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Abstract

One of the most commonly asked questions in astrophysics today refers to the nature of dark energy,

and thus to the details of the evolution of our Universe. The characteristics of dark energy are imprinted

in the large-scale structure of matter and accordingly also in the distribution of galaxy clusters as tracers

of this structure. The up-coming eROSITA X-ray instrument, which is scheduled for launch in early

2017, will detect a sample of ∼ 100, 000 clusters of galaxies in this wavelengths range in a total of eight

all-sky surveys. These observations are expected to significantly support the study of dark energy.

Already before the launch of this instrument, it is essential to provide forecasts on the expected ob-

servations and on their interpretations, as well as to test and prepare the required software and data

analysis strategies. The projects within this thesis support these aims, while focusing on the observa-

tions of galaxy clusters and on the cosmological implications from the expected cluster catalogue. Based

thereon, we perform predictions on how well eROSITA will be able to detect cluster gas temperatures

and redshifts, and we quantify the impact of the tools for the analysis of the raw data on these results. In

a second project, the constraints, which the expected large cluster sample will place on the cosmological

parameters, including the characteristics of dark energy, are estimated.

For the first project, we simulate cluster spectra for a variety of different cluster masses and redshifts,

while accounting for the expected background emission as well as for the instrumental response. An

emission model is then fit to these spectra to re-obtain the cluster temperature and redshift. Convolving

these results with the halo mass function and an assumed eROSITA selection function, yields the number

of clusters with precisely estimated characteristics. For a sub-sample of cluster masses and redshifts, we

test the influence of the pre-analysis procedures, which are required to extract the cluster spectra from

the observed raw data. Thus, we generate event files of cluster observations and analyse them apply-

ing the available tools of the currently developed eROSITA data reduction software, eSASS. The finally

extracted spectra are again analysed by the above procedures and the best-fit results are compared to

the input properties. Thus, we are able to identify and quantify systematics in the simulation and data

reduction strategies.

Based on the instrumental response, on X-ray cluster scaling relations, as well as on the information

on cluster observations obtained above, we convert the halo mass function to a more general halo abun-

dance function. This function considers a more direct observable, the number of observed photon counts

η, instead of the cluster mass. With the help of this model, we compute a mockcatalogue of the expect-

edly observed eROSITA clusters, which is highly dependent on the applied cosmology. Implementing

the mockcatalogue and the corresponding cluster abundance model into Markov-Chain Monte Carlo
simulations, yields the credibilities, with which the different cosmological parameters, including the

nature of dark energy, can be defined by the cluster sample.

Following these projects, we emphasise that eROSITA will observe precise temperatures with ΔT/T <
10% for clusters up to distances of z � 0.16, which relates to ∼ 1, 700 new clusters with precise

properties from the all-sky surveys. Also, redshifts will be accessible from the X-ray data alone up to

distances of z � 0.45. Additionally, we quantify the bias in the best-fit temperatures as well as in the

computed uncertainties to be negligible for all clusters with precise temperatures in these observations.

For the remaining clusters, correction functions are defined to still allow for the computation of accurate

properties. When considering the systematics, arising from the analysis of the raw data, the simulated

temperature precisions decrease slightly, whereas on average the parameter space of clusters with pre-

cise temperatures remains unchanged. However, the pre-analysis tools resulted in a strong temperature



bias of ≈ 10% for these clusters. The identification of this and other systematics in these software pack-

ages already initiated their advanced development and indicated the importance of similar investigations

of these tools also in the future.

The cosmological forecasts, on the other hand, present the eROSITA instrument as powerful probe for

precision cosmology and thus also for the study of dark energy. Credibilities of Δσ8 = 0.013(1.6%),

ΔΩm = 0.01(3.4%), Δw0 = 0.117(11%), and Δwa = 0.432 from the cluster abundances alone show

comparable constraints to the Planck data with external priors. Combining both data sets, allows for

precisions of Δw0 = 0.077(7.7%) and Δwa = 0.276 with a figure of merit of FoM2σ
w0,wa

= 53 for the

nature of dark energy. At the same time, the observed cluster catalogue will provide additional informa-

tion to tighten the knowledge on the M − LX scaling relation.

In conclusion, eROSITA will allow for precise studies of the galaxy cluster properties, while increasing

the current sample of clusters with precise temperature estimates by a factor of 5 − 10. The on-going

development of the data analysis tools will support these expectations as well as the observations of

accurate and reliable cluster characteristics and data interpretations. These cluster studies and the re-

sulting large catalogue of objects, will provide the required information for strong and unprecedented

cosmological constraints. Accordingly and based on the computed FoM, eROSITA is classified as the

first Stage IV probe for studying the nature of dark energy.
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CHAPTER 1

Prelude

“Astronomy? Impossible to understand and madness to investigate.”

Sophocles, c. 420 BC

Since the dawn of time, the night sky and its phenomena have impacted the evolution of cultures as well

as their strives and believes. Whereas in the early history, astronomical observations were commonly

interpreted as a divine intervention, already the ancient advanced civilisations studied regularities in the

motion of celestial objects and tracked the passing of time in calendars. Since these early days, a great

leap in astronomical knowledge could be achieved and modern research in this field has been revolu-

tionised to big data science governed by a complex physical framework and intensive computing. Apart

from this development, the general wide-spread attraction to astronomy and the puzzles of the cosmos

have remained.

The progress in astronomy and astrophysics was especially guided by the derivation of advanced the-

oretical models to describe e.g. General Relativity or the characteristics of spacetime, as well as by

further developments in technology and of powerful telescopes. We are thus able to e.g. look deeper

into space with an ever improving resolution, to identify diffuse objects as independent galaxies, com-

parable to our own Milkyway and at large distances of several Millions and Billions of lightyears, or

to map the over-all large scale distribution of these galaxies as well as of other astrophysical objects.

Another basic principle for shaping our current understanding of the Universe, is the observation of

space in all wavelengths, starting from the low radio frequencies with wavelengths of the order of kilo-

meters up to the highest gamma energies of ∼ 1021 eV. This multiwavelength approach allowed for the

discovery of previously unknown classes of objects and for the study of their properties, as well as for

the exploration of additional characteristics of already known objects.

All of these discoveries established the idea of the Universe as being infinite and unconfined, with an

origin in an initially hot, dense state, the so-called Big Bang, ∼ 13.6 Billion years ago. From this time

onwards, the Universe expanded continuously and consequently cooled down. The evolution of our

Universe from this initial state to today is one of the currently most extensively studied aspects in as-

trophysics and is summarised in the field of cosmology. This topic asks the questions how the Universe

evolved from the Big Bang until today, but also how it will develop in the future. Will it re-collapse

into a singularity or will it expand forever? Accordingly, studying cosmology allows us to predict the

initial as well as the final state of the Universe! In addition to these elementary questions, the field of

cosmology combines physical processes on the largest and smallest length scales with mutliwavelength

observations, complex theoretical models, and computationally expensive simulations.

To study the evolution of the Universe, it is essential to decode its geometry as well as its composition

1



1 Prelude

in terms of its total energy budget, its different forms of energy and matter, and the characteristics of

these components. Amongst these are radiation, consisting of photons and relativistic neutrinos, as well

as ordinary baryons, massive neutrinos and particles of the physical standard model in general. How-

ever, observations indicate the additional existence of so-far not understood forms of matter and energy,

which are not yet included in this standard model. These exotic forms are dark matter and dark energy.

The existence of dark matter was suggested by the Swiss astrophysicist Fritz Zwicky in 1933 (Zwicky

1933). He observed the velocity dispersions of galaxies in the Coma galaxy cluster, a gravitationally

bound and virialised accumulation of these objects. Following the laws of gravity, he inferred the re-

quired mass to bind the galaxies to the cluster. As the observed mass showed a deviation from the

expected, computed value with a reduction by more than an order of magnitude, Zwicky introduced an

additional, dark and thus unobserved mass component, which he labeled dark matter. Today, we find

the imprints of dark matter on all scales, where it explains e.g. rotation curves of spiral galaxies (e.g.

Bertone et al. 2005), or the evolution of structures in the Universe (e.g. Bergström 2000). However, this

form of matter has not been detected directly, yet, and we are able to study it only indirectly based on

its effects on the surrounding luminous matter. Following this study, dark matter appears as a particle

outside our current standard model of physics, which interacts especially via gravity and shows a very

small cross section for other particle interactions. Apart from these hints, the characteristics of this

particle species are still unidentified.

While elaborating the properties of dark matter, astrophysicists were and still are challenged by the

discovery of an accelerated expansion of the Universe. At the end of the last century, two independent

research groups analysed the distances to supernovae type Ia, a special type of exploding star at the end

of its life time. They realised that these objects showed larger distances than expected, where these in-

creased distances proposed an accelerated expansion of space (Perlmutter et al. 1998; Riess et al. 1998).

To drive the acceleration, an additional component was introduced to our cosmological model - dark
energy. Even though many models exist to describe this energy species, also dark energy has not been

observed directly, yet, and its nature is still less accessible than the characteristics of dark matter. Within

the current understanding, we treat dark energy as an attribute of space, showing a constant density in

time and space.

In summary, these two dark components contribute to ∼ 95% of the current total energy density of the

Universe, with ∼ 70% being added by dark energy only. Accordingly, only little information is available

on the vast major fraction of our Universe. What is more, due to their energy dominance, dark matter

and dark energy are strongly shaping the evolution of the Universe. Thus, to recover our past and to

predict our future evolution, we need to study the nature of these two dark components, where especially

the analysis of dark energy is one of the key research goals in cosmology. In addition to the motivations

expressed above, this pursuit to explore the dark side of the Universe states a further encouragement as

well as a necessity for cosmological studies.

As dark energy is not directly observable with current instruments, we investigate its nature by its

imprints on the detectable Universe, which includes its geometry and the evolution of the over-all large-

scale distribution of matter. The latter is especially traced by massive objects, such as e.g. galaxies and

clusters of galaxies. Due to the finite speed of light, we indeed glimpse the past evolutionary stages by

examining space at large distances. Especially the earliest times reveal the most essential information

about the evolution of the Universe. Within this work, I am especially interested in the galaxy cluster

approach, where I analyse their spatial distribution as well as their distribution with their mass to map

the underlying matter structure and its development. The precision and accuracy of the reconstruction

of structures depends, accordingly, on the precision and accuracy of the cluster observation data as well

as on the size of the applied cluster sample, where the statistical uncertainty decreases with increasing

catalogue size. One common strategy is the use of X-ray galaxy cluster catalogues, since X-ray obser-
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vations have proven as an effective technique for detecting these objects as well as for recovering their

characteristics. Currently, the sample of X-ray galaxy clusters with precise information consists of the

order of a few hundred objects, where roughly a couple of thousand clusters are known in X-rays in

total (comp. e.g. Piffaretti et al. 2011).

The study of large samples of galaxy clusters in this energy range was especially revolutionised by

ROSAT (Roentgensatellit), which was launched in 1990 and performed the first X-ray all-sky survey

with an imaging telescope (Trümper 1985). After the first six months of all-sky survey, ROSAT con-

tinued with deep exposure, pointed observations, such that during its nine years of operation time, the

telescope discovered close to 2, 000 clusters of galaxies (Voges et al. 1999; Rosati et al. 2002). The cur-

rently operating X-ray instruments, which are mainly the European XMM-Newton, the US-American

Chandra and NuSTAR, and up to recently the Japanese Suzaku, pursue the second observational ap-

proach and follow-up already known clusters with detailed pointed observations. Accordingly, these

telescopes continuously improve and extend the catalogue of galaxy clusters with precisely available

characteristics. As the ROSAT all-sky survey covers only the brightest clusters of galaxies with fluxes

of the order of � 10−13 erg/s/cm2 in the energy range between (0.5 − 2.0) keV (Trümper 1985) and at

rather low distances with redshifts around z � 0.51, the interest is to develop a new X-ray all-sky survey.

The applied instruments should show a comparable or even improved resolution and sensitivity to the

currently operating instruments. However, as these current instruments perform only pointed observa-

tions, an additional all-sky survey of the same sensitivity will significantly increase the total number of

observed clusters in X-rays and will thus essentially support detailed cosmological studies.

The planned eROSITA-telescope (extended ROentgen Survey with an Imaging Telescope Array) is such

an instrument (Predehl et al. 2010; Merloni et al. 2012). It is scheduled for launch in early 2017 as a joint

German-Russian mission and is presently assembled under the leadership of the German Space Agency
(DLR) and the Max-Planck Society (MPG). The instrument is expected to detect a total of 100, 000 clus-

ters of galaxies and it will thus extend the X-ray cluster catalogue by a factor of about ∼ 50 (Pillepich

et al. 2012), while increasing the number of clusters with precisely known characteristics at the same

time (Borm et al. 2014). Accordingly, eROSITA presents itself as powerful instrument to map the past

evolution of structures and to thus investigate the nature of dark energy for decoding the future evolution

of our Universe.

To allow for an efficient and an accurate reduction as well as interpretation of the up-coming eROSITA
data, a diversity of preparatory tasks are required, several of which are introduced in this thesis. Fol-

lowing the cosmological science driver of this instrument, I simulate the abundance and distribution of

clusters that eROSITA will observe and test how the catalogue of clusters with precise characteristics is

improved quantitatively. Based on these cluster information, I predict the constraints, the instrument will

place on cosmology and especially on the nature of dark energy. To investigate these research interests,

this thesis is structured as follows. The subsequent two chapters emphasise on the theoretical back-

ground of cosmological studies with galaxy clusters, including the necessary software and statistical

tools. Thereafter follow three chapters presenting the results for the above mentioned science goals with

a summarising conclusion stated in chapter 7. The contents of chapter 4 hava already been published

and accepted by the journal Astronomy and Astrophysics in May 2014 as Borm et al. (2014) (biblio-

graphic code: 2014A&A...567A..65B, reprinted with permission © ESO), whereas the work presented

in chapter 6 is in the process of being submitted.

Following these research tasks, this thesis constributes not only to the preparations of the eROSITA
instrument, but also to the exploration of dark energy and the evolution of our Universe in general.

1 In astrophysics, distances are commonly described in terms of redshift. A redshift of z = 0.5 corresponds to a time five

Billion years ago or equivalently to distances of a Billion light years (ly) or a few hundred Million parsec (pc).
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CHAPTER 2

Introduction

Within the last four decades, astrophysicists were able to develop a defined idea of the evolution and

composition of our Universe. Based on only the physical laws and on two handfuls of so-called cos-

mological parameters, we are able to describe the past evolution of our Universe in detail and to predict

its future development. Gradually, the values of these parameters were constrained with increasing pre-

cision, while there is still room left for improvement, e.g. in precisely quantifying the cosmological

parameters, or in testing additions to the currently accepted evolution model of our Universe.

The following sections present the reader with a brief summary of our current understanding of the

cosmological characteristics of our Universe and introduce the methodology of these studies based es-

pecially on the large scale distribution of matter as well as on galaxy clusters as its tracers. Additionally,

the up-coming eROSITA-instrument is described as a promising tool for decoding the past and for fore-

casting the future evolution of our Universe.

The general concepts of cosmology presented in Sects. 2.1 to 2.4, are based on the literature of e.g.

Kolb & Turner (1990); Peacock (1999); Dodelson (2003); Schneider (2015) if not stated otherwise.

2.1 Our Cosmological Model

Within the general understanding, the Universe formed ∼ 13.6 Billion years ago from an initially hot,

dense state, which we refer to as the Big Bang. From this point onwards, the Universe is expanding

continuously, while following the principles of being infinite and unconfined. However, we are not able

to observe the entire Universe, as information can only travel with the finite speed of light. All regions,

that are currently causally connected and are thus exchanging information amongst each other, are

located within a sphere of the so-called Hubble radius (compare section 2.1.1). This radius is especially

dependent on the expansion history of the Universe. Following our presently accepted cosmological

model, we expect a current Hubble radius of close to 5 Gpc, where 1 pc ≈ 3.086 · 1016 m. The finite

speed of light also results in the phenomenon of always looking back into the past as light needs time

to travel form the source to the observer. The larger the observed distances are, the larger is also the

look-back time.

Another important framework is the cosmological principle, which is based on the elemental idea that

there are no distinguished observers and that space appears uniform in all observed directions. The latter

aspect is referred to as isotropy of the Universe where the combination of both of the above statements

additionally results in the assumption of homogeneity. Accounting for these basic principles of our

Universe, we now describe its evolution and composition within a more theoretical framework.
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2 Introduction

2.1.1 Dynamics of Spacetime

Following the concepts of general relativity, the three spatial dimensions and the time are combined into

a four-dimensional, interacting continuum, referred to as spacetime. Accordingly, a certain position

in this four-dimensional continuum is described by a time variable t and a three-dimensional spatial

coordinate. The spatial vector is defined on a grid with fixed points, such that the distances between the

individual grid points are stretched with the expansion of space. This relative expansion between the

grid points is expressed by a dimensionless property, the so-called scaling factor a(t), with a dependence

on time and a value of unity for today a(t0) = 1. Based on the expansion of the Universe with time,

we accordingly constitute a(t1) < a(t2) for t1 < t2. The location of an object in space is thus defined as

r(t) = a(t) · x, with the 3-dimensional coordinate x representing the position on the fixed grid. To derive

the spatial evolution as well as to compute the physical distances between different objects, based on

this principle, we refer to Einstein’s theory of General Relativity.

One of the solutions to Einstein’s field equations was derived by Friedmann, Lemaître, Robertson and

Walker in the 1920s and 1930s to describe distances in the Universe. This Friedmann-Robertson-Walker
metric (FRW-metric) reads

ds2 = c2dt2 − a2(t) · [dχ2 + f 2
K(χ) · (dθ2 + sin2 θ · dφ2)] . (2.1)

The constant c represents the speed of light, whereas the parameter ds describes the separation between

two objects in the 4-dimensional spacetime. The spatial position is written in spherical coordinates

(χ,θ,φ), with the radial comoving distance χ depending on the curvature K of spacetime

fK(χ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K−1/2 · sin[K1/2 · χ] (K > 0)

χ (K = 0) .

(−K)−1/2 sinh[(−K)1/2 · χ] (K < 0)

(2.2)

In space, information propagates as electromagnetic waves, which follow null geodesics with the char-

acteristics (θ, φ) = const. and ds = 0. Accordingly, the FRW-metric simplifies to

c · dt = −a(t) · dχ (2.3)

⇒ χ(t) =
∫ t0

t

cdt′

a(t′)
. (2.4)

for the comoving distance χ(t) between us and an event happening at the cosmic time t. Looking back to

the beginning of the Universe at t = 0, the comoving distance defines the Hubble radius rH as χ(0) = rH.

At the same time, the above equation is the basis to derive the expression of the cosmological redshift z.

For this derivation, we assume a source, which emits two signals at te and te+Δte at a constant comoving

distance χ. These signals are then observed at the later times t0 and t0 +Δtobs and we obtain the relation

χ =

∫ t0

te

c · dt′

a(t′)
=

∫ t0+Δtobs

te+Δte

c · dt′

a(t′)
(2.5)

⇒
∫ te+Δte

te

c · dt′

a(t′)
=

∫ t0+Δtobs

t0

c · dt′

a(t′)
. (2.6)

For small time periods Δt0 and Δte and assuming a(t) to only change insignificantly during these time

intervals, we conclude

Δte = a(t) · Δtobs , (2.7)
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2.1 Our Cosmological Model

applying a(t0) = 1. The expansion of the Universe defines a(te) < a(t0) = 1 and accordingly Δtobs > Δte,

following Eq. 2.7. This increase of the interval between the observed signals has an influence on the

observed frequency of the signal. With νe = 1/Δte = νobs/a(t) and thus νe > νobs, the observed frequency

is decreased and the cosmological redshift z is defined as

(1 + z) :=
νe
νobs
=
λobs

λe
=

1

a(t)
, (2.8)

with the wavelength λ = c/ν. As a(t) decreases continuously with increasing look-back time, also the

redshift increases and ze > z0, where z0 = 0 by definition. In the following, the variables t, a(t) and z(t)
are used equivalently to represent different time epochs.

As shown by the previous considerations, distances in space are based on the evolution of the scale

factor a(t), which itself depends on the energy budget and the composition of the Universe. In 1922,

the theoretical astrophysicist Friedmann derived a set of two independent differential equations that

describe the evolution of the scale factor as a solution to Einstein’s field equations (Friedmann 1922).

These Friedmann equations read

I)
( ȧ
a

)2

=
8πG

3
· ρ − Kc2

a2
+
Λc2

3
(2.9)

II)
ä
a
= −4πG

3
·
(
ρ + 3 · p

c2

)
+
Λc2

3
, (2.10)

where we simplified a(t) = a. The variables ρ and p define the energy density as well as the pressure

in the Universe, respectively, whereas Λ presents the cosmological constant as an additional energy

source. The first Friedmann equation defines the expansion rate ȧ/a of spacetime, which is commonly

expressed by the Hubble parameter H(t)

H(t) =
ȧ(t)
a(t)

. (2.11)

Most recent measurements of today’s expansion rate, the so-called Hubble constant, yield a value of

H0 ≈ 67.74 ± 0.46 km/s/Mpc (Planck Collaboration et al. 2015c), which is equivalently formulated by

the dimensionless variable h = H0/(100 km/s/Mpc). The second Friedmann equation states the rate of

accelerated expansion of the Universe. If, as a first approach, the last term on the right hand side of

equation 2.10 is neglected, an acceleration is obtained for

− 1

3
>

p
ρc2

. (2.12)

In the assumption of only one dominating energy component, this component induces an accelerated

expansion of spacetime, if its equation of state w = p/(ρc2) reads w < −1/3.
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2 Introduction

2.1.2 Composition of the Universe

As displayed in equation 2.9, the curvature K and thus the geometry of the Universe are closely linked

to the total energy density. The case of a flat Universe with K = 0 requires a precisely calibrated density

value, the so-called critical density

ρcrit(t) =
3H(t)2

8πG
. (2.13)

In the case of ρ > ρcrit, the geometry is closed with K > 0, whereas for ρ < ρcrit, the curvature is negative

K < 0 and space time is defined as open. Furthermore, the individual energy components are defined as

ratios in comparison to the critical density

Ωi =
ρi

ρcrit
, (2.14)

with the index i noting the different energy components and Ω0 =
∑

iΩi,0 describing the total energy

density today. Different experiments concordantly estimate Ω0 to be of the order of unity with Ω0 =

0.9992+0.0040
−0.0039

(compare e.g. Planck Collaboration et al. 2015c; Komatsu et al. 2011) and thus confirm a

flat geometry of our Universe. This total energy budget is believed to be composed as follows:

Neutrinos: Current experiments estimate the effective total number of neutrino families to be consis-

tent with Neff = 3.046 (Planck Collaboration et al. 2015c) and thus with the Standard Model of particle

physics. However, since the discovery of neutrino oscillations at the beginning of this century, these

particles are expected to show masses larger then zero, despite the previous assumptions of this stan-

dard model. Detailed investigations on their mass characteristics yield lower constraints on the summed

mass for all neutrino species of
∑

mν > 0.06 eV (e.g. Lesgourgues & Pastor 2012). A detailed summary

of neutrino physics relevant for cosmology is given by Lesgourgues et al. (2013). Depending on the

neutrino masses and their corresponding current velocities, the neutrinos species contribute differently

to the energy budget of the Universe as explained below.

Radiation: Radiation consists of relativistic particles, which are photons γ and neutrinos ν with

masses close to zero. Induced by the evolution of spacetime, the radiation density is time dependent

with ρr(a) = ρr,0 · a−4, following the cosmic expansion ∝ a−3 and an energy shift ∝ a−1 due to the

cosmic redshift (compare Eq. 2.8). The radiation density ρr itself is mainly defined by the temperatures

of the two species, which started to form homogeneous and isotropic radiation backgrounds very early

after the Big Bang. The relations follow ργ ∝ T 4
γ and ρν,relativistic ∝ T 4

ν , respectively, with

ρν,relativistic = ργ · 7

8
·
(

4

11

)4/3

· Neff,relativistic , (2.15)

applying the comparison between the two background temperatures2 (comp. Sect. 2.2.1), Tν = (4/11)1/3·
Tγ, and the different degrees of freedom for neutrinos as fermions and photons as bosons. Here

Neff,relativistic defines the number of relativistic neutrino species.

2 We will see in Sect. 2.2.2 that Tγ = 2.73 K = TCMB, with TCMB as the temperature of the so-called Cosmic Microwave
Background.
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2.1 Our Cosmological Model

Baryonic Matter: The component Ωb summarises all baryons, which especially show the character-

istics to interact strongly electromagnetically. Accordingly, efficient photon interactions result in the

transport of information of this type of matter to us as observer. Also the baryon density is influenced

by the expansion of spacetime as ρb(a) ∝ a−3. All other matter components follow the same evolution

with time.

Dark Matter: The existence of dark matter was first postulated in galaxy clusters by Fritz Zwicky in

1933 (Zwicky 1933). Today we indirectly observe dark matter on all scales through its gravitational

impact on baryonic matter. Direct detections have not been accomplished, yet, and the few known

characteristics are e.g. inferred from studying the primordial nucleosynthesis right after the big bang

(compare 2.2.1), the history of structure formation (compare 2.3), or the interactions of galaxy clusters.

Accordingly, dark matter is expected to show a non-baryonic origin and very low interaction cross-

sections with estimated upper limits on the cross section for self-interactions of the order of σ/m � 1

cm2/g in dependence on the particle mass m (e.g. Markevitch et al. 2006; Randall et al. 2008).

Depending on the particle velocities and thus on the assumed masses, three different types of dark

matter are defined - ”hot“, ”warm“ and ”cold“. For example, neutrinos with relativistic velocities today

are e.g. considered as hot dark matter, whereas neutrinos with slightly higher masses and accordingly

non-relativistic velocities are referred to as warm particles. In the latter case, the neutrinos contribute to

the over-all matter density of the Universe as

Ων,massive =
mν

93.14 · h2 eV
(2.16)

(e.g. Lesgourgues et al. 2013; Böhringer & Chon 2015; Roncarelli et al. 2015) in dependence on the

summed mass of all non-relativistic species. In this way of thinking, Ων is independent of the number

of non-relativistic species for a fixed
∑

mν, where by default Neff,massive is commonly set to one for

simplicity3.

One commonly suggested model for cold dark matter are the so-called WIMPs, or Weakly Interacting
Massive Particles. The current standard model of particle physics does not include such a massive

particle with all of the above characteristics and additional theorems are required. One idea includes the

concepts of supersymmetry and defines WIMPs as the lightest supersymmetric particle, the so-called

neutralino χ, which show assumed masses of m ≈ 100 GeV/c2. Based on this mass estimate, a thermally

averaged reaction rate for self-interaction equivalent to 〈σv〉 ≈ 3 · 10−26 cm3/s was inferred.

In summary, we split up the dark matter budget ΩDM into a cold and a warm component Ωc and Ων,

respectively. The relativistic neutrinos are considered as radiation component.

Dark Energy: At the end of the last century, two research groups applied supernovae type Ia observa-

tions to measure the relation between the observed distances and redshifts (Riess et al. 1998; Perlmutter

et al. 1998). Their observations were not in agreement with their fiducial cosmological model of matter

and radiation as only energy components and of a steadily expanding Universe. Instead, the measure-

ments indicated an accelerated expansion of spacetime, which is initiated by a third form of energy, a

kind of vacuum energy with negative pressure. This so-called dark energy constitutes roughly two thirds

of the entire energy budget and is thus significantly driving the evolution of the cosmos.

Often, dark energy is identified with the cosmological constant with ρΛ = const and w = −1 (comp.

Eqs. 2.9, 2.10 & 2.12). The corresponding cosmological model is referred to as ΛCDM, with Λ for the

cosmological constant and CDM for “cold dark matter”. It includes all of the above mentioned energy

3 Please refer to the file at http://cosmologist.info/notes/CAMB.pdf for an application example.

9



2 Introduction

components and assumes a curvature of K = 0. However, as the characteristics of dark energy are still

investigated also more generalised models are tested. These e.g. allow for a constant equation of state,

w0CDM, with w = const. but w � −1, or for a variable equation of state, wCDM, with w � const. and

w = w(a). Commonly, the dark energy density is labeled by the subscript “DE” as e.g. ρDE, independent

of its characteristics.

A general evolution of its density is then derived as

ρDE = ρDE,0 · exp

[
−3 ·

∫ a

1

1 + w(a′)
a′

da′
]
. (2.17)

The most commonly applied variable equation of state (Chevallier & Polarski 2001; Linder 2003) and

its corresponding evolution read

w(a) = w0 + wa · (1 − a) (2.18)

ρDE = ρDE,0 · exp [−3 · (wa · (1 − a) + (1 + w0 + wa) · ln a)] . (2.19)

To quantify the total energy budget in the Universe, we summarise the above considerations as (Planck

Collaboration et al. 2015c)

Ω0 = Ωr + Ωb + Ων + Ωc + ΩDE + ΩK (2.20)

with Ωm = Ωb + Ων + Ωc , (2.21)

and state the values of the cosmological parameters in Tab. 2.1. Please note, that some of the mentioned

parameters will be explained in a later section. Following the definition of the density parameters, we

rewrite the first Friedmann equation (Eq. 2.9) in a more viable formalism

( ȧ
a

)2

= H(t)2 = H2
0 · (Ωr · a−4 + Ωm · a−3 + ΩDE + ΩK · a−2) (2.22)

with E(a) =
√
Ωr · a−4 + Ωm · a−3 + ΩΛ + ΩK · a−2 , (2.23)

assuming a cosmological constant as dark energy. In a more general case, the constant parameter ΩΛ
needs to be replaced by expression Eq. 2.19. From the different evolutions of the individual energy

components with the scale factor, we conclude the existence of three epochs of domination. Right after

the Big Bang, radiation was the dominant form of energy until aeq ≈ 3 · 10−4, zeq = 3371 (Planck

Collaboration et al. 2015c), when matter became the dominant component. At a redshift of roughly

(1 + z) = Ω−1/3
m or z ≈ 0.5, dark energy started dominating the total energy budget (e.g. Carroll et al.

1992).

2.1.3 Distance Measures

In an expanding Universe distances cannot be defined explicitly, as spacetime evolves during the travel

time of light rays. We therefore consider three different approaches as distance measures: the comoving

distance, the angular diameter distance, DA, as well as the luminosity distance, DL. Rewriting the

comoving distance (Eq. 2.4) with the definition of the Hubble parameter yields

χ(z1, z2) =

∫ a(z2)

a(z1)

c · da
a2 · H(a)

=
c

H0

∫ a(z2)

a(z1)

da
a2 · E(a)

(2.24)
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2.2 Thermal History in a Nutshell

Table 2.1: Cosmological model parameters as observed by Planck Collaboration et al. (2015c), where the last two

parameter values are added to present assumptions for a complete cosmological consideration.

Parameter Value Description

Ωbh2 0.0223 ± 0.00014 baryon density

Ωch2 0.1188 ± 0.0010 cold dark matter density

ΩDE 0.6911 ± 0.0062 cosmological constant

ΩK 0.0008+0.00040
−0.0039

curvature

H0 67.74 ± 0.46 Hubble constant

ns 0.9667 ± 0.0040 index of the linear power spectrum

σ8 0.8159 ± 0.0086 matter variance of scales of 8 Mpc/h

w0 −1.019±+0.075
−0.080

normalisation of the dark energy equation of state

wa consistent with 0.0 slope of the dark energy equation of state

Ωr ∼ 7.5 · 10−5 radiation density

Ων,massiveh2 0.00064 massive neutrino density

as the comoving distance between two objects at redshifts z1 and z2 with z1 < z2. The angular diameter

distance as well as the luminosity distance are derived in dependence on the comoving distance as

DA(z1, z2) = a(z2) · χ(z1, z2) (2.25)

DL(z2) = 1/a(z2) · χ(0, z2) , (2.26)

assuming a flat geometry ΩK = 0 and the observer to be positioned at z1 = 0 in the case of DL. In the

case of curvature these derivations modify to DA(z1, z2) = a(z2) · fK(χ) and DL(z2) = 1/a(z2) · fK(χ),

respectively, following Eq. 2.2.

2.2 Thermal History in a Nutshell

As the previous section emphasised on the general evolution of spacetime, the thermal history will now

describe the evolution of the different particle species and of the energy budget with time.

About ∼ 13.6 Billion years ago, the Universe was formed within the Big Bang and started to evolve

from an initially hot, dense state. Since then, space expanded gradually with time and causes a decrease

in the temperature of the different particle species by a factor of ∝ 1/a, or equivalently as

T (t) = T0/a(t) , (2.27)

with T0 as the current temperature. However, the following section will describe how these particle

species show different temperatures according to their history of particle interactions.
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2.2.1 From the Big Bang to the Epoch of Recombination

Right after the Big Bang and thus at the highest temperatures, the Universe was dominated by radiation,

while only the elementary particles - quarks, leptons, bosons, dark matter particles as well as their an-

tiparticles - existed and interacted with one another in a stable equilibrium. At times of 10−43 to 10−35

s after the Big Bang, a break in the symmetry between the strong and the electroweak interactions is

believed to have happened, which resulted in an overabundance of matter compared to antimatter. This

process is known as baryogenesis. The equilibrium in the different particle interactions holds as long

as their cross sections are larger than the expansion rate of the Universe. Accordingly, as the expansion

of the Universe progresses and the temperature decreases gradually, several interaction channels be-

come inaccessible and different particle species start to freeze-out of this equilibrium. The first particles

to follow this trend are the still hypothetical cold dark matter particles. With expected rest masses of

m � 100 GeV/c2 they can no longer be produced at times of the order of t � 10−10 s and additionally,

they only show negligible cross sections for interactions with other particles. Due to this freeze-out,

the CDM-particles now free-stream across spacetime, no longer participate in interactions, and form a

homogeneous and isotropic background. As these particles experience decay processes, their density

gradually decreases with the currently remaining relict density depending on their time of freeze-out.

The next important step in the thermal history is the hadron epoch, starting at t ∼ 10−6 s at energies

of 1 GeV, in which quarks couple to form protons and neutrons. Only at these low energies, hadrons

are composed effectively since at earlier times the high radiation energy density still allows for an equi-

librium between the formation of hadrons and their splitting. The newly created protons and neutrons

are in equilibrium with the remaining particles and convert into one another via the β- and the inverse

β-process. At t ≈ 1 s, however, neutrinos decouple from the particle equilibrium due to their small cross

sections. Followingly, the inverse β-process becomes inaccessible such that neutrons can no longer be

produced and their abundance decreases continuously. Shortly after the neutrino decoupling as energies

drop below 0.5 MeV (T ≈ 5 × 109 K), also the process of pair creation γγ → e+e− is suppressed. The

back reaction, however, continues at a high rates and thus heats the photon spectrum. As the primordial

neutrinos are already decoupled at this epoch of pair-annihilation, their temperatures remain unaffected

by this process.

Roughly at t ≈ 200 s, decreased temperatures of ∼ 109 K allow for the effective formation of the light-

est atomic nuclei in the primordial nucleosynthesis. During this process, all neutrons are bound in the

atomic nuclei to form mainly deuterium, 3He and 4He as well as traces of lithium. Due to the continuous

decrease of the neutron abundance since the era of neutrino decoupling, the amount of atomic nuclei

heavier than hydrogen strongly depends on the time interval between these two epochs. Following the

model predictions, the expected mass fractions are X ≈ 75% for hydrogen and Y ≈ 25% for helium (for

more detailed values compare e.g. Burles et al. (1999) and Burles & Tytler (1998)).

During the epoch of nucleosynthesis, the Universe was still ionised as any binding of electrons to the

atomic nuclei was split due to the high photon-to-baryon ratio of ∼ 109. Only at redshifts of z ≈ 1090

(Planck Collaboration et al. 2015c), roughly 380, 000 years after the Big Bang and well in the mat-

ter dominated epoch, a further decrease in the temperature and thus also in the photon energy allowed

electrons to couple effectively to the nuclei to form neutral atoms. Accordingly, the photons no longer

interacted with the free electrons via Compton scattering and were now able to freeze-out, which is

referred to as the epoch of recombination. Since before this epoch, the photons were in thermal equilib-

rium with the electrons, the free-streaming photons now follow a blackbody spectrum. This radiation is

known as the cosmic microwave background (CMB).
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2.2 Thermal History in a Nutshell

Figure 2.1: Anisotropies in the Cosmic Microwave Background as observed by the Planck satellite. The small

temperature anisotropies of ΔT/T ≈ 10−5 with the higher temperatures given in the blue colours, indicate the

beginnings of structure formation at z ≈ 1090.4

2.2.2 The Cosmic Microwave Background

The discovery of the CMB in the mid-1960s allowed for insight into the early moments after the Big

Bang. Within numerous observational missions, the characteristics of the CMB were studied and it

was found to show the best-measured blackbody spectrum in nature with a current temperature of T ≈
2.725 ± 0.0006 K (comp. e.g. Fixsen 2009). Within this homogeneous and isotropic radiation, small

temperature anisotropies of the order of ΔT/T ≈ 10−5 are observed as imprints of the baryonic matter

distribution at the epoch of photon decoupling (comp. Fig. 2.1). As a simplified description, the

slightly cooler regions, displayed in red, present regions of matter overdensities, such that photons

from these regions lose energy while climbing out of the gravitational potential. At large, the CMB

contains much information on the different cosmological parameters, which include the different energy

components as well as parameters defining the evolution of the matter distribution. They are imprinted in

the so-called CMB power spectrum, which describes the strength of the inhomogeneities at the different

scales, represented by the multipole moment l. Figure 2.2 displays the CMB power spectrum as it

was measured by the Planck satellite, showing as most dominant feature the so-called acoustic peaks

at scales of l � 100. These peaks are due to oscillation of the strongly coupled baryon-photon fluid

on scales inside the sound horizon at the epoch of decoupling. The position of the first acoustic peak

at l ≈ 1◦ expresses the angular scale of the sound horizon at this time and thus the geometry of the

Universe. The position of the peaks is mainly dependent on the total energy density Ω0, whereas the

amplitude of the peaks is related to the matter and to the baryon density, Ωm and Ωb, respectively.

Analogously, most of the remaining cosmological parameters leave their imprint on the CMB power

spectrum, such that this spectrum allows for detailed cosmological studies. A thorough description of

the dependencies of the CMB power spectrum on the different cosmological parameters is beyond the

scope of this work, however, and is summarised in detail in e.g. Hu & Dodelson (2002). After the epoch

of photon decoupling, the evolution of the Universe is mainly shaped by the development of the matter

distribution.

4 Credit: ESA (http://www.esa.int/Our_Activities/Space_Science/Planck/

Planck_and_the_cosmic_microwave_background)
5 Credit: ESA (http://www.esa.int/spaceinimages/Images/2013/03/Planck_Power_Spectrum)
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Figure 2.2: power spectrum of the cosmic microwave background as measured by the Planck satellite. This

spectrum describes the strength of the temperature inhomogeneities on different scales, where the shape of the

spectrum is strongly dependent on cosmology. The red markers indicate the Planck data, whereas the green curve

represents the best-fit standard model of cosmology. 5

2.3 Structure Formation

Figure 2.3: Distribution of galaxies as observed by

the Sloan Digital Sky Survey (SDSS). The galaxy

number density is imprinted in the colour scheme

with the highest densities given in red. Credit:
http://www.sdss.org/science/.

Following the argumentation of the cosmological

principle, we expect a homogeneous and isotropic

distribution of matter on large scales. The over-all

distribution of matter is generally referred to as

Large Scale Structure (LSS) and was e.g. identi-

fied by the 2dF Galaxy Redshift Survey (Colless

et al. 2001) in the allocation of galaxies. These

objects form a web-like structure with large un-

derdense voids, overdense filaments and knots as

intersection points of these filaments (Fig.2.3).

On scales larger than ∼ 100 Mpc, this distribu-

tion appears to be homogeneous. The underlying

matter arrangement itself is not observable with

current instruments, such that galaxies as well as

clusters of galaxies, which reside in the knots of

the LSS, are used as tracers of the over-all matter

distribution.

This so-called cosmic web of structures, was ini-

tiated by infinitely small fluctuations in the grav-

itational potential. The spatially deviating grav-

itational tug on the surrounding matter, accord-

ingly guided the clustering of matter into increas-

ing overdensities and into regions with continuously decreasing densities, so-called voids. In addition to

the steady accretion of matter, the overdensities also experienced mergers with one another. They then

decoupled from the over-all expansion of the Universe and eventually collapsed into virialised matter
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2.3 Structure Formation

haloes. The first imprints of the baryonic matter distribution are already visible in the temperature map

of the CMB, as already discussed in the previous section. With the continuous accretion of matter along

the filaments and the mergers of overdensities, the evolution of the matter distribution follows a hierar-

chical process (Fig. 2.4), with the most massive haloes residing in the knots of the LSS. This process is

also known as the Bottom-Up scenario.

The process of structure formation is highly dependent on the cosmological model, including the energy

budget of the Universe. Thus, tracing back the evolution of the matter structures places constraints on

the cosmological parameters. For example, the observed Bottom-Up scenario is only understandable, if

the majority of dark matter is in the form of a cold particle. Solely their low velocities allow structures

to form on the smallest scales first. Hot or warm particles on the contrary stream out of these small scale

perturbations. In the case of dark matter being composed mainly of high velocity particles, structures

would thus form on large scales first and later-on break down into smaller perturbations. This scenario

is also known as Top-Down solution. Accordingly, observations place constraints amongst others on the

fraction of massive neutrinos as dark matter particles.

In the following subsections, we derive the evolution of the LSS in a more detailed approach. For this

discussion of structure growth, we first emphasise on the evolution of dark matter-only perturbations

and later-on introduce the influence of the other energy species.

Figure 2.4: Evolution of dark matter-only structures as simulated within the Millenium Simulation (Springel et al.

2005). From left to right and from top to bottom, the images display the distribution of dark matter at the redshifts

z = 13.8, 5.7, 1.4 ,0. with the highest overdensities expressed by the brightest colors.

2.3.1 The Transfer Function and the Matter Power Spectrum

To quantify matter perturbations, the so-called density contrast δ(�x, t) at the comoving coordinate �x and

at time t is expressed as

δ(�x, t) =
ρ(�x, t) − ρ̄(t)
ρ̄(t)

(2.28)

based on the matter density at the given coordinates ρ(�x, t) and on the mean matter density ρ(t) at the

considered time t. For today at t0, the mean density contrast, averaged over �x, is estimated as δ̄(t0) = 1

with values of δ̄(t) < 1 for t < t0, as for example δ̄(z ∼ 1090) = 10−5 at the era of matter-photon

decoupling as imprinted in the CMB temperature map (Sect. 2.2.2).

15



2 Introduction

Though the evolution of this matter density contrast is driven by the gravitational potential, it is influ-

enced by the dominating energy species and depends on the considered perturbation scale as well. For a

realistic description of the matter perturbations, the growth of structures thus needs to be considered in

the epochs of radiation and matter domination, and we define sub- as well as superhorizon perturbations

with wavelengths λ of

λ < rH(a) and λ > rH(a) ,

respectively, in comparison to the Hubble radius rH at the considered epoch. We start with describing

the initial growth of perturbations at times around the recombination epoch, when a very small mean

density contrast is observed, such that we can apply linear perturbation theory. To quantify this growth,

a common approach is to work in the non-relativistic regime, to treat matter as a fluid and to assume

the initial density perturbations to follow a so-called Gaussian random field. This Gaussian approach

assumes the primordial perturbations to be generated by a stochastic process. The probability distri-

bution of any realisation of this random field g(�x) is thus Gaussian shaped. Following the concepts of

linear perturbation theory, the evolution of structures is expressed by the combination of the linearised

Continuity Equation, the linearised Euler Equation as well as the linearised Poisson Equation. Differen-

tiating between the two epochs of radiation and matter domination, and the two perturbation sizes, the

following dependencies of the evolution of the density contrast on the scale factor are computed,

if λ � rH δ ∝ a2 if a � aeq

δ ∝ a if a � aeq

if λ � rH no growth if a � aeq

δ ∝ a if a � aeq

the evolution with the scale factor is influenced by the different expansion rates H(a) during the epochs

of radiation and matter domination. With time, the comoving scale λ of the perturbation remains con-

stant, whereas the comoving horizon size rH increases with the scale factor. Thus, for each length scale

λ there is a time at which the perturbation enters the horizon. Perturbations of λ > λeq = rH(aeq) enter

the horizon in the matter dominated epoch and, according to the above summary, do not change their

growth rate after entering. Smaller perturbations of λ < λeq, however, enter the horizon still during radi-

ation domination and are suppressed in their growth by a factor of
(

aenter(λ)
aeq

)2

after entering the horizon.

This suppression of small scale perturbations is described by the so-called transfer function T (λ) with

dependence on the perturbation size. In detail, the transfer function describes the ratio between two

perturbation amplitudes of different lengths λ and λ∗ with λ∗ > λeq and compares their ratio at an early,

initial time ai to their ratio today at a0

δa0
(λ)

δa0
(λ∗)
= T (λ)

δai
(λ)

δai
(λ∗)
. (2.29)

According to the considerations above, the transfer function is roughly defined as

T (λ) ≈
⎧⎪⎪⎨⎪⎪⎩1 for λ � λeq

(λ/λeq)2 for λ � λeq

. (2.30)

Often, the transfer function is also computed as T (k) in terms of the wavenumber k = 2π/λ. For an exact

description of the transfer function, the underlying set of differential equations given by the Continuity

Equation, the Euler Equation as well as the Poisson Equation need to be solved. Analytical approxima-
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2.3 Structure Formation

tions to these solutions are presented e.g. by Bardeen et al. (1986) and Eisenstein & Hu (1998). The

currently most effective routine to solve the differential equations of structure formation and to compute

a realistic transfer function is CAMB (Code for Anisotropies in the Microwave Background) by Lewis

et al. (2000). CAMB also includes the influence of the different energy components, which are described

in Sect. 2.3.2.

To account for the growth of structures well after the epoch of radiation-matter equality when all per-

turbations evolve similarly, we reconsider solving the set of differential equations mentioned above for

the era of matter domination and assuming negligible radiation (comp. also e.g. Linder & Jenkins 2003;

Percival 2005).

δ̈ +
2ȧ
a
δ̇ =

3H2
0
Ωm

2a3
δ . (2.31)

The solution to this differential equation is a linear combination of one decaying D− and one growing

modeD+, of which only the latter is of interest to us. Unlike the transfer function, both modes are scale

invariant. For application, the growing mode is normalised to unity today

D+(a) = D+(a)/D+(1) , (2.32)

and is then named growth factor D+. Combining the information on the transfer function as well as on

the growth factor, the linear matter power spectrum P(k), which states the significance of the different

perturbation scales for the growth of structures is derived as

P(k, a) = A · knsT 2(k)D2
+(a) , (2.33)

including the index ns of the power spectrum and its amplitude A. Initially, this spectrum is defined as

the Fourier transform of the mean density contrast squared, evaluated for a certain scale factor a

P(k) =
∣∣∣δ(k)

∣∣∣2 = ∫
R3

dx · exp[−ix · k] ·
(
δ̄(x)

)2
. (2.34)

This Fourier transform decomposes the spatial density contrast into its different perturbation scales δ̄(k),

where the displayed parameter i represents the imaginary unit. Whenever we consider the power spec-

trum in this work, we always refer to the linear model.

Coming back to Eq. 2.33, the index ns is to a first approach expressed within the so-called Harrison-
Zel’dovich theorem as ns = 1. This assumption defines the power spectrum to be scale-invariant, such

that the density perturbations of all different scales show the same amplitude at the moment of horizon

crossing. However, most recent observations of the CMB obtain values of ns = 0.96 (Planck Collabo-

ration et al. 2015c). This slight deviation from scale invariance is interpreted as proof for an extension

to the standard model of the Big Bang theory (compare Sec. 2.4.2). The value of the amplitude A can-

not be derived theoretically, but needs to be inferred from observations, where we measure the present

standard deviation of the matter distribution on scales with radius r = 8 h−1 Mpc, also defined as σ8.

This normalisation approach is motivated by galaxy counts which yield ΔN/N̄ ≈ 1 on these scales. In

general, the mass standard deviation σ(r) shows the theoretical form

σ2(r, a) =

∫ ∞

0

d3k
(2π)3

P(k, a) · |Wr(k)|2 , (2.35)

where the power spectrum is smoothed by the window function Wr(k) over scales with radius r, while
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the integration runs over all perturbation modes k. The window function itself is defined as

Wr(k) = 3 · sin(kr) − kr · cos(kr)

(kr)3
. (2.36)

Combining expressions 2.33 and 2.35, we compute the normalisation A as

A =
σ2

8(∫ ∞
0

d3k
(2π)3 knsT (k, 1)2D2

+,0
· |Wr=8h−1Mpc(k)|2

) , (2.37)

where the normalisation is always defined for today at a = 1.

Following this approach, the linear power spectrum is computed in Fig. 2.5 based on the transfer func-

tion by CAMB and on a WMAP5-cosmology Komatsu et al. (2009). The maximum in the spectrum at

k ≈ 0.02 and the following drop for smaller scales emphasise the influence of the transfer function as

fluctuations on small scales with k � 0.02 enter the horizon already during radiation domination and are

thus suppressed. Accordingly, the position of this maximum is characteristic for the horizon size at the

epoch of radiation-matter equality.

Commonly when applying e.g. CAMB, the power spectrum is calculated for a = 1. The spectrum

can then be inferred for other scale factors by a multiplication with the corresponding growth factor as

P(k, a) = P(k, 0) · D2
+(a), since within the considerations above we normalised D+(1) = 0. If the pow-

erspectrum is initially computed for a different scale factor, the growth factor need to be re-normalised

correspondingly.

2.3.2 Influences on the Power Spectrum

For a proper account of the evolution of structures a dark-matter only approach does not suffice and

the transfer function needs to include the influences of all energy components - photons, neutrinos,

baryons, and dark energy. The impact of these components on the transfer function and thus on the

power spectrum is summarised below, and in Fig. 2.5.

Radiation: In general, the abundance of radiation, including photons as well as relativistic neutrinos,

defines the value of aeq and accordingly the suppression of small scale perturbations, such that e.g. an

increase in the number of relativistic neutrinos results in a decrease of the power spectrum to the right of

the peak (comp. Fig. 2.5, blue dotted line). Apart from this aspect, radiation and dark matter decoupled

already very early after the Big Bang so that the evolution of the dark matter overdensities was not

directly influenced by radiation.

Baryons: Dark matter and baryons interact gravitationally, such that baryons fall into the overden-

sitites formed by dark matter and vice versa. However, before the decoupling of the CMB, the strong

interactions between photons and baryons prevented the baryons from falling into the dark matter po-

tential wells. Accordingly, the over-all matter power spectrum is suppressed on small scales for an

increased fraction of baryons (comp. Fig. 2.5, dotted red line). Instead, the baryons were confined

in the baryon-photon fluid and were dragged along with the photons at the speed of sound to form

oscillations within the sound horizon. After the epoch of photon decoupling, baryons and dark mat-

ter eventually settle into each other’s potentials, creating the so-called Baryonic Acoustic Oscillations
(BAO) visible as wriggles in the power spectrum on scales smaller than the horizon (comp. also Fig.

2.2). With an increasing fraction of baryons Ωb, or equivalently Ωbh2, these oscillations become more
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Figure 2.5: Power spectra for different cosmologies computed with CAMB. The default is a ΛCDM-cosmology

as it is given by the results of WMAP5 (black line). To display the effects of the individual density parameters on

the power spectrum, one parameter at the time is varied, while fixing a flat geometry.

pronounced (comp. Fig. 2.5, dotted red line).

For a detailed description of the baryonic features in the transfer function and thus equivalently in the

power spectrum, please refer to Eisenstein & Hu (1998).

Massive Neutrinos: Early after the Big Bang, massive neutrinos are still relativistic and thus stream

out of density regions smaller than their free-streaming length. This leads to an additional suppression

of perturbations on small scales, especially for k < keq, with keq = 1/λeq (comp. Fig. 2.5, green dashed

line). This effect is analogous to the description of the Top-Down scenario for neutrino-only dark matter

and accordingly results in a similar alteration of the power spectrum as the increase of the radiation

abundance. At some point in time, depending on their rest mass, these particles become non-relativistic

and start to actively participate in the growth of structures.

For the comparison in Fig. 2.5, we considered a mass sum of all neutrino species of
∑

mν = 0.23 as the

upper limit on this parameter estimated by (Planck Collaboration et al. 2015c).

Dark Energy: Adding an additional dark energy component in a flat universe indirectly means a

decrease of the matter content such that aeq is increased. Accordingly, λeq:DE > λeq:matter_only and

perturbations of larger scales enter the horizon still during radiation domination and are thus suppressed

(compare Fig. 2.5, yellow dotted-dashed line).

As a second effect, a decreased matter density also leads to a reduced speed in the growth of structures.

Obtaining the same density contrast today, requires a higher amplitude of the linear power spectrum

than in a matter-only universe.
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Figure 2.6: Halo mass function based on the transfer function by CAMB and the functional form by Tinker et al.

(2008) for a WMAP5-cosmology.

2.3.3 From the Matter Power Spectrum to the Halo Mass Function

The power spectrum yields the foundation for other models to describe the distribution of matter per-

turbations across the Universe. One of them is the halo mass function dn/dM(M, z), which expresses

the number density of collapsed matter haloes within a certain mass interval in dependence on their

mass and their redshift. In the process of matter accretion onto overdensities, these regions follow a

less rapid expansion than their surroundings due to their increased gravitational potential. Accordingly,

these overdensities decouple from the general Hubble flow of the Universe and increase their density

contrast steadily. The overdense sphere eventually reaches a maximum expansion and then recollapses

into a relaxed and virialised halo with half the radius of the maximum extension, rvir = rmax/2 (for a

summary see e.g. Schneider 2015). This scenario is also referred to as spherical halo collapse model.

Following the simplified assumption of linear structure formation in an Einstein-deSitter Universe with

Ωm = Ω0 = 1 and solving the equation of motion of the sphere r̈ = −GM/r2 with the mass M and

the radius r, yields the required density contrast for the overdensity to collapse. Accordingly, matter

concentrations collapse for linear density contrasts of δlin = 1.69. Or in other words, for spheres to

collapse at a scale factor a and to become relaxed until today, these haloes need to show present linear

density contrasts of δlin,0 = 1.69/a. The mean density within the virialised region presents values of

ρ = 178 · ρcrit(z), compared to the critical density at the redshift at which the halo is observed. Despite

the simplified assumption for these derivations, the above values are commonly applied when consider-

ing haloes in virial equilibrium and (e.g. Percival 2005) found only a weak dependence of these results

on the cosmological model.

We follow this linear approach for structure formation as we are especially interested in the larger matter

haloes with scales of r � 10 Mpc/h, which later-on develop into the knots of the LSS. The halo mass

function is generally expressed by the functional form

dn
dM

(M, z) =
ρ̄m,0

M
·
(
d lnσ−1

dM

)
· f (σ) , (2.38)
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given by the mean matter density today ρ̄m,0 = Ωm · ρcrit,0, the mass M of the halo and the mass variance

σ2 = σ2(r, z) smoothed over the scale r of the matter concentration at redshift z. The scale and the mass

of the halo are related by

r(M) = (3 · M/(4πρ̄m,0))1/3 . (2.39)

The first to derive these relations were Press & Schechter (1974) with the factor

f (σ) =

√
2

π
· δlin
σ
· exp[−(δlin/σ)2/2] . (2.40)

Where this formalism was obtained in a theoretical approach, the currently well-accepted models of the

factor f (σ) are defined in fits to structure formation simulations. In general, the halo mass function is

believed to show a universal profile and its form is thus expected to be independent of the cosmological

model, including time-variable dark energy (e.g. Jenkins et al. 2001; Evrard et al. 2002; Linder &

Jenkins 2003; Kuhlen et al. 2005).The currently most commonly applied model is defined by Tinker

et al. (2008) based on the formalism of Eq. 2.38 and a factor f (σ) of

f (σ) = AT

[(
σ

bT

)−aT

+ 1

]
· exp(−cT/σ

2) . (2.41)

The parameters AT, aT, bT and cT are dependent on the overdensity Δm of the halo, defined as

Δm(z) =
MΔm

(4/3)πr3
Δm
ρ̄m(z)

, (2.42)

in dependence on the redshift z at which one wants to measure the halo mass function

AT(z) = AT,0 · (1 + z)−0.14 (2.43)

aT(z) = aT,0 · (1 + z)−0.06 (2.44)

bT(z) = bT,0 · (1 + z)−α (2.45)

cT(z) = cT,0 (2.46)

ln(α(Δm)) = −
[

0.75

ln(Δm/75)

]1.2

. (2.47)

The parameters denoted with the index “T,0” are obtained from the fit to the structure formation sim-

ulations for different overdensities Δm. A commonly applied value for the halo overdensity is Δcrit =

500 based on the critical density of the Universe and independent of the redshift, and thus Δcrit =

Δm(z)/Ωm(z). As already mentioned above, we assume this model of the halo mass function to be uni-

versal with cosmology, and extend this universality also to the redshift dependence of this function.

Combining the information of the previous sections, Fig. 2.6 presents the halo mass function based on

the formalism by Tinker et al. (2008) and the transfer function from CAMB for a WMAP5-cosmology

(Komatsu et al. 2009). The evolution of the number density of haloes with their mass and redshift

emphasises on the concepts of structure formation: More massive haloes are less abundant at higher

redshifts as a longer time period is needed to accrete the required mass. The shape of the halo mass

function and thus the abundance of haloes is strongly dependent on the cosmology just as the transfer

function and thus also the power spectrum are varying with cosmology (comp. Sect. 2.3.2). One of the

most important parameters for structure formation is the matter density Ωm, where structure formation
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proceeds more rapidly with an increased value for Ωm as the Universe expands more slowly. Accord-

ingly, the abundance of massive haloes is reduced at higher redshifts in this scenario to yield the same

abundance of haloes today. For the assumption of a flat Universe, an increase in dark energy ΩΛ thus

implies a slowed down growth of structures, but at the same time a larger abundance of massive haloes

at larger redshifts (comp. Sect. 2.3.2). If one allows for Ω0 � 0, however, an increase in ΩΛ supports

the growth of density perturbations. This is explained by the dependence of Ωm(z) on the evolution

and density of dark energy, where Ωm(z) starts to decrease only very late during the epoch of matter

domination for large values of ΩΛ and small values of w (Voit 2005), such that in this case the structure

evolution is reduced only at very low redshifts.

To test this theory of structure formation and to obtain the values of the different cosmological pa-

rameters which regulate this process, this model needs to be compared to observations. In the process of

this work, we base this comparison on the observation of the abundance of galaxy clusters as the largest

collapsed and virialised objects in the Universe.

2.4 The Standard Model under Investigation

Before we continue with defining the characteristics of these objects and describe how galaxy clusters

are adopted as cosmological tracers, we take a look at the validity of the described standard model for

the evolution of the Universe.

2.4.1 Successes and Problems of the Standard Model

The greatest success of the standard model of cosmology is the discovery of the CMB, which confirms

the Big Bang and the thermal evolution of the Universe. Analogously to this photon background, also

the existence of a uniform, isotropic neutrino background with a current temperature of Tν,0 = 1.9 K is

expected, but could not be studied yet, due to the low neutrino cross sections. The temperature of the

neutrino background is reduced by a factor of 11/4 compared to the CMB since the neutrinos decoupled

at an earlier time and thus were not heated during the epoch of e+e−-annihilation.

A second test for our thermal evolution model is provided by the primordial abundances of the different

elements, which strongly depend on the density of photons and baryons, especially on the neutron abun-

dance, at the time of nucleosynthesis. Measurements of the different primordial abundances agree on

the same baryon density of ∼ 3.6 × 1031 g/cm3 (comp. Burles et al. (1999)) with the tightest constraints

coming from observations of the primordial deuterium abundance. However, there have been discus-

sions on a primordial lithium problem as the expected abundance of Li7 from Big Bang nucleosynthesis

is a factor of 3 − 4 above the observations of stars (Fields 2011, comp. also Burles1999). Current

experiments were now able to reproduce the primordial nucleosynthesis of lithium in a laboratory and

confirmed the estimated baryon abundance, leaving the discrepancy to be explained by nonstandard

physical processes in the observed stars (Anders et al. 2014). At the same time, this measurement of the

baryon density emphasises these particles to contribute only ∼ 5% to the critical density of the Universe,

such that the remaining matter density of ∼ 25% needs to be provided by nonbaryonic dark matter.

However, besides these strong successes of the standard model of the Big Bang theory, some observa-

tions remain unexplained and ask for an extension to this model.
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2.4 The Standard Model under Investigation

Flatness Problem: Different observations confirm our Universe to show a flat geometry with Ω0 =

1.0 (Sec. 2.1.2). Tracing back the evolution of the individual energy species according to the Friedmann

Equations, a flat geometry today requires a value ofΩ0(z) very close to unity, with a decreasing deviation

for increasing redshifts. For example, at the epoch of neutrino decoupling at z ≈ 1010 we ask for a

deviation of |Ω0(z) − 1| � 10−15. This fine-tuning of the total energy contents of the Universe lacks an

explanation by the standard model.

Horizon Problem: The horizon problem is most evident in the isotropy of the CMB (comp. Fig.

2.1). Due to the finite speed of light, only regions within a well defined radius are able to communicate

with one another, where this event radius is growing with time. At the epoch of photon decoupling at

z = 1090, the angular radius of this event cone is expected to be θ ≈ 1◦ as computed from the standard

model for the evolution of space. However, for the CMB to be isotropic with relative fluctuations of

only ΔT/T ≈ 10−5, all regions need to have been in causal contact at the epoch of recombination.

Initial Density Perturbations: Right after the Big Bang, radiation as well as particles were dis-

tributed homogeneously. To explain the observed structures today, initial overdensities in the distribu-

tion of matter are required, which then grow through the accretion of surrounding matter. However, the

forming of these initial perturbations is not described by the standard model.

The Missing Baryons: As described above, observing the fractions of primordial elements con-

strains the baryon density. However, in the recent Universe with z < 2, which is shaped by the assembly

of large structures, only ∼ 40% of these baryons are found in stars, in cold or warm interstellar matter,

in the hot intracluster gas of galaxy clusters, and in the intergalactic medium (e.g. Fukugita et al. 1998;

Fukugita 2003). The remaining ∼ 60% of the initial baryons are predict to be part of the process of struc-

ture formation. Numerical simulations of the growth of structures indicate baryons to be shock heated to

temperatures of Millions of Kelvin as this matter is drawn towards the potential of forming structures by

gravity. These filaments of hot baryons are considered as the Warm Hot Intergalactic Medium (WHIM)

and are expected to show baryon number densities of ∼ 10−5−10−6 cm−3 with temperatures of 105−107

K (e.g. Danforth & Shull 2005). They are expected to present emission lines of highly ionised elements,

such as e.g. of carbon, oxygen, neon or iron, in the far-ultraviolet and soft X-ray energies (Cen & Fang

2006). Due to the small element densities, these lines are emitted with only low intensities. Addition-

ally, observations of these lines along many independent line-of-sights are required to thoroughly test

the abundance of baryons in the WHIM. However, several detections especially of O VI and of N VIII

were confirmed by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telscope (comp. e.g.

Savage et al. 2011; Stocke et al. 2013; Werk et al. 2014; Tejos et al. 2015). Accordingly, only ∼ 50%

of the baryons remain currently missing in the present Universe. Further detections are especially ex-

pected from COS and additionally future instruments are designed to study the WHIM in more detail,

with promising opportunities expressed e.g. for the European X-ray mission ATHENA (Nandra et al.

2013), which is scheduled for launch in 2028.

The Dark Universe: Observations e.g, of rotation curves in spiral galaxies, of velocity dispersions

of galaxies in clusters, or of the evolution history of our Universe in general, support the believe in

the existence of two dark components, dark matter as well as dark energy. Though their existence is

commonly accepted today, both dark matter and dark energy have not been detected directly, yet, and

there are competing models to describe the observed phenomena e.g. by a deviation from Newtonian

dynamics or from Einstein’s theory of General Relativity.
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To address the first three problems, the concept of inflation was added to the standard model of cos-

mology. Even though the existence of dark matter and dark energy is commonly accepted, their direct

observations as well as the study of their characteristics is currently the subject of intensive on-going

research and is supported by a large number of current as well as future experiments. For example, one

of these promising instruments to test the nature of dark energy is the future X-ray telescope eROSITA
(extended ROentgen Survey with an Imaging Telescope Array) (Merloni et al. 2012). Planned future

instruments with higher sensitivities will also allow for the search of the missing baryons in the WHIM.

Accordingly, also the latter three problems stated above will hopefully be solved in the near future.

2.4.2 Inflation

Inflation describes a short time interval around t ≈ 10−34 s after the Big Bang, in which our Universe

experienced an accelerated growth of space and expanded by more than 60 e-folds. According to the

second Friedmann Equation, such an accelerated expansion requires a phase with a dominating negative

pressure, analogously to the dark energy which is dominating our Universe today.

Currently, different theoretical models are investigated, which describe how inflation was initialised and

driven. The most established concept describes inflation to be driven by a scalar field Φ(�x, t) and its

potential V(Φ), the so-called inflaton. In the slow-role approximation, this scalar field slowly rolled

down its potential with time to reach the global minimum. During this slow-role phase, the scalar field

remained almost constant. At the end of inflation when the global minimum was reached, the energy

density of the inflaton field converted into radiation, the dominant species at this point of time, and thus

initiated a reheating of the Universe. However, how this short phase of negative pressure domination

was initialised and which laws the transition back to radiation domination followed are still very uncer-

tain.

The concept of inflation as an extension to the standard model solves the three first problems, described

in the previous section. Due to the rapid and vast expansion of spacetime during inflation, any initial

curvature is straightened as the curvature radius is stretched far beyond the current Hubble radius. Ac-

cordingly, Ω0 = 1 is obtained to a very high precision independent of the initial energy density and the

flatness problem is answered. At the same time, any small region in space, which is in causal contact

before inflation, is expanded by several ten orders of magnitude. Accordingly, the entire visible Uni-

verse today has been in causal contact before the epoch of recombination, which explains the isotropy

of the CMB and thus solves the horizon problem. The formation of the initial density perturbations

are explained on a different scope and originate from fluctuations in the inflationary scalar field, which

evolved into perturbations of the gravitational potential after the epoch of inflation. These fluctuations

finally drive the accretion of matter into overdensities (comp. Sect. 2.3).

Despite the fact, that the concept of inflation solves these shortcomings of the standard model, no defi-

nite proof of this epoch has yet been obtained from observations. One hint for the epoch of inflation is

provided by the study of structure formation and the value of the cosmological parameter ns (comp. Sec.

2.3.1). Following the approach of the standard model, one derives a value of ns = 1 and scale-invariance

of the density perturbations, where current observations, for example from the CMB power spectrum,

obtain values of ns = 0.96 (Planck Collaboration et al. 2015c). Only inflation is expected to allow for

this slight deviation from scale-variance as the characteristic length scale of the horizon during inflation

is imprinted in the perturbation spectrum.

Following the theory of structure growths described in the previous sections, we assumed primordial

Gaussianity for the initial density perturbations 2.3.1. However, searching for possible primordial non-
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Gaussianity is a powerful test for the confirmation of inflation and also for the validity of different

inflationary models (Acquaviva et al. 2003; Maldacena 2003). Especially observations of the CMB with

the Planck satellite allow for this study by analysing higher order correlations in its density contrasts

than contained in the power spectrum. The amplitude of non-Gaussianity, fNL, is then correlated to

these higher order correlations (comp. e.g. Baumann 2009). Recent estimates on this parameter are

in agreement with the above mentioned slow-role model of inflation, but also with only Gaussian pri-

mordial density perturbations (Planck Collaboration et al. 2014b, 2015a). Accordingly, the concept of

non-Gaussianity has not be confirmed, yet.

A third proof for the inflationary period would be the existence of primordial gravitational waves. These

gravitational waves are metric perturbations in the tensor field, analogously to the density fluctuations

as perturbations in the scalar field. These waves eventually lead to anisotropies in the photon radia-

tion field, which was released as CMB at the epoch of decoupling. These anisotropies are especially

visible in the polarisation of the CMB, where we would expect to observe a magnetic component or

so-called B-modes. The detection of these CMB B-modes and thus of primordial gravitational waves is

currently widely studied among different research teams (BICEP2 Collaboration et al. 2014, 2015) with

the Planck satellite as most promising instrument for this task (Planck Collaboration et al. 2015b).

2.5 Cosmological Probes

To study the variety of cosmological parameters (comp. Tab. 2.1), which define the evolution of struc-

tures in the Universe, two basic approaches can be followed: studying the geometry of the Universe

by measuring distances, and analysing the history of structure growth. For both possibilities different

observation methodologies and different objects are applied as cosmological probes, where the sensitiv-

ities on the parameters are deviating between the individual approaches. In the following, we present a

brief summary of the main strategies, which are currently applied.

CMB Power Spectrum: As already presented in Fig. 2.2 and in Sect. 2.2.2, the power spectrum of

the CMB displays the beginning of structure formation at a redshift of z ≈ 1090. Accordingly, the de-

pendence of the growth of structures on the different cosmological parameters is imprinted in the shape

of this spectrum (comp. e.g. Hu & Dodelson 2002), with influences comparable to our considerations

in Sect. 2.3.2. Based on this dependency tight parameter precisions could be constrained by current

CMB observations (e.g. Hinshaw et al. 2013; Planck Collaboration et al. 2015c), including e.g. small

uncertainties on ns or Ωc.

Supernovae Type Ia: These objects have already been applied successfully as geometrical cosmo-

logical probes during the detection of the accelerated expansion of the Universe (Perlmutter et al. 1998;

Riess et al. 1998). These type of supernovae explosions always develop under the same conditions,

when an accreting white dwarf becomes unstable as it reaches the Chandrasekhar Mass. Accordingly,

their light curves are standardisable and the luminosities of these phenomena are always comparable.

The observed flux thus defines the distance to the supernovae, which is then analysed in contrast to the

redshift, inferred from the spectra of the phenomenon (comp. Eq. 2.26). This comparison then yields

information on the cosmology.
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Galaxy Clustering: Galaxies evolve in the smaller peaks of the density perturbations and thus trace

the evolution of structures. The probability to find a second galaxy in a certain distance from another

galaxy is stored in the redshift dependent correlation function of galaxies. Following the idea that struc-

ture formation initiated from a homogeneous and isotropic density field, also the correlation function is

expected to be isotropic. Accordingly, studying the distribution of large samples of galaxies allows to

reconstruct this correlation function and thus the underlying cosmology dependence (e.g. Laureijs 2009;

Giannantonio et al. 2012).

BAO: Superimposed on the galaxy correlation function, we observe peaks at separations around >100

Mpc/h in the probability distribution, which are the acoustic peaks of the BAOs (comp. Sect. 2.3.2

Eisenstein et al. 2005; Anderson et al. 2012, 2014). Depending on the position and the amplitude of

these wiggles, especially the geometry and the matter and baryon content of the Universe are tested

(comp. also Hu & Dodelson 2002).

Redshift Space Distortion (RSD): When examining galaxy clustering experiments in more detail,

the observed galaxy redshifts are a superposition of the galaxy velocities due to the cosmic expansion

and their peculiar velocities. Accordingly, the position of objects can only be defined in a so-called

redshift space, which includes these peculiar velocities. The observed correlation function of galaxies is

thus distorted from the theoretical isotropical model and the amplitude of this distortion yields informa-

tion on e.g. the matter budget of the Universe and on its geometry (e.g. Hamilton 1998; Hawkins et al.

2003; Beutler et al. 2014).

Galaxy Clusters: Another important probe to trace especially the evolution of structures are galaxy

clusters, the most massive, virialised objects in the Universe. Since our work focuses on cosmological

studies based on these objects, the following sections present details on their characteristics as well as

on their applications for cosmology.

26



2.6 Introduction to Galaxy Clusters

2.6 Introduction to Galaxy Clusters

As described in Sect. 2.3.3, the evolution history of the large scale structures and thus of the Universe

in general, is well expressed by the distribution of dark matter haloes with the largest mass. The true

observable of these haloes are the objects which reside within them: galaxies as well as clusters of

galaxies towards the higher mass end. To emphasise on the importance of galaxy clusters as cosmolog-

ical tracers, their characteristics as well as their observation methodologies are summarised in detail in

this section.

2.6.1 Definitions

Galaxy clusters are the largest virialised objects in the Universe and are located within the knots of the

LSS (comp. Sec. 2.3). They are a gravitationally bound accumulation of several hundred individual

galaxies, of large amounts of gas, and of dark matter, which span scales of several megaparsecs. Char-

acteristic for these objects are masses between ∼ 5 · 1013 − 1015 M� and X-ray luminosities of several

1044 L� (e.g. Sarazin 1986). In general, one differentiates between galaxy groups, galaxy clusters and

super clusters:

• Galaxy Groups consist of a few to ∼ 50 individual galaxies with total masses of

1012 − 5 · 1013 M�

• Galaxy Clusters show between ∼ 50 and up to ∼ 1, 000 member galaxies with the above men-

tioned masses of ∼ 5 · 1013 − 1015 M�

• Galaxy Super Clusters are the largest known objects in the Universe with � 1, 000 individual

galaxies and masses above ∼ 1015 M�; they started collapsing only very recently in the history of

the Universe and are not virialised, yet.

Though the transition between these objects is fluent, their differences are not only expressed in their

masses or number of member galaxies, but they describe systems of deviating characteristics and phys-

ical processes.

Galaxy clusters do not only reveal the formation history of structures in the Universe, but they are also

laboratories for energetic hydrodynamical processes, such as for example shocks. Additionally, the en-

richment history of the Universe with metals6 as well as the physics of Active Galactic Nuclei (AGN)

are studied in clusters. Despite this diversity of physical aspects contained in galaxy clusters, we focus

on those characteristics important for cosmological studies.

2.6.2 Composition of Galaxy Clusters

Despite the commonly provided definitions above, galaxies provide only � 5% of the cluster’s total

mass. In general, clusters are composed as follows:

Dark Matter: The largest mass fraction of ∼ 80% is made up of dark matter. It forms the halo in which

the remaining cluster constituents, including the member galaxies, are gravitationally bound. Due to this

large amount of dark matter, galaxy clusters show high mass-to-light ratios of M/L ≈ 350 M�/L� (e.g.

Sarazin 1986).

6 We adopt the common astrophysical definition of metals as elements with atomic numbers larger than that of helium.
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Intra-Cluster Medium: The dark matter halo is smoothly filled by baryonic gas, called the Intra-
Cluster Medium (ICM). In the process of structure formation, ambient baryonic matter is assembled

into the potential well of the cluster and the potential energy of the in-falling matter is converted into

kinetic energy. This process is also known as violent relaxation (compare e.g. Voit 2005). During

the assembly, the matter reaches supersonic velocities and this kinetic energy is converted into heat

by adiabatic compression and shocks (e.g. Borgani & Kravtsov 2011) until the gas settles into thermal

equilibrium following a Maxwellian velocity distribution. Due to the cluster’s deep potential well, the

baryonic gas reaches temperatures of kBT ≈ (1 − 10) keV, where we apply the Boltzmann constant

kB, or equivalently temperatures of (107 − 108) K. According to these high temperatures, hydrogen as

well as helium atoms are completely collisionally ionised and heavy elements, such as e.g. iron, are in

hydrogen- or helium-like states. The ICM acts as an optically thin plasma with densities of (10−3−10−1)

particles/cm3 and metallicities of on average A = 0.3 A� (Arnaud et al. 1992). As a whole, the ICM

comprises 15% of the total cluster mass. Another commonly adopted characteristic is the gas mass

fraction fg ≡ Mgas/Mtotal, which defines the ratio between the gas mass and the total mass of a cluster.

It can also be defined as fg = Υ(z) · (Ωb/Ωm), with Υ(z) accounting for star formation processes and

other baryonic effects (e.g. Allen et al. 2011). Especially towards the cluster outskirts, fg approaches

the cosmological ratio of Ωb/Ωm ≈ 15%.

Galaxies: As mentioned above, galaxies provide ∼ 5% of the total cluster mass. Due to the strong

gravitational potential in the cluster, the galaxies may reach velocity dispersions of ∼ 103 km/s (Sarazin

1986). The fraction of elliptical galaxies in clusters is larger than in the field as a result of frequent

galaxy interactions and ram pressure stripping within the ICM. Usually, a giant elliptical galaxy , the

so-called brightest cluster galaxy (BCG), is located close to the cluster centre.

Relativistic Particles and Magnetic Fields: A negligible, but still mentionable fraction of the en-

ergy of the cluster is contained in relativistic particles and magnetic fields which are of the order of a

few μG. Relativistic particles can e.g. be generated in shocks within the ICM, for example during the

merger of two clusters. They gyrate around the magnetic field lines to especially emit radio synchrotron

emission.

To a first approximation, galaxy clusters are assumed to be relaxed, spherically symmetric systems,

such that they show a hydrostatic equilibrium between the gravitational potential and the pressure gra-

dient of the ICM. According to the spherical halo collapse model (comp. Sec. 2.3.3), this virialised

region encloses an average density of ρ̄ = 178 · ρcrit(z). However, as clusters reside in the LSS of the

Universe, no natural cluster boundary exists and this property needs to be defined by common practice.

We thus express the cluster radii rΔcrit
as the radius within which we observe an average overdensity of

ρ̄ = Δcrit · ρcrit(z) and correspondingly express the cluster masses MΔcrit
within the radius rΔcrit

.

MΔcrit
=

4

3
π · Δcrit · ρcrit · r3

Δcrit
(2.48)

Commonly applied values for Δcrit include 200, representing the virial radius, 500 and 2500, where

r2500 describes the cluster core region. r500 is especially important for X-ray studies as it represents

the observation limit for temperature measurement for example with the telescopes XMM-Newton or

Chandra (comp. also Sec. 2.7.3). At the same time, the assumption of hydrostatic equilibrium is often

a valid approach in this region and is confirmed to first order approximation by simulations (e.g. Nagai

et al. 2007; Borgani & Kravtsov 2011). However, the assumption of hydrostatic equilibrium needs to be
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relaxed in the cluster centres, within ∼ 10% of the viriral radius, in the cluster outskirts at r � r500, and

in clusters with recent mergers, as these regions are strongly influenced by physical processes. These

processes include e.g. feedback of AGN, especially in the cluster centre, or feedback of supernovae,

cooling processes, or the infall of ambient matter into the cluster. A detailed examination of these

aspects, however, is beyond the scope of this work.

This work focuses on cluster characteristics within a radius of r � r500 based on the critical density of

the Universe with Δcrit = 500 independent of redshift. For simplicity, we follow the notation Δcrit = Δ.

2.7 Galaxy Clusters in X-Rays

Figure 2.7: Composition of the optical (yellow

colouring) and X-ray (purple colouring) emission

of the cluster Abell 1689. In the optical light, the

individual member galaxies are visible, whereas

the diffuse X-ray emission originates from the

ICM.7

Galaxy clusters are visible in all wavelengths, where

the individual energy ranges display the different com-

ponents of the cluster. For example, we observe syn-

chrotron emission of relativistic electrons in the radio

wavelengths. Relativistic particles are also expected

to be visible in γ-rays through various processes, in-

cluding e.g. inverse Compton scatterings or decays

of relativistic hadrons or of hypothetical dark matter

particles. However, this emission could has not be

detected from galaxy clusters, yet (e.g. Maurin et al.

2012; Ackermann et al. 2014; Prokhorov & Churazov

2014). In the mm- as well as the submm-regime, we

study the ICM through the thermal Sunyaev-Zel’dovich
effect (SZ-effect), in which photons of the CMB are

up-scattered to higher energies via inverse Compton

processes with the hot electrons of the ICM. The ef-

fect is dependent on the integrated pressure of the ICM

along the line-of-sight and yields relative changes in

the CMB intensity of the order of ∼ 10−5 − 10−4 (e.g.

Sunyaev & Zeldovich (1970, 1972) and e.g. Borgani

& Kravtsov (2011); Reiprich et al. (2013) for a re-

view). However, in the progress of this thesis, we rely

on galaxy cluster information obtained in optical ob-

servations and especially from X-ray data.

In the optical light down to infrared energies, galaxy clusters present themselves as accumulation of

individual galaxies clustering around a BCG (Fig. 2.7). Photometric and spectroscopic observations

of these galaxies yield their redshifts and identify a possible projected gathering of galaxies as a bound

cluster. At the same time, these observations allow for the most precise redshift measurements of galaxy

clusters with Δz · (1 + z) and Δz ≈ 0.02 (e.g. Merloni et al. 2012; Liu et al. 2015) or Δz � 0.01 (comp.

Muzzin et al. 2009; Wilson et al. 2009), respectively. Due to their large potential wells, galaxy clusters

deflect the light of background objects and thus act as so-called gravitational lenses. Distorted back-

ground galaxies are also visible in the optical and the degree of the distortions yields information on the

mass of the galaxy cluster.

The spatially diffuse and continuous X-ray emission of clusters results from the hot ICM (comp. Sec.

2.6.2 & Fig. 2.7), where the X-ray spectra show an imprint of various cluster characteristics. Also, these

7 Credit: X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI; Release date: 2008
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observations allow for the determination of the cluster mass, which is essential for cosmological studies

with galaxy clusters. As this work focuses on the study of galaxy clusters in X-rays, this emission will

be described in detail in the following section.

2.7.1 Emission Mechanisms

The X-ray spectra of galaxy clusters are a superposition of the main three emission mechanisms in

the ICM - thermal bremsstrahlung of free electrons, line emission, as well as recombination emission.

For electron temperatures of kBTe � 2 keV, the main emission mechanism is thermal bremsstrahlung

(compare reviews of e.g. Sarazin 1986; Reiprich et al. 2013) of energetic electrons being accelerated in

the vicinity of an atomic nucleus, which is also known as free-free emission. The emissivity ε
f f
ν of this

process at a given frequency ν is summarised as

ε
f f
ν ∝ neT−1/2

e exp

[
− hν

kBTe

]
, (2.49)

where we adopt the electron number density ne and generally define the emissivity εν as emitted lumi-

nosity dL over the frequency range dν and the volume dV

εν ≡ dL
dνdV

. (2.50)

Over all, the bremsstrahlung emission describes a smooth, continuous spectrum with an exponential

cut-off towards the higher frequencies. Integrated over all energies, the total bremsstrahlung emissivity

is approximated as

ε f f ∝ T 1/2
e n2

e . (2.51)

At lower ICM temperatures of kBTe � 2.5 keV, line emission, also referred to as bound-bound emis-

sion, as well as free-bound emission of the highly ionised metals are the dominant processes with an

approximated total emissivity of

ε f b+bb ∝ T−0.6
e n2

e (2.52)

(comp. Sarazin 1986). Differently from the bremsstrahlung emission, the line emission decreases with

increasing electron temperature, as more metals are becoming fully ionised.

In the following, we assume an equality between the electron temperatures Te and the temperature of the

remaining gas particles Tgas and refer to this over-all ICM temperature as T . This approach is especially

reasonable within the studied radii r � r500, where this equilibration time scale is of the order of only a

few 108 yrs (Spitzer 1956; Reiprich et al. 2013).

2.7.2 Galaxy Cluster Spectra

Figure 2.8 presents the X-ray spectra as the superposition of bremsstrahlung, line and recombination

emission for different ICM temperatures. The exponential cut-off at high frequencies and the fading

emission lines with increasing temperatures, discussed in the previous section, are also visible in this

figure. Especially prominent is the Fe-L line complex at ∼ 1 keV as well as the Fe-K line complex

at ∼ 7 keV, which represent the electron transitions to the first excited and to the ground state in iron,

respectively. Emission lines of e.g. magnesium at 1.4 keV, silicon at 1.8 keV for kBT < 1 keV and at

2 keV for kBT > 1 keV, and sulphur at 2.6 keV are also detectable in the spectrum (comp. e.g. Sarazin

1986). In general, the X-ray spectra are imprinted by the following characteristics:
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Figure 2.8: X-ray emission spectra for three individual galaxy clusters with different ICM temperatures: 1 keV

(black), 3 keV (red) and 9 keV (green). All spectra are simulated for a metallicity of A = 0.4 A�, assuming no

foreground absorption, NH = 0 cm−2, and a redshift of z = 0. The figure describes the superposition of free-free,

free-bound as well as bound-bound emission and distinctly displays the dependence on the ICM temperature.

Credit: Reiprich et al. (2013)

Temperature: As emphasised by Fig. 2.8 as well as by Eq. 2.49 & 2.51, an increase in the ICM

temperature results in an enhancement of the over-all bremsstrahlung emission. Though the emission

at lower energies is reduced, the exponential cut-off is shifted to higher energies. At the same time, the

emission lines are fading with increasing temperature as the fraction of fully ionised metals increases.

The Fe-K lines, however, remain a prominent feature over a wide range of temperatures (Sarazin 1986).

Density: The ICM density regulates the number of particle interactions and thus the number of

emitted X-ray photons (comp. e.g. Eq. 2.49). With an increased density, interactions, including

bremsstrahlung emission as well as the excitation and ionisation of metals, occur more frequently such

that the X-ray emissivity increases as a whole. Accordingly, the density defines the luminosity of the

cluster, which is a compilation of all three emission mechanisms, as well as the normalisation of the

spectrum.

Metallicity: As the metallicity defines the number of metals in the ICM, it influences the strength of

the emission lines with a higher line emission rate for an increased metallicity.

Redshift: According to the cosmological redshifts z of galaxy clusters, we observe a shift in their

spectral features from the emission energy E0 to Eobs as (comp. Eq. 2.8)

Eobs =
E0

1 + z
. (2.53)
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Understanding these spectral dependencies allows for the determination of galaxy cluster properties

from observed X-ray spectra. However, due to the degeneracy of the different properties, which lead to

similar spectral changes, all of these parameters need to be fit simultaneously. At the same time, several

cluster properties are related to one another, following so-called galaxy cluster scaling relations.

2.7.3 Scaling Relations

Scaling relations describe the correlation between different object characteristics as power laws. For

galaxy clusters, these relations are derived following the so-called model of self-similarity (Kaiser 1986),

which explains the cluster properties by assuming gravity as the only acting force during the cluster for-

mation process. Since gravity has no preferred length scale, galaxy clusters of different masses are

understood as scaled versions of each other. Additionally, matter overdensities are expected to collapse

into bound haloes always at the same initial density contrast of δlin = 1.69/a relative to the scale factor

at the time of the collapse (comp. Sect. 2.3.3). Following this concept and considering Eq. 2.28 as well

as ρcrit(z) ∝ H(z)2, however, we conclude the absolute density value of a collapsing halo to increase

with increasing redshift.

We will consider those relations including X-ray properties, with a focus on the temperature, the lumi-

nosity, the total cluster mass as well as the redshift.

Mass-Temperature Relation: To derive the mass-temperature relation (M − TX relation) from the

principle of self-similarity, we recall the definition of the total cluster mass based on the critical density

as presented in Eq. 2.48. Remembering Eq. 2.13 & 2.23 for the definition of the critical density and

E(z), respectively, the above expression rewrites as (Giodini et al. 2013))

MΔ =
4π

3
· Δ · ρcrit,0E2(z)r3

Δ , (2.54)

applying ρcrit(z) =

(
H(z)

H0

)2

· ρcrit,0 . (2.55)

When adding the concept of virial equilibrium TX ∝ M/r, a correlation between the cluster mass and its

temperature is obtained

T ∝ M
r
∝ M2/3E(z)2/3Δ1/3 (2.56)

⇒ M ∝ T 3/2
X

Δ1/2E(z)
. (2.57)

Luminosity-Temperature Relation: The luminosity L of a galaxy cluster is expressed as the product

of the emissivity and the emitting volume L ∝ ε · r3. For X-rays, we follow the simplified definition of

Eq. 2.51 and the luminosity thus reads (comp. Giodini et al. 2013)

LX ∝ T 1/2n2
er3 , (2.58)

following Eq. 2.51. Applying the proportionality between the electron number density and the gas

density ne ∝ ρg as well as the gas mass fraction fg, which was defined earlier, we finally obtain

LX ∝ T 2 f 2
gΔ

1/2E(z) , (2.59)
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additionally considering Eq. 2.48 & 2.57.

Luminosity-Mass Relation: Replacing the temperature in the above scaling relation by Eq. 2.56

derives the LX − M relation

LX ∝ M4/3 f 2
gΔ

7/6E(z)7/3 . (2.60)

Outside the cluster cores, the assumption of only gravity determining the characteristics of the observed

ICM is appropriate to a first order approximation and is confirmed from simulations (comp. e.g. Borgani

& Kravtsov 2011, for a review). However, for a thorough investigation of the scaling relations, devia-

tions from hydrostatic equilibrium as well as physical processes within the ICM need to be accounted

for. Also, the above derivations follow the simplified assumptions of constant property values, such

as a constant temperature or gas density, which is generally not the case and will be discussed in the

subsequent section. Accordingly, observed scaling relations slightly deviate from the theoretical models

in their normalisations as well as in their exponents (e.g. Pratt et al. 2009; Vikhlinin et al. 2009a; Mantz

et al. 2010a; Reichert et al. 2011). Additionally, an intrinsic scatter σ is introduced, which accounts for

unique cluster characteristics resulting in slightly different temperature or luminosity values for each

individual cluster. For example, the M − TX relation shows an intrinsic scatter of the order of ∼ 15% in

the temperature (e.g. Vikhlinin et al. 2009a; Mantz et al. 2010a), which is a result of substructures in the

cluster matter distribution (O’Hara et al. 2006). The intrinsic scatter in the LX-M relation, on the other

hand, is even broader with roughly 40% (e.g. Vikhlinin et al. 2009a) and is related to heating and cooling

processes in the ICM as e.g. from AGN feedback, galactic winds or star formation (e.g. Mittal et al.

2011; Giodini et al. 2013). These considerations emphasise that even though hydrostatic equilibrium

is a reasonable assumption in general, physical processes within the ICM need to be considered for an

accurate interpretation of the observed data.

As expressed especially in Sec. 2.7.2, ICM temperatures, X-ray luminosities and redshifts are almost

directly accessible from X-ray or optical observations, respectively. Instead, Cluster masses need to

be derived indirectly from the data, based on more complex considerations. Thus, the above scaling

relations allow for a comfortable estimate of the cluster masses.

2.7.4 Galaxy Cluster Profiles

Up to now, the galaxy cluster properties, such as temperature, luminosity, or also metallicity, were as-

sumed to be constant throughout the entire ICM, whereas observations yield spatially dependent metal-

licity maps (Lovisari et al. 2011) and profiles in temperature and luminosity as well as in the underlying

density. To derive the density profile of a galaxy cluster, the distribution of matter in the potential

well is assumed to follow the model of a self-gravitating isothermal sphere and a so-called King-profile

(King 1962). Following this approach and assuming the gas to trace the underlying total matter density,

ρ(r) ∝ ρg(r), the gas density distribution ρg(r) is described by a β-model (Cavaliere & Fusco-Femiano

1976)

ρg(r) = ρg,0

(
1 +

r2

r2
c

)− 3
2β

, (2.61)

with the core radius rc and the central gas density ρg,0. The parameters ρg,0, rc and β cannot be derived

from theory, but need to be obtained from observations. As the density distribution itself is not directly

accessible, though, the closely related X-ray surface brightness S X is analysed

S X =
1

4π(1 + z)4

∫ ∞

−∞
ε dl , (2.62)
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as total X-ray emissivity ε integrated along the line of sight dl. Considering ε ∝ n2
e (comp. Eq. 2.51 &

2.52) for a constant temperature, and the relation ρg ∝ ne, the above integration is rephrased as

S X(R) = S X,0

(
1 +

R2

r2
c

)−3β+ 1
2

(2.63)

(Cavaliere & Fusco-Femiano 1976), with the projected radius from the cluster centre R. The searched-

for parameters β and rc, as well as the central X-ray brightness S X,0 are now obtained by the model fit

to the observed surface brightness, where commonly retrieved values for the exponent are β ≈ 2/3 (Voit

2005). Slight deviations between the theoretical model and observations result from the input assump-

tions of hydrostatic equilibrium and isothermality (comp. Sec. 2.7.3) and are adjusted by e.g. applying

a double β-model (e.g. Reiprich 1998). Following the above concept, the surface brightness distribution

mirrors the underlying density profile.

Along with the surface brightness, also the ICM temperature deviates with radius from the cluster centre.

Over all, decreasing temperatures are detected with increasing radii (e.g. Zhang et al. 2004; Vikhlinin

et al. 2005; Akamatsu et al. 2011) as a power law T ∝ r−γ, where the ICM temperatures outside the core

region drop by a factor of ∼ 3 towards r200 (e.g. Reiprich et al. 2013). In the cluster centre, however,

no general trend is observable and clusters show either flat or decreasing temperature profiles with de-

creasing radius (e.g. Allen et al. 2001; Hudson et al. 2010), as a result of complex heating and cooling

mechanisms in the cluster centre.

Due to the limited observation time and resolution of the X-ray instruments, these distributions in tem-

perature, brightness or density are not necessarily available for all observed clusters. Especially the

study of metallicity maps requires long observation times, such that the assumption of a constant ICM

metallicity is commonly applied. At the same time, an isothermal ICM is a feasible approach for clusters

with small angular extension or low observing time.

2.7.5 Mass Determination

Just as galaxy clusters are observable in all wavelengths, also their total mass is accessible in all energy

ranges applying different theoretical approaches. However, we mainly focus on the computation of X-

ray masses and briefly compare this method to mass determinations in other wavelengths.

As already expressed in Sect. 2.7.3, cluster masses can be inferred e.g. from X-ray scaling relations. To

calibrate the observed scaling relations or to avoid the uncertainties in these relations when computing

cluster masses, a more complex theoretical model for the mass needs to be derived. This theoretical

model of X-ray masses is based on the assumption of hydrostatic equilibrium between the pressure

gradient of the gas, and the gravitational potential Φ

1

ρg
· dP

dr
= −dΦ

dr
. (2.64)

The gravitational potential is defined via the total mass M(< r) within the radius r as

dΦ

dr
=

GM(< r)

r2
, (2.65)

whereas the pressure P follows the equation of an ideal gas

P =
k

μmp
· ρg · T . (2.66)
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The parameters μ and mp express the mean molecular weight and the proton mass, respectively. Com-

bining Eq. 2.64, 2.65 & 2.66, the definition of the hydrostatic mass of a galaxy cluster is derived

M(< r) = − kTr
Gμmp

·
(
d ln ρg

d ln r
+

d ln T
d ln r

)
, (2.67)

based on the gas density profile as well as on the temperature profile. The gas density distribution is

imprinted in the X-ray surface brightness profile (comp. Sec. 2.7.4), whereas the temperature profile is

obtained from the study of X-ray spectra in different annuli.

The above derivation is especially based on the assumption of hydrostatic equilibrium as well as of

spherical symmetry, and accordingly excludes clusters with recent merger processes. Also for more

relaxed clusters, especially the neglect of residual gas motion yields hydrostatic masses to be biased low

by ∼ 10 − 15% when compared to simulations (e.g. Nagai et al. 2007; Meneghetti et al. 2010). With

the new up-coming X-ray instruments, such as e.g. Astro-H (Takahashi et al. 2014) or Athena (Nandra

et al. 2013), the study of turbulent and bulk gas motion within the ICM becomes accessible and the

described mass bias is expected to decrease to � 5% (Ota et al. 2015). What is more, the uncertainty

in the estimated masses is mainly based on the determination of the density and temperature profiles,

rather than on violated assumptions in the derivation. Still, a comparison of X-ray masses to the results

of the mass determination in other wavelengths is suggested.

• Galaxy Velocity Dispersion: The observed velocities of the constituent galaxies in a cluster

emphasise the gravitational potential required for these galaxies to remain bound within the halo.

Following the virial theorem Ekin = −1
2
Epot, the total cluster mass is related to the galaxy velocity

dispersion σ in dependence on the radius r

M ∝ rσ2

G
. (2.68)

The correspondingly obtained cluster masses compare well to the hydrostatic X-ray masses.

• Gravitational Lensing: As expressed earlier, the distortion of the images of background galaxies

yields information on the mass of a foreground galaxy cluster. As a whole, lensing observations

obtain the most reliable cluster mass estimates as this phenomenon is independent of the dynam-

ical state of the cluster as well as of the type of matter. Recent comparisons indicate X-ray ob-

servations to underestimate weak lensing masses by ∼ 10% on average for relaxed clusters, with

an increasing deviation to 15 − 20% for less relaxed clusters (e.g. Mahdavi et al. 2008; Planck

Collaboration et al. 2012; Mahdavi et al. 2013; Applegate et al. 2015). Similar results are also

reported for strong lensing observations (e.g. Hoekstra et al. 2013), with a vanishing disagreement

for highly relaxed clusters (e.g. Bradač et al. 2008; Newman et al. 2011). These results accord-

ingly reflect the observed mass bias when compared to simulations (e.g. Nagai et al. 2007) and

emphasise the influence of deviations from hydrostatic equilibrium and of residual gas motion.

• Sunyaev-Zel’dovich Effect: Also mass measurements via the SZ-effect are based on cluster

density as well as temperature profiles. However, to reconstruct the mass, X-ray information is

always needed in addition to the SZ-data and accordingly, both SZ- and X-ray masses are well in

agreement with each other (Planck Collaboration et al. 2012).
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2.8 Galaxy Clusters as Cosmological Probes

Studying cosmology is generally based on one of the following two approaches: analysing the geometry

of the Universe by measuring distances (comp. Sect. 2.1.3) or tracing the evolution of structures (comp.

Sect. 2.3). The observation of galaxy clusters allows for the pursuit of both strategies. For example,

measurements of the gas mass fraction fg, or of distances inferred from the combination of X-ray and

SZ- information test the geometry of the Universe via the angular diameter distance (comp. e.g. Allen

et al. 2011). At the same time, as most massive, virialised objects in the Universe, galaxy clusters

present themselves as reliable probes for tracing the LSS (e.g. Voit 2005; Vikhlinin et al. 2009b; Allen

et al. 2011) either via their spatial clustering or their abundances. The spatial clustering is e.g. described

by the power spectrum of massive haloes Ph(k, z), following the relation

Ph(k, z) = b2(M, z) · P(k, z) , (2.69)

based on the matter power spectrum P(k, z) (comp. Sec. 2.3.1) and the bias b(M, z) between the distri-

butions of massive haloes and the underlying matter.

In this work, we focus on the abundance of galaxy clusters, while applying the halo mass function

(comp. Sec. 2.3.3 & Eq. 2.38). As massive haloes are traced by the observations of galaxy clusters, the

number distribution of these objects yields constraints on the cosmological parameters, especially on the

parameters Ωm and σ8 (for a review comp. e.g. Peacock 1999; Dodelson 2003; Voit 2005; Allen et al.

2011; Schneider 2015). At the same time, this approach is also sensitive to the dark energy equation

of state described by the parameters w0 and wa (e.g. Vikhlinin et al. 2009b; Mantz et al. 2010b, 2015).

Recently derived 68.3%-uncertainties on the above parameters from cluster studies are of the order of

ΔΩm = 0.03 (∼ 11.5%), Δσ8 = 0.04 (∼ 5%) as well as Δw0 = 0.15 (∼ 15%) for constant-w0 models

(Mantz et al. 2015). The constraints on the cosmological parameters are generally described as uncer-

tainty regions in the parameter space with different credibility levels. These levels define the probability

that the enclosed region contains the parameter value, which reproduces the observed data. Fig. 2.9

presents an example of such credibility regions for the joint parameter sets {Ωm, σ8} and {Ωm, w0} ob-

tained from the analysis of cluster counting experiments. The orientation and shape of these credibility

regions expresses the level of degeneracy between the displayed parameters, with e.g. a strong degen-

eracy between Ωm and σ8 for cluster observations. Additionally, constraints from other cosmological

probes are included, such as e.g. the CMB power spectrum (comp. Fig. 2.2). Several of these other

probes are briefly described in Sect. 2.5, but for detailed information of the applied data sets we ask the

reader to refer to Mantz et al. (2015). In an optimal case, all constraints should overlap in one mutually

shared region, despite their deviating parameter degeneracies as displayed above.

In practice when analysing cluster abundances, the number of clusters is counted in bins of finite redshift

and mass intervals. These observation results are then compared to the theoretically expected numbers,

which are obtained by integrating the halo mass function over the volume as well as over the defined

redshift and mass bins, for a given cosmology. Especially for larger samples of clusters, measured

masses are not available for all considered clusters, such that either scaling relations need to be applied

to compute the masses (comp. Sec. 2.7.3) or the theoretical model needs to be re-formulated based

on a more easily accessible observable, e.g. the cluster luminosity. As both approaches are based on

the application of scaling relations, they are limited by the uncertainties and by the intrinsic scatter in

the scaling relations. Those relations showing a low scatter, such as e.g. M − TX or M − YX, with

YX = kBTXMg, are thus best suitable for cosmological studies. Also, it is essential to simultaneously

calibrate and fit the scaling relations along with cosmology (comp. the review by Allen et al. 2011).
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Figure 2.9: Joint 68.3% and 95.4% credibility regions for the cosmological parameters (Ωm, σ8) and (Ωm, w0)

applying different cosmological probes. Left: Overlap of the credibility regions for the mean matter density Ωm

and the amplitude of matter perturbations σ8 obtained from cluster counts and observations of the CMB power-

spectrum with the two instruments WMAP, applying the 9-year survey results, and Planck. Right: Constraints

on the mean matter density Ωm and the dark energy equation of state w0 from various probes, including cluster

abundances and the joint credibility region for all probes. Credit: Mantz et al. (2015)

The methodology of re-formulating the halo mass function based on X-ray observables is described in

detail as well as in a practical context in Sect. 6.3.1.

2.9 The eROSITA-Telescope

Whereas the previous sections emphasised on the cosmological model and the concepts of studying the

evolution of our Universe with the help of galaxy clusters, we now introduce a promising instrument

for the required cluster observations - the extended ROentgen Survey with an Imaging Telescope Array
(eROSITA; Merloni et al. 2012). The main science driver for this telescope is the analysis of the dark

energy equation of state, by tracing the evolution of structures with the help of galaxy clusters. It is

likely to be the first “Stage IV” dark energy probe, according to the Dark Energy Task Force (DETF)

report of 2006 (Albrecht et al. 2006). Such a probe is expected to improve the constraints on dark energy

by a factor of ∼ 10 compared to the knowledge at the publication date of the report. For this aim, the

telescope will need to detect at least ∼ 30, 000 clusters of galaxies up to redshifts of ∼ 2.0.

The instrumental set-up as well as the different science goals for eROSITA, including the observation

strategy to constrain the characteristics of dark energy, are summarised in the following sections.
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2.9.1 Instrumental Information8

Figure 2.10: Schematic image of the eROSITA-

instrument, looking onto the seven X-ray tele-

scopes.9

The eROSITA-telescope is a joint X-ray initiative be-

tween several institutes and universities in Germany

and Russia, led by the Max-Planck Society (MPG) and

the German Space Agency (DLR) on the one side, and

by the Russian space agency ROSCOSMOS and the

Space Research Institute for the Russian Academy of
Sciences (IKI) on the other side. Currently, the instru-

ment is assembled under the leadership of the Max-
Planck Institute for Extraterrestrial Physics (MPE)

and will then be mounted onto the Russian satel-

lite platform Spectrum Roentgen Gamma (SRG). The

launch is scheduled for early 2017 from the cosmod-

rome in Baikonur to an L2 orbit. The telescope will

then perform eight all-sky surveys in total, each last-

ing half a year, with a subsequent pointed observation

phase of three years.

The instrument consists of seven X-ray mirror tele-

scopes, each with its own CCD (Charged Coupled De-
vice) in the focal plane (Fig. 2.10). X-ray telescopes

as well as CCDs need to follow certain characteristics

to collect and focus the energetic photons as well as

to measure their energy. X-ray photons are only re-

flected by a smooth metal surface and only for suffi-

ciently small impact angles, referred to as grazing in-
cidence. For example, for a photon with an energy of

E = 10 keV, which is equivalent to a wavelength of λ ≈ 1 Å, the incidence angle needs to be < 1◦.
To account for the grazing incidence and to focus all incoming light rays into one point, Wolter optics

are applied (Wolter 1952a,b), where X-ray instruments, including eROSITA, are based on the Wolter

optics Type I, which combine an outer parabolic mirror with an inner hyperbolic mirror. At the same

time, these optics allow large numbers of mirror shells to be stacked to increase the effective area of

the instrument. Each of the seven eROSITA-telescopes consists of 54 of these mirror shells with a focal

length of 1.60 m. The applied X-ray CCDs show a thicker depletion layer than optical CCDs to provide

for the sensitivity of high energy photons. Additionally, each X-ray photon is detected individually with

its direction as well as with its energy, where eROSITA’s effective area covers the energy range between

(0.1 − 10.0) keV with an energy resolution of ∼ 5 eV (comp. Fig. 2.11). The effective area is especially

large in the range between (0.5 − 2.0) keV with a sharp drop off for energies above ∼ 2 keV. Following

this shape, the energy range of highest sensitivity overlaps with the position of the main line emission

complexes at ∼ 1 keV of galaxy clusters (comp. Sec. 2.7.2) and accordingly allows for precise and

accurate estimates of various cluster characteristics, including especially the ICM temperature.

Other important information on the instrument include its field-of-view (FoV) of 0.83 deg2 and the

angular resolution of ∼ 15 arcsec for a pointed on-axis observation. However, the angular resolution

highly depends on the observation angle and degrades with increasing off-axis angle. For the scanning

observation mode of the all-sky surveys, the resolution is averaged over the entire FoV to show a value

8 If not stated otherwise, the information on the instrumental design are published by Merloni et al. (2012).
9 Credit: www.mpg.de/4710144/eROSITA_Dunkle_Energie
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Figure 2.11: Effective area for the seven eROSITA-telescopes compared to the efficiency of the three XMM-
Newton EPIC-PN filters. In the energy range between (0.5− 2.0) keV, where most of the emission lines of galaxy

clusters are located, eROSITA shows a higher efficiency than the current instrument. Credit: Merloni et al. (2012).

Figure 2.12: Exposure map for the four years of eROSITA all-sky survey given in galactic coordinates (FK5) with

the colour indicating the exposure time per FoV in seconds. Credit: J. Robrade 2014, eROSITA Collaboration
private communication.
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of ∼ 28 arcsec. The spatial distribution of exposure times per FoV is presented in Fig. 2.12, with an

average effective exposure time of 1.6 ks (Pillepich et al. 2012) after accounting for the subtraction of

solar flares and slight instrumental difficulties. Due to the observation strategy, two fields with deep ex-

posure times of ∼ 20 ks develop at the ecliptic poles. These fields cover only a very small sky fraction of

fsky = 0.0034, but allow for more detailed studies of X-ray objects and for predictions on the efficiency

of the subsequent pointed observation phase.

2.9.2 Science Goals

The interest in the eROSITA observations is especially promoted as it will perform the first all-sky survey

after the Röntgensatellit (ROSAT) in the 1990s, while allowing for a resolution of the order of current

X-ray instruments and for an improved sensitivity by one order of magnitude. The currently mainly

applied instruments for galaxy cluster studies are the European XMM-Newton, the US-american Chan-
dra and the Japanese Suzaku with angular resolutions of ∼ 15 arcsec, ∼ 0.5 arcsec and ∼ 2 arcmin,

respectively. Accordingly, the resolution of eROSITA is comparable to that of XMM-Newton for the

pointed observation phase, while it still remains four times as good as Suzaku’s resolution during the

survey mode. During its four years of all-sky surveys eROSITA will detect large samples of all types of

X-ray emitting objects, including e.g. X-ray binaries, single stars, AGN and galaxy clusters. As AGN

are the brightest extragalactic objects in the sky, eROSITA is expected to detect (3 − 10)·106 of these

sources up to redshifts of z ≈ 7 − 8. At the same time, the instrument will allow for a detailed study

of the accretion processes onto the super massive black holes in the centre of the AGN. However, the

main science driver of this telescope is the detection of galaxy clusters as tracers of the LSS and thus of

the dark energy characteristics. To achieve this aim, the average flux limit for the observation of galaxy

clusters is reduced to 3 · 10−14 erg/s/cm2 in the energy range of (0.5 − 2.0) keV, which is roughly one

order of magnitude below the ROSAT limit (Trümper 1985). Along with this sensitivity, forecasts pre-

dict eROSITA to detect ∼ 100, 000 clusters of galaxies with a minimum of ηmin = 50 observed photons

and masses above M = 5 · 1013 M�/h. This sample will cover redshifts of z � 2, while including all

massive clusters with M � 3 · 1014 M�/h in the observable Universe (Pillepich et al. 2012). With these

characteristics, the eROSITA cluster catalogue will extend the present ROSAT-cluster sample by a factor

of ∼ 50.

Complementary optical observations are planned to determine the cluster redshifts, such that X-ray

fluxes, luminosities as well as redshifts will be available for the entire eROSITA cluster sample. These

optical observations include e.g. the multi-band surveys PanSTARRS (Panoramic Survey Telescope &

Rapid Response System, e.g. Ebeling et al. (2013)), DES (Dark Energy Survey, e.g. Crocce et al. (2015))

and VST ATLAS (VLT Survey Telescope ATLAS, Shanks et al. (2015)) for photometric redshifts, while

spectroscopic observations with e.g. 4MOST (4m Multi-Object Spectroscopic Telescope for ESO, e.g.

de Jong et al. (2014)) and SPIDERS (SPectroscopic IDentification of eROSITA Sources, e.g. Salvato

(2015)) are designed as eROSITA follow-up. This redshift information is especially important for cos-

mological studies and will improve the constraints on the cosmological parameters.

Assuming luminosities and redshifts to be accessible for all eROSITA galaxy clusters, first forecasts

predict constraints of Δσ8 = 0.014 and ΔΩm = 0.012 for a ΛCDM cosmology, Δw0 = 0.053 for a

constant dark energy equation of state, and Δwa = 0.48 for a variable dark energy equation of state

(Fig. 2.13, Pillepich et al., in prep). These simulations are based on the halo mass function as well

as on the angular clustering of galaxy clusters and emphasise that eROSITA will allow for a significant

improvement of the cosmological constraints from galaxy clusters (comp. Sec. 2.8). At the same time,

it will decrease the uncertainty on the dark energy equation of state even below the current uncertainty

from the Planck data (Planck Collaboration et al. 2015c). However, the above stated results are still
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Figure 2.13: Forecasts of the cosmological constraints from the eROSITA galaxy cluster sample. Presented are the

joint constraints for (Ωm, w0), assuming a w0CDM-cosmology, and for (w0, wa), assuming a wCDM-cosmology.

The credibility regions are centred around a WMAP5 cosmology (Komatsu et al. 2009) and present the sce-

narios of eROSITA data with pessimistic scaling relation constraints, eROSITA data with optimistic constraints,

eROSITA+Planck data with pessimistic constraints, and eROSITA+Planck data with optimistic constraints from

bright to dark colours. Credit: Pillepich et al., in prep.

only a pessimistic approach and are limited by the uncertainty and scatter in the galaxy cluster scaling

relations (comp. Sec. 2.8). In the up-coming years, more precise mass estimates are expected from the

follow-up synergy of different X-ray instruments, including XMM-Newton, Chandra, Suzaku, NuSTAR
(The Nuclear Spectroscopic Telescope Array) (Harrison et al. 2013) and Astro-H (Kitayama et al. 2014),

which will decrease the scatter in the scaling relations. An additional improvement is expected from a

more accurate calibrations of the X-ray cluster masses by means of weak lensing mass measurements.

For a more optimistic scenario with a factor of four lower uncertainties in the scaling relations, the

above constraints will improve by ∼ 30− 40% (Fig. 2.13). More details on these forecasts as well as an

extension to the above estimates are presented in chapter 6 of this work.

2.10 Introduction to the Aims of this Work

Following the ideas of the previous section, the up-coming eROSITA-instrument is expected to prove

as reliable and promising tool to put tight constraints on the cosmological parameters and to especially

study the nature of dark energy. Within this work, we emphasise on the cosmological opportunities of

this telescope, while applying galaxy clusters as cosmological probes.

As cosmology studies have indicated strong improvements in the constraints, if additional cluster in-

formation to the observed flux is available (e.g. Clerc et al. 2012), we investigate the precision and

accuracy with which eROSITA will detect ICM temperatures. At the same time, the M − TX scaling

relation shows smaller uncertainties than the relation including the luminosity. By means of a spectral

analysis, we quantify the cluster masses and redshifts, which allow for the observation of low relative

temperature uncertainties. Convolving this parameter space with the halo mass function, the number of

eROSITA clusters with precise temperatures is estimated and we are able to define the corresponding

sub-catalogue of clusters with additional information for our cosmological forecasts. The above analy-

sis is then repeated for the determination of cluster redshifts to predict the results that can be obtained
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from eROSITA-data alone. These forecasts can then be applied to optimise optical follow-up observa-

tions. In general, this spectral analysis also allows for the study of biases that may occur during the data

reduction. These biases need to be quantified and convolved with the future observed data to allow for

its realistic interpretation and especially for an accurate reconstruction of the halo mass function. Since

the above research tasks involve the investigation of galaxy cluster spectra, which are already extracted

from the eROSITA raw data, we additionally test for a possible bias arising from the observation itself

or from the spectral extraction procedure.

Having quantified the observational strength for galaxy clusters, we continue with cosmological fore-

casts, while focusing on the main science driver of this telescope - the nature of dark energy. Within

this work, the currently existing cosmology studies for this instrument (Pillepich et al. 2012, Pillepich

et al., in prep.) are extended by applying Markov-Chain Monte Carlo simulations as a more detailed

statistical methodology, by adding cluster temperature information, and by testing a larger variety of

cosmological models. These include e.g. the analysis of the total neutrino mass and of the influence of

the applied scaling relation on the cosmology results. The experiences and results obtained from these

forecasts will allow for an improved approach in the reduction of the future data and for a more accurate

interpretation of the cosmological results.
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CHAPTER 3

Applied Software and Statistical Methodologies

Having discussed the theoretical background for studying cosmology with the help of galaxy clusters,

this chapter now focuses on the methodologies and the necessary statistics for completing these projects.

To forecast the precision of the observed ICM temperatures, we introduce the simulation of galaxy

cluster spectra (Sect. 3.1) as well as the applied software to produce eROSITA event files (Sect. 3.2).

For the cosmological predictions, we describe the underlying theoretical considerations (Sect. 3.3 &

3.4) and the software package COSMOMC (Lewis & Bridle 2002) (Sect. 3.5).

3.1 The Concepts of Simulating X-ray Spectra

The X-ray spectra simulated in the process of this work are produced by the software xspec (Arnaud

1996) version 12.7.0, which is a commonly applied tool in high energy astrophysics and is included

within the HEASARC (High Energy Astrophysics Science Archive Research Center) package. xspec
contains models for different X-ray emission processes and allows to perform fits of these emission

models to spectral data. The models and their characteristics, which are relevant for the work of this

thesis are presented below with an extended description stated in the xspec manual10.

3.1.1 Applied Emission Models

The following emission models describe the spectra of galaxy clusters as well as the X-ray background

observed by the eROSITA-instrument.

• apec: The apec model (Smith et al. 2001) defines the emission of a hot, collisionally-ionised,

and optically thin plasma, such as e.g. the ICM of galaxy clusters. The model thus includes

bremsstrahlung emission, line emission by highly ionised metals, and recombination emission as

free electrons are re-captured by these heavy ions. The apec model is parametrised as:

10 The manual of the most recent xspec version is located at

https://https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XspecSpectralFitting.html.
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plasma temperature in [keV]

metal abundance in solar abundances A�
redshift z

normalisation 10−14

4π[DA·(1+z)]2

∫
nenHdV , with the angular diameter distance DA in [cm], ne

and nH as electron and hydrogen number densities, respectively, in [cm−3];

the normalisation is given in the units [photons/cm−5] for a defined FoV

and is directly proportional to the luminosity of the emitting object.

• phabs: This is a multiplicative spectral component, which describes absorption by neutral gas

along the line of sight

phabs(E) = exp[−NH · σ(E)] (3.1)

with a dependence on the photon energy E. The parameters σ(E) and NH represent the photo-

electric cross-section and the hydrogen column density in units of [1022 atoms/cm2], respectively.

The column density of hydrogen is taken as a measure of the amount of neutral gas along the

line of sight, as the absorption of X-rays is dominated by heavy elements. Accordingly, NH is the

main parameter to define this spectral model.

• powerlaw: The powerlaw is an additive spectral component and follows the correlation

powerlaw(E) = K · E−Γ , (3.2)

with the variable parameters

spectral index Γ

normalisation K in [photons/keV/cm2/s] at 1 keV.

Powerlaw spectra in X-rays are e.g. observed for the inverse Compton or synchrotron emission of

AGN, which partially cannot be resolved by X-ray instruments and thus generate a background

signal.

3.1.2 Accounting for the Instrumental Response

The observed spectra are always a convolution of the emission of the source with the observational

response of the instrument, which includes its energy and spatial resolution, as well as its effective area

(Fig 2.11). This resolution and sensitivity information is stored in the instrumental response file (RS P),

which thus expresses the probability that a photon with a certain energy E is detected in an energy band

I. Followingly, the number of observed photons η(I) is computed as (Arnaud et al. 2011)

η(I) =

∫ ∞

0

f (E) · RS P(I, E) dE , (3.3)

with the spectrum f (E) of the source in units of [photons/s/keV].

The RSP itself is composed of the response matrix file (RMF), which stores the energy-dependent en-

ergy resolution of the instrument, and the ancillary response file (ARF) to define the spatial instrumental

sensitivity across the field-of-view.

Fig. 3.1 displays two simulated galaxy cluster spectra, modeled as a phabs ∗ apec emission and con-

volved with the eROSITA-RSP. The solid lines present the emission model, while the data points describe

one realisation of this model, including statistical scatter in the photon counts. Additionally, the energy
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Figure 3.1: Simulation of two galaxy cluster spectra observed with eROSITA. The two clusters show different

temperatures and redshifts of (kBT = 2.2 keV, z = 0.1) and (kBT = 9.8 keV, z = 0.3), respectively, while both

clusters are absorbed by a galactic foreground of NH = 0.02 · 1022 particles/cm2. More details on the simulated

clusters are described in Sect. 4.2.1

.

bins I are re-grouped to show at least 20 photons per energy bin for display purposes. Compared to

Fig. 2.8, the black spectrum shows broadened emission lines, due to the finite instrumental energy res-

olution. At the same time, however, these lines are also intensified due to the increased effective area

around energies of 1 keV. The drop in the intensity at the lower energy end emphasises the absorption

processes by neutral gas. Concluding, the characteristics of the instrumental response are imprinted in

the observed spectra and need to be accounted for in the analysis of this data.

3.2 Simulating eROSITA Event Files

Moving a step further towards a more realistic consideration of the eROSITA data, spectra are no direct

observable and the observed data will initially be stored in so-called event files. These contain the

information on all detected photons, including e.g. their individual energies, the coordinates of their

origin and the time of their detection. During the future data analysis, the cluster spectra are extracted

from these files. As no event files are available for this telescope, yet, studying the characteristics of

these files and the methodology of extracting the spectra requires the simulation of these event files. This

is accomplished by applying the software packages SIXTE by C. Schmid for the simulation(Schmid, C.

2008; Schmid 2012) as well as eSASS11 (extended Science Analysis Software System) by H. Brunner for

the spectral extraction. This approach thus allows for the simulation, the identification and the correction

of many detailed instrumental effects, which are not captured within common xspec simulations of

cluster spectra.

11 Further information on this software package is provided on the eROSITA-wiki web page, but is currently only accessible

for members of the consortium: https://wiki.mpe.mpg.de/eRosita/EroCat.

45



3 Applied Software and Statistical Methodologies

3.2.1 The Tool SIXTE

Applying the software package SIXTE, a catalogue of objects and their characteristics is converted into

an event file. The catalogue of sources needs to be stored in the so-called SIMPUT-format (SIMulation
inPUT) (Schmid et al. 2013), which is based on the commonly used FITS-file format. To describe a

source unambiguously, the SIMPUT-file contains the following information: the source position, its

flux in a well-defined energy range, its mission-independent spectral information as well as its surface

brightness profile.

Having defined the source catalogue as expressed above, the event file is produced by simulating the

spatial as well as energetic distribution of observed photons in a generic Monte Carlo approach, which

is based on a series of random number processes (comp. Sect. 3.4). These event files are strongly

dependent on the characteristics of the considered instrument. Though SIXTE was especially developed

for eROSITA predictions, instrumental responses of many other X-ray telescopes are implemented in the

software as e.g. those of XMM-Newton or of Athena. On the whole, SIXTE allows for the simulation

of pointed as well as of survey observations, where in the latter scenario additional information on the

exposure maps of the observations are required. A detailed description of the procedures to simulate

these event files is summarised in Appendix A.2.

3.2.2 The Tool eSASS

The software system eSASS is maintained within the German eROSITA-consortium under the respon-

sibility of H. Brunner and it is currently developed to provide all necessary tools for the analysis of

simulated as well as of future observed event files. These tasks include e.g. the calibration of events,

the creation of images of the photon events, the computation of the exposure maps (comp. Fig. 2.12),

the detection of sources in the distribution of photon events, as well as the extraction of source spectra.

Many of these tools are still in the process of being completed and tested, such that we focused only on

the task SRCTOOL, in order to investigate the systematics of this tool thoroughly and independent of

the other tasks.

Given the instrumental characteristics, such as e.g. the ".rmf" and ".arf" files, as well as the centre

position and region of the source, SRCTOOL extracts the source spectrum. Analogously, also the

background spectrum is obtained for a specified region. For further analysis steps, these spectra are

compatible with the file format required by xspec. Appendix A.3 expresses a detailed summary of the

application of this tool.

3.3 Statistical Tools

Estimating temperatures and their precision from the eROSITA cluster spectra and especially forecasting

cosmological constraints are based on a complex statistical framework. The following sections now

describe how to determine the searched for information by fitting models to observed data.

3.3.1 Bayes Theorem

Let’s assume, we have an observed data set of N data points for the observable x, which we inspect in

dependence on a set of parameters y. We thus define the pairs (xi, yi) with i ∈ [1,N]. The expected

relation between the set of parameters and the observable is defined by a model, which itself depends

on M variables θ j with j ∈ (1,M) and Θ = (θ1, θ2, ..., θM). Accordingly, we define

xi(yi) = xi(yi|Θ) , (3.4)
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where the observed value xi for the parameter set yi is based on the model and its parameters Θ. Given

this relation between the observable and the model, there are two different schools in statistics: Frequen-

tist and Bayesian. Following the Frequentist’s way of thinking, there is a true set of model parameters,

which results in the observed data. The probability for one specific event (xi,yi) is then defined by its

occurrence in a set of trials. In Bayesian statistics, on the other hand, only the data is real and the model

needs to be estimated from this data. Some model parameter values are more believable than others,

depending on how well they reproduce the data and on the prior knowledge on these parameters. In

this case, the probability with which the data is re-produced by the parameter set Θ defines the degree

of believe of these model parameters. This belief is described by the posterior probability distribution
P(Θ|x). Throughout this work, we follow the Bayesian approach and the so-called Bayes’ theorem (e.g.

Press et al. 2007)

P(Θ|x) =
P(Θ)

P(x)
· P(x|Θ) . (3.5)

The function P(Θ) represents the prior knowledge on the modelΘ and thus e.g. includes the information

which model parameter values can be excluded or whether some sets of these values are more expected

than others. If a priory all possible parameter values are equally probable, this is referred to as flat prior.

The evidence P(x) normalises the posterior to unity for an integration over all possible model parameter

combinations
∫

dΘ P(x|Θ) = 1, such that

P(x) =

∫
dΘ P(Θ) · P(x|Θ) . (3.6)

The third multiplier, P(x|Θ), is named the likelihood function and expresses the probability to re-obtain

the observations x given a defined set of model parameter values Θ. Thus, to find the model which best

describes the observations, the likelihood needs to be maximised. Those model values are accordingly

considered as maximum likelihood estimates.

3.3.2 Gaussian and Poissonian Statistics

To describe the likelihood P(x|Θ) either a Gaussian or a Poissonian probability distribution are com-

monly applied, depending on the characteristics of the observed data set. The Gaussian function, or

normal distribution, defines the distribution of random variables which are drawn independently from

independent sets. Its functional form follows an exponential shape, multiplied over all data points i (e.g.

Press et al. 2007)

P(x|Θ) =
∏

i

1√
2πσ2

i

· exp

⎡⎢⎢⎢⎢⎣− (xi − μi)
2

2σ2
i

⎤⎥⎥⎥⎥⎦ , (3.7)

where σ2
i describes the variance in the observed data point xi, and μi = μi(yi|Θ) represents the expected

value given the model parameters Θ. For a best fit between observations and model parameters, the

expression in the exponent needs to be minimised

χ2 =
∑

i

(
xi − μi

σi

)2

. (3.8)

For a fit with ν = N − M degrees of freedom, a result of χ2 ≈ ν is expected at the maximum likelihood.

Additionally, the χ2-value is applied to estimate the uncertainty regions of the parameter values, where

e.g. for a 2-dimensional credibility region, Δχ2 = 2.3 expresses the 1σ- or 68.27%-uncertainty region
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and Δχ2 = 6.18 the 2σ- or 95.45%-uncertainty region.

In the case of correlated data points, the Gaussian statistics are extended to

χ2 =
∑

i j

(xi − μi)C−1
i j (x j − μ j) , (3.9)

applying the covariance matrix Ci j = 〈(xi − μi) · (x j − μ j)〉 between the individual data points.

Analogous to the considerations above, a log-normal distribution is defined, in which the natural loga-

rithm of the observable follows a Gaussian function

P(ln x|Θ) =
∏

i

1√
2πσ2

i

· exp

⎡⎢⎢⎢⎢⎣− (ln xi − ln μi)
2

2σ2
i

⎤⎥⎥⎥⎥⎦ . (3.10)

The Poisson distribution, on the other hand, is usually applied for observables resembling a discrete

small number of independent events, which are counted in a specified interval such as e.g. time or

volume

P(x|Θ) =
∏

i

μxi
i

xi!
exp[−μi] , (3.11)

with the same notation as above. For large numbers in μi, this distribution approaches a Gaussian shape

with σ2
i = μi. Just as before, the maximum likelihood is found by minimising the following expression

− ln[P(x|Θ)] =
∑

i

⎛⎜⎜⎜⎜⎜⎝ xi∑
n=1

ln n + μi − xi · ln μi

⎞⎟⎟⎟⎟⎟⎠ , (3.12)

which is often referred to as the negative log-likelihood. When neglecting all constants, the equation

above simplifies to

− ln[P(x|Θ)] =
∑

i

(μi − xi · ln μi) . (3.13)

Poisson statistics are especially preferred for photon counting experiments with a low number of photons

per investigated bin as is the case of X-ray observations. In this example, xi represents the observed

number of photons in a specified energy bin, where μi gives the number of photons expected from the

emission model and the instrumental response. Especially for these low photon counts experiments, the

Cash-statistics and the corresponding C-parameter are derived based on Eq. 3.13 (Cash 1979)

C = −2 · ln[P(x|θ)] = 2 ·
⎛⎜⎜⎜⎜⎜⎝μ −∑

i

(xi · ln μi)

⎞⎟⎟⎟⎟⎟⎠ , (3.14)

with μ =
∑

i μi. Accordingly, the C-parameter is the equivalent to the χ2 in Gaussian statistics. As these

statistics allow to analyse small number of events per bin, the bins may be defined reasonably small for

an improved resolution, whereas for the application of the χ2-statistics several bins need to be merged to

yield sufficient events. Unlike the χ2-value, however, a C-value cannot be interpreted as direct indicator

of the uncertainty level. Accordingly, the χ2-statistics are generally considered in the limit of large

number of photon counts or large number of events (e.g. Humphrey et al. 2009).
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3.4 The Concepts of Markov-Chain Monte Carlo Simulations

In practice, the maximum likelihood as well as the uncertainty on the maximum likelihood estimates

are often obtained in Markov-Chain Monte Carlo (MCMC) simulations. Thereby, the expression Monte
Carlo generally refers to a computer algorithm, which is based on a series of random numbers, and

which was first derived by Enrico Fermi in the 1930s and by Stanislaw Ulam in 1947. The Markov-
Chain defines a sequence of random variables, in which the subsequent variable value only depends on

the present position and not on the past values. Within these simulations the likelihood is computed

for various different combinations of model parameter values Θ. In the end, the procedure converges

towards those model parameters, which yield the maximum likelihood. The statistics behind these sim-

ulations as well as the algorithms, applied to obtain convergence, are explained in the following sections

in detail. A description of the statistical aspects is also given by e.g. Press et al. (2007).

3.4.1 The Statistics in MCMC

To find the maximum of the likelihood function P(x|Θ), or of the probability for the model parame-

ters Θ to re-produce the data sample x, we define a M-dimensional parameter space for the M model

parameters. Starting at an arbitrary point Θ1 = (θ1,1, θ1,2, ..., θ1,M), the likelihood P(x|Θ1) is computed

for this first set of model parameter values. Thereafter, we step to a second point Θ2 and compute the

corresponding likelihood P(x|Θ2), where the step to this second parameter set is defined by the proposal
distribution q(Θ2|Θ1). Usually, this proposal distribution is described as a log-normal function, which

is symmetric around Θ1, but most importantly, the distribution depends only on the current position Θ1

and not on the previous steps. The sequence of steps between the parameter sets is referred to as chain.

Having stepped to Θ2, we need to decide whether to accept this new point. For this, we consider the

acceptance probability

α(Θ2|Θ1) = min

{
1,

P(x|Θ2)

P(x|Θ1)

}
, (3.15)

where symmetric proposal distributions of q(Θ2|Θ1) = q(Θ1|Θ2) are assumed. Based on the value of the

acceptance probability, different algorithms are available to decide whether to accept the new step. Due

to the algorithms, the chains will eventually move to the region of highest probability and cluster in this

part of the parameter space.

3.4.2 The Metropolis-Hastings Algorithm

The sampler we apply in our MCMC-simulations is the Metropolis-Hastings Algorithm. The individual

steps within this sampling to decide on the acceptance of a new parameter point are summarised as

1. Compute the acceptance probability α of Θ2 according to Eq. 3.15.

2. Generate a random number r from a uniform distribution of (0, 1).

3. Compare r to α.

• If α > r, Θ2 is accepted and taken as the starting point of a new step Θ3.

• If α < r, Θ2 is rejected and the sampler steps back to Θ1 to find a new point Θ2.

Following this acceptance strategy, parameter sets with a higher likelihood than the previous step are

always accepted, whereas those with a lower likelihood still have a chance to be accepted. These
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sampling steps are then repeated for each new chain step and gradually direct the chain towards the

parameter space of the highest likelihood. Due to this sampling strategy, the number of accepted points

increases with an increasing likelihood, such that the density of the chain steps increases towards the

peak of the maximum likelihood estimates.

3.4.3 Computing Parameter Uncertainties

As the MCMC-chains step towards the parameter space of highest likelihood, this region is thus char-

acterised by the highest density of chain steps and the maximum likelihood estimates are represented

by the mean of all steps. The uncertainty on these estimates is then described by the distribution of

the chain steps, which also represents the posterior distribution (Fig. 3.2). This uncertainty region is

also referred to as credibility interval, following the Bayesian approach. A credibility level of e.g. 68%

between the parameter limits ΘA and ΘB expresses, that this percentage of the chain steps is located

between the two limits.

To define these intervals for certain percent levels, we need to integrate over the distribution of chain

steps in the M-dimensional parameter space. The integration boundaries need to be set such, that the

volume of the region, containing the defined percentage of steps, is minimised. Computing but also

displaying this credibility interval becomes more complex with an increasing number of parameters M.

For M = 1, the credibility interval is unambiguously defined by an upper and a lower boundary value

of the only model parameter θ1, whereas for M = 2 already a 2-dimensional contour in parameter space

needs to be described (comp. Fig. 3.2). As we fail to plot M-dimensional credibility contours effectively

for M > 3, we marginalise the posterior distribution over all additional parameters. The marginalisation

is realised by an integration of the likelihood over those additional parameters as

P(θ1|x) =

∫
P(x|Θ)dθ2dθ3...dθM (3.16)

P(θ1, θ2|x) =

∫
P(x|Θ)dθ3...dθM (3.17)

for a 1-dimensional and a 2-dimensional credibility region, respectively. These mariginalised uncer-

tainty regions then need to be computed for all of the M parameters or for all pair combinations.

However, in practice, there are several additional aspects that need consideration.

3.4.4 Further Aspects of Running MCMC-Simulations

To thoroughly explore the region of highest likelihood, commonly several chains are run in parallel, but

completely independent from one another - they do not communicate their positions and the step to the

next point is not influenced by the positions of the other chains. An excerpt of a chronological stepping

sequence for multiple chains is displayed in Fig. 3.3, together with several further aspects which need

to be considered in MCMC simulations.

Burn-in: As the chains start from an arbitrary initial point Θ1, several steps are needed to reach the

parameter space of highest likelihood, where the chains then start scattering around the maximum like-

lihood estimates. The first steps towards this region of interest are referred to as burn-in and need to be

rejected for the analysis of the chains. In Fig. 3.3, the first ∼ 2, 500 steps, which is ∼ 10% of the total

chain, describe the burn-in. Thereafter, the chains start to scatter around the maximum likelihood at

Ωm = 0.28. However, the percentage of burn-in steps depends on the simulation and needs to be chosen
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Figure 3.2: Left: Distribution of MCMC-chain steps in the parameter space {ns,Ωch2} for a ΛCDM-simulation

and for a simultaneous fit of the variables {σ8,Ωm, ns, h,Ωb}. The dotted black lines represent the true values of the

applied cosmology. More details on this simulation are presented in chapter 6.6.1. Right: Credibility intervals of

the 68.27%- as well as of the 95.45%-level as black contours, corresponding to the distribution of steps displayed

in the left panel. The blue background describes the density of chain steps with a higher density being represented

by a darker shade.
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Figure 3.3: Excerpt of an example chronological sequence of MCMC steps in Ωm for four parallel chains and a

simulation for a ΛCDM-cosmology with Ωm = 0.28 (black dotted line). The first ∼ 2, 500 steps of the chains are

considered as burn-in and need to be rejected for the analysis.

51



3 Applied Software and Statistical Methodologies

such, that it does not influence the computed credibility regions or the maximum likelihood estimates

values.

Mixing: The length between steps in the chains is drawn from the proposal distribution P(Θ) (comp.

Sect. 3.3.1), where the width of this distribution needs to be adapted to the width of the credibility

region. For a too narrow proposal distribution and thus for too small steps, most of the steps are accepted,

but the chains do not explore the parameter space of interest within a reasonable time. On the other hand,

for a too broad proposal distribution, the chains frequently propagate out of the region of maximum

likelihood, such that only few steps are accepted and the actual credibility region is explored poorly.

The term mixing describes how well the Markov-Chains explore the posterior distribution. Accordingly,

the width of the posterior distribution P(Θ|x) either needs to be investigated in a test MCMC run to

obtain a reliable estimate or the proposal distribution needs to be up-dated during the run. The latter

approach is also followed by our simulations, which partially explains the change in the step widths and

the relative variations in the parameter values after the burn-in.

Convergence Criteria: As soon as the chains start to survey the posterior distribution in the parame-

ter space, several different criteria exist to decide whether the chains converged to a maximum likelihood

region. In the case of a single chain, convergence is e.g. investigated by comparing especially the chain

means for different chain lengths. This is also known as the Geweke-criterium. For simulations with

multiple chains, we test whether all chains, having started at different initial points, find the same target

distribution. Within the Gelman-Rubin-criterium, the ratio

R =
variance of chain means

mean of chain variances
=
σ(〈Θ〉)
〈σ(Θ)〉 (3.18)

is computed for the second half of the chains. Following this criterium, a value of R = 0.2 is commonly

applied, where this value as well as the ratio in the Geweke-criterium, depends on the requested accuracy.

When the defined convergence is met, the chain means and the credibility intervals are obtained from

the posterior distribution as expressed in Sect. 3.4.3.

For our simulations, we generally run four parallel chains and define the state of convergence similar to

the Geweke-criterium, while computing the mean and the credibility intervals for the combination of all

chains, excluding the burn-in. As soon as the deviation of these to properties between different chain

lengths drops below 1%, the chains are considered to be converged (Sect. 6.8.1).

3.5 An Introduction to COSMOMC12

The publicly available software package COSMOMC (Lewis & Bridle 2002) includes the MCMC ap-

proach for the analysis and forecasts of cosmological studies. Many data sets as well as their likelihoods,

such as e.g. for Planck, for the Hubble Key Project or for supernovae type Ia surveys, as well as cos-

mological tools, such as CAMB (Lewis et al. 2000), are already implemented in this programme. When

adding your own data set and likelihood function to this software package, you are able to apply the

MCMC simulator and the implemented tools also on your own data as well as to compute joint credibil-

ity regions of your data set and the data stored in the package. In general, COSMOMC can be modified

to the individual requirements of the user and includes a large variety of different application options.

The parameterisation is defined such, that the different parameters show close to Gaussian posterior

12 Detailed information on this programme are summarised in the COSMOMC-readme at

http://cosmologist.info/cosmomc/readme.html
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distributions to optimise the performance of the MCMC simulations. Those parameters, important for

our studies, are (comp. Tab. 2.1)

Ωbh2 present baryon density, normalised by the Hubble paramter

Ωch2 present cold dark matter density, normalised by the Hubble paramter

θ the angular size of the sound horizon at the era of recombination

w0 normalisation of the dark energy equation of state, following Eq. 2.18

wa time evolution of the dark energy equation of state, following Eq. 2.18

ns scalar spectral index of the linear matter power spectrum (comp. e.g. Eq. 2.33)

log A ≡ ln[1010 · A], with the amplitude A of the linear matter power spectrum (comp. e.g. Eq. 2.33).

Other commonly studied cosmological parameters, such as e.g. H0, Ωm or σ8, are derived from these

initial parameters within the programme.

What is more, also the evaluation of the generated chains, including the computation as well as the

plotting of up to 3-dimensional credibility regions, can be executed within COSMOMC.
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CHAPTER 4

Constraining Galaxy Cluster Temperatures and
Redshifts with eROSITA Survey Data

This chapter presents the first project of my thesis on the observational power for cluster tempera-

tures and redshifts with the eROSITA survey data. Apart from minor adaptations to the context of

this thesis, the following sections have been published as Borm et al. (2014) (bibliographic code:

2014A&A...567A..65B) with the journal Astronomy & Astrophysics. The theoretical aspects explained

in Sect. 4.1 are a summary of the discussions especially in Sect. 2.7, 2.8 & 2.9.

Abstract

The nature of dark energy is imprinted in the large-scale structure of the Universe and thus in the mass

and redshift distribution of galaxy clusters. The up-coming eROSITA-instrument will exploit this method

of probing dark energy by detecting ∼ 100, 000 clusters of galaxies in X-rays.

For a precise cosmological analysis the various galaxy cluster properties need to be measured with high

precision and accuracy. To predict these characteristics of eROSITA galaxy clusters and to optimise

optical follow-up observations, we estimate the precision and accuracy with which eROSITA will be

able to determine galaxy cluster temperatures and redshifts from X-ray spectra. Additionally, we present

the total number of clusters for which these two properties will be available directly from the eROSITA
survey.

We simulate the spectra of galaxy clusters for a variety of different cluster masses and redshifts while

taking into account the X-ray background as well as the instrumental response. An emission model is

then fitted to these spectra to recover the cluster temperature and redshift. The number of clusters with

precise properties is then based on the convolution of the above fit results with the halo mass function

and an assumed eROSITA selection function.

During its four years of all-sky surveys, eROSITA will determine cluster temperatures with relative

uncertainties of ΔT/T � 10% at the 68%-confidence level for clusters up to redshifts of z ∼ 0.16, which

corresponds to ∼ 1, 670 new clusters with precise properties. Redshift information itself will become

available with a precision of Δz/(1 + z) � 10% for clusters up to z ∼ 0.45. Additionally, we estimate

the increase in the number of clusters with precise properties that is achieved by a deepening of the

exposure.

For these clusters, the fraction of catastrophic failures in the fit is below 20% and in most cases even

much lower. Furthermore, the biases in the best-fit temperatures as well as in the estimated uncertainties

are quantified and shown to be in general negligible in the relevant parameter range. For the remaining
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parameter sets, we provide correction functions and factors. In particular, the standard way of estimating

parameter uncertainties significantly underestimates the true uncertainty, if the redshift information is

not available.

In conclusion, the eROSITA survey will increase the current number of galaxy clusters with precise

temperature measurements by a factor of 5 − 10. Thus, the instrument presents itself as a powerful

tool for determining tight constraints on the cosmological parameters. At the same time, this sample of

clusters will extend our understanding of cluster physics, for instance through precise LX − T scaling

relations.

4.1 Introduction

Over the past years, galaxy clusters have become reliable cosmological probes for studying dark en-

ergy and for mapping the large-scale structure (LSS) of the Universe (e.g., Borgani & Guzzo 2001; Voit

2005; Vikhlinin et al. 2009a,b; Mantz et al. 2010a; Allen et al. 2011). Further improved constraints

on the nature of dark energy require the analysis of a large sample of galaxy clusters with precisely

and accurately known properties. The future eROSITA (extended Roentgen Survey with an Imaging

Telescope Array) telescope (Predehl et al. 2010; Merloni et al. 2012), which is scheduled for launch in

early 2017, will provide such a data sample (Pillepich et al. 2012).

X-ray observations of galaxy clusters allow for the precise determination of various cluster properties

such as the total mass as well as the gas mass of the cluster or the temperature and the metal abundance

of the intra-cluster medium (ICM) (e.g. Henriksen & Mushotzky 1986; Sarazin 1986; Vikhlinin et al.

2009a). The information on these properties is imprinted in the emission spectrum of the ICM, which

follows a thermal bremsstrahlung spectrum superimposed by emission lines of highly ionised metals

(e.g., Sarazin 1986). Especially notable are the Fe-L and the Fe-K line complexes at energies of ∼ 1

keV and ∼ 7 keV, respectively. For low gas temperatures of kBT � 2.5 keV, emission lines are prominent

features in the spectrum in the energy range of roughly (0.5 − 8) keV. With increasing temperatures the

lines at the lower energies fade as the metals become completely ionised, whereas other emission lines,

such as the hydrogen-like Fe-K line, increase with higher gas temperatures (e.g., Fig. 2 in Reiprich

et al. 2013). Analogously to the temperature, the spectrum also reflects the density and metallicity of

the ICM, as well as the cluster redshift, which allows these properties to be recovered in the analysis

of X-ray data. While very precise redshifts with uncertainties of Δz � 0.01 can be obtained in optical

spectroscopic observations, estimating redshifts from X-ray data directly allows for an optimisation of

these time-consuming optical spectroscopic observations.

Cosmological studies based on galaxy clusters are especially dependent upon the information on their

redshift and total mass. As the cluster mass is not a direct observable, galaxy cluster scaling relations

are commonly applied to estimate this property based for example on the ICM temperature and the

cluster redshift (e.g., Vikhlinin et al. 2009a; Pratt et al. 2009; Mantz et al. 2010a; Reichert et al. 2011;

Giodini et al. 2013). This then allows for an analysis of the distribution of galaxy clusters with mass and

redshift. This halo mass function traces the evolution of the large-scale structure (LSS) and is highly

dependent on the cosmological model, implementing galaxy clusters as cosmological probes (e.g., Press

& Schechter 1974; Tinker et al. 2008). Testing the cosmological model through the study of the halo

mass function has become an important method in the past years (e.g., Reiprich & Böhringer 2002; Voit

2005; Vikhlinin et al. 2009a,b; Mantz et al. 2010a). This analysis methodology is not only based on

X-ray obervations, but can also be applied to Sunyaev-Zel’dovich (SZ) observations of galaxy clusters.

Current SZ cluster surveys, performed for example by the Atacama Cosmology Telescope (ACT), the

South Pole Telescope (SPT) and Planck, are increasing the impact of these observations and already led
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to an improvement in constraining the cosmological parameters (e.g. Vanderlinde et al. 2010; Planck

Collaboration et al. 2013; Reichardt et al. 2013). Additionally, a combination of SZ and X-ray observa-

tions allows for the calibration of hydrostatic cluster masses, which in turn improves the cosmological

constraints. The eROSITA instrument will soon improve the data sample of available X-ray clusters in

terms of precision, accuracy, and number of clusters. This sample will thus especially allow for opti-

mised cosmological studies by means of X-ray galaxy clusters. As a side effect, future SZ observations

will profit from this cluster sample as well.

eROSITA is the German core instrument onboard the Russian Spektrum-Roentgen-Gamma (SRG) satel-

lite, which is scheduled for launch in early 2017 (Predehl et al. 2010; Merloni et al. 2012). The main

science driver of this mission is studying the nature of dark energy. The first four years of the mission

are dedicated to an all-sky survey, followed by a pointed observation phase, both in the X-ray energy

range between (0.1 − 10) keV. Within the all-sky survey, a conservatively estimated effective average

exposure time of texp = 1.6 ks is achieved, and we expect to detect a total of ∼ 105 galaxy clusters,

including basically all massive clusters in the observable Universe with M � 3 × 1014h−1 M� (Pillepich

et al. 2012). For these calculations a minimum of 50 photon counts within the energy range of 0.5− 2.0

keV is assumed for the detection of a cluster. With this predicted data sample, current simulations esti-

mate an increased precision of the dark energy parameters to Δw0 ≈ 0.03 (for wa = 0) and Δwa ≈ 0.20

(Merloni et al. 2012, Pillepich et al., in prep.), assuming an evolution of the equation of state of dark

energy with redshift as wDE = w0 + wa/(1 + z).

These forecasts consider only the galaxy cluster luminosity and redshift to be known with an assumed

uncertainty, whereas the precision on the cosmological parameters will be improved if additional cluster

information, such as the ICM temperature, is available (compare e.g., Clerc et al. 2012). In this work

we thus present how accurately and precisely eROSITA will be able to determine the ICM temperature

in dependence on the cluster masses and redshifts. In an analogous simulation, we investigate for which

clusters the survey data will allow for a redshift estimate to optimise optical follow-up observations

(compare e.g., Yu et al. 2011).

The outline of this chapter is as follows: in Sect. 4.2, we define the properties of the clusters included in

our simulations. We also introduce the applied model for the X-ray background and the simulation and

analysis methods. The following section presents the predicted precisions and accuracies for the cluster

temperatures and redshifts, while Sect. 4.4 emphasises the number of clusters for which precise prop-

erties will be available from eROSITA data. The final two sections, 4.5 and 4.6, contain the discussion

and conclusion of this work.

If not stated otherwise, we apply a fiducial cosmology of H0 = 100·h km/s/Mpc with h = 0.7,Ωm = 0.3,

ΩΛ = 0.7, σ8 = 0.795 and the solar metallicity tables by Anders & Grevesse (1989).

4.2 Simulation Method and Analysis

The predictions for the cluster temperatures and redshifts are based on the analysis of galaxy cluster

spectra, for which we applied the software xspec (Arnaud (1996); comp. also Sect. 3.1) version 12.7.0.

To simulate the spectra, the cluster temperature, its luminosity, its redshift, its metallicity, and the fore-

ground absorption need to be known, as well as the background emission observed by eROSITA and the

instrumental response (RSP) of the detector. The RSP applied in our simulations contains the combined

resolution of all seven telescopes averaged over the entire field-of-view ("erosita_iv_7telfov_ff.rsp").
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Figure 4.1: Simulated spectra of a galaxy cluster with M500 = 1014 M� (black), kBT = 2.2 keV, and with

M500 = 1015 M� (red), kBT = 9.8 keV, respectively. The spectra are simulated for a redshift of z = 0.1 and

z = 0.3, respectively, and for an exposure time of texp = 1.6 ks. The model emission convolved with the instru-

mental response (continuous line) as well as the simulated emission (data points) are presented. For the simulated

emission the energy bins are regrouped to yield at least 20 photons per group for display reasons.

4.2.1 Cluster Properties

For the clusters included in our simulations, we defined the total mass M500 and redshift z within the

ranges of 13 � log(M/M�) � 15.7 and −2 � log(z) � 0.25 in logarithmic steps of 0.15, which is

equivalent to 1013 � M/M� � 5 × 1015 and 0.01 � z � 1.78, respectively. Based on these two input

parameters, the remaining cluster properties were estimated through galaxy cluster scaling relations

(comp. Sect. 2.7.3), where we applied the findings by Reichert et al. (2011).

T [keV] =

(
M

1014 M�
· 3.44

)0.62

· E(z)0.64 (4.1)

LX [1044erg/s] =

(
M

1014 M�
· 0.61

)1.92

· E(z)1.7 , (4.2)

with the bolometric luminosity LX measured in the energy range between (0.01 − 100) keV and the

redshift evolution

E(z) = [Ωm(1 + z)3 + ΩΛ]1/2 . (4.3)

This scaling relation is the most conservative approach for high-redshift clusters when compared to

other works, for instance Vikhlinin et al. (2009a) and Pratt et al. (2009) (see Sect. 4.5). Note that we ne-

glected the intrinsic scatter in the scaling relations for our simulations to only focus on the performance

of the instrument. However, to compute the cosmological parameters by means of galaxy cluster data,

this intrinsic scatter needs to be taken into account.

Throughout all simulations, the cluster metallicity was set to A = 0.3 A�, which is a commonly observed
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value for nearby clusters (e.g. Arnaud et al. 1992; Mushotzky & Loewenstein 1997). Even though an

evolution of the metallicity with redshift was observed, it could not be definitely quantified yet (Balestra

et al. 2007; Maughan et al. 2008; Baldi et al. 2012), and we thus preferred to apply the constant metal-

licity stated above. For a more detailed treatment of this evolution, we include a discussion of the effect

of an abundance evolution with redshift in Sect. 4.5.2. At the same time, we assumed the absorbing col-

umn density to be NH = 3×1020 particles/cm2 as typical value for regions at galactic latitudes of b � 20◦
(Kalberla et al. 2005), which are relevant for the eROSITA cluster survey. Figure 4.1 presents two exam-

ple galaxy cluster spectra simulated as an absorbed thermal emission (Smith et al. 2001) phabs*apec,

convolved with the eROSITA response. All clusters are simulated to show an isothermal emission.

Furthermore, the simulations focused on clusters with fluxes below the eHIFLUGCS limit of 9 × 10−12

erg/s within the energy range of (0.1−2.4) keV (Schellenberger et al., in prep.). All clusters in this com-

plete all-sky sample have high-quality Chandra and/or XMM observations and, therefore, temperatures

and redshifts are known. For clusters below this flux lumit no precise and accurate properties are usually

available. At the same time, only clusters with a minimum of 100 detected photons by eROSITA in the

energy range of (0.3 − 8) keV were considered to ensure a stable performance of the applied software.

What is more, no reliable temperature and redshift measurements are expected for clusters with this low

number of source events.

Even though the angular extension of the cluster does not define its over-all spectral emission, the

extension is essential for the simulation of the X-ray background as the background normalisation is

proportional to the observed region. The angular extension of the galaxy cluster is determined as α500

in dependence on the cluster mass and redshift

M500 =
4π

3
ρcrit(z) · 500 · R3

500 (4.4)

α500 =
R500

DA(z)
, (4.5)

applying the critical density ρcrit and the angular diameter distance DA

ρcrit =
3H(z)2

8πG
with H(z)2 = H0 · E(z)2 (4.6)

DA(z) =
c

H0(1 + z)

∫ z

0

E(z)−1 dz . (4.7)

4.2.2 eROSITA X-ray Background

The background, observed by eROSITA, was simulated following the modelled emission

phabs︸�︷︷�︸
1

∗(powerlaw︸������︷︷������︸
2

+ apec︸︷︷︸
3

+ apec︸︷︷︸
4

) + powerlaw︸������︷︷������︸
5

.

The different components include 1) the absorption by the neutral gas in our Galaxy, 2) the unresolved

cosmic X-ray background, that is distant AGN, 3) the plasma emission by the hot ISM and 4) the

emission by supernova remnants in our Galaxy, as well as 5) the particle background. The first four

components are defined by Lumb et al. (2002) and express the cosmic X-ray background, whereas the

particle background is estimated by Tenzer et al. (2010). The instrumental background was included in

the particle background and since the eROSITA detectors will be equipped with a graded-Z shield, we do

not expect to observe a significant component of fluorescent emission lines. Additionally, the influence

of bad and hot pixels was assumed to be negligible. The individual values for the model are presented
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Table 4.1: Model values of the eROSITA background. The numbering of the components is equivalent to the

numbering in the model definition (Sect. 4.2.2). The units of the individual model parameters are as follows:

[NH]= 1022 particles/cm2 and [kBT ]=keV. The normalisations are given for an eROSITA field-of-view of 0.83 deg2

with the units [norm]=photons/keV/cm2/s at 1 keV for the powerlaw and [norm]=photons/cm5 for the apec model.

Component Parameter Model Value

1 NH 1.7 × 10−2

2 photon spectral index 1.42

2 norm 0.0028

3 kBT 0.204

3 norm 0.0019

4 kBT 7.4 × 10−2

4 norm 0.029

5 photon spectral index 0.0

5 norm 0.29

in Table 4.1, where all components except the particle background are convolved with the instrumental

RSP. This background model is the default for the eROSITA instrument and is also described by Merloni

et al. (2012).

Figure 4.2 provides an illustration of the background spectrum, which is dominated by the particle

background for energies above ∼ 2 keV. When observed over the entire eROSITA field-of-view (FoV) of

0.83 deg2, the total background emission shows count rates of 12 cts/s within the energy range between

(0.3 − 8) keV. For a commonly observed cluster of M500 = 1014 M� ad z = 0.1 as simulated in Fig. 4.1,

this background results in a signal-to-noise ratio of S/N ≈ 23.5 and in a source-to-background ratio of

1.4.

4.2.3 Simulation Outline

To simulate the characteristics of eROSITA galaxy clusters the following methodology was applied:

1. For a given set of cluster mass and redshift, we simulate the total X-ray spectrum, which includes

both the absorbed galaxy cluster emission itself as well as the background.

2. A model is fit to the simulated emission. However, before the fitting procedure, we define the

background emission, such that this emission is removed from the above spectrum during the

fit and only the model of an absorbed cluster emission needs to be adjusted to the remaining

spectrum. The fit then determines the best fit values of the cluster temperature and redshift.

3. To obtain a proper statistical distribution of these best-fit values, steps 1.) - 3.) are repeated 300

times for each parameter set.

For the simulations we defined two different exposure times texp = 1.6 ks and texp = 20 ks, which

describe the effective average exposure time for eROSITA after its four years of all-sky surveys and the

observation time of two deep-exposure fields at the ecliptic poles, respectively (Pillepich et al. 2012;

Merloni et al. 2012). For the fitting we also follow two approaches, which assume the redshift either to

be known, for example from optical follow-up observations, or that no redshift information is available

yet. In the latter case, we introduced the redshift as variable parameter during the fit and determined
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Figure 4.2: Spectrum of the eROSITA background for a FoV of 1 arcmin2.

its value through the X-ray spectrum (e.g., Yu et al. 2011). These considerations yielded a total of four

different simulations.

Throughout the different simulation steps, Cash statistics were applied (Cash (1979); comp. also Sect.

3.3.2) to ensure a good performance during the fit despite the small number of photons in each energy

bin of the simulated spectra. To realise the total spectrum during the first step, we defined the exposure

time and convolved the emission models of the cluster and background with the instrumental responses,

where the background normalisation is rescaled to match the cluster extension (see Sect. 4.2.1). The

spectrum was re-grouped to yield at least one photon count per energy bin, to avoid failures during the

fit due to empty energy bins (compare Leccardi & Molendi 2007; Krumpe et al. 2008). In the next step,

the background emission was defined by applying the backgrnd-command, such that this emission was

removed during the final spectral fit. The procedures of normalising the background and employing

the backgrnd-command are essential to account for the statistical scatter in the photon counts in the

spectra. For this background model, we realistically assumed an exposure time of texp = 100, while

keeping the area fixed to the cluster extension. Finally, an absorbed apec emission model was fitted to

the remaining spectrum within an energy range of (0.3−8) keV, which reflects the effective energy range

of the eROSITA instrument (Merloni et al. 2012). During this simulation step, the cluster temperature

and the normalisation of the spectrum, which is proportional to the emission measure

norm =
10−14

4π[DA(1 + z)]2

∫
nenHdV , (4.8)

were recovered. In case of an unavailable cluster redshift, this property was also estimated in this step.

To allow for the most accurate fit values to be obtained, we thoroughly inspected the more-dimensional

space of the best-fit parameters for a global minimum in the goodness of the fit by applying the multi-

dimensional steppar-command. The investigated parameter space is defined as ±50% around the
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initial best-fit value with 50 steps each for the temperature and the redshift and 20 steps for the normal-

isation. In a last step, we estimated the 68%-confidence intervals of the best-fit values by means of the

xspec error-command. The complete simulation procedure was then repeated 300 times for each set

of parameters resulting in a well-sampled distribution of best-fit values. This distribution allowed us

to define a second 68%-confidence interval around the median best-fit value. In the following, this last

confidence range is applied for the analysis of the simulation and is considered as the true uncertainty

on the fit values.

4.2.4 Analysis Procedure

Before analysing the simulated data, we removed all catastrophic failures in the fit results, which we

devided into two types. The first type of catastrophic failures contains inconsistencies in the fit, where

the 68%-confidence interval calculated by the error-command was not set around the best-fit value.

These inconsistencies may occur during the simulations with unknown redshift. When appearing in the

analysis of observed data, the spectral fit needs to be repeated, while being adapted individually to this

spectrum by means of re-defined starting values for the fit, for example. This approach is not feasible

for the extent of our simulations, such that we were limited to the conservative procedure of discarding

these spectra.

During the analysis, we addressed each parameter set separately and defined the second type of catas-

trophic failures as fit values, whose true 3 × 68%-confidence interval does not include the input value.

This type of failures can only be quantified if the input cluster parameter values are known. In the anal-

ysis of observed data, however, they cannot be identified and thus decrease the accuracy of the analysed

data sample.

If these two types of catastrophic failures made up to more than 20% of the fit data, the parameter set

was rejected (see Sect. 4.5), i.e. it was assumed that the cluster property values cannot be recovered

typically from the eROSITA data. However, to ensure a conservative analysis, the fits showing the sec-

ond type of catastrophic failure were included in the analysis of all our data sets since these catastrophic

failures can generally not be identified for observed data.

The analysis considered three different interpretations of the temperature and the redshift fit results, all

of which are presented in dependence on the input values of the cluster mass and redshift. First we

inspect the relative uncertainties, which we defined as ΔT/〈Tfit〉 and Δz/〈1+ zfit〉. The elements ΔT and

Δz express the true 68%-confidence range from the distribution of the fit values. The typical fit values

〈Tfit〉 and 〈1 + zfit〉 were estimated by the median of the distribution. Especially of interest are relative

uncertainties of the two properties with values of � 10% since these uncertainties are similar to the

intrinsic scatter in the M − T scaling relation (e.g., Mantz et al. 2010a). We focused on the fit results of

the temperature since for future eROSITA observations the total cluster mass is more precisely estimated

by the M − T relation, due to its smaller intrinsic scatter in comparison to the M − LX relation (e.g.,

Mittal et al. 2011). However, analysing the recovery of the cluster mass from the simulated spectra is

beyond the scope of this paper.

The bias on the best-fit cluster properties was computed as 〈Tfit〉/Tinput and 〈1+ zfit〉/(1+ zinput), express-

ing the ratio between the median of the fit values and the input value. As a last analysis, we investigated

the deviation between the median uncertainty computed by the error-command and the uncertainty ob-

tained from the distribution of the fit results as 〈ΔTerror〉/ΔT . Analogously, the deviation in the redshift

uncertainties was analysed. This so-called bias in the error estimates is an important quantity since from

the reduction of observed data only the uncertainty by the error-command will be available, whereas

the proper statistical uncertainty is given by the distribution.
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4.3 Results

4.3.1 Relative Uncertainties

Figures 4.3 to 4.8 illustrate the relative temperature and relative redshift uncertainties, expected after

four years of the eROSITA all-sky survey. The relative uncertainties were computed in dependence on

the input cluster mass and redshift, such that each pixel represents a galaxy cluster with a different com-

bination of input mass and redshift, where the values of the two properties are given by the centre of the

pixel. The colour of the pixel indicates the relative uncertainty of either the temperature or the redshift

of the cluster. The colour bar expresses this relative uncertainty and is given in a linear scale. According

to the defined flux limit and photon count limit (Sect. 4.2.3), only the cluster parameter space within

the two white dashed lines was considered. In the simulation of the eROSITA deep exposure fields with

texp = 20 ks, this parameter space increases to higher redshifts as fainter clusters are detected above the

photon-count threshhold (Figs. 4.4 to 4.8).

For display purposes, we include countour lines for the relative uncertainty in white and for the number

of detected photons in black, where each cluster on the contour line shows at least the stated precision

or number of photons. In Figs. 4.6 and 4.8, the parameter space of clusters with relative uncertainties

of � 10% in temperature or redshift is indicated as the area between the solid white contour lines. The

white-framed dark-blue pixels present the parameter sets which were rejected because of a large fraction

of catastrophic failures (Sect. 4.2.4).
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Figure 4.8: Expected relative redshift uncertainty

for an exposure time of texp = 20 ks.

Compared with the simulation with texp = 1.6 ks and known redshift (Fig. 4.3), the number of rejected

pixels increases when the exposure time is increased, particularly when we assumed the redshift to be

not available. For the simulation results with unknown redshift the figures were clipped to the interme-

diate mass range of 13.6 � log(M/M�) � 15.1 since all parameter sets including the remaining masses

were rejected (Figs. 4.5 & 4.7 and 4.6 & 4.8). With increasing exposure time, the increased number

of detected photons reduces the statistical scatter in the simulated spectra, which allows for a higher

precision of the fit. Accordingly, this increased precision tightens the absolute constraints on the catas-

trophic failures. Futhermore, introducing the redshift as an additional free parameter in the simulations

complicates the fitting procedure and yields less accurate and less precise fit results (Sect. 4.3.2). The

occurence of a high level of failed spectral fits when determining the X-ray redshift of a cluster has also

been observed by Lloyd-Davies et al. (2011) (see also Sect. 4.5.3).

In all simulation approaches, the precision of temperature and redshift generally increased with increas-

ing cluster mass and, in particular, with decreasing cluster redshift.

64



4.3 Results

According to these findings, the galaxy clusters that are relevant for cosmological studies with rela-

tive parameter uncertainties of � 10% are observed in the local Universe. For the all-sky survey with

an average effective exposure time of texp = 1.6 ks, we expect the temperature to be detectable with

this precision up to maximum redshifts of log(z) ≈ −0.8, z � 0.16 (Fig. 4.3), if the redshift of the

cluster is known, and up to log(z) ≈ −1.1, z � 0.08 (Fig. 4.5), if the redshift is not available. The

redshift itself will be obtained with relative uncertainties of � 10% from X-ray data for clusters as far

as log(z) ≈ −0.35, z � 0.45 (Fig. 4.7). At the ecliptic poles of the mission with exposure times of

texp = 20 ks, the parameter space of clusters with precision temperatures increases in theory to redshifts

of z � 1.78 (Fig. 4.4), assuming the redshift is known. At these redshifts precise temperatures are only

obtained for the most massive galaxy clusters of which not many are expected to be observed (compare

Fig. 4.15), especially in the low sky area of the deep exposures. Additionally, pollution of the spectra

by the cluster AGN needs to be expected for these deep observations (see Sect. 4.5.5). In the case of

unavailable redshifts, both temperature and redshift are detectable up to log(z) ≈ −0.35, z � 0.45 (Figs.

4.6 & 4.8). For these observations, catastrophic failures in the spectral fit restrict the parameter space of

clusters with precise temperature and redshift estimates.

The parameter space of clusters with high-precision temperatures decreased for the simulation with un-

known redshift, because the redshift was introduced as an additonal free parameter during the fit and the

resulting degeneracy between the cluster redshift and the cluster temperature (compare Sect. 4.5.3). The

cluster redshift is more difficult to determine from X-ray spectra than the cluster temperature (e.g., Yu

et al. 2011; Lloyd-Davies et al. 2011). But because of the deviating definitions of the relative uncertain-

ties as ΔT/〈Tfit〉 and Δz/〈1 + zfit〉, precise redshifts are expected to be detected for more distant clusters

than are precise temperatures. According to this, the number of clusters for which both precise redshifts

and temperatures will be available from X-ray data is limited by the determination of the temperature.

The analysis of the relative uncertainties clearly shows that the precision of temperature and redshift

does not only depend upon the number of detected photons, but also upon the cluster properties (see

Sect. 4.5.1).

4.3.2 Biases in the Best-Fit Properties

The bias in the best-fit temperatures and redshifts was analysed in dependence on the cluster redshift

within five mass ranges, defined by the input cluster masses. These mass intervals were centred on the

values log(M/M�) = 13.15, 13.75, 14.35, 15.95 and 15.55, where the parameter biases of these cluster

masses are illustrated in Figs. 4.9 - 4.14 within the simulated redshift intervals. The uncertainty of the

bias is given by the scatter in the best-fit values. We also present correction functions for these biases,

which we obtained as a fit of the exponential function

f (x) = A · exp(B · x) + 1 , (4.9)

with variables A and B and x = log(z), to the data points.

The best-fit values of A and B are provided Appendix C.1. The parameter sets that we rejected due to

large numbers of catastrophic failures are displayed as empty symbols. They were included in the fit

of the correction function to avoid an underestimation of the correction of the best-fit property values.

However, cluster masses that showed only catastrophic failures for all redshifts were excluded from this

fit. For the simulations with known redshift, we define correction functions individually for the five

cluster masses stated above. However, we assumed the correction function to be an estimate for all

masses within the defined mass range and within the simulated redshift interval (Appendix C.1). When

the cluster redshift is unknown, the parameter biases are to a first approximation independent of the
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cluster mass (Figs. 4.10 & 4.11 and 4.13 & 4.14). According to this, we describe these biases by a

single exponential function for all cluster masses. The degeneracy in the cluster masses occurs because

for the simulation with unavailable redshift a larger scatter is introduced in the median values of the

parameter bias.

In general, the biases in the best-fit properties a decrease with declining cluster redshift, and for the sim-

ulated clusters with known redshifts, the bias additionally increases with decreasing cluster mass. For

local redshifts of roughly log(z) ≈ −0.7, the parameter bias becomes negligible for all cluster masses

and simulation approaches. Even for higher redshifts the best-fit value is still consistent with the input

value within the error bars.

With increasing exposure time, the median bias values improve moderately, whereas the uncertainty on

the best-fit value decreases significantly. According to this, the bias is only consistent with unity for

smaller redshift ranges when compared to the results for texp = 1.6 ks (compare Figs. 4.9 & 4.12). Simi-

lar to the findings for the relative uncertainties, the temperature bias rises when the redshift of the cluster

is unavailable. According to the deviating definitions for the temperature and redshift (Sect. 4.2.4), the

redshift appears as more accurate property.

The development of the bias in the best-fit properties in dependence on the cluster redshift, temperature,

and number of photons is analogous to the evolution of the relative uncertainties. Thus, both results

are explained by similar considerations (see Sect. 4.5.1). We recall that we investigated an isothermal

cluster emission model in our simulations to focus only on the performance of the eROSITA instrument.

To analyse observed data and thus mainly multi-temperature gas, additional systematics might arise in

the temperature estimation, according to the shape of the effective area. A first assessment of this effect

is presented by Reiprich et al. (2013) in their Figure 18.

The underestimation of the proper input property value has also been studied by Leccardi & Molendi

(2007). They explained the deviation through the increasing relative background contribution with in-

creasing redshift compared to the source counts as well as through the calibration of the instrument.

When convolving these results for the bias in the properties with the parameter space of eROSITA clus-

ters with precise temperatures and redshifts, we find that the bias is negligible for all clusters with

relative parameter uncertainties of � 10% during the all sky survey (texp = 1.6 ks). This is independent

of the available information on the redshift. The same result is observed for texp = 20 ks and for clusters

with unknown redshift. Only clusters with available redshifts and precise temperatures in the deep ex-

posure fields require a correction of the best-fit temperatures for distances above log(z) � −0.5, which

is equivalent to z � 0.32.

4.3.3 Bias in the Error Estimates

For the bias in the error estimates no definite dependence on the input cluster mass or the redshift is

observed, therefore, simple correction factors were calculated. Thus, we present estimates of these

biases averaged over the complete simulated mass and redshift range (Table 4.2). In analogy to the fit of

the bias on the best-fit properties, masses with only catastrophic failures for all simulated redshifts were

excluded from the estimation.

When the redshift of the cluster is known, the temperature uncertainty computed by the error-command

represents the statistical scatter in the best-fit values well, with a ratio in the uncertainties of

〈ΔTerror〉/ΔT = 1±0.1. For spectral fits with unavailable redshifts, we observe a general underestimation

of the proper uncertainty in the fit value by the error-command, where the uncertainty in the redshift

experiences a stronger bias than the uncertainty in the temperature (Table 4.2).

This increase in the bias for clusters with unknown redshift is explained by the additional free parameter

during the spectral fit and by the difficulty in recovering the cluster redshift from X-ray spectra (Yu et al.
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Table 4.2: Bias in the error estimates for the different simulations. The bias is avaraged over the complete mass

and redshift range. For the simulations with known redshift, the bias in the uncertainties is in general negligible.

simulation bias
exposure time

texp = 1.6 ks texp = 20 ks

known z 〈ΔTerror〉/ΔT 1 1

unknown z
〈ΔTerror〉/ΔT ∼ 0.3 ∼ 0.5

〈Δzerror〉/Δz ∼ 0.25 ∼ 0.15

2011). In addition, a longer exposure time does not necessarily result in a reduced bias in the error

estimates. Unlike the bias in the best-fit parameter values, the bias in the error estimates typically

needs to be considered for the analysis of clusters with relative parameter uncertainties of � 10%. In

the reduction of eROSITA data for clusters with unavailable redshifts, the provided corrections are a

necessary tool to compute reliable parameter uncertainties.

4.4 Cosmological Interpretation

To compute the number of clusters for which high-precision temperatures and redshifts will be available

directly from eROSITA data, we applied the halo mass function by Tinker et al. (2008) (comp. Sect.

2.3.3). This mass function was convolved with the M − LX and M − T scaling relation by Reichert

et al. (2011) as well as with the eROSITA response to obtain a distribution of the number of clusters

in dependence on the number of observed photons (comp. chapter 6.3). As in Sect. 4.3, the results

are dependent on the input cluster properties. Figure 4.15 presents this distribution of clusters for an

exposure time of texp = 1.6 ks. For our computation we assumed a minimum number of photons ηmin =

50 in the energy range of (0.5 − 2.0) keV for a source to be detected as a galaxy cluster by eROSITA
(following Pillepich et al. 2012). Accordingly, no constant flux cut was applied for our computations,

but for each considered combination of cluster mass and redshift the number of observed counts was

estimated based on the applied scaling relations. Additonally, we applied an effective lower mass cut of

Mcut = 5× 1013/h M�, which is equivalent to Mcut = 7.1× 1013 M� for our choice of h = 0.7. With this

cut we removed low-mass clusters and groups, which show a strong scatter in their scaling relations (e.g.

Eckmiller et al. 2011). During the simulation, this mass cut is converted into a redshift-dependent cut

of the photon counts, as explained by Pillepich et al. (2012) and in chapter 6.3.1, since for the analysis

of X-ray data the cluster mass is initially unknown. According to our applied cosmology (Ωm = 0.3,

ΩΛ = 0.7), we adjusted the normalisation of the matter power spectrum to σ8 = 0.795 by means of the

relation

σ8 ∝ Ω−0.38
m (4.10)

(Reiprich & Böhringer 2002), which we normalised according to the WMAP5 results of Ωm = 0.279

and σ8 = 0.817 (Komatsu et al. 2009). This normalisation was chosen for a better comparison between

our calculations and the work by Pillepich et al. (2012). We defined the observed sky fraction to be

fsky = 0.658 for the all-sky survey with texp = 1.6 ks. This sky fraction considers the entire sky, ex-

cluding a region of ±20◦ around the Galactic plane as well as regions with a high X-ray flux such as the

Magellanic Clouds and the Virgo Cluster.

Following these approaches, we expect to detect a total of ∼ 113, 400 clusters of galaxies with the

eROSITA instrument during its four years of all-sky survey (Table 4.3). The peak of the cluster distribu-

tion is located at a redshift of log(z) ≈ −0.5, z ≈ 0.3, and at a cluster mass of log(M/M�) ≈ 14 (compare

69



4 Constraining eROSITA Galaxy Cluster Temperatures and Redshifts

−2 −1.5 −1 −0.5 0
13

13.5

14

14.5

15

15.5

Redshift (in Log10)

M
as

s 
of

 c
lu

st
er

 (i
n 

Lo
g1

0)

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Figure 4.15: Distribution of galaxy clusters with mass and redshift as it will be detected by the eROSITA instru-

ment during its four years of all sky survey based on the mass function by Tinker et al. (2008) and on the scaling

relations by Reichert et al. (2011). The colour bar indicates the number of galaxy clusters in the individual bins

in units of log10 and the cluster mass is considered in units of log(M/M�). We assume that a minimum number

of ηmin = 50 photons is necessary to identify a cluster and effectively apply a lower mass cut to exclude low mass

galaxy groups.

Pillepich et al. 2012). For the highest cluster masses, the number of observed clusters is strongly lim-

ited at the local redshifts (Fig. 4.15), due to the small observed volume. Moreover, at the highest

redshifts we do not expect to detect any high-mass clusters according to our concordance cosmology,

which disfavours the existence of massive clusters at high redshifts. Galaxy clusters with low masses of

log(M/M�) � 14 only show small fluxes at high redshifts of log(z) � 0.3, which results in fewer than

50 photons for an exposure time of texp = 1.6 ks, and thus does not allow for a detection. Figure 4.16

presents the distribution of the observed clusters in dependence on their number of photon counts for the

all-sky survey. As a rough estimate, the currently known X-ray clusters are located in the two bins with

the highest counts. Accordingly, this graphic emphasises the large amount of so-far unknown clusters

that will be discovered by eROSITA.

To analyse the deep-exposure fields with texp = 20 ks, the sky coverage is re-defined to be fsky = 0.0034

(Merloni et al. 2012), such that the total number of observed clusters for these regions decreases to

2, 600. At the same time, the clusters are observed at more distant redshifts in these deep fields.

In convolving this number distribution of eROSITA clusters with the results obtained in Sect. 4.3.1, we

computed as a first estimate the number of clusters for which eROSITA will detect precise temperatures

and redshifts in addition to the already studied 184 eHIFLUGCS clusters (Table 4.3). For this we inte-

grate over the mass and redshift space with precise cluster properties, where we define the integration

boundaries to be centred between the last pixel within this precise parameter space and its neighbouring

pixel. In addition, we investigated the compatibility between the assumed limit of ηmin = 50 for the
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detection of a cluster and the required limit of 100 counts for the reliable analysis of the cluster spec-

trum. Even though these two limits are based on different energy bands, (0.5 − 2.0) keV and (0.3 − 8.0)

keV, respectively, all clusters, analysed in Sect. 4.3, are within the detection limit. According to these

assumptions, eROSITA is expected to obtain precise temperatures for ∼ 1, 670 clusters during its all-sky

survey if the redshift of the clusters is already known. This number of precision clusters emphasises

the importance of this instrument, because the number of clusters with precise temperatures will be in-

creased by a factor of ∼ 9 compared to eHIFLUGCS. Assuming the redshifts to be unavailable for all

clusters, the number of clusters with precise temperatures decreases to ∼ 300, because the parameter

space of precise temperatures reduces significantly (compare Fig. 4.5). For all of these 300 clusters

precise X-ray redshifts will be available as well from eROSITA data. Additionally, the simulations

predict eROSITA to obtain precise X-ray redshifts with relative uncertainties of < 10% for a total of

23, 000 clusters. This entire cluster sample can then be employed for cosmological studies where a first

estimate can already be obtained knowing only the cluster redshift and luminosity (compare Pillepich

et al. 2012). Following Table 4.3, the percentage of eROSITA clusters with precise properties increases

significantly with increasing exposure time, which is allowing us an outlook also into the successive

pointed observation phase of the mission as well. Only the redshift estimates in the deep exposure fields

are significantly limited by catastrophic failures in the spectral fit.

Even though we defined a minimum number of photons of ηmin = 50 for a galaxy cluster to be detected

by eROSITA, the number of clusters with precise properties is limited by the 100 photon counts that are

required for a reliable analysis of the cluster spectrum (Sect. 4.2.3). However, applying ηmin = 50 to

compute the number of clusters allows for a comparison of the number of clusters with precise prop-

erty values with the total number of observed clusters. If we assume a less conservative approach with
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Table 4.3: Number of clusters expected to be detected by eROSITA in total, with relative temperature uncertainties

of � 10%, when assuming the cluster redshift to be available, and with relative uncertainties of � 10% in tem-

perature and redshift for unavailable redshift. The presented numbers for the precision clusters refer to clusters

with fluxes of F < 9 × 10−12 erg/s/cm2, i.e. clusters without high quality observations already studied through

eHIFLUGCS. The values in parentheses denote the fraction of clusters with precise X-ray properties compared

with the total number of clusters for each exposure time.

simulation
texp = 1.6 ks, texp = 20 ks,

fsky = 0.658 fsky = 0.0034

total 113, 400 2, 600

known z precise T 1, 670 (∼ 1.5%) 280 (∼ 11%)

unknown z
precise T 300 (∼ 0.3%) 140 (∼ 5%)

precise z 23, 000 (∼ 18%) 340 (∼ 13%)

ηmin = 100, the total number of observed clusters in the all-sky survey decreases to 60, 100, whereas

the number of clusters with precise properties remains the same. With this assumption, the percent-

ages stated in Table 4.3 increase significantly, to ∼ 2.8% for clusters with known redshift in the all-sky

survey, for example.

4.5 Discussion

4.5.1 Dependence of the Relative Uncertainties

The fit of the model emission to the cluster spectrum is generally guided by the observed spectral lines,

the over-all shape of the spectrum, and by the position of the exponential cut-off at high energies. For

clusters with temperatures of kBT � 2.5 keV, the fit is dominated by the line emission, because most of

the emitted photons are observed in this spectral characteristic. With increasing cluster temperature, the

spectral shape and the cut-off become more important for the fit.

In Sect. 4.3.1 as well as in Figs. 4.3 through 4.8 we see a general increase of the relative uncertainties

with increasing redshift and with decreasing cluster mass. This dependence is explained by the follow-

ing aspects.

For a constant cluster luminosity, the photon flux strongly declines with increasing redshift as F ∝ 1/D2
L

with the luminosity distance DL. This reduction is alliviated, but not fully compensated for, by the in-

crease in luminosity with rising redshift, if we consider clusters with a constant mass (Eq. 4.2). Thus,

the uncertainty of the fit parameters increases with increasing redshift. However, clusters with increas-

ing total mass yield a strong increase in their luminosities, which improves the fit results despite the

higher temperatures of these clusters. These increased temperatures result in a depletion of the emis-

sion lines and in a shift of the position of the exponential cut-off to higher energies and thus out of the

eROSITA effective area.

The parameter space of clusters with precise properties extends to larger distances for the increased

exposure time of texp = 20 ks as more photon counts are observed from the individual clusters and the

statistical scatter in the spectrum is reduced. However, as already expressed in Sect. 4.3.1, the relative

uncertainties are not only depending on the number of detected source photons, but also on the cluster

characteristics. These characteristics include in particular the strength of emission lines and the position

of the high-energy cut-off compared with the eROSITA effective area.
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4.5.2 Remarks on the Relative Uncertainties

According to our simulation results, we expect eROSITA to detect X-ray redshifts for ∼ 23, 000 clusters,

which appears as an optimistic number at first glance. To test the reliability of these results, we anal-

ysed the relative redshift uncertainties for the two eHIFLUGCS clusters RXCJ 1504 and A2204, kindly

provided by G. Schellenberger. Both clusters show high redshifts of z = 0.215, log(z) = −0.67, and

z = 0.15, log(z) = −0.82, with masses of M = 1015 M� and M = 7 × 1014 M�, log(M/M�) = 14.85,

respectively. To allow for a comparison, the exposure times of the two Chandra observations were de-

creased to texp < 2 ks and only the temperature, redshift, and normalisation of the spectrum were left free

to vary during the fit. With this approach RXCJ 1504 and A2204 show a relative redshift uncertainty of

Δz/(1 + z) ≈ 0.04 and of Δz/(1 + z) ≈ 0.07, respectively. Furthermore the best-fit redshifts represent

the true redshifts very well, with a deviation of only a few percent in the case of RXCJ 1504 and with

no deviation for A2204. This result agrees well with the precise redshift estimates for clusters with

large distances obtained in our simulations (compare Fig. 4.7). Furthermore, the analysed eHIFLUGCS
clusters are located in a parameter range in which our simulations predict a large fraction of catastrophic

failures (compare Fig. 4.7). According to this, the above analysis of observed data illustrates the con-

servative approach of our simulations to re-obtain the cluster properties.

Since the estimation of ICM metallicities commonly presents large uncertainties when analysing ob-

served data (Balestra et al. 2007; Werner et al. 2008; Baldi et al. 2012), we quantified the effect of an

incorrectly assumed metallicity on our simulations. As the metallicity presents itself especially in the

strength of the emission lines, we only expect the metallicity to influence our results for clusters with

kBT � 2.5 keV. To test this influence, we repeated our simulation for a choice of clusters with different

masses and redshifts, where the cluster temperature meets the above criterion and the redshift is as-

sumed to be known. During the fitting procedure, the metallicity is wrongly fixed to the extreme values

of either A = 0.2 A� or A = 0.4 A� instead of the true value A = 0.3 A� (Maughan et al. 2008). Even

for these strong deviations in the metallicities, the relative temperature uncertainties only display an

increase for the more distant clusters of log(z) � 1.1, z � 0.1, by a few percent. However, the accuracy

of the temperature fit is unaffected by the incorrectly fixed metallicity.

Since the metallicity of a cluster is not only definded by the value of A, but also by the applied abun-

dance model, we repeated our simulation for texp = 1.6 ks and a sample of clusters with the more recent

abundance model by Asplund et al. (2009). Assuming the redshift of the tested clusters to be known, we

obtained differences in the relative temperature uncertainties of ∼ 5% and differences of only a few per-

cent for the bias in the temperature estimates. These differences do not show an apparent dependence on

the simulated cluster properties. In summary, we conclude that neither an incorrectly fixed metallicity

nor a change in the abundance model significantly alters the simulated parameter spaces or the numbers

of clusters with precise properties.

A possible evolution of the metallicity with redshift could not be definitely quantified in the literature

so far, and we thus applied a constant metallicity in our simulations (compare Sect. 4.2.1). Assuming a

metallicity evolution would impact our simulation results for the higher redshifts because the metallicity

might decrease to half its value at redshifts of z ≈ 1 (e.g. Maughan et al. 2008). Since redshift estimates

will be possible up to z ≈ 0.3 (compare Fig. 4.7) in the all-sky survey, we quantified the influence

of such an evolution on the redshift analysis. In an extreme scenario of A = 0.2 A� for clusters at

z ≈ 0.3, the relative redshift uncertainties increase to � 12%. This results in a shift of the contour line

of Δz/(1 + z) < 10% to lower redshifts by one pixel. However, the tested scenario requires an strong

metallicity evolution with an already strong decrease in metallicity over a small redshift range, which is

not anticipated in the literature (e.g. Balestra et al. 2007; Maughan et al. 2008).

Despite our realistic treatment of the background and its statistical scatter (compare Sect. 4.2.2), system-
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atic errors in the anaysis of future observed data might arise from an incorrectly constrained background

model. To investigate its effect on our results, we reran the simulations for a set of parameters of typi-

cally observed eROSITA cluster masses of M ≈ 1014 M� up to M ≈ 1014.8 M� with relative temperature

uncertainties of ∼ 10%. In these simulations we then assumed a background model with a systematic

error of ±10%. This is a conservative approach given that for Chandra, for instance, uncertainties of

∼ 3% are quoted (Markevitch et al. 2003), such that we expect a lower value for eROSITA. For clusters

with precise parameter estimates and low temperatures of kT � 3 keV (M � 1014 M�), the difference in

the newly simulated parameter bias and in the relative uncertainty is only a few percent when compared

with the simulation without applying any background uncertainty. These differences slightly increase to

∼ 10% for clusters with precise parameters, but intermediate temperatures, corresponding to M ≈ 1014.8

M�. This is true for the all-sky survey as well as for the deep exposures. According to this, introducing

a possible background error in our simulations does not influence the presented parameter space of clus-

ters with precise properties. Moreover, the temperature bias still remains negligible for clusters within

this parameter space, apart from the exclusions already stated in Sect. 4.3.2 for clusters observed in the

deep exposure fields.

4.5.3 Occurrence of Catastrophic Failures

As described in Sect. 4.3.1, catastrophic failures particularly occur for spectral fits with unknown cluster

redshifts, especially for the very low mass and the very high mass clusters (e.g. Fig 4.5). This finding is

generally explained by the degeneracy between the redshift and the temperature for these cluster masses.

This degeneracy in dependence on the cluster mass and temperature is illustrated in Fig. 4.17, where we

plot the distribution of temperature and redshift best-fit values for three different parameter sets, each

with roughly the same number of counts. The low- and the high-mass parameter set is rejected because

of large numbers of catastrophic failures, and both sets show a strong correlation between their best-fit

redshifts and temperatures. The stripe features, especially visible in the top image, are the result of the

steppar-fit and are addressed in Sect. 4.5.4.

This degeneracy and the simulation results for the clusters with unknown redshift are explained by

several spectral charactersitics that interact with one another. We find two possible examples to explain

the simulation results in the strength of the emission lines, especially in the strength of the Fe-K line,

and in the detectability of the exponential cut-off.

Low mass clusters only show small numbers of detected photons and thus a large statistical scatter in

their spectra. Additionally, the individual emission lines are not resolved (compare Fig. 4.1) and the

observed emission line complexes around energies of 1 keV are shifted to higher energies with increas-

ing temperatures. This latter characteristic leads to a degeneracy between the imprint of the redshift and

the temperature on the spectrum. Furthermore, due to the scatter in the emission lines at the energies of

the exponential cut-off, the exact energy of this spectral feature is not detectable, which complicates the

spectral fits. Considering these two aspects, we explain the large fraction of catastrophic failures for the

fit to spectra of clusters with low masses (compare e.g., Fig. 4.5). Only for higher cluster temperatures

of kBT � 2.5 keV and thus with fading emission lines, this degeneracy is partially lifted. For these

clusters, the spectral fit is mainly guided by the position of the exponential cut-off, which is no longer

obscured by the emission lines, and by the Fe-K line, which increases in strength with increasing cluster

temperatures. However, when we consider clusters with even higher masses of M � 1015 M� as well as

higher redshifts, which of the two competing effects, higher temperatures or higher redshifts, dominates

the shift of the exponential cut-off?

To answer this question, we investigated the position of the exponential cut-off in dependence on the

cluster mass and redshift for clusters with roughly the same number of source counts. As displayed in
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Figure 4.17: Distribution of the best-fit temperatures and redshifts for three different clusters in the deep exposure

fields, each with roughly 5, 000 counts, but with different cluster masses and temperatures. From top to bottom:

log(M/M�) = 13.75, 14.35, 14.8. The horizontal and vertical lines indicate the input redshifts and temperatures,

respectively. The low and high mass parameter set is rejected from the analysis due to large numbers of catas-

trophic failures. For these cluster masses, the correlation between the fit values of the temperature and the redshift

emphasises the degeneracy between these two properties.
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Figs. 4.3 - 4.8, the contour lines of constant counts can be approximated as linear functions with a slope

of m = 1. Moving up along this contour line, both cluster mass and redshift increase by a factor of

Δ = 100.15 = 1.41 with every pixel (compare Sect. 4.2.1). According to the emissivity of the thermal

bremsstrahlung

ε
f f
ν ∝ T−1/2 · e− hν

kBT , (4.11)

the position E of the exponential cut-off, where εffν ∝ 1/e, is proportional to the cluster temperature.

When also considering the cluster redshift, the position of the cut-off shows the relation

E ∝ T
(1 + z)

, (4.12)

such that the ratio between E1 and E2 for two neighbouring pixels along the line of constant photon

counts derives as
E2

E1
=

T2

T1
· (1 + z1)

(1 + z2)
=

T2

T1
· (1 + z1)

(1 + z1 · Δ)
, (4.13)

with z2 > z1. According to equation 4.1, the ratio between the two temperatures is defined by the M −T
scaling relation

T2

T1
=

(
M2

M1

)0.62

·
(
Ωm · (1 + z2)3 + ΩΛ

Ωm · (1 + z1)3 + ΩΛ

)0.32

(4.14)

= Δ0.62 ·
(
Ωm · (1 + z1 · Δ)3 + ΩΛ

Ωm · (1 + z1)3 + ΩΛ

)0.32

. (4.15)

Combining expressions 4.13 and 4.15, we obtain the final ratio of the position of the exponential cut-offs

along the line of constant photon counts

E2

E1
= Δ0.62 ·

(
Ωm · (1 + z1 · Δ)3 + ΩΛ

Ωm · (1 + z1)3 + ΩΛ

)0.32

· (1 + z1)

(1 + z1 · Δ)
. (4.16)

A graphical analysis of this function indicates a ratio of E2

E1
> 1 for our choice of Δ = 1.41 and for

the entire simulated redshift range. This result emphasises the shift of the exponential cut-off to higher

energies for clusters with increased masses and redshifts along the lines of constant photon counts. In

fact, for all Δ > 1 the result of E2

E1
> 1 holds true. For clusters with masses of log(M/M�) � 15 for which

catastrophic failures occur in the simulation with unavailable redshift the exponential cut-off is located

at energies of E � 8 keV and thus out of the spectral fitting range. The difficulty in the spectral fit that

thus arises is additionally appended by the decreasing S/N-ratio for clusters with the same number of

source photons, but with increasing redshifts. This evolution of the S/N-ratio with increasing redshift is

explained by the increasing extent of the cluster, from e.g. R500 ≈ 5.7 Mpc for a cluster with ∼ 1000

counts at z ≈ 0.08 to R500 ≈ 8.8 Mpc at z ≈ 0.45, and the consequently rising background emission.

4.5.4 Influence of the Analysis Strategy

To test the reliability of our predictions, we analysed the influence of the simulation setup on our results.

For several parameter sets we reran the simulation with 500, 700 and 1000 repetitions and compared

the outcome to the results for 300 repetitions. The changes in the biases and in the relative uncertainties

for temperature and redshift are only a few percent, and these deviations become negligible for clusters

with relative uncertainties of � 0.1. An equivalent development is observed when altering the number
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of steps within the steppar-fit. Even though with varying numbers of fitting steps the results show

deviations of up to 20% for parameter sets with high relative uncertainties, the results for clusters with

high precise properties are similar. We therefore conclude that the parameter space of cosmologically

interesting clusters with relative uncertainties of � 0.1 in their properties is independent of the number

of repetitions and of the number of steps in the more dimensional steppar-fit. For these clusters al-

ready 300 repetitions for the realisation of each parameter set yield a proper statistical, Gaussian-like

distribution of the fit results.

However, a small bias might arise in the steppar-fit with variable redshift for clusters with local red-

shifts of roughly z � 0.1. This bias is observed for clusters with unknown redshift and with low masses

of log(M/M�) � 14 and for intermediate mass clusters in the deep exposure fields (compare Figs. 4.7

and 4.8). For these clusters statistical artefacts might arise (compare Fig. 4.17 Top) since too little

information is available for the fit. We ran a thorough investigation for the fitting statistics of these

clusters and conclude that cluster with artefact features are generally rejected because of large numbers

of catastrophic failures. Even though, these clusters show a strong deviation between their input redshift

and the starting value for the fit with z = 0.3, the fit is not improved by an adaptation of the starting

value.

Generally, the simulated precisions and accuracies are not necessarily influenced by the starting values

of the spectral fit, so that we applied commonly observed values of kBT = 2 keV and z = 0.3 for the

start of the fit. Only in the simulations with unknown cluster redshift, the number of rejected data sets

for both intermediate- and high-mass clusters (e.g. Fig. 4.8) at their highest simulated redshifts can be

improved if we choose values close to the input parameter values for the start of the fit. In this case,

a strong decrease in the biases and in the relative uncertainties of up to � 25% of the former value is

observed. This results in fewer catastrophic failures in the mentioned mass ranges, and for the deep

exposures the parameter space of clusters with high-precision properties increases to higher redshifts.

However, with this adaptation of the fitting strategy, the percentage of precision clusters changes only

for the deep-exposure fields and only by < 1%. According to this, our setup, which does not require any

knowledge on the input properties, presents a reliable estimate of the number of detected clusters with

precise characteristics.

To improve the analysis of future eROSITA clusters with unavailable redshift, we suggest to refit the

spectrum for different starting redshifts, where the starting value of the temperature is adapted to the

redshift via an LX − T scaling relation (compare Lloyd-Davies et al. 2011). The fit that returns the

smallest parameter uncertainties is expected to also record the highest parameter accuracy.

Finally, we also tested the influence of the definition for rejected pixels on our results, since we required

a minimum of 80% of the repetitions to yield consistent and non-catastrophic data. This percentage

emphasises that more than 20% of unreliable fit results is unacceptable. For an increased minimum per-

centage of accepted data to 90%, the simulation results for texp = 1.6 ks and clusters with known redshift

remain unchanged. Within the other simulations, more parameter sets with especially high redshifts are

rejected, in particular, in the simulations with unknown redshift. However, this development reduces the

parameter space of clusters with known redshift and relative temperature uncertainties of � 10% only

insignificantly.

4.5.5 Remarks on the Cosmological Interpretation

Our simulations present an overview of the number of clusters for which eROSITA will be able to ob-

tain precise data. However, the future data reduction very likely requires individual models for each

observed cluster, which include individual background emissions, for instance, and might thus slightly

alter the presented numbers of clusters. In the previous sections of our discussion, we already concluded
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these numbers to be only insignificantly influenced by an incorrectly assumed metallicity of the cluster

and by the background emission. For a possible evolution of the metallicity with redshift, however, the

number of high- and intermediate-redshift clusters with precise properties might decrease depending on

the scale of the evolution.

Additionally, the emission of a possible central AGN in clusters needs to be considered in the analysis

of observed data, especially for deep exposures. In these observations, bright central AGN can impede

the extraction of cluster spectra and even the detection of the clusters as extended source. Currently,

investigations on the efficiency of different source-detection algorithms are conducted. Meanwhile, we

reconsidered the simulation results for the deep-exposure fields, which indicated the temperatures to

be available with high precision up to the highest redshifts for high mass clusters (Fig. 4.4). Taking

into account the above mentioned AGN confusion, a detection of precise temperatures up to a redshift

limit of z ≈ 1 presents a more reliable and conservative estimate for those high-mass clusters. With this

redshift limit, however, the total number of precise clusters in the deep-exposure fields remains the same

since only very few clusters with the highest masses of M � 1015 M� are found at z � 1.0 (compare

Fig. 4.15), in particular when limited to the one hundred square degrees for the deep-exposure fields.

The estimation of precise redshifts in these fields is already limited to log(z) � −0.35, z � 0.45 because

of catastrophic failures (compare Fig. 4.6) and is thus not influenced by AGN confusion.

Recent simulations have shown the possibility of cosmological estimates with only luminosity and

redshift information of the galaxy clusters available (Pillepich et al. 2012). Redshift information on

eROSITA clusters will be obtained through optical follow-up observations shortly after the launch of

the mission. This work now discusses the number of clusters for which precise temperatures will be

observed. In an upcoming work we will qualitatively test the improvement in the cosmological un-

certainties with the help of these additional information. The cosmological analysis of cluster data is

especially sensitive to the information coming from massive clusters. Our simulations now indicate that

at the beginning of the eROSITA survey precise information on massive clusters are rather difficult to

obtain (compare Sects. 4.3.1 & 4.5.3). X-ray follow-up observations with eROSITA and with other

instruments, such as XMM or Astro-H, will determine the surface brightness and the temperatures of

massive clusters soon after this. These information will then set tighter constraints on the cosmology,

even though not for all of the massive clusters temperature estimates will be available because ofthe

large numbers of observed clusters.

4.5.6 Comparison between Different Scaling Relations

We compared five commonly applied scaling relations (Maughan 2007; Pratt et al. 2009; Vikhlinin et al.

2009a; Mantz et al. 2010a; Reichert et al. 2011) with one another and analysed the effects of a change

in the scaling relation on the results of our simulations. For a recent review on cluster scaling relations

see Giodini et al. (2013).

The five different M − T relations deviate from one another especially for the smallest cluster masses

of log(M/M�) � 14 with an increasing inconsistency for increasing redshifts. The scaling relation

reported by Mantz et al. (2010a) shows the strongest increase of the temperature with cluster mass for

a fixed redshift, and the relation given by Maughan (2007) presents the shallowest slope. The relation

by Reichert et al. (2011) approximates an average value for the slope. The luminosities computed by

means of the different considered scaling relations for a fixed cluster mass are very similar at local

redshifts (Fig. 4.18). For a cluster mass of log(M/M�) = 14 they start to deviate from one another for

log z � −0.5, z � 0.3, where this deviation starts at lower redshifts for declining cluster masses. Within

this comparison, the M − LX relation reported by Reichert et al. (2011) exhibits the most moderate
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Figure 4.18: Luminosity in dependence on the cluster redshift for different scaling relations and a cluster mass of

M ≈ 5 × 1014 M�. The luminosities are computed within the energy range of (0.1 − 2.4) keV for all relations.

evolution of the luminosity with redshift. The shallow development of the M − LX relation with redshift

given by Reichert et al. (2011) favours the application of this scaling relation because distant clusters

with z � 0.3 show lower luminosities than the other scaling relations and thus fewer source counts. This

characteristic is especially important for simulating the deep-exposure fields, in case the cluster redshift

is available. In the remaining three simulations, the parameter space of precise cluster porperties is

mainly located at lower redshifts for which all considered scaling relations are similar.

The galaxy cluster sample on which Reichert et al. (2011) based their findings covers the largest mass

and redshift range with M = (5 × 1013 − 3 × 1015) M� and z � 1.46, such that we only required a

small extrapolation of this scaling relation to cover our simulated mass and redshift range. According

to this aspect and to the evolution of the relations, the scaling relations applied by Reichert et al. (2011)

describe the most conservative approach in terms of characterising high-z clusters.

The deviations in the individual scaling relations also result in differences in the distribution of clusters

with mass and redshift (Appendix C.2). For example, because of the slightly lower luminosity in the

scaling relation reported by Vikhlinin et al. (2009a) at the local redshifts, the total number of clusters

decreases to ∼ 103, 700 compared to ∼ 113, 400 clusters for the relations given by Reichert et al.

(2011) when applying the same cosmology for both relations. However, the number of clusters with

precise properties from eROSITA data is similar for both scaling relations with a deviation of < 2%.

For example, for the scaling relation given by Vikhlinin et al. (2009a), this deviation results in 1, 700

clusters with precise temperatures and already known redshifts for the all sky survey compared to the

1, 670 clusters for the relation by Reichert et al. (2011).
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4.5.7 Comparison with Other Works

Similar to the findings by Lloyd-Davies et al. (2011), Planck Collaboration et al. (2011) and Yu et al.

(2011), among others, our simulations depicted cluster X-ray spectra as sensitive estimators of the red-

shift of the object. However, our simulations forecast the determination of cluster redshifts for the

eROSITA instrument and for exposure times as short as texp = 1.6 ks for the first time. Our findings for

the eROSITA deep fields are similar to those reported by the Planck Collaboration et al. (2011), who

derived precise redshifts up to distances of z = 0.54 for texp = 10 ks with the XMM-Newton instrument,

when not correcting for the underestimation of the uncertainties. In addition, like these publications, our

work shows a decrease of the fit accuracy for the analysis of cluster spectra with unavailable redshift.

We emphasise that the precision and accuracy of the cluster properties strongly depend upon the values

of these cluster properties themselves and not only on the number of detected photons, equivalently to

the analysis by Yu et al. (2011). However, in contrast to their findings, our simulations predict X-ray

redshifts to be available also for clusters with fewer than 1, 000 photon counts, if these clusters show

temperatures of kBT � 5.5 keV (Figs. 4.7 & 4.8). This aspect is explained by the difference in the in-

strumental spectral responses between eROSITA and Chandra, on whose data Yu et al. (2011) base their

analysis. For two clusters with the same total number of detected photons, eROSITA will show more

photons in the soft-energy band, which improves the fitting statistics especially for the low-temperature

clusters above.

Our expected number of ∼ 113, 400 eROSITA clusters is increased by ∼ 15% compared to the analysis

by Pillepich et al. (2012), because this work applied the scaling relation by Vikhlinin et al. (2009a)

and the cosmological model of the WMAP5 results (Komatsu et al. 2009, compare Sect. 4.5.6 & C.2)

instead of the scaling relation by Reichert et al. (2011) used in our calculations. However, if we had

based the computation on the same setup as Pillepich et al. (2012), we would have obtained a negligible

deviation of only 1% from their results, which emphasises on the reliability of our code.

4.6 Summary and Conclusions

The upcoming eROSITA instrument presents a powerful tool for testing our current cosmological model

and especially for studying the nature of dark energy by investigating the distribution of galaxy clusters

with mass and redshift. Moreover, it will allow studying cluster physics, for example in terms of scal-

ing relations, in unprecedented detail. With the simulations we presented, we predict the accuracy and

the precision with which the eROSITA instrument will be able to determine the cluster temperature and

redshift, and we introduce the number of clusters for which these properties will be available.

The highest precision and accuracy of the temperature and redshift were obtained for clusters at the most

local redshifts. In general, the precision and the accuracy of the cluster properties did not only show a

dependence on the number of detected photons, but also on the cluster properties themselves, especially

on the redshift. For the average exposure time during the eROSITA all-sky survey, high-precision tem-

peratures will be available for clusters as distant as z � 0.16 and the instrument will allow for precise

X-ray redshifts up to z � 0.45, where for the very local clusters the uncertainty in the redshift is even

similar to optical photometric estimates. However, for the simulation with unknown cluster redshifts,

catastrophic failures occurred within the spectral fit and limited the parameter space of high-precision

properties, especially for the lowest and the highest masses log(M/M�) � 14 and log(M/M�) � 15.

These failures arise from the redshift as an additional free parameter in the fit and because of the thus

resulting degeneracy between redshift and temperature. As eROSITA cluster spectra prove as sensitive

estimators of the redshift for local clusters with intermediate masses, optical follow-up observations are

most effective if they first cover clusters without reliable X-ray redshifts, and we predict that these will
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preferentially be found above z ≈ 0.45. Additionally, these follow-up observations will eventually allow

for more precise redshift estimates also for clusters at lower redshifts.

Within the eROSITA deep-exposure fields, X-ray redshift and temperature information will be more

strongly limited by catastrophic failures than for the lower exposure time. Because of this, precise X-

ray redshifts are only observed to the same maximum distance as for the all sky survey. In this aspect,

our simulations followed the conservative approach of no constraints on the starting values of the fit.

However, the number of catastrophic failures for the spectral fit of intermediate- and high-mass clusters

can be reduced if additional information on the starting values, for example through coupling of the

fit parameters by the LX − T relation or with the help of first redshift estimates from shallow optical

surveys, are available.

If the redshift of the clusters in the deep-exposure fields is known, the percentage of clusters with pre-

cise temperatures still increases significantly to the highest redshifts. Even though these deep fields only

cover a small sky fraction, the findings for these regions shed light on the expectations for the subse-

quent pointed-observation phase.

The entire parameter space of clusters with precise properties displays great parameter accuracies, such

that for these clusters no parameter bias needs to be corrected for. Only for the long exposure times

of texp = 20 ks the bias in the temperature needs to be considered for clusters with available redshifts

at distances of z � 0.32. We additionally introduced correction functions that need to be applied to

spectral fits of clusters with a bias in their best-fit properties. To analyse observed eROSITA data, these

correction functions should be applied iteratively. During this procedure the analysis of spectral cluster

data yields preliminary values of the cluster temperature, redshift and luminosity from which the total

mass can be estimated. Implementing the redshift and the total mass, the correction functions will return

a revised cluster temperature and redshift, which sequently describe a corrected total mass. These steps

should be repeated until negligible changes of the properties are obtained with each iteration, and the

final values can be adopted as best estimates.

Through our simulations, we also investigated the deviation in the uncertainties between the results by

the xspec error-command and a statistical distribution. These corrections of the uncertainties need to

be considered for the data analysis of clusters with unknown redshift independently of the precision in

the cluster properties because xspec underestimates the statistical uncertainty.

In convolving the galaxy cluster mass function and scaling relations with the eROSITA response, we

obtained the distribution of clusters with mass and photon counts as it will be observed by the instru-

ment. Applying the scaling relations reported by Reichert et al. (2011), we expect eROSITA to detect

∼ 113, 400 clusters of galaxies in total with a minimum photon number of ηmin = 50. Out of this total

number of clusters, eROSITA will provide precise temperatures with ΔT/〈Tfit〉 � 10% for ∼ 1, 670 new

clusters in the all-sky survey, which is equivalent to a percentage of ∼ 1.5% of the total amount of de-

tected clusters. This eROSITA sample, consisting mainly of so-far unstudied clusters, will increase the

current catalogue of clusters with precise temperatures by a factor of 5− 10 depending on the refered-to

catalogue.

Large samples of precise and accurate cluster data as will be available from the eROSITA instrument are

essential for computing tight constraints on the cosmological parameters. Because the current simula-

tions on the constraints that eROSITA will implement on the cosmology do not yet include information

on the cluster temperature yet (Pillepich et al. 2012), we aim to improve these constraints through our

findings (compare Clerc et al. 2012) and will predict these improvements in our future work.
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CHAPTER 5

Investigating Systematic Biases in the eROSITA
Event Files of Galaxy Cluster Observations and
their Analysis

The considerations within the following chapter present an extension to the work in chapter 4, where we

now emphasise on additional systematics, which might arise in the observation and analysis of eROSITA
data. The tasks and aims of this project, as well as the approach for applying the simulation and the

analysis software were designed by myself. Many of the results, however, were obtained by A. Wenzel

in his bachelor thesis "Simulation and Analysis of eROSITA Galaxy Cluster Observations" (September

2014), with my supervision. Those results will be cited as Wenzel (2014) and are re-interpreted and

re-discussed in the following chapter. Additionally, this work was based on intensive discussions with

the developers of the applied software tools within the German eROSITA collaboration, especially with

C. Schmid, T. Brand, H. Brunner, and T. Dwelly. Sect. 5.1 summarises the main theoretical aspects

necessary for the study of this project, where a more detailed overview of the theoretical background is

given in Sects. 2.7.2, 2.8 & 2.9.

Abstract

For the correct and robust interpretation of observational results, it is essential to understand and quan-

tify the occurring systematics in the observation of the data as well as in its reduction. This aspect is

of significant importance, especially for the study of precision cosmology, which will be performed e.g.

by the up-coming eROSITA instrument. The main science driver of this telescope is to investigate the

nature of dark energy by tracing the distribution of galaxy clusters in the Universe. After the observa-

tional power of galaxy cluster characteristics by this instrument has been analysed (Borm et al. 2014,

comp. also chapter 4), we now emphasise on the possible bias in the cluster characteristics arising from

systematics in the observation of the data and in the data reduction software.

For a set of galaxy clusters with different cluster masses and redshifts, eROSITA event files are simu-

lated, based on the software SIXTE (Simulation of X-ray Telescopes) (Schmid, C. 2008; Schmid 2012).

These event files are then reduced by means of the future eROSITA-tools within eSASS (extended Sci-
ence Analysis Software System) to extract the cluster spectra. Thereafter, we perform a spectral analysis

to re-obtain the cluster temperatures and compare the results to those presented in Borm et al. (2014)

(comp. also chapter 4) to quantify the influence of these two software programmes on the measured
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temperature precision and accuracy. At the same time, this approach allows for a more realistic treat-

ment of the extracted source as well as of the background spectra.

We find that precise temperature information with relative uncertainties of ΔT/〈Tfit〉 � 10% will be

available for galaxy clusters up to redshifts of z ≈ 0.06, where the applied software influences the study

of precise cluster temperatures only insignificantly. However, a bias between the input and the best-fit

temperatures is estimated, which requires a correction also in the data analysis for precise clusters.

In summary, this project allows us to quantify several systematic uncertainties in the data simulation and

reduction tools for eROSITA and to improve these tasks to decrease the bias in the galaxy cluster charac-

teristics. Though, a progress in the temperature accuracy still needs to be achieved, the current eROSITA
analysis tools already yield promising results and underline the instrument’s potential for cosmological

studies.

5.1 Introduction

Within the last decades, a great improvement in precision cosmology could be accomplished by various

cosmological probes, including galaxy clusters (e.g. Borgani & Guzzo 2001; Voit 2005; Vikhlinin et al.

2009b; Mantz et al. 2010b; Allen et al. 2011). As most massive virialised objects in the Universe,

galaxy clusters trace the large scale structure (LSS) of the distribution of matter and thus the evolution

of the Universe as a whole. The future X-ray instrument eROSITA will exploit this approach to study

cosmology by observing a large sample of ∼ 100, 000 clusters of galaxies (Pillepich et al. 2012; Merloni

et al. 2012). However, progress in the cosmological constraints is not only based on more powerful

instruments and on larger data samples, but also on an advanced understanding of the observed data as

well as of the systematics in the analysis.

The most important cluster characteristics for cosmological estimates are the cluster mass and the cluster

redshift. The latter will be available from optical spectroscopic and photometric follow-up observations

for almost the entire eROSITA cluster catalogue (e.g. Ebeling et al. 2013; de Jong et al. 2014; Crocce

et al. 2015; Salvato 2015). Cluster masses, on the other hand, are indirectly accessible through more

directly observed cluster properties. In X-rays, these include e.g. the luminosity and the temperature

of the intra-cluster medium (ICM) (e.g. Sarazin 1986; Vikhlinin et al. 2009a), which are both estimated

based on the cluster spectrum (comp. Sect. 2.7.2). Applying galaxy cluster scaling relations, the

measured luminosity (M − LX relation) and ICM temperature (M − TX relation) then yield the required

cluster mass in combination with the redshift (e.g. Vikhlinin et al. 2009a; Pratt et al. 2009; Mantz et al.

2010a; Reichert et al. 2011; Giodini et al. 2013).

The main science driver of the eROSITA-instrument is to study cosmology and especially the equation

of state of dark energy with the help of galaxy clusters (Sect. 2.9). The instrument is scheduled for

launch in early 2017 as a joint German-Russian mission. During its four years of all-sky surveys, the

telescope will observe ∼ 100, 000 clusters of galaxies with masses above M � 5 · 1013 M�/h and with

at least 50 detected photon counts in the energy range between (0.5-2.0) keV (Pillepich et al. 2012).

Based on this large catalogue and assuming only the cluster luminosities and redshifts to be available,

we expect constraints on the nature of dark energy of Δw0 ≈ 0.03 (for wa = 0) and Δwa ≈ 0.20 for a

dark energy evolution as wDE = w0 + wa/(1 + z) (Merloni et al. 2012, Pillepich et al., in prep.). Current

surveys and data samples, e.g. from joint Planck cosmic microwave background, weak lensing, baryonic

acoustic oscillation, and Hubble parameter measurements, yield weaker constraints on the dark energy

of Δw0 =
+0.075
−0.080

(Planck Collaboration et al. 2015c).

As the M − TX scaling relation is showing a smaller intrinsic scatter than the M − LX relation in X-rays,

additional cluster temperature information is expected to allow for tighter cosmological constraints (e.g.
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Vikhlinin et al. 2009a; Mantz et al. 2010a; Allen et al. 2011; Clerc et al. 2012; Giodini et al. 2013). In

a previous project, we estimated that precise and accurate ICM temperatures with relative uncertainties

of ΔT/〈Tfit〉 � 10% will be available for a total of ∼ 2, 000 eROSITA galaxy clusters (Borm et al. 2014,

comp. also chapter 4), including the eHIFLUGCS catalogue (Reiprich 2012) and assuming known

redshifts for the clusters. Therefore, this new instrument will increase the current cluster samples with

precise temperatures by a factor of 5 − 10, depending on the referred-to catalogue. However, this

computation focused on the analysis of available cluster spectra, whereas additional systematics might

arise from the observations of the data themselves or from the extraction of the spectra from the initial

raw data. Accordingly, the best possible precision and accuracy in the cosmological parameters is

amongst others also dependent on the calibration and systematics of the data analysis.

To reduce these biases in the instrumental specific eROSITA software for extracting and analysing the

spectra or for the observation of the raw data itself, we thoroughly inspected the corresponding data

reduction steps. The observed raw data is stored in event files, which list the detected photons, including

their coordinates of origin and their energy information. As these files are not available yet for the

eROSITA-instrument, they were simulated for galaxy clusters with different masses and redshifts by

means of the software SIXTE (Simulation of X-ray Telescopes) (Schmid, C. 2008; Schmid 2012). This

software allows the creation of event files for various X-ray telescopes based on their instrumental

characteristics, as e.g. the point-spread function and the energy resolution, the pattern distribution

and the distinction between pointed and survey mode observations. Based on a generic Monte Carlo

simulation, the expected observed photons are then distributed spatially and energetically. Applying the

future eROSITA analysis software eSASS (extended Science Analysis Software System), source spectra

were then extracted from these event files and were analysed to re-obtain the cluster characteristics.

Following this methodology, the systematics in the analysis software were investigated by comparing

the values of the best-fit cluster properties to the input values as well as to the results of the spectra-only

analysis by Borm et al. (2014).

The outline of this chapter is as follows: Sects. 5.2 & 5.3 describe the individual steps to generate

eROSITA event files, to extract the included cluster spectra, and to subsequently analyse these spectra.

The following two sections present the analysis results as well as an investigation of the systematic

uncertainties in the applied software tasks. Thereafter Sect. 5.6 discusses the obtained results and

possible origins of the observed systematics. Finally, Sect. 5.7 summarises the simulation approach, its

results as well as the software systematics and suggests further investigation procedures.

Throughout this work, we applied the scaling relations by Reichert et al. (2011), and a cosmology of

Ωm = 0.3,ΩΛ = 0.7, and H0 = 100·h km/s/Mpc2 with h = 0.7 for consistency with the work by Reichert

et al. (2011). The spectra, which are defined during the simulation procedures, are based on the solar

metallicity tables by Anders & Grevesse (1989) and the described cluster masses and radial extents are

given as M500 and r500, respectively, in comparison to the critical density ρcrit,z = 3H2(z)/(8πG).

5.2 Simulation of Event Files

5.2.1 Outline of the Simulation and Analysis Strategy

The general concepts of this work include the investigation of possible systematics, which might arise

from a more realistic analysis procedure in general or from the two tools to simulate eROSITA survey

event files and to extract source spectra from these files - the tools SIXTE and eSASS. Whereas SIXTE is

developed to support the simulation of various X-ray instruments, eSASS is officially established for the

reduction of the future eROSITA data under the responsibility of H. Brunner and the German eROSITA-

Consortium. However, we focused on the application of only the SRCTOOL-task within eSASS for
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Table 5.1: Summary of the details for simulating the event files and analysing the extracted spectra. The horizontal

lines distinguish between the different steps in this computation.

Set-up Input

Observation mode Survey

Event file emission galaxy cluster + X-ray background + particle background

Instrumental response
"erosita_iv_1telonaxis_ff.rsp" + vignetting

(event file simulation)

Event file size 3.6 × 3.6 deg2

Exposure time texp ≈ 1.6 ks

Energy range (0.3 − 8.0) keV

Instrumental response
"erosita_iv_1telonaxis_ff.rsp"+vignetting

(spectral extraction)

Instrumental response
"erosita_iv_7telfov_ff.rsp"

(spectral analysis)

the extraction of the source spectra. For both tools SIXTE and SRCTOOL, the versions of May 2014

were applied. The spectral analysis was managed by the HEASARC (High Energy Astrophysics Science
Archive Research Center) tool xspec (Arnaud 1996), version 12.7.0.

The steps from the simulation of the event files to the final analysis read as follows

1. Defining the characteristics of the galaxy clusters to be simulated in the event files as well as of

the X-ray background observed by eROSITA.

2. Creating the input files in the SIMPUT-format (SIMulation inpPUT) for the event simulation.

3. Simulating the survey event files with SIXTE, where the same source is modeled 108 times for

good statistics.

4. Defining the extraction regions for the source spectra as well as for the background spectra.

5. Extracting the spectra by means of SRCTOOL.

6. Spectral analysis within xspec to re-obtain the ICM temperatures.

7. Analysing the best-fit temperatures and their uncertainties.

These steps will be elaborated in more detail in the subsequent sections, where the main set-up is

summarised in Tab. 5.1.

5.2.2 Cluster Characteristics

For the simulation of the event files, we defined a sample of in total 19 distinct galaxy clusters with

different combinations of cluster mass and redshift, where we included masses of log10 [M/M�] =

[1013.6, 1013.9, 1014.2, 1014.5] and redshifts of log10[z] ∈ [−1.7,−0.5] with logarithmic steps ofΔ(log10 z) =

0.15. These combinations present a subset of the (M, z)-sample studied in Borm et al. (2014) (Fig. 5.1)

with a focus on investigating the parameter space of relative temperature uncertainties of ΔT/〈Tfit〉 �
10% and its boundaries. Following the approach in the above mentioned work, we also neglected clus-

ters with less then 100 expected photons in the energy range between (0.3 − 8.0) keV and assumed
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Figure 5.1: Expected relative temperature uncertainties for various clusters with different combinations of mass

and redshift as simulated by Borm et al. (2014) (comp. Sect. 4.3.1 & Fig. 4.3). The colours of the pixels represent

the relative temperature uncertainties, where clusters with less than 100 detected photons in the energy range

between (0.3−8.0) keV as well as the eHIFLUGCS clusters were excluded in the computation. The combinations

of masses and redshifts marked in red define the clusters, which were simulated in the event files.

temperatures to already be precisely available for all clusters with F > 9 · 10−12 erg/s in the energy

range (0.1 − 2.4) keV. These clusters are included in eHIFLUGCS (Reiprich 2012), such that their ICM

temperatures are precisely known from pointed observations with Chandra, XMM or Suzaku.

To simulate the photon events, which will be detected by eROSITA for the different galaxy clusters,

their cluster spectra as well as their surface brightness profiles need to be defined. The cluster spectra

are modeled analogously to those described in Borm et al. (2014) (Sect. 4.2.1) based on a phabs*apec
emission, where the required ICM temperatures and X-ray luminosities were computed via the scaling

relations by Reichert et al. (2011)

T [keV] =

(
M

1014 M�
· 3.44

)0.62

· E(z)0.64 (5.1)

LX [1044erg/s] =

(
M

1014 M�
· 0.61

)1.92

· E(z)1.7 , (5.2)

with E(z) = (Ωm · (1 + z)3 + ΩΛ)1/2 and the bolometric luminosity LX in the energy range (0.01-100.0)

keV. Additionally, we applied a redshift independent metallicity of A = 0.3 A� for the cluster ICM (e.g.

Arnaud et al. 1992; Mushotzky & Loewenstein 1997), in accordance to the argumentation given in Sect.

4.2.1 & 4.5.2. The absorption of the cluster emission by the galactic foreground was modeled for a

neutral hydrogen column density of NH = 3 · 1020 particles/cm2 (Kalberla et al. 2005).
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The radial extent of the simulated galaxy clusters was interpreted as

r500 =

(
3

4π
· M500

500 · ρcrit,z

)1/3

, (5.3)

with an equivalent angular extent of

α =
r500

DA
, (5.4)

considering the angular diameter distance DA (comp. Eqs. 2.25 & 4.7).

The X-ray surface brightness profile S X(R), on the other hand, is defined as a β-profile (Cavaliere &

Fusco-Femiano 1976)

S X(R) = S X,0 ·
(
1 +

R2

r2
c

)−3β+ 1
2

, (5.5)

with the projected radius R from the cluster centre (comp. also Eq. 2.63). The core radius rc and the

β-parameter were expressed by commonly observed values of rc = 0.1 · α500 and β = 2
3

(Voit 2005).

Images corresponding to these surface brightness profiles were computed by means of the tool dis45x,

which is commonly applied in the analysis of Suzaku data.

5.2.3 The eROSITA Background

The background, which is expected to be observed by eROSITA, is expressed by the following compo-

nents

phabs︸�︷︷�︸
1

∗(powerlaw︸������︷︷������︸
2

+ apec︸︷︷︸
3

+ apec︸︷︷︸
4

) + powerlaw︸������︷︷������︸
5

,

including 1) the absorption by the neutral gas in our Galaxy, 2) the unresolved cosmic X-ray background,

that is distant AGN, 3) the plasma emission by the hot ISM and 4) the emission by supernova remnants

in our Galaxy, as well as 5) the particle background. A more detailed description of the eROSITA
background is presented in Sect. 4.2.2 and especially in Tab. 4.1. The first four components constitute

the X-ray background and were defined based on the work by Lumb et al. (2002). The instrumental

particle background, on the other hand, which is induced by the interaction of cosmic rays with the

detector material, was simulated by Tenzer et al. (2010) and starts to dominate the total background

emission at energies above ∼ 2 keV. When simulating a realisation of the background emission, the

first four components are convolved with the entire instrumental response (RSP), whereas the particle

background is folded only with the response matrix file (RMF), since this emission is independent of the

effective area of the mirrors (comp. Sect. 3.1.2). Following this concept, the total background emission

shows count rates of 12 cts/s within the energy range between (0.3 − 8.0) keV, when observed over the

entire eROSITA field-of-view (FoV) of 0.83 deg2.

During the simulation of the event files, however, only the emission of the X-ray background was

defined as a source with a flat surface brightness profile. The instrumental specific particle background

was modeled by SIXTE itself.

5.2.4 Simulation Steps

The simulation of event files with SIXTE required a specific input format, named SIMPUT (SIMula-
tion inPUT), for the source catalogue, which contained information on the source positions, on their

instrument-independent spectra and on their flux within a specified energy range as well as on their sur-

face brightness profile. Defining the different galaxy cluster coordinates and characteristics, as well as
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the X-ray background emission, these input catalogues were generated within SIXTE (comp. appendix

A.2). As the eROSITA event files were created to represent survey observations of the instrument, the

coordinates of the galaxy clusters define the exposure time of the simulated event files based on the

exposure maps of the survey. The objects in the catalogue were thus centred at (0.0, 0.0) in equatorial

coordinates, where exposure times of texp ≈ 1.6 ks during the total of four years of all-sky observations

were expected (comp. Fig. 2.12). This value states the average effective observation time per field-of-

view of the instrument (Pillepich et al. 2012). The spectral information as well as the surface brightness

profiles were obtained as described in Sect. 5.2.2 and were attached for the SIMPUT-files.

To optimise the computing time for the event files, we uniformly distributed several realisations of the

same galaxy cluster in one event file. Since the size of one survey observation is limited to 3.6×3.6 deg2,

the number of sources per event file depended on the angular extent of the clusters, where the spacing

between the different sources was chosen to still allowed for both source and background extractions.

Accordingly, distinct catalogues were defined for the galaxy clusters with different (M, z)-combinations.

Having defined the source catalogues in the SIMPUT-format, seven event files were simulated within

SIXTE for each catalogue with one event file for each eROSITA-telescope (comp. appendix A.2). During

this process, the source as well as the background emission were convolved with the RSP of the instru-

ment to yield a spatial and an energetic distribution of the observed photons. To model the RSP for a

survey observation, SIXTE folds the instrumental resolution of a pointed observation with an assumed

vignetting. Additionally, the particle background of the telescopes was summed to the photon events.

This simulation of the event files was repeated for each catalogue to obtain a total of 108 realisations of

the same cluster for good statistics. In general, we ensured a random variation in the distribution and

in the number of observed photon counts between the seven event files of one simulation run as well

as between the different runs for the same catalogue. Fig. 5.2 presents the image of an excerpt of an

example event file for a cluster with log10[M/M�] = 14.5 and z = 0.11. The position of the source is

easily recognised as a rotational symmetric gathering of photon events, with the innermost green circle

representing α500 of the cluster and the outer annuli defining the background region.

5.3 Analysis Procedure

5.3.1 Defining the Cluster and the Background Regions

To guide the extraction of source as well as of background spectra from the photon event lists, region

files were defined. For the clusters, we applied circular regions, in analogy to the rotational symmetric

β-profiles, and annuli around the sources for the definition of the background region. Commonly, when

reducing observational data, the source position as well as the source region are selected by detection

algorithms. These tools will also be included within the eSASS software, but were currently still under

investigation by the eROSITA Collaboration. Accordingly, to focus on the systematics arising in the

simulation of the event files and especially in the extraction of the spectra, we manually defined the

region files based on the cluster characteristics.

The galaxy cluster regions were centred around the source coordinates with a radius of α500 (Eq. 5.4).

This radius did not only represent our assumed cluster mass of M500, but it also stated the limit for

X-ray temperature measurements with the current instruments XMM-Newton and Chandra (Reiprich

et al. 2013). Additionally, when applying a β-surface brightness profile as defined above for the galaxy

clusters (Sect. 5.2.2), α500 contains � 90% of the total number of expected source photons (comp. Sect.

5.6.2 & Fig. 5.6).

The background regions were selected as annuli around the individual sources and were also centred

around the input cluster coordinates. The inner radius was chosen as α1 = 1.14 ·α500, whereas the outer
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Figure 5.2: Image extracted from an event file simulated with SIXTE for a galaxy cluster with log10[M/M�] =

14.5 and z = 0.11, while including both the X-ray as well as the particle background. The pixel colour represents

the number of observed photons, where the colour brightens for an increasing amount of events. The galaxy

cluster is easily detected as gathering of events with the source and the background region displayed in green as

circle and as annuli, respectively. Credit: Wenzel (2014)

radius α2 was computed such, that the annuli covered four times the area of the source region. This

strategy ensured the background regions to contain at least 100 detected photons and a lower statistical

scatter in the emission than in the source spectra. At the same time, the close location of the background

regions to the sources allowed the distribution of a larger number of separate objects within the survey

field of 3.6 × 3.6 deg2.

5.3.2 Extracting the Spectra

To extract the spectra, we applied the task SRCTOOL within eSASS (comp. appendix A.3) and the region

files defined above. The seven individual event files for the seven telescopes were analysed separately,

as only the calibration file for a single telescope had been defined, yet. Analogous to the approach

within SIXTE also during the spectral extraction the instrumental resolution for a survey observation

was modeled as the resolution of a pointed observation convolved with a vignetting file. Finally, we

obtained seven spectra for each defined region, where the spectra of the individual telescopes were

stacked to mirror the survey data observed with the complete instrument, corresponding to the response

"erosita_iv_7telfov_ff.rsp". Additionally, the statistical scatter in the observed photon numbers was thus

decreased compared to the observation with only one eROSITA telescope (comp. Sect. 4.2).

5.3.3 Spectral Analysis

For the spectral analysis, the source spectra and the corresponding background spectra were read into the

software xspec. The subsequent analysis steps were performed analogously to the reduction expressed

in Borm et al. (2014) (comp. Sect. 4.2.3 & 4.2.4), so that we only repeat the basic concepts at this point.

The background emissions were obtained in the spectral extraction within the annuli, whereas the spec-

tra of the circular source regions contained a superposition of the cluster as well as of the background

emission. To remove the latter, we applied the backgrnd-command, while referencing the spectra of
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the annuli and accounting for the deviating area sizes of the two extraction regions. Accordingly, only

a phabs*apec model was fit to the source spectrum, while leaving the ICM temperature as well as the

spectral normalisation free to vary during the fit. The cluster redshift was assumed to be known and

was set to the catalogue value, while the galactic hydrogen column density and the ICM metallicity

were fixed to the values stated above (Sect. 5.2.2). The steppar-command was applied to improve

the best-fit values, and the 1σ-uncertainty regions were computed by means of the error-command.

Accordingly, for each (M, z)-combination, we obtained a list of 108 best-fit temperatures and normali-

sations, including the uncertainties on these properties.

Before the final analysis steps, all catastrophic failures were removed from the fit results, where two

different types of failures were considered (comp. Sect. 4.2.4). In the following, three main results were

computed:

• The relative temperature uncertainty ΔT/〈Tfit〉: 〈Tfit〉 was taken as the median of the best-fit tem-

peratures and ΔT was defined as symmetrised 1σ-region around the median, where 2 · ΔT con-

tained 68% of the fit results.

• The temperature bias 〈Tfit〉/Tinput: ratio of the median best-fit temperature and the input tempera-

ture for the emission model.

• The bias in the temperature uncertainties ΔT/〈ΔTerror〉: ratio of the 68%-uncertainty estimated

from the distribution of best-fit values ΔT and the median of the values from the error-command

〈ΔTerror〉.

5.4 Results

5.4.1 Relative Temperature Uncertainties

The analysis results for the relative temperature uncertainties are presented in Figs. 5.3 & 5.4 for the

individual cluster masses in dependence on the cluster redshift and on the number of extracted cluster

photon counts, respectively. For clusters within the parameter space of ΔT/〈Tfit〉 � 10%, we considered

cluster temperatures to be precisely measurable, such that we marked this region of interest by a black

dashed line. The presented dotted lines, smoothing the distribution of data points for the different cluster

masses, display the general trend of the evolution of the relative temperature uncertainty with redshift

and with the number of detected photon counts, respectively. However, they do not state a fit to the data.

In general, the relative temperature uncertainty improved with decreasing cluster mass as well as with

decreasing redshift, where the influence of the redshift was more prominent (comp. Fig. 5.3). Up to

redshifts of z ≈ 0.06, precise temperatures will be available for all simulated cluster masses (Wenzel

2014). Also for farther redshifts, clusters of lower masses may still be located in the parameter space of

interest.

Additionally, the temperature precision improved with an increasing number of detected photon counts,

where the presented photon number in Fig. 5.4 represents the number of extracted galaxy cluster events

in the chosen source region. However, as the temperature precision depended more strongly on the clus-

ter mass in this analysis, a well-defined photon number, above which precise temperatures are obtained,

could not be quantified. For example, for clusters with masses of M = 1013.6 M�, already ∼ 200 photon

counts sufficed for a precise temperature estimate, whereas for clusters with M = 1014.5 M�, more than

∼ 5, 000 events were required to yield the same precision.

In summary, the relative temperature uncertainties mainly depended on the cluster mass, and especially
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Figure 5.3: Simulated relative temperature uncertainties ΔT/〈Tfit〉 in dependence on the cluster redshift for the

four considered cluster masses. The region of interest, ΔT/〈Tfit〉 ≤ 0.1, is marked by the dashed black line. The

smooth connecting curves between the data points of the individual masses (dotted lines) display the general trend

of the evolution with redshift. Credit: Data taken from Wenzel (2014)
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Figure 5.5: Bias between the best-fit ICM temperature and the model temperature in dependence on the redshift
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best-fit temperature overestimates the model value. Credit: Data taken from Wenzel (2014)

on the cluster redshift, where the latter was the most significant characteristic to define, for which clus-

ters precise temperatures will be available with eROSITA.

5.4.2 Temperature Bias

The bias in the best-fit temperatures was defined as the ratio between the median of the best-fit tempera-

tures 〈Tfit〉 and the initial model temperature Tmodel and was i.a. computed in dependence on the cluster

redshift and on the cluster mass (Fig. 5.5). For all simulated (M, z)-combinations, the spectral fit over-

estimated the model temperature, where in general the bias increased with increasing cluster mass and

with increasing redshift (Wenzel 2014). The same trend was also observed for the uncertainties on the

bias. However, for the larger cluster masses of M � 1014.2 M� the dependence on the redshift became

negligible, whereas for the low cluster masses the dependence on the cluster mass seemed to disappear.

The bias remained below ∼ 10% for the simulated cluster masses M = 1013.6 M� and M = 1013.9 M�
for all considered redshifts. The highest cluster mass, on the other hand, yielded biases of up to ∼ 25%.

What is more, the number of photon counts showed only an insignificant effect on the temperature bias

with a slight improvement in the bias for an increasing number of observed events.

Accordingly, we considered the bias to be negligible and of the order of only a couple of percent for

redshifts of z � 0.04. In comparison to the results of the relative temperature uncertainties, we thus

concluded that not for all clusters with precise temperature estimates also accurate temperature values

will be obtained. For the precise clusters above z ≈ 0.04, biases of up to ∼ 15% need to be corrected

for.
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5.4.3 Bias in the Temperature Uncertainties

In addition to the bias in the best-fit temperatures, also the bias in the uncertainty, computed by the

xspec error-command, was quantified as ΔT/〈ΔTerror〉, which is the ratio of the uncertainty defined by

the distribution of best-fit values ΔT and the median uncertainty obtained from the error-command

〈ΔTerror〉. This bias is an important property for the interpretation of observed data as only the uncer-

tainty computed within xspec is available, though ΔT follows more reliable statistics. Different than the

previous results, the bias in the uncertainty showed no well-defined dependence on the redshift or the

cluster mass, but generally decreased with an increasing number of detected photons (Wenzel 2014).

In summary, this bias was of the order of ±15% for most of the inspected (M, z)-combinations and

averaged to a ratio of ∼ 1.0 for the 19 considered clusters. However, for the clusters with the lowest

number of observed photons, the bias may increase up to ∼ 25% with an underestimation of the true un-

certainty by the error-command. Accordingly, the bias in the temperature uncertainties was generally

negligible for clusters with precise temperature estimates, but the general underestimation of the true

statistical uncertainties for clusters with few detected photon counts should be considered in the future

data analysis.

5.5 Systematic Bias in the Applied Software

To investigate and interpret possible biases in the applied software, the results obtained from the above

event file simulations and analysis were compared to the results by Borm et al. (2014), or equivalently

to the results in chapter 4. As those findings were based on a spectral analysis only, deviations in the

results were related to the current set-up of the event file simulations, of the handling of the raw data,

or of the spectral extraction. To allow for this direct comparison, the analysis steps for the extracted

spectra were performed completely equivalently to the procedures in the previous chapter. In general, a

small deterioration in the precision as well as in the accuracy of the new results were expected, as the

additional and more realistic simulation steps introduced further impacts on the data.

For the relative temperature uncertainties, we observed a comparable strong dependence on the clus-

ter mass as well as especially on the cluster redshift for both approaches (comp. Sect. 4.3.1 & Fig.

4.3). The redshift cut at z ≈ 0.06 in the current simulations, below which all clusters yielded precise

temperatures, underestimated the findings for the spectral analysis only with z � 0.08. Also when con-

sidering the discrete values of the relative temperature uncertainties, the event file simulations resulted

in a slightly reduced precision with a difference of approximately ∼ 3% on average for clusters with

ΔT/〈Tfit〉 � 15%. However, this deviation increased with decreasing precision and showed differences

of up to ∼ 20% for the clusters with the least temperature precisions. As a whole, for the clusters

of interest with precisions around ΔT/〈Tfit〉 � 10%, the simulation procedure including the event file

treatment behaved as expected and we explained the minor decrease in the precision by the additional

steps in the data generation and reduction. We thus concluded that generally all clusters with precise

temperatures in the spectra-only simulations (Sect. 4.3.1) also yielded precise temperatures with the

extended and more realistic simulation procedure.

The bias in the temperatures, on the other hand, was strongly increased compared to the spectral

analysis-only approach. Whereas for the low cluster masses of M = 1013.6 M� and M = 1013.9 M�, the

deviation between the two approaches presented values of 5 − 10%, the difference increased to up to

∼ 20% and ∼ 25% for the two larger cluster masses, respectively. The temperature bias now required a

correction for most of the clusters within the parameter space of precise temperature estimates, which

was not the case for the previous simulations. What is more, following the event file simulations, the

best-fit value overestimated the model temperature, where we recorded an underestimation of the model
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temperature in Sect. 4.3.2. Also other works, such as e.g. Yu et al. (2011), found an underestimation

of the true ICM temperature. This systematic bias in the temperature estimates, which arose from the

simulation of the event files and the extraction of the cluster spectra, asked for a further investigation of

the simulation software and procedures. Several of these aspects are discussed in Sects. 5.6.3 & 5.6.5.

For the bias in the temperature uncertainties, the results by Borm et al. (2014) were mainly reproduced

(comp. Sect. 4.3.3) with an average value of unity and a slightly increased scatter of ±15%. Also and

similarly in both approaches, a tendency of an underestimation of the true statistical uncertainty by the

error-command was observed as well as no general trend with neither the cluster mass nor the cluster

redshift. In general, the little deterioration for the event file ansatz, which was especially observed for

those clusters with the lowest number of detected photons, was expected due to the additionally per-

formed simulation steps.

In summary, the slight decrease in the temperature precision as well as in the accuracy of the uncertain-

ties was predicted and suggested no significant systematics to be present in the event simulation or the

spectral extraction. However, the strongly increased bias in the temperature estimates required a further

investigation of possible systematics in the two procedures.

5.6 Discussion

5.6.1 Understanding the Simulation Results

To explain the above described trends of the development of the relative temperature uncertainties and

the biases, we summarised the guidelines for the spectral fit (comp. also Sect. 4.5.1). The fitting

process was especially influenced by the spectral line emission complexes, which are dominant for

ICM temperatures of kBT � 2.5 keV, as well as by the exponential cut-off at large energies (comp.

Fig. 2.8). The line complexes in general present the main constraining power for the different cluster

characteristics.

In the above simulations, the cluster mass defined the ICM temperature through the applied scaling

relations, where the temperature increased with the cluster mass for a fixed redshift (comp. Eq. 5.1). As

the emission lines in the cluster spectra faded with increasing temperature, the fit results were degraded.

At the same time, with increasing ICM temperatures, the exponential cut-off shifted to higher energies

and thus out of the peak of the instrumental effective area, which is located at energies between (0.5−2.0)

keV (comp. Fig. 2.11). These aspects explained the influence of the cluster mass on the observed

temperature precisions and on the biases. However, an increased cluster mass also resulted in a raised

luminosity and accordingly in a larger number of detected photons, which reduced the statistical scatter

in the spectrum and thus supported the spectral fit (comp. Fig. 5.4). Following the simulation results,

this improvement in the statistical scatter could not compensate for the effect of the fading emission

lines and the shifting cut-off.

On the other hand, an increase in the redshifts yielded a reduction in the number of observed photon

events, which decreased as ∝ 1/D2
L

with the luminosity distance DL. Additionally, the energy stamp of

the spectral features shifted with redshift as ∝ 1/(1 + z).

As a whole, the computed relative temperature uncertainties as well as the biases were dependent on the

complex interplay between different cluster characteristics, but especially on the cluster mass and the

corresponding ICM temperature, and on the cluster redshift.
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Figure 5.6: Ratio of the extracted number of cluster photon counts and the model photon numbers for all 19

distinct galaxy clusters in dependence on the redshift. The extracted number of counts is taken as the median

value of the distribution of the analysis results of the (M, z)-combinations. Credit: Data taken from Wenzel

(2014)

5.6.2 Choice of Spectral Regions

As the eSASS tasks for the source detection were still under investigation and their systematics were

not completely quantified, yet, the source and the background regions were defined manually. This

procedure also allowed us to focus only on the possible systematics in the event simulations and in the

spectral extraction software. According to the observational power of the current X-ray instruments and

the general definition of the cluster scaling relations (comp. Sect. 5.3.1), we described the source extent

as α500. In addition to the above argumentation, this choice of the cluster region was tested based on the

number of included cluster photon counts.

To exclude any systematics in the total abundance of cluster photons, generated during the simulation

of the event files, we simulated test clusters as single sources in the centre of the event files, while ne-

glecting any background emission. In these cases, ∼ 100% of the expected model photon events were

distributed in the simulated sky area. However, since the considered β-profiles for the surface bright-

ness of the clusters showed no defined boundaries, several of the computed photon events were located

outside our considered source region of α500. Additionally, during the realistic simulations, the back-

ground emission had to be subtracted from the spectrum of the source region to yield only the cluster

photon events. The close position of the background region to the source, which was required to allow

for larger cluster catalogues to be simulated in the same survey field-of-view, resulted in few cluster

photons of the order of ∼ 1% to be considered as background emission. Accordingly, the subtraction

of the slightly overpredicted background from the source spectrum lead to a further reduction of the

extracted cluster events. Despite these two aspects, for the majority of our simulated clusters, ∼ 90% of

the expected cluster photon events were located within the defined α500-region (Wenzel 2014), where

this trend was observed independently of the cluster mass and of the cluster redshift (Fig. 5.6). For sev-

eral (M, z)-combinations, higher numbers of the extracted photon counts were observed when compared
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to the model number of photon events. A statistical scatter in the ratio between extracted and expected

photon counts was expected since the generation of cluster as well as of background counts, of their

energetic and their spatial distribution, was a random processes within SIXTE. However, averaging over

108 realisations of the same cluster observation did not compensate for this scatter, yet.

This is one of the origins for the observed increase in the uncertainties of the re-constructed cluster

temperatures and is commonly encountered in the reduction of observed data. A possible small bias

in the number of extracted counts, which originated from the spectral extraction software SRCTOOL is

further investigated in the following section.

5.6.3 Bias in the Simulated Spectra?

To directly test whether the application of SIXTE and SRCTOOL resulted in systematics in the simulated

cluster data, the shape of the extracted spectrum was compared to the model spectrum generated within

xspec (comp. Figs. 5.7 & 5.8), where for this analysis several test cluster event files without any

background emission were generated. Initially, the extracted spectrum showed a strong depletion of

the photon events for energies below E ≈ 0.7 keV with a complete depletion for E � 0.3 keV. These

findings initiated a discussion on the value of the over-all energy threshold as well as on the treatment

of split events for the future eROSITA data.

The energy threshold is defined based on the telemetry of the instrument, since the limited band width

and communication time of the instrument ask for a restriction to transfer the data of only those photon

events above a certain energy value. As a second influence on the event file spectra, split events need

to be corrected for, which describe those detections for which the photon energy is distributed amongst

different detector pixels. If these events are not considered, the spectrum is overestimated at the lower

energies and underestimated at the higher energy end. They are commonly identified by their pattern

and all involved pixels are flagged for this event and are neglected for the subsequent data analysis. To

correct for these systematics, the occurrences of these events and their patterns need to be simulated

thoroughly and accounted for in the instrumental response. Both aspects, the energy threshold as well

as the treatment of the split events, may induce the observed bias in the cluster spectra.

Initially, the energy treshold value was set to E = 0.3 keV, which explained the observed total depletion

of the extracted spectrum below these energies. In discussion with the involved software developers,

this threshold was then shifted to E = 0.1 keV in order to reduce the bias in the spectra. The resulting

extracted spectra with the adapted threshold is displayed in Fig. 5.8. Still, an underestimation of the

extracted spectrum was visible for energies below E ≈ 0.4 keV and also a further decrease in this

threshold did not improve the observed bias. The software set-up with the implemented small spectral

bias observed in Fig. 5.7 was then applied for the simulation and analysis of our cluster data, while the

origin of this bias and its impact on the analysis results was further investigated.

Eventually, one systematic effect was discovered to originate from the conversion between the photon

energy given in detector channels and in units of keV in the spectral extraction. In the observations,

the energy of the detected photons is in general first listed in terms of detector channels and is later-on

converted to values in units of keV. In the our applied SRCTOOL version, this conversion was defined

based on the average energy resolution of the eROSITA channels. However, each of these individual

channels shows slightly different resolutions, which are stored in the response matrix file (RMF)(comp.

Sect. 3.1.2). Updating the SRCTOOL to account for the information of the RMF (version 08/2014),

the bias in the spectra could almost be resolved completely (Fig. 5.8), and it was debated whether the

remaining slight deviations were only a statistical artifact. Additionally, the influence of the split events

treatment needs to be studied in further detail and has not been improved, yet.
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Figure 5.7: Comparison between the spectrum simulated within xspec in black and the corresponding extracted

spectrum in red for a cluster of M = 1015 M� at z = 0.02. The normalisation of the spectrum is artificially

increased to reduce the statistical scatter in the photon counts and to allow for a clear inspection of the bias

between the spectra. The extracted spectrum was generated with the SRCTOOL version of April 2014, which was

also applied during our data reduction.
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Figure 5.8: Display of the spectral bias with the same content as Fig. 5.7. However, for the spectral extraction

the updated SRCTOOL as of August 2014 (version 09/2014) was applied and the bias could be reduced.
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As our presented simulation results were based on the previous version of SRCTOOL, the effect of the

updated task on our results was tested based on a selection of different clusters. In a first comparison,

the reduced spectral bias showed only a negligible effect on our presented results and especially the bias

in the estimated temperatures was not improved.

5.6.4 Catastrophic Failures

To improve the reliability of the analysis results and to approach the reduction of truly observed data,

two types of catastrophic failures were defined for the spectral fit results (Borm et al. 2014, comp. also

Sect. 4.2.4). The first type addressed those results for which the uncertainty region defined by the

error-command was not set around the best-fit value. In this case, the data set was removed for the

subsequent analysis steps as would be the procedure for real observed data with equivalent fit results.

The second type of catastrophic failures described best-fit temperatures, which were positioned outside

the 3×1σ-region in the distribution of best-fit values for the 108 repeated simulations of the same cluster.

Those fit results were flagged, but still included in the analysis since these failures are not identifiable

in observed data.

In the above presented results, no catastrophic failures of the first type were detected and the second

type of failures occurred for only few of the 19 considered (M, z)-combinations. In those latter cases,

less than 5% of the 108 realisations of the same cluster were affected by these failures (Wenzel 2014).

Accordingly, the presented simulation results were only negligibly influenced by catastrophic failures.

An equivalent finding was also discovered for the spectra-only simulations, where for clusters with

available redshifts catastrophic failures of the first type did not arise and the second type of failures was

detected only to an insignificant percentage (Sects. 4.3.1 & 4.5.3).

5.6.5 Discussing the Temperature Bias

As expressed in detail in Sect. 5.5, the ratio between the best-fit and the model ICM temperature, esti-

mated in this extended set of simulations, was significantly increased in comparison to the spectra-only

analysis (comp. Sect. 4.3.2). Several possible explanations of this bias have been investigated in the pre-

vious sections. Accordingly, we excluded the influence of catastrophic failures (Sect. 5.6.4) and of the

spectral bias (Sect. 5.6.3) for generating the temperature bias. The scatter and the bias in the extracted

number of cluster photon counts mainly remained within ±10% and thus altered the normalisation of

the spectrum only marginally. A small increase in the uncertainty of the best-fit values was expected

due to this effect. What is more, the ratios of the numbers of extracted photons were almost randomly

distributed around unity and were thus not able to account for a systematic and general overestimation

of the cluster temperature.

Another possible origin for the temperature bias is the application of different instrumental responses

for the simulation and the analysis of the spectra. For the steps within SIXTE and SRCTOOL, the RSP

for a pointed observation was convolved with an estimated vignetting to account for a more realistic

instrumental effective area. In the spectral analysis, on the other hand, we manually assigned the survey

response to the spectra, where both the spectra and the response were stacked for the seven telescopes.

This may have resulted in an inconsistent definition of the instrumental effective area in the different

steps. A possible overestimation of the effective area during the spectral analysis would results in the

assumption of reduced amplitudes of the emission lines and thus in biased-high temperature estimates.

Following these considerations, an extended, thorough inspection of the simulation set-ups within

SIXTE as well as within SRCTOOL needs to be supported. Unfortunately, the steps within the two

different programmes could not easily be disentangled and the simulated spectrum was only studied
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after a full simulation run, which impeded the difficulty of identifying the origin of the systematics.

Additionally, an additional bias, arising from the general treatment of the raw data independent of the

applied analysis tools, needs to be considered and disentangled from the systematics in the software.

However, new updates for both softwares have been released since the work on this project. These in-

cluded e.g., the option to extract the instrumental response in addition to the spectrum when applying

SRCTOOL, which allows to study any systematics arising from manually assigning the eROSITA survey

RSP to the extracted spectra. Additionally, eSASS now includes a task to compute the exact exposure

time from the event file and also SIXTE has been extended by further simulation options. In conclusion,

a repetition of the above simulations while applying the updated software tasks presents a potential

option to solve and characterise the observed bias in the temperature estimates.

5.7 Conclusion & Outlook

Within this extension to the forecasts for the determination of eROSITA cluster properties, we simulated

event files for different galaxy clusters based on the software SIXTE and extracted the cluster spectra

applying the eSASS task SRCTOOL. These files were thereby based on eROSITA survey observations

with exposure times of texp = 1.6 ks. Subsequently, we performed a spectral analysis of the extracted

data, assuming the cluster redshifts to be available, and inspected the relative temperature uncertainties,

the temperature bias as well as the systematics in the computed temperature uncertainties. These results

were then compared to the conclusions of the spectra-only simulations by Borm et al. (2014) (chapter

4) to investigate systematic errors in the applied softwares or biases arising from the realistic treatment

of the raw data, with an increased interest in the performance of the official task SRCTOOL for the

reduction of future eROSITA data. The analysis of the simulated event files yielded the following main

results.

• The precision of the estimated cluster temperatures was especially depending on the cluster mass

and the corresponding ICM temperature, as well as on the cluster redshift. Precise temperatures

are obtained for all cluster masses up to z ≈ 0.06.

• The precision in the temperatures was slightly decreased for the clusters of interest with

ΔT/〈Tfit〉 < 10% when compared to the results of the spectra-only approach in which precise

temperatures were obtained for all clusters up to z ≈ 0.08. Despite this decrease in the parameter

space of high precision clusters, roughly all clusters, which showed precise temperature estimates

in the previous simulation, were still included in this parameter space.

• The model cluster temperature was overestimated in the spectral fit with a temperature bias of

� 10% on average and extreme values of up to ∼ 15% for clusters with precise temperatures.

Accordingly, this bias needs to be corrected for in the future data reduction.

• As the temperature bias was negligible for all clusters with precise temperature estimates in the

spectra-only simulations and the model temperature was now overestimated in the extended ap-

proach, a systematic error in the simulation and/or analysis set-up in these second forecasts was

expected.

• The results obtained for the bias in the computed uncertainty from the xspec error-command

reproduced the findings in chapter 4 with only a minor increase in the bias.

The results from this extended simulation approach were expected to present slightly less precise and

less accurate temperature estimates, due to the additional simulation steps and the additionally required
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treatment of e.g. the raw photon events or the definition of source extraction regions. Accordingly, the

minor degradation of the temperature precisions and of the accuracy of the temperature uncertainties

were expected findings of this simulation set-up. However, the bias in the temperature estimates indi-

cated a systematic error in at least one of the followed simulation and analysis steps or in the applied

software. A first investigation of this problem already resulted in an improvement of both SIXTE and

eSASS as well as in extensive discussions within the German eROSITA Collaboration. These discussions

also included the general concepts for the reduction of the future eROSITA data as well as the adaptation

of the task SRCTOOL to these ideas. The definition of the energy threshold or the treatment of split pho-

ton events presented e.g. two of these considered concepts. For both effects, the instrumental response

needs to be adapted to compensate the observed spectral bias. However, the origin of the temperature

bias has not been identified, yet. New updates of the applied software promise a more accurate and

realistic treatment of the future observed data and thus a decrease of the simulated spectral as well as

temperature bias. With the newly arising analysis options, included in the updated software, a repetition

of the above described simulation steps and methodology is accordingly supported.

In conclusion, the presented analysis successfully indicated and quantified different systematics within

the software tools SIXTE and SRCTOOL to allow for a more accurate reduction of the future eROSITA
data as well as its interpretation. The accuracy of the re-obtained galaxy cluster temperatures asks for an

extended investigation of possible systematics in the software or in the data analysis in general. How-

ever, the performed simulations applying the software versions of May 2014 already yielded promising

results for the reliability of the future data analysis and thus support the instrument’s cosmological

potential.
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CHAPTER 6

Cosmological Constraints from eROSITA
Galaxy Clusters: testing MCMC Simulations and
Gas Temperature Information

The project presented in this chapter investigates the cosmological constraining power of the eROSITA
instrument and will strongly support the instrument’s science goal for the study of the nature of dark

energy. Several aspects of this second main project of my thesis are building up on the results of my first

paper and thus on the observational data on galaxy clusters, which we expect to obtain from eROSITA.

The content of this chapter is currently being prepared for publication by Borm et al., in prep., whereas

the considerations in Sect. 6.7.2 will be included in more detail in the publication by Pillepich et al., in

prep. The basic principles of several aspects in the introductory as well as in the methodology sections

of this chapter (esp. Sects. 6.1, 6.2.2 & 6.4) have already been discussed especially in Sects. 2.3, 2.8

& 3.4. However, they are repeated at this point to summarise the required theoretical knowledge for the

unexperienced reader.

Abstract

The up-coming X-ray telescope eROSITA is expected to place tight constraints on cosmology, and es-

pecially on the dark energy equation of state, by detecting and exploiting a large sample of ∼ 100, 000

clusters of galaxies.

These objects are commonly applied tracers of the large-scale structure of the Universe and studying the

abundance of clusters in different observable bins reveals information on the cosmological parameters.

We predict with which precision the above instrument will be able to determine these parameters when

applying this approach for the complete eROSITA cluster sample with available redshift and luminosity

information. Additionally, we investigate the improvement of the cosmological constraints in the case of

accessible gas temperature information of the clusters that will realistically be available, and the impact

of a lower uncertainty in the X-ray scaling relations on the cosmological credibilities.

Based on the instrumental sensitivity and the X-ray scaling relations, we derive new observable clus-

ter population functions and the corresponding cluster mock catalogues, where we estimate a total of

98, 700 observed eROSITA clusters. Comparing these catalogues to our population models in Markov-
Chain Monte Carlo (MCMC) simulations, yields the expected uncertainties on the cosmological pa-

rameters for the future observations. The simulations are considered for the different cosmological

models ΛCDM, w0CDM, wCDM, for different scaling relations and for the two observable sets (z, η)
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and (z, kTX), respectively, with the redshift z, the cluster temperature TX, and η as the number of the

cluster photon counts detected by the eROSITA CCDs.

Whereas the abundance of eROSITA clusters with precise temperature estimates is too small to allow

for a significant impact on the cosmological constraints, the (z, η)-catalogue alone already yields pa-

rameter precisions which are as precise as the most recent cosmology findings by the Planck satellite

with external priors. Combining the two data sets and accounting for a development in the precision on

the scaling relations by a factor of four until the eROSITA data release, we obtain 68%-uncertainties of

< 1% and of ∼ 1.5% for σ8 and Ωm, respectively, in a ΛCDM- as well as in a w0CDM-cosmology, with

Δw0 ≈ 2.4% in the latter case. For the more general wCDM-scenario, the credibilities will be tightly

constrained to Δσ8 = 0.009 (1%), ΔΩm = 0.006 (2%), Δns = 0.004 (< 1%), Δw0 = 0.077 (8%), and

Δwa = 0.276. Though the considered improvement in the uncertainties on the scaling relations show a

significant impact on the constraints on e.g. Ωm and σ8, Δw0 and Δwa present only a minor influence by

the scaling knowledge. A further progress in the precision on these relations, however, only allows for

minor additional increases in the parameter precisions.

According to this precision in the cosmological parameters, eROSITA will be the first Stage IV instru-

ment in investigating the characteristics of dark energy with a figure of merit of FoM2σ
w0,wa

= 53.

6.1 Introduction

As most massive virialised objects in the Universe, galaxy clusters have become reliable cosmological

probes for mapping the large-scale structure (LSS) of matter and for studying the dark energy equation

of state (e.g., Borgani & Guzzo 2001; Voit 2005; Vikhlinin et al. 2009a,b; Mantz et al. 2010a; Allen

et al. 2011). To further improve the precision on the cosmological parameters by galaxy cluster studies,

we require large samples of galaxy clusters as well as tight relations between the cluster observables

and those cluster parameters directly linked to cosmology. The future eROSITA (extended ROentgen

Survey with an Imaging Telescope Array) telescope (Predehl et al. 2010; Merloni et al. 2012), which is

scheduled for launch in early 2017, will provide such a data sample in X-rays, and will simultaneously

also improve the uncertainties on the relations between the different cluster properties (Pillepich et al.

2012). According to the report of the Dark Energy Task Force (DETF), such a telescope is considered

as one of the first Stage IV probes for the study of dark energy (Albrecht et al. 2006).

One commonly applied method to study cosmology with galaxy clusters is based on the distribution of

these objects in dependence on their mass and redshift - on the halo mass function (e.g., Reiprich &

Böhringer 2002; Voit 2005; Vikhlinin et al. 2009a,b; Mantz et al. 2010a). This function traces the evo-

lution of structures in the Universe, which is highly dependent on the cosmological model (e.g., Press &

Schechter 1974; Tinker et al. 2008). The functional form of the halo mass function itself is considered

as universal with cosmology and redshift (Jenkins et al. 2001; Evrard et al. 2002; Linder & Jenkins

2003; Kuhlen et al. 2005; Tinker et al. 2008). Accordingly, counting clusters in mass and redshift bins

and comparing these observations to the theoretical prediction for different cosmological models yields

constraints on the cosmological parameters. However, this analysis requires the cluster redshift as well

as its mass to be accessible.

Galaxy cluster redshifts are mainly obtained in optical photometric or spectroscopic observations. For

the eROSITA cluster sample, for example, photometric redshifts will be provided e.g. by DES (Dark
Energy Survey, e.g. Crocce et al. 2015), VST ATLAS (VLT Survey Telescope ATLAS, e.g. Shanks et al.

2015) and PanSTARRS (Panoramic Survey Telescope & Rapid Response System, e.g. Ebeling et al.

2013), while at the same time spectroscopic surveys are designed to focus on eROSITA follow-up ob-

servations, e.g. 4MOST (4m Multi-Object Spectroscopic Telescope for ESO, e.g. de Jong et al. 2014)
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and SPIDERS (SPectroscopic IDdentification of eROSITA Sources, e.g. Salvato 2015). We thus expect

redshifts to be available for most clusters observed with this new instrument.

Cluster masses, on the other hand, are no direct observables and long exposure times are necessary for

their determination. Thus, galaxy cluster scaling relations are commonly applied to estimate this prop-

erty based on observables such as e.g. the cluster temperature, luminosity and redshift (e.g., Vikhlinin

et al. 2009a; Pratt et al. 2009; Mantz et al. 2010a; Reichert et al. 2011; Giodini et al. 2013). The uncer-

tainties in these scaling relations accordingly limit the precision on the computed cluster mass and thus

also on the cosmological constraints (e.g., Allen et al. 2011). As this uncertainty partially results from

the mass calibration, one idea is to combine observational information from different wavelengths, for

example from X-ray and weak lensing data, to calibrate the X-ray hydrostatical masses (e.g. Hoekstra

et al. 2013; Applegate et al. 2014; Israel et al. 2014, 2015). In fact, applying the halo mass function

for cosmological studies is not limited to X-ray samples, and current Sunyaev-Zel’dovich (SZ) cluster

surveys, performed for example by the Atacama Cosmology Telescope (ACT), the South Pole Telescope
(SPT) and Planck, already led to an improvement in constraining the cosmological parameters (e.g.

Vanderlinde et al. 2010; Planck Collaboration et al. 2013; Reichardt et al. 2013). Another idea is to

determine the scaling relations simultaneously to the cosmology during the analysis (e.g., Allen et al.

2011). Low uncertainties in the scaling relations as well as a relatively low intrinsic scatter are advanta-

geous for this method, where the latter aspect is achieved by e.g. applying the temperature-mass relation

instead of the luminosity-mass relation in X-rays, with intrinsic scatters of < 15% compared to ∼ 40%,

respectively (e.g. Vikhlinin et al. 2009a; Mantz et al. 2010a; Allen et al. 2011; Giodini et al. 2013). The

approach of the simultaneous fit will be followed by the up-coming eROSITA-instrument, which will

improve the currently available X-ray cluster samples in terms of precision, accuracy, and number of

clusters and is accordingly expected to yield tight constraints on cosmology.

eROSITA is the German core instrument aboard the Russian satellite Spektrum Roentgen Gamma (SRG),

which is scheduled for launch in early 2017 to an L2 orbit (Predehl et al. 2010; Merloni et al. 2012).

Covering the X-ray sky in an energy range between (0.1−10.0) keV, the telescope will perform eight all

sky surveys in total, each lasting half a year, with subsequent three years of pointed observations. With

an average effective exposure time of ∼ 1.6 ks per field-of-view (FoV), eROSITA is expected to detect

105 clusters of galaxies, assuming a detection limit of 50 photons in the (0.5−2.0) keV energy band and

cluster masses above 5 ·1013 M�/h (Pillepich et al. 2012). Also, this cluster sample will include all mas-

sive clusters in the entire Universe with M > 3 ·1014 M�/h, and X-ray temperatures for ∼ 2, 000 clusters

(Borm et al. 2014). First predictions of the constraints placed on the cosmological parameters by this

cluster sample yielded an increased precision of the dark energy parameters to Δw0 ≈ 0.03 (for wa = 0)

and Δwa ≈ 0.20 (Merloni et al. 2012), assuming an evolution with redshift as wDE = w0 + wa/(1 + z)

for dark energy (Chevallier & Polarski 2001; Linder 2003). Accordingly, eROSITA presented itself as

powerful tool to determine the nature of dark energy.

The current eROSITA forecasts followed the approach that only the redshift and the number of ob-

served X-ray photons, or equivalently the luminosity, will be available for the eROSITA clusters, and

were based on the Fisher matrix approach. We now extended these predictions to Markov-Chain Monte
Carlo (MCMC) simulations to allow for non-Gaussian credibility intervals of the cosmological parame-

ters and to yield more realistic parameter degeneracies (Wolz et al. 2012; Khedekar & Majumdar 2013).

Within these forecasts, the cosmological models ΛCDM, w0CDM, assuming a constant dark energy

equation of state, and wCDM for a variable dark energy equation of state were investigated, including

a simultaneous fit of the scaling relations. A possible detection of primordial non-Gaussianity and the

influence of additional information from angular clustering were already discussed in detail by Pillepich

et al. (2012) and by Pillepich et al., in prep. Since the cosmological constraints presented in these works

were strongly driven by the abundance of clusters, we focused on this observable only for our cosmo-
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6 Cosmological Constraints from eROSITA Galaxy Clusters

logical estimates. Instead, we extended the forecasts to constraints on the sum of the neutrino masses∑
mν (ΛCDM+ν-cosmology), and also included the knowledge of cluster temperatures, observed with

the eROSITA-instrument (Borm et al. 2014), in our predictions for a more realistic approach.

Studying neutrino characteristics with the help of cosmological probes has been made possible only

for the past years with the most recent data samples. Several investigations reported e.g. on the influ-

ence of different neutrino characteristics on the cluster abundances (comp. e.g. Ichiki & Takada 2012;

Costanzi et al. 2014; Roncarelli et al. 2015) or stated upper limits on
∑

mν < 0.23 eV, by investigating

the most recent data of the Cosmic Microwave Background (CMB) (e.g. Planck Collaboration et al.

2015c). Within the current works, cluster abundances alone did not allow for constraints on the uncer-

tainties on the nature of neutrinos yet, due to a strong degeneracy between the standard deviation in the

matter distribution σ8 and the matter energy density Ωm (e.g. Mantz et al. 2015; Roncarelli et al. 2015).

Including the large sample of eROSITA clusters in this analysis, we hoped to improve on this degener-

acy. The additional cluster information, on the one hand, was expected to tighten the uncertainties on

the cosmological parameters (compare e.g., Mantz et al. 2010a; Clerc et al. 2012), such that we aimed

at quantifying this impact.

This chapter is structured as follows: in Sect. 6.2, we introduce the theoretical models of the applied

halo mass function and the scaling relations. Sect. 6.3 derives the models of the observable cluster

population functions in the two cases of available photon counts and temperatures, respectively, along

with the corresponding mock catalogues, whereas Sect. 6.4 describes the statistical set-up of the sim-

ulations. The following sections summarise the simulation approach of currently existing eROSITA
forecasts (Sect. 6.5) and present our predictions for different cosmological models (Sect. 6.6). A de-

tailed analysis of the impacts of the different simulation steps follows in Sect. 6.7 and the discussion of

the results is found in Sect. 6.8. The summary and conclusion of this work are given in Sect. 6.9, and

we end this chapter with an outlook of currently considered extensions to this project (Sect. 6.10).

Throughout this work, we applied a fiducial WMAP5 (Wilkinson Microwave Anisotropy Probe) cosmol-

ogy (Komatsu et al. 2009), which we extended to also include neutrinos (Tab. 6.1).

6.2 Theoretical Models and Simulation Strategy

6.2.1 Fiducial Cosmological Model

The details of our fiducial WMAP5 cosmology are presented in this section and especially in Tab. 6.1.

To additionally account for the influence of neutrinos on the abundance of galaxy clusters, we included∑
mν = 0.06 eV, the neutrino mass summed over all neutrino species, and Neff = 3.046 for the total

effective number of neutrino species to our fiducial model. This mass estimate represents the lower the-

oretical limit (Lesgourgues & Pastor 2012, Sect. 2.1.2), where this summed neutrino mass is equivalent

to a current massive neutrino energy density of (e.g. Lesgourgues & Pastor 2006; Lesgourgues et al.

2013)

Ωνh2 =

∑
mν

93.14 eV
= 6.4 · 10−4 , (6.1)

with the Hubble parameter h and h = H0/100 · [Mpc · s/km]. Accordingly, the current matter density

was computed as Ωm = (Ωbh2 + Ωch2 + Ωνh2)/h2, based additionally on the energy densities of the

baryons Ωb as well as of the cold dark matter component Ωc. In the presence of relativistic neutrinos,

also the radiation energy density is influenced as

Ωr = Ωγ ·
⎛⎜⎜⎜⎜⎜⎝1 + 7

8
·
(

4

11

)4/3

· Neff, massless

⎞⎟⎟⎟⎟⎟⎠ (6.2)
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with the photon energy density Ωγ and the second summand representing the contribution of the mass-

less neutrinos. The above equation follows from the general concepts of the thermal history of our

Universe (e.g. Lesgourgues et al. 2013, Sect. 2.1.2). For the dark energy density, we defined ΩDE =

Ω0−Ωm−Ωr in dependence on the total energy density Ω0, but independent of the cosmological model.

In the case of a ΛCDM-model, ΩDE is equivalent to the cosmological constant ΩΛ. Throughout all sim-

ulations, we assumed a spatially flat universe and thus Ω0 = 1.0, following the precise findings by e.g.

Planck Collaboration et al. (2015c) with 1−Ω0 = 0.0008 with an uncertainty of only ∼ 0.4%. To define

the dark energy equation of state as a function of time, we applied the parametrisation by Chevallier &

Polarski (2001) and Linder (2003) with

w(a) = w0 + wa(1 − a) , (6.3)

in dependence on the scale factor a, and the corresponding evolution of the dark energy

ΩDE(a) = ΩDE · exp

[
−3 ·

∫ a

1

1 + w(a′)
a′

da′
]

(6.4)

ΩDE(a) ∝ exp[−3 · (wa · (1 − a) + (1 + w0 + wa) · ln[a])]. (6.5)

Initially, the equation of state was fixed to w0 = −1 and wa = 0 to represent a cosmological constant in

accordance with the WMAP5 results and with more recent findings by e.g. Planck Collaboration et al.

(2015c). During the forecasts, we especially tested the constraining power of eROSITA on the equation

of state of dark energy and considered amongst others a w0CDM-model with variable w0, but wa = 0,

and a wCDM-model with variable w0 and wa, respectively.

Accordingly, when considering both neutrinos and variable dark energy, the scale factor dependent

Hubble parameter was defined as

H(a) = H0 · E(a)

H(a) = H0 ·
√
Ωr · a−4 + (Ωb + Ωc + Ων) · a−3 + ΩDE(a). (6.6)

Tab. 6.1 additionally summarises the applied parameters for the scaling relation as well as aspects of

the eROSITA survey strategy, which are both addressed in detail in the following sections.

6.2.2 The Halo Mass Function

The halo mass function, from which we inferred the expected abundances of galaxy clusters for a given

cosmological model, is generally derived from the concepts of structure formation. It is thus based

on the linear matter power spectrum P(k, z), which describes the influence of the different perturbation

scales k for the growth of structures in dependence on the redshift z. For a fixed redshift, we estimated

the cosmology dependent linear power spectrum with CAMB (Code for Anisotropies in the Microwave
Background) by Lewis et al. (2000). The influence of neutrinos as well as of the nature of dark energy

on the power spectrum was included in this computation, where e.g. an increased abundance of neutrino

families as well as an increased summed neutrino mass reduced the amplitude on small perturbation

scales (comp. e.g. Ichiki & Takada 2012, Sect. 2.3.2). However, the following steps were based on the

linear matter power spectrum of only dark matter and baryons computed at z = 0(Costanzi et al. 2014;

Mantz et al. 2015; Roncarelli et al. 2015). The redshift evolution of this perturbation spectrum was then

accounted for by the normalised solution to the differential equation of linear matter perturbations on
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Table 6.1: List of applied parameter values; if not stated otherwise the values were taken from Komatsu et al.

(2009) for the cosmology, from Reichert et al. (2011) for the scaling relations and from Pillepich et al. (2012) for

the survey characteristics. All listed priors were simulated as a normal distribution. Additional information was

taken from (a) Cooke et al. (2014), (b) Riess et al. (2011), (c) Vikhlinin et al. (2009a).

Cosmology Fiducial Value Prior

Ωbh2 0.02265 ±0.00046a

Ωch2 0.1143

Ωνh2 0.00064

σ8 0.817

Ωm 0.28001

ns 0.96

h 0.701 ±0.022b

Ωb 0.046

w0 −1.0

wa 0.0

ΩΛ 0.71999

Ωr ∼ 7 · 10−5

Neff 3.046

Scaling Relations Fiducial Values Prior

αLM 1.923 ±0.058

βLM 0.386 ±0.088

γLM 1.731 ±0.305

σLM 0.396c ±0.039c

αTM 0.617 ±0.049

βTM 2.143 ±0.085

γTM 0.642 ±0.054

σTM 0.119c ±0.03c

Survey Parameters Fixed Value

fsky 0.658

texp 1.6 ks

response matrix "erosita_iv_7telfov_ff.rsp"

sub-horizon scales (comp. e.g. Linder & Jenkins 2003; Percival 2005)

δ̈(t) +
2ȧ
a
δ̇(t) =

3H2
0
Ωm

2a3
δ(t) , (6.7)

with the density contrast δ(t) depending on time t, the scale factor a, the Hubble constant H0, and the

current mean matter density Ωm. This homogeneous second order differential equation was coupled in

scale factor and time via the relation

da
dt
= ȧ = H(a) · a . (6.8)

Rewriting the density contrast in dependence on the scale factor a and substituting the time derivatives

dt by da, the coupled differential equations were simplified to a single second order differential equation.
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Its normalised solution D+(a) = δ(a)/δ(1) is named growth factor. As the growth factor is thus defined

by the evolution of the Hubble parameter (Eq. 6.6), it is impacted by the abundance of neutrinos as well

as by the characteristics of dark energy. Based on the growth factor, we defined P(k, z) = P(k, 0) ·D2
+(z).

Smoothing the powerspectrum over the mass scale, while integrating over all perturbation scales yielded

the standard deviation in the linear matter density σ2(M, z)

σ2(M, z) =

∫ ∞

0

dk
2π2

k2 · P(k, z) · |W(k,M)|2 . (6.9)

For the smoothing we applied the spherical top-hat window function W(k,M), which in Fourier space

reads

W(k,M) = 3 · sin(kr) − kr · cos(kr)

(kr)3
, (6.10)

with a smoothing scale of M = 4
3
πρ̄m,0r3, with the mean matter density today ρ̄m,0 = ρcrit,0 · (Ωc + Ωb)

and ρcrit,z = 3H(z)2/(8πG). Based on the matter standard deviation, the halo mass function was first

derived by Press & Schechter (1974) with a general form of

dn
dM

(M, z) =
ρ̄m,0

M
·
(
d lnσ−1(M, z)

dM

)
· f (σ, z) , (6.11)

to define the number density of collapsed haloes per mass bin. Note that the matter density ρ̄m,0 was

defined by only including the dark matter as well as the baryon abundances as defined above (comp.

Costanzi et al. 2014; Mantz et al. 2015; Roncarelli et al. 2015). The halo mass function shows an

universal profile for different cosmological models, including variable dark energy (e.g. Jenkins et al.

2001; Evrard et al. 2002; Linder & Jenkins 2003; Kuhlen et al. 2005) and we assumed an extended

universality also for the redshift evolution. For the function f (σ, z), we applied the findings by Tinker

et al. (2008)

f (σ, z) = AT

[(
σ

bT

)−aT

+ 1

]
· exp[−cT/σ

2] . (6.12)

with

AT(z) = AT,0 · (1 + z)−0.14 (6.13)

aT(z) = aT,0 · (1 + z)−0.06 (6.14)

bT(z) = bT,0 · (1 + z)−αT (6.15)

cT(z) = cT,0 (6.16)

ln[αT(Δm)] = −
(

0.75

ln[Δm/75]

)1.2

, (6.17)

The above parameters marked by the index “T” were estimated as a fit to collissionless cosmological

structure simulations and were quantified at z = 0 for various halo overdensities Δm,z = ρ̄halo,z/ρ̄m,z

compared to the mean matter density ρ̄m,z (comp. Table 2 in Tinker et al. (2008)).

However, to be consistent with the general definition of cluster scaling relations, we defined halo masses

based on the overdensities Δcrit,z compared to the critical density with

MΔ,z =
4π

3
(Δcrit,z · ρcrit,z)r3

Δ . (6.18)
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The conversion between the different overdensity definitions followed Δcrit,z/Δm,z = ρ̄m,z/ρcrit,z = Ωm,z,

where we applied a critical overdensity of Δcrit = 500 throughout this paper, independent of redshift.

This overdensity is commonly applied in X-ray scaling relations, since it represents the limit for X-ray

temperature measurements with e.g. XMM-Newton and Chandra (e.g. Reiprich et al. 2013).

6.2.3 X-ray Scaling Relations

Since the reconstruction of X-ray cluster masses requires in general long exposure times, this property

will be available only for a small subsample of eROSITA clusters. To relate direct observables, such as

the X-ray luminosity or the temperature of the intra-cluster medium (ICM), to the mass, we applied the

reparametrised scaling relations by Reichert et al. (2011)

kT [keV] =

(
M

1014 M�

)αTM

· βTM · E(z)γTM (6.19)

LX [1044 erg/s] =

(
M

1014 M�

)αLM

· βLM · E(z)γLM , (6.20)

with the mass M ≡ M500 and the bolometric luminosity LX in the energy range (0.01, 100.) keV. The

values of the stated parameters are summarised in Tab. 6.1 along with their corresponding priors. These

scaling relations present a conservative approach for high redshift clusters and are based on a broader

galaxy cluster sample with z � 1.5 when compared to other scaling relations (comp. e.g. Vikhlinin et al.

2009a; Pratt et al. 2009; Mantz et al. 2010a). Additionally, in a previous work we already performed the

first forecasts for the precision of eROSITA cluster temperatures based on these scaling relations (Borm

et al. 2014), and those results were applied in the following project.

We considered an intrinsic scatter in the scaling relations, which we defined by a log-normal distribution

P(ln L∗X|M, z) =
1√

2πσ2
LM

· exp

⎡⎢⎢⎢⎢⎣− (ln L∗
X
− μL)2

2σ2
LM

⎤⎥⎥⎥⎥⎦ (6.21)

for the mass-luminosity relation M − LX, where μL = ln LX(M, z) derived from Eq. 6.20 with no scatter

in the relation. An analogous relation was applied also for the mass-temperature M −TX relation. Since

Reichert et al. (2011) were not able to quantify the intrinsic scatter in their scaling relations, we referred

to the results found by Vikhlinin et al. (2009a) as commonly observed scatter values with σLM = 0.396

and σTM = 0.119 (comp. e.g. Mantz et al. 2010a; Allen et al. 2011).

Additionally, we implemented the scaling relations by Vikhlinin et al. (2009a) in some of our cosmolog-

ical simulations to investigate the influence of the applied scaling relation on the cosmological forecasts

and to compare our results to previous works, which were based on these relations (Pillepich et al. 2012,

Pillepich et al., in prep.). For this second set of scaling relations, we followed the definitions

ln LX = [101.48 + 1.5 · (σ2
LM − 0.3962)] (6.22)

+ 1.61 · ln(M/(3 · 1014 M�))

+ 1.85 · ln E(z) − 0.39 · ln(h/0.72)

ln kT = 0.65 · ln(M/(3.02 · 1014 M�/h)) (6.23)

+ 0.65 · ln E(z) + ln(5 keV) .
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The masses were still defined as M500, whereas the luminosity was now computed in the (0.5−2.0) keV

rest frame band. For the scatter in the relations, we referred to the expressions stated above. However,

as our simulations were mainly dependent on the relations by Reichert et al. (2011), the scaling relations

by Vikhlinin et al. (2009a) were only applied when stated specifically.

6.3 Observable Cluster Population Functions and Mock Catalogues

Relating the cluster mass to X-ray observables via scaling relations allowed us to re-write the halo mass

function into a galaxy cluster observable function and thus to apply the entire sample of the ∼ 100, 000

observed eROSITA galaxy clusters for cosmological studies. As observable we chose the number of

cluster photons η detected by the eROSITA CCDs in the energy range between (0.5 − 2.0) keV and

accordingly defined the galaxy cluster photon counts function dn/dη(η, z) (Pillepich et al. 2012), where

redshifts will be available from optical follow-up observations for all clusters. At the same time, we

derived a galaxy cluster temperature function dn/dT (T, z) as an additional theoretical distribution for

those clusters with expected temperature information. This second model already included the detailed

instrumental specific selection of clusters with precise and accurate temperatures as determined by Borm

et al. (2014).

6.3.1 Deriving the Galaxy Cluster Photon Counts Function

To convert the cluster mass M and the redshift z into the number of observed photons η, the temperature

TX and the luminosity LX of the cluster were computed in a first step by applying the scaling relations.

The parameter set (TX, LX, z) defined the spectrum of the cluster unambiguously, which was modeled an

absorbed apec spectrum phabs*apec (Smith et al. 2001) with the software xspec (Arnaud 1996) version

12.7.0, while assuming a constant metal abundance of A = 0.3 A� compared to the solar metallicity

(Arnaud et al. 1992; Mushotzky & Loewenstein 1997). Convolving this spectrum with the instrumental

response (RSP) yielded the observed number of photons by the instrument, such that in summary the

approach read

(M, z)
scaling relations−−−−−−−−−−−→ (TX, LX, z)

instr. response−−−−−−−−−−→ η . (6.24)

The approach of a constant metal abundance was preferred at this point, since a metallicity evolution

with redshift could not be certainly quantified, yet (Balestra et al. 2007; Maughan et al. 2008; Baldi

et al. 2012). At the same time, we set the absorbing column density to NH = 3 × 1020 particles/cm2 as

a commonly observed value for galactic latitudes of b � 20◦ (Kalberla et al. 2005). The spectral model

was then convolved with the eROSITA RSP file for the combined resolution of all seven telescopes

averaged over the entire field-of-view. Fig. 6.1 displays the dependence of the number of detected

photons on the cluster temperature and redshift for a fixed luminosity. Accordingly, the photon counts

remained almost constant with the temperature, when we neglect clusters with temperatures of � 0.5

keV, which correspond to masses of M < 1013 M�/h and thus to objects well within the galaxy group

regime. Due to the proportionality of η ∝ LX/D2
L

on the luminosity distance DL, we scaled the number

of photons as η = ηfid ·D2
L,fid
/D2

L
to include the dependence on cosmology, with the index “fid” marking

the computation in our fiducial cosmology.

Knowing the relation between the cluster mass and redshift, and the number of observed photons (Eq.
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Figure 6.1: Photon count rates detected by the eROSITA instrument in the energy range (0.5−2.0) keV at different

redshifts for galaxy clusters with a luminosity of LX = 1045 erg/s in the same rest frame energy band. The cluster

emission was modeled as a phabs*apec spectrum and was then convolved with the eROSITA response for all

seven telescopes within the software xspec.

6.24), we derived the cluster photon counts function as13

dn
dη

(η∗, z) =

∫
dM̄

dn
dM

(M̄, z) · P(η∗|M̄, z) , (6.25)

where the term P(η∗|M̄, z) represents the total scatter which might have arisen in the conversion. In the

optimal, but unrealistic, case of no scatter, the above expression would simplify to

dn
dη

(η∗, z) =
dn
dM

(M∗, z) · dM
dη

(M∗, η∗, z) , (6.26)

with the derivative dM/dη inferred from the procedures in Eq. 6.24. However, since the inclusion of the

scatter was inevitable for precise and reliable cosmological forecasts, we needed to consider

P(η∗|M̄, z) = P(ln η∗|M̄, z) · 1

η∗

=

∫
d ln LX

∫
d ln TX P(ln LX, ln TX|M̄, z)︸�������������������︷︷�������������������︸

intrinsic scatter in scaling relations

(6.27)

· P(ln η∗| ln η(ln LX, ln TX, z))︸������������������������������︷︷������������������������������︸
Poisson noise

· 1
η∗
.

13 The general considerations for the derivation of dn/dη(η∗, z) for eROSITA have first been discussed in Pillepich et al. (2012).
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In general, the intrinsic scatter in the scaling relations P(ln LX, ln TX|M̄, z) is expressed as a bivariate

log-normal distribution (comp. also Eq. 6.21) to account for a possible correlation between LX and TX

P(X|M̄, z) =
1

2π|Σ|1/2 · exp

[
−1

2
(X − μ)TΣ−1(X − μ)

]
. (6.28)

The applied vectors X and μ, and the covariance matrix Σ, which defines the correlation between the

two parameters, read

X =
(

ln LX

ln TX

)
and Σ =

(
σ2

LM
ρLTσLMσTM

ρLTσLMσTM σ2
TM

)
, (6.29)

with μ containing the mean values of ln LX and ln TX, and ρLT defining the linear correlation coefficient

between the two parameters. Up to now, ρLT has not been reliably quantified and different studies sug-

gested contradictory results (Stanek et al. 2010; Kravtsov et al. 2006; Mantz et al. 2010a). Accordingly,

we followed the simplified approach by Pillepich et al. (2012) with ρLT = 0, supported by the weak in-

fluence of the temperature on the number of observed cluster photons (comp. Fig. 6.1). Following this

approach, the expression of P(X|M̄, z) in a first step reduced to a multiplication of two one-dimensional

log-normal distributions. In a second step, however, we neglected the scatter in the M − TX relation due

to the mentioned weak dependence of the observable on the ICM temperatures, such that we eventually

arrived at the one-dimensional integration

P(η∗|M̄, z) =
1

η∗
·
∫

d ln LX P(ln LX|M̄, z) (6.30)

· P(ln η∗| ln η(ln LX, M̄, z)) .

The Poisson noise was expected to show only a negligible effect on the cosmological estimates (comp.

Sec. 6.8.5), such that it was defined as a Dirac delta function (Pillepich et al., in prep.)

P(ln η∗| ln η(ln LX, M̄, z)) = δD(ln η∗ − ln η) . (6.31)

We then followed a coordinate substitution from ln LX → ln η based on the relation η ∝ LX and Eq. 6.27

simplified to

P(η∗|M̄, z) =
1

η∗
· 1√

2πσ2
LM

· exp

⎡⎢⎢⎢⎢⎣− (ln η∗ − μη)2

2σ2
LM

⎤⎥⎥⎥⎥⎦ , (6.32)

with μη = ln η(M̄, z) as expected number of photons if no scatter in the scaling relations was applied.

Accordingly, we finally expressed the cluster photon counts function as

dn
dη

(η∗, z) =

∫
dM̄

dn
dM

(M̄, z) · 1

η∗
· (6.33)

· 1√
2πσ2

LM

· exp

⎡⎢⎢⎢⎢⎣− (ln η∗ − μη)2

2σ2
LM

⎤⎥⎥⎥⎥⎦ .

Fig. 6.2 displays this function for three different redshifts. The graphs were computed for the scaling

relation by Reichert et al. (2011) (solid lines) as well as by Vikhlinin et al. (2009a) (dotted lines). In

general, the shape of the function reflects the evolution of the halo mass function with mass and redshift,

where clusters with large numbers of observed photons represent massive clusters. A deviation of the

113



6 Cosmological Constraints from eROSITA Galaxy Clusters

computed abundances of clusters between the two different scaling relations is already visible by eye

and may even show ratios of up to a factor of ∼ 2. Accordingly, the influence of the applied relations on

the cosmological constraints needs to be quantified and discussed for their reliable interpretation (Sect.

6.7.1).

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 10  100  1000  10000  100000  1e+06  1e+07

dn
/d

η 
[h

3 /M
pc

3 ]

counts η [Texp=1.6 ks]

dn/dη in dependence on η

z=0.01
z=0.5
z=1.0

Figure 6.2: Galaxy CLuster photon counts function for the detected eROSITA photon events for three different

redshifts when applying the scaling relations by Reichert et al. (2011) (solid lines) and by Vikhlinin et al. (2009a)

(dotted lines). The functions were computed following the approach derived in Eq. 6.33.
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Figure 6.3: Graphical description of the photon counts cut ηmin = 50 cts (black dotted line) and the mass cut for

three different cluster masses. The clusters, which pass the cuts are located in the top right, framed by the mass

cut on the left and by the photon cut on the bottom.
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For a more realistic treatment of the galaxy cluster photon counts function, we included a lower limit in

the observed number of photon counts of ηmin = 50 and a lower mass cut of Mcut = 5 · 1013 M�/h in the

following computations (Pillepich et al. 2012, especially Fig. 2). The photon limit was defined by the

sensitivity of eROSITA to identify an extended source as a galaxy cluster, whereas the mass cut avoided

a confusion between the characteristics of galaxy clusters and galaxy groups (e.g. Eckmiller et al. 2011).

As the cluster mass was initially not known, the lower mass cut was converted into a redshift dependent

photon counts cut following Eq. 6.24. This cut was computed for the fiducial WMAP5 cosmology and

remained fixed throughout the entire forecasts, which mirrors the approach for the analysis of real data.

If the cut was adapted for each tested cosmology, the results would be biased to higher precision. For

the applied cosmology and the scaling relations by Reichert et al. (2011), the rejection of galaxy groups

dominated the defined photon limit up to redshifts of zcut = 0.28. Above this redshift the limit was

solely defined by ηmin = 50. Fig. 6.3 presents a graphical description of the cuts, where the parameter

space of interesting clusters is located in the top right corner, framed by the mass cut on the left and by

the photon cut on the bottom.

6.3.2 Including Temperature Information

The derivation of the galaxy cluster temperature function was analogous to the strategy applied in the

previous section (comp. Eq. 6.25)

dn
dT

(T ∗, z) =

∫
dM̄

dn
M

(M̄, z) · P(T ∗|M̄, z) · S (M̄, z) . (6.34)

However, we included the aspect that temperature information will not be available for the entire cluster

catalogue, such that we defined a multiplicative selection function S (M, z) (comp. also e.g. Mantz et al.

2010a). This function defined the probability to observe a precise cluster temperature with ΔT/T < 10%

with eROSITA in dependence on the cluster mass and redshift. Based on the findings in our previous

work (Borm et al. 2014), precise temperature estimates will be available for nearly all clusters up to

z ≈ 0.08. At higher redshifts, the majority of clusters with precise temperatures is known already

from detailed X-ray observations, such as from the eHIFLUGCS (extended HIgh FLUx Galaxy Cluster
Sample) (Reiprich 2012). In total, the selection function was defined to follow the shape of a step

function with a detailed derivation of S (M̄, z) summarised in appendix D.1, where for those clusters

included in eHIFLUGCS, the selection function read S (M̄, z) = 1. As this derivation was based on the

scaling relations by Reichert et al. (2011), we studied the function dn/dT for these scaling relations

only.

The scatter in the temperature observations P(T ∗|M, z) was in this case accounting for the intrinsic

scatter in the M − TX scaling relation and additionally included a statistical scatter in the temperature

estimation

P(T ∗|M̄, z) =
1

T ∗

∫
d ln TX P(ln T ∗| ln TX, M̄, z)︸�������������������︷︷�������������������︸

statistical scatter

(6.35)

· P(ln TX|M̄, z)︸����������︷︷����������︸
intrinsic scatter M − TX

.

Just as the scatter in the scaling relations, also the statistical scatter in the temperature estimates followed

a log-normal distribution (comp. appendix D.1) with the scatter σTT = ΔT/〈T 〉(M̄, z) representing the

computed relative temperature uncertainties for the different combinations of cluster mass and redshift.

The integration over two multiplied log-normal distributions yielded again a log-normal distribution and
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Figure 6.4: Lower temperature cut for the galaxy cluster temperature function dn/dT described by a photon limit

of ηmin = 50 and by three different mass cuts for comparison. The clusters of interest were thus limited by the

mass cut at lower redshifts and by the photon cut at higher redshifts.

Eq. 6.35 simplified to

P(T ∗|M̄, z) =
1

T ∗
· 1√

2π · (σ2
TM
+ σ2

TT
)

· exp

⎡⎢⎢⎢⎢⎣− (ln T ∗ − μTX
)2

2 · (σ2
TM
+ σ2

TT
)

⎤⎥⎥⎥⎥⎦ , (6.36)

again with μTX
= ln TX(M̄, z). We defined σTM = 11.9 (Vikhlinin et al. 2009a) and obtained σTT(M̄, z)

by investigating the expected temperature precisions, estimated in our previous work (Borm et al. 2014).

We also included our findings, that all clusters with precise temperatures also show accurate temperature

values, such that no parameter bias needed to be accounted for.

Analogous to the considerations for the photon counts function, a lower detection limit was applied,

where the limits on ηmin and Mcut were converted into a redshift dependent temperature cut Tmin(z) (Fig.

6.4). Also in this case, the temperature cut was fixed at the fiducial cosmology and a value of zcut = 0.28

was estimated, such that above these redshifts the temperature cut was in theory dominated by the mini-

mum cluster mass. However, at these distances, the cut at low kT was in practise completely defined by

the selection function S (M̄, z).

Fig 6.5 presents the galaxy cluster temperature function in dependence on the cluster redshift and the

temperature. The dotted graphs display this function without adding instrumental characteristics for

comparison reasons, such that neither the above cuts, nor the selection function or the statistical scatter

in the temperature estimates were applied. The graphs show a similar shape as the halo mass and the

photon counts functions with an exponential decrease towards higher temperatures, which represent the

more massive clusters. When considering the above mentioned instrumental characteristics, dn/dT ad-

ditionally displays strong cut-offs toward decreasing temperatures. In principle, eROSITA will be able

to estimate precise temperatures for all clusters up to z ≈ 0.08, such that the cut-offs at these low red-

shifts were defined by the low temperature cut. At the same time, the functions display smooth shapes

at these redshifts, due to a selection function of in general S (M̄, z) = 1. On the other hand, at increas-
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Figure 6.5: Galaxy cluster temperature function as derived in Sect. 6.3.2, plotted for four different redshifts. The

dotted graphs present this function without applying any instrumental information, such that no selection function

or statistical scatter in the temperature estimates was considered. The solid curves include these details as well

as the computed redshift dependent temperature limit, such that the function was reduced to zero for redshifts of

z � 0.6.

ing redshifts the selection function started to shape these cut-offs and even reduced the galaxy cluster

temperature function to zero for z � 0.6. At these highest still computed redshifts of 0.5 � z � 0.6,

the observed precise teperatures were all included within eHIFLUGCS, such that again the selection

of S (M̄, z) = 1 yielded a smooth cluster abundance function. The wiggles observed for intermediate

redshifts, for example around z ≈ 0.2, were due to the steps defined in the selection function and mir-

ror the rather unsmooth and inhomogeneous trend predicted in the distribution of relative temperature

uncertainties with mass and redshift (comp. Fig. 4.3). However, for the case of S (M̄, z) = 1, the func-

tion dn/dT including the instrumental characteristics slightly exceeds the abundance function excluding

theses characteristics by � 3%. This small deviation is not visible in Fig. 6.5, but this behaviour was

expected, as the instrumental characteristic function additionally includes the statistical scatter in the

temperature estimates.

6.3.3 Mock Catalogues

Forecasting cosmology based on the abundance of clusters required the computation of their total num-

ber and thus integrations of the galaxy cluster photon counts function over the photon counts and the

observed volume. The first step in this procedure was to estimate the differential abundance of clusters

in dependence on the redshift

dN

dz deg2
(z) =

4π

A
· fsky ·

⎡⎢⎢⎢⎢⎣D2
A
· c

H(z)

⎤⎥⎥⎥⎥⎦ · ∫ ∞

ηmin

dη∗
dn
dη

(η∗, z) , (6.37)

with the observed sky fraction fsky = 0.658 (Pillepich et al. 2012), the survey area A in deg2, the

comoving angular diameter distance DA, and the speed of light c. This distribution was highly dependent
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Figure 6.6: Differential number of clusters per deg2 as a function of redshift. The black curve presents the cluster

distribution of all galaxy clusters with η > 50. Different mass cut values are indicated in colour, where these cuts

especially influence the distribution at the lower redshift end and thus shift the peak of the distribution.

on the applied limits for ηmin and Mcut (Fig. 6.6), such that as expected from Fig. 6.2, the photon cut

defined the shape of the distribution at higher redshifts, whereas the converted mass cut shaped the

differential cluster abundance at the lower redshifts. The peak of the distribution is correspondingly

located at zcut, which marks the redshift for which η(Mcut, zcut) = ηmin. Since at low redshifts the

majority of observed clusters was showing small masses, a reduced mass cut accordingly results in an

increased fraction of more local clusters.

Within the next step, we described the total expected number of clusters in different observable bins

and constructed two mock catalogues based on a (z, η)- and a (z,kTX)-grid, respectively. To compute

the abundance of clusters N j per bin, we integrated the cluster observable functions over the considered

binned observable and the binned volume, represented by z

Nbin = 4π · fsky ·
∫ zup

zlow

dz
D2

A
(z) · c

H(z)

∫ ηup

ηlow

dη∗
dn
dη

(η∗, z) , (6.38)

with the same parameters as in the previous equation. An equivalent computation was applied for the

galaxy cluster temperature function and the abundance of clusters in the (z,kTX)-bins. Within these

computations, we neglected the influence of halo clustering on the abundance of clusters in the individ-

ual bins, since the eROSITA-survey will cover the entire sky.

Figs. 6.7 & 6.8 present these expected distributions of observed galaxy clusters on the two grids with

very fine binning, while accounting for all mentioned limits and selection effects. Accordingly, the

cluster abundance was reduced to zero for low photon counts at low redshifts (Fig. 6.7) and at low

temperatures (Fig. 6.8), respectively, due to the lower mass cut. Towards higher photon counts and

equivalently towards higher temperatures, the number of clusters decreased smoothly as expected from

the shape of the galaxy cluster observable functions. Additionally, the redshift put strong constraints on

observing precise temperatures, such that the redshift distribution in the (z, kTX)-grid was significantly

narrowed compared to the (z, η)-grid and showed a sharp cut-off towards increasing redshifts (Fig. 6.8).
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Figure 6.7: Distribution of the eROSITA galaxy clusters as a function of their redshift z and the number of photons

η detected by the instrument. The colour of the pixels indicates the number of galaxy clusters in the different bins

with the peak of the abundance being located towards the low photon counts end.

As a whole, the cluster distribution in the (z,kTX)-grid displayed more substructures by mirroring the

shape of the selection function. These substructures consisted of eHIFLUGCS as clusters with the high-

est temperatures for a given redshift, of the eROSITA-clusters with ΔT/〈T 〉 < 10% in the centre, and

clusters with an increased median relative temperature uncertainty towards the higher redshifts.

For computing the applied mock catalogues, however, we set the bin sizes according to the resolution

of the individual observables with eROSITA. The width of the redshift bins was defined as Δz · (1+ zbin)

with Δz = 0.05 to approximate the precision of optical photometric redshift estimates. Intentionally, the

applied redshift resolution was chosen to underestimate the commonly measured photometric precision

of Δz ≈ 0.022 (comp. e.g. Liu et al. 2015), such that the scattering of clusters between different redshift

bins due to their limited redshift resolution could be neglected. Following the idea of optical follow-up

observations for all eROSITA clusters, we defined 19 bins in redshift from 0.01 ≤ z ≤ 2.5 with the last

bin covering the range between 1.5 < z < 2.5. The number of photon counts η was divided into 20

equally spaced bins in log10 with 50 ≤ η ≤ 50, 000. For the (z,kTX)-mock catalogue of clusters with

precise temperatures, we kept the same binning in redshift, but reduced the number of bins to eight

between 0.01 ≤ z ≤ 0.5, due to the sharp drop in the selection function towards increasing redshifts.

For the temperature bins, we applied a conservative resolution of ΔT/T = 0.15 (comp. also Mantz et al.

2010a), which was twice the average relative uncertainty of all clusters in the precise temperature sample

(estimated from the results by Borm et al. (2014)). This approach accordingly decreased the scatter of

clusters between temperature bins and finally resulted in ten kTX-bins between (1.0 ≤ kTX ≤ 40.0) keV,

with the last bin formally covering the range between (15.2 ≤ kTX ≤ 40.0) keV. The upper temperature

limit was chosen to consistently and in theory also include those clusters with the highest considered

masses and redshifts, M = 1015.7 M� and z = 1.78, though these were suppressed by the defined selec-
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Figure 6.8: Distribution of the eROSITA galaxy clusters as a function of redshift z and temperature kTX of the

ICM. Again, the colour of the pixels represents the number of clusters per pixel, where the size of the redshift

grid as well as the abundance of clusters was reduced due to the required instrumental selection of clusters with

precise temperature estimates.

tion function and especially by the shape of the galaxy cluster temperature function (comp. Fig. 6.8).

Integrating over the individual bins, we computed a total of ∼ 98, 700 galaxy clusters detected by the

eROSITA-instrument, when following the scaling relations by Reichert et al. (2011). The all-sky surveys

of this instrument, additionally allowed for a sample of ∼ 1, 860 new clusters with precise temperature

information, and for a total temperature catalogue of ∼ 2, 050 clusters, including eHIFLUGCS.

6.4 Simulations

To forecast the constraints eROSITA will place on cosmology, we applied MCMC simulations within the

package COSMOMC (Lewis & Bridle 2002) version 01/2015, while employing the included Metropolis

sampler. Within this package we implemented our own likelihood to compare the data within our mock

catalogues to the expectations for different cosmologies. Additionally, we simultaneously fitted the

scaling relations by default throughout our simulations. For our main results, presented in Sect. 6.6,

we investigated four distinct cosmological models for the complete eROSITA cluster catalogue binned

as (z, η), when assuming only redshift and luminosity, or equivalently the number of photon counts, to

be available. In a second set of simulations, two cosmologies were investigated for a subcatalogue of

∼ 2050 clusters with eROSITA temperature estimates binned as (z, kTX).

(z, η) ΛCDM, w0CDM, wCDM, ΛCDM+ν

(z, kTX) ΛCDM, wCDM
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In general, each of these simulations was executed for a pessimistic as well as for an optimistic ap-

proach, differentiated by the applied priors (Sect. 6.4.3). Additionally, we combined our results for the

optimistic cases with data by the Planck satellite to break parameter degeneracies and to further improve

their precision. The following sections will describe the applied eROSITA-likelihood function in more

detail, summarise the applied priors and variables, as well as define the strategy for the joint analysis

with the Planck data.

6.4.1 Likelihoods

We expressed the complete likelihood L(N|X,Y) to re-obtain the observed total number of clusters

N, given a cosmological model X and a scaling relation model Y, as a combination of the individual

likelihoods to detect N j clusters in the j different mock bins. Since the values of N j approach zero

especially towards higher observable values, these likelihoods were based on Poisson statistics

L(N|X,Y) =
∏

j

L(N j|X,Y) =
∏

j

μ
N j
j

N j
· exp[−μ j]

∣∣∣∣∣X,Y , (6.39)

with μ j as expected number of clusters in the j-th mock bin given the cosmology X and the scaling

relation model Y. Following the strategy within COSMOMC, we implemented the negative natural

logarithm of this likelihood in our code and additionally neglected all constant summands, such that the

likelihood expression simplified to

− ln L(N|X,Y) =
∑

j

μ j − N j · ln μ j . (6.40)

Within our first set of forecasts, this sum was computed over the (z, η)-mock catalogue bins and we

inspected the cosmological constraints given the complete eROSITA-sample of ∼ 98, 700 clusters. In

the second simulation set-up, only the subcatalogue of ∼ 2050 clusters with estimated temperatures

was considered. The methodology for the joint analysis of eROSITA and external cosmology data is

expressed in Sect. 6.4.5.

6.4.2 Variable parameters

The parameters being varied within the MCMC sampling followed the default set-up of COSMOMC
and showed a close to Gaussian posterior distribution. For a ΛCDM-cosmology, our parameter set read

X = {Ωbh2,Ωch2, θ, ns, logA}14, with θ defining the angular size of the sound horizon at the epoch of de-

coupling, and with logA ≡ ln[1010 · A] with the amplitude of the linear matter power spectrum A. In the

considered extended cosmological models w0CDM, wCDM, and ΛCDM+ν, the additional parameters

w0, {w0, wa}, and
∑

mν were varied, respectively.

The scaling relations were determined simultaneously to the cosmology, where we defined two sets of

scaling models Y. In our first simulation set-up, when applying the (z, η)-mock catalogue, we defined

Y = {αLM, βLM, γLM, σLM} and fixed the parameters of the M − TX relation to the values in Tab. 6.1.

This approach was supported by the negligible influence of the temperature on the observed number of

photons (Sect. 6.3 & Fig. 6.1). Accordingly, for the forecast of a ΛCDM-cosmology, the model (X,Y)

consisted of nine variable parameters in total. When studying the impact of the temperature information

14 For more info refer to the COSMOMC-manual: http://cosmologist.info/cosmomc/readme.html.
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based on the catalogue (z, kTX), the scaling relation model was exchanged toY = {αTM, βTM, γTM, σTM}.

6.4.3 Priors

Due to the strong degeneracy between different cosmological parameters, especially between the Hubble

parameter h and the index of the power spectrum ns, which increases with increasing number of variable

parameters, we applied the Gaussian priors Δh = ±0.022 (Riess et al. 2011) and Δ(Ωbh2) = ±0.00046

(Cooke et al. 2014). Also, we defined Gaussian priors for the parameters of the scaling relations ac-

cording to their estimated uncertainties (Tab. 6.1). These uncertainties were considered as pessimistic

approach since they represented the current knowledge on the scaling relations. However, we expected

this information to improve by the time the final-depth eROSITA data will be analysed by /sim2020,

thanks to the synergy between X-ray follow-up observations of clusters with XMM-Newton, Chandra,

Astro-H, and NuSTAR. Also, eROSITA itself will reduce the uncertainties on the scaling relations by

means of the large data catalogue of the complete survey. Accordingly, an additional optimistic sce-

nario was adopted for the forecast, assuming four times tighter priors on the scaling relations (comp.

Pillepich et al., in prep.). In the case of studying the cluster subsample with estimated eROSITA tem-

peratures, the optimistic scenario was extended to also show roughly four times more clusters in the

catalogue. This was achieved by reducing the expected relative temperature uncertainties in the selec-

tion function by 40%.

All remaining variable parameters followed a flat prior distribution ofU(−∞,∞).

6.4.4 Planck -Data and Other Probes

Commonly, cosmology results from different probes are combined to break parameter degeneracies,

to calibrate the best-fit cosmology values and to improve the precision of these values (comp. e.g.

Vikhlinin et al. 2009b; Mantz et al. 2010a; Allen et al. 2011; Planck Collaboration et al. 2015c; Mantz

et al. 2015, comp. also Sect. 2.8). Currently, the data of the Planck satellite in combination with other

cosmological probes and data sets yield most precise estimates for various parameters, including e.g.

ns and w0 (Planck Collaboration et al. 2015c). However, Planck data of the cosmic microwave back-

ground (CMB) alone, did not allow to constrain the dark energy equation of state since the influence

of this energy component became relevant only much later in the evolution of the Universe. Accord-

ingly, additional external data were required to quantify Δw0 and Δwa. We thus applied the data set

which also included information on baryon acoustic oscillations (BAO), on the Hubble parameter, as

well as on supernovae type Ia data to guarantee constraints also on the time evolution of the dark energy

("base_w_plikHM_TT_lowTEB_BAO_H070p6_JLA"15) These data were taken from the second data re-

lease of the Planck satellite. The applied BAO data were based especially on the newest releases of the

Sloan Digital Sky Survey (SDSS) (e.g. Anderson et al. 2014), whereas the prior on the Hubble constant

was considering the work by Efstathiou (2014) and the supernovae data were a combination of differ-

ent supernovae type Ia compilations to the Joint Light-Curve Analysis (JLA) sample (e.g. Betoule et al.

2014). A detailed description of the applied external data sets is presented by Planck Collaboration et al.

(2015c).

For the above stated combination of data, cosmological analysis results were available within the Planck
data package for the investigated cosmologies w0CDM and wCDM. To yield the best-fit cosmology val-

ues and their uncertainties also for a ΛCDM-model, we performed a MCMC analysis based on the data

and on the likelihoods provided by the Planck data package.

15 The Planck data are e.g. available from the ESA-webpage: http://pla.esac.esa.int/pla/#cosmology.
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6.4.5 Joint likelihoods

When combining credibility regions of different cosmological probes and data sets to yield increased

parameter precisions, the most accurate approach is to perform joint MCMC simulations. As these

require a large amount of computing time and power, a first estimate of the combined credibilities

can be obtained from studying the information stored in the covariance matrices Ccov of the individual

MCMC chains. These square matrices are defined as

Ccov,i j =

⎧⎪⎪⎨⎪⎪⎩σ
2
i

(i = j)
σij (i � j)

(6.41)

following the computation

Ccov,i j =
1

N − 1

N∑
n=1

(Xi,n − μi) · (X j,n − μ j) . (6.42)

In these definitions, i and j describe two distinct parameters and σ2
i as well as σ2

j their variances.

Here, σi j states the correlation between the two parameters with σi j = ρi jσiσ j and the correlation

coefficient ρi j (comp. also Sect. 6.3.1). N denotes the total number of data points, which is in our case

equivalent to the number of chain steps, whereas Xi,n presents the n-th data point of parameter i with the

arithmetic mean μi. The credibilities were presumed to follow a Gaussian distribution for this approach,

such that this assumption yielded the most realistic and reliable results for close to Gaussian parameter

uncertainties.

The 2-dimensional credibility regions, stored in the covariance matrix, thus show elliptical shapes with

the axes lengths defined as (Coe 2009)

a2 =
σ2

i + σ
2
j

2
+

√
(σ2

i − σ2
j)

2

4
+ σ2

i j (6.43)

b2 =
σ2

i + σ
2
j

2
−

√
(σ2

i − σ2
j)

2

4
+ σ2

i j , (6.44)

with the angle θ between the major axis and the positive x-axis in a counter clockwise direction

tan 2θ =
2σi j

σ2
i − σ2

j

. (6.45)

However, the true lengths of the axes depended on the confidence level of interest and the above dis-

played parameters a and b were multiplied by a factor α =
√
Δχ2. For a 2-dimensional histogram, we

applied α = 1.52 (Δχ2 = 2.3) for the 68%-confidence level and α = 2.48 (Δχ2 = 6.17) for the 95.4%-

confidence level.

To combine two independent data sets, which was the case for the eROSITA and Planck data, we added

the inverse of the individual covariance matrices (Coe 2009)

C−1
cov,combined = C−1

cov,eROSITA +C−1
cov,Planck (6.46)

and finally inverted the resulting matrix to compute the joint ellipses. This approach required identical

dimensions for the inverted covariance matrices of both data sets. For the Planck data, we accordingly
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marginalised over all variables except for our cosmology set X. The corresponding Planck covariance

matrix was smaller by four dimensions when compared to the analogous eROSITA matrix, due to the

missing scaling parameters Y in the Planck sample. These additional columns and lines were then set

to zero in the inverted covariance matrix. As we introduced deviations from the accurate shapes of the

parameter uncertainties when following this approach, we compared the true MCMC contours with the

approximated ellipses to estimate the implied systematics.

6.4.6 Figure of Merit

The figure of merit (FoM) is a commonly applied parameter to quantify the performance of the studied

instrument for constraining certain variables. It is inversely proportional to the covariance matrix and to

the area of the credibility region, such that an increase in the FoM indicates a more suitable experiment

for studying the selected parameter set. For the 2-dimensional 1σ-uncertainty refions of the parameters

i, j, the FoM was computed as

FoM1σ
i, j =

(
σiσ j ·

√
1 − ρ2

i j

)−1

, (6.47)

based on the marginalised parameter uncertainties σi and σ j and the correlations coefficient ρi j between

the considered parameters. This relation followed the definition by the DETF (Albrecht et al. 2006,

2009; Coe 2009). The corresponding 2σ-FoM was obtained by multiplying the above expression by a

factor of 0.373, which is the ratio between the area of the 1σ- and the 2σ-credibility ellipses. Over all,

for the computation of the FoM, the uncertainties were again assumed to follow a Gaussian distribution.

6.5 Summary of Already Available Forecasts

First thorough and realistic investigations on cosmological constraints with eROSITA have been per-

formed by Pillepich et al. (2012), from whom we adopted the strategy of applying a galaxy cluster

photon counts function (comp. Sect. 6.3.1). This work focused on studying ΛCDM-cosmologies while

including tests of primordial non-Gaussianity. An extension to these first forecasts, now also including

predictions on the equation of state of dark energy, is currently summarised in the subsequent publica-

tion by Pillepich et al., in prep., to which we refer as P16 in the following. Also, our galaxy cluster

photon counts function was calibrated in collaboration with P16 to allow for negligible deviations be-

tween our definitions of less than one percent, where e.g. for the total number of eROSITA clusters a

difference of only ∼ 0.5% was achieved (comp. Sect. 6.8.1). For the forecast simulations, P16 relied on

a different statistical approach - on the Fisher matrix formalism - and our aim included amongst other

aspects to quantify the deviations between our strategies. This comparison then enables us to test the

reliability of the computed cosmological constraints and the influences of different simulation set-ups.

Investigating the accuracy of the predicted parameter uncertainties, additionally allows us to suggest a

preferred data reduction method for the future eROSITA cluster catalogue.

In the following, we thus summarise these methodology concepts, which deviate from our approach, and

the general results by P16 to perform a detailed comparison between our forecasts. Tab. 6.2 presents an

overview of the essential deviations between our two set-ups.
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Table 6.2: Summary of the differences between the set-up to perform the forecasts in this work and those by P16.

this work P16

Cluster data abundances abundances + clustering

Strategy MCMC Fisher

Scaling Relation Reichert et al. (2011) Vikhlinin et al. (2009a)

Opt. Scenario
Mcut = 5 · 1013 M�/h Mcut = 1 · 1013 M�/h

phot. redshifts spec. redshifts

6.5.1 Simulation Strategy

As already expressed, the derivation of the galaxy cluster photon counts function was calibrated between

this work and the work by P16. However, their cosmological simulations were based on mock catalogues

for abundances as well as for angular clustering of galaxy clusters, and the parameter uncertainties were

obtained from the Fisher matrix formalism.

The angular clustering addresses the spatial distribution of objects and asks for the probability of a

cluster with the characteristics (M1, z1) to be located at a certain distance from a second cluster (M2, z2).

Accordingly, this probability is related to the underlying matter distribution and can be traced by the

halo mass function or equivalently by our derived galaxy cluster photon counts function. These two

distributions are generally correlated by the general term

b(k,M, z) =

√
Phh(k,M, z)

P(k, z)
, (6.48)

with Phh as the linear power spectrum of the halo density field and b(k,M, z) as the bias between the two

power spectra. The strength of this systematic then depends on the cluster mass and redshift, as well

as on the considered clustering scale k (e.g. Mo & White 1996; Catelan et al. 1998; Smith et al. 2007).

Over-all, P16 worked with the so-called angular cross-spectrum between different observable bins i, j
and studied the probability to observe N j clusters in bin j, if bin i showed Ni cluster detections.

This tomographical test is especially interesting when analysing primordial non-Gaussianity fNL (comp.

e.g. Pillepich et al. 2012). A detailed description of the derivation and application of the halo bias and

the angular clustering is presented by Pillepich et al. (2012).

Another significant deviation from the statistical methodology presented in Sect. 6.4, is the perfor-

mance of a Fisher matrix analysis instead of MCMC simulations, where the Fisher matrix element for

the two parameters i, j is defined as

Fi j =

(
∂L
∂i ∂ j

)
, with L = − ln L (6.49)

and L as the negative natural logarithm of the likelihood function. The Fisher matrix defines the inverse

of the covariance matrix of the parameters and it accordingly contains information on the parameter

uncertainties and their correlations, while assuming Gaussian likelihoods.
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6 Cosmological Constraints from eROSITA Galaxy Clusters

6.5.2 Priors

The forecasts by P16 considered the same priors as described in Sect. 6.4.3 and the simulations were

also performed for a pessimistic and for an optimistic scenario. However, the optimistic case was

extended to include a) four times smaller uncertainties on the scaling parameters than currently known,

b) spectroscopic redshifts ofΔz = 0.01, and c) a reduced mass cut of Mcut ≥ 1·10−13 M�/h. Accordingly,

this optimistic set-up resulted in an increased catalogue of ∼ 125, 300 clusters for a WMAP5 cosmology.

6.5.3 Results

Over all, P16 presented cosmological forecasts for a ΛCDM-, a w0CDM- and a wCDM-model, while

additionally combining the results with the Planck data of the first release. Also in this case, the Planck
covariance matrices for a combined analysis of the Planck CMB data, of BAO information, of super-

novae type Ia data, and of WMAP polarisation maps(Planck Collaboration et al. 2014a) were considered.

The complete summary of forecast results by P16 is presented in Tab. D.2 in the appendix to allow for

a detailed comparison between their results and ours. Below, we state the main findings by P16 which

will be most important for testing the reliability of the forecast results in general and for quantifying the

influence of our deviating simulations set-ups.

• The improvement in the constraints from the pessimistic to the optimistic scenario was mainly

driven by the tighter priors on the scaling parameters as well as by the increase in the cluster

catalogue. The spectroscopic redshifts showed only a minor impact on the results.

• For the studied cosmological models, the angular clustering information influenced the parameter

precision only minorly.

• Assuming a ΛCDM-cosmology, the optimistic approach for eROSITA data alone outperformed

the derived constraints on σ8 and Ωm for Planck.

• For eROSITA data alone, the 1σ-marginalised uncertainties were constrained to Δσ8 = 0.011,

ΔΩm = 0.008, Δw0 = 0.091, Δwa = 0.36 for the wCDM-cosmology.

• In the case of the optimistic scenario with included Planck data, the cosmological constraints

were reduced to Δσ8 = 0.007, ΔΩm = 0.006, Δw0 = 0.07, Δwa = 0.27.

• When including Planck data, the 2σ-FoM for the dark energy equation of state was estimated to a

value of 55, which labels eROSITA as a Stage IV experiment according to the report of the DETF
(Albrecht et al. 2006).

6.6 Final MCMC Results

The results of the cosmological forecasts were analysed in the following basis of {σ8,Ωm, ns, h,Ωb},
which was more intuitive than the set of variable parameters X. Depending on the studied cosmological

model, the additional parameters {w0, wa,
∑

mν} were extended to the above basis. Furthermore, the

uncertainties of the variable scaling relation parameters were quantified, Y, (comp. Sect. 6.4.2) and we

generally followed the strategy expressed in Sects. 6.3 & 6.4.
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6.6 Final MCMC Results

Figure 6.9: Cosmological constraints for a wCDM-cosmology for the pessimistic scenario in blue and the opti-

mistic scenario in red. The 2-dimensional credibility regions present the 68%- as well as the 95%-uncertainties,

whereas the diagonal elements display their 1-dimensional histograms normalised to the same peak value. All

distributions are centred around the input cosmological values.
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6 Cosmological Constraints from eROSITA Galaxy Clusters

Figure 6.10: Forecasted joint credibilities for the matter density Ωm and the normalisation of the dark energy

equation of state w0. The contour plots present the 68%- as well as the 95%-credibility regions for the pessimistic

(blue) and the optimistic (red) scenario. For the 1-dimensional probability distributions, the estimate by the

MCMC simulations is indicated by the solid curves, whereas the dashed curves present the corresponding normal

distributions with the same mean and σ values.

6.6.1 Forecasts for the Complete Survey Sample (z, η)

These final results are based on the assumption of available cluster redshifts and photon counts only,

such that we applied the (z, η)-mock catalogue for the four years of eROSITA survey observations,

eRASS:8, where in total eight all-sky surveys will be performed. For all tested cosmological mod-

els, both the optimistic as well as the pessimistic scenarios were investigated. Tab. 6.3 presents the

forecasted constraints on the cosmological as well as on the scaling parameters for the different cos-

mological models and simulation approaches, whereas Fig. 6.9 displays the corresponding credibility

contours for a wCDM-cosmology. These 2-dimensional contours are centred around the input parameter

values, while marginalising over all remaining parameters except the two presented ones. The complete

triangle diagram, which also includes the contours of the scaling parameters is placed in the appendix

(Fig. D.3). Of most interest in this analysis were the constraints on the parameter set {σ8,Ωm, ns, w0, wa}
and their dependencies as completely free variables.

Expectedly, the uncertainty on the parameters increased with an extension of the variable set, especially

when moving from a w0CDM-model to a wCDM-model. Whereas Δns remained almost constant, Δσ8

and ΔΩm showed an increase by ∼ 33% and Δw0 was degraded by even a factor of ∼ 3.6. Accordingly,

this confirmed the strong degeneracies between the parameters {σ8,Ωm, w0, wa} observed in Fig. 6.9.

For the cosmological parameters, the strong dependence on the knowledge of the scaling relations be-

came visible with a significant decrease in the uncertainties for improved scaling information (comp.

Fig. 6.9). The factor of this decrease differed for the individual parameters, such that for σ8 and Ωm the

precision improved in general by a factor of ∼ 2, whereas for ns the progress was even higher with a

factor of ∼ 2.5. On the other hand, the parameters of the dark energy equation of state showed a weaker

dependence on the scaling information. For a w0CDM-cosmology, the constraints on w0 improved by
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6.6 Final MCMC Results

Figure 6.11: Forecasted joint credibilities for the standard deviation in the matter power spectrum σ8 and the

matter energy densityΩm assuming a wCDM-cosmology. Again, the pessimistic as well as the optimistic scenario

are presented in blue and red, respectively. The solid lines are computed based on the true parameter distribution

obtained in the MCMC simulation, whereas the dashed lines display the estimated covariance matrices of the

chains.

Figure 6.12: Credibility regions for the dark energy parameters w0 and wa. As before, we display the results

for the optimistic as well as for the pessimistic scenario and additionally approximate the MCMC results by the

corresponding covariance matrices.
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6 Cosmological Constraints from eROSITA Galaxy Clusters

only ∼ 40% when moving from the pessimistic to the optimistic scenario and this development declined

to only 10% for a wCDM-cosmology. A similar progress was also observed in Δwa. These trends of the

credibility regions were graphically summarised in Fig. 6.9 and emphasised upon in Figs. 6.10, 6.11 &

6.12 for different parameter combinations. When assuming even further knowledge on the scaling rela-

tions and comparing the optimistic scenario to the simulation with frozen scaling relations, the change

in the cosmological constraints varied between a factor of ∼ 3 to an improvement of only a couple of

percent depending on the considered parameter and cosmology. This approach of fixing the scaling

relations was of course idealistic, but it supported our aim of quantifying the impact of the knowledge

on these relations on the cosmological constraints. The least significant improvement was recorded for

the wCDM-cosmology, where the progress read only 30% for ns and only a couple of percent for w0

and wa. Since we were mainly interested in studying dark energy and the wCDM-model, we concluded,

that a better knowledge on the scaling relations was inevitable to obtain tight cosmological constraints

as they were computed for the optimistic scenario. However, a further reduction of the uncertainties in

the scaling relations resulted in only small improvements.

Fig. 6.9 also expresses the strong degeneracies between h and Ωb, which was defined by the applied

priors. However, if these priors were not considered, we would allow for a strong degeneracy especially

between h and ns with several local maxima in the likelihood. This would prevent the MCMC chains

from converging. Defining priors on h and Ωb thus allowed to localise the chains in the parameter space

around the input cosmological values and excluded the other local maxima, depending on the width of

the priors. In general, when running MCMC simulations for these forecasts, the applied priors did not

only improve the constraints, but were required to allow for converging chains.

The priors of Δh = ±0.022 (Riess et al. 2011) and of ΔΩbh2 = ±0.00046 (Cooke et al. 2014), or equiva-

lently of ΔΩb = ±0.00304, were reproduced in all considered cosmologies with a deviation of only less

than 10% from the initial values. The precision on these parameters showed a statistical scatter around

the prior values independent of the simulation scenario. Accordingly, the cluster data added only little

information to the constraints on these parameters. As there was no trend for this deviation with cosmo-

logical model or scaling information, we neglected Δh and ΔΩb from our further interpretations (comp.

also Fig. 6.9).

In contrast, the large sample of observed clusters allowed for a self-calibration of the scaling relations,

such that the constraints on some of the scaling parameters were reduced significantly when compared

to their initial prior values (comp. Fig. D.3, Tabs. 6.1 & 6.3). Whereas ΔαLM reproduced the initial

value for all considered simulation scenarios, the estimated uncertainties on βLM and γLM reduced the

prior in all set-ups by ∼ 50% and by ∼ 10−65%, respectively. The larger deviations were commonly ob-

served for the pessimistic approach, such that in these cases also ΔσLM was improved by ∼ 20%. These

improvements of the prior knowledge indicated that the extended eROSITA cluster catalogue contained

additional information on the investigated parameters. On the other hand, these deviations between the

priors and the computed MCMC uncertainties were also partially explained by the discrepancy of the

MCMC contours from a normal distribution. Investigating Figs. 6.9 & D.3, these differences were espe-

cially visible in the shapes of the 1-dimensional, marginalised histograms for the pessimistic simulation

scenarios and for the parameters h, Ωb, βLM, when considering parameters with prior constraints. Ac-

cordingly, the MCMC approach allowed for additional information on these prior values by inreasing

the allowed freedom on the shape of the credibility regions.

Deviations from a normal distribution were to some extent also observed for the remaining cosmolog-

ical parameters. In general, these discrepancies increased with increasing parameter uncertainties and

thus with the number of free cosmological parameters as well as with the decreasing knowledge on

the scaling relations. When analysing e.g. Figs. 6.10 & 6.12, we presented the MCMC parameter

distributions as solid lines and additionally displayed the approximated Gaussian shapes, based on the
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Table 6.3: MCMC forecasts of the cosmological and scaling relation parameters for the models ΛCDM, w0CDM and wCDM and for both the optimistic and the

pessimistic scenarios as well as for the idealistic approach of full knowledge on the scaling relations. The simulations for the eROSITA data alone were based

on the four years of all-sky survey (eRASS:8) including the stated priors on h and on Ωbh2. The Planck data were combined with external information on BAO,

supernovae type Ia and H0 (Planck+BAO+H0+JLA), where for the combination of eROSITA and Planck data, we applied the optimistic scenario.

Data Δσ8 ΔΩm Δns Δh ΔΩb Δw0 Δwa ΔαLM ΔβLM ΔγLM ΔσLM

eRASS:8+pes. 0.0187 0.0117 0.0748 0.0192 0.0027 – – 0.0525 0.0334 0.1106 0.0283

eRASS:8+opt. 0.0082 0.0061 0.0288 0.0177 0.0024 – – 0.0141 0.0124 0.0540 0.0095

eRASS:8+fixed 0.0027 0.0031 0.0209 0.0214 0.0029 – – – – – –

Planck 0.0143 0.0133 0.0062 0.0096 0.0011 – – – – – –

eRASS:8+Planck 0.0068 0.0047 0.0039 0.0036 0.0004 – – 0.0083 0.0120 0.0454 0.0093

eRASS:8+pes. 0.0195 0.0126 0.0823 0.0208 0.0029 0.0543 – 0.0517 0.0342 0.1735 0.0279

eRASS:8+opt. 0.0087 0.0064 0.0329 0.0218 0.0030 0.0329 – 0.0143 0.0123 0.0688 0.0096

eRASS:8+fixed 0.0059 0.0048 0.0217 0.0201 0.0028 0.0255 – – – – –

Planck 0.0201 0.0093 0.0053 0.0105 0.0015 0.0476 – – – – –

eRASS:8+Planck 0.0072 0.0049 0.0042 0.0054 0.0008 0.0243 – 0.079 0.01108 0.0472 0.0094

eRASS:8+pes 0.0265 0.0190 0.0864 0.0198 0.0028 0.1308 0.5259 0.0552 0.0355 0.1980 0.0353

eRASS:8+opt. 0.0129 0.0096 0.0315 0.0200 0.0028 0.1169 0.4316 0.0141 0.0126 0.0678 0.0095

eRASS:8+fixed 0.0107 0.0078 0.0217 0.0200 0.0028 0.1136 0.4222 – – – –

Planck 0.0207 0.0102 0.0057 0.0107 0.0016 0.1121 0.4467 – – – –

eRASS:8+Planck 0.0085 0.0062 0.0043 0.0063 0.0009 0.0771 0.2759 0.0079 0.0114 0.0480 0.0094

1
3
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6 Cosmological Constraints from eROSITA Galaxy Clusters

covariance matrix of the chains, as dotted curves. The normalisation of the dark energy equation of state

w0 showed small indications for a non-Gaussian 1-dimensional uncertainty distribution in the w0CDM-

model for the pessimistic scenario. This deviation was enhanced in the wCDM-model. The uncertainty

on the time evolution of the dark energy wa presented the strongest non-normal shapes with a tilt of the

1-dimensional histogramm to higher values in the pessimistic approach (Fig. 6.12). And even for the

optimistic scenario, slight substructures were observed in the distribution. Accordingly, the joint credi-

bility contours of w0 and wa did not resemble a Gaussian ellipse, which was also observed for the joint

uncertainty regions of the other parameter combinations including the dark energy characteristics (Fig.

6.9). In contrast to the dark energy parameters, however, σ8 and Ωm show mainly Gaussian constraints

with only slight deviations for Ωm in the pessimistic scenario (Fig. 6.11). These likelihood shapes were

expected, as these two parameters are commonly best constrained by cluster experiments (comp. e.g.

Reiprich & Böhringer 2002; Voit 2005; Allen et al. 2011; Mantz et al. 2015).

In summary and following the above considerations, the final constraints on the cosmological param-

eters for a dark energy cosmology were computed as Δσ8 = 0.0129, ΔΩm = 0.0096, ns = 0.0315,

w0 = 0.1169, wa = 0.4316 (Tab. 6.3). This related to uncertainties of � 3% for the first three parameters

and of ∼ 12% for w0. These results implied, that the eROSITA cluster sample alone was able to achieve

the same precision in the dark energy characteristics as the Planck data, when considering all external

knowledge (Planck+BAO+H0+JLA). Though the estimated Δns was downgraded by a factor of ∼ 5

when compared to the combined Planck results, the precision on Ωm and σ8 was improved by 10−60%

by the eROSITA cluster abundance. What is more, current cluster catalogues have not been sensitive for

the index of the power spectrum ns, yet, such that a tight prior was commonly applied on this parameter

when applying clusters for cosmological studies (comp. e.g. Mantz et al. 2015). Though the constraints

on ns were not as precise as for other cosmological probes, the extended eROSITA cluster catalogue was

able to break the degeneracy in this parameter (comp. also Pillepich et al. 2012).

As the main science driver for eROSITA is the study of dark energy, we computed the figure of merit

(Sect. 6.4.6) for the joint credibility region of w0 and wa to test the significance of the forecasted con-

straints. We obtained values of FoM2σ
w0,wa

= 12 for the pessimistic scenario and of FoM2σ
w0,wa

= 26 for the

optimistic scenario. This investigation characterised eROSITA’s cosmological constraining power alone

as an advanced Stage III study according to the DETF (Albrecht et al. 2006). Their report requested a

FoM2σ of [8, 43] for a Stage III dark energy mission and of [27, 645] for a Stage IV mission. However,

the final classification is defined for the combination of the considered probe with the Planck data. Ac-

cordingly, already precise estimates on the dark energy equation of state will be obtained from eROSITA
data only, where these results will even be improved by the combination with Planck data (Sect. 6.6.4).

6.6.2 Investigating Neutrino Cosmologies

In addition to the cosmological scenarios described above, we investigated a ΛCDM+ν-model and the

constraining power of the eROSITA cluster catalogue on the sum of the masses of the different neutrino

species,
∑

mν. Previous works by e.g. Mantz et al. (2015) and Roncarelli et al. (2015) reported the re-

quirement of including CMB data for the study of {Δ∑
mν} due to the strong degeneracy betweenσ8 and

Ωm for galaxy cluster experiments (comp. also Fig. 6.11). Alternatively to the CMB, additional angular

clustering information was applied to constrain the sum of the neutrino masses (Sartoris et al. 2015).

In analogy to these works, the uncertainty on {Δ∑
mν} could not be quantified by the eROSITA cluster

abundance alone. The significant extension of the currently available cluster catalogue by eROSITA was

thus not sufficient to compensate the influence of the strong degeneracy. Instead of approaching and then

exploring a defined parameter region for
∑

mν, the MCMC chains covered the entire allowed parameter

space, independent of the defined hard boundaries. Additionally, the best-fit value increased continu-
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ously with increasing step number. Accordingly, no maximum of the likelihood was determined and the

burn-in process continued indefinitely. The lack of an estimated credibility region for this simulation

scenario also disabled the subsequent combination of these results with Planck constraints in an analo-

gous approach to the investigations in Sect. 6.6.4. Studying neutrino characteristics thus requires a joint

MCMC simulation of both the cluster catalogue and the Planck data. Alternatively, the n-dimensional

credibility ellipses of the cosmological parameters estimated by Planck, with n defining the number of

variables, can be applied as priors when considering only the eROSITA catalogue. In this approach, not

only the width of the credibility ellipses for the Planck data, but also the different parameter correlations

are accounted for.

6.6.3 Including Temperature Information

As expressed above, cluster temperatures are commonly considered as more precise mass proxies than

cluster luminosities, due to the reduced intrinsic scatter in the M − TX scaling relation when compared

to the M − LX relation (comp. e.g. Vikhlinin et al. 2009a; Mantz et al. 2010a; Allen et al. 2011; Giodini

et al. 2013). Following this consideration, we computed the cosmological constraints placed only by

the eROSITA cluster sample with temperature estimates, (z,kTX), and quantified its impact on the total

cosmological precision.

Tab. 6.4 presents the simulation results for a ΛCDM cosmology with different simulation scenarios,

depending on the knowledge on the scaling relations. As observed for the full cluster sample, the con-

straints on σ8,Ωm and ns improved significantly by a factor of ∼ 2−3 when moving from the pessimistic

to the optimistic knowledge.

Also, the uncertainties on h and Ωb as well as the uncertainties on the scaling parameters recovered the

input priors, where in contrast to the above simulations the precision on βTM was decreased by ∼ 50%.

This underestimation of the prior on βTM expresses, that the applied catalogue allowed only for weaker

constraints than the current knowledge on this parameter. The shape of the uncertainty regions and 1-

dimensional histograms were analogously explained by the discussion in the previous section with slight

deviations from Gaussianity for Δh and ΔΩb, and with an increasing divergence for the pessimistic ap-

proach.

As an example, the joint credibility regions for the set {σ8,Ωm, ns} are presented in Fig. 6.13, where

this simulation was based on the optimistic scenario for a ΛCDM-cosmology. The graphic compares

the results of the (z,kTX)-catalogue only in black to the constraints of the full cluster sample in red.

On the one hand, the strong degeneracy between the three studied parameters was reproduced also for

the cluster sub-sample. However, of more significance in this figure is the deviation between the pa-

rameter credibilities for these two approaches. When applying only the (z,kTX)-cluster catalogue the

precisions on the cosmological parameters were reduced by a factor of ∼ 3 − 4 (comp. Tab. 6.3 & 6.4).

Accordingly, the cluster temperature sample alone allowed for studying the uncertainties on the above

cosmological parameters, but only with limited constraining power. This aspect yielded the consider-

ations, that adding the cluster temperature sample will improve the constraints of the full sample by

solely a couple of percent.

For investigating the influence of the cluster temperature information, we focused mainly on theΛCDM-

model, but tested a wCDM-cosmology and the impact on the dark energy parameters as well. In this

scenario, the sub-catalogue failed to constrain Δwa as the likelihood appeared almost constant towards

the lower best-fit values and no defined credibility regions could be outlined. Thus, the optimistic

(z,kTX)-sample of ∼ 8, 000 clusters alone did not provide enough information to investigate and test

more complex cosmologies than the currently accepted model.
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Figure 6.13: Joint credibility regions for the parameters σ8, Ωm and ns of the 68%- and the 95%-uncertainty

levels. The black contours represent the MCMC results for the temperature catalogue (z, kTX) only, whereas

the red contours show the constraints for the full (z, η)-cluster catalogue. Both approaches are displayed for the

optimistic scenario. Despite the extent of the (z,kTX)-sample to ∼ 8, 000 clusters, the constraints from the cluster

temperatures were still not comparable to the results for the full cluster catalogue without temperatures.

These results were reasoned by the following arguments. Though the intrinsic scatter in the M − TX

relation undercut that of the M − LX relation by a factor of � 3 (comp. e.g. Vikhlinin et al. 2009a;

Mantz et al. 2010a; Allen et al. 2011; Giodini et al. 2013), the percentaged uncertainties on the remain-

ing scaling parameters and thus also the defined priors were comparable for both scaling relations. In

general, these uncertainties remained below ∼ 10% with an increase up to ∼ 20% for γLM (comp. e.g.

Maughan 2007; Pratt et al. 2009; Vikhlinin et al. 2009a; Mantz et al. 2015; Giles et al. 2015). Accord-

ingly, the main influence on the cosmology results could be addressed to the reduced number of clusters

in the (z,kTX)-sample when compared to the full (z, η)-catalogue. This sub-catalogue of clusters with

temperature estimates did only contain a factor of ∼ 12 less clusters in the optimistic case, which thus

limited the statistical constraining power of the sample. At the same time, clusters at redshifts above

z ≈ 0.16 (comp. Figs. 6.8 & 4.3) were not included, due to the selection function of the instrument

(Sect. 6.3.2). In total, more than half of the redshift bins were neglected, where the information in the

bins at higher redshifts are most sensitive to cosmology. Additionally, the reduced intrinsic scatter in

the M −TX relation lowered the number of observed clusters even further as less clusters were scattered

up above the defined temperature cuts.

What is more, when comparing the M − LX and the M − TX relation, the smaller intrinsic scatter in the

latter relations should in principle allow for the determination of smaller statistical uncertainties on the

scaling parameters from a given observed catalogue. As discussed above, this is not observed, however,

such that there is still room for improvement in the cluster observations to reduce these uncertainties

and to establish the gas temperatures as more precise cosmological estimate than the luminosity.
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Table 6.4: Forecasts for the 1σ-uncertainties when applying the cluster temperature catalogue only, eRASS:8 kTX. Additionally, we summarised the constraints

for the optimistic approach with a frozen redshift evolution in the scaling relation as well as for a completely fixed M − TX relation.

Data Δσ8 ΔΩm Δns Δh ΔΩb ΔαT M ΔβT M ΔγT M ΔσT M

eRASS:8 kTX+pes. 0.0917 0.0417 0.1949 0.0204 0.0029 0.0446 0.1251 0.0636 0.0280

eRASS:8 kTX+opt. 0.0325 0.0209 0.1047 0.0207 0.0029 0.0121 0.0338 0.0166 0.0075

eRASS:8 kTX+opt. frozen γT M 0.0308 0.0203 0.1013 0.0200 0.0028 0.0120 0.0333 – 0.0075

eRASS:8 kTX+opt. frozen 0.0285 0.0194 0.0909 0.0203 0.0028 – – – –

Table 6.5: Cosmological parameter constraints when applying the scaling relations by Vikhlinin et al. (2009a) for different cosmological models. The scaling

relations remained fixed during all simulations, except for the last run in which the M − LX parameters were fit simultaneously for a pessimistic scenario. The

black results were obtained in our MCMC simulations, whereas the grey values were taken from the Fisher analysis by A. Pillepich, which we discussed in

private communication. Both simulation approaches followed an identical set-up apart from the deviation between the MCMC and the Fisher formalism.

Data Δσ8 ΔΩm Δns Δh ΔΩb Δw0 Δwa ΔαLM ΔβLM ΔγLM ΔσLM

eRASS:8 0.0031 0.0030 0.0252 0.0180 0.0026 – – – – – –

eRASS:8 (Fisher) 0.0031 0.0030 0.0292 0.0234 0.0032 – – – – – –

eRASS:8 0.0082 0.0057 0.0307 0.0204 0.0029 0.0293 – – – – –

eRASS:8 (Fisher) 0.0086 0.0059 0.0333 0.0236 0.0033 0.0310 – – – – –

eRASS:8 0.0136 0.0083 0.0281 0.0182 0.0026 0.1324 0.4542 – – – –

eRASS:8 (Fisher) 0.0152 0.0093 0.0358 0.0237 0.0033 0.1451 0.4892 – – – –

eRASS:8+pes. 0.0231 0.0169 0.0668 0.0205 0.0028 – – 0.0493 0.0809 0.1453 0.0329

1
3
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6 Cosmological Constraints from eROSITA Galaxy Clusters

Figure 6.14: Marginalised uncertainty regions for

the Planck+BAO+H0+JLA data in green and for

eRASS:8, assuming an optimistic scenario, in red

for the deviation in the matter perturbations σ8 and

the mean matter energy density Ωm, and a wCDM-

cosmology. When assuming a normal distribu-

tion of these uncertainties, the black ellipse rep-

resents the joint 68%-credibility contour for both

data sets. The Planck data have been shifted to

yield a WMAP5 cosmology.

Figure 6.15: Marginalised uncertainty regions for

the Planck+BAO+H0+JLA data in green and for

eRASS:8, assuming an optimistic scenario, in red

for the parameters of the dark energy equation of

state. When assuming a normal distribution for

these uncertainties, the black ellipse represents the

joint 68%-credibility contour for both data sets.

Again, the Planck data have been shifted to yield

a WMAP5 cosmology.

6.6.4 Including Planck -Data and Other Probes

For an estimate on how the inclusion of the Planck+BAO+H0+JLA data improves the eROSITA-only

cosmological constraints, we approximated the MCMC constraints of both data sets by their Gaussian

covariance matrixes. These were then inverted and summed (Sect. 6.4.5), while applying the results

of the full (z, η)-cluster set and of the optimistic scenario. This strategy of summing the inverse of the

covariance matrices was allowed due to the independence of the two data sets. At the same time, this ap-

proach focused on the shapes of the credibility ellipses and not on their location in the parameter space,

such that the problematic of the not fully consistent cosmology constraints between the Planck and the

WMAP data was avoided (comp. e.g. Komatsu et al. 2009; Hinshaw et al. 2013; Planck Collaboration

et al. 2015c). However, when assuming Gaussian uncertainties, we introduced a bias since e.g. the dark

energy equation of state parameters and also the priors Δh and ΔΩb suggested a non-normal distribution

of the likelihoods for the eROSITA data. For the latter two parameters, the deviation from Gaussianity

was computed to � 10%. The shape of the 1-dimensional histograms in Fig. 6.9 suggested discrepancies

from a normal distribution of the same order for the remaining parameters, especially when considering

the optimistic scenario. Analogously, the Planck data were investigated and showed a comparable trend

and deviations from Gaussianity (comp. Fig. D.4).

The uncertainties on the cosmological parameters for applying a joint analysis of the eRASS:8 and the

Planck+BAO+H0+JLA data are presented in Tab. 6.3. The strongest improvement is observed in Δns,

Δh and ΔΩb for all studied cosmological models with deviations of ∼ 70 − 80% when compared to

the eROSITA-only results. Since clusters alone allow for only weak constraints on these three variables
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and external priors were required on at least two of them (comp. e.g. Pillepich et al. 2012; Mantz et al.

2015), this trend was expected. On the other hand, the standard deviation in the matter perturbations

σ8, in the mean matter energy density Ωm, and in the dark energy parameters w0 and wa presented the

highest precisions for our cluster analysis, such that the combination of the data sets yielded only a

smaller progress of ∼ 20 − 35% in their uncertainties (Figs. 6.14 & 6.15). For a wCDM-cosmology,

ΔΩm, Δw0 and Δwa became comparable between the two individual analyses, in which case the ex-

pected improvement by a factor of
√

2, or equivalently by ∼ 40%, was obtained for the joint analysis.

In summary, we estimated precisions of Δσ8 = 0.0085(4%), ΔΩm = 0.0062(2%), Δw0 = 0.0771(8%),

and Δwa = 0.2759 for the combination of the two data sets. Though the Planck data did not contain any

information on the parameters of the scaling relations, the joint analysis allowed for improvements in

their precisions of up to ∼ 40% depending on their degeneracy with the cosmological parameters (comp.

Fig. D.3). Accordingly, for stronger degeneracies a more significant decrease of the uncertainties was

obaerved, which was the case for αLM and γLM. Over all, the best improvements could be obtained

for the wCDM cosmology as most complex investigated model. In this case, the combination of the in

total four different probes and two additional priors in our two data sets - clusters, CMB temperatures,

BAO, supernovae type Ia, and additional priors on the Hubble constant and the baryon density - were

best applied to break degeneracies and to benefit from the individual constraining characteristics of each

probe.

For this joint analysis, we repeated the computation of the figure of merit and achieved a result of

FoM2σ
w0wa
= 53. Accordingly, eROSITA is classified as the first Stage IV mission for the study of dark

energy (comp. Sect. 6.6.1).

As already expressed, this Gaussian approach for the uncertainty regions introduced a bias in the joint

credibility results. Assuming the uncertainties to be biased low by ∼ 10% each, the systematic error

in the joint uncertainties would increase to ∼ 0.1 · √2 ≈ 14%. Including this consideration also in the

figure of merit estimate, the results reduced to FoM2σ
w0wa
≈ 46.5, which did not degrade the classification

of the instrument. Although this deviation still allowed for a reliable estimate of the joint credibilities,

the non-normal distributions for the dark energy parameters asked for a combined MCMC-simulation

of the two data sets. The obstacles and necessary considerations for this approach are presented in the

outlook of this project, where we also discuss different approaches to work with the deviating best-fit

cosmologies from the Planck and the WMAP data (Sect. 6.10).

6.7 Influences on the Forecast Results

As the simulation set-up included a variety of different assumptions, we tested their influences on the

cosmological forecasts. For this study, we varied our own simulation strategy in several aspects and at

the same time performed a detailed comparison to the results by P16.

6.7.1 The Applied Scaling Relations

Galaxy cluster scaling relations obtained from different studies deviate especially in the computed scal-

ing parameters, which we named as α, β, γ, and σ in the previous sections (comp. Eqs. 6.19 & 6.20).

Accordingly, also the priors on these parameters vary from work to work and especially the shape of the

cluster abundance function and thus the number of expected galaxy clusters observed by eROSITA. Since

the previous cosmology forecasts for this instrument were based on the scaling relations by Vikhlinin

et al. (2009a) (Pillepich et al. 2012, comp. also Sect. 6.5), we performed MCMC simulations also for

this relation for various cosmologies and compared the computed parameter constraints to our results

for the scaling relations by Reichert et al. (2011).
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6 Cosmological Constraints from eROSITA Galaxy Clusters

The total number of expected eROSITA clusters was reduced to 89, 300 when applying the scaling rela-

tions by Vikhlinin et al. (2009a) for the same set-up as expressed in Sects. 6.3 & 6.4. While this cluster

abundance reproduced the estimates by P16 to more than 99%, it simultaneously displayed ∼ 10% less

clusters than in the above described mock catalogue. This deviation was explained by the difference in

the distribution of the observed clusters for both scaling relations as expressed by Borm et al. (2014).

Both distributions peaked around cluster masses of M ≈ 1014 M� and redshifts of z ≈ 0.3, while the

distribution for the scaling by Reichert et al. (2011) showed a broader maximum.

To quantify the influence of the two different cluster samples on the cosmological constraints, we

performed forecasts applying the Vikhlinin et al. (2009a) scaling relations for the three cosmologies

ΛCDM, w0CDM, and wCDM, while initially fixing the scaling parameters during the fit (Tab. 6.5) to

focus on the cosmological constraints. Similar to the forecast results for the scaling relations by Reichert

et al. (2011) (comp. Tab. 6.3), also for this set-up the constraints decreased significantly as additional

variable parameters were introduced. Whereas Δns remained almost constant, the strong degeneracy

between the parameters {σ8,Ωm, w0, wa} was reproduced with an increase of a factor of even ∼ 4.5 in

Δw0 when moving to a wCDM cosmology. These comparable degeneracies were also visible in the

comparison of the 2-dimensional credibility regions (Fig. D.5) with very similar shapes for all parame-

ter combinations. As before, also for these simulations the constraints on h as well as on Ωb generally

represented the defined priors on h and Ωbh2 for all considered cosmological models with deviations of

on average ∼ 12%.

Not considering the computed uncertainties on h and Ωb, the strongest deviations between the two scal-

ing relation approaches were found for the constraints on ns and σ8 with a slightly higher deviation in

Δns. For the cosmologies ΛCDM and waCDM, the divergence in these two parameter uncertainties was

of the order of � 20%, where the approach including the scaling relation by Vikhlinin et al. (2009a)

generally resulted in weaker constraints. The deviation even increased up to ∼ 30% for the w0CDM-

cosmology. The remaining uncertainties ΔΩm, Δw0, and Δwa were very comparable and altered by less

than � 15% between the two set-ups for all cosmologies. Accordingly, the different distributions of

clusters and the thus increased abundance for the scaling relations by Reichert et al. (2011) yielded a

higher precision on the parameters ns and σ8, whereas the constraints on Ωm as well as on the dark

energy characteristics were only less impacted.

To extent the above comparison, we performed one additional simulation based on the scaling relations

by Vikhlinin et al. (2009a) for a ΛCDM-cosmology with variable scaling parameters (Tab. 6.5), for

which we applied the following parameter values and Gaussian priors

αLM = 1.61 ± 0.14

βLM = 101.483 ± 0.085

γLM = 1.85 ± 0.42

σLM = 0.396 ± 0.039 .

This was equivalent to assuming a pessimistic approach and thus the current knowledge on the scaling

parameters. These priors were of the same percentage for both scaling relations apart from the uncer-

tainty on βLM, which showed a significant reduction for the relation by Vikhlinin et al. (2009a).

As in Sect. 6.6.1, we again observed a strong dependence of the cosmological constraints on the knowl-

edge on the scaling relations (comp. Tab. 6.5). For the variables σ8, Ωm, and ns, the increase in the

uncertainties was of a factor of ∼ 2.5 − 7.3, which is of the same order of magnitude as the analogous

comparison for the simulations applying the relations by Reichert et al. (2011). The priors on h, on Ωb

and on the scaling parameters were again reproduced, with an improvement of 65% in the uncertainties
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on αLM and γLM. As in the above comparison, deviations in the parameter uncertainties were observed

between the two scaling relation approaches with a difference of 20% in Δσ8 as well as in ΔΩm, and of

11% in Δns. Except for Δns, the precisions computed in this section underestimated those obtained for

the relations by Reichert et al. (2011).

In summary, the applied scaling relations mainly impacted the computed mock catalogue of cluster

observations and thus influenced the cosmological constraints accordingly. The general trends in the

parameter degeneracies, in the dependencies on the number of variable parameters and in the reproduc-

tion of the priors were comparable for both scaling relations. Though the computed precisions were

similar for several parameters as e.g. for w0 and for wa, a divergence of ∼ 30% or more may be observed

for other variables, depending on the considered cosmology and scaling knowledge. Following this train

of thoughts, for cosmological studies it is essential to calibrate the scaling relations to yield the correct

total number of clusters. The cluster catalogue from the eROSITA all-sky observations, which includes

clusters down to fluxes of ∼ 3·10−14 erg/s (Merloni et al. 2012; Pillepich et al. 2012), will allow for these

investigations in detail at least for the M − LX relation (Sect. 6.6.1 & Tab. 6.3), which shows a stronger

impact on the expected number of observed clusters (comp. Sect. 6.3.1). Thus, the eROSITA-instrument

will not only obtain tight cosmological constraints due to the observed broad cluster sample, but it will

also allow for even further improvements by calibrating the scaling relations.

6.7.2 Fisher Formalism vs. MCMC Simulations

As previous cosmology forecasts for eROSITA were performed based on the Fisher formalism, we quan-

tified the improvement in the accuracy of those results when applying MCMC simulations. For this

investigation, we compared our constraints for the scaling relations by Vikhlinin et al. (2009a) to those

presented by P16 in a constructive discussion with the authors.

Excluding any biases between the two works in programming the galaxy cluster photon counts function,

the computed total number of clusters agreed very well with a deviation of only ∼ 0.5%. To empha-

sise on the cosmological forecasts only, the scaling relations remained fixed during these fits and we

investigated the results for the cosmological models ΛCDM, w0CDM, and wCDM (Tab. 6.5). The in-

terpretation of the Fisher forecasts were prepared by P16, such that we focused on the comparison of

the two statistical approaches.

The strongest divergences were observed for the uncertainties in the parameters ns, h, and Ωb, with the

Hubble constant as the most influenced parameter (Fig. D.6). At the same time, these were the parame-

ters which could be constrained the least by galaxy clusters as cosmological probes. Studying the results

for the different cosmological models from top to bottom, the precisions for these three parameters in-

dicated deviations of < 23%, < 14%, and < 23%, respectively, between the two statistical scenarios,

where the MCMC analysis yielded tighter constraints in general. On the other hand, the credibilities of

σ8, of Ωm, as well as of the parameters of the dark energy equation of state, which are of most interest

to us, were very well approximated by the Fisher formalism with deviations of only � 10% (comp. Fig.

6.16). Also, the same parameter degeneracies were obtained within the two approaches.

The discrepancy in the uncertainty values arose since the Fisher approach reproduced the priors on h and

Ωb, whereas the MCMC forecast tightened the constraints on these parameters (comp. Sect. 6.6.1). As

the Hubble parameter and the index of the power spectrum are strongly degenerate, the deviation from

Gaussianity in Δh was transferred to Δns. Accordingly, the MCMC forecasts were improved compared

to the results of the Fisher formalism since the first scenario allowed for non-normal credibility regions.

In conclusion, the Fisher approach proved itself as reliable method for a first estimate of the cosmo-

logical constraints, which also included the dark energy parameters. On the other hand, the allowance

of non-Gaussian uncertainty distributions was the main cause for the difference between the two ap-
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Figure 6.16: Comparison of the joint credibility forecasts on w0 and wa, applying the scaling relations by Vikhlinin

et al. (2009a). The black regions display the MCMC results for the 68%- and the 95%-uncertainty levels, whereas

the red contours represent the results of the Fisher formalism for the 68%-credibilities only.

proaches, especially for those parameters {ns, h,Ωb} with only little constraining power by galaxy clus-

ters. However, for more complex and more realistic simulation scenarios with variable scaling relations,

deviations from Gaussianity became visible also for the dark energy parameters (comp. Fig. 6.12). Ac-

cordingly, these findings supported the MCMC simulation strategy in general and a subsequent compar-

ison between the two statistical approaches and their impact on the dark energy constraints is presented

in the following section.

6.7.3 Comparison to Previous Work

This section emphasises on the comparison between our work and that of P16 to investigate the impact

of our deviating simulation set-ups on the final results, while accounting for the information obtained in

the previous two sections.

In general, we observed similar trends in both works for the dependence on the knowledge on the scal-

ing relations or on the inclusion of additional variables. However, our simulation scenario yielded a

stronger dependence on the priors of the scaling parameters with a factor of ∼ 2 compared to a factor

of 1.3 − 2 for the work by P16 between the uncertainties in the pessimistic and the optimistic scenario.

At the same time, the precision on σ8 and Ωm decreased similarly in both approaches when including

a variable dark energy equation of state, whereas Δw0 increased more significantly for our simulation

strategy by a factor of ∼ 3.5 in comparison to a factor of ∼ 2.6 for P16.

When investigating the absolute values of the constraints, we additionally considered the comparison

of the results between the scaling relations by Vikhlinin et al. (2009a) and Reichert et al. (2011) (Sect.
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6.7.1), which resulted in similar constraints on Ωm, w0 and wa, but in improved constraints by up to

∼ 30% for σ8 and the latter scaling relation (Sect. 6.7.1). Despite this degradation in the precision for

the relations by Vikhlinin et al. (2009a), P16 now yielded more precise estimates for σ8 by up to ∼ 30%

in the pessimistic scenarios. We accordingly interpreted this improvement as the result of the included

clustering information. The assumed Gaussianity in the Fisher formalism was not expected to account

for this effect as the parameter σ8 displayed a close to normal distribution in our MCMC simulations

(Fig. 6.9). For the optimistic scenarios on the other hand, the constraints were very well comparable,

such that the stronger dependence on the scaling information for the relations by Reichert et al. (2011)

compensated not only for the additional clustering information, but also for the reduced mass cut and the

thus increased cluster sample by ∼ 25% by P16. What is more, this cluster sample was only extended to

lower mass clusters, which are mainly observed at the local redshifts. As the cosmological constraints,

except for the dark energy characteristics, are most sensitive to the massive clusters at the highest red-

shifts, this enhanced catalogue allowed only for a limited improvement in {σ8,Ωm, ns} in addition to the

better statistics.

Especially significant was the increased precision for all cosmological parameters in the optimistic sce-

nario of a wCDM cosmology for the Fisher formalism. As an example, the deviations in Δw0 and Δwa

were of the order of ∼ 22% and of ∼ 17%, respectively, between the two approaches. Since these uncer-

tainties did not deviate for the optimistic cases when assuming more simple cosmological models, this

effect could not be explained by the deviating cluster catalogues or the additional clustering information.

Instead, we discussed these results based on a discrepancy of the credibility regions from Gaussianity,

which increased with the complexity of the cosmology as well as with the number of variable parame-

ters (Sect. 6.6.1).

In summary, the main information from this comparison is the stronger dependence on the scaling priors

for the relations by Reichert et al. (2011) as well as especially the overestimation of the precisions by

the Fisher formalism for complex cosmological models. This latter argument supported the reliability

of our MCMC results to forecast the observational cosmological potential of the eROSITA instrument.

Apart from these aspects, the computed forecasts were in very good agreement between the two ap-

proaches, which was also reflected by the computed values of the FoM2σ of 55 by P16 and of 53 for our

work.

6.8 Discussion

6.8.1 Reliability of the Cosmological Results

To investigate the credibility of our above stated forecast results, we compared the best-fit values of the

variable parameters with their input values as a first test. These two sets of values were in very good

agreement with deviations of only � 1%, such that we excluded the existence of any possible parameter

bias in our simulations. Additionally, the convergence criterion for the chains was defined to show a

difference in the over-all mean fit values as well as in their 1σ-uncertainties of less than 1% when com-

paring the chains every ∼ 10, 000 steps. Accordingly, we could ensure the robustness of our computed

parameter uncertainties.

As a more thorough reliability test, we examined our predicted parameter uncertainties in contrast to

the eROSITA-forecasts by P16. Based on the conclusions on Sect. 6.7.3 we concluded our forecasts and

those by P16 to be in very good agreement with each other when considering the different simulation

set-ups. The observed deviations in the results are likely explained by these described differences in the

approaches.

Especially the shape of the w0 −wa credibility region and how well it can be approximated by the Fisher
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formalism has been investigated by several works and for several cosmological probes and data sets. As

an example, Wolz et al. (2012) and Khedekar & Majumdar (2013) found strong deviations between the

Fisher and the MCMC approach for the study of dark energy, where the first formalism in general under-

estimated the uncertainties. According to Khedekar & Majumdar (2013), this difference was expected to

be of the order of a factor of � 4 for the eROSITA cluster sample and the computed MCMC credibilities

diverged strongly from Gaussianity. However, for our MCMC simulations only small deviations from a

normal distribution were observed in the w0−wa contours, which we estimated to a factor of the order of

∼ 1.2 when we compared our results to those by P16. Khedekar & Majumdar (2013) applied a different

simulation set-up that resulted in completely different cosmological constraints, which accordingly ex-

plain the differences in the comparisons between MCMC and Fisher results. Though they applied only

a flux cut as instrumental characteristic and thus increased their sample to ∼ 120, 000 clusters, their

computed MCMC-uncertainties for a wCDM model were less precise by a factor of up to ∼ 8 compared

to our results. On the other hand, the Fisher formalism by Khedekar & Majumdar (2013) yielded tighter

constraints on wa by a factor of ∼ 2.2 when compared to P16. Accordingly, a particularly strong de-

viation between their two simulation methods was computed. Apparently, our developed cosmological

simulations strategy and the applied increased information on the instrumental response resolved the

strong deviation between the MCMC and the Fisher approach.

Recent work by Mantz et al. (2015) also presented a w0 − wa credibility region for cluster observations,

which was similarly shaped to Fig. 6.12. Their analysis was based on a sample of only ∼ 100 clusters,

but it included gas mass estimates and also weak lensing masses for some of the clusters. Though their

constraints on the dark energy parameters were a factor of ∼ 2 above our computed uncertainties, Mantz

et al. (2015) also obtained close to Gaussian credibility regions, which thus supported our findings.

6.8.2 Discussing the Dark Energy Constraints

To evaluate our computed constraints for the nature of dark energy, we analysed them in comparison to

the results of other current and planned cosmology studies of different cosmological probes (Tab. 6.6).

• Planck: Following the newest data release of the Planck satellite, we computed uncertainties

of Δw0 = 0.11 and of Δwa = 0.45 when considering Planck+BAO+H0+JLA data. A further

improvement of Δw0 =
+0.075
−0.080

could only be achieved if additional weak lensing information was

applied (Planck Collaboration et al. 2015c).

• Dark Energy Survey (DES): This optical and near-infrared survey was started in 2011 over a

time period of 5 years to cover 5, 000 deg2 in the southern hemisphere, while observing from

Cerro Tololo in the Chilean Alps (The Dark Energy Survey Collaboration 2005). It is expected

to include observations of ∼ 4, 000 supernovae type Ia, ∼ 300 Million galaxies and redshifts for

∼ 100, 000 clusters of galaxies. According to the DETF, DES is ranked as a Stage III dark energy

project (Albrecht et al. 2006). This constraining power will e.g. be obtained in the cosmological

study of supernovae type Ia (Bernstein et al. 2012) and especially in the investigation of galaxy

clustering and shear measurements (comp. e.g. Giannantonio et al. 2012). When combining the

expected DES dark energy constraints with the information of Planck, uncertainties of Δw0 = 0.09

and Δwa = 0.35 were expected (Giannantonio et al. 2012).

• Euclid: The Euclid-satellite is scheduled for launch in 2020 to an L2 orbit to perform a survey

of 10, 000 deg2 in the optical and in the near-infrared (Laureijs 2009). It will map ∼ 60 Million

galaxies out to z ≈ 2 to especially reconstruct the LSS and its evolution, while being classified

as Stage IV mission for the study of dark energy (Albrecht et al. 2006). In combination with the
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Table 6.6: Comparison of the constraints on the nature of dark energy for various data sets. For the constraints

from eROSITA, the optimistic cases for the knowledge on the scaling parameters were considered as well as the

data of Planck+BAO+H0+JLA.

Data Δw0 Δwa Reference

eRASS:8 0.117 0.432 this work

eRASS:8+Planck 0.077 0.276 this work

eRASS:8+Planck 0.071 0.27 Pillepich et al. in prep.

DES+Planck 0.090 0.35 Giannantonio et al. (2012)

Euclid+Planck 0.035 0.15 Giannantonio et al. (2012)

Euclid+Planck 0.017 0.07 Sartoris et al. (2015)

cosmological constraints from the Planck data, the Euclid instrument is expected to even tighten

the eROSITA constraints on the nature of dark energy by a factor of ∼ 2− 3.5 (Giannantonio et al.

2012; Sartoris et al. 2015, comp. also Tab. 6.6). The different predictions in the two works are due

to deviating simulation set-ups and different applied cosmological probes, where Giannantonio

et al. (2012) studied the clustering of galaxies, including also weak lensing information. Sartoris

et al. (2015) applied galaxy clusters as probes, while assuming a perfect knowledge on the scaling

relations. However, the start of this mission is scheduled well after the launch of eROSITA.

• BAO: Current cosmology studies based on BAOs, such as e.g. BOSS (Baryon Oscillation Spectro-
scopic Survey), are not yet competitive with the above results and yield uncertainties on w0 around

∼ 14% (comp.e.g. Anderson et al. 2014; Kazin et al. 2014). Future BAO surveys, such as e.g.

4MOST (de Jong et al. 2014) or eBOSS (extended Baryon Oscillation Spectroscopic Survey Zhao

et al. 2015), will extend the current data sample. While forecasts on the cosmological impact by

4MOST have not been published, yet, eBOSS is expected to achieve a figure of merit of 24.9 for

the dark energy parameters in combination with Planck and H0 data. Only when applying addi-

tional information from the Lyα-forest, this results can be improved to a value of 73.7 and thus to

tighter constraints than are expected for eROSITA. eBOSS is scheduled to start observing in late

2016, comparable to the time schedule of eROSITA.

• Redshift space distortion (RSD): Studies by means of RSD are commonly considering catalogues

of galaxy surveys, such as e.g. DES,eBOSS or data from the Euclid observations. If RSD data

were available for a DES-like sky area, the nature of dark energy could be identified with preci-

sions of Δw0 ≈ 0.03 and Δwa = 0.07, when simultaneously also applying the angular clustering of

galaxies (Gaztañaga et al. 2012). However, this analysis requires deep spectroscopic observations

of the considered sky area, which have not been planned, yet.

Accordingly, especially the studies listed in Tab. 6.6 define the unique features of eROSITA for investi-

gating the nature of dark energy. With FoM2σ = 53, the instrument fulfills the requirements of a Stage

IV experiment and improves on the constraints from the current DES and BOSS surveys. The up-coming

Euclid instrument will allow for even higher cosmological precisions. However, the launch of Euclid is
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scheduled for ∼ 3 years after the launch of eROSITA, such that the latter represents the first Stage IV

instrument for the study of dark energy.

6.8.3 Discussing Possible Information from the Temperatures

Following the results for the inclusion of the temperature information (Sect. 6.6.3), even for the opti-

mistic scenario this additional data did not yield an impact on the final cosmological constraints. Ac-

cordingly, we investigated the required knowledge on the scaling relations for the optimistic (z,kTX)-

catalogue of ∼ 8, 000 clusters in order to significantly improve the over-all cosmology results. We thus

first considered a reduced basis of scaling parameters Y by γTM for the predictions and froze the red-

shift evolution of the M − TX relation to γTM = −1.04. This approach was motivated by the study of

other scaling relations, which commonly assume self-similarity of γTM = −1 for the redshift evolution

in this relation (comp. e.g. Maughan 2007; Pratt et al. 2009; Vikhlinin et al. 2009a; Mantz et al. 2015;

Giles et al. 2015). Additionally, we assumed a perfect knowledge on the M − TX parameters to quantify

the maximum constraining power of the optimistic cluster set with precise temperatures. During these

simulations, we first considered the influence on the cosmology when applying the only the sub-sample

of clusters with temperature measurements.

When approaching self-similarity in the redshift evolution of the M − TX relation and freezing γTM, the

precision on these parameters improved only negligibly by a couple of percent (Tab. 6.4). Accordingly,

though these cosmological parameters are in general strongly influenced by the priors on the scaling

parameters, the redshift evolution yielded only a minor influence on their determinations. Furthermore,

also a perfect knowledge on the scaling relation resulted in an increased parameter precision of only

∼ 10%.

Accordingly, even the latter, most optimistic scenario was not able to reproduce the constraints placed

by the full eROSITA cluster catalogue with a deviation of a factor of ∼ 3.4 (comp. Tab. 6.3). Thus, only

an improvement in the knowledge on the scaling relations does not suffice for the temperature sample to

impact the cosmological constraints significantly. As already expressed in Sect. 6.6.3, the cosmological

study from the smaller sample of clusters with precise temperatures is strongly limited by its statistics

as well as by the reduced covered redshift range, rather than by a less efficient mock catalogue based on

the M − TX relation.

Following another train of thoughts, we investigated the impact of only the M − TX relation on the

mock catalogue to test new concepts of how the temperature information improves the cosmological

constraints. Just as the M − LX relation, also this relation was applied during the conversion of the halo

mass function into the galaxy cluster photon counts function. Up to now, however, the intrinsic scatter

in the M−TX relation, σTM was neglected for this derivation, due to the small impact of the temperature

on the observed number of photons (comp. Sect. 6.3.1). Following this argumentation, the temperature

scaling parameters remained frozen during our MCMC simulations (comp. also Pillepich et al. 2012).

To now quantify the influence of this scaling relation on the cluster catalogue and the cosmology in

general, we fixed the relation to be constant with mass and redshift with different well-defined temper-

ature values of kTX = 1 keV, 2keV and 5keV. Based on this simplified approach, the total number of

expected eROSITA clusters showed deviations of around ±17%. These findings supported the necessity

of a correct calibration of the scaling relations since according to the considerations in Sect. 6.7.1, such

a scatter in the total number of clusters may even result in deviation of on average ∼ 20% in the param-

eter uncertainties. Though, applying only the sub-sample of clusters with precise temperature estimates

was not able to yield tight constraints on the M − TX scaling parameters, the idea was now to obtain

information from the full cluster catalogue including the temperature information. According to the

above considerations, a simultaneous fit of both scaling relations may yield tight constraints on the scal-
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ing parameters, especially if temperatures are available for a cluster sub-sample. Within this extended,

detailed simulation approach, the observed cluster temperatures may thus allow for an improvement in

the cosmological constraints.

6.8.4 Defining the Temperature Selection Function

To derive the galaxy cluster temperature function for the eROSITA all-sky surveys, we defined a selec-

tion function S (M̄, z) (Appendix D.1) based on the mass and the redshift of the cluster and neglected

any possible dependence on the applied cosmology or scaling relation. As both cosmology and scaling

parameters were varied during our MCMC sampling, we investigated the influence of these variations

on our selection function. To do so, we first needed to understand the dependences of the catalogue of

clusters with precise temperatures on the different cluster properties.

The expected relative temperature uncertainties were estimated on a cluster mass-redshift grid. How-

ever, since these predictions were based on a spectral analysis, the results do not simply depend on

the cluster mass, but rather on the corresponding temperature TX and luminosity LX, which defined

the cluster spectrum. This correspondence was given by the scaling relations by Reichert et al. (2011)

and their applied ΛCDM-cosmology of Ωm = 0.3, ΩΛ = 0.7, and h = 0.7. As the cosmology enters

in the E(z)-terms of the scaling relations, it altered this correspondence between the different cluster

properties, such that the same mass related to a different temperature and thus a different temperature

precision. For our redshift range of interest with mainly z � 0.16, the deviation in TX and LX was of the

order of � 1% and therefore negligible, even for an unrealistic sampling of ΔΩm = ±0.2. On the other

hand, the cosmology also influenced the number of observed photons as η ∝ LX/D2
L

with a quadratic de-

pendence on the luminosity distance DL. With a realistic variation in the cosmology within our MCMC
sampling, especially in the Hubble parameter of e.g. Δh ≈ ±0.05, we needed to expect a deviation in the

measured number of photons of ∼ 10%. As observed in our previous work (Borm et al. 2014), however,

the parameter space of clusters with precise temperatures seemed to be rather dependent on the cluster

redshift and temperature itself than on η. Accordingly, we concluded that our defined selection function

S (M̄, z) was constant under the variation of cosmological parameter values within our MCMC sampling.

To inspect the influence of varying scaling relations on the parameter space of clusters with precise tem-

peratures, we considered the scatter in the scaling parameters during the MCMC simulations. For the

pessimistic approach, these parameters scattered within a region of roughly twice the size of the prior

and yielded a maximum deviation in the temperature of ∼ 15%. These altered correlations between

cluster mass and temperature lead to a shift of the parameter space of precise temperature clusters of

up to half a pixel in mass. However, this was only for the pessimistic approach and for the expected

improved priors on the scaling relations by a factor of four, the deviations in the temperature became

negligible around a couple of percent. Additionally, our definition of the selection function as a step

function already allowed for a more robust handling of the dependences of the temperature estimates

on the cluster mass and redshift. In conclusion, both variations in the cosmological as well as in the

scaling parameter values only lead to negligible changes in our defined selection function, such that the

eROSITA cluster temperature function was a reliable expression throughout our simulations.

In a final test, we compared the expected number of eROSITA clusters with precise temperatures from

the galaxy cluster temperature function with the results from Borm et al. (2014). Within our previous

work we computed this sample to include ∼ 1, 700 clusters, excluding eHIFLUGCS, where this result

was based on the transfer function by Eisenstein & Hu (1998) and applied only a simply selection of

S (M̄, z) ∈ {0, 1}. Our new estimation of ∼ 1, 860 newly determined precise temperatures with eROSITA
reproduced this result to a reliable level despite the different transfer function and the improved selec-

tion.
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6.8.5 Including Poisson Noise in the Mock Data

In general, Poisson noise in the number of detected photon counts from the clusters (comp. Eq. 6.27)

as well as in the number of detected clusters in the different observation bins was expected. For the

previous eROSITA cosmology forecasts by Pillepich et al. (2012), the noise in the photon counts was

included in the definition of the galaxy cluster photon counts function to allow for a detailed analysis.

However, reducing this Poisson noise to a Dirac delta function as expressed in Sect. 6.3.1 altered the

total number of detected clusters only negligibly by less than a couple of percent. In discussion with the

authors of P16, this approach of the reduced noise level was thus applied to simultaneously improve the

required simulation time for the MCMC analysis.

To quantify the impact of Poisson noise in the abundance of clusters in the individual (z, η)-bins, we

generated a mock catalogue including this noise and quantified the cosmology forecasts for different

cosmological models and simulation set-ups. Those simulations were based on fixed scaling relations

to focus on the influence on the cosmological constraints, and were performed for both the scaling rela-

tions by Reichert et al. (2011) as well as by Vikhlinin et al. (2009a). The strongest effect of the Poisson

scatter on the cluster counts was observed in the deviation of the best-fit values from the input values,

which scattered within the 68%-credibility regions for the idealistic case of fixed scaling relations. The

strength of this bias depended on the considered parameters as well as on the realisation of the Poisson

noise. In the realistic simulation scenario with a simultaneous fit of the scaling relation, the credibility

regions increase, however, such that this additional uncertainty is very unlikely to contribute to the final

cosmological constraints. Additionally, the parameter uncertainties, on the other hand, were almost in-

dependent of the scatter in the cluster counts and agreed by more than 98% percent for different Poisson

noise realisations and when compared to the scenario with no noise. Since our project emphasised on

the precision of the parameter forecasts, also the Poisson noise in the cluster counts was neglected.

6.8.6 Influence of Baryons on the Halo Mass Function

Over the last years, several studies investigated the impact of cluster gas physics on the halo mass func-

tion and thus on the number of expected galaxy clusters and on the cosmological estimates (e.g. Stanek

et al. 2009; Cui et al. 2012; Balaguera-Antolinez & Porciani 2013). Recent simulations by Bocquet

et al. (2015) now estimated the systematic error on the computed cosmological parameters values when

neglecting the influence of baryons on the halo mass function also for the eROSITA instrument. In this

case, the shift in the best-fit value of the matter density Ωm was computed as −0.01 when accounting for

the baryons in a ΛCDM model. However, the credibilities on the cosmological parameters were repro-

duced also with the altered halo mass function, such that we could neglect the effect of baryons on this

function for our forecasts. As the deviation in the best-fit estimate surpassed our expected uncertainty

by ∼ 60%, the accounting of baryonic effects on the shape of the halo mass function will be essential

for the future data analysis of the eROSITA instrument.
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6.9 Summary & Conclusion

Within this project, we presented forecasts on the cosmological parameters for the upcoming eROSITA
instrument, while investigating the different models ΛCDM, w0CDM, waCDM, and ΛCDM+ν. These

results were obtained based on the derivation of a galaxy cluster photon counts function to describe the

abundance of galaxy clusters observed by eROSITA, as well as on the performance of MCMC simula-

tions.

Applying the scaling relations by Reichert et al. (2011), we predicted eROSITA to observe a total of

∼ 98, 700 galaxy clusters, where precise temperature measurements where expected for a subsample

of ∼ 2, 050 clusters. When accounting for a development in the knowledge on the scaling relations

until the surveys are completed, the full cluster catalogue allowed for cosmological constraints for the

68%-credibilities of < 1% and of ∼ 1.5% for σ8 and Ωm, respectively, in a ΛCDM- as well as in a

w0CDM-cosmology, with Δw0 = 2.4% in the latter case. In the more complex wCDM-scenario, the cos-

mological parameters will be estimated to a high precision of Δσ8 = 0.013 (1.6%), ΔΩm = 0.01 (3.4%),

Δns = 0.032 (3.3%), Δw0 = 0.117 (11%), and Δwa = 0.432. These results are slightly more precise than

the recent results from the Planck satellite, including external priors on BAOs, on the Hubble parameter

and on supernovae type I data. When combining both data sets, the precision on the dark energy param-

eters could be improved to Δw0 = 0.077 (7.7%) and Δwa = 0.276. According to the latter results, we

computed a figure of merit of FoM2σ = 53 for the dark energy characteristics, which classified eROSITA
as first Stage IV instrument. Further results are summarised as follows.

• Significant degeneracies were observed between the parameters of the set {σ8,Ωm, w0, wa}, similar

to previous cluster cosmology experiments.

• A strong dependence of the parameter credibilities on the knowledge on the scaling relations

was computed with an improvement by a factor of ∼ 2 when moving from the pessimistic to

the optimistic scenario, where the dark energy parameters displayed the least influence. However,

when decreasing the priors on the scaling parameters even further, this cosmological improvement

starts to flatten and especially the constraints on the dark energy parameters remain constant.

• The size of the full eROSITA catalogue contained additional information especially on the scaling

relation parameters βLM and γLM with improvements beyond the prior information by up to 65%.

Accordingly, these data allowed for a more precise calibration of the M − LX relation.

• Even the smaller subsample of clusters with precise temperature estimates yielded constraints on

the parameters {σ8,Ωm, ns}, though its constraining power was strongly limited by the size of the

sample even for the optimistic scenario. Accordingly, these information improved the computed

credibilities from the total cluster sample only negligibly.

• The eROSITA cluster catalogue alone did not allow for the study of neutrino characteristics. For

this case a joint MCMC simulation of our data sample and the information from e.g. the Planck
results are suggested.

In addition to forecasting the cosmological constraints placed by the eROSITA instrument, we investi-

gated the influence of the different simulation steps and assumption on the results. Accordingly, several

simulations were repeated based on the scaling relation by Vikhlinin et al. (2009a) to quantify the influ-

ence of the applied relation. The comparison of the results for the two scaling relations showed a strong

dependence on the considered cosmological model. Whereas the constraints on the dark energy param-

eters remained comparable, deviations for Δσ8 and for ΔΩm by 20% were observed when assuming
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the current knowledge of the scaling relations. However, deviations in the uncertainties may increase

up to ∼ 30%, where on average the application of the relations by Reichert et al. (2011) resulted in

tighter credibility values. Accordingly, precision cosmology is strongly dependent on the accuracy of

the scaling relations. However, from the simulation results above, we expect eROSITA to not only allow

for tight cosmological constraints, but also for an improved calibration of the scaling relations and thus

for a more accurate accounting of the total number of clusters.

As another essential study, we quantified the reliability of a Fisher formalism approach when compared

to the more detailed MCMC simulations. For the less complex cosmological models and especially

when simplifying the set-up to a perfect knowledge on the scaling relations, both statistical approaches

yielded very similar constraints for the parameters {σ8,Ωm, w0, wa} with deviations by � 10%. When

considering the parameter set {ns, h,Ωb}, which is less decisively defined by galaxy clusters, the MCMC
methodology introduced additional information, which improved the uncertainties on these parameters

by up to ∼ 23%. On the other hand, when moving to more complex cosmological models with a real-

istic treatment of the knowledge on the scaling relations, we partially observed strong deviations from

Gaussianity in the computed MCMC credibility regions. This discrepancy was especially significant

for the dark energy parameters w0 and wa, such that the Fisher approach overestimated the precision on

these parameters by ∼ 22% and by ∼ 17%, respectively. Accordingly, the Fisher formalism proved as a

reliable statistical tool for the simulations with frozen scaling relations. For the more realistic simulation

set-ups as well as for the more complex cosmologies, however, the MCMC approach needs to be applied.

In conclusion, we summarise that eROSITA will be a very powerful instrument for cosmological stud-

ies, especially for the investigation of the nature of dark energy. The computed figure of merit with

FoM2σ = 53, when including the information from the Planck mission, classified the instrument as first

Stage IV mission for the determination of dark energy, according to the considerations of the DETF.

In addition to the dark energy constraints, the large catalogue of eROSITA galaxy clusters will allow

for unprecedented precision especially on the parameters σ8 and Ωm as well as for high parameter

precisions.

6.10 Outlook

One further study that we consider is to further quantify the bias in the cosmological constraints, that

may arise from applying inaccurate scaling relations in the data analysis, and to test the self-calibration

potential of these relations by their simultaneous fit during the MCMC simulations. For the first inves-

tigation, the mock catalogue is computed applying e.g. the scaling relations by Vikhlinin et al. (2009a),

while during the MCMC analysis we assume the functions by e.g. Reichert et al. (2011), including the

corresponding priors. To consider the self-calibration, an idea is to implement the same scaling relations

in the mock catalogue as well as in the analysis, but to change the normalisation of the relations by e.g.

±10% for the simulation of the catalogue. Following this approach, we can test whether the simultane-

ous fit of the scaling relations in the MCMC run allows for a compensation of the bias introduced by the

off-set in the considered scaling relations.

As already expressed in Sect. 6.6.4, to explore the full cosmological significance of the eROSITA cluster

catalogue, a joint MCMC analysis of this cluster sample with the Planck data was suggested. However,

while investigating this project, several obstacles and different possible approaches had to be addressed.

As a first scenario, we downloaded the Planck likelihoods and their parameter files, and implemented
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them in CosmoMC as suggested by the readme,16 of this software to allow for a joint simulation of

the data sets. Following this approach, it was necessary to first quantify the deviation between our de-

fault WMAP5 and the Planck cosmology. Assuming a ΛCDM-cosmology, we derived the following

model within CosmoMC from the Planck+BAO+H0+JLA data and the corresponding likelihoods with

the results from the WMAP5 data stated in the brackets for comparison

σ8 = 0.8296 ± 0.0143 (0.8170 ± 0.026)

Ωm = 0.3152 ± 0.0133 (0.2800 ± 0.0058)

ns = 0.9655 ± 0.0062 (0.9600 ± 0.013)

h = 0.6730 ± 0.0096 (0.7010 ± 0.013)

Ωb = 0.0491 ± 0.0011 (0.0460 ± 0.0015) .

Accordingly, the individual credibility regions for the Planck data set and for our defined eROSITA
mock catalogue were shifted from one another while still being consistent within the 68%-credibility

level. This deviation suggested the following two approaches: to either apply the cluster mock cata-

logue based on the WMAP5-cosmology or to adapt the catalogue to the findings by Planck. For the first

case, the joint simulations would thus suggestedly result in systematically increased credibility regions

when compared to the uncertainties of the individual analysis of each data set. However, this approach

represents a realistic scenario in the reduction of observed data. If we decided to recompute the mock

catalogue based on the Planck cosmology, on the other hand, most important would be the increase in

σ8 by ∼ 2% and in Ωm by ∼ 11%, which also surpasses the typically found values by cluster stud-

ies (comp. e.g. Mantz et al. 2015). Therefore, applying this cosmology without adapting the scaling

relations would lead to an overprediction of the number of clusters observed by eROSITA, where we

computed this sample to include a total of ∼ 122, 900 clusters. This development to ∼ 20% more clus-

ters originated from the influence of these increased values of σ8 and Ωm on the power spectrum and

was only insignificantly impacted by the changing E(z)-factor in the scaling relations. Accordingly, this

larger sample of clusters would by default allow for tighter cosmological constraints due to improved

statistics. Additionally, the distribution of the clusters would be altered as an increased matter density

suggested a reduced number of clusters at higher redshifts (comp. e.g. Voit 2005, Sect. 2.8). To dis-

solve this bias, we decreased the considered sky fraction to fsky = 0.528 to yield the same number of

clusters as for the WMAP5 cosmology, while neglecting the deviation in the distribution of the cluster

abundances. For both concepts of not altering and of re-defining the mock catalogue, we launched joint

MCMC forecasts for the eROSITA and the Planck data within CosmoMC. However, due to the evalua-

tion of several likelihoods and data samples in these simulations, the chains were running very slowly

and we estimated the necessary time for convergence to several months.

We thus considered an alternative scenario which was based on the so-called importance sampling. The

main concept of this strategy was to define the chains of the MCMC analysis of the first data set as basis

to compute the likelihoods of the second data set. In this sense, this second likelihood was evaluated at

the chain steps of the first data catalogue. Depending on the computed likelihood values, weights were

assigned to the individual steps of these second chains, such that eventually the credibility regions were

defined analogously to the analysis of a full MCMC simulation.

As this latter approach required the development of an additional script as well as its testing to perform

the importance sampling, this project is still on-going, where these results will be published in Borm et

al. in prep. together with the general findings of the cosological MCMC forecasts for eROSITA presented

16 Information on how the Planck likelihoods are integrated into CosmoMC as well as their download link could be found on

the webpage: http://cosmologist.info/cosmomc/readme.html.
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in the previous sections. However, based on our findings in Sect. 6.6.4, deviations of only ∼ 10 − 15%

from Gaussianity were observed for the computed MCMC results. Accordingly, we expected the un-

certainties to slightly increase for the joint MCMC analysis, but to still reproduce precisions around

Δw0 ≈ 0.08 and Δwa ≈ 0.28. In summary, the results stated in Tab. 6.3 can thus be considered as very

reliable and representative for the constraining power of the eROSITA instrument.
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CHAPTER 7

Final Conclusions and Outlook

The main science driver of the future eROSITA X-ray instrument is the investigation of the dark energy

equation of state, one of the most challenging questions of modern astrophysics. The characteristics

of dark energy are e.g. accessible via the observations of galaxy clusters and their distributions. The

projects of this thesis were structured to forecast the potential of the eROSITA instrument for the study

of galaxy clusters as well as of their cosmological implications. Accordingly, we emphasised first on

estimating the reliability of the cluster properties, which are expected to be observed by eROSITA.

Based on this obtained knowledge on the future cluster catalogue, we then inferred the constraints,

which the instrument will be able to place on the different cosmological parameters. Accordingly,

the work presented in this thesis, states a detailed as well as realistic scheme for studying precision

cosmology, while starting from the instrumental characteristics and the initially observed galaxy cluster

raw data to applying complex cosmological models and statistical methods to obtain the credibilities of

the cosmological parameters.

The following sections summarise the results achieved in these projects as well as the conclusions of

their interpretations. The final sections allow for an outlook of currently on-going work, of suggestions

for future studies as well as of how this work is essential for the analysis and interpretation of the future

eROSITA data.

7.1 Summary of the Projects and the Results

In our first project, we estimated how well eROSITA will be able to observe different cluster properties,

while focussing on the ICM temperature and on the redshift. This study was based on the simulation of

cluster spectra and accounted for the instrumental response as well as for the planned survey exposure

maps. The computed results indicated that eROSITA will allow for precise temperature measurements

for clusters as distant as z � 0.16, when applying the average effective survey exposure time and as-

suming cluster redshifts to be accessible. For distances up to z ≈ 0.08 precise temperatures will even be

estimated for all cluster masses. Precise redshifts will be available up to distances of z � 0.45, where for

the local clusters these precisions are comparable to optical photometric estimates. However, for clus-

ters with the highest as well as with the lowest considered masses, the ICM temperature and the redshift

were degenerate properties, which resulted in catastrophic failures during the spectral fit. These failures

limited especially the deep exposure observations and will thus need to be considered in the subsequent

pointed observation phase of the instrument. Additionally, for those clusters with precise measure-

ments, no systematics in the accuracy of the parameter values or in the error computation needed to be

corrected for when assuming an average exposure time. For the remaining clusters, correction functions

for the parameter bias as well as for the bias on the uncertainties were defined. Convolving the above

151



7 Final Conclusions and Outlook

results with the halo mass function, we estimated eROSITA to obtain precise temperatures for ∼ 1, 700

new clusters. This will increase the current cluster catalogue with precise temperature information by a

factor of 5 − 10 depending on the referred-to sample.

Whereas these computations assumed cluster spectra to be available directly, in a realistic observation

and analysis procedure several pre-analysis steps need to be applied first to the raw data. These include

e.g. coordinate transformations, event selections, the detection of the objects as well as their spectral

extraction. These steps as well as the realistic data treatment itself might cause an additional bias,

which impacts the final spectral fit results and thus the interpretation of the data. Following these con-

siderations, we extended the first project to investigate these pre-analysis strategies, while applying the

software packages SIXTE for the simulation of eROSITA event files and SRCTOOL for their analysis.

Based on these studies, we allowed for the improvement of several aspects in both tools. For the relative

parameter uncertainties, small increases were retrieved as expected, due to the additional analysis steps.

Thus, the determination of precise temperatures was now limited to redshifts of up to z � 0.09, where

up to distances of z ≈ 0.06 clusters of all considered masses were included in the parameter space of

precise properties. Despite small reductions, all clusters, which showed precise property estimates in the

previous simulations, were thus on average still included in the parameter space of clusters with precise

temperatures. Despite these agreements, the model temperature value was overestimated by on average

≈ 10% for those cluster, which suggested a systematic error in the simulation and/or in the analysis

set-up of the two applied tools. Though this bias could not be solved yet, these results supported the im-

provement of both software packages and the present advancements of these tools promise a reduction

of these systematics (Sect. 7.2).

Considering this knowledge on the expected observations of galaxy clusters with the eROSITA instru-

ment, we forecasted the constraints these clusters will place on the cosmological parameters. For these

simulations, we derived the halo photon counts function based on galaxy cluster scaling relations, where

this cluster abundance function was defined by the number of detected photon counts as direct cluster

observable. This function then defined a mockcatalogue for the expected cluster observations and the

statistical analysis of this catalogue was performed by a MCMC approach.

For the scaling relations by Reichert et al. (2011), this abundance function yielded a total of ∼ 98, 700

observed galaxy clusters. Only probing the cluster abundances and assuming a progress in the knowl-

edge on the scaling relations until the eROSITA surveys are completed, this large catalogue alone allowed

for cosmological constraints of < 1% and of ∼ 1.5% on σ8 and on Ωm, respectively, in a ΛCDM- and

a w0CDM-cosmology. In the latter scenario, the normalisation of the dark energy equation of state was

predicted with a precision of Δw0 = 2.4%. For the more complex wCDM-cosmology our computed

eROSITA constraints alone were comparable to the Planck results with external priors. Accordingly, we

computed credibilities of Δσ8 = 0.013(1.6%), ΔΩm = 0.01(3.4%), Δns = 0.032(3.3%),

Δw0 = 0.117(12%), and Δwa = 0.432 from the eROSITA cluster abundances alone. When combining

both data sets, the dark energy equation of state was constrained to Δw0 = 0.077(8%) and Δwa = 0.276.

At the same time, a figure of merit of FoM2σ
w0,wa

= 53 was retrieved, which classified the instrument as

first Stage IV probe for the study of dark energy. Especially the investigation of these two parameters

supported the application of MCMC simulations as a reliable analysis strategy since their credibility

regions showed deviations from a Gaussian distribution.

In addition, we were able to quantify the dependence of the credibilities on the knowledge on the applied

scaling relations, where the dark energy constraints showed the least influence and are not expected to

improve for a further increased precision in the scaling parameters. However, the eROSITA cluster sam-

ple will at the same time tighten the constraints on the M − LX relation, especially on the parameters

βLM and γLM. The inclusion of the cluster temperature information, on the other hand, did not directly
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improve the above stated results, due to the limited size of the cluster sample with precise ICM tempera-

tures. However, for a more complex and extended forecast scenario, these temperature information will

be beneficial. Instead, impacts on the cosmological constraints were caused e.g. by the applied scaling

relations, which strongly defined the total number of observed clusters. Deviations of on average ∼ 20%

in the parameter credibilities needed to be considered.

Finally, the main conclusions of the above explained projects are summarised as follows.

• eROSITA will be able to observe precise and accurate temperatures for clusters up to distances of

z � 0.16, which relates to ∼ 1, 700 new clusters with precise temperatures.

• Accounting for the additional analysis of the raw data yielded only a small decrease in the ex-

pected temperature precisions. However, the arising strong bias in the accuracy of this property

asked for a further investigation of the individual data reduction steps and for an improvement of

the applied tools.

• Considering the large eROSITA cluster catalogue only, allowed for forecasted precisions on the

cosmological parameters, which were comparable to the information obtained from the Planck
data with external priors. The combination of both data sets retrieved a figure of merit of

FoM2σ
w0,wa

= 53, which classified eROSITA as the first Stage IV instrument for the study of dark

energy.

Accordingly, the eROSITA instrument presented itself as powerful tool to study galaxy cluster character-

istics, on the one hand, with an increase in the sample of clusters with precise temperatures by a factor

of 5 − 10. In total, the all-sky survey of this instrument will extend the number of known X-ray clusters

by a factor of the order of ∼ 50. On the other hand, eROSITA will allow for cosmological studies with

unprecedented precision, especially on the parameters σ8, Ωm, w0 and wa.

7.2 Significance of this Work

This work does not only present forecasts for the observational potential of the eROSITA instrument,

but it also allows for a robust and reliable preparation of the analysis strategy of the future data. For

example, the inspection of the pre-analysis software already initiated improvements of the two packages

SIXTE and SRCTOOL, and helped to identify and to quantify systematics in the applied software proce-

dures and in the realistic treatment of the raw data. Additionally, the arising discussions on this topic in

the collaboration supported structuring reliable and detailed concepts for the future data reduction.

Similarly, the simulation of the expected precisions on the cluster properties yielded suggestions for a

robust analysis of the spectra. However most importantly, we were able to quantify the systematics in

the estimated best-fit parameter values as well as in the computed parameter uncertainties. The accord-

ingly defined bias correction functions will thus allow for the consideration of these biases in the future

data reduction to support an accurate interpretation of the results.

Though the most interesting conclusion from the cosmological forecast was the approved classifica-

tion of eROSITA as a Stage IV instrument, we also established a new cluster abundance function and

recorded diverse advices as well as lessons-learned for the future data reduction. For example, the im-

portance of an accurate and reliable calibration of the applied scaling relations was emphasised. Also,

the developed scripts for these simulations can build the basis for the software of the future cosmologi-

cal data evaluations.

In summary, the projects presented in this thesis support the development of a reliable, accurate and

robust strategy for the analysis of the future eROSITA data.
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7.3 On-Going Work and Outlook

At this point, we summarised the different outlooks, which we already presented in the previous chap-

ters. Currently, there are continuous investigations on two of these projects - on the study of the sys-

tematics in the pre-analysis tools and in the treatment of the raw data, as well as on the cosmological

forecasts.

The current identifications of possible systematics in the pre-analysis software, already presented a con-

tinuation to the project of cluster temperature predictions. An advancement of the applied tools now

allows for additional and more flexible applications and specifications in the data reduction. This up-

date thus suggests a re-simulation of the expected ICM temperature precisions and accuracies, while

promising a more realistic treatment of the observed raw data. One aim is to identify the origin of

the strong bias in the temperature estimates and solve it, but at the same time, these tests allow for an

improvement of the entire analysis methodology and for an adaptation of the individual tools to one an-

other. Accordingly, during the current development of eSASS, frequent tests of its packages are required.

For the final eSASS release, it will be essential to identify and to quantify its systematics, to understand

their origin and to provide the corresponding correction functions. Only if these aspects are covered, an

accurate reduction and interpretation of the eROSITA data is supported.

For the cosmological forecasts, on the other hand, we currently investigate the joint credibility con-

straints from the eROSITA and the Planck data. Whereas the results stated above were based on approx-

imating the individual MCMC uncertainty regions as Gaussians, we now follow a joint MCMC analysis

for the eRASS:8+Planck data sample. Accounting for the different arising problematics, three distinct

simulation approaches are followed. Though, the reported cosmological constraints were already ro-

bust estimates, they presented deviations from Gaussianity, especially for the dark energy parameters.

Accordingly, these newly combined MCMC results will then allow for more accurate and reliable cred-

ibility regions, which is of interest especially for w0 and wa. However, since only minor deviations from

a normal distribution were observed, the newly computed figure of merit will still classify eROSITA as

a Stage IV instrument for the study of dark energy.

In addition to approving the reliability of the cosmological conclusions, the combination of the cluster

information with the Planck data will also allow for the test of more complex cosmological models,

including e.g. neutrino characteristics. Apart from considering the constraints from Planck, possible

extensions to this study include e.g. the additional application of information from spatial clustering,

or the quantification of the credibilities of primordial non-Gaussianity and even of modified gravity.

Furthermore, we defined the idea of introducing the uncertainties on the M − TX relation in the simu-

lations, in which case the available temperature estimates will be beneficial. In a further step, it is also

interesting to quantify the impact of available information on cluster masses, e.g. from weak lensing

observations, on the cosmological constraints.

According to the ideas and concepts expressed above, the scientific preparation of the eROSITA in-

strument in the fields of galaxy cluster science and cosmology still shows room for a variety of inves-

tigations. Especially of interest is the ambition to improve these applied forecasting strategies and to

convert them into tools for the future data analysis. These improvements may e.g. include the reduction

in the systematics of the pre-analysis steps as well as a scheme for parallelising the MCMC simulations.

Though, the final calibration of the analysis procedures requires observed data, already at the moment it

is essential to provide a reliable and effective strategy for the analysis as well as for the interpretation of

the data. Following this scheme, we significantly support the exploration of the nature of dark energy.
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APPENDIX A

Details for Applying the Software Tools SIXTE
and SRCTOOL

This chapter explains in detail how event files are first simulated with the software SIXTE (Schmid, C.

2008; Schmid 2012) and subsequently analysed by the package eSASS, especially by the tool SRCTOOL.

For both applications the software versions as of May 2014 are considered.

A.1 Considering the Instrumental Resolution for the Events
Simulation

To account for the correct spatial resolution of the eROSITA instrument during the simulation of event

files, a few considerations are necessary beforehand. The future observational data will be stored in

event files of the size 1.02 × 1.02 deg2 for pointed observations and of a FoV of 3.6 × 3.6 deg2 for the

survey mode. Since the geometry of the eROSITA telescopes together with the installed CCDs yields a

spatial resolution of 9.6 arcsec, or equivalently 0.002667◦, per CCD-pixel, a survey event file will thus

be cover by an area of 1345 × 1345 pixels.

A.2 Simulating Event Files with SIXTE

For the event simulator SIXTE, we describe the procedures for simulating the events of a point source

as well as of an extended source and elaborate both cases for a pointed as well as for a survey mode ob-

servation. However, for all approaches the first step is to define the SIMPUT-file (SIMulation inPUT),

which includes the catalogue of sources to be simulated and their characteristics. This file follows the

commonly applied FITS-format and contains columns for the source coordinates, for its flux, for its

mission independent spectrum, and for its surface brightness distribution (Schmid et al. 2013).

Step 1: How to create the SIMPUT-files
The simulation of a SIMPUT-file for a well defined source is managed by the executable simputfile.

simputfile RA DEC XSPECFile="model.xcm" Emin Emax Simput="outputfile.simput"

The parameters (RA,Dec) and (Emin,Emax) describe the source position and the energy range, in which

the source flux is computed, respectively. The file "model.xcm" contains the spectral model of the

source in the syntax read by xspec. For example, for a galaxy cluster this is the command phabs*apec,
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followed by the values of the model parameters. The simulated SIMPUT-file presents the source char-

acteristics in the second FITS-extension with the flux being computed from the provided spectral model

in the given energy range. The spectrum is attached in the third extension of the file, while the first

extension remains empty. However, the executable simputfile does not generate a surface brightness

profile, which needs to be provided either by an image from observations or by an independent simula-

tion step. If no link to an image is defined in the second extension, the object is assumed to be point-like.

Step 2: How to simulate source images
For the simulation of brightness profiles as FITS-images, we apply the software dis45x, which is com-

monly implemented in the analysis of Suzaku data of galaxy clusters. Two files need to be defined for

running this programme: a ".mod"file, which contains the header keywords for the created image, and

a ".com"-file, which defines the spatial resolution of the image and the shape of the simulated surface

brightness. In both files, we fix the spatial resolution to the characteristics of the eROSITA-telescopes

(comp. Sect. A.1) and define the parameters

CRPIX1 = 672.5

and equivalently CRPIX2 in the ".mod"-file. These parameters present the half-extent of the image

in pixels, where the value stated above covers the FoV for an eROSITA survey observation. We applied

the survey FoV for convenience and to ensure that due to the large covered area no essential information

on the surface brightness profile is cut. However, the size of the simulated source image can be chosen

arbitrarily and does not define the size of the final event file.

In the ".com"-file, several parameters need to be specified, where for this example we simulate the sur-

face brightness of a galaxy cluster as a β-profile:

OUTFILE name of the output file, where the name of the ".mod"-file needs to have the same

prefix

PIXEL2DEG coverage of one detector pixel given in degrees

NX pixel size of the simulated image; equivalent to "NY"

CX x-coordinate of the centre of the image in pixels; equivalent to "CY"

RC.ARCMIN core radius of the source in arcmin

RC.PIXEL core radius of the source in pixels

BETA value of the β-parameter

NORM normalisation of the β-profile.

Again, we apply the resolution of the eROSITA telescopes as well as the survey FoV for the image size

(comp. Sect. A.1). The normalisation of the profile can be set to an arbitrary value as in the simulation

of the event file it is later-on defined by the source flux. Modeling the profile is then run by the command

./dis45x
DIS45X> @make-prefix.com
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Step 3: How to attach the image to the SIMPUT-file
To link a created or an observed image to the source information stored in the SIMPUT-file, the

HEASARC FTOOLS17 are applied for the manipulation of FITS-files. The name of the image file simply

needs to be stored in the "IMAGE"-column of the SIMPUT-file.

fpartab "image.fits[IMAGE,0]" source.simput[1] ’IMAGE’ 1

The same image can be linked to several sources. For sources with a different core radius but the same

β-profile, the image can be rescaled by the "IMGSCAL"-column in the SIMPUT-file. This keyword is

defined as

IMGSCAL= angular extend of the image / angular extend of the source

Step 4: How to create source catalogues
The SIMPUT-file, created by the simputfile-command, contains per default only one source. To sim-

ulate several objects within the same event file, it is convenient to define a source catalogue in one single

SIMPUT-file. Accordingly, we stack files of single sources by applying the FTOOLS. Since multiple

extensions of FITS-files cannot be stacked simultaneously, we first stack the different extensions into

separate files with the command fmerge and in a second step append the stacked extensions into one

SIMPUT-file by means of the command fappend.

Step 5: How to simulate event files
Having defined the catalogue of our objects of interest, we proceed in simulating the event file, which is

especially depending on the instrumental characteristics. In addition to this information also the centre

of the simulated event file (RA,Dec) and the exposure time in seconds need to be provided for this step.

Depending on the observation mode, different simulation approaches are followed. For modelling a

pointed observation, one runs

erosim Mode=none Simput=outputfile.simput Background=yes RA Dec Exposure
MJDREF=51544

where the command erosim calls all required characteristics of the eROSITA-instrument. However,

also the simulation of event files of other X-ray instruments is implemented within SIXTE and is ini-

tialised by just applying a different command at this point. The parameter "MJDREF" defines the refer-

ence coordinate system and needs to be set to the above stated value, whereas the keyword "Background"
expresses whether an instrumental specific particle background is convolved with the source events. To

also add a X-ray background to the events, this emission needs to be defined as a source with a flat sur-

face brightness profile either in the SIMPUT-catalogue or in a second SIMPUT-file. In the latter case,

the key "SIMPUT2=bkg.simput" needs to be extended to the simulation command. Eventually, the

procedure above yields seven event files as "events_i.fits" with i ∈ [1, 7], one for each of the eROSITA
telescopes. These files list the detected photons from the simulated sky region, including amongst others

the information on the photon energy, on the coordinates of its origin, as well as on its time stamp. To

ensure that the total number of observed photons as well as their distributions are randomly assigned

with a statistical scatter between the event files for the different telescopes as well as between subse-

17 A catalogue as well as a description of the different FTOOLS can be found at

https://heasarc.gsfc.nasa.gov/lheasoft/ftools/futils.html.
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quent simulation runs, the additional parameter seed=1 can be added to the command line above. For

pointed eROSITA observations, the simulated FoV always covers an area of 1.02 × 1.02 deg2.

For the simulation of an observation in survey mode, the exposure time of the considered FoV needs to

be computed from a so-called attitude-file, which defines the pointing directions of the telescopes at the

different times during the all-sky survey. Running the command ero_vis on the attitude-file, the time

intervals of interest are extracted and stored in a ".gti"-file.

ero_vis Attitude=attitude.fits Simput=outputfile.simput GTIFile=sim.gti RA Dec
TSTART=0.0 Exposure=1.26e8 dt=1.0 visibility_range=3.6

The coordinates (RA,Dec) define the centre of the considered FoV and the keyword "visibility_rage"
describes the size of the FoV in degrees. The exposure time is set to the total of four years to account for

all observations of the region of interest. Applying the obtained ".gti"-file, the simulation of an eROSITA
survey event file is run as

erosim Mode=survey Simput=outputfile.simput Background=yes RA Dec
Exposure=1.26e8 Attitude=attitude.fits GTIFile=sim.gti MJDREF=51544

Different than for the pointed mode, the survey observations are not limited to a well-defined FoV,

but in principle cover the entire sky.

For both survey strategies, the resulting events are best inspected with the programme fv, while inves-

tigating the additionally created "pattern_i.fits" files. Defining a histogramme over (RA,Dec) yields an

image of the spatial distribution of photon detections and visualises the simulated sources. However,

the coordinates stated in the event and pattern files are defined in detector pixels only, such that for the

analysis of these files a transformation into sky coordinates is required.

Step 6: How to convert the event files into sky coordinates
The conversion is managed by another SIXTE-command, ero_calevents, which is applied onto the

pattern-file, while stating the centre coordinates of the observation and a projection type. For the latter,

we consider the projection "SIN" for consistency with the later-on used analysis software eSASS. Be-

fore the coordinate transformation, an additional key, which describes the possible rotation of the CCD,

needs to be included in the header of the pattern-files.

fparkey fitsfile=pattern.fits[1] keyword=’CCDROTA’ value=’0.’ add=yes

ero_calevents PatternList=pattern.fits eroEventList=events_SIN.fits CCDNr=1
RefRA RefDec RA Dec Projection=SIN

The coordinates (RA,Dec) represent the centre of the observed FoV in the converted sky coordinates,

whereas the pair (RefRA,RefDec) states the initial centre of the simulated region. Both coordinate pairs

should naively be equal. During the above transformation, a second set of coordinates (X,Y) is added,

which describes the spatial distribution of the photons in pixels with (0,0) defining the centre of the FoV.

Each of the pixels shows a resolution of 1.38 · 10−5 deg, such that for a survey observation the FoV is

covered by a total of 260, 870 × 260, 870 pixels.

After this coordinate conversion, we proceed to the analysis of the event files.
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A.3 Analysing Event Files with eSASS

Applying the simulation steps above for the eROSITA instrument yields a total of seven event files.

Merging these into one single file simplifies the following analysis steps and represent a joint obser-

vation of all seven telescopes. The procedure for merging the files is equivalent to the considerations

explained in step 4. Before spectra are extracted from the sources in the event file by means of the tool

SRCTOOL, we select the photon events of interest.

Step 7: How to select the events of interest
The first selection step is based on the location of the observed photons. Since for an event file in

pointed mode the FoV is already limited to an area of 1.02 × 1.02 deg2, no further spatial selection is

necessary. For a survey simulation, however, the FoV needs to be cut to a 3.6 × 3.6 deg2 sky frame.

This selection is managed by the coordinates (X,Y) as these are showing a finer binning than the sky

coordinates (RA,Dec), with 1.38 · 10−5 deg compared to 2.7 · 10−3 deg, respectively. We again apply the

FTOOLS for this procedure.

fselect events_SIN.fits events_selected.fits "X >= -130435 && X <= 130435"

Repeating the above step also for the Y-coordinate yields the asked for survey FoV. Additionally, for

both observation modes, we select the pattern type of the photon events, which is also stored in the

event file, to PAT_TYP < 12. This filtering rejects all patterns, which are likely to result only from a

statistical clustering of photons. Further selections might e.g. include the energy range of the photon

events.

Step 8: How to extract the source spectra
For the extraction of the source spectra, the SRCTOOL, which was developed by T. Dwelly and is im-

plemented within the eSASS software kit, is applied. Three further manipulations of the event files are

required first, though. The name of the "GTI"-extension needs to be changed according to

fparkey fitsfile=events_selected.fits[2] keyword=’EXTNAME’ value=’STDGTI’

Also, the value of the two keys "DATE-OBS" and "DATE-END" in the file header are altered to the

value given for the "DATE" key applying fparkey.
For the spectral extraction, the source coordinates, the source region as well as the background region

need to be provided. These are either defined manually, as in our approach with e.g. R500 for the

source extent, or obtained by means of a source detection algorithm. The SRCTOOL is then run with

the following parameters.

evtfiles input file

outstem output file

todo "SPEC"

srccoord file containing the coordinates of the sources

insts 1

refarfs erosita_iv_1telonaxis_ff_convert.arf

ebounds erosita_iv_1telonaxis_ff_convert.rmf

vigndesc sim1_tvignet_100302v01.fits

extpars ”
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psfdesc erosita.psf.fits

xgrid 1.0

tstep 1.0

srcreg file defining the source region

backreg file defining the background region

badpix BADPIX.txt

A more detailed explanation of the different parameters is presented in the eROSITA-wiki18.

Following the set of the above stated steps, we finally generate one spectral file for each source region

and one for each additional background-only region as they are observed for the total of seven eROSITA
telescopes. To continue with the spectral analysis in xspec, the value of the exposure time and the name

of the instrumental response file need to be added manually to the header of the spectral file. In our

case, no tool was available yet to compute the exact exposure time of the simulated sky region, and we

define the position of the region such, that it is observed with the effective exposure time of texp = 1.6 ks

based on the exposure maps by J. Robrade (comp. Fig. 2.12). For the instrumental response, we apply

the survey resolution, averaged over all seven telescopes, "erosita_iv_7telfov_ff.rsp". The final analysis

steps to re-obtain the source characteristics are analogous to the approach described in Sects. 4.2.3 &

4.2.4.

18 https://wiki.mpe.mpg.de/eRosita/TaskDescriptions?action=AttachFile&do=view&target=srctool_doc.html
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APPENDIX B

Brief Manual for Running COSMOMC

The following sections briefly summarise, how the COSMOMC software package is structured in gen-

eral as well as how additional likelihood modules and data are added. The described features are valid

and have been tested for the software versions of 02/2015 and 06/2015, and applying the Intel Fortran
Compiler, ifort15. We would like to note to the reader, that only those applications required for our

simulations are discussed. More general information on the software and its installation are expressed

in the COSMOMC readme19 by A. Lewis.

B.1 General Outline of COSMOMC

COSMOMC contains the likelihoods as well as the data samples for a variety of different cosmological

probes, including e.g. supernovae type Ia, BAO, and also the CMB. These different information are

organised in the folders “./source/” together with the modules, which perform the MCMC simulation,

and “./data/”, respectively. Running the MCMC simulations is managed by “.ini”-files, which contain

all the required information on the characteristics of the simulations, such as e.g. the number of vari-

able parameters, the convergence criterium, which sampling method to use and which likelihoods to

compute. Per default, there exists one main, driver “.ini”-file, called “params.ini”, in the COSMOMC
home directory and many sub-files, which are launched by this driver and are located generally in the

“/batch1/”-directory. The main file e.g. includes the information on the names and the output directory

of the created files and defines the action to be executed. For performing a MCMC simulation based on

the Metropolis-Hastings algorithm, one needs to set

root_dir=
file_root=
action=0
sampling_method=1

while the first two parameters define the output directory as well as the name of the resulting chains,

respectively. This driver also calls additional “.ini”-files, such as e.g. “./batch1/likelihood_batch1.ini”,

which defines the likelihoods to be applied during the simulation, or

“./batch1/params_CMB_defaults.ini”. The latter file describes which parameters to vary during the fit,

their priors as well as the values of the frozen parameters. By default, the variables are defined e.g. as

19 The COSMOMC readme is available at http://cosmologist.info/cosmomc/readme.html
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param[name]= centre, min, max, starting width, proposed width

with an applied flat prior between the minimum and maximum boundary of the parameter value and

an estimate for the width of its proposal density. However, the option exists to update the latter property

during the simulation based on the distribution of the chain steps.

In addition to these definitions, an additional parameter file “.paramnames” needs to be available for

each simulation. It lists all parameters, which are stated in the “.ini”-file, with their names and their

LATEX notations, as e.g.

omegabh2 \Omega_b h∧2 #physical baryon density.

These parameter files are stored in the “./paramnames/”-directory and are referenced by the likelihood

codes (Sect. B.2). For those likelihoods already contained within COSMOMC, these files have been

defined and do not need to be edited.

Having adapted the performance of the simulations to your requests, you can launch one single chain

with the command

./cosmomc params.ini

To run several chains at the same time, an additional tool is required to manage the communication

between the individual chains, for example to update the proposal width or to test for convergence. This

parallelisation is commonly achieved by applying the software MPI (Message Passing Interface)20,

where both this software and COSMOMC need to be built by the same compiler. After this set-up, the

MCMC simulations can be launched as

mpirun -np #chains ./cosmomc params.ini

with #chains representing the number of chains. Each chain is then run on a separate core.

B.2 Writing Your Own Likelihood Module

The descriptions in the previous section focused on applying likelihoods, which are already available

within COSMOMC. To run your own likelihood function on an already defined data set or on your own

data, you need to develop a module, which computes the negative logarithmic likelihood, − log[P(x|Θ)],

and which shows a certain set-up, such that it can be integrated into the COSMOMC infrastructure.

Calculating the likelihood is left to the reader as it depends strongly on the considered model and data

set. However, to implement this likelihood into the software, the module needs to mirror the following

structure. As we constructed this module to compute the cosmological constraints based on the number

of observed galaxy clusters, we call the example “clustercounts” and the corresponding file “cluster-

counts.f90”, while writing the entire code in Fortran.

20 This tool is e.g. freely available at http://www.open-mpi.org/software/ompi/v1.10/.
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module clustercounts

!Defining the required COSMOMC modules
use settings
use CosmologyTypes
use CosmoTheory
use likelihood
use MatrixUtils
use Calculator_Cosmology
use Likelihood_Cosmology
use iniObjects
implicit none
private

type, extends(TCosmoCalcLikelihood) :: ClusterCountsLikelihood
!define all constants, e.g.
real(mcp) :: Msun,Mpc,AU
...
contains

procedure :: Loglikelihood
procedure :: Loglike => ClusterCounts_LnLike

end type ClusterCountsLikelihood

public ClusterCountsLikelihood, ClusterCountsLikelihood_Add

contains

subroutine ClusterCountsLikelihood_Add(Likelist, Ini)
class(TLikelihoodList) :: Likelist
class(TSettingIni), intent(in) :: Ini
class(ClusterCountsLikelihood), pointer :: this

if (.not. Ini%Read_Logical(’use_clustercounts’,.false.)) return
allocate(this)

!define all constants and load data, e.g.
this%Mpc=3.085678d22

...

call this%loadParamNames(trim(DataDir)//’../paramnames/
params_clusters.paramnames’)
call LikeList%Add(this)

end subroutine ClusterCountsLikelihood_Add
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function ClusterCounts_LnLike(this,CMB,Theory,DataParams) results (Loglike)
class(ClusterCountsLikelihood) :: this
class(CMBParams) :: CMB
class(TCosmoTheoryPredictions), target :: Theory

real(mpc) :: DataParams(:)
real(mpc) :: LogLike

LogLike = this%LogLikelihood(CMB,Theory)
end function ClusterCounts_LnLike

function LogLikelihood(this,CMB,Theory)
implicit none
class(ClusterCountsLikelihood) :: this
class(CMBParams) :: CMB
class(TCosmoTheoryPredictions), target :: Theory

!Here goes your likelihood code in Fortran

LogLikelihood = ...

end function LogLikelihood

end module clustercounts

B.3 Implementing Your Own Module into COSMOMC

Having developed your own likelihood code following the above structure, the default COSMOMC
modules need to be manipulated at several spots to integrate the new likelihood function. In a first step,

the new code and the additional data sets need to be copied to the directories “./source/” and “./data/”,

respectively. In addition to the likelihood module, two more files need to be created,

“./batch1/params_clustercounts.ini” and “./paramnames/params_clusters.paramnames”. These contain

the boundaries of the additional variables, required in the new likelihood, as well as their definitions in

analogy to the CMB parameter example presented above.

To attach the new likelihood to the procedures within COSMOMC, we edit the file “./source/DataLike-

lihoods.f90” by the following lines.

use clustercounts

call ClusterCountsLikelihood_Add(DataLikelihoods,Ini)

This file lists all available likelihood functions within the package and checks the input from the “.ini”-

files, which likelihood functions to consider. Additionally, the new function needs to be defined within

the Makefile with several comments.
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#can go anywhere at the top
CLUSTERCOUNTS ?=
ifneq ($(CLUSTERCOUNTS),)
CLUSTERCOUNTSO = clustercounts.o
CLUSTERCOUNTSF = clustercounts.f90
endif

#add to the end of the DATAMODULES
$(OUTPUT_DIR)/clustercounts.o

#somewhere after OBJFILES
ifneq ($(CLUSTERCOUNTS),)
LINKFLAGS += -lgsl -lgslcblas
LINKFLAGS += -L$(CLUSTERCOUNTS)
endif

Within a last step, the keywords for the new likelihood function need to be included into one of the

“.ini”-files, e.g. into “params.ini”. This way, we can treat the new likelihood as an equivalent to the

others and specify whether to apply this new function. To do so, we add the lines.

use_clustercounts = T
INCLUDE(batch1/clustercounts.ini)

Recompiling the entire software package then allows for applyiing the tools within COSMOMC on

your own likelihood function and data.

B.4 Some Further Notes

Even after implementing your own likelihood function into COSMOMC, adding details to your code or

to the performance of the MCMC simulations may become tedious and involve detailed knowledge of

the over-all infrastructure of the software package. The following paragraphs summarise our personal

requirements and how to implement them.

Gaussian Priors: By default the variables of the MCMC simulation are confined by flat priors, which

are defined within the “.ini”-files as expressed in Sect. B.1. For Gaussian priors, the additional informa-

tion

prior[name]= center, width

is required. Gaussian priors on these variables are allowed by default within COSMOMC. However,

more complex information, such as e.g. multivariate Gaussians, are currently not supported. First ideas

on how to develop add-ons for these kind of priors were expressed by A. Mantz

(https://sites.google.com/site/adambmantz/work/cosmomc_priors).
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Prior on H0: As H0 is only insufficiently constrained by the abundance of galaxy clusters, we de-

fined a Gaussian prior on this parameter (Sect. 6.4.3). Since H0 or h were no initial variables and were

computed based on the variable θ, the size of the sound horizon at the recombination epoch, the ap-

proach above could not be applied. Instead, the prior knowledge on the Hubble constant was included

as an additional likelihood function. This function was already available in the package, such that the

corresponding“HST.ini-file” had to be attached to one of the “.ini”-files applied to manage our simula-

tions.

use_HST = T
INCLUDE(./batch1/HST.ini)

Additionally, the considered file “HST.ini” had to be edited according to the mean value for H0 and

the requested uncertainty. For the prior by Riess et al. (2011), this resulted in the definitions

Hubble_zeff = 0.0001
Hubble_angconversion = 30.0028
Hubble_H0 = 70.1
Hubble_H0_err = 2.2

where the first to keywords defined the redshift at which the mean value of the Hubble constant is

measured, and the angular conversion, which is equivalent to

H0 =
angconversion

DA(zeff)
. (B.1)

The last two keys stated the measured value of the Hubble constant and its 1σ-uncertainty. Similar edi-

tions for zeff and the angular conversion also needed to be included within the file “./source/HST.f90”.

Following these steps, the applied constraints on H0 resemble a Gaussian prior knowledge on this pa-

rameter.

Implementing CAMB: One significant aspect in our simulations was the application of CAMB for

the computation of the linear matter power spectrum. The tool itself was already implemented within

COSMOMC, but we had to call the module within our likelihood function. Accordingly, the following

commands had to be added to our own likelihood module to compute the power spectrum at the redshift

z = 0.

!Within the subroutine add the following commands, with “numdatasets” stating the
total number of data sets to be loaded for the likelihood computation
do j = 1, numdatasets, 1

this%LikelihoodType = ’ClusterCounts’
this%needs_powerspectra = .true.
this%needs_exact_z = .false.
this%num_z = 1
this%max_z = 0.d0
this%needs_nonlinear_pk = .false.
this%kmax = 50.d0
this%num_mpk_kbands_use = 1000
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if (j.eq.1) then
... !Load data files, one for each j

end if
end do

!Add to both functions right after defining the applied classes
type(TCosmoTheoryPK), pointer :: PK

!In the Likelihood function add
PK => Theory%MPK
allocate (mpk_lin(this%num_mpk_kbands_use)) !Vector containing the P(k) values
allocate (kbands(this%num_mpk_kbands_use)) !Vector containing the k values

do i = 1, this%num_mpk_kbands_use, 1
kbands(i) = !Define the vector at which wavenumbers to compute the power
spectrum
mpk_lin(i) = PK%PowerAt(kbands(i),0._mpc) !Compute P(k) at the given k and
at redshift z = 0

end do
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APPENDIX C

Appendix for the Determination of Galaxy
Cluster Temperatures

C.1 Parameter Bias

Within this section we state the estimated correction functions for the parameter bias and describe for

which mass and redshift ranges these corrections apply (Tabs. C.1 – C.3). Because the parameter biases

are independent of the cluster mass for the simulations with unknown redshift, the correction function

covers the entire simulated redshift space −2 � log(z) � 0.25 in these cases. The functions are expressed

by equation 4.9 with the variables A and B and present an approximated estimate for the bias correction.

Table C.1: Mass and redshift ranges for the application of the individual correction functions of the parameter

bias in case of known cluster redshift.

group mass range redshift range in log(z)

in log(M/M�) texp = 1.6 ks texp = 20 ks

1 13 – 13.4.5 (-2) – (-1.35) (-2) – (-0.8)

2 13.45 – 14.05 (-1.7) – (-0.8) (-1.7) – (-0.2)

3 14.05 – 14.65 (-1.1) – (-0.2) (-1.1) – 0.25

4 14.65 – 15.25 (-0.65) – 0.25 (-0.65) – 0.25

5 15.25 – 15.7 (-0.2) – 0.25 (-0.2) – 0.25

Table C.2: Parameters of the correction function for the simulation with known redshift.

group texp = 1.6 ks texp = 20 ks

A B A B
1 50.0 5.25 2.53 4.34

2 -0.05 2.47 -0.22 3.25

3 -0.45 3.85 -0.41 2.51

4 -0.17 2.02 -0.22 2.43

5 -0.03 2.56 -0.05 1.07
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Table C.3: Parameters of the correction functions for the biases in the temperature and the redshift when the

cluster redshift itself is unavailable. For these simulations these biases are independent of the cluster mass.

parameter texp = 1.6 ks texp = 20 ks

A B A B
temperature -0.46 2.29 -0.32 2.53

redshift -0.28 2.91 -0.37 3.54

C.2 Comparison between Different Scaling Relations

In addition to the comparison of the number of clusters for the scaling relations given by Reichert et al.

(2011) and Vikhlinin et al. (2009a), we performed a thorough analysis of the distribution of galaxy

clusters with mass and redshift for these two relations. For both relations a cosmology of Ωm = 0.3,

ΩΛ = 0, 7, h = 0.7 and σ8 = 0.795 was assumed. The distribution are presented for three different

minimum numbers of detected photons ηmin = 50, 500 and 1500 (Figs. C.1 & C.2). Even though sources

with as few as 50 photon counts were assumed to be identified as galaxy clusters, a larger number of

counts improves the precision and the accuracy of the reduced cluster properties. The simulation of

these distributions follows the same setup as described in Sect. 4.4.

With an increasing value for ηmin, the total number of detected clusters declines significantly because

the distribution of clusters becomes shallower and the low- and intermediate-mass clusters are no longer

detected at the high redshifts. According to this, the total number of detected clusters decreases from

113, 400 for ηmin = 50 to 11, 000 for ηmin = 500 and to 3, 000 for ηmin = 1500. At the same time,

the maximum of the distribution shifts to lower redshift values z < 0.3. In comparison, both scaling

relations yield the same position of the maximum of the distribution where the distribution based on

the scaling relation by Reichert et al. (2011) displays a broader peak. This development results in a

total number of clusters that is 15 − 20% higher than the value for the study of the scaling relation by

Vikhlinin et al. (2009a) with a total number of cluster of 103, 700 for ηmin = 50, 8, 900 for ηmin = 500

and 2, 300 for ηmin = 1500.

This analysis emphasises the strong dependence of the distribution of clusters and of the total number

of detected clusters on the applied scaling relations and the defined minimum number of photons ηmin.
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Figure C.1: Distribution of galaxy clusters with mass

and redshift for three different photon detection min-

imums ηmin = 50, 500 and 1500 from top to bot-

tom for the scaling relation by Reichert et al. (2011).

All plots are generated for a lower mass cut of M =
5×1013/h100 M� with h100 = 0.7. The colour indicates

the number of detected clusters in the individual bins

in units of log10, where the cluster mass is considered

in units of log(M/M�). The total number of detected

clusters reads from top to bottom Ncluster = 113, 400;

11, 000; and 3, 000.
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Figure C.2: Distribution of galaxy clusters with mass

and redshift for three different photon detection min-

imums ηmin = 50, 500 and 1500, when applying

the scaling relations by (Vikhlinin et al. 2009a). All

plots are generated for a lower mass cut of M =

5×1013/h100 M� with h100 = 0.70, where the labeling

is equivalent to Fig. C.1. The total number of detected

clusters reads from top to bottom Ncluster = 103, 700;

8, 900; and 2, 300.
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APPENDIX D

Appendix for the Cosmological Forecasts

D.1 Details on the Halo Temperature Function

To define a realistic halo temperature function, we needed to include information on the subsample of

eROSITA clusters for which temperatures will be available and to account for the statistical uncertain-

ties in the temperature measurements. These aspects were realised by a multiplicative selection function

S (M̄, z) and by defining a probability distribution of best-fit temperature values P(ln T ∗| ln T, M̄, z), re-

spectively. These functions were based on our previous findings (Borm et al. 2014) and included the

information, that no parameter bias needed to be considered for clusters with precise temperature esti-

mates.

We defined a cluster temperature to be available, if its relative uncertainty ΔT/T � 10%, such that

this uncertainty was below the scatter in the M − TX relation. Fig. D.1 presents the estimates for the

median precision of the eROSITA cluster temperatures in dependence on the cluster mass and redshift.

This simulation was based on the same planned observation strategy with an average exposure time

of texp = 1.6 ks and available redshifts for all clusters. The upper left corner defines eHIFLUGCS
(extended HIgh FLUx Galaxy Cluster Sample) (Reiprich 2012) and thus all clusters with a flux of

F > 9 × 10−12 erg/s/cm2 in the energy range of (0.1 − 2.4) keV. For these clusters, temperatures will

already be accessible with high precision due to Chandra or XMM-Newton observations and we defined

S (M̄, z)eHIFLUGCS = 1. On the other hand, clusters in the lower right corner show η < 100 and were thus

not expected to show precise temperature measurement and were subject to the simulation limits within

xspec, such that we concluded S (M̄, z)η<100 = 0.

For the simulated results within the dashed white contour lines, we had 300 repeated fits for each mass-

redshift combination and we inspected the distribution of the fit results of each individual pixel to define

the selection function. However, even for clusters with a median ΔT/〈T 〉 > 10%, some of the fit results

showed an individual ΔT/T below this limit. An opposite consideration was valid for clusters with a

median ΔT/〈T 〉 < 10%. Accordingly, we defined S (M̄, z) as a step function (Tab. D.1) to incorporate

this smooth transition in the relative temperature uncertainties. The different combinations of cluster

mass and redshift were divided into steps according to the average probability to obtain a precise tem-

perature estimate, which then defined the value of the selection function. We intentionally added a step

function at this point instead of an interpolation, since the grid of the temperature forecast was rather

broad and we were thus missing the required statistics to define a more detailed allocation between

ΔT/〈T 〉 and S (M̄, z), such that a step function allowed for the most robust estimate of the selection.

After defining the selection function, we inspected the statistical scatter in the best-fit temperature val-

ues in the different mass-redshift pixels (Fig. D.2). Both the width of the distribution of best-fit values

as well as its shape were strongly dependent on the median relative temperature uncertainty and thus on
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(M̄, z). For precise temperature estimates of the order of ΔT/〈T 〉 � 0.05, a normal and a log-normal dis-

tribution yielded an equally accurate fit, where for lower precisions the log-normal distribution described

the best-fit values more properly. Accordingly, we defined the scatter in the temperature estimates as

P(ln T ∗| ln TX, M̄, z) =
1√

2πσ2
TT (M̄, z)

· exp

⎡⎢⎢⎢⎢⎣− (ln T ∗ − ln TX)2

2σ2
TT

(M̄, z)

⎤⎥⎥⎥⎥⎦ , (D.1)

with σTT = 〈ΔT/T 〉(M̄, z).
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Figure D.1: Expected relative temperature uncertainties for the

eROSITA galaxy clusters in dependence on the cluster mass and

redshift. The colour of the pixels depicts the median relative tem-

perature uncertainty, where the dark-blue regions outside the white

dashed contours are excluded from the simulations. Solid white and

black contours are included to emphasise on the levels of relative

uncertainties and photon counts, respectively. Credit: Borm et al.
(2014)

Table D.1: Selection function S (M̄, z)

of clusters with available temperature

information

ΔT/〈T 〉 S (M̄, z)

< 0.07 1.0

< 0.09 0.94

< 0.10 0.73

< 0.11 0.42

< 0.13 0.12

≤ 0.14 0.08

> 0.14 0.0
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D.1 Details on the Halo Temperature Function

Figure D.2: Distribution of best-fit temperatures for two different cluster mass-redshift combinations with relative

uncertainties of ΔT/〈T 〉 = 0.025 (top) and ΔT/〈T 〉 = 0.094 (bottom), respectively. Presented are a normal as well

as a log-normal fit to these distributions, where the log-normal fit reproduces the data more accurately, especially

in the case of the higher relative uncertainty.
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D.2 Additional Data

At this point, we summarise additional data, which is required to follow the detailed comparisons be-

tween different forecast set-ups and scenarios.

Table D.2: Forecasts of the cosmological constraints by P16, considering four years of all-sky observations,

eRASS:8, and the inclusion of the first year Planck-data (Planck+BAO+H0+polarisation+supernovae type Ia)

(Planck Collaboration et al. 2014a). The eROSITA-observations always include the described priors on the Hubble

parameter and the baryon density (comp. Sect. 6.5.2), where the simulations were based on the information of

cluster abundances and angular clustering. Different cosmological models of a ΛCDM universe, of a cosmology

with a constant, w0CDM, and with an evolving, wCDM, dark energy equation of state were tested.

Data Scenario Model Δσ8 ΔΩm Δw0 Δwa

eRASS:8 Pessimistic ΛCDM 0.014 0.012 – –

eRASS:8 Optimistic ΛCDM 0.009 0.007 – –

eRASS:8+Planck Pessimistic ΛCDM 0.008 0.007 – –

eRASS:8+Planck Optimistic ΛCDM 0.006 0.004 – –

eRASS:8 Pessimistic w0CDM 0.014 0.012 0.053 –

eRASS:8 Optimistic w0CDM 0.009 0.007 0.034 –

eRASS:8+Planck Pessimistic w0CDM 0.009 0.007 0.033 –

eRASS:8+Planck Optimistic w0CDM 0.007 0.005 0.026 –

eRASS:8 Pessimistic waCDM 0.019 0.017 0.139 0.48

eRASS:8 Optimistic waCDM 0.011 0.008 0.091 0.36

eRASS:8+Planck Pessimistic waCDM 0.010. 0.008 0.093 0.31

eRASS:8+Planck Optimistic waCDM 0.007 0.006 0.071 0.27
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Figure D.3: Expected constraints on the cosmological as well as on the scaling parameters for a wCDM-

cosmology when applying the eRASS:8 catalogue containing the redshifts and photon counts of all observed

eROSITA clusters. We present the results for the pessimistic (blue) and for the optimistic (red) simulation scenar-

ios with the contour plots displaying the 68%- and the 95%-credibility regions. The 1-dimensional histograms

show the 68% distributions only.
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Figure D.4: Credibility region of the Planck-data analysis in black with superimposed Gaussian uncertainty

ellipses in red. The 2-dimensional as well as the 1-dimensional histograms display Gaussian-like distributions

with only small deviations for especially ns and wa, which we estimate to by of the order of � 10% based on the

comparison between the prior values and the computed uncertainties Δh and ΔΩb in the eROSITA forecasts (Sect.

6.6.1 & Fig. 6.9).
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Figure D.5: Credibility regions for the MCMC forecasts of a wCDM-cosmology with fixed scaling parameters.

The comparison is shown between the simulation approach for the scaling relations by Reichert et al. (2011) (red

contours) and by Vikhlinin et al. (2009a) (blue contours), while presenting the 68%- as well as the 95%-credibility

intervals.
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Figure D.6: Comparison between the results of the MCMC and the Fisher formalism. Presented are the joint

credibility regions for a wCDM cosmological model, applying the scaling relations by Vikhlinin et al. (2009a).

The black contours show the results of the MCMC approach, whereas the red ellipses and normal distributions

display the Fisher forecasts.
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Figure D.7: Comparison between the 68%- and the 95%-constraints from the full eROSITA cluster catalogue in

an optimistic scenario (red) and the results from Planck+BAO+H0+JLA (green) for a wCDM cosmology. The

Planck data have been shifted to the best-fit WMAP5 cosmology to match the mean values of the eROSITA con-

straints. The black ellipses indicate the computed joint 68%-credibilities of the two data sets, while approximating

Gaussianity for the MCMC contours.
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