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Identifizierung von expressions quantitativ trait Loci (eQTL) und 

Kandidatengenen für das Wasserhaltevermögen im Schweinefleisch 

 

Die Beurteilung von Fleischqualität durch den Konsumenten ist definiert durch 

sensorische Merkmale, wie Saftigkeit, Muskel pH, Wasserhaltevermögen und Farbe. 

Das Wasserhaltevermögen in Bezug auf den Tropfsaftverlust hat sowohl eine genetische 

als auch eine ökologische Komponente mit geringer bis mittlerer Heritabilität. Die 

Anzahl der Gene die an dem Merkmal Tropfsaftverlust beteiligt sind, sind bislang noch 

unbekannt. Das Ziel dieser Studie war es, geeignete Kandidatengene, die für den 

Tropfsaftverlust im Schweinefleisch verantwortlich sind, zu identifizieren.  

Für die Kandidatengenanalyse und ihre eQTL Positionen wurden zwanzig Gene 

selektiert. Zur Erstellung der Expressionsprofile von 300 DUPI Tieren wurde einerseits 

eine quantitative Real-Time PCR verwendet, sowie das GenomeLab GeXP Multiplex 

Verfahren. Zur Normalisierung der Expression wurden mehrere Referenz Gene 

eingesetzt. Die Analyse zeigte das die Gene Peroxisome proliferator activated receptor 

gamma, coactivator 1 alpha (PPARGC1) und Alpha 1 microglobulin/bikunin (AMBP) in 

Vergleich zwischen hohem und niedrigem Tropfsaftverlust unterschiedlich 

exprimierten. Darüber, hinaus zeigte die Expression weiterer Gene signifikante 

Assoziationen mit verschiedenen Parametern der Fleischqualität. Die Analyse der eQTL 

erbrachte das diese Gene in der DUPI Population trans-reguliert waren. Durch die 

Verwendung verschiedener QTL Modelle wurde auf SSC2 in der Nähe des Markers 

S0141 eine vielversprechende chromosomale Region für Tropfsaftverlust entdeckt, dies 

konnte durch Fachliteratur bestätigt werden. Durch die Übereinstimmung entdeckter 

eQTL mit QTL in der DUPI Population und in anderen Schweine Populationen konnten 

weitere vielversprechende chromosomale Regionen für zukünftige Feinkartierungen 

und Assoziationsstudien a werden. 

 

 

 

 

 

 



  

Identification of expression quantitative trait loci (eQTL) and candidate genes 

associated with water holding capacity in porcine meat 

 

Consumer assessment of meat quality is defined by the characteristics of sensory 

experience such as juiciness, muscle pH, water-holding capacity and colour. Water-

holding capacity in terms of drip loss has a genetic as well as environmental component 

with low to medium heritability. The number of genes involved in the development of 

drip loss is unknown. The aim of this study was to identify the candidate genes and their 

transcriptional regulation responsible for the drip loss in pig meat.  

Twenty genes were selected for the candidate gene analysis and for their eQTL study. 

For the expression of genes quantitative real-time PCR and GenomeLab GeXP multi-

plex were used in 300 DUPI animals. Multiple housekeeping genes were used for the 

accurate gene expression normalization. Analysis revealed expression of peroxisome 

proliferator activated receptor gamma, coactivator 1 alpha (PPARGC1) and alpha 1 

microglobulin/bikunin (AMBP) genes were differentially regulated in animals with 

higher drip loss compared to lower drip loss. Moreover, expression of other genes 

showed significant association with different meat quality parameters. eQTL analysis 

showed that these genes are trans-regulated in DUPI population. By using different 

QTL models, on SSC2 vicinity of marker S0141 was detected as the most promising 

chromosomal region for drip loss supported by the literature as well. Ovelapping of 

detected eQTL with QTL in DUPI population and other pig populations showed 

promising chromosomal regions for further fine mapping and association studies.  
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Introduction 1 

1 Introduction 
 

Amount and distribution of water within the meat is a key factor which influences many 

technological and sensory properties of pork. Water-holding capacity (WHC), i.e. the 

capacity of meat to retain its water during application of external forces in particular is 

of special interest (Hamm 1985). During the post-mortem conversion of muscle to meat 

changes to WHC occur and as a result, a fluid consisting of water and dissolved proteins 

is released without application of external forces (except gravity), the so-called drip loss 

(drip) (Hamm 1985; Jennen et al. 2007). Several factors can influence the amount of 

drip loss. Besides the genetics, other aspects, including animal and carcass handling, 

post-mortem temperature management, nutrition, processing, also play an important 

role. Drip loss can cause product weight losses due to purge can average as much as 1–

3% in fresh retail cuts (Offer and Knight 1988) and can be as high at 10% in PSE 

products (Melody et al. 2004). In addition to the loss of salable weight, purge loss also 

entails the loss of a significant amount of protein (Offer and Knight 1988; Offer et al. 

1989).  

The majority of water in muscle is held either within the myofibrils, between the 

myofibrils and between the myofibrils and the cell membrane (sarcolemma), between 

muscle cells and between muscles bundles (groups of muscle cells). Once muscle is 

harvested the amount of water and location of that water in meat can change depending 

on numerous factors related to the tissue itself and how the product is handled (Honikel, 

2004). The main constituent of meat is water, comprising 75% of its weight. About 90% 

of the water is bound in the muscle cell, and the rest is present in the interstitium. As 

80% of the volume of the muscle is occupied by myofibrils, it is generally accepted that 

90-95% of the water in the muscle cell is present between the myofibrils and 5% is 

chemically bound to the charged groups of the intracellular muscle proteins (Lambert et 

al. 2001). 

The biochemical, physiological, and structural events that are initiated by slaughtering 

and which lead to drip loss are complex and poorly understood. However, loss of 

osmolytes and cell water, following osmotic perturbation, hormonal stimulation, and 

limitation in oxygen supply (anoxia), has been described in a variety of mammalian 

cells. This knowledge provides an obvious starting point in the understanding of the 

initial processes leading to water reorganization in muscle during its conversion to meat. 
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Several economic traits have been explored in pig industry through QTL studies 

including fattening traits (daily gain, feed efficiency), body composition traits (meat 

content, fat content, loin eye area) and meat quality traits (color, water-holding capacity, 

muscle pH, tenderness, intramuscular fat). These traits are caused by a number of 

genotypic and environmental factors. From the view of molecular genetics, genotypic 

effects rely on the variation of the nucleotide sequence in the genome that either 

influences the expression level of a given gene or the functional properties of the 

encoded proteins. Contributing greatly to this variation are the effects of extreme breeds 

and the structural and functional properties of muscle itself.  

The finding of genes responsible for genetic variation in the traits of interest in animal 

species is of importance in genomic analysis (Rothschild and Soller 1997). Currently, 

there are two different approaches known as QTL mapping and candidate gene analysis. 

While the first technique is to discover genomic regions related to quantitative traits, the 

other one focuses on detection of mutations in candidate genes and their possible 

association with economical production traits (Ovilo et al. 2002) and thereby exploits 

information from previous cellular, biochemical or physiological functional studies to 

target a gene of interest. Candidate genes can be derived based on knowledge of the 

function of the gene product (direct biological candidate) or its specific expression 

pattern (functional candidate).  

The present study was undertaken with the following objectives: 

 

1. To quantify transcript abundance of drip loss related genes and further figure out the 

expression profile of these genes in low and high performing pigs in Duroc / 

Pietrain (DUPI)  F2 resource populations. 

 

2. To understand the association of gene expression with meat quality traits. 

 

3. To identify expression quantitative loci (eQTL) of drip loss related genes. 
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2 Literature review 
 

2.1 The skeletal muscle development 

In farm animals, the structural and functional diversity of skeletal muscle is represented 

by a variety of myosin isoforms. Understanding muscle fiber characteristics will help to 

optimize the efficiency of the muscle growth and meat quality, the two important 

concerns in animal production. To this point, fiber classification, myosin heavy chain 

(MyHC) expression, their role in muscle development and meat quality traits and 

possible factors influencing the fiber proportions are briefly described in the next 

section.  

 

2.1.1 Prenatal development of skeletal muscle 

Skeletal muscle represents nearly half of the total body mass and thus is the most 

abundant tissue of the human body. A skeletal muscle is composed of many bundles of 

myofibers, which are the functional units. A single myofiber is derived from the fusion 

of numerous myoblasts and therefore contains many nuclei. Each myofiber contains 

many myofibrils, which are composed of repeating sarcomeres. A sarcomere is an 

arrangement of the contractile proteins myosin and actin, which form the thick and thin 

filaments, respectively (Figure 2.1) (Grefte et al. 2007).  

In early stages of embryonic development, the major function of gastrulation is to create 

a mesodermal layer between ectoderm and the endoderm. The mesoderm forms the 

blood, blood vessels, bones, cartilage, connective tissue, and the muscle of the body 

trunk (Grefte et al. 2007). The somites are generally regarded as the site of myogenesis. 

The somites are derived from the mesoderm which, in the body (excluding the head), is 

subdivided into four compartments: the axial, paraxial, intermediate and lateral plate 

mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental 

pattern of the body. Each somite is surrounded by extracellular matrix material 

connecting the somite with adjacent structures. The competence to form skeletal muscle 

is a unique property of the somites and becomes realized during compartmentalization, 

under control of signals emanating from surrounding tissues (Christ and Ordahl 1995). 

Compartmentalization is accompanied by altered patterns of expression of regulatory 

factors PAX-3 and PAX-7 genes within the somite (Mozdziak 2006). A crucial step in 

the formation of skeletal muscle is the appearance of myotome (Figure 2.2). 
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Figure 2.1: Shows the structure of skeletal muscle. Skeletal muscle made up of clusters 

of myofibers. The bundles of fibres, known as Fasciculi, which are surrounded by 

another connective tissue, called the Perimysium. Each Fasciculi contains anywhere 

between 10 and 100 muscle fibres. Muscle fibres are covered in a fibrous connective 

tissue, known as Endomysium which insulates each muscle fibre. Muscle fibres can 

range from 10 to 80 micrometers in diameter and may be up to 35cm long. Under the 

Endomysium and surrounding the muscle fibre is the Sarcolemma which is the fibres 

cell membrane and under this is the Sarcoplasm, which is the cells cytoplasm, a 

gelatinous fluid which fills most cells. This contains glycogen and fats for energy and 

also mitochondria which are the cells powerhouses, inside which the cells energy is 

produced  
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Figure 2.2: Formation of the somites and myotomes. Adapted from Grefte et al. (2007). 

 

Muscle progenitors cells delaminate from the four edges of dermomyotome and muscle 

progenitor cells migrate into limb buds. In later embroyogenesis, muscle masses 

separate into epaxial (deepback) muscles and hypaxial (abdominal and apendicular) 

muscles (Gross et al. 2004). Schematic reprasantation of muscle formation during 

embryo development is given in figure 2.3.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic representation of muscle formation. Adapted from Mozdziak et 

al. (2006) 
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Tyrosine kinase receptor (C-MET) that binds hepatocyte growth factor and PAX3 are 

major contributors to this delamination and migration. Because embryos lacking 

functional C-MET and PAX3 do not form skeletal muscle in limbs (Relaix et al. 2003; 

Epstein et al. 1996). Myogenesis regulated by basic-helix-loop-helix transcription 

factors through the action of myogenic regulatory factors (MRFs). MRFs are essential to 

the specification and determination of muscle cells lineage (Cole et al. 2004). 

Delaminating progenitor cells down-regulate PAX3 and become myoblasts by the action 

of MRFs. These myoblasts increase their expression of MYF5, MRF4, and MYOD (Cole 

et al. 2004; Rudnicki et al. 1993), and differentiate into myocytes through the cation of 

myogenin, MRF4 and MYOD (Grefte et al. 2007). These myocytes fuse and mature into 

multinucleated musclefibers forming continues muscle layer, the myotome (Kalcheim et 

al. 1999). Myogenesis processes stimulated by signals which are released from neural 

tube, notochord, and surface ectoderm (Figure 2.3). Sonic hedgehoh (Shh) and Wnt 

proteins are the secreted signaling molecules, are involved in muscle development 

(Münstreberg et al. 1995). Bone morphogenetic proteins (BMPs), another family of 

secreted signaling proteins, are released from the neural tube and the lateral plate 

mesoderm and inhibits myogenesis (Grefte et al. 2007; Duprez et al. 1996). During 

embryonic development, two distinct types of skeletal muscle fibers appear. The first 

muscle fibers that emerge are called primary or ambryonic fibers; the secondry or fetal 

fibers arise later. The primary and secondry fibers have distinct morphological and and 

biochemical properties and can be classified into slow-twitch and fast-twitch fibers. 

Toward the end of embryogenesis, the satellite cells appear. They are the major players 

in postnatal muscle growth and regeneration (Grefte et al. 2007).    

 

2.1.2 Postnatal muscle growth 

 

During postnatal growth, the increase in skeletal muscle mass is mainly due to an 

increase in muscle fibre size (hyperthrophy). This process is accompanied by the 

proliferative activity of satellite cells, which are the source of new nuclei incorporated 

into muscle fibres (Rehfeldt et al. 2004). At birth, satellite cells, which have yet to exit 

the cell cycle, account for ~30% of the nuclei in rodent limb muscle (Knapp et al. 2006; 

Cardasis and Cooper, 1975). During the first few weeks of life, satellite cells fuse to 

growing fibers so that the cells eventually account for at least 50% of the nuclei inside 
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the fiber. As adulthood is reached, muscle growth declines and the residual satellite cell 

population accounts for only 6% of the nuclei in limb muscles (Knapp et al. 2006; 

Cardasis and Cooper, 1975). The residual satellite cells become quiescent until receptor-

mediated signaling triggered by exercise or wounding causes them to re-enter the cell 

cycle, proliferate and differentiate into muscle (Knapp et al. 2006; Charge and 

Rudnicki, 2004; Seale et al. 2001). 

In general, adult skin wound healing occurs in three overlapping phase: inflammation, 

tissue formation and tissue remodelling (Grefte et al. 2007). At the site of injury, many 

growth factors are expressed and several of these are able to activate satellite cells. The 

function of satellite cells during muscle regeneration is regulated by many growth 

factors and cytokines such as fibroblast growth factor (FGF) and transforming growth 

factor-ß (TGF-ß) families, insulin-like growth factors-1 and -2 (IGF-1, IGF-2), 

hepatocyte growth factor (HGF), and interleukin-6 (IL-6) (Grefte et al. 2007).    

After birth, total muscle fiber number has been reported to remain unchanged in 

mammals and birds (Figure 2.4) (Rehfeldt et al. 2004). However, some reports have 

indicated increases in muscle fiber number after birth in rodents, chickens and pigs. A 

definite increase in the number of muscle fibers was reported in rats during the first 

three weeks after birth which is the result of the differentiation into myofibers of 

myoblasts present in muscle fiber bundles at birth however in fish the number of muscle 

fibers increases throughout life (Rehfeldt et al. 2004; Stickland 1983).   

  

 

 

 

 

 

 

 

 

 

Figure 2.4: Postnatal development of fiber diameter and total fiber number per cross 

section in the semitendinosus muscle of German Landrace pigs, adapted from Rehfeldt 

and Kuhn (2006)  
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2.1.3 Skeletal muscle to meat conversion 

 

The conversion of muscle into meat is a complex process in which all mechanisms 

responsible for the development of meat qualities are very likely independent. Colour 

and flavour are thus both dependent on oxidative mechanism. Oxidation and proteolysis 

are probably two processes involved in the development of meat tenderness (Ouali et al. 

2006). After slaughter, meat is dressed, deboned and stored at refrigerated temperature 

for duration of one week or more depending on practice which applied in national level. 

Storage of muscles for a reasonable length of a time is prerequisite for the development 

of organoleptic qualities of the final product namely meat (Ouali et al. 2006). After 

bleeding, muscle cells have no other alternative to only enter the programmed cell death 

procedure or apoptosis. Consequently, all cells and tissues will be irreversibly deprived 

of nutrients and oxygen. Under these very harmful environmental conditions, muscular 

cells will have no alternative but engage towards “suicide”, with all the consequences 

described above.  

Caspases (structure and functions) play an important role and regulate apoptotic 

processes in meat animal species (Fuentes-Prior and Salvesen 2004). Apoptosis in 

human muscle was shown in many publications (Tews 2002, 2005; Tews and Goebel 

1997). Cell death changes the inversion of the membrane polarity. In vivo, cellular 

membranes have a well defined polarity dependent on the distribution of phospholipids. 

This process has also consequences on some feature of the muscle such as pH fall, 

muscle thrombin activation (neuromuscular junction), calcium and meat ageing, 

variation of intra- and extracellular spaces in postmortem muscle, deterioration of 

mitochondria and cellular oxidation.  
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Figure 2.5: Different phases of the conversion of muscle into meat. Adapted from Ouali 

et al. (2006) 

 

2.2 Meat quality in pigs 

 

Pork quality can be considered from technological, nutritional, hygienical and sensory 

point of view, which may be influenced by multiple interacting factors acting before and 

after slaughter. Technological quality refers to the utility characteristics of meat in the 

current production processes, which constitute a set of technological and 

physicochemical properties such as: water holding capacity, pH, intensity and 

homogeneity of colour, firmness and processing yield. Nutritional quality concerns fatty 

acids profile and content of cholesterol, fat, conjugated linoleic acid (CLA), vitamins 

and minerals in meat. Sensory quality of pork is measured instrumentally as well as in 

sensory panel evaluation, and involves such elements as colour, marbling, tenderness, 

juiciness and flavour. The main factor influencing the meat quality, especially in 

technological, but also in sensory context, is muscle pH. 
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2.2.1  Muscle pH 

 

Many qualities of meat depend on its pH. Meat pH influences such characteristics like 

colour, water-holding capacity, cooking losses, processing yield, etc. The pH of living 

skeletal muscle is usually above pH 7. It may decrease after slaughter to pH 5.4 to 5.6 in 

normal meat. If initial glycogen is limited, the pH stays high and the meat remains DFD 

(dark, firm, dry). If the pH decline is rapid (affecting muscle proteins while still warm) 

or extensive (giving a low ultimate pH), the meat becomes PSE (pale, soft exudative). 

Muscle pH is measured 45 minutes and 24 hours after slaughter and shows dynamics of 

biochemical changes in muscle post-mortem. These may be termed pH1 and pH24 or 

pH45 and pH24 respectively. When the muscle becomes anaerobic after slaughter, 

glycogen is converted to lactate by way of the glycolytic pathway. Hydrogen ions are 

produced at the same time, causing the pH to fall (Young et al. 2004a). A quick 

acidification of muscle causes protein denaturation, and improper energetic processes 

which underlay the lactate production, cause the myofibrils damage. Denaturated 

proteins and damaged sarcolemma are not able to hold water and are the reason of a drip 

loss. These changes are accompanied by a paler colour of meat. Described features 

characterize a meat defect called PSE (Swatland, 2001).   

 
2.2.1.1 Muscle pH 45 minutes post-mortem (pH45) 

 

The muscle condition known as PSE pale, soft, exudative, which mainly affects the 

longissimus dorsi and the semi-membranosus, results in less attractive, less tender and 

less juicy meat. Although the cause is not fully understood it is associated with an 

unusually rapid fall in the muscle pH after slaughter and is linked to short-term stress. 

Much effort has been put into detecting PSE meat in intact carcasses. This would allow 

abattoirs to identify a problem at an early stage and take remedial action, by ensuring 

considerate preslaughter handling for example. It would also enable the carcass to be 

diverted away from fresh meat sale into other uses. Readings of pH at 45 min vary with 

the rate of pH fall (i.e. rapid fall in pH gives a lower value at 45 min). Therefore low pH 

values at 45 min post-slaughter are seen as indicative of PSE muscle (Homer and 

Matthews 1998). A pH 45 min pm < 6.0 is typically taken as the critical point below 

which commercially important PSE develops in pork (Bendall and Swatland 1988).  
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Figure 2.6: Effect of pH45 on reflectance and and drip loss. Adapted from Murray 

(1995) 

 

2.2.1.2 Muscle pH 24 hours post-mortem (pH24 or pHu) 

 

Ultimate pH has been implicated as a major factor affecting pork quality (Offer 1991). 

Many qualities of meat depend on its pH. Generally, meat in the pH range 5.4 to 5.6 has 

the most desirable properties for table cuts. Higher values, which can reach pH 6.9, 

result in several defects, the most obvious being its colour, which becomes 

progressively darker as pH increases. As a result, high pH meat is sometimes called 

‘dark-cutting’ or ‘DFD’, dark, firm, and dry, referring to the meat’s physical properties. 

Moreover, the microbiological stability of high pH meat is poor (Homer and Matthews 

1998), tenderness is more variable, and cooked flavour is inferior (van Laack et al. 

2001). In the 24 h following slaughter, a decrease in glycogen, as determined by 

glucose, occurred in parallel with the decline in pH. At the same time, lactate 

progressively accumulated as expected (Young et al. 2004b). The variation in ultimate 

pH influences factors such as colour and the ability of the meat to retain water. A low 

ultimate pH results in meat proteins having decreased water-holding capacity and a 
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lighter colour. Conversely, a higher ultimate pH will give a darker colour and less drip 

loss (Huff-Lonergan and Lonergan 2005).   

 

 

 

Figure 2.7: A schematic representation of the relationship between post-mortem change 

of pig muscle pH (longissimus dorsi) and meat quality 

 

2.2.2 Drip loss 

 

Water is the major constituent of meat accounting for approximately 75% of its weight 

(Borisova and Oreshkin 1992; Offer and Knight 1988). The amount and distribution of 

water inside the meat has a considerable influence on its properties. High losses of fluid 

in the form of drip may affect financial output, nutritional value, consumer appeal 

and/or technological properties of porcine meat (Jennen et al. 2007). Water-holding 

capacity (WHC), i.e. the capacity of meat to retain its water during application of 

external forces (Hamm 1985) in particular is of special interest. During the post-mortem 

conversion of muscle to meat changes to WHC occur and as a result, a fluid consisting 

of water and dissolved proteins is released without application of external forces (except 

gravity), the so-called drip loss (DRIP) (Offer and Knight 1988). In the past the 

assessment of drip loss was done by several methods (Borchers et al. 2007; Otto et al. 
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2004). Among them, bag method of Honikel (1987) is widespread and accepted as 

internationally method. A variety of different methods can be found in table 2.1. 

 

Table 2.1: Different methods of measurement drip loss and water-holding capacity of 

meat. Adapted from Borchers et al. (2007) 

  
Filterpaper-press method 
Loose bound water 
Capillary volumeter 
Tray method 
Filterpaper method 
Bag method 
Centrifugation methods 
EZ-DripLoss method 
Absorptive material 

Grau and Hamm, 1953 
Beutling, 1969 
Hofmann, 1975 
Lundström and Malmfors, 1985 
Kauffman et al., 1986 
Honikel, 1987 
Honikel and Hamm, 1994 
Rasmussen and Andersson, 1996 
Walukonis et al., 2002 

 
 
 
2.2.3 Water-holding capacity 

 

The definition of water holding capacity (WHC) is the ability of meat or meat systems 

to retain all water or part of its own and/or added water (Honikel 2004). Muscle 

contains approximately 75% water and other components such as protein (20%), lipids 

(5%), carbohydrate (1%) and vitamins and minerals (1%) (Huff-Lonergan and Lonergan 

2005).   

The water-holding capacity of meat products is a very important quality attribute which 

has an influence on product yield, which in turn has economic implications, but is also 

important in terms of eating quality. A number of pre- and post-mortem factors 

influence the water holding capacity (WHC) of meat. During the growth and 

development of meat animals, genotype and animal diet are important due to their direct 

influence on muscle characteristics. In the immediate pre-slaughter period, stresses on 

the animal such as fasting, and different stunning methods are likely to influence meat 

WHC. In the post-slaughter period chilling, ageing, injecting non-meat ingredients, as 

well as tumbling have important influences on WHC. Furthermore, cooking and cooling 

procedures for the final meat products can also affect the WHC of the product, in 

particular the cooking and the cooling methods, the heating and the cooling rate, the 

cooking temperature, and the endpoint temperature (Cheng and Sun 2008). 
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Two major genes have been identified to cause watery meat (PSE meat) within pig 

populations Halothane and RN− gene, the former being associated with an abnormally 

fast rate of pH decline. The Halothane gene offers producers a rapid way of producing 

lean, heavily muscled market hogs that will receive higher packer premiums. However, 

Halothane positive and carrier animals have poorer meat quality and processing 

characteristics, when compared to Halothane negative pigs. The meat quality problems 

associated with the Halothane gene result from a high incidence of the pale, soft, 

exudative (PSE) condition. Animals that carry the dominant allele of the Rendement 

Napole gene (RN-) have been found to produce paler meat with reduced water holding 

capacity and processing yields. However, RN- carriers have also been found to have 

higher carcass lean meat percentages and lower shear force values, indicating more 

tender meat. Thus, both the Halothane and RN genes independently have both negative 

and positive effects on carcass and meat quality and because of their different modes of 

action may have a greater combined effect on meat quality. 

Recently, mutation of the PRKAG3 gene encoding the γ3 subunit of the AMP dependent 

kinase (AMPK) was associated with excess glycogen content in pig skeletal muscle; one 

can thought that mutations of the same gene could be responsible for the biological 

variability in drip loss. The AMPK, comprising three subunits (α, β,γ), has been pointed 

out as one of the main actors in the regulation of intracellular energy metabolism 

(Carling 2004). The consequences of these mutations on muscle WHC, meat juiciness 

and drip loss are however still unknown. Investigation on the AMPK gene function and 

its polymorphic allelic expression would be an alternative way to provide answers to 

carcasses, muscles and meat exudation. In a longer term, these studies would probably 

be also very helpful for the genetic selection of animals expressing the most suitable 

isoform of the corresponding AMPK subunit. In addition, this gene is very likely 

common to all meat animal species and findings obtained can be therefore extended to 

any species (Cheng and Sun 2008). 

 

2.3 Molecular genetic methods for dissecting meat quality in pigs 

 

The genome of the pig (Sus scrofa) comprises 18 autosomes, with X and Y sex 

chromosomes. The genome size is similar to that of human and is estimated at 2.7 Gb. 

There is extensive conserved homology with the human genome. The pig is a member 
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of the artiodactyls, (cloven-hoofed mammal), which are an evolutionary clade distinct 

from the primates and rodents. It is an important model for human health particularly 

for understanding complex traits such as obesity and cardiovascular disease 

(http://www.sanger.ac.uk/Projects/S_scrofa/). Currently, the first release of the high-

coverage Sscrofa9 (April 2009) assembly for chromosomes 1 to 18 and X of the pig 

genome is available in Ensembl database. The Pig Sscrofa9 was annotated using a 

standard Ensembl mammalian pipeline. Predictions from vertebrates as well as pig 

proteins have been used to create the gene set, along with human 1:1 orthologs aligned 

to the pig genome using Exonerate. Pig cDNAs have been used to add UTRs to pig 

protein based predictions, and pig ESTs were used to add UTR to predictions made 

from non-pig proteins (Ensembl). According to Ensembl release 58.9b (May 2010), 

there has been already 660 known protein coding genes are available, however, 11,873 

protein coding genes were projected for the genome assembly. Up to now, 159,872 gene 

exons and 22,013 transcripts have already been identified by the pig genome sequencing 

consortium.  

 

2.3.1 Muscle transcriptome analysis for identifiying the positional candidate genes for 

pig meat quality  

 

The high-throughput, recently developed ‘omics’ techniques are capable of uncovering 

associations between previously unknown molecules (DNA, RNA, proteins and 

metabolites) or previously uncharacterized DNA/protein sequences and physiological 

traits of interest (Davoli and Braglia 2007). Earlier attempts for analyzing the 

expression of thousands of genes simultaneously in diverse biological systems started 

with the cDNA libraries. For application of microarray technologies to studies of 

skeletal muscle growth and development in swine, Yao et al. (2002) constructed a 

normalized cDNA library from porcine skeletal muscle. Among 742 EST sequences 

against the public database (dbEST), they found 139 novel porcine ESTs, suggesting the 

possibility of their specific expression in porcine skeletal muscle. Microarray 

technology facilitates quantitative assessment of gene expression levels for several 

thousand genes simultaneously. A porcine cDNA microarray comprising 5500 clones 

has been used to analyze differential transcript expression in phenotypically distinct 

muscle with the aim of identifying the genes involved in muscle phenotype 



Literature review 
 

16 

determination (Bai et al. 2003). The “Quality Pork GENES” project 

(www.qualityporkgenes.com) was initiated in order to create a unique phenotypic 

resource that could be exploited through the application of new functional genomics 

tools that determine differences in the transcriptome and proteome of muscle and relate 

this to the different aspects of meat quality. Cagnazzo et al. (2006) investigated the 

difference in the prenatal muscle-specific transcriptome profiles of Duroc and Pietrain 

pigs using microarray technology that contained more than 500 genes affecting 

myogenesis, energy metabolism, muscle structural genes, and other genes from a 

porcine muscle cDNA library. They conclude that the expression of the myogenesis-

related genes was greater in early Duroc embryos than in early Pietrain embryos (14 to 

49 d of gestation), whereas the opposite was found in late embryos (63 to 91 d of 

gestation). Their findings suggested the myogenesis process is more intense in early 

Duroc embryos than in Pietrain embryos but that myogenesis is more intense in late 

Pietrain fetuses than in Duroc fetuses. Murani et al. (2007) profiled the transcriptome 

changes during the myogenesis in vivo. In order to address this, they performed 

transcriptome profiling of prenatal skeletal muscle using differential display RT-PCR as 

on open system with the potential to detect novel transcripts. Seven key stages of 

myogenesis (days 14, 21, 35, 49, 63, 77 and 91 post conceptions) were studied in two 

breeds, Pietrain and Duroc, differing markedly in muscularity and muscle structure. 

Eighty prominent cDNA fragments were sequenced, 43 showing stage-associated and 

37 showing breed-associated differences in the expression, respectively. Out of the 

resulting 85 unique expressed sequence tags, EST, 52 could be assigned to known 

genes. The most frequent functional categories represented genes encoding myofibrillar 

proteins, genes involved in cell adhesion, cell-cell signaling and extracellular matrix 

synthesis/remodeling, genes regulating gene expression, and metabolism genes. Some 

of the EST that showed no identity to any known transcripts in the databases are located 

in introns of known genes and most likely represent novel exons (e.g. high mobility 

group AT-hook 2; HMGA2). Expression of thirteen transcripts along with five reference 

genes was further analyzed by means of real-time quantitative PCR. Nine of the target 

transcripts showed higher than two-fold differences in the expression between the two 

breeds (GATA3, HMGA2, NRAP, SMC6L1, SPP1, RAB6IP2, TJP1 and two EST). Their 

study revealed several genes and novel transcripts not previously associated with 

myogenesis. Moreover, they also gained knowledge of genetic factors operating during 
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myogenesis. Genes that exhibited differences between the divergent breeds represent 

candidate genes for muscle growth and structure.  

Te Pas et al. (2005) studied expression profiles of genes known to affect myogenesis, 

muscle structural proteins, and energy metabolism in prenatal pigs from 14 to 91 days 

of gestation by using microarray technology. Gene activation and repression profiles 

were studied counting the number of spots with detectable signal. The number of spots 

for muscle tissue structural protein genes showing upregulated expression increased 

constantly from day 14 until day 91 of gestation indicating continued activation of 

genes during this period. The mRNA expression level of the genes showed a peak 

around day 35 of gestation. The expression levels of genes affecting myogenic 

differentiation (stimulating and inhibiting) showed a peak at day 35 of gestation. The 

number of spots for differentiation-stimulating genes showing differential expression 

reaches a first peak around day 35 of gestation and a nadir at day 49 of gestation while 

the number of spots for differentiation-inhibiting genes reaches a nadir at day 35 of 

gestation. Myogenic differentiation seems less a matter of the expression level of genes 

affecting differentiation, but depends on the balance between the number of 

significantly activated genes for stimulating and inhibiting differentiation. Genes 

stimulating myoblast proliferation showed a small peak expression prior to day 35 of 

gestation indicating myoblast proliferation before differentiation. The number of spots 

and the expression levels of genes for glycolysis and ATP-metabolism are at a nadir 

around days 35 and 49-63 of gestation suggesting that the energy metabolism is low 

during fusion of myoblasts into multinucleated muscle fibers. 

Schulz et al. (2006) developed microarrays to profile the level of proteins associated 

with calcium regulation in sarcoplasmic reticulum (SR) isolated from porcine 

longissimus dorsi muscle. The microarrays consisted of SR preparations printed onto to 

glass slides and probed with monoclonal antibodies to 7 target proteins. Proteins 

investigated included: ryanodine receptor, (RyR), dihydropyridine receptor, (DHPR), 

triadin (TRI), calsequestrin (CSQ), 90 kDa junctional protein (JSR90), and fast-twitch 

and slow-twitch SR calcium ATPases (SERCA1 and SERCA2). The microarray 

developed was also employed to profile Longissimus muscle SR proteins from 

halothane genotyped animals. Significant (p<0.05) reductions in levels of several 

proteins were found including: RyR, CSQ, TRI, DHPR and SERCA2 in SR samples 

from halothane positive animals. Their results illustrated the potential of microarrays as 
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a tool for profiling SR proteins and aiding investigations of calcium regulation. Lin and 

Hsu (2005) compared gene transcription profiles of longissimus dorsi (LD) muscle 

between two pig breeds, Duroc and Taoyuan, which display dramatically different 

postnatal muscle growth. They isolated LD from neonatal pigs, and the Duroc muscle 

length and mass were greater (p<0.01) than for Taoyuan pigs; however, insignificant 

differences in the muscle fiber area and the percentage of fiber types were found. A 

human high-density complementary DNA (cDNA) microarray consisting of 9,182 

probes was used to compare gene transcription profiles of LM between the two breeds. 

The results showed that the transcription level of 73 genes and 44 genes in Duroc LD 

were up-regulated and down-regulated by at least 1.75-fold (p<0.05) compared with 

Taoyuan, respectively. The strongly up-regulated genes in Duroc pigs included those 

encoding the complex of myofibrillar proteins (e.g., myosin light and heavy chains, and 

troponin), ribosomal proteins, transcription regulatory proteins (e.g., skeletal muscle 

LIM protein 1; SLIM1 and high-mobility group proteins), and energy metabolic 

enzymes (e.g., electron-transferring flavo-protein dehydrogenase, NADH 

dehydrogenase, malate dehydrogenase, and ATP synthases). The highly transcribed 

genes that encode energy metabolic enzymes indicate a more glycolytic metabolism in 

Duroc LD, thereby favoring carbohydrates rather than lipids for use as energy substrates 

in this tissue. The over-transcribed genes that encode skeletal muscle predominant 

proteins or transcription regulators that control myogenesis and/or muscle growth 

suggest a general mechanism for the observed higher rate of postnatal muscle growth in 

Duroc pigs. The transcription of one such gene, SLIM1, was more highly transcribed 

(p<0.01) in Duroc LM at birth and at postnatal d 7 than in Taoyuan. The transcription of 

SLIM1 increased (p<0.05) in Duroc LD from neonate through 7 d of age, whereas its 

transcription remained essentially constant in Taoyuan during this period. They 

suggested that SLIM1 may be useful for the development of markers associated with the 

postnatal muscle growth of pigs. Muscle tenderness is an important complex trait for 

meat quality and thus for genetic improvement through animal breeding. However, the 

physiological or genetic control of tenderness development in muscle is still poorly 

understood. Lobjois et al. (2008) by using transcriptome analysis, found a relationship 

between gene expression variability and tenderness. Muscle (longissimus dorsi) samples 

from 30 F2 pigs were characterized by Warner-Bratzler Shear Force (WBSF) on cooked 

meat as a measurement of muscle tenderness. Gene expression levels were measured 
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using microarrays for 17 muscle samples selected to represent a range of WBSF values. 

Using a linear regression model, they determined that samples with WBSF values above 

30 N could be effectively analysed for genes exhibiting a significant association of their 

expression level on shear force (FDR<0.05). These genes were shown to be involved in 

three functional networks: cell cycle, energy metabolism and muscle development. 

Twenty two genes were mapped on the pig genome and 12 were found to be located in 

regions previously reported to contain quantitative trait loci (QTL) affecting pig meat 

tenderness (chromosomes 2, 6 and 13). Some genes appear therefore as positional 

candidate genes for relevant QTL. There is considerable variation in the water-holding 

capacity of meat affecting economy of meat production. Water holding-capacity 

depends on numerous genetic and environmental factors relevant to structural and 

biochemical muscle fibre properties a well as ante and post slaughter metabolic 

processes. Microarray analysis of M. longissimus dorsi RNAs of 74 F2 animals of a 

resource population showed 1,279 transcripts with trait correlated expression to water-

holding capacity (Ponsuksili et al. 2008a). Negatively correlated transcripts were 

enriched in functional categories and pathways like extracellular matrix receptor 

interaction and calcium signalling. Transcripts with positive correlation dominantly 

represented biochemical processes including oxidative phosphorylation, mitochondrial 

pathways, as well as transporter activity. A linkage analysis of abundance of trait 

correlated transcripts revealed 897 expression QTL (eQTL) with 104 eQTL coinciding 

with QTL regions for water holding capacity; 96 transcripts had trans-acting and 8 had 

cis-acting regulation. Moreover, they concluded, holistic expression profiling was 

integrated with QTL analysis for the trait of interest and for gene expression levels for 

creation of a priority list of genes out of the orchestra of genes of biological networks 

relevant to the liability to develop elevated drip loss (Ponsuksili et al. 2008a; Ponsuksili 

et al. 2008b).  

 

2.3.2 Expression QTL (eQTL) and applications in farm animals 

 

With the emergence of genome-wide gene expression arrays in the late 1990s it has 

become possible to consider genome-wide studies aimed at dissecting the genetic 

regulation of gene expression. Jansen and Nap (2001) published the formal description 

of this new research area and coined it genetical genomics. The study of expression 
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quantitative loci (eQTL) associates genetic variation in populations with variation of 

gene expression in order to pinpoint polymorphic genetic regions affecting gene 

expression. Conceptually eQTL are very simple: if the genotype at a certain locus is 

correlated with the phenotype (i.e. gene expression) of a certain gene, this region 

potentially contains a specific regulator of the target gene’s expression (Michaelson et 

al. 2009; Rockman and Kruglyak 2006). These polymorphic regulators maybe protein 

coding regions, microRNAs, cis-regulator motifs, or other functional nucleotide 

sequences (Michaelson et al. 2009). In order to detect such genomic regions one has to 

genotype genetically diverse individuals and measures their expression pattern using, 

for example microarrays, quantitative real-time PCR or deep sequencing technologies. 

High correlations between a marker and the expression of specific gene constitute an 

eQTL. One of the most powerful features of this approach is the ability to discriminate 

between cis- and trans-acting influences on gene expression and potentially to dissect 

complex regulatory networks (Li et al. 2006; Li et al. 2005). A cis-acting eQTL maps to 

the physical location of the gene itself, whereas a trans-acting eQTL maps to a genomic 

region that is distant from the physical location of the gene being transcribed. By 

combining the genomic position of the gene encoding each transcript and the position of 

its eQTL, it is possible to discriminate between cis- and trans-regulatory control 

elements of gene expression for thousands of genes across the genome (Li et al. 2006; 

Li et al. 2005). 

A number of genetical genomics studies show that sequence variation in cis-acting 

genes plays a considerable role in determining detectable variability in gene expression, 

and, accordingly, cis effects are usually mapped with high statistical significance 

(Hubner et al. 2005; Schadt et al. 2003). Cis-acting genes are generally easier to detect 

by linkage, since they explain a large fraction of the variance of gene expression, and 

are of great interest as positional candidates for physiological quantitative trait loci 

(QTLs) (Doss et al. 2005). Although trans-eQTLs may be associated with lesser 

statistical significance, they are often detected as clusters, reflecting coordinated 

regulation of many genes by a single “master regulator” (Yvert et al. 2003). Variation in 

gene expression is heritable and Petretto et al. (2006) report the influence of heritability 

and allelic effect of the quantitative trait locus on detection of cis- and trans-acting 

eQTLs and discuss how these factors operate in four different tissue-specific context. 



Literature review 
 

21 

They concluded, the median h2 ranges from a minimum of 0.14 for the trans-eQTLs to a 

maximum of 0.37 for the cis-eQTLs.  

Selecting a population for an eQTL study is an important factor affecting the outcome 

of experiment. The main difference among population is the degree of homozygosity, 

and the relatedness of individuals (Michaelson et al. 2009). Many different designs in 

different studies such as recombinant inbred strains (RILs), heteregenous stocks or other 

outbred populations can be used for the experiment. RILs are derived from two parental 

strains and have the advantage that individuals are homozygous at every marker and one 

can generate many identical individuals when it is needed. This mating design is mainly 

used for mice and rat studies (Tesson and Jansen 2009). This set up could be changed 

by inbred lines that were not derived from same parental strains. This creates more 

genetically diverse population. McClurg et al. (2007) used mouse diversity panel in 

their eQTL study and stated the advantages of this panel compared to traditional F2 

mapping populations. The third one, outbred population approach provides the largest 

genetic diversity. This design has been carried out in the human and livestock eQTL 

studies (Ponsuksili et al. 2008a).  

Different strategies for eQTL mapping were published. Jia and Xu (2007) reviewed two 

simple approaches. Individual transcript analysis in which a single expression trait is 

mapped at a time and the entire eQTL mapping involves separate analysis of thousands 

of traits and secondly individual marker analysis where differentially expressed 

transcripts are detected on the basis of their association and with the segregation pattern 

of an individual marker and the entire analysis requires scanning markers of the entire 

genome. The first approach requires single-trait QTL mapping (interval mapping), 

composite interval mapping or multiple QTL mapping. On the other hand, the second 

approach requires only a method for differential expression analysis, hierarchical 

mixture model or model based cluster analysis. They suggested a Bayesian clustering 

method that analyzes all expressed transcripts and markers jointly in a single model. 

This approach covers: a transcript may be simultaneously associated with multiple 

markers and additionally, a marker simultaneously alters the expression of multiple 

transcripts. Univariate mapping method which correlates one marker at a time with 

expression of the target gene. Linear model concept is the established univariate method 

for eQTL mapping. This depends on observed variation broken into component 

attributed to the eQTL under consideration, and another component of residual or 



Literature review 
 

22 

unexplained variation. Residual variation can contain environmental effect, effects from 

other genetic loci, or random noise. Two main algorithm could be considered under 

univariate methods: (1) Lander and Botstein (1989) suggested the term interval mapping 

which considers regression between ungenotyped intervals to markers flanking the 

intervals. Markers flanking the interval can be used to compute a probability 

distribution for the interval genotypes. (2) Haley and Knott (1992) improved the 

strategy of interval mapping which is proposed by Lander and Botstein (1989). They 

suggested a different parameterization of the linear model which incorporates additive 

and dominant effects.  

Removing the various factors other than genetic effect on gene expression is important. 

Recent studies have demonstrated the several confounding factors affect gene 

expressions and eQTL analysis: (1) sex specificity. It is well established that many 

genes are expressed in sex specific manner (Michaelson et al. 2009; Wang et al. 2006; 

Yang et al. 2006). By using equal number of sexes, only one sex or different statistical 

modelling which consider sex as covariable, this problem can be adressed. (2) It has 

been reported that sequence polymorphisms can affect the mRNA levels, especially cis-

acting factors. Microarray platforms which are using shorter oligonucleotides to probe 

the samples should be more affected compare to the platforms which are using longer 

probe sets. The relative effect of SNPs in probe regions is higher in shorter 

oligonucleotide platforms. Although, one can exclude probes with SNPs from the 

experiment, this could not be practical since not all SNPs are known in all populations. 

Another method was proposed by Alberts et al. (2007), they integrate hybridization 

errors due to SNPs in a multi-probe model. Nevertheless, this method is applicable in 

backcross, intercross and other experimental design with only Affymetrix GeneChips. 

(Alberts et al. 2005; Alberts et al. 2007; Ghazalpour et al. 2008; Walter et al. 2007). 

Batch affects cover the non-biological variations due to microarray design or 

experimental artefacts such as sample preparation or expression measurements (Akey et 

al. 2007; Branham et al. 2007; Vartanian et al. 2009). Recently, Ponsuksili et al. (2010) 

reported eQTL differences due to population size and expression measurement methods 

(microarray vs. qReal-Time PCR). They conclude, a global microarray eQTL analysis 

of a limited number of samples can be used for exploring functional and regulatory gene 

networks and scanning for cis eQTL, whereas the subsequent analysis of a subset of 
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likely cis-regulated genes by real-time RT-PCR in a larger number of samples is 

relevant to narrow down a QTL region by targeting these positional candidate genes. 

Association of eQTL data with complex traits were revealed in several publications. 

(Chen et al. 2008; Cookson et al. 2009; Schadt et al. 2005; Schadt et al. 2003; Wimmers 

et al. 2010). Most studies link trait associated loci to eQTL data by identifiying target 

genes whose expression is linked to the same or nearby locus (Michaelson et al. 2009). 

Although several eQTL studies have been performed in human (Franke and Jansen 

2009), model species (Tesson and Jansen 2009) and plants (Druka et al. 2009), a few 

studies has been conducted in farm animals. Potential and pitfalls of eQTL studies in 

livestock were reviewed by Haley and de Köning (2006). They concluded, most of the 

studies are too limited in size and design to unlock the full potential of the approach. 

Limited statistical power of studies exacerbates the problem of detection of false-

positive eQTL and some reported results should be interpreted with caution. However, 

combining expression studies with fine mapping has been proposed to facilitate the 

implementation of genetical genomis studies in farm animals (Haley and de Koning 

2006).  With the absence of recombinant inbred lines for livestock species, other options 

to increase the power of an eQTL design should be explored (de Koning et al. 2005). 

One possibility is to include knowledge about identified QTL into the design of the 

study. By selecting only individuals that are homozygous for the previously detected 

QTL (either ++ or −−) for disease challenge, expressionstudies and genome-wide 

molecular typing, the power to detect eQTL in the selected regions then becomes equal 

to that of an RI line (i.e. the same power as an F2 of twice the actual size) (de Koning et 

al. 2005). For immune traits, the combination of traditional QTL mapping with eQTL 

mapping will provide crucial information about the nature of the disease QTL. It will 

elucidate how a disease QTL affects gene expression following infection. Identification 

of genes that are affected by the eQTL provides a first step to unravelling the genetic 

pathway underlying the response to the disease challenge. The eQTL analysis may 

identify further regions related to the disease response that remained unnoticed or 

nonsignificant in the standard QTL analysis (de Koning et al. 2005). The same approach 

was successfully applied for meat quality in pigs (Ponsuksili et al. 2008a; Wimmers et 

al. 2010). Overlapping pQTL and eQTL regarding meat pH and drip loss elucidated 104 

genes, of those, 8 cis-acting and 96 trans-acting across the porcine genome. 

Kadarmideen et al. (2006) listed the benefits of eQTL in animal breeding. According to 
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them, the main uses of this systems genetics approach in quantitative genomics were 

shown to be in refinement of the identified QTL, candidate gene and SNP discovery, 

understanding gene-environment and gene-gene interactions, detection of candidate 

regulator genes/eQTL, discriminating multiple QTL/eQTL, and detection of pleiotropic 

QTL/eQTL, in addition to its use in reconstructing regulatory networks. The potential 

uses in animal breeding are direct selection on heritable gene expression measures, 

termed ‘‘expression assisted selection,’’ and genetical genomic selection of both QTL 

and eQTL based on breeding values of the respective genes, termed ‘‘expression-

assisted evaluation.’’ Moreover, in chickens, using the breast tissue samples, cis and 

trans-regulation of corresponding genes were identified on chicken chromosome 4 for 

the breast weight (de Koning et al. 2007).  

Although variety of eQTL mapping strategies in use and was published, there are two 

main approach; first correlation between the genotyping pattern at every individual 

marker and expression values and the second is deducing set of markers those explain 

the variation in expression values. When different confounding effects corrected, more 

accurate eQTL results would be handled to use in terms of expression assisted selection 

or genetical genomics selection. In farm animals, eQTL or SNPs within the eQTL 

regions can help us to predict traits that are difficult to measure on the farm and sex-

limited traits (e.g., disease susceptibility and health traits, reproductive traits, carcass 

quality, feed intake, milk production, reproduction). Such fast-track and reliable 

decisions have clear commercial benefits to animal breeders and producers. 

 

2.3.3 QTL analysis and important genes related to growth performance and meat quality 

traits 

 

Initially many QTL experiments were undertaken by using linkage maps to help 

determine regions underlying traits of importance to the pig industry. These early QTL 

scans used families developed by generally crossing European Wild Boar with a 

commercial breed or crossing the exotic Chinese Meishan breed with a commercial 

breed (Rothschild et al. 2007). The current release of the Pig QTL database contains 

5732 QTL representing 558 traits (www.animalgenome .org/QTLdb/pi.html) mostly for 

economically important traits like growth, carcass and meat quality. In QTL scan 

generally 300 to 700 pigs from F2 design were used, more recently, researchers have 
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used two commercial breeds for F2 families or larger synthetic lines or breed for 

candidate gene studies and large scale SNP association studies. Although, a lot of work 

has been carried out in finding potential genes or chromosome regions responsible for 

(or associated with) meat quality and processed meat products, the knowledge of genes 

and their interactions that are involved in meat properties are very limited. As a 

consequence, the understanding of meat quality on a genetic basis is scanty. Using the 

linkage analysis several QTL for the meat and carcass quality traits almost in all 

autosomes have been detected by using different pig crosses (Jennen et al. 2007; Liu et 

al. 2007; Liu et al. 2008; Ponsuksili et al. 2005; Wimmers et al. 2006; Wimmers et al. 

2007).  
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3 Materials and methods 

 

3.1 Materials 

 

3.1.1 Animals 

 

The animal population used for the meat quality and the genome scan was based on a 

Duroc / Pietrain F2 cross. A detailed description of the population structure was reported 

earlier (Liu et al. 2007; Liu et al. 2008). In this study, genetic information of three 

generations P, F1 and F2 and phenotypes from 300 F2 pigs were used. Crosses between 

these two breeds offer the possibility to identify the allelic variants responsible for their 

differences. This opportunity is particularly relevant since the corresponding variation is 

being exploited in the present breeding programs. The F1 generation was produced by 

mating of four Duroc boars to eight Pietrain sows and two Pietrain boars mating to five 

Duroc sows separately. The F1 animals were reciprocally assigned to produce the F2 

animals, therefore, 13 ‘DuPi’ F1 females were assigned to two ‘PiDu’ F1 boars and 14 

‘PiDu’ F1 females were assigned to three ‘DuPi’ F1 boars. 

All pigs were kept at the experimental research farm ‘Frankenforst’ of the University of 

Bonn and exposed to uniform environmental conditions. Piglets were weaned at 28 days 

of age and placed in collective pens in the post-weaning unit until 10 weeks of age. 

Male piglets were castrated. All animals were individually weighed at birth, at weaning, 

at the beginning and at the end of the testing, respectively. The F2 pigs were given an ad 

libitum diet containing 16 % crude protein, 1 % lysine, 0.6 % (methionine + cystine), 

0.6 % threonine and 13 MJ metabolize energy during the whole tetsting period from 10 

to 22 weeks of age, slaughtered approximately at 85 kg of slaughter weight, the average 

age at slaughter was 177 ± 15.6 days. A total of 1085 F2 pigs from 38 full-sib families 

were generated between May 2000 and October 2003. The 19 founder animals were 

tested and were found to be free of the mutation at the ryanodine receptor locus which is 

responsible for halothane susceptibility. Among these 1085 F2 animals, 300 animals 

were used for eQTL study. Skeletal muscle (longissimus dorsi) samples were collected 

for RNA isolation between 13th and 14th rib of each animal. All samples were taken 

immediately after slaughter in slaughterhouse. Muscle samples were snap frozen in 

liquid nitrogen after collection then stored at -80°C for further analysis. Figure 3.1 
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shows the picture of P, F1 and F2 animals and figure 3.2 show the the pedigree structure 

of DUPI population.  

 

 

Figure 3.1: Structure of the F2 Duroc / Pietrain (DUPI) resource population  

 

 

Figure 3.2: Pedigree structure of the Duroc / Pietrain (DUPI) F2 resource population. 

Adapted from Liu (2005)  
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3.1.2 Materials for laboratory analysis 

 

3.1.2.1 Chemicals, kits, biological and other materials 

 

Applied Biosystems (Foster City): SYBR® Green Universal PCR Master Mix 

Beckman Coulter (Krefeld): CEQ™ 8000 Genetic Analysis System, Dye Terminator 

Cycle Sequencing (DTCS), Glycogen  

Beckman Coulter (Krefeld): CEQ™ 8000 GenomeLab GeXP, Start Kit 

Beckman Coulter (Krefeld): CEQ™ 8000 GenomeLab GeXP, Thermo-Start® DNA 

polymerase 

Bio-Rad (Hercules) iTaq™ SYBR® Green Supermix with ROX 

Invitrogen Life Technologies (Karlsruhe): DTT, SuperScriptTM II RNase H- Reverse 

Transcriptase, 5 X first strand buffer, Random Primers 

MBI Fermentas (St. Leon-Rot): Glycogen 

Promega (Mannheim): BSA, pGEM®-T vector, RQ1 RNase-free DNase. RNasin 

Ribonuclease inhibitor, 2X rapid ligation buffer, T4 DNA ligase, ProntoTM 

Plus systems 

Qiagen (Hilden): RNeasy® Mini kit, QIAquick PCR Purification Kit, Mini EluteTM 

Reaction Cleanup Kit 

Roth (Karlsruhe): Acetic acid, Agar-Agar, Ampicillin, Bromophenol blue, Dimethyl 

sulfoxide (DMSO), Ethylenediaminetetraacetic acid (EDTA), Ethanol, 

Ethidium bromide, Hydrochloric acid, Isopropyl -D-thiogalactoside (IPTG), 

Kohrso1in FF, Nitric acid, Peptone, Potassium dihydrogen phosphate, 2- 

Propanol, Silver nitrate, Sodium acetate, Sodium carbonate, Sodium chioride, 

Sodium hydroxide, Trichloromethane/chiorophorm, Tris, X-Gal (5 -bromo-4-

chloro-3-indolylbeta-D-galactopyranoside), Yeast extract 

Sigma-Aldrich Chemie GmbH (Munich): Agarose, Ammonium acetate, Calcium 

chloride, Formaldehyde, GenEluteTM Plasmid Miniprep Kit, Glutamine, 

Hepes, Isopropanol, Magnesium chloride, 2-Mercaptoethanol, 

Ohigonucleotide primers, Penicillin, Phenol red solution, 10 X PCR reaction 

buffer, Potassium chloride, Sodium dodecyl sulfate (SDS), Taq DNA 

polymerase, yeast tRNA 

Stratagene (Amsterdam): 5 c DH Escherichia coli competent cells 
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USB (Ohio): ExoSAP-IT 

 

3.1.2.2 Buffers, reagents and media 

 

All solutions used in these investigations were prepared with deionized Millipore water 

(ddH2O) and pH was adjusted with sodium hydroxide (NaOH) or hydrochloric acid 

(HCl).   

LB-agar plate Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Agar-Agar 12.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O added to 800.0 ml 

   

LB-broth Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O added to 800.0 ml 

   

TBE (10x) buffer Tris  108.0 g 

 Boric acid  55.0 g 

 EDTA (0.5 M) 40.0 ml 

 ddH2O added to 1000.0 ml 

   

TAE (50x) buffer, pH 8.0 Tris  242.0 mg0  

 Acetic acid   57.1 ml  

 EDTA (0.5 M) 100.0 ml00 

 ddH2O added to 1000.0 ml 

   

TE (1x) buffer Tris (1 M) 10.0 ml 

 EDTA (0.5 M) 2.0 ml 

 ddH2O added to 1000.0 ml 
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X-gal X-gal 50.0 mg 

 N, N’-dimethylformamide 1.0 ml 

   

10x FA buffer, pH 7.0 MOPS 41.8 g 

 Sodium acetate 4.1 g 

 EDTA (0.5M) 20.0 ml  

 ddH2O added to 1000.0 ml 

   

1.2% FA gel Agarose 1.2 g 

 10 x FA buffer  10.0 ml 

 RNase free H2O 90.0 ml 

 Ethidium bromide 2.0 µl 

 Formaldehyde (37%) 1.8 ml 

Agarose loading buffer Bromophenol blue 0.0625 g 

 Xylencyanol 0.0625 g 

 Glycerol 7.5 ml 

 ddH2O added to 25 ml 

   

Digestion buffer NaCl 100 mM 

 Tris-HCl 50 mM 

 EDTA pH 8.0 1mM 

   

SDS solution Sodium dodecylsulfat in ddH2O 10% (w/v) 

   

Proteinase K solution Protein K in 1 x TE bufer 2% (w/v) 

   

dNTP solution dATP (100 mM) 10.0 µl 

 dCTP (100 mM) 10.0 µl 

 dGTP (100 mM) 10.0 µl 

 dTTP (100 mM) 10.0 µl 

 ddH2O added to 400.0 µl 
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IPTG solution IPTG 1.2 g 

 ddH2O added to 10.0 µl 

   

3M Sodium Acetate, pH 

5.2 

Sodium Acetate  123.1 g 

 ddH2O added to 500 ml 

   

1M EDTA, pH 8.0 EDTA 37.3 g 

 ddH2O added to 1000 ml 

   

Phenol Chloroform  Phenol : Chloroform 1 : 1 (v/v) 

 

 
3.1.2.3 Used softwares 

 

BLAST   http://www.ncbi.nlm.nih.gov/BLAST/ 

Multi sequence alignment http://prodes.toulouse.inra.fr/multalin/multalin.html 

Primer3   http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi   

CRI-MAP (version 2.4)  http://compgen.rutgers.edu/multimap/crimap/ 

SAS (version 9.2)   SAS Institute Inc., NC, USA 

Primer Express Software  Applied Biosystems, Foster city, CA, USA 

Express Designer                    Beckman Coulter GmbH, Krefeld, Germany 

Express Map                           Beckman Coulter GmbH, Krefeld, Germany 

 

3.1.2.4 Equipment 

 

ABI PRISM 7000 SDS Applied Biosystems, Foster city, USA 

Automated sequencer (LI-COR 4200)  MWG Biotech, Ebersberg 

Centrifuge Hermle, Wehingen 

CEQ™ 8000 Genetic Analysis System Beckman Coulter GmbH, Krefeld 

CEQ™ 8000 GenomeLab GeXP Beckman Coulter GmbH, Krefeld 

Electrophoresis (for agarose gels)  BioRad, Munich 
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Electrophoresis (vertical apparatus) Consort, Turnhout  

HERA safe Bioflow safety hood Heraeus Instruments, Meckenheim 

Incubator Heraeus, Hanau 

Millipore apparatus Millipore corporation, USA 

PCR thermocycler (PTC100) MJ Research, USA & BioRad, Germany 

pH meter Kohermann 

Savant SpeedVac TeleChem International, Sunnyvale 

Power supply PAC 3000 Biorad, Munich 

Spectrophotometer, Ultrospec™ 2100 pro 

UV/Visible 

Amersham Bioscience, Munich 

Thermalshake Gerhardt John Morris scientific, Melbourne 

Tuttnauer autoclave Connections unlimited, Wettenberg 

Ultra low freezer (-80oC) Labotect GmbH, Gottingen 

Sanyo, Japan 

UV Transilluminator (Uvi-tec) Uni Equip, Martinsried, Germany 

UV Transilluminator (Bio-Rad) Hercules, CA, USA 

Spectrophotometer (DU-62) Beckman, Unterschleissheim-Lohhof 

NanoDrop (ND-8000) Thermo Scientific, Wilmington, DE, 

USA 

 
 
3.2 Methods  

 

In this section, basic phenotyping and molecular genetics methods used in this study 

were described. After whole genome transcription profiling and data analysis, gene 

expression quantification methodologies and eQTL analysis were given. Figure 3.1 

explains the work flow for the given study.   
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Figure 3.1 Overview of the experimental design 

 

3.2.1 Phenotypes  

 

The phenotypic data of F2 animals were collected following the guidelines of the 

German performance testing procedures (ZDS 2003). The description of traits, numbers 

of records, means and standard deviation are summarised in result part. Meat pH value, 

and conductivity were measured using Star-series equipment (Rudolf Matthaeus 

Company, Germany). Muscle pH and conductivity measures were taken at 45 min post-

mortem and 24 h post-mortem in loin  (m. longissimus dorsi) between the 13th and 14th 

ribs, symbols of pH and conductivity are pH1L, pH24L, LF1L, LF24L respectively and 24 h 

post-mortem in the ham (musculus semimembranosus) (symbol: pH24si, LF24si), 

respectively. Muscle colour was measured at 24 h post-mortem by Opto-Star. Drip loss 

was scored using the bag method by a size-standardised sample from the longissimus 

dorsi that was collected at post-mortem. The sample was weighed, suspended in a 

plastic bag, held at 4°C for 48 h and re-weighed at the end of the holding time (Honikel 

1987). Drip loss was calculated as a percentage of weight loss based on the start weight 
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of a sample. To obtain cooking loss, a loin cube was taken from the longissimus dorsi, 

weighed, placed in a polyethylene bag and incubated in water at 75°C for 50 min. The 

bag was then immersed in flowing water at room temperature for 30 min and the solid 

portion was reweighed. Cooking loss was obtained as the difference of the sample 

weights before and after the treatment. Thawing loss was determined similarly after at 

least 24 h freezing at -20°C. Shear force was measured by the Instron-4310 equipment 

and replicated four times. 

 

3.2.2 DNA extraction 

 

A hundred mg of sample tissue was cut into small pieces and placed in a 1.5 ml tube, 

after that 700 µl of digestion buffer, 70 µl of 10% SDS and 18 µl of proteinase K for 

protein digestion was added. The mixture was incubated overnight at 37oC in a shaker at 

90 rpm. Completely digested tissue resulted in a viscous homogeneous solution. To 

extract DNA, 700 µl of phenol-chloroform was added into each tube and gently mix by 

several inversions until an emulsion formed. The mixture was separated into 3 phases 

after centrifugation at 10,000 rpm for 10 min, a lower phenol-chloroform phase, an 

interphase of precipitated protein and an upper phase containing DNA. The aqueous 

phase was transferred to another 2 ml tube followed by an addition of 700 µl chloroform 

and centrifugation at 10,000 rpm for 10 min. For DNA precipitation, the DNA phase 

was transferred to a fresh tube and mixed with 700 µl of isopropanol and 70 µl of 

sodium acetate. After centrifuging at 10,000 rpm for 5 min, a DNA pellet was collected 

and the supernatant was removed. The pellet was washed with 200 µl of 70% ethanol 

for the removal of excess salt and left air dry after centrifugation. In the final step, the 

pellet was dissolved in 200-500 µl of 1x TA buffer. The DNA concentration and 

integrity was evaluated by a spectrophotometer. The working solution of DNA was 

prepared by diluting stock DNA in 1x TA buffer to the concentration of 50 ng/µl. Stock 

DNA solution was stored at -20oC and the working solution was kept at 4oC. 

 

3.2.3 Marker analysis 

 

A linkage map with the total length of 2159.3 cM and an average marker interval of 

17.7 cM was constructed. P, F1 and F2 animals of the DUPI population were genotyped 
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at 122 markers loci covering all porcine autosomes. Marker positions and details of 

genotyping procedures were given in Liu et al. (2007) and for SSC1 in Große-

Brinkhaus et al. (2009). Most of the markers were selected from the USDA/MARC map 

(http://www.marc.usda.gov). They are also available in porcine genome drafts Sscrofa5 

(NCBI) and Sscrofa9 (Ensembl). Genotyping, electrophoresis, and allele determination 

were done using a LI-COR 4200 Automated Sequencer including the software 

OneDScan (Scanalytics). The CEQ8000 sequencer (Beckman Coulter) was used for 

genotyping of SSC1 and SSC18. Allele and inheritance genotyping errors were checked 

using Pedcheck software (version 1.1) (O'Connell and Weeks 1998). The relative 

positions of the markers were assigned using the build, twopoint and fixed options of 

CRI-Map software (version 2.4) (Green et al. 1990). Recombination units were 

converted to map distances using the Kosambi mapping function. Marker information 

content and segregation distortion were tested by following Knott et al. (1998).  

 

3.2.4 RNA isolation of muscle samples 

 

Total RNA was isolated from individual skeletal muscle (longissimus dorsi) by using 

Tri-Reagent (Sigma) according to the manufacturer’s protocol. In brief, muscle sample 

was first grinded in a mortar, then mixed and homogenized with 1 ml TriReagent using 

syringes and needles. To ensure complete dissociation of nucleoprotein complexes, the 

sample was allowed to stand for 5 min before adding 0.2 ml of chloroform. The mixture 

was shaken and left at room temperature for 10 min and centrifuged at 12,000 x g for 15 

min at 4oC. The upper aqueous phase was transferred to another fresh centrifuge tube 

and RNA was precipitated with 0.5 ml of isopropanol. After being incubated at room 

temperature for 10 min, the sample was centrifuged at 12,000 x g for 10 min at 4oC to 

get the RNA pellet, which was subsequently washed by 75% (v/v) ethanol. 

Centrifugation was then performed and the RNA pellet was air-dried and resuspended 

in 40 µl of DEPC treated water.  

In order to remove possible contamination of genomic DNA, the extracted RNA was 

treated with 5 µl RQ1 DNase buffer, 5 units DNase and 40 units of RNase inhibitor in a 

40 µl reaction volume. The mixture was incubated at 37oC for 1h followed by 

purification with the RNeasy Mini Kit. Concentration of clean-up RNA was determined 

spectrophotometrically by using the NanoDrop (ND-8000) instrument; the purity of 



Materials and methods 36

RNA was estimated by the ratio A260/A280 with respect to contaminants that absorb in 

the UV. Additional examination of integrity was done by denaturing agarose gel 

electrophoresis and ethidium bromide staining. Finally, the purified RNA was stored at 

-80oC for further analysis. 

 

3.2.5 Microarray analysis and selection of genes 

 

The RNA samples from skeletal muscle were sent to the Leibniz Institute for Farm 

Animal Biology in Dummerstorf. Immediately post mortem tissue samples were 

collected and snap frozen that were taken between the 13th and 14th rib from the center 

of Musculus longissimus dorsi of 74 animals. Animals were selected according to their 

drip loss, pH24ko and drip loss QTL genotypes based on SSC5 and 18. Total RNA was 

isolated as explained previous chapter. After DNaseI treatment the RNA was cleaned up 

using the RNeasy Kit (Qiagen). The quantity of RNA was established using the 

NanoDrop ND-1000 spectrophotometer (Peqlab) and the integrity was checked by 

running 1 µg of RNA on 1% agarose gel. In addition absence of DNA contamination 

was checked using the RNA as a template in standard PCR amplifying fragments of 

RPL32 and HPRT housekeeping genes. Muscle expression pattern were assessed using 

74 Porcine Genome Array which contains 23,937 probe sets that interrogate 

approximately 23,256 transcripts from 20,201 Sus scrofa genes. Preparation of target 

products, hybridization and scanning using the GeneChip scanner 3000 were performed 

according to Affymetrix protocols using 5 µg of total RNA to prepare antisense 

biotinylated RNA. The quality of hybridization was assessed in all samples following 

the manufacturer's recommendations. Data were analysed with Affymetrix GCOS 1.1.1 

software using global scaling to a target signal of 500. Data were then imported into 

Arrays Assist software (Stratagene Europe) for subsequent analysis. The data were 

processed with MAS5.0 to generate cell intensity files (present or absent). Quantitative 

expression levels of the present transcripts were estimated using PLIER (Probe 

Logarithmic Intensity Error) for normalization. The microarray data related to all 

samples have been deposited in the Gene Expression Omnibus (GEO) public repository 

(GEO accession number: GSE10204). 

In total 1279 genes with significant correlation of transcript abundance to drip loss were 

selected for eQTL linkage mapping. Among those, the eQTL analysis revealed 897 
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chromosome-wide significant eQTL detected in porcine autosomes. Combining QTL 

data for drip loss (pQTL) and eQTL data from the experiment, 104 significant eQTL 

were detected in the pQTL target regions for drip loss on SSC2, 3, 4, 5, 6, and 18. cis- 

and trans- acting regulation out of 104 eQTL that coincided with pQTL for drip, 96 

belong to genes that had trans-acting regulation of transcription, 8 genes had cis-acting 

transcriptional regulation. Details regarding microarray and eQTL experiment could be 

found in Ponsuksili et al. (2008a) and Ponsuksili et al. (2008b). From the 104 promising 

genes, twenty up- or down-regulated genes (Table 3.1) were selected according to their 

statistical power and functionality in skeletal muscle for further gene expression and 

eQTL analysis in the 300 DUPI animals. 

 

Table 3.1: Descriptive information of genes derived from microarray study  

 

Gene Affy. probe set ID Gene Acc. nr. 
Regu

lation 
Biological process 

A2M Ssc.16603.1.A1_at AY509877 ↑ 
Negative regulation of complement activation, 

lectin pathway 

ALB Ssc.10439.1.S1_at NM_001005208 ↓ 

Cellular response to starvation; hemolysis by 

symbiont of host erythrocytes; maintenance of 

mitochondrion location; negative regulation of 

apoptosis; transport 

AMBP Ssc.1894.1.S1_at X52087 ↓ 
Cell adhesion; heme catabolic process; transport; 

negative regulation of immune response 

ANGPTL4 Ssc.17345.1.S1_at NM_001038644 ↑ Angiogenesis; differentiation  

APOA1 Ssc.807.1.S1_at NM_214398  
Cholesterol metabolism; lipid metabolism; lipid 

transport 

APOC3 Ssc.1039.1.S1_at NM_001002801 ↓ Lipid degradation; lipid transport; transport 

ATF4 Ssc.11072.2.A1_at NM_001123078 ↑ Transcription; transcription regulation 

CAPNS1 
Ssc.7158.1.A1_a_

at 
NM_214318 ↓ 

Positive regulation of cell proliferation, calcium 

metabolism 

CYP2C33 Ssc.955.1.S1_at NM_214414 ↓ Oxidation reduction; drug metabolic process 

GC Ssc.2992.1.A1_at AY710291 ↓ Transport of vitamin D sterols 

GSTA2 Ssc.8516.1.A1_at NM_214389 ↓ Metabolic process 

PI Ssc.7090.1.A1_at NM_214395 ↓ Acute-phase response; blood coagulation  

PPARGC1 Ssc.16864.1.S1_at NM_213963 ↓ Transcription; transcription regulation 

PPP1R3B Ssc.6382.1.A1_at BW971859 ↓ Carbonhydrate metabolism; glycogen metabolism 

RBP4 Ssc.15695.1.S1_at NM_214057 ↓ Sensory transduction; transport; vision 

SERPINA3-2 Ssc.15773.1.S1_at NM_213787 ↓ 
Acute-phase response; regulation of lipid 

metabolic process 

TF Ssc.4222.1.S1_at X12386 ↓ Ion transport; iron transport, transport 
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TNC Ssc.16209.1.S1_at NM_214230 ↓ 
Cell adhesion; response to wounding; signal 

transduction 

TTR Ssc.640.1.S1_at NM_214212 ↓ Thyroid hormone generation; transport 

TYROBP Ssc.507.1.A1_at NM_214202 ↑ 
Cellular defence response; intracellular signalling 

cascade 

↑ up-regulation 

↓ down-regulation 

 
3.2.6 Reverse transcription and cDNA synthesis 

 

First-strand cDNA was synthesized from individual RNA using SuperScript II enzyme. 

The reaction started by adding 1 µl of Oligo (dT)15 primer (100 µM) and 1 µl random 

primer to 1 µg of total RNA for annealing by incubation at 68oC for 5 min followed by 

cooling on ice for 2 min. A transcription mixture including 4 µl first strand 5X buffer, 1 

µl 0.1 DTT, 1 µl dNTP mix (10 mM each), 1 µl (200 units) SuperScript II reverse 

transcriptase, 1 µl (40 units) of RNasin Ribonuclease inhibitor and RNase-free water 

was prepared to make a final volume of 20 µl. The reaction was incubated at 25oC for 5 

min followed by 42oC for 1h and stopped by heating at 70oC for 15 min. The resulting 

cDNA was tested with housekeeping gene 18S primers and kept at -20oC until use.  

 

3.2.7 PCR product purification 

 

The PCR product (20 µl) was separated by running in a 1% (w/v) agarose gel containing 

ethidium bromide (5 µl) in 1x TAE buffer. DNA fragment, which was visualized under 

an ultraviolet transilluminator, was cut and placed in a fresh tube at -20oC for 30 min 

before adding 600 µl of 1 x TE buffer to be homogenized. An equal volume (600 µl) of 

phenol: chloroform (1:1) was added, mixed and vortexed well. After centrifugation at 

14,000 g for 15 min at 4oC, the aqueous phase was carefully transferred to a new 

microcentrifuge tube. Subsequently, to remove the traced phenol, another 600 µl of 

chloroform was added, shaken vigorously and centrifuged for 10 min. The upper phase 

was transferred to a new tube and DNA was precipitated by adding double volume of 

cool absolute ethanol and 1:10 volume of 3 M sodium acetate (pH 5.2) acting to 

neutralize the highly charged phosphate backbone and promoting hydrophobic 

interactions. The solution was mixed gently and stored at -20oC overnight or 

alternatively at -80o for 2 hours. The DNA was later recovered by centrifugation at 
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14,000 g for 30 min at 4oC. To remove residual salt in the sample, the DNA pellet was 

washed by 75% (v/v) ethanol followed by drying at room temperature and resuspending 

in 7 µl of water. The purified cDNAs were kept at -20oC for ligation.  

As an alternative way, Qiagen QIAquick PCR purification kit (Cat nr: 28104) was used 

as well. QIAquick Kits contain a silica membrane assembly for binding of DNA in 

high-salt buffer and elution with low-salt buffer or water. The purification procedure 

removes primers, nucleotides, enzymes, mineral oil, salts, agarose, ethidium bromide, 

and other impurities from DNA samples. The binding buffer contains a pH indicator, 

allowing easy determination of the optimal pH for DNA binding. Nucleic acids adsorb 

to the silica-gel membrane in the high-salt conditions provided by the buffer. Impurities 

are washed away and pure DNA is eluted with a small volume of low-salt buffer 

provided or water, ready to use in all subsequent applications. 

 

3.2.8 Ligation  

 

Ligation of a PCR fragment into plasmid pGEM-T vector was done in a 5 µl reaction 

mix containing 2.5 µl of 2x ligation buffer, 0.5 µl of  pGEM-T (50 µg/µl), 0.5 µl of T4 

DNA ligase (3 units/µl) and 1.5 µl target template. The reaction was incubated at room 

temperature for 1h or, to get a maximum of transformants, at 4oC overnight. 

 

3.2.9 Transformation 

 

For DNA transformation, the entire ligation reaction was added to an aliquot of 60 µl 

competent JM109 Escherichia coli (E. coli) cells and incubated on ice for 20 min.  This 

mixture was then heat-shocked briefly in a 42oC water bath for 90 sec and immediately 

returned to ice for 2 min. Next, an addition of 600 µl nutrient medium (LB-broth) was 

performed and all were incubated at 37oC for 90 min in a shaker. At the same time, 

ampicillin treated LB-agar (50 mg/L LB-agar) plates including 20 µl of X-Gal (50 

mg/ml in N, N’-dimethyl-formamide) and 20 µl of IPTG were prepared. At the end of 

incubation period, the transformation culture was plated on two previously prepared 

LB-agar plates and incubated at 37oC overnight.  
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3.2.10 Colony screening and plasmid DNA isolation 

 

Colonies were screened based on the activity of β-galactosidase as white and blue for 

the presence and absence of insert DNA fragments. Three white colony representatives 

from each plate were picked up and suspended in 30 µl 1x buffer for M13 PCR for 

further confirmation of transformation. The same colonies were cultured in 600 µl 

ampicillin/LB-broth (5 mg / 100 ml) in a shaking incubator at 37oC for further plasmid 

isolation. In addition, to be used as a control for later comparison of the length of 

amplified DNA fragments, a blue colony was also selected from any plate.  

Plasmid DNA was isolated by using GenEluteTM Plasmid Miniprep Kit followed the 

manufacturer’s instructions. Briefly, 5 ml of bacterial culture were centrifuged at 14,000 

g for 1 min for harvesting cells, the supernatant was discarded. These cells were 

resuspended and vortexed in 200 µl of resuspension solution before adding 200 µl of 

lysis solution to lyse the solution. The mixture was subsequently mixed by inversion of 

tubes until it became clear and viscous. After incubating at room temperature for 4 min, 

cell precipitation was done by adding 350 µl of neutralization/binding buffer, mixed 

gently and centrifuged at 14000 g for 10 min. At the same time, the GeneElute Miniprep 

column was prepared by adding 500 µl of preparation solution, centrifuging shortly and 

discarding the flow-through. After that, the clear supernatant was transferred to this 

binding column and centrifuged at 14000 g for 1 min. The flow-through was discarded 

and the column was washed by adding 750 µl of wash solution followed by 

centrifugation at 14000 g for 1 min. To elute DNA, the column was transferred to a 

fresh collection tube; 50 µl of ddH2O was added and centrifuged at 14000 g for 1 min. 

The column was discarded and the DNA plasmid was then collected. 

For determination of plasmid size and quality, 5 µl of plasmid together with 2 µl 

loading buffer was checked by agarose gel electrophoresis. In addition, the quantity of 

plasmid was also measured by reading the absorbance at 260 nm in a spectrophotometer 

UV/visible light (Beckman Du® 62). An aliquot of DNA plasmid was subjected to 

sequence check; the rest was stored at -20oC to be used as template for setting up the 

standard curve in real-time PCR.  
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3.2.11 M13 PCR and sequencing for product confirmation 

 

M13 PCR was done to confirm the insertion of the fragment into the plasmid. Bacterial 

suspensions were boiled at 95oC for 15 min and these lysed bacterial solutions were 

used as templates. The M13 PCR was carried out in a 20 µl reaction including 1 µl 10x 

PCR buffer, 10 µl lysed bacterial solution, 0.5 µl dNTP (10 mM), 0.5 µl (10 µM) of 

each M13 primer (forward: 5’-TTGTAAAACGACGGCCAGT-3’; reverse: 5’-

CAGGAAACAGCTATGACC-3’) and 0.1 Unit of Taq polymerase. The PCR reaction 

was performed with a thermal cycling program of 95oC for 5 min followed by 35 cycles 

of 94oC for 30 sec, 60oC for 30 sec, 70oC for 1 min and an additional extension step for 

5 min at 70oC. An aliquot of 5 µl PCR product was then electrophoresed in 2% (w/v) 

agarose gel with 0.8 µg/ml ethidium bromide in 1 x TAE buffer. Under UV-

transilluminator, length differentiation of PCR fragments was identified. The M13 PCR 

products from white colonies were selected for subsequent sequencing while bacterial 

cultures of these colonies were expanded in a volume of 5 ml and incubated at 37oC 

overnight in a shaking incubator for plasmid isolation. 

The M13 products were used as templates for sequencing according to the dideoxy 

chain-termination method using SequiTherm ExcelTM II DNA Sequencing Kit 

(Epicentre Technologies, Biozym). For each PCR fragment, four sequencing reactions 

were prepared with different termination mix solutions namely deaza-dATP, ddCTP, 

ddTTP, ddGTP in a total volume of 3 µl containing 1 µl of termination mix and 2 µl of 

premix solution, which included of 3.5 µl of 3.5X sequencing buffer, 0.25 µl of 700-

IRD labeled primer SP6 (10 µM): 5’-TAAATCCACTGTGATATCTTATG-3’, 0.25 µl 

of 800-IRD labeled primer T7 (10 µM): 5’-ATTATGCTGAGTGATATCCCGCT-3’, 5 

units of SequiTherm Excel II DNA polymerase and 3.9 µl  PCR products. These 

sequencing reactions were carried out at 95oC for 3 min followed by 29 cycles of 95oC 

for 15 sec, 59 oC for 15 sec, and 70oC for 1 min and the reactions were ended by adding 

1.5 µl of stopping buffer. The sequence reaction products were then denatured at 95oC 

for 5 min and immediately kept on ice and loaded on a 6% Sequagel XR sequencing 

gel, 41 cm in length (National Diagnostics, Biozym). Electrophoresis was performed 

overnight (or at least 6h) in 1 x TBE buffer at 50oC, 50 W and 1200 V in the LI-COR 



Materials and methods 42

4200 automated DNA sequencer. The gel image was later analyzed by Image Analysis 

Program version 4.10 (LI-COR Biotechnology).  

The results from sequence analysis were compared with published sequences using the 

BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/). Plasmids from those clones 

with identity percentage higher than 90% were considered significant similarity and 

were isolated for downstream application.  

 

3.2.12 Quantitative Real-Time PCR (qPCR) 

 

qRT-PCR was carried out in an ABI Prism 7000 SDS instrument based on the changes 

in fluorescence proportional to the increase of product. SYBR Green, which emits a 

fluorescent signal upon binding to double stranded DNA, was used as a detector. 

Fluorescence values were recorded during every cycle representing the amount of 

product amplified to a point known as threshold cycle (Ct). The higher the initial 

transcript amount, the sooner accumulated product was detected in the PCR process. 

The plasmid serial dilution was prepared by converting concentration of plasmid (ng/µl) 

into numbers of molecules using the website http://molbiol.ru/eng/scripts/01_07.html. 

The plasmid concentration was diluted several folds from 101 to 109 so that the 

concentration would cover the range of target concentration in the muscle samples. A 

further step was to start the PCR assay to test whether a suitable standard curve could be 

achieved for high PCR efficiency. 

Prior to quantification, the optimum primer concentration was obtained by trying 

different combinations from 200 nM to 600 nM. Results from these primer 

combinations were compared and the one with lowest threshold cycle and minimizing 

non-specific amplification was selected for subsequent reaction. After selection of 

primer concentration, a final assay consisted of 1 µl cDNA as template, up and down 

stream primers and SYBR Green Universal PCR Master Mix containing SYBR Green I 

Dye, AmpliTaq Gold DNA polymerase, dNTPs with dUTP, passive reference and 

optimized buffer components were performed in a total volume of 20 µl reaction. 

Thermal parameters used to amplify the template started with an initial denaturation at 

95oC for 10 min followed by 40 cycles of 95oC for 15s denaturation and 60oC for 1 min 

annealing and extension. A dissociation curve was generated at the end of the last cycle 

by collecting the fluorescence data at 60oC and taking measurements every 7s until the 
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temperature reached 95oC. Final quantification analysis was done by amplifying serial 

dilutions of target plasmid DNA. The concentration of unknown cDNA was calculated 

according to the standard curve, and expression level of transcripts was normalized 

relatively to the transcript of TBP, GAPDH and RPL32 genes. Table 3.2 presents the 

list of primers used in qPCR quantification. 

 

Table 3.2: List of primers used to quantify genes for eQTL analysis (qPCR)  

 

Gene Primer sequence 5'→3' 
Pro. size 
(bp) 

Ta 
(oC) 

Acc. nr. 

AMBP 
Fw: AAGGATCAGGAGCTGGACAA 
Rv: CAGCCACCATAGTGGAAGGT 

153 54 NM_001164006 

GC 
Fw: CCCACAAACAAAGATGCGTGT 
Rv: TCAGAGTGGCAGCATTCATCA 

151 54 AY710291 

PPP1R3B 
Fw: CGAAATCCAGCACGAAGGTC 
Rv: AGAAGCGGGTGTCCTTTGC 

164 54 AK236976 

TNC 
Fw: ACAATGAGATGCGGGTCACAG 
Rv: CGCTGACAGGAATGCTCTTCTT 

185 59 NM_214230 

GAPDH 
Fw: ACCCAGAAGACTGTGGATGG 
Rv: ACGCCTGCTTCACCACCTTC 

247 60 DQ845173             

RPL32 
Fw: AGCCCAAGATCGTCAAAAAG 
Rv: TGTTGCTCCCATAACCAATG 

164 54 NM_0010016361 

TBP 
Fw: GATGGACGTTCGGTTTAGG 
Rv: AGCAGCACAGTACGAGCAA 

124 60 DQ845178 

 
 
3.2.13 mRNA expression with GenomeLab (GeXP)  

 

Concentration of skeletal muscle RNAs were measured by using the NanoDrop ND-

8000 spectrophotometer and diluted to 10ng/µl. By using 5 µl of template our standard 

protocol entails the use of 50 ng RNA as starting material for reverse transcription (RT) 

with a pool of all reverse primers (Table 3.3) prepared at 50 nmol final concentrations in 

a 20 µL reaction volume. Each of these primers is chimeric, having a gene-specific and 

universal sequence. Gene specific primers are given in table 3.3. Primers are designed 

with the 5′ end containing a quasi-T7 universal sequence which serves as a template for 

universal primers for use in subsequent amplification steps. Kanamycin RNA internal 

positive control is also included and produces a peak at 326 bp when samples are 

separated via electrophoresis. The RT reaction was performed using Beckman Coulter 

(Fullerton, CA, USA) GenomeLab GeXP Start Kit under the conditions: 1 min at 48 °C, 

60 min at 42 °C, 5 min at 95 °C, hold at 4 °C, in a thermal cycler. All experiments 
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include “no template” (i.e. without RNA) and “no enzyme” (i.e. no reverse 

transcriptase) negative controls to confirm the absence of peaks at the expected target 

sizes. The “no template” sample produces a single peak at 326 bp, corresponding to the 

externally spiked-in kanamycin RNA. This control confirms that all reagents are 

satisfactory and that the experiment is technically sound. The template used for PCR 

was 9.3 µl of the 20-µl RT reaction with 20 nmol (final concentration) of each forward 

primer. Beckman Coulter Thermo-Start® DNA Polymerase (Beckman Coulter, 

Fullerton, CA, USA) was used for amplification conditions. Each of the forward 

primers contains an SP6 universal sequence at the 5′ end and a gene-specific sequence 

at the 3′ end (Table 3.2). The PCR reaction was performed in a thermal cycler under the 

conditions: 10 min at 95 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 55 °C, and 1 

min at 70 °C; hold at 4 °C. The procedure for sample preparation and subsequent 

analysis follows manufacturer’s instructions, and is described here briefly. Amplicons 

are resolved based on size, with fragments measuring between 137 and 348 bp. Sample 

loading solution was prepared by adding 28.5 µl SLS buffer (Beckman Coulter, 

Fullerton, CA, USA) and 0.50 µl size standard-400 (Beckman Coulter, Fullerton, CA, 

USA) to each reaction. PCR products were separated by the fragment analysis method 

(Frag-3) on the GeXP by diluting 1 µl PCR reaction with 29.0 µl sample loading 

solution. The GeXP software matches each fragment peak with the appropriate gene, 

and reports peak height and area-under-the-curve (AUC) for all peaks in the 

electropherogram. This data were exported from the Express Analysis module of the 

GeXP software as a tab-delimited file for subsequent analyses. Electrophoretic 

separation was done by eight capillary GenomeLab™ GeXP Genetic Analysis System 

(Beckman Coulter, Fullerton, CA, USA). The GeXP software matches each fragment 

peak with the appropriate gene, and reports peak height and AUC for all peaks in the 

electropherogram. This data can be exported from the Express Analysis module of the 

GeXP software as a tab-delimited file for subsequent analyses. The data set was 

exported from the GeXP software after normalization to kanamycin, with area-under-

the-curve (AUC) set to 1. This step minimizes inter-capillary variation. All multiplexes 

were combined into one Excel data file for further statistical analysis, data were stored 

and checked using a SQL based database system. 
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Table 3.3 Multi-plex primer sequences and descriptive information regarding genes 

used for the experiment 

 

Gene Affy. probe set ID  Accession nr. SSC BP  Multi-plex primer sequence 5'→3' 

A2M 
Ssc.16603.1.A1 

AY509877 5 263 Fw: AGCAGGAATCAGGTGAAACG 
Rv: GACTCTCCACCAAAGCAGGT 

ACTB  DQ845171  312 Fw: GACATCCGCAAGGACCTCTA 
Rv: CAGTCCGCCTAGAAGCATTT 

ALB 
Ssc.10439.1.S1 

NM_001005208 8q12 256 Fw: AGTCCTTGGTGAACAGACGG 
Rv: CAAAGTTGCCCAGGACAGTT 

AMBP 
Ssc.1894.1.S1 

X52087 1q 270 Fw: CGTCTCGGAGAAGGAGTGTC 
Rv: GCAGCAGCTCTTCATCCTCT 

ANGPTL4 
Ssc.17345.1.S1 

NM_001038644 2q21-q24 235 Fw: CTGGAGAGGCCTTTGATGAG 
Rv: TGACTGAATCTGCCATCGAG 

APOA1 
Ssc.807.1.S1 

NM_214398 9p12-p11 284 Fw: TTTGGGAAAACACCTCAACC 
Rv: CATCTTCTGGCGGTACGTCT 

APOC3 
Ssc.1039.1.S1 

NM_001002801 9p13 277 Fw: CTTCTTGTCGCTGGTCTCCT 
Rv: CCAGAAGTCGGTGAACTTGC 

ATF4 
Ssc.11072.2.A1 

NM_001123078 5 193 Fw: AAACCATGCCAGATGAGCTT 
Rv: TTTGCAAGAACGTAAAGGGG 

CAPNS1 
Ssc.7158.1.A1_a 

NM_214318 6q1.1-q1.2.  144 Fw: CATCTCATACCCGCTCCATT 
Rv: GGACTGATCCTCCCAGAACA 

CYP2C33 
Ssc.955.1.S1 

NM_214414 14 332 Fw: TCATTGGGAATCTGATGCAA 
Rv: ATCCCAAAGTTCCTCAGGGT 

GC 
Ssc.2992.1.A1 

AY710291 8 214 Fw: GAGCTGCCCGAATACACAGT 
Rv: ACACGCATCTTTGTTTGTGG 

GSTA2 
Ssc.8516.1.A1 

NM_214389 7p  223 Fw: GTGGCCTCGATCAAAGAAAA 
Rv: CTTCAGCAGAGGGAAGTTGG 

PI 
Ssc.7090.1.A1 

NM_214395 7q2.4-q2.6 298 Fw: AAATCTCTCCTGGGCAACCT 
Rv: TCCCATGAAGAGGACAGCTT 

PPARGC1 
Ssc.16864.1.S1 

NM_213963 8p21 165 Fw: TTGTCAACAGCAAAAGCCAC 
Rv: TGGAGGTGCACTTGTCTCTG 

PPP1R3B 
Ssc.6382.1.A1 

BW971859  14 186 Fw: ACCATGTCTGCCTGGAGAAC 
Rv: CACGTACCAGCAGGGAAAGT 

RBP4 
Ssc.15695.1.S1 

NM_214057 14 249 Fw: GAGAACTTCGACAAGGCTCG 
Rv: GGGTCCTCGGTGTCTGTAAA 

SERPINA3-2 
Ssc.15773.1.S1 

NM_213787 7q 158 Fw: ATGTCCCTCTTCCTGGCTCT 
Rv: GCAGCTTCTTGATCTGGTCC 

TBP  DQ178129  151 Fw: TCGGTTTAGGTTGCAGCAC 
Rv: GCAGCACAGTACGAGCAACT 

TF 
Ssc.4222.1.S1 

X12386 13q31 172 Fw: AGAACTGCTGGCTGGAA  
Rv: GCCGATACACAGAGCACAGA 

TNC 
Ssc.16209.1.S1 

NM_214230 1q 300 Fw: CTCATTGTGTACACGCCCAC 
Rv: ACGTTTCGAAAGCAATGTCC 

TTR 
Ssc.640.1.S1 

NM_214212 6 346 Fw: ATGGTCAAAGTCCTGGATGC 
Rv: AGAGTAGGGGCTAAGCAGGG 

HMBS 
 

NM_001097412  179 Fw: AAGGTGCCAAGAACATCCTG 
Rv: CTGGGGTAATCACTCCCTGA 

TYROBP 
Ssc.507.1.A1 

NM_214202  137 Fw: AGCCCAAATCAGGACAGTCA 
Rv: CTGTGGATCCGTATCCTGGT 
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3.3 Statistical analysis 

 

3.3.1 Statistical analysis of QTL 

 

3.3.1.1 Characterization of markers 

 

The heterozygosity is a widely used measure of allelic diversity or infortiveness of a 

genetic marker. The informativeness of a genetic marker increases as heterozygosity 

increases. The heterozygosity of a genetic marker is estimated by: 

 

∑
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Where pi is the frequency of the ith allele and k is the number of alleles (Nei 1987; Otto 

and Goldstein 1992)  

 

Alternative measure of the informativeness of a genetic marker in outbred species is the 

polymorphic information content (Botstein et al. 1980). The PIC of a genetic marker is 

estimated by: 
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Where pi is the frequency of the ith allele and k is the number of alleles (Botstein et al. 

1980; Otto and Goldstein 1992). Regarding to codominant marker PIC was developed 

for ascertaining the allele transmitted by an affected heterozygous parent carrying a 

dominant disease allele (Otto and Goldstein 1992). PIC estimates the probability that a 

co-dominant marker genotype of an offspring can be used to deduce which of two 

marker alleles were transmitted by a parent carrying a dominant disease allele. The term 

polymorphic information contetnt is alternatively and frequently used for heterozygosity 

and possibly other measures of marker informativeness.  
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3.3.3.2 Linkage analysis and genetic map construction 

 

The data obtained from genotyping were used to construct linkage maps. The data were 

firstly checked for any genotyping errors by using Pedcheck software (v. 1.1) 

(O'Connell and Weeks 1998). Then multi point linkage analyses were carried out for 

males and sex average with the CRI-Map software (v. 2.4) (Green 1990). Various Cri-

MAP options were used to determine the marker orders and marker distances within 

linkage groups. Recombination units were converted into map distances using Kosambi 

(Kosambi 1944) mappig function for eQTL mapping. The generated sex-average 

recombination units can be converted to Kosambi centimorgan by: 

 

M = ¼ ln (1+2R/1-2R), 

 

Where; 

M = map distance in Morgan 

R = recombination 

 

3.3.3.3 eQTL analysis 

 

eQTL analysis was performed using the regression approach implemented in “QTL 

Express” internet based publicly available software http://qtl.cap.ed.ac.uk/ (Seaton et al. 

2002). This program is designed for the analyses of three generation pedigrees derived 

from a cross between outbred lines. This approach assumes that the founder populations 

are fixed for alternative QTL alleles in F2 population. These two alleles will be denoted 

Q for the Duroc allele and q for the Pietrain allele. Under this assumption, the 

probability (P) of a F2 individual being one of four possible QTL genotypes p(QQ), 

p(Qq), p(qQ) or p(qq), conditional on the marker genotypes at any putative location in 

the genome, were computed as described Haley et al. (1994). Sex average distances 

were used in all analysis, since Knott et al. (1998) showed that using sex-specific map 

had limited effects on the results. The different hypothesis (linked QTLs, genomic 

imprinting) were tested by computing at every cM of the whole genome, the reduction 

in sum of squares (F-ratio test) caused by adding new components to a no-QTL and to 

one QTL models. By this procedure, the additive and dominance coefficients and the F-
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ratio values were calculated. The proportions of F2 phenotypic variance that was 

explained by QTL effects was calculated as reduction of the residual mean square 

within the F2 generation. The following equation was used: 

 

%Var = 
R

FR

MS

MSMS −
x 100 

Where, MSR was the mean of square of the reduced model; MSF was the mean of square 

of the full model. 

The QTL Express program including backcross/F2 dataset was used following an 

additive and dominant model with permutated chromosome-wide permutations at a total 

of 1000 iterations. The chromosome-wide analysis was done by measuring QTL for all 

traits at the same time. Relevant fixed effects for gene expression values including class 

effects and covariates were tested using GLM procedure of SAS (v. 9.2). Among fixed 

effects, sex as class effect and slaughter weight as co-variate were found to be non 

significant on expression of genes therefore they were excluded from the final model.      

 

The single QTL analysis was performed by F2 outbred design in QTL Express. The 

single QTL model with additive and dominance effects was fitted at 1-cM intervals 

along every single chromosome. A permutation method was used to obtain the 

empirical distribution of the test statistics with 1000 times permutation under the null 

hypothesis (no linked QTL) (Churchill and Doerge 1994). The 5% chromosome-wide 

threshold was considered the suggestive level and obtained as in the paper de Koning et 

al. (1999). The 95% confidence intervals (CI95) of eQTL were calculated by a bootstrap 

method based on 2000 replacement resampling (Visscher et al. 1996).  

 

Based on a robust two-step procedure for QTL mapping in the QTL Express program, 

marker genotypes were used to estimate the identity-by-descent (IBD) probabilities at 1-

cM intervals through chromosomes. These probabilities are used to calculate additive 

and dominance coefficients for a putative QTL at each position and the trait values are 

regressed onto these coefficients to calculate F-ratios testing the existence of a QTL at 

given position. Linear models are fitted to phenotypic data using a general linear model. 

For the genetic component in the linear model, a single or a two QTL model is fitted 

(Green et al. 1990).  
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One QTL regression model 

 

The regression analysis of the backcross population calculates the transmission 

probabilities using simple algorithm. The estimable allele substitution effect is defined 

by the QQ-qq, which contains both an additive and dominance part. If the effect of 

recurrent QTL genotype is larger than the effect of heterozygous genotype, the value is 

positive. The QTL regression model for single analysis was:     

 

Yi = µ + Si + caia+cdid+ εi [Model 1] 

 

where: 

Yi = phenotype (gene expression) of the ith offspring 

µ = overall mean 

Si = Fixed effect of slaughter day, i = 1-12 

cai = additive coefficient of the ith  individual at a putative QTL in the genome 

cdi = dominant coefficient of the ith individual at a putative QTL in the genome 

a = additive effects of a putative QTL 

d = dominant effects of a putative QTL 

εi = residual error  

 

 Two Mendelian QTL model 

 

To distinguish between the presence of one QTL and with large effect and two linked 

QTL with smaller effects, a two dimensional QTL search at 1-cM grid was carried out 

for those linkage groups, where significant evidence for one QTL was detected by one 

QTL model, also by the cofactor analysis. The presence of two QTL in the same linkage 

group was tested by adding additive and dominance effects for a second QTL in the 

model:    

 

Yi = µ + Si + cai1a1+cdi1d1+ cai2a2+ cdi2d2+εij [Model 2] 

 

Where, yi, µ, Si and εi have the same meaning as in model 1. a1, d1, a2 and d2 are the 

additive and dominance effects for QTL1 and QTL2 respectively. cai1, cai2, cdi1 and cdi2 



Materials and methods 50

are corresponding coefficients. Coefficients ca1, ca2, cd1 and cd2 were calculated 

conditional upon the markers, as follows: 

 

ca1=p1(QQ)-p1(qq) 

cd1=p1(Qq) 

ca2=p2(QQ)-p2(qq) 

cd2=p2(Qq) 

 

where: p1 and p2 are the probabilities for configurations QQ, Qq and qq in location1 

and location 2. A 1-cM grid search was performed in QTL Express by fitting model 2 to 

estimate the effects of two QTL at separate positions within the same linkage group 

simultaneously, examinig all possible pairs of locations, to test whether the two-QTL 

model explained significantly more variation than the best QTL from the one-QTL 

analysis. Two F-statistics were computed. The first F-value was obtained by contrasting 

model 2 with no QTL model with 4 df in the numerator (F4df). When F-ratio (F4df) 

reached the suggestive level threshold, a second F-value was calculated by contrasting 

model 2 with QTL model 1 with 2 df in the numerator (F2df). The presence of two QTL 

on the linkage group was concluded only when both F-statistics reached significant 

threshold.  

 

One QTL model with imprinting 

 

The presence of imprinting effects (i) was tested by considering the paternal or maternal 

origin of grandparental (Duroc or Pietrain) alleles, including the difference between two 

classes of heterozygotes in the model as suggested by Knott et al. (1998):    

 

Yi = µ + Si + caia+cdid+ ciii+ εi [Model 3] 

 

Where yi, µ, Si, a, d, cai, cdi and εi have the same meaning as in model 1. i is the 

imprinting effect, and cii = p(Q(from sire)q) – p(qQ(from dam)) is the corresponding 

coefficient. Model 3 was first contrasted to a no QTL model with 3 degrees of freedom 

in the numerator (F3df). When significant, model 3 was contrasted to the best one QTL 
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model (model 1) with 1 degree of freedom in the numerator (F1df), in order to test the 

significance of the imprinting effects. 

 

3.3.3.4 Significant threshold 

 

Detection of QTL was based on a F statistics that was computed from sums of squares 

explained by the additive and dominance (also inclusive imprinting effects if exists) 

coefficients for the QTL. The significant thresholds were determined empirically by 

data permutation test (Churchill and Doerge 1994). This empric method uses 

distribution of data from genotypes and phenotypes. In order to determine significant 

thresholds, a total of 1000 permutations were performed for each chromosome x trait 

combination. The chromosome-wide 1% and 5% significance threshold were calculated 

by QTL Express. The 1% and 5% experiment-wide significant thresholds were 

calculated by transformation with Bonferoni correction for 18 autosomes of the haploid 

porcine genome. As there were no markers genotyped on the X chromosome, 

transformation was done only for an experiment-wide, not for a genome-wide 

significant threshold level. The experiment-wide significance level was calculated by 

the following term: 

 

Pr = 
r

Pc)1(1 −−
 

 

where:  

r = length of a specific chromosome / sum of length of all chromosomes 

Pc = chromosome-wide significance threshold 

 

3.3.3.5 Gene expression association with meat quality traits 

  

Analysis of variance was performed to investigate the effects of gene expression on 

different meat quality traits. Descriptive statistics was calculated by using MEAN 

procedure of SAS (v. 9.2). Association of gene expression levels with meat quality traits 

were based on mixed model which was performed with the MIXED procedure of SAS. 

The fixed effect part of the model was derived using GLM procedure of SAS (v. 9.2). 
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Relevant fixed effects for meat quality traits as well as the corresponding proportion of 

variation explained by these effects (R2) were calculated as well. In the fixed effects, 

slaughter date and sex of the animal were accounted as class effects. Slaughter weight 

and gene expressions were included as a linear co-variable for meat quality traits. 

Family (Dam x Sire) were considered random affects for the mixed model. Sire and 

dam effects were also tested. However, according to fit statistics option of PROC 

MIXED based on the smaller value is better; sire and dam showed always highest 

values among sire, dam and sire x dam (family) factors. Thus, dam and family were 

considered as random effects for the mixed model. The regression between normalized 

gene expressions and meat quality traits was tested using mixed model (PROC MIXED) 

in SAS (v. 9.2). The following model was used: 

 

Yjkif = µ + sexj + slaughter datek + COV gene expressioni + COV slaughter weightf + 

εijkf  

where: 

Yijkf    

 

= observation ijkf for meat quality traits 

(pH1 loin, pH24 loin, drip loss, cook loss, 

thaw loss and shear force) 

µ   = overall mean 

sexj   = the fixed effect of sex j (j =1, 2) 

slaughter datek = the fixed effect of slaughter date k (k = 

1 to 12               levels) 

COV gene expressionj = the covariate of covariate i (i = 

expression of 20 genes) 

COV slaughter weightf   = the covariate of slaughter weight f (1 

level) 

εijkf = the residual error. 
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4 Results 
 

4.1 Meat quality traits  

 

Descriptive statistics for meat quality parameters, used for this study are shown in table 

4.1. The mean of 45 min pH post-mortem was 6.56 ± 0.21. After 24 hours post-mortem 

pH was measured as 5.49 ± 0.08 in loin. The ultimate pH in ham was measured slightly 

higher (5.63 ± 0.12) compared to pH24L. While measuring the pH, conductivity was also 

measured in two time points but only in loin; conductivity 45 min and 24 h post-mortem 

were recorded as 4.35 ± 0.62 and 2.79 ± 0.82, respectively. In DUPI population drip 

loss was measured only in loin. Drip loss was recorded as 2.07 ± 0.96 in loin using the 

bag method. Thereafter, thawing loss and cooking loss were measured and recorded as 

8.20 ± 1.86 and 24.68 ± 1.97, respectively. Shearforce was measured in three 

replications, and mean of these three values were recorded as population mean. It was 

detected as 35.18 ± 6.62.  

 

Table 4.1: Descriptive statistics of meat quality parameters 

 

Trait N Mean SE Minimum Maximum 
pH1L  331 6.56 0.21 5.91 7.02 
pH24L 331 5.49 0.08 5.30 5.84 
pH24H 331 5.63 0.12 5.38 6.37 
Conductivity1L 331 4.35 0.62 2.80 6.00 
Conductivity24L 331 2.79 0.82 1.60 9.20 
Drip loss 331 2.07 0.96 0.50 5.60 
Cooking loss 331 24.68 1.97 17.20 29.40 
Thaw loss 331 8.20 1.86 3.30 13.60 
Shear force 320 35.18 6.62 21.96 61.21 
Meat colour 331 69.03 5.76 49.00 85.00 
 

4.2 Transcript abundance 

  

In order to compare the expression level of 20 genes in muscle tissue samples derived 

from phenotypically differentiated for drip loss and muscle pH in 300 pigs, we analyzed 

the mRNA levels of longissimus dorsi muscle using the multi-plex gene quantification 

method. Descriptive statistics regarding AUC values of 20 genes is given in Table 4.2. 

The expression levels of all genes obtained from multi-plex were normalized to 
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geometric mean of actin, beta (ACTB) and TATA box-binding protein (TBP). The 

relative expressions of 20 genes are given in figure 4.1. The expression values are 

clustred as high, moderate and low. According to clustering, gene A2M, ANGPTL4, 

TYROBP, TNC and CAPNS1 were found to be in high gene expression group. 

SERPINA3-2, PPARGC1 and RBP4 were found in middle gene expression cluster. 

APOC3, ALB, PI, GC, PPP1R3B, GSTA2, ATF4, TTR, APOA1, CYP2C33, TF and 

AMBP were measured in low expression group. Figure 4.1 shows the three gene 

expression cluster among 20 genes.  

 

Table 4.2: Descritive statistics of A2M, ACTB, ALB, AMBP, ANGPTL4, APOA1, 

APOC3, ATF4, CAPNS1, CYP2C33, GC, GSTA2, HMBS, PI, PPARGC1, PPP1R3B, 

RBP4, SERPINA3-2, TBP, TF, TNC, TTR and TYROBP genes 

 

Gene N Mean SD Minimum Maximum 
A2M 300 51.11 90.90 0.83 728.49 
ACTB* 300 1570.83 2605.89 5.41 22.154.19 
ALB 300 3.85 2.59 0.11 25.90 
AMBP 300 2.70 1.94 0.08 17.86 
ANGPTL4 300 45.1 82.78 0.77 660.5 
APOA1 300 17.36 15.99 0.14 141.66 
APOC3 300 4.38 3.19 0.05 28.50 
ATF4 300 12.75 27.41 0.09 274.76 
CAPNS1 300 45.92 86.56 0.58 752.14 
CYP2C33 300 13.58 22.26 0.53 176.91 
GC 300 7.27 15.46 0.02 133.27 
GSTA2 300 16.95 12.36 0.67 105.96 
HMBS*

 300 1322.38 1384 93.95 17868.86 
PI 300 19.40 33.62 0.27 259.35 
PPARGC1 300 40.05 89.21 0.29 712.43 
PPP1R3B 300 4.10 2.82 0.15 26.87 
RBP4 300 28.4 39.41 0.56 372.95 
SERPINA3-2 300 20.47 19.00 0.23 152.46 
TBP* 300 2212.72 3919.86 26.72 41207.26 
TF 300 3.40 2.80 0.15 2.80 
TNC 300 49.69 109.33 0.16 1042.17 
TTR 300 2.72 2.24 0.05 22.00 
TYROBP 300 51.93 90.85 0.74 700.42 
 

* used as house keeping genes for gene expression normalization 
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Figure 4.1: Expression value of A2M, ACTB, ALB, AMBP, ANGPTL4, APOA1, APOC3, 

ATF4, CAPNS1, CYP2C33, GC, GSTA2, HMBS, PI, PPARGC1, PPP1R3B, RBP4, 

SERPINA3-2, TBP, TF, TNC, TTR and TYROBP genes based on the AUC of 

GenomeLab GeXP instrument. Figure shows low, moderate and high gene expression 

 

4.3 Validation of microarray results in A2M, ACTB, ALB, AMBP, ANGPTL4, APOA1, 

APOC3, ATF4, CAPNS1, CYP2C33, GC, GSTA2, HMBS, PI, PPARGC1, PPP1R3B, 

RBP4, SERPINA3-2, TBP, TF, TNC, TTR and TYROBP genes 

 

The validation of gene expression in high vs. low drip loss and muscle pH 24 h post-

mortem in loin confirmed the result of microarray. However, couple of genes showed 

different regulation between two systems. The genes APOC3, ALB, PI, A2M, PPP1R3B, 

GSTA2, ATF4, SERPINA3-2, PPARGC1, RBP4, TTR, CAPNS1, APOA1, CYP2C33, TF 

and AMBP were validated in high vs low drip loss group of animals. However, the 

genes GC, ANGPTL4, TYROBP and TNC were not validated in GenomeLab GeXP. The 

result of validation in drip loss is given in figure 4.2.  

In high vs low pH 24 h post-mortem in loin, APOC3, ALB, PI, A2M, GC, GSTA2, 

ANGPTL4, ATF4, SERPINA3-2, PPARGC1, RBP4, TYROBP, TNC, CAPNS1, 

CYP2C33 and AMBP were validated by GenomeLab GeXP. On the other hand, 

PPP1R3B, TTR, APOA1 and TF were not validated with the same system. The result of 

validation in drip loss is given in figure 4.3.  
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Figure 4.2: Validation of microarray results in high vs low drip loss animals 

 

 

Figure 4.3: Validation of microarray results in high vs low muscle pH animals 

 

4.4 Regression analysis between meat quality traits and expression of A2M, ALB, 

AMBP, ANGPTL4, APOA1, APOC3, CAPNS1, CYP2C33, GC, PI, PPARGC1, 

PPP1R3B, RBP4, SERPINA3-2, TF, TNC, TTR and TYROBP genes 

 

Regression analysis between meat quality traits and gene expressions showed that 

among twenty genes, 18 genes showed association with drip loss, thawing loss, cooking 

loss, pH24L, pH1L and shear force with different significancy levels (Table 4.3). The 

genes ALB, AMBP, CAPNS1, TNC and TYROBP were found to be associated with more 

than one trait (Table 4.3). Twelve genes including APOA1 (p = 0.06), ANGPTL4 (p = 
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0.09), APOC3 (p = 0.01), SERPINA3-2 (p = 0.06), RBP4 (p = 0.09), TYROBP (p = 

0.07), TNC (p = 0.07), CAPNS1 (p = 0.05), CYP2C33 (p = 0.08), PI (p = 0.05), A2M (p 

= 0.05), and PPARGC1 (p = 0.03) were showed association with drip loss trait. Among 

them APOC3 and PPARGC1 showed highly significant association with drip loss (p = 

0.01 and 0.03 respectively). Moreover, PPARGC1 gene was also detected to be up 

regulated in high drip loss group compared to low drip loss (p<0.05) (see figure 4.4). 

Additionally, three of genes, GC (p = 0.009), TYROBP (p = 0.04), TNC (p = 0.03) and 

CAPNS1 (p = 0.07) were associated with cooking loss beside drip loss as well. The gene 

expression of PPP1R3B (p = 0.01), ALB (p = 0.04) and AMBP (p = 0.04) were found to 

be associated with shear force. ALB (p = 0.06) was also found to be associated with 

thawing loss. Moreover, expression of AMBP was also associated with pH24L as detected 

also with shear force. An additional association between pH24 loin and expression of TF 

has been estimated (p = 0.06). The only association for pH1 loin has been found with the 

expression of TTR (p = 0.04).  

 

Table 4.3: Regression analysis between meat quality traits and expression of A2M, ALB, 

AMBP, ANGPTL4, APOA1, APOC3, CAPNS1, CYP2C33, GC, PI, PPARGC1, 

PPP1R3B, RBP4, SERPINA3-2, TF, TNC, TTR and TYROBP genes  

 

Fixed effects  
Random 
effect 

Traits 
R2  Gene 

Gene 
expression 

Slaughter 
date Sex Slaughter 

weight  Family 

pH24LD 0.27 TF * (0.06) *** * *  √ 
pH24LD 0.27 AMBP * (0.03) *** * *  √ 
pH1LD 0.22 TTR * (0.04) *** ns *  √ 
Drip loss 0.11 PPARGC1 * (0.03) ns ns **  √ 
Drip loss 0.10 APOC3 * (0.01) ns ns **  √ 
Drip loss 0.10 APOA1 * (0.06) ns ns **  √ 
Drip loss 0.10 SERPINA3-2 * (0.06) ns ns **  √ 
Drip loss 0.10 RBP4 * (0.09) ns ns **  √ 
Drip loss 0.10 TYROBP * (0.07) ns ns **  √ 
Drip loss 0.10 TNC * (0.07) ns ns **  √ 
Drip loss 0.10 CAPNS1 * (0.05) ns ns **  √ 
Drip loss 0.10 CYP2C33 * (0.08) ns ns **  √ 
Drip loss 0.10 PI * (0.05) ns ns **  √ 
Drip loss 0.10 A2M * (0.05) ns ns **  √ 
Drip loss 0.10 ANGPTL4 * (0.09) ns ns **  √ 
Thaw loss 0.12 ALB * (0.06) ** * *  √ 
Cook loss 0.24 GC ** (0.009) *** * ***  √ 
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Cook loss 0.23 CAPNS1 * (0.07) *** ns ***  √ 
Cook loss 0.23 TNC * (0.03) *** ns ***  √ 
Cook loss 0.24 TYROBP * (0.04) *** ns ***  √ 
Shear 
force 

0.17 PPP1R3B * (0.01) ** ** ns  √ 

Shear 
force 

0.16 ALB * (0.04) ** * ns  √ 

Shear 
force 

0.16 AMBP * (0.04) ** * ns  √ 

ns not significant 
*** (p<0.001), ** (p<0.01) and * (p<0.1) 
R-square values derived from general linear model. 
P values derived from mixed model. 
 

4.5 Step-wise regression analysis between meat quality traits and gene expression 

values 

 

In order to understand the relation between gene expression values and meat quality 

phenotypes stepwise regression was done additionally. Separate multiple regression 

models based on independent contrasts investigating the effects of gene expression and 

fixed effects on five different meat quality traits were done. The models were 

constructed by sequentially removing variables, keeping those with p<0.15. Each 

column contains one best regression model relating to that specific meat quality trait. 

Dashes indicate variables entered the model but excluded from the final best model.  

Stepwise regression tests showed that drip loss was positively correlated with slaughter 

weight and expression of the ALB gene (Table 4.4). Nevertheless, in regression analysis 

done by the MIXED procedure, no association could be detected in the same gene 

(Table 4.3). The pH1L was positively correlated with sex, season, slaughter weight and 

the expression of ANGPTL4, TF, ALB and AMBP genes. pH24H and pH24L were only 

positively correlated with sex, season and slaughter weight. Thawing loss was 

negatively correlated with sex and expression of GC, ALB and APOA1 whereas 

positively correlated with ANGPTL4 (Table 4.4).  
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Table 4.4: Stepwise multiple regression models: relation of gene expressions with meat 

quality traits 

 

 Meat quality traits (dependent variables) 

Independent variable 
included in the best 
model 

pH1L  pH24L  Cooking loss Thawing loss Drip loss 

Sex -- C(p)=26.72 
R2=0.15 
P<0.0001 

C(p)=12.429 
R2=0.27 
P=0.05 

C(p)=-1.368 
R2=0.03 
P=0.06 

-- 

Slaughter date C(p)=27.40 
R2=0.0808 
P<.0001 

C(p)=18.999 
R2=0.15 
P<.0001 

C(p)=18.062 
R2=0.24 
P<.0001 

-- -- 

Slaughter weight C(p)=23.21 
R2=0.0196 
P=0.017 

C(p)=4.503 
R2=0.214 
P=0.005 

C(p)=14.209 
R2=0.26 
P=0.01 

-- C(p)=1.460 
R2=0.037 
P=0.0015 

ALB C(p)=20.78 
R2=0.0141 
P=0.04 

-- -- C(p)=0.111 
R2=0.01 
P=0.03 

C(p)=0.010 
R2=0.05 
P=0.108 

AMBP C(p)=20.78 
R2=0.0141 
P=0.04 

-- -- C(p)=-1.943 
R2=0.03 
P=0.10 

-- 

TF C(p)=2.638 
R2=0.16 
P=0.06 

-- -- C(p)=-2.025 
R2=0.04 
P=0.14 

-- 

APOA1 -- -- -- C(p)=-4.940 
R2=0.06 
P=0.02 

-- 

ALB C(p)=11.114 
R2=0.117 
P=0.02 

-- -- -- -- 

AMBP C(p)=5.748 
R2=0.14 
P=0.007 

-- -- -- -- 

SERPINA3-2 -- -- -- -- C(p)=0.559 
R2=0.04 
P=0.08 

PI -- -- -- -- C(p)=-6.865 
R2=0.08 
p=0.002 

A2M C(p)=-6.889 
R2=0.09 
P=0.14 

-- -- -- -- 

Whole model p<.0001 p<.0001 p<.0001 p<.0001 P=0.0031 

 

 

4.6 Differentially regulation of genes in high vs low drip loss, pH1 and pH24 

 

Gene expression analyses using GenomeLab GeXP system showed that expression of 

some genes significantly differed between samples high and low drip loss (high drip 

loss ≥ 1.8 %; low drip loss  <1.8 %) and pH24L (high pH24L ≤ 5.49; low pH24L > 5.49) 

(Figure 4.4 and 4.5). Among twenty genes, PPARGC1 was found to be significantly 
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differentially expressed between high vs. low drip loss (p = 0.03; figure 4.4). Moreover, 

for the high and low drip loss group, the expression level of AMBP gene was also found 

to be differentially regulated (p = 0.06; figure 4.4). Both, PPARGC1 and AMBP were up 

regulated in the group of animals with higher drip loss. Although the expression of other 

genes was not significantly (p>0.1) different, expression of these genes was slightly 

higher in high drip loss class.  

In the high pH24L class, expression of TTR and TF (p = 0.06 and p = 0.07, respectively; 

figure 4.5) found to be differentially regulated. The expression of both genes was 

slightly higher in the high pH24L group. Interestingly, no difference was observed in the 

mRNA level of genes between high and low pH1L in the DUPI population (Figure 4.6). 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.4: Differentially gene expression between high vs. low drip loss. 

 
 
 
 

 

 

 

 

 

 

 

Figure 4.5: Differentially gene expression between high vs. low pH24L. 

* P = 0.03 

* p = 0.06 

* p = 0.06 

* p = 0.07 
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Figure 4.6: Differentially gene expression between high vs. low pH1L 
 

4.7 Result of eQTL under the line-cross model  

 

In total, 25 eQTL were identified on porcine autosomes 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 and 

13 (Table 4.5). Among 20 traits, eQTL of 13 traits (PPARGC1, ALB, SERPINA3-2, 

PPP1R3B, GSTA2, APOC3, RBP4, APOA1, TF, ATF4, PI, CAPNS1 and TNC) reached 

the acceptable LOD score threshold (1.8). Among those eQTL, 17 eQTL were detected 

significant at 5% chromosome-wide level (CW) (Table 4.5). An eQTL for ALB on 

SSC2 was detected as 1% chromosome-wide significant level. Moreover, on SSC2, 

eQTL for SERPINA3-2 was detected as 5% genome-wide level (GW) which showed the 

highest F-value in the analysis. On SSC1, a chromosome-wide suggestive eQTL for 

PPARGC1 was found between the markers SW373 and SW1301 at 187 cM. The most 

promising eQTL were detected on SSC2 for 6 traits proximal to marker S0141. On 

SSC2, two eQTL were found for AMBP and GC at 118 cM close to marker SW240. On 

SSC3, a suggestive (p<0.05; CW) eQTL was detected for PPP1R3B at 86 cM close to 

marker S0002  On SSC4, two eQTL for RBP4 and APOA1 were detected at 67 and 72 

cM, respectively close to marker S0214. On SSC6, only one suggestive (p < 0.05; CW) 

eQTL was detected for PPARGC1 at 30 cM between the markers S0035 and S0087. 

Five eQTL were detected on SSC7. Among them three for APOC3, ALB and TF were 

found close to the marker S0064 at 33, 36 and 38 cM, respectively. On SSC7, an 

additional suggestive (p<0.05; CW) eQTL was detected for TNC at 103 cM close to 

marker S0115. An eQTL was detected on SSC8 for GSTA2 at 19 cM close to marker 
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SW2611. Additionally, 2 eQTL for GC and AMBP were detected at 22 and 26 cM, 

respectively between the markers SW2611 and S0086 on SSC8. On SSC9, an eQTL for 

SERPINA3-2 at 27 cM was found between the markers SW911 and SW54. The only 

eQTL for PI and CAPNS1 were detected on SSC10 and 11, respectively. eQTL for PI 

was detected at 118 cM close to marker SW951 and eQTL for CAPNS1 was detected at 

0 cM proximal to marker SW2008. On SSC13 two suggestive (p<0.05; CW) eQTL were 

detected, one at 31 cM and the other at 120 cM, close to markers SW344 and S0289, 

respectively. 

 

4.8 Result of eQTL under the two-QTL model  

 

The two-QTL model was used to identify the presence of possible two-eQTL regions on 

the same chromosome. Results for the two-QTL model conducted with QTL Express 

are presented in table 4.10. Significant evidence for an additional eQTL under a two-

QTL model was found on SSC1 and SSC2. On SSC1, it was detected for PPARGC1 

with a distance of 153 cM between two loci. The two loci were detected at 35 and 188 

cM, respectively. SSC1 was genotyped with 18 microsatellite markers and the average 

marker distance was 11.2 cM. In this case several markers were located between two-

QTL regions and one of the two chromosomal regions was identified in the single QTL 

approach (Table 4.6). The two loci on SSC1 for PPARGC1 in this study were in 

repulsion phase. The eQTL affecting PPARGC1 at 35 cM and 188 cM jointly explained 

4.02 % of the phenotypic variation. 

On SSC2, 5 two-eQTL pairs were detected for ALB, PPP1R3B, TTR, APOC3 and 

APOA1 close to marker S0141. There was a distance of 90 cM between these two-eQTL 

and two microsatellite markers were located between the eQTL loci. Average marker 

density for SSC2 was given as 15.9 cM. For the all given traits, the first eQTL was 

detected close to marker S0141 where this region was also detected with single-eQTL 

model. The second-eQTL of two-QTL model was detected close to marker SW1564. 

The phenotypic variation explained by the two loci is given in table 4.6.  
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4.9 Result of eQTL under imprinting model  

 

In total 8 imprinting eQTL were detected on SSC2 and 9 with the imprinting QTL 

model of QTL Express software. On SSC2, seven imprinting QTL were detected, of 

which 6 were paternally imprinted (maternally expressed) and one was maternally 

imprinted (paternally expressed). The identified imprinting eQTL on SSC2 were found 

to be close to marker S0141 at around 33 cM which also detected with the line-cross 

QTL model. On SSC9, the only paternally imprinted eQTL was mapped for SERPINA3-

2 at 26 cM close to marker SW911. The phenotypic variation explained by the 

imprinting QTL model is given in table 4.7.  
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Table 4.5: Summary of line-cross eQTL locations and their relative additive and 

dominant effects on gene expression values in the DUPI F2 resource population 

 

SSC Trait 
Position 
(cM) 

F - value 
Var 
(%) Add SE Dom SE Closest marker  

1 PPARGC1 187 5.92* 3.42 -5.56 2.4 -11.99 4.82 SW1301 
2 ALB 32 7.68** 3.7 1.24 0.36 -1.87 0.52 S0141 
 PPP1R3B 31 7.55* 3.26 1.46 0.42 -2.16 0.64 S0141 
 GSTA2 29 5.46 3.15 3.48 1.30 -7.1 2.34 S0141 
 SERPINA3-2 32 8.51*** 4.01 5.94 1.64 -8.68 2.34 S0141 
 RBP4 33 4.17 3.16 4.02 1.73 -6.54 2.38 S0141 
 APOC3 31 4.83 3.27 0.89 0.31 -1.31 0.49 S0141 
 AMBP 118 3.68 1.86 0.55  0.20 -0.30  0.33 SW240 
 GC 118 3.87 1.81 0.54 0.19 -0.0007 0.32 SW240 
3 PPP1R3B 86 5.10* 3.37 0.28  0.10 0.41 0.23 S0002 
4 RBP4 67 4.83* 3.3 3.8 1.22 0.29 2.0 S0214 
 APOA1 72 5.24* 3.24 2.25 0.8 1.74 1.45 S0214 
6 PPARGC1 30 4.86* 3.67 7.19 2.95 -17.76 7.04 S0035-S0087 
7 APOC3 33 5.6* 3.27 -0.41 0.2 0.73 0.29 S0064 
 ALB 36 5.22* 3.17 -0.41 0.25 0.97 0.38 S0064 
 TF 38 4.48 3.05 -0.36 0.26 1.06 0.41 S0064 
 TNC 103 4.92* 2.48 0.17  0.12 -0.64  0.21 S0115 – S0101    
8 GSTA2 19 5.33* 3.28 0.64 1.41 -10.58 3.47 SW2611-S0086 
 AMBP 26  3.74 2.05 0.38  0.35 2.33  0.88 SW2611 – S0086  
 GC 22  3.40 1.61 0.15  0.33 2.17  0.83 SW2611 – S0086  
9 SERPINA3-2 27 4.97* 3.14 2.19 1.27 -6.24 2.31 SW911-SW54 
10 PI 118 5.75* 3.47 -2.07 1.00 4.32 2.01 SW951 
11 CAPNS1 0 4.97* 2.55 -3.76 1.87 -5.64 2.75 SW2008 
13 PPP1R3B 31 4.91* 3.37 -0.46  0.14 0.52  0.41 S0219 – SW344   
 TNC 120 5.77* 3.10 -0.11 0.13 -0.80  0.24 S0289 

 
• *significant at the 5% chromosome-wide level 
• **significant at the 1% chromosome-wide level  
• ***significant at the 5% genome-wide level 
• SE: standart error  
• Add: Additive effect and standard error. Positive values indicate the Duroc 

alleles result in higher values than Pietrain alleles; negative values indicate that 
Duroc alleles result in lower values than Pietrain alleles.    

• Dom: Dominance effect and standard error. 
• Chromosomal position in Kosambi cM 
• Var: The percentage of phenotypic variance explained by the eQTL 
• SSC: Sus scrofa chromosome  
• The closest markers were those markers around the peak, as near as possible 
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Table 4.6: Summary of the two linked eQTL for gene expression in the DUPI F2 resource population 

 

Position (cM) F -value Effect A Effect B Closest marker 

SSC Trait 

eQTL A eQTL B 2vs0 2vs1 
Var (%) 

Add±SE Dom±SE Add±SE Dom±SE eQTL A eQTL B 
1 PPARGC1 35 188 4.0  2.0 4.02 -0.49± 2.1 -7.56± 3.7 -5.59± 2.4 -13.3±4.9 SWR2300 SW1301 
2 ALB 39 124 6.4*  5.0 4.17 1.88± 0.4 -2.79± 0.6 -0.93± 0.3 1.53±0.5 S0141 SW1564 
 PPP1R3B 42 124 5.5 3.3 3.98 2.16± 0.5 -3.27± 0.8 -0.87± 0.4 1.60±0.6 S0141 SW1564 
 TTR 30 125 4.7 5.4 4.16 1.35± 0.4 -2.02± 0.6 -1.11± 0.3 1.17±0.5 S0141 SW1564 
 APOC3 33 123 6.3*  7.5 4.09 1.20± 0.3 -1.53± 0.4 -0.72± 0.2 1.56±0.4 S0141 SW1564 
 APOA1 33 122 4.5 5.5 3.12 3.49± 1.1 -3.84± 1.4 -1.95± 0.9 3.69±1.4 S0141 SW1564 
 

  
• *significant at the 5% chromosome-wide level 
• SE: standart error 
• Chromosomal position in Kosambi cM 
• Add: Additive effect and standard error. Positive values indicate the Duroc alleles result in higher values than Pietrain alleles; 

negative values indicate that Duroc alleles result in lower values than Pietrain alleles    
• Dom: Dominance effect and standard error 
• Var: The percentage of phenotypic variance explained by the eQTL 
• SSC: Sus scrofa chromosome  
• Chromosomal position in Kosambi cM 
• The closest markers were those markers around the peak, as near as possible 
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Table 4.7: Summary of imprinting eQTL locations and their relative additive, dominant and imprinting effects on gene expression values 

the DUPI F2 resource population 

 

SSC Trait 
Position 
(cM) 

F – Value V (%) Add SE Dom SE Imp SE 
Inferred mode of 
expression 

Closest 
marker 

2 APOC3 31 3.22 2.78 0.89 0.32 -1.34 0.54 -0.04 0.3 Maternal S0141 
 ALB 33 5.57* 3.45 1.27 0.36 -2.1 0.56 -0.41 0.35 Maternal S0141 
 PPP1R3B 33 5.45* 3.48 1.48 0.41 -2.25 0.63 -0.50 0.39 Maternal S0141 
 GSTA2 33 5.53* 3.56 3.55 1.28 -7.46 1.97 -3.20 1.23 Maternal S0141 
 SERPINA3-2 31 5.72* 3.60 5.91 1.66 -8.97 2.76 0.76 1.58 Paternal S0141 
 RBP4 33 2.96 3.05 4.09 1.74 -7.42 2.67 -1.22 1.66 Maternal  S0141 
 TTR 33 4.4* 3.15 0.76 0.37 -1.92 0.57 -0.92 0.35 Maternal S0141 
9 SERPINA3-2 26 4.83* 3.46 2.15  1.24 -5.77  2.25 -2.18 1.32 Maternal  SW911 
 

• *significant at the 5% chromosome-wide level  
• SE: standart error 
• Add: Additive effect and standard error. Positive values indicate the Duroc alleles result in higher values than Pietrain alleles; 

negative values indicate that Duroc alleles result in lower values than Pietrain alleles    
• Dom: Dominance effect and standard error 
• Var: The percentage of phenotypic variance explained by the eQTL 
• SSC: Sus scrofa chromosome  
• The closest markers were those markers around the peak, as near as possible 
• Chromosomal position in Kosambi cm
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5 Discussion 
 
5.1 eQTL analyses of PPARGC1, ALB, PPP1R3B, GSTA2, SERPINA3-2, RBP4, 

APOC3, AMBP, GC, APOA1, TF, ATF4, TNC, PI, and CAPNS1 

Analysis of expression quantitative trait loci (eQTL) provides a means for detecting 

transcriptional regulatory relationships at a genome-wide scale (Michaelson et al. 2009).  

Many investigations have reported the successful mapping of eQTL in rats, mice, 

humans or pigs with different sample sizes (Hubner et al. 2005; Morley et al. 2004; 

Ponsuksili et al. 2010; Stranger et al. 2005). But experimental data from genetic 

investigations of gene expression in farm animals are still limited (Ponsuksili et al. 

2010). Mapping of eQTL to the specific gene indicates that cis-changes are responsible 

for the different expression levels, whereas mapping positions of eQTL that are 

different from the positions of the corresponding genes indicate trans-regulation. In this 

study, 25 eQTL on 11 different porcine autosomes were detected that shows trans-

regulation of these genes which were consistent with the previous reports for pigs 

(Ponsuksili et al. 2008a) and other species (Bystrykh et al. 2005; Morley et al. 2004). 

Ponsuksili et al. (2010) stated that the expression of genes associated with traits that 

have low heritability (that is, the high dependency on non-genetic factors), like drip loss 

or meat pH is coincides with the fact that they are under the control of several trans-

regulated genes, that is, genes that are controlled by other genes. Trans-eQTL usually 

reflect genetic regulation that is dispersed across many loci with small effects means 

that they explain small phenotypic variance (Gibson and Weir 2005) and it was shown 

that the expression level of the trans-regulated genes was less heritable than that of cis-

regulated genes (Petretto et al. 2006). Trans-regulated genes appear to be more complex 

(i.e., under polygenic control) than the cis-regulated genes and likely to reflect the 

additive outcome of genetic, epigenetic, and environmental regulation (Petretto et al. 

2006).  

A total of 25 eQTL for gene expression of 15 candidate genes were detected on 11 

different porcine automes. A LOD score of 1.8 assumed as cut-off for the given eQTL. 

Seventeen of all eQTL on SSC 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 and 13 were detected at 

suggestive level (p<0.05; CW). The rest 8 eQTL could not reach the 5% CW suggestive 

level. Among them, only an eQTL for SERPINA3-2 on SSC2 could reach the genome-

wide 5% significance level. The basic suggestive level is accepted as 5% chromosome-

wide significant value. From the results of the linkage analysis using gene expressions, 
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all detected eQTL are likely to be trans-regulated since gene positions and detected 

eQTL did not overlap within 20 Mb (general consideration for cis-regulated genes) 

intervals. In the same animal population (DUPI), eQTL by microarray expression 

profile revealed that 96 of 104 trait associated eQTL were reported as trans-regulated 

(Ponsuksili et al. 2008a). This result is consistent with the previous result of Ponsuksili 

et al. (2008a) since they also reported eQTL of these genes as trans-regulated. On SSC1 

an eQTL was detected for PPARGC1 close to marker SW1301 at 187 cM. In the same 

marker position, neither drip loss nor muscle pH QTL was detected in the same 

population (Liu et al. 2007). However, three QTL for skeletal muscle pH were detected 

between the markers SW1828 and SW1301 (Sanchez et al. 2006). Beeckman et al. 

(2003) also identified a significant QTL for conductivity 24 h pm in the same marker 

interval in Meishan, Pietrain and European Wild Boar cross population. On the other 

hand, by using a two-QTL model, an additional eQTL was detected for PPARGC1 at 35 

cM between the markers SWR2300 and SW1653. The detected eQTL in our study 

overlaps with several other eQTL in the same marker region (Ponsuksili et al. 2008a). 

No QTL was detected for drip loss and pH in the DUPI population. Although, several 

significant QTL were detected for muscle pH in this population between the markers 

S0312 and S0113, this region is not close to our detected eQTL region. However, 

significant QTL for longissimus dorsi muscle pH and conductivity 24 h pm were 

detected in Duroc and Berlin Miniature (DUMI) cross between the markers SW1515 and 

SW1851 (Ponsuksili et al. 2005; Wimmers et al. 2006). In total 8 eQTL were detected 

on SSC2 of which 6 eQTL were detected vicinity of marker S0141. In the DUPI 

population a suggestive QTL for drip loss was also detected between the markers 

SW2623 and S0141 at 20.1 cM (Liu et al. 2007). Malek et al. (2001) estimated a QTL 

for drip loss on SSC2 between the markers SWR2157 and SWR345 in a Berkshire and 

Yorkshire cross overlapping with our detected eQTL. A significant QTL for pH 24 h 

pm was found at the marker site of SW240 in a Meishan, Pietrain and European wild 

boar cross population (Lee et al. 2003). Heuven et al. (2009), observed also ultimate pH 

QTL between the markers SW1686 and SW2167 (65 cM) close to our estimated eQTL. 

Several other QTL for drip loss and muscle pH have been identified in different 

experimental populations. Van Wijk et al. (2006) identified a significant QTL for drip 

loss on SSC2 at 32 cM (SWR738 – SW240) in a cross of Pietrain / Large White boar line 

and commercial sow. In a similar experimental population an additional QTL for drip 
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loss has been reported by Kim et al. (2005b) at 35 cM (SW2445 – SW1686). Another 

QTL was also observed for drip loss at 46.2 cM (SW2445 – SW766) by Thomsen et al. 

(2004). Several other QTL for longissimus dorsi pH at 0-10 cM have been identified by 

other groups (de Koning et al. 2003; Evans et al. 2003; Rohrer et al. 2006). The 

positions of our detected eQTL are interesting not only because of coinciding QTL and 

eQTL regions, but also while different chromosomal positions were mapped with the 

two-eQTL model and imprinting eQTL model. With the two-eQTL model, beside the 

eQTL detected for ALB, PPP1R3B, TTR, APOC3 and APOA1 close to marker S0141, 

the second eQTL was detected proximal to marker SW1564. Malek et al. (2001), 

reported a significant QTL for drip loss at 114.4 cM between the markers SWR2157 and 

SWR308. In the same marker region, several other muscle pH QTL were also mapped 

which is coinciding with our detected eQTL (Qu et al. 2002; Rohrer et al. 2006; 

Thomsen et al. 2004). Harmegnies et al. (2006) reported a significant QTL for cooking 

loss between the markers SWR2157 and SW2513 in Landrace x Large White x Pietrain 

cross population. In the similar region, QTL for tenderness score in pigs are coinciding 

with our detected eQTL for 5 genes which were mapped in different pig populations 

(Ciobanu et al. 2004; Kim et al. 2005a; Meyers et al. 2007; Stearns et al. 2005). 

Moreover, our detected imprinting eQTL on SSC2 showed maternally (APOC3, ALB, 

PPP1R3B, GSTA2, RBP4 and TTR) and paternally expression (SERPINA3-2). 

Although, in pig very few imprinting genes has been identified, evidence of imprinting 

QTL have been reported for some specific chromosomes including SSC5 and SSC9 

(Rohrer et al. 2006; Thomsen et al. 2004). Previously, de Koning et al. (2000) identified 

a QTL for body composition in pigs, they detected four QTL out of five on SSC2, 6 and 

7 were subjected to imprinting. In mouse, genomic imprinting as a form of epigenetic 

regulation has been shown to influence several sub-chromosomal areas (Hudson et al. 

2010). Although, the mechanisms underlying the imprinting genes in pigs are not fully 

understood (Bischoff et al. 2009), the genes insulin-like growth factor 2 (IGF2) and 

H19 express paternally and maternally, respectively, in humans, mice, sheep, cattle and 

as well as in pig (Amarger et al. 2002; Li et al. 2008). Moreover, IGF2 is the major 

candidate for a paternally expressed QTL in the pig primarily affecting muscle 

development. Considering the complex regulation of IGF2 it has been shown that there 

is close interaction between IGF2, INS and H19 on SSC2p (Amarger et al. 2002). On 

SSC2 two eQTL were detected for AMBP and GC at 118 cM close to marker SW240. A 
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suggestive QTL for drip loss on SSC2 at 114.4 cM was reported by Malek et al. (2001) 

which is close to our detected eQTL for GC between the markers SWR2157 and 

SWR308. Moreover, a QTL for water-holding capacity was found by Malek et al. (2001) 

between SW1564 and SW1370. On SSC3 a 5% chromosome-wide suggestive level 

eQTL was identified for PPP1R3B close to marker S0002 at 86 cM. There is no any 

reported QTL vicinity of our detected eQTL in the same population (Liu et al. 2007). 

Only a QTL previously reported for pH 45 min pm was detected between the markers 

SW2047 and ACTG2 covering also our detected eQTL (Edwards et al. 2008). On SSC4 

two suggestive eQTL were detected for RBP4 and APOA1 at 67 and 72 cM, 

respectively close to marker S0214. In DUPI population, a QTL for drip loss was 

mapped between the markers S0214 and S0097 (Liu et al. 2008). de Koning et al. 

(2001) reported a QTL for drip loss spanning the markers S0301 and S0001 in Meishan 

and commercial cross population. Moreover, different research groups found various 

QTL for pH for 24 hour post-mortem in loin between the markers S0001 and S0097. 

(Mercade et al. 2005; Wimmers et al. 2006). Additionally, our detected eQTL for RBP4 

and APOA1 was harbored with previously reported QTL for water-holding capacity on 

SSC4 in Large white and Meishan cross population (Su et al. 2004). On SSC6, an eQTL 

was detected for PPARGC1 at 30 cM between the markers S0035 and S0087. Liu et al. 

(2008) identified a drip loss QTL in the DUPI population between the same marker 

interval with our detected eQTL. Another QTL for drip loss was reported at 74 and 61.2 

cM between the markers SW1057 and S0220 (de Koning et al. 2001; Markljung et al. 

2008). Moreover, several pH 24 h pm in loin QTL were mapped to close region of our 

detected eQTL is also supporting our findings for the PPARGC1 eQTL (de Koning et 

al. 2001; Kim et al. 2005b; Markljung et al. 2008). On SSC7, three eQTL for APOC3, 

ALB and TF were detected at 33, 36 and 38 cM, respectively, close to the marker 

S0064. Although, there is no reported drip loss QTL close to our detected eQTL, several 

significant and suggestive QTL for muscle pH and pH decline in different time points 

were mapped in vicinity of eQTL region (de Koning et al. 2003; Demeure et al. 2005; 

Duan et al. 2009b; Evans et al. 2003). On SSC7, three eQTL for APOC3, ALB and TF 

was detected at 33, 36 and 38 cM, respectively, close to marker S0064. Although, there 

is no reported drip loss QTL close to our detected eQTL, several significant and 

suggestive QTL for muscle pH and pH decline at different time points were mapped in 

vicinity of the eQTL region (de Koning et al. 2003; Demeure et al. 2005; Duan et al. 
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2009; Evans et al. 2003). The eQTL for TNC on SSC7 was suggestive (p < 0.05; CW); 

in the same marker interval (SW175 – S0115), an association was detected between the 

detected polymorphism of non-annotated EST (Affymetrix probe set ID: 

Ssc.25503.1.S1_at) and drip loss and pH 24 h pm in loin (Srikanchai et al. 2010). A 

significant QTL for pH 24 h pm in loin was detected between the markers S0115 and 

S0066 on SSC7 (Yue et al. 2003). Moreover, two meat color QTL were found close to 

marker SW1806 on SSC7 (Ovilo et al. 2002; Thomsen et al. 2004).  

On SSC8, a suggestive (p < 0.05; CW)  eQTL for GSTA2 was found at 19 cM (SW2611 

– S0086). No drip loss QTL was detected neither in the DUPI nor in another population. 

However, a QTL for longissmus dorsi pH was mapped between the markers SW905 and 

SW211 at 42 cM (Rohrer et al. 2006). Moreover, a significant conductivity 45 min pm 

QTL was detected in a Meishan x Pietrain x European Wild Boar cross population 

(Beeckmann et al. 2003). On chromosome 9, an eQTL for SERPINA3-2 was detected at 

27 cM close to marker SW911. Several QTL for muscle pH were reported in different 

populations (de Koning et al. 2003; Evans et al. 2003). Nevertheless, there is no QTL 

previously reported for drip loss or water-holding capacity in this region. Interestingly, 

a suggestive paternally imprinted eQTL was also detected for SERPINA3-2 at 26 cM 

close to marker SW911. Moreover, based on the homology between SSC9 and 

HSAP7q21.3, the paternally expressed 10 (PEG10) gene was reported as an imprinted 

gene in pigs. However, PEG10 is located on SSC9q, this region is far from our detected 

eQTL interval. Nevertheless, two maternally expressed QTL for drip loss and muscle 

pH were given by two different studies in pigs (de Koning et al. 2001; Thomsen et al. 

2004). The only eQTL on SSC10 was mapped for PI at 118 cM close to marker SW951. 

Neither drip loss nor pH QTL was found at the similar marker region. However, in same 

animal population a significant conductivity QTL was found between the markers 

S0070 and SW951. Moreover, two pH decline QTL were reported in the same marker 

interval (Duan et al. 2009b). The only eQTL for CAPNS1 was found on SSC11 at 0 cM 

position at SW2008 marker. A drip loss QTL was mapped in the vicinity of our detected 

eQTL at 7 cM in a Berkshire and Yorkshire cross population (Malek et al. 2001). 

Harmegnies et al. (2006) reported 24 h pm conductivity QTL in a close region to our 

detected eQTL. Although, different pH and conductivity traits were located on SSC11, 

none of them were close to the marker SW2008. In the DUPI population, there is no 

detected QTL for drip loss and muscle pH in that region. Two suggestive (P<0.05, CW) 
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eQTL for PPP1R3B and TNC were detected on SSC13. Of these, PPP1R3B was found 

between the markers S0219 and SW344 at 31 cM. On SSC13, there was no estimated 

QTL close to these markers in the same population. Our eQTL coincided  with a 

previously repoted significant QTL for pH 45 min pm in a Pietrain-Large White boar 

and commercial sow cross at 36 cM between the markers SWR428 and SW864 (van 

Wijk et al. 2006). Moreover, Malek et al. (2001), reported a QTL for water-holding 

capacity at 43 cM close to our eQTL for PPP1R3B. The second eQTL on this 

chromosome was detected for TNC at 121 cm close to marker S0289. There was no 

detected QTL overlapping with this eQTL in the same population and in other 

population given in the literature. 

 

5.2 Association of muscle specific gene expression profile with meat quality traits and 

contribution of the genes in meat quality 

 

5.2.1 Peroxisome proliferator–activated receptor-  coactivator-1 (PPARGC1)  

 

Peroxisome proliferator–activated receptor-  coactivator-1 (PPARGC1) was found to be 

associated with drip loss (p = 0.03) (Table 4.3). This gene also was found to be 

differentially regulated in high vs. low drip loss mentioned in the result part and it is 

significantly up-regulated in high drip loss (Figure 4.4). PPARGC1 is a coactivator of 

PPAR-  and other nuclear hormone receptors and plays an essential role in energy 

homeostasis (Esterbauer et al. 2002), body weight regulation and composition (Jacobs et 

al. 2006). The PPARGC1A gene is a coactivator of a subset of genes that control 

oxidative phosphorylation. PPARGC1A exerts its function through a whole range of 

nuclear hormone receptors and other transcription factors, and is primarily expressed in 

tissues with high energy demands (Larrouy et al. 1999). Besides having an important 

influence on the regulation and composition of the body weight, it also is an important 

factor in determining muscle fibre type composition (Dulloo and Samec 2001; Lin et al. 

2002; Mortensen et al. 2006). It has been shown that PPARGC1A increases the amount 

of oxidative muscle fibres, and that it also is expressed at a higher level in these muscle 

fibres. Mutations in PPARGC1 showed significant association with aerobic fitness 

related with endurance capacity in human (Lucia et al. 2005). Post-mortem metabolism 

in terms of pH decline of muscle is substantially affected from oxygen availability and 
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muscle temperature which causes of drip loss in meat. Wimmers et al. (2006) reported 

PPARGC1A as a functional candidate gene for muscle fibre traits. Associations have 

been found between mutations in the coding region of PPARGC1A and certain fat 

characteristics in the pig (Jacobs et al. 2006b; Kunej et al. 2005; Stachowiak et al. 

2007). The vicinity of SSC8, where PPARGC1A is located, exhibits a significant QTL 

for longissimus dorsi muscle pH between the markers SW905 and SW211 (Rohrer et al. 

2006). Corresponding with findings in humans (Larrouy et al. 1999), expression of 

PPARGC1A found to be higher in m. longissimus dorsi compare to backfat. It was 

reported that this gene as a interesting candidate gene for meat quality (Erkens et al. 

2006). These findings are in accordance with our result that expression of this gene was 

found to be significantly associated with drip loss (Table 4.3). In our population this 

gene showed higher expression in high drip loss group compared to low drip loss group 

(Figure 4.4). These results suggest that PPARGC1 is likely to be a putative candidate 

gene for drip loss in porcine meat.      

 

5.2.2 Apolipoprotein C-III (APOC3) and Apolipoprotein A-I (APOA1) 

 

Apolipoprotein C-III (APOC3) mapped to SSC9p13 in accordance human-porcine 

comparative map.  APOC3 has a in central role in fat cell differentiation and muscle 

fibre type determination (Kunej et al. 2005). It is a strong inhibitor of lipoprotein lipases 

(LPL), a key enzyme in fatty acid delivery to muscle and adipose tissue. Thomsen et al. 

(2004) detected a significant drip loss QTL detected in Duroc and Pietrain F2 population 

SW2401 and SW174 markers which is close to the position of APOC3 (Ensembl). 

Furthermore, on q arm of SSC9, 3 QTL were identified for post-mortem muscle pH in 

different significancy levels (de Koning et al. 2001; Glenn et al. 2007; Harmegnies et al. 

2006). The APOC3 gene is located in the confidence interval of lipid content, stearic  

acid percentage and fat percentage QTLs reported by different researchers (Edwards et 

al. 2008; Nii et al. 2006; Rohrer et al. 2006). Negative phenotypic correlation exists 

between the carcass traits related to fatness (back fat, fat area, as well as fat-to-meat 

ratio) and drip loss in the DUPI population (-0.19, -0.27, -0.31, respectively). Moreover, 

genes of the GO category of lipid metabolism were also enriched in the low drip loss 

group (Ponsuksili et al. 2008b). In our study, although expression of APOC3 was found 

to be associated with drip loss, the expression of this gene was found slightly higher in 
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high drip loss group compared to low drip loss group (Figure 4.4). Furthermore, in pig 

and beef, lipid content was found to be correlated with muscle pH (Lonergan et al. 

2007; Page et al. 2001).  

Apolipoprotein A-I (APOA1) is the major apoprotein of high density lipoprotein (HDL) 

and is a relatively abundant plasma protein. This gene was mapped to position 

SSC9p1.1-1.2. Near position to this gene, a drip loss QTL was reported between the 

markers SW2401 and SW174 on this chromosome. Moreover, vicinity of APOA1 gene, 

several QTL for post-mortem muscle pH was reported (Thomsen et al. 2004; de Koning 

et al. 2001; Harmegnies et al. 2006; Evans et al. 2003; de Koning et al. 2003). 

Abundance of pH and drip loss QTL where APOA1 is located, found to be in 

accordance with our gene expression and meat quality association results.     

 

5.2.3 Calpain, small subunit 1 (CAPNS1) 

 

Calpain, small subunit 1 (CAPNS1), encodes the small 28-kDa regulatory subunit which 

form heterodimers with CAPN1 and CAPN2 genes. Calpains are a family of Ca+2-

dependent intracellular cysteine. The CAPNS1 gene is mapped to SSC6q1.1-1.2 

(Drogemuller and Leeb 2002). The physiological roles and possible functional 

distinctions of calpains remain unclear, but suggested functions include participation in 

cell division and migration, integrin-mediated signal transduction, apoptosis, and 

regulation of cellular control proteins such as cyclin D1 and p53. It has been well 

documented that these proteases play an important role in proteolytic processes in the 

muscles, degrading quite a big number of myofibrillar proteins, but not actin, myosin 

and a-actinin (Juszczuk-Kubiak et al. 2009). Involvement of calpains in water-holding 

capacity has been shown by different researchers (Huff-Lonergan and Lonergan 2007). 

Greater activation of µ-calpain within the first 24h post-mortem should correspond to 

greater proteolysis and less myofibre shrinkage (Huff-Lonergan and Lonergan 2007). A 

QTL for drip loss on SSC6 harbouring the markers SW1057 and S0220 where CAPNS1 

is located (de Koning et al. 2001). On similar region several QTLs for 24h pm loin and 

ham pH was reported by different researcher. These findings are in accordance with our 

association analyses (Table 4.3). 
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5.2.4 Transferrin (TF)  

 

The protein encoded by transferrin (TF) is a glycoprotein with an approximate 

molecular weight of 76.5 kDa. Transferrin carries iron from the intestine, 

reticuloendothelial system and liver parenchymal cells to all proliferating cells in the 

body. It carries iron into cells by receptor-mediated endocytosis. Over-expression of 

transferrin has been observed in hypertrophied lamb muscles (Hamelin et al. 2006; Sayd 

et al. 2006). This muscle group has higher glycolytic metabolism and less developed 

vascularisation which causes less blood flow through the muscle. Over-expression of 

transferrin has been observed in the light color meat group compared to dark meat group 

in pigs (Sayd et al. 2006). In present study, we detected up-regulation of TF in the high 

drip loss group (Figure 4.5) and down-regulation in the pH24L group. It could be 

hypothesised that lower blood (less iron) supply can cause less O2 supply and at the end 

hypoxia and pH decline in skeletal muscle. On chromosome 13q (Ensembl) different 

QTL for pH and water-holding capacity were detected. Two QTL for longissimus dorsi 

pH were obtained spanning the markers S0282 to SWR428 and S0068 to SWR48 

respectively (Evans et al. 2003; Rohrer et al. 2006). A water-holding capacity QTL was 

also detected on SSC13 at 43 cM (Malek et al. 2001).  

 

5.2.5 Alpha-1-microglobulin/bikunin precursor (AMBP) 

 

Alpha-1-microglobulin/bikunin precursor (AMBP), encodes two plasma glycoproteins: 

A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine 

proteinase inhibitor family with prototypical Kunitz-type domain (Grewal et al. 2005). 

A strong immunoreaction of α1m was observed in developing myocytes in the myotome 

at early stages of mouse development. α1m-positive myocytes are seen in every skeletal 

muscle (Sanchez et al. 2002). AMBP was assigned to SSC1q (Ensembl) close to marker 

S0354. where several QTL for carcass traits were identified (Nonneman et al. 2005). A 

QTL for drip loss was detected in the vicinity of the S0056 marker on SSC1q (Malek et 

al. 2001). Additionally, a QTL for longissimus dorsi pH was detected between SW1828 

and SW2512 (Sanchez et al. 2006). Both QTL were detected close to the position of 

AMBP gene. 



Discussion 

 

76

AMBP is a extracellular matrix protein and plays a role during the regulation of 

development, cell growth, metabolism, immune response and modulates extracellular 

matrix protein as well as the level of intracellular calcium (Grewal et al. 2005). The 

extracellular matrix is a part of three connective tissue layers (endomysium, perimysium 

and epimysium) surrounding muscle fibers. The extracellular matrix is composed of 

proteins including collagens and proteoglycans, having various functions in skeletal 

muscle. The reduced amount of proteoglycans in animals which are selected for growth 

rate and muscling, can lead to decreased water-holding capacity (Velleman 2002). 

Association between gene expression and meat quality traits were estimated with mixed 

model. A suggestive association was detected between AMBP expression with cooking 

loss (p < 0.1) (Table 4.5). However, existence of correlation with cooking loss and drip 

loss, no association was detected between expression of AMBP and pH1L, pH24L, drip 

loss, thaw loss and shear force.  

 

5.2.6 Vitamin D binding protein (GC) 

 

Vitamin D-binding protein (GC) is a multifunctional serum glycoprotein and it is the 

major serum transport protein for vitamin D sterols (Hirai et al. 2000; Jiang et al. 2007). 

Certain allelic variations within the sequence of GC have an effect on glucose tolerance 

and insulin secretion. GC plays also an important role in clearance of cellular actin from 

the extracellular space (Goldschmidt-Clermont et al. 1988). Actin is one of the most 

abundant and highly conserved proteins in eukaryotic cells and it is involved in different 

functions including cell motility, control of cell shape and muscle contraction (Otterbein 

et al. 2002). By this effect GC might also be a regulator for meat quality in pigs as the 

structure of muscle and its degree of contraction influences the amount of water that can 

be held by the muscle (Huff-Lonergan and Lonergan 2007). The expression of this gene 

was found to be associated with cooking loss (p < 0.05). According genetic mapping 

based on our genotyping results, this gene is located on SSC8 between the markers 

SW2160 and S0144 in the DUPI population. A QTL for pH45 close to marker S0144 was 

estimated in Duroc and Berlin Miniature (DUMI) resource population (Wimmers et al. 

2006). Several other QTL for different meat pH parameters were detected in the same 

marker interval where GC is located (Duan et al. 2009). 
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5.2.7 Protein phosphatase 1, regulatory (inhibitor) subunit 3B (PPP1R3B) 

 

The glycogen-targeting PP1 (protein phosphatase 1) subunit (GL) gene is expressed in 

muscle and liver in humans at comparable levels. Its effects on muscle glycogen 

metabolism are still unknown; however GL has been shown to modulate the activity of 

PP1 on glycogen-metabolizing enzymes, either purified or in the context of hepatic cells 

(Montori-Grau et al. 2007; Munro et al. 2002). Purified GL enhances the muscle GS 

(glycogen synthase) phosphatase activity of PP1, whereas it decreases muscle GP 

(glycogen phosphorylase) phosphatase activity (Doherty et al. 1995). Muscles with low 

glycogen and lactate levels showed normal rates of post-mortem glycolysis and optimal 

meat quality. On the other hand, muscle with high glycogen and lactate content showed 

rapid post-mortem glycolysis, paler surface colour, high drip loss and higher extents of 

protein denaturation than muscles with high glycogen and low lactate content (Choe et 

al. 2008). Expression of the PPP1R3B gene showed suggestive association (p < 0.05) 

with pH24L (Table 4.3). PPP1R3B is locating on SSC15 (Ensembl) close to SW1401. 

Vicinity of the SW1401, several QTL for drip loss and post-mortem muscle pH was 

detected. Thomsen et al. (2004) was identified a QTL for drip loss close to marker 

SW1263. An additional significant QTL for drip loss was also found between the 

markers SW964 and SY1. Moreover, Liu et al. (2008) detected a QTL for ham pH 

between the markers SW1111 and SW936 in the DUPI population.  

 

5.2.8 Tenascin-C (TNC) 

The TNC gene is a member of a family of genes coding for extracellular matrix protein 

(Garrido et al. 1995). It has a function in cell communication, extracellular matrix-

receptor interaction and focal adhesion. TNC counterbalances cell adhesion to substrata, 

correlated with cytokinesis and motility, and prevents cells from adhering too tightly to 

other extracellular matrix proteins (Imanaka-Yoshida et al. 2001). The extracellular 

matrix is a part of three connective tissue layers surrounding muscle fibers. The 

connective tissue layers are the endomysium, perimysium and epimysium. The 

extracellular matrix is composed of fibrous and nonfibrous proteins including collagens 

and proteoglycans. If the amount of proteoglycan has been reduced in animals selected 

for growth rate and muscling, the reduced degree of water holding capacity would 

directly impact the meat juiciness and drip loss (Velleman 2002). Gene mapping for 
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TNC showed that this gene is located on SSC1q (Ensembl). Expression of TNC gene 

was found significantly associated (p < 0.01) with pH1L and cooking loss (p < 0.05) 

(Table 4.3). Sanchez et al. (2006) reported three significant QTL for semispinalis dorsi, 

longissimus dorsi and biceps femoris on SSC1q. A significant QTL for pH24L was also 

found in DUPI population in very close region to TNC location between the markers 

S0312 and S0113.    

 

5.2.9 Retinol binding protein 4 (RBP4) 

 

This protein belongs to the lipocalin family and is the specific carrier for retinol 

(vitamin A) in the blood. It delivers retinol from the liver stores to the peripheral tissues. 

In plasma, the RBP-retinol complex interacts with transthyretin which prevents its loss 

by filtration through the kidney glomeruli. A deficiency of vitamin A blocks secretion 

of the binding protein posttranslationally and results in defective delivery and supply to 

the epidermal cells. RBP4 is a novel adipokine that likely contributes to systemic insulin 

resistance and dyslipidemia (Shea et al. 2007; Vitkova et al. 2006). The role of genetic 

variations in RBP4 on phenotypes of glucose and lipid metabolism is not clear in 

humans. However,  Shea et al. (2009) detected five SNPs within RBP4 (rs3758539, G/A 

5' flanking region; rs61461737, A/G intron; rs10882280, C/A intron; rs11187545, A/G 

intron; and rs12265684, C/G intron). After correcting for multiple testing, they observed 

a significant association between the minor allele of two noncoding SNPs (rs10882280 

and rs11187545) and higher serum HDL-C (p = 0.043 and 0.042, respectively). 

Different investigations showed function of RBP4 in insulin resistance. Insulin 

resistance occurs under conditions of obesity, metabolic syndrome, and type 2 diabetes. 

It was found to be accompanied by down-regulation of the insulin responsive glucose 

transporter GLUT4 gene. Decreased adipocyte GLUT4 caused secretion by adipocytes 

of the serum retinol-binding protein RBP4. Enhanced levels of serum RBP4 appeared to 

be the signal for the development of systemic insulin resistance both in experimental 

animals and in humans (Wolf 2007). The blood level of glucose is maintained within a 

narrow range. In case of excess, such as after a meal, glucose is taken up by skeletal 

muscle; in case of insufficiency, as during starvation, glucose is produced and released 

by the liver. Glucose uptake is regulated by insulin: in case of a high level of glucose, 

insulin is secreted and stimulates uptake, storage, and metabolism in skeletal muscle 
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and adipose tissue (Shepherd and Kahn 1999). Suh et al. (2010) investigated the 

association between serum RBP4 concentrations and insulin resistance in 

perimenopausal women serum. They found, RBP4 concentrations positively correlated 

only with fasting glucose and serum RBP4 appears to identify age-induced insulin 

resistance by physiologic changes due to aging or menopause and by increasing hepatic 

glucose production. In pigs, RBP4 was mapped on SSC14 close to marker SWR925 

(Ensembl). QTL studies showed that, a drip loss QTL was mapped close to SW1081 and 

SW1557 where RBP4 is located. Different QTL positions have been also found for meat 

pH close to RBP4 position (Malek et al. 2001; Wimmers et al. 2006).  
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6 Summary 

 

The present study was carried out (i) to quantify transcript abundance of drip loss 

related genes and further figure out the expression profile of these genes in low and high 

drip loss and meat pH in the Duroc / Pietrain (DUPI) F2 resource population, (ii) to 

understand the association of gene expression with meat quality traits (iii) to identify 

expression quantitative loci (eQTL) of drip loss related genes. 

Twenty up or down regulated genes including three reference genes from the microarray 

results were selected for this purpose. In total 300 DUPI animals were subjected for the 

gene expression and eQTL analysis and all animals were genotyped using 122 

microsatellite markers. In total, 25 eQTL were identified on porcine autosomes 1, 2, 3, 

4, 6, 7, 8, 9, 10, 11 and 13. Among 20 traits, eQTL of 13 traits (PPARGC1, ALB, 

SERPINA3-2, PPP1R3B, GSTA2, APOC3, RBP4, APOA1, TF, ATF4, PI, CAPNS1 and 

TNC) reached the acceptable LOD score threshold (1.8). Among those eQTL, 17 eQTL 

were detected significant at 5% chromosome-wide level (CW). An eQTL for ALB on 

SSC2 was detected as 1% chromosome-wide significant level. Moreover, on SSC2, 

eQTL for SERPINA3-2 was detected as 5% genome-wide level (GW) which showed the 

highest F-value in the analysis. On SSC1, a chromosome-wide suggestive eQTL for 

PPARGC1 was found between the markers SW373 and SW1301 at 187 cM. The most 

promising eQTL were detected on SSC2 for 6 traits proximal to marker S0141. On 

SSC2, two eQTL were found for AMBP and GC at 118 cM close to marker SW240. 

Moreover, on SSC2, 5 two-eQTL pairs were detected for ALB, PPP1R3B, TTR, APOC3 

and APOA1 close to marker S0141. There was a distance of 90 cM between these two-

eQTL and two microsatellite markers were located between the eQTL loci. Average 

marker density for SSC2 was given as 15.9 cM. For the all given traits, the first eQTL 

of two-eQTL model was detected close to marker S0141 where this region was also 

detected with single-eQTL model. Another two-eQTL was detected close to marker 

SW1564. Additionally, on SSC2, seven imprinting eQTL were detected, of which 6 

were paternally imprinted (maternally expressed) and one was maternally imprinted 

(paternally expressed). The identified imprinting eQTL on SSC2 were found very close 

to marker S0141 at around 33 cM which also detected with the line-cross eQTL model. 

On SSC3, a suggestive (p < 0.05;CW) eQTL was detected for PPP1R3B at 86 cM close 

to marker S0002. On SSC4, two eQTL for RBP4 and APOA1 were detected at 67 and 
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72 cM, respectively close to marker S0214. On SSC6, only one suggestive (p < 0.05; 

CW) eQTL was detected for PPARGC1 at 30 cM between the markers S0035 and 

S0087. Five eQTL were detected on SSC7. Among them three for APOC3, ALB and TF 

were found close to the marker S0064 at 33, 36 and 38 cM, respectively. On SSC7, an 

additional suggestive (p < 0.05; CW) eQTL was detected for TNC at 103 cM close to 

marker S0115. An eQTL was detected on SSC8 for GSTA2 at 19 cM close to marker 

SW2611. Additionally, two eQTL for GC and AMBP were detected at 22 and 26 cM, 

respectively between the markers SW2611 and S0086 on SSC8. On SSC9, an eQTL for 

SERPINA3-2 at 27 cM was found between the markers SW911 and SW54. The only 

eQTL for PI and CAPNS1 were detected on SSC10 and 11, respectively. eQTL for PI 

was detected at 118 cM close to marker SW951 and eQTL for CAPNS1 was detected at 

0 cM close to marker SW2008. On SSC13 two suggestive (p < 0.05; CW) eQTL were 

detected for PPP1R3B and TNC, at 31 cM and at 120 cM, close to markers SW344 and 

S0289, respectively. 

Regression analysis between meat quality traits and gene expressions showed that 

among twenty genes, 18 genes showed association with drip loss, thawing loss, cooking 

loss, pH24L, pH1L and shear force with different significancy levels. The genes ALB, 

AMBP, CAPNS1, TNC and TYROBP were found to be associated with more than one 

trait. Twelve genes including APOA1 (p = 0.06), ANGPTL4 (p = 0.09), APOC3 (p = 

0.01), SERPINA3-2 (p = 0.06), RBP4 (p = 0.09), TYROBP (p = 0.07), TNC (p = 0.07), 

CAPNS1 (p = 0.05), CYP2C33 (p = 0.08), PI (p = 0.05), A2M (p = 0.05), and PPARGC1 

(p = 0.03) were showed association with drip loss trait. Among them APOC3 and 

PPARGC1 showed highly significant association with drip loss (p = 0.01 and 0.03,  

respectively). Moreover, PPARGC1 gene was also detected to be up regulated in high 

drip loss group compared to low drip loss (p < 0.05). Additionally, three of genes, GC 

(p = 0.009), TYROBP (p = 0.04), TNC (p = 0.03) and CAPNS1 (p = 0.07) were 

associated with cooking loss beside drip loss as well. The gene expression of PPP1R3B 

(p = 0.01), ALB (p = 0.04) and AMBP (p = 0.04) were found to be associated with shear 

force. ALB (p = 0.06) was also found to be associated with thawing loss. Moreover, 

expression of AMBP was also associated with pH24L as detected also with shear force. 

An additional association between pH24 loin and expression of TF has been estimated 

(p=0.06). The only association for pH1L has been found with the expression of TTR (p = 

0.04).  
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Gene expression analyses showed that expression of some genes significantly differed 

between samples high and low drip loss (high drip loss ≥ 1.8 %; low drip loss <1.8 %) 

and pH24L (high pH24L ≤ 5.49; low pH24L > 5.49). Among twenty genes, PPARGC1 was 

found to be significantly differentially expressed between high vs. low drip loss (p = 

0.03). Moreover, for the high and low drip loss group, the expression level of AMBP 

gene was also found to be differentially regulated (p = 0.06). Both, PPARGC1 and 

AMBP were up regulated in the group of animals with higher drip loss. Although the 

expression of other genes was not significantly (p > 0.1) different, expression of these 

genes was slightly higher in high drip loss class. In the high pH24L class, expression of 

TTR and TF (p = 0.06 and p = 0.07, respectively) found to be differentially expressed. 

The expression of both genes was slightly higher in the high pH24L group. Interestingly, 

no difference was observed in the mRNA level of genes between high and low pH1L in 

the DUPI population. 

As a summary, our eQTL results suggest that detected genomic regions for drip loss and 

pH putative candidate genes were coincided with QTL for drip loss and muscle pH on 

different porcine autosomes. However, our detected eQTL and gene positions were not 

coincided, this supports that the transcriptional regulation for these genes is likely to be 

trans-regulated. Beside these, on SSC2, the candidate genes underlying the eQTL peaks 

might be further investigated with the aim to understand gene-gene interactions and 

genetic pathways for meat quality traits in pigs. 
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7 Zusammenfassung 

 
Die vorliegende Studie diente, zur (i) Quantifizierung der mRNA-Gehalte für 

Tropfsaftverlust relevante Gene und zur Erstellung der Expressionsprofile dieser Gene 

in Proben von Schweinen einer Duroc/Pietrain (DUPI) F2 Ressource Population mit 

hohem und niedrigem Tropfsaftverlust, des weiteren, (ii) zum Verständnis der 

Assoziation der Genexpression mit Fleischqualitätsmerkmalen und (iii) zur 

Identifizierung Expressions- Quantitative Trait Loci (eQTL) für die Tropfsaftverlust 

relevanten Gene.  

Zwanzig hoch bzw. runter regulierten Gene inklusive drei Referenz Gene wurden aus 

der Microarrayanalyse für die weiteren Experimente ausgewählt. Insgesamt wurden 300 

DUPI Tiere für Exppression- und eQTL- Analyse eingesetzt. Insgesamt konnten 25 

eQTL auf den Schweine Autosomen 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 und 13 identifiziert 

werden. Von 20 Genen, erreichten eQTL von 13 Genen (PPARGC1, ALB, SERPINA3-

2, PPP1R3B, GSTA2, APOC3, RBP4, APOA1, TE, ATF4, PI und CAPNS1) einen 

akzeptablen LOD score Schwellenwert von 1.8. Bei 11 von diesen eQTL wurde mit 

einer Signifikanz von 5% ein Chromosomweites (CW) Level beobachtet. Für das Gen 

ALB wurde auf SSC2 ein signifikantes eQTL mit einer Chromosomweiten 

Irrtumswahrscheinlichkeit von 1% detektiert. Des weiterem, erreichten die eQTL auf 

SSC2 von den SERPINA2-3 Genen einen genomweiten (GW) Wert von 5%, welcher 

den höchsten F-Statistik Wert in der Analyse darstellte. Die übrigen fünf eQTL die auch 

den akzeptablen LOD score Wert erreichten, zeigten weder einen 5% 

Chromosomweiten noch einen suggestiven 1igen% Chromosomweiten signifikanten 

Wert. Ein Chromosomweit suggestives eQTL für PPARGC1 konnte zwischen den 

Marker SW373 und SW1301 bei 187 cM gefunden werden. Die meisten 

vielversprechenden eQTL für 6 Merkmale waren auf SSC2 detektiert, in der Nähe des 

Markers S0141. Auf dem Autosom SSC2 wurden zwei eQTL identifiziert, für AMBP 

und GC, diese befanden sich bei 118 cM in der Nähe des Markers SW240. Zudem, 

konnten auf SSC2 5 zwei-eQTL Paare für ALB, PPP1R3B, TTR, APOC3 und APOA1 in 

der Nähe des Markers S0141 detektiert werden. Zwischen diesen zwei-eQTL befand 

sich eine Distanz von 90 cM so wie zwei Microsatelliten Marker. Die durchschnittliche 

Marker Dichte für SSC2 war vorgegeben mit 15.9 cM. Für alle angegebenen Merkmale, 

wurde das erste eQTL in der Nähe des Markers S0141 detektiert, ebenso konnte mittels 
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des single-eQTL Modells diese Region ermittelt werden. Das zweite eQTL, nach dem 

zwei-eQTL Modell, konnte im Bereich des Markers SW1564 festgestellt werden. Des 

Weiteren, konnte auf SSC2 sieben imprinting QTL gefunden werden, von diesen 

zeigten 6 paternales Imprinting (maternale Expression) und 1 maternales Imprinting 

(paternale Expression). Die identifizierten Imprinting eQTL auf SSC2 wurden in der 

Nähe des Markers S0141 bei 33 cM gefunden, was mit dem Kreuzungs- QTL Modell 

ebenfalls detektiert wurde. Auf SSC3 wurde ein suggestiv (p<0.05; CW) eQTL für 

PPP1R3B bei 83 cM in der Nähe des Markers S0002 detektiert. Für RBP4 und APOA1 

konnten jeweils auf SSC4 ein eQTL bei 67 und 72 cM beim Marker S0214 detektiert 

werden. Auf SSC6 wurde nur ein suggestiv (p<0.05; CW) eQTL für PPARGC1 

gefunden, dieses befand sich bei 30 cM zwischen den Markern S0035 und S0087. Auf 

dem Autosom SSC7 konnten fünf eQTL identifiziert werden. Von diesen befanden sich 

drei für APOC3, ALB und TF in der Nähe des Markers S0064 bei 33, 36 und 38 cM. Für 

TNC konnte auf SSC7 ein suggestives (P<0.05; CW) eQTL bei 103 cM in der Nähe des 

Markers S0115 detektiert werden. Auf SSC8 wurde für GSTA2 bei 19 cM und in der 

Nähe des Markers SW2611 ein eQTL gefunden. Das Weitern, wurde ein eQTL für GC 

und ein eQTL für AMBP bei 22 und 26cM zwischen den Markern SW2611 und S0086 

auf SSC8 identifiziert. Für SERPINA3-2 konnte bei 27 cM auf SSC9 zwischen den 

Markern SW911 und SW54 ebenfalls ein eQTL detektiert werden. Die einzigen eQTL 

für PI und CAPNS1 wurden auf SSC10 und 11 gefunden. Dabei befand sich das eQTL 

für PI bei 118 cM in der Nähe des Markers SW951 und das eQTL für CAPNS1 0 cM 

proximal zum Marker SW2008. Auf dem Autosom SSC13 konnten zwei suggestive 

(p<0.05; CW) eQTL detektiert werden, sie befanden sich bei 31 und bei 120 cM in der 

Nähe der Marker SW344 und S0289. 

Regressionsanalysen zwischen Fleischqualitätsmerkmalen und Genexpression zeigten 

das von 20 Genen, 18 mit Tropfsaftverlust, Tauverluste, Kochverluste, pH24L, pH1L und 

Scherkraft mit unterschiedlichen Signifikanzen assoziierten.. Die Gene ALB, AMBP, 

CAPNS1, TNC und TYROBP zeigten dabei eine Assoziation mit mehr als einem 

Merkmal.  

Zwölf Gene, APOA1 (p = 0.06), APOC3 (p = 0.01), SERPINA3-2 (p = 0.06), RBP4 (p 

= 0.09), TYROBP (p = 0.07), TNC (p = 0.07), CAPNS1 (p = 0.05), CYP2C33 (p = 

0.08), PI (p = 0.05), A2M (p = 0.05), ANGPTL4 (p = 0.09) und PPARGC (p = 0.03) 

zeigten eine Assoziation mit Tropfsaftverlust (p<0.1), zwei von ihnen, APOC3 und 
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PPARGC1, sogar mit einer sehr hohen Signifikanz (p = 0.01 und p = 0.03). Zudem war 

das Gen PPARGC1 im Vergleich von hohem Tropfsaftverlust mit niedrigem 

Tropfsaftverlust im hohen Tropfsaft runter reguliert. Des Weiteren, zeigten drei der 

Gene, GC (p = 0.009), TYROBP (p = 0.04), TNC (p = 0.03) und CAPNS1 (p = 0.07) 

sowohl eine Assoziation mit Tropfsaftverlust als auch mit Kochverlust. Die Expression 

von PPP1R3B (p = 0.01), ALB (p = 0.04) und AMBP (p = 0.04) erbrachte eine 

Assoziation mit der Scherkraft. ALB (p = 0.06) zeigte ebenfalls eine Assoziation mit den 

Auftauverlust. Zu dem, erbrachte die Expression von AMBP eine Assoziation des Gens 

mit den Merkmalen pH24L sowie mit der Scherkraft. Zwischen den Merkmal pH24 Lende 

und der Expression von TF konnte ebenfalls eine Assoziation beobachtet werden (p = 

0.06). Die einzige Verknüpfung für das Merkmal pH1 Lende konnte mit der Expression 

von TTR (p = 0.06) gezeigt werden.  

Die Expressionsanalyse der Gene zeigte das die Expression einiger Gene signifikante 

Unterschiede zwischen den Proben mit hohem Tropfsaftverlust und niedrigem 

Tropfsaftverlust (hoher Tropfsaftverlust >1.8 %; niedriger Tropfsaftverlust <1.8 %) 

sowie zum pH24L (hoher pH24L < 5.49; niedriger pH24L > 5.49) aufwiesen. Unter 

zwanzig Genen, war PPARGC1 eines der Gene welches eine signifikant 

unterschiedliche Expression zwischen hohem und niedrigem Tropfsaftverlust zeigt (p = 

0.03). Ebenso wie das Gen AMBP, welches unterschiedlich exprimiert (p = 0.06) war 

zwischen diesen Gruppen. Beide Gene, PPARGC1 und AMBP, waren runter reguliert in 

der Gruppe der Tiere mit hohem Tropfsaftverlust. Die Expression der anderen Gene 

hingegen wiesen keine signifikanten Unterschiede auf, ihre Expression war nur 

geringfügig höher in der Gruppe mit hohem Tropfsaftverlust. Im Hinblick auf das 

Merkmal pH24L konnte bei TTR und TF (p = 0.06 und p = 0.07; Abbildung 4.5) eine 

unterschiedliche Regulation in der Expression beobachtet werden. Die Expression 

beider Gene, war in der Gruppe mit hohem pH24L geringfügig höher. Interessanterweise, 

konnte bei der Betrachtung des Merkmals pH1L keine Unterschiede im mRNA Level in 

der DUPI Population beobachtet werden. 

Zusammenfassend zeigen die eQTL Ergebnisse, dass die entdeckten genomischen 

Regionen von vier mutmaßlichen Kandidatengenen für Tropfsaftverlust und pH-Wert 

sich mit QTL für Tropfsaftverlust und Muskel pH-Wert auf unterschiedlichen Schweine 

Autosomen decken. Hingegen, deuten die gefunden eQTL und Genregionen die sich 

nicht mit QTLs deckten auf eine trans-wirkende Transkriptionale Regulation hin. Des 
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weiteren, die auf SSC2 gefundenen Kandidatengene und die zugrundeliegenden eQTL 

sollten weiter untersucht werden, mit dem Ziel eines bessern Verständnisses der Gen-

Gen Interaktionen sowie der genetischen Pathways von Fleischqualitätsmerkmalen in 

Schwein.
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