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Zusammenfassung

High-Level Interpretation von Fassaden-Bildern unter Benutzung von

Markierten Punktprozessen

Das Thema dieser Arbeit ist die Interpretation von Fassadenbildern als wesentlicher Beitrag zur

Erstellung hoch detaillierter, semantisch reichhaltiger dreidimensionaler Stadtmodelle. In rektifizierten

Einzelaufnahmen von Fassaden detektieren wir relevante Objekte wie Fenster, Türen und Balkone, um

daraus eine Bildinterpretation in Form von präzisen Positionen und Größen dieser Objekte abzuleiten.

Die digitale dreidimensionale Rekonstruktion urbaner Regionen ist ein aktives Forschungsfeld

mit zahlreichen Anwendungen, beispielsweise der Herstellung digitaler Kartenwerke für Navigation,

Stadtplanung, Notfallmanagement, Katastrophenschutz oder die Unterhaltungsindustrie. Detaillierte

Gebäudemodelle, die nicht nur als geometrische Objekte repräsentiert und durch eine geeignete Textur

visuell ansprechend dargestellt werden, erlauben semantische Anfragen, wie beispielsweise nach der

Anzahl der Geschosse oder der Position der Balkone oder Eingänge. Die semantische Interpretation

von Fassadenbildern ist ein wesentlicher Schritt für die Erzeugung solcher Modelle.

In der vorliegenden Arbeit lösen wir diese Aufgabe, indem wir aus Daten abgeleitete Evidenz für

das Vorkommen einzelner Objekte mit Vorwissen kombinieren, das die Analyse der gesamten Bildin-

terpretation steuert. Wir präsentieren dafür ein dreistufiges Verfahren: Wir erzeugen Bildmerkmale,

die für die Beschreibung der relevanten Objekte geeignet sind. Wir lernen, auf Basis abgeleiteter

Merkmale, eine Repräsentation dieser Objekte. Schließlich realisieren wir die Bildinterpretation

basierend auf der zuvor gelernten Repräsentation und dem Vorwissen über typische Konfigurationen

von Fassadenobjekten, welches wir aus Trainingsdaten ableiten.

Wir leisten dazu die folgenden wissenschaftlichen Beiträge: Wir schlagen eine neuartige Methode zur

Interpretation von Fassadenbildern vor, die einen sogenannten markierten Punktprozess verwendet.

Dafür entwickeln wir ein Modell zur Beschreibung typischer Konfigurationen von Fassadenobjekten

und entwickeln ein Bildinterpretationssystem, welches aus Daten abgeleitete Evidenz und a priori

Wissen über typische Fassadenkonfigurationen kombiniert. Für die Erzeugung der Evidenz stellen

wir Merkmale vor, die wir Shapelets nennen und die skaleninvariant und durch eine ausgesprochene

Distinktivität im Bezug auf Fassadenobjekte gekennzeichnet sind. Als Basismerkmale für die Erzeugung

der Shapelets dienen Linien-, Kreis- und Ellipsensegmente. Dafür stellen wir eine neuartige Methode

zur Vereinfachung von Liniensegmenten vor, die eine Pixelkette durch eine Sequenz von geraden

Linienstücken und elliptischen Bogensegmenten approximiert. Diese basiert unter anderem auf einer

Adaption des Douglas-Peucker Algorithmus, die anstelle gerader Linienstücke, Bogensegmente als

geometrische Basiselemente verwendet.

Wir evaluieren jeden dieser drei Teilschritte separat. Wir zeigen Ergebnisse der Liniensegmentierung

anhand verschiedener Bilder und weisen dabei vergleichbare und teilweise verbesserte Ergebnisse im

Vergleich zu bestehende Verfahren nach. Für die vorgeschlagenen Shapelets weisen wir in der Evaluation

ihre diskriminativen Eigenschaften im Bezug auf Fassadenobjekte nach. Wir erzeugen auf einem an-

spruchsvollen Datensatz von skalenvariablen Fassadenobjekten, mit starker Variabilität der Erscheinung

innerhalb der Klassen, vielversprechende Klassifikationsergebnisse, die die Verwendbarkeit der gelernten

Shapelets für die weitere Interpretation belegen. Schließlich zeigen wir Ergebnisse der Interpretation

der Fassadenstruktur anhand verschiedener Datensätze. Die qualitative Evaluation demonstriert die

Fähigkeit des vorgeschlagenen Lösungsansatzes zur vollständigen und präzisen Detektion der genannten

Fassadenobjekte.
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Abstract

In this thesis, we address facade image interpretation as one essential ingredient for the generation

of high-detailed, semantic meaningful, three-dimensional city-models. Given a single rectified facade

image, we detect relevant facade objects such as windows, entrances, and balconies, which yield a

description of the image in terms of accurate position and size of these objects.

Urban digital three-dimensional reconstruction and documentation is an active area of research

with several potential applications, e.g., in the area of digital mapping for navigation, urban planing,

emergency management, disaster control or the entertainment industry. A detailed building model

which is not just a geometric object enriched with texture, allows for semantic requests as the number

of floors or the location of balconies and entrances. Facade image interpretation is one essential step in

order to yield such models.

In this thesis, we propose the interpretation of facade images by combining evidence for the

occurrence of individual object classes which we derive from data, and prior knowledge which guides

the image interpretation in its entirety. We present a three-step procedure which generates features

that are suited to describe relevant objects, learns a representation that is suited for object detection,

and that enables the image interpretation using the results of object detection while incorporating

prior knowledge about typical configurations of facade objects, which we learn from training data.

According to these three sub-tasks, our major achievements are:

We propose a novel method for facade image interpretation based on a marked point process.

Therefor, we develop a model for the description of typical configurations of facade objects and propose

an image interpretation system which combines evidence derived from data and prior knowledge about

typical configurations of facade objects. In order to generate evidence from data, we propose a feature

type which we call shapelets. They are scale invariant and provide large distinctiveness for facade

objects. Segments of lines, arcs, and ellipses serve as basic features for the generation of shapelets.

Therefor, we propose a novel line simplification approach which approximates given pixel-chains

by a sequence of lines, circular, and elliptical arcs. Among others, it is based on an adaption to

Douglas-Peucker’s algorithm, which is based on circles as basic geometric elements.

We evaluate each step separately. We show the effects of polyline segmentation and simplification

on several images with comparable good or even better results, referring to a state-of-the-art algorithm,

which proves their large distinctiveness for facade objects. Using shapelets we provide a reasonable

classification performance on a challenging dataset, including intra-class variations, clutter, and scale

changes. Finally, we show promising results for the facade interpretation system on several datasets and

provide a qualitative evaluation which demonstrates the capability of complete and accurate detection

of facade objects.
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Notation

General

A name of a set

{. . .} a set of elements, may be unsorted, no element is the same, elements may have

arbitrary type

(. . .) a list of elements, sorted, elements may have arbitrary type

[. . .] vectors or matrices, the elements of matrices are stacked column wise and of fixed

dimension, in case of vectors their elements are scalars

ln(·), lb(·) natural logarithm and binary logarithm

Statistics

· random variable

· mean value

P (·) Probability of an event

A ⊥⊥ B independence of events A and B

E (·) Expectation

Px(·), P (·) a (cumulative) distribution function,

px(·), p(·) a density function

N (·) Normal density function

U(a, b) Uniform distribution in interval [a, b]

M(α) Multinomial distribution with parameter α

B(a, b) Beta distribution, with parameters [a, b]

D(α) Dirichlet distribution with parameter vector α

Geometry

x , l ,C names of geometric objects, regardless their mathematical representation.

K a circle

S a circle segment

C a conic

x,y 2D euclidean vectors

x, l 2D homogeneous vectors

(·)s spherical normalised homogeneous vector

(·)e euclidean normalised homogeneous vector

N(·) operator for the spherical normalisation of a homogeneous entity

Ne(·) operator for the euclidean normalisation of a homogeneous entity

Σxx covariance matrix of x

R,T euclidean matrices

M,H homogeneous matrices

X = {xi} A set of points xi, i ∈ 1 . . . I

K homogeneous matrix of a circle

C homogeneous matrix of a conic

CS a conic segment, in our case an ellipse segment, given by (C, φ1, φ2,Σcc)
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Algebra

ID identity matrix of dimension D

|·| absolute value of a scalar, euclidean norm of a vector, determinant of a matrix

|·|L L-norm

null(·) null space operator, yields a set of column vectors spanning the null space

Pairs of Adjacent Line Segments and Shapelets

t a PAS-descriptor

D(ta, tb) distance of two PAS-descriptors

Nt minimal number of PAS to form a cluster of the shapelets-codebook

s a shapelet

S codebook of shapelets

TX , TY number of tiles horizontally and vertically for building the spatial tiling in

BoW-representation

h histogram of shapelets

IΣ Integral image

HΣ Integral histogram

Point Processes and Markov Chains

S bounded Borel set, usually S ⊂ Rd

M space of marks

X a point process on S or marked point process on S ×M
X a configuration of points in S, X =

{
x1, . . .xN(X )

}
N(X ) number of points in X

Ω space of possible configurations on S
N the set of all counting measures on S

N σ-algebra on N, given by the numbers of points in configurations of Ω

λd(·) Lebesgue measure on Rd

µ(·) intensity measure of a reference Poisson process, a measure on S
πµ distribution of the finite Poisson process with intensity measure µ

x an object in image space, represented by [x, y, w, h, c], position, width, height,

and class

f (X ) density of a point process

F (X ) distribution of a point process

∼ symmetric relationship to denote neighbouring objects

Ne(x) neighbourhood of x with respect to ∼
U(X ) Gibbs energy of a configuration X

Udata(X ) data term of the Gibbs energy, unary energy

Ugeom(X ) geometric prior, unary energy

Uconf(X ) configuration prior, pairwise energy

Unum(X ) prior on number of objects per class

λ1, λ2, λ3 weights of individual energy terms

Φ(·) reward function, used in Udata(X )

Ψ(·) penalty function used in the prior energy terms

Ψ∩ (·, ·) penalty function for overlapping objects

Ψd (·, ·) penalty function for the distance of two objects
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d∩(·, ·) intersection area of two objects

dd(·, ·) minimal distance of two objects

d↔(·, ·) alignment distance horizontal of two objects

dl(·, ·) alignment distance vertical of two objects

d∆h(·, ·) size difference in height of two objects

d∆w(·, ·) size difference in width of two objects

td(ci, cj) minimal distance of two object classes ci and cj stored during training

gk(·) function representing learned configuration statistics,

k ∈ {x, y, w, h,↔, l,∆h,∆w}

T temperature parametre of simulated annealing

q(· | x) proposal distribution when at state x

A(· | ·) acceptance probability of the Metropolis-Hastings algorithm

R(· | ·) acceptance ratio of the Metropolis-Hastings-Green algorithm

Q(· | x) transition kernel when at state x

13





Abbreviations

AIC (Akaike’s) An Information Criterion

BIC (Schwarz’s) Bayesian Information Criterion

BoW bag of words

cdf (cumulative) probability distribution function

CNN convolutional neural network

CRF conditional random field

DLCE detecting line, circle, and ellipse segments

ELSD elliptical line segment detector

FAG feature adjacency graph

HOG histogram of oriented gradients

i.i.d. independent and identically distributed

ISM implicit shape model

IVM import vector machine

kAS k-adjacent line segments

KLR kernel logistic regression

MCMC Markov chain Monte Carlo

MDL minimal description length

MPP marked point process

MRF Markov random field

OA overall accuracy

PAS pairs of adjacent line segments

pdf probability density function

pmf probability mass function

RBF radial basis function

RF random forest

rjMCMC reversible jump Markov chain Monte Carlo

SVM support vector machine

TP true positive
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CHAPTER 1

Introduction

The objective of this theses is the interpretation of images showing facades of urban buildings.

Given a single rectified facade image, our system detects and distinguishes relevant facade

objects as windows, entrances, and balconies and results in a description of the image in

terms of accurate position and size of these objects.

In this chapter, we motivate this task, describe the goals of the thesis, and point out

our achievements. We review the related work in the field of facade image interpretation.

Afterwards we are prepared to give an overview of the systems architecture and the according

structure of the thesis.

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Goal and Achievements . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Related Work on Facade Image Interpretation . . . . . . . . . . . . . . 22

1.3.1 Tasks Addressed in Facade Image Interpretation and Reconstruction . . . . . . 22

1.3.2 Methods Used for Facade Image Interpretation and Reconstruction . . . . . . 31

1.3.3 What we Learned, Tasks Solved, and Open Issues . . . . . . . . . . . . 38

1.4 General Concept and Organisation of the Thesis . . . . . . . . . . . . . 39

1.4.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.2 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . 40

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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1.1 Motivation

The digital three-dimensional reconstruction and documentation of cities has received a growing

interest over the last years. Thereby, urban reconstruction is an active area of research with several

potential applications. First of all, digital mapping for navigation with cars, smart phones, tablets

or on PCs requires two and three-dimensional urban models, as given by Google Earth, Bing Maps,

OpenStreetMap, or classical map providing companies as Falk or land surveying offices. Further, urban

planning relies on urban reconstruction as basic information about the environment or for visualization.

Security relevant services, such as emergency management, disaster control, or security training need

accurate, detailed, and up-to-date urban models. Finally, the entertainment industry is probably the

largest market. Movies and computer games take place in real cities, where at least parts of the models

are obtained by urban reconstruction (Musialski et al., 2012). From an economic point of view, there

is an enormous benefit of being able to generate high-quality digital models in short time and fully

automatic (Musialski et al., 2012).

Thereby, the urban area consist of many objects: streets, buildings, cars or street furniture. In this

thesis, we focus on buildings, especially on facades, which contain relevant information for detailed

reconstruction itself. A detailed building model which is not just a geometric object enriched with

texture, allows for semantic requests as the number of floors or the location of balconies and entrances.

For example, in case of a flood, this allows the emergency management to estimate the potential height

of water until the first floor will be flooded. Or, in case of fire, the fire service will be aware of potential

places were people try to get out of the house. The taxi driver will be able to stop his car exactly in

front of the entrance. The architect will get detailed information about the structure of facades in the

immediate vicinity of his planing area.

Various input data are used for the task of building reconstruction: LIDAR from ground or airborne

and single or multiview images taken from ground or airborne. In this thesis, we use terrestrial, single

view images. They are easy to obtain, to store, to exchange and a huge amount of images are available

for free in the cloud. Nevertheless, for learning a model which is able to solve the task, in most cases,

we need annotated training data which is not available for free in general.

There are still many unsolved problems on the way to fully automatic algorithms. Object detection

from top-down expect well-defined object models, which clearly depend on context (Alegre and Dellaert,

2004; Müller et al., 2007; Ripperda, 2008). On the other hand, estimating the objects from bottom-up

is context free, but assumes the data to fit the underlying assumptions (Lee and Nevatia, 2004; Čech

and Šára, 2008).

Further, there is a trade off between quality and scalability of approaches. The increase of

automation often is related to loss of quality. High quality models often are generated pure manually,

or at least with manual control. Obviously, human interaction does not scale with huge data (Musialski

et al., 2012). The intermediate solution is given by medium user interaction, e.g., Müller et al. (2007).

Finally, we deal with constraints given by the images. Illumination, shadows, occlusions and noise

due to unwanted objects, such as cars, trees or decorations are problems we take into account.

1.2 Goal and Achievements

The goal of this theses is the interpretation of facade images by combining evidence for the occurrence

of individual object classes which we derive from data, and prior knowledge which guides the image

interpretation in its entirety. The former we denote as bottom-up evidence, while the latter we

denote by top-down image interpretation. Given single rectified facade images, we aim at the accurate

detection and description of relevant facade objects such as windows, entrances, and balconies.

We believe that image interpretation of complex scenes needs an interaction between low-level

bottom-up feature detection and high-level inference from top-down. A top-down approach uses results

of a bottom-up detection step as evidence for high-level inference of scene interpretation. Therefor, we

present a three-step procedure which
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• generates features from bottom-up that are suited to describe relevant objects;

• learns a representation of relevant objects at mid-level, based on learned features, that is suited

for object detection; and

• enables high-level image interpretation using the results of object detection and incorporating

prior knowledge about typical configurations of facade objects, which we learn from training

data.

Further, we propose to apply the theory of marked point processes to the task of facade image

interpretation and verify their potential as flexible model for the modelling of configurations of facade

objects.

Achievements. According to these sub-tasks, these are our major scientific contributions, starting

top-down:

• We propose a novel method for facade image interpretation based on a marked point process for

which we define a probability density function over configurations of facade objects.

• We propose a feature type which we call shapelets, for which we learn pairs of adjacent line

segments, including curved line segments, which are representatives for objects we aim at.

• We propose a novel approach for line simplification which approximates given pixel-chains by

a sequence of lines and elliptical arcs. For this, to the best of our knowledge, we are the first

that introduce an adaption to Douglas-Peucker’s algorithm, which is based on circles as basic

geometric elements.

Thereby, the first item contains the main contribution of this work. The application of Marked point

processes to the interpretation of facade images is a new field and the definition of a probability density

over configurations of facade objects a particular challenge. But, as we aim at the combination of

data-driven bottom-up evidence for the occurrence of target object classes with prior knowledge from

top-down, we also develop an appropriate classification system from bottom-up. This results in further

subordinate contributions.

The contents of this thesis have been partly published in the following articles and conference proceed-

ings:

Wenzel and Förstner (2012) Learning a Compositional Representation for Facade Objects. In

ISPRS Annals of Photogrammetry, Remote Sensing and the Spatial Information Sciences; Proc.

of 22nd Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS),

Volume I-3, pp. 197-202.

Wenzel and Förstner (2013) Finding Poly-Curves of Straight Line and Ellipse Segments in Images.

Photogrammetrie, Fernerkundung, Geoinformation (PFG), 4, pp. 297-308.

Wenzel and Förstner (2016) Facade Interpretation Using a Marked Point Process. In ISPRS An-

nals of Photogrammetry, Remote Sensing and the Spatial Information Sciences; Proc. of 23nd Con-

gress of the International Society for Photogrammetry and Remote Sensing (ISPRS).

Out of scope in this thesis, but done prior to this, the following articles and conference proceedings

have been published

Wenzel, Drauschke, and Förstner (2007) Detection and Description of Repeated Structures

in Rectified Facade Images. Photogrammetrie, Fernerkundung, Geoinformation (PFG), 7,

pp. 481–490.
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Wenzel, Drauschke, and Förstner (2008) Detection of repeated structures in facade images.

Pattern Recognition and Image Analysis, 18, pp. 406–411.

Wenzel and Förstner (2008) Semi-supervised incremental learning of hierarchical appearance mod-

els. 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS),

Part B3b-2, pp. 399–404.

Wenzel and Hotz (2010) The Role of Sequences for Incremental Learning. ICAART 2010 - Pro-

ceedings of the International Conference on Agents and Artificial Intelligence, 1, pp. 434–439.

1.3 Related Work on Facade Image Interpretation

Research in facade reconstruction started in the nineties and dealt with topics of three-dimensional

reconstruction, object detection and semantic interpretation, which are addressed in the following

review and which motivates the approach proposed in this thesis. Here, we give a broad view of facade

image interpretation to identify trends, constraints and restrictions. This prepares us to argue about

our proposed solution.

We divide the review into two parts, the first following tasks that were addressed, and afterwards

following methods that were used to solve the different tasks and subtasks. In some cases, we visualize

their results or even meaningful figures from their approaches to illustrate the tasks they solve, and

their method, as well as their performance.

The subsequent chapters will contain their own reviews of related work dealing with the special

methods, used in the corresponding part of the work to solve the according subtasks.

1.3.1 Tasks Addressed in Facade Image Interpretation and Reconstruction

This section gives an overview of different task that were addressed in the context of facade image

interpretation. The final goal of urban reconstruction are highly detailed, semantically meaningful

3D reconstructed buildings. We start with early approaches in 3D building reconstruction which

motivates the need of facade image interpretation. Further, many approaches, dealing with facade

image interpretation, also aim at 3D reconstruction, from which we we also partially review those

methods related to 3D facade reconstruction, focusing on the facade image interpretation part.

There is a long history in 3D city modelling, either from aerial images or airborne laser scans or

even from scanning maps Gruen (1997). Later, terrestrial images, as well as terrestrial laser scans,

were used, too. Early work focused on three-dimensional reconstruction of buildings from aerial digital

images, possibly deriving a digital elevation model as intermediate result, by modelling the objects

using parametrized volume primitives together with application-specific constraints (Braun et al.,

1995; Weidner and Förstner, 1995). Gruen et al. (1995) give an overview of these works. There is no

explicit facade modelling included in theses works. But, they became more detailed. For example,

Werner and Zisserman (2002) aim at the fully automatic reconstruction of buildings from multiple

uncalibrated images. They generate a coarse piecewise planar model of the principal scene planes and

their delineations and model indentations and protrusions, such as windows and doors, but without

recognising their semantics, cf. Figure 1.1. Thereby the facades are modelled implicitly and the

visualisation is enhanced by adding texture to the geometric model.

1.3.1.1 Window Detection

One of the earliest approaches which directly aim at the detection and reconstruction of windows

from images is shown in Lee and Nevatia (2004). They state that the detection of details of building

facades is needed for high quality visualisation as well as semantic modelling, and identify windows as

key elements for a detailed facade reconstruction, cf. Figure 1.2. In the following, window detection

was addressed in many works, either as main focus or intermediate result. Ali et al. (2007) perform

22



window detection through pure classification, cf. Figure 1.3. Most approaches include object specific

prior knowledge, either assuming a typical grid structure of windows within facades (Lee and Nevatia,

2004; Recky and Leberl, 2010; Wenzel et al., 2008) or a typical geometry and appearance of windows

(Čech and Šára, 2008), cf. Figures 1.4 to 1.6. Different from that, Jahangiri and Petrou (2009) aim at

detecting salient regions which they assume to be meaningful parts of the facade and which turn out

to be windows in most cases, cf. Figure 1.7. Most flexible in terms of structure of the window grid and

appearance of single windows, Tyleček and Šára (2010) aim at detecting windows, in single rectified

facade images, by modelling shape, appearance, location, and neighbourhood relations of windows, cf.

Figure 1.8.

Different from the approaches before, Mayer and Reznik (2005) and Reznik and Mayer (2008) aim

at the detection of windows from image sequences. Deriving depth of found window hypotheses, they

reconstruct these parts of facades which are dominated by windows, cf. Figure 1.9.

A task, opposite from window detection, is addressed by Burochin et al. (2014). They use opening

detection as indicator for the identification of blind facades, thus, facades without any openings, such

as windows or doors, which is important for urban planing.

1.3.1.2 Semantic Interpretation through Pixelwise Labelling

Aiming at more than one specific facade object, next group of approaches perform a pixelwise labelling

or facade segmentation. Berg et al. (2007) address image parsing using single, low resolutional,

uncalibrated images as input. They first identify coarse regions, such as sky, foliage, buildings, and

street, and at a finer level of detail, they further identify the positions of windows, doors, rooflines, and

the spatial extent of particular buildings, cf. Figure 1.10. Similarly, Fröhlich et al. (2010) model eight

classes for pixelwise classification, whereby, they do not take any structural meta knowledge about

facades into account, cf. Figure 1.11.

Using high-level interpretation methods, cf. Section 1.3.2, Teboul et al. (2010); Martinović et al.

(2012); Cohen et al. (2014) segment the images into 9 classes, which are window, wall, balcony, door,

roof, chimney, sky, and shop, cf. Figure 1.12. While Teboul et al. (2010) and Cohen et al. (2014) rely

on strong architectural constraints, Martinović et al. (2012) and Koziński et al. (2015) avoid strong

prior assumption about the structure of facades and introduce weak architectural knowledge, which

enforces the final reconstruction to be architecturally plausible and consistent, cf. Figure 1.13. Koziński

et al. (2015) even model occlusions as extra class and are able to reconstruct the facades structure

even if it is partly occluded, cf. Figure 1.14.

Figure 1.1: The 3D building reconstruction, as shown in Werner and Zisserman (2002), is given as

piecewise planar model including indentations and protrusions, which we may identify as windows. The

geometric representation is attached with texture, given by the images, but no semantic information is

extracted.
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Figure 1.2: Window detection and reconstruction from single view rectified images, as shown in Lee

and Nevatia (2004). Left: Gradient projection. Right: Results after grouping similar elements and

adding depth by plane sweep.

Figure 1.3: Results of window detection using an AdaBoost classifier, as shown in Ali et al. (2007).

Figure 1.4: Results of window detection based on gradient projection, as shown in Recky and Leberl

(2010).

Figure 1.5: Results of semi-supervised window detection, as shown in Wenzel and Förstner (2008).

Left: detected image patches. Right: derived class hierarchy.
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Figure 1.6: Results of window pane detection, as shown in Čech and Šára (2008). Left: detected

window panes. Right: labelled image patch and allowed configuration of labels (E - external, I -

internal windowpane label, (L,R,T,B) - (left, right, top, bottom edge), (TL, TR, BL, BR) - corners ).

Figure 1.7: Results of blob detection, as shown in Jahangiri and Petrou (2009).
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Figure 1.8: Results of window detection, using a hierarchical generative model, as shown in Tyleček

and Šára (2010). They show results for modern regular, irregular, and sparse facades.

Figure 1.9: Result of window detection and 3D reconstruction, as shown in Reznik and Mayer (2008).

Found window hypotheses are marked as red boxes.
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Figure 1.10: Facade image parsing, as shown in Berg et al. (2007). From left to right: input image,

three intermediate results of the parsing procedure, final result (red: found windows, yellow: roofline).

Figure 1.11: Pixelwise labelling of facade images, as shown in Fröhlich et al. (2010). Columns 1 and

4: original image. Columns 2 and 5: ground truth. Columns 3 and 6: result.

Figure 1.12: Facade image segmentation on Haussmannian buildings, as shown in Teboul et al. (2010).

Columns 1 and 4: original images. Columns 2 and 5: pixelwise classification. Columns 3 and

6: segmentation with procedural shape prior.
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Figure 1.13: Results of facade image segmentation, as shown in Martinović et al. (2012). They show

results on complete building images, and furthermore, on facades showing less structure.

Figure 1.14: Results of facade image segmentation, as shown in Koziński et al. (2015). They explicitly

model occlusions, and in the sequel, they predict the facades structure even it is partly occluded. From

left to right: original image, pixelwise classification, segmentation with occlusion, extracted facade

structure.
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Figure 1.15: Result as shown in Alegre and Dellaert (2004). Left: original input image. Right:

inferred model.

1.3.1.3 Exploiting Repetitive Structures

Some of the aforementioned approaches implicitly exploit the repetitive character of facade elements in

terms of similarity of facade objects (Lee and Nevatia, 2004; Wenzel and Förstner, 2008). In order

to provide a compact description of facades or to predict hidden or occluded facade objects, another

group of works aim at exploiting the repetitive structures within facade images. Using the knowledge

about structure of repeated objects, they are able to predict missing detections (Spinello et al., 2010;

Musialski et al., 2009). They are partly able to deal with different lattices within one image (Wendel

et al., 2010; Spinello et al., 2010; Park et al., 2010), but except Wenzel et al. (2007), there are no

nested grids modelled.

Alegre and Dellaert (2004) aim at a semantic interpretation of building facades and a compact

representation of a hierarchical regular structure of a facade in terms of exact metric and semantic

information, in order to provide highly structured descriptions of buildings. They use rectified images

from modern office blocks, thus, showing regular grids of windows, cf. Figure 1.15. They do not claim

to detect repeated structures, but they use them for modelling, see the description of methods, cf.

Section 1.3.2.

Wenzel et al. (2007) and Musialski et al. (2009) aim at the detection of translational and reflective

symmetries from single rectified facade images. Wenzel et al. (2007) derive hierarchically nested

repeated translational symmetries, in order to provide a compact image description, cf. Figure 1.16.

Musialski et al. (2009) aim at grids with simple structure and propagate the found symmetries over

the whole image to remove unwanted image content, e.g., noise or occlusions, cf. Figure 1.17. Also

Spinello et al. (2010) and Park et al. (2010) exploit repetitive object patterns for model compression

and completion, but are not restricted to rectified images. While Spinello et al. (2010) allow for more

complex window grids compared to Musialski et al. (2009), cf. Figure 1.18, Park et al. (2010) deal with

different lattices on different object planes, i.e. facades, within one image, cf. Figure 1.19. Recently,

Teeravech et al. (2014) aim at decomposing facade images into floors and tiles by discovering the

repetitive patterns of the dominant structures, such as windows and balconies.

Different from the approaches before, Wendel et al. (2010) aim at the segmentation of facades.

Using single, not necessarily rectified images showing a frontage consisting of different buildings, they

use the results of detecting repetitive structures as a feature to split the frontage into facades of
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Figure 1.16: Result of nested repetitive structure detection, as shown in Wenzel et al. (2007). The

graph on the right visualises the compact description in terms of found repetitions. Vertically, there

is one object repeated five times. Horizontally, there is a nested repetition: a larger group which is

repeated 3 times and contains another group of two windows, which corresponds to one repetition.

Figure 1.17: Result of propagating found repetitive structure for image restoration, as shown in

Musialski et al. (2009).

Figure 1.18: Detecting and completing repetitive structure for image compression, as shown in Spinello

et al. (2010). From left to right: extracted self-similar objects, conditional random field lattice and

inferred position of objects, reconstruction of the image based on model compression.
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Figure 1.19: Translational-symmetry-based perceptual grouping, as shown in Park et al. (2010).

Different colours mean different groups.

individual buildings. Thereby, they close the gap between real-data and assumptions made for several

algorithms, e.g., images showing a single facade.

1.3.1.4 Semantic 3D Reconstruction

Finally, the overall goal is the reconstruction of highly detailed, semantically meaningful, three

dimensional models. To the best of our knowledge, Dick et al. (2004) first describe an automatic

acquisition of three dimensional semantic architectural models, cf. Figure 1.20. They use short image

sequences as input and describe buildings as a set of walls together with what they call a Lego kit of

parametrised primitives, such as doors or windows.

Brenner and Ripperda (2006) and Ripperda (2008) address the extraction of building facades

in terms of a structural description in the form of a derivation tree which they use to derive a

3D reconstruction, cf. Figure 1.21. They use images as well as LIDAR data as input. Similarly,

Schmittwilken and Plümer (2010) aim at the reconstruction and classification of facade parts from 3D

point clouds.

Van Gool et al. (2007) and Müller et al. (2007) semi-automatically derive 3D models of high visual

quality, including a meaningful hierarchical facade subdivision, from single rectified facade images of

arbitrary resolutions, cf. Figure 1.22.

1.3.2 Methods Used for Facade Image Interpretation and Reconstruction

This section reviews the methods used to solve the aforementioned tasks. They partly deal with

three-dimensional reconstruction using methods from multi-view geometry, including estimating

vanishing points (Werner and Zisserman, 2002; Zhao et al., 2010) or plane sweep (Werner and

Zisserman, 2002; Lee and Nevatia, 2004; Mayer and Reznik, 2005; Reznik and Mayer, 2008). We are

dealing with single images solely and do not estimate nor use three-dimensional information. Therefore,

we do not go into detail of these methods. We are interested in these methods related to single view

facade image interpretation.

1.3.2.1 Detecting Regions of Interest

In order to detect regions of interest in the image, such as windows, there are two main trends: either

using gradient projection to find aligned edges or using a classificator that detects regions of interest
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Figure 1.20: Result of semantic 3D reconstruction with added generic texture, as shown in Dick et al.

(2004).

Figure 1.21: Grammar based facade interpretation. Top: Semantic partitioning of a facade and the

according derivation tree, as shown in Brenner and Ripperda (2006). Bottom: reconstruction results,

as shown in Ripperda (2008)

.
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Figure 1.22: Results as shown in Müller et al. (2007). From left to right: rectified facade image as

input, facade automatically subdivided and encoded as shape tree, resulting polygonal model, rendering

of final reconstruction.

searching over the image. The former is restricted to facade types whose windows fulfil an alignment

assumption, while the latter do not take any alignment or structure assumption, respectively, into

account.

Gradient Projection. Gradient projection was one of the first methods used for window detection,

based on the observation that facades are often characterised by grids of windows, aligned horizontally

as well as vertically. It was introduced in the pioneering work of Lee and Nevatia (2004).

Defining windows as homogeneous rectangles in the images, window detection is based on horizontal

and vertical gradient projection. While Lee and Nevatia (2004) and Teeravech et al. (2014) use rectified

images, which allow for gradient projection in order to directly detect outlines of windows, Recky and

Leberl (2010) do not assume rectified images and use vertical gradient projection to identify splits

within the facades, thus, floors. This also prevents strong assumptions of vertical alignment of facade

objects, as they perform horizontal gradient projection within these stripes. The latter is also done by

Teeravech et al. (2014). However, using rectified or non rectified images is not essential, as rectification,

using vanishing point estimation, is straight forward using facade images (Schaffalitzky and Zisserman,

2000).

In the following, Lee and Nevatia (2004) group found candidates to get different window classes and

use them to adjust the window grid. Grouping and classification, respectively, is based on normalised

cross-correlation of image content and a dimensional similarity depending on geometric features of each

candidate. Furthermore, they detect arc-shape windows within found candidates in a Hough voting

scheme. Recky and Leberl (2010) analyse and label resulting image blocks with a greedy procedure

based on the gradient content and a k-means clustering of colors in Lab-colorspace, respectively. As

already mentioned above, Teeravech et al. (2014) do not aim at window detection, but at decomposing

facade images into floors and tiles by discovering the repetitive patterns of the dominant structures,

such as windows and balconies. They interpret the accumulated horizontal and vertical histogram

profiles of gradients as a series of noisy wave cycles. Assuming them to represent the approximated

position and dimensions of repetitive elements, they discover repetitive pattern from the dominant

frequency by iteratively fitting candidate sine waves using a RANSAC-styled algorithm.

Obviously, all of these approaches rely on strong alignment assumption. While Lee and Nevatia

(2004) presume strong alignments of facade elements in horizontal and vertical direction, Recky and

Leberl (2010) and Teeravech et al. (2014), nevertheless, still require strong horizontal alignment to

achieve high-quality results. As a sequel Lee and Nevatia (2004), as well as Teeravech et al. (2014),

show results on rectified images showing large repetitive structures. The latter even use images

containing the facade, solely.

Object Detection Detection of regions of interest, mainly windows, from bottom-up, is done in

different ways.
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Ali et al. (2007) perform window detection using an AdaBoost classifier. They do not exploit any

prior knowledge about regularities or alignments, cf. Figure 1.3. Jahangiri and Petrou (2009) aim at

detecting salient regions which they assume to be meaningful parts of the facade. They define “blobs”

as regions containing some variation, i.e. local texture, and that are roughly convex. This is thought

as input for further analysis by a higher level interpretation module. Their extraction of blobs is based

on the use of Gaussian kernels and mathematical morphology and is independent of scale and color.

Their final output are bounding boxes of detected blobs, cf. Figure 1.7.

Wenzel and Förstner (2008) propose an incremental learning scheme, based on repeated template

matching using normalised cross-correlation, to get a class hierarchy of repetitive structure, cf. Figure 1.5.

Given one object of interest, manually labelled by the user, they automatically identify prototypes of

image patches and use them to build a hierarchical appearance based model, in a supervised manner.

Compared to gradient projection methods, these approaches yield inferior results in terms of

completeness (Ali et al., 2007) and distinctiveness (Jahangiri and Petrou, 2009). On the other

hand they are more flexible due to perspective distortion (Ali et al., 2007) and loose structure of

facade elements (Jahangiri and Petrou, 2009). Due to repeated template matching, using normalised

cross-correlation, Wenzel and Förstner (2008) need rectified facade images again, but do not use any

alignment assumptions.

1.3.2.2 Bottom-up Pixelwise Labelling

In contrast to the detection of regions of interest, another group of approaches perform a pixelwise

labelling or facade segmentation. They either combine a strong pixelwise classification, e.g., random

forest, with an unsupervised segmentation (Fröhlich et al., 2010; Teboul et al., 2010) or perform a

hierarchical segmentation. Therfor, they first parse the image into a coarse set of classes which they

further parse into more detailed classes using meta knowledge from coarse level of detail (Berg et al.,

2007; Zhao et al., 2010).

For example, purely bottom-up, thus, without taking any structural meta knowledge about facades

into account, Fröhlich et al. (2010) introduce the combination of a strong pixelwise classification with

the result of an unsupervised segmentation. They apply a random forest classifier to each pixel to get

classwise probabilities and assign labels to each segment, given by the maximum average probability

taken from the pixelwise classification, cf. Figure 1.11.

But, purely bottom-up, these results lack in accuracy. Berg et al. (2007) and Teboul et al. (2010)

combine results of pixelwise classification with methods from top-down, see below.

Recently, Jampani et al. (2015) proposed to use a sequence of boosted decision trees with what

they call auto-context features. Thereby, they make use of typical architectural structure principals,

while avoiding to fix them trough strong constraints. By learning the features in the surrounding of

predictions from the layer before, they are able to learn the structure from data. The principle is

similar to the idea from deep learning using a convolutional neural network.

1.3.2.3 Detecting Repetitive Structures

Exploiting repetitive structures, in the domain of facade images, usually deal with a large number

of observations, trying to find these groups of observations that indicate the dominant translation.

Therefor, these approaches either use Hough-like voting schemes (Wenzel et al., 2007; Musialski et al.,

2009; Wendel et al., 2010; Spinello et al., 2010) or obtain a robust estimate using RANSAC (Park

et al., 2010; Teeravech et al., 2014).

Wenzel et al. (2007) detect reflecting and translational symmetries based on matching SIFT features

within a single rectified image. Therefrom, they derive a compact description of hierarchically nested

repeated translations from the Hough-votes of found translations. They further evaluate identified

translational symmetries based on minimal description length (MDL) as model selection criterion,

cf. Figure 1.16. Similarly, Wendel et al. (2010) detect and match interest points within the image,

but instead of matching them directly, they use color intensity profiles, between all of them, to get
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corresponding profiles. Musialski et al. (2009) use normalised cross-correlation to match regions of

small size, within the image, over several scales, similar to Wenzel and Förstner (2008).

Different from these approaches, Park et al. (2010) detect a complementary set of features and

group them by mean-shift into potential groups of similar features that possibly form a lattice. Different

lattices are evaluated by RANSAC.

All these approaches yield reasonable results and might be used as mid-level tool in order to guide

a high-level interpretation module, e.g., to guide the splitting procedure in grammar based approaches,

see below.

1.3.2.4 High-Level Facade Interpretation

In order to derive highly detailed, semantic meaningful, partly even three-dimensional models, we need

high-level interpretation. Most of these approaches use generative stochastic modelling, grammars or

Markov random fields. Also marked point processes are used for facade image interpretation, which

belong to generative stochastic modelling, too. But, we discuss these methods in a separate paragraph,

as the modelling of prior knowledge from top-down is different from those we mention before.

Generative Stochastic Modelling. We summarise a large group of approaches under the term

generative stochastic modelling that use generative models, thus models which are suited to generate

synthetic samples of objects they modelled, and which are optimised by stochastic sampling, usually

Markov chain Monte Carlo (MCMC), cf. Section 2.6.

Dick et al. (2004) describe the automatic acquisition of three dimensional architectural models from

short image sequences. Top-down, they aim at organising a given image into semantically meaningful

parts by stochastically varying models. They describe a building as a set of walls together with what

they call a Lego kit of parametrised primitives, such as doors or windows. Priors on wall layout, and

on the parameters of each primitive are defined by experts and learnt from training data, respectively.

Changing the parameters (as width, aspect ratio, brightness, etc.) using MCMC sampling, they try to

generate the image which is most similar to the given image. With this work, they prove the great

potential and applicability of generative stochastic modelling.

In order to detect windows in image sequences, Mayer and Reznik (2005) train a window classifier

and cope with structure using MCMC to estimate parameters of windows, such that they are of same

size and aligned. Therefor, they first determine facade planes by robust least squares matching between

images of the sequence. The detection of window hypotheses is done by learning an implicit shape

model. Changing the parameters of the model, as width, aspect ratio, or brightness within MCMC

they try to generate the image which is most similar to the given image. In Reznik and Mayer (2008)

they continue this work. Based on plane sweep, similar to Werner and Zisserman (2002), they derive

depth information of facade objects, cf. Figure 1.9. Some heuristics and again a MCMC process are

used for self diagnosis of found window hypotheses. However, they only address windows as facade

elements.

Also for the detection of windows, but in single rectified facade images, Tyleček and Šára (2010)

propose a complex generative model, where they include object geometry as well as neighbourhood

relations. This way, they have a flexible configuration model for the window positions. They formulate

a generative model with parameters for complexity, shape attributes, location attributes, and element

neighbourhood relation. The recognition task is formulated as optimisation task of the joint density

over the parameters. The joint density is decomposed hierarchically into several prior densities for

each parameter group. They apply reversible jump Markov chain Monte Carlo (rjMCMC) sampling,

cf. Section 2.6.4, to find the optimal parameters. They show results even on irregular facade structure,

cf. Figure 1.8, but they do not show images with occlusions or high variability in window types.

Grammars. A shape grammar is a set of rules to generate geometric shapes. It consists of rules about

the shapes itself and about the process how to combine these rules. Wonka et al. (2003) introduced

shape grammars into the field of computer graphics for the generation of realistic building models.

These grammars are context-dependent and therefore, difficult to obtain efficiently. Alegre and Dellaert
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(2004) first demonstrate the potential of stochastic context-free grammars to represent a hierarchical

regular structure of a facade. They use rectified images from modern office blocks, thus, showing

regular grids of windows which they recursively split into parts using the rules of the grammar and

rjMCMC for optimization, cf. Figure 1.15.

Later Brenner and Ripperda (2006) and Ripperda (2008), in their pioneering work to the use of

formal grammars for semantic 3D reconstruction, use a formal grammar to derive a structural facade

description in the form of a derivation tree. They add variables and constraint equations to the symbols

of the grammar. Thus, the derivation tree automatically leads to a constraint equation system. This

equation system can be used to optimally fit the entire facade description to given measurement data.

The application of derivation steps during the construction of the tree is done by rjMCMC, again. In

Ripperda (2008) they further derive prior facade information from a set of facade images in order to

support the stochastic modelling process, cf. Figure 1.21. However, they assume 3D data, e.g., from

LIDAR, and additionally images as input.

Van Gool et al. (2007) and Müller et al. (2007) combine procedural modelling which is a rule-based

modelling technique known from computer graphics, with shape grammars and image analysis to derive

a meaningful hierarchical facade subdivision, cf. Figure 1.22. Splitting is done recursively, evaluating

horizontal and vertical image content. Based on mutual information they search for irreducible tiles,

e.g., vertical stripes which do not contain repetitions. The splitting is represented by a tree which

allows the derivation of a set of rules for a grammar. The depth of found basic elements is generated

semi-automatic by a manual user input.

Different from that, Teboul et al. (2010) do not aim at semantic 3D reconstruction, but at the

segmentation of building facades using procedural shape priors, cf. Figure 1.12. They formulate what

they call a constrained generic shape grammar to express special types of buildings and train a random

forest classificator to determine a relationship between semantic elements of the grammar and the

observed image support. Thus, a pixelwise classification is used as low-level input for the grammar.

For model selection they formulate an energy. Thus, segmenting the facade is viewed as choosing those

rules which generate a facade that best fits the image in terms of the energy given by the probabilistic

output of the classifier. In their preceding work (Teboul et al., 2013), they include reinforcement

learning. In this work, in contrast to Teboul et al. (2010), they avoid strong prior assumption about

the structure of facades. They show how the procedural rules of a shape grammars can be derived

based on the segmentation, rather than vice-versa.

We see that parameters of the grammar are estimated either using MCMC sampling (Dick et al.,

2004; Alegre and Dellaert, 2004; Brenner and Ripperda, 2006; Ripperda, 2008) or directly determined

during a recursive splitting and merging procedure (Van Gool et al., 2007; Müller et al., 2007). All of

them deal with more or less long pipelines including feature detection, 3D reconstruction, maybe a

region or pixelwise classification, and high-level reasoning in terms of grammar parsing. Nevertheless,

all approaches are restricted either to the type of facades the grammar was designed for or to facades

with simple structure.

In the context of 3D building reconstruction from point clouds, Becker (2009, 2010) propose to

infer production rules of a formal grammar automatically and fully bottom-up from observed parts of

facades. For these parts, they assume point clouds and images to be given. They aim at the geometric

refinement of planar building facades, therfor they apply learned rules top-down to generate facade

structure for the non observed parts of the building. Also Dehbi and Plümer (2011) proposed to learn

the rules of a grammar. Their approach is based on Inductive Logic Programming. They extend

context-free grammars by attributes and semantic rules, and link them with logic programs. Recently,

Dehbi et al. (2016) continue this work to the automatic learning of the rules of a weighted attributed

context-free grammar. They learn parameters and constraints of the grammar using Markov Logic

Networks which combine probabilistic graphical models with logic and are strongly related to MRFs.

Similar to our work, they are able to model facades with an a priori unknown number objects and

learn the prior knowledge that is needed for top-down interpretation, from data.
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Dynamic Programming. Dynamic programming is a method for optimization using the divide

and conquer principle. It breaks down the whole problem into simpler subproblems which probably

occur several times, solves these small problems, stores their solutions and uses them whenever they

are needed for solving the whole task.

Recently, Cohen et al. (2014) propose to use dynamic programming for efficiently parsing facade

images. They also introduce strong architectural constraints in order to obtain a reliable and consistent

interpretation result. But, instead of parsing the facade using a predefined and fixed set of rules

in terms of a grammar, they sequentially parse the individual classes according given constraints,

which make the process more flexible to different types of facades. However, they still rely on strong

architectural structure. Constraints, as well as according parameters, to apply for each type of facade,

are predefined by the user.

Markov Random Fields. MRFs are graphical models which express the joint density of random

variables within an undirected graph. Thereby, nodes and edges of the graph represent the random

variables, i.e. objects, and their neighbourhood relations. They could be labels of pixels in a regular

grid or complex objects whose neighbourhood relations are fixed by the graph.

Thus, by introducing neighbourhood relations, Berg et al. (2007) propose the two-step corse-to-fine

parsing by first parsing the image into coarse regions, such as sky, foliage, buildings, and street, and

second, into a finer level of detail, identifying the positions of windows, doors, rooflines, and the

spatial extent of particular buildings, cf. Figure 1.10. Both steps are based on a conditional random

field (CRF) formulation, whereas the approach uses unary potentials in the first, while unary and

pairwise potentials in the second step. Thus, the detailed parsing considers neighbourhood relations

based on the underlying coarse parsing.

Through pixelwise labelling and incorporating, in this case pixelwise, neighbourhood relations, Čech

and Šára (2008) detect windows. They identify window panes as characteristic part of windows, which

implicitly lead to the detection of windows. Using single orthographic rectified images of building

facades, they define window panes as axis-parallel rectangles of relatively low variability in appearance.

The detection of window panes is formulated as a task of maximum a posteriori labelling in a Potts

model, thus a Markov random field (MRF). Every image pixel has one out of 10 possible labels, and

the adjacent pixels are interconnected via links which define allowed label configuration, such that the

labels are forced to form a set of non-overlapping rectangles, cf. Figure 1.6. Thus, they get a strongly

structured model, forcing the labels to form rectangles. Their approach allow for low variability in

appearance of windows, and obviously they are restricted to the special type of windows they modelled.

Yang and Förstner (2011) combine a pixelwise classifier from bottom-up with a hierarchical CRF

for top-down interpretation. They use the probabilistic outputs of a random forest classifier as unary

potentials and the spatial and hierarchical structures of the regions, they segmented before, within the

pairwise potentials. Thus, they encode within the hierarchical model inter-class location information

in terms of high-order potentials.

Similarly, Martinović et al. (2012) propose a three-layered approach for semantic segmentation

of building facades, cf. Figure 1.13. They start from an oversegmentation of a facade and produce

probabilistic interpretations for each segment, using Recursive Neural Networks. The initial labelling

is merged with the output of a specialised facade component detectors formulating a MRF. They also

introduce weak architectural knowledge, which enforces the final reconstruction to be architecturally

plausible and consistent.

Koziński et al. (2015) propose to express architectural prior knowledge into a set of hierarchical

rules over different semantic classes that specify which pairs of classes can be assigned to pairs of

vertically- and horizontally-adjacent pixels. They transfer those rules into the structure of a MRF.

They handle occlusions and therefore, are able to recover partly occluded facades and to infer their

structure.

Marked Point Processes. Point Processes are stochastic processes which allow to handle configura-

tions of objects, without specifying their number. They are most flexible in defining the neighbourhood
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relations of objects and can be seen as generalization of MRFs, cf. Section 2.5. They are used in image

processing for the detection of dense object configurations, as tree crowns on agricultural farms or

birds from remotely sensed images or cars in urban environment. Recently they were introduced in the

field of facade image interpretation.

In order to detect openings in facades as indicator for the classification of blind facades, Burochin

et al. (2014) formulate a stochastic process to sample rectangles in image polygons, formerly identified

as facades, from oblique aerial images. Due to perspective distortions the resolution of rectified images

is low in vertical direction, images are noise and contain shadows. Given these conditions they define

openings as dark rectangles with respect to the wall background. As the detection results are dedicated

as indicator for the classification of blind facades, beside other features, they obviously do not require

complete and precise detections. But, to the best of our knowledge this is the first approach dealing

with marked point processes in the context of facade image interpretation. Their energy model consist,

as usual, of a data term and a prior term, weighted by a regularisation factor. The data term depends

on the gradient information on the edges of proposed rectangles, while the prior term solely penalizes

overlapping rectangles and does not consider any other configuration constraints. Optimization is done

by rjMCMC with simulated annealing.

Recently Wang et al. (2015) propose structure-driven facade parsing using a marked point process.

In fact they solely deal with windows as facade objects for which they derive multiple grids within the

image. They propose an energy formulation whose data term depends on a probability map given by

a pixelwise classification. The prior term consist on a repulsive term scoring interacting rectangles

in terms of their horizontal and vertical distance. Interestingly, they do not model the assumed grid

structure of windows within the prior energy, but through a structure-driven sampling during a multiple

birth and death optimisation. Their results are not convincing compared to state-of-the-art results,

such as Teboul et al. (2011); Martinović et al. (2012); Koziński et al. (2015). But, the concept of sparse

and data-driven sampling via marked point process seems to be promising and worth being continued.

1.3.3 What we Learned, Tasks Solved, and Open Issues

Early approaches deal with the detection of particular facade objects, thereby, either assume large

regular structures, at least in one direction (Lee and Nevatia, 2004; Recky and Leberl, 2010), or they

allow for low variability in appearance of these objects, or even are restricted to the special type of

windows they have modelled (Čech and Šára, 2008).

Pure bottom-up approaches lack in accuracy, as no prior knowledge is used to adjust the results

(Fröhlich et al., 2010). Most approaches that deal with pixel- or region-wise bottom-up classification or

object detection, respectively, rely on standard features, e.g., colour intensities, gradients, or thereof

derived features. These sets of features are defined beforehand and fixed for the approach and the

given data. We have seen that learning such features, e.g., by an implicit shape model which is related

to bag of words (Mayer and Reznik, 2005), or by boosted classification trees (Jampani et al., 2015)

yield reliable results and is highly flexible according the given data.

For the task of semantic interpretation, incorporating prior knowledge through grammars yield

state-of-the-art results. However, they rely on fixed, predefined, often hand crafted rules (Brenner

and Ripperda, 2006; Ripperda, 2008; Teboul et al., 2010). Their is no generalisation to other facade

layouts. In order to produce highly detailed 3D models, procedural modelling combined with shape

grammars is still semi automatic (Müller et al., 2007). However, there is clearly a need to learn the

rules of a grammar from data (Teboul et al., 2013; Dehbi et al., 2016).

Using MRFs, the structure of the underlying graph is fixed, either predefined in terms of fixed

neighbourhood relations pixel- or region-wise (Čech and Šára, 2008; Koziński et al., 2015) or derived

from the results of a segmentation (Yang and Förstner, 2011; Martinović et al., 2012).

Most flexible in terms of structure and number of objects are marked point processes. But,

their usage in the context of facade image interpretation is still at the very beginning. Recent

results are not convincing. There is clearly a need for strong data terms related to the image

content and for concepts how to incorporates our prior knowledge about facades structure into the en-

ergy. Further, there is a need for the automatic derivation of according rules through learning from data.
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We learned that the incorporation of prior knowledge from top-down, assuming evidence from

bottom-up is essential in order to obtain reliable and accurate results. Thereby, the top-down approach

uses the results of the bottom-up detection step or classification result, respectively, as evidence for

the occurrence of objects. Grammars are used for that task most frequently, but learning their rules

automatically from data is still in the beginning. We believe that marked point processes could serve

as competitive approach to grammars, as they are most flexible in terms of their structure and number

of objects.

In order to obtain bottom-up evidence, we believe that learning the representation of objects we

aim at, is essential in order to avoid pre-defined, manually chosen and fixed sets of features for the

classification.

1.4 General Concept and Organisation of the Thesis

We are now prepared to describe our concept for facade image interpretation. This section provides an

overview of the systems architecture and the structure of the thesis. We will motivate all tasks and

subtasks and assign them to their chapters and sections.

In the last section, we have seen, and most aforementioned approaches make use of it, that man-made

objects, especially facades are well structured. We observe floors, symmetries, and repetitive elements.

These structural concepts impose constraints on an image interpretation system. We aim at an image

interpretation system which combines evidence from bottom-up and prior knowledge about these

constraints from top-down. Thereby, we use evidence from bottom-up given by an object classifier

which uses aggregates of line segments as features to describe the image content. We incorporate prior

knowledge from top-down through a configuration model that describes typical configurations of facade

objects that we learned from training data. Thereby, the term configuration depicts size and location

of individual objects and their pairwise relations in terms of alignment, distance, and size differences.

Main focus of this work is the image interpretation from top-down. But, in order to provide evidence

for the occurrence of objects in the image, we propose the according framework for representation and

classification of image section.

In the following, in order to avoid confusion with the term line, we denote by straight line segment the

shortest path, between two points on the euclidean plan. Vice versa, the terms line and line segment

inherently include curved paths such as circular and elliptical line segments.

Line segments reveal a large invariance to shadows and changes in illumination. Especially windows

show a large variety in appearance, in particular due to the mirroring of other objects in the window

panes. The overall characteristics of facade objects, inherently man-made, let line segments appear

as promising image features. Due to decorative elements and varying shapes of facade objects, in

particular windows and doors with arc-type scuncheon, curved lines segments further enrich the

expressive power of line features. Further, aggregates of line segments show a large distinctiveness for

certain object categories of facades. This motivates our approach for the extraction of our particular

features from bottom-up and our representation at mid-level.

Input data are training images and their according annotations which label each pixel as member

of one of the target classes. Please note that we represented each object in the image by its bounding

box, for learning as well as detection. As target classes we aim at windows, balconies, and entrances

which, from our point of view, are the most dominant and most important facade objects. The set of

target classes can easily be extended by adding the according annotations to the training data.

We use terrestrial, single view and rectified images. Rectification is done in a preprocessing step

using a semi-automatic algorithm which uses vanishing points to estimate to homography to transform

the image to an ortho-rectified version. Due to the typical structure of facade images showing lots of
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perpendicular edges in the horizontal and vertical direction, this step might be done fully-automatic

using an algorithm that estimates the vanishing points, e.g., Schaffalitzky and Zisserman (2000).

We assume the resolution of images to be large enough to enable the detection of a sufficient number

of low-level image features. Images we use have image sizes of 1000 to 2000 pixel on their longest

image dimension. We obtain image scales by assigning one length in object space to the according

distance in the image, e.g., the height of an entrance to its mapping in the image.

1.4.1 The Big Picture

We first present the overview over the image interpretation system, roughly sketching the main steps.

In Section 1.4.2 we go into detail of each part to motivate the subsequent tasks.

Figure 1.23 represents the overview of the whole system. We start bottom-up. From each training

image we extract line features which are segments of straight lines, circular arcs, and ellipses.

At mid-level, we build pairs of adjacent line segments and learn, which of them are representative

for given images and target classes, respectively. We call these representatives shapelets and use them

as features for the compact description of image patches showing one object of the target classes each,

to train a classifier for object categorisation. Thus, the classifier is able to assign a class label to new,

previously unseen image patches.

From top-down, we learn a configuration model from the annotations of given training images. For

high-level image interpretation of a new, previously unseen test image, we determine a configuration

of class specific image segments, which fits the image content and the structure of the configuration

model. Thereby, the fitness of each proposed image segment to its given class label is defined by the

output of the classifier and the fitness to the configuration model is given by size and location of each

individual image patch and their pairwise relations as alignment, distance, and size differences.

1.4.2 Organisation of the Thesis

According to the system overview, given in Figure 1.23, the thesis is split into three main parts,

addressing the low-level image processing in Chapter 3, learning mid-level features in Chapter 4, and

the high-level image interpretation in Chapter 5. Theoretical background, thus, methods we need to

solve the according problems, are given in Chapter 2. Each of the chapters 3 to 5 contain their own

review of related work and an experimental section which evaluates the proposed method.

To motivate our solutions of subtasks of the proposed image interpretation system and further to

motivate the organisation of the thesis, we will go into detail of each part of the system. Figure 1.24

schematically shows the organisation of the thesis and the dependencies between subsections of

different chapters.

Most image interpretation systems, which use image features, rather than pure pixel information,

are based on key point or edge detection. We believe that directly identifying circular and elliptical

structure gives rise to much more informative image features from bottom-up. Thus, we aim at the

extraction of image features from bottom-up which are more informative than using intensity values

solely of single pixels or even line segments. However, this process of inferring low-level features is not

automated in a way that we identify which of them are relevant. We rather pre-define their structure,

otherwise there would be a step low-level feature learning.

In Chapter 3 we propose a two-step polygon simplification algorithm that approximates a given set

of ordered points in 2D, i.e. pixel-chains given by edge extraction, by a sequence of straight line, circular

arc, and ellipse segments. These should serve as low-level features for further image interpretation in

the subsequent chapters.

Therefor, we propose an adaption of Douglas-Peucker’s polyline simplification algorithm, using

circle segments instead of straight line segments. It is robust and decreases the complexity of given

polygons better than the original algorithm. We call this line simplification algorithm circlePeucker.

In a second step, we further simplify the poly-curve by merging neighbouring segments to straight line,
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overview in Figure 1.23. Gray are subsections from Chapter 2, collecting all the theoretical background

we need to solve our tasks.
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circular arc, and ellipse segments, based on the concept of model selection. The whole procedure is

called DLCE standing for detecting line, circle, and ellipse segments.

We introduce the mathematical concepts and methods, to represent and to estimate needed

geometric entities in 2D, in Section 2.1. Further, we need the concepts of model selection which we

review in Section 2.3.

At mid-level, Chapter 4 aims at the categorisation of objects in a facade, using aggregated line

primitives as features. This should serve the top-down image interpretation module as a link to the

image data.

Widely used object categorisation methods either use a number of object specific features (Fergus

et al., 2003) or learn a huge codebook of local image patches (Leibe et al., 2004) which result in a huge

search space for matching image features within this codebook. We believe that learning which features

best describe the target object classes is more natural than pre-choosing a fixed set of features in

advance and learning models based on these features. Further, learning the representation is essential

in order to avoid humanly modified models for classification or object detections, as shown by several

authors (Amit et al., 2004; Fidler et al., 2006; Gangaputra and Geman, 2006). We learn the parts that

represent individual object classes, therefore, avoid fixed and pre-selected features.

The scope of Chapter 4 is to classify subsections of images, based on the histogram of relevant

aggregates of line segments in a bag of words (BoW) approach, which we introduce in Section 2.4.

We learn generic parts of object structure which are pairs of adjacent line segments (PAS),

from image sections showing individual objects of the target classes. We identify which PAS

are relevant to serve as words in a BoW model, thus, are suited to be part of a compact and

discriminative image description. We call them shapelets. Finally, we use learned shapelets to

classify new, previously unseen image segments of learned target classes using the histogram of shapelets.

Finally, in Chapter 5 the task is to combine evidence from bottom-up for each single object proposal

with prior knowledge from top-down. Grammars and MRFs are widely used in image processing for

such tasks. Instead, we use marked point processes which can be seen as natural extension of MRFs,

not only due to the freedom of the underlying graph structure and its dimensionality, but also due

to the way they handle parametric objects. They have shown competitive results in several object

detection problems (Lafarge and Gimel’farb, 2008; Lafarge et al., 2010; Börcs and Benedek, 2012; Bredif

et al., 2013; Ortner et al., 2007, 2008; Tournaire et al., 2007, 2010; Verdie and Lafarge, 2013). While

MRFs are restricted to labelling problems in static graphs, marked point processes handle parametric

objects within dynamic graphs. Therefore, we are able to incorporate complex spatial interactions.

Typically this is designed manually (Ortner et al., 2007, 2008; Lafarge et al., 2010; Börcs and Benedek,

2012; Verdie and Lafarge, 2013). We introduce to learn typical spatial interactions from training images.

This way, we are able to combine the initial belief from bottom-up image categorisation and the prior

knowledge we have about typical configurations of facade objects.

Therefor, Chapter 5 presents a novel method for facade image interpretation based on marked point

processes, combining bottom-up evidence given by the object classifier, as proposed in Chapter 4, and

prior knowledge about typical configurations of facade objects, from top-down. We represent facade

objects by a simplified rectangular object model, representing their bounding boxes in the image, and

present an energy model which evaluates the agreement of a proposed configuration with the given

image and the statistics about typical configurations which we learned from training data. We use the

concept of marked point processes to optimise the agreement of configurations of objects, randomly

thrown from an appropriate search space, with the given image and learned statistics about typical

configurations, in order to identify the configuration that best fits the image content.

For optimisation we use reversible jump Markov chain Monte Carlo sampling combined with

simulated annealing, which is a sampling algorithm that allows us to find the global optimum of

complex functions with varying dimension. The latter is of special importance, as the number of

objects in the image is unknown beforehand.

Theoretical background about these concepts is given in Section 2.5 for marked point processes
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and Section 2.6 for optimization using rjMCMC. A particular challenge is the representation of a

probability density over a space of configurations with varying number of objects. Thus, we aim at

a representation which allows us to model the probability of a configuration which is a collection of

parametrised objects whose number is unknown. Both the parameters of the configuration and the

number of objects in the configuration are random variables, which make the concept different from

classical geodetic applications dealing with probability densities. In order to solve that task, we will

need the concept of probabilities based on measure theory. Therefor, we introduce the background in

measure theory in Section 2.2.1 and our representation of random variables in Section 2.2.2. Finally,

the Radon-Nikodym Derivative, cf. Section 2.2.3, allows us to represent a probability density function

in terms of a probability measure.

1.5 Summary

In this section, we motivated the task of automatic, accurate, and detailed facade image interpretation

as valuable ingredient for the production of highly detailed, visual attractive and semantic meaningful

3D city models and showed several applications of 3D city modelling. We formulated the goal of the

thesis, which is the accurate detection of facade objects from single-view images incorporating prior

knowledge from top-down.

We reviewed the existing approaches in the field of facade image interpretation and reconstruction.

State of the art methods use combined bottom-up – top-down approaches, in order to incorporate

prior knowledge about facades typical structure. Further, at the level of object classification, learning

a representation that is suited to describe target objects yield state-of-the-art results. We believe that

both learning learning a representation from bottom-up and learning prior knowledge from top-down

from data, rather than manually modelling by hand, will overcome typical limitations of existing

approaches.

We proposed a three-step system which in the first step, extracts line features from bottom-up,

which are segments of straight lines, circular arcs, and ellipses. Secondly, at mid-level, we learn what

we call shapelets from pairs of adjacent line segments, which are representatives for the description of

facade objects. Finally, at high-level, we learn typical configurations of facade objects from training

data and use them within a marked point process, such that they fit the image content as well as the

typical configuration of facade objects.

To guide the reader through the following chapters, we introduced our main concept, motivated

the according subtasks, and assign them to the chapters and sections of this thesis.
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CHAPTER 2

Theoretical Background

This chapter collects the mathematical and technical concepts we will use throughout this

thesis. It contains the representation and estimation of geometric entities, as circle and

ellipse segments, statistical terms and notation, and model selection. We introduce the bag

of words (BoW) approach as model for compact image representation, such that we are able

to use this representation as feature for image classification. For classification we provide

the basic concepts of support and import vector machines. Further, we review the theory

of spatial and marked point processes as statistical model in stochastic geometry for the

analysis of objects in images concerning both their geometry and their interactions. Finally,

we review the theory of Markov Chain Monte Carlo sampling and simulated annealing in

order to optimise complex probability density functions.
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2.1 Geometric Entities in 2D

Given pixel-chains from edge detection, Chapter 3 proposes a method to segment them into straight

line, circular arc, and ellipse segments. Found line segments should serve as low-level features for

further image interpretation, as already stated in Section 1.4.

This section presents the concepts and methods, we need to represent and to estimate needed

geometric entities.

2.1.1 Notation of Geometric Entities

We denote names of geometric objects regardless their mathematical representation calligraphic,

euclidean vectors and matrices cursive bold and homogeneous vectors and matrices upright bold. All

geometric elements we use are 2-dimensional. They are written with small letters. Sets are written

with capital letters. For example, a point is called x , its euclidean vector is written as x and his

homogeneous representation is x. A set of points is collected by the set X = {xi}, i ∈ 1 . . . I which might

be unsorted, but no element is the same. Their geometric representations are either X = [xi]i∈1...I

or X = [xi]i∈1...I which are matrices whose elements are stacked column wise, or vectors in case the

elements are scalar. We use round brackets (·) for lists, thus, collections of elements which may have

arbitrary type.

A list of typical geometric elements, we use throughout the thesis, is given on page 11.

2.1.2 Approximation of Curved Paths

The term path denotes an arbitrary connection between two points. This could be curved or not. The

shortest path, between two points on the euclidean plan, we denote by straight line segment. We deal

with curved paths in terms of circles and ellipses, whereby ellipses include circles and straight lines.

We approximate paths as collections of straight lines, circle and ellipse segments which we represent as

homogeneous elements.

Please note that we exclude parabolas and hyperbolas which are results of mapping a 3D circle to a

conic in general, too. But, assuming a straight line preserving mapping, we observe ellipses in general

and circles and straight lines as special cases.

A detailed discussion of uncertain homogeneous points and lines can be found in Förstner and Wrobel

(2016) and Meidow et al. (2009). We summarise the results, we will need throughout this thesis, in

Appendix B.

In the following, we give some more details about circle and ellipse segments including its paramet-

risation and estimation procedure which will be used in Chapter 3 to segment pixel-chains, extracted

from the image, into segments of lines, circles, and ellipses. We start with the most general curved

element which includes circles and lines.

2.1.3 Ellipses and Ellipse Segments

Regular conics are ellipses, hyperbolas or parabolas. Singular conics, among others, might be two

straight lines. In this section, we are interested in ellipses, solely.

Depending on the application we choose different representations for an ellipse which are given in

Appendix B.2.

Mainly, we use the homogeneous representation of conics to express the parameters of the ellipse.

Thereby, we represent conics with the symmetric 3× 3-matrix

C =

 c11 c12 c13
c12 c22 c23
c13 c23 c33

 =

[
Chh ch0
cT0h c00

]
. (2.1)

Any point x on the conic fulfils

xTCx = 0 . (2.2)
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Figure 2.1: An ellipse segment is given by the parameters of the full ellipse and the angles φ1 and φ2
of its start- and end-point.

From Equation (2.1) we see that C is described by 6 free parameters. Due to the homogeneous

representation, this results in 5 degrees of freedom.

To ensure the conic to be an ellipse, the homogeneous part of the conic must fulfil

|Chh| > 0 . (2.3)

Thus, when forcing the conic to be an ellipse, we might constrain

|Chh| = 1 , (2.4)

which is a valid choice, as the conic representation is homogeneous.

2.1.3.1 Representation of Ellipse Segments

Ellipse segments are assumed to be uncertain, due to the uncertainty of the original image data. We

represent them by an uncertain ellipse and two fixed angles φ1 and φ2 indicating their start and end

point, cf. Figure 2.1. Thus, an ellipse segment CS is given by its conic and two angles

CS = (C,Σcc, φ1, φ2) , (2.5)

with covariance matrix Σcc referring to the elements of the ellipse, given by conic C.

2.1.3.2 Algebraic Solution for Ellipse Fitting

For fitting an ellipse trough a set of given points, we aim at a maximum likelihood estimation, following

a Gauss-Helmert model with the constraint (2.4). As this is obviously a non linear problem, we will

need initial parameters which we will estimate using the direct method of Fitzgibbon (Fitzgibbon and

Fisher, 1999). As a result, we not only obtain the ellipse parameters, but also the estimated variance

σ̂2
0 of the data and the covariance matrix Σĉĉ of the parameters which we use for subsequent tests.

First, we will summarise the direct algebraic solution for fitting an ellipse through a set of 2D

points of Fitzgibbon and Fisher (1999). We start with the implicit polynomial representation of the

conic given in (B.42)

cT y = 0, (2.6)

collecting the parameters of the conic within vector

c = [c11, c12, c22, c13, c23, c33]
T (2.7)

and the observations within

y = [x2, 2xy, y2, 2x, 2y, 1]T , (2.8)
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given by an observed point x = [x, y]T.

Both, (2.2) and (2.6), define an algebraic distance of a point x to the conic. When fitting a conic

through a set of points we try to minimise this algebraic distance.

According to (2.3), we force the conic to be an ellipse when restricting its parameters to

c11c22 − 2c212 > 1 . (2.9)

Due to the homogeneous character of the conic representation we are free to scale the parameters; thus,

we can change the inequality constrain by the equality constraint

c11c22 − 2c212 = 1 (2.10)

as supposed by Fitzgibbon and Fisher (1999).

Other constrains where suggested, e.g., |c|2 = 1, c11+ c22 = 1 or c33 = 1, c. f. (Rosin, 1993; Gander

et al., 1994). But, these constrains are meant to avoid the trivial solution c = 06, but do not restrict

the conic to an ellipse.

The constraint (2.10) can be expressed in matrix form as

cTFc = cT



0 0 1/2 0 0 0

0 −2 0 0 0 0

1/2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 c = 1 . (2.11)

In the following, Fitzgibbon and Fisher (1999) solve the optimisation problem

minimise |Y c|2 (2.12)

subject to cTFc = 1 , (2.13)

using the design matrix Y = [y1, . . . ,yI ], build from I points xi. The corresponding Lagrangian

function is given by

L(c, λ) = |Y c|2 + λ(cTFc− 1) . (2.14)

Differentiating with respect to c leads to 1

∂L

∂c
= 2Y TY c+ λ(F + FT)c = 2Y TY c+ 2λFc . (2.15)

And differentiating with respect to λ leads to

∂L

∂λ
= cTFc− 1 . (2.16)

Minimising both leads to the system

Y TY c = λFc (2.17)

cTFc = 1 , (2.18)

where we skipped the sign in front of λ, due to the interpretation as eigenvalue equation. We solve (2.17)

for its generalised eigenvalues which leads to at most six pairs (λi,ui) of eigenvalues and eigenvectors.

Due to the homogeneous character of the equations any multiple α of ui is a solution, too. Setting

c = αui , (2.19)

we obtain from (2.18)

αi =

√
1

uT
i Fui

. (2.20)

Finally, we take this solution out of six with positive eigenvalue, to guaranty the existence of square

root (2.20). Fitzgibbon and Fisher (1999) proved that there exist exactly one positive eigenvalue which

gives an unique solution.

1Here we used the identities (A.1),(A.2),(A.3).
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2.1.3.3 Gauss-Helmert-Model for Ellipse Fitting

The direct solution, given in last section, provides initial values for a statistically best fit in terms

of least squares. In the following, we will formulate a Gauss-Helmert model which enables not only

the estimation of the parameters, but also of the according covariance information which we need for

further statistical testing.

The classical solution requires six implicit equations given by (2.1) or (2.6) for example. An

additional constraint is needed due to rank deficiency caused by homogeneity. The according estimate

has been shown to be unstable, in case of flat or short ellipse segments, as the elements c11, c23 and c33
become very large. The approach, given in this section, does not suffer from these problems; thus, we

are able to fit ellipses even in cases the segments are extremely flat.

To avoid the use of constraints within the Gauss-Helmert model for parameter fitting, we re-

parametrise the ellipse equation, which results in a five-parameter vector.

Re-parametrising the Ellipse. We seek for a change of the parameter-vector from

c = [c11, c12, c22, c13, c23, c33]
T to u = [b, c, d, e, f ]T (2.21)

and solve a classical Gauss-Helmert model without constraints.

We start with the constraint given in (2.4)∣∣∣∣ c11 c12
c12 c22

∣∣∣∣ = 1 . (2.22)

These are 3 parameters which we wish to reduce to 2 parameters b and c. Therefor, we choose c12 = b,

c11 = x− c and c22 = x+ c and obtain the new constraint∣∣∣∣ ∆− c b

b ∆+ c

∣∣∣∣ = 1 . (2.23)

To make this plausible, assume b = 0 and c = 0. then

1 =

∣∣∣∣ c11 c12
c12 c22

∣∣∣∣ = ∣∣∣∣ 1 0

0 1

∣∣∣∣ , (2.24)

which is a circle. Solving (2.23) for ∆ results in

∆ = ±
√
1 + b2 + c2 (2.25)

and leads to the re-parametrised conic

C =


√
1 + b2 + c2 − c b d

b
√
1 + b2 + c2 + c e

d e f

 (2.26)

where we choose the positive solution of (2.25) to avoid a negative C11−element.

The transformed parameter vector, which we wish to estimate in the following, is given by

u(c) = [b, c, d, e, f ]T (2.27)

=

[
c12,

(1− c211 + c212)

2c11
, c13, c23, c33

]T
, (2.28)

and vice versa

c(u) = [c11, c12, c22, c13, c23, c33]
T (2.29)

=
[√

1 + b2 + c2 − c, b,
√
1 + b2 + c2 + c, d, e, f

]T
. (2.30)
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Gauss-Helmert model. Given N observed points X = [xn] , n = 1 . . . N , using the reduced para-

meter set u = [b, c, d, e, f ]
T
, and collecting all observed coordinates within the (2N) × 1 vector of

observations l, with ln = [x, y]
T
n, we represent the ellipse by its implicit polynomial representation, cf.

(2.6),

gn(ln,u) : (2.31)(√
1 + b2 + c2 − c

)
x2n + 2b xnyn +

(√
1 + b2 + c2 + c

)
y2n + 2d xn + 2e yn + f = 0 ,

which fits the typical Gauss-Helmert constraint

g(l+ v̂, û) = 0 . (2.32)

We aim at adjusted parameter û, as well as adjusted observations l̂ = l+ v̂, given by their residuals v̂.

The solution for this model is given in Appendix C.2. As result, we obtain the adjusted parameter

vector û together with its covariance matrix Σûû, the adjusted observations l̂ and the estimated

variance coefficient σ̂2
0 .

At the end, we obtain the original parameters ĉ of the conic using (2.30) and Σĉĉ by variance

propagation

Σĉĉ
6×6

= Juc
6×5

Σûû
5×5

JTuc
5×6

(2.33)

using the Jacobian

Juc =



b/k c/k 0 0 0

1 0 0 0 0

b/k c/k 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 with k =
√

1 + b2 + c2 . (2.34)

2.1.4 Circles and Circle Segments

A circle is a special regular conic for which Chh ∝ I 2. In this section, we introduce our representation

of circles and circle segments and the estimation of their parameters.

Instead of using the over-parametrised conic representation, we represent circles by their implicit

homogeneous equation

A(x2 + y2) +Bx+ Cy +D = 0 , (2.35)

which is introduced in Appendix B.3.2. Every point x = [x y 1]T, sitting on the circle, fulfils (2.35).

Collecting the coordinates x = [x y]T in a vector y(x)

y(x) =


x2 + y2

x

y

1

 (2.36)

and the parameter within vector p

p =


A

B

C

D

 (2.37)

we obtain the implicit, linear, homogeneous form

y(x)Tp = 0 . (2.38)

Note that setting A = 0 allows us to represent circles with infinite radius, thus, lines.
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2.1.4.1 Direct Solution for Estimating the Homogeneous Circle Elements

Given a set of points xn = [xn yn]
T, n = 1 . . . N , supposed to sit on a circle, with covariance matrices

Σlnln which we assume to be σ2
nI 2, we aim at estimating the circles parameter vector p = [A B C D]T.

A direct solution is given in Förstner and Wrobel (2016, Section 3.6.2.5) and Al-Sharadqah and

Chernov (2009), which we summarise here shortly. A more detailed derivation of the equations is given

in Appendix B.3.3.

Using the constraints

gn(xn,p) = A(x2n + y2n) +Bxn + Cyn +D = y(xn)
Tp , (2.39)

as already seen in (2.35) and (2.38), we wish to minimise the squared sum of weighted algebraic

distances

Ω2(p̂) =
∑
n

g2n(x̂n, p̂)

σ2
gn

=
p̂TM p̂

p̂TN p̂
, (2.40)

using

M =
∑
n

ŷnŷ
T
n

σ2
n

=


z2 xz yz z

xz x2 xy x

yz xy y2 y

z x y 1

 , (2.41)

where we introduced the weighted mean values

z =
1

N

∑
n

x̂2n + ŷ2n
σ2
n

x =
1

N

∑
n

x̂n
σ2
n

y =
1

N

∑
n

ŷn
σ2
n

. (2.42)

For matrix N Al-Sharadqah and Chernov (2009) proposed to used

N = 2NT − NP , (2.43)

with

NP =


0 0 0 −2

0 1 0 0

0 0 1 0

−2 0 0 0

 and NT =


4z 2x 2y 0

2x 1 0 0

2y 0 1 0

0 0 0 0

 (2.44)

and showed that this choice leads to an unbiased solution.

Finally, the optimal parameters are given by minimising (2.40), which leads to the generalised

eigenvalue problem

Mp = λNp . (2.45)

The estimated parameters p̂ =
[
Â B̂ Ĉ D̂

]T
are given by the eigenvector belonging to the smallest

eigenvector.

The solution, given in this section, is based on an algebraic minimisation. We do not estimate

adjusted observations nor the Jacobians we usually use within the adjustment procedure. Therefore,

we are not able to give the covariance of the estimated parameters directly. Instead we follow

Förstner and Wrobel (2016, Section 3.6.2.5) and derive the covariance matrix of the circles paramet-

ers [x0, y0, r] directly from observed points. To do so, we assume the observations without outlier,

thus, accurate enough to assume the estimated parameters to be a good approximation of the true values.

First, we obtain centre (x̂0, ŷ0) and radius r̂ by

x̂0 = − B̂

2Â
ŷ0 = − Ĉ

2Â
r̂ =

√
B̂2 + Ĉ2 − 4ÂD̂

4Â2
. (2.46)
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using (B.62). Given the implicit circle equations

gn(xn, p̂) = (xn − x̂0)
2
+ (yn − ŷ0)

2 − r̂2 = 0 , (2.47)

using the classical circle parameters p̂ = [x̂0 ŷ0 r̂], we obtain the covariance of estimated parameters

by implicit variance propagation, cf. Appendix B.3.3,

Σpp =

 c2 cs c

cs s2 s

c s w

−1

, (2.48)

with abbreviations

s =
∑
n

sn
σ2
n

c =
∑
n

cn
σ2
n

cs =
∑
n

cnsn
σ2
n

c2 =
∑
n

c2n
σ2
n

s2 =
∑
n

s2n
σ2
n

w =
∑
n

1

σ2
n

sn =
xn − x̂0

r̂
cn =

yn − ŷ0
r̂

. (2.49)

From the residuals

v̂n = r̂ − |xn − x̂0| , (2.50)

we obtain the estimated variance factor

σ̂0
2
=

1

N − 3

∑
n

v̂n
σ2
n

. (2.51)

2.1.4.2 Circle Segments

In Section 3.2, we will propose an adaption of the Douglas-Peucker algorithm, which partitions an

ordered sequence of points into a sequence of circle segments. In order to enforce continuity, we

restrict the end-points of the segments to points of the given sequence. Therefor, this section describes

the parametrisation and estimation of circle segments which are restricted to their endpoints. We

concentrate on a geometric solution which we solve using an appropriate optimisation algorithm. As

our line simplification mentioned above is meant as pre-segmentation, thus, as splitting the sequence of

points into smaller sequences we are, at the moment, neither interested in an estimate in Least Squares

sense nor in full covariance information.

Parametrisation of Circle Segments. A circle has three degrees of freedom, but by restricting

the arc to two points there is only one degree of freedom left. We parametrise the arc segment by its

height h which could be positive and negative.

We call the first and last point of an arc segment xs and xe, respectively. This way, the chord s is

oriented from xs to xe. Everything left of s has positive sign, everything right of s has negative sign.

A circle segment S is then parametrised by

S : {xs,xe, h} (2.52)

whereby, we assume its start- and end-point fixed and the height h to be the single free parameter.

We define the orientation of the circle segment clockwise, if the points defining the segment are on

the left of the chord, thus, h > 0 and counter clockwise otherwise, cf. Figure 2.2.
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Figure 2.2: Orientation of circle segment. Left: counter clockwise. Right: clockwise.

To test the orientation, we need to determine the perpendicular distance of a point x to s which is

given by

d (x, s) =
xTs

|xhsh|
=



> 0 if x left of s

s
s
h

x

< 0 if x right of s

s

s
h

x

(2.53)

Thereby, the chord s is given by

s = Ne(xs × xe) , (2.54)

with euclidean normalisation Ne(·), and assuming the third coordinate of the two end points to be

positive. This way, the normal sh of s is directed to its left.

Estimating the Height of a Circle Segment. Given a set of points X = {xi}, we aim at fitting

an arc segment S , such that the distances of points to the segment are minimised. Thereby, we

determine the distances d = [d(xi, S)], of involved points xi to the arc segment S , and not to the

whole circle. To be precise, the distance of a point to a segment is the minimum of the distance to the

footpoint on the segment or the distance to the start or endpoint, which is visualised in Figure 2.3.

Finally, we obtain an estimate of height h by solving the following optimisation problem

ĥ = argminh |d(X , S(xs, xe, h))|L . (2.55)

The choice of norm depends on the problem. When choosing L = 2 we obtain a Least Squares estimate.

For a robust estimate we might choose the L1-norm; thus, we optimise h such that the sum of absolute

distances of all points to the arc segment is minimised. Using the L∞-norm we optimise h such that

xi

xs

xj

xe

S

s h
>

0
d
(x

i,
s)
<

0d(x
i , S

)

d(xj , S)

Figure 2.3: Distance measure of points x to a given arc S . For points, not belonging to the arc, e.g.,

xi, its distance to the arc is given by its shortest distance to the arcs end points instead of shortest

distance to the circle.
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Figure 2.4: Geometric elements describing a circle segment. Left: special case, where the central angle

is smaller than 180◦, thus, |h| < r. Right: special case, where the central angle is greater than 180◦,

thus, |h| > r. The chord s is defined in the direction from xs to xe. Both cases show the circle segment

right of the chord, thus, h < 0.

the maximum distances of any point to the arc segment is minimised. In our experiments, dealing

with pixel-chains extracted from images, we got best results using the L2-norm and hence, use this

option for further evaluation.

Making the distance d(x , S) explicit. To obtain an explicit equation of distance d(x , S), we need
to take into account two special cases of circle segments. We distinguish circle segments with central

angle < 180◦ or ≥ 180◦, cf. Figure 2.4. Depending on the arcs geometry, the distance of a point x to

S is given by

d(x , S) =
{
|x−m| − r if {sign (d(x, s)) = sign(h)} | x ∈ ∆{xs,m , xe}
min(|x− xs| , |x− xe|) otherwise

. (2.56)

Thereby, the centre m can then be calculated by

m =

{
c− (r − |h|) sign (h) sh if r ≥ |h| (cf. Figure 2.4 left)

c− (|h| − r) sign (h) sh otherwise (cf. Figure 2.4 right)
, (2.57)

using the chords midpoint

c =
xs + xe

2
, (2.58)

and radius

r =
4h2 + |xe − xs|2

8 |h|
. (2.59)

Remind our optimisation problem given in (2.55). We search for h which minimises |d(X , S(xs, xe, h))|L.
Optimisation by gradient descent methods is not applicable, as the function, we wish to optimise, is

non-convex and we can not give the derivative of |d(X , S(xs, xe, h))|L with respect to h. The function

we wish to minimise is one-dimensional and unconstrained. Assuming the initialisation to be accurate

enough to ensure convergences to the global optimum, we choose golden section search (Kiefer, 1953)

combined with a parabolic interpolation as method for optimisation (Press et al., 2007, chap.10).

Golden section search determines the extremum of an one-dimensional function by sequentially dividing

the search range into smaller values. More details are given in Appendix C.1. We initialise the upper

and lower bound of the search space by the smallest and greatest distances d(xi, S), respectively.
In our experiments we needed on average 6 to 10 iterations for the optimisation of one circle

segment.
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2.1.5 Conditioning

Fitting geometric entities often lack on an unstable numeric configuration, due to the mixture of true

euclidean coordinates, potentially of high range, and the homogeneous component. To avoid unstable

solutions, we condition our data before estimating parameters of geometric entities. To be precise, we

transform our data X = [xn], n = 1 . . . N , such that all coordinates lie within [−1, 1]. To do so we use

the transformation matrix

M =

 1 0 −x
0 1 −y
0 0 1/λ

 , (2.60)

using the centroid

x =
1

N

N∑
n=1

xn, (2.61)

and a scale λ which we usually derive from the biggest distance smax of any point x ∈ X to the origin,

thus, λ = 1/smax. Points and lines are conditioned by the simple transformations

x′ = Mx, (2.62)

l′ = M−Tl, (2.63)

and conics by

C′ = M−TCM−1 . (2.64)

The transformations (2.62) and (2.63) are linear in x and l; thus, their variance propagation is trivial.

The transformation for conics is bilinear. To obtain the Jacobian, we use the vec-operator, as introduced

in (A.6), and rewrite (2.64)

vecC′
9×1

= (M−T ⊗M−T)
9×9

vecC
9×1

, (2.65)

using the identity (A.12). As C is symmetric we can use (A.13) and (A.14) to obtain

Jc′
6×6

=
dvechC′

dvechC
= S3

6×9

(MT ⊗MT)
9×9

ST
3

9×6

. (2.66)

Finally, we obtain the transformed covariance of the conic by

Σc′c′
6×6

= Jc′
6×6

Σcc
6×6

JTc′
6×6

. (2.67)

Conditioning forth and back and the according variance propagation for points, lines, and conics is

summarised in Table 2.1.
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Table 2.1: Conditioning of points, lines and conicsusing the transformation M and according variance

propagation.

conditioning backconditioning

Points

x′ = Mx x = M−1x′

Σx′x′
3×3

= Jx′ΣxxJ
T
x′ Σxx

3×3

= JxΣxi′x′JTx

Jx′
3×3

= M Jx
3×3

= M−T

Lines

l′ = M−Tl l = MTl′

Σl′l′
3×3

= J l′ΣllJ
T
l′ Σll

3×3

= J lΣl′l′J
T
l

J l′
3×3

= M−T J l
3×3

= MT

Conics

C′ = M−TCM−1 C = MTC′M

Σc′c′
6×6

= Jc′ΣccJ
T
c′ Σcc

6×6

= JcΣc′c′J
T
c

Jc′
6×6

= S3
6×9

(M−T ⊗M−T)
9×9

ST
3

9×6

Jc
6×6

= S3
6×9

(MT ⊗MT)
9×9

ST
3

9×6
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2.2 Statistical Background, Terms and Notation

As already pointed out in Section 1.4.2, we will need a representation of a probability density over a

space of configurations of geometric objects, which leads to statistical concepts different from those

commonly used in geodetic applications. This section is desired to introduce our notation and presents

the basic terms from statistics we use throughout the following sections.

2.2.1 Measure Theory

2.2.1.1 Measure

A measure µ on a set S is a mapping which assigns a non-negative real number to each subset of that

set, which we may interpret as its size, the number of elements in the subset or its probability. A

measure µ must satisfy the following conditions

• µ(S1 ∪ S2) = µ(S1) + µ(S2), provided S1 and S2 are disjoint sets S1 ∩ S2 = ∅

• µ(∅) = 0

• µ is continuous: Given Sn is a decreasing sequence of closed, bounded sets (Sn ⊇ S), with limit

∩nSn = S, then µ(Sn) → µ(S)

A probability measure additionally fulfils the requirement µ(S) = 1.

2.2.1.2 Measure Space

A measure space is a triple (S,S, µ) where S is a set, S a σ-algebra of its subsets, and µ a measure.

We denote (S,S) the measurable space and µ the measure on S. Thus, a measure space consists of a

measurable space and a measure.

We call a measure space whose measure is a probability measure a probability space.

2.2.1.3 Measurable Function

We also use the term measurable function which is a mapping between measurable spaces. Suppose

two measurable spaces (S,S) and (T, T ), wherein S and T are the σ-algebras according to S and T .

A function f is said to be measurable if f−1(A) ∈ S ∀A ∈ T . Thus, the inverse image of any subset

of T is a subset of S.

2.2.2 Random Variables

We denote random variables underlined, e.g., x and the probability of the event that the random

variable x takes the value x by P (x = x), or short Px(x) with subscript x of P, to denote the random

variable or even shorter P (x), if the name of the random variable is clear from context.

The result of an experiment, being the set of outcomes, does not have to be a real valued number.

It could be the colour of one or more balls, picked from urns, or the image we see when tossing a coin.

In our applications it will be a set of objects, i.e. rectangles within the image plane. Therefor, we need

a formal way to declare random variables to describe an experiment.

A random variable x is a mapping which allows us to assign a number x(ω) to the outcome ω of

an experiment, being an element of a sample space Ω. Thus, the domain of x is the set of possible

outcomes of the experiment, e.g., Ω = {‘head‘,‘tail‘} for a coin experiment. The range of x are the

numbers assigned to each outcome, e.g., x(‘head‘) = 0 and x(‘tail‘) = 1.

We usually define a random variable x in terms of a probability space (Ω,A,P) with A, denoting a

σ-algebra on Ω, defining the set of events defined for a certain experiment and a mapping P : A → [0, 1]

which assigns a probability to each event, following Kolmogorovs axioms.
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Therefrom, we may define a random variable x with range R more formally as a measurable function

x : (Ω,A) → (R,B) (2.68)

ω → x(ω) (2.69)

from a probability space (Ω,A,P) to a measurable state space (R,B). We also use the following

notation: If A is a subset of R we denote by {x ∈ A} the event

{x ∈ A} = {ω ∈ Ω : x(ω) ∈ A} . (2.70)

The measure on B defined by

µ(A) = P
(
x−1(A)

)
(2.71)

is the distribution of x.

Sometimes, we relax the dependency on ω and denote by P (x = x) the probability of the event

that the random variable x takes the value x. Then, we use the term probability measure synonymous

to the term distribution. Thus, the distribution of a random variable x refers to the operator P (x)

which is a probability measure. Usually the distribution is given either in terms of the distribution

function or probability density function (probability mass function for discrete random variables) for

which we usually use the definitions discussed next.

2.2.2.1 Probability Distribution Function.

We denote the (cumulative) probability distribution function (cdf) of a random variable x by

Px(a) = P (x ≤ a) a ∈ R (2.72)

whereby, the index x indicates the name of random variable x. Vice versa, the probability measure for

a small interval (a, b] is given by

P(a, b] = P (b)− P (a) a, b ∈ R, a < b (2.73)

from which we see that P must satisfy

lim
x→−∞

P (x) = 0 lim
x→∞

P (x) = 1 . (2.74)

For a discrete-type random variable P , is piecewise constant, thus, has a finite number of jump

discontinuities.

2.2.2.2 Probability density and probability mass function.

For continuous random variables, the probability density function (pdf) is a function p : x → R+

satisfying

p(x) > 0 ∀x ∈ Ω∫
Ω
p(x) dx = 1

P (x ∈ B) =
∫
B p(x) dx B ⊆ Ω . (2.75)

We say the distribution of x admits a density p(x), which means that the distribution of x is absolutely

continuous, but not implies that the density is continuous.2

For a discrete random variable, the pdf is a collection of positive discrete masses and is called prob-

ability mass function (pmf). It directly gives rise to the probability of a certain event p(x) = P (x = x)

and the conditions above become ∑
x∈Ω p(x) = 1

P (x ∈ B) =
∑

x∈B p(x) B ⊆ Ω . (2.76)

The distribution of a discrete random variable cannot admit a density.

2A differentiable function is continuous; thus, as P is the derivative of p it must be continuous. The other way around
must not hold.
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2.2.3 The Radon-Nikodym Derivative

Given a measurable space (Ω,A), on which there is a measure ν which is absolutely continuous with

respect to another measure µ on (Ω,A). Then, there is a measurable function f : Ω → [0,∞] which

transforms the measure µ into the measure ν, namely

ν(A) =

∫
A

f dµ A ⊂ Ω . (2.77)

Thus, the function f is given by

f =
dν

dµ
, (2.78)

what is called the Radon-Nikodym derivative. If we assume the measure ν to be a probability measure,

then the function f is the density admitted by ν and µ is a measure of volume for which we evaluate

the density.

In our context this reads as follows. Given a distribution P (x) on Ω and assuming Ω to be a subset

of Rd. Further, assume P (x) to admit a density with respect to a measure µ. Then we write

P (dx) = p(x)µ(dx) . (2.79)

Usually, we assume µ to be the Lebesgue measure, thus, the measure of volume in Rd. We say P is

dominated by µ. Then, the density function p(x) is given by the Radon Nikodym derivative

p(x) =
P (dx)

µ(dx)
(2.80)

of the probability measure with respect to the measure of volume.

Observe, if µ(dx) = dx is the unit function and using the abbreviation P (dx) = dP (x), we arrive

at the classical definition of the density

p(x) =
dP (x)

dx
. (2.81)

In fact (2.80) holds for any type of measure as stated in (2.78). We will use these definitions, in

Section 2.5, for the construction of the density of a marked point process with respect to the probability

measure of a dominating Poisson process.

2.3 Model Selection

In Section 3.3, we will deal with the task of merging neighboured segments of pixel-chains, in case they

share the same geometric model. Thus, we need to decide whether two pixel-chains are best described

by a joint straight line, or an ellipse segment, or by two separate line segments.

Model selection deals with the task of finding a model which best explains the observed data. Thus,

the term explaining the data in our context is equivalent to describing a set of points by choosing an

appropriate geometric model. The domain of models we use is {straight line, circle, ellipse}, which
differ in the number of parameters. The term accuracy then, is related to the residuals caused by

deviations of the points to the selected model.

For the task of model selection, we find different points of view in the literature. First, we observe

a different notion of the best model. This can be seen by explaining the data in the most accurate way

or by choosing a model which obtains the best predictive quality. The former leads to a maximum

likelihood choice, which tend to choose the most complex model. At this point we refer Occam’s razor,

which states that the best explanation is as simple as possible, but not simpler. For the topic of model

selection, this means not to use more parameters as needed to explain the data. Preferring simple

models result in less calculations and less memory.
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From the point of view of prediction, we could require the model nothing, but to work. Thus,

model selection should be based on the quality of prediction.

At the end, we realise the trade-off between goodness-of-fit and simplicity. Both are contradictory,

maximising simplicity degrades goodness-of-fit. But, on the other hand, the perfect fit requires a more

complex model.

In 1978 Schwarz derived the widely used (Schwarz’s) Bayesian Information Criterion (BIC) for

model selection. Let us considering a number of N normally, i.i.d. distributed observations l with

covariance Σll, which is reasonable for our applications. We are looking for an U -dimensional parameter

vector θ̂, whereby observations and parameters are related by a functional model l+ v̂ = f
(
θ̂
)
. Using

the usual definition Ω = v̂TΣ−1
ll v̂, Schwarz derived

BIC = Ω + U lnN , (2.82)

as a criterion for model selection, which we minimise in order to identify the best model. It is derived

from the so called model evidence, which in fact is the marginal distribution of observations. It

includes a measure of fit of observations l concerning parameters θ in terms of the likelihood function

p(l | θ) and some prior knowledge, of how the model should be, as penalty term. The lower the

complexity of the model, given by the number of parameters U , the lower BIC. A higher number N of

observations increases the relative precision of the parameters, thus, increases the reliability of the model.

There are several other methods for model selection. (Rissanen, 1978, 1983) proposed a measure for

description length. The term description length refers to a measure in terms of coding length, which

states how many bits we need to optimally describe the data, assuming to compactly describe them by

an appropriate model. To select the best model, we aim at minimising the description length. However,

it turns out that in case of normally distributed observations, it is equivalent to BIC (McGlone, 2004).

Beside BIC, one of the most used model selection methods is the one given by Akaike (1974). He

proposed An Information Criterion3 (AIC), which chooses the model θ that minimises

AIC = Ω+ 2U , (2.83)

again in case of normally distributed observations.

Both, BIC and AIC, are related to coding length due to the use of information in the derivation

of their criteria. Thus, when comparing two models, based on BIC or AIC, we evaluate the gain of

description length.

To this end, we decided to use BIC as criterion for model selection throughout our experiments.

This is due to the facts that indeed BIC is the most established criterion and we have no arguments

against. Further, we actually observed no significant differences between these criteria.

2.4 Bag of Words for Image Representation

As introduced in Section 1.4.2, we will perform object classification and detection, respectively, at

mid-level of our facade image interpretation system. In order to learn from data a representation that

is suited for that task, we will use the so called bag of words (BoW) model for the classification of

image sections. It will be used in Chapter 4 as well as in Chapter 5.

The idea of BoW is to treat image features as words and to represent an image by a collection of

such words, cf. Figure 2.5. Having defined a dictionary of meaningful words, we conclude about the

content of an image. According to the visualisation, the collection of meaningful words is called a bag

of words. Synonymously we use the term codebook.

3The criterion was called Infromation Criterion (IC). In order to provide a list of similar proposals, Akaike (1974)
added A, trusting B, C etc. would follow. And he was right.
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The BoW model has its origin in information retrieval and text processing. It was first used

in the work of Harris (1954), who states that, ”The degree of semantic similarity between two

linguistic expressions A and B is a function of the similarity of the linguistic contexts, in which A

and B can appear.” (Harris, 1954)

In other words, the meaning of a word depends on the context, in which it is used, thus, the whole

sentence, or to be more precise, on the co-occurrences of certain words. This allows us to classify

documents by topic, by analysing the occurrence of certain words.

In image classification or image retrieval this idea is adopted to the use of image features. Termino-

logy used in information retrieval is easily transferred to our purposes. A document is either a text or

an image. The former is a collection of terms or words, whereas the latter can be seen as a collection

of image features which we interpret as words again. We use document and image synonymous. In

both cases, we count the occurrences of words from a dictionary to conclude about the category of a

document or an image, respectively. Thereby, the exact ordering of words within the document or the

position of features within an image, respectively, is ignored, only their number is crucial.

In image processing BoW arises around the turn of the millennium in works about texture

recognition (Leung and Malik, 2001; Cula and Dana, 2001; Lazebnik et al., 2003). Later it becomes

popular in object categorisation and detection, respectively (Fergus et al., 2003; Csurka et al., 2004;

Fei-Fei et al., 2004; Sivic et al., 2005; Sivic and Zisserman, 2006).

The principle of using BoW for image classification is shown in Figure 2.6. Initially, we will sketch

this principle roughly in an abstract way, in order to give the intuition of the main idea. Later, we will

go into detail of individual parts of the process.

Given a set of N training images and their according class labels, we extract image features. Due

to the diversity of given images, even within classes, we get a diverse set of extracted image features.

But, due to within class similarity, they are still similar features, thus, features close to each other in

feature space. Clustering leads to such groups of similar images features. These clusters are supposed

to represent meaningful image features which are suited to be part of a compact image description.

The codebook is composed of representatives for each cluster. Finally, each image from the training

set is represented by the histogram of codewords. For that, each feature in the image, which can be

mapped to a codeword from the codebook, increases the according bin of the histogram. At the end,

each image is compactly described by a single histogram vector xn, n = 1 . . . N . Its length is equal to

the size of the codebook. The elements of this histogram vector are the counts of codewords within the

image. Collecting all training images within matrix X = [xn] and their according class labels within

vector y we train a classifier y = f (X) .

For testing an unknown image, we extract features again and map them to the codebook. We build

the histogram of words and determine the class label using the learned classifier f .

Figure 2.5: The idea behind bag of words for image interpretation: An image is represented as

unordered collection of independent images features (Fei-Fei, 2005). The figure is probably the most

cited image related to BoW.

62



Images for Training

Feature Extraction

Clustering and Quantisation

trx1 =

[
...

]

trxn =

[
...

]

Histogram Representation

try = f(X)

X=
[
trx

]

Train Model for Classification

Test Image

Feature
and Matching

Extraction
to Codebook

tsx =

[
...

]

tsy = f(tsx)

Classify

Figure 2.6: The principle of using BoW for image classification.
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To get more into detail, we need to specify three parts of the method. First, we need to define

appropriate image features and their description which lead to the definition of a feature space. Second,

we need to choose a method to select those features which are suited to describe the images in a

compact way. This leads to a definition of similarity of two features, to the choice of a clustering

method, and finally, to the definition of a best representative for each cluster. Third, we need to

choose a classifier. Thereby, the most influential decision in designing a BoW model is the choice

of the adequate features. In the following, we will review commonly used features, and methods for

codebook generation. Later, in Sections 4.1 and 4.2, we will discuss our features for the classification

of facade objects. Further, this section introduces methods for normalising the histogram of words,

and introduces classification methods, we will use throughout our experiments.

2.4.1 Features Used as Words

There have been used several methods for feature extraction in BoW. It may be performed by

determining features on a grid or of randomly positioned patches, or by feature detection.

Fei-Fei and Perona (2005) divide the image into a regular grid and take each cell as one image patch.

Csurka et al. (2004), Fei-Fei et al. (2004), Fei-Fei and Perona (2005), Sivic and Zisserman (2006) and

many others use interest point detectors to collect image features, e.g., the Kadir and Brady (Kadir

and Brady, 2001), Harris (Harris and Stephens, 1988), or SIFT detector (Lowe, 2004). The work of

Mikolajczyk and Schmid (2005) gives an extensive review of existing feature detectors, their properties

and evaluates their performance. Another idea was to randomly sample position and scale of image

regions or to use image patches, given by image segmentation (Fei-Fei, 2005).

In each case, image patches serve as basic input for building the BoW model, for which we need a

descriptor. One way is to described images patches by pure pixel information; thus, pixel intensities of

each pixel of the patch are collected within a large vector. Possibly, the dimension of feature space is

reduced by principal component analysis (PCA) (Fei-Fei et al., 2004). In case interest points where

extracted, their local neighbourhood is described by an appropriate descriptor. The SIFT descriptor,

developed by Lowe (2004), was shown to outperform other descriptors in the literature by Mikolajczyk

and Schmid (2005). It is used in the context of BoW, e.g., in Csurka et al. (2004), Fei-Fei and Perona

(2005), Nister and Stewenius (2006), Sivic and Zisserman (2006) and many others. Again, this yield

one vector per image patch. In case of SIFT descriptors, they are typically of dimension 128, but not

necessarily.

The main criticism on BoW is its lack of information about spatial context of selected words.

Therefore, the implicit shape model (ISM) (Leibe et al., 2004), similar to BoW, uses the principle of

codewords, but additionally adds information about the spatial constellation of several parts of the

object model. Thereby, it builds object specific models, while in BoW a single codebook may severe as

dictionary for all classes.

Inspired from Sali and Ullman (1999), who use contour fragments for object classification, Opelt

and Zisserman (2006) and similarly Shotton et al. (2005) introduce this idea for object detection, and

use contour fragments as codewords in an ISM (Leibe et al., 2004). Nevertheless, Ferrari et al. (2008)

pick up the idea of using contour fragments as words in a BoW model. They introduce kAS-features,

standing for groups of k-adjacent line segments, as basic image features which they use in a BoW model

for the task of object detection. We will pick up exactly this idea when introducing our pairs of adjacent

line segments in Chapter 4. We will overcome the limitation of common BoW, by incorporating a rough

spatial layout by splitting the image patch into several tiles, from which the overall image descriptor is

given by the concatenated histogram of words of all tiles.

2.4.2 Generating the Codebook

After having collected a large enough number of image features from training images, the goal is to

generate a codebook of meaningful words out if. In most cases this is done by clustering the feature

descriptors in feature space, e.g., by using k-means or mean-shift (Comaniciu and Meer, 2002). The

codewords, thus, the representatives for each cluster, usually are chosen as mean value out of all cluster
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members. Both cluster methods assume a distance, defined on the feature space, which is easy and

fast evaluated. Usually, this is assumed either to be euclidean or a cosine distance in case of SIFT

descriptors. Using k-means requires the number of clusters, which is unknown beforehand, differs

between different datasets, and involves the danger of over- or under-segmentation. However, there are

methods to determine the best number of clusters (Bishop, 2006, Ch. 9). Mean-shift became popular

because it estimates the number of clusters from data. In return, it assumes the kernel-width as input

parameter, which can be interpreted as expected distance of features to except them as similar.

For the case of more complex feature spaces which prevent the use of euclidean or cosine distances,

as we will seen in Section 4.2.2, Ferrari et al. (2008) propose to use clique-partitioning for clustering.

Clique-partitioning. Assume a complete graph G(V ,E), with vertices v ∈ V and weighted edges

e ∈ E . The goal of clique-partitioning is to partition G into completely connected, disjoint subsets of

vertices (cliques), such that the sum of remaining edge weights is maximised.

Let wij be the weight on the edge connecting vertices vi and vj . Further, let the unknown

eij ∈ {0, 1} indicating whether an edge is active or not. We formulate the clique partitioning problem

as linear program

maximise
∑

1≤i≤j≤n

wijeij

subject to eij + ejk − eik ≤ 1, ∀1 ≤ i < j < k ≤ n

eij − ejk + eik ≤ 1, ∀1 ≤ i < j < k ≤ n

−eij + ejk + eik ≤ 1, ∀1 ≤ i < j < k ≤ n

eij ∈ {0, 1}, ∀1 ≤ i < j < k ≤ n . (2.84)

The objective function maximises the sum of intra-clique weights, while the constraints express the

clique constraint, thus, ensure the full connectivity of each cluster. Equation (2.84) can be solved by

linear programming, e.g., the simplex algorithm. But, as already mentioned by Ferrari et al. (2001),

clique-partitioning is NP-hard with exponential complexity in the number of vertices n, in worst case.

Therefore, Ferrari et al. (2001) propose a greedy procedure with polynomial complexity, O(n3) in worst

case, but faster in practice.

Starting with a partitioning Φ = {i}1...n of G , where each vertex is a singleton clique, they iteratively

merge cliques which fulfil the following requirements:

1. cliques proposed for merging are their mutual best merging option

2. merging increases the total score.

To evaluate these requirements Ferrari et al. (2001) propose a cost function

m(c1, c2) =
∑

i∈c1,j∈c2

wij (2.85)

for merging cliques c1 and c2. The score of the best merging choice for clique c is given by function

b(c) = max
t∈Φ

m(c, t) (2.86)

and the name of the clique to merge with

d(c) = argmax
t∈Φ

m(c, t) . (2.87)

Two cliques ci and cj are merged if and only if d(ci) = cj and d(cj) = ci, which represent requirement

1., and if b(ci) = b(cj) > 0, which represents requirement 2. Merging is iteratively repeated until no

two cliques fulfil the requirements anymore.

Clique-partitioning naturally deals with positive and negative weights, this leads to the definition

of a best solution without knowing the number of cliques before and without introducing a stopping

criterion (Ferrari et al., 2001).
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Ferrari et al. (2008) use this procedure to solve the clustering. From extracted features they build

a complete graph G(V ,E), where each vertex v ∈ V represents one feature in feature space, and

edges e ∈ E are weighted by an appropriate dissimilarity measure. Thereby, the weights are defined by

wij = τ −D(vi, vj) where D is a dissimilarity measure on features i and j and τ is a threshold which

represents the excepted intra-cluster dissimilarity, similar to the mean-shift kernel width. The smaller

D the similar two features. Thus, by introducing τ and taking the negative of D, similar features get

heigh weights, while dissimilar features get negative weights, which again lead to the linear program

(2.84).

For building the codebook, one representative per cluster is chosen: the feature with lowest distance

to all other features of the current cluster, thus, the one closest to the cluster centre.

2.4.3 Normalising the BoW histogram

Using the BoW model, each image or image section is compactly represented by its histogram of

codewords. To be independent on the images size, the histogram should by properly normalised.

Otherwise, the number of counted words grows by the size of the image. Different normalising methods

are commonly used. Most intuitively is a normalising, such that the length of the histogram vector is

1, thus, interpreting the normalized histogram as set of probabilities.

Another idea, again based on information retrieval in text processing, takes into account that

certain words have little or even no discriminative power to determine the context of the document.

For example, imaging a collection of documents about architecture. The word house occurs in almost

all documents and does not help to conclude about the specific topic of the document. In our context,

we are interested in object detection in images of facades. Here rectangular objects occur in almost all

images and have little discriminative power to distinguish windows from doors or balconies.

tf-idf weighting is a weighting scheme that reduces the impact of words that occur too often to be

meaningful. Given the number of occurrence ntd of word t within document d the according bin in the

histogram, describing document d, is given by

hd(t) =
ntd
nd

lb
N

Nt
, (2.88)

wherein nd is the total number of words in d, Nt is the number of documents containing at least one

instances of t, and N is the total number of documents (Manning et al., 2009).

The first fraction in (2.88) is equal to the term frequency and counts the number of occurrences of

word t in d, related to the total number of words within d, which we may interpret as p(t | d). The
second term in (2.88) is equal to the inverse document frequency and scales down the words with high

frequency. It takes into account the number of documents containing a certain word, related to the

total number of documents. We may interpret this term as −lbp(t), thus, the amount of information

we get, when observing a word t. It is high if word t is rare, but low if t is more likely. Together with

p(t | d), we see that (2.88) turns out to be an entropy.

In our context, the tf-idf histogram bin of word t is highest when t appears many times within a

small number of images; thus, it has a high discriminative power on this class of images. It is lower

when t appears in many images or is rare within an image. The lowest tf-idf value is given when t

occurs in almost all images.

2.4.4 Classification Methods

Having learned a codebook, we are able to represent each image or image section, respectively, in a

compact way by its histogram of words which we will use as feature vector for classification. We realize

object categorization by multi-class classification based on a feature vector.

Before introducing the two classification methods, we will use throughout this thesis, we shortly

review commonly used methods in the context of BoW classification. Most approaches use generative

classifiers that typically yield a posteriori probabilities which allow for further evaluation and processing
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of classification results. On the other, hand discriminative methods have shown better discriminative

power.

One of the most simplest classifier that is used in that context is the Naive Bayes classifier (Csurka

et al., 2004). It relaxes the general Bayes theorem by assuming independent features. As it is derived

from the general Bayes theorem, it is a generative model which yields a posteriori probabilities of

assigned labels and it takes into account prior class probabilities. As stated above, the output of

a posteriori probabilities is advantageous for further processing of classification results. But, as

independence is a rather naive assumption, we will not take into account this model.

Another group of generative models, used in terms of BoW, are hierarchical Bayesian models (Sivic

et al., 2005; Fei-Fei and Perona, 2005). They extensively exploit the power of Bayes theorem by not

only modelling the full joint probability of features, but additionally introducing hyper priors, namely

distribution over parameters of the prior distributions.

The probably most widespread discriminative classifier, not only, but also used in the context of

BoW, is the support vector machine (SVM).

In the following, we will shortly present two discriminative classifiers, SVM and import vector

machine (IVM). In Chapter 4, we will use SVM as powerful and fast classifier to evaluate the

performance of proposed shapelets for the task of object categorisation. In Chapter 5, we will need the

probabilistic output of a classifier, therefrom, we stick on IVM as a discriminative classifier which also

yield a posteriori probabilities.

2.4.4.1 Support Vector Machines

Given features X = [xn] and labels y = [yn] ∈ [−1, 1] n = 1 . . . N , a SVM, in its simplest form, solves

the two class linear classification problem

yn = y(xn) = sign
(
wTφ(xn) + b

)
, (2.89)

whereby, w and b are the parameters of a hyperplane that perfectly splits the data, assuming they

are separable. The functions φ represents a feature space transformation which allows us to separate

the data even if they are not linearly separable. The parameters of the hyperplane are learned using

training data. For classifying new unseen data points, we evaluate (2.89) to obtain the according label.

Converting (2.89) into another representation

yn = sign

(∑
m

ymamk(xn,xm) + b

)
, (2.90)

which we call the dual representation, avoids to work in the transformed feature space, represented by

φ. The new parameters a are Lagrangian multipliers and result from the formulation of the constrained

optimisation problem. We call

k(xn,xm) = φ(xn)
Tφ(xm) . (2.91)

the kernel function. It is the scalar product of transformed feature vectors and can be evaluated

efficiently without having functions φ explicitly. Furthermore, it allows us to work in high, even infinite

high feature dimensions, which makes the model attractive for hardly separable data. The Gram matrix

K which is the collection of kernels k(xn,xm), is symmetric and positive semidefinite and expresses

the similarity between every two features xn and xm. Depending on the application, we choose an

appropriate kernel function which is suited to express the similarity between features. Examples of

widely used kernel functions are

• Linear kernel

k(xn,xm) = xT
nxm (2.92)

• Polynomial kernel

k(xn,xm) =
(
γ xT

nxm + r
)M

, (2.93)

which contains all monomials up to order M
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Figure 2.7: Principle of a two-class SVM. Left: The SVM tries to maximise the margin which is

defined by the support vectors sitting on the margin. Support vectors are marked by filled circles and

squares. Right: Slack variables. Training samples sitting on the margin or behind have ξi = 0; sitting

on the wrong side of the marginthey have a value of ξi > 1, while on the correct side, but within the

margin 1 ≥ ξi ≥ 0.

• Gaussian or radial basis function (RBF) kernel

k(xn,xm) = exp

(
−|xn − xm|2

2σ2
RBF

)
. (2.94)

Depending on chosen kernel we have kernel parameters γ > 0, σRBF > 0, r,M .

Assuming the data to be linearly separable, possibly in their transformed feature space, there is

no unique solution for a linear hyperplane that perfectly splits the data. For this, SVM introduces

a margin which is defined by the smallest distance between any training sample and the decision

boundary. In conclusion, the goal of the SVM is to determine the hyperplane that maximises the

margin, see Figure 2.7 left.

It turns out that only a couple of Lagrangian multipliers an are different from zero. Thus, only

their according training samples contribute to the solution. These special samples are called support

vectors and it can be shown that they lie on the margin.

Different from the argumentation before, the data may not be perfectly separable. So called slack

variables ξn allow for overlapping class distributions, thus, the training samples to deviate from the

margin or even the decision boundary. To avoid over-fitting, a regularisation parameter4 λsvm controls

the trade off between model complexity and accuracy. In that case, the margin still is defined by the

support vectors, but they are not supposed to sit on the margin any more, see Figure 2.7 right.

All together, the standard SVM model, in its primal form, requires the solution of the optimisation

problem

min
w,b,ξ

1

2
|w|2 + λsvm

∑
n

ξn (2.95)

subject to yn
(
wTφ(xn) + b

)
≥ 1− ξn ∀n = 1 . . . N (2.96)

ξn ≥ 0 ∀n = 1 . . . N . (2.97)

Thus, we minimise the squared sum of weights and the sum of slack variables constrained to the correct

sidedness of training samples. It is solved in its dual form, thus, by introducing a kernel function as

4In standard SVM literature this parameter usually is called C. But, to avoid confusion with the number of classes
C, which we later use, we prefer the common regulariser name λ here.
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before.

We do not go more into detail. SVM became one of the standard tools to solve regression and

classification problems and is discussed in many textbooks, we refer on, e.g., Bishop (2006, Ch. 7),

Vapnik (1995, Ch. 5), Schölkopf and Smola (2002). Furthermore, there exist a couple of software

packages, which may use for solving our tasks, e.g., SVMlight by Joachims (1998) or LIBSVM by

Chang and Lin (2011). Even Matlab provides SVM for classification as well as regression within the

statistics toolbox.

We keep in mind that we are able to solve the classification task for complex decision boundaries

by introducing an appropriate kernel function. Furthermore, we keep in mind that we need to define

the regularisation parameter λsvm and if needed the parameters of the kernel function, e.g., the kernel

width σRBF of a RBF kernel. Either we estimate them from prior knowledge or we determine them by

grid search.

The big advantages of using SVMs are, first, that the determination of the model parameters

correspond to a convex optimisation problem, which guaranties a global optimum (Bishop, 2006,

Section 7.1). Second, it has been shown its discriminative power in a great number of applications.

The drawbacks are two-fold. First, in its fundamental form the SVM is a two-class classifier. Thus,

we have to decide how to handle multi-class problems. Typical solutions are to build one-versus-all or

one-versus-one classifiers, where several two-class classifiers are combined to yield a joint decision for

all classes. Second, the SVM is a discriminative classifier, thus, does not provide class conditional prob-

abilities, which is essential when using the output of a classifier as input for further high-level processing.

To overcome the lack of class conditional probabilities, Platt (2000) propose to fit a logistic sigmoid

function to the output of a trained SVM. To avoid overfitting, the data used for estimating the

according parameters must be independent from those used to train the SVM itself. Thus, additional

training data are needed or the amount of data available for training is reduces, respectively.

By intuition it becomes clear that the resulting probabilities may be unreliable for points at specific

positions. Let us assume two classes concentrated on two dense clusters, perfectly separable. The

decision boundary will be a hyperplane between them. The fitted logistic sigmoid function will tell

that every sample on the correct side, but near the decision boundary have low probability to be part

of the according class, while samples far away from the decision boundary will get a high probability of

being part of the according class. Let us assume a sample far away from the decision boundary and far

away from the cluster of training samples. Platts method will give this sample a high class conditional

probability. But, looking on the situation from a generative point of view, we intuitively give this

sample a low probability of being member of this class. For this, the probabilistic outcomes of SVMs

tend to be too optimistic. Also Tipping (2001) showed that SVMs merely give a poor approximation of

class conditional probabilities. Hence, we will use SVM as long as we do not need a probabilistic output

for further processing. This is the case in the evaluation of shapelets in Section 4.6. For high-level

reasoning, in Chapter 5, we need the probabilistic output of a classifier to get evidence for object

classes we aim at, from bottom-up. This is realised by the IVM.

2.4.4.2 Import Vector Machine

As SVM, the import vector machine (IVM) is a discriminative classifier, therefore, usually ensures

better discriminative power than generative models, but it produces classwise probabilities for test

samples. It is inherently made for multi-class problems. The IVM, as proposed by Zhu and Hastie

(2005), was shown to get a state-of-the-art classification performance, comparable to SVM and other

commonly used methods, while having advantages given above. For that reason, we will use the IVM

for object detection in Chapter 5.

The IVM is derived from the basic logistic regression model which, in case of two classes, is given
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Figure 2.8: Instead of using the original features x SVM, as well as IVM, use the affinities between

each feature xn to all other features xm. These are given by the kernel function k(xn,xm).

by

P (y = 1|x;w) =
1

1 + exp(−wTx)
(2.98)

for feature x belonging to class 1 and parameters w. The a posterior probability for x belonging to

class 2 directly results from (2.98)

P (y = 2|x;w) = 1− P (y = 1|x;w) . (2.99)

We do not model the class conditional probabilities, but directly aim at maximising the class conditional

a posteriori probability. Reversely, the decision boundary is implicitly given by the hyperplane for

which P (y = 1|x;w) = P (y = 2|x;w).

The two-class model can be generalised to the multi-class case by

P (y = c|x;w) =
exp(wT

c x)∑
i exp(w

T
i x)

. (2.100)

Here the parameter vector w is the concatenation of parameter vectors wc of all C classes. If the

features are of dimension D, the parameter vector has D ·C elements, which is linear in the number of

classes. The goal for the learning phase is to determine the parameter vector w from training data.

Thereby, we take into account that there are only (C − 1) ·D independent parameters due the fact

that all posterior probabilities sum up to 1.

We further extend the model to kernel logistic regression (KLR) to allow for non-linear models by

introducing a kernel function k(xn,xm)

P (y = c|x;w) =
exp

(
wT

c k(x)
)∑

i exp
(
wT

i k(x)
) (2.101)

whereby, we collect all kernel functions in one vector

k(x) = [k(x,xm)]m=1...N .

Thus, the original features are replaced by their affinities to all other features. This is visualised in

Figure 2.8.

The parameters of the model are determined by minimising the regularised negative log likelihood

function

Q(w) = − 1

N

∑
c

∑
n

tnc lnP (yn = c|xn;w) + λivmw
Tw (2.102)

whereby, tnc is the c-th element of the index vector tn which is a unit-vector with 1 at the c-th

element, thus, might be interpreted as target probability for class c. To avoid overfitting, λivm acts as

regulariser over the parameters. The parameters of the model are determined iteratively using the

iterated reweighted least squares optimisation, see Roscher et al. (2012).
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Figure 2.9: Simulation of a homogeneous spatial point process on the unit square, with β = 100.

Figure 2.10: Simulation of a homogeneous spatial point process on the unit square, with β = 5.

In order to prevent the computational and memory expensive evaluation of the standard KLR

model, Roscher et al. (2012), similarly to the selection of support vectors, propose a sparse version

of KLR, realised by subset selection. It iteratively selects samples of the training set which most

contribute to the solution, i.e. the minimising the objective function (2.102). In the sequel, the model

is based on a subset of samples from the training set which are called import vectors in analogy to

support vectors. The resulting method is called import vector machine.

Roscher et al. (2012) show that the IVM though conceptually being a discriminative model,

inherently have a reconstructive component. As discriminative model the IVM estimates the decision

boundary between target classes, but the import vectors are selected in order to minimise the

cross-entropy function (2.102). As a consequence, all samples chosen as import vectors contribute

to the class conditional posterior probability, but do not necessarily influence the decision boundary.

Since the import vectors cover the distribution of the data samples, class conditional probabilities

given by IVM are much more reliable than those of SVM and in consequence are much more suited for

further usage in high-level models .

As for SVM, we keep in mind that we are able to solve the classification task for complex decision

boundaries by introducing an appropriate kernel function. Furthermore, we keep in mind that we need

to define the regularisation parameter λivm and if needed the parameters of the kernel function, e.g.,

the kernel width σRBF of a RBF kernel, which we determine by grid search.

2.5 Marked Point Processes for Image Interpretation

In Chapter 5, we will model the geometry of image objects and their interactions to define a probability

density on configurations of objects. Thereby, in our context, an object will be an axis-parallel

rectangle, representing the bounding box of a target object class and parametrised by its location

and some additional parameters, represented by vector x. We call a set of objects X = {x1 . . .xn} a

configuration. Defining a probability density f(X ) on configurations of objects, allows us to identify

the most probable configuration by maximising this density.

For that task, spatial point processes are useful as statistical model for the analysis of observed
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Figure 2.11: Simulation of an inhomogeneous spatial point process on the unit square, with β = e2+5x.

Figure 2.12: Simulation of a marked point process on the unit square. Each point is attached with the

radius of a circle.

patterns of points represented by the location of objects. Further, marked point processes are of special

importance in stochastic geometry for handling random sets of objects. They are a special form of spatial

point process in a way that they represent configurations of objects which are points attached with

some additional parameters, which are called marks. Actually, they are marked spatial point processes.

This section gives a review of spatial point processes and especially marked point process (MPP), their

basic terms and notation.

A spatial point process is a random variable X , whose realisations are random configurations of

points x. One realisation is called X . Figure 2.9 shows four samples of a spatial point process with

mean number of points β = 100 within the unit square. Intuitively, these samples show points in 2D,

which are uniformly spread over the unit square. The number of points for each sample is a random

number, following a Poisson distribution with mean β. Figure 2.10 shows four samples of another

spatial point process with mean number of points β = 5 within the unit square. We see that the empty

set is a sample of such point process, too. Both Figure 2.9 and 2.10, are examples of Poisson processes,

which are the most random point process which we will describe in more detail later. Further, these are

examples of homogeneous point processes, where the expectation of number of points within a certain

region is same everywhere, thus, β is constant. Figure 2.11 shows three samples of an inhomogeneous

point process with mean β = e2+5x, whose function plot is shown on the very left of Figure 2.11. We

see that the density of points growth with the x-direction.

Finally, Figure 2.12 shows samples of a marked point process, where we uniformly spread

points on the unit square, again, which we mark by an additional parameter representing the

radius of a circle. We realize non-overlapping circles by thinning, thus, first uniformly sampling

points and their radius and afterwards removing overlapping circles. We see that this is not a

homogeneous point process anymore, as the density of points depends on the parameters of objects itself.

Let us assume a spatial Poisson process, as shown in Figures 2.9 and 2.10. Further, assume the

distribution of points is given by the measure π. We will see that the density f(X ) of any, probably

inhomogeneous, point process can be defined by its distribution FX(dX ) = f(X ) π(dX ) with respect

to the measure π of a reference Poisson process, as those shown in Figures 2.9 and 2.10. Once, we

made the formal definitions related to π, we will define f(X ) in terms of a Gibbs density ignoring π.
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But, in order to optimise, thus, to find the configuration X which maximises f(X ), we will construct a

Markov chain with FX(dX ) as its target distribution for which we need a clear understanding of π.

As the formal definitions, given in the literature, related to the applications of MPPs, are abstract

and hard to follow for the non-specialist, we want to introduce in Section 2.5.1 some intuitive

explanations. We give the general and more formal definitions at the end of each paragraph. To get a

more detailed introduction into spatial point processes we strongly recommend Baddeley (2007).

Afterwards, Section 2.5.2 discusses the stability of a given point process, which is essential when

constructing a Markov chain with FX as its stationary distribution. Sections 2.5.3 and 2.5.4 introduce

the Markov marked point process which we use to define a Gibbs energy on configurations of objects

and show the relation to Markov Random Fields.

2.5.1 Background Theory on Marked Point Processes

2.5.1.1 Spatial Point Processes

Point processes are defined for arbitrary dimensions. One special form are one dimensional point

processes where we usually model sequences of points during time. A one-dimensional point process

has a natural ordering for which we may describe the process by arrival times or inter-arrival times.

These natural ordering is absent in higher dimensions.

Throughout this thesis, we are dealing with spatial point processes, which are random configuration

of points in d dimensions, usually 2D in our case.

A spatial point process is a random variable X whose realisations are random configurations of

points x. One realisation is called X .

As it is non trivial to describe the moments of a random configuration of points, its statistics are

described in terms of region counts

N(B) = number of points falling in B (2.103)

for a closed set B ⊂ Rd. Given all counting variables N(B), for all subsets B, we are able to reconstruct

the position of all points. The positions x of points are characterised by N({x}) > 0, whereby, we

denote by {x} the region containing x. This leads to the definition of a point process as collection of

random variables N(B). Given the requirements of a measure, as given in Section 2.2.1.1, we define

the point process as random measure, in which the values N(B) are non-negative integers (Baddeley,

2007).

A point process is called locally finite if N(B) < ∞ with probability 1 for all B ⊂ Rd; thus, any

bounded region contains only a finite number of points. Further, we say the process is simple if

N({x}) ≤ 1 ∀ x ∈ Rd, thus, no two points coincide.

To denote a point process, we use both notations, X to denote the random configuration of points

or N for the counting variable according to the same process.

Let us assume a point process in R2. We denote its intensity by β, which is the expected amount

of points per unit area. Further, we denote by λ2(B) the Lebesgue measure in R2, thus, the area of B.
Then, the expectation of N(B) is given by

E (N(B)) = βλ2(B) . (2.104)

2.5.1.2 Poisson Processes

The most random point process is the Poisson process, where the counting variable follows a Poisson

distribution. The probability mass function of the Poisson distribution with mean µ is given by

P (N = k) = e−µµ
k

k!
. (2.105)
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Therefrom, the spatial Poisson process, with uniform intensity β > 0, is a point process in R2

such that the count N(B) has a Poisson distribution with mean µ(B) = βλ2(B). For all disjoint regions
B1 . . .Bm the number of points N(B1) . . . N(Bm) falling into these regions are independent.

Furthermore, given a Poisson process in S ⊂ R2, containing n points, these points are conditionally

independent and (spatially) uniformly distributed in S. On the other hand, given a subset B ⊂ S, the
number of points falling into B is binomial distributed

P (N(B) = k | N(S) = n)) =

(
n

k

)
pk(1− p)n−k with p =

λ2(B)
λ2(S)

. (2.106)

Given the properties above, we can simulate a Poisson process with intensity β in S, by drawing

a random number m ∼ Poisson(βλ2(S)) and then generating m independent, uniformly distributed

points on S. To simulate the Poisson processes in Figures 2.9 and 2.10, we take S = [0, 1]× [0, 1] ⊂ R2,

therefore, λ2(S) = 1 and m ∼ Poisson(β).

We say µ is the measure of the Poisson process on S, such that

µ(B) = E (N(B)), B ⊂ S (2.107)

called intensity measure, provided µ(B) <∞ for all compact B.

2.5.1.3 Marked Point Processes

If we attach additional parameters to each point, e.g., let each point be a circle with centre at x and

additional parameter r, or a rectangle with additional parameters (w, h) for width and height, then we

have a MPP. The MPP Y is a random variable whose realisations are configurations of objects.

A formal definition can be found in (Baddeley, 2007): A MPP on a space S with marks in a space

M is a point process Y on the product space S ×M such that N(K ×M) <∞ almost surely for all

compact K ⊂ S. That is, the corresponding projected process, thus, points without marks, is locally

finite.

Let X be the projected point process in S, thus, points without marks, again. Then, X is a Poisson

process in S with intensity µ, and given X , the marks attached to the points of X are independent

and identically distributed (i.i.d.) with distribution η on M. Further, Y is a Poisson process in the

product space S ×M with intensity measure µ · η .

The intensity measure of a MPP then takes the form

ν(A× B) = µ(A)η(B) = βλd(A)η(B) ∀ A ⊂ S,B ⊂ M . (2.108)

2.5.1.4 Distribution and Density of Finite Point Processes

Before we define the distribution of a point process, we detail the definition of the according probability

spaces, which allow us again to describe the point process in terms of its counting measure instead

of the whole configuration. Throughout this thesis, we are dealing with finite point processes, thus,

N(S) < inf almost surely.

Let (S,B, λd) be a measure space, with S ⊂ Rd, B being the σ-field on S and λd the Lebesgue

measure on Rd. Further, for a finite number n of points, let Ωn be the set of all unordered configurations

X = {x1, . . . ,xn} ∈ Ωn of points xi ∈ S. Then, we define the space of configurations by Ω = ∪nΩn.

Equivalently we denote by N the set of all counting measures on S. The according σ-algebra N then is

given by the mappings N : {x1, . . .xn} →
∑n

i=1 1 {xi ∈ S}, where 1{·} denotes the indicator function.

Thus, N is a mapping Ω → N and formally gives the number of points falling into B ∈ B. The space N
together with N is the outcome space for the point process on S. We also say a point process on S
is a mapping from a probability space (Ω,A,P) to the outcome space (N,N ) (Baddeley, 2007). Its

distribution is given through its counting measure NX by the probability measure

PX(A) = P (NX ∈ A) , A ∈ N . (2.109)
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For example, the distribution of the finite Poisson process X on S , with standard measure λd on S,
which we denote by π, is given by

π(A) = e−λd(S)
∞∑

n=0

1

n!

∫
S
. . .

∫
S
1{In(x1, . . . ,xn) ∈ A}λd(dx1) . . . λd(dxn) ∀A ∈ N (2.110)

where In is a mapping from the space of ordered n-tuples to the set of all counting measures with total

mass n, i.e. In(x1, . . . ,xn) = δx1
+ . . . δxn

, (Baddeley, 2007). According to the Poisson distribution

with intensity λd(S), π distributes the points uniformly in S (Stoica et al., 2005), as expected.

Distributions of more complicated models, e.g., using another intensity, or which take into account

interactions between objects, can be constructed by specifying a Radon-Nikodym derivative with

respect to π. Therefor, we assume a measurable function f which satisfies∫
S
f(X )π(dX ) = 1 , (2.111)

and define the point process distribution

FX(A) =

∫
A

f(X )π(dX ) , (2.112)

for any event A ∈ N . Due to the Radon-Nikodym theorem, the function f is the pdf of the point

process with distribution FX . We see that the distribution of the underlying Poisson process takes the

role of the Lebesgue measure in Rd. We say the distribution of the point process is dominated by the

distribution of the underlying Poisson process π.

As an example we take the uniform Poisson process with intensity β, referred to the standard

measure λd. Its pdf is

fβ(X ) = βN(X )e(1−β)λd(S) , (2.113)

whereby, e(1−β)λd(S) is the normalising constant. It is not trivial to see that this is a valid pdf, as we

need to integrate over N . But, we verify that this is the density of the Poisson process we ask for, by

putting (2.113) and (2.110) into (2.112)∫
A

fβ(X )π(dX ) =

∫
A

βN(X )e(1−β)λd(S)π(dX )

= βN(X )e(1−β)λd(S) ·

e−λd(S)
∞∑

n=0

1

n!

∫
S
. . .

∫
S
1{In(x1, . . . ,xn) ∈ A}λd(dx1) . . . λd(dxn)

= e−βλd(S)
∞∑

n=0

1

n!

∫
S
. . .

∫
S
1{In(x1, . . . ,xn) ∈ A}βλd(dx1) . . . βλd(dxn)

= e−µ(S)
∞∑

n=0

1

n!

∫
S
. . .

∫
S
1{In(x1, . . . ,xn) ∈ A}µ(dx1) . . . µ(dxn) ,

which is equivalent to the measure πµ of the Poisson process with intensity µ = βλd.

2.5.2 Stability of the Point Process

To ensure integrability of the point process density, the so called Papangelou conditional intensity must

satisfy the following condition

λ(x | X ) =
f (X ∪ {x})

f (X )
≤ Λ , 0 < Λ <∞,X ∈ Ω,x ∈ S . (2.114)

We say the process is locally stable if it satisfies (2.114), thus, if its conditional intensity is bounded.

This condition also ensures the convergence of a Markov Chain simulating the point process.
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2.5.3 Markov Point Processes

Markov point processes, introduced by Baddeley and Lieshout (1993), are defined in terms of local

interactions between points of the configuration.

We use the symbol ∼ to denote neighbouring objects. It is a symmetric and reflexive relation; thus,

for

xi ∼ xj ⇔ xj ∼ xi ∀xi,xj ∈ S (2.115)

xi and xj are said to be neighbours. For example, we may define all objects within a ball of radius r

to be neighboured

xi ∼ xj if d(xi,xj) ≤ r (2.116)

for a distance measure d. The neighbourhood Ne(y) of an object y contains all its neighbours

Ne(y) = {x ∈ S : x ∼ y} . (2.117)

Let X be a point process. X is a Markov point process if its conditional intensity of a point x

conditioned on a configuration X only depends on itself and its neighbours Ne(x), which can be seen

as the spatial analogue to the Markov property of a time series.

Additionally, the Hammersley-Clifford theorem tells that a point process density is Markov with

respect to a neighbourhood relation ∼ if and only if there is a measurable function ψ such that

f(X ) =
∏
c⊆X

ψ(c) . (2.118)

Thereby, a configuration c is said to be a clique if all of its members are each others neighbour. Thus,

the Hammersley-Clifford theorem provides a factorisation of a density of a Markov point process in

terms of interactions between points.

This leads to the special type of point processes, we will use throughout this thesis. If X is a finite

point process and its pdf has the form

f(X ) = exp

V0 +∑
x∈X

V1(x) +
∑

{x∼y}⊂X

V2(x,y) + . . .

 (2.119)

where Vk are called the potentials of order k, then X is a finite Gibbs process.

We may interpret − ln f(X ) as potential energy of the whole configuration X . Usually we denote the

energy by U . According to that U1(x) = −V1(x) might be interpreted as the energy at a single point

location and U2(x, y) = −V2(x, y) as energy between two points x and y, restricted to neighbouring

points. V0 is the normalising constant to ensure f to be a proper density.

In our application, we will use U1 and U2, solely. The former usually is called unary potential, unary

energy or data term, while the latter is called pairwise potential, pairwise energy or configuration term.

The normaliser V0 usually is out of interest as we aim at maximising f(X ), thus, compare densities

of different configurations, therefore the normaliser cancels out. We will use this representation in

Chapter 5 to define the density of a MPP by modelling the interaction between neighbouring objects

by pairwise energies U2 and the consistency of objects with the image signal by unary energies U1.

2.5.4 Relation to Markov Random Fields

A Markov random field (MRF) is a graphical model over an undirected graph G(V ,E) which models

the joint distribution of sites x in a configuration x. We use V = {1, . . . , N} to denote the set of nodes

representing random variables xn and E = {{i, j} | i, j ∈ V } to denote undirected edges between

nodes i and j. We use the term cliques, similar to the definition before, to denote completely connected

subgraphs. The potentials are modelled by interactions between neighbouring sites within cliques and

we will see that this is related to the modelling of a finite Gibbs process as seen before.
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Given the Markov property and Hammersley-Cliffords theorem, the joint density over all sites of

the graph factorises

p(x) = p(x1, . . . , xN ) =
1

Z

∏
c∈C

ψc(xc) (2.120)

with potential functions ψc(xc) > 0 referring to maximal cliques c ∈ C. The partition function Z

sums over all states of the complete Markov field to normalise p. Equivalently, we may use the Gibbs

distribution

p(x) =
1

Z
e−U(x) , (2.121)

where the energy is represented as sum over local energies, again

U(x) =
∑
c∈C

Uc(xc) . (2.122)

Please note that in the literature Uc and ψc are called potentials as well as Vi in (2.119). Actually, they

are related by Uc(xc) = − lnψc(xc). To distinguish them we call Uc local energy, and ψc the potential.

Please note that instead of maximising the pdf (2.120) we equivalently may minimise the energy in

(2.121).

We realise that the representation in (2.119) and (2.121), (2.122) are similar. The difference is the

definition of a static graph to model the configuration of sites within the MRF framework. Thus, here

the potentials are defined over cliques within a static graph, whereas the Gibbs process takes into

account all neighbouring objects according to the definition of neighbourhood relations, which may

differ for different realisation of the process. Most importantly, the definition of the MRF graph means

to define the number of objects or nodes, respectively, and the relation between objects beforehand.

Therefrom, marked point process can bee seen as extension of MRFs.

2.6 Optimisation Using Reversible Jump Markov Chain

Monte Carlo Sampling and Simulated Annealing

Markov chain Monte Carlo (MCMC) methods are a large class of sampling algorithms. One of them,

the Metropolis algorithm, is supposed to be one of the ten algorithms that have had the greatest

influence on science and engineering in the 20th century (Beichl and Sullivan, 2000).

In this section, we will introduce MCMC for sampling from unknown and potentially complex

probability density functions. We show how we use MCMC in combination with simulated annealing

to reach the global optimum of such functions.

In Chapter 5, we will apply these techniques to the task of geometric image interpretation of facade

images. For that we formulate an energy function which combines bottom-up evidence given by a

classifier and top-down high-level knowledge about typical object configurations which we learned from

training data. To find the global optimum of this function we use reversible jump Markov chain Monte

Carlo (rjMCMC) coupled with simulated annealing.

Monte Carlo methods solve problems by random sampling. As an example, suppose we wish to

evaluate the partition function

Z =

∫
p̃(x)dx (2.123)

with p̃ being an unnormalised probability density function, thus, p(x) = 1
Z

∫
p̃(x)dx. Further, assume

we are not able to sample directly, but we are able to evaluate p̃(x) for every x, cf. Figure 2.13. If we

find a proposal density q(x), from which we are able to sample easily, we can approximate Z by

Z =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx ≈

N∑
i=1

p̃(xi)

q(xi)
/N (2.124)
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x

q(x)

p(x)

x

q(x)

p(x)

Figure 2.13: Monte Carlo sampling to evaluate the partition function. Instead of directly sampling the

target density p(x) we sample from a proposal density q(x) to approximate the partition function Z of

p(x). Left: A proper choice of proposal q(x). Right: In case the proposal density does not fit the

target density, we need much more samples to obtain a reliable result.

assuming the number of samples N is large. This works fine, as long as the proposal fits the

target density as good as possible. In the simplest case we may take a Uniform distribution

in the range of p̃(x). As soon as the deviation between target and proposal gets larger, we are

still able to approximate Z, but the number of samples, needed to obtain a reliable result, goes to infinity.

Next, suppose we wish to sample from a density function p(x). If we are able to invert the

corresponding cdf P (x), we may draw a sample x0 from p(x) through

x0 = P−1 (u0) , (2.125)

where u0 is sampled uniformly from U(0, 1). The principle is shown in Figure 2.14.

In general, if we do not wish to sample from a standard distribution, we are not able to sample

directly. But, if we are able to evaluate the target density up to the normalising constant Z as before,

thus

p(x) =
1

Z
p̃(x) (2.126)

and if we further find a simple density q(x), from which are able to sample easily, and for which we

find any k such that k q(x) ≥ p̃(x) ∀x, we may sample from p̃(x) by rejection sampling. The principle

is shown in Figure 2.15. The algorithm is given in Algorithm 2.1.

1

0
x

p(x)

P(x) =
∫
p(x) dx

u0

x0 = P
−1(u0 )

Figure 2.14: Direct sampling. If we are able to invert the distribution function P (x), we can sample

random numbers x ∼ p(x) through uniformly sampled numbers u ∼ U(0, 1).
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x

k q(x)

p̃(x)

k q(x0)

u0

x0

Figure 2.15: Rejection sampling. We sample x0 from a proposal density kq(x). If a uniformly sampled

number u0 ∼ U(0, kq(x0)) ≤ p̃(x0), we accept the sample. Thus, the shaded area is the rejection area.

As accepted samples are uniformly distributed under p̃(x), we see that x0 ∼ p(x). The probability

of accepting a sample x0 is

Paccept (x0) =
p(x0)

q(x0)
. (2.127)

Thus, the acceptance rate

Paccept(x) =

∫
p̃(x)

k q(x)
q(x) dx =

1

k

∫
p̃(x) dx (2.128)

depends on the shaded area of Figure 2.15 and should be as small as possible. The algorithm works if

the proposal density does not fit the target density perfectly. But again, if the shaded area is too large

we make a lot of rejected proposals. For this, it is not easy to find such a proposal that perfectly fits

the target density.

There are several other sampling methods, e.g., adaptive rejection sampling, importance sampling

or sampling-importance-resampling. For details we refer to the literature, e.g., Bishop (2006, ch. 11),

Andrieu et al. (2003).

We keep in mind the idea of sampling from an unknown density by using a proposal density which

is easy to sample from. However, for all of these methods, mentioned before, it is often difficult to find

proper proposal densities which are easy to sample and that are good approximations of the target

density.

Markov chains offer a more flexible way to sample from complex functions. Using MCMC algorithms

we generate samples x exploring the state space X by constructing a Markov chain such that the drawn

Algorithm 2.1: Rejection sampling

Input : unnormalised target density p̃(x), proposal density kq(x) ≥ p̃(x)

Output : x0 ∼ p(x)

1 Sample x0 ∼ kq(x)

2 Sample u0 ∼ U(0, kq(x0))
3 if u0 ≤ q̃(u0) then

4 accept

5 else

6 reject

7 end

8 return
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x(t−1) x(t) x(t+1)
k
(
x(t)|x(t−1)

)
k
(
x(t+1)|x(t)

)

Figure 2.16: Markov Chain

samples follow the target density p(x) (Andrieu et al., 2003).

2.6.1 Markov Chains

A Markov chain describes a stochastic process, cf. Fig 2.16. The state space X contains all possible

values the random variable x may take. Whereby each state is given in terms of its probability density

or probability mass function p
(
x(t)
)
. The states of the Markov chain are governed by transition

probabilities k(·|·). For example, the transition probability of changing state x(t−1) to x(t) is given by

k(x(t)|x(t−1)). Given the Markov property, the probability density of state x(t) only depends on the

state before x(t−1) and the joint probability density of the chain simplifies to

p
(
x(t)|x(t−1), . . . x(0)

)
= p

(
x(t)|x(t−1)

)
. (2.129)

As an example, assume a discrete random variable x which can take three possible values. Let its

state space be X = {x1, x2, x3}. The probability of changing from one state to another is given by

distinct values shown in Figure 2.17, which we represent by transition matrix

K =

 0.3 0.1 0.6

0.7 0.0 0.0

0.0 0.9 0.4

 . (2.130)

For example, the probability of changing to x3 being in x2 is given by K (3, 2) = k(x3 | x2) = 0.9.

Further, assume an initial state p
(
x(0)

)
= p(0) = [1/3, 1/3, 1/3]

T
. The transition between two states

of the Markov chain is given by

p(t) = K p(t−1) . (2.131)

Thus, the stochastic process evolves to x(1) by

p(1) = K p(0) =

 0.33

0.23

0.43

 . (2.132)

This is a simple example of a homogeneous Markov chain where K remains invariant for all t, thus,

K = K (x(t)|x(t−1)) ∀t.

x1

x2

x3

0.7

0.3

0.9

0.1

0.6

0.4

Figure 2.17: Example: A simple discrete Markov chain. The graph visualises the state space

X = {x1, x2, x3} of random variable x as nodes and their transition probabilities as directed

edges. Its transition matrix is given in Equation (2.130).

80



x(0) x(1) . . . x(19) x(20) . . . x(t)

 1/3

1/3

1/3

  0.33

0.23

0.43

  0.36

0.25

0.38

  0.36

0.25

0.38

 π(x)p(t) =

Figure 2.18: Example: Evolution of the discrete Markov chain, shown in Figure 2.17, to its stationary

distribution π(x).

After a couple of iterations the process converges to

K t p(0) =

 0.36

0.25

0.38

 = π(x), (2.133)

independent of the initial state, cf. Figure 2.18. The stable distribution π(x) is called stationary

distribution and the goal of any MCMC simulation.

Convergence to the stationary distribution is given as long as K is a stochastic transition matrix,

which has following properties

Irreducibility There must be a positive probability of visiting the whole state space, independent

of the current state. In other words, the transition graph must be connected or any state of the chain

has finite probability.

Aperiodicity The process is aperiodic if all its states are aperiodic. Thereby, a state is said to be

aperiodic if the process may return to that state at irregular time. If the chain is irreducible, one

aperiodic state implies all other states to be aperiodic, thus, the whole chain to be aperiodic.

Recurrence The process visits any state infinitely often almost surely.

Ergodicity The chain is aperiodic and recurrent.

The last property ensures the chain to reach the stationary distribution. We say, if the chain is

stable at its stationary distribution it reaches equilibrium.

Detailed Balance To ensure to reach the desired invariant distribution π(x), the reversibility

condition

p (x) k(x′|x) = p (x′) k(x|x′) (2.134)

must hold. Thus, changing to a new state x′ given the process is at state x must be as probable as

changing to state x given the process is at state x′. Detailed balance is a sufficient, but not necessary

condition. If detailed balance holds, we say the Markov chain is reversible and it follows the existence

of a stationary distribution.

2.6.2 Metropolis-Hastings Algorithm

In the section, we come back to sampling techniques. We introduce MCMC algorithms to generate

samples x by exploring the state space X . Therefor, we construct a Markov chain, such that at
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Algorithm 2.2: Metropolis-Hastings Algorithm

1 chose initial state x(0);

2 while t <maxiter do

// propose new sample

3 x′ ∼ q(x′|x(t));
// acceptance probability

4 A = A(x′|x(t)); // (2.136) or (2.137)

// With probability A accept the move

5 α ∼ U(0, 1);
6 if A > α then

7 x(t+1) = x′ ; // accept the proposed sample

8 else

9 x(t+1) = x(t) ; // reject

10 end

11 end

equilibrium the drawn samples follow the target density p(x). We also say, we construct a chain with p

as stationary or invariant density.

The most famous algorithm from that group is the Metropolis algorithm (Metropolis et al., 1953)

and we will see that other algorithms, we will describe later, are adaptions of this idea.

Our goal is to sample from a density

p(x) =
1

Z
p̃(x) , (2.135)

from which we possibly do not know the normaliser Z.

Again, we sample from a proposal density, but in contrast to rejection sampling, it depends from

the current state q = q(x). Assume the proposal to be symmetric q (x′|x) = q (x|x′), the probability of

accepting a proposed sample x′ ∼ q(· | x) is given by

A(x′|x) = min

(
1,
p̃(x′)

p̃(x)

)
= min

(
1,
p(x′)

p(x)

)
, (2.136)

where we skip the tilde to avoid overloading the notation, keeping in mind that we still may use the

unnormalised density.

In practice, we sample an auxiliary random variable α ∼ U(0, 1) and accept the proposed sample

x′ if A > α and reject, otherwise. In the latter case the chain stays simply at the current state.

Hastings (1970) relaxed the assumption of symmetric proposals and introduced sampling from

arbitrary proposal densities, still dependent on the current state x. To ensure detailed balance, he

introduced an additional factor into the acceptance probability, which becomes

A(x′|x) = min

(
1,
p(x′)q(x|x′)
p(x)q(x′|x)

)
. (2.137)

In case the proposal becomes independent of state x, the second term cancels out, due to symmetry,

and we obtain (2.136).

The Metropolis-Hastings algorithm is given in Algorithm 2.2. The difference between Metropolis

and Hastings algorithm is the computation of the acceptance ratio. Thus, Algorithm 2.2 line 4 uses

(2.136) or (2.137), depending on the kind of proposal distribution.

The transition probability for the Metropolis-Hasting algorithm is given by

QMH(x′|x) = q(x′|x)A(x′|x) , (2.138)
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which we call transition kernel. We see that detailed balance holds because using (2.137)

p(x)q(x′|x)A(x′|x) = min (p(x)q(x′|x), p(x′)q(x|x′)) (2.139)

= min (p(x′)q(x|x′), p(x)q(x′|x)) (2.140)

= p(x′)q(x|x′) min

(
1,

p(x)q(x′|x)
p(x′)q(x|x′)

)
(2.141)

= p(x′)q(x|x′)A(x|x′) (2.142)

p(x)QMH(x′|x) = p(x′)QMH(x|x′) , (2.143)

as required in (2.134). Thus, p(x) indeed is the invariant density defined by the Metropolis-Hastings

algorithm.

2.6.3 Mixtures of Kernels

A widely used technique within MCMC sampling is the mixture of different transition kernels. That

is, if two kernels Q1(· | ·) and Q2(· | ·) have the same invariant density p, then the so called cycle

hybrid kernel Q1Q2 and so called mixture hybrid kernel wQ1 + (1− w)Q2, using a weight w ∈ [0, 1],

are transitions kernels with invariant density p, too (Andrieu et al., 2003). This allows us to create a

mixture of kernels which explore the whole state space by using a global proposal and to explore the

fine details around local maxima by using a local proposal.

In general, we express the proposition kernel as sum of several kernels, called sub-kernels, which

are appropriate for the current state x, thus

Q(· | x) =
∑
m

Qm(· | x) . (2.144)

Each sub-kernel is chosen with probability jm(x) with
∑

m jm(x) = 1. Thus, we draw a new proposal

by

x′ ∼ Qm(· | x)
jm(x)

. (2.145)

This shows up in the acceptance ratio as

A(x′|x) = min

(
1,
p(x′)jm(x′)qm(x|x′)
p(x)jm(x)qm(x′|x)

)
. (2.146)

2.6.4 Reversible Jump Markov Chain Monte Carlo Sampling

The algorithms, seen so far, are dedicated to problems where the distribution, from which we wish

to sample, have densities with respect to a measure in some space of fixed dimension. Given a task

where even the dimensionality of the problem is unknown, e.g., the number of components in a mixture

of Gaussians distribution (Richardson and Green, 1997), the number of parts in a grammar based

image interpretation task (Brenner and Ripperda, 2006; Ripperda, 2008), or the extraction of building

footprints from digital surface models (Bredif et al., 2013), standard Metropolis-Hastings algorithm

fails, as we can not evaluate the acceptance ratio due to different underlying measures. Grenander and

Miller (1994) and Green (1995) introduced reversible jump MCMC or trans-dimensional MCMC to

overcome this restriction.

Thus, our goal is to set up a Markov chain in a state space S = ∪iSi, which is the union of several

sub state spaces Si of potentially different dimensionality. Greens method allow the samples of the

chain to jump between these different subspaces.

Instead of comparing densities within the acceptance ratio, we have to be more formal in the way

that we compare distributions P (dx) = P (x ∈ dx) under an appropriate measure of volume (Andrieu

et al., 2003). The random variables and stochastic processes, we are dealing with, are continuous on Rd

and its product spaces, respectively, and bounded. Thus, the measures of volume we use are Lebesgue

and we assume the distribution to admit a density P (dx) = p(x)dx. Therefrom, the acceptance ratio
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Algorithm 2.3: Metropolis-Hastings-Green Algorithm for rjMCMC

1 chose initial state x(0);

2 while t < maxiter do

3 with probability jm propose a move m;

// propose new sample

4 u ∼ gm x′ = φ(x, u);

// acceptance probability

5 A = A(x′ | x) = min
(
1, p(x

′)
p(x)

jm(x′)
jm(x)

g′
m(u′)
gm(u)

∣∣∣∂φ−1(x′,u′)
∂(x′,u′)

∣∣∣);
// with probability A accept the move

6 α ∼ U(0, 1);
7 if A > α then

8 x(t+1) = x′; ; // accept the proposed sample

9 else

10 x(t+1) = x(t); ; // reject

11 end

12 end

additionally takes into account the ratio of measures, the Radon Nikodym derivative, which leads to a

Jacobian term due to the change of variables, i.e. the change of dimensionality.

Let us be more explicit. We need to map the samples of two different state spaces to a common

dimension to allow comparison of their densities. Assume the chain is currently at subspace S ⊂ Rd

and we propose a jump to another subspace S ′ ⊂ Rd′
. Green (1995) proposed to extend these, to what

we call communicating spaces, to T ′ := S ′ × U′ and T := S × U, which are the product spaces of the

original subspaces and some auxiliary spaces. U′ and U are chosen such that T ′ and T are of same

dimensionality. Further, we define a deterministic, differentiable and invertible function φ which maps

(x, u) ∈ T to (x′, u′) ∈ T ′, thus

(x′, u′) = φ(x, u) = (φx (x, u) , φu (x, u)) (2.147)

To ensure reversibility, the inverse function φ−1 is defined such that

(x, u) = φ−1 (φ (x, u)) . (2.148)

Instead of sampling x′ directly, as in original Metropolis-Hastings algorithm, we sample auxiliary

variables u from a density g and obtain the new proposal by the mapping (x′, u′) = φ (x, u).

The probability of accepting the proposal x′ being at state x, proposed by Green (1995), then is

given by

A(x′ | x) = min

(
1,
p(x′)

p(x)

jm(x′)

jm(x)

g′m(u′)

gm(u)

∣∣∣∣∂φ−1(x′, u′)

∂(x′, u′)

∣∣∣∣) , (2.149)

where we included a mixture of kernels, as introduced in Section 2.6.3. Thus, jm(x) is the probability

of choosing the m-th kernel when being at x and jm(x′) the probability of picking the inverse move.

The last term is the Jacobian due to the change of variables. More details about the derivation of

Green’s ratio are given in Appendix C.3.

To be consistent with the literature we denote the fraction in (2.149) as Green’s ratio R(· | ·), thus,
A(· | ·) = min (1, R(· | ·)).

2.6.5 Green’s Birth and Death Sampler

In our application we wish to sample from a point process’ distribution F (·). Given a point process X
with points xi in S, density f(·) and intensity µ(·) of a reference Poisson process, its distribution is

given by F (dX ) = f (X )πµ (dX ), cf. Equation (2.112).
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Algorithm 2.4: Basic Birth and Death sampler

Input: point process X with density f(X ),

intensity of the reference Poisson process µ(·),
state of the Markov chain at time t X(t) = X ,

probability of choosing birth pb = 0.5, probability of choosing death jd = 0.5

Output: Xt+1

// with probability pb propose birth

1 j ∼ U(0, 1)
2 if j < jb then

// Birth: propose to add a new point x ∈ S
3 x ∼ µ(·)

µ(S)

4 Y = X ∪ x

5 R (Y | X ) =
f (Y )

f (X )

µ (S)
N(Y )

// acceptance ratio birth

6 else

// Death: propose to delete an object

7 if X(t) = ∅ then

8 R (Y | X ) = 0

9 else

10 choose x uniformly in X
11 Y = X \ x

12 R (Y | X ) =
f (Y )

f (X )

N (X )

µ (S)
// acceptance ratio death

13 end

14 end

15 A (Y | X ) = min(1, R (Y | X )); // acceptance probability

// with probability A accept the move

16 α ∼ U(0, 1)
17 if A > α then

18 X(t+1) = Y ; // accept the proposed sample

19 else

20 X(t+1) = X(t); // reject

21 end
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Algorithm 2.5: Generic point process sampler

Input: state of the Markov chain at time t X(t) = X , probabilities jm for choosing move type m

Output: Xt+1

1 with probability jm (X ) choose proposition kernel Qm

// propose new object x ∈ S ×M
2 x ∼ Qm (· | X )

3 Y = X ∪ x

4 compute Green’s ratio Rm (X | Y )

5 A (Y | X ) = min(1, R (Y | X )); // acceptance probability

// with probability A accept the move

6 α ∼ U(0, 1)
7 if A (Y | X ) > α then

8 X(t+1) = Y ; // accept the proposed sample

9 else

10 X(t+1) = X(t); // reject

11 end

For that task, Geyer and Møller (1994) proposed the so called Birth an Death algorithm, which

turns out to be a special type of Green (1995) rjMCMC sampler. They built a Markov Chain using

Algorithm 2.4. As proposition kernel they uses what is called birth and death. The former proposes to

add a new point x ∈ S, the latter proposes to delete a randomly chosen point x ∈ X . We will give

more details according to these moves in next section.

Provided f(·) fulfils the stability condition (2.114) page 75, Algorithm 2.4 was proven to build a

Markov chain that is F (·) invariant, thus, simulates the point process X (Geyer and Møller, 1994;

Ortner et al., 2003). Furthermore, it was proven that it simulates a F (·) irreducible Markov chain that

is recurrent and ergodic, which guarantees its convergence to its target distribution F (·).
This version of the sampler contains an interesting detail. If the proposed configuration does

not fit the space of allowed configurations it allows us to stay in the current state. Thus, if a death

is proposed also the configuration is empty, the process stays at the current state. Alternatively

we might adapt the according kernel probabilities, e.g., change the probability of proposing a birth

jb(X = ∅) = 1. But, to allow to stay in the current state is of great advantage to take into account any

other exception that might occur, as we will see later.

2.6.6 A Marked Point Process Sampler

Algorithm 2.4 uses the birth and death kernel, both chosen with same probability. To improve the

mixing properties of the Markov chain, Ortner et al. (2003) extended this algorithm and introduced

additional proposition kernels. Beside the basic birth and death kernels, they proposed to use birth

and death in a neighbourhood and so called non jumping transformations as translation, rotation or

dilation of existing objects of the configuration.

In our work, we use two types of proposition kernels:

• dimensional jumping transformation: birth and death

• non jumping transformations: translation, dilation, switching

The latter randomly selects an object from the current configuration and randomly perturbs its marks.

We also call these proposition kernels moves.

The generic point process sampler algorithm is given in Algorithm 2.5 which is equivalent to

Hasting’s and Green’s Algorithm 2.3. Having M different moves we take the proposition kernel of the
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Markov chain as a mixture of m = 1 . . .M proposition distributions,

Q(· | X ) =

M∑
m=1

jm(X )Qm(· | X ) , (2.150)

each having a probability jm(X ) to choose move type m being at X . Depending on the chosen kernel

we evaluate Green’s ratio in line 4, formally given by

Rm (X | Y ) =
F (dY ) Qm (dX | Y )

F (dX ) Qm (dY | X )
(2.151)

To clarify the notion, we will denote the move types not by numbers, but by letters. We will use

m ∈ {b, d, nj}, standing for birth, death, and non jumping moves, in the following.

2.6.6.1 Birth and Death

In case of birth, with probability jb, we create a new object x ∼ Qb =
µ(·)
µ(S) and propose Y = X ∪ x.

Green’s ratio for birth takes the form

Rb (X | Y ) =
jd (Y )

jb (X )

f (Y )

f (X )

µ(S)
N (Y )

. (2.152)

In case of death, with probability jd, we delete an object x ∈ X and propose Y = X \ x. Green’s

ratio for death takes the form

Rd (X | Y ) =
jb (Y )

jd (X )

f (Y )

f (X )

N (X )

µ(S)
(2.153)

2.6.6.2 Non Jumping Transformations

With this type of moves we randomly perturb the marks of an existing object. To do so we uniformly

select an object x ∈ X and throw random numbers u ∼ Z(X ,u) according a suitable distribution. Given

a function h : y = h(x, u) which transforms the object, we propose Y = X \x∪y. We will detail these

moves in Section 5.3.

We construct the transformation h such that the inverse transformation x = h−1(y,u) exist and

is as possible as h is, which ensures reversibility. Thus, if the translation and its inverse are equally

probable and the according perturbation variables where thrown from the same distribution, Green’s

ratio simplifies to

Rnj (X | Y ) =
f (Y )

f (X )
, (2.154)

which was shown by Ortner et al. (2003). Details about the derivation of Green’s ratios for Marked

point process sampling are given in Appendix C.3.1.

2.6.7 Simulated Annealing

The algorithm introduced in preceding sections ensure sampling from a probability density p(x) or

f(x), respectively. Having an optimisation task, we are often interested in the global maximum of p(x)

and not the full density, i.e.

x̂ = argmax
x(t)

p
(
x(t)
)

(2.155)

A naive procedure would be to draw a large number of samples from p(x) and to take the value which

maximises p, which is obviously inefficient, especially when p(x) is complex or of high dimensionality.

The idea of simulated annealing (Kirkpatrick et al., 1983; Geman and Geman, 1984) is to narrow

the target density during time and to simulate a non-homogeneous Markov chain

p(t)(x) ∝ p(1/Tt)(x) (2.156)
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Figure 2.19: Sampling with Metropolis-Hastings and simulated annealing where we sample from p1/T .

Top left: samples from the original density p. Bottom right: samples from p1/T with T = 0.005

which are concentrated at the position where p has its maximum.

where Tt is what we call the temperature parameter and cools down the process such that

lim
t→∞

Tt = 0 . (2.157)

We assume the chain to be aperiodic and recurrent. If the process cools down slowly, in theory

logarithmic, it can be shown that p∞(x) is a probability density which concentrates all of its mass at

the global maximum of p(x) (Andrieu et al., 2003).

The concept of simulated annealing goes back to an analogy to statistical mechanics systems.

We interpret samples of a stochastic process as atoms of a physical system. There, the reduction of

temperature isolates low energy states, the annealing. In other words, while the atoms are highly

movable at high temperature they become less movable at low temperature, and finally, concentrate at

the state of lowest energy. In our case we want to create the Markov chain, such that the samples

explore the whole state space in the beginning and to concentrate around the global optimum during

time, more and more. In Section 2.5.1.4 and 2.5.4, we have already seen the energy point of view

in terms of Gibbs processes and Gibbs distribution. We note the equivalence of finding the global

maximum of a pdf to finding the global minimum of an energy.

An one-dimensional example is given in Figure 2.19. For different temperatures we draw 1000

samples from the pdf, shown as red line in Figure 2.19 top left, using the algorithm given in Algorithm 2.6.

For each plot we vary the parameter T , as given in the heading of each plot, to sample from p1/T . In

the beginning the samples explore the whole range of p, as expected. But, the lower T the more the

samples concentrate at the point where the original pdf has its global optimum. Please note that the

densities are not normalised, they indeed visualise p1/T . The histograms of samples are normalised

such that they fit the plot of p1/T , for visualisation purposes.
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Figure 2.20: Different cooling schedules for simulated annealing. T0 = c = 1

In theory convergence is ensured for cooling schedules such that

T (t) ≥ c

ln(t+ T0)
(2.158)

where t is the time index of the Markov chain, T0 the temperature we start with and c a constant. The

latter two parameters are problem dependent. In practice this cooling schedule is too slow to reach a

temperature near 0 in feasible time. Therefore, different schedules where proposed which are suited to

reach low temperatures in finite time, but take into account the risk of getting stuck into local optima.

The most common cooling scheme, which we found in our context, is a geometric cooling

T (t) = T0 · αt (2.159)

for α < 1 e.g., α = 0.9999 . . . 0.999999. Figure 2.20 shows different cooling schedules by comparison.

In orange we see the logarithmic scheme which guaranties convergence to the global optimum. The

temperature goes down fast, but converges towards zero slow. In contrast the geometric schedules

decrease in the beginning slower, while converging to zero fast, depending on α. In practice it is

demanding to find proper parameters T0 and α to reach zero temperature in finite time without getting

stuck in local minima.

The algorithm for optimisation using MCMC in combination with simulated annealing is given in

Algorithm 2.6. The only difference to common Metropolis-Hastings algorithm is the evaluation of the

acceptance ratio at line 5, which depends on the temperature parameter. Here we wrote the most

general form of the Metropolis-Hastings acceptance ratio, which we easily may adapt to mixtures of

kernels and Green’s ratio.
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Algorithm 2.6: Optimisation with Metropolis-Hastings algorithm and simulated annealing

1 chose initial state x(0) and initial temperature T0;

2 while t <maxiter do

// propose new sample

3 x′ ∼ q(x′|x(t));
4 set Tt according the cooling schedule;

// acceptance probability

5 A = A(x′|x) = min

(
1,
p1/Tt(x′)q(x|x′)
p1/Tt(x)q(x′|x)

)
;

// with probability A accept the move

6 α ∼ U(0, 1);
7 if A > α then

8 x(t+1) = x′ ; // accept the proposed sample

9 else

10 x(t+1) = x(t) ; // reject

11 end

12 end
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CHAPTER 3

Detecting Line, Circle and Ellipse Segments in Images

Given pixel-chains from edge detection, this chapter proposes a method to segment them

into straight line, circular arc and ellipse segments. Found line segments should serve

as low-level features for further image interpretation, as we will show in the subsequent

chapters. To do so, we propose an adaption of Douglas-Peucker’s polyline simplification

algorithm using circle segments instead of straight line segments. It is robust and decreases

the complexity of given polylines better than the original algorithm. We call this line

simplification algorithm circlePeucker. In a second step, we further simplify the poly-curve

by merging neighbouring segments to straight line, circular arc and ellipse segments. Merging

is based on the evaluation of the minimal description length. The whole procedure is called

detecting line, circle, and ellipse segments (DLCE).
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3.1 Introduction of the DLCE algorithm

Polyline simplification is interesting from several points of view. First, in terms of compact description

of spatial data, e.g., in the context of image description. Second, in terms of generalisation, e.g., in the

context of cartography or resolution dependent visualisation of polylines.

On the other, hand finding circular and elliptical structures in images is relevant in terms of

compact image description and further image interpretation. Most image interpretation systems which

use bottom-up image features, thus, not pure pixel information only, are based on key point or edge

detection. Directly identifying circular and elliptical structure gives rise to much more informative

image features from bottom-up (Chia et al., 2012; Jurie and Schmid, 2004).

We aim at the extraction of image features from bottom-up which are more informative than using

intensity values solely of single pixels or even line segments. For this, we propose a two-step polyline

simplification algorithm that approximates a given set of ordered points in 2D by a sequence of straight

line, circular arc, and ellipse segments. Although, the algorithm is applicable to any kind of ordered 2D

points, we assume pixel chains within images, see Figure 3.1. The first intuition behind our approach

is that arbitrary smooth curves can be locally characterised by an osculating circle. We will use this,

in the first step of the algorithm, where we simplify the given set of points by a sequence of circle

segments.

But, due to perspective distortions, in general there will be almost no circles in images. All circles

in object space are projected to ellipses in image space, ellipses in object space are projected to ellipses.

Only in rare cases, the images of 3D circles or 3D ellipses are mapped to hyperbola, namely in case

they partially are behind the camera. The situation is different if the circles are sitting in a set of

parallel planes and the viewing direction, intentionally, has been taken orthogonal to these planes, or

the image has been rectified to mimic this situation. Then, almost no ellipses will occur in the images,

and the proposed method can directly be transferred by replacing ellipses by circles. However, we will

still observe circular arc segments in images. Every time, a projected arc segment is very short or very

flat it will be locally approximate by an circular arc segment.

Therefore, eventually, the pixel-chain is represented by a sequence of straight line, circular arc and

ellipse segments. This way, we are more flexible representing curved lines.

The proposed method consists of two steps, see Figure 3.1. Given the pixel-chains within the

image, we first iteratively segment the region boundary into circular segments. This yields an

over-segmentation due to the non existence of real circle segments. Second, we merge neighbouring

segments to straight line, circular arc, and ellipse segments, based on model selection. This step

optimally estimates lines, circular arcs and ellipses in a least squares sense.

One might argue, why not directly segment a pixel-chain into ellipses, but first look for circle

segments, and then group them to ellipses. There are two main reasons for the two-step procedure:

1. The slope, curvature or curvature change functions of the ellipse are no simple functions, which

allow to identify elliptical segments, as this is the case for straight lines (constant slope) and

Figure 3.1: Overview of the DLCE procedure to detect segments of straight lines, circular and

elliptical arcs. From left to right: input image, pixel-chains, segmentation into circular arcs using

circlePeucker, final result after merging. Colours: Orange - ellipse segment. Green - circle segment.

Blue - straight line segment
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Algorithm 3.1: function circlePeucker. The algorithms recursively splits the chain X until the

largest distance of a point to the corresponding arc is below a pre-set threshold t.

In: Ordered set of points X = {x1 . . . xN}, indices ia and ib of start- and endpoint of the current

segment, tolerance t

Out: List of nodes O
// the current segment

1 Xs = {xia . . . xib};
2 if |Xs| = 2 then O = {ia, ib},return;
// Fit an arc to the current segment

3 S = fitArc(Xs);

// Evaluate distances of all points to the arc

4 (dmax, is) = distXS(Xs, S);
// Compare greatest distance to given tolerance

5 if dmax > t then

// Recursive call of PeuckerCircle algorithm

6 O1 = circlePeucker(X , ia, is, t);
7 O2 = circlePeucker(X , is, ib, t);
8 O = O1 ∪ O2;

9 else

// This is an arc

10 O = {ia, ib};
11 end

12 return

circles (constant curvature),

2. there is no simple local measure telling whether a local segment belongs to an ellipse or not:

Analysing the curvature, distinguishes circles and straight lines. We would need the second

derivatives of the curvature to capture the properties of a local ellipse element, as an ellipse has

two more degrees of freedom, than a circle. But, determining fourth derivatives is unstable.

The reminder of this chapter is as follows. Next, we present our adaption of the Douglas-Peucker

Algorithm by using circles instead of lines, which we call circlePeucker. Section 3.3 describes the

merging of neighbouring objects, whenever they are supposed to join the same geometric object. We

review related approaches in Section 3.4, evaluate the proposed procedure in Section 3.5, and summarize

the chapter in Section 3.6.

3.2 Segmenting Point Sequences into Circle Segments

Our concept of region boundary segmentation is based on the well known Douglas-Peucker algorithm

(Douglas and Peucker, 1973). This algorithm is designed to simplify polylines. Therefor, it recursively

splits the sequence of polyline edges into larger edges until the distance of an eliminated point to the

corresponding edge is below a threshold t.

We adapt the original algorithm, such that it uses circle segments instead of straight lines. Given an

ordered sequence of points X = {xn}, n = 1 . . . N , we recursively partition the sequence into segments

which approximate the according points by a circular arc up to a pre-specified tolerance t. If applicable,

a segment is split at that point xn, where the distance to the circular arc is maximum. In order to

enforce continuity, we fix the start and end point of the segments and determine the best fitting arc, as

shown in Section 2.1.4.2.

The algorithm for approximating a polyline by a sequence of circles, called circlePeucker, is given

in Algorithm 3.1. It uses
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1. a function fitArc(X ) for fitting a circular arc segment S to a given set of points X , constraining

it to the start and end point, as described in Section 2.1.4.2, and

2. a function distXS(X , S) for determining the index is and the distance dmax of that point xis , out
of X , with the largest distance to the arc segment S , which is given in (2.56) in Section 2.1.4.2.

We call the function by O =circlePeucker(X , 1, N, t). As result we obtain a list O of indices which

represent the end points of sought segments. This yields the required partitioning of the original point

sequence.

3.3 Merging Line Primitives Based on Model Selection

Given the pre-segmentation O of Section 3.2, which is assumed to be over-segmented, we aim at a

simplification by merging neighbouring segments which share the same model.

Deciding whether two neighbouring segments belong to the same model may be based on a statistical

hypothesis test. As hypothesis tests aim at rejecting the null hypothesis, they can be used as sieve for

keeping false hypothesis. Merging segments merely based on hypothesis testing, however, fails due

to the risk of accepting large changes in geometry, in case the parameters of the proposed model are

uncertain.

On the other hand, deciding which model fits the data best, i.e. whether a curved line is best

approximated by a straight line, circle or an ellipse, is a typical model selection problem, which we

introduced in Section 2.3.

Our pre-segmentation is based on circle segments, but in general there are almost no circles in

natural images, as they suffer from perspective distortions. Thus, our final segmentation is meant to

consist of straight line, circle and ellipse segments. Despite the argumentation before, we explicitly

include circles to consider very short or flat ellipse segments.

From the pre-segmentation we only take the information which points belong to the same segment

and ignore the parameters of the fitted circle segments. The final representation is achieved by fitting

straight line, circle and ellipse segments through neighboured segments and single segments, respectively,

using all points belonging to them. This is different from Rosin and West (1995), who only use the

endpoints from the pre-segmentation.

In the following, we are interested in the optimal estimates and fit lines l, using the approach

given in Section B.1.4, circles p using the approach given in Section 2.1.4.1, and ellipses C using the

approach given in Section 2.1.3.3. For each model, we estimate the weighted sum of squared residuals

Ω =
∑

n v
2
n/σ

2 as measure of precision.

Let us assume a segmentation O = {om} of points X = {Xm} into M segments. We call the current

parameter vector of the m-th segment θm. Thus, θm acts as placeholder for lm, pm or Cm and includes

the number Um of parameters needed to define the current model, which is our measure of complexity.

Initially, we select the best model for each segment by minimising its description length in terms of

the (Schwarz’s) Bayesian Information Criterion (BIC), cf. Section 2.3.

θ̂m = argmin
θm

BIC (Xm,θm) (3.1)

= argmin
θm

Ω(Xm,θm) + Um lnNm . (3.2)

We aim at merging neighbouring segments by evaluating the gain of description length, in terms of

BIC, when fitting a new model to the joined set of points.

Assume, we already found models θ̂m and θ̂m+1 using the points Xm of segment m and Xm+1 of

segment m+ 1, respectively. We propose the points of both segments to belong to a joined segment,

thus, Xm,m+1 = Xm ∪ Xm+1. Again, we select the best model, for this potentially merged segment, by
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Algorithm 3.2: function mergeSegments. The algorithms merges neighbouring segments in a

greedy procedure until no more merging proposals are left.

In: Initial segmentation X = {Xm}
Out: Final segmentation X̃

1 X̃ = X ;

2 foreach Xm do

// estimate best model, cf. Equation (3.2)

3 θ̂m = argmin
θm

BIC (Xm, θm);

4 end

5 foreach Xm,m+1 = Xm ∪ Xm+1 do

// estimate best joint model, cf. Equation (3.3)

6 θ̂m,m+1 = argmin
θm,m+1

BIC (Xm,m+1,θm,m+1);

7 end

// Start merging

8 merge = true;

9 while merge do

10 foreach Xm,m+1 = Xm ∪ Xm+1 do

// evaluate gain of description length, cf. Equation (3.4)

11 ∆BICm,m+1 = BIC
(

Xm,m+1, θ̂m,m+1

)
−
(
BIC

(
Xm, θ̂m

)
+BIC

(
Xm+1, θ̂m+1

))
;

12 end

// get best proposal for merging

13 m̂ = argmax
m

∆BICm,m+1;

14 if ∆BICm̂,m̂+1 > 0 then

// merge

15 X̃ = {X1, . . . ,Xm̂ ∪ Xm̂+1, . . .XM};
16 θ̂m̂ = θ̂m̂,m̂+1;

17 else

// nothing left to merge

18 merge = false;

19 end

20 end

minimising the BIC

θ̂m,m+1 = argmin
θm,m+1

BIC (Xm,m+1,θm,m+1) . (3.3)

The gain of description length is given by the difference of the joint description length, using the

models θ̂m and θ̂m+1 separately, and the description length when using the merged segments.

∆BICm,m+1 = BIC
(

Xm,m+1, θ̂m,m+1

)
−
(
BIC

(
Xm, θ̂m

)
+BIC

(
Xm+1, θ̂m+1

))
= Ωm,m+1 − (Ωm +Ωm+1) (3.4)

+Um,m+1 ln(Nm +Nm+1)− (Um lnNm + Um+1 lnNm+1)

If ∆BICm,m+1 > 0 the description length of the merged segment is shorter than the description length

of two separate segments; thus, they should be merged to reduce the overall complexity.

To evaluate the whole set of segments, we proceed in a greedy manner, cf. Algorithm 3.2. After

initialising all segments by their best models, in terms of description length, we propose all neighbouring

segments to be merged and select the according best model. From all neighboured pairs which have a
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positive gain of description length, we select the one with the highest gain. We update the segmentation,

such that one break point is removed. We iterate this process until there are no more merging proposals

with positive gain of description length.

3.4 Related Work

To the best of our knowledge, there is no work about an adaption of Douglas-Peucker’s algorithm to

the use of circles, instead of lines, as basic elements. However, proposals exist to simplify polygons by

sets of circular arcs for the efficient storage of polylines.

Günther and Wong (1990) propose, what they call Arc Tree, and which represents arbitrary curved

shapes, in a hierarchical data structure, with small curved segments at the leaves of a balanced binary

tree. Moore et al. (2003) propose a method for polygon simplification using circles. They aim at closed

polygons given by a set of 2D points. Based on medial axis from Voronoi polygons, they propose a

population of circles which they afterwards filter to get a set of circles which best approximate the

given polygon. The final representation of the polygon consists of circles represented by centre and

radius and tangents which link neighbouring circles. No work on using ellipses for improving storage

requirements are known to us.

Finding ellipses in images has attracted many researchers. Some of them use Hough-transform

methods which tend to be slow. Most techniques start from pixel-chains. Early works focussed on

ellipse fitting, e.g., Pavlidis (1983); Porrill (1990), later focussed on unbiased estimates, e.g., Wu (2008);

Libuda et al. (2006). We are interested in the more general problem of describing the pixel-chains by

sequences of straight line, circle, and ellipse segments, a problem already addressed in Albano (1974),

however, neither enforcing ellipses, nor looking for a best estimate for ellipses.

West and Rosin (1992) and Rosin and West (1995) perform a segmentation of point sequences into

lines and ellipses in a multistage process. They first segment a 2D-curve into straight lines. Afterwards

sequences of line segments are segmented into arcs restricted to their endpoints. We might interpret

this step as merging sequences of lines to elliptical arcs. Model selection is done implicitly by evaluating

a significance measure to each proposed segment, which is based on its geometry, purely. However,

their criteria are non-statistical, thus, cannot easily be adapted to varying noise situations.

Ji and Haralick (1999) criticise this and propose a statistically valid criterium. Starting from Rosin’s

output of arc segmentation, they merge pairs of arcs belonging to the same ellipse. Moreover, they

also group non-adjacent arcs and exploit the sign of the arcs for grouping. Proposals for merging are

validated via hypothesis testing. They showed only few results on comparably easy images.

Nguyen and Kerautret (2011) also address the segmentation of pixel-chains into lines and ellipses. It

is based on a discrete representation of tangents, circles, and an algebraic fitting through neighbouring

arcs, using some key points (boundary and midpoint) solely, instead of the complete pixel-chain.

Patraucean et al. (2012) propose a parameterless line segment and elliptical arc detector, called

elliptical line segment detector (ELSD). They use an ellipse fitting algorithm which uses both the

algebraic distance of the conic equation and deviation from the gradient direction. Their model

selection aims at avoiding false negatives, by controlling the number of false positives. Furthermore,

their method adapts to noise. Their validation and model selection criteria, however, are based on fixed

tolerance bands. Also, they do not enforce any continuity between neighbouring segments. Nevertheless,

their algorithm yields state-of-the-art results and outperforms other existing approaches. They provide

software as well as an online demo to process own images. We use this to compare our results to theirs.

An entirely different direction is the detection of circular and elliptical objects from stereo or even

multi-view images. Recently, Soheilian and Brédif (2014) propose a method to detect 3D circular

targets from multi-view images. In each image, they estimate full ellipses from given image points

which are already supposed to belong to the ellipse. These ellipses are taken as observations both to

reconstruct the 3D circle in object space and to estimate the poses of all images. The estimation is

done by a Gauss-Helmert model. All observations and unknowns are adjusted by error propagation;

thus, they use all available informations and yield a statistical optimal fit.
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The aim of this work is different compared to ours. While they use full ellipses in images as

observation to estimate circles in 3D, we aim at detecting ellipse segments, among others, within

images. They assume full ellipses as observation and do not show experiments on ellipse segments.

Our proposed line segmentation could replace their first step and serve as input for estimating the

orientation of images using lines, circular arcs and ellipses.

3.5 Experiments

This section presents our experiments to evaluate the proposed algorithm. The goal is to show that

DLCE successfully segments given pixel-chains into sequences of our line, circular, and elliptical arcs,

while preserving its geometry and reduces the number of elements, compared to standard algorithms.

We will show that the pre-segmentation using circlePeucker yields significant benefit compared to the

classical Peucker algorithm and compare the whole procedure with an existing approach. Further, we

give details about parameters, show the resulting segments and discuss the success of the merging step

by means of some statistics. We compete with ELSD (Patraucean et al., 2012), as this is state-of-the-art

and there exists code, as well as an online demo, to process own images using fixed parameters.

3.5.1 Extracting Pixel-Chains from Images

The presented algorithm is suited for every kind of point sequences. We only require the sequence of

the points is given. Throughout this work, we are dealing with images, whereas, we require pixel-chains

as input data. A pixel-chain is an ordered list of pixel coordinates which represent an edge or line

within the image, not necessarily a closed boundary.

For the extraction of edges from images a huge amount of algorithm exist. One of the most

widespread is the Canny edge detector (Canny, 1986), which is based on the spatially averaged second

moment matrix. The eigenspectrum of this matrix provides information about the local image content,

which is used to extract pixels which have a strong gradient in one direction.

More recently, Martin et al. (2004) presented the Berkley edge detector, where edge detection is

formulated as a supervised learning problem. They combine local features based on brightness, color,

and texture, associated with natural boundaries and train a classifier to identify boundaries. The

training of the classifier is based on a large data set of manually labelled natural images. The output

of their classifier are the posterior probabilities of each image location and orientation for being part of

a boundary. The work of Martin et al. (2004) gives an excellent overview of existing edge extraction

methods.

Almost all edge extraction procedures have in common the output of a labelled image, either

in form of a binary image which states whether a pixel belongs to an edge or not, or in form of an

intensity image, where intensities represent any kind of confidence of being boundary or not. Thus, we

need a post-processing step to extract pixel-chains out of them anyway.

To generate our input data, we use the feature extraction procedure, as described in Förstner (1994)

and Fuchs and Förstner (1995) called fop. We decided to use this approach for several reasons

• In contrast to many other procedures, it delivers region boundaries as well as thin lines.

• We get edges in the form of chains of points, immediately.

• We get them with sub-pixel coordinates.

fop uses the eigenspectrum of the spatially averaged second moment matrix. It includes an automatic

noise estimation and an edge preserving filter as described in Förstner (2000).

There are two parameters which we adapt to our purposes. First, we have the natural scale σ1
which is the differentiation scale and influences the noise suppression. Before differentiation, the image

is smoothed with a Gaussian kernel with standard deviation σ1 and width 4σ2
1 . Second, there is the
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artificial scale σ2 which is the integration scale, therefore, defines the width of the integration, when

averaging the squared gradients, and tells the maximum width of lines to be detected.

The image noise σn is used for non-minimum suppression, when identifying edge locations, and

usually is estimated automatically. For evaluating the effect of noise on DLCE, we use synthetic images,

where we predefine the noise for generating the images as well for extraction the edges. Thus, in case

of synthetic data, we switch off the automatic noise estimation, to be independent of its result.

3.5.2 Parameter Setting

For using DLCE, there are only a few parameters to choose, and these have a clear meaning. Depending

on the application they are intuitively adapted for the according objective.

First, we need to set the parameters for the edge extraction using fop. For finding fine details, we

use σ1 = 0.7 pixel for the differentiation and σ2 = 1.0 pixel for the integration scale, throughout all

experiments. In case of synthetic images we set the noise level manually. For all other images, we use

the automatic noise estimation procedure implemented in fop.

Using the standard deviation of edge pixels σe, we set the tolerance t for the pre-segmentation

t = 3 · σe, for both circlePeucker and for Douglas-Peucker. For the merging step, thus, for fitting

lines, circles, and ellipses, we assume the uncertainty of each pixel to be isotropic Σll = σ2
eI2.

From experiments we found the standard deviation of edge pixels σe = 0.1 pixel. To insist on pure

image statistics, we should use this value. Instead, we use this value as parameter for generalisation.

The higher σe, the more we allow the individual edge points to deviate from fitted geometric entities,

the more we generalise. If not stated otherwise, we chose σe = 0.2 pixel for all experiments.

As our purpose, in this chapter, is the segmentation of given pixel-chains, and not the interpretation

of the image, the identification of spurious scatter is out of scope. Our algorithm works stable even for

small chains. Nevertheless, to simplify the visualisation, we do not show short pixel-chains, say shorter

than 10 or 20 pixels, depending on the structure of the image.

For all results on DLCE tables D.1, D.2 and D.3 show the individual parameter settings.

3.5.3 Synthetic Data

First, we investigate the noise sensitivity of the procedure using synthetic images, see Figure 3.2. More

results on synthetic images are shown in Appendix D.1 in Figures D.1 and D.2. We synthesise 8 bit

grayvalues in the range [0, 255]. For the sample image used in Figure 3.2, the homogeneous regions are

of intensities 40, 100, 120 and 190 from dark ellipse to light background.

We start with synthetic generated noise free images, Figure 3.2 top row, and stepwise increase the

noise level to 10, 20, 30, 40 [gr]. To be independent of the automatic noise estimation of fop, we set

the noise level for extracting the pixel-chains manually. Edge extraction using fop fails when assuming

no noise; therefore, we assume a fictive image noise of σn(0) = 3 [gr] for the first image.

Further, when changing the noise of an image, from σn(0) to σn(k), we must adapt the standard

deviation of edge pixels σe. The relation between image noise and standard deviation of edge pixels is

not trivial due to the complex procedure of edge extraction. Thus, instead of variance propagation, we

use the estimated variance factors, of estimated line segments, to derive this relation empirically. This

way, we found a linear relation,

σe(σn(k)) = σn(0) +
1

100
σn(k) . (3.5)

Please note that we assume the image noise to be given as 8 bit grayvalues, too. Otherwise, the factor

would change. Other parameters of edge detection are set as defined in Section 3.5.2.

Figure 3.2 shows the final results of DLCE for each noise level, compared to those of ELSD. Please

note that the proposed algorithm works stable up to a certain degree of noise. As long as the contrast
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Image DLCE ELSD

Figure 3.2: Results of DLCE on synthetic data under different noise conditions and comparison to

ELSD. Intensities are 40, 100, 120 and 190 from dark ellipse to light background. We increase the

noise level from top to bottom σn = 0, 10, 20, 30, 40 grayvalues. Colours DLCE: Orange - ellipse

segment. Green - circle segment. Blue - straight line segment. Colours ELSD: Red - ellipse segment.

Blue - circle segment. Green - straight line segment. Parameter setting and number of segments after

pre-segmentation and merging, respectively, are given in Table D.1, page 188.
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is high, geometric elements are reliably and accurately detected. From visual inspection, our results

outperform those of ELSD.

For images with low noise, we realise the effect of rounding the corners. Due to differentiation and

integration over small image regions, we do not yield pixel-chains which perfectly restore the angles

of corners. Due to the tight setting of parameters for edge extraction, we try to reduce this effect as

much as possible. Other edge extraction methods, as Canny, show the same effect. As we increase the

expected noise of edges, while varying the image noise, the effect vanishes for higher noise levels.

3.5.4 Evaluating the Effect of Pre-segmentation Methods

Next, we investigate the usage of our new line simplification method circlePeucker as pre-segmentation

before the merging step.

We first perform the pre-segmentation, using both Douglas-Peucker and circlePeucker, and

perform merging afterwards on the according results. We compare the results qualitatively by visual

inspection and quantitatively by counting the number of segments after each step of the procedure.

Figures 3.3 and 3.4 show the effects on synthetic and natural images, respectively. Tables D.1 and

D.2 report for each individual experiment the setting of parameters and characteristic numbers, as

number of line segments, and running time. We summarise the effect of using circlePeucker instead

of Douglas-Peucker as follows:

• Depending on the objects structure, the number of segments after pre-segmentation is lower by a

factor of 1.5 to 3.

• The final number of line segments, after merging, is still lower up to a factor of 1.5 to 2.

• Qualitatively, the results are more reliable and more elliptical segments are detected.

• The run time for pre-segmentation, using circlePeucker, is much higher compared to Douglas-

Peucker, up to a factor of 35. But, due to the reduced number of segments which we need

to take into account for merging, the running time for merging is significantly reduced, when

pre-segmenting by circlePeucker. Depending on the complexity of the image, at the end,

the overall running time is almost equal or slightly worse when using circlePeucker. This is

acceptable with respect to the quality of results.

To be more precise, we show some of the advantages of pre-segmentation using circlePeucker by

some details. For example, see Figure 3.4 c2 and f2, the capital O of the STOP-sign actually consist of

four arcs instead of one ellipse. When circlePeucker, Figure 3.4 f2, we obtain this result exactly.

While using Douglas-Peucker tends to approximate arcs by lines, obviously, which we see at the

slope of the ’S’ in Figure 3.4 e2, for example. The main reason for this is the identification of break

points candidates when evaluating the pre-segmentation. Obviously, circlePeucker identifies points

of changing curvature more likely than Douglas-Peucker. The same effect can be observed for the

boundary lines around the worm, its eye and the O’s.
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Image Pre-segmentation Result

Figure 3.3: Comparison of the effect of pre-segmentation to the final result under different noise

conditions. Left: Input image. Middle: result of pre-segmentation, first Dougla-Peucker, second

circlePeucker. Right: Final result after merging. From top to bottom σn = 10, 30, 20, 40 grayvalues.

Colours see Figure 3.2. Parameter setting and number of segments after pre-segmentation and merging,

respectively, are given in Table D.1, page 188.
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a1 b1 c1

d1 e1 f1

a2 b2 c2

d2 e2 f2

Figure 3.4: Comparison of the effect of pre-segmentation to the final result of DLCE on natural

images and comparison to the results of ELSD. a∗: Given images as used in (Patraucean et al., 2012).

b∗: Pre-Segmentation using Douglas-Peucker. c∗: Pre-Segmentation using circlePeucker. e∗ and

f∗: Final segmentation using b∗ and c∗, respectively. d∗ results of ELSD. Colours see Figure 3.2. We

provide parameter setting and number of segments in Table D.2, page 189.
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3.5.5 Comparison to ELSD

We give two more results on natural images in Figure 3.5. We compare our results to those from ELSD

(Patraucean et al., 2012) in Figures 3.2, 3.4, and 3.5, and further in Appendix D.1 in Figures D.1 and

D.2. Let us take the worm of the book cover, shown in Figure 3.4. ELSD resolves nearby edges, e.g.,

the black boundaries of the worm. The pre-processing of our method identifies these as (dark) lines

which are then simplified. The slightly curved boundaries of the letters W or B are straightened by

ELSD, while better resolved by our method. ELSD simplifies too much, e.g., the ellipse of O in the

STOP-sign. The same can be observed in the Gothic window in Figure 3.5 left in several details.

While ELSD detects the edges independently, our method segments the edge or line pixel-chains;

therefore, at sharp corners occasionally an additional short segment is preserved, e.g., the rectangles

within Figure 3.2.

3.5.6 Using DLCE for Feature Extraction on Facade Images

Finally, we investigate the usage of DLCE for the extraction of image features in terms of line segments

on facade images. Figure 3.6, top row, shows image patches of rectified facade images of several

different window types. In the middle, we see the result of edge extraction, thus, pixel-chains which

serve as input for DLCE. Finally, the bottom row shows the result of DLCE. More results on balconies

and entrances are given inAppendix D.1 in Figure D.3 and D.4.

When observing the pixel-chains, we see the effect of rounding the corners, as already described in

Section 3.5.3. Further, we take into account the accuracy of edges in object space. While we are able

to extract edges in images up to an accuracy of 0.1 pixel, this is not related to the structure of edges

in object space. Consider an edge on a facade with clinkers. The texture of these surface will result in

much worse edge detection accuracy.

Thus, to avoid small segments, representing small roundings at corners, and to produce reliable and

representative image features, we try to generalise as much as possible without spreading out probably

important details. Therefor, we set the expected accuracy of edges σe = 0.3[px] and the threshold for

pre-segmentation t = 5σe. This way, we yield promising results for further processing of these features.

Boundaries of window panes are represented by long segments of straight lines, sometimes flat arc

segments. Corners of window panes and scuncheons are represented as intersection of long straight line

segments or arc segments in most cases.

3.6 Summary

In this chapter, we presented a line simplification approach which approximates given pixel-chains by a

sequence of lines, circular, and elliptical arcs. For this, we proposed an adaption to Douglas-Peucker’s

algorithm for the use of circles instead of straight lines. The pre-segmentation, using circlePeucker,

correctly identifies arc segments and especially their breakpoints. By itself, these are promising results

and improve the standard algorithm in terms of reducing the number of breakpoints of a given polygon,

while preserving the geometry.

Furthermore, we developed an approach for the simplification of such a segmentation by merging

neighbouring segments due to their agreement to a joint geometric model in terms of description length.

The merging step identifies elliptical arcs correctly and further reduces the number of segments of

most given pixel-chains. Lines are identified in most cases. If not, this might be due to distortions,

especially for long lines.

The approach depends on few parameters which are explainable by a priori knowledge about edge

detection accuracy. Depending on the assumed edge accuracy, we showed accurate results. We showed

the effects of polyline segmentation and simplification on several images with comparable good results,

referring to a state-of-the-art algorithm. We proved the success of merging in terms of the reduction

rate of number of segments per object.

In Chapter 4, we will use the final segmentation to derive high-level image features as input for an

image interpretation system.
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Figure 3.5: Results of DLCE on real images. Left: Gothic window. Right: cropped icosahedron.

From top to bottom: given image, our final result using circlePeucker for pre-segmentation, result

of ELSD. Colours, see Figure 3.2. We provide parameter setting and number of segments in Table D.3,

page 190.

104



Figure 3.6: Results on facade objects, windows. Top row: Image patches. Middle: Extracted

pixel-chains. Bottom: Results of DLCE. Colours, see Figure 3.2.
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CHAPTER 4

Using Shapelets for Object Classification

In this chapter, our objective is the categorisation of the most dominant objects in facade

images, like windows, entrances, and balconies. The approach, shown in this chapter, deals as

intermediate level of the whole interpretation process. Given the result of line segmentation,

presented in Chapter 3, we learn representative pairs of line segments, called shapelets, which

we use as complex features for object classification. The proposed features are scale invariant

and provide large distinctiveness for facade objects. The results will provide evidence for the

high-level interpretation of whole images from top down, which we will show in Chapter 5.
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4.1 Introduction of Shapelets and their Use for Object Cat-

egorisation

This chapter focuses on the categorisation of objects in a facade, which is meant to serve a top-down

module as a link to the image data. The scope of the chapter is to classify subsections of rectified

images, based on the histogram of relevant pairs of line segments in a bag of words (BoW) model, as

introduced in Section 2.4. We learn class models directly from images, and classify new instances in

the presence of intra-class variations, clutter, and scale changes.

As pointed out in Section 1.4.2, learning which features best describe the target object classes is

essential in order to avoid humanly modified models for classification or object detection. Therefore,

we learn the parts that represent individual object classes, thereby, avoiding fixed and pre-selected

features. Further, we already identified line segments as promising image features, due to their large

invariance to shadows and changes in illumination and their distinctiveness for facades objects.

We propose a bottom-up approach to learn generic parts of object structure from given training

image sections of these facade objects. We learn pairs of adjacent line segments (PAS) from image

sections showing individual objects of the target classes. We identify which PAS are relevant to

serve as words in a BoW model, thus, are suited to be part of a compact and discriminative image

description and call these representatives shapelets. In order to be independent on the images scale,

we choose a representation which is scale invariant. Finally, we use learned shapelets to classify new

unseen image segments of learned target classes using the histogram of shapelets.

The main concepts are based on the work of Ferrari et al. (2008) about groups of adjacent contour

segments for object detection. Unlike Ferrari et al., who use straight-line segments, we use line segments

of more complex geometry as low-level image features.

Ferrari et al. (2008) and Wenzel and Förstner (2012) use k-aggregates of straight line segments.

Thereby, a k-aggregate is a group of k-adjacent lines. Given the set of extracted line segments, the

complexity of the search and the amount of possible k-adjacent segments increases exponentially. As

already stated by Ferrari et al. (2008), this is infeasible for degrees greater than k = 5. Moreover,

they proved, that pairs of adjacent line segment performs best compared to the costlier k-aggregates.

This is equivalent to our observations in Wenzel and Förstner (2012). The reasons for this are

intuitive. These small aggregates are simple enough to offer a moderate complexity and to guaranty

repeatability. Nevertheless, they are more complex than simple gradients to capture more object inform-

ation. For that reason, we search for pairs of adjacent line segments and ignore more complex aggregates.

Following the classical BoW approach, as described in Section 2.4, we start from given training

image sections, together with their labels. We extract line segments using DLCE, as described in

Chapter 3. From these we collect all possible PAS tj ∈ T . Hereby, T is the infinite large set of all

possible PAS we may ever detect. To learn which PAS are relevant for describing the target classes,

we cluster PAS extracted from all training images. Identifying a representative for each cluster results

in the codebook S . Thus, we interpret identified PAS si ∈ S as words of a vocabulary S , as it is

usually done in BoW approaches. In the following, PAS representing words of the vocabulary, are

called shapelets. Each image section is represented by the histogram h(si), si ∈ S of shapelets. Taking

this as feature vector x = [h(si)], we train any classificator that is suited for our tasks.

Having learned the vocabulary S and the classification model, we classify a new image section by

detecting shapelets of the vocabulary, taking their histogram, and estimating its most probable class

using the learned classifier.

Next, we give more details about the several parts of the process. Section 4.2 introduces PAS

features, their representation, and defines a distance between two PAS features. We show how to learn

shapelets from PAS, collected from training images, in Section 4.3, and how to use them for object

categorization in a BoW approach, in Section 4.4. We review related approaches in Section 4.5 and
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Figure 4.1: Junction types

evaluate the proposed procedure in Section 4.6. Section 4.7 summarises the chapter.

4.2 PAS - Pairs of Adjacent Line Segments

Given our line segmentation, presented in Chapter 3, we start looking for PAS. For this, we need

a definition of adjacent segments and a way to identify them. Partly, this is already given by the

pre-segmentation of pixel-chains. Segments neighboured within a pixel-chain are adjacent by definition.

How we identify more adjacency relations, will be given in Section 4.2.1. In Section 4.2.2, we define a

descriptor for PAS which will be suited to define a measure of dissimilarity in Section 4.2.3.

4.2.1 Detecting PAS

In this section, we are looking for all adjacent pairs of line segments within an image. Two line segments

that meet each other build a junction which we differ depending on the way they meet. Figure 4.1

visualises junction types we distinguish. We call neighboured line segments

L-junction if they meet each other at their end-points and are not collinear,

T-junction if they meet each other at the end-point of one segment

X-junction if they are curved line segments that pass near by

I-junction if they are collinear at their intersection point. In case of curved line segments, their

tangents at their intersection point are collinear.

H-junction if they are parallel straight line segments that pass near by.

In order to identify all pairs of adjacent line segments, we create a feature adjacency graph (FAG), see

below, that states which segments are said to be neighboured. It is an undirected graph. Its nodes are

the segments detected in the image. Two nodes, i.e. segments, are connected by an edge if they are

defined to be neighboured. From the FAG, we are able to derive aggregates of adjacent line segments,

up to an arbitrary degree k, by traversing all possible paths of length k. But, as already argued,

we only search for pairs of adjacent line segments and ignore more complex aggregates. Segments,

neighboured within a pixel-chain, are said to be adjacent, naturally. We add the according edges to

the FAG immediately.

From the FAG, we are able to derive topologically neighboured line segments, but these need not

to be adjacent, as their distance is arbitrary. In order to identify adjacency relations, we define the

following rule to link segments which are not neighboured within the same pixel-chain:

Segments that meet at any point within a radius of ε pixel are said to be adjacent.

We declare all pairs of neighboured line segments, fulfilling this rule, to form a PAS feature. But, we

exclude I- and H-junctions, thus, pairs of segments which meet within 180◦, thus, form a line, and

segments which are parallel. This allows us to

• bridge discontinuities between following pixel-chains of a joint object boundary; therefore, to

encode L- junctions, but exclude I-junctions
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• combine curved line segments which pass near by, X-junction, but exclude parallel straight line

segments

• define T-junctions as PAS feature.

The first type is already included within the basic set of adjacent segments given by DLCE, whereas

the second and third items are realised by the additional rule of adjacency.

The reasons for excluding I- and H-junctions are two-fold. First, we observe that their presence su-

perimposes more discriminative PAS when learning the codebook. Second, their location is undefined, as

they have no distinctive point of reference, due to the undefined point of intersection of the two segments.

To get more robust features, we further ignore small segments which result from pixel-chain

segments smaller ε pixel, again. To argue on that, imagine a perpendicular corner, as in the rectangle

shown in Figure 4.2. As already stated, we do not extract perfect corners due to smoothing and

integrating during the edge extraction process. Therefore, the result of DLCE, depending on the size

of the integration scale σ2, yield small circular arc segments between two lines. Due to our tight setting

of parameters for edge extraction, these effects are small, but stable and predictable. Independently

of the resolution of an input image, and given a fixed value of σ2, we observe these small segments

of length 5 to 6 pixel. Taking the example of Figure 4.2 right, we ignore the small circular arcs and

declare the straight line segments to be adjacent, as we would expect from the input image. In that

case the value of 6 pixel is well-founded. For all the other cases, e.g., T-junctions, we did not find a

large sensitivity to the allowed distance of adjacent segments in our experiments. Finally, we fix the

allowed distance to ε = 6 pixel, for all our experiments.

To create the initial FAG, thus to identify the adjacency relations of segments belonging to different

pixel-chains, we exploit the distance transform of all detected segments. We create a binary image from

segmented pixel-chains. Each pixel belonging to an extracted line segment gets a value of 1, the rest

gets the value 0. We perform a distance transformation on the resulting binary image. Its complexity

is linear in the number of pixels, thus, fast. The ridges of the distance transform define the points of

equal distance to any adjoining segment, thus, inversely define the frontier between adjacent segments.

This is equivalent to a generalised Voronoi tessellation. Thus, perceiving the names, i.e. IDs, of each

segment, we infer, which segments join a common Voronoi boundary edge. If two of such segments

meet within 6 pixel we add them to the FAG.

Finally, we extract all PAS from the image by collecting all pairs of adjacent segments from the FAG.

Out of the huge amount of detected PAS, we wish to select those which are relevant for further

image interpretation. For this, we cluster all PAS found in a set of training images to create a set of

most frequent PAS which we will use as words in a BoW approach. But, before clustering, we need a

distance measure between PAS and subsequently a descriptor.

Figure 4.2: Effect of rounding corners. Left: input image. Middle: extracted pixel-chain. Right:

result of DLCE. Please note the small circular arcs in the corners, which result from the rounding

effect of the edge extraction.
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Figure 4.3: Parametrising PAS and its segments. Left: Each single PAS segment represents a chain of

neighbouring pixels and is parametrised by its centre coordinates [x̄, ȳ], its curvature κ, length L, and

orientation θ referring to the centre point. Right: A PAS is a group of two adjacent segments and is

parametrised by their according parameters and the vector r between their centre points.

4.2.2 Representing PAS

We derive a descriptor for PAS feature according to the one given in Ferrari et al. (2008). Due to the

use of curved line segments, we extended their descriptor by the curvature of line segments.

A PAS is an aggregate of two line segments, detected in the image. A segment could be a straight

line, circular arc or ellipse segment. Following the approach given by Ferrari et al. (2008), we parametrise

each segment by its centre [x, y], its direction θ, its length L, and curvature κ, cf. Figure 4.3 left. The

centre [x, y] is defined as point on the segment half way along the segment. The direction θ refers to

the direction of the tangent at centre [x, y]. The length L is given by the length of the path along the

segment. We additionally add the curvature, due to the broader type of line segments compared to

Ferrari et al. (2008). For lines the curvature is 0, for a circular arc [x, y, r] it is the inverse of its radius

κ = 1/r. Ellipses are more demanding as their curvature changes along the segment. In most cases

we choose the maximal curvature along the segment. In case, we have a highly unsymmetrical ellipse

segment, we choose the curvature at the centre. The orientation of each segment is normalised, such

that θ ∈
[
π
4 , π + π

4

]
. The reasons for that are two-fold. First, we avoid ambiguities due to segments

which differ only by a direction of π. Second, we can not avoid discontinuities due to the circular

property of θ, but we try to decrease its influence by shifting the discontinuity to π/4. When changing

the orientation θ of a segment by π we change its sign of curvature, too. Following the established

orientation of circle segments, c. f. Section 2.1.4.2, the curvature is positive if the arc lies on the

right-hand side of the tangent. Please note, we do not discretise the geometric properties of each

segment.

We derived the PAS descriptor from the parameters of its two line segments, whereby, we choose an

appropriate normalization, in order to provide scale invariance. Without loss of generality, we assume

two segments named 1 and 2. We choose segment 1 such that it is left of 2. If their segment centres

are on top of each other, we choose 1 such that it is below 2. This way, we ensure an unique ordering

of segments and therefore, unique descriptors independent of their IDs.

The PAS descriptor is given by the vector r of relative location, going from centre of segment 1

to the centre of segment 2, their tangent directions θ1 and θ2, their lengths L1 and L2, and finally,

their curvature κ1 and κ2, as shown in Figure 4.3 right. The vectors of relative location, length, and

curvature are normalised, by the length of r, to provide scale invariance. Thus, a PAS descriptor is an

8-vector given by

t =
[
r̃x, r̃y, θ1, θ2, L̃1, L̃2, κ̃1, κ̃2

]T
, (4.1)

111



using the normalised entries

r̃x,y =
rx,y
|r|

L̃1,2 =
L1,2

|r|
κ̃1,2 = κ1,2 · |r| . (4.2)

4.2.3 A Distance of two PAS

For clustering PAS features, we need a measure of dissimilarity, thus, a distance defined on two

PAS-descriptors. We define the distance between two descriptors ta and tb as weighted sum of

distances of each part of the descriptor

D(ta, tb) = wrDr + wθDθ + wLDL + wκDκ |w| = 1 (4.3)

with

Dr(t
a, tb) =

1

π
arccos

(
r̃a · r̃b

)
Dr ∈ [0, 1] (4.4)

Dθ(t
a, tb) =

1

2

2∑
i=1

1

π
arccos

([
cos 2θai
sin 2θai

]T [
cos 2θbi
sin 2θbi

])
Dθ ∈ [0, 1] (4.5)

DL(t
a, tb) =

1

2

2∑
i=1

min

(
1,

∣∣∣∣∣log10
(
L̃a
i

L̃b
i

)∣∣∣∣∣
)

DL ∈ [0, 1] (4.6)

Dκ(t
a, tb) =

1

2

2∑
i=1

∣∣tanh (κ̃ai − κ̃bi
)∣∣ Dκ ∈ [0, 1] . (4.7)

The individual terms have intuitive interpretations. The distance Dr gives the angular difference of

relative locations of both PAS. The larger Dr the more the PAS differ in their relative locations of

involved line segments. The distance Dθ adds up the pairwise angular differences of individual line

segments orientations. Thereby, we take each line segments orientation by the vector [cos 2θ, sin 2θ]

into account, to provide continuity. The distance DL adds up the differences of log-length of single

segments. We chose a basis of 10 for the logarithm and bound it by 1. This way, we take into account

differences in length up to a factor of 10, but bound the distance of larger differences, to provide

robustness. Finally, the distance Dκ measures the differences of curvature. It needs to take into

account negative curvatures. Therefor, we chose tanh, which is symmetric and bounded. Please note,

all individual terms are bounded such that they live in [0, 1]. This way, we provide robustness and

avoid that one term has substantial dominance over the other terms.

In order to derive the weights w = [wr, wθ, wL, wκ] in (4.3) from data, we perform a grid search

within a cross-validation framework. We used about 2000 manually labelled pairs of PAS, whereby, we

label them as similar or not. About 1/10 of them are labelled as similar.

We vary all weights in ranges of [1 . . . 5] and normalize them, such that they sum to one. For

each state of grid search, we train a simple classifier on one part of the data and evaluate it on the

rest of data. To be precise, we fit two Beta densities to the distances of positive and negative pairs,

respectively, and estimate their intersection to determine the threshold of accepting a pair to be similar.

Figure 4.4 shows the evaluated distances for all labelled pairs of PAS using a constant value of 1/4

for all weights. We note, that distances of positive pairs are small, while distances of negative pairs

are spread over the whole range of values, but by tendency larger than the positive ones, as expected.

Further, we realise, that positive and negative samples are not perfectly discriminated. Fitting a broad

Gaussian through the negative samples is intuitive and is confirmed empirically by the plot. Another

choice would be a uniform distribution. But, actually, we expect and observe less negative samples with

very small or very large values. For positive samples we expect the mode near 0 and a fast decrease

for increasing distances. Both distributions are restricted to [0, 1], therefore, we decided to fit a Beta

distribution to both distances from positive and negative pairs.
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Figure 4.4: Distribution of PAS distances using weights wr = wθ = wL = wκ = 1/4. Orange and blue

lines show distances of pairs of PAS labelled as similar and not similar, respectively. Thin lines show

the histograms of according distances. Bold line: Beta densities fitted through distances of similar and

dissimilar samples. For better visualisation, histograms are scaled such that they fit their parametrised

density approximately.

To summarise, we estimate these functions for each setting of the grid search and evaluate the

quality of chosen weights by the overall accuracy of classifying the test data. To yield a reliable result,

we estimate the weights within a 5-fold cross-validation.

Actually, we do not observe a large sensitivity to the choice of weights. As mean value we obtain

the set of weights wr = wθ = wL = wκ = 1/4 and a threshold for similarity of τ = 0.1. Which we will

use throughout all following experiments.

4.3 Learning Shapelets from PAS

We define shapelets as words of a dictionary that is suited for a compact image description. Learning

the shapelets, therefore, is equivalent to learning the words of a BoW codebook. After extracting

all PAS from the training images, we represent them as 8-dimensional feature vectors and identify

frequently occurring shapelets by clustering.

As introduced in Section 2.4.2, clustering in BoW usually is done by k-means or mean-shift

(Comaniciu and Meer, 2002). We decided to use the clique-partitioning approach proposed by Ferrari

et al. (2008). As the distance of our PAS descriptor is not Euclidean, and we are not aware of an

implementation of Mean-shift using an arbitrary metric, we do not use mean-shift. The design of the

PAS descriptors prohibits averaging of samples as it is done in the standard mean-shift approach as

well as in k-means. Therefore, we perform clique-partitioning, as described in Section 2.4.2.

From all PAS-features, extracted from the training images, we build a complete graph G(V ,E),

where each vertex v ∈ V represents one PAS in feature space and edges e ∈ E are weighted by

wij = τ −D(ti, tj) . By introducing τ and taking the negative of D, similar features get heigh weights,

while dissimilar features get negative weights. Using the approach of solving the CP-problem, given in

Section 2.4.2, we partition the graph into completely connected disjoint subsets of vertices - cliques -

such that the sum of remaining edge weights is maximised.

For building the codebook, we need to choose one representative per cluster. As already mentioned,

averaging the PAS-features belonging to a cluster is inappropriate. Therefore, we choose the feature
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Figure 4.5: An example of a learned codebook of shapelets from a set of 196 image sections, showing

arc-type windows. Light gray lines visualize PAS from the cluster. Thick red lines visualise the

representative of the cluster, thus, the extracted shapelet. Shapelets are sorted by the size of the

cluster, in decreasing order.

with smallest distance to all other features of the current cluster, thus, the one closest to the cluster

centre.

The partitioning of the graph is complete. This means that each PAS is member of one cluster.

Vice versa, each cluster contains at least one PAS. For sure, we are not interested in clusters containing

less than Nt PAS. We assume them to be clutter.

Finally, the codebook contains the representatives of those clusters which contain more than Nt

PAS. These members of the codebook are called shapelets. We will investigate the number of Nt in

our experiments, cf. Section 4.6.

An example of a learned codebook of shapelets is shown in Figure 4.5. Here, we used a set of

198 images section, solely showing arc-type windows, cf. Section 4.6.1. We keep all clusters which

contain more than Nt = 10 PAS. Visualised shapelets are sorted in decreasing order, such that the

largest cluster appears in the beginning. As expected, shapelets with rectangular L-shape are most

dominant and appear at the very beginning. But, we also observe T-junctions and shapelets which

contain curved line segments which are most discriminative for arc-type windows.

4.4 Using Shapelets for Object Categorisation

Having learned the vocabulary of shapelets, we aim at learning a classification model based on shapelets

as features. Therefor, each image region should be described by a single feature vector, which is the

input for learning and using the classifier, respectively. In this section, we describe the design of our

image descriptor based on shapelets.
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Figure 4.6: Tiling the image patches encode spatial layout: Rectangular and arc type windows are

indistinguishable at their lower parts, but have their characteristic features at their top. Reversely,

balconies, at their upper part, show doors or windows while having characteristic 3D structure below.

4.4.1 Soft Assignment for BoW Histograms

Having learned the codebook, we represent each image patch by its histogram of words. Thus, we

count the occurrence of each codebook entry within the image patch. But, instead of assigning each

found PAS to a single histogram bin, the closest one, we assign it to all types which are nearby in

terms of the dissimilarity measure given in (4.3). For this we spread a total weight of 1 over all bins

with D < τ proportional to the inverse of the dissimilarity. To be precise, let us take a detected PAS t

with dissimilarities D(t,S) < τ to I shapelets S =
[
si
]
, i = 1 . . . I. We increase the i-th bin by

∆hi =


0 ∀i D(t, si) > τ

1∑
j

D(t, sj)

1
D(t, si)

∀i,j D(t, si,j) ≤ τ (4.8)

For example, assume dissimilarities D(t,S) = [6.2 5.2 1 5.8] of a single PAS t to a codebook

of four shapelets si. Further, assume the threshold for similarity to be τ = 6. We increase the four

according bins of the histogram by ∆h = [0 0.1409 0.7327 0.1263]. The dissimilarity to the first

shapelet is too large; thus, the according bin is not increased at all. The dissimilarity to the third

shapelet of the codebook is the lowest; thus, it gets the highest increment, while the dissimilarities

to the second and fourth shapelets are near τ . Therefore, the according bins get small increments.

All weights sum up to a total amount of 1. This way, we make the representation less sensitive

to the exact shape of detected PAS and allow a better generalisation of representations of object classes.

4.4.2 Normalising BoW Histograms

As argued in Section 2.4.3, the histogram should by properly normalised to be independent on the

image size. Otherwise, the number of counted words grows by the size of the image. In our experiments,

we will compare L2- and tf-idf weighting, as introduced in Section 2.4.3. The former means normalising

such that the length of the histogram vector is 1. The latter is a weighting scheme that reduces the

impact of words that occur too often to be meaningful.

4.4.3 Including Spatial Information into BoW Histograms

Instead of using a simple BoW representation which means simply to count all shapelets occurring in

the image and building the according histogram, we partition each image patch into several tiles and
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Figure 4.7: Building the BoW feature vector for using a partitioning into 2× 2 tiles.

build the histogram for each of them separately and concatenate them to yield a single feature vector

per image patch. This way, we incorporate spatial layout of inspected object classes without building a

complex implicit shape model (ISM) (Leibe et al., 2004). This is similar to the idea used by Dalal and

Triggs (2005), who introduced the widely used histogram of oriented gradients (HOG).

The idea of tiling is sketched in Figure 4.6 for a partitioning into four tiles. Ferrari et al. (2008)

extensively evaluates the effect of different numbers of tiles. In their work they used groups of adjacent

line segments of complexity up to k = 4. They found the optimal number of tiles the lower the higher

the complexity of line aggregates. This is reasonable, as complex features are more discriminative

concerning the shape, while simple features are less discriminative by them self; thus, the overall

descriptor need to incorporate more spatial layout. For k = 2, thus, PAS features, they found the

optimal number of tiles to be T = 30. However, we will investigate the effect of tiling onto the result

in the experimental section.

To complete the procedure: We build the histogram of shapelets for each tile and concatenate them

to a joint feature vector of length T × S, whereby, T is the number of tiles and S is the number of

shapelets in the codebook. Figure 4.7 visualises the architecture of a feature vector belonging to one

image patch, using a partitioning of 2× 2 tiles. In this simple example, the codebook consist of 10

words. We build the histogram of words for each tile separately and concatenate all four histograms to

a joint feature vector h which compactly describes the according image patch and serves as input for

either training a classificator or for using an already learned classificator.

In Section 4.6, we will present a framework for evaluating found shapelets. Thereby, we will evaluate

different choices of parameters.

4.5 Related Work

Our approach is most related to two large groups, the first, working on object recognition and detection

based on shape and contour, respectively, the second, working on learning mid-level features or even

visual elements.

In order to categorise or detect objects, based on their characteristic contour, many works either

use groups of edge fragments to detect learned classes of shapes, while most of them use Hough based

voting techniques. They treat shapes as loose collections of 2D points (Cootes et al., 1995) or other 2D

features (Leordeanu et al., 2007; Elidan et al., 2006). Belongie et al. (2002) introduce to use shape

context to measure the similarity between shapes and exploit it for object recognition. For each point

they exploit the spatial distribution of all other points on the shape. This allows to establish a point-to

point correspondences between shapes even under non-rigid deformations.

However, to increase matching performance more informative structures than individual features are

needed. For this, we found either ensembles of pairwise constraints between point features (Leordeanu
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et al., 2007; Elidan et al., 2006) or a global geometric organisation of edge fragments (Shotton et al.,

2005; Opelt and Zisserman, 2006; Shotton et al., 2007; Ferrari et al., 2008; Ommer and Malik, 2009;

Lu et al., 2010; Srikantha and Gall, 2014), which allow to handle deformations. They belong to the

principle of perceptual grouping which relies on the idea that fragments of contour, related by some

perceptually salient property, are more likely to belong to the same object (Ferrari et al., 2008).

Leordeanu et al. (2007) exploit relations between all pairs of small edge segments, while Elidan et al.

(2006) use pairwise spatial relations between landmark points. The former uses all line segments from

a single image to initialises a model, which is then refined by iteratively removing spurious features and

adding new good features identified in many other images. The latter, address the modelling of shapes

of general object classes in 2D in order to outline according objects in real images. Interestingly they

use drawings of the target classes as training samples which capture the fundamental contour, while

avoiding problems such as clutter and shading variations. They propose a semi-parametric model which

is defined in terms of landmarks, each associated with local contour information. They formulated a

MRF over these landmarks, such that the outline of objects in real images can be found by standard

MRF inference algorithms.

These approaches aim at describing whole contours, thereby actually focusing on the outer contour

of their target objects. We learn from these approaches that contour features reveal a large distinctness

to certain object classes. On the other hand, objects we focus on, reveal their distinctiveness through

the appearance inside the outer contour, e.g., structure of window panes or typical structure of balconies.

In order to discover clusters of useful contour features, that are both representative and discrimin-

ative, Ferrari et al. (2006, 2008, 2010) in a series of work, introduce a family of scale invariant local

shape features build from short chains of connected contour segments. As already pointed out, we

adopt their concept to build our PAS features. Similar to Ferrari et al. (2006, 2008), Yu et al. (2007)

aim at object detection using a shape codebook. They directly build on Ferrari et al. (2006) and

use Triple-Adjacent-Segments (TAS) extracted from image edges as shape codewords and use them

in a Hough-based voting scheme, again, for object detection. Also Chia et al. (2012) build on work

of Ferrari et al. (2008). Similar to our work, they adapt their PAS features by the use of lines and

ellipses. They describe shape tokens consisting of line–line, line–ellipse or ellipse–ellipse pairs and use

them in a way similar to Ferrari et al. (2008) and our work. Different to our descriptor, they do not

take curvature of line segments into account, but the spacial extend of fitted ellipses. Further, they

introduce a clustering over relative positions of found shape token clusters to incorporate spatial layout.

Lu et al. (2010) aim at contour based object detection using so called part bundles. They

hierarchically decomposes the given contour model of an object class into fragments and group them

again into part bundles which can contain overlapping fragments. Local shape similarity, between part

bundles and edge fragments, cast votes for candidate part configurations while global shape similarity,

between the part configurations and the model contour, yield the optimal configuration.

From these works, we take over the idea of bundling local parts of a contour and to use these

bundles as discriminative features for the description of the target objects.

In order to encode spatial layout Shotton et al. (2005) and Opelt and Zisserman (2006) learn

class-specific boundary fragments including their spatial arrangements as a star configuration, which

allow for object localisation using voting, similar to ISM, as introduced by Leibe et al. (2004). Shotton

et al. (2007) extends this work by introducing a codebook of scale normalised contour exemplars.

Further, they introduce a new multi-scale oriented chamfer distance for matching contour fragments.

These approaches require an extra clustering step over spatial locations of learned discriminative

features and assume the target classes to be consistent in their spatial layout, up to a certain degree of

allowed variations.

Therefore, instead of spatial voting, Dalal and Triggs (2005) and Ferrari et al. (2008) encode

spatial organisation by tiling the object windows and learning which feature-tile combinations are most

discriminative. We uses this principle, as it is easy to implement and fast to evaluate, and due to the

large variability in aspect ratio of our target objects.
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Figure 4.8: For each row some examples of given image sections for class balcony, entrance, arc-type

windows, rectangular windows, and background.

4.6 Experiments

In Chapter 5, we will apply the learned codebook and classification model to the task of object

detection, which turns out to be nothing more than object categorisation in its first step. In that

application, we have to decide at every position of an image and for every, at least a couple of scales,

about the class of the current image section. Therefore, we relax the problem for our experiments in

this chapter. The goal of this section is to show that our learned shapelets and proposed feature vector

architecture are suited for object categorisation, whereby the term feature vector is meant as input for

the classifier. We will vary several parameters to find the best set and to investigate the sensibility

against these parameters.

4.6.1 Experimental Setup

The classification task is to learn a representation of several target classes, in a way that we are able to

classify new and unknown images.

We choose a dataset with C = 5 classes namely balconies, entrances, arc-type windows, rectangular

windows, plus background samples with 400, 76, 198, 400 and 400 samples per class, respectively, see

Figure 4.8 for some examples. We consider two different classes of windows in order to prove the

usefulness of learned shapelets. Later, we will regard all windows as one object class.

For each sample image patch its target class c is given. These samples are taken from annotated

rectified facade images, such that each sample image contains exactly one object of its given target

class. Background samples are sampled randomly from rectified facade images. Samples, taken this

way, that accidentally contain too large parts of foreground objects are removed manually. Please note

that they are not resized to have equal size.

Throughout our experiments, we will vary two parameters for which we want to find the best

choices. First, we consider different sizes of the codebook, which we measure by the minimal number

Nt of PAS belonging to a cluster, see Section 4.3. The lower Nt the higher the number of shapelets S

in the codebook and the larger the BoW histograms. Second, we inspect the number of tiles T used

for building the BoW histogram, see Section 4.4.3. We separate T into a number of tiles TX and TY ,

horizontally and vertically, respectively. Thus, we vary TX and TY , which give a total number of tiles of
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T = TX ·TY , yielding different settings for the same number of tiles T . Additionally, we exploit the effect

of normalising the BoW histograms using the standard L2-normalisation and the tf-idf weighting scheme.

We perform a five-fold cross validation. The dataset is equally split into five groups, such that

different sample sizes per class are equally split, too. In each cross validation step, we choose four of

the groups for learning the relevant aggregates and for training a classification model. The remaining

group is used for testing, thus, detecting proposed aggregates and testing the learned classifier. Please

note that we learn a single codebook for all classes. Thus, the codebook is dedicated to provide the

vocabulary for all object classes.

As classifier, we decided to choose the widely used support vector machine (SVM), cf. Section 2.4.4.1.

Later, in Chapter 5, we need reliable class conditional probabilities for further usage in high-level

interpretation, which we might get by IVM, cf. Section 2.4.4.2. Unfortunately learning the IVM model

is time consuming, especially when performing grid search to fix needed parameters. Learning the

SVM model is much faster, also it includes a grid search, too. As we merely want to investigate the

performance of learned codebooks under different parameter settings, and as we received comparable

results, throughout our experiments using IVM and SVM, we stick on SVM here.

We use the implementation provided by Chang and Lin (2011) call LIBSVM. In its default setting

it uses a RBF kernel, who’s kernel width σRBF, as well as the regularisation parameter λSVM, are

determined by grid search on a subset of the training data. For multi-class classification, LIBSVM

provides the one-versus-one approach. Having C classes, C(C − 1)/2 classifiers are trained which

separate every pair of classes. For classifying new unseen data, they use a voting scheme where each

binary classifier votes a sample for one class. At the end a sample is designated to be in that class

with the maximum number of votes. In case of equal numbers of votes, they simply choose the class

appearing first in the list of classes, which is nothing more than to venture a guess.

The whole experiment is set up the following way: For learning, we first collect all PAS from all

images from the training set. Performing clustering, we define the vocabulary of shapelets, our codebook.

Thereby, we vary the minimal number of PAS belonging to a cluster using Nt ∈ [10, 15, 20, 30, 50].

Remember, the lower Nt the larger the codebook. To investigate the incorporation of spatial layout

when building the BoW histograms, we vary the number of tiles horizontally and vertically using

{TX , TY } ∈ [1 . . . 7], resulting in a maximum number of Tmax = 49 tiles. For each tile, the BoW

histogram is normalised either using L2 or tf-idf weighting.

Using all feature vectors extracted from the training images we train the SVM classifier. For testing,

we extract shapelets, belonging to the learned vocabulary, and build their BoW histogram. Using the

learned SVM model, we got a prediction of the target class, which we compare to the given label to

build the confusion matrix.
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Figure 4.9: Learned shapelets. Shapelets learned in cross validation run 2, ordered by the number of PAS belonging to the cluster. The coloured boxes

mark the codebook size for different choices of Nt. The whole set belongs to the codebook using Nt = 10. Colours: violet: Nt = 15, green: Nt = 20,

blue: Nt = 30, orange: Nt = 50.
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4.6.2 Evaluating Shapelets

Figure 4.9 shows the shapelets, learned during one cross validation run using a minimal number

Nt = 10 of PAS belonging to each cluster, which yield in an average codebook size of 300 shapelets.

Increasing Nt results in smaller codebooks, which we have marked by coloured boxes in Figure 4.9.

The codebooks, learned in the other cross validation runs, are given in Appendix D.2 Figure D.5 to

D.8, page 192.

As expected, the most dominant shapelets are those who capture the rectangular structure

of facade objects. These shapelets are almost the same in all cross validation runs. Further, we

realise shapelets showing angles which are characteristic for projecting rectangular 3D structure to

the image plane. Due to the incorporation of curved line segments, we also find shapelets coding

arc-type structure, as given in facade decorations or arc-type windows or doors, even whole or half circles.

Using these codebooks, we trained the classifier, while varying the named parameters and measure

the classification performance in terms of accuracy. The overall accuracy (OA) is given as fraction of

correctly classified samples, the number of true positives (TP), related to all samples N

OA =
TP

N
. (4.9)

The average classwise accuracy is given as mean value of class specific accuracies ac, Thus, as the mean

of the confusion matrix diagonal.

AA =
1

C

∑
c

ac ac =
TPc

Nc
, (4.10)

whereby, Nc is the number of samples in class c, TPc the number of correctly classified samples of class

c and ac the according accuracy of class c.

We report both overall accuracy and average classwise accuracy, respectively, due to the different

number of samples per class. Therefore, the overall accuracy might be corrupted by the most dominant

class and the average classwise accuracy gives a more objective view.

Figure 4.10 and 4.11 show the overall classification accuracy and classwise accuracy, respectively,

depending on the codebook size and the spatial tiling for both L2 and tf-idf weighting. We plot

accuracy vs. tiling. Each line visualises the mean accuracy over the cross validation runs for one choice

of Nt. The horizontal axes are sorted such that the results of the Nt = 10 line increase. Therefrom, we

see the best choice of tiling at the very right of the plot.

First, we note that L2 normalising significantly outperforms the tf-idf weighting scheme. This does

not match our expectation, but might be related to numerical problems in Equation (2.88), page 66,

due to the large number of shapelets. We will focus on L2 normalisation in the following.

Further, we observe a significant increase of performance using the largest codebook, thus, Nt = 10.

This becomes reasonable when looking at Figure 4.9. The smaller the codebook, the less discriminative

the shapelets. The smallest codebooks, Nt = {50, 30} contain almost entirely rectangular L-junctions,

some T-junctions and only a few shapelets different from that. The most discriminative shapelets,

containing arcs or other angles are part of small clusters and therefore, occur at the end of the list.

When looking at the performance depending on the chosen tiling, we find the best results for 3× 3

tiles concerning overall accuracy. Concerning average classwise accuracy 3× 5 seems to be the best

choice.

Figure 4.12 shows the accuracy for each class separately, using the same visualisation as before.

Additionally, Table 4.1 give the confusion matrices for the best choice of parameters.

We note that arc-type windows are correctly classified up to 93% accuracy. Due to their arc-type

elements they are highly discriminative compared to other rectangular facade objects. Balconies are

classified up to 88% true positive rate. Note that we are dealing with single images; thus, we have

no 3D information, which usually guides recognition of balconies. Obviously, their images contain

discriminative shapelets coding the 2D structure due to the perspective projection of 3D objects. In
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Figure 4.10: Overall accuracy using different tiling and different cluster size for L2 and tf-idf

weighting. The horizontal axis is sorted, such that the results for Nt = 10 are sorted increasingly.

Please note that this sorting is different for both plots. Colours are given in the legend. To avoid

overloading the figure, we give the 1σ− band only for the upper line. It looks similar for the other

settings.

Table 4.1: Confusion matrix using Nt = 10, 3× 5 tiles and L2 weighting. Overall accuracy: 87.50%.

Average class accuracy: 88.38%.

PPPPPPPPtruth

estim
background balcony entrance win-arc win-rect

background 93.34 4.07 0.23 1.84 0.52

balcony 3.37 87.85 6.25 0.90 1.62

entrance 0.79 9.84 87.40 0.79 1.18

win-arc 4.61 0.49 0.00 92.72 2.18

win-rect 5.62 2.21 0.11 11.34 80.72
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Figure 4.11: Average class accuracy using different tiling and different cluster size for L2 and tf-idf

weighting. Detailed description cf. Figure 4.10.
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Figure 4.12: Classwise accuracy using L2-weighting and different tiling and different cluster sizes.

Detailed description cf. Figure 4.10.
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contrast, rectangular windows are challenging and are confused with other facade elements. They are

correctly classified with 83% accuracy. At most they are confused with arc-typ windows, which we

may ignore when regarding all windows within one class. The confusion matrix, Table 4.1, proves

that classification of entrances is possible, but still a challenging task, they are often confused with

balconies. Incorporating high-level knowledge, such that entrances are most likely at the ground floor,

this will be corrected.

We will use the learned classifier from this chapter in our experiments in Chapter 5. There, we will

incorporate high-level knowledge about typical configurations of facade objects, which we learn from

train images again.

Finally, we fix the parameters the following way

Nt = 10, TX = 3, TY = 3 (4.11)

using the L2 normalisation as already noted. This way, the feature space will be of dimension of

approximately 300× 3× 3 = 2700, which is large. But, the features vectors will be sparse and we will

show how to handle them effectively.

4.6.3 Comparison to HOG Descriptor

We compare our shapelets to the widely used HOG descriptor of Dalal and Triggs (2005) which is

the state-of-the-art in human detection and has proven competitive on other classes. Furthermore,

a couple of implementations are available. Recently, it was published within the Matlab Computer

Vision System Toolbox, thus, can be included into existing matlab projects the most easiest way.

We do not compare to the original groups of adjacent contour segments of Ferrari et al. (2008).

Unfortunately, they provide an implementation for their successive work in Ferrari et al. (2010), but

this does not include the object detection as described by Ferrari et al. (2008). In their succeeding work,

they use their PAS features which are build from straight line segments, and derive object contour

models for each addressed class. This includes spatial voting and an incremental refinement of contour

segments belonging to the overall contour. The final model consists of a list of contour point and object

detection is done by a combination of hough voting and shape matching. Thus, the work of Ferrari

et al. (2010) goes beyond our task in this chapter and therefore, is not competitive to our approach.

Furthermore, in contrast to Ferrari et al. (2010), our task in this chapter is to derive a set of features

which are suited for object classification within an MCMC approach. In Chapter 5, we will show how

to build an integral histogram of PAS features for each image. This way, the feature descriptor for each

image region, independent of size and position, can be derived in constant time, which is essential for

making MCMC sampling feasible. This is impossible using the shape descriptor of Ferrari et al. (2010).

Therefore, we decided to compare to the HOG descriptor which is currently the state-of-the-art

image descriptor for object categorisation.

The basic idea of HOG is that local object appearance and shape within an image can be described

by the distribution of intensity gradients. Therefore, the descriptor uses the histogram of gradients to

provide a descriptor for whole image patches. To incorporate spatial layout, the image is divided into

small connected regions, called cells of size a× a where a typically ranges from 2 to 8 pixel or even

more. For each cell a histogram of gradient directions is evaluated, for the pixels within the cell. The

concatenation of these histograms then represents the descriptor. Further, Dalal and Triggs (2005)

measure the intensity across several cells, called blocks, and use this to normalise all cells within the

blocks. This way, the images are contrast-normalised and the descriptor is invariant to changes in

illumination or shadowing.

For object detection, the HOG descriptor is used in a sliding window approach. Therefor, a classifier,

typically a SVM, is trained on the HOG descriptors of a couple of training images. For detecting new

instances of the target class(es), the classifier is evaluated for all possible locations of a search window

into a query image. As the descriptor is not scale invariant, training images are typically resized to

have equal size and the query image is evaluated over several scales.
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Figure 4.13: Classification performance using the HOG descriptor with different tiling. Top: Overall

accuracy as mean over 5 cross validation runs. Bottom: Average class accuracy as mean over 5 cross

validation runs. The shaded region visualises the 1σ-band. Again, the horizontal axes are sorted, such

that the results are sorted increasingly. For this reason we do not provide both lines within one plot.

For our experiments, we use the HOG implementation provided in the Matlab Computer Vision

System Toolbox. In its default settings it uses a cell size of 8× 8 pixels, a block size of 2× 2 cells, a

block overlap of half a block, which is the number of overlapping cells between adjacent blocks, and a

discretisation of gradient direction into 9 bins, which are unsigned. We use this default setting except

the cell size. Instead of resizing, all images used for training and testing, and using a fixed cell size, we

fix the number of cells and derive the cell size for each image separately. Similar to our experiments in

Section 4.6.2, we vary the number of cells to find the best setting.

We use exactly the same data for training and testing as in the experiment in Section 4.6.2. This in-

cludes the splitting of data into the cross validation subsets. We also use exactly the same classifier as in

Section 4.6.2. Thus, we train a SVM using default settings, estimating needed parameters by grid search.

Figure 4.13 shows the classification accuracy using HOG descriptors with different spatial tiling.

Again, we visualise mean results of overall accuracy and average classwise accuracy. It turns out that

the best results are given for 6× 5 cells. Table 4.2 shows the according confusion matrix. As expected,

HOG performs well and stable over different choices of tiling. Indeed it outperforms our feature sets in

terms of overall accuracy. But, our approach is still comparable and even better for classes balcony and

entrance. This might be related to the ability to learn detailed facade structures in terms of contour
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Table 4.2: Confusion matrix HOG descriptor with 6× 5 tiling. Overall accuracy: 92.4%. Average class

accuracy: 90.6%.

PPPPPPPPtruth

estim
background balcony entrance win-arc win-rect

background 97.74 1.44 0.25 0.19 0.38

balcony 5.39 84.56 9.54 0.00 0.50

entrance 3.95 13.16 78.95 1.32 2.63

win-arc 0.00 0.00 0.51 98.47 1.02

win-rect 1.65 2.59 2.12 0.82 92.82

fragments, which is more powerful than a collection of gradients.

It is important to note that our approach is comparable to the state-of-the-art performance of

HOG. Beside that, we are able to evaluate image descriptors by using the integral histogram of PAS

features, which we can not do when using HOG descriptors.

4.7 Summary

In this chapter, we proposed a new feature type which we call shapelets, and which are the representatives

of most dominant pairs of adjacent line segments in images, which might be curved or not. We showed

how to extract them from images and how to describe them. Further, we proposed a distance measure

and showed how to cluster them to derive the according shapelet.

For classification, we use the histogram of shapelets. We incorporate a rough spatial layout by

splitting the image patch into several tiles, from which the overall image descriptor is given by the

concatenated histogram of shapelets of all tiles.

Using these shapelets, we provided a reasonable classification performance on a challenging dataset,

including intra-class variations, clutter, and scale changes. We are slightly worse than using the HOG

descriptor, but still comparable, at least for classes balcony and entrance. Furthermore, our image

descriptor is suited for fast evaluation using the integral histogram which we will introduce in the next

chapter. However, shown classification performance proves that the learned set of shapelets is suited

to give good evidence for existence of certain facade objects from bottom-up. This will be done in the

following, when including the approach into an object detection method, based on sliding window and

using it as a region classifier in an MCMC framework.
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CHAPTER 5

Top-Down Facade Image Interpretation by Marked Point Processes

The objective in this chapter is the interpretation of facade images in a top-down manner

using a Markov marked point process. Given single rectified facade images, we aim at the

accurate detection of relevant facade objects, namely windows, entrances, and balconies,

using prior knowledge about their possible configurations within facade images. We represent

facade objects by a simplified rectangular object model and present an energy model which

evaluates the agreement of a proposed configuration with the given image and the statistics

about typical configurations which we learn from training data. We show results on different

datasets and provide a qualitative evaluation, which demonstrates the capability of complete

and accurate detection of facade objects.
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5.1 Using Bottom-Up Evidence for Top-Down Facade Inter-

pretation

In this chapter, our objective is the interpretation of facade images from top-down. Given single

rectified facade images, we aim at the accurate detection of relevant facade objects as windows,

entrances, and balconies, in terms of their bounding boxes, using prior knowledge about their possible

configurations within facade images. From bottom-up, we detect shapelets, as proposed in Chapter 4,

and use them to classify image sections within the image. In the sequel, we use the probabilistic

output of the classifier as input for further image interpretation.

Using the classifier in a naive way, yields reasonable results, but lack in accuracy and completeness.

Therefore, these results will be enhanced by incorporating prior knowledge about typical configurations

of facade objects. To be precise, we will evaluate spatial interactions between neighbouring objects, as

alignment, size differences, or distances and use them to enforce the detection results to configurations

which fit typical facades. Typical configurations might be modelled manually, but this inherently lacks

in generality, needs a huge amount of rules, increasing with the number of objects classes, and needs

to be well tuned to each type of facade. Therefore, we propose to learn spatial interactions for each

combination of neighbouring object classes from training images. This might be restricted to a certain

type of facades or not.

The task is to combine evidence from bottom-up for each single object proposal with prior

knowledge from top-down. As pointed out in Section 1.4.2, we propose to use a marked point

process (MPP) to deal with that task. To recap, a MPP is a random variable whose realisations are

configurations of parametric objects. The number of objects is a random variable, too, and needs

not to be defined beforehand in contrast to modelling as MRF. This way, we have a large degree of

freedom in the definition of parametric objects, the underlying graph structure, and its dimensionality.

Through incorporating spatial interactions which we learn from training images, we are able to combine

the initial belief from bottom-up image categorisation and the prior knowledge, we have about typical

configurations of facade objects.

The whole process is specified by three key elements:

• The object model. We model objects in images as axis-parallel rectangles, thus, points attached

with marks for width and height. Additionally, each point is given a class label. This leads to

the definition of the configuration space.

• The energy. We model the MPP as Gibbs process; for which we define the distribution in terms

of an energy. The energy validates the quality of a configuration according to the image content

and the spatial interaction of neighbouring objects in terms of the Markov property.

• An optimisation method. We aim at minimisation the energy which is complex and of varying

dimensionality. Therefor, we sample the configuration space by rjMCMC coupled with simulated

annealing, as introduced in Sections 2.6.4 and 2.6.7.

5.1.1 The Object Model

We model an image as continuous bounded set S = [0, IR]× [0, IC ] ⊂ R2, using the number of rows

IR and columns IC of the image. Objects in the image, we search for, are modelled as axis-parallel

rectangles x = [x, y, w, h, c], with centre point [x, y] ∈ S, attached with marks [w, h, c] ∈ M ⊂ R×R×N
for width, height, and class. These rectangles refer to the bounding boxes of our target object classes

within the image. As classes we consider c ∈ [1, 2, 3] standing for window, entrance, and balcony.

We represent the image interpretation as unordered set of of objects X = {x1 . . .xn}, using

n = N (X ), the number of objects in the configuration. We consider the MPP X , as introduced in

Section 2.5.1.3, to determine the configuration that best describe the image.
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Figure 5.1: Left: The value of the integral image at position (x, y) contains the sum of all values in

I in the rectangle spanned by (0, 0) − (x, y), thus, the gray area. Middle: We seek for the sum of

values of I in area A. Right: The sum of values of any area A can be derived with 3 summations of

values of the integral image IΣ.

5.1.2 Generating Bottom-up Evidence

Bottom-up, we use the output of a previously designed classifier to capture evidence about an image

sections class. For each image section, given by x, we extract its feature vector h, as described in

Section 4.4.3, and aim at an initial belief about its class.

For further interpretation from top-down, the initial belief must be appraisable in terms of its

confidence. Therefor, we need reliable a posteriori probabilities. For that reason, we prefer IVM over

SVM, as already argued in Section 2.4.4.2 and Section 4.6.1.

To complete the procedure: given annotated training images, we learn shapelets from training

images, cf. Chapter 4. We collect the histograms of shapelets, as described in Section 4.4, from

annotated image sections for each class c = 1 . . . C, and train an IVM for all object classes. Given

a new, previously unseen image, we detect shapelets and use the classifier to produce a posteriori

probabilities P (c | h(x)) for proposed image sections.

In our optimisation procedure, using MCMC sampling, classification of image sections is done many

million times. To evaluate the classifier, we must be able to process the descriptor of shapelets for each

and every position and size of image sections in the image. To allow the image processing in feasible

time, we adopt the idea of integral images to the use of integral histograms.

5.1.3 Integral Histograms

In 2004 Viola and Jones introduced integral images for the task of object detection in images. The

integral image is a special representation of an image which allows us a fast calculation of image

features. Their idea is easily adapted to the use of integral histograms, which allow us to determine

the histograms of shapelets, for an arbitrary image section, in constant time.

Integral Images. Given an image I, the integral image IΣ contains at any position (x, y) the sum

of all values of I before (x, y), which is the shaded area in Figure 5.1, left. Informally, this is given by

IΣ(x, y) =
∑
i≤x

∑
j≤y

I(i, j) . (5.1)

Given the integral image, we may derive the sum of values A, within any axis parallel rectangular

region in I, e.g., the shaded area in Figure 5.1, middle, by three additive operations

A =

x2∑
i=x1

y3∑
j=y1

I(i, j) = IΣ(P4)− IΣ(P2)− IΣ(P3) + IΣ(P1) , (5.2)

visualised in Figure 5.1, right. Thus, by building the integral image, which needs only one pass over

the image, we may evaluate such sums in constant time for any region in the image.

This allows us to implement sliding window approaches efficient, as it speeds up the needed

operations tremendously.
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Figure 5.2: Integral histogram HΣ.

Algorithm 5.1: Function IntegralHistogram, assuming a function HistogramOfShapelets for

building the histogram of shapelets. The algorithms recursively builds the integral histogram HΣ

by one run through the image.

In: Image I, shapelets S

Out: Integral histogram HΣ

1 [X,Y] = sizeof(I)

2 for x=1:1:X do

3 for y=1:1:Y do

4 h = HistogramOfShapelets(x, y,S)

5 if x == 1 & y == 1 then

6 HΣ(x, y, :) = h

7 else if x==1 then

8 HΣ(x, y, :) = HΣ(x, y − 1, :) + h

9 else if y==1 then

10 HΣ(x, y, :) = HΣ(x− 1, y, :) + h

11 else

12 HΣ(x, y, :) = HΣ(x− 1, y, :) +HΣ(x, y − 1, :)−HΣ(x− 1, y − 1, :) + h

13 end

14 end

15 end

16 return

Adding one Dimension to Build an Integral Histogram. The idea of integral images is easily

transferred to integral histograms. Instead of building the cumulative sum of intensity values, we sum

up the occurrences of image features. For this, the integral histogram HΣ consist of several layers, one

for each feature of the codebook, shapelets s ∈ S in our case, cf. Figure 5.2. Each layer s contains at

any position HΣ(x, y, s) the number of all features of type s before (x, y).

The algorithm for building the integral histogram is given in Algorithm 5.1. At any point of the

given image it adds up the histogram of shapelets h at point (x, y) to all previously seen histograms,

already contained in HΣ. Please note that we use a Matlab inspired notation, which denotes by the

colon operator ’:’ all values of a matrix within a certain dimension. If S is the number of bins, i.e.

shapelets, the vectors h are of size S × 1, thus, if the image is of size IC × IR, the integral histogram is

of size IC × IR × S.
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For querying the histogram of shapelets, within a rectangular image section A, as sketched in

Figure 5.1, 3S additions are needed

h(A) = HΣ(x4, y4, :)−HΣ(x2, y2, :)−HΣ(x3, y3, :) +HΣ(x1, y1, :) . (5.3)

All operations, needed for building the integral histogram, as well as for querying the histogram values,

for certain regions of the image, are additive. Thus, the integral histogram inherently works for both

strict and soft assignment of matched features to their according bins.

Before going into details of our image interpretation approach, we describe the naive object detection,

using a sliding window approach, and show some preliminary results which proves the generation of

bottom-up evidence.

5.1.4 Object Detection Using a Sliding Window Approach

When having learned an object classifier, the most intuitive and most common way for object detection

is the use of a sliding window approach. Therefor, we slide a window of size w × h over the whole

image. Thereby, the size of the search window varies in both directions to allow for different scales

and aspect ratios. For each position within the image, and for each size of the search window, we

evaluate the classifier, to ask for the class of the according image patch. We obtain a map of scores, in

term of a posteriori probabilities P (c | h(x)) per class, scale, and aspect ratio. We take each local

maximum, fulfilling P (c | h(x)) > C−1
C as raw detection. As result, we obtain a number of mutually

overlapping object detections, which we thin out in a greedy way: Recursively, we always take the

object with highest a posteriori probability and delete all overlapping objects. We proceed with the

next best detection until there are no more overlapping detections. Some results of sliding window

object detection are given in Figure 5.3. The detection rate for windows and balconies is high, while

its accuracy in size and position is inferior. We observe some false positives and missing detections

especially for entrances. The latter might be detected in the first phase, but probably were eliminated

by stronger window evidence. We obviously may improve these results by introducing high-level

knowledge as alignment, size of neighbouring objects, or spatial distribution of certain objects, e.g.,

that entrances are typically located at the bottom of the image.

Therefore, we continue in Section 5.2 with the description of the MPP. We introduce the density

and the according energy of the MPP. We detail the parts of the energy formulation, show how we

model interactions of neighbouring objects, and how we learn typical configurations. In Section 5.3 we

detail the optimisation using rjMCMC, particularly the types of proposition kernels we use to explore

the configuration space. We discuss related work in Section 5.4. In Section 5.5 we present experiments

and discuss the results.

5.2 An Energy for Facade Image Interpretation

We model a 2D image as configuration of objects which are points living in S ⊂ R2, attached with

marks living in a space M . A random configuration X , on the product space S × M , is a MPP, as

introduced in Section 2.5.1.3. We denote the set of object configurations

Ω = ∪∞
n=0Ωn with Ωn = {x1 . . .xn} ⊂ S × M , (5.4)

thus, the space of all possible configurations of objects.

The most random point process is a homogeneous Poisson process. In Section 2.5.1.4 we have seen

that its distribution takes the role of the Lebesgue measure in Rd, when defining the distribution of

a point process with respect to a reference Poisson point process. Thus, we define a general point

process by specifying its density f(·) with respect to a reference measure πµ which is the distribution
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Figure 5.3: Results of object detection using the sliding window approach. We yield a reasonable

detection rate, but accuracy of detected objects is low. Colours: blue - window, orange - entrance,

green - balcony.
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of the dominating Poisson process with intensity µ(·), such that the distribution of the point process is

given by

F (A) =

∫
A

f(X )πµ(dX ) . (5.5)

Moreover, we model the objects as Markov marked point process and express f(·) in terms of a Gibbs

energy U(X ) such that

f(X ) =
1

Z
e−U(X ) . (5.6)

Instead of maximising f(X ) we minimise the energy U(X ). The advantages are obvious. We get rid of

the normalising constant Z. Further, the energy needs not be probabilistic. It is a matter of design to

express the fitness of the configuration according the given image and expected configurations. We will

introduce our energy formulation in the next section.

5.2.1 Energy Formulation

We express the point process density in its Gibbs form

f(X ) ∝ exp−U(X ) . (5.7)

The energy should allow us to evaluate spatial interactions of objects and the consistency of single

objects concerning the given image. We express the energy as sum of four terms

U(X ) = Udata(X ) + λ1 Ugeom(X ) + λ2 Uconf(X ) + λ3 Unum(X ) , (5.8)

where Udata is the unary energy or the data term which expresses the local energy of all single objects

in the current configuration X . In our case, given the output of a classifier, it measures how well the

objects fits the image content. This energy will be designed such that attractive objects contribute

negative energies, whereby, we call an object attractive, if its a posteriori probability is high. We denote

Ugeom the geometric energy and Uconf the configuration energy which are given by prior knowledge from

training data about typical geometry of objects or object pairs. The former expresses an additional

unary energy in terms of the objects size and location. The latter expresses the energy of neighbouring

objects given by their spatial interaction. The structure of prior energies will be designed such that

configurations not fitting the learned configuration statistics get positive energies, thus, get punished.

Finally, Unum represents an additional prior on the number of each classes objects. In contrast to the

basic idea of a point process which is guided by the reference density of the Poisson process, whose

intensity reflects the accepted mean number of objects, this is an alternative model for the prior. Due

to the different mean numbers of each classes objects, one underlying reference measure is not suited

to reflect these numbers, therefore we decide to introduce this as a more adequate prior.

Finally, the single terms are weighted relative to each other by positive constants λi. We detail

each term in the next subsections.

5.2.2 The Data Term

As stated above, we use the output of a classifier to capture evidence from bottom-up, from which we

obtain an initial belief about its class. The data term uses the output of the classifier to assign an

energy to each object of a configuration. Thereby, we consider an object, x ∈ X , having class label

c ∈ {1 . . . C}, attractive if its a posteriori probability P (c | h(x)) is large, preferably near 1. Vice versa,

such objects should contribute a local unary energy Φ (x) < 0 to the overall energy. Thanks to the

Markov property and due to the theorem of Hammersley-Clifford, the overall data energy is given by

the sum of each objects local energy

Udata(X ) =
∑
xi∈X

Φ(xi) , (5.9)
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Figure 5.4: The reward function Φ(x) for different numbers of classes C, which gives the local unary

energy for an object x depending on the a posteriori probability P (c | h(x)), as given in Equation (5.10).

whereby, we use the reward function

Φ(x) = − logC P (c | h(x))− 1, Φ ∈ [∞,−1] (5.10)

to express the object’s local energy, which is visualised for different numbers of classes C in Figure 5.4.

Please note, the number of classes C as basis of the logarithm. This way, we ensure probable samples

to get a negative local energy, while objects with rather uncertain class labels or objects even not

belonging to the given class, thus, having a posteriori probability below 1/C, get positive local energy.

Nevertheless, the decrease of local energy is bounded, which is important to ensure stability of the

Markov chain, cf. Section 2.5.2. Obviously, the overall data energy might decrease infinitely by

superimposing infinite copies of an attractive object x. We avoid this by including a strong penalty

term for overlapping objects in the pairwise prior energy, see below.

5.2.3 Prior Energy

The prior energy terms evaluate different aspects of the configuration, concerning the geometry of each

single object or the geometric relation of neighbouring objects. In the following, we introduce our

configuration model to describe these neighbourhood relations and derive the according terms of the

prior energy.

5.2.3.1 The Configuration Model

We learn typical configurations of objects from training images. Thereby, we characterise a configuration

by properties of single objects, as width w, height h, and location x and y, and properties of neighbouring

objects as intersection, distance, alignment, and size differences.

Interacting Objects. Usually, the neighbourhood relation xi ∼ xj is defined in terms of a distance,

such that all objects within a ball of given radius are said to be neighboured. In our application it is

not possible to define such a fixed distance, it would differ from image to image and if the number

of objects is low, objects even could be on opposite sides of the image. Therefore, we define the

neighbourhood relation in terms of a Voronoi diagram. We reduce all rectangles to their centre points

and evaluate the according adjacency graph. Objects neighboured within the adjacency graph are said

to be neighbours in image space. The reason not to use the exoskeleton of the objects themselves is

that at high temperature the objects might overlap, thus, get merged to one component for processing

the exoskeleton.

We define different measures on interacting objects to describe the overall configuration. Not all of

them are taken into account for each neighbouring object pair, e.g., we do not measure the vertical
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Figure 5.5: Properties of neighbouring objects to describe the configuration.

alignment for objects neighboured horizontally. In the following, we first describe the interacting

measures and then detail, which measures are taken into account, under which constraints.

Interacting distances. Assuming the image scale m [px/m] to be known, we take into account the

following properties of interacting objects xi ∼ xj , cf. Figure 5.5:

• intersection area

d∩(xi,xj) =
area (xi ∩ xj)

min(wi · hi, wj · hj)
d∩ ∈ [0, 1] (5.11)

Two objects not intersecting at all, get an intersection area of 0, while two objects superimposed

get an intersection area of 1, cf. Figure 5.6

• minimal distance dd(xi,xj) which is given by the minimal distance between any two points of

the objects bounding box, normalised by the image scale m.

• alignment horizontal and vertical, referred to the centre of objects

d↔(xi,xj) =
|yi − yj |

m
dl(xi,xj) =

|xi − xj |
m

(5.12)

xi

xj

d∩ (xi,xj) = 0

xi

xj

d∩ (xi,xj) = 0.6

xi

xj

d∩ (xi,xj) = 1.0

Figure 5.6: Intersection distance. Left: The objects do not intersect; thus, the intersection distance

gets 0. Middle: The objects intersect partially; the intersection distance, normalised by the smaller

area, gets 0.6. Right: Worst case, the object lay on top of each other; the intersection distance gets

one.

137



Figure 5.7: Unary statistics collected from training images from the Basel image collection, cf.

Section 5.5.1. Unit of x-axis for gh and gw is cm. gx and gy are normalised to the images width, thus,

they are dimensionless. The histograms are smoothed using a Gaussian kernel density estimator, with

kernel widths from top to bottom: 0.3, 0.5, 1.0, 0.9. Please note the different ranges of values. The

large kernel width for gx and gy result from the almost unary distributed data.

• size difference in height and width

d∆h(xi,xj) =
|hi − hj |

m
d∆w(xi,xj) =

|wi − wj |
m

. (5.13)

In order to shorten the notation, we denote d
(i,j)
k := dk(xi,xj) the value of the k-th distance

between two objects xi and xj , i.e. k ∈ {∩, d,↔, l,∆h,∆w}.
As already mentioned, we do not take into account all distances for all interacting objects. To

denote this special behaviour, we specialise the neighbourhood relation to xi ∼dk xj , to declare objects

xi and xj neighbours with respect to distance dk. Therefor, we define the following neighbourhood

relations

xi ∼d↔ xj , xi ∼d∆h xj if d(i,j)↔ ≤ d
(i,j)
l (5.14)

xi ∼dl xj , xi ∼d∆w xj if d(i,j)↔ > d
(i,j)
l .

This way, we take into account the size difference in height and the horizontal misalignment, only

if the objects are roughly beside each other. Vice versa, we take into account the size difference in

width and the vertical misalignment, only if the objects are roughly on top of each other. Further, the

neighbourhood relations (∼d∆h ,∼d∆w) and (∼d↔ ,∼dl), respectively, are pairwise exclusive each, i.e.

two neighbouring object can interact only in terms of one of them.

5.2.3.2 Learning the configuration statistics

Given annotated training data, we collect all bounding boxes of our target classes, and collect for

all annotated objects their location (x, y), width w, and height h, and for all interacting objects

distances dd and d∩. Further, for each possible combination of object classes, we store distances
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Figure 5.8: Pairwise statistics g(dk) collected from training images from the Basel image collection,

cf. Section 5.5.1. Unite of x-axis is cm. Again, the histograms are smoothed using a Gaussian kernel

density estimator, with kernel widths from top to bottom: 1.5, 0.9, 1.0, 1.0.

d↔, dl, d∆h, and d∆h for all pairs of objects, interacting in terms of the according neighbourhood

relation and according class combination. We represent these statistics by their histogram which we

denote gk(· | ·), k ∈ {x, y, w, h, ↔, l, d∆h, d∆w}. We smooth the histograms using a kernel density

estimator with Gaussian kernel. Its kernel width is determined automatically, under the assumption of

normal distributed data, whereby, we choose for each parameter the same kernel width for all classes

and pairs of classes, respectively. To enable scoring of these properties, we normalise each histogram,

such that max(g) = 1.

The minimal distance between neighbouring objects is an exception: We just store the minimal

value td (c1, c2), we have seen during training according to each possible combination of object class c1
and c2. An example is given in Figures 5.7 and 5.8. There, we collected the configuration statistics

from training images taken in the city of Basel, cf. Section 5.5.1. These facades contain no balconies;

thus, we merely observe windows and entrances in images. Figure 5.7 visualises the unary statistics

about the objects height, width, and location. We observe that windows are almost equally distributed

over the image in x- and y-direction, respectively. At the borders of the images the probability of

observing a window is lower, which results from the fact that the images show exactly one facade solely,

in most cases. Further, from gy we note that the probability of observing an entrance is highest at the

lower part of the image, as we expect in typical facades.

Figure 5.8 visualises the pairwise statistics collected from the images. We observe that windows are

almost perfectly aligned horizontally and vertically. Further, neighbouring windows are of same size in

most cases. On the other hand, entrances and windows are more likely misaligned and of different size.

5.2.3.3 Prior Energy Terms.

Having learned these statistics, we now define the prior energy. It is represented by an unary term

Ugeom(X ) and a pairwise term Uconf(X ), which represent the confidence of proposed samples to the

learned statistics over size and location of single objects and the local arrangement of neighboured
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Figure 5.9: Penalty functions used in the individual terms of the prior energy. Left: Penalty function

(5.16). Values of g near 1 are favourable and contribute a negative energy, while values of g below 0.5

get punished and contribute a positive energy. Middle: Penalty function (5.18) of the intersecting

distance, using a = 10. The more two objects overlap the large d∩ the larger the increase of the

energy. Right: Blue: Penalty function (5.19) regarding the distance of two objects with respect to

the minimal distance td, using b = 5. Orange: adapted hat-function which transforms the distance dd
to a helping value d̂d which is in [0, 1], such that distance above td contribute a constant value of 1.

Vice versa the according penalty function increases the energy just for distances below td.

objects. The former is given by the sum of local energies of single objects

Ugeom(X ) =
∑
i

∑
k∈{x,y,w,h}

Ψ(gk (xi | ci)) , (5.15)

using the penalty function

Ψ(g) = −lb (2 · g) , Ψ ∈ [∞,−1] . (5.16)

Thus, for each object we sum up the contributions of each part of the configuration model. Using

Equation (5.16), which is shown in Figure 5.9 left, objects not fitting the learned function gk get

punished and contribute a positive energy, while objects near the global maximum of gk, which is 1,

even contribute a negative energy. This way, we are able to detect objects whose data energy is low,

but fit the learned configuration statistics.

We denote E = {eij | xi ∼ xj} the set of all neighbouring objects. We may also say it is the set of

edges eij , when representing the configuration X as graph. Summing over all edges, the prior energy

regarding interacting object pairs is given by

Uconf(X ) =
∑

(i,j)∈EΨ∩ (xi,xj) + Ψd (xi,xj | ci, cj) +
1

N (Ne(xi))
·

∑
k∈{↔,l,∆w,∆h}

Ψ(gk (xi,xj | ci, cj))

 (5.17)

where we use the same penalty function Ψ(·) as before for alignment and size differences, while

intersection and distance get punished more strongly. We use a hard core penalty function for

overlapping rectangles

Ψ∩ (xi,xj) = −a · lb
(
1− d

(i,j)
∩

)
, Ψ∩ ∈ [∞, 0] , (5.18)

using a medium constant, e.g., a = 10. The function, which is shown in Figure 5.9 middle, prevents to

increase the overall energy by superimposing infinite many objects at medium and low temperature.

Nevertheless, it allows small overlaps at height temperature, which is important to explore the state

space. If d∩ = 0 the objects do not overlap, then there is no penalty.
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Figure 5.10: Penalty function (5.21) used in the prior Unum for the number of objects per class for

different values of cmin and cmax and v = 10.

To penalise neighboured objects with distance below the class specific minimal distance td(ci, cj),

we use a function similar to the hat-function

Ψd (xi,xj | ci, cj) = −b · lb

(
1−max

(
0,
td(ci, cj)− d

(i,j)
d

td(ci, cj)

))
, Ψd ∈ [∞, 0] , (5.19)

again using a medium constant b = 5. We visualise this function in Figure 5.9 right, whereby, we split

it into two parts, orange showing the argument of the logarithm, blue showing the distance penalty

function. Distances slightly below td(ci, cj) get a small positive energy, which increases with decreasing

distance. Distances above td(ci, cj) do not influence the overall energy.

Again, we sum up for each object the contribution of each interacting distance. To make the

configuration energy (5.17) independent on the number of interacting neighbours Ne(xi), we normalise

by their number N (Ne(xi)).

Finally, in order to define a prior on the number of objects, we store the minimal and maximal

numbers cmin and cmax, respectively, of objects per class, we have seen in single images during training.

Configurations fitting these numbers should not influence the overall energy, while deviations should

get a punishment. Therefrom, we define the prior on the number of objects by

Unum(X ) =
∑

y=1...C

Ψn ({x ∈ X | c = y}) , (5.20)

using

Ψn (X ) =


min

(
−lb(ε), v

cmin
(N (X )− cmin)

2
)

if N (X ) < cmin

min
(
−lb(ε), v

cmax
(N (X )− cmax)

2
)

if N (X ) > cmax

0 otherwise ,

(5.21)

using a constant scaling v = 10 and the numerical precision ε = 10−16. Thus, configurations fitting cmin

and cmax, do not influence the overall energy, while deviations get a punishment which increases with

the degree of deviation, but is bounded by a fixed value of −lb(ε). Three example plots for different

values of cmin and cmax are shown in Figure 5.10. The prior Unum is of special interest for low frequent

classes, such as entrances. We observed that the regular structure of window grids, in most cases,

overvotes the existence of a single entrance, which we avoid by using this prior.

5.3 Optimisation by rjMCMC

Our task is to find the configuration X which maximises the unnormalised point process density

or minimises the energy U(X ), respectively. It is a complex function with rough landscape. Even
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its dimensionality is unknown due to the unknown number of objects. Therefore, we optimise with

rjMCMC coupled with simulated annealing, as introduced in Section 2.6.7, to find the global optimum.

Introducing the temperature parameter T , the optimiser is given by

X̂ = argmax
X

f(X )
1
Tt = argmax

X
exp

(
−U (X )

Tt

)
= argmin

X

U (X )

Tt
, lim

t→∞
Tt = 0 . (5.22)

In Section 2.6.6 we introduced the sampling algorithm to optimize MPPes, which we apply using two

types of moves:

1. dimensional jumping transformation: birth and death,

2. non jumping transformations: translation, dilation, switching.

The latter randomly selects an object from the current configuration and randomly perturbs its marks.

The generic point process sampler algorithm is given in Algorithm 2.5, page 86. Having M different

moves, we take the proposition kernel of the Markov chain as a mixture of m = 1 . . .M proposition

distributions, each having a probability jm(X ) to choose move type m being at X . The kernel Qm can

be interpreted as instruction, how to throw a new sample x being at X , using move type m which we

define in more detail in the following.

We set S = {[1, IC ] × [1, IR]}, using the image’s number of rows IR and columns IC , and M =

{[Wmin,Wmax] × [Hmin,Hmax] × [1, C]}, using ranges [Wmin,Wmax] and [Hmin,Hmax] for width and

height, respectively, taken from the training sample’s sizes. In order to clarify the notion, we denote

the move types not by numbers. We use m ∈ {b,d,nj} to denote birth, death and non jumping moves,

whereby, the latter comprises different move types leading to the same Green ratio.

5.3.1 Birth and Death.

In case of birth, we create a new object x ∈ S × M and propose Y = X ∪ x. Noting

f (Y )

f (X )
=

e−U(Y )

e−U(X )
= eU(X )−U(Y ) , (5.23)

introducing the temperature parameter Tt of simulated annealing, and taking jb = jd we obtain Green’s

ratio for birth and death kernels

Rb (X ,Y ) =
µ(S)
N (Y )

e

(
U(X)−U(Y )

Tt

)
(5.24)

Rd (X ,Y ) =
N (X )

µ(S)
e

(
U(X)−U(Y )

Tt

)
(5.25)

We do not sample x ∼ Qb =
µ(dx)
µ(S) as in common birth and death algorithm. Instead, we sample new

objects data-driven; thus, by normalizing the smoothed histograms gk, k ∈ {x, y, w, h}, such that they

represent pmfs, we sample the parameters of a new objects from these pmfs. This results in a non

homogeneous reference Poisson measure, but Descombes et al. (2009) show that this has no impact on

the convergence to the global minimum of the energy function. There is no effect on Green’s ratio nor

does it effect convergence of the Markov chain, but its speed, as we avoid to propose lots of useless

objects.

5.3.2 Non Jumping Transformations.

In case of non jumping moves, we randomly perturb the marks of an existing object. To do so,

we uniformly select an object x ∈ X and throw random numbers u ∼ Z(X ,u) according a suitable

distribution. Given a function φ : y = φ(x, u) which transforms the object we propose Y = (X \x)∪y.
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Translation: manipulates the centre of an object x.

We throw u ∈ R2

u =

[
ux
uy

]
∼ N

([
0

0

]
, T

[
(∆x)

2
0

0 (∆y)
2

])
φ : y = φ(x,u) = [x+ ux, y + uy, w, h, c]

T
,

Using control parameters ∆x, ∆y which we fix, such that the standard deviation of the Gaussian is

1/8 of the image’s height and width, respectively, at starting temperature T0. The variances of the

Gaussian get smaller as the temperature T decreases, thus, the proposed translations get smaller.

Dilation: manipulates width and height of an object x.

We throw u ∈ R2

u =

[
uw
uh

]
∼ N

([
0

0

]
, T

[
(∆w)

2
0

0 (∆h)
2

])
φ : y = φ(x,u) = [x, y, w + uw, h+ uh, c]

T
.

Using control parameters ∆w, ∆h which we fix again, such that the standard deviation of the Gaussian

is 1/8 of the image’s height and width, respectively, at starting temperature T0.

Switching: changes the label of an object x.

We throw u ∈ N, u ∼ U ({1, . . . , C} \ c); thus, we throw a random number out of C classes which is

not the current one c.

φ : y = φ(x, u) = [x, y, w, h, u]
T
.

In each case the inverse transformation x = φ−1(y,u) exist and is as possible as φ is, which

ensures reversibility. Thus, if the translation and its inverse are equally probable and the according

perturbation variables where thrown from the same distribution, Green’s ratio simplifies to

Rnj (X ,Y ) = e

(
U(X)−U(Y )

Tt

)
, (5.26)

which completes Algorithm 2.5, page 86.

Exceptions. Impossible proposals for moves, i.e. y /∈ S×M, e.g., if a translation or dilation proposal

moves the object out of the image, are not used. In that case we reject the according proposition,

without any impact on the invariant distribution as pointed out by Ortner et al. (2003).

5.4 Related Work

In our work we are dealing with Marked Pointed process which were introduced by Baddeley and

Lieshout (1993) to the field of stochastic geometry. In conjunction with reversible jump MCMC

methods, introduced by Green (1995) and Geyer and Møller (1994), they become popular for several

tasks of image processing and interpretation. In statistics these methods, among others, were used

for Bayesian analysis of complex distributions as mixtures with an unknown number of components

(Richardson and Green, 1997; Stephens, 2000). In the following, we will focus on related work from

image processing.

To the best of our knowledge, around 2001 the group at INRIA around Josaine Zerubia and Xavier

Descombes, started to introduce the topics of stochastic geometry and point process theory to the

field of image processing in terms of structure extraction and object detection. They aim at the

detection of buildings and road networks in digital aerial images (Garcin et al., 2001; Lacoste et al.,

2002; Descombes et al., 2001) or rectangular road markings (Tournaire et al., 2007).

Ortner et al. (2003) continue the work on detecting parametrised objects and introduce a proposition

kernel that allows to sample objects in the neighbourhood of existing objects. Ortner et al. (2007, 2008)
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use this technique for the extraction of building footprints from altimetric data in dense urban areas,

and the extraction of road networks and buildings from digital elevation models, which is done again

by Tournaire et al. (2010) in a more efficient way to speed up the process. Lafarge et al. (2010) extend

this work to 3D and proposed to reconstruct building from DSM based on a library of 3D models.

These model suffer from a lack of generality, they aim at specific applications and the complexity

of interactions between the objects does not generalise to another application. Most of them rely on

many tunable parameters. Therefore, Lafarge et al. (2010) propose a more generalised MPP called

multi-marked point process, which can be applied to a large range of applications without changing the

underlying model. Verdie and Lafarge (2013) build on former approaches, but aim at their large-scale

applications by introducing an efficient parallelisation scheme.

Chai et al. (2012) propose a hybrid representation of MRFs and MPPs to represent both low-level

information and high-level knowledge to provides a structure-driven approach for detecting buildings in

aerial images. At high-level, they construct a MPP of rectangles to represent the buildings on ground

scene. At the low-level, they use a MRF to represent the statistics of the image appearance based on

the histograms of colours to represent the buildings appearance. They use rjMCMC to explore the

configuration space at high-level, and Graph Cut to optimise configurations at low level. To provide

the results to each others level, they propose a top-down and a bottom-up scheme to communicate the

results between these levels.

In the area of structure detection Lacoste et al. (2005) and Sun et al. (2007) extract line-networks

from images, the former in terms of roads or hydrographic networks from remotely sensed images, the

latter in terms of vessel trees from medical images. Both propose spatial interactions between lines

based on overlapping, alignment and connection considerations, whereby, they force certain types of

line junctions which are more likely to appear in real networks.

Chai et al. (2013) introduce the so-called junction point processes for the extraction of line-networks.

Therefor, they propose a graph-based representation of line segments with junction points marked by

angles indicating the directions of the adjacent points and formulate the configuration of junction-points

as a planar graph.

Another interesting application is population counting, shown by Descombes et al. (2009), where

they aim at tree crown extraction and bird detection, both parametrised as disk in the plane, and

thereby, count the number of detected objects. Similarly, Ge and Collins (2009) perform crowd

detection, i.e. counting people, from single- and multi-view images. They represent objects as set of

body shapes which they learned from training data. Utasi and Benedek (2011) similarly detect people

in 3D from multi-view images, whereby, they represent objects as cylinders.

In the field of texture analysis Nguyen et al. (2010) develope a model for texture recognition. They

regard a texture as the realisation of a MPP of visual keypoints and use the descriptive statistics of this

MPP to form a set of texture descriptors. In other words the spatial distribution of visual keypoints

discriminates the textures.

Lafarge and Gimel’farb (2008); Lafarge et al. (2010) provide a general model for extracting different

types of geometric features from images, as line, rectangles and disks. They use a mixture of object

interactions to reconstruct a large variety of textures. Therefor, they introduce a library of geometric

models which act as primitive elements of a description of texture images. Furthermore, they propose

to use the so-called jump-diffusion dynamic as alternative to the commonly used rjMCMC sampling

with simulated annealing. It adds to the reversible jumps of the MCMC process a stochastic diffusion

dynamic within each continuous subspace. At high temperature, the diffusion performs large random

steps to avoid trapping into local optima, while at low temperature it acts as gradient descent.

Jump-diffusion is an interesting development to speed up convergence tremendously and to increase

the accuracy of the final solution. But, it assumes the energy landscape to be smooth near the optimum,

and further an energy for which we can evaluate the gradient efficiently. Both is not given in our

application: the energy landscape is rough and the energies gradient can not be evaluated analytically.

We may obtain the gradient from numerical differentiation, but this is slow and contradicts the desired

speed-up. Therefrom, we do not use jump-diffusion.

We are aware of two works, dealing with MPPs in the context of facade image interpretation. In
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(a) Basel old town

(b) Basel row houses

(c) City houses with balconies

Figure 5.11: Sample images from used datasets.

order to detect openings in facades, as indicator for the classification of blind facades, Burochin et al.

(2014) formulate a stochastic process to sample rectangles in images polygons, formerly identified as

facades, from oblique aerial images. Do to perspective distortions the resolution of rectified images is

low in vertical direction, images are noise and contain shadows. Given these conditions, they define

openings as dark rectangles with respect to the wall background. As the detection results are dedicated

as indicator for the classification of blind facades, beside other features, they obviously do not require

complete and precise detections. Their energy model consist, as usual, of a data term and a prior

term, weighted by a regularisation factor. The data term depends on the gradient information on the

edges of proposed rectangles, while the prior term solely penalizes overlapping rectangles and does

not consider any other configuration constraints. Optimization is done by rjMCMC with simulated

annealing, using birth and death, split and merge and edge translation as non-jumping kernels.

Wang et al. (2015) aim at the detection of window grids in images using a marked point process.

They propose structure-driven sampling in order to yield the assumed grid structure of windows

and use an energy formulation whose data term depends on a probability map given by a pixelwise

classification and whose prior term consist on a repulsive term scoring interacting rectangles in terms

of their horizontal and vertical distance. Their results are not convincing compared to state-of-the-art

results, but to the best of our knowledge, this is the first approach dealing with marked point processes

in the context of facade image interpretation. We also use the concept data-driven sampling via marked

point process.

5.5 Experiments

This section evaluates the proposed MPP for facade interpretation. The goal is to show that our

approach is suited for facade image interpretation, thus, for the complete and accurate detection of
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facade objects. We learn the model on different datasets, showing different characteristics. To prove

the learned prior model, we simulate configurations, ignoring bottom-up evidence from image data.

We visualise interpretation results and provide a qualitative pixelwise evaluation.

5.5.1 Datasets

From eTrims image database (Korc and Förstner, 2009), we assembled different image collections which

are characterised by similar facade structure and as similar as possible appearance of addressed facade

objects. The goal is to show that we are able to learn a model from few images that we can use to

evaluate new images with similar characteristics. Figure 5.11 shows samples of datasets we use for this

work.

The first dataset consist of six images from Basel old town, characterised by a medium number of

highly structured facade objects which are regularly arranged. There are just windows and entrances.

Due to different decorations the appearance of facade objects differ between the images. Their image

scale is 0.5cm/px on average. The second dataset consist of 11 images showing Basel row houses,

characterised by a sparse configuration of few facade objects, which are windows and entrances. The

configuration of facade objects is homogeneous within the dataset, while the appearance differ due

to occlusions and decorations. Their image scale is 0.3cm/px on average. The last dataset consist

of 8 images showing apartment houses, characterised by a large number of facade objects, which are

windows and balconies. Although the windows are regularly arranged, which seems to be easy to

evaluate, the configuration of balconies differ between the images of the collection, which results in less

distinctive configuration statistics. Their image scale is 1cm/px on average.

Ground truth annotations are shown in Figures 5.13 to 5.15. Each annotated rectangle contains

exactly one object. Please note that balconies are defined as the aggregate of protrusion and windows

or doors, respectively, belonging to the balcony. Entrances are aggregates of doors, decoration, and

stairs in front of the door.

5.5.2 Simulation

Our facade model is a generative model. Therefore, we are able to visually check the quality of

the model by simulating facades, based on individually learned configuration statistics, ignoring the

dataterm in Equation (5.8). We fix Udata = −1 for all proposals and simulate the Markov chain, using

a fast geometric temperature schedule with Tt+1 = T0 ·αt with fixed parameters T0 = 2 and α = 0.9999

for all runs. Figure 5.12 shows samples, based on the configurations statistics learned from each given

image collection. Actually, we simulate configurations similar to those of the given images, which

reflect the characteristics of underlying training images. Samples of the balcony dataset are more

variable due to the diversity of configurations of given training images. Nevertheless, homogeneity of

window lattices is realised.

5.5.3 Evaluation

For evaluation on real images, we perform object detection in a leave-one-out cross-validation setting, i.e.

we use one image of a dataset for testing and all other for learning the classifier and the configuration

statistics. For all experiments we use a slow geometric temperature schedule, using α = 0.99999 and

T0 = 5. The latter was determined empirically such that the average acceptance rate at beginning was

around 70%. We stop the iteration when the temperature reaches Tmin = 10−6. The weights λi, cf.

Equation (5.8), were set empirically, too. The weight λ3, for the prior on the number of objects, is

set to 1 for all experiments, while the weights λ1 and λ2 were individually set for each experiment,

thus manually chosen, but fixed for all images of one data set. The range of marks, thus, range of

width and height for sampling new or manipulating existing objects, is given by the training data. The

optimisation needed on average 1 to 2 million iterations.

Figure 5.13 to 5.15 visualise exemplary results which we will discuss in Section 5.5.3.2.
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(a) Basel

(b) Basel row houses

(c) City houses with balconies

Figure 5.12: Simulations without using bottom-up evidence by an image, just based on learned

configuration statistics. Colours: Blue: windows. Orange: entrances. Green: balconies.
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image ground truth result

Figure 5.13: Results for Basel old town dataset, using weights λ1 = λ2 = 1/7. Colours as given in

Figure 5.12.
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image ground truth result

Figure 5.14: Results for Basel row houses dataset, using weights λ1 = λ2 = 1/5.
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image ground truth result

Figure 5.15: Results for dataset city houses with balconies, using weights λ1 = λ2 = 1/5. Colours as

given in Figure 5.12.
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Table 5.1: Confusion matrices and confidence regions for object based evaluation. Left column:

Confusion matrices given by the total number of correct and false detected objects per dataset. Right

column: Confidence regions (in [%]) with lower bound, mean, and upper bound of the according entry

in the confusion matrix, assuming a week Dirichlet prior.

(a) Basel old town

prediction

bg win entr

tr
u
th

bg 0 0 0

win 2 49 0

entr 0 0 6

confidence region

background window entrance

22.64 < 98.06 < 100.00 0.00 < 0.97 < 59.50 0.00 < 0.97 < 59.50

0.21 < 3.86 < 13.71 86.25 < 96.12 < 99.79 0.00 < 0.02 < 1.07

0.00 < 0.14 < 8.16 0.00 < 0.14 < 8.16 86.67 < 99.72 < 100.00

(b) Basel row houses

prediction

bg win entr

tr
u
th

bg 0 0 0

win 0 34 0

entr 0 0 11

confidence region

background window entrance

22.64 < 98.06 < 100.00 0.00 < 0.97 < 59.50 0.00 < 0.97 < 59.50

0.00 < 0.03 < 1.60 97.33 < 99.94 < 100.00 0.00 < 0.03 < 1.60

0.00 < 0.08 < 4.71 0.00 < 0.08 < 4.71 92.21 < 99.83 < 100.00

(c) City houses

prediction

bg win balc

tr
u
th

bg 0 5 0

win 6 146 0

balc 0 3 40

confidence region

background window balcony

0.11 < 16.75 < 65.33 34.46 < 83.08 < 99.89 0.00 < 0.17 < 9.56

1.03 < 3.93 < 9.04 90.95 < 96.07 < 98.97 0.00 < 0.01 < 0.36

0.00 < 0.02 < 1.27 0.81 < 6.84 < 19.85 80.12 < 93.14 < 99.19

Table 5.2: Mean and standard deviation of parameter differences of detected objects with respect to

ground truth, in [cm] in object space.

x (a) Basel old town (b) Basel row houses (c) City houses

∆̂x 5.21± 14.15 1.97± 22.36 3.33± 12.53

∆̂y −11.85± 18.18 −3.96± 10.27 −6.49± 11.76

∆̂w −9.37± 22.80 4.65± 24.86 −7.15± 19.57

∆̂h 13.35± 39.49 10.19± 23.28 13.57± 23.72

5.5.3.1 Qualitative evaluation

As we aim at an accurate detection of facade objects, we provide a qualitative evaluation in Table 5.1.

The left column of Table 5.1 contains confusion matrices which compare predicted and true class for

each object and all images of the according dataset, given as total numbers of objects. Thereby, we

take into account all detected objects which overlap with ground truth objects by at least 50%. If

a detected object does not overlap with any ground truth object, we match it to the ground truths

background class, we may say it is a false positive. If a ground truth object does not overlap to any

detected object, we have a missing detection and we virtually count it as detected background object.

Taking all correctly detected objects into account, we also provide mean differences to ground truth

objects and according standard deviations, for the objects parametres, in Table 5.2.

We also would like to give confidence information according the confusion matrices. But, we have a

small sample sizes and did not evaluate the experiments several time; therefore, we can not give mean

values and standard deviations for these numbers. Due to the small sample size, it may happen that

we observe no object at all for one class. Therefore, we can not normalize each row by the number

of samples per row, to get a frequentist estimate of probabilities. However, we seek on a prediction

of probabilities and confidence regions for these numbers. In the following we describe a Bayesian
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estimate of probabilities and confidence regions for such confusion matrices.

A Bayesian Estimate for Confusion Matrices Probabilities. Let us take one row

yi = [yi,1 . . . yi,j . . . yi,C ] of the confusion matrix, representing the numbers of ground truth

objects of class i ∈ {1 . . . C} predicted to belong to class j ∈ {1 . . . C}. To avoid overloading the

notation, we leave out i in the following.

The numbers y are Multinomial distributed M(τ ), with parameters τ = [τ1 . . . τC ] , τj > 0, giving

the probability of each class, such that
∑C

j=1 τj = 1. In order to get an estimate of probabilities

for each entry of the confusion matrix, we set up a Bayes estimate, assuming a week prior on the

parameters τ of the Multinomial distribution. The conjugate prior of the Multinomial is the Dirichlet

distribution D(α) which is defined on the C − 1 simplex, with parameters αj , j = 1 . . . C, which we

call concentration parameters and which must not sum to 1. Multiplying likelihood and conjugate

prior, the posterior is again Dirichlet

D(α̂ | y) = M(y | τ )D(τ ) , (5.27)

where the parameters are easily updated by

α̂ = τ + y , (5.28)

without explicitly estimating the right hand side of (5.27). We assume the prior to have parameters

τj =

{
1 if j = i

0.01 otherwise ,
(5.29)

thus, a large prior on the number of predictions for the true class, and a small prior on the other

classes. The mean of the posterior is given by

µj =
α̂j

C∑
c=1

α̂c

. (5.30)

Estimating the variance of the Dirichlets pdf is not sufficient to provide confidence regions, due

to the non-symmetry. On the other hand, estimating confidence regions for a Dirichlet distribution

is not trivial. Instead, we use the fact that the the marginal distribution of the Dirichlet is the Beta

distribution B(a, b) with parameters a = αj and b = A− αj , with A =
∑

c αc. Therefrom, we provide

confidence regions for each value yj given by its marginal Beta distribution B(αj , A− αj), which is a

one dimensional distribution for which we easily find the lower and upper bound, ylb
j and yub

j , such that∫ ylb
j

0

B(y | a, b) dy =

∫ 1

yub
j

B(y | a, b) dy =
β

2
, (5.31)

using β = 1− S with confidence value S = 0.99.

Confidence regions which we evaluate using this procedure, are shown in Table 5.1. Classes with

100% true positive detection rate, actually get a tight confidence region near 100%, e.g., bottom right

entry in (a) and (b). While ground truth classes with zero predictions, e.g., top left in (a) and (b) get

confidence regions which represent the chosen Dirichlet prior.

5.5.3.2 Discussion

We have seen exemplary results of our facade image interpretation procedure in Figures 5.13 to 5.15.

Evaluation of the whole datasets in terms of confusion matrices and their confidence regions are given

in Table 5.1. Finally, accuracy of detected objects is given in Table 5.2.

For all shown samples from dataset Basel old town and Basel row houses, the detection of facade

objects is complete; thus, we do not miss any object, except few small windows, which is stressed by
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the confusion matrices, Table 5.1 (a) and (b). Even in case of occlusion, the prior terms support the

detection of partially hidden objects, cf. Figure 5.14, top and bottom row. We yield detection rates

between 92% and 96% for windows and 100% for entrances.

The dataset city houses with balconies is more challenging, cf. Figure 5.15. The confusion matrix,

Table 5.1 (c), shows more false detections and missing objects, respectively. We yield detection rates of

96% and 93% for windows and balconies, respectively. We miss some windows which, due to protrusion

of balconies and perspective distortion, overlap with bounding boxes of neighbouring balconies. As our

energy is designed to prevent overlapping objects, the process at equilibrium does not accept these

object proposals, e.g., Figure 5.15 top row. Further, we miss some windows or do not get their exact

outline. Both might be explained by the loose structure of neighbouring objects. For example, the

height of windows is wrongly detected if they do not have horizontally neighboured windows, whose

height supports them, cf. Figure 5.15 bottom row. The same holds for two missing windows at 3rd

row of Figure 5.15. Their appearance differs from common windows of this dataset, thus, their data

energy is weak, and their existence is not supported by vertically neighboured windows.

These effects show that the energy should take into account global neighbourhood relations. The

pairwise energy term we use, takes into account objects which are directly adjacent. In this dataset,

we may argue that the regular window grid is disturbed by balconies in between. Thus, we should

model the global layout of each individual class, which is not the case in our model.

In order to make evaluation of accuracy comparable between all images and data sets, we measure

differences of outline of detected objects from outline of ground truth objects with respect to the

images scale, thus, in cm in object space. Mean values and standard deviations are given in Table 5.2.

Averaging over all data sets, we observe a mean difference from outline of ground truth objects of

about 2 cm and 11 cm in position, and 5 cm and 13 cm in size. However, standard deviations are

larger than the mean values for all parameters. Therefore, we claim to perform object detection with

an accuracy of 15 cm in position and 24 cm in size. Related to the ground sampling distances of about

1 pixel per cm and the usage of single view images these are reasonable results.

5.5.3.3 Failure Cases Through Varying Parameters or Local Minima

During our experiments, when varying the parameters for simulated annealing, sometimes, the process

convergences to local minima. Figure 5.16 shows some of these results.

The top row demonstrates the power of the prior energy in case of sparse object distribution. In all

these failure cases, the windows are almost perfectly aligned or of same height or width, respectively,

but they do not meet the true windows. Figure 5.16, bottom, shows that the prior energy sometimes

hallucinates an object, e.g., a window instead of wall, two windows instead of an entrance, or a balcony

instead of a window. In theses cases, the data term does not hinder the result to be dominated by the

learned structure of typical facades.

Figure 5.17 demonstrates the relevance of the prior Unum. If we set the weight λ3 = 0, thus, ignoring

Unum, the regular structure of window grids and their strong data term overvotes the existence of

balconies or single entrances. We observed in our experiments that the data energy of minor classes,

i.e. entrances and balconies, is always inferior to those of windows. Therefore, the missing prior Unum

leads to more accepted window proposals. On the other hand, the strong structure of window grids

compared to the loose structure of window - balcony grids, results in lower energies in the pairwise

prior term, too.
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Figure 5.16: Local minima. Through varying the parameters of simulated annealing, the optimiser

sometimes converges to local minima.
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Figure 5.17: Influence of the prior on the number of objects Unum: If we set the weight λ3 = 0, thus,

ignoring the prior on the number of objects per class, the regular structure of window grids overvotes

the existence of single entrances or balconies.
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5.6 Summary

In this chapter, we proposed a novel method for facade image interpretation based on a marked point

process, combining bottom-up evidence, given by an object classifier, and prior knowledge, about

typical configurations of facade objects, from top-down. We represented facade objects by a simplified

rectangular object model and presented an energy model which evaluates the agreement of a proposed

configuration with the given image and the learned statistics about typical configurations. Due to the

learned prior energies, our model is almost free of tunable parameters, in contrast to other approaches,

dealing with marked point processes. We showed promising results and provided a qualitative evaluation

which demonstrated the capability of complete and accurate detection of facade objects.

However, we are not competitive to state-of-the-art results, e.g., Teboul et al. (2010) in terms of

complexity. In contrast to them we deal with few classes per image. We are aware on the weakness of

our evaluation: We proved our approach on few datasets with small sample size. Their appearance, as

well as structure of facade objects, are homogeneous within each dataset. Further, the evaluation by

leave-one-out-crossvalidation might by too optimistic, due to the homogeneity of the datasets. However,

as soon as more training data are available and the procedures are parallelised for GPU processing, we

may evaluate more data and may learn the remaining weights from data, e.g., by cross validation.

Nevertheless, compared to grammar based approaches, we are more flexible in terms of underlying

structure of facade objects and even able to deal with very sparse structure. We believe that we

prospectively may overcome the limitations of grammar based approaches, which have to be designed

individually for each type of facade and are dedicated for large, regularly structured types of facades,

such as Hausmanian, cf. Teboul et al. (2010).
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CHAPTER 6

Conclusion

6.1 Summary

The goal of this theses was to develop and evaluate a scheme for interpreting facade images by

combining evidence from bottom-up and prior knowledge from top-down. We aimed at the accurate

detection and description of relevant facade objects from single rectified facade images.

Our approach is dedicated to building facades, characterised by architectural principles as equally

sized or alignment of neighbouring facade objects, symmetry within and between facade objects,

and topological rules, such as entrances are supposed to be near the ground level. Further, facade

objects are supposed to be characterised by straight, sometimes curved lines, in a way that they form

regular, symmetric objects. Therefore, and due to variability in appearance of facades, e.g., by lighting

conditions, color or decorations, we chose line and edge features as starting point for the interpretation

from bottom-up.

In a three-step procedure we extracted straight lines, circular and elliptical arc segments from

images. From these we generated pairs of adjacent line segments and learned shapelets as representative

pairs of adjacent line segments, in order to use them in a bag of words approach for object detection.

Finally, at high-level, we proposed the image interpretation using a Markov marked point process.

Therefor, we used the results of object detection and combined them with prior knowledge about

typical configurations of facade objects, which we learned from training data.

For low-level image processing we presented a line simplification approach which approximates

given pixel-chains by a sequence of lines, circular and elliptical arcs. This, again, was designed as a

two-step procedure. For pre-segmentation we proposed an adaption to Douglas-Peucker’s algorithm for

the use of circles instead of straight lines. For further simplification we merged neighbouring segments

due to their agreement to a joint geometric model in terms of description length.

In our experiments, we showed that the new pre-segmentation correctly identifies arc segments and

especially their breakpoints. We improved the standard algorithm in terms of reducing the number of

breakpoints of a given polygon, while preserving the geometry. We further showed that the merging

step correctly identified elliptical arcs and further reduces the number of segments of most given

pixel-chains. We tested the algorithm on several images with comparable good or even better results,

referring to a state-of-the-art algorithm.

At mid-level we used the results of detecting line, circle, and ellipse segments and generated pairs
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of adjacent line segments as image features. We proposed to learn which of them are most dominant

for the description of facade objects and called their representatives shapelets. We showed how to

extract pairs of adjacent line segments from images, how to describe them, and proposed a distance

between pairs of adjacent line segments. Using the descriptor and the proposed distance, we cluster

pairs of adjacent line segments to derive the shapelets.

Further, we proposed to apply a bag of words approach for the classification of facade objects,

using shapelets as words of the bag of words codebook. Therefor, we proposed to use the histogram

of shapelets as feature vector for classification, whereby, we incorporated a rough spatial layout by

splitting the image patch into several tiles, from which the overall feature vector is given by the

concatenated histogram of shapelets of all tiles.

In our experiments we examined the performance of the proposed features and classification

procedure on our target object classes, thus, several types of facade objects. We reached a reasonable

classification performance on a challenging dataset including intra-class variations, clutter, and scale

changes. We yield an average class accuracy of 88%. Thereby, arc-type windows performed best,

they were correctly classified up to 93% accuracy, which proved the utility of elliptical and circular

arc segments. In contrast, rectangular windows, due to their large variability, were more challenging

and were confused with other facade elements. They were correctly classified with 81% accuracy.

For balconies we yielded a classification performance of up to 88% true positive rate. Which we

explained by characteristic shapelets which code the projected 3D structure, mapped to the image

plane and characterised by the perspective projection of 3D objects. The classification of entrances

yielded an accuracy of 87%, they were mostly confused with balconies, which we predicted to avoid by

incorporating prior knowledge from top-down.

Finally, combining bottom-up evidence given by the object classifier that uses learned shapelets,

and prior knowledge about typical configurations of facade objects, from top-down, we proposed

the facade image interpretation based on a Markov marked point process. Therefor, we used an

energy model which evaluates the agreement of a proposed configuration with the given image and the

learned statistics about typical configurations. We proposed to learn prior knowledge about typical

configurations of facade objects from training data. For this, we collected statistics about objects

geometry, i.e. position, width, and height, and about pairwise neighbourhood relations as alignment,

size difference, distance, and intersection. Therefore, in contrast to existing approaches for facade

image interpretation, we avoid predefining and fix sets of rules. Due to the learned prior energies, the

proposed model is almost free of tunable parameters.

In our experiments we demonstrated the capability of complete and accurate detection of facade

objects. We yielded object detection rates up to 100% for windows and entrances. For more difficult

data sets we still yielded detection rates of 96% for window and 93% for balconies. For the estimated

parameters we provided an accuracy of 15 cm in position and 25 cm in size, regarding the object space,

which is reasonable related to the ground sampling distances of about 1 pixel per cm and the usage of

single view images.

6.2 Discussion

Our final results showed that we are able to perform facade image interpretation providing a complete

and accurate detection of target objects. We successfully proved the concept of combining bottom-up

evidence and top-down prior knowledge using a marked point process for the task of image interpretation,

where almost all parts of the process were learned from training data, representation as well as prior

information.

However, the approach should be evaluated on more and larger datasets, showing more classes, more

variable facade structure and less homogeneous appearance. We are not competitive to state-of-the-art

results, e.g., Teboul et al. (2010) in terms of complexity. Nevertheless, compared to grammar based

approaches, we are more flexible in terms of underlying structure of facade objects and even able to
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deal with very sparse structure. We believe that we prospectively may overcome the limitations of

grammar based approaches.

Our concept of learning shapelets is closely related to the concept of deep learning which is often

synonymously used with the application of deep convolutional neural networks. But, this is just one

very popular and powerful algorithm, yielding impressive results and decreasing the error rates on well

known benchmark datasets (Russakovsky et al., 2015; Ren et al., 2015). Deep learning rather is a

collective term, describing machine learning algorithms that are based on learning multiple levels of

representation or abstraction (Bengio, 2009; LeCun et al., 2015). For example, this could mean to learn

edges in terms of oriented contrast at the very first stage. In a next level, we could learn combinations

of these edge fragments which probably form certain shapes. And so on, we could further learn even

more complex features from combinations of the level before up to an arbitrary complexity. This is

done automatically in what we call deep belief propagation networks. In that sense, we are related

to deep learning due to learning more complex features, our shapelets, from low-level features, our

line segments. But, current deep learning algorithms, such as convolutional neural networks, include

feedback steps, in terms of backpropagation, where the results of the layers are backtracked to the

given training data in order to learn the weights of the layers nodes. Further, they often use the

concept of distributed representation, which means that similar classes share parts of the description

(Bengio, 2009).

In our context, for generating bottom-up evidence, we perform the representation learning without

a feed back loop or sharing parts of the description. A full deep learning approach would go one step

further and in a feed back loop would simultaneously learn the low level structures.

6.3 Outlook

In our experiments we showed promising results, but we already pointed out some limitations. In this

section, we will collect several suggestions or questions for future work.

Enhancement of the Energy Model. Rather minor is the learning of the remaining weights from

data. Usually, such a task is solved by grid search within a cross-validation. This can be done as soon

as more training data are available and the procedures are parallelised for GPU processing.

We have shown results on simple facade structures showing few object classes. Future work should

focus on the enhancement of the energy model, in a way that it expresses the structure of more complex

facades, including more classes. Thereby, we may include more classes in the current process easily,

as long as annotated data are provided. But, we already identified the limitations of our pairwise

prior energy due to missing global constraints. Thus, a question for future work is to explore, how we

include global neighbourhood relations into the energy of a marked point process. Chai et al. (2012)

propose to combine Markov random field and marked point process, whereby, the Markov random field

is used to represent the statistics of the image appearance to provide low-level evidence. However, they

show how to communicate between Markov random fields and marked point processes. So far, Markov

random fields, marked point processes, and grammars are competitive models for high-level reasoning.

Future work should exploit the weakness and strength of these approaches and should combine them

to even more powerful methods.

Sampling of the Markov Chain. The optimization of the proposed Gibbs energy, using reversible

jump Markov chain Monte Carlo is still slow, which makes the approach not applicable for large scale

applications. Thus, a task that should be addressed in future work, is the speed up of optimization.

Verdie and Lafarge (2013) propose sampling in parallel, where a large number of perturbations is

proposed simultaneously, using a unique chain. Therefor, they exploit the Markov property by splitting

the global sampling problem into spatially independent proposals in a local neighbourhood. The

common Markov chain Monte Carlo sampling procedure performs all steps sequentially, which inherently

prohibits parallelisation. Through parallel sampling, all calculations according to each individual
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proposal can be done in parallel, which allows for parallisation as well as implementing the procedure

on GPU.

Further, the data-driven sampling mechanism could be enhanced in a way that sampling should be

guided by the learned structure of facade objects, too. Thus, structure-driven sampling, as proposed

by Wang et al. (2015).

Another topic for future research is the sampling of several Markov chains in parallel to smooth

the jointly sampled target distribution. Searching for suited strategies, for the exchange of samples

between the chains, should enhance the mixing properties of the Markov chain (Mingas and Bouganis,

2012).

Deep Learning. Convergence of the Markov Chain heavily depends on the data term, thus, evidence

given by the object classifier. Our classification scheme is not yet general enough, thus will not reach

state-of-the-art art performance in more general schemes. Provided a huge set of annotated training

data, methods from deep learning will provide more powerful and even more flexible classifiers to

support the proposed energy.

Altogether, the proposed facade image interpretation system has shown promising results. The

application of marked point processes to the task of facade image interpretation has shown its potential

as flexible model for the modelling of configurations of facade objects.

Several aspects like adapting the classification to be more flexible to a wider range of object classes,

as well as improving the energy model and its optimization procedure, due to computational time,

reveal potential for future research.
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APPENDIXA

Matrix Calculus

This section summarises results from Matrix calculus we use throughout this theses.

We use the following derivatives of squared forms of vectors x and a and a square matrix A with

respect to x.

∂xTa

∂x
=
∂aTx

∂x
= a (A.1)

∂xTAx

∂x
= (A+ AT)x (A.2)

∂|x|2

∂x
=
∂xTx

∂x
= 2x (A.3)

The derivative of a matrix A ∈ RI ×RJ with respect to another matrix B ∈ RK ×RL is defined

as the element wise derivative of each element in A with respect to each element in B

dA

dB
=

daij
dbkl

. (A.4)

This can be expressed differently using the vec operator

dA

dB
=

dvecA

dvecB
. (A.5)

Whereby, the vec(·) operator produces a vector a from matrix A by column-wise taking its elements

a =



a11
...

aI1
a21
...

aIJ


= vec

 a11 . . . a1J
... · · ·

...

aI1 . . . aIJ

 . (A.6)

When dealing with symmetric matrices, we use the vech(·) operator, which produces a vector c from a
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square matrix C ∈ RN ×RN , by column-wise taking its lower triangle elements

c =



c11
...

cN1

c22
...

cN2

c33
...

cNN


= vech


c11 . . . 0 0

c21 c22 . . . 0
... · · ·

...

cN1 cN2 . . . cNN

 = SNvecC , (A.7)

where SN is a matrix containing only 0 and one 1 per row, such that it realises (A.7), e.g.,

S2 =

 1 0 0 0

0 1 0 0

0 0 0 1

 (A.8)

or

S3 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

 . (A.9)

From Equation (A.7) we obtain for C ∈ RN ×RN

dvechC

dvecC
= SN (A.10)

and from inversion we obtain
dvecC

dvechC
= ST

N . (A.11)

Having this relation in mind and using the identity

vec(AXB) =
(
BT ⊗A

)
vecX , (A.12)

we obtain the following useful derivatives, where again, A ∈ RI × RJ , B ∈ RK × RL and C,D ∈
RN ×RN

dAXB

dX
=

dvecAXB

dvecX
=

d(BT ⊗A)vecX

dvecX
= BT ⊗A (A.13)

dvechC

dvechD
=

dvechC

dvecC

dvecC

dvecD

dvecD

dvechD
= SN

dvecC

dvecD
ST
N = SN

dC

dD
ST
N . (A.14)
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APPENDIXB

Uncertain Line Primitives

In this section, we summarise the homogeneous representations of uncertain geometric elements we

need in Ch. 3. A detailed discussion of uncertain homogeneous points and lines can be found in

Förstner and Wrobel (2016) and Meidow et al. (2009).

B.1 Points and Straight Lines

B.1.1 Homogeneous Representations of Uncertain Points

We represent an uncertain euclidean 2D point x =
[
x, y
]T

by its mean and covariance

x ∼ N (µx,Σxx) = N
([

µx

µy

]
,

[
σ2
x σxy

σxy σ2
y

])
. (B.1)

We obtain a homogeneous representation by adding a non-stochastic homogeneous coordinate

x ∼ N (µxe ,Σxexe) = N

 µx

µy

1

 ,
 σ2

x σxy 0

σxy σ2
y 0

0 0 1

 . (B.2)

This is called the euclidean normalised point representation. When using this normalisation, we denote

the first two elements the euclidean part and the third element the homogeneous part

x =

[
x0

xh

]
. (B.3)

Sometimes we wish to normalise the coordinate vector, such that its length is 1, this is called

spherical normalisation

xs ∼ N (µxs ,Σxsxs) = N
(

µx

|µx|
, Js(µx)ΣxxJs(µx)

T

)
, (B.4)

where we obtain the covariance matrix through variance propagation using the Jacobian

Js(x)
3×3

=
∂xs

∂x
=

1

|x|

(
I 3 −

xxT

xTx

)
. (B.5)

The different representations of a point x are visualised in Figure B.1.
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At the end of any estimation or reasoning procedure, we usually want to know the euclidean

coordinates. For this we need the transformation back to the euclidean representation. Given an

uncertain homogeneous point x, with mean µx and covariance Σxx, we obtain the euclidean normalised

point by

µx =
µx0

µxh
=

[
µx

µy

]
(B.6)

and its covariance by

Σxx
2×2

= Jxx(µx)
T

2×3

Σxx
3×3

Jxx(µx)
3×2

=

[
σ2
x σxy

σxy σ2
y

]
, (B.7)

using the Jacobian

Jxx(x)
T

2×3

=
∂x

∂x
=

1

x2h
[xhI 2| − x0] . (B.8)

Both, Σxexe and Σxsxs , have rank two, which will cause problems as soon as we need an inverse

covariance matrix. We will investigate this problem later within this section. We point out that their

ellipsoids are flat.

The standard ellipsoid of Σxexe lies in the euclidean plane, which is shown by its null space

null (Σxexe) = e3 =

[
0

|xh|

]
. (B.9)

The standard ellipsoid of Σxsxs lies in the tangent plane of the unit sphere, which is shown by its null

space

null (Σxsxs) = xs . (B.10)

B.1.2 Homogeneous Representations of Uncertain Lines

To represent euclidean lines, we choose its Hessian parametres l =
[
φ, d
]T
. The uncertain euclidean

line is then represented by its mean and covariance

l ∼ N (µl,Σll) = N
([

µφ

µd

]
,

[
σ2
φ σφd

σφd σ2
d

])
. (B.11)

The euclidean normalised homogeneous line is given by

le =

 cosφ

sinφ

−d

 =

[
lh
l0

]
(B.12)

whereby, we denote the first two elements the homogeneous part and the third element the euclidean

part.

The transformation l → le is not linear; thus, the covariance matrix can be derived approximately

by variance propagation (Förstner and Wrobel, 2016). We obtain

le ∼ N (µle ,Σlele) = N

 cosµφ

sinµφ

−µd

 , J le(µl)ΣllJ le(µl)
T

 (B.13)

using the Jacobian

J le(l) =
∂le

∂l
=

 − sinφ 0

cosφ 0

0 −1

 . (B.14)

The spherical normalisation is given by

ls ∼ N (µls ,Σlsls) = N
(

µl

|µl|
, Js(µx)ΣxxJs(µx)

T

)
, (B.15)
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w

{u, v}

{x, y}1

x

xe

xs null(xT) = [s, t]

Figure B.1: Homogeneous coordinates of a point x . Left: The tangent space [s, t] at µx. Right:

Cross section across the unit sphere and the representations of a point x .

using the Jacobian given in (B.5). Again, we see that both Σlele and Σlsls have rank two. Its nullspaces

are

null (Σlele) =

 cosµφ

sinµφ

0

 =

[
µlh

0

]
(B.16)

null (Σlsls) = µs . (B.17)

When we are interested in the uncertain Hessian parametres, we need the transformation back to

the euclidean representation. Given an uncertain homogeneous line l, with mean µl and covariance Σll,

we obtain the euclidean parametres by

µl =

[
atan2(b, a)

− c√
a2+b2

]
=

[
µφ

µd

]
(B.18)

and its covariance by

Σll = J ll(µl)ΣllJ ll(µl)
T =

[
σ2
φ σφd

σφd σ2
d

]
, (B.19)

using the Jacobian evaluated at µl of l = [a, b, c]
T

Jll(l) =
∂l

∂l
=

1

s3

[
−bs as 0

ac bc −s3
]

s =
√
a2 + b2 . (B.20)

B.1.3 Reduced Homogeneous Coordinates

Representations of uncertain homogeneous elements, we have seen so far, suffer on a rank deficiency.

This will cause problems as soon as we need to inverse the covariance matrix, e.g., when estimating a

Mahalonobis distance or solving the normal equation during an adjustment procedure. To solve this,

we use reduced coordinates as given in Förstner and Wrobel (2016).

The main idea is to use spherical normalised coordinates and to represent the uncertain homogeneous

entity in the tangent space at µxs , which is the null space of µT
xs

[s, t]
3×2

= null(µT
xs) , (B.21)

which is visualised in Figure B.1. As we mentioned before, all standard ellipses, we have seen so far,

are flat such that they are located in the tangent space of their homogeneous coordinates, spanned

by the basis vectors s and t. Any random difference from the mean is then given as a 2-dimensional

random vector xr within the tangent space. Its mean is 0 and its covariance is denoted Σxrxr
.
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Assume, we want to make a small change ∆xr in the coordinates of xs or its mean value, respectively.

The updated coordinates are then

xs(∆xr) = N (µxs + [s, t]∆xr) , (B.22)

whereby, N(·) is the operator for the spherical normalisation, which includes the according variance

propagation.

Assume, we are given a tangent space [s, t] at µx and a point x near µx. Using the 3× 2 Jacobian

of the spherical normalised vector xs, with respect to the reduced coordinates xr,

Jr(x)
3×2

=
∂xs

∂xr
= null(xT) , (B.23)

we can estimate the reduced coordinates

xr
2×1

≈ Jr(µx)
T

2×3

xs

3×1
, (B.24)

which is an approximation due to the Taylor expansion. Further, we obtain the covariance of the

reduced coordinates by

Σxrxr
2×2

= Jr(µx)
T

2×3

Σxsxs
3×3

Jr(µx)
3×2

. (B.25)

Vice versa, we obtain the covariance of the spherical normalised coordinates by

Σxsxs
3×3

= Jr(µx)
3×2

Σxrxr
2×2

Jr(µx)
T

2×3

. (B.26)

For lines we have an equivalent reduced representation. A small change ∆lr in the coordinates of

ls is given by

ls(∆lr) = N (µls + J r(µls)∆lr) . (B.27)

The covariance of the reduced coordinates is given by

Σlrlr
2×2

= Jr(µl)
T

2×3

Σlsls
3×3

Jr(µl)
3×2

. (B.28)

Vice versa, we obtain the covariance of the spherical normalised coordinates by

Σlsls
3×3

= Jr(µl)
3×2

Σlrlr
2×2

Jr(µl)
T

2×3

. (B.29)

If not stated otherwise, we will represent homogeneous points and lines by its spherical normalised

coordinates and the reduced covariance; thus, a point by x : {xs,Σxrxr
} and a line by l : {ls,Σlrlr}

and sometimes skip the indices.

B.1.4 Statistically Best Fitting Line

Given N observed points X = {xn}, n = 1 . . . N , we aim at the best fitting line. The simplest way is to

solve the linear system XTl = 0, which leads to the algebraic best fitting line. Instead, we look for the

statistically best fitting line as well as its covariance. We will need this in Section 3.3, when merging

neighbouring lines based on their statistical properties. The solution can be found in (Förstner and

Wrobel, 2016, Section 9.4.2).

We assume i.i.d. coordinates of each point, sharing the same isotropic covariance xn ∼ N
(
xn, σ

2
nI 2
)
.

In (Förstner and Wrobel, 2016, Section 9.4.2) it is shown that the statistically best fitting line

passes trough the centroid of given points and that its direction is given by the principal axis of their

moment matrix. Thus, we first estimate the weighted centroid of given points by

x0 =

∑N
n=1 wnxn∑N
n=1 wn

, wn =
1

σ2
n

(B.30)
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and derive its direction from the moment matrix

M =

N∑
n=1

wn (xn − x0) (xn − x0)
T
. (B.31)

Eigenvalue decomposition of M yields the two principal axis u1 and u2 and their according eigenvalues

λ1 and λ2, assuming λ1 ≥ λ2. The direction of the line is given by u1, the eigenvector belonging to

the larger eigenvalue λ1. The eigenvector u2, belonging to the smaller eigenvalue λ2, represents the

normal vector of the sought line; thus, we obtain

l̂ =

[
u2

−u2x
T
0

]
(B.32)

as euclidean normalised line vector.

We express the theoretical uncertainty of the line in terms of the uncertainty σ2
q across the line and

the uncertainty σ2
α in the direction of the line, both viewed from its centre

σ2
q =

1∑N
n=1 wn

σ2
α =

1

λ1
. (B.33)

In (Förstner and Wrobel, 2016, Section 9.4.2) it is shown that these variances are statistically inde-

pendent. To derive the covariance matrix of the homogeneous line, we therefore introduce a fictive

line

h : {h,Σhh} =


 1

0

0

 ,
 0 0 0

0 σ2
q 0

0 0 σ2
α

 , (B.34)

which represents the y-axis with an uncertainty in its position across and in its direction, independently

from each other. Using the estimated parametres of line l̂ we move line h on l by the transformation

T =

 cosφ − sinφ x0
sinφ cosφ y0
0 0 1

−T

φ = α+
π

4
(B.35)

and obtain its homogeneous coordinates and according covariance matrix via variance propagation.

l̂ = Th (B.36)

Σl̂l̂ = TΣhhT
T . (B.37)

Of course, (B.32) and (B.36) yield the same result. But, using (B.36), together with (B.37), we obtain

the covariance information.

B.2 Representation of Ellipses

A conic is the intersection of a plane with a circular cone. This could be a hyperbola, a parabola or an

ellipse with spatial case circle. In this section, we are interested in ellipses, solely. Depending on the

application, we choose different representations for an ellipse which we introduce shortly in this section.

B.2.1 Homogeneous Representation of Ellipses.

We represent conics with the symmetric 3× 3-matrix

C =

 c11 c12 c13
c12 c22 c23
c13 c23 c33

 =

[
Chh ch0
cT0h c00

]
. (B.38)
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Figure B.2: The ellipse in parametric form is described by its centre x0, the length of major and minor

semi-axes aand b and the rotation between these (u, v)−axes and the (x, y)−coordinate system.

Any point x on the conic fulfils

xTCx = 0 . (B.39)

From (B.38) we see that C is described by 6 free parametres. Due to the homogeneous representation this

results in 5 degrees of freedom. Thus, for any representation we need 5 parametres to describe the ellipse.

To ensure the conic to be an ellipse the homogeneous part of the conic must fulfil

|Chh| > 0 . (B.40)

Thus, when forcing the conic to be an ellipse we might constrain

|Chh| = 1 . (B.41)

This is a valid choice, as the conic representation is homogeneous.

B.2.2 Polynomial Representation of Ellipses.

We may rewrite (B.39) and (B.38) to obtain an implicit polynomial formulation

C(c,y) = cT · y = a11x
2 + 2a12xy + a22y

2 + 2a13x+ 2a23y + a33 = 0 (B.42)

collecting the parametres of the conic within vector c = [c11, c12, c22, c13, c23, c33]
T and the coordinates

of the point within y = [x2, 2xy, y2, 2x, 2y, 1]T, given by an euclidean point x = [x, y]T. Again, we

have 6 parametres, which we can scale arbitrary, from which we end up with 5 degrees of freedom.

B.2.3 Parametric Representation of Ellipses.

Sometimes, we need the geometric parametres of the ellipse explicit, e.g., for plotting or for representing

an ellipse section. Figure B.2 visualises the geometric elements, we need to describe an ellipse. The

point of symmetry or the centre of the ellipse, respectively, is given by

x0 = −C−1
hhch0 , (B.43)
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using the partition of C given in (B.38). We obtain the dimensions of the ellipse and the rotation

between the semi-axis and the superior (x, y)−coordinate system by eigenvalue decomposition of the

normalised homogeneous part of the conic

Ce
hh =

−Chh

c00 − cTh0C
−1
hhch0

(B.44)

= RΛRT , (B.45)

whereby, the eigenvectors R = [u,v] define the local coordinate system of the ellipse. From the

eigenvalues we evaluate the main radii of the ellipse by

a =

√
1

λ2
b =

√
1

λ1
, (B.46)

where we assume the eigenvalues ordered, such that λ1 > λ2. Further, (B.45) leads to local (u, v)

coordinates within the ellipse [
u

v

]
= RT

([
x

y

]
−
[
x0
y0

])
. (B.47)

Within the transformed coordinate systems, coordinates of points on the ellipse are given by

u(θ) = a cos t (B.48)

v(θ) = b sin t t ∈ [0, 2π) , (B.49)

using the ellipse parametre t. Finally, the polar angle φ is given by

φ(t) = atan

(
b

a
tan(t)

)
. (B.50)

Vice versa, the ellipse parametre, given a polar angle, is given by

t(φ) = atan
(a
b
tan(φ)

)
. (B.51)

For plotting an ellipse segment for φ ∈ [φ1 . . . φ2] we obtain the coordinates in the superior

(x, y)−system by [
x(φ)

y(φ)

]
=

[
x0
y0

]
+ R

[
u(t(φ)

v(t(φ))

]
(B.52)

B.3 Representation of Circles

B.3.1 Conic Representation of Circles

A circle is a special regular conic for which Chh ∝ I 2.

To obtain the conic representation of an arbitrary circle, we may translate a circle with radius r at

the origin

C0 =

 1 0 0

0 1 0

0 0 −r2

 (B.53)

to the centre {x0, y0} using the transformation

M =

 1 0 x0
0 1 y0
0 0 1

 . (B.54)
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The transformation yields

C = M−TC0M
−1 (B.55)

=

 1 0 −x0
0 1 −y0

−x0 −y0 x20 + y20 − r2

 . (B.56)

Every point x = [x y 1]T, which fulfils xTCx = 0, lies on the circle.

Due to homogeneity we can scale every conic arbitrary, therefore, we can normalise a circle in conic

representation, such that Chh = I 2. This way, we can derive the circle parametre {x0, y0, r} easily.

B.3.2 Homogeneous Representation of Circles

The conic representation, given in last section, is over-parametrised, as the matrix C has 9 elements,

from which we need 3 parametres to describe the circle.

To derive a homogeneous representation for circles, we start from the implicit circle equation

(x− x0)
2
+ (y − y0)

2 − r2 = 0 , (B.57)

given a point x = [x y] sitting on the circle {x0, y0, r}. It is easily shown that rearranging xTCx = 0,

using x = [x y 1]T and the conic C given in (B.56), yields (B.57), too.

Rearranging (B.57) yields

1
(
x2 + y2

)
− 2x0x− 2y0y + x20 + y20 − r2 = 0 (B.58)

1

−2x0
−2y0

x20 + y20 − r2


T

·


x2 + y2

x

y

1

 = 0 (B.59)


A

B

C

D


T

·


x2 + y2

x

y

1

 = 0. (B.60)

Obviously, this is a homogeneous representation with one degree of freedom, thus, we are free to scale

the parametre vector by any scalar. Equation (B.60) describes a circles only if B2 + C2 − 4AD > 0.

Setting A = 0, Equation (B.60) allows us to represent a circle with infinite radius; thus, a line.

Al-Sharadqah and Chernov (2009) argue that (B.60) together with the constraint

B2 + C2 − 4AD = 1 (B.61)

describe circles as well as lines, which ensures a proper least squares solution.

Given A,B,C,D we obtain centre and radius of the circle using

x0 = − B

2A
y0 = − C

2A
r =

√
B2 + C2 − 4AD

4A2
. (B.62)

B.3.3 Direct Solution for Estimating the Homogeneous Circle Elements

In Section B.3.3 we summarise a direct unbiased solution for circle fitting as given in Al-Sharadqah and

Chernov (2009). In this section, we give more details and motivate the resulting equations. Further-

more, we derive the covariance information of estimated parametres using implicit variance propagation .

Given a set of points xn = [xn yn]
T, n = 1 . . . N , supposed to sit on a circle, with covariance

matrices Σlnln , which we assume to be σ2
nI 2, we aim at estimating the circles parametre vector

p = [A B C D]T.
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Using the constraints

gn(xn,p) = A(x2n + y2n) +Bxn + Cyn +D = y(xn)
Tp , (B.63)

as given in (B.60), we wish to minimise the squared sum of weighted algebraic distances

Ω2(p̂) =
∑
n

g2n
σ2
gn

. (B.64)

Assuming individual variances, the denominator in (B.64) is given by variance propagation

σ2
gn = fT

nΣlnlnfn , (B.65)

using the Jacobian

fT
n =

∂gn
∂yn

∂yn

∂xn

∣∣∣∣
xn=x̂n

(B.66)

= pT


2x̂n 2ŷn
1 0

0 1

0 0

 (B.67)

= [ 2x̂nA+B | 2ŷnA+ C ] , (B.68)

where we used y(xn) = yn to shorten the notation. This yields

σ2
gn = σ2

n

(
(2x̂nA+B)

2
+ (2ŷnA+ C)

2
)

(B.69)

= σ2
n4A

(
x̂2nA+ x̂nB +

B2

4A
+ ŷ2nA+ ŷnC +

C2

4A

)
(B.70)

= σ2
n4A

A (x̂2n + ŷ2n
)
+Bx̂n + Cŷn +D︸ ︷︷ ︸

=0

+
B2

4A
+
C2

4A
−D

 (B.71)

= σ2
n

(
B2 + C2 − 4AD

)
. (B.72)

Instead of using (B.72), Taubin (1991) suggested to replace the individual variances σ2
gn in (B.64) by

their mean variance

σ2
gn =

1

N

∑
N

σ2
gn . (B.73)

Using (B.65) together with (B.67) yields

σ2
gn =

1

N

∑
n

σ2
np̂

T


4x̂2n + 4ŷ2n 2x̂n 2ŷn 0

2x̂n 1 0 0

2ŷn 0 1 0

0 0 0 0

 p̂ . (B.74)

Altogether the function we wish to minimise is given by

Ω2(p̂) =
∑
n

g2n(x̂n, p̂)

σ2
gn

=
p̂TM p̂

p̂TN p̂
, (B.75)

using

M =
∑
n

ŷnŷ
T
n

σ2
n

=


z2 xz yz z

xz x2 xy x

yz xy y2 y

z x y 1

 (B.76)
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where we introduced the weighted mean values

z =
1

N

∑
n

x̂2n + ŷ2n
σ2
n

x =
1

N

∑
n

x̂n
σ2
n

y =
1

N

∑
n

ŷn
σ2
n

. (B.77)

The matrix N depends on the choice of the variances σ2
n. When using (B.72), which was supposed by

Pratt (1987), we obtain

NP =


0 0 0 −2

0 1 0 0

0 0 1 0

−2 0 0 0

 . (B.78)

But, when using the mean variance instead, as supposed by Taubin (1991), we obtain

NT =


4z 2x 2y 0

2x 1 0 0

2y 0 1 0

0 0 0 0

 . (B.79)

Furthermore, Al-Sharadqah and Chernov (2009) proposed to used

N = 2NT − NP (B.80)

and showed that this choice leads to an unbiased solution.

Finally, the optimal parametres are given by minimising (B.75) which leads to the generalised

eigenvalue problem

Mp = λNp . (B.81)

The estimated parametres p̂ =
[
Â B̂ Ĉ D̂

]T
are given by the eigenvector belonging to the smallest

eigenvector.

The solution given in this section is based on an algebraic minimisation. We do not estimate

adjusted observations nor the jacobians we usually use within the adjustment procedure. There-

fore, we are not able to give the covariance of the estimated parametres directly. Instead we

follow Förstner and Wrobel (2016, Section 3.6.2.5) and derive the covariance matrix of the circles

parametres [x0, y0, r] directly from observed points. To do so, we assume the observations without out-

lier; thus, accurate enough to assume the estimated parametres a good approximation of the true values.

First, we obtain centre (x̂0, ŷ0) and radius r̂ using (B.62). Given the implicit circle equations

gn(xn, p̂) = (xn − x̂0)
2
+ (yn − ŷ0)

2 − r̂2 = 0 , (B.82)

using the classical circle parametres p̂ = [x̂0 ŷ0 r̂], we obtain the covariance of estimated parametres

by implicit variance propagation, cf. (Förstner and Wrobel, 2016, Section 1.7.5)

Σpp = B−1AΣllA
TB−T , (B.83)

using the jacobians

A =
[
aT
n

]
=

[
∂gn(xn,p)

∂x

∣∣∣∣
p=p̂

]
(B.84)

B =
[
bTn
]
=

[
∂gn(xn,p)

∂p

∣∣∣∣
p=p̂

]
. (B.85)
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The first one is given by

A =

 2(x1 − x̂0) 2(y1 − ŷ0) 0 0 0 0
...

...
. . .

. . .
...

...

0 0 0 0 2(xN − x̂0) 2(yN − ŷ0)

 , (B.86)

from which we obtain for the inner part of (B.83)

AΣllA
T = 4

 σ2
1

(
(x1 − x̂0)

2 + (y1 − ŷ0)
2
)

0 0
...

. . .
...

0 0 σ2
N

(
(xN − x̂0)

2 + (yN − ŷ0)
2
)


= 4r̂2 diag
(
σ2
n

)
(B.87)

= 4r̂2W−1 . (B.88)

The second jacobian is given by

B =

 −2(x1 − x̂0) −2(y1 − ŷ0) −2r̂
...

...
...

−2(xN − x̂0) −2(yN − ŷ0) −2r̂

 (B.89)

= −2r̂


x1−x̂0

r̂
y1−ŷ0

r̂ 1
...

...
...

xN−x̂0

r̂
yN−ŷ0

r̂ 1

 (B.90)

= −2r̂

 c1 s1 1
...

...
...

cN sN 1

 (B.91)

= −2r̂B̄ , (B.92)

where we used sines sn and cosines cn of the directions of given points to the circles center

sn =
xn − x̂0

r̂
cn =

yn − ŷ0
r̂

. (B.93)

Using (B.88) and (B.92), we rewrite (B.83)

Σpp = B̄
−1

W−1B̄
−T

=
(
B̄

T
WB̄

)−1

=

 c2 cs c

cs s2 s

c s w

−1

(B.94)

with abbreviations

s =
∑
n

sn
σ2
n

c =
∑
n

cn
σ2
n

cs =
∑
n

cnsn
σ2
n

c2 =
∑
n

c2n
σ2
n

s2 =
∑
n

s2n
σ2
n

w =
∑
n

1

σ2
n

. (B.95)

From the residuals

v̂n = r̂ − |xn − x̂0| , (B.96)

we obtain the estimated variance factor

σ̂0
2
=

1

N − 3

∑
n

v̂n
σ2
n

. (B.97)
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APPENDIXC

Optimisation

C.1 Golden section search

In Section 2.1.4.2 we used golden section search to find the minimum of an one-dimensional function.

In this section, we give some details about this optimisation technique.

Golden section search was introduced in 1953 by Kiefer. A good introduction can be found in

(Press et al., 2007, chap.10). This chapter includes an embedding into the whole area of optimisation

techniques.

Basically the method determines the extremum of an unimodal, univariate function by sequentially

dividing the search range into smaller values. We do not need the derivative, but we must be able to

evaluate the function itself at every point.

Figure C.1 visualises the principle. Given a function f(x), we wish to minimise, we start from a

given range [xl, xu], the lower and upper bound of the optimum x̂.

We introduce two interior points x1 = xl + d and x2 = xu − d. In each iteration, one of the two

interior points is selected as new bound:

• If f(x1) < f(x2) we choose x2 to be the new xl and x1 to be the new x2.

• If f(x2) < f(x1) we choose x1 to be the new xu and x2 to be the new x1.

xl xux1x2

d
d

xl xux1x2

f(x2)

f(x1)

xl xux1x2

f(x2)

f(x1)

d

Figure C.1: Golden section search. Left: Given the upper and lower bound xu und xl, the interior

points are given by d = (φ− 1)(xu − xl) using the golden number φ = 1.618. Middle: Depending on

the function values of interior points, the upper or lower bound are shifted to an interior point. Right:

The process iterates until convergence.
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f(x)

x

true min.

f(xl)

f(x1)

f(xu)

parabolic

approximation

xl x1 xu

approx.

of min.

x1x′1

Figure C.2: Parabolic interpolation. We improve the location of x1 by getting the minimum of the

parabola through {xl, x1, xu}.

The choice of d is such that the ratio of intervals

x2 − xl
x1 − x2

=
xu − xl
x1 − x2

= φ (C.1)

holds the golden ratio

φ =
1 +

√
5

2
= 1.680133. (C.2)

Thus, d is given by

d = (φ− 1) · (xu − xl). (C.3)

The termination condition is given in (Press et al., 2007, chap.10) with

|xu − xl| < τ(|x2|+ |x1|) , (C.4)

where τ is the assumed tolerance of |x̂|. They recommend τ =
√
ε, where ε is the computational

precision of f(x). If (C.4) holds the optimum is given by

x̂ =
xl + xu

2
. (C.5)

To speed up convergence, we may include a parabolic interpolation. The principle is visualised in

Figure C.2. Assume x1 to be the lowest point we have seen so far. We can find a better approximation

of the minimum of the true function by fitting a parabola to three points {xl, x1, xu} and estimating

its minimum. A direct solution is given by

x′1 = x1 −
1

2

(x1 − xl)
2 [f(x1)− f(xu)]− (x1 − xu)

2 [f(x1)− f(xl)]

(x1 − xl) [f(x1)− f(xu)]− (x1 − xu) [f(x1)− f(xl)]
(C.6)

This way, we reach an improved new interior point x′1 which we may use for the next iteration of

golden section search.

Clearly, this methods fails if the points are nearly coplanar. In this case, we do not use this step.
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C.2 Gauss-Helmert model

In Section 2.1.3 we estimate the parametres of an ellipse together with their covariance information,

using a Gauss-Helmert model without constrains. In this section, we summarise the general solution of

such an Gauss-Helmert model.

Assume N observations, collected in a vector l, together with their covariance information Σll. We

look for U adjusted parametres collected in a vector x̂. Furthermore, we seek for adjusted observations

l̂ = l+ v̂ given by their residuals v̂.

Expressing the relation between observations and adjusted unknowns in G implicit constraints, the

Gauss-Helmert model is given by

g(l+ v̂, x̂) = 0 . (C.7)

If the constraints are not linear, with respect to the parametres, we need to linearise using the

Taylor expansion. We estimate corrections to the approximate values of the parametres in the linear

substitute model, leading to updated approximate values.

The linearised Gauss-Helmert model is given by

g
(
l̂a, x̂a

)
+ A∆̂x+ BT∆̂l = 0 , (C.8)

using the Jacobian of g with respect to the reduced parametres and to the observations

A
N×U

=
∂g(l,x)

∂x

∣∣∣∣
l=l̂a,x=x̂a

(C.9)

BT

N×G
=
∂g(l,x)

∂l

∣∣∣∣
l=l̂a,x=x̂a

(C.10)

evaluated at an approximate set of parametres x̂a, approximate values of l̂a and the differences between

the current estimate and the approximate values

∆̂x = x̂− x̂a (C.11)

∆̂l = l̂− l̂a . (C.12)

Given the covariance of the observations Σll and estimated residuals v̂, we wish to minimise the

weighted squared sum of residuals v̂TΣ−1
ll v̂ subject to the constraints (C.7).

The solution can be found in McGlone (2004, Section 2.2.4.3) or Niemeier (2008, chap.5)

∆̂x =

(
AT
(
BTΣllB

)−1

A

)−1

AT
(
BTΣllB

)−1

cg (C.13)

∆̂l = ΣllB
(
BTΣllB

)−1 (
cg − A∆̂x

)
(C.14)

using the contradictions

cg = BT(l̂a − l)− g(l̂a, x̂a) . (C.15)

We update parametres and observations

x̂ = x̂a + ∆̂x (C.16)

l̂ = l̂a + ∆̂l (C.17)

and iterate (C.9) to (C.17) until there is no change in the parametres any more.

After convergence, variance propagation yields the covariance of estimated parametres

Σx̂x̂ =

(
AT
(
BTΣllB

)−1

A

)−1

. (C.18)
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The variance coefficient for the observations is given by

σ̂2
0 =

v̂TΣ−1
ll v̂

R
(C.19)

with redundancy R = G− U .

C.3 Derivation of Green’s Ratio

In Section 2.6.6 we introduce the algorithm for sampling unnormalised marked point process densities.

The following section sketches the derivation of Green’s Ratio which shows up as acceptance ratio in

the marked point process sampling algorithm 2.5, page 86.

We set up a Markov chain in a state space S = ∪iSi, which is the union of several sub state spaces

Si that are potentially of different dimensionality. Greens method allow the samples of the chain to

jump between these different subspaces.

Instead of comparing densities within the acceptance ratio, we have to be more formal in a way

that we compare distributions P (dx) = P (x ∈ dx) under an appropriate measure of volume (Andrieu

et al., 2003).

First, we recap from probability theory the change of variable under different distributions. Assume

a random variable x with continuous density px(x). If we express a new random variable y as function

y = h (x), whereby h is a strictly increasing, continuously differentiable function with inverse x = g
(
y
)
.

Then

py(y) = px(g(y))

∣∣∣∣∂g(y)∂y

∣∣∣∣ (C.20)

Obviously, observations in the range [x, x+∆x] will be transformed by h into [y, y +∆y] as long as

∆x is small. Thus, px(x)∆x ≈ py(y)∆y and assuming both to be differentiable px(x)dx = py(y)dy.

Using (C.20), we obtain

py(y)dy =

∣∣∣∣∂g(y)∂y

∣∣∣∣ px(x)dx . (C.21)

The first term contains the partial derivatives of the functional with respect to involved variables, thus,

the Jacobian. Please note dy and dx, which realises the underlying measures of according distributions.

We construct a reversible Markov chain on a general state space S with invariant distribution P .

The detailed balance condition, cf. Equation (2.134) page 81, reads as∫
(x,x′)∈A,B

P (dx)Q(dx′ | x) =
∫
(x,x′)∈A,B

P (dx′)Q(dx | x′) (C.22)

for all Borel sets A ,B ⊂ S . Drawing a new state x′ from a proposal measure Q(dx’|x), i.e. a proposal

distribution, the proposition kernel, i.e. the transition probability, cf. Equation (2.138) page 82, is

given by

Q(dx′|x) = Q(dx′ | x)A(x′ | x) . (C.23)

Thus ∫
(x,x′)∈A,B

P (dx)Q(dx′ | x)A(x′|x) =
∫
(x,x′)∈A,B

P (dx′)Q(dx | x′)A(x|x′) . (C.24)

Green (1995) showed that P (dx)Q(dx′ | x) is dominated by a symmetric measure µ on S × S . We call

its Radon-Nikodym derivative with respect to µ; thus, its density, f , and rewrite the detailed balance

equation ∫
(x,x′)∈A,B

f(x′ | x)A(x′|x)µ(dx, dx′) =
∫
(x,x′)∈A,B

f(x | x′)A(x|x′)µ(dx′,dx) (C.25)
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from which we see that the acceptance probability is given by

A(x′|x) = min

(
1,
f(x | x′)
f(x′ | x)

)
= min

(
1,
p(x′)q(x | x′)
p(x)q(x′ | x)

)
(C.26)

as expected.

In the following, we take into account the trans-dimensional case. Suppose S ⊂ Rd and p to be a

density with respect to a d-dimensional Lebesgue measure. We wish to draw a sample from S ′ ⊂ Rd′
.

Green (1995) proposed to overcome the dimensional jump by drawing auxiliary variables u from a joint

density g, from which the proposal x′ is given by the differentiable and invertible function x′ = φ(x, u),

which is a mapping φ : Rd ×Rr → Rd′
.

We rewrite the detailed balance equation∫
(x,x′)∈A,B

p(x)g(u)A(x′ | x) dx du =

∫
(x,x′)∈A,B

p(x′)g′(u′)A(x | x′) dx′ du′ , (C.27)

where we assume u′ ∼ g′ and the existence of the inverse mapping

x = φ−1(x′, u′), φ−1 : Rd′
×Rr′ → Rd .

Due to the change of variables, the product measures on both sides are related by

dx′ du′ =

∣∣∣∣∂φ−1(x′, u′)

∂(x, u)

∣∣∣∣ dx du . (C.28)

Again, noting the symmetry of the product measures (dx du) and (dx′ du′) this yields

p(x)g(u)A(x′ | x) = p(x′)g′(u′)A(x | x′)
∣∣∣∣∂φ−1(x′, u′)

∂(x, u)

∣∣∣∣ . (C.29)

And we see that detailed balance holds if the acceptance probability is given by

A(x′|x) = min

(
1,
p(x′)

p(x)

g(u′)

g(u)

∣∣∣∣∂(x′, u′)∂(x, u)

∣∣∣∣) . (C.30)

Please note that the dimensionality of variables here remains invisible. As long as the mapping

and its inverse is a diffeomorphism, dimensions of x and x′ might be different. It requires that

dimension-matching holds; thus, d+ r = d′ + r′. The symbol p(x) remains the same independent of

the current subspace.

Up to now, we omit the case of using a mixture of kernels as it is typically used to traverse the

whole state space. But, this is straight forward and already given in Section 2.6.3. Here we shortly

recap the result. Given a set of m = 1 . . .M possible moves at a certain state x of the chain. The

complete transition kernel then is given by summing over all move types

Q(B | x) =
M∑

m=1

∫
x′∈B

Qm(dx′ | x)A(x′ | x) . (C.31)

Each move is chosen with probability jm(x) given the chain is at x. Accordingly, auxiliary variables

u are drawn from densities gm. Then the final expression for the acceptance probability of rjMCMC

using a mixture of kernels is given by

Am(x′ | x) = min

(
1,
p(x′)

p(x)

jm(x′)

jm(x)

g′m(u′)

gm(u)

∣∣∣∣∂(x′, u′)∂(x, u)

∣∣∣∣) (C.32)

as stated in (2.149).
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C.3.1 Derivation of Green’s Ratio for Marked Point Sampling

The generic point process sampler algorithm is given in Algorithm 2.5, which is equivalent to Hasting’s

and Green’s Algorithm 2.3. Having M different moves, we take the proposition kernel of the Markov

chain as a mixture of m = 1 . . .M proposition distributions, each having a probability jm(X ) to choose

move type m being at X . Depending on the chosen kernel we evaluate Green’s ratio in Algorithm 2.5

line 4, formally given by

Rm (X ,Y ) =
F (dY ) Qm (dX | Y )

F (dX ) Qm (dY | X )
(C.33)

Ortner et al. (2003) showed that F (dX )Qm (dY | X ) is dominated by a symmetric measure ξ(dX ,dY ).

Which yield the following formulations for Green’s ratio for different move types. Therefore, to clarify

the notion, we will denote the move types not by numbers, but by letters. We will use m ∈ {b, d, nj},
standing for birth, death, and non jumping moves.

C.3.1.1 Birth and Death

In case of birth, we create a new object x ∼ Qb =
µ(dx)
µ(S) and propose Y = X ∪ x. Using the definition

of the point process’ distribution F (dX ) = f (X )πµ (dX ), we obtain

F (dX )Qb (dY | X ) = f (X )πµ (dX ) jb (X )
µ(dx)

µ(S)

= f (X ) jb (X )
1

µ(S)
ξ(dX ,dY ) , (C.34)

using

ξ(dX ,dY ) = πµ (dX )µ(dx) . (C.35)

In case of death, we delete an object x ∈ X and propose Y = X \ x

F (dX )Qd (dY | X ) = f (X )πµ (dX ) jd (X )
1

N (X )

= f (X ) jd (X )
1

N (X )
ξ(dX ,dY ) , (C.36)

using

ξ(dX ,dY ) = πµ (dX ) . (C.37)

Using (C.34) and (C.36), (C.33) yields in case of birth

Rb (X ,Y ) =
F (dY )Qd (dX | Y )

F (dX )Qb (dY | X )

=
f (Y ) jd (Y )µ(S) ξ (dX ,dY )

f (X ) jb (X )N (Y ) ξ(dX ,dY )

=
jd (Y )

jb (X )

f (Y )

f (X )

µ(S)
N (Y )

(C.38)

and in case of death

Rd (X ,Y ) =
F (dX )Qb (dY | X )

F (dY )Qd (dX | Y )

=
f (Y ) jb (Y )N (X ) ξ (dX ,dY )

f (X ) jd (X )µ(S) ξ(dX ,dY )

=
jb (Y )

jd (X )

f (Y )

f (X )

N (X )

µ(S)
. (C.39)
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C.3.1.2 Non Jumping Transformations

With this type of moves, we randomly perturb the marks of an existing object. To do so we uniformly

select an object x ∈ X and throw random numbers u ∼ Z(X ,u) according a suitable distribution. Given

a function φ : y = φ(x, u) which transforms the object we propose Y = X \x∪ y. We will detail these

moves in Section 5.3.

We construct the transformation φ such that the inverse transformation x = φ−1(y,u) exist and

is as possible as φ is, which ensures reversibility. Thus, if the translation and its inverse are equally

probable and the according perturbation variables where thrown from the same distribution Green’s

ratio simplifies to

Rnj (X ,Y ) =
f (Y )

f (X )
, (C.40)

which was shown by Ortner et al. (2003).
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APPENDIXD

Further Results

D.1 More Results on DLCE

This section extends the results, shown in the experiments of our DLCE algorithm in Section 3.5. We

show more results on synthetic images, Figures D.1 and D.2, and on image sections showing facade

objects, Figures D.3 and D.4.

In Table D.1 to D.3 we report for all experiments the used parametres and characteristic values.

We report number of line segments and running time, depending on the processing step and used

pre-segmentation method.

In each table the second column gives the used pre-segmentation method, Douglas-Peucker (dp)

algorithm or circlePeucker (cp). The third column refers to the number of evaluated pixel-chains per

image. Fourth and fifth column give the number of line segments, using the according pre-segmentation

method, and the final number of line segments after merging. Columns six to eight report the found

numbers of each line segment type; thus, line, arc and ellipse segments. Columns nine to ten report

the running times of both steps of the procedure. Remaining columns document the parametre setting

for each individual experiment.
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Image DLCE ELSD

Figure D.1: Results of DLCE on synthetic data under different noise conditions for overlapping

geometric objects and comparison to ELSD. Intensities are 30, 80, 120 and 190 [gr] from dark circle

to light background. We increase the noise level from top to bottom σn = 0, 10, 20, 30, 40 [gr].

Colours DLCE: Orange - ellipse segment. Green - circle segment. Blue - straight line segment.

Results of ELSD: Red - ellipse segment. Blue - circle segment. Green - straight line segment.
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Image DLCE ELSD

Figure D.2: Results of DLCE on synthetic data under different noise conditions for overlapping geometric

objects and low contrast and comparison to ELSD. Intensities are 40, 90, 110 and 190 [gr] from dark

square to light background. We increase the noise level from top to bottom σn = 0, 10, 20, 30, 40 [gr].

Colours see Figure D.1.

185



Figure D.3: Balconies. Results of DLCE on facade objects. Top row: Image patches. Middle: Extracted pixel-chains. Bottom: Results of DLCE.

Colours, see Figure D.1.
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Figure D.4: Entrances. Results of DLCE on facade objects. Top row: Image patches. Middle: Extracted pixel-chains. Bottom: Results of DLCE.

Colours, see Figure D.1.
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Table D.1: Statistics of simplification. The image names refer to Figure 3.2, D.1 and D.2. Abbreviations: Methods for pre-segmentaion: cp - circlePeucker,

dp - Douglas-Peucker. Ell - ellipse segments, Min p.l. - minimal pixel length for visualisation.

Number of Time [sec.] Parametre

Image Pre.Seg. Pix.Chains Peucker Merging Lines Arcs Ell. Peucker Merging σ0[px] t Min p.l.[px] σn[gr]

synth1
cp 3 18 10 4 5 1 0.8 1.1 0.2 3 20 3

dp 3 63 11 6 4 1 0.0 3.5 0.2 3 20 3

synth1 s10
cp 3 15 9 5 3 1 1.0 1.1 0.3 3 20 10

dp 3 48 12 7 4 1 0.0 2.4 0.3 3 20 10

synth1 s20
cp 3 12 7 3 3 1 0.8 0.9 0.4 3 20 20

dp 3 40 15 10 4 1 0.0 2.0 0.4 3 20 20

synth1 s50
cp 3 13 8 4 3 1 1.0 0.9 0.5 3 20 30

dp 3 35 18 13 4 1 0.0 1.7 0.5 3 20 30

synth1 s40
cp 4 13 8 3 3 2 1.0 0.9 0.6 3 20 30

dp 4 26 14 11 2 1 0.0 1.5 0.6 3 20 30

synth2
cp 4 20 15 7 6 2 1.4 1.1 0.2 3 20 3

dp 4 57 17 11 4 2 0.1 3.1 0.2 3 20 3

synth2 s10
cp 3 20 13 7 4 2 1.7 1.4 0.3 3 20 10

dp 3 43 16 8 7 1 0.0 2.5 0.3 3 20 10

synth2 s20
cp 4 20 15 9 3 3 1.5 1.2 0.4 3 20 20

dp 4 39 16 12 3 1 0.0 2.2 0.4 3 20 20

synth2 s30
cp 2 14 8 5 1 2 1.1 1.1 0.5 3 20 30

dp 2 31 11 8 1 2 0.0 1.9 0.5 3 20 30

synth2 s40
cp 5 12 9 4 2 3 0.8 0.6 0.6 3 20 30

dp 5 28 17 10 7 0 0.0 1.3 0.6 3 20 30

synth3
cp 2 21 16 6 8 2 1.2 0.8 0.2 3 20 3

dp 2 53 15 7 6 2 0.0 2.1 0.2 3 20 3

synth3 s10
cp 1 18 14 8 5 1 1.1 0.8 0.3 3 20 10

dp 1 37 14 8 5 1 0.0 1.7 0.3 3 20 10

synth3 s20
cp 3 13 12 5 6 1 0.9 0.5 0.4 3 20 20

dp 3 31 21 15 6 0 0.0 1.1 0.4 3 20 20

synth3 s30
cp 3 12 11 5 5 1 0.8 0.4 0.5 3 20 30

dp 3 24 16 10 5 1 0.0 0.8 0.5 3 20 30

synth3 s40
cp 3 10 9 4 4 1 0.7 0.4 0.6 3 20 30

dp 3 23 19 14 5 0 0.0 0.9 0.6 3 20 30
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Table D.2: Statistics of simplification. The image names refer to Figure 3.4 and 3.5. Abbreviations, see Table D.1.

Number of Time [sec.] Parametre

Image Pre.Seg. Pix.Chains Peucker Merging Lines Arcs Ell. Peucker Merging σ0[px] t Min p.l.[px] σn[gr]

stop
cp 104 337 300 117 158 25 9.7 9.1 0.3 3 20 auto

dp 94 500 412 278 131 3 0.7 13.9 0.3 3 20 auto

stop
cp 139 754 697 252 410 35 25.1 23.3 0.2 3 30 5

dp 139 1642 1094 751 332 11 1.1 48.4 0.2 3 30 5

worm
cp 170 568 502 168 268 66 15.4 13.5 0.3 3 10 5

dp 170 1036 726 403 316 7 0.7 23.9 0.3 3 10 5

gothic window
cp 161 445 411 146 230 35 14.6 12.9 0.3 3 20 auto

dp 168 881 644 398 242 4 0.7 25.0 0.3 3 20 auto

icosah.
cp 492 1717 1600 620 891 89 54.8 49.6 0.3 3 30 3

dp 492 2812 2340 1556 765 19 2.0 80.0 0.3 3 30 3

little mole
cp 51 562 479 118 312 49 29.4 20.7 0.2 5 30 auto

dp 48 1115 784 433 345 6 0.7 34.0 0.2 5 30 auto
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Table D.3: Statistics of simplification. The image names refer to Figure 3.6, D.3 and D.4. Abbreviations, see Table D.1.

Number of Time [sec.] Parametre

Image Pre.Seg. Pix.Chains Peucker Merging Lines Arcs Ell. Peucker Merging σ0[px] t Min p.l.[px] σn[gr]

window 7115
cp 60 178 169 63 100 6 8.1 6.8 0.3 5 30 auto

dp 60 286 233 148 85 0 0.2 10.3 0.3 5 30 auto

window 188
cp 66 241 236 115 113 8 9.8 8.3 0.3 5 30 auto

dp 66 337 312 204 108 0 0.3 10.6 0.3 5 30 auto

window 15
cp 27 89 87 41 44 2 4.0 3.3 0.3 5 30 auto

dp 27 122 115 79 36 0 0.1 3.8 0.3 5 30 auto

window 164
cp 12 47 45 23 22 0 3.1 2.1 0.3 5 30 auto

dp 15 66 60 36 24 0 0.1 2.4 0.3 5 30 auto

window 2291
cp 10 27 25 13 10 2 1.1 0.9 0.3 5 30 auto

dp 10 45 35 25 10 0 0.0 1.4 0.3 5 30 auto

balcony 45
cp 74 172 162 70 78 14 4.2 4.2 0.3 5 20 auto

dp 74 258 241 162 79 0 0.2 6.0 0.3 5 20 auto

balcony 57
cp 173 462 442 206 229 7 15.4 15.1 0.3 5 30 auto

dp 173 670 613 418 194 1 0.5 19.1 0.3 5 30 auto

balcony 60
cp 247 833 795 383 394 18 26.6 24.0 0.3 5 30 auto

dp 247 1143 1082 764 318 0 0.9 30.1 0.3 5 30 auto

balcony 560
cp 75 297 291 133 152 6 8.2 7.8 0.3 5 30 auto

dp 75 404 375 245 130 0 0.3 9.9 0.3 5 30 auto

balcony 691
cp 65 194 184 84 98 2 5.7 5.6 0.3 5 30 auto

dp 65 260 249 181 68 0 0.2 6.7 0.3 5 30 auto

balcony 1026
cp 112 387 370 163 195 12 13.1 11.3 0.3 5 30 auto

dp 112 540 498 320 178 0 0.4 14.5 0.3 5 30 auto

entrance 2
cp 80 221 216 90 122 4 7.7 7.1 0.3 5 30 auto

dp 80 318 296 181 115 0 0.3 9.1 0.3 5 30 auto

entrance 14
cp 90 285 274 116 152 6 12.5 11.2 0.3 5 30 auto

dp 90 403 378 250 128 0 0.3 14.2 0.3 5 30 auto

entrance 52
cp 85 278 268 103 159 6 11.6 10.3 0.3 5 30 auto

dp 85 389 368 230 138 0 0.3 12.5 0.3 5 30 auto

entrance 99
cp 103 340 329 135 188 6 11.9 11.0 0.3 5 30 auto

dp 103 476 431 274 154 3 0.4 14.3 0.3 5 30 auto

entrance 250
cp 137 560 529 254 264 11 16.2 14.7 0.3 5 30 auto

dp 137 774 701 480 221 0 0.5 19.6 0.3 5 30 auto

entrance 283
cp 187 671 651 310 330 11 22.4 18.6 0.3 5 30 auto

dp 187 959 869 566 303 0 0.7 25.6 0.3 5 30 auto
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D.2 More Results on shapelets

In Section 4.6.2 we learn shapelets from PAS detected in training images. We evaluate the proposed

method within a cross-validation framework and show one learned codebook, as an example. In order

to complete the visualisation of results, Figures D.5 to D.8 show the codebooks, learned in the other

cross-validation runs.
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Figure D.5: Shapelets learned in crossvalidation run 1, ordered by the number of PAS belonging to the cluster. The coloured boxes mark the

codebook size for different choices of Nt. The whole set belongs to the codebook using Nt = 10. Colours: violet: Nt = 15, green: Nt = 20, blue: Nt = 30,

orange: Nt = 50.
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Figure D.6: Shapelets learned in crossvalidation run 3. For detailed description see Figure D.5.
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Figure D.7: Shapelets learned in crossvalidation run 4. For detailed description see Figure D.5.
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Figure D.8: Shapelets learned in crossvalidation run 5. For detailed description see Figure D.5.
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1.7 Results of blob detection, as shown in Jahangiri and Petrou (2009). . . . . . . . . . . . 25

1.8 Results of window detection, as shown in Tyleček and Šára (2010). . . . . . . . . . . 26
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1.14 Facade image segmentation and structure detection, as shown in Koziński et al. (2015). 28
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Günther, O. and E. Wong (1990). The Arc Tree: An Apprcximation Scheme to Represent Arbitrary

Curved Shapes. Computer Vision, Graphics and Image Processing 51, 313–337. 96

Harris, C. and M. Stephens (1988). A combined corner and edge detector. In Proc. of the 4th

Alvey Vision Conference, pp. 147–151. 64

Harris, Z. (1954). Distributional structure. Word 10 (23), 146–162. 62

Hastings, W. (1970). Monte carlo samping methods using markov chains and their applications.

Biometrika 57 (1), 97–109. 82

Jahangiri, M. and M. Petrou (2009). An attention model for extracting regions that merit identification.

In ICIP. 23, 25, 34, 197

Jampani, V., R. Gadde, and P. Gehler (2015). Efficient facade segmentation using auto-context. In

Proc. of IEEE Winter Conf. on Applications of Computer Vision (WACV), pp. 1038–1045. 34, 38

208



Ji, Q. and R. M. Haralick (1999). A Statistically Efficient Method for Ellipse Detection. In ICIP, pp.

730–734. 96

Joachims, T. (1998). Making large-scale support vector machine learning practical, Chapter Advances

in Kernel Methods - Support Vector Learning, pp. 169–184. Cambridge, MA, USA: MIT Press. 69

Jurie, F. and C. Schmid (2004). Scale-invariant shape features for recognition of object categories. In

CVPR, Volume 2, pp. II–90 – II–96 Vol.2. 92

Kadir, T. and M. Brady (2001, November). Saliency, scale and image description. IJCV 45 (2), 83–105.

64

Kiefer, J. (1953). Sequential minimax search for a maximum. Proc. Amer. Math. Soc. 4, 502–506. 55,

175

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing.

Science 220 (4598), 671–680. 87

Korc, F. and W. Förstner (2009). etrims image database for interpreting images of man-made scenes.

Technical Report TR-IGG-P-2009-01, University of Bonn, Dept. of Photogrammetry. 146
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