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Abstract

For an arbitrary knot in a three–sphere, the Ooguri–Vafa conjecture associates to it a unique
stack of branes in type A topological string on the resolved conifold, and relates the colored
HOMFLY invariants of the knot to the free energies on the branes. For torus knots, we use
a modified version of the topological recursion developed by Eynard and Orantin to compute
the free energies on the branes from the Aganagic–Vafa spectral curves of the branes, and find
they are consistent with the known colored HOMFLY knot invariants à la the Ooguri–Vafa con-
jecture. In addition our modified topological recursion can reproduce the correct closed string
free energies, which encode the information of the background geometry. We conjecture the
modified topological recursion is applicable for branes associated to hyperbolic knots as well,
encouraged by the observation that the modified topological recursion yields the correct planar
closed string free energy from the Aganagic–Vafa spectral curves of hyperbolic knots. This has
implications for the knot theory concerning distinguishing mutant knots with colored HOMFLY
invariants. Furthermore, for hyperbolic knots, we present methods to compute colored HOM-
FLY invariants in nonsymmetric representations of U(N). The key step in this computation is
computing quantum 6j–symbols in the quantum group Uq(slN ).
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CHAPTER 1

Introduction

1.1 String Theory as a Logical Next Step

The Standard Model of fundamental particles is one of the most successful theory of physics.
On the one hand, it is a very comprehensive theory, covering length scales from down to the size
of quarks up to the macroscopic world. On the other hand, it is also extremely accurate. For
almost every experiment particle physicists could think of, the Standard Model can produce
results consistent with the measurements, often with stunningly high precisions. With the
discovery of the Higgs–like particle at the LHC in 2012, the last piece of the Standard Model
fell into place. However, the Standard Model is short of being a complete fundamental theory of
physics. As a relativistic quantum field theory, the Standard Model incorporates only three out
of the four fundamental interactions, leaving out the gravitational interaction. When the energy
scale of the theory is pushed toward the Planck scale, the quantum fluctuation of matter fields
would become so violent that the spacetime structure, due to the laws of general relativity,
would be induced into a state of wild quantum fluctuation as well. It is therefore logically
necessary1 to develop a quantum theory for the gravitational field at high energy scale as
part of a complete fundamental theory, of which the Standard Model is only the low energy
approximation. However the marriage between quantum field theory and general relativity faces
great problems, as the Hilbert–Einstein action of the gravitational field in general relativity is
non–renormalizable, and as a consequence a naive quantum field theory of gravity would lose
predicative power.

Therefore to quantize general relativity, one has to generalize the Standard Model, or rather
quantum field theories in general, by relaxing some of the fundamental assumptions. One way
to generalize the Standard Model is to enhance its symmetry. The Lie algebra of symmetry
the S–matrices respect in a relativistic quantum field theory has to be the direct product of
the Poincaré algebra and some Lie algebra describing the internal symmetry, whose generators
are Lorentzian scalars [1]. One possible way of enhancing the symmetry is to allow graded Lie
algebra, and the only consistent graded Lie algebra extension is the supersymmetry algebra [2].
The supersymmetry generators QAα convert a bosonic field to a fermionic field and vice versa.
Therefore supersymmetry organizes all the fields in a theory into supermultiplets, each of which
consists of fields that can be changed into each other via supersymmetry transformations. Here
α is the Weyl spinor index and the index A goes from 1 through N , which is the number
of supersymmetries. Since the supersymmetry generators are intimately convoluted with the

1 Recall that the general relativity itself was born out of the logical inconsistency between special relativity and
Newtonian gravitational theory.
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Chapter 1 Introduction

Poincaré algebra, as seen in the anti–commutation relation

{QAα , Q̄β̇B} = 2σm
αβ̇
Pmδ

A
B , (1.1)

where Pm is the energy–momentum operator and m the Lorentz index, in a gravity theory
where the Poincaré symmetry becomes a local symmetry, the supersymmetry algebra should
also be gauged, giving rise to a supergravity theory2. In a supergravity theory, the bosonic
particles of gravitons, which are the force carriers of the gravitational interaction, have fermionic
counterparts called gravitini (plural of gravitino). Their loop contributions have opposite signs.
Therefore there is some cancellation of the infinite loop corrections to the scattering amplitudes,
although the cancellation is not perfect. So the problem of ultraviolet divergence is mitigated
but not eliminated in supergravity theories.

A second way to generalize the Standard Model is concerned with the basic assumption that
before quantization a fundamental particle can be understood as a point propagating in the
spacetime manifold. The trajectory of the propagation is called the worldline of the particle.
A natural generalization of this picture is the propagation of a string, be it open or closed,
and it sweeps out a worldsheet in the spacetime manifold. Various fundamental particles with
different masses then can be regarded as distinct vibrational modes of the string. The string has
a fundamental string scale, and the string can not probe spacetime scale smaller than this string
scale3 , just like the resolution of an optical picture is limited by the wavelength of the probing
photons. Effectively the string scale acts as a cutoff of the energy scale of the quantum gravity
theory, therefore bypassing the problem of non–renormalizability. This so–called bosonic string
theory4, however suffers from several serious problems. It cannot describe fermions, for one
things, and it has nasty tachyonic states with negative square masses, which make the ground
state of the theory unstable.

The combination of these two ideas, supersymmetry and propagating string, gives rise to
superstring theory5. In superstring theory the worldsheet of string carries a superconformal
field theory, in other words, a 2d conformal field theory with supersymmetry, which includes
both bosonic and fermionic vibrational modes. Together they give rise to both bosonic particles
and fermionic particles at low energy physics. Not all the vibrational modes are allowed though,
and one needs a selection rule, called the GSO projection [10], which eliminates tachyonic modes
and which makes superstring a supersymmetric field theory in low energy.

Up to now superstring theory remains the most fruitful among all proposals of quantum
gravity theories. It is a unified framework, which describes not only gravitons, but also matter
particles and the interaction between gravitons and matter particles. In fact, there has been
promising progress towards embedding the minimal supersymmetric extension of the Standard
Model (MSSM) in superstring theory6. This is not surprising given that superstring theory is
a generalization of quantum field theory of particles. Rather it is surprising that this general-
ization contains graviton fields at all.

Furthermore, superstring theory has connections to many branches of theoretical physics
and mathematics, providing sometimes surprising and paradigm shifting insights into the latter

2 Interested readers can read [3] as an excellent textbook on this subject.
3 In fact, the backreaction of the string would warp the spacetime such that it is meaningless to talk about

scales below the string scale in a full string theory.
4 For a comprehensive discussion of the bosonic string theory one can read [4].
5 Up to now there are many excellent textbooks on superstring theory, including [5–9].
6 A very incomplete list [11–15] taken from the talk of Prof. Eran Palti [16] at the String Phenomenology 2014.
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1.1 String Theory as a Logical Next Step

fields. This is due to two facts about superstring theory. The first fact is that a consistent
superstring theory demands the spacetime has in total ten dimensions. Since we only observe
a four dimensional spacetime, the other six spatial dimensions must form a compact manifold,
whose size is so tiny that it is much below the probing limit of our experiments/observations;
in other words, these six dimensions must be compactified. The geometry of the compact
space X is restricted by the properties of the superstring theory. If we require that in 4d
N = 1 supersymmetry is preserved from a N = 1 10 dimensional superstring theory, the
compact X must be a Calabi–Yau threefold, which is a 6 dimensional simply connected Kähler
manifold whose Ricci tensor vanishes. The second fact is that there is not one but five different
versions of perturbative superstring theories, called type IIA, type IIB, type I, E8×E8 heterotic
string, and SO(32) heterotic string respectively. At low energy, they reduce to five different 10d
supergravity theories. In addition, there is a unique 11d N = 1 supergravity and its conjectured
high energy completion called M–theory.

These six different theories are revealed to be dual to each other. In other words, two the-
ories with different couplings or different compactification spaces describe completely the same
physics. These dualities provide much of the richness of superstring theory. From mathem-
atical point of view, some dualities relating superstring theories compactified on two different
Calabi–Yau threefolds are rather surprising. For instance, the mirror symmetry claims that for
each Calabi–Yau threefold X there exists a mirror partner Y with the properties7

h1,1(X) = h2,1(Y ), h2,1(X) = h1,1(Y ) , (1.2)

such that type IIA superstring compactified on X is dual to type IIB superstring compactified
on Y . Mathematically speaking there is a priori no reason to relate these two manifolds, since
they have different topologies and different moduli spaces. However, in the 90s string physicists
surprised mathematicians by using the mirror symmetry to make striking predictions, like the
counting of holomorphic spheres in (some) Calabi–Yau threefolds, which eventually were proved
to be correct with rigorous mathematics.

Another type of superstring duality involves a new kind of objects called Dirichlet branes, or
D–branes in short. They were initially conceived as the loci in spacetime where the endpoints
of open string are restricted to. Later it was argued that they should also be treated as
dynamical objects, themselves having associated energy and momentum. Therefore a stack
of many branes wrapping a cycle in the compact manifold M with the number N of branes
sent to infinity can induce a sizeable change of the background geometry, according to the
general relativity. On the other hand, the vibrational modes of open string give rise to a gauge
theory on the worldvolume of the branes. This line of reasoning lead to the famous AdS/CFT
correspondence [17], which relates a d+1 dimensional quantum gravity theory on an AdS space
X to a d dimensional gauge theory (which is also conformal) on the boundary of X. For obvious
reasons, this correspondence is also known as the large N duality or the gauge/gravity duality.
It was a beautiful realization of the holographic principle proposed by ’t Hooft [18], and has
since provided insights into both quantum gravity and gauge theory.

Despite its many applications, there are some significant difficulties in superstring theory.
Since it is a quantum gravity theory, most of its effects are only seen in extreme conditions,
like energy scales far beyond the current technology. Therefore it is difficult to conceive of any

7 There are rare exceptions. A Calabi–Yau threefold X with h2,1(X) = 0 does not have a mirror manifold.
To be precise, the type II superstring theory on X still has a mirror theory, but the latter does not allow a
geometric interpretation.
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Chapter 1 Introduction

experiment to verify superstring theory at this stage. Furthermore, many crucial aspects of
superstring theory are still poorly understood. Computations in superstring theory are usually
simplified by the supersymmetry condition. On the other hand, to compute for instance the
free energy in superstring theory one needs to perturbatively sum over contributions from the
worldsheets on Riemann surfaces of different genera weighted by powers of the string coupling
gs

F =
∑

g

g2g−2
s Fg . (1.3)

But on a worldsheet of genus greater than one, the supersymmetry can only be preserved on
local coordinate patches but not on the worldsheet as a whole, which makes the computations
very difficult (see more discussions in section 2.1.2). Furthermore, the sum over genera is
an asymptotic series, which only has meanings in the limit of infinitesimal string coupling.
Interpreting this asymptotic series with finite string coupling is difficult, especially since it is
not known what kinds of nonperturbative effects would arise.

To help solving the last two problems, it may be beneficial to first study a simplified version
of superstring theory.

1.2 A Useful Exercise of Topological String

Type A/type B topological string theory is a simplification of the N = 2 type IIA/IIB super-
string theory compactified on a Calabi–Yau threefold. This is achieved through a “topological
twisting” in the worldsheet theory, so that the supersymmetry is always preserved on the whole
worldsheet regardless of the genus of the Riemann surface the worldsheet is on. It is called
topological string because after the twisting the theory no longer depends on the metric of the
worldsheet. In some sense, this removes the difference between Riemann surfaces of different
genera, which is the reason the supersymmetry can always be preserved globally. The price to
pay is that (nearly) half of the fields in the theory are projected out. The massless fields in
a 4d N = 2 superstring theory are organized into vector multiplets, hypermultiplets, and one
gravity multiplet. Topological string theories lose track of the hypermultiplets. Besides, among
the numerous terms involving the vector multiplets and the gravity multiplet in the action of
a 4d N = 2 supergravity, one can only compute the kinetic terms of the fields in the vector
multiplets and the couplings of the scalars in the vector multiplets to the gravity multiplet in
topological string theories. The former are encoded in the planar free energy F0, while the
latter are given by higher genera free energies Fg with g ≥ 1 [19].

However, whatever little one can compute with topological strings, one can compute them
well. Because of the supersymmetry on worldsheets, powerful methods have been developed to
compute the free energies Fg in both type A and type B topological string theories order by order
(see section 2.2 and references therein). Furthermore, various dualities, like mirror symmetry
and larger N duality, are either inherited or have their own manifestations in topological string
theories, and they often conspire to form a chain or a web of dualities. Given the computational
powers and better understandings in topological string theories, these dualities can be verified
explicitly or sometimes even be proved rigorously, in contrast to cases in superstring theories.

The large N duality in topological string (also called the Gopakumar–Vafa duality) claims
that the type A topological string compactified on the resolved conifold, i.e. the double line
bundle over P1 : O(−1) ⊕ O(−1) → P1, is dual to 3d U(N) Chern–Simons theory on three
sphere in the large N limit. The Chern–Simons theory is a topological pure gauge theory, and

4



1.2 A Useful Exercise of Topological String

the boundary of the double line bundle over P1 at infinity is indeed a three sphere. Therefore
this large N duality exactly parallels the AdS/CFT correspondence in superstring theories.
There are well–established methods to compute the free energies in the Chern–Simons theory.
For instance one can use the surgery method of Witten [20] to compute the partition function
with relative ease, and then deduce the free energies from the partition function. The large N
duality has been verified by directly matching the free energies from the Chern–Simons theory
and the type A topological string theory [21].

The large N duality can be further extended to a chain of dualities. Given the relation
between topological strings and type II superstrings, the mirror symmetry is directly inherited
by topological string theories, mapping type A topological string on a Calabi–Yau threefold
X to type B topological string on the mirror Calabi–Yau Y satisfying eq. (1.2). In particular,
the mirror manifold of the resolved conifold is a three complex dimensional hypersurface Y in
C2 × (C∗)2. Furthermore, type B topological string on Y is dual to a matrix model. All put
together, we have the following chain of dualities

Chern–Simons
theory

type A on
resolved conifold

type B on Y matrix model
large N

duality

A matrix model is a zero dimensional U(N) pure gauge theory. It is associated with a function
of a Hermitian matrix M , and the function is invariant under an adjoint U(N) transformation

M 7→ UMU †, U ∈ U(N) (1.4)

on the matrix (here we focus on Hermitian 1–matrix models). The partition function of the
matrix model is then a path integral of the invariant function over all possible configurations
of the Hermitian matrix modulo U(N) transformations. The study of matrix models has a
long history. Recently, Eynard and Orantin have developed the powerful method of topological
recursion which can solve matrix models at all orders in the large N limit [22–24].

We are interested in the Ooguri–Vafa conjecture [25], which is a generalization of the large
N duality by the insertion of branes in the type A topological string. This corresponds to the
insertion of Wilson loops in the Chern–Simons theory on three sphere. The path of a Wilson
loop in three sphere is a knot. Witten showed [20] that the vev of a Wilson loop evaluated in
the fundamental representation of U(N) in the Chern–Simons theory can be identified with the
HOMFLY invariant of the knot. In the knot theory, the HOMFLY invariant [26] is a unique
bivariate algebraic expression for each knot, and for two different knots, the associated two
algebraic expressions are usually also different8. Therefore the HOMFLY knot invariants can
be used to distinguish or identify knots. The HOMFLY invariants can be computed from a
single simple linear relation called the skein relation, which is described in section 2.3.2. On the
other hand, given the identification of the HOMFLY knot invariants and the vevs of the Wilson
loops in the fundamental representation, the vevs of the Wilson loops in more complicated
representations of U(N) in the Chern–Simons theory are called the colored HOMFLY invariants.
They can also be defined in the knot theory, but the computations there are significantly more
complicated.

Using this terminology of the knot theory, the Ooguri–Vafa conjecture relates colored HOM-
FLY knot invariants to free energies of branes in type A topological string theory. Our goal
is to verify the Ooguri–Vafa conjecture by directly comparing the colored HOMFLY invariants

8 The exceptional cases when the HOMFLY invariants of two different knots are identical are discussed in
section 3.4.
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Chapter 1 Introduction

with the brane free energies. For a type of relatively simple knots called torus knots, all of their
colored HOMFLY invariants can be computed. On the other hand, the right half of the duality
chain in the diagram above indicates the brane free energies can be computed via techniques in
matrix models, in particular the topological recursion. We use a modified version of the topolo-
gical recursion to compute the brane free energies and find they match the results of the colored
HOMFLY invariants à la the Ooguri–Vafa conjecture. In addition, our modified topological re-
cursion can reproduce the correct free energies of the topological closed string theory. This is in
accord with the fact that these branes probe the background geometry, since the closed string
free energies encode the information of the background geometry. Furthermore, emboldened
by our observation that the modified topological recursion can reproduce the correct planar
closed string free energy even from the data of more complicated knots (hyperbolic knots), we
conjecture that the modified topological recursion can be applied on these knots as well. If
proved correct, our conjecture will have interesting implications also for the knot theory. On
the other hand, it would be difficult to verify our conjecture or the Ooguri–Vafa conjecture for
these knots, because even the colored HOMFLY invariants for these knots are poorly under-
stood. There has been much work on the HOMFLY invariants in symmetric representations
of U(N). We build on these results and present computations of the HOMFLY invariants for
these knots in nonsymmetric representations of U(N) in the framework of the Chern–Simons
theory.

Finally, due to its relative simplicity, it is easier to first try to understand nonperturbative
completion of free energies Fg in topological string theory and then see what it can teach us
about superstring theory. This is especially the case if the topological string theory in question
has a dual matrix model, and if the partition function of the matrix model is convergent, because
the partition function of a matrix model is defined nonperturbatively and is understood rather
well. Interesting progress has been made along this line, including for instance refs. [27–29] as
well as our work in progress [30]. Unfortunately this topic will not be covered in this thesis.

The outline of the thesis is as follows. We prepare the theoretical background in chapter 2.
We explain what topological strings actually compute by the free energies Fg, and gloss over the
methods to compute them. We describe various dualities in topological string theories, includ-
ing the dualities to the Chern–Simons theory and matrix models, as well as the Ooguri–Vafa
conjecture. We also explain the basic computational methods in the Chern–Simons theory and
matrix models that will be used in our work. In chapter 3 we verify the Ooguri–Vafa conjec-
ture for torus knots by computing the free energies of the branes via the modified topological
recursion and comparing with the known data of the colored HOMFLY invariants. In chapter 4
we describe a method to compute colored HOMFLY invariants for non–torus knots colored in
nonsymmetric representations. We conclude in chapter 5 and propose future directions.
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CHAPTER 2

Topological String and Field Theories

In this chapter we summarize the theoretical background of the thesis. In the first two sec-
tions, we explain the origin of topological string theories. For this purpose, we first discuss
in section 2.1 how to twist the 2d N = (2, 2) nonlinear sigma model on a superstring world-
sheet to get 2d topological field theories. Then we briefly explain in section 2.2 how to couple
these topological field theories to 2d gravity to get topological string theories. We cover some
other salient points in topological strings in this section as well, like what are the computables,
and the major computational methods. In some scenarios topological string theories can be
reduced to 3d Chern–Simons theories or Hermitian matrix models, which will be discussed in
section 2.3 and section 2.4 respectively. Section 2.5 is dedicated to the topological recursion,
an extremely powerful method for solving matrix models, and we emphasize its relevance to
topological string theories in section 2.5.5. Along the way at various places we discuss mirror
symmetry (section 2.2.6) and large N duality (section 2.4.5) , which together form a beautiful
circle of dualities that connects all these topological theories to each other. We also describe
the generalization of this circle dualities via the insertion of branes in topological strings (sec-
tion 2.5.4,section 2.5.6). Emphasis is placed on the Ooguri–Vafa conjecture, which is a key link
in this generalized circle of dualities.

2.1 2d Topological Sigma Models

2.1.1 2d N = (2, 2) Nonlinear Sigma Model

When type II superstring theory is compactified on a Calabi–Yau threefold X, the worldsheet of
string carries a N = 2 supersymmetric nonlinear sigma model, which maps the worldsheet into
the target space X. We give a short description of this nonlinear sigma model and follow closely
the discussions in ref. [31]. The nonlinear sigma model is a 2d N = (2, 2) supersymmetric field
theory. It has two U(1) R–symmetries in the left and right channels respectively, and their
Noether charges are denoted by FL and FR. It is also customary to combine them into vector
or axial R–symmetries with Noether charges

FV = FL + FR, FA = FL − FR . (2.1)

There are four supercharges in the N = (2, 2) supersymmetric field theory denoted by

Q+, Q−, Q+, Q− (2.2)

where the subscript + or −means propagation in the left or right channel, while with or without
bar overhead means having R–symmetry charge +1 or −1 in the respective channel.
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Chapter 2 Topological String and Field Theories

The 2d N = (2, 2) supersymmetry algebra is generated by Hamiltonian, momentum, angular
momentum in the Poincaré algebra

H, P, M ,

the supercharges, and the R–symmetries charges. They satisfy the (anti–) commutation rela-
tions

Q2
+ = Q2

− = Q
2
+ = Q

2
− = 0 (2.3)

{Q±, Q±} = H ± P , (2.4)

{Q+, Q−} = {Q+, Q−} = 0 , (2.5)

{Q−, Q+} = {Q+, Q−} = 0 , (2.6)

[iM,Q±] = ∓Q±, [iM,Q±] = ∓Q± , (2.7)

[iFV , Q±] = −iQ±, [iFV , Q±] = iQ± , (2.8)

[iFA, Q±] = ∓iQ±, [iFA, Q±] = ±iQ± . (2.9)

In principle there can also be central charges arising on the right hand side of eqs. (2.5), (2.6).

{Q+, Q−} = Z, {Q+, Q−} = Z∗ ,

{Q−, Q+} = Z̃, {Q+, Q−} = Z̃∗ ,

provided that they commute with all the generators in the algebra. But they are necessarily zero
in the presence of the FV and FA R–charges. For instance the super–Jacobi identity dictates

0 = [iFV , {Q+, Q−}]− {Q−, [iFV , Q+]}+ {Q+, [Q−, iFV ]} = −2Z .

The supersymmetric field theory is most conveniently described in terms of the 2d N = (2, 2)
superspace, which is discussed in detail in chapter 12 of ref. [31]. The superspace has in addition
to the spacetime coordinates x0, x1

1 four fermionic coordinates

θ+, θ−, θ̄+, θ̄− . (2.10)

There are also four covariant differential operators D±, D±, which anticommute with the rep-
resentation of the supercharges in the superspace

{D±, Q±} = 0 . (2.11)

Besides, they satisfy the anti–commutation relation

{D±, D±} = 2i∂± . (2.12)

In the superspace the bosonic and fermionic fields in the same supermultiplet are packaged into
a single superfield. We are interested in chiral superfields, which are defined by

D±Φ = 0 . (2.13)

1 Here we take the flat Minkowski metric η = diag(−1, 1).
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2.1 2d Topological Sigma Models

A chiral superfield Φ
Φ = φ+ θαψα + θ+θ−F (2.14)

has one scalar component field φ, two Weyl component fields ψ± with opposite chiralities, and
an auxiliary field F . The last component field is not dynamical and gets integrated out in an
on–shell theory. These fields constitute a chiral supermultiplet. One can assign the following
R–charges to the component fields by performing proper vector or axial R rotations on the
fermionic coordinates θ inside the chiral superfield Φ,

φ ψ+ ψ− F

FV 0 −1 −1 −2
FA 0 −1 +1 0

Furthermore one can find the supersymmetric transformation laws for the fields in a chiral
supermultiplet by applying the representation of supercharges in the superspace on the chiral
superfield Φ,

δφ = ε+ψ− − ε−ψ+ ,

δψ± = ±2iε̄∓∂±φ+ ε±F ,

δF = −2iε̄+∂−ψ+ − 2iε̄−∂+ψ− .

(2.15)

Let us now construct a 2d N = (2, 2) nonlinear sigma model that maps the worldsheet of
string into an n complex dimensional Kähler manifold X. The theory has n copies of chiral
superfields Φi. The n scalar fields φi are the holomorphic coordinates on the target space X
(the conjugate fields φ

ı̄
serve as the anti–holomorphic coordinates). The Lagrangian of the 2d

supersymmetric nonlinear sigma model is built from the D–term only2,

Lsigma =

∫
d4θK(Φi,Φ

ı̄
) , (2.16)

where K(·, ·) is the Kähler potential of the target space X. Due to its very construction, the
Lagrangian is supersymmetrically invariant.

When the 2d N = (2, 2) nonlinear sigma model is quantized, both the algebra generators and
the fields are promoted to operators. If the supersymmetry is still preserved, the supersymmetric
transformation laws in eqs. (2.15) can be translated into (anti–)commutation relations via the
correspondence,

δO = [δ̂,O] , (2.17)

with
δ̂ := iε+Q− − iε−Q+ − iε̄+Q− + iε̄−Q+ . (2.18)

For instance, the lowest component field φ of a chiral multiplet then satisfies

[Q±, φ] = 0 . (2.19)

On the other hand, in the quantum theory axial U(1) R–symmetry may be anomalously broken;
for the axial R–symmetry to be anomaly free, the target space X must obey

c1(X) = 0 , (2.20)

2 The explicit form of the Lagrangian can be found for instance in chapter 13 of [31].
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Chapter 2 Topological String and Field Theories

where c1 is the first Chern class of the tangent vector bundle on X. This condition is satisfied
if the Kähler manifold X is a Calabi–Yau manifold.

2.1.2 Topological Twists and Topological QFT of the Witten Type

To be precise, when placed on a generic curved Riemann surface Σ, globally speaking the 2d
N = (2, 2) nonlinear sigma model with the Lagrangian eq. (2.16) is not necessarily supersym-
metrically invariant. The Lagrangian constructed from D–term yields under supersymmetry
transformation a term of total differential, which may not integrate to zero on a Riemann
surface Σ with non–trivial curvature. Another way to look at the problem is to consider the
variation of the action of the sigma model under a supersymmetric transformation (2.18),

δS =

∫

Σ
(∇µε+Gµ− −∇µε−Gµ+ −∇µε̄+G

µ
− +∇µε̄−Gµ+)

√
hd2x . (2.21)

Here h is the metric on the Riemann surface and Gµ±, G
µ
± are the would–be supercurrents if the

supersymmetry is preserved. On a generic Riemann surface Σ the supersymmetry variation δS
only vanishes if the fermionic variation parameters ε±, ε̄± are covariantly constant spinors on Σ.
However on a curved Riemann surface of higher genus covariantly constant spinors are not avail-
able. As a consequence, we can still formulate a 2d field theory with equal amount of bosonic
and fermionic degrees of freedom on a curved Riemann surface (worldsheet supersymmetry),
but the supersymmetry invariance of the action of the nonlinear sigma model has to break
down. This is the source of complication of many perturbative computations in superstring
theory, where one has to sum over worldsheets with different genera.

It would be desirable to have some fermionic symmetry globally preserved on the Riemann
surface Σ, so that the localization principle can be applied to simplify the partition function
computation. In general the computation of a partition function in a quantum field theory
involves integrating over all possible field configurations, which are infinitely many. In the
semiclassical limit it is known that the partition function is dominated by configurations around
instanton solutions which solve the equations of motion of the theory. On the other hand if there
is a fermionic symmetry Q in the theory like supersymmetry, the partition function would only
pick up instanton configurations, which are usually finitely many, and one–loop fluctuations
around them. Since instanton configurations solve equations of motion, which are usually
proportional to the variations of fermionic fields associated to the fermionic symmetry Q 3, the
above statement can also be rephrased as that the partition function is localized to the vicinity
of the fixed loci of the transformations of the fermionic symmetry Q. This statement was first
proposed in [32] with the following supporting argument. If a symmetry exists in the theory,
one can cut out small neighborhoods of the fixed loci of the symmetry transformations and treat
the rest of the field configuration space as a fiber bundle F , with the field configurations in
each fiber being closed under the symmetry transformations. The computation of the partition
function on F then can be performed in two steps. In the first step one integrates over field
configurations on each fiber, and in the second step one proceeds to integrate over the base of
the fiber bundle. The integral along a fiber is proportional to the volume of the symmetry group,

3 This is observed in many supersymmetric field theories. A rough argument goes as follows. We assume the
lowest component of the supermultiplet is a bosonic field φ and its Q–variation is proportional to the fermionic
field ψ. The Q–variation of ψ when divided out the variation parameter ε is a dimension two expression,
and it consists of only bosonic fields. Let us denote it by P (φ). But the nilpotency of Q demands that
P (φ) ∝ δQψ = δ2

Qφ = 0 and it is only possible if P (φ) is proportional to the bosonic equation of motion.
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2.1 2d Topological Sigma Models

U(1)V U(1)A U(1)E U(1)AE U(1)BE
Q+ −1 −1 −1 −2 −2

Q− −1 1 1 0 2

Q+ 1 1 −1 0 0

Q− 1 −1 1 2 0

Table 2.1: U(1) R–charges as well as the chiralities (twice of spin) of the supercharges before and after
the topological twistings.

which is zero in the case of a fermionic symmetry. So nonzero contributions of the partition
function can only come from the small neighborhoods of the fixed loci of the fermionic symmetry
transformations4.

In the case of the 2d N = (2, 2) supersymmetric field theory, a fermionic symmetry can be
obtained by twisting the rotation generator of the 2d Lorentz group via U(1) R–charge, so that
some combination Q of supercharges becomes a scalar, albeit still Grassmannian, which can
be trivially placed globally on a curved Riemann surface [32–35]. Put it in another way, the
variation parameter ε associated to the charge Q is now also a scalar and can always be made
covariantly constant. It can be shown that in fact the “fermionic” symmetry charge Q has the
additional benefit of making the sigma model a topological field theory, which is independent
of the metric of the worldsheet, simplifying the theory even further.

Let us be more specific. From now on we work with the Euclidean version of the 2d N = (2, 2)
sigma model obtained by performing the Wick rotation x0 = −ix2. We also denote z = x1+ix2.
Then the 2d Lorentz group becomes the Euclidean rotation group SO(2)E = U(1)E with the
generator

ME = iM . (2.22)

Correspondingly the commutation relations eqs. (2.7), (2.8), and (2.9) in the supersymmetry
algebra become

[ME , Q±] = ∓Q±, [ME , Q±] = ∓Q± , (2.23)

[FV , Q±] = −Q±, [FV , Q±] = Q± , (2.24)

[FA, Q±] = ∓Q±, [FA, Q±] = ±Q± . (2.25)

For the sake of clarity and later convenience, let us now summarize the U(1) R–charges as
well as the chiralities of the supercharges in the second block (columns 2 to 4) of Tab. 2.1. All
of them can be read off from the commutation relations eqs. (2.23), (2.24), (2.25). Keep in
mind that chirality is twice the value of spin. We also list the R–charges and chiralities of the
fields in the chiral supermultiplet in the second block of Tab. 2.2.

Now we define two new Euclidean rotation generators M
A/B
E ,

A–twist: MA
E = ME + FV , (2.26)

B–twist: MB
E = ME + FA . (2.27)

4 In practice when one does a localization computation, if the action of the theory is not Q–exact, one needs to
add a Q–exact term to the action by hand to localize to semiclassical configurations. See for instance [31] for
more details.
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Chapter 2 Topological String and Field Theories

U(1)V U(1)A U(1)E U(1)AE U(1)BE
φ 0 0 0 0 0

ψ+ −1 −1 −1 −2 −2

ψ− −1 1 1 0 2

ψ+ 1 1 −1 0 0

ψ− 1 −1 1 2 0

Table 2.2: U(1) R–charges and the chiralities (twice of spin) of the chiral fields before and after the
topological twistings.

They are obtained through twisting the old rotation generator by either the vector or the axial
R–charge. In either case, the chiralities, or the spins, of the chiral fields and supercharges will
be changed, as listed in the last two columns of Tabs. 2.2 and 2.1.

More concretely the change of chiralities or spins of fields can be understood as the modific-
ation of the action by coupling either the vector or the axial R-symmetry current to the spin
connection, as explained in detail in chapter 3 of ref. [36]. For instance one can show that before
twisting one of the kinetic terms in the Lagrangian is

igīψ̄
̄
−Dz̄ψ

i
−

where the covariant derivative is

Dz̄ψ
i
− = ∂z̄ψ

i
− +

i

2
ωz̄ψ

i
− + Γijk∂z̄φ

jψk− .

On the right hand side, ωz̄ is the spin connection, and Γijk is the Christopher symbol. The
coefficient 1/2 in front of the spin connection (dropping the imaginary unit) is the spin of
the fermionic field ψi−. Let the vector and axial R–charge currents be jµV and jµA respectively.
Then the A–twist can be realized by adding −1

2ωµj
µ
V to the Lagrangian so that the covariant

derivative of ψi− becomes

Dz̄ψ
i
− 7→ ∂z̄ψ

i
− + Γijk∂z̄φ

jψk− .

On the other hand if we perform the B–twist by adding 1
2ωµj

µ
A to the Lagrangian the covariant

derivative of ψi− is changed to

Dz̄ψ
i
− 7→ ∂z̄ψ

i
− + iωz̄ψ

i
− + Γijk∂z̄φ

jψk− .

Notice how the spin of ψi− gets shifted in accordance with Tab. 2.2.

After the twisting the most important thing is that the supercharges Q− and Q+ become
scalars in the case of A–twist, while the supercharges Q+ and Q− become scalars in the case
of B–twist. So we can define the following combinations

A–twist: QA =Q+ +Q−, (2.28)

B–twist: QB =Q+ +Q−, (2.29)

which are the scalar fermionic (Grassmannian) symmetry charges we have been looking for!

Now let us denote Q = QA or QB and explore the topological nature of the new theory. We
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2.1 2d Topological Sigma Models

define in the new theory physical operators Oi to be those which commute with Q, and call
them Q–closed. Since the action of the theory is Q invariant, we can show that all the operators
which are Q-exact, i.e., the operators which can be written as commutators of Q, decouple from
physical observables. For instance, if

O′ = [Q,G] ,

then
〈O′O1 . . .Os〉 = 〈[Q,G]O1 . . .Os〉 = −〈G[Q,O1 . . .Os]〉 = 0 .

Since the symmetry charge Q is nilpotent,

Q2 = 0 , (2.30)

Q-exact operators are necessarily Q-closed. Therefore physical operators are actually one–to–
one correspondent with the elements of the Q-cohomology group

HQ =
{Q-closed operators}
{Q-exact operators} . (2.31)

If in addition the energy–momentum tensor5 T twisted
µν is Q-exact

T twisted
µν = {Q,Gµν} , (2.32)

correlation functions of physical operators are independent of the metric h of the 2d Euclidean
spacetime, because

δh〈O1 . . .Os〉 =
1

4π

∫ √
hdxδhµν〈TµνO1 . . .Os〉 ,

while as a Q-exact operator Tµν decouples from all the physical operators. A topological
quantum field theory defined in this way, i.e., through a fermionic symmetry operator, is called
topological quantum field theory of the Witten type. Note that since the action of the theory
manifestly contains the metric, it is topological only at the quantum level but not at the classical
level. It has been shown in ref. [32] for the on–shell case and in ref. [35] for the off–shell case
that the energy momentum tensor T twisted

µν in the supersymmetric nonlinear sigma model with
either A–twist or B–twist is Q–exact. Let us discuss the two types of topological twists in a
little more detail. We will follow closely the discussions in refs. [31, 36].

2.1.3 Topological A–Twist

After the topological A–twist, by looking at Tab. 2.2 we know that the fermionic fields ψ−
and ψ+ become scalars, while ψ+ and ψ− with spins −1 and +1 are now antiholomorphic and

5 Note earlier in this subsection we have pointed out the Lagrangian of the sigma model is changed after the
twist, and therefore so is the energy–momentum tensor.
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Chapter 2 Topological String and Field Theories

holomorphic 1-forms6. We rename the fields to make the new spins manifest,

χi := ψi−, χı̄ := ψ
ı̄
+ ,

ρı̄z := ψ
ı̄
−, ρiz̄ := ψi+ .

(2.33)

Then the action can be obtained, as discussed in the previous subsection, by modifying eq. (2.16)
with a coupling term between the vector R–symmetry current and the spin connection after
Wick rotation and integrating out fields F i to make the action on shell,

SA =

∫
d2z

(
gī

(
1

2
∂zφ

i∂z̄φ
̄

+
1

2
∂z̄φ

i∂zφ
̄ − iρ̄zDz̄χ

i + iρiz̄Dzχ
̄

)
− 1

2
Rik̄jl̄ρ

i
z̄χ

jρk̄zχ
l̄

)
.

(2.34)

Since we are now only concerned with the supersymmetry transformation induced by

QA = Q+ +Q− ,

accordingly to the correspondence in eq. (2.17) the supersymmetry transformation laws can be
deduced from the generic transformation laws eqs. (2.15) with the restriction ε− = ε̄+ = 0 and
ε+ = ε̄− =: ε,

δφi = ε χi, δφ
ı̄

= ε χı̄ ,

δρiz̄ = 2iε ∂z̄φ
i + εΓijkρ

j
z̄χ

k, δχı̄ = 0 ,

δχi = 0 , δρı̄z = −2iε ∂zφ
ı̄
+ εΓı̄̄k̄ρ

k̄
zχ

̄ .

(2.35)

When this theory is quantized, as argued at the end of the last subsection, it is a topolo-
gical quantum field theory of the Witten type, independent of the metric of the worldsheet.
Furthermore it was argued in ref. [32] that correlation functions computed in this theory are
independent of the complex structure moduli of the target space X as well, and they only
depend on the complexified Kähler moduli of X. This will become clear later in the discussion
of these correlation functions.

The physical operators in this theory are the combinations of the fields which commute with
QA. Using the QA-symmetry transformation laws (2.35) one can convince himself/herself that
the following combination

ωi1···ip ̄1···̄q(φ)χi1 · · ·χipχ̄1 · · ·χ̄q , (2.36)

is a physical operator as long as

ωi1···ip ̄1···̄q(φ)dzi1 · · · dzipdz̄ ̄1 · · · dz̄ ̄q

is a d-closed form of degree (p, q). The correspondence between physical operators and d-closed
forms is no coincidence, since if we identify χi with dzi and recall that φi are holomorphic
coordinates on X, the QA-symmetry variations in (2.35) look exactly like the action of the
exterior differential operator d. In other words the operator QA can be identified with the
differential operator d, and therefore the QA cohomology group, which is equivalent with the
set of all physical operators, is isomorphic to the de Rahm cohomology group of the target

6 Similarly in a gauge field theory the gauge fields with spin 1 are interpreted as 1-forms.
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2.1 2d Topological Sigma Models

space X,
{physical operators} ∼= HQA

∼= H∗DR(X) . (2.37)

A correlation function of physical operators Oi is given by

〈O1 · · · Os〉 =

∫
DφDχDρ e−SA O1 · · · Os . (2.38)

As pointed out in the beginning of section 2.1.2, because of the presence of the fermionic
symmetry QA, the computation of the partition function localizes to the vicinities of the fixed
loci of the symmetry transformations of QA. By looking at the right hand side of eqs. (2.35),
it is clear the fixed loci are given by

∂z̄φ
i = ∂zφ

ı̄
= 0 ; (2.39)

in other words, the map φ : Σ → X has to be holomorphic. They are called worldsheet
instantons. Denote the homology class of the image φ(Σ) in X by β ∈ H2(X,Z). At these loci,
the bosonic part of the action becomes,

SA,bosonic =

∫

Σ

1

2
gī(∂zφ

i∂z̄φ
̄

+ ∂z̄φ
i∂zφ

̄
)d2z

=

∫

Σ
gī∂z̄φ

i∂zφ
̄
d2z +

∫

Σ
φ∗ω =

∫

Σ
φ∗ω = ω · β ,

where ω is the Kähler form, and φ∗ω its pullback to the worldsheet. So the bosonic part of the
action simply measures the size of the holomorphic image of the worldsheet. We can decompose
the homology class β in terms of a basis {Si} of the homology group H2(X,Z)

β =

b2(X)∑

i=1

niSi , (2.40)

and write the bosonic action as
∑

i niti, with

ti =

∫

Si

ω , i = 1, . . . b2(X) , (2.41)

the Kähler moduli of the target space X.

Furthermore one can use the two U(1) R–symmetries to derive selection rules for the correl-
ation functions, which read, that the correlation function (2.38) vanishes unless

s∑

i=1

pi =
s∑

i=1

qi = dimX(1− g) + c1(X) · β, (2.42)

where pi and qi are the holomorphic and antiholomorphic degrees of the operator Oi, and g
is the genus of the worldsheet. In the case that X is a Calabi–Yau manifold, the right hand
side of the selection rule is reduced to dimX(1− g), and it is only positive if g = 0. Therefore
the correlation function (2.38) only receives contributions from holomorphic maps from genus
0 worldsheet into the target space X.

Let us suppose for the moment that the target space X is a Calabi–Yau manifold of complex

15



Chapter 2 Topological String and Field Theories

dimension three, and a physical operator Oi has degrees (1, 1). Then the operator Oi corres-
ponds to a d-closed (1, 1) form ωi, whose Poincaré dual is a divisor Di in X. With a bit of
careful analysis one can show that

〈O1O2O3〉 = (D1 ∩D2 ∩D3) +
∑

β

I0,3,β(ω1, ω2, ω3)Qβ , (2.43)

where the first term is the classical intersection number of the three divisors, while in the second
term Qβ denotes ΠiQ

ni
i = e−

∑
i niti . The coefficient I0,3,β(ω1, ω2, ω3) counts the number of

holomorphic maps of genus 0 worldsheet Σ into a two cycle of homology class β such that the
three points x1, x2, x3 on the worldsheet where the local operators O1,O2,O3 are inserted are
mapped into the divisors D1, D2, D3 respectively. Furthermore one can show that

I0,3,β(ω1, ω2, ω3) = N0,β

∫

β
ω1

∫

β
ω2

∫

β
ω3 , (2.44)

where N0,β simply counts the number of holomorphic maps from genus 0 worldsheet into the
homology class β in X, and they are called the genus 0 Gromov–Witten invariants. They can
be collected in the A–model prepotential

F0(t) =
∑

0,β

N0,βQ
β . (2.45)

Note that if we choose Oi so that the associated divisors Di are the basis elements Si in the
homology group H2(X,Z), the dual Poincaré cohomology classes ωi satisfy

∫

Si

ωj = δij ,

and as a consequence ∫

β
ωi =

∑

j

nj

∫

Sj

ωi = ni .

It is easy to see then the three–point correlation function and the prepotential are related by

〈O1O2O3〉 = (D1 ∩D2 ∩D3)− ∂3F0

∂t1∂t2∂t3
. (2.46)

Finally we comment that from eqs. (2.43), (2.44) the correlation functions only depend on the
Kähler moduli of the target space.

2.1.4 Topological B–Twist

After the B–twist, as seen in Tab. 2.2, the fermionic fields ψ+ and ψ− become scalars, while ψ+

and ψ− with spins −1 and +1 are now antiholomorphic and holomorphic 1-forms respectively.
It is more convenient to redefine the fields as

ψ
ı̄
− + ψ

ı̄
+ = −ηı̄, ψı̄− − ψ

ı̄
+ = gı̄jθj

ρiz = ψi−, ρ
i
z̄ = ψi+ .

(2.47)
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2.1 2d Topological Sigma Models

Then given the symmetry charge
QB = Q+ +Q− ,

the QB symmetry transformation laws are derived from the generic supersymmetry transform-
ation laws eqs. (2.15) by demanding ε+ = ε− = 0 and ε̄+ = ε̄− =: ε̄,

δφi = 0, δθi = 0 ,

δφ
ı̄

= ε̄ ηı̄, δηı̄ = 0 ,

δρiµ = ±2iε̄ ∂µφ
i .

(2.48)

Since the axial R–symmetry has quantum anomaly proportional to c1(X) and the B–twist
is performed by using the axial R–charge FA, the quantum nonlinear sigma model of B–twist
is only well–defined if the target space X is a Calabi–Yau manifold. It was seen at the end of
subsection 2.1.2 that after quantization this nonlinear sigma model is a topological quantum
field theory of the Witten type, and it was further argued in [32], as opposed to the case of A–
twist, the theory only depends on the complex structure moduli of the target space X but not
the Kähler moduli. This will also become clear later in the discussion of correlation functions.

The physical operators in this case are those which commute with QB. It can be shown that
the combination

ω
j1···jq
ı̄1···̄ıp (φ)ηı̄1 · · · ηı̄pθj1 · · · θjq (2.49)

is a physical operator if the associated antiholomorphic p-form with values in ∧qTX

ω
j1···jq
ı̄1···̄ıp (φ)dz̄ ı̄1 · · · dz̄ ı̄p ∂

∂zj1
· · · ∂

∂zjq
(2.50)

is closed under the action of ∂. Again the connection of physical operators to ∂-closed forms is no
coincidence. With ηı̄ identified with dz̄ ı̄ and φ

ı̄
recognized as the antiholomorphic coordinates

on X, the equivalence between QB and ∂ is obvious. Therefore the QB cohomology group,
which is the collection of all physical operators, is isomorphic to the Dolbeault cohomology
group

n⊕

p,q=0

H0,p(X,∧qTX) , (2.51)

where n = dimX.

A correlation function of the physical operators Oi is given by

〈O1 · · · Os〉 =

∫
DφDηDθe−SBO1 · · · Os . (2.52)

One can again use the vector and axial R–symmetries to derive selection rules, which read, that
the correlation functions vanish unless

s∑

i=1

pi =
s∑

i=1

qi = dimX(1− g) . (2.53)

The selection rules are only non–trivially satisfied if the genus g of worldsheet is 0. Furthermore
the correlation function localizes to the small neighborhoods of fixed loci of QB transformation.
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Chapter 2 Topological String and Field Theories

The fixed loci according to eqs. (2.48) satisfy

∂µφ
i = 0 , (2.54)

in other words, they correspond to constant maps φ : Σ → X which map the worldsheet to
a point in X. As a consequence the path integral in the correlation function is reduced to an
integral over the Calabi–Yau manifold X.

Let us choose physical operators Oi which correspond to elements µi in H0,1(X,TX)

µi = (µi)
k
̄ dz̄

̄ ∂

∂zk
. (2.55)

Such a differential form is called a Beltrami differential, and it can be used to infinitesimally
deform the complex structure of X7 ; in other words, it is a tangent vector on the complex
structure moduli space of X. Then the integral over X can be obtained by

〈O1 · · · Os〉 =

∫

X
〈µ1 ∧ · · ·µs,Ω〉 ∧ Ω =

∫

X
(µ1)k1

̄1 · · · (µs)ks̄s Ωk1···ksdz̄
̄1 ∧ · · · dz̄ ̄s ∧ Ω , (2.56)

where Ω = Ωk1···ksdz
k1 · · · dzks is the nowhere–vanishing holomorphic (n, 0) form on the Calabi–

Yau manifold X. This formula clearly demonstrates that the correlation functions only depend
on the complex structure moduli of the target space.

2.1.5 A Diversion: Complex Structure Moduli Space of Calabi–Yau Threefold

From the discussion in the previous subsection, we already saw that the correlation functions
〈O1 · · · Os〉 in the B–twisted supersymmetric nonlinear sigma model only depends on the com-
plex structure moduli of the Calabi–Yau manifold X. Here we suppose the target space X has
complex dimension three, and discuss the special geometry property of the complex structure
moduli space of the Calabi–Yau threefold X [37, 38], after which we can make it more explicit
the relation between the B–twisted supersymmetric nonlinear sigma model and the complex
structure moduli space of X.

The homology group H3(X,Z) of X is an integral lattice with integral intersection numbers
between its elements. We choose a symplectic basis AI ,BJ , I, J = 0, . . . , h2,1 of H3(X,Z) such
that the (oriented) intersection numbers are

AI ∩ BJ = −BJ ∩ AI = δIJ , AI ∩ AJ = BI ∩ BJ = 0 . (2.57)

Here h2,1 = dimH2,1(X). A different symplectic basis A′I ,B′J of H3(X,Z) can be obtained by
a symplectic transformation,

(
B′J
A′I
)

=

(
A B
C D

)(
BJ
AI
)
, M =

(
A B
C D

)
∈ Sp(2h2,1 + 2,Z) . (2.58)

The Poincaré dual cohomology classes of the three cycles AI ,BJ are denoted by αI , β
J , and

7 In fact even for an arbitrary smooth complex geometry, which may not be a Calabi–Yau manifold, one can
use its Beltrami differentials to infinitesimally deform its complex structure. We will later use them to deform
the complex structure of a Riemann surface in section 2.2.1.
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they satisfy ∫

AJ
αI =

∫

X
αI ∧ βJ = δJI ,

∫

BJ
βI =

∫

X
βI ∧ αJ = −δIJ . (2.59)

We also define the A–periods and B–periods of the holomorphic (3, 0) form Ω by

XI =

∫

AI
Ω, FI =

∫

BI
Ω . (2.60)

Then the period matrix

τ := τIJ =
∂

∂XJ
FI (2.61)

can be used to characterize the complex structure of the Calabi–Yau threefold X. It is the
direct analog of the elliptic modulus τ of a torus, which itself is a complex one dimensional
Calabi–Yau manifold,

τ = ω1/ω2 .

Here ω1 and ω2 are two periods of the torus. Note a symplectic transformation M ∈ Sp(2h2,1 +
2,Z) transforms the period matrix τIJ by

τ ′ = (Aτ +B)(Cτ +D)−1 . (2.62)

The old and new period matrices describe the same complex structure.

On the other hand, the A–periods XI can serve as projective coordinates on the complex
structure moduli space MX [39]. Since the multiplication of Ω by a nonvanishing complex
number is still a holomorphic (3, 0) form on X, XI are actually homogeneous coordinates on
MX , and the latter has complex dimension h2,1. We define the following affine coordinates
(normalized A–periods)

ti =
Xi

X0
, i = 1, . . . , h2,1 . (2.63)

It is consistent with the fact that an infinitesimal deformation8 of the complex structure is
induced by a Beltrami differential. The number of Beltrami differentials is dimH0,1(X,TX),
which is equal to h2,1 due to the following one–to–one map

µi = (µi)̄
kdz̄ ̄

∂

∂k
7−→ χi = (µi)̄

kΩkmndz̄
̄ ∧ dzm ∧ dzn . (2.64)

In fact after an infinitesimal deformation of the complex structure of X along the direction of
ti, the holomorphic form Ω changes by

∂

∂ti
Ω = KiΩ + χi ∈ H3,0(X) +H2,1(X) , (2.65)

where Ki only depends on the coordinates ti, while χi is precisely the (2, 1) form in eq. (2.64).

Since the A–periods XI alone already suffice to parametrize the complex structure moduli
space MX , the B–periods FJ have to be functions of XI , and so are the components of the

8 One may worry about whether there is any obstruction from an infinitesimal deformation to a finite one of the
complex structure of X so that the dimension ofMX is smaller than h2,1. However it was shown for instance
in [40, 41] that a unique finite deformation can always be found from an infinitesimal one for a Calabi–Yau
threefold.
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Chapter 2 Topological String and Field Theories

period matrix τIJ . τIJ is in fact a collection of multivalued functions. They are singular on
the moduli space MX along divisors where a period vanishes, indicating that the underlying
three cycle ν has shrunk to zero. When parallel transported around the singular divisor back
to the original point on MX , the three cycles undergo the linear transformation according to
the Picard–Lefshetz formula (see for example [42, 43])

Mν : γ → γ − (γ ∩ ν)ν , (2.66)

where γ ∩ ν is the intersection number of the two 3–cycles γ and ν. The corresponding peri-
ods undergo the same linear transformation, and it is called the monodromy of the periods
around the singular divisor. Furthermore the moduli spaceMX can have orbifold singularities.
The periods when parallel transported around a divisor of orbifold singularity also undergo a
monodromy. Since the complex structure of X is uniquely defined at the each point on the
moduli space, the monodromies must be symplectic transformations. As a consequence the
monodromies around all the singular divisors of MX generate a subgroup Γ of the symplectic
group Sp(2h2,1 + 2,Z) and it is called the modular group of the model.

Using the definition of the periods in eqs. (2.60) one can decompose the holomorphic 3-form
Ω as

Ω = XIαI − FJ(XI)βJ . (2.67)

On the other hand the deformation formula eq. (2.65) implies

∫

X
Ω ∧ ∂IΩ = 0 . (2.68)

Combining these two facts one finds

FI(X
J) =

1

2

∂

∂XI
(XJFJ) . (2.69)

In other words all the B–periods can be written as the derivatives of a single holomorphic
function

F =
1

2
XJFJ (2.70)

which is called the prepotential of the complex structure moduli space. Besides since

2F = XI ∂F

∂XI
(2.71)

it is a homogeneous function of degree 2. So we can define

F0(t) =
1

(X0)2
F (X) (2.72)

which only depends on the affine coordinates ti, i = 1, . . . , h2,1.

Now we can state the relation between the correlation functions in the B–twisted supersym-
metric nonlinear sigma model and the prepotential of the complex structure moduli space of the
Calabi–Yau threefold X. According to the selection rule eq. (2.53), only three–point correlation
functions do not vanish. With a bit of work one can show they are related to the prepotential
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2.2 Topological String Theory

Figure 2.1: All possible stable degenerations of a genus two Riemann surface. Here we represent a double
point by two marked points connected through a line.

by

〈O1O2O3〉 =
∂3F0(t)

∂t1∂t2∂t3
. (2.73)

2.2 Topological String Theory

2.2.1 General Ideas

In the discussion in the last section of the topologically twisted supersymmetric nonlinear sigma
models, we always fix the metric on the worldsheet. Furthermore the two topological sigma
models appear to be a bit boring as the correlation functions, according to the selection rules
(2.42) and (2.53), can only have nonvanishing values if the genus of the worldsheet is zero
and only for certain types of operator insertions. It would be more interesting if this were
not the case. Besides, computations in a full–fledged string theory would require summing
over worldsheets of all genera, just like one has to sum over all loop diagrams in a quantum
field theory, and for each genus g integrating over the moduli space Mg of the corresponding
Riemann surface. In other words we have to couple the 2d topological sigma model to 2d gravity
where the metric of the worldsheet is allowed to vary.

This was achieved by exploiting the similarity between topological nonlinear sigma models
and bosonic string theory noticed in refs. [44–46]. Let Σg be a Riemann surface of genus g.
One defines the genus g ≥ 1 free energy of topological string theory by [47]

Fg =

∫

Mg

〈
6g−6∏

k=1

(G,µk)〉 , (2.74)

where

(G,µk) =

∫

Σg

d2z(Gzz(µk)z̄
z +Gz̄z̄(µk)z

z̄) , (2.75)

while the genus 0 free energy is simply identified with the prepotentials defined in the A– and
B–twisted nonlinear sigma models respectively.

This definition needs some explanation. Eq. (2.74) is manifestly an integration over the
moduli space Mg of Σg with the measure constructed from the Beltrami differential9 µk =
(µk)z̄

zdz̄∂z onMg. Since the moduli space of Σg has real dimension 6g−6, one needs a product
of 6g−6 copies of the Beltrami differentials to construct a volume form. The integration domain
in eq. (2.74) is actually larger than the moduli spaceMg of smooth Riemann surface of genus g.

9 Note this is not the Beltrami differential of the target space used in the previous section.
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Chapter 2 Topological String and Field Theories

The compactified moduli space Mg includes all the stable degenerations of the Riemann surface
Σg as well [48]. A stable degeneration of the Riemann surface Σg is a collection of Riemann
surfaces of lower genera connected to each other through double points such that

• the total genus of the collection is g, and

• each component Riemann surface is stable10, namely it belongs to one of the following
three cases: a Riemann sphere touching other components or itself at three or more points,
a torus touching other components or itself at one or more points, a Riemann surface of
genus greater than one.

As an example, all possible stable degenerations of a genus two Riemann surface are listed in
Fig. 2.1. The stable degenerations will play a crucial role later in section 2.2.4 and section 2.5.3.
Finally in eq. (2.75) Gzz is defined in eq. (2.32) the Q-exact condition of the twisted energy
momentum tensor T twisted

µν , and it depends on the concrete topological nonlinear sigma model in
question. The topological string theory constructed from A–twisted and B–twisted topological
nonlinear sigma models are called type A and type B topological string theories respectively.
As their names suggest, they are related to type IIA and type IIB superstring theories respect-
ively. The moduli space of type A (type B) topological string are identified with the vector
multiplet moduli space of the type IIA (type IIB) superstring compactified on the Calabi–Yau
threefold. The vector moduli space of type IIA superstring theory is the (complexified) Kähler
moduli space of the target space corrected by P1 worldsheet instantons, whose contributions
are suppressed in the large volume limit; the moduli space of type IIB superstring theory is
the complex structure moduli space of the target space without quantum corrections (see for
instance [49]). This is consistent with the moduli dependence of the two topological nonlinear
sigma models from which the topological strings are constructed.

Similar to the case in genus 0, the correlation functions of an arbitrary genus can be computed
through the free energy of the same genus via some covariant derivatives on the Käher moduli
space (complex structure moduli space) of the target space X in the type A (type B) topological
string theory [47]

〈O1 · · · Os〉g = D1 · · ·DsFg . (2.76)

One can also derive selection rules for the correlation functions. Different from eqs. (2.42) and
(2.53), now they read11 (see an explanation for instance in [31])

s∑

i=1

pi =
s∑

i=1

qi = (dimX − 3)(1− g) + s+ c1(X) · β . (2.77)

They are now trivially satisfied as long as X is a Calabi–Yau threefold and each operator Oi
has degree (1, 1), even if the genus is greater than zero or the number of insertions is different
from three.

In the following we explain briefly what the free energies Fg actually compute and what
major methods can be used to compute them in the two topological string theories. We will
always assume the target space is a Calabi–Yau threefold. We follow various sources including
[31, 36, 47, 50–52].

10 A Riemann surface which only has finite number of diffeomorphisms is called stable. As a counter–example a
smooth and isolated Riemann sphere has diffeomorphism group SL(2,C) and is therefore not stable.

11 In the type B theory the last term disappears because the theory is only well–defined if X is a Calabi–Yau
manifold.
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2.2.2 Type A Closed String

Like the prepotential of the A–twisted topological nonlinear sigma model in eq. (2.45), the
free energy Fg in type A topological string theory localizes to the instanton sectors, which are
holomorphic maps of the worldsheet of genus g into the target space X. It has the structure,

Fg(t) =
∑

β

Ng,βQ
β . (2.78)

Here Ng,β counts in an appropriate sense12 the number of holomorphic maps of the worldsheet
Σg of genus g into the homology class β ∈ H2(X,Z) in the target space X. These numbers Ng,β

are called the Gromov–Witten invariants, and they have been rigorously defined in mathematics.
We can assemble all the Fg in a formal series

F(gs, t) =

∞∑

g=0

Fg(t)g2g−2
s (2.79)

where the fugacity gs is also called the string coupling.

Effective methods, such as equivariant localization, have been developed in algebraic geometry
to compute the Gromov–Witten invariants [53–55]. Ng,β can be understood as the result of the
integration of some cohomology class φ over the moduli spaceMg(X,β) of (stable) holomorphic
maps from Σg to the homology class β in X. If the Calabi–Yau threefold X is invariant under
some U(1) symmetry, the action of the U(1) symmetry can be lifted to Mg(X,β). According
to the Atiyah–Bott localization formula, if the cohomology class φ is compatible (equivariant)
with the U(1) action13, the integration can be localized to the fixed loci of the U(1) action on
Mg(X,β). Note the idea of equivariant localization is similar in spirit but still quite different
from the localization of partition function in the presence of a fermionic symmetry in physics.
Such U(1) symmetries exist abundantly in a category of geometries called toric geometries, and
when the target space is a toric geometry the equivariant localization techniques for computing
the Gromov–Witten invariants become particularly powerful [57–59].

A toric geometry14 X of complex dimension three contains as a dense open set (C∗)3 which
naturally enjoys U(1)3 symmetry, and the U(1)3 symmetry can be extended over the entirety of
X. In other words X is a superset of (C∗)3, and each point in the complement, which necessarily
has lower dimension, can be realized as the limit point of some one–parameter U(1) subgroup
of U(1)3. Each toric geometry X is associated with n− 3 charge vectors ~Qa, a = 1, . . . , n− 3 of
dimension n > 3. Then X is the submanifold of Cn constrained by

n∑

i=1

Qai |xi|2 = ra, a = 1, . . . , n− 3 (2.80)

12 Precisely speaking they count the number of stable holomorphic maps, such that the worldsheet Σg can be
degenerate, and only stable components of Σ can be mapped to a point in X. These maps are called stable
because there are only finite number of diffeomorphisms of them.

13 We refer to, for example refs. [31, 56], for the precise meaning of the equivariant cohomology and the Atiyah–
Bott formula.

14 The canonical reference on toric geometry is [60], while refs. [31, 56, 61, 62] provide excellent reviews on toric
geometry for physicists.
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|x1|2

|x2|2

|x3|2
x3 = 0

x4 = 0
x2 = 0

x1 = 0

Figure 2.2: Toric diagram of O(−1)⊕O(−1)→ P1. The base P1 as indicated by the dashed lines is an
S1 fibration over the bounded edge in the center.

modulo the U(1)n−3 gauge symmetry with real gauge parameters εa

xi → eiεaQ
a
i xi , i = 1, . . . , n . (2.81)

Without loss of generality we can assume ra > 0 in eq. (2.80), and they characterize the sizes
of two–dimensional submanifolds of X. Furthermore Cn naturally has U(1)n symmetry. After
gauging U(1)n−3 the toric geometry X indeed has U(1)3 symmetry left.

One can draw the toric diagram ΥX of X by projecting X onto the base space B ⊂ R3

parametrized by |x1|2, |x2|2, and |x3|2 to help visualizing the fixed loci of the U(1) actions. On
the one hand X can be regarded as T 3 = U(1)3 fibration over ΥX whose fibers are the leftover
U(1)3 rotations on the phases of xi. On the other hand, the conditions |xi|2 > 0, i = 1, . . . , n
determine that ΥX is partially bounded with faces, edges, and vertices, which are various fixed
loci of the U(1)3 actions. A face is given by |xi|2 = 0 for some xi. It is therefore the fixed loci
of the linear combination of U(1)s acting solely on the phase of xi, and the fiber over the face
degenerates to T 2. Two faces intersect at an edge, over which the T 3 fiber degenerates to S1.
Over a vertex the T 3 fiber degenerates completely.

Consider a toric geometry X which is also a Calabi–Yau threefold. The Calabi–Yau condition
is equivalent to requiring

∑
iQ

a
i = 0 for each charge vector. It implies due to eq. (2.80) there

are unbounded directions and X is therefore called a noncompact Calabi–Yau threefold. One
simple example is the double line bundle O(−1)⊕O(−1)→ P1 which has a single charge vector
~Q = (−1,−1, 1, 1), and therefore the defining equation

|x3|2 + |x4|2 − |x1|2 − |x2|2 = r , r > 0 . (2.82)

The corresponding toric diagram is given in Fig. 2.2. The base space P1 = S2 of the double
line bundle is located at x1 = x2 = 0 where eq. (2.82) is reduced to the sphere equation
|x3|2 + |x4|2 = r. Let z and z′ = 1/z be the local affine coordinates in the north and south
coordinate patches of the P1. We note here that the coordinates φ and φ′ on the fiber of a
generic line bundle O(n) → P1 in the two coordinate patches are related by the transition
function

φ′ = z−nφ . (2.83)

Since it will be important later in section 2.4.5, we point out here that the smooth Calabi–
Yau threefold O(−1)⊕O(−1)→ P1 is the small resolution of a singular Calabi–Yau threefold

24



2.2 Topological String Theory

called conifold. A conifold is a hypersurface in C4 defined by

uv − xy = 0 , (2.84)

and it is clearly singular at the origin. One way of removing the singularity is to introduce the
variable λ satisfying

x = λ v, u = λ y , (2.85)

which are compatible with eq. (2.84). The singular origin of the conifold is now replaced by, or
blown–up to, a P1 for which λ is a local affine coordinate, and eqs. (2.85) describe two O(−1)
bundles over P1 whose fibers are parametrized by (x, v) and (u, y) respectively. This is called a
small resolution of the conifold singularity.

Let us delve a little bit into the application of the equivariant localization on a toric Calabi–
Yau threefold X. The computation of the Gromov–Witten invariant Ng,β is localized to sum-
ming over stable holomorphic maps f : Σg → X which are invariant under the U(1) actions on
X. The worldsheet Σg may be degenerate with component Riemann surfaces connected to each
other through nodal points. A stable holomorphic map requires that genus zero components
with > 3 nodal points, genus one components with > 1 nodal point, and higher genera compon-
ents be mapped to points, while other components be mapped holomorphically to nontrivial
2–cycles in X. An invariant map means the images of the map should be in the fixed loci of
the toric action, and therefore can only be either a vertex or the S1 fibration over an edge in
the toric diagram ΥX . The latter is a P1 with two points removed. Each invariant stable holo-
morphic map can be represented by a graph G consisting of vertices connected through edges.
Each vertex v represents a constant map, and it is labelled by (gv, nv, σv), where gv is the genus
of a component Riemann surface, nv is the number of edges connected to v in G, and σv is
the vertex in ΥX the component Riemann surface is mapped to. If (gv, nv) = (0, 2) or (0, 1)
the preimage of the map is actually a nodal point or a smooth point on the Riemann sphere(s)
represented by the edge(s) connected to v. Each edge e is labelled by (εe, de) representing a
component Riemann sphere with either one or two nodal points mapped holomorphically to
(S1 bundle over) the edge εe in ΥX , and the degree of the map is de. An example of graph G
is given in Fig. 2.3. We denote Gg,0 the set of graphs satisfying

∑

v

(2− 2gv − nv) = 2− 2g , (2.86)

and in addition G̃g,0 the set of the same graphs but without degrees on the edges. Next we need
to assign to each graph G in Gg,0 a weight w(G) which factorizes to the contribution Hgv ,nv ,σv

from each vertex and the contribution Fεe,de from each edge [63, 64]. Then the free energy
Fg(t) is computed by summing over the weights of the graphs in Gg,0

Fg(t) =
∑

G∈Gg,0

1

#Aut(G)

∏

v

Hgv ,nv ,σv

∏

e

Fεe,de(t) (2.87)

where #Aut(G) is the order of the symmetry (automorphism) group of the graph G. The exact
expressions of Hgv ,nv ,σv and Fεe,de(t) can be found in [63, 64] and will not be needed in this
thesis. We just comment that the degrees of edges only affect Fεe,de(t) and therefore we can
first sum over graphs which only differ by the degrees on the edges, and then sum over graphs
G̃ in G̃g,0. The weights of G̃ still factorize. A similar picture of summing over weighted graphs
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1 2

(2, 1, 1)

1

(1, 2, 2)

1

(0, 1, 1)

(a) map (b) diagram

Figure 2.3: An invariant stable holomorphic map from a worldsheet on degenerate Σ3 to the resolved
conifold (represented by its toric digram), and the diagram G ∈ G3,0 that represents it. Here in G we
suppress the εe symbols on the edges (see text).

in G̃g,0 will rise again in a completely different context.
The Gromov–Witten invariants computed for instance by equivariant localization are actually

fractional numbers instead of integers, which is counter–intuitive since they are enumerative
quantities. However two phenomena need to be taken into account. The first is multicovering.
Given a holomorphic map f : P1 → X in genus 0 and homology class β, one can immediately
construct a holomorphic map in genus 0 and homology class dβ by composing f with the
covering map P1 → P1 of degree d. The second phenomenon is bubbling. Given a holomorphic
map f : Σ→ X in genus g, a map f ′ in genus g′ greater than g can be constructed by attaching
to Σ a Riemann surface of genus g′− g which is mapped to a point in X. To count the number
of primitive maps one has to subtract in the Gromov–Witten invariants the contributions from
multicovering and bubbling. Indeed it was shown in ref. [65] the free energy Fg has the structure

F(gs, t) =
∑

g,d,β

ng,β
d

(
2 sin

dgs
2

)2g−2

Qdβ . (2.88)

with integer coefficients ng,β, which are called the Gopakumar–Vafa invariants15. By perform-
ing the genus expansion, one can find the Gromov–Witten invariants in terms of the integral
Gopakumar–Vafa invariants. The examples of the lowest genera are16

F0(t) =
∑

d=1,β

n0,β

d3
e−dβ·t, F1(t) =

∑

d=1,β

1

d

(n0,β

12
+ n1,β

)
e−dβ·t . (2.89)

2.2.3 Type A Open String

In the previous subsection we have only considered the holomorphic maps from the worldsheet
on Riemann surfaces Σg with no boundary to the target space X. We can also consider the
theory which maps the worldsheet on Riemann surfaces Σg,h with genus g and h boundary
components to X. They correspond to the worldsheet instanton sector of a topological open
string theory of type A. The additional question then is what boundary condition the image of
the worldsheet has to satisfy. Witten showed in ref. [68] (see also [69, 70]) that the requirement

15 They are actually BPS indices which count the numbers of bosonic modes minus the numbers of fermionic
modes arising from D–branes wrapping holomorphic Riemann surfaces in X. Therefore ng,β can be negative.

16 The genus 0 formula was first found in [66] and later proved in [67].
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of QA invariance on the boundary demands that the boundary components of the worldsheet
be mapped into a Lagrangian submanifold L with Dirichlet boundary condition. A Lagrangian
submanifold on a Calabi–Yau threefold X is a three cycle on which the (complexified) Kähler
form ω of X vanishes

ω
∣∣
L = 0 . (2.90)

The Dirichlet boundary condition simply means the images of the boundary components of the
worldsheet cannot move in the transverse direction to the Lagrangian submanifold L. Therefore,
let the boundary components of Σg,h be Ci, i = 1, . . . , h, the holomorphic map φ : Σg,h → X
should satisfy

φ(Ci) ⊂ L . (2.91)

In addition, the Grassmannian fields χ and ρ at each boundary Ci should take values in φ∗(TL),
i.e. the pullback φ∗ of the holomorphic tangent bundle TL onto Σg,h.

As in superstring theory, We can regard the Lagrangian submanifold L to be wrapped by
a D–brane (D for Dirichlet. It is also called a Lagrangian brane) and the two endpoints of
the open string have to lie on the D-brane. The perturbative open string propagating on the
D-brane induces a U(1) gauge vector field A on the brane. Suppose there are N coincident
D–branes wrapping the Lagrangian submanifold L together, since each endpoint of the open
string can lie on any of the N D–branes, a total of N ×N indices arise and the gauge vector
field A is enhanced to that of the gauge group U(N). When A is not zero, the path integral
for computing free energies should be modified with the insertion of the Wilson loop operator

h∏

i=1

Tr P exp

∮

Ci

φ∗(A) . (2.92)

Here the trace Tr is always taken in the fundamental representation of U(N).

Let us consider the problem of enumerating holomorphic maps from Σg,h into X with the
boundary of Σg,h mapped to the Lagrangian brane L in X. The holomorphic maps are classified
according to two types of data: the first is the homology class β ∈ H2(X) in the target space
the image of Σg,h wraps (bulk data), and the second is the homology class γ ∈ H1(L) on the
brane the image of each boundary component Ci belongs to (boundary data). For the simplest
case where b1(L) = 1, which we will always assume in this thesis, the images of the boundary
components Ci are integral multiples of the only generator γ of H1(L),

φ(Ci) = ωiγ, ωi ∈ Z+ . (2.93)

In other words, the boundary component Ci winds around the γ cycle ωi times.

Given the bulk data β and the boundary data ω = (ω1, . . . , ωh) we can analogously define the
number Ng,ω,β of holomorphic maps of Σg,h (in an appropriate sense) to be the open Gromov–
Witten invariant. We assemble them into the free energies Fg,ω

Fg,ω(t) =
∑

Ng,ω,βQ
β . (2.94)

via the Kähler parameters Qi = e−ti and further into a single open topological string free energy
F

F(gs, t, V ) =
∞∑

g=0

∞∑

h=1

∑

ω1,...,ωh

ih

h!
g2g−2+h
s Fg,ω(t) TrV ω1 · · ·TrV ωh . (2.95)

27



Chapter 2 Topological String and Field Theories

|x1|2

|x2|2

|x3|2
x3 = 0

x4 = 0
x2 = 0

x1 = 0

L1

L2

Figure 2.4: Two toric special Lagrangian branes L1,L2 in the resolved conifold X. In the toric diagram
ΥX they are represented by two rays touching the edges of ΥX .

Here V defined by

V = P exp

∮

γ
A (2.96)

is the Wilson loop of the vector field A on the 1–cycle γ in L. The product of traces is then
identical with the operator insertion in eq. (2.92). Note that if the rank N of the gauge group
is finite, not all the trace products are independent. In order to distinguish all the instanton
sectors, we take the limit N →∞. Finally gs is the string coupling. And we include the factor
ih as in ref. [36] for later convenience.

The open Gromov–Witten invariants have also been computed via the equivariant localization
techniques for a special type of Lagrangian branes in toric Calabi–Yau threefolds [71–74]. Let
us take a ray R = R+ in the base space B of the toric Calabi–Yau X touching an edge of its
toric diagram ΥX and construct a Lagrangian submanifold L by restricting the generic T 3 fiber
over R to T 2 via the Lagrangian condition

ω = i
∑

i

dxi ∧ dx̄i =
∑

i

d|xi|2 ∧ dθi = 0 ,

where θi is the phase of xi. Note the T 2 fiber further degenerates to S1 at the boundary of R
where it touches the edge so L itself is without boundary. L has the topology of R+ × T 2 ∼
R2 × S1. It has a single 1–cycle γ, which is homologous to the S1 fiber that does not vanish at
the boundary point of R and it is compatible with the U(1) action along the edge of the toric
diagram ΥX that R touches. Examples of L in O(−1)⊕O(−1)→ P1 are given in Fig. 2.4.

The submanifold L is actually not only Lagrangian but special Lagrangian [75] satisfying
the extra phase condition Re(Ω)

∣∣
L = 0 [50]. It is a direct generalization of the construction in

[75] to toric Calabi–Yau threefold backgrounds so that it is compatible with the toric action
of the background[50] . L is sometimes called “toric special Lagrangian” or “Harvey–Lawson”
submanifold. Let us wrap M D–branes around L and denote them by L as well. Since L is con-
structed on the toric diagram of X, the open Gromov–Witten invariants counting the worldsheet
instantons ending on the branes L can be computed by adapting the equivariant localization
techniques discussed in the previous section. The computation of the open Gromov–Witten
invariants is localized to counting those holomorphic maps whose preimages are (degenerate)
Riemann surfaces Σg,0 without boundary and h disks connected to Σg,0 at nodal points. Σg,0

is mapped to X in the same way as discussed in the last subsection while a disk is mapped to
the S1 fibration over one of the two half–edges in ΥX that intersect with R. Let us denote by
xi the size of the image of the i–th disk. The graph G representing the holomorphic map has
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1 2

L

1

(2, 2, 1)

1

(1, 2, 2)

1

(0, 2, 1)

1

(a) map (b) diagram

Figure 2.5: An invariant stable holomorphic map from a worldsheet on degenerate Σ3,2 to the resolved
conifold (represented by its toric digram) ending on the Lagrangian brane L, as well as the diagram
G ∈ G3,2 that represents it. Here in G we suppress the εe(εc) symbols on the edges (half edges) (see
text).

accordingly in addition h half edges with labels (εc, dc) representing a disk mapped holomorph-
ically to the half–edge εc and the degree of the map is dc. An example of G is given in Fig. 2.5.
We denote by Gg,h the set of graphs containing h half edges and satisfying

2− 2gv + nv = 2− 2g + h , (2.97)

and by G̃g,h the set of the same graphs but without degrees on edges and half–edges.

The weight w(G) of a graph G factorizes as in the case of closed string and now in addition
has contribution Dεc,dc from each half–edge c. We refer to [52] for the explicit expression of
Dεc,dc , and only point out here that they are the only factors that contain the parameters xi.
We further define the open string amplitude

A
(g)
h (t, x1, . . . , xh) =

∑

ω

Fg,ω(t)e−
∑
i ωixi . (2.98)

which encodes the open Gromov–Witten invariants in Fg,ω(t). Then the open string amplitude

A
(g)
h (t, x1, . . . , xh) is computed by

A
(g)
h (t, x1, . . . , xh) =

∑

G∈Gg,h

(−1)h

#Aut(G)

∏

v

Hgv ,nv ,σv

∏

e

Fεe,de(t)
∏

c

Dεc,dc(x) . (2.99)

As in the closed case we can first sum over graphs which only differ by the degrees on edges
and half–edges and then sum over graphs G̃ in G̃g,h. The weights of G̃ still factorize.

The open Gromov–Witten invariants computed in this way are again only rational numbers
due to the multicovering and bubbling phenomena. The integrality structure of the free energy
F(gs, t, V ) was analyzed in refs. [25, 76]. It was shown the free energy can be written as

F(gs, t, V ) =
∑

R

∞∑

d=1

1

d
fR(qd, e−dβ·t) trR V

d , (2.100)

where R is a representation in U(M), the gauge group on the coincident M Lagrangian branes,
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and we take the limit M →∞. Furthermore q = eigs and

fR(q, e−β·t) =
∑

g=0

∑

β,R′,R′′

CRR′R′′SR′(q)ng,R′′,β

(
2 sin

dgs
2

)2g−1

e−β·t . (2.101)

In the formula above, CRR′R′′ is the Clebsch–Gordan coefficient of the symmetric group S` with
` being the number of boxes in the Young diagram associated to R. The function SR(q) is
defined as

SR(q) =

{
(−1)mq−

`−1
2 +m, if R is a hook representation,

0, otherwise
, (2.102)

where m is the height of the hook representation minus one. The integer coefficients ng,R′′,β
are called the Ooguri–Vafa coefficients.

Using the Frobenius formula the above result can be written in a form more in line with
eq. (2.95). To each boundary condition labelled by ω = (ω1, . . . , ωh) there is associated a
natural conjugate class C(ω) in the symmetric group S` with ` =

∑
i ωi. The cycle type of

the conjugacy class is obtained by writing down an ωi cycle for each ωi. Let χR(C(ω)) be the
character of the conjugacy class C(ω) in the representation R of the symmetric group S`. We
can define the combinations

ng,ω,β =
∑

R

χR(C(ω))ng,R,β , (2.103)

which are also integers. It can be shown the integrality condition of eqs. (2.100), (2.101) can
be cast in the following form [76]

∞∑

g=0

g2g−2+h
s Fg,ω(t) =

(−1)h−1

∏
j ωj

∑

g,β,d|ω

ng,ω/d,βd
h−1

(
2 sin

dgs
2

)2g−2 h∏

i=1

(
2 sin

ωigs
2

)
e−dβ·t .

(2.104)

We can perform genus expansion to find the open Gromov–Witten invariants in terms of the
integral Ooguri–Vafa invariants. The first few results are [36, 77]

F0,ω(t) = (−1)h−1
∑

d|ω

dh−3n0,ω/d,βe
−dβ·t . (2.105)

2.2.4 Type B Closed String

As seen in the previous subsections, type A topological string theory is better understood from
the mathematical point of view as an enumerative problem, but not so much as a quantum
gravity theory. On the contrary, type B topological string theory is much better understood
from the latter perspective. As discussed in subsections 2.1.4 and 2.1.5 the genus 0 free energy
of type B topological string is closely related to the deformation theory of the complex structure
of the target space. The latter theory can actually be formulated in terms of a field theory.

The deformation of the complex structure of the Calabi–Yau threefoldX can also be described
as the deformation of the ∂ differential operator

∂ → ∂ +A . (2.106)
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Here
∂ = ∂ı̄dz̄

ı̄ , (2.107)

and A is a Beltrami differential,

A = Aı̄
jdz̄ ı̄∂j =: Aj∂j . (2.108)

Given an arbitrary holomorphic function f in the new complex structure defined by

(∂ +Ai∂i)f = 0 , (2.109)

the consistency condition

0 = ∂(∂ +Ai∂i)f = ∂(Ai)∂if −Ai∂i∂f = (∂Ai +Aj∂jA
i)∂if ,

demands that

∂A+
1

2
[A,A] = 0 . (2.110)

This is called the Kodaira–Spencer equation [78–81] in the theory of complex structure de-
formation. It can also be understood as the equation of motion of the field A in a classical
field theory. To quantize this field theory one can find the action whose equation of motion is
eq. (2.110), and then apply the usual quantization procedure on the action. This was done in
[47], and it was shown that the free energies Fg of the quantum field theory are precisely those
in the type B topological string theory defined via eq. (2.74). Therefore the type B topological
string is the quantum deformation theory of the complex structure of the Calabi–Yau manifold
X17.

Free energies Fg(t, t̄) defined in the quantum deformation theory and also those via eq. (2.74)
in type B topological string theory actually depend on in general not only the complex structure
moduli ti, but also their antiholomorphic counterparts t̄i, with the only exception of F0(t) which
is holomorphic. This phenomenon, which is called holomorphic anomaly, in fact also arises in
type A topological string theory, where the free energies Fg(t, t̄) defined via eq. (2.74) depend
on the antiholomorphic counterparts of the (complexified) Kähler moduli of the target space as
well. The holomorphic free energies Fg(t) described in the enumerative problem in section 2.2.2
are Fg(t, t̄) in the limit t̄i → 0. The mild dependence of Fg(t, t̄), g ≥ 1 on t̄i was exploited in
refs. [47, 82] to construct the holomorphic anomaly equations, a set of infinitely many differential
equations, from which Fg(t, t̄), g ≥ 1 can be solved recursively18. We do not spell out the explicit
form of the holomorphic anomaly equations since they will not be needed in the thesis. However
the generic form of the solutions to the equations can be written down in a way familiar to
those versed in quantum field theories.

Let us focus on type B topological string theory. We have discussed in section 2.1.5 that
the complex structure moduli space of a Calabi–Yau threefold X can have singular divisors,
and the periods XI , FJ(XI) as well as the period matrix τIJ undergo monodromy when they
are parallel transported around a singular divisor. All the monodromies generate the modular
group Γ ⊂ Sp(2h2,1 + 2,Z). It turns out that the free energies Fg(t, t̄) are modular invariant
(almost holomorphic modular forms of Γ of weight 0), in the sense that they do not change even

17 To be precise the quantum field theory alluded to here is the string field theory that describes the creation
and annihilation of strings.

18 The holomorphic anomaly equations only determine Fg(t, t̄) upto a modular invariant holomorphic term, which
needs to be fixed via some boundary conditions. This issue will be clarified in a little detail below.
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F2(t, t̄) = +
∆
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Figure 2.6: Diagrammatic illustration of the expansion of F2(t, t̄) in eq. (2.113). Here each connecting
line with endpoints (I, J) is a factor of ∆IJ , and each Riemann surface of genus g with h marked points
I1, . . . , Ih is ∂I1 . . . ∂IhFg.

if the periods, and therefore the complex structure moduli ti, go through a monodromy19. On
the other hand, the holomorphic limit Fg(t) of Fg(t, t̄) lose the property of modular invariance
(quasi–modular forms of Γ). It was shown in [51] that one can relate Fg(t, t̄) to Fg(t) via

Fg(t, t̄) = Fg(t) + Γg(∆
IJ , ∂I1 . . . ∂InFr<g(t)) , (2.111)

where Γg sums over all possible stable degenerations of the genus g Riemann surface Σg with
each component Riemann surface Σr,n having genus r (necessarily smaller than g) and n marked
points represented by ∂I1 . . . ∂InFr<g(t) and each connecting line replaced by

∆IJ =
(
(τ̄ − τ)−1

)IJ
. (2.112)

For example the genus two free energy satisfies

F2(t, t̄) =F2 +
∆IJ

2
(∂I∂JF1 + ∂IF1∂JF1) +

∆IJ∆KL

8
(∂I∂J∂K∂LF0 + 4∂IF1∂J∂K∂LF0)

+
∆IJ∆KL∆MN

48
(4∂I∂K∂MF0∂J∂L∂NF0 + 6∂I∂J∂KF0∂L∂M∂NF0) (2.113)

which is illustrated in Fig. 2.6. The denominators of the linear coefficients are symmetry
factors, in other words the orders of the symmetry groups the corresponding diagrams enjoy.
For example the last diagram has Z2 symmetry of swapping the curved line linked only to the
left sphere, another Z2 symmetry of swapping the curved line linked only to the right sphere,
and a third Z2 exchanging the two spheres. The total symmetry factor is 2× 2× 2 = 8. On the
other hand, each stably degenerate Riemann surface can be regarded as a Feynman diagram,
where each component Riemann surface is understood as a subdiagram, each line a propagator,
and the linear coefficient with the correct symmetry factor. Fg(t, t̄) depends on antiholomorphic
moduli t̄i only through τ̄20, and it can be shown eq. (2.111) provides the general form of the
solutions to the holomorphic anomaly equations.

When we try to solve Fg(t, t̄) recursively, we assume the lower genera free energies Fr<g(t, t̄)
and hence their holomorphic limit in Γg(· · · ) in eq. (2.111) are already known. We only need
to find a holomorphic function Fg(t) such that the sum is modular invariant. Obviously in this
way F (t, t̄) is only determined up to a holomorphic modular invariant term, which is called
the holomorphic ambiguity. It can be fixed by demanding suitable behavior of Fg(t, t̄) at the
boundary as well as singular loci of the complex structure moduli space M(X) of X explored
in ref. [84]. The holomorphic anomaly equations have been thus solved for various target space
geometries [84–87] through the direct integration method developed in refs. [88–90], which

19 F0 actually needs some modification to be modular invariant. For details see [83].
20 The holomorphic limit t̄i → 0 corresponds to sending τ̄ to i∞.
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exploits the structure of the ring of almost holomorphic modular forms of Γ.

2.2.5 Type B Open String

We can also consider the theory of constant maps from Riemann surface Σg,h with genus g and
h boundary components. It was shown [68] that the boundary components should be mapped
into a holomorphic submanifold S of the target space X with Dirichlet boundary condition in
the transverse direction to the submanifold S. The submanifold S can be regarded as being
wrapped by a D–brane (holomorphic brane), on which a U(1) gauge field propagates. If the
holomorphic submanifold S is wrapped by a stack of N branes, the gauge group is enhanced
to U(N).

A nice review on type B topological open string theory is given by Aspinwall [91]. In the
case of X being a noncompact Calabi–Yau threefold, the type B topological open string theory
is most conveniently studied in connection with matrix models or topological recursion, which
will be discussed in section 2.4 and section 2.5 respectively.

2.2.6 Mirror Symmetry

Here we discuss a remarkable duality called mirror symmetry in string theory. It was first
suggested in [92, 93] that Calabi–Yau threefolds should exist in pairs (X,Y ) satisfying21

h1,1(X) = h2,1(Y ), h2,1(X) = h1,1(Y ) , (2.114)

such that the superconformal field theory on the worldsheet propagating in X in type IIA
superstring theory is equivalent to the superconformal field theory on the worldsheet propagat-
ing in Y in type IIB superstring theory. X and Y are called mirror manifolds, and the two
superstring theories mirror dual to each other. First examples of mirror manifolds were ex-
plicitly constructed in [94]. The authors also pointed out the equivalence of superconformal
field theories on worldsheets lead to several striking implications, including the identification of
Yukawa couplings, which behave very differently in the two mirror superstring theories. These
predictions were verified in [66, 95] followed by [96–103] in a series of illuminating examples.
Furthermore, if we extend the equivalence of worldsheet theories to open strings, it implies D–
branes in type IIA superstring in X can be mapped to D–branes in type IIB superstring in Y ,
and the worldvolume theories on the D–branes in the two superstring theories are equivalent as
well. This lead to the interesting Strominger–Yau–Zaslow conjecture [104]. Finally, numerous
pairs of Calabi–Yau threefolds satisfying eq. (2.114) were constructed by Batyrev [105] using
toric geometry.

Because of the connection between type IIA/B superstring and type A/B topological string
alluded to in section 2.2.1, mirror symmetry is naturally inherited by topological string. And the
statement of mirror symmetry in the latter case can be made rather precise, since quantities in
topological string are much better under control. The mirror symmetry claims that the moduli
spaces of type A topological string on X and type B topological string on Y 22 can be identified
with a proper mirror map relating the moduli of the two theories, and the free energies in the
two theories coincide. In the case of closed topological string, the mirror symmetry was proved
by Givental as well as Yau [106–108] in genus zero for Calabi–Yau’s that were hypersurfaces or

21 Although note the caveat stated in the footnote 7 on page 3.
22 One can of course switch X and Y .
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Figure 2.7: Spectral curve C of the mirror of O(−1) ⊕ O(−1) → P1, the A and B cycles on C, and its
projection to C∗.

complete intersections in compact toric geometry. Independently Hori and Vafa proved mirror
symmetry for complete intersections in compact toric geometry as well as toric Calabi–Yau
threefolds (which are necessarily noncompact) in a physicists’ way [109]23. In this thesis we will
be only concerned with topological string in toric Calabi–Yau threefolds.

The mirror dual of type A topological string on a toric Calabi–Yau threefold X is type B
topological string on a noncompact complex manifold Y defined by

uv = H(x, y) , u, v, x, y ∈ C (2.115)

with some polynomial H(x, y) in α := e−x and β := e−y. One has the freedom to reparametrize
the function H(x, y) as long as the symplectic form dx∧ dy is preserved. H(x, y) = 0 defines a
noncompact Riemann surface C with punctures at x→ ±∞ or y → ±∞. The Riemann surface
C is called the spectral curve of the type B theory, and it can be visualized as the surface of
the tubular neighborhood of the toric diagram ΥX of X. For instance the mirror dual of type
A topological string on O(−1)⊕O(−1)→ P1 has the target space defined by

uv = H(x, y) = 1− e−x − e−y +Qe−x−y , (2.116)

with parameter Q. The spectral curve given by H(x, y) = 0 is a Riemann sphere with four
punctures illustrated in Fig. 2.7.

Next, to state the mirror map a coordinate patch on the moduli space has to be chosen.
We choose in type A topological string the large volume limit where the Kähler moduli24 ti
defined in eq. (2.41) are good coordinates due to the suppression of instanton corrections. They
actually provide a set of flat coordinates25 on the moduli space near the point of infinitely large

23 We refer to [31, 56, 110] for reviews on mirror symmetry in topological string theory, and [111] for a nice
review on the Greene–Plesser story of mirror symmetry in superstring theory.

24 Their complexified version with the Kalb-Ramond field to be precise.
25 Strictly speaking to talk about flat coordinates one has to specify the bundle and connection on the moduli

space, which are naturally given by the special geometry structure of the moduli space. See for instance [47].
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Figure 2.8: A toric special Lagrangian brane L in the resolved conifold, and a disk instanton on L.

volume. An additional advantage of using these coordinates is the exposition of the integrality
structure of the free energies illustrated in eqs. (2.88) and (2.89). The flat coordinates in type B
moduli space are provided by the normalized A–periods ti defined by eq. (2.63), and the mirror
map identifies them with the Kähler moduli ti in type A topological string. In the case of
noncompact Calabi–Yau there is always a constant A–period, and so by choosing it to be X0, ti
are given directly by integration of Ω over some 3–cycles. Furthermore if the local Calabi–Yau
is of the type given by eq. (2.115), Ω can be reduced to ydx on the spectral curve C and the
three–cycles Ai and Bi of the Calabi–Yau project onto 1–cycles of C (denoted also by Ai and
Bi), so that the periods of the Calabi–Yau can be computed from C alone

ti =
1

4πi

∮

Ai
ydx,

∂F0

∂ti
=

∮

Bi
ydx . (2.117)

In the example of the mirror of the resolved conifold, the cycles on its spectral curve is illustrated
in Fig. 2.7. Usually ti can be expanded as − log zi with zi being some parameters of H(x, y),
plus a power series in zi. However if C is a Riemann sphere the power series corrections vanish.
In particular for the Calabi–Yau in eq. (2.116) mirror to resolved conifold one has

t = − log(Q) . (2.118)

We can also consider mirror symmetry in topological open string theory by for instance
inserting Lagrangian branes in the type A theory. In particular we are interested in the toric
special Lagrangian branes discussed in section 2.2.3. They are parametrized by two real moduli.
The first is their position on the edges of the toric diagram, or equivalently the size r of the
disk instanton stretched between the closest vertex in the toric diagram and the branes. This is
illustrated for the example of resolved conifold in Fig. 2.8. The second is the gauge connection
of the gauge bundle on the branes, which is characterized by the Wilson loop θ along the only
1–cycle on the branes. r and θ combine into one complex modulus x = r + iθ.

These branes were discussed in [50, 112], and the authors found their mirror duals were the
holomorphic branes that were either located at u = 0 and extended along the v direction or
located at v = 0 and extended along the u direction. In either of the two cases, the holomorphic
branes are represented by a point p on C. Although the parametrization of C has the freedom
of symplectic transformations, there is a natural choice of the parametrization of the point p
when it represents the mirror dual to branes in type A theory. Namely we choose x, y such that
in the large volume limit Re(x) is the size r of disk instanton, Im(x) the Wilson loop θ, and
y → 0. With this parametrization, the authors of [50] showed that disk instanton amplitude
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A
(0)
1 (t, x) is given by the Abel–Jacobi map on the spectral curve C

A
(0)
1 (t, x) =

∫ x

x∗
y(x′)dx′ . (2.119)

Here the initial position x∗ is irrelevant and can be dropped after the computation. It is natural

then in the large volume limit, ∂A
(0)
1 (t, x)/∂x = y(x)→ 0, since the disk instanton corrections

should be suppressed. Note that the picture in type A theory indicates there are various phases
of the branes corresponding to them located on different edges of the toric diagram. On the
one hand, when the branes pass through a vertex and move onto a neighboring edge, the disk
instantons change, and accordingly the natural parametrization is changed. The new and old
parametrizations are related through a symplectic transformation on the coordinates x, y [113].
On the other hand the apparent singularity in the brane moduli space corresponding to the
branes located at a vertex due to the vanishing of both r and θ is an artifact of the large volume
limit. The singularity is removed when disk instanton corrections to the brane moduli space
are taken into account. This is clear from the picture in type B theory, where the brane moduli
space can be identified with the spectral curve C (there is no quantum correction to the moduli
space in type B theory) which is smooth at these places.

We would like to have flat coordinates on the brane moduli space as well. It was derived in
[112] and the result is as follows. As seen for instance from the spectral curve of the mirror
of resolved conifold, y(x) is a multivalued function on C. For any point p on C there exists a
closed loop passing through p along which y enjoys the monodromy

Cp : y → y + 2πi . (2.120)

Then the flat coordinate at the point p is defined to be

x̂(p) =

∮

Cp

y(x)dx . (2.121)

This definition parallels the definition of flat coordinates in the closed string sector. It was

further shown in [112] that only expanded in terms of x̂ does the disk amplitude A
(0)
1 (t, x)

have integrality coefficients as in eq. (2.105) (together with eq. (2.98)). In general the flat
coordinate x̂ can be approximated by x plus power series in e−t representing closed string
instanton corrections. These instanton corrections vanish if C is a Riemann sphere.

We point out that the natural choice of parametrizing C corresponding to branes still has a
Z ambiguity: x → x + ny, n ∈ Z, since y vanishes in the large volume limit. One nevertheless
has to fix this ambiguity in the quantum theory as y in general is not zero, and we call it the
framing26 of the branes. Note that here the coefficient n is restricted to integers because the
algebraic coordinate α = e−x should be invariant after one circles along the loop Cp that shifts
y by 2πi.

Finally since it will be of later use we discuss the mirror dual of type A topological string on
T ∗S3 the cotangent bundle of a three–sphere. T ∗S3 is a smooth Calabi–Yau threefold because
the curvature of S3 is cancelled by the curvature of the cotangent bundle. Although T ∗S3 itself
is not toric, it can be understood as the deformation of the singular conifold which is toric; in

26 The purpose of choosing this name will become clear at the end of section 2.5.4.
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other words T ∗S3 is given by the hypersurface equation

uv − xy = ε , (2.122)

with u, v, x, y ∈ C and the deformation parameter ε which, without loss of generality, is assumed
to be real. To see that this indeed represents T ∗S3, one only has to do the change of variables

u = η1 + iη2, y = i(η3 − iη4) ,

x = i(η3 + iη4), v = η1 − iη2 ,
(2.123)

and then separate the real and imaginary parts ηµ = xµ + ivµ. Eq. (2.122) becomes

4∑

µ=1

(x2
µ − v2

µ) = ε ,
4∑

µ=1

xµvµ = 0 . (2.124)

The first equation indicates that the locus vµ = 0 is a three–sphere, while the second equation
describes the cotangent space at the point xµ. It was found out in [114] based on [115] that
the mirror dual of T ∗S3 can be found via the deformation of the mirror construction of toric
geometry alluded to earlier in this subsection and it was found to be the hypersurface

uv = (1− e−x)(1− e−y) (2.125)

with the conifold singularity at u = v = x = y = 0 blown up to P1.

2.3 Chern–Simons Theory

2.3.1 Basic Definitions

In this section we follow closely [36]. Chern–Simons theory is a 2 + 1 dimensional pure gauge
theory on a generic three manifold M with gauge group G, which we assume to be a compact
semi-simple Lie group. The action of Chern–Simons theory contains only the Chern–Simons
term,

S =
k

4π

∫

M
Tr(A ∧ dA+

2

3
A ∧A ∧A) . (2.126)

Here the level k is a positive real number, and A the gauge connection. The representation in
which the trace Tr is taken depends on the group G. If G = U(N), it is the N -dimensional
fundamental representation. Since the action does not contain metric, the theory is topological
at least at the classical level, and there is no difference between the temporal and the spatial
directions. We assume M to be compact.

When the theory is quantized, the gauge coupling 2π/k receives corrections and is shifted to

gs =
2π

k + g
(2.127)

where g is the dual coxeter number of the gauge group. It is N for G = U(N). Furthermore
as demonstrated in [20] the quantum theory indeed is still a topological field theory, with the
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caveat that the partition function

Z(M) =

∫
DAeiS (2.128)

depends on the framing of the three manifold M , defined as the homotopy class of the trivial-
ization of the tangent bundle TM . The framing can be understood as a choice of three linearly
independent sections si of the tangent bundle TM , where {si} restricts to a basis of tangent
vectors at each point on M . The framing is characterized by an integer. When the framing is
shifted by ∆f the partition function changes by

Z(M)→ e2πi∆f ·c/24Z(M) , (2.129)

where

c =
k dimG

k + g
(2.130)

is the central charge of the ĝ WZW model with level k. The appearance of elements from the
rational conformal field theory is no coincidence, and we will see the deep connection between
Chern–Simons theory and WZW models in section 2.3.3. Finally a large gauge transformation
which cannot be continuously deformed to identity can shift the action by

S → S + const ·mk

with some integer m. This puts constraint on k in a quantum theory since the partition function
is only gauge invariant if the shift const ·mk is an integral multiple of 2π. If G = U(N) and
Tr taken in the fundamental representation, k has to be an integer.

To construct physical observables, we embed a knot27 K in the three manifold M and compute
the trace of the holonomy of the gauge field A along the knot K in an irreducible representation
R of G. In other words, we have

WKR (A) = TrR UK , (2.131)

where UK is the holonomy

UK = P exp

∮

K
A . (2.132)

Since the definition of this nonlocal operator does not involve metric, its (normalized) vev is
necessarily a quantum topological invariant of the knot

WR(K) = 〈WKR (A)〉 =
1

Z(M)

∫
DAWKR (A)eiS , (2.133)

with the same caveat of framing dependence. We call it the quantum knot invariant of the knot
K. The framing of M induces a framing on the knot K, which can be intuitively understood as
the following. We choose a section of the normal bundle to the knot K inside M and deform
K infinitesimally along the direction of the section at every point on the knot to get a new
knot K′. The framing of K is then the linking number between the two knots old and new.
The framing of K is also characterized by an integer. When the framing is shifted by ∆f , the

27 We can equally embed a link which has several knot components. The discussion is similar.
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quantum knot invariant changes by a phase,

WR(K)→ e2πihR·∆fWR(K) , (2.134)

where

hR =
∑

a

(T a)2

2(k + g)
=

CR
k + g

, (2.135)

is the conformal weight of the WZW primary in the integrable representation R. If G = U(N),
the quadratic Casimir CR is

CR = N`+ κR , (2.136)

where
κR = `+

∑

i

(`2i − 2i`i) , (2.137)

while `i and ` denote the number of boxes in the i–th row, and the total number of boxes in
the Young diagram of R. Then the framing transformation is

WR(K)→ λ
1
2 `∆fq

1
2κR∆fWR(K) . (2.138)

Here we have defined

q = exp

(
2πi

k +N

)
, λ = qN . (2.139)

Furthermore in the case of M = S3, there is a canonical choice of zero framing.

Let us assume M = S3 and G = U(N) from now on. The quantum knot invariants are
functions of q and λ, regardless of the framing f . One of the remarkable discoveries in [20] was
that the quantum knot invariants W (K)(q, λ) in the fundamental representation coincide
with the HOMFLY knot invariants H(K)(q, λ) defined by mathematicians [26]

W (K)(q, λ) = H(K)(q, λ) . (2.140)

Therefore analogously we can define colored HOMFLY invariants HR(K) in an arbitrary irre-
ducible representation R

HR(K)(q, λ) =WR(K)(q, λ) . (2.141)

It is also customary to normalize the knot invariants by that of unknot, the simplest knot

HR(K) =
HR(K)

HR( )
. (2.142)

The normalized HOMFLY invariants are polynomials in q±1 and λ±1. We briefly discuss
HOMFLY knot invariants in the context of knot theory in the next subsection. We refer
interested readers to refs. [116, 117].

2.3.2 HOMFLY Knot Invariants

In the mathematical branch of knot theory, the goal is to construct a topological invariant
P (·) of knots so that if two knots K1 and K2 are different then P (K1) 6= P (K2), effectively
converting distinguishing knots from a topological problem to an algebraic problem. Knots
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(a) over–crossing
L+

(b) under–
crossing L−

(c) no crossing
L0

Figure 2.9: Overcrossing, undercrossing, and no crossing.

are usually represented by their projection graphs onto a plane with crossings classified into
overcrossings and undercrossings (Fig. 2.9a and Fig. 2.9b). The crossing number of a knot,
defined to be the minimal number of crossings one can find in any planar projection graph of
a knot, characterizes the complexity of the knot. Some examples of two dimensional graphs
of knots are given in Fig. 2.10a, Fig. 3.3, and Figs. B.1. A topological knot invariant should
provide people a prescription to write down a unique algebraic expression for a knot from any
of its planar projection graphs.

The normalized HOMFLY polynomial H(K) (uncolored) is defined by two conditions. The
first is the skein relation

λ1/2H(L+)− λ−1/2H(L−) = (q1/2 − q−1/2)H(L0) . (2.143)

Here L+, L−, and L0 are three knots which only differ at a small region containing either
an overcrossing, an undercrossing, or no crossing, as shown in Fig. 2.9. The second is the
normalization condition

H( ) = 1 . (2.144)

To see that these conditions are already enough to compute the normalized HOMFLY polyno-
mials from any projection graph, notice the fact that if overcrossings and undercrossings are
freely exchangeable, any knot is equivalent to an unknot, while the obstruction is characterized
by the term on the right hand side of the skein relation. Therefore, for a given knot K, one can
reduce its crossing number by using the skein relation to judiciously replace an overcrossing
(undercrossing) by an undercrossing (overcrossing), at the cost of introducing an additional
knot whose crossing number is smaller than that of K by one. Perform this step recursively,
one will end up with unknots only.

One can also find skein relations for colored HOMFLY invariants, but they are not powerful
enough to enable people to compute these invariants. Very cumbersome techniques have to be
employed to compute the colored HOMFLY polynomials with limited effects (See for example
[118]). Furthermore from the mathematical definition of the HOMFLY polynomial it is not
obvious why it should be a topological invariant. This is the reason the elegant method of
computing HOMFLY polynomials via Chern–Simons theory, which will be explained in the
next subsection, is very appealing.

2.3.3 Surgery and Nonperturbative Solutions

The quantum knot invariantsWR(K) can be solved exactly in Chern–Simons theory via the idea
of surgery proposed by Witten [20]. We assume the three manifold is a three–sphere and the
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gauge group is U(N), and consequently the quantum knot invariants are identified with colored
HOMFLY invariants. As was shown in [119], the U(N) Chern–Simons action can be split
into U(1) Chern–Simon action and SU(N) Chern–Simons action. The Abelian Chern–Simons
theory is trivial, leaving us to focus on the SU(N) Chern–Simons theory.

The action of U(N) Chern–Simons theory can be split in the following way

S =
k1

4π

∫

S3

B ∧ dB +
k

4π

∫

S3

Tr(A ∧ dA+
2

3
A ∧A ∧A) . (2.145)

The first part of the action describes the U(1) Chern–Simons theory with Abelian gauge field
B, while the second part is the action of the SU(N) Chern–Simons theory with A being the
gauge connection. The level k1 of the U(1) theory is related to the level k of the SU(N) theory
by [119]

k1 = N(k +N) . (2.146)

Besides due to the factorization of the Wilson loop operator

WKR (A) TrR UK = Trn UK(B) TrR UK(A) , (2.147)

the quantum knot invariant also factorizes

WU(1)×SU(N)
(n,R) (K) =WU(1)

n (K)WSU(N)
R (K) . (2.148)

Here the integer n for the representation of U(1) should be identified with the number of boxes
in the Young diagram of the irreducible representation R of SU(N). The U(1) quantum knot
invariant only contains the framing dependence

WU(1)
n (K) = exp(2πihU(1)

n · f) · 1 = exp

(
2πi

n2

2k1
f

)
, (2.149)

because it is known that the Abelian quantum knot invariant in zero framing is always one. So
the Abelian quantum knot invariant does not distinguish knots and only serves to provide a
framing dependent phase, which is one in the zero framing. In the following we always assume
zero framing unless otherwise specified.

To compute SU(N) quantum knot invariants, Witten [20] proposed to cut the three–sphere to
two three–manifolds M1 and M2 with shared boundary Σ. If one has to apply a homeomorphism
f : Σ→ Σ to glue M1 and M2 back to S3, we write S3 = M1∪fM2

28. Let us see some examples.
The three–sphere can be split to two three dimensional discs D3 glued at the boundary S2 via
an identity map. Using our notation we write S3 = D3 ∪id D3. We can also obtain S3 by
gluing two solid tori T2 together. Indeed if we embed a solid torus T2 in S3, the complement of
the solid torus also has one contractible 1–cycle and one noncontractible 1–cycle and therefore
is itself a solid torus. On the other hand, the contractible (noncontractible) 1–cycle of the
embedded T2 is homologous29 to the noncontractible (contractible) 1–cycle of the complement
T2, so the two solid tori T2 are glued together via an S transformation on the boundary torus
T 2. In other words, we have S3 = T2 ∪S T2. Recall the mapping class group of T 2, i.e. the
discrete group of homeomorphisms which cannot be continuously deformed to each other, is
SL(2,Z), and it is generated by T and S transformations. These are two linear transformations

28 This operation is called Heegaard splitting in mathematics.
29 Intuitively it means the two 1–cycles can be continuously deformed to each other.
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acting on the two fundamental 1–cycles of a torus via,

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
. (2.150)

The path integral for computing WR(K) evaluated in M1 depends on the gauge field config-
uration on the boundary Σ, and can be effectively regarded as the wave function of a quantum
state |Ψ1〉 inn the Hilbert space H(Σ) on the boundary Σ. The quantum state depends on
whether (part of) a knot is embedded in M1. Similarly the path integral in M2 produces a
quantum state 〈Ψ2| in the conjugate Hilbert space H∗(Σ) because of the opposite orientation.
The homeomorphism f induces an operator on H(Σ)

Uf : H(Σ)→ H(Σ) . (2.151)

Then the path integral in S3 is identified with the inner product

〈Ψ2|Uf |Ψ1〉 . (2.152)

Through canonical quantization of Chern–Simons theory on Σ × R+ in the vicinity of the
boundary Σ, Witten made the following crucial observation on the Hilbert space H(Σ) [20].
Suppose the boundary is a Riemann surface Σg,n of genus g with n punctures where the strands
of the embedded knot pass through the boundary. Let us color each puncture by Ri, which is
either R or its conjugate R, depending on whether the strand enters or exits M1. Then the
Hilbert space H(Σ) is isomorphic to the vector space of n–point conformal blocks in the ŝu(N)k
WZW model with level k on the Riemann surface Σg, where the n points are WZW primaries
in the representations Ri

30. For instance, if the boundary Σ is a Riemann sphere with no
puncture, the Hilbert space has only vacuum and is therefore one dimensional. If the boundary
Σ is a torus with no puncture, the corresponding conformal block is a circle traversed by a
WZW primary in an integrable highest weight representation of the affine Lie algebra ŝu(N)k.
At a given level k the number of integrable highest weight representations of ŝu(N)k is finite.
The dimension of the Hilbert space H(T 2) is equal to the number of dominant weights, and we
can choose a basis of H(T 2) such that, other than the vacuum |0〉, each quantum state |ΨT 2,Rλ̂

〉
corresponds to an integrable representation Rλ̂ with dominant affine weight λ̂. Concretely, the
vacuum state |0〉 corresponds to M1 being an empty solid torus, while the quantum state Rλ̂ is
obtained via the insertion of the operator OR = TrR U , which is given by the Wilson loop along
the noncontractible 1–cycle of T2 evaluated in the irreducible SU(N) representation Rλ. We
use λ to denote the finite part of the affine weight λ̂. Furthermore, the T and S transformations
in the mapping class group SL(2,Z) of torus T 2 are promoted to quantum operators acting on
H(T 2). They are identified with the matrix elements of the modular transformations T and S
on the characters χλ̂ in the ŝu(N)k affine Lie algebra.

Now we are ready to compute the quantum knot invariants of unknot. First we compute
the partition function Z(S3) of the Chern–Simons theory. According to the gluing scheme

30 Note that Ri now represents an integrable representation of the affine Lie algebra ŝu(N)k. In general an
irreducible SU(N) representation cannot always be promoted to an affine integrable representation. However
since we are only concerned with the functional forms of the quantum knot invariants which do not depend on
the values of the level k and rank N , we can make convenient assumptions, say, k →∞, so that this is always
possible. We also refer to [120] for a comprehensive review on WZW models and affine Lie algebras.
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(a) Trefoil torus knot (b) Placing trefoil on T2

Figure 2.10: The torus knot K2,3 = K3,2, also called the trefoil knot, and how to place it on the surface
of a solid torus.

S3 = T2 ∪S T2, we can write the partition function as,

Z(S3) = 〈0|S|0〉 := S00 . (2.153)

To compute the quantum knot invariant for unknot, we simply embed the unknot colored in
representation Rλ along the noncontractible 1–cycle of the solid torus M1.

WRλ( ) =
1

Z(S3)

∫
DA TrRλ Ue

iS =
〈0|S|Rλ〉
〈0|S|0〉 =

S0Rλ

S00
. (2.154)

This is by definition the quantum dimension31 dimq(Rλ) of the representation Rλ.

We can work a bit harder to compute the quantum knot invariants for a large category of
nontrivial knots. A torus knot Kr,s labelled by two coprime integers (r, s) is defined to be a
knot which can be placed on the surface of a solid torus T2 such that it is wound r times
along the noncontractible cycle of T2, and s times along the contractible cycle of T2. It can
be shown that the two torus knots Kr,s and Ks,r in fact are equivalent. The simplest torus
knot K2,3 = K3,2, also called the trefoil, is shown in Figs. 2.10. The quantum knot invariants of
all torus knots colored in any irreducible representation can be computed by the Rosso-Jones
formula [121]. The idea is as follows. Although the framing of a knot has to be an integer, it
does not stop us from applying the framing transformation formula eq. (2.134) with a fractional
framing shift. It turns out the quantum knot invariants of the torus knot Kr,s can be computed
based on the understanding that Kr,s can be obtained by stacking r unknots with zero framing
together, applying a fractional framing shift of s/r to each of them, and then gluing them to
each other [122].

A crucial step in this computation is the application of the formula of the Adams’ operation.
Let chR be the character of the representation R of a Lie algebra g and U an algebra element.
The relations

chR1⊕R2(U) = chR1(U) + chR2(U), chR1⊗R2(U) = chR1(U) · chR2(U) . (2.155)

indicate there is a ring R(g) of functions f : g → C, which is generated by the characters of
irreducible representations of g. The elements of the ring R(g) are called virtual characters.

31 Quantum dimension is defined both in the theory of quantum group and in WZW models. The former definition
will be alluded to in section 4.2, while the latter definition is given precisely by the last part in eq. (2.154). It
can be shown the two definitions are equivalent.
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The virtual character chR(U r), being a function from g to C, can therefore be written as a
linear combination of the characters of the irreducible representations of g; in other words

chR(U r) =
∑

V

cVR,rchV (U) . (2.156)

This is called the Adams’ operation. The right hand side of the formula is summed over a finite
number of irreducible representations. In the case of su(N), let `(V ) be the number of boxes in
the Young diagram of V , V must satisfy `(V ) = r · `(R). More details on the coefficients of the
Adams’ operation can be found for instance in the appendix A of [123]. Given the definition
of the quantum knot invariants in eqs. (2.131), (2.133), we naturally have

WR(Kr,0) =
∑

`(V )=r·`(R)

cVR,rWV (K1,0) =
∑

`(V )=r·`(R)

cVR,rWV ( ) . (2.157)

Here Kr,0 is a stack of r unknots. After shifting the framing by s/r on each unknot, we get the
quantum knot invariant for the tours knot Kr,s

WR(Kr,s) =
∑

`(V )=r·`(R)

cVR,re
hV ·2πis/r dimq(V ) . (2.158)

It is necessary to point out that the quantum knot invariants obtained in this way are for the
knot Kr,s with framing r · s. One has to apply the framing transformation formula eq. (2.134)
to convert them to framing zero if one so desires. Furthermore one can also use similar formula
to compute the quantum knot invariants for the torus knot Ks,r, and results would be the same.

2.3.4 Symmetry Properties

Here we list some symmetry properties of the quantum knot invariants/colored HOMFLY in-
variants, which will be useful later in section 4.4.

• The mirror K∗ of a knot K is obtained from its planar projection by changing every
undercrossing to overcrossing and vice versa. When we map a knot to its mirror, the
quantum knot invariants transform by [36]

WR(K∗)(q, λ) =WR(K)(q−1, λ−1) . (2.159)

Amphicheiral knots are those knots which can be continuously deformed to their mirrors.
If a knot is amphicheiral, its knot invariants satisfy the symmetry

WR(K)(q, λ) =WR(K)(q−1, λ−1) . (2.160)

• When the representation R is replaced by its transpose RT , the quantum knot invariants
transform via [124, 125]

WRT (K)(q, λ) =WR(K)(q−1, λ) . (2.161)

Therefore the quantum knot invariants in transpose–invariant representations enjoy the
symmetry

WR(K)(q, λ) =WR(K)(q−1, λ) . (2.162)
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2.3.5 Free Energies 1/N Expansion

Let us consider the large N expansion of the free energy in U(N) Chern–Simons theory on S3

defined by
F = logZ(S3) . (2.163)

In order to do the expansion, we first need to specify the ground state around which we expand
the free energy. By studying the equation of motion of the Chern–Simons theory, it can be shown
the ground states are given by flat connections on the three manifold, which are characterized
by holonomies around nontrivial 1–cycles in the three manifold. Since S3 is simply connected,
the only flat connection is the trivial connection, which is the ground state we will be expanding
around.

In the U(N) Chern–Simons theory, the only propagating field is the gauge field A in the
adjoint representation. As advocated by ’t Hooft [126], in this case one can replace each
propagator in a Feynman diagram in the perturbative expansion of F by a double line with
opposite directions. The Feynman diagram is then converted to a ribbon graph, which can be
regarded as a Riemann surface with genus g and h boundary components. It can be shown that
the contribution of this Feynman diagram to the free energy is proportional to (igs)

2g−2+hNh,
where the gauge coupling gs is given by eq. (2.127). Collecting Feynman diagrams with the
same topology, one can expand the free energy by

F(gs, N) =
∑

g,h

Fg,h (igs)
2g−2+hNh . (2.164)

The series in h with fixed g is convergent. So we can write

F(gs, t) =
∑

g

Fg(t)(igs)2g−2 , (2.165)

where t is the ’t Hooft coupling
t = igsN , (2.166)

and we have performed the resummation

Fg(t) =
∑

h

Fg,hth . (2.167)

We can define a free energy which serves as the generating function of all the vevs of Wilson
loops. For this purpose we introduce the Ooguri–Vafa operator [25]

Z(U, V ) = exp

( ∞∑

n=1

1

n
TrUn TrV n

)
. (2.168)

Here U is the U(N) holonomy matrix for a knot K, and V is some arbitrary U(M) matrix
(“source”). One can expand this operator with the help of the Frobenius formula and obtain

Z(U, V ) =
∑

R

TrR(U) TrR(V ) . (2.169)
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After path integrated over field configurations of U we get,

Z(V ) = 〈Z(U, V )〉 =
∑

R

WR(K) TrR(V ) , (2.170)

i.e., we have the generating function of all the quantum knot invariants of K. For the reason
that will become clear in the next subsection, we call it the partition function of the deformed
Chern–Simons theory. Likewise, we can define its logarithm to be the free energy,

F(V ) = logZ(V ) =
∑

~k

1

z~k
W(c)
~k

Υ~k
(V ) , (2.171)

which is the generating function of the connected vevs W(c)
~k

(K) labelled by the vector ~k =

(k1, k2, . . .)

W(c)
~k

(K) = 〈
∞∏

j=1

(TrU j)kj 〉(c) . (2.172)

One can express the connected vevs in terms of quantum knot invariants. For instance

W(c)
(2,0,...) =W +W − (W )2 . (2.173)

In the definition of F(V ), the coefficient z~k is

z~k =
∏

j

kj !j
kj , (2.174)

while

Υ~k
(V ) =

∞∏

j=1

(TrV j)kj . (2.175)

As in the definition of the free energy eq. (2.95) of type A topological open string theory, we
need to assume M → ∞ in order to distinguish all the source terms Υ~k

(V ). Finally we can
also consider the perturbative expansion of the connected vevs,

W(c)
~k

=
∑

g

W~k,g
(t)i|

~k|g2g−2+|~k|
s . (2.176)

2.3.6 Relation to Topological String Theory

It was shown by Witten [68] that with particular target spaces type A topological open string
theory can be drastically simplified and in fact be reduced to Chern–Simons theory.

Take the smooth Calabi–Yau threefold T ∗S3 to be the target space. Let the local coordinates
on S3 be qi, i = 1, 2, 3 and the local coordinates on the fibers of the cotangent bundle be
pi, i = 1, 2, 3. Then locally the Kähler form can be written as

ω =

3∑

i=1

dpi ∧ dqi . (2.177)
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It is easy to see S3 is a Lagrangian submanifold in T ∗S3 because ω vanishes along the loci
where pi are constant. We can wrap N coincident D–branes around S3. Witten [68] showed
that the type A topological open string theory on this stack of branes can be reduced to
U(N) Chern–Simons theory on S3, with the string coupling gs identified with the gauge theory
coupling gs = exp(2π/(k +N)). In other words, the open string free energy is the same as the
Chern–Simons free energy after the identification of parameters mentioned above.

There is another type of Lagrangian submanifolds one can consider, which are associated
to knots embedded in S3. Given a knot K parametrized by s ∈ [0, 2π), we can construct its
conormal bundle L̃K

L̃K =

{
(q(s), p) ∈ T ∗S3

∣∣∣
∑

i

pi
dqi
ds

= 0, 0 6 s < 2π

}
. (2.178)

This is obtained by considering at each point q on K the two dimensional subspace of T ∗q S
3

orthogonal to the tangent vector to the knot and looping the subspace along the knot. The
submanifold L̃K has the topology of R2 × S1 and it intersects with S3 at the locus of the knot
K. It is easy to see the Kähler form when restricted to L̃K vanishes, so L̃K is also a Lagrangian
submanifold. Let us wrap M coincident D–branes on it.

Now the open strings propagating on the N branes wrapping S3 induce U(N) Chern–Simons
theory on S3 with gauge field A and the open strings propagating on the M branes wrapping
L̃K induce U(M) Chern–Simons theory on L̃K with gauge field Ã. In addition there are open
strings stretched between S3 and L̃K, which induce the scalar field φ in the bifundamental
representation (N,M), as well as the scalar field φ in the bifundamental representation (N,M).
Since we focus on the Chern–Simons theory on S3, we regard Ã as a nondynamical source term.
It can be shown that after the scalar fields are integrated out the action of the U(N) Chern–
Simons theory on S3 is modified to

SCS [A]− i
∞∑

n=1

1

n
TrUn TrV n , (2.179)

where U and V −1 are the holonomies of A and Ã along the knot K. The partition function of
this deformed Chern–Simons theory is

Zdef(S
3) =

∫
DA exp

(
iSCS [A] +

∞∑

n=1

1

n
TrUn TrV n

)
=

〈
exp

( ∞∑

n=1

1

n
TrUn TrV n

)〉
.

(2.180)
We see that the Ooguri–Vafa operator appears, and the partition function here coincides with
the one defined in eq. (2.170). The free energy of the deformed Chern–Simons theory is then
given precisely by eq. (2.171).

2.4 Matrix Models

2.4.1 Basic Definitions

Here we review some basics of matrix models, focusing on the saddle point approximation in this
section and loop equations in the next, the two aspects which are most relevant to topological
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string theory. Comprehensive treatments on matrix models can be found in refs. [36, 127–129].

Matrix models are the simplest quantum gauge theories which are formulated on 0+0 dimen-
sions. In fact since there is no propagation of gauge fields in spacetime manifold, they can also
be understood as describing thermal fluctuations of a statistical ensemble which in addition
enjoys a U(N) gauge symmetry.

Let us suppose M is a Hermitian N ×N matrix, and V is a function of M such that its trace
is invariant under the gauge transformation

M → UMU † , U ∈ U(N) . (2.181)

A typical example of V is a polynomial

V (M) =
∑

k≥1

gk
k
Mk . (2.182)

Let us also define the Haar measure of the Hermitian matrices to be

dM = 2
N(N−2)

2

N∏

i=1

dMii

∏

1≤i<j≤N
dReMijd ImMij , (2.183)

and it is also invariant under the gauge transformation. Here Mij is the (i, j) entry of the
matrix M . The numerical factor in the front is for latter convenience. Then we can define the
gauge invariant partition function that integrates over fluctuations of the matrix entries

Z =
1

vol(U(N))

∫
dMe

− 1
gs

TrV (M)
. (2.184)

This is called the Hermitian 1–matrix model or matrix integral.

Since the only field in this theory is in the adjoint representation of U(N), we can introduce
the ’t Hooft parameter

t = gsN (2.185)

and consider the ’t Hooft limit

N →∞, gs → 0, t finite . (2.186)

Similar to the Chern–Simons theory, in this limit the free energy of the matrix model defined
by

F = logZ , (2.187)

enjoys the genus expansion

F =

∞∑

g=0

Fg(t)g2g−2
s , where Fg(t) =

∞∑

h=1

Fg,hth . (2.188)

We can also consider the one–trace correlation functions

〈TrMk〉 =
1

vol(U(N))

∫
dM TrMke

− 1
gs

TrV (M)
. (2.189)
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and their generating function

W (p) = gs

∞∑

k=0

〈TrMk〉
pk+1

= gs

〈
Tr

1

p−M

〉
, (2.190)

which is called the 1–point resolvent. It can be generalized to the s–point resolvent

W (p1, . . . , ps) =g2−s
s

∞∑

kj=1

〈TrMk1 · · ·TrMks〉(c)
pk1+1

1 · · · pks+1
s

= g2−s
s

〈
Tr

1

p1 −M
· · ·Tr

1

ps −M

〉(c)

,

(2.191)
which is the generating function of s–trace correlation functions. Here the superscript (c) means
connected components. The resolvents also enjoy genus expansion

W (p1, . . . , ps) =
∞∑

g=0

g2g
s Wg(p1, . . . , ps), s ≥ 1 . (2.192)

Furthermore suppose the potential is a polynomial or has a power series expansion as in
eq. (2.182), one can define the loop operator

∂

∂V
(p) = −

∞∑

k=1

k

pk+1

∂

∂gk
, (2.193)

which relates all the resolvents to the free energy

Wg(p1, . . . , ps) =
∂

∂V
(p1) · · · ∂

∂V
(ps)Fg =

∂

∂V
(p2) · · · ∂

∂V
(ps)Wg(p1) . (2.194)

There is another way to formulate the matrix model in eq. (2.184) which is easier to manipu-
late. Since every Hermitian matrix can be converted via the gauge transformation eq. (2.181) to
a diagonal matrix, we can use the Faddeev–Popov gauge fixing procedure to localize the matrix
integral to only diagonal matrices. In other words we apply the Faddeev–Popov techniques and
choose the gauge fixing condition

δ(UM) :=
∏

i<j

δ(2)(UMij) , (2.195)

where UM = UMU †. The gauge fixing computation is explicitly carried out in [36]. The end
result involves only the N eigenvalues λi, i = 1, . . . , N of the Hermitian matrix M

1

vol(U(N))

∫
dMf(M) =

1

N !

1

(2π)N

∫ N∏

i=1

dλi∆
2(λ)f(λ) . (2.196)

Here ∆2(λ) denotes

∆2(λ) =
∏

i<j

(λi − λj)2 , (2.197)

which is the square of the Vandermonde determinant. It can be understood as the Jacobian that

relates the Haar measure and new measure
∏N
i=1 dλi. Note the numerical factor 2

N(N−2)
2 in the

Haar measure has disappeared. f(λ) is what one obtains after replacing M by diag(λ1, . . . , λN )
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in the function of matrix f(M). Since the N eigenvalues are not ordered, we have to divide out
the N ! symmetry factor. As a particular case of the generic result, the partition function can
be written as

Z =
1

N !

1

(2π)N

∫ N∏

i=1

dλi∆
2(λ)e

− 1
gs

∑N
i=1 V (λi) . (2.198)

2.4.2 Saddle Point Approximation

The planar contributions to the free energy and resolvents were solved in the classic paper [130],
which showed that the matrix model in the planar limit is completely described by a Riemann
surface.

In the ’t Hooft limit, the path integral is dominated by semi-classical configurations, in other
words, the ground states. To analyze these ground states, we write the partition function in
the following form,

Z =
1

N !

∫ N∏

i=1

dλi
2π

e
1

g2s
Seff(λ)

. (2.199)

where the effective action is

Seff(λ) = −gs
∞∑

i=1

V (λi) + 2g2
s

∑

i<j

log |λi − λj | . (2.200)

Then we can immediately derive the equation of motion by varying the eigenvalues in the
effective action

V ′(λi) = 2gs
∑

j 6=i

1

λi − λj
, i = 1, . . . , N . (2.201)

and a solution of the equation of motion, i.e. a distribution of the eigenvalues {λi}, is a semi–
classical configuration. We can formally encode the distribution in a single function

ρ(λ) =
1

N

N∑

i=1

δ(λ− λi) . (2.202)

In the large N limit, ρ becomes a continuous function, and in all interesting cases it has a
compact support. Let us us assume for the sake of simplicity the compact support D consists
of s intervals, also called s cuts, on the real axis32,

D = [x1, x2] ∪ · · · ∪ [x2s−1, x2s] , (2.203)

and the eigenvalue density ρ vanishes outside the s intervals. Naturally ρ satisfies

∫

D
ρ(λ)dλ = 1 . (2.204)

To understand the shape of the compact support, we write down the effective potential from

32 In the path integral eq. (2.198) the eigenvalues are integrated over the real axis. However for a generic potential
one may need to deform the path of integral away from the real axis for the integral to converge. Consequently
the compact support D is also lifted away from the real axis. These are called holomorphic matrix models.
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the equation of motion

Veff(λi) = V (λi)− 2gs
∑

j 6=i
log |λi − λj | . (2.205)

Suppose V ′(λ) has s zeroes. If the expansion parameter gs is zero, all the eigenvalues condensate
to the s extrema of V (λ). When gs increases, the repulsive potential −2gs

∑
j 6=i log |λi − λj |

pushes the eigenvalues away from each other, and the Ni eigenvalues at the i–th extremum
spread out to form the interval [x2i−1, x2i] centered around the extremum. We define the filling
fractions

εi = Ni/N =

∫ x2i

x2i−1

ρ(λ)dλ , i = 1, . . . , s (2.206)

to record the number of eigenvalues distributed in each interval. Among the s filling fractions
only s− 1 of them are independent since all of them add up to 1. Note the choice of the filling
fractions, in other words the eigenvalue distribution, is a choice of the ground state around
which quantum (or thermal) fluctuations occur. Therefore it is a free choice. Once the filling
fractions are chosen, they give us s−1 constraining conditions33. Note that similar to the filling
fractions, we can also define the partial ’t Hooft parameters

ti = tεi = gsNi, i = 1, . . . , s . (2.207)

But unlike filling fractions, all the s partial ’t Hooft parameters are independent.

Using the substitution

1

N

N∑

i=1

f(λi)→
∫

D
f(λ)ρ(λ)dλ (2.208)

we can express every planar quantity in terms of the eigenvalue density. For instance the planar
free energy can be written as

F0 = Seff = −t
∫

D
dλρ(λ)V (λ) + t2

∫

D×D
dρdρ′ρ(λ)ρ(λ′) log |λ− λ′| , (2.209)

and the planar 1–point resolvent has the form

W0(p) = t

∫

D
dλ

ρ(λ)

p− λ . (2.210)

So in order to solve the planar matrix model we only need to compute ρ.

The genus zero resolvent W0(p) has interesting properties. It has the following asymptotic
behavior

W0(p) =
t

p
+O(p−2), p→∞ , (2.211)

because of the normalization of ρ in eq. (2.204). Besides, from its expression in eq. (2.210) it
is easy to see W0(p) has branch cuts along D the compact support of ρ (it is actually analytic
everywhere else), and furthermore the discontinuity of W0(p) across D is

DiscW0(λ) = W0(λ+ iε)−W0(λ− iε) = −2πi · t ρ(λ) . (2.212)

33 There is another choice of constraining conditions. It requires the effective potential, which is level inside each
cut, be the same among all the cuts. It also yields s− 1 constraining conditions. The constraining conditions
we choose is more relevant for topological string as we will see in section 2.4.4.
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Therefore once we know the genus zero 1–point resolvent, the eigenvalue density immediately
follows.

In order to compute W0(p) we multiply the equation of motion eq. (2.201) by 1/(λi− p) and
sum over i. In the large N limit we find an algebraic equation for W0(p)

W0(p)2 − V ′(p)W0(p) +Rm−1(p) = 0 , (2.213)

where

Rm−1(p) = t

∫

D
dλρ(λ)

V ′(p)− V ′(λ)

p− λ =

∮

C∞

dλ

2πi

W0(λ)V ′(λ)

p− λ . (2.214)

Here the second equality is derived by using eq. (2.212) to convert the line integral along the
cuts to a contour integral around the cuts and then deforming the contour away from the cuts
until it becomes a contour around the point p plus a contour around infinity. Let us assume
the potential V (p) is a polynomial of degree m + 1 with leading coefficient gm+1. Then from
the first equality in the formula above we find that Rm−1(p) is a polynomial of degree at most
m − 1, while the second equality, together with the asymptotic behavior of W0(p), fixes the
leading coefficient of Rm to be tgm+1.

We can solve the quadratic equation eq. (2.213) for the planar resolvent, and choose the
solution

W0(p) =
1

2

(
V ′(p)−

√
V ′(p)2 − 4Rm−1(p)

)
, (2.215)

due to its asymptotic behavior. Let us define

y(p) := V ′(p)− 2W0(p) , (2.216)

then the above solution implies

y(p)2 = V ′(p)2 − 4Rm−1(p) , (2.217)

which describes a Riemann surface (a hyperelliptic Riemann surface to be precise) parametrized
by p and y. It is called the spectral curve of the matrix model, and it can be seen that it encodes
all the planar information of the matrix model as well as the filling fractions.

The spectral curve C described by eq. (2.217) can be highly singular. We factor out the
smooth part

y(p)2 = M(p)2
2s∏

i=1

(p− xi) , (2.218)

where M(p) is a polynomial of degree m − s, and the branch points xi are all distinct. The
smooth reduced spectral curve C̃

ỹ(p)2 =

2s∏

i=1

(p− xi) , (2.219)

has genus s − 1 and its branch points are precisely the end points of the compact support D.
We can choose the branch cuts of the reduced spectral curve so that they coincide with D.
Furthermore since V ′(p) is analytic along the cuts D, the eigenvalue density — planar resolvent
correspondence in eq. (2.212) can equally be written as

ρ(λ) =
1

4πi · t(y(λ+ iε)− y(λ− iε)) , (2.220)
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in terms of y(λ). Therefore we can use y(λ) in place of ρ(λ) to compute all the planar quantities.
Besides, the definition of partial ’t Hooft parameters in eq. (2.207) is translated to

ti =
1

4πi

∮

Ai

y(λ) dλ , (2.221)

where Ai is the clockwise contour around the cut [x2i−1, x2i]. One can also derive the following
property of planar free energy by sending an eigenvalue λj to infinity and integrating the force
acting upon it along the way

∂F0

∂ti
=

∫

Bi

y(λ) dλ . (2.222)

Here Bi is the path going from the endpoint x2i of the i–the cut to infinity. The integral actually
diverges and has to be renormalized. This is done by regularizing the infinite distance with
truncation Λ and throwing away after integration everything that contains Λ.

It remains to fix the spectral curve, which boils down to fixing the m − 1 coefficients in
the polynomial Rm−1(p) (recall the leading coefficient has already been determined). Suppose
we are given the s partial ’t Hooft parameters as the additional conditions. The genus of the
reduced spectral curve is s, and we have m − s nodal point conditions on the spectral curve
equation eq. (2.217). The other s− 1 conditions are naturally provided by the partial ’t Hooft
parameters through eq. (2.221)34.

Finally we comment that in section 2.5 we will see the spectral curve C in fact contains not
only the planar information of the matrix model., but the information in all genera in the
large N expansion. Therefore the matrix model is (almost) completely described by its spectral
curve35. Besides we point out the solution of the planar resolvent eq. (2.215) can be packed
into a compact form

W0(p) =
1

2

∮

CD

dλ

2πi

V ′(λ)

p− λ
ỹ(p)

ỹ(λ)
, (2.223)

as explained in refs. [131, 132]. By unwinding the contour CD around the cuts D we get a
contour around the point p and a contour around infinity. The first term on the right hand side
of eq. (2.215) immediately emerges as the residue at p, while getting the second term requires
slightly more work.

2.4.3 Relation to Chern–Simons Theory

It was shown in section 2.3.3 that the partition function of U(N) Chern–Simons theory on
S3 can be computed via the surgery techniques and the result was eq. (2.153). This partition
function can be cast in the following form [133]

ZCS(S3) =
e−

x
12
N(N2−1)

N !

∫ N∏

i=1

dβi
2π

e−
∑
i β

2
i /2x

∏

i<j

(
2 sinh

βi − βj
2

)2

, (2.224)

with

x =
2πi

k +N
, (2.225)

34 This is not the traditional way of fixing the spectral curve, which rather exploits the asymptotic behavior of
the planar resolvent. This is explained for instance in ref. [36].

35 There may be non–perturbative information not captured by the asymptotic series in the large N limit.
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It looks very similar to the partition function of a Hermitian matrix model in eq. (2.198) with
expansion parameter x and a quadratic potential

V (β) =
1

2
β2 , (2.226)

although the integral measure

N∏

i=1

dβi
2π

∏

i<j

(
2 sinh

βi − βj
2

)2

(2.227)

is different from that of a Hermitian matrix model. Eq. (2.224) is sometimes called the Chern–
Simons matrix model. Note that since the potential has only one zero, the compact support of
the eigenvalue density has only one interval. If the expansion parameter x is very small, all the
eigenvalues βi would be very close to each other. As a consequence,

∏

i<j

(
2 sinh

βi − βj
2

)2

∼
∏

i<j

(βi − βj)2 , (2.228)

meaning the integral measure can be approximated by that of a Hermitian matrix model.

Ideally we would like to write eq. (2.224) exactly in the form of a Hermitian matrix integral
so that the techniques of the saddle point approximation can be applied. This can be done
via a change of variables [134, 135], although the resulting Hermitian matrix integral has a
nonconventional potential. Let us define new variables

λi = exp(βi + t) , (2.229)

where t = xN is the ’t Hooft parameter, then eq. (2.226) in terms of the new variables reads

ZCS(S3) =
1

N !

N∏

i=1

dλi
2π

∆2(λ) exp

(
−

N∑

i=1

(log λi)
2/2x

)
. (2.230)

This is a Hermitian 1–matrix model with the potential

V (λ) =
1

2
(log λ)2 . (2.231)

Although the potential is not a polynomial, some results of the saddle point approximation
as presented in the previous subsection can still be applied. For instance the formula for the
planar 1–point resolvent in eq. (2.223) is still valid, and one can deform the contour of integral
similar in spirit to the discussion following eq. (2.223) to simplify it, although now one has to
take into account the branch cut of the logarithm. The result is

W0(p) = −1

p
log

(
1 + e−tp+

√
(1 + e−tp)2 − 4p

2p

)
. (2.232)

Let us define new variables

y(p) := t− pW0(p) + πi, x(p) := t− log p . (2.233)
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The above result of the planar resolvent indicates

1 + ey + ex + ex−y+t = 0 , (2.234)

which we identify as the spectral curve of the Chern–Simons matrix model.

Finally recall that the Chern–Simons theory is only well–defined as a quantum topological
field theory if a framing is specified, and the partition function eq. (2.224) was computed with
framing zero. A framing shift by f in the Chern–Simons theory is reflected in the Chern–Simons
matrix model by the change of variables

x = x′ + fy′, y = y′ (2.235)

in the spectral curve.

2.4.4 Relation to Topological String Theory

In the remarkable paper [136] Dijkgraaf and Vafa showed that type B open topological string
theory on a large variety of target spaces can be reduced to Hermitian matrix models. Let us
consider the three complex dimensional hypersurface W in C4 defined by

uv = y2 − V ′(x)2 , (2.236)

where V (x) is a degree m + 1 polynomial in x. This is a Calabi–Yau threefold, albeit it is
singular at m points given by

u = v = y = 0, x = xi , i = 1, . . . ,m (2.237)

where xi are the m critical points of V (x). Locally near a singular point of W , the hy-
persurface looks like a conifold singularity. This is evident after the change of variables
y → (y + x)/2, V ′(x)→ (y − x)/2 and the defining equation for W becomes

uv − xy = 0 . (2.238)

Therefore we can resolve the singularity by blowing up each singular point to a P1 as we did in
section 2.2.2. The new smooth geometry remains a Calabi–Yau, and we denote it Wres. The m
P1’s obtained from blow–ups are holomorphic submanifolds of W .

Let us consider type B open topological string theory with Wres being the target space and
the i–th P1 being wrapped by Ni D–branes. It was shown in [136] that the partition function
of the open topological string theory can be reduced to exactly the Hermitian matrix model in
eq. (2.198) with the polynomial potential V (λ). Furthermore the classical ground state of the
matrix model is chosen such that Ni eigenvalues are located at the i–th critical point of V (λ).
We assume Ni 6= 0 for any i so that the number of cuts s is the same as m. Let N =

∑m
i=1Ni,

then the filling fractions are

εi =
Ni

N
. (2.239)

The large N expansion of the free energy F = logZ of the matrix model has the form

F(gs, Ni) =
∑

g,h1,...,hm

Fg,h1,...,hmg
2g−2+h
s Nh1

1 · · ·Nhm
m , (2.240)
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where h =
∑m

i=1 hi. We can identify Fg,h1,...,hm in the mirror type A theory as the contribution
of the worldsheet with genus g and hi boundary components mapped to the Ni mirror D–branes.

In addition to the Calabi–Yau threefold Wres we can also consider type B topological string
theory on the resolution Yres of the singular Calabi–Yau threefold

Y : uv = (1− ex)(1− ey) , (2.241)

where u, v, x, y ∈ C. The Calabi–Yau Yres has already been discussed in section 2.2.2 and re-
vealed to be the mirror dual of T ∗S3. Since the type A open topological string theory of N
D–branes wrapping S3 in T ∗S3 is equivalent to U(N) Chern–Simons theory on S3, as discussed
in section 2.3.6, and the partition function of the Chern–Simons theory can be interpreted as a
matrix model integral (section 2.4.3), it is natural to conjecture the existence of a matrix model
interpretation of type B open topological string of N D–branes wrapping some appropriate holo-
morphic submanifold in Yres. Such an interpretation was found in [114], and the holomorphic
submanifold is the P1 arising from blowing up the conifold singularity in Y . Furthermore this
matrix model turns out to be precisely the Chern–Simons matrix model.

2.4.5 Large N Duality

The idea that a U(N) gauge theory in the limit N → ∞ may have a closed string theory
interpretation has a long history since ’t Hooft [126] and was later for example concretely
realized in the celebrated AdS/CFT correspondence [17]. The insight of ’t Hooft was, if one
replaces the propagator of a gauge field by a double line with opposite directions, a Feynman
diagram with only gauge fields is converted to a ribbon graph which is basically a Riemann
surface with boundary. All the ribbon graphs with genus g and h boundary components have
contributions proportional to g2g−2+h

s and Nh, and can be grouped together. Here gs is the
gauge coupling. Therefore the free energy has the decomposition

F(gs, N) =
∑

g,h

Fg,hg2g−2+h
s Nh . (2.242)

Furthermore one can define the ’t Hooft parameter t = gsN and perform the summation in two
steps

Fg(t) =
∑

h

Fg,hth , (2.243)

followed by

F(gs, t) =
∑

g

Fg(t)g2g−2
s . (2.244)

It can be shown36 that in general the first sum can be explicitly carried out since the series
(2.243) converges at t = 0 with finite radius of convergence, while the second sum is an asymp-
totic series. So in the ’t Hooft limit

gs → 0, t finite (necessarily N →∞) (2.245)

eq. (2.244) is meaningful. On the other hand the form of this equation is typical of the free
energy of a closed string theory.

36 See for instance [137].
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S2 S3

N

S2 S3 S2 S3

Figure 2.11: The conifold transition underlying the Gopakumar–Vafa conjecture. The three diagrams
from left to right represent T ∗S3, conifold singularity, and O(−1) ⊕ O(−1) → P1 respectively. In the
first diagram, N stands for a stack of N branes wrapping S3.

We have seen that gauge theories like U(N) Chern–Simons theory on S3 and Hermitian
1–matrix models with polynomial potentials have open string interpretations, where N is the
number of D–branes. It is conceivable that in the limit N →∞ the backreaction of the branes
to the background geometry is sizeable, and therefore in the large N limit if the gauge theory
has a dual closed string theory where the branes are removed, the background geometry of the
latter should be different from that of the open string theory. In other words there will be a
transition of the background geometry.

The U(N) Chern–Simons theory on S3 with level k was realized in section 2.3.6 as type
A open topological string theory on N branes wrapping the three–sphere in the cotangent
bundle T ∗S3. We knew by eq. (2.122) the smooth Calabi–Yau T ∗S3 is the deformation of
the conifold singularity. We also saw in section 2.2.2 another way to smooth the conifold
singularity by blowing up the singular point to P1. Taking this as a hint Gopakumar and Vafa
conjectured [21] that in the large N limit the open topological string, and therefore the Chern–
Simons theory, is equivalent to type A closed topological string theory on the resolved conifold
O(−1)⊕O(−1)→ P1 with the following dictionary

gs =
2π

k +N
, t = igsN , (2.246)

where gs is the closed string coupling and t the complexified Kähler modulus of the P1. The
change of the underlying background geometry is called the conifold transition, and it is illus-
trated in Fig. 2.11. The Gopakumar–Vafa conjecture was verified by directly matching the free
energies of the Chern–Simons theory with those of the closed string theory at all genera [21].

One can also find the large N dual of the Hermitian matrix models along the same line of
thought. As seen in section 2.4.4 the Hermitian 1–matrix model with polynomial potential
V (λ) of degree m + 1 can be interpreted as open type B topological string with Ni branes
wrapping the i–th P1 in Wres obtained from blowing up the i–th singular point of W . Locally
each singular point of W is of conifold type, and thus one can also smooth the singularity of
W by deformation, resulting in the smooth hypersurface in C4

Wdef : uv = y2 − (V ′(x))2 + 4Rm−1(x) . (2.247)

The extra polynomial Rm−1(x) of degree m− 1 has m coefficients in accord with the freedom
of deforming the m singular points of W . Dijkgraaf and Vafa [136] thus conjectured that in the
large N =

∑
iNi limit, the matrix model is dual to close type B topological string in the target

space Wdef, where Rm−1(x) depends on the distribution Ni of branes. Indeed the spectral curve
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matrix model

type A on Xres type B on Ydef

type A on Xdef type B on Yres

Chern–Simons

mirror symmetry

mirror symmetry

large N large N

Figure 2.12: Mirror symmetry and large N duality form a circle of dualities. Here X is the conifold
singularity and Y is the singular Calabi–Yau given by eq. (2.241).

of the closed string theory is

y2 − (V ′(x))2 + 4Rm−1(x) = 0 , (2.248)

where Rm−1(x) can be chosen such that it is identical with the spectral curve of the matrix
model in eq. (2.217). Note in type B closed string the complex structure moduli ti and the
(derivative of) genus zero free energy F0 are given by

ti =
1

4πi

∮

Ai
ydx,

∂F0

∂ti
=

∮

Bi
ydx , (2.249)

while the same formulae give the partial ’t Hooft parameters and the planar free energy F0 in
the matrix model. It is natural to identify the moduli in type B topological string with the
partial ’t Hooft parameters in the matrix model so that their genus 0 free energies coincide.
In fact the identical spectral curve implies the matrix model and the type B topological string
theory have the same free energies at all genera as a result of the BKMP theorem that will be
discussed in section 2.5.5.

This also implies a new perspective to look at the large N duality between U(N) Chern–
Simons theory on S3 and type A closed topological string on the resolved conifold. With the
identification Q = e−t, the spectral curve of the Chern–Simons matrix model in eq. (2.234) is
same as the spectral curve eq. (2.116) of the mirror dual of the type A topological string theory,
up to a reparametrization that preserves the symplectic form dx ∧ dy.

Finally we point out the large N duality together with mirror symmetry discussed in sec-
tion 2.2.6 forms a beautiful circle of dualities that connects (closed) topological string theory,
Chern–Simons theory, and Hermitian matrix models to each other. The example involving
Chern–Simons theory on S3 and the resolved conifold is illustrated in Fig. 2.12.

2.5 Topological Recursion

2.5.1 Loop Equations and Their Solutions

In this section we look beyond the planar limit of matrix models by solving the loop equations.
In matrix models loop equations (also called the Schwinger–Dyson equations) are a chain of
infinite integral equations which can be used to compute resolvents exactly to all genera. The
k–th loop equation in Hermitian 1–matrix models can be derived from the invariance of the
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matrix integral under the reparametrization [127, 138–141]

M →M + ε
1

x1 −M
k∏

j=2

Tr
1

xj −M
. (2.250)

For instance the first two loop equations read,

K̂(x)W (x) = W (x)2 + g2
sW (x, x) , (2.251)

K̂(x1)W (x1, x2) = 2W (x1)W (x1, x2) + g2
sW (x1, x1, x2) +

∂

∂x2

W (x2)−W (x1)

x2 − x1
. (2.252)

Here the integral operator K̂(x) is defined to act on a function by

K̂(x)f(x, . . .) =

∮

CD

dλ

2πi

V ′(λ)

x− λf(λ, . . .) , (2.253)

where the contour of integral CD encircles all the branch cuts of W (λ) (W (p) and its planar
limit have the same branch cuts) but leaves out the point p. Note that once we have the first
loop equation, the second and higher loop equations can be obtained by applying the loop
operator ∂/∂V on both sides of the equation.

To see that the loop equations can be used to recursively compute all the resolvents, one can
do genus expansion on both sides of eqs. (2.251), (2.252) and obtain loop equations at different
genera.

(
K̂(x)− 2W0(x)

)
Wg(x) =

g−1∑

g′=1

Wg′(x)Wg−g′(x) +Wg−1(x, x) , (2.254)

(
K̂(x1)− 2W0(x1)

)
Wg(x1, x2) =2

g∑

g′=1

Wg′(x1)Wg−g′(x1, x2) +Wg−1(x1, x1, x2)

+
∂

∂x2

Wg(x2)−Wg(x1)

x2 − x1
. (2.255)

We assume that the planar resolvent W0(x) is already known. Notice that the k–th loop equa-
tion at genus g involves, other than Wg(x1, . . . , xk), a) resolvents with lower genera but prob-
ably one more insertion point, like Wg−1(x1, x1, . . . , xk), Wg′(x1, . . . , xk), and Wg′(x1, . . . , xk−1),
g′ < g; and b) resolvents with the same genus and fewer insertion points, like Wg(x1, . . . , xk−1).
Therefore one can adopt the points–first–genus–second double recursion strategy: one computes
recursively resolvents with increasingly more insertion points but with fixed genus, starting with
genus zero, and then moves up to the next genus.

With this strategy Eynard solved beautifully the loop equations in [142]. Let us define

U(x1;x2, . . . , xk) = g2−k
s

〈
Tr

V ′(x1)− V ′(M)

x1 −M
Tr

1

x2 −M
· · ·Tr

1

xk −M

〉
. (2.256)

and its genus expansion

U(x1;x2, . . . , xk) =
∑

g

g2g
s Ug(x1;x2, . . . , xk) . (2.257)
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It is easy to see U(x1;x2, . . . , xk) is a polynomial in x1 with degree at most m− 1, m being the
degree of V ′(λ). In fact if k + g ≥ 2, Ug(x1;x2, . . . , xk) is at most a degree m − 2 polynomial
in x1. Then instead of solving the integral equations, Eynard used the identity

K̂(x1)Wg(x1, x2, . . . , xk) = V ′(x1)Wg(x1, x2, . . . , xk)− Ug(x1;x2, . . . , xk) , (2.258)

to hide the troublesome K̂(x1)Wg(x1, x2, . . . , xk) in the polynomial Ug(x1;x2, . . . , xk). Next by
exploiting the analytic property of U(x1;x2, . . . , xk) and the loop equations he proved recurs-
ively that

ω
(g)
k := Wg(x1, . . . , xk)dx1 · · · dxk + δk,2δg,0

dx1dx2

(x1 − x2)2
(2.259)

were meromorphic multidifferentials with poles only at the ramification points of the reduced
spectral curve C̃. Finally he reduced the polynomial Ug(x1;x2, . . . , xk) via the Euclidean division
with respect to M(x1) (see eq. (2.218) for the definition of M(x)) to the quotient Pg(x1; . . .),
a polynomial in x1 with degree m − 2 − (m − s) = s − 2, and the remainder Rg(x1; . . .), a
polynomial in x1 with degree < m− s. Recall s− 1 is the genus of the reduced spectral curve.
The polynomial P (x1; . . .) could be decomposed in terms of the fundamental polynomials37 on

C̃ and further be fixed by exploiting the pole structures of ω
(g)
k , while the polynomial Rg(x1; . . .)

could be shown to be irrelevant.

A more direct way to solve the loop equations is to invert the integral operator K̂(x)−2W0(x).
It was later shown in [131, 132] that the inverse is the integral operator

d̂G(f)(x) :=
2s∑

i=1

Res
x′→ai

dG(x, x′)

dx

dx′

y(x′)
f(x′) , (2.260)

provided that f(x) only has poles at the ramification points on C̃. Here ai are the ramification
points on the reduced spectral curve C̃ and dG(x, x′) is the indefinite integral with respect to x′

of a symmetric bidifferential called the Bergman kernel B(x, x′) on C̃. We relegate the definition
of the Bergman kernel to the next subsection where the solutions of the loop equations by the
name of the topological recursion will be explained in full detail.

It is worthy to point out that the kernel of the integral operator K̂(x)−2W0(x) is in fact not

trivial and is spanned by holomorphic differentials on C̃. The inverse operator d̂G therefore only

determines ω
(g)
k (x1, . . . , xk) up to a holomorphic multidifferential. The holomorphic ambiguity

is fixed by demanding that the integral of ω
(g)
k (x1, . . . , xk) around each cut Ai = [x2i−1, x2i], i =

1, . . . , s vanish. This is called the filling fraction conditions and is justified in the framework of
Hermitian matrix models as shown for instance in [142]. It can be shown with these conditions

d̂G is the correct inverse operator. Solutions to the loop equations not constrained by the filling
fraction conditions also exist. They may not correspond to matrix models but they still satisfy
the symmetries underlying the loop equations which are in this sense more fundamental.

2.5.2 Topological Recursion and Symplectic Invariants

We saw at the end of section 2.4.2 that the spectral curve C contains all the planar information of
the associated matrix model as well as the filling fractions. We further saw in the last subsection

37 These are s− 1 polynomials Hi(x) appearing in the numerators of the s− 1 holomorphic 1–forms Hi(x)dx/dy
on the reduced spectral curve.

60



2.5 Topological Recursion

and especially in eq. (2.260) that the recursive procedures for solving the loop equations to get
higher genera resolvents only depend on the Bergman kernel on the smooth reduced spectral
curve C̃, the function y(x), and the ramification points ai, which project onto the branch points
on the x–plane. This motivated Eynard and Orantin [22, 23] to propose a paradigm shift

treating the multidifferentials ω
(g)
k and free energies Fg as geometric invariants associated to

the curve C̃ regardless of whether there is an underlying matrix model. They call the prescription
to compute these invariants derived from solving the loop equations the topological recursion.
Since then the topological recursion has seen applications in many branches of theoretical
physics and mathematics38 where either there is no underlying matrix model or the matrix
model interpretation is not known, and it remains an open question how far we can extend the
applicability of the topological recursion. The topological recursion has been nicely reviewed
in [22–24]. Here we summarize the important points of the topological recursion which will be
relevant for our work.

To apply the topological recursion, we need the following data:

• The spectral curve C, which is a smooth but not necessarily compact Riemann surface of
genus39 g, as well as a choice of symplectic basis of 1–cycles (Ai,Bj) on C;

• Two complex functions x, y on the curve C such that dx, dy are meromorphic differentials;

• The Bergman kernel B on C.

The symplectic basis of 1–cycles on C satisfy the conditions

Ai ∩ Bj = −Bj ∩ Ai = δij , Ai ∩ Aj = Bi ∩ Bj = 0 . (2.261)

Ai and Bj are called A– and B–cycles respectively. Once the A– and B–cycles are chosen one
can find g holomorphic 1–forms on C such that

∮

Ai
dui = δij . (2.262)

The period matrix τij given by ∮

Bi
duj = τij (2.263)

characterizes the complex structure of the spectral curve. Choosing a different symplectic basis

amounts to a modular transformation, and its effects on the invariants ω
(g)
n and Fg will be

discussed in the next subsection.

The complex function x can be used to project C onto a complex plane with branch points.
The zeros ai of dx are the ramification points on the curve, and they project onto the branch
points on the complex plane. We assume dx only has simple zeros40 and that dy does not vanish
at the ramification points.

The differential ω
(0)
1 (p) = y(p)dx(p) will play an important role. It can be interpreted as the

Seiberg–Witten differential41 [148, 149] on the curve C.
38 For a review of its current applications see [24].
39 Do not confuse the genus of the spectral curve with the genera of the invariants ω

(g)
k or the free energies Fg.

40 The cases where dx has zeros of nontrivial multiplicity have been treated in [143–145].
41 For reviews on the Seiberg–Witten theory one can read [146, 147].
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The spectral curve C can be described by an equation of x and y

H(x, y) = 0 . (2.264)

When the Riemann surface described by this equation is singular, as it may happen in Hermitian
matrix models with

y2 = M(x)2
2s∏

i=1

(x− xi) ,

the spectral curve is actually chosen to be the reduced smooth curve

ỹ2 =
2s∏

i=1

(x− xi) . (2.265)

The differential ω
(0)
1 (p) = y(p)dx(p) nevertheless is still constructed from y(p) instead of ỹ(p).

In the vicinity of a ramification point ai the spectral curve looks like two sheets glued together
at the point ai. Given a point p on one sheet we can define the conjugate point p̄ on the other
sheet which projects onto the same point on the x–plane as p does

x(p) = x(p̄) . (2.266)

The Bergman kernel B(p1, p2) is the unique symmetric bidifferential on C whose only pole is
the double pole at the diagonal loci p1 = p2 with the leading behavior

B(p1, p2) =
dp1dp2

(p1 − p2)2
+ regular terms , (2.267)

and whose integral along any A–cycle vanishes. Bidifferentials with the pole structure like
eq. (2.267) differ from each other by a holomorphic bidifferential, and the normalization condi-
tion along A–cycles fixes the Bergman kernel completely. The Bergman kernel is to be identified

with ω
(0)
2 , and therefore the A–cycle normalization conditions of B(p1, p2) are consistent with

the filling fraction conditions in Hermitian matrix models. Furthermore it can be shown the
Bergman kernel satisfies

∮

q∈Bi
B(p, q) = 2πidui(p) , i = 1, . . . , g (2.268)

where dui are the g holomorphic differentials on the spectral curve. Note the Bergman kernel
depends on the symplectic basis (Ai,Bi).

Finally we define the recursion kernel

K(p, q) = −1

2

∫ q
q′=q̄ B(p, q′)

ω
(0)
1 (q)− ω(0)

1 (q̄)
. (2.269)

Since the pair of conjugate points q, q̄ is only well–defined near a ramification point, it is
understood that the second argument q of K(p, q) is always given in the vicinity of a ramification
point.

Now we can give a computational definition of the correlation differentials ω
(g)
k on the spectral
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curve C. We define recursively with decreasing χ = 2 − 2g − k the following meromorphic
multidifferentials.

ω
(0)
1 (p) = y(p)dx(p) , (2.270)

ω
(0)
2 (p1, p2) = B(p1, p2) . (2.271)

Let J be the collective notation of a set of points {p1, . . . , pk} on the curve. Then for χ < 0 we
have

ω
(g)
k+1(p0, J) =

∑

i

Res
q→ai

K(p0, q)

(
ω

(g−1)
k+2 (q, q̄, J) +

g∑

h=0

′∑

I⊂J
ω

(h)
1+|I|(q, I)ω

(g−h)
1+k−|I|(q̄, J\I)

)
.

(2.272)

Here the notation
∑′

means the terms with (h, I) = (0, ∅) or (g, J) are not included in the
sum.

We already know the pole structures of ω
(0)
1 and ω

(0)
2 . The differentials ω

(g)
k with 2−2g−k < 0

are called stable. They are invariant under a permutation of {pi} and only have poles at the
ramification points with no residue for every variable

Res
p1→ai

ω
(g)
k (p1, . . . , pk) = 0 . (2.273)

This is again consistent with the filling fraction conditions in Hermitian matrix models.

We can also define free energies Fg. For g ≥ 2, the free energies are defined to be

Fg =
1

2− 2g

∑

i

Res
q→ai

Φ(q)ω
(g)
1 (q) , (2.274)

where Φ(q) is the indefinite integral of ω
(0)
1 . An integral constant in Φ(q) would drop out after

taking residue because of eq. (2.273). The definitions of free energies F0 and F1 are much more
complicated [22, 23]. It is more convenient to compute them via the variational formulae that
we will discuss in the next subsection.

The recursive definitions of ω
(g)
k enjoy a particularly nice graphic representation, which is

elaborated upon in refs. [22, 23].

2.5.3 Properties of Symplectic Invariants

Here we summarize some important properties of the invariants ω
(g)
k , Fg. We will see the

connection to topological string toward the end of this subsection.

The first property is the symplectic invariance of the free energies Fg, at least if C is a
compact Riemann surface and x, y themselves are meromorphic functions (recall in general we
only require dx, dy to be meromorphic differentials) [22, 150, 151]. It means Fg is invariant
under a symplectic reparametrization of the spectral curve which preserves dx∧dy. In particular

Fg does not change under the transformation (x, y) → (y,−x). The differentials ω
(g)
k however

can undergo a shift by a total differential. For instance with the transformation (x, y)→ (y,−x)

ω
(0)
1 (p) = y(p)dx(p)→ −x(p)dy(p) = y(p)dx(p)− d(x(p)y(p)) .
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Because of this symmetry property, Eynard and Orantin call ω
(g)
k and Fg the symplectic invari-

ants of the spectral curve.

The second property is concerned with the variation of the symplectic invariants when one
slightly changes the complex structure of the spectral curve. An infinitesimal change of the

complex structure of C is reflected in the variation of ω
(0)
1

δΩω
(0)
1 (p) = εΩ(p) , (2.275)

where ε is the infinitesimal deformation parameter and Ω is a 1–differential. It can be shown
that one can always find a path of integral ∂Ω (possibly closed) and a multiplier function Λ(q)
such that [23]

Ω(p) =

∫

q∈∂Ω
B(p, q)Λ(q) . (2.276)

Then the variations of correlation differentials satisfy the identity

δΩω
(g)
k (p1, . . . , pk) =

∫

q∈∂Ω
ω

(g)
k+1(p1, . . . , pk, q)Λ(q) . (2.277)

This is called the variational formula. It can be generalized to free energies Fg by regarding

the latter as ω
(g)
0

δΩFg =

∫

q∈∂Ω
ω

(g)
1 (q)Λ(q) , g ≥ 1 , (2.278)

δΩ1δΩ2δΩ3F0 =

∫

q1∈∂Ω1

Λ1(q1)

∫

q2∈∂Ω2

Λ2(q2)

∫

q3∈∂Ω3

Λ3(q3)ω
(0)
3 (q1, q2, q3) . (2.279)

If one varies the complex structure by deforming a parameter in the defining equation of the
spectral curve, the left hand sides of the variational formulae become partial derivatives. This

provides a convenient way to compute F1,F0 once we know ω
(1)
1 and ω

(0)
3 .

Finally we are interested in the modular properties of the symplectic invariants, namely how
they transform under the following change of the symplectic basis of 1–cycles on C

Bi =
∑

j

AijB′j +BijA′j , Ai =
∑

j

CijB′j +DijA′j . (2.280)

Here A,B,C,D are g × g matrices, satisfying ABt = BAt, CDt = DCt, and ADt −BCt = 1g.
In other words (

A B
C D

)
(2.281)

is an element of Sp(2g,Z). It turns out the free energies Fg and the correlation differentials

ω
(g)
k are not invariant under this transformation. The reason is that among the input data of

the topological recursion, the Bergman kernel is not modular invariant and in fact transforms
in the following nontrivial way [22, 23]

B(z1, z2) = B′(z1, z2) + 2πi

g∑

i,j=1

κijdui(z1)duj(z2), κ = (AC−1 − τ)−1 . (2.282)
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We can nonetheless remedy it by introducing the generalized Bergman kernel (also called the
Schiffer kernel)

B∆(z1, z2) = B(z1, z2) + 2πi

g∑

i,j=1

∆ijdui(z1)duj(z2) , (2.283)

where we choose
∆ = (τ̄ − τ)−1 , (2.284)

and demonstrate easily this generalized Bergman kernel is modular invariant. The generalized
Bergman kernel is normalized with respect to a different set of cycles

A∆
i = Ai −

∑

j

∆ij(Bj −
∑

l

τjlAl) ,B∆
i = Bi −

∑

j

∆ijAj , (2.285)

satisfying
A∆
i ∩ B∆

j = −B∆
j ∩ A∆

i = δij , A∆
i ∩ A∆

j = B∆
i ∩ B∆

j = 0 . (2.286)

In other words, ∮

q∈A∆
i

B∆(p, q) = 0,

∮

q∈B∆
i

B∆(p, q) = 2πidui(p) . (2.287)

Now if we apply the topological recursion with the Bergman kernel replaced by B∆(z1, z2),

the computed free energies F∆
g and correlation differentials ω

(g),∆
k will be modular invariant.

The price to pay is introducing antiholomorphic dependence on the complex structure of the
spectral curve C because of τ̄ in ∆. Since τ̄ only appears in ∆, we can derive the dependence
of the symplectic invariants on τ̄ via the usual Taylor expansion at ∆ = 0

ω
(g),∆
k =

3g−3∑

n=0

1

n!
∆n ∂n

∂∆n
ω

(g),∆
k

∣∣∣
∆=0

, including F∆
g when k = 0 , (2.288)

together with the following formula [22, 23] (including F∆
g as the special case of k = 0)

∂

∂∆ij
ω

(g),∆
k (z1, . . . , zk)

∣∣∣
∆=0

=
1

2

∂

∂ti

∂

∂tj
ω

(g−1)
k (z1, . . . , zk)

+
1

2

g∑

h=0

∑

I⊂J

∂

∂ti
ω

(h)
1+|I|(I)

∂

∂tj
ω

(g−h)
n−|I| (J\I) . (2.289)

Here the moduli ti are the analog of partial ’t Hooft parameters

ti =
1

2πi

∮

Ai
ydx . (2.290)

For instance the dependence of F∆
2 (τ, τ̄) on τ̄ can be seen in the following expansion

F∆
2 (τ, τ̄) =F2 +

1

2
∆ij(∂i∂jF1 + ∂iF1∂jF1) +

1

8
∆ij∆kl(∂i∂j∂k∂lF0 + 4∂iF1∂j∂k∂lF0)

+
1

48
∆ij∆kl∆mn(4∂i∂k∂mF0∂j∂l∂nF0 + 6∂i∂j∂kF0∂l∂m∂nF0) , (2.291)
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F∆
2 (τ, τ̄) = +

∆

2
+

∆

2
+

∆2

8

+
∆2

2
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∆3

12
+

∆3

8

Figure 2.13: Diagrammatic illustration of the expansion of F∆
2 (τ, τ̄) in eq. (2.291). Here each connecting

line with endpoints (i, j) is a factor of ∆ij , and each Riemann surface of genus g with h marked points
i1, . . . , ih is ∂i1 . . . ∂ihFg.

where Fg = F∆|∆=0 and ∂i = ∂
∂ti

. This is illustrated diagrammatically in Fig. 2.13.

The conflict between modular invariance and holomorphicity of the symplectic invariants is
reminiscent of the free energies in type B topological string theory. By comparing Fig. 2.13 and
Fig. 2.6 one finds out that the antiholomorphic dependence of the free energies computed by the
topological recursion and that of the free energies in type B topological string as solutions to
the holomorphic anomaly equations are strikingly similar. The connection actually runs deeper.
If the target space of type B topological string is a noncompact Calabi–Yau X characterized by
the spectral curve C, the period matrix τ of X is the same as the period matrix of C. Eynard
and Marino showed in [152] that in this case if one identifies the partial ’t Hooft parameters
with the complex structure moduli, the free energies F∆

g computed by the topological recursion
using the spectral curve of X satisfy the holomorphic anomaly equations.

However one shall not conclude immediately that F∆
g computed via the topological recursion

is identical with the free energies Fg(t, t̄) in type B topological string theory. Both of them suffer
from holomorphic ambiguity. The ambiguity of the former is fixed by the filling fraction condi-
tions, while that of the latter is determined from certain conditions at the boundary/singular
loci in the moduli space from physics considerations. It is a priori not clear why these two
conditions should lead to the same results and therefore the two free energies could still differ
by a holomorphic modular invariant term. This is further discussed in section 2.5.5.

2.5.4 Resolvents, Unknot, and Special Lagrangian Branes

We have seen in section 2.4.5 the beautiful circle of dualities relating U(N) Chern–Simons
theory on S3, the Chern–Simons matrix model, closed type A topological string on resolved
conifold, and closed type B topological string with spectral curve eq. (2.116), where the free
energies of all four theories are identical. It is natural to ask how the other quantities in these
theories fit into the picture, including for instance the quantum knot invariants WR(K) in the
Chern–Simons theory and the resolvents Wg(p1, . . . , pn) in the matrix model.

It was seen in section 2.3.6 that a knot K in the Chern–Simons theory can be lifted to its
conormal bundle L̃K in T ∗S3 in its type A open topological string interpretation. It is possible
to find the unique Lagrangian brane LK as the counterpart of L̃K in the resolved conifold
through the geometric transition in the N →∞ limit [25, 76, 153, 154], and therefore the large
N dual of the Chern–Simons theory with the insertion of knot K is the type A open topological
string on LK in the resolved conifold. In the simplest case of unknot, LK is shown [25] to
be the toric special Lagrangian branes touching the internal edge of the toric diagram of the
resolved conifold, and their mirror dual in type B topological string theory has been discussed
in section 2.2.6. It can be shown [25] the quantum knot invariants of unknot are related to
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type A on resolved conifold with

toric special Lagrangian branes

type B on uv = H(x, y) with

special holomorphic branes

unknot in Chern-Simons Chern-Simons matrix model

mirror symmetry

large N large N

Figure 2.14: The same circle of dualites as in Fig.2.12, but with the insertion of the branes associated
to unknot in the topological string theories.

open string free energies by the formula

FCS(V ) = Ftop(V ) . (2.292)

FCS(V ) on the left hand side is the free energy of the deformed Chern–Simons theory given
by eq. (2.171) which is the generating function of quantum knot invariants, while Ftop(V ) on
the right hand side is the usual type A open topological string free energy defined in eq. (2.95)
(it can of course also be understood as the open string free energy in the mirror dual type B
theory). Here in addition to the large N dictionary eq. (2.246) we naturally identify the matrix
V in the two theories. The above identity implies

1∏
j j

kj
W(c)
~k,g

(t) = F
g,~k

(t) . (2.293)

Here the knot invariant W(c)
~k,g

(t) was defined in eq. (2.176), and F
g,~k

(t) is the same as Fg,ω(t)

in type A topological string. The label ~k = (k1, k2, . . .) is another way to record the boundary
data ω = (ω1, . . . , ωh). It means that the winding number j appears kj times in ω.

On the other hand, the resolvents, or equivalently the correlation differentials ω
(g)
h , of the

Chern–Simons matrix model are related to the open string free energies via

A
(g)
h (t, x1, . . . , xh) =

∫ x1,...,xh

ω
(g)
h (x′1, . . . , x

′
h)− δg,0δh,2

dα1dα2

(α1 − α2)2
. (2.294)

Here the open string amplitude A
(g)
h was defined in eq. (2.98). On the right hand side the initial

position of the integral is irrelevant, and αi = e−x
′
i are the algebraic coordinates on the spectral

curve. In summary, now we have a new version of the circle of dualities illustrated in Fig. 2.14.

An interesting aspect of this picture is that similar to the framing of knots in the Chern–
Simons theory, there is also the integral choice of framing of branes as discussed at the end of
section 2.2.6. It is not surprising that the identity eq. (2.292) remains valid under a simultaneous
framing transformation in both Chern–Simons theory and topological string theory, where it
corresponds to an integral shift of the brane coordinate x.

One can consider several ways to generalize this circle of dualities. Given an arbitrary toric
Calabi–Yau threefold we can still talk about toric special Lagrangian branes in type A topolo-
gical string and their mirror duals in type B topological string. On the one hand, for the type A
topological strings on a large variety of but not all toric Calabi–Yau threefolds, it is still possible
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to find a complicated construction of Chern–Simons theories with massive corrections, which
are dual to them in the large N limit [114, 115, 155]. On the other hand, the link between mat-
rix models and topological string theories is stronger. Although it may be difficult to find the
dual matrix model in the large N limit (however, see recent progress in [29]), the computations
of resolvents and free energies in the matrix model using the topological recursion require only
the knowledge of its spectral curve, which can be identified with that of the type B topological
string. Indeed as discussed in section 2.5.3 the topological recursion is deeply related to type
B topological string theory. This connection is consolidated in the BKMP theorem.

2.5.5 The BKMP Theorem

It was conjectured by Bouchard, Klemm, Mariño, and Pasquetti [113, 156] that the topological
recursion can be used in general to compute closed string free energies of type A topological
string on a toric Calabi–Yau threefold M , as well as the open string free energies of toric special
Lagrangian branes in M , using the spectral curve C of the mirror dual type B string theory.

Given a toric Calabi–Yau threefold M and a stack of toric special Lagrangian branes L in it,
the spectral curve C in the mirror type B topological string is given by a polynomial H(x, y)
in the algebraic coordinates α := ex, β := ey. C is parametrized according to the edge of the
toric diagram of M the toric special Lagrangian branes L are placed upon and the framing of
the branes. C can be highly singular, and as discussed in section 2.5.2 in this case the smooth
reduced spectral curve C̃ is used as the spectral curve for the topological recursion. Nevertheless
x, y that parametrize C still provide two complex functions on C̃ and in particular ydx is used

as the Seiberg–Witten differential ω
(0)
1 . Note that x, y are multivalued functions, as seen for

example from the spectral curve of the resolved conifold in eq. (2.116), but dx, dy are globally
defined meromorphic differentials on C̃. Furthermore since the Bergman kernel is not modular
invariant, one has to choose a symplectic basis of H1(C̃,Z). The choice of the symplectic basis
crucially depends on the coordinate patch on the closed string moduli space one works with [51].
When one is working with the coordinate patch mirror dual to the large volume limit in type
A theory, one usually chooses the A cycles so that their periods (closed flat coordinates) are
mirror dual to the Kähler moduli in type A theory42. Once the A and B cycles are separated,
the Bergman kernel B(p1, p2) of C̃ can be written down.

Now one has all the ingredients (C̃, x, y, B) needed to run the topological recursion and to

compute the symplectic invariants {Fg, ω(g)
n }. The BKMP conjecture then claims that Fg are

identical with the free energies of the closed topological string theories in the holomorphic limit,
and the open string free energies of the toric spectral Lagrangian branes L in type A string,
or equivalently of the special holomorphic branes in the mirror type B string, can be obtained

from ω
(g)
n via eq. (2.294) (see Fig. 2.15). Furthermore, it is argued that a phase transition of the

branes by moving them to a neighboring edge on the toric diagram or a framing transformation
corresponds to a symplectic reparametrization of the spectral curve preserving dx ∧ dy. Given
their interpretations in the BKMP conjecture, it is certainly satisfying to know from section 2.5.3
that among the quantities computed by the topological recursion, Fg are invariant under this

transformation, while ω
(g)
n are not.

In the special case when C is a hyperelliptic curve, namely a double cover of C∗ which is

42 In this coordinate patch the closed flat coordinates should behave like − log(zi) + asymptotic series in zi, with
zi being parameters of the spectral curve, as discussed in section 2.2.6.
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topological recursion

type A on Xres type B on Ydefmirror symmetry

toric special Lagrangian branes special holomorphic branes
+ +

Figure 2.15: The BKMP conjecture. The topological recursion is applied on the spectral curve of the
type B topological string.

glued together at a finite number of points (ramification points) described by

y2 = M(x)2
∏

i

(x− xi) , i 6= j , (2.295)

the computations are relatively simple and one can adapt the results in refs. [142, 157]. In
particular a spectral curve of genus 6 2 is always hyperelliptic. If it has genus 0, the Bergman
kernel is simply

B(p1, p2) =
dy(p1)dy(p2)

(y(p1)− y(p2))2
; (2.296)

if it has genus 1, the Bergman kernel can be written down using the Akemann’s formula [158],
which involves elliptic integrals and an ordering of the branch points (choice of A and B cycles).
Note in these cases matrix model interpretations exist.

The BKMP conjecture was proved for M = C3 independently in [159] and [160]. The
generic case with an arbitrary toric background in type A theory was proved in [52]. It was
shown in [161] that the topological recursion has a direct enumerative interpretation of counting

worldsheet instantons in line with type A topological string. Similar to the differential ω
(0)
1 ,

the Bergman kernel identified with ω
(0)
2 can be regarded as the generating function of annulus

worldsheet instantons, while the recursion kernel the generating function of pairs–of–pants
worldsheet instantons. Since the recursive formula of the topological recursion eq. (2.272) can

reduce any ω
(g)
n to a product of Bergman kernels and recursion kernels, it effectively serves to

cut a worldsheet instanton with genus g and n boundary components to only tubes and pairs–
of–pants. (This will be discussed again in section 3.2.1. Examples are given in Fig. 3.4) Given
this enumerative interpretation, it may be possible to establish a link between the topological
recursion and the equivariant localization in type A topological string, where uncertainties
like holomorphic ambiguities in type B topological string are removed. On the one hand, the
equivariant localization relies crucially on the toric diagram ΥM . On the other hand, the
spectral curve C can be visualized as the surface of the tubular neighborhood of the skeleton
of ΥM , and it shrinks to this skeleton when the radius of the tubular neighborhood decreases
to zero. Thus when C is cut to tubes and pairs–of–pants, the former correspond one–to–one
with the edges of ΥM . Furthermore by projecting C onto a single tube = C∗, it is evident that
the ramification points of C correspond one–to–one with the vertices of ΥM . The similarity

actually runs deeper, as Eynard showed in [162] the symplectic invariants ω
(g)
n and Fg (regarded

as ω
(g)
0 ) can be computed by summing over the weights of diagrams in G̃g,n (recall its definition

in section 2.2.2 and 2.2.3), and the weights factorize to contributions of vertices, edges, and
half edges. Eynard and Orantin further demonstrated in [52] that the weight of a graph in the
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topological recursion can be identified with the weight of a graph in the equivariant localization
computation, thus completing the proof of the BKMP conjecture.

2.5.6 Ooguri–Vafa Conjecture and Open Problems

The BKMP theorem is one way of generalizing the circle of dualities discussed in section 2.5.4.
We can also ask what the quantum knot invariants of a nontrivial knot in the U(N) Chern–
Simons theory on S3 correspond to in the other theories. We have run out of observables in
the matrix model, however we can still construct unique branes LK in the resolved conifold
in type A topological string theories associated to an arbitrary knot K in the Chern–Simons
theory. The branes LK were constructed in [76] for torus knots, and generalized to arbitrary
knots in [153]. It is then natural to conjecture that the quantum knot invariants for K and the
free energies of LK are still related by eq. (2.292), from now on also called the Ooguri–Vafa
conjecture. Since the open string free energies of branes enjoy the integrality structure as shown
in eqs. (2.100), (2.101), the Ooguri–Vafa conjecture immediately predicates similar integrality
structures of quantum knot invariants [25, 76]. This integrality prediction43 was confirmed and
proved in [163–165] and it provides strong support for the Ooguri–Vafa conjecture.

What remains to be done is a direct comparison of free energies at the two sides of eq. (2.292).
To compute FCS(V ) on the left hand side, one needs the knowledge of all the quantum knot
invariants of K. The quantum knot invariants have only been computed for torus knots via the
Rosso–Jones formula [121] as explained in section 2.3.3, and only for a handful of non–torus
knots (also called hyperbolic knots in the knot theory) colored in symmetric representations [118,
124, 125, 166–169]. Non–torus knots colored in nonsymmetric representations was explored in
our work [119] and will be the focus of chapter 4. Ftop(V ) on the right hand side is the
generating function of open Gromov–Witten invariants, which can be computed for low genera
and low degrees of homology classes by adapting the equivariant localization techniques for
branes associated to torus knots [154]. A more efficient way to compute the open free energies
was attempted in our work [170] and it will be the focus of chapter 3.

43 This is also called the Labastida–Mariño–Ooguri–Vafa conjecture in the literature.
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CHAPTER 3

Topological String and Knot Invariants

The Bouchard–Klemm–Mariño–Pasquetti theorem provides through the topological recursion
a powerful tool for computing free energies of type A open topological string theory on toric
special Lagrangian branes, which in the resolved conifold correspond to unknot in the Chern–
Simons theory on a three–sphere. It is tempting to conjecture that the topological recursion
can also be used to compute free energies for the Lagrangian branes associated to nontrivial
knots. This is supported by ref. [171], which suggests for an arbitrary knot the existence of a
matrix model integral which generates all the quantum knot invariants of this knot. In order to
check this idea, one has first to find the spectral curve on which the topological recursion can
be applied. This is not a problem for unknot, since the spectral curve for the associated branes
coincides with that of the type B string theory on the mirror dual of resolved conifold. Since
all the symplectic invariants computed from this spectral curve have found interpretations in
topological string theory, it is necessary to find a different spectral curve CK for a nontrivial knot
K. Two different versions of the spectral curve CK have been proposed in the literature by Brini,
Eynard, Mariño [172] and Aganagic, Vafa [173] respectively. We will argue in section 3.1 the
Aganagic–Vafa curve is the better option of the two. We apply the topological recursion on the
Aganagic–Vafa curve in section 3.2 and find out that necessary modifications of the topological
recursion have to be adopted in order for it to work on the Aganagic–Vafa curve. The modified
topological recursion is put to work and verified for some simple knots in section 3.3. Finally
in section 3.4 we discuss the implications of our findings for the knot theory.

3.1 Spectral Curves

3.1.1 Brini–Eynard–Mariño Spectral Curve

We have discussed in section 2.2.6 that a phase transition (moving the branes onto a neigh-
boring edge through a vertex in the toric diagram) or a framing transformation of toric special
Lagrangian branes is given by a reparametrization of the spectral curve of the branes through a
symplectic transformation of the pair of coordinates (x, y). However these two types of trans-
formations do not generate all possible symplectic transformations. Brini, Eynard, and Mariño
[172] considered the generic symplectic transformation on the coordinates (x, y) of the spectral
curve of unknot with framing zero

x̃ =rx− sy ,
ỹ =− δx+ γy ,

(
r −s
−δ γ

)
∈ SL(2,Z) . (3.1)

where r, s are different from one and they are coprime. Based on the observation the new x̃
coordinate can be written as x̃ = r(x− s/r y), they claim that it represents r copies of unknot

71



Chapter 3 Topological String and Knot Invariants

with fractional framing s/r, which is precisely the interpretation of the Rosso–Jones formula. In
other words, by performing the symplectic reparametrization given by eq. (3.1) on the spectral
curve of unknot with framing zero, one could get the spectral curve of the torus knot Kr,s with
framing r s, henceforth called the BEM spectral curve.

Before we write down the BEM spectral curve, we note that it is possible to simplify the
BEM spectral curve by using the coordinate y instead of ỹ in the curve after reparametrization;
in other words, the new curve is parametrized by x̃ and y, and it can be obtained by the single
step of change of variables x→ (x̃+ sy)/r. The reason is that we can write ỹ as

ỹ = −δ
r
x̃+

1

r
y . (3.2)

The difference between y and ỹ (up to the scaling r) is proportional to x̃, and in the disk

amplitude A
(0)
1 this only gives rise to a classical term x̃2/2 which does not contribute to the disk

instanton counting (see eq. (2.98)). Furthermore since ỹ enters the topological recursion formula

only through ω
(0)
1 (q) − ω

(0)
1 (q̄) in the denominator of the recursion kernel (see eq. (2.269)),

replacing ỹ by y would not change the results of the topological recursion as the difference x̃

(up to the scaling r) cancels out in ω
(0)
1 (q)− ω(0)

1 (q̄).

Now let us start with the spectral curve of unknot with framing zero

(1−Qβ)− α(1− β) = 0 , (3.3)

where α = e−x, β = e−y are the algebraic coordinates. Because the spectral curve is a Riemann
sphere, x, y coincide with the open flat coordinates, and t := − logQ is the flat coordinate on
the closed string moduli space. In order to write down the BEM spectral curve we replace α by
α̃1/rβs/r. For the ease of notation we will suppress the tilde in the new curve in the following,
and it is always understood that α refers to an algebraic coordinate of the spectral curve in
question and x the minus of its logarithm. This results is

(1−Qβ)r − αβs(1− β)r = 0 . (3.4)

It turns out the Seiberg–Witten differential ω
(0)
1 = ydx = − log βdα/α of this curve en-

codes the correct numbers of worldsheet disk instantons. The series expansion of the integral
−
∫

log βdα/α near α = 0 has terms proportional to αn/r, where n is a positive integer. If we
interpret the coefficients (functions of Q) of the integral power terms with n = mr as the open
string free energies F0,ω=(m), which are the generating functions of the numbers of worldsheet
disk instantons with winding number m around the only 1–cycle of the Lagrangian brane, they
are consistent with what are expected from the colored HOMFLY invariants of the torus knot
Kr,s through eq. (2.293) in the Ooguri–Vafa conjecture. Furthermore it can be demonstrated
that other open string free energies could also be extracted from the correlation differentials
computed by the topological recursion. For instance, since the spectral curve represented by
eq. (3.4) has genus zero, the Bergman kernel can be easily written down

ω
(0)
2 = BBEM

r,s (β1, β2) =
dβ1dβ2

(β1 − β2)2
, (3.5)

where βi is the coordinate of the i–th point on the curve. Near the point α1 = α2 = 0, the

expansion of indefinite integral of the Bergman kernel has terms proportional to α
n1/r
1 α

n2/r
2 ,

where n1, n2 are positive integers. The coefficients of the integral power terms with αm1
1 αm2

2

are the correct open string free energies F0,ω=(m1,m2), which encode the numbers of worldsheet
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annulus instantons whose two boundary components wind around the 1–cycle of the brane
m1 and m2 times respectively. These free energies F0,ω=(m1,m2) are again consistent with the
expectation from the colored HOMFLY invariants. The same pattern is repeated for higher open
string free energies. For the correlation differentials computed with the topological recursion,
the expansion of the their indefinite integrals near the origin contain both integral and fractional
power terms, and the coefficients of the former can be identified with the correct open string
free energies. Refs. [172, 174] argue that the success of the topological recursion on the BEM
spectral curve is due to an underlying matrix model.

Remarkable as it is, the BEM spectral curve suffers from several problems and limitations.

The correlation differentials ω
(g)
h including the Seiberg–Witten differential and the Bergman

kernel are somehow not pure generating functions of worldsheet instantons in the sense that
their series expansions also contain fractional power terms, whose meanings are very puzzling.
What adds to the puzzle is that these fractional power terms are different for the BEM spectral
curves of the torus knots Kr,s and Ks,r. This is most clearly reflected in the fact that the BEM
spectral curves themselves are different for these two knots. On the other hand the two torus
knots Kr,s and Ks,r are topologically completely the same, and they only differ in the way they
are placed on the surface of a solid torus. It seems the BEM spectral curve is therefore not
a completely topologically invariant quantity. Finally the construction of the BEM spectral
curve depends crucially on the special properties of the torus knots, and it is not likely it can
be generalized to hyperbolic knots (nontorus knots), while the latter are far more numerous in
number. It is therefore necessary to look for an alternative.

3.1.2 Aganagic–Vafa Spectral Curve

A second version of the spectral curve for knots can be obtained by addressing the first issue of
the BEM spectral curve. We regard the spectral curve F (x, y) as such that the natural Seiberg–
Witten differential ydx would be the pure generating function of the worldsheet disk instanton
numbers without any redundant terms. With this understanding in mind, the spectral curve
for torus knot Kr,s can be derived in a brute force way. Namely one can make the ansatz

F (α, β) =
∑dαdβ

i,j=0 cijα
iβj for the polynomial equation of the spectral curve with the algebraic

coordinates α, β and proper upper bounds dα, dβ of their powers, then solve for the coefficients
cij such that the correct Seiberg–Witten differential is reproduced. This method was pursued
in ref. [123]. However a more efficient algebraic algorithm can be developed to construct the
same spectral curve by simply removing the fractional power terms in the BEM spectral curve.

Let us take a closer look at the BEM spectral curve. The appearance of fractional power
terms αn/r in the expansion of (integral of) the Seiberg–Witten differential near α = 0 indicates
that α is not a well–defined local affine coordinate. Instead we should use the coordinates
ζ = α1/r, ρ = β1/r, in terms of which the BEM spectral curve reads

hr,s(ζ, ρ) = (1−Qρr)− ζρs(1− ρr) = 0 . (3.6)

When ζ = 0, there are r different solutions of ρ: e2πik/rQ−1/r, k = 1, . . . , r. So the coordinate
patch near α = 0 splits to r different ones centered at (ζ, ρ) = (0, e2πik/rQ−1/r), and in each
coordinate patch ζ is a well–defined local affine coordinate. We denote the function ρ in the
k–th coordinate patch by ρ(k) to distinguish the r different coordinate patches. Likewise the
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disk instanton amplitude W := A
(0)
1 of the BEM spectral curve also splits

W (k)
r,s (ζ) = r2

∫
dζ

ζ
log ρ(k)(ζ) , k = 1, . . . , r . (3.7)

Each disk instant amplitude can be expanded around ζ = 0

W (k)
r,s (ζ) = r2

∞∑

n=1

P̃ (r,s)
n (Q)ζn + classical terms . (3.8)

We learn from the discussion of the BEM spectral curve that the coefficients of the terms with
the power n divisible by r encode the numbers of worldsheet disk instantons, and we would
like to remove all the other terms. For this purpose we notice that the r different coordinate
patches can be accessed cyclically through a phase shift1 on ζ: ζ → e2πi/rζ. Therefore we can
cancel the terms with the power n not divisible by r by summing over all the r disk instanton
amplitudes

Wr,s =
r∑

k=1

W (k)
r,s = r2

∫
dζ

ζ
log(ρ(1) · . . . · ρ(r)) . (3.9)

The form of this pure disk instanton amplitude also suggests the way to find the spectral
curve of the torus knot Kr,s, namely it is a curve parametrized by the coordinates2

α = ζr, β = (−1)r+1ρ(1) · . . . · ρ(r) . (3.10)

and the defining equation for the spectral curve is given by the relation between these two
coordinates. To find this defining equation, we consider r copies of the BEM spectral curves
hr,s(ζ, ρ

(k)) with the coordinates ζ, ρ(k), and construct the ideal

Ĩr,s = 〈α− ζr, β + (−1)rρ(1) · . . . · ρ(r)〉 ∪
(

r⋃

k=1

〈
hr,s(ζ, ρ

(k))
〉)

. (3.11)

The defining equation can be found simply in the elimination ideal

Ĩr,s ∩ C(Q)[α, β] . (3.12)

In other words we remove the the variables ζ, ρ(1), . . . , ρ(k) from the ideal Ĩr,s by for instance
using its Gröbner basis in the elimination monomial order3.

In fact we can improve this method further. The elimination ideal Ĩr,s also contains redundant
elements including the original BEM spectral curve eq. (3.4) because ρ(1), . . . , ρ(r) in eq. (3.10)
can all be identical. To obtain our spectral curve, as discussed above eq. (3.10) ρ(1), . . . , ρ(r)

should all be distinct. To make sure of this, we enlarge the ideal Ĩ by including the polynomials

1 Since r and s are coprime, we can always find integers p, q such that rp − sq = 1. It can be read off from
eq. (3.6) that a phase shift ζ → e2πi/rζ is absorbed by simultaneously shifting ρ→ e2πiq/rρ, effectively sending
one from the k–th coordinate patch to the (k + q)–th.

2 The sign (−1)r+1 is chosen to match the conventions of ref. [123].
3 Given an ideal I in a polynomial ring R, the Gröbner basis G(I) of the ideal I [175] is a minimal set of

generators of I such that any polynomial in R has a unique remainder after division by the elements of G(I)
in an arbitrary order. For the application of the Gröbner basis in eliminating variables from an ideal, see for
instance [176].
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hr,s(ζ, ρ
(k1), . . . , ρ(ki)) with 1 ≤ k1 ≤ . . . ≤ ki ≤ r and 1 < i ≤ r, which are recursively defined

by

hr,s(ζ, ρ
(k1), . . . , ρ(ki)) =

∑

1≤n<m≤i

hr,s(ζ, ρ
(k1), . . . , ρ̂(kn), . . . , ρ(ki))− hr,s(ζ, ρ(k1), . . . , ρ̂(km), . . . , ρ(ki))

ρ(kn) − ρ(km)
. (3.13)

Here ρ̂(kn) means that the variable ρ(kn) is omitted. By taking the difference of the two poly-
nomials in the numerator and dividing out ρ(kn) − ρ(km), we make sure that ρ(kn) 6= ρ(km) for
any two ρ’s. The enlarged ideal now reads

Îr,s = 〈α− ζr, β + (−1)rρ(1) · · · ρ(r)〉 ∪




r⋃

i=1

⋃

1≤k1≤...≤ki≤r
〈hr,s(ζ, ρ(k1),...,ρ(ki))〉


 . (3.14)

The elimination ideal
Ir,s = Îr,s ∩ C(Q)[α, β] (3.15)

should have a single generator, which is the defining equation of the spectral curve we are after.
For instance, the spectral curve for the trefoil torus knot K2,3 computed in this way is

F2,3(α, β) = 1−Qβ + αβ3(1− β + 2β2 − 2Qβ2 −Qβ3 +Q2β4)− α2β9(1− β). (3.16)

It has framing 2 · 3 = 6 just like the BEM spectra curve from which it is derived. One can
convert it to framing 0 by the framing transformation α → αβ−6. One can likewise compute
the spectral curve for the torus knot K3,2 and it turns out to be the same as that of the knot
torus K2,3. It is satisfactory since a topological invariant of knots should be the same for the
two torus knots. On the other hand this is not surprising since the fractional power terms in
the BEM spectral curve which cause the inequivalence between the two torus knots have now
been removed. We also note that by its very construction, the Seiberg–Witten differential of
the spectral curve is eq. (3.9), and when expanded about the point (α, β) = (0, Q−1) in terms
of α it generates the correct numbers of worldsheet disk instantons.

Before we move on, we comment that since its construction is symmetric in ρ(k), the ideal Îr,s
should also contain relations between the elementary symmetric functions S(j) (j = 1, . . . , r) of
ρ(k). To see this more explicitly, we generate the ideal Îr,s not directly from hr,s(ζ, ρ

(k1), . . . , ρ(ki))
but from the symmetric sums of them (together with α− ζr and β+ (−1)rρ(k1) · . . . · ρ(kr)), and
express these symmetric sums in terms of S(j). The Gröbner basis of this construction of Îr,s
consists of polynomials in S(j) and α, β

R(k)
r,s (α, β, S(1), . . . , S(r)) = 0, k = 1, . . . , r . (3.17)

They are the relations of S(j) we are after, and they can be used to eliminate S(j) in favor of
α, β. This will be useful for constructing the so–called annulus kernel in section 3.2.

The spectral curves constructed this way actually have already been found by Aganagic and
Vafa [173], and therefore we call them the AV spectral curve. The idea of their construction is
as follows.
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Chapter 3 Topological String and Knot Invariants

Suppose there is only one brane wrapping the Lagrangian submanifold in the resolved conifold
corresponding to the knot K in U(N) Chern–Simons theory on a three–sphere. The source
matrix V in the free energy of the brane in eq. (2.95) only has one entry, and let us denote it
by e−x. Then x serves as the modulus of the brane. The partition function of the brane

Ztop(x; gs, t) = exp (F(gs, t, V )) . (3.18)

can be expressed in terms of quantum knot invariants of the knot K through the Ooguri–Vafa
conjecture. The eq. (2.292) identifies Ztop(x; gs, t) with the partition function of the deformed
Chern–Simons theory. The latter is computed from the Ooguri–Vafa operator, which can be
expanded from its definition in eq. (2.168) as

Z(U, V ) = 1 +
∑

~k

1

z~k
Υ~k

(U)Υ~k
(V ) , (3.19)

where the coefficient z~k and the factors Υ~k
have been defined in eq. (2.174) and eq. (2.175)

respectively. When V = e−x, the factor Υ~k
(V ) is reduced to exp(−`(~k)x) with `(~k) =

∑
j jkj .

When one sums over ~k with fixed `(~k), Υ~k
(V ) can be factored out, and the rest can reduced

by the Frobenius formula to ∑

~k,`(~k)=n

1

z~k
Υ~k

(U) = Trn(U) . (3.20)

Here the trace Trn is taken with the n–th symmetric representation, whose associated Young
diagram has one row of n boxes. After taking the vev of U the partition function of the deformed
Chern–Simons theory and therefore the partition function of the brane is expressed in terms of
the quantum knot invariants of K colored only in symmetric representations

Ztop(x; gs, t) = ZCS(x;U) =

∞∑

n=0

Wn(K)e−nx . (3.21)

A crucial observation in ref. [177] is that the topological string partition function of brane
can be regarded as a wavefunction on the moduli space, or in other words the on–shell phase
space, of the brane. In the current context, it means that the partition function eq. (3.21) is
a wavefunction on the moduli space of the brane associated to the knot K, and the latte is
understood to be the spectral curve of the brane we are after, characterized by an equation
relating x and y

FK(x, y) = 0 . (3.22)

Here x is the brane modulus, while p := y is regarded as the momentum. Furthermore we
can quantize the spectral curve by promoting the variables x, p to operators x̂, p̂. When the
wavefunction Ztop(x; gs, t) is in the coordinate representation, which it is, the effect of x̂ is
multiplication by x, while p̂ is the differential operator p̂ = gs∂x. They satisfy the commutation
relation

[p̂, x̂] = gs , (3.23)

where gs is now treated as the Planck constant in this quantum system. Then the quantum
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spectral curve should annihilation the wave function of the brane4

F̂K(x̂, p̂)Ztop(x; gs, t) = 0 . (3.24)

Furthermore due to eq. (3.21) the quantum knot invariants are Fourier transforms of the parti-
tion function; in other words, they are the wave function in the momentum representation. So
they are also annihilated by the quantum spectral curve

F̂K(x̂, p̂)Wn(K) = 0 , (3.25)

where now the operators x̂ and p̂ act differently

ep̂Wn(K) = qnWn(K), ex̂Wn(K) =Wn+1(K) . (3.26)

In the representation above q = eigs . Therefore eq. (3.25) effectively gives a recursive relation
between quantum knot invariants in symmetric representations. Conversely if we know all the
quantum knot invariants in symmetric representations of a knot we can try to find the quantum
spectral curve by deducing the recursive relation, and the geometric spectral curve is obtained
in the classical limit. In this way the spectral curves for torus knots can be computed, and they
are the same as the spectral curves we derived by removing fractional power terms of the BEM
spectral curves.

Yet another way to compute the AV spectral curve was found by mathematicians [178–183],
and it is intimately related to the construction of the Lagrangian branes associated to knots.
In T ∗S3 before the geometric transition the Lagrangian brane of knot K is constructed to
be wrapping the conormal bundle L̃K (we use the same symbol for both the brane and the
submanifold) of the knot in eq. (2.178). The cotangent bundle T ∗S3 asymptotes at infinity
to (S3 × S2) × R+, where in particular S2 × R+ = R3 (represented by the shaded face in the
left diagram of Fig. 3.1) is the cotangent vector space over each point of S3. The conormal
bundle L̃K imprints the S3 at infinity in the shape of the knot. On the other hand since the
conormal bundle over each point of the knot is simply R2 ⊂ R3, it imprints the S2 at infinity in
the shape of a simple S1 (unknot). In order to find the Lagrangian brane after the geometric
transition in the resolved conifold, it is most convenient to first lift the brane L̃K slightly off
the three–sphere before deforming the three–sphere to a point and blowing it up. The brane
L̃K naturally survives the geometric transition and we can then land it on the S2 = P1 in the
resolved conifold. The brane intersects P1 at the locus of a simple S1 just like its imprint on
the S2 in the infinity, and in the C2 fiber over each point of P1 it imprints the S3 at infinity
in the shape of the knot. This approach of constructing the brane in the resolved conifold was
advocated in refs. [77, 154], and it has the additional advantage that one can naturally deduce
the framing the the brane from that of the knot in the process.

Ng took the idea a step further and argued that the information of the brane is encoded
completely in its imprint on S2×S3 in the infinity, which is not changed over the course of the
geometric transition, and this is the reason the partition functions of the brane are identical
before and after the geometric transition. In particular the boundary S2 × S3 at infinity
is a contact geometry, and the two dimensional imprint of the brane on the boundary is a

4 The equation describing the on–shell phase space is the equation of motion of the system, and the quantum
operator derived from it necessarily annihilates the wavefunction of the system.
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S1

∩
S2

K
∩
S3

T ∗S3

LK

S1

∩
S2

K
∩
S3

O(−1) +O(−1)→ P1

LK

Figure 3.1: The Lagrangian branes in the transition of geometries underlying the Ooguri–Vafa conjecture.

Legendre submanifold. Using techniques in the theory of contact geometry, Ng devised a series
of invariants of the Legendre submanifold, which are essentially defined by certain holomorphic
disks in (S2 × S3) × R+ ending on the Legendre submanifold. The simplest invariant is the
so–called augmentation variety, which is a complex curve in (C∗)2 defined by a polynomial
equation5

AugK(α, β;Q) = 0 . (3.27)

For the details of Ng’s invariants we refer readers to the review [182]. We only point out
that it has been conjectured that Ng’s augmentation variety is the same as the AV spectral
curve for an arbitrary knot [182, 184], and it has been verified for all the AV spectral curves
that have been computed. This is not surprising since the Ng’s invariants are defined from
the holomorphic disks ending on the brane. Furthermore Ng provides an algorithm to derive
the augmentation variety for an arbitrary knot from its planar projection graph. In fact the
augmentation varieties for many knots, many of which are hyperbolic, have been derived by Ng
and can be found on Ng’s website.

Let us now summarize the reasons to regard the AV spectral curves as the real spectral curves
for branes associated to knots. First, they are the moduli spaces of the branes associated to the
knots in question according to the construction of Aganagic and Vafa. Second, their Seiberg–
Witten differentials do not contain redundant and mysterious fractional power terms and are
pure generating functions of the holomorphic disks ending on the branes. As a consequence
they seem to be true topological invariants as opposed to the BEM spectral curves, in the sense
that they are identical for the two torus knots Kr,s and Ks,r with swapped labels. And finally
the most important of all mathematicians have devised an algorithm to derive the AV spectral
curves for arbitrary knots, if the conjecture that augmentation varieties equal AV spectral
curves is correct. In the following we will assume this is the case and use the name AV spectral
curve and augmentation variety interchangeably.

Finally in this section we point out some properties of the AV spectral curves. The aug-
mentation varieties and hence the AV spectral curves enjoy the an involution symmetry. The

5 Precisely speaking Ng treats the parameter Q also as a C∗ coordinate, and therefore the augmentation variety
is a complex surface in (C∗)3.
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x3 = 0

x4 = 0

x2 = 0

x1 = 0

(a) toric diagram

x

y

(b) spectral curve

Figure 3.2: The toric diagram of the resolved conifold, and the spectral curve of its mirror. The former is
invariant under the involution of eq. (3.30), and the latter is invariant under the involution of eq. (3.29).

augmentation variety of any knot is invariant under the map6

ι : α 7→ Qf−1

α
, β 7→ 1

Qβ
, (3.28)

where f is the framing of the knot. This actually reflects the involution symmetry of the
background geometry the resolved conifold itself. The spectral curve eq. (2.116) of the mirror
dual of the resolved conifold is invariant under the involution transformation

x 7→ logQ− x, y 7→ logQ− y , (3.29)

which is illustrated in Fig. 3.2b. This transformation is precisely the involution eq. (3.28) with
framing zero (recall that α = e−x, β = e−y). Accordingly the resolved conifold itself enjoys a
symmetry under involution ,

(x1, x2, x3, x4)→ (x2,−x1, x4,−x3) . (3.30)

This is schematically described in its toric diagram by the 180◦ rotation about the central thick
point in Fig. 3.2a. When a brane (not necessarily toric) in the resolved conifold is mapped by
the involution, its spectral curve, in other words its moduli space, undergoes the transformation
described by eq. (3.28). Since the background geometry is the same after the involution, the
numbers of holomorphic disks ending on the brane are the same, which is the reason the spectral
curve of the brane is invariant under the involution.

A second property of the AV spectral curves is that they are usually singular and of high
genera. For instance, the AV spectral curve of the trefoil torus knot (see Fig. 2.10a), is a genus
one curve with two nodal points7. This topology is not affected by a framing transformation of
the spectral curve. The AV spectral curve of the figure eight knot with framing zero (denoted

6 Note the augmentation variety is only defined up to multiplications of α or β.
7 The genus of the spectral curve can be determined by the number of the integral lattice points inside the

Newton polytope of the spectral curve, minus the contribution from the singular points.
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Figure 3.3: The figure eight knot, also denoted by 41 in the knot theory.

by 41 in knot theory), the simplest hyperbolic knot (see Fig. 3.3), is

F41(α, β) =β2 −Qβ3 + α(−1 + 2β − 2Q2β4 +Q2β5)

+ α2(1− 2Qβ + 2Q2β4 −Q3β5) + α3(−Q2β2 +Q2β3) . (3.31)

It is a genus two curve with two degree three singular points. This topology is also not changed
by a farming transformation of the spectral curve.

3.2 Annulus Kernel

3.2.1 Problems with Bergman Kernel

We have established in the previous section that the AV spectral curves are the real spectral
curves for branes associated to knots. However when proceeding to apply the topological
recursion we immediately face problems from the next input of the topological recursion, namely
the Bergman kernel. As we mentioned in the previous section the AV spectral curves for branes
associated to nontrivial knots have genera greater than zero. This implies that the Bergman
kernel is a transcendental function of the parameter Q of the spectral curve. For instance the
AV spectral curve for trefoil is an elliptic curve, and the Bergman kernel of an elliptic curve is
given by the Akemann formula [158], which reads

B(α1, α2) =
E(k2)

K(k2)

(λ1 − λ3)(λ4 − λ2)

4
√∏4

i=1(α1λi − 1)(α2λi − 1)
dα1dα2

+
1

4(α1 − α2)2

(√
(α1λ1 − 1)(α1λ2 − 1)(α2λ3 − 1)(α2λ4 − 1)

(α1λ3 − 1)(α1λ4 − 1)(α2λ1 − 1)(α2λ2 − 1)

+

√
(α2λ1 − 1)(α2λ2 − 1)(α1λ3 − 1)(α1λ4 − 1)

(α2λ3 − 1)(α2λ4 − 1)(α1λ1 − 1)(α1λ2 − 1)
+ 2

)
dα1dα2 . (3.32)

Here λi, i = 1, . . . , 4 are the four branch points of the elliptic curve, and K(k2), E(k2) are the
complete elliptic integrals of the first and second kinds respectively, with the elliptic modulus
k defined by

k2 =
(λ1 − λ2)(λ3 − λ4)

(λ1 − λ3)(λ2 − λ4)
. (3.33)

The Akemann kernel clearly depends on the ordering of the four branch points, and hence the
choice of A– and B–cycles. More importantly since the argument k2 of the elliptic integrals is
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a rational function of the parameter Q, the Akemann kernel is a transcendental function of Q.
This is also true at each individual order when the Akemann kernel is expanded in terms of
α1 and α2 near α1 = α2 = 0, since the ratio E(k2)/K(k2) will appear in the series coefficients.
However this contradicts squarely with the Ooguri–Vafa conjecture. Since the Bergman kernel
is the generating function of worldsheet annulus instantons, the Ooguri–Vafa conjecture predicts
that its expansion coefficients in the neighborhood of α1 = α2 = 0 are polynomials of Q±1. To
see this, let us suppose the Bergman kernel is expanded as follows

B(p1, p2) =
dα1dα2

(α1 − α2)2
+ dα1dα2

(
p(2) + p(1,1)(α1 + α2)

+p(0,2)α1α2 + p(1,0,1)(α
2
1 + α2

2) + . . .
)
. (3.34)

The subscripts of the coefficients p(∗) are vectors ~k = (k1, k2, . . .), which record the winding
numbers of the boundary components of the worldsheet (annulus) instantons following the
convention in eq. (2.293). According to eq. (2.294) and eq. (2.98) the coefficients p

(~k)
of the

Bergman kernel are identified with open string free energies F
0,~k

(Q) with genus zero and |~k| =∑
j kj = 2 up to certain factors arising from the integration

p~k =
∏

j

jkjF
0,~k

(Q) for |~k| = 2 . (3.35)

On the other hand eq. (2.293) of the Ooguri–Vafa conjecture predicts that

F
0,~k

=
1∏
j j

kj
W(c)
~k,0

(Q) =
1∏
j j

kj
W(c)
~k

(q = 1, Q) , (3.36)

where in the last step we have used eq. (2.176) the genus expansion formula for the connected
vev of Wilson loop along the knot. Therefore we have the simple identification

p~k =W(c)
~k

(q = 1, Q) . (3.37)

The variable Q can be related to λ in the Chern–Simons theory by combining the mirror map
of the resolved conifold eq. (2.118), the large N dictionary eq. (2.246), and the definition of λ
eq. (2.139) in Chern–Simons theory

Q = λ−1 . (3.38)

Finally by comparing eq. (2.171) and eq. (2.170) one can easily compute the connected vevs

W(c)
~k

and find them to be polynomials in quantum knot invariants (a simple example is given

in eq. (2.173)), and therefore polynomials in Q±1. As a consequence, the coefficients p~k of the
Bergman kernel expansion are polynomials in Q±1. The coefficients of different monomials in
these polynomials are the numbers of annulus instantons in different relative homology classes
in the bulk data, which translate to how many times they wrap around the P1 in the background
resolved conifold.

But does the polynomial nature of the Bergman kernel indicate the true spectral curve should
actually be of genus zero, therefore is not the AV spectral curve? Let us assume this is the
case, but insist that α is a good local coordinate8 near the origin. Being of genus zero, we can

8 We have seen that the BEM spectral curve fails this requirement and so the following argument does not apply.
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always find a semi–global coordinate y on the spectral curve according to the uniformization
theorem (see for instance [185]) such that its coordinate chart covers almost the whole spectral
curve except for a single point9, and that it vanishes at α = 0. In terms of this semi–global
coordinate, the Bergman kernel has the simple form

B(y1, y2) =
dy1dy2

(y1 − y2)2
. (3.39)

On the other hand, we can treat α as a function of y and expand it

α(y) = y + c1y
2 + c2y

3 +O(y4) . (3.40)

In the series expansion above, the linear term cannot vanish, for otherwise α ceases to be a
good local coordinate. We can thus always rescale y so that the linear coefficient is 1. If we
plug the series expansion α(y) in eq. (3.34) and compare it with eq. (3.39), we can get a series
of relations between p~k and ci

0 = p(2) − c2
1 + c2,

0 = p(1,1) + 2c3
1 + 2p(2)c1 − 4c1c2,

0 = p(0,2) − 6c4
1 + 4p(2)c

2
1 + 16c2

1c2 + 4p(1,1)c1 − 6c2
2,

0 = p(1,0,1) − 3c4
1 + 9c2

1c2 + 3p(1,1)c1 + 3p(2)c2 − 3c2
2,

· · · · · ·

(3.41)

By removing ci from these relations we obtain a series of identities which involve p~k only. For
instance, the very first identity reads

J1 = 6p2
(2) − 4p(1,0,1) + 3p(0,2) = 0 . (3.42)

Assuming the Ooguri–Vafa conjecture is correct and the Bergman kernel is the generating func-
tion of worldsheet annulus instantons, p~k can be read off from quantum knot invariants through
eq. (3.37), and we can explicitly check these identities for the knots whose knot invariants are
known. For instance, for the first two torus knots K2,3 and K2,5, the J1 invariant turns out to
be10

J1(K2,3) = 36(−1 +Q)4(5− 4Q+Q2) ,

J1(K2,5) = 60(−1 +Q)4(98− 168Q+ 105Q2 − 28Q3 + 3Q4) .
(3.43)

which manifestly do not vanish. Therefore even if we assume the spectral curve is of genus zero,
contradictions concerning the Bergman kernel are inevitable.

It seems that unless we give up the Ooguri–Vafa conjecture for nontrivial knots, identifying
the generating function of worldsheet annulus instantons with the Bergman kernel of the spectral
curve always leads to contradictions, regardless of the genus of the spectral curve. Since there
are strong evidences for the verity of the Ooguri–Vafa conjecture (for instance the proof of
the integrality structure of the quantum knot invariants mentioned in section 2.5.6), we are

9 For instance on S2 the north coordinate chart only misses the south pole. Since the spectral curve is defined in
(C∗)2 there are in fact punctures on the curve. Here we ignore these punctures for the moment, and compactify
the spectral curve by filling up all the punctures.

10 We note here although the quantum knot invariants of the two torus knots are framing dependent, the invariant
J1 is framing independent, which may indicate some underlying symmetry.
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forced to abandon the assumption that the Bergman kernel is the annulus instanton generating
function.

This conclusion is bolstered by the following observation. By definition the Bergman kernel
satisfies the normalization condition that its integral along an A cycle of the spectral curve
vanishes, which is consistent with the filling fraction conditions in Hermitian matrix models
discussed in section 2.5.1. One can convince oneself that this A cycle normalization condition
is the reason that the Bergman kernel is a transcendental function of the parameter Q of the
spectral curve. This is evident in the case of the Akemann kernel in eq. (3.32) for an elliptic
spectral curve. The integral of the Akemann kernel along an A cycle would produce various
elliptic integrals which would be cancelled by E(k2) and K(k2) in the formula for the integral
to vanish.

The filling fraction conditions can be proved in Hermitian matrix models (see for instance
ref. [142]), where the A cycles of the spectral curve play an important role. For instance we
know that the integrals of the Seiberg–Witten differential along A cycles give the filling fractions
of the matrix model. Besides we know thanks to the BKMP theorem that the usual topological
recursion applies to the spectral curve of the mirror dual of a toric Calabi–Yau threefold, and
therefore the filling fraction conditions are also satisfied. In this scenario the A cycles of the
spectral curve likewise have physical meanings. The integrals of the Seiberg–Witten differential
along A cycles are the flat coordinates on the closed topological string moduli space as in
eq. (2.117), i.e. the moduli of the background Calabi–Yau threefold. In fact it was argued in
ref. [29] that for many toric Calabi–Yau threefolds one may construct matrix models whose
free energies coincide with those of type A closed topological string theory on these geometries
and these matrix models are in some way similar to the usual Hermitian matrix models. This
could be the underlying reason of the BKMP theorem, and as a corollary the filling fraction
conditions. On the other hand, it is not known whether there are matrix model interpretations
underlying the AV spectral curves for nontrivial knots, and even if they exist whether they
are similar to the usual Hermitian matrix models. In fact the meaning of the A cycles of the
AV spectral curves are rather mysterious. They certainly do not correspond to the moduli of
the background geometry. The background resolved conifold has only one modulus, while the
AV spectral curves have more and more A cycles due to increasing genera when the associated
knots become more complicated. Therefore we can contemplate abandoning the filling fraction
conditions.

On the other hand, even without the filling fraction conditions, we can still apply the for-
mula eq. (2.272) of the topological recursion to compute meaningful quantities as long as we
have a proper substitute for the Bergman kernel. These quantities, as we stressed at the end
of section 2.5.1, are still solutions to the loop equations which are the consequence of some
symmetries of the system.

Furthermore we know that any Riemann surface Σg,h of genus g with h boundary components
can be decomposed to tubes and pairs–of–pants, and it was argued in ref. [161] that the formula
eq. (2.272) describes precisely the recursive procedure to decompose a Riemann surface. We

can use eq. (2.272) recursively to write down for an arbitrary correlation differential ω
(g)
h a finite

sum of products, each of which consists of the symmetric bidifferential ω
(0)
2 and the recursion

kernel K only. Each product corresponds to one way of decomposing the Riemann surface Σg,h,
and can in fact be obtained from the decomposition scheme by substituting a tube with the
symmetric bidifferential and a pair–of–pants with the recursion kernel. Let us illustrate this
by some examples. By applying the topological recursion the genus one one–point correlation
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pair–of–pants tube

(a) Decomposition of Σ1,1

pair–of–pants

tubes

(b) Decomposition of Σ0,3

Figure 3.4: The decomposition of Σg=1,h=1 and Σ0,3 into tubes and pairs–of–pants.

differential is computed by

ω
(1)
1 (p) =

∑

i

Res
q→ai

K(p, q)ω
(0)
2 (q, q̄) , (3.44)

where ai is a ramification point on the spectral curve. Accordingly there is only one way
to decompose Σ1,1 to tubes and pairs–of–pants, as seen in Fig. 3.4a. After replacing each
component by the bidifferential or the recursion kernel, we get the integrand on the right hand
side of eq. (3.44). Note that the gluing slice in Fig. 3.4a corresponds to in the recursion formula
an internal point q in terms of which we will take the residue of the integrand at the ramification
points. Besides the two ends of the tube glued from the right are assigned the coordinate q and
its conjugate q̄ respectively. We can also compute the planar three–point correlation differential
by the topological recursion, and it reads,

ω
(0)
3 (p1, p2, p3) = 2 Res

q→a
K(p1, q)ω

(0)
2 (q, p2)ω

(0)
2 (q̄, p3) . (3.45)

Likewise there is only one way of decomposing Σ0,3 to tubes and pairs–of–pants as see in
Fig. 3.4a, and we can also obtain the correct integrand by doing the replacement. Note the
factor of 2 in eq. (3.45) corresponds to two ways of gluing the pair–of–pants to the two different
tubes.

Having established the similarity between the topological recursion formula and the cut–

and–glue scheme of Riemann surfaces, it was further argued in ref. [161] that if ω
(0)
2 (p1, p2) is

the generating function of worldsheet annulus instantons, and K(p, q) is the generating func-

tion of worldsheet pair–of–pants instantons, then ω
(g)
h (p1, . . . , ph) computed by the topological

recursion would be the generating function of worldsheet instantons on the Riemann surface

Σg,h. Besides it can be shown that the kernel K(p, q) is related to ω
(0)
2 and the disk generating

function ω
(0)
1 through eq. (2.269).

Naturally in the context of the AV spectral curves for the branes associated to knots, the
idea is to look for the true generating function of the worldsheet annulus instantons, substitute
it for the Bergman kernel, and check if the formula of the topological recursion can reproduce
the correct higher worldsheet instanton generating functions.

3.2.2 Constructing the Annulus Kernel

Constructing the annulus generating function from scratch would be a daunting task. Instead we
used a short–cut [170] by applying the same technique we exploited in section 3.1.2 to compute

84



3.2 Annulus Kernel

AV spectral curves. Recall that the integral of the Bergman kernel of a BEM spectral curve

for a torus knot when expanded in α1, α2 has terms proportional to α
n1/r
1 α

n2/r
2 , where n1, n2

are positive integers. Although the coefficients of the terms with either n1 or n2 not divisible
by r (fractional power terms) do not have physical meanings, the coefficients of the terms with
both n1 and n2 divisible by r (integral power terms) count the numbers of worldsheet annulus
instantons. Similar to our computation of AV spectral curves in the beginning of section 3.1.2,
we can therefore construct the pure annulus generating function for branes associated to a
torus knot by removing the fractional power terms from the Bergman kernel BBEM

r,s (β1, β2) of
the BEM spectral curve. To do this, we note again that because of the fractional power terms,
α1 and α2 are not good local coordinates, and we need to express the BEM Bergman kernel in
eq. (3.5) in terms of the local coordinate ζ = α1/n

BBEM
r,s (β1, β2) = B(k,`)

r,s (ζ1, ζ2) =

(
rρ(k)(ζ1)r−1ρ(k)′(ζ1)

) (
rρ(`)(ζ2)r−1ρ(`)′(ζ2)

)
(
ρ(k)(ζ1)r − ρ(`)(ζ2)r

)2 dζ1dζ2 . (3.46)

Recall that the coordinate patch near α = 0 splits to r different coordinate patches for ζ, and

we need to specify in B
(k,`)
r,s (ζ1, ζ2) for both ζ1 and ζ2 which coordinate patches they belong to

by the superscripts (k) and (`) on the functions ρ(ζ). To remove this uncertainty we need to
sum over all the r2 representations of this BEM Bergman kernel with k and ` running from 1
through r.

Br,s(α1, α2) =
r∑

k,`=1

B(k,`)
r,s (ζ1, ζ2) , αµ = (ζµ)r , µ = 1, 2 . (3.47)

Since the r different coordinate patches for ζ can be cyclically accessed through phase shifting
ζ → e2πi/rζ, similar to what happens in the construction of the pure disk instanton generating
function Wr,s in eq. (3.9), the summation in eq. (3.47) removes all the expansion terms ζn1

1 ζn2
2 =

α
n1/r
1 α

n2/r
2 where either n1 or n2 is indivisible by r. Therefore Br,s(α1, α2) is the pure generating

function of worldsheet annulus instantons for branes associated to the torus knot Kr,s, and we
call it the annulus kernel. It is possible to express the annulus kernel in terms of α and β
instead of ζ and ρ(k), ρ(`). To do this, we notice that the numerator and the denominator of the
annulus kernel are symmetric functions in ρ(k). Therefore we can decompose them in terms of
the elementary symmetric functions S(j), j = 1, . . . , r of ρ(k) and use the relations eqs. (3.17)
to remove S(j) in favor of α and β. ζ always appears in the annulus kernel as powers of ζr and
thus it can be easily replaced in terms of α. The end result has the form

Br,s(p1, p2) =
Nr,s(α(p1), β(p1), α(p2), β(p2);Q)

Dr,s(α(p1), β(p1), α(p2), β(p2);Q)
dα(p1)dα(p2) , (3.48)

where both the numerator and the denominator are polynomials in α1, α2, β1, β2 and Q. The
polynomials Nr,s and Dr,s computed this way can be horrendously lengthy. There may exist a
simpler presentation of the annulus kernel Br,s = Ñr,s/D̃r,s with shorter polynomials Ñr,s, D̃r,s,
which satisfy

r ·Nr,s +
∑

µ pµ · Fr,s(αµ, βµ;Q)

r ·Dr,s +
∑

µ qµ · Fr,s(αµ, βµ;Q)
=

r̃ · Ñr,s +
∑

µ p̃µ · Fr,s(αµ, βµ;Q)

r̃ · D̃r,s +
∑

µ q̃µ · Fr,s(αµ, βµ;Q)
, (3.49)
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Here pµ, qµ, p̃µ, q̃µ are some polynomials in α1, α2, β1, β2 and Q. Although it is in principle not
necessary for the application of the topological recursion, it is computationally beneficial to
find the simplest presentation of the annulus kernel, which is a difficult problem.

Before we proceed, we notice that near the diagonal loci (α1, β1) = (α2, β2) each BEM

Bergman kernel B
(k,`)
r,s (ζ1, ζ2) with ` = k = 1, . . . , r has a double pole. This is the double pole

of a usual Bergman kernel and therefore its principal part is

dζ1dζ2

(ζ1 − ζ2)2
∼ dα1dα2

(α1 − α2)2
, (3.50)

where ∼means identical up to regular terms. As a consequence the principal part of the annulus
kernel near the diagonal loci is

r dα1dα2

(α1 − α2)2
. (3.51)

Unfortunately this principal part is not r, s symmetric, and therefore the annulus kernel would
be different for the torus knots Kr,s and Ks,r. This problem can be cured by simply doing the
subtraction

B̂r,s(α1, α2) = Br,s(α1, α2)− (r − 1)dα1dα2

(α1 − α2)2
, (3.52)

and we call B̂r,s(α1, α2) the calibrated annulus kernel. We note that the calibration does not
change the numbers of worldsheet annulus instantons, and therefore the calibrated annulus
kernel is an equally good annulus generating function. Furthermore it can be shown that the
calibrated annulus kernel as opposed to the uncalibrated annulus kernel is covariant under the
framing transformation, i.e. it remains a correct annulus generating function after a framing
transformation. In fact we will show in the next subsection that without calibration the annulus
kernel will make the topological recursion ill–defined, and this problem is cured exactly by the
calibration. In the later sections we will use the calibrated annulus kernel in place of the
Bergman kernel to perform the topological recursion.

3.2.3 Calibration and Poles

Here we discuss the necessity of doing the calibration as in eq. (3.52), as well as the pole
structure of the calibrated annulus kernel. This subsection is a bit technical, and we refer
the readers not interested in technical details to the last paragraph of this subsection which
summarizes the discussions.

We start by looking at the computation of the AV spectral curve through the ideal eq. (3.14)
in the beginning of section 3.1.2 more closely. The BEM spectral curve in eq. (3.6) we started
with has degree r+s in the variable ρ, and it is therefore a (r+s)–sheeted cover of the ζ complex
plane. Among the (r+s) sheets, r of them are continued to the points (ζ, ρ) = (0, e2πik/rQ−1/r)
in the limit ζ → 0 and they correspond locally to the r coordinate patches we have discussed
about. The other s sheets are continued in the limit ζ → 0 to the point (ζ, ρ) = (0,∞). In the
ideal eq. (3.14) that leads to the AV spectral curve, each variable ρ(k) is not restricted to any
particular covering sheet. Therefore the r components ρ(k) of the variable β can take values in
any of the (r + s) covering sheets. It is only when we expand the annulus amplitude Wr,s in
eq. (3.9) about the point (α, β) = (0, Q−1) are the components ρ(k) forced to take values in the
first r coordinate patches, for if any ρ(k) takes value in one of the rest s covering sheets, the
value of β will explode at α = 0.
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3.2 Annulus Kernel

To stress the random choice of the ρ components of β among the r + s covering sheets, we
rewrite eq. (3.10) for the variables α and β

α = ζr, β = (−1)r+1ρ(`1) · . . . · ρ(`r) , (3.53)

where 1 6 `1 < . . . < `r 6 r + s. It immediately implies that the AV spectral curve has degree(
r+s
r

)
in β. The annulus kernel now has the form

Br,s(α1, α2) =
r∑

m,n=1

B(m,n)
r,s (ζ1, ζ2)

=
r∑

m,n=1

(
rρ(`m)(ζ1)r−1ρ(`m)′(ζ1)

) (
rρ(`n)(ζ2)r−1ρ(`n)′(ζ2)

)
(
ρ(`m)(ζ1)r − ρ(`n)(ζ2)r

)2 dζ1dζ2 . (3.54)

This uncalibrated annulus kernel has double pole when ρ(`m)(ζ1) = ρ(`n)(ζ2)11, and its prin-
cipal part is simply given by the double pole of the BEM Bergman kernel

dζ1dζ2

(ζ1 − ζ2)2
. (3.55)

Although this implies ζ1 = ζ2 and consequently α1 = α2, it does not necessarily mean β1 = β2

and only requires that some ρ components of β1 be identical with some ρ components of β2.
Therefore there can be many more double poles than those at the diagonal loci. They can spell
trouble for the topological recursion.

In the topological recursion the annulus kernel Br,s(q, q̄) with q̄ being the conjugate point of
q near a ramification point a of the spectral curve appears frequently. However the annulus
kernel is singular at (q, q̄). To see this, we notice that a pair of conjugate points q, q̄ is such
that when q stays away from the ramification point a, we have

α(q) = α(q̄), β(q) 6= β(q̄) ; (3.56)

and when q approaches the ramification point a

lim
q→a

(α(q)− α(q̄)) = 0, lim
q→a

(β(q)− β(q̄)) = 0 . (3.57)

From the perspective of the ρ components of β, this happens when r − 1 of the r component
ρ’s of β(q) are identical with r − 1 component ρ’s of β(q̄), while the last component ρ of β(q)
is the conjugate point of the last component ρ of β(q̄) near a ramification point, say ã, on the
BEM spectral curve in eq. (3.6). In other words, without loss of generality we have

β(q) = (−1)r+1ρ(`1)ρ(`2) · · · ρ(`r) ,

β(q̄) = (−1)r+1ρ(`1)ρ(`2) · · · ρ(`r) .
(3.58)

In fact this is the only possible way to get conjugate points on an AV spectral curve of a torus
knot. Suppose there is a second conjugate pair ρ(`i) and ρ(`i) with i 6= r near a ramification

11 We are being sloppy here. The double pole condition is ρ(`m)(ζ1)r = ρ(`n)(ζ2)r, and hence a possible phase
factor of r–th root of unity can arise. Nevertheless we can always absorb this phase factor by appropriately
shifting the phase of ζ as we discussed in footnote 1 on page 74. So we ignore the phase factor.

87



Chapter 3 Topological String and Knot Invariants

point ã′ on the BEM spectral curve such that ρ(`i) is a component of β(q) and ρ(`i) a component
of β(q̄). The condition eq. (3.57) demands that

ζ(ã) = ζ(ã′) . (3.59)

On the other hand by the construction through eq. (3.14) it is known that ρ(`i) 6= ρ(`r) and
therefore ã 6= ã′. It indicates two ramification points are stacked over one single branch point,
which does not happen for the BEM spectral curve eq. (3.6).

Given the structure of a pair of conjugate points in eq. (3.58), we known that the uncalibrated
annulus kernel Br,s(q, q

′) has double pole at q′ = q̄, and furthermore the principal part of the
double pole is

(r − 1)dζ1dζ2

(ζ1 − ζ2)2
∼ (r − 1)dα1dα2

(α1 − α2)2
. (3.60)

This double pole is removed precisely through the calibration in eq. (3.52). This is the reason
the annulus kernel must be calibrated for it to be used in the topological recursion.

Using eq. (3.54) we can not only see the reason for calibration, but also find out all the double
poles of the (calibrated) annulus kernel. Let us fix the first point (α1, β1), and also the r distinct
ρ components of β1: ρ(`k) with k = 1, . . . , r. Let the values of ρ on the rest s covering sheets
be ρ(`k), k = r + 1, . . . , r + s. The calibrated annulus kernel has a double pole when among
the r component ρ’s of β2, i of them are identical with the ρ components of β1, where i is an
arbitrary integer between 0 and r but i 6= r−1. (Because of the calibration, the kernel also has
double pole when i = 0. See eq. (3.61). This lower bound of i will be improved shortly.) So
we can classify the double poles of the calibrated kernel into different types labelled by index
i, and the principal part of a double pole of type i is

i dζ1dζ2

(ζ1 − ζ2)2
− (r − 1)dα1dα2

(α1 − α2)2
∼ (i+ 1− r)dα1dα2

(α1 − α2)2
. (3.61)

To find a double pole, we pick arbitrary i values of ρ among ρ(`k), k = 1, . . . , r, drop the rest
of them, and pick another r − i values of ρ among ρ(`k), k = r + 1, . . . , r + s. The requirement
r − i 6 s corrects the lower bound of i from 0 to max(0, r − s). The r values of ρ now at hand
can be used to construct a new β, which we choose to be β2. There are in total

(
r
i

)(
s
r−i
)

such
choices. Let us use index j := r − i instead of i to label the type of double poles, and it runs
over 0, 2, . . . ,min(r, s). Then we have just found out for a fixed β1, the number of double poles
Nj of type j and their principal parts Pj of the calibrated annulus kernel are

Nj =

(
r

j

)(
s

j

)
, Pj =

(1− j)dα1dα2

(α1 − α2)2
. (3.62)

The case of j = 0 is simply the double pole at the diagonal loci. Besides, the total number of
double poles is

min(r,s)∑

j=0,j 6=1

Nj =

(
r + s

s

)
− r s . (3.63)

Let us summarize this subsection. One of the crucial reasons for using the calibrated annulus
kernel in favor of the uncalibrated annulus kernel Br,s(q, q

′) is that the latter is singular when

q′ = q̄, which makes it unsuitable as ω
(0)
2 in the topological recursion. After calibration this
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singularity goes away. Furthermore we find out that when the first point in the calibrated
annulus kernel is fixed, the kernel has min(r, s) − 1 types of double poles. Labelled by j =
0, 2, . . . ,min(r, s), the number of double poles Nj and the principal part Pj of the double pole
of each type are given by eqs. (3.62), and the total number of double poles is given by eq. (3.63).
Note that this pole structure is manifestly r, s symmetric.

3.2.4 Stretched Annulus Instantons

Recall that as discussed in section 3.1.2, the resolved conifold enjoys the involution symmetry
described by eq. (3.30), and a stack of branes L embedded in the resolved conifold is mapped to
their images ι(L) under the involution. In this setup, other than worldsheet annulus instantons
whose two boundary components only end on L, there are also annulus instantons stretched
between L and ι(L). To count the numbers of these annulus instantons, we notice that the
branes ι(L) are in the same moduli space of L. But the limit of large disk instantons is mapped
by ι from the point (α, β) = (0, Q−1) to (α, β) = (∞, 1). Therefore we should do the change of
variables on the second point in the calibrated annulus kernel

α2 =
Qf−1

α̃2
, β2 =

1

Qβ̃2

(3.64)

and expand the calibrated annulus kernel B̂r,s(p1, p2) in terms of α1 and α̃2 about the point
α1 = α̃2 = 0. In the case of the torus knot K2,3 in the framing 6 = 2 · 3, after rescaling
α1 7→ Q5α1, α̃2 7→ Q5α̃2 we have

B̂2,3(p1, p2) = B̂2,3(p1, ι(p2)) = dα1dα̃2

[
− 9Q+ 16Q2 − 9Q3 +Q4

+ (−168Q+ 504Q2 − 576Q3 + 300Q4 − 60Q5)(α1 + α̃2)

+ (−3861Q+ 16236Q2 − 28215Q3 + 25920Q4

− 13230Q5 + 3528Q6 − 378Q7)(α2
1 + α̃2

2)

+ (−3136Q+ 13230Q2 − 23040Q3 + 21280Q4 − 11088Q5

+ 3150Q6 − 400Q7 + 2Q8)α1α̃2 + . . .
]
. (3.65)

Similar to the usual expansion of the Bergman kernel illustrated in eq. (3.34), the coefficient
polynomial of Q in front of the differential αn1 α̃

n′
2 dα1dα̃2 should encode the numbers of annulus

instantons with winding numbers n + 1 and n′ + 1 on the two stacks of branes L and ι(L)
respectively. We follow the notation below eq. (2.293) and record the winding numbers on
the two stacks of branes by two vectors ~k = (k1, k2, . . .) and ~k′ = (k′1, k

′
2, . . .). The coefficient

polynomials can then be denoted by p~k,~k′ , and they satisfy the involution symmetry p~k,~k′ = p~k′,~k.
They are identified with the free energies of the worldsheet annulus instantons stretched between
L and L̃ through

p~k,~k′ =
∏

j

jkj+k
′
jF

g=0,~k,~k′(Q) for |~k| = |~k′| = 1 . (3.66)

Therefore from eq. (3.65) we can read off the free energies of the stretched annulus instantons
between the pair of branes L2,3 and ι(L2,3)

p(1),(1) =− 9Q+ 16Q2 − 9Q3 +Q4 ,
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p(0,1),(1) =− 168Q+ 504Q2 − 576Q3 + 300Q4 − 60Q5 ,

p(0,0,1),(1) =− 3861Q+ 16236Q2 − 28215Q3 + 25920Q4 − 13230Q5 + 3528Q6 − 378Q7 ,

p(0,1),(0,1) =− 3136Q+ 13230Q2 − 23040Q3 + 21280Q4 − 11088Q5 + 3150Q6 − 400Q7

+ 2Q8 . (3.67)

Note in each polynomial the leading order of Q is 1, meaning that a stretched annulus must
wrap around the P1 in the background resolved conifold at least once. This is different from
ordinary annulus instantons ending on one brane only.

In order to verify these results, we compute the free energies from two other avenues. The
first is the adaptation of the equivariant localization techniques by Diaconescu, Shende, and
Vafa [154], and this was discussed in [170]. The free energies computed in this way coincide
with the results presented above. The second is by generalizing the formula eq. (2.293) of the
Ooguri–Vafa conjecture. It was pointed out in ref. [186] that the most generic representations
of the gauge group U(N) are composite representations (R;S) labelled by a pair of Young
diagrams, and that the quantum knot invariants corresponding to the worldsheet instantons
stretched between the pair of branes L and ι(L) are those colored in composite representations.
Concretely by going through the derivations similar to those in section 2.3.5 concerning the free
energies of the deformed Chern–Simons theory, but with the usual quantum knot invariants
in eq. (2.170) replaced by those colored in composite representations, we can derive connected

vevs of Wilson loops W(c)
~k,~k′

with composite labelling. These connected vevs should be identified

with the free energies of the stretched worldsheet instantons via

1
∏
j j

kj+k̃j
W(c)
~k,~k′,g

(t) = F
g,~k,~k′(t) , (3.68)

analogous to eq. (2.293). Therefore once we know the quantum knot invariants in composite
representations, we can also compute the free energies of the worldsheet instantons stretched
between L and ι(L). To compare with the results from expanding the calibrated annulus kernel,
we combine eq. (3.66) and eq. (3.68) and find

p~k,~k′(Q) =W(c)
~k,~k′

(q = 1, Q), with |~k| = |~k′| = 1 . (3.69)

The composite representations of U(N) and the quantum knot invariants colored in them are
discussed in Appendix A. For torus knots, the quantum knot invariants in composite represent-
ations can be written down by a simple adaptation of the Rosso–Jones formula (c.f. eq. (A.13)).
Therefore we can also compute the connected vev of Wilson loops with ease. For the torus knot
K2,3 in the limit q → 1, the results are

W(c)
(1),(1)(Q)→ Q(−9 + 16Q− 9Q2 +Q4) ,

W(c)
(0,1),(1)(Q)→ 2Q(Q− 1)(−24 + 18f + 78Q− 41fQ− 84Q2 + 34fQ2 + 24Q3

− 9fQ3 + 12Q4 − 2fQ4 − 6Q5 + fQ5) ,

W(c)
(0,1)(0,1)(Q)→ 2Q(−128 + 855Q− 2376Q2 + 3296Q3 − 2088Q4 − 9Q5 + 808Q6

− 432Q7 + 72Q8 +Q9 − 24f(Q− 1)5(Q− 2)(Q2 +Q− 4)

+ 2f2(Q− 2)2(Q− 1)2(Q4 − 9Q2 + 16Q− 9)) ,
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W(c)
(0,0,1),(1)(Q)→ 3

2
Q(Q− 1)(6(Q− 1)3(−27 + 88Q− 52Q2 − 16Q3 + 13Q4)

− f(246− 1242Q+ 2399Q2 − 2209Q3 + 859Q4 + 59Q5 − 145Q6

+ 31Q7) + 3f2(Q− 1)(Q− 2)2(−9 + 16Q− 9Q2 +Q4)) , (3.70)

where f is the framing of the knot. Plugging in the framing 6 = 2 · 3, they agree with results
in eq. (3.67) through the identity eq. (3.69).

We point out that the confluence of the three results provides a nontrivial check on the
calibrated annulus kernel, because in computing the free energies of the stretched annulus
instantons through the expansion of B̂r,s(p1, ι(p2)) we probe different coordinate patches of the
spectral curve, and consequently the global structure of the calibrated annulus kernel on the
spectral curve.

3.3 Modified Topological Recursion

3.3.1 Normalization and Free Energies

With the calibrated annulus kernel B̂r,s(p1, p2) in hand, we can proceed to apply the topological
recursion formula eq. (2.272) on the AV spectral curve for a torus knotKr,s, with the problematic
Bergman kernel replaced by the calibrated annulus kernel. We call this procedure the modified
topological recursion, and claim that the correlation differentials computed by the modified
topological recursion provide us the free energies of the branes associated to the torus knot Kr,s
as in the usual way through eq. (2.294). In fact we can do better. Since the branes associated
to knots also probe the background geometry, i.e. the resolved conifold, it is conceivable that
the moduli space of these branes also encodes the information of the background geometry
described by the free energies of the closed topological string. We will demonstrate that the
modified topological recursion is able to compute the closed string free energies from the AV
spectral curves as well.

Let us first point out that the correlation differentials computed by the modified topological
recursion applied on the AV spectral curve of a torus knot Kr,s also satisfy the variational
formula in eq. (2.277), with a slight twist. To be precise, these correlation differentials satisfy
[170]

δΩ ω(g)
n (p1, . . . , pn) =

1

Nr,s

∫

p∈∂Ω
ω

(g)
n+1(p, p1, . . . , pn)Λ(p) . (3.71)

Here the extra normalization factor Nr,s is

Nr,s =

(
r + s− 2

r − 1

)
, (3.72)

which is actually half the number of ramification points with respect to the projection onto the
α plane [170]. The integration path ∂Ω and the multiplier Λ(p) in the eq. (3.71) are defined in
line with their counterparts in the usual topological recursion in eq. (2.276), with the role of
the Bergman kernel played by the calibrated annulus kernel

Ω(q) =

∫

p∈∂Ω
B̂r,s(p, q)Λ(p) . (3.73)

In contract to the case in the usual topological recursion, we shall rather treat this as a formal
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definition, since given an arbitrary Ω(q) one may not be able to find an integration path and
the multiplier so that the equation above is satisfied. Nevertheless we can always use this
definition to eliminate the integration path and the multiplier on the right hand side of the
variational formula eq. (3.71), if we stipulate that the formal integral in eq. (3.73) commutes
with any conventional integral. The reason is that in the variational formula the correlation

differential ω
(g)
n+1 is convoluted with the multiplier Λ(p) through the first argument p, while

this first argument belongs to the calibrated annulus kernel inside the recursion kernel (c.f.
eqs. (2.272),(2.269) with the Bergman kernel replaced by the calibrated annulus kernel). So
when we compute the right hand side of eq. (3.71), by shifting the order of integrations we
can first evaluate the formal integral with respect to the argument p before any conventional
integration, eliminating the multiplier Λ(p) and the integration path ∂Ω together with the
calibrated annulus kernel containing p in favor of the deformation differential Ω.

The variational formula eq. (3.71) has two implications. The first is that the correlation
differential computed by the modified recursion may actually be greater than what we expected
by a factor of several powers of Nr,s. One can show that when one computes the stable correl-

ation differential ω
(g)
n with the modified topological recursion, each time the recursion formula

eq. (2.272) is applied, a factor of Nr,s appears. Since each application of the recursion formula

increases the Euler characteristic χ = 2 − 2g − n by one and one stops at ω
(0)
2 with χ = 0,

the recursion formula has to be applied χ times, indicating a factor of N2g−2+n
r,s . We therefore

define the normalized stable correlation differential

ω̂(g)
n (p1, . . . , pn) =

1

N2g−2+n
r,s

ω(g)
n (p1, . . . , pn) . (3.74)

They satisfy the variational formula

δΩ ω̂(g)
n (p1, · · · , pn) =

∫

∂Ω
ω̂

(g)
n+1(p, p1, · · · , pn)Λ(p). (3.75)

which looks exactly like the one in the usual topological recursion.
The second implication is that we can generalize the variational formula and use it to define

the free energies in the modified topological recursion. In other words, we have

δΩFg =

∫

∂Ω
ω̂

(g)
1 (p)Λ(p) , g ≥ 1 , (3.76)

δΩiδΩjδΩkF0 =

∫

∂Ωi

Λj(p1)

∫

∂Ωj

Λj(p2)

∫

∂Ωk

Λk(p3)ω̂
(0)
3 (p1, p2, p3) . (3.77)

Since the free energies given by the topological recursion are supposed to be identified with the
free energies of the closed topological string, the formulae above give us the means to compute
the latter by the modified topological recursion.

By plugging in the recursion formula for computing ω
(1)
1 , the genus one free energy is found

to be

F1 =
1

24Nr,s
ln

(
τ12
B

∏

i

β′(ai)

β(ai)α(ai)

)
. (3.78)

The symbol τB stands for a function over the moduli space of the spectral curve C,12 and it is

12 Strictly speaking τB is a function on the moduli space of the branched covering α : C → P1. We refer readers
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characterized by its derivative with respect to branch points α(ai)

∂ ln τB
∂α(ai)

= Res
q→ai

B̂r,s(q, q̄)

dα
. (3.79)

Besides the derivative β′(ai) in eq. (3.78) is with respect to the local coordinate zi in the
neighborhood of the i–th ramification point ai defined by

α = α(ai) + z2
i . (3.80)

We point out that the expression of the genus one free energy given by eq. (3.78) should also
be valid in the usual topological recursion when it is applied to spectral curves in type B
topological string (i.e. in the B–model remodelling as in refs. [113, 156]), with Nr,s = 1 and
with the Bergman kernel replacing the calibrated annulus kernel in eq. (3.79).

By plugging in the recursion formula for ω
(0)
3 the variational formula for the planar free energy

in eq. (3.77) can be simplified

δΩiδΩjδΩkF0 =
1

Nr,s

∑

`

Ωi(a`)Ωj(a`)Ωk(a`)α(a`)β(a`)

d2α(a`)/dβ2
. (3.81)

The triple derivative of the planar free energy is also called the Yukawa coupling. Remarkably
the above formula shows the computation of the Yukawa coupling does not require the know-
ledge of the calibrated annulus kernel and we need only the differential Ω which encodes the
deformation of the AV spectral curve. We will exploit this point in section 3.3.3 to compute
extensively the Yukawa couplings up to the normalization factor NK even from AV spectral
curves of hyperbolic knots, for which we do not have the knowledge of the calibrated annulus
kernels yet.

In the next two subsections we verify the modified topological recursion by computing the
normalized correlation differentials and the free energies respectively for branes associated to
(torus) knots.

3.3.2 Computing Correlation Differentials

In this subsection we take the example of the AV spectral curve eq. (3.16) for the trefoil torus
knot with framing r · s = 6 and compute the normalized correlation differentials, taking the
results from [170]. Since the calibrated annulus kernel we used in the computation is very
lengthy, we relegate it to Appendix B.

The planar three–point correlation differential is computed by eq. (3.45), with the Bergman
kernel in the recursion kernel replaced by the calibrated annulus kernel. The formula can be
simplified to

ω̂
(0)
3 (p1, p2, p3) =

1

N2,3

∑

i

Res
q→ai

B̂r,s(p1, q)B̂r,s(p2, q)B̂r,s(p3, q)α(q)β(q)

dα(q)dβ(q)
, (3.82)

where we have included the normalization factor N2,3 = 3. The result is a symmetric tridif-
ferential. We expand it in terms of α1, α2, and α3 and record the coefficients with the same

to ref. [170] and reference therein.
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notation as in eq. (3.34) after rescaling αµ → Q5αµ, µ = 1, 2

p(3) =− 7200 + 24192Q− 31536Q2 + 19980Q3 − 6264Q4 + 864Q5 − 36Q6 ,

p(2,1) =− 302400 + 1378944Q− 2624832Q2 + 2699424Q3 − 1620216Q4 + 570960Q5

− 112320Q6 + 10800Q7 − 360Q8 ,

p(1,2) =− 12700800 + 73156608Q− 183145536Q2 + 261128448Q3 − 233372160Q4

+ 135520560Q5 − 51246720Q6 + 12283200Q7 − 1749600Q8 + 129600Q9

− 3600Q10 . (3.83)

The coefficient function p~k encodes the numbers of worldsheet instantons with boundary data ~k.

Similar to the calibrated annulus kernel discussed in section 3.2.4, the tridifferential ω̂
(0)
3 (p1, p2, p3)

also encodes the numbers of planar worldsheet instantons with three boundary components
stretched between the branes L2,3 and their images ι(L2,3) under the involution map of eq. (3.28).
To access this data, we do the change of variables α3 = Q5/α̃3, β3 = 1/(Qβ̃3) on the third inser-

tion point in ω̂
(0)
3 (p1, p2, p3) and expand it in terms of α1, α2, and α̃3. We record the coefficients

with the notation in line with section 3.2.4, after rescaling αµ → Q5αµ, µ = 1, 2

p(2),(1) =432Q− 1224Q2 + 1296Q3 − 612Q4 + 108Q5 ,

p(1,1),(1) =18144Q− 72576Q2 + 118944Q3 − 101952Q4 + 47880Q5 − 11520Q6 + 1080Q7 ,

p(2),(0,1) =8064Q− 33264Q2 + 56160Q3 − 49824Q4 + 24624Q5 − 6480Q6 + 720Q7 . (3.84)

For instance p(1,1),(1) encodes the numbers of worldsheet instantons with winding numbers 1
and 2 on one stack of branes and winding number 1 on the other stack of branes.

We also compute the normalized genus one one–point correlation differential by eq. (3.44)
with necessary adaptation. We expand the result in terms of α and record the coefficients after
rescaling αµ → Q5αµ, µ = 1, 2 in the following

p(1) = 1
24(22− 21Q−Q2) ,

p(0,1) = 1
12(1722− 3752Q+ 2625Q2 − 620Q3 + 25Q4) ,

p(0,0,1) = 1
24(213213− 719433Q+ 940500Q2 − 595980Q3 + 185850Q4 − 25074Q5

+ 924Q6) . (3.85)

These polynomials encode the numbers of worldsheet instantons of genus one and with one
boundary component.

The polynomials p~k and p~k,~k′ should be identical with the connected vevs W(c)
~k

and W(c)
~k,~k′

of the Wilson loop along the trefoil knot in the U(N) Chern–Simons theory according to the
Ooguri–Vafa conjecture. Since the quantum knot variants of the trefoil torus knot including
those colored in composite representations of U(N) are known, the connected vevs can be
computed explicitly, and they do match the results presented above. This provides a nontrivial
check for the validity of the modified topological recursion applied to branes associated to torus
knots.
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3.3.3 Computing Free Energies

With the AV spectral curve for the trefoil torus knot and the calibrated annulus kernel B̂2,3(p1, p2)
we can also compute the free energies Fg using the variational formulae in eqs. (3.76), (3.77).
We vary the complex structure of the spectral curve by an infinitesimal deformation

t→ t+ δt (3.86)

and consequently Q = e−t → Q−Qδt. The variations of the free energies on the left hand side
of eqs. (3.76), (3.77) are then simply derivatives with respect to the modulus t. We postulate
that these free energies Fg coincide with the free energies of the type A closed topological string
(in the holomorphic limit) on the resolved conifold, and as such they should not depend on the
framing of the probing Lagrangian branes associated to knots.

It turns out that with an arbitrary framing f retained throughout the computation, we get
the following genus one free energy

∂

∂t
F1 = 2πi

(
Q

12(1−Q)
+
f3 − 4f2 + 28f − 69

72f(f − 3)

)
. (3.87)

The first term is framing independent and it does coincide with the derivative of the genus one
free energy (in the holomorphic limit) of the type A close topological string on the resolved
conifold! The second term depends on the framing and is absent in the type A closed topolo-
gical string theory. We interpret it as a classical ambiguity due to the noncompactness of the
background geometry. Furthermore the planar free energy, or rather the Yukawa coupling, is
computed to be

∂3

∂t3
F0 = (2πi)3

(
Q

1−Q +
f3 + f2 − 5f + 3

3f(f − 3)

)
. (3.88)

Here again the first term is framing independent, and it coincides with the Yukawa coupling
of the type A topological string on the resolved conifold. The second term as the classical
ambiguity again depends on the framing.

Up to now we have been providing evidence for the validity of the modified topological
recursion for branes associated to torus knots in both the open string and the closed string
sectors. Here we take a leap of faith and conjecture that the modified topological recursion
works for branes associated to hyperbolic knots as well. We are encouraged by the observation
that the modified topological recursion can produce the correct Yukawa couplings from the AV
spectral curves of hyperbolic knots. Indeed, although we do not know yet how to compute
the calibrated annulus kernel for hyperbolic knots, we can still compute the Yukawa couplings
from their AV spectral curves since the computation of the Yukawa coupling does not require
the knowledge of the calibrated annulus kernel. We perform the computations for the four
hyperbolic knots denoted in the knot theory by 41,52,61, and 62 with a generic framing13. The
planar projection graphs of these knots are included in Fig. B.1. We list the Yukawa couplings
computed from these hyperbolic knots in Tab. 3.1, including the unknown normalization factor
NK (ignore the last column of the table for the moment).

13 With a generic framing, the AV spectral curve of a knot has a fixed number of ramification points with respect
to the projection onto the α plane. However there may exist several bad framings with which the AV spectral
curve has a reduced number of ramification points as some of them are sent to the punctures at infinity. In
these cases the topological recursion would fail to compute the correct free energies. This phenomenon was
first observed in ref. [187] and then fully explained in ref. [170].
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knot Yukawa coupling normalization

41 (2πi)3 3
N41

Q
1−Q + classical terms 3

52 (2πi)3 3
N52

Q
1−Q + classical terms 3

61 (2πi)3 3
N61

Q
1−Q + classical terms 3

62 (2πi)3 5
N62

Q
1−Q + classical terms 5

Table 3.1: The Yukawa coupling (triple derivative of the planar free energy) computed from the AV
spectral curves of four hyperbolic knots

Note that up to the ambiguous classical terms, all these Yukawa couplings are proportional
to the Yukawa coupling of the type A topological string on the resolved conifold. This lends
support to our conjecture that extends the validity of the modified topological recursion over
hyperbolic knots. In other words, we would be able to compute all the other symplectic invari-
ants for branes associated to hyperbolic knots, had we known the calibrated annulus kernels in
addition to the AV spectral curves. These kernels are by definition the pure generating func-
tions of the worldsheet annulus instantons, and they differ from the Bergman kernels on the AV
spectral curves. Furthermore we propose that the normalization factors NK should be such that
the Yukawa couplings are exactly the same as the Yukawa coupling of the closed topological
string. For the four hyperbolic knots, we record the conjectured normalization factors in the
last column of Tab. 3.1. We notice that unlike the cases of torus knots, these normalization
factors are not half of the numbers of the ramification points of the spectral curves with respect
to the projection onto the α plane. For instance the normalization factor for the figure eight
knot 41 is 3, while one can check there are 10 ramification points14 on the AV spectral curve
of the figure eight knot with respect to the projection onto the α plane.

3.4 Implications for and from Knot Theory

In this subsection we discuss some implications of our work for and from the knot theory. To
stress the connection with the knot theory, here we will always use the name (colored) HOMFLY
invariants instead of quantum knot invariants.

We see from the construction of Aganagic and Vafa [173] in section 3.1.2 that we only need
the knowledge of HOMLFY invariants of a knot colored in symmetric representations to derive
the AV spectral curve. On the other hand, we can build the calibrated annulus kernel once we
know the numbers of worldsheet annulus instantons, which can be extracted using the Ooguri–
Vafa conjecture from colored HOMFLY invariants of the knot in question. It can be shown
that for this purpose we only need the subset of HOMFLY invariants colored in representations
whose associated Young diagrams have at most two rows [170]. Once we have the AV spectral
curve and the calibrated annulus kernel, assuming our conjecture that the modified topological
recursion works for the branes associated to an arbitrary knot (including hyperbolic knots) is

14 As mentioned in footnote 13 on page 95, with some bad framings the number of ramification points is reduced.
For the figure eight knot, the bad framings are −2, 0, and 2, with which the number of ramification points is
reduced to 8.
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Figure 3.5: The mutant pair of the Kinoshita–Terasaka knot (left) and the Conway (right) knot. From
wikipedia.

correct, we can compute all the correlation differentials, from which we can extract using the
Ooguri–Vafa conjecture in the reverse direction all the colored HOMFLY invariants of the knot
in question. In summary we have the following flows of information

HOMFLYs of K colored
in one row irreps

HOMFLYs of K colored
in two row irreps

AV spectral curve

calibrated
annulus kernel

HOMFLYs of K colored
in any irrep

Therefore, a natural corollary of our conjecture is that the information of the full set of HOM-
FLY invariants can be deduced from the subset containing only HOMFLY invariants colored
in at most two row representations.

We have noted in section 2.3.2 that one of the goals in the knot theory is to design a knot
invariant which is cable of distinguishing apart all knots. In other words, given an arbitrary
pair of two topologically distinct knots, their associated knot invariants should be different.
Such a knot invariant is called complete. A complete knot invariant is difficult to find. And
even if a knot invariant can distinguish all the knot pairs people can think of, it is still far from
proving that this knot invariant is in fact complete. A simple test for a complete knot invariant
is to check whether it can distinguish mutant pairs.

The mutant partner of a knot is given as follows. We pick a tangle of the knot, which is a part
of the knot contained in a disk in the planar projection graph connected to the rest of the knot
by four strands (see for instance the part inside the red circle in either of the two diagrams in
Fig. 3.5). There are two reflections of the disk, i.e. horizontally and vertically, which exchange
pairs of neighbouring endpoints of the tangle. Then a mutant partner of the knot is obtained
by performing either of the two reflections, or the composition of the two reflections, which
amounts to a 180◦ rotation of the disk, and gluing the tangle back to the rest of the knot. For a
simple knot, its mutant partner is itself. The simplest mutant pair of distinct knots have both
11 crossings, and the two knots are called the Conway knot and the Kinoshita–Terasaka knot
respectively (see Fig. 3.5). Many knot invariants, including the HOMFLY invariant colored
in the fundamental representation (the original HOMFLY invariant), the Jones polynomial,
and the Alexander polynomial15 fail the test of distinguishing the Conway/Kinoshita–Terasaka

15 For an introduction to these knot invariants we refer to the interesting book [117]. In this thesis we are only
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mutant pair. In fact it was proved by Morton and Cromwell [188] that a HOMFLY knot
invariant colored in any symmetric representation cannot distinguish mutant pairs16. On the
other hand it has been conjectured (see for instance [189]) that the full set of all colored
HOMFLY invariants is a complete knot invariant. It means that there exists a HOMFLY
invariant colored in some representation which can distinguish mutant pairs. Combined with the
chart of information flows earlier in this subsection, our conjecture of the modified topological
recursion would indicate that the HOMFLY invariant colored in some two row representation
should be able to distinguish mutant pairs. Indeed the mutant pair of the Conway knot and the
Kinoshita–Terasaka knot can be distinguished by the representation associated to the partition
(2, 1) [188]. Furthermore, given the different roles in distinguishing mutant pairs played by the
HOMFLY invariants colored in symmetric and two row representations, one is naturally lead
to the conclusion that at least for knots with mutant partners it is not possible to derive the
calibrated annulus kernel from the AV spectral curve itself alone. The calibrated annulus kernel
may well be truly an input of the modified topological recursion independent of the AV spectral
curve.

interested in (colored) HOMLFY invariants.
16 A theorem in ref. [188] states that a HOMFLY invariant colored by a representation R is incapable of distin-

guishing mutant pairs if the decomposition of the tensor product R ⊗ R has no repeated summands. This is
certainly the case for any symmetric representation.
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CHAPTER 4

Knot Invariants and RCFT

After verifying the validity of the modified topological recursion for torus knots, naturally the
next step is to check our conjecture extending the validity of the modified topological recursion
over hyperbolic knots. For this purpose, two inputs are required, the AV spectral curve and the
calibrated annulus kernel. The former can be easily computed with Ng’s algorithm for augment-
ation varieties, assuming the conjecture that AV spectral curves and augmentation varieties are
identical is valid. The latter is much more difficult to obtain. There is no longer BEM Bergman
kernel from which we can derive the annulus kernel. Instead one hopes to construct the annulus
kernel as the generating function of worldsheet annulus instanton numbers, which in turn are
extracted via the Ooguri–Vafa duality map from the HOMFLY knot invariants colored in one–
or two–row representations (c.f. discussion in section 3.4)1.

Computation of colored HOMFLY invariants of hyperbolic knots in one–row representations,
i.e. totally symmetric representations, have been studied extensively [118, 124, 125, 166–169].
On the other hand, computation of colored HOMFLY invariants of hyperbolic knots in two–row
or more general non–symmetric representations remains a difficult problem, and up to now it
has only been approached in refs. [190, 191]. Here we provide methods and tools to compute
these knot invariants for a large variety of hyperbolic knots. The key step in our method turns
out to be the computation of crossing matrices, or fusion matrices, in ŝu(N)k WZW models. For
generic N , the crossing matrices have only been computed for simple representations. Recently
the values of the crossing matrices which only involve symmetric representations have been
conjectured in ref. [192]. The crossing matrices in fact are proportional to quantum 6j–symbols
in Uq(slN ) quantum group. Inspired by methods for computing Racah 6j–symbols in classical
Lie algebra su(N) [193, 194], we use the bootstrap strategy to compute values of quantum 6j–
symbols involving relatively small but arbitrary representations. Equipped with the knowledge
of these quantum 6j–symbols and consequently the corresponding crossing matrices, we are
able to compute as the first step colored HOMFLY invariants of hyperbolic knots in the
representation.

Clearly the values of crossing matrices should be useful beyond the application here for com-
puting colored HOMFLY invariants. They may find applications directly in the ŝu(N)k WZW
models. Furthermore, the classical limit of these crossing matrices can be used to compute
group factors of scattering amplitudes [195, 196].

The outline of this chapter is as follows. We review the method to compute colored HOM-
FLY invariants for a large variety of knots in section 4.1. It enables us to write down the

1 Recall that to verify the modified topological recursion is essentially is to verify the Ooguri–Vafa conjecture.
However using the Ooguri–Vafa duality map to compute partially the inputs of the modified topological
recursion does not make the whole process of verification tautological. In principle one can compute infinitely
many correlation differentials to compare with HOMFLY invariants colored in beyond two–row representations.
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(a) 41 (b) 31

Figure 4.1: A quasi–plat presentation of 41 and a plat presentation of 31.

computational formulae whose only unknown components are the crossing matrices. The re-
lation of the crossing matrices in ŝu(N)k WZW models and quantum 6j–symbols in quantum
group Uq(slN ) are explained in section 4.2. We also discuss the rich symmetry properties of the
quantum 6j–symbols. These symmetry properties become the pillars of the bootstrap strategy
for computing the values of the quantum 6j–symbols, which is described in section 4.3. Sec-
tion 4.4 lists the results and discusses some properties of the colored HOMFLY invariants we
have computed.

4.1 Braiding Method

4.1.1 Basic Ideas

First we describe the type of (hyperbolic) knots for which we can compute colored HOMFLY
invariants. As we mentioned in section 2.3.2, a knot may be represented by its planar projection
graph. A particular type of planar projection graph is called the quasi–plat presentation. It
consists of a braid with even number of strands in the middle (all the strands in a braid flow
in one direction; no strand should turn back at any point in a braid), and all the strands of
the braid close off pairwise at either end of the braid (see Fig. 4.1a for an example). If in
addition on both ends the (2i − 1)–th strand is joined with the 2i–th strand, i = 1, 2, . . ., the
planar projection graph is called a plat presentation (see Fig. 4.1b for an example). A knot may
have more than one quasi–plat presentation. If the minimal number of strands in quasi–plat
presentations of a knot is 2m, its bridge index is defined to be m. We will call a knot with bridge
index m an m–bridged knot. The only 1–bridged knot is unknot. 2–bridged knots include (2, s)
torus knots and infinitely many hyperbolic knots. We will only be computing colored HOMFLY
invariants for 2–bridged knots using their quasi–plat presentations with four strands2.

We will be using the surgery technique for computing colored HOMFLY invariants/quantum
knot invariants in U(N) Chern–Simons theory introduced by Witten [20]. In section 2.3.3 we
covered its general idea and its application for unknot and torus knots. The surgery technique
was adapted by refs. [124, 166, 197] to compute colored HOMFLY invariants for 2–bridged

2 The possible extension of the method described here to compute knots with bridge index three or more can
be found in ref. [169].
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knots colored mostly in symmetric/anti–symmetric representations. We refined their method
in ref. [119] so that HOMFLY invariants colored in nonsymmetric representations can also
be dealt with. Here we stress that the colored HOMFLY invariant is a function of q and λ,
and the functional form of the knot invariant does not depend on the values of N and k.
Therefore we can choose appropriate limits of k and N to facilitate the computation of the
functional forms of the knot invariants. As noted in the footnote 30 on page 42, in the limit
k → ∞ that we will be working with, the highest weight integrable representations (these are
the representations of the WZW primaries) of the affine Lie algebra ŝu(N)k can be identified
with the irreducible representations of the simple Lie algebra su(N), and the fusion algebra in
ŝu(N)k WZW model behaves the same as the tensor products in su(N). In the chapter we will
not distinguish between representations of the two algebras, as well as between fusion algebra
and tensor products.

Given a quasi–plat presentation of a 2–bridged knot K, it is natural to cut the S3 in a way
such that the four strands of the quasi–plat presentation pass through the shared boundary Σ
of the two three–manifolds M1 and M2 transversely (see Fig. 4.2). Let us call the partial knot
inside M1 or M2 a tangle. The tangle can be made more complicated by a braiding operation
(see Fig. 4.4), which winds two neighboring strands around each other once to produce a new
crossing. On the other hand the braiding operations are effectively quantum operators acting
on the Hilbert space H(Σ) on the boundary Σ. Let us call them simply braiding operators.
An ideal basis of H(Σ) consists of eigenstates of the braiding operators. The idea to compute
the colored HOMFLY invariants of K is then as follows. We first cut the S3 near the top of
the quasi–plat presentation, so that the simple tangle in M1 does not contain any crossing.
The associated quantum state can be easily decomposed in terms of the ideal basis, as we
will demonstrate in the next subsection. Apply successive braiding operations according to
the quasi–plat presentation, until all the crossings have been accounted for. Effectively we are
moving the boundary Σ downwards through all the crossings. Finally we take the inner product
of the resulting quantum state associated to the now complicated tangle inM1 with the quantum
state associated to the simple tangle at the bottom of the quasi–plat presentation inside M2,
which gives us the colored HOMFLY invariant. This computational procedure is illustrated in
Fig. 4.2. In the computation the framing of the knot is given by minus the writhe w of the
quasi–plat presentation, and the latter is defined by the number of overcrossings subtracted by
the number of undercrossings

w = #(overcrossing)−#(undercrossing) . (4.1)

One can use the framing transformation formula eq. (2.138) to convert the computed colored
HOMFLY invariant to any framing that one desires.

For this braiding method to work, we need to find the ideal basis, clarify the action of the
braiding operations on the states in the ideal basis, and understand how to decompose the
quantum states associated to simple tangles in terms of the ideal basis. These are explained in
the next subsection.

4.1.2 Eigenstates of Braiding Operators

We know from section 2.3.3 that the basis states in H(Σ) correspond one–to–one with con-
formal blocks in ŝu(N)k WZW models. Since there are three different ways to write down
conformal blocks corresponding to t–channel, s–channel, and u–channel respectively, there are

101



Chapter 4 Knot Invariants and RCFT

braidings

simple top

configuration

(conjugate of)

simple top

configuration

Figure 4.2: A quasi–plat presentation can be split into two simple tangles at the top and the bottome
and the braidings in the middle.

R1 R2 R3 R3

t

r4 r3

(a) t–channel

s

R1 R2 R3 R3

r2

r1

(b) s–channel

Figure 4.3: Four–point conformal blocks in t–channel and s–channel respectively.

correspondingly three different bases of H(Σ). We will see that the two bases corresponding
to t– and s–channels as shown in Fig. 4.3 are the ideal bases, and we call them the t–basis
and the s–basis respectively. The basis states in each basis are labelled by the intermediate
WZW primary and the two multiplicity labels at the two vertices. We will represent a WZW
primary by its associated representation of the affine Lie algebra ŝu(N)k. In the t–basis, a

basis state is denoted by |φ(1)
t,r3,r4

(R1, R2, R3, R4)〉, and the corresponding conformal block is
given in Fig. 4.3a. Here the four WZW primaries at the four legs of the conformal block are
colored in four arbitrary representations R1, R2, R3, R4 to keep the discussion generic. In the
computation of colored HOMFLY invariants for knots, the representation at each leg can be
either R that colors the knot, or the conjugate representation R, depending on at the associated
puncture on the boundary Σ whether the strand enters or exits the three–manifold M1. The
intermediate state t should satisfy t ∈ (R1×R3)∩(R3×R4), belonging to both fusion decompos-
itions. The multiplicity labels r3 or r4 take values in 0, 1, . . . ,N t

R1R2
−1 and 0, 1, . . . ,N t

R3R4
−1

respectively, where N t
R1R2

or N t
R3R4

are the corresponding fusion coefficients. Similarly, we de-

note a basis state in the s–basis corresponding to the s–channel conformal block in Fig. 4.3b by

|φ(2)
s,r1,r2(R1, R2, R3, R4)〉, with the intermediate state s ∈ (R2×R3)∩(R1×R4), and multiplicity

labels r1, r2.

Braiding operations are classified by the strands they wind around each other and the direc-
tions of the winding. We use symbol b+` (` = 1, 2, 3) to denote the braiding operation that when
viewed from top (from inside M1 toward Σ) winds clockwise the `–th and the (`+1)–th strands
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4.1 Braiding Method

`+ 1`

· · · · · ·

(a) b+`

` `+ 1

· · · · · ·

(b) b−`

Figure 4.4: Two braiding operations b+i and b−i with opposite directions.

0 x 1 ∞

t

r4 r3

Figure 4.5: The monodromy of the 4–point conformal block in the t–channel.

together (Fig. 4.4a) as well as the associated quantum braiding operator, and b−` the braiding
operation that winds anticlockwise the two strands together (Fig. 4.4b) as well as the associated
quantum braiding operator. Since the conformal blocks in the t–channel are invariant when
two legs on one side (R1 and R2 or R3 and R4) are swapped, the basis states in the t–basis
are eigenstates of b±1 , b

±
3 . On the other hand, the conformal blocks in the s–channel do not

change when the two central legs are swapped. Accordingly the basis states in the s–basis are
eigenstates of b±2 . The eigenvalues of the braiding operations can also be easily determined. In
the example of a conformal block in the t–channel, we can use conformal symmetry to send the
first, third, and fourth legs to 0, 1,∞ respectively, and label the position of the second leg x.
The conformal block then has the following form [120]

F21
34 (x|t) = xht−hR1

−hR2 · P (x) , (4.2)

where ht, hR1 , hR2 are conformal weights, and P (x) is a polynomial of x. Clearly when we wind
the point x around the point 0 and back to the original position (Fig. 4.5), the conformal block
has the monodromy

F21
34 (x|t) 7−→ q±(Ct−CR1

−CR2
)F21

34 (x|t) , (4.3)

because
e2πihR = e2πi·CR/(k+N) = qCR (4.4)

and the sign ± depends on the direction of the winding. A b±1 braiding operation amounts to
moving x half way around 0, so the eigenvalue of b±1 should be the square root of the monodromy.
In general, the eigenvalue of a braiding operator is

b±` : λ±Ri,Rj ;Rk,r = {Ri, Rj , Rk, r}q±(CRi+CRj−CRk )/2
, ` = 1, 2, 3 . (4.5)

Here Ri, Rj are the representations of the WZW primaries at the two legs being wound together.
Rk is the representation of the intermediate WZW primary the two Ri and Rj primaries are
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R1

r4

R2

R4

r3

R3

t
=

∑
s,r1,r2

at,r3r4s,r1r2

[
R1 R2

R3 R4

]
·

R2

r1

R3

R1

r2

R4

s

Figure 4.6: t– and s–channel conformal blocks are related by a crossing matrix.

fusioned into, and r is the associated multiplicity label. The phase factor {Ri, Rj , Rk, r} is the
3j–phase in su(N), which is the phase that arises in front of the Clebsch–Gordan coefficient
〈rRkmk|RimiRjmj〉 when the two representations Ri and Rj are exchanged,

〈rRkmk|RimiRjmj〉 = {Ri, Rj , Rk, r}〈rRkmk|RjmjRimi〉 . (4.6)

Here mi refers to a state in the representation Ri. The 3j–phase can only take the value of ±1,
and its value is not changed if all three representations are replaced by their conjugates.

{Ri, Rj , Rk, r} = {Ri, Rj , Rk, r} . (4.7)

Furthermore we have conjugated Rk in the notation of 3j–phase to emphasize that the three
representations Ri, Rj , Rk constitute a triad, meaning that the tensor product of them contains
the singlet

Ri ⊗Rj ⊗Rk 3 1 . (4.8)

Then it is easy to see the 3j–phases satisfy the permutation symmetry

{Ri, Rj , Rk, r} = {σ(Ri), σ(Rj), σ(Rk), r}, σ ∈ S3 . (4.9)

The values of 3j–phases are largely unfixed, except for when two of the three representations
are identical. In this case, the value {R,R,Rk, r} is fixed by group theoretical considerations

{R,R,Rk, r} =





+1, Rk ∈ Sym2R

−1, Rk ∈ ∧2R

0, otherwise

. (4.10)

If no two representations are identical, we have the freedom to choose the sign of the 3j–phase.
When r = 0 the multiplicity label is often omitted in the notation. Furthermore if one of the
three representations is singlet, we use the shorthand notation

{R,R,1} = {R} (4.11)

and call it a 2j–phase. A consistent convention for the signs of 3j–phases and 2j–phases will
be given in section 4.3.1.

Coming back to the formula of the eigenvalues of the braiding operators in eq. (4.5). Com-
bining it with the fact that the basis states in the t–basis of H(Σ) are eigenstates of b±1 , b

±
3 , and
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4.1 Braiding Method

the basis states in the s–basis of H(Σ) are eigenstates of b±2 , we can write down concretely the
eigenvalue equations

b±1 |φ
(1)
t,r3r4

(R1, R2, R3, R4)〉 = λ±R1,R2;t,r4
|φ(1)
t,r3r4

(R1, R2, R3, R4)〉 ,
b±2 |φ(2)

s,r1r2(R1, R2, R3, R4)〉 = λ±R2,R3;s,r1
|φ(2)
s,r1r2(R1, R2, R3, R4)〉 ,

b±3 |φ
(1)
t,r3r4

(R1, R2, R3, R4)〉 = λ±
R3,R4;t̄,r3

|φ(1)
t,r3r4

(R1, R2, R3, R4)〉 .
(4.12)

Since the braiding operators b±1 , b
±
3 and b±2 have different eigenstates, when we apply successively

braiding operations according to the quasi–plat presentation of a knot, we usually need to
switch between the t–basis and the s–basis. The t–channel and the s–channel conformal blocks
are related to each other by the crossing matrices (also called fusion matrices, see Fig. 4.6).
Correspondingly in H(Σ) these crossing matrices serve as the transition matrices between the
two bases

|φ(1)
t,r3r4

(R1, R2, R3, R4)〉 =
∑

s,r1,r2

at,r3r4s,r1r2

[
R1 R2

R3 R4

]
|φ(2)
s,r1r2(R1, R2, R3, R4)〉 , (4.13)

The crossing matrices satisfy the unitarity relation

∑

t,r3,r4

at,r3r4s,r1r2

[
R1 R2

R3 R4

]
at,r3r4
s′,r′1r

′
2

[
R1 R2

R3 R4

]∗
= δs,s′δr1,r′1δr2,r′2 . (4.14)

These crossing matrices are the only unknown ingredients in this program of computing colored
HOMFLY knot invariants. In the simple case when one of the four representations is singlet,
the value of the crossing matrix is known,

a0,00
s,r1r2

[
R1 R1

R2 R2

]
= {R2}{R1, R2, s, r1}

√
dimq s√

dimq R1 dimq R2

δr1,r2 ,

at,r3r40,00

[
R1 R2

R2 R1

]
= {R2}{R1, R2, t̄, r3}

√
dimq t√

dimq R1 dimq R2

δr3,r4 .

(4.15)

Here we use 0 to represent a singlet representation. dimq R is the quantum dimension of the
representation R. We have touched upon the definition of quantum dimension in WZW models
in section 2.3.3 and will also discuss its meaning in quantum group in the next section. The
formulae for computing the quantum dimensions are given in eqs. (A.8),(A.9) in appendix A.
In the generic case, a crossing matrix is difficult to compute. We discuss the computation of
crossing matrices in the next section by exploiting their relations to quantum 6j–symbols in
quantum groups.

Let us assume the crossing matrices are already known. We still need to decompose a quantum
state inH(Σ) associated to a simple tangle in terms of basis states in either the t– or the s–bases.
Let us take the simple tangle inside M1 in Fig. 4.7 as an example. We notice that it is a trivial

eigenstate of the braiding operators b±1 , b
±
3 . Therefore the associated quantum state |Φ(1)

1 〉 is

proportional to |φ(1)
0,00(R1, R1, R2, R2)〉. We fix the proportionality constant by requiring that

the inner product of this state with its own conjugate yields the colored HOMFLY invariant of
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R1 R̄1 R2 R̄2

Figure 4.7: A simple tangle in M1. When glued with its conjugate in M2 (mirror image with the
orientation flipped) we have two disconnected unknots.

two disconnected unknots (Fig. 4.7)

〈Φ(1)
1 |Φ

(1)
1 〉 =WSU(N)

R1
(©)WSU(N)

R2
(©) = dimq R1 dimq R2 . (4.16)

Note the conjugate state is associated to the mirror image of the tangle in M2 with the orient-
ation of the strands reversed. Together with the normalization

〈φ(1)
0,00(R1, R1, R2, R2)|φ(1)

0,00(R1, R1, R2, R2)〉 = 1 , (4.17)

we find
|Φ(1)

1 〉 =
√

dimq R1 dimq R2|φ(1)
0,00(R1, R1, R2, R2)〉 . (4.18)

Now by using appropriate crossing matrix to convert |φ(1)
0,00(R1, R1, R2, R2)〉 to the basis states

in the s–basis, we can easily write down the decomposition of |Φ(1)
1 〉 in terms of the latter. The

crossing matrix involved in the basis transformation involves singlet, so its value is known. In
the end, we have

|Φ(1)
1 〉 =

∑

s,r1,r2

{R2}{R1, R2, s, r1}
√

dimq s δr1,r2 |φ(2)
s,r1r2(R1, R1, R2, R2)〉 . (4.19)

We can use similar analysis to write down the basis decomposition of the quantum states
associated to all possible simple tangles in M1. The results are listed in Tab. 4.1 and Tab. 4.2.
The relative signs between two quantum states are fixed by requiring the inner product of the
two quantum states (one of them is conjugated) yields the correct colored HOMFLY invariant
of the knot obtained by gluing the corresponding two simple tangles together. Sometimes a
braiding operation needs to be inserted in between for the gluing to be possible if the orient-
ations of the strands from the two tangles conflict. Two examples of the gluing process for
normalization, with and without an extra braiding, are given in Figs. 4.8. The result of such a
gluing process is always either a unknot or two disconnected unknots, whose colored HOMFLY
invariants are already known.
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R1 R̄1 R2 R̄2

|Φ(1)
1 〉 =

√
|R1||R2||φ(1)

0,00(. . .)〉
= {R2}

∑

s,r1,r2

{R1, R2, s̄, r2}
√
|s| δr1,r2 |φ(2)

s,r1r2(. . .)〉

R1 R̄1 R̄2 R2

|Φ(1)
2 〉 = {R2}

√
|R1||R2||φ(1)

0,00(. . .)〉
=
∑

s,r1,r2

{R1, R2, s̄, r2}
√
|s| δr1,r2 |φ(2)

s,r1r2(. . .)〉

R̄1 R1 R2 R̄2

|Φ(1)
3 〉 = {R1}

√
|R1||R2||φ(1)

0,00(. . .)〉
= {R1}{R2}

∑

s,r1,r2

{R1, R2, s̄, r2}
√
|s| δr1,r2 |φ(2)

s,r1r2(. . .)〉

R̄1 R1 R̄2 R2

|Φ(1)
4 〉 = {R1}{R2}

√
|R1||R2||φ(1)

0,00(. . .)〉
= {R1}

∑

s,r1,r2

{R1, R2, s̄, r2}
√
|s| δr1,r2 |φ(2)

s,r1r2(. . .)〉

Table 4.1: Depicted are the first four simple tangles in M1 together with the associated quantum states.
The conjugate quantum states are associated to the mirrored tangles in M2 with the orientation of the
strands reversed. We use |R| as a shorthand for dimq R. The ellipses in the parentheses are to be filled
in with appropriate WZW primaries.

R R̄ R R̄
R1 R̄2

Figure 4.8: Two examples of gluing a pair of simple tangles together. In the right diagram, a braiding
has to be inserted. This kind of diagrams is used to fix the relative phases between the quantum states
associated to different simple tangles.

4.1.3 Summary

We have described all the ingredients needed in the surgery computation of colored HOMFLY
invariants using the quasi–plat presentations of the knots. Let us summarize the procedure of
the computation.

• Given an arbitrary knot K with bridge index two, draw a quasi–plat presentation. Cut the
three–sphere containing the knot to three parts: two hemispheres containing the simple
tangles at the top and the bottom, and the cylinder containing the braid of the quasi–plat
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R1 R̄2 R2 R̄1

|Φ(2)
1 〉 = {R1}{R2}

√
|R1||R2||φ(2)

0,00(. . .)〉
= {R1}

∑

t,r3,r4

{R1, R2, t̄, r4}
√
|t| δr3,r4 |φ(1)

t,r3r4(. . .)〉

R1 R̄1R2 R̄2

|Φ(2)
2 〉 = {R1}

√
|R1||R2||φ(2)

0,00(. . .)〉
= {R1}{R2}

∑

t,r3,r4

{R1, R2, t̄, r4}
√
|t| δr3,r4 |φ(1)

t,r3r4(. . .)〉

R1R̄1 R̄2 R2

|Φ(2)
3 〉 = {R2}

√
|R1||R2||φ(2)

0,00(. . .)〉
=
∑

t,r3,r4

{R1, R2, t̄, r4}
√
|t| δr3,r4 |φ(1)

t,r3r4(. . .)〉

R̄1 R2 R̄2 R1

|Φ(2)
4 〉 =

√
|R1||R2||φ(2)

0,00(. . .)〉
= {R2}

∑

t,r3,r4

{R1, R2, t̄, r4}
√
|t| δr3,r4 |φ(1)

t,r3r4(. . .)〉

Table 4.2: The second four simple tangles in M1 and the quantum states associated to them. The
conjugate quantum states are associated to the mirrored tangles in M2 with the orientation of the strands
reversed. |R| is short for dimq R. The ellipses in the parentheses are to be filled in with appropriate
WZW primaries.

presentation (Fig. 4.2).

• Decompose the quantum state associated to the simple tangle at the top in terms of the
t–basis or the s–basis, depending on whether the first braiding operation in the braid is
b±1 , b

±
3 or b±2 . This can be done by simply looking up in Tab. 4.1 and Tab. 4.2.

• Apply successive braiding operations on the quantum state according to the braid of
the quasi–plat presentation. The eigenvalues of the braiding operations are given in
eqs. (4.12). In this process, sometimes one needs to switch from the t–basis to the s–basis
if a b±1 , b

±
3 braiding is followed by a b±2 braiding, or switch from the s–basis to the t–basis if

a b±2 braiding is followed by a b±1 , b
±
3 braiding. The basis transition is given by eq. (4.13).

• When all the crossings in the braid have been accounted for, take the inner product of the
resulting quantum state with the quantum state associated to the simple tangle at the
bottom. The latter can also be decomposed in terms of the t– or the s–bases by looking
up in Tab. 4.1 and Tab. 4.2.

• As discussed in section 2.3.3, this inner product is only the SU(N) part of the quantum
knot invariant. To obtain the colored HOMFLY invariant (U(N) quantum knot invariant),
one needs to multiply the SU(N) invariant with the U(1) invariant given by eq. (2.149).
The latter only depends on the framing of the quasi–plat presentation, which is given by
eq. (4.1).
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• One can apply eq. (2.134) to convert the obtained colored HOMFLY invariant to a different
framing. One can also normalize the colored HOMFLY invariant HR(K) as in eq. (2.142)
to obtain the normalized HOMFLY polynomial HR(K).

4.2 Quantum Group and Quantum 6j–Symbols

As discussed in section 4.1.2, to apply the surgery method described above to compute colored
HOMFLY knot invariants, we need the knowledge of crossing matrices in the ŝu(N)k WZW
model. To compute these crossing matrices, it is beneficial to have some understanding of the
Uq(slN ) quantum group and its representation theory. In this section we mainly follow the
excellent treatment on this subject in ref. [198].

Despite its name, the quantum group Uq(slN ) is an algebra. It can be understood as the
quantum deformation of the universal enveloping algebra U(slN ) of slN , which is the complexi-
fication of the Lie algebra su(N). Some explanations are in order. The universal enveloping
algebra U(slN ) is the unital associative algebra of (finite) formal power series generated by the
generators of the simple Lie algebra slN , subject to the relations given by the commutators of
these generators, which coincide with the corresponding Lie brackets of slN . In the simplest
example, the Lie algebra sl2 has three generators E,F,H and the Lie brackets

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H . (4.20)

The universal enveloping algebra U(sl2) is an associate algebra with multiplicative unit 1 and
three generators E,F,H. The three generators satisfy the following relations

HE − EH = 2E, HF − FH = −2F, EF − FE = H . (4.21)

The quantum group Uq(slN ) is obtained by a deformation of the relations of U(slN ) measured
by a formal parameter q such that in the “classical limit” q → 1, the quantum group returns to
the universal enveloping algebra. Continuing with the example of U(sl2), the quantum group
Uq(sl2) has four generators E,F,K,K−1 subject to the relations

K ·K−1 = K−1 ·K = 1

KE = qEK, KF = q−1FK, EF − FE =
K −K−1

q1/2 − q−1/2
. (4.22)

The first relation is trivial. Let us denote K = qH/2. Then it is easy to see the first two relations
in the second row of eqs. (4.22) are implied by the first two relations of U(sl2), while the right
hand side of the last identity in eq. (4.22) is the q–deformed H defined by

[H] =
qH/2 − q−H/2
q1/2 − q−1/2

, (4.23)

and it goes back to H in the classical limit q → 1

K −K−1

q1/2 − q−1/2
= [H]

q→1−−−→ H . (4.24)

We will content ourselves with this heuristic understanding of quantum groups and refrain from
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giving the precise definition of Uq(slN ), which can be found for example in ref. [198]. Next we
proceed to its representation theory3.

Given the similarity between the quantum group Uq(slN ) and the Lie algebra slN , a repres-
entation of Uq(slN ) can be constructed via the same techniques as applied in slN . Namely one
starts with an arbitrary dominant weight as the highest weight and then apply the lowering
operators to find all possible weights in the representation. In fact for a generic value of q which
is not a root of unity, the irreducible representations of Uq(slN ) correspond one–to–one with the
irreducible representations of slN . More interesting case is when q is a root of unity, and it will
be seen shortly this is the case when the quantum group Uq(slN ) is closely related to the ŝu(N)k
WZW model. In this case, the nature of the highest weight representation depends crucially on
the highest weight λ. Suppose q = exp( 2πi

k+N ), and θ is the greatest root of slN . If (λ, θ) 6 k,
the highest weight representation is a usual irreducible representation. If (λ, θ) = 0 mod k+1,
the highest weight representation is irreducible but non–unitarizable, because the states in the
representation have zero norm. Finally for the highest weight representations with (λ, θ) > k
and (λ, θ) 6= 0 mod k + 1, while some of them are also non–unitarizable irreducible represent-
ations, most of them combine with another representation with a different highest weight λ′

to form a reducible yet indecomposable representation. The latter means there is an invariant
subspace in the representation space, but the representation space cannot be decomposed to a
direct sum of invariant subspaces. These peculiarly behaving representations of Uq(slN ) with
(λ, θ) > k are prevalent. They can arise in the decomposition of the tensor product

Ri ⊗Rj =
∑

k

LkijRk , (4.25)

even if both Ri and Rj are unitarizable and irreducible. On the other hand, if either Ri or Rj
is a peculiarly behaving representation, all the representations on the right hand side will be of
this type.

It is easier to organize these representations by the quantum dimension. In quantum group,
the quantum dimension of a representation R with the highest weight λ is defined as the q–
deformation of the dimension of the representation space

dimq R =
∑

λ′∈ΩR

multR(λ′)q(ρ,λ′) , (4.26)

where ΩR is the space of weights in the representation R, and ρ is the Weyl vector. Clearly in
the limit q → 1, the quantum dimension reduces to the usual dimension of the representation
R. One nice property of quantum dimension is that, given the tensor product decomposition
of two representations in eq. (4.25), the quantum dimensions of the representations involved
satisfy the natural identity

dimq Ri · dimq Rj =
∑

k

Lkij dimq Rk . (4.27)

On the other hand, if q is a root of unity, for instance exp( 2πi
k+N ), the quantum dimension is only

finite for the irreducible highest weight representations with (λ, θ) 6 k, and it vanishes for all

3 As explained for example in ref. [198], a technical but important feature of the Uq(slN ) quantum group is that
it remains a so–called Hopf algebra so that tensor products of its representations are well–defined. This is not
the case for a generic algebra.
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R1 R2 R3

R12

R

r12

r

∼

R1 R2 R3

R23

R

r23

r′

Figure 4.9: Diagrammatic illustration of the associativity isomorphism of the truncated tensor products.

the peculiarly behaving representations. Therefore, when both Ri and Rj are unitarizable and
irreducible, we can remove the null contributions of peculiarly behaving representations from
the right hand side of (4.27), and the equality still holds. In other words, we have

dimq Ri · dimq Rj =
∑

k

′Lkij dimq Rk , (4.28)

where
∑′ means only representations with nonzero quantum dimensions are included. This

encourages one to define the truncated tensor product

Ri ? Rj ≡
∑

k

′
(L)kijRk , (4.29)

where Ri, Rj , and Rk are all unitarizable and irreducible representations. It can be shown the
truncated tensor product is also associative.

We will be focusing on the finite (quantum) dimensional highest weight representations of
Uq(slN ). They can also be denoted by partitions or Young diagrams. In fact, we will use the
composite labelling as explained in Appendix A, and use the powers of the representations
(c.f. Appendix A) to partially order them. A bigger representation means higher power, and a
smaller representation lower power.

Now we can state the link between the ŝu(N)k WZW models and the Uq(slN ) quantum
groups. With the dictionary

q = exp

(
2πi

k +N

)
, (4.30)

the WZW primaries correspond one–to–one with the finite (quantum) dimensional represent-
ations of Uq(slN ). Note that the WZW primaries are representations of the affine Lie algebra
ŝu(N)k, and the highest weight integrable representations of the latter also satisfy (λ, θ) 6 k.
Furthermore, the fusion rules of the WZW model are isomorphic with the truncated tensor
products of Uq(slN ), and the crossing matrices of the WZW model are identified with the
(quantum) recoupling coefficients in the quantum group.

The quantum recoupling coefficients characterize the associativity isomorphism

α : (R1 ? R2) ? R3
∼−→ R1 ? (R2 ? R3) . (4.31)

The sequential decompositions of the truncated tensor products on the two sides of the iso-
morphism provide two different bases of the representation space, and the quantum recoupling
coefficients are the linear transformation coefficients of this isomorphism. More concretely, the
coupling of the three states |R1m1〉q, |R2m2〉q, and |R3m3〉q in the three representations R1,
R2, R3 can be decomposed in two different ways. According to the left hand side of eq. (4.31)
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we can first decompose the coupling between the first two states and then with the third state

|R1m1〉q|R2m2〉q|R3m3〉q
=

∑

r12R12m12

|(R1R2), r12R12m12〉q|R3m3〉q · 〈r12R12m12|R1m1, R2m2〉q

=
∑

r12R12m12
rRm

|(R1R2)r12R12, R3, rRm〉q · 〈r12R12m12|R1m1, R2m2〉q

× 〈rRm|R12m12, R3m3〉q . (4.32)

Here 〈r12R12m12|R1m1, R2m2〉q and 〈rRm|R12m12, R3m3〉q are the quantum Clebsch–Gordan
coefficients with respect to the truncated tensor product decomposition. Note that multiple
copies of the state |Rm〉 can appear in the end, and these states are labelled by the intermediate
representation R12 and the two multiplicity labels r12, r from the two truncated tensor products
R1 ?R2 and R12 ?R3 respectively. They furnish an orthonormal basis of the subspace V (R,m)
of the left hand side of eq. (4.31) consisting of the states of the type |Rm〉 only. This is the
case illustrated by the left diagram in Fig. 4.9. On the other hand, we can also follow the right
hand side of eq. (4.31) and decompose the coupling of the last two states |R2m2〉 and |R3m3〉
first

|R1m1〉q|R2m2〉q|R3m3〉q =
∑

R23R23m23
r′Rm

|R1(R2R3)r23R23, r
′Rm〉q · 〈r′Rm|R1m1, R23m23〉q

× 〈r23R23m23|R2m2, R3m3〉q . (4.33)

Thus we find another orthonormal basis of V (R,m) labelled by the intermediate state R23 and
the multiplicity labels r23, r

′ from the truncated tensor productsR2?R3 andR1?R23 respectively.
This is the case illustrated in the right diagram of Fig. 4.9. The quantum recoupling coefficients
〈(R1R2)r12R12, R3; rR|R1(R2R3)r23R23; r′R〉q are the transition coefficients between the two
bases of V (R,m)

|R1(R2R3)r23R23, r
′Rm〉q =

∑

r12R12r

|(R1R2)r12R12, R3, rRm〉q

× 〈(R1R2)r12R12, R3; rR|R1(R2R3)r23R23; r′R〉q . (4.34)

It is customary to normalize a quantum recoupling coefficient

q

{
R1 R2 R12

R3 R R23

}

r′,r23,r,r12

=
{R2}{R1R2R12r12}{R12R3Rr}√

dimq R12 dimq R23

× 〈(R1R2)r12R12, R3; rR|R1(R2R3)r23R23; r′R〉q . (4.35)

and call the left hand side a quantum 6j–symbol. They coincide with the Racah 6j–symbols in
su(N) in the classical limit q → 1. Since the crossing matrices in ŝu(N)k WZW model can be
identified with the quantum recoupling coefficients

〈(R1R2)r12R12, R3; rR|R1(R2R3)r23R23; r′R〉q = aR12,rr12

R23,r′r23

[
R1 R2

R3 R

]
, (4.36)
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and therefore with the quantum 6j–symbols up to the normalization, the problem of computing
crossing matrices in WZW models is converted to computing quantum 6j–symbols in Uq(slN ).

The quantum 6j–symbol

q

{
R1 R2 R12

R3 R R23

}

r′,r23,r,r12

is rather an elegant and convenient notation, as it puts the six representations involved in the
recoupling coefficient on an equal footing. Let us borrow from eq. (4.8) and introduce triads in
Uq(slN ), which now mean three finite (quantum) dimensional representations of Uq(sl)N whose
truncated tensor product contains the singlet. There are four triads involved in the associativity
isomorphism eq. (4.31) (c.f. Fig. 4.9)

R1 ? R23 ? R 3 1r′ , R2 ? R3 ? R23 3 1r23 ,

R12 ? R3 ? R 3 1r , R1 ? R2 ? R12 3 1r12 ,
(4.37)

where we have recorded the multiplicity labels as the subscripts of the singlets. The following
four diagrams,

r′∗ r23∗ r∗ r12

when superimposed on the 6j–symbol, can help us track the four representations in each triad,
together with the given multiplicity label. In these diagrams the symbol ∗ means one has to
conjugate the corresponding representation.

Furthermore the symmetry properties of the recouping coefficients can be cast in simple forms
in terms of quantum 6j–symbols. From the definition of the recoupling coefficients eq. (4.34)
and eqs. (4.32),(4.33), it is easy to see that the quantum recoupling coefficients and therefore
the quantum 6j–symbols can be expressed in terms of quantum Clebsch–Gordon coefficients

〈(R1R2)r12R12, R3; rR|R1(R2R3)r23R23; r′R〉q
=

1

dimq R

∑

m1m2m3
m,m12m23

〈r12R12m12|R1m1, R2m2〉q〈rRm|R12m12, R3m3〉q

× 〈r′Rm|R1m1, R23m23〉∗q〈r23R23m23|R2m2, R3m3〉∗q .

(4.38)

One can derive from this relation abundant symmetry properties of quantum 6j–symbols, which
we list in the following [199]. From now on we will suppress the little q symbol in the notation
of quantum 6j–symbols as well as quantum Clebsch–Gordan coefficients. In addition we will
use the shorthand notation | · | for quantum dimension in the list below.

1. Tetrahedral symmetry

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

=

{
λ2 λ3 λ1

µ2 µ3 µ1

}

r2r3r1r4

={µ1}{µ2}{µ3}{λ1µ̄2µ3r1}{µ1λ2µ̄3r2}

× {µ̄1µ2λ3r3}{λ1λ2λ3r4}
{
λ2 λ1 λ3

µ̄2 µ̄1 µ̄3

}

r2r1r3r4
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λ1

λ3

µ3

µ1

λ2

λ1

ν

µ3

µ1λ3

λ3
µ1

λ1 µ3

µ2

{
λ1 λ2 λ3
µ1 µ2 µ3

}

{
λ1 λ2 λ3
µ̄3 ν µ̄1

} {
µ3 ν λ3

µ1 µ2 λ1

}

Figure 4.10: Diagrammatic illustration of the generalized Racah backcoupling rule. We suppress multi-
plicity labels here.

=

{
λ̄1 µ2 µ̄3

µ̄1 λ2 λ̄3

}

r4r3r2r1

=

{
µ̄1 λ̄2 µ3

λ̄1 µ̄2 λ3

}

r3r4r1r2

=

{
µ1 µ̄2 λ̄3

λ1 λ̄2 µ̄3

}

r2r1r4r3

. (4.39)

We can freely permute the columns, or exchange the rows along two columns, and the
value of the quantum 6j–symbol is not changed up to a sign.

2. Complex conjugation

{
λ1 λ2 λ3

µ1 µ2 µ3

}∗

r1r2r3r4

=

{
λ̄1 λ̄2 λ̄3

µ̄1 µ̄2 µ̄3

}

r1r2r3r4

. (4.40)

3. Unitarity

∑

λ3r3r4

|λ3||µ3|
{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

{
λ1 λ2 λ3

µ1 µ2 µ′3

}∗

r′1r
′
2r3r4

= δµ3µ′3
δr1r′1δr2r′2 . (4.41)

4. The generalized Racah backcoupling rule

q(Cλ1
+Cµ1+Cλ3

+Cµ3 )/2

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

=
∑

νrs

q(Cν+Cλ2
+Cµ2 )/2|ν|{λ3}{λ1µ̄2µ3r1}{µ1λ2µ̄3r2}

· {λ̄1µ1νr}
{
µ3 ν λ3

µ1 µ2 λ1

}

r1rr3s

{
λ1 λ2 λ3

µ̄3 ν µ̄1

}

rr2sr4

. (4.42)

From the WZW model point of view this symmetry means that the conformal blocks of
t–, s– and u–channels are related to each other via the triangular commutative diagram
as shown in Fig. 4.10.
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5. The pentagon relation (Biedenharn–Elliott sum rule)

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

=
∑

λν3
t1t2t3s1s2

|λ3||ν3||λ|{λ1}{ν1}{λ1µ̄2µ3r1}

· {µ1λ2µ̄3r2}{µ̄1µ2λ3r3}{λµ̄1ν1t1}{λµ̄2ν2t2}{λµ̄3ν3t3}

·
{
ν2 µ̄2 λ
µ3 ν3 λ̄1

}

s1r1t3t2

{
ν3 µ̄3 λ
µ1 ν1 λ̄2

}

s2r2t1t3

·
{
ν1 µ̄1 λ
µ2 ν2 λ̄3

}

s3r3t2t1

{
λ1 λ2 λ3

ν1 ν2 ν3

}

s1s2s3r4

. (4.43)

On the right hand side we have the freedom to choose the two representations ν1 and ν2

as long as all the triads in the quantum 6j–symbols involving ν1 and ν2 are valid so that
the right hand side does not vanish identically. This symmetry can be diagrammatically
represented by Fig. 4.11 which looks like a pentagon, hence the name pentagon relation.

6. q–q−1 symmetry. The parameter q only appears in the values of quantum 6j–symbols in
q–deformed numbers, so a quantum 6j–symbol is not changed if q is replaced by q−1.

Most of these symmetry properties degenerate to known symmetry properties of classical
Racah 6j–symbols in the limit q → 1. Note that the last q–q−1 symmetry is trivial in the
classical limit, and it can be regarded as the property unique to quantum groups.

4.3 Computing 6j–Symbols

Since we want to compute colored HOMFLY knot invariants in the representation R = , we
need to know the values of the quantum 6j–symbols of the following two kinds

{
R R̄ ρ1

R R ρ2

}

r1r2r3r4

first kind

{
R̄ R ρ3

R R ρ4

}

r′1r
′
2r
′
3r
′
4

second kind

(4.44)

µ3

µ1

ν1

λ3

µ1

λ1 ν2 ν1

λ3

λ2

µ1

ν2λ1µ3

µ3

µ2

λ

µ1

λ1 ν2 ν1 µ3

λ

λ1 ν2

ν3

ν1

µ1

µ3 λ1

ν3

ν2 ν1

λ

µ1

{
λ1 λ2 λ3
µ1 µ2 µ3

}

Figure 4.11: Diagrammatic illustration of the pentagon relation. Multiplicity labels are suppressed here.

115



Chapter 4 Knot Invariants and RCFT

In general the values of quantum 6j–symbols are only known for the trivial 6j–symbols which
contain the singlet {

λ1 λ2 λ3

λ̄2 λ1 0

}

00rs

=
{λ1λ2λ3 r}√

dimq λ1 dimq λ2

δrs . (4.45)

Note that since we will use composite labelling (like (1; 1)) or sometimes single partitions (like
(2, 1)) to refer to representations of Uq(slN ), the singlet is denoted by (0; 0) or 0. These values
of trivial quantum 6j–symbols are consistent with the values of crossing matrices in eq. (4.15).
On the other hand, it was pointed out in ref. [199] that the bootstrap method developed in
refs. [193, 200, 201] for computing classical Racah 6j–symbols of su(N) can be adapted to
compute values of generic quantum 6j–symbols, and examples were given for Uq(sl2). We
generalized the method and computed quantum 6j–symbols for Uq(slN ) in ref. [119]. The idea
is to exploit the symmetry properties of quantum 6j–symbols in a systematic way to constrain
the values of 6j–symbols or to relate them to the trivial 6j–symbols. Before embarking on the
exposition of the bootstrap method in sections 4.3.3 and 4.3.4, we first clarify some technical
points here, and later discuss in section. 4.3.2 an expedient way to reduce the numbers of
quantum 6j–symbols that need to be bootstrapped.

First, as argued in the beginning of section 4.1.1, we can work in the convenient limit where
k is large. In this case, there is no difference between representations of Uq(slN ) and the
representations of su(N) with not too high powers, as well as between truncated tensor products
in Uq(slN ) and tensor products in su(N).

Second, we will not be applying the original form of the generalized Racah backcoupling
rule where the formal parameter q appears explicitly. Instead by using the q–q−1 symmetry of
quantum 6j–symbols, we can cast the generalized Racah backcoupling rule in a form where q
only appears in q–deformed numbers, and where the number of terms is reduced on the right
hand side. To achieve this, we apply the generalized Racah backcoupling rule two times. In
the first time, we write down the original formula and rescale it by q−(Cνm+Cλ2

+Cµ2 )/2, where
νm is the ν with the greatest quadric Casimir. In the second time, we write down the Racah
backcoupling rule with q replaced by q−1, and rescale the formula by q(Cνm+Cλ2

+Cµ2 )/2. In the
difference of the two formulae, the terms with the ν’s whose Casimiars equal Cνm are removed.
These representations have higher powers than the other ν’s. Besides, all the q’s can be packed
into q–deformed numbers. In the following when we speak of applying the generalized Racah
backcoupling rule, we mean this modified form of the symmetry property unless otherwise
specified.

Finally, there is in fact a freedom in fixing the values of quantum 6j–symbols, which stems
from the freedom in the values of quantum Clebsch–Gordan coefficients. We can assign a
common phase η with |η| = 1 to all the states |λm〉 in the representation λ, and these new states
η|λm〉 still constitute an invariant representation space. The phase condition |η| = 1 is due to
the normalization of the states. This implies the values of quantum (classical) Clebsch–Gordan
coefficients 〈λ1m1, λ2m2|rλm〉 are only fixed up to a phase, a U(1) freedom, which should not
depend on the individual states m1,m2, and m. Let us denote the phase by U(λ1λ2λ̄)rr

〈λ1m1, λ2m2|rλm〉new = 〈λ1m1, λ2m2|rλm〉old U(λ1λ2λ̄)rr (4.46)

In the case when λ1 ? λ2 has n copies of λ with n > 1 and the multiplicity label r can be
nontrivial, we can even mix up uniformly states in the n copies of the representation λ, and the
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free phase U(λ1λ2λ)rr is promoted to a matrix U(λ1λ2λ̄)r′r with r′, r = 0, . . . , n− 1

〈λ1m1, λ2m2|rλm〉new =
n−1∑

r′=0

〈λ1m1, λ2m2|r′λm〉old U(λ1λ2λ̄)r′r . (4.47)

The orthonormality condition of quantum Clebsch–Gordan coefficients demands that U(λ1λ2λ̄)r′r
is a U(n) matrix. This freedom translates into quantum 6j-symbols via the relation eq. (4.38).
A generic quantum 6j–symbol {

λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

(4.48)

has a U(ni) freedom or uncertainty for each multiplicity label ri, i = 1, . . . , 4, the rank ni being
the total multiplicity of the corresponding triad. For instance if λ1 ? λ2 3 n4 · λ̄3, we have the
following U(n4) freedom

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4, new

=

n4−1∑

r′4=0

U(λ1λ2λ3)r4r′4

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r′4, old

. (4.49)

Therefore any tabulation of values of quantum 6j–symbols depends on a particular scheme to
fix these U(ni) uncertainties.

In the multiplicity–free case (no multiplicity label can be greater than 0), the quantum
6j–symbols only suffer from U(1) uncertainties. As seen from the symmetry properties of
quantum 6j–symbols at the end of section 4.2, these U(1) uncertainties are intertwined with
the sign freedom of 3j– and 2j–phases. When the U(1) uncertainties of quantum 6j–symbols are
completely fixed, the signs of 3j–phases are partially constrained by the symmetry properties,
and vice versa. We will discuss in the next subsection a consistent convention for the 3j– and
2j–phases so that the freedom one has to fix by hand is minimized. The extra SU(ni) freedom
of quantum 6j–symbols due to nontrivial multiplicity labels is fixed by multiplicity separation
schemes, which will be discussed in section 4.3.4.

4.3.1 Phase Convention

Since in the large k limit we will be working with, truncated tensor products of Uq(slN ) are
not different from tensor products of su(N), we will simply adopt the convention of 3j– and
2j–phases in su(N) [193, 200].

2j–phases

It is easy to see that {λ} = {λ̄}. Besides SU(N) is a so–called quasi–ambivalent group, which
means that consistent choices of 2j–phases can be made such that

{λ1}{λ2}{λ3} = 1 (4.50)

whenever λ1, λ2, λ3 constitute a valid triad. Using this rule repeatedly one can reduce any
2j–phase to either 1 or {(1; 0)} = {(0; 1)}.

3j–phases
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A consistent choice of 3j–phases can be made such that they satisfy

{µ1}{µ2}{µ3}{λ1µ̄2µ3r1}{µ1λ2µ̄3r2}{µ̄1µ2λ3r3}{λ1λ2λ3r4} = (−1)r1+r2+r3+r4 . (4.51)

With this choice of 3j–phases, the second equality in the tetrahedral symmetry involving trans-
position of two columns in the quantum 6j–symbol (c.f. eq. (4.39)) can be simplified

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

= (−1)r1+r2+r3+r4

{
λ2 λ1 λ3

µ̄2 µ̄1 µ̄3

}

r2r1r3r4

. (4.52)

Furthermore, we also choose

{λ1λ2λ3r} = (−1)r{λ1λ2λ30} ≡ (−1)r{λ1λ2λ3} . (4.53)

With these rules together with the symmetry properties of 3j–phases, one can reduce any 3j–
phase to products of {ελ′λ}, where ε is either fundamental or anti–fundamental, and p(λ) =
p(λ′) + 1. Besides, all the {ελ′λ}’s with the same λ and different λ′ are related to each other,
and one only has to fix by hand one of them. The reduction of the first few 3j–phases can be
found in the appendix of ref. [200].

We point out an example of mutual constraining between the choice of 3j–phases and fixing
the U(1) freedom of quantum 6j–symbols. Eq. (4.52) as a result of our convention of 3j–phases
constrains that at least some quantum 6j–symbols with an even sum of multiplicity labels have
to be real, while some quantum 6j–symbols with an odd sum of multiplicity labels have to be
imaginary. For instance eq. (4.52) implies

{
1; 0 0; 1 1; 1
21; 0 21; 0 2; 0

}

00r30

= (−1)r3
{

0; 1 1; 0 1; 1
0; 21 0; 21 0; 2

}

00r30

. (4.54)

Here 21; 0 is short for the composite labelling (µ; ν) with µ = (2, 1) and ν = (0). In fact we
can consistently choose all the quantum 6j–symbols with even sum of multiplicity labels to be
real, and all the quantum 6j–symbols with odd sum of multiplicity labels to be imaginary [200].
This is the convention we will use.

4.3.2 Eigenvector Method

Not all the quantum 6j–symbols of the two kinds (c.f. eq. (4.44)) need to computed through the
bootstrap strategy. Indeed by using the generalized Racah backcoupling rule and the column
permutation symmetry, we find

{
R̄ R ρ3

R R ρ4

}

r′1r
′
2r
′
3r
′
4

=
∑

ν,r,r′

(−1)r+r
′+r′3+r′4{R}{R,R, ρ̄4, r

′
2}{R, R̄, ρ3, r

′
3}{R, R̄, ν, r}

q−2CR+(Cρ3+Cρ4+Cν)/2 dimq ν

{
R R̄ ρ3

R R ν̄

}

rr′r′3r
′
4

{
R̄ R ν
R R ρ4

}

r′1r
′
2rr
′
.

Let us define

T
ρ3,r′3r

′
4

ν,rr′ =(−1)r+r
′+r′3+r′4{R}{R, R̄, ρ3, r

′
3}{R, R̄, ν, r}q−2CR+(Cρ3+Cρ4+Cν)/2
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√
dimq ρ3 dimq ν

{
R R̄ ρ3

R R ν̄

}

rr′r′3r
′
4

, (4.55)

Uν,rr
′

ρ4,r′1r
′
2

=
√

dimq ν dimq ρ4

{
R̄ R ν
R R ρ4

}

r′1r
′
2rr
′
, (4.56)

then the above identity becomes a matrix eigenvalue equation

T
ρ3,r′3r

′
4

ν,rr′ Uν,rr
′

ρ4,r′1r
′
2

= {R,R, ρ̄4, r
′
2} U

ρ3,r′3r
′
4

ρ4,r′1r
′
2
. (4.57)

As discussed before, the 3j–phase {R,R, ρ̄4, r
′
2} here is not a free choice. It is +1 if ρ4 belongs

to Sym2R, and it is −1 if ρ4 belongs to ∧2R.
If we have already computed all the quantum 6j–symbols of the first kind and thus the matrix

T is known, we can try to simply construct the matrix U whose columns are eigenvectors of
T . On the other hand, since the eigenvalues of T are highly degenerate, the eigenvectors of T
associated to the same eigenvalue can be mixed. We still need to compute some entries in each
column of U in order to fix the column vectors. Nevertheless the eigenvalue equation eq. (4.57)
can greatly reduce the number of quantum 6j–symbols that need to be computed.

4.3.3 Bootstrap: Reduction to Cores

Nontrivial quantum 6j–symbols can be classified into those with fundamental or anti–fundamental
representations and those without. We call them primitive 6j–symbols and non–primitive 6j–
symbols respectively. The first step of the bootstrap strategy is to reduce non–primitive 6j–
symbols to primitive 6j–symbols [193]. Given an arbitrary non–primitive 6j–symbol

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

we can always use the tetrahedral symmetry to make sure that λ3 is the smallest representation
among the six (lowest power, or fewest boxes in the Young diagram). Then we apply the
pentagon relation, where we choose that ν1 is either fundamental or anti–fundamental, and ν2

has one power less than λ3 such that ν̄1, ν2, λ3 constitute a valid triad. The pentagon relation
becomes {

λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

=
∑

λν3
r′2r
′
3r
′
1

c

{
λ1 ν3 ν̄2

λ µ2 µ3

}

r1r′3r
′
2r
′
1

.

In each summand on the right hand side, c is the product of some primitive 6j–symbols, while
in the last 6j–symbol the smallest representation is either ν2 or even smaller than ν2. In either
case the smallest representation in the last 6j–symbol must have lower power than λ3. If this
last 6j–symbol is not primitive, we repeat the process until we have primitive 6j–symbols only.

Next it was shown in [201] that every primitive 6j–symbol can be further reduced to com-
binations of quantum 6j–symbols of the following two types:

• Type II (Core 6j–symbols) {
λ1 λ2 λ3

µ1 ε µ3

}

0 r20 r4

. (4.58)

Here ε is either fundamental or anti–fundamental. The remaining representations satisfy
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p(λ1) > p(λ2) > p(λ3) as well as p(λ3) > p(µ1) or p(λ1) > p(µ3).

• Type IV {
λ1 λ2 ε1
µ1 µ2 ε2

}

0000

, (4.59)

where ε1 and ε2 are either fundamental or anti–fundamental.

To explain this second reduction process, we need to introduce some concepts. A triad which
contains either a fundamental or anti–fundamental representation is called a primitive triad.
A triad (λ1λ2λ3r4) is partially ordered if p(λ1) > p(λ2) > p(λ3). Furthermore, two partially
ordered triads can be compared. (λ1λ2λ3) > (µ1µ2µ3) if

- p(λ3) > p(µ3); or

- p(λ3) = p(µ3), p(λ2) > p(µ2); or

- p(λ3) = p(µ3), p(λ2) = p(µ2), p(λ1) > p(µ1) .

The algorithm to further reduce a primitive 6j–symbol is as follows. A primitive 6j–symbol
has either two or four primitive triads. If the latter is the case, it must be a type IV 6j–symbol
and the reduction stops. If the former is the case, we can use the tetrahedral symmetry to
make sure that the triad (λ1λ2λ3r4) in the first row of

{
λ1 λ2 λ3

µ1 µ2 µ3

}

r1r2r3r4

is partially order and the greatest among the four triads. Then the fundamental or anti–
fundamental representation must be in the second row. Let us denote it by ε. Three things can
happen.

1. If µ1 is ε and p(λ1) > p(λ2) (type I), we permute the three columns of the 6j–symbol
by the cycle (132) and apply the generalized Racah backcoupling rule. For each of the
resulting 6j–symbols we reduce it to a primitive 6j–symbol (if it is non–primitive) and
rerun this further reduction algorithm from the beginning, unless it is already a trivial,
type II, or type IV 6j–symbol.

2. If µ3 is ε and p(λ2) > p(λ3) (type III), we apply the pentagon relation with ν2 being a
fundamental or anti–fundamental. For each of the resulting 6j–symbols we reduce it to a
primitive 6j–symbol (if it is non–primitive) and then rerun this reduction algorithm from
the beginning, unless it is already a trivial, type II, or type IV 6j–symbol.

3. Otherwise the 6j–symbol is either already a type II, or we can simple transpose two
neighboring columns to make it so (µ1 is ε and p(λ1) = p(λ2), or µ3 is ε and p(λ2) = p(λ3)).
The reduction stops.

It can be shown [201] that this algorithm terminates and a primitive 6j–symbol is completely
reduced to combinations of type II (core), type IV, and trivial 6j–symbols.
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4.3.4 Bootstrap: Crushing the Cores

A type IV 6j–symbol can be solved easily. Let us assume that ε1 and ε2 in eq. (4.58) are
conjugate to each other (if this is not the case, we can transpose the two columns to their left
to make it so). If λ1 and µ1 are identical, we apply the the generalized Racah backcoupling
rule and get

qCλ1
+Cε1

{
λ1 λ2 ε1
λ1 µ2 ε2

}

0000

=

∑

ν,r

q(Cν+Cλ2
+Cν2 )/2 dimq ν {. . .}

{
ε2 ν ε1
λ1 µ2 λ1

}

0r00

{
λ1 λ2 ε1
ε̄2 ν λ̄1

}

r000

,

where the phase factors consisting of 3j– and 2j–phases are represented by {. . .} and not
explicitly spelled out. The representation ν that is summed over can be either the singlet (0; 0)
or the adjoint (1; 1). By using the technique in the beginning of section 4.3 (the discussion
of the modified form of backcoupling rule before section 4.3.1), we can remove the adjoint
representation. Thus the type IV 6j–symbol is related to trivial 6j–symbols only, and its value
can be computed without ambiguity. If λ1 is different from µ1, we can ask what possible
representations can replace ν with all the other five representations kept fixed for the type IV
6j–symbol still to be valid (i.e. all four triads in the 6j–symbol are valid), since the 6j–symbols
which differ only by the representation at position (2,1) (second row first column) are related to
each other by the unitarity condition. It is not difficult to convince oneself that only two things
can happen. Either µ1 cannot be replaced by any other representation, so that the absolute
value of the 6j–symbol is completely constrained by the unitarity condition

dimq λ1 dimq µ1

∣∣∣∣
{
λ1 λ2 ε1
µ1 µ2 ε2

}∣∣∣∣
2

= 1 ;

or it can only be replaced by λ1, and the absolute value of the 6j–symbol can still be determined
as we already know how to solve the new 6j–symbol after replacement

dimq λ1 dimq µ1

∣∣∣∣
{
λ1 λ2 ε1
µ1 µ2 ε2

}∣∣∣∣
2

+ (dimq λ1)2

∣∣∣∣
{
λ1 λ2 ε1
λ1 µ2 ε2

}∣∣∣∣
2

= 1 .

Besides, in either case, we have the freedom to choose a sign for the type IV 6j symbol.

Core (type II) 6j–symbols, on the contrary, cannot be solved by a mechanized routine, and
must be dealt with case by case. Here we discuss various techniques we use to solve core 6j–
symbols. Suppose p(λ3) > p(µ1). One relatively simple variety of core 6j–symbols are those
when the other five representations are fixed, the representation λ3 can only be replaced by
representations with lower powers for the 6j–symbol to be valid. We call these 6j–symbols
λ3–descendable and say that they can “descend” to 6j–symbols with smaller representations at
position (1,3) (row one column three) of the 6j–symbol through the unitarity relation (When
p(λ1) > p(µ3) there are also λ1–descendable 6j–symbols, and the discussion is similar). A
simple example is {

λ1 λ̄1 1; 1
1; 0 1; 0 µ3

}

000r4

,

where the adjoint representation (1; 1) at position (1,3) can only be replaced by the singlet
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(0;0). Using the unitary relation the absolute values of these 6j–symbols can be related to
the values of the relatively simpler 6j–symbols that they descend to, and therefore can be
recursively solved. On the other hand, unlike those type IV 6j–symbols with λ1 6= µ1, we do
not have the freedom to choose signs for all the λ3–descendable core 6j–symbols. For instance,
the λ3–descendable 6j–symbols which differ only by µ3 are also related through the unitarity
condition

∑

λ3r4

dimq λ3 dimq µ3

{
λ1 λ2 λ3

µ1 ε µ3

}

0r20r4

{
λ1 λ2 λ3

µ1 ε µ′3

}∗

0r20r4

= 0 , µ3 6= µ′3 , (4.60)

and we only have the freedom to choose the sign for one of them (usually the one with the
smallest µ3). Here we assume the 6j–symbols that these λ3–descendables can descend to have
already been solved.

Strictly speaking the absolute value of a λ3–descendable can only be fixed if r4 cannot be
greater than 0. The unitarity relation (c.f. eq. (4.41)) sums over not only λ3 but also r4 (r3 is
always 0 for a core 6j–symbol). In the case when r4 can be greater than 0 the λ3–descendables
that differ by r4 cannot be separated. More concretely, suppose λ1 ? λ2 3 n · λ̄3 so that r4 can
take value in 0, 1, . . . , n − 1. By relating to simpler 6j–symbols that can be descended to, we
are only allowed to compute

n−1∑

r4=0

∣∣∣
{
λ1 λ2 λ3

µ1 ε µ3

}

0r20r4

∣∣∣
2

(4.61)

and
n−1∑

r4=0

{
λ1 λ2 λ3

µ1 ε µ3

}

0r20r4

{
λ1 λ2 λ3

µ1 ε µ′3

}∗

0r20r4

, µ3 6= µ′3 (4.62)

for various possible µ3s (µ′3s). Let us call eq. (4.61) and eq. (4.62) a unitarity sum and an
orthogonality sum respectively. These quantities are not enough to fix the values of individual
6j–symbols, and nor shall we expect them to, because these 6j–symbols should suffer from
U(n) uncertainty with respect to r4 as we discussed in the beginning of section. 4.3. And both
the unitarity sum and the orthogonality sum are indeed invariant under a U(n) transformation
acting on r4 as in eq. (4.49). Therefore to fix the values of these 6j–symbols we have to
implement a multiplicity separation scheme by hand to fix the U(n) uncertainty.

Our choice of the multiplicity separation scheme is as follows. Suppose µ3 can be µ
(1)
3 , µ

(2)
3 , . . ..

First consider the 6j–symbols with µ3 = µ
(1)
3 . We set the 6j–symbols with r4 = 1, . . . , n − 1

to 0. Then the absolute value of the 6j–symbol with r4 = 0 is fixed by the unitarity sum, and

we assign an arbitrary sign to this 6j–symbol. Next consider the 6j–symbols with µ3 = µ
(2)
3 .

The value of the first 6j–symbol (r4 = 0) is now fixed by the orthogonality sum with the help

of the values of the 6j–symbols with µ3 = µ
(1)
3 . We set the 6j–symbols with r4 = 2, . . . , n − 1

to 0, and the absolute value of the 6j–symbol with r4 = 1 is then fixed by the unitarity sum.
We again assign an arbitrary sign to this 6j–symbol. Repeat this process through the list of
possible µ3s and the values of all these 6j–symbols can be fixed. The whole procedure can be
summarized in the following table:
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r4\µ3 µ
(1)
3 µ

(2)
3 µ

(3)
3 · · ·

0 ∗ − −
1 0 ∗ −
2 0 0 ∗
3 0 0 0
...

...
...

...
n− 1 0 0 0

∗ absolute value fixed by unitarity sums
− value (w/ sign) fixed by orthogonality sums

Note that the values of the 6j–symbols computed in this way depend on the order in the list of

possible µ3s: µ
(1)
3 , µ

(2)
3 , . . .. A different ordering of the µ3’s amounts to a different multiplicity

separation scheme. Besides, in this separation scheme, we have fixed 2(n − 1) + 1 degrees of

freedom for µ
(1)
3 , 2(n− 2) + 1 degrees of freedom for µ

(2)
3 , so on and so forth. In the end we at

most fix n2−1 degrees of freedom, which are the degrees of freedom in the group of uncertainty
SU(n) ⊂ U(n).

To solve core 6j–symbols which are not descendable, we need to look for other features. For
instance, for some 6j–symbols, the representation at one position is unique, and the absolute
values of these 6j–symbols are determined through the unitarity condition, just like the first
case of the type IV 6j–symbols with λ1 6= µ1 discussed in the beginning of this subsection.
For some other 6j–symbols, the representation at a position can only have two possibilities,
and the corresponding two 6j–symbols are linearly related (through symmetries other than the
unitarity condition). Typical examples are 6j–symbols of the following form

{
λ1 λ2 2; 0
1; 0 0; 1 ν

}

0000

or

{
λ1 λ2 12; 0
1; 0 0; 1 ν

}

0000

, (4.63)

where 12; 0 is short for (µ; ν) with µ = (1, 1) and ν = (0). Fixing the other five representations,
ν is either unique or it has two distinct possibilities, denoted by ν(1) and ν(2) respectively. In
the latter case, the generalized Racah backcoupling rule provides a linear relation between the
two 6j–symbols with ν being ν(1) and ν(2). Together with the unitarity condition, the values
of both 6j–symbols can be solved (we need to fix the sign of one 6j–symbol by hand). Finally,
in the case of p(λ2) = p(λ3), the following two types of core 6j–symbols,

{
λ1 λ2 λ3

µ1 ε µ3

}

0r20r4

and

{
λ1 λ3 λ2

µ′1 ε′ µ′3

}

0r′20r′4

,

can be related to each other by first transposing the last two columns of either 6j–symbol and
then applying the pentagon relation with ν2 being fundamental or anti–fundamental. So we
only have to solve one type of 6j–symbols.

With these tricks we have discussed, we were able to compute all the type IV and type II
(core) 6j–symbols that were reduced from the quantum 6j–symbols of the two kinds in eq. (4.44)
that one needed to compute. The results are given in the following section.
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4.4 Results

4.4.1 Quantum 6j–Symbols of the Two Kinds

Let us first take a look at the quantum 6j–symbols of the first kind. Due to the tetrahedral
symmetry and the complex conjugation relation, many quantum 6j–symbols of the first kind
are identical. we group the quantum 6j–symbols of the first kind into a matrix

T̂ ρi,r3r4ρj ,r1r2 =

{
R R̄ ρi
R R ρj

}

r1r2r3r4

,

with row index ρj , r1, r2 and column index ρi, r3, r4. The symmetries of quantum 6j–symbols
are translated into symmetries of the matrix T̂

T̂ ρi,r3r4ρj ,r1r2 = T̂ ρ̄i,r4r3ρ̄j ,r2r1 = T̂ ρ̄i,r3r4ρj ,r2r1 =
(
T̂
ρ̄j ,r1r2
ρ̄i,r3r4

)∗
, (4.64)

which greatly reduce the number of its independent entries. In the case of R = , we have

ρi, ρj ∈(21; 0)⊗ (0; 21)

= (0; 0)⊕ 2(1; 1)⊕ (2; 2)⊕ (2; 12)⊕ (12; 2)⊕ (12; 12)⊕ (21; 21) .

which implies that T̂ is a 10 × 10 matrix. The number of independent entries of the matrix
T , however, is reduced by symmetries from 100 to 37. All these independent entries will be
covered below.

Besides, the values of the quantum 6j–symbols with non–trivial multiplicity labels depend on
the multiplicity separation scheme we choose. However, physical quantities such as the colored
HOMFLY invariants do not depend on the choice of multiplicity separation scheme. Therefore
we can choose the most convenient multiplicity separation scheme such that the quantum 6j–
symbols are as simple as possible.

Divided into five blocks, we tabulate the values of the quantum 6j–symbols of the first kind
with R = :

Trivial quantum 6j–symbols:

(ρj)r1r2\ (ρi)r3r4 (1; 1)00 (1; 1)01 (1; 1)10 (1; 1)11 (0; 0)

(0; 0) [3]
[N−1][N ][N+1] 0 0 − [3]

[N−1][N ][N+1]
[3]

[N−1][N ][N+1]

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12) (21; 21)

(0; 0) [3]
[N−1][N ][N+1] − [3]

[N−1][N ][N+1] − [3]
[N−1][N ][N+1]

[3]
[N−1][N ][N+1]

[3]
[N−1][N ][N+1]

In the table above, the multiplicity labels are omitted when they are trivial. A gray cell means
the quantum 6j–symbol contained inside can be related to other 6j–symbols via the tetrahedral
symmetry or complex conjugation, so that it is not an independent entry. The trivial quantum
6j–symbols with ρi = (0; 0) can also be read off from this table through the last equality in
eq. (4.64).
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ρi = ρj = (1; 1):

(ρj)r1r2\ (ρi)r3r4 (1; 1)00 (1; 1)01 (1; 1)10 (1; 1)11

(1; 1)00 long expression i[2N ]

[N−1][N ]2[N+1]
√

[N−2][N+2]

i[2N ]

[N−1][N ]2[N+1]
√

[N−2][N+2]
− [4]

[2][N−1][N ][N+1]

(1; 1)01 − i[2N ]

[N−1][N ]2[N+1]
√

[N−2][N+2]
− 1

[N−1][N ][N+1] − 1
[N−1][N ][N+1] 0

(1; 1)10 − i[2N ]

[N−1][N ]2[N+1]
√

[N−2][N+2]
− 1

[N−1][N ][N+1] − 1
[N−1][N ][N+1] 0

(1; 1)11 − [4]
[2][N−1][N ][N+1] 0 0 − 1

[N−1][N ][N+1]

The quantum 6j–symbol labelled by ‘long expression’ reads

{
21; 0 0; 21 1; 1
21; 0 21; 0 1; 1

}

0000

=
[3]2([N − 3][N + 2] + [N − 2][N + 3])

[N − 2][N − 1][N ][N + 1][N + 2]([N − 2][N + 1] + [N − 1][N + 2])

+
[2][3]2[2N ]2

[N − 2][N − 1]3[N ]3[N + 1]3[N + 2]([N − 2][N + 1] + [N − 1][N + 2])

+
[2][N − 2][N + 2]([N − 2][N + 1]2 + [N − 1]2[N + 2])− 2[3]([N − 1]3 + [N + 1]3)

[2][N − 1]3[N ]2[N + 1]3
.

The appearance of many zeros in the table is due to a proper choice of multiplicity separation
scheme. Let us view this table as a 4 × 4 submatrix M of T . Changing the multiplicity
separation scheme amounts to a unitary transformation,

M 7→ U M U †, U ∈ U(4).

As a consequence the four U(4) Casimirs of M should be invariant after a change of the
multiplicity separation scheme, which we have checked indeed to be the case.

ρi = (2; 2), (2; 12), (12; 2), (12; 12) and ρj = (1; 1):

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12)

(1; 1)00 long expression long expression long expression long expression

(1; 1)01
i
√

[N−2]

[N−1][N ]2
√

[N+2]
− i

[N ][N+1]
√

[N−2][N+2]

i

[N−1][N ]
√

[N−2][N+2]
− i

√
[N+2]

[N ]2[N+1]
√

[N−2]

(1; 1)10
i
√

[N−2]

[N−1][N ]2
√

[N+2]

i

[N−1][N ]
√

[N−2][N+2]
− i

[N ][N+1]
√

[N−2][N+2]
− i

√
[N+2]

[N ]2[N+1]
√

[N−2]

(1; 1)11 − [N−2]
[N−1][N ]2[N+1]

− 1
[N−1][N ][N+1] − 1

[N−1][N ][N+1] − [N+2]
[N−1][N ]2[N+1]

The values of the quantum 6j–symbols in the first row are as follows.

{
21; 0 0; 21 2; 2
21; 0 21; 0 1; 1

}

0000

= −
(
−[2][N − 2]3[N + 1][N + 2]2 + 2[3][N − 2][N + 2]([3][N − 1]2 + [N + 1]2)

+[2]2[3]2 − [3]2[N − 1][N ]([N − 3][N + 2] + [N − 2][N + 3])
)

/([2][N − 2][N − 1]3[N ]2[N + 1]2[N + 2]) ,
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{
21; 0 0; 21 2; 12

21; 0 21; 0 1; 1

}

0000

=

{
21; 0 0; 21 12; 2
21; 0 21; 0 1; 1

}

0000

=−
(
[3]2[N ]([N − 3][N + 2] + [N − 2][N + 3])− [3][N − 2][N + 2]([N − 3] + [N + 3])

−[2][3]2[N − 2][N ][N + 2] + [2][N − 2]2[N ][N + 2]2
)

/([2][N − 2][N − 1]2[N ]2[N + 1]2[N + 2]) ,

{
21; 0 0; 21 12; 12

21; 0 21; 0 1; 1

}

0000

= −
(
−[2][N − 2]2[N − 1][N + 2]3 + 2[3][N − 2][N + 2]([N − 1]2 + [3][N + 1]2)

+[2]2[3]2 − [3]2[N ][N + 1]([N − 3][N + 2] + [N − 2][N + 3])
)

/([2][N − 2][N − 1]2[N ]2[N + 1]3[N + 2])

The 6j–symbols with ρi = (1; 1) and ρj = (2; 2), (2; 12), (12; 2), (12; 12) can also be read off from
the table above using the last equality in eq. (4.64).

ρi, ρj = (2; 2), (2; 12), (12; 2), (12; 12):

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12)

(2; 2) [N−1][2]2+[N+1][2]2−[N−4][N ][N+3]
[N−2][N−1][N ]3[N+1][N+2][N+3]

[3]
[N−1][N ]2[N+1][N+2]

[3]
[N−1][N ]2[N+1][N+2]

− [3]2

[N−2][N−1][N ][N+1][N+2]

(2; 12) [3]
[N−1][N ]2[N+1][N+2]

[3]
[N−2][N−1][N ][N+1][N+2]

[3]
[N−2][N−1][N ][N+1][N+2]

[3]
[N−2][N−1][N ]2[N+1]

(12; 2) [3]
[N−1][N ]2[N+1][N+2]

[3]
[N−2][N−1][N ][N+1][N+2]

[3]
[N−2][N−1][N ][N+1][N+2]

[3]
[N−2][N−1][N ]2[N+1]

(12; 12) − [3]2

[N−2][N−1][N ][N+1][N+2]
[3]

[N−2][N−1][N ]2[N+1]
[3]

[N−2][N−1][N ]2[N+1]
[N−1][2]2+[N+1][2]2−[N−3][N ][N+4]

[N−3][N−2][N−1][N ]3[N+1][N+2]

ρj = (21; 21):

(ρj)r1r2\ (ρi)r3r4 (1; 1)00 (1; 1)01 (1; 1)10 (1; 1)11

(21; 21) − [3]2

[N−2][N−1][N ][N+1][N+2] 0 0 0

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12) (21; 21)

(21; 21) [2][3]2

[N−2][N−1][N ]2[N+1][N+2][N+3]
0 0 [2][3]2

[N−3][N−2][N−1][N ]2[N+1][N+2]
− [3]3

[N−3][N−2][N−1]2[N ][N+1]2[N+2][N+3]

Again the quantum 6j–symbols with ρi = (21; 21) can be read off from the table above using
the symmetry properties in eq. (4.64).

The quantum 6j–symbols of the second kind enjoy less symmetry. We group these 6j–symbols
into the following matrix

Ûρi,r3r4ρj ,r1r2 =

{
R̄ R ρi
R R ρj

}

r1r2r3r4

,

and it satisfies the following symmetry properties

Ûρi,r3r4ρj ,r1r2 = Û ρ̄i,r3r4ρj ,r2r1 =
(
Ûρi,r4r3ρj ,r2r1

)∗
. (4.65)
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For R = the relevant representations ρi and ρj are

ρi ∈(21; 0)⊗ (0; 21)

= (0; 0)⊕ 2(1; 1)⊕ (2; 2)⊕ (2; 12)⊕ (12; 2)⊕ (12; 12)⊕ (21; 21) ,

ρj ∈(21; 0)⊗ (21; 0)

= (42; 0)⊕ (23; 0)⊕ (313; 0)⊕ 2(321; 0)⊕ (412; 0)⊕ (32; 0)⊕ (2211; 0) ,

therefore Û is also a 10 × 10 matrix. Its symmetry only reduces the number of independent
entries to 66.

For the quantum 6j–symbols with ρj = (321; 0) and (r1, r2) = (1, 0) or (0, 1), the symmetry
eq. (4.65) together with our convention that 6j–symbols with

∑
i ri being odd are imaginary

constrain almost all of them to be zero except for

{
0; 21 21; 0 1; 1
21; 0 21; 0 321; 0

}

1001

=

{
0; 21 21; 0 1; 1
21; 0 21; 0 321; 0

}

1010

=

{
0; 21 21; 0 1; 1
21; 0 21; 0 321; 0

}

0101

=

{
0; 21 21; 0 1; 1
21; 0 21; 0 321; 0

}

0110

=
[3]
√

[5]

2[N − 1][N ][N + 1]
√

[N − 2][N + 2]
, (4.66)

{
0; 21 21; 0 2; 12

21; 0 21; 0 321; 0

}

1000

= −
{

0; 21 21; 0 12; 2
21; 0 21; 0 321; 0

}

1000

=−
{

0; 21 21; 0 2; 12

21; 0 21; 0 321; 0

}

0100

=

{
0; 21 21; 0 12; 2
21; 0 21; 0 321; 0

}

0100

=− i[2][3]
√

[5]

2[N − 2][N − 1][N ][N + 1][N + 2]
. (4.67)

We list the remaining 6j–symbols of the second kind with R = in the following. This time,
we divide them into four blocks.

Trivial 6j–symbols:

(ρj)r1r2\ (ρi)r3r4 (0; 0) (0; 0)

(42; 0) [3]
[N−1][N ][N+1] (412; 0) − [3]

[N−1][N ][N+1]

(23; 0) [3]
[N−1][N ][N+1] (32; 0) − [3]

[N−1][N ][N+1]

(313; 0) [3]
[N−1][N ][N+1] (2212; 0) − [3]

[N−1][N ][N+1]

(321; 0)00
[3]

[N−1][N ][N+1] (321; 0)11 − [3]
[N−1][N ][N+1]

ρi = (1; 1) and ρj 6= (321; 0):
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(ρj)r1r2\ (ρi)r3r4 (1; 1)00 (1; 1)01 (1; 1)10 (1; 1)11

(42; 0) [2][3][N−1]+[4][N+1]
[2][N−1][N ]2[N+1][N+2]

− i
√

[N−2]

[N−1][N ]2[N+1]
√

[N+2]

[2]
[N−1][N ]2[N+1]

(23; 0) − [3]
[N−2][N ]2[N+1]

i[3]
√

[N+2]

[N−1][N ]2[N+1]
√

[N−2]

[2][3]
[N−1][N ]2[N+1]

(313; 0) [2][3][N−2][N−1]−[6][N−1][N+2]−[3][4][N+1][N+2]
[4][N−2][N−1][N ]2[N+1][N+2]

− i[3]

[N−1][N ][N+1]
√

[N−2](N+2]
0

(412; 0) − [3][4][N−2][N−1]+[6][N−2][N+1]−[2][3][N+1][N+2]
[4][N−2][N−1][N ]2[N+1][N+2]

i[3]

[N−1][N ][N+1]
√

[N−2][N+2]
0

(32; 0) − [3]
[N−1][N ]2[N+2]

− i[3]
√

[N−2]

[N−1][N ]2[N+1]
√

[N+2]

[2][3]
[N−1][N ]2[N+1]

(2212; 0) [4][N−1]+[2][3][N+1]
[2][N−2][N−1][N ]2[N+1]

i
√

[N+2]

[N−1][N ]2[N+1]
√

[N−2]

[2]
[N−1][N ]2[N+1]

Duo to space constraint, the quantum 6j–symbols in the gray cells are omitted. They are
equal to the opposite of the 6j–symbols immediately to their left because of the symmetry in
eq. (4.65).

ρi = (2; 2), (2; 12), . . . and ρj 6= (321; 0):

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12) (21; 21)

(42; 0) [2][3][N−1]+[4][N+1]
[2][N−1][N ]2[N+1][N+2][N+3]

[3]
[N−1][N ]2[N+1][N+2]

[3]2

[N−1][N ]2[N+1][N+2]
[3]2

[N−1][N ]2[N+1][N+2][N+3]

(23; 0) [3]2

[N−2][N−1][N ]2[N+1]
− [3]2

[N−2][N−1][N ]2[N+1]
− [3]

[N−2][N−1][N ]2[N+1]
[3]2

[N−2][N−1]2[N ]2[N+1]

(313; 0) − [3]2

[N−2][N−1][N ][N+1][N+2] − [3]
[N−2][N−1][N ][N+1][N+2] − [2][3][N−2][N−1]−[6][N+2][N−1]−[3][4][N+1][N+2]

[4][N−3][N−2][N−1][N ]2[N+1][N+2]
[3]2

[N−3][N−2][N−1][N ][N+1][N+2]

(412; 0) − [3][4][N−2][N−1]+[6][N−2][N+1]−[2][3][N+1][N+2]
[4][N−2][N−1][N ]2[N+1][N+2][N+3]

[3]
[N−2][N−1][N ][N+1][N+2]

[3]2

[N−2][N−1][N ][N+1][N+2]
[3]2

[N−2][N−1][N ][N+1][N+2][N+3]

(32; 0) [3]
[N−1][N ]2[N+1][N+2]

[3]2

[N−1][N ]2[N+1][N+2]
− [3]2

[N−1][N ]2[N+1][N+2]
[3]2

[N−1][N ]2[N+1]2[N+2]

(2212; 0) − [3]2

[N−2][N−1][N ]2[N+1]
− [3]

[N−2][N−1][N ]2[N+1]
− [4][N−1]+[2][3][N+1]

[2][N−3][N−2][N−1][N ]2[N+1]
[3]2

[N−3][N−2][N−1][N ]2[N+1]

The quantum 6j–symbols in the gray cells (omitted) equal the 6j–symbols immediately to their
left.

ρj = (321; 0) :

(ρj)r1r2\ (ρi)r3r4 (1; 1)00 (1; 1)01 (1; 1)10 (1; 1)11

(321; 0)00 − [3]([2N ]+1)
[N−2][N−1][N ]2[N+1][N+2]

i([3][N−2]+[6][N ]−[3][N+2])

2[2][N−1][N ]2[N+1]
√

[N−2][N+2]
− [3]

[N−1][N ]2[N+1]

(321; 0)11
[3]([2N ]−1)

[N−2][N−1][N ]2[N+1][N+2]
i([3][N−2]−[6][N ]−[3][N+2])

2[2][N−1][N ]2[N+1]
√

[N−2][N+2]
− [3]

[N−1][N ]2[N+1]

(ρj)r1r2\ (ρi)r3r4 (2; 2) (2; 12) (12; 2) (12; 12) (21; 21)

(321; 0)00 − [3]([N−2]−[N+1])
[N−2][N−1][N ]2[N+1][N+2]

− [3]([3][N−2]−[4][N ]−[3][N+2])
2[2][N−2][N−1][N ]2[N+1][N+2]

− [3]([N−1]+[N+2])
[N−2][N−1][N ]2[N+1][N+2]

[3]2

[N−2][N−1][N ]2[N+1][N+2]

(321; 0)11
[3]([N−2]+[N+1])

[N−2][N−1][N ]2[N+1][N+2]
− [3]([3][N−2]+[4][N ]−[3][N+2])

2[2][N−2][N−1][N ]2[N+1][N+2]
− [3]([N−1]−[N+2])

[N−2][N−1][N ]2[N+1][N+2]
[3]2

[N−2][N−1][N ]2[N+1][N+2]

The quantum 6j–symbols in the gray cells (omitted) in the first table equal minus the 6j–
symbols immediately to their left, while those in the gray cells (omitted) in the second table
are identical with the 6j–symbols immediately to their left.

4.4.2 HOMFLY Invariants Colored in (2,1) Representation

With the quantum 6j–symbols listed in the previous subsection, we are able to compute colored
HOMFLY invariants of hyperbolic knots with bridge index two colored in the (2,1) representa-
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tion. The quasi–plat presentations of hyperbolic knots with up to seven crossings are given in
Figs. B.1. The normalized HOMFLY invariants of these knots colored in the (2,1) representation
with framing 0 are listed below4

H̄ (41) =
1

λ3q5

(
q5λ6 + (−q8 − q6 + q5 − q4 − q2)λ5

+ (q10 − q9 + 3q8 − 3q7 + 5q6 − 4q5 + 5q4 − 3q3 + 3q2 − q + 1)λ4

+ (−2q10 + 2q9 − 5q8 + 6q7 − 8q6 + 7q5 − 8q4 + 6q3 − 5q2 + 2q − 2)λ3

+ (q10 − q9 + 3q8 − 3q7 + 5q6 − 4q5 + 5q4 − 3q3 + 3q2 − q + 1)λ2

+(−q8 − q6 + q5 − q4 − q2)λ+ q5
)

(4.68)

H̄ (52) =
1

λ9q7

(
(q12 − 2q11 + 3q10 − 4q9 + 5q8 − 5q7 + 5q6 − 4q5 + 3q4 − 2q3 + q2)λ6

+ (q13 − 2q12 + 5q11 − 7q10 + 9q9 − 11q8 + 13q7 − 11q6 + 9q5 − 7q4 + 5q3 − 2q2 + q)λ5

+ (q14 − 2q13 + 4q12 − 6q11 + 9q10 − 12q9 + 13q8 − 14q7 + 13q6 − 12q5 + 9q4 − 6q3

+ 4q2 − 2q + 1)λ4 + (−q14 + q13 − 3q12 + 3q11 − 5q10 + 7q9 − 8q8 + 7q7 − 8q6 + 7q5

−5q4 + 3q3 − 3q2 + q − 1)λ3 + (q10 − 2q7 + q4)λ2 + (q10 + q8 − q7 + q6 + q4)λ− q7
)

(4.69)

H̄ (61) =
1

λ6q7

(
q7λ9 + (−q10 + 2q7 − q4)λ8 + (q12 − 2q11 + q10 − 4q9 + 4q8 − 3q7

+ 4q6 − 4q5 + q4 − 2q3 + q2)λ7 + (q13 − 2q12 + 4q11 − 6q10 + 8q9 − 9q8 + 11q7 − 9q6

+ 8q5 − 6q4 + 4q3 − 2q2 + q)λ6 + (q14 − 2q13 + 4q12 − 7q11 + 11q10 − 12q9 + 15q8

− 17q7 + 15q6 − 12q5 + 11q4 − 7q3 + 4q2 − 2q + 1)λ5 + (−2q14 + 3q13 − 7q12 + 9q11

− 13q10 + 17q9 − 19q8 + 18q7 − 19q6 + 17q5 − 13q4 + 9q3 − 7q2 + 3q − 2)λ4

+ (q14 − 2q13 + 4q12 − 5q11 + 8q10 − 10q9 + 11q8 − 12q7 + 11q6 − 10q5 + 8q4 − 5q3

+ 4q2 − 2q + 1)λ3 + (q11 − q10 + q9 − q8 + 3q7 − q6 + q5 − q4 + q3)λ2

+(−q10 − q8 + q7 − q6 − q4)λ+ q7
)

(4.70)

H̄ (62) =
1

λ6q10

(
(q15 + 2q13 − q12 + 2q11 + 2q9 − q8 + 2q7 + q5)λ6 + (−q18 − 3q16

+ 2q15 − 5q14 + 3q13 − 8q12 + 4q11 − 8q10 + 4q9 − 8q8 + 3q7 − 5q6 + 2q5 − 3q4 − q2)λ5

+ (q20 − q19 + 5q18 − 7q17 + 13q16 − 14q15 + 24q14 − 22q13 + 29q12 − 26q11 + 32q10

− 26q9 + 29q8 − 22q7 + 24q6 − 14q5 + 13q4 − 7q3 + 5q2 − q + 1)λ4 + (−2q20 + 3q19

− 8q18 + 12q17 − 22q16 + 24q15 − 33q14 + 35q13 − 42q12 + 39q11 − 44q10 + 39q9 − 42q8

+ 35q7 − 33q6 + 24q5 − 22q4 + 12q3 − 8q2 + 3q − 2)λ3 + (q20 − 2q19 + 5q18 − 6q17

4 Colored HOMFLY invariants of 2–bridged knots with eight crossings can also be found in our paper[119].

129



Chapter 4 Knot Invariants and RCFT

+ 12q16 − 14q15 + 17q14 − 16q13 + 21q12 − 18q11 + 18q10 − 18q9 + 21q8 − 16q7 + 17q6

− 14q5 + 12q4 − 6q3 + 5q2 − 2q + 1)λ2 + (−q18 + q17 − q16 − q14 − 2q13 + 5q12 − 6q11

+ 4q10 − 6q9 + 5q8 − 2q7 − q6 − q4 + q3 − q2)λ+ q15 − 2q14 + 3q13 − 4q12 + 5q11

−5q10 + 5q9 − 4q8 + 3q7 − 2q6 + q5
)

(4.71)

H̄ (63) =
1

λ3q10

(
(−q15 + 2q14 − 3q13 + 4q12 − 5q11 + 5q10 − 5q9 + 4q8 − 3q7 + 2q6

− q5)λ6 + (q18 − q17 + 2q16 − 2q15 + 4q14 − 4q13 + 6q12 − 5q11 + 7q10 − 5q9 + 6q8

− 4q7 + 4q6 − 2q5 + 2q4 − q3 + q2)λ5 + (−q20 + 2q19 − 6q18 + 9q17 − 17q16 + 23q15

− 36q14 + 41q13 − 55q12 + 56q11 − 62q10 + 56q9 − 55q8 + 41q7 − 36q6 + 23q5 − 17q4

+ 9q3 − 6q2 + 2q − 1)λ4 + (2q20 − 4q19 + 10q18 − 16q17 + 31q16 − 40q15 + 60q14

− 71q13 + 90q12 − 92q11 + 105q10 − 92q9 + 90q8 − 71q7 + 60q6 − 40q5 + 31q4 − 16q3

+ 10q2 − 4q + 2)λ3 + (−q20 + 2q19 − 6q18 + 9q17 − 17q16 + 23q15 − 36q14 + 41q13

− 55q12 + 56q11 − 62q10 + 56q9 − 55q8 + 41q7 − 36q6 + 23q5 − 17q4 + 9q3 − 6q2

+ 2q − 1)λ2 + (q18 − q17 + 2q16 − 2q15 + 4q14 − 4q13 + 6q12 − 5q11 + 7q10 − 5q9 + 6q8

− 4q7 + 4q6 − 2q5 + 2q4 − q3 + q2)λ− q15 + 2q14 − 3q13 + 4q12 − 5q11 + 5q10 − 5q9

+4q8 − 3q7 + 2q6 − q5
)

(4.72)

H̄ (72) =
1

λ12q9

(
(q14 − 2q13 + 3q12 − 4q11 + 5q10 − 5q9 + 5q8 − 4q7 + 3q6 − 2q5

+ q4)λ9 + (q15 − 2q14 + 3q13 − 5q12 + 7q11 − 8q10 + 8q9 − 8q8 + 7q7 − 5q6 + 3q5

− 2q4 + q3)λ8 + (q16 − 2q15 + 3q14 − 4q13 + 7q12 − 8q11 + 9q10 − 9q9 + 9q8 − 8q7

+ 7q6 − 4q5 + 3q4 − 2q3 + q2)λ7 + (q17 − 2q16 + 3q15 − 6q14 + 9q13 − 12q12 + 14q11

− 17q10 + 17q9 − 17q8 + 14q7 − 12q6 + 9q5 − 6q4 + 3q3 − 2q2 + q)λ6 + (q18 − 2q17

+ 4q16 − 7q15 + 11q14 − 14q13 + 19q12 − 22q11 + 24q10 − 25q9 + 24q8 − 22q7 + 19q6

− 14q5 + 11q4 − 7q3 + 4q2 − 2q + 1)λ5 + (−q18 + q17 − 3q16 + 4q15 − 7q14 + 9q13

− 12q12 + 14q11 − 16q10 + 16q9 − 16q8 + 14q7 − 12q6 + 9q5 − 7q4 + 4q3 − 3q2

+ q − 1)λ4 + (q15 + q12 + q10 − 2q9 + q8 + q6 + q3)λ3 + (−q13 + q12 − q11 + q10

−3q9 + q8 − q7 + q6 − q5)λ2 + (q12 + q10 − q9 + q8 + q6)λ− q9
)

(4.73)

H̄ (73) = − λ
6

q12

(
(q17 + 2q15 − q14 + 2q13 + 2q11 − q10 + 2q9 + q7)λ6 + (−q20 − 3q18

+ 2q17 − 5q16 + 3q15 − 8q14 + 4q13 − 8q12 + 4q11 − 8q10 + 3q9 − 5q8 + 2q7

− 3q6 − q4)λ5 + (−q19 + 2q18 − 3q17 + 8q16 − 9q15 + 13q14 − 13q13 + 18q12 − 13q11

+ 13q10 − 9q9 + 8q8 − 3q7 + 2q6 − q5)λ4 + (q24 − q23 + 4q22 − 5q21 + 9q20 − 10q19
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+ 14q18 − 13q17 + 14q16 − 11q15 + 10q14 − 7q13 + 6q12 − 7q11 + 10q10 − 11q9 + 14q8

− 13q7 + 14q6 − 10q5 + 9q4 − 5q3 + 4q2 − q + 1)λ3 + (−q24 + 2q23 − 5q22 + 9q21

− 16q20 + 22q19 − 28q18 + 33q17 − 40q16 + 41q15 − 39q14 + 41q13 − 44q12 + 41q11

− 39q10 + 41q9 − 40q8 + 33q7 − 28q6 + 22q5 − 16q4 + 9q3 − 5q2 + 2q − 1)λ2

+ (−q23 + 2q22 − 6q21 + 11q20 − 17q19 + 23q18 − 31q17 + 35q16 − 38q15 + 41q14

− 42q13 + 40q12 − 42q11 + 41q10 − 38q9 + 35q8 − 31q7 + 23q6 − 17q5 + 11q4 − 6q3

+ 2q2 − q)λ− q22 + 2q21 − 3q20 + 6q19 − 10q18 + 11q17 − 12q16 + 15q15 − 16q14

+15q13 − 15q12 + 15q11 − 16q10 + 15q9 − 12q8 + 11q7 − 10q6 + 6q5 − 3q4 + 2q3 − q2
)

(4.74)

H̄ (74) = −λ
3

q9

(
q9λ9 + (−q12 + q11 − q10 + 2q9 − q8 + q7 − q6)λ8 + (−q14 − 3q12 + q11

− 2q10 + 4q9 − 2q8 + q7 − 3q6 − q4)λ7 + (q16 + q14 − q13 − 2q12 − q11 + 4q9 − q7 − 2q6

− q5 + q4 + q2)λ6 + (q18 − 2q17 + 4q16 − 6q15 + 13q14 − 16q13 + 21q12 − 28q11 + 33q10

− 28q9 + 33q8 − 28q7 + 21q6 − 16q5 + 13q4 − 6q3 + 4q2 − 2q + 1)λ5 + (−q18 + 4q17

− 8q16 + 14q15 − 24q14 + 37q13 − 48q12 + 57q11 − 66q10 + 70q9 − 66q8 + 57q7 − 48q6

+ 37q5 − 24q4 + 14q3 − 8q2 + 4q − 1)λ4 + (−2q17 + 6q16 − 14q15 + 21q14 − 36q13

+ 51q12 − 61q11 + 70q10 − 78q9 + 70q8 − 61q7 + 51q6 − 36q5 + 21q4 − 14q3

+ 6q2 − 2q)λ3 + (−3q16 + 8q15 − 15q14 + 22q13 − 32q12 + 47q11 − 51q10 + 48q9 − 51q8

+ 47q7 − 32q6 + 22q5 − 15q4 + 8q3 − 3q2)λ2 + (−2q15 + 6q14 − 10q13 + 16q12 − 22q11

+ 26q10 − 28q9 + 26q8 − 22q7 + 16q6 − 10q5 + 6q4 − 2q3)λ− q14 + 4q13 − 6q12 + 6q11

−9q10 + 12q9 − 9q8 + 6q7 − 6q6 + 4q5 − q4
)

(4.75)

H̄ (75) =
1

λ12q12

(
(q22 − 2q21 + 5q20 − 9q19 + 15q18 − 20q17 + 27q16 − 32q15 + 38q14

− 40q13 + 42q12 − 40q11 + 38q10 − 32q9 + 27q8 − 20q7 + 15q6 − 9q5 + 5q4 − 2q3

+ q2)λ6 + (q23 − 3q22 + 9q21 − 19q20 + 33q19 − 49q18 + 69q17 − 90q16 + 107q15

− 121q14 + 130q13 − 134q12 + 130q11 − 121q10 + 107q9 − 90q8 + 69q7 − 49q6 + 33q5

− 19q4 + 9q3 − 3q2 + q)λ5 + (q24 − 3q23 + 8q22 − 18q21 + 30q20 − 48q19 + 69q18

− 92q17 + 111q16 − 133q15 + 146q14 − 156q13 + 158q12 − 156q11 + 146q10 − 133q9

+ 111q8 − 92q7 + 69q6 − 48q5 + 30q4 − 18q3 + 8q2 − 3q + 1)λ4 + (−q24 + 2q23

− 6q22 + 10q21 − 17q20 + 24q19 − 32q18 + 41q17 − 47q16 + 51q15 − 55q14 + 58q13

− 56q12 + 58q11 − 55q10 + 51q9 − 47q8 + 41q7 − 32q6 + 24q5 − 17q4 + 10q3 − 6q2

+ 2q − 1)λ3 + (q21 + 2q19 − 4q18 + 9q17 − 12q16 + 17q15 − 24q14 + 27q13 − 26q12

+ 27q11 − 24q10 + 17q9 − 12q8 + 9q7 − 4q6 + 2q5 + q3)λ2 + (q20 − 2q19 + 3q18 − 6q17

+ 9q16 − 11q15 + 12q14 − 14q13 + 16q12 − 14q11 + 12q10 − 11q9 + 9q8 − 6q7 + 3q6
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−2q5 + q4)λ− q17 + 2q16 − 3q15 + 4q14 − 5q13 + 5q12 − 5q11 + 4q10 − 3q9 + 2q8 − q7
)

(4.76)

H̄ (76) =
1

λ9q10

(
(q15 − 2q14 + 3q13 − 4q12 + 5q11 − 5q10 + 5q9 − 4q8 + 3q7

− 2q6 + q5)λ9 + (−q18 + 2q17 − 4q16 + 7q15 − 11q14 + 14q13 − 18q12 + 20q11 − 21q10

+ 20q9 − 18q8 + 14q7 − 11q6 + 7q5 − 4q4 + 2q3 − q2)λ8 + (q20 − 3q19 + 9q18 − 19q17

+ 34q16 − 51q15 + 74q14 − 95q13 + 113q12 − 124q11 + 131q10 − 124q9 + 113q8 − 95q7

+ 74q6 − 51q5 + 34q4 − 19q3 + 9q2 − 3q + 1)λ7 + (−3q20 + 9q19 − 22q18 + 41q17

− 71q16 + 105q15 − 142q14 + 177q13 − 213q12 + 229q11 − 236q10 + 229q9 − 213q8

+ 177q7 − 142q6 + 105q5 − 71q4 + 41q3 − 22q2 + 9q − 3)λ6 + (3q20 − 8q19 + 19q18

− 34q17 + 58q16 − 83q15 + 117q14 − 143q13 + 169q12 − 183q11 + 194q10 − 183q9

+ 169q8 − 143q7 + 117q6 − 83q5 + 58q4 − 34q3 + 19q2 − 8q + 3)λ5 + (−q20 + 2q19

− 7q18 + 11q17 − 20q16 + 26q15 − 39q14 + 44q13 − 52q12 + 53q11 − 61q10 + 53q9

− 52q8 + 44q7 − 39q6 + 26q5 − 20q4 + 11q3 − 7q2 + 2q − 1)λ4 + (2q18 − q17 + 3q16

− 2q15 + 2q14 + 5q13 + 6q11 − 7q10 + 6q9 + 5q7 + 2q6 − 2q5 + 3q4 − q3 + 2q2)λ3

+ (−q16 − 3q15 + q14 − 2q13 + 4q12 − 7q11 + q10 − 7q9 + 4q8 − 2q7 + q6 − 3q5 − q4)λ2

+(2q13 + q12 + q11 − 2q10 + q9 + q8 + 2q7)λ− q10
)

(4.77)

H̄ (77) =
1

λ3q10
(q10λ9 + (−2q13 − 2q11 + 2q10 − 2q9 − 2q7)λ8 + (q16 + 2q15 + 4q13

− 4q12 + 8q11 − 4q10 + 8q9 − 4q8 + 4q7 + 2q5 + q4)λ7 + (−2q18 + 2q17 − 8q16 + 8q15

− 15q14 + 16q13 − 24q12 + 21q11 − 28q10 + 21q9 − 24q8 + 16q7 − 15q6 + 8q5 − 8q4

+ 2q3 − 2q2)λ6 + (q20 − 2q19 + 10q18 − 18q17 + 36q16 − 58q15 + 88q14 − 110q13

+ 145q12 − 156q11 + 164q10 − 156q9 + 145q8 − 110q7 + 88q6 − 58q5 + 36q4 − 18q3

+ 10q2 − 2q + 1)λ5 + (−3q20 + 8q19 − 22q18 + 46q17 − 82q16 + 124q15 − 186q14

+ 240q13 − 286q12 + 319q11 − 340q10 + 319q9 − 286q8 + 240q7 − 186q6 + 124q5

− 82q4 + 46q3 − 22q2 + 8q − 3)λ4 + (3q20 − 10q19 + 23q18 − 45q17 + 83q16

− 127q15 + 178q14 − 234q13 + 284q12 − 314q11 + 326q10 − 314q9 + 284q8 − 234q7

+ 178q6 − 127q5 + 83q4 − 45q3 + 23q2 − 10q + 3)λ3 + (−q20 + 4q19 − 10q18 + 18q17

− 32q16 + 54q15 − 75q14 + 95q13 − 122q12 + 136q11 − 134q10 + 136q9 − 122q8 + 95q7

− 75q6 + 54q5 − 32q4 + 18q3 − 10q2 + 4q − 1)λ2 + (q18 − 3q17 + 3q16 − 2q15 + 6q14

− 8q13 + q12 − 3q11 + 10q10 − 3q9 + q8 − 8q7 + 6q6 − 2q5 + 3q4 − 3q3 + q2)λ

− q15 + 4q14 − 6q13 + 6q12 − 9q11 + 12q10 − 9q9 + 6q8 − 6q7 + 4q6 − q5) (4.78)

These normalized HOMFLY invariants enjoy the symmetry properties discussed in sec-
tion 2.3.4. The knots 41 and 63 are amphicheiral knots, and indeed their HOMFLY invariants
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satisfy the symmetry given by eq. (2.160), while the HOMFLY invariants of the other knots
do not. Furthermore, all the computed HOMFLY invariants satisfy the symmetry given by
eq. (2.162) because the representation is transpose–symmetric.

Some of these invariants, namely those of the knots 41, 52, 62, 63, 73, 75, have already been
computed using a different method in refs. [190, 191]. Their results are in perfect agreement
with ours, which serves as a non–trivial check on both approaches.
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CHAPTER 5

Conclusions and Prospect

In topological string theories, statements of dualities like mirror symmetry, large N duality, and
etc, can be made very precise, and in conjunction with the powerful computational methods
in topological string theories, these dualities can be verified very explicitly. The Ooguri–Vafa
conjecture [25] claims that for an arbitrary knot in S3 there is a unique stack of branes (the
number of branes in this stack is not fixed) in type A topological string on the resolved conifold,
such that the vevs of the Wilson loop along the knot in U(N) Chern–Simons theory on S3 eval-
uated in various representations, also known as quantum knot invariants or colored HOMFLY
invariants, can be related to the free energies on the branes in the type A topological open string
theory. These free energies in turn can be identified with the free energies on the mirror branes
in the type B topological open string theory on the mirror geometry of the resolved conifold.
Our goal is to directly verify the Ooguri–Vafa conjecture for non–trivial knots by comparing
the quantum knot invariants and the free energies on the associated branes in the topological
string theories.

On the topological string side, the BKMP theorem [52, 113, 156] claims that the topological
recursion [22, 23] developed by Eynard and Orantin to solve matrix models can be applied
on the spectral curves in type B topological string theory to compute the free energies on the
toric special Lagrangian branes in the mirror type A topological string theory, or equivalently
the free energies on the mirror special holomorphic branes in the type B topological string
theory. When the type A topological string is compactified on the resolved conifold, these toric
special Lagrangian branes are the branes associated to a unknot in S3 according to the Ooguri–
Vafa conjecture. We find out that to apply the topological recursion on the Aganagic–Vafa
spectral curve of the branes associated to a non–trivial knot, the recursion has to be modified
by substituting the Bergman kernel with the genuine generating function of worldsheet annulus
instantons on the branes, and we call the latter the calibrated annulus kernel [170]. We compute
the calibrated annulus kernel for branes associated to the simplest torus knot, which enable
us to apply the modified topological recursion on these branes. We verify that the modified
recursion can reproduce the correct free energies on the branes, in the sense that they are
consistent with the quantum knot invariants à la the Ooguri–Vafa conjecture. In addition our
method of the modified topological recursion can reproduce the free energies of the topological
closed string theory, which encode the information of the background geometry. This is in line
with the observation that these branes also probe the background geometry.

Although the validity of our method of the modified topological recursion has only been
confirmed for the branes associated to torus knots, we conjecture that when it is applied to
the branes associated to hyperbolic knots, it should also reproduce the correct free energies on
the branes, and they should be consistent with the quantum knot invariants in the sense of the
Ooguri–Vafa conjecture. We are encouraged by the observation that the modified topological
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recursion can reproduce the correct planar free energies of the topological closed string when
it is applied to the Aganagic–Vafa spectral curves of hyperbolic knots. Our conjecture has a
natural corollary in the knot theory, namely, any pair of mutant knots can be distinguished by
colored HOMFLY invariants in some two row presentations of U(N). On the other hand, to
verify our conjecture concerning hyperbolic knots, we need to compute the calibrated annulus
kernels for the branes associated to these knots. This proves to be a daunting task. We argue
that this kernel can be extracted from the colored HOMFLY invariants in symmetric and two
row representations of U(N). There are existing methods to compute the colored HOMFLY in-
variants in symmetric representations. We develop techniques in U(N) Chern–Simons theory to
compute the colored HOMFLY invariants for hyperbolic knots in nonsymmetric representations
[119], based on the works in refs. [124, 166, 197], which in turn heavily draw on Witten’s insights
that relates the 3d SU(N) Chern–Simons theory to the ŝu(N)k WZW models. Our techniques
require the knowledge of nontrivial crossing matrices in the WZW models. These crossing
matrices are proportional to the quantum 6j–symbols in the quantum group Uq(slN ). Using
symmetries of the quantum 6j–symbols, we compute the values of many nontrivial quantum
6j–symbols through the bootstrap strategy. Once this is done, we can compute the HOMFLY
invariants for many hyperbolic knots colored in the {2, 1} representation [119].

Admittedly these colored HOMFLY invariants are not enough for the derivation of the calib-
rated annulus kernels for the branes associated to these hyperbolic knots. Therefore a natural
direction of future research is to compute colored HOMFLY invariants for hyperbolic knots in
more two row representations. On the other hand it might be interesting to look for a prob-
ably exotic matrix model underlying the modified topological recursion, which may shed light
on a more convenient way to compute the calibrated annulus kernels. Furthermore recently a
refined version of the topological recursion has been proposed by Eynard and Orantin based on
the β–ensemble [202], but it has not been applied successfully in the refined topological string
theory. It would be interesting to find out how the refined recursion should be modified to be
applicable in refined topological string, and even for the branes associated to knots.

Concerning the computation of quantum knot invariants, it is natural to generalize them to
other gauge groups like SO(N), Sp(N), or even exceptional groups, and to consider different
ambient three–manifolds for knots like Lens spaces. A more interesting direction is toward the
refined Chern–Simons theory, where the vevs of Wilson loops along torus knots in the funda-
mental representation are known [203] to coincide with the superpolynomials in the HOMFLY
knot homology [204], which is the categorification of the HOMFLY knot invariants. It would
be interesting to find out whether it is possible to generalize our techniques to compute the
vevs of Wilson loops in generic representations in the refined Chern–Simons theory and explore
further connections of the refined Chern–Simons theory to the HOMFLY knot homology.
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APPENDIX A

Composite Representations of U(N)

Here we discuss composite representations of U(N) and quantum knot invariants colored in
composite representations. We will also introduce composite labelling of representations of
SU(N). In this section we always refer to a representation by its associated partition.

A generic irreducible representation of U(N) is a composite representation labelled by two
partitions (µ; ν). Let µi, νj be the i–th and j–th components of the partitions µ, ν respectively.
The two partitions satisfy the usual conditions µ1 > µ2 > . . . > µp > 0 and ν1 > ν2 > . . . >
νq > 0, and in addition the sum of the lengths (number of components) of µ and ν cannot exceed
N . In terms of Young diagrams the representation (µ; ν) is usually depicted as in Fig. A.1a,
where the Young diagram of ν is rotated by 180◦ and is drawn to the left of the Young diagram
of µ, and the total height of the diagram is N .

To have an intuitive understanding of the representation (µ; ν), we notice that U(N) =
U(1) o SU(N), and therefore a representation of U(N) always gives a representation of U(1)
and a representation of SU(N). Let us write the pair of partitions (µ; ν) as

(µ; ν) = (µ1, . . . , µp, 0, . . . , 0,−νq, . . . ,−ν1︸ ︷︷ ︸
N

) =: (f) . (A.1)

Then the corresponding U(1) representation has charge `(f) =
∑N

i=1 fi, and the irreducible
SU(N) representation is given by the partition

(λ) = (λ1, . . . , λN ) = (µ1 + ν1, . . . , µp + ν1, ν1, . . . , ν1, ν1 − νq, . . . , 0) . (A.2)

In other words we make a universal shift in the components of the partition (f) by ν1 and every
component of the partition becomes nonnegative. The Young diagram corresponding to (λ) is
the juxtaposition of the vertical complement of the rotated Young diagram of ν with the Young
diagram of µ, as illustrated in Fig. A.1b.

Clearly a U(N) composite representation corresponds to a unique SU(N) irreducible repres-
entation, but the opposite is not true. Given a composite representation (µ; ν) = (f), we can
get infinitely many composite representations through a universal shift of the components of
(f) by an arbitrary integer n

(f)→ (f ′) = (f1 + n, . . . , fN + n) = (µ′; ν ′) (A.3)

and all these composite representations correspond to the same SU(N) representation. On
the other hand, the U(1) charges of these composite representations differ from each other by
multiples of N . In the limit N → ∞, given an irreducible representation (λ) of SU(N), there
is only one corresponding composite representation (µ; ν) whose U(1) charge is finite. We call
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ν

µ

N

(a) A composite representation of
U(N)

ν

µ

(b) The associated repres-
entation of SU(N)

Figure A.1: The Young diagram of a composite representation (µ; ν) of U(N), and that of the associated
representation of SU(N).

it the canonical composite representation associated to (λ), or simply the composite labelling
of (λ). For instance the composite labellings of the fundamental and antifundamenal repres-
entations of SU(N) are (1; 0) and (0; 1) respectively, and the composite labelling of the adjoint
representation is (1; 1). In addition given an arbitrary irreducible representation (λ) of SU(N)
we can always find it in the decomposition of the tensor product of a string of fundamental
and antifundamental representations, and we define the power p(λ) of the representation to
be the minimum number of fundamental and antifundamental representations needed in this
construction. It is easy to convince oneself the power p(λ) is simply the total number of boxes
in its composite labelling; in other words

p(λ) = `(µ) + `(ν) . (A.4)

Let us come back to the composite representations of the group U(N). They can in act be
rigorously defined by [205]

(µ; ν) =
∑

ζ,ρ,σ

(−1)`(ζ)Nµ
ζρV

ν
ζT σ(ρ⊗ σ) , (A.5)

where σ is the conjugate of σ and Nµ
ζρ the Littlewood–Richard coefficient. The tensor product

of two composite representations can be decomposed via [206]

(µ; ν)⊗ (ρ;σ) =
∑

ζ,η

((µ/ζ)⊗ (ρ/η); (ν/η)⊗ (σ/ζ)) . (A.6)

Here the division of two partitions is defined with the help of the Littlewood–Richardson coef-
ficients

µ/ζ =
∑

ρ

Nµ
ζρ ρ . (A.7)

It’s precisely the opposite operation of tensor product decomposition.

Since the quantum knot invariants are formulated in U(N) Chern–Simons theory, the most
generic quantum knot invariants are colored in composite representations. The quantum knot
invariants of unknot are still given by the quantum dimensions of the coloring representations.
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The quantum dimension of the composite representation (µ; ν) is [170]

dimq(µ; ν) = Q−
1
2

(|µ|+|ν|)sµ(q−ρ)sν(q−ρ)

∏cµt
i=1

∏cνt
j=1(1−Qqi+j−µti−νtj−1)

∏cµt
i=1

∏cνt
j=1(1−Qqi+j−1)

×
( cµt∏

i=1

cνt∏

j=cνt−µti+1

(1−Qqi+j−1)
)( cνt∏

i=1

cµt∏

j=cµt−νti+1

(1−Qqi+j−1)
)
,

(A.8)

where Q = qN , sµ(·) is a Schur polynomial, and cµ is the height of the Young diagram of µ.
The quantum dimension can also be written as

dimq(µ; ν) =
Nn(µ; ν)

H(µ)H(ν)
(A.9)

where H(µ) and H(ν) are the q–deformed hook length products of the respective Young dia-
grams with each factor x in the hook length product replaced by the corresponding q–deformed
number

[x] =
qx/2 − q−x/2
q1/2 − q−1/2

. (A.10)

[x] usually differs from x but returns to x in the limit q → 1. Besides the numerator Nn(µ; ν)
is given by

Nn(µ; ν) =
∏

i,j,k,`

[N − i− j + µi + νj + 1][N + k + `− (µT )k − (νT )` − 1] . (A.11)

In the formula above, (µT )k and (νT )` are the k–th and `–th components of the transposed
partitions, and the right hand side of the formula is multiplied over all the cells with row
and column indices (i, j) in the Young diagram of µ as well as all the cells with row and
column indices (k, `) in the Young diagram of ν. Whenever j exceeds cν or k exceeds cµT , the

corresponding νj or (µT )k vanishes.
Finally the quantum knot invariants of torus knots colored in composite representations can

also be computed using the Rosso–Jones formula. We observe that the quadratic Casimir
eigenvalue satisfies [207]

C(µ;ν) = Cµ + Cν . (A.12)

Since the conformal weight hV in the Rosso–Jones formula eq. (2.158) is proportional to the
quadratic Casimir eigenvalue of V , we can immediately write down

W(µ;ν)(Kr,s) =
∑

`(ρ)=r·`(µ)
`(σ)=r·`(ν)

c
(ρ;σ)
(µ;ν),re

(hρ+hσ)·2πis/r dimq(ρ;σ) . (A.13)

Here the coefficients of the Adams’ operation c
(ρ;σ)
(µ;ν),r involving composite representations can

be computed using formulae in [205], and some results are given explicitly in [170]. Note the
formula above also computes invariants for a torus knot Kr,s in the framing r · s.
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APPENDIX B

Calibrated Annulus Kernel

Here we lay out explicitly the calibrated annulus kernel of the trefoil torus knot. It is

B̂2,3(p1, p2) = B2,3(p1, p2)− dα1dα2

(α1 − α2)2
, (B.1)

where the uncalibrated annulus kernel has the form

B2,3(p1, p2) =
U2,3(α1, β1, α2, β2;Q) + U2,3(α2, β2, α1, β1;Q)

V2,3(α1, β1, α2, β2;Q) + V2,3(α2, β2, α1, β1;Q)
dα1dα2 , (B.2)

with the convention αµ = α(pµ), βµ = β(pµ), µ = 1, 2. The polynomials U2,3 and V2,3 are
respectively

U2,3(α1, β1, α2, β2;Q) = (1−Q)β3
2

×
[
Q2α2

(
24Qα1β

8
2 + (11− 24Q)α1β

7
2 − 6Q4β6

2 − 2(Q− 4)Q3β5
2 + 4Q2(6Q− 5)β4

2 + 2Q
(
4Q2 − 9Q+ 5

)
β3

2

+4(1− 3Q)Qβ2
2 − 6(Q− 1)Qβ2 + 4Q

)
β10

1 + α2

(
−6Q4α1β

10
2 + 6(Q− 1)Q3α1β

9
2 + 2Q2(4Q− 19)α1β

8
2

+Q
(
−2Q2 + 61Q− 65

)
α1β

7
2 − 2

(
16Q2 − 41Q+ 25

)
α1β

6
2 + 9Q4β5

2 + 3Q2
(
7Q2 − 18Q+ 5

)
β3

2

+6(Q− 1)2Q2β2
2 + 9Q2β2 − 6(Q− 1)Q2

)
β9

1 + α2

(
−2(Q− 4)Q3α1β

10
2 +Q2

(
2Q2 − 10Q+ 17

)
α1β

9
2

−75(Q− 1)Qα1β
8
2 +

(
24Q5 +

(
2Q3 + 57Q2 − 240Q+ 275

)
α1

)
β7

2 +
(
2(7Q− 19)Q4 +

(
−3Q2 + 95Q− 140

)
α1

)
β6

2

+
(
2
(
Q2 − 41Q+ 40

)
Q3 +

(
2Q2 + 29Q− 74

)
α1

)
β5

2 − 4Q2
(
12Q2 − 15Q+ 5

)
β4

2 + 2Q
(
−4Q3 + 37Q2 − 38Q+ 5

)
β3

2

+4(1− 3Q)2Qβ2
2 + 6(Q− 1)2Qβ2 + 4(1− 3Q)Q

)
β8

1 +
(
α2

(
4Q2(6Q− 5)α1β

10
2 − 4Q

(
6Q2 − 11Q+ 5

)
α1β

9
2

−8Q(3Q− 2)α1β
8
2 − 26Q4β7

2 +
(
(59Q− 71)Q3 + (46Q− 48)α1

)
β6

2 +
(
Q2
(
11Q2 − 97Q+ 132

)
− 6(3Q− 4)α1

)
β5

2

−8Q
(
14Q2 − 29Q+ 15

)
β4

2 +
(
−80Q3 + 197Q2 − 132Q+ 25

)
β3

2 +
(
−8Q3 + 74Q2 − 76Q+ 10

)
β2

2

+3
(
7Q2 − 18Q+ 5

)
β2 + 2

(
4Q2 − 9Q+ 5

))
− 13Q6β4

2

)
β7

1 − α2

(
−2Q

(
4Q2 − 9Q+ 5

)
α1β

10
2

+
(
8Q3 − 47Q2 + 82Q− 25

)
α1β

9
2 + 3

(
2Q4 +

(
7Q2 − 43Q+ 40

)
α1

)
β8

2 +
(
2(19Q− 22)Q3 +

(
8Q2 + 67Q− 97

)
α1

)
β7

2

+4(Q− 1)
(
3(Q− 4)Q2 − 4α1

)
β6

2 − 2
(
2Q
(
27Q2 − 52Q+ 25

)
+ (20− 3Q)α1

)
β5

2 − 4(2− 3Q)2Qβ4
2

+
(
8
(
14Q2 − 29Q+ 15

)
+ 13α1

)
β3

2 + 4
(
12Q2 − 15Q+ 5

)
β2

2 − 24Q+ 20
)
β6

1 +
(
Q2
(
9Q4β4

2 + 2(20− 3Q)Q2β2
2

−6Q(3Q− 4)β2 + 2Q2 + 29Q− 74
)
β2

2 + α2

(
4(1− 3Q)Qα1β

10
2 +

(
9Q4 + 2

(
9Q2 − 14Q+ 5

)
α1

)
β9

2

+
((
−6Q2 + 42Q− 20

)
α1 − 9(Q− 1)Q3

)
β8

2 +
(
(187− 105Q)Q2 + (38− 14Q)α1

)
β7

2 −
(
3Q
(
16Q2 − 57Q+ 55

)
+4(Q+ 7)α1)β6

2 +
(
329Q2 − 690Q+ 275

)
β5

2 + 4
(
27Q2 − 52Q+ 25

)
β4

2 +
(
11Q2 − 97Q+ 132

)
β3

2

+2
(
Q2 − 41Q+ 40

)
β2

2 + 9β2 − 2Q+ 8
))
β5

1 +
(
β2

(
4Q6β6

2 − 4Q4(Q+ 7)β4
2 + 16(Q− 1)Q3β3

2 + 2Q2(23Q− 24)β2
2

+Q
(
−3Q2 + 95Q− 140

)
β2 − 32Q2 + 82Q− 50

)
+ α2

(
2Q
(
2Q3 − 3(Q− 1)α1

)
β10

2 +
(
3
(
2Q2 − 4Q+ 5

)
α1

−4(Q− 1)Q3
)
β9

2 + 2Q2(3Q− 19)β8
2 + 2

(
5Q
(
Q2 + 3Q− 4

)
+ 3(Q− 4)α1

)
β7

2 + 4
(
Q3 − 19Q2 + 41Q− 25

)
β6

2

−3
(
16Q2 − 57Q− 3α1 + 55

)
β5

2 − 12
(
Q2 − 5Q+ 4

)
β4

2 + (59Q− 71)β3
2 + 2(7Q− 19)β2

2 − 6
))
β4

1

+
(
2Q
(
3Q2 + 2α1

)
α2β

10
2 − 2

(
9Q2 + 5(Q− 1)α1

)
α2β

9
2 +

(
Q
(
−6Q2 + 43Q− 25

)
+ (6Q− 20)α1

)
α2β

8
2

+
(
6Q5 +

(
49Q2 − 290Q+ 6α1 + 275

)
α2

)
β7

2 + 2
(
3(Q− 4)Q4 +

(
5
(
Q2 + 3Q− 4

)
+ 2α1

)
α2

)
β6

2

+
(
2(19− 7Q)Q3 + (187− 105Q)α2

)
β5

2 +
((
−8Q2 − 67Q+ 97

)
Q2 + (44− 38Q)α2

)
β4

2 − 26α2β
3
2

+
(
2Q3 + 57Q2 − 240Q+ 24α2 + 275

)
β2

2 +
(
−2Q2 + 61Q− 65

)
β2 − 24Q+ 11

)
β3

1 +
(
2Q2(3Q− 10)α2β

10
2

−2Q
(
3Q2 − 13Q+ 10

)
α2β

9
2 + 16Qα2β

8
2 +

(
2(3Q− 10)Q4 +

(
−6Q2 + 43Q− 25

)
α2

)
β7

2 + 2(3Q− 19)α2β
6
2

141



Appendix B Calibrated Annulus Kernel

+
(
−2
(
3Q2 − 21Q+ 10

)
Q2 − 9(Q− 1)α2

)
β5

2 − 3
(
Q
(
7Q2 − 43Q+ 40

)
+ 2α2

)
β4

2 − 8Q(3Q− 2)β3
2 − 75(Q− 1)β2

2

+(8Q− 38)β2 + 24)β2
1 + β2

(
−10(Q− 1)Qα2β

9
2 +

(
16Q2 − 32Q+ 25

)
α2β

8
2 − 2

(
3Q2 − 13Q+ 10

)
α2β

7
2

−2
(
5(Q− 1)Q3 + 9α2

)
β6

2 +
(
3Q2

(
2Q2 − 4Q+ 5

)
− 4(Q− 1)α2

)
β5

2 +
(
2Q
(
9Q2 − 14Q+ 5

)
+ 9α2

)
β4

2

+
(
−8Q3 + 47Q2 − 82Q+ 25

)
β3

2 − 4
(
6Q2 − 11Q+ 5

)
β2

2 +
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2Q2 − 10Q+ 17
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β2 + 6(Q− 1)
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2Qα2β

9
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7
2 +

(
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4Q2 − 9Q+ 5
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β3
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) ]
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The numerator of the kernel B2,3(p1, p2) is of degree one in αµ and degree 13 in βµ for µ = 1, 2,
while its denominator is of degree 3 in αµ and degree 9 in βµ for µ = 1, 2.
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Appendix B Calibrated Annulus Kernel

(a) 41 (b) 52 (c) 61 (d) 62

(e) 63 (f) 72 (g) 73 (h) 74

(i) 75 (j) 76 (k) 77

Figure B.1: Quasi–plat presentations of hyperbolic knots with up to seven crossings.
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Birkhäuser Boston, Boston, MA, 1983 77–102 (cit. on p. 19).

[40] G. Tian, “Smoothness of the universal deformation space of compact Calabi-Yau
manifolds and its Petersson-Weil metric”,
Mathematical aspects of string theory (San Diego, Calif., 1986), vol. 1,
Adv. Ser. Math. Phys. World Sci. Publishing, Singapore, 1987 629–646 (cit. on p. 19).

[41] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(n ≥ 3)
(Calabi-Yau) manifolds. I, Comm. Math. Phys. 126.2 (1989) 325–346, issn: 0010-3616
(cit. on p. 19).

[42] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko,
Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics,
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1985 edition, Birkhäuser/Springer, New York, 2012 xii+382, isbn: 978-0-8176-8339-9
(cit. on p. 20).

[43] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko,
Singularities of differentiable maps. Volume 2, Modern Birkhäuser Classics,
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