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Experimentally, it is well established that the Standard Model of particle physics requires
an extension to accommodate the neutrino oscillation data, which indicates that at least two
neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos
are naturally present in a supersymmetric extension of the Standard Model which includes
lepton–number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the
hierarchy between the electroweak scale and the scale of unified theories or the Planck scale.
In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We
present a mechanism how the experimental neutrino oscillation data can be realized in this
framework. Then we discuss how recently published data from the Large Hadron Collider
(LHC) can be used to constrain the parameter space of this model. Furthermore, we present
work on supersymmetric models where R–parity is conserved, considering scenarios with light
stops in the light of collider physics and scenarios with near–massless neutralinos in connection
with cosmological restrictions.
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Chapter 1

Introduction

The experimental observation of neutrino oscillations, and thus of neutrino masses, is an in-
dication that the Standard Model of particle physics (SM) is incomplete [1–7]. Experimentally,
neutrinos must be relatively light. Direct laboratory measurements restrict their masses to be
below O(10MeV − 1 eV) [8–11], depending on the flavor. Cosmological observations even give
upper bounds of O(0.1 eV) on the sum of the neutrino masses [12–14]. Furthermore, the atmo-
spheric and solar neutrino oscillation data are best fit if the squared neutrino mass differences
are O(10−3eV2) and O(10−5eV2), respectively [6, 7]. This implies that at least two neutrinos
must be massive.

In principle, it is easy to extend the SM Lagrangian by a Dirac neutrino mass term [5].
However, right-handed neutrinos and new Yukawa couplings of O(� 10−12) are in this case
needed. Such tiny couplings seem to be very unnatural and might point towards a dynamical
mechanism, that explains the small neutrino masses. Furthermore, the right–handed neutrinos
can have an unspecified Majorana neutrino mass. Most prominently discussed are extensions
of the SM involving the see–saw mechanism, by introducing right-handed neutrinos and fixing
the new Majorana neutrino mass scale to be large, cf. Refs. [15–17]. By setting the arbitrary
Majorana mass scale to be large, light neutrinos with mass of order O(0.1 eV) can be obtained
even with O(1) Yukawa couplings. There are other see–saw mechanisms [18–25], which involve
different additional particles that determine/control the see–saw scale. The see–saw mechanism
can also be naturally incorporated into supersymmetry (SUSY) [26–29].

Supersymmetry is one of the most promising extensions of the SM. It is the unique extension
of the Lorentz spacetime symmetry when allowing for graded Lie algebras [30, 31]. In the min-
imal supersymmetric extension of the SM, the MSSM, every SM particle gets a superpartner
and the Higgs sector is extended by an additional Higgs SU(2)L doublet, cf. Table 1.1 [27–29].
Supersymmetry also provides a solution to the hierarchy problem of the SM [32–36]. More im-
portantly here: in SUSY, neutrino masses can be generated through a see–saw mechanism with
the neutralinos without having to introduce additional particles, if lepton number is violated [37–
43]. This is well–motivated because the most general gauge invariant and renormalizable MSSM
Lagrangian contains lepton number violating (LNV) operators.

However, the most general MSSM Lagrangian also allows for terms which violate baryon
number. If both baryon and lepton number violating operators are present, the proton is likely
to decay with a rate which is in contradiction to experimental bounds1 [44–46]. Most commonly,
one therefore introduces the discrete symmetry R–parity [47] (or, equivalently, proton–hexality
P6

2 [48]) which forbids all lepton and baryon number violating (BNV) terms and thus ensures

1 For example, the combination of couplings λ′
112λ

′′
112 would lead to proton decay via tree-level strange squark

exchange at an unacceptable rate, unless |λ′
112λ

′′
112| is smaller than about 10−25 for a squark mass in the 800

GeV range [44].
2 Note that proton–hexality additionally ensures that dangerous dimension 5 operators such as QQQL are
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Matter & Higgs superfields spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Qa,x
i Q̃a,x

i ≡ (ũxLi
d̃xLi

) (uxLi
dxLi

) ( 3, 2 , 1
6)

Ūx
i

˜̄Ux
Ri

ux†Ri
( 3̄, 1, −2

3)

D̄x
i

˜̄Dx
i dx†Ri

( 3̄, 1, 1
3)

sleptons, leptons La
i L̃a

i ≡ (ν̃i ẽLi) (νi eLi) ( 1, 2 , −1
2)

Ēi
˜̄ERi e†Ri

( 1, 1, 1)

Higgs, higgsinos Ha
u Ha

u ≡ (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Ha
d Ha

d ≡ (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Gauge superfields spin 1 spin 1/2 SU(3)C , SU(2)L, U(1)Y

B boson, bino V1 B0
µ B̃0 ( 1, 1 , 0)

W bosons, winos V2 WA
µ W̃A ( 1, 3 , 0)

Gluon, gluino V3 gXµ g̃X ( 8, 1 , 0)

Table 1.1: The particle spectrum of the MSSM in terms of superfields and their decomposition into SM
particles and their superpartners, the latter denoted with a tilde. i = 1, 2, 3 are the usual generation
indices of quarks, leptons and their superpartners, a = 1, 2 (A = 1, 2, 3) are the indices of the SU(2)L
fundamental (adjoint) representation and x = 1, ...8 (X = 1, ..) are the SU(3)C color indices in the
fundamental (adjoint) representation. The fermionic superfield components are two–component Weyl
spinors. The SU(3)C , SU(2)L, U(1)Y quantum numbers are given in the last column. After electroweak
(EW) symmetry breaking, the neutral higgsinos and EW gauginos mix to form the neutralinos χ0 and
similarily the charged higgsinos and EW gauginos form the charginos χ±.

proton stability:
Rp = (−1)2S+3B+L (1.1)

Instead of Rp, one can equally introduce the well–motivated discrete symmetry baryon triality
(B3) [48–50] which also forbids the BNV terms but allows for lepton number violation. P6 and
B3 are the only discrete ZN symmetries of the MSSM which can be written as a remnant of a
broken anomaly free gauge symmetry [48, 49], and which also ensure that dimension five BNV
operators that might lead to proton decay are forbidden.

Since in a generic B3 MSSM, the number of free parameters in the SUSY breaking sector is
too large to perform a systematic study, we work in the B3 constrained MSSM (B3 cMSSM)
[51], which imposes simplifying assumptions on the scalar and gaugino masses and couplings at
the high energy unification scale MX ∼ 1016 GeV. As a result, there are 5 free parameters in the
SUSY breaking sector. We reduce the number of parameters in the LNV sector by rotating away
the bilinear LNV terms at the unification scale MX , such that there are only 36 trilinear LNV
parameters at MX left. Note however, that the bilinear terms will be re–generated at lower
energy scales via renormalisation group (RG) effects [39]. The generation of neutrino masses
through non–zero LNV parameters directly at the electroweak (EW) scale (therefore without
the complications from RG effects) has been studied in Refs. [42, 52]. Generation of neutrino

forbidden. However, on a renormalizable level Rp and P6 allow for the same terms in the superpotential.
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masses via bilinear LNV couplings and the corresponding collider signatures have also been
studied. We refer interested readers to Refs. [53–61] and references therein.

In the B3 cMSSM, the size of the neutrino masses is proportional to the square of the trilinear
LNV parameters. Therefore, one can use the upper bound on the neutrino masses from cosmo-
logical observations [12–14] to derive bounds on the LNV parameters, which we examine in § 5.
These bounds were previously shown to be very strict, as low as O(10−6). We show that they
are significantly weakened in regions of cMSSM parameter space specified by certain values of
the universal trilinear scalar coupling (A0) at MX .

Apart from the upper bound on the sum of neutrino masses, there is also a bound on the
effective number of neutrino generations N eff

ν from cosmology. Additional relativistic particles
such as sterile neutrinos contribute to the relativistic degrees of freedom and thus speed up the
expansion rate of the universe; consequently neutron-proton decoupling occurs earlier and the
mass fraction of primordial 4He is increased [62]. Recent results are consistent with the three
neutrino generations present in the SM and MSSM [63–68]; however, there is a tendency to
slightly larger values. We interpret this in the light of a near–massless neutralino contributing
to N eff

ν in § 9. It has been shown that very light or even massless neutralinos in the Rp MSSM are
consistent with all current experiments, given non-universal gaugino masses, cf. Refs. [69–77].
Furthermore, a very light neutralino is consistent with astrophysical bounds from supernovae
and cosmological bounds on dark matter [73, 77–81]. Here we study the cosmological constraints
on this scenario from Big Bang nucleosynthesis (BBN) [67, 68]. We take gravitinos into account,
but restrict ourselves to the Rp–conserving MSSM, without including LNV effects, which would
lead to mixing between neutralinos and neutrinos. We find that a very light neutralino is even
favoured by current observations.

The just mentioned mixing between neutralinos and neutrinos leads to one massive neutrino
at tree–level in the B3 MSSM [37–43]. Higher order corrections need to be included to give mass
to at least one more neutrino in order to be consistent with the non–zero values of the neutrino
mass squared differences, ∆m2

21 and ∆m2
31. The radiative origin of the second neutrino mass

scale implies that a strong hierarchy of O(100) between the neutrino masses is to be expected,
cf. Ref. [43]. However, the data require a neutrino mass ratio of the heaviest two neutrinos of at
most O(5). Thus a mechanism is needed to suppress the tree–level mass scale for viable models.
Ref. [43] used sets of five parameters [two trilinear LNV couplings together with the three
mixing angles that describe the lepton Yukawa matrix]. The LNV parameters were chosen such
that their contributions to the tree–level neutrino masses partially cancel against each other.
We present an alternative mechanism, first mentioned in Ref. [82], where the tree–level neutrino
mass can vanish in a more generic fashion in certain regions of cMSSM parameter space, specified
by the trilinear soft supersymmetry breaking parameter A0 in § 4.

In § 6 we focus especially on these parameter regions, and aim to reproduce the neutrino
oscillation data using a small set of LNV couplings. Compared with Ref. [43], these regions
might be considered more preferable in the sense that they avoid suppression of tree level
neutrino masses through specific cancellations between LNV parameters. We furthermore wish
to analyze the general structures that lead to potential solutions, since it is not possible to
systematically list all solutions. By introducing parameters coupled to different generations, we
attempt to understand how different trilinear LNV terms interplay with each other to generate
the observed mass pattern. For a quantitative analysis, it is essential to have a complete 1–
loop treatment of the LNV sector, since this significantly influences the generation of neutrino
masses. Therefore we have extended the spectrum calculator SOFTSUSY to calculate neutrino
masses at the full 1–loop level, see § 6.1.2 and Ref. [83].

3
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Having investigated different ansaetze for the LNV sector of the B3 MSSM, we then turn to
the implications of these models for collider signatures at the Large Hadron Collider (LHC). The
LHC has been collecting data since 2010. A main objective of both multi–purpose experiments
ATLAS and CMS at the LHC is the search for new physics beyond the SM. Many of these
extensions, in particular SUSY, include new heavy colored states and a weakly interacting
lightest new particle escaping detection. Thus the most generic signal among these models are
several hard jets and large transverse missing momentum ( /pT ). ATLAS and CMS grouped
their multi–jet and missing transverse momentum searches into 0, 1, 2 lepton studies [84–95], in
order to be sensitive to different SUSY models and to avoid an overlap between these studies.
Most studies were recently updated to the full dataset of about 5 fb−1 recorded in 2011 at a
center–of–mass energy of 7 TeV. So far, no excess above SM expectations has been observed and
strict bounds on any supersymmetric model or another relevant new physics model providing a
similar collider signal can be derived. ATLAS and CMS mainly concentrate on SUSY searches
which are based on the Rp–conserving MSSM.

In the B3 MSSM, there are several notable differences compared to the Rp–conserving MSSM.
The lightest supersymmetric particle (LSP) decays via the LNV interactions and cosmological
constraints do not apply [96]. Note that in the LNV MSSM a stau LSP is as well motivated as a
neutralino LSP [51, 97–100]. These LSP decays lead to distinct collider signatures at the LHC,
which can be significantly different from models with Rp conservation [101]. Also, if the LNV
couplings are relatively large, supersymmetric particles (sparticles) can be produced singly at a
collider, possibly on resonance3 [102–105]. Additionally, large LNV couplings can significantly
change the renormalization group running of the sparticle masses, such that at the electroweak
scale the selectron or smuon (sneutrino) can become lighter than the neutralino or the stau and
thus become the LSP [99, 106, 107]. This can dramatically change the SUSY collider signatures,
because (heavy) sparticles normally cascade decay down to the LSP [99, 107, 108]. There have
been several ATLAS and CMS searches as well as phenomenological studies for /Rp models,
mostly based on resonant slepton production, multi–lepton signatures or displaced vertices [109–
115]. However, most of these studies constrain models where the L–violating couplings are either
very large (for single slepton production), very small (for displaced vertices) or where we have
single coupling dominance and four body decays (4 lepton signature) [116]. Apart from these
studies, the results of the ATLAS 1 lepton, multi–jet and /pT study with 1 fb−1 of data were
used to restrict a bilinear R–parity violating model [58], which takes into account constraints
from neutrino data [90].

In § 7, we re–interpret the ATLAS studies with jets, /pT and 0, 1 or 2 isolated leptons [84,
90, 93] in the light of the hierarchical B3 MSSM, where we relate the LNV couplings to the
Higgs–Yukawa couplings, as first proposed in Ref. [117]. This reduces the number of free LNV
parameters to six, cf. § 2.1.1. We take into account experimental results on neutrino oscillations,
which amounts to five constraints (neutrino mixing angles and mass-squared differences). When
additionally fixing the overall neutrino mass scale, this enables us to unambiguously determine
the magnitude of the six LNV parameters, removing (almost) all degrees of freedom from the
LNV sector. Consequently, the decay properties of the LSP in the hierarchical B3 MSSM depend
only on the experimental neutrino data. We expect no difference in the production and decay
chains of supersymmetric particles compared to the Rp MSSM, since the magnitude of the L–
violating couplings is fairly small (of order 10−5) in order to be in accordance with neutrino

3 For example, single resonant slepton production at the LHC via λ′
ijk, Eq. (2.3): An excess over the SM

backgrounds is visible if λ′
ijk � O(10−3), depending also on the sparticle masses [102–105].
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data. However, due to the LSP decays there is less /pT and more jets and/or leptons. Therefore,
the exclusion limits on the B3 cMSSM are somewhat weaker than on the Rp–conserving cMSSM
using the currently available experimental searches which are optimized for the latter, as we
show in § 7.

The parameter space of the conventional Rp–conserving cMSSM is becoming more and more
excluded by the LHC searches. The fact that no signal has yet been found allows to derive quite
stringent bounds on the masses of some strongly interacting superparticles. In particular, first
generation squarks and gluinos below about 1.5 TeV are excluded if their masses are roughly
equal [84]. Squark and gluino masses above 1.5 TeV seem already somewhat high, consider-
ing that the main motivation for postulating the existence of superparticles is to stabilize the
electroweak hierarchy against radiative corrections. However, to one loop order essentially only
third generation (s)quarks appear in the loop corrections to Higgs mass parameters. Moreover,
the analyses published by CMS and ATLAS so far are not sensitive to direct pair production of
only third generation squarks, if the other squarks and gluinos are sufficiently heavy [118–122]4.
Hence stop masses of a few hundred GeV are still allowed, and in fact favored by fine–tuning
arguments.

There are phenomenological reasons to be interested in quite light stops in the Rp–conserving
MSSM. One obvious disadvantage of the B3 MSSM described in the last paragraphs is that
it cannot account for dark matter because the LSP decays. In contrast, in the Rp–conserving
MSSM the LSP is stable and the lightest neutralino can be a viable dark matter candidate
[29, 124], being weakly interacting and stable (if R−parity, or a similar symmetry, is exact).
However, for most combinations of parameters the computed LSP relic density is either too
large (if the LSP is bino–like, which is preferred in many constrained models) or too small (if it
is higgsino– or wino–like). One (of several [29, 124]) solutions is to have a bino–like neutralino
with mass splitting of a few tens of GeV to the lightest stop. In this case co–annihilation [125]
between these two states can lead to an acceptable relic density [126]. This type of scenario
is well motivated for several reasons. If supersymmetry breaking is transmitted to the visible
sector at some high energy scale, Yukawa contributions to the renormalization group evolution
tend to reduce stop masses relative to the masses of first generation squarks [29, 124]. Also, the
mixing between the SU(2) doublet left (L−)type and SU(2) singlet right (R−)type squarks is
proportional to the mass of the corresponding quark, and is therefore most important for top
squarks. This mixing will further reduce the mass of the lighter eigenstate (and increase that
of the heavier eigenstate).

Thus motivated, we study in § 8 the effects at a hadron collider of a scenario where the lighter
stop mass eigenstate t̃1 is the only strongly interacting light sparticle, with rather small mass
splitting to the neutralino LSP. We assume that charginos as well as all other neutralinos are
heavier than t̃1 and the sfermion and gluino masses are O(few TeV). The dominant sparticle
production mechanism is then stop pair production. The loop induced two–body decay t̃1 →
c χ̃0

1 is the dominant decay mode [127–129] because other decays are kinematically closed or
strongly phase space suppressed. Because of the small mass splitting to the LSP the soft
fragmentation and decay products of the stops cannot be reconstructed as jets and thus the
usual signals will be swamped by background.

4 One reason is that the cross section for producing a pair of third generation squarks is much smaller than
that for producing first generation squarks, since no “flavor excitation” contributions exist for third generation
squarks. However, very recently ATLAS published [123] an analysis of a search for light sbottom pairs using
about 2 fb−1 of data, which excludes b̃1 with mass below 400 GeV if b̃1 decays with unit branching ratio into
the lightest neutralino, assuming the mass of that neutralino is sufficiently small.
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Chapter 1 Introduction

In Ref. [130] it was proposed to consider stop pair production in association with a hard jet,
t̃1 t̃

∗
1j. This inevitably leads to the notion of a monojet [131], i.e. a final state containing a

single high momentum jet, whose pT is mostly balanced by the invisible LSPs, plus some soft
particles. In [132] the SM background for monojets was evaluated in the context of searching
for extra dimensions; these results were used in [130] to show that the monojet signature from
stop pair production can be seen above the SM background up to stop masses of 200 GeV or
larger. In [130] the selection cuts could not be optimized. In § 8, we develop a set of selection
cuts optimized for searching for relatively light t̃1 squarks nearly degenerate with the neutralino
LSP. We perform a signal and background simulation at hadron level and simulate the most
important detector effects by using a fast detector simulation. In addition, we also include tt̄ as
an important background for the monojet signal, which had been omitted in previous works.

Note that a further motivation to reconsider stop pair production in association with a hard
jet arises in the context of testing a supersymmetry relation involving superpotential couplings.
An alternative production process to t̃1 t̃

∗
1j based on the associate production of a t̃1 t̃

∗
1 pair with

a bb̄ pair [133] has large mixed EW–QCD contributions5 for relatively light higgsinos. These
are sensitive to the t̃1 − χ̃±

1 − b coupling. However, reconstructing this coupling requires that
the masses of the lighter stop and the lightest neutralino are known, so that the pure QCD
contribution, where the bb̄ pair originates from gluon splitting, can be subtracted. Determining
the stop mass from an independent, QCD dominated process would be advantageous for this
purpose.

1.1 Publications

Large parts of the work presented here have already been published. The dependence of neutrino
masses on B3 cMSSM parameter space (§ 4) and bounds on the LNV couplings from the cos-
mological upper bound on the sum of neutrino masses (§ 5.3) have been analyzed in Ref. [134].
In Ref. [83] we describe how we implemented the 1–loop neutrino sector in SOFTSUSY-3.2, cf.
§ 6.1.2. Phenomenologically viable neutrino masses and mixings within the B3 cMSSM (§ 6)
have been obtained in Ref. [135]. The collider analysis of the hierarchical B3 cMSSM described
in § 7 has been published in Ref. [136]. The light stop search with monojet events (§ 8) and the
investigation of cosmological bounds on a very light neutralino (§ 9) can be found in Refs. [137]
and [138], respectively.

5 These can even exceed the pure QCD prediction, since there are 2 → 3 diagrams with an on–shell higgsino–like
chargino decaying into a stop and a b jet.
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Chapter 2

The Baryon Triality (B3) MSSM

The most general gauge invariant superpotential at the renormalizable level with the field content
of the MSSM, cf. Table 1.1, can be written as [45, 139, 140]

W = WRp +W/Rp
, (2.1)

where WRp(W/Rp
) contain terms that conserve (violate) the discrete symmetries R–parity (Rp) as

well as proton hexality (P6). In the notation of Table 1.1, which follows Ref. [51] and SOFTSUSY
[141, 142] closely, they are

WRp = εab [(YE)jkH
a
dL

b
jĒk + (YD)jkH

a
dQ

b
jD̄k + (YU )jkQ

a
jH

b
uŪk − µHa

dH
b
u], (2.2)

W/Rp
= εab [

1

2
λijkL

a
iL

b
jĒk + λ′

ijkL
a
iQ

b
jD̄k + λ′′

ijkŪiD̄jD̄k − κiL
a
iH

b
u], (2.3)

where i, j, k ∈ {1, 2, 3} are generation indices, a, b ∈ {1, 2} (ε12 = 1) are indices of the SU(2)L
fundamental representation, while the corresponding SU(3)c indices are suppressed. (YE)jk,
(YU )jk and (YD)jk are the Higgs–Yukawa couplings of the lepton and the up– and down–type
quarks, respectively, and µ is the bilinear Higgs mixing parameter. λijk and λ′

ijk (λ′′
ijk) are the

trilinear LNV (BNV) couplings and κi is the bilinear LNV parameter. To avoid operators that
could result in dangerously fast proton decay [44, 140, 143], we impose the discrete symmetry
baryon triality (B3) [48–50]. Under this symmetry, baryon number is conserved while there is
lepton number violation (LNV). The superpotential is given by

WB3 = WRp +WLNV, (2.4)

where the last term on the right is obtained by setting λ′′ = 0 in W/Rp
. We note that Rp, B3

and P6 are the only discrete ZN symmetries which can be written as a remnant of a broken
anomaly free gauge symmetry [48, 49]. In the rest of this paper, B3 is assumed to be conserved.

Beside the superpotential, also the soft-breaking Lagrangian of the B3 conserving MSSM
exhibits lepton number violating operators [51]

−Lsoft
LNV = εab [

1

2
hijkL̃

a
i L̃

b
j
˜̄Ek + h′ijkL̃

a
i Q̃

b
j
˜̄Dk − D̃iL̃

a
iH

b
u] +m2

LiHd
L̃†
iaH

a
d + h.c., (2.5)

where again i, j, k = 1, 2, 3 are generation indices and we use the notation of Table 1.1. Beside
the term proportional to m2

HdL̃i
, the operators in Eq. (2.5) are the soft-breaking analog of the

terms in WLNV, Eq. (2.4). We state also the complete Rp–conserving soft SUSY breaking
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Chapter 2 The Baryon Triality (B3) MSSM

Lagrangian in order to fix the notation [51, 141],

− Lsoft
Rp

= εab

[
(hE)jkH̃

a
d L̃

b
j
˜̄Ek + (hD)jkH̃

a
d Q̃

b
j
˜̄Dk + (hU )jkQ̃

a
jH

b
u
˜̄Uk − B̃Ha

dH
b
u + h.c.

]
+ m2

Hd
H†

dHd +m2
Hu

H†
uHu + Q̃i

†
(m2

Q̃
)ijQ̃j +

˜̄Li(m
2
L̃
)ij

˜̄L†
j +

˜̄Ei(m
2
Ẽ
)ij

˜̄E†
j

+ ˜̄Di(m
2
D̃
)ij

˜̄D†
j +

˜̄U(m2
Ũ
)ij

˜̄U † +

[
1

2
M1B̃

0B̃0 +
1

2
M2W̃

AW̃A +
1

2
M3g̃g̃ + h.c

]
.(2.6)

Here, (m2
F̃
)ij are the soft-breaking scalar masses. (hE)jk, (hD)jk, (hU )jk as well as B̃ are the

soft breaking trilinear and bilinear terms, respectively. M1, M2 and M3 are the U(1)Y , SU(2)L
and SU(3)c gaugino masses, respectively. Again, the SU(3)c indices are suppressed.

2.1 Constraining the Parameter Space

The B3 MSSM model has more than 200 free parameters [144]. In order to perform a systematic
study, we restrict ourselves to the well motivated framework of the B3 constrained MSSM
(cMSSM) [36, 51], which provides simple boundary conditions for the MSSM parameters at the
unification scale MX . The cMSSM model is specified by the parameter set

M0, M1/2, A0, sgn(µ), tanβ, (2.7)

denoting the universal scalar mass, the universal gaugino mass, the universal trilinear scalar
coupling at the unification scale MX , and the sign of the bilinear Higgs mixing parameter µ
and the ratio of Higgs vacuum expectation values (VEVs) vu/vd at the electroweak scale MZ .
The magnitude of µ is determined dynamically by radiative electroweak symmetry breaking
(REWSB) [145].

Additionally, there are 36 B3 conserving (but Rp–violating) parameters

Λ ⊂ {λijk, λ
′
ijk} . (2.8)

Note that we allow for trilinear but not bilinear LNV parameters at the unification scale, because
we work in a basis where the bilinear LNV couplings κi and D̃i are both zero at MX . It is possible
to rotate away the κi terms in the superpotential at any given energy scale by an orthogonal
rotation of the fields Lα ≡ (Hd, Li) [37, 146]. The corresponding bilinear soft-breaking terms
proportional to D̃i, Eq. (2.5), can be rotated away in conjunction with κi if D̃i and κi are aligned.
This condition is fulfilled at MX in the bt cMSSM if the underlying supergravity superpotential
f satisfies the quite natural condition [51]

f(zi; yα) = f1(zi) + f2(yα) , (2.9)

where the superfields zi belong to the observable sector and the superfields yα to the hidden
sector (“universal SUSY breaking“).

However, when evolving the parameters down to the weak scale, κi, D̃i �= 0 are re–generated
via the RGEs [39]. The leading terms are given by [51]

16π2 dκi
dt

= −3µλ′
ijk(YD)jk − µλijk(YE)jk − 3κi

[
g21
5

+ g22 − (YU )
2
33 −

(YE)
2
33

3
δ3i

]
(2.10)
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2.2 Quark Mixing

and

16π2 dD̃i

dt
= −3(YD)jk(2µ h′ijk + B̃λ′

ijk)− (YE)jk(2µ hijk + B̃λijk)

−3D̃i

[
g21
5

+ g22 − (YU )
2
33 −

(YE)
2
33

3
δ3i

]
+ 6κi

[
g21
5
M1 + g22M2

]

+6κi

[
(YU )33(hU )33 +

(YE)33
3

(hE)33 δ3i

]
. (2.11)

Here t ≡ ln(Q/µ0) with Q the renormalization scale and µ0 an arbitrary reference scale. h′ijk ≡
A0×λ′

ijk at MX , cf. Eq. (2.5). g1 and g2 are the U(1)Y and SU(2)L gauge couplings, respectively.
We see in Eqs. (2.10) and (2.11) that the RGEs differ, and therefore κi and D̃i will no longer
be aligned at the weak scale [39]. The complete low energy spectrum is obtained by running the
RGEs down from MX to MZ . Note that we work in the CP-conserving limit throughout this
work.

2.1.1 The Hierarchical B3 cMSSM

The Hierarchical B3 cMSSM further constrains the LNV sector of the B3 cMSSM by making
a hierarchical ansatz for the LNV trilinear couplings by relating them to the corresponding
Higgs–Yukawa couplings [117]: In the B3 cMSSM, the down–type Higgs superfield and the SU(2)
doublet lepton superfield have the same gauge quantum numbers [37]. They are indistinguishable
because lepton number is broken. Thus, the L–violating trilinear terms in Eq. (2.3) resemble the
Higgs–Yukawa terms in the R–parity conserving superpotential, Eq. (2.2). We therefore make
the following ansatz at MX [117], which can be motivated in the framework of Froggatt-Nielsen
models [146]

λ′
ijk ≡ 	′i · (YD)jk , (2.12)

λijk ≡ 	i · (YE)jk − 	j · (YE)ik . (2.13)

Here, 	i, 	′i are c-numbers. Eq. (2.13) has the required form to maintain the anti-symmetry of
the λijk in the first two indices. Assuming a specific form of the Higgs–Yukawa couplings, the
number of free LNV parameters is reduced from 36 to 6. We have given our ansatz in the weak–
current basis. However, after EW symmetry breaking, we must rotate to the mass–eigenstate
basis as we discuss in § 2.2 and § 3.4.

2.2 Quark Mixing

The RGE evolution of the parameters in the B3 cMSSM from MX to MEW depends on the
Higgs–Yukawa coupling matrices YE , YD and YU , cf. Eqs. (2.10) and (2.11). In particular, the
RGEs of the LNV violating parameters are coupled via the non–diagonal matrix elements of the
Higgs–Yukawa couplings. Also, the LNV parameters in the hierarchical B3 cMSSM are directly
proportional to the Higgs–Yukawa coupling matrices, cf. Eqs. (2.12) and (2.13). Therefore a
knowledge of the latter is crucial for the analysis of neutrino masses in the B3 MSSM.

The initial parameter set of the B3 cMSSM model at MX is given in the electroweak basis
so that for the RGE evolution the Higgs–Yukawa couplings (or the quark– and lepton–mass
matrices) are also needed in the electroweak basis. However, from experiment we only know the
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Chapter 2 The Baryon Triality (B3) MSSM

masses and Cabbibo–Kobayashi–Maskawa (CKM) [147, 148] matrix

VCKM = U†
LDL (2.14)

at MEW. Here U†
L (D†

L) rotate the left–handed up– (down–) quark fields from the mass ei-
genstate basis to the electroweak basis. For simplicity, we take YD and YU to be real and
symmetric and thus the rotation matrices for the right–handed quark fields are identical to the
ones for left–handed quark fields, UR = UL and DR = DL ("left–right symmetric mixing").

When determining the neutrino masses, we will consider two limiting cases at MEW, following
Ref. [51, 149, 150]:

• “up–type mixing" the quark mixing is only in the up–quark sector,

UL,R = VCKM , DL,R = 1 ,

YD × vd = diag(md,ms,mb) , (2.15)
YU × vu = VCKM · diag(mu,mc,mt) ·VT

CKM .

• “down–type mixing" the mixing is only in the down–quark sector,

DL,R = VCKM , UL,R = 1 ,

YD × vd = VCKM · diag(md,ms,mb) ·VT
CKM ,

YU × vu = diag(mu,mc,mt) . (2.16)

Here md,ms,mb (mu,mc,mt) denote the masses of the down–type (up–type) quarks.
The choice between up– and down–type mixing can have a strong effect on the final results

for the LNV couplings Λ ∈ {λ′
ijk} with j �= k, as we will show in § 5.3 (see Tab. 5.1). The

reason is that the generated tree level neutrino mass is proportional to the off–diagonal matrix
element (YD)

2
jk, cf. the discussion in § 3 and § 4. Our results (for the tree–level neutrino mass)

in § 5.3 can be easily translated to scenarios which lie between the limiting cases of Eqs. (2.15)
and (2.16). One only needs to know the respective Yukawa matrix elements (YD)jk.

The choice of mixing can have significant impact on the required magnitude of the λ′
ijk

couplings at the unification scale, especially for the case j �= k. This is because in our model the
bilinear LNV couplings, κi, that enter the tree–level mass (Meff

ν )tree via Eq. (3.5) are generated
via renormalization group evolution. For example, there are contributions of the form

dκi
dt

∝ µλ′
ijk × (YD)jk, (2.17)

where t = ln(Q/µ0), with Q the renormalization scale and µ0 an arbitrary reference scale. We
see that the relative index structure of the non–vanishing R–parity violating and conserving
Yukawa couplings is essential for the resulting magnitude of κi.
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Chapter 3

Neutrino Masses and Mixings in the B3

MSSM

The LNV terms of the B3 MSSM detailed in Eq. (2.3) and Eq. (2.5) lead to the dynamical
generation of neutrino masses. For example, the bilinear terms in Eq. (2.3) mix the Higgsinos,
the supersymmetric partners of the Higgs bosons, with the neutrino fields and thus generate
one non–vanishing neutrino mass at tree–level [37–43], cf. Sect 3.1. In order to fit neutrino
oscillation data, which implies at least two massive neutrinos, it is necessary to include the
1–loop contributions to mν . In fact, these corrections must be sizable as the mass ratio of the
two heaviest neutrinos is of order one, cf. § 3.5.

We here identify the dominant 1–loop contributions. A complete list of all one–loop contribu-
tions is given in Ref. [41], where they are formulated in a basis–independent manner. Many of
the one–loop contributions are proportional to the mass insertions that mix the neutrinos with
the neutralinos. They are thus aligned to the tree–level neutrino mass matrix and do not lead
to more than one massive neutrino.

The dominant one–loop contributions which are not aligned to the tree–level mass matrix are
on the one hand due to loops involving two LNV vertices and are thus either proportional to
λ2 or to λ′2, cf. Fig. 3.1 We will review these contributions in § 3.2. On the other hand, loops
with virtual neutral scalars (i.e. Higgses and sneutrinos) and neutralinos, which are shown in
Fig. 3.2, can also give large contributions to neutrino masses. These loops are proportional to
the mass difference between CP-even and CP-odd sneutrinos, cf. § 3.3.

We discuss how the neutrino mixing angles are obtained from the PMNS matrix in § 3.4 and
finally we state the most recent experimental data on neutrino oscillations and the cosmological
upper bound on neutrino masses in § 3.5.

3.1 Tree–Level Contributions

Since lepton number is violated in the B3 MSSM, the lepton doublet superfields Li carry the
same quantum numbers as the down–type Hd doublet superfield. As a result, the neutralinos
and neutrinos mix:

LMN
= −1

2
(−iB̃,−iW̃ 3, H̃0

d , H̃
0
u, νi)MN




−iB̃
−iW̃3

H̃0
d

H̃0
u

νj


 .

(3.1)
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νi νj

νi νj

λikn λjnk

λ′
ikn λ′

jnk

�k

dk

�̃n

d̃n

Figure 3.1: Loop contributions to the neutrino mass matrix via a non-vanishing product of B3 couplings
λikn × λjnk (upper figure) and λ′

ikn × λ′
jnk (lower figure). See § 3.2 for more details.

In the above expression, MN is a 7 × 7 mass matrix. As we are interested in models with a
strong hierarchy between the mass scales of the neutralinos and the neutrinos, it is convenient
to write MN as

MN =

(
Mχ0 m
mT mν

)
, (3.2)

where mν is the 3 × 3 mass matrix in the neutrino sector and Mχ0 is the 4 × 4 mass matrix
in the neutralino sector. m denotes the 3 × 4 mixing matrix which arises through R–parity
violation. Analogously to the standard see-saw mechanism [15–17] (with the neutralinos taking
over the role of the right-handed neutrinos), an effective 3 × 3 neutrino mass matrix Meff

ν can
then be defined [38, 151]

Meff
ν ≡ mν −mM−1

χ0 m
T . (3.3)

At tree–level, in which mν = 0, it is given by [38, 151]

(Meff
ν )treeij =

µ(M1g
2
2 +M2g

2)

2vuvd(M1g22 +M2g2)− 2µM1M2
∆i∆j

(3.4)

where

∆i ≡ vi − vd
κi
µ
, i = 1, 2, 3 . (3.5)

Here vi and vd are vacuum expectation values (VEVs) of the sneutrino and (Hd) higgs fields.
The former are determined in the minimization of the neutral scalar potential, cf. § 3.1.1. An
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3.1 Tree–Level Contributions

νi νj

νi νj

χ̃0
k

χ̃0
k

H0
L

A0
L

Figure 3.2: Loop contributions to the neutrino mass matrix via a non–exact cancellation of loops with
CP-even and CP-odd neutral scalars. Note, that there is a relative minus sign between the two diagrams.
See § 3.3 for more details.

effective neutrino mixing matrix Uν can then be defined via the relation

UT
ν Meff

ν Uν = diag[mνi ], i = 1, 2, 3. (3.6)

The rank–1 structure of (Meff
ν )tree leads to only one non–zero neutrino mass, which can at MEW

be simplified to [51]

mtree
ν ≈ −16παGUT

5

∑3
i=1 ∆

2
i

M1/2
, (3.7)

if we take into account the gaugino universality assumption at MX , leading to M2 =
3
5
α2
2

α2
1
M1 =

α2
2

α2
GUT

M1/2 at MEW [51]. Here αGUT = g2GUT/4π ≈ 0.041 is the unified gauge coupling con-
stant [51].

3.1.1 Radiative Electroweak Symmetry Breaking

In the B3 MSSM, sneutrinos can acquire vevs vi because of the mixing between the lepton
superfields Li and the Higgs superfield Hd (i = 1, 2, 3). The sneutrino vevs vi (as well as the
bilinear Higgs parameter |µ| and its corresponding soft breaking term B̃) are determined by
the minimization conditions for the neutral scalar potential, which has been discussed in detail
in Ref. [51] for the LNV case.

At tree level, the sneutrino vevs can be written as [51]

(M2
ν̃ )ijvj = −

[
m2

LiHd
+ µκi

]
vd + D̃ivu , (3.8)
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with

(M2
ν̃ )ij = (m2

L̃
)ij + κiκj +

1

2
M2

Z cos 2β δij +
(g2 + g22)

2
sin2 β

∑
l

v2l δij , (3.9)

where g =
√

3/5 g1. m2
LiHd

originates from the LNV soft-breaking Lagrangian, Eq. (2.5). It
mixes the down–type Higgs fields, Hd, with the lepton doublet scalars, L̃i, and is zero at MX .
That is, because we take within cMSSM the mass matrix of the fields L̃α = (Hd, L̃i) to be
diagonal and proportional to M0 at MX . However, m2

LiHd
�= 0 is subsequently generated via

the RGEs, cf. Eq. (4.6).
Higher order corrections [152–154] to sneutrino VEVs can amount to O(10%) and should

therefore be included in a quantitative discussion of neutrino masses in the B3 MSSM.

3.2 Contributions from λλ- and λ′λ′-Loops

In large regions of parameter space, the dominant loop contributions are those which are directly
proportional to the product of two LNV trilinear couplings, as we will see in § 4. The corres-
ponding squark-quark and slepton-lepton loops are shown in Fig. 3.1. The resulting neutrino
mass contributions are [40]

(mΛΛ
ν )ij =

1

32π2

∑
k,n

λiknλjnkm�k sin 2φ̃
�
n ln

(
m2

�̃1n

m2
�̃2n

)

+
3

32π2

∑
k,n

λ′
iknλ

′
jnkmdk sin 2φ̃

d
n ln

(
m2

d̃1n

m2
d̃2n

)
, (3.10)

where m�k (mdk) are the lepton (down-quark) masses of generation k, and φ̃�
n (φ̃d

n) the mixing
angles that describe the rotation of the left– and right–handed slepton (down-squark) current
eigenstates of generation n to the two mass eigenstates, m�̃1n

and m�̃2n
(md̃1n

and md̃2n
), re-

spectively. Note that the squared sfermion masses are linear functions of the cMSSM parameters
M2

0 and M2
1/2, see for example Ref. [155]. For the calculation of Eq. (3.10) and all following cal-

culations, we have used the two-component spinor formalism as described in Ref. [156].
For the first two sfermion generations, the sfermion mixing angles are small and we approx-

imate Eq. (3.10) by using the mass insertion approximation (MIA) as described in Ref. [43].
The slepton (and down-squark) mass eigenstates are replaced by the respective left– and right–
handed eigenstates with mass m�̃Ln

and m�̃Rn
. The mixing angle can then be approximated

by

sin 2φ̃�
n =

2(MLR
�̃

)2n

m2
�̃Ln

−m2
�̃Rn

, (3.11)

where
(MLR

�̃
)2n = m�n

[
(hE)nn
(YE)nn

− µ tan β

]
(3.12)

denotes the left–right mixing matrix element of the charged sleptons of generation n [51].
A similar formula is obtained for sin 2φ̃d

n. One only needs to replace in Eq. (3.11) and Eq. (3.12)
	 ↔ d, 	̃ ↔ d̃, (YE)nn ↔ (YD)nn and (hE)nn ↔ (hD)nn.
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3.3 Contributions from Neutral Scalar–Neutralino–Loops

3.3 Contributions from Neutral Scalar–Neutralino–Loops

Contributions arising from loops with neutral scalars and neutralinos can also play an important
role for neutrino mass generation, cf. Refs. [40, 157, 158]. Most important is the contribution
from sneutrino–antisneutrino mixing, as we will see in Eq. (3.18).

If CP is conserved, sneutrinos ν̃i and antisneutrinos ν̃∗i mix to form CP–invariant mass eigen-
states

ν̃+i ≡ 1√
2
(ν̃i + ν̃∗i ) , (3.13)

ν̃−i ≡ 1

i
√
2
(ν̃i − ν̃∗i ) . (3.14)

If lepton number is conserved, the ν̃±i masses are degenerate and the CP-even (CPE) and CP-
odd (CPO) contributions to the neutrino mass from neutral scalar–neutralino–loops cancel, cf.
Fig. 3.2.

In contrast, if lepton number is violated, the ν̃±i masses are in general different, so the cancel-
lation is no longer exact. This is due to the fact that the CPE and CPO neutrinos mix differently
with the CPE and CPO Higgs fields, respectively. The size of this contribution to the neutrino
masses is roughly proportional to the mass splitting ∆m2

ν̃i
= m2

ν̃+i
− m2

ν̃−i
, cf. Eq. (3.18) and

Refs. [40, 157, 158].

The neutral scalar–neutralino-loops, shown in Fig. 3.2, lead to the following contributions to
the neutrino mass matrix [43]

(mν̃ν̃
ν )ij =

1

32π2

4∑
k=1

5∑
L=1

mχ̃0
k
(gN1k − g2N2k)

2×
[
Z+
(2+i)LZ

+
(2+j)LB0(0,m

2
H0

L
,m2

χ̃0
k
)

−Z−
(2+i)LZ

−
(2+j)LB0(0,m

2
A0

L
,m2

χ̃0
k
)

]
,

(3.15)

where mχ̃0
k
(k = 1 . . . 4) are the neutralino masses and N is the 4×4 neutralino mixing matrix in

the bino, wino, Higgsino basis [159]. The two-point Passarino-Veltman function is conventionally
denoted B0 [160]. mH0

L
(mA0

L
) with L = 1, . . . , 5 are the mass eigenvalues of the CPE (CPO)

neutral Higgs bosons and CPE (CPO) sneutrino fields. They can be obtained with the help of
the unitary matrix Z+ (Z−), which diagonalizes the mass matrices of the CPE (CPO) neutral
scalars, i.e.

(Z+)TMCPEZ
+ = diag(m2

h0 ,m
2
H0 ,m

2
ν̃+1

,m2
ν̃+2

,m2
ν̃+3

) ≡ diag(m2
H0

L
) (3.16)

and

(Z−)TMCPOZ
− = diag(m2

G0 ,m
2
A0 ,m

2
ν̃−1

,m2
ν̃−2

,m2
ν̃−3

) ≡ diag(m2
A0

L
) ; (3.17)

see Ref. [43] for additional details.

In order to analyze the dependence of this contribution on the cMSSM parameters, we make
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use of the fact that in the B3 cMSSM model, Eq. (3.15) can be approximated by [42]

(mν̃ν̃
ν )ij ≈ 1

32π2

4∑
k=1

m3
χ̃0
k
(gN1k − g2N2k)

2 ×
∆m2

ν̃i

(m2
ν̃i
−m2

χ̃0
k
)2

ln

(
m2

χ̃0
k

m2
ν̃i

)
δij (3.18)

by expanding around m2
H0

L>2
and m2

A0
L>2

. The mass splitting, ∆m2
ν̃i

, in Eq. (3.18) between CPE
and CPO sneutrinos of generation i is then given by [158]

∆m2
ν̃i =

−4B̃2M2
Zm

2
ν̃i
sin2 β

(m2
H0 −m2

ν̃i
)(m2

h0 −m2
ν̃i
)(m2

A0 −m2
ν̃i
)
× (B̃vi − D̃ivd)

2

(v2d + v2i )(B̃
2 + D̃2

i )
. (3.19)

3.4 The PMNS Matrix, Charged Lepton Masses and Neutrino
Mixing Angles

The observable Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [161–163] is defined to be

UPMNS = UT
�LUν . (3.20)

The charged lepton mixing matrix U�L can be obtained by treating the charged lepton–chargino
mass matrix MC in a similar fashion as the neutrino–neutralino mass matrix. In particular an
effective charged lepton mass matrix Meff

� as well as its corresponding charged lepton mixing
matrices U�L(R) can be defined, which rotate the left– (right–) handed charged leptons. Con-
sistent with our notation, MC is defined in the same way as in Ref. [142]. To an excellent
approximation, the charged lepton masses can be obtained by

U †
�LM

eff
� U�R = diag[m�i], i = 1, 2, 3. (3.21)

To obtain a complete 1–loop description of the PMNS matrix, one–loop corrections to Meff
�

need to be included1. In our numerical simulations, we impose the condition that the charged
lepton mixing matrix is diagonal at the electroweak scale. This implies that one–loop corrections
to the charged lepton mixing matrix would only indirectly influence the UPMNS matrix. The
unification–scale Yukawa couplings are adjusted such that the charged lepton mixing matrix is al-
ways diagonal at the electroweak scale. One–loop corrections to U� would further (slightly) alter
the unification-scale Yukawa couplings, which in turn affects the RGEs of the LNV parameters.
However, these changes are negligible compared to the current experimental uncertainties in the
neutrino sector [142], therefore we neglect one–loop corrections to the charged lepton mixing
matrix.

In this basis, the PMNS matrix is determined only by the form of the effective neutrino mixing
Uν . We consider this advantageous, as this allows for a more transparent understanding and
better control of how different LNV parameters contribute to the neutrino masses and mixings.
Thus, the PMNS matrix can be expressed in terms of the neutrino mixing angles θij [164]

UPMNS ≡


 cθ12cθ13 sθ12cθ13 sθ13

−sθ12cθ23 − cθ12sθ23cθ13 cθ12cθ23 − sθ12sθ23sθ13 sθ23cθ13
sθ12sθ23 − cθ12cθ23sθ13 −cθ12sθ23 − sθ12cθ23sθ13 cθ23cθ13


 . (3.22)

1 In SOFTSUSY, the Rp–conserving 1–loop corrections are implemented, but not the LNV ones.
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where cθij ≡ cos(θij), sθij ≡ sin(θij), and we assume CP–conservation.

3.5 Experimental Neutrino Data

Assuming three active oscillating neutrinos, the best global fit values of the combined global
analysis of atmospheric, solar, reactor and accelerator data is given by [6, 165],

sin2(θ12) = 0.31 ± 0.02, (3.23)
sin2(θ23) = 0.51 ± 0.06, (3.24)
sin2(θ13) < 0.03, (3.25)

∆m2
21 = 7.59 ± 0.2× 10−5 eV2, (3.26)

∆m2
31 =

{
−2.34± 0.1 × 10−3 eV2

2.45± 0.1 × 10−3 eV2 , (3.27)

where the errors are given at the 1σ level, and

∆m2
ij ≡ m2

νi −m2
νj . (3.28)

mνi denote the neutrino masses in order of largest electron-neutrino admixture. There are
two large mixing angles θ12 and θ23 and a small angle θ13. This implies that at least two
neutrinos have non–zero mass. The (as–yet) undetermined sign of ∆m2

31 means that two mass
orderings are possible. They are known as the normal (∆m2

31 > 0) and the inverted (∆m2
31 < 0)

hierarchies.
Deviating from Ref [6], an explicit non–zero θ13 value has recently been indicated by T2K,

Daya Bay and RENO [166–168]. We here display the best–fit value by Daya Bay,

sin2(2θ13) = 0.09 ± 0.02. (3.29)

which is within the bound set by Eq. (3.25). Note that there has recently been an updated
global fit in Ref. [7]. However, this new global fit is not used in our results yet.

The observations and measurements from neutrino oscillations determine the differences of
neutrino masses squared, cf. Eqs. (3.26), (3.27). Direct laboratory measurements restrict the
absolute masses of the neutrinos to be below O(10MeV − 1 eV) [5, 8–11]. Limits dependent on
the Majorana nature of neutrinos also exist from non–observation of neutrinoless double beta
decay (0νββ), which is of O(0.5 eV) [169–172]. Note, there is a claim of evidence for a neutrino
mass of 0.39 eV in a 0νββ experiment [173].

A stringent upper limit can be obtained from cosmological restrictions on the sum of the neut-
rino masses. The neutrinos act as hot dark matter and can suppress cosmic density fluctuations
on small scales through free-streaming. In order for its relic abundance to be small enough to
be consistent with the observed small-scale structure, we require∑

mνi � 0.4 eV , (3.30)

at 99.9% confidence level, obtained from Refs. [12–14]. The exact limit depends on details of
the analysis. Typically these analyses include data from the Wilkinson Microwave Anisotropy
Probe (WMAP) [174], Large Scale Structure [175–178] and Type Ia supernovae [179, 180].

In the following, we will make use of three limiting cases of neutrino mass hierarchies. In the

17



Chapter 3 Neutrino Masses and Mixings in the B3 MSSM

first two cases, we assume that the lightest neutrino is massless and impose normal and inverted
hierarchy, respectively. In the third case, we consider almost–degenerate neutrino masses with
normal hierarchy mass ordering, saturating the cosmological limit stated in Eq. (3.30).

For the normal (m1 < m2 < m3) and inverted (m3 < m1 < m2) hierarchies, neutrino masses
are respectively given by

• normal hierarchy (NH):

m1 ≈ 0 eV,

m2 = 8.71 × 10−3 eV,

m3 = 4.95 × 10−2 eV,

m3/m2 ∼ 5.7 . (3.31)

• inverted hierarchy (IH):

m1 = 4.84 × 10−2 eV,

m2 = 4.92 × 10−2 eV,

m3 ≈ 0 eV,

m2/m1 ∼ 1 . (3.32)

We will use the masses given in Eqs.(3.31) and (3.32) as best–fit values for the three neutrino
masses for the NH and IH cases, respectively. For the degenerate case (m1 ≈ m2 ≈ m3), we
assume that the sum of the three active neutrino masses equals 0.4 eV.

For illustrative purposes, we often refer to the tri–bi–maximal mixing (TBM) approximation
[181], where

sin2(θ12) =
1

3
, sin2(θ23) =

1

2
sin2(θ13) = 0 (3.33)

is assumed. The first two quantities differ from their best fit values by 7% and 2% respectively.
We discuss how this difference as well as the non–zero θ13 can be accommodated via small
deviations from the TBM structure in § 6. In the TBM approximation, the PMNS mixing
matrix [161–163] is explicitly given by

UTBM ≡




√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2


 . (3.34)

Since the defining equations in Eq. (3.33) involve squares, more than one phase convention exists
for the resulting mixing matrix.
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Chapter 4

Dependence of the ν–Masses on B3 cMSSM
Parameters

In the literature it has frequently been assumed that the tree–level contribution to the neutrino
mass, Eq. (3.7), in the B3 cMSSM model dominates over the loop contributions, cf. for example
Refs. [43, 51]. However, as has been noted in Ref. [82], in certain regions of B3 cMSSM para-
meter space, the tree–level neutrino mass vanishes. We find that there is in particular a strong
dependence of the tree–level neutrino mass on the trilinear SUSY breaking parameter A0.

We demonstrate this effect in Fig. 4.1, where we display the tree–level neutrino mass (solid
red line) as a function of A0. The other B3 cMSSM parameters are given by Point I with
λ′
233|GUT = 10−5, cf. § 4.1.1. We see that the tree–level mass, mtree

ν , vanishes around A0 ≈ 910
GeV. In the vicinity of this minimum, mtree

ν drops by several orders of magnitude over a wide
range of A0, and it is therefore not a (large) fine–tuning effect. In this case the loop contributions
will dominate the neutrino mass matrix, resulting in much weaker bounds on the involved Λ
coupling, cf. § 5.3. Thus the bound crucially depends on the choice of A0.

We emphasize that the range of A0 for which weaker bounds may be obtained is quite large.
In an interval of ∆A0 ≈ 100GeV around the minimum, we obtain bounds on λ′

233 that are at
least one order of magnitude smaller than the bound derived at for example A0 = 0 GeV. Much
weaker bounds can therefore be obtained without a lot of fine tuning.

In this chapter, we aim to explain in detail the origin of this cancellation, considering as an
explicit example mostly the case Λ ∈ {λ′

ijk}. We focus on the dependence of mtree
ν on the

cMSSM parameter A0, because it is always possible to find a value of A0 [for a given set of
parameters tan β, M1/2, M0, and sgn(µ) ] such that the tree–level neutrino mass vanishes. All
arguments can analogously be applied to a λijk coupling, as discussed in § 4.4. Note for the
further discussion that we can always obtain a positive Λ by absorbing a possible sign of Λ
via a re–definition L → −L and E → −E of the lepton doublet and lepton singlet superfields,
respectively. We also note that the generated neutrino masses scale roughly with Λ2, cf. the
following discussion. Although we concentrate in this work on the B3 cMSSM model, the
mechanisms described will also work in more general /Rp models.

4.1 Preliminaries

4.1.1 Benchmark Scenarios

We center our analysis around the following B3 cMSSM parameter points with exactly one non–
zero LNV parameter Λ ∈ {λ′

ijk, λijk} at the unification scale MX ,
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Particles Masses (GeV)
g̃ 1146

χ̃±
1 , χ̃

±
2 380 570

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4 204 380 552 571

ũ1, c̃1, t̃1 1050 1050 1005
ũ2, c̃2, t̃2 1012 1012 858
d̃1, s̃1, b̃1 1053 1053 971
d̃2, s̃2, b̃2 1008 1008 1002
ẽ1, µ̃1, τ̃1 353 353 346
ẽ2, µ̃2, τ̃2 217 217 163
ν̃e, ν̃µ, ν̃τ 343 343 331

h0, A0,H0,H± 112 607 608 612

Table 4.1: Mass spectrum of the benchmark Point I in the Rp conserving limit. From top to bottom,
the particles are the gluino, charginos, neutralinos, up–like squarks (2 rows), down–like squarks (2
rows), charged sleptons (2 rows), sneutrinos and the Higgses. The charginos and neutralinos are ordered
according to their masses. For a scalar sparticle, a subscript 1(2) denotes that it is primarily ‘left’(‘right’)
handed, i.e. the superpartner of a left(right) chiral fermion. This is the convention used in SOFTSUSY.
From left to right, the 4 Higgses are the light CP–even Higgs, CP–odd Higgs, heavy CP–even Higgs and
the charged Higgs.

Point I: M1/2 = 500 GeV, M0 = 100 GeV, tanβ = 20, sgn(µ) = +1, A0 = 900 GeV, Λ = λ′
233

Point II: M1/2 = 500 GeV, M0 = 100 GeV, tanβ = 20, sgn(µ) = +1, A0 = 200 GeV, Λ = λ233

Point II differs from Point I only by the choice of the LNV coupling and the size of A0. We
have chosen these points as examples because the tree–level contribution to the neutrino mass
is small around Point I and II and therefore one–loop contributions are important. Both points
lead to squark masses of O(1 TeV) and slepton masses of around 300 GeV, with a scalar tau
(stau) as the LSP. The full spectrum in the Rp–conserving limit (for Point I) is displayed in
table 4.1.

We ensured that both points lie in regions of parameter space where various other experimental
constraints are fulfilled, such as the lower bound on the lightest Higgs mass from LEP2 [182,
183] or the bound from b → sγ [184] and from Bs → µ+µ− [184]. We elaborate this in more
detail in § 5.2. Furthermore, we are well above the LEP2 and Tevatron supersymmetric mass
bounds, as for example on the charginos.

4.1.2 Numerical Implementation

The numerical calculation of the neutrino mass matrix is done in the following way. We first em-
ploy SOFTSUSY-3.0.12 [141, 142] to obtain the low energy mass spectrum1. SOFTSUSY employs
the full set of renormalization group equations (RGEs) at one loop [51, 82, 185, 186] in order to
obtain the B3 MSSM spectrum at the electroweak scale (MEW). We then use our own add–on
1 We use as SM inputs for SOFTSUSY the following parameters: MZ = 91.1876 GeV (mt = 165.0 GeV) for the

pole mass of the Z boson (top quark); α−1(MZ) = 127.925 and αs(MZ) = 0.1176 for the gauge couplings in
the MS scheme; mb(mb) = 4.20 GeV, mu(2GeV) = 0.0024 GeV, md(2GeV) = 0.00475 GeV, ms(2GeV) = 0.104
GeV and mc(mc) = 1.27 GeV for the light quark masses in the MS scheme.
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to calculate the neutrino mass matrix. The tree–level contribution was derived from Eq. (3.4).
For the λλ– and λ′λ′–loops, we employed Eq. (3.10), if third generation sfermions were involved.
However, for sfermions of the first two generations we used the MIA as given in Eqs. (3.11) and
(3.12). For the neutral scalar–neutralino–loops, we in principle employed Eq. (3.15). However,
instead of performing the large numerical cancellation between CPE and CPO neutral scalars
directly [square bracket in Eq. (3.15)], we used an MIA to calculate the deviation from exact
cancellation in the R-parity conserving (RPC) limit, following Ref. [43]. The resulting formula
is quite lengthy and we refer the interested reader to Ref. [43] for details. We have cross checked
our program with the help of Eq. (3.18) and Eq. (3.19). All our calculations are performed in the
CP-conserving limit. We employ micrOMEGAs2.2 [187] for the evaluation of BR(Bs → µ+µ−),
BR(b → sγ) and δaSUSY

µ .

4.2 A0 Dependence of the Tree–Level Neutrino Mass

We now discuss the dependence of the tree–level neutrino mass at MEW as a function of A0 at
MGUT. Recall from § 3.1 that

mtree
ν ∝ ∆2

i =

(
vi − vd

κi
µ

)2

. (4.1)

From the RGE of κi, Eq. (2.10), we obtain as the dominant contribution

κi ∝ µλ′
ijk(YD)jk ≡ µλ′

ijk

(md)jk
vd

(4.2)

at all energy scales, where (md)jk denotes a matrix element of the down quark mass matrix.
Therefore,

vd
κi
µ

∝ λ′
ijk · (md)jk , (4.3)

without further dependence on cMSSM parameters.
Thus, the dependence of the tree–level neutrino mass, Eq. (4.1), on the cMSSM parameters

is solely through the sneutrino vev vi
2. In Fig. 4.1, the dashed green line explicitly shows the

dependence of |vi| , i = 2 on A0. It possesses a clear minimum which is close to the minimum
of mtree

ν .
This behavior can be understood by taking a look at the (tree–level) formula for the vev vi,

Eq. (3.8). For Λ ∈ {λ′
ijk} it can be written as

vi =
1

(M2
ν̃ )ii

[
D̃ivu − (m2

LiHd
+ µκi)vd

]
, (4.4)

with
(M2

ν̃ )ii = (m2
L̃
)ii +

1

2
M2

Z cos 2β . (4.5)

Here, we have neglected terms proportional to κ2i and v2i , because they are much smaller than
(m2

L̃
)ii and M2

Z . Note that we only obtain one non–zero sneutrino vev because λ′
ijk violates only

2 Note that there is one exception, namely the direct proportionality mtree
ν ∝ 1/M1/2, cf. Eq. (3.7). However,

compared to vi, the impact of this term on mtree
ν and thus on the bounds of the trilinear LNV couplings is

much weaker.
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Figure 4.1: A0 dependence of mtree
ν and the terms determining the sneutrino vev v2, Eq. (4.4), at the

REWSB scale (used in SOFTSUSY to calculate the sneutrino vev). Since the scale affects the parameters
only logarithmically, there are only minor changes when running to MEW. The other B3 cMSSM
parameters are that of Point I with λ′

233|GUT = 10−5, § 4.1.1.

one lepton flavor.

In many regions of parameter space the sneutrino vev in Eq. (4.1) is at least two orders of
magnitude larger than the term vdκi/µ. Thus the minimum of the neutrino mass can only occur
when the sneutrino vev is drastically reduced. As we shall see, the sneutrino vev becomes very
small, when there is a cancellation between the two terms in Eq. (4.4).

The second term of vi in Eq. (4.4), (m2
LiHd

+ µκi)vd, and the prefactor 1/(M2
ν̃ )ii are always

positive and depend only weakly on A0. This can be seen in Fig. 4.1 for (m2
LiHd

+ µκi)vd
(dotted–dashed blue line) and also for 1/(M2

ν̃ )ii (solid turquoise line). This behavior can be
easily understood:

The soft breaking parameter, m2
LiHd

, Eq. (2.5), is zero at MX and is generated at lower scales
via [51]

16π2
dm2

LiHd

dt
= −λ′

ijk(YD)jkF(m̃2)− 6h′ijk(hD)jk , (4.6)

where F(m̃2) is a linear function of the soft-breaking scalar masses squared and of the down–type
Higgs mass parameter squared. h′ijk [(hD)jk] is the soft-breaking analog of λ′

ijk [(YD)jk] with
h′ijk = λ′

ijk ×A0 [(hD)jk = (YD)jk ×A0] at MGUT. The second term in Eq. (4.6) thus depends
on A2

0. However, F(m̃2) is in general much larger than A2
0 due to several contributions from

soft breaking masses [51]. Therefore, varying A0 does not significantly change the magnitude of
m2

LiHd
as long as A0 is not much larger than the sfermion masses.

Concerning the term µκi in (m2
LiHd

+µκi)vd, we note from the RGE for κi, Eq. (2.10), that the
only A0 dependence of κi stems from its proportionality to µ. µ at MEW can be approximated
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by [155]

µ2 = c1M
2
0 + c2M

2
1/2 + c3A

2
0 + c4A0M1/2 −

M2
Z

2
. (4.7)

Here c1 and c2 are numbers of O(1) whereas c3 and c4 are only of O(10−1 − 10−2)3. Therefore,
except for A0 � M0,M1/2, the order of magnitude of µ remains constant when varying A0.

We conclude that (m2
LiHd

+ µκi)vd depends only weakly on A0 and therefore, D̃i is decisive
for the A0 dependence of the vev vi and thus of mtree

ν . If the first term in Eq. (4.4), D̃ivu, is
positive and only slightly larger than the (nearly constant) second term, (m2

LiHd
+ µκi)vd, vi

can equal vdκi/µ and we get mtree
ν = 0, cf. Eq. (4.1).

The strong A0 dependence of the magnitude of D̃ivu is also displayed in Fig. 4.1 (dotted
magenta line). We observe that |D̃ivu| is often larger than (m2

LiHd
+ µκi)vd (dotted–dashed

blue line). However, near the tree–level neutrino mass minimum (solid red line), it drops below
(m2

LiHd
+ µκi)vd and vi can equal vd κi

µ . In this case mtree
ν , Eq. (4.1), vanishes.

In order to understand this behavior of D̃i, we need to understand how D̃i is generated via
the RGEs. Recall that D̃i = 0 at MX within the B3 cMSSM model. The generation of D̃i

primarily depends on the running of the trilinear soft breaking mass h′ijk [51],

16π2 dD̃i

dt
= −6µ(YD)jkh

′
ijk + . . . . (4.8)

We find the contribution in Eq. (2.11) proportional to B̃ is typically much smaller4 and we here
focus on the effects due to h′ijk. The dominant terms of the corresponding RGE are given by
[51, 107]

16π2
dh′ijk
dt

=
16

3
g23 (2M3λ

′
ijk − h′ijk) + . . . , (4.9)

where g3 (M3) denotes the SU(3) gauge coupling (gaugino mass). At MX this equation simplifies
to

16π2
dh′ijk
dt

=
16

3
g2GUT(2M1/2 −A0) λ

′
ijk + . . . . (4.10)

Keeping for now all parameters except A0 fixed (with sgn(µ) =+1 and λ′
ijk > 05), we can

classify the running of h′ijk, Eq. (4.9) and Eq. (4.10), in the following way (see also Ref. [107]
for a detailed discussion):

(a) A0 
 2M1/2 (including negative values of A0): Since the right hand side (RHS) of the
RGE for h′ijk, Eq. (4.9), is always positive and large, h′ijk is quickly reduced from its
initial value of A0×λ′

ijk and even becomes negative when running to lower energies. This

3 All ci depend also weakly on tanβ. However, this becomes only relevant for very small tanβ [155].
4 Only in parameter regions with small tan β and small M1/2, a term proportional to B̃, Eq. (2.11), becomes

equally important. This is because B̃ increases with decreasing tan β [51] whereas µ × h′
ijk decreases with

decreasing M1/2, cf. Eq. (4.7) and Eq. (4.9). The term proportional to B̃ in Eq. (2.11) is then enhanced with
respect to the term proportional to h′

ijk. However, in this parameter region vi will typically end up being
negative because D̃i is further reduced than the other term in vi, such that the latter dominates. Then there
can be no cancellation in the tree–level neutrino mass, Eq. (4.1).

5 From Eq. (2.10) it is easy to see that this implies sgn(κi) = +1 below MGUT.
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Figure 4.2: Running of h′
233 for various values of A0. The other B3 cMSSM parameters are that of Point

I, § 4.1.1, with λ′
233|GUT = 10−5 and M1/2 = 500 GeV.
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Figure 4.3: Running of the bilinear coupling D̃2, Eq. (4.8), for the same parameter sets as those in
Fig. 4.2.

behavior is displayed in Fig. 4.2 (dashed green line), where the running of h′233 is shown
for different boundary conditions at MGUT.

(b) A0 ≈ 2M1/2: If the size of A0 is comparable to 2M1/2, h′ijk will be fairly constant at
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high energies, cf. the dotted magenta line in Fig. 4.2. However, when running to lower
energies it will still start decreasing, but more slowly than in case (a). This is due to
the fact that M3 and λ′

ijk themselves increase significantly (by factors of approx. 2.5 and
3, respectively; see Ref. [107]) when running to lower energies. Thus the term 2M3λ

′
ijk

eventually dominates in Eq. (4.9) even if initially A0 � 2M1/2. This leads to a small,
negative h′ijk at low energies.

(c) A0 � 2M1/2: h′ijk is large at MX and is further increased when running to lower energies.
This is due to the negative RHS of the RGE for h′ijk, Eq. (4.9); see also the dotted–dashed
blue line in Fig. 4.2.
Caveat: Since the term 2M3λ

′
ijk in Eq. (4.9) increases by a factor of approximately

8 ≈ 3 · 2.5 when running from MX to MEW [as mentioned in (b)], h′ijk only strictly
displays the behavior of case (c) when A0 � 20M1/2. Otherwise, h′ijk will decrease once
the term 2M3λ

′
ijk dominates.

Because D̃i is zero at MGUT and, according to Eq. (4.8), also proportional to the integral of
h′ijk over ln(Q), points (a) - (c) have the following consequences for D̃i:

(a) A0 
 2M1/2: Since h′ijk always becomes negative below some energy scale close to MX ,
the RHS of Eq. (4.8) is positive. This leads to a large negative D̃i at MZ as can be seen
in Fig. 4.3 (dashed green line). Consequently, all terms except D̃ivu become negligible
in vi, Eq. (4.4), and thus |vi| at MEW is large, dominating the tree–level neutrino mass,
Eq. (4.1).

(b) A0 ≈ 2M1/2: Due to the initially negative RHS of Eq. (4.8) at energies close to MX

(where h′ijk ≈ A0 × λ′
ijk), D̃i first increases when running to lower energies but then

starts decreasing once h′ijk becomes negative, cf. the dotted magenta lines in Fig. 4.2 and
Fig. 4.3. At some energy scale Q, D̃i becomes small such that vi, Eq. (4.4), can equal
vd

κi
µ . A cancellation between these two terms in mtree

ν , Eq. (4.1), at the scale Q will then
occur. This corresponds to a vanishing tree–level neutrino mass if Q = MEW.

(c) A0 � 2M1/2: The RHS of Eq. (4.8) is always negative with a large magnitude such that
we get a large positive D̃i at the weak scale, cf. the dotted–dashed blue line in Fig. 4.3.
As in case (a), D̃ivu provides the main contribution to |vi|, Eq. (4.4). Therefore, |vi| is
large and dominates mtree

ν , Eq. (4.1).

Summarizing, the tree–level neutrino mass has a minimum in the parameter region where the
size of A0 is comparable to 2M1/2. This is mainly due to the running of the parameters D̃i and
h′ijk that affect the sneutrino vevs; in particular due to a partial cancellation in Eq. (4.9). Note
that in Fig. 4.1 the tree–level neutrino mass vanishes at A0 ≈ 910 GeV, which is indeed close
to 2M1/2.

In Fig. 4.4, we show two dimensional cMSSM parameter scans of the tree–level neutrino mass.
The other cMSSM parameters are those of Point I, § 4.1.1, with λ′

233|GUT = 10−5. One scan
parameter is always A0 in order to show how the position of the minimum, which was described
in the last section, changes with the other cMSSM parameters. Fig. 4.4(i) shows the A0–M1/2

plane. We can clearly see that the position of the neutrino mass minimum is at A0 ≈ 2M1/2 as
was concluded above. Fig. 4.4(ii) presents the A0–M0 plane and Figs. 4.4(iii) and (iv) present
the A0–tanβ plane for positive and negative sgn(µ), respectively. As we will explain in the
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Figure 4.4: Two dimensional plots of the tree–level neutrino mass. In plot (i) [top, left], we depict the
A0 − M1/2 plane, in plot (ii) [top, right], we depict the A0 − M0 plane, in plot (iii) [bottom, left], we
depict the A0 − tanβ plane for sgn(µ) = +1 and in plot (iv) [bottom, right], we depict the A0 − tanβ
plane for sgn(µ) = −1. The plots are centered around parameter Point I, § 4.1.1, with λ′

233|GUT = 10−5.
The yellow regions signify parts of the parameter space where the neutrino mass becomes smaller than
10−4eV [plots (i),(iii),(iv)] or smaller than 10−5eV [plot (ii)] .

following subsection, the position of the minimum is shifted towards higher values of A0 for
small tan β. However, in this case a change of sgn(µ) also has a significant impact.

4.3 Dependence on Further B3 cMSSM Parameters

In § 4.2, we described in detail the dependence of the tree–level neutrino mass, Eq. (3.7), on the
B3 cMSSM parameter A0. In this section, we explain now in more detail the dependence of the
tree–level neutrino mass and the loop induced masses on the remaining B3 cMSSM parameters.

4.3.1 M1/2 Dependence

The tree–level neutrino mass minimum can be explained equivalently in terms of its dependence
on M1/2 instead of its dependence on A0. This is because varying M1/2 has a similar effect on
the running of h′ijk, Eq. (4.9) and Eq. (4.10), as varying A0. This is clear from the arguments
(a)-(c) in § 4.2. We could just rephrase the case differentiation as

(a) M1/2 � A0/2 .
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Figure 4.5: Same as Fig. 4.1, but now for the cMSSM parameter M1/2 instead of A0.

(b) M1/2 ≈ A0/2 .

(c) M1/2 
 A0/2 .

However, when varying M1/2 there are additional effects coming on the one hand from the
dependence of µ2, (M2

ν̃ )ii and m2
LiHd

on M1/2. These quantities are linear functions of M2
1/2. For

µ2 this can bee seen from Eq. (4.7). For (M2
ν̃ )ii and m2

LiHd
this follows because the respective

RGEs are functions of the squared sfermion masses [51]. One obtains for example [155]

(M2
ν̃ )ii ≈ M2

0 + 0.52M2
1/2 +

1

2
M2

Z cos 2β . (4.11)

On the other hand, there is also a direct proportionality of mtree
ν to M−1

1/2, cf. Eq. (3.7). All
these additional effects do not significantly influence the position of the tree–level neutrino mass
minimum, i.e. A0 ≈ 2M1/2 still holds for Λ ∈ {λ′

ijk}; see § 4. However, the effects add a global
slope to the terms (as a function of M1/2), which contribute to the tree level mass. This behavior
can be seen in Fig. 4.5.

We show in Fig. 4.5 the same contributions as in Fig. 4.1, but now as a function of M1/2

instead of A0. Here A0 has been fixed to 900 GeV. On the one hand, we observe that the
quantities D̃ivu (dotted magenta line) and (m2

LiHd
+µκi)vd (dotted-dashed blue line) are nearly

constant for low values of M1/2, but they have a positive slope for large values of M1/2. This is
mainly due to their dependence on µ; cf. Eq. (2.11) [Eq. (2.10)] for D̃i [κi]. On the other hand
(M−2

ν̃ )ii (solid turquoise line) has a negative slope for all values of M1/2 because of Eq. (4.11).
Overall this leads to a steep decrease of the tree–level neutrino mass (solid red line) in the region
of low M1/2, whereas in the region of large M1/2, the various contributions’ dependence on M1/2

roughly cancels, see Fig. 4.5.
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Figure 4.6: Same as Fig. 4.1, but now for the cMSSM parameter tanβ instead of A0.

Going beyond the plot, for M1/2 → ∞ the tree–level mass scales with M−1
1/2, as follows from

the different contributions to mtree
ν in Eq. (3.7). Such a behavior is expected, because SUSY

decouples from the SM sector in the limit M1/2 → ∞.

4.3.2 tanβ Dependence

Varying tan β most importantly affects the tree–level neutrino mass via the term D̃ivu in
Eq. (4.4). The RGE for D̃i, Eq. (4.8), is proportional to the down–type Yukawa coupling
(YD)jk ≡ (md)jk/vd. Therefore,

D̃ivu ∝ c1 + c2
vu
vd

≡ c1 + c2 tan β , (4.12)

at MEW. The factors c1 and c2 depend on the other cMSSM parameters but their magnitude
is approximately independent of tan β. However, there is a dependence of sgn(c2) on tan β via
the RGE of h′ijk. Especially in case (b) of § 4.2, i.e. in the region around the tree–level neutrino
mass minimum, this becomes relevant 6.

This (weak) tan β dependence of |D̃ivu| is illustrated in Fig. 4.6 for our B3 cMSSM parameter
set Point I; see § 4.1.1. One observes that the dotted magenta line (|D̃ivu|) increases between
tan β = 2 and tan β ≈ 40. Here, sgn(c2) > 0. Above tan β ≈ 40, |D̃ivu| starts decreasing, i.e.
sgn(c2) < 0. This is due to the enhancement of the down–type Yukawa coupling when increasing
tan β, since this reduces h′ijk further and further until it becomes negative. This decrease of
|D̃ivu| is only partially visible in Fig. 4.6 since the parameter region with high tan β is excluded
due to tachyons.

One can also see in Fig. 4.6 that the other term determining the sneutrino vev, (m2
LiHd

+

6 In case (a), c2 remains always negative and in case (c), c2 is positive.
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µκi)vd, which is displayed as a dotted-dashed blue line, is fairly constant regarding tanβ. This
contribution to the sneutrino vev is subtracted from the first term, D̃ivu (dotted magenta line),
so that the sneutrino vev becomes zero when the two lines intersect; see Eq. (4.4).

We observe this intersection in Fig. 4.6 at tan β ≈ 22, thus yielding the tree–level neutrino
mass minimum in this region. In theory, there could even arise two minima because above
tan β ≈ 40 D̃ivu starts decreasing again, leading to another intersection with (m2

LiHd
+ µκi)vd.

However, as mentioned before, this usually happens in an excluded region of parameter space.
As is also illustrated in Fig. 4.6, there is quite a sizable difference between the two terms which

determine the sneutrino vev, i.e. (m2
LiHd

+ µκi)vd (dotted–dashed blue line) and D̃ivu (dotted
magenta line) in the region of low tan β. If we are looking for a neutrino mass minimum in
this region of parameter space, we need to adjust A0 towards higher values, which will increase
h′ijk [cf. Eq. (4.9)]. Therefore, increasing A0 will shift the dotted magenta line upwards until
it intersects with the dotted-dashed blue line at the desired low tan β value. This shift of the
tree–level neutrino mass minimum to higher A0 is clearly visible in Fig. 4.4 (iii). For tan β = 20,
the minimum lies at A0 ≈ 900 GeV whereas for tan β = 5, it has shifted to A0 ≈ 1300 GeV. In
short, the shift is due to a decrease of the down–type Yukawa coupling for low tanβ leading to
a decrease of the RHS of Eq. (4.8). This decrease needs to be balanced by increasing A0; recall
that h′ijk = λ′

ijk ×A0 at MX in Eq. (4.8).

4.3.3 sgn(µ) Dependence

A change of sgn(µ) notably affects the tree–level neutrino mass via the RGE running of D̃i

[Eq. (4.8)], in which the overall sign of the RGE is changed. Therefore, the sign of D̃i itself is
reversed at any energy scale but its magnitude is mostly unaffected. Consequently, the A0 value
where D̃i = 0 is still mostly the same after a sign change.

However, at the position of the tree–level neutrino mass minimum, D̃i needs to be slightly
larger than zero in order to cancel the other terms contributing to the tree–level mass, cf. § 4.2
and § 4.3.2. When we are at a parameter point where the tree–level neutrino mass minimum
occurs for positive µ (i.e. D̃i is small and positive), a sign change to sgn(µ) = −1 will yield a
D̃i which is small and negative. The other contributing terms undergo no overall sign change.
If we would like to obtain a neutrino mass minimum now, D̃i needs to be increased in order
to become slightly larger than zero again. This can be achieved by decreasing A0, § 4.2, (or,
equivalently, increasing M1/2, § 4.3.1) since this increases D̃i via h′ijk in its RGE, Eq. (4.8),
when µ is negative. Therefore, the tree–level minimum will occur at smaller values of A0 (or
equivalently larger values of M1/2) when we change sgn(µ) = +1 to sgn(µ) = −1.

This effect becomes more important when we go to regions of low tan β. Here the influence of
h′ijk on D̃i, Eq. (4.8), becomes weaker due to the decrease of the down–type Yukawa coupling,
as we discussed in § 4.3.2. In order to still obtain a positive D̃i after reversing sgn(µ), h′ijk has
to decrease in a more substantial fashion than for large tan β. Therefore, the parameter point
where the tree–level neutrino mass minimum is located will shift to smaller A0 when changing
sgn(µ) = +1 to sgn(µ) = −1, especially for tan β � 10.

Overall, the sign change of µ leads to a “mirroring" of the tree–level mass minimum curve
in the A0–tan β plane around A0 = 800 GeV(≈ 2M1/2) because of a reversal of the sign of the
RGE for D̃i. This can be seen in Fig. 4.4 (iii) and (iv): for sgn(µ) = +1 the minimum shifts
to higher values of A0 with decreasing tan β, whereas for sgn(µ) = −1 the minimum shifts to
lower values of A0.
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Figure 4.7: Same as Fig. 4.1, but now for the cMSSM parameter M0 instead of A0.

4.3.4 M0 Dependence

Varying M0 does not greatly affect the tree–level neutrino mass. However, similar effects as
those described in § 4.3.1 as additional effects, arise due to the dependence of several parameters
on M2

0 , cf. for example Eq. (4.7) and Eq. (4.11). This can be seen in Fig. 4.7, where we again
show the terms, which enter the tree–level neutrino mass formula, Eq. (3.7). We can see that
most of the quantities depend only weakly on M0. This results in a nearly constant tree–level
neutrino mass, cf. solid red line in Fig. 4.7.

However, the above mentioned M2
0 dependences lead to a moderate shift of the tree–level

neutrino mass minimum towards higher values of A0 when increasing M0. Explaining this in
detail is fairly lengthy because the M0 dependence of the parameters determining the tree–
level neutrino mass is not as straightforward as the dependence on other cMSSM parameters.
However, the effect is shown numerically in Fig. 4.4 (ii). At large M0, the interval around the
minimum in the A0 direction where the the tree–level neutrino mass is considerably reduced
(and therefore the bounds on λ′

ijk are substantially weakened) is significantly broadened.
It should be noted that there is a similar mirror effect when changing sgn(µ) as for tan β. For

sgn(µ) = −1, the minimum shifts towards lower values of A0 when increasing M0.

4.4 Changes for Λ ∈ λijk

We now consider the case of Λ ∈ {λijk} instead of Λ ∈ {λ′
ijk}. Since λijk only couples lepton

superfields to each other (as opposed to the λ′
ijk operator which also involves quark superfields),

the RGEs in § 4.2 are reduced by a (color) factor of 3 [51, 82]. In addition, the down quark
Yukawa matrix elements, (YD)jk, need to be replaced by the respective lepton Yukawa matrix
elements, (YE)jk. Otherwise, the structure of the RGEs remains the same.

The only RGE where there are more extensive relevant changes is that for hijk (which replaces
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Figure 4.8: Same as Fig. 4.1, but now for the B3 cMSSM Point II, § 4.1.1, with λ233|GUT = 10−4.

h′ijk); cf. Eq. (2.5). Eq. (4.9) must be replaced by [51]

16π2 dhijk
dt

=
9

5
g21(2M1λijk − hijk) + 3g22(2M2λijk − hijk) + . . . , (4.13)

with hijk = A0 × λijk at MGUT. This looks exactly the same as the RGE for h′ijk, Eq. (4.9),
only with g3 and M3 replaced by gα and Mα (α = 1, 2). However, it is important to realize
that the running of gα and Mα is different from the running of g3 and M3. As was mentioned
in § 4.2, the latter quantities increase when running to lower energy scales whereas the former
decrease [28].

This has important consequences for the position of the tree–level neutrino mass minimum.
The terms g2αMαλijk of Eq. (4.13) now decrease [as opposed to g23M3λ

′
ijk in Eq. (4.9)]. It is thus

necessary to choose A0 smaller in order to have a smaller hijk at MGUT and at lower scales to
compensate for this. Quantitatively, we checked numerically that we now need A0 ≈ M1/2/2
(Λ ∈ {λijk}) to achieve a vanishing tree–level neutrino mass rather than A0 ≈ 2M1/2 (Λ ∈
{λ′

ijk}) as was the case in § 4.2.
For illustrative purpose, we show in Fig. 4.8 the A0 dependence of the tree–level neutrino mass

(solid red line) and of the terms determining the sneutrino vev v2 for a non-vanishing coupling
λ233 at MX . Fig. 4.8 is equivalent to Fig. 4.1 beside the fact that we now employ the parameter
Point II with λ233|GUT = 10−4 instead of the parameter Point I with λ′

233|GUT = 10−5, cf.
§ 4.1.1. The qualitative behavior of all terms is the same in both figures. However, in Fig. 4.8
the minima are shifted to lower values of A0 compared to Fig. 4.1.

We conclude that the line of argument explaining the minimum of the tree–level neutrino
mass in the case of Λ ∈ {λ′

ijk} still holds for Λ ∈ {λijk}. However, the position of the minimum
now shifts to A0 ≈ M1/2/2. The change of the prefactor is due to the fact that λijk couples only
leptonic fields to each other. Consequently, only superfields carrying SU(2) and U(1) charges,
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Figure 4.9: A0 dependence of the different contributions to the neutrino mass at the REWSB scale
for the B3 cMSSM Point I, § 4.1.1, with λ′

233|GUT = 10−5. Note that only the absolute values of the
contributions to the neutrino mass are displayed. mtree

ν and mλλ
ν are negative whereas mν̃ν̃

ν is mostly
positive. mν̃ν̃

ν is only negative between the two minima of |mν̃ν̃
ν |; see § 4.5 for details.

but not SU(3) charges, contribute to the relevant RGEs.

4.5 Dependence of the Loop Contributions to ν Masses on
cMSSM Parameters

The loop contributions to the neutrino mass matrix are usually several orders of magnitude
smaller than the tree–level contribution [43, 51]. However, in the region around the tree–level
neutrino mass minimum, the loops dominate as shown in Fig. 4.9 and Fig. 4.10. Therefore, we
now briefly discuss the dependence of the loop contributions on the cMSSM parameters.

• λλ– and λ′λ′–loops: This contribution to the neutrino mass, mλλ
ν , depends only weakly on

the cMSSM parameters, in particular it depends logarithmically on the relevant sfermion
mass. For example, varying A0 from 0 to 1400 GeV (−200 GeV to 1000 GeV) around
Point I (Point II) leaves the magnitude of mλλ

ν nearly unchanged7; cf. the dotted–dashed
blue line in Fig. 4.9 (Fig. 4.10). However, increasing M0 or M1/2 results in a decreasing
mλλ

ν : as the SUSY spectrum gets heavier the sfermions in the loops decouple.

• Neutral scalar–neutralino–loops: This contribution to the neutrino mass, mν̃ν̃
ν , as a func-

tion of A0 possesses a minimum which lies in the vicinity of the mtree
ν minimum. However,

there is no exact alignment.
7 In principle, there is an A0 dependence that stems from left-right mixing of the sfermions inside the loop, cf.

the first term in Eq. (3.12). However, in most regions of parameter space we have µ tan β � A0. In this case
only the second term in Eq. (3.12) plays a role.
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Figure 4.10: Same as Fig. 4.9, but for the B3 cMSSM Point II, § 4.1.1, with λ233|GUT = 10−4.

According to Eqs. (3.18) and (3.19), the dominant loop contribution from neutral scalar–
neutralino–loops to the neutrino mass matrix, (mν̃ν̃

ν )ii, is proportional to

(mν̃ν̃
ν )ii ∝ (D̃ivd − B̃vi)

2 × f(m2
χ̃0
k
,m2

ν̃i ,m
2
H0

,m2
A0

,m2
h0
) , (4.14)

where f is a function of the neutralino, sneutrino and Higgs masses squared, respectively.
The A0 dependence of Eq. (4.14) is mainly determined by D̃i, since the A0 dependence of
vi is governed by D̃i(A0),

vi(A0) ∝ D̃i(A0) + c , (4.15)

where the term c depends mainly on the other cMSSM parameters but barely on A0, as
discussed in § 4.2. Therefore (mν̃ ν̃

ν )ii is roughly proportional to D̃2
i . The behavior of D̃i

has been discussed in detail in § 4.2 in the context of the tree–level neutrino mass. We
have shown that there is always a value of A0 where D̃i becomes zero. Thus the neutral
scalar–neutralino loops display a similar minimum as the tree–level neutrino mass. The
position of the minimum is close to the tree–level one, but not exactly aligned. This
can be seen by comparing the dotted magenta line and dashed green line in Fig. 4.9 and
Fig. 4.10. However, since Eq. (4.14) is only an approximate formula [for the exact formula,
cf. Eq. (3.15)], the real curve is slightly shifted downwards such that its minimum reaches
negative values. Therefore |(mν̃ ν̃

ν )ii| in Fig. 4.9 and Fig. 4.10 appears to have two minima.

It is also immediately obvious from Eq. (4.14) that the scalar–neutralino–loops are roughly
proportional to [Λ× (YD)jk]

2 like the tree–level mass. Again, increasing M0 or M1/2 will
in general decrease mν̃ν̃

ν , because the SUSY mass spectrum gets heavier.

• NLO corrections to the sneutrino vevs are typically at least one order of magnitude smaller

33



Chapter 4 Dependence of the ν–Masses on B3 cMSSM Parameters

than the tree–level quantities determining the sneutrino vevs, m2
LiHd

× vd/(Mν̃)
2
ii and

D̃i × vu/(Mν̃)
2
ii, in Eq. (3.8) [152]. For illustration, one could consider this as a O(10%)

correction to m2
LiHd

. This shift upwards of the dotted–dashed blue line in Fig. 4.1 slightly
changes the position of the tree–level neutrino mass minimum, but does not alter any of
the conclusions drawn in this section. Since the effects that we investigate in this chapter
arise mainly from the contribution D̃ivu to the sneutrino vevs (see § 4.2), these corrections
are not important for the qualitative analysis performed here. In chapter 6.1.2, we discuss
how these NLO corrections can be implemented in the spectrum generator SOFTSUSY.

For parameter Points I and II, § 4.1.1, the A0 interval, ∆A0, where the loops dominate is
relatively small, cf. Fig. 4.9 and Fig. 4.10. However, there are other parameter regions where
the loops dominate in intervals of ∆A0 = O(100GeV)! This is for example the case if one varies
A0 around the benchmark point SPS1a [188].

4.6 Implications for Model Building

The tree–level neutrino mass depends strongly on the trilinear soft-breaking A0–parameter (and
also similarly on the gaugino masses). We concluded that in regions of parameter space with
A0 ≈ 2M1/2 (A0 ≈ M1/2/2) for λ′

ijk|GUT �= 0 (λijk|GUT �= 0), a cancellation between the
different contributions to the tree–level mass can occur. This can weaken the bounds on LNV
parameters arising from the cosmological upper bound on neutrino masses significantly, since
the overall neutrino mass scale is reduced. We will investigate this in § 5.3.

The work presented in this chapter can also help to find new supersymmetric scenarios that
are consistent with the observed neutrino masses and mixings. We have shown how the (typically
large) hierarchy between the tree–level and 1–loop neutrino masses can be reduced systematic-
ally . One can use this mechanism to match the ratio between tree–level and 1–loop induced
masses to the observed neutrino mass hierarchy, both for hierarchical neutrino masses and for
a degenerate spectrum. We further develop this idea in § 6. However, in § 4.5 it was mentioned
that loop corrections to the sneutrino vevs can lead to a seizable correction of the absolute value
of the neutrino masses. Also, there are further contributions to 1–loop neutrino masses besides
the dominant ΛΛ and neutral scalar–neutralino loops discussed here. Hence, § 6.1.2 is devoted
to a discussion of the implementation of a full 1–loop treatment of the neutrino sector within
the spectrum calculator SOFTSUSY, in order to obtain a precise description of neutrino masses
for comparison with experimental data.
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Chapter 5

Bounds on the B3 cMSSM

5.1 Low–energy bounds on the trilinear LNV couplings of the B3

cMSSM

Once a set of LNV couplings is specified, a natural question arises as to whether the model is
compatible with the large number of low energy observables (LEOs) on lepton–number violation.
If a considered model predicts LEO values close to current experimental limits, future (non–
)observations could (dis–)favor this model.

An extended set of relevant bounds on LNV LEOs is presented in Refs. [44, 189, 190]. Typically
these constraints are more important for LNV couplings involving lighter generations. The
reasons are two fold: Firstly, the fermion mass term in the λλ and λ′λ′–loops in Eq. (3.10)
implies that, in order to generate a neutrino mass contribution of the same size, LNV couplings
involving a light family index k need to be much larger than corresponding couplings with
heavy family indices to compensate for the mass suppression. Secondly, experimental constraints
generally provide more stringent limits on LNV couplings invocationlving light generations.

In the models presented in later sections, we compare our best fit parameter values with the
limits presented in Ref. [44], as well as a 0νββ bound on λ′

111 from Ref. [191–194]. The bounds
which are most relevant for the discussion of our results are displayed below:

[b1 ] µ → eee decay:

λnijλn11 � 6.6 · 10−7
( mν̃n

100GeV

)2
, i, j = 12, 21

λ′
211λ

′
111 � 1.3 · 10−41

[b2 ] µ− e conversion in nuclei:

λnijλ
′
n11 � 2.1 · 10−8

( mν̃n

100GeV

)2
, i, j = 12, 21

λ′
2n1λ

′
1n1 � 4.3 · 10−8

( mq̃n

100GeV

)2
, n = 2, 3

λ′
21nλ

′
11n � 4.5 · 10−8

( mq̃n

100GeV

)2
, n = 2, 3

λ′
211λ

′
111 � 4.3 · 10−8 ·∆−1,

∆ ≡
(
100GeV

mũ

)2

−
(
2Z +N

2N + Z

100GeV

md̃

)2
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Chapter 5 Bounds on the B3 cMSSM

For 48
22Ti, (2Z+N)/(2N+Z) = 70/74. This comes from the ratio of the number of valence

up–quarks to that of the down–quarks in a nuclei. See Ref. [195].

[b3 ] µ decay:
λ12k � 0.08

( m ˜ekR

100GeV

)
[b4 ] Leptonic τ decay:

λ23k, λ13k � 0.08
( m ˜ekR

100GeV

)
[b5 ] Forward–backward asymmetry of Z decay:

λi3k(i �= k �= 3) � 0.25
( mν̃τ

100GeV

)
λi2k(i �= k �= 2) � 0.11

( mν̃µ

100GeV

)

[b6 ] Leptonic K–meson decay (here i, j = 12, 21):

λn11λ
′
nij � 1.0 · 10−8

( mν̃n

100GeV

)2
,

λn22λ
′
nij � 2.2 · 10−7

( mν̃n

100GeV

)2
,

λn12λ
′
nij � 6 · 10−9

( mν̃n

100GeV

)2
,

λn21λ
′
nij � 6 · 10−9

( mν̃n

100GeV

)2
,

[b7 ] µ → eγ:

λnl2λnl1 < 8.2 · 10−5 ·

·


2(100GeV

mν̃L

)2

−
(
100GeV

ml̃L

)2


−1

λ23nλ13n < 2.3 · 10−4 ·

·


2(100GeV

mν̃L

)2

−
(
100GeV

ml̃R

)2


−1

λ′
2nlλ

′
1nl < 7.6 · 10−5

(
md̃lR

100GeV

)2

, n = 1, 2

[b8 ] 0νββ (here f̃ = ẽL, ũL, d̃R):

|λ′
111| � 5 · 10−4

( mf̃

100GeV

)2( mg̃/χ̃

100GeV

)1/2
.

These bounds are given in the mass basis, with the reference sparticle mass scale set at 100
GeV. In order to compare our model values with these bounds, we rotate to the mass basis
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5.2 Bounds on the B3 cMSSM parameter space

and include the correct mass dependence for all constraints derived from tree–level (4–fermion)
operators.

5.2 Bounds on the B3 cMSSM parameter space

We also need to take into account various other constraints on the B3 cMSSM parameter space
such as the absence of tachyons [51] or the lower bound on the lightest Higgs mass from LEP2
[182, 183]. However, we reduce the LEP2 bound by 3 GeV in order to account for numerical
uncertainties of SOFTSUSY [196–198]. For instance, in the decoupling limit (where the light Higgs,
h0, is SM-like) a lower bound of

mh0 > 111.4GeV (5.1)

We check in all numerical analyses presented in this work that we lie within the 2σ window for
the branching ratio of b → sγ [184],

2.74 × 10−4 < BR(b → sγ) < 4.30× 10−4 , (5.2)

and we are below the experimental upper bound on the branching ratio of Bs → µ+µ− [184],
i.e.

BR(Bs → µ+µ−) < 4.7× 10−8 . (5.3)

The 2σ window of the SUSY contribution to the anomalous magnetic moment of the muon
[199–202] excludes fairly large regions of cMSSM parameters space, which we show for example
in Figs. 5.1 and 5.2:

8.6 × 10−10 < δaSUSY
µ < 40.6× 10−10 . (5.4)

For more details see Ref. [107] and references therein. Note that there is a significant correlation
in cMSSM models between the muon anomalous magnetic moment and Bs → µ+µ− [203].

5.3 Bounds on the trilinear LNV Couplings from ν–Masses

In this section, we calculate upper bounds on all trilinear LNV couplings Λ ∈ {λijk, λ
′
ijk} at

MX from the cosmological upper bound on the sum of neutrino masses as given in Eq. (3.30).
We use the same benchmark points and numerical tools as in § 4. Beside the tree–level neutrino
mass, we also include the dominant contributions to the neutrino mass matrix at one–loop as
described in § 3.2 and § 3.3. Note that in good approximation

mν |EW ∝ Λ2|GUT , (5.5)

for both tree–level as well as 1–loop neutrino masses, as explained in § 4.2 2 and § 4.5. Based on
this approximation we employ an iterative procedure to account for effects beyond Eq. (5.5).

In § 5.3.1, we first compare our bounds with those given in Ref. [51], where the cMSSM
parameters of the benchmark point SPS1a [188] (in addition to Λ) were used. We choose the
same cMSSM parameters beside A0 in order to show how the bounds change in the vicinity of
the tree–level neutrino mass minimum, cf. § 4.2. We then perform in § 5.3.3 two dimensional

2 This is directly clear since the LNV parameters D̃i, κi and m2
LiHd

that determine the sneutrino vev are
generated proportional to Λ at MX , cf. § 4.2. From mtree

ν ∝ v2i we then obtain the relationship in Eq. (5.5).
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Up mixing Down mixing
A0 (GeV) -100 500 550 -100 500 550

λ′
111 2.0×10−3 2.7×10−2 8.3×10−2 9.7×10−4 1.3×10−2 5.3×10−2

λ′
211 2.0×10−3 2.7×10−2 8.3×10−2 9.7×10−4 1.4×10−2 5.3×10−2

λ′
311 2.0×10−3 2.7×10−2 8.3×10−2 9.6×10−4 1.3×10−2 5.3×10−2

λ′
121, λ

′
112 (1.3×10−1)t (1.7×10−1)t (1.7×10−1)t 4.3×10−4 6.0×10−3 2.7×10−2

λ′
221, λ

′
212 (1.3×10−1)t (1.7×10−1)t (1.7×10−1)t 4.3×10−4 6.0×10−3 2.7×10−2

λ′
321, λ

′
312 (1.3×10−1)t (1.7×10−1)t (1.7×10−1)t 4.3×10−4 5.9×10−3 2.6×10−2

λ′
131 (1.4×10−1)t (1.9×10−1)t (1.9×10−1)t 6.9×10−4 9.5×10−3 4.2×10−2

λ′
231 (1.4×10−1)t (1.9×10−1)t (1.9×10−1)t 6.9×10−4 9.5×10−3 4.3×10−2

λ′
331 (1.4×10−1)t (1.9×10−1)t (1.9×10−1)t 6.8×10−4 9.3×10−3 4.2×10−2

λ′
122 9.1×10−5 1.3×10−3 5.3×10−3 8.9×10−5 1.2×10−3 5.2×10−3

λ′
222 9.1×10−5 1.3×10−3 5.3×10−3 8.9×10−5 1.2×10−3 5.2×10−3

λ′
322 9.0×10−5 1.3×10−3 5.3×10−3 8.8×10−5 1.2×10−3 5.2×10−3

λ′
132 2.4×10−2 (1.9×10−1)t (1.9×10−1)t 5.8×10−5 8.0×10−4 3.9×10−3

λ′
232 2.4×10−2 (1.9×10−1)t (1.9×10−1)t 5.8×10−5 8.0×10−4 3.9×10−3

λ′
332 2.4×10−2 (1.9×10−1)t (1.9×10−1)t 5.8×10−5 7.9×10−4 3.8×10−3

λ′
113 4.2×10−3 5.5×10−2 1.9×10−1 6.3×10−4 8.7×10−3 3.8×10−2

λ′
213 4.2×10−3 5.5×10−2 1.9×10−1 6.3×10−4 8.7×10−3 3.8×10−2

λ′
313 4.2×10−3 5.4×10−2 1.7×10−1 6.2×10−4 8.6×10−3 3.7×10−2

λ′
123 5.9×10−4 8.7×10−3 2.4×10−2 5.3×10−5 7.4×10−4 3.4×10−3

λ′
223 5.9×10−4 8.7×10−3 2.4×10−2 5.3×10−5 7.4×10−4 3.4×10−3

λ′
323 5.8×10−4 8.5×10−3 2.4×10−2 5.3×10−5 7.2×10−4 3.4×10−3

λ′
133 2.3×10−6 3.2×10−5 1.3×10−4 2.3×10−6 3.2×10−5 1.3×10−4

λ′
233 2.3×10−6 3.2×10−5 1.3×10−4 2.3×10−6 3.2×10−5 1.3×10−4

λ′
333 2.3×10−6 3.1×10−5 1.3×10−4 2.3×10−6 3.1×10−5 1.3×10−4

Table 5.1: Upper bounds on the trilinear couplings λ′
ijk , Eq. (2.3), at MX for several values of A0 (second

row). The other cMSSM parameters are those of SPS1a [188]. We assume up-mixing (down-mixing) in
column 2-4 (5-7), cf. § 2.2. Bounds arising from the absence of tachyons are in parentheses and marked
by a superscript t: ()t.

parameter scans around the benchmark scenarios Point I and Point II (cf. § 4.1.1) to show more
generally how the bounds depend on the B3 cMSSM parameters.

In our parameter scans we exclude parameter regions where a tachyon occurs [51] or where
the lower bound on the lightest Higgs mass from LEP2 [182, 183] is violated. In the figures,
we also show contour lines for the 2σ window of the SUSY contribution to the anomalous
magnetic moment of the muon [200]. We have checked that the complete parameter space which
we investigate in the following is consistent with the experimental bounds from b → sγ [184],
and from Bs → µ+µ− [184] and that we are well above the LEP2 and Tevatron supersymmetric
mass bounds; see § 5.2 for details.

5.3.1 Comparison with Previous Results

In Ref. [51], bounds on single couplings Λ at MGUT in the B3 cMSSM model from the tree–level
neutrino mass were determined for the cMSSM parameters of SPS1a, in particular A0 = −100
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A0 (GeV) -100 200 120
λ211 1.1×10−1 2.7×10−1 (7.1×10−1)t

λ311 1.1×10−1 2.7×10−1 (7.1×10−1)t

λ231 (5.5×10−1)t (6.7×10−1)t (7.1×10−1)t

λ122 4.7×10−4 1.7×10−3 4.9×10−3

λ322 4.7×10−4 1.7×10−3 4.9×10−3

λ132 (5.5×10−1)t (6.7×10−1)t (7.1×10−1)t

λ123 (5.1×10−1)t (6.3×10−1)t (6.7×10−1)t

λ133 2.7×10−5 1.0×10−4 2.8×10−4

λ233 2.7×10−5 1.0×10−4 2.8×10−4

Table 5.2: Upper bounds on the trilinear couplings λijk, at MX for different values of A0 (first row).
The othercMSSM parameters are those of SPS1a [188]. Bounds arising from the absence of tachyons are
marked by ()t.

GeV. It was claimed that neutrino masses put an upper bound of O(10−3 − 10−6) on most of
the trilinear couplings in Eq. (2.3). However, the possibility of obtaining much weaker bounds
on the coupling Λ in the region of the tree–level neutrino mass minimum was not exploited. We
present here an update of these results by using Eq. (3.30) and including the dominant 1–loop
contributions. We then explore the cMSSM parameter dependence of the bounds.

In Tab. 5.1 and Tab. 5.2 (Λ ∈ {λ′
ijk} and Λ ∈ {λijk}, respectively), we compare the previous

results with bounds (at MGUT) that we obtain for identical B3 cMSSM parameter points, where
only the choice of A0 differs. In order to obtain corresponding bounds at MEW one needs to
take into account the RGE evolution of the couplings. Quantitatively this results in multiplying
the bounds in Tab. 5.1 (Tab. 5.2) by roughly a factor of 3.5 (1.5), cf. Ref. [51, 82, 150, 190,
204].

In addition to A0 = −100 GeV (SPS1a), we choose two parameter points which lie ∆A0 ≈ 10
GeV and ∆A0 ≈ 60−70 GeV, away from the neutrino mass minimum. In Tab. 5.1 (Λ ∈ {λ′

ijk}),
we choose A0 = 500 GeV (column 3 and 6) and A0 = 550 GeV (column 4 and 7). In Tab. 5.2
(Λ ∈ {λijk}), we choose A0 = 200 GeV (column 3) and A0 = 120 GeV (column 4). This enables
us to examine the dependence of the bounds on A0 around the tree–level mass minimum.

Note that at SPS1a and when varying A0, the neutrino mass minimum for λ′
ijk �= 0 lies at

A0 = 563 GeV. This value is mostly independent of the choice of the indices i, j, k. This is
clear because the condition for the minimum to occur, A0 ≈ 2M1/2, does not depend on i, j, k,
cf. § 4. Similarly, for λijk|GUT �= 0 the minimum is expected at A0 ≈ M1/2/2. For the SPS1a
parameters we thus obtain A0 ≈ 127 GeV3.

We first concentrate on Tab. 5.1. Comparing the columns for A0 = −100 GeV and then for
A0 = 500 GeV, i.e. approaching the minimum up to ∆A0 = 63 GeV, the bounds from too large
neutrino masses are weakened by a factor of 13–15. When we go even closer, i.e. A0 = 550 GeV
and ∆A0 = 13 GeV, the bounds are weakened by a factor of 40–64 compared to A0 = −100 GeV.
As we discuss below, in the case of up-mixing, some couplings in Tab. 5.1 (column 2-4) can not
be restricted at all by too large neutrino masses. In this case we show the bounds at MGUT

[marked by ()t], that one obtains from the absence of tachyons; see also Ref. [51].
3 This value is smaller than would be expected by estimating A0 ≈ M1/2/2 = 250 GeV, because we are consid-

ering a parameter point with relatively low tan β (tan β = 10 for SPS1a). As discussed in § 4.3, this leads to a
shift of the tree–level neutrino mass minimum towards lower values of A0, cf. Fig. 4.4 (iii).
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We differentiate in Tab. 5.1 between up– and down–type quark mixing, cf. § 2.2. Different
quark mixing has important consequences for the bounds on the couplings λ′

ijk if j �= k. As is
clear from § (4.2), the tree–level neutrino mass is generated proportional to λ′

ijk× (YD)jk. Thus,
no tree–level mass is generated at this level when we consider j �= k and up–type mixing (which
implies a diagonal YD). But, an additional λ′

ikk coupling will be generated via RGE running at
lower scales, cf. Ref. [51]. This coupling will still generate a tree–level neutrino mass, which is
however suppressed by the additional one–loop effect 4.

This effect can be seen in Tab. 5.1, if we compare for example the upper bounds on λ′
223 and

λ′
233 for up– and down–type quark mixing. The ratio between these bounds is roughly 200 in the

case of up–type mixing whereas there is only one order of magnitude difference for down–type
mixing.

In the latter case, the ratio between the λ′
223 and λ′

233 bounds originates mainly from the
ratio

(YD)23
(YD)33

=
(VCKM )23
(VCKM )33

, (5.6)

since the tree–level mass is generated via λ′
223 × (YD)23 and λ′

233 × (YD)33, respectively.
To conclude, the bounds from the generation of neutrino masses (at least in the case of down–

type mixing) are usually the strongest bounds on the couplings λ′
ijk at MGUT. As considered

in Ref. [51], they range from O(10−4) to O(10−6) for the parameter point SPS1a (column 5
in Tab. 5.1). However, there is a large window around the tree-level neutrino mass minimum,
where bounds may be obtained that are between one and two orders of magnitude weaker than
those in Ref. [51]. Around the minimum, the couplings are only bounded from above by O(10−2)
to O(10−4) (cf. column 7 in Tab. 5.1). Thus, other low energy bounds become competitive [44,
190, 205–209].

We now discuss in Tab. 5.2 the case of a non-vanishing coupling λijk at MGUT. Contrary to
Tab. 5.1, in the case considered in Tab. 5.2 the quark mixing assumption does not affect the
bounds since λijk couples only to lepton superfields. Due to the antisymmetry λijk = −λjik

there are only 9 independent couplings.
We observe in Tab. 5.2 that if i �= j �= k �= i there are no bounds from too large neutrino

masses. The only bound we obtain stems from the absence of tachyons. This is because we
assume a diagonal lepton Yukawa matrix YE as stated in § 2.2 and therefore, only couplings of
the form λikk can generate a neutrino mass 5.

For these couplings, the bounds at MGUT for A0 = −100 GeV (column 2) range from 1.1×10−1

(λ211 and λ311) to 2.7× 10−5 (λ133 and λ233). If we approach the tree–level mass minimum, i.e.
going from column 2 to column 4 with A0 = 120 GeV, the bound is weaker than the tachyon
bound (λ211 and λ311) or it is weakened to 2.8×10−4 (λ133 and λ233). The bounds from neutrino
masses are thus decreased by roughly a factor of 10.

Comparing the bounds on λikk at MGUT, one can see nicely how the choice of k influences the
strength of the bound. The bounds resemble the hierarchy between the lepton Yukawa couplings
(YE)kk analogously to Eq. (5.6). Therefore, the bounds are strongest for k = 3.

In contrast to Tab. 5.1, the bounds are only reduced by one order of magnitude when we
approach the tree-level mass minimum. This is because the loop contributions play an important
role for the bounds in Tab. 5.2, as we discuss in the following section.

4 Note that also the loop contributions are strongly suppressed, because the λ′λ′–loops are proportional to
λ′
ijk × λ′

ikj , Eq. (3.10), and the neutral scalar loops are aligned with the tree-level mass, cf. § 4.5.
5 This would change drastically if the YE were strongly mixed [51].
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5.3.2 Influence of Loop Contributions

We now shortly discuss the influence of the neutrino mass loop contributions on the bounds.
Typically, one expects that the closer we approach the tree–level neutrino mass minimum the
more important the loop contributions become. This is because the loops are not aligned to the
tree–level mass, cf. § 4.5.

However, in the case of the neutral scalar loops there is still partial alignment, because both
the tree–level mass minimum and the minima of the neutral scalar loops crucially depend on
the vanishing of the bilinear LNV parameter D̃i, cf. § 4.5. Therefore, it is the λ′λ′–loops and
λλ–loops, § 3.2, that are relevant whenever the loop contributions become dominant over the
tree–level contributions.

We now give a few examples. For Λ ∈ {λijk}, Tab. 5.2, the loop contributions dominate
over the tree–level mass in a range of ∆A0 ≈ ±50 GeV around the tree–level mass minimum at
A0 = 127 GeV. Therefore, the bounds in this region are much more restrictive (i.e. the value of
the bounds decreases) when taking into account the loop contributions. For example,

λtot
233

λtree
233

≈ 0.3 , (5.7)

for A0 = 120 GeV; column 4 in Tab. 5.2. Here, λtot
233 is the bound on λ233 at MX if we take into

account both tree–level and loop–contributions to the neutrino mass. In contrast, λtree
233 would

be the bound if we only employ the tree-level mass.
Further away from the minimum, the influence of the loop contributions is weaker. The

bounds are strengthened by approximately 5% for A0 = 200 GeV (column 3 of Tab. 5.2) and
< 1% for A0 = −100 GeV (column 2 of Tab. 5.2).

The loop contributions are less important for the bounds in Tab. 5.1, i.e. Λ ∈ {λ′
ijk}. For

example, even near the tree-level mass minimum (column 4 and 7 with A0 = 550 GeV), the
bounds become only stronger by up to 20% if we take the loop induced neutrino masses in
addition to the tree–level mass into account.

5.3.3 Dependence of Bounds on B3 cMSSM Parameters

In this section, we discuss the dependence of the bounds on Λ ∈ {λijk, λ
′
ijk} at MGUT on the

B3 cMSSM parameters. For that purpose we perform two-dimensional parameter scans around
the benchmark scenarios, Point I and Point II, of § 4.1.1. For the calculation of the bounds all
contributions to the neutrino mass considered in § 3 are included. We will focus here on the
couplings λ′

233 and λ233, because these couplings have the strongest constraints from neutrino
masses, cf. Tab. 5.1 and Tab. 5.2.

We have analyzed in § 4 how the neutrino mass changes with the cMSSM parameters. Due to
its approximate proportionality to Λ2, cf. Eq. (5.5), the analysis in § 4 is directly transferable
to the cMSSM dependence of bounds on the LNV trilinear couplings. Therefore, the parameter
scans presented in this section, i.e. Fig. 5.1 and Fig. 5.2, resemble closely those in Fig. 4.4, § 4.

We show in Fig. 5.1 [Fig. 5.2] how the bounds on λ′
233 [λ233] at MGUT vary with cMSSM

parameters. We present in Figs. 5.1 (i)–(iii) [Figs. 5.2 (i)–(iii) the A0–M1/2, A0–tanβ, and
A0–M0 planes, respectively. The bounds are shown on a logarithmic scale. The blackened out
regions designate areas of parameter space which are rejected due to tachyons in the model or
violation of the LEP2 bound on the lightest Higgs mass, cf. Eq. (5.1). Furthermore, we include
contour lines of the 2σ window for the SUSY contribution to the anomalous magnetic moment
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Figure 5.1: Upper bounds on λ′
233 at MX from the cosmological bound on the sum of neutrino masses,

Eq. (3.30), as a function of cMSSM parameters. In plot (i) [top, left], we depict the A0 −M1/2 plane, in
plot (ii) [top, right], we depict the A0 − tanβ plane, in plot (iii) [bottom, left], we depict the A0 −M0

plane. The parameter space below [above] the green line in plot (i), (i) [plot (iii)] is disfavored by δSUSY
µ ;

see Eq. (5.4). The parameter scans are centered around benchmark Point I, cf. § 4.1.1. The blackened-
out region denotes parameter points where tachyons occur or where the LEP2 Higgs bound is violated.

of the muon, Eq. (5.4). Imposing Eq. (5.4) disfavors the parameter space below [above] the
green contour line in Figs. 5.1 (i) and (ii), 5.2 (i) and (ii) [Fig. 5.1 (iii) and Fig. 5.2 (iii)].

We observe in Fig. 5.1 that the strictest bounds on λ′
233 from too large neutrino masses

are of O(10−6) . However, there are sizable regions of parameter space where the bounds
are considerably weakened. For example, in the A0–M1/2 plane, Fig. 5.1 (i), the bounds are
of O(10−6) only in approximately half of the parameter space whereas in the other half, the
bounds are O(10−5) or weaker. In roughly 10% of the allowed region in Fig. 5.1, the bounds
even lie at or above O(10−4)! In this region, the loop contributions to the heaviest neutrino
mass are essential for determining the bounds since the corresponding tree–level neutrino mass
vanishes, cf. also the discussion in § 5.3.2.

We can see in Fig. 5.2 a similar behavior for the parameter dependence of the bounds on λ233.
Here, the strongest bounds are now of O(10−5). However, for example in the A0–M0 plane,
Fig. 5.2 (iii), the bounds are as strong as O(10−5) in only about 25% of the parameter plane.
The remaining 75% have bounds of O(10−4) (50%) or even O(10−3) (25%)!
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Figure 5.2: Same as Fig. 5.1, but for λ233 at MX and for the benchmark scenario Point II, cf. § 4.1.1.

Up to now, we have analyzed how the bounds on the trilinear LNV couplings λ′
233 and λ233

vary with the cMSSM parameters. However, from the analysis in § 5.3.1, we can easily deduce
how most of these bounds change for different couplings λ′

ijk and λijk, i.e for different indices
i, j, k. For λ′

ijk the index i does not significantly influence the bound, because the employed
Yukawa coupling, (YD)jk, via which the tree–level mass is generated, does not depend on i.
But, the situation is totally different when we change the indices j, k. In general, for λ′

ijk

(and down–mixing) the bounds will display the hierarchy of the down–type Yukawa couplings.
Therefore, bounds for couplings λ′

i11 are about three orders of magnitude weaker than bounds
for the couplings λ′

i33 as long as the other B3 cMSSM parameter are the same. We also observe
a similar behavior for λ′

ijk with up–mixing and for λijk [using (YE)jk instead of (YD)jk], if j = k;
cf. the discussion in § 5.3.1.

To conclude, one can use the Yukawa matrix YD (YE) to easily translate the bounds in Fig. 5.1
(Fig. 5.2) to bounds on couplings other than λ′

233 (λ233).
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Chapter 6

Phenologically Viable Neutrino Masses and
Mixings in the B3 cMSSM

In this chapter we discuss how the experimental neutrino oscillation data can be realized in the
framework of the B3 cMSSM. We show how to obtain phenomenologically viable solutions, which
are compatible with the recent experimental results in § 6.2. In § 6.3, we present and discuss
results for the normal hierarchy, inverted hierarchy and degenerate cases which illustrate the
possible size and structure of the LNV couplings. Our aim is to obtain the correct masses and
mixing angles with a small number of LNV parameters. We furthermore wish to analyze the
general structures that lead to potential solutions, since it is not possible to systematically list all
solutions. By introducing parameters coupled to different generations, we attempt to understand
how different trilinear LNV terms interplay with each other to generate the observed mass
pattern. We work with a new SOFTSUSY-3.2 version, where we implement full 1–loop neutrino
masses as described in § 6.1.2. Finally, we shortly discuss some phenomenological implications
at the LHC in § 6.4.

6.1 Preliminaries

6.1.1 Choice of cMSSM benchmark point

As has been noted in § 4, there are preferred regions of B3 cMSSM parameter space in which
the neutrino oscillation data can be more easily accommodated. This is illustrated once more in
Fig. 6.1 for one single LNV coupling. However, now we also include the full 1–loop contributions
to neutrino masses as calculated with our newly published SOFTSUSY-3.2 in the figure. Recall
that there is only one tree–level neutrino mass, the second (and third) neutrino mass scale is
set by the 1–loop contributions1. From Fig. 6.1 (a) [(b)] we see that for a given λ [λ′], in the
parameter region 100 � A0/GeV � 300 [870 � A0/GeV � 930], the tree–level neutrino mass
is sufficiently suppressed relative to the 1–loop neutrino mass to match the mild neutrino mass
hierarchy required by the data of maximally 5.7, cf. Eqs. (3.31), (3.32). This region of parameter
space is determined by the fact that the tree–level neutrino mass (solid cyan line in Fig. 6.1)
has a zero in A0 parameter space due to RGE effects. This region exists for every B3 cMSSM
parameter point, cf. § 4, provided that

A
(λ′)
0 ≈ 2M1/2 (6.1)

A
(λ)
0 ≈

M1/2

2
(6.2)

1 Note that at least two lepton flavors need to be violated in order to generate more than one neutrino mass.
Therefore, one single LNV coupling will not be sufficient. For the discussion here, however, the simplifying
picture of one LNV coupling is sufficient, since the arguments remain valid for more than one LNV coupling.
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Figure 6.1: A0 dependence of the different contributions to the neutrino mass at the electroweak sym-
metry breaking scale for our benchmark point BP, with (top) λ233|GUT = 10−4, (bottom) λ′

222|GUT =
6 ·10−4. Note that only the absolute values of the contributions to the neutrino mass are displayed. The
equations for mtree

ν and mΛΛ
ν are given in Eqs. (3.4) and (3.10), respectively. m1loop

ν represents the full
1–loop corrections to the neutrino mass, msneut

ν represents the neutral scalar loops. The grey–shaded
area is excluded by the cosmological bound.

for non–zero LNV couplings λ′
ijk or λijk, respectively. Note that the position of the minimum

is approximately the same for all indices i, j, k = 1, 2, 3. Henceforth we denote the A0 minimum
with respect to λ and λ′ by A

(λ)
0 and A

(λ′)
0 respectively. In this paper we focus on this region;

more details are given in § 6.3.1. Therefore we have only 4 Rp–conserving parameters left,
namely M1/2, M0, tanβ and sgn(µ).

For easy comparison with § 4, we use the same benchmark point (BP):

M1/2 = 500 GeV
M0 = 100 GeV

tanβ = 20

sgn(µ) = +1 , (6.3)

for which we checked various low–energy bounds, cf. § 4.1.1. The spectrum in the Rp conserving
limit is displayed in Table 4.1. The squark masses are of order O(1TeV), whereas the slepton
masses are around 200–300 GeV. The lightest supersymmetric particle (LSP) is a stau. However
the presence of LNV couplings will render the LSP unstable, making cosmological constraints
on the nature of the LSP not applicable [101, 150, 210, 211].

It should also be pointed out that it is not possible to suppress tree–level contributions for
both λ and λ′ simultaneously for a universal A0 parameter [134], as the two minima do not
coincide in the A0 parameter space, cf. Eqs. (6.1), (6.2). Therefore scenarios such as those
discussed in Ref. [212], where there is no tree–level neutrino mass at all, are only possible in the
B3 cMSSM if there is only one type of LNV coupling, either λ or λ′.

It is also interesting to note that in the case of λ couplings [Fig. 6.1 (a)], the full 1–loop
contributions are well approximated by the ΛΛ loops, whereas in the case of λ′ couplings [Fig. 6.1
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(b)], the approximation is less satisfactory, and further 1–loop contributions such as neutral
scalar–neutralino loops also play an important role in parts of the parameter space. However,
around the A

(λ′)
0 minimum, the ΛΛ loops still give a good order of magnitude estimate.

Note that viable neutrino masses might also be obtained away from the A0 minimum region by
using only off–diagonal LNV couplings, since the tree–level contribution is dominantly generated
through diagonal LNV couplings. Thus, scenarios involving only off–diagonal couplings (and
up–mixing if using λ′ couplings) also lead to a suppression of the tree–level contribution and
could thus potentially reduce the dependence on the A0 minimum.

For concreteness, we work in the flavor basis with up–type mixing, unless stated otherwise.
In this basis, the λ′

ijk couplings which are off–diagonal in j, k do not contribute significantly
to Meff

ν at tree–level, but could be used as parameters to adjust loop level contributions when
fitting the data. Note that because YE is always diagonal in our model, λijk couplings for i, j �= k
can be utilized in a similar fashion. The changes that appear for down–type mixing is discussed
in § 6.3.4.

6.1.2 Numerical Tools & the Inclusion of Tadpoles in SOFTSUSY

Our numerical simulation is performed using the new SOFTSUSY-3.2. We refer interested readers
to the SOFTSUSY manual [83, 142] for the detailed procedure of obtaining the B3 MSSM mass
spectrum. We use the program package MINUIT2 and a Markov chain Monte Carlo method
(Metropolis–Hastings algorithm) for fitting the LNV couplings Λijk to the neutrino data as well
as for obtaining a good value for A0 within the minimum region.

We now comment briefly on the additional features we include in SOFTSUSY. We implement the
full 1–loop contributions to the neutrino–neutralino sector, cf. the new /Rp SOFTSUSY manual [83].
Our calculation follows closely that of Refs. [42, 43]. However we go beyond their approximations
by including also the 1–loop LNV corrections to the sneutrino and Higgs vacuum expectation
values (VEVs) vi, vd and vu

2. This is done by calculating the tadpoles ∂∆V
∂vA

(A = i, d, u)
where ∆V denotes the 1–loop contributions to the neutral scalar potential. These /Rp tadpole
corrections are included in the SOFTSUSY iteration procedure which minimizes the 5–dimensional
EW symmetry breaking neutral scalar potential.

The explicit 1–loop corrections to the 7x7 neutralino–neutrino mass matrix have already been
implemented by Ref. [43] in a private add–on code to SOFTSUSY. We cross–check and integrate
this code together with the improved REWSB including full /Rp 1–loop contributions into the
new SOFTSUSY-3.2 version. We present the relevant parts of the code where the explicit formula
for the tadpoles are visible in the appendix (§ B).

The effective 3 × 3 neutrino mass matrix Meff
ν and the effective neutrino mixing matrix Uν

are calculated at the EWSB scale given an input set of LNV parameters at the unification scale.
Note that within SOFTSUSY, the condition that the charged lepton mixing matrix is diagonal is
imposed at the electroweak scale. Thus, UPMNS = Uν , cf. § 3.4.

6.2 Choice of LNV parameters

In this section, we choose specific representative scenarios for the LNV sector which will be
used for the numerical fit of the neutrino masses and mixings in § 6.3. First, as a motivation
to and a guide line in finding models, we discuss the general neutrino mass matrix in the TBM
2 Tree–level results and Rp 1–loop contributions are already included in SOFTSUSY
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approximation. As we have seen in § 3.5, this is a very good approximation to the data. Later,
when performing our numerical fits, we use the experimental values listed in Eqs. (3.23)–(3.25).
In § 6.2.1 we limit the discussion to “diagonal LNV parameters" λijj and λ′

ijj. In § 6.2.2 we
discuss the more general case which includes “non–diagonal couplings", i.e. λijk and λ′

ijk with
j �= k.

Since any LNV coupling λijk, λ
′
ijk could potentially contribute to the effective neutrino mass

matrix, we expect a large number of possible solutions to Eqs. (3.23)–(3.27). It is well beyond
the scope of this paper to attempt to determine them completely. Instead we wish to classify
the types of solutions with a potentially minimal set of parameters. We thus make a series
of simplifying assumptions, restricting ourselves to a subset of couplings. We will suggest 5
different scenarios (denoted S1 to S5), each making use of LNV coupling combinations from
different types (λ and λ′) and generations, which we will make explicit as we proceed.

In order to obtain the neutrino mass matrix, we solve the equation

U †
TBMMTBM

ν UTBM = diag[mνα] , (6.4)

for MTBM
ν . Here the neutrino masses mνα(α = 1, 2, 3) fit the mass–squared differences and

UTBM is given in Eq. (3.34).
It is natural to split up the resulting neutrino mass matrix into three separate contributions,

each of which is proportional to one neutrino mass:

MTBM
ν ≡ M1 +M2 +M3

=
mν1

3


 2 −1 1

−1 1/2 −1/2
1 −1/2 1/2


+

mν2

3


 1 1 −1

1 1 −1
−1 −1 1


+

mν3

2


 0 0 0

0 1 1
0 1 1


(6.5)

=
1

6


 4mν1 + 2mν2 2α21 − 2α21

2α21 mν1 + 2mν2 + 3mν3 − 2α21 + 3α31

− 2α21 − 2α21 + 3α31 mν1 + 2mν2 + 3mν3


 , (6.6)

where the off–diagonal entries are written in terms of

αij ≡
∆m2

ij

mνi +mνj
. (6.7)

We observe that all three contributions Mα are of the symmetric form

(Mα)ij ∝ c
(α)
i c

(α)
j . (6.8)

If UTBM is orthogonal, this always follows from Eq. (6.4), independent of its exact form. The
supersymmetric tree–level neutrino mass matrix displays an identical structure if one assigns

c
(tree)
i ∼ λ′

ijk(YD)jk , (6.9)

or
c
(tree)
i ∼ λijk(YE)jk . (6.10)
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This follows from a first–order approximation of Eq. (3.4), making use of RGE considerations
such as Eq. (2.17)3. The dominant 1–loop level contribution to the neutrino mass matrix does
not strictly display the same structure, as can be seen from Eq. (3.10). However, for diagonal
couplings (j = k), one can make a similar assignment as in the tree–level case,

c
(loop)
j ∼ λ′

jkk(md)k (6.11)

or
c
(loop)
j ∼ λjkk(m�)k , (6.12)

cf. Eq. (3.10). We discuss the generalisation to non–diagonal couplings in § 6.2.2.
For simplicity, we mainly focus on solutions which directly reflect the form of Eq. (6.6) (S1

to S4)4, namely

c
(1)
1 = −2c

(1)
2 = 2c

(1)
3 =

√
2mν1

3
,

c
(2)
1 = c

(2)
2 = −c

(2)
3 =

√
mν2

3
,

c
(3)
1 = 0, c

(3)
2 = c

(3)
3 =

√
mν3

2
. (6.13)

This can minimally be achieved by allowing for exactly one LNV parameter for each coefficient
c
(α)
i

5. The three matrices in Eq. (6.6) can then be described by 8 coefficients

{c(1)1,2,3, c
(2)
1,2,3, c

(3)
2,3} , (6.14)

where we have made use of the fact that c
(3)
1 = 0 in both the TBM case and the best–fit case,

under the assumption that θ13 = 0. Since we need only two mass scales to describe the neutrino
data, we shall assume that the lightest neutrino is massless in the NH and IH cases. Depending
on the scenario (NH, IH, DEG), we thus need either five, six or eight non–zero coefficients c

(α)
i .

To illustrate possible alternatives, we show how “non–diagonal” couplings might contribute
to neutrino masses in another example (S5).

While we have presented the TBM approximation to display the general coupling structure we
are aiming for, in the numerical analysis below we solve Eq. (6.4) not in the TBM approximation
but instead for the best–fit neutrino data given in Eqs. (3.23)–(3.27). This results in slightly

3 Note that in Eq. (6.10), j = k to excellent approximation due to our assumption that the charged lepton mass
matrix is diagonal at the electroweak scale, cf. § 2.2. Thus, YE is near-diagonal up to small corrections.

4 It is possible to obtain other solutions to Eq. (6.4) by forming linear combinations of the Mα’s given in Eq. (6.6).
As an example we here present the NH solution with c

(3)
3 = 0 used in S4 NH:

c
(2)
1 =

√
mν2

3
+

mν3

2
,

c
(2)
2 =

mν2
3

+ mν3
2

mν2
3

, c
(2)
3 =

mν2
3

+ mν3
2

mν3
2

− mν2
3

,

c
(3)
1 =

c
(3)
2

2
=

√
mν2
3

mν3
2

mν2
3

+ mν3
2

, c
(3)
3 = 0.

5 In the “off-diagonal" scenarios, some deviation from this statement is necessary, as will be explained in § 6.2.2.
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different values for c(i)j . However, the deviation from the TBM case is less than 7% for each c
(i)
j .

6.2.1 Diagonal LNV scenarios

Scenarios involving only diagonal LNV couplings Λijk with j = k are the most straightforward
to consider. With these we can generate all neutrino mass matrix entries with a minimal set
of LNV couplings. The non–diagonal case requires additional couplings, as we discuss below,
cf. § 6.2.2. We first discuss normal hierarchy and inverted hierarchy scenarios and then the
degenerate case.

• Normal Hierarchy:

Since the first part of the neutrino mass matrix, M1, is zero for NH, we need only five LNV
couplings to generate Mν ≡ M2 +M3. In order to keep these two contributions M2, M3

(corresponding to the two non–zero neutrino mass eigenvalues) as independent as possible,
we use λ couplings for one and λ′ couplings for the other matrix. If we now choose A0

such that it lies in the minimum region for either λ or λ′ (we denote this by A
(λ)
0 and

A
(λ′)
0 respectively), cf. § 6.1.1, we can generate one neutrino mass eigenvalue at tree–level

and one at loop–level in a nearly independent fashion. This implies that the mass scales
can be easily adjusted. We focus on the case A

(λ′)
0 ∼ 2M1/2, where the contribution from

λ′ couplings to the tree–level mass matrix is suppressed, because as we will show, for the
IH scenarios only this choice of A0 is possible. We briefly mention changes for the case
A

(λ)
0 ∼ M1/2/2 in NH scenarios during the discussion in § IV D.

Motivated by the observation that the first row/column of M3 is zero (i.e. c
(3)
1 = 0), and

also λ111 = 0 due to antisymmetry, we fit

(M3)ij ∼ λi11λj11 , (6.15)

(i.e. c
(3)
i ∼ λi11). We then automatically obtain the structure of M3. Because we have

chosen A
(λ′)
0 ∼ 2M1/2, this matrix is dominated by the tree–level contribution. In order

to generate M2 independently of M3 (at 1–loop level), we choose

(M2)ij ∼ λ′
ikkλ

′
jkk , (6.16)

where k is fixed. We present all three cases k = 1, 2, 3 in Table 6.1, denoted S1, S2 and
S3, respectively.

Additionally, we present one further scenario where we depart from the correspondence
c
(α)
i ∼ Λi. The motivation for this is to consider a neutrino scenario where third generation

couplings are dominant, in analogy to the hierarchy of the SM Yukawa couplings. This
scenario is particularly interesting because it represents a lower limit on the required size of
the LNV couplings under the assumption that no further mechanism exists to contribute
to the neutrino masses. We discuss this aspect in more detail in section 6.3.2. In order to
be able to fit the matrices M2, M3 only with third generation couplings λi33 and λ′

i33, one
of those matrices needs to fulfill (Mi)3k = 0 due to the antisymmetry of λ in the first two
indices. To achieve this, we build a suitable superposition of the matrices M2 and M3.
We denote the new coefficients by c̃

(α)
i in S4 of Table 6.1.
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• Inverse Hierarchy:

As mentioned in the case of Normal Hierarchy, λijj couplings will always lead to one
row/column of zeros in the generated neutrino mass matrix. Since in the case of Inverse
Hierarchy, the two non–zero matrices M1 and M2 are both non–zero in all entries, we take
this as motivation to fit M1 and M2 with λ′ couplings only (however, for completeness
we also present one scenario with both λ and λ′ couplings, cf. next paragraph). With
only λ′ couplings present, we set the value of A0 to A

(λ′)
0 ∼ 2M1/2, such that all tree–

level contributions are suppressed, and the two mass scales are both generated at loop
level. Otherwise the neutrino mass hierarchy would be much larger than experimentally
observed, cf. § 6.1.1. We display the three possibilities arising from

(M1)ij ∼ λ′
ikkλ

′
jkk , (6.17)

(M2)ij ∼ λ′
illλ

′
jll , (6.18)

where l < k6 in Table 6.1. These models are labelled (IH) S1, S2 and S3.

If we choose λi�� couplings instead of λ′
i�� in Eq. (6.18), this would again generate a

(unwanted) row/column of zeros in M2. Therefore, in this case we need to combine, for
example, λi33 with λ322 in order to generate non–zero entries for the third row/column of
M2. Such a combination of couplings generates a matrix of the form c

(2)
i c

(2)
j , where c

(2)
1,2

and c
(2)
3 originate from λi33 and λ322 at tree–level respectively, because these couplings

generate κi via the RGEs, cf. Eqs. (3.4) and (2.17). In order to ensure that M2 is generated
at tree–level, we still set A

(λ′)
0 = 2M1/2, such that we are able to fit Eq. (6.6). This case

is also listed under S4 in Table 6.1.

• Degenerate Masses:

Since for degenerate masses, all three matrices M1,2,3 are non–zero and of similar mag-
nitude, this scenario is a combination of choices made for NH and IH. As explained for
the case of NH, we choose

(M3)ij ∼ λi11λj11 . (6.19)

To generate M1 and M2, we fit in analogy to the IH case

(M1)ij ∼ λ′
ikkλ

′
jkk (6.20)

(M2)ij ∼ λ′
illλ

′
jll . (6.21)

These models are listed in Table 6.1 as (DEG) S1, S2 and S3. Here, as in the IH case,
only the parameter choice A

(λ′)
0 is possible in order to suppress the λ′ contribution to the

tree–level neutrino mass.

6 Note that in principle, there would be 6 possibilities. However, numerically the values of the LNV parameters
are affected only at O(1) level if we swap the assignment of λ′ couplings to c

(1)
i or c

(2)
i , i.e. c

(1)
i ∼ λ′

i33,
c
(2)
i ∼ λ′

i22 looks very similar to c
(1)
i ∼ λ′

i22, c
(2)
i ∼ λ′

i33. This is obvious because the c
(1)
i and c

(2)
i differ from

each other by maximally a factor 2.
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Normal Hierarchy (NH) Inverse Hierarchy (IH) Degenerate (DEG)
S1 c

(1)
i ∼ 0 c

(1)
i ∼ λ′

i11 c
(1)
i ∼ λ′

i11

c
(2)
i ∼ λ′

i11 c
(2)
i ∼ λ′

i22 c
(2)
i ∼ λ′

i22

c
(3)
i ∼ λi11 c

(3)
i ∼ 0 c

(3)
i ∼ λi11

S2 c
(1)
i ∼ 0 c

(1)
i ∼ λ′

i11 c
(1)
i ∼ λ′

i11

c
(2)
i ∼ λ′

i22 c
(2)
i ∼ λ′

i33 c
(2)
i ∼ λ′

i33

c
(3)
i ∼ λi11 c

(3)
i ∼ 0 c

(3)
i ∼ λi11

S3 c
(1)
i ∼ 0 c

(1)
i ∼ λ′

i22 c
(1)
i ∼ λ′

i22

c
(2)
i ∼ λ′

i33 c
(2)
i ∼ λ′

i33 c
(2)
i ∼ λ′

i33

c
(3)
i ∼ λi11 c

(3)
i ∼ 0 c

(3)
i ∼ λi11

S4 c
(1)
i ∼ 0 c

(1)
i ∼ λ′

i33

c̃
(2)
i ∼ λ′

i33 c
(2)
i ∼ λi33 & λ322 –

c̃
(3)
i ∼ λi33 c

(3)
i ∼ 0

S5 c
(1)
i ∼ 0 c

(1)
i ∼ λ′

i33

c
(2)
i ∼ λ′

i23 & λ′
i32 – c

(2)
i ∼ λi33 & λ322

c
(3)
i ∼ λi11 c

(3)
i ∼ λ231 & λ213 & λ312 (& λ313)

Table 6.1: Overview of the “diagonal" (S1 – S4) and “non–diagonal" (S5) scenarios used for our numerical
analysis.

6.2.2 Non–diagonal LNV scenarios

In this section, we depart from the diagonal coupling scenarios and discuss the effects of intro-
ducing “non–diagonal" couplings.

When allowing for non–diagonal LNV couplings λ′
ikl (λikl), l �= k, we generally need more

couplings than in the diagonal case. This is because at 1–loop level7, neutrino masses are
dominantly generated proportional to λ′

iklλ
′
ilk (λiklλilk). Thus, the assignment of one LNV

coupling to one c
(α)
i parameter (Eq. (6.8)) is not possible for the part of the neutrino mass

matrix generated at 1–loop level. Instead, we require

c
(α)
i c

(α)
j ∼ 1

2
· (λ′

iklλ
′
jlk + λ′

ilkλ
′
jkl) (md)k (md)l (6.22)

where k, l are fix (similarly for λ couplings). This effectively doubles the number of LNV
parameters if we choose k �= l. Phenomenologically, one can distinguish between two cases:

(a) λ′
ikl ≈ λ′

ilk (same order of magnitude)

(b) λ′
ikl � λ′

ilk or vice versa (strong hierarchy)

In the first case (a), the size of the couplings will not differ significantly from the diagonal case.
7 Our choice to take the charged lepton mass matrix at the electroweak scale to be diagonal ensures that in good

very approximation an off–diagonal coupling λijk with j �= k does not generate a tree–level neutrino mass,
since the bilinears κi are generated proportionally to λijk(YE)jk and are thus zero for j �= k. This argument
still roughly holds if there are small off–diagonal entries in the Higgs Yukawa coupling, so in approximation
this is also valid for couplings λ′

ijk with j �= k, especially for the case of up–mixing.
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For illustrative purposes, we will present numerical results for a non–diagonal scenario similar
to the S3 NH example, which we list under S5 NH in Table 6.1. Here, we take as starting values
λ′
i23 = λ′

i32 and thus, a simplified form of Eq. (6.22) is c
(2)
i ∼ λ′

i32, similar to the assignment in
the diagonal case.

In the latter case (b), the size of the couplings become very different from those in the diagonal
scenarios. In particular, some of the couplings can become very large. This is potentially of
great interest experimentally. However, various low–energy bounds could potentially be violated.
This can be illustrated with the help of the following example with degenerate neutrino masses,
which we list under S5 DEG in Table 6.1. Here, the first two neutrino masses are generated
as in the case of S4 IH (however, now for normal mass ordering): M2 is generated at tree–
level via diagonal λi33 and λ322 couplings, and M1 is generated at loop–level via λ′

i33 couplings.
However, now we additionally generate M3 at 1–loop level via the 3 off–diagonal λ couplings
λ231, λ213 and λ312. The latter do not lead to tree–level neutrino masses because the leptonic
Higgs–Yukawa coupling is (nearly) diagonal and thus the tree–level generating term λijk(YE)jk
is (practically) zero. As we will see, the benchmark point we use leads to a very large λ231

beyond the perturbativity limit. For this reason, a different BP point, labelled as BP2, will be
introduced for this scenario in § 6.3.38.

To obtain a qualitative understanding of the relative size of the couplings, first note that λ133

contributes to both M2 and M3 due to the antisymmetry, λ133 ≡ −λ313. We choose the A
(λ′)
0

minimum, and thus generate M2 at tree level. The value of λ133 is therefore fixed, and is forced
to be small due to its coupling with the large tau Yukawa coupling (YE)33. The matrices M1 and
M3 are then generated at loop level. The coupling product λ231λ313 = −λ231λ133 is responsible
for generating (M3)23. This implies that λ231 needs to be large in order to compensate for
the smallness of λ313. When now fitting (M3)22 ∼ λ231λ213, the large λ231 then leads to a
hierarchically smaller λ213 in order to be consistent with the experimental result. Similarly,
λ231 leads to a small λ312 by their contribution to (M3)33 via λ312λ321(A

l
12 +Al

21) as shown in
Eq. (3.10).

6.3 Numerical Results

In this section, we present the numerical results. We first describe our minimization procedure.
Then we present our best–fit solutions for the normal hierarchy, inverted hierarchy and the
degenerate case, respectively. We discuss the results for diagonal and off–diagonal LNV scenarios
and how changes to the benchmark point can effect the results..

6.3.1 Minimization Procedure

Our goal is to find numerical values for each LNV scenario specified in Table 6.1, such that we
obtain the experimentally observed neutrino data, Eqs. (3.23)–(3.27), at the 1σ level by means
of least–square fitting. In order to achieve this also in degenerate scenarios, which necessarily
8 Note that the coupling λ133 contributes to both M2 and M3 due to the antisymmetry, λ133 ≡ −λ313. We fix

its value when fitting M2. Therefore, effectively there are only 3 off-diagonal couplings to fit M3, which is
nonetheless sufficient. We set the A0 minimum to λ′, such that M2 is generated at tree–level (leading to small
λi33 couplings) whereas M1, M3 are generated at loop level. For this reason, a strong hierarchy between λ313

and λ231 arises when fitting (M3)23 ∼ λ231λ313, because λ231 has to compensate for the smallness of λ313.
When now fitting (M3)22 ∼ λ231λ213, the large λ231 coupling also leads to a strong hierarchy to λ213 in order
to not exceed the experimental values (similarly for (M3)33 and λ312).
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involve some fine–tuning (as we discuss in § 6.3.2), we use a multistep procedure as outlined
below.

We take as initial values for each set of LNV parameters at the unification scale MX

Λikk ∼ c
(α)
i

1

(Yf )kk
(6.23)

(no summation over k) as specified in Table 6.1. f denotes a down quark for a λ′ and a charged
lepton for a λ coupling. The proportionality factor is estimated from the upper bound on
the LNV couplings which comes from the upper bound on the neutrino mass from WMAP
measurements, cf. Ref. [134].

Next, we perform a pre–iteration within our modified version of SOFTSUSY, where we make
the simplifying assumption that the generation of the tree–level (by Λ = λ) and 1–loop level
(by Λ = λ′) neutrino mass matrices Mα in Eq. (6.6) are independent of each other. So for each
Mα we separately fit the relevant Λijk. In our iteration procedure we set

Λijk|new =

√
(Mobs

α )ii

(M softsusy
α )ii

Λijk|old . (6.24)

Here M softsusy
α is the effective neutrino mass matrix (at 1–loop level) obtained via the seesaw–

mechanism with SOFTSUSY . In the first step we use the initial values corresponding to Eq. (6.23).
We obtain (Mobs

α )ii by inverting Eq. (6.4), without using the TBM approximation. For mνα we
use the experimental best–fit values. And for the diagonalization matrix U , we implement the
general form, using θ12, θ23 from the experimental best–fit, as well as θ13 = 0. In Eq. (6.24)
there is also no sum over i.

This gives a very good order of magnitude estimate for all LNV couplings and thus a suitable
starting point for our least–square fit. However, so far each set of couplings Λijk ∼ c

(α)
i /(Yf )kk

has only been fit separately for each α, while keeping the other LNV couplings equal to zero.
When fitting all LNV couplings simultaneously, they can affect each other via the RGEs and
through contributions to the other Mobs

α . Note that these effects are easily controllable for NH
and IH scenarios. However, in the case of DEG scenarios, some strong cancellations occur for
some entries of the effective neutrino mass matrix, e.g. the (Mν)13 = (M1)13 + (M2)13 entry
in Eq. (6.6). Here, both individual entries (Mα)13 are of the order of the generated neutrino
mass, but the resulting (Mν)13 entry is at least 3 orders of magnitude smaller. This will become
relevant in the next step of our procedure.

After these first approximations, we next fit all LNV parameters specified for each scenario
in Table 6.1 simultaneously. We calculate the full 7 × 7 neutralino–neutrino mass matrix with
SOFTSUSY. The 3 × 3 neutrino mass matrix is then obtained via the seesaw mechanism, and is
used in order to extract predictions for the neutrino masses and mixing angles.

We define a χ2 function

χ2 ≡ 1

Nobs

Nobs∑
i=1

(
f softsusy
i − f obs

i

δi

)2

(6.25)

where f obs
i are the central values of the Nobs experimental observables defined in Eqs. (3.23)–

(3.27), f softsusy
i are the corresponding numerical predictions and δi are the 1σ experimental

54



6.3 Numerical Results

uncertainties. We minimize Eq. (6.25) with a stepping method of the program package MINUIT2
for the NH/IH case. In the DEG scenarios, MINUIT2 initially does not converge due to the
points made in the last paragraph. Therefore, we first use the Hastings–Metropolis algorithm
to obtain a χ2 < O(10). Subsequently, the same MINUIT2 routine as in the NH/IH case is used.
We accept a minimization result as successful if our minimization procedure yields χ2 < 1.

Simultaneously, we ensure that the conditions (cf. § 3.5)∑
i

mνi � 0.4 eV

sin2(θ13) < 0.047 (6.26)

are fulfilled.

6.3.2 Discussion of the Results for Diagonal LNV Scenarios

We present our numerical results in Table 6.2. In the three columns, we show our best–fit
solutions for normal hierarchy, inverse hierarchy and degenerate masses, respectively. In the
five rows, we show our solutions for the various scenarios enlisted in Table 6.1. S1–S4 are
the “diagonal” LNV scenarios, while S5 involves non–diagonal couplings, as discussed in the
previous section. In order to illustrate the low energy bounds most relevant to our scenarios,
we also display models which do not satisfy all constraints. These solutions are highlighted
in bold and the violated bound(s) are also stated. In this subsection, we restrict ourselves to
the diagonal LNV scenarios; the off–diagonal LNV scenarios will be discussed in the following
subsection.

We first discuss some general features of the best fit parameter sets. Focusing on the three
scenarios S1–S3, some ratios among the LNV couplings are displayed in Table 6.3. We see that
the results reflect the basic structure of our ansätz Eq. (6.23). In particular, the relative signs
among different LNV couplings are reproduced. However, the relative magnitude among the
couplings are expected to deviate somewhat from Eqs. (6.23) and (6.13). One reason is that
our LNV couplings should mirror the structure of Eq. (6.13) at the electroweak scale, while in
Table 6.2 and Table 6.3 the couplings are given at the unification scale. So RG running needs to
be taken into account. However the change in the LNV couplings when going to the unification
scale is not uniform for all couplings. Also, we fit the oscillation data given in § 3.5 instead of
the TBM approximation, such that the c

(α)
i differ from Eq. (6.13) already by up to 7% percent.

We also see from Table 6.3 that the LNV parameters in the IH scenarios follow the pattern
of c(α)i more closely than those in the NH and DEG scenarios. For the IH scenarios, the tree
level contribution is suppressed by choosing A0 appropriately. The neutrino mass matrix entries
are dominated by loop contributions and the associated couplings should then reflect the near
TBM structure as well as the orthogonality of the vectors c(α). However for the NH and DEG
scenarios, the significant contributions from both tree and loop masses mean that while the c

(α)
i

have the expected ratios for each α after pre–iteration, once contributions from different α’s
are combined for the full iteration they interfere with each other. For example, the presence
of λ couplings changes the position of the A

(λ′)
0 minimum, making the contributions of the λ′

couplings to the tree level masses less suppressed, thus leading to the larger deviation.
It is clear from Eq. (6.23) that the magnitude of diagonal LNV couplings should decrease from

first to third generation (while generating the same neutrino masses), because the LNV couplings
have to balance out the effect of the Higgs–Yukawa–couplings, which increase with generation.
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Normal Hierarchy Inverse Hierarchy Degenerate
S1 λ′

111 = 3.94 · 10−2 [b1],[b2],[b8] λ′
111 = 5.85 · 10−2 [b1],[b2],[b7],[b8]

λ′
211 = −1.88 · 10−2 [b1],[b2] λ′

211 = −3.63 · 10−2 [b1],[b2],[b6],[b7]
λ′
311 = 1.94 · 10−2 λ′

311 = 3.35 · 10−2 [b6]
λ′
111 = 1.12 · 10−2 [b2],[b8] λ′

122 = 1.21 · 10−3 λ′
122 = 2.18 · 10−3

λ′
211 = 8.76 · 10−3 λ′

222 = 1.27 · 10−3 λ′
222 = 1.63 · 10−3

λ′
311 = −1.48 · 10−2 λ′

322 = −1.31 · 10−3 λ′
322 = −2.09 · 10−3

λ211 = 1.52 · 10−2 [b2] λ211 = 2.55 · 10−2 [b2],[b6]
λ311 = 1.37 · 10−2 λ311 = 2.28 · 10−2 [b6]

S2 λ′
111 = 3.99 · 10−2 [b1],[b2],[b8] λ′

111 = 6.87 · 10−2 [b1],[b2],[b7],[b8]
λ′
211 = −1.81 · 10−2 [b1],[b2] λ′

211 = −2.90 · 10−2 [b1],[b2],[b6],[b7]
λ′
311 = 1.89 · 10−2 λ′

311 = 3.18 · 10−2 [b6]
λ′
122 = 5.08 · 10−4 λ′

133 = 3.09 · 10−5 λ′
133 = 4.99 · 10−5

λ′
222 = 3.88 · 10−4 λ′

233 = 3.21 · 10−5 λ′
233 = 2.98 · 10−5

λ′
322 = −6.97 · 10−4 λ′

333 = −3.35 · 10−5 λ′
333 = −7.43 · 10−5

λ211 = 1.52 · 10−2 λ211 = 2.99 · 10−2 [b2],[b6]
λ311 = 1.37 · 10−2 λ311 = 2.10 · 10−2 [b6]

S3 λ′
122 = 1.80 · 10−3 λ′

122 = 2.93 · 10−3

λ′
222 = −8.29 · 10−4 λ′

222 = −1.98 · 10−3

λ′
322 = 8.64 · 10−4 λ′

322 = 5.79 · 10−4

λ′
133 = 1.30 · 10−5 λ′

133 = 3.11 · 10−5 λ′
133 = 5.18 · 10−5

λ′
233 = 4.84 · 10−6 λ′

233 = 3.22 · 10−5 λ′
233 = 5.78 · 10−5

λ′
333 = −2.28 · 10−5 λ′

333 = −3.32 · 10−5 λ′
333 = −5.13 · 10−5

λ211 = 1.55 · 10−2 λ211 = 1.71 · 10−2

λ311 = 1.40 · 10−2 λ311 = 3.08 · 10−2

S4 λ′
133 = −6.80 · 10−6 λ′

133 = 3.96 · 10−5

λ′
233 = 2.81 · 10−5 λ′

233 = −2.81 · 10−5

λ′
333 = 4.21 · 10−5 λ′

333 = 2.89 · 10−5

λ133 = 1.32 · 10−6 λ133 = 3.23 · 10−6

λ233 = 2.70 · 10−6 λ233 = 3.48 · 10−6

λ322 = −5.64 · 10−5

S5 λ′
123 = 5.76 · 10−5 λ′

133 = −3.11 · 10−5

λ′
132 = 5.75 · 10−5 λ′

233 = 8.79 · 10−5

λ′
223 = 6.23 · 10−5 λ′

333 = −4.14 · 10−5

λ′
232 = 6.24 · 10−5 λ133 = 1.99 · 10−6

λ′
323 = −5.88 · 10−5 λ233 = 4.08 · 10−6

λ′
332 = −6.00 · 10−5 λ322 = −2.57 · 10−5

λ211 = 1.52 · 10−2 λ231 = −5.67 · 10−2

λ311 = 1.39 · 10−2 λ213 = −2.03 · 10−5

λ312 = 2.54 · 10−3

Table 6.2: Best–fit points for the LNV parameters at the unification scale MX for our benchmark point
BP and A

(λ′)
0 = 912.3 GeV, except for S5 DEG, where BP2 and A

(λ′)
0 = 1059.2 GeV are used, cf. § 6.3.3.

The couplings printed in bold violate one of the low–energy bounds [b1]–[b7] which are listed in § 5.1.
Note that the values are given at 2 significance level only for better readability. In order to reproduce
the results, higher significance is needed as is clear from Eq. (6.28). Readers are encouraged to contact
the authors to obtain the exact values.
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Normal Hierarchy Inverse Hierarchy Degenerate
data c

(1)
1 : c

(1)
2 : c

(1)
3 = 2.09 : −0.98 : 1 c

(1)
1 : c

(1)
2 : c

(1)
3 = 2.09 : −0.98 : 1

c
(2)
1 : c

(2)
2 : c

(2)
3 = 0.94 : 0.99 : −1 c

(2)
1 : c

(2)
2 : c

(2)
3 = 0.94 : 0.99 : −1 c

(2)
1 : c

(2)
2 : c

(2)
3 = 0.94 : 0.99 : −1

c
(3)
2 : c

(3)
3 = 0.99 : 1 c

(3)
2 : c

(3)
3 = 0.99 : 1

S1 λ′
111 : λ′

211 : λ′
311 = 2.04 : −0.97 : 1 λ′

111 : λ′
211 : λ′

311 = 1.75 : −1.09 : 1
λ′
111 : λ′

211 : λ′
311 = 0.75 : 0.59 : −1 λ′

122 : λ′
222 : λ′

322 = 0.93 : 0.97 : −1 λ′
111 : λ′

211 : λ′
311 = 1.04 : 0.78 : −1

λ211 : λ311 = 1.11 : 1 λ211 : λ311 = 1.19 : 1
S2 λ′

111 : λ′
211 : λ′

311 = 2.12 : −0.96 : 1 λ′
111 : λ′

211 : λ′
311 = 2.11 : −0.91 : 1

λ′
122 : λ′

222 : λ′
322 = 0.73 : 0.56 : −1 λ′

133 : λ′
233 : λ′

333 = 0.93 : 0.96 : −1 λ′
133 : λ′

233 : λ′
333 = 0.67 : 0.40 : −1

λ211 : λ311 = 1.11 : 1 λ211 : λ311 = 1.42 : 1
S3 λ′

122 : λ′
222 : λ′

322 = 2.09 : −0.96 : 1 λ′
122 : λ′

222 : λ′
322 = 5.06 : −3.41 : 1

λ′
133 : λ′

233 : λ′
333 = 0.57 : 0.21 : −1 λ′

133 : λ′
233 : λ′

333 = 0.93 : 0.97 : −1 λ′
133 : λ′

233 : λ′
333 = 1.01 : 1.13 : −1

λ211 : λ311 = 1.11 : 1 λ211 : λ311 = 0.56 : 1

Table 6.3: Ratios of the LNV parameters at the unification scale MX for scenarios S1, S2 and S3 and
the ratios c

(α)
1 : c

(α)
2 : c

(α)
3 inferred from experimental data. For comparison, the ratios c

(α)
1 : c

(α)
2 : c

(α)
3

in the TBM limit are (2 : −1 : 1), (1 : 1 : −1) and (0 : 1 : 1) for α = 1, 2 and 3 respectively.

For example, comparing the size of λ′
ikk in scenarios S1–S3 in the IH case, one observes that

the difference in magnitude of the LNV couplings mirrors the hierarchy of down–type quark
masses, λ′

ijj/λ
′
ikk ∼ (md)k/(md)j for fixed index i.

As we see in Table 6.2, models involving first generation couplings (λ′
111 and λ′

211) are dis-
favored due to strong constraints from µ → eee [b1], µ–e conversions [b2] and 0νββ [b8]. In
addition, the λ211 in S1 NH, S1 DEG and S2 DEG violate the two–coupling bound from µ–e
conversion [b2] in conjunction with the large λ′

111 coupling. Limits on leptonic K–meson decay
[b6] and µ → eγ [b7] are also seen to be violated in degenerate scenarios S1 DEG and S2 DEG
involving diagonal first generation couplings. The second generation LNV Yukawa couplings are
of the order of 10−3 (10−4) for IH and DEG (NH) scenarios9 and safely satisfy all low–energy
bounds. The third generation couplings take on values between 10−5 and 10−6.

Collider implications of the solutions we obtained will be discussed in section 6.4. Generally
speaking, the stringent low energy bounds on the first generation couplings could be evaded in
models with heavier supersymmetric mass spectra. In these models the relatively large coup-
lings could still lead to interesting collider phenomenology, for example resonant production of
sparticles [102–105, 213]. These couplings could also have significant impact on the RG run-
ning of the sparticle masses, and result in observable changes to the sparticle spectrum when
compared with those in the Rp–conserving limit. In particular, new LSP candidates may be
obtained even within the B3 cMSSM framework [99, 100, 108, 204].

In contrast, third generation couplings are tiny, e.g. the S4 NH model in Table 6.2. However
these small couplings could result in a finite decay length for the LSP and hence potential
detection of displaced vertices in a collider. See Ref. [43] for numerical estimates.

In Fig. 6.2, we display the changes in χ2 for a few selected scenarios (S2 NH, S3 IH and
S3 DEG) when a LNV coupling is varied within [0.5:1.5] times the best–fit value. We define a
“width” for a χ2 minimum to be

w ≡
∆Λ|χ2<3

Λ|χ2≈0
, (6.27)

so that a large (small) w value may be interpreted as less (more) fine–tuning between different
9 For NH the couplings are smaller because the lighter neutrino mass is smaller in NH than in IH/DEG.
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Figure 6.2: Variation of χ2 as a function of λ′
222 for scenarios S2 NH, S3 IH and S3 DEG. The glitches

in S3 IH and S3 DEG are associated with the ‘crossing–over’ of mass eigenstates when λ′
222 is varied.

See text for more discussion.

LNV couplings.
Clearly the NH case looks significantly better than the IH/DEG cases:

w(NH,Λ = λ′
222) = 1.1 · 10−1 ,

w(IH,Λ = λ′
222) = 7.4 · 10−3 ,

w(DEG,Λ = λ′
222) = 4.8 · 10−4 . (6.28)

In fact, since the neutrino masses in our model are free parameters to be fitted to the data, it
is natural for these masses to be non–degenerate. To obtain the two (three) quasi–degenerate
masses in the IH (DEG) spectrum thus requires a certain amount of fine–tuning, which should
be reflected in the value of w. Recall from Eqs. (6.6) and (6.7) that due to a small (zero)
sin[θ13] in the near (exact) TBM limit, there are small off–diagonal entries for an inverted or
degenerate mass spectrum. Specifically, α21 is small in both cases, while α31 is also small in a
DEG spectrum. As a result, there are small off–diagonal entries for both IH and DEG scenarios
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but not for a normal hierarchy, while in our set–up the diagonal and off–diagonal entries of Mα

are of the same order for each α. Therefore, a way to understand this fine tuning technically
would be by considering the size of the off–diagonal entries of Meff

ν . We discuss the three cases
separately.

In the case of NH, the off–diagonal entries in Meff
ν will be of the same order as the diagonal

values. In this case, the experimental observables are fairly insensitive to changes of up to
O(10%) in the LNV sector, cf. Eq. (6.28).

For IH, we have two nearly degenerate mass eigenstates. Therefore, the tree–level and the
loop contribution have to be of the same order, with a near–cancellation occurring between
the off–diagonal entries of M1 and M2. This results in a significantly larger width of the χ2

minimum than in the NH case.
For the same reason, in the DEG cases even larger fine–tuning is required in order to obtain

three nearly degenerate neutrino masses. Actually, in the limit M � ∆M ∼ ∆m2/M , where
M is the mass scale of the heaviest neutrino, all off–diagonal entries will have a magnitude of
O(∆M), and the width w can be approximated by

Λ2 ∼ M , (6.29)

∆Λ

Λ
∼ 1

2

∆M

M
. (6.30)

A consequence of such fine–tuning is that if Meff
ν is deformed slightly (for example due to

changes in model parameters or technical aspects such as low convergence threshold in the
spectrum calculation), the angles can change a lot since they are especially sensitive to the
(small) off–diagonal entries of Meff

ν . In contrast, the mass values are much more stable, with
their sum determined by the diagonal entries of Meff

ν .
This can be illustrated by changing the implementation of the LNV parameters in the numer-

ical code from 6 significant figures to 3: the masses change by less than 1 percent, whereas the
angles change by a factor of order one. Therefore the values displayed in Table 6.2, especially
those for the IH and DEG cases, need to be taken with caution. However, listing more digits
would result in worse readability, so we ask readers interested in reproducing our results to
contact the authors for more precise values.

To see how the experimental observables change as the LNV couplings are varied, we show in
Figs. 6.3, 6.4 and 6.5 the variation of the mixing angles and masses as functions of λ′

222. Recall
that the χ2 variation of the fit for λ′

222 is displayed in Fig. 6.2. For illustrative purposes these
figures also show the variation of another LNV coupling for each of these scenarios, such that
two sets of couplings, each corresponding to one Mα, are presented10.

We first discuss the scenario S2 NH, which is illustrated in Fig. 6.3. In the upper two plots,
one sees that the variation of λ′

222 mainly affects θ12 and somewhat also m2, whereas θ23 and
m3 are left relatively unchanged. In the lower two plots, where λ211 is varied, the observables
are reversely affected. This is because the two non–zero mass matrices, M2 ∼ mν2 and M3 ∼
mν3, are controlled by the λ and λ′ couplings separately (i.e. by the tree–level and loop level
contribution, respectively). Obviously, in NH sin2 θ12 is determined only by M2, whereas in IH
and DEG, the form of M1 is also relevant. Therefore, NH is the easiest scenario to fit, because
the observables can be directly related to independent sets of couplings. The mixing sin2θ13

10 We refrain from showing an additional set for the third Mα in the DEG case, because it does not give rise to
any new insights.
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Figure 6.3: Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of λ′
222

(top) and λ211 (bottom) for scenario S2 NH. The best fit values for λ′
222 and λ211 are located at the

centre of the plots. On the plots of mixing angles, the grey bands are experimentally viable regions for
(from top to bottom) sin2θ23, sin2θ12 and sin2θ13. On the plots of mass eigenvalues, values inside the
grey bands are disfavoured by cosmological considerations.

remains practically unchanged due to our ansätz in Eq. (6.23), which is designed to give a tiny
θ13.

For scenario S3 IH (Fig. 6.4), we see that here, no clean correlation exists between which
LNV parameter is varied and which observable is affected. θ12 and m2 change drastically and
are affected by both λ′

i22 ∼ M1 and λ′
i33 ∼ M2. The sharp change in sin2θ12 around the best–fit

point corresponds to “cross–overs” of mass eigenstates m1 and m2 as λ′
222 or λ′

233 is varied. The
fact that the best–fit solution lies in this steeply changing region simply reflects the fact that
for IH the two heavy neutrinos have similar masses. Incidentally, the small “suppression” at
λ′
222 ∼ −8.4 ·10−4 in the corresponding χ2 plot in Fig. 6.2 near the best–fit point corresponds to

a region where ∆m2
21 coincides with the experimental value during this cross–over. However to

a reasonable approximation the flavour content of the two mass eigenstates are now swapped,
hence sin2θ12 is different from its best–fit value.
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Figure 6.4: Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of λ′
222

(top) and λ′
233 (bottom) for scenario S3 IH. The best–fit values of λ′

222 and λ′
233 are located at the

centre of the plots. On the plots of mixing angles, the grey bands are experimentally viable regions for
(from top to bottom) sin2θ23, sin2θ12 and sin2θ13. On the plots of mass eigenvalues, values inside the
grey bands are disfavoured by cosmological considerations.

On the other hand, it is clear that m3 does not sit close to the cross–over region. Moreover,
since m3 basically contains only µ and τ flavours around the best–fit region, the proportion of
µ and τ content of the other two mass eigenstates must be the same in order for them to be
orthogonal to m3. As a consequence, the cross–over of these two states only changes sin2 θ23
mildly. As in the case of S2 NH, sin2 θ13 is designed to have a tiny value.

For the scenario S3 DEG (Fig. 6.5), the fact that the three mass scales are very close to each
other means that complete separation of the three contributions is in practice very difficult. As
in S3 IH, the best–fit point lies close to a region where cross–over of mass eigenstates take place.
In this case, two cross–overs take place near the best–fit point. For example, the non–trivial
variation of sin2θ12 with λ′

233 immediately to the right of the best–fit point corresponds to a
second cross–over of the mass eigenvectors. The fact that all three masses are quasi–degenerate
also explains the large transition of all three mixing angles. In particular, even though the
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Figure 6.5: Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of λ′
222

(top) and λ′
233 (bottom) for scenario S3 DEG. The best fit values for λ′

222 and λ′
233 are located at the

centre of the plots. On the plots of mixing angles, the grey bands are experimentally viable regions for
(from top to bottom) sin2θ23, sin2θ12 and sin2θ13. On the plots of mass eigenvalues, values inside the
grey bands are disfavoured by cosmological considerations.

coupling set is chosen to have a small sin2θ13, immediately away from the best–fit point the
mass ordering is changed, resulting in the different sin2θ13 behaviour compared with the NH
and IH cases.

Furthermore, due to the strong fine–tuning, the χ2 suppression expected as in the IH scenarios
is buried within the rapidly increasing χ2 value. We note in passing that due to this fine–tuning,
the numerical results are less stable than those in the NH and IH scenarios. This results in the
fluctuations seen in the figures11.

We now go on to discuss the scenarios S4, which represent scenarios with the smallest possible
LNV couplings to still describe the oscillation data correctly. In the S4 NH scenario, recall
that the antisymmetry of the λi33 couplings generates zeros in M3 which do not correspond
11 In fact, the tolerance parameter in SOFTSUSY needs to be set to high precision (O(10−6)) in order to produce

results comparable among different platforms.
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to the “texture zeros” given in Eq. (6.6). Therefore, linear combinations between the different
contributions to the neutrino masses (i.e. between M2 ∼ mν2 and M3 ∼ mν3) are necessary
to obtain the desired oscillation parameters. As a result, the ratio of the couplings are not
approximated by those displayed in Eq. (6.13) but instead by a linear combination of these, cf.
Ref.12. Still, the behaviour of the observables when the relevant LNV couplings are varied is
similar to the scenarios discussed above.

In the S4 IH scenario, the λ′
i33 couplings still roughly follow the expected structure and

magnitude as before in S1 to S3 IH. However, the deviations are slightly larger because of
the presence of λ couplings. In contrast to other IH scenarios, in S4 IH, M2 is generated at
tree–level from λi33 and λ322 instead of at 1–loop level from λ′

i22. The absence of λ333, due
to anti–symmetry of the first two generation indices, means that λ322 (or λ311) is needed to
“fill up” the third row/column of the tree–level matrix M2. In this scenario, all diagonal third
generation couplings are used. Consequently, the magnitude of our coupling set is the smallest
possible among the diagonal inverted hierarchy scenarios.

The ratio of the three λ couplings is approximately

(λ133 : λ233 : λ322) ∼ (1 : 1 : −16) , (6.31)

which is expected as these couplings scales as 1/(YE)ii (i = 2, 3).
We conclude in both the NH and the IH case that it is not possible to push all LNV couplings

below O(10−5). However, at this order of magnitude, displaced vertices might be observed at
colliders, depending on the benchmark point, cf. § 6.4.

6.3.3 Discussion of the Results for Off–diagonal LNV Scenarios

In S5 in Table 6.3, we present the solutions for the two off–diagonal LNV scenarios. We see
that the NH off–diagonal solution, being an example of non–hierarchical off–diagonal couplings,
is very similar to the diagonal NH solutions in structure, cf. Eq. (6.31). Obviously, because
here the generation indices of the couplings are i23/i32 instead of i22 (S2) or i33 (S3). The
order of magnitude of the couplings is somewhere between the solutions S2 and S3, mirroring
the mass hierarchy in the down–quark sector.

In scenario S5 DEG, the λ231 coupling is much larger than the other couplings, representing an
example of a strongly hierarchical off–diagonal scenario. In fact,when performing the SOFTSUSY
pre–iteration for our benchmark point, we found λ231 to be of O(1), which is inconsistent with
the requirement of perturbativity, and also violates the low–energy bounds.

To reduce the size of this coupling, a different cMSSM benchmark point is therefore chosen.
Employing a larger tanβ and also sgn(µ) = −1 is useful, as the former implies larger down–type
quark Yukawa couplings, while the latter also increases certain loop contributions to neutrino
12 It is possible to obtain other solutions to Eq. (6.4) by forming linear combinations of the Mα’s given in Eq. (6.6).

As an example we here present the NH solution with c
(3)
3 = 0 used in S4 NH:

c
(2)
1 =

√
mν2

3
+

mν3

2
,

c
(2)
2 =

mν2
3

+ mν3
2

mν2
3

, c
(2)
3 =

mν2
3

+ mν3
2

mν3
2

− mν2
3

,

c
(3)
1 =

c
(3)
2

2
=

√
mν2
3

mν3
2

mν2
3

+ mν3
2

, c
(3)
3 = 0.
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Particles Masses (GeV)
g̃ 1696

χ̃±
1 , χ̃

±
2 599 798

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4 320 599 785 799

ũ1, c̃1, t̃1 1593 1593 1431
ũ2, c̃2, t̃2 1536 1535 1281
d̃1, s̃1, b̃1 1595 1595 1427
d̃2, s̃2, b̃2 1530 1530 1358
ẽ1, µ̃1, τ̃1 665 665(663) 631(629)
ẽ2, µ̃2, τ̃2 516(510) 515 382
ν̃e, ν̃µ, ν̃τ 659 659(657) 616(614)

h0, A0,H0,H± 116 579 577 585

Table 6.4: Mass spectrum of the benchmark point BP2 in the Rp conserving limit. The notation is the
same as Table 4.1. The values in brackets denote changes when the non–zero LNV couplings in S5 DEG
is included. As expected, the dominant coupling λ231 changes the second and third generation slepton
and the (right–handed) selectron masses, but only by at most 1%.

masses. Of course, assuming a heavier mass spectrum is also helpful. In fact, a scan over the
cMSSM parameter space with the condition λ231 � O(0.1), leads to the following benchmark
point (BP2):

M1/2 = 760 GeV ,

M0 = 430 GeV ,

tanβ = 40 ,

sgn(µ) = −1 . (6.32)

The A
(λ′)
0 corresponding to this is 1059.2 GeV. The resulting mass spectrum is displayed in

Table 6.4. Compare with the original benchmark point BP, the sparticles in BP2 are somewhat
heavier than those in BP. Also, while the LSP in BP is a stau, the relatively small differences
between M1/2 and M0 in BP2 results in a neutralino LSP (χ̃0

1) instead. This leads to distinctly
different collider phenomenology, which will be briefly discussed in the next section.

6.3.4 Effects of changing the benchmark point

So far, we have only considered scenarios under the assumption of up–mixing in the quark sector
and using the A

(λ′)
0 minimum. In the rest of this section we briefly discuss changes which occur

when down–mixing is assumed or using the A
(λ)
0 minimum instead.

• A
(λ)
0 minimum: We consider as an example the scenario S2 NH. The best–fit LNV

couplings for A
(λ′)
0 = 912.3 GeV are given in the second row, first column of Table 6.2.

When using the A
(λ)
0 minimum instead (given by A

(λ)
0 = 200.6 GeV), the λ′

i22 couplings
generate M2 at tree–level whereas M3 is generated by λi11 at 1–loop level (for the A

(λ′)
0 it
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was the other way round). We obtain as a best fit

λ′
122 = 1.11 · 10−5

λ′
222 = 1.49 · 10−5

λ′
322 = −8.99 · 10−6

λ211 = 1.53 · 10−1 [b3], [b5]

λ311 = 1.59 · 10−1 [b4] (6.33)

The decrease (increase) by a factor 10 of the λ′
i22 (λi11) couplings reflects the typical

hierarchy between the tree–level and the 1–loop neutrino mass of O(102), cf. Fig. 6.1.
In contrast to the original S2 NH scenario, this scenario is not compatible with several
low–energy bounds as listed in § 5.1 due to the larger λi11 couplings.

• down–mixing: When changing the quark mixing assumption from up–type to down–
type mixing, cf. § 2.2, the LNV parameters are affected via RG running. However, the
changes when running from the unification scale down to the electroweak scale are less
than 1 percent for diagonal LNV couplings when switching from up–type to down–type
mixing. This is because for λ′ couplings involving light generations (e.g. λ′

i11), RG running
is dominated by gauge contributions. For couplings involving the third generation (e.g.
λ′
i33), the fact that the only significant mixing in the CKM matrix is between the first

two generations implies that the effect of changing the quark mixing is also small. The
bilinear LNV couplings responsible for the tree level neutrino mass matrix are dynamically
generated by λ couplings, which are of course not affected directly by changes in the quark
mixing assumptions. In models where bilinear couplings are generated by λ′ couplings,
the effect of changing the quark mixing assumption is more complicated.

Note also that for non–diagonal couplings, the changes are expected to be much larger
than for diagonal couplings. This is because YD is diagonal when assuming up–quark mix-
ing, while non–zero off–diagonal entries are present when down–quark mixing is assumed
instead. We note that similar observations are made in Ref. [134], where a single non–zero
LNV coupling is used to saturate the cosmological bound.

Nevertheless, these small changes for diagonal LNV couplings can still be important,
particularly for the IH and DEG scenarios, which are sensitive to the exact values of
the LNV parameters. On top of that, 1–loop contributions involving light quark mass
insertions can depend sensitively on the quark mixing assumption. For example, (YD)11
changes by a factor of ∼ 2 when the mixing is changed, which implies large changes in the
loop contributions involving λ′

i11, which in turn will affect all mass ordering scenarios. In
contrast, (YD)22 changes by a couple of percent, so the impact through the mass insertion
is relatively mild.

In principle, changing the mixing assumption, but retaining the same coupling values, can
affect χ2 dramatically, if the width w of the scenario is small. As a numerical example
consider a comparison of the three scenarios depicted in Fig. 6.2. S2 NH, involves λ′

i22

with a width w of O(10%). Here χ2 increases from ∼ 0 in the up–mixing case to about 3
in the down–mixing case. In contrast, in S3 IH (DEG), where the width is narrower than
1% (0.1%), changing the quark mixing assumption leads to a χ2 change of 4 (more than 6)
orders of magnitude. These changes can be compensated by refitting the LNV couplings.
It is not surprising that refitting a subset of couplings is sufficient. For example, a refit of
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S3 IH yields:

λ′
122 = 1.70 · 10−3

λ′
222 = −8.80 · 10−4

λ′
322 = 9.71 · 10−4

λ′
133 = 3.11 · 10−5

λ′
233 = 3.22 · 10−5

λ′
333 = −3.32 · 10−5 , (6.34)

where the three λ′
i22 are refitted. A different solution with a small χ2 can also be obtained

by refitting λ′
i33 alone. The solution in Eq. (6.34) differs from the original up–type mixing

solution by O(10%). This is what one might expect, bearing in mind that the changes
occurring in the CKM matrix from up–type to down–type mixing are ∼ 20%.

6.4 Collider Phenomenology

The neutrino models we have found in the previous sections lead to observable collider signatures.
We will examine in detail the collider signatures of the hierarchical B3 cMSSM scenario in § 7.
This scenario is quasi identical to the here presented scenario S4 NH, however, it is motivated
by a high energy ansatz, cf. § 2.1.1. The magnitude of the couplings in S4 NH is of the order
10−5 or 10−6. The collider phenomenology of scenarios with couplings of the same magnitude
will be very similar to the one discussed in § 2.1.1. However, if the couplings become as large as
10−3 or smaller than 10−6, the observation of resonant single slepton production or displaced
vertices at the LHC might be possible, which we now shortly discuss.

Resonant slepton production typically requires a coupling strength λ′
i11 � 10−3 for incoming

first generation quarks [102–105, 213]. For higher generation quarks an even larger coupling is
required to compensate the reduced parton luminosity. In Table 6.2, we see that our models do
not satisfy this requirement. However, by considering a scenario which combines aspects of S1
NH and S4 NH, it is possible to have a large λ′

211 while evading the low energy constraints.For
example, if we consider an "intermediate" scenario with c̃

(2)
i ∼ λ′

i11 and c̃
(3)
i ∼ λi22, which can

be achieved by using a linear combination of the original c
(α)
i ’s (similar to the construction

of S4 NH), we can evade the bounds which exclude S1 NH and obtain a NH scenario with
resonant smuon production. This is because this scenario leads to λ′

211 = O(10−3), whereas
λ′
111 ∼ O(10−4) is sufficiently small in order to be consistent with [b8], due to the fact that

c̃
(2)
1 /c̃

(2)
2 ∼ O(10−1).

Let us now consider the case of very smal LNV couplings. lThe stau lifetime can be estimated
by

ττ̃ = [Γ(τ̃ → f1 + f2)]
−1 =

16π

NcΛ2mτ̃2

= 3.3 · 10−15 sec
1

Nc

(
100GeV

mτ̃2

)(
10−5

Λ

)2

. (6.35)

Here Nc is the colour factor, which is 3 for λ′ couplings and 1 for λ couplings. We have ignored
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any factors due to stau mixing and have only considered one dominant decay mode 13. The
decay length is then given by

Lτ̃2 = γβcττ̃2

= γβ · 10−6m · 1

Nc

(
100GeV

mτ̃2

)(
10−5

Λ

)2

. (6.36)

In S4 NH the stau mass is 163 GeV and cττ̃2 ∼ 3µm. Therefore a small fraction of events, with
γβ near 10 for one of the stau LSPs could lead to detached vertices that are observable at the
LHC [214]. For a more detailed discussion of the collider phenomenological aspects, we refer the
reader to § 7.2 and Refs. [101–105, 150, 213, 215–218].

13 For a primarily right–handed stau with a dominant λij3 coupling, an extra factor of 0.5 should be included to
account for the two final state configurations νilj and νjli.

67





Chapter 7

Testing Neutrino Masses in the Hierarchical
B3 cMSSM with LHC Results

In this chapter, we work in the so–called hierarchical B3 cMSSM described in § 2.1.1. The aim is
to derive exclusion limits on the parameter space from SUSY ATLAS searches. We now shortly
describe how the LNV sector of the hierarchical B3 cMSSM is fixed by taking into account the
experimental neutrino data of § 3.5 before discussing the resulting collider signatures (§ 7.2) and
the exclusion limits (§ 7.3).

7.1 Fixing the LNV Sector of the Hierarchical B3 cMSSM

According to § 4.6, we need to fix the soft breaking scalar coupling A0 in order to obtain a
phenomenologically viable mass hierarchy in the neutrino sector. We choose A0 such that it
minimizes the λ′ contribution to neutrino masses [Eq. (6.2)]. Thus, in the hierarchical B3

cMSSM a set of 10 free parameters,

M1/2, M0, sgn(µ), tan β, 	i, 	
′
i, (7.1)

fixes the full B3 cMSSM.
We fit the lepton–number violating parameters to the most recent neutrino oscillation data,

including the mixing angle θ13 found by Daya Bay, cf. Eq. (3.29). In the quark sector, we assume
up–type–mixing. In Ref. [135], it was shown that the choice of quark mixing (e.g. mixing in the
up–type versus mixing in the down–type–sector) does not significantly influence the numerical
results at the low energy scale.

As described in § 6, it is possible to obtain the experimentally measured neutrino mass squared
differences and mixing angles by independently generating each neutrino mass with a set of three
L–violating free parameters. This means that 6 or 9 independent couplings are necessary in order
to obtain the full spectrum with either two or three massive neutrinos. However, in the case
of neutrinos in normal hierarchy mass ordering with a massless lightest neutrino, it turns out
that one can do with only 2 couplings to explain the heaviest neutrino mass, mν3 , cf. Ref. [135].
This is fortunate, because due to our hierarchical ansatz only 	′i, 	1 and 	2 have a significant
impact on the neutrino sector whereas 	3 generates only a negligible contribution to the neutrino
masses if it is of the same order of magnitude as the other couplings 1. Therefore, we generate
mν3 at tree–level via the λijk couplings, which are in turn determined by 	1 and 	2. The second
neutrino mass, mν2 is generated via λ′

ijk (determined by the 	′i) at one–loop level, whereas the
lightest neutrino must remain massless, mν1 ≈ 0.

1 Because of the antisymmetry of λijk, λ333 = 0 and �3 could only contribute to neutrino masses via λ233. This
means that for a sizable contribution, �3 must be several orders of magnitude larger than �1 or �2.
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In summary, we have 5 free L-violating parameters which control the neutrino sector, 	′i and
	1, 	2. These can be used to generate non-zero mν2 and mν3 , respectively, in accordance with the
two mass squared difference and three mixing angles from experiment. It is not easily possible
to obtain inverse hierarchy or degenerate neutrino masses in the hierarchical B3 cMSSM unless
	3 becomes several orders of magnitude larger than the other L-violating parameters.

7.1.1 Numerical tools

The low energy mass spectrum and couplings are calculated with SOFTSUSY3.3 [83]. The nu-
merical minimization of our neutrino parameter χ2 function is done with the program package
MINUIT2 [219]. The decay widths of the relevant sparticles are obtained with IsaJet7.64 [220]
and IsaWig1.200. However, the decay channels of the neutralino LSP via the sneutrino vevs
and the κi term are absent in IsaWig1.200. Therefore, we calculate decays via the bilinear L–
violating couplings with SPheno3.1 [221]. We combined all decay widths in order to calculate the
branching ratio of the sparticles. We use the parton distribution functions MRST2007 LO mod-
ified [222]. Our signal events are generated with Herwig6.510 [223]. The cross sections are nor-
malized with the NLO calculations from Prospino2.1 [224] assuming equal renormalization and
factorization scale. Our events are stored in the Monte Carlo event record format StdHep5.6.1.
We take into account detector effects by using the fast detector simulation Delphes1.9 [225],
where we choose the default ATLAS–like detector settings. Our event samples are then analyzed
with the program package ROOT [226] and we calculate the 95% and 68% confidence levels (CL)
of the exclusion limits with TRolke [227].

7.1.2 Size of the LNV parameters

For each cMSSM point we fit the L–violating parameters 	i and 	′i to the best–fit Normal
Hierarchy neutrino mass data in Eq. (3.31). We perform this fit by minimizing the χ2 function

χ2 =
1

Nobs

Nobs∑
i=1

(
f softsusy
i − fobs

i

δi

)
, (7.2)

where fobs
i are the central values of the Nobs experimental observables in Eq. (3.31), f softsusy

i are
the corresponding numerical predictions and δi are the 1σ uncertainties. Details of our numerical
procedure can be found in chapter 6 or Ref. [135]. Here, we present an example solution where
we translate the best fit values 	i and 	′i into the corresponding values of the trilinear L-violating
couplings at the unification scale:

λ133 = 1.72 · 10−6

λ233 = 2.74 · 10−6

λ′
133 = 1.13 · 10−5

λ′
233 = 3.89 · 10−5

λ′
333 = 3.11 · 10−5 (7.3)

We have used M0 = 100 GeV, M1/2 = 500 GeV, tan β = 25, sgn(µ) and A
(λ′)
0 ≈ 2M1/2.

As one can see, the λi33 and λ′
i33 couplings are between O(10−5) and O(10−6). All remaining

trilinear L–violating couplings are at least one order of magnitude smaller, below O(10−7). The
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Figure 7.1: Best–fit values of the L–violating coupling λ′
233 at the unification scale in the M0–M1/2 plane,

fixing A
(λ′)
0 ≈ 2M1/2, tanβ = 25 and sgn(µ) = +1.

couplings λ′
233 and λ′

333 tend to be the largest trilinear L–violating couplings. In Fig. 7.1, we
display the best fit value of λ′

233 in the M0–M1/2 plane. We see that the magnitude of the
L–violating couplings does not strongly depend on M0 and M1/2. Furthermore, the relative
magnitude of the L–violating couplings to each other remains roughly the same throughout the
parameter space.

Recall that the parameter 	3 is not fixed by the neutrino oscillation data in the normal
hierarchy scenario. However, we assume that 	3 is of the same order of magnitude as 	1 and 	2,
setting 	3 = 	2 in the rest of our paper 2.

We have checked all low energy constraints on the L–violating trilinear couplings [44, 205].
However, in our case the couplings are too small to have an observable impact on any low energy
observables.

7.2 Collider signatures

In this section, we investigate possible collider signatures of the hierarchical B3 cMSSM at the
LHC. The best–fit values of the L–violating couplings to neutrino data are too small to have an
observable effect on the resonant production of supersymmetric particles. Thus, pair production
of colored sparticles via strong interactions is the dominant production channel at the LHC.
Only if sleptons and gauginos are much lighter than the colored sparticles, their production rate
becomes comparable. The produced sparticles cascade decay into the LSP. In our parameter
space, we can have either a stau LSP or a neutralino LSP3. The final state collider signature is

2 �3 has no relevance for the collider signatures as long as it doesn’t become several orders of magnitude larger
than �1 and �2.

3 In principle, any sparticle could be the LSP in /Rp models since it is unstable [99]. However, since the L–
violating couplings in the hierarchical B3 cMSSM are small, the particle spectrum remains very similar to the
Rp cMSSM and thus the lighter stau is always the lightest sfermion due to large left–right mixing.
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determined by the decay properties of the LSP candidate. In the B3 cMSSM, the LSP is almost
always short–lived and decays within the detector via the L-violating interactions 4. We now
describe the final state signatures of stau LSP and neutralino LSP scenarios separately. Then
we go on to discuss in which regions of M0 −M1/2 parameter space they occur.

7.2.1 Stau LSP decay

In the parameter region where the lighter stau τ̃1 is the LSP, pair produced squarks and gluinos
at the LHC cascade decay into the LSP, producing jets and taus (tau–neutrinos) along the way,

pp → q̃q̃/q̃g̃/g̃g̃ → τ̃1τ̃1 + 2j +X, (7.4)

where j and X denote jets and additional particles of the process (such as τ or ντ ), respectively.
Note that we can have more than 2 jets in the final state if the process involves gluinos. These
additional jets are included in X, which we discuss in more detail in § 7.2.3. For example, right-
handed squarks decay into a jet and the lightest neutralino, which then typically decays into a
stau and a tau with a branching ratio of one,

q̃R q̃R → jjχ̃0
1χ̃

0
1 → jj ττ τ̃1τ̃1 . (7.5)

The stau then directly decays into two SM fermions via the trilinear L–violating couplings
λ133, λ233 and λ′

3jk, cf. Fig 7.2. Decays via the λi33 couplings are dominant, even though the
decay width via λ′

3jk is enhanced by a factor of NC = 3 and the λ′
3jk couplings are generally

larger. However, the lightest stau is mostly right–handed and thus the coupling of the stau via
λ′ is suppressed due to the small admixture with the left–handed stau. Additionally, the stau
decay via λ′

333 into a top and bottom quark is kinematically forbidden or suppressed in large
regions of parameter space. Stau decays via λ′

311 and λ′
322 are heavily suppressed due to the

smallness of the couplings.
In principle, the stau can also mix with the charged Higgs boson via κ3 and decay via the

two–body decay mode τ̃ → τν. However, we have numerically checked that stau decays via
bilinear operators are always sub–dominant in our model. We define a

• benchmark point BP1 in the stau LSP region with

M0 = 100 GeV, M1/2 = 500 GeV, tan β = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2

This benchmark point is characterized by lightest neutralino, lighter stau, gluino and squark
masses of 205 GeV, 162 GeV, 1146 GeV and 1012 GeV, respectively. The dominant LSP branch-
ing ratios for BP1 are given by

Br(τ̃−1 → τ−νe) = 0.26

Br(τ̃−1 → τ−νµ) = 0.21

Br(τ̃−1 → e−ντ ) = 0.26

Br(τ̃−1 → µ−ντ ) = 0.21

Br(τ̃−1 → s c̄ ) = 0.04 . (7.6)

4 Only in a small part of the neutralino LSP region, where M1/2 � 240 GeV, the lifetime of the LSP can become
larger than cτ � 15 mm, cf. Fig 7.6.
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τ̃1

q(�)

q′(ν ′
�)

Figure 7.2: Schematic characterization of the stau LSP decay in the hierarchical B3 cMSSM.

χ̃0

b

b̃R ν

b

χ̃0

W (Z)

�(ν)

Figure 7.3: Schematic characterization of the three–body (left) and two–body (right) decay modes of the
neutralino LSP in the hierarchical B3 cMSSM.

Note that the branching ratios into different decay channels are roughly independent of the stau
mass as long as the final state masses are negligible.

Roughly half of the staus decay into a charged lepton and neutrino, the other half decays into
a tau and neutrino. Note that we only denote electrons or muons as leptons in this paper. Since
one third of taus decays leptonically, we expect final state collider signatures with either 0, 1 or
2 leptons from the decaying stau LSPs, for 12%, 46% and 42% of events, respectively:

0	+ 2ν + 2τhad + 2j +X

1	+ 2(4)ν + 1τhad + 2j +X

2	+ 2(4, 6)ν + 2j +X (7.7)

where 	 denotes an electron or muon and τhad denotes a hadronically decaying tau. If the
lepton[s] in the 1	 or 2	 channel come from a leptonically decaying tau, the number of neutrinos
increases from 2 to 4 [6], as shown in brackets in Eq. (7.7). Due to the Majorana character
of the neutralino, both neutralinos can decay into like–charged staus and hence we can have
same–sign leptons in the final state.

7.2.2 Neutralino LSP decay

In the hierarchical B3 cMSSM, the lightest neutralino eigenstate is generally bino–like. The
production process is given by

pp → q̃q̃/q̃g̃/g̃g̃ → χ̃0
1χ̃

0
1 + 2j +X . (7.8)

The neutralino LSP can either decay via a trilinear L–violating operator into three SM fermions
or via neutralino–neutrino mixing (proportional to the bilinear L–violating couplings and the
sneutrino vevs) into a gauge/Higgs boson and a lepton, cf. Fig. 7.3.

For relatively low sfermion masses in the propagator, the trilinear three–body decay modes
dominate because the bilinear L–violating couplings are only generated radiatively via RGE
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running and the sneutrino vevs are determined to be relatively small from radiative electroweak
symmetry breaking. However, in parameter regions with heavy sfermions, the bilinear two–body
decay mode becomes dominant because the three body decay mode suffers from phase space
suppression and heavy virtual sfermions in the propagator.

First, we discuss the case where the lightest neutralino dominantly decays via the trilinear
LNV couplings, for which we define

• benchmark point BP2 with

M0 = 200 GeV, M1/2 = 400 GeV, tan β = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2

This benchmark point is characterized by lightest neutralino, lighter stau, gaugino and squark
masses of 163 GeV, 213 GeV, 937 GeV and 846 GeV, respectively. We obtain the following LSP
branching ratios for BP2:

Br(χ̃0
1 →

(–)
ν�bb̄) = 0.31

Br(χ̃0
1 →

(–)
ντbb̄) = 0.20

Br(χ̃0
1 → W±	∓) = 0.21

Br(χ̃0
1 → W±τ∓) = 0.05

Br(χ̃0
1 →

(–)
ντZ

0) = 0.13

Br(χ̃0
1 →

(–)
ντh

0) = 0.08 (7.9)

The branching ratio of the three–body decay modes (the χ̃0
1 → νbb̄ channel) is roughly 51%.

However, for this benchmark point the two–body L–violating decays via bilinear L–violating
couplings already have a sizable contribution to the LSP decays. The electron (electron-
neutrino) channel is suppressed compared to the muon decay channel because λ′

133 ∼ 0.3λ′
233,

cf. Eq. (7.3). Therefore, about 90% of our leptons are muons. Summing up the various decay
channels and including the gauge boson branching ratios, roughly 72% of neutralinos decay
without leptons, 19% with one lepton and 7% with two leptons. This leads to 52%, 27% and
14% of events with 0, 1 and 2 leptons from LSP decays, respectively.

Assuming the cascade decay processes of Eq. (7.8), dominant final state signatures are then
given by

0	+ 2ν + 2bb̄+ 2j +X

1	+ 1ν + bb̄+Whad + 2j +X

2	+ 2ν + bb̄+ 2j +X (7.10)

Next, we discuss the decay properties of the lightest neutralino in a region where the two–body
decays dominate,

• benchmark point BP3 with

M0 = 600 GeV, M1/2 = 400 GeV, tan β = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2

The lightest neutralino, lighter stau, gluino and squark masses of BP2 are 164 GeV, 579 GeV,
961 GeV and 1010 GeV, respectively. Here, the LSP decay channels are the same as for BP2;
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however, the branching ratios differ drastically:

Br(χ̃0
1 →

(–)
ν�bb̄) = 0.04

Br(χ̃0
1 →

(–)
ντbb̄) = 0.03

Br(χ̃0
1 → W±	∓) = 0.40

Br(χ̃0
1 → W±τ∓) = 0.14

Br(χ̃0
1 →

(–)
ντZ

0) = 0.27

Br(χ̃0
1 →

(–)
ντh

0) = 0.12 (7.11)

Since here the scalar masses (M0) are fairly large, the two–body neutralino decay modes via
bilinear L–violating couplings or sneutrino vevs dominate, amounting to 93%. Therefore, there
are only half as many neutralinos decaying into the 0	 channel as for BP2; twice as many decay
into the 1	 and 2	 channel. This results in final state signatures with 0,1 or 2 leptons at 24, 37
and 27%, respectively. Typical final state signatures are given by

0	+ 2ν + 2Z0
had/νν + 2j +X

1	+ 1ν + Z0
had/νν +Whad + 2j +X

2	+ 2ν + Z0
had/νν + 2j +X (7.12)

As mentioned before, the electron decay channel is suppressed by roughly a factor of 10 compared
to the muon decay channel. Additionally to the channels mentioned in Eq. (7.12), there are
12% of events with 3 or 4 leptons from LSP decay.

7.2.3 Scan in the M0 −M1/2 plane and kinematical distributions

In the subsequent numerical analysis, we perform a scan in the M0 − M1/2 plane. For this,
we define a benchmark region (BR) which contains the three benchmark points defined above
(BP1, BP2, BP3):

• Benchmark region BR (where M0, M1/2 free):

tan β = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2

BP1, BP2 and BP3 each lie in distinct sections of the BR: stau LSP region, neutralino LSP
region dominated by three-body decays and neutralino LSP region dominated by two–body
decays, respectively. This is depicted in Fig 7.4, where the ratio between three– and two–body
decay modes of the neutralino LSP is displayed. The two–body χ̃0

1 decay modes dominate at
large M1/2 and M0. As one can also see in this figure, the stau LSP region within our BR is
approximately given by

M1/2 ≥ 3 M0 − 80GeV, (7.13)

since the lightest neutralino mass is driven to larger values by the large M1/2. In general, the
lighter stau mass eigenstate is mostly right–handed. In § 7.1.2, we discussed that the absolute
magnitude of the L–violating parameters as well as the relative magnitude between them does
not vary significantly with M0 and M1/2. This implies that the LSP decay branching ratios are
hardly affected by variations of the L–violating parameters within our BR. However, the decay
modes are importantly affected by two points, as illustrated in Fig. 7.4:
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Figure 7.4: The iso curves show the logarithmic ratio between three–body and two–body decay modes of
the neutralino LSP in our benchmark region. In the stau LSP region, the two–body stau decay modes
via the trilinear RPV couplings are always dominant.

(A) Whether we are in the stau or neutralino LSP region

(B) The ratio between three– and two–body decay modes within the neutralino LSP region.

In the stau LSP region, the 1 and 2 lepton channels are dominant for large regions of parameter
space. The 0 lepton channel only becomes significant once the stau becomes heavier than the
top–quark. Then, hadronic stau decays via λ′

i33 contribute significantly and the 1 and 2 lepton
studies perform much worse, resulting in a “cutoff" of the sensitive region for stau masses above
the top mass. Now, the 0 lepton channel could further exclude parameter space; however, since
this region extends well above M1/2 ≈ 500 GeV, we expect that the amount of data collected
is not yet large enough to make exclusion possible. In the neutralino LSP region dominated
by three–body decays, we expect the 0 lepton channel to be the best, whereas in the case of
two–body decays, the 2 lepton channel should perform better.

We now come to a discussion of possible additions to the final state particles from “X" [as
contained in Eqs. (7.4) and (7.8)] and the most important distributions for our benchmark
region.

Additional jets can arise from gluinos in the hard process, since the gluino decays into quark
and (virtual) squark, leading to more jets in the final state 5. Besides gluino pair and gluino–
squark production, gluinos can occur in squark decays if M1/2 
 M0. For example, in BP3 the
gluinos are lighter than the squarks and a sizable fraction of the squarks decay into a gluino and
a quark. Thus, we expect a higher jet multiplicity than for BP1 or BP2, where mq̃ < mg̃. This
is illustrated in Fig. 7.5 (i). There, we show the distribution of the number of jets for our three
benchmark points as well as for a Rp–conserving version of BP2 and BP3 with a stable LSP
(denoted “BP2 RPC" and “BP3 RPC", respectively). One can see that for BP2 RPC, there
are on average only 2-3 jets because here squarks typically decay into a neutralino/chargino and
a quark, whereas for BP3 RPC, there are 3-4 jets. Comparing BP2 RPC to BP2, we expect
up to 4 additional b–jets from the neutralino LSP decays [Eq. (7.10)], and thus the distribution
peaks around Njet = 5 − 6, cf. Fig. 7.5 (i). Similar observations can be made for BP3. Here,
there are more jets from the (R–parity conserving) decay chain involving gluinos. However, on
average there are less jets from neutralino LSP decays, Eq. (7.12), such that the distribution
also peaks at Njet = 5−6. In the stau LSP case (BP1), the distribution peaks at Njets = 3−4.
Here there are only few jets which can be attributed to X (ie. gluino decays), as discussed
above.

Further leptons in the final state can emerge in the cascade decays of the SU(2) doublet
squarks. The latter decay into charginos and neutralinos with dominant SU(2) gaugino com-

5 Note that additional jets can also arise from QCD Bremsstrahlung
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position, which are typically χ̃±
1 and χ̃0

2 in the cMSSM. χ̃±
1 and χ̃0

2 subsequently decay either
into slepton and lepton or gauge boson/Higgs and the lightest neutralino. However, this leads
to isolated leptons in only ∼15% of events in our case, as is illustrated in Fig. 7.5 (ii) by the N�

distributions for BP2 RPC and BP3 RPC. The reason for this is that in BP2, the τ̃1 is much
lighter than the other sleptons, whereas the latter are heavier than χ̃0

2 and χ̃±
1 . Thus χ̃0

2 and χ̃±
1

dominantly decay into τ̃ τ and τ̃ ν, respectively. About one third of these τ ’s decay leptonically,
leading to final state leptons. In BP3, all sleptons are heavier than χ̃±

1 and χ̃0
2 and hence

the latter preferably decay into a gauge/Higgs boson and the lightest neutralino. Comparing
BP2 RPC and BP3 RPC with the corresponding /Rp scenarios, we clearly see that there are
significantly more leptons for BP2 and BP3 due to leptonic decays of χ̃0

1. However, there are
more entries in the 0 lepton bin for BP2 and BP3 than expected from Eqs. (7.10) and (7.12),
because some of the leptons are non-isolated or too soft or do not fall into the acceptance re-
gion of the tracking system. The same holds for BP1, which has overall the largest number of
isolated leptons; nevertheless the ratio between events with 1 lepton and 0 leptons is still less
than predicted from Eq. (7.7) 6.

In Fig. 7.5 (iii), we present the missing transverse momentum distribution. Here, we clearly
see that BP1 has the hardest distribution among all Rp violating distributions. Note that for
the two other Rp violating scenarios the missing transverse energy distribution is much softer
compared to the respective Rp conserving scenarios, due to the LSP decays.

7.3 Exclusion limits on the Hierarchical B3 cMSSM parameter
space

In this section, we further constrain the hierarchical B3 cMSSM parameter space using data
from the LHC at

√
s = 7 TeV with an integrated luminosity of up to 5 fb−1. We focus on

recent ATLAS studies with 0,1 or 2 isolated leptons, several jets and large missing transverse
momentum. A short overview over the ATLAS studies used is given in Table 7.1. Full details
of objects reconstruction, definitions of all kinematical observables and event selection cuts of
all three analyses can be found in the respective ATLAS publications [84–86] (0 lepton), [90,
91] (1 lepton) and [93] (2 leptons). We have chosen these analyses because they only rely on
simple objects such as electrons, muons, jets and missing transverse momentum in the final
state. Thus, we do not rely on complicated tau reconstruction and b–tagging algorithms, which
are difficult to simulate with the detector simulation Delphes1.9 [225]. In particular, difficulties
arise in reconstructing hadronically decaying taus [101]. Also, the published ATLAS studies for
supersymmetry involving taus [228] or b–jets [229] in the final states have smaller cross–sections
or smaller efficiencies than the multi–jet, large /pT and lepton searches. Thus, we expect the
“simple” 0-2 lepton analyses to perform better with the current amount of data. So far, the
experimental data is in agreement with the SM background expectations. We use their results
in order to derive the 68% and 95% CL exclusion regions in the M0–M1/2 parameter space.
We plan to investigate exclusion limits arising from third generation studies and multi–lepton
studies in a future publication.

ATLAS and CMS have recently published conference notes which found that the lightest
Higgs is at least heavier than 117.5 GeV at 95% CL [230, 231]. In the hierarchical B3 cMSSM,
the lightest Higgs is typically rather lighter than 116 GeV, because the value of A0 is necessarily
6 Note that for BP1 additional leptons can arise from non–vanishing branching ratios of χ̃±

1 and χ̃0
1 into first

and second generation sleptons and the corresponding leptons.
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Figure 7.5: We depict (i) the number of jets Njet, (ii) the number of isolated leptons N� with pT > 20
GeV and (iii) the missing transverse momentum (“ETMISS") for our benchmark points BP1, BP2 and
BP3. Additionally we display an Rp version of BP2 and BP3 (“BP2 RPC",“BP3 RPC"), where
the neutralino LSP is kept stable. We generated 40000 events for each benchmark point.
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0lept–SRE–m 1lept–3j 2lept–OS–4j
N� 0 1 2
Njet 6 3 ≥ 4
pTjets >(130, 60, 60, 60, 40, 40) >(100, 25, 25) >(100, 70, 70, 70)

/pT > 160 > 250 > 100

minc
eff > 1200 > 1200 –
/pT
meff

> 0.15 > 0.3 –
L 4.7 fb−1 4.7 fb−1 1.0 fb−1

Table 7.1: The main cuts used in the ATLAS studies used in this collider study. More details concerning
the cuts can be found in the relevant ATLAS studies (0 lepton [86], 1 lepton [91] and 2 lepton [93]). N�

denotes the number of isolated leptons, Njet the number of jets and pTjets specifies the minimal transverse
momentum which is required for these jets. /pT gives the minimal value of missing transverse momentum
of the event, m(inc)

eff the minimal (inclusive) effective mass and L denotes the total integrated luminosity
at 7 TeV.

fixed to be positive and similar in magnitude to 2M1/2, cf. § 7.1. This means that the stop
mixing cannot become very large and thus the loop contributions to the lightest Higgs mass are
moderate. We have checked various values of tan β and both sgn(µ) = ±1; however, we found
that the Higgs mass does not become larger than 117 GeV for M0, M1/2 < 1 TeV. Therefore, the
exclusion limits derived from this lightest Higgs mass bound would by far exceed the exclusion
limits derived from the 0, 1 and 2 lepton channels mentioned above. However, it could be
possible to soften the bound if we extend the field content of the hierarchical B3 MSSM by a
singlet, i.e. working in the next-to minimal SSM (NMSSM) [232–234]. We leave this topic for a
future investigation at a time when there is more certainty regarding the lightest Higgs mass.

Before applying the model independent cross section limits from the ATLAS searches to our
neutrino model, we checked that the Monte Carlo tools are correctly tuned. Therefore, we gener-
ated 20000 events for each grid point in the M0–M1/2 plane in the R–parity conserving cMSSM.
We determined the 95% CL exclusion region in the M0–M1/2 plane for the ATLAS “1lepton-3j”
study (cf. Table 7.1) and verified that our results are compatible with the interpretation from
ATLAS within ±30 GeV. We now discuss the 0, 1 and 2 lepton channels in detail.

7.3.1 0 lepton channel

ATLAS has used the 0 lepton channel as one of the first search channels for supersymmetry
[84–86]. So far, they have collected a total luminosity of about 4.7 fb−1 at the center of mass
energy of

√
s = 7 TeV. From the non–observation of an excess, we can derive exclusion limits on

the hierarchical B3 cMSSM. The ATLAS 0 lepton channel is divided into several signal regions
(SR). For all signal regions, the cut on /pT and the minimum requirement on pTjet of the first two
most–energetic jets are identical. However, the number of jets and the minimum pTjet cut for the
remaining jets as well as the cut on minc

eff and on the ratio /pT /meff differ for the different signal
regions.

We have examined all signal regions after applying the object reconstruction described in their
study and found that we obtain the strictest exclusion limits for the “SRE–m" signal region,
which demands 6 jets, mincl

eff > 1200 GeV and /pT
meff

> 0.15, cf. Table 7.1. We show the resulting
plot in the M0–M1/2 plane in Fig. 7.6. The exclusion limit peaks at M0 ≈ 200 GeV. This is
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Figure 7.6: Exclusion limit on our benchmark region, where tanβ = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2,

from the 0 isolated leptons, 6–jets and MET (“0lept–SRE–m") ATLAS study. The white region is
excluded at 95% confidence level (CL), the light blue is excluded at 68% CL. The grey lines denote the
gluino masses, the dashed black lines denote the squark masses (each in GeV). The black line delineates
the region (below) where the lifetime of the LSP becomes larger than cτ � 15 mm.

the region where the neutralino LSP decays dominantly via three–body decays χ̃0
1 → νbb̄, c. f.

Fig. 7.4. It was to be expected that the “SRE–m" signal region gives good exclusion limits
for this type of scenario, because if both neutralinos decay via χ̃0

1 → νbb̄, we expect at least 6
parton level jets (including b–jets). Also, we have only moderate /pT because of the three–body
decay of the neutralino, and therefore more events survive in the “SRE–m" than in the “SRE–t"
scenario (where minc

eff > 1500 GeV). Finally, leptons from the cascade decays of SU(2) doublet
squarks into χ̃±

1 and χ̃2
0 are suppressed, since the latter dominantly decay into χ̃±

1 → τ̃ ν and
χ̃0
2 → τ̃ τ .
For increasing M0, the exclusion region decreases to lower M1/2 values. We can see in Fig. 7.4

that the two–body decay mode of the neutralino becomes more important here. Thus, an
increasing number of the neutralino LSPs decay into a gauge boson and a lepton and less b–jets
are expected in the final state, so that less events pass the kinematical cuts on the final state
jets. Another effect is that for larger M0, the production cross section decreases.

Directly to the left of the peak at M0 ≈ 200 GeV, the limit drops off sharply because here the
LSP becomes the τ̃1 and there are significantly less events with 6 jets and no leptons. However,
M1/2 � 350 GeV can still be excluded at 95% CL. We would like to point out that in principle,
it is possible to obtain better exclusion limits (up to M1/2 � 400 GeV) in the stau LSP case by
using a signal region with only 4 or 5 jets. However, the 1 lepton study performs even better
and therefore we go not into detail about the results from these signal regions here.

7.3.2 1 lepton channel

Refs. [90, 91] search for multi–jet events with large missing transverse momentum and exactly
one isolated lepton. Similarly to the 0 lepton channel in the previous subsection, the 1 lepton
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channel was one of the first supersymmetry search channels and the current integrated luminosity
is 4.7 fb−1 at the center of mass energy of 7 TeV. They consider signal regions with 3– or 4–jets
with different kinematic configurations, which are optimized for the Rp cMSSM with a large
mass difference between the gluino and the LSP. Additionally, they include a soft–lepton signal
region which is sensitive to scenarios with small mass splitting between the sparticles.

Comparing the results for the different signal regions, we observe that the 3–jet signal region
(“1lept–3j” ) provides us with the best overall exclusion limits in the stau LSP region up to
M1/2 ∼ 500 GeV (i.e. better than the limits from any other signal region in the 0 to 2 lepton
channels). The main kinematic cuts of the 1lept–3j signal region are listed in Table 7.1 and
the resulting plot is shown in Fig. 7.7. Almost half of the events in the stau LSP region decay
into final states with 1 lepton, cf. § 7.2.1. Note also that the 1 lepton study [91] demands the
most stringent cut on /pT among the 0, 1 and 2 lepton studies. In the stau LSP region with
direct (two–body) leptonic decays, much more missing transverse momentum is produced than
in the neutralino LSP region. In particular in the neutralino LSP region with dominant three–
body decays into νb̄b, the amount of /pT is greatly reduced compared to the stau LSP region.
Moreover, much less charged leptons arise from the neutralino decay. Additional leptons from
the cascade decays are also heavily suppressed. Thus, we have a sharp drop of the acceptance
in the crossover region between the stau and neutralino LSP region. For larger M0 values,
eventually the two–body neutralino decay modes become dominant over the three–body decay
mode. However, the hard cut on /pT still rejects many signal events in this region.

Note that the ATLAS signal region with 1 lepton and 4–jets is also sensitive to the neutralino
LSP region besides the stau LSP region. This explains why in the old 4–jet signal region with
1 fb−1 in the muon channel, ATLAS was able to constrain the bilinear /Rp model presented
in Ref. [90] (with two–body neutralino decays) quite well. However, having in mind that in
our case we have addtional three–body decays and in the new 5 fb−1 study, the cuts are more
stringent cuts than the 1 fb−1 version and not optimized for our type of scenario, the resulting
exclusion limits on the neutralino LSP region are weaker than the limits derived in the 2 lepton
channel as shown below.

7.3.3 2 lepton channel

The ATLAS study based on final states with two leptons and missing transverse momentum
[93] has not yet been updated to include more than 1 fb−1 of data. The search is divided into
opposite–sign (OS), same–sign (SS) and flavour–subtraction (FS) signal regions where up to
4 jets are demanded besides exactly 2 leptons and a cut on /pT . We find that we obtain the
best exclusion limits with the OS signal regions. The three OS regions differ in the /pT cut, the
number of jets and the corresponding minimal pTjets cut. As in the case of the 1 lepton channel,
the OS studies with the hardest transverse missing momentum cut (“2lept–OS–2j", /pT > 250
GeV) are quite sensitive to the stau LSP region where two staus decay leptonically. However, in
the 2 lepton channel the obtained exclusion limits are ∼ 50 GeV weaker than in the “1lept–3j”
study. This is due to the stringent cuts on minc

eff and on the ratio /pT /meff in the “1lept–3j”
search channel, which yield better signal isolation and background suppression.

The OS and 4–jet channel with a moderate /pT cut of 100 GEV (“2lept–OS–4j”), described in
Table 7.1, provides us with the best exclusion limits for M0 � 300 GeV, where the neutralino
LSP decays dominantly via two–body decays as shown in Fig. 7.8. We notice a slight dip for
smaller M0 (M0∼ 200 GeV), where there are dominant three–body neutralino decays. Here, as
discussed in the previous subsections, parton–level leptons from the neutralino LSP decays or
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Figure 7.7: Exclusion limit on our benchmark region, where tanβ = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2,

from the 1 isolated lepton, 3–jets and MET (“1lept–3j") ATLAS study [91]. The white region is excluded
at 95% CL, the light blue is excluded at 68% CL. The grey lines denote the gluino masses, the dashed
black lines denote the squark masses (each in GeV). The black line delineates the region (below) where
the lifetime of the LSP becomes larger than cτ � 15 mm.

from the cascade decays of the SU(2) doublet squarks are heavily suppressed and the exclusion
limits from the 0 lepton channel are more stringent. For even smaller values of M0, we are in
the stau LSP region and the exclusion limits improve again. However, as discussed in the last
paragraph, the cuts are not optimized for a stau LSP scenario. The Emiss

T cut is the weakest
among all three analyses in Table 7.1 and the kinematic requirements on the jets are harder
compared to the “1lept–3j” search channel.

For M0 � M1/2, the gluino is generally lighter than the squarks and thus we expect a higher jet
multiplicity and in general more jets passing the kinematic cuts. However, much less transverse
momentum is generated compared to the R–parity conserving case or the stau LSP region.
Thus, the “2lept–OS–4j” yields the better overall exclusion region in the neutralino LSP region
with dominant bilinear RPV decays due to the softer Emiss

T cut compared to "0lept–SREm".
One further remark on the number of leptons in the final state: for M1/2 
 M0, the SU(2)
doublet squarks decay via a wino–like gaugino is quite sizable, although we have the competing
decay channel via an off–shell gluino. These wino–like gauginos again dominantly decay into
gauge bosons providing additional leptons in the final state.
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7.3 Exclusion limits on the Hierarchical B3 cMSSM parameter space
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Figure 7.8: Exclusion limit on our benchmark region, where tanβ = 25, sgn(µ) = 1 and A
(λ′)
0 ≈ 2M1/2,

from the 2 isolated opposite–sign leptons, 4–jets and MET (“2lept–OS–4j") ATLAS study. The white
region is excluded at 95% CL, the light blue is excluded at 68% CL. The grey lines denote the gluino
masses, the dashed black lines denote the squark masses (each in GeV). The black line delineates the
region (below) where the lifetime of the LSP becomes larger than cτ � 15 mm.
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Chapter 8

Light Stop Searches at the LHC with
Monojet Events

We consider light top squarks (stops) in the Rp–conserving MSSM at the LHC. Here, we assume
that the lightest neutralino is the lightest supersymmetric particle (LSP) and the lighter stop
is the next–to–LSP. We consider stop pair production in association with one QCD jet,

pp → t̃1 t̃
∗
1j +X, (8.1)

where X stands for the rest of the event. We assume that the mass difference between the
lightest stop and the lightest neutralino is a few tens of GeV or less, and that the on–shell
t̃1 → χ̃+

1 b and t̃1 → b χ̃0
1W decays are closed. Due to the small mass splitting to the LSP, four–

body decays like t̃1 → χ̃0
1	

+ν�b are strongly suppressed. However, the flavor changing neutral
current (FCNC) stop decay into a charm–quark and the lightest neutralino,

t̃1 → c χ̃0
1 , (8.2)

is open. This decay can only occur if t̃1 has a non–vanishing c̃ component. As pointed out in
[127, 128], such a component will be induced radiatively though CKM mixing even if it is absent
at tree level. For simplicity we assume that it has branching ratio of 100%.

The small mass difference to the LSP also implies that both charm “jets” in the signal are
rather soft.1 The charm quarks will then not be useful for suppressing backgrounds since soft
jets are ubiquitous at the LHC, and may not be detected as jets at all. Thus our signal will be
a single high pT jet with large missing energy,

pp → j /pT , (8.3)

possibly accompanied by one or more soft jet(s) from gluon radiation and the t̃1 decay products.
At the LHC, the largest contribution to stop pair production in association with a jet comes
from gluon fusion diagrams, but contributions from qg and q̄g initial states, which become more
important for large t̃1 masses, are nearly as large.2 Contributions from qq̄ annihilation are
relatively small. We perform a full leading order analysis, using exact O(α3

S) parton–level cross
sections for gg, qq̄ → t̃1 t̃

∗
1g and gq → t̃1 t̃

∗
1q.

Since most events have at least one gluon in the initial state, we expect strong QCD brems-
strahlung due to the large color charge. The QCD radiation increases with increasing stop mass.
However, the topology of the signal is still simple compared to standard supersymmetric collider

1 Unless the stop squarks themselves are highly boosted, which is true only in a tiny fraction of all signal events.
2 For light stop masses of 120 GeV, the qg contribution is already about 43% of the total cross section. It

increases to 47% for 300 GeV stops.
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signatures: a single energetic jet, which is essentially back to back to the missing transverse
momentum vector.

After shortly introducing our numerical tools, we discuss the major backgrounds in the next
section, and describe how to determine them from experimental data, including a discussion
of the resulting systematic and statistical errors. Next, we shortly discuss our numerical tools
before introducing a specific benchmark scenario. We then show the relevant kinematic distri-
butions and motivate our final cuts. We conclude the chapter with the discovery reach at the
LHC in the neutralino–stop mass plane.

8.1 Preliminaries

8.1.1 Benchmark Scenario

In the introduction, we motivated scenarios with a light stop and light neutralino in order to
be fully consistent with dark matter and electroweak baryogenesis. However, in this study we
do not only want to discuss these scenarios, but also to determine the discovery reach in the
stop–neutralino plane, where the mass difference between stop and lightest neutralino is at most
a few tens of GeV. On the one hand, scenarios with a heavier stop are expected to have a worse
signal to background ratio than those with a very light stop, due to the very quickly decreasing
production cross section. However, for heavier stops, producing an additional hard jet reduces
the cross section by a smaller factor than for light stops. We choose a scenario with a rather
large stop mass, in order to probe the discovery reach found in Ref. [130]:

m t̃1
= 220GeV, (8.4)

as a benchmark scenario. The mass of the lightest neutralino is

m χ̃0
1
= 210GeV. (8.5)

All remaining sparticles are decoupled.3

We require pT (jet) ≥ 150 GeV for the parton–level jet. The total leading order (LO) cross
section for our signal then only depends on the stop mass. The cross section for the benchmark
point is σ = 4.2 pb. We have generated 8 · 105 signal events for our benchmark point. LO
predictions for cross sections for different stop masses are listed in Table 8.1.

As described at the beginning of this chapter, we assume that all t̃1 undergo two–body decay

t̃1 → c χ̃0
1 . (8.6)

We assume that these decays are prompt; a finite impact parameter would greatly facilitate
detection of the signal [239].

3 In order to reduce stop and sbottom loop contributions to electroweak precision variables, in particular to the
ρ parameter [235–238], our t̃1 should be predominantly an SU(2) singlet. However, the stop mixing angle and
the identity of the LSP are irrelevant for our analysis. Similarly, the presence of relative light higgsino–like
chargino and neutralino states, as required for EW baryogenesis, does not affect our analysis, as long as they
are not produced in t̃1 decays. We primarily use the right–left stop mixing parameter At and the gaugino
mass M1 as parameters to obtain the desired values for m t̃1

and m χ̃0
1
, respectively.
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8.2 Backgrounds

m t̃1
[GeV] 120 140 160 180 200 220 240 260 280 300 320

σ [pb] 31 20 13 8.8 6.0 4.2 2.9 2.1 1.5 1.2 0.86

Table 8.1: Total hadronic cross sections in pb for the signal at
√
s = 14 TeV. The cross sections were

calculated with Madgraph4.5.5, with a parton–level cut pT > 150 GeV on the jet.

8.1.2 Numerical tools

The masses, couplings and branching ratios of the relevant sparticles are calculated with SPheno-
2.2.3 [240], starting from weak–scale inputs for the relevant parameters. We use the CTEQ6L1
parton distribution functions and the one–loop expression for the strong gauge coupling with
five active flavors with ΛQCD = 165 MeV [241]. Our parton–level signal events are generated
with Madgraph4.4.5 [242]. These events are then passed on to Pythia8.150 [243] for showering
and hadronization. As already mentioned, we generate our SM background events directly with
Pythia8.150 fixing the tt̄ normalization as in Table 8.2. Apart from the tt̄ sample, we employed
a parton–level cut on minimum transverse momentum of 150 GeV on our parton–level jet, which
will become the “monojet” in our signal and background; the final cut on the pT of this jet will
be much harder, so that the cut on the parton–level jet, which greatly increases the efficiency of
generating signal and background events, does not affect our final results. Our events are stored
in the Monte Carlo event record format HepMC 2.04.01 [244]. We take into account detector
effects by using the detector simulation Delphes1.9 [225], where we choose the default ATLAS–
like detector settings. Our event samples are then analyzed with the program package ROOT
[226].

We define jets using the anti−kt algorithm implemented in FastJet [245], with a cone radius
∆R =

√
(∆φ)2 + (∆η)2 = 0.7 , where ∆φ and ∆η are the difference in azimuthal angle and

rapidity, respectively. All jets have to have pT > 20 GeV. We demand that electrons have
pT (e) > 10 GeV and are isolated, i.e. that there is no other charged particle with pT > 2.0
GeV within a cone radius ∆R = 0.5. Since muons can be identified even if they are not isolated
and have quite small pT [246], we include all reconstructed muons with pT > 4 GeV. Note
that Delphes1.9 assumes a track reconstruction efficiency of only 90%, giving a substantial
probability that charged leptons are lost. Moreover, we only include true leptons, i.e. we do not
attempt to estimate the rate of fake leptons.

In Delphes1.9, the same object can in principle be reconstructed as several different objects.
E.g., an electron can be reconstructed as an electron as well as a jet. Since such double counting
of objects has to be prevented, we use an object removal procedure similar to that outlined in
Ref. [247]. However, any jet within ∆R < 0.2 of an electron (including non–isolated electrons)
will be removed if

pT (jet)− pT (e
±) < 20GeV. (8.7)

This removes “jets” whose energy is dominated by an electron, but we keep hard, hadronic jets
even if they are very close to an electron. Note that contrary to Ref. [247], we keep all isolated
electrons and all muons even if they are close to a jet.

8.2 Backgrounds

The dominant SM backgrounds are:
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process Z(→ νν̄) + j W (→ eνe, µνµ) + j W (→ τντ ) + j tt̄

σ [pb] 37 94 47 800

Table 8.2: Total hadronic cross sections in pb for the main SM backgrounds at
√
s = 14 TeV. The cross

sections were calculated with Pythia8.150 apart from tt̄ production, which is calculated in Ref. [248].
The V + j (V = W,Z) cross sections have been calculated demanding pT > 150 GeV for the parton–level
jets.

• Z(→ νν̄) + j production, i.e. Z boson production in association with a jet. The Z
boson decays into a pair of neutrinos. If the charm jets in the signal are very soft, this
background looks very similar to our signal. We will see in § 8.4 that Z(→ νν̄) + j is the
dominant irreducible background after applying all kinematic cuts. Fortunately its size
can be directly determined from data: One can measure Z(→ 	+	−) + j, where the Z
decays into a pair of either electrons or muons. From the known Z branching ratios (BRs)
one can then obtain an estimate for the background cross section. However, this procedure
will increase the statistical error, since BR(Z → 	+	−) � BR(Z → νiν̄i)/3 after summing
over 	 = e, µ and all three generations of neutrinos. Moreover, not all Z → 	+	− events
are reconstructed correctly. Including efficiencies, Ref. [132] estimated that the calibration
sample Z(→ e+e−/µ+µ−) + j is roughly a factor of 5.3 smaller than the Z(→ νν) + j
background in the signal region.4 Hence, we expect that the error of this background is√
5.3 � 2.3 times larger than the statistical error.

• W (→ 	ν) + j production, where the W decays leptonically. Unlike the signal, this back-
ground contains a charged lepton (	 = e±, µ±), and will thus resemble the signal only if
the charged lepton is not identified. This can happen when the charged lepton emerges too
close to the beam pipe or (in case of electrons) close to a jet. Since the production cross
section for W (→ 	ν) + j is larger than Z(→ νν̄) + j by a factor of ∼ 3, this will still con-
tribute significantly to the overall background, as we will see in § 8.4. The W (→ 	ν�) + j
background can be determined by extrapolation using events where the lepton is detected.

• W (→ τν) + j production, where the W decays into a tau. The reconstructed jets from
a hadronically decaying tau are in general not back to back in azimuth to the missing
momentum vector. Ref. [132] exploits this feature to suppress the tau decay channel of W+
j. However, identification of hadronically decaying τ leptons is not easy. This background
can be experimentally determined with the help of W (→ 	ν)+ j events where the charged
lepton is detected, using known tau decay properties. We (quite conservatively) assign an
overall systematic uncertainty of 10% for the total W + j background, including that from
W → 	ν� decays.

• tt̄ production (including all top decay channels). Top decays will almost always produce
two b−jets. Since we require large missing ET , at least one of the W bosons produced
in top decay will have to decay leptonically. Note that this again gives rise to a charged
lepton (e, µ) or τ , whereas the signal does not contain isolated charged leptons. However,
for hadronically decaying τ ’s, we can have large missing ET with no e or µ present. This

4 Ref. [132] cites a factor of seven between the Z → �+�− control sample and the total background from V + j
production (V = W±, Z), after applying a lepton veto in the signal. The ratio of 5.3 follows since according
to the cuts of [132], about 75% of the V + j background comes from Z(→ νν̄) + j.
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8.3 Distributions

background can again be estimated by normalizing to tt̄ events where (at least) one charged
lepton is detected. Just as for the W + j background, we assume a total systematic error
of 10%.

We consider the above default estimates of systematic errors to be conservative, since they
do not rely on Monte Carlo simulations. We expect that the SM contribution to the missing
transverse energy signal rate will be determined with at least this precision. For example W±+j
and even γ + j samples can also be used for reducing the error on the leading Z(→ νν̄) + j
background, since these classes of events have very similar QCD dynamics [249].

In principle, one should also consider single top production, since semi–leptonic top decays
can again give rise to large missing ET . However, the production cross section for single top
production is a factor of ∼ 4 smaller than for tt̄. Even though tt̄ is important for the cut
selection, we will see that in the end it only contributes 5% to the total SM background. For
these reasons, we neglect single top production as a background. We do not consider pure QCD
dijet and trijet production in our analysis, since a large /pT cut is expected to essentially remove
those backgrounds [247, 250, 251]. We also neglect gauge boson pair production as background,
since the total cross section is much smaller than that for single gauge boson plus jet production.

There are many SUSY processes leading to a monojet signature, which could be considered
to be backgrounds to our signal. LSP pair plus jet production always gives a monojet signature,
but has a very small cross section. Associate gluino plus squark production can lead to monojets
if the gluino mass is close to that of the neutralino LSP. In addition, squark pair production
can give rise to monojets, if both squarks directly decay into the LSP and one of the two jets is
lost in the beam direction or the partons from both squarks are reconstructed in the same jet.
Recently, [251] considered squark–wino production. However, as we argued in the introduction,
in order to avoid bounds from electron and neutron EDM, we assume that most superparticles
are quite heavy. Thus, the production rates of these additional supersymmetric processes are
strongly suppressed and we need only consider Standard Model backgrounds.

Estimates for the total hadronic cross sections for these SM backgrounds are given in Table 8.2.
The cross section for the tt̄ background has been taken from [248], which includes NLO correc-
tions as well as resummation of next–to–leading threshold logarithms. All other backgrounds
have been calculated to leading order using Pythia8.150 [243].

We have generated 2 · 106 Z(→ νν̄) + j events, 2 · 106 W (→ eνe, µνµ) + j events, 2 · 106
W (→ τντ ) + j events as well as 107 tt̄ events. Note that exact O(ααS) parton–level cross
sections have been used to generate the hardest jet in the W, Z+ jet backgrounds.

8.3 Distributions

In this subsection, we discuss the basic kinematic distributions and jet and particle multiplicities
for the signal (our benchmark point) as well as for the background processes. The distributions
are not stacked on each other and are shown on a logarithmic scale. All distributions are scaled
to an integrated luminosity of 100 fb−1 at

√
s = 14 TeV at the LHC.

We show in Fig. 8.1 the number of leptons (electrons and muons) for signal and background.
The signal contains very few charged leptons. In principle, semi–leptonic c → s	ν� decays can
produce leptons, but these are usually too soft to satisfy our criteria; in addition, most of the
remaining electrons are removed by our isolation criterion. The Z + j background also contains
very few leptons, since we only consider Z → νν̄ decays here. In contrast, the tt̄ background can
have up to seven charged leptons, mostly from semileptonic t → b → c → s, d decays. Note that
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Figure 8.1: Number of leptons for the signal and SM backgrounds assuming an integrated luminosity of
100 fb−1 at

√
s = 14 TeV. For the signal we assumed the benchmark scenario of § 8.1.1, i.e. mχ̃0

1
= 210

GeV and m t̃1 = 220 GeV.

we include tt̄ events where both t quarks decay fully hadronically. This background therefore
peaks at n� = 0 charged leptons. The W + j background peaks at n� = 1 charged lepton; recall
that we have only generated W → 	ν decays here, and that we show the W + j background
with W → τντ separately. In the latter case a charged lepton can arise from the leptonic decays
of the tau.

We will later apply a hard cut on missing ET . This would remove all W + j events where
the W decays hadronically, which we therefore didn’t bother to generate. Similarly, tt̄ events
can pass this cut only if they contain at least one charged lepton.5 A veto on charged leptons
will therefore efficiently remove most of the SM backgrounds, except for the contribution from
Z(→ νν̄) + j.

The distribution of the number of identified taus is shown in Fig. 8.2. Leptonically decaying
taus cannot be reconstructed; they can, however, be vetoed by charged lepton veto, if the decay
lepton is sufficiently energetic. On the other hand, taus decaying hadronically can be identified,
although tau identification is not very easy at a hadron collider. In case of hadronic tau–decays,
only 1–prong events are taken into account for the reconstruction of tau–jets in Delphes, where
77% of all hadronically decaying taus are 1–prong events. Delphes exploits that the cone of tau
jets is narrower than that of QCD jets and they state a tau–tagging efficiency of about 30% for
Z → τ+τ−. We find that the tau tagging efficiency, as estimated by Delphes, is much worse
for the tt̄ background due to the increased hadronic activity. Nevertheless the tt̄ background
has the second largest percentage of identified taus, exceeded only by W (→ τν)+ j; even in the
latter case only about 25% of all events contain an identified tau, even though all of these events
do contain a tau lepton.6 Note that we include mis–tags of QCD jets as taus, as estimated by
5 Since the other top (anti)quark might decay fully hadronically, we cannot simply enforce semi–leptonic top

decays when simulating this background.
6 It might well be possible to design a tau veto algorithm that performs better than that used by Delphes. We

have not attempted to do so since at the end the SM background will be dominated by Z → νν̄ events even
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Figure 8.2: Number of isolated hadronic taus for the signal and SM backgrounds. Parameters are as in
Fig. 8.1.

Delphes. In fact, most τ−jets identified in the signal are fakes.
Fig. 8.3 shows the number of reconstructed jets including b−jets. Jets are reconstructed with

the anti−kt jet algorithm with a cone of ∆R = 0.7. We require the jets to have minimum
transverse momentum pT > 20 GeV. We see that the signal distribution has its peak around
four jets. Jets can be created not only from the hard interaction (e.g. the jet produced explicitly
in the signal as well as in the V + j backgrounds, or the jets produced in top decays), but also
from QCD radiation in the initial and/or final state. QCD radiation is controlled by the average
partonic squared center of mass energy ŝ as well as by the color charges in the initial and final
states. As expected from the discussion in § 8, we see that the jet multiplicity of the signal
is on average larger than for the gauge boson plus jet backgrounds.7 Not surprisingly, the tt̄
background is characterized by the by far largest average jet multiplicity. In previous works,
the tt̄ background was omitted. Fig. 8.3 indicates that this background can be greatly reduced
by cutting against additional jet activity; however, such a cut will reduce the signal more than
the V + j backgrounds. Therefore, it is crucial to include the tt̄ background in our analysis in
order to determine the optimal set of cuts.

Fig. 8.4 shows the number of tagged b−jets. A jet is taggable as a b−jet if it lies in the
acceptance region of the tracking system, i.e. satisfies |η| < 2.5 in addition to the requirement
pT > 20 GeV that all jets have to fulfill, and if it is associated with the parent b−quark. Delphes
assumes a tagging efficiency of about 40% for taggable jets; the total b−tagging efficiency is thus
less than 40%. Delphes also assumes mistagging efficiencies of 10% and 1% for charm–jets and
light–flavored (or gluon) jets, respectively. Not surprisingly, the tt̄ background contains the

assuming Delphes efficiencies.
7 We have not explicitly matched the parton shower to the matrix element calculation for our signal, i.e. we

did not forbid the showering to produce jets that are even harder than the primary jet. However, we will
later demand a large cut on the minimum pT of the hardest jet. Since showering produces such energetic jets
exceedingly rarely, the error introduced by our simplified treatment should be small – certainly much smaller
than the error due to unknown NLO contributions.
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Figure 8.3: Number of jets for the signal and SM backgrounds. Parameters are as in Fig. 8.1.

largest number of b−tags, since every tt̄ event contains two b−quarks arising from top quark
decays, and additional b−quarks can emerge from gluon splitting. Unfortunately the signal
contains b−tags slightly more often than the V + j backgrounds do. This is partly due to
the presence of two c (anti)quarks, which have a relatively high probability to be mistagged as
b−jets. Moreover, at the parton–level the jet in signal events is most often a gluon, which can
split into a bb̄ pair, whereas in V + j events the parton–level jet is most of the time a quark;
signal events are therefore more likely to produce a bb̄ pair in the QCD shower. Nevertheless a
b−jet veto will suppress the tt̄ background with relatively little loss of signal.

The pT distribution of the hardest jet is given in Fig. 8.5, where we have also included the
b−jets. At very large transverse momentum, pT (jet) > 600 GeV, all curves have similar slopes,
since then the hardness of the event is determined by the pT of the hardest jet rather than
the mass of the produced particles. However, at smaller pT the V + j backgrounds have a
significantly softer spectrum than the signal and the tt̄ background; once a pair of massive
particles is produced, producing a jet with pT comparable to, or smaller than, twice the mass
of these particles is more likely than in events containing only relatively light particles. Finally,
the peaks in the distributions for the signal as well as the V + j backgrounds are due to the
parton–level cut of 150 GeV on the jet that is produced as part of the hard partonic collision.
Recall that we generated tt̄ events without requiring an additional parton, and therefore we did
not require a minimum pT (jet1) here at parton–level. As a result, the tt̄ contribution peaks at a
lower pT value (∼ mt/2, off the scale shown in Fig. 8.5) than the other processes. We conclude
from Fig. 8.5 that a lower cut of about 500 GeV on the hardest jet will improve the statistical
significance of the signal.

We see in Fig. 8.6 that the pT distribution of the second hardest jet is much softer for the
signal and the V + j backgrounds than that of the hardest jet. Recall that the first jet is
generated at parton level with pT > 150 GeV, whereas the second jet comes from QCD showers,
or, in case of the signal, possibly from stop decays; both sources give mostly soft jets, whose
spectrum is backed up against the lower cut of 20 GeV we impose on all jets. In contrast, in
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Figure 8.4: Number of tagged b−jets for the signal and SM backgrounds. Parameters are as in Fig. 8.1.
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Figure 8.5: pT distributions of the hardest jet for the signal and SM backgrounds. Parameters are as in
Fig. 8.1.
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Figure 8.6: pT distributions of the second hardest jet for the signal and SM backgrounds. Parameters
are as in Fig. 8.1.

tt̄ events the hardest and second hardest jet usually both originate from top decay. The pT
spectrum of the second hardest jet therefore peaks not much below that of the hardest jet, at
pT � 75 GeV.

From Fig. 8.3, we have seen that a veto on the second jet is necessary in order to sufficiently
suppress the tt̄ background. However, if we vetoed all jets with pT > 20 GeV, we would lose
too many signal events. We find that it is a good choice to veto all events where the second
hardest jet has pT > 100 GeV. We also examined a veto on the third hardest jet with reduced
pT threshold. This would reduce the tt̄ background even further. However, it would also remove
many signal events and thus a veto on the third jet does not increase the significance of our
signal.

Finally, Fig. 8.7 shows the missing transverse energy distributions of signal and backgrounds.
We see that the signal has the slowest fall off. Recall that we did not take into account pure
QCD backgrounds such as dijet and trijet events. Thus we need a cut on missing energy in
order to suppress these backgrounds [247]. We find that a missing transverse energy cut near
450 GeV maximizes the significance of the signal for our benchmark point. Such a hard cut on
the missing ET , together with the veto on a second hard jet, should suppress the pure QCD
background to a negligible level.

8.4 Discovery Potential at the LHC

In the previous Subsection, we have discussed the basic distributions which we use to derive
a set of kinematical cuts. Now we discuss the statistical significance for our benchmark point.
Then, we will show the discovery potential of our signal in the stop–neutralino mass plane at
the LHC for an integrated luminosity of 100 fb−1 at

√
s = 14 TeV, using the same set of cuts

that optimizes the signal significance for our benchmark point.
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Figure 8.7: Missing transverse energy distributions for the signal and SM backgrounds. Parameters are
as in Fig. 8.1.

As motivated by our discussion in § 8.3, we apply the following set of cuts:

• pT (jet1) ≥ 500 GeV, i.e. we require one hard jet with pT ≥ 500 GeV.

• /pT > 450 GeV, i.e. we demand large missing transverse energy.

• Nlepton < 1, i.e. we veto all events with a reconstructed electron or muon with |η| < 2.5.
Recall that we only include isolated electrons with pT > 10 GeV, but all muons with
pT > 4 GeV.

• Ntau < 1, i.e. we veto all events with an identified tau jet with |η| < 2.5 and pT > 20
GeV.

• Nb−jet < 1, i.e. require a veto on all tagged b−jets with pT > 20 GeV and |η| < 2.5.

• pT (jet2) < 100 GeV, i.e. we veto the existence of a second hard jet.

The numerical values of the first, second and last cut have been set by optimizing the signal
significance for our benchmark point.

In Table 8.3, we list all cuts in the first column. We display the total number of (Z → νν̄)+ j
(second column), W (→ 	ν�) + j (third column), W (→ τντ ) + j (fourth column) and tt̄ events
(fifth column) for an integrated luminosity of 100 fb−1 at the LHC with

√
s = 14 TeV. The signal

S, the resulting ratio between signal and background (B) events and the estimate significance
S/δB are given in the sixth, seventh and eighth column, respectively.

The significance of the signal depends on the error δB (8.8) of the background. In Section
8.2, we discussed the individual systematical errors. We also mentioned a data driven method
to determine the dominant Z + j background from the Z(→ 		) + j calibration channel. Our
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cut Z(→ νν̄) + j W (→ eνe, µνµ) + j W (→ τντ ) + j tt̄ signal S/B S/δB

pT (j1) > 500 GeV 27 619 69 802 35 137 2 206 070 17 797 0.008 0.08
/pT > 450 GeV 22 798 20 738 16 835 63 320 13 350 0.108 1.94
veto on e, µ 22 284 6 363 11 978 23 416 12 810 0.200 4.68

veto on isolated taus 22 221 6 274 9 031 22 848 12 727 0.21 4.96
veto on b−jets 21 295 5 968 8 617 11 424 11 064 0.23 6.94

veto on second jet 15 415 3 702 5 128 1 408 5 848 0.23 8.17
(pT (j2) ≤ 100GeV)

Table 8.3: Cut flow for the benchmark scenario of § 8.1.1 at the LHC with
√
s = 14 TeV and an integrated

luminosity of 100 fb−1. In the second last column, we present the ratio between signal and background
number of events. In the last column, we estimate the significance via δB given in Eq. (8.8)

overall error estimate is then given by

δB =

√
5.3BZ+j +

∑
i

Bi +
∑
i

(0.1Bi)2, (8.8)

i = tt̄,W(→ 	ν�) + j,W(→ τντ ) + j.

We start with a cut on the hardest jet (including b−tagged jets). After applying this cut,
tt̄ is the dominant background; it is two orders of magnitude larger than the signal and the
remaining SM background, as can be seen in the first row of Table 8.3 and Fig. 8.5. Because
of the large tt̄ background, the signal significance is still very small. Note that for lower stop
masses, a less stiff cut on the hardest jet would be slightly more efficient but we optimize our
cuts for heavier stops since we would like to determine the discovery reach.

The rather hard cut on the missing transverse energy strongly suppresses the W + j and tt̄
backgrounds, but, coming after the hard cut on the pT of the first jet, has little effect on the
signal and on the Z + j background. This holds for relatively small mass splittings between the
lighter stop and the lightest neutralino. In these scenarios (including our benchmark scenario),
the charm jets are very soft and rarely reconstructed, leading to large missing transverse energy.
As the mass splitting increases, the charm jets become harder and are more often reconstructed,
decreasing /pT . We therefore anticipate that the significance of our signal will be worse for larger
mass splittings (see below).

As we have shown in Fig. 8.1, the lepton veto should efficiently reduce the SM background,
while having little effect on the signal. We can see in Table 8.3 that the leptonic W + j
background is reduced by about a factor of three. W + j events involving leptonically decaying
taus from the W are also removed. This cut also reduces the tt̄ background significantly. Naively,
one would assume that after demanding large missing transverse energy, at least one W boson
from t → b+W or in W+j decays leptonically. However, there is a quite substantial probability
that a charged lepton is not reconstructed according to the criteria described in § IIIB. Finally,
the irreducible Z + j background is not affected by this cut.

The tau veto removes 25% of the W (→ τν) + j background events. However, nearly all tt̄
events pass the cut. Requiring a large missing transverse energy cut and a lepton veto should
mostly leave tt̄ events with one W decaying into a tau. Even so, only a few tt̄ events are removed,
since the τ tagging efficiency is very poor for tt̄ events.
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Figure 8.8: Number of signal events after isolation cuts in the stop–neutralino mass plane assuming an
integrated luminosity of 100 fb−1 at

√
s = 14 TeV. The two parallel straight lines delineate the region

where t̃1 → χ̃0
1c decays are allowed but t̃1 → χ̃0

1W
+b̄ decays are forbidden. The grey lines correspond

to 7000, 6000, 5000, 4000, 3000, 2000 and 1000 signal events (from top to bottom), respectively.

After these four cuts, the signal significance is slightly less than five, with a signal to back-
ground ratio of 0.21. At this stage tt̄ and Z + j are still the dominant backgrounds. The b−jet
veto further suppresses the tt̄ background by a factor of two. As expected, it has little effect
on the Z + j and W + j backgrounds. We saw in Fig. 4 that a relatively large fraction of the
signal events contains a tagged b−jet. Thus the veto also removes 13% of the signal events.
Nevertheless this cut increases the signal significance to 6.94.

The final cut vetoing a second hard jet is of crucial importance to further suppress the tt̄
background. We now obtain a significance of 8.17 and a rather good signal to background ratio
of about 0.23. Note that the tt̄ background is now quite insignificant, being much smaller than
the signal. It could be suppressed even further by reducing the pT threshold in the second jet
veto. However, the number of signal events is decreased more strongly by this veto than the
Z + j background, such that our overall significance would get worse.

Having discussed the signal significance for our benchmark scenario, we now want to present
results for other stop and neutralino masses. As before, we assume that all other sparticles are
effectively decoupled. For the sake of simplicity, we apply the same cuts as for the benchmark
point, i.e. the cuts in Table 8.3.

In Fig. 8.8, we present the number of signal events in the stop–neutralino mass plane applying
all cuts of Table 8.3. The number of signal events is normalized to a luminosity of 100 fb−1 at√
s = 14 TeV. We see that even after the stiff cuts listed at the beginning of this Subsection,

our O(α3
S) signal process yields in excess of 1000 signal events out to quite large stop masses,

as long as the mass splitting to the χ̃0
1 is small.

In Fig. 8.9, we show the statistical significance in the stop–neutralino mass plane for an
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Figure 8.9: Signal significance with background error estimated as in Eq. (8.8) in the stop–neutralino
mass plane assuming an integrated luminosity of 100 fb−1 at

√
s = 14 TeV. The two parallel straight

lines delineate the region where t̃1 → χ̃0
1c decays are allowed but t̃1 → χ̃0

1W
+b̄ decays are forbidden.

The three grey lines correspond to 5σ, 3σ and 2σ (from top to bottom), respectively. The short-dashed
black curve delimits the Tevatron exclusion region, whereas the long-dashed red curve denotes the lower
limit of the discovery reach of searches for light stops in events with two b−jets and large missing energy.

integrated luminosity of 100 fb−1 at
√
s = 14 TeV. We present the discovery reach corresponding

to 5σ, 3σ and 2σ, respectively; the latter should be interpreted as the region that can be excluded
at 95% c.l. if no signal is found. The stop can dominantly decay into a charm and a neutralino
for m χ̃0

1
+mc < m t̃1

< m χ̃0
1
+mW +mb, the area lying between the two straight lines in Figs. 8.9

and 8.8. The region below the short–dashed black curve is excluded by Tevatron searches at the
95% confidence level [252, 253]. Note that LEP2 experiments could already rule out t̃1 masses
below 100 GeV [254] even for very small mass splitting8. In the region to the left of the long–
dashed red curve, searches for light stops in events with two b−jets and large missing energy
[133] should have at least 5σ statistical significance.

We see from Fig. 8.9 that the discovery of stop pairs in association with a jet should be
possible for stop masses up to 290 GeV and for mass splittings between stop and neutralino
of up to 45 GeV. Stop masses up to 360 GeV can be excluded at 2σ if the mass splitting is
very small. As mentioned in the discussion of the missing ET cut as well as in Ref. [130], the
significance of our monojet signal gets worse with increasing mass splitting. Increasing the mass
splitting increases the average energy of the c−jets. This reduces the missing ET , and increases
the probability that the signal fails the veto on a second hard jet. These effects are cumulative:
the reduced missing ET could be compensated by increasing the pT of the additional parton–
level jet. However, this would also increase the pT of the t̃1 t̃

∗
1 pair, and hence the average pT

8 t̃1 pair production should be detectable at e+e− colliders for arbitrarily small mass splitting to the LSP if one
includes the effects of (both perturbative and non–pertubative) gluon radiation [255].
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of the c−jets from t̃1 decay.
The region close to the maximal allowed mass splitting (for the assumed loop–level two–body

decay of t̃1) could perhaps be probed through conventional searches for di–jet plus missing ET

events, without demanding the presence of an additional parton–level jet. Alternatively one
could reduce the missing ET cut, and try to suppress the V + j backgrounds by a cut on the
minimal multiplicity of charged particles [133]. In both cases some sort of c−jet tagging would
be helpful and perhaps even crucial. Unfortunately little is known (to us) about the capabilities
of the LHC experiments to detect charm jets (or at least to isolate an event sample enriched in
charm jets). We have therefore not attempted this approach here.

The dashed red line in Fig. 8.9 indicates that the two b−jet plus missing transverse energy
signature [133] is degraded less for larger mass splittings compared to our monojet signal. There
the presence of two hard b−jets allowed to use a much milder missing ET cut of “only” 200 GeV,
and no veto against additional jet activity was used. However, the analysis of [133] isn’t really
comparable to our present work. First of all, only statistical uncertainties were considered
in [133], whereas in the present case the uncertainty of the background, and hence the total
significance, is dominated by the systematic errors; for example, after all cuts our benchmark
point has a statistical significance of about 37, compared to our stated significance of “only”
8.17. Secondly, detector effects were not included in [133]. At least according to Delphes, this
over–estimates the efficiency of the lepton veto in reducing W + j and top backgrounds. Finally,
the red curve shown in Fig. 8.9 holds under the assumption that there is a higgsino–like chargino
just 20 GeV above the t̃1; this increases the cross section for t̃1 t̃

∗
1bb̄ production, which receives

contributions from t̃1χ̃
−
1 b̄ production followed by χ̃−

1 → t̃∗1b decays (as well as charge conjugate
processes).

As noted above, the total uncertainty of our background estimate is dominated by the sys-
tematic error on the W+1 jet background, which we estimate to be 10%. This is compatible
with recent preliminary ATLAS results on monojet searches at the 7 TeV LHC [256]. Since with
the accumulation of additional data our understanding of W +1 jet production should improve,
we consider this estimate, and the resulting estimate of the LHC reach, to be quite conservative.
For example, Ref.[132] estimates the total uncertainty from all W, Z + 1 jet backgrounds to be
7BZ+j. This would reduce the total uncertainty δB of the background after all cuts from about
715 (our estimate) to about 360, i.e. by a factor of two. Once the total error on the background
has been established, Fig. 8.8 can be used to determine the region of parameter space that can
be probed at a given significance.

Finally, our estimate of the signal S also has uncertainties. Since we define the significance
as S/δB the systematic (theoretical) uncertainty on S will only change the signal reach appre-
ciably if the uncertainty is sizable. Since we are employing leading order O(α3

S) expressions
for the parton–level signal cross section, NLO corrections might indeed be sizable. One often
attempts to estimate their magnitude by varying the factorization and renormalization scales.
For example, for m t̃1

= 120 GeV, setting both of these scales equal to the stop mass increases
the parton–level cross section before cuts to 49 pb; this is a factor 1.6 larger than the value of 31
pb we quote in Table 8.1, which has been computed using the MadGraph default scale choices.
Unfortunately no NLO calculation of squark pair production with radiation of an additional jet
has been performed as yet. All other theoretical uncertainties (due to details of the QCD shower
and fragmentation or the choice of parton distribution functions) are significantly smaller than
this estimate of the uncertainty due to NLO corrections.
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Chapter 9

Gravitino cosmology with a very light
neutralino

In the MSSM, the photon and the Z0 boson, as well as the two neutral CP–even Higgs bosons,
have SUSY spin-1/2 partners which mix. The resulting mass eigenstates are denoted neutralinos,
χ0
i , with i = 1, . . . , 4, and are ordered by mass mχ0

1
< . . . < mχ0

4
[28]. The Particle Data Group

quotes a lower mass bound on the lightest neutralino in the Rp–conserving MSSM [164]

mχ0
1
> 46 GeV , (9.1)

which is derived from the LEP chargino search under the assumption of gaugino mass univer-
sality:

M1 =
5

3
tan2 θWM2 . (9.2)

Here θW is the electroweak mixing angle. If we relax this latter assumption, the bound (9.1) no
longer applies. In fact for any value of M2, µ, and tan β there is always a M1

M1 =
M2M

2
Z sin(2β) sin2 θW

µM2 −M2
Z sin(2β) cos2 θW

(9.3)

� 2.5 GeV
(

10

tan β

)(
150 GeV

µ

)
, (9.4)

such that the lightest neutralino is massless [71, 77]. A very light or massless neutralino is
necessarily predominantly bino–like since the experimental lower bound on the chargino mass,
sets lower limits on M2 and µ [69, 74, 75]. Although Eq. (9.3) holds at tree–level, there is always
a massless solution even after including quantum corrections to the neutralino mass [77].

Such a light or even massless neutralino is consistent with all laboratory data. The processes
considered include the invisible width of the Z0, electroweak precision observables, direct pair
production, associated production, and rare meson decays. Note that a bino-like neutralino does
not couple directly to the Z0. The other production processes, including the meson decays, thus
necessarily involve virtual sleptons or squarks. If these have masses of O(200) GeV or heavier,
then all bounds are evaded — for details on the individual analyses see Refs. [69–77]. The best
possible laboratory mass measurement can be performed at a linear collider via selectron pair
production with an accuracy of order 1 GeV, depending on the selectron mass [257].

Light neutralinos can lead to rapid cooling of supernovæ, so are constrained by the broad
agreement between the expected neutrino pulse from core collapse and observations of SN 1987A
[78]. The neutralinos would be produced and interact via the exchange of virtual selectrons and
squarks. For a massless neutralino which ‘free-streams’ out of the supernova, the selectron
must be heavier than about 1.2 TeV and the squarks must be heavier than about 360 GeV.
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For light selectrons or squarks of mass ∼ 100 − 300 GeV, the neutralinos instead diffuse out
of the supernova just as the neutrinos do and thus play an important role in the supernova
dynamics. Hence lacking a detailed simulation which includes the effects of neutralino diffusion,
no definitive statement can presently be made [73, 78–80]. Recently the luminosity function of
white dwarfs has been determined to high precision [258, 259] and this may imply interesting
new bounds on light neutralinos, just as on axions.

If a neutralino is stable on cosmological time scales it can contribute to the dark matter (DM)
of the universe. If ‘cold’, then its mass is constrained from below by the usual Lee-Weinberg
bound [260–263] which depends only on the self-annihilation cross-section. This limit has been
widely discussed in the literature in the framework of the ΛCDM cosmology [264–267] and
various values are quoted for a MSSM neutralino: Mχ0

1
> 12.6 GeV [268, 269] and Mχ0

1
> 9

GeV [270, 271]. The low mass range is particularly interesting because the DAMA [272] and
CoGeNT [273] direct detection experiments have presented evidence for annual modulation
signals suggestive of a DM particle with mass of O(10) GeV.

A light neutralino with a much smaller mass is also viable as ‘warm’ or ‘hot’ DM but this
possibility has been less discussed. The observed DM density ΩDMh2 ≈ 0.11 can in principle
be entirely accounted for with warm dark matter (WDM) in the form of neutralinos having a
mass of a few keV [274]. However the usual assumption of radiation domination and entropy
conservation prior to big bang nucleosynthesis (BBN) then needs to be relaxed otherwise the relic
neutralino density is nominally much larger than required. This scenario requires a (unspecified)
late episode of entropy production or, equivalently, reheating after inflation to a rather low
temperature of a few MeV. Although models of baryogenesis with such reheating temperatures
exist [275, 276], the necessary baryon number violating interactions would result in rapid decay
of the proton to (the lighter) neutralinos. This makes such models very difficult to realise in
this context, although the situation may be somewhat eased since the maximum temperature
during reheating can be higher than the final thermalisation temperature [277].

In this chapter we focus on a light neutralino which acts as hot dark matter (HDM)1, i.e.
can suppress cosmic density fluctuations on small scales through free-streaming. In order for its
relic abundance to be small enough to be consistent with the observed small-scale structure we
require [77] following Ref.[81]:

mχ0
1
� 0.7 eV . (9.5)

analogous to Eq. (3.30) for neutrinos. Such ultralight neutralinos affect BBN by contributing
to the relativistic degrees of freedom and thus speeding up the expansion rate of the universe;
consequently neutron-proton decoupling occurs earlier and the mass fraction of primordial 4He is
increased [62]. The resulting constraint on new relativistic degrees of freedom is usually presented
as a limit on the number of additional effective SU(2) doublet neutrinos:

∆N eff
ν (χ0

1) ≡ N eff
ν − 3 . (9.6)

In § 9.1, we calculate this number in detail and compare it with observational bounds on ∆N eff
ν

from BBN [281].
Until recently, the BBN prediction and the inferred primordial 4He abundance implied ac-

1 Note that HDM cannot contribute more than a small fraction of the observed dark matter, so another particle
is required to make up the cold dark matter (CDM). Potential candidates include the gravitino [278], the axion
[279] or the axino [280].
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cording to some authors [65, 66]
∆N eff

ν � 0 . (9.7)

This is however in tension with recent measurements of the cosmic microwave background
(CMB) anisotropy by WMAP, which suggest a larger value of [63, 64]

WMAP : ∆N eff
ν = 1.34+0.86

−0.88 . (9.8)

Recent measurements of the primordial 4He abundance are also higher than reported earlier,
implying [67, 68]:

BBN : ∆N eff
ν = 0.68+0.8

−0.7 . (9.9)

Given these large uncertainties, a very light neutralino is easily accommodated, and even fa-
voured, by the BBN and CMB data. In the near future, the Planck mission [282] is foreseen to
determine N eff

ν to a higher precision of about δN eff
ν = ±0.26 [64], thus possibly constraining the

light neutralino hypothesis.
Local SUSY models necessarily include a massive gravitino [283]. Depending on its mass,

the gravitino can also contribute to ∆N eff
ν as we discuss in § 9.2. This effect is only relevant

for sub-eV mass gravitinos (for models see e.g. Ref. [284]). More commonly the gravitino has
electroweak-scale mass and its decays into the light neutralino will result in photo-dissociation of
light elements, in particular 4He [62]. The resulting (over) production of 2H and 3He is strongly
constrained observationally and we present the resulting bounds in § 9.3. In § 9.4 we examine
under which conditions the gravitino itself can be a viable DM candidate in the presence of a
very light neutralino.

9.1 Light neutralinos and nucleosynthesis

In global SUSY models, or local SUSY models with a non–relativistic gravitino, the sub–eV
neutralino is the only relativistic particle present at the onset of nucleosynthesis apart from the
usual photons, electrons and 3 types of neutrinos.

The contribution of the neutralino to the number of effective neutrino species is [62]:

∆N eff
ν (χ0

1) =
gχ0

1

2

(
Tχ0

1

Tν

)4

, (9.10)

where gχ0
1

is the number of internal degrees of freedom, equal to 2 due to the Majorana character
of the neutralino. The ratio of temperatures is given by

Tχ0
1

Tν
=

[
g∗(T ν

fr)

g∗(T
χ0
1

fr )

]1/3
, (9.11)

where T i
fr is the freeze–out temperature of particle i and

g∗(T ) =
∑

bosons

gi ·
(
Ti

T

)4

+
7

8

∑
fermions

gi ·
(
Ti

T

)4

. (9.12)

with gi being the internal relativistic degrees of freedom at temperature T . Usually Ti for a
decoupled particle species i is lower than the photon temperature T . because of subsequent
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entropy generation.

The freeze-out temperature of SU(2) doublet neutrinos is T ν
fr ∼ 2 MeV [285]. The interaction

rate Γχ0
1

of the lightest neutralino is suppressed relative to that of neutrinos [77] because the
SUSY mass scale mSUSY > MW, where mSUSY denotes the relevant SUSY particle mass involved
in the neutralino reactions. Hence the freeze-out temperature of the very light neutralino will
generally be higher than T ν

fr.

Estimating the thermally-averaged neutralino annihilation cross-section via an effective ver-
tex, we obtain the approximate interaction rate

Γχ0
1
(T ) = 2

3

4

ζ(3)

π2
G2

SUSY T 5
χ0
1
, (9.13)

where GSUSY/
√
2 = g2/(8m2

SUSY). Equating this to the Hubble expansion rate [62]

H(T ) =

√
4π3g∗(T )

45

T 2

MPl
, (9.14)

where g∗ counts the relativistic degrees of freedom, yields the approximate freeze-out temper-
ature:

T
χ0
1

fr ≈ 3
( mSUSY

200 GeV

)4/3
T ν
fr . (9.15)

Thus, for sparticle masses below ∼ 3 TeV, the neutralinos freeze–out below the temperature at
which muons annihilate [77].

We now calculate the freeze–out temperature of a pure bino–like neutralino more carefully,
considering all annihilation processes into leptons which are present at the time of neutralino
freeze–out:

χ0
1χ

0
1 → 		̄, 	 = e, νe, νµ, ντ . (9.16)

Assuming that sleptons and sneutrinos have a common mass scale mslepton, the following rela-
tions hold

σ(χ0
1χ

0
1 → 	R	̄L) = 16σ(χ0

1χ
0
1 → 	L	̄R)

= 16σ(χ0
1χ

0
1 → νν̄), (9.17)

so the total annihilation cross section into leptons is given by

σ(χ0
1χ

0
1 → 		̄) = 20σ(χ0

1χ
0
1 → 	L	̄R) , (9.18)

where we have taken the electron to be massless. The thermally-averaged cross-section is then
given by

〈σ(χ0
1χ

0
1 → 		̄)v〉 = 20

9ζ(3)2
25

3
I(1)2σ̂T 2, (9.19)

where

I(n) =

∫ ∞

0

yn+2

exp(y) + 1
(9.20)

and

σ̂ =
e4

8π cos4 θW

1

m4
slepton

(9.21)
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Figure 9.1: Freeze-out temperature of the pure bino–like neutralino as a function of the common mass
scale mslepton.

for mslepton � T . In calculating the cross-section (9.19), we have neglected the Pauli blocking
factors in the final state statistics [286].

Relating the reaction rate (9.19) to the Hubble expansion rate (9.14), we can now obtain the
freeze–out temperature for a bino–like neutralino, shown in Fig. 9.1 as a function of the common
mass scale mslepton. Note that for mslepton below a few TeV, the neutralino decouples below the
muon mass as noted earlier. Thus neutrinos and neutralinos will have the same temperature,

Tχ0
1
= Tν , (9.22)

hence during BBN,
∆N eff

ν (χ0
1) = 1 . (9.23)

However, for slepton masses above a few TeV, the neutralino freeze–out temperature is close to
the muon mass, and muon annihilation will influence the neutralino and neutrino temperature
differently. For T

χ0
1

fr � mµ, the neutrinos are heated by the muon annihilations, whereas this
affects the neutralinos only marginally. Therefore Tχ0

1
/Tν is reduced due to the conservation of

comoving entropy. The muons contribute to g∗(Tχ0
1
), such that

Tχ0
1

Tν
=

[
gγ +

7
8( ge + 3gν)

gγ +
7
8(ge + 3gν + gµ)

]1/3
=

(
43

57

)1/3

. (9.24)

Thus employing Eq. (9.10) we obtain

∆N eff
ν (χ0

1) = 0.69 , (9.25)
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which is interestingly close to the observationally inferred central value of 0.68 in Eq. (9.9).
The LHC already restricts the masses of strongly coupled SUSY particles (squarks and gluinos)
to be above several hundred GeV [287–289] and the supernova cooling argument requires the
selectron mass to also be above a TeV for a massless neutralino [73], so the picture is consistent.

Even for a neutralino freeze–out temperature somewhat below the muon mass, the effects from
muon annihilation are notable. We now determine the equivalent number of neutrino species
more carefully using the Boltzmann equation as in Refs. [285, 290], in order to determine the
effect for arbitrary slepton masses. Consider a fiducial relativistic fermion x which is decoupled
during µµ̄ annihilation, so that its number density, nx, satisfies

ṅx +
3Ṙ

R
nx = 0 . (9.26)

The Boltzmann equation controlling the number density of the lightest neutralino can then be
written as

d

dt

(
nχ0

1

nx

)
= nx〈σv〉

[(
nµ

nx

)2

− f(Tχ0
1
)

(
nχ0

1

nx

)2
]
, (9.27)

where

f(Tχ0
1
) =

[
nµ(Tχ0

1
)

nχ0
1
(Tχ0

1
)

]2
equilibrium

. (9.28)

The cross-section µµ̄ → χ0
1χ

0
1 is given by

16πs2
cos θ4W
e4

σ(µRµ̄L → χ0
1χ

0
1) = (9.29)

2(m2
µ̃− m2

µ) ln


2(m2

µ̃ −m2
µ) + s−√

s
√
s− 4m2

µ

2(m2
µ̃ −m2

µ) + s+
√
s
√
s− 4m2

µ




+
√
s
√

s− 4m2
µ

2(m2
µ̃ −m2

µ)
2 +m2

µ̃s

(m2
µ̃ −m2

µ)
2 +m2

µ̃s
. (9.30)

Since this involves a cancellation between the two terms, we Taylor expand to ensure numerical
stability:

16π
cos θ4W
e4

σ(µRµ̄L → χ0
1χ

0
1) ≈

√
1− 4m2

µ

s (s−m2
µ)

3(m2
µ̃ −m2

µ)
2

,

then take the thermal average 〈σv〉 following Ref. [291].

In order to reformulate Eq. (9.27) in terms of dimensionless quantities, we define

δ ≡
Tχ0

1
− Tx

Tx
, ε ≡ Tγ − Tx

Tx
, y ≡ mµ

Tγ
. (9.31)

Here δ measures the temperature difference between the decoupled particle x and the lightest
neutralino and thus quantifies the heating of the lightest neutralino due to µµ̄ annihilation. We
now evaluate nµ/nx numerically and expand nχ0

1
/nx ≈ 1 + 3δ so Eq. (9.27) can be written as
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[285, 290]
dδ

dy
≈ ay−2(ε− δ) , (9.32)

for δ 
 1, i.e. for small temperature differences. The prefactor a depends on the size of the
annihilation cross-section, and thus on y and the slepton mass:

a(y,ml̃) =
5.67 × 1017√

g∗
〈σv〉

GeV−2 . (9.33)

We approximate the drop in g∗ when the muons become non–relativistic by a step-function with
g∗(y < 1) = 16 and g∗(y > 1) = 12.34.

Now Tx and the photon temperature Tγ are related through entropy conservation [62]:

Tx

Tγ
=

(
43

57

)1/3

[ζ(y)]1/3 , (9.34)

where

ζ(y) = 1 +
180

43π4
×
∫ ∞

0
x2

√
x2 + y2 + x2

3
√

x2+y2

e
√

x2+y2 + 1
dx. (9.35)

We use Eqs. (9.34) and (9.35) to numerically evaluate ε(y) and then solve the differential equation
(9.32) for δ(y,ml̃). The solution asymptotically approaches a limit [denoted by δmax(ml̃)] for
y � 10 because for temperatures far below the muon mass there is no further heating of the
neutralinos from muon annihilation. This improves our estimate (9.23) to:

∆N eff
ν (χ0

1) =

(
Tχ0

1

Tν

)4

= 0.69 [1 + δmax(ml̃)]
4. (9.36)

In Fig. 9.2, we show ∆N eff
ν (χ0

1) as a function of the common slepton mass mslepton. We see that
for slepton masses above 3 TeV, our previous result of 0.69 in Eq.(9.25) is not modified. This is
because if the interaction between the neutralinos and muons is too weak, then the neutralinos
cannot stay in thermal contact with the muons. For slepton masses around 1 TeV, we get again
1 additional effective neutrino species. (Our numerical approximation is valid only for δ 
 1,
so holds down to mslepton = 0.5 TeV when δ � 0.1.)

Summarizing, the neutralino contribution to the effective number of neutrinos lies between
0.69 and 1, depending on the slepton mass as seen in Fig. 9.2. Thus, a very light neutralino is
easily accommodated by BBN and CMB data and is in fact favoured by the recent observational
indication (9.9) that Nν � 3 .

9.2 A very light neutralino and a very light gravitino

A very light gravitino (as realized e.g. in some models of gauge-mediated SUSY breaking) can
constitute HDM. For its relic density to be small enough to be consistent with the observed
small–scale structure requires [292]:

mG̃ � 15− 30 eV . (9.37)
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Figure 9.2: Contribution of the pure bino–like neutralino to the effective number of neutrinos versus the
slepton mass.

If the gravitino is heavier than the (very light) neutralino it will decay into it plus a photon with
a lifetime � 1038 s [see Eq. (9.44) below] which is well above the age of the universe ∼ 4×1017 s.
Conversely if the gravitino is lighter than the neutralino, the latter will decay to a gravitino and
a photon with lifetime [293]

τχ0
1
� 7.3 × 1041 s

(
mχ0

1

1 eV

)−5 ( mG̃

0.1 eV

)2
, (9.38)

assuming that there is no near–mass degeneracy between the neutralino and the gravitino. Again
the lifetime is well above the age of the universe, therefore we can consider both the gravitino
and the very light neutralino as effectively stable HDM.

The presence of a very light gravitino thus affects the primordial 4He abundance analogously to
a very light neutralino. However, the contribution of the gravitino to the expansion rate depends
on its mass, since it couples to other particles predominantly via its helicity–1/2 components
with the coupling strength ∆m2/(mG̃mPl), where ∆m2 is the squared mass splitting of the
superpartners [294]. For a very light gravitino, the interaction cross-section can be of order the
weak interaction, leading to later decoupling. Hence it can have a sizeable effect on BBN.

The freeze-out temperature of a very light gravitino can be estimated from the conversion
process with cross-section [295]

σ(G̃e± → e±χ0
1) =

α

9

s

m2
Plm

2
G̃

. (9.39)

We neglect self–annihilations, G̃G̃ → 		̄, γγ since the annihilation rate into photons is ∝ m4
χ0
1

[286, 296] hence suppressed for a light neutralino, while the annihilation rate into leptons is
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Figure 9.3: Contour lines for the ratio of cross-sections for neutralino self–annihilation (9.16) and
conversion/co-annihilation (9.39), in the gravitino–slepton mass plane. The shaded area indicates where
∆N total

ν = 2.

∝ T 6 [286] so falls out of equilibrium much earlier than the conversions (similarily for the wino-
like neutralino, where the annihilation rate is ∝ T 4m2

χ0
2

[286]). If this process (9.39) is dominant

over the neutralino self–annihilation process, neutralino and gravitino will co-annihilate, G̃χ0
1 →

e+e−, with a rate similar to Eq. (9.39).
After thermal averaging of the conversion rate (9.39) as before, we find

T conversion
fr � 7.51m

2/3

G̃
m

1/3
Pl g

∗1/6

≈ 100 g∗
1/6

( mG̃

10−3 eV

)2/3
MeV. (9.40)

Since the goldstino coupling is enhanced for decreasing gravitino mass, the freeze-out temper-
ature of the gravitino increases with its mass. For a gravitino mass of 5.6× 10−4 eV (7.8× 10−4

eV) its freeze-out temperature equals the muon (pion) mass, so for heavier gravitinos the contri-
bution to ∆N eff

ν will decrease. We also consider the case mG̃ = 10 eV which gives a freeze-out
temperature of O(100) GeV, thus a negligible effect on ∆N eff

ν . (Note however that T G̃
fr will now

depend on the SUSY mass spectrum because above temperatures of a GeV or so other SUSY
processses can also be in thermal equilibrium [297, 298] and Eq. (9.40) may not apply.)

We can now evaluate the contribution of the gravitino, in conjunction with the very light neut-
ralino, to the effective number of neutrino species. We need to keep in mind that the gravitino
can affect neutralino decoupling since for very large slepton masses and/or very light gravitinos,
the neutralino annihilation process χ0

1χ
0
1 → 		̄ becomes sub–dominant to the conversion process

G̃e± → e±χ0
1 and therefore neutralino and gravitino will co-annihilate with a rate similar to
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Chapter 9 Gravitino cosmology with a very light neutralino

Eq. (9.40).

In Fig. 9.3, we show contour lines for the ratio of the cross-sections for neutralino annihiliation
(9.16), and the conversion process (9.39), in the slepton–gravitino mass plane. For a ratio less
than 0.1, the freeze–out temperature of both particles is determined via the conversion process
(9.39) and TG̃ = Tχ0

1
. Hence ∆N eff

ν (G̃, χ0
1) = 1/0.69/0.57, the latter two cases corresponding

to gravitino masses above 5.6 × 10−4 eV and 7.8 × 10−4 eV, respectively [corresponding to a
freeze–out temperature below the muon and the pion mass, as determined from Eq. (9.40)]. The
corresponding equivalent number of neutrino species is:

∆N total
ν ≡ ∆N eff

ν (G̃) + ∆N eff
ν (χ0

1) = 2/1.38/1.14 . (9.41)

Thus a very light gravitino is strongly constrained by the BBN bound (9.9), a mass below
5.6× 10−4 eV being excluded at 3σ. As the gravitino mass increases, ∆N total

ν decreases because
the gravitino and neutralino freeze-out earlier, hence are colder than the neutrinos at the onset
of BBN.

One can see from Fig. 9.3 that a further increase of the gravitino mass (or smaller slepton
mass) accesses parameter regions where the neutralino annihilation process dominates over
the conversion process. When the ratio of their rates exceeds ∼ 10, the freeze–out of the
neutralino and the gravitino is governed by the processes (9.16) and (9.39) respectively. For
a slepton mass above ∼ 3 TeV, the lightest neutralino decouples above the muon mass hence
yields ∆N eff

ν (χ0
1) = 0.69. Fig. 9.2 shows that with decreasing slepton mass, this increases

to ∆N eff
ν (χ0

1) = 1 as before. Hence we obtain the same bounds on the gravitino mass for
∆N eff

ν (G̃) = 1/0.69/0.57.

In summary for a slepton mass below ∼ 1 TeV

∆N total
ν = 2/1.69/1.57 , (9.42)

while for a slepton mass above ∼ 3 TeV

∆N total
ν = 1.69/1.38/1.26 ; (9.43)

for intermediate slepton masses, there is a continuous transition between the two cases.

If the gravitino mass increases further its effect on the expansion rate continues to decrease,
e.g. for mG̃ = 10 eV (corresponding to T G̃

fr ≈ 100 GeV), we find g∗ = 395/4 or ∆N eff
ν (G̃) � 0.05.

Thus, gravitinos with mass � eV do not significantly affect the expansion rate.

Summarising, ∆N total
ν is between 1.14 and 2 for scenarios with both a relativistic neutralino

and a relativistic gravitino (when their freeze-out temperature lies between the freeze-out tem-
perature of the neutrino and the pion mass). As before we can use the Boltzmann equation
if necessary to obtain exact values for ∆N eff

ν around the mass thresholds. From Eq. (9.9),
N total

ν > 4.9 is excluded at 3σ implying a lower bound on the gravitino mass of 5.6 × 10−4 eV,
cf. Fig. 9.3. This bound is two orders of magnitude weaker than the one stated in Ref. [286]
where a model with a very light gravitino but a heavy neutralino was considered. This is because
the gravitino annihilation into di-photons or leptons is the relevant process when there is no
light neutralino, also Ref. [286] assumed a more stringent BBN limit: N total

ν < 3.6.
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9.3 Decaying Gravitinos

So far we have considered the increase in the expansion rate caused by sub–eV neutralinos and
gravitinos which are quasi–stable (cf. § 9.4). We now consider a gravitino with a mass above
O(100GeV) as would be the case in gravity mediated SUSY breaking where the gravitino sets
the mass scale of SUSY partners.

As the gravitino mass increases, the relative coupling strength of the helicity–1/2 compon-
ents, ∆m2/(mG̃mPl) decreases and the helicity–3/2 components come to dominate. These are
however also suppressed by 1/mPl hence gravitinos decouple from thermal equilibrium very
early. During reheating, gravitinos are produced thermally via two–body scattering processes
(dominantly QCD interactions) and the gravitino abundance is proportional to the reheating
temperature TR [299]. The gravitino is unstable and will decay subsequently into the very light
neutralino and a photon with lifetime [278, 299–301],

τG̃ � 4.9× 108
( m3/2

100GeV

)−3

s , (9.44)

where we have assumed for simplicity that the gravitino is the next–to–lightest SUSY particle
(NLSP) while the neutralino is the LSP. If the gravitino decays around or after BBN, the
light element abundances are affected by the decay products whether photons or hadrons. In
particular there is potential overproduction of D and 3He from photodissociation of (the much
more abundant) 4He [278, 300], while for short lifetimes, decays into hadrons have more effect
[301].

Therefore, the observationally inferred light element abundances constrain the number density
of gravitinos. For a gravitino lifetime of O(108 sec) one obtains [302, 303] a severe bound on the
abundance Y3/2 ≡ n3/2/s:

Y3/2 � 10−14

(
100GeV

mG̃

)
. (9.45)

This is proportional to the reheating temperature through [278, 299–301](
TR

1010 GeV

)
≈ 3.0× 1011 Y3/2 , (9.46)

hence the latter is constrained to be

TR � 3.0 × 107 GeV ×
(
100GeV

m3/2

)
. (9.47)

Note that a reheating temperature below O(108 GeV) is not consistent with thermal leptogenesis,
which typically requires TR ∼ 1010 GeV [304]. There are however other possible means to produce
the baryon asymmetry of the universe at lower temperature [275–277].

The contribution to the present neutralino relic density from gravitino decays is

Ωdecay
χ0
1

h2 ≈ 0.28 Y3/2

(
mχ0

1

1 eV

)
. (9.48)

i.e. negligible, such that the Cowsik–McClelland bound on the neutralino mass is unaffected.
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9.4 Quasi–stable Gravitinos

As mentioned in § 9.3, when the gravitino mass is below ∼ 100 MeV its lifetime is longer than
the age of the universe so it is quasi–stable and can constitute warm dark matter. Decaying
gravitino DM is constrained by limits on the diffuse γ–ray background. For a mass between
∼ 100 keV and ∼ 100 MeV the gravitino decays to a photon and a neutralino, and the photon
spectrum is simply

dNγ

dE
= δ(E −

mG̃

2
) . (9.49)

The γ–flux from gravitions decaying in our Milky Way halo dominates [305, 306] over the
redshifted flux from gravitino decays at cosmological distances. Using a Navarro-Frenk-White
profile for the distribution of DM in our galaxy, we obtain [307]

E2 dJ

dE
|halo ≡

2E2

8πτG̃mG̃

dNγ

dE

∫
l.o.s

〈ρhalo(�	)d�	 〉/∆Ω

= 31.1
( mG̃

1 MeV

)4
δ(E −

mG̃

2
)

MeV
cm2 str s

. (9.50)

We compare this to the measurements of the γ-ray background by COMPTEL, EGRET and
Fermi [308–310] and extract a conservative upper bound of 3× 10−2 cm−2str−1s−1MeV on the
γ-ray flux from the inner Galaxy in the relevant mass region below ∼ 100 MeV. This implies that
gravitinos with mass above ∼ 250 keV would generate a flux exceeding the observed galactic
γ-ray emission. On the other hand, constraints from small–scale structure formation set a lower
mass bound on WDM of O(keV) [311–313].

Now we consider the relic density of those gravitinos. Due to the presence of the very light
neutralino, all sparticles will decay into the latter before the onset of BBN. Therefore the
gravitino will only be produced thermally with relic density [314]

Ω3/2h
2 ≈

(
1 keV
mG̃

)(
TR

10 TeV

)(
MSUSY

200 GeV

)2

. (9.51)

This further restricts the gravitino mass and/or the reheating temperature in order not to
exceed the observed value ΩDMh2 ≈ 0.11. The least restrictive upper bound on the reheating
temperature from Eq. (9.51) is O(105 GeV) for gravitino and gaugino masses of order 100 keV
and 100 GeV, respectively. This could be alleviated if the gravitino density is diluted by the
decay of particles (such as moduli fields [301] or the saxion from the axion multiplet [315, 316]).
In this context, there have been several detailed studies on gravitinos as light DM [317–321].
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Chapter 10

Summary and Conclusion

After motivating and introducing our framework in chapters § 1 to § 3, we presented work on
several aspects of a lepton–number violating minimal supersymmetric extension of the Standard
Model, the B3 cMSSM in chapters § 4 to § 7. Then, we discussed the discovery potential of
light stops in the Rp–conserving MSSM in § 8 and finally we investigated bounds on a near
massless neutralino in the Rp–conserving MSSM due to cosmological restrictions (§ 9). First,
we analyzed in § 4 how the neutrino masses, which are naturally present in the B3 cMSSM,
depend on the input parameters at the unification scale, restricting ourselves to the case of
one single LNV coupling for simplicity. We found that the tree–level neutrino mass depends
strongly on the trilinear soft-breaking A0–parameter (and also similarly on the gaugino masses).
We conclude in § 4, that in regions of parameter space with A0 ≈ 2M1/2 (A0 ≈ M1/2/2) for
λ′
ijk|GUT �= 0 (λijk|GUT �= 0), a cancellation between the different contributions to the tree–level

mass can occur. We have explained this effect in detail and have shown that such a cancellation
is significant in large regions of the cMSSM parameter space. Although we concentrated in
this work on the B3 cMSSM model, the mechanisms described will also work in more general
lepton–number violating models.

Keeping this effect in mind, we calculated upper bounds on single trilinear LNV couplings at
the unification scale within the B3 cMSSM, which result from the cosmological bound on the
sum of neutrino masses (§ 5.3). We showed that these bounds on the couplings can be weaker
by one to two orders of magnitude compared to the ones which were previously presented in the
literature. In general, the bounds can be as weak as O(10−1). Thus other low energy bounds
become competitive. The reason for these large effects is the above mentioned A0 dependence
of the tree–level neutrino mass. For example, the bounds can be weakened by one order of
magnitude in A0 intervals of up to O(100 GeV) around A0 ≈ 2M1/2 (A0 ≈ M1/2/2), see Fig. 5.1
(Fig. 5.2). Therefore, much weaker bounds (compared to previous ones) can occur without
significant fine–tuning. In order to obtain the correct bounds in the vicinity of the tree–level
neutrino mass minimum, we included the main 1–loop contributions as listed in § 3.

The work presented in § 4 can also help to find new supersymmetric scenarios that are consist-
ent with the observed neutrino masses and mixings. We have shown how the (typically large)
hierarchy between the tree–level and 1–loop neutrino masses can systematically be reduced by
tuning (but not fine–tuning) the tri–linear soft breaking A0 parameter. Together with addi-
tional LNV couplings, one can use this mechanism to match the ratio between tree–level and
1–loop induced masses to the observed neutrino mass hierarchy. We further develop this idea
in § 6. However, in § 4.5 it was mentioned that loop corrections to the sneutrino vevs can lead
to a seizable correction of the absolute value of the neutrino masses. Also, there are further
contributions to 1–loop neutrino masses besides the dominant ΛΛ and neutral scalar–neutralino
loops discussed here. Hence, we implement a full 1–loop treatment of the neutrino sector within
the spectrum calculator SOFTSUSY, described in § 6.1.2, in order to obtain a precise description of
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neutrino masses for comparison with experimental data. We then analyze how phenomenologic-
ally viable neutrino mass and mixings can be obtained in the B3 cMSSM for the cases of normal
hierarchy (NH), inverted hierarchy (IH) and degenerate (DEG) neutrino masses. Furthermore
we have mostly focused on one benchmark point to fix the other cMSSM parameters. We have
implemented all the relevant low–energy bounds on the lepton number violating R–parity viol-
ating couplings. It turns out these kill a significant number of the best–fit solutions we find. We
have then considered five different scenarios, labelled S1 through S5. Scenarios S1 through S3
employ diagonal lepton number violating couplings Λijl and the couplings are chosen to closely
follow the structure of the tri–bi maximal mixing solutions. The three scenarios correspond to
the three different possible generations j = 1, 2, 3. Higher generations lead to smaller lepton
number violating couplings, because the corresponding Higgs Yukawa couplings which also enter
the formulae are larger. In looking for solutions, we then fit a small number of lepton number
violating couplings to the neutrino data. We need five couplings in the NH case, six in the
IH case and eight couplings for the degenerate case. Our results are presented in Table 6.2.
Solutions with large couplings, Λ = O(10−2), are mostly excluded by the low–energy bounds.
In particular this kills all S1 models, as well as the IH and DEG models in the S2 scenarios.
The NH S2, as well as the NH and DEG S3 scenarios include LLĒ couplings of order 10−2. All
other remaining scenarios have couplings 10−3 or smaller. Possible alternatives to the scenarios
S1, S2 and S3 are presented in scenarios S4 and S5. The S4 models assume ansätze with
diagonal Λ couplings but alternative methods to obtain the neutrino masses, whereas the S5
models employ off–diagonal Λ couplings. Despite the tension between the neutrino mass contri-
bution and the low energy bounds, which favor large and small LNV couplings respectively, λ
couplings of O(0.01) (e.g. S2, S3 NH) involving only the first 2 lepton generations are allowed.
However, simultaneous presence of (dominant) diagonal LNV couplings λ′

i11 and λj11 appears
to be difficult, at least with the assumed mass spectrum BP. Single coupling dominance, which
many collider studies usually assume, also appears to be consistent with neutrino oscillation
data (S5 DEG). It would therefore be interesting to study collider implications of these models
in more detail.

For this purpose, we introduce in § 7 a hierarchical ansatz for the trilinear LNV couplings in
the B3 cMSSM, which corresponds to scenario S5 NH of § 6. Here, the trilinear LNV Yukawa
couplings are related to the Higgs Yukawa couplings via six independent complex numbers 	i and
	′i. We have then determined the best fit values of the 	i and 	′i in order to obtain phenomeno-
logically viable neutrino masses and mixing angles. We find that we obtain phenomenologically
viable neutrino masses and mixings only in the case of NH neutrino masses and that the LNV
sector is unambiguously determined by neutrino oscillation data. We discuss the resulting col-
lider signals for the case of a neutralino as well as a scalar tau lightest supersymmetric particle.
We use the ATLAS searches for multi–jet events and large /pT in the 0, 1 and 2 lepton channel
with 7 TeV center–of–mass energy in order to derive exclusion limits on the parameter space
of this R–parity violating supersymmetric model. We present the 95% and 68% CL exclusion
limits in the M0–M1/2 plane for fixed sgn(µ) and tan β in Figs. 7.6- 7.8. We can exclude squark
masses below 800 GeV, and gluino masses below 700 GeV (for squark masses below 1 TeV) at
95%. These limits become more stringent at 68% CL by roughly 100 GeV. Compared to the
case of the R–parity conserving cMSSM, we obtain weaker limits using the ATLAS searches
(optimized for Rp–conserving models) because generally we have less /pT and more jets and/or
leptons.

Furthermore, we consider in § 8 light stops nearly degenerate with the lightest neutralino,
with mass splitting of at most a few tens of GeV in the Rp–conserving MSSM. In such a
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scenario the direct production of a pair of light stops in stop pair production is difficult to
detect at a hadron collider like the LHC since the decay products of the stops are quite soft.
One solution is to examine stop pair production in association with two b−jets, which could not
only serve as a stop discovery channel, but could also be used to constrain Yukawa couplings of
superparticles because mixed QCD–EW contributions are large. However, in order to determine
the value of this coupling from future data, it is necessary to know the stop mass so that the
QCD contribution can be subtracted. In this context, it is interesting to stop pair production in
association with a hard jet because here EW contributions are negligible. We analyze this process
with some significant improvements compared to previous publications. Firstly, we include the tt̄
background, which had been neglected in previous works. Secondly, we simulate the signal and
full SM background with the recent Monte Carlo simulations including a detector simulation.
Finally, we optimize the selection cuts. We find that demanding a lot of missing transverse
energy ( /pT ≥ 450GeV) and large transverse momentum of the hardest jet (pT (j1) ≥ 500GeV)
is not sufficient to see an excess above the SM background. However, additionally imposing a
lepton veto and a veto on the second jet (pT (j2) ≤ 100GeV) is very efficient for background
suppression, the remaining dominant background process being the irreducible process Z(→
νν̄) + j. Fortunately, this background can be determined experimentally from Z(→ 		) + j,
although with reduced statistics. Here, we adopted a conservative estimate of the background
uncertainty of the Z(→ νν̄) + j channel using δBZ(→νν̄)+j = 5.3BZ(→νν̄)+j . On the remaining
SM backgrounds we assum a systematic error of 10%. For our benchmark point, we show that
we can have a total signal significance exceeding 8 for an integrated luminosity of 100 fb−1 at√
s = 14 TeV, cf. Table 8.3. For the same cuts, we examine the discovery reach in the stop–

neutralino mass plane and showed that this process can probe stop masses up to 290 GeV if the
mass splitting to the LSP is very small, cf. Fig. 8.9.

Finally, we consider the effect of a stable very light neutralino on the effective number of
neutrino species during big bang nucleosynthesis in § 9. Even a massless neutralino is compatible
with all laboratory data, while the strictest astrophysical constraint is imposed by supernova
cooling and requires selectrons to be heavy (mẽ � 1TeV). For slepton masses above ∼ 3 TeV,
we arrive at the result that ∆N eff

ν (χ0
1) is 0.69 and this increases as the slepton mass decreases,

reaching 1 for slepton masses below ∼ 0.5 TeV. We also consider constraints on the gravitino
mass in the context of local SUSY with a very light neutralino. A very light gravitino will affect
the expansion rate of the universe similarly to a light neutralino. We identify the mass range
where a gravitino has a sizeable effect on the effective number of neutrino species as ∼ 10−4−10
eV. Within this range, we obtain values for ∆N eff

ν (χ0
1 & G̃) between 0.74 and 1.69, depending on

the gravitino and slepton masses. Values around 0.7 are favored by recent BBN measurements.
However, the uncertainties in the determination of 4He are still sufficiently large that we need
to await data from Planck to pin down the allowed gravitino and slepton mass. If the gravitino
is heavier than ∼ 100 MeV, it decays to the neutralino and a photon with a lifetime smaller
than the age of the universe. This results in photo-dissociation of the light elements, which
is strongly constrained observationally and translates into an upper bound on the reheating
temperature of the universe of ∼ 107 GeV for typical gravity mediated SUSY breaking models.
Note that neither the neutralino nor the gravitino can constitute the complete dark matter
in the scenarios considered so far. The mass range where the gravitino can constitute warm
dark matter is constrained by bounds from the diffuse γ-ray background, from the formation
of structure on small-scales, and from the observed DM abundance, leaving a small window of
allowed gravitino mass between 1 and 100 keV for a reheating temperature below 105 GeV.
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Appendix A

Abbreviations
B3 Baryon Triality
BBN Big Bang Nucleosynthesis
BNV baryon number violating
CKM Cabbibo–Kobayashi–Maskawa matrix
cMSSM constrained Minimal Supersymmetric extension of the Standard Model
CPE CP–even
CPO CP–odd
DEG degenerate
DM dark matter
EW electroweak
FCNC flavor changing neutral currents
Fig. Figure
HDM hot dark matter
IH Inverted Hierarchy
LEO low energy observables
LEP Large Electron–Positron Collider
LHC Large Hadron Collider
LNV lepton number violating
LSP lightest supersymmetric particle
MSSM Minimal Supersymmetric extension of the Standard Model
NH Normal Hierarchy
NLSP next–to–lightest supersymmetric particle
P6 Proton Hexality
PMNS Pontecorvo–Maki–Nakagaw–Sakata matrix
Rp R–parity
/Rp R–parity violating
Ref. Reference
REWSB radiative electroweak symmetry breaking
RG(E) Renormalization Group (Equations)
RHS right hand side
SM Standard Model of particle physics
SUSY Supersymmetry
Tab. Table
TBM tri-bi maximal mixing
QCD quantum chromodynamics
WDM warm dark matter
WMAP Wilkinson Microwave Anisotropy Probe
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Appendix B

Softsusy code

We here present parts of the new SOFTSUSY-3.2 code where we implemented the /Rp tadpoles for
REWSB. We only show the routines which calculate the 1–loop sneutrinoVEVs, not the code
which does the same for the Higgs VEVs, since the calculation is similar. More details about
the general procedure are given in Ref. [83]. We have checked that in the Rp–conserving limit
our results agree with the internal results in SOFTSUSY-3.1.5.

DoubleVector RpvNeutrino::calculateSneutrinoVevs
(const DoubleVector & sneutrinoVevs, double tol, double snuSq, double v1, double v2) {

double tb = displayTanb(), beta = atan(tb);
double vSM = displayHvev();
double mz = displayMzRun();
double sinthDRbar = calcSinthdrbar();

DoubleVector n(3);
DoubleMatrix m(3, 3), mInverse(3, 3);
DoubleMatrix i(3, 3); i(1, 1) = i(2, 2) = i(3, 3) = 1.0; /// Identity matrix

/// tree level sneutrino vevs
n = displayDr() * v2 - displaySusyMu() * v1 * displayKappa() - displayMh1lSquared() * v1;
m = displaySoftMassSquared(mLl).transpose() + (0.5 * sqr(mz) * cos(2.0 * beta)

+ sqr(sin(beta)) * sqr(mz) / sqr(vSM) * snuSq) * i
+ outerProduct(displayKappa(), displayKappa());

mInverse = m.inverse();

/// adding the 1-loop correction
n = n + calculateSneutrinoTadpoles(sinthDRbar);

return mInverse * n;
}

DoubleVector RpvNeutrino::calculateSneutrinoTadpoles(double sinthDRbar) {

double g1 = displayGaugeCoupling(1) * sqrt(0.6), g2 = displayGaugeCoupling(2);
double tanb = displayTanb(), beta = atan(tanb);

double costhDRbar = sqrt(1.0 - sqr(sinthDRbar)),
tanthDRbar = tan(asin(sinthDRbar)), tanthDRbar2 = sqr(tanthDRbar);

double vSM = displayHvev();
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DoubleVector vi = displaySneutrinoVevs();
double snuSq, v1, v2;
if (usefulVevs(vSM, vi, snuSq, v1, v2)) {

cout << "sneutrino VEVs incompatible with MZ, MW!" << endl; }
double mw = displayMwRun();
double mz = displayMzRun();
double q = displayMu();

double smu = displaySusyMu();
DoubleVector kappa = displayKappa();
DoubleVector Dr = displayDr();

DoubleMatrix ye = displayYukawaMatrix(YE);
DoubleMatrix he = displayTrilinear(EA);
DoubleMatrix yd = displayYukawaMatrix(YD);
DoubleMatrix hd = displayTrilinear(DA);
DoubleMatrix yu = displayYukawaMatrix(YU);

/// CPE/CPO scalar couplings
DoubleMatrix CPECoupling(5,5), CPOCoupling(5,5);
vector<DoubleMatrix> CPECouplings, CPOCouplings;

for (int family=1; family <=3; family++) {
for (int ii=1; ii<=5; ii++) { //initialise
for (int jj=1; jj<=5; jj++) {

CPECoupling(ii,jj) = 0.;
CPOCoupling(ii,jj) = 0.;

}}

for (int ii=1; ii<=3; ii++) { //sneutrinos
CPECoupling(ii+2, ii+2) = sqr(g2 / costhDRbar) /8.0 * vi(family);
CPOCoupling(ii+2, ii+2) = sqr(g2 / costhDRbar) /8.0 * vi(family);

if ((ii)==family) {
CPECoupling(1, ii+2) = - sqr(g2 / costhDRbar)/ 8.0 * v2;
CPECoupling(2, ii+2) = sqr(g2 / costhDRbar)/ 8.0 * v1;
CPECoupling(ii+2, 1) = CPECoupling(1, ii+2);
CPECoupling(ii+2, 2) = CPECoupling(2, ii+2);

for (int jj=1; jj<=3; jj++) {
CPECoupling(family+2, jj+2) = CPECoupling(family+2, jj+2) +

sqr(g2 / costhDRbar) /8.0 * vi(jj);
CPECoupling(jj+2, family+2) = CPECoupling(jj+2, family+2) +

sqr(g2 / costhDRbar) /8.0 * vi(jj);
}}}

/// snu-higgs1-higgs1 (down-type)
CPECoupling(2, 2) = sqr(g2 / costhDRbar) / 8.0 * vi(family);
CPOCoupling(2, 2) = sqr(g2 / costhDRbar) / 8.0 * vi(family);

/// snu-higgs2-higgs2 (up-type)
CPECoupling(1, 1) = - sqr(g2 / costhDRbar) / 8.0 * vi(family);
CPOCoupling(1, 1) = - sqr(g2 / costhDRbar) / 8.0 * vi(family);
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CPECoupling = CPEscalarMixing.transpose() * CPECoupling * CPEscalarMixing;
CPOCoupling = CPOscalarMixing.transpose() * CPOCoupling * CPOscalarMixing;

CPECouplings.push_back(CPECoupling);
CPOCouplings.push_back(CPOCoupling);

}

DoubleVector neutralCPEscalars(3), neutralCPOscalars(3);
for (int family=1; family <=3; family++) {
for (int ii=1; ii<=5; ii++) {
neutralCPEscalars(family) = neutralCPEscalars(family) +

CPECouplings[family-1](ii, ii) * a0(CPEmasses(ii), q);
neutralCPOscalars(family) = neutralCPOscalars(family) +

CPOCouplings[family-1](ii, ii) * a0(CPOmasses(ii), q);
}}

CPECouplings.clear();
CPOCouplings.clear();

DoubleVector tadpole = neutralCPEscalars + neutralCPOscalars;

///charged higgs-slepton mass matrix - order: Hu1, Hd2, tildeLi, tildeEbarj
DoubleMatrix Sleptons = calculateLNVSleptonMassMatrix(sinthDRbar);

DoubleVector SleptonMasses(8);
DoubleMatrix SleptonMixing(8, 8);
Sleptons.diagonaliseSym(SleptonMixing, SleptonMasses);
SleptonMasses = SleptonMasses.apply(ccbSqrt);

///slepton couplings
DoubleMatrix SleptonCoupling(8, 8);
vector<DoubleMatrix> SleptonCouplings;

for (int family=1; family <=3; family++) {
for (int ii=1; ii<=8; ii++) { //initialise
for (int jj=1; jj<=8; jj++) SleptonCoupling(ii, jj) = 0.;

}

SleptonCoupling(1, 1) = sqr(g2 / 2.0) * (1. - tanthDRbar2) * vi(family);
SleptonCoupling(2, 2) = -sqr(g2 / 2.0) * (1. - tanthDRbar2) * vi(family);

for (int ii=1; ii<=3; ii++) {
if (family == ii) {

SleptonCoupling(1, ii+2) = 0.25 * sqr(g2) * v2;
SleptonCoupling(2, ii+2) = 0.25 * sqr(g2) * v1;
SleptonCoupling(ii+2, 2) = 0.25 * sqr(g2) * v1;

}
SleptonCoupling(2, ii+5) = - he(family, ii) / root2;
SleptonCoupling(ii+2, ii+2) = - sqr(g2 / 2.0) * (1. - tanthDRbar2) * vi(family);
SleptonCoupling(ii+5, ii+5) = - 0.5 * sqr(g2) * tanthDRbar2 * vi(family);
SleptonCoupling(1, ii+5) = SleptonCoupling(1, ii+5) - smu / root2 * ye(family, ii);
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for (int jj=1; jj<=3; jj++) {
if (family == jj) {

SleptonCoupling(ii+2, family+2) = SleptonCoupling(ii+2, family+2)
+ sqr(g2) * 0.25 * vi(ii);

SleptonCoupling(family+2, ii+2) = SleptonCoupling(family+2, ii+2)
+ sqr(g2) * 0.25 * vi(ii);

}
SleptonCoupling(1, ii+5) = SleptonCoupling(1, ii+5) +

displayLam(family, jj, ii) / root2 * kappa(jj);
SleptonCoupling(ii+2, 2) = SleptonCoupling(ii+2, 2) -

ye(family, jj) * ye(ii, jj) * v1;
SleptonCoupling(2, 2) = SleptonCoupling(2, 2) +

ye(family, jj) * ye(ii, jj) * vi(ii);
SleptonCoupling(ii+2, jj+5) = SleptonCoupling(ii+2, jj+5) +

displayHr(LE).display(jj, family, ii) / root2;

for (int kk=1; kk<=3; kk++) {
SleptonCoupling(2, ii+2) = SleptonCoupling(2, ii+2) -

ye(kk, jj) * displayLam(family, ii, jj) * vi(kk);
SleptonCoupling(ii+2, 2) = SleptonCoupling(ii+2, 2) -

ye(family, jj) * displayLam(kk, ii, jj) * vi(kk);
SleptonCoupling(ii+2, jj+2) = SleptonCoupling(ii+2, jj+2) +

ye(ii, kk) * displayLam(family, jj, kk) * v1;
SleptonCoupling(ii+5, jj+5) = SleptonCoupling(ii+5, jj+5) +

ye(family, jj) * ye(kk, ii) * vi(kk) +
ye(kk, ii) * v1 * displayLam(family, kk, jj);

for (int ll=1; ll<=3; ll++) {
SleptonCoupling(ii+2, jj+2) = SleptonCoupling(ii+2, jj+2) +

displayLam(kk, ii, ll) * displayLam(family, jj, ll) * vi(kk);
SleptonCoupling(ii+5, jj+5) = SleptonCoupling(ii+5, jj+5) +

displayLam(kk, ll, ii) * displayLam(family, ll, jj) * vi(kk);
}}
SleptonCoupling(jj+5, ii+2) = SleptonCoupling(ii+2, jj+5);

}
SleptonCoupling(ii+2, 1) = SleptonCoupling(1, ii+2);
SleptonCoupling(ii+5, 1) = SleptonCoupling(1, ii+5);
SleptonCoupling(ii+5, 2) = SleptonCoupling(2, ii+5);

}
SleptonCoupling = SleptonMixing.transpose() * SleptonCoupling * SleptonMixing;
SleptonCouplings.push_back(SleptonCoupling);
}

DoubleVector sleptons(3), cgb(3), chiggs(3), sleps(3);
for (int family=1; family<=3; family++) {

for (int II=1; II<=8; II++) {
sleptons(family) = sleptons(family) +

SleptonCouplings[family-1](II, II) * a0(SleptonMasses(II), q);

if (II>=2 && II<=7) sleps(family) = sleps(family) +
SleptonCouplings[family-1](II, II) * a0(SleptonMasses(II), q);

}
cgb(family) = cgb(family) + SleptonCouplings[family-1](1, 1) *
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a0(SleptonMasses(1), q);
chiggs(family) = chiggs(family) + SleptonCouplings[family-1](8, 8) *

a0(SleptonMasses(8), q);
}
tadpole = tadpole + sleptons;

SleptonCouplings.clear();

/// squark mass matrices
DoubleMatrix UpSquarks = calculateLNVUpSquarkMassMatrix(sinthDRbar),
DownSquarks = calculateLNVDownSquarkMassMatrix(sinthDRbar);

DoubleVector UpSquarkMasses(6), DownSquarkMasses(6);
DoubleMatrix UpSquarkMixing(6, 6), DownSquarkMixing(6, 6);
UpSquarks.diagonaliseSym(UpSquarkMixing, UpSquarkMasses);
DownSquarks.diagonaliseSym(DownSquarkMixing, DownSquarkMasses);

UpSquarkMasses = UpSquarkMasses.apply(ccbSqrt);
DownSquarkMasses = DownSquarkMasses.apply(ccbSqrt);

/// squark couplings
DoubleMatrix UpSquarkCoupling(6, 6), DownSquarkCoupling(6, 6);
vector<DoubleMatrix> UpSquarkCouplings, DownSquarkCouplings;

for (int family=1; family <=3; family++) {
/// initialise
for (int ii=1; ii<=6; ii++) {
for (int jj=1; jj<=6; jj++) {

UpSquarkCoupling(ii, jj) = 0.;
DownSquarkCoupling(ii, jj) = 0.;

}}
for (int ii=1; ii<=3; ii++) {

UpSquarkCoupling(ii, ii) = sqr(g2 / 2.0) * (1. - tanthDRbar2 / 3.0) * vi(family);
UpSquarkCoupling(ii+3, ii+3) = sqr(g2) * tanthDRbar2 / 3.0 * vi(family);

DownSquarkCoupling(ii,ii) = - sqr(g2 / 2.0) * (1. + tanthDRbar2 / 3.0) * vi(family);
DownSquarkCoupling(ii+3,ii+3) = - sqr(g2) * tanthDRbar2 / 6.0 * vi(family);

for (int jj=1; jj<=3; jj++) {
UpSquarkCoupling(ii, jj+3) = - kappa(family) / root2 * yu(ii, jj);
UpSquarkCoupling(jj+3, ii) = UpSquarkCoupling(ii, jj+3);
DownSquarkCoupling(ii, jj+3) = displayHr(LD).display(jj, family, ii) / root2;
DownSquarkCoupling(jj+3, ii) = DownSquarkCoupling(ii, jj+3);

for (int kk=1; kk<=3; kk++) {
DownSquarkCoupling(ii, jj) = DownSquarkCoupling(ii, jj) +

displayLamPrime(family, ii, kk) * yd(jj, kk) * v1;
DownSquarkCoupling(ii+3, jj+3) = DownSquarkCoupling(ii+3, jj+3) +

yd(kk, jj) * displayLamPrime(family, kk, ii) * v1;

for (int ll=1; ll<=3; ll++) {
DownSquarkCoupling(ii, jj) = DownSquarkCoupling(ii, jj) +

displayLamPrime(ll, jj, kk) * vi(ll) * displayLamPrime(family, ii, kk);
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DownSquarkCoupling(ii+3, jj+3) = DownSquarkCoupling(ii+3, jj+3) +
displayLamPrime(kk, ll, ii) * vi(kk) * displayLamPrime(family, ll, jj);

}}}}
UpSquarkCoupling = UpSquarkMixing.transpose() * UpSquarkCoupling * UpSquarkMixing;
DownSquarkCoupling = DownSquarkMixing.transpose() * DownSquarkCoupling * DownSquarkMixing;

UpSquarkCouplings.push_back(UpSquarkCoupling);
DownSquarkCouplings.push_back(DownSquarkCoupling);
}
DoubleVector squarks(3);
for (int II=1; II<=6; II++) {

for (int family=1; family<=3; family++) {
squarks(family) = squarks(family) + 3.0 *

UpSquarkCouplings[family-1](II, II) * a0(UpSquarkMasses(II), q);
squarks(family) = squarks(family) + 3.0 *

DownSquarkCouplings[family-1](II, II) * a0(DownSquarkMasses(II), q);
}}
tadpole = tadpole + squarks;

UpSquarkCouplings.clear();
DownSquarkCouplings.clear();

///Quarks
DoubleVector quarks(3), DownMasses(3);
DoubleMatrix DownMixingU(3, 3), DownMixingV(3, 3), DownCoupling(3, 3);
vector<DoubleMatrix> DownCouplings;

DoubleMatrix md = (yd * v1 + displayLambda(LD).dotProd(vi, 2)) / root2;
md.diagonalise(DownMixingU, DownMixingV, DownMasses);

for (int family=1; family<=3; family++) {
for (int ii=1; ii<=3; ii++) {
for (int jj=1; jj<=3; jj++) {

DownCoupling(ii, jj) = displayLamPrime(family, ii,jj) / root2;
}}
DownCoupling = DownMixingU.transpose() * DownCoupling * DownMixingV;
DownCouplings.push_back(DownCoupling);

}
for (int family=1; family<=3; family++) {
for (int ii=1; ii<=3; ii++) {
quarks(family) = quarks(family) - 6.0 * DownCouplings[family-1](ii, ii) *

DownMasses(ii) * a0(DownMasses(ii), q) * 2.0;
}}
tadpole = tadpole + quarks;
DownCouplings.clear();

/// Weak bosons
DoubleVector gaugeBosons(3);
gaugeBosons = vi * (3.0 * sqr(g2) / 4.0 * (2.0 * a0(mw, q) + a0(mz, q) / sqr(costhDRbar)));
tadpole = tadpole + gaugeBosons;

/// chargino-charged lepton mass matrix in basis (W-, Hd-, l-) M (W+, hu+, ebar+)
DoubleMatrix Charginos = chargedLeptons(vSM);
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DoubleVector CharginoMasses(5);
DoubleMatrix CharginoMixingU(5, 5), CharginoMixingV(5, 5);
Charginos.diagonalise(CharginoMixingU, CharginoMixingV, CharginoMasses);

/// chargino couplings
DoubleMatrix CharginoCoupling(5, 5);
vector<DoubleMatrix> CharginoCouplings;

for (int family=1; family<=3; family++) {
for (int ii=1; ii<=5; ii++) { for (int jj=1; jj<=5; jj++) { //initialise

CharginoCoupling(ii, jj) = 0.0; }
}
CharginoCoupling(family+2, 1) = 2.0 * g2 / root2;
for (int ii=1; ii<=3; ii++) {
CharginoCoupling(2, ii+2) = - 2.0 * ye(family, ii) / root2;
for (int jj=1; jj<=3; jj++) {

CharginoCoupling(ii+2, jj+2) = 2.0 * displayLam(family, ii, jj) / root2;
}}
CharginoCoupling = CharginoMixingU.transpose() * CharginoCoupling * CharginoMixingV;
CharginoCouplings.push_back(CharginoCoupling);

}
DoubleVector charginos(3);
for (int family=1; family<=3; family++) {
for (int II=1; II<=5; II++) {
charginos(family) = charginos(family) - 2.0 * CharginoCouplings[family-1](II, II) *

CharginoMasses(II) * a0(CharginoMasses(II), q);
}}
tadpole = tadpole + charginos;

CharginoCouplings.clear();

/// neutralino-neutrino mass matrix
DoubleMatrix Neutralinos = neutralinoMassMatrix();

/// Swap rows and columns to the format (Bino, Wino, Hu, Hd, nui)
Neutralinos.swaprows(1, 4); Neutralinos.swapcols(1, 4);
Neutralinos.swaprows(2, 5); Neutralinos.swapcols(2, 5);
Neutralinos.swaprows(3, 7); Neutralinos.swapcols(3, 7);
Neutralinos.swaprows(6, 4); Neutralinos.swapcols(6, 4);
Neutralinos.swaprows(6, 5); Neutralinos.swapcols(6, 5);

DoubleVector NeutralinoMasses(7);
DoubleMatrix NeutralinoMixing(7, 7);
Neutralinos.diagonaliseSym(NeutralinoMixing, NeutralinoMasses);

/// neutralino couplings
DoubleMatrix NeutralinoCoupling(7, 7);
vector<DoubleMatrix> NeutralinoCouplings;

for (int family=1; family<=3; family++) {
for (int ii=1; ii<=7; ii++) {

for (int jj=1; jj<=7; jj++) { //initialise
NeutralinoCoupling(ii, jj) = 0.0;
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}}
NeutralinoCoupling(1, family+4) = - g2 * tanthDRbar;
NeutralinoCoupling(2, family+4) = g2;

NeutralinoCoupling.symmetrise();
NeutralinoCoupling = NeutralinoMixing.transpose() * NeutralinoCoupling *

NeutralinoMixing;

NeutralinoCouplings.push_back(NeutralinoCoupling);
}
DoubleVector neutralinos(3);
for (int family=1; family<=3; family++) {
for (int II=1; II<=7; II++) {
neutralinos(family) = neutralinos(family) - NeutralinoCouplings[family-1](II, II)

* NeutralinoMasses(II) * a0(NeutralinoMasses(II), q);
}}
tadpole = tadpole + neutralinos;

NeutralinoCouplings.clear();

for (int family = 1; family<=3; family++) {
tadpole(family) = tadpole(family) / (16.0 * sqr(PI));

}
return tadpole;

}
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