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Abstract

The object-oriented paradigm is one of the central programming paradigms
of our time. The following description is a generally accepted characteri-
zation of that paradigm: “An object has state, behavior, and identity” [9].
The concept of object identity plays an important role here insofar it is the
only characteristic element that is not available in purely declarative pro-
gramming languages without further effort. Purely declarative languages
also incorporate behavior via functions or rules, and state via immutable
values that are passed around to such functions and rules. Objects localize
state and behavior, and the single means to access state and behavior of
objects are their identity. In other words, the major achievement of object-
oriented programming languages is to provide constructs for unambiguously
mapping object identities to storage locations and procedures that act on
those storage locations.

Early discussions of the notion of object identity have found strong con-
nections between changes of state and equality predicates for objects. Object
identity lies at the center of such discussions: when the state of an object is
changed by way of its identity the new state is (re)observable via that same
identity; when the same object identity is stored in two different variables
it is always the same state that is observable via those variables [75]. Later
on, various authors have implicitly or explicitly kept that same basic idea.

Now, this thesis shows that an alternative perception of object identity
is possible when an analysis starts from a description of the usage scenarios
for object identity. These are reference on the one hand – an object is able
to refer to other objects – and comparison on the other hand – two vari-
ables may refer to the same or to different objects. These usage scenarios
can be separated both on the conceptual level of an object model as well
as on the practical level of the implementation of a programming language
and run-time environment. From this modified view on object identity new
operations can be derived. Especially dynamic object replacement is prob-
ably the most intriguing operation that is enabled by the approach taken in
this thesis. This operation has the potential to address usage scenarios from
the emerging field of unanticipated software evolution. This shows that this
thesis is not only of a theoretical nature but also gives insight into possi-
ble practical applications. Still, the traditional notion of object identity is
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kept as a special case of the broader conceptual framework presented in this
thesis.

This thesis presents a historical perspective on the concept of object
identity by illustrating central notions through summaries of seminal publi-
cations on the topic. It then develops the essential ingredients of the Gilgul
model – one of the important results of this thesis – and demonstrates these
ingredients as extensions of the Java programming language. Furthermore,
the intricacies of the replacement of active objects are analyzed – objects
with methods executing at the time of their replacement – and extensions
of the Gilgul language are presented that help to deal with these intri-
cacies. Finally, the implementation of the Gilgul language and run-time
environment are discussed and evaluated, and usage examples are given.
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Chapter 1

Introduction

The object-oriented paradigm is one of the central programming paradigms
of our time. The following description is a generally accepted characteri-
zation of that paradigm: “An object has state, behavior, and identity” [9].
The concept of object identity plays an important role here insofar it is the
only characteristic element that is not available in purely declarative pro-
gramming languages without further effort. Purely declarative languages
also incorporate behavior via functions or rules, and state via immutable
values that are passed around to such functions and rules. Objects localize
state and behavior, and the single means to access state and behavior of
objects are their identity. In other words, the major achievement of object-
oriented programming languages is to provide constructs for unambiguously
mapping object identities to storage locations and procedures that act on
those storage locations.

Early discussions of the notion of object identity have found strong con-
nections between changes of state and equality predicates for objects. Object
identity lies at the center of such discussions: when the state of an object is
changed by way of its identity the new state is (re)observable via that same
identity; when the same object identity is stored in two different variables
it is always the same state that is observable via those variables [75]. Later
on, various authors have implicitly or explicitly kept that same basic idea.

Now, this thesis shows that an alternative perception of object identity is
possible when an analysis starts from a description of the usage scenarios for
object identity. These are reference on the one hand – an object is able to
refer to other objects – and comparison on the other hand – two variables
may refer to the same or to different objects. These usage scenarios can
be separated both on the conceptual level of an object model as well as
on the practical level of the implementation of a programming language
and run-time environment. From this modified view on object identity new
operations can be derived. This shows that this thesis is not only of a
theoretical nature but also gives insight into possible practical applications.

9



10 CHAPTER 1. INTRODUCTION

Still, the traditional notion of object identity is kept as a special case of the
broader conceptual framework presented in this thesis.

Dynamic object replacement is probably the most intriguing operation
that is enabled by the approach taken in this thesis. This operation has the
potential to address usage scenarios from the emerging field of unanticipated
software evolution: although some changes in requirements can typically be
anticipated by software developers, unanticipated changes occur repeatedly
in practice, and by definition techniques like parameterization or application
of design patterns cannot tackle them. To obviate such problems, program-
ming languages and run-time environments should include features that al-
low for manipulation of program internals without permanently modifying
their source code. This latter requirement is especially important in the
context of component-oriented software engineering: components are usu-
ally deployed using a compiled format and their source code is not available
for modifications. Even if the source code can be accessed in some cases,
destructive modifications are still not feasible since they would not auto-
matically be incorporated into new versions of a component.

Essentially, unanticipated software evolution can take place at two points
in time. It can occur before a program is being linked into its final form,
or it can happen at run time. Changes to software that are carried out
before linktime can be made effective only by stopping an old version of a
program and starting the new one. This results in downtimes that induce a
high cost and possibly determines an application’s success or failure. Alter-
natively, run-time systems should be provided with features that allow for
subsequent unanticipated evolution of already active programs. Dynamic
object replacement is an especially desirable feature in this regard.

This thesis is organized as follows: Chapter 2 presents a historical per-
spective on the concept of object identity by illustrating central notions
through summaries of seminal publications on the topic. Chapter 3 devel-
ops the essential ingredients of the Gilgul model – one of the important
results of this thesis. In Chapter 4, these ingredients are demonstrated as
extensions of the Java programming language – in that chapter, the (type
sound) operator for dynamic replacement is already discussed. In Chapter
5, the intricacies of the replacement of active objects are analyzed – objects
with methods executing at the time of their replacement – and extensions of
the Gilgul language are presented that help to deal with these intricacies.
In the following two chapters, the implementation of the Gilgul language
and run-time environment are discussed and evaluated, and usage examples
are given. Chapter 8 concludes and hints towards future work.

The appendix includes the Gilgul language specification as an adden-
dum to the Java language specification. Furthermore, Appendix B reprints
the Comparand pattern that has been jointly written with Arno Haase and
makes some of the results of the Gilgul approach available for other “tra-
ditional” object-oriented programming languages.



Chapter 2

History of Object Identity
Concepts

This chapter gives summaries of relevant historical papers that characterize
and discuss important facets of the concept of object identity. These papers
are presented in chronological order. They mainly consist of papers that
consider the relevance of object identity with regard to programming lan-
guages. Of course, the concept plays also an important role in the context
of database systems, and therefore relevant literature from that area is also
taken into account. Here is a list of the papers that are discussed in this
chapter:

• In “The Art of the Interpreter or, the Modularity Complex (Parts Zero,
One, and Two)” [75] (1978), Guy L. Steele and Gerald J. Sussman
analyze the connection between side effects and equality.

• In “Values and Objects in Programming Languages” [56] (1982), Bruce
J. MacLennan discusses the distinction between values and objects.

• The paper “Object Identity” [43] (1986) by Setrag N. Khoshafian and
George P. Copeland is the most cited one with regard to the topic of
object identity, and gives a thorough presentation of the concept and
its implementation in programming languages and database systems.

• In “The Object-Oriented Database System Manifesto” [4] (1990), Mal-
colm Atkinson et al. list requirements that are to be fulfilled by object-
oriented databases. Of course, object identity plays an important role
here.

• “A Rigorous Model of Object References, Identity and Existence” [42]
(1991) by William Kent describes a model for object identity that,
among other things, aims at a facility for merging objects and their
identities after the fact.

11



12 CHAPTER 2. HISTORY OF OBJECT IDENTITY CONCEPTS

• Catriel Beeri criticizes a too strong focus on object-oriented features in
the context of databases in “Some Thoughts on the Future Evolution
of Object-Oriented Database Concepts” [8] (1993), and sketches a re-
duction of the concept of object identity to pure value-based properties
in relational databases.

• Roel Wieringa and Wiebren de Jonge present a detailed formal model
in “Object Identifiers, Keys, and Surrogates – Object Identifiers Re-
visited” [85] (1995) that captures the essential properties of object
identity and can be interpreted as the common denominator of previ-
ous approaches.

2.1 Steele, Sussman (1978)

In “The Art of the Interpreter or, the Modularity Complex (Parts Zero,
One, and Two)” [75] (1978), Guy L. Steele and Gerald J. Sussman discuss
a number of programming language constructs that support the modular
decomposition of programs. All these language constructs are presented as
incremental extensions of a meta-circular interpreter for a Lisp dialect. For
example, local function declarations and the difference between lexical and
dynamic scoping are discussed in detail, among other features.

A large part of that paper deals with side effects, their meaning and
their importance. The authors argue that for a small program, side effects
play a minor role, and that usually such programs can be transformed into
variants that do not make use of side effects.1

However, for a large program the authors illustrate that it is often im-
portant to be able to decompose it into modules with independent state. “If
more than one module has state [...] then each may perceive changes in the
other’s behavior. This [is] the essence of side effect.”2

The discussion about side effects and state in that paper reveals that the
“concept of side effect is inseperable from the notion of equality / identity
/ sameness. The only way one can observationally determine that a side
effect has occurred is when the same object behaves in two different ways
at different times. [...] Conversely, the only way one can determine that
two objects are the same is to perform a side effect on one and look for an
appropriate change in the behavior of the other.” (p. 40) “Thus the ability

1In fact, the side effects can be encapsulated inside of the interpreter of the language,
and this makes the program appear to be free of side effects. This approach has been
further investigated by other authors, and recently lead to the discovery of monads and
arrows. The details of simulation of side effects in pure applicative approaches are not
taken further into account in this thesis.

2As a historical sidenote, Sussman and Steele at that time had incorporated object-
oriented constructs into Lisp, resulting in the first version of the language Scheme. This
is probably the reason why their arguments in that paper resemble those typically hold in
favor of object-oriented programming.



2.2. MACLENNAN (1982) 13

to decide whether two objects are the same is directly correlated with the
ability to perform side effects on them.” (p. 43)

As one result of the discussion, the adequate semantics of an equality
predicate are discussed, that are now taken for granted in most programming
languages (eq in Common Lisp, == in Java, C# and C++, = in Pascal,
Modula-2, Oberon, etc.). Essentially, this equality predicate distinguishes
each object from all other objects, i.e. it tests for object identity.

In Gilgul – the approach presented in this thesis – the == operatorhas the
same granularity by default but can be widened by comparand assignment –
see Section 3.2.2 for details. In other words, comparands introduce equiva-
lence classes into the language. One consequence of comparand assignments
is that a side effect on an object may not be observable in another object
that is nonetheless considered the same under Gilgul’s == operator. The
implications thereof are discussed in Section 3.5.

2.2 MacLennan (1982)

In “Values and Objects in Programming Languages” [56], Bruce J. MacLen-
nan characterizes both values and objects by contrasting and comparing
them. Values are described as applicative, atemporal, abstract3, and un-
countable. A motivation for this characterization is given as follows: “[...]
it is not common to treat compound data values, such as complex numbers
or sequences, as values. If done, this would eliminate one source of errors,
namely, updating a data structure that is unknowingly shared [...]”.

In order to characterize objects, that paper states that two objects might
be different even if they have the same values because they occupy different
locations. So here, comparing objects is basically understood as determin-
ing if the same location is occupied. This is unified with the concept of a
reference to an object: “In general we can say that the uniqueness of an ob-
ject is determined by its external relations and is independent of its internal
relations and properties”, where “external relations” are the references to
other objects and “internal relations” are the values (the state) of an object.
This uniqueness is what is later called “identity”.

Based on this concept, several properties of objects are derived. For
example, objects “can be created, destroyed, copied, shared and updated”.
These notions are indeed widely available in object-oriented programming
languages. For example in Java, creation is represented by the new statement
and constructors, destruction by the finalize method, copying by the clone
method, and sharing and updating by assignment.

3in the sense that they cannot exist independently of something they describe
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2.3 Khashafian, Copeland (1986)

[43] focuses the discussion on the properties of object identity rather than
the differences in values. It stresses that “identity is internal to an object.
Its purpose is to provide a way to represent the individuality of an object
independently of how it is accessed.” The focus on comparison is also mani-
fested in the discussion of “operators with object identity” which are, among
others, identity equality, shallow equality, deep equality, assignment (mak-
ing two references equal with regard to identity), shallow copying and deep
copying. Several approaches for implementing object identity are described:

Identity Through Physical Address This implementation approach is
based on real or virtual addresses as represented by the CPU or the
MMU of a computer.

Identity Through Indirection Instead of using direct machine addresses,
some languages use an object table that store those addresses and make
objects refer to each other indirectly via pointers into such a table.
This provides for some advantages with regard to object relocation
and remote objects.

Identity Through Structured Identifiers This approach can be used
for remote objects and uses compound references that consist of a de-
scription of the remote address space where an object resides together
with the actual reference within that address space.

Identity Through Identifier Keys In relational databases, entries are
usually referenced by user-supplied identifier keys.

Identity Through Tuple Identifiers That paper gives examples of data-
base systems that use tuple identifiers that are used internally for tech-
nical reasons but have no conceptual external representation. A way
how to use those tuple identifiers to implement identity is sketched.

Identity Through Surrogates Surrogates are globally unique, system-
generated identifiers, and are described as the most powerful imple-
mentation technique for object identity.

Some of these approaches relate to variants of the Comparand pattern
as described in Appendix B.

2.4 Atkinson et al. (1990)

In “The Object-Oriented Database System Manifesto” [4], Malcolm Atkin-
son et al. list constituent features of object-oriented databases. They are
complex objects, object identity, encapsulation, types and classes, class or
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type hierarchies, overriding, overloading and late binding, computational
completeness, extensibility, persistence, secondary storage management, con-
currency, recovery, an ad hoc query facility, and furthermore some optional
features: multiple inheritance, type checking and type inferencing, distribu-
tion, design transactions and versions.

In that paper, objects are described as having an existence independent
of their value as a consequence of object identity. Two implications are
outlined, namely object sharing – two objects can refer to the same third
object – and object updating, as supported by operations for assigning,
copying, and tests for object identity and object equality.

2.5 Kent (1991)

In “A Rigorous Model of Object References, Identity and Existence” [42],
William Kent also discusses various aspects of object identity. He argues
that object identity is not about comparing objects but about referencing
them. The motivating example is given as follows: “A predicate of the form
Identical(O1, O2) is hard to explain if O1 and O2 are meant to be the objects
themselves. Can the same object actually be present in the first operand
and also the second? This question is best recast into determing whether
two references are to the same object.” Consequentially, “[d]eciding which
things are the same is very carefully excluded from the model. [...] Such
questions are decided by the system implementors or data administrators.”
This means that the actual equality predicates need to be implemented ex-
plicitly, only a test for identity of object references is offered by the system.4

That paper also introduces the concept of synonymous handles5, that are
essentially different identifiers referencing the same object. For example, an
operation MakeSameObject(...) is sketched.

2.6 Beeri (1993)

In [8], Catriel Beeri criticizes the notion of object identity from the perspec-
tive of relational databases. He starts from giving a distinction of values
and objects, similar to the one made in [56], but then proceeds to argue that
most properties of the concept of object identity can already be achieved
by the notion of keys in relational databases. He argues that objects are
actually not identified by their object identities, in the sense that object

4For example, Java follows this approach by offering the == operator for object identity
tests and the method equals method that needs to be redefined for all other kinds of
equivalence. See [35] for an opposing view in which a programming language designer is
advised to offer only one comparison operation per object – either object identity or a
different equality predicate, as required by the application domain.

5“A reference is an occurrence of a handle in the system” [42].
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identities are not explicitly used by programmers to determine an object or
a set of object with specific properties. Instead, the retrieval of objects from
an object-oriented database is actually accomplished by way of association
with values. In other words, “[a]n object is uniquely identifiable if there is
a query that retrieves it, and no other object.” This argument is illustrated
with an example in which an ambiguous query can only be turned into an
unambiguous one by adding more value-based constraints.

Object identity still has a place in Catriel Beeri’s conceptualization, but
only as a generalization and simplification of the notion of foreign keys:
Object identity extends the relational model by adding sharing and cyclic
structures in a straightforward way.

2.7 Wieringa, de Jonge (1995)

In “Object Identifiers, Keys, and Surrogates – Object Identifiers Revisited”
[85], Roel Wieringa and Wiebren de Jonge present a formal model of what
they call object identification schemes. That paper is discussed in more
detail here because it must be regarded as the most important influence on
this thesis.

The essential understanding of object identification is given as follows in
that paper: “Basically, an oid is a proper name of an object such that the
connection between the oid and the object is one-one and fixed.” In order to
achieve a formalization of this notion, the authors take the following three
steps.

First, they distinguish between symbol occurrences, symbols and values:
A symbol occurrence denotes a specific symbol but a symbol occurrence is
always only equal to itself. So for example, two occurrences of the letter
“E” are different when regarded as symbol occurrences but the same when
regarded as symbols. A procedure for unambiguously determining the sym-
bol from a symbol occurrence is taken for granted and not further discussed
in that paper.

A notation system is defined as a partial function that maps symbols
to values. The same symbol always yields the same value under the same
notation system but might yield different values under different notation
systems. Different notation systems may map different symbols to the same
values.

In the next step, naming schemes are introduced. A naming scheme is
defined as a function N : Σ → ℘(V × O) where Σ is the set of all possible
states of the world6, V is a set of values that might be names of objects,
O is the set of all objects that might be named, and ℘(V × O) is the set
of possible naming relations, the powerset of V × O. (Nσ ⊆ V × O holds
for each σ ∈ Σ.) It is important to note that this is not supposed to be an

6A “world” is the set of all possible objects of interest.
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object identification scheme yet, so each value can name many objects and
each object can be named by many values.

The domain and range of a naming relation are defined as follows:

dom(Nσ) = {v | ∃o ∈ O : 〈v, o〉 ∈ Nσ}
range(Nσ) = {o | ∃v ∈ V : 〈v, o〉 ∈ Nσ}

In the third and final step, a set of requirements is identified that a
naming scheme must satisfy in order to be an object identification scheme.
In the rest of this thesis, they will be referred to as the Wieringa/de Jonge
requirements. They are as follows.

Singular reference. In each state σ ∈ Σ, each name in dom(Nσ) must
name exactly one object in O. (These names are called oids.)

Singular naming. In each state σ ∈ Σ, each object in range(Nσ) must be
named by exactly one oid in V .

Monotonic designation. For all successive states of the world σ1 and σ2,
Nσ1 ⊆ Nσ2 must hold.

The authors give the following rationale for those restrictions. The sin-
gularity requirements ensure that a name never refers to more than one
object, and that an object never has more than one name. Therefore “in
each single state of the world, we can count objects by counting their oids”.
In order to preserve this countability property across all possible states of
a world, the monotonicity requirement is needed. The fact that objects can
be distinguished by their oids even if they have the same state is presented
as another consequence of those requirements.

Relation to Other Concepts In the subsequent sections of that paper,
the authors compare their notion of an object identification scheme to con-
cepts mainly from the field of relational databases – keys on the one hand
and surrogates / internal identifiers on the other hand.

They compare keys and oids in seven regards.

1. Keys are tied to databases whereas oids are claimed to be more gen-
erally applicable.

2. Keys may represent information about objects they identify. The au-
thors argue that because of the singularity and monotonicity require-
ments placed on oids, they are more restricted: candidates for proper-
ties that can act as oids are required to be unique and unchangeable,
and the authors claim that it is impossible to find such properties.
They name fingerprints as example candidates that can nevertheless
be manipulated.
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3. Keys are updatable whereas oids are not. Even when keys are made
non-updateable, an update operation can always be accomplished by
deleting a tuple and inserting a modified one that is supposed to rep-
resent the same object.

4. A key is required to be unique in each single state of a database whereas
an oid is additionally required to be unique across all possible states
of the world.

5. Keys and oids are claimed to have a different level of suitability for
solving the information transfer problem. Without naming a specific
reference, Wieringa and de Jonge state that oids are considered by
authors to be a solution to that problem. In contrast, they argue that
this is only a gradual difference: while a set of related keys is typically
bound to a specific database, oids are claimed to have a broader scope.
So the information transfer problem is considered to be less pressing
with oids because it is relatively easy to exchange information between
information systems that use the same object identification scheme
whereas it is not so clear whether two different databases use the same
representation for their keys.

Wieringa and de Jonge argue for the fact that this is only a gradual
difference by stating that “a global oid scheme is unattainable in prac-
tice”. Obviously, they are not aware of the concept of globally unique
identifiers (GUIDs or UUIDs, see [10]) that can serve as a global iden-
tification scheme without the need for global synchronization.7

6. Keys are usually assigned by database users while oids are typically
assigned by “authorities higher than the database user”. The authors
give the governmental tax department in the Netherlands that assign
social security numbers as an example, and they state that this is also
only a gradual difference.

7. The authors say that oids should be visible to the user, just like keys.
Again, they cite social security numbers as an example.

These comparisons can be criticized as follows. The fundamental mistake
Wieringa and de Jonge make is that they compare the implementational level
of keys to the conceptual level of oids. For example, whether keys represent
information about the objects they identify or not is an implementation
aspect that needs to be decided upon in the design phase of an information
system. If the strict requirements as expressed for oids are detected to be
important for the problem at hand as well, a database designer should of
course make the same considerations as the authors of that paper make for
oids. It is, of course, perfectly possible to use GUIDs as the sole content of

7See also Appendix B for some details about GUIDs.
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(primary) keys in a database and thus give keys all the properties that are
claimed to be characteristic of oids. When the requirements are detected
to be less strict during analysis, then the database designer is free to relax
the restrictions on the implementation and leverage the expressive power of
keys. Still, that section is illuminating because it sheds light on the fact
that the authors have a very general concept in mind when they define the
concept of an object identification scheme.

Oids are further compared to surrogates and internal identifiers. Sur-
rogates are objects (tuples) internal to a database that represent concep-
tual entities, and internal identifiers are identifiers for such surrogates. The
important fact here is that surrogates and internal identifiers play a role
exclusively on the level of the implementation of a database system and are
completely invisible from the outside. The comparison by Wieringa and de
Jonge highlight some differences that can all be derived from this funda-
mental observation, but the details are not interesting here.

In the following sections, Wieringa and de Jonge mention some examples
that are either examples for object identification schemes or not. (Passport
numbers do not qualify because a person can have more than one passport;
employee numbers can qualify as oids when they identify employee roles;
libraries typically employ object identification schemes for books and other
publications; credit card numbers cannot be used as oids for persons be-
cause an account might be used by more than one person; unix process
numbers violate the monotonic designation requirement; ethernet addresses
are claimed to not qualify as oids because manufacturers have not agreed
upon the object space – they are either ethernet boards or machines that
carry ethernet boards; internet domain names are not oids because domain
names can change.)

The rest of that paper discusses several technicalities, like assignment
of oids, borrowing of oids and information transfer that are not of interest
here.

Relation to Programming Languages Although the authors cite some
papers that discuss object identity in the context of programming languages,
they do not discuss the relation of their model of object identification in that
context. Here is a possible reconstruction of the steps they take to define
oids with regard to programming languages.

At first, one is tempted to first interpret the definitions of symbol oc-
currences, symbols and values as the variable names, variables and values
stored in variables of programming languages. However in the next step,
those values are interpreted as names for objects, and so this interpretation
does not seem to fit.

As already described above in the discussion of the paper by Khoshafian
and Copeland, there are mainly two approaches for implementing object
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identifiers in programming languages, namely Identity Through Physical
Address and Identity Through Indirection. They are similar in that ref-
erence/pointer variables store addresses/handles that serve as object iden-
tifiers. In order to match the concept of an object identification scheme
by Wieringa and de Jonge, those addresses/handles need to be considered
as the names for objects. So in turn, symbol occurrences and symbols are
representations of such addresses/handles – for example, they might be vi-
sualized as hexadecimal values in debuggers. (Here the notation system
interprets/presents character strings as hexadecimal representations of inte-
ger values.)

The requirements imposed on this naming scheme in order to make it
an object identification scheme can be interpreted as follows.

Singular Reference. Indeed, if a physical address names an object within
a running program it names exactly one object. The same holds for
typcial implementations of Identity Through Indirection because each
table entry typically consists of a pointer to exactly one object.

Singular Naming. Each object is located at a unique machine address.
For Identity Through Indirection, the Singular Naming Requirement
needs to be enforced in order to not have the same object represented
in two different table cells at the same time.8

Monotonic Designation. If a machine address / table pointer refers to
one object at some point in time, it will refer to the same object at
any point in time thereafter. This can trivially be accomplished under
the following assumptions: physical memory is never reclaimed once
it has been captured by an object, even if the object is deleted or
could be garbage collected; and objects never change their location in
physical memory.

Of course in practical implementations, unused storage is usually re-
claimed and therefore machine addresses might name different objects
at different points in time. Furthermore, some compacting garbage
collectors even relocate objects in physical memory. However, such
implementations take great care to keep the illusion that object iden-
tities never change in time; indeed, all these implementation techniques
can be regarded as mere optimizations of the simplified model above,
even if they require collaboration by the programmer in languages like
C++.

It is important to note that such optimizations are applied under the
assumption that the machine addresses / handles themselves are not

8Or alternatively, partitioning the table into active and inactive cells. Then, the re-
quirements needs to be enforced only for all the active cells at the same time. However,
this is only an optimization and conceptually equivalent.
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used as first class entities, say as integer values. This is in contrast to
the statement by Wieringa and de Jonge that oids should be visible for
users. In the realm of programming languages, constructs that allow
determining the machine address of an object and referencing storage
locations via machine addresses are considered low level, and it is gen-
erally accepted wisdom that they require great care by programmers
and should only be used for very low level programming tasks.

2.8 Summary

The latter comparison reveals that Wieringa’s and de Jonge’s object iden-
tification schemes are trivially implemented by physical machine addresses
and still relatively easily by object tables. Indeed, implementations of ob-
ject tables incorporate restrictions that make pointers into such tables still
behave more or less like physical addresses. The contribution of Wieringa’s
and de Jonge’s work is that their requirements on naming schemes indeed
characterize the common understanding of object identity, as for example
exemplified in the other papers discussed in this chapter.

However, there already exist alternative conceptualizations of object
identitiy. One example is the diploma thesis “Datenraumbasierte Formu-
lierung der Objektidentität” by Harald Schmidt [72] that takes the criticism
by Catriel Beeri as a starting point and develops an alternative model based
on data spaces [22].

This thesis takes yet another route. Instead of taking the characteristics
of physical addresses as object identifiers for granted, the question is raised
whether the requirements formulated by Wieringa and de Jonge can be
altered and turned into something more flexible. This idea is explored in
detail in the rest of this thesis.
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Chapter 3

The Gilgul Model

This chapter introduces the Gilgul model. Beforehand, an example is given
that motivates important ingredients of the Gilgul model. As already
pointed out in the introductory chapter, the goal of Gilgul is to provide
both a new foundation for the concept of object identity and well-motivated
uses of this new foundation.

After giving an outline of the Gilgul model together with a resolution
of the motivating example, this chapter presents a comparison of Gilgul
and the text “Object Identifiers, Keys and Surrogates – Object Identifiers
Revisited” by Wieringa and de Jonge, as discussed in the previous chapter
[85]. It turns out that the Gilgul model can be regarded as a deconstruction
[24] of that text: as already discussed in the previous chapter, the traditional
view of object identity is based on a particular implementation scheme, and
abandoning that implicit assumption results in the opportunity to relax all
the requirements imposed on object identity by that text.

The requirements are reformulated in the following, and it is shown how
these relaxed requirements enable the specification of new language con-
structs. Namely, object identity is separated into referents and comparands.
This allows the introduction of referent assignment and comparand assign-
ment along the traditional reference assignment.

These language extensions are already sketched as extensions of the Java
programming language. Specifically Smalltalk’s become: operator is com-
pared to Gilgul’s referent assignment because of their similarity, and prob-
lems of become: are discussed that are avoided in Gilgul.

The Gilgul model is not a minimal model in a mathematical sense
but pragmatic aspects are considered more important. This is especially
important in the rationale for the inclusion of comparands into the Gilgul
model that is presented in this chapter.

Last but not least, the name Gilgul is also explained and motivated.

23
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3.1 Dynamic Object Replacement

In principle, unanticipated evolution can always be dealt with by manual
redirection of references. If one knows the reference to an object and wants
to add or replace a method or change its class, one can simply assign a new
object with the desired properties. The new object can even reuse the old
object by some form of delegation [47] so that a transition of the old state
is not needed.

For example, [47] gives an illustrating example within the context of
the European Union’s transition to the Euro currency. Assume you have
developed a Java class that represents, for example, the former German
currency in an application some years ago, as follows.

public class DEM ... {
...

int amount() { return ...; }
}

In order to make the (unanticipated) transition to the Euro currency,
you can write the following wrapper class.

public class EuroWrapper ... {

DEM parent;

// constructor
EuroWrapper (DEM dem) { this.parent = dem; }

// changed method
int amount() { return parent.amount() / 1.96; }

...
}

This wrapper class can be used to adapt existing DEM instances. In
[47] this example has been given to illustrate the self problem [53] and its
solution in the Lava programming language. The self problem occurs when
messages are sent to this within a wrapped object that should in fact be
sent to the wrapper. In essence, the solution in [47] is to have means at the
language level to bind this to the wrapper in forwarded messages (without
breaking type soundness).

In this thesis, we take that solution for the self problem for granted, but
instead concentrate on the actual introduction of wrappers at run time.1 On

1Examples that use a combination of the Lava and Gilgul approaches are presented
in the evaluation chapter of this thesis.
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old

new

old

new

Figure 3.1: If an object is replaced by manual redirection of references,
messages may be sent to both objects during the replacement, probably
leading to an inconsistent state.

object.field

Figure 3.2: The concept of object identity combines the notion of object
reference. . .

the conceptual level, the approach to manually redirect references from the
old object to the new wrapper involves two consistency problems. Firstly, if
there is more than one reference to the old object, they all must be known
to the programmer in order to consistently redirect them. Secondly, even
if all references are known, they have to be redirected to the new object
one by one. This approach is likely to lead to an inconsistent state of the
objects involved if message are sent via these references during the course
of the redirections (for example within another thread; see Figure 3.1).

So for example, when references to an existing DEM instance are redi-
rected to its EuroWrapper object, it must be ensured that each attempt
at changing the amount property is consistently executed, depending on
whether the old or the new version of this object is addressed.

It would be much simpler if we could just “replace” an object with an-
other one without changing the references involved. Such a replacement
would be an atomic operation and hence would avoid the consistency prob-
lems shown above. However, this would also conflict with the traditional
notion of object identity, as is explained in the following paragraphs.

The reason for this conflict is that the concept of object identity in
fact combines two distinct notions of object reference which permits object
correlation and access to objects’ internal states (Figure 3.2), and object
comparison which permits the decision if two variables actually refer to the
same object (Figure 3.3). In the following paragraphs we discuss the central
idea of the Gilgul approach, the strict separation of the notions of reference
and comparison. Eventually, this allows us to introduce means for dynamic
object replacement into a programming language that solve the consistency
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v1

v1 == v2

v2

Figure 3.3: . . . and the notion of comparison.

reference referent comparand

Figure 3.4: Gilgul’s model: references hold referents that represent objects,
and each object stores a comparand.

problems shown above.
This dissection of object identity concerns is illustrated in Figure 3.4.

By default, all object identities are split into references, referents and com-
parands. A reference refers to a referent which is a representation of the
actual object, and each object is supplemented with an attribute that stores
a comparand.

In our approach, neither references nor referents are ever compared. In-
stead, comparands are exclusively used for comparison. They are system-
generated, globally unique values that cannot be manipulated by a program-
mer. So the comparison of two variables v1 == v2 always means the compar-
ison of the comparands stored in the objects being referred to: v1.comparand
== v2.comparand. However, they are never used for referencing.

Figure 3.5 illustrates why this strict separation of reference and com-

v1

v1 == v2

v2

Figure 3.5: Comparison of references and referents may yield different re-
sults, so comparands are used for comparison to avoid conceptual ambiguity.
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parison is needed. Assume that you want to compare v1 and v2. In this
situation, comparison of variables without the use of comparands is ambigu-
ous on the conceptual level, since comparison of the references would yield
false, whereas comparison of the referents would yield true. The decision
for one or the other option would be arbitrary and cannot be justified other
than by technical considerations only. Therefore, we opt for comparison of
properties stored inside of the objects involved and thus make comparison
of variables unambiguous.2

Note that we have avoided to use terms like “key”, “identifier”, “OID”,
“surrogate” and so on that are generally used in the literature for object
identity and similar concepts. Instead, we have intentionally opted for ref-
erence (“the referring entity”), referent (“what is being referred to”) and
the artificial word comparand (“what is being compared”) in order to stress
the tasks of the concepts behind these terms.

Essentially, Gilgul’s model boils down to the use of double indirection
and the use of a default attribute for comparison which are both not breath-
takingly new. However, what is new in our approach is the inclusion of these
concepts into a programming language in a semantically clean way so that
they are open to manipulation in unanticipated contexts.

3.2 Gilgul

Based on this scheme, we outline the operations introduced in Gilgul in the
following sections. They are sketched as extensions of Java and introduce
means to manipulate referents and comparands.3

3.2.1 Operations on Referents

In Gilgul, the referent assignment operator #= is introduced to enable
the proposed replacement of objects. The referent assignment expression
demInstance #= euroInstance replaces the referent of the variable demInstance
with the referent of euroInstance without actually changing any references.
Effectively, this means that all other variables which hold the same reference
as currency refer to the object euroInstance as well. Consider the following
statement sequence.

demInstance = new DEM();
demAlias = demInstance;
demAlias #= euroInstance;

2A more complete rationale is given later in this chapter.
3More details are given in subsequent chapters and Appendix A.
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demInstance

demAlias

euroInstance

(1) demAlias = demInstance; (2) demAlias #= euroInstance;

demInstance

demAlias

euroInstance

Figure 3.6: Referent Assignment: After execution of demAlias #= euroIn-
stance, all three variables refer to the same object. Since demInstance holds
the same reference as demAlias, it is also affected by this operation.

After execution of the referent assignment, all three variables are guar-
anteed to refer to the same object euroInstance, since after the second as-
signment, demInstance and demAlias hold the same reference (see Figure
3.6).

Note that the referent assignment operator #= is a reasonable language
extension due to the fact that the standard assignment operator = copies
the reference from the right-hand operand to the left-hand variable, but not
the referent.

3.2.2 Operations on Comparands

Technically, it is clear that comparands may be copied freely between ob-
jects. There are in fact good reasons on the conceptual level to allow the
copying of comparands. For example, decorator objects usually have to
“take over” the comparand of the decorated object so that comparison op-
erations that involve “direct” references to a wrapped object yield the correct
result.

Comparands are introduced in Gilgul by means of a new basic type
comparandtype which can be used to create new comparands via comparand
creation expressions (new comparand). By default, the definition of java.lang.
Object includes an instance variable of this type, as follows.

public class Object {
public comparandtype comparand;

...
}

The equality operators == and != that are already defined on references
in Java are redefined in Gilgul to operate on comparands, such that v1 ==
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euroInstance

demInstance

parent

Figure 3.7: Naive application of demInstance #= euroInstance may result in
an unwanted cycle. When euroInstance.parent holds the same reference as
demInstance beforehand, it will also refer to euroInstance afterwards.

v2 means the same as v1.comparand == v2.comparand, and v1 != v2 means
the same as v1.comparand != v2.comparand.

Given these prerequisites, we can let a wrapper “take over” the com-
parand of a wrapped object in order to make them become equal by simply
copying it as follows.

wrapper.comparand = wrapped.comparand;

3.2.3 Reuse of Existing State

Returning to our given problem, we are now able to apply the new oper-
ations to achieve the desired replacement of objects atomically. We can
apply demInstance #= euroInstance to let euroInstance replace demInstance
consistently for all clients that have references to the original demInstance.

However, one has to be careful when euroInstance wants to delegate mes-
sages to the original demInstance. Regard the following naive sequence of
operations.

euroInstance.parent = demInstance;
demInstance #= euroInstance;

This would be erroneous, because afterwards euroInstance.parent would
refer to euroInstance, since it contains the same reference as demInstance
according to the first assignment. This results in a cycle and therefore, to
non-terminating loops for messages that are delegated by euroInstance (see
Figure 3.7). The following statement sequence however is correct (see Figure
3.8).

// let a fresh reference refer to demInstance
ICurrency tmp #= demInstance;
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euroInstance

demInstance

parent

tmp

Figure 3.8: Correct application of demInstance #= euroInstance. When
euroInstance.parent holds a different reference to the same object as
demInstance beforehand, it will still refer to the original demInstance af-
terwards, since the temporary reference is not affected. In this way, the
state of replaced objects can smoothly be reused.

// use tmp instead of demInstance for delegation
euroInstance.parent = tmp;

// ensure that equality behaves well
euroInstance.comparand = demInstance.comparand;

// tmp and so euroInstance.parent remain unchanged
demInstance #= euroInstance;

The actual replacement of demInstance is initiated by the last opera-
tion, and thus is indeed atomic. Further note that the temporary reference
can be used to revert the replacement by application of demInstance #=
euroInstance.parent.

However, this “Replacement by Wrapper” idiom of using an additional
reference for delegation is only needed when newObject actually needs to
reuse oldObject. Otherwise, a “simple” replacement is sufficient. In the
latter case, reversal of a replacement can also be achieved by the use of an
additional reference, but it is not needed for delegation.

3.3 Wieringa/de Jonge Requirements Revisited

In the following section the practicable operations on referents are contrasted
with the Wieringa/de Jonge requirements [85], namely Singular Reference,
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Singular Naming and Monotonic Designation. We restate each requirement
in terms of our approach and show that each can be abandoned because
of the differentiation between reference and comparison introduced in our
model. We then describe how the referent assignment operation is enabled
as a consequence of these relaxations.

Monotonic Designation

The Monotonic Designation requirement demands that, if a name refers to
a particular object at a given time (and vice versa), this name is bound to
that object at any point in time thereafter. (Recall that in this context, a
name means a physical address or a reference to an object table, and not
the name of a variable.)

The abandonment of this requirement can be stated as follows:

Variable Designation: If a name refers to a particular object at a given
time, it may refer to a different object at another time. Accordingly,
if a particular object is referred to by a name, it may be referred to
by a different name at another time.

The referent assignment operator #= just “implements” Variable Des-
ignation. An assignment demInstance #= euroInstance replaces the for-
mer demInstance object with the euroInstance object. All references to
demInstance remain unchanged but nevertheless refer to the euroInstance
object afterwards.

Singular Naming

The Singular Naming requirement demands that each object is referred to
by exactly one name. By abandoning this requirement we get:

Multiple Naming: Each object may be referred to by an arbitrary number
of names.

We have already depicted an example of Multiple Naming without com-
ment: everytime a referent assignment is executed, two different names re-
fer to the same object afterwards. So for example in the “Replacement by
Wrapper” idiom shown above, after execution of tmp #= demInstance two
different names refer to the same object. This characteristic is utilized in
that idiom because it helps to set the parent reference to the correct object
– if more than one name can refer to the same object, this fact can be used
to refer to specific names in a referent assignment.

Hence, the referent assignment operator introduces both Variable Des-
ignation and Multiple Naming.
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Singular Reference

The Singular Reference requirement demands that each name refers to ex-
actly one object at a given time. Again, by abandoning this requirement we
get:

Multiple Reference: Each name may refer to an arbitrary number of ob-
jects at a given time.

When calling “The President of the USA”’s phone number, you may
actually talk to a representative who might be in a position to act au-
tonomously in the name of his employer in particular well-defined areas.
(The representative can be seen as a kind of “wrapper person”.) If you have
managed to convince him to reach a certain decision, you may rightfully be
said to have “The President”’s word without ever having heard it. This is
an (admittedly artificial) example of “The President of the USA” referring
to more than one person at a time.

A somewhat more natural example of Multiple Reference is a phone
number identifying The White House as a whole, including all its employees,
so in this way referring to more than one person at the same time. The
different employees might then be reached by different extensions.

Variations of Multiple Reference Multiple Reference can be realized
as follows. Instead of each referent referring to a concrete object, they consist
of simple data structures. The first variation of Multiple Reference can be
realized as an array or a linked list, which stores references to the proper
objects. When sending messages via name, it is sent to one of these objects
providing a method for this message in its interface. When more than one
object understands the message, the list may provide the order in which the
objects are to be searched.

The second variation, a collection of objects supplemented with “exten-
sions” or “port” numbers (like in internet addresses), can be realized as a
hash table, with port numbers as keys and references to the proper objects
as hash-table slots. Both kinds of Multiple Reference can even be combined
via Red-Black Trees, that have both properties, mapping keys to slots and
keeping these mappings in a programmer-defined order.

These examples for Multiple Reference illustrate that there must be a
resolution mechanism that decides which object receives a message when it
is being sent via a reference that refers to more than one object. In the
first kind the decision can be automatically based on the order in which
the objects are stored within a linear data structure. This resembles several
models of forwarding or delegation, for example [12] and [48], where the run-
time system automatically decides which object of a list of specially linked
objects receives a particular message.
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In the second kind the sender of the message has to augment the message
with additional information (a port number). This resembles several role or
view models [7] as well as the COM component model [10], where the sender
may select a distinguished perspective (role, view, or interface, respectively)
on an object before it sends a message.

From this we can see that there are many proposals for how to decide
which object receives a particular message, and none of them covers all
cases. For this reason, our model carefully excludes the choice of a single
one resolution mechanism. It also excludes a standard mechanism for de-
ciding which comparands are to be compared when references to more than
one object are involved in a comparison operation. Instead, these choices
are deferred to the programmer, who can either define a special resolution
mechanism or select from predefined ones.

Multiple Reference through Wrappers So instead of introducing new
operators in order to express Multiple Reference, Gilgul has been designed
to enable the reuse of several features of the Java platform to achieve the
same expressiveness.

By using the given reference assignment operator #=, it is possible to
let a variable that has referred to a single object before a certain point in
time refer to a wrapper object that delegates messages to several destination
objects afterwards. The following example is based on that idea.

MyClass wrapper = new MyClass() {
void m() {wrapperObject.m();}
void n() {visualObject.n();}

}

visualObject #= wrapper;

Inclusion of methods for manipulating the wrapper’s contents enables
the inclusion and removal of decorated objects afterwards. A variation of a
role or view model can also be expressed by dispatching method calls in a
similar way. An example is given in Section 7.1.2.

It is important to note that a programmer is not meant to program
wrapper classes explicitly for each case of Multiple Reference. Instead, a
class library can be provided to handle the different cases, and a programmer
simply reuses this library. To be truely generic, such a library may employ
the feature of dynamic proxy classes introduced in version 1.3 of the Java
2 SDK ([78], “Summary of New Features”), or other means of reflective
metaprogramming.
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Figure 3.9: The symmetric version of Smalltalk’s become: swaps two objects
without changing their references. The asymmetric version lets one reference
refer to the same object as another refence, but not vice versa.

3.4 Smalltalk’s become:

The programming language Smalltalk provides an operation become: that
enables the programmer to (symmetrically) “swap” two objects without
actually changing their references. Early Smalltalk implementations were
based on object tables, and so this operation was straightforward to im-
plement. Modern Smalltalk implementations that do not use object tables
either take considerable effort to implement become: correctly, or reduce
become: to an asymmetrical operation [74].

In Smalltalk, the wrapping of a demInstance can be implemented as fol-
lows.

demInstance become: euroInstance.
demInstance setParent: euroInstance.

This works for both the symmetric and asymmetric version of become:
but does not carry out the replacement atomically, because the parent field
is only set after the actual replacement. Furthermore, the need to seemingly
set the demInstance’s parent instead of euroInstance’s parent may be regarded
as counterintuitive.

In order to achieve the desired atomicity of the replacement, the “Re-
placement by Wrapper” idiom presented in this chapter can also be used in
Smalltalk with the symmetric version of become:, as follows.

tmp become: demInstance.
euroInstance setParent: tmp.
demInstance become: euroInstance.

This idiom works only because it relies on the fact that references are
not “merged” by this operation. However, references are in fact merged by
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the asymmetric version of become: and we are not aware how atomicity can
be achieved in this case. Further note that for the symmetric version, this
sequence also affects euroInstance which refers to tmp afterwards.

There are still some other serious drawbacks of Smalltalk’s become:. It is
not type-safe because it does not check for compatible layouts of the objects
involved. Furthermore, it does not pay any attention to methods currently
executing on the objects, but just lets them continue to execute on the
“swapped” objects.

Because of these obscurities, [74] states that “[t]he become: message is
dangerous since it is easy to make a mess with it if you don’t fully under-
stand what it does.” In contrast, Gilgul offers a clean and explicit model
of reference and comparison that avoids these obscurities; furthermore, its
referent assignment operator respects Java’s type system without sacrific-
ing flexibility (see Chapter 4); and it introduces means to correctly and
explicitly deal with active objects (see Chapter 5).

3.5 A Mental Model for Comparands

As already mentioned in the introduction to this chapter, the Gilgul model
is not a minimal model. This is evident in Figure 3.4: We introduce a com-
parand for comparison purposes because we do not otherwise want to choose
between the reference and the referent to compare. However, because com-
parands are stored in objects, and objects are potentially replaced by referent
assignments, it could be argued that comparands are strictly not necessary
because they effectively lead to a comparison of referents unless comparand
assignment is made use of in a program. After all, the Java programming
language already includes a way to influence equivalence relationships by
way of overriding the equals method that is defined for all objects.

Nevertheless, we are convinced that comparands provide a more ap-
proachable way to influence the result of comparison operations that should
suit the programmer’s mental model better. See Figure 3.10 as an illustra-
tion: It shows a complex relationship between three members of a family.
The right person plays the role of a wife for the left person, the role of a
mother for middle person, and at the same the role of the school principal
of the school that the middle person attends and in which the left person
works as a teacher. Likewise, the left person plays the role of a husband for
the right person and the roles of both a father and a teacher for the middle
person. Depending on the context in which each of the three persons inter-
acts with another, a different role object of that person is used and interacts
with a specific role object of the other person. (See Section 7.1.2 for some
more details about how role models can make use of Gilgul constructs.)

Although different objects are used to represent the same person in this
example, they all describe just an aspect of a larger conceptual entity, i.e. a
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Teacher School Principal

PersonPerson

Husband Wife

Father Mother

Child

Person

Pupil

Figure 3.10: An example of a complex relationship between three different
persons, realized by way of roles. The different role objects are marked by
comparands to indicate to which conceptual entity they belong.

person. Therefore, these different objects should appear to be the same when
being compared. This can be accomplished by overriding equals and dele-
gating it to the core object which performs the actual comparison. However,
this can lead to complex interactions, especially because overriding equals
also leads to the requirement to override the hashCode method accordingly.
(See Section 4.1.3 in the following chapter for more details about interactions
between comparisons and hashCode.)

Compare this with the obvious and straightforward approach taken in
Figure 3.10: The different objects that belong to a conceptual entity are
just marked by the same symbol. This is exactly how uses of comparands
should be thought of: They mark the objects that belong to a conceptual
entity, and in turn the implementation of a programming language and
run-time environment can take care of establishing the right dependencies
(comparison operations, hash codes) that follow from these marks. In other
words, comparands define equivalence classes on objects. The comparand
assignment operation just allows changing these equivalence classes at run
time, which leads to an important contribution to the field of unanticipated
software evolution. See Appendix B for some examples and already known
uses (without explicit programming language support) of such a notion of
comparands.
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3.6 The Name Gilgul

This dissertation’s title “Transmigration of Object Identity” is inspired by
a concept in Jewish mystical thought known as “gilgul” which in turn has
been chosen as the name for the model and language extension described in
this thesis. “Gilgul” is a variation of a belief in transmigration of souls in
which not a soul in its entirety, but a “nitzotz” or spark of soul can rein-
carnate, so an individual person can possess several such sparks of people
who have lived previously. This has been the idea behind the concepts of
Variable Designation, Multiple Naming and Multiple Reference: The com-
parands of objects may “reincarnate” when being copied to other objects,
and references can possess “sparks” of other objects by letting them refer to
more than one object at a given time. For example, see [66] for a discussion
of “gilgul”.
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Chapter 4

The Programming Language
Gilgul

The previous chapter has already given an outline of the fundamental con-
structs of the programming language Gilgul: comparands, comparand as-
signment and referent assignment. In this chapter, we introduce, define and
describe these constructs in more detail, together with appropriate ratio-
nales. Furthermore, it introduces control facilities for the new assignment
operations as well as the so-called typeless classes. This is accompanied by
a reasoning about the type soundness of the language Gilgul, especially
with regard to related approaches.

The programming language Gilgul has been carefully designed not to
compromise compatibility with existing Java sources. However, it introduces
new keywords, like comparand, typeless, and so on, that are needed to de-
clare respective properties of program parts. Such keywords are not available
anymore to the programmer as names for variables, methods, classes, and
so on, and need to be renamed accordingly should they occur in legacy Java
code. Apart from that, existing Java program will run without noticeable
changes in functionality.

4.1 Basic Language Constructs of Gilgul

There are four levels that can be manipulated when dealing with variables:
the reference and the object level that already exist in Java, and the ref-
erent and the comparand level that are new in Gilgul. A class instance
creation expression (new MyClass(...)) results not only in the creation of a
new object, but also in the creation of a new reference, a new referent and
a new comparand.

39
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4.1.1 Operations on Referents

The referent assignment operator #= is an assymetric object replacement
operator, as introduced in the previous chapter. (See Section 3.2.1.)

Since the null literal does not refer to any object, the referent assignment
is prevented from being executed on null. The expression null #= expression
is rejected by the compiler, and v #= expression throws a GilgulRestrictionEx-
ception when v holds null. This ensures that a programmer is not able to
erroneously redirect all variables that hold null to a non-null object. Note,
however, that v #= null is valid when v does not hold null and redirects all
variables that have the same reference as v to null.

The GilgulRestrictionException is an unchecked exception, so this case is
similar to the throw of a NullPointerException when attempting to access
the properties of a variable that holds null. Both kinds of exception can
be avoided by testing against null beforehand. See Section A.10.1 for more
details about the GilgulRestrictionException.

4.1.2 Operations on Comparands

Comparands and comparand assigment are introduced in the programming
language Gilgul along the lines of the notions as described in the previous
chapter. (See Section 3.2.2.)

Ensuring the uniqueness of a single object is always possible by assigning
a freshly created comparand as follows: v.comparand = new comparand.

In Java, the equality operator == is only accepted by the compiler if
one operand can be cast to the type of the other. The language thereby
excludes meaningless comparisons of arbitrarily-typed references [34]. Con-
sequently, a comparand assignment of the form expression1.comparand = ex-
pression2.comparand is only accepted at compile-time if expression2 can (po-
tentially) be cast to the type of expression1. This restriction can be lifted by
an explicit cast as follows: expression1.comparand = ((Object)expression2).
comparand. Other forms of comparand assignment are always accepted.
There are no restrictions imposed on comparand assignment at run time.

Since null does not have a comparand an attempt to access null.comparand
is rejected by the compiler, and v.comparand throws a GilgulRestrictionEx-
ception when v holds null. This ensures that testing equality against null is
guaranteed to be unambiguous.

The actual implementation of comparands is hidden from programmers.
In particular, Gilgul prevents comparands from being arbitrarily cast and,
for example, does not allow arithmetic operators to be executed on com-
parands.

Since comparands cannot be manipulated directly, there are no limita-
tions on how they are implemented in a concrete virtual machine. The only
requirement they have to fulfil is that if v1.comparand and v2.comparand
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have been generated by the same (different) class instance or comparand
creation expression, then v1.comparand == v2.comparand yields true (false),
and v1.comparand != v2.comparand yields false (true).

One reasonable and efficient implementation of comparands are 64-bit
unsigned integers with comparand creation being accomplished by increment
of a global counter. This scheme provides for approximately 10 billion unique
comparands per second for half of a century. (On the other hand, 32-bit
values are usually not big enough to ensure uniqueness for long-running
applications. At a rate of 1000 comparands per second, they wrap around
after roughly 6 weeks.)

4.1.3 Operations on References and Objects

Besides Gilgul’s new operations on referents and comparands, the oper-
ations on references and objects are still available as a matter of course.
However, there are some interesting interdependencies between the stan-
dard methods equals(...) and hashCode() and the ability to copy comparands
between objects.

Note that the standard definition of equals(...) relies on the definition
of the equality operators == and !=, and therefore is affected by their
redefinition to operate on comparands instead of references. Hence, it yields
true iff the comparands of the corresponding objects are the same. As a
consequence, the standard definition of hashCode() has been changed to
return a hash code value for an object’s comparand, since the contract of
hashCode() is based on equals(...) – [78] states that if “two objects are
equal according to the equals(Object) method, then calling the hashCode()
method on each of the two objects must produce the same integer result.”
A comparand’s hash code value fulfils the same requirement, except that
it is based on the equality operator on comparands (==) instead of on the
method equals(...).

From this perspective, comparands can be seen as an alternative way to
redefine the method equals(...) by just copying them between objects. This
complies with the mental model for comparands as illustrated in Section
3.5. Furthermore, comparands relieve the programmer of the requirement
to remember to override hashCode() accordingly whenever he or she is about
to change the equality semantics of an object via comparand assignment.

Another consequence is that the equality operators == and != and the
method equals(...) are always redefined in a uniform way by copying of
comparands, unless equals(...) is explicitly overridden by the programmer.
This complies with the suggestion that there should be only one comparison
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operation per object, as is stated for example in [35]1 or [51]2.

4.2 Replacement of an Object with its Wrapper

Recall the object replacement example given in the previous chapter. (See
Section 3.2.3.) It shows that in general, an object replacement consists of
four consecutive steps. We repeat the steps here:

// let a fresh reference refer to the original object
Object tmp #= orgObject;

// use tmp instead of orgObject for delegation
newObject.parent = tmp;

// ensure that equality behaves well
newObject.comparand = orgObject.comparand;

// tmp and so newObject.parent remain unchanged
orgObject #= newObject;

These four steps are sufficiently complex to be remembered by an ap-
plication programmer so in principle, this would call for another language
extension in order to simplify the replacement operation. Fortunately, this
complexity can be hidden in the class of the wrapper as follows.

class Wrapper ... {

Target parent; // the object being delegated to

// constructor
public Wrapper(Target orgObject) {

Target tmp #= orgObject;
this.parent = tmp;
this.comparand = orgObject.comparand;

}

...
}

1It states that a programming language should provide “only one copy method and
one comparison method for each class. The designer of the class, rather than its clients,
should choose appropriate semantics for these methods.”

2“Use method equals instead of operator == when comparing objects. [. . . ] Rationale:
If someone defined an equals method to compare objects, then they want you to use it.
Otherwise, the default implementation of Object.equals is just to use ==.” From this
perspective, the decision to include two different ways to compare objects into the Java
programming language may be considered questionable.
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Now, the constructor consists of the first three steps of the object re-
placement idiom given above. In this way, the replacement operation is
reduced for the application programmer to the following simple statement:
orgObject #= new Wrapper(orgObject).

4.3 Initializing Referent Assignments

Without further notice, we have introduced another language construct in
the above example, the initializing referent assignment : The left-hand side
of a referent assignment expression is not only allowed to be an already
initialized variable, such that all variables that contain the same reference
are also affected, but it can also be an uninitialized variable as well, as in
the first line of the constructor for the class Wrapper above.

Since an uninitialized variable does not hold anything that could be
replaced, the semantics are that a fresh reference is created for the referent
designated by the right-hand side of the referent assignment expression.

Note that this is a different situation from that in which the variable
of the left-hand side contains null which is generally forbidden by Gilgul
(see above). This gives rise to another distinction that needs to be specified
for the language Gilgul: Java allows the separation of declaration and
initialization of local variables. This in turn allows for complex initialization
schemes, for example as follows.

MyClass object;

if (condition) {
object = initialization1;

} else {
object = initialization2;

}

Here, it is guaranteed that exactly one assignment takes place, either
that of initialization1 or that of initialization2.

Gilgul generalizes this notion and allows for similar initializing referent
assignments, as follows.

MyClass object;

if (condition) {
object #= initialization1;

} else {
object #= initialization2;

}
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In order to avoid ambiguities and give initializing referent assignments
reasonable semantics, the Java’s concept of definite assignment is reused
(see Chapter 16 in [34]). We give the following definitions:

A referent assignment is said to be definitely initializing if it can be
statically proven that the variable on the left-hand side is definitely unas-
signed on all execution paths up to this referent assignment. It is said to be
definitely non-initializing if it can be statically proven that that variable is
definitely assigned on all execution paths up to this referent assignment.

If a referent assignment is definitely initializing then a compiler for the
language Gilgul generates a code sequence that implements initializing ref-
erent assignment as described above. If it is definitely non-initializing then a
Gilgul compiler generates a code sequence that implements normal referent
assignment as described above. If a referent is neither definitely initializing
nor definitely non-initializing, because various paths up to this referent differ
in this regard, then a Gilgul compiler must reject that referent assignment
at compile time.

So for example, the following code is invalid.

MyClass object;

if (condition) {
object = anInitialization;

}

object #= replacement;

Here, if condition would hold at run time, the referent assignment would
need to be non-initializing, otherwise it would need to be initializing.

Note however, that the following code is acceptable.

if (condition) {
object = initialization1;

} else {
object #= initialization2;

}

In the latter case, both paths are unambiguous with regard to the ini-
tialization status of object.

Rationale The semantics of an initializing referent assignments differs
strongly from that of a non-initializing referent assignment with regard to
the effects these variants potentially have on other variables in the running
system. It seems well-justified and in line with aims of the design of the
Java programming language to enforce consistent use of these two different
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uses of referent assignment. Furthermore, a strict separation of these two
variants allows for a cleaner and more efficient implementation as is shown
in Chapter 6.

Since the terms definitely initializing referent assignment and definitely
non-initializing referent assignment are well-defined in terms of definite as-
signment and definite unassignment, it is possible to reuse the rules stated
for Java source code in Chapter 16 of [34] without any changes. Therefore,
we do not repeat them in this thesis.

4.4 Control Facilities

Gilgul offers facilities for controlling what operations are valid on concrete
referents and comparands. Since references and comparands are created
at the same time as their initially corresponding objects via class instance
creation expressions, these restrictions have to be given in constructor dec-
larations as follows.

class SecurityManager {
// constructor
SecurityManager() with fixed referent, bound comparand {...}

...
}

The possible restrictions are fixed, bound or none for comparands, and
fixed, bound or none for referents.

Restricitions on Comparands If no restriction is declared for a com-
parand, it may be copied or replaced freely. If a comparand is declared as
fixed, it cannot be replaced with another comparand, but it may be copied
elsewhere. If a comparand is declared as bound, it may neither be replaced
nor copied, which means that a bound comparand is implicitly fixed.

The rationale behind this implication is that if a programmer declares a
comparand as bound, he/she wants to guarantee that there does not exist
a copy of this comparand elsewhere. However, if a bound comparand could
be replaced with a comparand of another object, this guarantee would be
violated, because the other object could not be prevented from using the
latter comparand.

Restrictions on Referents Similarly, if no restriction is declared for a
referent, it may be copied or replaced freely. If a referent is declared as fixed,
it cannot be replaced with another one, but it may be copied elsewhere. If a
referent is declared as bound, it may neither be replaced nor copied, which
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means that a bound referent is implicitly fixed. The rationale is the same as
for comparands.

These constructs allow the flexible declaration of detailed restrictions
on comparands and referents, ranging from the allowance of all operations
introduced in the previous sections to the reduction to the “classic” approach
of dealing with object identity. For example, consider the following class
declaration.

class TraditionalObject {
// constructor
TraditionalObject() with bound referent, bound comparand
{ ... }

...
}

Instances of this class can neither have their referents nor comparands
replaced nor copied.

Since the use of wrappers in conjunction with Gilgul’s new operations
is so salient, we have opted for allowing comparands to be initialized in the
constructor head as follows.

class EuroWrapper ... {
// constructor
EuroWrapper(DEM dem) with fixed comparand = dem.comparand
{ ... }

...
}

This is accepted by the compiler because the constructor’s parameters
are visible in the scope of the restriction declaration and can be used to
initialize the (fixed or unbound) comparand. Especially in the case of fixed
comparands, this both allows the comparand to be set to a given com-
parand once and ensures that it is never changed afterwards. This kind of
comparand initialization is carried out before a call to a super constructor
in order to ensure consistency.

Note that in contrast to the standard access modifiers of Java (public,
protected, private), the restrictions on comparands and referents are not at-
tached to variables and consequently cannot be checked statically in the
general case. Therefore, comparand assignments (v1.comparand = v2.com-
parand) and referent assignments (v1 #= v2) may throw instances of Gilgul-
RestrictionException. The restrictions imposed on the null literal in Sections
4.1.1 and 4.1.2 can be restated as if null’s “constructor” had been declared
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with fixed referent, bound comparand, so the presumed exceptional cases for
null are direct consequences of this “declaration”.

Alternatively to the scheme presented above, it would have been possible
to allow for declaration of restrictions either at the class level (class Securi-
tyManager with fixed referent ...), or at each instance creation (new Securi-
tyManager(...) with fixed referent, ...). However, declaration of restrictions
at the class level is most probably too coarse-grained in practice because
an implementor of a class might want to declare private and/or protected
unrestricted constructors. On the other hand, declaration of restrictions at
the instance level is likely to be too fine-grained because it makes it harder
to prevent clients from instantiating “loose” objects.3

It turns out that declaration of restrictions at the constructor level ac-
comodates all possible usage scenarios, ranging from complete prevention
of comparand/referent assignment operations up to complete openness to
modification of object identity. For example, the possible options in be-
tween include restricted use of comparand/referent assignment for clients
via public constructors and open use of comparand/referent assignment for
subclasses via protected constructors at the same time.

However, note that Gilgul’s flexibility comes at the price of an increased
complexity of contracts since it still must be determined which kinds of ref-
erent assignment and comparand assignment are valid for concrete classes or
objects. The possible restrictions on comparands and referents just help to
make these contracts more explicit, but they do not reduce their complexity
at the conceptual level as is the case for the standard access modifiers [49].

4.5 Type Issues

The referent assignment operator #= respects Java’s type system. In the
following sections we explore what this actually means and especially show
that this may lead to unnecessarily restricted situations. An extension of
Java’s type system is presented afterwards that allows “pure” implementa-
tion classes to be declared that do not define new types. This is a novel
approach which to our knowledge is not available in any previous language.
This extension allows the restrictions to be resolved which are associated
with the type-sound use of the referent assignment operator.

4.5.1 Additive and Subtractive Replacement

The referent assignment operator allows an object to be replaced always with
another one that implements at least the same types (additive replacement).
A special case is the replacement with an object that is an instance of exactly

3The only solution would be to prevent clients from using constructors at all, and
require them to go through factory methods [31].
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TCPConnection

TCPEstablished TCPListen TCPClosed

Figure 4.1: An example of the State pattern. Usually, only TCPConnection
is used as a type.

the same class, but this statement naturally also includes objects that are
instances of any of the old object’s subclasses. This is a direct consequence
of the Liskov Substitution Principle [55].

The situation becomes more complex when you want to use Gilgul’s
constructs in a setting where subtractive replacement is inevitable. Assume
that you want to implement the State pattern [31] without the proposed use
of forwarding. Instead, Gilgul’s referent assignment operator is to be used
to consistently express state transitions for all clients that refer to a shared
state object.

So for example, an instance of the State pattern is illustrated in Figure
4.1 (adapted from [31]). The state transition of a TCP connection can be
expressed in Gilgul as follows: connection #= new TCPEstablished().

However in general, type safety is not ensured when a reference to the
previous state object exists that has an incompatible type, as follows.

TCPListen listen = new TCPListen();
connection #= listen;

... // after some time
connection #= new TCPClosed();

Just before the last step of this code sequence, the listen variable might
still refer to the previous state, and so the referent assignment operator
cannot statically guarantee type safety.

In this and similar situations, before replacement of an object with an-
other one, it must be checked dynamically that the old object is referenced
only by variables that expect it to implement the intersection of the types
implemented by both the old and the new object. Therefore, the run-time
system has to keep track of all references to an object and their respective
types. However, in order to ensure that subtractive replacements are al-
ways possible whenever needed, an extension of Gilgul’s type system is
inevitable.
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TCPConnection

TCPEstablished TCPListen TCPClosed

reopen()this is a
new method

<<typeless>> <<typeless>><<typeless>>

Figure 4.2: How can a new method in a typeless class be called from the
outside?

4.5.2 Typeless Classes

On closer examination of the TCPConnection example, it can be noticed
that classes TCPEstablished, TCPListen and TCPClosed are most likely never
needed as actual types of their own. Instead, all clients that are in need of
a TCPConnection will in fact always use this general class type. This can be
expressed explicitly in Gilgul by adding the modifier typeless to the classes
that are not needed as types (all except for TCPConnection) as follows.

typeless class TCPEstablished extends TCPConnection {
...

}

Afterwards, these classes can still be used as any other class in most
respects, for example within instance creation expressions. However, they
cannot be used as types anymore, in the sense that variables must not be
declared as being of a type of a typeless class. Consequently, instances of
these classes (TCPEstablished, etc.) can always be replaced with instances
of any class of the given hierarchy, since they all implement the same set of
types (which only consists of the type of TCPConnection and its supertypes)
by definition. This property results in the desired applicability of subtractive
replacement.

4.5.3 Cast Expressions

Assume that TCPClosed additionally defines a public method reopen() which
is not defined in the other classes of the TCPConnection hierarchy (see Figure
4.2). How can this method ever be called from outside of class TCPClosed?
As we already know, the only way instances of this class can be used is via
references of type TCPConnection. Therefore, sending the message reopen()
to such references would result in compile-time errors since this method is
not defined in TCPConnection. However, message reopen() can be sent to a
connection by casting it to the TCPClosed class beforehand as follows.
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((TCPClosed)connection).reopen();

Class cast expressions do not conflict with the original goal of typeless
classes, that is to allow for subtractive object replacement. Variables which
are cast to a typeless class still cannot be assigned to variables that are
declared to be of this very class type, because the restriction still holds that
it must not be used as a type. Therefore, in the very moment of applying
the referent assignment operator to an instance of a typeless class, it is still
ensured that there are no variables in the running system that expect the
new object to implement the old object’s class type.

4.5.4 The with Statement

In order to conveniently express cascaded method calls to the same variable
in the presence of typeless classes, Gilgul introduces a with statement that
is reminiscent of the similar statement in the programming language Oberon
[70]. In Gilgul, it can be used as follows.

with (object instanceof aClass) {
...

}

Its effect is that object is regarded as an instance of the respective class
for the scope of the following (block) statement. The left-hand side of the
with condition can be any interface or class, including typeless classes. Given
this statement, a call to a method defined in a typeless class can be expressed
as follows.

with (connection instanceof TCPClosed) {
connection.reopen();
...
connection.otherExclusiveMethods();

}

Note that whereas in Oberon the with statement is introduced to allow for
compiler optimization, such that code for the with condition is emitted only
once, in Gilgul the with statement is syntactic sugar only. Since the object
referred to by the variable in the with condition can always be replaced with
another object (for example, within another thread), the condition might
not hold for the following block completely, possibly resulting in a class cast
exception at any place within that block where the variable is actually used.

4.5.5 Relation to Java’s Interfaces

Apart from the confined use of typeless classes as types, they do not differ
from usual classes. Especially, they are allowed to implement any interface,
as follows.
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typeless class C extends D implements I {
...

}

Note, however, that this declaration introduces a new type into the class
hierarchy if interface I is not implemented by any of C’s superclasses. As
soon as a variable of type I refers to an instance of class C, this instance
can be replaced only with objects that simultaneously are instances of any
subclass of D and implement I.

Yet we have not chosen to disallow typeless classes to implement inter-
faces since this feature can be utilized for a clean separation of types and
implementations as follows.

interface ICurrency {
...

}

typeless class Euro implements ICurrency {
...

}

Although the main purpose of Java’s interfaces is the definition of “pure”
types, we have also chosen to allow for the declaration of typeless interfaces.
For example, this might be useful in order to group related methods into a
typeless interface without declaring a new type. This is similar to Smalltalk’s
concept of categories. Typeless interfaces could also help to avoid the dec-
laration of new types just to introduce application-wide constants, or can
be used as marker interfaces to indicate specific class-related properties, like
Cloneable or Serializable, which are also usually not intended to be used as
types.

4.5.6 Relation to Software Evolution

The introduction of typeless classes fits perfectly to the goal of widening the
range of unanticipated software evolution. It is always possible to extend an
existing class hierarchy by additional typeless classes and thus allow for both
additive and subtractive object replacements. There is no need to change
existing classes, so this feature can be used for third-party components with-
out further effort.

The possibility to introduce new methods into a typeless class with-
out restricting the replaceability of its instances also improves adaptability.
Since typeless classes can be used in class cast expressions, these new meth-
ods can be called within unrelated classes that yet are aware of these new
methods. Still, the existing class hierarchy does not need to be changed for
this purpose.
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The fact that casts can only be checked dynamically and therefore might
raise class cast exceptions may be regarded as a disadvantage of this pro-
posal. However, this is only the flipside of the possibility to declare optional
methods, which in turn is a benefit that otherwise cannot be expressed easily.

Typeless classes effectively decouple declarations of optional properties
on the one hand, that virtually can be added to and removed from objects,
and the actual use of such optional properties on the other hand, which of
course may result in the temporary absence of these properties.

Other approaches that allow for optional properties insist on their intro-
duction into the existing class hierarchy in order to allow for static checks
of their sound use, but in this way they simultaneously narrow the range
of unanticipated evolution of third-party components. See for example the
concept of empty methods in Component Pascal [80] which are similar to
abstract methods but default to empty method bodies in order to avoid
exceptions at run time.

Note that the goal of separating interfaces and classes has been pro-
posed explicitly by Cook et al. [14] and, for example, has been addressed
in Emerald [40], Sather [81] and Java [34]. However, whereas it is possible
to declare pure interfaces/types in one or the other way in all of these ap-
proaches, the declaration of classes still implies the accompanying (implicit
or explicit) declaration of interfaces in order to use newly declared properties
from the outside. In Gilgul, it is possible to declare “pure” implementation
classes that must never be used as types. In this way, Gilgul “completes”
the separation of types and classes that has been initiated with the former
approaches.

Typeless classes are not only useful in conjunction with referent assign-
ments, but also with other programming language constructs, like Generic
Wrappers [12] or Delegation [47]. For example, Generic Wrappers could
be enabled to dynamically change their wrappees to instances of the wrap-
pee’s superclass, if the wrappee is an instance of a typeless class. Currently,
Generic Wrappers do not allow for the subtractive exchange of wrappees.

Newer approaches that head for subtractive object replacement, and
modify the type system for this purpose in a similar way, are Fickle [28]
and Wide Classes [73]. However, these approaches still do not allow for
declaration of classes that must not be used as types.

4.5.7 Type Soundness

Java is intended to be a type-sound programming language, and type sound-
ness has been proven for non-trivial subsets of Java. For example, see
[29, 64, 79] in [1]. With regard to type soundness, Gilgul is a conser-
vative extension of Java. The following sections list and discuss the features
of Gilgul that affect Java’s type system.
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Comparands

Comparands do not affect Java’s type system. Since the comparand field is
publicly defined for the class java.lang.Object which is the top-most super-
class of all classes, it is guaranteed that it is always accessible in all objects.

One implication of making the comparand field a definition of the class
Object is that this field also becomes defined in all interfaces, since the
type Object is also a supertype of all interface types. In a strict sense, this
conflicts with Java’s restriction that interfaces may not contain (non-static)
field definitions. However, Gilgul does not generalize interfaces to include
field definitions in order to allow for the proper definition of the comparand
field. Instead, it treats comparands as a special exceptional case.

In its current definition, Gilgul treats comparand as a keyword that
cannot be used by programmers for definitions of their own. This justifies
the inclusion of comparands in interfaces as a special case, and it also ensures
that the comparand field cannot be hidden by programmers in their own
classes.

This design is compatible with possible future extensions of Java/Gilgul
that may allow for the general inclusion of non-static fields in interfaces.

Referent Assignment

In general, a referent assignment cannot be checked statically in order to
ensure run-time type safety without further run-time checks. For example,
assume the referent assignment left #= right with right denoting an object
of compile-time type R and left denoting an object of compile-time type L.
The following cases may occur:

a) R may be the same type as L,

b) R may be a subtype of L,

c) R may be a supertype of L,

d) R and L may be unrelated types.

It seems straightforward to accept case a) and b) at compile-time. How-
ever at run time, right might actually refer to an object of a less specific
run-time type than that of left, so the referent assignment would not be
safe. Likewise it seems straightforward to reject case c) and d) at compile-
time. However at run time, right might actually refer to an object of a more
specific run-time type than that of left in case c), so the referent assign-
ment would be safe. The rejection is justified in case d) only because Java
does not allow for multiple inheritance; otherwise, even in case d) a referent
assignment might succeed at run time.

The reason for the disparity of compile-time and run-time type checks
for referent assignment is the fact that referent assignments do not operate
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on variables but on objects: Whereas a simple assignment in Java stores
references to objects in variables, a referent assignment redirects references
without directly affecting the contents of variables. In other words, a referent
assignment strictly does not deal with compile-time entities.

Still, the Gilgul language specifies the same compile-time type checks
for referent assignments as those for simple assignments in Java. This is to
ensure the same familiar degree of programmer guidance by the type system
as in Java. Case c) above might seem as an unnecessary restriction because
Gilgul strictly rejects code that might succeed at run time. However, a
referent assignment can always be forced to be accepted by the Gilgul type
checker by casting either side to an appropriate type.

In any case, all referent assignments generally need to be checked again
at run time, taking into account the actual run-time types of left and right.
If right’s class is not a subclass of any of the non-typeless superclasses of
left’s class, then a ClassCastException is thrown. This ensures that a referent
assignment never violates the expected type of a variable in any part of a
running Gilgul program.

The grammar productions for referent assignments do not allow for
chains of referent assignments of the form a #= b #= c .... (See Sec-
tion A.10.7.) This would have seriously complicated the type system with
no obvious gain in expressivity. Still, referent assignment uses the form of
an expression instead of a statement in order to accomodate possible future
extensions of the language.

Null References

In Java, the null reference is generally understood as the single reference to
“no” object [54]. Gilgul retains this null reference from Java that has a fixed
referent in Gilgul by default, so it cannot be redirected to actual objects.
However, the fixed restriction allows for other references to be redirected to
null, and in this way allows creating unbound null references. For example,
Object obj #= null creates an unbound null reference that can be redirected
to an actual object later on.

There is seemingly a conflict between the applicability of referent as-
signments to unbound null references and Java’s permissive rules for casting
null’s “type” to any reference type and vice versa. This conflict has been
detected by Sven Müller in his diploma thesis [58] and is illustrated there
with the following example.

In Figure 4.3, a reference to an instance of class B is stored in two
variables a and b of type A and B respectively. Then, a is assigned null
via referent assignment, which results in an unbound null reference, and
afterwards it is assigned a fresh instance of class A via referent assignment.
If the latter assignment were permissible this would result in b referring to
an object that is not an instance of type B, i.e. a run-time type error.
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BA

AB

a

b

A a = new B();

B b = (B)a;

a #= null;

a #= new A(); // not allowed!

A a #= null;

B b = (B)a; // not allowed!
a #= new A();

Abbildung 3.2: Nullreferenzen führen zum Verlust von Typinformationnen und machen
daher weitere Anstrengungen erforderlich, um die Typsicherheit des #= Operators zu ga-
rantieren.

3.2.4.1 Typproblem

Im Gegensatz zu null kann eine unbound Nullreferenz als linker Operand des #= Opera-
tors vorkommen (2.3.4). Übertrüge man jedoch die gemäß JVMS legale Typumwandlung
des ”Typs“ von null zu jedem beliebigen Referenztyp und umgekehrt auch auf unbound
Nullreferenzen, würde die Typsicherheit des Referent Assignment zerstört.

Abbildung 3.2 veranschaulicht dies an einem Beispiel: Zunächst wird eine Referenz auf
eine Instanz der Klasse B in jeweils einer Referenzvariablen des Typs A und B gespeichert.
Anschließend finden zwei Referent Assignment Operationen statt. Dabei wird zunächst
eine Nullreferenz erzeugt und diese anschließend auf eine Instanz der Oberklasse A rediri-
giert. Die Typüberprüfung in der bisherigen Form (2.3.5) ist in beiden Fällen erfolgreich.
Dennoch ist danach in einer Referenzvariablen des Typs B eine Referenz auf eine Instanz
von A gespeichert, und daher offenbar die Typintegrität verletzt.

Eine solche Fehlersituation wird dadurch vermieden, dass unbound Nullreferenzen mit spe-
zifischen Typinformationen versehen werden, die bei einem späteren Referent Assignment
herangezogen werden. Der Typ einer Nullreferenz wird dabei durch den Typ des vorherge-
henden Referenten bestimmt. Im obigen Beispiel ist dies B, wodurch beim zweiten Referent
Assignment die Verletzung der Typintegrität erkannt wird.

Nicht immer kann der Typ einer Nullreferenz von einem vorhergehenden Referenten ab-
geleitet werden, wie die erste Zeile des zweiten Kode-Abschnitts in Abbildung 3.2 zeigt.
Hier wird der #= Operator auf eine zuvor nicht initialisierte Referenzvariable angewendet.
Wie später (3.3.3) zu sehen sein wird, spiegeln sich diese beiden Fälle in unterschiedli-
chen Bytecode-Instruktionen wieder. Im Fall uninitialisierter Referenzvariablen wird der
deklarierte statische Typ der Referenzvariablen als Typ der Nullreferenz verwendet8 und
damit sichergestellt, dass die Nullreferenz nur auf Instanzen redirigiert werden kann, die
mit diesem statischen Typ kompatibel sind. Der deklarierte Typ wird hierbei als Parame-
ter der zugehörigen Bytecode-Instruktion übergeben, weil es im Java-Bytecode für lokale
Referenzvariablen keine spezifischen Typinformationen gibt (vergleiche 3.1.1).

Die beschriebene strengere Typisierung von unbound Nullreferenzen impliziert die Not-
wendigkeit, auch die Semantik von Typumwandlungen zu erweitern. Bei einer unbound

8Dies kann auch ein Interfacetyp sein

Figure 4.3: In conjunction with referent assignments, unbound null refer-
ences require additional rules in order to ensure type soundness. (Illustration
taken from [58].)

Such situations are actually prevented by storing additional type in-
formation with unbound null references that record the required type to be
checked in subsequent referent assignments. The required type is determined
by the type of the referent that a new unbound null reference replaces. In
the example given above, this is the type B that prevents the type violation
in the second referent assignment.

In the case of freshly created references, the required type of an unbound
null reference cannot be determined by a previous referent. In these cases,
the statically declared type is used. For example in Figure 4.3, the third
referent assignment records the type A with the freshly created unbound
null reference, which in turn prevents the type violation in the subsequent
cast to type B. This leads to the probably surprising situation that casting
a null reference might issue the throw of a ClassCastException in Gilgul.

However, it is very important to note that all these additional rules
exclusively apply to unbound null references, a concept that does not exist
in pure Java. Especially, the semantics of the default null reference, as known
in Java, are not changed: null can still be arbitrarily cast and involved in
assignment operations. Gilgul does not lose its compatibility with pure
Java programs because of unbound null references.

Typeless Classes

Typeless classes do also not affect the type soundness of pure Java. The
only effect is that typeless classes are forbidden to be declared in certain
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contexts. Apart from that, Java’s typing rules do not change: the left-hand
side of a simple reference assignment is always a variable, and therefore has
the type of a non-typeless class. Therefore, the right-hand side still must be
of the same or a more specific type than that of the left-hand side.

Typeless classes only affect the type checks of referent assignments in-
sofar it is not sufficient to check the type of the right-hand side against the
(most specific) type of the left-hand side, because the left-hand side might be
an instance of a typeless class. Therefore, all the non-typeless superclasses
of the left-hand side must be taken into account, and the class of the right-
hand side must be a a subclass of each of those. At run time, this is the case
when the left-hand side is an instance of a typeless class. At compile time,
this is only the case when the left-hand side is the keyword this. (In fact,
this is the only case in which Gilgul’s compile-time type rules for referent
assignment deviate from those of Java for simple assignment.)

With Statement and Casts

Consider the general form of a with statement.

with (myExpression instanceof MyClass) {
. . .
... myExpression ...
. . .

}

The with statement is a simple rewrite rule that textually replaces all
occurrences of a given expression in its body with the same expression explic-
itly cast to a given class. This means that the resulting code looks roughly
as follows.4

. . .

... ((MyType)myExpression) ...

. . .

No implicit assumptions about the type of the expression are made. In
fact, the type of the expression is repeatedly checked at each occurrence in
the body of the with statement at run time.

When a cast expression is used to access a field or method that is other-
wise not accessible – for example ((MyClass)myExpression).m() – this typi-
cally results in two steps at run time: first, it is checked whether the resulting
object is really an instance of the given class – this potentially results in a
ClassCastException – and second, the actual field access or method call is
performed.

4A more detailed description is given in Section 4.5.4.
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Since in Gilgul, this two-step process might potentially be interspersed
by a referent assignment in another thread that affects the expression being
cast, Gilgul requires the combination of theses two steps into an atomic
operation. See Chapter 6 for more details. This requirement also ensures
the run-time type safety of cast expressions.
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Chapter 5

Replacement of Active
Objects

This chapter discusses issues that can occur when active objects are being
replaced by way of a referent assignment. In the context of this thesis, an
object is said to be active at a specific point in time when a method is being
executed at that point in time. There are two cases of active objects: either
an object is active in the same thread, or in one or more other threads.

The language Gilgul offers various options to handle referent assign-
ments on active objects: the following sections describe default semantics
and the language construct recall that allows for controlled deviations from
the default semantics.

5.1 Default Semantics of Referent Assignment on
Active Objects

Consider Figure 5.1 that depicts an attempt at replacement of object1 that
still has a method m() executing on it. In such a situation, it is unclear

object1 object2

object1 #= ...;

m()

Figure 5.1: Replacement of object1 – what object should m() continue to
execute on?

59
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what object the active method m() should continue to execute on afterwards.
There are only two options – either it continues to execute on the old object
that has been replaced or it chooses the new object. Both options have
serious drawbacks. If m() continues to execute on the old object, it does
not reflect the programmer’s intention to have the object replaced. If it
chooses the new object, this may lead to severe consistency problems, for
example, if m() is implemented differently in the class of the new object.
For example, the method might try to access private instance variables that
are not present anymore. This example also illustrates why in the general
case, such attempts cannot be detected statically since they might be issued
in other objects and especially in totally different source code.

In order to ensure consistency, the default semantics of Gilgul are de-
fined as follows. If the active method m() and the attempt at object replace-
ment are executed by different threads the referent assignment operation
blocks until m() (and all other methods that are active on the target object)
complete. If they are executed by the same thread (that is, on the same
execution stack) the referent assignment operation throws an (unchecked)
ReferentAssignmentException. (See Section A.10.1 for more details on Ref-
erentAssignmentException.)

5.1.1 Replacement of this

There are several situations when an object itself knows best when to be
replaced. For example, the State pattern gives the advice “to let the State
subclasses themselves specify their successor state and when to make the
transition” [31]. However, a referent assignment this #= expression implies
that the method that currently executes on this is active in the same thread
by definition (see Figure 5.2).

Gilgul relaxes its restrictions for this case and does not throw a Ref-
erentAssignmentException if it is ensured by a combination of static and
dynamic checks (see below) that after the replacement of this, code will no
longer be executed on this. For example, in the case of a void method this
can be accomplished by just placing the replacement of this at the end of
the method, as follows.

void close() {
...
this #= new TCPClosed(); }

For non-void methods a new construct is introduced.

int close() {
...
return expression with this #= new TCPClosed(); }
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The semantics are as follows. First, the return expression is evaluated.
Then the replacement of this is carried out. Lastly, the method completes
and returns the result of the evaluation in the first step. Together these
steps ensure that the replacement of this is indeed the last statement that
gets executed on this. Possibly, there are still other methods active on the
current object. In this case, the rules hold that are given in the previous
section.

Another variation of this construct occurs in combination with the throw
statement: throw expression with this #= replacement. The semantics are
defined accordingly.

In previous versions of Gilgul, we have allowed replacements of this
to be placed inside the finally block of a try statement. This would ensure
roughly the same semantics (both for return and throw statements). How-
ever, the finally block is meant to be used for code that should always execute,
even when an exception is thrown. It is more likely that replacements of
this should not occur in this case so we have added the with construct to our
design with these slightly different semantics.

The checks that ensure that a replace of this is indeed the last statement
in a method are as follows. First, we define the term definite last referent
assignment : a referent assignment is said to be definite last if it can be stati-
cally proven that no other code follows after that referent assignment within
the same method. As in the case of definite initializing/non-initializing ref-
erent assignments in the previous chapter, we reuse the rules for definite
assignment/unassignment in Chapter 16 of [34] accordingly.

The static check for definite last referent assignment does not take into
account whether the left-hand side of a referent assignment is indeed the
keyword this. This would be too restrictive in general, because the following
code sequence is also a valid definite last referent assignment on this.

Object v = this;
v #= expression;

Instead, a Gilgul compiler has to mark all definite last referent assign-
ments in the generated bytecode, independent from the expression on the
left-hand side. This also complies with the fact that all assignments in the
Java Virtual Machine and consequently the Gilgul Virtual Machine go via
the stack: first, the expression on the left-hand side is evaluated, then the
expression on the right-hand side, and finally an assignment operation is
issued. Hence, a static check for definite last referent assignmen does not
need to be more specific than described above. The Gilgul Virtual Machine
simply has to disallow referent assignments on all left-hand variables that
hold the same reference as this only for the unmarked cases.
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5.1.2 Augmented return/throw versus try-finally

There are also some minor technical issues that result from interdependen-
cies between try-catch-finally statements and the with construct for return
and throw statements. In the case of a with construct inside a try block
covered by a finally block, we have two code sections that are declared to be
executed last.

try {
...
return ... with ...; // or throw ... with ...;

} finally {
...

}

This results in a priority conflict that is hard to solve. Therefore, the
language Gilgul disallows such nesting of with and finally code at compile
time.

In the case of a with construct inside a try block covered by a catch block,
the cases for return ... with ... and throw ... with ... differ slightly: In the
case of return ... with ..., the referent assignment can only be executed when
no exception is thrown beforehand. Therefore, none of the declared catch
blocks can potentially be executed after the definite last referent assignment.
On the other hand, in the case of throw ... with ..., the exception thrown by
that throw statement might be caught by one of the enclosing catch blocks.
Therefore, one of the catch blocks might be executed after the definite last
referent assignment, rendering its definite last status questionable. There,
this case must be forbidden. These considerations result in the following
rules:

• A referent assignment in the with construct for a return or throw state-
ment may not be covered by a finally block. A referent assignment in
the with construct for a throw statement may also not be covered by a
catch block. However, a referent assignment in the with construct for
a return statement may be covered by one or more catch blocks.

5.1.3 Advanced Requirements

So far, Gilgul does not offer a completely satisfactory solution for replace-
ments of active objects. For the default case, our main goal was to ensure
consistency, and consequently this precludes solutions for the following is-
sues.

• The rule that replacements block until active methods in other threads
complete does not by itself handle the situation when the active method
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object1

this #= ...;

m()

Figure 5.2: Replacement of this – method m() is active by definition.

consists of a non-terminating loop (for example, in the case of daemon
threads).

• More often than not, administrators might be willing to trade time-
liness for (temporary) inconsistency and so want to have an object
replaced immediately rather than having to wait for the completion of
other methods.

For example, assume that you have implemented a stock ticker roughly
as follows.

public class StockTicker {
... // some member declarations

public void run() {
// mainly a non-terminating loop
while (true) {

input.getRequest();
getQuote();
output.putResponse();

}
}

}

Because of the non-terminating loop in method run it is not obvious how
to replace an instance of this class without having to shut down the system.1

In Gilgul, the concept of recalls is introduced to provide support for
these cases. In the following sections, we first outline the concept of recalls
and afterwards show how they can be combined with referent assignments
in order to provide a feasible means to deal with these cases.

1We are aware of only one approach that allows for dynamic software evolution and
tries to deal with non-terminating loops without stopping them, but rather by letting the
programmer define states of loops that allow for quasi-“morphing” to other loops [52].
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object1 object2

throw new Recall(object2);

Figure 5.3: A recall on object2 unwinds the current stack up to the first
method call on object2, and then calls this method again. Just before re-
execution of this method call (at the marked spot), the call stack is guaran-
teed to be clear of object2 as a receiver.

5.1.4 Recalls

Exceptions in Java are a means to step out of the standard flow of control,
and they can be caught by dedicated exception handlers, possibly at a higher
level in the call stack, to revert to a corrected flow. In other words, the
current call stack is unwound until a matching exception handler is found
[34].

A recall in Gilgul mimics the behaviour of Java’s exceptions, but in-
stead of relying on the definition of dedicated exception handlers, a return to
the standard flow takes place as soon as the call stack is clear of a particular
receiver during the process of unwinding. For example, assume the throw of
a recall on object2 in Figure 5.3. The current call stack is unwound up to
the first method call on object2, and then this particular method is called
again on object2.

Note that a recall guarantees that immediately before the point of return
to the standard flow of control, the current call stack does not contain any
method calls to the specified object. So by definition there is no method
active on this object at this point in time (at the marked spot in Figure
5.3). If there is no method active on the target object at the moment of the
throw of a respective recall, this recall is simply ignored and evaluates to a
non-operation.

Just as in the case of exceptions in Java, Recall is a plain class in Gilgul
and instances thereof can be thrown and caught. It is unchecked, like
java.lang.RuntimeException, in order to have it smoothly integrated into ex-
isting Java code.

A recall handler can be used for setting corresponding objects to a consis-
tent state. However, a caught recall should be rethrown in order to guarantee
its completion, as follows.
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try {
... // do your stuff here

} catch (Recall recall) {
... // reset your object(s)
throw recall; // and rethrow the recall

}

Since Gilgul’s recalls are not exceptions in the strict sense to indi-
cate that something has gone wrong, Recall is not defined as a subclass of
java.lang.Exception, but as a subclass of the more general class java.lang.
Throwable. This ensures that a general catch of all exceptions does not
accidentally catch a recall as well, as follows.

try {
...

} catch (Exception e) {
// recalls are not caught here
...

}

Further note that when parameters have been passed to the method that
gets re-executed by a recall, the (possibly complex) parameter expressions
are not reevaluated, but the previously evaluated values are simply reused:
In Java bytecode, the call of a method consists of pushing parameters on
the operand stack, and then, as a distinct step, execute an invocation of the
respective method. It is only this last step that gets re-executed by a recall,
and the invocation merely reuses the old state of the operand stack.

5.1.5 Combination with Referent Assignment

Given these prerequisites, Gilgul’s referent assignment can be amended
by recalls in order to replace even active objects. This is accomplished by
annotating the application of the referent assignment operator accordingly,
for example as follows.

stockTicker #= new StockTicker with global recall;

The options are as follows: a local recall throws the recall only for the
current thread; a global recall throws it for all other threads that have a
method executing on the target object, but not the current thread. Since
the throw of a recall within a thread does not have any effect if the respective
call stack is already clear of the specified object as a receiver, this definition
is equivalent to the more general one that a global recall is thrown for all
other threads.
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These options can be combined as in expression1 #= expression2 with
local recall, global recall. Then the recall is thrown for both the current
thread and other threads. The combination of a local and a global recall
can be abbreviated, as in expression1 #= expression2 with total recall.

The actual Recall instance that is thrown in this case takes the left-hand
side of the referent assignment expression as a parameter. This means that
the respective call stacks are unwound up to the first method call on the
object referred to by the left-hand side. The actual replacement of this
object is deferred to this point in time when the call stack is guaranteed to
be clear of methods that are active on this object (as a receiver) and just
before the re-execution of the respective method call (at the marked spot in
Figure 5.3).

As a consequence, by means of the recall construct the replacement takes
place at a point in time when it is safe to carry it out. Afterwards the stan-
dard flow of control is reentered and can for example return to a thus tem-
porarily terminated loop. Since recalls may be caught during the unwinding
of the call stack it is possible to reset the target object (and possibly depen-
dent objects) to a reasonable, consistent state. However, it is not required
to provide for such clearance code because recalls are unchecked. Therefore
they can still be thrown even in unanticipated contexts. In the latter case,
it is the task of the programmer who wants to replace a specific object to
decide if clearance is needed or not and to take the necessary steps.

5.1.6 Relation to Java’s Thread Model

There is a close relation of Gilgul’s recalls to Java’s interrupts that are
used in order to signal that a specific thread should terminate. In the latter
case, no automatic steps are taken by the run-time system to actively stop
the thread, but instead all threads are required to regularly check their own
interrupt flags and terminate eventually. In order to help programmers to
remember to check for interrupts, some standard thread-oriented methods in
Java, like wait(...) or Thread.sleep(...), may throw a (checked) InterruptedEx-
ception when the corresponding flag is set. Note that this is the only default
means in Java to support the termination of threads. Up to JDK 1.2, the
class java.lang.Thread has included methods stop(...) and suspend(...) for
explicit termination, but they have since been deprecated for safety reasons
[78].

Essentially, global recalls in Gilgul mimic this behaviour. Instead
of directly throwing recalls in other threads, a global recall merely sets a
corresponding flag in each thread. This recall flag is checked in the well-
known methods that already check for the interrupt status, namely wait(...),
Thread.sleep (...) and so on, and they may throw recalls accordingly. Addi-
tionally, the recall flag is checked in the equally well-known Thread.yield().
Since platform independent components are expected to at least occasion-
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ally call Thread.yield() for compatibility reasons, and generally make use of
the other methods mentioned as well, the recall mechanism will most likely
be already applicable in most cases without change of existing components.

In Java, the method Thread.yield() is used as a hint to the run-time
system to indicate where switches between thread contexts may occur, and is
essentially a Thread.sleep(0). The occasional call of Thread.yield() is optional
in pre-emptive implementations of Java’s thread model, but is required in
cooperative ones. See [50] for more details on Thread.yield().

5.1.7 Replacement of Long-Running Methods

We now show how the combined use of the referent assignment operator
and the recall construct can be used by sketching a class for consistently
replaceable objects with long-running methods.

public class StockTicker {
... // some member declarations

public void run() {
...

try {

while (true) {
Thread.yield(); // implicitly check for global recalls

input.getRequest();
getQuote();
output.putResponse();

}

} catch (Recall rec) {

// ensure consistency
if (input.requestsSoFar() < output.responsesSoFar()) {

output.signalDropouts();
}

throw rec; // rethrow the recall
}

}

}
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Now the replacement of a StockTicker instance with an appropriate wrap-
per (see Section 4.2) looks as follows.

stockTicker #= new StockTickerWrapper(stockTicker)
with global recall;

Please note the following.

• The try-catch block inside the run method is only required if there
is a need for clearance in the presence of recalls. Otherwise, Java’s
standard exception handling mechanism guarantees the propagation
of recalls to higher levels.

• If the run method is the topmost method that has been called for the
respective object on the call stack, the throw of a recall is guaran-
teed to re-execute this method (after object replacement, if thrown
in conjunction with a referent assignment). There is no need for the
programmer to take explicit steps in order to achieve this behaviour.

• The only requirement that is currently placed on the programmer is
to occasionally insert checks for recalls, for example by calling Thread.
yield(). A programmer may also choose to explicitly check for global
recalls by inspection of the respective recall flag. However, we expect
programmers to want to do this seldomly. See Chapter 6 for more
details.

• So in general, the referent assignment operator is applicable even in
the case of long-running methods.



Chapter 6

Implementation

In this chapter, the implementation of the Gilgul compiler and the Gilgul
Virtual Machine is described. The Gilgul compiler is an extension of the
original Java compiler, as provided by Sun Microsystems, Inc. The Gilgul
Virtual Machine (GVM) is a modification of the Kaffe virtual machine [41],
released under the GNU Public License.

The Java execution model differs from typical implementations of other
languages that compile source code directly into machine code and link the
code into an executable program file. Instead, a Java compiler produces a
platform-independent bytecode that is stored in class files. An implemen-
tation of the Java Virtual Machine (as specified in [54]) – for example the
Kaffe virtual machine – is able to to load such class files, link them on
the fly, and eventually execute them. Execution is either accomplished via
interpreting the bytecode, or via compiling it into machine code (just-in-
time compilation), or via a combination of interpretation and compilation
(dynamic compilation). Since Java is designed for loading and executing
programs from potentially untrusted origins, its execution scheme also in-
volves a bytecode verifier that rejects malicious code. Java’s execution model
is illustrated in Figure 6.1.

The Gilgul compiler uses well-known implementation techniques and
compiles the specification given in Appendix A into an extension of the
Java class file format, specifically customized for Gilgul. The bulk of the
implementation is mainly driven by the specification of the extensions of the
Java Virtual Machine instruction set and their implementation in the Gilgul
Virtual Machine.

We have put our main focus on providing a stable proof of concept in
a manageable amount of time and not on industrial-strength performance,
given the manpower of just one programmer for the compiler and one for
the run-time system. Therefore we have chosen to only modify the pure
interpreter part of the Kaffe virtual machine and have not addressed issues
of just-in-time or dynamic compilation.

69
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Figure 6.1: The Java execution model

Currently, a beta-quality implementation of the complete Gilgul pro-
gramming language, as described in this chapter, can be freely downloaded
as a compiler and run-time system from the Gilgul homepage [32].

The complete details of the implementation of the Gilgul Virtual Ma-
chine are given in [58]. In the remaining sections of this chapter, we give an
overview of that work.

6.1 Architecture of the Java Virtual Machine

The Java Virtual Machine combines the use of a stack for passing parameters
to methods and managing local variables, and a heap for allocating objects
and arrays. Memory management is automatic: Stack-allocated memory is
freed upon return from a method and heap-allocated memory is regularly
garbage collected (without fixing a specific garbage collection algorithm).
The stack and heap are operated on primarily via bytecode instructions.

Like the Java programming language, the Java Virtual Machine distin-
guishes between primitive data types (like short, int, long, char, and so on)
and reference types for objects and arrays. All bytecode instructions exclu-
sively operate on well-specified types. For example, integer additions are
not allowed to operate on reference types. Some of these restrictions are
(specified to be) statically checked by the bytecode verifier, at load time,
while others can only be enforced at run time.

The class file format specifies an intermediate representation of Java
classes that is generated by the Java compiler. It consists of a constant pool
that stores constant values, strings, field and method signatures, and so on,
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that are used in a class; references to related classes (the superclass, imple-
mented interfaces, inner classes, and so on); field and method definitions;
and the bytecode for non-abstract methods. Most information, except for
references to local variables, is encoded symbolically and resolved at load
time the earliest.

The instruction set of the Java Virtual Machine consists of load and
store operations for local variables and operands; arithmetic operations; type
conversions between primitive data types; operations for allocating and ini-
tializing objects and arrays; for accessing object, class and array members;
for determining the length of an array; for determining the instanceof rela-
tion; for jumping within a method; for invoking and returning values from
methods; and for synchronizing threads that execute in parallel.

6.2 Architecture of the Gilgul Virtual Machine

6.2.1 The primitive data type comparand

Gilgul requires the type comparandtype. As noted in Section 4.1.2, it is sug-
gestive to implement it as a 64-bit unsigned integer. However, Gilgul also
requires that comparands and numerical values are strictly separated in or-
der to ensure comparand uniqueness. Comparands should only be generated
by the comparand creation operation, and not be modified via arithmetic
operations. Therefore, the Gilgul Virtual Machine also introduces the type
comparandtype at the virtual machine level.

However, comparands can be converted to values of type long, but not
vice versa. A comparand always maps to the same long value, and no two
comparands can be mapped to the same long value. The conversion of
comparand to long values can be used in distributed programming scenarios
– see Appendix B.

In the Gilgul Virtual Machine, a comparison of two objects is always
performed as the comparison of their respective comparands. However, null
references are treated specially: a comparison of a null reference with another
reference yields only true when that other reference is also a null reference.
This check is performed before the references are attempted to be derefer-
enced. This effectively means that obj1 == obj2 is not strictly equivalent
to obj1.comparand == obj2.comparand when null refereces are involved – if
both obj1 and obj2 are null, then the latter throws a NullPointerException
while the former yields true.

6.2.2 Control Facilities

Gilgul specifies several control facilities for restricting the use of refer-
ent and comparand assignments. These restrictions are declared alongside
constructors which are compiled into methods with the name <init> that
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are treated specially by the Java Virtual Machine. Because of several re-
strictions that the Java Virtual Machine specification imposes on construc-
tors, we have opted for the introduction of another kind of specially treated
<gilgulinit> methods that are used instead of <init> methods if avail-
able, and in turn call <init> to behave well with pure Java classes. The
restrictions declared on referents and comparands in a Gilgul class are as-
sociated with such <gilgulinit> methods and handled accordingly by the
Gilgul Virtual Machine.

6.2.3 Protected Activities

Referent assignments can only be carried out on references while they are
inactive. The diploma thesis [58] presents the following definitions and rules
in order to achieve a sound implementation of this requirement.

Definition 6.1 (Compound Activity) A compound activity on an object
reference is a succession of machine operations of the target platform that
(potentially) need to refer to that fixed object more than once via that object
reference.

During execution of a method, there can occur arbitrarily many accesses
to this that must refer to the same object. A synchronized block is imple-
mented by a pair of monitorenter and monitorexit bytecode instructions, as
specified by the Java Virtual Machine, that also must refer to the same
object via the same reference. Therefore, method invocations and synchro-
nized blocks are compound activities at the bytecode level. (See below for
examples of compound activities below the bytecode level.)

Definition 6.2 (Protected Activity) A protected activity is a compound
activity on a reference during which no other thread is allowed to intervene
by performing a referent assignment on that reference.

By definition, interventions cannot occur for atomic operations. There-
fore, only compound activities can be referred to as protected activities.
According to these definitions, method invocations and synchronized blocks
are protected activities. Additionally, the following bytecode instructions
qualify as compound activities that must be protected.

checkcast and instanceof Instructions that check for the instanceof relation-
ship between an object reference and a class must first check for null
before dereferencing that reference. So these instructions are com-
pound activities that must be protected because they use a given ob-
ject reference twice.

aastore Each assignment into an array must be preceded by an implicit
checkcast at run time because of a subtle hole in Java’s static type
system. Therefore, it also qualifies as a compound activity.
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if acmpeq and if acmpne Instructions that check for object identity are re-
defined in Gilgul to operate on the comparands of the involved ob-
jects. Since accesses to object comparands must be preceded by null
checks, they qualify as compound activities.

invokecast, invokeinterfacecast, getfieldcast, putfieldcast Each method invo-
cation and field access for instances of typeless classes must be pre-
ceded by typechecks and subsequent casts to such classes. This is
accomplished in the Gilgul Virtual Machine by combining typecheck,
cast and access into the listed compound operations. These operations
qualify as compound activities.

assignreferent The referent assignment operation is accomplished by a dedi-
cated bytecode instruction that combines several type integrity checks,
making it a compound activity.

Field and comparand accesses as such may also qualify as compound
activities depending on implementation details of a concrete Gilgul Virtual
Machine. Such accesses must at least implicitly check for null in order to
correctly issue throws of NullPointerException. However, the memory man-
agement facilities of the operating system and the underlying hardware may
allow an implementation to avoid explicit null checks in these cases.

Rule 6.1 (Integrity Rule) A Thread T may only perform a referent as-
signment on a reference while no other thread performs a protected activity
on that reference. When necessary, thread T must wait until this condition
holds. If thread T itself currently performs a protected activity on that refer-
ence, the Gilgul Virtual Machine must throw a SelfBlockingThreadException.
An exception for this rule exists for definite last assignments.

Rule 6.2 (Stability Rule) As long as a thread performs a referent assign-
ment on a reference, no other thread is allowed to start a protected activity on
that reference. When necessary, such a thread must wait until this condition
holds. This especially means that a Gilgul Virtual Machine is not allowed
to performe more than one referent assignment on the same reference at the
same time.

Rule 6.3 (Compatibility Rule) There are no restrictions on the paral-
lelizability of compound activities on a reference as long as no referent as-
signment or synchronization on that reference is involved.

Taken together, these rules ensure that referent assignments behave well.
Examples are given in [58].

There exists an exception to the integrity rule: A referent assignment on
a reference that is the target of the current method invocation (the reference
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stored in this) is accepted by Gilgul as long as it is a definite last assign-
ment. This is mapped to the Gilgul Virtual Machine level by the following
conditions under which a SelfBlockingThreadException is not thrown.

• There must be no other protected activity on this in the current thread.

• The corresponding assignreferent instruction must be marked as a def-
inite last assignment by the compiler (see Section 6.3.2).

• None of the following instructions may potentially follow in the control
flow of the current method after that assignreferent instruction: get-
field, putfield, invokevirtual, invokeinterface, invokespecial, invokestatic,
checkcast, instanceof, if acmpeq, if acmpne, monitorenter, getcomparand,
putcomparand, getfieldcast, putfieldcast, invokecast, invokeinterfacecast.

These are all bytecode instructions that potentially access objects ei-
ther directly or indirectly and therefore would violate the definite last
assignment status of the assignreferent instruction. An exception is
made in the case of monitorexit that also needs to access an object in
order to release a lock. However, a monitorexit instruction needs to
be matched by a preceding monitorenter instruction on the same refer-
ence. If this happens to be this, the referent assignment would not be
valid anyway because of the integrity rule given above. On the other
hand, this exception allows for the added flexibility of being able to
place a definite last assignments in a synchronized block.

This last condition must be checked by the bytecode verifier.

6.2.4 Recalls

The basic implementation scheme for recalls is already sketched in Section
5.1.6. The following additional details are noteworthy.

An instance of java.lang.Recall can only be thrown as a result of the
checks performed by the assignreferent instruction of the Gilgul Virtual Ma-
chine, or as an explicit throw issued by the programmer. When a recall is
thrown, the only protected activities that may currently still be executed
on the respective reference, except for the issuing assignreferent, are method
calls and synchronized blocks. All other protected activities are ensured to
be atomically executed by the Gilgul Virtual Machine in this regard.

This means that the start of synchronized blocks (i.e., the monitorenter
instruction) and all instructions for method invocations are candidates for
being the top-most implicit recall handlers. However, we have slightly devi-
ated from this apparently straightforward choice in the following way: When
the start of a synchronized block is the top-most protected activity for a recall
reference, the immediately surrounding method call is chosen as the entry
point for the implicit recall handler. This means that there are no provisions
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in the Gilgul Virtual Machine for directly re-executing synchronized blocks.
The reasons for this design choice are as follows:

• It is easier for programmers to understand the consequences of a recall,
especially with regard to explicit recall handlers.

• The proposed scheme is easier to implement efficiently. The recall
of a method requires the run-time system to only restore the actual
parameters to the method, whereas the recall of a synchronized block
would require restoring all accessible local variables that might have
been side-effected by that block in the previous run.

As noted in Section 5.1.6, recalls that several threads issue for each
other need to be checked in regular intervals. The low-level method for
this purpose is called checkRecall() and is defined in class java.lang.Thread.
Since the flags that this method checks are by nature accessed in a multi-
threaded fashion, special care must be taken to synchronize those accesses
appropriately in a Gilgul Virtual Machine. Again, details are given in [58].

6.2.5 System Classes

The restrictions for several system classes are defined as follows. (See Section
4.4 “Control Facilities”.)

• References to (built-in) arrays are bound, as well as their comparands.

• References to instances of the following classes are bound, as well as
their comparands: java.lang.String, java.lang.Class, java.lang. Security-
Manager, java.lang.reflect.Method, java.lang.reflect.Constructor, java.lang.
reflect.Field.

• References to instances of java.lang.Thread and all of its subclasses
are bound. There are no restrictions on their comparands, except for
possibly programmer-defined ones.

Classes like java.lang.SecurityManager and java.lang.Method are restricted
because of obvious security concerns. Other classes are restricted because
of implementation-dependent details.

6.3 New Virtual Machine Instructions

The Gilgul Virtual Machine introduces 18 new instructions at the bytecode
level that reflect the new operations introduced by Gilgul.
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6.3.1 Operations on Comparands

A major portion is dedicated to operations involving the new “primitive”
data type comparand, and they are designed in a similar fashion like those
for other primitive data types in the Java Virtual Machine. They comprise
kload and kstore for copying comparands between operand stack and local
variables; kaload and kastore for copying comparands out of and into arrays;
if kcmpeq and if kcmpne for comparing comparands; kreturn for returning
comparands from methods; k2l for converting comparands to long values;
getcomparand and putcomparand for accessing an object’s comparand; and
newcomparand for generating fresh comparands.

Note that the bound restriction of an object’s comparand is not yet
checked when it is read via getcomparand in order not to prevent client code
to use its value as a basis for determining hash codes, for example. Instead,
the comparand values themselves carry flags that indicate whether they are
acceptable as comparands for other objects or not.

6.3.2 Operations on References

There exist three operations for dealing with newly introduced operations
in Gilgul:

assignreferent This operation performs referent assignments. Apart from the
two operands, this operation can be further refined with three flags.

WITH LOCAL RECALL, WITH GLOBAL RECALL These flags reflect
the with local, with global and/or with total recall annotations
given by the programmer.

WITH RELEASE THIS This flag indicates whether this assignreferent
is a candidate for a definite last assignment. This flag is implicitly
set by the Gilgul compiler as the result of a simple control flow
analysis.1

newreference unbound, newreference fixed These instructions create a fresh
reference for an object passed as an operand. They reflect the Gilgul
construct for initializing referent assignments (see Section 4.3). The
newreference fixed is used when the annotation with fixed referent is
given by the programmer. The newreference bound is used otherwise,
and must be provided with the static type of the initializing referent
assignment (i.e., the left-hand side of the assignment). That type
is used in subsequent run-time checks involving null references (see
Section 4.5.7). Because such type information is not required in the
with fixed referent case, initializing referent assignments are divided
into two operations.

1It has to be re-checked by the Gilgul Virtual Machine for security reasons.
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6.3.3 Operations on typeless Classes

Accesses to fields and invocations of methods of typeless classes require
checking that an object is indeed an instance of the expected class before-
hand. However, other threads may potentially intervene the check and the
actual access / invocation. In order to be able to treat a check and an
access / invocation as a protected activity, the Gilgul Virtual Machine pro-
vides the following four instructions that simply execute a checkcast and the
respective “unchecked” operation, as already provided by the Java Virtual
Machine: invokecast, invokeinterfacecast, getfieldcast and putfieldcast.

6.4 Representation of Objects

The presentation of the Gilgul model in Chapter 3, and especially its
comparison with the Smalltalk object model in Section 3.4, suggests an im-
plementation of object references in the Gilgul Virtual Machine as pointers
into a central object table that in turn contains pointers (“referents”) to the
actual objects. While this is certainly a feasible implementation technique,
as has been demonstrated by early Smalltalk and also Java implementations,
it is generally known as a very inefficient approach and therefore has been
replaced by implementations with direct pointers both for Smalltalk and
Java.

Since the referent and comparand assignment operators are the central
contribution of the work presented in this thesis, we cannot afford to im-
purify the semantics of those operations in order just to be able to switch
to direct pointers. Instead, we have to find a more reasonable resolution
between double indirection and direct pointers that does not restrict the ap-
plicability of referent assignment. The implementation of the Gilgul Virtual
Machine, as presented in [58], presents a feasible approach.

6.4.1 Minimization of Indirection Penalties

It is clear that additional indirections cannot be avoided in the Gilgul Virtual
Machine. However by default, when objects are newly created, there exists
an unambiguous mapping between references and referents that is only dis-
associated by application of the referent assignment operation. Therefore, it
can be expected that there is always a reasonably sized subset of mappings
between references and referents, whose size depends on the frequency of
the referent assignment operation. In the general case, it can vary over time
whether a specific object belongs to that subset or not, except for objects
with bound referents which always belong to that subset. (It is not sufficient
that a reference’s referent is fixed because there might still exist more than
one reference with that referent.)
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These observations have led to the following two essential optimizations
in the Gilgul Virtual Machine.

• Objects that are referenced with bound referents can always be ac-
cessed via direct pointers. This already affects a major portion of reg-
ularly used Java classes, for example the classes for immutable data
types provided by the Java core API, like java.lang.String, java.lang.In-
teger, and so on. This effectively means that a large number of object
accesses can be implemented as efficiently as in pure Java.

• For indirectly addressed objects, an implementation technique is reused
that is also employed in some Smalltalk implementations. Instead of
relying on a central object table, so-called “hidden pointers” are used
that are placed immediately before the objects to which they refer [74].
Such a hidden pointer refers to the following object as long as no oper-
ation is performed that redirects it to a different object. With regard
to modern random access memory architectures, such an approach is
especially efficient: Of the two accesses that are needed with any ac-
cess that uses double indirection, the first access results in caching
the surrounding memory area, and it can be expected that the second
access can be very efficiently resolved in cache.

These two steps result in several additional implementation details, like
adding flags to object headers that indicate direct or indirect addressing, and
so forth. These details are described in [58]. An overview of the quantitative
evaluation (performance benchmarks) performed in that thesis is given here
in Section 7.2.

6.5 Activity Control and Multithreading

In the Java Virtual Machine, monitors are used to synchronize concurrent
accesses to shared resources. Since these monitors are associated with ob-
jects, but the Gilgul Virtual Machine needs monitors for references in order
to synchronize concurrent referent assignments on shared references, it intro-
duces such reference monitors. Reference monitors are used to coordinate
referent assignments and protected activities so that they do not overlap
with each other. Since it must be allowed to have overlaps between pro-
tected activities as such, in the absence of referent assignments, reference
monitors must not be held during whole activities. Instead, activities are
only registered by way of activity counters embedded in reference monitors.

In [58], a Simple Registration Protocol is presented that fulfils the require-
ments for synchronization of referent assignments, but is very inefficient in
terms of book keeping and frequent use of heavy-weight synchronization
operations at the machine level. Furthermore, these penalties are incurred
whether referent assignments are involved or not.
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Therefore, an additional Adaptive Registration Protocol is described that
reduces the overhead to an essential minimum. That protocol distinguishes
between a light-weight and a heavy-weight registration phase with regard
to a reference. During the light-weight registration phase, the costly access
to registration monitors is completely avoided, but instead only minimal,
purely local auxiliary information is recorded. The transition to the heavy-
weight registration phase is only needed when a referent assignment is actu-
ally performed, and then also only temporarily. Just before that transition,
a global analysis of the call stacks of all threads is performed in order to
determine the actual activity status of a reference after the fact.

Furthermore, the Adaptive Registration Protocol is also a suitable basis
for an implementation of recalls in the Gilgul Virtual Machine. This involves
determining the top-most activity on a recall reference, and the necessary
communication between threads to determine an appropriate point in time
for re-executing method invocations.
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Chapter 7

Evaluation

This chapter presents an evaluation of the Gilgul model and language
on two levels. On the one hand, we present a qualitative evaluation by
presenting three different examples that show that the concepts introduced
in Gilgul can indeed be used in a wide range of usage scenarios. The first
example (Section 7.1.1) presents how a live update of a server that provides
data from a stock ticker can be accomplished. The second example (Section
7.1.2) illustrates how role models can benefit from referent assignments.
Finally, the third example (Section 7.1.3) presents constant folding by way
of referent assignment as an optimization for the Interpreter pattern.

All these examples focus on uses of referent assignment. Usage scenar-
ios for comparands are presented in detail in the Comparand pattern in
Appendix B, and are not repeated here.

On the other hand, a quantitative analysis has been performed as part
of [58], and we give an overview of that work in Section 7.2. Its purpose is to
quantify the performance overhead that the implementation of comparands
and referents described in the previous chapter incur.

7.1 Qualitative Evaluation

7.1.1 The Stock Ticker Example

We present a client-server scenario in which a client repeatedly inquires the
value of a stock ticker from a server. This scenario is depicted in Figure 7.1:
StockClient consists of one simple thread that repeatedly reads a value from
a socket stream and displays that value for the user. The server consists of
three loosely coupled loops:

• StockServer listens to incoming connection requests from clients and
produces threads to handle such requests. The handlers communicate
with StockTicker to get the current stock value to be delivered to a
client.

81
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StockClientStockServer

StockTicker

admin shell

Figure 7.1: The basic architecture of the stock ticker example.

• StockTicker consists of a loop that repeatedly refreshes its value.

• The server also provides an admin shell that allows interacting with
the run-time environment that executes the whole server.

In our example, we demonstrate how a switch from the former German
DEM currency to the European EURO currency can be accomplished, which
was an unanticipated change for most European countries a few year ago.
In order to understand the issues that such a switch involves, we sketch the
source code for the StockTicker class.

class StockTicker implements Runnable {

// (1) The StockTicker is a singleton.
static private StockTicker instance = new StockTicker();
static public StockTicker getInstance() {return instance;}

// (2) The stock value.
// In our example, the currency is fixed.
protected double currentStockValue;
protected final String stockCurrency = "DEM";
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// (3) In a multi-threaded environment, accesses to
// the stock value must be synchronized.

public synchronized double getCurrentStockValue() {
return currentStockValue;}

protected synchronized void setCurrentStockValue(double d) {
currentStockValue = d;}

public synchronized String getStockCurrency() {
return stockCurrency;}

// (4) This produces a representation for the client.
protected String printStockValue() {

return ((int)getCurrentStockValue()) + " "
+ getStockCurrency();}

// (5) For our example, the value change is randomized.
protected synchronized void refreshCurrentStockValue() {

setCurrentStockValue(getCurrentStockValue()
+java.util.Math.random()*60);}

// (6) The main endless loop.
public void run() {

try {
while (true) {

Thread.sleep(2000);
refreshCurrentStockValue();

}
} catch (InterruptedException e) {}

}
}

Here are more details to the comments given in the source code above.

1. The StockTicker is a singleton class (see [31]). (We do not lazily initial-
ize the singleton reference here because the instance must be initialized
very early on anyway.)

2. The currency is fixed, so the change to a different currency cannot be
accomplished by a mere assignment to the currency field.

3. Since the fields are accessed purely locally (in the methods printStock-
Value and refreshCurrentStockValue), it would strictly not be necessary
to provide “getter” methods. However, we need to synchronize those
accesses, so therefore we need the “getter” methods.
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4. The printed representation for the client includes the currency.

5. The randomization of changes in the stock value is only included to
have an interesting effect for demonstration purposes.

6. The main loop of the stock ticker presents the main challenge in this
example: We need to break out of this loop in order to replace the
stock ticker with a new one that reflects the change to the new EURO
currency.

Of course, the change to the new currency can be performed by way of
a referent assignment in conjunction with a recall (see Section 5.1.4). Here
is the code of the EuroStockTicker.

class EuroStockTicker extends StockTicker {

// (1) We delegate calls to the original stock ticker.
private StockTicker parent;

// (2) The new currency.
public String getStockCurrency() {return "Euro";}

// (3) The stock value converted to / from EURO.
public synchronized double getCurrentStockValue() {
return parent.getCurrentStockValue()/1.95583;}

protected synchronized void setCurrentStockValue(double d) {
parent.setCurrentStockValue(d*1.95583);}

protected synchronized void refreshCurrentStockValue() {
setCurrentStockValue(getCurrentStockValue()

-java.util.Math.random()*80);}

// (4) The constructor prepares for the
// replacement of the original stock ticker.
protected EuroStockTicker(StockTicker st) {
StockTicker old #= st; // create second reference...
this.parent = old; // ...and store it as parent

}

// (5) The static initializer performs the replacement.
static {
StockTicker st = StockTicker.getInstance();
st #= new EuroStockTicker(st) with global recall;

}
}
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Comments:

1. We use a simple simulation of delegation in order to redefine some
methods of the original stock ticker class and leave others unchanged.
Here, the use of a language extension for proper delegation would be
appropriate (for example, see [48]).

2. It is sufficient to simply replace the “getter” method for the currency
field in order to introduce the new EURO currency.

3. The “getter” and “setter” methods for the stock value are redefined
with proper conversion methods that otherwise delegate to the original
accessors.

4. The constructor follows the idiom presented in Section 4.2.

5. The actual replacement of the stock ticker takes place in the static ini-
tializer of the EuroStockTicker class. The static initializer is executed
when the class is loaded into a running Java / Gilgul Virtual Machine.
Therefore, it suffices when the admin shell for the server allows load-
ing of the EuroStockTicker class. The replacement is annotated with a
global recall in order to ensure that the endless loop of the StockTicker
is exited before the replacement and re-executed after the replacement
(see Section 5.1.4).

7.1.2 Using Referent Assignments to Introduce New Roles

In this example, we illustrate how referent assignments allow for the global
introduction of new roles, given a suitable role model. A role model extends
basic object-oriented language constructs with a notion of additional views
to an object that show a different behavior than the core object itself. Still,
the core object together with its views present themselves as one single
conceptual identity. So for example, a Person object may act as an Employee
in some contexts and as a Parent to a child in others, and so forth.

The notion of roles is discussed for example in [46], and [48] shows how a
role model can be implemented with a proper language extension for delega-
tion. A similar notion is the concept of perspectives, as for example presented
in [69]. An important difference between roles and perspectives on the con-
ceptual level is that roles can be acquired and dropped during the lifetime
of an object (a Person may get unemployed, and again employed later on),
while a perspective is attached to an object for its whole lifetime. For ex-
ample, [69] gives examples from the field of architecture in which building
materials present themselves differently in a simulation depending on what
properties an architect is currently interested in. Nevertheless, the building
materials have the different modeled physical properties during their whole
lifetime.
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Another interesting aspect of the work on perspectives presented in [69]
is the fact that the presented language extension allows for the dynamic
introduction of new perspectives into a running program while maintaining
the “illusion” that those perspectives have existed since the creation of the
respective objects.

In the following, we present step by step how some of the notions induced
by role and perspective models can be simulated with the help of referent
assignment.

The basic idea is to start from a role model as presented in [46, 48], with
a simplified approach for implementing delegation as in the previous section,
for presentation purposes. A class Person adheres to an interface IPerson as
follows:

public interface IPerson {
String getName();
. . .

}

public class Person implements IPerson {

String name;

public Person(String name, . . .) {
this.name = name;
. . .

}

public String getName() {
return name;}

. . .
}

The interface IPerson is used to factor out the essential methods of a
Person instance so that roles of a Person can have the proper type:

public class Employee implements IPerson {

IPerson delegatee;
String employer;

public Employee(IPerson person, String employer) {
this.delegatee = person;
this.employer = employer;}
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public String getEmployer() {
return employer;}

// delegated methods
public String getName() {

return delegatee.getName();}

. . .
}

Now, there are essentially two different ways to make an existing Person
instance acquire a new role. A local activation simply acquires the role
purely for the local context:

Employee emp = new Employee(somePerson);

Other contexts do not see this newly introduced role. In order to achieve
a global activation of a new role, one can use a referent assignment:

somePerson #= new Employee(somePerson);

However, this approach might not lead to desirable results because other
contexts may also try to introduce a new role by way of referent assignment,
so this might lead to a mismatch between globally activated roles. In or-
der to avoid such mismatches, there is another option to introduce a role
globally without necessarily affecting other already activated roles: One can
first obtain a reference to the core object that is wrapped by various role
objects and replace that core object. In order to be able to do this, we
introduce a method getCoreObject into the IPerson interface and implement
it in the Person class to return this, and in all role classes to delegate it to
the delegatee. Now, the global activation of a role looks as follows:

somePerson.getCoreObject() #=
new Employee(somePerson.getCoreObject());

The two basic activation schemes (local and global) are depicted in Fig-
ure 7.2: A local activation places a new role in front of an existing conceptual
entity (core object + roles) while a global activation places a new role in
front of the core object and after the already existing roles.

A final issue is the question how to find already existing roles in the path
from an “outer” role to a core object. This can be important when one needs
to ensure that a role only exists once but is only created when needed. This
is, for example, the case when we want to simulate a perspective concept
as presented in [69] and allow for the dynamic introduction of new role
/ perspective classes into a running system. We introduce a RoleManager
class for this purpose that maps role classes to role instances for a given core
object.
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   core #= new MyRole(core);

Figure 7.2: The two basic idioms for introducing roles.

public interface RoleCreator {
public Object createRole(Object delegatee);

}

public class RoleManager {

java.util.HashMap roles = new java.util.HashMap();

public Object getRole(Class clazz, RoleCreator creator) {
if (roles.containsKey(clazz))

return roles.get(clazz);
else {

Object role = creator.createRole(this);
roles.put(clazz,role);
return role;

}
}

}

The RoleCreator interface is provided to allow passing a closure to the
getRole method in the RoleManager class for lazily creating a new role in-
stance in case it does not already exist in the hash map. The RoleManager
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is intended to be used as a superclass for core object classes, for example
Person.1

Now, the basic activation scheme looks as follows.

Employee emp = (Employee)
somePerson.getRole

(Employee.class,
new RoleCreator() {
public Object createRole(Object delegatee) {

return new Employee((IPerson)delegatee);}
});

Again, this can be combined with referent assignments in order to dis-
tinguish between local and global activations.

7.1.3 Constant Folding in the Interpreter Pattern

The Interpreter pattern is one of the classic patterns described in [31]. Its
intent is to “define a representation for [a language’s] grammar along with
an interpreter that uses the representation to interpret sentences in the
language”. This can mainly be used to embed a “scripting” language into
an application for tasks that need to be flexibly specified at run time. The
pattern description in [31] gives a language for regular expressions as an
example.

An aspect that is not covered in that book is how to optimize the execu-
tion of interpreted languages. A straightforward optimization is a technique
known as constant folding: Assume a language for arithmetic expressions
that involves both variables and constant numbers, as illustrated in Figure
7.3. Given an expression new AddExpr(new NumberExpr(6), new Number-
Expr(7)), a naive implementation of the interpret method will perform the
addition in each run, although the result will never change from being 13.
The referent assignment operation allows us to perform constant folding
during the interpretation of the arithmetic expression, for example in the
class AddExpr, as follows.

public Expression interpret(. . .) {
Expression leftResult = left.interpret(. . .);
Expression rightResult = right.interpret(. . .);

Expression result = new NumberExpr
( ((NumberExpr)leftResult).value +
((NumberExpr)rightResult).value );

1In cases where the single superclass of a core object class is already used for a different
purpose, for example aspect-oriented language extensions like AspectJ [45] can be used to
mix in the desired role manager behavior.
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Figure 7.3: The Interpreter pattern.

if ((left instanceof NumberExpr) &&
(right instanceof NumberExpr))

return result with this #= result;
else
return result;

}

The referent assignment associated with the return statement ensures
that the current arithmetic expression is replaced with a constant number
expression in case both operands are in turn constant numbers. The in-
stanceof checks of the left and right references are performed after interpret
has been executed on them so that their potential (recursive) replacements
are correctly taken into acount in the current interpret method. It is im-
portant to note that all subclasses of Expression need to be typeless so that
instances of ArithmeticExpr can indeed be replaced by instances of Number-
Expr (see Section 4.5.2).

7.2 Quantitative Evaluation

As described in the previous chapter of this thesis, a prototypical implemen-
tation of the Gilgul Virtual Machine has been implemented as an extension
of the bytecode interpreter that is part of the Kaffe virtual machine [41].
The diploma thesis [58] describes that implementation and a quantitative
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analysis of its performance characteristics. This section presents an overview
of that analysis.

Two different kinds of benchmarks have been performed. On the one
hand, microbenchmarks have been written that allow for isolated measure-
ments of single instructions, like method calls, field accesses and comparison
operations. On the other hand, macrobenchmarks are “natural” real-world
programs, or simulations thereof, that allow for analysis of whole program
performance characteristics that put overheads incurred by single instruc-
tions into perspective.

As a basis for the microbenchmarks, parts of the Java Grande Forum’s
benchmark suite are used [37]. This suite has been extended to cover addi-
tional operations that are of special interest in our context: reference com-
parisons, instanceof checks, comparand creation and referent assignment. In
order to evaluate concurrent referent assignments and other protected ac-
tivities, a specialized GilgulBench benchmark has been written because the
issues involved are by definition out of scope of standard Java benchmarks.

The macrobenchmarks consist of widely used Java benchmarks that cor-
respond to real-world Java programs with a fixed set of input data [3, 27, 83].
Apart from VolanoMark they consist of javasrc, a program for generating
HTML documentation from Java source code; rhino, an interpreter for the
scripting language JavaScript; and gj, a compiler for the Java programming
language.

All tests have been performed on a PC with an AMD Athlon processor
(800 MHz) and 384 MByte RAM, an top of Linux Kernel 2.4. The heap
settings for the virtual machine have been modified by standard environment
variables in order to ensure that runs of the garbage collector do not distort
the results. The tests have been performed several times, and the results
have been averaged over these runs.

7.2.1 Memory Overhead

The design of the Gilgul Virtual Machine incurs the following memory over-
head for each object:

• Each object stores a comparand that spans 64 bits.

• If a reference to an object is represented explicitly, another 64 bits are
needed for the additional reference. (References with bound referents
do not need such additional references – see Section 6.4.1.)

The actual memory overhead in the benchmark programs ranges between
0% (for a heapsort benchmark that purely uses large arrays) and over 20%,
depending on the types of objects that are actually used.



92 CHAPTER 7. EVALUATION

7.2.2 Performance Overhead

In all macrobenchmarks, the Gilgul Virtual Machine has performed less than
5% slower than the unmodified Kaffe virtual machine, given that the adap-
tive registration protocol is used (see Section 6.5). In the case of rhino and
gj, the Gilgul Virtual Machine even performs slightly better than the un-
modified Kaffe virtual machine. We suspect that this is due to optimizations
that the C compiler can perform based on the changed memory layout of
objects because of the additional comparands. (Optimizations on the micro
level are generally very sensitive to such minimal changes. This is an indi-
cation that the Kaffe virtual machine itself is not yet fine tuned with regard
to performance characteristics.)

The results of the microbenchmarks are as follows.

Comparands Comparand creation adds 5 to 10% performance overhead
to instance creation. This overhead can be considerably reduced by a factor
of 0.5 by introducing thread-local comparand buffers. Such buffers assign
a range of comparands to a single thread at a time, instead of requiring
threads to synchronize accesses to a single comparand counter on each com-
parand creation. Only when a comparand buffer runs out of comparands,
synchronizing threads because of comparands become inevitable. Imple-
menting comparand buffers is straightforward and does not require consider-
able memory and performance overhead itself, so this technique is definitely
worthwhile to employ. A moderate number of comparands per request of
about 100 to 1000 comparands is sufficient to gain considerable performance
improvements. A more sophisticated scheme, however, that keeps track of
comparands that become unused due to garbage collection is unlikely to
make sense in the face of a virtually unlimited total number of comparands.

Comparison of references are about 25% slower due to the additional in-
direction via explicit references and the use of comparands for comparisons.

Referents The additional indirection layer induces a performance over-
head of 4% at most, as determined in microbenchmarks that do not involve
a control of concurrent activities. In order to determine whether this very
low overhead is due to the use of local indirections, as described in Sec-
tion 6.4.1, an alternative implementation of the Gilgul Virtual Machine was
used in further test runs that strictly keeps references and their referents
on different memory pages. Only under pessimistic pathological boundary
conditions, when a very large number of objects is accessed in a random
fashion, this separation of references and referents lead to a considerable
performance overhead of 10 to 20%. The more realistic macrobenchmarks,
however, can only be improved by about 1.5 to 4% by using local indirec-
tions. It has been a surprise to us that indirections do not incur a high
overhead, contrary to widely held assumptions.
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7.2.3 Activity Control

The Gilgul Virtual Machine implements two variants of a Registration Pro-
tocol in order to prevent replacements of active objects (see Section 6.5). On
the one hand, the influence of these protocols on the execution of standard
Java programs has been analyzed. Naturally, the Adaptive Registration
Protocol leads only to a minimal performance overhead since its very pur-
pose is to shift as much overhead as possible to the referent assignment
operation. However, the Simple Registration Protocol incurs a very high
overhead especially in the case of instanceof checks and comparisons (about
3 to 4.5 times slower than without any activity control).

On the other hand, it is important to be able to predict what overhead
activity control will incur in “real-world” Gilgul programs. Due to the
lack of a considerable number of Gilgul programs because of its status as
a research prototype, we have opted for writing a macrobenchmark Gilgul-
Bench in which the relative number of various operations can be influenced
by parameters, but otherwise behaves in a random fashion. The operations
whose frequency distribution can be determined by those parameters are as
follows.

• Referent assignments.

• Method calls with a nesting depth of five method calls.

• Synchronized method calls, again nested.

The parameters are as follows.

• t determines the number of threads.

• a determines the number of operations per thread.

• o determines the number of objects.

• r determines the number of referent assignments.

• s determines the number of synchronized method calls.

Furthermore, GilgulBench has been executed on different configurations
of the Gilgul Virtual Machine: with only a Simple Registration Protocol,
with an Adaptive Registration Protocol, and for comparison purpose with-
out any activity control. (In the latter case, the behavior of the program
is semantically wrong because active objects can be arbitrarily replaced.
However, since GilgulBench is already a synthetic program for pure analysis
purposes this does not matter much.)

The test runs lead to the following conclusions.
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• The Adaptive Registration Protocol induces a very low performance
overhead in comparison to the Gilgul Virtual Machine without activity
control, given that the rate of referent assignments is low (r <= 1).

• The Simple Registration Protocol induces a very high performance
overhead in any configuration (25% and more).

• The performance of the Adaptive Registration Protocol depends on the
number of threads. This is clear given the fact that it needs to analyze
the call stack of each thread in the event of a referent assignment.
Nevertheless, it is interesting that the performance overhead is linear
in the number of threads, which indicates a good scalability at least
when the number of referent assignments is low.

• The Simple Registration Protocol becomes better than the Adaptive
Registration Protocol as late as the rate of referent assignments and
the number of threads becomes very high (r = 10, t > 50).

• Both protocols do not seem to suffer from a higher number of concur-
rent accesses to objects since the parameter o has no significant effect
on the test results.

• The criticality of synchronized blocks is not very high. When s is set to
50% the tests run slower than with s set to 0%. However, the penalty
is only a constant of about 10% that is independent from t.

The parameter r (rate of referent assignments) has a considerable effect
on the test results. In order to get an understanding what that parameter
means, the following considerations can be taken into account.

• When the use of the referent assignment is restricted to scenarios in
which it is used for dynamic software evolution, or only selected design
patterns, the rate of referent assignmenst is likely to be very low (r
falls in the range of 0.1 to 1%). In that case, the activity control does
not have a significant effect on the performance of a program.

• When the referent assignment is regarded as an essential part of the
programming language, it is conceivable that the rate of referent as-
signments rises to 5 to 10%. In combination with a high number of
threads (t > 50), the Simple Registration Protocol becomes prefer-
able: Although it induces a high performance overhead, that overhead
is independent from the number of threads.

7.2.4 Summary

The memory overhead induced by comparands and explicit references can
be as high as 20% or more while the performance overhead is generally less
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than 5%. This performance overhead covers using comparands for compar-
ison operations, an additional level of indirection for accessing objects, and
the coordination of protected activities. When observed in isolation, the
performance overhead of single operations ranges from 25% for comparisons
due to comparands, over 10% for comparand creation, down to less than
5% for additional indirection and activity control. Comparand creation can
be considerably improved by way of thread-local comparand buffers. The
localization of indirections (by placing explicit references close to the objects
to which they refer) can considerably improve performance in certain arti-
ficial circumstances, but additional indirections incur a surprisingly small
overhead by default. With regard to activity control, the Adaptive Regis-
tration Protocol should generally be preferred over the Simple Registration
Protocol. Only when the number of referent assignments is considerably
high, the cost of analyzing the call stacks after the fact makes the Adaptive
Registration Protocol infeasible. Apart from that, both variants display a
good scalability with regard to various parameters, especially with regard
to the number of threads and the number of synchronized statements.

As a final note, it must be stressed that the results must be put into per-
spective because of the fact that the tests have been performed on purely
interpreted virtual machines. In a compiled environment, it is likely that
the performance of most of the standard Java bytecode instructions can be
considerably improved while operations that deal with thread synchroniza-
tion are by their very nature very expensive operations at the hardware level.
Since especially the activity control relies heavily on thread synchronization,
it is likely that the extensions needed for the Gilgul Virtual Machine will
paint a less optimistic picture than the one we have found here. It is an
open question what the actual performance characteristics of Gilgul are in
a compiled run-time environment. Some design alternatives are sketched in
[58].
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Chapter 8

Conclusions and Future
Work

This chapter summarizes the essential results of this thesis. The Gilgul
model provides a new alternative conceptualization of the notion of ob-
ject identity; the Gilgul programming language provides a consistent and
backwards-compatible extension of the Java programming language that of-
fers flexible operations based on the Gilgul model; the implementation
consists of a compiler and a run-time system for the Gilgul programming
language that achieves a promising level of performance. This thesis also
provides a number of application examples from very different fields that
make use of the new operations, but their power shows foremostly when
used as a basis for dynamic unanticipated software evolution.

Possible future work includes an implementation of Gilgul as a compiler
that translates the new constructs into instructions understood natively by
the hardware, for example as part of a dynamic or just-in-time compilation
framework, and extensions of the notion of atomic object replacement to-
wards atomic replacement of whole networks of objects, and of class objects
at the meta level.

8.1 Results

This thesis starts from an exploration of traditional notions of object iden-
tity. It is clear that the notions of reference and comparison are essential
ingredients of such traditional notions, but this thesis presents the first ap-
proach that strictly separates these notions to the best of our knowledge.

The Gilgul model and the Gilgul programming language introduce
the new basic type comparandtype together with means to copy comparands
between objects, and the referent assignment operator #=. It also changes
the definition of the existing equality operators == and != according to the
Gilgul model.

97
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This model is a generalization of what can be expressed in terms of ob-
ject identity in current object-oriented programming languages. Gilgul
offers flexible means for declaring restrictions on which operations are valid
on specific referents and comparands, for example in order to prevent the
replacement of sensible objects. These restrictions can range from the un-
restricted applicability of Gilgul’s new operations to the reduction to the
traditional stringent restrictions placed on object identity.

We have shown how Gilgul’s new operations can be applied for the
purpose of dynamic object replacement without the need to deal with con-
sistency problems. We have then investigated various effects of Gilgul’s
model on other aspects of the language, most notably the type system and
the handling of active objects.

We proposed an extension of Java’s type system that allows “pure” im-
plementation classes to be declared that must not be used as types. This
novel approach “completes” previous efforts to separate pure interfaces from
classes that, however, still define types of their own. It effectively widens
the range of both anticipated and unanticipated adaptations.

By default, Gilgul deals with dynamic replacement of active objects
both in multi-threaded and single-threaded contexts in a way that preserves
consistency. If programmers are willing to trade consistency for timeliness,
or even need to break consistency in order to be able to replace objects at all
in the case of non-terminating loops, they can take advantage of Gilgul’s
advanced facilities for these cases.

We have outlined the concept of recalls that has been introduced in
Gilgul. Like exceptions, recalls unwind the call stack, and can be thrown
and caught. Unlike exceptions, the return to the standard flow of control is
guaranteed as soon as the call stack is clear of a specific object as a receiver
of a method call. At this point in time, the very first call to the specified
object is simply re-executed.

The referent assignment operator can be annotated with several variants
of recalls, which means that the actual replacement is deferred until the
corresponding call stack is clear of the object to be replaced. Just before
re-execution of the first method call to this object, the actual replacement
takes place.

Although this combination of the referent assignment operator and a
recall might break consistency, target objects are still able to react to the
throw of recalls by providing recall handlers for clearance purposes, just
like exception handlers in Java. However, even if recall handlers have not
been provided, replacements can still be carried out ensuring timeliness,
and replaceability in the presence of non-terminating loops. This might
sometimes be the last resort before a system shut-down becomes inevitable.

We have sketched some of the properties of the implementation of the
Gilgul compiler and run-time system. The most notable achievements in
this area include the surprising result that double indirection, which can
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only partly be avoided when implementing referent assignments, does not
impose a serious performance penalty, and a sophisticated registration pro-
tocol for compound activities that move the overhead for synchronizing ref-
erent assignments among multiple threads almost completely to the referent
assignment operation itself. This leads to usable performance characteris-
tics of the Gilgul Virtual Machine that does not impose serious performance
penalties, neither on “pure” Java programs nor on programs that make
use of Gilgul’s new capabilities. Only in corner cases, the registration
protocols required for multithreading considerably decreases the run-time
performance of a Gilgul program.

We have shown a considerable number of usage scenarios, in Section 7.1
for the referent assignment operation and in Appendix B for comparands
and comparand assignment. This proves that Gilgul provides language
constructs that have the potential to be of practical relevance in real-world
applications.

8.2 Possible Extensions

Gilgul is one of the approaches of the TAILOR Project at the University
of Bonn, whose purpose has been to explore opportunities for unanticipated
software evolution in programming languages and run-time systems. For this
reason, Gilgul has been intentionally designed to be as flexible as possible
in order to fit to these goals, while putting up with certain run-time excep-
tions (for example, the GilgulRestrictionException, or the ClassCastException
in the case of the with statement for typeless classes). Although we are cer-
tain that our approach is not too extreme, it can still be a fruitful task to
investigate a more “gentle” approach that aims for a higher degree of static
checkability in the future.

Future work also clearly includes an integration of Gilgul’s concepts
into a just-in-time or dynamic compiler at the implementation level. The
work presented in [58] already sketches some possible ingredients of such an
implementation.

At the conceptual level, the notion of referent assignment provides two
obvious potential paths for further exploration. Both paths can be char-
acterized as a widening of the granularity of referent assignment: In the
Gilgul model, exactly one object can be replaced at a time. This object-
centric granularity can be extended either by focusing on whole nets of
objects and trying to achieve atomicity of the replacement of such nets.
This would provide a natural extension from object-based replacement to-
wards component-based replacement. On the other hand, several languages
provide metaobject protocols [44] that model classes and other aspects of
a programming language as objects themselves. These languages include
for example Common Lisp and Smalltalk, and Java also provides a limited
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form of a metaobject protocol in its reflection API. In principle, it would
be straightforward to allow a referent assignment operation to be applied
to such meta-level objects. However, the replacement of a class metaobject
immediately leads to the question how to consistently reflect the changes
of the class metaobject in its instances at the base level. Both paths, re-
placements of nets of objects and replacements of class metaobjects, open
up a new dimension of complexity with regard to the various issues that are
discussed in this thesis for replacements of base-level objects, like control
facilities, type issues and replacements of active objects.1

1Exactly because these issues are outside of the scope of this thesis, Section 6.2.5 define
instances of java.lang.Class to have bound referents. The issues that future work on opening
up referent assignments for meta-level objects needs to deal with can be formulated as
the question what it exactly means to define instances of java.lang.Class to have unbound
referents.



Appendix A

The Gilgul Language
Specification

A.1 Introduction

The following sections define the programming language Gilgul in the style
of “The Java Language Specification” [34]. They only list changes and
additions to that specification. All the other definitions are exactly like
those given in that specification.

In ambiguous cases, the specifications given here override those given in
the Java Language Specification. For example, Java specifies a call to an-
other constructor to be the very first action in any constructor except for the
class Object, whereas in A.10.3 it is specified for Gilgul that comparand
initializations are performed before any call to other constructors. In this
case, the rules for Gilgul take precedence over those given for Java.

A.2 Notation

The notational conventions are like those given in Chapter 2 of [34]. Differ-
ences to that specification are underlined. Like in that book, the grammar
is presented here in a way that is better for expositon rather than as a basis
for a parser.

At the beginning of each of the following sections, a short note in italics
indicates the Chapter and Section of [34] to which the subsequent sections
refer to.

A.3 Lexical Structure

A.3.1 Keywords

Section 3.9

101
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The list of keywords is augmented, resulting in the following production.

Keyword: one of
abstract continue goto private synchronized
boolean default if protected this
bound do implements public throw
break double import recall throws
byte else instanceof referent total
case extends int return transient
catch final interface short try
char finally local static typeless
class fixed long strictfp void
comparand float native super volatile
comparandtype for new with while
const global package switch

A.3.2 Operators

Section 3.12
The list of operators is augmented, resulting in the following production.

Operator: one of
= > < ! ~ ? : #=
== <= >= != && || ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

A.4 Types, Values, and Variables

A.4.1 Primitive Types and Values

Section 4.2
The list of primitive types is augmented, resulting in the following pro-

duction.

PrimitiveType::
NumericType
boolan
comparandtype

There are no requirements on how comparands are represented internally.
The programming language Gilgul does not provide any means to access
the internal representation of a comparand.

The operations that are defined on comparands are the comparand equal-
ity operators == and !=, which result in a value of type boolean (A.10.6),
and the comparand creation expression new comparandtype, which results
in a fresh value of type comparandtype (A.10.5).
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Furthermore, the reference equality operators == and != are redefined to
operate on the comparands of the involved objects (A.10.6), and the class
instance creation expression is redefined to create a fresh comparand for a
newly created object (A.10.3).

A.4.2 Reference Types and Values

The Class Object

Section 4.3.2
The class Object is augmented with the field comparand of type compa-

randtype, which is by default initialized with a fresh comparand when a new
instance is created. The definition of that field can therefore be roughly
summarized as follows.

package java.lang;

public class Object {
public comparandtype comparand = new comparandtype;

. . .
}

Remark: This code is strictly not legal Gilgul code since comparand is
listed as a keyword of the language in A.3.1, and keywords are not available
as user-definable identifiers. However, the comparand of an object can still
be understood as one of its fields. The treatment of comparand as a keyword
also allows a comparand to be accessed via an interface type as a special case.
Since Object is the only type whose definitions are implicitly available via
interface types, Gilgul’s treatment of the comparand field as a special case
does not give rise to generally allow instance field declarations in interfaces.

A.4.3 Where Types Are Used

Section 4.4
Gilgul introduces the notion of typeless classes and interfaces (A.6.1,

A.7.1). Of the kinds of usage of types listed in Section 4.4 in the Java
Language Specification, the types defined by such classes and interfaces
can never be used in declarations, except for import declarations, but are
always available in expressions, except for array creation. This means that
the types of typeless classes and interfaces are not available as types for
field declarations, method parameter types, method result types, constructor
parameter types, local variable types, exception handler parameter types,
and array creation expressions; the types of typeless interfaces are available
as types for import declarations, casts and the instanceof operator; the
types of typeless classes are additionally available for class instance creations.
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A.4.4 Variables

Section 4.5
If the type of a variable is a reference type, it must not be the type of a

typeless class.

Initial Values of Variables

Section 4.5.5
If a class variable, instance variable or an array component is of type

comparandtype, its default value is a freshly created comparand, as per com-
parand creation expression (A.10.5). The Gilgul programming language
does not define any other meaningful default value for comparands. The
semantics of Gilgul ensure that it is not possible to read a non-initialized
comparand.

Types, Classes, and Interfaces

Section 4.5.6
Types that are introduced by typeless classes or interfaces can never play

the role of compile-time types of variables. If an object is a direct instance
of a typeless class, it is still possible to refer to that class as its “run-time
type”.

Historically, the Java programming language had a stricter distinction
between the terms “types” and “classes”, as is described in Section 4.5.5
of the first edition of the Java Language Specification [33]. Gilgul’s term
“typeless” was coined on the background of that stricter distinction.

A.5 Conversions and Promotions

A.5.1 Kinds of Conversions

Identity Conversions

Section 5.1.1
The identity conversion from comparandtype to comparandtype is per-

mitted.

Narrowing Conversions

Section 5.1.3
The narrowing conversion from comparandtype to long is permitted.

For each comparand, each conversion to long always produces the same
value. Furthermore, for two ore more different comparands within a program
run, the values produced by conversion to long are distinct.
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Forbidden Conversions

Section 5.1.7
Except for the identity conversion from comparandtype to comparandtype

and the narrowing conversion from comparandtype to long, no other con-
versions are permitted that involve the type comparandtype. Especially,
there is no conversion from long to comparandtype.

A.5.2 Assignment Conversion

Section 5.2
Referent assignment of a value of compile-time reference type S (source)

to a variable of compile-time reference type T (target) is checked in the same
way as for reference assignments. However, since the run-time type of an
object referred to by T might be a subtype of the compile-time type of T,
this check cannot guarantee that the referent assignment will be executed
without an exception, in contrast to the check for reference assignment. This
is because a referent assignment potentially affects variables other than T
whose actual types cannot be determined at compile-time in the general
case.

There is an additional case that is covered by referent assignments: The
left-hand side T of a referent assignment is allowed to be this under certain
circumstances (A.10.7). Since the class of this can be a typeless class, the
right hand-side S of the referent assignment does not need to be the same
class or a subclass thereof. Instead, the set of all compile-time types of T
is determined, and the referent assignment check is performed potentially
more than once, that is for each of those types being considered as the type
of T. The referent assigment check to this is successful if and only if the
referent assignment checks for all of these types are successful. Consider the
following example.

class TCPConnection {
. . .

}

typeless class TCPOpen extends TCPConnection
implements Serializable {

. . .
void listen() {

this #= new TCPListen();
}

}

typeless class TCPListen extends TCPConnection
implements Serializable {
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. . .
void close() {

this #= new TCPClosed();
}

}

typeless class TCPClosed extends TCPConnection {
// does not implement Serializable

. . .
void open() {
this #= new TCPOpen();

}
}

The set of compile-time types for both the classes TCPOpen and TCP-
Listen consists of Object, TCPConnection and Serializable; the set of compile-
types for the class TCPClosed consists of Object and TCPConnection. There-
fore, the referent assignment checks yield the following results:

• For method listen(), the referent assignment is accepted because TCP-
Listen can statically be determined to be a subtype of each Object,
TCPConnection and Serializable.

• For method close(), the referent assignment is not accepted because
TCPClosed cannot statically be determined to be a subtype of Serial-
izable.

• For method open(), the referent assignment is accepted because TCP-
Open can statically be determined to be a subtype of each Object and
TCPConnection.

A.5.3 Casting Conversion

Section 5.5
There are no changes to this section. Especially, typeless classes and

interfaces can be used in cast expressions without any restrictions.

A.6 Classes

A.6.1 Class Declaration

Class Modifiers

Section 8.1.1
The list of class modifiers is augmented, resulting in the following pro-

duction.
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ClassModifier: one of
public protected private
abstract static final strictfp
typeless

The type of a typeless class is not available as a type for field declarations,
method parameter types, method result types, constructor parameter types,
local variable types, exception handler parameter types, and array creation
expressions; the type of a typeless class is available as a type for import
declarations, class instance creations, casts and the instanceof operator.

There are no restrictions on the possible combinations of the typeless
modifier with other class modifiers.

A.6.2 Field Declarations

Section 8.3
It is possible to initalize a newly declared field by way of a referent assign-

ment. This means that during initialization, a fresh reference is created for
the object yielded by the right-hand side and the left-hand side is assigned
this fresh reference. This reference will not be affected by subsequent refer-
ent assignments to already existing references to that same object. Apart
from these semantics for initialization by referent assignment, such initial-
ization follows the same rules as standard Java field initialization.

The definition of VariableDeclarator is changed as follows.

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer
Identifier #= Expression WithFixedReferentopt

WithFixedReferent:
with fixed referent

Initialization by referent assignment is only available for non-array ref-
erence types. An additional with fixed referent declaration results in a
reference whose referent cannot be changed by subsequent referent assign-
ments. The exact rules for fixed referents are given in A.10.7.

A.6.3 Constructor Declarations

Section 8.8
It is possible to declare restrictions on the use of comparands and refer-

ents together with a constructor definition. The modified/new productions
are as follows.
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ConstructorDeclaration:
ConstructorModifiersopt ConstructorDeclarator Throwsopt

WithRestrictionDeclarationopt ConstructorBody

WithRestrictionDeclaration:
with ComparandRestriction
with ReferentRestriction
with ComparandRestriction , ReferentRestriction
with ReferentRestriction , ComparandRestriction

ComparandRestriction:
FixedOrBound comparand
fixedopt comparand = Expression

ReferentRestriction:
FixedOrBound referent

FixedOrBound:
fixed
bound

When a new object is created and initialized, the selected constructor
determines the resulting restrictions on comparands and referents, which are
just those declared with that constructor. Declarations of other construc-
tors, whether called or not, are ignored.

A fixed comparand cannot be assigned a new value, unless an explicit
assignment is given with the restriction declaration. In that case, the com-
parand is assigned exactly once and cannot be changed afterwards. A com-
parand initialization, explicit or implicit, is always the first action performed
exactly once by the first constructor in a constructor chain, before any call
to another constructor, such that all constructor code sees correctly initial-
ized comparands. Only an explicit comparand initialization given with the
selected constructor is performed instead of an implicit comparand initial-
ization. All other explicit comparand initializations of other constructors are
always ignored, no matter whether indirectly called or not. A comparand
that is assigned in the method header does not need to be fixed. In that
case, subsequent assignments to the comparand are still possible.

A bound comparand is fixed and additionally cannot be copied to com-
parands of other objects. A bound comparand cannot be explicitly initial-
ized, but always gets a fresh comparand value determined by the run-time
system.

A fixed referent cannot be modified by subsequent referent assignments.
A bound referent is fixed and additionally cannot be assigned to other refer-
ences by subsequent referent assignments. Referents can never be initialized
in constructor headers.

When no comparand or referent restrictions are declared, they are re-
spectively considered to be unbound. This is, for example, the case for the
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implicitly created default constructor when no other constructor declaration
is given in a class.

The exact rules how comparand and referent restrictions are checked are
given in Section A.10.7.

A.7 Interfaces

A.7.1 Interface Declarations

Interface Modifiers

Section 9.1.1
The list of interface modifiers is augmented, resulting in the following

production.

InterfaceModifier: one of
public protected private
abstract static strictfp
typeless

The type of a typeless interface is not available as a type for field declara-
tions, method parameter types, method result types, constructor parameter
types, local variable types, exception handler parameter types, and array
creation expressions; the type of a typeless interface is available as a type
for import declarations, casts and the instanceof operator.

There are no restrictions on the possible combinations of the typeless
modifier with other interface modifiers.

A.8 Exceptions

Chapter 11
Gilgul adds another kind of exception, namely the class Recall that is

a subclass of java.lang.Throwable. A recall is always defined in conjunction
with an object that must be passed in a constructor of the class Recall. The
(public) definition of that class is as follows.

package java.lang;

public class Recall extends Throwable {

public Recall (Object obj) {
. . .

}
}
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The (explicit) throw of a recall results in the same behavior as that of
other exceptions, except for the following difference: The call stack of the
thread in which the recall is thrown is unwound until the very first method
call to the object on which the recall is defined. A recall may be caught
by appropriate exception handlers before the run-time system reaches that
point. This means that that point might never be reached for a specific
throw of a recall. However, if it is reached, the process of unwinding the call
stack is stopped at that point and that very first method call is re-executed,
without reevaluation of the arguments passed to that method.

A.8.1 The Causes of Exceptions

Section 11.1
Recalls may be explicitly thrown, and such explicit recalls always refer

to the thread in which they are thrown. They may also be implicitly thrown
in conjunction with referent assignments (A.10.7). In that case, they may
also apply to other threads. A Gilgul virtual machine implementation may
choose to use subclasses of Recall to distinguish between different variants
of implicit or explicit recalls.

A.8.2 Compile-Time Checking of Exceptions

Section 11.2
Like Java’s run-time exceptions and errors, but unlike Java’s other ex-

ceptions, recalls are not statically checked. This is because static checks of
recalls would interfere with the goals of unanticipated software evolution.
Another reason is that recalls might stem from other threads, and it is in-
herently not possible to statically determine how Java threads interact with
each other in that regard.

A.8.3 Handling of Exceptions

Section 11.3
Since the main purpose of recalls is to allow for object replacement in

situations that would otherwise result in a deadlock, it is strongly recom-
mended to rethrow a recall that is caught in an exception handler, and to
only use exception handlers for recalls to reset computations to a consistent
state. For this reason, Recall is a direct subclass of Throwable so that exist-
ing Java code that already catches exceptions and errors without rethrowing
them – which is the standard practice in Java – behaves gracefully with re-
gard to recalls.

See Section 5.1.7 in this thesis for an example of a recall handler.
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Handling Asynchronous Exceptions

Section 11.3.2
Recalls always occur synchronously, never asynchronously. A Gilgul

virtual machine implementation must ensure that this is always the case,
especially in the case of global recalls that can be thrown for other threads
(A.10.7).

A.9 Blocks and Statements

A.9.1 Local Variable Declaration Statements

Section 14.4
The semantics of local variable declaration statements are changed in the

same way as those of field declarations (A.6.2). The description is repeated
here to make the presentation clearer.

It is possible to initalize a newly declared local variable by way of a
referent assignment. This means that during initialization, a fresh reference
is created for the object yielded by the right-hand side and the left-hand
side is assigned this fresh reference. This reference will not be affected by
subsequent referent assignments to already existing references to that same
object. Apart from these semantics for initialization by referent assignment,
such initialization follows the same rules as standard Java local variable
initialization.

The definition of VariableDeclarator is changed as follows.

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer
Identifier #= Expression WithFixedReferentopt

WithFixedReferent:
with fixed referent

Initialization by referent assignment is only available for non-array ref-
erence types. An additional with fixed referent declaration results in a
reference whose referent cannot be changed by subsequent referent assign-
ments. The exact rules for fixed referents are given in Section (A.10.7).

A.9.2 Statements

Section 14.5
The list of possible statements (Statement and StatementNoShortIf ) is

augmented as follows.1

1The ...NoShortIf variants are only needed for resolving ambiguities resulting from
potentially dangling else branches. See Section 14.5 of the Java Language Specification
for further details.
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Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement
WithThenStatement
WithThenElseStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf
WithThenElseStatementNoShortIf

A.9.3 The return Statement

Section 14.16

ReturnStatement:
return ;
return Expression WithRefAssignopt ;

WithRefAssign:
with ReferentAssignment

A return statement can be augmented with a referent assignment to
this. The semantics are as follows: First, the return expression is evaluated;
then, the referent assignment is carried out; finally, the result of the first
step is returned. This is to enable referent assignments to this to be the
definite last operation in a method (A.10.7).

If the referent assignment completes abruptly, then the return statement
completes abruptly for the same reason. In all other respects, such a return
statement behaves like Java return statements.

The Gilgul compiler does not require the left-hand side of the referent
assignment to be the keyword this.

A.9.4 The throw Statement

Section 14.17

ThrowStatement:
throw Expression WithRefAssignopt ;
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A throw statement can be augmented with a referent assignment to this.
The semantics are as follows: First, the throw expression is evaluated; then,
the referent assignment is carried out; finally, the result of the first step is
thrown. This is to enable referent assignments to this to be the definite
last operation in a method (A.10.7).

If the referent assignments completes abruptly, then the throw state-
ments completes abruptly for the same reason. In all other respects, such a
throw statement behaves like Java throw statements.

The Gilgul compiler does not require the left-hand side of the referent
assignment to be the keyword this.

A.9.5 The try Statement

Section 14.19
Gilgul does not permit a return statement or a throw statement aug-

mented with a referent assignment to this to be placed inside the try block
of a try-finally statement, and also does not permit a throw statement
augmented with a referent assignment to this to be placed inside the try
block of a try-catch statement, and rejects attempts to do so at compile-
time. See Section 5.1.2 in this thesis for a detailed rationale.

A.9.6 The with Statement

WithThenStatement:
with ( Expression instanceof ReferenceType ) Statement

WithThenElseStatement:
with ( Expression instanceof ReferenceType ) StatementNoShortIf

else Statement

WithThenElseStatementNoShortIf:
with ( Expression instanceof ReferenceType ) StatementNoShortIf

else StatementNoShortIf

The with-then and with-then-else statements behave like Java’s if-
then and if-then-else statements with the following differences: The only
boolean expression allowed to be checked is an instanceof expression. In
the lexically visible code that makes up the then branch of a with state-
ment, all occurrences of the left-hand side of the instanceof expression are
embedded into casts to the right-hand side of that instanceof expression.
Consider the following example.

with (this.field instanceof MyClass) {
. . .
this.field.m();
. . .

}
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This is translated into the following equivalent code.

if (this.field instanceof MyClass) {
. . .
((MyClass)this.field).m();
. . .

}

It is generally not possible to ensure that the expression of the left-hand
side of the instanceof expression always refers to the same conceptual
entity througout the body of a with statement, especially if it would be an
arbitrary expression. The intended usage of the with statement is for local
variables or for fields of this. In order to cast this into a manageable usage
restriction, Gilgul only permits an ExpressionName to be the left-hand
side of an instanceof expression being the condition of a with statement.
All other kinds of expressions are rejected by the compiler in these specific
places. See Section 6.5 of the Java Language Specification for details on the
meaning of names in Java.

A.10 Expressions

A.10.1 Normal and Abrupt Completion of Evaluation

Section 15.6
Gilgul adds the following run-time exceptions for predefined operators:

• A simple assignment (A.10.7) of one value’s comparand to another
value’s comparand throws a GilgulRestrictionException when either value
is null, or when the left-hand object’s comparand has been created as a
fixed or bound comparand, or when the right-hand object’s comparand
has been created as a bound comparand.

• A referent assignment (A.10.7) throws a GilgulRestrictionException when
the left-hand side is null, or when it has been created with a fixed or
bound referent, or when the right-hand side has been created with a
bound referent. It throws a ReferentAssignmentException if at least one
method is active on the object referred to by the left-hand operand
and no local recall or total recall declaration is given with the
referent assignment.

A.10.2 Primary Expressions

Section 15.8
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PrimaryNoNewArray:

Literal
Type . class
void . class
this
ClassName . this
( Expression )
ClassInstanceCreationExpression
ComparandCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

A.10.3 Class Instance Creation Expressions

Run-time Evaluation of Class Instance Creation Expressions

Section 15.9.4
Since Gilgul does not define a distinct default value for comparands,

the comparand field of an object is always initialized either with the result
of evaluating the explicit comparand initialization expression (A.6.3) given
in the constructor chosen for the particular class instance creation expres-
sion, or else implicitly with a fresh comparand if no comparand initialization
expression is given, as per comparand creation (A.10.5). Only the selected
constructor is used to determine whether an explicit or an implicit com-
parand initialization takes place. Other constructors that might be called
by the selected constructor are completely ignored in this regard.

Comparand initialization (implicit or explicit) takes place immediately
after the actual arguments to the constructor have been evaluated. An ex-
plicit constructor initalization expression can access those arguments via
the constructor parameter names. If the comparand initialization expres-
sion completes abruptly, the class instance creation expression completes
abruptly for the same reason.

Class instance creation proceeds with the invocation of the selected con-
structor, as specified in the Java Language Specification.

Anonymous Class Declarations

Section 15.9.5
It is not possible to define any comparand or referent restrictions on

instances of anonymous classes. This might be a possible extension of a
future version of Gilgul, but the need for this did not arise as yet. As one
consequence, the comparands of instances of anonymous classes are always
implicitly initialized.
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A.10.4 Array Creation Expression

Section 15.10
A single-dimensional array with comparandtype as its component type

has each of its components initialized with a fresh comparand, as per com-
parand creation (A.10.5).

A.10.5 Comparand Creation Expressions

ComparandCreationExpression:

new comparandtype
new comparand

A comparand creation expression creates a fresh comparand that is
unique for the currently executing virtual machine. Comparand creation de-
termines the result of the comparand equality operators == and != (A.10.6).

The compile-time type of a comparand creation expression is compa-
randtype. The expressions new comparandtype and new comparand are
synonymous; the latter is just provided for convenience.

A.10.6 Equality Operators

Reference Equality Operators == and !=

Section 15.21.3
In Gilgul, references cannot be compared. The reference equality op-

erators are redefined as follows.
At run time, the result of == is true if the operand values are both null,

or both refer to arrays or objects with the same comparand; otherwise, the
result is false.

The result of != is false if the operand values are both null, or both
refer to arrays or objects with the same comparand; otherwise, the result is
true.

Comparand Equality Operators == and !=

If the operands of an equality operator are both of type comparandtype,
then the operation is comparand equality.

At run time, the result of == is true if the operand values have been
created by the same comparand creation expression; otherwise, the result is
false.

The result of != is false if the operand values have been created by
different comparand creation expressions; otherwise, the result is true.
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A.10.7 Assignment Operators

Section 15.26

AssignmentExpression:
ConditionalExpression
Assignment
ReferentAssignment

AssignmentExpressionNoRefAssign:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpressionNoRefAssign

Simple Assignment Operator =

Section 15.26.1
If the types of the right-hand operand and the variable involved in the

simple assignment are reference types and the operand is also a variable,
then subsequent referent assignments to either variable assigns the other as
well. This also holds transitively for assignments of either variable to a third
variable, and so on.

It is possible to determine whether both the variable and the right-hand
operand denote comparands of objects. This is always the case when the
name comparand is used as a selector (expression.comparand).2 When this is
the case, i.e. when both sides denote comparands of objects, then a compile-
time error occurs if it is impossible to convert the type of either object to the
type of the other object by a casting conversion. These objects would not
be comparable under the given types following the Java rules for equality
operators, so it is reasonable to warn the programmer in this case. This
restriction can be lifted by casting at least one of the involved objects to
type Object.

All other kinds of comparand assignment are handled liberally with re-
gard to static typing, including the cases in which only one side is the com-
parand of an object.

At run time, the left-hand comparand is checked whether it was created
with a fixed comparand or bound comparand declaration. If this is the
case, the assignment expression completes abruptly by throwing a GilgulRe-
strictionException. Likewise, the right-hand comparand is checked whether
it was created with a bound comparand declaration. Again, if this is the
case, the assignment expression completes abruptly by throwing a GilgulRe-
strictionException.

2Because comparand is defined as a keyword in Gilgul, a programmer can not use the
name comparand to hide the comparand field of class Object.
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Referent Assignment Operator #=

ReferentAssignment:
LeftHandSide #= AssignmentExpressionNoRefAssign WithRefAssignModsopt

WithRefAssignMods:
with RefAssignMods

RefAssignMods:
RefAssignMod
RefAssignMod , RefAssignMods

RefAssignMod:
fixed referent
local recall
global recall
total recall

A compile-time error occurs if the type of the right-hand operand can-
not be converted to the type of the variable by assignment conversion.
A compile-time error occurs if the left-hand operand is a definitely unas-
signed variable and one or more of the declarations local recall, global
recall or total recall is used. A compile-time error occurs if the left-
hand operand is a definitely assigned variable or this, and the declaration
fixed referent is used. A compile-time error occurs if the left-hand side
is neither definitely assigned nor definitely unassigned, or if it is both defi-
nitely assigned and definitely unassigned. A compile-time error occurs if the
left-hand operand is this and the referent assignment cannot possibly be the
definite last operation of the method in which it occurs.

At run time, the expression is evaluated in one of three ways. If the
left-hand operand expression denotes a definitely unassigned variable, then
the following steps are required:

• A fresh reference is created for the object yielded by the right-hand
side and the left-hand side is assigned this fresh reference. This refer-
ence will not be affected by subsequent referent assignments to already
existing references to that same object. Apart from these semantics
for initialization by referent assignment, such initialization follows the
same rules as standard Java variable initialization.

• Initialization by referent assignment is only available for non-array ref-
erence types. An additional with fixed referent declaration results
in a reference whose referent cannot be changed by subsequent referent
assignments. The exact rules for fixed referents are given below.

Otherwise, if the left-hand operand expression is not an array access
expression, then it is a referent assignment to a definitely assigned variable
and the following steps are required:
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• First, the left-hand operand is evaluated to produce a variable. If
this evaluation completes abruptly, then the assignment expression
completes abruptly for the same reason; the right-hand operand is not
evaluated and no assignment occurs.

• Otherwise, the reference stored in that variable is checked whether it
was created with a fixed referent or a bound referent declaration.
If this is the case, the assignment expression completes abruptly by
throwing a GilgulRestrictionException; the right-hand operand is not
evaluated and no assignment occurs.

• Otherwise, if at least one method is active on the object referred to by
the left-hand operand, and no local recall or total recall decla-
ration is given with the referent assignment, the assignment expression
completes abruptly by throwing a ReferentAssignmentException and no
assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation com-
pletes abruptly, then the assignment expression completes abruptly for
the same reason and no assignment occurs.

• Otherwise, the reference of the right-hand operand is checked whether
it was created with a bound referent declaration. If this is the case,
the assignment expression completes abruptly by throwing a GilgulRe-
strictionException and no assignment occurs.

• Otherwise, the run-time type of the right-hand operand is checked
against the type of the object obj referred to by the left-hand operand.
If the run-time type of the right-hand operand is not a subclass of any
of the non-typeless classes and interfaces that obj is an instance of,
the assignment expression completes abruptly by throwing a Class-
CastException and no assignment occurs.

• Otherwise, if a local recall or total recall declaration is given
with the referent assignment, and the current thread has at least one
active method on the object obj referred to by the left-hand variable,
an instance of Recall on object obj is thrown in the current thread
and the subsequent steps are performed immediately before the first
method call to obj is re-executed. Additionally, if a global recall
or total recall declaration is given with the referent assignment, an
instance of Recall on object obj is thrown in all other threads than
the current one that have at least one active method on obj, and the
subsequent steps are performed immediately before the first method
calls to obj are re-executed in each of those threads. In other words,
the subsequent steps must wait for all recalls to wait for re-execution
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of the corresponding first methods. Recalls that are thrown in other
threads are probably delayed in order to ensure synchronicity (A.8.3).

• Then, the actual referent assignment is performed so that the left-
hand variable refers to the same object referred to by the right-hand
operand. Subsequent referent assignments to either side of the assign-
ment expression do not affect the other. If the object referred by the
right-hand operand evaluates to null, a fresh unbound null is created
that remembers the set of non-typeless classes and interfaces of the ob-
ject referred to by the left-hand operand, and that fresh unbound null
is stored as a referent for the reference stored in the left-hand operand
instead. This set of non-typeless classes and interfaces is used for the
dynamic type check of a subsequent referent assignment to the refer-
ence stored in the left-hand operand.

Otherwise, if the left-hand operand expression is an array access expres-
sion, then the following steps are required:

• First, the array reference subexpression of the left-hand operand array
access expression is evaluated. If this evaluation completes abruptly,
then the assignment expression completes abruptly for the same rea-
son; the index subexpression (of the left-hand operand array access
expression) and the right-hand operand are not evaluated and no as-
signment occurs.

• Otherwise, the index subexpression of the left-hand operand array
access expression is evaluated. If this evaluation completes abruptly,
then the assignment expression completes abruptly for the same reason
and the right-hand operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation com-
pletes abruptly, then the assignment expression completes abruptly for
the same reason and no assignment occurs.

• Otherwise, if the value of the array reference subexpression is null,
then no assignment occurs and a NullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
to an array. If the value of the index subexpression is less than zero,
or greater than or equal to the length of the array, then no assignment
occurs and an ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a
component of the array referred to by the value of the array refer-
ence subexpression. This component is a definitely assigned variable.
Referent assignment proceeds as above.
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The grammar productions for referent assignments do not allow for
chains of referent assignments of the form a #= b #= c .... This would
have seriously complicated the type system with no obvious gain in expres-
sivity. Still, referent assignment uses the form of an expression instead of a
statement in order to accomodate possible future extensions of the language.

A.11 Definite Assignment

Chapter 16
Java’s rules for definite assignments are augmented in Gilgul by simply

regarding referent assignments as an additional kind of assignment. This
means that a local variable can be assigned by referent assignment (A.9.1)
as well as blank final variables, for example fields (A.6.2). In both cases,
a referent assignment is considered an initialization if and only if the left-
hand side is a definitely unassigned variable. Otherwise, the left-hand side
must be a definitely assigned variable or this. It is a compile-time error if
the left-hand side is neither definitely assigned nor definitely unassigned, or
both definitely assigned and definitely unassigned.

The rules for definite assignment for with statements are the same as
those for if statements – see Section 16.2.7 of the Java Language Specifica-
tion.
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Appendix B

The Comparand Pattern

This Appendix includes the text of the paper [19] that describes how some of
the results of this thesis that involve the notion of comparands can be used
in pure Java and other programming languages that do not provide them by
default. This paper was jointly written with Arno Haase.

B.1 Thumbnail

The Comparand pattern provides a means to interpret different objects as
being the same for certain contexts. It does so by introducing an instance
variable in each class of interest – the comparand – and using it for com-
parison. Establishing the sameness of different objects is needed when more
than one reference refers to conceptually the same object. In distributed
systems, the Comparand pattern provides for efficient comparison of (pos-
sibly) remote objects.

B.2 Example

Suppose you want to implement the Java Platform Debugger Architecture
(JPDA), a specification of a debugging framework for the Java Virtual Ma-
chine (JVM).

The JPDA consists of three levels: the Java Virtual Machine Debug
Interface (JVMDI), an API that is to be implemented in native code, at
the level of the JVM; the Java Debug Wire Protocol (JDWP), that allows
debuggers to remotely employ the capabilities offered by the JVMDI; and
finally, the Java Debug Interface (JDI), a high-level Java API that abstracts
from the details of the other levels and thus allows for the implementation
of a concrete debugger in a pure object-oriented fashion (see fig. B.1).

This architecture expects a debugger to be executed on an instance of
the JVM which is different from that of the target application. Therefore the
target application’s objects cannot be directly referred to in the debugger

123
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The Comparand Pattern

Thumbnail

The COMPARAND pattern provides a means to interpret different objects as being the
same for certain contexts. It does so by introducing an instance variable in each class of
interest – the comparand – and using it for comparison. Establishing the sameness of
different objects is needed when more than one reference refers to conceptually the
same object. In distributed systems, the COMPARAND pattern provides for efficient
comparison of (possibly) remote objects.

Example

Suppose you want to implement the Java Platform Debugger Architecture (JPDA), a
specification of a debugging framework for the Java Virtual Machine (JVM).

The JPDA consists of three levels: the Java Virtual Machine Debug Interface (JVMDI),
an API that is to be implemented in native code, at the level of the JVM; the Java
Debug Wire Protocol (JDWP), that allows debuggers to remotely employ the
capabilities offered by the JVMDI; and finally, the Java Debug Interface (JDI), a high-
level Java API that abstracts from the details of the other levels and thus allows for the
implementation of a concrete debugger in a pure object-oriented fashion (see fig. 1).

Fig. 1: The Java Platform Debugger Architecture

This architecture expects a debugger to be executed on an instance of the JVM which is
different from that of the target application. Therefore the target application's objects
cannot be directly referred to in the debugger by references as offered by the Java
Programming Language. Instead they have to be represented as objects that act as
remote references.
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Figure B.1: The Java Platform Debugger Architecture.

by references as offered by the Java Programming Language. Instead they
have to be represented as objects that act as remote references.

If a debugger needs to compare variables holding such remote references
in order to determine if they refer to the same remote object, care has to be
taken to do so correctly. Different remote references might refer to the same
remote object, since they can be created independently, for example by con-
secutive retrieval operations. Therefore, if comparison of remote references
yields false, it is not guaranteed that they actually represent different remote
objects.

The straightforward solution is to execute an operation on the remote
system that determines the correct answer. However, beyond the perfor-
mance penalty that this solution incurs, it also interferes with the goal of
the Java Platform Debugging Architecture which is to isolate the debugger
from the target application as far as possible in order to avoid potential side
effects.

The Comparand pattern solves this problem by adding an attribute
to the remote references, the so-called comparand. The comparand of a
particular reference is assigned a value that uniquely identifies its remote
object.

Consequently, only a comparison of comparands is needed in order to
determine sameness or difference of the respective remote objects. They
can therefore be used to carry out the comparison operation efficiently. In-
terferences with the execution of the target application are reduced to the
actual creation of comparands inside the JVM of the target application.
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B.3 Context

Comparison of objects with reference semantics without comparing their
references.

B.4 Problem

Object comparison is usually taken to mean either comparison for sameness
(object identity) or comparison of state. The first of these approaches cor-
responds to so-called reference semantics, usually based on comparison of
references or pointers; the second approach corresponds to value semantics,
using all or a subset of the attributes.1

However, neither of these approaches is sufficient when reference seman-
tics is to be maintained but reference comparison does not ensure sameness.
This is the case when there are different references that can refer to con-
ceptually the same object. In the motivating example, remote references
are represented as objects on their own: for this reason, the target object
together with its remote references form a conceptual entity that should be
indistinguishable from the outside. So the issue is not how to change refer-
ence semantics to value semantics but how to have reference semantics with
a comparison operation that does not simply compare the references. As
another example, particularly in distributed systems, several proxies [31] in
the same address space refer to either the same or to different remote objects
(see fig. B.2). In this case, the fact that a lack of a direct reference mecha-
nism for remote objects has to be overcome results in potentially ambiguous
references.

Another example is an implementation of the Decorator pattern [31],
where not only different decorators may be applied to the same core ob-
ject, but they can even decorate each other since decorators and decorated
objects have the same interfaces in general. (See [31] for examples.) Here,
comparison of references might not reveal that they actually refer to the
same core object, but there is a need to establish sameness for decorator
objects that are strictly different.2

In such circumstances, the following forces have to be balanced:

• A comparison of object state does not yield the intended result since
reference semantics is desired.

• A comparison of references cannot be relied upon since one wants to
consider different objects to be the same. These objects might even
be instances of different types.

1Other semantics for object comparison include more complex equality operations that,
for example, take structural equivalence into account. See [5] and [35] for discussions on
the range of possible equality semantics.

2The latter is also known as an example of a split object [6].
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Another example is an implementation of the DECORATOR pattern [8], where not only
different decorators may be applied to the same core object, but they can even decorate
each other since decorators and decorated objects have the same interfaces in general.
(See [8] for examples.) Here, comparison of references might not reveal that they
actually refer to the same core object, but there is a need to establish sameness for
decorator objects that are strictly different.2

Fig. 2: Do the two proxies refer to the same remote object or not?

In such circumstances, the following forces have to be balanced:

• A comparison of object state does not yield the intended result since reference
semantics is desired.

• A comparison of references cannot be relied upon since one wants to consider
different objects to be the same. These objects might even be instances of
different types.

• The sameness of objects in general depends on the context. Objects that are
considered the same in one context can be different in another.

• If an object is copied3, care must be taken how to define comparison between
original and copy. There are cases where comparison between the two should
yield true – leaning more towards value semantics – but others where they
must be distinguished.

                                                
2 The latter is also known as an example of a split object [2].
3 For the purposes of this paper, the clone method is just one means of allowing an
object to be copied. Therefore the two are used interchangeably except where
implementation details are discussed.

Figure B.2: Do the two proxies refer to the same remote object or not?

• The sameness of objects in general depends on the context. Objects
that are considered the same in one context can be different in another.

• If an object is copied3, care must be taken how to define comparison
between original and copy. There are cases where comparison between
the two should yield true – leaning more towards value semantics –
but others where they must be distinguished.

• Sometimes comparison of objects of different types must yield true, for
example different decorators of the same object, especially decorators
of decorators.

• A system may want detailed control of the possible results of object
comparisons. For example, when the cost of object creation is to be
lowered by introducing a recycling mechanism, the expected result of
comparison even changes over time.

• Comparison must be a cheap operation in terms of run-time overhead
if it is performed frequently. This requires particular attention in dis-
tributed systems.

3For the purposes of this paper, the clone method is just one means of allowing an object
to be copied. Therefore the two are used interchangeably except where implementation
details are discussed.
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• In a distributed system, it is usually non-trivial to determine sameness
of object references locally and executing a remote call for comparison
introduces a significant performance overhead.

• The additional memory overhead associated with achieving the desired
comparison behavior often needs to be small, especially if many objects
are involved.

B.5 Solution

Introduce an instance variable in each class of interest – the comparand –
that does not belong to the conceptual state of their respective objects, and
compare objects by comparing their comparand values.4

public class MyClass {

protected static long comparandCounter = 0;

protected long comparand = comparandCounter++;

public boolean equals(Object obj) {
if (obj instanceof MyClass) {

MyClass that = (MyClass)obj;
return this.comparand == that.comparand;

}
return false;

}

// rest of class body
...

}

The comparands stored in the objects under consideration can be either
values of a primitive type or instances of a compound type. Primitive val-
ues of 64 bits are large enough to allow 10 billion unique comparands per
second to be created for half a century which is good enough for almost

4We have chosen the artificial name Comparand for this pattern to stress that this
instance variable is a passive entity that is not used for referencing, but within comparison
operations only. Elsewhere, names like “key” and “identifier”, or acronyms like “OID” and
“id” are used for this concept, but these names are used ambiguously and with overloaded
meanings throughout the literature. Many brainstorming sessions have not revealed a
better name, so we have opted for Comparand.
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all applications.5 In this case, unique comparands can always be created
efficiently by just increasing a global counter. Therefore, in a local context
that allows the management of comparands to be centralized, there is no
reason to use compound comparands with the associated performance and
memory overhead.6

B.6 Implementation

There are some subtle issues when applying the Comparand pattern, which
are discussed in the following sections.

B.6.1 The “Right” Comparison Semantics

It is important to thoroughly understand what exactly object comparison
is supposed to mean in the context at hand. The Comparand pattern is
applicable only if the intended behavior is that of reference semantics, but
not that of value semantics or even of some intermediate semantics.7

Sometimes different contexts require different comparison semantics. For
example, after application of the Decorator pattern the core object and
its decorators represent the same conceptual entity. However, certain clients
expect the comparison of decorator objects to determine if their respective
core objects are the same, whereas other clients need to differentiate between
the decorators. The introduction of more than one comparison operation (for
example equals and equalsDecorator) is advisable under these circumstances.

B.6.2 Comparison of Clones

If an object can be copied or cloned, typically afterwards both objects have
exactly the same state, but they are not identical. The Comparand pattern
offers the flexibility to define any desired degree of sameness. There is a free
choice to assign the copy the original comparand or a new one which can
even be based on dynamic properties of the environment. However, then
one must consider the question what the correct behavior should be in a
given context. In the general case, a new comparand should be assigned by

532 bit values, on the other hand, are usually not big enough to ensure uniqueness for
long-running applications. At a rate of 1000 comparands per second, they wrap around
after roughly 1 1

2
months. In the rare cases when even 64 bits are insufficient, two or more

long integers can easily be combined in a customized value type with a larger range of
numbers.

6This need only arises in the case of distributed applications. See Comparands in
Distributed Environments in the Implementation section for further details.

7Sometimes, comparison of objects needs to take sophisticated aspects into account,
for example structural equivalence of complex object types. A thorough overview of these
issues is given in [35].
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default, as illustrated in the following example, since clones can usually be
regarded as independent instances.

public class MyClass implements Cloneable {

// comparand and equals() as above
...

public Object clone() {
try {

MyClass myClone = (MyClass)super.clone();
myClone.comparand = comparandCounter++;
return myClone;

} catch (CloneNotSupportedException e) {
// since MyClass implements Cloneable
// this exception cannot occur
throw new InternalError();

}
}

}

However, an example of a system that may need to treat objects and
their clones as equal is one that offers transactional services. It creates
copies of objects to operate on them instead of the original ones, so that
a rollback operation is easily implemented by just discarding these copies.
From a system programmer’s point of view, the disambiguation of copies
from original objects is clearly needed, but from an application program-
mer’s point of view it is not desirable to distinguish between them. Again,
the introduction of more than one dedicated comparison operation (with
different access rights, if applicable) may solve this problem.

B.6.3 Which Classes Are Comparable To Each Other?

Another important issue is the determination of the classes that are supposed
to be comparable. If it is required to potentially establish identity for any
two objects of arbitrary type, further effort is needed. For example, in
Java an interface can be introduced that otherwise unrelated classes can
implement, allowing their objects to be compared as follows.

public interface Comparable {
public long getComparand();

}

Since in this case the creation of comparands does not naturally belong
to one of the comparable classes anymore, it should be factored out into a
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class of its own.8

public class ComparandFactory {

private static long comparandCounter = 0;

public long getNewComparand() {
return comparandCounter++;

}
}

public MyClass implements Comparable {

protected long comparand =
ComparandFactory.getNewComparand();

public long getComparand() {
return this.comparand;

}

public boolean equals(Object obj) {
if (obj instanceof Comparable) {

Comparable that = (Comparable)obj;
return this.comparand == that.getComparand();

}
return false;

}

// rest of class body
...

}

Provided that each Comparable class implements equals in this way, any
two Comparable objects can be made the same by assigning their comparands
the same value.

B.6.4 Boundary Conditions of a Given System

A good understanding of the properties and the “feel” of the environment
at hand is important. Are there standard ways to establish and determine
sameness? For example, in C++ sameness is usually determined via the

8Note that the getNewComparand() method must be synchronized in the presence of
multi-threading.
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operator==, so it is advisable to redefine it accordingly, whereas in Java the
== operator cannot be redefined, but instead the equals method has to be
overridden and used.

What kinds of comparison and guarantees of uniqueness are provided or
required by the programming language and the libraries and frameworks to
be used?

For example, libraries for collections usually expect comparison opera-
tions to behave well, as in the case of Java’s Collection Framework that
requires the standard hashCode method to return the same result for two
objects that are equal in terms of the standard equals method. In fact, the
comparand should be used as a hash code value for this reason, as shown in
the following code fragment.9

public class MyClass {
// comparand and equals() as above
...

public int hashCode() {
return (int)this.comparand;

}
}

B.6.5 Reuse of an Existing Attribute

There are cases where there is no need to define and create comparands
specifically. For example, in frameworks that map objects to table entries
in relational database systems, primary keys are good candidates for com-
parands, especially when they are created by some kind of sequence number
generator inside the database system. However, care must be taken to en-
sure that the preexisting attribute exactly reflects the intended comparison
semantics. There are deceptive cases where an attribute “accidentally” re-
flects the intended semantics without being conceptually bound to it, in
which case it is better to introduce a dedicated attribute.

B.6.6 Execution of Comparison Operations

There are two options in this dimension of variance. On the one hand,
the objects that hold the comparands can offer methods to carry out the
comparison, hiding the fact that the Comparand pattern is used for this
purpose (internal comparison). This allows one to change the implementa-
tion later on and base it on a technique other than the Comparand pattern
as required. The implementation can be scaled down to even a comparison

9See the JDK documentation on hashCode() in java.lang.Object for further details [77].
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of plain references as offered by the programming language when the reasons
for an advanced solution have vanished.10

On the other hand, objects can allow one to access the comparands and
perform the comparison directly (external comparison). This variant may
be opted for when comparands offer additional functionality and there is
therefore already a need to access them. For example, comparands can also
serve as keys for later retrievals of the same object. In this case, compar-
ison of two objects looks like follows. (Note that casts to the Comparable
interface are not always necessary.)

if ((obj1 instanceof Comparable) &&
(obj2 instanceof Comparable)) {
Comparable comp1 = (Comparable)obj1;
Comparable comp2 = (Comparable)obj2;
if (comp1.getComparand() == comp2.getComparand()) {

....
}

}

The two options are not mutually exclusive: an object can offer both
internal and external comparison. However, in this case, the specific ad-
vantage that internal comparison hides the implementation details of the
Comparand pattern vanishes, and therefore, pure internal comparison is a
better alternative in the general case.

B.6.7 Comparands in Distributed Environments

Especially in the case of distributed systems, the Comparand pattern can
significantly reduce the runtime overhead of comparison operations. When
the comparand of a remote object is cached within each of its remote ref-
erences11, comparisons do not require any remote execution at all (see fig.
B.3). Instead of allowing various remote references for the same remote ob-
ject to coexist, a system can choose to unify remote references as soon as
they enter an address space. Since this guarantees the uniqueness of remote
references they can directly be compared as such.

However, in order to check if an old reference must be reused or a new
one must be created, the system has to keep a table that maps comparands,
which are determined via the underlying communication mechanism, to the
actual remote references.12

10Other details of the specific implementation are also encapsulated and therefore eas-
ily exchanged, like the issues of primitive types vs. compound types, and so on. See
Comparands in Distributed Environments for further details on compound comparands.

11thus making it a simple instance of the Cache Proxy Pattern [71]
12Note that comparands should always be implemented with value semantics rather

than reference semantics, since only values can be copied across machine boundaries.
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The two options are not mutually exclusive: an object can offer both internal and
external comparison. However, in this case, the specific advantage that internal
comparison hides the implementation details of the COMPARAND pattern vanishes, and
therefore, pure internal comparison is a better alternative in the general case.

Comparands in Distributed Environments

Especially in the case of distributed systems, the COMPARAND pattern can significantly
reduce the runtime overhead of comparison operations. When the comparand of a
remote object is cached within each of its remote references11, comparisons do not
require any remote execution at all (see fig. 3). Instead of allowing various remote
references for the same remote object to coexist, a system can choose to unify remote
references as soon as they enter an address space. Since this guarantees the uniqueness
of remote references they can directly be compared as such.

However, in order to check if an old reference must be reused or a new one must be
created, the system has to keep a table that maps comparands, which are determined via
the underlying communication mechanism, to the actual remote references.12

Fig. 3: The sameness of a remote object can be determined locally by comparing
the comparands.

In distributed systems, the goal of unique comparands can be achieved only at great
expense. Uniqueness can be complicated even further when a heterogeneous application
has to be built which consists of independently developed subsystems. The following
variants of the COMPARAND pattern offer different solutions for this problem.

                                                
11 thus making it a simple instance of the CACHE PROXY Pattern [16]
12 Note that comparands should always be implemented with value semantics rather
than reference semantics, since only values can be copied across machine boundaries.

Figure B.3: The sameness of a remote object can be determined locally by
comparing the comparands.

In distributed systems, the goal of unique comparands can be achieved
only at great expense. Uniqueness can be complicated even further when
a heterogeneous application has to be built which consists of independently
developed subsystems. The following variants of the Comparand pattern
offer different solutions for this problem.

Ambiguous Comparands Instead of trying to achieve the goal of glob-
ally unique comparands, the requirements can be relaxed by letting all par-
ticipating subsystems independently create potentially overlapping sets of
comparands.

In this case, two objects might have equal comparands by accident.
Therefore, one needs to know whether these comparands stem from the
same subsystem in order to definitely determine sameness. As a last resort,
the comparison operation has to be executed remotely. However, two objects
that have different comparands are guaranteed to be different. The aim of
avoiding remote invocations is not fully achieved, but the looser coupling of
the systems involved outweighs this loss of performance, depending on the
frequency of comparison operations.
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Compound Comparands Instead of sacrificing uniqueness of compara-
nds, compound comparands can store identifiers for the process in which the
respective objects live. Comparand creation is then a process that involves
several steps, such as the creation of a unique number within a server and
incorporating a server identifier into comparands within clients.

The basic implementation scheme for compound comparands is as fol-
lows.

public class Comparand {

protected java.net.URL remoteSystem;
protected int processNo; // identifies an address space
protected long remoteComparand;

public Comparand(java.net.URL remoteSystem,
int processNo,
long comparand) {

this.remoteSystem = remoteSystem;
this.processNo = processNo;
this.remoteComparand = comparand;

}

public boolean equals(Object obj) {
if (obj instanceof Comparand) {

Comparand that = (Comparand)obj;
return this.remoteSystem.equals(that.remoteSystem) &&

(this.processNo == that.processNo) &&
(this.remoteComparand == that.remoteComparand);

}
return false;

}

public int hashCode() {
return (int)remoteComparand;

}

// note: no redefinition of clone()!

}

A class for remote references that uses compound comparands looks as
follows.
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public class MyRemoteReference {

protected Comparand comparand;

public MyRemoteReference(java.net.URL host,
int processNo,
long comparand) {

this.comparand =
new Comparand(host, processNo, comparand);

}

public boolean equals(Object obj) {
if (obj instanceof MyRemoteReference) {

MyRemoteReference that = (MyRemoteReference)obj;
return this.comparand.equals(that.comparand);

}
return false;

}

public int hashCode() {
return this.comparand.hashCode();

}

// note: no redefinition of clone()!

}

Note that there are some fundamental differences between this imple-
mentation and the example that is given for non-distributed applications
earlier in this paper. Firstly, remote references do not request the creation
of a totally new comparand but let a comparand be initialized with given
values that identify an existing remote object. This information must be
determined via the underlying communication mechanism (for example IP).
Secondly, the clone() method is not redefined since a clone of a remote ref-
erence refers to the same remote object by definition.

Computed Comparands Comparands may be computed by an algo-
rithm that takes considerable effort to ensure global uniqueness. For ex-
ample, GUIDs in the Microsoft Component Object Model (COM) can be
used as 128 bit comparands. Again, counters that are global for the current
machine are taken into account, together with the local machine’s network
address and the current time in order to ensure (world-wide) global unique-
ness [10]. Since GUIDs store all this information in a standardized way, they
may still be regarded as a special case of compound comparands. However,
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since GUID creation imposes a significant runtime overhead, in the general
case ambiguous comparands and compound comparands are preferable.

Coordinated Comparands Another viable alternative for ensuring uni-
que comparands is the assignment of non-overlapping sets of comparands
to each node of a distributed application. Then each node is responsible
for providing objects with unique comparands from the range of permitted
comparands. This implies the need for a central comparand server that
coordinates the creation of these non-overlapping sets and their assignment
to the respective nodes. A possible disadvantage of this approach is the
dependency on the availability of the comparand server. On the other hand,
the access rate can be scaled by the number of comparands that are granted
on each request.13

B.7 Consequences

Using Comparands to compare objects yields the following benefits.

Flexibility The use of comparands makes it easy to define sameness of
objects in an arbitrary way. It is even possible to change sameness at run
time without affecting the objects state. In addition, it is possible to make
objects of different types equal, for example different decorators wrapping
the same object.

Comparison is cheap Comparison using primitive comparands is about
as cheap as possible in terms of performance overhead.

Comparison of remote objects Proxies of remote objects can cache
comparands locally, allowing remote references to be compared without the
need for network traffic. This provides an efficient way to implement unifi-
cation of remote references.

There are however several liabilities.

Complexity As is often the case, flexibility comes at the cost of increased
complexity. The use of comparands makes it more difficult to understand
which objects are the same by looking at their implementation. The code
that determines equality of objects can be part of objects other than those
being compared, scattering the definition of sameness across several classes.

13There is no completely satisfactory solution to this problem because of the inherent
unreliability of distributed applications. For example, see [25].
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Collections If the default comparison mechanism of the language (equals
in Java, operator== in C++) is implemented with comparands, care must
be taken when container classes are used. Many container implementations
rely on comparison of the contained objects, and if several objects have the
same comparands, unexpected behavior can result.

Memory overhead The Comparand pattern relies on the introduction
of an additional attribute, incurring some memory overhead. This can be
an issue if the number of objects is large or compound comparands are used.

B.8 Known Uses

B.8.1 Java Platform Debugger Architecture

The JPDA [38] does not only include a set of specifications, as introduced
above, but also a standard implementation of all key components. The
implementation of the Java Debug Interface uses comparands extensively to
compare general (“user-defined”) objects, strings, arrays, class loaders, and
threads as well as reified types, fields and methods.

The comparands are implemented as long integer values (field ref in
class com.sun.tools.jdi.ObjectReferenceImpl). In principle, the implementa-
tion allows a debugger to connect to more than one virtual machine at the
same time. For this reason, objects that have the same comparands are not
necessarily the same. Therefore, a representation of the originating virtual
machine is also taken into account during comparison. Consequently, the
comparands can be created independently by their respective hosts.

Although the Java Debug Interface offers methods to retrieve the com-
parands of remote references, these comparands cannot be used to carry
out comparison operations because of their ambiguity. Therefore, dedicated
comparison methods are offered in addition.

See [36] for the source code of JDK 1.3, which also includes the sources of
the standard implementation of the Java Platform Debugger Architecture.

B.8.2 Remote Method Invocation

In Java RMI [39], remote objects are represented by objects that implement
the java.rmi.server.RemoteRef interface. In the standard implementation of
RMI (as of JDK 1.3), this interface is implemented by the sun.rmi.server.
UnicastRef class. This class uses the Comparand pattern to compare re-
mote objects by comparing the field ref of type sun.rmi.transport.LiveRef,
that is defined for this class. This field consists of a representation of a
server (“Endpoint”), a unique address space within that server (“UID”) and
a unique long integer value corresponding to an object within that address
space.
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This representation of remote objects allows each server to create their
own respective sets of values representing actual objects. Since remote ref-
erences always record the execution context of their remote objects, they
are the same if and only if they have the same comparands.

The java.rmi.server.RemoteRef interface does not allow the retrieval of the
comparands of remote references, but it completely hides the fact that com-
parands are used in the standard implementation. Instead, a remoteEquals
method is offered to carry out the comparison operation.

Again, see [36] for the source code of JDK 1.3, which also includes the
sources of the standard implementation of RMI.

B.8.3 CORBA Relationship Service

In principle, CORBA does not provide any means to compare components.
However, the Relationship Service Specification [62] defines the CosObjec-
tIdentity module which includes an IdentifiableObject interface. It defines a
long integer attribute as a comparand (“ObjectIdentifier”).

Since this value is not guaranteed to be unique, two objects that have
the same comparands are not necessarily the same. In order to definitively
determine if two component references refer to the same component, an
is identical operation is also defined that has to be carried out remotely.

The “ObjectIdentifier”-comparands are explicitly meant to be used as
keys in hash tables. Therefore they can be accessed directly as readonly
attributes.

B.8.4 Enterprise JavaBeans

In Enterprise Java Beans [76], the so-called entity beans offer primary keys
which can be obtained by getPrimaryKey methods. For example, they can
be used to retrieve or remove the components they represent and they can
also be used as comparands.

Again, comparison of such primary keys does not completely determine
whether two references refer to the same component. If they are equal, it
must be determined whether they are obtained from the same execution
context (the so-called “home”) or otherwise an isIdentical method has to be
invoked remotely.

Whereas primary keys are technically realized as instances of possibly
user-defined primary key classes, these classes are restricted to be legal Value
Types in RMI-IIOP [61]. These Value Types are constrained in a way that
essentially leads to classes with value semantics rather than reference se-
mantics. For example, they are required to redefine Java’s standard equals
method accordingly.
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B.8.5 Ginko

Ginko [63] is an email client for the Apple Macintosh (including Mac OS
X), and is implemented in Objective-C. One of its features is the unified
handling of different copies of the same email. Emails are represented as
objects and can be stored into more than one folder whilst keeping the
same set of attributes, such as status information and priority markers. The
repeated receipt of the same email is also detected by Ginko.

Different instances of the same email are identified by comparison of the
standard MESSAGE-ID, as specified by the Internet Request For Comments
document number 822 [23]. As RFC 822 states, the “uniqueness of the
message identifier is guaranteed by the host which generates it”. Therefore
in Ginko, these MESSAGE-IDs are used as comparands and they are equal
if and only if the corresponding emails are the same.

B.8.6 Related Patterns

Several of the standard patterns from [31] employ some kind of delegation
to let methods of one object operate on behalf of another. If a multitude
of objects delegate to a single object, implementations of these patterns can
apply the Comparand pattern instead of delegating requests for comparison
to the respective target objects. The patterns that can take advantage of
the Comparand pattern in this way are Adapter, Bridge, Decorator
and Proxy.14

The OID pattern from [11], which can be regarded as a special case of
the Comparand pattern, is restricted to the context of integrating objects
and relational database systems. It discusses only primitive types (integer
or strings) as candidates for comparands, and favors the use of sequence
number generators, which are built into some relational database systems,
as sources for comparand creation.

B.9 Conclusion

There are several techniques for implementing object comparison, depending
on the desired semantics and the context of its use, with reference compar-
ison being built into almost all programming languages and therefore being
most widely employed. An interesting distinction between the Comparand
pattern and reference comparison is the following asymmetry. With the
Comparand pattern, two objects are guaranteed to be the same if their

14Other patterns from [31] that also use delegation are State and Strategy. However,
they are not candidates for the application of the Comparand pattern, since in these cases,
the respective target objects do not play an “identifying” role, so it makes no sense to
compare them at all.
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comparands are equal; with reference comparison, two objects are guaran-
teed to be equal if their references are the same. The latter case is often
utilized to optimize otherwise complex comparison operations.

We believe that these considerations could be extended into a useful
pattern language covering the realm of object comparison. Other sources
that should be taken into account are [5] and [35], which discuss various
aspects of object comparison, and the Extrinsic Properties of [30], which
can also be used as a means to determine object equality, to name just a
few.
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Past Experience

1/8/1999 - 31/3/2004 University of Bonn, Institute of Computer Sci-
ence III, TAILOR Project, Bonn, Germany

15/2/1999 - 31/7/1999 University of Bonn, Institute of Computer Sci-
ence III, teaching and preparation of TAILOR
Project, Bonn, Germany
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(MUSC), Project “Medizin Telematik Zentrale”
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tion system, Bonn, Germany

16/1/1998 - 15/9/1998 University of Bonn, Institute of Computer Sci-
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1992 - 1993 Heynmöller Informatik GmbH, programming,

Bonn, Germany
1989 - 1992 infill Computer GmbH, programming, Troisdorf,

Germany
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Founder: comet – Costanza, Merklinghaus und Trapp GbR, 19931
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ing sites for several Nestlé brands and for Hagemann Verlag, a major
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and has given rise to two journal special issues, four journal publi-
cations, three PhD theses, ten diploma theses, six conference papers,
twelve workshop papers, four workshop reports, three posters at con-
ferences, and one book chapter.

Teaching: Contributed to and held university courses; given advanced train-
ing to industrial programmers; supervised master theses

Major Accomplishments

Co-designed and implemented the first compiler for Lava, an integration of
delegation into a strongly-typed class-based programming language. Con-
trary to object-oriented programming languages that base inheritance mech-
anism on a class hierarchy, there are so-called prototype-based languages
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programming language, and the detection and fix of a hole in the static type
system of the original design. Subsequently, Lava has been reimplemented
several times using different implementation strategies, but the original de-
sign has largely remained the same which is the first working integration
of class-based and prototype-based features into a strongly-typed language.
Lava is mainly used in academia.

Originated the ClassFilters package, a framework for load-time trans-
formation of Java classes. This has been rewritten as JMangler under his
supervision (joint work with Günter Kniesel) which is now a widely used
framework, both in academia and industry. The major results of that work
are two-fold. On the technical level, JMangler is the first load-time trans-
formation framework that is neither implemented as a custom Java Virtual
Machine implementation nor as a custom Java class loader. This ensures
applicability in a much wider range of scenarios than other approaches. On
the conceptual level, JMangler is the first and currently only framework
that allows transformations of class files to be expressed as independently
extensible transformer components. This means that the developer of a
transformer component does not need to be aware of the complete trans-
formation process and/or other transformer components in order to express
desired features to be added to a set of Java classes. As a consequence,
JMangler is a powerful and convenient platform-independent framework for
the introduction of systematic properties into a Java program. This has
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been effectively taken advantage of in several scenarios, for example as a
basis for an alternative implementation of Lava that enables delegation to
pure Java classes, or as a basis for an efficient customized code-coverage tool
that has been used in large industrial projects.

Other Noteworthy Accomplishments

Introduced Internet technologies (WWW, http, HTML) to his company in
1994, making it one of the first companies in Germany to develop commercial
websites.

Introduced the Java programming language to his company in 1996,
making it one of the first German companies to develop software in Java.

Was accepted for the OOPSLA Doctoral Symposium in 2001.
Helped forming the German AOSD community by co-organizing work-

shops. Adapted and introduced the Writers’ Workshop format to that com-
munity. German AOSD workshops have sticked to that format since then.

Established the notion of Unanticipated Software Evolution (jointly with
Günter Kniesel) by organizing workshops and a special issue of the Journal
of Software Maintenance and Evolution, published by John Wiley & Sons.
Other researchers have started to adopt this term.

Has written a guide to the Common Lisp programming language and
published it at his website. This has been widely received as excellent in-
troductory material and is linked prominently from many sites, including as
recommended links by both commercial and open-source vendors of Com-
mon Lisp implementations. As of February 2004, a Korean translation of
this guide has been published on the web.
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