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Overview

In recent years advances in data collection and storage allow us to observe and analyze
many financial, economic or environmental processes with higher precision. This in turn
reveals new features of the underlying processes and creates a demand for the development
of new econometric techniques. The aim of this thesis is to tackle some of these challenges
in the filed of panel data and time series models. In particular, the first and the last
chapters contribute to the issue of testing and estimating heterogeneous panel models
with random coefficients. The second chapter discusses a generalization of the classical
linear time series models to asymmetric ones and presents a test statistic to help empirical
researchers to choose the appropriate modeling framework in this context. Finally, the
objective of the third chapter is to extend the available (nonlinear) time series techniques
on big data sets or functional data.

In more detail, Chapterl, which is joint work with Joerg Breitung and Christoph
Roling, employs the Lagrange Multiplier (LM) principle to test parameter homogeneity
across cross-section units in panel data models. The test can be seen as a generalization
of the Breusch-Pagan test against random individual effects to all regression coefficients.
While the original test procedure assumes a likelihood framework under normality, several
useful variants of the LM test are presented to allow for non-normality, heteroskedasticity
and serially correlated errors. Moreover, the tests can be conveniently computed via
simple artificial regressions. We derive the limiting distribution of the LM test and show
that if the errors are not normally distributed, the original LM test is asymptotically valid
if the number of time periods tends to infinity. A simple modification of the score statistic
yields an LM test that is robust to non-normality if the number of time periods is fixed.
Further adjustments provide versions of the LM test that are robust to heteroskedasticity
and serial correlation. We compare the local power of our tests and the statistic proposed
by Pesaran and Yamagata. The results of the Monte Carlo experiments suggest that the
LM-type test can be substantially more powerful, in particular, when the number of time
periods is small.

Chapter 2, which is joint work with Thomas Nebeling, develops a Lagrange multi-
plier test statistic and its variants to test for the null hypothesis of no asymmetric effects
of shocks on time series. In asymmetric time series models that allow for different re-

sponses to positive and negative past shocks the likelihood functions are, in general, non-

7



differentiable. By making use of the theory of generalized functions Lagrange multiplier
type tests and the resulting asymptotics are derived. The test statistics possess standard
asymptotic limiting behavior under the null hypothesis. Monte Carlo experiments illus-
trate the accuracy of the asymptotic approximation and show that conventional model
selection criteria can be used to estimate the required lag length. We provide an empirical
application to the U.S. unemployment rate.

In Chapter 3, written in collaborative work with Alexander Gleim, statistical tools
for forecasting functional times series are developed, which for example can be used to
analyze big data sets. To tackle the issue of time dependence we introduce the notion
of functional dependence through scores of the spectral representation. We investigate
the impact of time dependence thus quantified on the estimation of functional principal
components. The rate of mean squared convergence of the estimator of the covariance
operator is derived under long range dependence of the functional time series. After that,
we suggest two forecasting techniques for functional time series satisfying our measure of
time dependence and derive the asymptotic properties of their predictors. The first is the
functional autoregressive model which is commonly used to describe linear processes. As
our notion of functional dependence covers a broader class of processes we also study the
functional additive autoregressive model and construct its forecasts by using the k-nearest
neighbors approach. The accuracy of the proposed tools is verified through Monte Carlo
simulations. Empirical relevance of the theory is illustrated through an application to
electricity consumption in the Nordic countries.

In Chapter 4, which was jointly done with Joerg Breitung, three main estimation
procedures for the panel data models with heterogeneous slopes are discussed: pooling,
generalized LS and mean-group estimator. In our analysis we take an explicit account
of the statistical dependence that may exists between regressors and the heterogeneous
effects of the slopes. It is shown that under systematic slope variations: (i) pooling gives
inconsistent and highly misleading estimates, and (ii) generalized LS in general is not
consistent even in settings when N and 7' are large, (iii) while mean-group estimator
always provide consistent result at a price of higher variance. We contribute to the
literature by suggesting a simple robustified version of the pooled based on Mundlak type
corrections. This estimator provides consistent results and is asymptotically equivalent
to the mean-group estimator for large N and 7. Monte Carlo experiments confirm our
theoretical findings and show that for large N and fixed T" new estimator can be an

attractive option when compare to the competitors.



Chapter 1

LM-type Tests for Slope
Homogeneity in Panel Data Models

1.1 Introduction

In classical panel data analysis it is assumed that unobserved heterogeneity is captured by
individual-specific constants, whether they are assumed to be fixed or random. In many
applications, however, it cannot be ruled out that slope coefficients are also individual-
specific. For instance, heterogenous preferences among individuals may result in individual-
specific price or income elasticities. Ignoring this form of heterogeneity may result in bi-
ased estimation and inference. Therefore, it is important to test the assumption of slope
homogeneity before applying standard panel data techniques such as the least-squares
dummy-variable (LSDV) estimator for the fixed effect panel data model.

If there is evidence for individual-specific slope parameters, economists are interested
in estimating a population average like the mean of the individual-specific coefficients.
Pesaran and Smith (1995) advocate mean group estimation, where in a first step the
model is estimated separately for each cross-section unit. In a second step, the unit-
specific estimates are averaged to obtain an estimator for the population mean of the
parameters. Alternatively, Swamy (1970) proposes a generalized least squares (GLS)
estimator for the random coefficients model, which assumes that the individual regression
coefficients are randomly distributed around a common mean.

In this paper we derive a test for slope homogeneity by employing the LM principle
within a random coefficients framework, which allows us to formulate the null hypothesis
of slope homogeneity in terms of K restrictions on the variance parameters. Hence, the
LM approach substantially reduces the number of restrictions to be tested compared to
the set of K(N — 1) linear restrictions on the coefficients implied by the test proposed
by Pesaran and Yamagata (2008), henceforth referred to as PY. This does not mean,

however, that our test is confined to detect random deviation in the coefficients. In fact



our test is optimal against the alternative of random coefficients but it is also powerful
against any systematic variations of the regression coefficients.

Our approach is related but not identical to the conditional LM test recently suggested
by Juhl and Lugovskyy (2014) which is referred to as the JL test. The main difference
is that the latter test is derived for a more restrictive alternative, where it is assumed
that the individual-specific slope coefficients attached to the K regressors have identical
variances. In contrast, our test focuses on the alternative that the coefficients have dif-
ferent variances which allows us to test for heterogeneity in a subset of the regression
coefficients. Furthermore, the derivation of our test follows the original LM principle
involving the information matrix, whereas the JL test employs the outer product of the
scores as an estimator of the information matrix. Our simulation study suggest that both
non-standard features of the latter test may result in size distortions in small samples and
a sizable loss in power. An important advantage of the JL test is however that it is robust
against non-Gaussian and heteroskedastic errors. We therefore propose variants of the
original LM test that share the robustness against non-Gaussian and heteroskedastic er-
rors. Furthermore, we also suggest a modified LM test that is robust to serially correlated
errors. Another contribution of the paper is the analysis of the local power of the test
that allows us to compare the power properties of the LM and PY tests. Specifically, we
find that the location parameter of the LM test depends on the cross-section dispersion
of the regression variances, whereas the location parameter of the PY test only depends
on the mean of the regressor variances. Thus, if the regressor variances differ across the
panel groups, the gain in power from using the LM test may be substantial.

The outline of the paper is as follows. In Section 1.2 we compare two tests for slope
heterogeneity recently proposed in the literature. We introduce the random coefficients
model in 1.3 and lay out the (standard) assumptions for analyzing the large-sample prop-
erties. In Section 1.4 we derive the LM statistic and establish its asymptotic distribution.
Section 1.5 discusses several variants of the proposed test. First, we relax the normality
assumption and extend the result of the previous section to this more general setting.
Second, we propose a regression-based version of the LM test. Section 1.6 investigates
the local asymptotic power of the LM test. Section 1.7 describes the design of our Monte

Carlo experiments and discusses the results. Section 1.8 concludes.

1.2 Existing tests

To prepare the theoretical discussion in the following sections, we briefly review the ran-
dom coefficients model and existing tests. Following Swamy (1970), consider a linear

panel data model

/
Yit = Ty + €,
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fort=1,2,...,N,and t = 1,2,...,T, where y;; is the dependent variable for unit 7 at
time period t, x; is a K x 1 vector of explanatory variables and €;; is an idiosyncratic

error with zero mean and variance E (¢%) = o?. For the slope coefficient 3; we assume

Bi=B+wv,

where [ is a fixed K x 1 vector and v; is a i.i.d. random vector with zero mean and K x K
covariance matrix 3,.!

The null hypothesis of slope homogeneity is

br=p=:=p0Nn=0, (1.1)
which is equivalent to testing ¥, = 0. To test hypothesis (1.1), Swamy suggests the
statistic

. N o - PXIXN e~ ~
5= 35 () () (- )
; B: = Bwis ( 2 ) B = Bws

with X; = (24,...,2;7) and B = (X!X;)"'X/y; is the ordinary least squares (OLS)
estimator of (1.2) for panel unit i, and ¢t = 1,...,7. The common slope parameter [ is

estimated by the weighted least-squares estimator

N

1
- X!X; Xy,
Pwrs = Z ;2 Z Qy ;

S
=1 v =1

where s? denotes the standard OLS estimator of o7.

Intuitively, if the regression coefficients are identical, the differences between the in-
dividual estimators and the pooled estimator should be small. Therefore, Swamy’s test
rejects the null hypothesis of homogenous slopes for large values of this statistic, which
possesses a limiting x? distribution with K (N — 1) degrees of freedom as N is fixed and
T — oo.

Pesaran and Yamagata (2008) emphasize that in many empirical applications N is
large relative to 7" and the approximation by a x? distribution is unreliable. PY adapt

the test to a setting in which N and T jointly tend to infinity. In particular, they assume

1For more details and extensions of the basic random coefficient model see Hsiao and Pesaran (2008).
As pointed out by a referee, this specification may be replaced by some systematic variation of the coeffi-
cients that depends on observed variables. For example, we may specify the deviations as 8;— 3 = ['z; +n;,
where z; is some vector of observed variables possibly correlated with z;;. The corresponding variant of
the LM test (which is different from our LM test based assuming that v; and z;; are independent) will be
optimal against this particular form of systematic variation. In general, our test assuming independent
variation with I' = 0 will also have power against systematic variations but admittedly our test is not
optimal against alternative with systematically varying coefficients.

11



individual-specific intercepts and derive a test for the hypothesis 51 = --- = gy = [ in
Yir = i + T} 0 + €ir. (1.2)

The analogue of the pooled weighted least squares estimator above eliminates the unob-

served fixed effects,

N -1/ N
5 XZ/MLXZ X’L,Mbyl

i=1 i i=1
where M, = It — vt/ /T, and 7 is a T' x 1 vector of ones. A natural estimator for 0? is
N/ ~
(?Ji - Xzﬂi) M, <y7, - Xzﬂi)

52 = ,

’ T'—-K-1

where B3; = (X/M,X;)" (X!M,y;) and the test statistic becomes

5=3 (3 ure) (M25) (3. ).

i=1 v

Employing a joint limit theory for N and T', PY obtain the limiting distribution as

S— NK

d 1 1.
T — N(0,1), (1.3)

A=
provided that N — oo, T'— oo and VN /T — 0. Thus, by appropriately centering and
standardizing the test statistic, inference can be carried out by resorting to the standard
normal distribution, provided the time dimension is sufficiently large relative to the cross-
section dimension. PY propose several modified versions of this test, which for brevity
we shall refer to as the A tests or statistics. In particular, to improve the small sample

properties of the test, PY suggest the adjusted statistic under normally distributed errors
(see Remark 2 in PY),

~ NS - K
Augi = /N(T+1 , 1.4
5= VN >(¢2K<T_K_1)> (14)
where S is computed as S but replacing o7 by the variance estimator
~ !/ ~
N (yi — XiﬁFE) M, <yz — XiﬁFE)
o; = : (1.5)

‘ T7—-1

12



-1
where Bpp = (Z XIM, X; ) <Z XM, yl> is the standard ’fixed effects’ (within-group)
estimator. Note that this asymptotic framework does not seem to be well suited for typical
panel data applications where IV is large relative to T'. Therefore, it will be of interest to
derive a test statistic that is valid when 7T is small (say 7' = 10) and N is very large (say
N =1000), which, for instance, is encountered in microeconomic panels.

The test statistic proposed by Juhl and Lugovskyy (2014) is based on the individual

scores
Si = M, X; X! M,u; — o7 tr( X, M, X;),

where u; = y; — XiEFE and tr (A) denotes the trace of the matrix A. The (conditional)

LM statistic results as

N N
CLM =) "5/ (Z sl-slf) > S (1.6)
=1 =1 =1

It is interesting to compare this test statistic to the PY test which is based on the sum

S =N S with

— (3= Bwew) (K555 (B )

- % ul M, X (XM, X;) ™ X M, + o0,(1)

if N and T tend to infinity. Note that limNHOOE(:S’\i) = K. The main difference be-
tween the JL and the PY statistics is that the statistic S; neglects the additional inverse
(02 X!M,X;)"" in the statistic S;. Thus, although these two test statistics are derived from
different statistical principles, the final test statistics are essentially testing the indepen-
dence of u; and M, X; or E(u,M, X;W;X!Mu;) = o?E(tr [M,X;W; X!M,]) with W; = I
for the JL test and W; = (62 X/ M, X;)! for the PY test.

1.3 Model and Assumptions

Consider a linear panel data model with random coefficients,

yi = Xili + €, (1.7)
Bi = B+ vi, (1.8)
fori=1,2,..., N, where y; is ais a T'x 1 vector of observations on the dependent variable

for cross-section unit ¢, and X; is a T" x K matrix of possibly stochastic regressors. To

13



simplify the exposition we assume a balanced panel with the same number of observation
in each panel unit (see also Remark 1 of Lemma 1). The vector of random coefficients
is decomposed into a common non-stochastic vector 5 and a vector of individual-specific
disturbances v;. Let X = [X], X3,..., Xi]"

In order to construct the LM test statistic for slope homogeneity we start with model
(1.7)-(1.8) under stylized assumptions. However, in Section 5 these assumptions will be
relaxed to accommodate more general and empirically relevant setups. The following
assumptions are imposed on the errors and the regressor matrix:

Assumption 1 The error vectors are distributed as €;|X “ N (0,0%Ir) and v;| X &
N(0,%,), where S, = diag (62,,...,02). The errors ¢; and v; are independent from

each other for all i and j.

Assumption 2 For the regressors we assume E|z;; ,|*7° < C' < oo for some § > 0, for all

i=1,2...,N,t=1,2,....,T and k =1,2..., K. The limiting matm’x]\}im N7'E(X'X)
—00

exists and is positive definite for all N and T'.

In Assumption 1, the random components of the slope parameters are allowed to have
different variances but we assume that there is no correlation among the elements of v;.
Note that this framework is more general than the one considered by Juhl and Lugovskyy
(2014) who assume E(v;v}) = 72Ik. The latter assumption seems less appealing if there
are sizable differences in the magnitudes of the coefficients. Furthermore, the power of
the test depends on the scaling of regressors, whereas the (local) power of our test is
invariant to a rescaling of the regressors (see Theorem 5). The alternative hypothesis
can be further generalized by allowing for a correlation among the elements of the error
vector v;. However, this would increase the dimension of the null hypothesis to K (K +1)/2
restrictions and it is therefore not clear whether accounting for the covariances helps to
increase the power of the test. Obviously, if all variances are zero, then the covariances
are zero as well.?

Let u; = X,v; + ¢;. Stacking observations with respect to ¢ yields

y=Xp+u, (1.9)
where y = (v},...,yy) and u = (u},...,uly)". The NT x NT covariance matrix of u is
given by

X135, X + %Iy 0
Q=Eud|X] = -
0 XnS, XY + %Iy

2We also conducted Monte Carlo simulations allowing for non-zero diagonal elements in the matrix
Y. We found that the results are quite similar to the setting where ¥, is diagonal.
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The hypothesis of fixed homogeneous slope coefficients, 5; = ( for all 4, corresponds to
testing
Hy : aﬁjk =0, fork=1,.. K,

against the alternative

K
Hy: Y op, >0, (1.10)
k=1

that is, under the alternative at least one of the variance parameters is larger than zero.

1.4 The LM Test for Slope Homogeneity

Let 0 = (0311, ey 037 K 02)/. Under Assumption 1 the corresponding log-likelihood function

results as

NT

£(5,0) = "5 log(2m) — Sog[Q(O)] — 5 (v~ XY 2.(6) (v XB).  (11)

The restricted ML estimator of 5 under the null hypothesis coincides with the pooled OLS
estimator E = (X'X)7' X'y and the corresponding residual vector and estimated residual
variance are denoted by u; = y; — Xig and 2. The following lemma presents the score

and the information matrix derived from the log-likelihood function in (1.11).

Lemma 1 The score vector evaluated under the null hypothesis is given by

N

> (mxOx M - xx V)
=1
~ ol 1 :
0|y, 20 ( )

[

<ﬂfX.(K)X.(K)’ﬂZ- - 52X.(K)’X.(K)>

=1

0

where X*) is the k-th column of X fork=1,2,..., K.

15



The information matriz evaluated under the null hypothesis is

~ [ 0%
I(c*)=—-E —&909/}
- N N -

z <Xi(1)/Xi(1)>2 Z <Xz(1)/Xz(K))2 X(l)/X(l)
i=1 1=1
N N
5 ( x@ X(1)> S < X X}K)f X@rx®

1 i=1 i=1

= 5= ) : . , (1.13)
N
> (Xi(K)/Xi(l))Q Z (X(K K)) X () x (K)
i=1 i=1
X @ x @) . X (K) x (K) NT

where Xi(k) denotes the k-th column of the T x K matriz X;, k = 1,2,..., K and 1 =
1,...,N.

Remark 1 It is straightforward to extend Lemma 1 to unbalanced panel data, where
observations are assumed to be missing at random. Let X; be a T; x K matrix and u; be

a conformable T; x 1 vector. The score vector is given by

$ (ax " xa - 7 x [ x)

=1

204 % (m Xi(K) Xi(K)/ai P Xi(K)/ XZ'(K)>

i=1

0

where

Za’m.
ZT i=1
=1

The information matrix is computed accordingly.

Remark 2 If individual-specific constants «; are included in the regression, then a con-
ditional version of the test is available (cf. Juhl and Lugovskyy (2014)). The individual

effects can be “conditioned out” by considering the transformed regression

with M, as defined in Section 2. The typical elements of the corresponding score vector
result as .

— (a;MLij)ij)’M@- _ 8’2XZ.(j)'MLXi(j)) Cj=1,... K

o
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where w; = M,y; — MLXiE and E is the pooled OLS estimator of the transformed model
(1.14), and &2 is the corresponding estimated residual variance. It follows that we just

have to replace the vector Xi(j ) by the mean-adjusted vector M, X G)

./ in Theorem 1.

Remark 3 It is easy to see that under the more restrictive alternative E(v;v]) = 621 of
Juhl and Lugovskyy (2014), where 07| = --- = 0, = 7., the score is simply the sum of

all elements of S.

Remark 4 Notice also that the LM-type statistics do not require the restriction K < T,
which is important for the PY approach. This is of course not an issue for the asymptotic
framework, where T" — oo, however, it can be a substantive restriction in many empirical

applications when T is small.

In the following theorem it is shown that when T is fixed, the LM statistic possesses a 2

limiting null distribution with K degrees of freedom as N — oc.
Theorem 1 Under Assumptions 1, 2 and the null hypothesis

IM=8I(E)'S=35V 5%\, (1.15)

as N — oo and T is fized, where s is defined as the K x 1 vector with typical element

N

2
1 Ny 1 L,
S = ﬁz 1 Uit Lit K — ﬁZZ@t,k, (116)

i=1 t= i=1 t=1
and the (k,l) element of the matrix V s given by

N

N 1 T 2 1 N T N T
Via = 254 Z ( 1 $it,kxz’t,l> “NT (ZZﬁtk) <ZZ$12H> : (1.17)

=1 t= i=1 t=1 i=1 t=1

Remark 5 If T is fixed, normality of the regression disturbances is required. If we relax
the normality assumption, an additional term enters the variance of the score vector and
the information matrix becomes an inconsistent estimator. Theorem 2 discusses this issue
in more details and derives the asymptotic distribution of the LM test if the errors are

not normally distributed.

Remark 6 It may be of interest to restrict attention to a subset of coefficients. For
example, in the classical panel data model it is assumed that the constants are individual-
specific and, therefore, the respective parameters are not included in the null hypothesis.
Another possibility is that a subset of coefficients is assumed to be constant across all

panel units. To account for such specifications the model is partitioned as

Yit = ﬁi@XZt + 5£XZ + Bézcht + Uit -
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The K; x 1 vector X}, includes all regressors that are assumed to have individual-specific
coefficients stacked in the vector B1;. The Ky x 1 vector X}, comprises all regressors that
are supposed to have homogenous coefficients. The null hypothesis is that the coefficient
vector fs; attached to the K3 x 1 vector of regressors X}, is identical for all panel units,
that is, B3; = B3 for all ¢, where 83; = B3 + vs;. The null hypothesis implies ¥, = 0. Let

Xe 0 - 0 Xb X¢

0 X¢ -~ 0 Xb XS
7 — ' 2 . ‘ 2 2 :

0 0 - X% X& X5

where X = [X&,..., X%] and the matrices X? and X¢ are defined accordingly. The
residuals are obtained as w = (I — Z(Z'Z)~'Z')y and the columns of the matrix X°
are used to compute the LM statistic. Some caution is required if a set of individual-
specific coefficients are included in the panel regression since in this case the ML estimator
52 = (NT)"* o8 ST @2 is inconsistent for fixed T and N — oo. This implies that the
expectation of the score vector (1.12) is different from zero. Accordingly, the unbiased

estimator

T

N
|
G’ = us 1.18
4 NT—Kl—Kg—K:aiZlZu” (1.18)

t=1

must be employed. As a special case, assume that the constant is included in X, whereas
all other regressors are included in the matrix X?, and X¢ is dropped. This case is
equivalent to the test for random individual effects as suggested by Breusch and Pagan
(1980). The LM statistic then reduces to

NT a’([N®LTL,T)/’lI 2

LM = 1-
2(T — 1) W ’

where 7 is a T x 1 vector of ones, which is identical to the familiar LM statistic for

random individual effects.

1.5 Variants of the LM Test

In this section we generalized the LM test statistic by allowing for non-normally dis-
tributed, heteroskedastic and serially dependent errors. First we show in Section 1.5 that
the proposed LM test is robust against non-normally distributed errors once we assume
N, T — oo jointly and specific restrictions on the existence of higher-order moments.

Moreover, the variants of the test with non-normally distributed errors are proposed for
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the settings when N — oo and T is fixed. Second, in Section 1.5.2 we propose a variant
of the LM test that is robust to heteroskedastic errors. Finally, Section 1.5.3 discusses

how to robustify the LM test, when the errors are serially correlated.

1.5.1 The LM statistic under non-normality

In this section we consider useful variants of the original LM statistic under the assumption
that the errors are not normally distributed. Therefore, we replace Assumptions 1 and 2
by:

Assumption 1’ ¢; is independently and identically distributed with E(ey|X) = 0, E(e]X)
o? and E (Je;|°|X) < C < oo for all i and t. Furthermore, €; and €;s are independently
distributed for i # j and t # s.

Assumption 2’ For the regressors we assume E|xit,k|6 < C < o for some 6 > 0, for all

T
i=1,2...,N,t=1,2,....,T and k =1,2..., K. Further, Tlim TS E [zl tend to

N T
a positive definite matriz Q; and the limiting matriz ¢ := Nl%m (NT) 'S S E [zyat]
exists and is positive definite.

Assumption 3 The error vector v; is independently and identically distributed with
E(v;]X) = 0, E(vv}|X) = 2, where ¥, = diag (02;,...,02 ) and E (Jog|*™ |X) <
C < oo for some 6 > 0, for all i and k = 1,..., K. Further, v; and €; are independent

from each other for all i and j.

Notice that, as in Section 1.3 under the null hypothesis ¥, or v; = 0 for all 7. Hence,
Assumption 3 is not required for the derivation of the asymptotic null distribution. To
study the behaviour of the LM test statistic under (local) alternatives, Assumption 3 will
be used in Section 1.6.

With these modifications of the previous setup, the limiting distribution of the LM

statistic is given in
Theorem 2 Under Assumptions 1', 2" and the null hypothesis,

LM %2, (1.19)

as N — oo, T"— oo jointly.

Generalizing the model to allow for non-normally distributed errors introduces a new term

into the variance of the score: the (k,[) element of the covariance matrix now becomes
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(see equation (A.5) in appendix A.2)

Mg4)34NT2 1NT2 | Mo
Via + W ZZ Titk = NT Lit k mit, sztvl

z:1 t=1

(1.20)

where uu ) denotes the fourth moment of the error distribution, and V; 1 is as in (1.17)
with o replaced by o*. The additional term depends on the excess kurtosis ug) 30
Clearly, for normally distributed errors, this term disappears, but it deviates from zero
in the more general setup. Under Assumptions 1’ and 2’, the first term Vj; is of order
NT?, while the new component is of order NT', such that, when the appropriate scaling
underlying the LM statistic is adopted, it vanishes as T — oo. Therefore, the LM statistic
as presented in the previous section continues to be Y% distributed asymptotically. By
incorporating a suitable estimator of the second term in (1.20), however, a test statistic
becomes available that is valid in a framework with non-normally distributed errors as

N — o0, whether T is fixed or T" — oco. Therefore, denote the adjusted LM statistic by
~/ = -1 ~
LMy = 5 (Vi) 5

where ‘7adj is as in (1 20) With Vir, ot and ,Af*) replaced by the consistent estimators ‘7k,l

defined in (1.17), 5% and il = (NT) ™! SV S ad fork,l=1,..., K. As a consequence

of Theorem 2 and the preceding discussion, we obtain the following result.
Corollary 1 Under Assumptions 1', 2 and the null hypothesis
d 2
LMadj — XK
as N — oo and T s fized. Furthermore,
LM, — LM 5 0,
as N — oo, T'— oo jointly.

As mentioned above, once the regression disturbances are no longer normally distributed,
the fourth moments of the error distribution enter the variance of the score. It is insight-
ful to identify exactly which terms give rise to this new form of the covariance matrix.
According to Lemma 1, the contribution of the i-th panel unit to the k-th element of the

score vector is

T
axPx®g, — 5 xM'x (Z 22, ( 2)) + 37 Ul pisg. (121)

t=1 s#t
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The variance of the first term on the right hand side depends on the fourth moments of
the errors. Since the contribution of this term vanishes if 7" gets large, it can be dropped
without any severe effect on the power whenever T is sufficiently large. Hence, we consider

a modified score vector as presented in the following theorem.

Theorem 3 Under Assumptions 1', 2 and the null hypothesis, the modified LM statistic

1

LM* — g*/ (‘7/7*)_ §>k i> X%{,

as N — oo and T fixed, where §* is K x 1 vector with contributions for panel unit 1
T t-1

Y 1 -
Sik = =1 E E Uit UisTit ke Tis (1.22)

t=2 s=1

fori=1,..,N, k=1,..,K, and the (k,l) element of V* s given by

t—

T
E g Lt ke Lit [ Lis kLis,l, (1-23)

t=2 s=1

1

ot 4

(2

Sh
Via =

N
=1
fork,l=1,.. K.

Remark 7 [t is important to note that this version of the LM test is invalid if the panel
regression allows for individual-specific coefficients (cf. Remark 3). Consider for example

the regression
Yir = i + Ty B + wit (1.24)

where «; are fixed individual effects and we are interested in testing Hy : var(ps;) = 0.

The residuals are obtained as
Ui = Yir — Ui — (T — Tz)/g = Uy —U; — (T — Ti)/(g— B).

It follows that in this case E(uytisTixTis k) 7 0 and, therefore, the modified scores (1.22)
result in a biased test. To sidestep this difficulty, orthogonal deviations (e.g. Arellano

and Bover (1995)) can be employed to eliminate the individual-specific constants yielding

yh = Baf +u, t=23,....T,

t—1
L x [t—1 1
with y;, = 5 [yit T (Z yzs)] )
s=1

where 2, and v}, are defined analogously. It is well known that if u; is i.i.d. so is u},. It

follows that the modified LM statistic can be constructed by using the OLS residuals u},
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instead of ;. This approach can be generalized to arbitrary individual-specific regressors
z%. Let X¢ =[x, ...,2%] denote the individual-specific T' x K; regressor matrix in the

regression
yi = X B + X7 B + X{Bsi + s, (1.25)
(see Remark 3). Furthermore, let

M} = Ip = XPXPXT) XY
and let ]\Z“ denote the (T'— K7) x T matrix that results from eliminating the last K; rows
from M such that (MFM) is of full rank. The model (1.25) is transformed as

yr = X2 By 4+ X Bai + (1.26)

where yf = Z%; and 22 = (MeM®)"12Me. Tt is not difficult to see that E(uiul) =
0?I1_g, and, thus, the modified scores (1.22) can be constructed by using the residuals
of (1.26), where the time series dimension reduces to 7' — K;. Note that orthogonal

deviations result from letting X be a vector of ones.

To review the results of this section, the important new feature in the model without
assuming normality is that the fourth moments of the errors enter the variance of the
score. The information matrix of the original LM test derived under normality does not
incorporate higher order moments, but the test remains applicable as T" — oo. To apply
the LM test in the original framework when 7' is fixed and errors are no longer normal we
can proceed in two ways. A direct adjustment of the information matrix to account for
higher order moments yields a valid test. Alternatively, we can adjust the score itself and
restrict attention to that part of the score that does not introduce higher order moments
into the variance. In the next section, we further pursue the second route of dealing
with non-normality and thereby robustify the test against heteroskedasticity and serial

correlation.

1.5.2 The regression-based LM statistic

In this section we offer a convenient way to compute the proposed LM statistic via a
simple artificial regression. Moreover, the regression-based form of the LM test is shown
to be robust against heteroskedastic errors. Following the decomposition of the score
contribution in (1.21) and the discussion thereafter, we construct the “Outer Product of
Gradients” (OPG) variant of the LM test based on the second term in (1.21). Rewriting

22



the corresponding elements of the score contributions of panel unit ¢ as
T t-1
§;:k = Z Uit UisTit k- Tis s (1.27)
t=2 s=1
for k = 1,..., K. Note that we dropped the factor 1/* as this factor cancels out in the
final test statistic. This gives the usual LM-OPG variant

LMopg = (; s> (; ss> (Z 3) : (1.28)

where 8 = [57,..., 8 K},. An asymptotically equivalent form of the LM-OPG statistic
can be formulated as a Wald-type test for the null hypothesis ¢ = 0 in the auxiliary

regression
K

Uy = » Zawprtew, fori=1,... N, t=1..T (1.29)
k=1

where

t—1
Zitk = Ltk E UisTis K
s=1

for k =1, ..., K. Therefore, with the Eicker-White heteroskedasticity-consistent variance

estimator, the regression based test statistic results as

N T / T -1 N T
L, - (z )( z~) (z ) (130)
i=1 t=2 i=1 t=2 i=1 t=2

It follows from the arguments similar as in Theorem 3 that M, test statistic is

asymptotically y? distributed but it turns out to be robust against heteroskedasticity:

Corollary 2 Under Assumption 1" but allowing for heteroscedastic errors such that E[e4| X] =

0% < C < oo, Assumption 2 and the null hypothesis

LMoy % X% (1.31)

as N — oo and T s fixed.

It is important to note that the LM-OPG variant cannot be applied to residuals from a
fixed effect regression, see Remark 7. Furthermore, the replacement of the residuals by
orthogonal forward deviation will not fix this problem since orthogonal forward deviations
are no longer serially uncorrelated if the errors are heteroskedastic. Therefore, a version

of the test is required that is robust against autocorrelated errors.
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1.5.3 The LM statistic under serially dependent errors

In this section we propose a variant of the LM test statistic that accommodates serially

correlated errors, that is, we relax Assumptions 1’ as follows:

Assumption 1”7 The T x 1 error vector €; is independently and identically distributed
with E(&;|X) = 0, E(e€}|X) = E(ge;) = £ and E [|e|*°|X] < C < o0 for some § > 0
and all © and t. The T x T matriz X is positive definite with typical element o for
t,s=1,...,T.

Note that Assumption 1” allows for heteroscedasticity and serial dependence across time,
however, it restricts the error vector ¢; to be iid across individuals.

Under this assumption the expectation of the score vector (1.22) is under the null
hypothesis

E[Uituis%t,k, Hfis,k] = UtsE[iﬁit,k%s,k]-

We therefore suggest a modification for autocorrelated errors based on the adjusted K x 1

score vector s with typical element 57" = Zl \Sip for k=1,... K and
T t-1
Z uztais - 5153) Lit, kLis k » (132)
t=2 s=1

where 045 = Z _, Uiis. The asymptotic properties of the LM statistic based on the

modified score vector are presented in

Theorem 4 Let .
LMac — ~*>«<l (V**) 5**’

where V** is a K x K matriz with typical element

T t—1 t—

T
Z Z Z Z AtSquit,kxis,kxiT,lxiq,l (133)

1 t=2 7=2 s=1 ¢=1

T7rkx
Vil =

M-

7

—_

N

and (Stsq—q = N ( %tﬂjsﬂﬁﬂjq UtsUTq> .
j=1

Under Assumptions 1", 2, the null hypothesis (1.1) and as N — oo with T' fized the LM,

statistic has a X% limiting distribution.

Note that this version of the test has a good size control irrespective of serial depen-
dence in errors. However, the test involves some power loss relative to the original test
statistics when errors are serially uncorrelated, which is not surprising given a more gen-
eral setup of this variant of the test. The respective asymptotic power results are analyzed
in the next section (see Remark 10). Section 1.7 elaborates in detail on the size-power

properties of the LM,. in finite samples.
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1.6 Local Power

The aim of this section is twofold. First, we investigate the distributions of the LM-type
test under suitable sequences of local alternatives. Two cases are of interest, N — oo
with T fixed and N,T" — oo jointly, which are presented in the respective theorems below.
Second, we adopt the results of PY to our model in order to compare the local asymptotic
power of the two tests. To formulate an appropriate sequence of local alternatives, we
specify the random coefficients in (1.8) in a setup in which 7" is fixed. The error term wv;

is as in Assumption 1 with elements of 3, given by
Uv,k = ) (134)

where ¢, > 0 are fixed constants for £ = 1,..., K. The asymptotic distribution of the

LM statistic results as follows.

Theorem 5 Under Assumptions 1, 2 and the sequence of local alternatives (1.34),
d
LM 5 X% (1),

as N — oo and T fized, with non-centrality parameter pu = ¢/ We, where ¢ = (c1,...,cx)
and V is a K x K matriz with (k,l) element

1 1 L (& i 1 ) 1 & )
Uy = 551 ~—; plim N ; (; ﬂfit,kﬂﬁit,l) -5 (N Z Z $zt,k) (N Z Z xit,l)

N—o0

In order to relax the assumption of normally distributed errors we adopt Assumption 1’

for v;, where the sequence of local alternatives is now given by

Tk = TT;N’ (1.35)
for k =1,..., K. Note that according to Theorem 2 we require T" — oc.
Theorem 6 Under Assumptions 1, 2', 3 and the sequence of alternatives (1.35),
LM 5 x5 (),
as N — oo, T — oo, with non-centrality parameter y = ¢ Ve, where ¢ = (cy, ..., cx) and

U is a K x K matriz with (k,l) element

N T 2
‘Ifk,z = — plim — Z ( Z%t kxztl> .

20_ N, T—)oo i1
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Remark 8 As in Section 1.5.1 above, when the normality assumption is relaxed, local
power can be studied for LM* under Assumptions 1’, 2 and 3 when T is fixed. The
specification of local alternatives as in Theorem 5 applies. The non-centrality parameter

of the limiting non-central x? distribution results as p* = ¢/ U*c with

t—1

T

U li

kl = 04 p1m Tit kTit, 1 Tis,kLis|l
=1

t=2 s=1

for k,l=1,..., K.

Remark 9 Given the results for the modified statistic LM™* in remark 8, and the fact that
st = Zf\il sF = (Z’ ﬂ*), we expect a similar result for the regression-based LM statistic

LM, to hold. Recall that LM* uses N ~1* as an estimator of the variance of §* (see
(1.23)), while LM,e, employs ( D DD PN t%t%,g) Under the null hypothesis, it is
not difficult to see that these two estimators are asymptotically equivalent. Under the
alternative, when studying the (k,[) element of the variance of LM,.,, we obtain (see

appendix A.2 for details)

N T N T t—1 t—1
N Ult it, kzzt 1= N €+ Lt kit €isLisk €isLis,l

i=1 t=2 i=1 t=2 s=1 s=1

N T
1
+ szeivivai +op(1), (1.36)

with the K x K matrix B = (%’t,k: 22;11 iUz'stis,k:) (xm Zi;ll xgsxis,l). The first term
on the right-hand side in (1.36) has the same probability limit as N *117,&, the limiting
covariance matrix element Wy ,. In contrast to LM, however, the variance estimator of
the regression-based test involves additional quadratic forms such as v, B} v;, contributing

to the estimator. Since, in a setup with fixed 7" and the local alternatives o7, = <%

Y

e

N T
1 b's ~1/2
NZZE v, By, v; —Op(N / ),
i=1 t=2
the variance estimator remains consistent. In small samples, however, the additional
term results in a bias of the variance estimator and may deteriorate the power of the
regression-based test. See the appendix for details about the above result and the Monte

Carlo experiments in Section 1.7.

Remark 10 The arguments of Remark 8 can be used to derive the local power of the

LM, statistic that accounts for serial correlation in errors. The same specification of
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local alternatives applies. The non-centrality parameter of the limiting non-central x?2

distribution takes the quadratic form p** = ¢U**¢ with
T
Z (uituisuiﬂ'uiq - UtSO-Tq) Lt kTis kLir 1 Tig,l,
for k,l =1,..., K. In the absence of serial correlation it can be shown that the LM, test

involve a loss of power. To illustrate this fact assume for simplicity that K = 1 (single

regressor case). Further, the score vector in (1.32) can be equivalently written as
t—1

N T 1 N T
- Z Z (uituis - UtS Tt kLis ke — E § uztuzs xzt kLisk — CtS) ) (137)

i=1 t=2 s=1 i=1 t=2 s=1

t—

where C, = % Zf\;l Ti4%;s. Thus, demeaning of wu;u;, is equivalent with demeaning of
Tit kTis k- In the case of no autocorrelation and (1.37) it follows that ¥* — ¥** is positive
semi-definite. Therefore, the modification (1.32) tends to reduce the power of the LM,
test when compared to LM*.

We now proceed to examine the local power of the A statistic of PY in model (1.7)
and (1.8) under the sequence of local alternatives (1.35). In our homoskedastic setup, the

dispersion statistic becomes

f;(@z ) () (5-9).

with 5 as the OLS estimator in (1.9) as above. Using this expression, the A statistic is
computed as in (1.3). The next theorem presents the asymptotic distribution of the A
statistic under the local alternatives as specified above. This result follows directly from
Section 3.2 in PY.

Theorem 7 Under Assumptions 1', 2', 3 and the sequence of local alternatives (1.35)
AL NN,

as N — oo, T — oo, provided /N /T — 0, where A = N'¢/v/2K and A is a K x 1 vector

with typical element

Ay = QNP%ILHOONTZZ it oo

=1 t=1

fork=1,... K.
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In Theorem 7, the mean of the limiting distribution of A is slightly different from the
result in Section 3.2 in PY. Here, v; is random and independently distributed from the

regressors and, therefore, the second term of the respective expression in PY is zero.

Remark 11 Consider for simplicity a scalar regressor z;; that is i.i.d. across ¢ and ¢t
with uniformly bounded fourth moments. Let E[z;] = 0 and E [z3] = o7, that is, the

regressor is assumed to have a unit-specific variation which is constant over time for a

given unit. We obtain
1 L)
§ (; Zx?f) — (oL +0 (1),
t=1

implying p = ¢2/20*limpy_,oo N1 Zfil (UzI)Q in Theorem 6. To gain further insight,

we think of (ogx)z as being randomly distributed in the cross-section such that the non-

centrality parameter results as
c? 5 c? 9
p=5=E |(0L)"] = 5 (Var [oL] + (E[02,))*). (1.38)
Similarly, under these assumptions, we find

Cc

o2/2

Comparing the mean of the normal distribution of the A statistic in (1.39) with the non-

\ = E [07,] (1.39)

centrality parameter of the asymptotic x? distribution of the LM statistic in (1.38), we
see that the main difference between the two tests is that the variance of 0722,95 contributes
to the power of the LM statistic but not to the power of the A test. If Var [aix} = 0 such
that o7, = o2 for all i, the LM test and the A test have the same asymptotic power in
this example. If, however, Var [aix] > 0, so that there is variation in the variance of the
regressor in the cross-section, the LM test has larger asymptotic power. To illustrate this
point, we examine the local asymptotic power functions of the LM and the A test for two
cases, using the expressions in (1.38) and (1.39). Figure 1.1 (see appendix C) shows the
local asymptotic power of the LM (solid line) and the A test (dashed line) as a function
of ¢ when o7, has a x7 distribution. Figure 1.2 repeats this exercise for o7, drawn from a
X2 distribution. In both cases, the LM test has larger asymptotic power. The power gain
is substantial for the first case, but diminishes for the second. This pattern is expected,

as the variance of JZI contributes relatively more to the non-centrality parameter in the

first specification.

This discussion exemplifies the difference between the LM-type tests and the A statistic

in terms of the local asymptotic power in a simplified framework. The analysis suggests
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that the LM-type tests are particularly powerful in an empirically relevant setting in
which there is non-negligible variation in the variances of the regressors between panel
units. Having studied the large samples properties of the LM tests under the null and
the alternative hypothesis in our model, we now evaluate the finite-sample size and power

properties of the LM-type tests in a Monte Carlo experiment.

1.7 Monte Carlo Experiments

1.7.1 Design

After deriving LM-type tests in the random coefficient model, we now turn to study the
small-sample properties of the proposed test and it variants. The aim of this section is to
evaluate the performance of the tests in terms of their empirical size and power in several
different setups, relating to the theoretical discussion of Sections 1.4 - 1.6. We consider the
following test statistics: the original LM statistic presented in Theorem 1, the adjusted
LM statistic that adjusts the information matrix to account for fourth moments of the
error distribution (see Corollary 1), the score-modified LM statistics (see Theorem 3 and
Theorem 4) and the regression-based, heteroskedasticity-robust LM statistic (see Section
1.5.2). As a benchmark, we consider PY’s statistic gadj given in (1.4). Following the notes
in Table 1 in PY, the test using &adj is carried out as a two-sided test. In addition, the
CLM test in (1.6) is included, which is also a two-sided test. We consider the following

data-generating process with normally distributed errors as the standard design:

Yo = o+ xy B+ e,

en < N(0,1), (1.40)
a; < N(0,0.25),
T = o+, k=1,2,3,

:ft,k ~ N(07Oz'2x,k)7

Bi ~ N3 (L3,Ev),

under the null hypothesis: ¥, = 0 (1.41)
0.03 0 0
under the alternative: ¥, = 0 002 0 |, (1.42)
0 0 0.01

wherei =1,2,...,N,t=1,2,...,T. Hence, to simulate a model under the null the slope
vector (; is generated as a 3 X 1 vector of ones ¢35 for all 7. As discussed in Section 1.6

the variances of the regressors play an important role. In our benchmark specification we
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generate the variances as

Orp = 025+
iid
Nk ~ X (1.43)

2

iz x 1s made analogous to the Monte Carlo experiment

The choice of the x? distribution for o
in PY. We then consider variations of this specification below. All results are based on

5,000 Monte Carlo replications. We choose

N € {10, 20,30, 50, 100, 200} ,
T € {10,20, 30},

as we would like to study the small sample properties of the test procedures when the time
dimension is small. In our first set of Monte Carlo experiments the errors are normally
distributed; therefore we focus on the standard LM test. We also include their respective

heteroskedasticity-robust regression variants for this exercise.

1.7.2 Normally distributed errors

Panel A of Table 1.1 (see Appendix B) shows the rejection frequencies when the null
hypothesis is true. The Aadj test has rejection frequencies close to the nominal size of 5%
for all combinations of N and 7', while the CLM test rejects the null hypothesis too often,
in particular for small N. Deviations from the nominal size for the the standard LM test
and the regression-based test are small and disappear as N increases, as expected from
Theorem 1. Panel B of Table 1.1 shows the corresponding rejections frequencies under the
alternative hypothesis. The LM test outperforms the Zadj and the CLM test in general.
This observation holds in particular for 7" = 10 where the power gain is considerable. The
LM, variant, although as powerful as the ﬁadj test for T' = 10, suffers from a power loss
relative to the standard LM test. This power loss may be due to the small sample bias of
the variance estimator, see Remark 9.

Following Remark 7 the variants of the LM tests are computed as follows. First, the
individual-specifc fixed effects a; are eliminated by transforming the data using orthogonal
forward deviations (see Arellano and Bover (1995)). The LM statistics are then computed
using the transformed data. The results presented in Panel A of Table 1.2 indicate that
by employing forward orthogonalization all variants of the LM test have size reasonably
close to the nominal level. By comparing panel B of Table 1.1 and the rejection rates
under the alternative in panel B of Table 1.2 we see that the power is very similar in both

setups confirming usefulness of the forward orthogonalization procedure for the LM tests.
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1.7.3 Non-normal errors

We now investigate the LM test when the errors are no longer normally distributed,
thereby building on the results of Section 1.5.1. The errors in (1.40) are generated from
a t-distribution with 5 degrees of freedom, scaled to have unit variance. All other speci-
fications of the standard design remain unchanged. In addition to the statistics already
considered, we now include the adjusted LM statistic (see corollary 1) and the score-
modified statistic (see Theorem 3). Panel A in Table 1.3 reports the rejection frequencies
under the null hypothesis in this case. We notice that the LM test has substantial size
distortions when 7' is fixed and N increases, which is expected from Theorem 2. However,
the adjusted LM statistic LM,q; and the modified score statistic LM™ are both successful
in controlling the type-I error.

Panel B of Table 1.3 shows rejection frequencies under the alternative hypothesis.
The power gain of the LM test relative to the ﬁadj test is noticeable when T° = 10 or
T = 20. We found similar results when the errors are x? distributed with two degrees of
freedom, centered and standardized to have mean zero and variance equal to one. Given
the similarity of the results for ¢t and x? distributed errors, we do not present the latter

results.

1.7.4 Serially correlated errors

To study the impact of serially correlated errors on the test statistics we adjust the DGP

as follows:

Y = Tyl + €,
1/2
€t = pPCit—1 T+ (1 - 02) / €it,

fori=1,2,...,N,t=1,2,...,T, where e; w (0,1). Under the null hypothesis 3; = 1
for all ¢ while under the alternative f; is generated as in (1.42). The regressors, T,

k =1,2,3 are generated as

2 xT
Titk = QikTi—1) + (1 - Qf%%k)l/ it k>
dir 2 U0.05,0.95),
. did
itk ™ N’(O,fo’k),

. iid
where O'?xk = 0.25 + n;p with n;, ~ X%- Parameters ¢;; and o0y, are fixed across
replications.

Results of this simulation experiment are reported in Table 1.4. Panel A and B show
the rejection frequencies under the null hypothesis in case of “small” serial dependence
(i.e., p = 0.2, Panel A) and “moderate” dependence (i.e., p = 0.5, Panel B). For all LM
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based test statistics, except the LM,. test, we observe substantial size deviations from
the nominal level. However, the LM, test is successful in controlling the type-I error.
Further, size properties of PY test are also significantly affected by autocorrelated errors.
Note that this fact is already documented and studied in Blomquist and Westerlund
(2013).

Panel C of Table 1.4 reports power properties of the test under no serial correlation
(i.e., p = 0), building on the discussion in Remark 10. We observe that the LM, test
involve a 5 — 10% power loss compared to the LM* test. This relative power loss dies out

if T increases.

1.8 Concluding remarks

In this paper we examine the problem of testing slope homogeneity in a panel data model.
We develop testing procedures using the LM principle. Several variants are considered
that robustify the original LM test with respect to non-normality, heteroscedasticity and
serially correlated errors. By studying the local power we identify cases where the LM-
type tests are particularly powerful relative to existing tests. In sum, our Monte Carlo
experiments suggest that the LM test are powerful testing procedures to detect slope
homogeneity in short panels in which the time dimension is small relative to the cross-
section dimension. The LM approach suggested in this paper may be extended in future
research by allowing for dynamic specifications with lagged dependent variables and cross

sectionally or serially correlated errors.
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A Appendix: Proofs

N T

To economize on notation we use » . and > instead of full expressions Y and > through-
i t i=1 =1
out this appendix.

A.1 Preliminary results

We first present an important result concerning the asymptotic effect of the estimation
error 3 — 3 on the test statistics. Define

AW x® x 0 _ (NT 3 X >> I

ul fork=1,..., K. Fur-

7 i

Lemma A.1 Let R, = Y X/AW X, and RY,, = 3 X/A

thermore let

Ry = (5—) ooz (7= 8) ®O (5-0) ~2(5-6) R,

fork=1,.... K. Under Assumptions 1, 2 and the null hypothesis the following properties
hold if T is fixed:

(i) R¥4x = Oy (N),
(i) Rh, = Oy (N12),
(iif) RY =0, (1),
fork=1,. K.

Proof. (i) Using the definition of Az(j ) yields

(&
XAX—Z)@( >/)X1——<sznk> (ZXQQ).
The first term is a K x K matrix with typical (I, m) element
5 (z ) (z m> 0,
7 t t
as a consequence of Assumption 2, while 37, 3~ 27, . /NT = O, (1) and ), X/ X; = O, (N).

(ii) Recall that under the null hypothesis, u; = ¢;. Thus

B, = Y (X)) (x0) - (z S ) (z X;ui> |

(2
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The first and the second term are O, (N'/2) by a the central limit theorem (CLT) for
independent random variables and Assumption 2. (iii) Combining (i) and (ii) together

with the fact that v/ N (E — B) = O,(1) yields the result. m

Lemma A.2 Under Assumptions 1', 2’ and the null hypothesis the following properties
hold for N — oo and T — oo:

(i) Rihx = Op (NT?),

(i) Rith, = Op (NV2T7),

(iii) R%“)T = 0, (T'), which is defined as Rg\]f) in Lemma A.1,
fork=1,.. K.

Proof. Following the proof of Lemma A.1 the element of the first term of RE?AX is
O, (NT?), whereas the second term is O, (NT) by Assumption 2’ which yields state-

ment (i). Notice in (ii) Rg’;l)qu has two terms as in Lemma A.1, where the first one has
zero mean and variance of order 7. Therefore by Lemma 1 in Baltagi et al. (2011) we

have that X! X" X9y, = 0,(T%?) and by Lemma 2 in PY that 3 (X{Xf”) (Xi(j)/ui> =

O, (N'/?T?/?) and (E X{ul) = O, (N'2T"/2). These results and the fact that v/ NT (E— ﬂ) =
O, (1) imply (iii). m

A.2 Proofs of the main results

Proof of Lemma 1

We use the following rules for matrix differentiations:

o 1 o0 1 o0
Tt QP L D |t i Al
o6, ~ 2" { aek] "3 [“ o0 “] | A
o1 1 o0 o0
E|l— | = Ztr Q7 = ) Q[ == A2
{aakael} 2! [ (M) (691)} ’ A2

for k1 =1,2,..., K + 1, see, e.g., Harville (1977) and Wand (2002). First,

X8, X =Y o2 XXM
k

with X i(k) denoting the k-th column vector of X;. Hence

X15,X] 0

_ 2
- E :Uv,kAk7

0 XnE, XY k
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with the NT' x NT matrix ,

XX 0
Ak — . . ,
0 xXPxy

for k=1,..., K, and X ) denotes the k-th column of the 7' x K matrix X;. Thus,

Q= ol A+ 0 Inr
k

and
o {Ak, fork=1,2.. . K,

8_0k_ ]NT7 fOI'k:K"’].

Under the null hypothesis we have Q = 0?Iy7. Using (A.1) we obtain

oty _ — gt [Ay] + g W Ay, fork=1,2,... K
a‘ng_ 0, for k=K +1,

where

1
~2 Y1
g = NTU

7= (]NT X (X'x)™! X’> y.

The representation of the score vector follows from

tr[Ay] = ZZX%k (k) x (k)

where X *) denotes the k-th column of the NT x K matrix X. Similarly, (A.2) yields

Bl
- {aakael} .

Using the fact that Ay and A; are block-diagonal,
tr[A,A)] = Ztr [( ( ) (ng)ng)/)} 3 (ng>/ng)>2

where X ) denotes the i-th column of X, which yields the form of the information matrix
presented in the lemma.

ﬁtr [AkAl]7 for k,l = 172"“’[(’
= #X(k‘)/X(k), fOl"k‘Il,Q,...,K, andl:K+1’
= fork=101=K+1,

204

Proof of Theorem 1
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Recall that

1
AR = x B x ) _ (W > X}’“’X}’”) Ir,

K3
and rewrite the elements of the scores as

~4

~ o 1 ~ 4 (k)~
o (04) 204 Z Uit e

7

for k=1,..., K. Since u; = u; — XZ»(E— S) we have

Lo ("4) LS~ AW, ¢ g
UN T YN 5t ) 201 2t et i

where Rgl,c) = 0, (1) from Lemma A.1. Since ) . tr [Agk)} = 0 it follows that E(u;Agk)uz) =
0 and, therefore,
. [y
B (75) -

Cov (AP s, A u; | X) = 20'tr [ A A

= 20* (x(7'x0 ) ( e Z x* ) (x"x) - (% Z Xf”’Xf”) (xM'x®)
and since u;AEk) u; is independent of u}Agl)uj for all ¢ # j conditional on X,
(QTL) Cov (Z w,A; k)uz, Z u;A; l)uz )
_ % <Z (Xz'(k)/Xi(l))Q B W (;X(k)/X(k)> (; Xi(l)/Xi(l)>>

1
= Vi

The covariances are obtained as

The Liapounov condition in the central limit theorem for independent random variables
(see White (2001), Theorem 5.10) is satisfied by Assumption 2 and therefore

(%f/) o (\/LN§> L N(0,Ix),

where V replaces ot in V by o%. By the formula for the partitioned inverse

{1(52)_1}1«,1:1( =V
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where {-}1.x1.x denotes the upper-left K x K block of the matrix, it follows finally that

Proof of Theorem 2

The proof proceeds in three steps: (i) we derive the covariance matrix of the score vector,
(ii) we establish the asymptotic normality of the score vector and (iii) we use these results
to establish the asymptotic distribution of the LM statistic.

(i) Define the K x 1 vector s = sy, ..., Sg|" with typical element

1 ;A (k) 1

where s, = ugAEk)ui and 1 < k < K. Using standard results for quadratic forms (see
e.g., Ullah (2004), appendix A.5),

E {Si,k}X} = o’tr [Agk)}

E [slks,l‘X] = 20%tr [A(k A } + oltr [A( } [AE”] + (/Lff) 30 4) agk)/a(l),

where az(k) is a vector consisting of the main diagonal elements of the matrix A,Ek) and /Lq(;l)

denotes the fourth moment of ;. Since
B el & ] = ot [0 e [ 7],

we have /
Cov (sik, 510|X) = 20 tr [Agk)AZ(»l)] + (/Lff) — 30 agk) az(»l). (A.4)

Due to the independence of ] A uZ and v A @) u; for © # j, it follows that

Cov <Z Sik, Z Sil X) = 20" Ztr [Al(k)AEl)} + (uf) — 304) Z agk)/al(l).

i

Let Viyr denote the covariance matrix of s. Inserting the expression for tr A(k)A(l)} , We

determine the (k,1) element of Vyr as
Vi = 204 Z (Z Tit kit l> -~ (Z Z Ty k) (2} zt: f?tk)
) — 304 1 ) , 1 ,
+ 204 Z Z tk = NT XZ: zt: Lit k Litg — NT zl: zt: Litl

= Vigs+ Vo (A.5)

ii) To verify that a central limit theorem applies to s, let A € R, ||A|| =1 and Z; 1 =
y b
%/\’si, where s; is a K x 1 vector with elements s;; for 1 < k < K. Further, E[Z; 7] =0
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and E [Z7;] = 75 NE [Vir] A, where V7 is a K x K matrix with the typical (k, ) element
defined in (A.4) for 1 < k,l < K. From the Cramer-Wold device we conclude that it is
sufficient to show that

\/LN Z Zir =5 N(0,V), (A.6)

where V = Nl%gloo w7z 2 NE[Vir] A Assumption 2’ and (A.4) ensure that V exists and

is positive definite.
The asymptotic normality result (A.6) follows from the central limit theorem for the
double indexed process (see e.g., Phillips and Moon (1999), Theorem 2) if the following

condition holds
ZQT
ey (5] )

Vnr
where Vyr = 75 >, NE[Vi7] A. In turn the Lindeberg condition (A.7) holds provided
that

2
Zir

VN T

—0 for all e > 0, (A.7)

f 113
supE || Z; r|* < supE HﬁH < 00. (A.8)
0T ’ 0T T

To study wether s; /T is uniformly L3 bounded for all i and T it suffices to consider s;/T
elementwise. Furthermore, each element of s;/T can be written in terms of quadratic

forms i.e.,
1),

where B, = Xi(k)Xi(k)' for 1 < k < K and by the triangle inequality

<

3

1 1
= Sik

3 3
1
=t

E)l

1 , 3
Tsi,k < ﬁE |U¢szuz|

<

u;B; yu; — E |:(U;szuz)

2

3

<

For the first term on the r.h.s of (A.9) we make use of a formula for the third moment
of a quadratic form (see e.g., Wiens (1992) or Ullah (2004), appendix A.5), the law of
iterated expectations and uniform bounds E [Ju;|?|X] < C' < co and E|z;x|® < C < 00
given in Assumptions 1’ and 2, i.e.,

all

2 .2 2 2 2 2
E E E:u’itluitQUitgmitl,kajitz,k‘xitg,k’ X

t1 to t3

3

N (A.9)

T3

1 1
ﬁE |’UJ;BZ7]€U1|3 = T3E |: |:|U;Bz,kuz|

+0(T7"). (A.10)

Further, from Assumptions 1’ we have E ’u "X } < C' < oo and from Assump-

1t ZtQ ’Lt5

tions 2’ the term E [|xit1’kxit27kxit3’ku is uniformly bounded for all ¢ and 7. Then it
follows from triangle inequality that the first term on the r.h.s. of (A.10) is uniformly
bounded. The same reasoning applies to the rest of the terms in (A.9) to show their
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uniform boundedness. This concludes the proof of (A.8) and the asymptotic normality of
the score vector s.
(iii) Rewrite the first K elements of the score as

~4
g: (U—> S+ RNT>

where Ryt is given in Lemma A.2 and s has typical element as defined in (A.3). By (ii),
s (Var) s 5 Xk, (A.11)

as N — oo, T — oo, where Vyr has (k,l) element Vj; as in (A.5). Under Assumptions
1" and 2’

Vl:Op(NT2)’
Vo =0,(NT),

where V; and V; are specified elementwise in (A.5). Given the expression for V in Theorem
1

Y

V. Vi
N7z~ nre Y
and hence _
SV s— s (Vyr) s 50 (A.12)

as N — oo, T"— oo. The LM statistic can be expanded as

LM =3'V"15

~4 / . ~4
() ()
o o
o’ ~
= (—4> <3'V_1s> +0, (N2 (A.13)
o
where the last line follows from Lemma A.2. The theorem follows by combining (A.11),
(A.12) and (A.13).
Proof of Corollary 1
The result follows immediately from the proof of Theorem 2 and the fact that Zlq(f) =
(NT)"" 323 @y is a consistent estimator of .

.

Proof of Theorem 3

Using similar arguments as in the proof of Theorem 1,

t—1
0_14 E Z Z Lit, 1 Uit Lis,1 Wis
1 1 0.4 it s=1
5= = : +0,(1). A4
N N ( ) i p(1) ( )
=DIDY
vt s=

1
Lit, K Wit Lis, K Uis
1
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Let u}, = ult/a and 2}, = Ti U, Clearly, >, St 2h2i,] = 0. Since conditional on

X, 3, 2 ks k and S, 2527y are independent for i # j, the covariances for
two elements k and [ of the vector (A.14) are

1 T t—1 T t-—1
X} = ; Z E (Z Z Z;ﬁk;z:sk;> (Z z*tlzzsl>
7 t

=2 s=1 t=2 s=1

1 T t—1
= ; E Lt kTt 1 E Lis kLis,l
i=1 \t=2 s=1

Y
= Vir:

* %k
E [sksl

since all cross terms have zero expectation and E [(u:‘t)Q] = 1. The central limit theorem
for independent random variables and Slutsky’s theorem imply

1 ~1/2 1 .
-V —s* ) > N(0,1
(7)) (g57) 4w
and the result follows.

Proof of Corollary 2

Using the arguments in Theorem 1 and 3 (under Assumption 1’; 2 and allowing for
Ele?|X]| = 07), LM, is asymptotically x% if the Liapounov condition is satisfied and the

asymptotic covariance matrix of the score vector is equal to the limit of > Zuztz,t,kzm
it
as N — oo and T is fixed.
Regarding the Liapounov condition it

k=1,..., K. By Minkowski inequality,

245 _ 246\ 77
Z Z (E |uztuzsxzt kLis k| )
t
Further by the Cauchy-Schwartz inequality, the law of iterated expectations, Assumptions
1" and 2,
246 5
\/ [’uztu i ’X} ’xit,lxis,1|2+ ]

\/E [ A D e

Hence the Liapounov condition holds.
Regarding the (k,1) element of the covariance matrix of §*, note that

t—1 t—1
Z E (Z Tt kUit (Z xis,kuis> ) (Z Lt 1 Uit (Z $is,luis> ) l X]
% t s=1 t s=1
t—1
itV isbit, kit lVis kLis,l
% t s=1
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t—1 .
Next let 2 p = Titp .1 WisTisk and notice that

t—1
2 / 2 2
5 E Ui Zit kit ) X] = E E § 03105 Tit kit 1 Tis k Tis -
[ t 7 t s=1

Furthermore

2 y4
E E U, Zit ke Zit) — E E Uizt k2t — 0,
N it N ) 5 5
7 t

and result (1.31) follows.
Proof of Theorem 4

Consider the normalized scores
—5" = ——s o
VN VN g

where the k-element of the vector s** is given by

N T t-1
S= Y Y (ittis — 01) Tinkis
i=1 t=2 s=1
By construction E [s;*] = 0 for k = 1,..., K under the null hypothesis. Same arguments

as for result (1.31) apply to show the Liapounov condition and make use of the central
limit theorem for independent and heterogeneously random variables . It remains to show
that the (k,1) element of the covariance matrix of s** takes form (1.33). Since conditional
on X , contributions s7} and s7} are independent for ¢ # j, the covariances for two
elements k£ and [ of the vector s** normalized with N are

X]

ko skek
[Sk S

:;E

T t—1 T t—1
E (uituis - Uts) Ttk Tis k E E uzTuiq - UTq) Lir 1 Tiq,l
t=2

s=1 T7=2 q=1
T —1 T t—1
= E § E Tit kTis k § E E [(witthis — 0ts) (Uirthiqy — 0r¢) | X TiriTiq |
i t=2 s=1 =2 gq=1
Further,

E [(uituis - Jts) (uifuiq - OTq) ’X] =E [uituisui‘ruiq|X] — 0¢s0rq,

and the (k,[) element can be written as

T
X] = Z Z Z Lit kLis,k (Z 6t5’rqxz7' 1Tiq, l)

=1 t=2 s=1 T=2 q=1
t—1

N T T
= E E 5ts7’qxit,ins,kxiT,lziq,la

i=1 t=2 s=1 7=2 ¢=1

kkokk
E [sk s;

t—1
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where 0isrq = E[ujiujsujruiq|X]| — 01s074. Substituting é;5,, by an appropriate consistent
estimator gmq =1/N Zjvzl U5 UjrUjq — EtSETq> yields the limiting distribution of the
modified test statistic.

Proof of Theorem 5

As in Honda (1985) the proof of the theorem proceeds in three steps: (i) first we show
that &2 remains consistent under the local alternative; (ii) second, we incorporate the
local alternative into the score vector and (iii) establish the asymptotic distribution of
the LM statistic. (i) Note first that with My = Iyp — X (X'X) ™" X'

ﬂ:MXu:MX(DXv—i-e),

where
X 0
X
Dy = ’
0 XN
Hence,
ﬂ’ﬂ 1 / / IZaY ! ™/ /
NT ~ VT (€'e — ¢ Pxe +v' Dy MxDxv +v'Dy Mxe + v'Mx Dxe) .

Using Assumptions 1, 2 and 3, it is straightforward to show that
1 _
X (X'X) 'X'e = 0,(1),

1

NU’D'XMXDXU = o0,(1),

1
NU'D'XMXG = o0,(1).

and, thus, 5% = 6% + 0, (1) .

(ii) Since u; = X;v; + €; and
u; = Xvi + 6 — X; (5—5)7

we obtain
1 - 1 ot\ 1 (k)
= v (5) o Dl
1 (o 1 ) (ot A (K)
+—= (% _2042111. <Xz.AZ. Xi>vi+op(1), (A.15)

for kK =1, ..., K, where the order of the remainder term follows by similar arguments as
in lemma A.1.

(iii) Using the same arguments as in the proof of Theorem 1, the first term of 5/ N in
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(A.15) is asymptotically normally distributed. Regarding the second term

(k)
S (A O (KA ()
and by standard results for quadratic forms,

E[ (V) (x,A0%) (W)

X] —tr [(XiAg’“)Xi) DC] .

with D, = diag(cy,...,ck). Thus by the law of large numbers for sums of independent
random variables,

1 / 1 4 (k) D ) (k) > ]
2v/Not Zi:vi <XiAi XZ) vi J\}gr(l)o 204N Zt [(XiAi Xi ) D.|.

Now

K

Tl )L (2 () -3 (B2 0) (£32)

1=1
Define the K x 1 vector ¢ elementwise by

2
Z ¢ plim % Z (Z wit,k%t,l) - % (% Z Z 35221:1@) (% Z Z w?t,l)
i t Pt Pt

N—oo

By Slutsky’s theorem theorem we obtain

1 -1/2 7 4 J
—V —s5 | = 1
(N ) (\/NS) N(Q/}a K>7
and the theorem follows by the definition of the non-central x? distributed random variable
with ¢ = Wc and ¢ = (cy, ..., cx) .

Proof of Theorem 6

2

The proof is analogous to the proof of Theorem 5. To show that ¢“ remains consistent

under the sequence of alternatives we note that

X (X'X)'X'e = 0,(1),
v'DyMxDxv = O, (N'?T),
VDyxMxe = O, (NT'?)+0,(T"?).

Using the same arguments as in the proof of Theorem 2, 5/(7v/ N) has a limiting normal
distribution with nonzero mean which is determined by applying the law of large numbers
to the second term in (A.15) with proper normalization.

Proof of Theorem 7 With the Swamy statistic as described in the text, the proof follows

the steps outlined in Appendix A.6 in PY.
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Details for Remark 9

We study the (k,1) element of (N D DAND D ﬂfﬁit?@-’t) under the sequence of alterna-
tives in Theorem 5. Note that

0 = (e + ahi)” + (E - 5>/$itl’§t <E— 5) — 2 (€ + Tyv) T (5 - 5) . (A16)

and
t—1
~ / / n
Zitk = Tit k E (Q’s + T v+ T (5 - 5)) Lis k-
s=1
implying,
t—1 t—1 t—1 t—1
~ ~ / /
Zit,k<it,]l = Lit,kLit,l E €isLisk €isTisi | +U; | Titk E LisLis,k Lit,l E L;sLis,l | Vi
s=1 s=1 s=1 s=1

/ il ~
+ (5 - B) (xzt k <Z Tisis k) ) <xztl (Z 33;5$is7l> ) <B - ﬁ)
t—1 t—1
+ Lit k ( Eisxis,k> (xztl Z JI sUi xis,l) <xzt k Z JI sUi xis,k) (xit,l Z 6isxis,l>
s=1

— T4t kTit,l (i Gisxis,k> (Z xis,wzés) (B - 5) — Lit,kLit,l (i (fEQSUz xzs k> (Z Lis l%) (g - 5)
s=1

s=1 s=1
t—1 t—1 t—1
’ a ’ a /
— Tt Tis ] 5 Ty (6 — 6) Tis ke E €isTis] | — Tit kTis 5 Ty (ﬂ — 6) Tis ke E X5 ViTis
s=1 s=1 s=1 s=1
(A.17)

First, from the first term on the right hand sides of (A.16) and (A.17), we obtain

1 N T t—1 t—1
2
NE E €t Lit kLit,l E €islis k E €isTis) | -
i=1 t=2 s=1 s=1

Notice that this term has the same probability limit as ‘7,;"[ /N, which is equal to Wy .
Next, from the first term on the right-hand side in (A.16) and the second term on the
right-hand side in (A.17),

1 T t—1 t—1
2 1 /
N g g €U | Titk E Tislis k Titl g TiyXisl | Vg
3 s=1 s=1

i=1 t=2
1 N T t—1 t—1
2 1/4, ' / 1/4
= Nis > > e (N ) | wik D wiswion | | i > ahwiss | (N 0;)
i=1 t=2 s=1 s=1
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Since €; and v; are independent conditional on X,

t—1 t—1
2 1/4,,\/ / 1/4
ez, (N4, <xz’t,k > xisxis,k> («Tit,l > @ﬂm,z) (N4,
s=1 s=1

with the K x K matrix Bjf = (:cz-t,k 22;11 xisxis,k) (:Em 22;11 x;t:cis,l) such that

E

X] = o’tr [By D]

T

t—1 t—1
N11_5 Z Z e?t (N1/4v2-), (xit,k' Z xisxis,k) (Iit,z Z X{ﬂis,l) (N1/4'Ui) =0, (N_1/2)
s=1 s=1

i=1 t=2

Using the properties of €;;, v; and the fact that (5— 6) = 0, (1), it can be shown in a

similar manner that all of the remaining terms are of lower order.
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B Appendix: Tables

Table 1.1: Rejection frequencies for Hj : all coefficients are homogenous

A) Size | B) Power
Awj CLM LM LM, | A,y CLM LM LMy,
T=10
N =10 6.3 11.8 2.6 4.7 5.5 5.4 11.3 4.1
N =20 5.6 12.0 3.2 43 8.4 4.2 24.8 7.0
N =30 5.5 11.4 3.7 4.3 115 6.3 35.2 10.4
N =50 5.2 8.9 3.7 4.1 18.9 15.9 51.2 19.6
N=100 54 8.3 4.7 48 36.1 46.5 77.5 47.0
N =200 46 7.5 4.9 4.6 65.6 87.3 96.9 83.1
T =20
N =10 5.3 15.1 2.6 6.3 17.1 3.4 28.1 12.4
N =20 5.7 14.2 3.4 5.7 35.0 9.5 53.0 25.8
N =30 5.9 12.8 3.8 5.8 50.7 23.4 70.5 43.2
N =50 5.1 10.8 4.1 5.3 74.6 53.5 88.9 71.8
N=100 45 8.3 43 4.7 95.7 90.1 99.1 96.5
N=200 51 7.1 5.2 5.5 99.9 988  100.0  100.0
T =30
N =10 4.7 15.6 2.4 7.0 34.4 4.6 43.0 22.4
N =20 45 14.5 3.5 6.2 64.8 19.7 74.3 50.9
N =30 5.2 13.2 3.9 5.6 81.9 42.5 88.9 73.3
N =50 5.3 11.6 45 5.9 96.3 76.9 98.2 94.5
N=100 52 8.9 43 47 100.0 96.0  100.0  99.9
N =200 52 7.4 5.0 5.8 100.0 99.3  100.0  100.0

Notes: Rejection frequencies (in %) for K = 3 under the null (panel A) and the alternative hypothesis
(panel B). Nominal size is 5%.
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Table 1.2: Rejection frequencies: model with individual effects

A) Size | B) Power
LM LM* LMe LM, | An CLM LM LM* LMy LM,
T =10
N=10 26 29 4.8 34 5.7 5.3 8.3 8.6 4.2 7.8
N=20 33 40 5.2 3.8 8.1 4.3 21.6  20.2 6.8 17.8
N=30 31 39 4.7 4.1 8.7 5.3 26.5 242 8.8 22.5
N=5 38 46 4.3 4.5 13.1 10.8 420 389 15.7  35.8
N =100 41 438 4.7 4.6 29.2 408 734 677 404 64.5
N =200 42 48 4.7 4.7 490 795 91.8 879 729 849
T =20
N=10 23 22 6.4 24 19.1 3.6 314 308 13.1 26.3
N=20 34 35 6.0 3.9 39.1 94 59.3 57.8 31.7 536
N=30 38 41 5.4 4.2 40.0 158 60.2 58.0 33.0 53.8
N=50 38 42 5.1 3.8 725 539 89.0 8.1 733  84.7
N =100 43 46 9.5 4.5 914 89.0 982 97.7 939  96.9
N =200 48 438 5.3 4.7 99.8 984 100.0 100.0 99.9 100.0
T =30
N=10 28 29 8.0 3.5 26.6 3.9 37.8 376 18.0 294
N=20 36 35 6.2 3.8 66.8 246 780 773 563 722
N=30 37 37 5.8 4.1 91.8 478 9.3 949 864  93.7
N=50 47 45 5.8 4.8 946 671 970 969 918 96.1
N =100 44 44 5.1 4.7 99.9 928 100.0 100.0 99.9 999
N =200 46 46 4.8 4.6 100.0 984 100.0 100.0 100.0 100.0

Notes: Left panel: rejection frequencies (in %) under the null hypothesis with same design as in
Table 1.1 and orthogonal forward orthogonalization to eliminate fixed effects. Right panel: rejection
frequencies (in %) under the alternative hypothesis and forward orthogonalization to eliminate fixed
effects. Nominal size is 5%.
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Table 1.3: Size and power for ¢-distributed errors

A) Size Awy CLM LM LM,y;  LM* LM,

T =10
N =10 6.3 9.0 3.5 2.9 4.0 3.9
N =20 6.1 10.5 5.4 4.0 6.1 4.5
N =30 5.6 10.2 6.9 5.0 6.2 4.9
N =50 5.1 8.9 75 5.3 6.6 4.4
N=100 5.0 75 9.8 6.2 7.2 4.9
N=200 55 6.9 10.7 5.7 7.6 5.2

T =20
N =10 5.5 13.2 3.5 2.8 3.6 6.0
N =20 5.8 13.0 5.1 4.0 4.6 6.3
N =30 5.4 11.7 5.5 4.3 4.8 5.6
N =50 5.2 10.4 6.7 4.8 5.1 5.3
N=100 49 8.0 8.0 5.5 5.9 5.1
N=200 51 7.0 8.9 5.5 5.4 4.8

T =30
N =10 5.8 15.0 3.0 2.6 3.0 7.0
N =20 5.0 13.6 4.5 3.5 3.9 5.7
N =30 4.7 12.4 5.2 4.3 4.2 5.5
N =50 5.1 11.3 5.9 4.7 5.1 5.9
N=100 50 8.5 6.4 5.0 4.8 5.1
N=200 5.3 7.7 7.3 5.0 5.2 4.9

B) Power Awy CLM LM LM,  LM* LMy,
T =10

N =10 5.9 3.4 12.4 10.9 11.8 4.9
N =20 9.7 3.9 25.6 22.7 22.9 7.5
N =30 13.6 6.9 36.1 31.8 32.4 11.9
N =50 24.1 16.0 52.4 46.7 47.9 22.6

N =100 45.3 44.4 78.9 71.8 73.9 49.4
N =200 76.1 83.1 95.7 92.6 93.8 83.2

T =20
N =10 20.0 3.2 30.5 28.6 294 13.7
N =20 39.5 10.1 53.6 50.0 52.5 29.7
N =30 57.3 22.8 70.5 67.3 68.5 46.7
N =50 80.0 oL.5 88.3 85.5 86.7 72.2
N =100 97.8 89.5 99.0 98.4 99.0 96.4
N =200 100.0 98.8 100.0 100.0 100.0 100.0

T =30

N=10 37.5 3.7 45.8 43.8 45.1 254
N =20 67.7 19.6 74.3 71.9 73.3 54.3
N =30 85.4 43.0 88.6 86.6 87.4 4.4
N =50 97.3 76.2 98.0 97.2 97.7 93.8
N =100 100.0 95.9 100.0 100.0 100.0 99.9
N =200 100.0 99.4 100.0 100.0 100.0 100.0

Notes: Rejection frequencies (in %) for K=3 under the null (panel A) and the alternative hypothesis
(panel B) when €;; is drawn from a ¢-distribution with five degrees of freedom. Nominal size is 5%.
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Table 1.4: Size and power in a model with autocorrelated errors

Ay CLM LM LM*  LM., LM,

A) Size: p=02

T =10
N =10 5.3 7.4 4.8 4.8 3.9 5.5
N =50 9.0 4.6 12.1 13.1 9.3 4.3
N =100 15.9 6.0 17.1 21.0 7.6 5.0
T =20
N =10 7.6 6.8 6.4 6.7 4.4 4.5
N =50 16.3 4.9 15.1 15.7 6.3 4.9
N =100 34.7 9.7 23.8 25.7 11.5 4.4
T =230
N =10 7.3 6.6 6.7 6.9 5.1 4.1
N =50 27.9 5.2 16.1 16.9 6.3 3.6
N =100 46.7 12.7 25.6 27.6 12.4 4.1
B) Size: p=05
T =10
N =10 6.5 3.4 9.3 11.0 3.6 7.7
N =50 48.2 14.3 52.6 63.5 22.3 4.8
N =100 68.6 25.9 67.7 79.8 30.9 4.8
T =20
N =10 14.3 3.0 8.8 9.6 4.4 4.7
N =150 88.9 32.8 65.1 71.4 39.0 4.3
N =100 99.4 74.8 90.5 94.2 73.8 4.6
T =230
N =10 32.9 4.1 24.6 25.6 9.6 4.7
N =150 94.7 36.7 66.6 71.1 42.0 4.5
N =100 99.9 81.1 92.1 94.6 7.2 4.5
C) Power: p=0
T=10
N =10 0.4 8.1 8.3 8.1 4.3 7.7
N =50 10.5 7.0 46.0 43.6 10.5 34.2
N =100 16.9 23.2 69.1 65.2 22.3 54.5
T =20
N =10 11.6 3.7 26.7 26.4 9.6 17.9
N =50 59.3 34.6 89.6 88.7 60.2 82.4
N =100 85.9 80.0 99.0 99.0 90.5 97.9
T =30

N =10 14.4 4.6 28.3 217 10.3 18.2
N =50 88.6 63.9 97.5 97.4 85.8 94.9
N =100 99.7 95.7 100.0 100.0 99.9 100.0

Notes: Panel A) and B) present rejection frequencies (in %) for K=3 under serial correlation of errors
(p = 0.2 and p = 0.5, respectively) and the null hypothesis. Panel C) presents rejection frequencies
(in %) under the alternative hypothesis without serial correlation in errors. Nominal size is 5%.
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C Appendix: Figures

0 05 1 1.9 2 25 3 35 4

Figure 1.1: Asymptotic local power of the LM (solid line) and the A test (dahed line)
when o7, ~ 7.
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power

Figure 1.2: Asymptotic local power of the LM (solid line) and the A test (dashed line)
when o7, ~ x3.
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Chapter 2

LM Tests for Shock Induced

Asymmetries in Time Series

2.1 Introduction

“Losses loom larger than corresponding gains”
D. Kahneman and A. Tversky

In the last decades there has been a significant increase in findings from empirical
studies in economics and finance indicating that processes react differently to positive
and negative shocks. For instance, Koutmos (1999) tests and finds asymmetries in the
conditional mean and the conditional standard deviation of the stock returns distribu-
tion of the G7 national stock markets. Karras and Stokes (1999) examine asymmetric
effects of money-supply shocks in OECD countries and report that negative shocks have
a stronger effect on output than positive ones. Other examples can be found in Elwood
(1998), Kilian and Vigfusson (2011) and Brénnés et al. (2012) among others. In univariate
time series settings this led to an asymmetric time series paradigm introduced by Wecker
(1981). As the main framework to model asymmetries induced by the sign of innovations,
Wecker (1981) suggests asymmetric moving average models (AsMA, hereafter). Com-
plementary to the AsMA model we consider an extension of the autoregressive process
to an asymmetric one (AsAR, hereafter). Note that the asymmetric time series models
considered in this paper introduce a type of nonlinearity to the dynamics of the process,
which differs from the one described by the threshold autoregressive model (TAR). In
particular, the TAR model splits the sample into groups (regimes) based on the observed
threshold variable and the unknown threshold parameter, while AsMA and AsAR models
describe nonlinearity through the sign of shocks.

The potential presence of shock induced asymmetries raises the natural question of
(pre)testing for the correct model specification. This testing problem has already been

discussed in the literature. To test for the conventional moving average model against
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AsMA, Wecker (1981) suggests a likelihood ratio test (LR, hereafter), while Briannés and
De Gooijer (1994) construct a Wald-type test to choose the correct model specification.
Besides this, Briannéds et al. (1998) consider a test statistic based on the artificial re-
gression constructed from the Lagrange multiplier (LM, hereafter) principle. However,
the asymmetric nature of the AsMA model makes the corresponding likelihood function
non-differentiable.! This in turn prevents the use of classical likelihood based tests, such
as LM, LR and Wald test, since the standard approach of deriving the gradient and the
Hessian from the likelihood function as well as the asymptotic behavior of these statistics
are not valid anymore.

In this paper we contribute to the literature by constructing new test statistics based
on the LM approach that account for the non-differentiability of the likelihood function.
The tests are derived for AsSMA and AsAR models. To deal with the absence of smoothness
in the log-likelihood function we resort to the treatment of non-differentiability offered
by Phillips (1991) for LAD estimators. The idea is to examine the problem in the space
of generalized functions (distributions) whose derivatives do not exist in the classical
sense, but can be accommodated by distributional derivatives. This approach allows us
to operate with first order conditions and derive LM type test statistics. Moreover, with
this generalization the asymptotic properties of the test statistics can be obtained. We
show that the limiting distribution is a standard y? distribution under the null hypothesis
of no asymmetric effects. Further, by means of Monte Carlo simulations the finite sample
properties of the new test statistics are explored in different setups. Finally, in order to
make the testing procedures more accessible to potential users, it is shown via Monte Carlo
experiments that the standard model selection criteria, such as BIC or HQ, applied to a
linear model provide a reliable estimate of the lag length for the asymmetric counterpart
model.

To illustrate the use of the proposed techniques, we apply the test to the U.S. unem-
ployment rate. Our results show strong evidence that the growth of the unemployment
rate is affected by an asymmetric impact of positive and negative shocks.

The remainder of this paper is as follows. Section 2.2 introduces the modelling frame-
work for asymmetric time series. The construction of the LM type tests is described in
Section 2.3. In Section 2.4 the asymptotic properties of the proposed statistics are inves-
tigated. In Section 2.5 we present results from a simulation study. An empirical example
is discussed in Section 2.6. The final section contains concluding remarks. Proofs, figures

and tables are relegated to the Appendix.

1Section 2.3 provides a detailed discussion on the type of non-differentiability present in log-likelihood
functions obtained for asymmetric time series.
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2.2 Preliminaries

This section lays out a basis of the asymmetric time series models as a counterpart to
the usual linear moving average and autoregressive models. The main characteristic of
this model class that distinguishes it from other well established nonlinear models (such
as threshold AR models for instance) is that two different filters, one for positive and one
for negative innovations are employed. In particular, Wecker (1981) advocated the use of

the asymmetric moving average model which takes the form
Y=+ a1g 1+ o+ Qe p+ BiE + o+ ﬁpgzr_p, (2.1)

where ¢ = g1 (g, > 0) and 1(-) defines an indicator function. We also complement

Wecker’s approach by considering the asymmetric autoregressive model defined as

Yt =& — 1lYg—1 — ... — QplYp—p — Bly:_—l e T /prt—‘r—]ﬁ (2'2)

where 3" = 31 (g; > 0). In both models it is assumed that y; = 0 for ¢ < 0 and that
the random disturbance term ¢; is a real i.i.d. sequence with N (0, 0?) distribution. The
normality assumption is necessary only for the derivation of the LM statistics. For the
application as well as for the derivation of the asymptotic results, this assumption is
relaxed. In general, for the asymptotic analysis we require the process y; to be stationary
and invertible under the null hypothesis of no asymmetric effects. For this reason it is
assumed that the roots of a(z) = 143 7_| a;2" lie outside the unit circle. We discuss the
consequences of a violation of the stationarity assumption for the asymptotics in Remark
12 of Section 2.4.

To express model (2.1) and (2.2) in matrix notations, define B as a T' x T backshift
matrix with typical element B;; = 1 if 7 — j = 1 and zero otherwise. As a convention
BY = I is set to be the identity matrix. Matrix Dy = diag{1(s; >0),..., 1 (e > 0)}
defines a T' x T diagonal matrix and a = (ay,...,q,), B8 = (B4, ..., 8,) are vectors of

parameters. Then models (2.1) and (2.2) can be rewritten as

y = (Ma +MgDy()) €, (2.3)
and

(Ma + MﬁDl(s)) y =€, (2.4)

respectively, where Mg = >0 ;B and Mg = Y7 ;B with ap =1,y = (y1, ..., yr)’
denotes a T' x 1 vector of observations and € = (e1,...,er)" is a T x 1 vector of error terms.
The representations (2.3) and (2.4) are convenient for our discussion since deviations

from the conventional symmetric MA(p) or AR(p) models are now represented in both
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cases by matrix Mg. Therefore, the main question of interest can be formulated as
Ho: Mg =0, (or 8 =0),

against the two alternatives that Ha : {y;} is generated by (2.3) or Hp : {y:} is generated
by (2.4).

2.3 The Lagrange multiplier test

The corresponding log-likelihood function for time series processes (2.3) and (2.4) is given

by
2\ __ - _j 2\ L /
L (a”B,U ) = const 5 In (O‘ ) 5 SE'E, (2.5)

where € = (Ma +M5D1(€))71y for the AsMA(p) case and € = (Ma +M5D1(E)) y
for the AsAR(p) model. Denote @ = (a',3)" as the parameter vector of interest and
50 = (64/,0)' as the restricted ML estimator of 8, = (a/,O)/. The parameter o2
can be concentrated out. Furthermore, let s(0) = 0L (0) /00 denote the score and
H (0) = —plimy_, . T10*L(0) /0000’ the asymptotic Hessian of the log-likelihood (2.5).
It is convenient in this testing framework to use a partitioning of the score s(0) =
(sa (68),ss (0)/)/, with so (0) = 0L (0) /0, and sg (0) = 0L (0) /0B. The asymptotic

Hessian matrix can be expressed as

Here Hoa (0) = — plimg_, . T710%L (0) /0ada’, Hap (0) = — plimp_, T~ 2L (0) /0ad 3,

etc. Then the usual form of the LM test for testing Hy can be written as,

LMy = %sﬁ ((9\0)'\@1 <§0> ss (50) : (2.6)

where Vg (0) represents the variance of the score sg (6) and is taken from the appropriate
diagonal block of the # (8) matrix, i.c., Vg (8) = Hgg (0) — Hpa (0) Hao (0) " Hap (0) .

Notice that the presence of the indicator functions in the likelihood function (2.5)
makes it non-differentiable for ¢, at zero for all ¢ = 1,...,7T. Therefore, the standard
framework for deriving the LM test (and its asymptotics) with absence of smoothness is
in general not applicable. We suggest here to resort to Phillips (1991), where a solution
to nonregular problems like discontinuities in the criterion function is proposed on the
example of the LAD estimator. In particular, if derivatives do not exist in the usual sense,
these may be accomodated directly by the use of generalized functions or distributions

(See, e.g., Gelfand and Shilov (1964) for more detailed overview of the theory of general-

56



ized functions). As presented below, this generalization of the classical approach does not
only provide a justification of the derivation of the LM test but it also helps to develop
generalized Taylor series expansions of the first order conditions which in turn are useful
to extract the asymptotic theory.

We start with the derivative of the indicator function that can be written as the Dirac

delta (generalized) function, i.e.,

The required properties of the d(x) function are given in Appendix A, Lemma A.5. Then
for the convenience of the notations we define matrix Moz = My +MgD; () which essen-
tially represents the filtering (structure) of the processes (2.3) and (2.4). By proceeding
in a purely formal way the derivative of Mg with respect to 6 can be compactly written

as

(’9Ma,5 _ { Bi + MBDg(E)Dae/agi for QZ = Oy (2 7)

00; B'Dy () + MgDj()Docjoo, for 6; =5

where Dy is a T' x T' diagonal matrix defined as diag{d(e1),...,6(er)} and Dye/9, =
diag {0e1/06; ,...,0er/00;}. Further, under the null hypothesis Mg = 0 and M, g/00;
takes a simple matrix form B’ or B'Dy(). Finally, using standard results for matrix
derivatives (see, e.g., Liitkepohl, 1996), the elements of the score vector sg (50) under

the null hypothesis can be presented for process (2.3) in a quadratic form as

~ 1 /
8/371' (90) = —8 (M 1B Dl( )> g, (28)
o2
and for process (2.4) as
0 Loy 1) =
S8, <90> = —ﬁé' <B Dl(e)Ma ) g, (29)
where i = 1,...,p, € is the ML estimator of € under HO and f)l = diag{le >0), -

1(ET>0)} The vector € is estimated from the MA as M y or from the AR process as
May, respectively, where M, =5"F aB

2.3.1 Variants of the LM test

There are as many different ways to compute the LM statistic (2.6) as there are asymp-
totically valid ways to estimate the covariance matrix Vg (8y). So far, we have assumed
that Vg (6y) is derived from the asymptotic Hessian matrix evaluated under the null.
However, any method that allows us to estimate Vg (6,) consistently can be used. In
what follows, several different approaches that are commonly used in the literature are

discussed.
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Empirical Hessian and information matrix

The most straightforward method, based on (2.6), to compute the negative of the Hessian
evaluated at the restricted vector of ML estimates 50, which is referred to as the empirical

Hessian estimator, i.e.,

VA () = (B (80) ~ P (30) B (30) "1 (1))

where Hyq <§0> = —0°L <§0> /00, Hup <§0> = 0°L <§0> /0adf', etc. However,
this estimator cannot be easily handled in practice due to the presence of the Dirac delta
functions and its derivatives even under the null.

However, it can be shown that by taking the expectation the terms that include
delta functions in the expression of the Vg (6y) can be eliminated. This follows from the
definition of the delta function and so called sifting property (see Lemma A.5). Therefore,
the information matrix approach can be used instead of the empirical Hessian to obtain

an efficient and applicable estimator of Vg (6y). Hence, in what follows the estimator
VgM) (§0> is constructed as

Vi (8) = 1 (00 (60) 30 (80) e (B0) Jaa (B) ). 210

where Joo (0) = E [sa (0) 54 (0)'], Jap (6) =E [s4 (8) s5(0)'], etc.
Finally, to derive an analytical expression for V(ﬂIM) we relax the Gaussian distri-
butional assumption of ¢; for more specific restrictions on the existence of higher-order

moments. This allows to robustify the estimator VI(@IM) (5()) to non-normal disturbances.

Assumption 2"
(i) {et} is an i.i.d. sequence with zero mean and E [€7] = 0 > 0;

M« O < 00 for some r >0 and

(ii) There is a positive constant C' > 0 such that E ||
all t;

(iii) The density function of ;, defined as f. (-), is continuous and differentiable at zero.

Assumption 3 constitutes sufficient conditions for the asymptotic results obtained in this
paper. While part (i) and (ii) are standard identification assumptions in the time series
literature, part (i77) restricts the analysis to innovations with a smooth density function
at zero.

The matrix Jqq (60) is obtained by using standard results for quadratic forms (see,
e.g., Ullah, 2004, Appendix A.5) and has the same shape for both H4 and Hp alternatives,
with typical J; ; () element

Jii (00) = E[s4,i (00) Sa.j (00)] = tr [(M;lBi)(M;lBj)’} : (2.11)
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fori,j =1,...,p. However, the results for other components Jog (0), Jgo (8) and Jgs (0)
differ depending on the modeling framework as presented below. Note, that in the fol-

lowing Lemmas we omit the argument 6, in J;;, s,; and sg; to lighten the notational
load.

Lemma A.3 Let ¢ = E (Ef)k for k = 1,2. Then under the data generating process
(2.3), assumption 3 and the null hypothesis,

E[SOM‘S&]‘] = ’YlJi,ja (212)
E(sgisss] = (n—12)Jij+72Wi, (2.13)

where 1 < i,§ < p, 11 = ¢2/0?, 72 = (1) /o and Wi; = U'(MZ'B)(MZ'BY)'1 with 1

being a T x 1 vector of ones.

The invertibility of the process y; ensures the existence of the inverse of M, under the

null. Hence,
P -1 00
M, = (Z aiBi> => B, (2.14)
=0 i=0
where 1) = 1 and > || < oo.

Lemma A.4 Let ¢ = E (6f)k for k = 1,2. Then under the data generating process
(2.4), assumption 3 and the null hypothesis,

Efsaiss;] — 4 ° 07 Jori= (2.15)
e Fodij+mb—y fori<j '

E [S e ] _ FOJi,j + 71 fOT’T; :J (2 ]_6)
Piot Fg(]i’j —|—’72 fO’I“i 7&] ’ .

where 1 < i,j < p, Fo = (1 — F.(0)) and F.(-) denotes the distribution function of ¢;
Y1 = (T —i)(pa — 02 F) /0%, v = nFoyi—j + ¢1/0? (T — max(i, j)).

Therefore, to test for no asymmetric effects of innovations it is sufficient to estimate
parameter vector e and error vector € under the null and use them to construct the
components of the LM test (2.6), i.e.,

LM = s () [V (80)] s (8). (2.17)

where s <§0) is given by (2.8) or (2.9) and VgM) <§0> is derived in (2.11) and Lemma
A.3 or Lemma A.4 under the null hypothesis of the interest, respectively.
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OPG variant

The second method is the one that can be most easily obtained. It is based on the
outer product of the gradient and is referred to as the OPG estimator. First, recall that
the inverse of M, under the null is given by M ' = Y77 v, BF = g:_ol Y LF, where
Yo =1and Y o |tk| < co. Then we can write the score vector s (00> as the sum of T

contributions

i (80) = S0 (80). 219
t=1

where ¢ = 1,...,p, g1, <§0> = Zi;il Etss{ﬂ\t_s_i for 0; = o, and it 0; = f3; then g, <§0> =
22;21 5t6jz/ﬁ\t_5_i for the AsMA model and g¢;; <§0> = 22;21 eresl(egq > O)Jt_s_i for the

AsAR model. Define the T' x 2p matrix G <§0) with typical element g; ; <§0>. Hence, if
the OPG estimator is used in (2.6) the statistic becomes

Wi = s (@) [ () @ ()] s (a1). 2.19)

Furthermore, statistic (2.19) can readily be computed by use of an artificial regression,
which has the form
=G (§0> ctu, (2.20)

where [ is the vector of ones, ¢ is a parameter vector and w is a residual vector. The
explained sum of squares obtained from (2.20) is numerically equal to the OPG variant
of the LM statistic (2.19).

This OPG variant has the advantage of being easy to calculate and is known to provide
a heteroskedasticity robust version of the LM test (2.6). Nevertheless, it should be used
with caution since there is evidence (see e.g., Davidson and MacKinnon, 1983 among
others) suggesting that this form tends to be less reliable in finite samples. Section 2.5

provides a further discussion of this issue.

Other regression based variants

Other variants of the LM test presented in the from of artificial regressions can be used for
our testing purpose. In this section we discuss one of the best known artificial regression
forms of the LM test that is based on the Gauss-Newton regressions. For a review of other
available regression based procedures see for instance Davidson and MacKinnon (2001).
This approach simply involves regressing the disturbances from the restricted model on
the derivatives of the criterion function with respect to all parameters of the unrestricted

model.
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More precisely, consider the following auxiliary test regression

e=X, <§0> p. +Xg (§0> ps+v, (2.21)

where X (B0) = [ (8 ()] ana %o (80) = [ 25 (3)... 2 (8)]
Both regression matrices X, 50 and Xg éo can be easily computed using the ex-
pressions for g—;i derived in items (ii) and (iii) of Lemma A.5 (see Appendix A). Testing
the null hypothesis Hy : 8 = 0 is asymptotically equivalent to test whether p; = 0 in
the test regression (2.21). Therefore, the test statistic can be computed as the standard
Wald test from the Gauss-Newton regressions (2.21). In what follows we will refer to this
variant of the LM test as regression based and denote it by LM(TReg).

A careful inspection shows that this form of the statistic for the H, alternative re-
sembles closely the test proposed by Brannés et al. (1998). Therefore, the arguments and
the results obtained in this paper can be used to justify the derivation of the statistics in

Briannés et al. (1998) and establish its asymptotics.

2.4 Asymptotics

The difference between the LM-type test statistics discussed above lies in the estimation
of Vg. Since all considered approaches are known to provide a consistent estimator for the
covariance matrix of the score vector under the null, the LMEFI M), LM%OPG) and LM%REQ)
are asymptotically equivalent and behave as x? distribution with p degrees of freedom.

This result is summarized in the following theorem.

Theorem 8 For processes (2.3) and (2.4), under assumption 3 and the null hypothesis
LMy — x>,
as " — oo.

Remark 12 Notice that, if the stationarity assumption is violated under the null hypoth-
esis the underlying asymptotics will differ from the ones obtained in Theorem 8. For

instance, consider the underlying process y; to be near integrated under the null, i.e.,

C
yo=(1+ T> Y1 + 1. (2.22)

Then, the LM test to test for AsAR(1) behaves asymptotically as

Tﬁ> <f01 JC(T)dW(T))
fol J2(r)dr
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where J.(r) is an Orhstein-Uhlenbeck process and W (r) is a Brownian motion.? However,
at this point it is not clear how to discriminate nonstationarity from asymmetry. There-
fore, pretesting for the unit root before applying the LM test for asymmetries might provide
wnvalid results. We do not pursue this problem in this paper. However, this presents an

interesting line of research for further investigation.

2.5 MC simulations

After deriving LM-type tests for testing asymmetries induced by shocks in time series and
their asymptotics, we now turn to study the small sample properties of the proposed test
and its variants. The main aim of this section is to evaluate the performance of the tests

in terms of their size and power in different empirically relevant setups.

2.5.1 Normally distributed errors

As a benchmark specification we consider two types of time series processes given as

Y= e +ag_+ P, (2.24)
y= e +ay_,+ 0y, (2.25)
with e ~ N (0,1), (2.26)

where (2.24) corresponds to the AsMA(1) and (2.25) to the AsAR(1) model. We examine
different combinations of « and S selected from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} and three sample sizes T = 50, T' = 100 and 7" = 200. All Monte Carlo
simulations are based on N = 2000 replications and are executed for tests of a nominal size
of 10%, 5% and 1%. Only the results for the size of 5% are reported since no qualitative
differences were observed.

The left panel of Table 2.1 (see Appendix B) shows rejection frequencies under the
null hypothesis when the underlying processes are MA(1) and AR(1) (i.e., « = [ in
(2.24)) with a lag coefficient a € {0,...,0.9}. In the case of the MA(1) and T = 50
we observe moderate deviation from the nominal size for the LM{"® and the LM
test when the parameter « is close to unity. For the AR(1) process and 7" = 50 the
obtained results show that the LM(TOPG) and the LMgﬂReg) perform equally well, while
LMgf M) slightly underrejects. The size properties of all tests approach the nominal level
fast as T increases.

Figure 2.1 (see Appendix C) illustrates the corresponding rejection frequencies under
the alternative. In particular, parameter 5 in (2.24) and (2.25) is fixed to zero, while «

takes values from the set {0, ...,0.9} as described above. At this point we report that the

2The proof of this fact is almost identical to the proof presented in Phillips (1997).
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setup with fixing o and allowing 3 to change will produce symmetric results and is omitted
from the discussion. The left panel shows the results for the AsMA alternative and the
right one for the AsAR alternative. All three tests performs equally well except for the
case of T' = 50 where the LM(TI M) test has marginally bigger power than its variants for
the AsMA alternative and suffers slightly from a power loss relatively to the other tests
in the case of the AsAR alternative.

2.5.2 Errors with skewed distribution

We now investigate the behavior of the LM tests when the errors are no longer normally
distributed. Since we construct test statistics that are built to distinguish the contribution
of positive and negative errors, it is of special interest to study if the obtained tests are
robust to a skewed distribution of the underlying errors. For this reason the errors in
(2.24) and (2.25) are generated from a beta distribution, i.e.,

&~ B(/L, 07575)7 (227)

where the parameters (u, 0, £, k) are fixed to the values such that assumption 3 is satisfied.
In particular, p = 0 and refers to the mean of the distribution, ¢ = 1 and refers to
the standard deviation, £ = 0.8 and k = 3 refer to the skewness and to the kurtosis
respectively. All other specifications of the MC design remain the same.

The middle panel of Table 2.1 (see Appendix B) shows the rejection frequencies under
the null hypothesis for setups (2.24) and (2.25) with (2.27). The reported results have
only marginal changes to the one obtained for the benchmark case where ¢, ~ N (0, 1).
This indicates that all three test statistics are robust in terms of their size property to
setups where innovations are drawn from a non-normal skewed distribution.

Turning to the power analysis, Figure 2.2 (see Appendix C) illustrates the obtained
rejection frequencies under the alternative. As a deviation point from the benchmark
design each panel reports two setups, one with @« = 0 and 5 € {0,...,0.9} and one
with § = 0 and « € {0,...,0.9}. It is clear from the Figure 2.2 that while the power
properties of the LM(TOPG) and LMEFREQ) do not change qualitatively compared to the
scenario with normal errors, a practical weakness of LMng) is revealed. In particular,
the power properties of the test are asymmetric with respect to the fixed o and fixed (8
setups. The problem vanishes fast as 7" increases. However, the LM,EFI M) test seems to be

less robust in small samples against skewed error distributions.

2.5.3 Conditional heteroskedasticity

To investigate the effect of conditional heteroskedasticity on the performance of the pro-
posed LM type tests we use instead of (2.26) a GARCH(1,1) specification to generate
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errors of the processes (2.24) and (2.25), i.e.,

e = Vi, (2.28)
hi = K+ 6hi1+0e (2.29)
v, ~ N(0,1) (2.30)

with k = 0.01, § = 0.08 and ¢ = 0.9. In this simulation the chosen parameters are
motivated by empirical results estimating a GARCH(1,1) on daily stock market returns
(see Pelagatti and Lisis, 2009).

The right panel of Table 2.1 (see Appendix B) presents type I errors for this setup. As
expected the OPG variant of the LM test shows the most conservative and close to the
nominal level size performance, while the other two variants are oversized for all sample
sizes.

Figure 2.3 reports the rejection frequencies under the alternative of the tests when
errors are conditional heteroscedastic. In comparison to our benchmark specification we

observe only marginal changes in power for all cases.

2.5.4 Model Selection

In practice knowledge of the lag length is required prior to the implementation of the
LM test. Hence, in this section we study the estimation of the true order, which shall
be called pg, and its impact on the test statistics. Our primary aim is to establish the
small sample behavior of p estimated using a standard model selection approach within
a linear time series model when the true underlying model is in fact a AsMA(pg) or
AsAR(po). Specifically, the lag length is estimated from a linear M A(p) or AR(p) model
with 1 < p < Pax where P, is known a priori. The model selection criteria such as the
AIC, BIC or HQ are used for the estimation of the py. The second aim of this section is
to investigate the influence of the estimated lag length on the size-power properties of the
LM test.

In a first step we investigate the performance of the three mentioned model selection
criteria in two model setups each with two different parameterizations. In particular, we

use the following specifications

Yo = &+ g + asgy o+ Biel | + o, (2.31)
Yo = &ty +ays + Ayl + oy (2.32)

where the first corresponds to an AsMA(2) and the latter to an AsAR(2). We use the
parameter combinations a; = 0.5, ag = 0.4, 51 = 0.3, B = 0.2 and a1 = 0.5, s = 0.3,

b1 = 0.1, By = 0.1. Further, we calculate the selected lag length frequencies up to a lag
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of six periods (i.e., Ppnax = 6) for sample sizes T = 100, 7" = 200 and 7" = 400 using
N = 2000 replications.

The results are given in Table 2.2 and are qualitatively similar for both model specifi-
cations. For T'= 100 the BIC has a clear tendency to underselect the lag length for both
parametrizations. However, this improves rapidly with an increase of 7" and furthermore
BIC shows the highest percentage of correct lag selection (above 94%). Similar observa-
tions are made for the HQ criterion. As for the linear time series models, the AIC has
a tendency to overselect for all sample sizes. For the first parameter specification, when
T = 400, the AIC overselects in 25.6% cases for AsMA model and 28.95% for the AsAR
model. When we compare to overselection rates of BIC and HQ it is 2.15% and 9.1%
for theAsMA model, respectively, and 2.85% and 11.1% for the AsAR model. The same
message holds for the second parameter specification.

Which criterion is preferable is nevertheless context specific and depends on the taste
of the researcher. For our purposes it is important to note that standard criteria can be
used to determine the lag length in finite samples, although one should be aware of a
potential overselection of the AIC criterion.

In the second step, we turn to the influence of a preliminary model selection stage
on the power of the LM test. For this reason we use the BIC in our baseline setup with
normally distributed errors and compare outcomes with the benchmark model in Section
2.5.1. BIC values are calculated up to a lag of six periods. The results are shown in
Figure 2.4. In this setup we only observe minor power deviations compared to the case

with a known lag structure of the process.

2.6 Example: Growth of the U.S. unemployment rate

In this section we explore by using the AsAR model the presence of asymmetries in the
growth of the U.S. unemployment. We use monthly, seasonally adjusted unemployment
data of the U.S. population at the age of 16 and above, available from the Bureau of
Labor Statistics. The sample runs from January 1958 to December 2014 and is plotted
in Figure 2.5.

Based on BIC and HQ, with a maximum number of lags P,.. = 12, the AR(4)
model is selected as the appropriate test specification. We use the LM(TOPG) test which is
robust to heteroscedasticity, since there is evidence of residual heteroscedasticity in the
model under the null. The null hypothesis of no asymmetric effects of innovations on the
growth of unemployment is rejected at the 1% significance level with LM(TOPG) = 19.35.
Furthermore, we can analyze the asymmetric effects lagwise. This can be simply done
by using the same testing routine for the restricted asymmetric model. For instance, to

test for asymmetry of innovations in the k-th lag, the LM test can be constructed for the
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model y; =€, — 1Y—1 — ... — QWYYr—p — Bky:r_k with £ =1,..., p in the same way as for the

unrestricted model (2.2) in Section 2.3. The obtained results in our case are as follows

LMY = 7.79, LMY = 1.58, LM = 1.26, LMY = 0.69,

where LM,(C?PG) is the OPG version of the test for asymmetry in the k-th lag. Only the

first test rejects the null hypothesis (at the 1% level). This indicates that shock induced
asymmetries are only present for the first lag of the series. Our findings suggest that
the appropriate model specification for the growth of the unemployment rate takes the

following form

Y = €+ Y1 + QYo + Q33 + QY4 + 5lyt+_1- (2.33)

A thorough theoretical discussion of estimating asymmetric time series models goes
beyond the scope of this paper. However, to illustrate how asymmetries can influence
the dynamics of the process we complete this example by estimating model (2.33). To
estimate asymmetric time series models, Wecker (1981) suggests the maximum likelihood
approach. As argued in Section 2.3 the likelihood function is not differentiable (in a
classical sense) and standard search techniques for the maximum can produce misleading
or biased estimates. For this reason we suggest a simple iterative procedure:®

Step 1. First, the model (in our case AR(4)) is estimated under the null to obtain an
estimation of the innovations {?gl)}. For this, standard OLS/GLS can be used. Estimates

{éﬁl)} are used to construct the asymmetric components 3", = y;_;1 (51(517)1 > 0) for
1=1,....,p;

Step 2. The AsAR model can be estimated with OLS/GLS approach by replacing
the true asymmetric components y;" ; with estimated quantities ;" , for s = 1, ..., p. This

step in turn will produce the estimated residuals from the asymmetric model {52)};
Step 3. The innovations {é\f)} from Step 2 are used to recalculate the asymmetric

components, i.e. §,, =y, ;1 (aﬁl_)l > 0) for i =1,...,p. Then Step 2 is repeated and new
estimated residuals are produced {éf)’)
Step 4. Step 2 and 3 can be repeated N times until the fit of the model does not

change between iterations, i.e.,
~92 ~
o8 =8 <«

where 7% = (gN))/gN)/T is the estimate of the fitted variance in iteration N and € is

the precision constant chosen by the researcher.

3The consistency of the suggested estimation procedure remains an open topic and the obtained
estimates serve only for illustrative purposes.
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In our example we choose € = 1074 Convergence of the estimation procedure is
achieved after two iterations. Table 2.3 reports the parameter estimates and the respective
t-statistics. In addition, we report that the residuals for the given AsAR process are not
serially correlated, if we look at the Ljung-Box test for serial correlation up to 6 lags.
The most noticeable result is that the first lag of y; effects only through the asymmetric
component y;; but not through the linear one y; ;. Since it is difficult to assess the
dynamics of the autoregressive process only through point estimates the corresponding
impulse-response functions are constructed. To isolate the effects of positive and negative
innovations we consider two shocks of one standard deviation, that is, ¢ = ¢ and ¢q =
—0o. In Figure 2.6, we plot the obtained impulse-response functions. The blue line with
diamonds represents the impulse of the positive shock and the red line with triangles
depicts the negative shock mirrored with respect to the time-axis for a better comparison.
For completeness we also add the impulse of the standard AR(4) model (line with squares).
This figure presents the difference between “positiv”’ and “negative” impulses that pertain
in the first year after the shock. It becomes apparent that the positive shock affects
immediately while the effect of the negative one is less pronounced and delayed.

This finding complements the existing literature on nonlinear behavior of the unem-
ployment rate (see e.g., Hansen (1997), Yilanci (2008) and Caporale and Gil-Alana (2007)
among others) and creates potentially a new discussion on what type of nonlinearity is

present in the U.S. unemployment rate.

2.7 Conclusion

In this paper we used the theory of generalized functions to derive the Lagrange multiplier
test when the likelihood function is not differentiable. In particular, we derived different
variants of the LM test to detect asymmetries induced by positive and negative past
shocks on time series. Further, we investigated the asymptotic properties of the test. In a
simulation study, we examined the small sample properties of the LMt test under different
model specifications. It is also shown by means of Monte Carlo simulations that standard
model selection criteria can be used for the implementation of the test. In an empirical
example to the growth of the U.S. unemployment rate, we demonstrate the relevance of

our testing procedure.
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A Appendix: Proofs

First, some auxiliary results are collected in the following Lemma to simplify the exposi-
tion of the subsequent proofs.

Lemma A.5 (%) Sifting property of delta functions

/6<x>f<x>dx—f<o> and/5<x>f<x>dx——f<o>,

Q Q

where A (x) defines the derivative of the delta function and f(z) is the derivative of f (x);
(i) For process (2.3) it holds

Oe —ﬁ;}ﬁBis, if 0; = oy
00;

" | -M.,BDie, ifbi =5

where Ma’ﬁ =M, + Mgﬁ and D = D) + Dse)De fori=1,...,p;
(iit) For process (2.4) it holds

Oe . Aa,lgBiM;’lﬁ€, Zf 97, = 4
891 Aa,I@BZDl(s)M;’lﬂE, Zf 91 = ﬂl

where Aq,g =1 —MgDj)Dy and y = M;}ﬁe fori=1,...p.

Proof. Sifting property (i) summarizes some of the features of delta functions (see, e.g.,
Gelfand and Shilov, 1964).

Property (ii) comes directly from differentiation of (2.3) and standard results for
matrix derivatives (see, e.g., Liitkepohl, 1996), i.e.,

Oe
B;

= —M_ 5 [B'Dy() + MgDjse)Doesop,] €

= —M_;B'D)e + MgDy)D.0e/9p;.

Solving the last equality for g—g_ yields the required result. The same calculations are

: Oe
required for 5=

Finally, the last item (iii) follows from similar arguments, i.e.,

Oe
9B

= [BDi(e) + MgDse)Doc/os | M 58
= BiDl(s)M;,l,BE + MgDs(e) Dy de /9p;

where y = M;}ﬁs. Again solving the last equation for aa_g,- yields item (iii). The proof for

g_s is identical. m
a;
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Proof of Lemma A.3

Recall that invertibility of process y; ensures the existence of the inverse of M, under the

null, i.e.,
P -1 o) T-1
- (zakBk) S B =SB
k=0 =0 1=0

where 1) = 1 and >~ [x] < oo.
(i) We have that

Sap = % (M 1BZ = Z Z€t58¢t s—1i9

t=141 s=1
1 1 &
— +Y/ -1pi\ - _ T
so; = () MIB) e=— 3 > et
t=14j s=1

Hence the expectation of s, ;535 can be rewritten as

| T T
E [sai56,4] = I Z Z Z Z¢t—s—i¢l—k—jE eiesciel] .

t=1+i s=1 I=1+j k=1

Note that the above expectations are nonzero only if the four indices of ¢, are pairwise
equal. More precisely, the only possible case is when ¢ = [ and s = k. We thus obtain the
following expression

T t— maxz

E [Sa,isﬁ,j] = % Z Z 1/% s— zwt s—j — QS_ [(M;IBZ) (M;IBJ)/} :

t=1+max(s,j) s=1

(ii) Proof of fact (2.13) goes along the same line. Rewrite the expectation of sg;sg ;

IE:[S/g7 7] = 0_4 Z Z Z Z 'th s— ﬂ?t s—j |:€t5 €l5k:|

t=1+1 s<t—11=1475 k<I—1

as

In this situations the expectations are nonzero only if the indices of e satisfy conditions
t=101%#s=kand s#k+#t=1. Which in turn leads to (2.13) since

T t— max

E[Sﬁ,isﬂ,j] - % Z Z wt s— zl/}t s—j

t=1+4+max(i,j) =1

PN
0_2 Z Z Z ¢t—s—iwt—k—j7

t=14max(7,j) 1<s#k<t—max(i,j)

where
T t—max(%,5)

S Gt =t |(MLB) (M'B)]

t=14max(%,j) s=1
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t—max(7,5) t—max(%,7)

Z Z wt s—1 Z % k—j —l,( 1Bi>(M;1Bj)Il7

t=1+max(s,j) s=1

with I being a T" x 1 vector of ones.

Proof of Lemma A.4

(i) Consider the following decomposition of the elements of sg; into two terms

Z Z egsl (€1 > 0)hysi — — Z 1€, 4, (A1)

t=14+i s=1 t=1+1

for i =1, ...,p. Hence the expectation of sg;s3; can be expressed as

T t—i-1 T Il—j—1
1
E[sgisp;] = - Z Z Z Z E [ereseienl (emi > 0) 1 (51— > 0)] Yos—ithi—p—;
t=14i s=1 I=1+5 k=1
1 T t—i—1 T
T Z ZE [eesaie 1 (e > 0)] s (A.2)

T
Z E [eieseigi 1 (eemj > 0)] ooy

Consider first ¢ = j. Then the second and the third term in (A.2) are zero. The only
relevant cases when expectation is non zero for the first term are when t = [; s = k and
for the fourth term when ¢t = [. These facts together with the fact that

Fo ::E[l(gt_i20)]:/OodFa(:p):1—F5(0),

implies that

t—i—1

Elsgissil = ]:OZ Z@Dt“ — (' =)

t=141 s=1

SR S M< ) (A3)

t=141% s=1
9
= Fotr [(M;!'B)(M,'BY)] + $2= 07

2

(T — ). (A4)

g

When i > j, the second term in (A.2) as well is zero and the only relevant case for the
first term is when t = [; s = k and for the fourth term when ¢t = [. However, the third
term in (A.2) when ¢ = [ and s =t — i has non zero expectation and can be expressed as
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2Py (1 — Fo) Zthl i ¥i—j- This results in the following outcome

E(ssisp;] = Fotr[(Mg'B)(M'B)]
+(T0—2 2 ((¢2 — o Fo) Forbizj + 1) - (A.5)

Finally, for ¢ < j the results are identical to those obtained for ¢ > j due to the symmetry
of the variance covariance matrix.

(ii) The same techniques are used to find the covariance between s,; and sg;. For
the case when j < i we have that

T t—1i
Elsaisai] = Fo > D Ui, (A.6)

t=147 s=1

= Fotr [(BM)(B/M,")], (A.7)
and for j > ¢ additional terms enter the expression, i.e.,

(2 — 0% Fo)

o2

E [s4,85,] = Fotr [(B'M;')(B'MZ')'] + i (T =13), (A.8)

which completes the proof of the Lemma.

Proof of Theorem 8

To lighten the notational load in what follows we omit the argument 6,. Then rewrite
/ .
the score vector as sg = % 3, Zy p, where Zy = (Zt(}T), ey Zf?) with Zt(l% defined as

t—1
(4) +
ZtT = E €13 W—s—i = €&,

)

s=1

t—i
and &_; denotes > el s ;. To investigate the limiting behavior the Cramer-Wold
=1

device will be applsied which tells that it is sufficient to study the limiting distribution of
a sequence of scalars ;7 = XN'Z; 7, where X is a p x 1 vector such that ||[A|| = 1 and |||
defines an Lo vector norm.

The central limit theorem for martingale difference sequences (hereafter, mds) applies
to the {n; r} if the following holds: *

(i) {ner, Fer} is mds, where F; 1 is defined as an associated o-algebra to the sequence
ne 7 such that n, 7 is measurable with respect to F; r;

(i) E |n.r|*™" < C < oo for some r > 0 and all ¢;

2
(iii) define 772 = ZE (Z nth) ] , where @2 7 > 7/ > 0 and
t

1 _
T ZUET — 0, 20.
t

4see, e.g., White (2001), Corollary 5.26
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It is straightforward to see that condition (i) is satisfied since E [y r|Fi—17] = NE [Z; 1| Fio17] =
0 and the assumption on &; assures that E |n, 7| < oo. To verify condition (ii) notice first
that by Cauchy- Schwarz and Minkowski’s inequalities

1 24r
247\ 2+r
E|nr|*T < |IAIPTE || Zor| T < <Z <IE z\) ) ) ,

Hence, condition (ii) follows from uniform L,,, boundedness of ¢;, uniform L., bound-
edness of &/ (implied by assumption 3) and the following arguments

247

E Zt( < (Ele/"E|&"T)?

" L\ 2
C (Z (E ‘5:¢t—s—i’4+r> 4+T>

s=1

-1 24r
< O (Z |1/Jt—s—z"> < 00,
s=1

where the second inequality follows from the Minkowski’s inequality and the last one from
invertibility and stability of the process.
Regarding condition (iii), first it is clear that Efﬂu is bounded away from zero, i.e.,

i)
T

AN

2
1
(Z th,T> = ZXVEA 0.
t

1 2 =2 :
Second, to show the convergence of 7 >, 0/ —@; 1 it is sufficient to show the convergence

of
1

1
T Z Zt%Z 72— _Vﬂ(l ]) T Z (5? - 02) ft—ift—j + ?02 zt:Xt—la (A-9)

t

where X, = ), (é”t_i{t i e (Zt L+ max(i.j) 1/1t 1/1t — ”>>. The first term on the

2+r

r.h.s. of (A.9) satisfies the mds property and E| (e2 — %) &2 1} < A < oo. Therefore

the law of large numbers for mds gives that X T (e —0?) & ibj 2 0. Moreover,
assumption 3 with standard arguments (see, e.g., Hamilton, 1994, Chapter 7, pp.192-
193) implies that X; ; is uniformly integrable L' mixingale which in turn gives that
F3, X1 50,

Proofs of limiting results of AsAR model are similar to those given for AsMA and
hence are omitted.
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Table 2.1: Rejection frequencies (in% ) under the null of no asymmetric effects for AsMA and AsAR processes
g ~ N(0,1) | e ~ B(0,1,0.8,3) | g ~ GARCH(1,1)

MA(1) | AR(1) | MA(1) | AR(1) | MA(1) | AR(1)

a LM TMEPO TG | v LvPd L | LuE™ P9 T | o™ Lv"9 Lv | L@ a9 v | o™ Lv L)

0.0 7.9 6.3 6.5 5.8 6.0 4.9 5.6 7.4 5.7 4.8 7.1 4.8 9.1 6.6 8.8 7.8 6.3 8.9
0.1 6.1 7.2 5.6 4.2 6.5 6.1 6.6 7.7 5.9 4.6 7.3 5.9 9.1 6.8 8.9 6.5 5.0 7.5
0.2 7.1 5.8 4.7 44 5.5 5.1 5.5 5.4 5.6 4.1 6.4 5.2 8.9 6.4 9.1 6.9 6.2 9.0
0.3 6.6 .7 6.3 4.2 5.3 4.8 6.4 8.0 6.1 3.4 7.3 5.2 8.5 6.0 8.2 6.1 5.3 8.3
T =50 0.4 6.7 8.0 6.9 3.8 5.5 4.3 6.0 7.9 5.4 2.7 6.8 5.8 8.4 5.0 8.8 5.3 5.2 7.5
0.5 7.3 6.5 5.1 3.0 5.0 4.7 6.8 7.1 4.9 2.5 6.1 4.8 8.4 6.1 8.9 4.5 4.8 7.0
0.6 7.4 7.8 5.8 2.6 6.0 5.2 7.8 8.5 6.1 24 5.8 4.7 8.1 6.0 9.1 3.5 5.0 7.2
0.7 8.3 8.4 6.4 3.2 5.1 4.4 8.1 9.9 6.7 2.1 7.0 5.1 8.5 7.1 10.9 3.4 5.1 7.4
0.8 8.7 10.9 7.4 1.9 5.3 4.7 9.4 11.5 8.0 2.3 5.1 3.5 8.6 8.8 12.2 4.1 5.5 7.7
0.9 7.9 11.9 9.6 3.0 5.7 4.6 8.9 13.9 9.0 2.6 5.6 4.5 7.1 11.8 12.2 5.0 5.8 8.7
0.0 5.9 5.2 4.7 5.1 5.8 5.3 4.8 6.3 5.3 4.9 5.8 5.4 8.0 6.1 8.9 7.9 5.2 8.2
0.1 5.5 5.8 5.4 4.7 6.0 4.9 4.5 6.2 4.9 4.7 6.2 5.3 9.2 5.9 9.0 8.5 6.0 9.0
0.2 5.0 5.5 4.5 4.1 5.7 4.6 4.9 6.7 5.8 5.2 5.2 4.3 8.7 6.1 8.7 7.3 5.8 8.1
0.3 5.7 5.3 4.8 4.3 5.6 4.8 4.0 5.8 4.5 4.5 6.6 5.5 8.3 4.9 7.6 6.1 4.8 7.8
T =100 0.4 5.0 5.3 4.7 3.8 5.9 4.9 5.1 5.8 5.5 3.9 6.3 5.4 8.5 4.8 8.7 6.4 5.5 7.8
0.5 5.4 5.1 4.6 3.5 5.8 4.8 44 5.0 4.6 3.5 5.6 4.6 8.3 4.8 7.1 5.0 4.6 6.8
0.6 4.5 6.4 5.7 3.6 5.3 5.3 4.3 6.1 6.2 2.6 4.7 4.2 7.6 5.4 8.5 5.4 5.7 74
0.7 4.9 5.3 4.8 3.2 5.3 5.1 4.4 6.1 5.7 3.0 5.7 4.7 8.0 4.7 8.9 3.9 4.0 6.0
0.8 5.2 6.2 6.4 3.3 5.7 4.8 5.2 6.2 5.8 3.4 5.3 4.1 7.2 5.5 8.9 5.4 5.0 7.2
0.9 5.3 74 7.7 3.7 5.2 4.3 5.9 8.5 6.3 3.2 5.2 4.1 6.8 8.1 10.8 6.4 5.6 8.2
0.0 4.8 6.1 5.9 5.0 5.5 5.1 4.1 5.6 5.5 4.9 6.1 5.5 8.3 5.1 8.4 9.4 6.2 9.5
0.1 4.2 5.4 4.8 4.6 5.6 4.6 4.7 6.3 5.8 5.5 5.5 5.3 9.5 6.0 9.5 7.8 5.2 8.2
0.2 5.0 5.1 5.1 4.8 5.4 5.0 4.0 5.8 5.6 5.3 6.4 5.7 8.2 4.6 7.8 9.3 6.3 9.4
0.3 4.2 5.4 5.2 5.2 6.5 5.9 3.8 4.6 4.1 4.9 6.0 5.9 9.6 6.0 9.4 7.6 4.9 7.9
T — 200 0.4 4.3 6.7 6.5 4.1 4.7 44 4.3 5.2 5.1 5.0 5.6 4.6 7.8 4.7 7.7 7.1 5.3 8.0
0.5 4.7 5.0 5.2 4.9 5.7 5.5 4.4 5.7 5.2 3.8 5.2 4.2 9.1 5.3 8.7 7.0 5.5 8.2
0.6 4.0 5.1 5.0 4.1 4.8 4.5 3.4 5.3 5.0 4.8 6.1 5.3 8.0 5.1 8.1 6.1 4.8 7.9
0.7 4.5 5.7 5.9 3.8 5.0 4.6 3.8 6.4 6.8 3.5 5.3 4.6 7.5 4.5 7.7 7.0 5.7 8.3
0.8 44 4.9 4.6 4.1 5.7 5.3 4.8 5.4 5.1 3.7 6.3 5.4 7.3 5.2 8.5 7.2 6.5 9.2
0.9 4.5 6.3 7.2 3.9 44 4.5 5.4 5.6 5.5 3.5 4.4 4.1 7.7 6.5 10.2 6.4 5.3 7.7

Notes: The nominal size is 5%. The errors ¢; are drawn from N(0,1) (left panel), 5(0, 1,0.8,3) (middle panel) and GARCH(1,1) (right panel).



Table 2.2: Lag selection frequencies (in% ) under different AsMA and AsAR DGPs

Y =¢&;+0.5e,_, +0.4e, 5, + 0.3, +0.2¢/,

ye =& + 0.5y, + 0.4y, 5 + 0.3y, + 0.2y, ,

T\p 1 2 3 4 5 6 1 2 3 4 5 6
AIC | 3.9 67 122 6.3 5.6 5 6.05 6815 12 54 4.35 4.05
100 BIC | 20.05 7595 32 05 0.15 0.15 20.75 75.85 2.65 05 0.25 0
HQ | 98 775 7.6 275 1.25 1.05 11.7 7745 715 1.75 1.3 0.65
AIC | 0.25 7375 10.85 6.7 4.75 3.7 0.15 7355 1265 6 4.5 3.15
2000 BIC| 21 9545 205 04 0 0 235 9495 26 0.05 0.05 0
HQ | 045 89.95 58 24 0.85 0.55 075 885 785 14 1.25 0.25
AIC| o0 744 11.75 6.9 3.95 3 0 71.05 139 59 53 3.85
400  BIC 0 9785 19 025 0 0 005 971 26 0.2 0.05 0
HQ 0 90.9 6.4 2 04 0.3 0 889 835 1.75 0.5 0.5
Yy =6 +05e,_ , +03e, ,+01ef , +0.1e/y, y =e +0.5y;,, +0.3y,_,+0.1y;", + 0.1y},
AIC | 19.45 532 104 6.95 5.65 4.35 21.1 55,5 10.05 5.8 44 3.15
100 BIC | 49.95 46.7 235 0.8 0.15 0.05 50.2 47.85 1.45 0.35 0.15 0
HQ | 3265 558 655 2.7 1.65 0.65 345 56.75 52 1.9 1.3 0.35
AIC| 48 651 13.25 745 5.15 4.25 505 69.35 11.3 59 5.05 3.35
200 BIC | 23.45 71.4 2 025 0.2 0 22.05 76.15 1.3 045 0.05 0
HQ | 1065 78 24 24 09 0.65 109 81.2 47 2.05 0.85 0.3
AIC | 0.15 6795 1405 7.75 5.3 4.8 0.15 67.25 107 82 17.25 6.45
400 BIC | 265 943 27 035 0 0 23 9545 1.7 045 0.1 0
HQ | 05 8.1 75 24 0.95 0.55 0.7 89.15 48 295 1.7 0.7

Table 2.3: Estimation results for the growth
of U.S. unemployment rate

Regressor Estimate t-statistic
Yi—1 -0.0500 -0.9343
Yt—2 0.2124 5.7014*
Yt—3 0.1452 3.9078%*
Yt—a 0.1265 3.3830*
T 0.1658 2.3093*

Notes: * denotes significance at the 1% level

C Appendix: Figures
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Figure 2.1: Power of the LM variants when £; ~ N (0,1). Figures are generated for 5 =0 and «
runs from 0 to 0.9 with step 0.1. The left panel presents results for the AsMA DGP and the right
panel for the AsAR one. Number of MC replications for each output is 2000
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Figure 2.5: The growth of the U.S. unemployment rate from January 1958
to December 2014.

78



0.05

...-¢--- Positive Shock

0.04 o
)
3 . —a4— Negative shock
o) ;
2003 X
e
)
£ 0.02
>
Q.
E

0.01

0

Time, month

Figure 2.6: Impulse-response analysis of the growth of the U.S. unem-
ployment rate based on the empirical AsAR(4) and AR(4) models. The
effects of the positive shock €9 = & and the negative one ¢g = —7 are
illustrated by the blue line with “diamonds” and the red line with “trian-
gles”, respectively. The impulse-response of the AR(4) model is given by
green line with squares.

79



Bibliography

Brannas, K. and J. G. De Gooijer (1994). Autoregressive-Asymmetric Moving Average
Models for Business Cycle Data. Journal of Forecasting 13(6), 529-544.

Brannés, K., J. G. De Gooijer, C. Lonnbark, and A. Soultanaeva (2012, January). Simul-
taneity and Asymmetry of Returns and Volatilities: The Emerging Baltic States’ Stock
Exchanges. Studies in Nonlinear Dynamics € Econometrics 16(1), 1-24.

Brannés, K., J. G. De Gooijer, and T. Terdsvirta (1998). Testing Linearity against Non-
linear Moving Average Models. Communications in Statistics, Theory and Methods 27,
2025-2035.

Caporale, G. M. and L. A. Gil-Alana (2007). Nonlinearities and Fractional Integration
in the US Unemployment Rate. Ozxford Bulletin of Economics and Statistics 69(4),
521-544.

Davidson, R. and J. MacKinnon (1983). Small Sample Properties of Alternative Forms
of the Lagrange Multiplier Test. Economics Letters 12, 269-275.

Davidson, R. and J. G. MacKinnon (2001, January). Artificial Regressions. Working
Papers 1038, Queen’s University, Department of Economics.

Elwood, S. K. (1998). Is the Persistence of Shocks to Output Asymmetric? . Journal of
Monetary Economics 41(2), 411 — 426.

Gelfand, I. M. and G. Shilov (1964). Generalized Functions, Properties and Operations,
Volume 1. New York and London: Academic Press.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

Hansen, B. (1997). Inference in TAR Models. Studies in Nonlinear Dynamics & Econo-
metrics 2(1), 1-14.

Karras, G. and H. H. Stokes (1999). On the Asymmetric Effects of Money-Supply Shocks:
International Evidence from a Panel of OECD Countries. Applied Economics 31(2),
227-235.

Kilian, L. and R. J. Vigfusson (2011, November). Are the Responses of the U.S. Economy
Asymmetric in Energy Price Increases and Decreases?  Quantitative Economics 2,
419-453.

Koutmos, G. (1999). Asymmetric Index Stock Returns: Evidence from the G7. Applied
Economics Letters 6(12), 817-820.

80



Liitkepohl, H. (1996). Handbook of Matrices. John Wiley & Sons, Ltd.

Pelagatti, M. M. and F. Lisis (2009). ”Variance Initialisation in GARCH FEstimation”
Complex Data Modeling and Computationally Intensive Statistical Methods for Estima-
tion and Prediction.

Phillips, P. (1991, December). A Shortcut to LAD Estimator Asymptotics. Econometric
Theory 7(04), 450-463.

Phillips, P. (1997). Towards a Unified Asymptotic Theory for Autoregression. Biomet-
rica 74 (3), 5b35-H47.

Ullah, A. (2004). Finite Sample Econometrics. Oxford University Press.

Wecker, W. E. (1981). Asymmetric Time Series. Journal of the American Statistical
Association 76(373), 16-21.

White, H. (2001). Asymptotic Theory for Econometricians: Revised Edition. Academic
Press.

Yilanci, V. (2008). Are Unemployment Rates Nonstationary or Nonlinear? Evidence from
19 OECD Countries. Economics Bulletin 3(47), 1-5.

81



Chapter 3

Forecasting Methods for Functional

Time Series

3.1 Introduction

In recent years advances in data collection and storage led to the possibility of recording
many real life processes at increasingly high accuracy. Examples include high frequency
data such as financial transactions, environmental data such as ozone or insolation maps
and economic data such as income distributions or yield curves. The availability of large
amounts of data offers manifold opportunities for researchers to obtain a better under-
standing of the underlying processes. However, to make use of this growing information
and efficiently handle big data sets, suitable statistical tools are required to describe,
model and forecast the relevant characteristics of this data. Functional data analysis
(FDA) has emerged as a response to this request and has consequently been growing into
an important field of statistical research.

In FDA, where large data sets are utilized in the form of functional observations (or
curves), the focus has been mostly on independent and identically distributed observa-
tions. In many empirical applications data is collected sequentially over time. Conse-
quently, we expect that the functional observations in a given time period are affected by
past observations. Therefore, additional tools are required to analyze data that is given in
the form of a functional time series (FTS). This paper studies the problem of describing
and forecasting F'T'S and consists of two main parts. In a first step we provide a simple yet
broad framework to quantify time dependencies in FTS. Second, we develop forecasting
techniques for F'T'S under the given definition of time dependency.

Stochastic processes with time dependencies have been considered in the statistical
literature. In the context of classical (i.e., finite dimensional) time series analysis, er-
godicity and various mixing conditions are well established and frequently used (see, e.g.

Hamilton (1994) and Davidson (1994) for a review). In the functional context, however,
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only few concepts are available when dealing with time-dependent observations. A key
reference is Hormann and Kokoszka (2010) who introduce a moment based notion of weak
dependence using m-dependence. In this paper we complement the approach of Hormann
and Kokoszka (2010) by suggesting an alternative concept of time dependencies for FTS.
Using the spectral Karhunen-Loeve representation functional observations can be repre-
sented by their functional principal component (FPC) scores. Therefore, the dependence
between functional observations can be quantified through their respective FPC scores.
This approach allows us to adapt various concepts of dependence available in the time
series literature to the functional context. In particular, we consider dependence based
on the autocovariances and cumulants of FPC scores. Further, since FPCs play a major
role in explaining time dependencies it is necessary to establish the consistency of their
estimates. We derive the convergence rates for the estimators of the FPCs under quite
general serial dependence that allows for the long range dependence of the FPC scores.
This in turn extends the result in Hérmann and Kokoszka (2010).

In the second part of the paper we discuss forecasting methods for FTS. Most work
dedicated to the prediction of (FTS) has focused on the functional autoregressive model
of order one (FAR(1)) suggested in Bosq (2000). In particular, Bosq (2000) derives the
estimator and the predictor for the FAR model using the Yule Walker equation and shows
their consistency. Besse et al. (2000) propose a local adaptation of the FAR(1) model by
introducing a nonparametric weighted kernel estimator. The issue of weak convergence
for estimates of the FAR(1) model is addressed in Mas (2007). Kargin and Onatski (2008)
develop a predictive factor technique for the estimation of the autoregressive operator.
Park and Qian (2012) apply the FAR(1) framework to model FTS of distributions. Did-
ericksen et al. (2012) provide a small sample simulation study of the performance of the
FAR(1) model and several competing prediction techniques. More recently, Kokoszka and
Reimherr (2013) suggest a testing procedure to determine the lag order for more general
FAR(p) processes. Aue et al. (2015) suggest a simple alternative procedure to transform
the FAR model into a vector autoregressive model of functional principal scores, where
standard multivariate techniques can be used to model and predict FTS.

In order to forecast FTS that follow our concept of time dependence we discuss two
forecasting techniques. First, F'T'S processes that have a linear response to the past func-
tional observations can be forecasted by the FAR model. We show that the autocovariance
estimator given in Bosq (2000) is consistent under our notion of time dependence and de-
rive its convergence rate. However, the concept of time dependence we introduce covers
a broader class of processes than described by FAR. More precisely, the behavior of the
autocovariances of the FPC scores is less restrictive (in particular we can allow for long
range dependence) and non-linear responses are possible. For this reason we generalize
the FAR model to the functional additive autoregressive model (FAAR). The idea of

functional additive models was introduced by Miiller and Yao (2008) in the context of
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functional linear regressions. This approach gives rise to a more flexible and essentially
nonparametric model and allows us to consider the problem of prediction as a problem
of nonlinear response of the FPC scores. To estimate the nonlinear responses we pro-
pose a k-nearest neighbors classification approach that is simple to implement and in
the finite-dimensional setting well understood. As this approach has been successfully
applied to classical time series analysis (see, e.g., Cover and Hart (1967), Stone (1977),
Stute (1984) and Yakowitz (1987)), we can use the available theoretical results to derive
the convergence rate of our predictor in the FAAR model.

To assess the performance of the proposed forecasting methods in small samples we
provide a Monte Carlo simulation study. In particular, we compare the accuracy of the
prediction of the FAAR model to the FAR model, the multivariate score model suggested
by Aue et al. (2015) and benchmark models such as mean predictor, naive predictor and
prediction of VAR for discrete observations. Further, we compare the performance of the
above mentioned F'T'S models in forecasting electricity consumption in Denmark, Finland,
Norway and Sweden. Our results show that FAAR models and multivariate score models
provide the most accurate forecasts.

The remainder of this paper is organized as follows. Section 3.2 introduces the notion of
dependence for functional time series. Section 3.3 discusses the impact of time dependence
on the estimators of the functional principal components. In Section 3.4 we address
the FAR model, while a generalization of the FAR model to FAAR, its estimation and
asymptotic properties are presented in Section 3.5. A supporting small sample study is
presented in Section 3.6. An empirical application to electricity consumption is described
in Section 3.7 and concluding remarks are given in Section 3.8. All proofs, figures and

tables are collected in the Appendix.

3.2 Methodology and Assumptions

We shall assume that we observe a series of functional observations {X;(t)} for t € [a, b]
and i = 1,..., N, where the interval [a, b] is normalized to [0, 1]. For each i the observation
X; belongs to the Hilbert space H = L?([0,1], || - ||) of square integrable functions which
is equipped with a norm || - || induced by the inner product (x,y) fo t)dt. The
object {X;(t)}~ , is referred to as functional time series (see e.g., Horvath and Kokoszka
2012, Chapter 13-16 and Bosq, 2000 for a survey on FTS analysis) and we refer to i as the
time index. In what follows the data {X;} are assumed to be given in a functional form
since the problem of data representation in functional form has been extensively studied
in the literature (see, e.g., Ramsay and Silverman, 2005 for a review of the available
techniques and general description of FDA).

Our attention is restricted to weakly stationary processes allowing for the standard
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time series representation

Xi = G(Ei,é‘i_l,...), (31)

where {¢;} denotes the series of errors or innovations which are i.i.d elements from Hilbert
space H, and G is a measurable function G : H* — H. In this paper two cases of
representation (3.1) are considered. The first is the functional autoregressive (FAR) model
that models linear responses of a FTS to its lags (see Section 3.4). Second, To account
for possible nonlinear responses we extend the FAR framework to more general settings
using the functional additive approach suggested in Miiller and Yao (2008) for functional
regressions (see Section 3.5). Representation (3.1) can also be extended to non-stationary
sequences {X;}. We do not pursue this topic in our paper and refer the interested reader
to Horvath et al. (2014) for additional insights. For future reference, S denotes the
space of Hilbert-Schmidt operators from H to H and is equipped with the operator norm
|- |ls (ie., for some U € S, |U[ls = (35, [|¥(en)]|2)"? for any orthonormal basis
{en}>1) and the space of bounded linear operators on H is denoted by £ with the norm
Wz = supyy<i {1 (2)[], = € H}.

We begin by describing the concept of time dependency in functional time series. It
is founded on the spectral decomposition of random functions as follows. All random
functions are defined on a common probability space (€2, A, P). Let L}, (Q, A, P) denote
the space of H valued random variables X such that for p > 1, E||X||” < co. Every
function X € L% possesses a mean function p := E (X) and a covariance operator C(z) :=

E[(X — pu,2)X — p], where € L? and C' admits the spectral decomposition. That is,
Clz) = Z Ae(e, 2)1be, (3.2)
=1

where {A\¢},., is the strictly positive decreasing sequence of eigenvalues and {1}, de-
notes the corresponding sequence of eigenfunctions (i.e., C(1y) = Aptby) which forms an
orthonormal basis system of H. It follows that X admits the Karhunen-Loéve represen-

tation

X(t) = p(t) + Z Orbe(t), (3.3)

where 6, = (X,1y) denotes the ¢-th functional principal component score of X. By
construction, the sequence of functional principal component scores {6;},., is such that
the elements 6, are uncorrelated across the spectral dimension ¢, have r;ean zero and
variance Ag. Then for a given weakly stationary FTS {X;} (such that foreachi =1,..., N,
X; € L%) X, admits a Karhunen-Lo¢ve decomposition which in turn yields a sequence
of scores {6}, and the corresponding sequences of eigenvalues {\,} and eigenfunctions

{W}zzl-

The following assumption formalizes how time dependencies between functional obser-
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vations {X;} are translated into their score series. Let Key,....t(071,.7g—1) denote the g-th
order cumulant of (6; ¢, Oitr o, -, 0igr, 1 0,), Where 71,...,7,01 € N are integers (see,
e.g., Brillinger, 2001, p.19 for a more detailed description of cumulants). Then we shall

assume:
Assumption 3"

(i) For some o> 2 and all £ > 1,

Ao — Apgr ~ €771,

(i) Define B,SZ) = sup]E[@i,gei_hysH. Then there exists a constant B > 0 and some
8 > 0 such that

B < Bh™%\/N\\,.

(iii) For fized ¢ > 3 and some constant B > 0, the joint q-th order cumulants are

absolutely summable

Z Z \ml, 0o (0,71, mg—1) ‘ <BH)\1/2

T1yeen, Tg—1=—00

Part (i) of Assumption 3” is the standard assumption that prevents the spacing be-
tween adjacent eigenvalues )y from being too small. It also implies that A\, ~ ¢=®. The
importance of spacing property (i) will become particularly apparent from the results of
Corollary 4, where the asymptotic properties of eigenfunction estimators are studied.

Part (ii) and (iii) of Assumption 3” describe the form of time dependencies that

we allow for the scores {0}, ,»,. The assumed behavior of Béfs)

, which represents a
measure of absolute covariances between score series {6;,} and lagged series {0, s}, is
only a mild restriction. In particular, part (ii) implies an intuitive restriction on the
absolute summability of the h-th autocovariances of the score series {6;,}, across the
spectral dimension ¢, since Y ,o; [E[6; 0i—nsl] < D oy Bﬁ) < Ch~". However, absolute
summability of the autocovariz;nces of the score ser_ies is not required across the time
dimension ¢ and fixed spectral dimention ¢. More precisely, for 0 < § < 1 one can
conclude that Zthl E [0;.00i—ne] < Zh L B§ ¢ is of order N 1=8 )\, which diverges for fixed
¢ and large N. In what follows we refer to this as a long range dependence property. A
similar restriction holds for the covariances of the score series across time dimension with

fixed the spectral dimensions ¢ # s, i.e.,

S E i = =0 (N'Va)

h=1
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Finally, Assumption 3" (iii) requires absolute summability of the joint cumulants of
{0; ¢} up to ¢-th order. This allows us to control the temporal dependencies in the g-th

moments of the score series across spectral and time dimension. In particular, condition

00
Ty, Tgm1=—00

(iii) for one fixed spectral direction ¢, 3 |Kp,.. 0(0m1,mge1)| < C)\Z/Z, implies

the finiteness of the ¢-th moment, i.e., E||X;||? < A < oo for all i. For more details on
how moments are related to cumulants see Appendix A equation (A.1). In general this
cumulant condition is standard for the time series literature (see, e.g. Andrews, 1991,
Brillinger, 2001, and Demetrescu et al., 2008) and provides us with a useful measure of
the joint statistical dependence of higher order moments and a convenient tool for deriving
the rates of convergence. It should be noted that the value of ¢ is method-specific and as
we shall see in the sequel relaxing linear structure of the model may require strengthening
the restrictions on the moments.

Furthermore, note that the concept of a-mixing is closely related to the form of time
dependencies assumed in (ii)-(iii). In fact, a-mixing together with finite sixth moments
implies absolute summability of the joint cumulants up to sixth order (see, e.g. Andrews,
1991 or Gongalves and Kilian, 2007). Hence, the main difference between the two ap-
proaches lies in the way autocovariances are handled. In general we find that conditions
(i) and (iii) have several advantages in a functional setting. First, they allow for a
broader scope of time dependencies (in that absolutely summable autocovariances are not
necessary which can be controlled through parameter ). Second, incorporating decay
across the spectral dimension ¢ is straighforward, which is crucial for the analysis. Third,
the stated conditions have an intuitive interpretation of the time dependence concept for
functional data when compared to various mixing properties. Moreover, using standard
time series techniques it can be easily verified in practice if there is time dependence
between the scores of the FTS.

3.3 Properties of Functional Principal Components

The fundamental ingredients for describing time dependence in functional data are princi-
pal component scores. However, in practice scores and other FPC (C' and its eigenvalues
and eigenfunctions) are not known and must be estimated. Therefore, before developing
forecasting methods that rely on Assumption 3”, it is crucial to verify the convergence
of the estimated FPC to their population counterparts. Consistency results for the FPC
are available for independent observations (see, e.g., Dauxois et al., 1982) and for L*-m-
dependent functional data (see e.g., Hormann and Kokoszka, 2010). In this section we
show that consistency of the corresponding estimators extends to our time dependency
settings.

We start with the preliminaries. Suppose we observe X1, ..., Xy. The standard es-
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timators for the mean function, p, and the covariance operator, C'(z), are given by the

following sample averages

i) = X0, (3.4)
Onla) = (X~ o) (Xi(t)— (), e L” (35)

i=1

Further, we denote the estimators of eigenvalues and eigenfunctions as { A}~ and {z@}ﬁzl,

respectively. Using aN(t), they are computed from the eigenequation

Typically estimates of eigenelements (5\5 and @) can be obtained for an arbitrary fixed
level L such that L < N. The asymptotic results in Section 3.4 and 3.5 provide a discussion
of this issue, where L is set to be a function of N, such that L — oo as N — co. Ramsay
and Silverman (2005, Section 6.4) discuss practical/computational methods for solving

eigenequations.

Remark 13 In what follows we shall assume without loss of generality that X; have
means equal to zero for all i = 1,...,N. For any practical application the methodology
introduced in this paper remains unchanged if data are centered prior to the forecasting
exercise. For the completeness of the discussion we state the following result for the
estimator of p. For the weakly stationary FTS {Xi}i]il that fulfills Assumption 5" (i)-(ii)
we have

E ||y — pl|* = O (max {N"7, N7'}).

The following result establishes the consistency of estimator (3.5).

Theorem 9 If a weakly stationary FTS {Xi}fil fulfills Assumption 3" with joint cumu-

lants up to order 4 then
~ 2 .
2ol =0t

where * ;= min{3,1/2}.

Theorem 9 implies that the fastest convergence speed that can be achieved for the
empirical estimator of the covariance operator is N~ when 8 > 1/2. This extends
previously obtained results in Bosq (2000) and Hérmann and Kokoszka (2010) showing
that the fastest convergence can also be achieved for processes that potentially posses long
range dependencies. In other words, the absolute summability of the autocovariances of
the functional principal component score series {6, ,};>1 across the time dimension i, is

not necessary to get rate N~1. If one is only interested in establishing the consistency of
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the covariance operator estimator, part (ii) of Assumption 3” can be relaxed to Bg;) <
Bby/As, As with Y72 h7'h, < oco. This condition allows for a slow decay of the time
dependencies represented by component b, that can even be of logarithmic order b, =
@) <ln(h)7lfﬁ> for 5 > 0 (see, e.g., Davidson, 1994, Theorem 2.31).

The autocovariance operator defined as
Iy =E[(X;,2) X 1], (3.6)

for i =1,..., N and some h, can estimated similarly by the sample analogue

N-1

Thn = (X . .
h,N = N — 12 z>$ ) (37)

=1
Furthermore, the following holds for any autocovariance operator of order h.

Corollary 3 If a weakly stationary FTS {Xi}fil fulfills Assumption 3" with joint cumu-
lants up to order 4 then

E By =T z 0 (N,

Our next result gives explicit bounds for the mean squared error of the eigenelement

estimators.

Corollary 4 If a weakly stationary FTS {Xi}f\;l fulfills Assumption 3" with joint cumu-

lants up to order 4 then

i) E <Sup

>1

j\g — )\g‘2> =0 (N_Qﬁ*) ,

(i) (SUP Ham WH ) (OEN"27),

1<¢>L

where a; := sign((@,@bg}), ¢ = max)<p<¢(Ag — Apy1)

The results in Corollary 4 indicate that, as ¢ increases, it becomes more difficult to esti-
mate the eigenfunctions v, associated with ), since the expected L? error is proportional
to d7. As a consequence, the spacing between adjacent eigenvalues {\,} ¢>1 cannot decrease
~ 2 .
too fast. In particular, by Assumption 3”(i) E ( sup ||agp, — WH ) = O (LTI N=287),
1<0>1L

Therefore, restriction L = o (N#/07%)) has to hold for estimators {@}ﬁzl to be consis-

tent. Further, the estimator 121 of 9, is only identified up to a change in sign. As is

standard in the literature, we shall tacitly assume that the sign of z/ﬂ\l is chosen such that

[ > 0.
Note, recently Hormann and Kidziniski (2015) proofed that for the consistency of FPCs

estimators the spacing property given in Assumption 3”(i) can be relaxed to more general
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settings. However, our subsequent analysis of the forecasting techniques in Sections 3.4
and 3.5 requires explicit rates of convergence for the estimators /):g and 2,/0\4 and consequently

the spacing property.

3.4 Forecasting Linear FTS

In this section we discuss estimation and forecasting techniques for FAR models. As
pointed out in the introduction the FAR(1) model is the model most commonly used in
the FTS analysis and it is natural to use it as the main linear FTS benchmark model.
The theory of FAR(1) processes in Hilbert and Banach spaces is studied in Bosq (2000)
to which we refer the reader for a general overview. In this section we study the estimator
suggested in Bosq (2000) and derive its convergence rate under the time dependency
assumption stated in Section 3.2. For simplicity of exposition we consider the FAR model

of order one.! The model takes the form
Xi = p(Xia1) + &, (3.8)

where ¢; is a strong white noise in L3, i.e., ¢; is a zero mean iid sequence in L%, with
the covariance operator C.(z) := E[(¢;,x)e;] being a positive definite Hilbert-Schmidt
operator. The autoregressive operator p is a assumed to be Hilbert-Schmidt operator
satisfying

lp|lz < 1 for some k > 1. (3.9)

This condition assures strict stationarity for process X; (see, e.g., Bosq, 2000, Theorem
3.1). In other words, if (3.9) holds then function G(-) in FTS representation (3.1) takes

an additive linear form .
Xi = th(gi—h)-
h=1

To formulate the estimator of p(-) and derive its convergence rate we first address
the well known issue often referred to as an ill-posed inverse problem. Recall that
C(z) = E[(X;,2)X;] and ['y(z) = E[(X;, 2)X,_s], and both operators allow for spec-

tral representations

Clx) = Y Al z)t, (3.10)
/=1

Ta() = > Elbie bins] (e, )1 (3.11)
(=1 s=1

1See, e.g., Bosq (2000, Section 5) and Horvéth and Kokoszka (2012, Chapter 15.1) for the review on
how to estimate higher order FAR models
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It follows from (3.8) that operator equation I'y = pC holds and formally gives the solution
p =I'1C~t. However, the operator C' does not have a bounded inverse on the entire space
H. Tt follows from (3.10) that C~1 = Y72 A, ' (¢, x)¢hy, where A\,' — oo as £ — oo
and the domain of C~! is restricted to D (C™') = {y € H > 2, (y, ¥e)*/ * < oco}. The
standard method in the literature to circumvent this problem is to use only the first L
functional components. That is, for A\; > Ay > ... > 0 we define Hj, a subspace of H
spanned by the L-eigenvectors 1, ..., 1, associated with A\; > ... > Ap, and consider

ZA (e, )b, (3.12)

where C;! is the inverse of C' on Hy, and L is the function of N such that L — oo as
N — 00. Then the estimator of p is based on (3.7), the sample analog of (3.12) and can

be formulated as

~ 1 &
pn (x) = ] > Z b, 2)05.0141,50s. (3.13)
i=1 £,s=1

Remark 14 Note that the FAR process (3.8)-(3.9) satisfies the time dependence notion
discussed in Section 3.2, however it impose stricter conditions on the autocovariances of
the FPC scores:

1. The FAR process (3.8)-(3.9) does not posses the long range dependence property (i.e.,
p > 1). Indeed, condition (3.9) implies Y ;- , thHc < 00 which in turn implies
Yore ITwll < 0o. Using expression (3.11) one can conclude that Y 5", [Ty, < 00

if B> 1.

2. The autocovariances of the FPC scores E[0; ¢0;_p ] decay faster then the variances
E[0;.00: 6] across spectral dimension €. To see this note that the autoregressive oper-

ator p admits the representation

x) = Z Zags Wy, x)s, with x € H, (3.14)

/=1 s=1

where ags = E[0;4,0;_1 4] )\Zl denote the spectral coefficients. Further, we adopt the
approach of Hall and Horowitz (2007) for functional linear regressions and substitute
Assumption 8" (ii) with one, that allows us to control the decrease of the spectral
coefficients ays with more flexibility (see Assumption 3.8 in Hall and Horowitz,
2007). That is, instead of Assumption 3" (ii) assume there ezists a constant B > 0,
some B> 1 and v > 1/2 4+ « such that for all ¢ > 1,

B") < B h P15, (3.15)
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Then, since p is the Hilbert-Schmidt operator we have Y o >, a?}s < o0. The
squared summability of ass is assured if and only if v > 1/2 + «. In turn, the

autocovariances of the FPC scores behave as E[0; 0; 1] = O((*') and decay faster
then the variances E[0; 40; ] = O(£%).

The following result shows the consistency of py and its speed of convergence.

Theorem 10 If a FAR process (3.8)-(3.9) satisfies Assumption 3" (i) and (iii) with joint

cumulants up to order 4, and condition (3.15) then

LQOH‘%
HﬁN - PH,: = Op max W, L1+2(a77) . (316)

The rate of convergence for the estimator of the autoregressive operator consists of two
parts. The first one, %, characterizes the convergence of estimator py to the truncated
true operator p; = FlC’L_l. Moreover, it restricts L for the estimator py to be consistent
such that L = o (N'/(4e*3)) and L — oo as N — co. The second part, L'~ describes
asymptotic behaviour of the reminder ||p; — pl| ., which converge in probability to zero
since 1+2(a—7) < 0. Note that the fastest convergence rate O, (Nfl/Q) can be achieved
when space H is finite dimensional which is inline with the results for the OLS estimator

of stationary multivariate autoregressive models (such as VAR for instance).

3.5 Forecasting Nonlinear FT'S

As the correct model specification for FTS is not known in practice it might be too
restrictive to assume a linear modeling framework, as for instance, FAR model. For
this reason, in this section we propose a simple, yet robust and versatile approach to
tackle potential nonlinearity in FTS. We use the functional additive approach of Miiller
and Yao (2008) to generalize FAR(1) model (3.8) and rewrite it as a functional additive
autoregressive model. Using equation (3.14) the FAR model can be rewritten as standard

linear regression model with infinitely many FPC score as predictors,

E [XH_1|X7,] = Z Z af,sei,f¢8a

s=1 (=1

In particular, the relationship between the response and predictor scores is modeled lin-
carly as E[0;11/X;] = > o2, aps0ip. Furthermore, the linear framework of the FAR
model and the uncorrelatedness of the FPS scores imply that E [0;114]0;¢] = ars0;0. As
suggested in Miiller and Yao (2008), this model can be generalized by replacing the linear

terms ay 6, by functional counterparts my s(6;). This transforms the FAR model into a

92



functional additive autoregressive model (FAAR)

(X1 | Xi] szes 0:.0) s, (3.17)

s=1 (=1

where it is assumed that E[m,s(6;,)] = 0 for all £,s > 1 to assure identifiability. We
impose a mild restriction on the model (3.17). Let the random principal component scores
6, have unconditional probability density function f,(6;,), and write frs(0;11.5|0i¢) for

the conditional probability density of 0,1 s given 0; .

Assumption 2 my (), fi(-) and fis(-) are twice continuously differentiable and fy(-),
and fo(-) are bounded. Furthermore, the functional principal component scores 0;, and

0; s are independent for { # s.

That is, the only requirement for functions my s(-) is smoothness. Further, Assumption
2 strengthens contemporaneous uncorrelatedness of the FPC scores to independency. This

in turn implies that

E [9i+1,s’9i,€] = ]E[ [ i+1 s’X ‘OM

qus 1,9 ‘elfl mfs(z@)-

The simple and flexible framework of model (3.17) provides us with a non-linear alter-
native to the FAR model. In particular, representation (3.17) motivates a straightforward
forecasting scheme to predict the expected value of X1 through estimates of the con-
ditional means my s(6n ). Define the predictor M(Xy) := E [Xn41/Xn]. Then using the
approximation )A(z L = Zle @,g@ instead of real functions X; the estimator of M (Xy)
can be constructed as L.
MNL XNL ZZ Mg, ( HNE Vs, (3.18)

(=1 s=1
where L is set to be a function of N such that L — oo as N — oco. While the estimation
of the functional principal components 1, and 6;, has already been discussed in Section

3.3, we propose in the following section an estimator for the conditional means my s(6; ).

3.5.1 k-Nearest Neighbors Estimator

In this section a simple method based on the k-nearest neighbors approach (KNN) is
suggested to estimate predictor M (Xy). The main idea behind forecasting with KNN is
to identify the past observations of the time series that are most similar (in terms of some
distance) to the last onservation and use a combination of their future values to predict

the next value of the series.
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If FTS satisfies model (3.17) and Assumptions 3” and 2 then the KNN method can
be adopted directly to the series of the FPC scores. The estimation procedure consists of

three basic steps:

1. Use data Xy, ..., Xy and the FPC analysis to compute estimates 7:[)\(, /):g and FPC

scores {@g}f\;l for ¢ =1, ..., L (as described in Section 3.3).

2. Compute the distance between the most recent FPC score QANJ and each element

in the rest of the score series {6;,}".

A typical choice for this task Minkowski
distance. Denote the index set of the ky closest neighbors to the feature score
component §N7é by Z(kn; é\N’g% where the number of neighbors depends on sample

size N such that ky — oo as N — oo.

3. Once the ky closest elements are identified their subsequent values are averaged to

obtain the final estimator, i.e.,

~ 1 .
Mys(Onye) = E Z Oit1.0, (3.19)

iEf(kN;éNyg)
for{,s=1,..., L.

Substituting estimates m475(§N75) and QZS where ¢,s = 1,..., L back to (3.18) gives the
functional predictor. Note that KNN estimator (3.19) is presented with equal weights
1/ky. Alternative weighting schemes can be considered as well. For instance, weights can

be set to be inversely proportional to the distance between the last observation (/9\N,g and
a neighbor from 7 <kN; QAN73>, ie.,

&=

wi:k 3

z

1
dj

<
Il
—

where d; is a distance between é\N’g and a neighbor ¢ € 7 (kN; 0 N,g>.

3.5.2 Asymptotic properties of FKNN

We split the investigation of the asymptotic properties of predictor (3.18)-(3.19) for FAAR

model into two parts as follows. Consider the infeasible estimator of mys(6,) given by

~ 1
m(,s(eN,Z) = k’_ Z 0¢+175.

iEI(kN;aN,g)

where all quantities of spectral decomposition, As, ¥, and 6;, are assumed to be known.

Consequently, the infeasible functional predictor My 1 (x) with the additional smoothing
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step based on a approximation X; 1(t) = ZzL=1 0; 0100(t) is defined by

L L
My (Xnyz): ZZstgNZ

/=1 s=1

Then to obtain the convergence rate of the estimator (3.18)-(3.19) to the true predictor
it suffices to obtain the convergence rate of infeasible estimator to the true predictor,
E[|My (X 1) —M(Xy)|)?, and convergence rate of the feasible estimator (3.18)-(3.19) to

_ 2
infeasible one, E H My (Zr) — My p(xr) H . The following theorems present the respective

convergence rates.

Theorem 11 Let a weakly stationary FTS {Xi}i]il fulfills Assumption 3" with joint cu-
mulants up to order 4, Assumption 2 and follows model (3.17). Moreover, it is assumed

that L1577 B [mi (0i0)] = O (Xs). Then we have
E||My(Xn.) — M(Xy)|> = O (max {ky', L)1),

where ky ~ N4/°.

Theorem 12 If a weakly stationary FTS {Xi}i]il fulfills Assumption 8" with joint cu-
mulants up to order 6, Assumption 2 and follows model (3.17) then

E HJ\YN,L(:EL) M) =0 (M) , (3.20)

N25
where §* = min {3,1/2}.

The result of Theorem 11 implies that the infeasible estimator is consistent and its
convergence rate consists of two parts. The first part, k', describes the convergence of the
infeasible estimator to the truncated true predictor My (Xy 1) = Zizzl Mes(Ono)s. Tt
also shows that the consistency result requires the number of neighbors to be the function
of the sample size such that ky ~ N*°. The second one characterizes the convergence of
the remainder E||Mp,(Xy.1) — M(Xy)||? which is of order O (L'~2).

Theorem 12 delivers the convergence between feasible and infeasible estimators. One
benefit of this result is that it allows us to state the restrictions on the principal component
cutoff L. It is required that L = o (N?#"/(2e%3) [1og(N)V/(23)) and L — 0o as N — oo
to obtain the consistent FAAR predictor.

3.6 Small Sample Performance

We now turn to study the small-sample properties of the proposed models. The objective

of this section is twofold. The first objective is to evaluate the forecasting performance
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of the FAR and the FAAR frameworks in different setups, relating to the asymptotic
results obtained in Sections 3.4 and 3.5. The second one is to conduct a comparison of
the proposed models with other alternatives available in the related forecasting/functional

literature. The last aspect is covered by examining the comparative forecast performance
of the FAR model and FAAR approach with that of the

1. VAR model. It is natural to investigate when functional settings provide an ad-
vantage compared to standard multivariate techniques. For this reason we include
the VAR method, where functional observations X; are treated as T x 1 vectors
X; = [Xi(t1), ..., Xi(tx)]. These vectors are obtained by evaluating the original

functions at T' equidistant points t, = ;;_11, s=1,...,Tandi=1,...,N;

2. Improved FAR [iFAR]. This approach is suggested by Kokoszka and Zhang (2010)
to control for possibly small values of /):g that potentially can be translated into large

errors in le. It is suggested to add a positive baseline to X in (3.13) for ¢ > 2;

3. Multivariate score model. This model is recently suggested by Aue et al. (2015) and
is based on the standard multivariate techniques applied to the vector of scores.
Here we employ the VAR model for the score series which provides a simplified and
elegant alternative for the FAR model.. In what follows this method will be referred
to as MSM method.

We also supplement our comparative analysis with two standard benchmarks commonly
employed in functional data analysis (see, e.g., Didericksen et al., 2012). The first is
Mean prediction [MP], where predictors are obtained as the mean of the sample X N1 =
~ SV, X, and the second is Naive Prediction [NP] given as X1 = Xy.

We use the FAR(1) model as the main benchmark design for FTS processes

1
X;(t) = / p(t,s)X;—1(s)ds + &;(t), (3.21)
0
for i =1,..., N. The error terms are generated as Brownian bridges
gi(t) =W(t) —tW(1), (3.22)

where W (-) is the standard Wiener process generated as W (£) = \/% Z?Zl Z; for k =
1,..., K and Z; are independent standard normals.

Three different forms of the kernel p(t, s) are used: p(t,s) = Ce#, p(t,s) =C
and p(t,s) = Ct. In all cases the constant C' is chosen such that [|p||s = 0.5. Samples
of size N = 50,100 and 200 have been generated with a burn-in period of 100 functional
observations. In all cases N — 1 observations where used for the estimation and on

the last observation a one-step ahead forecast was computed. All results were repeated
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N, = 1000 times. For the FAAR model, the number of nearest neighbors ky was set to
N4/ as suggested by Theorem 11. To estimate and forecast with the VAR model the size
of the grid has to be specified and the following rule was applied 7' = 0.1N. Finally, to
measure the forecasts performance, the mean squared error (MSE) and the mean median

error (MME) were computed, i.e.,

N,
1 oo ‘ iy
MSE = 3" X~ Kl (3.23)
'f‘jzl
1 Yoy g
MME = =3 / ‘ngﬂ(s)—xjvﬂ(s)ds, (3.24)
Tj:l 0

where X7, 41 and )A(J]V 41 represent real observations and obtained forecasts, respectively,
for j’s replication. It should be mentioned that we used two approaches to estimat the
number of FPC L. First, L is selected such that FPCs explain at least 99% or 95% of
the variability in the sample. Second, we apply the selection criteria suggested in Aue
et al. (2015). We report that the second approach provides forecasts with smaller MSE
and MME errors. Therefore, the results based on the first approach are omitted here and
are available upon request.

We report our results in the form of boxplots of the errors MSE and MME for different
sample sizes and kernels. Figures 3.1, 3.2 and 3.3 present the results for the case when the
kernel is given as p(t, s) = C’ef(ﬁ;g), p(t,s) = Cand p(t, s) = Ct, respectively. All models
based on functional observations (e.g., FAAR, FAR, iFAR and MSM) perform significantly
better than the benchmark predictors and the VAR model, except for the special case

when p(t,s) = C. In this setup, the mean predictor provides the best forecasting results
due to the structure of the DGP. In general, none of the FAR, iFAR and MSM dominates
the others, while the FAAR model has marginally higher median and variance of the
forecast errors. This stems from the fact that the aim of the FAAR model is to forecast
general autoregressive processes while FAR, iFAR and MSM are explicitly tailored for the
considered FAR DGP.

3.7 Forecasting electric load demand in the Nordic

countries

In this section we are considering the prediction of daily electric load demand curves
in the Nordic countries from a functional perspective. This problem has been of high
interest to decision makers in the energy sector and has seen numerous contributions in
the statistical literature. Traditionally, parametric time series models have been applied

to this problem - both classical time series methods and machine learning type methods
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such as artificial neural networks and support vector machines (see, e.g., Kyriakides and
Polycarpou, 2007, Feinberg and Genthliou, 2005, Hippert et al. (2001) and Chen et al.
(2004) among others). This section describes the implementation and comparison of the
F'TS models discussed in Section 3.6.

The data that is used in this application has been provided by Nord Pool Spot AS, the
energy exchange of the Nordic and Baltic countries in Oslo, Norway 2. Hourly demand
data is made available for Denmark, Finland, Norway and Sweden since 2013. The time
stamps of the raw data are converted to UTC such that every day has always 24 hours.
That is, our sample for each country consist of N = 987 daily observations from January
1, 2013 till September 15, 2015, where each one is observed at 24 equidistant time points
(e.g., hourly). Figure 3.4 plots a typical daily observation in a summer period. Further, a
visual inspection of the data reveals that the level of the electricity demand significantly
changes between different seasons of the year. Therefore, the data was centered and
adjusted for monthly seasonality by subtracting from each observation the corresponding
monthly average. Figure 3.5 plots the seasonal monthly components for each country.

Since we treat discrete observations as realizations of continuous functions, a prelim-
inary smoothing step is required to reconstruct the underlying functional observations.
For reconstruction of the deseasonalized load demand functions we consider a basis rep-
resentation in terms of fourth-order B-splines with knots placed at each observed hour.
Thus, the number of employed basis functions is 24 per curve. This amount of basis
functions leads inevitably to overfitting the data and we thus penalize the sum of squared
errors for roughness (as measured through the squared second derivative). The optimal
choice of the smoothing parameter A can be determined through minimizing a generalized
cross-validation criterion (GCV). The FDA package offered by Ramsay et al. (2009) for
the Matlab was applied here.?

We start with the report on the estimation of the functional principal components.
For each country the first three principle components combined account for more than
90% of the total variation in the sample. Figure 3.6 plots the eigenfunctions and their
respective percentages. Further, an analysis of the estimated score series provides evidence
of the time dependencies for each sample. In particular, we verify the presence of the
dependencies by looking at autocovariances and partial autocovariances of the score series.
Figure 3.7 illustrates our findings for the first FPC score series.

We apply FAAR, FAR, iFAR, MSM, VAR models and benchmark models such as the
naive prediction and the mean prediction to obtain forecasts for the deseasonalized electric
load demand functions. The original sample is split into two parts. The first one from
January 1, 2013 till December 31, 2014 is reserved for the estimation and learning purposes

and the second for the evaluation of the one step ahead forecast performance. Finally,

2http://www.nordpoolspot.com/historical-market-data/
3http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/
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MSE and MME given in (3.24) and (3.24), respectively, are used for the comparison of
the quality of the competing procedures. The number of principal components and lags
is selected according to the selection criteria suggested in Aue et al. (2015). Further,
more attention is paid to choosing the number of neighbors for the predictor in the FAAR
model. More precisely, we forecast the last observation in the estimating part of the
sample using (3.18)-3.19 with different values of ky = 1,..., N*/°. Then the number ky is
selected to minimize the MSE between the obtained predictors and the last observation.

The results are reported in Figure 3.7 in the form of boxplots of the MSE and the
MME errors. In general the MSM model is the best framework for forecasting electricity
demand in Nordic countries except Denmark. In the case of Denmark the FAAR model
provides forecasts with smaller errors when compared to MSM and for other cases is a
runner-up. This finding indicates that there is a nonlinear response of the FPC score
series to the past observations. This statement is also supported by the evidence from
scatter plots illustrated in Figure 3.9. The bold lines show the best polynomial fit of order
3. In all countries but Denmark we can see that the relationship between the current first
FPC score value and its lag is linear. Finally, FAR, iFAR and VAR models deliver equally

good results and in general are able to outperform the naive predictors.

3.8 Conclusion

In this paper a time dependence concept for functional observations is proposed. It is
based on the idea of the Karhunen-Loeve decomposition of functional observations which
gives us the vector valued time series of FPC scores. In particular, time dependence in
FTS is quantified through the autocovariances and cumulants of its FPC scores series.
To operate with this concept in practice we show that the estimates of the FPCs are
consistent under the described dependencies. Further, two forecasting techniques for
functional time series are discussed. The first one is the FAR model for processes that
have a linear relation with the past observations. We then extend this linear framework
using the functional additive approach suggested in Miiller and Yao (2008) and offer
a simple forecasting technique based on the kNN approach. Asymptotic consistency is
derived. Further our simulations indicate that the loss of efficiency against the FAR model

when the true underlying DGP is linear is only marginal.
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A Appendix: Auxiliary results

: : N N . : N N
To economize notations we use > ;% and >, instead of full expressions > ;7 > .7,

and Zf\il Zjvzl i throughout this appendix. Further, the following combinatorial repre-
sentation of p-th order moments in terms of joint cumulants is often used for proofs and

is stated here for future reference. For a set of random variables x4, ..., z, one has
Elxy-...-xp) = Z H K(x;:i€B), (A1)
T Bem

were 7 cycles through all possible partitions of the set {1,2,...,p} and B cycles through
all blocks of partition 7. For instance, zero mean random variables satisfies the following
expressions: K(zi,z2) = E [x1, 23] for p = 2, K(z1,@2,23) = E [21, 29, 23] for p = 3 and

K(z1,z2,23,24) = E [l’l, X, X3, LE'4] —E [33'1, l’g]E[SL’g, 1'4]

— E [1‘1, $3]]E[ZL’2, $4] — ]E [111, 1’4]E[$2, [L’g] .

To facilitate understanding of the following proofs we collect intermediate steps into
auxiliary Lemmas.

Lemma A.1 Let a weakly stationary FTS {X;}Y, satisfies Assumption &' with q = 4
then

sup 5\4—)\4 < H@N—CH , (A.2)
>1 L
m@;—@” < CégHC*N—CHL, for2<0<L (A.3)

where ¢, = sign ((’Q/D\g, W)), d¢ = maxy<p<p (A\p — )\k+1)_1, and C' is some positive constant.

Proof. Both results (A.2) and (A.3) follow from Bosq (2000, Lemma 4.2 and 4.3),
respectively. m

Lemma A.2 A FAR process (3.8)-(3.9) satisfies Assumption 3" (i) and (iii) with joint
cumulants up to order 4, and condition (3.15) then:

B &N X = 2, A+ 0, (N2

(ii) le =0, (L*) as N — 00, L = o0 and 57 — 0;
(i) Fo, = 0p1);

. ~ ~ ~ 1/2
(i) [|Fux (9) | < 207 (F i ixal?)

(V) s Hp (@) H2 =0, (max{f\f;‘; : L1+2(a*7)});

Proof.

2
Proof of item (i): To establish item (i) we show that E |4 SN X =2 N =
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O (N71) and then by Chebyshev inequality (i) will follow First, notice that + ZZ X =
LN S 0?,, and denote Z; = Y2, 0?,, Zy = + SN Zi and m = 2521 A¢. Then

i E [62,62,]

Var (ZN) =

2|H

fiﬁfss (0,0,]i—3],]i—34l) +2E[0129]s] )7

2|H

>
S5

H M8 “|

where the last equality comes from relation (A.1). For the first term by Assumption
3" (iii) we have

_ZZnusSooh —jl,li— JD_NQZZ/\Z/\_O )

1,j=14£,5=1 i=1 £,s=1

and for the second

2 N o 9 N 00
m Z Z E [ei,éej,s]z = 12 Z Z ]E dejs Z )‘E
t,j=14,5=1 i#j=110,s=1

4 N—-1 N %) *) 9 ,

S Nz Z Z (Be s ) N Z Al

h=1 i=h+1{,5=1 /=1

B N-1

< Z -28 Z e Z)‘Z ’
N h=1 l,s=1

where the last result comes from Assumption 3” (i) and (iii) and condition 3.15.

Proof of item (ii): It follows immediately from Corollary 4 and Chebyshev inequality
/):g =0, (max {L—a7 N—I/Q}) and X;l =0, <maX{Li N_1/2}>. The item (ii) will follow
from the fact N~'/2 will go to zero faster then L~ since L*/N'/2 — 0.

Proof of item (iii): Follows from Corollary 3 and Chebyshev inequality.

Proof of item (iv): Follows from Lemma 8.3 in Bosq (2000).

Proof of item (v): Item (v) is obtained by using the proof from Lemma 8.2 in Bosq
(2000) and the facts that HéN - CHc = 0,(N"V2), 5 6, = O(L2*) and 52, [|p ()|

0] (L1+2(a7'y)) -
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B Appendix: Proofs

Proof of Remark 13

We have
1 N 1 N 00
Eli—pl® = N2 Z Xj—p) = e Z Z E[04,0;]
i,7=1 1,j=1£,5=1
1 N o
= _QZZ 6187015 N2 Z ZE91€7QJS .
i=1 (= i£j=14,s=1

As a consequence of Assumption 3" part (i) >_,2, Ay < oo such that the first term in
the last equation above behaves as O (N~1). Rearranging the second term and invoking
Assumption 3" (ii) gives

1 N oo
3 > Y Ef0i0. 05 =

i#j=10,s=1

2
L

2|
WE

iE (65, 05.]

,5=1

> )

T
Ll

A
<o
Mz

)
>
+
—_
S

h=1 i=h+1{,s=1
C N-1
< w2 W- thZ\/Ag =0 (max {N? N7}).
h=1 l,s=1

The last equality uses Davidson (1994, Theorem 2.27) and the fact that Y ,~, v A < o
which follows from Assumption 3”.

Proof of Theorem 9

We have,
. 2 > 1 & i
E|Cy |, = DE||% D () Xi —E[(X: v Xi)
(=1 i=1
N oo 00
= % Z Z ZE [ei,fej,fei,sej,s] - /\?> (A4)
1,j=1 £=1 =1

(B [62672] — X0)

1N
+WZ

E zgej,gei,sejys] =a+0b. (A5)

102



where ﬁ ijzl > 0o Kere(0.0)i—jlli—i)) = O (N~1) by Assumption 3”(iii) and

N oo N 00 0o
2 2 , 2
e ZZ 005" = 35 2 DB+ 5 2N
=1 (= i#j=1 =1 =1
N-1 N 00 00
4 22
(h) 2
< w2 (BY) N
h=1 i=h+1 (=1 (=1
N—-1 o) [e¢)
B 928 2 2 2
< 2.h S oA+ ~ >N
h=1 (=1 (=1

— 0 (max {N"% N1,

where the last equality comes from Assumption 3”(i) and (ii).
Similar arguments apply to term b, i.e.,

N 00 N 00

1 1

F E E E[ei,fej,éei,sej,s] = N2 E E (KZ,K,S,S(0707|i_j‘»|i_j‘)+ (A.6)
: s:l

ij=1b+£s=1

+ E 0,00,/ E[0; 0,5 +E[0;00;:] E 0 :6,0]) (A.7)

by relation (A.1). The first terms on the r.h.s of (A.6) is O (N~!) by Assumption 3" (iii).
The second and the third terms on the r.h.s of (A.6) are O (max{N~?*, N='}) by the
same arguments as above. In particular, for the third term we have

N-1 N  o©

% i i E [0:60;,s] E [0,56;.] < % i i (B‘g;_j)y - %Z 2 ( )

i,j=10+£s=1 i,j=10£s=1 h=1 i=h+1 ¢#£s=1
B N-1 0o
< 2P A =0 (max (N7 N,
h=1 l#£s=1

Putting together rates for a and b yields the statement of the theorem.

Proof of Theorem 10

Recall that H; = span{ty,...,1r} and let ﬁL = span{{ﬁ\l, ...,@EL} and denote 77 and 7,
projections on Hy and Hp, respectively. Then we can consider the following decomposition

(v —p)(x) = (pv = pre(x)) + (pro(x) — p7n(x)) + (p7L(z) — p(x))
= an(x) +by(z) + ey (2).
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Further, denote ay(z) = > _; ar.n(z), where
L —~ —~ —~
an(z) = T'in Z (z\[l - )\Zl) <$7¢£>W> ,

/=1
) = Fox (307 (1.0 (o ;>)w>,

L
asn(e) = Tin | YA G l) (@—wz)),

a4,N($) = (FIN_ )(i)‘el W we)

For the first term we have

Ae— A ~ e
Jax(a |<Z" )30

Using (A.2), Cauchy-Schwartz inequality and item (iv) of Lemma A.2 we obtain
L 1/2 L
{-1/2 -
lanall, <2 <N Z ||Xz||2) ICn = Cl, (Z YRy 1> :
i=1 =1

From Theorem 9 and Chebyshev inequality ||Cx — C||, = O,(N~/2). Assume for now
that L*/N'/2 — 0, then by using item (i) and (ii) of Lemma A.2 one gets

L%a-{-l
HG’N,1H£ = Op N1/2 . (Ag)

Finally, to archive the consistency it is required that L2°+!/N/2 — 0 which in turn
implies the condition L*/N'/2 — 0 has to hold. That is, L*/N'/?2 — 0 is necessary but
not sufficient to obtain the statement of the theorem.

Turning to ax (), from item (iv) of Lemma A.2 and Cauchy-Schwartz inequality we

have
/2

N
1 1724
lanall, <2 <N Z HXzH2> Z)‘/ A
=1 =1

where (A.3) together with and the fact that 21, d, = O(L*?) yield

L%a—i—Q
||aN,2HE = OP N1/2 . (Ag)

Concerning ay 3(x), Cauchy-Schwartz inequality and orthogonality of @/b\g and 1), yield

the bound
L ) 1/2
faxalle < [Fan, (z e ) |
/=1
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1/2
Then using item (iii) of Lemma A.2 and the fact that (ZZL:1 a?) = O(L**3/%) yield

L2a+%
Finally,

1/2
oy —T Ay 2@, ) :
c

(=1

Jaxall = |

Then Corollary 3 entail
Lots
||CLN’4||£ = Op N1/2 . (A]_l)

Next we turn to by(x) and cy(x). First observe that

lowlle < € (fj o (2)] + fj Hp(zmn?) . (A.12)

which behave as O, (max {%, L1+2(a_“’)}> by item (v) of Lemma A.2. For cy(z) we

have ||len|, = 302, [lp ()| = O, (L1+2@=7) and statement of the theorem is proofed.
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Proof of Theorem 11

FiI‘St, define ML<XN,L) = Zﬁ,f:lE [9N+1,s|8N,€] ws = ZSL,Z:I mg,s(QNj)ws, where in com-
parison to My 1, (z1) the ky-NN estimators of the scores have been replaced by the corre-
sponding conditional population means. Since our interest is in analyzing E|| My ,(Xn ) —
M(Xy)|]?, it suffices, upon adding and subtracting M (Xy 1) in the argument of our ob-
ject of interest, to consider the two terms

E[[ML(Xn,) — M(Xy)||? and E||[My,(Xn,L) — Mp(Xn,)|? (A.13)

For simplicity of notation let 6, denote 6y ,. Then for the first term in (A.13) by using
the orthonormality of the {t);} we have

2

E|| My (Xnz) — M(Xn)|* = Z muy,s(8¢) 10 — Z my,s(00)Y
s,0=1 s,l=1
= Z E mgs Qg Z ZE mgs 0( +Z Z mgseg (A14)
s,0=L+1 s=L+1 /=1 s=1¢=L+1

Now observe that from L' K [m], (0;0)] = O(X,) it follows immediately that
ZE,OZ:LH E [m4,6(0¢)%] = O(L2(1=)), Z;)O:L—H 25:1 I [m4,4(0,)%] = O(L'~*) and

L (o) —a
23:1 ZZ:L—H E [m&s(gé)Q] = O(Ll )

Now we consider the second term in (A.13) which can be written as

|| My, (Xnp) = Mu(Xn )P =E || (rs(0r) — mes(6)) v
s =1
=Y E [(fires(0) — mus(6))°] (A.15)
s,0=1

where the second equality follows from the orthonormality of the sequence of eigenfunc-
tions (¢¢)f_,. For fixed ¢ = 1,..., L, rates of convergence of the mean squared error
in (A.15) can be derived by following results in Yakowitz (1987). A careful inspection
of the proofs in Yakowitz (1987) reveals that analyzing the second moment of the dis-
tance between (the given) 6, and its farthest (of the ky) neighbor is of key importance.
Denote this farthest neighbor to 6; by On@y),; and write R;;(0;) = |0;; — 6| such that
Ri)i(01) == |ON(ky) — 01| denotes the ky-th order statistic of the R;;(6;). Results in

Yakovvltz (1987) indicate that E[R ) (0:)?] < C’l(l)k‘;,l/Q, where C(l) is some constant
that depends only on [. While this holds true for fixed [, we have to consider asymptotics
where L goes to infinity. Now observe that

E [Riy)1(00)°] = E [|0n(ky)2 — 0] < Ca(N)N

for fixed N, where Cy(N) is some constant only depending on N. Combining these results

gives us E[Ry.(6)%] < Cgk;;l/ ?\i, where now Cj is a constant that is independent of
both [ and V. Moreover, Yakowitz (1987) shows that the number of neighbors ky has to
grow with the sample size where ky ~ | N4/?].

The desired result now follows from the Theorem 2.1 Yakowitz (1987) and the argu-
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ments presented above.

Proof of Theorem 12

Denote, for i = 1,...,ky, by N(i) € Z(kyn;0,) the index of the i-th nearest neigh-
bor to 6,. Then upon adding and subtracting ZeL,s:l my,s(00)1s to the argument of

—~ 2
E ’ My (z) — MN,L<5UL)H it suffices to analyze the quantities

2 2

Z my,s(0r) ( %Us) and [E ZL: (mé,s(éﬁ) - mﬁ,s(02)> Ul
ls=1 =1

For the first term we have

EL: my,s(0e) (%Zs - ?,Us) =

l,s=1

L
ZZ HekaQk)‘A— )A— ]
i
< —QZZZ [91\7 )+ 1,60N(j)+1,60507
N =1

EL: EL: mys(0e)my - (0r) <lZs — Uy — ¢T>]

l,s=1k,7=1

IA

CH } (A.16)

where the last inequality follows from Lemma A.1. As already discussed in the proof of
Theorem 9 we have

N 00
~ 2 1
HCN - CHS = m Z ( Z en,h19n,h20m,h19m,h2

nm=1 \hi,ho=1
oo oo
E § § 2
+ )\ >\h1 n hl Ahl 9m,h1 :
h1=1 h1=1 h1=1

Thus the expression in (A.16) can be rewritten as

L L N
k%z > ZE{GMWHN 100,
Ny 3,7=1

=1k,7=1

CH :| :Al —|—A2 —2A3,

where

1 L L kN N 00
A= Z DD D 660 (08410841401 OOy O]

s=1k,7=11,j=1n,m=1 hy,hy=1

L N 00
R -2 D I D LRI

lis=1k,r=11%j=1nm=1h;=1
L kn

N 00
. 5 D 3D 3D S LTSI RPN

l,s=1k,r=14%,j=1nm=1h;=1

L kn
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The analysis of the terms above now proceeds by considering the relationship between
higher order moments and joint cumulants as defined in (A.1) and noting that the random
variables 6., = (X., 1) have zero mean by construction and are independent across h by
assumption.

We start with term A,. The relevant case for us to consider is ¢ = k as otherwise
Ay = 0 by the above arguments. Distinguishing the cases where ¢ # hy; and ¢ = h; then
yields

L N [e's)

Ay = kQNQ ZZZ DD S8R KON -NG)D

=17= 12,] 1 n,m=1 h1#¢=1
L N

+ kQszzZZMAmeow )

£,s=1 t=1 ¢,j=1n,m=1

= Ayy+ Ags. (A.17)

Now consider the term Az and again note that it suffices to consider only the case
¢ = k. Again distinguishing the cases where ¢ # hy; and ¢ = h; we have by (A.1) that

As ~ B N2 N2 Zl > Z ij=1 > Zg,mzl ZZ?:L.H 512/\%“/41(0,IN(1')—N(J')\)
T o 20 Doige1 20 Lot OF MR LOIN@-NGILIN G +1-nl [N(i)+1-n)
TR et 20 im0 Dot OL NRIOIN G411 OING)+1-n)
T e 20 Lotge1 22 Lomamet ST NRIOING)-N () (0.0)
=: Agq1+ Aso+ Az + Az, (A.18)

Note that the term Aj enters the object of interest twice with a negative sign, such that
all terms of which A, is comprised are canceled in view of Ay = Az and Ays = Asy
and since £;(0,0)=X,

We now tun to term A; and first decompose into the cases where hy # hy and hy = hs.
The second case is furthermore decomposed into cases where [ = k and [ # k. This yields

A = = 2N DD Zl 1 2 Zu > Zijmﬂ DD husny 010K (08 (1)+1.00N () +1,60m. 11 O iy O O )
N 00
kz N2 > Zl;ﬁk > Z i,j=1 > Zn,mzl Zhlzl 00k E [QN(i)+1,l‘9N(j)+1,k972L,h1ezn,hl]
k2 N2 Zl 1 Z Zz] 1 Z Z’r]:fmzl 2201:1 512]E [HN(i)+1710N(j)+17k0721,h18T2n,h1:|
= Al,l —|— ALQ —|— Al,S- (Alg)

Now note that A; 5 = 0 by the same arguments as above. For term A; 3, we decompose
into the cases where [ £ hy and [ = h; which yields

Ais = 2 L1 2 Lot 20 Lonmet OB [On (108G +1065 167,
k:2 N2 Zl 1 Z Zz] 1 Z Zn,m:l ZZ?:L-{-l 512E [GN(i)+1,19N(j)+1vl} E [Hn h102 }20)

We consider first the first term of (A.20). By (A.1) and writing, with some abuse of

108



notation, k) for the p-th order cumulant, we have

E [HN(z‘)H,z@N G)+1.107 105, l]
= Iil(ﬁ) + 15’%(4)’%(2) + 1O/<al3) ® 4 15/<al( )2 )Hl@).

(2)

There are 15 instances of ;™ which are of the form

L X Ky (0,ING-NG))

2 X K(0,IN(G)+1-n])

2 X K(0,|N(i)+1—m))
2 X Ri(IN@)=N@G)|IN(@)+1-n])
2 X KI(IN@)=NG)|IN(@)+1-m])
4 X Ky(IN(@)+1-n|,|N())+1-m])
L X Ky(IN()+1-n|,|N(i)+1-n)

1 X Ki(IN(i)+1—m|,|N(i)+1-m])
Now note that there are precisely four instances where /il(z) is such that the first term in
(A.20) takes the form

e N2 Z Z Z Z > " FNELOIN @)+ 1-n (0N G) +1-n)

1,j=1 n,m=1

and precisely one instance where 1@(2) is such that the first term in (A.20) takes the form

k2, N2ZZZZZ®)\2MO‘N NG

1,j=1 n,m=1

which are canceled by Ass and Aj 4, respectively, since these terms enters twice with a

negative sign. By similar arguments, we have two instances in which 51(4) is such that the
first term in (A.20) takes the form

TN N2 Zzzzzé NN )~ N G)LING)+1-n] | N(i)+1-n])

1,j=1 n,m=1

which are canceled by As 9, again since that term enters twice with a negative sign. The
remaining terms of the first term in (A.20) do not provide the dominant rate of convergence
such that we skip the further analysis and consider next the second term in (A.20). By
(A.1) we have

E [en h1em h1]
= '%hl (0701|n_m|7‘n_m|)+”<’h1 (070) "ih1(|n_m‘7|n_m|)+2/€h1 (0,|n—m|) '%hl (Ov‘n_m‘)
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such that we obtain for the second term of (A.20)

K2, N2 Nz Zl 1 ZZ =1 Zan 1 Zhl =L+1 5 E [91\’ +119N(J +1l] [en hlem hl]

= e Y Y Y Y s Yo 41 OFARLE [0y r1aOn 1.
kz N2 Zl 1 > Z ij=1 > Zn m=1 ZZT_LH 52]E [91\7 )+1 leN(j)Jrl,l} Ky (0,0,[n—m|,[n—m|)
+2k2 N2 Zl 1 ZZ ZZW DN O E [9 +1l0N(J)+1l] Ky (0,n—m|)*.

Observe now that the first term in the above display is canceled by As; as it enters twice
with a negative sign. As a consequence, the terms Ay, Az and parts of A; cancel each
other out. The dominant rate of convergence is now obtained by considering the third
term in the above display for which we have

N 0o
k2, N2 N2 Zz 1 Z E ij=1 Z En m=1 Zh1:L+1 512E [GN(i)+1,l‘9N(j)+1,l] Khy (0,ln—m/|)?
L
=2 (k N Doie1 o7 > Z” 1 [QN(i)+1,19N(j)+1,lD X
(;W%N IIVETAED D) DA Fahlm,m—mn?) . (A.21)

For the first term in brackets in (A.21) we have, for some constant C' > 0,

(o) < N Zz 1 52 ZkN E [912\/( ) +1, z} + kN;N ZZL—I 52 > ZEJ ‘E [QN(' +1 leN(j)—f—l,l”
< klN I= 1‘522 )‘l+kNNZkN 127, m+1 lL152 m,l
=N Zl 1 oA+ EnN N ZkN l(kN —m)m~’ Zl:l o7 A

o O k,}\f 5L3+a
= ~ ,

where the last equality follows from Assumption 3”. For the second term in brackets in
(A.21) we have by similar arguments for some constants C, C* > 0,

(.) < k;NNZZZE s O]

h1=1 nm=1
00 N
c S SRR Y Y S E bt
N hi=1n=1 N hi=1 n#m

A
|-
™
=
_I_
ol
2‘“’
Mz
M8
w
v
=

hi1=1 m=1 i=1 h;=1
< —+ m=2%N "\ :o( )

where * = min {/3,1/2}. Combining these results we obtain the following rate of conver-

gence
L3+a
O ——1.
Ky N

110



Note that we omit the analysis of term A; ; for brevity as it follows by the same arguments
presented above and yields the same rate of convergence.

111



Appendix: Figures
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Figure 3.1: Boxplots of the prediction errors MSE (left panel) and MME
—(t2+5%)

(right panel) when DGP has kernel p(t,s) = Ce™ = .
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Figure 3.5: Seasonal monthly averages of the electricity demand in the
Nordic countries.
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Chapter 4

On Estimation of Heterogeneous
Panels with Systematic Slope

Variations

4.1 Introduction

It becomes common in the panel data analysis to allow unobserved heterogeneity not only
enter the model through the individual specific constant but also through the slope of the
model. One of the standard and common approaches to handle the slope heterogeneity
is to consider a random coefficient model where the slope coefficients are randomly dis-
tributed across individuals with a common mean parameter (See, e.g., Hsiao and Pesaran,
2008). This topic gained considerable attention in the resent literature, where number
of testing procedures have been developed to test for slope homogeneity (see, e.g., Pe-
saran and Yamagata, 2008, Juhl and Lugovskyy, 2014 and Breitung et al., 2016). It is
also widely recognized that such a modeling framework can have important consequences
for the estimation and inference in the panel models (see, e.g., Pesaran et al., 1996 and
Breitung, 2014 for a review of this topic).

The main aim of this paper is to analyze estimation procedures in heterogeneous panels
with a particular focus on systematic slope variations - dependence of any form between
covariates and their respective coefficients. The properties of the random coefficient panel
model when coefficients are assumed to be independent of the covariates are well studied.
However, this setup provides a restrictive modeling framework for many economic appli-
cations. (See, e.g., Wooldridge, 2005, who stress the importance of this issue) Therefore,
estimators robust to (potentially) systematically varying slopes have to be developed.

There are two general concepts to construct an estimator of a slope or a common

parameter in heterogeneous panel models.! The first one uses pooled data across indi-

1See for instance Pesaran and Smith (1995) for a detailed review of different estimation concepts in
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viduals and time for estimation (pooled or within-group estimator), while the second one
estimates the parameter for each individual/group which later are pooled to obtain a sin-
gle estimator (mean-group estimator). In the presence of the systematic slope variations
the within-group estimator (and also the GLS estimator) provides inconsistent results,
whereas the mean-group estimator is robust in this situation. On the other hand the
robustness of the mean group estimator comes at the price of a higher variance in com-
parison with pooled type estimator. For this reason a Hausman test can be used to choose
an appropriate estimator as suggested in Pesaran et al. (1996).

In this work we develop an alternative solution to the estimation problem of a het-
erogeneous panel with (potentially) systematically varying slopes. We propose an esti-
mation procedure that is based on the pooled estimator with Mundlak type correction
(see, Mundlak, 1978 for more details). This solution is appealing due to its simplicity of
implementation since it only requires to add well define addition regressor to the panel
model and then perform the pooled estimation procedure. Further, it is asymptotically
equivalent to the mean-group estimator in terms of bias and efficiency when N and 7" are
large. This in turn allows to concentrate on one estimation technique and to avoid the
additional testing as suggested in Pesaran et al. (1996). Finally, when N is large and T’
is fixed the new estimation procedure can provide an attractive alternative in terms of
efficiency when compared to the mean-group estimator. This findings are supported with
Monte Carlo experiments in small samples.

The reminder of the paper is structured as follows. Section 2 discusses the modeling
framework, available estimation procedures and suggests a robust pooled estimator. In
Section 3 asymptotic properties of the estimator are derived and discussed. The finite

sample properties are studied Section 4. Section 5 concludes.

4.2 Model, Assumptions and Estimators

We assume that data are generated by the random coefficient model for panels, where the

slope coefficients are constant over time but differ randomly across individuals, i.e.,

Yie = XuBi+ e, (4.1)
Bi = B+vi (4.2)
fori =1,2,...Nand t = 1,....,T, where x;; is a K x 1 vector of exogenous regressors.

The vector of (random) coefficients consist of a common non-stochastic vector g and a

vector of a individually specific disturbances v;. Inserting (4.2) into (4.1) and stacking

panels. This work also considers the other types of estimators based on the between-group regression
and the time series regression. However, these estimators are found to be less efficient than the pooled
and mean-group ones and are not considered in this paper
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over the time dimetion yields
yi =XiB+u;, (4.3)

_ [ I _ ! _ /
where u; = [u;1, ..., wir| with w; = x,,v; +ei, Xi = (X1, ..., %) and y; = (Yir, - -, vir)'-

Assumption 3 (i) The error vector g; is 1id(0, 02Iz), where Iy is T X T identity matriz.

Moreover, €; is independent of X; and v; for all 1.

Assumption 4 (i) The K x 1 strictly exogenous vector of regressors x;; is weakly station-
M0 < for some 6 >0, C >0and alli=1,....,.N andt=1,...,T.
(ii) Further, matrices S;p = XiX,;/T and Syr = S0, XiX,;/NT are positive definite

for all N and T and have non-stochastic positive definite limits, i.e.,

ary and E |2 |

S;

T
plim S; r = T11_I>n E [xix,],

T—oo

S = plim Syr= llm —ZS

N, T—0c0

Assumption 5 (i) The error vectors v;|X ~ iid(0, ©; y1), where is ©; np diagonal. (ii)

Foreachi,j=1,..,N andt=1,...,T v; is independent of €,

Estimators:

There are two well established approaches to estimate the common parameter B that
represents the central tendency among heterogeneous responses.

First, we may just ignore parameter heterogeneity and pool the data which will yield
the pooled OLS estimator

B, = (Z XéXz) (Z Xéy@-) . (4.4)

Furthermore, it is customary to use generalized LS version of the pooled estimator

Bis (Z X' X) (Z X;QilyZ) . (4.5)

where Qz = E(ulu;|Xz) = Xigi,NTX; + O'EQIT, and u; = (uil, Ce ,uiT)’.
Second, the parameter 8 may be estimated separately for each group and then the
individual specific estimators are pooled to obtain an estimator of 8. This approach was

advocated by Pesaran and Smith (1995) and it is referred to as mean-group estimator,
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ie.,

-~

1L~

where Ez = (szXz‘)_l (Xiyi)-
It can be easily seen that the consistency of (4.4) and (4.5) depends on the relation

between the x;; and wug:

Under assumption 3 we have E (Xle;) = 0 for all i. Hence, it follows that for the consis-
tency of these estimators we require that S; 7 and v; are uncorrelated. For this reason
Wooldridge (2005) advocated a sufficient condition, E (v;|z;;) = 0 for all ¢, to make the
pooled estimator unbiased. In this work we propose to consider more general settings by

following the Mundlak (1978) and introduce the auxiliary regression

Assumption 3’
vi = (Sir —Sno)Y + &, (4.8)

where &; is 1id(0, Al k), &; is uncorrelated with S; v and €, for all i,5 =1, ..., N.
The demeaning S; 7 — Sy in (4.8) is used to ensure that E (v;) = 0. Clearly, vy = 0 if
and only if the S; 7 are uncorrelated with the effects v;. It also follows from assumption

5 and 3’ that ©; v = Alx + (Sir — Snr)¥Y (Siz — Sy ). Further, model (4.1) under

assumption 3’ takes the form
Yie = XyuB + 2y + N

where z; = (S;r — Sn.r) Xt and 0 = X},€; + ;. Accordingly, a consistent estimator of
B can be obtained as
B, = (XM.X)"" (X'M.y), (4.9)

—1
where M, = Iyr — Z (Zfil z;zl-) 7', 7 = (Z,,..,2Zy) and Z; = (2,,,..., ) for
i=1,..,N.

4.3 Asymptotic Properties

In this section we investigate the asymptotic properties of the estimators considered in
the previous section: B,, B,, B, and By,;. Next two propositions present first order

asymptotics of the considered estimators.
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Proposition 1 (Bias) Given model (4.1)-(4.2) satisfies the assumptions 3, 4 and 3’ then
for a fired T and N — oo the following holds

(i) For the pooled estimator:
plim B, — B = S7'S®)y, (4.10)

N—o0

where S = limy_,o Zf\il Var[S;r].

(ii) For the GLS estimator:

plim B, — B = Q'Ay + O,(T"V?), (4.11)

N—oo

_ N o-1 A — 1 N o- o
where Q = ]\}1_120% S, O A= AP_I}I;O% >l O (S;—8S) and ©; = N,l%gloo@i’NT'

(iii) For the pooled-Mundlak estimator:

plim B, — B =0, (4.12)
N—o00
(iv) For the mean-group estimator:
plim B,,, — B = 0. (4.13)
N—o0

Proof. See Appendix. =

Proposition 1 illustrates several key facts and findings about the consistency of estima-
tors of heterogeneous panels with systematically varying slopes. First, as discussed above
the standard pooled OLS estimator ,Ep has bias which will vanish only if 4 = 0, which
in turn is associated with no correlation between disturbances v; and second empirical

moment of the covariates. Second, an interesting result is obtained for ,B estimator that

gls
is known to be asymptotically equivalent to ,Bmg and consistent for heterogeneous panels
when N, T — oo. Item (ii) of Proposition 1 shows that in fact under systematic slope
variations (y # 0) the GLS estimator will be consistent only if A = 0. That is, the mean
of scaled variances of covariates has to be equal zero. Further, it is shown in Proposition
1 item (iii) that inclusion of the additional regressor z; in the model can fix the problem
of the bias of the pooled estimator. Finally, item (iv) confirms the consistency of the
mean-group estimator.

The next question of interest is the efficiency of relevant (consistent) estimators. For
simplicity of exposition (and without loss of generality) we analyze the case where the
model contains only one regressor (K = 1), generated independently across i,t and iden-
tically across t, i.e.,

126



Our next result presents the asymptotic variance of the pooled estimator with Mundlak

correction.

Proposition 2 (Efficiency) If model (4.1)-(4.2) satisfies the assumptions 3, 4, 3' and
additionally covariates behaves as in (4.14) with E|zy|® < oo for all i = 1,...,N and
t=1,...,T, then

2
) ~ oz _ _
Jim N Var (@,) = ST AT 0T, (4.15)

. N . N
where S = limpy_ oo % Yoii1Siand ¥g = limy o0 % S, SE

Recall that for the mean group estimator a similar result is obtained (see, e.g., Hsiao
and Pesaran, 2008)

N
N Var (BMG) — % lim 1Z;+A. (4.16)

Nooco T N—oco N -

Further, from Cauchy-Schwarz inequality and Jensen’s inequality it follows that [S]™' <
* Zfil Si and Mg > 5%, respectively. Therefore, it becomes clear from (4.15) and (4.16)
that in the settings with large N and fixed T" both estimators can have gains in terms of
the efficiency, when compared to each other. In particular, if the variance of idiosyncratic
errors dominates the variance of the slope coefficients (i.e., 02 >> A) then Ep will provide
more efficient estimates, otherwise (i.e., A >> ¢2) B will be preferred option in terms

of efficiency.

4.4 Monte Carlo Experiments

In this section we investigate the finite sample properties of the estimation procedures for
heterogeneous panels discussed in this paper, Bp, Bp, Bgls and Bmg. The aim of this section
is to evaluate and compare the performance of the estimators in terms of their bias and
efficiency for several different setups, relating to the theoretical discussion of Section 4.3.

The following data-generating process is used to conduct experiments

Yie = Talbi+ it

where g;; ~ 7d N(0,1). Variances of the regressors we generate as S; = 1, S; ~ x3 and
S; ~ UJ0.5,3.5]. The dependencies between v; and s; are modeled as in the assumption

3’ ie., v; = y(s; —35) + &. Therefore, in our benchmark specification we generate the
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Est.  Bias Var Ratio ‘ Bias Var Ratio ‘ Bias Var Ratio ‘ Bias Var Ratio
S; =1, =0 \ v=05
T =20 T =100 \ T =20 T =100

Bp 0.002 0.058 1.08 | 0.000 0.052 1.02 | 0.048 0.057 1.09 | 0.001 0.051 1.02
0.003 0.054 1.00 |-0.000 0.051 1.00 | 0.003 0.052 1.00 |-0.009 0.050 1.00
Bp 0.003 0.054 1.01 |-0.000 0.051 1.00 | 0.002 0.053 1.01 |-0.009 0.050 1.00
Bue  0.003  0.054 . -0.000 0.051 . 0.002 0.052 . -0.009 0.050 .

Bp -0.002 0.011 1.08 | 0.001 0.010 1.02 | 0.011 0.053 1.02 | 0.007 0.011 1.02
N =100 Bgls -0.001 0.011 1.00 | 0.001 0.010 1.00 | 0.001 0.052 1.00 |-0.003 0.010 1.00

Ep -0.001 0.011 1.00 | 0.001 0.010 1.00 | 0.001 0.052 1.00 |-0.003 0.010 1.00

Bue  -0.001  0.011 . 0.001 0.010 . 0.001  0.052 . -0.003 0.010 .

Bp 0.002 0.144 0.07 | -0.008 0.141 0.26 | 0.968 0.588 0.24 | 0.888 0.394 0.75
N=20 B, 0.003 0.066 0.03 |-0.001 0.058 0.11 |-0.054 0.077 0.03 |-0.078 0.066 0.13

Bp 0.004 0.126 0.06 | -0.006 0.120 0.22 |-0.005 0.124 0.05 | -0.002 0.118 0.22

Bue  -0.007  2.084 . 0.008 0.545 . 0.020 2.443 . 0.010 0.527 .

Bp -0.001 0.032 0.07 | -0.000 0.030 0.33 | 1.106 0.183 0.39 | 0.995 0.112 1.28
N =100 Bgls -0.001 0.013 0.03 |-0.001 0.012 0.13 |-0.051 0.016 0.03 | -0.089 0.014 0.16

Ep 0.001 0.030 0.07 |-0.001 0.028 0.31 | 0.002 0.030 0.06 | 0.000 0.029 0.33

Bue  -0.003  0.453 . -0.001 0.091 . 0.017  0.467 . 0.005 0.087 .

S; ~ U [0.5,3.5],

Bp -0.004 0.082 1.65 |-0.001 0.017 1.62 | 1.580 0.301 5.82 | 1.652 0.067 6.51
N =20 Egls -0.004 0.050 1.00 |-0.000 0.011 1.00 |-0.218 0.100 1.92 |-0.231 0.020 1.96

Bp -0.005 0.072 144 |-0.002 0.016 1.47 | 0.000 0.074 143 |-0.002 0.015 1.48

Bue -0.004  0.050 . -0.000 0.011 . 0.001 0.052 . -0.002 0.010 .

Ep -0.007 0.080 1.54 |-0.002 0.016 1.60 | 1.656 0.068 6.54 | 1.369 0.035 3.52
N =100 B, -0.002 0.052 1.00 |-0.001 0.010 1.00 |-0.228 0.020 1.91 |-0.179 0.020 1.97
Bp -0.001 0.069 1.33 | 0.000 0.014 1.42 |-0.002 0.015 1.49 |-0.000 0.014 1.44

BMG -0.002 0.052 . -0.001 0.010 . -0.000 0.010 . 0.000 0.010
Table 4.1: Bias and efficiency of the estimators for heterogeneous panels with systematic slope varia-
tions.
slopes as

Bi~ N(1,A) +~(s; = 3),

where A = 1, v = {0,0.5}. All results are based on 5000 relications. We examine four
combinations of (N,T") = {(20,20), (20, 100), (100, 20), (100, 100)}.

Results of the simulations are presented Table 1. In particular, the bias, the MSE of
the estimators and ratio of the estimator’s MSE with respect to the MSE of the mean-
group estimator are reported. Finally, the left panel represents the case when parameter
~v = 0 indicating no correlation between v; and s;, while A = 0 presents the case when
three is no heterogeneity in slopes. The main results of the experiments confirm the

theoretical findings of Proposition 1 and 2.
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A Appendix: Proofs

First, an auxiliary Lemma is provided.

Lemma A.3 Given that x;; ~ id(0,S;) and E |xit|8 < 00 for alli and t then the first four
moments of S; 7 = x|Irx;/T are

(i) E[S;z] = S,
(i) B[s2,] = 57 (14 23¢),
(iii) E[S?,] = S? (1 + 3% 4 22)

(iv) E[S!r] = S (1+6% + 3% +3%).
where A1 ; = (2 + 1 ) Ao = (8 +p® 4 12p? 110 ( ) ) Ags = (44 +60p? + 4p¥

2 2 2 2
+40 (p") " +3 (s17) ) Ay = (48 + 144p 249"+ 4240 (") + 32 (p?)
+56p§1)p§3)> and pgl) and pz@) are Persons measure of skewness and kurtosis of the x;

distribution and pgg), ...,pgﬁ) are regarded as measure for deviation from normality as in

Ullah (2004).
Proof. To obtain (i), (ii) and (iii) we make use of results derived in Appendix A.5 of
Ullah (2004). Item (iv) follows from Theorem 2 of Bao and Ullah (2010). =

Proof of Proposition 1
Item (i)
For the pooled estimator it holds

R | N -1 | XN
B,—B = (NZXQXz) (NZXQXivi)+Op(N‘”2)

=1
= [Snr]” [ Zs ~ S 7

where in turn by Assumption 4 Sy % S and LLN for independent heterogeneous dis-
tributed random variables (see, e.g., White, 2001, Corrolary 3.9) we have

1 o -
[NZS?,T—S%V,T] [ > (E[SE] - [Si,TF)] =0,
i=1

=1

Y+ Op(Nil/Q)a

a.s.
as N — oo and = denotes almost sure convergence. 1.
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Item (ii)

The GLS estimator can be written as a matrix weighted average of the least squares
estimator for each cross-sectional unit i.e.,

:/B\gls = %ZRZé\h (Al)

where
. —1
Ri = |53 (02 (XX) +Ouvr) | (02 (XX) + Ouvr)
J

Oint = Elvw)|X] = Alg + (Siz — Snv)¥Y (Sizr — Snr)

Further rewrite weights R; as R; = [Qnz]”' Qir where Q1 = (02 (X/X;) + @,-,NT)_l

and QN,T = Zz Qi,T/N~
Remark 1: The following holds

(i) Siz =Si+ 0, (T717);
(ii) S;z=Si"+0, (T71?);
(ili) Oinr = Oin + O, (T71?), where ©; 5 = (S; — Sn)¥Y (S; — Sn)" + Alk and
Sn = w2 S
(iv) ©;nr =©; 4+ O, (N~ + 0, (T~/?), where ©; = (S; — S)¥Y' (S; — S)' + Al

Proof of Remark 1: (i) follows from Lindeberg-Levy CLT; (ii) comes from the fact that
S, is positive definite and first order Taylor expansion of the inverse function g (S;r) =
S; 7 in the local neighborhood of S;. For item (iii) and (iv) notice that Syr = Sy +
O, (T7Y?) =S+0, (T7"/?) + 0, (N~"/2). Then results will follow from (i) and uniform
Ly s boundedness of regressors (i.e., Assumption 4). B

Remark 2:

(i) Qir =O; 5 — 7W;n + O, (T7/?), where W, y = 020, ,S;'©; .
(i) [Qnr) " = Q3 +EQ WhQ +0, (T7/?), where Qy = L 3V O, yand Wy =
% Z’fil Win.
Proof of Remark 2: By the Remark 1 we have Ql_% = @i7N+la2S—1+Op (T*1/2). Then

T e~
by using the first order Taylor expansion of the inverse of matrix sum (i.e., (A +B)~! =

A7 — A7'BA™Y) it follows
-1
Qr =[O+ —azs.l} L0, (177
1
= O,y — TUSGZ}VSZ@Z}V +0, (T717?).

Summing Q; 7 over ¢ and using again Taylor expansion for the inverse will yield item (ii)
of Remark 2. B
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Notice that 23" = O(1) and Wy = O(1) hence [Qnr] " = Q3 + O, (T~Y/?). Then
by putting together expression for GLS estimator (A.1) and Remark 2 we have

N

N
_ _ 1 13 1 153 _
Bus = (O3 +0,(T 1/2)) (NZ@N{/ i—ﬁ;Wu}vﬁﬂr% (T 1/2)>

=1

1 & -
' D OB+ 0, (T7).
=1

where the last equality comes from the fact that SV W;]{,BZ = O, (T™1). Further
from Remark 1 and since BZ — B =vi+0, (T7'/?) the result for item (ii) will follow, i.e.,

1 N
— § 71 1

Item (iii) and (iv)

(Si —S)y+ O, (T™?) + 0, (N7'/?).

||Mz

(iii) Mundlak-type pooled estimator:
B,— B =(XM;X)"" (X'M;(X©n)) = O)(N"?),
where ® denotes Hadamard product, n is NT'x 1 vector with typical element n;; = x84+

and the last equality comes from the Kolmogorov LLN.
(iv) Mean-group estimator:

X’ HXIXvi) 4+ O (N2

ZIH

Brg— B =

(Siz — Sn7)y + Op(N 1/2):OP(N71/2).

ZIH

Proof of Proposition 2
First note that

N Var <§p> = o’E <%) B

ooap [ (XMX ' (X'M;DxD\M;X\ [ X'M;X\ "'
N N N ’

where Dy = diag{Xi, ..., X }. Then by LLN for independent heterogeneously distributed
observations and Lemma A.3 it follows,

N
X’X B %Z Sir] a's'O,
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where SN E[Sir] = * SV, S; — S as N — co. Same techniques will provide the
rest of the results

X'Z o 7 1 &

. o o
v 2 (B ~ES)) = Jim 5> (57 (2+0)).
Z7 .o . T

N — ]}IE;O N Z (E[SgT] - 2E[Sz T]E[Si,T] + E[Si,T]S)

i=1

-y (s (ol o

=1

X/DXD/XX a.s. 2 2 7. 1 al 2
— N ]&%O_ZESZT T]\;EI;ON'E;Si_’_O(T)

X,D D/ Z a.sS.
# - J&EHW_ZESET S?T] [Si 7]

= Tllm—ZS?’( 2—}-])1 )>+O()

N—>oo
Z/DXD/XZ a.s. T2 al 4 3 2 2
—N Jim N E[S; ] — 2E[S; 7 ]E[S; 7] + E[S; |E[S; 1]

=1

= T lim —ZS4<2—|—p(2)>+O(1).

Nooco N

Putting together all results from above will yield,

X'M;X
TZ 2 ST +0(1),
X'M;DxDyM;X
ZEXTXTTZR B s T? 4+ O(T),

N

where S = limy_o0 v ZZ S and Yg = limy e + v ZZ . S7, which in turn yield the
statement of the proposition.
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