first period

(Assumption 1.6.1 below). For this case, we solve R subject to (M), (ICDd) and

(PE). Assumption 1.2.1 guarantees that in the optimal solution, (M) is slack for

buyer two. For buyer one, however, this assumption is not sufficient to guarantee

monotonicity of the optimal solution. In Section 1.6.4, we show how the mechanism

has to be ironed if (M) is binding at the optimal solution.

In the following section, we will simplify the notation and decompose the seller’s

problem into two subproblems; one for d1 = 1 and one for d1 = 2. These problems

are only linked by the incentive compatibility constraint for the deadline (ICDd). In

Section 1.6.2, we impose an assumption that rules out lotteries and solve the revenue

maximization problem for d1 = 1. Section 1.6.3 deals with the problem for d1 = 2

in the regular case where the monotonicity constraint is slack. Section 1.6.4 gives

the general solution that also applies to the irregular case of a binding monotonicity

constraint. The reader may want to skip section 1.6.4 at the first read. Finally, we

combine the solutions to a solution for the general problem.

1.6.1. Decomposition of the seller’s problem. Since N1 = N2 = 1 we write d,

ρ, f2(v2), and F2(v2) instead of d1, ρ1,1, f2(v2|2), and F2(v2|2), respectively. Slightly

abusing notation, we write winning probabilities as

x1(v1, 1) = x1 ( ξ1 = (1) | s1 = ((1, v1, 1), 1) ) ,

x1(v1, 2, v2) = x1 ( ξ2 = (1, 0) | s2 = (((1, v1, 2), (2, v2, 2)), 1) ) ,

and x2(v1, d, v2) = x2 ( ξ2 = (0, 1) | s2 = (((1, v1, d), (2, v2, 2)), 1) ) .

x1(v1, 1) is the probability that buyer one gets the object if his deadline is one.

xi(v1, d, v2) is the probability that buyer i gets the object for a given type-profile

and conditional on the event that the object has not been allocated in period one.

Note that x is feasible if and only if for all v1, v2 ∈ [0, v], d ∈ {1, 2}, and i ∈ {1, 2},

x1(v1, 1), xi(v1, d, v2) ∈ [0, 1] and x1(v1, 2, v2) + x2(v1, 2, v2) ≤ 1. (F)

The feasibility constraint for d = 1 is fulfilled automatically because x2(v1, 1, v2) is

the winning probability of buyer two conditional on the event that the object has

not been allocated in the first period.

Interim winning probabilities of buyer one are given by:

q1(v1, 1) = x1(v1, 1),

and q1(v1, 2) =

ˆ v

0

x1(v1, 2, v2)f2(v2)dv2.
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Furthermore, we define the interim winning probability of buyer two, conditional on

the deadline of buyer one and the event that the object has not been allocated in

period one as:

q2(v2, d) =

ˆ v

0

x2(v1, d, v2)f1(v1|d)dv1.

Hence, we have

q2(v2) = ρ

(
ˆ v

0

(1 − x1(v1, 1))f1(v1|1)d1

)

q2(v2, 1) + (1 − ρ)q2(v2, 2).

With these definitions, R subject to (ICDd), (PE) and (M) for buyer one can be

rewritten as the maximization problem P:

max
q

ρ

ˆ v

0

[

q1(v1, 1)J1(v1|1) + (1 − q1(v1, 1))

ˆ v

0

q2(v2, 1)J2(v2)f2(v2)dv2

]

f1(v1|1)dv1

+ (1 − ρ)

ˆ v

0

q1(v, 2) J1(v|2) f1(v|2) + q2(v, 2) J2(v) f2(v) dv (P)

such that q is the reduced form of a feasible allocation rule and subject to

∀d ∈ {1, 2}, ∀v, v′ ∈ [0, v] : v > v′ ⇒ q1(v, d) ≥ q1(v
′, d) (M1)

∀d ∈ {1, 2}, ∀v ∈ [0, v] : U1(v, d) =

ˆ v

0

q1(s, d)ds, (PE1)

∀v ∈ [0, v] : U1(v, 1) ≤ U1(v, 2). (ICDd
1)

Except for the incentive constraint for the deadline (ICDd
1), the expected revenue

for d = 1 (first line in the objective) and d = 2 (second line) can be maximized

independently. In order to decompose the seller’s problem, we introduce a function

U : [0, v] → [0, v] that separates U1(., 1) from U1(., 2):

∀v ∈ [0, v] : U1(v, 1) ≤ U(v) ≤ U2(v, 2). (ICDd
U)

Using U as a parameter, the maximization problem can be rewritten as P ′:

max
U

ρ π1[U ] + (1 − ρ) π2[U ] (P ′)

π1[U ] is defined as the maximal expected revenue that can be achieved if the

deadline is one and the expected payoff of the first buyer is constrained by U1(v, 1) ≤

U(v) for all v ∈ [0, v]. This maximization problem is called P1:

π1[U ] := max
qi(.,1)

ˆ v

0

[

q1(v1, 1)J1(v1|1) + (P1)

(1 − q1(v1, 1))

ˆ v

0

q2(v2, 1)J2(v2)f2(v2)dv2

]

f1(v1|1)dv1

s.t. qi(v, 1) ∈ [0, 1], (PE1), (M1) and (ICDd
U)

π2[U ] is defined as the maximal expected revenue that can be achieved if the

deadline is two and the utility of the first buyer is constrained by U1(v, 2) ≥ U(v)
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for all v ∈ [0, v]. This maximization problem is called P2:

π2(U) := max
qi(.,2)

ˆ v

0

q1(v, 2)J1(v|2)f1(v|2) + q2(v, 2)J2(v)f2(v)dv (P2)

s.t. (F),(PE1), (M1) and (ICDd
U).

If P1 and P2 are solved for the same U , we get a solution for P. Therefore, P
can be reformulated as a problem of choosing U optimally as in P ′.

1.6.2. Solution to P1. If (ICDd
U) is ignored, P1 is equivalent to the problem of

finding the optimal selling strategy for a sequence of short-lived buyers. The optimal

solution is a sequence of fixed prices (Riley and Zeckhauser, 1983). Optimal prices

are determined working backwards in time. If the object was not sold in the first

period, the optimal price in the second period is r2 = v0
2. This implies an option

value of postponing the allocation of V opt
2 :=

´ v

v0
2
J2(v2)f2(v2)dv2 = v0

2(1 − F2(v
0
2)).

Consequently, the optimal price in the first period, r1, is given by J1(r1|1) = V opt
2 .

This is the relaxed solution of P1.

If constraint (ICDd
U) is imposed, the optimal solution to P1 may involve lotter-

ies.18 To rule out this possibility we make

Assumption 1.6.1. J1(v|1)f1(v|1) is strictly increasing for all v ∈ [v0
1|1, v].

Theorem 1.3.2 implies that if the allocation rule is deterministic in the first

period, (ICDd
U) reduces to U1(v, 1) ≤ Ū , where we define Ū := U(v). We will

therefore treat π1 as a function of Ū and write π1(Ū) instead of π1[U ] in this case.

The optimal fixed price in period one is now given by the lowest price that satisfies

J1(r1|1) ≥ V opt
2 and v − r1 ≤ Ū . The optimal fixed price in period two, r2, is not

affected by constraint (ICDd
U).

Theorem 1.6.2. Suppose f1 satisfies Assumption 1.6.1. Then

(i) the optimal solution of P1 does not use lotteries in the first period and is given

by

q1(v1, 1) =

{

0, if J1(v1|1) < max{V opt
2 , J1(v − Ū |1)},

1, otherwise,

q2(v2, 1) =

{

0, if J2(v2) < 0,

1, otherwise.

(ii) π1(Ū) is continuously differentiable for Ū ∈ (0, v) and strictly concave in Ū for

Ū < v − J−1
1 (V opt

2 ).

18The no-haggling result of Riley and Zeckhauser (1983) is a consequence of a special structure
of the feasible set of the maximization problem. Manelli and Vincent (2007) show that the set of
extremal points of the feasible set, which contains the maximizers, is equal to the set of deterministic
allocation rules. Due to the additional constraint (ICDd

U), the set of extremal points changes.
Rather than trying to extend the results of Manelli and Vincent here, we use Assumption 1.6.1 as
a sufficient condition for a deterministic mechanism.
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Proof. See Appendix 1.B. �

To understand the role of Assumption 1.6.1, note that in the constraint U(v) ≥
´ v

0
q1(s, 1)ds, winning probabilities are not weighted in the integral because incentive

compatibility constraints are independent of the buyer’s own distribution function.

In the objective, however, q1(v1, 1) is weighted by (J1(v1|1)−V opt
2 )f1(v1|1). Increas-

ing the winning probability q1(v1, 1) for valuations in [v, v + ε] and decreasing it by

the same amount on [v′, v′ +ε], with v′ +ε ≤ v, decreases U1(v1, 1) for v1 ∈ [v′, v+ε]

and leaves U1(v1, 1) unchanged otherwise. Hence, such a change in q1 does not de-

stroy incentive compatibility. On the other hand, this shift of winning probability

from low to high types increases the seller’s revenue if (J1(v1) − V opt
2 )f1(v1) is in-

creasing. Assumption 1.6.1 guarantees that (J1(v1|1) − V opt
2 )f1(v1|1) is increasing

whenever J1(v1|1) − V opt
2 ≥ 0. Therefore, the winning probability must jump from

zero to one at some point and the allocation is deterministic.

If Assumption 1.6.1 does not hold, raising the winning probability for a lower

valuation may be more profitable than for a higher valuation because it is sufficiently

more likely that buyer one has the low valuation. For this to be the case, the de-

crease in the density must outweigh the increase in expected revenue, i.e. the virtual

valuation. Finally, note that Assumption 1.6.1 is a sufficient condition. Presumably,

a necessary and sufficient condition cannot be stated as a local condition.

1.6.3. Solution to P2 – The Regular Case. In this section, we solve P2, im-

posing (ICDd
U) only for v = v. By Theorems 1.3.2 and 1.6.2, this is sufficient for

the general problem if Assumption 1.6.1 is fulfilled. In the derivation of the optimal

solution of P2, however, Assumption 1.6.1 is not used. Therefore, the results of

this and the following section also apply if the mechanism designer is exogenously

restricted to set a fixed price in the first period.

To state the optimal solution, we define the generalized virtual valuation of buyer

one:

JpU

1 (v) := J1(v|1) +
pU

f1(v|1)
.

The parameter pU determines the magnitude of the distortion of the allocation rule

away from Myerson’s (1981) solution for P2 without (ICDd
U). (pU is the multiplier

of constraint (ICDd
U) in the underlying control problem.) Suppose we already know

the optimal pU . Then, the optimal allocation rule is given by

x1(v1, 2, v2) =

{

0, if JpU

1 (v1) < max{0, J2(v2)}

1, otherwise,

x2(v1, 2, v2) =

{

0, if J2(v2) ≤ max{0, JpU

1 (v1)}

1, otherwise.

(1.6.1)

For every Ū ∈ [0, v), let p∗
Ū

be the lowest value pU ≥ 0, such that the reduced form

of (1.6.1) satisfies
´ v

0
q1(v, 2)dv ≥ Ū .
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one wins
W1: buyer

W2: buyer
two wins

0
0

v

v0
2

v1

v

v2

J1(v1|2) = J2(v2)

v0
1αα ββ

(J1(v1|2) − J2(v2))f1(v1|2) = −pU

Figure 1.6.1. Optimal allocation rule

Theorem 1.6.3. Fix Ū and suppose J
p∗

Ū

1 (v1) is strictly increasing in v1. Then

(i) the reduced form of (1.6.1) for pU = p∗
Ū

is an optimal solution of P2 subject to

(M1), (PE1), and (ICDd

U) for v = v.

(ii) p∗U = −π′
2(Ū).

(iii) π2 is weakly concave.

Proof. Theorem 1.6.3 is a special case of Theorem 1.6.5 below. �

If the relaxed solution is incentive compatible, pU is zero and valuations (v1, v2)

tie if J1(v1|2) = J2(v2) as in Myerson’s solution. If the relaxed solution is not

incentive compatible, pU is strictly positive and valuations tie if JpU

1 (v1) = J2(v2),

which is equivalent to

(J1(v1|2) − J2(v2))f1(v1|2) = −pU . (1.6.2)

Figure 1.6.1 sketches both cases for identically distributed valuations (f1(.|2) = f2).

The solid line is the Myerson-line at which valuations tie in the relaxed solution.

The dashed line is the distorted Myerson-line at which valuations tie in the general

solution. Note that for pU > 0, valuations tie in an area where the (standard) virtual

valuation of buyer one is strictly smaller than the virtual valuation of buyer two.

To understand condition (1.6.2), consider the effect on π2 of an increase of q1(., 2).

Fix any (v1, v2) on the distorted Myerson-line, such that 0 ≤ JpU

1 (v1) ≤ v. In the

figure, this corresponds to α ≤ v1 ≤ β. In order to increase q1(v1, 2), the allocation

has to be changed from buyer two to buyer one at (v1, v2). This leads to a marginal

change of π2 by J1(v1|2)−J2(v2) < 0 per mass of type profiles for which the allocation

is changed. This mass of type profiles is proportional to f1(v1|2). Hence, the left-

hand side of (1.6.2) quantifies the marginal cost of increasing q1(v1, 2).
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The marginal cost of increasing q1(v1, 2) must be independent of v1. The reason

is that winning probabilities are not weighted in the constraint
´ v

0
q1(s, 2)ds ≥ Ū .

If the marginal cost of changing q1(v1, 2) varied with v1, we could increase q1(v1, 2)

where the marginal cost is small and decrease it where the marginal cost is big. If

we chose this variation such that U1(v, 2) =
´ v

0
q1(s, 2)ds were not changed, we could

increase the objective function without violating the constraints—a contradiction.

Hence, the marginal cost of increasing q1(., 2) must be constant and equal to pU for

all v1 ∈ [α, β]. As the utility of the highest type is given by U1(v, 2) =
´ v

0
q1(s, 2)ds,

pU can also be interpreted as the marginal cost of the constraint U1(v, 2) ≥ Ū .

Furthermore, note that the distortion is increasing in pU , and that by Assumption

1.2.1, the marginal cost of a distortion is increasing in the distance from the Myerson

solution (the LHS of (1.6.2) is decreasing in v2). Therefore, it is optimal to choose

the lowest pU such that (ICDd
U) is satisfied, and the cost of distortions is convex,

which implies concavity of π2 in Ū .

(1.6.2) also implies that the distortion of the Myerson-line is bigger for types

with lower densities. This is intuitive because the expected cost of a distortion is

lower for types that are less frequent. But this also means that an increasing density

can lead to non-monotonicities of the winning-probability.

1.6.4. Solution to P2 – The Irregular Case. Theorem 1.6.3 requires that J
p∗

U

1 is

strictly increasing because otherwise, the winning probability of buyer one would be

decreasing. This is a condition on an endogenous object and Assumption 1.2.1 does

not guarantee monotonicity of JpU

1 for all values of pU . A decreasing density f1(v|2)

together with Assumption 1.2.1 would be sufficient, but this is quite restrictive and

rules out most of the examples of concave virtual valuations in Table 1. To give

a complete solution without further assumptions, we show that Myerson’s ironing

procedure can be used to deal with non-monotonicities of JpU

1 .

Definition 1.6.4 (Ironing; Myerson, 1981). (i) For every t ∈ [0, 1], define

MpU

1 (t) := J1(F
−1
1 (t|2)|2) +

pU

f1(F
−1
1 (t|2)|2)

,

as the generalized virtual valuation at the t-quantile of F1(.|2).

(ii) Integrate this function:

HpU (t) :=

ˆ t

0

MpU

1 (s)ds.

(iii) Take the convex hull (i.e. the greatest convex function G such that G(t) ≤

HpU (t) for all t):

H̄pU (t) := conv HpU (t).

(iv) Since H̄pU is convex, it is almost everywhere differentiable and any selection

M̄pU

1 (t) from the sub-gradient is non-decreasing.
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(v) Reverse the change of variables made in (i) to obtain the ironed generalized

virtual valuation

J̄pU

1 (v1) := M̄pU

1 (F1(v1|2)).

In the irregular case, the optimal allocation rule depends on two parameters, pU

and x0
1, and has the following structure:

x̄1(v1, 2, v2) =







1, if J̄pU

1 (v1) > 0 and J̄pU

1 (v1) ≥ J2(v2)

x0
1, if J̄pU

1 (v1) = 0 and J2(v2) ≤ 0,

0, otherwise,

x̄2(v1, 2, v2) =

{

0, if J2(v2) ≤ max{0, J̄pU

1 (v1)},

1, otherwise.

, (1.6.3)

The parameters are determined as follows. First, let p∗U be the minimal value pU ≥ 0

such that the reduced form of (1.6.3) with x0
1 = 1 satisfies

´ v

0
q1(v, 2)dv ≥ Ū . Second,

if p∗U > 0, select x0∗
1 ∈ [0, 1] such that

´ v

0
q1(v, 2)dv = Ū , otherwise set x0∗

1 = 1.

The additional parameter x0
1 is only needed if J̄pU

1 (v1) = 0 on an interval [v0
1, v̄

0
1]

with v0
1 < v̄0

1. In this case,
´ v̄0

1

v0
1

JpU

1 (v)dv = 0 and hence, U1(v, 2) can be varied at

constant marginal cost pU by changing the winning probability for all valuations in

the interval [v0
1, v̄

0
1]. Therefore, the same value of pU defines the ironed generalized

virtual valuation for different values Ū in a non-empty interval [a, b]. x0
1 is varied to

achieve different values of U1(v, 2) ∈ [a, b].

The allocation rule in (1.6.3) excludes buyer one if his valuation is smaller than

v0
1. With a valuation in [v0

1, v̄
0
1], he can win against buyer two if v2 ≤ v0

2, but he gets

the object only with probability x0
1.

19 To summarize, we have

Theorem 1.6.5. (i) The reduced form of (1.6.3) for p∗U and x0∗
1 is an optimal

solution of P2 subject to (M1), (PE1), and (ICDd

U
) for v = v.

(ii) For almost every Ū , π′
2(Ū) = −p∗U

(iii) π2 is weakly concave in Ū and strictly concave if pU > 0 and J̄pU

1 (v) = 0 has a

unique solution.

Proof. See Appendix 1.A. �

Note that if JpU

1 is increasing, J̄pU

1 equals JpU

1 . Therefore, Theorem 1.6.3 is a

special case of Theorem 1.6.5.

1.6.5. Global Solution and Discussion. Under Assumption 1.6.1, P ′ reduces to

the problem of choosing Ū optimally. The first order necessary condition is

ρ π′
1(Ū) = −(1 − ρ) π′

2(Ū).

19It is also possible to construct a deterministic allocation rule with the same reduced form. Choose

v̂2 such that x0
1 = F2(v̂2)

F2(v0

2
)
. For v1 ∈ [v0

1, v̄
0
1 ], set x1(v1, 2, v2) = 1 if v2 ≤ v̂2 and x1(v1, 2, v2) = 0

otherwise. This construction, however, has the disadvantage that the allocation decision for buyer
one depends on truthful reports of buyer two in cases when he can never win the object.
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By Theorem 1.6.5, π2 is concave and by Theorem 1.6.2 and Assumption 1.6.1, π1 is

concave. Therefore, the first-order condition is also a sufficient. To determine the

optimal distortion, it suffices to compute the unique solution pU ≥ 0 of

pU =
ρ

1 − ρ
π′

1(Ū),

and Ū ≤

ˆ v

0

qpU

1 (v, 2)dv1, with equality if pU > 0,

where qpU is the reduced form of (1.6.1) for given value of pU .20 An explicit form

of the solution is not available. However, for given pU , U1(v, 2) =
´ v

0
qpU

1 (v, 2)dv1 is

easy to calculate and an explicit expression for π′
1 is given in the proof of Theorem

1.6.2. Hence, it is easy to compute the optimal pU numerically. If Assumption 1.6.1

is violated, π1 may fail to be concave and it may be necessary to compute all local

maxima to find the global solution.

We will now discuss several properties of the general solution.

Monotonicity of q2. q2(v2, 1), defined by the fixed price r2, and q2(v2, 2), defined

by the reduced form of (1.6.3), are non-decreasing. This follows from Assumption

1.2.1. Therefore, q2(v2) is also non-decreasing and the optimal solutions of P1 and

P2 together fulfill all constraints of P. We have derived an optimal solution of P.

Distortions in Both Periods. By Theorem 1.6.2, π1(Ū) is continuously differentiable.

Therefore, pU > 0 implies that the allocation for d = 1 is distorted. Hence, in all

cases where the relaxed solution is not incentive compatible, the general solution

involves a distortion for both deadlines. The relative magnitude of the distortion

depends on ρ. If d = 1 is relatively unlikely (ρ small), then the distortion of the

fixed price is bigger and the auction is closer to Myerson’s solution. The reason is

that distortions are more costly at the deadline which occurs more frequently.

Distortions. In the first period, the fixed price is max{Ū − v, J−1
1 (V opt

2 |1)}. It is

distorted upwards compared to the relaxed solution to make the fixed price less

attractive.

To analyze the distortions in the auction in period two, note that

∀v1 ∈ [0, v] : JpU

1 (v1) = J1(v1|2) +
pU

f1(v1|2)
> J1(v1|2),

if the relaxed solution is not incentive compatible (pU > 0). Therefore, the reserve

price for buyer one is smaller than in the relaxed solution. Secondly, for all valuations

above the reserve price, the winning probability is higher than in the relaxed solution

because v1 ties with a higher valuation v2. Finally, in contrast to the relaxed solution,

the winning probability of bidder two is strictly smaller than one for all v2 ∈ [0, v].

The reason is that for every pU > 0, there is a non-empty interval (c, v] such that

20We only discuss the global solution for the regular case. The irregular case is similar.
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JpU

1 (v1) > v for all valuations v1 ∈ (c, v]. Buyer two cannot win against buyer one

with valuation v1 > c.

Bunching. We find that for the optimal allocation rule, there is bunching at the

top of the type-space if the incentive compatibility constraint for the deadline is

binding. The bunching region has full dimension. The optimal mechanism does not

separate different types of buyer one if their valuations are very high (v1 > c). In

the auction, these types win with probability one and have to make an expected

payment equal to the fixed price in the first period. Therefore, we have bunching of

valuations as well as deadlines. This finding is robust: a (small) bunch occurs even

if the allocation is only slightly distorted.

Dominant Strategies and Indirect Implementation. There are several ways to imple-

ment the optimal auction in period two. For example, it can be implemented by a

generalized Vickrey auction. In this auction, the winning bidder pays the valuation

for which his (generalized) virtual valuation ties with the (generalized) virtual valu-

ation of the losing bidder. For buyer two, this mechanism is incentive compatible in

dominant strategies.21 Hence, the optimal mechanism does not rely on the seller’s

ability to conceal information about period one.

As in the standard auction model, there is also an open format that corresponds

to this direct mechanism. Consider the following ascending clock auction. The

auctioneer has a clock that runs from zero to v. For each bidder i, the auctioneer’s

clock value ca is translated into a bidder-specific clock value ci. For bidder one, this

is c1 = (JpU

1 )−1 (ca|2). For bidder two, this is c2 = J−1
2 (ca). The auctioneer raises ca

continuously and bidders can drop out at any time. If bidder i drops out, the clock

stops immediately. Bidder j 6= i wins the object and has to make a payment equal to

his bidder-specific clock-value cj . Given the informational assumptions made in this

chapter, this auction is strategically equivalent to the generalized Vickrey auction. It

has the advantage that the winning bidder does not have to reveal his true valuation

to the auctioneer.

1.7. Conclusion

We have analyzed a dynamic mechanism design model, in which a seller wants

to maximize the revenue from selling one or multiple identical units of a good to

buyers that arrive over time, within a finite time horizon. The main innovation of

the model is that buyers are privately informed about their deadlines for buying a

unit of the good.

First, we have studied the case of full separation in which the additional incentive

compatibility constraint for the deadline is slack in the seller-optimal mechanism. We

found sufficient conditions for the incentive compatibility of the relaxed solution and

21If the auction is considered in isolation, it is also a dominant strategy for buyer one, to bid
his true valuation. In the dynamic context, however, it is not a dominant strategy to report the
deadline truthfully.
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sufficient conditions for the incentive compatibility constraint to be violated. Both

conditions exploit (a) a static pricing effect that depends on stochastic dependencies

between the deadline and the valuation of a buyer, and (b) a dynamic pricing effect

that depends on non-linearities in the virtual valuation function of a buyer. While

the former effect can also be found in static models with two-dimensional private

information, the latter effect is due to the dynamic nature of the allocation problem.

The critical virtual valuation that buyer has to overbid in order to get a unit is

a martingale with respect to the information about all buyer’s types. Therefore,

critical virtual valuations for later periods are mean preserving spreads of critical

virtual valuations for earlier periods. This leads to lower (higher) payoffs for later

deadlines in the case of concave (convex) virtual valuations and destroys (guarantees)

incentive compatibility.

Second, we have studied the case of bunching. If the relaxed solution is not

incentive compatible, the incentive constraint for the deadline is binding in the

optimal mechanism. Therefore, we had to solve a mechanism design problem with

two dimensional private information. The fact that that the second dimension is a

deadline puts some structure on the model. The two dimensional problem is similar

to a standard one-dimensional mechanism design problem with a type-dependent

outside option. We solve this model for the case of two time periods, one object

and deterministic arrival of one buyer in each period. We show that the optimal

mechanism has a very similar structure as the relaxed solution, but the allocation

rule is distorted in favor of buyers with later deadlines and earlier arrival. This

provides incentives to report the deadline truthfully. The optimal mechanism can

be described in terms of a generalized virtual valuation.

Several assumptions have been made to ensure tractability or to simplify the

exposition.

Discounting. Throughout the chapter, we have abstracted from discounting. This

assumption can be relaxed. If only payments are discounted and buyers and the

seller use a common discount factor, the analysis is almost identical. On the other

hand, if the whole payoff is discounted, Lemma 1.3.1 may not be valid. For example,

it may be optimal to allocate a unit in the first period even if the deadline of the

winner is two, because the waiting cost due to discounting is too high. In this case,

it is more complicated to rule out upward deviations in the deadline.

Which modelling assumption is more pertinent depends on the application. In

the example given in the introduction, the value of the object for the buyer is the

present discounted value of the revenue stream from the contractual relationship

with the third party. This could for example be a production contract. If production

starts after the deadline and is independent of the time at which the firm obtains

the object (as long as it gets it before the deadline), it seems reasonable that the

firm only discounts payments. Similar arguments apply in any situation where the
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buyer plans to use the object at a fixed time after the deadline as in the case of

flight tickets of hotel reservations.

Stochastic Exit. We have implicitly assumed that buyers are available until their

deadline. In some situations, however, buyers may find other opportunities to pur-

chase a similar object if the seller does not sell in the period of arrival. Therefore,

stochastic exit, random participation or competition with other sellers would be

interesting extensions for future research.

Incentive Compatibility of the Relaxed Solution with Many Objects. The proof of the

martingale property of the critical virtual valuation uses a property of the optimal

allocation rule that was shown in Chapter 3 for the case of a single object. With

one object, there is a unique bidder in each period that has a positive probability of

winning. This greatly simplifies the analysis because in each state, the type of only

one buyer is relevant for the allocation rule and buyers who are irrelevant in period t

will not be recalled in the future. Unfortunately, a generalization of this property to

the case of many objects is not available. I conjecture, however, that the martingale

property of the critical virtual valuation generalizes to the case of many objects. If

this conjecture is true, then the dynamic as well as the static pricing effect, and

the absence of a competition effect will carry over to the case of multiple objects

and more than two time periods. Therefore the sufficient conditions for incentive

compatibility of the relaxed solution will also apply to the more general model.

Privately Known Arrival Times. The arrival time has similar properties as the dead-

line. Misreports are feasible only in one direction and it does not directly enter the

utility functions because units cannot be allocated before the arrival. Therefore, the

analysis of a model with privately known arrival times will be similar as the analysis

in the present chapter. Incentive compatibility of the relaxed solution, however, is

guaranteed for the arrival time under weaker conditions than incentive compatibility

for the deadline. As in the case of deadlines, there is a static pricing effect if the

valuation depends stochastically on the arrival time (Pai and Vohra, 2008b). The

dynamic pricing effect, however, does not arise with arrival times because the arrival

time does not influence the time of the allocation. Furthermore, independent of the

type distribution there is an additional effect, that relaxes the incentive compati-

bility constraint for the arrival time. By delaying the report of his arrival, a buyer

runs the risk that units are allocated to buyers that he could have overbid if he had

reported his arrival truthfully. Therefore, an adverse static pricing effect does not

automatically destroy incentive compatibility.

Generalizing the Bunching Case: More Bidders. Introducing more bidders who ar-

rive in the second period is straight forward. The assumption that there is only one

bidder in the first period is more important. It was used to show that the object is

offered to buyer one for a fixed price if he reports deadline one. We have shown that

in this case, misreporting deadline one instead of deadline two is most profitable for
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the buyer with the highest valuation. Hence, we know exactly where the incentive

compatibility constraint for the deadline binds. If more than one buyer arrives in

the first period, a fixed price is no longer optimal and the incentive compatibility

constraint for the deadline may bind for interior types. The exact points where it

binds arise endogenously in the optimal solution.

Generalizing the Bunching Case: Number of Periods. Increasing the number of pe-

riods introduces several complications. Consider for example a model with three

periods. Suppose that in each period a single bidder arrives, whose deadline can

be any period after his arrival. Now, from period two onwards, there is more than

one bidder who participates in the mechanism. This introduces similar problems

as the introduction of more bidders in the first period discussed in the preceding

paragraph. Additional complications will arise because buyers from different pe-

riods will have to be treated asymmetrically. In the third period, the mechanism

designer has to design an optimal auction with three different bidders, two of which

have type-dependent participation constraints. In the case of two periods and two

bidders, the feasibility constraint could be used to eliminate the winning probability

of one bidder (see Appendix 1.A). A generalization of this approach to three bidders

is not obvious.

1.A. Proof of Theorem 1.6.5

It will be convenient to make the changes of variables t1 = F1(v1|2) and t2 =

F2(v2). Defining v1(t1) := F−1
1 (t1|2) and v2(t2 := F−1

2 (t2), we have

ti ∼ U [0, 1] for i = 1, 2,

v′
1(t1) =

1

f1(v1(t1)|2)
,

and v′
2(t2) =

1

f2(v2(t2))
,

Furthermore, for i = 1, 2 we introduce

qi(t) = qi(vi(t), 2),

U(t) = U1(v1(t), 2),

M1(t) = J1(v1(t)|2) = v1(t) − (1 − t)v′
1(t)

M2(t) = J2(v2(t)) = v2(t) − (1 − t)v′
2(t)

t01 = F1(v
0
1 |2 |2).

and t02 = F2(v
0
2).

The objective of the seller becomes

R[q1, q2] :=

ˆ 1

0

q1(t)M1(t) + q2(t)M2(t)dt. (1.A.1)
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In order to employ control theory, we have to formulate the feasibility constraint

in terms of q. Border (1991) provides a characterization of feasibility for symmet-

ric reduced form allocation rules. The following Theorem generalizes the result to

asymmetric allocation rules.

Theorem 1.A.1 (Chapter 2). For i = 1, 2, let qi : [0, 1] → [0, 1] be nondecreasing.

(q1, q2) is the reduced form of a feasible allocation rule if and only if for all t1, t2 ∈

[0, 1],
ˆ 1

t1

q1(t)dt +

ˆ 1

t2

q2(t)dt ≤ 1 − t1t2.

Now we can restate P2 as P ′
2:

π2(Ū) = sup
(q1,q2)

R[q1, q2] (P ′
2)

subject to

∀t ∈ [0, 1] : qi(t) ∈ [0, 1], (1.A.2)

∀t > t′, qi(t) ≥ qi(t
′), (1.A.3)

∀t1, t2 ∈ [0, 1] :

ˆ 1

t1

q1(θ)dθ +

ˆ 1

t2

q2(θ)dθ ≤ 1 − t1t2, (1.A.4)

∀t ∈ [0, 1] : U(t) =

ˆ t

0

q1(θ)v
′
1(θ)dθ, (1.A.5)

and U(1) ≥ Ū . (1.A.6)

Using qi(Fi(vi|2)) = qi(vi, 2), a solution to P2 can be derived easily from a solution

to P ′
2.

A direct solution of P ′
2 is difficult because (1.A.4) is not a standard constraint.

Instead, we can use (1.A.4) to eliminate q2 from the objective function. For q1 :

[0, 1] → [0, 1] non-decreasing, define the inverse as

q−1
1 (t) :=

{

1 if q1(1) < t,

inf{θ ∈ [0, 1] | q1(θ) ≥ t} otherwise.

Lemma 1.A.2. Let q1 : [0, 1] → [0, 1] be non-decreasing. Then an optimal solution

to

sup
q2

ˆ 1

0

q2(t)M2(t)dt subject to (1.A.2)–(1.A.4),

is given by

q∗2(t) =

{

q−1
1 (t) if t ≥ t02,

0 otherwise.

The solution is unique for almost every t.
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Proof. (1.A.4) can be rewritten as

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ min
t1∈[0,1]

[

1 − t1t2 −

ˆ 1

t1

q1(θ)dθ

]

.

On the right-hand side we minimize a convex function. Therefore, the first order

condition is sufficient for a minimum and we have t2 ∈ [q1(t
−
1 ), q1(t

+
1 )] for all t2 ∈

[q1(0), q1(1)], t1 = 0 if t2 < q1(0) and t1 = 1 if t2 > q(1). Hence t1 = q−1
1 (t2) is a

minimizer for all t2. Substituting this into (1.A.4) yields

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ 1 − q−1
1 (t2)t2 −

ˆ 1

q−1
1 (t2)

q1(θ)dθ. (1.A.7)

q∗2 fulfills this constraint with equality for all t2 ∈ [0, 1].

Now consider an alternative solution q̃2 that differs from q∗2 on a set of positive

measure. If q̃2(t) > 0 for some t < t02, than it is not a maximizer. So suppose

q̃2(t) = 0 for t < t02. By (1.A.7) we must have
´ 1

t
q̃2(θ)dθ ≤

´ 1

t
q∗2(θ)dθ for all

t ∈ [0, 1]. Since q̃ 6= q∗, on a set of positive measure,
´ 1

a
q̃2(θ)dθ <

´ 1

a
q∗2(θ)dθ for

some a ∈ [t02, 1]. Let Q(t) be the concave hull of

t 7−→

{
´ 1

t
q̃2(θ)dθ, if t 6= a,

´ 1

a
q∗2(θ)dθ, if t = a,

and define q̂2(t) = −dQ(t)
dt

for almost every t. By definition, Q(t) =
´ 1

t
q̂2(θ)dθ ≤

´ 1

t
q∗2(θ)dθ. Hence q̂2 is a solution. Furthermore, there are a, ā such that

q̂2(t) =







q̃2(t), if t /∈ [a, ā],
´ 1
a

q̃2(θ)dθ−
´ 1
a

q∗2(θ)dθ

a−a
, if t ∈ [a, a),

´ 1
a

q∗2(θ)dθ−
´ 1
a

q̃2(θ)dθ

ā−a
, if t ∈ (a, ā].

Hence q̂2(t) < q̃2(t) for t ∈ (a, a), q̂2(t) > q̃2(t) for t ∈ (a, ā) and q̂2(t) = q̃2(t)

otherwise. Furthermore,
ˆ a

a

q̂2(θ) − q̃2(θ)dθ =

ˆ ā

a

q̃2(θ) − q̂2(θ)dθ.

This implies that we have constructed q̂2 from q̃2 by shifting winning probability from

types in [a, a] to types in [a, a]. By Assumption 1.2.1, this increases the objective

function. Hence q̃2 cannot be optimal. �

Using Lemma 1.A.2, (1.A.1) becomes
ˆ 1

0

q1(t)M1(t)dt +

ˆ 1

t02

q−1
1 (t)M2(t)dt. (1.A.8)

If q1 is absolutely continuous, substituting s = q1(t) in the second integral yields
ˆ 1

0

q1(t)M1(t) + tq′1(t)M̃2(q1(t))dt +

ˆ 1

q(1)

M̃2(t)dt, (1.A.9)
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where we define M̃2(t) := max{0, M2(t)}.
22

Monotonicity implies some regularity of q1. In particular q1 = qC
1 + qJ

1 where qC
1

is a continuous function and qJ
1 is a pure jump function. This leaves two problems

unresolved. Firstly, we have to deal with jumps and secondly, absolute continuity

of qC
1 is not guaranteed.23

These problems can be circumvented by solving the maximization problem under

the restriction that q1 be Lipschitz continuous with global Lipschitz constant K,

q1 ∈ LK := {q : [0, 1] → [0, 1] | ∀t, t′ ∈ [0, 1] : |q(t) − q(t′)| ≤ K|t − t′|}.

We define the maximization problem PK
2 as P ′

2 subject to the additional constraint

q1 ∈ LK . It will be shown that optimal solutions of PK
2 converge to the optimal

solution of P ′
2 as K → ∞. Using Lipschitz functions is convenient to show existence

because LK is sequentially compact.

Theorem 1.A.3. (a) An optimal solution of P ′
2 exists.

(b) For every K > 0, an optimal solution of PK
2 exists.

Proof. (i) Let (qn
1 , qn

2 )n∈N be a sequence of solutions of P ′
2 such that R[qn

1 , qn
2 ]

→ π2(Ū) for n → ∞. By Helly’s Theorem, for i = 1, 2 there exists a sub-

sequence
(
q

nj

i

)

j∈N
and a non-decreasing function qi : [0, 1] → [0, 1], such that

q
nj

i → qi almost everywhere. If we consider the qi as elements of L2([0, 1]), the

set of winning probabilities that satisfy (1.A.4) is weakly-compact (cf. Lemma

2.3.5 in Chapter 2 and Lemma 5.4 in Border (1991)). Therefore, after tak-

ing subsequences again, q
nj

i ⇀ qi and qi is feasible. As Mi ∈ L2([0, 1]) and

v′
1 ∈ L2([0, 1]), weak convergence of q

nj

i implies that q1 fulfills (1.A.5)–(1.A.6),

and R[q1, q2] = π2(Ū). Therefore (q1, q2) is an optimal solution.

(ii) Let (qn
1 , qn

2 )n∈N be a sequence of solutions of PK
2 such that R[qn

1 , qn
2 ] → πK

2 (Ū).

After taking subsequences we can assume that this sequence converges to a

solution satisfying (1.A.2)–(1.A.6) as in (i). Let q1 be the limit of qn
1 . Since

qn
i ∈ LK , for all s, t ∈ [0, 1], |q1(t)− q1(s)| = limn→∞ |qn

1 (t)− qn
1 (s)| ≤ K|t− s|.

Hence q1 ∈ LK .

�

The next step is to show that Lipschitz solutions converge to the general solution

if K tends to infinity. The proof is based on Reid (1968).

Lemma 1.A.4. Let (qn
1 , qn

2 )n∈N a sequence of optimal solutions of PKn

2 where Kn →

∞ as n → ∞. Then, there exists a solution (q1, q2) of P ′
2 and a subsequence

(q
nj

1 , q
nj

2 )j∈N such that q
nj

i (t)
j→∞
−→ qi(t) for almost every t and R[q1, q2] = π2(Ū).

22If q is not absolutely continuous, the substitution yields
´ 1

0
q1(t)M1(t)dt +

´ 1

0
tM̃2(t)dq1(t) +

´ 1

q(1)
M̃2(t)dt. In the second integral, q1 is interpreted as a measure that does not admit a density.

This is not useful if we want to apply optimal control theory.
23For example, the Cantor function is non-decreasing and continuous but it cannot be described
as the integral of a function. Hence it is not absolutely continuous.
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Proof. After taking a subsequence, we can assume that (qn
1 , qn

2 ) converges a.e. to a

solution (q̂1, q̂2) of P ′
2 (see proof of Theorem 1.A.3). To show optimality of (q̂1, q̂2),

let (q1, q2) be an optimal solution of P ′
2. We can extend q1 to R by setting q1(t) = 0

if t < 0 and q1(t) = 1 if t > 1. Define qd,1 : R → [0, 1] as

qd,1(t) :=
1

2d

ˆ t+d

t−d

q1(s)ds.

By the Lebesgue differentiation theorem qd,1(t) → q1(t) for almost every t ∈ [0, 1] as

d → 0. Since q1 is non-decreasing and q1(t) ∈ [0, 1], qd,1 also has these properties.

Furthermore qd,1 ∈ L
1
2d :

∀t > t′ : 0 ≤ qd,1(t) − qd,1(t
′) =

1

2d

(
ˆ t+d

t−d

q1(s)ds −

ˆ t′+d

t′−d

q1(s)ds

)

=
1

2d

(
ˆ t+d

t′+d

q1(s)ds −

ˆ t−d

t′−d

q1(s)ds

)

≤
1

2d

ˆ t+d

t′+d

q1(s)ds

≤
1

2d
(t − t′)

Since qd,1 may violate
´ 1

0
qd,1(t)v

′
1(t)dt ≥ Ū , we define q̃d,1 := λd + (1 − λd)qd,1 and

q̃d,2(t) :=

{

q̃−1
d,1(t), if M2(t) ≥ 0,

0, otherwise,

where λd := max

{

0,
Ū−
´ 1

0 qd,1(t)v
′
1(t)dt

v−
´ 1

0
qd,1(t)v

′
1(t)dt

}

. For every d, (q̃d,1, q̃d,2) is a solution of P
1
2d

2 .

λd converges to zero as d → 0. By Lemma 1.A.2, q2(t) = q−1
1 (t) for a.e. t such that

M2(t) ≥ 0 and q2(t) = 0 otherwise. Hence, for i = 1, 2, q̃d,i → qi almost everywhere

as d → 0. By the dominated convergence theorem, R[q̃d,1, q̃d,2] → R[q1, q2] and

R[qn
1 , qn

2 ] → R[q̂1, q̂2]. Define dn = 1
2Kn

. Then, R[q̃dn,1, q̃dn,2] ≤ R[qn
1 , qn

2 ] and we have

R[qn
1 , qn

2 ] → R[q1, q2] and hence R[q̂1, q̂2] = R[q1, q2]. �

1.A.1. Solution on the class LK. Using Lemma 1.A.2, we rewrite PK
2 as a control

problem. The state variables are the expected utility of bidder one, denoted U(t),

and the winning probability, denoted q(t), (in the control problem we write q instead

of q1). As q is absolutely continuous, we can use u(t) = q′(t) as a control variable.

The objective is defined as

Rc[U, q, u] :=

ˆ 1

0

q(t)M1(t) + tu(t)M̃2(q(t))dt +

ˆ 1

q(1)

M̃2(t)dt.

where u is a measurable control

u : [0, 1] → [0, K]. (1.A.10)
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The evolution of the state variables is governed by

U ′(t) = q(t)v′
1(t), (1.A.11)

q′(t) = u(t). (1.A.12)

We impose the state constraint

∀t ∈ [0, 1] : q(t) ≤ 1. (1.A.13)

Furthermore, we impose the following constraints on the start- and endpoints:

U(0) = 0, (1.A.14)

q(0) ≥ 0, (1.A.15)

(1) ≥ Ū , (1.A.16)

To summarize, we have the following control problem:

max
(U,q,u)

Rc[U, q, u], subject to (1.A.10)–(1.A.16). (PK
C )

(1.A.11) is (1.A.5) in differential form. (1.A.10) and (1.A.12) ensure that q ∈ LK

and non-decreasing. (1.A.10), (1.A.12) and (1.A.15) imply q(t) ≥ 0 for all t. Hence,

we can dispense with a second state constraint.

The Pontryagin maximum principle yields the following necessary conditions for

an optimum.

Theorem 1.A.5 (Clarke (1983), pp. 210-212). Let (U, q, u) be a solution of PK
C .

If (U, q, u) is optimal, there exists ω ∈ {0, 1}, an absolutely continuous function

p : [0, 1] → R2, the components of which we denote by (pU , pq), and a non-negative

measure µ on [0, 1], such that the following conditions hold:

(i) For almost every t ∈ [0, 1],

p′U(t) = 0, (1.A.17)

p′q(t) = −ω
[

M1(t) + tu(t)M̃ ′
2(q(t))

]

− pUv′
1(t). (1.A.18)

(ii) For almost every t ∈ [0, 1], u(t) maximizes
[

ωtM̃2(q(t)) + pq(t) + µ[0, t)
]

u.

(iii) µ is supported on {q(t) = 1},
(iv) p satisfies the transversality conditions

pq(0) ≤ 0, (with equality if q(0) > 0, )

pU(1) ≥ 0, (with equality if U(1) > U, )

pq(1) = −ωM̃2(q(1)) − µ[0, 1].

(v) ω + ‖p‖ + ‖µ‖ > 0.

Note that (1.A.17) implies that pU is constant. First, we show that trivial solu-

tions do not occur.
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Lemma 1.A.6 (Non-triviality). If Ū < v, ω = 1.

Proof. Suppose that ω = 0. By (1.A.18), p′q(t) = −pUv′
1(t). By the transversality

conditions, pU ≥ 0. pU = 0 implies, p′q(t) = 0 and pq(t) = pq(0) for all t. pU > 0

implies, p′q(t) < 0 and pq(t) < 0 for all t > 0.

Suppose pU > 0. By, the transversality condition this implies U(1) = Ū . By

(ii), u(t) maximizes (pq(t) + µ[0, t))u. If q(0) < 1, µ[0, t) = 0 for t close to zero and

hence u(t) = 0. As µ[0, t) cannot become positive we must have q(t) = q(0) < 1 for

all t and consequently µ[0, 1] = 0. The transversality condition therefore requires

pq(1) = 0, a contradiction. If, however, q(0) = 1 we would have U(1) = v > Ū .

Again a contradiction.

Now suppose that pU = 0. If q(1) < 1, µ[0, 1] = 0 and by the transversality

conditions, p(t) = 0 for all t. This implies ω + ‖p‖ + ‖µ‖ = 0, in contradiction to

(v). Hence, q(1) = 1. Since pq(t) = pq(1), we have pq(t) = −µ[0, 1]. To fulfil (v) we

must have µ[0, 1] > 0. u(t) maximizes (µ[0, t)−µ[0, 1])u. This implies that u(t) = 0

if q(t) < 1. Hence, we must have q(t) = 1 for all t ∈ [0, 1]. This implies U(1) = v

which cannot be optimal if Ū < v. �

Defining MpU

1 (t) := M1(t) + pUv′
1(t), we can rewrite (1.A.18) as

−p′q(t) = MpU

1 (t) + tu(t)M̃ ′
2(q(t)), for a. e. t ∈ [0, 1]. (1.A.19)

Condition (ii) implies that for almost every t ∈ [0, 1],

u(t) = K if tM̃2(q(t)) + pq(t) > 0, (1.A.20)

u(t) ∈ [0, K] if tM̃2(q(t)) + pq(t) + µ[0, t) = 0, (1.A.21)

u(t) = 0 if tM̃2(q(t)) + pq(t) + µ[0, t) < 0. (1.A.22)

In (1.A.20), µ[0, t) was omitted because q(t) < 1 if u(t) = K. Integrating (1.A.19)

yields for s, t ∈ [0, 1]:

pq(t) = pq(s) −

ˆ t

s

MpU

1 (θ) + θu(θ)M̃ ′
2(q(θ))dθ

= pq(s) −

ˆ t

s

MpU

1 (θ) − M̃2(q(θ))dθ − tM̃2(q(t)) + sM̃2(q(s)). (1.A.23)

If we substitute (1.A.23) in (1.A.20)–(1.A.22) and define HpU (t) =
´ t

0
MpU

1 (θ)dθ and

mq(t) =
´ t

0
M̃2(q(θ))dθ, we have that for almost every t ∈ [0, 1],

u(t) = K if pq(0) + mq(t) > HpU (t), (1.A.24)

u(t) ∈ [0, K] if pq(0) + mq(t) + µ[0, t) = HpU (t), (1.A.25)

u(t) = 0 if pq(0) + mq(t) + µ[0, t) < HpU (t). (1.A.26)

Lemma 1.A.7 (Reid (1968)). Suppose pq(0) + mq(t) = HpU (t) for t ∈ {t, t}, t < t

and q(t) < 1 for t < t. Let α, β ∈ R and l(t) = α + βt. If l(t) ≤ HpU (t) for all

t ∈ [t, t], then pq(0) + mq(t) ≥ l(t) for all t ∈ [t, t].
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Proof. Suppose that mq(s) + pq(0) < l(s) for some s ∈ (t, t). Then there exists

ε > 0 and t < t1 < t2 < t such that mq(t) + pq(0) < l(t) − ε for t ∈ (t1, t2),

mq(t1) + pq(0) = l(t1)− ε, and pq(0) + mq(t2) = l(t2)− ε. This implies that m′
q(t) =

M̃2(q(t)) cannot be constant on (t1, t2). On the other hand, mq(t)+pq(0)+µ[0, t) =

mq(t)+pq(0) < l(t)−ε < H(t) and hence u(t) = 0 for t ∈ (t1, t2) which implies that

m′
q(t) is constant, a contradiction. �

An immediate implication of the Lemma is that pq(0) + mq(t) ≥ H̄pU

[t,t]
(t), where

H̄pU

[t,t]
(t) denotes the convex hull of HpU restricted to [t, t], i.e. the greatest convex

function G : [t, t] → R such that G(t) < HpU (t) for all t ∈ [t, t]. Furthermore, pq(0)+

mq(t) is convex because q and M̃2 are non-decreasing. This yields the following

Corollary 1.A.8. Suppose pq(0)+mq(t) ≤ HpU (t) for all t ∈ [t, t], with equality at

the endpoints of the interval and q(t) < 1 for t < t. Then pq(0) + mq(t) = H̄pU

[t,t]
(t),

for all t ∈ [t, t].

If MpU

1 is non-decreasing on [t, t], then HpU (t) = H̄pU

[t,t]
(t). Differentiating pq(0)+

mq(t) = H̄pU

[t,t]
yields MpU

1 = M̃2(q(t)) for t ∈ [t, t].

If, however, MpU

1 is not monotonic on [t, t], differentiating yields M̄pU

[t,t]
(t) =

M̃2(q(t)), where M̄pU

[t,t]
=

dH̄
pU
[t,t]

(t)

dt
is non-decreasing. Hence, Reid’s Lemma provides

a control theoretic technique to show that Myerson’s ironing procedure can be used

to solve irregular instances of mechanism design problems.

Now we establish some properties of the optimal solution. Define

xpU
(t) =







0, if MpU

1 (t) < M2(0),

M−1
2 (MpU

1 (t)), if MpU

1 (t) ∈ [M2(0), v]

1, if MpU

1 (t) > v,

,

and x[t,t]
pU

(t) =







0, if M̄pU

[t,t]
(t) < M2(0),

M−1
2 (M̄pU

[t,t]
(t)), if M̄pU

[t,t]
(t) ∈ [M2(0), v]

1, if M̄pU

[t,t]
(t) > v.

,

The derivative of xpU
is given by

x′
pU

(t) =
M ′

1(t) + pUv′′(t)

M ′
2(xpU

(t))
.

The assumptions on fi and Fi guarantee that x′
pU

(t) is continuous on [0, 1]. Let

KpU := maxt∈[0,1] x
′
pU

(t). Then xpU
∈ LKpU . In what follows, we write H̄pU for H̄pU

[0,1]

and M̄pU

1 for M̄pU

[0,1].

Lemma 1.A.9 (interior solution). Suppose u(t) ∈ (0, K) for a.e. t ∈ [t, t], t < t.

Then for all t ∈ [t, t],

(i) q(t) = xpU
(t) if q(t) ≥ t02,

(ii) MpU

1 (t) = 0 if q(t) < t02.
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Proof. If u(t) > 0, we must have µ[0, t) = 0. (1.A.24) – (1.A.26) imply that

pq(0) + mq(t) = HpU (t) for allt ∈ (t, t). Differentiating this w.r.t. t yields

M̃2(q(t)) = MpU

1 (t).

If q(t) ≥ t02, M̃2(q(t)) = M2(q(t)) and hence that q(t) = xpU
(t). If q(t) < t02,

M̃2(q(t)) = 0 and hence MpU

1 (t) = 0. By continuity, the results extend to t and

t. �

Next, we derive necessary conditions for intervals where u(t) is in {0, K}.

Lemma 1.A.10 (constant q). Suppose q(t) = a ∈ [0, 1] on [t, t], t < t, and let [t, t]

be chosen maximally. Then

pq(t) + tM̃2(q(t)) = 0,

pq(0) + mq(t) = HpU (t),

for t = t if t > 0 and for t = t if t < 1, and furthermore

MpU

1 (t) ≥ M̃2(a), if t > 0, (1.A.27)

and MpU

1 (t) ≤ M̃2(a), if t < 1. (1.A.28)

Proof. If q(t) is constant, then for almost every t ∈ (t, t), u(t) = 0 and therefore

pq(t) + tM̃2(q(t)) + µ[0, t) ≤ 0 and pq(0) + mq(t) + µ[0, t) ≤ HpU (t). As µ ≥ 0 and

by continuity, pq(t) + tM̃2(q(t)) ≤ 0 and pq(0) + mq(t) ≤ HpU (t) for t ∈ {t, t}.

Suppose t > 0 and let S− := {0 < t < t | u(t) > 0}. Since q(t) < a for

t < t, and q is absolutely continuous, S− ∩ [t − δ, t] has positive measure for every

δ > 0. Hence, there exists a sequence tn ր t with pq(tn) + tnM̃2(q(tn)) ≥ 0 and

pq(0) + mp(tn) ≥ HpU (tn) for all n. By continuity, the first two equalities in the

Lemma follow for t > 0. For t < 1 set S+ := {t < t < 1 | u(t) > 0}. S+ ∩ [t, t + δ]

has positive measure for every δ > 0. Hence, there exists a sequence tn ց t with

pq(tn) + tnM̃2(q(tn)) ≥ 0 and pq(0) + mp(tn) ≥ HpU (tn) for all n. By continuity, the

first two equations in the Lemma follow for t < 1.

To show (1.A.27), note that for almost every t ∈ S−, pq(t) + tM̃2(q(t)) ≥ 0.

(1.A.23) yields

pq(t) = pq(t) −

ˆ t

t

MpU

1 (θ) − M̃2(q(θ))dθ − tM̃2(q(t)) + tM̃2(q(t)).

With pq(t) = −tM̃2(q(t)) and pq(t) + tM̃2(q(t)) ≥ 0 this implies
ˆ t

t

MpU

1 (θ) − M̃2(q(θ))dθ ≥ 0,

for almost every t ∈ S−. If this inequality is fulfilled, there must be a t′ ∈ [t, t] with

MpU

1 (t′) − M̃2(q(t
′)) ≥ 0.
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As S− ∩ [t − δ, t] has positive measure for every δ > 0, t and hence t′ can be chosen

arbitrarily close to t. By continuity this implies

MpU

1 (t) − M̃2(q(t)) ≥ 0.

To show (1.A.28), note that for almost every t ∈ S+, pq(t) + tM̃2(q(t)) ≥ 0.

(1.A.23) yields

pq(t) = pq(t) −

ˆ t

t

MpU

1 (θ) − M̃2(q(θ))dθ − tM̃2(q(t)) + tM̃2(q(t)).

With pq(t) = −tM̃2(q(t)) and pq(t) + tM̃2(q(t)) ≥ 0 this implies
ˆ t

t

MpU

1 (θ) − M̃2(q(θ))dθ ≤ 0,

for almost every t ∈ S+. As above there exists t′ ∈ [t, t] such that the integrand

is non-positive at t′. t and t′ can be chosen arbitrarily close to t. Therefore, by

continuity

MpU

1 (t) − M̃2(q(t)) ≤ 0.

�

Lemma 1.A.10 implies that there cannot be an interval where q is constant and

q ∈ (0, 1) if xpU
is strictly increasing.

Lemma 1.A.11. Suppose u(t) = K for almost every t ∈ (t, t), t < t. Let (t, t) be

chosen maximally. Then for t = t and for t = t if t < 1,

pq(t) + tM̃2(q(t)) = 0,

for t = t if t > 0 and for t = t if t < 1

pq(0) + mq(t) = HpU (t).

Furthermore,

MpU

1 (t) ≤ M̃2(q(t)), if t > 0, (1.A.29)

and MpU

1 (t) ≥ M̃2(q(t)), if t ∈ [0, 1]. (1.A.30)

Proof. The proof is very similar to the proof of the preceding Lemma. To show the

first equality for t = 0, the transversality condition can be used to obtain pq(0) ≤ 0.

For t = 1, (1.A.30) follows from MpU

1 (1) ≥ v and M̃2(q(t)) ≤ v. �

Setting q(t) = x0(t) for t ≥ t01 and q(t) = 0 otherwise, yields the optimal solution

of Myerson (1981). This is not surprising because pU would be zero if the incentive

compatibility constraint for the deadline were ignored. The following Lemma, which

does not depend on the maximum principle, excludes solutions that have lower

winning probabilities than the undistorted solution x0.

Lemma 1.A.12. For K > K0, let b ≥ t01 be the unique solution to (b− t01)K = x0(b).

If q(t) ≤ x0(t) for all t ∈ [t01, 1] and q(t) < x0(t) for some t ∈ [b, 1], then q is not

optimal.



44 1. OPTIMAL DYNAMIC MECHANISM DESIGN WITH DEADLINES

Proof. Suppose by contradiction that q is an optimal solution with the properties

stated in the Lemma. Let b′ ∈ [0, b] be the unique solution to q(t01) + (b′ − t01)K =

x0(b
′). Define

q̃(t) =







q(t), if t < t01,

q(t01) + (t − t01)K, if t ∈ [t01, b
′],

x0(t), if t > b′.

Obviously, q̃ ∈ LK and Ũ(1) ≥ Ū . Since x0 is the optimal solution absent con-

straints, q̃ yields higher revenue than q. This contradicts the optimality of q. �

Lemma 1.A.13. If Ū < v, then pU ≤ p̄U := 1 + maxt∈[0,1]
v−v1(t)

v′1(t)
< ∞.

Proof. Suppose to the contrary that, pU > p̄U . Then MpU

1 (t) > M̃2(1) = v for all

t ∈ [0, 1]. By Lemma 1.A.9.ii, this implies q(t) ≥ t02 if u(t) ∈ (0, K) on a maximal

interval [t, t]. By Lemma 1.A.9.i, this implies q(t) = xpU
(t), for all t ∈ [t, t], but this

contradicts u(t) > 0 if MpU

1 (t) > v. Hence we have u(t) ∈ {0, K} for all t ∈ [0, 1].

Suppose u(t) = 0 on a maximal interval [t, t]. By Lemma 1.A.10, this implies

t = 1. If u(t) = K on a maximal interval [t, t], Lemma 1.A.11 implies t = 0.

Therefore, there exists a ∈ [0, 1] such that u(t) = K for t < a and u(t) = 0 for t > a.

Suppose a > 0. Lemma 1.A.11 implies pq(0) = 0 if a > 0. As MpU

1 (t) > M̃2(q(t))

for all t, we have pq(t) + mq(t) < HpU (t) for all t > 0. Hence, u(t) = 0 for all t > 0

and a = 0.

If q(t) = q is constant, Lemma 1.A.12 implies that q > t02. Therefore, pq(0) = 0

by the transversality condition. Using (1.A.23), we get pq(1) = −
´ 1

0
MpU

1 (t)dt < 0.

The transversality condition and pU > 0 imply U(1) = Ū . This yields q = Ū
v
. If

q < 1, then µ[0, 1] = 0, and hence, pq(1) = −M̃2(q(1)) > −
´ 1

0
MpU

1 (t)dt by the

transversality condition. So we must have q = 1 and hence Ū = v which is ruled

out by assumption. �

Note that |x′
pU

(t)| ≤
M ′

1(t)+pU |v′1(t)|

minx∈[0,1] |M
′
2(x)|

. Defining K := maxt∈[0,1]
M ′

1(t)+p̄U |v′1(t)|

minx∈[0,1] |M
′
2(x)|

we

have xpU
∈ LK for all pU ≤ p̄U .

Lemma 1.A.14. Let (t, t) be a maximal interval such that u(t) = K for all t ∈ (t, t)

and K > K. Then q(t) < max{t02, xpU
(t)} for all t ∈ [t, t). If t > 0, then q(t) < t02.

Furthermore t < 1.

Proof. If q(t) ≥ max{t02, xpU
(t)}, then q(t) > max{t02, xpU

(t)} because K > K.

Hence M̃2(q(t)) > MpU

1 (t), a contradiction by Lemma 1.A.11. If t > 0, q(t) < t02
because otherwise (1.A.29) and K > K would imply q(t) ≥ max{t02, xpU

(t)}, which

is a contradiction. Finally, t = 1 would imply q(t) < x0(t) for all t ∈ [t01, 1). This is

also a contradiction by Lemma 1.A.12. �

Lemma 1.A.15. For K > K0, q(1) = 1.
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Proof. Suppose q(1) < 1. By Lemma 1.A.12, q(1) > t02. By the transversality

condition, pq(1) = −M̃2(q(1)). Differentiating pq(t) + tM̃2(q(t)), we get d
dt

(pq(t) +

tM̃2(q(t))) = p′q(t)+M̃2(q(t))+tM̃ ′
2(q(t))q

′(t) = M̃2(q(t))−MpU

1 (t). As q(1) < xpU
(1)

we have d
dt

(pq(t)+tM̃2(q(t))) < 0, and thus p(t)+tM̃2(q(t)) > 0 for t sufficiently close

to one. Hence u(t) = K on a maximal interval [t, 1]. As K > K0, t > 0 and hence

q(t) < t02 by Lemma 1.A.14. This contradicts optimality by Lemma 1.A.12. �

Define c := min{t | q(t) = 1}. By the preceding Lemma, this is well defined for

K > K0.

Lemma 1.A.16. For K > K,

pq(0) + mq(c) = HpU (c),

pq(c) + cM̃2(q(c)) = 0,

MpU

1 (c) = M̃2(1).

Proof. If c < 1 the first two equations are implied by Lemma 1.A.10. If c = 1,

u(t) /∈ {0, K} for a set of types with positive measure, arbitrarily close to one.

(u(t) = 0 is ruled out by c = 1, u(t) 6= K follows from the same argument as in

the proof of Lemma 1.A.15). Hence, the first two equalities hold for t close to c

and by Lemma 1.A.9 also the third equality holds for t close to c. By continuity

the equalities also hold for c. If c < 1, MpU

1 (c) ≥ M̃2(q(c)) by Lemma 1.A.10. For

K > K , u(t) = K for a maximal interval [t, c] is not possible as Lemma 1.A.11

requires MpU

1 (t) ≤ M̃2(q(t)). Hence u(t) /∈ {0, K} for a set of types with positive

measure, arbitrarily close to c. By Lemma 1.A.9 and continuity, the third equality

follows for c. �

Lemma 1.A.17. Let (U, q, u) be an optimal solution to PK
C for K > K.

(i) Let b = min{q(t) ≥ t02}. Then there exists b ∈ [b, c] such that u(t) = K for t ∈

[b, b], and M̃2(q(t)) = M̄pU

[b,1]
(t) for t ∈ [b, c]. Furthermore, c = min{t|M̄pU

[b,1]
(t) =

v}.

(ii) Let t
0
1 := max{t | M̄pU

1 (t) ≤ 0} and t
0
1 = 0 if M̄pU

1 (0) > 0 . Then b → t
0
1 and

b → t
0
1 as K → ∞.

(iii) For almost every t < b,

u(t)







= 0, if pq(0) < HpU (t),

∈ [0, K], if pq(0) = HpU (t),

= K, if pq(0) > HpU (t).

Proof. (iii) follows directly from (1.A.24)–(1.A.26) as q(t) ≤ t02 for t < b and hence

mq(t) = 0.

If pq(0) < HpU (t) for all t ∈ [0, 1], then pq(0) < 0 and therefore q(0) = 0 by

the transversality condition. Hence pq(0) + mq(t) < HpU (t), and q(t) = 0 for all t,

contradicting Lemma 1.A.12. Therefore pq(0) ≥ mint H
pU (t).
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To show (i), we first show that M̃2(q(t)) = M̄pU

[b,c]
(t) for all t ∈ [b, c]. Three cases

have to be considered. To do this we need the following definitions:

p
q

:=

{

min{pq | λ{H
pU (t) ≤ pq}K ≥ t02}, if λ{HpU (t) ≤ 0}K ≥ t02,

0, otherwise,

bmax := max{b | p
q
≥ HpU (b)},

where λ denotes the Lebesgue measure on [0, 1].

Case 1 : HpU (t) > 0 for all t > 0. (⇒ p
q

= 0, bmax = 0)

In this case, q(0) ≥ t02. Otherwise pq(0) + mq(t) < HpU (t) for all t > 0. This would

imply q(1) = q(0) < 1, a contradiction. Suppose u(t) = K for a maximal interval

[t, t]. By Lemma 1.A.14, t > 0 would imply q(t) < t02. Hence t = 0. Also by

Lemma 1.A.14, q(t) ≤ xpU
(t) for all t ∈ [t, t] and hence q(0) < xpU

(0). This implies

pq(0) + mq(t) < HpU (t) for t close to zero, contradicting u(t) = K. Hence u(t) < K

for all t ∈ [0, 1]. This requires pq(0) + mq(t) ≤ H(t) for all t by (1.A.24)–(1.A.26),

and by Reid’s Lemma, we have M̃2(q(t)) = MpU

[0,c](t) for all t ∈ [0, c]. With b = b = 0,

this shows M̃2(q(t)) = M̄pU

[b,c]
(t) for all t ∈ [b, c] in case 1.

Case 2 : HpU (t) ≤ 0 for some t > 0 and MpU

1 (bmax) = 0.

In this case, q(bmax) = t02. Suppose to the contrary that q(bmax) < t02. This im-

plies pq(0) ≤ p
q
. Hence pq(0) + mq(t) ≤ p

q
< HpU (t) for all t > bmax. This

is a contradiction to optimality. Next, suppose that q(bmax) > t02. This implies

pq(0) ≥ p
q

and therefore pq(0) + mq(b
max) > HpU (bmax). Therefore bmax is con-

tained in an interval [t, t] where u(t) = K. By Lemma 1.A.14, this is a contra-

diction. Therefore q(bmax) = t02. By (iii) we must have pq(0) = p
q

and hence

pq(0) + mq(b
max) = p

q
= HpU (bmax). Set b = b = bmax. Lemma 1.A.14 also implies

that pq(0) + mq(t) ≤ HpU (t) for all t ∈ [bmax, c]. Reid’s Lemma then implies that

M̃2(q(t)) = M̄pU

[b,c]
(t) for all t ∈ [b, c] for case 2.

Case 3 : HpU (t) ≤ 0 for some t > 0 and MpU

1 (bmax) > 0.

In this case, q(bmax) > t02 because otherwise q(1) = q(bmax) < 1, which is a contra-

diction. This implies b < bmax and pq(0) ≥ p
q
. Since pq(0) ≥ p

q
, pq(0) + mq(b

max) >

H(bmax) = p
q
. Hence bmax is in the interior of a maximal interval [t, t] such that

u(t) = K for all t ∈ [t, t]. By Lemma 1.A.14, q(t) < t02. This implies that

b ∈ (t, bmax). By Lemma 1.A.11, pq(0) + mq(t) = H(t) and by Lemma 1.A.14,

pq(0) + mq(t) ≤ H(t), for t ∈ [t, c]. Hence, we can set b = t and have thus shown

M̃2(q(t)) = M̄pU

[b,c]
(t) for all t ∈ [b, c] for case 3.

Claim: M̃2(q(t)) = M̄pU

[b,1]
(t) for all t ∈ [b, c].

Note that M̄pU

[b,1]
(c) ≤ M̄pU

[b,c]
(c). To show the converse, note that as q is constant on
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[c, 1], pq(0) + mq(t) + µ[0, t) ≤ HpU (t) for a.e. t ≥ c. This implies

pq(0) + mq(c) + (t − c)v + µ[c, t) ≤ HpU (c) +

ˆ t

c

MpU

1 (s)ds,

⇔

ˆ t

c

MpU

1 (s)ds ≥ v(t − c) + µ[c, t). (1.A.31)

If M̄pU

[b,1]
(c) < v, then

´ t

c
MpU

1 (s)ds = HpU (t)−HpU (c) ≤ HpU (t)− H̄pU (c) < (t− c)v

for some t > c. This would contradict (1.A.31) so we must have M̄pU

[b,1]
(c) ≥ v =

M̄pU

[b,c]
(c). If M̄pU

[b,c]
(c) = M̄pU

[b,1]
(c) we must have M̄pU

[b,c]
(t) = M̄pU

[b,1]
(t) for all t ∈ [b, c].

This proves the claim and c = min{t | M̄pU

[b,1]
(t) = v} follows immediately. Hence we

have shown (i).

It remains to show (ii): p
q
→ mint∈[0,1] H

pU (t) as K → ∞. This implies that

bmax → t
0
1. Furthermore b ≥ bmax ≥ b and b − b < 1

K
. Hence b → t

0
1 and b → t

0
1 as

K → ∞. �

Now we can turn to the limiting solution as K → ∞.

Proof of Theorem 1.6.5. The reduced form of x̄i as defined in (1.6.3) is

q̄1(v1, 2) =







0, if J̄pU

1 (v1) < 0

x0
1F2(v

0
2), if J̄pU

1 (v1) = 0

F2(J
−1
2 (J̄pU

1 (v1)), if 0 < J̄pU

1 (v1) ≤ v,

1, otherwise,

q̄2(v2, 1) =

{

0, if J2(v2) < 0,

F1((J̄
pU

1 )−1(J2(v2))), otherwise.

Changing variables, we have

q̄1(t) =







0, if t < t01,

x0
1t

0
2, if t ∈ [t01,t

0
1],

M−1
2 (M̄pU

1 (t)), if 0 < M̄pU

1 (t) ≤ v,

1, otherwise,

q̄2(t) =

{

0, if M2(t) < 0,

(M̄pU

1 )−1(M2(t)), otherwise,

where t01 = min{t|M̄pU

1 (t) ≥ 0}.

Obviously, q̄2(t) = q̄−1
1 (t) if t ≥ t02 and q̄2(t) = 0 otherwise. Therefore, by Lemma

1.A.2, we only have to show optimality of q̄1. Let (qn
1 , qn

2 ) be a sequence of optimal

solutions of PKn

2 where K < Kn → ∞ as n → ∞. Denote the adjoint variables in

these solutions by pn
U and pn

q , respectively, and let (q1, q2) be the a.e.-limit of the

sequence. By Theorem 1.A.4, (q1, q2) is an optimal solution. We will show that

(q̄1, q̄2) yields the same expected revenue as the limit of any such sequence. Since
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M̄pU

[t
0
1,1]

(t) = M̄pU

1 (t) for all t ∈ [t
0
1, 1], Lemma 1.A.17 implies that q1(t) = q̄1(t) for

t > t
0
1 where pU = limn→∞ pn

U .

Next we consider the limiting solution for t < t
0
1. If t10 > 0, then q1(0) = 0 and

u(t) = 0 for t ≤ t01 as for q̄1. Now suppose that t01 < t
0
1.

Claim: If q1(t) is not constant at t ∈ [t01, t
0
1], then HpU (t) = minθ HpU (θ).

Suppose to the contrary that HpU (t) > minθ HpU (θ). Then there exist ε > 0 and

δ > 0 such that HpU (τ) > minθ HpU (θ) + δ for all τ ∈ (t − ε, t + ε). Since pn
q (0) →

minθ HpU (θ) for n → ∞, there exists N > 0 and ε′ ∈ (0, ε) such that for all n > N ,

pn
q (0) < Hpn

U (τ) for all τ ∈ (t − ε′, t + ε′). This implies that qn
1 is constant on

(t − ε′, t + ε′) for n > N and hence q1 is constant on (t − ε′, t + ε′) which is a

contradiction. This proves the claim.

Now set q0
1

=
[

(v1(t
0
1) − v1(t

0
1))
]−1
´ t̄01

t01
q1(s)v

′
1(s)ds and let [t, t] be the interval

where q1(t) = q0
1

(if q1(t) 6= q0
1

for all t, set t = t such that q1(t) < q0
1

if t < t and

q1(t) > q0
1

if t > t). With this definition, q1(t) < q0
1

for t < t and q1(t) > q0
1

for t > t,

and q1 is not constant at t and t. The claim implies that [t01, t] and [t, t
0
1] are unions

of intervals [a, b] such that either MpU

1 (t) = 0 for all t ∈ [a, b], or q1 is constant on

[a, b] and
´ b

a
MpU

1 (t)dt = 0. Hence, setting q1(t) = q0
1

does not change the value of

the objective and by definition of q0
1
, U1(1) is left unchanged. Since, q0

1
= x0

1t
0
2, the

(q1, q2) yields the same expected revenue as (q̄1, q̄2). Uniqueness of pU and x0
1 are

obvious.

For the proof of (ii) and (iii) note that π2 can be written as

π2(Ū) =

ˆ 1

0

[

x̄pŪ
(t)M1(t) +

ˆ 1

x̄p
Ū

(t)

M̃2(q)dq

]

dt.

We first show that π2(Ū) is Lipschitz. For Ū ′ > Ū ,

∣
∣π2(Ū

′) − π2(Ū)
∣
∣ =

∣
∣
∣
∣
∣

ˆ 1

0

ˆ x̄p
Ū′ (t)

x̄p
Ū

(t)

M1(t) − M̃2(q)dqdt

∣
∣
∣
∣
∣
,

≤

ˆ 1

0

∣
∣
∣
∣
∣

ˆ x̄p
Ū′ (t)

x̄p
Ū

(t)

M1(t) − M̃2(q)
︸ ︷︷ ︸

|.|≤M<∞

dq

∣
∣
∣
∣
∣
dt,

≤ M

ˆ 1

0

x̄pŪ′ (t) − x̄pŪ
(t)dt,

≤
M

v′
1

(Ū ′ − Ū),
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where v′
1 = mint∈[0,1] v

′
1(t) > 0 by our assumptions on the type distributions. Next

we show that π′
2(Ū) = −pU . for almost every Ū . For h > 0,

1

h
(π2(Ū + h) − π2(Ū)) =

1

h

ˆ 1

0

ˆ x̄p
Ū+h

(t)

x̄p
Ū

(t)

M1(t) − M̃2(q)dqdt,

=
1

h

ˆ c(Ū)

t01(Ū+h)

ˆ x̄p
Ū+h

(t)

x̄p
Ū

(t)

M1(t) − M̃2(q)dqdt,

= −pŪ

1

h

ˆ c(Ū)

t01(Ū+h)

ˆ x̄p
Ū+h

(t)

x̄p
Ū

(t)

v′
1(t)dqdt

︸ ︷︷ ︸

=h

+

+

ˆ c(Ū)

t01(Ū+h)

1

h

ˆ x̄p
Ū+h

(t)

x̄p
Ū

(t)

MpU

1 (t) − M̃2(q)dqdt.

A similar expression can be derived for h < 0. t01 and c are are continuous in Ū

for almost every Ū (for all Ū if MpU

1 is strictly increasing). Hence, by the Lebesgue

differentiation theorem and dominated convergence, for almost every Ū (every Ū if

MpU

1 is strictly increasing),

π′
2(Ū) = lim

h→0

1

h
(π2(Ū + h) − π2(Ū)) = −pŪ +

ˆ c

t01

MpU

1 (t) − M̃2(x̄pŪ
(t))dt,

= −pŪ +

ˆ c

t01

M̄pU

1 (t) − M̃2(x̄pŪ
(t))dt,

= −pŪ .

Since π2(Ū) is Lipschitz continuous it is absolutely continuous and π2(Ū) = π2(0)−
´ Ū

0
pU(s)ds. Therefore, as pU(Ū) is non-decreasing, π2 is weakly concave. If {t|M̄pU

1 (t)

= 0} is a singleton pU(Ū) is strictly increasing an hence π2 strictly concave. �

1.B. Other Proofs

Proof of Lemma 1.3.1. x̂ is derived from x as follows. Whenever a buyer is

alloted a unit before his deadline is reached, this allotment is postponed to the

deadline. Whenever a buyer is alloted unit after his deadline has elapsed, the unit

is withheld under the new allocation rule. In all other cases, the new allocation rule

is the same as the old one.

This implies that buyers who report their deadline truthfully enjoy the same

expected payoff in both mechanisms:

∀a ∈ {1, . . . T}, d ∈ {a, . . . T}, ∀v ∈ [0, v] :

d∑

τ=a

q̂a(v, d) =

d∑

τ=a

qa(v, d).
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On the other hand, for d′ 6= d, we have

d∑

τ=a

q̂a(v, d′) ≤
d∑

τ=a

qa(v, d′).

Hence,

Ûa(v, d) = Ua(v, d) ≥ Ua(v, d, v′, d′) ≥ Ûa(v, d, v′, d′).

�

Proof of Lemma 1.5.1. The result will be shown separately for the two cases

K = 1 and T = 2.

Case 1 (K = 1): To simplify notation, define cτ
a := maxj∈{i∈Ia|di=τ} Ja(vj |τ) and

cτ
≤a := max{cτ

1, . . . , c
τ
a}. For fixed i ∈ I≤τ define cτ,−i

a := maxj∈{l∈Ia\{i}|dl=τ} Ja(vj |τ)

and cτ,−i
≤a := max{cτ,−i

1 , . . . , cτ,−i
a }. The results from Chapter 3 (see the remark at the

end of Section 3.3) imply that for each state st in which the object is still available,

there is a unique period θt ≥ t, in which the object will be allocated if it is allocated

to a buyer i ∈ I≤t. θt is determined by

cτ
≤t ≤ Esτ+1 [Vτ+1(sτ+1)|sτ = st, kτ+1 = 1] ∀τ < θt,

and cθt

≤t > Esθt+1
[Vθt+1(sθt+1)|sθt

= st, kθt+1 = 1] .

Furthermore, there is a unique tentative winner i∗t ∈ I≤t in state st. i∗t has deadline

di∗t
= θt, and virtual valuation Jai∗

t
(vi∗t

|di∗t
) = cθt

≤t. For all other buyers in I≤t, the

winning probability conditional on st is zero. Hence, in order to compute the value

function in state st, Ht can be replaced (θt, c
θt

≤t) :

VT (sT ) = 1{kT =1} max{0, Jai∗
T

(vi∗t
|T )}

= 1{kT =1} max{0, cT
≤T} =: VT ((θT , cT

≤T )),

and Vt(st) =

{

Jai∗
t
(vi∗t

|t), if di∗t
= t and kt = 1,

Est+1 [Vt+1(st+1)|st] , otherwise.

=

{

cθt

≤t if θi = t and kt = 1,

Est+1

[
Vt+1(st+1)|(θt, c

θt

≤t), kt+1 = 1
]
, otherwise.

=: Vt((θt, c
θt

≤t)),

In order to compute the critical virtual valuation of the winning buyer, of course,

more information is needed. Suppose buyer i arrives in period ai and kai
= 1. Then,

he wins in period di, if and only if

∀t ∈ {ai, . . . , di} ct
≤t ≤ Vt((di, Jai

(vi|di)), kt = 1),

and Jai
(vi|di) > Esdi+1

[Vdi+1(sdi+1)|sdi
, kdi+1 = 1] ,

where we define the expected value in the last line as zero if di = T . To give an

expression for the critical virtual valuation, we define

zd
t (c

t
≤t) = min

{
z ≥ 0

∣
∣ct

≤t = Est+1 [Vt+1(st+1)|(d, z), kt+1 = 1]
}
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where here and in the following, Est+1[. . . |(d, z), kt+1 = 1] = Est+1[. . . |(θt, c
θt

≤θt
) =

(d, z), kt+1 = 1]. With this definition we have

ζ i
ai,di

(Hdi
, 1) = max

{

zdi
ai

(cai,−i
≤ai

), . . . , zdi

di−1(c
di−1,−i
≤di−1 ), cdi,−i

≤di
,

Esdi+1
[Vdi+1(sdi+1)|Hdi,−i, kdi+1 = 1]

}

.

Claim 1.B.1. zd
t (c

t
≤t) = zd

d−1(z
d−1
t (ct

≤t)).

Proof of Claim 1.B.1. If zd
t (c

t
≤t) = 0 then also zd−1

t (ct
≤t) = 0 and therefore

zd
d−1(z

d−1
t (ct

≤t)) = 0. Suppose zd
t (c

t
≤t) > 0 and zd−1

t (ct
≤t) > 0. This implies

ct
≤t = Est+1

[
Vt+1(st+1)

∣
∣(d − 1, zd−1

t (ct
≤t)), kt+1 = 1

]

= Est+1

[
Vt+1(st+1)

∣
∣(d, zd

t (c
t
≤t)), kt+1 = 1

]

The second equation is equivalent to

Est+1

[
max

{
ct+1
t+1, Est+2 [ . . . (1.B.1)

Esd−1

[
1{kd−1=1} max

{
cd−1
≤d−1, z

d−1
t (ct

≤t), Esd
[Vs(sd)|Hd−1, kd = 1]

}∣
∣sd−2

]

. . .
∣
∣st+1

]}∣
∣I≤t = ∅, kt+1 = 1

]

=Est+1

[
max

{
ct+1
t+1, Est+2 [ . . .

Es−1

[
1{kd−1=1} max

{
cd−1
≤d−1, Esd

[
Vs(sd)

∣
∣(d, zd

t (c
t
≤t)), kd = 1

]
,

Esd
[Vs(sd)|Hd−1, kd = 1]}

∣
∣sd−2

]
. . .
∣
∣st+1

]}∣
∣I≤t = ∅, kt+1 = 1

]

Now suppose by contradiction that zd
t (c

t
≤t) > zd

d−1(z
d−1
t (ct

≤t)). This implies

Esd

[
Vd(sd)

∣
∣(d, zd

t (c
t
≤t)), kd = 1

]
> zd−1

t (ct
≤t).

Conditional on I≤t = ∅, with positive probability the realization of sd−1 is such that

kd−1 = 1 and

Esd

[
Vd(sd)

∣
∣(d, zd

t (c
t
≤t)), kd = 1

]
> max

{
cd−1
≤d−1, Esd

[Vd(sd)|Hd−1, kd = 1]
}

> zd−1
t (ct

≤t).

But this contradicts (1.B.1). Similarly, zd
t (c

t
≤t) < zd

d−1(z
d−1
t (ct

≤t)) leads to a contra-

diction. This proves the claim. �

Now, consider the critical virtual valuation for deadline di − 1:

ζ i
ai,di−1(Hdi−1, 1) = max

{

zdi−1
ai

(cai,−i
≤ai

), . . . , zdi−1
di−2(c

di−2,−i
≤di−2 ), cdi−1,−i

≤di−1 ,

Esdi
[Vdi

(sdi
)|Hdi−1,−i, kdi

= 1]
}

.

Claim 1.B.1 allows us to replace the cutoff values zdi−1
τ . ∀τ ∈ {ai, . . . , di − 2} :

xdi−1
τ (cτ,−i

≤τ ) = Esdi

[
Vdi

(sdi
)
∣
∣(di, z

di

di−1(z
di−1
τ (cτ,−i

≤τ ))), kdi
= 1
]
,

= Esdi

[
Vdi

(sdi
)
∣
∣(di, z

di
τ (cτ,−i

≤τ )), kdi
= 1
]
.
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Hence,

ζ i
ai,di−1(Hdi−1, 1) =

= max
{

Esdi

[
Vdi

(sdi
)
∣
∣(di, z

di
ai

(cai,−i
≤ai

)), kdi
= 1
]
, . . .

. . . , Esdi

[

Vdi
(sdi

)
∣
∣
∣(di, z

di

di−1(c
di−1,−i
≤di−1 )), kdi

= 1
]

, Esdi
[Vdi

(sdi
)|Hdi−1,−i, kdi

= 1]
}

=Esdi

[

max
{

zdi
ai

(cai,−i
≤ai

), . . . , zdi

di−1(c
di−1,−i
≤di−1 ),

cdi

≤di
, Esdi+1

[Vdi+1(sdi+1)|Hdi,−i, kdi+1 = 1]
}∣
∣
∣Hdi−1

]

=EHdi
[ζ i

ai,di
(Hdi

, 1)|Hdi−1].

As ζ i
ai,di−1(Hdi−1, 1)|Hdi−1 is deterministic for each Hdi−1,

ζ i
ai,di−1(Hdi−1, 1)|Hdi−1 ≻SSD ζ i

ai,di
(Hdi

, 1)|Hdi−1

and the lemma follows.

Case 2 (T = 2): Now we revert to the notation from the main text and use ct
(K).

Let ct,−i

(k) denote the kth highest virtual valuation among the buyers with deadline t

in I≤t\{i}. Fix any state s1 = (H1, K). Let K1 denote the number of units that are

allocated in period one in state (H1,−i, K − 1). We distinguish two sub-cases.

Case A—In state (H1,−i, K), K1 units are allocated in the first period: If, in state

((H1,−i, (1, vi, 1)), K), buyer i gets a unit in the first period, then the remaining K−1

units are allocated as in state (H1,−i, K−1). This means that K1 units are allocated

to buyers other than i in period one and K − K1 − 1 units are retained. Hence, i’s

virtual valuation must exceed the option value of retaining the K − Kst
1 unit. We

have

ζ i
1,1(H1, K) = Es2 [V2(s2)|H1,−i, k2 = K − K1] − Es2 [V2(s2)|H1,−i, k2 = K − K1 − 1] ,

= Es2

[

max
{

0, c2,−i

(K−K1)

}∣
∣
∣H1

]

.

In state ((H1,−i, (1, vi, 2)), K), the number of units that are allocated in the first

period must also be K1. It is obvious that the arrival of buyer i with di = 2 cannot

increase the number of units allocated in the first period. On the other hand, suppose

that in state ((H1,−i, (1, vi, 2)), K), only K1−1 units are allocated in the first period.

Then

c1,−i

(K1) ≤ Es2

[
max

{
0, c2

(K−K1+1)

}∣
∣(H1,−i, (1, vi, 2))

]
,

≤ Es2

[
max

{
0, c2

(K−K1+1)

}∣
∣(H1,−i, (1, v, 2))

]
,

= Es2

[
max

{
0, c2

(K−K1)

}∣
∣H1,−i

]
,

< c1,−i

(K1)
,

where the last inequality follows from our assumption that in state (H1,−i, K − 1),

K1 units are allocated in the first period. This is a contradiction. But if K1 objects
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are allocated in the first period, then

ζ i
1,2(H2, K) = max

{

0, c2,−i

(K−K1)

}

.

Hence, in case A, Es2[ζ
i
1,2(H2, K)|H1] = ζ i

1,1(H1, K) and ζ i
1,1(H1, K)|H1 ≻SSD

ζ i
1,2(H2, K)|H1.

Case B—In state (H1,−i, K), K1 + 1 objects are allocated in the first period:

Again, if in state ((H1,−i, (1, vi, 1)), K), buyer i gets an object in the first period,

then the remaining K − 1 objects are allocated as in state (H1,−i, K − 1). Hence, in

case B we have

ζ i
1,1(H1, K) = c1,−i

(K1+1).

In state ((H1,−i, (1, vi, 2)), K), it depends on vi, how many objects are retained

for the second period. Define z by

c1,−i

(K1+1) = Es2

[
max

{
0, c2

(K−K1)

}∣
∣(H1,−i, (1, J

−1
1 (z|2), 2))

]
.

If J1(vi|2) ≥ z, then K −K1 objects are retained, otherwise only K−K1 −1 objects

are retained. Hence, we have

ζ i
1,2(H2, K) =







c2,−i

(K−K1)
, if z < c2,−i

(K−K1)
,

z if c2,−i

(K−K1)
≤ z < c2,−i

(K−K1−1),

c2,−i

(K−K1−1) if c2,−i

(K−K1−1) ≤ z.

Note that for H1 = (H1,−i, (1, J
−1
1 (z|2), 2)) this equals max

{

0, c2
(K−K1)

}

. There-

fore, also in case B, Es2[ζ
i
1,2(H2, K)|H1] = ζ i

1,1(H1, K) and ζ i
1,1(H1, K)|H1 ≻SSD

ζ i
1,2(H2, K)|H1. �

Proof of Theorem 1.5.2. Consider a buyer i with type (a, v, d), where a < d ≤

T and let d′ ∈ {1, . . . , d − 1}. Fix the state in the arrival period sa, and let

G(ζ) = Prob
{
ζ i
a,d(Hd, ka) ≤ ζ

∣
∣sa

}
,

and G′(ζ) = Prob
{
ζ i
a,d′(Hd′, ka) ≤ ζ

∣
∣sa

}
.

Lemma 1.5.1 implies that G and G′ have the same mean and G′ ≻SSD G.

(i) Suppose v = v, Ja(v|d
′) is strictly concave and Ja(v|d

′) ≥ Ja(v|d) for all v ∈

[v0
a|d

′, v]. Conditional on sa the expected payoff of i is given by

Ua(v, d) =

ˆ v

0

(v − J−1
a (ζ |d))dG(ζ),

≤

ˆ v

0

(v − J−1
a (ζ |d′))dG(ζ),

<

ˆ v

0

(v − J−1
a (ζ |d′)dG′(ζ) = Ua(v, d′).

In the second line we have used that J−1
a (ζ |d′) ≤ J−1

a (ζ |d) for ζ > 0. In the

third line we have used strict convexity of J−1
a (ζ |d′) as a function of ζ . A similar
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argument can be made if Ja(v|d) is strictly concave. If Ja(v|d
′) > Ja(v|d) for all

v < v, the first inequality becomes strict and strict concavity can be replaced

by weak concavity.

(ii) Suppose Ja(v|d
′) is convex and Ja(v|d) ≥ Ja(v|d

′) for all v ∈ [v0
a|d, v]. Condi-

tional on sa we have

Ua(v, d) =

ˆ Ja(v|d)

0

(v − J−1
a (ζ |d))dG(ζ),

≥

ˆ Ja(v|d′)

0

(v − J−1
a (ζ |d′))dG(ζ),

= J−1
a (0|d′)G(0) +

ˆ Ja(v|d′)

0

d

dζ
J−1

a (v|d′) G(ζ)dζ,

≥ J−1
a (0|d′)G′(0) +

ˆ Ja(v|d′)

0

d

dζ
J−1

a (v|d′) G′(ζ)dζ = Ua(v, d′)

The last line follows because d
dζ

J−1
a (v|d′) is non-negative and non-increasing

and for all non-negative and non-increasing functions φ : [0, v] → [0, v], we

have

∀x ∈ [0, v] :

ˆ x

0

φ(s)G′(s)ds ≤

ˆ x

0

φ(s)G(s)ds.

For φ(s) = 1{s≤x} this follows directly from SSD and since any non-increasing

function φ : [0, v] → [0, v] can be uniformly approximated by non-increasing

step functions the result follows.

A similar argument can be made if Ja(v|d) is convex.

�

Proof of Theorem 1.6.2. Substituting V opt
2 into the objective function we get

π1(U) = max
q1(.,1)

V opt
2 +

ˆ v

0

q1(v, 1)
(
J1(v|1) − V opt

2

)
f1(v|1)dv, (1.B.2)

Subject to q1(v, 1) ∈ [0, 1], ∀v ∈ [0, v]. (M1), (PE1) and (ICDd
U). This is a control

problem with state U1(v) = U1(v, 1) and measurable control q1(.) = q1(v, 1). The

law of motion for the state is U ′
1(v) = q1(v). We account for q1(v, 1) ∈ [0, 1] and

(ICDd
U) by imposing the state constraint U1(v) ≤ U(v), requiring the state to start at

zero, U1(0) = 0, and the control to take values between zero and one, q1(v) ∈ [0, 1].

(M) will be neglected for the moment.

The Hamiltonian of this problem is

H(U1, q1, p, v) = pq1 + q1

(
J1(v|1) − V opt

2

)
f1(v|1)

where p is the adjoint variable of the state U1. Let (U1, q1) be an optimal solution.

By the Pontryagin maximum principle (c.f. Clarke (1983, pp. 211-212)) we have

that p(v) = p is constant and p + µ[0, v] = 0, where µ is a non-negative measure

supported on the set {v | U1(v) = U(v)}. Furthermore, for almost every v, q1(v)
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maximizes H(U1(t), q1, p + µ[0, v), v). This implies that for almost every v,

q1(v) = 1, if p + µ[0, v) + (J1(v|1) − V opt
2 )f1(v|1) > 0,

q1(v) ∈ [0, 1], if p + µ[0, v) + (J1(v|1) − V opt
2 )f1(v|1) = 0,

and q1(v) = 0, if p + µ[0, v) + (J1(v|1) − V opt
2 )f1(v|1) < 0.

Since p + µ[0, v) ≤ 0, q1(v) = 0 if J1(v|1) < V opt
2 . But if J1(v|1) ≥ V opt

2 ,

1.6.1 implies that (J1(v|1) − V opt
2 )f1(v|1) is strictly increasing. Since µ[0, v) is non-

decreasing, p + µ[0, v)+ (J1(v|1)− V opt
2 )f1(v|1) = 0 implies p + µ[0, v′) + (J1(v

′|1)−

V opt
2 )f1(v

′|1) > 0 for all v′ > v. Therefore there is a unique value r1 such that

q1(v1) =

{

0, if v1 < r1

1, if v1 > r1.

Obviously, any such solution satisfies (M). r1 can be determined without resort-

ing to optimal control theory. As the mechanism is deterministic, it is the lowest

value such that J1(r1) ≥ V opt
2 and U1(v, 1) = v− r1 ≤ U(v). This yields the solution

stated in the Theorem.

If we set r1 = max{J−1
1 (V opt

2 |1), v − Ū} and insert the optimal solution in the

objective function we obtain

π1(Ū) =

ˆ v

r1

J1(v|1)f1(v|1)dv + V opt
2 F1(r1|1).

π′
1(Ū) =

{

(J1(v − Ū |1) − V opt
2 )f1(v − Ū |1), if J1(v − Ū |1) > V opt

2 ,

0 otherwise.

For Ū → v − J−1
1 (V opt

2 |1) we have π′
1(Ū) → 0 since f1 is bounded. Hence, π′

1(Ū) is

continuous. Using Assumption 1.6.1, we conclude that π′
1(Ū) is strictly decreasing

if J1(v − Ū |1) > V opt
2 and hence π1 is strictly concave. �

1.C. Reduced Forms

The interim winning probability for period t of a buyer with type (ai, vi, di) is

given by:

qt
ai

(vi, di) =
∑

(N1,...,Nt)∈{0,...,N̄}t




Nai

νai,Nai
∑N̄

r=1 rνai,r

∏

a∈{1,...,t}\ai

νa,Na









T∑

d1=a1

. . .

T∑

di−1=ai−1

T∑

di+1=ai+1

. . .
T∑

dN≤t
=aN≤t




∏

j∈I≤t\i

ρaj ,dj





˙

v1...vi−1

˙

vi+1...vN≤t




∑

ξ1∈Φ1(s1)

x1(ξ1|s1)

. . .
∑

ξt∈Φt(st)

xt(ξt|st)ξt,i




∏

j∈I≤t\i

faj
(vj |dj)dvj



 .
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The interim expected payment of a buyer with type (ai, vi, di) is given by:

pai
(vi, di) =

∑

(N1,...,Nt)∈{0,...,N̄}t




Nai

νai,Nai
∑N̄

r=1 rνai,r

∏

a∈{1,...,t}\ai

νa,Na









T∑

d1=a1

. . .
T∑

di−1=ai−1

T∑

di+1=ai+1

. . .
T∑

dN≤t
=aN≤t




∏

j∈I≤t\i

ρaj ,dj





˙

v1...vi−1

˙

vi+1...vN≤t




∑

ξ1∈Φ1(s1)

x1(ξ1|s1)

. . .
∑

ξai
∈Φai

(sai
)

xai
(ξai

|sai
)



yai,i(sai
, ξai

) +
∑

ξai+1∈Φai+1(sai+1)

xai+1(ξai+1|sai+1)



 . . .

∑

ξT∈ΦT (sT )

xT (ξT |sT )yT,i(sT , ξT )












∏

j∈I≤t\i

faj
(vj |dj)dvj



 .



CHAPTER 2

Asymmetric Reduced Form Auctions

2.1. Introduction

An auction is a mechanism to sell (or buy) an object to (from) one of several

bidders. An asymmetric auction has the special feature that its rules treat different

bidders or groups of bidders differently. For example in a procurement auction

the buyer may want to grant bidders different bonuses according to his monetary

assessment of non-price attributes of the bidders’ products. In dynamic settings, the

auctioneer may want to treat bidders differently if they arrive in different periods.

If the auctioneer knows that different (groups of) bidders have different outside

options, or budget constraints, he may also want to treat them differently.

Formally, an auction consists of a set of admissible bids for each bidder, an al-

location rule and a payment rule. Depending on the profile of submitted bids, the

allocation and payment rules determine who will get the object and the payments of

each participant. An auction implements a certain social choice function (i.e. allo-

cation and payment rule) if there is an equilibrium in which the outcome coincides

with the outcome of the social choice function. By the revelation principle, a social

choice function is implementable if and only if the direct mechanism defined by the

social choice function has a truth-telling equilibrium. The design problem of finding

an optimal auction therefore amounts to the optimal choice of a social choice func-

tion subject to (a) incentive compatibility constraints and (b) a feasibility constraint

that requires that for each profile of types, the object is allocated only once.

The reduced form of an allocation rule is given by the interim winning probabil-

ities, i.e. the probabilities that an agent wins, conditional on his own type, provided

that all other bidders tell the truth. If the desired solution concept is Bayes-Nash-

Equilibrium, standard payoff equivalence results characterize incentive compatibility

as a condition on the reduced form allocation and payment rules. The feasibility

constraint, on the other hand, is a condition on the allocation rule (rather than the

reduced form). In order to incorporate both constraints in the mechanism design

problem, a condition is needed, that characterizes reduced forms which are imple-

mentable by a feasible allocation rule.1

1In the classic optimal auction problem, this problem does not arise. Incentive compatibility con-
straints can be used to attach a virtual valuation to each type of a buyer. The optimal mechanism
can then be derived by point-wise maximization. This admits a direct application of the feasibility
constraint (Myerson, 1981).

57
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For the case of symmetric allocation rules, Border (1991) gives a characterization

of implementable reduced forms.2 A reduced form is shown to be implementable if

and only if for all measurable subsets A of the type-space,3 the probability that

a bidder with type in A wins the object is less than or equal to the probability

that there is a bidder with type in A. Following Border (2007), this condition

shall be called the Maskin-Riley-Matthews (MRM) condition. Border also shows

that it suffices to check the MRM condition for a one-dimensional family of subsets,

viz. the upper contour sets of the reduced form allocation rule. Bayes-Nash incentive

compatibility requires monotonicity of the reduced form, and therefore the upper

contour sets take the form of intervals if types are one-dimensional. Border (2007)

generalizes the first result to asymmetric auctions for the case of finite type-spaces.

In this characterization, the MRM condition must be satisfied for all sets of type

profiles. The second result, i.e. a reduction of the condition to a low-dimensional

family of sets has not been generalized to the asymmetric case, so far.

In this note, asymmetric reduced form auctions are studied with general type-

spaces and the second result is generalized.4 In the asymmetric case, bidders may

have different type spaces and their types need not be identically distributed. There

may be groups of bidders that are treated identically by the allocation rule. Bidders

in the same group are assumed to be symmetric, i.e. all bidders in the same group

have identical type spaces and identically distributed types. The number of groups

is denoted by L and hence there are L (possibly) different type spaces.

We show that the MRM condition is necessary and sufficient for feasibility if

it is imposed for sets of the form A1 × . . . × AL, where each Al is a measurable

subset of the type-space of group l. This family of sets is a proper subset of the

family considered in Border (2007). Second, we show that for each group l the

family of sets Al can be further restricted to the upper contour sets of group l’s

reduced form winning probability. For each component of A1 × . . . × Al, there is

only a one-dimensional family of sets. Hence, it is necessary and sufficient that the

MRM condition is satisfied for an L-dimensional family of sets. Again, together

with incentive compatibility, this yields a tractable characterization of feasibility.5

In the next section, the formal model is introduced and the results are stated.

Section 2.3 contains the proofs. The general approach to prove the results is the

same as in Border (1991). Some generalizations are necessary to incorporate the

2Maskin and Riley (1984) use a special case of this result to study the optimal auction problem
with risk-aversion. Matthews (1984) conjectured the result proven by Border and proved a partial
result. See also (Chen, 1986).
3In the symmetric case, all bidders have the same type space and their types are identically dis-
tributed.
4Daniele Condorelli, Yoen-Koo Che and Jinwoo Kim (private communication) independently de-
rived a similar result.
5In Chapter 1, we use this characterization to solve a dynamic mechanism design problem. Pai and
Vohra (2008a) use Border’s symmetric characterization to analyze optimal auctions with budget
constraints.
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more complicated asymmetric structure (Lemmas 2.3.4 and 2.3.6). Furthermore

some parts are (slightly) simplified by treating the set of feasible allocation rules

and the set of feasible reduced forms as subsets of L2 rather than L∞.

2.2. Definitions and Results

There are N bidders. Each bidder belongs to one of L ≤ N groups. The

function γ : {1, . . . , N} → {1, . . . , L} associates with each bidder i his group γ(i).

γ−1(l) denotes the set of bidders in group l and N l = |γ−1(l)| denotes the number

of bidders in group l. (The sets γ−1(1), . . . , γ−1(L) partition the set of bidders

{1, . . . , N}. Hence
∑L

l=1 N l = N .) For each group l, there is a probability space

(T l, T l, µl). The type of a bidder i is denoted ti ∈ T l where l = γ(i). The types of all

bidders that belong to group l are identically distributed according to the probability

measure µl. The space of all type profiles t = (t1, . . . , tN) is the product space of all

type-spaces and is denoted by (T, T , µ) = (T γ(1)×T γ(2)× . . .×T γ(N), T γ(1)⊗T γ(2)⊗

. . . ⊗ T γ(N), µ =
∏N

i=1 µγ(i)). As usual, a type profile where the type of bidder i is

excluded, is denoted by t−i with probability space (T−i, T −i, µ−i). θ = (θ1, . . . , θL)

denotes a profile of L types, one for each group. The associated probability space is

(T̂ , T̂ , µ̂) = (T 1 × . . . × TL, T 1 ⊗ . . . ⊗ T L,
∏L

l=1 µl).

Definition 2.2.1. (a) An allocation rule is a measurable function q : T → [0, 1]N

that satisfies the following feasibility condition for all t ∈ T .

N∑

i=1

qi(t) ≤ 1. (F)

(b) An allocation rule is group symmetric if for all l ∈ {1, . . . , L}, i, j ∈ γ−1(l) and

t ∈ T

qi(t) = qj(σi,j(t)),

where σi,j interchanges the ith with the jth component of its argument.

qi(t) is the probability that bidder i gets the object if the profile of types is t.

The feasibility condition (F) ensures that the object is allocated at most once. The

set of all group symmetric allocation rules is denoted by Q0. The (group) reduced

form Q̂ : T̂ → [0, 1]L of a group symmetric allocation rule q is given by the interim

winning probabilities

Q̂l(θl) :=

ˆ

T−i

qi(θl, t−i)dµ−i(t−i), where γ(i) = l.

The lth component of Q̂(θ) is the probability that a bidder from group l gets the

object when his type is θl. Note that Q̂l is a function of θl rather than θ. In

what follows, a function with this property shall be called diagonal. A measurable

diagonal function Q̂ : T̂ → [0, 1]L is implementable by a group symmetric allocation
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rule if it is the group reduced form of some q ∈ Q0.
6 The set of all such functions is

denoted by Q̂.

Let F denote the set of L-tuples of measurable subsets of the individual type-

spaces

F :=
{
(A1, . . . , AL)

∣
∣ ∀l : Al ∈ T l

}
.

For each A ∈ F , A1 × . . .×AL is a subset of T̂ . The converse, however, is not true.

This is the difference to the approach taken by Border (2007) who considers general

subsets of T̂ .7

A ∈ F is called empty if for all l = 1, . . . , L, Al = ∅. Two elements A, B ∈ F

are called F -disjoint (denoted A ∩F B = ∅) if for all l = 1, . . . , L: Al ∩ Bl = ∅.

We can now state the generalization of Theorem 3.1 in Border (1991) for asym-

metric allocation rules.

Theorem 2.2.2. Let Q̂ : T̂ → [0, 1]L be measurable and diagonal. Then Q̂ ∈ Q̂ if

and only if for each A ∈ F ,

L∑

l=1

N l

ˆ

Al

Q̂l(tl)dµl(tl) ≤ 1 −
L∏

l=1

(
1 − µl(Al)

)N l

. (2.2.1)

As in the symmetric case, the family of sets A ∈ F for which (2.2.1) must be

checked can be reduced. In the symmetric case it suffices to check a one dimensional

family. In the group symmetric case, this family has dimension L.

Theorem 2.2.3. Let Q̂ : T̂ → [0, 1]L be measurable and diagonal. For each α ∈

[0, 1]L define Eα = (E1
α, . . . , EL

α ) by El
α := {tl ∈ T l | Q̂l(tl) ≥ αl}.

Then Q̂ ∈ Q̂ if and only if for each α ∈ [0, 1]L,

L∑

l=1

N l

ˆ

El
α

Q̂l(tl)dµl(tl) ≤ 1 −
L∏

i=1

(
1 − µl(El

α)
)N l

.

2.3. Proofs

For applications it is convenient to work with group reduced forms but for the

proofs, the bidder reduced form is more convenient. The bidder reduced form Q :

T → [0, 1]N of a feasible group-symmetric allocation rule q is defined as

Qi(ti) =

ˆ

T−i

qi(ti, t−i)dµ−i(t−i).

The set of bidder reduced forms of feasible and group symmetric allocation rules is

denoted by Q. Note that each Q ∈ Q is diagonal and group-symmetric (Qi(t) =

Qj(t) for all t ∈ T if i ∈ γ(j)). Hence, each Q ∈ Q has a representation Q̂ ∈ Q̂ that

satisfies Q̂l = Qi if l = γ(i).

6Implementability is not to be confused with usual meaning in the mechanism design literature.
7In that paper L = N and therefore T̂ = T .
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As in Border (1991), hierarchical allocation rules are an important tool in the

proofs. This notion has to be generalized to fit the asymmetric case.

Definition 2.3.1. Let A1, . . . , AK ∈ F be a family of pairwise F -disjoint sets. The

hierarchical allocation rule qA1,...,AK
generated by A1, . . . , AK is defined as

qi
A1,...,AK

(t) :=







1

|{j: tj∈A
γ(j)
k

}|
if ti ∈ A

γ(i)
k and ∄j : tj ∈ A

γ(j)
1 ∪ . . . ∪ A

γ(j)
k−1

0 otherwise.

The sets A1, . . . , AK define a hierarchy of types. Al
k is the set of types of bidders

in group l that are at the kth level of the hierarchy. The hierarchical allocation

rule qA1,...,AK
works as follows. If there are bidders with types at the first level,

the object is given to one of these bidders with equal probability. Otherwise the

auctioneer checks whether there are bidders with types at the second level, and in

this case, allocates the object with equal probability to one of them. The auctioneer

continues until either he has allocated the object or he has checked for bidders at

all levels of the hierarchy. In the latter case the object is not sold.

2.3.1. Proof of Theorem 2.2.2. The general approach is the same as in Border

(1991). Since µ is a finite measure, Q0 and Q are subsets of the Hilbert space

L2(T, µ, RN). For Q, f ∈ L2(T, µ, RN) the scalar product is given by 〈Q, f〉 =
´

T
(Q(t), f(t))dµ(t), where (., .) is the Euclidean scalar product in RN . To simplify

notation L2(T, µ, RN) will be abbreviated as LN
2 , and L2(T, µ, R) as L2.

The feasibility condition (2.2.1) can be written as a condition on 〈Q, f〉 for

certain functions f ∈ LN
2 . To do this write the vector of indicator functions

for (A1, . . . , AL) = A ∈ F , as χA(t) := (χAγ(1)(t1), . . . , χAγ(N)(tN )) so that χA :

T → {0, 1}N . Clearly, χA ∈ LN
2 if A ∈ F . Furthermore define B(A) := 1 −

∏L

l=1

(
1 − µl(Al)

)N l

. If Q̂ is diagonal and a representation of Q, (2.2.1) can be

rewritten as

〈Q, χA〉 ≤ B(A).

With this notation, Lemmas 5.1 and 5.3 from Border (1991) can be reproduced

for the asymmetric case.

Lemma 2.3.2 (cf. Lemma 5.1, Border (1991)). For all A ∈ F and all Q ∈ Q,

〈Q, χA〉 ≤ B(A).

Lemma 2.3.3 (cf. Lemma 5.3, Border (1991)). Let Q : T → [0, 1]N be measur-

able and suppose that the function f =
∑M

j=1 αjχAj
with α1, . . . , αM ∈ R and

A1, . . . , AM ∈ F separates Q from Q. That is, for all Q̃ ∈ Q:
〈

Q,

M∑

j=1

αjχAj

〉

>

〈

Q̃,

M∑

j=1

αjχAj

〉

.

Then for some set A ∈ F , 〈Q, χA〉 > B(A).
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In Lemma 2.3.3, the simple function f =
∑M

j=1 αjχAj
is diagonal and group

symmetric. The following Lemma implies that whenever a function f̃ ∈ LN
2 separates

Q from Q and Q is diagonal and group symmetric, then there exists a diagonal group

symmetric function f ∈ LN
2 that separates Q from Q.

Lemma 2.3.4. For every f̃ ∈ LN
2 , there exist a diagonal and group symmetric f ∈ LN

2

such that
〈

Q, f̃
〉

= 〈Q, f〉 for all diagonal and group symmetric Q ∈ LN
2 .

Proof. Let Q ∈ LN
2 be diagonal and group symmetric with representation Q̂ : T̂ →

[0, 1]L. Then,

〈

Q, f̃
〉

=

ˆ

T

N∑

i=1

f̃ i(t)Qi(t)µ(t),

=

N∑

i=1

ˆ

T i

(
ˆ

T−i

f̃ i(ti, t−i)Qi(ti, t−i)dµ−i(t−i)

)

dµγ(i)(ti),

=
N∑

i=1

ˆ

T i

(
ˆ

T−i

f̃ i(ti, t−i)dµ−i(t−i)

)

︸ ︷︷ ︸

=:ξi(ti)

Qi(ti)dµγ(i)(ti),

=

N∑

i=1

ˆ

T i

ξi(ti)Qi(ti)dµγ(i)(ti),

=
L∑

l=1

∑

i∈γ−1(l)

ˆ

T l

ξi(tl)Q̂l(tl)dµl(tl),

=

L∑

l=1

ˆ

T l




∑

i∈γ−1(l)

ξi(tl)





︸ ︷︷ ︸

=:N lf̂ l(tl)

Q̂l(tl)dµl(tl),

=

N∑

i=1

ˆ

T i

f i(ti)Qi(ti)dµγ(i)(ti) = 〈Q, f〉 .

ξ : T → [0, 1]N is diagonal by definition and therefore f̂ : T̂ → [0, 1]L is also

diagonal. With f : T → [0, 1]N defined as f i(t) = f̂γ(i)(ti) = 1
Nγ(i)

∑

j:γ(j)=γ(i) ξj(ti),

the desired diagonal and group symmetric function is obtained. �

Lemma 2.3.5. Q0 and Q are weakly compact subsets of LN
2 .

Proof. The proof is very similar to the proof of Lemma 5.4 in Border (1991).

Since we work with the Hilbert-Space LN
2 and Q0 is bounded, we have that every

sequence (qn) in Q0 has a weakly convergent subsequence (with limit in LN
2 ). Fol-

lowing Border, it can be shown that Q0 is weakly closed and hence weakly compact.

Furthermore, the mapping Λ, that associates an allocation rule with its reduced
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form is weakly continuous. As Q is the image of a compact set under Λ, it is also

weakly compact. �

Proof of Theorem 2.2.2. Let Q̂ : T̂ → [0, 1]L be diagonal. Then it is the repre-

sentation of a diagonal and group symmetric function Q : T → [0, 1]N .

Lemma 2.3.2 shows that condition (2.2.1) is necessary for feasibility. Conversely

suppose Q /∈ Q. Q is a convex and weakly compact subset of LN
2 . By a stan-

dard separation theorem,8 there exists a function f ∈ LN
2 such that 〈Q, f〉 >

max
{〈

Q̃, f
〉∣
∣
∣Q̃ ∈ Q

}

. By Lemma 2.3.4, f can be chosen to be diagonal and group

symmetric. Furthermore, as the simple functions are dense in L2, we can take each

component f i to be a simple function. Hence f satisfies the conditions of Lemma

2.3.3 and there exists A ∈ F such that (2.2.1) is violated. It remains to be shown

that for every Q ∈ Q there exists a q∗ ∈ Q0 such that Λ(q∗)(t) = Q(t) for every

t ∈ T (so far this has been shown for almost every t ∈ T ). The proof can be found

in Border (1991) and is omitted here. �

2.3.2. Proof of Theorem 2.2.3. As in the symmetric case, the proof of Theorem

2.2.3 starts by showing the result for simple functions which requires a bit more

work than the proof for symmetric auctions. For A ∈ F and χA : T → [0, 1]N as

above, let χ̂A : T̂ → [0, 1]L denote the representation of χA.

Lemma 2.3.6. Let Q̂ : T̂ → [0, 1]L be a diagonal simple function with Q̂ =
∑K

k=1 αkχ̂Ak

where α1 > α2 > . . . > αK ≥ 0, the Ak ∈ F are pairwise F-disjoint and Al
1 ∪ . . . ∪

Al
K = T l for all l. For l = 1, . . . , L and k = 1, . . . , K set El

k := Al
1 ∪ . . . ∪ Al

k and

set El
0 := ∅.

If for each (k1, . . . , kL) ∈ {0, 1, . . . , K}L:

L∑

l=1

N l

ˆ

El
kl

Q̂(tl)dµl(tl) ≤ B(E1
k1

, . . . , EL
kL

), (2.3.1)

then Q̂ ∈ Q̂.

Proof. Define f : [0, 1]L → [0, 1] as f(x) := 1 −
∏L

m=1(1 − xm)Nm

. This implies

∂2
l f(x) = −N l(N l − 1)(1 − xl)N l−2

∏

m6=l

(1 − xm)Nm

≤ 0, (2.3.2)

and B(A) = f(µ1(A1), . . . , µL(AL)), for A ∈ F . (2.3.3)

To simplify notation define cl
k := µl(El

k). In order to bound the left hand side of

(2.2.1), define g : [0, 1]L → [0, 1] as a continuous and piecewise linear function with

g(0) = 0. For x ∈ (c1
k1−1, c

1
k1

) × . . . × (cL
kL−1, c

L
kL

), let the gradient of g be given by

∇g(x) =






N1αk1

...

NLαkL




 .

8cf. Theorem 3.4 in Rudin (1973)
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With this definition, g(x) ≤ f(x) on the grid of points G0 := {(c1
k1

, . . . , cL
kL

) | ki ∈

{0, 1, . . . , L}}:

∀x ∈ G0 : g(x) =

L∑

l=1

N l

kl∑

k=1

αkµ
l(Al

k)

=
L∑

l=1

N l

ˆ

El
kl

Ql(tl)µl(tl)

≤ f(µl(E1
k1

), . . . , µL(EL
kL

)) = f(x).

The second equality follows from the definition of Q and the inequality follows from

(2.3.1) and (2.3.3).

Now it is shown inductively, that g(x) ≤ f(x) on the sets

Gn :=
{

x ∈ [0, 1]L
∣
∣
∣ L − n ≤ |{j | ∃kj : xj = cj

kj
}|
}

,

for n = 1, . . . , L.9 Observe that GL = [0, 1]L. Suppose that g(x) ≤ f(x) for all x ∈

Gn−1. Let x ∈ Gn. Then there exist l and kl such that x = (x1, . . . , xl−1, cl
kl−1, x

l+1,

. . . , xL) and x = (x1, . . . , xl−1, cl
kl
, xl+1, . . . , xL) are in Gn−1 and x = x(δ) = (1 −

δ)x + δx for some δ ∈ [0, 1]. As x and x differ only in the lth coordinate, f(x(δ))

is weakly concave as a function of δ by (2.3.2). Furthermore, as the gradient of g

is constant on sets of the form (c1
k1−1, c

1
k1

) × . . . × (cL
kL−1, c

L
kL

), g(x(δ)) is linear as a

function of δ. By the induction hypothesis, g(x) ≤ f(x) and g(x) ≤ f(x). Therefore

also g(x) ≤ f(x).

Now, for A ∈ F define h : [0, µ1(A1)]× . . .× [0, µL(AL)] → [0, 1] as a continuous

and piecewise linear function with h(0) = 0. For x ∈ (µ1(A1∩E1
k1−1), µ

1(A1∩E1
k1

))×

. . . × (µL(AL ∩ EL
kL−1), µ

L(AL ∩ EL
kL

)) let the gradient of h be given by

∇h(x) =






N1αk1

...

NLαkL




 .

With this definition,

h(A) =

L∑

l=1

N l

ˆ

Al

Q̂l(tl)dµl(tl).

Furthermore for all x and all l: ∇lh(x) ≤ ∇lg(x). Therefore h(x) ≤ g(x) ≤ f(x)

which implies (2.2.1) for all sets A ∈ F and therefore Q̂ ∈ Q̂ by proposition 2.2.2. �

Proof of Theorem 2.2.3. The proof works as the proof of proposition 3.2 in

Border (1991). For the asymmetric case Q̂ is approximated by the sequence of

simple functions Q̂n : T̂ → RL which is constructed such that Q̂l
n(t) = k

2n on

{t | k
2n ≤ Q̂l(t) < k+1

2n }. �

9In the case L = 3 and K = 1, G0 are the vertices of the cuboid [0, 1]3, G1 are the edges, G2 are
the surfaces and G3 is the cuboid itself.



CHAPTER 3

The Dynamic Vickrey Auction

Summary. We construct a simple payment rule that implements the efficient alloca-

tion rule for a single indivisible object over T time periods. Buyers arrive randomly

over time. Private information is multidimensional because valuations depend on

the time at which the object is sold. It is shown that each type has a unique po-

tential winning period and only the valuation for this period is important for the

allocation decision. Therefore, types can be reduced to essentially one dimension

and there is a natural order on the type space by which buyers can be compared.

These properties allow to define a simple payment rule in which only the winner

has non-zero transfers, transfers are ex-post individually rational and can be made

online. The payment rule is a generalization of the static Vickrey auction in which

the winner pays the lowest valuation for the winning period that would suffice to

win. Losers pay nothing.

Furthermore, in each period, there is only one buyer who has a chance to win the

object in the future, all other buyers can be dismissed and will never be recalled.

This allows to define a generalized ascending auction that implements the efficient

allocation rule and the same payment rule as the dynamic Vickrey auction. Both the

dynamic Vickrey auction and the generalized ascending auction are periodic ex-post

incentive compatible.

3.1. Introduction

Standard auction models usually assume that all potential buyers are available

at the same time, and that the valuations of buyers do not depend on the time of

the allocation. In many allocation problems, however, time is an important factor.

In online auctions, buyers typically arrive over time and since auctions usually last

several days, some buyers may not be willing to wait until the end of the auction

(for example think of buying a last-minute birthday present). Internet platforms like

eBay offer a feature that allows to end the auction immediately for a predetermined

price. One explanation why this feature is used, is that buyers are impatient and

willing to pay a high price for closing a deal immediately (Mathews, 2004; Gallien and

Gupta, 2007).1 Time preferences of buyers as well as dynamic arrival are important

in many other markets. For example, in the housing market, and in the markets for

airline tickets or hotel reservations, a long time elapses between the start and the

1Another explanation is risk-aversion (Budish and Takeyama, 2001; Hidvégi, Wang, and Whinston,
2006; Reynolds and Wooders, 2006).

65
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end of the selling mechanism, potential buyers arrive over time, and they may have

privately known preferences about the time of purchase.

In this chapter, we study the dynamic allocation of a single object over a fi-

nite time horizon. The model generalizes the standard independent private values

framework. Potential buyers arrive randomly over time, they are long-lived, and the

valuation they derive from getting the object may depend on the time of allocation in

an arbitrary way. We show that the efficient allocation rule can be implemented by

a mechanism with a simple payment rule that generalizes the static Vickrey auction

(Vickrey, 1961).

The implementability of the efficient allocation rule has already been demon-

strated in great generality by Parkes and Singh (2003), Bergemann and Välimäki

(2010) and Athey and Segal (2007). To ensure incentive compatibility, expected pay-

ments of each buyer have to be equal to the expected change in the welfare enjoyed

by the other agents due to the report of the buyer. This is an application of the

famous Vickrey-Clarke-Groves (VCG) mechanism to the dynamic framework (Vick-

rey, 1961; Clarke, 1971; Groves, 1973). Thus, incentive compatibility pins down the

expected payments conditional on all information available at the time when agents

observe their private information (i.e. at their arrival time in this chapter). There

are many ways, however, in which ex-post payments can be distributed over different

states of the world, while maintaining the VCG-property of the expected payments.

The central question of this chapter is whether simple payment rules can be

defined to implement the efficient allocation rule. By simplicity we mean that,

(A) only the winner makes a payment,

(B) payments are ex-post individually rational,

(C) the mechanism never transfers money to any buyer, and

(D) payments are made online, i.e. all information that is needed to determine the

payment must be available at the time of allocation.

Note that properties (A)–(C) are fulfilled by standard static auction formats.

Moreover, if we leave the ideal world of the abstract mechanism design model,

properties (A)–(D) are obviously desirable. Property (A) minimizes the number

of transactions. This is important if the buyers or the seller incur transaction costs

for financial transactions. Property (B) is important because ex-post individually

rational payments are easier to enforce. A winner who has to pay more than his

value may feel a strong desire to renege on his bid. Property (C) is convenient

because payments to buyers may encourage persons who are not interested in the

object, to speculate on getting such subsidies and trying to renege on their bids

in the case they are selected as the winner. While it may be possible to prevent

such abuse by strict enforcement of the mechanism’s rules, this will certainly involve

additional costs. The last property (D) seems indispensable. If payments cannot be

determined online, this means that additional information has to be collected from

future buyers after the winner has already been determined. Incentives for reporting
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such information are weak. Furthermore, online payments allow to match payments

with delivery, which makes it easier to enforce payments.

There are examples of mechanisms in the literature, which fulfill properties (A)–

(D).2 As systematic analysis of implementability by simple payments rules, however,

seems to be missing. Only the requirement of online has been posited explicitly in

the literature on dynamic mechanism design (Parkes and Singh, 2003).3

The Dynamic Vickrey Auction proposed in this chapter yields expected payments

that ensure incentive compatibility. At the same time, payments are distributed

over different states of the world such that properties (A)–(D) are satisfied. Con-

sequently, the payment of an agent corresponds neither to the expected change in

the other agents’ welfare as in the online VCG mechanisms proposed by Parkes and

Singh (2003), nor to the sum of flow marginal contributions as in the dynamic pivot

mechanism proposed by Bergemann and Välimäki (2010). Instead, payments satisfy

another property of the static Vickrey (or second-price) auction. The payment of the

winner is equal to the lowest valuation for the winning period with which she could

have won the object. This valuation is called the critical type of the winning buyer.

In a static model, the critical type is equal to the second highest valuation. In the

dynamic model, however, valuations for getting the object in one period (e.g. today)

cannot be compared directly to a valuation for another period (e.g. tomorrow). In-

stead, valuations for tomorrow are compared to current valuations in terms of the

option value of retaining the object until tomorrow. Loosely speaking, the critical

type is determined by transforming all valuations using the option value function to

make them comparable with valuations for the winning period. The second highest

of these transformed valuations is the critical type of the winner. Because of the

transformation, in general, the payment differs from the second highest (untrans-

formed) valuation. Since the critical type determines the allocation decision, it can

only depend on information that is available in the winning period. Therefore, the

payment is not delayed beyond the time of allocation of the object; it can be made

online.

There is difficulty in the definition of a critical type because the model has a

multi-dimensional type-space. Types are multi-dimensional because buyers can have

different valuations for different periods. The central result of this chapter is that

the information about a buyer’s type, that is relevant for determining the efficient

allocation, is essentially one-dimensional. For each type, there is a unique period in

which she can possibly win the object. Therefore, only the valuation for this period

matters for the efficient allocation rule. This reduction to one dimension allows to

2For example, sequences of posted prices as in Gershkov and Moldovanu (2008); Gallien (2006)
and many other papers lead to simple payment rules. The dynamic pivot mechanism proposed by
Bergemann and Välimäki (2010) also yields a simple payment rule if it is applied to a scheduling
problem.
3(Gershkov and Moldovanu, 2009a) demonstrate that the requirement of online payments can
destroy the implementability of the efficient allocation rule if a buyer’s type is informative about
future buyers’ types.
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consider a lowest type in a well-defined way. As a corollary of this result, it is shown

that at each point in time, there is only one bidder who has a positive chance of

winning the object. All other bidders can be dismissed immediately and will never

be recalled. In other words, the efficient allocation rule only needs a queue of bidders

of length one. These properties also allow to design a generalized ascending auction

that implements the efficient allocation rule in periodic ex-post equilibrium.

The chapter is structured as follows: In Section 3.2, the formal model is intro-

duced, the efficient allocation rule is defined, and the mechanisms proposed by Parkes

and Singh (2003) and Bergemann and Välimäki (2010) are discussed. In Section 3.3,

it is proven that for each type, there is a unique potential winning period. In Section

3.4, the payment rule of the dynamic Vickrey auction is constructed. Section 3.5

describes the generalized ascending auction. Section 3.6 concludes with a discussion

of possible generalizations and relationships of the results to revenue-maximizing

auctions.

3.2. The Model

3.2.1. Setup and Notation. A seller wants to sell a single indivisible object

within T time periods. In each period t ∈ {1, . . . , T}, a random number of buyers

nt arrives. The numbers nt are independent random variables and the probability

that nt = k is denoted by ρt
k ≥ 0, with

∑∞
k=0 ρt

k = 1. Nt :=
∑t

τ=1 nτ denotes the

number of buyers that have arrived in or before period t. Buyers are indexed in the

order of arrival. Within periods, indexing is random. It = {1, . . . , Nt} denotes the

set of buyers that arrive in or before period t.

A typical buyer j who arrives in period t, attaches a monetary value of vτ
j ∈ [0, v]

to the object if she gets it in period τ ≥ t, where v > 0. Each buyer is completely

characterized by her vector of valuations starting with her arrival period. Her type is

thus vj = (vt
j, . . . , v

T
j ). Buyers’ types are independent random variables with distri-

bution functions Φt : [0, v]T−t+1 → [0, 1] and strictly positive densities on [0, v]T−t+1,

where t is the arrival period of the respective buyer. We allow for dependencies

between the components of a buyer’s type. (ρt
k)t=1,...T,k∈N and (Φt)t=1,...,T are com-

monly known by the buyers and the seller. Realizations of type and arrival period

are private information of each buyer, and we assume that she knows her complete

type in the arrival period. The valuation for the object can depend on the time

of allocation as described by the type-vector, but this relationship is completely

determined when the buyer arrives.

Prior to the arrival period, the type of a buyer is not known to anybody. To

emphasize this informational constraint, we distinguish the type of a buyer who

arrives in period t: (vt
j , . . . , v

T
j ) ∈ [0, v̄]T−t+1 from the type of a buyer who arrives in

period τ < t and has the same valuations for periods t, . . . , T but valuations of zero

for periods before t: (0, . . . , 0, vt
j, . . . , v

T
j ) ∈ [0, v̄]T−τ+1.

Buyers are risk-neutral. If a buyer j has to make a total expected payment of

pj, and qτ is the probability of getting the object in period τ , then her expected
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utility is given by
∑T

τ=t v
τ
j qτ −pj . The seller’s valuation for the object is normalized

to zero.

For τ ≥ t, let ητ (It) := maxi∈It
{vτ

i } be the highest valuation for getting the

object in period τ among all buyers in It and define η(It) := (ηt(It), . . . , ηT (It)) and

η := (η(I1), . . . , η(IT )).

3.2.2. The Efficient Allocation Rule under Complete Information. In pe-

riod t, allocation decisions can only depend on the types of buyers that have already

arrived. The value of the object, on the other hand, depends on the time when a

buyer gets it. Consequently, the ex-post efficient allocation rule is not feasible. It is

not always possible to identify the identity of the buyer with the ex-post highest val-

uation with certainty, in the period where this valuation can be realized. Instead, we

consider the ex-ante efficient allocation rule, i.e. the allocation rule that maximizes

the expected value of the utility enjoyed by the buyers, subject to the informational

constraint that information about future types cannot be used. This allocation rule

is the optimal policy for the following dynamic program.

The state (ht, at) at time t, consists of the history of types of all buyers in It,

denoted ht, and the availability of the object, denoted at ∈ {0, 1}. at equals zero

if the object has already been allocated, and one if the object is still available in

period t.

The set of feasible decisions xt, in state (ht, at) is

X(ht, at) =

{

{0, 1, . . . , Nt(ht)}, if at = 1,

{0}, if at = 0,

where xt = 0 means that the object is not allocated in period t and xt ∈ {1, . . . , Nt}

means that the object is allocated to buyer xt.
4 A policy is a family of decision

rules x = (xt(., .))
T
t=1 where xt(ht, at) ∈ X(ht, at). The total value (or welfare) in

period T at history hT after decisions x = (x1, . . . , xT ) is given by
∑T

t=1 vt
xt

(define

vt
0 := 0, ∀t). The efficient allocation rule is the optimal policy x∗, for the dynamic

program P:

max
(xτ (.,.))T

τ=1

E

[
T∑

τ=1

vτ
xt(ht,at)

]

. (P)

The value function is given by V ∗
T+1(hT+1, aT+1) = 0 and

V ∗
t (ht, at) = max

(xτ (.,.))T
τ=t

E

[
T∑

τ=t

vτ
xτ (hτ ,aτ )

]

= vt
x∗

t (ht,at) + E
[
V ∗

t+1(ht+1, at+1)
∣
∣ ht, at, x

∗
t (ht, at)

]
.

The efficient allocation rule always allocates to a buyer who has the highest

valuation for the selling period. Hence, the value function can be considered as a

4Without loss of efficiency we can restrict the decision space to deterministic decisions.
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function of η(It) instead of ht.

V ∗
t (ht, at) = V ∗

t (η(It), at).

The option value of retaining the object in period t is a function of the highest

valuations for all future periods v̂t : [0, v]T−t+1 → R, defined by5

v̂t(η(It)) := E
[
V ∗

t+1(η(It+1), 1)
∣
∣ η(It)

]
. (3.2.1)

It is efficient to allocate the object in period t, if the option value is below the

highest valuation in period t. Hence, the object is allocated in the first period for

which

ηt(It) > v̂t(η(It)). (3.2.2)

In this period, the object is awarded to a buyer with valuation ηt(It). If there is a

tie, the buyer with the lowest index is chosen.6

3.2.3. Incentive Compatibility. A direct mechanism is a tuple (S, x, π). S =

(St)t∈{1,...,T} is the sequence of signal spaces, where St = [0, v]T−t+1 is the signal

space for period t. In each period, buyers can only report a complete type of a

buyer that arrived in the same period. A buyer can make a report in any period

after her arrival. Without loss of generality we can assume that each buyer makes at

most one report. The allocation rule x is a policy as defined in the last section. We

will only use the efficient policy x∗. π : hT 7→ (πi)i=1,...,NT
∈ RNt is the payment rule.

πj(hT ) specifies the payment of buyer j at the terminal history hT . A mechanism

does not explicitly specify the time at which payments have to be made. Payments

may depend on all reports until the last period. If, however, in period t, and for

some ht, πj(hT ) is independent of all reports after period t, then the payments of

buyer j can already be made in period t.

Now consider a buyer j, who arrives in period t and plans to make a report v′ ∈ Sr

in period r ≥ t. Denote the history of reports of all buyers in It \ {j}, by ht,−j .

For given ht,−j and assuming that all other buyers report truthfully, the winning

probability of buyer j for period τ ≥ r conditional on all information available in the

arrival period is given by

qr
τ (v

′, ht,−j) := Prob [x∗
τ (hτ ) = j | ht,−j, vj = v′] .

We omit at as an argument of the winning probability because qr
τ (ht,−j, v

′) will only

be used when at = 1. The expected payment is given by

pr(v′, ht,−j) := E [πj(hT ) | ht,−j , vj = v′] .

5For simplicity, ηt(It) is included in the arguments although v̂t does not depend on ηt(It).
6This implies a random selection among buyers with the same arrival period because indices are
assigned randomly. Furthermore, there is preference for buyers that arrived earlier. In this chapter,
the efficient allocation rule always refers to the allocation rule that has just been described. There
are other allocation rules which achieve the same total expected welfare. For example, the allocation
rule that allocates in the first period for which ηt(It) ≥ v̂t(η(It)), is also efficient. Also, other tie-
breaking rules could be used.
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With these definitions, the expected utility from participating in the mechanism

with a reported type v′ ∈ Sr and true type v ∈ St is

U(v, v′, ht,−j) :=
T∑

τ=r

vτqr
τ (v

′, ht,−j) − pr(v′, ht,−j).

The expected utility from truth-telling is abbreviated U(v, ht,−j) := U(v, v, ht,−j).

A mechanism is periodic ex-post incentive compatible if for all t, r ∈ {1, . . . , T}

with r ≥ t, all v ∈ St, v′ ∈ Sr, and all possible histories of reports ht,−j ,

U(v, ht,−j) ≥ U(v, v′, ht,−j). (3.2.3)

Periodic ex-post incentive compatibility requires that a truthful report at the ar-

rival period must be optimal for all possible histories, under the assumption that all

buyers (past, current and future arrivals) report their types truthfully at their re-

spective arrival periods. Periodic ex-post incentive compatibility is a hybrid concept

that reflects the informational constraint of the dynamic model. Expectations are

taken with respect to the types of future buyers. In this sense, it resembles Bayes-

Nash incentive compatibility. With respect to past and current buyers, incentive

compatibility constraints must hold for every profile of types. Therefore, ex-post

incentive compatibility is required only for information that is already realized at

the time when a buyer makes a report.7

Incentive compatibility of the efficient allocation rule has been shown by Parkes

and Singh (2003) for discrete type-spaces8 and by Bergemann and Välimäki (2010)

for continuous type-spaces.9

Adapted to the model of this chapter, the online VCG mechanism of Parkes and

Singh (2003) uses the following payment rule. The payment of j, when she makes a

report v′ ∈ Sr, is defined as

πoVCG
j (hT,−j, v

′) =

T∑

τ=r

v′τ1{x∗
τ (hτ,−j ,v′)=j} − [V ∗

r ((hr,−j, v
′), ar) − V ∗

r (hr,−j, ar)] .

(3.2.4)

7Note that (3.2.3) also rules out profitable deviations in which a buyer delays her report and reports
different types in later periods, conditional on the valuations of buyers who have arrived in the
meantime. For period T , (3.2.3) ensures that it is optimal to report vT

j truthfully, for every history
hT,−j . This applies to buyers who arrived in period T as well as to buyers who delayed their
report because the mechanism cannot distinguish between them. In period T − 1, (3.2.3) rules out
that a delayed but truthful report of vT

j is a profitable deviation. Therefore in period T − 1, it is

optimal to report (vT−1
j , vT

j ) truthfully and without delay. Working backwards in time it follows

inductively, that (3.2.3) rules out all feasible reporting strategies except a truthful report in the
arrival period.
8These authors use a very similar equilibrium concept. In their concept, ex-post incentive compat-
ibility is required with respect to information of buyers with lower index. This excludes the types
of buyers who arrive simultaneously but were assigned a higher index.
9Athey and Segal (2007) also show implementability of the efficient allocation rule, but the proposed
mechanism requires all agents to be available in all periods.
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The first term is equal to the private utility j enjoys according to her reported type.

If j wins the object in period τ , this is equal to v′τ . If she does not win the object in

any period, it is zero. The term in parentheses is the change in expected total welfare

due to the report of buyer j given the information available in period r. As in the

standard static VCG mechanism, the payment replaces the private surplus of each

buyer by the (expected) change in total welfare due to her report. The allocation

rule maximizes welfare subject to the informational constraint that future types are

not known. Therefore, it is optimal for j to report her true type, because she faces

the same informational constraint.

Theorem 3.2.1 (Parkes and Singh (2003)). The mechanism (S, x∗, πoVCG) is peri-

odic ex-post incentive compatible.

πpVCG is not the only payment rule that implements the efficient allocation. The

dynamic pivot mechanism of Bergemann and Välimäki (2010) does not aggregate

payments over periods. The payment of a buyer j in period s ≥ r is defined as

πDP
j (hs,−j, v

′) = vx∗
s(hs,−j) + E

[
V ∗

s+1(hs+1,−j)
∣
∣hs,−j, x

∗
s(hs,−j)

]

−
(
vx∗

s(hs,−j ,v′) + E
[
V ∗

s+1(hs+1,−j)
∣
∣hs,−j, x

∗
s(hs,−j, v

′)
])

None of the mechanisms fulfills all properties (A)–(C). In the truth-telling equilib-

rium of the online VCG mechanism, j always receives a payoff given by

V ∗
t (ht, at) − V ∗

t (ht,−j , at). (3.2.5)

The payoff is independent of the event that she wins the object. In particular, this

implies that the mechanism must transfer a positive amount of money to every buyer

who has a positive chance of winning at the time of arrival, if that buyer does not

win the object. This violates property (C).

The dynamic pivot mechanism requires payments from buyers who are pivotal

for postponing the allocation even if they do not win the object. To see this consider

the following example. Let T = 2, I1 = {1, 2} with v1 = (v1
1, 0) and v2 = (0, v2

2),

and assume that ρ2
1 = 1 so that I2 = {1, 2, 3}. Furthermore, assume that v1

1 = 5
8
,

v2
2 = 3

4
and v2

3 ∼ U [0, 1]. In this case, it is efficient not to allocate in the first period

because v1
1 = 5

8
< E

[
max

{
3
4
, v2

3

}]
= 25

32
. Buyer two is pivotal for the allocation

decision; without her, the object would be allocated to buyer one in the first period.

Her payment in period one is therefore given by π1
2 = v1 −E[v3] = 1

8
. If the realized

valuation v2
3 exceeds v2

2 , then buyer two does not receive the object and his payment

in the second period is π2
2 = 0. Hence, her total payment is 1

8
which violates property

(A) and ex-post individual rationality.10

10This does not contradict the individual rationality result of Bergemann and Välimäki (2010)
because the authors consider periodic ex-post individual rationality. Indeed, the expected payoff
of buyer two in the first period is 3

4 (3
4 − 3

8 ) − 1
8 = 5

32 > 0.
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3.3. Properties of the Efficient Allocation Rule

The efficient allocation rule allocates the object in the first period where ηt(It) >

v̂t(η(It)). We show below that if we apply this condition to the type vj of buyer j,

then we get the unique period in which this type can win.

Definition 3.3.1. For t ∈ {1, . . . , T}, the potential winning period θj of buyer j

with type vj ∈ St, is the earliest period θ ≥ t for which vθ
j > v̂θ(vj), i.e.,

vτ
j ≤ v̂τ (vj), for τ ∈ {t, . . . , θj − 1},

and v
θj

j > v̂θj
(vj).

(3.3.1)

Definition 3.3.1 partitions the type-space. Hence, there is a unique potential

winning period for each type. The potential winning period θj only depends on the

type of buyer j and the structure of the allocation problem, i.e. the arrival process

and the distributions from which valuations are drawn. It does not depend on the

realized types of the other buyers or the realized numbers of buyers.

Examples:

(1) A buyer with constant valuation vj = (v, v, . . . , v) has potential winning

period T .

(2) A buyer with vτ
j = v for some τ and vt

j = 0 for t 6= τ , has potential winning

period T if vτ
j ≤ v̂τ (0, . . . , 0), otherwise she has potential winning period τ .

The following theorem states that under the efficient allocation rule, a buyer can

win the object only in her potential winning period.

Theorem 3.3.2. Fix a buyer j with type vj ∈ St. If x∗
s(hs, as) = j for some s ≥ t,

and some hs, then s = θj.

Proof. See Appendix 3.A. �

To get an intuition for the result, consider the case T = 2. Suppose buyer j

arrives in period one and has type vj = (v1
j , v

2
j ). The theorem states that she can

either win in period one or in period two, but not in both periods. Of course, it

depends on the types of the other buyers whether she wins at all.

First, suppose that for some profile of types, it is efficient that j gets the object

in period two. In this case, the highest valuation for the first period η1(I1), must

not be greater than the option value of retaining the object:

η1(I1) ≤ v̂1(η(I1)).

If j wins in the second period, she must have the highest valuation for period two

among the buyers from period one: v2
j = η2(I1). Hence, the option value of retaining

the object only depends on her valuation: v̂1(η(I1)) = v̂1(v
2
j ). On the other hand,

her valuation for the first period cannot be greater than η1(I1). We conclude that

v1
j ≤ v̂1(v

2
j ).
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Loosely speaking, if j had a higher valuation for period one, she would overbid the

option value defined by her own valuation for period two. But this must not be the

case if j wins in the second period.

Second, suppose that for some other profile of types it is efficient to allocate the

object to j in period one. Then, v1
j = η1(I1) and hence

v1
j > v̂1(η(I1)) ≥ v̂1(v

2
j ).

Loosely speaking, j’s valuation for period one must overbid the option value of

retaining the object. Especially, j must overbid her own valuation for period two

(transformed by the option value function). The conditions on vj for winning in the

first and in the second period, cannot be fulfilled simultaneously. Hence, it is not

possible that j wins in different periods for different profiles of the other buyers’

types.

Theorem 3.3.2 greatly reduces the dimension of the signal space that is necessary

to implement the value-maximizing allocation rule. The type of each buyer j can

be summarized by θj and v
θj

j . In addition, once the winning period θj is fixed, the

notion of the lowest type that can win the auction for a particular state of the world

becomes well defined. This property will be used to define the dynamic Vickrey

auction.

Theorem 3.3.2 has two important implications that are useful to define auction

rules. First, in each period t, there is a unique buyer j∗t among those who have

already arrived, who has a chance of winning. This buyer is called the tentative

winner in period t. Furthermore, if we partition the set of buyers in period t into

two subsets A and B, two tentative winners can be determined under the assumption

that only the buyers in A or B, respectively, have arrived. The tentative winner for

the set of all buyers (A ∪ B), must be one of the two tentative winners determined

for the subsets A and B. Formally, we have:

Corollary 3.3.3. (i) For each period t and every state (ht, at) with at = 1, there

exists a unique buyer j∗t ∈ It such that x∗
τ (hτ , aτ ) /∈ It\j

∗
t for all τ ≥ t and all

future states (hτ , aτ ) that can occur after (ht, at).

(ii) Suppose It = A ∪ B with A, B 6= ∅. Let a ∈ A be the tentative winner if the

set of buyers is I ′
t = A, and let b ∈ B be the tentative winner if I ′

t = B. Then

j∗t ∈ {a, b}.

Proof. (i) For t ∈ {1, . . . , T} consider a hypothetical buyer k with valuations

vk = η(It). By Theorem 3.3.2, this buyer has a unique potential winning

period θk. The stopping rule of the efficient allocation only depends on the

highest valuation for each period (cf. condition (3.2.2)). Therefore, the time

at which the object is allocated with It, is the same as with I ′
t = {k} and

vk = η(It). Hence, buyers in It can only win in period θk. If a buyer from

It wins, it must be j∗t = min
(

arg maxi∈It
{vθk

i }
)

. (If there are ties, the tie-

breaking rule described in Section 3.2.2 eventually selects the buyer with the
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lowest index. As the indices of the buyers in It are already known in period t,

the identity of the tentative winner is unique in period t.)

(ii) Without loss of generality we can assume that j∗t ∈ A. But then j∗t must also

be the tentative winner for I ′
t = A because with any other tentative winner,

the expected value of the allocation for I ′
t = A must be weakly smaller than

the expected value with j∗t as tentative winner.

�

An immediate implication of Corollary 3.3.3 is that a buyer who was not tentative

winner in period t, cannot become tentative winner in period t + 1.

Corollary 3.3.4. For t ∈ {1, . . . , T − 1}, let j∗t and j∗t+1 be the tentative winners

in t and t + 1, respectively. Then j∗t+1 ∈ (It+1\It) ∪ {j∗t }.

These properties of the efficient allocation rule imply that it can be implemented

as follows: In each period t, new buyers are asked to report complete types to the

auctioneer.11 If it is efficient to allocate immediately, the object is sold and the

auction ends. If it is efficient to retain the object for the next period, the auctioneer

declares a tentative winner which is either the tentative winner from the previous

period or a new buyer who has made a report in period t. All other buyers are

informed that they cannot win the auction and will never be recalled.

Remarks:

(1) The properties of the efficient allocation rule carry over to optimal policies

of any dynamic program that has a similar structure as P. For example,

one could consider quasi-efficient allocation rules that maximize excepted

welfare after valuations have been transformed by strictly increasing func-

tions:

Jt(vj) = (J t
t (v

t
j), . . . , J

T
t (vT

j )),

where each Jτ
t is strictly increasing.

(2) Note also that the assumption of full support of the type distribution has

not been used in this section. Therefore, the results carry over to a model

with constant valuations and deadlines. In this model, the types of all

buyer have the form (vi, . . . , vi, 0, . . . , 0) where the valuation vi is repeated

from the arrival time to the deadline di. Theorem 3.3.2 is trivial in this

case because θi = di for all types, but the less obvious Corollary 3.3.3 also

carries over to the model with deadlines.

3.4. Payments

In this section, a simple payment rule is constructed, that generalizes the static

Vickrey auction. To highlight the similarity, we briefly review the payment rule of

the static Vickrey auction.

11Alternatively, they could be asked to report their potential winning period and the valuation for
that period.
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3.4.1. The Static Vickrey Auction. Consider the standard independent private

values model with N bidders. Valuations are drawn from Θ = [a, b] with distribution

function F . Let q be the probability of winning the object in the second-price auction

without reserve price.

By payoff-equivalence, the expected payoff of bidder 1 with valuation v1 ∈ Θ in

the second-price auction is given by

U(v1) =

ˆ v1

a

q(v)dv. (3.4.1)

Writing the winning probability explicitly,

U(v1) =

ˆ v1

a

ˆ

ΘN−1

1{v≥max{v2,...,vN}}dF (v2) . . . dF (vN)dv.

Writing v(1) = max{v2, . . . , vN} and changing the order of integration yields:

U(v1) =

ˆ

Θ

ˆ v1

a

1{v≥v(1)}dvdF N−1(v(1))

=

ˆ

Θ

(v1 − v(1))1{v1≥v(1)}dFN−1(v(1))

=

ˆ

Θ

v11{v1≥v(1)}dFN−1(v(1))

︸ ︷︷ ︸

v1·q(v1)

−

ˆ

Θ

v(1)1{v1≥v(1)}dFN−1(v(1))

︸ ︷︷ ︸

p(v1)

This shows, that the payment of any bidder can be defined as zero if she does not

win and as the highest valuation of the other bidders if she wins.

3.4.2. Construction of Payments for the Dynamic Vickrey Auction. The

construction of payments in the dynamic setting follows the same logic. First, the di-

mension reduction of the type-space, incentive compatibility and payoff-equivalence

for multi-dimensional mechanisms are used to derive a formula similar to (3.4.1).

The result is (3.4.3) below. Second, as in the one-dimensional case, the winning

probability is written explicitly and the order of integration is changed. Instead

of the second-highest valuation, we will then obtain a critical type vt(θj , η−j) that

depends on the arrival period t, the potential winning period θi, and the profile of

the other bidders’ highest valuations η−j = (ηs(Iτ\{j}))τ=1,...,T,s=τ,...,T . This is used

to define payments for the winning bidder.

Consider a bidder j with type vj who arrives in period t ∈ {1, . . . , T}. Proposi-

tion 1 in Jehiel, Moldovanu, and Stacchetti (1999) implies that the expected payoff

for j, from participating in an incentive compatible mechanism which implements

the efficient allocation rule, is given by

U t(vj) = U t(0) +

ˆ 1

0

〈
qt(γ(s)), γ′(s)

〉
ds (3.4.2)

where qt(v) := (qt
t(v, ht,−j), . . . , q

t
T (v, ht,−j)), γ : [0, 1] → [0, v]T−t+1 parameterizes

a piecewise smooth curve that connects the origin with vj, and 〈., .〉 denotes the
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standard scalar product on RT−t+1. The argument ht,−j is suppressed in the func-

tions U and q, in order to simplify notation. Incentive compatibility of the efficient

allocation rule implies that qt is a conservative vector field (Jehiel, Moldovanu, and

Stacchetti, 1999). Therefore, γ can be chosen such that it is composed of three

straight lines. Let the first line connect the origin with w1
j := (0, . . . , v̂θj

(0), 0, . . .).

(This implies that the first line reduces to a point for θj = T.) Let the second line

connect w1
j with w2

j := (0, . . . , v
θj

j , 0, . . .). Let the third line connect w2
j with vj.

If θj 6= T , for each v = γ(s) on the first line, qt
τ (v) = 0 for τ 6= T by Theorem

3.3.2 (see the example after Definition 3.3.1), and γ′
T (s) = 0 by the choice of γ.

Hence, the path of integration is perpendicular to the vector-field and the integrand

in (3.4.2) vanishes. For each v = γ(s) on the third line segment, qt
τ (v) = 0 for τ 6= θj ,

and γ′
θj

(s) = 0. Hence, the integrand vanishes as well. On the second line segment,

only the θth
j components of qt and γ′ are non-zero. Therefore, with a simple change

of variables, (3.4.2) can be simplified to

U t(vj) = U t(0) +

ˆ v
θj
j

v̂θj
(0)

qt
θj

(0, . . . , v, 0, . . .)dv. (3.4.3)

For given v ∈ [0, v̄], qt
θj

(0, . . . , v, 0, . . .) is equal to the probability conditional on

ht,−j, that η−j belongs to the set

Ωt
θj

(v) :=
{
η̃−j

∣
∣ η̃t(It,−j) ≤ v̂t(η̃t(It,−j), . . . , max{η̃θj

(It,−j), v}, . . . , η̃T (It,−j)),

. . .

η̃θj−1(Iθj−1,−j) ≤ v̂θj−1(η̃θj−1(Iθj−1,−j), max{η̃θj
(Iθj−1,−j), v}, . . .

. . . , η̃T (Iθj−1,−j)),

v > η̃θj
(Iθj ,−j),

v > v̂θj
(η̃(Iθj ,−j))

}
,

= {η̃−j | η̃t(It,−j) ≤ v̂t(0, . . . , v, . . . , 0),

. . .

η̃θj−1(Iθj−1,−j) ≤ v̂θj−1(0, v, 0 . . . , 0), (3.4.4)

v > η̃θj
(Iθj ,−j),

v > v̂θj
(η̃(Iθj ,−j))

}
,

where Iτ,−j = Iτ\{j}. The second equality follows because j must be the tentative

winner in all periods t, . . . , θj, if he gets the object in period θj . In (3.4.4), the

conditions on η̃(It,−j), . . . , η̃(Iθj−1,−j), ensure that it is efficient to retain the object

until period θj . The second last line ensures that j has the highest valuation in

period θj among all bidders. The last condition ensures that it is not efficient to
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retain the object in period θj . With this definition, (3.4.3) becomes

U t(vj) = U t(0) +

ˆ v
θj
j

v̂θj
(0)

ˆ

Ωt
θj

(v)

dGt(η−j | ht,−j)dv,

where Gt( . |ht,−j) shall denote the distribution function of η−j , conditional on ht,−j .

The inequalities defining Ωt
θj

(v) in (3.4.4) are lower bounds for v. Therefore,

Ωt
θj

(v′) ⊇ Ωt
θj

(v) if v′ ≥ v. We can rewrite the expected payoff and use Fubini as

follows:

U t(vj) = U t(0) +

ˆ v
θj
j

v̂θj
(0)

ˆ

Ωt
θj

(v
θj
j )

1{η−j∈Ωt
θj

(v)} dGt(η−j | ht,−j) dv,

= U t(0) +

ˆ

Ωt
θj

(v
θj
j )

ˆ v
θj
j

v̂θj
(0)

1{η−j∈Ωt
θj

(v)} dv dGt(η−j | ht,−j).

Finally, we define

vτ (θj , η−j) := inf
{

v
∣
∣
∣ η−j ∈ Ωτ

θj
(v)
}

. (3.4.5)

vτ (θj, η−j) is the critical type of the winning bidder, i.e. the valuation v
θj

j , for which

j ties with η−j . Using this, we can rewrite the expected payoff to get

U t(vj) = U t(0) +

ˆ

Ωt
θj

(v
θj
j )

v
θj

j − vt(θj , η−j) dGt(η−j | ht,−j) (3.4.6)

= U t(0) +

ˆ

Ωt
θj

(v
θj
j )

v
θj

j dGt(η−j | ht,−j)

︸ ︷︷ ︸

v
θj
j · qθj

(vj )

−

ˆ

Ωt
θj

(v
θj
j )

vt(θj , η−j) dGt(η−j | ht,−j)

︸ ︷︷ ︸

pt(vj)

The last line shows that the expected payment is the integral over the critical

type. The domain of integration is restricted to the set of profiles for which j wins

the object. Therefore, a payment rule that requires no payment from losing bidders

and a payment equal to the critical type from the winner, implements the efficient

allocation rule in periodic ex-post equilibrium. Obviously, with this definition, it

is ensured that buyer j has to pay a positive amount only if she gets the object.

Furthermore, the payoff of bidder j is non-negative because her valuation v
θj

j is

greater than or equal to the critical value if she wins the auction. As the inequalities

in (3.4.4) only depend on information available in period θj , the payment can be

determined at the same time as the allocation. To summarize, we can state

Theorem 3.4.1. Let π be a payment rule that defines the payment for bidder j,

when she reports type vj in period t, and the history of reports is hT , as

πj(hT ) :=

{

vt(θj , η−j) if η−j ∈ Ωt
θj

(v
θj

j )

0 if η−j /∈ Ωt
θj

(v
θj

j )
. (3.4.7)

Then,
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(i) the mechanism (S, x∗, π) is periodic ex-post incentive compatible,

(ii) payments are non-negative for the winning bidder and zero for all other bidders,

(iii) payments are completely determined in the period when the object is allocated,

(iv) and the mechanism is ex-post individually rational.

Remarks:

(1) With these payments, U t(0) = 0.

(2) The critical type vt(θj , η−j), can be computed by setting the inequalities in

the definition of Ωt
θ(v) equal (see (3.4.4)) and solving each equality for v.

The critical value is the maximum of these solutions. There is at least one

equality that is fulfilled at this maximum. If the last equality is fulfilled we

have vt(θj , η−j) = v̂θj
(η(Iθj ,−j)): j has to pay the option value of retaining

the object to period θj + 1. If the penultimate equality is fulfilled we have

vt(θj , η−j) = ηθj
(Iθj ,−j): j has to pay the second highest valuation for period

θj . If one of the other equalities is fulfilled, the auction would have ended

earlier than θj if j had not made her report. Suppose for example, that the

equality for η̃t′ for some t′ ∈ {t, . . . , θj − 1} is fulfilled. Then, without j’s

report, the auction would have stopped in period t′. Solving η̃t′(It′,−j) =

v̂t′(0, . . . , v, 0, . . . , 0) for v yields vt(θj , η−j). The solution is lower than the

highest valuation in period t′. Hence, in this case, the winner has to pay

less that the valuation of the bidder who would have won without j.

(3) As in the static Vickrey auction, payments of bidder j do not depend di-

rectly on her report.

(4) Payments are defined as a function of the history hT in the final period. We

know from Corollary 3.3.3, that in each period only the tentative winner

has a positive probability to win the object in the future. This implies, that

for all bidders except the tentative winner, payments are determined as zero

immediately after they have made their reports. For a tentative winner, the

payment is determined if she wins the object or if another bidder becomes

tentative winner. In the latter case, the payment is zero, in the former case,

it can be made at the same time as the allocation of the object. Therefore,

all payments can be made online.

3.5. A Generalized Ascending Auction

Theorem 3.4.1 defines a direct mechanism that generalizes the static second price

auction. The ascending auction can also be generalized to the dynamic setting. In

this construction, one property of the efficient allocation rule is crucial. We can

define an order on the type-space such that efficient allocation rule always selects

the bidder that ranks highest in this order as tentative winner, and allocates to her

if her potential winning period is reached.
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For bidder j with arrival period t, type vj ∈ St and potential winning period θj ,

we define the comparison price πT
j by

πT
j := min

{

π ≥ 0
∣
∣
∣v

θj

j ≤ v̂θj
(0, . . . , 0, π)

}

.

Since dismissed buyers are never recalled, we have that v̂τ (0, . . . , 0, v
θj

j , 0, . . . , 0) =

v̂τ (0, . . . , 0, π
T
j ) for all vj such that πT

j > 0 and τ < θj . This implies that j wins

against another bidder i with potential winning period θi = T , if and only if vT
i < πT

j .

More generally, if bidder i has type vi, potential winning period θi and comparison

price πT
i , then j wins against i only if πT

j ≥ πT
i .12 If θi = θj this is obvious.

Otherwise, suppose without loss of generality that θj < θi. Then we have πT
j ≥ πT

i

if and only if

v
θj

j = v̂θj
(0, . . . , 0, πT

j ) ≥ v̂θj
(0, . . . , 0, πT

i ) = v̂θj
(0, . . . , 0, vθi

i , 0, . . . , 0).

We will now use the order of types defined by their comparison price, to define

a dynamic ascending auction. In each period t, there are T − t + 1 price clocks that

show prices πt, . . . , πT for buying the object in periods t, . . . , T . All prices πτ , τ < T

are linked to πT by

πτ = v̂τ (0, . . . , 0, π
T ). (3.5.1)

In the first period, πT starts at zero. In all periods t > 1, πT starts at the value

where it stopped in period t − 1. The other prices are set such that they satisfy

(3.5.1). In each period, the auction has two phases, the clock phase and the buying

phase. Before the clock phase, buyers can chose to become active. In the clock

phase, πT is raised continuously and the other prices are updated such that (3.5.1)

is satisfied. Bidders are free to drop out at any time. A bidder who has dropped

out cannot become active again. If all bidders but one have dropped out, or if all

remaining bidders decide to drop out at the same time, the clock stops immediately.

The remaining bidder, or a random bidder from the group of drop-outs if all bidders

dropped out simultaneously, enters the buying phase.13 In the buying phase, she

can either buy immediately for the current price πt, or she can wait. In the former

case, the auction ends with a sale, in the latter case, the auction proceeds to the

next period and she remains active.

A bidder j is said to bid truthfully in the dynamic ascending auction if she uses

the following strategy:

• Before the clock phase of any period τ : become active if and only if ∃s ≥

τ : vs
j > πs.

• In the clock phase of any period τ : drop out if and only if vs
j ≤ πs for all

s ≥ τ .

• In the buying phase of any period τ : Buy if and only if τ = θj .

12We ignore ties in this discussion.
13Here, for simplicity, we use a different tie-breaking rule than in the dynamic Vickrey auction.
The probability that this affects the outcome is zero.
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Theorem 3.5.1. (i) If all bidders bid truthfully, the outcome of the dynamic as-

cending auction coincides with the outcome of the dynamic Vickrey auction

with probability one.

(ii) Truthful bidding is a periodic ex-post equilibrium in the dynamic ascending

auction.

Proof. See Appendix 3.A. �

The main steps of the proof are as follows. Under truthful bidding, the ascending

auction selects the buyer with the highest comparison price and allocates the object

to him in his potential winning period. Hence, ignoring ties, the allocation rule is

the same as in the dynamic Vickrey auction. Next, we show that the price for the

winning period, at which the last competing bidder drops out is equal to the winner’s

critical type. Therefore, the payment rule implemented under truthful bidding is

also identical to the payment rule in the dynamic Vickrey auction.

To show that truth-telling is an equilibrium we rule out several deviations that

lead to non-positive expected payoffs and show that the remaining strategies yield

the same expected payoffs as certain reports in the dynamic Vickrey auction. Truth-

ful bidding corresponds to a truthful report in the dynamic Vickrey auction. Incen-

tive compatibility of the latter therefore implies that truthful bidding is a periodic

ex-post equilibrium of the dynamic ascending auction.

3.6. Conclusion

This chapter shows how the payments in a dynamic mechanism can be dis-

tributed over different states of the world such that (i) expected payments ensure

incentive compatibility and (ii) the payment rule is simple in the sense that non-

winning bidders do not make or receive a transaction, ex-post participation con-

straints are satisfied and payments can be made online. The result is the dynamic

Vickrey auction in which the winning bidder pays her critical type, i.e., she pays

the lowest valuation for the winning period that would suffice to win against the

other bids. The crucial step in the construction of the payment rule was to show

that for each type, there is a unique potential winning period. This reduces types

to essentially one dimension. Furthermore, it was shown that the efficient allocation

rule allows to define a tentative winner in each period. There is an order of the

type-space and the tentative winner is the highest bidder in that order. The results

have been used to generalize the ascending clock auction to the dynamic framework.

The model is restrictive in at least two ways. Firstly, the allocation of a single

object is studied. The case of multiple objects is left for future research. How-

ever, if more than one object is at sale, it is possible to construct simple examples

where bidders can win in different periods for different profiles of competing bidders’

types. Therefore, future research will have to concentrate on the generalization of

the weaker result of corollaries 3.3.3 and 3.3.4.
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Secondly, more general allocation problems could be studied. In this case, as in

the case of multiple objects, a reduction of types to essentially one dimension may

not be possible. It should be noted, however, that Theorem 3.3.2 provides much

more structure than is needed for the construction of payments in Section 3.4. It

would suffice that for each type vj , there exists a path from the origin to vj such that

the allocation to bidder j is monotonic along this path for all profiles of the other

bidder’s types. Depending on the choice of these paths, the payment rule may look

significantly different from Vickrey payments, but nevertheless it would be possible

to define payment rules that require transfers only from winning bidders.

Dynamic revenue maximization is an important question that has not been stud-

ied extensively in models with private information about time preferences.14 The

results of the present chapter do not characterize the allocation rule that maximizes

revenue. They can, however, be generalized to other allocation rules that are the

solution to a recursive dynamic program in which valuations are replaced by some

increasing function of valuations. Given the dynamic structure of the model, it is

possible that the revenue-maximizing allocation rule belongs to this class. In this

case, the expected payments fixed by the allocation rule (via payoff equivalence),

could be distributed over different states in the same way as in this chapter.

3.A. Omitted Proofs

Proof of Theorem 3.3.2. The result is proven by induction. For T = 1 the

result is trivial. Assume that the theorem is true for allocation problems with T − 1

periods. The statement for T is shown in four steps.

Step 1: If a buyer j ∈ I1 gets the object in period one, v1
j > v̂1(η(I1)) ≥ v̂1(vj).

Therefore θj = 1.

Step 2: If it is not efficient to allocate in period one, we can consider the allocation

of the retained object in periods {2, . . . , T} as a new allocation problem with T − 1

periods. We only have to relabel Ĩ1 = I2, . . . , ĨT−1 = IT and delete the first elements

from the type vectors of bidders in I1. The decisions in periods {2, . . . , T} of the

original problem only depend on the buyers that are present in these periods and

their valuations. Therefore the identity of the winning buyer is the same in the new

problem and the original problem. The time of allocation is shifted by one. This

implies, that buyer j with potential winning period θnew
j ∈ {1, . . . , T −1} in the new

problem, can only win in period one or period θ′j = θnew
j +1 of the original problem.

Furthermore, as θnew
j is characterized by condition (3.3.1) with τ ∈ {1, . . . , θnew

j −1},

θ′j is characterized by (3.3.1) with τ ∈ {2, . . . , θ′j − 1}. It therefore remains to show

that v1
j ≤ v̂1(vj), if j wins in θ′j in the original problem.

Step 3: There is only one buyer from I1 that can win the object in the original

problem if it is retained for period two. To see this, consider again the new problem

with T −1 periods. Define A = I1 and B = Ĩ1\I1. Then Ĩ1 = A∪B. Assume B 6= ∅.

14See Pai and Vohra (2008b) and Chapter 1 for exceptions. In most other papers, buyers are either
short-lived, or long-lived with a common, public discount factor and a fixed valuation.
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By Corollary 3.3.3.ii, there are elements a ∈ A and b ∈ B such that the tentative

winner in period one of the new problem is in {a, b}. Hence, buyer a ∈ A = I1 is

the only buyer in I1 that can win the object in the original problem if it is retained

for period two. If B = ∅ the argument is trivial.

Step 4: If j ∈ I1 gets the object in θ′j 6= 1, we must have η1(I1) ≤ v̂1(η(I1)). By

step 3 we know that j is the only bidder in I1 that can win in periods {2, . . . , T}.

Therefore the option value of retaining the object only depends on her valuation:

v̂1(η(I1)) = v̂1(vj). As v1
j ≤ η1(I1) we have v1

j ≤ v̂1(vj) as desired. �

Proof of Theorem 3.5.1. (i) If all bidders bid truthfully, a bidder j drops out

if πT = πT
j . Therefore, in each period, a buyer with the highest comparison price

enters the buying phase. As buyers buy in their potential winning periods, and

only in this period, if they bid truthfully, the allocation coincides with the efficient

allocation rule of the dynamic Vickrey auction, except for the case of ties, that occur

with zero probability.

Now suppose that bidder j arrives in period t and wins the object in period θj .

We show that the price πθj at which the last competing bidder dropped out equals

the critical type of bidder j. For each i ∈ Iθj
, define π

θj

i := v̂θj
(0, . . . , 0, πT

i ). Then,

j has to pay

max
i∈Iθj

π
θj

i = max

{

max
i∈Iθj

,θi<θj

π
θj

i , max
i∈Iθj

,θi=θj

π
θj

i , max
i∈Iθj

,θi>θj

π
θj

i

}

.

If θi < θj , then for all τ < θj , v̂τ (0, . . . , 0, π
θj

i , 0, . . . , 0) = v̂τ (0, . . . , 0, π
T
i ) ≥ vτ

i .

Hence,

max
i∈Iθj

,θi<θj

π
θj

i = max
{
vθj
∣
∣vθj = 0 or ∃τ ∈ {t, . . . , θj − 1}, i ∈ Iτ : θi < θj (3.A.1)

and vτ
i = v̂τ (0, . . . , 0, v

θj , 0, . . . , 0)
}

.

If θj = θi, then π
θj

i = v̂θj
(0, . . . , 0, πT

i ) = v̂θi
(0, . . . , 0, πT

i ) = vθi

i = v
θj

i . Hence

max
i∈Iθj

,θi=θj

π
θj

i = max
i∈Iθj

,θi=θj

v
θj

i . (3.A.2)

Finally if θi > θj , then π
θj

i = v̂θj
(0, . . . , 0, πT

i ) ≥ v̂θj
(0, . . . , 0, vθi

i , 0, . . . , 0). Hence

max
i∈Iθj

,θi>θj

π
θj

i = max
i∈Iθj

,θi>θj

v̂θj
(v

θj

i , . . . , vT
i ). (3.A.3)

We now compare (3.A.1)–(3.A.3) to the values defining the critical type of bidder

j from (3.4.4). Define ξ1 as the minimal value of v that satisfies all but the last two

inequalities in (3.4.4), ξ2 as the infimal value of v that satisfies the second-last

inequality in (3.4.4), and ξ3 as the infimal value of v that satisfies the last inequality

in (3.4.4). In general ξ1 is greater or equal than (3.A.1), ξ2 is greater or equal than

(3.A.2) and ξ3 is greater or equal than (3.A.3) as the maximizations in (3.A.1)–

(3.A.3) are restricted to the sets of bidders with θi < θj , θi = θj and θi > θj ,
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respectively. Now suppose that the last bidder i who dropped out before j won the

auction has θi < θj . Then the price clock for period θi stopped at πθi = vθi

i . Let πθj

be the value at which the price clock for period θj stopped. As i is the last drop-out,

vθi

i = ηθi
(Iθi,−j) = v̂θi

(0, . . . , 0, πθj , 0, . . . , 0) and ητ (Iτ,−j) ≤ v̂τ (0, . . . , 0, π
θi, 0, . . . 0)

for all τ = t, . . . , θj − 1. Therefore, ξ1 satisfies

vθi

i = v̂θi
(0, . . . , 0
︸ ︷︷ ︸

t,...,θj−1

, ξ1, 0, . . . , 0
︸ ︷︷ ︸

θj+1,...,T

) = v̂θi
(0, . . . , 0, πθi, 0, . . . , 0).

This implies ξ1 = π
θj

i . If θi = θj , then i dropped out at πθj = v
θj

i . This im-

plies ξ2 = π
θj

i . If θi > θj , then i dropped out at πθi = vθi

i . Therefore π
θj

i =

v̂θj
(0, . . . , 0, vθi

i , 0, . . . , 0) = ξ3. Finally, if no buyer except j arrives, the clock for

period θj remains at its initial value πj = v̂θj
(0) and we have ξ3 = v̂θj

(0), ξ1 = 0 and

ξ2 = 0. In summary this implies maxi∈Iθj
πθi

i = vt(θj , η−j).

(ii) Suppose that for a dynamic ascending auction of length T−1, truthful bidding

is an ex-post equilibrium. For length one this is trivial. We show by induction that

the claim is also true for T periods.

Consider bidder j ∈ I1 and suppose that all other bidders bid truthfully. If the

auction reaches period two, and bidder j has not dropped out in the first period,

truthful bidding is optimal for j by hypothesis.

If j enters the buying phase in period one, we have to distinguish two cases.

Case 1: πT ≥ πT
j . In this case, vt

j ≤ πt for all t = 1, . . . , T . Therefore j’s expected

utility is non-positive regardless of the continuation strategy.

Case 2: πT < πT
j . In this case, (i) implies that buying immediately yields a payoff

equal to U(vj , (v
1
j , 0, . . . , 0), h̃1,−j) and not buying followed by truthful bidding yields

a payoff equal to U(vj , (0, v
2
j , . . . , v

T
j ), h̃1,−j). h̃1,−j = h1,−j ∪ {(π1, . . . , πT )} denotes

the history of types of the other bidders with the addition of an artificial bidder

that has valuations equal to the prices at which the clock stopped when j entered

the buying phase. U(v, v′, h) denotes the expected payoff from participating in the

dynamic Vickrey auction. If θj = 1

U(vj , (v
1
j , 0, . . . , 0), h̃1,−j) = U(vj , h̃1,−j) ≥ U(vj , (0, v

2
j , . . . , v

T
j ), h̃1,−j),

where the inequality follows from periodic ex-post incentive compatibility of the

dynamic Vickrey auction. Similarly, if θj > 1

U(vj , (0, v
2
j , . . . , v

T
j ), h̃1,−j) = U(vj , h̃1,−j) ≥ U(vj , (v

1
j , 0, . . . , 0), h̃1,−j).

This show that it is optimal to buy according to the truthful bidding strategy.

Finally, consider the clock phase. If πT ≥ πT
j , remaining active yields a payoff

of at most zero as shown before, therefore it is optimal to drop out immediately. If

πT < πT
j , continuing by truthful bidding yields U(v, h̃1,−j) ≥ 0. Hence it is optimal

to bid truthfully in the first period. �
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